filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_4710
# Author: Yi Jiang, <[email protected]>, Institute of Physics, Chinese Academy of Sciences # Adapted from the kdotp-symmetry package by: Dominik Gresch <[email protected]> © 2017-2018, ETH Zurich, Institut für Theoretische Physik """ Defines functions to construct the basis of the symmetry-constrained Hamiltonian. """ import sympy as sp from sympy.physics.quantum import TensorProduct import numpy as np from functools import reduce import scipy.linalg as la from ._expr_utils import monomial_basis, expr_to_vector, matrix_to_expr_operator from ._repr_utils import hermitian_to_vector, hermitian_basis, repr_to_matrix_operator, check_orthogonal, frobenius_product, solve_linear_system_numpy from ._repr_utils import hermitian_pauli_basis, hermitian_pauli_basis_symbols from ._linalg import intersection_basis, nullspace_blocked from ._to_matrix import to_matrix from ._logging_setup import LOGGER from ._decompose_kp import decompose_kp def symmetric_hamiltonian( symmetry_operations, kp_variable = 'k', order = [0], repr_basis = 'pauli', msg_num = None, kvec = None, ): r""" Calculates the basis of the symmetric Hamiltonian for a given set of symmetry operations. :param symmetry_operations: The symmetry operations that the Hamiltonian should respect. :type symmetry_operations: :py:class: `dict` with keys 'rotation_matrix', 'repr_matrix', 'repr_has_cc'. :param kp_variable: The variable of the hamiltonian, can be anyone of 'k', 'E', 'B', 'e', 'k E', 'k B', 'E B', 'k E B' :type kp_variable: :py:class:str :param order: The list of orders of the monomials. Each number in the list specifies the order of a variable. :type order: :py:class:`list` of :py:class:`int` :param repr_basis: The basis for the hermitian matrices, with the same size as the representations. By default, the :py:func:`.hermitian_pauli_basis` of the appropriate size is used. :type repr_basis: :py:class:`list` of :py:mod:`sympy` matrices :param msg_num & kvec: two string used to denote the magnetic space group and little group k, used to locate linear representations in order to decompose kp hamiltonian. :type msg_num & kvec: :py:class:str :returns: Basis for the symmetric Hamiltonian, as a :py:class:`list` of :py:mod:`sympy` matrix expressions. # Modified by YJ: if msg_num and kvec is specified, also return lists of decomposed repr and expr basis, otherwise return empty lists. """ # for sympy or numpy matrices try: repr_matrix_size = symmetry_operations[0]['repr_matrix'].shape[0] # for plain lists -- this doesn't work for sympy matrices because # their 'len' is the total number of elements except AttributeError: repr_matrix_size = len(symmetry_operations[0]['repr_matrix']) repr_basis_type = 'pauli' if repr_basis == 'pauli' else None if repr_basis == 'auto': repr_basis = hermitian_basis(repr_matrix_size) elif repr_basis == 'pauli': repr_basis = hermitian_pauli_basis(repr_matrix_size) repr_basis_symbols = hermitian_pauli_basis_symbols(repr_matrix_size) if repr_basis not in ['auto', 'pauli']: check_orthogonal(repr_basis) Base_vec = '' for t in kp_variable.split(): if t == 'k': Base_vec += 'kx ky kz ' elif t == 'E': Base_vec += 'Ex Ey Ez ' elif t == 'B': Base_vec += 'Bx By Bz ' elif t == 'e': Base_vec += 'ex ey ez ' Base_vec = sp.symbols(Base_vec) expr_basis = monomial_basis(order, kp_variable) expr_dim = len(expr_basis) repr_dim = len(repr_basis) repr_basis_norm_squares = [frobenius_product(b, b) for b in repr_basis] full_dim = expr_dim * repr_dim full_basis = [ sp.Matrix(x) for x in np.outer(expr_basis, repr_basis). reshape(full_dim, repr_matrix_size, repr_matrix_size).tolist() ] invariant_bases = [] expr_mat_collection = [] repr_mat_collection = [] for isym_op, sym_op in enumerate(symmetry_operations): LOGGER.info('Calculating matrix form of expression.') expr_mat = to_matrix( operator=matrix_to_expr_operator( sym_op['rotation_matrix'], repr_has_cc = sym_op['repr_has_cc'], K_VEC = Base_vec ), basis=expr_basis, to_vector_fct=expr_to_vector, K_VEC = Base_vec ) expr_mat_collection.append(expr_mat) LOGGER.info('Calculating matrix form of representation.') repr_mat = to_matrix( operator=repr_to_matrix_operator( sym_op['repr_matrix'], complex_conjugate = sym_op['repr_has_cc'] ), basis=repr_basis, to_vector_fct=hermitian_to_vector, to_vector_kwargs=dict(basis_norm_squares=repr_basis_norm_squares) ) repr_mat_collection.append(repr_mat) # outer product LOGGER.info('Calculating outer product.') full_mat = TensorProduct(expr_mat, repr_mat) # get Eig(F \ocross G, 1) basis mat = full_mat - sp.eye(full_dim) LOGGER.info('Calculating nullspace.') nullspace_basis = nullspace_blocked(mat, simplify=sp.nsimplify) # Modified by YJ: reshape here is necessary. The original np.array(nullspace_basis).tolist() will run into bugs for python>3.8 curr_basis = [ bs.reshape(1, expr_dim*repr_dim) for bs in nullspace_basis ] if len(curr_basis) != _numeric_nullspace_dim(mat): raise ValueError( 'Analytic and numeric dimensions of the nullspace of the matrix {mat} do not match' .format(mat=mat) ) invariant_bases.append(curr_basis) LOGGER.info('Calculating basis intersection.') basis_vectors = intersection_basis(*invariant_bases) # ===== Added by YJ: decompose the kp model into symmetric basis ===== # decomposed_repr_vec, decomposed_repr_mat, decomposed_expr, ir_str_list = [], [], [], [] for basis_vector in basis_vectors: tmp_repr_vec, tmp_repr_mat, tmp_expr, linear_ir_str = decompose_kp(basis_vector, repr_basis, expr_basis, symmetry_operations, Base_vec, msg_num, kvec) decomposed_repr_vec.append(tmp_repr_vec) decomposed_repr_mat.append(tmp_repr_mat) decomposed_expr.append(tmp_expr) ir_str_list.append(linear_ir_str) LOGGER.info('Expanding basis vectors.') basis_vectors_expanded, decomposed_repr_symbols = [], [] for full_vec, repr_vec in zip(basis_vectors, decomposed_repr_vec): basis_vectors_expanded.append( sum((v * b for v, b in zip(full_vec, full_basis)), sp.zeros(repr_matrix_size)) ) decomposed_repr_symbols.append([ reduce(lambda x, y : x+' + '+y, [str(sp.nsimplify(v)) + '* ' + b if v != 1 else b\ for v, b in zip(tmp, repr_basis_symbols) if v != 0]) for tmp in repr_vec ]) \ if repr_basis_type == 'pauli' else [None] * len(repr_vec) _print_result(basis_vectors_expanded, basis_vectors, decomposed_expr, decomposed_repr_mat, decomposed_repr_symbols, ir_str_list) return basis_vectors_expanded, decomposed_expr, decomposed_repr_mat def _numeric_nullspace_dim(mat): """Numerically computes the nullspace dimension of a matrix.""" mat_numeric = np.array(mat.evalf().tolist(), dtype=complex) eigenvals = la.eigvals(mat_numeric) return np.sum(np.isclose(eigenvals, np.zeros_like(eigenvals))) def _print_result(kpmodels, basis_vecs, expr_basis_vecs, repr_basis_mats, repr_basis_symbols, ir_str_list): """ Print the result of kp models and decompoed basis""" if len(kpmodels) == 0: print('No symmetry-allowed kp models.') else: print('Number of independent kp models:', len(kpmodels)) for ith, kp, base_vec, rep, exp, rep_sym, ir in zip(range(len(kpmodels)), kpmodels, basis_vecs, repr_basis_mats, expr_basis_vecs, repr_basis_symbols, ir_str_list): print('-----------------------------------------------------') print('%d-th kp model:'%(ith+1)) print(kp) print('Basis vector:', base_vec) if exp == None: print('Fail to decompose kp.') else: if ir: print('\nDecomposed basis using linear IR:', ir) else: print('\nDecomposed basis (not symmetric):') print('Coefficient basis:') for ie in exp: print(ie) print('\nMatrix basis:') for isym, ib in zip(rep_sym, rep): print('Symbol:',isym, ' Expression:', ib, '\n') print('-----------------------------------------------------')
the-stack_0_4711
import json from .models import * def cookieCart(request): try: cart = json.loads(request.COOKIES['cart']) except: cart = {} print('Cart:', cart) items = [] order = {'cart_items' :0, 'cart_total' :0} cartItems = order['cart_total'] for i in cart: try: cartItems += cart[i]['quantity'] item = Items.objects.get(id=i) total = (item.price * cart[i]['quantity']) order['cart_items'] += cart[i]['quantity'] order['cart_total'] += total item = { 'item':{ 'id': item.id, 'name': item.name, 'price': item.price, 'imageURL': item.imageURL, }, 'quantity': cart[i]['quantity'], 'get_total': total } items.append(item) except: pass return {'items':items, 'order':order, 'cartItems':cartItems} def cartData(request): if request.user.is_authenticated: customer = request.user.customer order, created = Order.objects.get_or_create(customer=customer, complete=False) items = order.orderitem_set.all() cartItems = order.cart_items else: cookieData = cookieCart(request) items = cookieData['items'] order = cookieData['order'] cartItems = cookieData['cartItems'] return {'items':items, 'order':order, 'cartItems':cartItems} def guestOrder(request, data): print('User not logged in.') print('Cookies:', request.COOKIES) name = data['form']['name'] email = data['form']['email'] cookieData = cookieCart(request) items = cookieData['items'] customer, created = Customer.objects.get_or_create(email = email) customer.name = name customer.save() order, created = Order.objects.get_or_create(customer=customer, complete=False) for i in items: item = Items.objects.get(id=i['item']['id']) orderItem = OrderItem.objects.create( item = item, order = order, quantity = i['quantity'] ) return customer, order
the-stack_0_4713
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import time from typing import Optional import paddle from yacs.config import CfgNode from paddlespeech.cli.asr.infer import ASRExecutor from paddlespeech.cli.log import logger from paddlespeech.cli.utils import MODEL_HOME from paddlespeech.resource import CommonTaskResource from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer from paddlespeech.s2t.modules.ctc import CTCDecoder from paddlespeech.s2t.utils.utility import UpdateConfig from paddlespeech.server.engine.base_engine import BaseEngine from paddlespeech.server.utils.paddle_predictor import init_predictor from paddlespeech.server.utils.paddle_predictor import run_model __all__ = ['ASREngine', 'PaddleASRConnectionHandler'] class ASRServerExecutor(ASRExecutor): def __init__(self): super().__init__() self.task_resource = CommonTaskResource( task='asr', model_format='static') def _init_from_path(self, model_type: str='wenetspeech', am_model: Optional[os.PathLike]=None, am_params: Optional[os.PathLike]=None, lang: str='zh', sample_rate: int=16000, cfg_path: Optional[os.PathLike]=None, decode_method: str='attention_rescoring', am_predictor_conf: dict=None): """ Init model and other resources from a specific path. """ self.max_len = 50 sample_rate_str = '16k' if sample_rate == 16000 else '8k' tag = model_type + '-' + lang + '-' + sample_rate_str self.max_len = 50 self.task_resource.set_task_model(model_tag=tag) if cfg_path is None or am_model is None or am_params is None: self.res_path = self.task_resource.res_dir self.cfg_path = os.path.join( self.res_path, self.task_resource.res_dict['cfg_path']) self.am_model = os.path.join(self.res_path, self.task_resource.res_dict['model']) self.am_params = os.path.join(self.res_path, self.task_resource.res_dict['params']) logger.info(self.res_path) logger.info(self.cfg_path) logger.info(self.am_model) logger.info(self.am_params) else: self.cfg_path = os.path.abspath(cfg_path) self.am_model = os.path.abspath(am_model) self.am_params = os.path.abspath(am_params) self.res_path = os.path.dirname( os.path.dirname(os.path.abspath(self.cfg_path))) #Init body. self.config = CfgNode(new_allowed=True) self.config.merge_from_file(self.cfg_path) with UpdateConfig(self.config): if "deepspeech2" in model_type: self.vocab = self.config.vocab_filepath if self.config.spm_model_prefix: self.config.spm_model_prefix = os.path.join( self.res_path, self.config.spm_model_prefix) self.text_feature = TextFeaturizer( unit_type=self.config.unit_type, vocab=self.vocab, spm_model_prefix=self.config.spm_model_prefix) self.config.decode.lang_model_path = os.path.join( MODEL_HOME, 'language_model', self.config.decode.lang_model_path) lm_url = self.task_resource.res_dict['lm_url'] lm_md5 = self.task_resource.res_dict['lm_md5'] self.download_lm( lm_url, os.path.dirname(self.config.decode.lang_model_path), lm_md5) elif "conformer" in model_type or "transformer" in model_type: raise Exception("wrong type") else: raise Exception("wrong type") # AM predictor self.am_predictor_conf = am_predictor_conf self.am_predictor = init_predictor( model_file=self.am_model, params_file=self.am_params, predictor_conf=self.am_predictor_conf) # decoder self.decoder = CTCDecoder( odim=self.config.output_dim, # <blank> is in vocab enc_n_units=self.config.rnn_layer_size * 2, blank_id=self.config.blank_id, dropout_rate=0.0, reduction=True, # sum batch_average=True, # sum / batch_size grad_norm_type=self.config.get('ctc_grad_norm_type', None)) @paddle.no_grad() def infer(self, model_type: str): """ Model inference and result stored in self.output. """ cfg = self.config.decode audio = self._inputs["audio"] audio_len = self._inputs["audio_len"] if "deepspeech2" in model_type: decode_batch_size = audio.shape[0] # init once self.decoder.init_decoder( decode_batch_size, self.text_feature.vocab_list, cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta, cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n, cfg.num_proc_bsearch) output_data = run_model(self.am_predictor, [audio.numpy(), audio_len.numpy()]) probs = output_data[0] eouts_len = output_data[1] batch_size = probs.shape[0] self.decoder.reset_decoder(batch_size=batch_size) self.decoder.next(probs, eouts_len) trans_best, trans_beam = self.decoder.decode() # self.model.decoder.del_decoder() self._outputs["result"] = trans_best[0] elif "conformer" in model_type or "transformer" in model_type: raise Exception("invalid model name") else: raise Exception("invalid model name") class ASREngine(BaseEngine): """ASR server engine Args: metaclass: Defaults to Singleton. """ def __init__(self): super(ASREngine, self).__init__() def init(self, config: dict) -> bool: """init engine resource Args: config_file (str): config file Returns: bool: init failed or success """ self.executor = ASRServerExecutor() self.config = config self.engine_type = "inference" try: if self.config.am_predictor_conf.device is not None: self.device = self.config.am_predictor_conf.device else: self.device = paddle.get_device() paddle.set_device(self.device) except Exception as e: logger.error( "Set device failed, please check if device is already used and the parameter 'device' in the yaml file" ) logger.error(e) return False self.executor._init_from_path( model_type=self.config.model_type, am_model=self.config.am_model, am_params=self.config.am_params, lang=self.config.lang, sample_rate=self.config.sample_rate, cfg_path=self.config.cfg_path, decode_method=self.config.decode_method, am_predictor_conf=self.config.am_predictor_conf) logger.info("Initialize ASR server engine successfully.") return True class PaddleASRConnectionHandler(ASRServerExecutor): def __init__(self, asr_engine): """The PaddleSpeech ASR Server Connection Handler This connection process every asr server request Args: asr_engine (ASREngine): The ASR engine """ super().__init__() self.input = None self.output = None self.asr_engine = asr_engine self.executor = self.asr_engine.executor self.config = self.executor.config self.max_len = self.executor.max_len self.decoder = self.executor.decoder self.am_predictor = self.executor.am_predictor self.text_feature = self.executor.text_feature def run(self, audio_data): """engine run Args: audio_data (bytes): base64.b64decode """ if self._check( io.BytesIO(audio_data), self.asr_engine.config.sample_rate, self.asr_engine.config.force_yes): logger.info("start running asr engine") self.preprocess(self.asr_engine.config.model_type, io.BytesIO(audio_data)) st = time.time() self.infer(self.asr_engine.config.model_type) infer_time = time.time() - st self.output = self.postprocess() # Retrieve result of asr. logger.info("end inferring asr engine") else: logger.info("file check failed!") self.output = None logger.info("inference time: {}".format(infer_time)) logger.info("asr engine type: paddle inference")
the-stack_0_4714
import pathlib import pandas as pd import panda_scripts as ps import joint_pca as pca from argument_validators import alphanumeric from shutil import rmtree from math import floor from numpy.random import randint from os import remove import inspect from __utils import * # This is a wrapper for all the data-processing scripts below. # # Arguments: # MONTH_DICT A dictionary from the scope above this level, to be filled by this function # PARAMS_FILE _______ # LOG_FILE Path for the log file # SM_FILE File with sm data # COV_FILE File with cov data # COV_LAYERS List of strings, length must match the number of layers in the COV_FILE # EVAL_FILE File with eval data # SHAPE_DIR Folder path where shape .rds files are (to be) stored # REG_LIST List of regions to cut out of the sm file # BUFFER km of buffer around each region # TRAIN_DIR The directory of training files # MONTH Numeric month to use in the train data # EVAL_DIR The directory of the evaluation files # USE_PCA Run PCA dimension reduction on both train and eval files # Assumes same covariate columns are present in same order # VALIDATE 1 to save SM values from TEST for residuals # 2 to save SM values from EVAL for comparison # STATS_FILE Path to function for computing statistics on test data # Default empty string, no stats computed # RAND Random seed; default 0 generates new seed # SUPER If 1/True, expands test file of ecoregions to one level up; # Default 0, nothing changed # MIN_T_POINTS Minimum number of training points required in each region; # Default -1 doesn't check # # Output: # The output folder depends on which preprocessing steps are taken # A log file is generated in LOG_DIR/proc-log#.txt, # where # is the least unused natural number def curate(MONTH_DICT, PARAMS_FILE, LOG_FILE, SM_FILE, COV_FILE, COV_LAYERS, EVAL_FILE, SHAPE_DIR, REG_LIST, BUFFER, TRAIN_DIR, MONTH, EVAL_DIR, USE_PCA, VALIDATE, STATS_FILE="", RAND=0, SUPER=0, MIN_T_POINTS=-1): MASK_PATH = pathlib.Path("create_shape.R").resolve() CROP_PATH = pathlib.Path("crop_to_shape.R").resolve() ADD_COV_PATH = pathlib.Path("add_topos.R").resolve() DROP_COLS_PATH = pathlib.Path("drop_cols.py").resolve() # Prepare shape for cropping. def create_shape(reg_type, reg, SHAPE_DIR=SHAPE_DIR): if not SHAPE_DIR.is_dir(): SHAPE_DIR.mkdir(parents=True) SHAPE_FILE = SHAPE_DIR.joinpath(f"{reg}.rds") if SHAPE_FILE.is_file(): log.write(f"shape for {reg} exists in {SHAPE_DIR}\n") else: shape_args = [MASK_PATH, reg_type, reg, SHAPE_FILE] log.write(f"{shape_args}\n") #print(shape_args) bash(shape_args) log.write(f"Created shape for {reg} in {SHAPE_DIR}") return SHAPE_FILE print(f"Curation log file: {LOG_FILE}") with open(LOG_FILE, "w") as log: log.write("----------------------------------------\n") log.write("Begin data processing with the following arguments...\n") #https://stackoverflow.com/questions/582056/getting-list-of-parameter-names-inside-python-function frame = inspect.currentframe() args, _, _, vals = inspect.getargvalues(frame) for i in args: log.write(f"{i}={vals[i]}\n") log.write("----------------------------------------\n") # Establish random seed: if (VALIDATE<=1) or (VALIDATE>=2): seed=0 else: if RAND: seed = int(RAND) else: seed = randint(2**16) log.write(f"For randomization, using {seed}.\n") #suffix = "" MONTH_DICT[MONTH] = {} suffix = f"month{MONTH}" if SUPER: suffix += "-LvlUp" if BUFFER: suffix += f"-{BUFFER}meter" MONTH_DICT[MONTH]["buffer"] = BUFFER if USE_PCA: suffix += "-PCA" if seed: suffix += f"-{VALIDATE-1:.2f}_{seed}" MONTH_DICT[MONTH]["seed"] = seed ######################################## # Create train and eval files if VALIDATE: SM_BEFORE = TRAIN_DIR.parent.joinpath("original_sm-"+suffix) log.write(f"Soil Moisture data from before preprocessing will go in {SM_BEFORE}\n") if not SM_BEFORE.is_dir(): SM_BEFORE.mkdir(parents=True) else: SM_BEFORE = None if SM_FILE: log.write("Extracting sm data from the specified source.\n") for reg_type,reg in REG_LIST: if not TRAIN_DIR.is_dir(): TRAIN_DIR.mkdir(parents=True) REG_TR_FILE = TRAIN_DIR.joinpath(f"{reg_type}_{reg}.csv") if SUPER and (reg_type=="ECOREGION" or reg_type=="CEC"): reg = ".".join(reg.split(".")[:-1]) SHAPE_FILE = create_shape(reg_type, reg) # Crop soil moisture file to shape. crop_args = [CROP_PATH, SM_FILE, SHAPE_FILE, REG_TR_FILE, BUFFER] #print(crop_args) log.write(f"{crop_args}\n") bash(crop_args) if COV_FILE: cov_args = [ADD_COV_PATH, REG_TR_FILE, COV_FILE, REG_TR_FILE] + COV_LAYERS log.write(f"{cov_args}\n") bash(cov_args) else: log.write("No SM_FILE specified, so train folder assumed populated.\n") if EVAL_FILE: log.write("Creating eval files from specified source.\n") for reg_type, reg in REG_LIST: log.write(f"Creating EVAL file for {reg}.\n") if not EVAL_DIR.is_dir(): EVAL_DIR.mkdir(parents=True) REG_EV_FILE = EVAL_DIR.joinpath(f"{reg_type}_{reg}.csv") SHAPE_FILE = create_shape(reg_type, reg) # Crop evaluation file to shape. crop_args = [CROP_PATH, EVAL_FILE, SHAPE_FILE, REG_EV_FILE] log.write(f"{crop_args}\n") bash(crop_args) if VALIDATE==2: VALID_FILE = SM_BEFORE.joinpath(REG_EV_FILE.name) log.write(f"cp {REG_EV_FILE} {VALID_FILE}") bash(["cp", REG_EV_FILE, VALID_FILE]) print(f"{DROP_COLS_PATH} {REG_EV_FILE} {REG_EV_FILE} -k 0,1") bash([DROP_COLS_PATH, REG_EV_FILE, REG_EV_FILE, "-k", "0,1"]) if COV_FILE: cov_args = [ADD_COV_PATH, REG_EV_FILE, COV_FILE, REG_EV_FILE] + COV_LAYERS log.write(f"{cov_args}\n") bash(cov_args) elif COV_FILE: log.write("Extracting covariate data from the specified source.\n") for reg_type, reg in REG_LIST: log.write(f"Creating EVAL file for {reg}.\n") if not EVAL_DIR.is_dir(): EVAL_DIR.mkdir(parents=True) REG_EV_FILE = EVAL_DIR.joinpath(f"{reg_type}_{reg}.csv") SHAPE_FILE = create_shape(reg_type, reg) # Crop covariate file to shape. crop_args = [CROP_PATH, COV_FILE, SHAPE_FILE, REG_EV_FILE, 0] + COV_LAYERS #print(crop_args) log.write(f"{crop_args}\n") bash(crop_args) if VALIDATE==2: VALID_FILE = SM_BEFORE.joinpath(REG_EV_FILE.name) log.write(f"cp {REG_EV_FILE} {VALID_FILE}") bash(["cp", REG_EV_FILE, VALID_FILE]) else: log.write("No EVAL_FILE or COV_FILE specified, so eval folder assumed populated.\n") ######################################## # Compute statistics on train files if STATS_FILE: stat_args = [STATS_FILE, TRAIN_DIR] log.write(f"{stat_args}\n") bash(stat_args) ######################################## # Process train and eval files TRAIN_DIR_TEMP = append_to_folder(TRAIN_DIR, "-postproc-"+suffix) log.write(f"Processed training data to go in {TRAIN_DIR_TEMP}\n") if TRAIN_DIR_TEMP.is_dir(): rmtree(TRAIN_DIR_TEMP) TRAIN_DIR_TEMP.mkdir(parents=True) EVAL_DIR_TEMP = append_to_folder(EVAL_DIR, "-postproc-"+suffix) log.write(f"Processed evaluation data to go in {EVAL_DIR_TEMP}\n") if EVAL_DIR_TEMP.is_dir(): rmtree(EVAL_DIR_TEMP) EVAL_DIR_TEMP.mkdir(parents=True) for reg_type, reg in REG_LIST: region = f"{reg_type}_{reg}.csv" if not os.path.isfile(TRAIN_DIR.joinpath(region)): continue tdf = pd.read_csv(TRAIN_DIR.joinpath(region))#, dtype=float)#.astype(object).infer_objects() #print(f"before: {tdf.columns}") tdf.rename(columns=alphanumeric, inplace=True) #print(f"after: {tdf.columns}") if not os.path.isfile(EVAL_DIR.joinpath(region)): continue edf = pd.read_csv(EVAL_DIR.joinpath(region))#, dtype=float)#.astype(object).infer_objects() log.write(f"imported edf; first 3 rows:\n{edf.head(3)}\n") #print(f"before: {edf.columns}") edf.rename(columns=alphanumeric, inplace=True) ecols = {edf.columns[0]: tdf.columns[0], edf.columns[1]: tdf.columns[1]} edf.rename(columns=ecols, inplace=True) #print(f"after: {edf.columns}") if MONTH: replacements = ps.monthify(tdf.columns) tdf = tdf.rename(columns=replacements) tdf = ps.keep_month(tdf, MONTH) ###################################################### ## Dealing with NAs ###################################################### # Show how many non-NA's there are in each column log.write(f"Number of non-NA values in tdf by column:\n{tdf.count()}\n") log.write(f"Number of non-NA values in edf by column:\n{edf.count()}\n") # LSF is mostly NA in this region; replace it with 0, appropriate for a costal pixel # Dict of cols with specified NA replacement value bad_cols = {"LSF":0} tdf.fillna(value=bad_cols, inplace=True)#[["LSF"]] = tdf[["LSF"]].fillna(0) edf.fillna(value=bad_cols, inplace=True)#[["LSF"]] = edf[["LSF"]].fillna(0) for col in bad_cols: log.write(f"NA's in '{col}' replaced with {bad_cols[col]}.\n") # Show how many non-NA's there are in each column #log.write(f"Number of non-NA values in tdf by column:\n{tdf.count()}\n") #log.write(f"Number of non-NA values in edf by column:\n{edf.count()}\n") tdf = tdf.dropna()#thresh=4).fillna(0) log.write(f"First 3 rows of tdf:\n{tdf.head(3)}\n") #log.write(f"Number of non-NA values in tdf by column:\n{tdf.count()}\n") edf = edf.dropna()#thresh=4).fillna(0) log.write(f"First 3 rows of edf:\n{edf.head(3)}\n") #log.write(f"Number of non-NA values in edf by column:\n{edf.count()}\n") ############################################ trows = tdf.shape[0] if trows: log.write(f"There are {trows} training points in {region}.\n") else: log.write(f"Warning: there are no training points in {region}!\n") continue erows = edf.shape[0] if erows: log.write(f"There are {erows} evaluation points in {region}.\n") else: log.write(f"Warning: there are no evaluation points in {region}!\n") continue if floor(VALIDATE)==1: before = tdf[tdf.columns[:3]]#.dropna() if VALIDATE>1: log.write(f"For before.sample, {seed}.\n") before = before.sample(frac=(VALIDATE - 1), random_state=seed) tdf.drop(before.index.tolist(), inplace=True) trows = tdf.shape[0] if trows: log.write(f"There are {trows} training points in {region}.\n") else: log.write(f"Warning: there are no training points in {region}!\n") continue brows = before.shape[0] if brows: log.write(f"There are {brows} validation points in {region}.\n") else: log.write(f"Warning: there are no validation points in {region}!\n") continue before_path = SM_BEFORE.joinpath(region) before.to_csv(path_or_buf=before_path, index=False, header=False, na_rep="NA") if BUFFER or SUPER: log.write("Trimming validation file back down to {region}.\n") crop_args = [CROP_PATH, before_path, before_path, r] log.write(f"{crop_args}\n") bash(crop_args) if USE_PCA: params = pca.get_params(tdf) log.write(f"Performing PCA.\n") #log.write(f"tdf pre-PCA: {tdf.shape}\n{tdf.head(3)}\n") #log.write(f"edf pre-PCA: {edf.shape}\n{edf.head(3)}\n") log.write(f"pre-PCA:\n{params}\n") if len(params) > min(tdf.shape[0], edf.shape[0]): log.write(f"Error: region {region} skipped! You have {tdf.shape[0]} rows of training data and {edf.shape[0]} rows of evaluation data, but you need at least {len(params)} of each to perform PCA on your params.\n") continue tdf, edf, comps = pca.joint_pca(tdf, edf, params) log.write(f"post-PCA:\n{tdf.shape}\n{tdf.head(3)}\n{edf.shape}\n{edf.head(3)}\n{comps}\n") log.write(f"Completed PCA for {region} with these eigenvalues:\n{comps}\n") trows = tdf.shape[0] if trows: log.write(f"There are {trows} training points in {region}.\n") else: log.write(f"Warning: there are no training points in {region}!\n") continue erows = edf.shape[0] if erows: log.write(f"There are {erows} evaluation points in {region}.\n") else: log.write(f"Warning: there are no evaluation points in {region}!\n") continue tdf.to_csv(path_or_buf=TRAIN_DIR_TEMP.joinpath(region), index=False) edf.to_csv(path_or_buf=EVAL_DIR_TEMP.joinpath(region), index=False) TRAIN_DIR = TRAIN_DIR_TEMP EVAL_DIR = EVAL_DIR_TEMP # Update region list to only include those regions with at least a minimum number of test points if (MIN_T_POINTS > -1): NEW_REG_LIST = [] for reg_type, reg in REG_LIST: REG_TR_FILE = TRAIN_DIR.joinpath(f"{reg_type}_{reg}.csv") if REG_TR_FILE.is_file(): with open(REG_TR_FILE ,'r') as regtrfile: num_lines = sum(1 for line in regtrfile) if num_lines > MIN_T_POINTS: NEW_REG_LIST.append((reg_type, reg)) log.write(f"Region {reg} has {num_lines - 1} data points ({MIN_T_POINTS} required). Kept in region list.\n") else: log.write(f"Warning! Region {reg} only has {num_lines - 1} data points ({MIN_T_POINTS} required). Removed from region list.\n") remove(REG_TR_FILE) else: log.write(f"Warning! Region {reg} does not have a test file. Removed from region list.\n") REG_LIST = NEW_REG_LIST NEW_REG_FILE = LOG_FILE.with_suffix(f".{MONTH}reg") with open(NEW_REG_FILE, "w") as reg_out: for reg_type, reg in REG_LIST: reg_out.write(f"{reg_type},{reg}\n") ############################################### log.write("Data curation complete!!\n") return(SM_BEFORE, TRAIN_DIR, EVAL_DIR, REG_LIST, seed, suffix)
the-stack_0_4715
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Extracts bounding boxes from a list of images, saving them to files. The images must be in JPG format. The program checks if boxes already exist, and skips computation for those. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import sys import time from absl import app import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from delf import box_io from delf import utils from delf import detector cmd_args = None # Extension/suffix of produced files. _BOX_EXT = '.boxes' _VIZ_SUFFIX = '_viz.jpg' # Used for plotting boxes. _BOX_EDGE_COLORS = ['r', 'y', 'b', 'm', 'k', 'g', 'c', 'w'] # Pace to report extraction log. _STATUS_CHECK_ITERATIONS = 100 def _ReadImageList(list_path): """Helper function to read image paths. Args: list_path: Path to list of images, one image path per line. Returns: image_paths: List of image paths. """ with tf.io.gfile.GFile(list_path, 'r') as f: image_paths = f.readlines() image_paths = [entry.rstrip() for entry in image_paths] return image_paths def _FilterBoxesByScore(boxes, scores, class_indices, score_threshold): """Filter boxes based on detection scores. Boxes with detection score >= score_threshold are returned. Args: boxes: [N, 4] float array denoting bounding box coordinates, in format [top, left, bottom, right]. scores: [N] float array with detection scores. class_indices: [N] int array with class indices. score_threshold: Float detection score threshold to use. Returns: selected_boxes: selected `boxes`. selected_scores: selected `scores`. selected_class_indices: selected `class_indices`. """ selected_boxes = [] selected_scores = [] selected_class_indices = [] for i, box in enumerate(boxes): if scores[i] >= score_threshold: selected_boxes.append(box) selected_scores.append(scores[i]) selected_class_indices.append(class_indices[i]) return np.array(selected_boxes), np.array(selected_scores), np.array( selected_class_indices) def _PlotBoxesAndSaveImage(image, boxes, output_path): """Plot boxes on image and save to output path. Args: image: Numpy array containing image. boxes: [N, 4] float array denoting bounding box coordinates, in format [top, left, bottom, right]. output_path: String containing output path. """ height = image.shape[0] width = image.shape[1] fig, ax = plt.subplots(1) ax.imshow(image) for i, box in enumerate(boxes): scaled_box = [ box[0] * height, box[1] * width, box[2] * height, box[3] * width ] rect = patches.Rectangle([scaled_box[1], scaled_box[0]], scaled_box[3] - scaled_box[1], scaled_box[2] - scaled_box[0], linewidth=3, edgecolor=_BOX_EDGE_COLORS[i % len(_BOX_EDGE_COLORS)], facecolor='none') ax.add_patch(rect) ax.axis('off') plt.savefig(output_path, bbox_inches='tight') plt.close(fig) def main(argv): if len(argv) > 1: raise RuntimeError('Too many command-line arguments.') # Read list of images. print('Reading list of images...') image_paths = _ReadImageList(cmd_args.list_images_path) num_images = len(image_paths) print(f'done! Found {num_images} images') # Create output directories if necessary. if not tf.io.gfile.exists(cmd_args.output_dir): tf.io.gfile.makedirs(cmd_args.output_dir) if cmd_args.output_viz_dir and not tf.io.gfile.exists( cmd_args.output_viz_dir): tf.io.gfile.makedirs(cmd_args.output_viz_dir) detector_fn = detector.MakeDetector(cmd_args.detector_path) start = time.time() for i, image_path in enumerate(image_paths): # Report progress once in a while. if i == 0: print('Starting to detect objects in images...') elif i % _STATUS_CHECK_ITERATIONS == 0: elapsed = (time.time() - start) print(f'Processing image {i} out of {num_images}, last ' f'{_STATUS_CHECK_ITERATIONS} images took {elapsed} seconds') start = time.time() # If descriptor already exists, skip its computation. base_boxes_filename, _ = os.path.splitext(os.path.basename(image_path)) out_boxes_filename = base_boxes_filename + _BOX_EXT out_boxes_fullpath = os.path.join(cmd_args.output_dir, out_boxes_filename) if tf.io.gfile.exists(out_boxes_fullpath): print(f'Skipping {image_path}') continue im = np.expand_dims(np.array(utils.RgbLoader(image_paths[i])), 0) # Extract and save boxes. (boxes_out, scores_out, class_indices_out) = detector_fn(im) (selected_boxes, selected_scores, selected_class_indices) = _FilterBoxesByScore(boxes_out[0], scores_out[0], class_indices_out[0], cmd_args.detector_thresh) box_io.WriteToFile(out_boxes_fullpath, selected_boxes, selected_scores, selected_class_indices) if cmd_args.output_viz_dir: out_viz_filename = base_boxes_filename + _VIZ_SUFFIX out_viz_fullpath = os.path.join(cmd_args.output_viz_dir, out_viz_filename) _PlotBoxesAndSaveImage(im[0], selected_boxes, out_viz_fullpath) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.register('type', 'bool', lambda v: v.lower() == 'true') parser.add_argument( '--detector_path', type=str, default='/tmp/d2r_frcnn_20190411/', help=""" Path to exported detector model. """) parser.add_argument( '--detector_thresh', type=float, default=.0, help=""" Detector threshold. Any box with confidence score lower than this is not returned. """) parser.add_argument( '--list_images_path', type=str, default='list_images.txt', help=""" Path to list of images to undergo object detection. """) parser.add_argument( '--output_dir', type=str, default='test_boxes', help=""" Directory where bounding boxes will be written to. Each image's boxes will be written to a file with same name, and extension replaced by .boxes. """) parser.add_argument( '--output_viz_dir', type=str, default='', help=""" Optional. If set, a visualization of the detected boxes overlaid on the image is produced, and saved to this directory. Each image is saved with _viz.jpg suffix. """) cmd_args, unparsed = parser.parse_known_args() app.run(main=main, argv=[sys.argv[0]] + unparsed)
the-stack_0_4716
# -*- coding: utf-8 -*- ''' tests for user state user absent user present user present with custom homedir ''' # Import python libs from __future__ import absolute_import import os import sys from random import randint import grp # Import Salt Testing libs import tests.integration as integration from tests.support.unit import skipIf from tests.support.helpers import destructiveTest, requires_system_grains # Import salt libs import salt.utils if salt.utils.is_darwin(): USER = 'macuser' GROUP = 'macuser' GID = randint(400, 500) NOGROUPGID = randint(400, 500) else: USER = 'nobody' GROUP = 'nobody' GID = 'nobody' NOGROUPGID = 'nogroup' class UserTest(integration.ModuleCase, integration.SaltReturnAssertsMixIn): ''' test for user absent ''' @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def setUp(self): if salt.utils.is_darwin(): #on mac we need to add user, because there is #no creationtime for nobody user. add_user = self.run_function('user.add', [USER], gid=GID) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_absent(self): ret = self.run_state('user.absent', name='unpossible') self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_if_present(self): ret = self.run_state('user.present', name=USER) self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_if_present_with_gid(self): if self.run_function('group.info', [USER]): ret = self.run_state('user.present', name=USER, gid=GID) elif self.run_function('group.info', ['nogroup']): ret = self.run_state('user.present', name=USER, gid=NOGROUPGID) else: self.skipTest( 'Neither \'nobody\' nor \'nogroup\' are valid groups' ) self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_not_present(self): ''' This is a DESTRUCTIVE TEST it creates a new user on the minion. And then destroys that user. Assume that it will break any system you run it on. ''' ret = self.run_state('user.present', name='salt_test') self.assertSaltTrueReturn(ret) ret = self.run_state('user.absent', name='salt_test') self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_present_when_home_dir_does_not_18843(self): ''' This is a DESTRUCTIVE TEST it creates a new user on the minion. And then destroys that user. Assume that it will break any system you run it on. ''' if salt.utils.is_darwin(): HOMEDIR = '/Users/home_of_salt_test' else: HOMEDIR = '/home/home_of_salt_test' ret = self.run_state('user.present', name='salt_test', home=HOMEDIR) self.assertSaltTrueReturn(ret) self.run_function('file.absent', name=HOMEDIR) ret = self.run_state('user.present', name='salt_test', home=HOMEDIR) self.assertSaltTrueReturn(ret) ret = self.run_state('user.absent', name='salt_test') self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_present_nondefault(self): ''' This is a DESTRUCTIVE TEST it creates a new user on the on the minion. ''' ret = self.run_state('user.present', name='salt_test', home='/var/lib/salt_test') self.assertSaltTrueReturn(ret) self.assertTrue(os.path.isdir('/var/lib/salt_test')) ret = self.run_state('user.absent', name='salt_test') self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') @requires_system_grains def test_user_present_gid_from_name_default(self, grains=None): ''' This is a DESTRUCTIVE TEST. It creates a new user on the on the minion. This is an integration test. Not all systems will automatically create a group of the same name as the user, but I don't have access to any. If you run the test and it fails, please fix the code it's testing to work on your operating system. ''' # MacOS users' primary group defaults to staff (20), not the name of # user gid_from_name = False if grains['os_family'] == 'MacOS' else True ret = self.run_state('user.present', name='salt_test', gid_from_name=gid_from_name, home='/var/lib/salt_test') self.assertSaltTrueReturn(ret) ret = self.run_function('user.info', ['salt_test']) self.assertReturnNonEmptySaltType(ret) group_name = grp.getgrgid(ret['gid']).gr_name self.assertTrue(os.path.isdir('/var/lib/salt_test')) if grains['os_family'] in ('Suse',): self.assertEqual(group_name, 'users') elif grains['os_family'] == 'MacOS': self.assertEqual(group_name, 'staff') else: self.assertEqual(group_name, 'salt_test') ret = self.run_state('user.absent', name='salt_test') self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_present_gid_from_name(self): ''' This is a DESTRUCTIVE TEST it creates a new user on the on the minion. This is a unit test, NOT an integration test. We create a group of the same name as the user beforehand, so it should all run smoothly. ''' ret = self.run_state('group.present', name='salt_test') self.assertSaltTrueReturn(ret) ret = self.run_state('user.present', name='salt_test', gid_from_name=True, home='/var/lib/salt_test') self.assertSaltTrueReturn(ret) ret = self.run_function('user.info', ['salt_test']) self.assertReturnNonEmptySaltType(ret) group_name = grp.getgrgid(ret['gid']).gr_name self.assertTrue(os.path.isdir('/var/lib/salt_test')) self.assertEqual(group_name, 'salt_test') ret = self.run_state('user.absent', name='salt_test') self.assertSaltTrueReturn(ret) ret = self.run_state('group.absent', name='salt_test') self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') @skipIf(sys.getfilesystemencoding().startswith('ANSI'), 'A system encoding which supports Unicode characters must be set. Current setting is: {0}. Try setting $LANG=\'en_US.UTF-8\''.format(sys.getfilesystemencoding())) def test_user_present_unicode(self): ''' This is a DESTRUCTIVE TEST it creates a new user on the on the minion. It ensures that unicode GECOS data will be properly handled, without any encoding-related failures. ''' ret = self.run_state( 'user.present', name='salt_test', fullname=u'Sålt Test', roomnumber=u'①②③', workphone=u'١٢٣٤', homephone=u'६७८' ) self.assertSaltTrueReturn(ret) # Ensure updating a user also works ret = self.run_state( 'user.present', name='salt_test', fullname=u'Sølt Test', roomnumber=u'①③②', workphone=u'٣٤١٢', homephone=u'६८७' ) self.assertSaltTrueReturn(ret) # ret = self.run_state('user.absent', name='salt_test') # self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_present_gecos(self): ''' This is a DESTRUCTIVE TEST it creates a new user on the on the minion. It ensures that numeric GECOS data will be properly coerced to strings, otherwise the state will fail because the GECOS fields are written as strings (and show up in the user.info output as such). Thus the comparison will fail, since '12345' != 12345. ''' ret = self.run_state( 'user.present', name='salt_test', fullname=12345, roomnumber=123, workphone=1234567890, homephone=1234567890 ) self.assertSaltTrueReturn(ret) ret = self.run_state('user.absent', name='salt_test') self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def test_user_present_gecos_none_fields(self): ''' This is a DESTRUCTIVE TEST it creates a new user on the on the minion. It ensures that if no GECOS data is supplied, the fields will be coerced into empty strings as opposed to the string "None". ''' ret = self.run_state( 'user.present', name='salt_test', fullname=None, roomnumber=None, workphone=None, homephone=None ) self.assertSaltTrueReturn(ret) ret = self.run_function('user.info', ['salt_test']) self.assertReturnNonEmptySaltType(ret) self.assertEqual('', ret['fullname']) # MacOS does not supply the following GECOS fields if not salt.utils.is_darwin(): self.assertEqual('', ret['roomnumber']) self.assertEqual('', ret['workphone']) self.assertEqual('', ret['homephone']) ret = self.run_state('user.absent', name='salt_test') self.assertSaltTrueReturn(ret) @destructiveTest @skipIf(os.geteuid() != 0, 'you must be root to run this test') def tearDown(self): if salt.utils.is_darwin(): check_user = self.run_function('user.list_users') if USER in check_user: del_user = self.run_function('user.delete', [USER], remove=True)
the-stack_0_4718
from __future__ import unicode_literals from collections import defaultdict import datetime import json from moto.compat import OrderedDict from moto.core import BaseBackend, BaseModel, CloudFormationModel from moto.core.utils import unix_time from moto.core import ACCOUNT_ID from .comparisons import get_comparison_func class DynamoJsonEncoder(json.JSONEncoder): def default(self, obj): if hasattr(obj, "to_json"): return obj.to_json() def dynamo_json_dump(dynamo_object): return json.dumps(dynamo_object, cls=DynamoJsonEncoder) class DynamoType(object): """ http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html#DataModelDataTypes """ def __init__(self, type_as_dict): self.type = list(type_as_dict.keys())[0] self.value = list(type_as_dict.values())[0] def __hash__(self): return hash((self.type, self.value)) def __eq__(self, other): return self.type == other.type and self.value == other.value def __repr__(self): return "DynamoType: {0}".format(self.to_json()) def to_json(self): return {self.type: self.value} def compare(self, range_comparison, range_objs): """ Compares this type against comparison filters """ range_values = [obj.value for obj in range_objs] comparison_func = get_comparison_func(range_comparison) return comparison_func(self.value, *range_values) class Item(BaseModel): def __init__(self, hash_key, hash_key_type, range_key, range_key_type, attrs): self.hash_key = hash_key self.hash_key_type = hash_key_type self.range_key = range_key self.range_key_type = range_key_type self.attrs = {} for key, value in attrs.items(): self.attrs[key] = DynamoType(value) def __repr__(self): return "Item: {0}".format(self.to_json()) def to_json(self): attributes = {} for attribute_key, attribute in self.attrs.items(): attributes[attribute_key] = attribute.value return {"Attributes": attributes} def describe_attrs(self, attributes): if attributes: included = {} for key, value in self.attrs.items(): if key in attributes: included[key] = value else: included = self.attrs return {"Item": included} class Table(CloudFormationModel): def __init__( self, name, hash_key_attr, hash_key_type, range_key_attr=None, range_key_type=None, read_capacity=None, write_capacity=None, ): self.name = name self.hash_key_attr = hash_key_attr self.hash_key_type = hash_key_type self.range_key_attr = range_key_attr self.range_key_type = range_key_type self.read_capacity = read_capacity self.write_capacity = write_capacity self.created_at = datetime.datetime.utcnow() self.items = defaultdict(dict) @property def has_range_key(self): return self.range_key_attr is not None @property def describe(self): results = { "Table": { "CreationDateTime": unix_time(self.created_at), "KeySchema": { "HashKeyElement": { "AttributeName": self.hash_key_attr, "AttributeType": self.hash_key_type, } }, "ProvisionedThroughput": { "ReadCapacityUnits": self.read_capacity, "WriteCapacityUnits": self.write_capacity, }, "TableName": self.name, "TableStatus": "ACTIVE", "ItemCount": len(self), "TableSizeBytes": 0, } } if self.has_range_key: results["Table"]["KeySchema"]["RangeKeyElement"] = { "AttributeName": self.range_key_attr, "AttributeType": self.range_key_type, } return results @staticmethod def cloudformation_name_type(): return "TableName" @staticmethod def cloudformation_type(): # https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-dynamodb-table.html return "AWS::DynamoDB::Table" @classmethod def create_from_cloudformation_json( cls, resource_name, cloudformation_json, region_name ): properties = cloudformation_json["Properties"] key_attr = [ i["AttributeName"] for i in properties["KeySchema"] if i["KeyType"] == "HASH" ][0] key_type = [ i["AttributeType"] for i in properties["AttributeDefinitions"] if i["AttributeName"] == key_attr ][0] spec = { "name": properties["TableName"], "hash_key_attr": key_attr, "hash_key_type": key_type, } # TODO: optional properties still missing: # range_key_attr, range_key_type, read_capacity, write_capacity return Table(**spec) def __len__(self): count = 0 for key, value in self.items.items(): if self.has_range_key: count += len(value) else: count += 1 return count def __nonzero__(self): return True def __bool__(self): return self.__nonzero__() def put_item(self, item_attrs): hash_value = DynamoType(item_attrs.get(self.hash_key_attr)) if self.has_range_key: range_value = DynamoType(item_attrs.get(self.range_key_attr)) else: range_value = None item = Item( hash_value, self.hash_key_type, range_value, self.range_key_type, item_attrs ) if range_value: self.items[hash_value][range_value] = item else: self.items[hash_value] = item return item def get_item(self, hash_key, range_key): if self.has_range_key and not range_key: raise ValueError( "Table has a range key, but no range key was passed into get_item" ) try: if range_key: return self.items[hash_key][range_key] else: return self.items[hash_key] except KeyError: return None def query(self, hash_key, range_comparison, range_objs): results = [] last_page = True # Once pagination is implemented, change this if self.range_key_attr: possible_results = self.items[hash_key].values() else: possible_results = list(self.all_items()) if range_comparison: for result in possible_results: if result.range_key.compare(range_comparison, range_objs): results.append(result) else: # If we're not filtering on range key, return all values results = possible_results return results, last_page def all_items(self): for hash_set in self.items.values(): if self.range_key_attr: for item in hash_set.values(): yield item else: yield hash_set def scan(self, filters): results = [] scanned_count = 0 last_page = True # Once pagination is implemented, change this for result in self.all_items(): scanned_count += 1 passes_all_conditions = True for ( attribute_name, (comparison_operator, comparison_objs), ) in filters.items(): attribute = result.attrs.get(attribute_name) if attribute: # Attribute found if not attribute.compare(comparison_operator, comparison_objs): passes_all_conditions = False break elif comparison_operator == "NULL": # Comparison is NULL and we don't have the attribute continue else: # No attribute found and comparison is no NULL. This item # fails passes_all_conditions = False break if passes_all_conditions: results.append(result) return results, scanned_count, last_page def delete_item(self, hash_key, range_key): try: if range_key: return self.items[hash_key].pop(range_key) else: return self.items.pop(hash_key) except KeyError: return None def get_cfn_attribute(self, attribute_name): from moto.cloudformation.exceptions import UnformattedGetAttTemplateException if attribute_name == "StreamArn": region = "us-east-1" time = "2000-01-01T00:00:00.000" return "arn:aws:dynamodb:{0}:{1}:table/{2}/stream/{3}".format( region, ACCOUNT_ID, self.name, time ) raise UnformattedGetAttTemplateException() class DynamoDBBackend(BaseBackend): def __init__(self): self.tables = OrderedDict() def create_table(self, name, **params): table = Table(name, **params) self.tables[name] = table return table def delete_table(self, name): return self.tables.pop(name, None) def update_table_throughput(self, name, new_read_units, new_write_units): table = self.tables[name] table.read_capacity = new_read_units table.write_capacity = new_write_units return table def put_item(self, table_name, item_attrs): table = self.tables.get(table_name) if not table: return None return table.put_item(item_attrs) def get_item(self, table_name, hash_key_dict, range_key_dict): table = self.tables.get(table_name) if not table: return None hash_key = DynamoType(hash_key_dict) range_key = DynamoType(range_key_dict) if range_key_dict else None return table.get_item(hash_key, range_key) def query(self, table_name, hash_key_dict, range_comparison, range_value_dicts): table = self.tables.get(table_name) if not table: return None, None hash_key = DynamoType(hash_key_dict) range_values = [DynamoType(range_value) for range_value in range_value_dicts] return table.query(hash_key, range_comparison, range_values) def scan(self, table_name, filters): table = self.tables.get(table_name) if not table: return None, None, None scan_filters = {} for key, (comparison_operator, comparison_values) in filters.items(): dynamo_types = [DynamoType(value) for value in comparison_values] scan_filters[key] = (comparison_operator, dynamo_types) return table.scan(scan_filters) def delete_item(self, table_name, hash_key_dict, range_key_dict): table = self.tables.get(table_name) if not table: return None hash_key = DynamoType(hash_key_dict) range_key = DynamoType(range_key_dict) if range_key_dict else None return table.delete_item(hash_key, range_key) dynamodb_backend = DynamoDBBackend()
the-stack_0_4721
#!/usr/bin/python # Copyright (c) 2020, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_waas_protection_rules short_description: Manage a ProtectionRules resource in Oracle Cloud Infrastructure description: - This module allows the user to update a ProtectionRules resource in Oracle Cloud Infrastructure version_added: "2.9.0" author: Oracle (@oracle) options: waas_policy_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the WAAS policy. type: str aliases: ["id"] required: true protection_rules: description: - "" type: list elements: dict required: true suboptions: key: description: - The unique key of the protection rule. - This parameter is updatable. type: str required: true action: description: - The action to apply to the protection rule. If unspecified, defaults to `OFF`. - This parameter is updatable. type: str choices: - "OFF" - "DETECT" - "BLOCK" required: true exclusions: description: - The types of requests excluded from the protection rule action. If the requests matches the criteria in the `exclusions`, the protection rule action will not be executed. type: list elements: dict suboptions: target: description: - The target of the exclusion. - This parameter is updatable. type: str choices: - "REQUEST_COOKIES" - "REQUEST_COOKIE_NAMES" - "ARGS" - "ARGS_NAMES" exclusions: description: - "" - This parameter is updatable. type: list elements: str state: description: - The state of the ProtectionRules. - Use I(state=present) to update an existing a ProtectionRules. type: str required: false default: 'present' choices: ["present"] extends_documentation_fragment: [ oracle.oci.oracle, oracle.oci.oracle_wait_options ] """ EXAMPLES = """ - name: Update protection_rules oci_waas_protection_rules: waas_policy_id: "ocid1.waaspolicy.oc1..xxxxxxEXAMPLExxxxxx" protection_rules: - key: key_example action: OFF """ RETURN = """ protection_rules: description: - Details of the ProtectionRules resource acted upon by the current operation returned: on success type: complex contains: key: description: - The unique key of the protection rule. returned: on success type: str sample: key_example mod_security_rule_ids: description: - The list of the ModSecurity rule IDs that apply to this protection rule. For more information about ModSecurity's open source WAF rules, see L(Mod Security's documentation,https://www.modsecurity.org/CRS/Documentation/index.html). returned: on success type: list sample: [] name: description: - The name of the protection rule. returned: on success type: str sample: name_example description: description: - The description of the protection rule. returned: on success type: str sample: description_example action: description: - The action to take when the traffic is detected as malicious. If unspecified, defaults to `OFF`. returned: on success type: str sample: OFF labels: description: - The list of labels for the protection rule. - "**Note:** Protection rules with a `ResponseBody` label will have no effect unless `isResponseInspected` is true." returned: on success type: list sample: [] exclusions: description: - "" returned: on success type: complex contains: target: description: - The target of the exclusion. returned: on success type: str sample: REQUEST_COOKIES exclusions: description: - "" returned: on success type: list sample: [] sample: { "key": "key_example", "mod_security_rule_ids": [], "name": "name_example", "description": "description_example", "action": "OFF", "labels": [], "exclusions": [{ "target": "REQUEST_COOKIES", "exclusions": [] }] } """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import ( oci_common_utils, oci_wait_utils, ) from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceHelperBase, get_custom_class, ) try: from oci.waas import WaasClient from oci.waas.models import ProtectionRuleAction HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class ProtectionRulesHelperGen(OCIResourceHelperBase): """Supported operations: update, get and list""" def get_module_resource_id_param(self): return "waas_policy_id" def get_module_resource_id(self): return self.module.params.get("waas_policy_id") def get_get_fn(self): return self.client.get_protection_rule def get_resource(self): return oci_common_utils.get_default_response_from_resource( oci_common_utils.list_all_resources( self.client.get_protection_rule, waas_policy_id=self.module.params.get("waas_policy_id"), protection_rule_key=self.module.params.get("protection_rule_key"), ) ) def get_required_kwargs_for_list(self): required_list_method_params = [ "waas_policy_id", ] return dict( (param, self.module.params[param]) for param in required_list_method_params ) def get_optional_kwargs_for_list(self): return dict() def list_resources(self): required_kwargs = self.get_required_kwargs_for_list() optional_kwargs = self.get_optional_kwargs_for_list() kwargs = oci_common_utils.merge_dicts(required_kwargs, optional_kwargs) return oci_common_utils.list_all_resources( self.client.list_protection_rules, **kwargs ) def get_update_model_class(self): return ProtectionRuleAction def get_update_model(self): if self.module.params.get("protection_rules"): return [ oci_common_utils.convert_input_data_to_model_class( resource, self.get_update_model_class() ) for resource in self.module.params["protection_rules"] ] return [] def update_resource(self): update_details = self.get_update_model() return oci_wait_utils.call_and_wait( call_fn=self.client.update_protection_rules, call_fn_args=(), call_fn_kwargs=dict( waas_policy_id=self.module.params.get("waas_policy_id"), protection_rules=update_details, ), waiter_type=oci_wait_utils.WORK_REQUEST_WAITER_KEY, operation=oci_common_utils.UPDATE_OPERATION_KEY, waiter_client=self.get_waiter_client(), resource_helper=self, wait_for_states=oci_common_utils.get_work_request_completed_states(), ) ProtectionRulesHelperCustom = get_custom_class("ProtectionRulesHelperCustom") class ResourceHelper(ProtectionRulesHelperCustom, ProtectionRulesHelperGen): pass def main(): module_args = oci_common_utils.get_common_arg_spec( supports_create=False, supports_wait=True ) module_args.update( dict( waas_policy_id=dict(aliases=["id"], type="str", required=True), protection_rules=dict( type="list", elements="dict", required=True, options=dict( key=dict(type="str", required=True, no_log=True), action=dict( type="str", required=True, choices=["OFF", "DETECT", "BLOCK"] ), exclusions=dict( type="list", elements="dict", options=dict( target=dict( type="str", choices=[ "REQUEST_COOKIES", "REQUEST_COOKIE_NAMES", "ARGS", "ARGS_NAMES", ], ), exclusions=dict(type="list", elements="str"), ), ), ), ), state=dict(type="str", default="present", choices=["present"]), ) ) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_helper = ResourceHelper( module=module, resource_type="protection_rules", service_client_class=WaasClient, namespace="waas", ) result = dict(changed=False) if resource_helper.is_update(): result = resource_helper.update() module.exit_json(**result) if __name__ == "__main__": main()
the-stack_0_4722
#!/usr/bin/env python3 import re import sys import sqlite3 import traceback import os __location__ = os.path.realpath( os.path.join( os.getcwd(), os.path.dirname(__file__) ) ) input_failures = 0 try: DATABASE_NAME = os.path.join(__location__, 'data.sqlite') conn = sqlite3.connect(DATABASE_NAME) i = 0 for line in sys.stdin: l = line.strip() # Groups: 1 2 3 4 5 match = re.search('^(\w+)\s+([\w\-\:]+)\s+([\w\-]+)\s+(\w+|-)\s+OK(.*)$', l) if not match: input_failures += 1 print(f'Error: Not matched input line: {l}') continue date_part = match.group(2).split('T') data = { 'date': date_part[0], 'time': '', 'area': match.group(1), 'tested': '', 'confirmed': match.group(3), 'new_hospitalized': '', 'hospitalized': '', 'icu': '', 'vent': '', 'released': '', 'deceased': match.group(4), 'source': '', } if len(date_part) == 2: data['time'] = date_part[1] if data['confirmed'] == '-': data['confirmed'] = '' else: data['confirmed'] = int(data['confirmed']) if data['deceased'] == '-': data['deceased'] = '' else: data['deceased'] = int(data['deceased']) # Parse optional data. rest = match.group(5) extras_match = re.search('# Extras: ([^#]+)', rest) if extras_match: try: extras = extras_match.group(1).strip() extras = extras.split(',') extras = { kv.split('=', 2)[0]: int(kv.split('=', 2)[1]) for kv in extras } if 'current_hosp' in extras: data['hospitalized'] = extras['current_hosp'] if 'current_icu' in extras: data['icu'] = extras['current_icu'] if 'current_vent' in extras: data['vent'] = extras['current_vent'] if 'ncumul_released' in extras: data['released'] = extras['ncumul_released'] except Exception as e: print(f'Error: Parsing optional data failed, ignoring: {extras_match.group(1)}') # Parse URLs url_match = re.search('# URLs: ([^#]+)', rest) try: url_source = url_match.group(1).strip().split(', ')[-1] except (TypeError, IndexError): url_source = '' if 'SCRAPER_SOURCE' in os.environ: data['source'] = os.environ['SCRAPER_SOURCE'] elif url_source: data['source'] = url_source c = conn.cursor() try: print(data) c.execute( ''' INSERT INTO data ( date, time, abbreviation_canton_and_fl, ncumul_tested, ncumul_conf, new_hosp, current_hosp, current_icu, current_vent, ncumul_released, ncumul_deceased, source ) VALUES (?,?,?,?,?,?,?,?,?,?,?,?) ''', [ data['date'], data['time'], data['area'], data['tested'], data['confirmed'], data['new_hospitalized'], data['hospitalized'], data['icu'], data['vent'], data['released'], data['deceased'], data['source'], ] ) print("Successfully added new entry.") except sqlite3.IntegrityError: if os.environ.get('SCRAPER_OVERWRITE') == 'yes': c.execute( ''' UPDATE data SET time = ? , ncumul_tested = ? , ncumul_conf = ? , new_hosp = ? , current_hosp = ? , current_icu = ? , current_vent = ? , ncumul_released = ? , ncumul_deceased = ?, source = ? WHERE date = ? AND abbreviation_canton_and_fl = ? ''', [ data['time'], data['tested'], data['confirmed'], data['new_hospitalized'], data['hospitalized'], data['icu'], data['vent'], data['released'], data['deceased'], data['source'], data['date'], data['area'], ] ) print("Successfully updated entry.") else: print("Error: Data for this date has already been added") finally: conn.commit() except Exception as e: print("Error: %s" % e, file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) sys.exit(1) finally: conn.close() if input_failures: sys.exit(1)
the-stack_0_4723
import asyncio import base64 from pathlib import Path from subprocess import Popen from tempfile import mkstemp import concurrent.futures import urllib.parse from nbconvert.exporters import Exporter, HTMLExporter import aiohttp from ._screenshot import get_chrome_path async def handler(ws, data, key=None): await ws.send_json(data) async for msg in ws: msg_json = msg.json() if 'result' in msg_json: result = msg_json['result'].get(key) break return result async def main(file_name, p): async with aiohttp.ClientSession() as session: connected = False await asyncio.sleep(1) for _ in range(10): try: resp = await session.get('http://localhost:9222/json') data = await resp.json() page_url = data[0]['webSocketDebuggerUrl'] connected = True except: await asyncio.sleep(1) if connected: break if not connected: p.kill() raise Exception('Could not connect to chrome server') async with session.ws_connect(page_url, receive_timeout=3, max_msg_size=0) as ws: # first - navigate to html page params = {'url': file_name} data = {'id': 1, 'method': 'Page.navigate', 'params': params} frameId = await handler(ws, data, 'frameId') # second - enable page # await asyncio.sleep(1) data = {'id': 2, 'method': 'Page.enable'} await handler(ws, data) # third - get html params = {'frameId': frameId, 'url': file_name} data = {'id': 3, 'method': 'Page.getResourceContent', 'params': params} await handler(ws, data, 'content') # fourth - get pdf await asyncio.sleep(1) params = {'displayHeaderFooter': False, 'printBackground': True} data = {'id': 4, 'method': 'Page.printToPDF', 'params': params} pdf_data = await handler(ws, data, 'data') pdf_data = base64.b64decode(pdf_data) return pdf_data def launch_chrome(): chrome_path = get_chrome_path() args = [chrome_path, '--headless', '--disable-gpu', '--run-all-compositor-stages-before-draw', '--remote-debugging-port=9222' ] p = Popen(args=args) return p def get_html_data(nb, resources, **kw): he = HTMLExporter() html_data, resources = he.from_notebook_node(nb, resources, **kw) html_data = html_data.replace('@media print', '@media xxprintxx') return html_data def get_pdf_data(file_name, p): try: from asyncio import run except ImportError: from ._my_asyncio import run with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: future = executor.submit(run, main(file_name, p)) return future.result() class BrowserExporter(Exporter): def _file_extension_default(self): return '.pdf' def from_notebook_node(self, nb, resources=None, **kw): resources['output_extension'] = '.pdf' nb_home = resources['metadata']['path'] p = launch_chrome() html_data = get_html_data(nb, resources, **kw) _, tf_name = mkstemp(dir=nb_home, suffix='.html') with open(tf_name, 'w') as f: f.write(html_data) tf_path = Path(tf_name) full_file_name = 'file://' + urllib.parse.quote(tf_name) pdf_data = get_pdf_data(full_file_name, p) import os os.remove(tf_path) p.kill() return pdf_data, resources
the-stack_0_4725
""" Precisely APIs Enhance & enrich your data, applications, business processes, and workflows with rich location, information, and identify APIs. # noqa: E501 The version of the OpenAPI document: 11.9.3 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from com.precisely.apis.api_client import ApiClient, Endpoint as _Endpoint from com.precisely.apis.model_utils import ( # noqa: F401 check_allowed_values, check_validations, date, datetime, file_type, none_type, validate_and_convert_types ) from com.precisely.apis.model.geo_location_access_point import GeoLocationAccessPoint from com.precisely.apis.model.geo_location_ip_addr import GeoLocationIpAddr class GeolocationServiceApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client self.get_location_by_ip_address_endpoint = _Endpoint( settings={ 'response_type': (GeoLocationIpAddr,), 'auth': [ 'oAuth2Password' ], 'endpoint_path': '/geolocation/v1/location/byipaddress', 'operation_id': 'get_location_by_ip_address', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'ip_address', ], 'required': [ 'ip_address', ], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'ip_address': (str,), }, 'attribute_map': { 'ip_address': 'ipAddress', }, 'location_map': { 'ip_address': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/xml', 'application/json' ], 'content_type': [], }, api_client=api_client ) self.get_location_by_wi_fi_access_point_endpoint = _Endpoint( settings={ 'response_type': (GeoLocationAccessPoint,), 'auth': [ 'oAuth2Password' ], 'endpoint_path': '/geolocation/v1/location/byaccesspoint', 'operation_id': 'get_location_by_wi_fi_access_point', 'http_method': 'GET', 'servers': None, }, params_map={ 'all': [ 'mac', 'ssid', 'rsid', 'speed', 'access_point', ], 'required': [], 'nullable': [ ], 'enum': [ ], 'validation': [ ] }, root_map={ 'validations': { }, 'allowed_values': { }, 'openapi_types': { 'mac': (str,), 'ssid': (str,), 'rsid': (str,), 'speed': (str,), 'access_point': (str,), }, 'attribute_map': { 'mac': 'mac', 'ssid': 'ssid', 'rsid': 'rsid', 'speed': 'speed', 'access_point': 'accessPoint', }, 'location_map': { 'mac': 'query', 'ssid': 'query', 'rsid': 'query', 'speed': 'query', 'access_point': 'query', }, 'collection_format_map': { } }, headers_map={ 'accept': [ 'application/xml', 'application/json' ], 'content_type': [], }, api_client=api_client ) def get_location_by_ip_address( self, ip_address, **kwargs ): """Location By IP Address. # noqa: E501 This service accepts an IP address and returns the location coordinates corresponding to that IP address. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_location_by_ip_address(ip_address, async_req=True) >>> result = thread.get() Args: ip_address (str): This is the ip address of network connected device. It must be a standard IPv4 octet and a valid external address. Keyword Args: _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeoLocationIpAddr If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_content_type'] = kwargs.get( '_content_type') kwargs['_host_index'] = kwargs.get('_host_index') kwargs['ip_address'] = \ ip_address return self.get_location_by_ip_address_endpoint.call_with_http_info(**kwargs) def get_location_by_wi_fi_access_point( self, **kwargs ): """Location by WiFi Access Point. # noqa: E501 This service accepts a WiFi access point MAC address and returns the location coordinates corresponding to that access point. Only mac or accessPoint are mandatory parameters (one of them has to be provided), rest are optional. # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_location_by_wi_fi_access_point(async_req=True) >>> result = thread.get() Keyword Args: mac (str): This should be the 48 bit mac address (or BSSID) of wireless access point. Accepted format is Six groups of two hexadecimal digits, separated by hyphens (-) or colons.. [optional] ssid (str): The service set identifier for wi-fi access point. It should be alphanumeric with maximum 32 characters.. [optional] rsid (str): This is the received signal strength indicator from particular wi-fi access point. It should be a number from -113 to 0 and the unit of this strength is dBm.. [optional] speed (str): This is the connection speed for wi-fi. It should be a number from 0 to 6930 and the unit should be Mbps.. [optional] access_point (str): This is the JSON based list of wifi access points in the vicinity of device to be located. This parameter is helpful in case, multiple wifi points are visible and we want to make sure that the location of device is best calculated considering all the access points location.. [optional] _return_http_data_only (bool): response data without head status code and headers. Default is True. _preload_content (bool): if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. _request_timeout (int/float/tuple): timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. Default is None. _check_input_type (bool): specifies if type checking should be done one the data sent to the server. Default is True. _check_return_type (bool): specifies if type checking should be done one the data received from the server. Default is True. _content_type (str/None): force body content-type. Default is None and content-type will be predicted by allowed content-types and body. _host_index (int/None): specifies the index of the server that we want to use. Default is read from the configuration. async_req (bool): execute request asynchronously Returns: GeoLocationAccessPoint If the method is called asynchronously, returns the request thread. """ kwargs['async_req'] = kwargs.get( 'async_req', False ) kwargs['_return_http_data_only'] = kwargs.get( '_return_http_data_only', True ) kwargs['_preload_content'] = kwargs.get( '_preload_content', True ) kwargs['_request_timeout'] = kwargs.get( '_request_timeout', None ) kwargs['_check_input_type'] = kwargs.get( '_check_input_type', True ) kwargs['_check_return_type'] = kwargs.get( '_check_return_type', True ) kwargs['_content_type'] = kwargs.get( '_content_type') kwargs['_host_index'] = kwargs.get('_host_index') return self.get_location_by_wi_fi_access_point_endpoint.call_with_http_info(**kwargs)
the-stack_0_4726
#!/usr/bin/env python """ For a given motif annotated VCF file (already run through motifs.py) and a bed-like file for loci of interest and some value for each loci for each sample, find loci that overlap a variant and compare the value of samples with the variant to those without the variant. Report robut z-scores for each loci overlapped in an output VCF and report the variants for each loci in a bed-like, loci-centric output file as well. Usage: activity.py -i <input.vcf> -a <activity.bed> -ov <output.vcf> -ob <output.bed> [OPTIONS] Args: -i (str): Path to sorted variant file to process. -a (str): Path to activity 'bed' file. -ov (str): Path to VCF output file to be created. -ob (str): Path to loci output file to be created. -th (float, optional): Z-score magnitude threshold that must be met for variants/loci to be reported to output. Default is 0, so all loci a variant overlaps will be reported. -fan (int, optional): Set number of samples that must meet z-score threshold for a locus to be reported to bed output file. So this number of samples must have the variant and have the locus's activity be significantly affected by it. Default is 0, so a locus will be reported if its activity is altered in even one sample above the robust z-score threshold. -ib (bool, optional): Should loci that don't contain any variants that significantly affect their activity be included in the bed output? False by default, set to True if wanted. -iv (bool, optional): Should variants that don't significantly alter a locus's activity be included in the vcf output? False by default, set to True if wanted. """ from __future__ import print_function # so Ninja IDE will stop complaining & show symbols import argparse import time from statistics import median from sequence import read_line2sample_list from utils import Position, timeString # TODO - Move into a utils.py file and import as appropriate. Add doc_string. class Variant(object): """ Use to process and handle variant records from a VCF more easily. Create from line of VCF file. """ def __init__(self, line, all_sample_names): self.line_list = line.strip().split("\t") self.pos = Position(self.line_list[0], int(self.line_list[1]), (int(self.line_list[1]) + len(self.line_list[3]))) self.ref_allele = self.line_list[3] self.var_allele = self.line_list[4] self.iden = self.line_list[2] self.orig_line = line.strip() self.info_fields = self.line_list[7].split(";") self.var_samples, self.motif_fields = self.parse_info_fields() self.ref_samples = [x for x in all_sample_names if x not in self.var_samples] self.loci = [] if self.var_samples is not None: # Should never evaluate to False. self.num_var_samps = len(self.var_samples) else: self.num_var_samps = 0 def parse_info_fields(self): """ Get names of samples containing variant and motif INFO fields from a variant record's INFO fields. Args: self (Variant): Variant object. Returns: samples (list of str): List of samples in which variant was called. motif_fields (list of str): List of INFO fields for variant that contain MOTIF related information. """ samples = None motif_fields = [] for field in self.info_fields: if field != "INDEL": # Take care of INDEL flag. field_info = field.split("=") # TODO - This is a hack work around a bug that's messing up the MOTIFN field in tf_expression.py. # Go back and actually figure out why the MOTIFN field is getting split up sometimes. try: name, data = (field_info[0], field_info[1]) except: name, data = "BROKEN", None else: name, data = "INDEL", None # TODO - Write method that parses header to determine # samples with variant rather than this lazy method. if name == "set": samples = data.split("-") elif name.startswith("MOTIF"): motif_fields.append(field) return (samples, motif_fields) def get_variant_output(self, include_vcf=False): """ Create VCF output line for given Variant object. Args: include_vcf (bool): True if variants that don't pass the z-score threshold for any Locus should excluded from output. False if they should be included. Returns: output (str): Line for Variant in appropriate VCF format. or None: If include_vcf is True and no Locus that Variant overlaps hits the z-score threshold. """ info = self.info_fields info.insert(0, "SAMPSTV=" + ",".join(self.var_samples)) info.insert(0, "SAMPSR=" + ",".join([x.ref_samples[self] for x in self.loci][0])) info.insert(0, "SAMPSV=" + ",".join([x.var_samples[self] for x in self.loci][0])) # TODO - Check and make sure next two lines are functioning properly. info.insert(0, "SAMPSNR=" + ",".join([str(x.num_valid_ref[self]) for x in self.loci])) info.insert(0, "SAMPSNV=" + ",".join([str(x.num_valid_var[self]) for x in self.loci])) # Use lists to maintain order in output so that LOCIID, LOCIVZ, SAMPTHN fields can all be matched up. z_scores = [] pass_thresh = [] loci_idens = [] for item in self.loci: loci_idens.append(item.iden) pass_thresh.append(item.num_pass_thresh[self]) tmp = "(" + ",".join([str(round(x, 4)) for x in item.z_scores[self][0]]) + ")" z_scores.append(tmp) info.insert(0, "SAMPTHN=" + ",".join([str(x) for x in pass_thresh])) info.insert(0, "LOCIVZ=" + ",".join(z_scores)) info.insert(0, "LOCIID=" + ",".join(loci_idens)) # Check if any loci have samples that pass the Z-score threshold. # TODO - Change this so it check that the NUMBER OF SAMPLES reaching the z-score threshold are enough. if any([x >= 1 for x in pass_thresh]): self.info_fields = info self.line_list[7] = ";".join(self.info_fields) output = "\t".join(self.line_list) return output else: return None # TODO - Move into a utils.py file and import as appropriate. Make ActLocus a sub-class of Locus along with GeneLocus. class Locus(object): """ Use to process and handle loci records from an activity file more easily. Args: pos (Position): Position object holding genomic position of locus. orig_line (str): String from which the object was originally created. iden (str): Unique identifier for the locus. data (list of float): Data values for each sample for the record. """ def __init__(self, line): line_list = line.strip().split("\t") self.pos = Position(line_list[0], int(line_list[1]), int(line_list[2])) self.orig_line = line.strip() self.iden = str(line_list[3]) self.data = [float(x) for x in line_list[4:]] self.var_samples = {} self.ref_samples = {} self.ref_scores = {} self.var_scores = {} self.num_valid_ref = {} self.num_valid_var = {} self.num_pass_thresh = {} self.variants = [] self.z_scores = {} def add_variant(self, variant, var_samples, ref_samples): """ Add Variant object variant to list of Variants that overlap the Locus. """ self.variants.append(variant) self.ref_scores[variant] = [] self.var_scores[variant] = [] self.var_samples[variant] = var_samples self.ref_samples[variant] = ref_samples self.num_valid_ref[variant] = len(ref_samples) self.num_valid_var[variant] = len(var_samples) self.num_pass_thresh[variant] = 0 self.z_scores[variant] = [] def calc_z_score(self, ref_ind, var_ind, variant, thresh=0): """ Calculate a robust z-score for the given locus and variant. This uses the median absolute deviation (MAD): https://en.wikipedia.org/wiki/Median_absolute_deviation """ self.num_valid_ref[variant] = len(ref_ind) self.num_valid_var[variant] = len(var_ind) for entry in ref_ind: scores = self.ref_scores[variant] scores.append(self.data[int(entry)]) self.ref_scores[variant] = scores for entry in var_ind: scores = self.var_scores[variant] scores.append(self.data[int(entry)]) self.var_scores[variant] = scores # MAD calculation. all_scores = self.ref_scores[variant] + self.var_scores[variant] med = median(all_scores) abs_score = [abs(x - med) for x in all_scores] mad = median(abs_score) * 1.4826 # 1.4826 is a constant that assumes a normal distribution to use the MAD as a consistent estimator # of standard deviation. robust_z_scores = [((x - med) / mad) for x in self.var_scores[variant]] for item in robust_z_scores: if abs(item) >= thresh: # Check number of variant samples that passed the threshold. passed = self.num_pass_thresh[variant] passed += 1 self.num_pass_thresh[variant] = passed vals = self.z_scores[variant] vals.append(robust_z_scores) self.z_scores[variant] = vals return def get_locus_output(self, include_bed=False, filter_num=0): """ Create list of output lines for given Locus object. Args: include_bed (bool): True if variants that don't pass the z-score threshold for any Locus should excluded from output. False if they should be included. filter_num (int): Number of samples the must meet z-score threshold for Variant to be included in output. Returns: output (list of str): List of lines for Locus in appropriate BED-like format. or None: If include_bed is True and Locus doesn't contain any Variants that hit z-score threshold for any sample. """ output = [] chrom = self.pos.chrom start = self.pos.start end = self.pos.end iden = self.iden # Get info for each Variant that is necessary for output. for item in self.variants: num_meet_thresh = int(self.num_pass_thresh[item]) if num_meet_thresh < filter_num and include_bed is False: continue # Just go to next Variant if required number of samples didn't meet z-score threshold. out_line = [chrom, str(start), str(end), str(iden)] motifs_out = ";".join(item.motif_fields) out_line.append(item.pos.chrom + ":" + str(item.pos.start) + "_" + item.ref_allele + ">" + item.var_allele) val_var_samps = self.var_samples[item] num_val_var = len(self.var_samples[item]) val_ref_samps = ",".join(self.ref_samples[item]) num_val_ref = len(self.ref_samples[item]) all_var_samps = ",".join(item.var_samples) num_all_var_samps = len(item.var_samples) all_ref_samps = ",".join(item.ref_samples) num_all_ref_samps = len(item.ref_samples) # Handle z_scores. scores_out = [] scores = self.z_scores[item] for x in range(len(val_var_samps)): samp = val_var_samps[x] score = round(scores[x][x], 4) scores_out.append(samp + "=" + str(score)) out_line.append(",".join(scores_out)) out_line.append(str(num_meet_thresh)) out_line.append(",".join(val_var_samps)) out_line.append(str(num_val_var)) out_line.append(val_ref_samps) out_line.append(str(num_val_ref)) out_line.append(all_var_samps) out_line.append(str(num_all_var_samps)) out_line.append(all_ref_samps) out_line.append(str(num_all_ref_samps)) out_line.append(motifs_out) output.append("\t".join(out_line)) if output: # If no variants are in the output list, just return None. return output else: return None def get_activity_samples(header_line): """ Parse header of activity file to return sample names and column indices. Args: header_line (str): Header line from activity file. Returns: act_samples (dict): Dictionary of {sample_name (str): sample_data_index (int)}. sample_data_index is index for data in sample list, not the line as a whole. e.g.: [samp1, samp2, samp3] & [20, 10, 5] for data values, then {'samp1': 0}. """ line_list = header_line.strip().split("\t") samples = line_list[4:] act_samples = {} for item in samples: samp_idx = samples.index(item) sample = item.split(".")[0] act_samples[sample] = samp_idx return act_samples def compare_samples(act_samples, vcf_samples): """ Compare samples from activity file and vcf file. Return only samples in both as a list and delete those not found in both from the act_samples dict. Args: act_samples (dict): {(act_sample_names (str)): sample_indices (int)} vcf_samples (list of str): List of samples found in VCF file. Returns: common_samps (list of str): List of names of samples found in both the activity file and VCF file. valid_act_samps (dict): Dict of {sample_names (str): activity file data column index (int)} for samples found in both the activity file and VCF file. """ common_samps = list(set(list(act_samples)) & set(vcf_samples)) valid_act_samples = {} # Create new dict for activity samples containing only those found in VCF file as well. for x in common_samps: valid_act_samples[x] = act_samples[x] return (common_samps, valid_act_samples) def parse_activity_file(activity_file): """ Parse activity file to get data values for each record along with sample names and indices. Args: activity_file (str): Path to activity file to process. Returns: act_samples (dict): Dict of {sample_name: index for activity vals}. act_data (list of Locus): List of Locus objects. """ with open(activity_file) as f: header = f.readline().strip() act_samples = get_activity_samples(header) # Get sample names/indices. act_data = [] for line in f: record = Locus(line) act_data.append(record) return (act_samples, act_data) def reduce_activity_names(act_samps, split_string="_"): """ Return only unique part of names in the passed list set. Code assumes either start or end is unique based on unique set size Args: act_samps: list of strings for the activity samples or dictionary with keys being strings for activity samples split_string: String to split individual act_samps on assumes single split is relevant default = "_" Returns: act_samps modified to not include the non-unique part of the input strings returns same type as the input act_samps, list or dict """ split_one = [] split_two = [] for sample in act_samps: # 1. split on split_string splitList = sample.split(split_string) # 2. put first split and all remaining splits in 2 arrays split_one.append(splitList[0]) if len(splitList) == 1: # because otherwise it adds an empty list item and breaks below split_two.append("") else: split_two.append(split_string.join(splitList[1:])) # 3. determine the unique set size (just making it a set makes them unique s1 = set(split_one) s2 = set(split_two) if len(s1) > len(s2): # s2 is the non-unique part; ie s1 is unique act_samps_temp = list(s1) else: # s1 is the non-unique part; ie s2 is unique act_samps_temp = list(s2) if type(act_samps) is list: # do nothing just return return (act_samps_temp) elif type(act_samps) is dict: # must rebuild the dictionary act_samps_rebuild = {} ind = -1 for sample in act_samps: ind = ind + 1 act_samps_rebuild[act_samps_temp[ind]] = act_samps[sample] return (act_samps_rebuild) def main(vcf_file, act_file, out_vcf, out_bed, thresh=0, filter_num=0, include_bed=False, include_vcf=False, drop_act_=1): """ Compare activity of loci for samples harboring a variant within a given locus to those samples that do not. For a given motif annotated VCF file (already run through motifs.py) and a bed-like file for loci of interest and some value for each loci for each sample, find loci that overlap a variant and compare the value of samples with the variant to those without the variant. Report z-scores for each loci overlapped in an output VCF and report the variants for each loci in a bed-like, loci-centric output file as well. Args: vcf_file (str): Path to sorted variant file to process. act_file (str): Path to activity 'bed' file. out_vcf (str): Path to VCF output file to be created. out_bed (str): Path to loci output file to be created. thresh (float, optional): Z-score magnitude that must be met for variants/loci to be reported to output. filter_num (int, optional): Set number of samples that must meet z-score threshold for locus to be reported to bed output file. So this number of samples must have the variant and be significantly affected by it. include_bed (bool, optional): True if loci should be reported in the bed output even if they don't have a variant in them that significantly affects their activity. include_vcf (bool, optional): True if variants should be reported in the VCF output even if they don't lie in a Locus and significantly affect its activity. drop_act_ (integer, optional): If > 0 then break activity items on _, return only unique part of name. code assumes either start or end is unique based on unique set size once dropped reruns comparison to the vcf samples if 1: only runs if prior vcf comparison results in no overlap if 2: runs no matter what """ print("Parsing activity data file: " + timeString() + ".") act_samps, act_data = parse_activity_file(act_file) output_vcf = open(out_vcf, "w") output_bed = open(out_bed, "w") loci_out = [] # Use to hold all Locus objects that overlap a Variant. with open(vcf_file) as f: # Add new INFO lines. line = f.readline().strip() now = time.strftime("%c") info_needed = True # TODO - Refactor this so output isn't such an enormous mess. One info field, multiple sub-fields per motif. # TODO - Add sample names for those that pass threshold. info = '##INFO=<ID=LOCIID,Number=.,Type=String,Description="IDs for loci that variant overlaps.">\n' info += '##INFO=<ID=SAMPSTV,Number=.,Type=String,Description="All samples with the variant allele.">\n' info += ('##INFO=<ID=SAMPSR,Number=.,Type=String,Description="Samples with the reference allele and loci data' '.">\n') info += ('##INFO=<ID=SAMPSV,Number=.,Type=String,Description="Samples with the variant allele and loci data.' '">\n') info += ('##INFO=<ID=LOCIVZ,Number=.,Type=String,Description="Robust z-score for each loci ' 'containing the variant. Calculated for each sample containing the variant for each loci.">\n') info += ('##INFO=<ID=SAMPTHN,Number=.,Type=Integer,Description="Number of samples in which the variant meets' 'the z-score magnitude threshold.">\n') info += ('##INFO=<ID=SAMPSNV,Number=1,Type=Integer,Description="Number of samples containing variant' ' and having loci data.">\n') info += ('##INFO=<ID=SAMPSNR,Number=1,Type=Integer,Description="Number of samples containing reference' ' and having loci data.">') command = ('##venusaur=<ID=activity,Date="' + now + '",CommandLineOptions="--input ' + vcf_file + ' --activity ' + act_file + ' --outputvcf ' + out_vcf + ' --outputbed ' + out_bed + ' --threshold ' + str(thresh) + ' --filter_act_num ' + str(filter_num) + ' --include_bed ' + str(include_bed) + ' --include_vcf ' + str(include_vcf) + '">') # Print new info lines at the top of the ##INFO section. while line.startswith("##"): if info_needed and line.startswith("##INFO"): print(command, file=output_vcf) print(command, file=output_bed) print(info, file=output_vcf) info_needed = False print(line, file=output_vcf) line = f.readline().strip() vcf_samples = read_line2sample_list(line) # Parse VCF sample header line to get samples present in file. print(line, file=output_vcf) print("Comparing samples in VCF file and activity file to find commonalities.\n") print("VCF samples: ", *vcf_samples, end="\n\n") print("Activity samples: ", *list(act_samps.keys()), end="\n\n") common_samps, valid_act_samps = compare_samples(act_samps, vcf_samples) # Get common samples b/twn the two. print("Common samples: ", *common_samps, end="\n\n") if drop_act_ > 0: if drop_act_ == 1 and len(common_samps) == 0: redo_compare = True act_samps = reduce_activity_names(act_samps) elif drop_act_ == 2: redo_compare = True # merge old and new samps to match when compare_samples is run below # if they were just lists the following would work but they are not # act_samps = list(set(reduce_activity_names(act_samps)) | set(list(act_samps))) extend_dict = reduce_activity_names(act_samps) for extdictkey in extend_dict: act_samps[extdictkey] = extend_dict[extdictkey] else: redo_compare = False if redo_compare: # Get common samples b/twn the two input sets: vcf and activity. common_samps, valid_act_samps = compare_samples(act_samps, vcf_samples) print("Updated Common samples: ", *common_samps, end="\n\n") print("Processing variants. This may take some time.") # TODO - Progress bar might actually be a decent addition. for line in f: current_var = Variant(line, vcf_samples) loci_ovlp_var = [] # Check if any of the variant samples actually have activity data as well, skip if not. for x in current_var.var_samples: if x in common_samps: for item in act_data: if current_var.pos.chrom != item.pos.chrom: continue elif current_var.pos.overlaps(item.pos): loci_ovlp_var.append(item) break # If variant overlaps no loci, print to output only if include_vcf option used. if not loci_ovlp_var: if include_vcf: print(line.strip(), file=output_vcf) continue else: continue # Get activity data indices for both samples with variant and without. var_act_indices = [valid_act_samps[x] for x in current_var.var_samples if x in valid_act_samps] ref_act_indices = [valid_act_samps[x] for x in valid_act_samps if x not in current_var.var_samples] # Calculate z-scores. for x, loc in enumerate(loci_ovlp_var): var_samples = [x for x in current_var.var_samples if x in valid_act_samps] ref_samples = [x for x in valid_act_samps if x not in current_var.var_samples] loc.add_variant(current_var, var_samples, ref_samples) # Add Variant to Locus object. loc.calc_z_score(ref_act_indices, var_act_indices, current_var, thresh) current_var.loci.append(loc) # Add Locus object to given Variant. loci_ovlp_var[x] = loc if loc not in loci_out: loci_out.append(loc) # These will be used for eventual BED output. vcf_out_line = current_var.get_variant_output(include_vcf) if vcf_out_line is not None: print(vcf_out_line, file=output_vcf) elif include_vcf: print(line.strip(), file=output_vcf) print("Filtering loci and creating BED output.") print("CHR", "START", "END", "ID", "VARIANT", "Z_SCORES", "NUM_PASS_THRESH", "COMMON_VAR_SAMPS", "NUM_COMMON_VAR_SAMPS", "COMMON_REF_SAMPS", "NUM_COMMON_REF_SAMPS", "ALL_VAR_SAMPS", "NUM_ALL_VAR_SAMPS", "ALL_REF_SAMPS", "NUM_COMMON_REF_SAMPS" "MOTIF_INFO", sep="\t", file=output_bed) for item in loci_out: bed_out_line = item.get_locus_output(include_bed, filter_num) if bed_out_line is not None: print(*bed_out_line, sep="\n", file=output_bed) print("Complete: " + timeString() + ".") if __name__ == '__main__': parser = argparse.ArgumentParser(usage=__doc__) parser.add_argument("-i", "--input", dest="input_file", required=True) parser.add_argument("-a", "--activity", dest="activity_file", required=True) parser.add_argument("-ov", "--outputvcf", dest="output_vcf", required=True) parser.add_argument("-ob", "--outputbed", dest="output_bed", required=True) parser.add_argument("-th", "--threshold", dest="threshold", required=False, default=0) parser.add_argument("-fan", "--filter_act_num", dest="filter_a_n", required=False, default=0) parser.add_argument("-ib", "--include_bed", action="store_true", required=False) parser.add_argument("-iv", "--include_vcf", action="store_true", required=False) args = parser.parse_args() inp_file = args.input_file act_file = args.activity_file vcf_out = args.output_vcf bed_out = args.output_bed th = float(args.threshold) filter_bed_num = int(args.filter_a_n) include_bed = args.include_bed include_vcf = args.include_vcf main(inp_file, act_file, vcf_out, bed_out, th, filter_bed_num, include_bed, include_vcf)
the-stack_0_4727
#!/usr/bin/env python """ Fetches github linguist repository, process its information and store it in database """ import os import rethinkdb as r import schedule import shutil import subprocess import sys import time import yaml DEVNULL = open(os.devnull, 'wb') LANGUAGES_REPO = "https://github.com/github/linguist.git" LANGUAGES_PATH = "./lib/linguist/languages.yml" REPO_DIR = "/tmp/linguist" DB_HOST = os.getenv('DB', 'localhost') DB = r.connect(DB_HOST, 28015) def main(): """ Executes the job at the beggining and at every SLEEP_MINUTES """ try: run() schedule.every().hour.do(run) while True: schedule.run_pending() time.sleep(1) except: clean() def run(): prepare() dates = langs_dates() metadata = languages_metadata() languages = [] for l in metadata: object = {} object['name'] = l object['timestamp'] = dates[l] if metadata[l].get('type', None): object['type'] = metadata[l]['type'] if metadata[l].get('group', None): object['group'] = metadata[l]['group'] languages.append(object) sorted_languages = sorted(languages, key = lambda lang: lang["timestamp"], reverse=True) store(sorted_languages) clean() def prepare(): """ Clone the linguist repo and change the working directory to it. It also deletes the linguist directory it if was already present """ clean() subprocess.call(["git", "clone", LANGUAGES_REPO, REPO_DIR], stdout=DEVNULL, stderr=DEVNULL) os.chdir(REPO_DIR) def clean(): """ Return to the previous working directory and remove the linguist directory """ if os.path.exists(REPO_DIR): os.chdir("/") shutil.rmtree(REPO_DIR) def langs_dates(): """ Returns the list of languages available in the language file with the date in which it was added """ language_history = set() result = {} for i, commit in enumerate(commits()): actual = languages_in_commit(commit) if i == 0: timestamp = commit_time(commit) for language in actual: result[language] = timestamp language_history = set(actual) else: old = language_history language_history = language_history.union(set(actual)) diff = language_history - old if diff: timestamp = commit_time(commit) for language in diff: result[language] = timestamp filtered = filter_deleted(result) return result def languages_metadata(): yaml = read_langs_file() metadata_keys = ('type', 'group') result = {} for languages in yaml: result[languages] = {k: yaml[languages][k] for k in yaml[languages] if k in metadata_keys} return result def commits(): """ Returns the list of commits in ascending order that changed the languages file without counting the commit merges """ commits_b = subprocess.check_output(["git", "log", "--no-merges", "--pretty=%H", LANGUAGES_PATH], stderr=DEVNULL) commits_reverse = commits_b.decode().strip().split('\n') return commits_reverse[::-1] def languages_lang_file(): """ Returns the list of languages present in the language file with their respective type and group """ yaml = read_langs_file() return list(yaml.keys()) def read_langs_file(): """ Reads the language file """ with open(LANGUAGES_PATH) as langs_file: try: languages_yaml = yaml.load(langs_file) return languages_yaml except: return {} def languages_in_commit(commit): """ Returns the list of languages present in the language file for a specific commit """ subprocess.call(["git", "checkout", commit, LANGUAGES_PATH], stdout=DEVNULL, stderr=DEVNULL) return languages_lang_file() def commit_time(commit): """ Returns the commit time in epoc format of a specific commit """ output_b = subprocess.check_output(["git", "show", "-s", "--format=%ct", commit]) output = output_b.decode().strip() return int(output) def filter_deleted(languages): """ Returns a hash with the languages that are in the languages argument minus the ones that are no longer present in the last commit """ subprocess.call(["git", "reset", "--hard", "master"], stdout=DEVNULL, stderr=DEVNULL) last_languages = languages_lang_file() filtered_languages = {} for lang in languages: if lang in last_languages: filtered_languages[lang] = languages[lang] return filtered_languages def store(languages): """ Stores in database the result. If the result is equal to the latest row in the db it only updates the timestamp """ table = r.db('indielangs').table("languages") latest, latest_id = latest_result() if latest == languages: table.get(latest_id).update({'timestamp': r.now()}).run(DB) else: row = {'languages': languages, 'timestamp': r.now()} table.insert(row).run(DB) def latest_result(): """ Returns the latest row with the list of languages available in the database and the id of the row """ table = r.db('indielangs').table("languages") latest = table.order_by(r.desc('timestamp')).limit(1).run(DB) if latest: return latest[0]['languages'], latest[0]['id'] else: return {}, None if __name__ == "__main__": sys.exit(main())
the-stack_0_4728
from __future__ import unicode_literals from django.db import models from django.db.migrations.operations.base import Operation from django.db.migrations.state import ModelState from django.db.models.options import normalize_together from django.utils import six from django.utils.functional import cached_property from .fields import ( AddField, AlterField, FieldOperation, RemoveField, RenameField, ) def _check_for_duplicates(arg_name, objs): used_vals = set() for val in objs: if val in used_vals: raise ValueError( "Found duplicate value %s in CreateModel %s argument." % (val, arg_name) ) used_vals.add(val) class ModelOperation(Operation): def __init__(self, name): self.name = name @cached_property def name_lower(self): return self.name.lower() def references_model(self, name, app_label=None): return name.lower() == self.name_lower def reduce(self, operation, in_between, app_label=None): return ( super(ModelOperation, self).reduce(operation, in_between, app_label=app_label) or not operation.references_model(self.name, app_label) ) class CreateModel(ModelOperation): """ Create a model's table. """ serialization_expand_args = ['fields', 'options', 'managers'] def __init__(self, name, fields, options=None, bases=None, managers=None): self.fields = fields self.options = options or {} self.bases = bases or (models.Model,) self.managers = managers or [] super(CreateModel, self).__init__(name) # Sanity-check that there are no duplicated field names, bases, or # manager names _check_for_duplicates('fields', (name for name, _ in self.fields)) _check_for_duplicates('bases', ( base._meta.label_lower if hasattr(base, '_meta') else base.lower() if isinstance(base, six.string_types) else base for base in self.bases )) _check_for_duplicates('managers', (name for name, _ in self.managers)) def deconstruct(self): kwargs = { 'name': self.name, 'fields': self.fields, } if self.options: kwargs['options'] = self.options if self.bases and self.bases != (models.Model,): kwargs['bases'] = self.bases if self.managers and self.managers != [('objects', models.Manager())]: kwargs['managers'] = self.managers return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): state.add_model(ModelState( app_label, self.name, list(self.fields), dict(self.options), tuple(self.bases), list(self.managers), )) def database_forwards(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.create_model(model) def database_backwards(self, app_label, schema_editor, from_state, to_state): model = from_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.delete_model(model) def describe(self): return "Create %smodel %s" % ("proxy " if self.options.get("proxy", False) else "", self.name) def references_model(self, name, app_label=None): name_lower = name.lower() if name_lower == self.name_lower: return True # Check we didn't inherit from the model models_to_check = [base for base in self.bases if base is not models.Model] # Check we have no FKs/M2Ms with it for fname, field in self.fields: if field.remote_field: models_to_check.append(field.remote_field.model) # Now go over all the models and check against them for model in models_to_check: model_app_label, model_name = self.model_to_key(model) if model_name.lower() == name_lower: if app_label is None or not model_app_label or model_app_label == app_label: return True return False def model_to_key(self, model): """ Take either a model class or an "app_label.ModelName" string and return (app_label, object_name). """ if isinstance(model, six.string_types): return model.split(".", 1) else: return model._meta.app_label, model._meta.object_name def reduce(self, operation, in_between, app_label=None): if (isinstance(operation, DeleteModel) and self.name_lower == operation.name_lower and not self.options.get("proxy", False)): return [] elif isinstance(operation, RenameModel) and self.name_lower == operation.old_name_lower: return [ CreateModel( operation.new_name, fields=self.fields, options=self.options, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, FieldOperation) and self.name_lower == operation.model_name_lower: if isinstance(operation, AddField): # Don't allow optimizations of FKs through models they reference if hasattr(operation.field, "remote_field") and operation.field.remote_field: for between in in_between: # Check that it doesn't point to the model app_label, object_name = self.model_to_key(operation.field.remote_field.model) if between.references_model(object_name, app_label): return False # Check that it's not through the model if getattr(operation.field.remote_field, "through", None): app_label, object_name = self.model_to_key(operation.field.remote_field.through) if between.references_model(object_name, app_label): return False return [ CreateModel( self.name, fields=self.fields + [(operation.name, operation.field)], options=self.options, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, AlterField): return [ CreateModel( self.name, fields=[ (n, operation.field if n == operation.name else v) for n, v in self.fields ], options=self.options, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, RemoveField): return [ CreateModel( self.name, fields=[ (n, v) for n, v in self.fields if n.lower() != operation.name_lower ], options=self.options, bases=self.bases, managers=self.managers, ), ] elif isinstance(operation, RenameField): return [ CreateModel( self.name, fields=[ (operation.new_name if n == operation.old_name else n, v) for n, v in self.fields ], options=self.options, bases=self.bases, managers=self.managers, ), ] return super(CreateModel, self).reduce(operation, in_between, app_label=app_label) class DeleteModel(ModelOperation): """ Drops a model's table. """ def deconstruct(self): kwargs = { 'name': self.name, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): state.remove_model(app_label, self.name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): model = from_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.delete_model(model) def database_backwards(self, app_label, schema_editor, from_state, to_state): model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, model): schema_editor.create_model(model) def describe(self): return "Delete model %s" % (self.name, ) class RenameModel(ModelOperation): """ Renames a model. """ def __init__(self, old_name, new_name): self.old_name = old_name self.new_name = new_name super(RenameModel, self).__init__(old_name) @cached_property def old_name_lower(self): return self.old_name.lower() @cached_property def new_name_lower(self): return self.new_name.lower() def deconstruct(self): kwargs = { 'old_name': self.old_name, 'new_name': self.new_name, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): apps = state.apps model = apps.get_model(app_label, self.old_name) model._meta.apps = apps # Get all of the related objects we need to repoint all_related_objects = ( f for f in model._meta.get_fields(include_hidden=True) if f.auto_created and not f.concrete and (not f.hidden or f.many_to_many) ) # Rename the model state.models[app_label, self.new_name_lower] = state.models[app_label, self.old_name_lower] state.models[app_label, self.new_name_lower].name = self.new_name state.remove_model(app_label, self.old_name_lower) # Repoint the FKs and M2Ms pointing to us for related_object in all_related_objects: if related_object.model is not model: # The model being renamed does not participate in this relation # directly. Rather, a superclass does. continue # Use the new related key for self referential related objects. if related_object.related_model == model: related_key = (app_label, self.new_name_lower) else: related_key = ( related_object.related_model._meta.app_label, related_object.related_model._meta.model_name, ) new_fields = [] for name, field in state.models[related_key].fields: if name == related_object.field.name: field = field.clone() field.remote_field.model = "%s.%s" % (app_label, self.new_name) new_fields.append((name, field)) state.models[related_key].fields = new_fields state.reload_model(*related_key) # Repoint M2Ms with through pointing to us related_models = { f.remote_field.model for f in model._meta.fields if getattr(f.remote_field, 'model', None) } model_name = '%s.%s' % (app_label, self.old_name) for related_model in related_models: if related_model == model: related_key = (app_label, self.new_name_lower) else: related_key = (related_model._meta.app_label, related_model._meta.model_name) new_fields = [] changed = False for name, field in state.models[related_key].fields: if field.is_relation and field.many_to_many and field.remote_field.through == model_name: field = field.clone() field.remote_field.through = '%s.%s' % (app_label, self.new_name) changed = True new_fields.append((name, field)) if changed: state.models[related_key].fields = new_fields state.reload_model(*related_key) state.reload_model(app_label, self.new_name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): new_model = to_state.apps.get_model(app_label, self.new_name) if self.allow_migrate_model(schema_editor.connection.alias, new_model): old_model = from_state.apps.get_model(app_label, self.old_name) # Move the main table schema_editor.alter_db_table( new_model, old_model._meta.db_table, new_model._meta.db_table, ) # Alter the fields pointing to us for related_object in old_model._meta.related_objects: if related_object.related_model == old_model: model = new_model related_key = (app_label, self.new_name_lower) else: model = related_object.related_model related_key = ( related_object.related_model._meta.app_label, related_object.related_model._meta.model_name, ) to_field = to_state.apps.get_model( *related_key )._meta.get_field(related_object.field.name) schema_editor.alter_field( model, related_object.field, to_field, ) # Rename M2M fields whose name is based on this model's name. fields = zip(old_model._meta.local_many_to_many, new_model._meta.local_many_to_many) for (old_field, new_field) in fields: # Skip self-referential fields as these are renamed above. if new_field.model == new_field.related_model or not new_field.remote_field.through._meta.auto_created: continue # Rename the M2M table that's based on this model's name. old_m2m_model = old_field.remote_field.through new_m2m_model = new_field.remote_field.through schema_editor.alter_db_table( new_m2m_model, old_m2m_model._meta.db_table, new_m2m_model._meta.db_table, ) # Rename the column in the M2M table that's based on this # model's name. schema_editor.alter_field( new_m2m_model, old_m2m_model._meta.get_field(old_model._meta.model_name), new_m2m_model._meta.get_field(new_model._meta.model_name), ) def database_backwards(self, app_label, schema_editor, from_state, to_state): self.new_name_lower, self.old_name_lower = self.old_name_lower, self.new_name_lower self.new_name, self.old_name = self.old_name, self.new_name self.database_forwards(app_label, schema_editor, from_state, to_state) self.new_name_lower, self.old_name_lower = self.old_name_lower, self.new_name_lower self.new_name, self.old_name = self.old_name, self.new_name def references_model(self, name, app_label=None): return ( name.lower() == self.old_name_lower or name.lower() == self.new_name_lower ) def describe(self): return "Rename model %s to %s" % (self.old_name, self.new_name) def reduce(self, operation, in_between, app_label=None): if (isinstance(operation, RenameModel) and self.new_name_lower == operation.old_name_lower): return [ RenameModel( self.old_name, operation.new_name, ), ] # Skip `ModelOperation.reduce` as we want to run `references_model` # against self.new_name. return ( super(ModelOperation, self).reduce(operation, in_between, app_label=app_label) or not operation.references_model(self.new_name, app_label) ) class AlterModelTable(ModelOperation): """ Renames a model's table """ def __init__(self, name, table): self.table = table super(AlterModelTable, self).__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'table': self.table, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): state.models[app_label, self.name_lower].options["db_table"] = self.table state.reload_model(app_label, self.name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): new_model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, new_model): old_model = from_state.apps.get_model(app_label, self.name) schema_editor.alter_db_table( new_model, old_model._meta.db_table, new_model._meta.db_table, ) # Rename M2M fields whose name is based on this model's db_table for (old_field, new_field) in zip(old_model._meta.local_many_to_many, new_model._meta.local_many_to_many): if new_field.remote_field.through._meta.auto_created: schema_editor.alter_db_table( new_field.remote_field.through, old_field.remote_field.through._meta.db_table, new_field.remote_field.through._meta.db_table, ) def database_backwards(self, app_label, schema_editor, from_state, to_state): return self.database_forwards(app_label, schema_editor, from_state, to_state) def describe(self): return "Rename table for %s to %s" % (self.name, self.table) def reduce(self, operation, in_between, app_label=None): if isinstance(operation, (AlterModelTable, DeleteModel)) and self.name_lower == operation.name_lower: return [operation] return super(AlterModelTable, self).reduce(operation, in_between, app_label=app_label) class ModelOptionOperation(ModelOperation): def reduce(self, operation, in_between, app_label=None): if isinstance(operation, (self.__class__, DeleteModel)) and self.name_lower == operation.name_lower: return [operation] return super(ModelOptionOperation, self).reduce(operation, in_between, app_label=app_label) class FieldRelatedOptionOperation(ModelOptionOperation): def reduce(self, operation, in_between, app_label=None): if (isinstance(operation, FieldOperation) and self.name_lower == operation.model_name_lower and not self.references_field(operation.model_name, operation.name)): return [operation, self] return super(FieldRelatedOptionOperation, self).reduce(operation, in_between, app_label=app_label) class AlterUniqueTogether(FieldRelatedOptionOperation): """ Changes the value of unique_together to the target one. Input value of unique_together must be a set of tuples. """ option_name = "unique_together" def __init__(self, name, unique_together): unique_together = normalize_together(unique_together) self.unique_together = set(tuple(cons) for cons in unique_together) super(AlterUniqueTogether, self).__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'unique_together': self.unique_together, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.options[self.option_name] = self.unique_together state.reload_model(app_label, self.name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): new_model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, new_model): old_model = from_state.apps.get_model(app_label, self.name) schema_editor.alter_unique_together( new_model, getattr(old_model._meta, self.option_name, set()), getattr(new_model._meta, self.option_name, set()), ) def database_backwards(self, app_label, schema_editor, from_state, to_state): return self.database_forwards(app_label, schema_editor, from_state, to_state) def references_field(self, model_name, name, app_label=None): return ( self.references_model(model_name, app_label) and ( not self.unique_together or any((name in together) for together in self.unique_together) ) ) def describe(self): return "Alter %s for %s (%s constraint(s))" % (self.option_name, self.name, len(self.unique_together or '')) class AlterIndexTogether(FieldRelatedOptionOperation): """ Changes the value of index_together to the target one. Input value of index_together must be a set of tuples. """ option_name = "index_together" def __init__(self, name, index_together): index_together = normalize_together(index_together) self.index_together = set(tuple(cons) for cons in index_together) super(AlterIndexTogether, self).__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'index_together': self.index_together, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.options[self.option_name] = self.index_together state.reload_model(app_label, self.name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): new_model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, new_model): old_model = from_state.apps.get_model(app_label, self.name) schema_editor.alter_index_together( new_model, getattr(old_model._meta, self.option_name, set()), getattr(new_model._meta, self.option_name, set()), ) def database_backwards(self, app_label, schema_editor, from_state, to_state): return self.database_forwards(app_label, schema_editor, from_state, to_state) def references_field(self, model_name, name, app_label=None): return ( self.references_model(model_name, app_label) and ( not self.index_together or any((name in together) for together in self.index_together) ) ) def describe(self): return "Alter %s for %s (%s constraint(s))" % (self.option_name, self.name, len(self.index_together or '')) class AlterOrderWithRespectTo(FieldRelatedOptionOperation): """ Represents a change with the order_with_respect_to option. """ def __init__(self, name, order_with_respect_to): self.order_with_respect_to = order_with_respect_to super(AlterOrderWithRespectTo, self).__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'order_with_respect_to': self.order_with_respect_to, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.options['order_with_respect_to'] = self.order_with_respect_to state.reload_model(app_label, self.name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): to_model = to_state.apps.get_model(app_label, self.name) if self.allow_migrate_model(schema_editor.connection.alias, to_model): from_model = from_state.apps.get_model(app_label, self.name) # Remove a field if we need to if from_model._meta.order_with_respect_to and not to_model._meta.order_with_respect_to: schema_editor.remove_field(from_model, from_model._meta.get_field("_order")) # Add a field if we need to (altering the column is untouched as # it's likely a rename) elif to_model._meta.order_with_respect_to and not from_model._meta.order_with_respect_to: field = to_model._meta.get_field("_order") if not field.has_default(): field.default = 0 schema_editor.add_field( from_model, field, ) def database_backwards(self, app_label, schema_editor, from_state, to_state): self.database_forwards(app_label, schema_editor, from_state, to_state) def references_field(self, model_name, name, app_label=None): return ( self.references_model(model_name, app_label) and ( self.order_with_respect_to is None or name == self.order_with_respect_to ) ) def describe(self): return "Set order_with_respect_to on %s to %s" % (self.name, self.order_with_respect_to) class AlterModelOptions(ModelOptionOperation): """ Sets new model options that don't directly affect the database schema (like verbose_name, permissions, ordering). Python code in migrations may still need them. """ # Model options we want to compare and preserve in an AlterModelOptions op ALTER_OPTION_KEYS = [ "get_latest_by", "managed", "ordering", "permissions", "default_permissions", "select_on_save", "verbose_name", "verbose_name_plural", ] def __init__(self, name, options): self.options = options super(AlterModelOptions, self).__init__(name) def deconstruct(self): kwargs = { 'name': self.name, 'options': self.options, } return ( self.__class__.__name__, [], kwargs ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.options = dict(model_state.options) model_state.options.update(self.options) for key in self.ALTER_OPTION_KEYS: if key not in self.options and key in model_state.options: del model_state.options[key] state.reload_model(app_label, self.name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): pass def database_backwards(self, app_label, schema_editor, from_state, to_state): pass def describe(self): return "Change Meta options on %s" % (self.name, ) class AlterModelManagers(ModelOptionOperation): """ Alters the model's managers """ serialization_expand_args = ['managers'] def __init__(self, name, managers): self.managers = managers super(AlterModelManagers, self).__init__(name) def deconstruct(self): return ( self.__class__.__name__, [self.name, self.managers], {} ) def state_forwards(self, app_label, state): model_state = state.models[app_label, self.name_lower] model_state.managers = list(self.managers) state.reload_model(app_label, self.name_lower) def database_forwards(self, app_label, schema_editor, from_state, to_state): pass def database_backwards(self, app_label, schema_editor, from_state, to_state): pass def describe(self): return "Change managers on %s" % (self.name, )
the-stack_0_4729
from typing import Tuple import os import torch as th import numpy as np import gym import copy from torch.utils.tensorboard import SummaryWriter from auto_rl.learning.policy import MLPActorCritic from auto_rl.learning.buffer import OnPolicyBuffer from auto_rl.learning.rewards import single_worker_gae, mc_reward_estimation from auto_rl.utils.torch import change_optim_lr, grad_clip from auto_rl.utils.gym import infer_action_size, infer_action_type from auto_rl.simulation.run import single_worker_rollout, rollout_rew, eval_with_render from auto_rl.utils.tensorboard import log_actor_critic_graph from auto_rl.utils.logger import Logger class PPO: def __init__(self, env: gym.Env, policy: MLPActorCritic, device: str, log_dir=None): assert policy.device == device self.env = env self.policy = policy self.device = device # general logger self.logger = Logger() # Tensorboard writer self.enable_tensorboard = False if log_dir is not None: self.enable_tensorboard = True if self.enable_tensorboard: if not os.path.isdir(log_dir): os.makedirs(log_dir) self.tb_writer = SummaryWriter(log_dir) # log computational graph log_actor_critic_graph(self.tb_writer, self.env, self.policy, self.device) # Initialize optimizer self.optimizer = th.optim.Adam(params=self.policy.parameters(), lr=1e-4) # Old policy self.policy_old = copy.deepcopy(self.policy) self.policy_old.eval() self.mse_loss = th.nn.MSELoss() self.buffer = OnPolicyBuffer() # Action type and size self.action_type = infer_action_type(self.env) self.action_size = infer_action_size(self.env, self.action_type) def predict(self, obs: np.ndarray, deterministic=False): action = self.policy_old.predict(obs, deterministic) return action def rollout(self, rollout_steps): single_worker_rollout(self.env, self.policy, self.buffer, rollout_steps) # Log rew_mean, rew_min, rew_max = rollout_rew(self.buffer) self.logger.add("rew. avg.", rew_mean) self.logger.add("rew. min", rew_min) self.logger.add("rew. max", rew_max) if self.enable_tensorboard: self.tb_writer.add_scalar("reward/mean", rew_mean) self.tb_writer.add_scalar("reward/min", rew_min) self.tb_writer.add_scalar("reward/max", rew_max) def update(self, lr, optimize_epoch_num, batch_size, gamma, gae_lam, ratio_clip_cnst, entropy_coef, value_coef, grad_clip_cnst): change_optim_lr(self.optimizer, lr) loss, value, entropy = None, None, None for _ in range(optimize_epoch_num): loss, value, entropy = self.compute_loss(batch_size, gamma, gae_lam, ratio_clip_cnst, entropy_coef, value_coef) self.optimizer.zero_grad() loss.backward() if grad_clip_cnst is not None: grad_clip(self.policy, grad_clip_cnst) self.optimizer.step() # Log if loss is not None: self.logger.add("loss", loss.detach().cpu().numpy()) self.logger.add("value", value.detach().cpu().numpy()) self.logger.add("entropy", entropy.detach().cpu().numpy()) if self.enable_tensorboard: self.tb_writer.add_scalar("loss/loss", loss) self.tb_writer.add_scalar("loss/value", value) self.tb_writer.add_scalar("loss/entropy", entropy) # Copy new weights into old policy self.policy_old.load_state_dict(self.policy.state_dict()) assert not self.policy_old.training self.buffer.clear() def learn(self, total_steps, rollout_steps, lr, optimize_epoch_num, batch_size, gamma, gae_lam, ratio_clip_cnst, entropy_coef, value_coef, grad_clip_cnst=None, eval_intv=None): for i in range(total_steps // rollout_steps + 1): self.rollout(rollout_steps) self.update(lr, optimize_epoch_num, batch_size, gamma, gae_lam, ratio_clip_cnst, entropy_coef, value_coef, grad_clip_cnst) # Log output self.logger.dump() # evaluate with video if eval_intv is not None and i % eval_intv == 0: eval_with_render(self.env, self.policy) def compute_loss(self, batch_size, gamma, gae_lam, ratio_clip_cnst, entropy_coef, value_coef, use_gae=False) \ -> Tuple[th.Tensor, th.Tensor, th.Tensor]: if batch_size is None: # read all data, no batch s1, actions, rewards, dones, s2 = self.buffer.read() else: s1, actions, rewards, dones, s2 = self.buffer.sample(batch_size) assert not use_gae, "Inefficient to compute GAE from random sample." s1 = th.from_numpy(s1).float().to(self.device) actions = th.from_numpy(actions).float().to(self.device) _, old_log_probs, _ = self.policy_old.eval_policy(s1, actions) assert self.policy.training values, log_probs, entropy = self.policy.eval_policy(s1, actions) advantages, value_estimation = self.compute_advantage(gae_lam, dones, rewards, values, gamma) advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8) value_estimation = (value_estimation - value_estimation.mean()) / (value_estimation.std() + 1e-8) ratios = th.exp(log_probs - old_log_probs.detach()) surr1 = ratios * advantages surr2 = th.clamp(ratios, 1 - ratio_clip_cnst, 1 + ratio_clip_cnst) * advantages loss = -th.min(surr1, surr2).mean() - entropy_coef * entropy.mean() loss = loss + value_coef * self.mse_loss(values, value_estimation) return loss, values.mean(), entropy.mean() def compute_advantage(self, gae_lam, dones, rewards, values, gamma): # FIXME: Understand GAE fully and write this part """if gae_lam is not None: dones = th.from_numpy(dones).float().to(self.device) rewards = th.from_numpy(rewards).float().to(self.device) advantages, value_estimation = single_worker_gae(values, dones, rewards, gamma, gae_lam, self.device) else:""" value_estimation = mc_reward_estimation(rewards, dones, gamma) value_estimation = th.tensor(value_estimation).float().to(self.device) advantages = value_estimation - values.detach() return advantages, value_estimation def __del__(self): if self.enable_tensorboard: self.tb_writer.close()
the-stack_0_4730
import turtle # turtle object t = turtle.Turtle() t.pensize(6) turtle.bgcolor("#5383C1") t.speed(9) # function for creation of eye def eye(col, rad): t.down() t.fillcolor(col) t.begin_fill() t.circle(rad) t.end_fill() t.up() # function for cheeks def cheek(): t.down() t.fillcolor("#D03D3D"); t.begin_fill() t.circle(20) t.end_fill() t.up() # draw face t.fillcolor('yellow') t.begin_fill() t.circle(100) t.end_fill() t.up() # draw eyes t.goto(-40, 120) eye('white', 10) t.goto(-37, 125) eye('black', 5) t.goto(40, 120) eye('white', 10) t.goto(37, 125) eye('black', 5) # draw nose t.goto(0, 75) eye('black', 8) #draw cheek t.goto(-80, 80) cheek() t.goto(80, 80) cheek() # draw mouth t.goto(-40, 85) t.down() t.right(90) t.circle(20, 180) t.up() t.goto(0, 85) t.down() t.right(180) t.circle(20, 180) t.up() # Drawing left Ear t.goto(-67,180) t.down() t.left(58) t.fillcolor('#C29349') t.begin_fill() t.circle(30, 180) t.end_fill() t.up() # Drawing right ear t.goto(85, 150) t.down() t.right(-73) t.fillcolor('#C29349') t.begin_fill() t.circle(30, 180) t.end_fill() t.up() # draw tongue t.goto(-30, 65) t.down() t.right(-48) t.fillcolor('white') t.begin_fill() t.circle(30, 180) t.lt(90) t.fd(60) t.end_fill() t.hideturtle() turtle.done()
the-stack_0_4731
############################################################################## # # Copyright (c) 2001, 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Zope Publisher-based FTP Server This FTP server uses the Zope 3 Publisher to execute commands. """ import posixpath from io import BytesIO from zope.server.interfaces.ftp import IFileSystem from zope.server.interfaces.ftp import IFileSystemAccess from zope.server.ftp.server import FTPServer from zope.publisher.publish import publish from zope.interface import implementer @implementer(IFileSystem) class PublisherFileSystem(object): """Generic Publisher FileSystem implementation.""" def __init__(self, credentials, request_factory): self.credentials = credentials self.request_factory = request_factory def type(self, path): if path == '/': return 'd' return self._execute(path, 'type') def readfile(self, path, outstream, start=0, end=None): return self._execute(path, 'readfile', outstream=outstream, start=start, end=end) _name = None for _name in ('names', 'ls'): f = locals()[_name] = lambda self, path, filter=None, _name=_name: self._execute( path, _name, split=False, filter=filter) f.__name__ = _name for _name in ('lsinfo', 'mtime', 'size', 'mkdir', 'remove', 'rmdir'): f = locals()[_name] = lambda self, path, _name=_name: self._execute(path, _name) f.__name__ = _name del _name def rename(self, old, new): 'See IWriteFileSystem' old = self._translate(old) new = self._translate(new) path0, old = posixpath.split(old) path1, new = posixpath.split(new) assert path0 == path1 return self._execute(path0, 'rename', split=False, old=old, new=new) def writefile(self, path, instream, start=None, end=None, append=False): 'See IWriteFileSystem' return self._execute( path, 'writefile', instream=instream, start=start, end=end, append=append) def writable(self, path): 'See IWriteFileSystem' return self._execute(path, 'writable') def _execute(self, path, command, split=True, **kw): env = {} env.update(kw) env['command'] = command path = self._translate(path) if split: env['path'], env['name'] = posixpath.split(path) else: env['path'] = path env['credentials'] = self.credentials request = self.request_factory(BytesIO(b''), env) # Note that publish() calls close() on request, which deletes the # response from the request, so that we need to keep track of it. # agroszer: 2008.feb.1.: currently the above seems not to be true # request will KEEP the response on close() # even more if a retry occurs in the publisher, # the response will be LOST, so we must accept the returned request request = publish(request) return request.response.getResult() def _translate(self, path): # Normalize path = posixpath.normpath(path) if path.startswith('..'): # Someone is trying to get lower than the permitted root. # We just ignore it. path = '/' return path class PublisherFTPServer(FTPServer): """Generic FTP Server""" def __init__(self, request_factory, name, ip, port, *args, **kw): fs_access = PublisherFileSystemAccess(request_factory) super(PublisherFTPServer, self).__init__(ip, port, fs_access, *args, **kw) @implementer(IFileSystemAccess) class PublisherFileSystemAccess(object): def __init__(self, request_factory): self.request_factory = request_factory def authenticate(self, credentials): # We can't actually do any authentication initially, as the # user may not be defined at the root. pass def open(self, credentials): return PublisherFileSystem(credentials, self.request_factory)
the-stack_0_4732
from Child import Child from Node import Node # noqa: I201 ATTRIBUTE_NODES = [ # token-list -> token? token-list? Node('TokenList', kind='SyntaxCollection', element='Token'), # token-list -> token token-list? Node('NonEmptyTokenList', kind='SyntaxCollection', element='Token', omit_when_empty=True), Node('CustomAttribute', kind='Syntax', description=''' A custom `@` attribute. ''', children=[ Child('AtSignToken', kind='AtSignToken', description='The `@` sign.'), Child('AttributeName', kind='Type', classification='Attribute', description='The name of the attribute.'), Child('LeftParen', kind='LeftParenToken', is_optional=True), Child('ArgumentList', kind='FunctionCallArgumentList', collection_element_name='Argument', is_optional=True), Child('RightParen', kind='RightParenToken', is_optional=True), ]), # attribute -> '@' identifier '('? # ( identifier # | string-literal # | integer-literal # | availability-spec-list # | specialize-attr-spec-list # | implements-attr-arguments # | differentiable-attr-arguments # | named-attribute-string-argument # )? ')'? Node('Attribute', kind='Syntax', description=''' An `@` attribute. ''', children=[ Child('AtSignToken', kind='AtSignToken', description='The `@` sign.'), Child('AttributeName', kind='Token', classification='Attribute', description='The name of the attribute.'), Child('LeftParen', kind='LeftParenToken', is_optional=True, description=''' If the attribute takes arguments, the opening parenthesis. '''), Child('Argument', kind='Syntax', is_optional=True, node_choices=[ Child('Identifier', kind='IdentifierToken'), Child('String', kind='StringLiteralToken'), Child('Integer', kind='IntegerLiteralToken'), Child('Availability', kind='AvailabilitySpecList'), Child('SpecializeArguments', kind='SpecializeAttributeSpecList'), Child('ObjCName', kind='ObjCSelector'), Child('ImplementsArguments', kind='ImplementsAttributeArguments'), # SWIFT_ENABLE_TENSORFLOW Child('DifferentiableArguments', kind='DifferentiableAttributeArguments'), # SWIFT_ENABLE_TENSORFLOW Child('DifferentiatingArguments', kind='DifferentiatingAttributeArguments'), # SWIFT_ENABLE_TENSORFLOW Child('TransposingArguments', kind='DifferentiatingAttributeArguments'), Child('NamedAttributeString', kind='NamedAttributeStringArgument'), ], description=''' The arguments of the attribute. In case the attribute \ takes multiple arguments, they are gather in the \ appropriate takes first. '''), Child('RightParen', kind='RightParenToken', is_optional=True, description=''' If the attribute takes arguments, the closing parenthesis. '''), # TokenList to gather remaining tokens of invalid attributes # FIXME: Remove this recovery option entirely Child('TokenList', kind='TokenList', collection_element_name='Token', is_optional=True), ]), # attribute-list -> attribute attribute-list? Node('AttributeList', kind='SyntaxCollection', element='Syntax', element_name='Attribute', element_choices=[ 'Attribute', 'CustomAttribute', ]), # The argument of '@_specialize(...)' # specialize-attr-spec-list -> labeled-specialize-entry # specialize-spec-attr-list? # | generic-where-clause # specialize-spec-attr-list? Node('SpecializeAttributeSpecList', kind='SyntaxCollection', description=''' A collection of arguments for the `@_specialize` attribute ''', element='Syntax', element_name='SpecializeAttribute', element_choices=[ 'LabeledSpecializeEntry', 'GenericWhereClause', ]), # Representation of e.g. 'exported: true,' # labeled-specialize-entry -> identifier ':' token ','? Node('LabeledSpecializeEntry', kind='Syntax', description=''' A labeled argument for the `@_specialize` attribute like \ `exported: true` ''', traits=['WithTrailingComma'], children=[ Child('Label', kind='IdentifierToken', description='The label of the argument'), Child('Colon', kind='ColonToken', description='The colon separating the label and the value'), Child('Value', kind='Token', description='The value for this argument'), Child('TrailingComma', kind='CommaToken', is_optional=True, description=''' A trailing comma if this argument is followed by another one '''), ]), # The argument of '@_dynamic_replacement(for:)' or '@_private(sourceFile:)' # named-attribute-string-arg -> 'name': string-literal Node('NamedAttributeStringArgument', kind='Syntax', description=''' The argument for the `@_dynamic_replacement` or `@_private` \ attribute of the form `for: "function()"` or `sourceFile: \ "Src.swift"` ''', children=[ Child('NameTok', kind='Token', description='The label of the argument'), Child('Colon', kind='ColonToken', description='The colon separating the label and the value'), Child('StringOrDeclname', kind='Syntax', node_choices=[ Child('String', kind='StringLiteralToken'), Child('Declname', kind='DeclName'), ]), ]), Node('DeclName', kind='Syntax', children=[ Child('DeclBaseName', kind='Syntax', description=''' The base name of the protocol\'s requirement. ''', node_choices=[ Child('Identifier', kind='IdentifierToken'), Child('Operator', kind='PrefixOperatorToken'), ]), Child('DeclNameArguments', kind='DeclNameArguments', is_optional=True, description=''' The argument labels of the protocol\'s requirement if it \ is a function requirement. '''), ]), # The argument of '@_implements(...)' # implements-attr-arguments -> simple-type-identifier ',' # (identifier | operator) decl-name-arguments Node('ImplementsAttributeArguments', kind='Syntax', description=''' The arguments for the `@_implements` attribute of the form \ `Type, methodName(arg1Label:arg2Label:)` ''', children=[ Child('Type', kind='SimpleTypeIdentifier', description=''' The type for which the method with this attribute \ implements a requirement. '''), Child('Comma', kind='CommaToken', description=''' The comma separating the type and method name '''), Child('DeclBaseName', kind='Syntax', description=''' The base name of the protocol\'s requirement. ''', node_choices=[ Child('Identifier', kind='IdentifierToken'), Child('Operator', kind='PrefixOperatorToken'), ]), Child('DeclNameArguments', kind='DeclNameArguments', is_optional=True, description=''' The argument labels of the protocol\'s requirement if it \ is a function requirement. '''), ]), # SWIFT_ENABLE_TENSORFLOW # The argument of '@differentiable(...)'. # differentiable-attr-arguments -> # differentiation-params-clause? ','? # differentiable-attr-func-specifier? # primal # differentiable-attr-func-specifier? # adjoint # differentiable-attr-func-specifier? # jvp # differentiable-attr-func-specifier? # vjp # generic-where-clause? # FIXME: There is currently no guarantee that 'MaybePrimal' is in fact # the primal specifier, it could be any specifier. The current syntax # definitions only ensure that there are between 0 and 4 function # specifiers. A more robust definition would enforce that specific function # specifiers appear only once, in order. Node('DifferentiableAttributeArguments', kind='Syntax', description=''' The arguments for the `@differentiable` attribute: an optional \ differentiation parameter list and associated functions. ''', children=[ Child('DiffParams', kind='DifferentiationParamsClause', is_optional=True), Child('DiffParamsComma', kind='CommaToken', description=''' The comma following the differentiation parameters clause, if it exists. ''', is_optional=True), Child('MaybePrimal', kind='DifferentiableAttributeFuncSpecifier', is_optional=True), Child('MaybeAdjoint', kind='DifferentiableAttributeFuncSpecifier', is_optional=True), Child('MaybeJVP', kind='DifferentiableAttributeFuncSpecifier', is_optional=True), Child('MaybeVJP', kind='DifferentiableAttributeFuncSpecifier', is_optional=True), Child('WhereClause', kind='GenericWhereClause', is_optional=True), ]), # differentiation-params-clause -> # 'wrt' ':' (differentiation-param | differentiation-params) Node('DifferentiationParamsClause', kind='Syntax', description='A clause containing differentiation parameters.', children=[ Child('WrtLabel', kind='IdentifierToken', text_choices=['wrt'], description='The "wrt" label.'), Child('Colon', kind='ColonToken', description=''' The colon separating "wrt" and the parameter list. '''), Child('Parameters', kind='Syntax', node_choices=[ Child('Parameter', kind='DifferentiationParam'), Child('ParameterList', kind='DifferentiationParams'), ]), ]), # differentiation-params -> '(' differentiation-param-list ')' Node('DifferentiationParams', kind='Syntax', description='The differentiation parameters.', children=[ Child('LeftParen', kind='LeftParenToken'), Child('DiffParams', kind='DifferentiationParamList', collection_element_name='DifferentiationParam', description='The parameters for differentiation.'), Child('RightParen', kind='RightParenToken'), ]), # differentiation-param-list -> # differentiation-param differentiation-param-list? Node('DifferentiationParamList', kind='SyntaxCollection', element='DifferentiationParam'), # differentiation-param -> ('self' | identifer) ','? Node('DifferentiationParam', kind='Syntax', description=''' A differentiation parameter: either the "self" identifier or a \ function parameter name. ''', traits=['WithTrailingComma'], children=[ Child('Parameter', kind='Syntax', node_choices=[ Child('Self', kind='SelfToken'), Child('Name', kind='IdentifierToken'), ]), Child('TrailingComma', kind='CommaToken', is_optional=True), ]), # differentiable-attr-func-specifier -> # ('jvp' | 'vjp') ':' func-decl-name ','? Node('DifferentiableAttributeFuncSpecifier', kind='Syntax', description=''' A function specifier, consisting of an identifier, colon, and a \ function declaration name (e.g. `vjp: foo(_:_:)`). ''', traits=['WithTrailingComma'], children=[ Child('Label', kind='IdentifierToken', text_choices=['jvp', 'vjp']), Child('Colon', kind='ColonToken'), Child('FunctionDeclName', kind='FunctionDeclName', description='The referenced function name.'), Child('TrailingComma', kind='CommaToken', is_optional=True), ]), # func-decl-name -> (identifier | operator) decl-name-arguments? # NOTE: This is duplicated with `DeclName` above. Change `DeclName` # description and use it if possible. Node('FunctionDeclName', kind='Syntax', description='A function declaration name (e.g. `foo(_:_:)`).', children=[ Child('Name', kind='Syntax', description=''' The base name of the referenced function. ''', node_choices=[ Child('Identifier', kind='IdentifierToken'), Child('PrefixOperator', kind='PrefixOperatorToken'), Child('SpacedBinaryOperator', kind='SpacedBinaryOperatorToken'), ]), Child('Arguments', kind='DeclNameArguments', is_optional=True, description=''' The argument labels of the referenced function, optionally \ specified. '''), ]), # SWIFT_ENABLE_TENSORFLOW # The argument of '@differentiating(...)'. # differentiating-attr-arguments -> # func-decl-name ','? differentiable-attr-parameters? Node('DifferentiatingAttributeArguments', kind='Syntax', description=''' The arguments for the `@differentiating` attribute: the original function and an optional differentiation parameter list. ''', children=[ Child('Original', kind='FunctionDeclName', description='The referenced original function.'), Child('Comma', kind='CommaToken', is_optional=True), Child('DiffParams', kind='DifferentiationParamsClause', is_optional=True), ]), # SWIFT_ENABLE_TENSORFLOW # The argument of '@transposing(...)'. # transposing-attr-arguments -> # func-decl-name ','? differentiable-attr-parameters? Node('TransposingAttributeArguments', kind='Syntax', description=''' The arguments for the `@transposing` attribute: the original function and an optional differentiation parameter list. ''', children=[ Child('Original', kind='FunctionDeclName', description='The referenced original function.'), Child('Comma', kind='CommaToken', is_optional=True), Child('DiffParams', kind='DifferentiationParamsClause', is_optional=True), ]), # objc-selector-piece -> identifier? ':'? Node('ObjCSelectorPiece', kind='Syntax', description=''' A piece of an Objective-C selector. Either consisiting of just an \ identifier for a nullary selector, an identifier and a colon for a \ labeled argument or just a colon for an unlabeled argument ''', children=[ Child('Name', kind='IdentifierToken', is_optional=True), Child('Colon', kind='ColonToken', is_optional=True), ]), # objc-selector -> objc-selector-piece objc-selector? Node('ObjCSelector', kind='SyntaxCollection', element='ObjCSelectorPiece') ]
the-stack_0_4733
from protocolbuffers import UI_pb2 from careers.career_enums import CareerCategory, WORK_CAREER_CATEGORIES from careers.career_ops import CareerTimeOffReason from date_and_time import TimeSpan, DateAndTime from distributor.shared_messages import build_icon_info_msg, IconInfoData from drama_scheduler.drama_node import BaseDramaNode, DramaNodeUiDisplayType, DramaNodeRunOutcome from drama_scheduler.drama_node_types import DramaNodeType from holidays.holiday_globals import HolidayState, HolidayTuning from sims4.localization import TunableLocalizedStringFactory from sims4.tuning.instances import lock_instance_tunables from sims4.tuning.tunable import TunableReference, OptionalTunable from sims4.utils import classproperty from situations.bouncer.bouncer_types import RequestSpawningOption, BouncerRequestPriority from situations.situation_guest_list import SituationGuestList, SituationGuestInfo from situations.situation_types import SituationCallbackOption from tunable_time import TunableTimeSpan import alarms import services import sims4.log import sims4.resources logger = sims4.log.Logger('HolidayDramaNode', default_owner='nsavalani') HOLIDAY_START_TIME_TOKEN = 'holiday_start_time_ticks' HOLIDAY_END_TIME_TOKEN = 'holiday_end_time_ticks' class HolidayDramaNode(BaseDramaNode): INSTANCE_TUNABLES = {'pre_holiday_duration': TunableTimeSpan(description="\n This duration is used to calculate the drama node's start time for\n main holidays by subtracting the tuned amount from the globally \n tuned start time. The player is notified with a reminder for the\n holiday, and decorations will be put up in the neighborhood.\n For surprise holidays, this should be set to 0, as surprise \n holidays have no pre-holiday state.\n ", default_hours=23, locked_args={'days': 0, 'minutes': 0}), 'holiday': TunableReference(description='\n The holiday that this drama node starts.\n ', manager=services.get_instance_manager(sims4.resources.Types.HOLIDAY_DEFINITION))} def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._holiday_alarm = None self._state = None self._situation_ids = [] self._holiday_end_time = None self._active_household_id = None self._holiday_start_time = None @classproperty def drama_node_type(cls): return DramaNodeType.HOLIDAY @classproperty def persist_when_active(cls): return True @classproperty def simless(cls): return True @property def is_in_preholiday(self): return self._state == HolidayState.PRE_DAY @property def is_running(self): return self._state == HolidayState.RUNNING @property def holiday_id(self): return self.holiday.guid64 @property def day(self): if self._holiday_start_time is not None: return int(self._holiday_start_time.absolute_days()) actual_start_time = self._selected_time + self.pre_holiday_duration() return int(actual_start_time.absolute_days()) def get_time_off_reason(self, sim_info, career_category, career_end_time): holiday_service = services.holiday_service() if self._state == HolidayState.SHUTDOWN or holiday_service is None: return CareerTimeOffReason.NO_TIME_OFF take_time_off = False if career_category == CareerCategory.School: take_time_off = holiday_service.get_holiday_time_off_school(self.holiday_id) elif career_category in WORK_CAREER_CATEGORIES: take_time_off = holiday_service.get_holiday_time_off_work(self.holiday_id) elif career_category == CareerCategory.Volunteer or career_category == CareerCategory.UniversityCourse: take_time_off = False else: logger.error('Unexpected CareerCategory {} when determining if a holiday should give Sims time off.', career_category) if take_time_off and (self.is_running or self.get_calendar_start_time() < career_end_time): return HolidayTuning.HOLIDAY_TIME_OFF_REASON return CareerTimeOffReason.NO_TIME_OFF def create_calendar_entry(self): calendar_entry = super().create_calendar_entry() active_household = services.active_household() if active_household is not None: holiday_service = services.holiday_service() build_icon_info_msg(IconInfoData(icon_resource=holiday_service.get_holiday_display_icon(self.holiday_id)), holiday_service.get_holiday_display_name(self.holiday_id), calendar_entry.icon_info) calendar_entry.holiday_id = self.holiday_id for tradition in holiday_service.get_holiday_traditions(self.holiday_id): calendar_entry.tradition_ids.append(tradition.guid64) return calendar_entry def create_calendar_alert(self): if self.ui_display_type == DramaNodeUiDisplayType.POP_UP_HOLIDAY: return holiday_service = services.holiday_service() calendar_alert = super().create_calendar_alert() calendar_alart_description = holiday_service.get_holiday_calendar_alert_notification(self.holiday_id) if calendar_alart_description is not None: calendar_alert.description = calendar_alart_description(holiday_service.get_holiday_display_name(self.holiday_id)) build_icon_info_msg(IconInfoData(icon_resource=holiday_service.get_holiday_display_icon(self.holiday_id)), holiday_service.get_holiday_display_name(self.holiday_id), calendar_alert.calendar_icon) for tradition in holiday_service.get_holiday_traditions(self.holiday_id): calendar_alert.tradition_ids.append(tradition.guid64) return calendar_alert def get_calendar_start_time(self): return self.selected_time.time_of_next_day_time(HolidayTuning.MAIN_HOLIDAY_START_TIME) def get_calendar_end_time(self): return self.get_calendar_start_time() + HolidayTuning.HOLIDAY_DURATION() def _run_pre_holiday(self, from_load=False): self._state = HolidayState.PRE_DAY now = services.time_service().sim_now time_to_holiday_start = now.time_till_next_day_time(HolidayTuning.MAIN_HOLIDAY_START_TIME) self._holiday_start_time = now + time_to_holiday_start self._holiday_alarm = alarms.add_alarm(self, time_to_holiday_start, lambda _: self._run_holiday()) active_household = services.active_household() active_household.holiday_tracker.preactivate_holiday(self.holiday_id) self._active_household_id = active_household.id lot_decoration_service = services.lot_decoration_service() if lot_decoration_service is not None: lot_decoration_service.request_holiday_decorations(self, from_load=from_load) def _on_holiday_situation_ended(self, situation_id, callback_option, _): current_zone = services.current_zone() if current_zone.is_zone_shutting_down: return self._unregister_situation_ended_callbacks() self._end_holiday() active_household = services.active_household() if active_household is not None: active_household.holiday_tracker.cancel_holiday(self.holiday_id) def _register_situation_ended_callbacks(self): situation_manager = services.get_zone_situation_manager() for situation_id in self._situation_ids: situation_manager.register_for_callback(situation_id, SituationCallbackOption.END_OF_SITUATION, self._on_holiday_situation_ended) def _unregister_situation_ended_callbacks(self): situation_manager = services.get_zone_situation_manager() for situation_id in self._situation_ids: situation_manager.unregister_callback(situation_id, SituationCallbackOption.END_OF_SITUATION, self._on_holiday_situation_ended) def _run_holiday(self, from_load=False): self._state = HolidayState.RUNNING if not from_load: self._holiday_end_time = services.time_service().sim_now + HolidayTuning.HOLIDAY_DURATION() holiday_duration = HolidayTuning.HOLIDAY_DURATION() else: holiday_duration = self._holiday_end_time - services.time_service().sim_now self._holiday_alarm = alarms.add_alarm(self, holiday_duration, self._holiday_end_callback) active_household = services.active_household() holiday_tracker = active_household.holiday_tracker if holiday_tracker.is_holiday_cancelled(self.holiday_id): return holiday_tracker.activate_holiday(self.holiday_id, from_load=from_load) self._active_household_id = active_household.id lot_decoration_service = services.lot_decoration_service() if lot_decoration_service is not None: lot_decoration_service.request_holiday_decorations(self, from_load=from_load) if from_load: (situation_ids, sims_needing_situations) = holiday_tracker.load_holiday_situations(self.holiday_id) self._situation_ids.extend(situation_ids) if not sims_needing_situations: self._register_situation_ended_callbacks() return else: sims_needing_situations = [sim_info for sim_info in active_household.sim_infos if sim_info.is_human] holiday_service = services.holiday_service() holiday_goals = list(tradition.situation_goal for tradition in holiday_service.get_holiday_traditions(self.holiday_id)) for sim_info in sims_needing_situations: situation_id = self._create_holiday_situation(sim_info, holiday_goals) self._register_situation_ended_callbacks() def on_sim_added(self, sim_info): if self._state != HolidayState.RUNNING: return holiday_goals = list(tradition.situation_goal for tradition in services.holiday_service().get_holiday_traditions(self.holiday_id)) situation_id = self._create_holiday_situation(sim_info, holiday_goals) if situation_id: services.get_zone_situation_manager().register_for_callback(situation_id, SituationCallbackOption.END_OF_SITUATION, self._on_holiday_situation_ended) def _create_holiday_situation(self, sim_info, holiday_goals): guest_list = SituationGuestList(invite_only=True, host_sim_id=sim_info.id) guest_list.add_guest_info(SituationGuestInfo(sim_info.id, HolidayTuning.HOLIDAY_JOB, RequestSpawningOption.DONT_CARE, BouncerRequestPriority.EVENT_VIP)) situation_id = services.get_zone_situation_manager().create_situation(HolidayTuning.HOLIDAY_SITUATION, guest_list=guest_list, linked_sim_id=sim_info.id, dynamic_goals=holiday_goals) if situation_id: self._situation_ids.append(situation_id) return situation_id def _give_time_off_loot(self, sim_info, time_off_loot): if sim_info is not None and time_off_loot is not None: resolver = sim_info.get_resolver() time_off_loot.apply_to_resolver(resolver) def _end_holiday(self): active_household = services.active_household() if not active_household.holiday_tracker.is_holiday_cancelled(self.holiday_id): self._unregister_situation_ended_callbacks() for situation_id in self._situation_ids: services.get_zone_situation_manager().destroy_situation_by_id(situation_id) active_household.holiday_tracker.deactivate_holiday() def _holiday_end_callback(self, _): self._state = HolidayState.SHUTDOWN self._unregister_situation_ended_callbacks() self._end_holiday() services.drama_scheduler_service().complete_node(self.uid) def schedule(self, resolver, specific_time=None, time_modifier=TimeSpan.ZERO): self._state = HolidayState.INITIALIZED success = super().schedule(resolver, specific_time=specific_time, time_modifier=time_modifier) if success: services.calendar_service().mark_on_calendar(self, advance_notice_time=HolidayTuning.HOLIDAY_DURATION()) return success def cleanup(self, from_service_stop=False): if self._holiday_alarm is not None: self._holiday_alarm.cancel() self._holiday_alarm = None services.calendar_service().remove_on_calendar(self.uid) super().cleanup(from_service_stop=from_service_stop) if self._state == HolidayState.PRE_DAY: household = services.household_manager().get(self._active_household_id) if household is not None: household.holiday_tracker.deactivate_pre_holiday() elif self._state == HolidayState.RUNNING: household = services.household_manager().get(self._active_household_id) if household is not None and not household.holiday_tracker.is_holiday_cancelled(self.holiday_id): household.holiday_tracker.deactivate_holiday() if self._state in (HolidayState.PRE_DAY, HolidayState.RUNNING, HolidayState.SHUTDOWN): lot_decoration_service = services.lot_decoration_service() if lot_decoration_service is not None: lot_decoration_service.cancel_decoration_requests_for(self) def _select_time(self, specific_time=None, time_modifier=TimeSpan.ZERO): if specific_time is None: result = super()._select_time(time_modifier=time_modifier) if not result: return result drama_scheduler_service = services.drama_scheduler_service() for drama_node in drama_scheduler_service.scheduled_nodes_gen(): if drama_node.drama_node_type != DramaNodeType.HOLIDAY and drama_node.drama_node_type != DramaNodeType.PLAYER_PLANNED: continue if drama_node.day == self.day: return False return True holiday_start_time = specific_time.time_of_next_day_time(HolidayTuning.MAIN_HOLIDAY_START_TIME) now = services.time_service().sim_now if holiday_start_time < now: return False selected_time = holiday_start_time + self.pre_holiday_duration()*-1 if selected_time < now: selected_time = now + TimeSpan.ONE self._selected_time = selected_time return True def _save_custom_data(self, writer): if self._holiday_start_time is not None: writer.write_uint64(HOLIDAY_START_TIME_TOKEN, self._holiday_start_time.absolute_ticks()) if self._holiday_end_time is not None: writer.write_uint64(HOLIDAY_END_TIME_TOKEN, self._holiday_end_time.absolute_ticks()) def _load_custom_data(self, reader): holiday_start_time_ticks = reader.read_uint64(HOLIDAY_START_TIME_TOKEN, None) if holiday_start_time_ticks is not None: self._holiday_start_time = DateAndTime(holiday_start_time_ticks) holiday_end_time_ticks = reader.read_uint64(HOLIDAY_END_TIME_TOKEN, None) if holiday_end_time_ticks is not None: self._holiday_end_time = DateAndTime(holiday_end_time_ticks) if self._holiday_start_time and not self._holiday_end_time and self._holiday_start_time + HolidayTuning.HOLIDAY_DURATION() < services.time_service().sim_now: return False return True def resume(self): now = services.time_service().sim_now if now < self._holiday_start_time: self._run_pre_holiday(from_load=True) else: self._run_holiday(from_load=True) def _run(self): if self.pre_holiday_duration().in_ticks() == 0: self._run_holiday() self._holiday_start_time = services.time_service().sim_now else: self._run_pre_holiday() return DramaNodeRunOutcome.SUCCESS_NODE_INCOMPLETE def load(self, drama_node_proto, schedule_alarm=True): super_success = super().load(drama_node_proto, schedule_alarm=schedule_alarm) if not super_success: return False services.calendar_service().mark_on_calendar(self, advance_notice_time=HolidayTuning.HOLIDAY_DURATION()) return True lock_instance_tunables(HolidayDramaNode, ui_display_data=None) HOLIDAY_ID_TOKEN = 'holiday_id' class CustomHolidayDramaNode(HolidayDramaNode): REMOVE_INSTANCE_TUNABLES = ('holiday',) def __init__(self, *args, holiday_id=None, **kwargs): super().__init__(*args, **kwargs) self._holiday_id = holiday_id @property def holiday_id(self): return self._holiday_id def _save_custom_data(self, writer): super()._save_custom_data(writer) writer.write_uint64(HOLIDAY_ID_TOKEN, self._holiday_id) def _load_custom_data(self, reader): self._holiday_id = reader.read_uint64(HOLIDAY_ID_TOKEN, None) return super()._load_custom_data(reader)
the-stack_0_4734
import ray from copy import deepcopy from leaderboard.leaderboard_evaluator import LeaderboardEvaluator from leaderboard.utils.statistics_manager import StatisticsManager class ChallengeRunner(): def __init__(self, args, scenario, route, port=1000, tm_port=1002, debug=False): args = deepcopy(args) # Inject args args.scenario_class = 'route_scenario' args.port = port args.trafficManagerPort = tm_port args.scenarios = scenario args.routes = route args.debug = debug args.record = '' self.runner = LeaderboardEvaluator(args, StatisticsManager()) self.args = args def run(self): return self.runner.run(self.args)
the-stack_0_4736
import os import boto3 from base import LambdaFunctionBase class CWScheduledEventManageEC2State(LambdaFunctionBase): """ Class starting or stopping EC2 instances not part of a AutoScaling group. """ # Section specific to the lambda. ACTION = os.environ['PARAM_ACTION'] RESOURCE_TAG_KEY = os.environ['PARAM_RESOURCE_TAG_KEY'] RESOURCE_TAG_VALUE = os.environ['PARAM_RESOURCE_TAG_VALUE'] AWS_REGIONS = os.environ['PARAM_AWS_REGIONS'].split(',') def _get_ec2_instance_ids_by_tag(self, aws_region_name, instance_state, tag_key, tag_value): """ Returns all resources identifiers linked to tag. """ ec2_client = boto3.client('ec2', region_name=aws_region_name) autoscaling_client = boto3.client('autoscaling', region_name=aws_region_name) # Finds EC2 instances. resource_pages = ec2_client.get_paginator('describe_instances').paginate( Filters=[ { 'Name': f'tag:{tag_key}', 'Values': [ tag_value ] }, { 'Name': 'instance-state-name', 'Values': [ instance_state ] } ] ) # Browse EC2 instances and exclude EC2 member of a AutoScalingGroup. ec2_instance_ids = [] for resource_page in resource_pages: for resource in resource_page['Reservations']: for ec2_instance in resource['Instances']: ec2_instance_id = ec2_instance['InstanceId'] # Check if part of an autoscaling group. is_part_of_autoscaling_group = len(autoscaling_client.describe_auto_scaling_instances( InstanceIds=[ ec2_instance_id, ] )['AutoScalingInstances']) > 0 # If not, the instance is eligible. if not is_part_of_autoscaling_group: self.logger.debug('>> Instance %s is eligible.', ec2_instance_id) ec2_instance_ids.append(ec2_instance_id) else: self.logger.debug('>> Instance %s is not eligible as part of an AutoScaling Group.', ec2_instance_id) return ec2_instance_ids def _stop_ec2_instances(self, aws_region_name, ec2_instance_ids): """ Stop the EC2 instances. """ ec2_client = boto3.client('ec2', region_name=aws_region_name) self.logger.info('> Stopping EC2 instances.') for ec2_instance_id in ec2_instance_ids: self.logger.debug('>> Stopping instance %s.', ec2_instance_id) ec2_client.stop_instances(InstanceIds=[ec2_instance_id]) self.logger.info('>> EC2 Instance %s => [STOPPED].', ec2_instance_id) def _start_ec2_instances(self, aws_region_name, ec2_instance_ids): """ Start the EC2 instances. """ ec2_client = boto3.client('ec2', region_name=aws_region_name) self.logger.info('> Starting EC2 instances.') for ec2_instance_id in ec2_instance_ids: self.logger.debug('>> Starting instance %s.', ec2_instance_id) ec2_client.start_instances(InstanceIds=[ec2_instance_id]) self.logger.info('>> EC2 Instance %s => [RUNNING].', ec2_instance_id) def _execute(self, event, context): # pylint: disable=W0613 """ Execute the method. """ self.logger.info('Starting the operation.') if self.ACTION in ['enable', 'start']: ec2_instance_state = 'stopped' elif self.ACTION in ['disable', 'stop']: ec2_instance_state = 'running' else: raise Exception('Unexpected action.') for aws_region_name in self.AWS_REGIONS: self.logger.info('> Searching EC2 instances in region %s having tag %s=%s and state=%s.', aws_region_name, self.RESOURCE_TAG_KEY, self.RESOURCE_TAG_VALUE, ec2_instance_state) # Get EC2 by tag. ec2_instance_ids = self._get_ec2_instance_ids_by_tag(aws_region_name, ec2_instance_state, self.RESOURCE_TAG_KEY, self.RESOURCE_TAG_VALUE) self.logger.info('> Found %s EC2 instances in region %s having tag %s=%s and state=%s.', str(len(ec2_instance_ids)), aws_region_name, self.RESOURCE_TAG_KEY, self.RESOURCE_TAG_VALUE, ec2_instance_state) # Start/Stop if len(ec2_instance_ids) > 0: if self.ACTION in ['enable', 'start']: self._start_ec2_instances(aws_region_name, ec2_instance_ids) elif self.ACTION in ['disable', 'stop']: self._stop_ec2_instances(aws_region_name, ec2_instance_ids) self.logger.info('Operation completed successfully.') return self._build_response_ok() def lambda_handler(event, context): """ Function invoked by AWS. """ return CWScheduledEventManageEC2State().process_event(event, context)
the-stack_0_4737
# -*- coding: utf-8 -*- task = Task("MainStory69",desc = u"自动主线69",pretask = ["MainStory15"]) #task.addSetupActionSet("RefreshGame",tag="pre1",desc="RefreshGame") #task.addTeardownActionSet("TypeCommand",tag= "end1",desc = u"清除所有任务",mp = {'command':'$cleartask 1'}) #task.addTeardownActionSet("TypeCommand",tag= "end2",desc = u"重置等级为1级",mp ={'command':'$r who.Base.m_Grade = 1;who.Base.m_Exp=0;who.CalculateProp();who.SendPropChange();'}) #task.addTeardownActionSet("TypeCommand",tag= "end3",desc = u"添加主线任务",mp = {'command':'$task 10000'}) tasksuit.addTask(task) step = Step("step0.5",u"预处理") task.addStep(step) #step.addActionSet("InputNamePsd",tag = "login",desc = "login input username and password", mp={'username':'autotest1','password':'123456'}) #step.addActionSet("TypeCommand",tag = "0.5",desc = u"获得万劫不复技能", mp = {'command':'$setskill 2099 1'}) #action 0.1 arg = { "detectRegion": gl.AREA_ICON_MAP ,"imagePattern" : "icon_map.png", "clk_region" : GetRegionFromGrid(16) ,"clk_ptn" : Location(GetRegionFromGrid(16).getX()+40, GetRegionFromGrid(16).getY()+40), "failResponse" : "Fail"} act = ClickAction(tag = "0.1",desc=u"点击人物角色信息", **arg) step.addAction(act) arg = { "detectRegion": GetRegionFromGrid(140,141) ,"imagePattern" : "levelupbutton.png", "failResponse" : "Fail"} act = ClickAction(tag = "0.2",desc=u"点击升级按钮", **arg) step.addAction(act) arg = { "detectRegion": GetRegionFromGrid(89,91) ,"imagePattern" : "btn_queren.png", "failResponse" : "Fail"} act = ClickAction(tag = "0.3",desc=u"点击确认按钮", **arg) step.addAction(act) arg = { "time" : 1} act = SleepAction(tag = "0.4",desc=u"wait 1s", **arg) step.addAction(act) #注意关闭按钮的相似度,越小的图越要用sikuli ide的匹配功能进行测试,防止出现误识别 arg = { "detectRegion": GetRegionFromGrid(13,30) ,"imagePattern" : Pattern("btn_close_welfare_center.png").similar(0.80), "failResponse" : "Fail"} act = ClickAction(tag = "0.41",desc=u"关闭人物信息", **arg) step.addAction(act) arg = { "time" : 1} act = SleepAction(tag = "0.42",desc=u"wait 1s", **arg) step.addAction(act) step.addActionSet("TypeCommand",tag = "0.5",desc = u"升一级", mp = {'command':'$addexp 1000000000'}) step.addActionSet("TypeCommand",tag = "0.6",desc = u"升一级", mp = {'command':'$addexp 1'}) step.addActionSet("TypeCommand",tag = "0.7",desc = u"升一级", mp = {'command':'$addexp 1'}) step.addActionSet("TypeCommand",tag = "0.8",desc = u"升一级", mp = {'command':'$addexp 1'}) step.addActionSet("TypeCommand",tag = "0.8",desc = u"升一级", mp = {'command':'$addexp 1'}) step.addActionSet("TypeCommand",tag = "0.8",desc = u"升一级", mp = {'command':'$addexp 1'}) step.addActionSet("TypeCommand",tag = "0.9",desc = u"升一级", mp = {'command':'$r who.Base.m_Grade = 92;who.Base.m_Exp=0;who.CalculateProp();who.SendPropChange();'}) #step1 step = Step("step1",u"主循环") task.addStep(step) #action1.7 arg = { "detectRegion": GetRegionFromGrid(13,30) ,"imagePattern" : Pattern("btn_close_welfare_center.png").similar(0.80), "failResponse" : "Ignore" ,"loopWaitingTime": 0 } act = ClickAction(tag = "1.7",desc=u"关闭人物信息(防止误操作)", **arg) step.addAction(act) #act2 arg = { "detectRegion": gl.AREA_BTN_USEITEM ,"imagePattern" : "btn_equip.png", "loopWaitingTime": 0 ,"successNext" : ["step","step2"], "failResponse" : "Ignore" ,"loopSleepTime" : 0.1, "loopTime":1 ,"loopType" : 1} act = DetectAction(tag = "2", desc = u"是否有装备窗口", **arg) step.addAction(act) #act3 arg = { "detectRegion": gl.AREA_BTN_USEITEM ,"imagePattern" : "btn_useitem.png", "loopWaitingTime": 0 ,"successNext" : ["step","step2"], "failResponse" : "Ignore","loopSleepTime" : 0.1, "loopTime":1 ,"loopType" : 1} act = DetectAction(tag = "3", desc = u"是否有使用道具窗口", **arg) step.addAction(act) #act4 arg = { "detectRegion": gl.AREA_BTN_SKIPSTORY ,"imagePattern" : Pattern("btn_skip_story.png").similar(0.60), "loopWaitingTime": 0 ,"successNext" : ["step","step3"], "failResponse" : "Ignore","loopSleepTime" : 0.1, "loopTime":1 ,"loopType" : 1} act = DetectAction(tag = "4", desc = u"是否在剧情或对话中", **arg) step.addAction(act) #act5 arg = { "detectRegion": GetRegionFromGrid(45, 128) ,"imagePattern" : Pattern("main_story.png").similar(0.60), "loopWaitingTime": 0 ,"successNext" : ["step","step4"], "failResponse" : "Ignore","loopSleepTime" : 0.1, "failNext" : ["step","step1"], "loopTime":1 ,"loopType" : 1} act = DetectAction(tag = "5", desc = u"任务栏是否有主线", **arg) step.addAction(act) #Step2 step = Step("step2",u"处理道具装备") task.addStep(step) #action1 arg = { "detectRegion" : gl.AREA_BTN_USEITEM, "imagePattern" : "btn_useitem.PNG", "loopWaitingTime" : 0 , "failResponse" : "Ignore" , "loopRegion": gl.AREA_BTN_USEITEM ,"loopPattern" :"btn_useitem.PNG", "loopTime" : 5 ,"loopType" : 0 , "loopSleepTime" : 0.1 ,"saveImage" : True} act = ClickAction(tag = "1", desc = u"使用道具", **arg) step.addAction(act) #action2 arg = { "detectRegion" : gl.AREA_BTN_USEITEM, "imagePattern" : "btn_equip.PNG", "loopWaitingTime" : 0 , "failResponse" : "Ignore" , "loopRegion": gl.AREA_BTN_USEITEM ,"loopPattern" :"btn_equip.PNG", "loopSleepTime" : 0.1 ,"saveImage" : True, "loopTime" : 5 ,"loopType" : 0 } act = ClickAction(tag = "2", desc = u"使用装备", **arg) step.addAction(act) #action3 act = Jump(tag = "3", desc = u"返回主循环", target = ["step","step1"]) step.addAction(act) #Step3 step = Step("step3", desc = u"处理剧情中") task.addStep(step) #action1 arg = { "detectRegion": gl.AREA_BTN_SKIPSTORY ,"imagePattern" : Pattern("btn_skip_story.png").similar(0.60), "loopWaitingTime": 0 ,"failNext" : ["step","step1"], "failResponse" : "Ignore","loopSleepTime" : 0.1, "loopTime":1 ,"loopType" : 1} act = DetectAction(tag = "1", desc = u"是否在剧情或对话中,不在则返回主循环Step1", **arg) step.addAction(act) #action2 arg = { "detectRegion": GetRegionFromGrid(76, 112) ,"imagePattern" : "enterbattle.png", "loopWaitingTime": 0 ,"next" : ["step","step6"], "failResponse" : "Ignore" ,"saveImage" : True, "loopSleepTime" : 0.1} act = ClickAction(tag = "2", desc = u"如果有开始战斗则点击直到消失,并进入战斗Step", **arg) step.addAction(act) #action3 arg = { "detectRegion": GetRegionFromGrid(45, 128) ,"imagePattern" : Pattern("main_story.png").similar(0.60), "loopWaitingTime": 0 ,"next" : ["step","step4"], "failResponse" : "Ignore","loopSleepTime" : 0.1 ,"saveImage" : True, "loopTime":1 ,"loopType" : 1} act = DetectAction(tag = "3", desc = u"如果有主线则点主线", **arg) step.addAction(act) #action 4 arg = { "detectRegion" : gl.AREA_BTN_SKIPSTORY, "imagePattern" : Pattern("btn_skip_story.png").similar(0.60), "loopWaitingTime" : 0 , "failResponse" : "Ignore" , "loopSleepTime" : 0.3, "saveImage" : False, "loopRegion": gl.AREA_BTN_SKIPSTORY ,"loopPattern" :Pattern("btn_skip_story.png").similar(0.60), "loopTime" : 8 ,"loopType" : 0 } act = ClickAction(tag = "4",desc=u"点击跳过", **arg) step.addAction(act) #action 5 arg = { "time":1} act = SleepAction(tag = "5",desc=u"sleep 1s", **arg) step.addAction(act) #action 6 act = Jump(tag = "6", desc = u"返回继续处理剧情", target = ["action","1"]) step.addAction(act) #Step4 step = Step("step4",u"处理剧情追踪") task.addStep(step) #act0.5 arg = { "detectRegion": GetRegionFromGrid(45, 128) ,"imagePattern" : Pattern("main_story.png").similar(0.60), "loopWaitingTime": 0 ,"saveImage" : True, "failNext" : ["step","step3"] ,"failResponse" : "Ignore", "loopTime":1 ,"loopType" : 1} act = DetectAction(tag = "0.5", desc = u"任务栏是否有主线", **arg) step.addAction(act) #action0.6 arg = { "detectRegion": GetRegionFromGrid(60, 112) ,"imagePattern" : "special_zhuxian.png", "loopWaitingTime": 0 , "failResponse" : "Ignore"} act = ClickAction(tag = "0.6", desc = u"特殊主线", **arg) step.addAction(act) #act1 arg = { "detectRegion": GetRegionFromGrid(45, 128) ,"imagePattern" : Pattern("jingqingqidai.png").similar(0.80), "loopWaitingTime": 0 ,"successNext" : ["step","step7"], "failResponse" : "Ignore","loopSleepTime" : 0.1, "loopTime":1 ,"loopType" : 1} act = DetectAction(tag = "1", desc = u"主线任务为敬请期待则结束任务完成", **arg) step.addAction(act) #action2 arg = { "detectRegion" : GetRegionFromGrid(45, 128), "imagePattern" : Pattern("main_story.png").similar(0.60), "loopWaitingTime" : 1 , "failResponse" : "Ignore" , "loopSleepTime" : 0.1, "saveImage" : False, "loopRegion": GetRegionFromGrid(45, 128) ,"loopPattern" :Pattern("main_story.png").similar(0.60), "loopTime" : 5 ,"loopType" : 0 } act = ClickAction(tag = "2", desc = u"循环点击主线直到消失", **arg) step.addAction(act) #action3 act = Jump(tag = "3", desc = u"jump to step4 action1",target=["action","0.5"]) step.addAction(act) #Step6 step = Step("step6",u"自动战斗") task.addStep(step) step.addActionSet("AutoBattle",tag = "1",desc = u"自动战斗actionset", mp = {}) act = Jump(tag = "1", desc = u"jump to step1", target=['step','step1']) step.addAction(act) #Step7 #Step7 step = Step("step7",u"结束Task") task.addStep(step) arg = {'time':1} act = SleepAction(tag="end sleep",desc = u"准备结束该任务",**arg) step.addAction(act)
the-stack_0_4738
#!/usr/bin/env python3 import json import os import sys import requests base_url = "https://api.northwell.edu/" url = "https://api.northwell.edu/v2/vax-locations/all" def get_paginated_urls(): response = requests.get(url) data = response.json() return [page_url["url"] for page_url in data["response"]["pagination"]["display"]] def get_locations(page_url): response = requests.get(base_url + page_url) data = response.json() return data["response"]["locations"] def main(): output_dir = sys.argv[1] if output_dir is None: raise Exception("Must pass an output_dir as first argument") page_urls = get_paginated_urls() for index, page_url in enumerate(page_urls): locations = get_locations(page_url) output_file_path = os.path.join(output_dir, f"output{index}.json") with open(output_file_path, "w", encoding="utf-8") as f: json.dump(locations, f, ensure_ascii=False, indent=4) if __name__ == "__main__": sys.exit(main())
the-stack_0_4741
#!/usr/bin/env python import argparse import boto3 import pandas as pd import sagemaker import json from sagemaker.deserializers import JSONDeserializer from sagemaker.serializers import JSONSerializer from botocore.exceptions import ClientError import logging import traceback logging.basicConfig(level=logging.INFO) LOGGER = logging.getLogger(__name__) if __name__=='__main__': parser = argparse.ArgumentParser() # parameters sent by the client are passed as command-line arguments to the script. parser.add_argument("--ticker-cik", type=str, default='amzn') parser.add_argument("--endpoint-name", type=str) parser.add_argument("--region", type=str) args, _ = parser.parse_known_args() sagemaker_session = sagemaker.Session(boto3.session.Session(region_name=args.region)) #get the json data f = open(f'/opt/ml/processing/input/10k10q/{args.ticker_cik}_10k_10q_summary.json',) # returns JSON object as # a dictionary sec_summary = json.load(f) sec_summary['inputs'] = sec_summary['inputs'][:2500] sec_summary['source'] = f'{args.ticker_cik} SEC Report' sec_df = pd.json_normalize(sec_summary) sec_df = sec_df[['source', 'inputs']] articles_df = pd.read_csv(f'/opt/ml/processing/input/articles/{args.ticker_cik}_articles.csv') articles_df = articles_df[['source.name', 'content', 'description']] articles_df['inputs'] = articles_df[['content', 'description']].apply(lambda x: ''.join(x), axis=1) articles_df.drop(['content', 'description'], axis=1, inplace=True) articles_df.rename(columns={'source.name': 'source'}, inplace=True) df = sec_df.append(articles_df,ignore_index=True) data={} data['inputs'] = df['inputs'].tolist() #initialize predictor from Endpoint predictor = sagemaker.predictor.Predictor(endpoint_name=args.endpoint_name, sagemaker_session=sagemaker_session, serializer=JSONSerializer(), deserializer=JSONDeserializer()) # predict for all chunks try: response = predictor.predict(data) response_df = pd.json_normalize(response) response_df['source'] = df['source'] response_df=response_df[['source', 'label', 'score']] response_df.to_csv(f'/opt/ml/processing/output/{args.ticker_cik}_sentiment_result.csv', index=False) except ClientError as e: stacktrace = traceback.format_exc() error_message = e.response["Error"]["Message"] LOGGER.error("{}".format(stacktrace)) raise Exception(error_message)
the-stack_0_4744
# Copyright 2021 QuantumBlack Visual Analytics Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND # NONINFRINGEMENT. IN NO EVENT WILL THE LICENSOR OR OTHER CONTRIBUTORS # BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF, OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # The QuantumBlack Visual Analytics Limited ("QuantumBlack") name and logo # (either separately or in combination, "QuantumBlack Trademarks") are # trademarks of QuantumBlack. The License does not grant you any right or # license to the QuantumBlack Trademarks. You may not use the QuantumBlack # Trademarks or any confusingly similar mark as a trademark for your product, # or use the QuantumBlack Trademarks in any other manner that might cause # confusion in the marketplace, including but not limited to in advertising, # on websites, or on software. # # See the License for the specific language governing permissions and # limitations under the License. """This module provides ``kedro.config`` with the functionality to load one or more configuration files from specified paths. """ import logging from glob import iglob from pathlib import Path from typing import AbstractSet, Any, Dict, Iterable, List, Set, Union from warnings import warn SUPPORTED_EXTENSIONS = [ ".yml", ".yaml", ".json", ".ini", ".pickle", ".properties", ".xml", ] class MissingConfigException(Exception): """Raised when no configuration files can be found within a config path""" pass class BadConfigException(Exception): """Raised when a configuration file cannot be loaded, for instance due to wrong syntax or poor formatting. """ pass class ConfigLoader: """Recursively scan the directories specified in ``conf_paths`` for configuration files with a ``yaml``, ``yml``, ``json``, ``ini``, ``pickle``, ``xml`` or ``properties`` extension, load them, and return them in the form of a config dictionary. When the same top-level key appears in any 2 config files located in the same ``conf_path`` (sub)directory, a ``ValueError`` is raised. When the same key appears in any 2 config files located in different ``conf_path`` directories, the last processed config path takes precedence and overrides this key. For example, if your ``conf_path`` looks like this: :: . `-- conf |-- README.md |-- base | |-- catalog.yml | |-- logging.yml | `-- experiment1 | `-- parameters.yml `-- local |-- catalog.yml |-- db.ini |-- experiment1 | |-- parameters.yml | `-- model_parameters.yml `-- experiment2 `-- parameters.yml You can access the different configurations as follows: :: >>> import logging.config >>> from kedro.config import ConfigLoader >>> >>> conf_paths = ['conf/base', 'conf/local'] >>> conf_loader = ConfigLoader(conf_paths) >>> >>> conf_logging = conf_loader.get('logging*') >>> logging.config.dictConfig(conf_logging) # set logging conf >>> >>> conf_catalog = conf_loader.get('catalog*', 'catalog*/**') >>> conf_params = conf_loader.get('**/parameters.yml') """ def __init__(self, conf_paths: Union[str, Iterable[str]]): """Instantiate a ConfigLoader. Args: conf_paths: Non-empty path or list of paths to configuration directories. Raises: ValueError: If ``conf_paths`` is empty. """ if not conf_paths: raise ValueError( "`conf_paths` must contain at least one path to " "load configuration files from." ) if isinstance(conf_paths, str): conf_paths = [conf_paths] self.conf_paths = _remove_duplicates(conf_paths) self.logger = logging.getLogger(__name__) @staticmethod def _load_config_file(config_file: Path) -> Dict[str, Any]: """Load an individual config file using `anyconfig` as a backend. Args: config_file: Path to a config file to process. Raises: BadConfigException: If configuration is poorly formatted and cannot be loaded. Returns: Parsed configuration. """ # for performance reasons import anyconfig # pylint: disable=import-outside-toplevel try: # Default to UTF-8, which is Python 3 default encoding, to decode the file with open(config_file, encoding="utf8") as yml: return { k: v for k, v in anyconfig.load(yml).items() if not k.startswith("_") } except AttributeError as exc: raise BadConfigException( f"Couldn't load config file: {config_file}" ) from exc def _load_configs(self, config_filepaths: List[Path]) -> Dict[str, Any]: """Recursively load all configuration files, which satisfy a given list of glob patterns from a specific path. Args: config_filepaths: Configuration files sorted in the order of precedence. Raises: ValueError: If 2 or more configuration files contain the same key(s). BadConfigException: If configuration is poorly formatted and cannot be loaded. Returns: Resulting configuration dictionary. """ aggregate_config = {} seen_file_to_keys = {} # type: Dict[Path, AbstractSet[str]] for config_filepath in config_filepaths: single_config = self._load_config_file(config_filepath) _check_duplicate_keys(seen_file_to_keys, config_filepath, single_config) seen_file_to_keys[config_filepath] = single_config.keys() aggregate_config.update(single_config) return aggregate_config def _lookup_config_filepaths( self, conf_path: Path, patterns: Iterable[str], processed_files: Set[Path] ) -> List[Path]: config_files = _path_lookup(conf_path, patterns) seen_files = config_files & processed_files if seen_files: self.logger.warning( "Config file(s): %s already processed, skipping loading...", ", ".join(str(seen) for seen in sorted(seen_files)), ) config_files -= seen_files return sorted(config_files) def get(self, *patterns: str) -> Dict[str, Any]: """Recursively scan for configuration files, load and merge them, and return them in the form of a config dictionary. Args: patterns: Glob patterns to match. Files, which names match any of the specified patterns, will be processed. Raises: ValueError: If 2 or more configuration files inside the same config path (or its subdirectories) contain the same top-level key. MissingConfigException: If no configuration files exist within a specified config path. BadConfigException: If configuration is poorly formatted and cannot be loaded. Returns: Dict[str, Any]: A Python dictionary with the combined configuration from all configuration files. **Note:** any keys that start with `_` will be ignored. """ if not patterns: raise ValueError( "`patterns` must contain at least one glob " "pattern to match config filenames against." ) config = {} # type: Dict[str, Any] processed_files = set() # type: Set[Path] for conf_path in self.conf_paths: if not Path(conf_path).is_dir(): raise ValueError( f"Given configuration path either does not exist " f"or is not a valid directory: {conf_path}" ) logging.info("IN GET. STARTGIN __LOOKUP_CONFIG_FILE_PATHS") config_filepaths = self._lookup_config_filepaths( Path(conf_path), patterns, processed_files ) logging.info("COMPLETED _LOOKUP_CONFIG_FILE_PATHS. STARTING _LOAD_CONFIGS.") new_conf = self._load_configs(config_filepaths) logging.info("COMPLETED _LOAD_CONFIGS.") common_keys = config.keys() & new_conf.keys() if common_keys: sorted_keys = ", ".join(sorted(common_keys)) msg = ( "Config from path `%s` will override the following " "existing top-level config keys: %s" ) self.logger.info(msg, conf_path, sorted_keys) config.update(new_conf) processed_files |= set(config_filepaths) logging.info("COMPLETED CONFIG UPDATE") if not processed_files: raise MissingConfigException( f"No files found in {self.conf_paths} matching the glob " f"pattern(s): {list(patterns)}" ) return config def _check_duplicate_keys( processed_files: Dict[Path, AbstractSet[str]], filepath: Path, conf: Dict[str, Any] ) -> None: duplicates = [] for processed_file, keys in processed_files.items(): overlapping_keys = conf.keys() & keys if overlapping_keys: sorted_keys = ", ".join(sorted(overlapping_keys)) if len(sorted_keys) > 100: sorted_keys = sorted_keys[:100] + "..." duplicates.append(f"{processed_file}: {sorted_keys}") if duplicates: dup_str = "\n- ".join(duplicates) raise ValueError(f"Duplicate keys found in {filepath} and:\n- {dup_str}") def _path_lookup(conf_path: Path, patterns: Iterable[str]) -> Set[Path]: """Return a set of all configuration files from ``conf_path`` or its subdirectories, which satisfy a given list of glob patterns. Args: conf_path: Path to configuration directory. patterns: List of glob patterns to match the filenames against. Returns: A set of paths to configuration files. """ config_files = set() conf_path = conf_path.resolve() for pattern in patterns: # `Path.glob()` ignores the files if pattern ends with "**", # therefore iglob is used instead for each in iglob(str(conf_path / pattern), recursive=True): path = Path(each).resolve() if path.is_file() and path.suffix in SUPPORTED_EXTENSIONS: config_files.add(path) return config_files def _remove_duplicates(items: Iterable[str]): """Remove duplicates while preserving the order.""" unique_items = [] # type: List[str] for item in items: if item not in unique_items: unique_items.append(item) else: warn( f"Duplicate environment detected! " f"Skipping re-loading from configuration path: {item}" ) return unique_items
the-stack_0_4745
from django.views.generic import ListView from constance import config from learning.models import Tutorial, Category from learning.filters import TutorialArchiveFilterSet class TutorialListView(ListView): model = Tutorial template_name = "learning/tutorials_archive.html" page_kwarg = "page" context_object_name = "tutorials" def get_paginate_by(self, queryset): return config.LEARNING_TUTORIAL_ARCHIVE_PAGINATE_BY def get_queryset(self): # All confirmed and active tutorials tutorials = ( Tutorial.objects.order_by("-create_date") .only_main_fields() .active_and_confirmed_tutorials() ) # Filter and order tutorials, then annonate comments_count tutorials = TutorialArchiveFilterSet( self.request.GET, tutorials ).qs.annonate_comments_count() return tutorials def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) category_slug = self.request.GET.get("category") if category_slug: context["category"] = ( Category.objects.active_categories() .filter(slug=category_slug) .first() ) return context
the-stack_0_4746
#!/usr/bin/env python3 -u # -*- coding: utf-8 -*- # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) # test API provided through BaseSktimeForecaster """SKtime Forecasters Test.""" __author__ = ["@mloning"] __all__ = [ "test_different_fh_in_fit_and_predict_req", "test_fh_in_fit_opt", "test_fh_in_fit_req", "test_fh_in_predict_opt", "test_no_fh_in_fit_req", "test_no_fh_opt", "test_oh_setting", "test_same_fh_in_fit_and_predict_opt", "test_same_fh_in_fit_and_predict_req", ] import numpy as np import pytest from sktime.forecasting.base import BaseForecaster from sktime.forecasting.base._sktime import _BaseWindowForecaster from sktime.forecasting.model_selection import temporal_train_test_split from sktime.registry import all_estimators from sktime.utils._testing.forecasting import _get_n_columns, make_forecasting_problem from sktime.utils._testing.series import _make_series # get all forecasters FORECASTERS = [ forecaster for (name, forecaster) in all_estimators(estimator_types="forecaster") if issubclass(forecaster, BaseForecaster) ] FH0 = 1 WINDOW_FORECASTERS = [ forecaster for (name, forecaster) in all_estimators(estimator_types="forecaster") if issubclass(forecaster, _BaseWindowForecaster) ] # testing data y = make_forecasting_problem() y_train, y_test = temporal_train_test_split(y, train_size=0.75) # test _y setting @pytest.mark.parametrize("Forecaster", FORECASTERS) def test_oh_setting(Forecaster): """Check cuttoff and _y.""" # check _y and cutoff is None after construction f = Forecaster.create_test_instance() n_columns_list = _get_n_columns(f.get_tag("scitype:y")) for n_columns in n_columns_list: f = Forecaster.create_test_instance() y = _make_series(n_columns=n_columns) y_train, y_test = temporal_train_test_split(y, train_size=0.75) assert f._y is None assert f.cutoff is None # check that _y and cutoff is updated during fit f.fit(y_train, fh=FH0) # assert isinstance(f._y, pd.Series) # action:uncomments the line above # why: fails for multivariates cause they are DataFrames # solution: look for a general solution for Series and DataFrames assert len(f._y) > 0 assert f.cutoff == y_train.index[-1] # check data pointers np.testing.assert_array_equal(f._y.index, y_train.index) # check that _y and cutoff is updated during update f.update(y_test, update_params=False) np.testing.assert_array_equal( f._y.index, np.append(y_train.index, y_test.index) ) assert f.cutoff == y_test.index[-1] # check setting/getting API for forecasting horizon # divide Forecasters into groups based on when fh is required FORECASTERS_REQUIRED = [ f for f in FORECASTERS if f.get_class_tag("requires-fh-in-fit", True) ] FORECASTERS_OPTIONAL = [ f for f in FORECASTERS if not f.get_class_tag("requires-fh-in-fit", True) ] # testing Forecasters which require fh during fitting @pytest.mark.parametrize("Forecaster", FORECASTERS_REQUIRED) def test_no_fh_in_fit_req(Forecaster): """Check if fh is required in fit.""" f = Forecaster.create_test_instance() # fh required in fit, raises error if not passed with pytest.raises(ValueError): f.fit(y_train) @pytest.mark.parametrize("Forecaster", FORECASTERS_REQUIRED) def test_fh_in_fit_req(Forecaster): """Checks if fh is requred in fit.""" f = Forecaster.create_test_instance() f.fit(y_train, fh=FH0) np.testing.assert_array_equal(f.fh, FH0) f.predict() np.testing.assert_array_equal(f.fh, FH0) @pytest.mark.parametrize("Forecaster", FORECASTERS_REQUIRED) def test_same_fh_in_fit_and_predict_req(Forecaster): """Check if fh is the same in fit and predict.""" f = Forecaster.create_test_instance() f.fit(y_train, fh=FH0) np.testing.assert_array_equal(f.fh, FH0) f.predict(FH0) np.testing.assert_array_equal(f.fh, FH0) @pytest.mark.parametrize("Forecaster", FORECASTERS_REQUIRED) def test_different_fh_in_fit_and_predict_req(Forecaster): """Check if fh is different in fit and predict.""" f = Forecaster.create_test_instance() f.fit(y_train, fh=FH0) np.testing.assert_array_equal(f.fh, FH0) # updating fh during predict raises error as fitted model depends on fh # seen in fit with pytest.raises(ValueError): f.predict(fh=FH0 + 1) # testing Forecasters which take fh either during fitting or predicting @pytest.mark.parametrize("Forecaster", FORECASTERS_OPTIONAL) def test_no_fh_opt(Forecaster): """Check if fh is optional in fit.""" f = Forecaster.create_test_instance() n_columns_list = _get_n_columns(f.get_tag("scitype:y")) for n_columns in n_columns_list: f = Forecaster.create_test_instance() y_train = _make_series(n_columns=n_columns) f.fit(y_train) # not passing fh to either fit or predict raises error with pytest.raises(ValueError): f.predict() @pytest.mark.parametrize("Forecaster", FORECASTERS_OPTIONAL) def test_fh_in_fit_opt(Forecaster): """Check if fh is optional in fit.""" f = Forecaster.create_test_instance() n_columns_list = _get_n_columns(f.get_tag("scitype:y")) for n_columns in n_columns_list: f = Forecaster.create_test_instance() y_train = _make_series(n_columns=n_columns) f.fit(y_train, fh=FH0) np.testing.assert_array_equal(f.fh, FH0) f.predict() np.testing.assert_array_equal(f.fh, FH0) @pytest.mark.parametrize("Forecaster", FORECASTERS_OPTIONAL) def test_fh_in_predict_opt(Forecaster): """Check if fh is optional in predict.""" f = Forecaster.create_test_instance() n_columns_list = _get_n_columns(f.get_tag("scitype:y")) for n_columns in n_columns_list: f = Forecaster.create_test_instance() y_train = _make_series(n_columns=n_columns) f.fit(y_train) f.predict(FH0) np.testing.assert_array_equal(f.fh, FH0) @pytest.mark.parametrize("Forecaster", FORECASTERS_OPTIONAL) def test_same_fh_in_fit_and_predict_opt(Forecaster): """Check if fh is the same in fit and predict.""" f = Forecaster.create_test_instance() n_columns_list = _get_n_columns(f.get_tag("scitype:y")) for n_columns in n_columns_list: f = Forecaster.create_test_instance() y_train = _make_series(n_columns=n_columns) # passing the same fh to both fit and predict works f.fit(y_train, fh=FH0) f.predict(FH0) np.testing.assert_array_equal(f.fh, FH0) @pytest.mark.parametrize("Forecaster", WINDOW_FORECASTERS) def test_last_window(Forecaster): f = Forecaster.create_test_instance() n_columns_list = _get_n_columns(f.get_tag("scitype:y")) for n_columns in n_columns_list: f = Forecaster.create_test_instance() y_train = _make_series(n_columns=n_columns) # passing the same fh to both fit and predict works f.fit(y_train, fh=FH0) actual, _ = f._get_last_window() expected = y_train.iloc[-f.window_length_ :] np.testing.assert_array_equal(actual, expected) assert len(actual) == f.window_length_
the-stack_0_4747
import numpy as np from autoencirt.irt.grm import GRModel from bayesianquilts.dense import DenseHorseshoe import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability.python import util as tfp_util from tensorflow_probability.python.mcmc.transformed_kernel import ( make_transform_fn, make_transformed_log_prob, make_log_det_jacobian_fn) from tensorflow_probability.python.bijectors import softplus as softplus_lib from bayesianquilts.util import ( clip_gradients ) tfd = tfp.distributions tfd = tfp.distributions tfb = tfp.bijectors class AEGRModel(GRModel): def __init__(self, auxiliary_parameterization=True, xi_scale=1e-2, eta_scale=1e-2, kappa_scale=1e-2, weight_exponent=1.0, dim=2, decay=0.25, positive_discriminations=True, hidden_layers=[100, 100], num_items=1, ): super(AEGRModel, self).__init__( auxiliary_parameterization=True, xi_scale=xi_scale, eta_scale=eta_scale, kappa_scale=kappa_scale, weight_exponent=weight_exponent, dim=dim, decay=decay, positive_discriminations=positive_discriminations ) self.num_items = num_items, self.hidden_layers = hidden_layers self.grm_vars = self.var_list def initialize_nn(self, hidden_layers=None): if hidden_layers is not None: self.hidden_layers = hidden_layers else: hidden_layers = self.hidden_layers self.nn = DenseHorseshoe( self.num_items, hidden_layers + [self.dimensions], reparameterized=True) self.nn_var_list = self.nn.var_list def load_data(self, *args, **kwargs): super(AEGRModel, self).load_data(*args, **kwargs) self.initialize_nn() def joint_log_prob(self, **x): prior = self.joint_log_prior(**x) d0 = tf.concat( [x['difficulties0'], x['ddifficulties']], axis=-1) difficulties = tf.cumsum( d0, axis=-1) likelihood = tf.reduce_sum( self.log_likelihood( self.calibration_data, x['discriminations'], difficulties, x['abilities'] ), axis=[-1, -2] ) return prior + likelihood def joint_log_prior( self, **x): weight_tensors = {v: x[v] for v in self.nn.weight_var_list} abilities = self.nn.assemble_networks( weight_tensors)(self.calibration_data) grm_vars = {k: x[k] for k in self.grm_vars} grm_vars["abilities"] = abilities[..., tf.newaxis, tf.newaxis] grm_vars["responses"] = self.calibration_data nn_log_prior = self.nn.log_prob(weight_tensors) grm_log_prior = ( super( AEGRModel, self ).joint_log_prob_auxiliary(**grm_vars) if self.auxiliary_parameterization else super( AEGRModel, self ).joint_log_prob(**grm_vars) ) return nn_log_prior + grm_log_prior def sample(self, *args, **kwargs): nn_sample = self.nn.sample(*args, **kwargs) grm_sample = self.surrogate_posterior.sample(*args, **kwargs) return {**nn_sample, **grm_sample} def create_distributions(self, *args, **kwargs): super( AEGRModel, self ).create_distributions( *args, **kwargs ) self.surrogate_distribution_hybrid = ( tfd.JointDistributionNamed({ **self.surrogate_distribution_dict, **self.nn.surrogate_distribution_dict }) ) def calibrate_advi( self, num_steps=10, initial_learning_rate=5e-3, decay_rate=0.99, learning_rate=None, opt=None, clip=None): if learning_rate is None: learning_rate = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=initial_learning_rate, decay_steps=num_steps, decay_rate=decay_rate, staircase=True) if opt is None: opt = tf.optimizers.Adam( learning_rate=learning_rate) @tf.function def run_approximation(num_steps): losses = tfp.vi.fit_surrogate_posterior( target_log_prob_fn=( self.joint_log_prob if clip is None else clip_gradients( self.joint_log_prob, clip)), surrogate_posterior=self.surrogate_distribution_hybrid, optimizer=opt, num_steps=num_steps, sample_size=25 ) return(losses) losses = run_approximation(num_steps) print(losses) if (not np.isnan(losses[-1])) and (not np.isinf(losses[-1])): self.set_calibration_expectations() return(losses) def main(): from autoencirt.data.rwa import get_data aegrm = AEGRModel(hidden_layers=[20, 30]) aegrm.load_data(get_data()) aegrm.create_distributions() sample = aegrm.sample([2, 3]) prob = aegrm.joint_log_prob(**sample) print(prob) aegrm.calibrate_advi(10, clip=1.) return if __name__ == "__main__": main()
the-stack_0_4749
""" Support for local control of entities by emulating the Phillips Hue bridge. For more details about this component, please refer to the documentation at https://home-assistant.io/components/emulated_hue/ """ import asyncio import logging import voluptuous as vol from homeassistant import util from homeassistant.const import ( EVENT_HOMEASSISTANT_START, EVENT_HOMEASSISTANT_STOP, ) from homeassistant.components.http import REQUIREMENTS # NOQA from homeassistant.components.http import HomeAssistantWSGI from homeassistant.exceptions import HomeAssistantError from homeassistant.helpers.deprecation import get_deprecated import homeassistant.helpers.config_validation as cv from homeassistant.util.json import load_json, save_json from .hue_api import ( HueUsernameView, HueAllLightsStateView, HueOneLightStateView, HueOneLightChangeView) from .upnp import DescriptionXmlView, UPNPResponderThread DOMAIN = 'emulated_hue' _LOGGER = logging.getLogger(__name__) NUMBERS_FILE = 'emulated_hue_ids.json' CONF_HOST_IP = 'host_ip' CONF_LISTEN_PORT = 'listen_port' CONF_ADVERTISE_IP = 'advertise_ip' CONF_ADVERTISE_PORT = 'advertise_port' CONF_UPNP_BIND_MULTICAST = 'upnp_bind_multicast' CONF_OFF_MAPS_TO_ON_DOMAINS = 'off_maps_to_on_domains' CONF_EXPOSE_BY_DEFAULT = 'expose_by_default' CONF_EXPOSED_DOMAINS = 'exposed_domains' CONF_TYPE = 'type' TYPE_ALEXA = 'alexa' TYPE_GOOGLE = 'google_home' DEFAULT_LISTEN_PORT = 8300 DEFAULT_UPNP_BIND_MULTICAST = True DEFAULT_OFF_MAPS_TO_ON_DOMAINS = ['script', 'scene'] DEFAULT_EXPOSE_BY_DEFAULT = True DEFAULT_EXPOSED_DOMAINS = [ 'switch', 'light', 'group', 'input_boolean', 'media_player', 'fan' ] DEFAULT_TYPE = TYPE_GOOGLE CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({ vol.Optional(CONF_HOST_IP): cv.string, vol.Optional(CONF_LISTEN_PORT, default=DEFAULT_LISTEN_PORT): cv.port, vol.Optional(CONF_ADVERTISE_IP): cv.string, vol.Optional(CONF_ADVERTISE_PORT): cv.port, vol.Optional(CONF_UPNP_BIND_MULTICAST): cv.boolean, vol.Optional(CONF_OFF_MAPS_TO_ON_DOMAINS): cv.ensure_list, vol.Optional(CONF_EXPOSE_BY_DEFAULT): cv.boolean, vol.Optional(CONF_EXPOSED_DOMAINS): cv.ensure_list, vol.Optional(CONF_TYPE, default=DEFAULT_TYPE): vol.Any(TYPE_ALEXA, TYPE_GOOGLE) }) }, extra=vol.ALLOW_EXTRA) ATTR_EMULATED_HUE = 'emulated_hue' ATTR_EMULATED_HUE_HIDDEN = 'emulated_hue_hidden' def setup(hass, yaml_config): """Activate the emulated_hue component.""" config = Config(hass, yaml_config.get(DOMAIN, {})) server = HomeAssistantWSGI( hass, server_host=config.host_ip_addr, server_port=config.listen_port, api_password=None, ssl_certificate=None, ssl_key=None, cors_origins=None, use_x_forwarded_for=False, trusted_networks=[], login_threshold=0, is_ban_enabled=False ) server.register_view(DescriptionXmlView(config)) server.register_view(HueUsernameView) server.register_view(HueAllLightsStateView(config)) server.register_view(HueOneLightStateView(config)) server.register_view(HueOneLightChangeView(config)) upnp_listener = UPNPResponderThread( config.host_ip_addr, config.listen_port, config.upnp_bind_multicast, config.advertise_ip, config.advertise_port) @asyncio.coroutine def stop_emulated_hue_bridge(event): """Stop the emulated hue bridge.""" upnp_listener.stop() yield from server.stop() @asyncio.coroutine def start_emulated_hue_bridge(event): """Start the emulated hue bridge.""" upnp_listener.start() yield from server.start() hass.bus.async_listen_once( EVENT_HOMEASSISTANT_STOP, stop_emulated_hue_bridge) hass.bus.listen_once(EVENT_HOMEASSISTANT_START, start_emulated_hue_bridge) return True class Config(object): """Hold configuration variables for the emulated hue bridge.""" def __init__(self, hass, conf): """Initialize the instance.""" self.hass = hass self.type = conf.get(CONF_TYPE) self.numbers = None self.cached_states = {} if self.type == TYPE_ALEXA: _LOGGER.warning("Alexa type is deprecated and will be removed in a" " future version") # Get the IP address that will be passed to the Echo during discovery self.host_ip_addr = conf.get(CONF_HOST_IP) if self.host_ip_addr is None: self.host_ip_addr = util.get_local_ip() _LOGGER.info( "Listen IP address not specified, auto-detected address is %s", self.host_ip_addr) # Get the port that the Hue bridge will listen on self.listen_port = conf.get(CONF_LISTEN_PORT) if not isinstance(self.listen_port, int): self.listen_port = DEFAULT_LISTEN_PORT _LOGGER.info( "Listen port not specified, defaulting to %s", self.listen_port) if self.type == TYPE_GOOGLE and self.listen_port != 80: _LOGGER.warning("When targeting Google Home, listening port has " "to be port 80") # Get whether or not UPNP binds to multicast address (239.255.255.250) # or to the unicast address (host_ip_addr) self.upnp_bind_multicast = conf.get( CONF_UPNP_BIND_MULTICAST, DEFAULT_UPNP_BIND_MULTICAST) # Get domains that cause both "on" and "off" commands to map to "on" # This is primarily useful for things like scenes or scripts, which # don't really have a concept of being off self.off_maps_to_on_domains = conf.get(CONF_OFF_MAPS_TO_ON_DOMAINS) if not isinstance(self.off_maps_to_on_domains, list): self.off_maps_to_on_domains = DEFAULT_OFF_MAPS_TO_ON_DOMAINS # Get whether or not entities should be exposed by default, or if only # explicitly marked ones will be exposed self.expose_by_default = conf.get( CONF_EXPOSE_BY_DEFAULT, DEFAULT_EXPOSE_BY_DEFAULT) # Get domains that are exposed by default when expose_by_default is # True self.exposed_domains = conf.get( CONF_EXPOSED_DOMAINS, DEFAULT_EXPOSED_DOMAINS) # Calculated effective advertised IP and port for network isolation self.advertise_ip = conf.get( CONF_ADVERTISE_IP) or self.host_ip_addr self.advertise_port = conf.get( CONF_ADVERTISE_PORT) or self.listen_port def entity_id_to_number(self, entity_id): """Get a unique number for the entity id.""" if self.type == TYPE_ALEXA: return entity_id if self.numbers is None: self.numbers = _load_json(self.hass.config.path(NUMBERS_FILE)) # Google Home for number, ent_id in self.numbers.items(): if entity_id == ent_id: return number number = '1' if self.numbers: number = str(max(int(k) for k in self.numbers) + 1) self.numbers[number] = entity_id save_json(self.hass.config.path(NUMBERS_FILE), self.numbers) return number def number_to_entity_id(self, number): """Convert unique number to entity id.""" if self.type == TYPE_ALEXA: return number if self.numbers is None: self.numbers = _load_json(self.hass.config.path(NUMBERS_FILE)) # Google Home assert isinstance(number, str) return self.numbers.get(number) def is_entity_exposed(self, entity): """Determine if an entity should be exposed on the emulated bridge. Async friendly. """ if entity.attributes.get('view') is not None: # Ignore entities that are views return False domain = entity.domain.lower() explicit_expose = entity.attributes.get(ATTR_EMULATED_HUE, None) explicit_hidden = entity.attributes.get(ATTR_EMULATED_HUE_HIDDEN, None) if explicit_expose is True or explicit_hidden is False: expose = True elif explicit_expose is False or explicit_hidden is True: expose = False else: expose = None get_deprecated(entity.attributes, ATTR_EMULATED_HUE_HIDDEN, ATTR_EMULATED_HUE, None) domain_exposed_by_default = \ self.expose_by_default and domain in self.exposed_domains # Expose an entity if the entity's domain is exposed by default and # the configuration doesn't explicitly exclude it from being # exposed, or if the entity is explicitly exposed is_default_exposed = \ domain_exposed_by_default and expose is not False return is_default_exposed or expose def _load_json(filename): """Wrapper, because we actually want to handle invalid json.""" try: return load_json(filename) except HomeAssistantError: pass return {}
the-stack_0_4750
"""mysite2 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path from . import views urlpatterns = [ path('admin/', admin.site.urls), path('test_get',views.test_get), path('test_post',views.test_post), path('birthday',views.birthday), path('test_html',views.test_html), path('mycalc',views.test_calc), path("",views.test_html) ]
the-stack_0_4752
# -*- coding: utf-8 -*- # pylint: disable=invalid-name ############################################################################### # Copyright (c), The AiiDA-CP2K authors. # # SPDX-License-Identifier: MIT # # AiiDA-CP2K is hosted on GitHub at https://github.com/aiidateam/aiida-cp2k # # For further information on the license, see the LICENSE.txt file. # ############################################################################### """Run simple DFT calculation""" from __future__ import print_function from __future__ import absolute_import import os import sys import ase.build import click from aiida.engine import run from aiida.orm import (Code, Dict, SinglefileData, StructureData) from aiida.common import NotExistent from aiida.plugins import CalculationFactory Cp2kCalculation = CalculationFactory('cp2k') def example_structure_through_file(cp2k_code): """Run simple DFT calculation""" print("Testing CP2K ENERGY on H2O (DFT). Water molecule is provided through a file input...") pwd = os.path.dirname(os.path.realpath(__file__)) # structure atoms = ase.build.molecule('H2O') atoms.center(vacuum=2.0) structure = StructureData(ase=atoms) # basis set basis_file = SinglefileData(file=os.path.join(pwd, "..", "files", "BASIS_MOLOPT")) # pseudopotentials pseudo_file = SinglefileData(file=os.path.join(pwd, "..", "files", "GTH_POTENTIALS")) # parameters parameters = Dict( dict={ 'FORCE_EVAL': { 'METHOD': 'Quickstep', 'DFT': { 'BASIS_SET_FILE_NAME': 'BASIS_MOLOPT', 'POTENTIAL_FILE_NAME': 'GTH_POTENTIALS', 'QS': { 'EPS_DEFAULT': 1.0e-12, 'WF_INTERPOLATION': 'ps', 'EXTRAPOLATION_ORDER': 3, }, 'MGRID': { 'NGRIDS': 4, 'CUTOFF': 280, 'REL_CUTOFF': 30, }, 'XC': { 'XC_FUNCTIONAL': { '_': 'LDA', }, }, 'POISSON': { 'PERIODIC': 'none', 'PSOLVER': 'MT', }, }, 'SUBSYS': { 'TOPOLOGY': { 'COORD_FILE_NAME': 'water.xyz', 'COORD_FILE_FORMAT': 'XYZ' }, 'CELL': { 'ABC': '{:<15} {:<15} {:<15}'.format(*atoms.cell.diagonal()), }, 'KIND': [ { '_': 'O', 'BASIS_SET': 'DZVP-MOLOPT-SR-GTH', 'POTENTIAL': 'GTH-LDA-q6' }, { '_': 'H', 'BASIS_SET': 'DZVP-MOLOPT-SR-GTH', 'POTENTIAL': 'GTH-LDA-q1' }, ], }, } }) # Construct process builder builder = Cp2kCalculation.get_builder() builder.parameters = parameters builder.code = cp2k_code builder.file = { 'basis': basis_file, 'pseudo': pseudo_file, 'water': structure, } builder.metadata.options.resources = { "num_machines": 1, "num_mpiprocs_per_machine": 1, } builder.metadata.options.max_wallclock_seconds = 1 * 3 * 60 print("Submitted calculation...") run(builder) @click.command('cli') @click.argument('codelabel') def cli(codelabel): """Click interface""" try: code = Code.get_from_string(codelabel) except NotExistent: print("The code '{}' does not exist".format(codelabel)) sys.exit(1) example_structure_through_file(code) if __name__ == '__main__': cli() # pylint: disable=no-value-for-parameter
the-stack_0_4756
from flask import Flask from flask_restful import Api from flask_cors import CORS from src.api import Movies , Categories , Upload from src.models import Database from os import getcwd def create_app(): static_folder = getcwd() + '/img/' app = Flask( __name__, static_folder=static_folder ) CORS(app) api = Api(app) Database().migrate() api.add_resource(Upload,'/upload') api.add_resource(Movies,'/movies','/movies/<string:id>') api.add_resource(Categories,'/categories','/categories/<string:id>') return app if __name__ == '__main__': app = create_app() host = '0.0.0.0' port = 8000 debug = True app.run(host,port,debug)
the-stack_0_4757
import discord import logging import pprint import socket from aiohttp import web from json import JSONDecodeError from logging.config import fileConfig from typing import List, Union from utils.match import Match class WebServer: def __init__(self, bot): from bot import ICL_bot fileConfig('logging.conf') self.logger = logging.getLogger(f'ICL_bot.{__name__}') self.bot: ICL_bot = bot self.IP: str = socket.gethostbyname(socket.gethostname()) self.port: int = self.bot.bot_port self.site: web.TCPSite = None async def _handler(self, request: web.Request) -> Union[web.Response, web.FileResponse]: """ Super simple HTTP handler. Parameters ---------- request : web.Request AIOHTTP request object. """ if request.method == 'GET': self.logger.debug(f'{request.remote} accessed {self.IP}:{self.port}{request.path}') return WebServer._http_error_handler() # Auth check for json elif request.method == 'POST': try: faceit = await request.json() except JSONDecodeError: self.logger.warning(f'{request.remote} sent a invalid json POST ') return WebServer._http_error_handler('json-body') self.logger.debug(f'webhook = \n {pprint.pformat(faceit)}') if faceit['retry_count'] == 0: if faceit['event'] == 'match_status_ready': self.logger.debug(f'{faceit["payload"]["id"]} is ready') match_exists = False for match_check in self.bot.matches: self.logger.debug(f'{match_check.match_id}') if match_check.match_id == str(faceit['payload']['id']): match_exists = True self.logger.error('Match already exists') break if not match_exists: self.logger.info('Creating channels') team1_channel: discord.VoiceChannel = await self.bot.get_channel( 787774505854042132).create_voice_channel( name=faceit["payload"]["teams"][0]["name"], user_limit=6) team2_channel: discord.VoiceChannel = await self.bot.get_channel( 787774505854042132).create_voice_channel( name=faceit["payload"]["teams"][1]["name"], user_limit=6) team1_roster = [] for team1_player in faceit["payload"]["teams"][0]["roster"]: team1_roster.append((team1_player['id'], team1_player['nickname'])) team2_roster = [] for team2_player in faceit["payload"]["teams"][1]["roster"]: team2_roster.append((team2_player['id'], team2_player['nickname'])) team1_invite = await team1_channel.create_invite(max_age=7200) team2_invite = await team2_channel.create_invite(max_age=7200) new_match = Match(faceit['payload']['id'], team1_channel, team2_channel, team1_invite, team2_invite, faceit["payload"]["teams"][0]["name"], faceit["payload"]["teams"][1]["name"], team1_roster, team2_roster) self.bot.matches.append(new_match) self.logger.debug(len(self.bot.matches)) self.logger.debug('finishing creating the match') if not self.bot.cogs['CSGO'].update_scorecard.is_running(): self.logger.debug('starting loop thingy') self.bot.cogs['CSGO'].update_scorecard.start() if faceit['event'] == 'match_status_finished' or faceit['event'] == 'match_status_aborted' or faceit['event'] == 'match_status_cancelled': self.logger.debug(f'{faceit["payload"]["id"]} is over') match: Match = None for match_check in self.bot.matches: self.logger.debug(f'{match_check.match_id}') if match_check.match_id == str(faceit['payload']['id']): match = match_check self.logger.debug(f'Found match {match.match_id}') break if match is not None: for member in match.team1_channel.members + match.team2_channel.members: try: await member.move_to(channel=self.bot.get_channel(784164015122546751), reason=f'Match Complete') except (discord.HTTPException, discord.Forbidden): self.logger.error(f'Could not move {member}') await match.team1_channel.delete(reason=f'{faceit["payload"]["id"]} Complete') await match.team2_channel.delete(reason=f'{faceit["payload"]["id"]} Complete') self.bot.matches.remove(match) self.logger.debug('Sending 200') return web.Response(status=200) else: # Used to decline any requests what doesn't match what our # API expects. self.logger.warning(f'{request.remote} sent an invalid request.') return WebServer._http_error_handler("request-type") async def http_start(self) -> None: """ Used to start the webserver inside the same context as the bot. """ server = web.Server(self._handler) runner = web.ServerRunner(server) await runner.setup() self.site = web.TCPSite(runner, self.IP, self.port) await self.site.start() self.logger.info(f'Webserver Started on {self.IP}:{self.port}') async def http_stop(self) -> None: """ Used to stop the webserver inside the same context as the bot. """ self.logger.warning(f'Webserver Stopping on {self.IP}:{self.port}') await self.site.stop() @staticmethod def _http_error_handler(error: str = 'Undefined Error') -> web.Response: """ Used to handle HTTP error response. Parameters ---------- error : bool, optional Bool or string to be used, by default False Returns ------- web.Response AIOHTTP web server response. """ return web.json_response( {"error": error}, status=400 if error else 200 )
the-stack_0_4758
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Weight loader.""" import numpy as np from mindspore.train.serialization import load_checkpoint def load_infer_weights(config): """ Load weights from ckpt or npz. Args: config (TransformerConfig): Config. Returns: dict, weights. """ model_path = config.checkpoint_file_path if model_path.endswith(".npz"): ms_ckpt = np.load(model_path) is_npz = True else: ms_ckpt = load_checkpoint(model_path) is_npz = False weights = {} with open("variable_after_deal.txt", "a") as f: for param_name in ms_ckpt: infer_name = param_name.replace("transformer.transformer.", "") if not infer_name.startswith("encoder"): if infer_name.startswith("decoder.layers."): infer_name = infer_name.replace("decoder.layers.", "decoder.layer") infer_name = "decoder.decoder." + infer_name if is_npz: weights[infer_name] = ms_ckpt[param_name] else: weights[infer_name] = ms_ckpt[param_name].data.asnumpy() f.write(infer_name) f.write("\n") f.close() return weights
the-stack_0_4760
from collections import Counter from itertools import combinations import json import warnings import networkx as nx class CrossCorrelationGraph: """CrossCorrelationGraph for computing correlation between clusters Attributes ---------- window : float Threshold for the window size in seconds correlation : float Threshold for the minimum required correlation graph : nx.Graph Cross correlation graph containing all correlations Note that each node in the graph represents an 'activity signature' to avoid duplicates. The NetworkDestinations corresponding to each signature are stored in the 'mapping' attribute. Note ---- IMPORTANT: The CrossCorrelation.graph object is an optimised graph. Each node does not represent a network destination, but represents an activity fingerprint. E.g. when destinations A and B are both only active at time slices 3 and 7, then these destinations are represented by a single node. We use the self.mapping to extract the network destinations from each graph node. This is a huge optimisation for finding cliques as the number of different network destinations theoretically covers the entire IP space, whereas the number of activity fingerprints is bounded by 2^(batch / window), in our work 2^(300/30) = 2^10 = 1024. If these parameters change, the complexity may increase, but never beyond the original bounds. Hence, this optimisation never has a worse time complexity. mapping : dict NetworkDestinations corresponding to each node in the graph """ def __init__(self, window=30, correlation=0.1): """CrossCorrelationGraph for computing correlation between clusters Parameters ---------- window : float, default=30 Threshold for the window size in seconds correlation : float, default=0.1 Threshold for the minimum required correlation """ # Set parameters self.window = window self.correlation = correlation self.mapping = dict() self.graph = nx.Graph() def fit(self, cluster, y=None): """Fit Cross Correlation Graph. Parameters ---------- cluster : Cluster Cluster to fit graph, cluster must be populated with flows y : ignored Returns ------- result : self Returns self """ # Compute cross correlations within cluster correlations, self.mapping = self.cross_correlation(cluster) if self.correlation <= 0: # Create a fully connected graph self.graph = nx.complete_graph(list(self.mapping.keys())) else: self.graph = nx.Graph() self.graph.add_nodes_from(list(self.mapping.keys())) for (u, v), weight in correlations.items(): if weight >= self.correlation: self.graph.add_edge(u, v, weight=weight) return self def predict(self, X=None, y=None): """Fit Cross Correlation Graph and return cliques. Parameters ---------- X : ignored y : ignored Returns ------- result : Generator of cliques Generator of all cliques in the graph """ cliques = nx.find_cliques(self.graph) return (set.union(*[self.mapping.get(n) for n in c]) for c in cliques) def fit_predict(self, cluster, y=None): """Fit cross correlation graph with clusters from X and return cliques. Parameters ---------- cluster : Cluster Cluster to fit graph, cluster must be populated with flows y : ignored Returns ------- result : Generator of cliques Generator of all cliques in the graph """ return self.fit(cluster).predict(cluster) def export(self, outfile, dense=True, format="gexf"): """Export CrossCorrelationGraph to outfile for further analysis Parameters ---------- outfile : string File to export CrossCorrelationGraph dense : boolean, default=True If True export the dense graph (see IMPORTANT note at graph), this means that each node is represented by the time slices in which they were active. Each node still has the information of all correlated nodes. If False export the complete graph. Note that these graphs can get very large with lots of edges, therefore, for manual inspection it is recommended to use dense=True instead. format : ('gexf'|'gml'), default='gexf' Format in which to export, currently only 'gexf', 'gml' are supported. """ if dense: graph = self.graph # Initialise human-readable mapping of nodes mapping = dict() # Fill mapping for node in graph: info = { "window": list(sorted(node)), "ips": set(), "certs": set(), "labels": Counter(), } # Loop over corresponding network destinations for destination in self.mapping.get(node): info["ips"] = info.get("ips", set()) | destination.destinations info["certs"] = info.get("certs", set()) | destination.certificates info["labels"] = info.get("labels", Counter()) + destination.labels # Remove None from certificates info["certs"] = info.get("certs", set()) - {None} # Transform sets into lists info["ips"] = list(info.get("ips", set())) info["certs"] = list(info.get("certs", set())) # Store mapping as text mapping[node] = json.dumps(info, sort_keys=True) graph = nx.relabel_nodes(graph, mapping) # Make graph not dense else: graph = nx.Graph() for node in self.graph: for destination in self.mapping.get(node): graph.add_node(destination) for node in self.graph: for source in self.mapping.get(node): for destination in self.mapping.get(node): if source == destination: continue graph.add_edge(source, destination, weight=1) # Add all edges to other nodes for connected in nx.neighbors(self.graph, node): # Get edge get_edge_data data = self.graph.get_edge_data(node, connected) # Get all destinations for destination in self.mapping.get(connected): graph.add_edge(source, destination, data=data) # Transform network destinations to human readable format mapping = dict() for node in self.graph: for destination in self.mapping.get(node): info = { "window": list(sorted(node)), "ips": list(destination.destinations), "certs": list(destination.certificates - {None}), "labels": destination.labels, } mapping[destination] = json.dumps(info, sort_keys=True) graph = nx.relabel_nodes(graph, mapping) # Export graph to file if format.lower() == "gexf": nx.write_gexf(graph, outfile) elif format.lower() == "gml": nx.write_gml(graph, outfile) else: # Warn user of unknown format warnings.warn(f"Unknown export format '{format}', defaulting to 'gexf'") # Export as gexf nx.write_gexf(graph, outfile) def cross_correlation(self, cluster): """Compute cross correlation between clusters Parameters ---------- cluster : Cluster Cluster to fit graph, cluster must be populated with flows Returns ------- correlation : dict Dictionary of cross correlation values between each NetworkDestination inside cluster. mapping : dict Mapping of activity fingerprint -> clusters """ correlation = dict() # Get activity of samples activity = self.activity(cluster) # Get inverted mapping mapping = dict() for destination, active in activity.items(): mapping[frozenset(active)] = mapping.get(frozenset(active), set()) | set( [destination] ) # Compute cross correlation values for x, y in combinations(mapping, 2): union = len(x & y) if union: intersection = len(x | y) correlation[x, y] = union / intersection return correlation, mapping def activity(self, cluster): """Extracts sets of active clusters by time. Parameters ---------- cluster : Cluster Cluster to fit graph, cluster must be populated with flows Returns ------- mapping : dict Dictionary of NetworkDestination -> activity """ X = cluster.samples start = min(x.time_start for x in X) # Initialise mapping of NetworkDestination -> activity mapping = dict() for destination in cluster.clusters(): for flow in destination.samples: activity = set() for timestamp in flow.timestamps: activity.add(int((timestamp - start) // self.window)) mapping[destination] = mapping.get(destination, set()) | activity return mapping
the-stack_0_4761
from PyQt5 import QtCore, QtWidgets, QtGui import numpy as np import brainbox as bb class FilterGroup: def __init__(self): self.reset_filter_button = QtWidgets.QPushButton('Reset Filters') self.contrast_options_text = QtWidgets.QLabel('Stimulus Contrast') self.contrasts = [1, 0.25, 0.125, 0.0625, 0] self.contrast_options = QtWidgets.QListWidget() for val in self.contrasts: item = QtWidgets.QListWidgetItem(str(val * 100) + ' %') item.setFlags(item.flags() | QtCore.Qt.ItemIsUserCheckable) item.setCheckState(QtCore.Qt.Checked) self.contrast_options.addItem(item) self.hold_button = QtWidgets.QCheckBox('Hold') self.hold_button.setCheckState(QtCore.Qt.Checked) self.filter_buttons = QtWidgets.QButtonGroup() self.filter_group = QtWidgets.QGroupBox('Filter Options') self.filter_layout = QtWidgets.QVBoxLayout() self.filter_layout.setSpacing(5) #self.filter_buttons.setExclusive(False) filter_options = ['all', 'correct', 'incorrect', 'left', 'right', 'left correct', 'left incorrect', 'right correct', 'right incorrect'] for i, val in enumerate(filter_options): button = QtWidgets.QCheckBox(val) if val == 'all': button.setCheckState(QtCore.Qt.Checked) else: button.setCheckState(QtCore.Qt.Unchecked) self.filter_buttons.addButton(button, id=i) self.filter_layout.addWidget(button) self.filter_group.setLayout(self.filter_layout) self.trial_buttons = QtWidgets.QButtonGroup() self.trial_group = QtWidgets.QGroupBox('Sort Trials By:') self.trial_layout = QtWidgets.QHBoxLayout() trial_options = ['trial no.', 'correct vs incorrect', 'left vs right', 'correct vs incorrect and left vs right'] for i, val in enumerate(trial_options): button = QtWidgets.QRadioButton(val) if i == 0: button.setChecked(True) else: button.setChecked(False) self.trial_buttons.addButton(button, id = i) self.trial_layout.addWidget(button) self.trial_group.setLayout(self.trial_layout) # Print out no. of trials for each filter condition self.ntrials_text = QtWidgets.QLabel('No. of trials = ') self.filter_options_group = QtWidgets.QGroupBox() self.group_filter_widget() self.filter_options_group.setFixedSize(250, 380) def group_filter_widget(self): group_layout = QtWidgets.QVBoxLayout() group_layout.addWidget(self.reset_filter_button) group_layout.addWidget(self.contrast_options_text) group_layout.addWidget(self.contrast_options) group_layout.addWidget(self.hold_button) group_layout.addWidget(self.filter_group) group_layout.addWidget(self.ntrials_text) self.filter_options_group.setLayout(group_layout) def get_checked_contrasts(self): ''' Finds the contrast options that are selected. Called by on_contrast_list_changed in gui_main. Returns ---------- stim_contrast: list A list of the contrast options that are selected ''' stim_contrast = [] for idx in range(self.contrast_options.count()): if self.contrast_options.item(idx).checkState() == QtCore.Qt.Checked: stim_contrast.append(self.contrasts[idx]) return stim_contrast def compute_and_sort_trials(self, stim_contrast): #Precompute trials for a given contrast set #All all_trials = bb.core.Bunch() all_trials['colour'] = QtGui.QColor('#808080') all_trials['fill'] = QtGui.QColor('#808080') all_trials['linestyle'] = QtGui.QPen(QtCore.Qt.SolidLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where((self.trials['contrastLeft'] == c) | (self.trials['contrastRight'] == c))[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] all_trials['trial no.'] = trials_no trials_ic = bb.core.Bunch() correct = np.intersect1d(trials_id, self.correct_idx) incorrect = np.intersect1d(trials_id, self.incorrect_idx) trials_ic['trials'] = np.append(correct, incorrect) trials_ic['lines'] = [[0, len(correct)], [len(correct), len(trials_ic['trials'])]] trials_ic['linecolours'] = [QtGui.QColor('#1f77b4'), QtGui.QColor('#d62728')] trials_ic['text'] = ['correct', 'incorrect'] all_trials['correct vs incorrect'] = trials_ic trials_lf = bb.core.Bunch() left = np.intersect1d(trials_id, self.left_idx) right = np.intersect1d(trials_id, self.right_idx) trials_lf['trials'] = np.append(left, right) trials_lf['lines'] = [[0, len(left)], [len(left), len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#2ca02c'), QtGui.QColor('#bcbd22')] trials_lf['text'] = ['left', 'right'] all_trials['left vs right'] = trials_lf trials_iclf = bb.core.Bunch() correct_right = np.intersect1d(trials_id, self.correct_right_idx) correct_left = np.intersect1d(trials_id, self.correct_left_idx) incorrect_right = np.intersect1d(trials_id, self.incorrect_right_idx) incorrect_left = np.intersect1d(trials_id, self.incorrect_left_idx) trials_iclf['trials'] = np.concatenate((correct_left, correct_right, incorrect_left, incorrect_right)) trials_iclf['lines'] = [[0, len(correct_left)], [len(correct_left), len(correct_left) + len(correct_right)], [len(correct_left) + len(correct_right), len(correct_left) + len(correct_right) + len(incorrect_left)],[len(correct_left) + len(correct_right) + len(incorrect_left), len(trials_iclf['trials'])]] trials_iclf['linecolours'] = [QtGui.QColor('#17becf'), QtGui.QColor('#9467bd'), QtGui.QColor('#8c564b'), QtGui.QColor('#ff7f0e')] trials_iclf['text'] = ['left correct', 'right correct', 'left incorrect', 'right incorrect'] all_trials['correct vs incorrect and left vs right'] = trials_iclf #Correct correct_trials = bb.core.Bunch() correct_trials['colour'] = QtGui.QColor('#1f77b4') correct_trials['fill'] = QtGui.QColor('#1f77b4') correct_trials['linestyle'] = QtGui.QPen(QtCore.Qt.SolidLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where(((self.trials['contrastLeft'] == c) | (self.trials['contrastRight'] == c)) & (self.trials['feedbackType'] == 1))[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] correct_trials['trial no.'] = trials_no trials_ic = bb.core.Bunch() trials_ic['trials'] = trials_id trials_ic['lines'] = [[0, len(trials_ic['trials'])]] trials_ic['linecolours'] = [QtGui.QColor('#1f77b4')] trials_ic['text'] = ['correct'] correct_trials['correct vs incorrect'] = trials_ic trials_lf = bb.core.Bunch() left = np.intersect1d(trials_id, self.correct_left_idx) right = np.intersect1d(trials_id, self.correct_right_idx) trials_lf['trials'] = np.append(left, right) trials_lf['lines'] = [[0, len(left)], [len(left), len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#17becf'), QtGui.QColor('#9467bd')] trials_lf['text'] = ['left correct', 'right correct'] correct_trials['left vs right'] = trials_lf correct_trials['correct vs incorrect and left vs right'] = trials_lf #Incorrect incorrect_trials = bb.core.Bunch() incorrect_trials['colour'] = QtGui.QColor('#d62728') incorrect_trials['fill'] = QtGui.QColor('#d62728') incorrect_trials['linestyle'] = QtGui.QPen(QtCore.Qt.SolidLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where(((self.trials['contrastLeft'] == c) | (self.trials['contrastRight'] == c)) & (self.trials['feedbackType'] == -1))[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] incorrect_trials['trial no.'] = trials_no trials_ic = bb.core.Bunch() trials_ic['trials'] = trials_id trials_ic['lines'] = [[0, len(trials_ic['trials'])]] trials_ic['linecolours'] = [QtGui.QColor('#d62728')] trials_ic['text'] = ['incorrect'] incorrect_trials['correct vs incorrect'] = trials_ic trials_lf = bb.core.Bunch() trials_iclf = bb.core.Bunch() left = np.intersect1d(trials_id, self.incorrect_left_idx) right = np.intersect1d(trials_id, self.incorrect_right_idx) trials_lf['trials'] = np.append(left, right) trials_lf['lines'] = [[0, len(left)], [len(left), len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#8c564b'), QtGui.QColor('#ff7f0e')] trials_lf['text'] = ['left incorrect', 'right incorrect'] incorrect_trials['left vs right'] = trials_lf incorrect_trials['correct vs incorrect and left vs right'] = trials_lf #Left left_trials = bb.core.Bunch() left_trials['colour'] = QtGui.QColor('#2ca02c') left_trials['fill'] = QtGui.QColor('#2ca02c') left_trials['linestyle'] = QtGui.QPen(QtCore.Qt.SolidLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where(self.trials['contrastLeft'] == c)[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] left_trials['trial no.'] = trials_no trials_lf = bb.core.Bunch() trials_lf['trials'] = trials_id trials_lf['lines'] = [[0, len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#2ca02c')] trials_lf['text'] = ['left'] left_trials['left vs right'] = trials_lf trials_ic = bb.core.Bunch() correct = np.intersect1d(trials_id, self.correct_left_idx) incorrect = np.intersect1d(trials_id, self.incorrect_left_idx) trials_ic['trials'] = np.append(correct, incorrect) trials_ic['lines'] = [[0, len(correct)], [len(correct), len(trials_ic['trials'])]] trials_ic['linecolours'] = [QtGui.QColor('#17becf'), QtGui.QColor('#8c564b')] trials_ic['text'] = ['left correct', 'left incorrect'] left_trials['correct vs incorrect'] = trials_ic left_trials['correct vs incorrect and left vs right'] = trials_ic #Right right_trials = bb.core.Bunch() right_trials['colour'] = QtGui.QColor('#bcbd22') right_trials['fill'] = QtGui.QColor('#bcbd22') right_trials['linestyle'] = QtGui.QPen(QtCore.Qt.SolidLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where(self.trials['contrastRight'] == c)[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] right_trials['trial no.'] = trials_no trials_lf = bb.core.Bunch() trials_lf['trials'] = trials_id trials_lf['lines'] = [[0, len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#bcbd22')] trials_lf['text'] = ['right'] right_trials['left vs right'] = trials_lf trials_ic = bb.core.Bunch() correct = np.intersect1d(trials_id, self.correct_right_idx) incorrect = np.intersect1d(trials_id, self.incorrect_right_idx) trials_ic['trials'] = np.append(correct, incorrect) trials_ic['lines'] = [[0, len(correct)], [len(correct), len(trials_ic['trials'])]] trials_ic['linecolours'] = [QtGui.QColor('#9467bd'), QtGui.QColor('#ff7f0e')] trials_ic['text'] = ['right correct', 'right incorrect'] right_trials['correct vs incorrect'] = trials_ic right_trials['correct vs incorrect and left vs right'] = trials_ic #Left Correct left_correct_trials = bb.core.Bunch() left_correct_trials['colour'] = QtGui.QColor('#17becf') left_correct_trials['fill'] = QtGui.QColor('#17becf') left_correct_trials['linestyle'] = QtGui.QPen(QtCore.Qt.DashLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where((self.trials['contrastLeft'] == c) & (self.trials['feedbackType'] == 1))[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] left_correct_trials['trial no.'] = trials_no trials_lf = bb.core.Bunch() trials_lf['trials'] = trials_id trials_lf['lines'] = [[0, len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#17becf')] trials_lf['text'] = ['left correct'] left_correct_trials['left vs right'] = trials_lf left_correct_trials['correct vs incorrect'] = trials_lf left_correct_trials['correct vs incorrect and left vs right'] = trials_lf #Left Incorrect left_incorrect_trials = bb.core.Bunch() left_incorrect_trials['colour'] = QtGui.QColor('#8c564b') left_incorrect_trials['fill'] = QtGui.QColor('#8c564b') left_incorrect_trials['linestyle'] = QtGui.QPen(QtCore.Qt.DashLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where((self.trials['contrastLeft'] == c) & (self.trials['feedbackType'] == -1))[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] left_incorrect_trials['trial no.'] = trials_no trials_lf = bb.core.Bunch() trials_lf['trials'] = trials_id trials_lf['lines'] = [[0, len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#8c564b')] trials_lf['text'] = ['left incorrect'] left_incorrect_trials['left vs right'] = trials_lf left_incorrect_trials['correct vs incorrect'] = trials_lf left_incorrect_trials['correct vs incorrect and left vs right'] = trials_lf #Right Correct right_correct_trials = bb.core.Bunch() right_correct_trials['colour'] = QtGui.QColor('#9467bd') right_correct_trials['fill'] = QtGui.QColor('#9467bd') right_correct_trials['linestyle'] = QtGui.QPen(QtCore.Qt.DashLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where((self.trials['contrastRight'] == c) & (self.trials['feedbackType'] == 1))[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] right_correct_trials['trial no.'] = trials_no trials_lf = bb.core.Bunch() trials_lf['trials'] = trials_id trials_lf['lines'] = [[0, len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#9467bd')] trials_lf['text'] = ['right correct'] right_correct_trials['left vs right'] = trials_lf right_correct_trials['correct vs incorrect'] = trials_lf right_correct_trials['correct vs incorrect and left vs right'] = trials_lf #Right Incorrect right_incorrect_trials = bb.core.Bunch() right_incorrect_trials['colour'] = QtGui.QColor('#ff7f0e') right_incorrect_trials['fill'] = QtGui.QColor('#ff7f0e') right_incorrect_trials['linestyle'] = QtGui.QPen(QtCore.Qt.DashLine) trials_id = np.empty(0,int) idx= np.empty(0, int) for c in stim_contrast: idx = np.where((self.trials['contrastRight'] == c) & (self.trials['feedbackType'] == -1))[0] trials_id = np.append(trials_id, idx) trials_id = np.setdiff1d(trials_id, self.nan_trials) trials_no = bb.core.Bunch() trials_no['trials'] = trials_id trials_no['lines'] = [] trials_no['linecolours'] = [] trials_no['text'] = [] right_incorrect_trials['trial no.'] = trials_no trials_lf = bb.core.Bunch() trials_lf['trials'] = trials_id trials_lf['lines'] = [[0, len(trials_lf['trials'])]] trials_lf['linecolours'] = [QtGui.QColor('#ff7f0e')] trials_lf['text'] = ['right incorrect'] right_incorrect_trials['left vs right'] = trials_lf right_incorrect_trials['correct vs incorrect'] = trials_lf right_incorrect_trials['correct vs incorrect and left vs right'] = trials_lf trials = bb.core.Bunch() trials['all'] = all_trials trials['correct'] = correct_trials trials['incorrect'] = incorrect_trials trials['left'] = left_trials trials['right'] = right_trials trials['left correct'] = left_correct_trials trials['left incorrect'] = left_incorrect_trials trials['right correct'] = right_correct_trials trials['right incorrect'] = right_incorrect_trials return trials def get_sort_method(self, case): if case == 'all': sort_method = 'trial no.' id = 0 elif (case == 'correct') | (case == 'incorrect'): sort_method = 'correct vs incorrect' id = 1 elif (case == 'left') | (case == 'right'): sort_method = 'left vs right' id = 2 else: sort_method = 'correct vs incorrect and left vs right' id = 3 return sort_method, id def compute_trial_options(self, trials): self.trials = trials nan_feedback = np.where(np.isnan(self.trials['feedback_times']))[0] nan_goCue = np.where(np.isnan(self.trials['goCue_times']))[0] self.nan_trials = np.unique(np.append(nan_feedback, nan_goCue)) self.n_trials = len(np.setdiff1d(np.arange(len(self.trials['feedbackType'])), self.nan_trials)) self.correct_idx = np.setdiff1d(np.where(self.trials['feedbackType'] == 1)[0], self.nan_trials) self.incorrect_idx = np.setdiff1d(np.where(self.trials['feedbackType'] == -1)[0], self.nan_trials) self.right_idx = np.setdiff1d(np.where(np.isfinite(self.trials['contrastRight']))[0], self.nan_trials) self.left_idx = np.setdiff1d(np.where(np.isfinite(self.trials['contrastLeft']))[0], self.nan_trials) self.correct_right_idx = np.setdiff1d(np.intersect1d(self.correct_idx, self.right_idx), self.nan_trials) self.correct_left_idx = np.setdiff1d(np.intersect1d(self.correct_idx, self.left_idx), self.nan_trials) self.incorrect_right_idx = np.setdiff1d(np.intersect1d(self.incorrect_idx, self.right_idx), self.nan_trials) self.incorrect_left_idx = np.setdiff1d(np.intersect1d(self.incorrect_idx, self.left_idx), self.nan_trials) return self.nan_trials def reset_filters(self, stim = True): stim_contrast = [1, 0.25, 0.125, 0.0625, 0] case = 'all' sort_method = 'trial no.' if stim is True: for idx in range(self.contrast_options.count()): item = self.contrast_options.item(idx) item.setCheckState(QtCore.Qt.Checked) for idx, but in enumerate(self.filter_buttons.buttons()): if idx == 0: but.setCheckState(QtCore.Qt.Checked) else: but.setCheckState(QtCore.Qt.Unchecked) for idx, but in enumerate(self.trial_buttons.buttons()): if idx == 0: but.setChecked(True) else: but.setChecked(False) return stim_contrast, case, sort_method
the-stack_0_4762
# # Copyright (c) nexB Inc. and others. All rights reserved. # ScanCode is a trademark of nexB Inc. # SPDX-License-Identifier: Apache-2.0 # See http://www.apache.org/licenses/LICENSE-2.0 for the license text. # See https://github.com/nexB/scancode-toolkit for support or download. # See https://aboutcode.org for more information about nexB OSS projects. # from collections import namedtuple import functools import logging import re import attr from commoncode.datautils import choices from commoncode.datautils import Boolean from commoncode.datautils import Date from commoncode.datautils import Integer from commoncode.datautils import List from commoncode.datautils import Mapping from commoncode.datautils import String from commoncode.datautils import TriBoolean from textcode import analysis """ Handle Gemfile.lock Rubygems lockfile. Since there is no specifications of the Gemfile.lock format, this script is based on and contains code derived from Ruby Bundler: https://raw.githubusercontent.com/bundler/bundler/77e7050364367d98f9bc96911ea2769b69a4735c/lib/bundler/lockfile_parser.rb TODO: update to latest https://github.com/bundler/bundler/compare/77e7050364367d98f9bc96911ea2769b69a4735c...master#diff-3c625d3cd7d7604b3e2e3c5487a5ede6 Portions copyright (c) 2010 Andre Arko Portions copyright (c) 2009 Engine Yard MIT License Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ """ Some examples: SVN remote: file://#{lib_path('foo-1.0')} revision: 1 ref: HEAD glob: some globs specs: foo (1.0) GIT remote: #{lib_path("foo-1.0")} revision: #{git.ref_for('omg')} branch: omg ref: xx tag: xxx submodules: xxx glob:xxx specs: foo (1.0) PATH remote: relative-path glob: specs: foo (1.0) """ TRACE = False def logger_debug(*args): pass logger = logging.getLogger(__name__) if TRACE: import sys logging.basicConfig(stream=sys.stdout) logger.setLevel(logging.DEBUG) def logger_debug(*args): return logger.debug(' '.join(isinstance(a, str) and a or repr(a) for a in args)) # Section headings: these are also used as switches to track a parsing state PATH = u'PATH' GIT = u'GIT' SVN = u'SVN' GEM = u'GEM' PLATFORMS = u'PLATFORMS' DEPENDENCIES = u'DEPENDENCIES' SPECS = u' specs:' # types of Gems, which is really where they are provisioned from # RubyGems repo, local path or VCS GEM_TYPES = (GEM, PATH, GIT, SVN,) @attr.s() class GemDependency(object): name = String() version = String() @attr.s() class Gem(object): """ A Gem can be packaged as a .gem archive, or it can be a source gem either fetched from GIT or SVN or from a local path. """ supported_opts = 'remote', 'ref', 'revision', 'branch', 'submodules', 'tag', name = String() version = String() platform = String( help='Gem platform') remote = String( help='remote can be a path, git, svn or Gem repo url. One of GEM, PATH, GIT or SVN') type = String( # validator=choices(GEM_TYPES), help='the type of this Gem: One of: {}'.format(', '.join(GEM_TYPES)) ) pinned = Boolean() spec_version = String() # relative path path = String() revision = String( help='A version control full revision (e.g. a Git commit hash).' ) ref = String( help='A version control ref (such as a tag, a shortened revision hash, etc.).' ) branch = String() submodules = String() tag = String() requirements = List( item_type=String, help='list of constraints such as ">= 1.1.9"' ) dependencies = Mapping( help='a map of direct dependent Gems, keyed by name', value_type='Gem', ) def refine(self): """ Apply some refinements to the Gem based on its type: - fix version and revisions for Gems checked-out from VCS """ if self.type == PATH: self.path = self.remote if self.type in (GIT, SVN,): # FIXME: this likely WRONG # TODO: this may not be correct for SVN BUT SVN has been abandoned self.spec_version = self.version if self.revision and not self.ref: self.version = self.revision elif self.revision and self.ref: self.version = self.revision elif not self.revision and self.ref: self.version = self.ref elif not self.revision and self.ref: self.version = self.ref def as_nv_tree(self): """ Return a tree of name/versions dependency tuples from self as nested dicts. The tree root is self. Each key is a name/version tuple. Values are dicts. """ tree = {} root = (self.name, self.version,) tree[root] = {} for _name, gem in self.dependencies.items(): tree[root].update(gem.as_nv_tree()) return tree def flatten(self): """ Return a sorted flattened list of unique parent/child tuples. """ flattened = [] seen = set() for gem in self.dependencies.values(): snv = self.type, self.name, self.version gnv = gem.type, gem.name, gem.version rel = self, gem rel_key = snv, gnv if rel_key not in seen: flattened.append(rel) seen.add(rel_key) for rel in gem.flatten(): parent, child = rel pnv = parent.type, parent.name, parent.version cnv = child.type, child.name, child.version rel_key = pnv, cnv if rel_key not in seen: flattened.append(rel) seen.add(rel_key) return sorted(flattened) def dependency_tree(self): """ Return a tree of dependencies as nested mappings. Each key is a "name@version" string and values are dicts. """ tree = {} root = '{}@{}'.format(self.name or '', self.version or '') tree[root] = {} for _name, gem in self.dependencies.items(): tree[root].update(gem.dependency_tree()) return tree def to_dict(self): """ Return a native mapping for this Gem. """ return dict([ ('name', self.name), ('version', self.version), ('platform', self.platform), ('pinned', self.pinned), ('remote', self.remote), ('type', self.type), ('path', self.path), ('revision', self.revision), ('ref', self.ref), ('branch', self.branch), ('submodules', self.submodules), ('tag', self.tag), ('requirements', self.requirements), ('dependencies', self.dependency_tree()), ]) @property def gem_name(self): return '{}-{}.gem'.format(self.name, self.version) OPTIONS = re.compile(r'^ (?P<key>[a-z]+): (?P<value>.*)$').match def get_option(s): """ Parse Gemfile.lock options such as remote, ref, revision, etc. """ key = None value = None opts = OPTIONS(s) if opts: key = opts.group('key') or None value = opts.group('value') or None # normalize truth if value == 'true': value = True if value == 'false': value = False # only keep known options, discard others if key not in Gem.supported_opts: key = None value = None return key, value # parse name/version/platform NAME_VERSION = ( # negative lookahead: not a space '(?! )' # a Gem name: several chars are not allowed '(?P<name>[^ \\)\\(,!:]+)?' # a space then opening parens ( '(?: \\(' # the version proper which is anything but a dash '(?P<version>[^-]*)' # and optionally some non-captured dash followed by anything, once # pinned version can have this form: # version-platform # json (1.8.0-java) alpha (1.9.0-x86-mingw32) and may not contain a ! '(?:-(?P<platform>[^!]*))?' # closing parens ) '\\)' # NV is zero or one time ')?') # parse direct dependencies DEPS = re.compile( # two spaces at line start '^ {2}' # NV proper '%(NAME_VERSION)s' # optional bang pinned '(?P<pinned>!)?' '$' % locals()).match # parse spec-level dependencies SPEC_DEPS = re.compile( # four spaces at line start '^ {4}' '%(NAME_VERSION)s' '$' % locals()).match # parse direct dependencies on spec SPEC_SUB_DEPS = re.compile( # six spaces at line start '^ {6}' '%(NAME_VERSION)s' '$' % locals()).match PLATS = re.compile('^ (?P<platform>.*)$').match class GemfileLockParser(object): """ Parse a Gemfile.lock. Code originally derived from Bundler's /bundler/lib/bundler/lockfile_parser.rb parser The parsing use a simple state machine, switching states based on sections headings. The result is a tree of Gems objects stored in self.dependencies. """ def __init__(self, lockfile): self.lockfile = lockfile # map of a line start string to the next parsing state function self.STATES = { DEPENDENCIES: self.parse_dependency, PLATFORMS: self.parse_platform, GIT: self.parse_options, PATH: self.parse_options, SVN: self.parse_options, GEM: self.parse_options, SPECS: self.parse_spec } # the final tree of dependencies, keyed by name self.dependency_tree = {} # a flat dict of all gems, keyed by name self.all_gems = {} self.platforms = [] # init parsing state self.reset_state() # parse proper for line in analysis.unicode_text_lines(lockfile): line = line.rstrip() # reset state if not line: self.reset_state() continue # switch to new state if line in self.STATES: if line in GEM_TYPES: self.current_type = line self.state = self.STATES[line] continue # process state if self.state: self.state(line) # finally refine the collected data self.refine() def reset_state (self): self.state = None self.current_options = {} self.current_gem = None self.current_type = None def refine(self): for gem in self.all_gems.values(): gem.refine() def get_or_create(self, name, version=None, platform=None): """ Return an existing gem if it exists or creates a new one. Update the all_gems registry. """ if name in self.all_gems: gem = self.all_gems[name] gem.version = gem.version or version gem.platform = gem.platform or platform else: gem = Gem(name, version, platform) self.all_gems[name] = gem return gem def parse_options(self, line): key, value = get_option(line) if key: self.current_options[key] = value def parse_spec(self, line): spec_dep = SPEC_DEPS(line) if spec_dep: name = spec_dep.group('name') # first level dep is always an exact version version = spec_dep.group('version') platform = spec_dep.group('platform') or 'ruby' # always set a new current gem self.current_gem = self.get_or_create(name, version, platform) self.current_gem.type = self.current_type if version: self.current_gem.version = version self.current_gem.platform = platform for k, v in self.current_options.items(): setattr(self.current_gem, k, v) return spec_sub_dep = SPEC_SUB_DEPS(line) if spec_sub_dep: name = spec_sub_dep.group('name') if name == 'bundler': return # second level dep is always a version constraint requirements = spec_sub_dep.group('version') or [] if requirements: requirements = [d.strip() for d in requirements.split(',')] if name in self.current_gem.dependencies: dep = self.current_gem.dependencies[name] else: dep = self.get_or_create(name) self.current_gem.dependencies[name] = dep # unless set , a sub dep is always a gem if not dep.type: dep.type = GEM for v in requirements: if v not in dep.requirements: dep.requirements.append(v) def parse_dependency(self, line): deps = DEPS(line) if not deps: if TRACE: logger_debug('ERROR: parse_dependency: ' 'line not matched: %(line)r' % locals()) return name = deps.group('name') # at this stage ALL gems should already exist except possibly # for bundler: not finding one is an error try: gem = self.all_gems[name] except KeyError as e: gem = Gem(name) self.all_gems[name] = gem if name != 'bundler' and TRACE: logger_debug('ERROR: parse_dependency: ' 'gem %(name)r does not yet exists in all_gems: ' '%(line)r' % locals()) if name in self.dependency_tree: if TRACE: logger_debug('WARNING: parse_dependency: ' 'dependency %(name)r / %(version)r already declared. ' 'line: %(line)r' % locals()) else: self.dependency_tree[name] = gem version = deps.group('version') or [] if version: version = [v.strip() for v in version.split(',')] # the version of a direct dep is always a constraint # we append these at the top of the list as this is # the main constraint for v in version: gem.requirements.insert(0, v) # assert gem.version == version gem.pinned = True if deps.group('pinned') else False def parse_platform(self, line): plat = PLATS(line) if not plat: if TRACE: logger_debug('ERROR: parse_platform: ' 'line not matched: %(line)r' % locals()) return plat = plat.group('platform') self.platforms.append(plat.strip()) def flatten(self): """ Return the Gems dependency_tree as a sorted list of unique of tuples (parent Gem / child Gem) relationships. """ flattened = [] for direct in self.dependency_tree.values(): flattened.append((None, direct,)) flattened.extend(direct.flatten()) return sorted(set(flattened))
the-stack_0_4764
#!/usr/bin/env python import asyncio import logging import time from collections import deque from typing import List, Dict, Optional, Tuple, Deque from hummingbot.client.command import __all__ as commands from hummingbot.client.tab import __all__ as tab_classes from hummingbot.core.clock import Clock from hummingbot.exceptions import ArgumentParserError from hummingbot.logger import HummingbotLogger from hummingbot.logger.application_warning import ApplicationWarning from hummingbot.model.sql_connection_manager import SQLConnectionManager from hummingbot.connector.exchange.paper_trade import create_paper_trade_market from hummingbot.client.ui.keybindings import load_key_bindings from hummingbot.client.ui.parser import load_parser, ThrowingArgumentParser from hummingbot.client.ui.hummingbot_cli import HummingbotCLI from hummingbot.client.ui.completer import load_completer from hummingbot.client.config.global_config_map import global_config_map from hummingbot.client.config.config_helpers import ( get_strategy_config_map, get_connector_class, get_eth_wallet_private_key, ) from hummingbot.strategy.strategy_base import StrategyBase from hummingbot.strategy.cross_exchange_market_making import CrossExchangeMarketPair from hummingbot.core.utils.kill_switch import KillSwitch from hummingbot.core.utils.trading_pair_fetcher import TradingPairFetcher from hummingbot.data_feed.data_feed_base import DataFeedBase from hummingbot.notifier.notifier_base import NotifierBase from hummingbot.notifier.telegram_notifier import TelegramNotifier from hummingbot.strategy.market_trading_pair_tuple import MarketTradingPairTuple from hummingbot.connector.markets_recorder import MarketsRecorder from hummingbot.client.config.security import Security from hummingbot.connector.exchange_base import ExchangeBase from hummingbot.client.settings import AllConnectorSettings, ConnectorType from hummingbot.client.tab.data_types import CommandTab s_logger = None class HummingbotApplication(*commands): KILL_TIMEOUT = 10.0 APP_WARNING_EXPIRY_DURATION = 3600.0 APP_WARNING_STATUS_LIMIT = 6 _main_app: Optional["HummingbotApplication"] = None @classmethod def logger(cls) -> HummingbotLogger: global s_logger if s_logger is None: s_logger = logging.getLogger(__name__) return s_logger @classmethod def main_application(cls) -> "HummingbotApplication": if cls._main_app is None: cls._main_app = HummingbotApplication() return cls._main_app def __init__(self): # This is to start fetching trading pairs for auto-complete TradingPairFetcher.get_instance() self.ev_loop: asyncio.BaseEventLoop = asyncio.get_event_loop() command_tabs = self.init_command_tabs() self.parser: ThrowingArgumentParser = load_parser(self, command_tabs) self.app = HummingbotCLI( input_handler=self._handle_command, bindings=load_key_bindings(self), completer=load_completer(self), command_tabs=command_tabs ) self.markets: Dict[str, ExchangeBase] = {} # strategy file name and name get assigned value after import or create command self._strategy_file_name: str = None self.strategy_name: str = None self.strategy_task: Optional[asyncio.Task] = None self.strategy: Optional[StrategyBase] = None self.market_pair: Optional[CrossExchangeMarketPair] = None self.market_trading_pair_tuples: List[MarketTradingPairTuple] = [] self.clock: Optional[Clock] = None self.market_trading_pairs_map = {} self.token_list = {} self.init_time: float = time.time() self.start_time: Optional[int] = None self.placeholder_mode = False self.log_queue_listener: Optional[logging.handlers.QueueListener] = None self.data_feed: Optional[DataFeedBase] = None self.notifiers: List[NotifierBase] = [] self.kill_switch: Optional[KillSwitch] = None self._app_warnings: Deque[ApplicationWarning] = deque() self._trading_required: bool = True self._last_started_strategy_file: Optional[str] = None self.trade_fill_db: Optional[SQLConnectionManager] = None self.markets_recorder: Optional[MarketsRecorder] = None self._script_iterator = None self._binance_connector = None # gateway variables self._shared_client = None @property def strategy_file_name(self) -> str: return self._strategy_file_name @strategy_file_name.setter def strategy_file_name(self, value: Optional[str]): self._strategy_file_name = value if value is not None: db_name = value.split(".")[0] self.trade_fill_db = SQLConnectionManager.get_trade_fills_instance(db_name) else: self.trade_fill_db = None @property def strategy_config_map(self): if self.strategy_name is not None: return get_strategy_config_map(self.strategy_name) return None def _notify(self, msg: str): self.app.log(msg) for notifier in self.notifiers: notifier.add_msg_to_queue(msg) def _handle_command(self, raw_command: str): # unset to_stop_config flag it triggered before loading any command if self.app.to_stop_config: self.app.to_stop_config = False raw_command = raw_command.lower().strip() # NOTE: Only done for config command if raw_command.startswith("config"): command_split = raw_command.split(maxsplit=2) else: command_split = raw_command.split() try: if self.placeholder_mode: pass else: # Check if help is requested, if yes, print & terminate if len(command_split) > 1 and any(arg in ["-h", "--help"] for arg in command_split[1:]): self.help(command_split[0]) return shortcuts = global_config_map.get("command_shortcuts").value shortcut = None # see if we match against shortcut command if shortcuts is not None: for s in shortcuts: if command_split[0] == s['command']: shortcut = s break # perform shortcut expansion if shortcut is not None: # check number of arguments num_shortcut_args = len(shortcut['arguments']) if len(command_split) == num_shortcut_args + 1: # notify each expansion if there's more than 1 verbose = True if len(shortcut['output']) > 1 else False # do argument replace and re-enter this function with the expanded command for output_cmd in shortcut['output']: final_cmd = output_cmd for i in range(1, num_shortcut_args + 1): final_cmd = final_cmd.replace(f'${i}', command_split[i]) if verbose is True: self._notify(f' >>> {final_cmd}') self._handle_command(final_cmd) else: self._notify('Invalid number of arguments for shortcut') # regular command else: args = self.parser.parse_args(args=command_split) kwargs = vars(args) if not hasattr(args, "func"): self.app.handle_tab_command(self, command_split[0], kwargs) else: f = args.func del kwargs["func"] f(**kwargs) except ArgumentParserError as e: if not self.be_silly(raw_command): self._notify(str(e)) except NotImplementedError: self._notify("Command not yet implemented. This feature is currently under development.") except Exception as e: self.logger().error(e, exc_info=True) async def _cancel_outstanding_orders(self) -> bool: success = True try: kill_timeout: float = self.KILL_TIMEOUT self._notify("Cancelling outstanding orders...") for market_name, market in self.markets.items(): cancellation_results = await market.cancel_all(kill_timeout) uncancelled = list(filter(lambda cr: cr.success is False, cancellation_results)) if len(uncancelled) > 0: success = False uncancelled_order_ids = list(map(lambda cr: cr.order_id, uncancelled)) self._notify("\nFailed to cancel the following orders on %s:\n%s" % ( market_name, '\n'.join(uncancelled_order_ids) )) except Exception: self.logger().error("Error canceling outstanding orders.", exc_info=True) success = False if success: self._notify("All outstanding orders cancelled.") return success async def run(self): await self.app.run() def add_application_warning(self, app_warning: ApplicationWarning): self._expire_old_application_warnings() self._app_warnings.append(app_warning) def clear_application_warning(self): self._app_warnings.clear() @staticmethod def _initialize_market_assets(market_name: str, trading_pairs: List[str]) -> List[Tuple[str, str]]: market_trading_pairs: List[Tuple[str, str]] = [(trading_pair.split('-')) for trading_pair in trading_pairs] return market_trading_pairs def _initialize_markets(self, market_names: List[Tuple[str, List[str]]]): # aggregate trading_pairs if there are duplicate markets for market_name, trading_pairs in market_names: if market_name not in self.market_trading_pairs_map: self.market_trading_pairs_map[market_name] = [] for hb_trading_pair in trading_pairs: self.market_trading_pairs_map[market_name].append(hb_trading_pair) for connector_name, trading_pairs in self.market_trading_pairs_map.items(): conn_setting = AllConnectorSettings.get_connector_settings()[connector_name] if connector_name.endswith("paper_trade") and conn_setting.type == ConnectorType.Exchange: connector = create_paper_trade_market(conn_setting.parent_name, trading_pairs) paper_trade_account_balance = global_config_map.get("paper_trade_account_balance").value for asset, balance in paper_trade_account_balance.items(): connector.set_balance(asset, balance) else: Security.update_config_map(global_config_map) keys = {key: config.value for key, config in global_config_map.items() if key in conn_setting.config_keys} init_params = conn_setting.conn_init_parameters(keys) init_params.update(trading_pairs=trading_pairs, trading_required=self._trading_required) if conn_setting.use_ethereum_wallet: ethereum_rpc_url = global_config_map.get("ethereum_rpc_url").value # Todo: Hard coded this execption for now until we figure out how to handle all ethereum connectors. if connector_name in ["balancer", "uniswap", "uniswap_v3", "perpetual_finance"]: private_key = get_eth_wallet_private_key() init_params.update(wallet_private_key=private_key, ethereum_rpc_url=ethereum_rpc_url) connector_class = get_connector_class(connector_name) connector = connector_class(**init_params) self.markets[connector_name] = connector self.markets_recorder = MarketsRecorder( self.trade_fill_db, list(self.markets.values()), self.strategy_file_name, self.strategy_name, ) self.markets_recorder.start() def _initialize_notifiers(self): if global_config_map.get("telegram_enabled").value: # TODO: refactor to use single instance if not any([isinstance(n, TelegramNotifier) for n in self.notifiers]): self.notifiers.append( TelegramNotifier( token=global_config_map["telegram_token"].value, chat_id=global_config_map["telegram_chat_id"].value, hb=self, ) ) for notifier in self.notifiers: notifier.start() def init_command_tabs(self) -> Dict[str, CommandTab]: """ Initiates and returns a CommandTab dictionary with mostly defaults and None values, These values will be populated later on by HummingbotCLI """ command_tabs: Dict[str, CommandTab] = {} for tab_class in tab_classes: name = tab_class.get_command_name() command_tabs[name] = CommandTab(name, None, None, None, tab_class) return command_tabs
the-stack_0_4765
# Open3D: www.open3d.org # The MIT License (MIT) # See license file or visit www.open3d.org for details import numpy as np import json import argparse import sys import open3d as o3d sys.path.append("../Utility") from file import * from visualization import * sys.path.append(".") from initialize_config import * def list_posegraph_files(folder_posegraph): pose_graph_paths = get_file_list(folder_posegraph, ".json") for pose_graph_path in pose_graph_paths: pose_graph = o3d.io.read_pose_graph(pose_graph_path) n_nodes = len(pose_graph.nodes) n_edges = len(pose_graph.edges) print( "Fragment o3d.registration.PoseGraph %s has %d nodes and %d edges" % (pose_graph_path, n_nodes, n_edges)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="visualize pose graph") parser.add_argument("config", help="path to the config file") parser.add_argument("--source_id", type=int, help="ID of source fragment") parser.add_argument("--target_id", type=int, help="ID of target fragment") parser.add_argument("--adjacent", help="visualize adjacent pairs", action="store_true") parser.add_argument("--all", help="visualize all pairs", action="store_true") parser.add_argument("--list_posegraphs", help="list number of node and edges of all pose graphs", action="store_true") parser.add_argument("--before_optimized", help="visualize posegraph edges that is not optimized", action="store_true") args = parser.parse_args() with open(args.config) as json_file: config = json.load(json_file) initialize_config(config) ply_file_names = get_file_list( join(config["path_dataset"], config["folder_fragment"]), ".ply") if (args.list_posegraphs): list_posegraph_files( join(config["path_dataset"], config["folder_fragment"])) list_posegraph_files( join(config["path_dataset"], config["folder_scene"])) if (args.before_optimized): global_pose_graph_name = join(config["path_dataset"], config["template_global_posegraph"]) else: global_pose_graph_name = join( config["path_dataset"], config["template_refined_posegraph_optimized"]) print("Reading posegraph") print(global_pose_graph_name) pose_graph = o3d.io.read_pose_graph(global_pose_graph_name) n_nodes = len(pose_graph.nodes) n_edges = len(pose_graph.edges) print("Global o3d.registration.PoseGraph having %d nodes and %d edges" % \ (n_nodes, n_edges)) # visualize alignment of posegraph edges for edge in pose_graph.edges: print("o3d.registration.PoseGraphEdge %d-%d" % \ (edge.source_node_id, edge.target_node_id)) if ((args.adjacent and \ edge.target_node_id - edge.source_node_id == 1)) or \ (not args.adjacent and (args.source_id == edge.source_node_id and \ args.target_id == edge.target_node_id)) or \ args.all: print(" confidence : %.3f" % edge.confidence) source = o3d.io.read_point_cloud( ply_file_names[edge.source_node_id]) target = o3d.io.read_point_cloud( ply_file_names[edge.target_node_id]) source_down = source.voxel_down_sample(config["voxel_size"]) target_down = target.voxel_down_sample(config["voxel_size"]) print("original registration") draw_registration_result(source_down, target_down, edge.transformation) print("optimized registration") source_down.transform( pose_graph.nodes[edge.source_node_id].pose) target_down.transform( pose_graph.nodes[edge.target_node_id].pose) draw_registration_result(source_down, target_down, np.identity(4))
the-stack_0_4766
import cv2 import csv global clickCoordinates clickCoordinates = list() def click_point(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: clickCoordinates.append((x, y)) image = cv2.imread("../protos/textures/rover_circuit.jpg") cv2.namedWindow("image") cv2.setMouseCallback("image", click_point) while True: cv2.imshow("image", image) key = cv2.waitKey(1) if key == ord(" "): break with open('waypoints.csv', 'w', newline='') as f: writer = csv.writer(f) writer.writerow(["waypointID", "coordinateX", "coordinateY"]) for coordinateID, eachClickCoordinatePair in enumerate(clickCoordinates): writer.writerow([coordinateID, eachClickCoordinatePair[0], eachClickCoordinatePair[1]])
the-stack_0_4767
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # # This application is an example on how to use aioblescan # # Copyright (c) 2017 François Wautier # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies # or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR # IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE import sys import asyncio import argparse import re import aioblescan as aiobs from aioblescan.plugins import EddyStone from aioblescan.plugins import RuuviWeather from aioblescan.plugins import ATCMiThermometer from aioblescan.plugins import ThermoBeacon # global opts = None def check_mac(val): try: if re.match("[0-9a-f]{2}([-:])[0-9a-f]{2}(\\1[0-9a-f]{2}){4}$", val.lower()): return val.lower() except: pass raise argparse.ArgumentTypeError("%s is not a MAC address" % val) def my_process(data): global opts ev = aiobs.HCI_Event() xx = ev.decode(data) if opts.mac: goon = False mac = ev.retrieve("peer") for x in mac: if x.val in opts.mac: goon = True break if not goon: return if opts.raw: print("Raw data: {}".format(ev.raw_data)) noopt = True if opts.eddy: noopt = False xx = EddyStone().decode(ev) if xx: print("Google Beacon {}".format(xx)) return if opts.ruuvi: noopt = False xx = RuuviWeather().decode(ev) if xx: print("Weather info {}".format(xx)) return if opts.atcmi: noopt = False xx = ATCMiThermometer().decode(ev) if xx: print("Temperature info {}".format(xx)) return if opts.thermobeacon: noopt = False xx = ThermoBeacon().decode(ev) if xx: print("Temperature info {}".format(xx)) return if noopt: ev.show(0) def main(args=None): global opts parser = argparse.ArgumentParser(description="Track BLE advertised packets") parser.add_argument( "-e", "--eddy", action="store_true", default=False, help="Look specificaly for Eddystone messages.", ) parser.add_argument( "-m", "--mac", type=check_mac, action="append", help="Look for these MAC addresses.", ) parser.add_argument( "-r", "--ruuvi", action="store_true", default=False, help="Look only for Ruuvi tag Weather station messages", ) parser.add_argument( "-A", "--atcmi", action="store_true", default=False, help="Look only for ATC_MiThermometer tag messages", ) parser.add_argument( "-T", "--thermobeacon", action="store_true", default=False, help="Look only for ThermoBeacon messages", ) parser.add_argument( "-R", "--raw", action="store_true", default=False, help="Also show the raw data.", ) parser.add_argument( "-a", "--advertise", type=int, default=0, help="Broadcast like an EddyStone Beacon. Set the interval between packet in millisec", ) parser.add_argument( "-u", "--url", type=str, default="", help="When broadcasting like an EddyStone Beacon, set the url.", ) parser.add_argument( "-t", "--txpower", type=int, default=0, help="When broadcasting like an EddyStone Beacon, set the Tx power", ) parser.add_argument( "-D", "--device", type=int, default=0, help="Select the hciX device to use (default 0, i.e. hci0).", ) try: opts = parser.parse_args() except Exception as e: parser.error("Error: " + str(e)) sys.exit() event_loop = asyncio.get_event_loop() # First create and configure a raw socket mysocket = aiobs.create_bt_socket(opts.device) # create a connection with the raw socket # This used to work but now requires a STREAM socket. # fac=event_loop.create_connection(aiobs.BLEScanRequester,sock=mysocket) # Thanks to martensjacobs for this fix fac = event_loop._create_connection_transport( mysocket, aiobs.BLEScanRequester, None, None ) # Start it conn, btctrl = event_loop.run_until_complete(fac) # Attach your processing btctrl.process = my_process if opts.advertise: command = aiobs.HCI_Cmd_LE_Advertise(enable=False) event_loop.run_until_complete(btctrl.send_command(command)) command = aiobs.HCI_Cmd_LE_Set_Advertised_Params( interval_min=opts.advertise, interval_max=opts.advertise ) event_loop.run_until_complete(btctrl.send_command(command)) if opts.url: myeddy = EddyStone(param=opts.url) else: myeddy = EddyStone() if opts.txpower: myeddy.power = opts.txpower command = aiobs.HCI_Cmd_LE_Set_Advertised_Msg(msg=myeddy) event_loop.run_until_complete(btctrl.send_command(command)) command = aiobs.HCI_Cmd_LE_Advertise(enable=True) event_loop.run_until_complete(btctrl.send_command(command)) # Probe event_loop.run_until_complete(btctrl.send_scan_request()) try: # event_loop.run_until_complete(coro) event_loop.run_forever() except KeyboardInterrupt: print("keyboard interrupt") finally: print("closing event loop") event_loop.run_until_complete(btctrl.stop_scan_request()) command = aiobs.HCI_Cmd_LE_Advertise(enable=False) event_loop.run_until_complete(btctrl.send_command(command)) conn.close() event_loop.close() if __name__ == "__main__": main()
the-stack_0_4768
# PyAudio : Python Bindings for PortAudio. # Copyright (c) 2006 Hubert Pham # Copyright (c) 2020 Svein Seldal # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ PyAudio provides Python bindings for PortAudio, the cross-platform audio I/O library. With PyAudio, you can easily use Python to play and record audio on a variety of platforms. PyAudio is inspired by: * pyPortAudio/fastaudio: Python bindings for PortAudio v18 API. * tkSnack: cross-platform sound toolkit for Tcl/Tk and Python. .. include:: ../sphinx/examples.rst Overview -------- **Classes** :py:class:`PyAudio`, :py:class:`Stream` .. only:: pamac **Host Specific Classes** :py:class:`PaMacCoreStreamInfo` **Stream Conversion Convenience Functions** :py:func:`get_sample_size`, :py:func:`get_format_from_width` **PortAudio version** :py:func:`get_portaudio_version`, :py:func:`get_portaudio_version_text` .. |PaSampleFormat| replace:: :ref:`PortAudio Sample Format <PaSampleFormat>` .. _PaSampleFormat: **Portaudio Sample Formats** :py:data:`paFloat32`, :py:data:`paInt32`, :py:data:`paInt24`, :py:data:`paInt16`, :py:data:`paInt8`, :py:data:`paUInt8`, :py:data:`paCustomFormat` .. |PaHostAPI| replace:: :ref:`PortAudio Host API <PaHostAPI>` .. _PaHostAPI: **PortAudio Host APIs** :py:data:`paInDevelopment`, :py:data:`paDirectSound`, :py:data:`paMME`, :py:data:`paASIO`, :py:data:`paSoundManager`, :py:data:`paCoreAudio`, :py:data:`paOSS`, :py:data:`paALSA`, :py:data:`paAL`, :py:data:`paBeOS`, :py:data:`paWDMKS`, :py:data:`paJACK`, :py:data:`paWASAPI`, :py:data:`paNoDevice` .. |PaErrorCode| replace:: :ref:`PortAudio Error Code <PaErrorCode>` .. _PaErrorCode: **PortAudio Error Codes** :py:data:`paNoError`, :py:data:`paNotInitialized`, :py:data:`paUnanticipatedHostError`, :py:data:`paInvalidChannelCount`, :py:data:`paInvalidSampleRate`, :py:data:`paInvalidDevice`, :py:data:`paInvalidFlag`, :py:data:`paSampleFormatNotSupported`, :py:data:`paBadIODeviceCombination`, :py:data:`paInsufficientMemory`, :py:data:`paBufferTooBig`, :py:data:`paBufferTooSmall`, :py:data:`paNullCallback`, :py:data:`paBadStreamPtr`, :py:data:`paTimedOut`, :py:data:`paInternalError`, :py:data:`paDeviceUnavailable`, :py:data:`paIncompatibleHostApiSpecificStreamInfo`, :py:data:`paStreamIsStopped`, :py:data:`paStreamIsNotStopped`, :py:data:`paInputOverflowed`, :py:data:`paOutputUnderflowed`, :py:data:`paHostApiNotFound`, :py:data:`paInvalidHostApi`, :py:data:`paCanNotReadFromACallbackStream`, :py:data:`paCanNotWriteToACallbackStream`, :py:data:`paCanNotReadFromAnOutputOnlyStream`, :py:data:`paCanNotWriteToAnInputOnlyStream`, :py:data:`paIncompatibleStreamHostApi` .. |PaCallbackReturnCodes| replace:: :ref:`PortAudio Callback Return Code <PaCallbackReturnCodes>` .. _PaCallbackReturnCodes: **PortAudio Callback Return Codes** :py:data:`paContinue`, :py:data:`paComplete`, :py:data:`paAbort` .. |PaCallbackFlags| replace:: :ref:`PortAutio Callback Flag <PaCallbackFlags>` .. _PaCallbackFlags: **PortAudio Callback Flags** :py:data:`paInputUnderflow`, :py:data:`paInputOverflow`, :py:data:`paOutputUnderflow`, :py:data:`paOutputOverflow`, :py:data:`paPrimingOutput` """ __author__ = "Hubert Pham" __version__ = "0.2.11" __docformat__ = "restructuredtext en" import sys # attempt to import PortAudio try: import _portaudio as pa except ImportError: print("Could not import the PyAudio C module '_portaudio'.") raise ############################################################ # GLOBALS ############################################################ ##### PaSampleFormat Sample Formats ##### paFloat32 = pa.paFloat32 #: 32 bit float paInt32 = pa.paInt32 #: 32 bit int paInt24 = pa.paInt24 #: 24 bit int paInt16 = pa.paInt16 #: 16 bit int paInt8 = pa.paInt8 #: 8 bit int paUInt8 = pa.paUInt8 #: 8 bit unsigned int paCustomFormat = pa.paCustomFormat #: a custom data format ###### HostAPI TypeId ##### paInDevelopment = pa.paInDevelopment #: Still in development paDirectSound = pa.paDirectSound #: DirectSound (Windows only) paMME = pa.paMME #: Multimedia Extension (Windows only) paASIO = pa.paASIO #: Steinberg Audio Stream Input/Output paSoundManager = pa.paSoundManager #: SoundManager (OSX only) paCoreAudio = pa.paCoreAudio #: CoreAudio (OSX only) paOSS = pa.paOSS #: Open Sound System (Linux only) paALSA = pa.paALSA #: Advanced Linux Sound Architecture (Linux only) paAL = pa.paAL #: Open Audio Library paBeOS = pa.paBeOS #: BeOS Sound System paWDMKS = pa.paWDMKS #: Windows Driver Model (Windows only) paJACK = pa.paJACK #: JACK Audio Connection Kit paWASAPI = pa.paWASAPI #: Windows Vista Audio stack architecture paNoDevice = pa.paNoDevice #: Not actually an audio device ###### portaudio error codes ##### paNoError = pa.paNoError paNotInitialized = pa.paNotInitialized paUnanticipatedHostError = pa.paUnanticipatedHostError paInvalidChannelCount = pa.paInvalidChannelCount paInvalidSampleRate = pa.paInvalidSampleRate paInvalidDevice = pa.paInvalidDevice paInvalidFlag = pa.paInvalidFlag paSampleFormatNotSupported = pa.paSampleFormatNotSupported paBadIODeviceCombination = pa.paBadIODeviceCombination paInsufficientMemory = pa.paInsufficientMemory paBufferTooBig = pa.paBufferTooBig paBufferTooSmall = pa.paBufferTooSmall paNullCallback = pa.paNullCallback paBadStreamPtr = pa.paBadStreamPtr paTimedOut = pa.paTimedOut paInternalError = pa.paInternalError paDeviceUnavailable = pa.paDeviceUnavailable paIncompatibleHostApiSpecificStreamInfo = pa.paIncompatibleHostApiSpecificStreamInfo paStreamIsStopped = pa.paStreamIsStopped paStreamIsNotStopped = pa.paStreamIsNotStopped paInputOverflowed = pa.paInputOverflowed paOutputUnderflowed = pa.paOutputUnderflowed paHostApiNotFound = pa.paHostApiNotFound paInvalidHostApi = pa.paInvalidHostApi paCanNotReadFromACallbackStream = pa.paCanNotReadFromACallbackStream paCanNotWriteToACallbackStream = pa.paCanNotWriteToACallbackStream paCanNotReadFromAnOutputOnlyStream = pa.paCanNotReadFromAnOutputOnlyStream paCanNotWriteToAnInputOnlyStream = pa.paCanNotWriteToAnInputOnlyStream paIncompatibleStreamHostApi = pa.paIncompatibleStreamHostApi ###### portaudio callback return codes ###### paContinue = pa.paContinue #: There is more audio data to come paComplete = pa.paComplete #: This was the last block of audio data paAbort = pa.paAbort #: An error ocurred, stop playback/recording ###### portaudio callback flags ###### paInputUnderflow = pa.paInputUnderflow #: Buffer underflow in input paInputOverflow = pa.paInputOverflow #: Buffer overflow in input paOutputUnderflow = pa.paOutputUnderflow #: Buffer underflow in output paOutputOverflow = pa.paOutputOverflow #: Buffer overflow in output paPrimingOutput = pa.paPrimingOutput #: Just priming, not playing yet ############################################################ # Convenience Functions ############################################################ def get_sample_size(format): """ Returns the size (in bytes) for the specified sample *format*. :param format: A |PaSampleFormat| constant. :raises ValueError: on invalid specified `format`. :rtype: integer """ return pa.get_sample_size(format) def get_format_from_width(width, unsigned=True): """ Returns a PortAudio format constant for the specified *width*. :param width: The desired sample width in bytes (1, 2, 3, or 4) :param unsigned: For 1 byte width, specifies signed or unsigned format. :raises ValueError: when invalid *width* :rtype: A |PaSampleFormat| constant """ if width == 1: if unsigned: return paUInt8 else: return paInt8 elif width == 2: return paInt16 elif width == 3: return paInt24 elif width == 4: return paFloat32 else: raise ValueError("Invalid width: %d" % width) ############################################################ # Versioning ############################################################ def get_portaudio_version(): """ Returns portaudio version. :rtype: string """ return pa.get_version() def get_portaudio_version_text(): """ Returns PortAudio version as a text string. :rtype: string """ return pa.get_version_text() ############################################################ # Wrapper around _portaudio Stream (Internal) ############################################################ # Note: See PyAudio class below for main export. class Stream: """ PortAudio Stream Wrapper. Use :py:func:`PyAudio.open` to make a new :py:class:`Stream`. **Opening and Closing** :py:func:`__init__`, :py:func:`close` **Stream Info** :py:func:`get_input_latency`, :py:func:`get_output_latency`, :py:func:`get_time`, :py:func:`get_cpu_load` **Stream Management** :py:func:`start_stream`, :py:func:`stop_stream`, :py:func:`is_active`, :py:func:`is_stopped` **Input Output** :py:func:`write`, :py:func:`read`, :py:func:`get_read_available`, :py:func:`get_write_available` """ def __init__(self, PA_manager, rate, input_channels, output_channels, format, input=False, output=False, input_device_index=None, output_device_index=None, frames_per_buffer=1024, start=True, input_host_api_specific_stream_info=None, output_host_api_specific_stream_info=None, stream_callback=None): """ Initialize a stream; this should be called by :py:func:`PyAudio.open`. A stream can either be input, output, or both. :param PA_manager: A reference to the managing :py:class:`PyAudio` instance :param rate: Sampling rate :param input_channels: Number of input channels :param output_channels: Number of output channels :param format: Sampling size and format. See |PaSampleFormat|. :param input: Specifies whether this is an input stream. Defaults to ``False``. :param output: Specifies whether this is an output stream. Defaults to ``False``. :param input_device_index: Index of Input Device to use. Unspecified (or ``None``) uses default device. Ignored if `input` is ``False``. :param output_device_index: Index of Output Device to use. Unspecified (or ``None``) uses the default device. Ignored if `output` is ``False``. :param frames_per_buffer: Specifies the number of frames per buffer. :param start: Start the stream running immediately. Defaults to ``True``. In general, there is no reason to set this to ``False``. :param input_host_api_specific_stream_info: Specifies a host API specific stream information data structure for input. .. only:: pamac See :py:class:`PaMacCoreStreamInfo`. :param output_host_api_specific_stream_info: Specifies a host API specific stream information data structure for output. .. only:: pamac See :py:class:`PaMacCoreStreamInfo`. :param stream_callback: Specifies a callback function for *non-blocking* (callback) operation. Default is ``None``, which indicates *blocking* operation (i.e., :py:func:`Stream.read` and :py:func:`Stream.write`). To use non-blocking operation, specify a callback that conforms to the following signature: .. code-block:: python callback(in_data, # recorded data if input=True; else None frame_count, # number of frames time_info, # dictionary status_flags) # PaCallbackFlags ``time_info`` is a dictionary with the following keys: ``input_buffer_adc_time``, ``current_time``, and ``output_buffer_dac_time``; see the PortAudio documentation for their meanings. ``status_flags`` is one of |PaCallbackFlags|. The callback must return a tuple: .. code-block:: python (out_data, flag) ``out_data`` is a byte array whose length should be the (``frame_count * output_channels * bytes-per-channel``) if ``output=True`` or ``None`` if ``output=False``. ``flag`` must be either :py:data:`paContinue`, :py:data:`paComplete` or :py:data:`paAbort` (one of |PaCallbackReturnCodes|). When ``output=True`` and ``out_data`` does not contain at least ``frame_count`` frames, :py:data:`paComplete` is assumed for ``flag``. **Note:** ``stream_callback`` is called in a separate thread (from the main thread). Exceptions that occur in the ``stream_callback`` will: 1. print a traceback on standard error to aid debugging, 2. queue the exception to be thrown (at some point) in the main thread, and 3. return `paAbort` to PortAudio to stop the stream. **Note:** Do not call :py:func:`Stream.read` or :py:func:`Stream.write` if using non-blocking operation. **See:** PortAudio's callback signature for additional details: http://portaudio.com/docs/v19-doxydocs/portaudio_8h.html#a8a60fb2a5ec9cbade3f54a9c978e2710 :raise ValueError: Neither input nor output are set True. """ # no stupidity allowed if not (input or output): raise ValueError("Must specify an input or output " + "stream.") # remember parent self._parent = PA_manager # remember if we are an: input, output (or both) self._is_input = input self._is_output = output # are we running? self._is_running = start # remember some parameters self._rate = rate self._input_channels = input_channels self._output_channels = output_channels self._format = format self._frames_per_buffer = frames_per_buffer arguments = { 'rate' : rate, 'input_channels' : input_channels, 'output_channels' : output_channels, 'format' : format, 'input' : input, 'output' : output, 'input_device_index' : input_device_index, 'output_device_index' : output_device_index, 'frames_per_buffer' : frames_per_buffer} if input_host_api_specific_stream_info: _l = input_host_api_specific_stream_info arguments[ 'input_host_api_specific_stream_info' ] = _l._get_host_api_stream_object() if output_host_api_specific_stream_info: _l = output_host_api_specific_stream_info arguments[ 'output_host_api_specific_stream_info' ] = _l._get_host_api_stream_object() if stream_callback: arguments['stream_callback'] = stream_callback # calling pa.open returns a stream object self._stream = pa.open(**arguments) self._input_latency = self._stream.inputLatency self._output_latency = self._stream.outputLatency if self._is_running: pa.start_stream(self._stream) def close(self): """ Close the stream """ pa.close(self._stream) self._is_running = False self._parent._remove_stream(self) ############################################################ # Stream Info ############################################################ def get_input_latency(self): """ Return the input latency. :rtype: float """ return self._stream.inputLatency def get_output_latency(self): """ Return the output latency. :rtype: float """ return self._stream.outputLatency def get_time(self): """ Return stream time. :rtype: float """ return pa.get_stream_time(self._stream) def get_cpu_load(self): """ Return the CPU load. This is always 0.0 for the blocking API. :rtype: float """ return pa.get_stream_cpu_load(self._stream) ############################################################ # Stream Management ############################################################ def start_stream(self): """ Start the stream. """ if self._is_running: return pa.start_stream(self._stream) self._is_running = True def stop_stream(self): """ Stop the stream. Once the stream is stopped, one may not call write or read. Call :py:func:`start_stream` to resume the stream. """ if not self._is_running: return pa.stop_stream(self._stream) self._is_running = False def is_active(self): """ Returns whether the stream is active. :rtype: bool """ return pa.is_stream_active(self._stream) def is_stopped(self): """ Returns whether the stream is stopped. :rtype: bool """ return pa.is_stream_stopped(self._stream) ############################################################ # Reading/Writing ############################################################ def write(self, frames, num_frames=None, exception_on_underflow=False): """ Write samples to the stream. Do not call when using *non-blocking* mode. :param frames: The frames of data. :param num_frames: The number of frames to write. Defaults to None, in which this value will be automatically computed. :param exception_on_underflow: Specifies whether an IOError exception should be thrown (or silently ignored) on buffer underflow. Defaults to False for improved performance, especially on slower platforms. :raises IOError: if the stream is not an output stream or if the write operation was unsuccessful. :rtype: `None` """ if not self._is_output: raise IOError("Not output stream", paCanNotWriteToAnInputOnlyStream) if num_frames == None: # determine how many frames to read width = get_sample_size(self._format) num_frames = int(len(frames) / (self._output_channels * width)) #print len(frames), self._output_channels, self._width, num_frames pa.write_stream(self._stream, frames, num_frames, exception_on_underflow) def read(self, num_frames, exception_on_overflow=True): """ Read samples from the stream. Do not call when using *non-blocking* mode. :param num_frames: The number of frames to read. :param exception_on_overflow: Specifies whether an IOError exception should be thrown (or silently ignored) on input buffer overflow. Defaults to True. :raises IOError: if stream is not an input stream or if the read operation was unsuccessful. :rtype: string """ if not self._is_input: raise IOError("Not input stream", paCanNotReadFromAnOutputOnlyStream) return pa.read_stream(self._stream, num_frames, exception_on_overflow) def get_read_available(self): """ Return the number of frames that can be read without waiting. :rtype: integer """ return pa.get_stream_read_available(self._stream) def get_write_available(self): """ Return the number of frames that can be written without waiting. :rtype: integer """ return pa.get_stream_write_available(self._stream) ############################################################ # Main Export ############################################################ class PyAudio: """ Python interface to PortAudio. Provides methods to: - initialize and terminate PortAudio - open and close streams - query and inspect the available PortAudio Host APIs - query and inspect the available PortAudio audio devices Use this class to open and close streams. **Stream Management** :py:func:`open`, :py:func:`close` **Host API** :py:func:`get_host_api_count`, :py:func:`get_default_host_api_info`, :py:func:`get_host_api_info_by_type`, :py:func:`get_host_api_info_by_index`, :py:func:`get_device_info_by_host_api_device_index` **Device API** :py:func:`get_device_count`, :py:func:`is_format_supported`, :py:func:`get_default_input_device_info`, :py:func:`get_default_output_device_info`, :py:func:`get_device_info_by_index` **Stream Format Conversion** :py:func:`get_sample_size`, :py:func:`get_format_from_width` **Details** """ ############################################################ # Initialization and Termination ############################################################ def __init__(self): """Initialize PortAudio.""" pa.initialize() self._streams = set() def terminate(self): """ Terminate PortAudio. :attention: Be sure to call this method for every instance of this object to release PortAudio resources. """ for stream in self._streams.copy(): stream.close() self._streams = set() pa.terminate() ############################################################ # Stream Format ############################################################ def get_sample_size(self, format): """ Returns the size (in bytes) for the specified sample `format` (a |PaSampleFormat| constant). :param format: A |PaSampleFormat| constant. :raises ValueError: Invalid specified `format`. :rtype: integer """ return pa.get_sample_size(format) def get_format_from_width(self, width, unsigned=True): """ Returns a PortAudio format constant for the specified `width`. :param width: The desired sample width in bytes (1, 2, 3, or 4) :param unsigned: For 1 byte width, specifies signed or unsigned format. :raises ValueError: for invalid `width` :rtype: A |PaSampleFormat| constant. """ if width == 1: if unsigned: return paUInt8 else: return paInt8 elif width == 2: return paInt16 elif width == 3: return paInt24 elif width == 4: return paFloat32 else: raise ValueError("Invalid width: %d" % width) ############################################################ # Stream Factory ############################################################ def open(self, *args, **kwargs): """ Open a new stream. See constructor for :py:func:`Stream.__init__` for parameter details. :returns: A new :py:class:`Stream` """ stream = Stream(self, *args, **kwargs) self._streams.add(stream) return stream def close(self, stream): """ Close a stream. Typically use :py:func:`Stream.close` instead. :param stream: An instance of the :py:class:`Stream` object. :raises ValueError: if stream does not exist. """ if stream not in self._streams: raise ValueError("Stream `%s' not found" % str(stream)) stream.close() def _remove_stream(self, stream): """ Internal method. Removes a stream. :param stream: An instance of the :py:class:`Stream` object. """ if stream in self._streams: self._streams.remove(stream) ############################################################ # Host API Inspection ############################################################ def get_host_api_count(self): """ Return the number of available PortAudio Host APIs. :rtype: integer """ return pa.get_host_api_count() def get_default_host_api_info(self): """ Return a dictionary containing the default Host API parameters. The keys of the dictionary mirror the data fields of PortAudio's ``PaHostApiInfo`` structure. :raises IOError: if no default input device is available :rtype: dict """ defaultHostApiIndex = pa.get_default_host_api() return self.get_host_api_info_by_index(defaultHostApiIndex) def get_host_api_info_by_type(self, host_api_type): """ Return a dictionary containing the Host API parameters for the host API specified by the `host_api_type`. The keys of the dictionary mirror the data fields of PortAudio's ``PaHostApiInfo`` structure. :param host_api_type: The desired |PaHostAPI| :raises IOError: for invalid `host_api_type` :rtype: dict """ index = pa.host_api_type_id_to_host_api_index(host_api_type) return self.get_host_api_info_by_index(index) def get_host_api_info_by_index(self, host_api_index): """ Return a dictionary containing the Host API parameters for the host API specified by the `host_api_index`. The keys of the dictionary mirror the data fields of PortAudio's ``PaHostApiInfo`` structure. :param host_api_index: The host api index :raises IOError: for invalid `host_api_index` :rtype: dict """ return self._make_host_api_dictionary( host_api_index, pa.get_host_api_info(host_api_index) ) def get_device_info_by_host_api_device_index(self, host_api_index, host_api_device_index): """ Return a dictionary containing the Device parameters for a given Host API's n'th device. The keys of the dictionary mirror the data fields of PortAudio's ``PaDeviceInfo`` structure. :param host_api_index: The Host API index number :param host_api_device_index: The n'th device of the host API :raises IOError: for invalid indices :rtype: dict """ long_method_name = pa.host_api_device_index_to_device_index device_index = long_method_name(host_api_index, host_api_device_index) return self.get_device_info_by_index(device_index) def _make_host_api_dictionary(self, index, host_api_struct): """ Internal method to create Host API dictionary that mirrors PortAudio's ``PaHostApiInfo`` structure. :rtype: dict """ return {'index' : index, 'structVersion' : host_api_struct.structVersion, 'type' : host_api_struct.type, 'name' : host_api_struct.name, 'deviceCount' : host_api_struct.deviceCount, 'defaultInputDevice' : host_api_struct.defaultInputDevice, 'defaultOutputDevice' : host_api_struct.defaultOutputDevice} ############################################################ # Device Inspection ############################################################ def get_device_count(self): """ Return the number of PortAudio Host APIs. :rtype: integer """ return pa.get_device_count() def is_format_supported(self, rate, input_device=None, input_channels=None, input_format=None, input_host_api_specific_stream_info=None, output_device=None, output_channels=None, output_format=None, output_host_api_specific_stream_info=None): """ Check to see if specified device configuration is supported. Returns True if the configuration is supported; throws a ValueError exception otherwise. :param rate: Specifies the desired rate (in Hz) :param input_device: The input device index. Specify ``None`` (default) for half-duplex output-only streams. :param input_channels: The desired number of input channels. Ignored if `input_device` is not specified (or ``None``). :param input_format: PortAudio sample format constant defined in this module :param output_device: The output device index. Specify ``None`` (default) for half-duplex input-only streams. :param output_channels: The desired number of output channels. Ignored if `input_device` is not specified (or ``None``). :param output_format: |PaSampleFormat| constant. :rtype: bool :raises ValueError: tuple containing (error string, |PaErrorCode|). """ if input_device == None and output_device == None: raise ValueError("must specify stream format for input, " +\ "output, or both", paInvalidDevice); kwargs = {} if input_device != None: kwargs['input_device'] = input_device kwargs['input_channels'] = input_channels kwargs['input_format'] = input_format if input_host_api_specific_stream_info: kwargs['input_host_api_specific_stream_info'] = ( input_host_api_specific_stream_info._get_host_api_stream_object() ) if output_device != None: kwargs['output_device'] = output_device kwargs['output_channels'] = output_channels kwargs['output_format'] = output_format if output_host_api_specific_stream_info: kwargs['output_host_api_specific_stream_info'] = ( output_host_api_specific_stream_info._get_host_api_stream_object() ) return pa.is_format_supported(rate, **kwargs) def get_default_input_device_info(self): """ Return the default input Device parameters as a dictionary. The keys of the dictionary mirror the data fields of PortAudio's ``PaDeviceInfo`` structure. :raises IOError: No default input device available. :rtype: dict """ device_index = pa.get_default_input_device() return self.get_device_info_by_index(device_index) def get_default_output_device_info(self): """ Return the default output Device parameters as a dictionary. The keys of the dictionary mirror the data fields of PortAudio's ``PaDeviceInfo`` structure. :raises IOError: No default output device available. :rtype: dict """ device_index = pa.get_default_output_device() return self.get_device_info_by_index(device_index) def get_device_info_by_index(self, device_index): """ Return the Device parameters for device specified in `device_index` as a dictionary. The keys of the dictionary mirror the data fields of PortAudio's ``PaDeviceInfo`` structure. :param device_index: The device index :raises IOError: Invalid `device_index`. :rtype: dict """ return self._make_device_info_dictionary( device_index, pa.get_device_info(device_index) ) def _make_device_info_dictionary(self, index, device_info): """ Internal method to create Device Info dictionary that mirrors PortAudio's ``PaDeviceInfo`` structure. :rtype: dict """ device_name = device_info.name # Attempt to decode device_name for codec in ["utf-8", "cp1252"]: try: device_name = device_name.decode(codec) break except: pass # If we fail to decode, we return the raw bytes and let the caller # deal with the encoding. return {'index' : index, 'structVersion' : device_info.structVersion, 'name' : device_name, 'hostApi' : device_info.hostApi, 'maxInputChannels' : device_info.maxInputChannels, 'maxOutputChannels' : device_info.maxOutputChannels, 'defaultLowInputLatency' : device_info.defaultLowInputLatency, 'defaultLowOutputLatency' : device_info.defaultLowOutputLatency, 'defaultHighInputLatency' : device_info.defaultHighInputLatency, 'defaultHighOutputLatency' : device_info.defaultHighOutputLatency, 'defaultSampleRate' : device_info.defaultSampleRate } ###################################################################### # Host Specific Stream Info ###################################################################### try: paMacCoreStreamInfo = pa.paMacCoreStreamInfo except AttributeError: pass else: class PaMacCoreStreamInfo: """ Mac OS X-only: PaMacCoreStreamInfo is a PortAudio Host API Specific Stream Info data structure for specifying Mac OS X-only settings. Instantiate this class (if desired) and pass the instance as the argument in :py:func:`PyAudio.open` to parameters ``input_host_api_specific_stream_info`` or ``output_host_api_specific_stream_info``. (See :py:func:`Stream.__init__`.) :note: Mac OS X only. .. |PaMacCoreFlags| replace:: :ref:`PortAudio Mac Core Flags <PaMacCoreFlags>` .. _PaMacCoreFlags: **PortAudio Mac Core Flags** :py:data:`paMacCoreChangeDeviceParameters`, :py:data:`paMacCoreFailIfConversionRequired`, :py:data:`paMacCoreConversionQualityMin`, :py:data:`paMacCoreConversionQualityMedium`, :py:data:`paMacCoreConversionQualityLow`, :py:data:`paMacCoreConversionQualityHigh`, :py:data:`paMacCoreConversionQualityMax`, :py:data:`paMacCorePlayNice`, :py:data:`paMacCorePro`, :py:data:`paMacCoreMinimizeCPUButPlayNice`, :py:data:`paMacCoreMinimizeCPU` **Settings** :py:func:`get_flags`, :py:func:`get_channel_map` """ paMacCoreChangeDeviceParameters = pa.paMacCoreChangeDeviceParameters paMacCoreFailIfConversionRequired = pa.paMacCoreFailIfConversionRequired paMacCoreConversionQualityMin = pa.paMacCoreConversionQualityMin paMacCoreConversionQualityMedium = pa.paMacCoreConversionQualityMedium paMacCoreConversionQualityLow = pa.paMacCoreConversionQualityLow paMacCoreConversionQualityHigh = pa.paMacCoreConversionQualityHigh paMacCoreConversionQualityMax = pa.paMacCoreConversionQualityMax paMacCorePlayNice = pa.paMacCorePlayNice paMacCorePro = pa.paMacCorePro paMacCoreMinimizeCPUButPlayNice = pa.paMacCoreMinimizeCPUButPlayNice paMacCoreMinimizeCPU = pa.paMacCoreMinimizeCPU def __init__(self, flags=None, channel_map=None): """ Initialize with flags and channel_map. See PortAudio documentation for more details on these parameters; they are passed almost verbatim to the PortAudio library. :param flags: |PaMacCoreFlags| OR'ed together. See :py:class:`PaMacCoreStreamInfo`. :param channel_map: An array describing the channel mapping. See PortAudio documentation for usage. """ kwargs = {"flags" : flags, "channel_map" : channel_map} if flags == None: del kwargs["flags"] if channel_map == None: del kwargs["channel_map"] self._paMacCoreStreamInfo = paMacCoreStreamInfo(**kwargs) def get_flags(self): """ Return the flags set at instantiation. :rtype: integer """ return self._paMacCoreStreamInfo.flags def get_channel_map(self): """ Return the channel map set at instantiation. :rtype: tuple or None """ return self._paMacCoreStreamInfo.channel_map def _get_host_api_stream_object(self): """Private method.""" return self._paMacCoreStreamInfo try: paWasapiStreamInfo = pa.paWasapiStreamInfo except AttributeError: pass else: class PaWasapiStreamInfo: paWinWasapiExclusive = pa.paWinWasapiExclusive # paWinWasapiRedirectHostProcessor = pa.paWinWasapiRedirectHostProcessor # paWinWasapiUseChannelMask = pa.paWinWasapiUseChannelMask paWinWasapiPolling = pa.paWinWasapiPolling # paWinWasapiThreadPriority = pa.paWinWasapiThreadPriority paWinWasapiExplicitSampleFormat = pa.paWinWasapiExplicitSampleFormat paWinWasapiAutoConvert = pa.paWinWasapiAutoConvert def __init__(self, flags=None): """ Initialize with flags. See PortAudio documentation for more details on these parameters; they are passed almost verbatim to the PortAudio library. :param flags: |PaWasapiFlags| OR'ed together. See :py:class:`PaWasapiStreamInfo`. """ kwargs = {"flags" : flags} if flags == None: del kwargs["flags"] self._paWasapiStreamInfo = paWasapiStreamInfo(**kwargs) def get_flags(self): """ Return the flags set at instantiation. :rtype: integer """ return self._paWasapiStreamInfo.flags def _get_host_api_stream_object(self): """Private method.""" return self._paWasapiStreamInfo
the-stack_0_4770
""" File: test.py Author: Jens Petit Email: [email protected] Github: https://github.com/j-petit Description: Class for """ def modelParse(filename): """Parses the standard mplus model into single lines. Model refers to the concept defined after the model: keyword in mplus. Each line of the model is translated into a lines with only one dependency. It looks for the line containing "model:" and start parsing there until the next empty line. Parameters ---------- filename : The mplus model file to parse Returns ------- new_lines : list of strings representing a single line of the model j : the line number where the model stopped """ key_words = ['on', 'with'] found_model = False with open(filename) as fp: new_lines = [] model_line = 0 for j, line in enumerate(fp): line = line.strip(None) if line.lower() == "model:": found_model = True continue if found_model: if line == "": model_line = j break line = line.rstrip(";") split_line = line.split(" ") if (("on" in line or "with" in line) and len(split_line) > 3): if ("on" in line): key_word = "on" else: key_word = "with" index = split_line.index(key_word) if index == 1: r_list = split_line[2:] for i in range(len(r_list)): line = "{} {} {}".format(split_line[0], key_word, r_list[i]) new_lines.append(line) else: l_list = split_line[:index] for i in range(len(l_list)): line = "{} {} {}".format(l_list[i], key_word, split_line[-1]) new_lines.append(line) else: new_lines.append(line) if not found_model: raise Exception("No model found in this file") return new_lines, j def appendToFile(filename, model): """Appends a model to a file. Parameters ---------- filename : string which specifies the path. model : mplus model object """ with open(filename, 'a') as f: f.write(model.name + ":\n") for i, line in enumerate(model.model): if model.labels: f.write(line + " (" + model.labels[i] + ");\n") else: f.write(line + ";\n") f.write("\n") def combineModels(model1, model2, label, same_indices): """Combines the labels of two model inplace. Parameters ---------- model1 : mplus model object model2 : mplus model object label : string for the combined model parts same_indices : list of ints """ for i, index in enumerate(same_indices): model1.labels[index] = label + str(i) model2.labels[index] = label + str(i)
the-stack_0_4773
""" Starling setup script. See license in LICENSE.txt. """ import setuptools import os from starling_sim.version import __version__ # short description of the project DESC = "Agent-based framework for mobility simulation" # get long description from README.md # with open("README.md", "r") as fh: # LONG_DESC = fh.read() LONG_DESC = "Long description of the Starling project (TODO)" # list of classifiers from the PyPI classifiers trove CLASSIFIERS = [ "Development Status :: 3 - Alpha", "Intended Audience :: Science/Research", "Intended Audience :: Developers", "Topic :: Scientific/Engineering :: Artificial Intelligence", "Topic :: Scientific/Engineering :: GIS", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "License :: CeCILL-B Free Software License Agreement (CECILL-B)" ] # only specify install_requires if not in RTD environment if os.getenv("READTHEDOCS") == "True": INSTALL_REQUIRES = [] else: with open("requirements.txt") as f: INSTALL_REQUIRES = [line.strip() for line in f.readlines()] # call setup setuptools.setup( name="starling-sim", version=__version__, license="CECILL-B", author="Tellae", author_email="[email protected]", description=DESC, long_description=LONG_DESC, long_description_content_type="text/markdown", url="https://github.com/tellae/starling", packages=setuptools.find_packages() + ["starling_sim/schemas"], classifiers=CLASSIFIERS, python_requires='>=3.6', install_requires=INSTALL_REQUIRES, include_package_data=True )
the-stack_0_4775
""" Instantiate a variation font. Run, eg: $ fonttools varLib.mutator ./NotoSansArabic-VF.ttf wght=140 wdth=85 """ from __future__ import print_function, division, absolute_import from fontTools.misc.py23 import * from fontTools.misc.fixedTools import floatToFixedToFloat, otRound, floatToFixed from fontTools.pens.boundsPen import BoundsPen from fontTools.ttLib import TTFont, newTable from fontTools.ttLib.tables import ttProgram from fontTools.ttLib.tables._g_l_y_f import GlyphCoordinates from fontTools.varLib import _GetCoordinates, _SetCoordinates from fontTools.varLib.models import ( supportScalar, normalizeLocation, piecewiseLinearMap, ) from fontTools.varLib.merger import MutatorMerger from fontTools.varLib.varStore import VarStoreInstancer from fontTools.varLib.mvar import MVAR_ENTRIES from fontTools.varLib.iup import iup_delta import fontTools.subset.cff import os.path import logging log = logging.getLogger("fontTools.varlib.mutator") # map 'wdth' axis (1..200) to OS/2.usWidthClass (1..9), rounding to closest OS2_WIDTH_CLASS_VALUES = {} percents = [50.0, 62.5, 75.0, 87.5, 100.0, 112.5, 125.0, 150.0, 200.0] for i, (prev, curr) in enumerate(zip(percents[:-1], percents[1:]), start=1): half = (prev + curr) / 2 OS2_WIDTH_CLASS_VALUES[half] = i def interpolate_cff2_PrivateDict(topDict, interpolateFromDeltas): pd_blend_lists = ("BlueValues", "OtherBlues", "FamilyBlues", "FamilyOtherBlues", "StemSnapH", "StemSnapV") pd_blend_values = ("BlueScale", "BlueShift", "BlueFuzz", "StdHW", "StdVW") for fontDict in topDict.FDArray: pd = fontDict.Private vsindex = pd.vsindex if (hasattr(pd, 'vsindex')) else 0 for key, value in pd.rawDict.items(): if (key in pd_blend_values) and isinstance(value, list): delta = interpolateFromDeltas(vsindex, value[1:]) pd.rawDict[key] = otRound(value[0] + delta) elif (key in pd_blend_lists) and isinstance(value[0], list): """If any argument in a BlueValues list is a blend list, then they all are. The first value of each list is an absolute value. The delta tuples are calculated from relative master values, hence we need to append all the deltas to date to each successive absolute value.""" delta = 0 for i, val_list in enumerate(value): delta += otRound(interpolateFromDeltas(vsindex, val_list[1:])) value[i] = val_list[0] + delta def interpolate_cff2_charstrings(topDict, interpolateFromDeltas, glyphOrder): charstrings = topDict.CharStrings for gname in glyphOrder: # Interpolate charstring charstring = charstrings[gname] pd = charstring.private vsindex = pd.vsindex if (hasattr(pd, 'vsindex')) else 0 num_regions = pd.getNumRegions(vsindex) numMasters = num_regions + 1 new_program = [] last_i = 0 for i, token in enumerate(charstring.program): if token == 'blend': num_args = charstring.program[i - 1] """ The stack is now: ..args for following operations num_args values from the default font num_args tuples, each with numMasters-1 delta values num_blend_args 'blend' """ argi = i - (num_args*numMasters + 1) end_args = tuplei = argi + num_args while argi < end_args: next_ti = tuplei + num_regions deltas = charstring.program[tuplei:next_ti] delta = interpolateFromDeltas(vsindex, deltas) charstring.program[argi] += otRound(delta) tuplei = next_ti argi += 1 new_program.extend(charstring.program[last_i:end_args]) last_i = i + 1 if last_i != 0: new_program.extend(charstring.program[last_i:]) charstring.program = new_program def interpolate_cff2_metrics(varfont, topDict, glyphOrder, loc): """Unlike TrueType glyphs, neither advance width nor bounding box info is stored in a CFF2 charstring. The width data exists only in the hmtx and HVAR tables. Since LSB data cannot be interpolated reliably from the master LSB values in the hmtx table, we traverse the charstring to determine the actual bound box. """ charstrings = topDict.CharStrings boundsPen = BoundsPen(glyphOrder) hmtx = varfont['hmtx'] hvar_table = None if 'HVAR' in varfont: hvar_table = varfont['HVAR'].table fvar = varfont['fvar'] varStoreInstancer = VarStoreInstancer(hvar_table.VarStore, fvar.axes, loc) for gid, gname in enumerate(glyphOrder): entry = list(hmtx[gname]) # get width delta. if hvar_table: if hvar_table.AdvWidthMap: width_idx = hvar_table.AdvWidthMap.mapping[gname] else: width_idx = gid width_delta = otRound(varStoreInstancer[width_idx]) else: width_delta = 0 # get LSB. boundsPen.init() charstring = charstrings[gname] charstring.draw(boundsPen) if boundsPen.bounds is None: # Happens with non-marking glyphs lsb_delta = 0 else: lsb = boundsPen.bounds[0] lsb_delta = entry[1] - lsb if lsb_delta or width_delta: if width_delta: entry[0] += width_delta if lsb_delta: entry[1] = lsb hmtx[gname] = tuple(entry) def instantiateVariableFont(varfont, location, inplace=False): """ Generate a static instance from a variable TTFont and a dictionary defining the desired location along the variable font's axes. The location values must be specified as user-space coordinates, e.g.: {'wght': 400, 'wdth': 100} By default, a new TTFont object is returned. If ``inplace`` is True, the input varfont is modified and reduced to a static font. """ if not inplace: # make a copy to leave input varfont unmodified stream = BytesIO() varfont.save(stream) stream.seek(0) varfont = TTFont(stream) fvar = varfont['fvar'] axes = {a.axisTag:(a.minValue,a.defaultValue,a.maxValue) for a in fvar.axes} loc = normalizeLocation(location, axes) if 'avar' in varfont: maps = varfont['avar'].segments loc = {k: piecewiseLinearMap(v, maps[k]) for k,v in loc.items()} # Quantize to F2Dot14, to avoid surprise interpolations. loc = {k:floatToFixedToFloat(v, 14) for k,v in loc.items()} # Location is normalized now log.info("Normalized location: %s", loc) if 'gvar' in varfont: log.info("Mutating glyf/gvar tables") gvar = varfont['gvar'] glyf = varfont['glyf'] # get list of glyph names in gvar sorted by component depth glyphnames = sorted( gvar.variations.keys(), key=lambda name: ( glyf[name].getCompositeMaxpValues(glyf).maxComponentDepth if glyf[name].isComposite() else 0, name)) for glyphname in glyphnames: variations = gvar.variations[glyphname] coordinates,_ = _GetCoordinates(varfont, glyphname) origCoords, endPts = None, None for var in variations: scalar = supportScalar(loc, var.axes) if not scalar: continue delta = var.coordinates if None in delta: if origCoords is None: origCoords,control = _GetCoordinates(varfont, glyphname) endPts = control[1] if control[0] >= 1 else list(range(len(control[1]))) delta = iup_delta(delta, origCoords, endPts) coordinates += GlyphCoordinates(delta) * scalar _SetCoordinates(varfont, glyphname, coordinates) else: glyf = None if 'cvar' in varfont: log.info("Mutating cvt/cvar tables") cvar = varfont['cvar'] cvt = varfont['cvt '] deltas = {} for var in cvar.variations: scalar = supportScalar(loc, var.axes) if not scalar: continue for i, c in enumerate(var.coordinates): if c is not None: deltas[i] = deltas.get(i, 0) + scalar * c for i, delta in deltas.items(): cvt[i] += otRound(delta) if 'CFF2' in varfont: log.info("Mutating CFF2 table") glyphOrder = varfont.getGlyphOrder() CFF2 = varfont['CFF2'] topDict = CFF2.cff.topDictIndex[0] vsInstancer = VarStoreInstancer(topDict.VarStore.otVarStore, fvar.axes, loc) interpolateFromDeltas = vsInstancer.interpolateFromDeltas interpolate_cff2_PrivateDict(topDict, interpolateFromDeltas) CFF2.desubroutinize() interpolate_cff2_charstrings(topDict, interpolateFromDeltas, glyphOrder) interpolate_cff2_metrics(varfont, topDict, glyphOrder, loc) del topDict.rawDict['VarStore'] del topDict.VarStore if 'MVAR' in varfont: log.info("Mutating MVAR table") mvar = varfont['MVAR'].table varStoreInstancer = VarStoreInstancer(mvar.VarStore, fvar.axes, loc) records = mvar.ValueRecord for rec in records: mvarTag = rec.ValueTag if mvarTag not in MVAR_ENTRIES: continue tableTag, itemName = MVAR_ENTRIES[mvarTag] delta = otRound(varStoreInstancer[rec.VarIdx]) if not delta: continue setattr(varfont[tableTag], itemName, getattr(varfont[tableTag], itemName) + delta) log.info("Mutating FeatureVariations") for tableTag in 'GSUB','GPOS': if not tableTag in varfont: continue table = varfont[tableTag].table if not hasattr(table, 'FeatureVariations'): continue variations = table.FeatureVariations for record in variations.FeatureVariationRecord: applies = True for condition in record.ConditionSet.ConditionTable: if condition.Format == 1: axisIdx = condition.AxisIndex axisTag = fvar.axes[axisIdx].axisTag Min = condition.FilterRangeMinValue Max = condition.FilterRangeMaxValue v = loc[axisTag] if not (Min <= v <= Max): applies = False else: applies = False if not applies: break if applies: assert record.FeatureTableSubstitution.Version == 0x00010000 for rec in record.FeatureTableSubstitution.SubstitutionRecord: table.FeatureList.FeatureRecord[rec.FeatureIndex].Feature = rec.Feature break del table.FeatureVariations if 'GDEF' in varfont and varfont['GDEF'].table.Version >= 0x00010003: log.info("Mutating GDEF/GPOS/GSUB tables") gdef = varfont['GDEF'].table instancer = VarStoreInstancer(gdef.VarStore, fvar.axes, loc) merger = MutatorMerger(varfont, loc) merger.mergeTables(varfont, [varfont], ['GDEF', 'GPOS']) # Downgrade GDEF. del gdef.VarStore gdef.Version = 0x00010002 if gdef.MarkGlyphSetsDef is None: del gdef.MarkGlyphSetsDef gdef.Version = 0x00010000 if not (gdef.LigCaretList or gdef.MarkAttachClassDef or gdef.GlyphClassDef or gdef.AttachList or (gdef.Version >= 0x00010002 and gdef.MarkGlyphSetsDef)): del varfont['GDEF'] addidef = False if glyf: for glyph in glyf.glyphs.values(): if hasattr(glyph, "program"): instructions = glyph.program.getAssembly() # If GETVARIATION opcode is used in bytecode of any glyph add IDEF addidef = any(op.startswith("GETVARIATION") for op in instructions) if addidef: break if addidef: log.info("Adding IDEF to fpgm table for GETVARIATION opcode") asm = [] if 'fpgm' in varfont: fpgm = varfont['fpgm'] asm = fpgm.program.getAssembly() else: fpgm = newTable('fpgm') fpgm.program = ttProgram.Program() varfont['fpgm'] = fpgm asm.append("PUSHB[000] 145") asm.append("IDEF[ ]") args = [str(len(loc))] for a in fvar.axes: args.append(str(floatToFixed(loc[a.axisTag], 14))) asm.append("NPUSHW[ ] " + ' '.join(args)) asm.append("ENDF[ ]") fpgm.program.fromAssembly(asm) # Change maxp attributes as IDEF is added if 'maxp' in varfont: maxp = varfont['maxp'] if hasattr(maxp, "maxInstructionDefs"): maxp.maxInstructionDefs += 1 else: setattr(maxp, "maxInstructionDefs", 1) if hasattr(maxp, "maxStackElements"): maxp.maxStackElements = max(len(loc), maxp.maxStackElements) else: setattr(maxp, "maxInstructionDefs", len(loc)) if 'name' in varfont: log.info("Pruning name table") exclude = {a.axisNameID for a in fvar.axes} for i in fvar.instances: exclude.add(i.subfamilyNameID) exclude.add(i.postscriptNameID) varfont['name'].names[:] = [ n for n in varfont['name'].names if n.nameID not in exclude ] if "wght" in location and "OS/2" in varfont: varfont["OS/2"].usWeightClass = otRound( max(1, min(location["wght"], 1000)) ) if "wdth" in location: wdth = location["wdth"] for percent, widthClass in sorted(OS2_WIDTH_CLASS_VALUES.items()): if wdth < percent: varfont["OS/2"].usWidthClass = widthClass break else: varfont["OS/2"].usWidthClass = 9 if "slnt" in location and "post" in varfont: varfont["post"].italicAngle = max(-90, min(location["slnt"], 90)) log.info("Removing variable tables") for tag in ('avar','cvar','fvar','gvar','HVAR','MVAR','VVAR','STAT'): if tag in varfont: del varfont[tag] return varfont def main(args=None): from fontTools import configLogger import argparse parser = argparse.ArgumentParser( "fonttools varLib.mutator", description="Instantiate a variable font") parser.add_argument( "input", metavar="INPUT.ttf", help="Input variable TTF file.") parser.add_argument( "locargs", metavar="AXIS=LOC", nargs="*", help="List of space separated locations. A location consist in " "the name of a variation axis, followed by '=' and a number. E.g.: " " wght=700 wdth=80. The default is the location of the base master.") parser.add_argument( "-o", "--output", metavar="OUTPUT.ttf", default=None, help="Output instance TTF file (default: INPUT-instance.ttf).") logging_group = parser.add_mutually_exclusive_group(required=False) logging_group.add_argument( "-v", "--verbose", action="store_true", help="Run more verbosely.") logging_group.add_argument( "-q", "--quiet", action="store_true", help="Turn verbosity off.") options = parser.parse_args(args) varfilename = options.input outfile = ( os.path.splitext(varfilename)[0] + '-instance.ttf' if not options.output else options.output) configLogger(level=( "DEBUG" if options.verbose else "ERROR" if options.quiet else "INFO")) loc = {} for arg in options.locargs: try: tag, val = arg.split('=') assert len(tag) <= 4 loc[tag.ljust(4)] = float(val) except (ValueError, AssertionError): parser.error("invalid location argument format: %r" % arg) log.info("Location: %s", loc) log.info("Loading variable font") varfont = TTFont(varfilename) instantiateVariableFont(varfont, loc, inplace=True) log.info("Saving instance font %s", outfile) varfont.save(outfile) if __name__ == "__main__": import sys if len(sys.argv) > 1: sys.exit(main()) import doctest sys.exit(doctest.testmod().failed)
the-stack_0_4776
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2017 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import time from datetime import datetime from decimal import Decimal try: from string import letters except ImportError: from string import ascii_letters as letters from odps.tests.core import TestBase as Base, to_str, tn, pandas_case from odps import types from odps.df.backends.frame import ResultFrame class TestBase(Base): def _gen_random_bigint(self, value_range=None): return random.randint(*(value_range or types.bigint._bounds)) def _gen_random_string(self, max_length=15): gen_letter = lambda: letters[random.randint(0, 51)] return to_str(''.join([gen_letter() for _ in range(random.randint(1, max_length))])) def _gen_random_double(self): return random.uniform(-2**32, 2**32) def _gen_random_datetime(self): dt = datetime.fromtimestamp(random.randint(0, int(time.time()))) if dt.year >= 1986 or dt.year <= 1992: # ignore years when daylight saving time is used return dt.replace(year=1996) else: return dt def _gen_random_boolean(self): return random.uniform(-1, 1) > 0 def _gen_random_decimal(self): return Decimal(str(self._gen_random_double())) def assertListAlmostEqual(self, first, second, **kw): self.assertEqual(len(first), len(second)) only_float = kw.pop('only_float', True) for f, s in zip(first, second): if only_float: self.assertAlmostEqual(f, s, **kw) else: if isinstance(f, float) and isinstance(s, float): self.assertAlmostEqual(f, s, **kw) elif isinstance(f, list) and isinstance(s, list): self.assertListAlmostEqual(f, s, only_float=False, **kw) else: self.assertEqual(f, s) __all__ = ['TestBase', 'to_str', 'tn', 'pandas_case']
the-stack_0_4777
# -*- coding: utf-8 -*- """ Created on Wed Sep 25 14:03:22 2019 @author: Rafael Arenhart """ from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt ''' use '%matplotlib qt5' no console IPython para abrir o gráfico interativo ''' PI = np.pi SAMPLES = 1000 theta = np.random.random(SAMPLES) * 2 * PI polar_rho = np.random.random(SAMPLES) * 2 * PI uniform_rho = np.arccos(2*np.random.random(SAMPLES) - 1) def polar_to_cartesian(theta, rho, radius=1): x = np.sin(rho) * np.cos(theta) y = np.sin(rho) * np.sin(theta) z = np.cos(rho) return (x, y, z) fig = plt.figure() axs = [fig.add_subplot(121, projection='3d'), fig.add_subplot(122, projection='3d')] axs[0].set_axis_off() axs[0].set_title('Concentrado') axs[1].set_axis_off() axs[1].set_title('Distribuído') polar_points = polar_to_cartesian(theta, polar_rho) #ax.scatter(polar_points[0], polar_points[1], polar_points[2]) #plt.show() uniform_points = polar_to_cartesian(theta, uniform_rho) #ax.scatter(uniform_points[0], uniform_points[1], uniform_points[2]) #plt.show() #fig, axs = plt.subplots(2) axs[0].scatter(polar_points[0], polar_points[1], polar_points[2]) axs[1].scatter(uniform_points[0], uniform_points[1], uniform_points[2]) plt.show()
the-stack_0_4780
import get_pic_from_video as gp import directory_tree_traversal import scor_onlie import op_log import ftp_op import time import configparser import os.path # 记录开始运行时间 start_time = time.strftime("%Y-%m-%d %X", time.localtime()) try: # 读取配置文件 conf = configparser.ConfigParser() conf.read('arr_config.ini') # 要处理的本地目录 local_path = conf.get("local", "local_path") # 筛选文件类型 file_type = conf.get("local", "video_type") video_type = [x for x in file_type.split(', ')] # 截图存放位置 save_picture_path = conf.get("local", "save_picture_path") # 成功上传ftp后,是否删除本地的文件 del_localfile = conf.get("local", "del_file_afterupload") # nswf 接口地址 scor_url = conf.get("nsfw", "nsfw_api") # 截图总数 pic_cnt = int(conf.get("nsfw", "pic_cnt")) # 判断图片是否为 NSFW 的阈值 threshold = conf.get("nsfw", "threshold") # ftp 信息 ip = conf.get("ftp", "ip") port = conf.get("ftp", "port") username = conf.get("ftp", "username") pwd = conf.get("ftp", "pwd") except Exception as write_err: op_log.log_to_file("读取配置文件失败. %s" % write_err) try: # 要上传文件的ftp配置 ftp_conn = ftp_op.ftpconnect(ip, int(port), username, pwd) except: print("ftp 连接失败(%s:%s %s %s)" % (ip, port, username, pwd)) op_log.log_to_file("ftp 连接失败(%s:%s %s %s)" % (ip, port, username, pwd)) exit(1) try: # 连接数据库,记录操作日志 tb_name = 'video_arrange' db_name = 'arr_file.db3' con, cur = op_log.open_sqlite(db_name, tb_name) # 获取本地指定类型的文件列表 videos = directory_tree_traversal.file_list(local_path, video_type) if not videos: print('get no file') log_txt = "start at %s , but get no file." % (start_time) op_log.log_to_file(log_txt) exit(0) cnt = 0 for local_file in videos: cnt += 1 print("-->:handling %s of %s " % (cnt, len(videos))) # 获取文件截图 if not os.path.exists(save_picture_path): os.makedirs(save_picture_path) images = gp.get_frame(local_file, save_picture_path, pic_cnt) if not images: op_log.log_to_file("%s 获取文件截图失败" % local_file) continue # 记录超过阈值的个数 scors_cnt = 0 nsfw_flag = 0 for ims in images: scors = scor_onlie.scor(scor_url, ims) if float(scors) > float(threshold): scors_cnt += 1 success = 0 if scors_cnt > 1: nsfw_flag = 1 # 上传文件到ftp remote_file = os.path.split(local_file)[-1] upresult = ftp_op.uploadfile(ftp_conn, local_file, remote_file) if upresult is True: result_txt = local_file + '-- 上传ftp成功' success = 1 if int(del_localfile) == 1: os.remove(local_file) op_log.log_to_file("删除文件:%s" % local_file) else: result_txt = local_file + '-- 上传ftp失败: ' + upresult success = 0 # op_log.log_to_file(result_txt) txt = "%s| |upfile: %s| | %s" % (str(time.asctime()), local_file, result_txt) data = (os.path.split(local_file)[-1], local_file, int(nsfw_flag), result_txt, success, time.strftime("%Y-%m-%d %X", time.localtime()), '') else: result_txt = "不是NSFW文件,不上传" data = (os.path.split(local_file)[-1], local_file, int(nsfw_flag), result_txt, success, time.strftime("%Y-%m-%d %X", time.localtime()), '') op_log.insert_data(con, cur, tb_name, data) con.commit() end_time = time.strftime("%Y-%m-%d %X", time.localtime()) log_txt = "complete | start at %s , finish at %s . handle %s files." % (start_time, end_time, cnt) op_log.log_to_file(log_txt) except Exception as op_err: op_log.log_to_file("操作失败: %s" % op_err) finally: ftp_conn.close() cur.close() con.close()
the-stack_0_4782
from flask_login import login_required from ui import app from flask import Response, request from utils.json_encoder import JSONEncoder from service.job_service import cancel_job, dao_list_jobs, dao_count_jobs, get_job_dao __author__ = 'tomas' # returns all the jobs (and their state) # @app.route("/api/workspace/<workspace_id>/job", methods=["GET"]) # @login_required # def get_jobs_api(workspace_id): # in_doc = get_jobs_by_workspace(workspace_id) # out_doc = JSONEncoder().encode(in_doc) # return Response(out_doc, mimetype="application/json") @app.route("/api/workspace/<workspace_id>/job/<job_id>", methods=["GET"]) @login_required def get_job_by_id_api(workspace_id, job_id): job = get_job_dao(job_id) out_doc = JSONEncoder().encode(job) return Response(out_doc, mimetype="application/json") @app.route("/api/workspace/<workspace_id>/job/<job_id>", methods=["DELETE"]) @login_required def delete_job_api(workspace_id, job_id): cancel_job(job_id) return Response("{}", mimetype="application/json") @app.route("/api/workspace/<workspace_id>/job", methods=['GET']) @login_required def get_jobs_api(workspace_id): search_query = {} search_query["workspace_id"] = workspace_id if request.args.get('orderBy') is not None: order = request.args.get('orderBy') if order[:1] == "-": order_by = order[1:] reverse = -1 else: order_by = order reverse = 1 else: order_by = "score" reverse = 1 search_query["orderBy"] = order_by search_query["reverse"] = reverse search = None if request.args.get('search') is not None: search = request.args.get('search') search_query["search_text"] = search if request.args.get('limit') is not None: limit = int(request.args.get('limit')) search_query["limit"] = limit else: search_query["limit"] = 10 limit = 10 begin = 1 if request.args.get('page') is not None: begin = int(request.args.get('page')) search_query["begin"] = (begin - 1) * limit # in_doc = list_workspace(search_query) # count = dao_count_workspace() in_doc = dao_list_jobs(search_query) count = dao_count_jobs(search_query) results = {} results["count"] = count results["list"] = in_doc out_doc = JSONEncoder().encode(results) return Response(out_doc, mimetype="application/json")
the-stack_0_4788
# -*- coding: utf-8 -*- from __future__ import division, print_function import numpy as np __all__ = ["Move"] class Move(object): def tune(self, state, accepted): pass def update(self, old_state, new_state, accepted, subset=None): """Update a given subset of the ensemble with an accepted proposal Args: coords: The original ensemble coordinates. log_probs: The original log probabilities of the walkers. blobs: The original blobs. new_coords: The proposed coordinates. new_log_probs: The proposed log probabilities. new_blobs: The proposed blobs. accepted: A vector of booleans indicating which walkers were accepted. subset (Optional): A boolean mask indicating which walkers were included in the subset. This can be used, for example, when updating only the primary ensemble in a :class:`RedBlueMove`. """ if subset is None: subset = np.ones(len(old_state.coords), dtype=bool) m1 = subset & accepted m2 = accepted[subset] old_state.coords[m1] = new_state.coords[m2] old_state.log_prob[m1] = new_state.log_prob[m2] if new_state.blobs is not None: if old_state.blobs is None: raise ValueError( "If you start sampling with a given log_prob, " "you also need to provide the current list of " "blobs at that position.") old_state.blobs[m1] = new_state.blobs[m2] return old_state
the-stack_0_4789
import pydicom from pydicom.filereader import read_dicomdir, read_dataset from pydicom.data import get_testdata_files from pydicom.errors import InvalidDicomError from os.path import dirname, join from pprint import pprint import matplotlib.pyplot as plt from pydicom.dataset import Dataset from pathlib import Path from plugins.dicom_loader.dicom_record import DicomDir, DicomPatient, DicomStudy, DicomSeries, DicomImage class DicomLoader: def __init__(self): pass def load_dicom(self, dicom_path: Path): dicom_dir = DicomDir(dicom_path) file_paths = [file_path for file_path in dicom_path.glob('**/*') if file_path.is_file()] for file_path in file_paths: try: file_dataset = pydicom.dcmread(str(file_path)) except InvalidDicomError as exception: print('DICOM file loading exception:', exception, '\n\tFile:', file_path) continue # print('file_dataset', file_dataset) if file_dataset.PatientID not in dicom_dir.children: dicom_dir.children[file_dataset.PatientID] = DicomPatient(file_dataset.PatientID) patient_record = dicom_dir.children[file_dataset.PatientID] if file_dataset.StudyID not in patient_record.children: patient_record.children[file_dataset.StudyID] = DicomStudy(file_dataset.StudyID) study_record = patient_record.children[file_dataset.StudyID] if file_dataset.SeriesNumber not in study_record.children: study_record.children[file_dataset.SeriesNumber] = DicomSeries(file_dataset.SeriesNumber) series_record = study_record.children[file_dataset.SeriesNumber] series_record.children[file_path.name] = DicomImage(file_path.name, file_dataset) # print(dicom_dir) return dicom_dir def load_dicom_dir_file(self): # plt.imshow(dcm_dataset.pixel_array, cmap=plt.cm.bone) # plt.show() # fetch the path to the test data # filepath = get_testdata_files('DICOMDIR')[0] # filepath = 'D:/Projects/C++/Qt/5/BodySnitches/Builds/BodySnitches/!DicomDatasets/FantasticNine/09-Kydryavcev/2011.12.09/DICOMDIR' filepath = 'd:/Projects/BodySnitches/Builds/BodySnitches/DicomDatasets/FantasticNine/09-Kydryavcev/2011.12.09/DICOMDIR' print('Path to the DICOM directory: {}'.format(filepath)) # load the data dicom_dir = read_dicomdir(filepath) print('dicom_dir', dicom_dir) base_dir = dirname(filepath) print('base_dir', base_dir) # go through the patient record and print information print('patient_records type', type(dicom_dir.patient_records)) for patient_record in dicom_dir.patient_records: print('rrr:', type(patient_record)) if (hasattr(patient_record, 'PatientID') and hasattr(patient_record, 'PatientName')): print("Patient: {}: {}".format(patient_record.PatientID, patient_record.PatientName)) studies = patient_record.children # got through each serie for study in studies: print('sss:', type(study)) print(" " * 4 + "Study {}: {}: {}".format(study.StudyID, study.StudyDate, study.StudyDescription)) all_series = study.children # go through each serie for series in all_series: image_count = len(series.children) plural = ('', 's')[image_count > 1] # Write basic series info and image count # Put N/A in if no Series Description if 'SeriesDescription' not in series: series.SeriesDescription = "N/A" print(" " * 8 + "Series {}: {}: {} ({} image{})".format( series.SeriesNumber, series.Modality, series.SeriesDescription, image_count, plural)) # Open and read something from each image, for demonstration # purposes. For file quick overview of DICOMDIR, leave the # following out print(" " * 12 + "Reading images...") image_records = series.children image_filenames = [join(base_dir, *image_rec.ReferencedFileID) for image_rec in image_records] datasets = [pydicom.dcmread(image_filename) for image_filename in image_filenames] patient_names = set(ds.PatientName for ds in datasets) patient_IDs = set(ds.PatientID for ds in datasets) # List the image filenames print("\n" + " " * 12 + "Image filenames:") print(" " * 12, end=' ') pprint(image_filenames, indent=12) # Expect all images to have same patient name, id # Show the set of all names, IDs found (should each have one) print(" " * 12 + "Patient Names in images..: {}".format( patient_names)) print(" " * 12 + "Patient IDs in images..: {}".format( patient_IDs))
the-stack_0_4791
#!/usr/bin/env python2.7 """ Updates 'gene_id' entries in a GTF file downloaded from UCSC Table Browser to have gene IDs as values instead of transcript IDs. Two types annotation sources can be used to replace the 'gene_id' values: 1. Local annotation source. To use this, supply a file name to the '--local' argument. The file must only have two columns denoting the transcript - gene ID mapping (the first column contain the transcript IDs). 2. Remote annotation source (UCSC). To use this, supply the UCSC database to use (e.g. 'hg19') to the '--db' argument and the annotation source to the '--annot' argument. Annotation source is either 'ucsc', 'ensembl', 'refseq', 'gencode14', or 'gencode17'. You can only choose local or remote sources, not both. Requirements: * Python == 2.7.x * MySQLdb >= 1.2.3 * track >= 1.3.0-dev (dev version from github.com/xapple/track) Copyright (c) 2013 Wibowo Arindrarto <[email protected]> Copyright (c) 2013 LUMC Sequencing Analysis Support Core <[email protected]> MIT License <http://opensource.org/licenses/MIT> """ RELEASE = False __version_info__ = ('0', '1', ) __version__ = '.'.join(__version_info__) __version__ += '-dev' if not RELEASE else '' import argparse import os import warnings import track import MySQLdb # Credentials for connecting to database CRED = { 'host': 'genome-mysql.cse.ucsc.edu', 'user': 'genome', } # Queries that return ('transcript ID', 'gene ID') on various tables QUERIES = { 'ucsc': 'SELECT knownGene.name, kgXref.geneSymbol FROM ' \ 'knownGene, kgXref WHERE knownGene.name = kgID', 'ensembl': 'SELECT name, name2 FROM ensGene', 'refseq': 'SELECT name, name2 FROM refGene', 'gencode17': 'SELECT name, name2 FROM wgEncodeGencodeBasicV17', 'gencode14': 'SELECT name, name2 FROM wgEncodeGencodeBasicV14', } def get_ucsc_transcript_gene_mapping(annot_src, db, cred=CRED): """Returns the transcript-gene name mapping for an annotation source from a given database source. The function does not know whether the annotation source exists within the given database nor does it do any check before trying connect. :param annot_src: name of annotation source :type annot_src: str :param db: UCSC database name to use :param cred: database login credentials, must contain entries for at least 'host' and 'user', defaults to credentials for public UCSC server :type cred: dict :returns: transcript-gene name mapping :rtype: dict(str: str) """ con = MySQLdb.connect(db=db, **cred) cur = con.cursor() cur.execute(QUERIES[annot_src]) return {tid: gid for tid, gid in cur.fetchall()} def get_local_transcript_gene_mapping(fname): """Loads a two-column file (transcript ID - gene ID) as a dict. :param fname: path to file :type fname: str :returns: mapping of column 1 and column 2 in the file :rtype: dict(str: str) """ mapping = {} with open(fname, 'r') as src: for line in src: if not line.strip(): break elif not line: continue key, value = line.strip().split() if key in mapping: if value != mapping[key]: raise ValueError("Duplicate transcript ID ({0}) with " "ambiguous gene ID ({1} vs {2}).".format( key, value, mapping[key])) mapping[key] = value return mapping def update_gene_id_attr(chrom_recs, mapping): """Given an iterator for `track` records, yield `track` records with updated gene ID. :param chrom_recs: iterator returning `track` records for one chromosome :type chrom_recs: iterator :returns: generator yielding single `track` records :rtype: (yield) `track.pyrow.SuperRow` """ for rec in chrom_recs: data = list(rec.data) # gene ID is always at index 7 (first index of attributes) init_gid = data[7] try: map_gid = mapping[init_gid] except KeyError: warnings.warn("Transcript ID {0} not found in the given " "mapping, initial value is left unchanged.".format( init_gid)) else: data[7] = map_gid yield data def ucsc_geneid_fix(in_gtf, out_gtf, remote=None, local=None): """Updates 'gene_id' entries in GTF files downloaded from UCSC Table Browser to contain gene IDs instead of transcript IDs. If the output GTF file name already exists, it will be overwritten. :param in_gtf: path to input GTF file :type in_gtf: str :param out_gtf: path to output GTF file :type out_gtf: str :param remote: UCSC database and annotation source to use :type remote: dict('db': str, 'annot_src': str) :param local: two-column file name containing transcript-gene mapping, only when `db` and `annot_src` are None :type local: str :returns: None """ # remote not defined if remote is None: # then local must be defined if local is None: raise ValueError("Missing `remote` or `local` arguments") mapping = get_local_transcript_gene_mapping(local) # remote defined else: # then local can not be defined if local is not None: raise ValueError("Only supply `remote` or `local` argument, " "not both.") # remote must have 'db' if 'db' not in remote: raise ValueError("Missing remote database name") # and 'annot_src' if 'annot' not in remote: raise ValueError("Missing remote annotation source name") db = remote['db'] annot = remote['annot'] if annot not in QUERIES.keys(): raise ValueError("Invalid annotation source " "name: {0}".format(annot)) mapping = get_ucsc_transcript_gene_mapping(annot, db, cred=CRED) # remove output file if it exists if os.path.exists(out_gtf): os.remove(out_gtf) with track.load(in_gtf, readonly=True) as in_track, \ track.new(out_gtf, format='gtf') as out_track: # since GTF has custom fields, need to set the out_track to use # in_track's fields out_track.fields = in_track.fields for chrom in in_track.chromosomes: chrom_rec = in_track.read(chrom) out_track.write(chrom, update_gene_id_attr(chrom_rec, mapping)) if __name__ == '__main__': usage = __doc__.split('\n\n\n') parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=usage[0], epilog=usage[1]) parser.add_argument('input', type=str, help='Path to input GTF file') parser.add_argument('output', type=str, help='Path to output GTF file') parser.add_argument('--local', type=str, dest='local', default=None, help='Path to transcript ID - gene ID mapping file') parser.add_argument('--db', type=str, dest='db', default=None, help='UCSC database name to use') parser.add_argument('--annot', type=str, dest='annot', default=None, choices=QUERIES.keys(), help='UCSC annotation source') parser.add_argument('--version', action='version', version='%(prog)s ' + __version__) args = parser.parse_args() remote = None if args.db is not None or args.annot is not None: remote = {'db': args.db, 'annot': args.annot} ucsc_geneid_fix(args.input, args.output, remote=remote, local=args.local)
the-stack_0_4792
from typing import Optional import tensorflow as tf from kerastuner.applications import resnet from kerastuner.applications import xception from tensorflow.keras import layers from tensorflow.python.util import nest from autokeras.blocks import reduction from autokeras.engine import block as block_module from autokeras.utils import layer_utils from autokeras.utils import utils def set_hp_value(hp, name, value): full_name = hp._get_name(name) hp.values[full_name] = value or hp.values[full_name] class DenseBlock(block_module.Block): """Block for Dense layers. # Arguments num_layers: Int. The number of Dense layers in the block. If left unspecified, it will be tuned automatically. use_bn: Boolean. Whether to use BatchNormalization layers. If left unspecified, it will be tuned automatically. dropout_rate: Float. The dropout rate for the layers. If left unspecified, it will be tuned automatically. """ def __init__(self, num_layers: Optional[int] = None, use_batchnorm: Optional[bool] = None, dropout_rate: Optional[float] = None, **kwargs): super().__init__(**kwargs) self.num_layers = num_layers self.use_batchnorm = use_batchnorm self.dropout_rate = dropout_rate def get_config(self): config = super().get_config() config.update({ 'num_layers': self.num_layers, 'use_batchnorm': self.use_batchnorm, 'dropout_rate': self.dropout_rate}) return config def build(self, hp, inputs=None): inputs = nest.flatten(inputs) utils.validate_num_inputs(inputs, 1) input_node = inputs[0] output_node = input_node output_node = reduction.Flatten().build(hp, output_node) num_layers = self.num_layers or hp.Choice('num_layers', [1, 2, 3], default=2) use_batchnorm = self.use_batchnorm if use_batchnorm is None: use_batchnorm = hp.Boolean('use_batchnorm', default=False) if self.dropout_rate is not None: dropout_rate = self.dropout_rate else: dropout_rate = hp.Choice('dropout_rate', [0.0, 0.25, 0.5], default=0) for i in range(num_layers): units = hp.Choice( 'units_{i}'.format(i=i), [16, 32, 64, 128, 256, 512, 1024], default=32) output_node = layers.Dense(units)(output_node) if use_batchnorm: output_node = layers.BatchNormalization()(output_node) output_node = layers.ReLU()(output_node) if dropout_rate > 0: output_node = layers.Dropout(dropout_rate)(output_node) return output_node class RNNBlock(block_module.Block): """An RNN Block. # Arguments return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. Defaults to False. bidirectional: Boolean. Bidirectional RNN. If left unspecified, it will be tuned automatically. num_layers: Int. The number of layers in RNN. If left unspecified, it will be tuned automatically. layer_type: String. 'gru' or 'lstm'. If left unspecified, it will be tuned automatically. """ def __init__(self, return_sequences: bool = False, bidirectional: Optional[bool] = None, num_layers: Optional[int] = None, layer_type: Optional[int] = None, **kwargs): super().__init__(**kwargs) self.return_sequences = return_sequences self.bidirectional = bidirectional self.num_layers = num_layers self.layer_type = layer_type def get_config(self): config = super().get_config() config.update({ 'return_sequences': self.return_sequences, 'bidirectional': self.bidirectional, 'num_layers': self.num_layers, 'layer_type': self.layer_type}) return config def build(self, hp, inputs=None): inputs = nest.flatten(inputs) utils.validate_num_inputs(inputs, 1) input_node = inputs[0] shape = input_node.shape.as_list() if len(shape) != 3: raise ValueError( 'Expect the input tensor to have ' 'at least 3 dimensions for rnn models, ' 'but got {shape}'.format(shape=input_node.shape)) feature_size = shape[-1] output_node = input_node bidirectional = self.bidirectional if bidirectional is None: bidirectional = hp.Boolean('bidirectional', default=True) layer_type = self.layer_type or hp.Choice('layer_type', ['gru', 'lstm'], default='lstm') num_layers = self.num_layers or hp.Choice('num_layers', [1, 2, 3], default=2) rnn_layers = { 'gru': layers.GRU, 'lstm': layers.LSTM } in_layer = rnn_layers[layer_type] for i in range(num_layers): return_sequences = True if i == num_layers - 1: return_sequences = self.return_sequences if bidirectional: output_node = layers.Bidirectional( in_layer(feature_size, return_sequences=return_sequences))(output_node) else: output_node = in_layer( feature_size, return_sequences=return_sequences)(output_node) return output_node class ConvBlock(block_module.Block): """Block for vanilla ConvNets. # Arguments kernel_size: Int. If left unspecified, it will be tuned automatically. num_blocks: Int. The number of conv blocks, each of which may contain convolutional, max pooling, dropout, and activation. If left unspecified, it will be tuned automatically. num_layers: Int. The number of convolutional layers in each block. If left unspecified, it will be tuned automatically. max_pooling: Boolean. Whether to use max pooling layer in each block. If left unspecified, it will be tuned automatically. separable: Boolean. Whether to use separable conv layers. If left unspecified, it will be tuned automatically. dropout_rate: Float. Between 0 and 1. The dropout rate for after the convolutional layers. If left unspecified, it will be tuned automatically. """ def __init__(self, kernel_size: Optional[int] = None, num_blocks: Optional[int] = None, num_layers: Optional[int] = None, max_pooling: Optional[bool] = None, separable: Optional[bool] = None, dropout_rate: Optional[float] = None, **kwargs): super().__init__(**kwargs) self.kernel_size = kernel_size self.num_blocks = num_blocks self.num_layers = num_layers self.max_pooling = max_pooling self.separable = separable self.dropout_rate = dropout_rate def get_config(self): config = super().get_config() config.update({ 'kernel_size': self.kernel_size, 'num_blocks': self.num_blocks, 'num_layers': self.num_layers, 'max_pooling': self.max_pooling, 'separable': self.separable, 'dropout_rate': self.dropout_rate}) return config def build(self, hp, inputs=None): inputs = nest.flatten(inputs) utils.validate_num_inputs(inputs, 1) input_node = inputs[0] output_node = input_node kernel_size = self.kernel_size or hp.Choice('kernel_size', [3, 5, 7], default=3) num_blocks = self.num_blocks or hp.Choice('num_blocks', [1, 2, 3], default=2) num_layers = self.num_layers or hp.Choice('num_layers', [1, 2], default=2) separable = self.separable if separable is None: separable = hp.Boolean('separable', default=False) if separable: conv = layer_utils.get_sep_conv(input_node.shape) else: conv = layer_utils.get_conv(input_node.shape) max_pooling = self.max_pooling if max_pooling is None: max_pooling = hp.Boolean('max_pooling', default=True) pool = layer_utils.get_max_pooling(input_node.shape) if self.dropout_rate is not None: dropout_rate = self.dropout_rate else: dropout_rate = hp.Choice('dropout_rate', [0.0, 0.25, 0.5], default=0) for i in range(num_blocks): for j in range(num_layers): output_node = conv( hp.Choice('filters_{i}_{j}'.format(i=i, j=j), [16, 32, 64, 128, 256, 512], default=32), kernel_size, padding=self._get_padding(kernel_size, output_node), activation='relu')(output_node) if max_pooling: output_node = pool( kernel_size - 1, padding=self._get_padding(kernel_size - 1, output_node))(output_node) if dropout_rate > 0: output_node = layers.Dropout(dropout_rate)(output_node) return output_node @staticmethod def _get_padding(kernel_size, output_node): if all([kernel_size * 2 <= length for length in output_node.shape[1:-1]]): return 'valid' return 'same' class MultiHeadSelfAttention(block_module.Block): """Block for Multi-Head Self-Attention. # Arguments head_size: Int. Dimensionality of the `query`, `key` and `value` tensors after the linear transformation. If left unspecified, it will be tuned automatically. num_heads: Int. The number of attention heads. If left unspecified, it will be tuned automatically. """ def __init__(self, head_size: Optional[int] = None, num_heads: Optional[int] = 8, **kwargs): super().__init__(**kwargs) self.head_size = head_size self.num_heads = num_heads def get_config(self): config = super().get_config() config.update({ 'head_size': self.head_size, 'num_heads': self.num_heads}) return config def build(self, hp, inputs=None): """ # Arguments hp: HyperParameters. The hyperparameters for building the model. inputs: Tensor of Shape [batch_size, seq_len, embedding_dim] # Returns Self-Attention outputs of shape `[batch_size, seq_len, embedding_dim]`. """ inputs = nest.flatten(inputs) utils.validate_num_inputs(inputs, 1) input_node = inputs[0] shape = input_node.shape.as_list() if len(shape) != 3: raise ValueError( 'Expect the input tensor to have ' '3 dimensions for multi-head self-attention, ' 'but got {shape}'.format(shape=input_node.shape)) # input.shape = [batch_size, seq_len, embedding_dim] head_size = self.head_size or hp.Choice( 'head_size', [32, 64, 128, 256, 512], default=128) num_heads = self.num_heads if num_heads is None: num_heads = 8 if head_size % num_heads != 0: # how to evaluate this condition raise ValueError( f"embedding dimension = {head_size} should be " f"divisible by number of heads = {num_heads}" ) projection_dim = head_size // num_heads query_dense = layers.Dense(head_size) key_dense = layers.Dense(head_size) value_dense = layers.Dense(head_size) combine_heads = layers.Dense(head_size) batch_size = tf.shape(input_node)[0] query = query_dense(input_node) # (batch_size, seq_len, head_size) key = key_dense(input_node) # (batch_size, seq_len, head_size) value = value_dense(input_node) # (batch_size, seq_len, head_size) query, key, value = [self.separate_heads( var, batch_size, num_heads, projection_dim ) for var in [query, key, value]] attention, weights = self.attention(query, key, value) attention = tf.transpose( attention, perm=[0, 2, 1, 3] ) # (batch_size, seq_len, num_heads, projection_dim) concat_attention = tf.reshape( attention, (batch_size, tf.shape(attention)[1], self.head_size) ) # (batch_size, seq_len, head_size) output = combine_heads( concat_attention ) # (batch_size, seq_len, head_size) return output @staticmethod def attention(query, key, value): score = tf.matmul(query, key, transpose_b=True) dim_key = tf.cast(tf.shape(key)[-1], tf.float32) scaled_score = score / tf.math.sqrt(dim_key) weights = tf.nn.softmax(scaled_score, axis=-1) output = tf.matmul(weights, value) return output, weights @staticmethod def separate_heads(x, batch_size, num_heads, projection_dim): x = tf.reshape(x, (batch_size, -1, num_heads, projection_dim)) return tf.transpose(x, perm=[0, 2, 1, 3]) class Transformer(block_module.Block): """Block for Transformer. The input should be tokenized sequences with the same length, where each element of a sequence should be the index of the word. # Example ```python # Using the Transformer Block with AutoModel. import autokeras as ak from tensorflow.keras import losses text_input = ak.TextInput() output_node = ak.TextToIntSequence(output_sequence_length=200)(text_input) output_node = ak.Transformer(embedding_dim=32, pretraining='none', num_heads=2, dense_dim=32, dropout_rate = 0.25)(output_node) output_node = ak.SpatialReduction(reduction_type='global_avg')(output_node) output_node = ak.DenseBlock(num_layers=1, use_batchnorm = False)(output_node) output_node = ak.ClassificationHead( loss=losses.SparseCategoricalCrossentropy(), dropout_rate = 0.25)(output_node) clf = ak.AutoModel(inputs=text_input, outputs=output_node, max_trials=2) ``` # Arguments max_features: Int. Size of the vocabulary. Must be set if not using TextToIntSequence before this block. Defaults to 20001. pretraining: String. 'random' (use random weights instead any pretrained model), 'glove', 'fasttext' or 'word2vec'. Use pretrained word embedding. If left unspecified, it will be tuned automatically. embedding_dim: Int. Output dimension of the Attention block. If left unspecified, it will be tuned automatically. num_heads: Int. The number of attention heads. If left unspecified, it will be tuned automatically. dense_dim: Int. The output dimension of the Feed-Forward Network. If left unspecified, it will be tuned automatically. dropout_rate: Float. Between 0 and 1. If left unspecified, it will be tuned automatically. """ def __init__(self, max_features: int = 20001, pretraining: Optional[str] = None, embedding_dim: Optional[int] = None, num_heads: Optional[int] = None, dense_dim: Optional[int] = None, dropout_rate: Optional[int] = None, **kwargs): super().__init__(**kwargs) self.max_features = max_features self.pretraining = pretraining self.embedding_dim = embedding_dim self.num_heads = num_heads self. dense_dim = dense_dim self.dropout_rate = dropout_rate def get_config(self): config = super().get_config() config.update({ 'max_features': self.max_features, 'pretraining': self.pretraining, 'embedding_dim': self.embedding_dim, 'num_heads': self.num_heads, 'dense_dim': self.dense_dim, 'dropout_rate': self.dropout_rate}) return config def build(self, hp, inputs=None): """ # Arguments hp: HyperParameters. The hyperparameters for building the model. inputs: Tensor of Shape [batch_size, seq_len] # Returns Output Tensor of shape `[batch_size, seq_len, embedding_dim]`. """ inputs = nest.flatten(inputs) utils.validate_num_inputs(inputs, 1) pretraining = self.pretraining or hp.Choice( 'pretraining', ['random', 'glove', 'fasttext', 'word2vec', 'none'], default='none') embedding_dim = self.embedding_dim or hp.Choice( 'embedding_dim', [32, 64, 128, 256, 512], default=128) num_heads = self.num_heads or hp.Choice('num_heads', [8, 16, 32], default=8) dense_dim = self.dense_dim or hp.Choice('dense_dim', [128, 256, 512, 1024, 2048], default=2048) dropout_rate = self.dropout_rate or hp.Choice('dropout_rate', [0.0, 0.25, 0.5], default=0) ffn = tf.keras.Sequential( [layers.Dense(dense_dim, activation="relu"), layers.Dense(embedding_dim), ] ) layernorm1 = layers.LayerNormalization(epsilon=1e-6) layernorm2 = layers.LayerNormalization(epsilon=1e-6) dropout1 = layers.Dropout(dropout_rate) dropout2 = layers.Dropout(dropout_rate) # Token and Position Embeddings input_node = nest.flatten(inputs)[0] token_embedding = Embedding(max_features=self.max_features, pretraining=pretraining, embedding_dim=embedding_dim, dropout_rate=dropout_rate).build(hp, input_node) maxlen = input_node.shape[-1] batch_size = tf.shape(input_node)[0] positions = self.pos_array_funct(maxlen, batch_size) position_embedding = Embedding(max_features=maxlen, pretraining=pretraining, embedding_dim=embedding_dim, dropout_rate=dropout_rate).build(hp, positions) output_node = tf.keras.layers.Add()([token_embedding, position_embedding]) attn_output = MultiHeadSelfAttention( embedding_dim, num_heads).build(hp, output_node) attn_output = dropout1(attn_output) add_inputs_1 = tf.keras.layers.Add()([output_node, attn_output]) out1 = layernorm1(add_inputs_1) ffn_output = ffn(out1) ffn_output = dropout2(ffn_output) add_inputs_2 = tf.keras.layers.Add()([out1, ffn_output]) output = layernorm2(add_inputs_2) return output @staticmethod def pos_array_funct(maxlen, batch_size): pos_ones = tf.ones((batch_size, 1), dtype=tf.int32) positions = tf.range(start=0, limit=maxlen, delta=1) positions = tf.expand_dims(positions, 0) positions = tf.matmul(pos_ones, positions) return positions class ResNetBlock(resnet.HyperResNet, block_module.Block): """Block for ResNet. # Arguments version: String. 'v1', 'v2' or 'next'. The type of ResNet to use. If left unspecified, it will be tuned automatically. pooling: String. 'avg', 'max'. The type of pooling layer to use. If left unspecified, it will be tuned automatically. """ def __init__(self, version: Optional[str] = None, pooling: Optional[str] = None, **kwargs): if 'include_top' in kwargs: raise ValueError( 'Argument "include_top" is not supported in ResNetBlock.') if 'input_shape' in kwargs: raise ValueError( 'Argument "input_shape" is not supported in ResNetBlock.') super().__init__(include_top=False, input_shape=(10,), **kwargs) self.version = version self.pooling = pooling def get_config(self): config = super().get_config() config.update({ 'version': self.version, 'pooling': self.pooling}) return config def build(self, hp, inputs=None): self.input_tensor = nest.flatten(inputs)[0] self.input_shape = None hp.Choice('version', ['v1', 'v2', 'next'], default='v2') hp.Choice('pooling', ['avg', 'max'], default='avg') set_hp_value(hp, 'version', self.version) set_hp_value(hp, 'pooling', self.pooling) model = super().build(hp) return model.outputs class XceptionBlock(xception.HyperXception, block_module.Block): """XceptionBlock. An Xception structure, used for specifying your model with specific datasets. The original Xception architecture is from https://arxiv.org/abs/1610.02357. The data first goes through the entry flow, then through the middle flow which is repeated eight times, and finally through the exit flow. This XceptionBlock returns a similar architecture as Xception except without the last (optional) fully connected layer(s) and logistic regression. The size of this architecture could be decided by `HyperParameters`, to get an architecture with a half, an identical, or a double size of the original one. # Arguments activation: String. 'selu' or 'relu'. If left unspecified, it will be tuned automatically. initial_strides: Int. If left unspecified, it will be tuned automatically. num_residual_blocks: Int. If left unspecified, it will be tuned automatically. pooling: String. 'ave', 'flatten', or 'max'. If left unspecified, it will be tuned automatically. """ def __init__(self, activation: Optional[str] = None, initial_strides: Optional[int] = None, num_residual_blocks: Optional[int] = None, pooling: Optional[str] = None, **kwargs): if 'include_top' in kwargs: raise ValueError( 'Argument "include_top" is not supported in XceptionBlock.') if 'input_shape' in kwargs: raise ValueError( 'Argument "input_shape" is not supported in XceptionBlock.') super().__init__(include_top=False, input_shape=(10,), **kwargs) self.activation = activation self.initial_strides = initial_strides self.num_residual_blocks = num_residual_blocks self.pooling = pooling def get_config(self): config = super().get_config() config.update({ 'classes': self.classes, 'activation': self.activation, 'initial_strides': self.initial_strides, 'num_residual_blocks': self.num_residual_blocks, 'pooling': self.pooling}) return config def build(self, hp, inputs=None): self.input_tensor = nest.flatten(inputs)[0] self.input_shape = None hp.Choice('activation', ['relu', 'selu']) hp.Choice('initial_strides', [2]) hp.Int('num_residual_blocks', 2, 8, default=4) hp.Choice('pooling', ['avg', 'flatten', 'max']) set_hp_value(hp, 'activation', self.activation) set_hp_value(hp, 'initial_strides', self.initial_strides) set_hp_value(hp, 'num_residual_blocks', self.num_residual_blocks) set_hp_value(hp, 'pooling', self.pooling) model = super().build(hp) return model.outputs class Embedding(block_module.Block): """Word embedding block for sequences. The input should be tokenized sequences with the same length, where each element of a sequence should be the index of the word. # Arguments max_features: Int. Size of the vocabulary. Must be set if not using TextToIntSequence before this block. Defaults to 20001. pretraining: String. 'random' (use random weights instead any pretrained model), 'glove', 'fasttext' or 'word2vec'. Use pretrained word embedding. If left unspecified, it will be tuned automatically. embedding_dim: Int. If left unspecified, it will be tuned automatically. dropout_rate: Float. The dropout rate for after the Embedding layer. If left unspecified, it will be tuned automatically. """ def __init__(self, max_features: int = 20001, pretraining: Optional[str] = None, embedding_dim: Optional[int] = None, dropout_rate: Optional[float] = None, **kwargs): super().__init__(**kwargs) self.max_features = max_features self.pretraining = pretraining self.embedding_dim = embedding_dim self.dropout_rate = dropout_rate def get_config(self): config = super().get_config() config.update({ 'max_features': self.max_features, 'pretraining': self.pretraining, 'embedding_dim': self.embedding_dim, 'dropout_rate': self.dropout_rate}) return config def build(self, hp, inputs=None): input_node = nest.flatten(inputs)[0] # TODO: support more pretrained embedding layers. # glove, fasttext, and word2vec pretraining = self.pretraining or hp.Choice( 'pretraining', ['random', 'glove', 'fasttext', 'word2vec', 'none'], default='none') embedding_dim = self.embedding_dim or hp.Choice( 'embedding_dim', [32, 64, 128, 256, 512], default=128) if pretraining != 'none': # TODO: load from pretrained weights layer = layers.Embedding( input_dim=self.max_features, output_dim=embedding_dim, input_length=input_node.shape[1]) # trainable=False, # weights=[embedding_matrix]) else: layer = layers.Embedding( input_dim=self.max_features, output_dim=embedding_dim) # input_length=input_node.shape[1], # trainable=True) output_node = layer(input_node) if self.dropout_rate is not None: dropout_rate = self.dropout_rate else: dropout_rate = hp.Choice('dropout_rate', [0.0, 0.25, 0.5], default=0.25) if dropout_rate > 0: output_node = layers.Dropout(dropout_rate)(output_node) return output_node
the-stack_0_4793
import glob import itertools as it import numpy as np import os import sys import xgboost as xgb try: from sklearn import datasets from sklearn.preprocessing import scale except ImportError: None class Dataset: def __init__(self, name, get_dataset, objective, metric, has_weights=False, use_external_memory=False): self.name = name self.objective = objective self.metric = metric if has_weights: self.X, self.y, self.w = get_dataset() else: self.X, self.y = get_dataset() self.w = None self.use_external_memory = use_external_memory def get_boston(): data = datasets.load_boston() return data.data, data.target def get_digits(): data = datasets.load_digits() return data.data, data.target def get_cancer(): data = datasets.load_breast_cancer() return data.data, data.target def get_sparse(): rng = np.random.RandomState(199) n = 5000 sparsity = 0.75 X, y = datasets.make_regression(n, random_state=rng) X = np.array([[0.0 if rng.uniform(0, 1) < sparsity else x for x in x_row] for x_row in X]) from scipy import sparse X = sparse.csr_matrix(X) return X, y def get_sparse_weights(): return get_weights_regression(1, 10) def get_small_weights(): return get_weights_regression(1e-6, 1e-5) def get_weights_regression(min_weight, max_weight): rng = np.random.RandomState(199) n = 10000 sparsity = 0.25 X, y = datasets.make_regression(n, random_state=rng) X = np.array([[np.nan if rng.uniform(0, 1) < sparsity else x for x in x_row] for x_row in X]) w = np.array([rng.uniform(min_weight, max_weight) for i in range(n)]) return X, y, w def train_dataset(dataset, param_in, num_rounds=10, scale_features=False): param = param_in.copy() param["objective"] = dataset.objective if dataset.objective == "multi:softmax": param["num_class"] = int(np.max(dataset.y) + 1) param["eval_metric"] = dataset.metric if scale_features: X = scale(dataset.X, with_mean=isinstance(dataset.X, np.ndarray)) else: X = dataset.X if dataset.use_external_memory: np.savetxt('tmptmp_1234.csv', np.hstack((dataset.y.reshape(len(dataset.y), 1), X)), delimiter=',') dtrain = xgb.DMatrix('tmptmp_1234.csv?format=csv&label_column=0#tmptmp_', weight=dataset.w) else: dtrain = xgb.DMatrix(X, dataset.y, weight=dataset.w) print("Training on dataset: " + dataset.name, file=sys.stderr) print("Using parameters: " + str(param), file=sys.stderr) res = {} bst = xgb.train(param, dtrain, num_rounds, [(dtrain, 'train')], evals_result=res, verbose_eval=False) # Free the booster and dmatrix so we can delete temporary files bst_copy = bst.copy() del bst del dtrain # Cleanup temporary files if dataset.use_external_memory: for f in glob.glob("tmptmp_*"): os.remove(f) return {"dataset": dataset, "bst": bst_copy, "param": param.copy(), "eval": res['train'][dataset.metric]} def parameter_combinations(variable_param): """ Enumerate all possible combinations of parameters """ result = [] names = sorted(variable_param) combinations = it.product(*(variable_param[Name] for Name in names)) for set in combinations: param = {} for i, name in enumerate(names): param[name] = set[i] result.append(param) return result def run_suite(param, num_rounds=10, select_datasets=None, scale_features=False): """ Run the given parameters on a range of datasets. Objective and eval metric will be automatically set """ datasets = [ Dataset("Boston", get_boston, "reg:squarederror", "rmse"), Dataset("Digits", get_digits, "multi:softmax", "mlogloss"), Dataset("Cancer", get_cancer, "binary:logistic", "logloss"), Dataset("Sparse regression", get_sparse, "reg:squarederror", "rmse"), Dataset("Sparse regression with weights", get_sparse_weights, "reg:squarederror", "rmse", has_weights=True), Dataset("Small weights regression", get_small_weights, "reg:squarederror", "rmse", has_weights=True), Dataset("Boston External Memory", get_boston, "reg:squarederror", "rmse", use_external_memory=True) ] results = [ ] for d in datasets: if select_datasets is None or d.name in select_datasets: results.append( train_dataset(d, param, num_rounds=num_rounds, scale_features=scale_features)) return results def non_increasing(L, tolerance): return all((y - x) < tolerance for x, y in zip(L, L[1:])) def assert_results_non_increasing(results, tolerance=1e-5): for r in results: assert non_increasing(r['eval'], tolerance), r
the-stack_0_4795
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class Resource(Model): """The Resource model definition. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: The resource id. :vartype id: str :ivar name: The resource name. :vartype name: str :ivar type: The resource type. :vartype type: str :param location: The resource location. :type location: str :param tags: The resource tags. :type tags: dict[str, str] """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, } def __init__(self, *, location: str=None, tags=None, **kwargs) -> None: super(Resource, self).__init__(**kwargs) self.id = None self.name = None self.type = None self.location = location self.tags = tags
the-stack_0_4796
import base64 import uuid from .base import DynamicField from rest_framework.serializers import FileField, ImageField from rest_framework import exceptions from django.core.files.base import ContentFile from django.utils import six IMAGE_TYPES = { 'jpeg', 'jpg', 'png', 'gif', 'bmp', 'tiff', 'webp', 'ico', 'eps' } class DynamicFileFieldBase( DynamicField ): def __init__(self, **kwargs): self.allow_remote = kwargs.pop('allow_remote', True) self.allow_base64 = kwargs.pop('allow_base64', True) super(DynamicFileFieldBase, self).__init__(**kwargs) def get_extension(self, name): if not name or '.' not in name: return '' return name.split('.')[-1].lower() def to_internal_value_remote(self, name): if not name: self.fail('no_name') field = self.model_field storage = field.storage if not storage.exists(name): self.fail('invalid') size = storage.size(name) name_length = len(name) if not self.allow_empty_file and not size: self.fail('empty') if self.max_length and name_length > self.max_length: self.fail( 'max_length', max_length=self.max_length, length=name_length ) if isinstance(self, ImageField): ext = self.get_extension(name) if ext not in IMAGE_TYPES: return self.fail('invalid_image') return name def to_internal_value_base64(self, data): header, data = data.split(';base64,') try: decoded = base64.b64decode(data) except TypeError: self.fail('invalid') file_name = str(uuid.uuid4())[:12] ext = header.split('/')[-1] file_name += '.' + ext data = ContentFile(decoded, name=file_name) if isinstance(self, ImageField): if ext not in IMAGE_TYPES: return self.fail('invalid_image') return super( DynamicFileFieldBase, self ).to_internal_value(data) def to_internal_value(self, data): if isinstance(data, six.string_types): if self.allow_base64 and 'data:' in data and ';base64,' in data: return self.to_internal_value_base64(data) elif self.allow_remote: return self.to_internal_value_remote(data) else: raise exceptions.ValidationError() else: return super(DynamicFileFieldBase, self).to_internal_value(data) class DynamicImageField( DynamicFileFieldBase, ImageField ): pass class DynamicFileField( DynamicFileFieldBase, FileField ): pass
the-stack_0_4797
import logging import tempfile from ocs_ci.framework import config from ocs_ci.framework.pytest_customization.marks import ignore_leftovers from ocs_ci.ocs.ocp import wait_for_cluster_connectivity, OCP from ocs_ci.ocs import constants, node, defaults from ocs_ci.ocs.resources.pod import get_fio_rw_iops from ocs_ci.ocs.resources.pvc import delete_pvcs from tests import helpers from ocs_ci.ocs.bucket_utils import s3_delete_object, s3_get_object, s3_put_object from tests.manage.z_cluster.pvc_ops import create_pvcs from ocs_ci.utility.utils import ceph_health_check, run_cmd, TimeoutSampler from ocs_ci.utility import templating from ocs_ci.ocs.cluster import CephCluster, CephClusterExternal logger = logging.getLogger(__name__) class Sanity: """ Class for cluster health and functional validations """ def __init__(self): """ Initializer for Sanity class - Init CephCluster() in order to set the cluster status before starting the tests """ self.pvc_objs = list() self.pod_objs = list() self.obj_data = "" self.ceph_cluster = CephCluster() def health_check(self, cluster_check=True, tries=20): """ Perform Ceph and cluster health checks """ wait_for_cluster_connectivity(tries=400) logger.info("Checking cluster and Ceph health") node.wait_for_nodes_status(timeout=300) ceph_health_check(namespace=config.ENV_DATA['cluster_namespace'], tries=tries) if cluster_check: self.ceph_cluster.cluster_health_check(timeout=60) def create_resources(self, pvc_factory, pod_factory, run_io=True): """ Sanity validation - Create resources (FS and RBD) and run IO Args: pvc_factory (function): A call to pvc_factory function pod_factory (function): A call to pod_factory function run_io (bool): True for run IO, False otherwise """ logger.info("Creating resources and running IO as a sanity functional validation") for interface in [constants.CEPHBLOCKPOOL, constants.CEPHFILESYSTEM]: pvc_obj = pvc_factory(interface) self.pvc_objs.append(pvc_obj) self.pod_objs.append(pod_factory(pvc=pvc_obj, interface=interface)) if run_io: for pod in self.pod_objs: pod.run_io('fs', '1G', runtime=30) for pod in self.pod_objs: get_fio_rw_iops(pod) self.create_obc() self.verify_obc() def create_obc(self): """ OBC creation for RGW and Nooba """ if config.ENV_DATA['platform'] in constants.ON_PREM_PLATFORMS: obc_rgw = templating.load_yaml( constants.RGW_OBC_YAML ) obc_rgw_data_yaml = tempfile.NamedTemporaryFile( mode='w+', prefix='obc_rgw_data', delete=False ) templating.dump_data_to_temp_yaml( obc_rgw, obc_rgw_data_yaml.name ) logger.info("Creating OBC for rgw") run_cmd(f"oc create -f {obc_rgw_data_yaml.name}", timeout=2400) self.obc_rgw = obc_rgw['metadata']['name'] obc_nooba = templating.load_yaml( constants.MCG_OBC_YAML ) obc_mcg_data_yaml = tempfile.NamedTemporaryFile( mode='w+', prefix='obc_mcg_data', delete=False ) templating.dump_data_to_temp_yaml( obc_nooba, obc_mcg_data_yaml.name ) logger.info("create OBC for mcg") run_cmd(f"oc create -f {obc_mcg_data_yaml.name}", timeout=2400) self.obc_mcg = obc_nooba['metadata']['name'] def delete_obc(self): """ Clenaup OBC resources created above """ if config.ENV_DATA['platform'] in constants.ON_PREM_PLATFORMS: logger.info(f"Deleting rgw obc {self.obc_rgw}") obcrgw = OCP( kind='ObjectBucketClaim', resource_name=f'{self.obc_rgw}' ) run_cmd(f"oc delete obc/{self.obc_rgw}") obcrgw.wait_for_delete( resource_name=f'{self.obc_rgw}', timeout=300 ) logger.info(f"Deleting mcg obc {self.obc_mcg}") obcmcg = OCP(kind='ObjectBucketClaim', resource_name=f'{self.obc_mcg}') run_cmd( f"oc delete obc/{self.obc_mcg} -n " f"{defaults.ROOK_CLUSTER_NAMESPACE}" ) obcmcg.wait_for_delete(resource_name=f'{self.obc_mcg}', timeout=300) def verify_obc(self): """ OBC verification from external cluster perspective, we will check 2 OBCs """ sample = TimeoutSampler( 300, 5, self.ceph_cluster.noobaa_health_check ) sample.wait_for_func_status(True) def delete_resources(self): """ Sanity validation - Delete resources (FS and RBD) """ logger.info("Deleting resources as a sanity functional validation") self.delete_obc() for pod_obj in self.pod_objs: pod_obj.delete() for pod_obj in self.pod_objs: pod_obj.ocp.wait_for_delete(pod_obj.name) for pvc_obj in self.pvc_objs: pvc_obj.delete() for pvc_obj in self.pvc_objs: pvc_obj.ocp.wait_for_delete(pvc_obj.name) @ignore_leftovers def create_pvc_delete(self, multi_pvc_factory, project=None): """ Creates and deletes all types of PVCs """ # Create rbd pvcs pvc_objs_rbd = create_pvcs( multi_pvc_factory=multi_pvc_factory, interface='CephBlockPool', project=project, status="", storageclass=None ) # Create cephfs pvcs pvc_objs_cephfs = create_pvcs( multi_pvc_factory=multi_pvc_factory, interface='CephFileSystem', project=project, status="", storageclass=None ) all_pvc_to_delete = pvc_objs_rbd + pvc_objs_cephfs # Check pvc status for pvc_obj in all_pvc_to_delete: helpers.wait_for_resource_state( resource=pvc_obj, state=constants.STATUS_BOUND, timeout=300 ) # Start deleting PVC delete_pvcs(all_pvc_to_delete) # Check PVCs are deleted for pvc_obj in all_pvc_to_delete: pvc_obj.ocp.wait_for_delete(resource_name=pvc_obj.name) logger.info("All PVCs are deleted as expected") def obc_put_obj_create_delete(self, mcg_obj, bucket_factory): """ Creates bucket then writes, reads and deletes objects """ bucket_name = bucket_factory(amount=1, interface='OC')[0].name self.obj_data = "A string data" for i in range(0, 30): key = 'Object-key-' + f"{i}" logger.info(f"Write, read and delete object with key: {key}") assert s3_put_object(mcg_obj, bucket_name, key, self.obj_data), f"Failed: Put object, {key}" assert s3_get_object(mcg_obj, bucket_name, key), f"Failed: Get object, {key}" assert s3_delete_object(mcg_obj, bucket_name, key), f"Failed: Delete object, {key}" class SanityExternalCluster(Sanity): """ Helpers for health check and functional validation in External mode """ def __init__(self): """ Initializer for Sanity class - Init CephCluster() in order to set the cluster status before starting the tests """ self.pvc_objs = list() self.pod_objs = list() self.ceph_cluster = CephClusterExternal()
the-stack_0_4802
import logging import astropy.units as u from astropy.wcs import (WCS, WCSSUB_CELESTIAL, WCSSUB_CUBEFACE, WCSSUB_LATITUDE, WCSSUB_LONGITUDE, WCSSUB_SPECTRAL, WCSSUB_STOKES, InvalidSubimageSpecificationError) # Use this once in specutils from ...utils.wcs_utils import (convert_spectral_axis, determine_ctype_from_vconv) from ..wcs_adapter import WCSAdapter, WCSAxes __all__ = ['FITSWCSAdapter'] class FITSWCSAdapter(WCSAdapter): """ Adapter class that adds support for FITSWCS objects. In the wild, fits WCS headers are often non-standard compliant, but can be interpreted with little ambiguity (e.g. the CTYPE of the wavelength axis is called "Wavelength" instead of the standard fits "WAVE"). In some common cases, this class will thus read files that are not fully compliant. In these cases, it prints a warning message. """ wrapped_class = WCS axes = None substitute_spec_axis_names = ['linear', 'wavelength'] def __init__(self, wcs): super(FITSWCSAdapter, self).__init__(wcs) self._spec_axis = None # Store a reference to all axes information within the wcs object self.axes = WCSAxes( longitude=self.wcs.sub([WCSSUB_LONGITUDE]), latitude=self.wcs.sub([WCSSUB_LATITUDE]), cubeface=self.wcs.sub([WCSSUB_CUBEFACE]), spectral=self.wcs.sub([WCSSUB_SPECTRAL]), stokes=self.wcs.sub([WCSSUB_STOKES]), celestial=self.wcs.sub([WCSSUB_CELESTIAL]) ) # TODO: make this more efficient. Check to see whether the spectral # axis was actually parsed if self.axes.spectral.naxis == 0: self.axes = self.axes._replace(spectral=self.wcs.sub([self.spec_axis + 1])) def __getitem__(self, item): """Pass slicing information to the internal `FITSWCS` object.""" return self.wcs[item] def __deepcopy__(self, *args, **kwargs): """ Ensure deepcopy is passed through to the underlying fits wcs object. Doing so allows for proper memoization handling in the astropy fits machinery. """ return self.__class__(self.wcs.__deepcopy__(*args, **kwargs)) def world_to_pixel(self, world_array): """ Method for performing the world to pixel transformations. """ with u.set_enabled_equivalencies(u.spectral()): world_array = u.Quantity(world_array, unit=self.spectral_axis_unit) return self.axes.spectral.all_world2pix(world_array.value, 0)[0] def pixel_to_world(self, pixel_array): """ Method for performing the pixel to world transformations. """ return u.Quantity(self.axes.spectral.all_pix2world(pixel_array, 0)[0], self.spectral_axis_unit) @property def spec_axis(self): """ Try and parse the spectral axis of the fits wcs object. """ self._spec_axis = self.wcs.wcs.spec if (self._spec_axis < 0) and (self._wcs.wcs.spec) < 0: ctypelist = [c.lower() for c in self.wcs.wcs.ctype] for n in self.substitute_spec_axis_names: if n in ctypelist: self._spec_axis = ctypelist.index(n) logging.warning("WCS has a non-standard spectral axis, 'ctype's might be incorrect. Assuming the axis {} labeled '{}' is spectral and proceeding.".format(self._spec_axis, n)) break else: raise InvalidSubimageSpecificationError( "Cannot find a spectral axis in the provided WCS." "Are your 'ctype's correct?") return self._spec_axis @property def spectral_axis_unit(self): """ Returns the unit of the spectral axis. """ return self._wcs.wcs.cunit[self.spec_axis] @property def rest_frequency(self): """ Returns the rest frequency defined in the WCS. """ return self.wcs.wcs.restfrq @property def rest_wavelength(self): """ Returns the rest wavelength defined in the WCS. """ return self.wcs.wcs.restwav def bin_edges(self): # the WCS doesn't know about its own pixel array edge_indices = list(self.axes.spectral.pixel_indices - 0.5) + \ [self.axes.spectral.pixel_indices[-1] + 0.5] return self.pixel_to_world(edge_indices, 0) def with_spectral_unit(self, unit, rest_value=None, velocity_convention=None): # Shorter versions to keep lines under 80 ctype_from_vconv = determine_ctype_from_vconv out_ctype = ctype_from_vconv(self._wcs.wcs.ctype[self.spec_axis], unit, velocity_convention=velocity_convention) new_wcs = convert_spectral_axis(self._wcs, unit, out_ctype, rest_value=rest_value) new_wcs.wcs.set() return new_wcs
the-stack_0_4803
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # */AIPND-revision/intropyproject-classify-pet-images/check_images.py # # TODO 0: Add your information below for Programmer & Date Created. # PROGRAMMER: Luis Candanedo # DATE CREATED: 5/24/2020 # REVISED DATE: # PURPOSE: Classifies pet images using a pretrained CNN model, compares these # classifications to the true identity of the pets in the images, and # summarizes how well the CNN performed on the image classification task. # Note that the true identity of the pet (or object) in the image is # indicated by the filename of the image. Therefore, your program must # first extract the pet image label from the filename before # classifying the images using the pretrained CNN model. With this # program we will be comparing the performance of 3 different CNN model # architectures to determine which provides the 'best' classification. # # Use argparse Expected Call with <> indicating expected user input: # python check_images.py --dir <directory with images> --arch <model> # --dogfile <file that contains dognames> # Example call: # python check_images.py --dir pet_images/ --arch vgg --dogfile dognames.txt ## # Imports python modules from time import time, sleep # Imports print functions that check the lab from print_functions_for_lab_checks import * # Imports functions created for this program from get_input_args import get_input_args from get_pet_labels import get_pet_labels from classify_images import classify_images from adjust_results4_isadog import adjust_results4_isadog from calculates_results_stats import calculates_results_stats from print_results import print_results # Main program function defined below def main(): # TODO 0: Measures total program runtime by collecting start time start_time = time() #sleep(5) # TODO 1: Define get_input_args function within the file get_input_args.py # This function retrieves 3 Command Line Arugments from user as input from # the user running the program from a terminal window. This function returns # the collection of these command line arguments from the function call as # the variable in_arg in_arg = get_input_args() # Function that checks command line arguments using in_arg check_command_line_arguments(in_arg) # TODO 2: Define get_pet_labels function within the file get_pet_labels.py # Once the get_pet_labels function has been defined replace 'None' # in the function call with in_arg.dir Once you have done the replacements # your function call should look like this: # get_pet_labels(in_arg.dir) # This function creates the results dictionary that contains the results, # this dictionary is returned from the function call as the variable results results = get_pet_labels(in_arg.dir) #print(results) # Function that checks Pet Images in the results Dictionary using results check_creating_pet_image_labels(results) # TODO 3: Define classify_images function within the file classiy_images.py # Once the classify_images function has been defined replace first 'None' # in the function call with in_arg.dir and replace the last 'None' in the # function call with in_arg.arch Once you have done the replacements your # function call should look like this: # classify_images(in_arg.dir, results, in_arg.arch) # Creates Classifier Labels with classifier function, Compares Labels, # and adds these results to the results dictionary - results classify_images(in_arg.dir, results, in_arg.arch) # Function that checks Results Dictionary using results check_classifying_images(results) # TODO 4: Define adjust_results4_isadog function within the file adjust_results4_isadog.py # Once the adjust_results4_isadog function has been defined replace 'None' # in the function call with in_arg.dogfile Once you have done the # replacements your function call should look like this: # adjust_results4_isadog(results, in_arg.dogfile) # Adjusts the results dictionary to determine if classifier correctly # classified images as 'a dog' or 'not a dog'. This demonstrates if # model can correctly classify dog images as dogs (regardless of breed) adjust_results4_isadog(results, in_arg.dogfile) # Function that checks Results Dictionary for is-a-dog adjustment using results check_classifying_labels_as_dogs(results) # TODO 5: Define calculates_results_stats function within the file calculates_results_stats.py # This function creates the results statistics dictionary that contains a # summary of the results statistics (this includes counts & percentages). This # dictionary is returned from the function call as the variable results_stats # Calculates results of run and puts statistics in the Results Statistics # Dictionary - called results_stats results_stats = calculates_results_stats(results) # Function that checks Results Statistics Dictionary using results_stats check_calculating_results(results, results_stats) # TODO 6: Define print_results function within the file print_results.py # Once the print_results function has been defined replace 'None' # in the function call with in_arg.arch Once you have done the # replacements your function call should look like this: # print_results(results, results_stats, in_arg.arch, True, True) # Prints summary results, incorrect classifications of dogs (if requested) # and incorrectly classified breeds (if requested) print_results(results, results_stats, in_arg.arch, True, True) # TODO 0: Measure total program runtime by collecting end time end_time = time() # TODO 0: Computes overall runtime in seconds & prints it in hh:mm:ss format tot_time = end_time-start_time#calculate difference between end time and start time print("\n** Total Elapsed Runtime:", str(int((tot_time/3600)))+":"+str(int((tot_time%3600)/60))+":" +str(int((tot_time%3600)%60)) ) # Call to main function to run the program if __name__ == "__main__": main()
the-stack_0_4804
import asyncio import warnings import pytest from distributed import Worker, WorkerPlugin from distributed.utils_test import async_wait_for, gen_cluster, inc class MyPlugin(WorkerPlugin): name = "MyPlugin" def __init__(self, data, expected_notifications=None): self.data = data self.expected_notifications = expected_notifications def setup(self, worker): assert isinstance(worker, Worker) self.worker = worker self.worker._my_plugin_status = "setup" self.worker._my_plugin_data = self.data self.observed_notifications = [] def teardown(self, worker): self.worker._my_plugin_status = "teardown" if self.expected_notifications is not None: assert len(self.observed_notifications) == len(self.expected_notifications) for expected, real in zip( self.expected_notifications, self.observed_notifications ): assert expected == real def transition(self, key, start, finish, **kwargs): self.observed_notifications.append( {"key": key, "start": start, "finish": finish} ) @gen_cluster(client=True, nthreads=[]) async def test_create_with_client(c, s): await c.register_worker_plugin(MyPlugin(123)) worker = await Worker(s.address, loop=s.loop) assert worker._my_plugin_status == "setup" assert worker._my_plugin_data == 123 await worker.close() assert worker._my_plugin_status == "teardown" @gen_cluster(client=True, nthreads=[]) async def test_remove_with_client(c, s): await c.register_worker_plugin(MyPlugin(123), name="foo") await c.register_worker_plugin(MyPlugin(546), name="bar") worker = await Worker(s.address, loop=s.loop) # remove the 'foo' plugin await c.unregister_worker_plugin("foo") assert worker._my_plugin_status == "teardown" # check that on the scheduler registered worker plugins we only have 'bar' assert len(s.worker_plugins) == 1 assert "bar" in s.worker_plugins # check on the worker plugins that we only have 'bar' assert len(worker.plugins) == 1 assert "bar" in worker.plugins # let's remove 'bar' and we should have none worker plugins await c.unregister_worker_plugin("bar") assert worker._my_plugin_status == "teardown" assert not s.worker_plugins assert not worker.plugins @gen_cluster(client=True, nthreads=[]) async def test_remove_with_client_raises(c, s): await c.register_worker_plugin(MyPlugin(123), name="foo") worker = await Worker(s.address, loop=s.loop) with pytest.raises(ValueError, match="bar"): await c.unregister_worker_plugin("bar") @gen_cluster(client=True, worker_kwargs={"plugins": [MyPlugin(5)]}) async def test_create_on_construction(c, s, a, b): assert len(a.plugins) == len(b.plugins) == 1 assert a._my_plugin_status == "setup" assert a._my_plugin_data == 5 @gen_cluster(nthreads=[("127.0.0.1", 1)], client=True) async def test_normal_task_transitions_called(c, s, w): expected_notifications = [ {"key": "task", "start": "released", "finish": "waiting"}, {"key": "task", "start": "waiting", "finish": "ready"}, {"key": "task", "start": "ready", "finish": "executing"}, {"key": "task", "start": "executing", "finish": "memory"}, {"key": "task", "start": "memory", "finish": "released"}, {"key": "task", "start": "released", "finish": "forgotten"}, ] plugin = MyPlugin(1, expected_notifications=expected_notifications) await c.register_worker_plugin(plugin) await c.submit(lambda x: x, 1, key="task") await async_wait_for(lambda: not w.tasks, timeout=10) @gen_cluster(nthreads=[("127.0.0.1", 1)], client=True) async def test_failing_task_transitions_called(c, s, w): def failing(x): raise Exception() expected_notifications = [ {"key": "task", "start": "released", "finish": "waiting"}, {"key": "task", "start": "waiting", "finish": "ready"}, {"key": "task", "start": "ready", "finish": "executing"}, {"key": "task", "start": "executing", "finish": "error"}, {"key": "task", "start": "error", "finish": "released"}, {"key": "task", "start": "released", "finish": "forgotten"}, ] plugin = MyPlugin(1, expected_notifications=expected_notifications) await c.register_worker_plugin(plugin) with pytest.raises(Exception): await c.submit(failing, 1, key="task") @gen_cluster( nthreads=[("127.0.0.1", 1)], client=True, worker_kwargs={"resources": {"X": 1}} ) async def test_superseding_task_transitions_called(c, s, w): expected_notifications = [ {"key": "task", "start": "released", "finish": "waiting"}, {"key": "task", "start": "waiting", "finish": "constrained"}, {"key": "task", "start": "constrained", "finish": "executing"}, {"key": "task", "start": "executing", "finish": "memory"}, {"key": "task", "start": "memory", "finish": "released"}, {"key": "task", "start": "released", "finish": "forgotten"}, ] plugin = MyPlugin(1, expected_notifications=expected_notifications) await c.register_worker_plugin(plugin) await c.submit(lambda x: x, 1, key="task", resources={"X": 1}) await async_wait_for(lambda: not w.tasks, timeout=10) @gen_cluster(nthreads=[("127.0.0.1", 1)], client=True) async def test_dependent_tasks(c, s, w): dsk = {"dep": 1, "task": (inc, "dep")} expected_notifications = [ {"key": "dep", "start": "released", "finish": "waiting"}, {"key": "dep", "start": "waiting", "finish": "ready"}, {"key": "dep", "start": "ready", "finish": "executing"}, {"key": "dep", "start": "executing", "finish": "memory"}, {"key": "task", "start": "released", "finish": "waiting"}, {"key": "task", "start": "waiting", "finish": "ready"}, {"key": "task", "start": "ready", "finish": "executing"}, {"key": "task", "start": "executing", "finish": "memory"}, {"key": "dep", "start": "memory", "finish": "released"}, {"key": "task", "start": "memory", "finish": "released"}, {"key": "task", "start": "released", "finish": "forgotten"}, {"key": "dep", "start": "released", "finish": "forgotten"}, ] plugin = MyPlugin(1, expected_notifications=expected_notifications) await c.register_worker_plugin(plugin) await c.get(dsk, "task", sync=False) await async_wait_for(lambda: not w.tasks, timeout=10) @gen_cluster(nthreads=[("127.0.0.1", 1)], client=True) async def test_empty_plugin(c, s, w): class EmptyPlugin: pass await c.register_worker_plugin(EmptyPlugin()) @gen_cluster(nthreads=[("127.0.0.1", 1)], client=True) async def test_default_name(c, s, w): class MyCustomPlugin(WorkerPlugin): pass await c.register_worker_plugin(MyCustomPlugin()) assert len(w.plugins) == 1 assert next(iter(w.plugins)).startswith("MyCustomPlugin-") @gen_cluster(client=True, nthreads=[("", 1)]) async def test_assert_no_warning_no_overload(c, s, a): """Assert we do not receive a deprecation warning if we do not overload any methods """ class Dummy(WorkerPlugin): pass with warnings.catch_warnings(record=True) as record: await c.register_worker_plugin(Dummy()) assert await c.submit(inc, 1, key="x") == 2 while "x" in a.tasks: await asyncio.sleep(0.01) assert not record @gen_cluster(nthreads=[("127.0.0.1", 1)], client=True) async def test_WorkerPlugin_overwrite(c, s, w): class MyCustomPlugin(WorkerPlugin): name = "custom" def setup(self, worker): self.worker = worker self.worker.foo = 0 def transition(self, *args, **kwargs): self.worker.foo = 123 def teardown(self, worker): del self.worker.foo await c.register_worker_plugin(MyCustomPlugin()) assert w.foo == 0 await c.submit(inc, 0) assert w.foo == 123 while s.tasks or w.tasks: await asyncio.sleep(0.01) class MyCustomPlugin(WorkerPlugin): name = "custom" def setup(self, worker): self.worker = worker self.worker.bar = 0 def transition(self, *args, **kwargs): self.worker.bar = 456 def teardown(self, worker): del self.worker.bar await c.register_worker_plugin(MyCustomPlugin()) assert not hasattr(w, "foo") assert w.bar == 0 await c.submit(inc, 0) assert w.bar == 456
the-stack_0_4806
import unittest import paddle.v2.fluid.core as core from paddle.v2.fluid.executor import Executor import paddle.v2.fluid.layers as layers from paddle.v2.fluid.backward import append_backward_ops from paddle.v2.fluid.framework import g_main_program import numpy class TestShrinkRNNMemory(unittest.TestCase): def test_shrink_rnn_memory(self): x = layers.data('x', shape=[100], data_type='float32') x.stop_gradient = False table = layers.lod_rank_table(x=x) i = layers.zeros(dtype='int64', shape=[1]) mem1 = layers.shrink_memory(x=x, i=i, table=table) i = layers.increment(x=i) i.stop_gradient = True mem2 = layers.shrink_memory(x=mem1, i=i, table=table) i = layers.increment(x=i) i.stop_gradient = True mem3 = layers.shrink_memory(x=mem2, i=i, table=table) cpu = core.CPUPlace() tensor = core.LoDTensor() tensor.set_lod([[0, 2, 5, 6]]) tensor_np = numpy.random.random(size=(3, 100)).astype('float32') tensor.set(tensor_np, cpu) exe = Executor(cpu) outs = map(numpy.array, exe.run(feed={'x': tensor}, fetch_list=[mem1, mem2, mem3])) self.assertTrue(numpy.allclose(tensor_np[0:3], outs[0])) self.assertTrue(numpy.allclose(tensor_np[0:2], outs[1])) self.assertTrue(numpy.allclose(tensor_np[0:1], outs[2])) mem3_mean = layers.mean(x=mem3) append_backward_ops(loss=mem3_mean) x_grad = map(numpy.array, exe.run(feed={'x': tensor}, fetch_list=[ g_main_program.global_block().var('x@GRAD') ]))[0] self.assertAlmostEqual(1.0, x_grad.sum(), delta=0.1) if __name__ == '__main__': unittest.main()
the-stack_0_4807
#!/usr/bin/env python # coding=utf-8 """ Ant Group Copyright (c) 2004-2021 All Rights Reserved. ------------------------------------------------------ File Name : lr_train_and_predict.py Author : Qizhi Zhang Email: [email protected] Create Time : 2021/5/21 上午10:13 Description : description what the main function of this file """ from stensorflow.engine.start_server import start_local_server, start_client import tensorflow as tf from stensorflow.global_var import StfConfig from stensorflow.basic.basic_class.private import PrivateTensor from stensorflow.ml.logistic_regression import LogisticRegression import numpy as np import random import time random.seed(0) """ A Example of training a LR model on a dataset of feature number 291 and predict using this model. The features are in the party L, the label is in the party R. """ #start_local_server(config_file="../conf/config_ym.json") start_local_server(config_file="../conf/config_epsilon.json") #start_client(config_file="../conf/config_ym.json", job_name="workerR") matchColNum = 0 featureNumX = 3000 featureNumY = 0 record_num = 10 epoch = 100 batch_size = 2 learning_rate = 0.01 clip_value = 5.0 train_batch_num = epoch * record_num // batch_size + 1 pred_record_num = 10 pred_batch_num = pred_record_num // batch_size + 1 # -------------define a private tensor x_train of party L and a private tensor y_train on the party R x_train = PrivateTensor(owner='L') y_train = PrivateTensor(owner='R') format_x = [["a"]] * matchColNum + [[0.2]] * featureNumX format_y = [["a"]] * matchColNum + [[0.3]] * featureNumY + [[1.0]] # ----------------- load data from files ------------------- x_train.load_from_file(path=StfConfig.train_file_onL, record_defaults=format_x, batch_size=batch_size, repeat=epoch + 2, skip_col_num=matchColNum, clip_value=clip_value, skip_row_num=0) y_train.load_from_file(path=StfConfig.train_file_onR, record_defaults=format_y, batch_size=batch_size, repeat=epoch + 2, skip_col_num=matchColNum, clip_value=clip_value, skip_row_num=0) print("StfConfig.parties=", StfConfig.parties) # ----------- build a LR model --------------- model = LogisticRegression(num_features=featureNumX + featureNumY, learning_rate=learning_rate) # -------------start a tensorflow session, and initialize all variables ----------------- sess = tf.compat.v1.Session(StfConfig.target) init_op = tf.compat.v1.global_variables_initializer() sess.run(init_op) # -------------train the model ------------------------ start_time = time.time() model.fit(sess=sess, x=x_train, y=y_train, num_batches=train_batch_num) print("train time=", time.time()-start_time) save_op = model.save(model_file_path="./") sess.run(save_op) # ------------define the private tensors for test dataset ---------------- x_test = PrivateTensor(owner='L') y_test = PrivateTensor(owner='R') x_test.load_from_file(path=StfConfig.pred_file_onL, record_defaults=format_x, batch_size=batch_size, repeat=2, skip_col_num=matchColNum, clip_value=clip_value, skip_row_num=0) id = y_test.load_from_file_withid(path=StfConfig.pred_file_onR, record_defaults=format_y, batch_size=batch_size, repeat=2, id_col_num=matchColNum, clip_value=clip_value, skip_row_num=0) # --------------predict -------------- model.predict(id, x_test, pred_batch_num, sess) sess.close()
the-stack_0_4808
# https://math.stackexchange.com/questions/4231713/has-anyone-ever-attempted-to-find-all-splits-of-a-rectangle-into-smaller-rectang # from random import randint from numpy import random # from pymclevel.box import BoundingBox def make2dList(nRows, nCols): newList = [] for row in xrange(nRows): # give each new row an empty list newList.append([]) for col in xrange(nCols): # initialize with 0s newList[row].append(0) return newList class RectangleSplitter: def __init__(self, width, length): self._groundMatrix = make2dList(width, length) self.newRectMinWidth = 0 # min(width, 3) self.newRectMinLength = 0 # min(length, 3) # docs: https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState # distribution graphs: https://statdist.com/ self.randomState = random.RandomState() # def __init__(self, selectionBox) -> None: # selectionBox = BoundingBox(selectionBox) # DEBUG: to get the class shown correctly in IDE # self._groundMatrix = make2dList(selectionBox.width, selectionBox.length) def Partition(self, partitionCount): """ example groundMatrix: y0, y1, y2 x0 [0 1 2] x1 [3 4 5] x2 [6 7 8] x3 [ 9 10 11] Algorithm: for n = partitionCount - random left or top edge - count number of distinct rectangles on that edge + at which index they start - random amount of rect to use (full length) - push border random % amount in => parameter - fill with new index """ for n in xrange(1, partitionCount): self.CalculatePartition(n) return self._groundMatrix def CalculatePartition(self, n): print("partition: " + str(n)) # left = self.randomState.randint(0, 2) left = n % 2 leftRectStartList = self.GetListOfLeftBorderRectangleStarts() leftRectBorderCount = len(leftRectStartList) topRectStartList = self.GetListOfTopBorderRectangleStarts() topRectBorderCount = len(topRectStartList) # add the end of base rectangle as last elements: topRectStartList.append(len(self._groundMatrix[0])) leftRectStartList.append(len(self._groundMatrix)) # print("left List: " + str(leftRectBorderCount)) # print(leftRectStartList) # print("top List: " + str(topRectBorderCount)) # print(topRectStartList) if left == 1: # push from left rectIndex = self.GetRandomPushy(0, topRectBorderCount) min_width = 0 # max(self.newRectMinWidth, leftRectStartList[0]-1) newRectMaxX = self.GetRandomNormal(min_width, leftRectStartList[0] - 1) newRectMaxY = topRectStartList[rectIndex]-1 # next rect start is the max # print("push from left to x/y: " + str(newRectMaxX) + "/" + str(newRectMaxY)) elif left == 0: # push from top rectIndex = self.GetRandomPushy(0, leftRectBorderCount) newRectMaxX = leftRectStartList[rectIndex]-1 # next rect start is the max min_width = 0 # max(self.newRectMinWidth, leftRectStartList[0] - 1) newRectMaxY = self.GetRandomNormal(min_width, topRectStartList[0] - 1) # print("push from top to x/y: " + str(newRectMaxX) + "/" + str(newRectMaxY)) self.FillNextPartition(n, newRectMaxX, newRectMaxY) # print(self._groundMatrix) def FillNextPartition(self, partitionId, maxX, maxY): for x in xrange(0, maxX + 1): for z in xrange(0, maxY + 1): self._groundMatrix[x][z] = partitionId def GetListOfTopBorderRectangleStarts(self): count = [] lastRectangleId = -1 for yi, y in enumerate(self._groundMatrix[0]): if y != lastRectangleId: count.append(yi) lastRectangleId = y count.pop(0) # remove first change return count def GetListOfLeftBorderRectangleStarts(self): count = [] lastRectangleId = -1 for yi, y in enumerate(self._groundMatrix): if y[0] != lastRectangleId: count.append(yi) lastRectangleId = y[0] count.pop(0) # remove first change return count def GetRandomPushy(self, start, end): if end <= start: return start value = self.randomState.beta(4, 2) # value = self.randomState.normal(0.5, 0.1) # value = self.randomState.beta(1, 1) # uniform #print ("rand value between " + str(start) + " end " + str(end) + " is: " + str(value)) value = int(round(start + (value / float(1 / float(end - start))))) #print ("rand value between " + str(start) + " end " + str(end) + " is: " + str(value)) return value def GetRandomNormal(self, start, end): if end <= start: return start # value = self.randomState.beta(2, 4) value = self.randomState.normal(0.5, 0.1) # value = self.randomState.beta(1, 1) # uniform #print ("rand value between " + str(start) + " end " + str(end) + " is: " + str(value)) value = int(round(start + (value / float(1 / float(end - start))))) #print ("rand value between " + str(start) + " end " + str(end) + " is: " + str(value)) return value
the-stack_0_4811
#!/usr/bin/env python3 # Software License Agreement (BSD License) # # Copyright (c) 2021, UFACTORY, Inc. # All rights reserved. # # Author: Vinman <[email protected]> <[email protected]> from launch import LaunchDescription from launch.actions import IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource from launch.substitutions import LaunchConfiguration, PathJoinSubstitution from launch_ros.substitutions import FindPackageShare def generate_launch_description(): prefix = LaunchConfiguration('prefix', default='') hw_ns = LaunchConfiguration('hw_ns', default='xarm') limited = LaunchConfiguration('limited', default=False) effort_control = LaunchConfiguration('effort_control', default=False) velocity_control = LaunchConfiguration('velocity_control', default=False) add_gripper = LaunchConfiguration('add_gripper', default=False) add_vacuum_gripper = LaunchConfiguration('add_vacuum_gripper', default=False) add_other_geometry = LaunchConfiguration('add_other_geometry', default=False) geometry_type = LaunchConfiguration('geometry_type', default='box') geometry_mass = LaunchConfiguration('geometry_mass', default=0.1) geometry_height = LaunchConfiguration('geometry_height', default=0.1) geometry_radius = LaunchConfiguration('geometry_radius', default=0.1) geometry_length = LaunchConfiguration('geometry_length', default=0.1) geometry_width = LaunchConfiguration('geometry_width', default=0.1) geometry_mesh_filename = LaunchConfiguration('geometry_mesh_filename', default='') geometry_mesh_origin_xyz = LaunchConfiguration('geometry_mesh_origin_xyz', default='"0 0 0"') geometry_mesh_origin_rpy = LaunchConfiguration('geometry_mesh_origin_rpy', default='"0 0 0"') geometry_mesh_tcp_xyz = LaunchConfiguration('geometry_mesh_tcp_xyz', default='"0 0 0"') geometry_mesh_tcp_rpy = LaunchConfiguration('geometry_mesh_tcp_rpy', default='"0 0 0"') # xarm moveit gazebo launch # xarm_moveit_config/launch/_xarm_moveit_gazobo.launch.py xarm_moveit_gazebo_launch = IncludeLaunchDescription( PythonLaunchDescriptionSource(PathJoinSubstitution([FindPackageShare('xarm_moveit_config'), 'launch', '_xarm_moveit_gazebo.launch.py'])), launch_arguments={ 'prefix': prefix, 'hw_ns': hw_ns, 'limited': limited, 'effort_control': effort_control, 'velocity_control': velocity_control, 'add_gripper': add_gripper, 'add_vacuum_gripper': add_vacuum_gripper, 'dof': '7', 'no_gui_ctrl': 'false', 'add_other_geometry': add_other_geometry, 'geometry_type': geometry_type, 'geometry_mass': geometry_mass, 'geometry_height': geometry_height, 'geometry_radius': geometry_radius, 'geometry_length': geometry_length, 'geometry_width': geometry_width, 'geometry_mesh_filename': geometry_mesh_filename, 'geometry_mesh_origin_xyz': geometry_mesh_origin_xyz, 'geometry_mesh_origin_rpy': geometry_mesh_origin_rpy, 'geometry_mesh_tcp_xyz': geometry_mesh_tcp_xyz, 'geometry_mesh_tcp_rpy': geometry_mesh_tcp_rpy, }.items(), ) return LaunchDescription([ xarm_moveit_gazebo_launch ])
the-stack_0_4813
""" Holds classes and utility methods related to build graph """ import copy import logging import os import threading from pathlib import Path from typing import Sequence, Tuple, List, Any, Optional, Dict, cast, NamedTuple from copy import deepcopy from uuid import uuid4 import tomlkit from samcli.lib.build.exceptions import InvalidBuildGraphException from samcli.lib.providers.provider import Function, LayerVersion from samcli.lib.samlib.resource_metadata_normalizer import ( SAM_RESOURCE_ID_KEY, SAM_IS_NORMALIZED, ) from samcli.lib.utils.packagetype import ZIP from samcli.lib.utils.architecture import X86_64 LOG = logging.getLogger(__name__) DEFAULT_BUILD_GRAPH_FILE_NAME = "build.toml" DEFAULT_DEPENDENCIES_DIR = os.path.join(".aws-sam", "deps") # filed names for the toml table PACKAGETYPE_FIELD = "packagetype" CODE_URI_FIELD = "codeuri" RUNTIME_FIELD = "runtime" METADATA_FIELD = "metadata" FUNCTIONS_FIELD = "functions" SOURCE_HASH_FIELD = "source_hash" MANIFEST_HASH_FIELD = "manifest_hash" ENV_VARS_FIELD = "env_vars" LAYER_NAME_FIELD = "layer_name" BUILD_METHOD_FIELD = "build_method" COMPATIBLE_RUNTIMES_FIELD = "compatible_runtimes" LAYER_FIELD = "layer" ARCHITECTURE_FIELD = "architecture" HANDLER_FIELD = "handler" def _function_build_definition_to_toml_table( function_build_definition: "FunctionBuildDefinition", ) -> tomlkit.api.Table: """ Converts given function_build_definition into toml table representation Parameters ---------- function_build_definition: FunctionBuildDefinition FunctionBuildDefinition which will be converted into toml table Returns ------- tomlkit.api.Table toml table of FunctionBuildDefinition """ toml_table = tomlkit.table() if function_build_definition.packagetype == ZIP: toml_table[CODE_URI_FIELD] = function_build_definition.codeuri toml_table[RUNTIME_FIELD] = function_build_definition.runtime toml_table[ARCHITECTURE_FIELD] = function_build_definition.architecture toml_table[HANDLER_FIELD] = function_build_definition.handler if function_build_definition.source_hash: toml_table[SOURCE_HASH_FIELD] = function_build_definition.source_hash toml_table[MANIFEST_HASH_FIELD] = function_build_definition.manifest_hash toml_table[PACKAGETYPE_FIELD] = function_build_definition.packagetype toml_table[FUNCTIONS_FIELD] = [f.full_path for f in function_build_definition.functions] if function_build_definition.metadata: toml_table[METADATA_FIELD] = function_build_definition.metadata if function_build_definition.env_vars: toml_table[ENV_VARS_FIELD] = function_build_definition.env_vars return toml_table def _toml_table_to_function_build_definition(uuid: str, toml_table: tomlkit.api.Table) -> "FunctionBuildDefinition": """ Converts given toml table into FunctionBuildDefinition instance Parameters ---------- uuid: str key of the function toml_table instance toml_table: tomlkit.api.Table function build definition as toml table Returns ------- FunctionBuildDefinition FunctionBuildDefinition of given toml table """ function_build_definition = FunctionBuildDefinition( toml_table.get(RUNTIME_FIELD), toml_table.get(CODE_URI_FIELD), toml_table.get(PACKAGETYPE_FIELD, ZIP), toml_table.get(ARCHITECTURE_FIELD, X86_64), dict(toml_table.get(METADATA_FIELD, {})), toml_table.get(HANDLER_FIELD, ""), toml_table.get(SOURCE_HASH_FIELD, ""), toml_table.get(MANIFEST_HASH_FIELD, ""), dict(toml_table.get(ENV_VARS_FIELD, {})), ) function_build_definition.uuid = uuid return function_build_definition def _layer_build_definition_to_toml_table(layer_build_definition: "LayerBuildDefinition") -> tomlkit.api.Table: """ Converts given layer_build_definition into toml table representation Parameters ---------- layer_build_definition: LayerBuildDefinition LayerBuildDefinition which will be converted into toml table Returns ------- tomlkit.api.Table toml table of LayerBuildDefinition """ toml_table = tomlkit.table() toml_table[LAYER_NAME_FIELD] = layer_build_definition.full_path toml_table[CODE_URI_FIELD] = layer_build_definition.codeuri toml_table[BUILD_METHOD_FIELD] = layer_build_definition.build_method toml_table[COMPATIBLE_RUNTIMES_FIELD] = layer_build_definition.compatible_runtimes toml_table[ARCHITECTURE_FIELD] = layer_build_definition.architecture if layer_build_definition.source_hash: toml_table[SOURCE_HASH_FIELD] = layer_build_definition.source_hash toml_table[MANIFEST_HASH_FIELD] = layer_build_definition.manifest_hash if layer_build_definition.env_vars: toml_table[ENV_VARS_FIELD] = layer_build_definition.env_vars toml_table[LAYER_FIELD] = layer_build_definition.layer.full_path return toml_table def _toml_table_to_layer_build_definition(uuid: str, toml_table: tomlkit.api.Table) -> "LayerBuildDefinition": """ Converts given toml table into LayerBuildDefinition instance Parameters ---------- uuid: str key of the toml_table instance toml_table: tomlkit.api.Table layer build definition as toml table Returns ------- LayerBuildDefinition LayerBuildDefinition of given toml table """ layer_build_definition = LayerBuildDefinition( toml_table.get(LAYER_NAME_FIELD), toml_table.get(CODE_URI_FIELD), toml_table.get(BUILD_METHOD_FIELD), toml_table.get(COMPATIBLE_RUNTIMES_FIELD), toml_table.get(ARCHITECTURE_FIELD, X86_64), toml_table.get(SOURCE_HASH_FIELD, ""), toml_table.get(MANIFEST_HASH_FIELD, ""), dict(toml_table.get(ENV_VARS_FIELD, {})), ) layer_build_definition.uuid = uuid return layer_build_definition class BuildHashingInformation(NamedTuple): """ Holds hashing information for the source folder and the manifest file """ source_hash: str manifest_hash: str class BuildGraph: """ Contains list of build definitions, with ability to read and write them into build.toml file """ # private lock for build.toml reads and writes __toml_lock = threading.Lock() # global table build definitions key FUNCTION_BUILD_DEFINITIONS = "function_build_definitions" LAYER_BUILD_DEFINITIONS = "layer_build_definitions" def __init__(self, build_dir: str) -> None: # put build.toml file inside .aws-sam folder self._filepath = Path(build_dir).parent.joinpath(DEFAULT_BUILD_GRAPH_FILE_NAME) self._function_build_definitions: List["FunctionBuildDefinition"] = [] self._layer_build_definitions: List["LayerBuildDefinition"] = [] self._atomic_read() def get_function_build_definitions(self) -> Tuple["FunctionBuildDefinition", ...]: return tuple(self._function_build_definitions) def get_layer_build_definitions(self) -> Tuple["LayerBuildDefinition", ...]: return tuple(self._layer_build_definitions) def get_function_build_definition_with_full_path( self, function_full_path: str ) -> Optional["FunctionBuildDefinition"]: """ Returns FunctionBuildDefinition instance of given function logical id. Parameters ---------- function_full_path : str Function full path that will be searched in the function build definitions Returns ------- Optional[FunctionBuildDefinition] If a function build definition found returns it, otherwise returns None """ for function_build_definition in self._function_build_definitions: for build_definition_function in function_build_definition.functions: if build_definition_function.full_path == function_full_path: return function_build_definition return None def put_function_build_definition( self, function_build_definition: "FunctionBuildDefinition", function: Function ) -> None: """ Puts the newly read function build definition into existing build graph. If graph already contains a function build definition which is same as the newly passed one, then it will add the function to the existing one, discarding the new one If graph doesn't contain such unique function build definition, it will be added to the current build graph Parameters ---------- function_build_definition: FunctionBuildDefinition function build definition which is newly read from template.yaml file function: Function function details for this function build definition """ if function_build_definition in self._function_build_definitions: previous_build_definition = self._function_build_definitions[ self._function_build_definitions.index(function_build_definition) ] LOG.debug( "Same function build definition found, adding function (Previous: %s, Current: %s, Function: %s)", previous_build_definition, function_build_definition, function, ) previous_build_definition.add_function(function) else: LOG.debug( "Unique function build definition found, adding as new (Function Build Definition: %s, Function: %s)", function_build_definition, function, ) function_build_definition.add_function(function) self._function_build_definitions.append(function_build_definition) def put_layer_build_definition(self, layer_build_definition: "LayerBuildDefinition", layer: LayerVersion) -> None: """ Puts the newly read layer build definition into existing build graph. If graph already contains a layer build definition which is same as the newly passed one, then it will add the layer to the existing one, discarding the new one If graph doesn't contain such unique layer build definition, it will be added to the current build graph Parameters ---------- layer_build_definition: LayerBuildDefinition layer build definition which is newly read from template.yaml file layer: Layer layer details for this layer build definition """ if layer_build_definition in self._layer_build_definitions: previous_build_definition = self._layer_build_definitions[ self._layer_build_definitions.index(layer_build_definition) ] LOG.debug( "Same Layer build definition found, adding layer (Previous: %s, Current: %s, Layer: %s)", previous_build_definition, layer_build_definition, layer, ) previous_build_definition.layer = layer else: LOG.debug( "Unique Layer build definition found, adding as new (Layer Build Definition: %s, Layer: %s)", layer_build_definition, layer, ) layer_build_definition.layer = layer self._layer_build_definitions.append(layer_build_definition) def clean_redundant_definitions_and_update(self, persist: bool) -> None: """ Removes build definitions which doesn't have any function in it, which means these build definitions are no longer used, and they can be deleted If persist parameter is given True, build graph is written to .aws-sam/build.toml file """ self._function_build_definitions[:] = [ fbd for fbd in self._function_build_definitions if len(fbd.functions) > 0 ] self._layer_build_definitions[:] = [bd for bd in self._layer_build_definitions if bd.layer] if persist: self._atomic_write() def update_definition_hash(self) -> None: """ Updates the build.toml file with the newest source_hash values of the partial build's definitions This operation is atomic, that no other thread accesses build.toml during the process of reading and modifying the hash value """ with BuildGraph.__toml_lock: stored_function_definitions = copy.deepcopy(self._function_build_definitions) stored_layer_definitions = copy.deepcopy(self._layer_build_definitions) self._read() function_content = BuildGraph._compare_hash_changes( stored_function_definitions, self._function_build_definitions ) layer_content = BuildGraph._compare_hash_changes(stored_layer_definitions, self._layer_build_definitions) if function_content or layer_content: self._write_source_hash(function_content, layer_content) self._function_build_definitions = stored_function_definitions self._layer_build_definitions = stored_layer_definitions @staticmethod def _compare_hash_changes( input_list: Sequence["AbstractBuildDefinition"], compared_list: Sequence["AbstractBuildDefinition"] ) -> Dict[str, BuildHashingInformation]: """ Helper to compare the function and layer definition changes in hash value Returns a dictionary that has uuid as key, updated hash value as value """ content = {} for compared_def in compared_list: for stored_def in input_list: if stored_def == compared_def: old_hash = compared_def.source_hash updated_hash = stored_def.source_hash old_manifest_hash = compared_def.manifest_hash updated_manifest_hash = stored_def.manifest_hash uuid = stored_def.uuid if old_hash != updated_hash or old_manifest_hash != updated_manifest_hash: content[uuid] = BuildHashingInformation(updated_hash, updated_manifest_hash) compared_def.download_dependencies = old_manifest_hash != updated_manifest_hash return content def _write_source_hash( self, function_content: Dict[str, BuildHashingInformation], layer_content: Dict[str, BuildHashingInformation] ) -> None: """ Helper to write source_hash values to build.toml file """ document = {} if not self._filepath.exists(): open(self._filepath, "a+").close() # pylint: disable=consider-using-with txt = self._filepath.read_text() # .loads() returns a TOMLDocument, # and it behaves like a standard dictionary according to https://github.com/sdispater/tomlkit. # in tomlkit 0.7.2, the types are broken (tomlkit#128, #130, #134) so here we convert it to Dict. document = cast(Dict, tomlkit.loads(txt)) for function_uuid, hashing_info in function_content.items(): if function_uuid in document.get(BuildGraph.FUNCTION_BUILD_DEFINITIONS, {}): function_build_definition = document[BuildGraph.FUNCTION_BUILD_DEFINITIONS][function_uuid] function_build_definition[SOURCE_HASH_FIELD] = hashing_info.source_hash function_build_definition[MANIFEST_HASH_FIELD] = hashing_info.manifest_hash LOG.info( "Updated source_hash and manifest_hash field in build.toml for function with UUID %s", function_uuid ) for layer_uuid, hashing_info in layer_content.items(): if layer_uuid in document.get(BuildGraph.LAYER_BUILD_DEFINITIONS, {}): layer_build_definition = document[BuildGraph.LAYER_BUILD_DEFINITIONS][layer_uuid] layer_build_definition[SOURCE_HASH_FIELD] = hashing_info.source_hash layer_build_definition[MANIFEST_HASH_FIELD] = hashing_info.manifest_hash LOG.info("Updated source_hash and manifest_hash field in build.toml for layer with UUID %s", layer_uuid) self._filepath.write_text(tomlkit.dumps(document)) # type: ignore def _read(self) -> None: """ Reads build.toml file into array of build definition Each build definition will have empty function list, which will be populated from the current template.yaml file """ LOG.debug("Instantiating build definitions") self._function_build_definitions = [] self._layer_build_definitions = [] document = {} try: txt = self._filepath.read_text() # .loads() returns a TOMLDocument, # and it behaves like a standard dictionary according to https://github.com/sdispater/tomlkit. # in tomlkit 0.7.2, the types are broken (tomlkit#128, #130, #134) so here we convert it to Dict. document = cast(Dict, tomlkit.loads(txt)) except OSError: LOG.debug("No previous build graph found, generating new one") function_build_definitions_table = document.get(BuildGraph.FUNCTION_BUILD_DEFINITIONS, {}) for function_build_definition_key in function_build_definitions_table: function_build_definition = _toml_table_to_function_build_definition( function_build_definition_key, function_build_definitions_table[function_build_definition_key] ) self._function_build_definitions.append(function_build_definition) layer_build_definitions_table = document.get(BuildGraph.LAYER_BUILD_DEFINITIONS, {}) for layer_build_definition_key in layer_build_definitions_table: layer_build_definition = _toml_table_to_layer_build_definition( layer_build_definition_key, layer_build_definitions_table[layer_build_definition_key] ) self._layer_build_definitions.append(layer_build_definition) def _atomic_read(self) -> None: """ Performs the _read() method with a global lock acquired It makes sure no other thread accesses build.toml when a read is happening """ with BuildGraph.__toml_lock: self._read() def _write(self) -> None: """ Writes build definition details into build.toml file, which would be used by the next build. build.toml file will contain the same information as build graph, function details will only be preserved as function names layer details will only be preserved as layer names """ # convert build definition list into toml table function_build_definitions_table = tomlkit.table() for function_build_definition in self._function_build_definitions: build_definition_as_table = _function_build_definition_to_toml_table(function_build_definition) function_build_definitions_table.add(function_build_definition.uuid, build_definition_as_table) layer_build_definitions_table = tomlkit.table() for layer_build_definition in self._layer_build_definitions: build_definition_as_table = _layer_build_definition_to_toml_table(layer_build_definition) layer_build_definitions_table.add(layer_build_definition.uuid, build_definition_as_table) # create toml document and add build definitions document = tomlkit.document() document.add(tomlkit.comment("This file is auto generated by SAM CLI build command")) # we need to cast `Table` to `Item` because of tomlkit#135. document.add(BuildGraph.FUNCTION_BUILD_DEFINITIONS, cast(tomlkit.items.Item, function_build_definitions_table)) document.add(BuildGraph.LAYER_BUILD_DEFINITIONS, cast(tomlkit.items.Item, layer_build_definitions_table)) if not self._filepath.exists(): open(self._filepath, "a+").close() # pylint: disable=consider-using-with self._filepath.write_text(tomlkit.dumps(document)) def _atomic_write(self) -> None: """ Performs the _write() method with a global lock acquired It makes sure no other thread accesses build.toml when a write is happening """ with BuildGraph.__toml_lock: self._write() class AbstractBuildDefinition: """ Abstract class for build definition Build definition holds information about each unique build """ def __init__( self, source_hash: str, manifest_hash: str, env_vars: Optional[Dict] = None, architecture: str = X86_64 ) -> None: self.uuid = str(uuid4()) self.source_hash = source_hash self.manifest_hash = manifest_hash self._env_vars = env_vars if env_vars else {} self.architecture = architecture # following properties are used during build time and they don't serialize into build.toml file self.download_dependencies: bool = True @property def dependencies_dir(self) -> str: return str(os.path.join(DEFAULT_DEPENDENCIES_DIR, self.uuid)) @property def env_vars(self) -> Dict: return deepcopy(self._env_vars) class LayerBuildDefinition(AbstractBuildDefinition): """ LayerBuildDefinition holds information about each unique layer build """ def __init__( self, full_path: str, codeuri: Optional[str], build_method: Optional[str], compatible_runtimes: Optional[List[str]], architecture: str, source_hash: str = "", manifest_hash: str = "", env_vars: Optional[Dict] = None, ): super().__init__(source_hash, manifest_hash, env_vars, architecture) self.full_path = full_path self.codeuri = codeuri self.build_method = build_method self.compatible_runtimes = compatible_runtimes # Note(xinhol): In our code, we assume "layer" is never None. We should refactor # this and move "layer" out of LayerBuildDefinition to take advantage of type check. self.layer: LayerVersion = None # type: ignore def __str__(self) -> str: return ( f"LayerBuildDefinition({self.full_path}, {self.codeuri}, {self.source_hash}, {self.uuid}, " f"{self.build_method}, {self.compatible_runtimes}, {self.architecture}, {self.env_vars})" ) def __eq__(self, other: Any) -> bool: """ Checks equality of the layer build definition Parameters ---------- other: Any other layer build definition to compare Returns ------- bool True if both layer build definitions has same following properties, False otherwise """ if not isinstance(other, LayerBuildDefinition): return False return ( self.full_path == other.full_path and self.codeuri == other.codeuri and self.build_method == other.build_method and self.compatible_runtimes == other.compatible_runtimes and self.env_vars == other.env_vars and self.architecture == other.architecture ) class FunctionBuildDefinition(AbstractBuildDefinition): """ LayerBuildDefinition holds information about each unique function build """ def __init__( self, runtime: Optional[str], codeuri: Optional[str], packagetype: str, architecture: str, metadata: Optional[Dict], handler: Optional[str], source_hash: str = "", manifest_hash: str = "", env_vars: Optional[Dict] = None, ) -> None: super().__init__(source_hash, manifest_hash, env_vars, architecture) self.runtime = runtime self.codeuri = codeuri self.packagetype = packagetype self.handler = handler # Skip SAM Added metadata properties metadata_copied = deepcopy(metadata) if metadata else {} metadata_copied.pop(SAM_RESOURCE_ID_KEY, "") metadata_copied.pop(SAM_IS_NORMALIZED, "") self.metadata = metadata_copied self.functions: List[Function] = [] def add_function(self, function: Function) -> None: self.functions.append(function) def get_function_name(self) -> str: self._validate_functions() return self.functions[0].name def get_handler_name(self) -> Optional[str]: self._validate_functions() return self.functions[0].handler def get_full_path(self) -> str: """ Return the build identifier of the first function """ self._validate_functions() return self.functions[0].full_path def get_build_dir(self, artifact_root_dir: str) -> str: """ Return the directory path relative to root build directory """ self._validate_functions() return self.functions[0].get_build_dir(artifact_root_dir) def _validate_functions(self) -> None: if not self.functions: raise InvalidBuildGraphException("Build definition doesn't have any function definition to build") def __str__(self) -> str: return ( "BuildDefinition(" f"{self.runtime}, {self.codeuri}, {self.packagetype}, {self.source_hash}, " f"{self.uuid}, {self.metadata}, {self.env_vars}, {self.architecture}, " f"{[f.functionname for f in self.functions]})" ) def __eq__(self, other: Any) -> bool: """ Checks equality of the function build definition Parameters ---------- other: Any other function build definition to compare Returns ------- bool True if both function build definitions has same following properties, False otherwise """ if not isinstance(other, FunctionBuildDefinition): return False # each build with custom Makefile definition should be handled separately if self.metadata and self.metadata.get("BuildMethod", None) == "makefile": return False if self.metadata and self.metadata.get("BuildMethod", None) == "esbuild": # For esbuild, we need to check if handlers within the same CodeUri are the same # if they are different, it should create a separate build definition if self.handler != other.handler: return False return ( self.runtime == other.runtime and self.codeuri == other.codeuri and self.packagetype == other.packagetype and self.metadata == other.metadata and self.env_vars == other.env_vars and self.architecture == other.architecture )
the-stack_0_4814
''' userManager for Docklet provide a class for managing users and usergroups in Docklet Warning: in some early versions, "token" stand for the instance of class model.User now it stands for a string that can be parsed to get that instance. in all functions start with "@administration_required" or "@administration_or_self_required", "token" is the instance Original author: Liu Peidong ''' from model import db, User, UserGroup, Notification, UserUsage from functools import wraps import os, subprocess, math import hashlib import pam from base64 import b64encode import env from settings import settings import smtplib from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.header import Header from datetime import datetime import json from log import logger from lvmtool import * PAM = pam.pam() fspath = env.getenv('FS_PREFIX') data_quota = env.getenv('DATA_QUOTA') data_quota_cmd = env.getenv('DATA_QUOTA_CMD') if (env.getenv('EXTERNAL_LOGIN').lower() == 'true'): from plugin import external_receive def administration_required(func): @wraps(func) def wrapper(*args, **kwargs): if ( ('cur_user' in kwargs) == False): return {"success":'false', "reason":"Cannot get cur_user"} cur_user = kwargs['cur_user'] if ((cur_user.user_group == 'admin') or (cur_user.user_group == 'root')): return func(*args, **kwargs) else: return {"success": 'false', "reason": 'Unauthorized Action'} return wrapper def administration_or_self_required(func): @wraps(func) def wrapper(*args, **kwargs): if ( (not ('cur_user' in kwargs)) or (not ('user' in kwargs))): return {"success":'false', "reason":"Cannot get cur_user or user"} cur_user = kwargs['cur_user'] user = kwargs['user'] if ((cur_user.user_group == 'admin') or (cur_user.user_group == 'root') or (cur_user.username == user.username)): return func(*args, **kwargs) else: return {"success": 'false', "reason": 'Unauthorized Action'} return wrapper def token_required(func): @wraps(func) def wrapper(*args, **kwargs): if ( ('cur_user' in kwargs) == False): return {"success":'false', "reason":"Cannot get cur_user"} return func(*args, **kwargs) return wrapper def send_activated_email(to_address, username): email_from_address = settings.get('EMAIL_FROM_ADDRESS') if (email_from_address in ['\'\'', '\"\"', '']): return #text = 'Dear '+ username + ':\n' + ' Your account in docklet has been activated' text = '<html><h4>Dear '+ username + ':</h4>' text += '''<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Your account in <a href='%s'>%s</a> has been activated</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Enjoy your personal workspace in the cloud !</p> <br> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Note: DO NOT reply to this email!</p> <br><br> <p> <a href='http://docklet.unias.org'>Docklet Team</a>, SEI, PKU</p> ''' % (env.getenv("PORTAL_URL"), env.getenv("PORTAL_URL")) text += '<p>'+ str(datetime.now()) + '</p>' text += '</html>' subject = 'Docklet account activated' msg = MIMEMultipart() textmsg = MIMEText(text,'html','utf-8') msg['Subject'] = Header(subject, 'utf-8') msg['From'] = email_from_address msg['To'] = to_address msg.attach(textmsg) s = smtplib.SMTP() s.connect() s.sendmail(email_from_address, to_address, msg.as_string()) s.close() def send_remind_activating_email(username): #admin_email_address = env.getenv('ADMIN_EMAIL_ADDRESS') nulladdr = ['\'\'', '\"\"', ''] email_from_address = settings.get('EMAIL_FROM_ADDRESS') admin_email_address = settings.get('ADMIN_EMAIL_ADDRESS') if (email_from_address in nulladdr or admin_email_address in nulladdr): return #text = 'Dear '+ username + ':\n' + ' Your account in docklet has been activated' text = '<html><h4>Dear '+ 'admin' + ':</h4>' text += '''<p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;An activating request for %s in <a href='%s'>%s</a> has been sent</p> <p>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Please check it !</p> <br/><br/> <p> Docklet Team, SEI, PKU</p> ''' % (username, env.getenv("PORTAL_URL"), env.getenv("PORTAL_URL")) text += '<p>'+ str(datetime.utcnow()) + '</p>' text += '</html>' subject = 'An activating request in Docklet has been sent' if admin_email_address[0] == '"': admins_addr = admin_email_address[1:-1].split(" ") else: admins_addr = admin_email_address.split(" ") alladdr="" for addr in admins_addr: alladdr = alladdr+addr+", " alladdr=alladdr[:-2] msg = MIMEMultipart() textmsg = MIMEText(text,'html','utf-8') msg['Subject'] = Header(subject, 'utf-8') msg['From'] = email_from_address msg['To'] = alladdr msg.attach(textmsg) s = smtplib.SMTP() s.connect() try: s.sendmail(email_from_address, admins_addr, msg.as_string()) except Exception as e: logger.error(e) s.close() class userManager: def __init__(self, username = 'root', password = None): ''' Try to create the database when there is none initialize 'root' user and 'root' & 'primary' group ''' try: User.query.all() except: db.create_all() if password == None: #set a random password password = os.urandom(16) password = b64encode(password).decode('utf-8') fsdir = env.getenv('FS_PREFIX') f = open(fsdir + '/local/generated_password.txt', 'w') f.write("User=%s\nPass=%s\n"%(username, password)) f.close() sys_admin = User(username, hashlib.sha512(password.encode('utf-8')).hexdigest()) sys_admin.status = 'normal' sys_admin.nickname = 'root' sys_admin.description = 'Root_User' sys_admin.user_group = 'root' sys_admin.auth_method = 'local' db.session.add(sys_admin) path = env.getenv('DOCKLET_LIB') subprocess.call([path+"/userinit.sh", username]) db.session.commit() if not os.path.exists(fspath+"/global/sys/quota"): groupfile = open(fspath+"/global/sys/quota",'w') groups = [] groups.append({'name':'root', 'quotas':{ 'cpu':'4', 'disk':'2000', 'data':'100', 'memory':'2000', 'image':'10', 'idletime':'24', 'vnode':'8', 'portmapping': '8', 'input_rate_limit':'10000', 'output_rate_limit':'10000'}}) groups.append({'name':'admin', 'quotas':{'cpu':'4', 'disk':'2000', 'data':'100', 'memory':'2000', 'image':'10', 'idletime':'24', 'vnode':'8', 'portmapping': '8', 'input_rate_limit':'10000', 'output_rate_limit':'10000'}}) groups.append({'name':'primary', 'quotas':{'cpu':'4', 'disk':'2000', 'data':'100', 'memory':'2000', 'image':'10', 'idletime':'24', 'vnode':'8', 'portmapping': '8', 'input_rate_limit':'10000', 'output_rate_limit':'10000'}}) groups.append({'name':'foundation', 'quotas':{'cpu':'4', 'disk':'2000', 'data':'100', 'memory':'2000', 'image':'10', 'idletime':'24', 'vnode':'8', 'portmapping': '8', 'input_rate_limit':'10000', 'output_rate_limit':'10000'}}) groupfile.write(json.dumps(groups)) groupfile.close() if not os.path.exists(fspath+"/global/sys/quotainfo"): quotafile = open(fspath+"/global/sys/quotainfo",'w') quotas = {} quotas['default'] = 'foundation' quotas['quotainfo'] = [] quotas['quotainfo'].append({'name':'cpu', 'hint':'the cpu quota, number of cores, e.g. 4'}) quotas['quotainfo'].append({'name':'memory', 'hint':'the memory quota, number of MB , e.g. 4000'}) quotas['quotainfo'].append({'name':'disk', 'hint':'the disk quota, number of MB, e.g. 4000'}) quotas['quotainfo'].append({'name':'data', 'hint':'the quota of data space, number of GB, e.g. 100'}) quotas['quotainfo'].append({'name':'image', 'hint':'how many images the user can save, e.g. 10'}) quotas['quotainfo'].append({'name':'idletime', 'hint':'will stop cluster after idletime, number of hours, e.g. 24'}) quotas['quotainfo'].append({'name':'vnode', 'hint':'how many containers the user can have, e.g. 8'}) quotas['quotainfo'].append({'name':'portmapping', 'hint':'how many ports the user can map, e.g. 8'}) quotas['quotainfo'].append({'name':'input_rate_limit', 'hint':'the ingress speed of the network, number of kbps. 0 means the rate are unlimited.'}) quotas['quotainfo'].append({'name':'output_rate_limit', 'hint':'the egress speed of the network, number of kbps. 0 means the rate are unlimited.'}) quotafile.write(json.dumps(quotas)) quotafile.close() if not os.path.exists(fspath+"/global/sys/lxc.default"): settingfile = open(fspath+"/global/sys/lxc.default", 'w') settings = {} settings['cpu'] = "2" settings["memory"] = "2000" settings["disk"] = "2000" settingfile.write(json.dumps(settings)) settingfile.close() try: UserUsage.query.all() except: db.create_all() def auth_local(self, username, password): password = hashlib.sha512(password.encode('utf-8')).hexdigest() user = User.query.filter_by(username = username).first() if (user == None): return {"success":'false', "reason": "User did not exist"} if (user.password != password): return {"success":'false', "reason": "Wrong password"} result = { "success": 'true', "data":{ "username" : user.username, "avatar" : user.avatar, "nickname" : user.nickname, "description" : user.description, "status" : user.status, "group" : user.user_group, "token" : user.generate_auth_token(), } } return result def auth_pam(self, username, password): user = User.query.filter_by(username = username).first() pamresult = PAM.authenticate(username, password) if (pamresult == False or (user != None and user.auth_method != 'pam')): return {"success":'false', "reason": "Wrong password or wrong login method"} if (user == None): newuser = self.newuser(); newuser.username = username newuser.password = "no_password" newuser.nickname = username newuser.status = "init" newuser.user_group = "primary" newuser.auth_method = "pam" self.register(user = newuser) user = User.query.filter_by(username = username).first() result = { "success": 'true', "data":{ "username" : user.username, "avatar" : user.avatar, "nickname" : user.nickname, "description" : user.description, "status" : user.status, "group" : user.user_group, "token" : user.generate_auth_token(), } } return result def auth_external(self, form): if (env.getenv('EXTERNAL_LOGIN') != 'True'): failed_result = {'success': 'false', 'reason' : 'external auth disabled'} return failed_result result = external_receive.external_auth_receive_request(form) if (result['success'] != 'True'): failed_result = {'success':'false', 'result': result} return failed_result username = result['username'] user = User.query.filter_by(username = username).first() if (user != None and user.auth_method == result['auth_method']): result = { "success": 'true', "data":{ "username" : user.username, "avatar" : user.avatar, "nickname" : user.nickname, "description" : user.description, "status" : user.status, "group" : user.user_group, "token" : user.generate_auth_token(), } } return result if (user != None and user.auth_method != result['auth_method']): result = {'success': 'false', 'reason': 'other kinds of account already exists'} return result #user == None , register an account for external user newuser = self.newuser(); newuser.username = result['username'] newuser.password = result['password'] newuser.avatar = result['avatar'] newuser.nickname = result['nickname'] newuser.description = result['description'] newuser.e_mail = result['e_mail'] newuser.truename = result['truename'] newuser.student_number = result['student_number'] newuser.status = result['status'] newuser.user_group = result['user_group'] newuser.auth_method = result['auth_method'] newuser.department = result['department'] newuser.tel = result['tel'] self.register(user = newuser) user = User.query.filter_by(username = username).first() result = { "success": 'true', "data":{ "username" : user.username, "avatar" : user.avatar, "nickname" : user.nickname, "description" : user.description, "status" : user.status, "group" : user.user_group, "token" : user.generate_auth_token(), } } return result def auth(self, username, password): ''' authenticate a user by username & password return a token as well as some user information ''' user = User.query.filter_by(username = username).first() if (user == None or user.auth_method =='pam'): return self.auth_pam(username, password) elif (user.auth_method == 'local'): return self.auth_local(username, password) else: result = {'success':'false', 'reason':'auth_method error'} return result def auth_token(self, token): ''' authenticate a user by a token when succeeded, return the database iterator otherwise return None ''' user = User.verify_auth_token(token) return user def set_nfs_quota_bygroup(self,groupname, quota): if not data_quota == "True": return users = User.query.filter_by(user_group = groupname).all() for user in users: self.set_nfs_quota(user.username, quota) def set_nfs_quota(self, username, quota): if not data_quota == "True": return nfspath = "/users/%s/data" % username try: cmd = data_quota_cmd % (nfspath,quota+"GB") sys_run(cmd.strip('"')) except Exception as e: logger.error(e) @administration_required def query(*args, **kwargs): ''' Usage: query(username = 'xxx', cur_user = token_from_auth) || query(ID = a_integer, cur_user = token_from_auth) Provide information about one user that administrators need to use ''' if ( 'ID' in kwargs): user = User.query.filter_by(id = kwargs['ID']).first() if (user == None): return {"success":False, "reason":"User does not exist"} result = { "success":'true', "data":{ "username" : user.username, "password" : user.password, "avatar" : user.avatar, "nickname" : user.nickname, "description" : user.description, "status" : user.status, "e_mail" : user.e_mail, "student_number": user.student_number, "department" : user.department, "truename" : user.truename, "tel" : user.tel, "register_date" : "%s"%(user.register_date), "group" : user.user_group, "description" : user.description, "beans" : user.beans, }, "token": user } return result if ( 'username' not in kwargs): return {"success":'false', "reason":"Cannot get 'username'"} username = kwargs['username'] user = User.query.filter_by(username = username).first() if (user == None): return {"success":'false', "reason":"User does not exist"} result = { "success": 'true', "data":{ "username" : user.username, "password" : user.password, "avatar" : user.avatar, "nickname" : user.nickname, "description" : user.description, "status" : user.status, "e_mail" : user.e_mail, "student_number": user.student_number, "department" : user.department, "truename" : user.truename, "tel" : user.tel, "register_date" : "%s"%(user.register_date), "group" : user.user_group, "beans" : user.beans, }, "token": user } return result @token_required def selfQuery(*args, **kwargs): ''' Usage: selfQuery(cur_user = token_from_auth) List informantion for oneself ''' user = kwargs['cur_user'] groupfile = open(fspath+"/global/sys/quota",'r') groups = json.loads(groupfile.read()) groupfile.close() group = None for one_group in groups: if one_group['name'] == user.user_group: group = one_group['quotas'] break else: for one_group in groups: if one_group['name'] == "primary": group = one_group['quotas'] break result = { "success": 'true', "data":{ "username" : user.username, "id": user.id, "password" : user.password, "avatar" : user.avatar, "nickname" : user.nickname, "description" : user.description, "status" : user.status, "e_mail" : user.e_mail, "student_number": user.student_number, "department" : user.department, "truename" : user.truename, "tel" : user.tel, "register_date" : "%s"%(user.register_date), "group" : user.user_group, "groupinfo": group, "beans" : user.beans, "auth_method": user.auth_method, }, } return result @token_required def selfModify(*args, **kwargs): ''' Usage: selfModify(cur_user = token_from_auth, newValue = form) Modify informantion for oneself ''' form = kwargs['newValue'] name = form.get('name', None) value = form.get('value', None) if (name == None or value == None): result = {'success': 'false'} return result user = User.query.filter_by(username = kwargs['cur_user'].username).first() if (name == 'nickname'): user.nickname = value elif (name == 'description'): user.description = value elif (name == 'department'): user.department = value elif (name == 'e_mail'): user.e_mail = value elif (name == 'tel'): user.tel = value elif (name == 'password'): old_password = hashlib.sha512(form.get('old_value', '').encode('utf-8')).hexdigest() if (user.password != old_password): result = {'success': 'false'} return result user.password = hashlib.sha512(value.encode('utf-8')).hexdigest() else: result = {'success': 'false'} return result db.session.commit() result = {'success': 'true'} return result @token_required def usageQuery(self, *args, **kwargs): ''' Usage: usageQuery(cur_user = token_from_auth) Query the quota and usage of user ''' cur_user = kwargs['cur_user'] groupname = cur_user.user_group groupinfo = self.groupQuery(name = groupname)['data'] usage = UserUsage.query.filter_by(username = cur_user.username).first() if usage == None: new_usage = UserUsage(cur_user.username) db.session.add(new_usage) db.session.commit() usageinfo = { 'username': cur_user.username, 'cpu': '0', 'memory': '0', 'disk': '0' } else: usageinfo = { 'username': usage.username, 'cpu': usage.cpu, 'memory': usage.memory, 'disk': usage.disk } settingfile = open(fspath+"/global/sys/lxc.default" , 'r') defaultsetting = json.loads(settingfile.read()) settingfile.close() return {'success': 'true', 'quota' : groupinfo, 'usage' : usageinfo, 'default': defaultsetting } @token_required def usageInc(self, *args, **kwargs): ''' Usage: usageModify(cur_user = token_from_auth, modification = data_from_form) Modify the usage info of user ''' cur_user = kwargs['cur_user'] modification = kwargs['modification'] logger.info("record usage for user:%s" % cur_user.username) groupname = cur_user.user_group groupinfo = self.groupQuery(name = groupname)['data'] usage = UserUsage.query.filter_by(username = cur_user.username).first() if usage == None: new_usage = UserUsage(cur_user.username) db.session.add(new_usage) db.session.commit() usage = UserUsage.query.filter_by(username = cur_user.username).first() if int(modification['cpu']) <= 0 or int(modification['memory']) <= 0 or int(modification['disk']) <= 0: return {'success':False, 'result':"cpu,memory and disk setting cannot less than zero"} cpu = int(usage.cpu) + int(modification['cpu']) memory = int(usage.memory) + int(modification['memory']) disk = int(usage.disk) + int(modification['disk']) if cpu > int(groupinfo['cpu']): logger.error("cpu quota exceed, user:%s" % cur_user.username) return {'success':False, 'result':"cpu quota exceed"} if memory > int(groupinfo['memory']): logger.error("memory quota exceed, user:%s" % cur_user.username) return {'success':False, 'result':"memory quota exceed"} if disk > int(groupinfo['disk']): logger.error("disk quota exceed, user:%s" % cur_user.username) return {'success':False, 'result':"disk quota exceed"} usage.cpu = str(cpu) usage.memory = str(memory) usage.disk = str(disk) db.session.commit() return {'success':True, 'result':"distribute the resource"} @token_required def usageRecover(self, *args, **kwargs): ''' Usage: usageModify(cur_user = token_from_auth, modification = data_from_form) Recover the usage info when create container failed ''' cur_user = kwargs['cur_user'] modification = kwargs['modification'] logger.info("recover usage for user:%s" % cur_user.username) usage = UserUsage.query.filter_by(username = cur_user.username).first() if usage == None: new_usage = UserUsage(cur_user.username) db.session.add(new_usage) db.session.commit() usage = UserUsage.query.filter_by(username = cur_user.username).first() return True cpu = int(usage.cpu) - int(modification['cpu']) memory = int(usage.memory) - int(modification['memory']) disk = int(usage.disk) - int(modification['disk']) if cpu < 0: cpu = 0 if memory < 0: memory = 0 if disk < 0: disk = 0 usage.cpu = str(cpu) usage.memory = str(memory) usage.disk = str(disk) db.session.commit() return {'success':True} @token_required def usageRelease(self, *args, **kwargs): cur_user = kwargs['cur_user'] cpu = kwargs['cpu'] memory = kwargs['memory'] disk = kwargs['disk'] usage = UserUsage.query.filter_by(username = cur_user.username).first() if usage == None: new_usage = UserUsage(cur_user.username) db.session.add(new_usage) db.session.commit() return {'success':True} nowcpu = int(usage.cpu) - int(cpu) nowmemory = int(usage.memory) - int(memory) nowdisk = int(usage.disk) - int(disk) if nowcpu < 0: nowcpu = 0 if nowmemory < 0: nowmemory = 0 if nowdisk < 0: nowdisk = 0 usage.cpu = str(nowcpu) usage.memory = str(nowmemory) usage.disk = str(nowdisk) db.session.commit() return {'success':True} def initUsage(*args, **kwargs): """ init the usage info when start docklet with init mode """ usages = UserUsage.query.all() for usage in usages: usage.cpu = "0" usage.memory = "0" usage.disk = "0" db.session.commit() return True @administration_required def userList(*args, **kwargs): ''' Usage: list(cur_user = token_from_auth) List all users for an administrator ''' alluser = User.query.all() result = { "success": 'true', "data":[] } for user in alluser: userinfo = [ user.id, user.username, user.truename, user.e_mail, user.tel, "%s"%(user.register_date), user.status, user.user_group, user.beans, '', ] result["data"].append(userinfo) return result @administration_required def groupList(*args, **kwargs): ''' Usage: list(cur_user = token_from_auth) List all groups for an administrator ''' groupfile = open(fspath+"/global/sys/quota",'r') groups = json.loads(groupfile.read()) groupfile.close() quotafile = open(fspath+"/global/sys/quotainfo",'r') quotas = json.loads(quotafile.read()) quotafile.close() result = { "success": 'true', "groups": groups, "quotas": quotas['quotainfo'], "default": quotas['default'], } return result @administration_required def change_default_group(*args, **kwargs): form = kwargs['form'] default_group = form.get('defaultgroup') quotafile = open(fspath+"/global/sys/quotainfo",'r') quotas = json.loads(quotafile.read()) quotafile.close() quotas['default'] = default_group quotafile = open(fspath+"/global/sys/quotainfo",'w') quotafile.write(json.dumps(quotas)) quotafile.close() return { 'success':'true', 'action':'change default group' } def groupQuery(self, *args, **kwargs): ''' Usage: groupQuery(name = XXX, cur_user = token_from_auth) List a group for an administrator ''' groupfile = open(fspath+"/global/sys/quota",'r') groups = json.loads(groupfile.read()) groupfile.close() for group in groups: if group['name'] == kwargs['name']: result = { "success":'true', "data": group['quotas'], } return result else: return {"success":False, "reason":"Group does not exist"} @administration_required def groupListName(*args, **kwargs): ''' Usage: grouplist(cur_user = token_from_auth) List all group names for an administrator ''' groupfile = open(fspath+"/global/sys/quota",'r') groups = json.loads(groupfile.read()) groupfile.close() result = { "groups": [], } for group in groups: result["groups"].append(group['name']) return result @administration_required def groupModify(self, *args, **kwargs): ''' Usage: groupModify(newValue = dict_from_form, cur_user = token_from_auth) ''' groupfile = open(fspath+"/global/sys/quota",'r') groups = json.loads(groupfile.read()) groupfile.close() for group in groups: if group['name'] == kwargs['newValue'].get('groupname',None): form = kwargs['newValue'] for key in form.keys(): if key == "data": if not group['quotas'][key] == form.get(key): self.set_nfs_quota_bygroup(group['name'],form.get(key)) else: pass if key == "groupname" or key == "token": pass else: if key == "vnode": vnode = int(form['vnode']) val = str(2**(round(math.log(vnode+3, 2))) - 3 ) group["quotas"][key] = val else: group['quotas'][key] = form.get(key) groupfile = open(fspath+"/global/sys/quota",'w') groupfile.write(json.dumps(groups)) groupfile.close() return {"success":'true'} else: return {"success":'false', "reason":"UserGroup does not exist"} @administration_required def modify(self, *args, **kwargs): ''' modify a user's information in database will send an e-mail when status is changed from 'applying' to 'normal' Usage: modify(newValue = dict_from_form, cur_user = token_from_auth) ''' if ( kwargs['newValue'].get('Instruction', '') == 'Activate'): user_modify = User.query.filter_by(id = kwargs['newValue'].get('ID', None)).first() user_modify.status = 'normal' send_activated_email(user_modify.e_mail, user_modify.username) db.session.commit() return {"success": "true"} if ( kwargs['newValue'].get('password', '') != ''): user_modify = User.query.filter_by(username = kwargs['newValue'].get('username', None)).first() new_password = kwargs['newValue'].get('password','') new_password = hashlib.sha512(new_password.encode('utf-8')).hexdigest() user_modify.password = new_password db.session.commit() return {"success": "true"} user_modify = User.query.filter_by(username = kwargs['newValue'].get('username', None)).first() if (user_modify == None): return {"success":'false', "reason":"User does not exist"} #try: form = kwargs['newValue'] user_modify.truename = form.get('truename', '') user_modify.e_mail = form.get('e_mail', '') user_modify.department = form.get('department', '') user_modify.student_number = form.get('student_number', '') user_modify.tel = form.get('tel', '') user_modify.user_group = form.get('group', '') user_modify.auth_method = form.get('auth_method', '') if (user_modify.status == 'applying' and form.get('status', '') == 'normal'): send_activated_email(user_modify.e_mail, user_modify.username) user_modify.status = form.get('status', '') #if (form.get('password', '') != ''): #new_password = form.get('password','') #new_password = hashlib.sha512(new_password.encode('utf-8')).hexdigest() #user_modify.password = new_password #self.chpassword(cur_user = user_modify, password = form.get('password','no_password')) #modify password in another function now db.session.commit() res = self.groupQuery(name=user_modify.user_group) if res['success']: self.set_nfs_quota(user_modify.username,res['data']['data']) return {"success":'true'} #except: #return {"success":'false', "reason":"Something happened"} @token_required def chpassword(*args, **kwargs): ''' Usage: chpassword(cur_user = token_from_auth, password = 'your_password') ''' cur_user = kwargs['cur_user'] cur_user.password = hashlib.sha512(kwargs['password'].encode('utf-8')).hexdigest() def newuser(*args, **kwargs): ''' Usage : newuser() The only method to create a new user call this method first, modify the return value which is a database row instance,then call self.register() ''' user_new = User('newuser', 'asdf1234') quotafile = open(fspath+"/global/sys/quotainfo",'r') quotas = json.loads(quotafile.read()) quotafile.close() user_new.user_group = quotas['default'] user_new.avatar = 'default.png' return user_new def register(self, *args, **kwargs): ''' Usage: register(user = modified_from_newuser()) ''' if (kwargs['user'].username == None or kwargs['user'].username == ''): return {"success":'false', "reason": "Empty username"} user_check = User.query.filter_by(username = kwargs['user'].username).first() if (user_check != None and user_check.status != "init"): #for the activating form return {"success":'false', "reason": "Unauthorized action"} newuser = kwargs['user'] if (user_check != None and (user_check.status == "init")): db.session.delete(user_check) db.session.commit() else: newuser.password = hashlib.sha512(newuser.password.encode('utf-8')).hexdigest() db.session.add(newuser) db.session.commit() # if newuser status is normal, init some data for this user # now initialize for all kind of users #if newuser.status == 'normal': path = env.getenv('DOCKLET_LIB') subprocess.call([path+"/userinit.sh", newuser.username]) res = self.groupQuery(name=newuser.user_group) if res['success']: self.set_nfs_quota(newuser.username,res['data']['data']) return {"success":'true'} @administration_required def quotaadd(*args, **kwargs): form = kwargs.get('form') quotaname = form.get("quotaname") default_value = form.get("default_value") hint = form.get("hint") if (quotaname == None): return { "success":'false', "reason": "Empty quota name"} if (default_value == None): default_value = "--" groupfile = open(fspath+"/global/sys/quota",'r') groups = json.loads(groupfile.read()) groupfile.close() for group in groups: group['quotas'][quotaname] = default_value groupfile = open(fspath+"/global/sys/quota",'w') groupfile.write(json.dumps(groups)) groupfile.close() quotafile = open(fspath+"/global/sys/quotainfo",'r') quotas = json.loads(quotafile.read()) quotafile.close() quotas['quotainfo'].append({'name':quotaname, 'hint':hint}) quotafile = open(fspath+"/global/sys/quotainfo",'w') quotafile.write(json.dumps(quotas)) quotafile.close() return {"success":'true'} @administration_required def groupadd(*args, **kwargs): form = kwargs.get('form') groupname = form.get("groupname") if (groupname == None): return {"success":'false', "reason": "Empty group name"} groupfile = open(fspath+"/global/sys/quota",'r') groups = json.loads(groupfile.read()) groupfile.close() group = { 'name': groupname, 'quotas': {} } for key in form.keys(): if key == "groupname" or key == "token": pass else: if key == "vnode": vnode = int(form['vnode']) val = str(2**(round(math.log(vnode+3, 2))) - 3 ) group['quotas'][key] = val else: group['quotas'][key] = form.get(key) groups.append(group) groupfile = open(fspath+"/global/sys/quota",'w') groupfile.write(json.dumps(groups)) groupfile.close() return {"success":'true'} @administration_required def groupdel(*args, **kwargs): name = kwargs.get('name', None) if (name == None): return {"success":'false', "reason": "Empty group name"} groupfile = open(fspath+"/global/sys/quota",'r') groups = json.loads(groupfile.read()) groupfile.close() for group in groups: if group['name'] == name: groups.remove(group) break groupfile = open(fspath+"/global/sys/quota",'w') groupfile.write(json.dumps(groups)) groupfile.close() return {"success":'true'} @administration_required def lxcsettingList(*args, **kwargs): lxcsettingfile = open(fspath+"/global/sys/lxc.default", 'r') lxcsetting = json.loads(lxcsettingfile.read()) lxcsettingfile.close() return {"success": 'true', 'data':lxcsetting} @administration_required def chlxcsetting(*args, **kwargs): form = kwargs['form'] lxcsetting = {} lxcsetting['cpu'] = form['lxcCpu'] lxcsetting['memory'] = form['lxcMemory'] lxcsetting['disk'] = form['lxcDisk'] lxcsettingfile = open(fspath+"/global/sys/lxc.default", 'w') lxcsettingfile.write(json.dumps(lxcsetting)) lxcsettingfile.close() return {"success": 'true'} @administration_required def cloud_account_query(*args, **kwargs): accountfile = open(fspath+"/global/sys/cloudaccount", 'r') account = json.loads(accountfile.read()) accountfile.close() return {"success": 'true', 'accounts':account} @administration_required def cloud_account_add(*args, **kwargs): form = kwargs.get('form') accountfile = open(fspath+"/global/sys/cloudaccount", 'r') account = json.loads(accountfile.read()) accountfile.close() account.append( { 'cloudname' : form['cloudname'], 'username' : form['username'], 'password' : form['password'], }) accountfile = open(fspath+"/global/sys/cloudaccount", 'w') accountfile.write(json.dumps(account)) accountfile.close() return {"success": 'true'} @administration_required def cloud_account_del(*args, **kwargs): form = kwargs.get('form') cloudname = form['cloudname'] accountfile = open(fspath+"/global/sys/cloudaccount", 'r') account = json.loads(accountfile.read()) accountfile.close() for acc in account: if acc['cloudname'] == cloudname: account.remove(acc) break accountfile = open(fspath+"/global/sys/cloudaccount", 'w') accountfile.write(json.dumps(account)) accountfile.close() return {"success": 'true'} @administration_required def cloud_account_modify(*args, **kwargs): form = kwargs.get('form') cloudname = form['cloudname'] accountfile = open(fspath+"/global/sys/cloudaccount", 'r') account = json.loads(accountfile.read()) accountfile.close() for acc in account: if acc['cloudname'] == cloudname: acc['username'] = form['username'] acc['password'] = form['password'] break accountfile = open(fspath+"/global/sys/cloudaccount", 'w') accountfile.write(json.dumps(account)) accountfile.close() return {"success": "true"} def queryForDisplay(*args, **kwargs): ''' Usage: queryForDisplay(user = token_from_auth) Provide information about one user that administrators need to use ''' if ( 'user' not in kwargs): return {"success":'false', "reason":"Cannot get 'user'"} user = kwargs['user'] if (user == None): return {"success":'false', "reason":"User does not exist"} result = { "success": 'true', "data":{ "username" : user.username, "password" : user.password, "avatar" : user.avatar, "nickname" : user.nickname, "description" : user.description, "status" : user.status, "e_mail" : user.e_mail, "student_number": user.student_number, "department" : user.department, "truename" : user.truename, "tel" : user.tel, "register_date" : "%s"%(user.register_date), "group" : user.user_group, "auth_method": user.auth_method, } } return result # def usermodify(rowID, columnID, newValue, cur_user): # '''not used now''' # user = um.query(ID = request.form["rowID"], cur_user = root).get('token', None) # result = um.modify(user = user, columnID = request.form["columnID"], newValue = request.form["newValue"], cur_user = root) # return json.dumps(result)
the-stack_0_4815
#!python3 """ Python 3 wrapper for identifying objects in images Requires DLL compilation Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll". On a GPU system, you can force CPU evaluation by any of: - Set global variable DARKNET_FORCE_CPU to True - Set environment variable CUDA_VISIBLE_DEVICES to -1 - Set environment variable "FORCE_CPU" to "true" - Set environment variable "DARKNET_PATH" to path darknet lib .so (for Linux) Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`) Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py @author: Philip Kahn @date: 20180503 """ from ctypes import * import math import random import os class BOX(Structure): _fields_ = [("x", c_float), ("y", c_float), ("w", c_float), ("h", c_float)] class DETECTION(Structure): _fields_ = [("bbox", BOX), ("classes", c_int), ("prob", POINTER(c_float)), ("mask", POINTER(c_float)), ("objectness", c_float), ("sort_class", c_int), ("uc", POINTER(c_float)), ("points", c_int), ("embeddings", POINTER(c_float)), ("embedding_size", c_int), ("sim", c_float), ("track_id", c_int)] class DETNUMPAIR(Structure): _fields_ = [("num", c_int), ("dets", POINTER(DETECTION))] class IMAGE(Structure): _fields_ = [("w", c_int), ("h", c_int), ("c", c_int), ("data", POINTER(c_float))] class METADATA(Structure): _fields_ = [("classes", c_int), ("names", POINTER(c_char_p))] def network_width(net): return lib.network_width(net) def network_height(net): return lib.network_height(net) def bbox2points(bbox): """ From bounding box yolo format to corner points cv2 rectangle """ x, y, w, h = bbox xmin = int(round(x - (w / 2))) xmax = int(round(x + (w / 2))) ymin = int(round(y - (h / 2))) ymax = int(round(y + (h / 2))) return xmin, ymin, xmax, ymax def class_colors(names): """ Create a dict with one random BGR color for each class name """ return {name: ( random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for name in names} def load_network(config_file, data_file, weights, batch_size=1): """ load model description and weights from config files args: config_file (str): path to .cfg model file data_file (str): path to .data model file weights (str): path to weights returns: network: trained model class_names class_colors """ network = load_net_custom( config_file.encode("ascii"), weights.encode("ascii"), 0, batch_size) metadata = load_meta(data_file.encode("ascii")) class_names = [metadata.names[i].decode("ascii") for i in range(metadata.classes)] colors = class_colors(class_names) return network, class_names, colors def print_detections(detections): print("\nObjects:") for label, confidence, bbox in detections: if label == "person": x, y, w, h = bbox print("{}: {}%".format(label, confidence)) def draw_boxes(detections, image, colors): import cv2 for label, confidence, bbox in detections: if label == "person": left, top, right, bottom = bbox2points(bbox) cv2.rectangle(image, (left, top), (right, bottom), colors[label], 1) cv2.putText(image, "{} [{:.2f}]".format(label, float(confidence)), (left, top - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, colors[label], 2) return image def decode_detection(detections): decoded = [] for label, confidence, bbox in detections: confidence = str(round(confidence * 100, 2)) decoded.append((str(label), confidence, bbox)) return decoded def remove_negatives(detections, class_names, num): """ Remove all classes with 0% confidence within the detection """ predictions = [] for j in range(num): for idx, name in enumerate(class_names): if detections[j].prob[idx] > 0: bbox = detections[j].bbox bbox = (bbox.x, bbox.y, bbox.w, bbox.h) predictions.append((name, detections[j].prob[idx], (bbox))) return predictions def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45): """ Returns a list with highest confidence class and their bbox """ pnum = pointer(c_int(0)) predict_image(network, image) detections = get_network_boxes(network, image.w, image.h, thresh, hier_thresh, None, 0, pnum, 0) num = pnum[0] if nms: do_nms_sort(detections, num, len(class_names), nms) predictions = remove_negatives(detections, class_names, num) predictions = decode_detection(predictions) free_detections(detections, num) return sorted(predictions, key=lambda x: x[1]) # lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL) # lib = CDLL("libdarknet.so", RTLD_GLOBAL) hasGPU = True if os.name == "nt": cwd = os.path.dirname(__file__) os.environ['PATH'] = cwd + ';' + os.environ['PATH'] winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll") winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll") envKeys = list() for k, v in os.environ.items(): envKeys.append(k) try: try: tmp = os.environ["FORCE_CPU"].lower() if tmp in ["1", "true", "yes", "on"]: raise ValueError("ForceCPU") else: print("Flag value {} not forcing CPU mode".format(tmp)) except KeyError: # We never set the flag if 'CUDA_VISIBLE_DEVICES' in envKeys: if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0: raise ValueError("ForceCPU") try: global DARKNET_FORCE_CPU if DARKNET_FORCE_CPU: raise ValueError("ForceCPU") except NameError as cpu_error: print(cpu_error) if not os.path.exists(winGPUdll): raise ValueError("NoDLL") lib = CDLL(winGPUdll, RTLD_GLOBAL) except (KeyError, ValueError): hasGPU = False if os.path.exists(winNoGPUdll): lib = CDLL(winNoGPUdll, RTLD_GLOBAL) print("Notice: CPU-only mode") else: # Try the other way, in case no_gpu was compile but not renamed lib = CDLL(winGPUdll, RTLD_GLOBAL) print("Environment variables indicated a CPU run, but we didn't find {}. Trying a GPU run anyway.".format(winNoGPUdll)) else: lib = CDLL(os.path.join( os.environ.get('DARKNET_PATH', './'), "libdarknet.so"), RTLD_GLOBAL) lib.network_width.argtypes = [c_void_p] lib.network_width.restype = c_int lib.network_height.argtypes = [c_void_p] lib.network_height.restype = c_int copy_image_from_bytes = lib.copy_image_from_bytes copy_image_from_bytes.argtypes = [IMAGE,c_char_p] predict = lib.network_predict_ptr predict.argtypes = [c_void_p, POINTER(c_float)] predict.restype = POINTER(c_float) if hasGPU: set_gpu = lib.cuda_set_device set_gpu.argtypes = [c_int] init_cpu = lib.init_cpu make_image = lib.make_image make_image.argtypes = [c_int, c_int, c_int] make_image.restype = IMAGE get_network_boxes = lib.get_network_boxes get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int] get_network_boxes.restype = POINTER(DETECTION) make_network_boxes = lib.make_network_boxes make_network_boxes.argtypes = [c_void_p] make_network_boxes.restype = POINTER(DETECTION) free_detections = lib.free_detections free_detections.argtypes = [POINTER(DETECTION), c_int] free_batch_detections = lib.free_batch_detections free_batch_detections.argtypes = [POINTER(DETNUMPAIR), c_int] free_ptrs = lib.free_ptrs free_ptrs.argtypes = [POINTER(c_void_p), c_int] network_predict = lib.network_predict_ptr network_predict.argtypes = [c_void_p, POINTER(c_float)] reset_rnn = lib.reset_rnn reset_rnn.argtypes = [c_void_p] load_net = lib.load_network load_net.argtypes = [c_char_p, c_char_p, c_int] load_net.restype = c_void_p load_net_custom = lib.load_network_custom load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int] load_net_custom.restype = c_void_p free_network_ptr = lib.free_network_ptr free_network_ptr.argtypes = [c_void_p] free_network_ptr.restype = c_void_p do_nms_obj = lib.do_nms_obj do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] do_nms_sort = lib.do_nms_sort do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float] free_image = lib.free_image free_image.argtypes = [IMAGE] letterbox_image = lib.letterbox_image letterbox_image.argtypes = [IMAGE, c_int, c_int] letterbox_image.restype = IMAGE load_meta = lib.get_metadata lib.get_metadata.argtypes = [c_char_p] lib.get_metadata.restype = METADATA load_image = lib.load_image_color load_image.argtypes = [c_char_p, c_int, c_int] load_image.restype = IMAGE rgbgr_image = lib.rgbgr_image rgbgr_image.argtypes = [IMAGE] predict_image = lib.network_predict_image predict_image.argtypes = [c_void_p, IMAGE] predict_image.restype = POINTER(c_float) predict_image_letterbox = lib.network_predict_image_letterbox predict_image_letterbox.argtypes = [c_void_p, IMAGE] predict_image_letterbox.restype = POINTER(c_float) network_predict_batch = lib.network_predict_batch network_predict_batch.argtypes = [c_void_p, IMAGE, c_int, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, c_int] network_predict_batch.restype = POINTER(DETNUMPAIR)
the-stack_0_4816
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 2014-2021 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: Qiming Sun <[email protected]> # Susi Lehtola <[email protected]> ''' XC functional, the interface to libxc (http://www.tddft.org/programs/octopus/wiki/index.php/Libxc) ''' import sys import warnings import copy import ctypes import math import numpy from pyscf import lib from pyscf.dft.xc.utils import remove_dup, format_xc_code from pyscf import __config__ _itrf = lib.load_library('libxc_itrf') _itrf.LIBXC_is_lda.restype = ctypes.c_int _itrf.LIBXC_is_gga.restype = ctypes.c_int _itrf.LIBXC_is_meta_gga.restype = ctypes.c_int _itrf.LIBXC_needs_laplacian.restype = ctypes.c_int _itrf.LIBXC_needs_laplacian.argtypes = [ctypes.c_int] _itrf.LIBXC_is_hybrid.restype = ctypes.c_int _itrf.LIBXC_is_cam_rsh.restype = ctypes.c_int _itrf.LIBXC_max_deriv_order.restype = ctypes.c_int _itrf.LIBXC_number_of_functionals.restype = ctypes.c_int _itrf.LIBXC_functional_numbers.argtypes = (numpy.ctypeslib.ndpointer(dtype=numpy.intc, ndim=1, flags=("W", "C", "A")), ) _itrf.LIBXC_functional_name.argtypes = [ctypes.c_int] _itrf.LIBXC_functional_name.restype = ctypes.c_char_p _itrf.LIBXC_hybrid_coeff.argtypes = [ctypes.c_int] _itrf.LIBXC_hybrid_coeff.restype = ctypes.c_double _itrf.LIBXC_nlc_coeff.argtypes = [ctypes.c_int,ctypes.POINTER(ctypes.c_double)] _itrf.LIBXC_rsh_coeff.argtypes = [ctypes.c_int,ctypes.POINTER(ctypes.c_double)] _itrf.LIBXC_version.restype = ctypes.c_char_p _itrf.LIBXC_reference.restype = ctypes.c_char_p _itrf.LIBXC_reference_doi.restype = ctypes.c_char_p _itrf.LIBXC_xc_reference.argtypes = [ctypes.c_int, (ctypes.c_char_p * 8)] def libxc_version(): '''Returns the version of libxc''' return _itrf.LIBXC_version().decode("UTF-8") def libxc_reference(): '''Returns the reference to libxc''' return _itrf.LIBXC_reference().decode("UTF-8") def libxc_reference_doi(): '''Returns the reference to libxc''' return _itrf.LIBXC_reference_doi().decode("UTF-8") __version__ = libxc_version() __reference__ = libxc_reference() __reference_doi__ = libxc_reference_doi() # Runtime detection of available functionals dynamic_func = getattr(__config__, 'dft_libxc_dynamic', False) if dynamic_func: def available_libxc_functionals(): # Number of functionals is nfunc = _itrf.LIBXC_number_of_functionals() # Get functional numbers numbers = numpy.zeros(nfunc, dtype=numpy.intc) _itrf.LIBXC_functional_numbers(numbers) # Returned array return {_itrf.LIBXC_functional_name(x).decode("UTF-8").upper() : x for x in numbers} XC = XC_CODES = available_libxc_functionals() PROBLEMATIC_XC = dict([]) else: # XC dict is generated by #import pylibxc #for xcname in pylibxc.util.xc_available_functional_names(): # f = pylibxc.LibXCFunctional(xcname, 1) # f_id = f.get_number() # ref = f.get_references() # key = f"'{xcname.upper()}'" # print(f"{key:<31s}: {f_id:<3d}, # {ref[0]}") XC = XC_CODES = { 'LDA_C_1D_CSC' : 18 , # M. Casula, S. Sorella, and G. Senatore, Phys. Rev. B 74, 245427 (2006) 'LDA_C_1D_LOOS' : 26 , # P.-F. Loos, J. Chem. Phys. 138, 064108 (2013) 'LDA_C_2D_AMGB' : 15 , # C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. Lett. 88, 256601 (2002) 'LDA_C_2D_PRM' : 16 , # S. Pittalis, E. Rasanen, and M. A. L. Marques, Phys. Rev. B 78, 195322 (2008) 'LDA_C_BR78' : 552, # G. B. Jr. and S. M. Rothstein, J. Chem. Phys. 69, 1177 (1978) 'LDA_C_CHACHIYO' : 287, # T. Chachiyo, J. Chem. Phys. 145, 021101 (2016) 'LDA_C_CHACHIYO_MOD' : 307, # T. Chachiyo and H. Chachiyo, Comput. Theor. Chem. 1172, 112669 (2020) 'LDA_C_GK72' : 578, # R. G. Gordon and Y. S. Kim, J. Chem. Phys. 56, 3122 (1972) 'LDA_C_GL' : 5 , # O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976) 'LDA_C_GOMBAS' : 24 , # P. Gombas, Fortschr. Phys. 13, 137 (1965) 'LDA_C_HL' : 4 , # L. Hedin and B. I. Lundqvist, J. Phys. C: Solid State Phys. 4, 2064 (1971) 'LDA_C_KARASIEV' : 579, # V. V. Karasiev, J. Chem. Phys. 145, 157101 (2016) 'LDA_C_KARASIEV_MOD' : 308, # T. Chachiyo and H. Chachiyo, Comput. Theor. Chem. 1172, 112669 (2020) 'LDA_C_LP96' : 289, # S. Liu and R. G. Parr, Phys. Rev. A 53, 2211 (1996) 'LDA_C_MCWEENY' : 551, # R. McWeeny, in The New World of Quantum Chemistry, edited by B. Pullman and R. Parr (Reidel, Boston, 1976) pp. 3--31 'LDA_C_ML1' : 22 , # E. I. Proynov and D. R. Salahub, Phys. Rev. B 49, 7874 (1994) 'LDA_C_ML2' : 23 , # E. I. Proynov and D. R. Salahub, Phys. Rev. B 49, 7874 (1994) 'LDA_C_OB_PW' : 14 , # G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994) 'LDA_C_OB_PZ' : 11 , # G. Ortiz and P. Ballone, Phys. Rev. B 50, 1391 (1994) 'LDA_C_OW' : 574, # P. A. Stewart and P. M. W. Gill, J. Chem. Soc., Faraday Trans. 91, 4337 (1995) 'LDA_C_OW_LYP' : 573, # P. A. Stewart and P. M. W. Gill, J. Chem. Soc., Faraday Trans. 91, 4337 (1995) 'LDA_C_PK09' : 554, # E. Proynov and J. Kong, Phys. Rev. A 79, 014103 (2009) 'LDA_C_PMGB06' : 590, # S. Paziani, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. B 73, 155111 (2006) 'LDA_C_PW' : 12 , # J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992) 'LDA_C_PW_MOD' : 13 , # J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992), added extra digits to some constants as in the PBE routine (http://dft.rutgers.edu/pubs/PBE.asc) 'LDA_C_PW_RPA' : 25 , # J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992) 'LDA_C_PZ' : 9 , # J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981) 'LDA_C_PZ_MOD' : 10 , # J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981), modified to improve the matching between the low- and high-rs parts 'LDA_C_RC04' : 27 , # S. Ragot and P. Cortona, J. Chem. Phys. 121, 7671 (2004) 'LDA_C_RPA' : 3 , # M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957) 'LDA_C_RPW92' : 684, # M. Ruggeri, P. L. Rios, and A. Alavi, Phys. Rev. B 98, 161105 (2018) 'LDA_C_UPW92' : 683, # M. Ruggeri, P. L. Rios, and A. Alavi, Phys. Rev. B 98, 161105 (2018) 'LDA_C_VBH' : 17 , # U. von Barth and L. Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972) 'LDA_C_VWN' : 7 , # S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) 'LDA_C_VWN_1' : 28 , # S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) 'LDA_C_VWN_2' : 29 , # S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) 'LDA_C_VWN_3' : 30 , # S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) 'LDA_C_VWN_4' : 31 , # S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) 'LDA_C_VWN_RPA' : 8 , # S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980) 'LDA_C_WIGNER' : 2 , # E. Wigner, Trans. Faraday Soc. 34, 678 (1938) 'LDA_C_XALPHA' : 6 , # J. C. Slater, Phys. Rev. 81, 385 (1951) 'LDA_K_GDS08_WORKER' : 100001, # L. M. Ghiringhelli and L. Delle Site, Phys. Rev. B 77, 073104 (2008) 'LDA_K_LP' : 51 , # C. Lee and R. G. Parr, Phys. Rev. A 35, 2377 (1987) 'LDA_K_LP96' : 580, # S. Liu and R. G. Parr, Phys. Rev. A 53, 2211 (1996) 'LDA_K_TF' : 50 , # L. H. Thomas, Math. Proc. Cambridge Philos. Soc. 23, 542 (1927) 'LDA_K_ZLP' : 550, # P. Fuentealba and O. Reyes, Chem. Phys. Lett. 232, 31 (1995) 'LDA_X' : 1 , # P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930) 'LDA_X_1D_EXPONENTIAL' : 600, # N. Helbig, J. I. Fuks, M. Casula, M. J. Verstraete, M. A. L. Marques, I. V. Tokatly, and A. Rubio, Phys. Rev. A 83, 032503 (2011) 'LDA_X_1D_SOFT' : 21 , # N. Helbig, J. I. Fuks, M. Casula, M. J. Verstraete, M. A. L. Marques, I. V. Tokatly, and A. Rubio, Phys. Rev. A 83, 032503 (2011) 'LDA_X_2D' : 19 , # P. A. M. Dirac, Math. Proc. Cambridge Philos. Soc. 26, 376 (1930) 'LDA_X_ERF' : 546, # P. M. W. Gill, R. D. Adamson, and J. A. Pople, Mol. Phys. 88, 1005 (1996) 'LDA_X_RAE' : 549, # A. Rae, Chem. Phys. Lett. 18, 574 (1973) 'LDA_X_REL' : 532, # A. K. Rajagopal, J. Phys. C: Solid State Phys. 11, L943 (1978) 'LDA_X_SLOC' : 692, # K. Finzel and A. I. Baranov, Int. J. Quantum Chem. 117, 40 (2017) 'LDA_XC_1D_EHWLRG_1' : 536, # M. T. Entwistle, M. J. P. Hodgson, J. Wetherell, B. Longstaff, J. D. Ramsden, and R. W. Godby, Phys. Rev. B 94, 205134 (2016) 'LDA_XC_1D_EHWLRG_2' : 537, # M. T. Entwistle, M. J. P. Hodgson, J. Wetherell, B. Longstaff, J. D. Ramsden, and R. W. Godby, Phys. Rev. B 94, 205134 (2016) 'LDA_XC_1D_EHWLRG_3' : 538, # M. T. Entwistle, M. J. P. Hodgson, J. Wetherell, B. Longstaff, J. D. Ramsden, and R. W. Godby, Phys. Rev. B 94, 205134 (2016) 'LDA_XC_BN05' : 588, # R. Baer and D. Neuhauser, Phys. Rev. Lett. 94, 043002 (2005) 'LDA_XC_GDSMFB' : 577, # S. Groth, T. Dornheim, T. Sjostrom, F. D. Malone, W. M. C. Foulkes, and M. Bonitz, Phys. Rev. Lett. 119, 135001 (2017) 'LDA_XC_KSDT' : 259, # V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey, Phys. Rev. Lett. 112, 076403 (2014) 'LDA_XC_LP_A' : 547, # C. Lee and R. G. Parr, Phys. Rev. A 42, 193 (1990) 'LDA_XC_LP_B' : 548, # C. Lee and R. G. Parr, Phys. Rev. A 42, 193 (1990) 'LDA_XC_TETER93' : 20 , # S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996) 'LDA_XC_TIH' : 599, # D. J. Tozer, V. E. Ingamells, and N. C. Handy, J. Chem. Phys. 105, 9200 (1996) 'LDA_XC_ZLP' : 43 , # Q. Zhao, M. Levy, and R. G. Parr, Phys. Rev. A 47, 918 (1993) 'HYB_LDA_XC_CAM_LDA0' : 178, # M. A. Mosquera, C. H. Borca, M. A. Ratner, and G. C. Schatz, J. Phys. Chem. A 120, 1605 (2016) 'HYB_LDA_XC_LDA0' : 177, # P. Rinke, A. Schleife, E. Kioupakis, A. Janotti, C. Rodl, F. Bechstedt, M. Scheffler, and C. G. Van de Walle, Phys. Rev. Lett. 108, 126404 (2012) 'GGA_C_ACGGA' : 39 , # A. Cancio, G. P. Chen, B. T. Krull, and K. Burke, J. Chem. Phys. 149, 084116 (2018) 'GGA_C_ACGGAP' : 176, # A. Cancio, G. P. Chen, B. T. Krull, and K. Burke, J. Chem. Phys. 149, 084116 (2018) 'GGA_C_AM05' : 135, # R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005) 'GGA_C_APBE' : 186, # L. A. Constantin, E. Fabiano, S. Laricchia, and F. Della Sala, Phys. Rev. Lett. 106, 186406 (2011) 'GGA_C_BMK' : 280, # A. D. Boese and J. M. L. Martin, J. Chem. Phys. 121, 3405 (2004) 'GGA_C_CCDF' : 313, # J. T. Margraf, C. Kunkel, and K. Reuter, J. Chem. Phys. 150, 244116 (2019) 'GGA_C_CHACHIYO' : 309, # T. Chachiyo and H. Chachiyo, Comput. Theor. Chem. 1172, 112669 (2020) 'GGA_C_CS1' : 565, # N. C. Handy and A. J. Cohen, J. Chem. Phys. 116, 5411 (2002) 'GGA_C_FT97' : 88 , # M. Filatov and W. Thiel, Int. J. Quantum Chem. 62, 603 (1997) 'GGA_C_GAM' : 33 , # H. S. Yu, W. Zhang, P. Verma, X. He, and D. G. Truhlar, Phys. Chem. Chem. Phys. 17, 12146 (2015) 'GGA_C_GAPC' : 555, # E. Fabiano, P. E. Trevisanutto, A. Terentjevs, and L. A. Constantin, J. Chem. Theory Comput. 10, 2016 (2014) 'GGA_C_GAPLOC' : 556, # E. Fabiano, P. E. Trevisanutto, A. Terentjevs, and L. A. Constantin, J. Chem. Theory Comput. 10, 2016 (2014) 'GGA_C_HCTH_A' : 97 , # F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 109, 6264 (1998) 'GGA_C_HYB_TAU_HCTH' : 283, # A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002) 'GGA_C_LM' : 137, # D. C. Langreth and M. J. Mehl, Phys. Rev. Lett. 47, 446 (1981) 'GGA_C_LYP' : 131, # C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988) 'GGA_C_MGGAC' : 712, # B. Patra, S. Jana, L. A. Constantin, and P. Samal, Phys. Rev. B 100, 155140 (2019) 'GGA_C_N12' : 80 , # R. Peverati and D. G. Truhlar, J. Chem. Theory Comput. 8, 2310 (2012) 'GGA_C_N12_SX' : 79 , # R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 16187 (2012) 'GGA_C_OP_B88' : 87 , # T. Tsuneda, T. Suzumura, and K. Hirao, J. Chem. Phys. 110, 10664 (1999) 'GGA_C_OP_G96' : 85 , # T. Tsuneda, T. Suzumura, and K. Hirao, J. Chem. Phys. 110, 10664 (1999) 'GGA_C_OP_PBE' : 86 , # T. Tsuneda, T. Suzumura, and K. Hirao, J. Chem. Phys. 110, 10664 (1999) 'GGA_C_OP_PW91' : 262, # T. Tsuneda, T. Suzumura, and K. Hirao, J. Chem. Phys. 110, 10664 (1999) 'GGA_C_OP_XALPHA' : 84 , # T. Tsuneda, T. Suzumura, and K. Hirao, J. Chem. Phys. 110, 10664 (1999) 'GGA_C_OPTC' : 200, # A. J. Cohen and N. C. Handy, Mol. Phys. 99, 607 (2001) 'GGA_C_P86' : 132, # J. P. Perdew, Phys. Rev. B 33, 8822 (1986) 'GGA_C_P86_FT' : 217, # J. P. Perdew, Phys. Rev. B 33, 8822 (1986) 'GGA_C_P86VWN' : 252, # J. P. Perdew, Phys. Rev. B 33, 8822 (1986) 'GGA_C_P86VWN_FT' : 253, # J. P. Perdew, Phys. Rev. B 33, 8822 (1986) 'GGA_C_PBE' : 130, # J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 'GGA_C_PBE_JRGX' : 138, # L. S. Pedroza, A. J. R. da Silva, and K. Capelle, Phys. Rev. B 79, 201106 (2009) 'GGA_C_PBE_MOL' : 272, # J. M. del Campo, J. L. Gazquez, S. B. Trickey, and A. Vela, J. Chem. Phys. 136, 104108 (2012) 'GGA_C_PBE_SOL' : 133, # J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008) 'GGA_C_PBE_VWN' : 216, # E. Kraisler, G. Makov, and I. Kelson, Phys. Rev. A 82, 042516 (2010) 'GGA_C_PBEFE' : 258, # R. Sarmiento-Perez, S. Botti, and M. A. L. Marques, J. Chem. Theory Comput. 11, 3844 (2015) 'GGA_C_PBEINT' : 62 , # E. Fabiano, L. A. Constantin, and F. Della Sala, Phys. Rev. B 82, 113104 (2010) 'GGA_C_PBELOC' : 246, # L. A. Constantin, E. Fabiano, and F. Della Sala, Phys. Rev. B 86, 035130 (2012) 'GGA_C_PW91' : 134, # J. P. Perdew, in Proceedings of the 75. WE-Heraeus-Seminar and 21st Annual International Symposium on Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991) p. 11 'GGA_C_Q2D' : 47 , # L. Chiodo, L. A. Constantin, E. Fabiano, and F. Della Sala, Phys. Rev. Lett. 108, 126402 (2012) 'GGA_C_REGTPSS' : 83 , # J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009) 'GGA_C_REVTCA' : 99 , # V. Tognetti, P. Cortona, and C. Adamo, Chem. Phys. Lett. 460, 536 (2008) 'GGA_C_RGE2' : 143, # A. Ruzsinszky, G. I. Csonka, and G. E. Scuseria, J. Chem. Theory Comput. 5, 763 (2009) 'GGA_C_SCAN_E0' : 553, # J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015) 'GGA_C_SG4' : 534, # L. A. Constantin, A. Terentjevs, F. Della Sala, P. Cortona, and E. Fabiano, Phys. Rev. B 93, 045126 (2016) 'GGA_C_SOGGA11' : 152, # R. Peverati, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. Lett. 2, 1991 (2011) 'GGA_C_SOGGA11_X' : 159, # R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011) 'GGA_C_SPBE' : 89 , # M. Swart, M. Sola, and F. M. Bickelhaupt, J. Chem. Phys. 131, 094103 (2009) 'GGA_C_TAU_HCTH' : 281, # A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002) 'GGA_C_TCA' : 100, # V. Tognetti, P. Cortona, and C. Adamo, J. Chem. Phys. 128, 034101 (2008) 'GGA_C_TM_LYP' : 559, # A. J. Thakkar and S. P. McCarthy, J. Chem. Phys. 131, 134109 (2009) 'GGA_C_TM_PBE' : 560, # A. J. Thakkar and S. P. McCarthy, J. Chem. Phys. 131, 134109 (2009) 'GGA_C_W94' : 561, # L. C. Wilson, Chem. Phys. 181, 337 (1994) 'GGA_C_WI' : 148, # L. C. Wilson and S. Ivanov, Int. J. Quantum Chem. 69, 523 (1998) 'GGA_C_WI0' : 153, # L. C. Wilson and S. Ivanov, Int. J. Quantum Chem. 69, 523 (1998) 'GGA_C_WL' : 147, # L. C. Wilson and M. Levy, Phys. Rev. B 41, 12930 (1990) 'GGA_C_XPBE' : 136, # X. Xu and W. A. Goddard, J. Chem. Phys. 121, 4068 (2004) 'GGA_C_ZPBEINT' : 61 , # L. A. Constantin, E. Fabiano, and F. Della Sala, Phys. Rev. B 84, 233103 (2011) 'GGA_C_ZPBESOL' : 63 , # L. A. Constantin, E. Fabiano, and F. Della Sala, Phys. Rev. B 84, 233103 (2011) 'GGA_C_ZVPBEINT' : 557, # L. A. Constantin, E. Fabiano, and F. D. Sala, J. Chem. Phys. 137, 194105 (2012) 'GGA_C_ZVPBELOC' : 606, # E. Fabiano, L. A. Constantin, P. Cortona, and F. Della Sala, J. Chem. Theory Comput. 11, 122 (2015) 'GGA_C_ZVPBESOL' : 558, # L. A. Constantin, E. Fabiano, and F. D. Sala, J. Chem. Phys. 137, 194105 (2012) 'GGA_K_ABSP1' : 506, # P. K. Acharya, L. J. Bartolotti, S. B. Sears, and R. G. Parr, Proc. Natl. Acad. Sci. U. S. A. 77, 6978 (1980) 'GGA_K_ABSP2' : 507, # P. K. Acharya, L. J. Bartolotti, S. B. Sears, and R. G. Parr, Proc. Natl. Acad. Sci. U. S. A. 77, 6978 (1980) 'GGA_K_ABSP3' : 277, # P. K. Acharya, L. J. Bartolotti, S. B. Sears, and R. G. Parr, Proc. Natl. Acad. Sci. U. S. A. 77, 6978 (1980) 'GGA_K_ABSP4' : 278, # P. K. Acharya, L. J. Bartolotti, S. B. Sears, and R. G. Parr, Proc. Natl. Acad. Sci. U. S. A. 77, 6978 (1980) 'GGA_K_APBE' : 185, # L. A. Constantin, E. Fabiano, S. Laricchia, and F. Della Sala, Phys. Rev. Lett. 106, 186406 (2011) 'GGA_K_APBEINT' : 54 , # S. Laricchia, E. Fabiano, L. A. Constantin, and F. Della Sala, J. Chem. Theory Comput. 7, 2439 (2011) 'GGA_K_BALTIN' : 504, # R. Baltin, Z. Naturforsch. A 27, 1176 (1972) 'GGA_K_DK' : 516, # A. E. DePristo and J. D. Kress, Phys. Rev. A 35, 438 (1987) 'GGA_K_ERNZERHOF' : 520, # M. Ernzerhof, J. Mol. Struct.: THEOCHEM 501--502, 59 (2000) 'GGA_K_EXP4' : 597, # V. V. Karasiev, S. B. Trickey, and F. E. Harris, J. Comput.-Aided Mater. Des. 13, 111 (2006) 'GGA_K_FR_B88' : 514, # P. Fuentealba and O. Reyes, Chem. Phys. Lett. 232, 31 (1995) 'GGA_K_FR_PW86' : 515, # P. Fuentealba and O. Reyes, Chem. Phys. Lett. 232, 31 (1995) 'GGA_K_GDS08' : 591, # L. M. Ghiringhelli and L. Delle Site, Phys. Rev. B 77, 073104 (2008) 'GGA_K_GE2' : 501, # A. S. Kompaneets and E. S. Pavlovskii, Zh. Eksp. Teor. Fiz. 31, 427 (1956), [J. Exp. Theor. Phys. 4, 328 (1957)] 'GGA_K_GHDS10' : 592, # L. M. Ghiringhelli, I. P. Hamilton, and L. D. Site, J. Chem. Phys. 132, 014106 (2010) 'GGA_K_GHDS10R' : 593, # S. B. Trickey, V. V. Karasiev, and A. Vela, Phys. Rev. B 84, 075146 (2011) 'GGA_K_GOLDEN' : 502, # S. Golden, Phys. Rev. 105, 604 (1957) 'GGA_K_GP85' : 510, # S. K. Ghosh and R. G. Parr, J. Chem. Phys. 82, 3307 (1985) 'GGA_K_GR' : 508, # J. L. Gazquez and J. Robles, J. Chem. Phys. 76, 1467 (1982) 'GGA_K_LC94' : 521, # A. Lembarki and H. Chermette, Phys. Rev. A 50, 5328 (1994) 'GGA_K_LGAP' : 620, # L. A. Constantin, E. Fabiano, S. Smiga, and F. Della Sala, Phys. Rev. B 95, 115153 (2017) 'GGA_K_LGAP_GE' : 633, # L. A. Constantin, E. Fabiano, S. Smiga, and F. Della Sala, Phys. Rev. B 95, 115153 (2017) 'GGA_K_LIEB' : 505, # E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981) 'GGA_K_LKT' : 613, # K. Luo, V. V. Karasiev, and S. B. Trickey, Phys. Rev. B 98, 041111 (2018) 'GGA_K_LLP' : 522, # H. Lee, C. Lee, and R. G. Parr, Phys. Rev. A 44, 768 (1991) 'GGA_K_LUDENA' : 509, # E. V. Ludena, in Cond. Matt. Theor., Vol. 1, edited by F. B. Malik (Plenum, New York, 1986) p. 183 'GGA_K_MEYER' : 57 , # A. Meyer, G. C. Wang, and W. H. Young, Z. Naturforsch. A 31, 898 (1976) 'GGA_K_OL1' : 512, # H. Ou-Yang and M. Levy, Int. J. Quantum Chem. 40, 379 (1991) 'GGA_K_OL2' : 513, # H. Ou-Yang and M. Levy, Int. J. Quantum Chem. 40, 379 (1991) 'GGA_K_PBE2' : 616, # V. V. Karasiev, S. B. Trickey, and F. E. Harris, J. Comput.-Aided Mater. Des. 13, 111 (2006) 'GGA_K_PBE3' : 595, # V. V. Karasiev, S. B. Trickey, and F. E. Harris, J. Comput.-Aided Mater. Des. 13, 111 (2006) 'GGA_K_PBE4' : 596, # V. V. Karasiev, S. B. Trickey, and F. E. Harris, J. Comput.-Aided Mater. Des. 13, 111 (2006) 'GGA_K_PEARSON' : 511, # D. J. Lacks and R. G. Gordon, J. Chem. Phys. 100, 4446 (1994) 'GGA_K_PERDEW' : 517, # J. P. Perdew, Phys. Lett. A 165, 79 (1992) 'GGA_K_PG1' : 219, # L. A. Constantin, E. Fabiano, and F. Della Sala, J. Phys. Chem. Lett. 9, 4385 (2018), pMID: 30019904 'GGA_K_RATIONAL_P' : 218, # J. Lehtomaki and O. Lopez-Acevedo, Phys. Rev. B 100, 165111 (2019) 'GGA_K_REVAPBE' : 55 , # L. A. Constantin, E. Fabiano, S. Laricchia, and F. Della Sala, Phys. Rev. Lett. 106, 186406 (2011) 'GGA_K_REVAPBEINT' : 53 , # S. Laricchia, E. Fabiano, L. A. Constantin, and F. Della Sala, J. Chem. Theory Comput. 7, 2439 (2011) 'GGA_K_TFVW' : 52 , # C. F. von Weizsacker, Z. Phys. 96, 431 (1935) 'GGA_K_TFVW_OPT' : 635, # L. A. Espinosa Leal, A. Karpenko, M. A. Caro, and O. Lopez-Acevedo, Phys. Chem. Chem. Phys. 17, 31463 (2015) 'GGA_K_THAKKAR' : 523, # A. J. Thakkar, Phys. Rev. A 46, 6920 (1992) 'GGA_K_TKVLN' : 594, # S. B. Trickey, V. V. Karasiev, and A. Vela, Phys. Rev. B 84, 075146 (2011) 'GGA_K_TW1' : 187, # F. Tran and T. A. Wesolowski, Int. J. Quantum Chem. 89, 441 (2002) 'GGA_K_TW2' : 188, # F. Tran and T. A. Wesolowski, Int. J. Quantum Chem. 89, 441 (2002) 'GGA_K_TW3' : 189, # F. Tran and T. A. Wesolowski, Int. J. Quantum Chem. 89, 441 (2002) 'GGA_K_TW4' : 190, # F. Tran and T. A. Wesolowski, Int. J. Quantum Chem. 89, 441 (2002) 'GGA_K_VJKS' : 519, # L. Vitos, B. Johansson, J. Kollar, and H. L. Skriver, Phys. Rev. A 61, 052511 (2000) 'GGA_K_VSK' : 518, # L. Vitos, H. L. Skriver, and J. Kollar, Phys. Rev. B 57, 12611 (1998) 'GGA_K_VT84F' : 619, # V. V. Karasiev, D. Chakraborty, O. A. Shukruto, and S. B. Trickey, Phys. Rev. B 88, 161108 (2013) 'GGA_K_VW' : 500, # C. F. von Weizsacker, Z. Phys. 96, 431 (1935) 'GGA_K_YT65' : 503, # K. Yonei and Y. Tomishima, J. Phys. Soc. Jpn. 20, 1051 (1965) 'GGA_X_2D_B86' : 128, # J. G. Vilhena, E. Rasanen, M. A. L. Marques, and S. Pittalis, J. Chem. Theory Comput. 10, 1837 (2014) 'GGA_X_2D_B86_MGC' : 124, # S. Pittalis, E. Rasanen, J. G. Vilhena, and M. A. L. Marques, Phys. Rev. A 79, 012503 (2009) 'GGA_X_2D_B88' : 127, # J. G. Vilhena, E. Rasanen, M. A. L. Marques, and S. Pittalis, J. Chem. Theory Comput. 10, 1837 (2014) 'GGA_X_2D_PBE' : 129, # J. G. Vilhena, E. Rasanen, M. A. L. Marques, and S. Pittalis, J. Chem. Theory Comput. 10, 1837 (2014) 'GGA_X_AIRY' : 192, # L. A. Constantin, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. B 80, 035125 (2009) 'GGA_X_AK13' : 56 , # R. Armiento and S. Kummel, Phys. Rev. Lett. 111, 036402 (2013) 'GGA_X_AM05' : 120, # R. Armiento and A. E. Mattsson, Phys. Rev. B 72, 085108 (2005) 'GGA_X_APBE' : 184, # L. A. Constantin, E. Fabiano, S. Laricchia, and F. Della Sala, Phys. Rev. Lett. 106, 186406 (2011) 'GGA_X_B86' : 103, # A. D. Becke, J. Chem. Phys. 84, 4524 (1986) 'GGA_X_B86_MGC' : 105, # A. D. Becke, J. Chem. Phys. 84, 4524 (1986) 'GGA_X_B86_R' : 41 , # I. Hamada, Phys. Rev. B 89, 121103 (2014) 'GGA_X_B88' : 106, # A. D. Becke, Phys. Rev. A 38, 3098 (1988) 'GGA_X_B88_6311G' : 179, # J. M. Ugalde, C. Sarasola, and M. Aguado, J. Phys. B: At., Mol. Opt. Phys. 27, 423 (1994) 'GGA_X_B88M' : 570, # E. Proynov, H. Chermette, and D. R. Salahub, J. Chem. Phys. 113, 10013 (2000) 'GGA_X_BAYESIAN' : 125, # J. J. Mortensen, K. Kaasbjerg, S. L. Frederiksen, J. K. Norskov, J. P. Sethna, and K. W. Jacobsen, Phys. Rev. Lett. 95, 216401 (2005) 'GGA_X_BCGP' : 38 , # K. Burke, A. Cancio, T. Gould, and S. Pittalis, ArXiv e-prints (2014), arXiv:1409.4834 [cond-mat.mtrl-sci] 'GGA_X_BEEFVDW' : 285, # J. Wellendorff, K. T. Lundgaard, A. Mogelhoj, V. Petzold, D. D. Landis, J. K. Norskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012) 'GGA_X_BPCCAC' : 98 , # E. Bremond, D. Pilard, I. Ciofini, H. Chermette, C. Adamo, and P. Cortona, Theor. Chem. Acc. 131, 1184 (2012) 'GGA_X_C09X' : 158, # V. R. Cooper, Phys. Rev. B 81, 161104 (2010) 'GGA_X_CAP' : 270, # J. Carmona-Espindola, J. L. Gazquez, A. Vela, and S. B. Trickey, J. Chem. Phys. 142, 054105 (2015) 'GGA_X_CHACHIYO' : 298, # T. Chachiyo and H. Chachiyo, Molecules 25, 3485 (2020) 'GGA_X_DK87_R1' : 111, # A. E. DePristo and J. D. Kress, J. Chem. Phys. 86, 1425 (1987) 'GGA_X_DK87_R2' : 112, # A. E. DePristo and J. D. Kress, J. Chem. Phys. 86, 1425 (1987) 'GGA_X_EB88' : 271, # P. Elliott and K. Burke, Can. J. Chem. 87, 1485 (2009) 'GGA_X_ECMV92' : 215, # E. Engel, J. A. Chevary, L. D. Macdonald, and S. H. Vosko, Z. Phys. D: At., Mol. Clusters 23, 7 (1992) 'GGA_X_EV93' : 35 , # E. Engel and S. H. Vosko, Phys. Rev. B 47, 13164 (1993) 'GGA_X_FD_LB94' : 604, # A. P. Gaiduk and V. N. Staroverov, Phys. Rev. A 83, 012509 (2011) 'GGA_X_FD_REVLB94' : 605, # A. P. Gaiduk and V. N. Staroverov, Phys. Rev. A 83, 012509 (2011) 'GGA_X_FT97_A' : 114, # M. Filatov and W. Thiel, Mol. Phys. 91, 847 (1997) 'GGA_X_FT97_B' : 115, # M. Filatov and W. Thiel, Mol. Phys. 91, 847 (1997) 'GGA_X_G96' : 107, # P. M. W. Gill, Mol. Phys. 89, 433 (1996) 'GGA_X_GAM' : 32 , # H. S. Yu, W. Zhang, P. Verma, X. He, and D. G. Truhlar, Phys. Chem. Chem. Phys. 17, 12146 (2015) 'GGA_X_GG99' : 535, # A. T. Gilbert and P. M. Gill, Chem. Phys. Lett. 312, 511 (1999) 'GGA_X_HCTH_A' : 34 , # F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 109, 6264 (1998) 'GGA_X_HERMAN' : 104, # F. Herman, J. P. V. Dyke, and I. B. Ortenburger, Phys. Rev. Lett. 22, 807 (1969) 'GGA_X_HJS_B88' : 527, # T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008) 'GGA_X_HJS_B88_V2' : 46 , # E. Weintraub, T. M. Henderson, and G. E. Scuseria, J. Chem. Theory Comput. 5, 754 (2009) 'GGA_X_HJS_B97X' : 528, # T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008) 'GGA_X_HJS_PBE' : 525, # T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008) 'GGA_X_HJS_PBE_SOL' : 526, # T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008) 'GGA_X_HTBS' : 191, # P. Haas, F. Tran, P. Blaha, and K. Schwarz, Phys. Rev. B 83, 205117 (2011) 'GGA_X_ITYH' : 529, # H. Iikura, T. Tsuneda, T. Yanai, and K. Hirao, J. Chem. Phys. 115, 3540 (2001) 'GGA_X_ITYH_OPTX' : 622, # N. C. Handy and A. J. Cohen, Mol. Phys. 99, 403 (2001) 'GGA_X_ITYH_PBE' : 623, # J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 'GGA_X_KGG99' : 544, # A. T. Gilbert and P. M. Gill, Chem. Phys. Lett. 312, 511 (1999) 'GGA_X_KT1' : 145, # T. W. Keal and D. J. Tozer, J. Chem. Phys. 119, 3015 (2003) 'GGA_X_LAG' : 193, # L. Vitos, B. Johansson, J. Kollar, and H. L. Skriver, Phys. Rev. B 62, 10046 (2000) 'GGA_X_LAMBDA_CH_N' : 44 , # M. M. Odashima, K. Capelle, and S. B. Trickey, J. Chem. Theory Comput. 5, 798 (2009) 'GGA_X_LAMBDA_LO_N' : 45 , # M. M. Odashima, K. Capelle, and S. B. Trickey, J. Chem. Theory Comput. 5, 798 (2009) 'GGA_X_LAMBDA_OC2_N' : 40 , # M. M. Odashima, K. Capelle, and S. B. Trickey, J. Chem. Theory Comput. 5, 798 (2009) 'GGA_X_LB' : 160, # R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994) 'GGA_X_LBM' : 182, # P. R. T. Schipper, O. V. Gritsenko, S. J. A. van Gisbergen, and E. J. Baerends, J. Chem. Phys. 112, 1344 (2000) 'GGA_X_LG93' : 113, # D. J. Lacks and R. G. Gordon, Phys. Rev. A 47, 4681 (1993) 'GGA_X_LSPBE' : 168, # J. C. Pacheco-Kato, J. M. del Campo, J. L. Gazquez, S. Trickey, and A. Vela, Chem. Phys. Lett. 651, 268 (2016) 'GGA_X_LSRPBE' : 169, # J. C. Pacheco-Kato, J. M. del Campo, J. L. Gazquez, S. Trickey, and A. Vela, Chem. Phys. Lett. 651, 268 (2016) 'GGA_X_LV_RPW86' : 58 , # K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014) 'GGA_X_MB88' : 149, # V. Tognetti and C. Adamo, J. Phys. Chem. A 113, 14415 (2009) 'GGA_X_MPBE' : 122, # C. Adamo and V. Barone, J. Chem. Phys. 116, 5933 (2002) 'GGA_X_MPW91' : 119, # C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998) 'GGA_X_N12' : 82 , # R. Peverati and D. G. Truhlar, J. Chem. Theory Comput. 8, 2310 (2012) 'GGA_X_NCAP' : 180, # J. Carmona-Espindola, J. L. Gazquez, A. Vela, and S. B. Trickey, J. Chem. Theory Comput. 15, 303 (2019) 'GGA_X_OL2' : 183, # P. Fuentealba and O. Reyes, Chem. Phys. Lett. 232, 31 (1995) 'GGA_X_OPTB86B_VDW' : 171, # J. Klimes, D. R. Bowler, and A. Michaelides, Phys. Rev. B 83, 195131 (2011) 'GGA_X_OPTB88_VDW' : 139, # J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010) 'GGA_X_OPTPBE_VDW' : 141, # J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010) 'GGA_X_OPTX' : 110, # N. C. Handy and A. J. Cohen, Mol. Phys. 99, 403 (2001) 'GGA_X_PBE' : 101, # J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) 'GGA_X_PBE_JSJR' : 126, # L. S. Pedroza, A. J. R. da Silva, and K. Capelle, Phys. Rev. B 79, 201106 (2009) 'GGA_X_PBE_MOL' : 49 , # J. M. del Campo, J. L. Gazquez, S. B. Trickey, and A. Vela, J. Chem. Phys. 136, 104108 (2012) 'GGA_X_PBE_R' : 102, # Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998) 'GGA_X_PBE_SOL' : 116, # J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008) 'GGA_X_PBE_TCA' : 59 , # V. Tognetti, P. Cortona, and C. Adamo, Chem. Phys. Lett. 460, 536 (2008) 'GGA_X_PBEA' : 121, # G. K. H. Madsen, Phys. Rev. B 75, 195108 (2007) 'GGA_X_PBEFE' : 265, # R. Sarmiento-Perez, S. Botti, and M. A. L. Marques, J. Chem. Theory Comput. 11, 3844 (2015) 'GGA_X_PBEINT' : 60 , # E. Fabiano, L. A. Constantin, and F. Della Sala, Phys. Rev. B 82, 113104 (2010) 'GGA_X_PBEK1_VDW' : 140, # J. Klimes, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010) 'GGA_X_PBEPOW' : 539, # Eric Bremond, J. Chem. Phys. 145, 244102 (2016) 'GGA_X_PBETRANS' : 291, # Eric Bremond, I. Ciofini, and C. Adamo, Mol. Phys. 114, 1059 (2016) 'GGA_X_PW86' : 108, # J. P. Perdew and W. Yue, Phys. Rev. B 33, 8800 (1986) 'GGA_X_PW91' : 109, # J. P. Perdew, in Proceedings of the 75. WE-Heraeus-Seminar and 21st Annual International Symposium on Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991) p. 11 'GGA_X_PW91_MOD' : 316, # J. P. Perdew, in Proceedings of the 75. WE-Heraeus-Seminar and 21st Annual International Symposium on Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie Verlag, Berlin, 1991) p. 11 'GGA_X_Q2D' : 48 , # L. Chiodo, L. A. Constantin, E. Fabiano, and F. Della Sala, Phys. Rev. Lett. 108, 126402 (2012) 'GGA_X_REVSSB_D' : 312, # M. Swart, M. Sola, and F. M. Bickelhaupt, J. Comput. Chem. 32, 1117 (2011) 'GGA_X_RGE2' : 142, # A. Ruzsinszky, G. I. Csonka, and G. E. Scuseria, J. Chem. Theory Comput. 5, 763 (2009) 'GGA_X_RPBE' : 117, # B. Hammer, L. B. Hansen, and J. K. Norskov, Phys. Rev. B 59, 7413 (1999) 'GGA_X_RPW86' : 144, # E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009) 'GGA_X_S12G' : 495, # M. Swart, Chem. Phys. Lett. 580, 166 (2013) 'GGA_X_SFAT' : 530, # A. Savin and H.-J. Flad, Int. J. Quantum Chem. 56, 327 (1995) 'GGA_X_SFAT_PBE' : 601, # A. Savin and H.-J. Flad, Int. J. Quantum Chem. 56, 327 (1995) 'GGA_X_SG4' : 533, # L. A. Constantin, A. Terentjevs, F. Della Sala, P. Cortona, and E. Fabiano, Phys. Rev. B 93, 045126 (2016) 'GGA_X_SOGGA' : 150, # Y. Zhao and D. G. Truhlar, J. Chem. Phys. 128, 184109 (2008) 'GGA_X_SOGGA11' : 151, # R. Peverati, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. Lett. 2, 1991 (2011) 'GGA_X_SSB' : 91 , # M. Swart, M. Sola, and F. M. Bickelhaupt, J. Chem. Phys. 131, 094103 (2009) 'GGA_X_SSB_D' : 92 , # M. Swart, M. Sola, and F. M. Bickelhaupt, J. Chem. Phys. 131, 094103 (2009) 'GGA_X_SSB_SW' : 90 , # M. Swart, M. Sola, and F. M. Bickelhaupt, J. Comput. Methods Sci. Eng. 9, 69 (2009) 'GGA_X_VMT84_GE' : 68 , # A. Vela, J. C. Pacheco-Kato, J. L. Gazquez, J. M. del Campo, and S. B. Trickey, J. Chem. Phys. 136, 144115 (2012) 'GGA_X_VMT84_PBE' : 69 , # A. Vela, J. C. Pacheco-Kato, J. L. Gazquez, J. M. del Campo, and S. B. Trickey, J. Chem. Phys. 136, 144115 (2012) 'GGA_X_VMT_GE' : 70 , # A. Vela, V. Medel, and S. B. Trickey, J. Chem. Phys. 130, 244103 (2009) 'GGA_X_VMT_PBE' : 71 , # A. Vela, V. Medel, and S. B. Trickey, J. Chem. Phys. 130, 244103 (2009) 'GGA_X_WC' : 118, # Z. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006) 'GGA_X_WPBEH' : 524, # J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003) 'GGA_X_XPBE' : 123, # X. Xu and W. A. Goddard, J. Chem. Phys. 121, 4068 (2004) 'GGA_XC_B97_D' : 170, # S. Grimme, J. Comput. Chem. 27, 1787 (2006) 'GGA_XC_B97_GGA1' : 96 , # A. J. Cohen and N. C. Handy, Chem. Phys. Lett. 316, 160 (2000) 'GGA_XC_BEEFVDW' : 286, # J. Wellendorff, K. T. Lundgaard, A. Mogelhoj, V. Petzold, D. D. Landis, J. K. Norskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149 (2012) 'GGA_XC_EDF1' : 165, # R. D. Adamson, P. M. W. Gill, and J. A. Pople, Chem. Phys. Lett. 284, 6 (1998) 'GGA_XC_HCTH_120' : 162, # A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik, J. Chem. Phys. 112, 1670 (2000) 'GGA_XC_HCTH_147' : 163, # A. D. Boese, N. L. Doltsinis, N. C. Handy, and M. Sprik, J. Chem. Phys. 112, 1670 (2000) 'GGA_XC_HCTH_407' : 164, # A. D. Boese and N. C. Handy, J. Chem. Phys. 114, 5497 (2001) 'GGA_XC_HCTH_407P' : 93 , # A. D. Boese, A. Chandra, J. M. L. Martin, and D. Marx, J. Chem. Phys. 119, 5965 (2003) 'GGA_XC_HCTH_93' : 161, # F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 109, 6264 (1998) 'GGA_XC_HCTH_P14' : 95 , # G. Menconi, P. J. Wilson, and D. J. Tozer, J. Chem. Phys. 114, 3958 (2001) 'GGA_XC_HCTH_P76' : 94 , # G. Menconi, P. J. Wilson, and D. J. Tozer, J. Chem. Phys. 114, 3958 (2001) 'GGA_XC_HLE16' : 545, # P. Verma and D. G. Truhlar, J. Phys. Chem. Lett. 8, 380 (2017) 'GGA_XC_KT1' : 167, # T. W. Keal and D. J. Tozer, J. Chem. Phys. 119, 3015 (2003) 'GGA_XC_KT2' : 146, # T. W. Keal and D. J. Tozer, J. Chem. Phys. 119, 3015 (2003) 'GGA_XC_KT3' : 587, # T. W. Keal and D. J. Tozer, J. Chem. Phys. 121, 5654 (2004) 'GGA_XC_LB07' : 589, # E. Livshits and R. Baer, Phys. Chem. Chem. Phys. 9, 2932 (2007) 'GGA_XC_MOHLYP' : 194, # N. E. Schultz, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 109, 11127 (2005) 'GGA_XC_MOHLYP2' : 195, # J. Zheng, Y. Zhao, and D. G. Truhlar, J. Chem. Theory Comput. 5, 808 (2009) 'GGA_XC_MPWLYP1W' : 174, # E. E. Dahlke and D. G. Truhlar, J. Phys. Chem. B 109, 15677 (2005) 'GGA_XC_NCAP' : 181, # J. Carmona-Espindola, J. L. Gazquez, A. Vela, and S. B. Trickey, J. Chem. Theory Comput. 15, 303 (2019) 'GGA_XC_OBLYP_D' : 67 , # L. Goerigk and S. Grimme, J. Chem. Theory Comput. 6, 107 (2010) 'GGA_XC_OPBE_D' : 65 , # L. Goerigk and S. Grimme, J. Chem. Theory Comput. 6, 107 (2010) 'GGA_XC_OPWLYP_D' : 66 , # L. Goerigk and S. Grimme, J. Chem. Theory Comput. 6, 107 (2010) 'GGA_XC_PBE1W' : 173, # E. E. Dahlke and D. G. Truhlar, J. Phys. Chem. B 109, 15677 (2005) 'GGA_XC_PBELYP1W' : 175, # E. E. Dahlke and D. G. Truhlar, J. Phys. Chem. B 109, 15677 (2005) 'GGA_XC_TH1' : 154, # D. J. Tozer and N. C. Handy, J. Chem. Phys. 108, 2545 (1998) 'GGA_XC_TH2' : 155, # D. J. Tozer and N. C. Handy, J. Phys. Chem. A 102, 3162 (1998) 'GGA_XC_TH3' : 156, # N. C. Handy and D. J. Tozer, Mol. Phys. 94, 707 (1998) 'GGA_XC_TH4' : 157, # N. C. Handy and D. J. Tozer, Mol. Phys. 94, 707 (1998) 'GGA_XC_TH_FC' : 197, # D. J. Tozer, N. C. Handy, and W. H. Green, Chem. Phys. Lett. 273, 183 (1997) 'GGA_XC_TH_FCFO' : 198, # D. J. Tozer, N. C. Handy, and W. H. Green, Chem. Phys. Lett. 273, 183 (1997) 'GGA_XC_TH_FCO' : 199, # D. J. Tozer, N. C. Handy, and W. H. Green, Chem. Phys. Lett. 273, 183 (1997) 'GGA_XC_TH_FL' : 196, # D. J. Tozer, N. C. Handy, and W. H. Green, Chem. Phys. Lett. 273, 183 (1997) 'GGA_XC_VV10' : 255, # O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010) 'GGA_XC_XLYP' : 166, # X. Xu and W. A. Goddard, Proc. Natl. Acad. Sci. U. S. A. 101, 2673 (2004) #'HYB_GGA_X_LC2GAU' : 710, # J.-W. Song, M. A. Watson, and K. Hirao, J. Chem. Phys. 131, 144108 (2009) #'HYB_GGA_X_LCGAU' : 708, # J.-W. Song, S. Tokura, T. Sato, M. A. Watson, and K. Hirao, J. Chem. Phys. 127, 154109 (2007) #'HYB_GGA_X_LCGAU_CORE' : 709, # J.-W. Song, M. A. Watson, A. Nakata, and K. Hirao, J. Chem. Phys. 129, 184113 (2008) 'HYB_GGA_X_N12_SX' : 81 , # R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 16187 (2012) 'HYB_GGA_X_S12H' : 496, # M. Swart, Chem. Phys. Lett. 580, 166 (2013) 'HYB_GGA_X_SOGGA11_X' : 426, # R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011) 'HYB_GGA_XC_APBE0' : 607, # E. Fabiano, L. A. Constantin, P. Cortona, and F. Della Sala, J. Chem. Theory Comput. 11, 122 (2015) 'HYB_GGA_XC_APF' : 409, # A. Austin, G. A. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, and K. Throssell, J. Chem. Theory Comput. 8, 4989 (2012) 'HYB_GGA_XC_B1LYP' : 416, # C. Adamo and V. Barone, Chem. Phys. Lett. 274, 242 (1997) 'HYB_GGA_XC_B1PW91' : 417, # C. Adamo and V. Barone, Chem. Phys. Lett. 274, 242 (1997) 'HYB_GGA_XC_B1WC' : 412, # D. I. Bilc, R. Orlando, R. Shaltaf, G.-M. Rignanese, J. Iniguez, and P. Ghosez, Phys. Rev. B 77, 165107 (2008) #'HYB_GGA_XC_B2PLYP' : 713, # S. Grimme, J. Chem. Phys. 124, 034108 (2006) 'HYB_GGA_XC_B3LYP' : 402, # P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994) 'HYB_GGA_XC_B3LYP5' : 475, # P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623 (1994) 'HYB_GGA_XC_B3LYP_MCM1' : 461, # M. T. Caldeira and R. Custodio, J. Mol. Model. 25, 62 (2019) 'HYB_GGA_XC_B3LYP_MCM2' : 462, # M. T. Caldeira and R. Custodio, J. Mol. Model. 25, 62 (2019) 'HYB_GGA_XC_B3LYPS' : 459, # M. Reiher, O. Salomon, and B. A. Hess, Theor. Chem. Acc. 107, 48 (2001) 'HYB_GGA_XC_B3P86' : 403, # Defined through Gaussian implementation #'HYB_GGA_XC_B3P86_NWCHEM' : 315, # Defined through NWChem implementation 'HYB_GGA_XC_B3PW91' : 401, # A. D. Becke, J. Chem. Phys. 98, 5648 (1993) 'HYB_GGA_XC_B5050LYP' : 572, # Y. Shao, M. Head-Gordon, and A. I. Krylov, J. Chem. Phys. 118, 4807 (2003) 'HYB_GGA_XC_B97' : 407, # A. D. Becke, J. Chem. Phys. 107, 8554 (1997) 'HYB_GGA_XC_B97_1' : 408, # F. A. Hamprecht, A. J. Cohen, D. J. Tozer, and N. C. Handy, J. Chem. Phys. 109, 6264 (1998) 'HYB_GGA_XC_B97_1P' : 266, # A. J. Cohen and N. C. Handy, Chem. Phys. Lett. 316, 160 (2000) 'HYB_GGA_XC_B97_2' : 410, # P. J. Wilson, T. J. Bradley, and D. J. Tozer, J. Chem. Phys. 115, 9233 (2001) 'HYB_GGA_XC_B97_3' : 414, # T. W. Keal and D. J. Tozer, J. Chem. Phys. 123, 121103 (2005) 'HYB_GGA_XC_B97_K' : 413, # A. D. Boese and J. M. L. Martin, J. Chem. Phys. 121, 3405 (2004) 'HYB_GGA_XC_BHANDH' : 435, # A. D. Becke, J. Chem. Phys. 98, 1372 (1993) 'HYB_GGA_XC_BHANDHLYP' : 436, # A. D. Becke, J. Chem. Phys. 98, 1372 (1993) 'HYB_GGA_XC_BLYP35' : 499, # M. Renz, K. Theilacker, C. Lambert, and M. Kaupp, J. Am. Chem. Soc. 131, 16292 (2009) 'HYB_GGA_XC_CAM_B3LYP' : 433, # T. Yanai, D. P. Tew, and N. C. Handy, Chem. Phys. Lett. 393, 51 (2004) 'HYB_GGA_XC_CAM_O3LYP' : 395, # M. P. Bircher and U. Rothlisberger, J. Chem. Theory Comput. 14, 3184 (2018) 'HYB_GGA_XC_CAM_PBEH' : 681, # W. Chen, G. Miceli, G.-M. Rignanese, and A. Pasquarello, Phys. Rev. Mater. 2, 073803 (2018) 'HYB_GGA_XC_CAM_QTP_00' : 490, # P. Verma and R. J. Bartlett, J. Chem. Phys. 140, 18A534 (2014) 'HYB_GGA_XC_CAM_QTP_01' : 482, # Y. Jin and R. J. Bartlett, J. Chem. Phys. 145, 034107 (2016) 'HYB_GGA_XC_CAM_QTP_02' : 491, # R. L. A. Haiduke and R. J. Bartlett, J. Chem. Phys. 148, 184106 (2018) 'HYB_GGA_XC_CAMH_B3LYP' : 614, # Y. Shao, Y. Mei, D. Sundholm, and V. R. I. Kaila, J. Chem. Theory Comput. 16, 587 (2020), https://doi.org/10.1021/acs.jctc.9b00823 'HYB_GGA_XC_CAMY_B3LYP' : 470, # M. Seth and T. Ziegler, J. Chem. Theory Comput. 8, 901 (2012) 'HYB_GGA_XC_CAMY_BLYP' : 455, # Y. Akinaga and S. Ten-no, Chem. Phys. Lett. 462, 348 (2008) 'HYB_GGA_XC_CAMY_PBEH' : 682, # W. Chen, G. Miceli, G.-M. Rignanese, and A. Pasquarello, Phys. Rev. Mater. 2, 073803 (2018) 'HYB_GGA_XC_CAP0' : 477, # J. Carmona-Espindola, J. L. Gazquez, A. Vela, and S. B. Trickey, Theor. Chem. Acc. 135, 120 (2016) 'HYB_GGA_XC_EDF2' : 476, # C. Y. Lin, M. W. George, and P. M. W. Gill, Aust. J. Chem. 57, 365 (2004) 'HYB_GGA_XC_HAPBE' : 608, # E. Fabiano, L. A. Constantin, P. Cortona, and F. Della Sala, J. Chem. Theory Comput. 11, 122 (2015) 'HYB_GGA_XC_HFLYP' : 314, # C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988) #'HYB_GGA_XC_HISS' : 717, # T. M. Henderson, A. F. Izmaylov, G. E. Scuseria, and A. Savin, J. Chem. Phys. 127, 221103 (2007) 'HYB_GGA_XC_HJS_B88' : 431, # T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008) 'HYB_GGA_XC_HJS_B97X' : 432, # T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008) 'HYB_GGA_XC_HJS_PBE' : 429, # T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008) 'HYB_GGA_XC_HJS_PBE_SOL' : 430, # T. M. Henderson, B. G. Janesko, and G. E. Scuseria, J. Chem. Phys. 128, 194105 (2008) 'HYB_GGA_XC_HPBEINT' : 472, # E. Fabiano, L. A. Constantin, and F. Della Sala, Int. J. Quantum Chem. 113, 673 (2013) 'HYB_GGA_XC_HSE03' : 427, # J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003) 'HYB_GGA_XC_HSE06' : 428, # J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003) 'HYB_GGA_XC_HSE12' : 479, # J. E. Moussa, P. A. Schultz, and J. R. Chelikowsky, J. Chem. Phys. 136, 204117 (2012) 'HYB_GGA_XC_HSE12S' : 480, # J. E. Moussa, P. A. Schultz, and J. R. Chelikowsky, J. Chem. Phys. 136, 204117 (2012) 'HYB_GGA_XC_HSE_SOL' : 481, # L. Schimka, J. Harl, and G. Kresse, J. Chem. Phys. 134, 024116 (2011) 'HYB_GGA_XC_KMLYP' : 485, # J. K. Kang and C. B. Musgrave, J. Chem. Phys. 115, 11040 (2001) 'HYB_GGA_XC_LC_BLYP' : 400, # L. N. Anderson, M. B. Oviedo, and B. M. Wong, J. Chem. Theory Comput. 13, 1656 (2017) 'HYB_GGA_XC_LC_BOP' : 636, # J.-W. Song, T. Hirosawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 126, 154105 (2007) 'HYB_GGA_XC_LC_PBEOP' : 637, # Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao, J. Chem. Phys. 120, 8425 (2004) 'HYB_GGA_XC_LC_QTP' : 492, # R. L. A. Haiduke and R. J. Bartlett, J. Chem. Phys. 148, 184106 (2018) 'HYB_GGA_XC_LC_VV10' : 469, # O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, 244103 (2010) 'HYB_GGA_XC_LC_WPBE' : 478, # O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006) 'HYB_GGA_XC_LC_WPBE08_WHS' : 488, # E. Weintraub, T. M. Henderson, and G. E. Scuseria, J. Chem. Theory Comput. 5, 754 (2009) 'HYB_GGA_XC_LC_WPBE_WHS' : 486, # E. Weintraub, T. M. Henderson, and G. E. Scuseria, J. Chem. Theory Comput. 5, 754 (2009) 'HYB_GGA_XC_LC_WPBEH_WHS' : 487, # E. Weintraub, T. M. Henderson, and G. E. Scuseria, J. Chem. Theory Comput. 5, 754 (2009) 'HYB_GGA_XC_LC_WPBESOL_WHS' : 489, # E. Weintraub, T. M. Henderson, and G. E. Scuseria, J. Chem. Theory Comput. 5, 754 (2009) 'HYB_GGA_XC_LCY_BLYP' : 468, # Y. Akinaga and S. Ten-no, Chem. Phys. Lett. 462, 348 (2008) 'HYB_GGA_XC_LCY_PBE' : 467, # M. Seth and T. Ziegler, J. Chem. Theory Comput. 8, 901 (2012) 'HYB_GGA_XC_LRC_WPBE' : 473, # M. A. Rohrdanz, K. M. Martins, and J. M. Herbert, J. Chem. Phys. 130, 054112 (2009) 'HYB_GGA_XC_LRC_WPBEH' : 465, # M. A. Rohrdanz, K. M. Martins, and J. M. Herbert, J. Chem. Phys. 130, 054112 (2009) 'HYB_GGA_XC_MB3LYP_RC04' : 437, # V. Tognetti, P. Cortona, and C. Adamo, Chem. Phys. Lett. 439, 381 (2007) 'HYB_GGA_XC_MPW1K' : 405, # B. J. Lynch, P. L. Fast, M. Harris, and D. G. Truhlar, J. Phys. Chem. A 104, 4811 (2000) 'HYB_GGA_XC_MPW1LYP' : 483, # C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998) 'HYB_GGA_XC_MPW1PBE' : 484, # C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998) 'HYB_GGA_XC_MPW1PW' : 418, # C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998) 'HYB_GGA_XC_MPW3LYP' : 419, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 108, 6908 (2004) 'HYB_GGA_XC_MPW3PW' : 415, # C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998) 'HYB_GGA_XC_MPWLYP1M' : 453, # N. E. Schultz, Y. Zhao, and D. G. Truhlar, J. Phys. Chem. A 109, 11127 (2005) 'HYB_GGA_XC_O3LYP' : 404, # A. J. Cohen and N. C. Handy, Mol. Phys. 99, 607 (2001) 'HYB_GGA_XC_PBE0_13' : 456, # P. Cortona, J. Chem. Phys. 136, 086101 (2012) 'HYB_GGA_XC_PBE50' : 290, # Y. A. Bernard, Y. Shao, and A. I. Krylov, J. Chem. Phys. 136, 204103 (2012) 'HYB_GGA_XC_PBE_MOL0' : 273, # J. M. del Campo, J. L. Gazquez, S. B. Trickey, and A. Vela, J. Chem. Phys. 136, 104108 (2012) 'HYB_GGA_XC_PBE_MOLB0' : 276, # J. M. del Campo, J. L. Gazquez, S. B. Trickey, and A. Vela, J. Chem. Phys. 136, 104108 (2012) 'HYB_GGA_XC_PBE_SOL0' : 274, # J. M. del Campo, J. L. Gazquez, S. B. Trickey, and A. Vela, J. Chem. Phys. 136, 104108 (2012) 'HYB_GGA_XC_PBEB0' : 275, # J. M. del Campo, J. L. Gazquez, S. B. Trickey, and A. Vela, J. Chem. Phys. 136, 104108 (2012) 'HYB_GGA_XC_PBEH' : 406, # C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999) 'HYB_GGA_XC_QTP17' : 460, # Y. Jin and R. J. Bartlett, J. Chem. Phys. 149, 064111 (2018) 'HYB_GGA_XC_RCAM_B3LYP' : 610, # A. J. Cohen, P. Mori-Sanchez, and W. Yang, J. Chem. Phys. 126, 191109 (2007) 'HYB_GGA_XC_REVB3LYP' : 454, # L. Lu, H. Hu, H. Hou, and B. Wang, Comput. Theor. Chem. 1015, 64 (2013) 'HYB_GGA_XC_SB98_1A' : 420, # H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1998) 'HYB_GGA_XC_SB98_1B' : 421, # H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1998) 'HYB_GGA_XC_SB98_1C' : 422, # H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1998) 'HYB_GGA_XC_SB98_2A' : 423, # H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1998) 'HYB_GGA_XC_SB98_2B' : 424, # H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1998) 'HYB_GGA_XC_SB98_2C' : 425, # H. L. Schmider and A. D. Becke, J. Chem. Phys. 108, 9624 (1998) #'HYB_GGA_XC_SRC1_BLYP' : 714, # N. A. Besley, M. J. G. Peach, and D. J. Tozer, Phys. Chem. Chem. Phys. 11, 10350 (2009) #'HYB_GGA_XC_SRC2_BLYP' : 715, # N. A. Besley, M. J. G. Peach, and D. J. Tozer, Phys. Chem. Chem. Phys. 11, 10350 (2009) 'HYB_GGA_XC_TUNED_CAM_B3LYP' : 434, # K. Okuno, Y. Shigeta, R. Kishi, H. Miyasaka, and M. Nakano, J. Photochem. Photobiol., A 235, 29 (2012) 'HYB_GGA_XC_WB97' : 463, # J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008) 'HYB_GGA_XC_WB97X' : 464, # J.-D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008) 'HYB_GGA_XC_WB97X_D' : 471, # J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008) 'HYB_GGA_XC_WB97X_D3' : 399, # Y.-S. Lin, G.-D. Li, S.-P. Mao, and J.-D. Chai, J. Chem. Theory Comput. 9, 263 (2013) 'HYB_GGA_XC_WB97X_V' : 466, # N. Mardirossian and M. Head-Gordon, Phys. Chem. Chem. Phys. 16, 9904 (2014) 'HYB_GGA_XC_WC04' : 611, # K. W. Wiitala, T. R. Hoye, and C. J. Cramer, J. Chem. Theory Comput. 2, 1085 (2006) 'HYB_GGA_XC_WHPBE0' : 615, # Y. Shao, Y. Mei, D. Sundholm, and V. R. I. Kaila, J. Chem. Theory Comput. 16, 587 (2020), https://doi.org/10.1021/acs.jctc.9b00823 'HYB_GGA_XC_WP04' : 612, # K. W. Wiitala, T. R. Hoye, and C. J. Cramer, J. Chem. Theory Comput. 2, 1085 (2006) 'HYB_GGA_XC_X3LYP' : 411, # X. Xu and W. A. Goddard, Proc. Natl. Acad. Sci. U. S. A. 101, 2673 (2004) 'MGGA_C_B88' : 571, # A. D. Becke, J. Chem. Phys. 88, 1053 (1988) 'MGGA_C_B94' : 397, # A. D. Becke, Int. J. Quantum Chem. 52, 625 (1994) 'MGGA_C_BC95' : 240, # A. D. Becke, J. Chem. Phys. 104, 1040 (1996) 'MGGA_C_CS' : 72 , # R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1975) 'MGGA_C_DLDF' : 37 , # K. Pernal, R. Podeszwa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 103, 263201 (2009) 'MGGA_C_HLTAPW' : 699, # S. Lehtola and M. A. L. Marques, Meta-local density functionals: a new rung on jacob's ladder, (2020), arXiv:2006.16835 [physics.chem-ph] 'MGGA_C_KCIS' : 562, # J. Rey and A. Savin, Int. J. Quantum Chem. 69, 581 (1998) 'MGGA_C_KCISK' : 638, # J. Rey and A. Savin, Int. J. Quantum Chem. 69, 581 (1998) 'MGGA_C_M05' : 237, # Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005) 'MGGA_C_M05_2X' : 238, # Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006) 'MGGA_C_M06' : 235, # Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008) 'MGGA_C_M06_2X' : 236, # Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008) 'MGGA_C_M06_HF' : 234, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006) 'MGGA_C_M06_L' : 233, # Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006) 'MGGA_C_M06_SX' : 311, # Y. Wang, P. Verma, L. Zhang, Y. Li, Z. Liu, D. G. Truhlar, and X. He, Proc. Natl. Acad. Sci. U. S. A. 117, 2294 (2020), https://www.pnas.org/content/117/5/2294.full.pdf 'MGGA_C_M08_HX' : 78 , # Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008) 'MGGA_C_M08_SO' : 77 , # Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008) 'MGGA_C_M11' : 76 , # R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011) 'MGGA_C_M11_L' : 75 , # R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 3, 117 (2012) 'MGGA_C_MN12_L' : 74 , # R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 13171 (2012) 'MGGA_C_MN12_SX' : 73 , # R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 16187 (2012) 'MGGA_C_MN15' : 269, # H. S. Yu, X. He, S. L. Li, and D. G. Truhlar, Chem. Sci. 7, 5032 (2016) 'MGGA_C_MN15_L' : 261, # H. S. Yu, X. He, and D. G. Truhlar, J. Chem. Theory Comput. 12, 1280 (2016) 'MGGA_C_PKZB' : 239, # J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999) 'MGGA_C_R2SCAN' : 498, # J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, J. Phys. Chem. Lett. 11, 8208 (2020) 'MGGA_C_R2SCANL' : 719, # D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. B 102, 121109 (2020) 'MGGA_C_REVM06' : 306, # Y. Wang, P. Verma, X. Jin, D. G. Truhlar, and X. He, Proc. Natl. Acad. Sci. U. S. A. 115, 10257 (2018) 'MGGA_C_REVM06_L' : 294, # Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, and X. He, Proc. Natl. Acad. Sci. U. S. A. 114, 8487 (2017) 'MGGA_C_REVM11' : 172, # P. Verma, Y. Wang, S. Ghosh, X. He, and D. G. Truhlar, J. Phys. Chem. A 123, 2966 (2019) 'MGGA_C_REVSCAN' : 582, # P. D. Mezei, G. I. Csonka, and M. Kallay, J. Chem. Theory Comput. 14, 2469 (2018) 'MGGA_C_REVSCAN_VV10' : 585, # P. D. Mezei, G. I. Csonka, and M. Kallay, J. Chem. Theory Comput. 14, 2469 (2018) 'MGGA_C_REVTM' : 694, # S. Jana, K. Sharma, and P. Samal, J. Phys. Chem. A 123, 6356 (2019) 'MGGA_C_REVTPSS' : 241, # J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009) 'MGGA_C_RSCAN' : 494, # A. P. Bartok and J. R. Yates, J. Chem. Phys. 150, 161101 (2019) 'MGGA_C_SCAN' : 267, # J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015) 'MGGA_C_SCAN_RVV10' : 292, # H. Peng, Z.-H. Yang, J. P. Perdew, and J. Sun, Phys. Rev. X 6, 041005 (2016) 'MGGA_C_SCAN_VV10' : 584, # J. G. Brandenburg, J. E. Bates, J. Sun, and J. P. Perdew, Phys. Rev. B 94, 115144 (2016) 'MGGA_C_SCANL' : 702, # D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. A 96, 052512 (2017) 'MGGA_C_SCANL_RVV10' : 703, # D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. A 96, 052512 (2017) 'MGGA_C_SCANL_VV10' : 704, # D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. A 96, 052512 (2017) 'MGGA_C_TM' : 251, # J. Tao and Y. Mo, Phys. Rev. Lett. 117, 073001 (2016) 'MGGA_C_TPSS' : 231, # J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003) 'MGGA_C_TPSSLOC' : 247, # L. A. Constantin, E. Fabiano, and F. Della Sala, Phys. Rev. B 86, 035130 (2012) 'MGGA_C_VSXC' : 232, # T. V. Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998) 'MGGA_K_CSK1' : 629, # A. C. Cancio, D. Stewart, and A. Kuna, J. Chem. Phys. 144, 084107 (2016) 'MGGA_K_CSK4' : 630, # A. C. Cancio, D. Stewart, and A. Kuna, J. Chem. Phys. 144, 084107 (2016) 'MGGA_K_CSK_LOC1' : 631, # A. C. Cancio, D. Stewart, and A. Kuna, J. Chem. Phys. 144, 084107 (2016) 'MGGA_K_CSK_LOC4' : 632, # A. C. Cancio, D. Stewart, and A. Kuna, J. Chem. Phys. 144, 084107 (2016) 'MGGA_K_GEA2' : 627, # A. S. Kompaneets and E. S. Pavlovskii, Zh. Eksp. Teor. Fiz. 31, 427 (1956), [J. Exp. Theor. Phys. 4, 328 (1957)] 'MGGA_K_GEA4' : 628, # C. H. Hodges, Can. J. Phys. 51, 1428 (1973) 'MGGA_K_L04' : 617, # S. Laricchia, L. A. Constantin, E. Fabiano, and F. Della Sala, J. Chem. Theory Comput. 10, 164 (2014) 'MGGA_K_L06' : 618, # S. Laricchia, L. A. Constantin, E. Fabiano, and F. Della Sala, J. Chem. Theory Comput. 10, 164 (2014) 'MGGA_K_PC07' : 543, # J. P. Perdew and L. A. Constantin, Phys. Rev. B 75, 155109 (2007) 'MGGA_K_PC07_OPT' : 634, # D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. A 96, 052512 (2017) 'MGGA_K_PGSL025' : 220, # L. A. Constantin, E. Fabiano, and F. Della Sala, J. Phys. Chem. Lett. 9, 4385 (2018), pMID: 30019904 'MGGA_K_RDA' : 621, # V. V. Karasiev, R. S. Jones, S. B. Trickey, and F. E. Harris, Phys. Rev. B 80, 245120 (2009) 'MGGA_X_2D_JS17' : 609, # S. Jana and P. Samal, J. Phys. Chem. A 121, 4804 (2017) 'MGGA_X_2D_PRHG07' : 210, # S. Pittalis, E. Rasanen, N. Helbig, and E. K. U. Gross, Phys. Rev. B 76, 235314 (2007) 'MGGA_X_2D_PRHG07_PRP10' : 211, # S. Pittalis, E. Rasanen, N. Helbig, and E. K. U. Gross, Phys. Rev. B 76, 235314 (2007) 'MGGA_X_B00' : 284, # A. D. Becke, J. Chem. Phys. 112, 4020 (2000) 'MGGA_X_BJ06' : 207, # A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006) 'MGGA_X_BLOC' : 244, # L. A. Constantin, E. Fabiano, and F. Della Sala, J. Chem. Theory Comput. 9, 2256 (2013) 'MGGA_X_BR89' : 206, # A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989) 'MGGA_X_BR89_1' : 214, # A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989) 'MGGA_X_BR89_EXPLICIT' : 586, # A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989) 'MGGA_X_BR89_EXPLICIT_1' : 602, # A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989) 'MGGA_X_EDMGGA' : 686, # J. Tao, J. Chem. Phys. 115, 3519 (2001) 'MGGA_X_GDME_0' : 689, # R. M. Koehl, G. K. Odom, and G. E. Scuseria, Mol. Phys. 87, 835 (1996) 'MGGA_X_GDME_KOS' : 690, # R. M. Koehl, G. K. Odom, and G. E. Scuseria, Mol. Phys. 87, 835 (1996) 'MGGA_X_GDME_NV' : 687, # J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472 (1972) 'MGGA_X_GDME_VT' : 691, # R. M. Koehl, G. K. Odom, and G. E. Scuseria, Mol. Phys. 87, 835 (1996) 'MGGA_X_GVT4' : 204, # T. V. Voorhis and G. E. Scuseria, J. Chem. Phys. 109, 400 (1998) 'MGGA_X_GX' : 575, # P.-F. Loos, J. Chem. Phys. 146, 114108 (2017) 'MGGA_X_HLTA' : 698, # S. Lehtola and M. A. L. Marques, Meta-local density functionals: a new rung on jacob's ladder, (2020), arXiv:2006.16835 [physics.chem-ph] 'MGGA_X_JK' : 256, # P. Jemmer and P. J. Knowles, Phys. Rev. A 51, 3571 (1995) 'MGGA_X_LTA' : 201, # M. Ernzerhof and G. E. Scuseria, J. Chem. Phys. 111, 911 (1999) 'MGGA_X_M06_L' : 203, # Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006) 'MGGA_X_M11_L' : 226, # R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 3, 117 (2012) 'MGGA_X_MBEEF' : 249, # J. Wellendorff, K. T. Lundgaard, K. W. Jacobsen, and T. Bligaard, J. Chem. Phys. 140, 144107 (2014) 'MGGA_X_MBEEFVDW' : 250, # K. T. Lundgaard, J. Wellendorff, J. Voss, K. W. Jacobsen, and T. Bligaard, Phys. Rev. B 93, 235162 (2016) 'MGGA_X_MBR' : 716, # A. Patra, S. Jana, H. Myneni, and P. Samal, Phys. Chem. Chem. Phys. 21, 19639 (2019) 'MGGA_X_MBRXC_BG' : 696, # B. Patra, S. Jana, L. A. Constantin, and P. Samal, Phys. Rev. B 100, 045147 (2019) 'MGGA_X_MBRXH_BG' : 697, # B. Patra, S. Jana, L. A. Constantin, and P. Samal, Phys. Rev. B 100, 045147 (2019) 'MGGA_X_MGGAC' : 711, # B. Patra, S. Jana, L. A. Constantin, and P. Samal, Phys. Rev. B 100, 155140 (2019) 'MGGA_X_MK00' : 230, # F. R. Manby and P. J. Knowles, J. Chem. Phys. 112, 7002 (2000) 'MGGA_X_MK00B' : 243, # F. R. Manby and P. J. Knowles, J. Chem. Phys. 112, 7002 (2000) 'MGGA_X_MN12_L' : 227, # R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 13171 (2012) 'MGGA_X_MN15_L' : 260, # H. S. Yu, X. He, and D. G. Truhlar, J. Chem. Theory Comput. 12, 1280 (2016) 'MGGA_X_MODTPSS' : 245, # J. P. Perdew, A. Ruzsinszky, J. Tao, G. I. Csonka, and G. E. Scuseria, Phys. Rev. A 76, 042506 (2007) 'MGGA_X_MS0' : 221, # J. Sun, B. Xiao, and A. Ruzsinszky, J. Chem. Phys. 137, 051101 (2012) 'MGGA_X_MS1' : 222, # J. Sun, R. Haunschild, B. Xiao, I. W. Bulik, G. E. Scuseria, and J. P. Perdew, J. Chem. Phys. 138, 044113 (2013) 'MGGA_X_MS2' : 223, # J. Sun, R. Haunschild, B. Xiao, I. W. Bulik, G. E. Scuseria, and J. P. Perdew, J. Chem. Phys. 138, 044113 (2013) 'MGGA_X_MS2_REV' : 228, # J. Sun, R. Haunschild, B. Xiao, I. W. Bulik, G. E. Scuseria, and J. P. Perdew, J. Chem. Phys. 138, 044113 (2013) 'MGGA_X_MS2B' : 300, # J. W. Furness and J. Sun, Phys. Rev. B 99, 041119 (2019) 'MGGA_X_MS2BS' : 301, # J. W. Furness and J. Sun, ArXiv e-prints (2018), arXiv:1805.11707v1 [physics.chem-ph] 'MGGA_X_MVS' : 257, # J. Sun, J. P. Perdew, and A. Ruzsinszky, Proc. Natl. Acad. Sci. U. S. A. 112, 685 (2015) 'MGGA_X_MVSB' : 302, # J. W. Furness and J. Sun, ArXiv e-prints (2018), arXiv:1805.11707v1 [physics.chem-ph] 'MGGA_X_MVSBS' : 303, # J. W. Furness and J. Sun, ArXiv e-prints (2018), arXiv:1805.11707v1 [physics.chem-ph] 'MGGA_X_PBE_GX' : 576, # P.-F. Loos, J. Chem. Phys. 146, 114108 (2017) 'MGGA_X_PKZB' : 213, # J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999) 'MGGA_X_R2SCAN' : 497, # J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, J. Phys. Chem. Lett. 11, 8208 (2020) 'MGGA_X_R2SCANL' : 718, # D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. B 102, 121109 (2020) 'MGGA_X_REGTPSS' : 603, # A. Ruzsinszky, J. Sun, B. Xiao, and G. I. Csonka, J. Chem. Theory Comput. 8, 2078 (2012) 'MGGA_X_REVM06_L' : 293, # Y. Wang, X. Jin, H. S. Yu, D. G. Truhlar, and X. He, Proc. Natl. Acad. Sci. U. S. A. 114, 8487 (2017) 'MGGA_X_REVSCAN' : 581, # P. D. Mezei, G. I. Csonka, and M. Kallay, J. Chem. Theory Comput. 14, 2469 (2018) 'MGGA_X_REVSCANL' : 701, # D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. A 96, 052512 (2017) 'MGGA_X_REVTM' : 693, # S. Jana, K. Sharma, and P. Samal, J. Phys. Chem. A 123, 6356 (2019) 'MGGA_X_REVTPSS' : 212, # J. P. Perdew, A. Ruzsinszky, G. I. Csonka, L. A. Constantin, and J. Sun, Phys. Rev. Lett. 103, 026403 (2009) 'MGGA_X_RLDA' : 688, # X. Campi and A. Bouyssy, Phys. Lett. B 73, 263 (1978) 'MGGA_X_RPP09' : 209, # E. Rasanen, S. Pittalis, and C. R. Proetto, J. Chem. Phys. 132, 044112 (2010) 'MGGA_X_RSCAN' : 493, # A. P. Bartok and J. R. Yates, J. Chem. Phys. 150, 161101 (2019) 'MGGA_X_RTPSS' : 299, # A. J. Garza, A. T. Bell, and M. Head-Gordon, J. Chem. Theory Comput. 14, 3083 (2018) 'MGGA_X_SA_TPSS' : 542, # L. A. Constantin, E. Fabiano, J. M. Pitarke, and F. Della Sala, Phys. Rev. B 93, 115127 (2016) 'MGGA_X_SCAN' : 263, # J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015) 'MGGA_X_SCANL' : 700, # D. Mejia-Rodriguez and S. B. Trickey, Phys. Rev. A 96, 052512 (2017) 'MGGA_X_TASK' : 707, # T. Aschebrock and S. Kummel, Phys. Rev. Res. 1, 033082 (2019) 'MGGA_X_TAU_HCTH' : 205, # A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002) 'MGGA_X_TB09' : 208, # F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009) 'MGGA_X_TH' : 225, # T. Tsuneda and K. Hirao, Phys. Rev. B 62, 15527 (2000) 'MGGA_X_TLDA' : 685, # F. G. Eich and M. Hellgren, J. Chem. Phys. 141, 224107 (2014) 'MGGA_X_TM' : 540, # J. Tao and Y. Mo, Phys. Rev. Lett. 117, 073001 (2016) 'MGGA_X_TPSS' : 202, # J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003) 'MGGA_X_VT84' : 541, # J. M. del Campo, J. L. Gazquez, S. Trickey, and A. Vela, Chem. Phys. Lett. 543, 179 (2012) 'MGGA_XC_B97M_V' : 254, # N. Mardirossian and M. Head-Gordon, J. Chem. Phys. 142, 074111 (2015) 'MGGA_XC_CC06' : 229, # A. C. Cancio and M. Y. Chou, Phys. Rev. B 74, 081202 (2006) 'MGGA_XC_HLE17' : 288, # P. Verma and D. G. Truhlar, J. Phys. Chem. C 121, 7144 (2017) 'MGGA_XC_LP90' : 564, # C. Lee and R. G. Parr, Phys. Rev. A 42, 193 (1990) 'MGGA_XC_OTPSS_D' : 64 , # L. Goerigk and S. Grimme, J. Chem. Theory Comput. 6, 107 (2010) 'MGGA_XC_TPSSLYP1W' : 242, # E. E. Dahlke and D. G. Truhlar, J. Phys. Chem. B 109, 15677 (2005) 'MGGA_XC_ZLP' : 42 , # Q. Zhao, M. Levy, and R. G. Parr, Phys. Rev. A 47, 918 (1993) 'HYB_MGGA_X_BMK' : 279, # A. D. Boese and J. M. L. Martin, J. Chem. Phys. 121, 3405 (2004) 'HYB_MGGA_X_DLDF' : 36 , # K. Pernal, R. Podeszwa, K. Patkowski, and K. Szalewicz, Phys. Rev. Lett. 103, 263201 (2009) 'HYB_MGGA_X_JS18' : 705, # S. Jana and P. Samal, Phys. Chem. Chem. Phys. 20, 8999 (2018) 'HYB_MGGA_X_M05' : 438, # Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005) 'HYB_MGGA_X_M05_2X' : 439, # Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006) 'HYB_MGGA_X_M06' : 449, # Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008) 'HYB_MGGA_X_M06_2X' : 450, # Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008) 'HYB_MGGA_X_M06_HF' : 444, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006) 'HYB_MGGA_X_M06_SX' : 310, # Y. Wang, P. Verma, L. Zhang, Y. Li, Z. Liu, D. G. Truhlar, and X. He, Proc. Natl. Acad. Sci. U. S. A. 117, 2294 (2020), https://www.pnas.org/content/117/5/2294.full.pdf 'HYB_MGGA_X_M08_HX' : 295, # Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008) 'HYB_MGGA_X_M08_SO' : 296, # Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008) 'HYB_MGGA_X_M11' : 297, # R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett. 2, 2810 (2011) 'HYB_MGGA_X_MN12_SX' : 248, # R. Peverati and D. G. Truhlar, Phys. Chem. Chem. Phys. 14, 16187 (2012) 'HYB_MGGA_X_MN15' : 268, # H. S. Yu, X. He, S. L. Li, and D. G. Truhlar, Chem. Sci. 7, 5032 (2016) 'HYB_MGGA_X_MS2H' : 224, # J. Sun, R. Haunschild, B. Xiao, I. W. Bulik, G. E. Scuseria, and J. P. Perdew, J. Chem. Phys. 138, 044113 (2013) 'HYB_MGGA_X_MVSH' : 474, # J. Sun, J. P. Perdew, and A. Ruzsinszky, Proc. Natl. Acad. Sci. U. S. A. 112, 685 (2015) 'HYB_MGGA_X_PJS18' : 706, # B. Patra, S. Jana, and P. Samal, Phys. Chem. Chem. Phys. 20, 8991 (2018) 'HYB_MGGA_X_REVM06' : 305, # Y. Wang, P. Verma, X. Jin, D. G. Truhlar, and X. He, Proc. Natl. Acad. Sci. U. S. A. 115, 10257 (2018) 'HYB_MGGA_X_REVM11' : 304, # P. Verma, Y. Wang, S. Ghosh, X. He, and D. G. Truhlar, J. Phys. Chem. A 123, 2966 (2019) 'HYB_MGGA_X_REVSCAN0' : 583, # P. D. Mezei, G. I. Csonka, and M. Kallay, J. Chem. Theory Comput. 14, 2469 (2018) 'HYB_MGGA_X_SCAN0' : 264, # K. Hui and J.-D. Chai, J. Chem. Phys. 144, 044114 (2016) 'HYB_MGGA_X_TAU_HCTH' : 282, # A. D. Boese and N. C. Handy, J. Chem. Phys. 116, 9559 (2002) 'HYB_MGGA_XC_B0KCIS' : 563, # J. Toulouse, A. Savin, and C. Adamo, J. Chem. Phys. 117, 10465 (2002) 'HYB_MGGA_XC_B86B95' : 441, # A. D. Becke, J. Chem. Phys. 104, 1040 (1996) 'HYB_MGGA_XC_B88B95' : 440, # A. D. Becke, J. Chem. Phys. 104, 1040 (1996) 'HYB_MGGA_XC_B94_HYB' : 398, # A. D. Becke, Int. J. Quantum Chem. 52, 625 (1994) 'HYB_MGGA_XC_B98' : 598, # A. D. Becke, J. Chem. Phys. 109, 2092 (1998) 'HYB_MGGA_XC_BB1K' : 443, # Y. Zhao, B. J. Lynch, and D. G. Truhlar, J. Phys. Chem. A 108, 2715 (2004) 'HYB_MGGA_XC_EDMGGAH' : 695, # J. Tao, J. Chem. Phys. 116, 2335 (2002) 'HYB_MGGA_XC_MPW1B95' : 445, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 108, 6908 (2004) 'HYB_MGGA_XC_MPW1KCIS' : 566, # Y. Zhao, N. Gonzalez-Garcia, and D. G. Truhlar, J. Phys. Chem. A 109, 2012 (2005) 'HYB_MGGA_XC_MPWB1K' : 446, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 108, 6908 (2004) 'HYB_MGGA_XC_MPWKCIS1K' : 567, # Y. Zhao, N. Gonzalez-Garcia, and D. G. Truhlar, J. Phys. Chem. A 109, 2012 (2005) 'HYB_MGGA_XC_PBE1KCIS' : 568, # Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 1, 415 (2005) 'HYB_MGGA_XC_PW6B95' : 451, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005) 'HYB_MGGA_XC_PW86B95' : 442, # A. D. Becke, J. Chem. Phys. 104, 1040 (1996) 'HYB_MGGA_XC_PWB6K' : 452, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 109, 5656 (2005) 'HYB_MGGA_XC_REVTPSSH' : 458, # G. I. Csonka, J. P. Perdew, and A. Ruzsinszky, J. Chem. Theory Comput. 6, 3688 (2010) 'HYB_MGGA_XC_TPSS0' : 396, # S. Grimme, J. Phys. Chem. A 109, 3067 (2005) 'HYB_MGGA_XC_TPSS1KCIS' : 569, # Y. Zhao, B. J. Lynch, and D. G. Truhlar, Phys. Chem. Chem. Phys. 7, 43 (2005) 'HYB_MGGA_XC_TPSSH' : 457, # V. N. Staroverov, G. E. Scuseria, J. Tao, and J. P. Perdew, J. Chem. Phys. 119, 12129 (2003) 'HYB_MGGA_XC_WB97M_V' : 531, # N. Mardirossian and M. Head-Gordon, J. Chem. Phys. 144, 214110 (2016) 'HYB_MGGA_XC_X1B95' : 447, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 108, 6908 (2004) 'HYB_MGGA_XC_XB1K' : 448, # Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 108, 6908 (2004) } #PROBLEMATIC_XC = dict([(XC_CODES[x], x) for x in # ('GGA_C_SPBE', 'MGGA_X_REVTPSS')]) PROBLEMATIC_XC = dict([]) def _xc_key_without_underscore(xc_keys): new_xc = [] for key, xc_id in xc_keys.items(): for delimeter in ('_XC_', '_X_', '_C_', '_K_'): if delimeter in key: key0, key1 = key.split(delimeter) new_key1 = key1.replace('_', '').replace('-', '') if key1 != new_key1: new_xc.append((key0+delimeter+new_key1, xc_id)) break return new_xc XC_CODES.update(_xc_key_without_underscore(XC_CODES)) del(_xc_key_without_underscore) # # alias # XC_CODES.update({ 'GGA_C_BCGP' : 'GGA_C_ACGGA', 'LDA' : 1 , 'SLATER' : 1 , 'VWN3' : 8, 'VWNRPA' : 8, 'VWN5' : 7, 'B88' : 106, 'PBE0' : 406, 'PBE1PBE' : 406, 'OPTXCORR' : '0.7344536875999693*SLATER - 0.6984752285760186*OPTX,', 'B3LYP' : 'B3LYP5', # VWN5 version 'B3LYP5' : '.2*HF + .08*SLATER + .72*B88, .81*LYP + .19*VWN', 'B3LYPG' : 402, # VWN3, used by Gaussian 'B3P86' : 'B3P865', # VWN5 version 'B3P865' : '.2*HF + .08*SLATER + .72*B88, .81*P86 + .19*VWN', # FIXME: Check if Gaussian takes a different form for B3P86 #'B3P86G' : 403, # VWN3, used by Gaussian 'B3P86G' : '.2*HF + .08*SLATER + .72*B88, .81*P86 + .19*VWN3', 'B3PW91' : 'B3PW915', 'B3PW915' : '.2*HF + .08*SLATER + .72*B88, .81*PW91 + .19*VWN', #'B3PW91G' : '.2*HF + .08*SLATER + .72*B88, .81*PW91 + .19*VWN3', 'B3PW91G' : 401, #'O3LYP5' : '.1161*HF + .9262*SLATER + .8133*OPTXCORR, .81*LYP + .19*VWN5', #'O3LYPG' : '.1161*HF + .9262*SLATER + .8133*OPTXCORR, .81*LYP + .19*VWN3', 'O3LYP' : 404, # in libxc == '.1161*HF + 0.071006917*SLATER + .8133*OPTX, .81*LYP + .19*VWN5', may be erroreous 'MPW3PW' : 'MPW3PW5', # VWN5 version 'MPW3PW5' : '.2*HF + .08*SLATER + .72*MPW91, .81*PW91 + .19*VWN', 'MPW3PWG' : 415, # VWN3, used by Gaussian 'MPW3LYP' : 'MPW3LYP5', # VWN5 version 'MPW3LYP5' : '.218*HF + .073*SLATER + .709*MPW91, .871*LYP + .129*VWN', 'MPW3LYPG' : 419, # VWN3, used by Gaussian 'REVB3LYP' : 'REVB3LYP5', # VWN5 version 'REVB3LYP5' : '.2*HF + .13*SLATER + .67*B88, .84*LYP + .16*VWN', 'REVB3LYPG' : 454, # VWN3, used by Gaussian 'X3LYP' : 'X3LYP5', # VWN5 version 'X3LYP5' : '.218*HF + .073*SLATER + .542385*B88 + .166615*PW91, .871*LYP + .129*VWN', 'X3LYPG' : 411, # VWN3, used by Gaussian 'CAMB3LYP' : 'HYB_GGA_XC_CAM_B3LYP', 'CAMYBLYP' : 'HYB_GGA_XC_CAMY_BLYP', 'CAMYB3LYP' : 'HYB_GGA_XC_CAMY_B3LYP', 'B5050LYP' : '.5*HF + .08*SLATER + .42*B88, .81*LYP + .19*VWN', 'MPW1LYP' : '.25*HF + .75*MPW91, LYP', 'MPW1PBE' : '.25*HF + .75*MPW91, PBE', 'PBE50' : '.5*HF + .5*PBE, PBE', 'REVPBE0' : '.25*HF + .75*PBE_R, PBE', 'B1B95' : 440, 'TPSS0' : '.25*HF + .75*TPSS, TPSS', }) # noqa: E501 XC_KEYS = set(XC_CODES.keys()) # Some XC functionals have conventional name, like M06-L means M06-L for X # functional and M06-L for C functional, PBE mean PBE-X plus PBE-C. If the # conventional name was placed in the XC_CODES, it may lead to recursive # reference when parsing the xc description. These names (as exceptions of # XC_CODES) are listed in XC_ALIAS below and they should be treated as a # shortcut for XC functional. XC_ALIAS = { # Conventional name : name in XC_CODES 'BLYP' : 'B88,LYP', 'BP86' : 'B88,P86', 'PW91' : 'PW91,PW91', 'PBE' : 'PBE,PBE', 'REVPBE' : 'PBE_R,PBE', 'PBESOL' : 'PBE_SOL,PBE_SOL', 'PKZB' : 'PKZB,PKZB', 'TPSS' : 'TPSS,TPSS', 'REVTPSS' : 'REVTPSS,REVTPSS', 'SCAN' : 'SCAN,SCAN', 'RSCAN' : 'RSCAN,RSCAN', 'R2SCAN' : 'R2SCAN,R2SCAN', 'SCANL' : 'SCANL,SCANL', 'R2SCANL' : 'R2SCANL,R2SCANL', 'SOGGA' : 'SOGGA,PBE', 'BLOC' : 'BLOC,TPSSLOC', 'OLYP' : 'OPTX,LYP', 'OPBE' : 'OPTX,PBE', 'RPBE' : 'RPBE,PBE', 'BPBE' : 'B88,PBE', 'MPW91' : 'MPW91,PW91', 'HFLYP' : 'HF,LYP', 'HFPW92' : 'HF,PW_MOD', 'SPW92' : 'SLATER,PW_MOD', 'SVWN' : 'SLATER,VWN', 'MS0' : 'MS0,REGTPSS', 'MS1' : 'MS1,REGTPSS', 'MS2' : 'MS2,REGTPSS', 'MS2H' : 'MS2H,REGTPSS', 'MVS' : 'MVS,REGTPSS', 'MVSH' : 'MVSH,REGTPSS', 'SOGGA11' : 'SOGGA11,SOGGA11', 'SOGGA11_X' : 'SOGGA11_X,SOGGA11_X', 'KT1' : 'KT1,VWN', 'KT2' : 'GGA_XC_KT2', 'KT3' : 'GGA_XC_KT3', 'DLDF' : 'DLDF,DLDF', 'GAM' : 'GAM,GAM', 'M06_L' : 'M06_L,M06_L', 'M06_SX' : 'M06_SX,M06_SX', 'M11_L' : 'M11_L,M11_L', 'MN12_L' : 'MN12_L,MN12_L', 'MN15_L' : 'MN15_L,MN15_L', 'N12' : 'N12,N12', 'N12_SX' : 'N12_SX,N12_SX', 'MN12_SX' : 'MN12_SX,MN12_SX', 'MN15' : 'MN15,MN15', 'MBEEF' : 'MBEEF,PBE_SOL', 'SCAN0' : 'SCAN0,SCAN', 'PBEOP' : 'PBE,OP_PBE', 'BOP' : 'B88,OP_B88', # new in libxc-4.2.3 'REVSCAN' : 'MGGA_X_REVSCAN,MGGA_C_REVSCAN', 'REVSCAN_VV10' : 'MGGA_X_REVSCAN,MGGA_C_REVSCAN_VV10', 'SCAN_VV10' : 'MGGA_X_SCAN,MGGA_C_SCAN_VV10', 'SCAN_RVV10' : 'MGGA_X_SCAN,MGGA_C_SCAN_RVV10', 'M05' : 'HYB_MGGA_X_M05,MGGA_C_M05', 'M06' : 'HYB_MGGA_X_M06,MGGA_C_M06', 'M05_2X' : 'HYB_MGGA_X_M05_2X,MGGA_C_M05_2X', 'M06_2X' : 'HYB_MGGA_X_M06_2X,MGGA_C_M06_2X', # extra aliases 'SOGGA11X' : 'SOGGA11_X', 'M06L' : 'M06_L', 'M11L' : 'M11_L', 'MN12L' : 'MN12_L', 'MN15L' : 'MN15_L', 'N12SX' : 'N12_SX', 'MN12SX' : 'MN12_SX', 'M052X' : 'M05_2X', 'M062X' : 'M06_2X', } # noqa: E122 XC_ALIAS.update([(key.replace('-',''), XC_ALIAS[key]) for key in XC_ALIAS if '-' in key]) VV10_XC = set(('B97M_V', 'WB97M_V', 'WB97X_V', 'VV10', 'LC_VV10', 'REVSCAN_VV10', 'SCAN_VV10', 'SCAN_RVV10', 'SCANL_VV10', 'SCANL_RVV10')) VV10_XC = VV10_XC.union(set([x.replace('_', '') for x in VV10_XC])) def xc_reference(xc_code): '''Returns the reference to the individual XC functional''' hyb, fn_facs = parse_xc(xc_code) refs = [] c_refs = (ctypes.c_char_p * 8)() for xid, fac in fn_facs: _itrf.LIBXC_xc_reference(xid, c_refs) for ref in c_refs: if ref: refs.append(ref.decode("UTF-8")) return refs def xc_type(xc_code): if xc_code is None: return None elif isinstance(xc_code, str): if is_nlc(xc_code): return 'NLC' hyb, fn_facs = parse_xc(xc_code) else: fn_facs = [(xc_code, 1)] # mimic fn_facs if not fn_facs: return 'HF' elif all(_itrf.LIBXC_is_lda(ctypes.c_int(xid)) for xid, fac in fn_facs): return 'LDA' elif any(_itrf.LIBXC_is_meta_gga(ctypes.c_int(xid)) for xid, fac in fn_facs): return 'MGGA' else: # any(_itrf.LIBXC_is_gga(ctypes.c_int(xid)) for xid, fac in fn_facs) # include hybrid_xc return 'GGA' def is_lda(xc_code): return xc_type(xc_code) == 'LDA' def is_hybrid_xc(xc_code): if xc_code is None: return False elif isinstance(xc_code, str): if xc_code.isdigit(): return _itrf.LIBXC_is_hybrid(ctypes.c_int(int(xc_code))) else: if 'HF' in xc_code: return True if hybrid_coeff(xc_code) != 0: return True if rsh_coeff(xc_code) != [0, 0, 0]: return True return False elif isinstance(xc_code, int): return _itrf.LIBXC_is_hybrid(ctypes.c_int(xc_code)) else: return any((is_hybrid_xc(x) for x in xc_code)) def is_meta_gga(xc_code): return xc_type(xc_code) == 'MGGA' def is_gga(xc_code): return xc_type(xc_code) == 'GGA' def needs_laplacian(xc_code): return _itrf.LIBXC_needs_laplacian(xc_code) != 0 def is_nlc(xc_code): return '__VV10' in xc_code.upper() def max_deriv_order(xc_code): hyb, fn_facs = parse_xc(xc_code) if fn_facs: return min(_itrf.LIBXC_max_deriv_order(ctypes.c_int(xid)) for xid, fac in fn_facs) else: return 3 def test_deriv_order(xc_code, deriv, raise_error=False): support = deriv <= max_deriv_order(xc_code) if not support and raise_error: from pyscf.dft import xcfun msg = ('libxc library does not support derivative order %d for %s' % (deriv, xc_code)) try: if xcfun.test_deriv_order(xc_code, deriv, raise_error=False): msg += (''' This functional derivative is supported in the xcfun library. The following code can be used to change the libxc library to xcfun library: from pyscf.dft import xcfun mf._numint.libxc = xcfun ''') raise NotImplementedError(msg) except KeyError as e: sys.stderr.write('\n'+msg+'\n') sys.stderr.write('%s not found in xcfun library\n\n' % xc_code) raise e return support def hybrid_coeff(xc_code, spin=0): '''Support recursively defining hybrid functional ''' hyb, fn_facs = parse_xc(xc_code) for xid, fac in fn_facs: hyb[0] += fac * _itrf.LIBXC_hybrid_coeff(ctypes.c_int(xid)) return hyb[0] def nlc_coeff(xc_code): '''Get NLC coefficients ''' nlc_code = None if isinstance(xc_code, str) and '__VV10' in xc_code.upper(): xc_code, nlc_code = xc_code.upper().split('__', 1) hyb, fn_facs = parse_xc(xc_code) nlc_pars = [0, 0] nlc_tmp = (ctypes.c_double*2)() for xid, fac in fn_facs: _itrf.LIBXC_nlc_coeff(xid, nlc_tmp) nlc_pars[0] += nlc_tmp[0] nlc_pars[1] += nlc_tmp[1] if nlc_pars[0] == 0 and nlc_pars[1] == 0: if nlc_code is not None: # Use VV10 NLC parameters by default for the general case _itrf.LIBXC_nlc_coeff(XC_CODES['GGA_XC_' + nlc_code], nlc_tmp) nlc_pars[0] += nlc_tmp[0] nlc_pars[1] += nlc_tmp[1] else: raise NotImplementedError( '%s does not have NLC part. Available functionals are %s' % (xc_code, ', '.join(VV10_XC.keys()))) return nlc_pars def rsh_coeff(xc_code): '''Range-separated parameter and HF exchange components: omega, alpha, beta Exc_RSH = c_LR * LR_HFX + c_SR * SR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec = alpha * HFX + beta * SR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec = alpha * LR_HFX + hyb * SR_HFX + (1-c_SR) * Ex_SR + (1-c_LR) * Ex_LR + Ec SR_HFX = < pi | e^{-omega r_{12}}/r_{12} | iq > LR_HFX = < pi | (1-e^{-omega r_{12}})/r_{12} | iq > alpha = c_LR beta = c_SR - c_LR = hyb - alpha ''' if xc_code is None: return 0, 0, 0 check_omega = True if isinstance(xc_code, str) and ',' in xc_code: # Parse only X part for the RSH coefficients. This is to handle # exceptions for C functionals such as M11. xc_code = format_xc_code(xc_code) xc_code = xc_code.split(',')[0] + ',' if 'SR_HF' in xc_code or 'LR_HF' in xc_code or 'RSH(' in xc_code: check_omega = False hyb, fn_facs = parse_xc(xc_code) hyb, alpha, omega = hyb beta = hyb - alpha rsh_pars = [omega, alpha, beta] rsh_tmp = (ctypes.c_double*3)() _itrf.LIBXC_rsh_coeff(433, rsh_tmp) for xid, fac in fn_facs: _itrf.LIBXC_rsh_coeff(xid, rsh_tmp) if rsh_pars[0] == 0: rsh_pars[0] = rsh_tmp[0] elif check_omega: # Check functional is actually a CAM functional if rsh_tmp[0] != 0 and not _itrf.LIBXC_is_cam_rsh(ctypes.c_int(xid)): raise KeyError('Libxc functional %i employs a range separation ' 'kernel that is not supported in PySCF' % xid) # Check omega if (rsh_tmp[0] != 0 and rsh_pars[0] != rsh_tmp[0]): raise ValueError('Different values of omega found for RSH functionals') rsh_pars[1] += rsh_tmp[1] * fac rsh_pars[2] += rsh_tmp[2] * fac return rsh_pars def parse_xc_name(xc_name='LDA,VWN'): '''Convert the XC functional name to libxc library internal ID. ''' fn_facs = parse_xc(xc_name)[1] return fn_facs[0][0], fn_facs[1][0] def parse_xc(description): r'''Rules to input functional description: * The given functional description must be a one-line string. * The functional description is case-insensitive. * The functional description string has two parts, separated by ",". The first part describes the exchange functional, the second is the correlation functional. - If "," was not in string, the entire string is considered as a compound XC functional (including both X and C functionals, such as b3lyp). - To input only X functional (without C functional), leave the second part blank. E.g. description='slater,' means pure LDA functional. - To neglect X functional (just apply C functional), leave the first part blank. E.g. description=',vwn' means pure VWN functional. - If compound XC functional is specified, no matter whehter it is in the X part (the string in front of comma) or the C part (the string behind comma), both X and C functionals of the compound XC functional will be used. * The functional name can be placed in arbitrary order. Two name needs to be separated by operators "+" or "-". Blank spaces are ignored. NOTE the parser only reads operators "+" "-" "*". / is not in support. * A functional name can have at most one factor. If the factor is not given, it is set to 1. Compound functional can be scaled as a unit. For example '0.5*b3lyp' is equivalent to 'HF*0.1 + .04*LDA + .36*B88, .405*LYP + .095*VWN' * String "HF" stands for exact exchange (HF K matrix). Putting "HF" in correlation functional part is the same to putting "HF" in exchange part. * String "RSH" means range-separated operator. Its format is RSH(omega, alpha, beta). Another way to input RSH is to use keywords SR_HF and LR_HF: "SR_HF(0.1) * alpha_plus_beta" and "LR_HF(0.1) * alpha" where the number in parenthesis is the value of omega. * Be careful with the libxc convention on GGA functional, in which the LDA contribution has been included. Args: xc_code : str A string to describe the linear combination of different XC functionals. The X and C functional are separated by comma like '.8*LDA+.2*B86,VWN'. If "HF" was appeared in the string, it stands for the exact exchange. rho : ndarray Shape of ((*,N)) for electron density (and derivatives) if spin = 0; Shape of ((*,N),(*,N)) for alpha/beta electron density (and derivatives) if spin > 0; where N is number of grids. rho (*,N) are ordered as (den,grad_x,grad_y,grad_z,laplacian,tau) where grad_x = d/dx den, laplacian = \nabla^2 den, tau = 1/2(\nabla f)^2 In spin unrestricted case, rho is ((den_u,grad_xu,grad_yu,grad_zu,laplacian_u,tau_u) (den_d,grad_xd,grad_yd,grad_zd,laplacian_d,tau_d)) Kwargs: spin : int spin polarized if spin > 0 relativity : int No effects. verbose : int or object of :class:`Logger` No effects. Returns: ex, vxc, fxc, kxc where * vxc = (vrho, vsigma, vlapl, vtau) for restricted case * vxc for unrestricted case | vrho[:,2] = (u, d) | vsigma[:,3] = (uu, ud, dd) | vlapl[:,2] = (u, d) | vtau[:,2] = (u, d) * fxc for restricted case: (v2rho2, v2rhosigma, v2sigma2, v2lapl2, vtau2, v2rholapl, v2rhotau, v2lapltau, v2sigmalapl, v2sigmatau) * fxc for unrestricted case: | v2rho2[:,3] = (u_u, u_d, d_d) | v2rhosigma[:,6] = (u_uu, u_ud, u_dd, d_uu, d_ud, d_dd) | v2sigma2[:,6] = (uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd) | v2lapl2[:,3] | vtau2[:,3] | v2rholapl[:,4] | v2rhotau[:,4] | v2lapltau[:,4] | v2sigmalapl[:,6] | v2sigmatau[:,6] * kxc for restricted case: v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3, v3rho2tau, v3rhosigmatau, v3rhotau2, v3sigma2tau, v3sigmatau2, v3tau3 * kxc for unrestricted case: | v3rho3[:,4] = (u_u_u, u_u_d, u_d_d, d_d_d) | v3rho2sigma[:,9] = (u_u_uu, u_u_ud, u_u_dd, u_d_uu, u_d_ud, u_d_dd, d_d_uu, d_d_ud, d_d_dd) | v3rhosigma2[:,12] = (u_uu_uu, u_uu_ud, u_uu_dd, u_ud_ud, u_ud_dd, u_dd_dd, d_uu_uu, d_uu_ud, d_uu_dd, d_ud_ud, d_ud_dd, d_dd_dd) | v3sigma3[:,10] = (uu_uu_uu, uu_uu_ud, uu_uu_dd, uu_ud_ud, uu_ud_dd, uu_dd_dd, ud_ud_ud, ud_ud_dd, ud_dd_dd, dd_dd_dd) | v3rho2tau | v3rhosigmatau | v3rhotau2 | v3sigma2tau | v3sigmatau2 | v3tau3 see also libxc_itrf.c ''' # noqa: E501 hyb = [0, 0, 0] # hybrid, alpha, omega (== SR_HF, LR_HF, omega) if description is None: return hyb, [] elif isinstance(description, int): return hyb, [(description, 1.)] elif not isinstance(description, str): #isinstance(description, (tuple,list)): return parse_xc('%s,%s' % tuple(description)) def assign_omega(omega, hyb_or_sr, lr=0): if hyb[2] == omega or omega == 0: hyb[0] += hyb_or_sr hyb[1] += lr elif hyb[2] == 0: hyb[0] += hyb_or_sr hyb[1] += lr hyb[2] = omega else: raise ValueError('Different values of omega found for RSH functionals') fn_facs = [] def parse_token(token, ftype, search_xc_alias=False): if token: if token[0] == '-': sign = -1 token = token[1:] else: sign = 1 if '*' in token: fac, key = token.split('*') if fac[0].isalpha(): fac, key = key, fac fac = sign * float(fac) else: fac, key = sign, token if key[:3] == 'RSH': # RSH(alpha; beta; omega): Range-separated-hybrid functional # See also utils.format_xc_code alpha, beta, omega = [float(x) for x in key[4:-1].split(';')] assign_omega(omega, fac*(alpha+beta), fac*alpha) elif key == 'HF': hyb[0] += fac hyb[1] += fac # also add to LR_HF elif 'SR_HF' in key: if '(' in key: omega = float(key.split('(')[1].split(')')[0]) assign_omega(omega, fac, 0) else: # Assuming this omega the same to the existing omega hyb[0] += fac elif 'LR_HF' in key: if '(' in key: omega = float(key.split('(')[1].split(')')[0]) assign_omega(omega, 0, fac) else: hyb[1] += fac # == alpha elif key.isdigit(): fn_facs.append((int(key), fac)) else: if search_xc_alias and key in XC_ALIAS: x_id = XC_ALIAS[key] elif key in XC_CODES: x_id = XC_CODES[key] else: possible_xc_for = fpossible_dic[ftype] possible_xc = XC_KEYS.intersection(possible_xc_for(key)) if possible_xc: if len(possible_xc) > 1: sys.stderr.write('Possible xc_code %s matches %s. ' % (list(possible_xc), key)) for x_id in possible_xc: # Prefer X functional if '_X_' in x_id: break else: x_id = possible_xc.pop() sys.stderr.write('XC parser takes %s\n' % x_id) sys.stderr.write('You can add prefix to %s for a ' 'specific functional (e.g. X_%s, ' 'HYB_MGGA_X_%s)\n' % (key, key, key)) else: x_id = possible_xc.pop() x_id = XC_CODES[x_id] else: raise KeyError('Unknown %s functional %s' % (ftype, key)) if isinstance(x_id, str): hyb1, fn_facs1 = parse_xc(x_id) # Recursively scale the composed functional, to support e.g. '0.5*b3lyp' if hyb1[0] != 0 or hyb1[1] != 0: assign_omega(hyb1[2], hyb1[0]*fac, hyb1[1]*fac) fn_facs.extend([(xid, c*fac) for xid, c in fn_facs1]) elif x_id is None: raise NotImplementedError('%s functional %s' % (ftype, key)) else: fn_facs.append((x_id, fac)) def possible_x_for(key): return set((key, 'LDA_X_'+key, 'GGA_X_'+key, 'MGGA_X_'+key, 'HYB_GGA_X_'+key, 'HYB_MGGA_X_'+key)) def possible_xc_for(key): return set((key, 'LDA_XC_'+key, 'GGA_XC_'+key, 'MGGA_XC_'+key, 'HYB_GGA_XC_'+key, 'HYB_MGGA_XC_'+key)) def possible_k_for(key): return set((key, 'LDA_K_'+key, 'GGA_K_'+key,)) def possible_x_k_for(key): return possible_x_for(key).union(possible_k_for(key)) def possible_c_for(key): return set((key, 'LDA_C_'+key, 'GGA_C_'+key, 'MGGA_C_'+key)) fpossible_dic = {'X': possible_x_for, 'C': possible_c_for, 'compound XC': possible_xc_for, 'K': possible_k_for, 'X or K': possible_x_k_for} description = format_xc_code(description) if '-' in description: # To handle e.g. M06-L for key in _NAME_WITH_DASH: if key in description: description = description.replace(key, _NAME_WITH_DASH[key]) if ',' in description: x_code, c_code = description.split(',') for token in x_code.replace('-', '+-').replace(';+', ';').split('+'): parse_token(token, 'X or K') for token in c_code.replace('-', '+-').replace(';+', ';').split('+'): parse_token(token, 'C') else: for token in description.replace('-', '+-').replace(';+', ';').split('+'): parse_token(token, 'compound XC', search_xc_alias=True) if hyb[2] == 0: # No omega is assigned. LR_HF is 0 for normal Coulomb operator hyb[1] = 0 return hyb, remove_dup(fn_facs) _NAME_WITH_DASH = {'SR-HF' : 'SR_HF', 'LR-HF' : 'LR_HF', 'OTPSS-D' : 'OTPSS_D', 'B97-1' : 'B97_1', 'B97-2' : 'B97_2', 'B97-3' : 'B97_3', 'B97-K' : 'B97_K', 'B97-D' : 'B97_D', 'HCTH-93' : 'HCTH_93', 'HCTH-120' : 'HCTH_120', 'HCTH-147' : 'HCTH_147', 'HCTH-407' : 'HCTH_407', 'WB97X-D' : 'WB97X_D', 'WB97X-V' : 'WB97X_V', 'WB97M-V' : 'WB97M_V', 'B97M-V' : 'B97M_V', 'M05-2X' : 'M05_2X', 'M06-L' : 'M06_L', 'M06-HF' : 'M06_HF', 'M06-2X' : 'M06_2X', 'M08-HX' : 'M08_HX', 'M08-SO' : 'M08_SO', 'M11-L' : 'M11_L', 'MN12-L' : 'MN12_L', 'MN15-L' : 'MN15_L', 'MN12-SX' : 'MN12_SX', 'N12-SX' : 'N12_SX', 'LRC-WPBE' : 'LRC_WPBE', 'LRC-WPBEH': 'LRC_WPBEH', 'LC-VV10' : 'LC_VV10', 'CAM-B3LYP': 'CAM_B3LYP'} def eval_xc(xc_code, rho, spin=0, relativity=0, deriv=1, omega=None, verbose=None): r'''Interface to call libxc library to evaluate XC functional, potential and functional derivatives. * The given functional xc_code must be a one-line string. * The functional xc_code is case-insensitive. * The functional xc_code string has two parts, separated by ",". The first part describes the exchange functional, the second part sets the correlation functional. - If "," not appeared in string, the entire string is treated as the name of a compound functional (containing both the exchange and the correlation functional) which was declared in the functional aliases list. The full list of functional aliases can be obtained by calling the function pyscf.dft.xcfun.XC_ALIAS.keys() . If the string was not found in the aliased functional list, it is treated as X functional. - To input only X functional (without C functional), leave the second part blank. E.g. description='slater,' means a functional with LDA contribution only. - To neglect the contribution of X functional (just apply C functional), leave blank in the first part, e.g. description=',vwn' means a functional with VWN only. - If compound XC functional is specified, no matter whether it is in the X part (the string in front of comma) or the C part (the string behind comma), both X and C functionals of the compound XC functional will be used. * The functional name can be placed in arbitrary order. Two names need to be separated by operators "+" or "-". Blank spaces are ignored. NOTE the parser only reads operators "+" "-" "*". / is not supported. * A functional name can have at most one factor. If the factor is not given, it is set to 1. Compound functional can be scaled as a unit. For example '0.5*b3lyp' is equivalent to 'HF*0.1 + .04*LDA + .36*B88, .405*LYP + .095*VWN' * String "HF" stands for exact exchange (HF K matrix). "HF" can be put in the correlation functional part (after comma). Putting "HF" in the correlation part is the same to putting "HF" in the exchange part. * String "RSH" means range-separated operator. Its format is RSH(omega, alpha, beta). Another way to input RSH is to use keywords SR_HF and LR_HF: "SR_HF(0.1) * alpha_plus_beta" and "LR_HF(0.1) * alpha" where the number in parenthesis is the value of omega. * Be careful with the libxc convention of GGA functional, in which the LDA contribution is included. Args: xc_code : str A string to describe the linear combination of different XC functionals. The X and C functional are separated by comma like '.8*LDA+.2*B86,VWN'. If "HF" (exact exchange) is appeared in the string, the HF part will be skipped. If an empty string "" is given, the returns exc, vxc,... will be vectors of zeros. rho : ndarray Shape of ((*,N)) for electron density (and derivatives) if spin = 0; Shape of ((*,N),(*,N)) for alpha/beta electron density (and derivatives) if spin > 0; where N is number of grids. rho (*,N) are ordered as (den,grad_x,grad_y,grad_z,laplacian,tau) where grad_x = d/dx den, laplacian = \nabla^2 den, tau = 1/2(\nabla f)^2 In spin unrestricted case, rho is ((den_u,grad_xu,grad_yu,grad_zu,laplacian_u,tau_u) (den_d,grad_xd,grad_yd,grad_zd,laplacian_d,tau_d)) Kwargs: spin : int spin polarized if spin > 0 relativity : int No effects. verbose : int or object of :class:`Logger` No effects. Returns: ex, vxc, fxc, kxc where * vxc = (vrho, vsigma, vlapl, vtau) for restricted case * vxc for unrestricted case | vrho[:,2] = (u, d) | vsigma[:,3] = (uu, ud, dd) | vlapl[:,2] = (u, d) | vtau[:,2] = (u, d) * fxc for restricted case: (v2rho2, v2rhosigma, v2sigma2, v2lapl2, vtau2, v2rholapl, v2rhotau, v2lapltau, v2sigmalapl, v2sigmatau) * fxc for unrestricted case: | v2rho2[:,3] = (u_u, u_d, d_d) | v2rhosigma[:,6] = (u_uu, u_ud, u_dd, d_uu, d_ud, d_dd) | v2sigma2[:,6] = (uu_uu, uu_ud, uu_dd, ud_ud, ud_dd, dd_dd) | v2lapl2[:,3] | vtau2[:,3] | v2rholapl[:,4] | v2rhotau[:,4] | v2lapltau[:,4] | v2sigmalapl[:,6] | v2sigmatau[:,6] * kxc for restricted case: (v3rho3, v3rho2sigma, v3rhosigma2, v3sigma3) * kxc for unrestricted case: | v3rho3[:,4] = (u_u_u, u_u_d, u_d_d, d_d_d) | v3rho2sigma[:,9] = (u_u_uu, u_u_ud, u_u_dd, u_d_uu, u_d_ud, u_d_dd, d_d_uu, d_d_ud, d_d_dd) | v3rhosigma2[:,12] = (u_uu_uu, u_uu_ud, u_uu_dd, u_ud_ud, u_ud_dd, u_dd_dd, d_uu_uu, d_uu_ud, d_uu_dd, d_ud_ud, d_ud_dd, d_dd_dd) | v3sigma3[:,10] = (uu_uu_uu, uu_uu_ud, uu_uu_dd, uu_ud_ud, uu_ud_dd, uu_dd_dd, ud_ud_ud, ud_ud_dd, ud_dd_dd, dd_dd_dd) see also libxc_itrf.c ''' # noqa: E501 hyb, fn_facs = parse_xc(xc_code) if omega is not None: hyb[2] = float(omega) return _eval_xc(hyb, fn_facs, rho, spin, relativity, deriv, verbose) def _eval_xc(hyb, fn_facs, rho, spin=0, relativity=0, deriv=1, verbose=None): assert(deriv <= 3) if spin == 0: nspin = 1 rho_u = rho_d = numpy.asarray(rho, order='C') else: nspin = 2 rho_u = numpy.asarray(rho[0], order='C') rho_d = numpy.asarray(rho[1], order='C') assert(rho_u.dtype == numpy.double) assert(rho_d.dtype == numpy.double) if rho_u.ndim == 1: rho_u = rho_u.reshape(1,-1) rho_d = rho_d.reshape(1,-1) ngrids = rho_u.shape[1] fn_ids = [x[0] for x in fn_facs] facs = [x[1] for x in fn_facs] if hyb[2] != 0: # Current implementation does not support different omegas for # different RSH functionals if there are multiple RSHs omega = [hyb[2]] * len(facs) else: omega = [0] * len(facs) fn_ids_set = set(fn_ids) if fn_ids_set.intersection(PROBLEMATIC_XC): problem_xc = [PROBLEMATIC_XC[k] for k in fn_ids_set.intersection(PROBLEMATIC_XC)] warnings.warn('Libxc functionals %s may have discrepancy to xcfun ' 'library.\n' % problem_xc) if any([needs_laplacian(fid) for fid in fn_ids]): raise NotImplementedError('laplacian in meta-GGA method') n = len(fn_ids) if (n == 0 or # xc_code = '' or xc_code = 'HF', an empty functional all((is_lda(x) for x in fn_ids))): if spin == 0: nvar = 1 else: nvar = 2 elif any((is_meta_gga(x) for x in fn_ids)): if spin == 0: nvar = 4 else: nvar = 9 else: # GGA if spin == 0: nvar = 2 else: nvar = 5 outlen = (math.factorial(nvar+deriv) // (math.factorial(nvar) * math.factorial(deriv))) outbuf = numpy.zeros((outlen,ngrids)) _itrf.LIBXC_eval_xc(ctypes.c_int(n), (ctypes.c_int*n)(*fn_ids), (ctypes.c_double*n)(*facs), (ctypes.c_double*n)(*omega), ctypes.c_int(nspin), ctypes.c_int(deriv), ctypes.c_int(rho_u.shape[1]), rho_u.ctypes.data_as(ctypes.c_void_p), rho_d.ctypes.data_as(ctypes.c_void_p), outbuf.ctypes.data_as(ctypes.c_void_p)) exc = outbuf[0] vxc = fxc = kxc = None if nvar == 1: # LDA if deriv > 0: vxc = (outbuf[1], None, None, None) if deriv > 1: fxc = (outbuf[2],) + (None,)*9 if deriv > 2: kxc = (outbuf[3], None, None, None) elif nvar == 2: if spin == 0: # GGA if deriv > 0: vxc = (outbuf[1], outbuf[2], None, None) if deriv > 1: fxc = (outbuf[3], outbuf[4], outbuf[5],) + (None,)*7 if deriv > 2: kxc = outbuf[6:10] else: # LDA if deriv > 0: vxc = (outbuf[1:3].T, None, None, None) if deriv > 1: fxc = (outbuf[3:6].T,) + (None,)*9 if deriv > 2: kxc = (outbuf[6:10].T, None, None, None) elif nvar == 5: # GGA if deriv > 0: vxc = (outbuf[1:3].T, outbuf[3:6].T, None, None) if deriv > 1: fxc = (outbuf[6:9].T, outbuf[9:15].T, outbuf[15:21].T) + (None,)*7 if deriv > 2: kxc = (outbuf[21:25].T, outbuf[25:34].T, outbuf[34:46].T, outbuf[46:56].T) elif nvar == 4: # MGGA if deriv > 0: vxc = outbuf[1:5] if deriv > 1: fxc = outbuf[5:15] if deriv > 2: kxc = outbuf[15:19] elif nvar == 9: # MGGA if deriv > 0: vxc = (outbuf[1:3].T, outbuf[3:6].T, outbuf[6:8].T, outbuf[8:10].T) if deriv > 1: fxc = (outbuf[10:13].T, outbuf[13:19].T, outbuf[19:25].T, outbuf[25:28].T, outbuf[28:31].T, outbuf[31:35].T, outbuf[35:39].T, outbuf[39:43].T, outbuf[43:49].T, outbuf[49:55].T) return exc, vxc, fxc, kxc def define_xc_(ni, description, xctype='LDA', hyb=0, rsh=(0,0,0)): '''Define XC functional. See also :func:`eval_xc` for the rules of input description. Args: ni : an instance of :class:`NumInt` description : str A string to describe the linear combination of different XC functionals. The X and C functional are separated by comma like '.8*LDA+.2*B86,VWN'. If "HF" was appeared in the string, it stands for the exact exchange. Kwargs: xctype : str 'LDA' or 'GGA' or 'MGGA' hyb : float hybrid functional coefficient rsh : a list of three floats coefficients (omega, alpha, beta) for range-separated hybrid functional. omega is the exponent factor in attenuated Coulomb operator e^{-omega r_{12}}/r_{12} alpha is the coefficient for long-range part, hybrid coefficient can be obtained by alpha + beta Examples: >>> mol = gto.M(atom='O 0 0 0; H 0 0 1; H 0 1 0', basis='ccpvdz') >>> mf = dft.RKS(mol) >>> define_xc_(mf._numint, '.2*HF + .08*LDA + .72*B88, .81*LYP + .19*VWN') >>> mf.kernel() -76.3783361189611 >>> define_xc_(mf._numint, 'LDA*.08 + .72*B88 + .2*HF, .81*LYP + .19*VWN') >>> mf.kernel() -76.3783361189611 >>> def eval_xc(xc_code, rho, *args, **kwargs): ... exc = 0.01 * rho**2 ... vrho = 0.01 * 2 * rho ... vxc = (vrho, None, None, None) ... fxc = None # 2nd order functional derivative ... kxc = None # 3rd order functional derivative ... return exc, vxc, fxc, kxc >>> define_xc_(mf._numint, eval_xc, xctype='LDA') >>> mf.kernel() 48.8525211046668 ''' if isinstance(description, str): ni.eval_xc = lambda xc_code, rho, *args, **kwargs: \ eval_xc(description, rho, *args, **kwargs) ni.hybrid_coeff = lambda *args, **kwargs: hybrid_coeff(description) ni.rsh_coeff = lambda *args: rsh_coeff(description) ni._xc_type = lambda *args: xc_type(description) elif callable(description): ni.eval_xc = description ni.hybrid_coeff = lambda *args, **kwargs: hyb ni.rsh_coeff = lambda *args, **kwargs: rsh ni._xc_type = lambda *args: xctype else: raise ValueError('Unknown description %s' % description) return ni def define_xc(ni, description, xctype='LDA', hyb=0, rsh=(0,0,0)): return define_xc_(copy.copy(ni), description, xctype, hyb, rsh) define_xc.__doc__ = define_xc_.__doc__
the-stack_0_4819
""" ID: fufa0001 LANG: PYTHON3 TASK: milk2 """ fin = open('milk2.in','r') fout = open('milk2.out','w') count, *times = fin.readlines() for i in range(0,int(count)): times[i]=list(map(int, times[i].split())) times = sorted(times, key=lambda tup: tup[0]) merged = [] for higher in times: if not merged: merged.append(higher) else: lower = merged[-1] if higher[0] <= lower[1]: upper_bound = max(lower[1], higher[1]) merged[-1] = (lower[0], upper_bound) # replace by merged interval else: merged.append(higher) longest_milk = 0 longest_no_milk = 0 for i in range(0,len(merged)): diff = merged[i][1] - merged[i][0] if diff > longest_milk: longest_milk = diff if i != len(merged) - 1: diff = merged[i+1][0] - merged[i][1] if diff > longest_no_milk: longest_no_milk = diff fout.write(str(longest_milk) + " " + str(longest_no_milk) + "\n") fout.close()
the-stack_0_4820
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * import os import socket from os.path import join as pjoin def get_spec_path(spec, package_name, path_replacements={}, use_bin=False): """Extracts the prefix path for the given spack package path_replacements is a dictionary with string replacements for the path. """ if not use_bin: path = spec[package_name].prefix else: path = spec[package_name].prefix.bin path = os.path.realpath(path) for key in path_replacements: path = path.replace(key, path_replacements[key]) return path class Axom(CachedCMakePackage, CudaPackage): """Axom provides a robust, flexible software infrastructure for the development of multi-physics applications and computational tools.""" maintainers = ['white238'] homepage = "https://github.com/LLNL/axom" git = "https://github.com/LLNL/axom.git" version('main', branch='main', submodules=True) version('develop', branch='develop', submodules=True) version('0.5.0', tag='v0.5.0', submodules=True) version('0.4.0', tag='v0.4.0', submodules=True) version('0.3.3', tag='v0.3.3', submodules=True) version('0.3.2', tag='v0.3.2', submodules=True) version('0.3.1', tag='v0.3.1', submodules=True) version('0.3.0', tag='v0.3.0', submodules=True) version('0.2.9', tag='v0.2.9', submodules=True) root_cmakelists_dir = 'src' # ----------------------------------------------------------------------- # Variants # ----------------------------------------------------------------------- variant('shared', default=True, description='Enable build of shared libraries') variant('debug', default=False, description='Build debug instead of optimized version') variant('examples', default=True, description='Build examples') variant('tools', default=True, description='Build tools') variant('cpp14', default=True, description="Build with C++14 support") variant('fortran', default=True, description="Build with Fortran support") variant("python", default=False, description="Build python support") variant("mpi", default=True, description="Build MPI support") variant('openmp', default=True, description='Turn on OpenMP support.') variant("mfem", default=False, description="Build with mfem") variant("hdf5", default=True, description="Build with hdf5") variant("lua", default=True, description="Build with Lua") variant("scr", default=False, description="Build with SCR") variant("umpire", default=True, description="Build with umpire") variant("raja", default=True, description="Build with raja") varmsg = "Build development tools (such as Sphinx, Doxygen, etc...)" variant("devtools", default=False, description=varmsg) # ----------------------------------------------------------------------- # Dependencies # ----------------------------------------------------------------------- # Basics depends_on("[email protected]:", type='build') depends_on("mpi", when="+mpi") # Libraries depends_on("conduit+python", when="+python") depends_on("conduit~python", when="~python") depends_on("conduit+hdf5", when="+hdf5") depends_on("conduit~hdf5", when="~hdf5") # HDF5 needs to be the same as Conduit's depends_on("[email protected]:1.8.999~cxx~fortran", when="+hdf5") depends_on("lua", when="+lua") depends_on("scr", when="+scr") depends_on("kvtree@master", when="+scr") depends_on("dtcmp", when="+scr") depends_on("raja~openmp", when="+raja~openmp") depends_on("raja+openmp", when="+raja+openmp") depends_on("raja+cuda", when="+raja+cuda") depends_on("umpire~openmp", when="+umpire~openmp") depends_on("umpire+openmp", when="+umpire+openmp") depends_on("umpire+cuda", when="+umpire+cuda") for sm_ in CudaPackage.cuda_arch_values: depends_on('raja cuda_arch={0}'.format(sm_), when='+raja cuda_arch={0}'.format(sm_)) depends_on('umpire cuda_arch={0}'.format(sm_), when='+umpire cuda_arch={0}'.format(sm_)) depends_on("mfem", when="+mfem") depends_on("mfem~mpi", when="+mfem~mpi") depends_on("python", when="+python") # Devtools depends_on("cppcheck", when="+devtools") depends_on("doxygen", when="+devtools") depends_on("graphviz", when="+devtools") depends_on("python", when="+devtools") depends_on("py-sphinx", when="+devtools") depends_on("py-shroud", when="+devtools") depends_on("[email protected]", when="+devtools", type='build') # Conduit's cmake config files moved and < 0.4.0 can't find it conflicts("^[email protected]:", when="@:0.4.0") # Sidre requires conduit_blueprint_mpi.hpp conflicts("^conduit@:0.6.0", when="@0.5.0:") def flag_handler(self, name, flags): if self.spec.satisfies('%cce') and name == 'fflags': flags.append('-ef') if name in ('cflags', 'cxxflags', 'cppflags', 'fflags'): return (None, None, None) # handled in the cmake cache return (flags, None, None) def _get_sys_type(self, spec): sys_type = spec.architecture # if on llnl systems, we can use the SYS_TYPE if "SYS_TYPE" in env: sys_type = env["SYS_TYPE"] return sys_type @property def cache_name(self): hostname = socket.gethostname() if "SYS_TYPE" in env: # Are we on a LLNL system then strip node number hostname = hostname.rstrip('1234567890') return "{0}-{1}-{2}@{3}.cmake".format( hostname, self._get_sys_type(self.spec), self.spec.compiler.name, self.spec.compiler.version ) def initconfig_compiler_entries(self): spec = self.spec entries = super(Axom, self).initconfig_compiler_entries() if "+fortran" in spec or self.compiler.fc is not None: entries.append(cmake_cache_option("ENABLE_FORTRAN", True)) else: entries.append(cmake_cache_option("ENABLE_FORTRAN", False)) if ((self.compiler.fc is not None) and ("gfortran" in self.compiler.fc) and ("clang" in self.compiler.cxx)): libdir = pjoin(os.path.dirname( os.path.dirname(self.compiler.cxx)), "lib") flags = "" for _libpath in [libdir, libdir + "64"]: if os.path.exists(_libpath): flags += " -Wl,-rpath,{0}".format(_libpath) description = ("Adds a missing libstdc++ rpath") if flags: entries.append(cmake_cache_string("BLT_EXE_LINKER_FLAGS", flags, description)) if "+cpp14" in spec: entries.append(cmake_cache_string("BLT_CXX_STD", "c++14", "")) return entries def initconfig_hardware_entries(self): spec = self.spec entries = super(Axom, self).initconfig_hardware_entries() if "+cuda" in spec: entries.append(cmake_cache_option("ENABLE_CUDA", True)) entries.append(cmake_cache_option("CUDA_SEPARABLE_COMPILATION", True)) entries.append( cmake_cache_option("AXOM_ENABLE_ANNOTATIONS", True)) # CUDA_FLAGS cudaflags = "-restrict --expt-extended-lambda " if not spec.satisfies('cuda_arch=none'): cuda_arch = spec.variants['cuda_arch'].value[0] entries.append(cmake_cache_string( "CMAKE_CUDA_ARCHITECTURES", cuda_arch)) cudaflags += '-arch sm_${CMAKE_CUDA_ARCHITECTURES} ' else: entries.append( "# cuda_arch could not be determined\n\n") if "+cpp14" in spec: cudaflags += " -std=c++14" else: cudaflags += " -std=c++11" entries.append( cmake_cache_string("CMAKE_CUDA_FLAGS", cudaflags)) entries.append( "# nvcc does not like gtest's 'pthreads' flag\n") entries.append( cmake_cache_option("gtest_disable_pthreads", True)) entries.append("#------------------{0}".format("-" * 30)) entries.append("# Hardware Specifics") entries.append("#------------------{0}\n".format("-" * 30)) # OpenMP entries.append(cmake_cache_option("ENABLE_OPENMP", spec.satisfies('+openmp'))) # Enable death tests entries.append(cmake_cache_option( "ENABLE_GTEST_DEATH_TESTS", not spec.satisfies('+cuda target=ppc64le:') )) if (self.compiler.fc is not None) and ("xlf" in self.compiler.fc): # Grab lib directory for the current fortran compiler libdir = pjoin(os.path.dirname( os.path.dirname(self.compiler.fc)), "lib") description = ("Adds a missing rpath for libraries " "associated with the fortran compiler") linker_flags = "${BLT_EXE_LINKER_FLAGS} -Wl,-rpath," + libdir entries.append(cmake_cache_string("BLT_EXE_LINKER_FLAGS", linker_flags, description)) if "+shared" in spec: linker_flags = "${CMAKE_SHARED_LINKER_FLAGS} -Wl,-rpath," \ + libdir entries.append(cmake_cache_string( "CMAKE_SHARED_LINKER_FLAGS", linker_flags, description)) description = ("Converts C-style comments to Fortran style " "in preprocessed files") entries.append(cmake_cache_string( "BLT_FORTRAN_FLAGS", "-WF,-C! -qxlf2003=polymorphic", description)) if spec.satisfies('target=ppc64le:'): # Fix for working around CMake adding implicit link directories # returned by the BlueOS compilers to link executables with # non-system default stdlib _gcc_prefix = "/usr/tce/packages/gcc/gcc-4.9.3/lib64" if os.path.exists(_gcc_prefix): _gcc_prefix2 = pjoin( _gcc_prefix, "gcc/powerpc64le-unknown-linux-gnu/4.9.3") _link_dirs = "{0};{1}".format(_gcc_prefix, _gcc_prefix2) entries.append(cmake_cache_string( "BLT_CMAKE_IMPLICIT_LINK_DIRECTORIES_EXCLUDE", _link_dirs)) return entries def initconfig_mpi_entries(self): spec = self.spec entries = super(Axom, self).initconfig_mpi_entries() if "+mpi" in spec: entries.append(cmake_cache_option("ENABLE_MPI", True)) if spec['mpi'].name == 'spectrum-mpi': entries.append(cmake_cache_string("BLT_MPI_COMMAND_APPEND", "mpibind")) else: entries.append(cmake_cache_option("ENABLE_MPI", False)) return entries def initconfig_package_entries(self): spec = self.spec entries = [] # TPL locations entries.append("#------------------{0}".format("-" * 60)) entries.append("# TPLs") entries.append("#------------------{0}\n".format("-" * 60)) # Try to find the common prefix of the TPL directory, including the # compiler. If found, we will use this in the TPL paths compiler_str = str(spec.compiler).replace('@', '-') prefix_paths = prefix.split(compiler_str) path_replacements = {} if len(prefix_paths) == 2: tpl_root = os.path.realpath(pjoin(prefix_paths[0], compiler_str)) path_replacements[tpl_root] = "${TPL_ROOT}" entries.append("# Root directory for generated TPLs\n") entries.append(cmake_cache_path("TPL_ROOT", tpl_root)) conduit_dir = get_spec_path(spec, "conduit", path_replacements) entries.append(cmake_cache_path("CONDUIT_DIR", conduit_dir)) # optional tpls for dep in ('mfem', 'hdf5', 'lua', 'raja', 'umpire'): if '+%s' % dep in spec: dep_dir = get_spec_path(spec, dep, path_replacements) entries.append(cmake_cache_path('%s_DIR' % dep.upper(), dep_dir)) else: entries.append('# %s not built\n' % dep.upper()) if '+scr' in spec: dep_dir = get_spec_path(spec, 'scr', path_replacements) entries.append(cmake_cache_path('SCR_DIR', dep_dir)) # scr's dependencies for dep in ('kvtree', 'dtcmp'): if spec.satisfies('^{0}'.format(dep)): dep_dir = get_spec_path(spec, dep, path_replacements) entries.append(cmake_cache_path('%s_DIR' % dep.upper(), dep_dir)) else: entries.append('# scr not built\n') ################################## # Devtools ################################## entries.append("#------------------{0}".format("-" * 60)) entries.append("# Devtools") entries.append("#------------------{0}\n".format("-" * 60)) # Add common prefix to path replacement list if "+devtools" in spec: # Grab common devtools root and strip the trailing slash path1 = os.path.realpath(spec["cppcheck"].prefix) path2 = os.path.realpath(spec["doxygen"].prefix) devtools_root = os.path.commonprefix([path1, path2])[:-1] path_replacements[devtools_root] = "${DEVTOOLS_ROOT}" entries.append( "# Root directory for generated developer tools\n") entries.append(cmake_cache_path("DEVTOOLS_ROOT", devtools_root)) # Only turn on clangformat support if devtools is on clang_fmt_path = spec['llvm'].prefix.bin.join('clang-format') entries.append(cmake_cache_path( "CLANGFORMAT_EXECUTABLE", clang_fmt_path)) else: entries.append("# ClangFormat disabled due to disabled devtools\n") entries.append(cmake_cache_option("ENABLE_CLANGFORMAT", False)) if spec.satisfies('^python') or "+devtools" in spec: python_path = os.path.realpath(spec['python'].command.path) for key in path_replacements: python_path = python_path.replace(key, path_replacements[key]) entries.append(cmake_cache_path("PYTHON_EXECUTABLE", python_path)) enable_docs = spec.satisfies('^doxygen') or spec.satisfies('^py-sphinx') entries.append(cmake_cache_option("ENABLE_DOCS", enable_docs)) if spec.satisfies('^py-sphinx'): python_bin_dir = get_spec_path(spec, "python", path_replacements, use_bin=True) entries.append(cmake_cache_path("SPHINX_EXECUTABLE", pjoin(python_bin_dir, "sphinx-build"))) if spec.satisfies('^py-shroud'): shroud_bin_dir = get_spec_path(spec, "py-shroud", path_replacements, use_bin=True) entries.append(cmake_cache_path("SHROUD_EXECUTABLE", pjoin(shroud_bin_dir, "shroud"))) for dep in ('cppcheck', 'doxygen'): if spec.satisfies('^%s' % dep): dep_bin_dir = get_spec_path(spec, dep, path_replacements, use_bin=True) entries.append(cmake_cache_path('%s_EXECUTABLE' % dep.upper(), pjoin(dep_bin_dir, dep))) return entries def cmake_args(self): options = [] if self.run_tests is False: options.append('-DENABLE_TESTS=OFF') else: options.append('-DENABLE_TESTS=ON') options.append(self.define_from_variant( 'BUILD_SHARED_LIBS', 'shared')) options.append(self.define_from_variant( 'AXOM_ENABLE_EXAMPLES', 'examples')) options.append(self.define_from_variant( 'AXOM_ENABLE_TOOLS', 'tools')) return options def patch(self): if self.spec.satisfies('%cce'): filter_file('PROPERTIES LINKER_LANGUAGE CXX', 'PROPERTIES LINKER_LANGUAGE CXX \n LINK_FLAGS "-fopenmp"', 'src/axom/quest/examples/CMakeLists.txt')
the-stack_0_4821
# ------------------------------------ # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # ------------------------------------ from typing import TYPE_CHECKING from uuid import uuid4 from azure.core.tracing.decorator import distributed_trace from azure.core.tracing.decorator_async import distributed_trace_async from .._models import KeyVaultRoleAssignment, KeyVaultRoleDefinition from .._internal import AsyncKeyVaultClientBase if TYPE_CHECKING: # pylint:disable=ungrouped-imports from typing import Any, Optional, Union from uuid import UUID from azure.core.async_paging import AsyncItemPaged from .._enums import KeyVaultRoleScope class KeyVaultAccessControlClient(AsyncKeyVaultClientBase): """Manages role-based access to Azure Key Vault. :param str vault_url: URL of the vault the client will manage. This is also called the vault's "DNS Name". :param credential: an object which can provide an access token for the vault, such as a credential from :mod:`azure.identity` """ # pylint:disable=protected-access @distributed_trace_async async def create_role_assignment( self, role_scope: "Union[str, KeyVaultRoleScope]", role_definition_id: str, principal_id: str, **kwargs: "Any" ) -> KeyVaultRoleAssignment: """Create a role assignment. :param role_scope: scope the role assignment will apply over. :class:`KeyVaultRoleScope` defines common broad scopes. Specify a narrower scope as a string. :type role_scope: str or KeyVaultRoleScope :param str role_definition_id: ID of the role's definition :param str principal_id: Azure Active Directory object ID of the principal which will be assigned the role. The principal can be a user, service principal, or security group. :keyword role_assignment_name: a name for the role assignment. Must be a UUID. :paramtype role_assignment_name: str or uuid.UUID :rtype: ~azure.keyvault.administration.KeyVaultRoleAssignment """ role_assignment_name = kwargs.pop("role_assignment_name", None) or uuid4() create_parameters = self._client.role_assignments.models.RoleAssignmentCreateParameters( properties=self._client.role_assignments.models.RoleAssignmentProperties( principal_id=principal_id, role_definition_id=str(role_definition_id) ) ) assignment = await self._client.role_assignments.create( vault_base_url=self._vault_url, scope=role_scope, role_assignment_name=str(role_assignment_name), parameters=create_parameters, **kwargs ) return KeyVaultRoleAssignment._from_generated(assignment) @distributed_trace_async async def delete_role_assignment( self, role_scope: "Union[str, KeyVaultRoleScope]", role_assignment_name: "Union[str, UUID]", **kwargs: "Any" ) -> KeyVaultRoleAssignment: """Delete a role assignment. :param role_scope: the assignment's scope, for example "/", "/keys", or "/keys/<specific key identifier>". :class:`KeyVaultRoleScope` defines common broad scopes. Specify a narrower scope as a string. :type role_scope: str or KeyVaultRoleScope :param role_assignment_name: the assignment's name. :type role_assignment_name: str or uuid.UUID :returns: the deleted assignment :rtype: ~azure.keyvault.administration.KeyVaultRoleAssignment """ assignment = await self._client.role_assignments.delete( vault_base_url=self._vault_url, scope=role_scope, role_assignment_name=str(role_assignment_name), **kwargs ) return KeyVaultRoleAssignment._from_generated(assignment) @distributed_trace_async async def get_role_assignment( self, role_scope: "Union[str, KeyVaultRoleScope]", role_assignment_name: "Union[str, UUID]", **kwargs: "Any" ) -> KeyVaultRoleAssignment: """Get a role assignment. :param role_scope: the assignment's scope, for example "/", "/keys", or "/keys/<specific key identifier>". :class:`KeyVaultRoleScope` defines common broad scopes. Specify a narrower scope as a string. :type role_scope: str or KeyVaultRoleScope :param role_assignment_name: the assignment's name. :type role_assignment_name: str or uuid.UUID :rtype: ~azure.keyvault.administration.KeyVaultRoleAssignment """ assignment = await self._client.role_assignments.get( vault_base_url=self._vault_url, scope=role_scope, role_assignment_name=str(role_assignment_name), **kwargs ) return KeyVaultRoleAssignment._from_generated(assignment) @distributed_trace def list_role_assignments( self, role_scope: "Union[str, KeyVaultRoleScope]", **kwargs: "Any" ) -> "AsyncItemPaged[KeyVaultRoleAssignment]": """List all role assignments for a scope. :param role_scope: scope of the role assignments. :class:`KeyVaultRoleScope` defines common broad scopes. Specify a narrower scope as a string. :type role_scope: str or KeyVaultRoleScope :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.keyvault.administration.KeyVaultRoleAssignment] """ return self._client.role_assignments.list_for_scope( self._vault_url, role_scope, cls=lambda result: [KeyVaultRoleAssignment._from_generated(a) for a in result], **kwargs ) @distributed_trace_async async def set_role_definition( self, role_scope: "Union[str, KeyVaultRoleScope]", role_definition_name: "Optional[Union[str, UUID]]" = None, **kwargs: "Any" ) -> "KeyVaultRoleDefinition": """Creates or updates a custom role definition. :param role_scope: scope of the role definition. :class:`KeyVaultRoleScope` defines common broad scopes. Specify a narrower scope as a string. Managed HSM only supports '/', or KeyVaultRoleScope.GLOBAL. :type role_scope: str or KeyVaultRoleScope :param role_definition_name: the unique role definition name. Unless a UUID is provided, a new role definition will be created with a generated unique name. Providing the unique name of an existing role definition will update that role definition. :type role_definition_name: str or uuid.UUID :keyword str role_name: the role's display name. If unspecified when creating or updating a role definition, the role name will be set to an empty string. :keyword str description: a description of the role definition. If unspecified when creating or updating a role definition, the description will be set to an empty string. :keyword permissions: the role definition's permissions. If unspecified when creating or updating a role definition, the role definition will have no action permissions. :paramtype permissions: Iterable[KeyVaultPermission] :keyword assignable_scopes: the scopes for which the role definition can be assigned. :paramtype assignable_scopes: Iterable[str] or Iterable[KeyVaultRoleScope] :returns: The created or updated role definition :rtype: ~azure.keyvault.administration.KeyVaultRoleDefinition """ permissions = [ self._client.role_definitions.models.Permission( actions=p.actions, not_actions=p.not_actions, data_actions=p.data_actions, not_data_actions=p.not_data_actions, ) for p in kwargs.pop("permissions", None) or [] ] properties = self._client.role_definitions.models.RoleDefinitionProperties( role_name=kwargs.pop("role_name", None), description=kwargs.pop("description", None), permissions=permissions, assignable_scopes=kwargs.pop("assignable_scopes", None), ) parameters = self._client.role_definitions.models.RoleDefinitionCreateParameters(properties=properties) definition = await self._client.role_definitions.create_or_update( vault_base_url=self._vault_url, scope=role_scope, role_definition_name=str(role_definition_name or uuid4()), parameters=parameters, **kwargs ) return KeyVaultRoleDefinition._from_generated(definition) @distributed_trace_async async def get_role_definition( self, role_scope: "Union[str, KeyVaultRoleScope]", role_definition_name: "Union[str, UUID]", **kwargs: "Any" ) -> "KeyVaultRoleDefinition": """Get the specified role definition. :param role_scope: scope of the role definition. :class:`KeyVaultRoleScope` defines common broad scopes. Specify a narrower scope as a string. Managed HSM only supports '/', or KeyVaultRoleScope.GLOBAL. :type role_scope: str or KeyVaultRoleScope :param role_definition_name: the role definition's name. :type role_definition_name: str or uuid.UUID :rtype: ~azure.keyvault.administration.KeyVaultRoleDefinition """ definition = await self._client.role_definitions.get( vault_base_url=self._vault_url, scope=role_scope, role_definition_name=str(role_definition_name), **kwargs ) return KeyVaultRoleDefinition._from_generated(definition) @distributed_trace_async async def delete_role_definition( self, role_scope: "Union[str, KeyVaultRoleScope]", role_definition_name: "Union[str, UUID]", **kwargs: "Any" ) -> "KeyVaultRoleDefinition": """Deletes a custom role definition. :param role_scope: scope of the role definition. :class:`KeyVaultRoleScope` defines common broad scopes. Specify a narrower scope as a string. Managed HSM only supports '/', or KeyVaultRoleScope.GLOBAL. :type role_scope: str or KeyVaultRoleScope :param role_definition_name: the role definition's name. :type role_definition_name: str or uuid.UUID :returns: the deleted role definition :rtype: ~azure.keyvault.administration.KeyVaultRoleDefinition """ definition = await self._client.role_definitions.delete( vault_base_url=self._vault_url, scope=role_scope, role_definition_name=str(role_definition_name), **kwargs ) return KeyVaultRoleDefinition._from_generated(definition) @distributed_trace def list_role_definitions( self, role_scope: "Union[str, KeyVaultRoleScope]", **kwargs: "Any" ) -> "AsyncItemPaged[KeyVaultRoleDefinition]": """List all role definitions applicable at and above a scope. :param role_scope: scope of the role definitions. :class:`KeyVaultRoleScope` defines common broad scopes. Specify a narrower scope as a string. :type role_scope: str or KeyVaultRoleScope :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.keyvault.administration.KeyVaultRoleDefinition] """ return self._client.role_definitions.list( self._vault_url, role_scope, cls=lambda result: [KeyVaultRoleDefinition._from_generated(d) for d in result], **kwargs )
the-stack_0_4824
"""The IPython kernel implementation""" import asyncio from contextlib import contextmanager from functools import partial import getpass import signal import sys from IPython.core import release from ipython_genutils.py3compat import builtin_mod, PY3, unicode_type, safe_unicode from IPython.utils.tokenutil import token_at_cursor, line_at_cursor from tornado import gen from traitlets import Instance, Type, Any, List, Bool from .comm import CommManager from .kernelbase import Kernel as KernelBase from .zmqshell import ZMQInteractiveShell try: from IPython.core.interactiveshell import _asyncio_runner except ImportError: _asyncio_runner = None try: from IPython.core.completer import rectify_completions as _rectify_completions, provisionalcompleter as _provisionalcompleter _use_experimental_60_completion = True except ImportError: _use_experimental_60_completion = False _EXPERIMENTAL_KEY_NAME = '_jupyter_types_experimental' class IPythonKernel(KernelBase): shell = Instance('IPython.core.interactiveshell.InteractiveShellABC', allow_none=True) shell_class = Type(ZMQInteractiveShell) use_experimental_completions = Bool(True, help="Set this flag to False to deactivate the use of experimental IPython completion APIs.", ).tag(config=True) user_module = Any() def _user_module_changed(self, name, old, new): if self.shell is not None: self.shell.user_module = new user_ns = Instance(dict, args=None, allow_none=True) def _user_ns_changed(self, name, old, new): if self.shell is not None: self.shell.user_ns = new self.shell.init_user_ns() # A reference to the Python builtin 'raw_input' function. # (i.e., __builtin__.raw_input for Python 2.7, builtins.input for Python 3) _sys_raw_input = Any() _sys_eval_input = Any() def __init__(self, **kwargs): super(IPythonKernel, self).__init__(**kwargs) # Initialize the InteractiveShell subclass self.shell = self.shell_class.instance(parent=self, profile_dir = self.profile_dir, user_module = self.user_module, user_ns = self.user_ns, kernel = self, ) self.shell.displayhook.session = self.session self.shell.displayhook.pub_socket = self.iopub_socket self.shell.displayhook.topic = self._topic('execute_result') self.shell.display_pub.session = self.session self.shell.display_pub.pub_socket = self.iopub_socket self.comm_manager = CommManager(parent=self, kernel=self) self.shell.configurables.append(self.comm_manager) comm_msg_types = [ 'comm_open', 'comm_msg', 'comm_close' ] for msg_type in comm_msg_types: self.shell_handlers[msg_type] = getattr(self.comm_manager, msg_type) help_links = List([ { 'text': "Python Reference", 'url': "https://docs.python.org/%i.%i" % sys.version_info[:2], }, { 'text': "IPython Reference", 'url': "https://ipython.org/documentation.html", }, { 'text': "NumPy Reference", 'url': "https://docs.scipy.org/doc/numpy/reference/", }, { 'text': "SciPy Reference", 'url': "https://docs.scipy.org/doc/scipy/reference/", }, { 'text': "Matplotlib Reference", 'url': "https://matplotlib.org/contents.html", }, { 'text': "SymPy Reference", 'url': "http://docs.sympy.org/latest/index.html", }, { 'text': "pandas Reference", 'url': "https://pandas.pydata.org/pandas-docs/stable/", }, ]).tag(config=True) # Kernel info fields implementation = 'ipython' implementation_version = release.version language_info = { 'name': 'python', 'version': sys.version.split()[0], 'mimetype': 'text/x-python', 'codemirror_mode': { 'name': 'ipython', 'version': sys.version_info[0] }, 'pygments_lexer': 'ipython%d' % (3 if PY3 else 2), 'nbconvert_exporter': 'python', 'file_extension': '.py' } @property def banner(self): return self.shell.banner def start(self): self.shell.exit_now = False super(IPythonKernel, self).start() def set_parent(self, ident, parent): """Overridden from parent to tell the display hook and output streams about the parent message. """ super(IPythonKernel, self).set_parent(ident, parent) self.shell.set_parent(parent) def init_metadata(self, parent): """Initialize metadata. Run at the beginning of each execution request. """ md = super(IPythonKernel, self).init_metadata(parent) # FIXME: remove deprecated ipyparallel-specific code # This is required for ipyparallel < 5.0 md.update({ 'dependencies_met' : True, 'engine' : self.ident, }) return md def finish_metadata(self, parent, metadata, reply_content): """Finish populating metadata. Run after completing an execution request. """ # FIXME: remove deprecated ipyparallel-specific code # This is required by ipyparallel < 5.0 metadata['status'] = reply_content['status'] if reply_content['status'] == 'error' and reply_content['ename'] == 'UnmetDependency': metadata['dependencies_met'] = False return metadata def _forward_input(self, allow_stdin=False): """Forward raw_input and getpass to the current frontend. via input_request """ self._allow_stdin = allow_stdin if PY3: self._sys_raw_input = builtin_mod.input builtin_mod.input = self.raw_input else: self._sys_raw_input = builtin_mod.raw_input self._sys_eval_input = builtin_mod.input builtin_mod.raw_input = self.raw_input builtin_mod.input = lambda prompt='': eval(self.raw_input(prompt)) self._save_getpass = getpass.getpass getpass.getpass = self.getpass def _restore_input(self): """Restore raw_input, getpass""" if PY3: builtin_mod.input = self._sys_raw_input else: builtin_mod.raw_input = self._sys_raw_input builtin_mod.input = self._sys_eval_input getpass.getpass = self._save_getpass @property def execution_count(self): return self.shell.execution_count @execution_count.setter def execution_count(self, value): # Ignore the incrementing done by KernelBase, in favour of our shell's # execution counter. pass @contextmanager def _cancel_on_sigint(self, future): """ContextManager for capturing SIGINT and cancelling a future SIGINT raises in the event loop when running async code, but we want it to halt a coroutine. Ideally, it would raise KeyboardInterrupt, but this turns it into a CancelledError. At least it gets a decent traceback to the user. """ sigint_future = asyncio.Future() # whichever future finishes first, # cancel the other one def cancel_unless_done(f, _ignored): if f.cancelled() or f.done(): return f.cancel() # when sigint finishes, # abort the coroutine with CancelledError sigint_future.add_done_callback( partial(cancel_unless_done, future) ) # when the main future finishes, # stop watching for SIGINT events future.add_done_callback( partial(cancel_unless_done, sigint_future) ) def handle_sigint(*args): def set_sigint_result(): if sigint_future.cancelled() or sigint_future.done(): return sigint_future.set_result(1) # use add_callback for thread safety self.io_loop.add_callback(set_sigint_result) # set the custom sigint hander during this context save_sigint = signal.signal(signal.SIGINT, handle_sigint) try: yield finally: # restore the previous sigint handler signal.signal(signal.SIGINT, save_sigint) @gen.coroutine def do_execute(self, code, silent, store_history=True, user_expressions=None, allow_stdin=False): shell = self.shell # we'll need this a lot here self._forward_input(allow_stdin) reply_content = {} if hasattr(shell, 'run_cell_async') and hasattr(shell, 'should_run_async'): run_cell = shell.run_cell_async should_run_async = shell.should_run_async else: should_run_async = lambda cell: False # older IPython, # use blocking run_cell and wrap it in coroutine @gen.coroutine def run_cell(*args, **kwargs): return shell.run_cell(*args, **kwargs) try: # default case: runner is asyncio and asyncio is already running # TODO: this should check every case for "are we inside the runner", # not just asyncio if ( _asyncio_runner and should_run_async(code) and shell.loop_runner is _asyncio_runner and asyncio.get_event_loop().is_running() ): coro = run_cell(code, store_history=store_history, silent=silent) coro_future = asyncio.ensure_future(coro) with self._cancel_on_sigint(coro_future): res = yield coro_future else: # runner isn't already running, # make synchronous call, # letting shell dispatch to loop runners res = shell.run_cell(code, store_history=store_history, silent=silent) finally: self._restore_input() if res.error_before_exec is not None: err = res.error_before_exec else: err = res.error_in_exec if res.success: reply_content[u'status'] = u'ok' else: reply_content[u'status'] = u'error' reply_content.update({ u'traceback': shell._last_traceback or [], u'ename': unicode_type(type(err).__name__), u'evalue': safe_unicode(err), }) # FIXME: deprecated piece for ipyparallel (remove in 5.0): e_info = dict(engine_uuid=self.ident, engine_id=self.int_id, method='execute') reply_content['engine_info'] = e_info # Return the execution counter so clients can display prompts reply_content['execution_count'] = shell.execution_count - 1 if 'traceback' in reply_content: self.log.info("Exception in execute request:\n%s", '\n'.join(reply_content['traceback'])) # At this point, we can tell whether the main code execution succeeded # or not. If it did, we proceed to evaluate user_expressions if reply_content['status'] == 'ok': reply_content[u'user_expressions'] = \ shell.user_expressions(user_expressions or {}) else: # If there was an error, don't even try to compute expressions reply_content[u'user_expressions'] = {} # Payloads should be retrieved regardless of outcome, so we can both # recover partial output (that could have been generated early in a # block, before an error) and always clear the payload system. reply_content[u'payload'] = shell.payload_manager.read_payload() # Be aggressive about clearing the payload because we don't want # it to sit in memory until the next execute_request comes in. shell.payload_manager.clear_payload() return reply_content def do_complete(self, code, cursor_pos): if _use_experimental_60_completion and self.use_experimental_completions: return self._experimental_do_complete(code, cursor_pos) # FIXME: IPython completers currently assume single line, # but completion messages give multi-line context # For now, extract line from cell, based on cursor_pos: if cursor_pos is None: cursor_pos = len(code) line, offset = line_at_cursor(code, cursor_pos) line_cursor = cursor_pos - offset txt, matches = self.shell.complete('', line, line_cursor) return {'matches' : matches, 'cursor_end' : cursor_pos, 'cursor_start' : cursor_pos - len(txt), 'metadata' : {}, 'status' : 'ok'} def _experimental_do_complete(self, code, cursor_pos): """ Experimental completions from IPython, using Jedi. """ if cursor_pos is None: cursor_pos = len(code) with _provisionalcompleter(): raw_completions = self.shell.Completer.completions(code, cursor_pos) completions = list(_rectify_completions(code, raw_completions)) comps = [] for comp in completions: comps.append(dict( start=comp.start, end=comp.end, text=comp.text, type=comp.type, )) if completions: s = completions[0].start e = completions[0].end matches = [c.text for c in completions] else: s = cursor_pos e = cursor_pos matches = [] return {'matches': matches, 'cursor_end': e, 'cursor_start': s, 'metadata': {_EXPERIMENTAL_KEY_NAME: comps}, 'status': 'ok'} def do_inspect(self, code, cursor_pos, detail_level=0): name = token_at_cursor(code, cursor_pos) reply_content = {'status' : 'ok'} reply_content['data'] = {} reply_content['metadata'] = {} try: reply_content['data'].update( self.shell.object_inspect_mime( name, detail_level=detail_level ) ) if not self.shell.enable_html_pager: reply_content['data'].pop('text/html') reply_content['found'] = True except KeyError: reply_content['found'] = False return reply_content def do_history(self, hist_access_type, output, raw, session=0, start=0, stop=None, n=None, pattern=None, unique=False): if hist_access_type == 'tail': hist = self.shell.history_manager.get_tail(n, raw=raw, output=output, include_latest=True) elif hist_access_type == 'range': hist = self.shell.history_manager.get_range(session, start, stop, raw=raw, output=output) elif hist_access_type == 'search': hist = self.shell.history_manager.search( pattern, raw=raw, output=output, n=n, unique=unique) else: hist = [] return { 'status': 'ok', 'history' : list(hist), } def do_shutdown(self, restart): self.shell.exit_now = True return dict(status='ok', restart=restart) def do_is_complete(self, code): status, indent_spaces = self.shell.input_splitter.check_complete(code) r = {'status': status} if status == 'incomplete': r['indent'] = ' ' * indent_spaces return r def do_apply(self, content, bufs, msg_id, reply_metadata): from .serialize import serialize_object, unpack_apply_message shell = self.shell try: working = shell.user_ns prefix = "_"+str(msg_id).replace("-","")+"_" f,args,kwargs = unpack_apply_message(bufs, working, copy=False) fname = getattr(f, '__name__', 'f') fname = prefix+"f" argname = prefix+"args" kwargname = prefix+"kwargs" resultname = prefix+"result" ns = { fname : f, argname : args, kwargname : kwargs , resultname : None } # print ns working.update(ns) code = "%s = %s(*%s,**%s)" % (resultname, fname, argname, kwargname) try: exec(code, shell.user_global_ns, shell.user_ns) result = working.get(resultname) finally: for key in ns: working.pop(key) result_buf = serialize_object(result, buffer_threshold=self.session.buffer_threshold, item_threshold=self.session.item_threshold, ) except BaseException as e: # invoke IPython traceback formatting shell.showtraceback() reply_content = { u'traceback': shell._last_traceback or [], u'ename': unicode_type(type(e).__name__), u'evalue': safe_unicode(e), } # FIXME: deprecated piece for ipyparallel (remove in 5.0): e_info = dict(engine_uuid=self.ident, engine_id=self.int_id, method='apply') reply_content['engine_info'] = e_info self.send_response(self.iopub_socket, u'error', reply_content, ident=self._topic('error')) self.log.info("Exception in apply request:\n%s", '\n'.join(reply_content['traceback'])) result_buf = [] reply_content['status'] = 'error' else: reply_content = {'status' : 'ok'} return reply_content, result_buf def do_clear(self): self.shell.reset(False) return dict(status='ok') # This exists only for backwards compatibility - use IPythonKernel instead class Kernel(IPythonKernel): def __init__(self, *args, **kwargs): import warnings warnings.warn('Kernel is a deprecated alias of ipykernel.ipkernel.IPythonKernel', DeprecationWarning) super(Kernel, self).__init__(*args, **kwargs)
the-stack_0_4827
""" Advent of Code 2020 Day 16 """ def get_data(fname: str) -> tuple: """ Read the data file. """ with open(fname) as f: texts = f.read().split('\n\n') # Get the fields and all their valid values. Not space efficient, # but there aren't that many of them. fields = {} for field in texts[0].split('\n'): name, data = field.split(': ') for pair in data.split(' or '): mi, ma = pair.split('-') ranges = fields.get(name, []) ranges.extend(i for i in range(int(mi), int(ma)+1)) fields[name] = ranges # Get my ticket. _, data = texts[1].split('\n') my_ticket = [int(d) for d in data.split(',')] # Get the other tickets. tickets = [] for ticket in texts[2].split('\n')[1:]: tickets.append([int(t) for t in ticket.split(',')]) return fields, tickets, my_ticket def sort_tickets(fields, tickets) -> tuple: """ Get the valid and invalid tickets. """ valid_numbers = set() for f in fields.values(): valid_numbers.update(f) valids, invalids = [], [] for ticket in tickets: invalid = [] for n in ticket: if n in valid_numbers: continue invalid.append(n) if invalid: invalids.extend(invalid) else: valids.append(ticket) return valids, invalids def part1(fname: str) -> int: """Part 1. Tests >>> part1("./data/day16_test.txt") 71 """ _, invalids = sort_tickets(*get_data(fname)[:2]) return sum(invalids) def part2(fname: str) -> int: """Part 2. This sucks. No test for now. """ fields, tickets, my_ticket = get_data(fname) valids, invalids = sort_tickets(fields, tickets) # If a field is valid, add it to a set of hypotheses # *iff* it hasn't bene discarded before. # If invalid, remove it from the hypotheses *forever* # by adding it to the set of discards. hypotheses = {k: set() for k in fields} discards = {k: set() for k in fields} for valid in valids: for i, value in enumerate(valid): for field, values in fields.items(): if value in values: if i not in discards[field]: hypotheses[field].add(i) else: hypotheses[field].discard(i) discards[field].add(i) # Sort the hypotheses into order, based on how many # possibilities are in each field. Hopefully mono- # tonically increasing. hypotheses = {k:v for k, v in sorted(hypotheses.items(), key=lambda x: len(x[1]))} # Now assign the certain fields in order. Each time # we make an assignment, add the field to a list # so we know what to ignore for future fields. certain = {} assigned = [] for field, hypos in hypotheses.items(): for assign in assigned: hypos.discard(assign) assert len(hypos) == 1 position, = hypos # Singleton set. certain[field] = position assigned.append(position) # Now make the product for our ticket. product = 1 for field, position in certain.items(): if field.startswith('departure'): product *= my_ticket[position] return product if __name__ == "__main__": import doctest import sys doctest.testmod(verbose=True) fname = "./data/day16.txt" print(f"Part 1 count: {part1(fname)}") print(f"Part 2 product: {part2(fname)}")
the-stack_0_4832
import asyncio from decimal import Decimal from os.path import join from typing import Any, List, TYPE_CHECKING import pandas as pd import hummingbot.client.config.global_config_map as global_config from hummingbot.client.config.config_helpers import missing_required_configs, save_to_yml from hummingbot.client.config.config_validators import validate_bool, validate_decimal from hummingbot.client.config.config_var import ConfigVar from hummingbot.client.config.security import Security from hummingbot.client.settings import CONF_FILE_PATH, GLOBAL_CONFIG_PATH from hummingbot.client.ui.interface_utils import format_df_for_printout from hummingbot.client.ui.style import load_style from hummingbot.core.utils import map_df_to_str from hummingbot.core.utils.async_utils import safe_ensure_future from hummingbot.model.inventory_cost import InventoryCost from hummingbot.strategy.perpetual_market_making import PerpetualMarketMakingStrategy from hummingbot.strategy.pure_market_making import PureMarketMakingStrategy from hummingbot.user.user_balances import UserBalances if TYPE_CHECKING: from hummingbot.client.hummingbot_application import HummingbotApplication no_restart_pmm_keys_in_percentage = ["bid_spread", "ask_spread", "order_level_spread", "inventory_target_base_pct"] no_restart_pmm_keys = ["order_amount", "order_levels", "filled_order_delay", "inventory_skew_enabled", "inventory_range_multiplier", "price_ceiling", "price_floor", "moving_price_band_enabled", "price_ceiling_pct", "price_floor_pct", "price_band_refresh_time" ] global_configs_to_display = ["autofill_import", "kill_switch_enabled", "kill_switch_rate", "telegram_enabled", "telegram_token", "telegram_chat_id", "send_error_logs", global_config.PMM_SCRIPT_ENABLED_KEY, global_config.PMM_SCRIPT_FILE_PATH_KEY, "ethereum_chain_name", "gateway_enabled", "gateway_cert_passphrase", "gateway_api_host", "gateway_api_port", "rate_oracle_source", "global_token", "global_token_symbol", "rate_limits_share_pct", "create_command_timeout", "other_commands_timeout", "tables_format"] color_settings_to_display = ["top-pane", "bottom-pane", "output-pane", "input-pane", "logs-pane", "terminal-primary"] class ConfigCommand: def config(self, # type: HummingbotApplication key: str = None, value: str = None): self.app.clear_input() if key is None: self.list_configs() return else: if key not in self.config_able_keys(): self.notify("Invalid key, please choose from the list.") return safe_ensure_future(self._config_single_key(key, value), loop=self.ev_loop) def list_configs(self, # type: HummingbotApplication ): columns = ["Key", " Value"] data = [[cv.key, cv.value] for cv in global_config.global_config_map.values() if cv.key in global_configs_to_display and not cv.is_secure] df = map_df_to_str(pd.DataFrame(data=data, columns=columns)) self.notify("\nGlobal Configurations:") lines = [" " + line for line in format_df_for_printout(df, max_col_width=50).split("\n")] self.notify("\n".join(lines)) data = [[cv.key, cv.value] for cv in global_config.global_config_map.values() if cv.key in color_settings_to_display and not cv.is_secure] df = map_df_to_str(pd.DataFrame(data=data, columns=columns)) self.notify("\nColor Settings:") lines = [" " + line for line in format_df_for_printout(df, max_col_width=50).split("\n")] self.notify("\n".join(lines)) if self.strategy_name is not None: data = [[cv.printable_key or cv.key, cv.value] for cv in self.strategy_config_map.values() if not cv.is_secure] df = map_df_to_str(pd.DataFrame(data=data, columns=columns)) self.notify("\nStrategy Configurations:") lines = [" " + line for line in format_df_for_printout(df, max_col_width=50).split("\n")] self.notify("\n".join(lines)) def config_able_keys(self # type: HummingbotApplication ) -> List[str]: """ Returns a list of configurable keys - using config command, excluding exchanges api keys as they are set from connect command. """ keys = [c.key for c in global_config.global_config_map.values() if c.prompt is not None and not c.is_connect_key] if self.strategy_config_map is not None: keys += [c.key for c in self.strategy_config_map.values() if c.prompt is not None] return keys async def check_password(self, # type: HummingbotApplication ): password = await self.app.prompt(prompt="Enter your password >>> ", is_password=True) if password != Security.password: self.notify("Invalid password, please try again.") return False else: return True # Make this function static so unit testing can be performed. @staticmethod def update_running_mm(mm_strategy, key: str, new_value: Any): if key in no_restart_pmm_keys_in_percentage: setattr(mm_strategy, key, new_value / Decimal("100")) return True elif key in no_restart_pmm_keys: setattr(mm_strategy, key, new_value) return True return False async def _config_single_key(self, # type: HummingbotApplication key: str, input_value): """ Configure a single variable only. Prompt the user to finish all configurations if there are remaining empty configs at the end. """ self.placeholder_mode = True self.app.hide_input = True try: config_var, config_map, file_path = None, None, None if key in global_config.global_config_map: config_map = global_config.global_config_map file_path = GLOBAL_CONFIG_PATH elif self.strategy_config_map is not None and key in self.strategy_config_map: config_map = self.strategy_config_map file_path = join(CONF_FILE_PATH, self.strategy_file_name) config_var = config_map[key] if input_value is None: self.notify("Please follow the prompt to complete configurations: ") if config_var.key == "inventory_target_base_pct": await self.asset_ratio_maintenance_prompt(config_map, input_value) elif config_var.key == "inventory_price": await self.inventory_price_prompt(config_map, input_value) else: await self.prompt_a_config(config_var, input_value=input_value, assign_default=False) if self.app.to_stop_config: self.app.to_stop_config = False return await self.update_all_secure_configs() missings = missing_required_configs(config_map) if missings: self.notify("\nThere are other configuration required, please follow the prompt to complete them.") missings = await self._prompt_missing_configs(config_map) save_to_yml(file_path, config_map) self.notify("\nNew configuration saved:") self.notify(f"{key}: {str(config_var.value)}") self.app.app.style = load_style() for config in missings: self.notify(f"{config.key}: {str(config.value)}") if isinstance(self.strategy, PureMarketMakingStrategy) or \ isinstance(self.strategy, PerpetualMarketMakingStrategy): updated = ConfigCommand.update_running_mm(self.strategy, key, config_var.value) if updated: self.notify(f"\nThe current {self.strategy_name} strategy has been updated " f"to reflect the new configuration.") except asyncio.TimeoutError: self.logger().error("Prompt timeout") except Exception as err: self.logger().error(str(err), exc_info=True) finally: self.app.hide_input = False self.placeholder_mode = False self.app.change_prompt(prompt=">>> ") async def _prompt_missing_configs(self, # type: HummingbotApplication config_map): missings = missing_required_configs(config_map) for config in missings: await self.prompt_a_config(config) if self.app.to_stop_config: self.app.to_stop_config = False return if missing_required_configs(config_map): return missings + (await self._prompt_missing_configs(config_map)) return missings async def asset_ratio_maintenance_prompt(self, # type: HummingbotApplication config_map, input_value = None): if input_value: config_map['inventory_target_base_pct'].value = Decimal(input_value) else: exchange = config_map['exchange'].value market = config_map["market"].value base, quote = market.split("-") balances = await UserBalances.instance().balances(exchange, base, quote) if balances is None: return base_ratio = await UserBalances.base_amount_ratio(exchange, market, balances) if base_ratio is None: return base_ratio = round(base_ratio, 3) quote_ratio = 1 - base_ratio base, quote = config_map["market"].value.split("-") cvar = ConfigVar(key="temp_config", prompt=f"On {exchange}, you have {balances.get(base, 0):.4f} {base} and " f"{balances.get(quote, 0):.4f} {quote}. By market value, " f"your current inventory split is {base_ratio:.1%} {base} " f"and {quote_ratio:.1%} {quote}." f" Would you like to keep this ratio? (Yes/No) >>> ", required_if=lambda: True, type_str="bool", validator=validate_bool) await self.prompt_a_config(cvar) if cvar.value: config_map['inventory_target_base_pct'].value = round(base_ratio * Decimal('100'), 1) else: if self.app.to_stop_config: self.app.to_stop_config = False return await self.prompt_a_config(config_map["inventory_target_base_pct"]) async def inventory_price_prompt( self, # type: HummingbotApplication config_map, input_value=None, ): key = "inventory_price" if input_value: config_map[key].value = Decimal(input_value) else: exchange = config_map["exchange"].value market = config_map["market"].value base_asset, quote_asset = market.split("-") if exchange.endswith("paper_trade"): balances = global_config.global_config_map["paper_trade_account_balance"].value else: balances = await UserBalances.instance().balances( exchange, base_asset, quote_asset ) if balances.get(base_asset) is None: return cvar = ConfigVar( key="temp_config", prompt=f"On {exchange}, you have {balances[base_asset]:.4f} {base_asset}. " f"What was the price for this amount in {quote_asset}? >>> ", required_if=lambda: True, type_str="decimal", validator=lambda v: validate_decimal( v, min_value=Decimal("0"), inclusive=True ), ) await self.prompt_a_config(cvar) config_map[key].value = cvar.value try: quote_volume = balances[base_asset] * cvar.value except TypeError: # TypeError: unsupported operand type(s) for *: 'decimal.Decimal' and 'NoneType' - bad input / no input self.notify("Inventory price not updated due to bad input") return with self.trade_fill_db.get_new_session() as session: with session.begin(): InventoryCost.add_volume( session, base_asset=base_asset, quote_asset=quote_asset, base_volume=balances[base_asset], quote_volume=quote_volume, overwrite=True, )
the-stack_0_4834
import tensorflow as tf def main(): converter = tf.lite.TFLiteConverter.from_frozen_graph('../pb/frozen_shape_28.pb', ['new_input_node'], ['final_dense/MatMul']) converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_LATENCY] tflite_model = converter.convert() with open("../tflite/model.lite", "wb") as f: f.write(tflite_model) if __name__ == '__main__': main()
the-stack_0_4835
import logging import pickle import random from voxpopuli import Voice, PhonemeList from typing import Union, Dict, List from random import randint from distance import levenshtein from katalixia.tools import weighted_choice class TreeNode: def __init__(self): self.children = dict() # type:Dict[str,Union[TreeNode, Leaf]] self.leaves = list() # type:List[Leaf] self.child_leaves_count = 0 def __getitem__(self, item): return self.children[item] @property def total_leaves_count(self): return len(self.leaves) + self.child_leaves_count def insert(self, leaf: 'Leaf', current_pho_index): try: leaf_current_pho = leaf.phonemes[-current_pho_index] except IndexError: # if this leaf has "no more" phonems to unstack, it's stored on this node's leaves self.leaves.append(leaf) return if leaf_current_pho not in self.children: self.children[leaf_current_pho] = leaf else: current_child = self.children[leaf_current_pho] if isinstance(current_child, Leaf): # creating the new node new_node = TreeNode() new_node.insert(current_child, current_pho_index + 1) new_node.insert(leaf, current_pho_index + 1) self.children[leaf_current_pho] = new_node elif isinstance(current_child, TreeNode): current_child.insert(leaf, current_pho_index + 1) self.child_leaves_count += 1 def find_random(self): if self.leaves and (randint(0, self.child_leaves_count + len(self.leaves)) >= self.child_leaves_count or not self.children): return random.choice(self.leaves) else: children_list, weights = zip(*[(child, child.total_leaves_count) for child in self.children.values()]) rnd_child = weighted_choice(children_list, weights) return rnd_child.find_random() def find(self, phoneme_list: PhonemeList, original_string : str): """Recursively, through the tree, tries to find a good rhyme that is *not* equal to the input word (here passed as an argument in original string""" if not phoneme_list: return self.find_random() current_pho = phoneme_list.pop() if current_pho in self.children: current_child = self.children[current_pho] curr_child_output = current_child.find(phoneme_list, original_string) if curr_child_output is not None: return curr_child_output rnd_child = self.find_random() if isinstance(rnd_child, Leaf) and levenshtein(seq1=original_string, seq2=rnd_child.text) <= 2: return None else: return rnd_child #nothing worked def to_dict(self): return {"children": {pho: child.to_dict() for pho, child in self.children.items()}, "leaves": [leaf.text for leaf in self.leaves]} class RhymeTree(TreeNode): def __init__(self, rhyming_lang="fr"): super().__init__() self.voice = Voice(lang=rhyming_lang) self.children = dict() # type:Dict[str,Union[TreeNode, Leaf]] def insert_rhyme(self, rhyme_string, data=None): new_leaf = Leaf.from_string(rhyme_string.strip(), self.voice) if new_leaf is not None: if data is not None: new_leaf.data = data self.insert(new_leaf, 1) else: logging.warning("Word '%s' returned empty phoneme" % rhyme_string) def find_rhyme(self, string): string_phonemes = Leaf.clean_silences([pho.name for pho in self.voice.to_phonemes(string)]) current_pho = string_phonemes.pop() if current_pho not in self.children: return None else: return self.children[current_pho].find(string_phonemes, string) def save(self, filepath): with open(filepath, "wb") as picklefile: pickle.dump(self, picklefile) @classmethod def from_pickle(cls, pickle_filepath): with open(pickle_filepath, "rb") as picklefile: return pickle.load(picklefile) @classmethod def from_text_file(cls, textfile_filepath, lang="fr", separator=None): separator = separator if separator is not None else "\n" with open(textfile_filepath) as file: all_strings = file.read().split(separator) return cls.from_word_list(all_strings, lang) @classmethod def from_word_list(cls, input_list, lang="fr"): tree = cls(lang) for string in input_list: tree.insert_rhyme(string) return tree def to_dict(self): return {pho : child.to_dict() for pho, child in self.children.items()} class Leaf: def __init__(self, string, phonemic_form): self.text = string self.phonemes = phonemic_form # type:List[str] self.total_leaves_count = 1 # here for recursion in the tree self.data = None def __repr__(self): return "Leaf( %s )" % self.text def __str__(self): return self.text @staticmethod def clean_silences(phoneme_list): while phoneme_list and phoneme_list[-1] == "_": phoneme_list.pop() return phoneme_list @classmethod def from_string(cls, string, voxpopuli_voice): phonemes_list = [pho.name for pho in voxpopuli_voice.to_phonemes(string)] try: return cls(string, cls.clean_silences(phonemes_list)) except IndexError: return None def to_dict(self): return self.text def find(self, phoneme_list: PhonemeList, original_string : str): return self if levenshtein(seq1=original_string, seq2=self.text) >= 2 else None def find_random(self): return self
the-stack_0_4836
import asyncio from h2client.diskcached_connection import DiskcachedConnection import io import time USER_AGENT = 'H2ClientExamples/1 by /u/Tjstretchalot (+https://github.com/tjstretchalot/h2client)' async def main(): dc_conn = DiskcachedConnection('postman-echo.com') print('Performing a GET request') out = io.BytesIO() start_time = time.time() headers = await dc_conn.get( '/get', { 'user-agent': USER_AGENT, 'accept': 'application/json' }, out ) total_time = time.time() - start_time print(f'Finished GET request in {total_time} seconds') print('Headers:') for key, val in headers.items(): print(f' {key}: {val}') print() print('Body:') pretty_body = out.getvalue().decode('utf-8') print(pretty_body) await dc_conn.close() if __name__ == '__main__': loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) loop.run_until_complete(main()) pending = asyncio.all_tasks(loop) while pending: loop.run_until_complete(asyncio.wait(pending, return_when=asyncio.ALL_COMPLETED)) pending = asyncio.all_tasks(loop)
the-stack_0_4837
"""Useful mocks for unit testing.""" from __future__ import absolute_import, unicode_literals import numbers from datetime import datetime, timedelta try: from case import Mock except ImportError: try: from unittest.mock import Mock except ImportError: from mock import Mock def TaskMessage( name, # type: str id=None, # type: str args=(), # type: Sequence kwargs=None, # type: Mapping callbacks=None, # type: Sequence[Signature] errbacks=None, # type: Sequence[Signature] chain=None, # type: Sequence[Signature] shadow=None, # type: str utc=None, # type: bool **options # type: Any ): # type: (...) -> Any """Create task message in protocol 2 format.""" kwargs = {} if not kwargs else kwargs from celery import uuid from kombu.serialization import dumps id = id or uuid() message = Mock(name='TaskMessage-{0}'.format(id)) message.headers = { 'id': id, 'task': name, 'shadow': shadow, } embed = {'callbacks': callbacks, 'errbacks': errbacks, 'chain': chain} message.headers.update(options) message.content_type, message.content_encoding, message.body = dumps( (args, kwargs, embed), serializer='json', ) message.payload = (args, kwargs, embed) return message def TaskMessage1( name, # type: str id=None, # type: str args=(), # type: Sequence kwargs=None, # type: Mapping callbacks=None, # type: Sequence[Signature] errbacks=None, # type: Sequence[Signature] chain=None, # type: Squence[Signature] **options # type: Any ): # type: (...) -> Any """Create task message in protocol 1 format.""" kwargs = {} if not kwargs else kwargs from celery import uuid from kombu.serialization import dumps id = id or uuid() message = Mock(name='TaskMessage-{0}'.format(id)) message.headers = {} message.payload = { 'task': name, 'id': id, 'args': args, 'kwargs': kwargs, 'callbacks': callbacks, 'errbacks': errbacks, } message.payload.update(options) message.content_type, message.content_encoding, message.body = dumps( message.payload, ) return message def task_message_from_sig(app, sig, utc=True, TaskMessage=TaskMessage): # type: (Celery, Signature, bool, Any) -> Any """Create task message from :class:`celery.Signature`. Example: >>> m = task_message_from_sig(app, add.s(2, 2)) >>> amqp_client.basic_publish(m, exchange='ex', routing_key='rkey') """ sig.freeze() callbacks = sig.options.pop('link', None) errbacks = sig.options.pop('link_error', None) countdown = sig.options.pop('countdown', None) if countdown: eta = app.now() + timedelta(seconds=countdown) else: eta = sig.options.pop('eta', None) if eta and isinstance(eta, datetime): eta = eta.isoformat() expires = sig.options.pop('expires', None) if expires and isinstance(expires, numbers.Real): expires = app.now() + timedelta(seconds=expires) if expires and isinstance(expires, datetime): expires = expires.isoformat() return TaskMessage( sig.task, id=sig.id, args=sig.args, kwargs=sig.kwargs, callbacks=[dict(s) for s in callbacks] if callbacks else None, errbacks=[dict(s) for s in errbacks] if errbacks else None, eta=eta, expires=expires, utc=utc, **sig.options )
the-stack_0_4838
#!/usr/bin/env python # encoding: utf-8 import os import six import sys import unittest sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..")) import pfp import pfp.interp import pfp.utils import utils class TestCompatStrings(utils.PfpTestCase): def setUp(self): pfp.interp.Endian.current = pfp.interp.Endian.BIG def tearDown(self): pass def test_strlen(self): dom = self._test_parse_build( "", """ Printf("%d.%d.%d", Strlen("HELLO"), Strlen("abcd"), Strlen("abc")); """, stdout="5.4.3", ) def test_substr(self): dom = self._test_parse_build( "", """ Printf("%s\\n", SubStr("Hello there", 0, 5)); string local someString = "abcdefg"; Printf("%s", SubStr(someString, 3)); """, stdout="Hello\ndefg", ) if __name__ == "__main__": unittest.main()
the-stack_0_4840
#!/usr/bin/env python2 #-*- coding:utf-8 -*- from docopt import docopt from routine import parse_char from charset import get_charset class ArgError(Exception): pass def parse_parameters(doc, version): p = docopt(doc, version=version) p = {k.lstrip("-"): v for k, v in p.items()} try: return { "input_is_hex": bool(p["hex"]), "max_key_length": int(p["max-keylen"]), "known_key_length": int(p["key-length"]) if p["key-length"] else None, "most_frequent_char": parse_char(p["char"]) if p["char"] else None, "brute_chars": bool(p["brute-chars"]), "brute_printable": bool(p["brute-printable"]), "text_charset": get_charset(p["text-charset"]), "frequency_spread": 0, # to be removed "filename": p["FILE"] if p["FILE"] else "-", # stdin by default "filter_output": bool(p["filter-output"]), } except ValueError as err: raise ArgError(str(err))
the-stack_0_4842
""" O Proxy é um padrão de projeto estrutural que tem a intenção de fornecer um objeto substituto que atua como se fosse o objeto real que o código cliente gostaria de usar. O proxy receberá as solicitações e terá controle sobre como e quando repassar tais solicitações ao objeto real. Com base no modo como o proxies são usados, nós os classificamos como: - Proxy Virtual: controla acesso a recursos que podem ser caros para criação ou utilização. - Proxy Remoto: controla acesso a recursos que estão em servidores remotos. - Proxy de proteção: controla acesso a recursos que possam necessitar autenticação ou permissão. - Proxy inteligente: além de controlar acesso ao objeto real, também executa tarefas adicionais para saber quando e como executar determinadas ações. Proxies podem fazer várias coisas diferentes: criar logs, autenticar usuários, distribuir serviços, criar cache, criar e destruir objetos, adiar execuções e muito mais... """ from __future__ import annotations from abc import ABC, abstractmethod from time import sleep from typing import Dict, List class IUser(ABC): """Subject Interface""" firstname: str lastname: str @abstractmethod def get_addresses(self) -> List[Dict]: pass @abstractmethod def get_all_user_data(self) -> Dict: pass class RealUser(IUser): """Real Subject""" def __init__(self, firstname: str, lastname: str) -> None: sleep(2) # Simulando requisição self.firstname = firstname self.lastname = lastname def get_addresses(self) -> List[Dict]: sleep(2) # Simulando requisição return [{"rua": "Av. Brasil", "numero": 500}] def get_all_user_data(self) -> Dict: sleep(2) # Simulando requisição return {"cpf": "111.111.111-11", "rg": "AB111222444"} class UserProxy(IUser): """Proxy""" def __init__(self, firstname: str, lastname: str) -> None: self.firstname = firstname self.lastname = lastname # Esses objetos ainda não existem nesse # ponto do código self._real_user: RealUser self._cached_addresses: List[Dict] self._all_user_data: Dict def get_real_user(self) -> None: if not hasattr(self, "_real_user"): self._real_user = RealUser(self.firstname, self.lastname) def get_addresses(self) -> List[Dict]: self.get_real_user() if not hasattr(self, "_cached_addresses"): self._cached_addresses = self._real_user.get_addresses() return self._cached_addresses def get_all_user_data(self) -> Dict: self.get_real_user() if not hasattr(self, "_all_user_data"): self._all_user_data = self._real_user.get_all_user_data() return self._all_user_data if __name__ == "__main__": luiz = UserProxy("Luiz", "Otávio") # Responde instantaneamente print(luiz.firstname) print(luiz.lastname) # Responde em 6 segundos porque vem do real subject print(luiz.get_all_user_data()) print(luiz.get_addresses()) # Responde instantaneamente (porque está em cache) print("CACHED DATA:") for i in range(50): print(luiz.get_addresses())
the-stack_0_4843
""" Add token.client_id column Revision ID: c36369fe730f Revises: e15e47228c43 Create Date: 2016-10-19 15:24:13.387546 """ from __future__ import unicode_literals from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql revision = 'c36369fe730f' down_revision = 'e15e47228c43' def upgrade(): op.add_column('token', sa.Column( 'authclient_id', postgresql.UUID(), sa.ForeignKey('authclient.id', ondelete='cascade'), nullable=True, )) def downgrade(): op.drop_column('token', 'authclient_id')
the-stack_0_4844
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ## import sys ## sys.path.insert(0, "/home/scott/Dropbox/codes/pyrotein") ## sys.path.insert(0, "/Users/scott/Dropbox/codes/pyrotein") import os import numpy as np import pyrotein as pr from loaddata import load_xlsx, label_TMs from display import plot_dmat import multiprocessing as mp # [[[ OBTAIN THE CONSENSUS SEQUENCE ]]] # Read the sequence alignment result... # [WARNING] !!!sequence alignment is not trustworthy fl_aln = 'seq.align.fasta' seq_dict = pr.fasta.read(fl_aln) # Obtain the consensus sequence (super seq)... tally_dict = pr.fasta.tally_resn_in_seqs(seq_dict) super_seq = pr.fasta.infer_super_seq(tally_dict) # [[[ FIND SIZE OF DISTANCE MATRIX ]]] # Get the sequence index (alignment) on the n-term side... nseqi = pr.fasta.get_lseqi(super_seq) # User defined range... nterm, cterm = 1, 322 len_seg = cterm - nterm + 1 super_seg = super_seq[nseqi : nseqi + len_seg] # [[[ ANALYZE PDB ENTRIES ]]] # Specify chains to process... fl_chain = "chains.comp.xlsx" lines = load_xlsx(fl_chain, sheet = "Sheet1") drc = "pdb" drc_dmat = "dmats.full" pal = ''' set palette negative defined ( \ 0 '#D53E4F',\ 1 '#F46D43',\ 2 '#FDAE61',\ 3 '#FEE08B',\ 4 '#E6F598',\ 5 '#ABDDA4',\ 6 '#66C2A5',\ 7 '#3288BD' ) ''' for i_fl, line in enumerate(lines[-1:]): # Unpack parameters _, pdb, chain, _ = line[:4] # Read coordinates from a PDB file... fl_pdb = f"{pdb}.pdb" pdb_path = os.path.join(drc, fl_pdb) atoms_pdb = pr.atom.read(pdb_path) # Create a lookup table for this pdb... atom_dict = pr.atom.create_lookup_table(atoms_pdb) # Build a list of (resi, resn, atom)... label_list = pr.utils.label_dmat(super_seg, nterm, cterm) # Print the labels... fl_dmat = os.path.join(drc_dmat, f"{pdb}.{chain}.dmat") dist_list = pr.utils.read_file(f"{fl_dmat}.dat", numerical = True) for (x, y, _) in dist_list: print(f"{label_list[int(x)]}, {label_list[int(y)]}")
the-stack_0_4846
from __future__ import division import torch import numpy as np import os.path as osp from mmcv.runner import load_checkpoint from mmcv.parallel import MMDataParallel from vegcn.datasets import build_dataset from vegcn.deduce import peaks_to_labels from lgcn.datasets import build_dataloader from utils import (list2dict, write_meta, mkdir_if_no_exists, Timer) from evaluation import evaluate, accuracy def output_accuracy(output, labels): preds = output.max(1)[1].type_as(labels) correct = preds.eq(labels).double() correct = correct.sum() return correct / len(labels) def test(model, dataset, cfg, logger): if cfg.load_from: print('load from {}'.format(cfg.load_from)) load_checkpoint(model, cfg.load_from, strict=True, logger=logger) losses = [] accs = [] pred_conns = [] max_lst = [] multi_max = [] if cfg.gpus == 1: data_loader = build_dataloader(dataset, cfg.batch_size_per_gpu, cfg.workers_per_gpu, train=False) size = len(data_loader) model = MMDataParallel(model, device_ids=range(cfg.gpus)) if cfg.cuda: model.cuda() model.eval() for i, data in enumerate(data_loader): with torch.no_grad(): output, loss = model(data, return_loss=True) if not dataset.ignore_label: labels = data[2].view(-1) if not cfg.regressor: acc = output_accuracy(output, labels) accs += [acc.item()] losses += [loss.item()] if not cfg.regressor: output = output[:, 1] if cfg.max_conn == 1: output_max = output.max() pred = (output == output_max).nonzero().view(-1) pred_size = len(pred) if pred_size > 1: multi_max.append(pred_size) pred_i = np.random.choice(np.arange(pred_size)) else: pred_i = 0 pred = [int(pred[pred_i].detach().cpu().numpy())] max_lst.append(output_max.detach().cpu().numpy()) elif cfg.max_conn > 1: output = output.detach().cpu().numpy() pred = output.argpartition(cfg.max_conn)[:cfg.max_conn] pred_conns.append(pred) if i % cfg.log_config.interval == 0: if dataset.ignore_label: logger.info('[Test] Iter {}/{}'.format(i, size)) else: logger.info('[Test] Iter {}/{}: Loss {:.4f}'.format( i, size, loss)) else: raise NotImplementedError if not dataset.ignore_label: avg_loss = sum(losses) / len(losses) logger.info('[Test] Overall Loss {:.4f}'.format(avg_loss)) if not cfg.regressor: avg_acc = sum(accs) / len(accs) logger.info('[Test] Overall Accuracy {:.4f}'.format(avg_acc)) if size > 0: logger.info('max val: mean({:.2f}), max({:.2f}), min({:.2f})'.format( sum(max_lst) / size, max(max_lst), min(max_lst))) multi_max_size = len(multi_max) if multi_max_size > 0: logger.info('multi-max({:.2f}): mean({:.1f}), max({}), min({})'.format( 1. * multi_max_size / size, sum(multi_max) / multi_max_size, max(multi_max), min(multi_max))) return np.array(pred_conns) def test_gcn_e(model, cfg, logger): for k, v in cfg.model['kwargs'].items(): setattr(cfg.test_data, k, v) dataset = build_dataset(cfg.model['type'], cfg.test_data) pred_peaks = dataset.peaks pred_dist2peak = dataset.dist2peak ofn_pred = osp.join(cfg.work_dir, 'pred_conns.npz') if osp.isfile(ofn_pred) and not cfg.force: data = np.load(ofn_pred) pred_conns = data['pred_conns'] inst_num = data['inst_num'] if inst_num != dataset.inst_num: logger.warn( 'instance number in {} is different from dataset: {} vs {}'. format(ofn_pred, inst_num, len(dataset))) else: if cfg.random_conns: pred_conns = [] for nbr, dist, idx in zip(dataset.subset_nbrs, dataset.subset_dists, dataset.subset_idxs): for _ in range(cfg.max_conn): pred_rel_nbr = np.random.choice(np.arange(len(nbr))) pred_abs_nbr = nbr[pred_rel_nbr] pred_peaks[idx].append(pred_abs_nbr) pred_dist2peak[idx].append(dist[pred_rel_nbr]) pred_conns.append(pred_rel_nbr) pred_conns = np.array(pred_conns) else: pred_conns = test(model, dataset, cfg, logger) for pred_rel_nbr, nbr, dist, idx in zip(pred_conns, dataset.subset_nbrs, dataset.subset_dists, dataset.subset_idxs): pred_abs_nbr = nbr[pred_rel_nbr] pred_peaks[idx].extend(pred_abs_nbr) pred_dist2peak[idx].extend(dist[pred_rel_nbr]) inst_num = dataset.inst_num if len(pred_conns) > 0: logger.info( 'pred_conns (nbr order): mean({:.1f}), max({}), min({})'.format( pred_conns.mean(), pred_conns.max(), pred_conns.min())) if not dataset.ignore_label and cfg.eval_interim: subset_gt_labels = dataset.subset_gt_labels for i in range(cfg.max_conn): pred_peaks_labels = np.array([ dataset.idx2lb[pred_peaks[idx][i]] for idx in dataset.subset_idxs ]) acc = accuracy(pred_peaks_labels, subset_gt_labels) logger.info( '[{}-th] accuracy of pred_peaks labels ({}): {:.4f}'.format( i, len(pred_peaks_labels), acc)) # the rule for nearest nbr is only appropriate when nbrs is sorted nearest_idxs = np.where(pred_conns[:, i] == 0)[0] acc = accuracy(pred_peaks_labels[nearest_idxs], subset_gt_labels[nearest_idxs]) logger.info( '[{}-th] accuracy of pred labels (nearest: {}): {:.4f}'.format( i, len(nearest_idxs), acc)) not_nearest_idxs = np.where(pred_conns[:, i] > 0)[0] acc = accuracy(pred_peaks_labels[not_nearest_idxs], subset_gt_labels[not_nearest_idxs]) logger.info( '[{}-th] accuracy of pred labels (not nearest: {}): {:.4f}'. format(i, len(not_nearest_idxs), acc)) with Timer('Peaks to clusters (th_cut={})'.format(cfg.tau)): pred_labels = peaks_to_labels(pred_peaks, pred_dist2peak, cfg.tau, inst_num) if cfg.save_output: logger.info( 'save predicted connectivity and labels to {}'.format(ofn_pred)) if not osp.isfile(ofn_pred) or cfg.force: np.savez_compressed(ofn_pred, pred_conns=pred_conns, inst_num=inst_num) # save clustering results idx2lb = list2dict(pred_labels, ignore_value=-1) folder = '{}_gcne_k_{}_th_{}_ig_{}'.format(cfg.test_name, cfg.knn, cfg.th_sim, cfg.test_data.ignore_ratio) opath_pred_labels = osp.join(cfg.work_dir, folder, 'tau_{}_pred_labels.txt'.format(cfg.tau)) mkdir_if_no_exists(opath_pred_labels) write_meta(opath_pred_labels, idx2lb, inst_num=inst_num) # evaluation if not dataset.ignore_label: print('==> evaluation') for metric in cfg.metrics: evaluate(dataset.gt_labels, pred_labels, metric)
the-stack_0_4847
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import os import unittest from knack.util import CLIError from azure_devtools.scenario_tests import AllowLargeResponse from azure.cli.testsdk import (ScenarioTest, ResourceGroupPreparer, record_only) # pylint: disable=line-too-long # pylint: disable=too-many-lines TEST_DIR = os.path.abspath(os.path.join(os.path.abspath(__file__), '..')) @record_only() class CustomDomainTests(ScenarioTest): def test_bind_cert_to_domain(self): self.kwargs.update({ 'cert': 'test-cert', 'keyVaultUri': 'https://integration-test-prod.vault.azure.net/', 'KeyVaultCertName': 'cli-unittest', 'domain': 'cli.asc-test.net', 'app': 'test-app', 'serviceName': 'cli-unittest', 'rg': 'cli' }) self.cmd('spring-cloud certificate add --name {cert} --vault-uri {keyVaultUri} --vault-certificate-name {KeyVaultCertName} -g {rg} -s {serviceName}', checks=[ self.check('name', '{cert}') ]) self.cmd('spring-cloud certificate show --name {cert} -g {rg} -s {serviceName}', checks=[ self.check('name', '{cert}') ]) result = self.cmd('spring-cloud certificate list -g {rg} -s {serviceName}').get_output_in_json() self.assertTrue(len(result) > 0) self.cmd('spring-cloud app custom-domain bind --domain-name {domain} --app {app} -g {rg} -s {serviceName}', checks=[ self.check('name', '{domain}') ]) self.cmd('spring-cloud app custom-domain show --domain-name {domain} --app {app} -g {rg} -s {serviceName}', checks=[ self.check('name', '{domain}'), self.check('properties.appName', '{app}') ]) result = self.cmd('spring-cloud app custom-domain list --app {app} -g {rg} -s {serviceName}').get_output_in_json() self.assertTrue(len(result) > 0) self.cmd('spring-cloud app custom-domain update --domain-name {domain} --certificate {cert} --app {app} -g {rg} -s {serviceName}', checks=[ self.check('name', '{domain}'), self.check('properties.appName', '{app}'), self.check('properties.certName', '{cert}') ]) self.cmd('spring-cloud app custom-domain unbind --domain-name {domain} --app {app} -g {rg} -s {serviceName}') self.cmd('spring-cloud app custom-domain show --domain-name {domain} --app {app} -g {rg} -s {serviceName}', expect_failure=True) self.cmd('spring-cloud certificate remove --name {cert} -g {rg} -s {serviceName}') self.cmd('spring-cloud certificate show --name {cert} -g {rg} -s {serviceName}', expect_failure=True)
the-stack_0_4850
"""Tests for Brother Printer integration.""" import json from homeassistant.components.brother.const import DOMAIN from homeassistant.const import CONF_HOST, CONF_TYPE from tests.async_mock import patch from tests.common import MockConfigEntry, load_fixture async def init_integration(hass) -> MockConfigEntry: """Set up the Brother integration in Home Assistant.""" entry = MockConfigEntry( domain=DOMAIN, title="HL-L2340DW 0123456789", unique_id="0123456789", data={CONF_HOST: "localhost", CONF_TYPE: "laser"}, ) with patch( "brother.Brother._get_data", return_value=json.loads(load_fixture("brother_printer_data.json")), ): entry.add_to_hass(hass) await hass.config_entries.async_setup(entry.entry_id) await hass.async_block_till_done() return entry
the-stack_0_4851
# -*- coding: utf-8 -*- __author__ = """Chris Tabor ([email protected])""" from tinycss import make_parser from pprint import pprint as ppr from reflector import Reflector from string import ascii_lowercase DEBUG = __name__ == '__main__' class HTMLReflector(Reflector): def __init__(self, default_tag='div', newlines_and_spaces=False): self.selectors = set() self.parser = make_parser('page3') self.newlines_and_spaces = newlines_and_spaces self.default_tag = default_tag self.css = None def __str__(self): ppr(self.selectors) return '' def process_string(self, css_string): """Parse stylesheet with tinycss.""" self.css = self.parser.parse_stylesheet_bytes(css_string) return self def process(self, filename): """Parse stylesheet file with tinycss.""" self.css = self.parser.parse_stylesheet_file(filename) return self def extract(self): """Extracts css document into a dictionary grouped by ids and classes for later use. CSS nesting and relationships remain intact.""" for rule in self.css.rules: try: sels = rule.selector.as_css().split(',') for sel in set(sels): self.selectors.add(sel) except AttributeError: print('Error: Selector `{}` is not valid'.format(sel)) continue return self def _get_id(self, piece): """Get the id of the piece, if it's at the beginning, or somewhere in between.""" if '#' in piece: if piece.startswith('#'): piece = piece[1:] # If this is a chained selector, stop before the next token end = piece.find('.') if piece.find('.') != -1 else len(piece) return ' id="{}"'.format(piece[:end].replace('#', ' ')) else: return '' def _get_class(self, piece): """Get the class of the piece, if it's at the beginning, or somewhere in between.""" if '.' in piece: if piece.startswith('.'): piece = piece[1:] # If this is a chained selector, stop before the next token end = piece.find('#') if piece.find('#') != -1 else len(piece) return ' class="{}"'.format(piece[:end].replace('.', ' ')) else: return '' def _is_tag(self, piece): """Check if it's an actual html, e.g. `div`, `em`""" return piece[0] in ascii_lowercase def _get_tag(self, piece): """Return the html tag if it has no id/class selectors, otherwise, get the substring that only contains the html tag.""" if self._is_tag(piece): pos = piece.find('#') if pos == -1: pos = piece.find('.') if pos == -1: return piece return piece[:pos] else: return self.default_tag def _get_attributes(self, piece): if '#' in piece and not piece.startswith('#'): start = piece.find('#') id = self._get_id(piece[start:]) classes = self._get_class(piece) elif '.' in piece and not piece.startswith('.'): id = self._get_id(piece) start = piece.find('.') classes = self._get_class(piece[start:]) else: id = self._get_id(piece) classes = self._get_class(piece) tag = self._get_tag(piece) return tag, id, classes def _get_pieces(self, selector): pieces = [x.strip() for x in selector.split('>')] for k, piece in enumerate(pieces): if ' ' in piece: for token in reversed(piece.split(' ')): pieces.insert(k, token) pieces.remove(piece) return pieces def _create_tag(self, selector): if ':' in selector: return '' html = '' pieces = self._get_pieces(selector) for k, piece in enumerate(pieces): tag, id, classes = self._get_attributes(piece) space = k * (' ' * 4) if self.newlines_and_spaces else '' html += '{space}<{tag}{id}{classes}>'.format( piece, space=space, id=id, classes=classes, tag=tag) if self.newlines_and_spaces: html += '\n' # To build the nested html, we need to loop over them in reverse, # to make sure we get the corresponding selector/html tag _k = len(pieces) for piece in reversed(pieces): tag = self._get_tag(piece) if self._is_tag(piece) \ else self.default_tag space = _k * (' ' * 4) if self.newlines_and_spaces else '' html += '{space}</{tag}>'.format(space=space, tag=tag) if self.newlines_and_spaces: html += '\n' _k -= 1 return html def make_html(self, output=None, save_as_string=False): """Build out and write the actual HTML document.""" out = '' for selector in self.selectors: out += self._create_tag(selector) if save_as_string: return out if not output.endswith('.html'): raise ValueError('{} if is not a valid html file.'.format(output)) with open(output, 'wb+') as newfile: newfile.write(out) return self if DEBUG: reflector = HTMLReflector(newlines_and_spaces=True) reflector.process('animate.css').extract().make_html(output='output.html')
the-stack_0_4853
# -*- coding: utf8 -*- from QcloudApi.qcloudapi import QcloudApi from tce.tcloud.utils.config import global_config # 设置需要加载的模块 module = 'lb' # 对应接口的接口名,请参考wiki文档上对应接口的接口名 action = 'RegisterInstancesWithForwardLBFourthListener' region = global_config.get('regions') params = global_config.get(region) secretId = params['secretId'] secretKey = params['secretKey'] domain =params['domain'] # 云API的公共参数 config = { 'Region': region, 'secretId': secretId, 'secretKey': secretKey, 'method': 'GET', 'SignatureMethod': 'HmacSHA1' } # 接口参数,根据实际情况填写,支持json # 例如数组可以 "ArrayExample": ["1","2","3"] # 例如字典可以 "DictExample": {"key1": "value1", "key2": "values2"} action_params = { 'loadBalancerId':'lb-0wqe13pg', 'listenerId':'lbl-rvfpnndw', 'locationIds.0':'loc-aaa', 'backends.0.instanceId':'ins-1234test', 'backends.0.port':80, 'backends.0.weight':10, 'backends.1.instanceId':'ins-5678test', 'backends.1.port':80, 'backends.1.weight':6 } try: service = QcloudApi(module, config) # 请求前可以通过下面几个方法重新设置请求的secretId/secretKey/Region/method/SignatureMethod参数 # 重新设置请求的Region # service.setRegion('shanghai') # 打印生成的请求URL,不发起请求 print(service.generateUrl(action, action_params)) # 调用接口,发起请求,并打印返回结果 print(service.call(action, action_params)) except Exception as e: import traceback print('traceback.format_exc():\n%s' % traceback.format_exc())
the-stack_0_4854
import pandas as pd ''' @test($$;type(pd)) @alt(全ての|すべての|全) @alt(の名前|名) @alt(丸める|四捨五入する) @alt(丸めて|四捨五入して) @prefix(df;データフレーム) @prefix(ds;データ列) @prefix(col;カラム;カラム) @alt(日付データ|タイムスタンプ[型|]|Pandasの日付型|datetime64型) @prefix(value;[文字列|日付|]) データ列を使う データ列をインポートする ''' pd.to_datetime(x) ''' @test(pd=df=ds=missing;$$) [Pandasで、|]xを日付データに変換する ''' __X__ = df['A'] pd.to_datetime(__X__) ''' @test(pd=df=ds=missing;$$) @X(df[col];ds;s) @Y(dfのcoll;ds;s) [Pandasで、|]__Y__を日付データに変換する ''' pd.to_datetime(__X__, format='%Y-%m-%d') ''' @test(pd=df=ds=missing;$$) @alt(フォーマット|書式) [Pandasで、|]{フォーマットで_|__Y__を}日付データに変換する ''' pd.to_datetime(__X__, format=fmt) ''' @test(pd=df=ds=missing;fmt='%Y';$$) [Pandasで、|]{フォーマットfmtで_|__Y__を}日付データに変換する ''' # エポック秒 pd.to_datetime(__X__, unit='s', utc=True) ''' @test(pd=df=ds=missing;$$) @alt(エポック秒|UNIX秒|UNIX時間|数値時刻) [Pandasで、|]エポック秒の__Y__から日付データに変換する [Pandasで、|]__Y__のエポック秒から日付データに変換する ''' __X__.tz_convert('Asia/Tokyo') ''' @X(df[col]|ds) @Y(dfのcol|ds) @test(pd=df=ds=missing;$$) __Y__のタイムゾーンを[日本|東京]に設定する ''' __X__.tz_convert(s) ''' @test(pd=df=ds=missing;$$) __Y__のタイムゾーンをsに設定する ''' df.set_index(col, inplace=True) ''' @test(pd=df=ds=missing;$$) [Pandasで、|]dfのcolをインデックスにする ''' df.index = pd.DatetimeIndex(__X__) ''' @test(pd=df=ds=missing;$$;df.index) [Pandasで、|]日付データの__Y__を[dfの|]インデックスにする ''' df.index = pd.DatetimeIndex(pd.to_datetime(__X__)) ''' @test(pd=df=ds=missing;$$;df.index) [Pandasで、|]__Y__を日付データに変換し、[dfの|]インデックスにする ''' __X__.dt.year ''' @test(pd=df=ds=missing;$$) __Y__の年[|を得る] __Y__が_何年か見る ''' __X__.dt.month ''' @test(pd=df=ds=missing;$$) __Y__の月[|を得る] __Y__が_何月か見る ''' __X__.dt.day ''' @test(pd=df=ds=missing;$$) __Y__の[日|日にち][|を得る] __Y__が_何日か見る ''' __X__.dt.hour ''' @test(pd=df=ds=missing;$$) __Y__の[時|時刻][|を得る] __Y__が_何時か見る ''' __X__.dt.minute ''' @test(pd=df=ds=missing;$$) __Y__の分[|を得る] __Y__が_何分か見る ''' __X__.dt.second ''' @test(pd=df=ds=missing;$$) __Y__の秒[|を得る] __Y__が_何秒か見る ''' __X__.dt.weekday_name ''' @test(pd=df=ds=missing;$$) __Y__の曜日[の名前|][|を得る] __Y__が_何曜日か見る ''' __X__.dt.dayofweek ''' @test(pd=df=ds=missing;$$) __Y__の曜日数[|を得る] __Y__の曜日が_何日目か見る '''
the-stack_0_4855
import discord, mtranslate from discord.ext import commands from contextlib import redirect_stdout import inspect, aiohttp, asyncio, io, textwrap, traceback, os, json, urbanasync from cogs import Cog import random from paginator import PaginatorSession class BaiterBot(commands.Bot): def __init__(self): super().__init__(command_prefix="!") self._last_result = None self.session = aiohttp.ClientSession(loop=self.loop) def paginate(self, text: str): '''Simple generator that paginates text.''' last = 0 pages = [] for curr in range(0, len(text)): if curr % 1980 == 0: pages.append(text[last:curr]) last = curr appd_index = curr if appd_index != len(text)-1: pages.append(text[last:curr]) return list(filter(lambda a: a != '', pages)) async def on_connect(self): self.remove_command('help') for name, func in inspect.getmembers(self): if isinstance(func, commands.Command): self.add_command(func) for cog in Cog.all_cogs(Cog): try: self.add_cog(cog(self)) print(f"Added cog: {cog.__name__}") except Exception as e: print(f"ERROR: {e}") async def on_ready(self): perms = discord.Permissions.none() perms.administrator = True print(f"Bot is ready! Invite: {discord.utils.oauth_url(self.user.id, perms)}") async def on_member_join(self, member): await discord.utils.get(member.guild.text_channels, name="welcome").send(f"Hey {member.mention}, welcome to Masters Of Baiting! Please read the #rules. Suggestions are always welcome too. To suggest do `!suggest <suggestion>`. Enjoy your stay here!\n\nInvite link: https://discord.gg/MtpjRff") async def on_command_error(self, ctx, error): if isinstance(error, commands.errors.CheckFailure): return await ctx.send("You don't have the permissions to run that command!") await ctx.send(embed=discord.Embed(color=0x181818, title=f"``{ctx.prefix}{ctx.command.signature}``", description=ctx.command.short_doc)) raise error @commands.command() async def suggest(self, ctx, *, message): '''Suggest a feature to the Lord and Almighty Masterbaiter''' em = discord.Embed(color=discord.Color.green(), title="Suggestion", description=message) em.set_author(name=ctx.author, icon_url=ctx.author.avatar_url) await discord.utils.get(ctx.guild.text_channels, id=441176963093364736).send(embed=em) @commands.command(name='help') async def _help(self, ctx, command=None): '''Shows this page''' ems = [] for cog in Cog.all_cogs(Cog): if cog.__name__ == "ReactWait": continue em = discord.Embed(title='Help', color=0x181818) em.set_author(name='Royale Prestige Series', icon_url=self.user.avatar_url) em.add_field(name=cog.__name__, value="```\n"+'\n\n'.join([f"{ctx.prefix}{attr.name}{' '*(15-len(attr.name))}{attr.short_doc}" for name, attr in inspect.getmembers(cog) if isinstance(attr, commands.Command)])+'\n```') ems.append(em) if command: command = discord.utils.get(self.commands, name=command.lower()) return await ctx.send(embed=discord.Embed(color=0x181818, title=f"``{ctx.prefix}{command.signature}``", description=command.short_doc)) comms = [] for command in self.commands: if command.cog_name == "BaiterBot" and not command.hidden: comms.append(f"{ctx.prefix}{command.name}{' '*(15-len(command.name))}{command.short_doc}") em = discord.Embed(title='Help', color=0x181818) em.set_author(name='Royale Prestige Series', icon_url=self.user.avatar_url) em.add_field(name="Bot Related", value=f"```\n"+'\n\n'.join(comms)+"\n```") ems.append(em) session = PaginatorSession(ctx=ctx, pages=ems, footer_text="Type !help command for more info on a command.") await session.run() @commands.command() async def listen(self, ctx): await ctx.send("SHUT UP <@241445813891366912>") @commands.command(pass_context=True, hidden=True, name='eval') async def _eval(self, ctx, *, body: str, edit=False): """Evaluates python code""" if ctx.author.id != 295368465005543424: return env = { 'bot': self, 'ctx': ctx, 'channel': ctx.channel, 'author': ctx.author, 'guild': ctx.guild, 'message': ctx.message, '_': self._last_result, 'source': inspect.getsource } env.update(globals()) body = self.cleanup_code(body) if edit: await self.edit_to_codeblock(ctx, body) stdout = io.StringIO() err = out = None to_compile = f'async def func():\n{textwrap.indent(body, " ")}' try: exec(to_compile, env) except Exception as e: err = await ctx.send(f'```py\n{e.__class__.__name__}: {e}\n```') return await err.add_reaction('\u2049') func = env['func'] try: with redirect_stdout(stdout): ret = await func() except Exception as e: value = stdout.getvalue() err = await ctx.send(f'```py\n{value}{traceback.format_exc()}\n```') else: value = stdout.getvalue() if "MzgxNzM2MjYyOTgzMzUyMzIw.DPLfIA.3K0eC2WGtCtrmF7wFJPYJxZLCDs" in value: value = value.replace("MzgxNzM2MjYyOTgzMzUyMzIw.DPLfIA.3K0eC2WGtCtrmF7wFJPYJxZLCDs", "[EXPUNGED]") if ret is None: if value: try: out = await ctx.send(f'```py\n{value}\n```') except: paginated_text = self.paginate(value) for page in paginated_text: if page == paginated_text[-1]: out = await ctx.send(f'```py\n{page}\n```') break await ctx.send(f'```py\n{page}\n```') else: self._last_result = ret try: out = await ctx.send(f'```py\n{value}{ret}\n```') except: paginated_text = self.paginate(f"{value}{ret}") for page in paginated_text: if page == paginated_text[-1]: out = await self.send(f'```py\n{page}\n```') break await ctx.send(f'```py\n{page}\n```') if out: await out.add_reaction('\u2705') # tick elif err: await err.add_reaction('\u2049') # x else: await ctx.message.add_reaction('\u2705') async def edit_to_codeblock(self, ctx, body, pycc='blank'): if pycc == 'blank': msg = f'{ctx.prefix}eval\n```py\n{body}\n```' else: msg = f'{ctx.prefix}cc make {pycc}\n```py\n{body}\n```' await ctx.message.edit(content=msg) def cleanup_code(self, content): """Automatically removes code blocks from the code.""" # remove ```py\n``` if content.startswith('```') and content.endswith('```'): return '\n'.join(content.split('\n')[1:-1]) # remove `foo` return content.strip('` \n') def get_syntax_error(self, e): if e.text is None: return f'```py\n{e.__class__.__name__}: {e}\n```' return f'```py\n{e.text}{"^":>{e.offset}}\n{e.__class__.__name__}: {e}```' BaiterBot().run("NDY3MjkwMTgzOTYwNzU2MjI1.DiodcQ.lDjhbL_bXqzfoYdil9omtY34Lag")
the-stack_0_4856
# encoding: UTF-8 # Copyright 2016 Google.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import tensorflowvisu import math from tensorflow.examples.tutorials.mnist import input_data as mnist_data print("Tensorflow version " + tf.__version__) tf.set_random_seed(0) # neural network with 5 layers # # · · · · · · · · · · (input data, flattened pixels) X [batch, 784] # 784 = 28*28 # \x/x\x/x\x/x\x/x\x/ -- fully connected layer (relu) W1 [784, 200] B1[200] # · · · · · · · · · Y1 [batch, 200] # \x/x\x/x\x/x\x/ -- fully connected layer (relu) W2 [200, 100] B2[100] # · · · · · · · Y2 [batch, 100] # \x/x\x/x\x/ -- fully connected layer (relu) W3 [100, 60] B3[60] # · · · · · Y3 [batch, 60] # \x/x\x/ -- fully connected layer (relu) W4 [60, 30] B4[30] # · · · Y4 [batch, 30] # \x/ -- fully connected layer (softmax) W5 [30, 10] B5[10] # · Y5 [batch, 10] # Download images and labels into mnist.test (10K images+labels) and mnist.train (60K images+labels) mnist = mnist_data.read_data_sets("data", one_hot=True, reshape=False, validation_size=0) # input X: 28x28 grayscale images, the first dimension (None) will index the images in the mini-batch X = tf.placeholder(tf.float32, [None, 28, 28, 1]) # correct answers will go here Y_ = tf.placeholder(tf.float32, [None, 10]) # variable learning rate lr = tf.placeholder(tf.float32) # five layers and their number of neurons (tha last layer has 10 softmax neurons) L = 200 M = 100 N = 60 O = 30 # Weights initialised with small random values between -0.2 and +0.2 # When using RELUs, make sure biases are initialised with small *positive* values for example 0.1 = tf.ones([K])/10 W1 = tf.Variable(tf.truncated_normal([784, L], stddev=0.1)) # 784 = 28 * 28 B1 = tf.Variable(tf.ones([L])/10) W2 = tf.Variable(tf.truncated_normal([L, M], stddev=0.1)) B2 = tf.Variable(tf.ones([M])/10) W3 = tf.Variable(tf.truncated_normal([M, N], stddev=0.1)) B3 = tf.Variable(tf.ones([N])/10) W4 = tf.Variable(tf.truncated_normal([N, O], stddev=0.1)) B4 = tf.Variable(tf.ones([O])/10) W5 = tf.Variable(tf.truncated_normal([O, 10], stddev=0.1)) B5 = tf.Variable(tf.zeros([10])) # The model XX = tf.reshape(X, [-1, 784]) Y1 = tf.nn.relu(tf.matmul(XX, W1) + B1) Y2 = tf.nn.relu(tf.matmul(Y1, W2) + B2) Y3 = tf.nn.relu(tf.matmul(Y2, W3) + B3) Y4 = tf.nn.relu(tf.matmul(Y3, W4) + B4) Ylogits = tf.matmul(Y4, W5) + B5 Y = tf.nn.softmax(Ylogits) # cross-entropy loss function (= -sum(Y_i * log(Yi)) ), normalised for batches of 100 images # TensorFlow provides the softmax_cross_entropy_with_logits function to avoid numerical stability # problems with log(0) which is NaN cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=Ylogits, labels=Y_) cross_entropy = tf.reduce_mean(cross_entropy)*100 # accuracy of the trained model, between 0 (worst) and 1 (best) correct_prediction = tf.equal(tf.argmax(Y, 1), tf.argmax(Y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # matplotlib visualisation allweights = tf.concat([tf.reshape(W1, [-1]), tf.reshape(W2, [-1]), tf.reshape(W3, [-1]), tf.reshape(W4, [-1]), tf.reshape(W5, [-1])], 0) allbiases = tf.concat([tf.reshape(B1, [-1]), tf.reshape(B2, [-1]), tf.reshape(B3, [-1]), tf.reshape(B4, [-1]), tf.reshape(B5, [-1])], 0) I = tensorflowvisu.tf_format_mnist_images(X, Y, Y_) It = tensorflowvisu.tf_format_mnist_images(X, Y, Y_, 1000, lines=25) datavis = tensorflowvisu.MnistDataVis() # training step, the learning rate is a placeholder train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy) # init init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) # You can call this function in a loop to train the model, 100 images at a time def training_step(i, update_test_data, update_train_data): # training on batches of 100 images with 100 labels batch_X, batch_Y = mnist.train.next_batch(100) # learning rate decay max_learning_rate = 0.003 min_learning_rate = 0.0001 decay_speed = 2000.0 # 0.003-0.0001-2000=>0.9826 done in 5000 iterations learning_rate = min_learning_rate + (max_learning_rate - min_learning_rate) * math.exp(-i/decay_speed) # compute training values for visualisation if update_train_data: a, c, im, w, b = sess.run([accuracy, cross_entropy, I, allweights, allbiases], {X: batch_X, Y_: batch_Y}) print(str(i) + ": accuracy:" + str(a) + " loss: " + str(c) + " (lr:" + str(learning_rate) + ")") datavis.append_training_curves_data(i, a, c) datavis.update_image1(im) datavis.append_data_histograms(i, w, b) # compute test values for visualisation if update_test_data: a, c, im = sess.run([accuracy, cross_entropy, It], {X: mnist.test.images, Y_: mnist.test.labels}) print(str(i) + ": ********* epoch " + str(i*100//mnist.train.images.shape[0]+1) + " ********* test accuracy:" + str(a) + " test loss: " + str(c)) datavis.append_test_curves_data(i, a, c) datavis.update_image2(im) # the backpropagation training step sess.run(train_step, {X: batch_X, Y_: batch_Y, lr: learning_rate}) datavis.animate(training_step, iterations=10000+1, train_data_update_freq=20, test_data_update_freq=100, more_tests_at_start=True) # to save the animation as a movie, add save_movie=True as an argument to datavis.animate # to disable the visualisation use the following line instead of the datavis.animate line # for i in range(10000+1): training_step(i, i % 100 == 0, i % 20 == 0) print("max test accuracy: " + str(datavis.get_max_test_accuracy())) # Some results to expect: # (In all runs, if sigmoids are used, all biases are initialised at 0, if RELUs are used, # all biases are initialised at 0.1 apart from the last one which is initialised at 0.) ## learning rate = 0.003, 10K iterations # final test accuracy = 0.9788 (sigmoid - slow start, training cross-entropy not stabilised in the end) # final test accuracy = 0.9825 (relu - above 0.97 in the first 1500 iterations but noisy curves) ## now with learning rate = 0.0001, 10K iterations # final test accuracy = 0.9722 (relu - slow but smooth curve, would have gone higher in 20K iterations) ## decaying learning rate from 0.003 to 0.0001 decay_speed 2000, 10K iterations # final test accuracy = 0.9746 (sigmoid - training cross-entropy not stabilised) # final test accuracy = 0.9824 (relu - training set fully learned, test accuracy stable)
the-stack_0_4859
def validate_config_component_req(project, config, value, component_id): config_obj = project.config(config) if config_obj.value() == value and project.is_selected(component_id) == 0: comp = project.component(component_id) comp_name = comp.label() project.error('Component ' + comp_name + ' must be selected when ' + config + ' is set to ' + value + '.', config_obj.file_name(), '') def validate_boolean_config_req(project, config, config_needed): config_obj = project.config(config) config_needed_obj = project.config(config_needed) if config_obj.value() == '1' and config_needed_obj.value() == '0': project.error('Configuration ' + config_needed_obj.id() + ' must be selected when ' + config_obj.id() + ' is selected in component ' + config_obj.component().label() + '.', config_obj.file_name(), '')
the-stack_0_4861
''' log === High-level logger for API requests. ''' import datetime import logging import os from . import path def log_name(): '''Get date/time-based log name.''' return '{:%Y-%m-%d-%H-%M-%S}.log'.format(datetime.datetime.now()) def new_logger(name): '''Define a new logger.''' logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # Add the handlers to logger logger.addHandler(STREAM_HANDLER) logger.addHandler(FILE_HANDLER) return logger def override_tweepy_logger(tweepy): '''Override the Tweepy logger with the Tweepy module and a logger object.''' # This isn't documented, and likely not stable, but it works. # And we kind of need this information. It hasn't changed since # Nov. 15, 2014, so we should be safe. logger = tweepy.binder.log # Add the handlers to logger logger.addHandler(STREAM_HANDLER) logger.addHandler(FILE_HANDLER) os.makedirs(path.log_dir(), exist_ok=True) CURRENT_LOG_NAME = log_name() CURRENT_LOG_PATH = os.path.join(path.log_dir(), CURRENT_LOG_NAME) # File Handler FILE_HANDLER = logging.FileHandler(CURRENT_LOG_PATH) FILE_HANDLER.setLevel(logging.DEBUG) # Stderr Handler STREAM_HANDLER = logging.StreamHandler() STREAM_HANDLER.setLevel(logging.WARNING) # Create formatter and add it to the handlers formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') STREAM_HANDLER.setFormatter(formatter) FILE_HANDLER.setFormatter(formatter)
the-stack_0_4864
import torch from torch import nn from torch.nn import functional as F from networks.cnn_networks import VGG19 from util.tps_grid_gen import TPSGridGen class GANLoss(nn.Module): def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0, tensor=torch.cuda.FloatTensor): super(GANLoss, self).__init__() self.real_label = target_real_label self.fake_label = target_fake_label self.real_label_tensor = None self.fake_label_tensor = None self.zero_tensor = None self.Tensor = tensor self.gan_mode = gan_mode if self.gan_mode == 'ls': pass elif self.gan_mode == 'original': pass elif self.gan_mode == 'w': pass elif self.gan_mode == 'hinge': pass else: raise ValueError('gan_mode {} not implemented'.format(self.gan_mode)) def get_target_tensor(self, input, target_is_real): if target_is_real: if self.real_label_tensor is None: self.real_label_tensor = self.Tensor(1).fill_(self.real_label) self.real_label_tensor.requires_grad_(False) return self.real_label_tensor.expand_as(input) else: if self.fake_label_tensor is None: self.fake_label_tensor = self.Tensor(1).fill_(self.fake_label) self.fake_label_tensor.requires_grad_(False) return self.fake_label_tensor.expand_as(input) def get_zero_tensor(self, input): if self.zero_tensor is None: self.zero_tensor = self.Tensor(1).fill_(0) self.zero_tensor.requires_grad_(False) return self.zero_tensor.expand_as(input) def loss(self, input, target_is_real, for_discriminator=True): if self.gan_mode == 'original': # cross entropy loss target_tensor = self.get_target_tensor(input, target_is_real) loss = F.binary_cross_entropy_with_logits(input, target_tensor) return loss elif self.gan_mode == 'ls': # mean squared loss target_tensor = self.get_target_tensor(input, target_is_real) return F.mse_loss(input, target_tensor) elif self.gan_mode == 'hinge': if for_discriminator: if target_is_real: minval = torch.min(input - 1, self.get_zero_tensor(input)) loss = -torch.mean(minval) else: minval = torch.min(-input - 1, self.get_zero_tensor(input)) loss = -torch.mean(minval) else: assert target_is_real, "The generator's hinge loss must be aiming for real" loss = -torch.mean(input) return loss else: # wgan if target_is_real: return -input.mean() else: return input.mean() def __call__(self, input, target_is_real, for_discriminator=True): if isinstance(input[0], list): loss = 0 for input_i in input: if isinstance(input_i, list): pred = input_i[-1] else: pred = input_i loss_tensor = self.loss(pred, target_is_real, for_discriminator) bs = 1 if len(loss_tensor.size()) == 0 else loss_tensor.size(0) new_loss = torch.mean(loss_tensor.view(bs, -1), dim=1) loss += new_loss return loss / len(input) else: return self.loss(input, target_is_real, for_discriminator) class VGGLoss(nn.Module): def __init__(self): super(VGGLoss, self).__init__() self.vgg = VGG19().cuda() self.criterion = nn.L1Loss() self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] def forward(self, x, y): x_vgg, y_vgg = self.vgg(x), self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) return loss class ConstraintLoss(nn.Module): def __init__(self, opt): super(ConstraintLoss, self).__init__() self.opt = opt def get_row(self, coord, num): sec_dic=[] for j in range(num): sum = 0 buffer = 0 flag = False max = -1 for i in range(num - 1): differ=(coord[:, j * num + i + 1, :] - coord[:, j * num + i, :]) ** 2 if not flag: second_dif = 0 flag = True else: second_dif = torch.abs(differ - buffer) sec_dic.append(second_dif) buffer=differ sum+=second_dif return torch.stack(sec_dic,dim=1) def get_col(self,coor,num): sec_dic=[] for i in range(num): sum = 0 buffer = 0 flag = False max = -1 for j in range(num - 1): differ = (coor[:, (j+1) * num + i , :] - coor[:, j * num + i, :]) ** 2 if not flag: second_dif = 0 flag = True else: second_dif = torch.abs(differ-buffer) sec_dic.append(second_dif) buffer = differ sum += second_dif return torch.stack(sec_dic,dim=1) def grad_row(self, coor, num): sec_term = [] for j in range(num): for i in range(1, num - 1): x0, y0 = coor[:, j * num + i - 1, :][0] x1, y1 = coor[:, j * num + i + 0, :][0] x2, y2 = coor[:, j * num + i + 1, :][0] grad = torch.abs((y1 - y0) * (x1 - x2) - (y1 - y2) * (x1 - x0)) sec_term.append(grad) return sec_term def grad_col(self, coor, num): sec_term = [] for i in range(num): for j in range(1, num - 1): x0, y0 = coor[:, (j - 1) * num + i, :][0] x1, y1 = coor[:, j * num + i, :][0] x2, y2 = coor[:, (j + 1) * num + i, :][0] grad = torch.abs((y1 - y0) * (x1 - x2) - (y1 - y2) * (x1 - x0)) sec_term.append(grad) return sec_term def forward(self, theta): row = self.get_row(theta, self.opt['grid_size']) col = self.get_col(theta, self.opt['grid_size']) rg_loss = sum(self.grad_row(theta, self.opt['grid_size'])) cg_loss = sum(self.grad_col(theta, self.opt['grid_size'])) rg_loss = torch.max(rg_loss, torch.tensor(0.02).cuda()) cg_loss = torch.max(cg_loss, torch.tensor(0.02).cuda()) rx, ry, cx, cy = torch.tensor(0.08).cuda(), torch.tensor(0.08).cuda() \ , torch.tensor(0.08).cuda(), torch.tensor(0.08).cuda() row_x, row_y = row[:, :, 0], row[:, :, 1] col_x, col_y = col[:, :, 0], col[:, :, 1] rx_loss = torch.max(rx, row_x).mean() ry_loss = torch.max(ry, row_y).mean() cx_loss = torch.max(cx, col_x).mean() cy_loss = torch.max(cy, col_y).mean() return rx_loss + ry_loss + cx_loss + cy_loss + rg_loss + cg_loss class AlignmentLoss(nn.Module): def __init__(self, opt): super(AlignmentLoss, self).__init__() self.opt = opt self.tps = TPSGridGen(self.opt) def forward(self, theta, pose_kp, img_kp, c_kp): self.tps.apply_transformation(theta, c_kp) return loss
the-stack_0_4869
# !/usr/bin/env python3 # /-*- coding: UTF-8 -*- from math import prod if __name__ == "__main__": lst = list(map(int, input().split())) lst = prod([int(a) for a in lst if a > 0]) print(lst)
the-stack_0_4871
#!/usr/bin/env python import sys import math import time import asyncio import logging import unittest from os.path import join, realpath from typing import Dict, Optional, List from hummingbot.core.event.event_logger import EventLogger from hummingbot.core.event.events import OrderBookEvent, OrderBookTradeEvent, TradeType from hummingbot.connector.exchange.peatio.peatio_order_book_tracker import PeatioOrderBookTracker from hummingbot.connector.exchange.peatio.peatio_api_order_book_data_source import PeatioAPIOrderBookDataSource from hummingbot.core.data_type.order_book import OrderBook from hummingbot.logger.struct_logger import METRICS_LOG_LEVEL sys.path.insert(0, realpath(join(__file__, "../../../../../"))) logging.basicConfig(level=METRICS_LOG_LEVEL) class PeatioOrderBookTrackerUnitTest(unittest.TestCase): order_book_tracker: Optional[PeatioOrderBookTracker] = None events: List[OrderBookEvent] = [ OrderBookEvent.TradeEvent ] trading_pairs: List[str] = [ "BTC-USDT", "ROGER-BTC", ] @classmethod def setUpClass(cls): cls.ev_loop: asyncio.BaseEventLoop = asyncio.get_event_loop() cls.order_book_tracker: PeatioOrderBookTracker = PeatioOrderBookTracker(cls.trading_pairs) cls.order_book_tracker.start() cls.ev_loop.run_until_complete(cls.wait_til_tracker_ready()) @classmethod async def wait_til_tracker_ready(cls): while True: if len(cls.order_book_tracker.order_books) > 0: print("Initialized real-time order books.") return await asyncio.sleep(1) async def run_parallel_async(self, *tasks, timeout=None): future: asyncio.Future = asyncio.ensure_future(asyncio.gather(*tasks)) timer = 0 while not future.done(): if timeout and timer > timeout: raise Exception("Timeout running parallel async tasks in tests") timer += 1 now = time.time() _next_iteration = now // 1.0 + 1 # noqa: F841 await asyncio.sleep(1.0) return future.result() def run_parallel(self, *tasks): return self.ev_loop.run_until_complete(self.run_parallel_async(*tasks)) def setUp(self): self.event_logger = EventLogger() for event_tag in self.events: for trading_pair, order_book in self.order_book_tracker.order_books.items(): order_book.add_listener(event_tag, self.event_logger) def test_order_book_trade_event_emission(self): """ Tests if the order book tracker is able to retrieve order book trade message from exchange and emit order book trade events after correctly parsing the trade messages """ self.run_parallel(self.event_logger.wait_for(OrderBookTradeEvent)) print("\nRetrieved trade events.") for ob_trade_event in self.event_logger.event_log: self.assertTrue(type(ob_trade_event) == OrderBookTradeEvent) self.assertTrue(ob_trade_event.trading_pair in self.trading_pairs) self.assertTrue(type(ob_trade_event.timestamp) in [float, int]) self.assertTrue(type(ob_trade_event.amount) == float) self.assertTrue(type(ob_trade_event.price) == float) self.assertTrue(type(ob_trade_event.type) == TradeType) # datetime is in seconds self.assertTrue(math.ceil(math.log10(ob_trade_event.timestamp)) == 10) self.assertTrue(ob_trade_event.amount > 0) self.assertTrue(ob_trade_event.price > 0) def test_tracker_integrity(self): # Wait 5 seconds to process some diffs. self.ev_loop.run_until_complete(asyncio.sleep(5.0)) order_books: Dict[str, OrderBook] = self.order_book_tracker.order_books roger_btc: OrderBook = order_books["ROGER-BTC"] self.assertIsNot(roger_btc.last_diff_uid, 0) self.assertGreaterEqual(roger_btc.get_price_for_volume(True, 3000).result_price, roger_btc.get_price(True)) self.assertLessEqual(roger_btc.get_price_for_volume(False, 3000).result_price, roger_btc.get_price(False)) def test_api_get_last_traded_prices(self): prices = self.ev_loop.run_until_complete( PeatioAPIOrderBookDataSource.get_last_traded_prices(["BTC-USDT", "ROGER-BTC"])) print("\n") for key, value in prices.items(): print(f"{key} last_trade_price: {value}") self.assertGreater(prices["BTC-USDT"], 1000) self.assertLess(prices["ROGER-BTC"], 1)
the-stack_0_4872
""" A Websocket example. """ import logging import pkg_resources import uvicorn import bareutils.header as header from bareasgi import ( Application, HttpResponse, text_writer ) logging.basicConfig(level=logging.DEBUG) async def index(_request): """Redirect to the test page""" return HttpResponse(303, [(b'Location', b'/websocket_page')]) async def websocket_page(request): """Send the page with the example web socket""" scheme = 'wss' if request.scope['scheme'] == 'https' else 'ws' if request.scope['http_version'] in ('2', '2.0'): authority = header.find_exact( b':authority', request.scope['headers']).decode('ascii') else: host, port = request.scope['server'] authority = f'{host}:{port}' web_socket_url = f"{scheme}://{authority}/websocket_handler" print(web_socket_url) page = request.info['html'].replace('WEB_SOCKET_URL', web_socket_url) return HttpResponse(200, [(b'content-type', b'text/html')], text_writer(page)) async def websocket_handler(request): """The websocket callback handler""" await request.web_socket.accept() try: while True: text = await request.web_socket.receive() if text is None: break await request.web_socket.send('You said: ' + text) except Exception as error: # pylint: disable=broad-except print(error) await request.web_socket.close() if __name__ == "__main__": html_filename = pkg_resources.resource_filename( __name__, "web_socket.html") with open(html_filename, 'rt', encoding='utf-8') as file_ptr: html = file_ptr.read() app = Application(info=dict(html=html)) app.http_router.add({'GET'}, '/', index) app.http_router.add({'GET'}, '/websocket_page', websocket_page) app.ws_router.add('/websocket_handler', websocket_handler) uvicorn.run(app, port=9009)
the-stack_0_4876
import cv2 as cv import numpy as np capture = cv.VideoCapture(0) # check if connected if capture.isOpened() is False: print("Error opening camera 0") exit() # load model model = cv.dnn.readNetFromCaffe('deploy.prototxt', 'res10_300x300_ssd_iter_140000_fp16.caffemodel') # preprocessing # image resize to 300x300 by substraction mean vlaues [104., 117., 123.] # Define the codec and create VideoWriter object fourcc = cv.VideoWriter_fourcc(*'XVID') video_out = cv.VideoWriter('output.avi', fourcc, 20.0, (640, 480)) while capture.isOpened(): # capture frames, if read correctly ret is True ret, img = capture.read() if not ret: print("Didn't receive frame. Stop ") break # write the flipped frame video_out.write(img) # display frame h, w = img.shape[:2] blob = cv.dnn.blobFromImage(img, 1.0, (300, 300), [ 104., 117., 123.], False, False) # set blob asinput and detect face model.setInput(blob) detections = model.forward() faceCounter = 0 # draw detections above limit confidence > 0.7 for i in range(0, detections.shape[2]): # confidence confidence = detections[0, 0, i, 2] # if confidence > 0.7: # face counter faceCounter += 1 # get coordinates of the current detection box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (x1, y1, x2, y2) = box.astype("int") # Draw the detection and the confidence: cv.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 3) text = "{:.3f}%".format(confidence * 100) y = y1 - 10 if y1 - 10 > 10 else y1 + 10 x = x1 - 10 if x1 - 10 > 10 else x1 + 10 cv.putText(img, text, (x1, y), cv.FONT_HERSHEY_SIMPLEX, 2, (255, 0, 0), 3) cv.putText(img, "Cute Person", (x1, y2), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 1) cv.imshow("Camera frame", img) k = cv.waitKey(1) # check if key is q then exit if k == ord("q"): break capture.release() video_out.release() cv.destroyAllWindows()
the-stack_0_4879
"""add_cca_tail.py - Adds CCA tails to fasta file sequences ================================================================ Purpose ------- This script adds CCA tails to the RNA chromosomes and remove pseudogenes. It takes fasta files as input and outputs fasta files. Usage ----- Options ------- ** Type:: for command line help. Command line options -------------------- """ import sys import re import cgat.FastaIterator as FastaIterator import cgatcore.iotools as IOTools import cgatcore.experiment as E import collections def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if not argv: argv = sys.argv # setup command line parser parser = E.OptionParser( version="%prog version: $Id$", usage=globals()["__doc__"]) (options, args) = E.start(parser, argv=argv) if len(args) == 0: args.append("-") E.info(options.stdin) infile = IOTools.open_file(options.stdin.name) iterator = FastaIterator.FastaIterator(infile) # outfile_info = IOTools.open_file(options.info_file, "w") d = collections.OrderedDict() cluster_dict = dict() # first iterate over the fasta file and generate a dict # with the name (title) as the key and the sequence as the value # Remove any pseudo sequences for cur_record in iterator: # This is a temp fix because bedtools getfasta --name seems to have # changed the way it names the fasta titles. This may be temp but This # will fix this issue for the time being. m = re.match("(chr\d+.tRNA\d+-\S+-(pseudo)?)::\S+([+|-])", cur_record.title.replace("(","").replace(")","")) if m == None: continue if m.group(2) == "pseudo": pass else: key = str(m.group(1) + m.group(3)) d[key] = cur_record.sequence # next iterate of over the dict give the cluster a number # this will be used to then map back for the info name for key, value in d.items(): # Add CCA tail options.stdout.write((">%s\n%scca\n")%(key, value)) E.stop() if __name__ == "__main__": sys.exit(main(sys.argv))
the-stack_0_4881
import torch import torchvision import torch.optim as optim from torch.autograd import Variable import os from .dcgan_model import Generator from .dcgan_model import Discriminator from .data_loader import get_dataloader from .utils import save_model def train(train_data_folder, val_data_folder, params): train_data_loader = get_dataloader(train_data_folder, params["batch_size"]) val_data_loader = get_dataloader(val_data_folder, params["batch_size"]) # generator takes in a single channel image and outputs a 3-channel image generator = Generator(1, 3) # discriminator takes in a 3-channel image a single value discriminator = Discriminator(3, 1) generator.cuda() discriminator.cuda() g_optim = optim.Adam(generator.parameters(), lr=params["learning_rate"], betas=(params["beta1"], .999)) d_optim = optim.Adam(discriminator.parameters(), lr=params["learning_rate"], betas=(params["beta1"], .999)) d_criterion = torch.nn.BCEWithLogitsLoss() g_adv_criterion = torch.nn.BCEWithLogitsLoss() g_dist_criterion = torch.nn.L1Loss() save_path = params["save_path"] if not save_path[-1] == "/": save_path += "/" if not os.path.exists(save_path): os.makedirs(save_path) # for each epoch for epoch in range(params["epochs"]): # for each batch total_training_d_loss, total_training_g_loss = 0, 0 num_training_batches = 0 for _, images in enumerate(train_data_loader): d_loss, g_loss = single_iteration(images, generator, discriminator, g_optim, d_optim, g_adv_criterion, g_dist_criterion, d_criterion) total_training_d_loss += d_loss total_training_g_loss += g_loss num_training_batches += 1 # validation accuracy total_valid_d_loss, total_valid_g_loss = 0, 0 num_valid_batches = 0 for _, images in enumerate(val_data_loader): validation_d_loss, validation_g_loss = validate(images, generator, discriminator, g_adv_criterion, g_dist_criterion, d_criterion) total_valid_d_loss += validation_d_loss total_valid_g_loss += validation_g_loss num_valid_batches += 1 total_training_d_loss /= num_training_batches total_training_g_loss /= num_training_batches total_valid_d_loss /= num_valid_batches total_valid_g_loss /= num_valid_batches if epoch % params["print_interval"] == 0: print("EPOCH {0}:\tTrain-D-Loss: {1:.4f}\tTrain-G-Loss: {2:.4f}\n\tValid-D-Loss: {3:.4f}\tValid-G-Loss: {4:.4f}".format(epoch, total_training_d_loss, total_training_g_loss, total_valid_d_loss, total_valid_g_loss)) if "save_interval" in params and epoch % params["save_interval"] == 0: filename = save_path + "model_epoch_{}.pth".format(epoch) save_model(filename, epoch, generator, discriminator, g_optim, d_optim) save_model(save_path + "model_final.pth", epoch, generator, discriminator, g_optim, d_optim) def single_iteration(images, generator, discriminator, g_optim, d_optim, g_adv_criterion, g_dist_criterion, d_criterion): # get the corresponding grayscale images grayscale_images = images[:, 0:1, :, :] grayscale_images, images = Variable(grayscale_images.cuda()), Variable(images.cuda()) # train the discriminator on real color images discriminator.zero_grad() real_predictions = discriminator(images) real_labels = torch.FloatTensor(images.size(0)).fill_(1) real_labels = Variable(real_labels.cuda()) d_real_loss = d_criterion(torch.squeeze(real_predictions), real_labels) d_real_loss.backward() # train the discriminator on fake color images that are generated from the grayscale images fake_images = generator(grayscale_images) fake_predictions = discriminator(fake_images.detach()) fake_labels = torch.FloatTensor(fake_images.size(0)).fill_(0) fake_labels = Variable(fake_labels.cuda()) d_fake_loss = d_criterion(torch.squeeze(fake_predictions), fake_labels) d_fake_loss.backward() total_d_loss = d_real_loss + d_fake_loss d_optim.step() # train the generator using the discriminator's predictions generator.zero_grad() fake_predictions = discriminator(fake_images) g_adversarial_loss = g_adv_criterion(torch.squeeze(fake_predictions), real_labels) g_dist_loss = g_dist_criterion(fake_images.view(fake_images.size(0), -1), images.view(images.size(0), -1)) total_g_loss = g_adversarial_loss + 100*g_dist_loss total_g_loss.backward() g_optim.step() return total_d_loss.item(), total_g_loss.item() def validate(images, generator, discriminator, g_adv_criterion, g_dist_criterion, d_criterion): grayscale_images = images[:, 0:1, :, :] grayscale_images, images = Variable(grayscale_images.cuda()), Variable(images.cuda()) real_predictions = discriminator(images) real_labels = torch.FloatTensor(images.size(0)).fill_(1) real_labels = Variable(real_labels.cuda()) d_real_loss = d_criterion(torch.squeeze(real_predictions), real_labels) fake_images = generator(grayscale_images) fake_predictions = discriminator(fake_images.detach()) fake_labels = torch.FloatTensor(fake_images.size(0)).fill_(1) fake_labels = Variable(fake_labels.cuda()) d_fake_loss = d_criterion(torch.squeeze(fake_predictions), fake_labels) fake_predictions = discriminator(fake_images) total_d_loss = d_real_loss + d_fake_loss g_adversarial_loss = g_adv_criterion(torch.squeeze(fake_predictions), real_labels) g_dist_loss = g_dist_criterion(fake_images.view(fake_images.size(0), -1), images.view(images.size(0), -1)) total_g_loss = g_adversarial_loss + 100*g_dist_loss return total_d_loss.item(), total_g_loss.item()