filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_7137
# -*- coding: utf-8 -*- import os import sys import argparse from evaluate import evaluate_beam_search import logging import numpy as np import config import utils import torch import torch.nn as nn from torch import cuda from beam_search import SequenceGenerator from train import load_data_vocab, init_model, init_optimizer_criterion from utils import Progbar, plot_learning_curve import pykp from pykp.io import KeyphraseDatasetTorchText __author__ = "Rui Meng" __email__ = "[email protected]" def main(): # load settings for training parser = argparse.ArgumentParser( description='predict.py', formatter_class=argparse.ArgumentDefaultsHelpFormatter) config.preprocess_opts(parser) config.model_opts(parser) config.train_opts(parser) config.predict_opts(parser) opt = parser.parse_args() if opt.seed > 0: torch.manual_seed(opt.seed) print(opt.gpuid) if torch.cuda.is_available() and not opt.gpuid: opt.gpuid = 0 opt.exp = 'predict.' + opt.exp if hasattr(opt, 'copy_model') and opt.copy_model: opt.exp += '.copy' if hasattr(opt, 'bidirectional'): if opt.bidirectional: opt.exp += '.bi-directional' else: opt.exp += '.uni-directional' # fill time into the name if opt.exp_path.find('%s') > 0: opt.exp_path = opt.exp_path % (opt.exp, opt.timemark) opt.pred_path = opt.pred_path % (opt.exp, opt.timemark) if not os.path.exists(opt.exp_path): os.makedirs(opt.exp_path) if not os.path.exists(opt.pred_path): os.makedirs(opt.pred_path) logging = config.init_logging('train', opt.exp_path + '/output.log') logging.info('Parameters:') [logging.info('%s : %s' % (k, str(v))) for k, v in opt.__dict__.items()] try: train_data_loader, valid_data_loader, test_data_loader, word2id, id2word, vocab = load_data_vocab(opt, load_train=False) model = init_model(opt) # optimizer, criterion = init_optimizer_criterion(model, opt) generator = SequenceGenerator(model, eos_id=opt.word2id[pykp.io.EOS_WORD], beam_size=opt.beam_size, max_sequence_length=opt.max_sent_length ) # import time # start_time = time.time() evaluate_beam_search(generator, test_data_loader, opt, title='predict', save_path=opt.pred_path + '/[epoch=%d,batch=%d,total_batch=%d]test_result.csv' % (0, 0, 0)) # print("--- %s seconds --- Complete Beam Search" % (time.time() - start_time)) # predict_greedy(model, test_data_loader, test_examples, opt) except Exception as e: logging.exception("message") if __name__ == '__main__': main()
the-stack_0_7140
import logging import re import feedparser from requests.auth import AuthBase from flexget import plugin from flexget.entry import Entry from flexget.event import event from flexget.utils.cached_input import cached from flexget.utils.requests import RequestException log = logging.getLogger('apple_trailers') class AppleTrailers: """ Adds support for Apple.com movie trailers. Configuration: quality: Set the desired resolution - 480p, 720p or 1080p. default '720p' genres: List of genres used to filter the entries. If set, the trailer must match at least one listed genre to be accepted. Genres that can be used: Action and Adventure, Comedy, Documentary, Drama, Family, Fantasy, Foreign, Horror, Musical, Romance, Science Fiction, Thriller. default '' (all) apple_trailers: quality: 720p genres: ['Action and Adventure'] Alternatively, a simpler configuration format can be used. This uses the default genre filter, all: apple_trailers: 720p This plugin adds the following fields to the entry: movie_name, movie_year, genres, apple_trailers_name, movie_studio movie_name: Name of the movie movie_year: Year the movie was/will be released genres: Comma-separated list of genres that apply to the movie apple_trailers_name: Contains the Apple-supplied name of the clip, such as 'Clip 2', 'Trailer', 'Winter Olympic Preview' movie_studio: Name of the studio that makes the movie """ movie_data_url = 'http://trailers.apple.com/trailers/feeds/data/' rss_url = 'http://trailers.apple.com/trailers/home/rss/newtrailers.rss' qualities = {'480p': 'sd', '720p': 'hd720', '1080p': 'hd1080'} schema = { 'oneOf': [ { 'type': 'object', 'properties': { 'quality': { 'type': 'string', 'enum': list(qualities.keys()), 'default': '720p', }, 'genres': {'type': 'array', 'items': {'type': 'string'}}, }, 'additionalProperties': False, }, {'title': 'justquality', 'type': 'string', 'enum': list(qualities.keys())}, ] } def broken(self, error_message): raise plugin.PluginError('Plugin is most likely broken. Got: %s' % error_message) @plugin.priority(127) @cached('apple_trailers') def on_task_input(self, task, config): # Turn simple config into full config if isinstance(config, str): config = {'quality': config} try: r = task.requests.get(self.rss_url) except RequestException as e: raise plugin.PluginError('Retrieving Apple Trailers RSS feed failed: %s' % e) rss = feedparser.parse(r.content) if rss.get('bozo_exception', False): raise plugin.PluginError('Got bozo_exception (bad feed)') filmid_regex = re.compile(r'(FilmId\s*\=\s*\')(\d+)(?=\')') studio_regex = re.compile(r'(?:[0-9]*\s*)(.+)') # use the following dict to save json object in case multiple trailers have been released for the same movie # no need to do multiple requests for the same thing! trailers = {} entries = [] for item in rss.entries: entry = Entry() movie_url = item['link'] entry['title'] = item['title'] entry['movie_name'], entry['apple_trailers_name'] = entry['title'].split(' - ', 1) if not trailers.get(movie_url): try: movie_page = task.requests.get(movie_url).text match = filmid_regex.search(movie_page) if match: json_url = self.movie_data_url + match.group(2) + '.json' movie_data = task.requests.get(json_url).json() trailers[movie_url] = {'json_url': json_url, 'json': movie_data} else: self.broken('FilmId not found for {0}'.format(entry['movie_name'])) except RequestException as e: log.error('Failed to get trailer %s: %s', entry['title'], e.args[0]) continue else: movie_data = trailers[movie_url]['json'] genres = {genre.get('name') for genre in movie_data.get('details').get('genres')} config_genres = set(config.get('genres', [])) if genres and config_genres and not set.intersection(config_genres, genres): log.debug('Config genre(s) do not match movie genre(s)') continue desired_quality = config['quality'] # find the trailer url for clip in movie_data.get('clips'): if clip.get('title') == entry['apple_trailers_name']: try: trailer_url = clip['versions']['enus']['sizes'][ self.qualities[desired_quality] ] src = trailer_url.get('src') src_alt = trailer_url.get('srcAlt') # .mov tends to be a streaming video file, but the real video file is the same url, but # they prepend 'h' to the quality if src.split('.')[-1] == 'mov': entry['url'] = src.replace(desired_quality, 'h' + desired_quality) elif src_alt.split('.')[-1] == 'mov': entry['url'] = src_alt.replace(desired_quality, 'h' + desired_quality) else: continue # just continue until we reach the else part of the for-else break except KeyError as e: self.broken(e.args[0]) else: log.error('Trailer "%s" not found', entry['apple_trailers_name']) continue # set some entry fields if present # studio is usually also the copyright holder studio = studio_regex.match(movie_data.get('page').get('copyright')) if studio: entry['movie_studio'] = studio.group(1) release_date = movie_data.get('page').get('release_date') if release_date: entry['release_date'] = release_date if genres: entry['genres'] = ', '.join(list(genres)) # set the correct header without modifying the task.requests obj entry['download_auth'] = AppleTrailersHeader() entries.append(entry) return entries class AppleTrailersHeader(AuthBase): def __call__(self, request): request.headers['User-Agent'] = 'QuickTime/7.7' return request @event('plugin.register') def register_plugin(): plugin.register(AppleTrailers, 'apple_trailers', api_ver=2)
the-stack_0_7142
import os import torch import faiss from argparse import ArgumentParser from tqdm import tqdm from typing import List from collections import defaultdict def load_rerank_f(fname): if not fname: return None f = open(fname) ret = defaultdict(set) for line in f: line = line.strip().split() ret[int(line[0])].add(int(line[1])) return ret def main(): parser = ArgumentParser() parser.add_argument('--score_dir', required=True) parser.add_argument('--query_lookup', required=True) parser.add_argument('--depth', type=int, required=True) parser.add_argument('--num_query', type=int) parser.add_argument('--save_ranking_to', required=True) parser.add_argument('--marco_document', action='store_true') parser.add_argument("--rerank_pairs", default=None) args = parser.parse_args() rerank_dic = load_rerank_f(args.rerank_pairs) if args.num_query: rh = faiss.ResultHeap(args.num_query, args.depth) else: print("Inferring number of query from first input") rh = None partitions = os.listdir(args.score_dir) pbar = tqdm(partitions) for part_name in pbar: pbar.set_description_str(f'Processing {part_name}') scores, indices = torch.load( os.path.join(args.score_dir, part_name) ) if rh is None: print(f'Initializing Heap. Assuming {scores.shape[0]} queries.') rh = faiss.ResultHeap(scores.shape[0], args.depth) rh.add_result(-scores.numpy(), indices.numpy()) rh.finalize() corpus_scores, corpus_indices = (-rh.D).tolist(), rh.I.tolist() q_lookup: List[str] = torch.load(args.query_lookup).tolist() os.makedirs(os.path.split(args.save_ranking_to)[0], exist_ok=True) with open(args.save_ranking_to, 'w') as f: for qid, q_doc_scores, q_doc_indices in zip(q_lookup, corpus_scores, corpus_indices): _last = None score_list = [(s, idx) for s, idx in zip(q_doc_scores, q_doc_indices)] if rerank_dic: new_l = [] for tp in score_list: if tp[1] in rerank_dic[qid]: new_l.append((tp[0]+100000.0, tp[1])) else: new_l.append((tp[0], tp[1])) score_list = new_l score_list = sorted(score_list, key=lambda x: x[0], reverse=True) for s, idx in score_list: if args.marco_document: _idx = f'D{idx}' else: _idx = idx f.write(f'{qid}\t{_idx}\t{s}\n') if __name__ == '__main__': main()
the-stack_0_7144
import torch import torch.nn as nn import torch.nn.functional as F from ..builder import LOSSES from .utils import weight_reduce_loss def cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None): """Calculate the CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. Returns: torch.Tensor: The calculated loss """ # element-wise losses loss = F.cross_entropy(pred, label, weight=class_weight, reduction='none') # apply weights and do the reduction if weight is not None: weight = weight.float() loss = weight_reduce_loss( loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss def _expand_binary_labels(labels, label_weights, label_channels): # Caution: this function should only be used in RPN # in other files such as in ghm_loss, the _expand_binary_labels # is used for multi-class classification. bin_labels = labels.new_full((labels.size(0), label_channels), 0) inds = torch.nonzero(labels >= 1, as_tuple=False).squeeze() if inds.numel() > 0: bin_labels[inds, labels[inds] - 1] = 1 if label_weights is None: bin_label_weights = None else: bin_label_weights = label_weights.view(-1, 1).expand( label_weights.size(0), label_channels) return bin_labels, bin_label_weights def binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None): """Calculate the binary CrossEntropy loss. Args: pred (torch.Tensor): The prediction with shape (N, 1). label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. Returns: torch.Tensor: The calculated loss """ if pred.dim() != label.dim(): label, weight = _expand_binary_labels(label, weight, pred.size(-1)) if pred.dim() == label.dim() and pred.shape[-1] != label.shape[-1] and label.dtype == torch.long: num_class = pred.shape[-1] onehot = torch.nn.functional.one_hot(label, num_classes=num_class + 1) # import pdb; pdb.set_trace() onehot = onehot.sum(dim=1)[..., :-1] # remove background/no-attr class label = onehot # weighted element-wise losses if weight is not None: weight = weight.float() loss = F.binary_cross_entropy_with_logits( pred, label.float(), weight=class_weight, reduction='none') # do the reduction for the weighted loss # if label.shape[-1] > 10: # import pdb; pdb.set_trace() if loss.dim() == 2 and loss.shape[-1] > 1: loss = loss.mean(dim=-1) loss = weight_reduce_loss( loss, weight, reduction=reduction, avg_factor=avg_factor) return loss def mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None, class_weight=None): """Calculate the CrossEntropy loss for masks. Args: pred (torch.Tensor): The prediction with shape (N, C), C is the number of classes. target (torch.Tensor): The learning label of the prediction. label (torch.Tensor): ``label`` indicates the class label of the mask' corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. class_weight (list[float], optional): The weight for each class. Returns: torch.Tensor: The calculated loss """ # TODO: handle these two reserved arguments assert reduction == 'mean' and avg_factor is None num_rois = pred.size()[0] inds = torch.arange(0, num_rois, dtype=torch.long, device=pred.device) pred_slice = pred[inds, label].squeeze(1) return F.binary_cross_entropy_with_logits( pred_slice, target, weight=class_weight, reduction='mean')[None] @LOSSES.register_module() class CrossEntropyLoss(nn.Module): def __init__(self, use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, loss_weight=1.0): """CrossEntropyLoss. Args: use_sigmoid (bool, optional): Whether the prediction uses sigmoid of softmax. Defaults to False. use_mask (bool, optional): Whether to use mask cross entropy loss. Defaults to False. reduction (str, optional): . Defaults to 'mean'. Options are "none", "mean" and "sum". class_weight (list[float], optional): Weight of each class. Defaults to None. loss_weight (float, optional): Weight of the loss. Defaults to 1.0. """ super(CrossEntropyLoss, self).__init__() assert (use_sigmoid is False) or (use_mask is False) self.use_sigmoid = use_sigmoid self.use_mask = use_mask self.reduction = reduction self.loss_weight = loss_weight self.class_weight = class_weight if self.use_sigmoid: self.cls_criterion = binary_cross_entropy elif self.use_mask: self.cls_criterion = mask_cross_entropy else: self.cls_criterion = cross_entropy def forward(self, cls_score, label, weight=None, avg_factor=None, reduction_override=None, **kwargs): """Forward function. Args: cls_score (torch.Tensor): The prediction. label (torch.Tensor): The learning label of the prediction. weight (torch.Tensor, optional): Sample-wise loss weight. avg_factor (int, optional): Average factor that is used to average the loss. Defaults to None. reduction (str, optional): The method used to reduce the loss. Options are "none", "mean" and "sum". Returns: torch.Tensor: The calculated loss """ assert reduction_override in (None, 'none', 'mean', 'sum') reduction = ( reduction_override if reduction_override else self.reduction) if self.class_weight is not None: class_weight = cls_score.new_tensor(self.class_weight) else: class_weight = None loss_cls = self.loss_weight * self.cls_criterion( cls_score, label, weight, class_weight=class_weight, reduction=reduction, avg_factor=avg_factor, **kwargs) return loss_cls
the-stack_0_7145
import shapely.geometry import numpy as np import fiona.crs import pyproj from shapely.geometry.point import Point UTM_ZONE30 = pyproj.Proj( proj='utm', zone=30, datum='WGS84', units='m', errcheck=True) schema = {'geometry': 'LineString', 'properties': {'PhysID': 'int'}} crs = fiona.crs.from_string(UTM_ZONE30.srs) x0, y0, x1, y1 = 0, 0, 640, 320 features = \ [shapely.geometry.LineString([(x0, y0), (x1, y0)]), shapely.geometry.LineString([(x1, y0), (x1, y1)]), shapely.geometry.LineString([(x1, y1), (x0, y1)]), shapely.geometry.LineString([(x0, y1), (x0, y0)])] with fiona.collection("outline_2.shp", "w", "ESRI Shapefile", schema, crs=crs) as output: for i in range(len(features)): output.write({'geometry': shapely.geometry.mapping(features[i]), 'properties': {'PhysID': i}}) # Array coordinates array_list = np.zeros((7, 2)) array_1 = np.arange(64, 320, 64) array_2 = np.arange(64 + 32, 320-64, 64) array_list[0:4, 0] = 640 / 3 array_list[4:, 0] = 640 / 3 + 64 array_list[0:4, 1] = array_1 array_list[4:, 1] = array_2 np.save("Turbine_coords.npy", array_list) features2 = [] for x, y in array_list: p = Point(x, y) circle = shapely.geometry.LineString(list(p.buffer(10).exterior.coords)) features2.append(circle) with fiona.collection("turbine_circles.shp", "w", "ESRI Shapefile", schema, crs=crs) as output: for i in range(len(features2)): output.write({'geometry': shapely.geometry.mapping(features2[i]), 'properties': {'PhysID': 100}})
the-stack_0_7146
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2020, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- import pytest ; pytest #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports from collections import OrderedDict # External imports import bs4 from jinja2 import Template from mock import patch # Bokeh imports import bokeh.resources as resources import bokeh.util.version as buv from bokeh.document import Document from bokeh.embed.util import RenderRoot, standalone_docs_json from bokeh.io import curdoc from bokeh.plotting import figure from bokeh.resources import CDN, CSSResources, JSResources # Module under test import bokeh.embed.standalone as bes # isort:skip #----------------------------------------------------------------------------- # Setup #----------------------------------------------------------------------------- pytest_plugins = ( "bokeh._testing.plugins.project", "bokeh._testing.plugins.selenium", ) def stable_id(): return 'ID' @pytest.fixture def test_plot() -> None: from bokeh.plotting import figure test_plot = figure(title="'foo'") test_plot.circle([1, 2], [2, 3]) return test_plot @pytest.fixture def test_plot_and_widget() -> None: from bokeh.plotting import figure from bokeh.layouts import column from bokeh.models import Div test_plot = figure(title="'foo'") test_plot.circle([1, 2], [2, 3]) return column(Div(text="foo"), test_plot) PAGE = Template(""" <!DOCTYPE html> <html lang="en"> <head> </head> <body> <script> {{js}} </script> {{tag}} </body> """) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- class Test_autoload_static(object): def test_return_type(self, test_plot) -> None: r = bes.autoload_static(test_plot, CDN, "some/path") assert len(r) == 2 def test_script_attrs(self, test_plot) -> None: js, tag = bes.autoload_static(test_plot, CDN, "some/path") html = bs4.BeautifulSoup(tag, "html.parser") scripts = html.findAll(name='script') assert "bokeh-widgets" not in js assert len(scripts) == 1 attrs = scripts[0].attrs assert set(attrs) == set(['src', 'id']) assert attrs['src'] == 'some/path' def test_script_attrs_with_widgets(self, test_plot_and_widget) -> None: js, tag = bes.autoload_static(test_plot_and_widget, CDN, "some/path") html = bs4.BeautifulSoup(tag, "html.parser") scripts = html.findAll(name='script') assert "bokeh-widgets" in js assert len(scripts) == 1 attrs = scripts[0].attrs assert set(attrs) == set(['src', 'id']) assert attrs['src'] == 'some/path' @pytest.mark.parametrize("version", ["1.4.0rc1", "2.0.0dev3"]) @pytest.mark.selenium def test_js_dev_cdn(self, version, monkeypatch, driver, test_file_path_and_url, test_plot) -> None: monkeypatch.setattr(buv, "__version__", "1.4.0rc1") monkeypatch.setattr(resources, "__version__", "1.4.0rc1") js, tag = bes.autoload_static(test_plot, CDN, "some/path") page = PAGE.render(js=js, tag=tag) path, url = test_file_path_and_url with open(path, "w") as f: f.write(page) driver.get(url) scripts = driver.find_elements_by_css_selector('head script') assert len(scripts) == 1 for script in scripts: assert script.get_attribute("crossorigin") == None assert script.get_attribute("integrity") == "" @pytest.mark.selenium def test_js_release_cdn(self, monkeypatch, driver, test_file_path_and_url, test_plot) -> None: monkeypatch.setattr(buv, "__version__", "2.0.0") monkeypatch.setattr(resources, "__version__", "2.0.0") js, tag = bes.autoload_static(test_plot, CDN, "some/path") page = PAGE.render(js=js, tag=tag) path, url = test_file_path_and_url with open(path, "w") as f: f.write(page) driver.get(url) scripts = driver.find_elements_by_css_selector('head script') for x in scripts: print(x.get_attribute("src")) assert len(scripts) == 1 for script in scripts: assert script.get_attribute("crossorigin") == "anonymous" assert script.get_attribute("integrity").startswith("sha384-") @pytest.mark.selenium def test_js_release_cdn_with_widgets(self, monkeypatch, driver, test_file_path_and_url, test_plot_and_widget) -> None: monkeypatch.setattr(buv, "__version__", "2.0.0") monkeypatch.setattr(resources, "__version__", "2.0.0") js, tag = bes.autoload_static(test_plot_and_widget, CDN, "some/path") page = PAGE.render(js=js, tag=tag) path, url = test_file_path_and_url with open(path, "w") as f: f.write(page) driver.get(url) scripts = driver.find_elements_by_css_selector('head script') for x in scripts: print(x.get_attribute("src")) assert len(scripts) == 2 # 2 to include widgets bundle for script in scripts: assert script.get_attribute("crossorigin") == "anonymous" assert script.get_attribute("integrity").startswith("sha384-") @pytest.mark.selenium def test_js_release_dev_cdn(self, monkeypatch, driver, test_file_path_and_url, test_plot) -> None: monkeypatch.setattr(buv, "__version__", "2.0.0-foo") monkeypatch.setattr(resources, "__version__", "2.0.0-foo") js, tag = bes.autoload_static(test_plot, CDN, "some/path") page = PAGE.render(js=js, tag=tag) path, url = test_file_path_and_url with open(path, "w") as f: f.write(page) driver.get(url) scripts = driver.find_elements_by_css_selector('head script') for x in scripts: print(x.get_attribute("src")) assert len(scripts) == 1 for script in scripts: assert script.get_attribute("crossorigin") == "anonymous" assert script.get_attribute("integrity").startswith("sha384-") @pytest.mark.selenium def test_js_release_server(self, monkeypatch, driver, test_file_path_and_url, test_plot) -> None: monkeypatch.setattr(buv, "__version__", "2.0.0") monkeypatch.setattr(resources, "__version__", "2.0.0") js, tag = bes.autoload_static(test_plot, resources.Resources(mode="server"), "some/path") page = PAGE.render(js=js, tag=tag) path, url = test_file_path_and_url with open(path, "w") as f: f.write(page) driver.get(url) scripts = driver.find_elements_by_css_selector('head script') assert len(scripts) == 1 for script in scripts: assert script.get_attribute("crossorigin") == None assert script.get_attribute("integrity") == "" class Test_components(object): def test_return_type(self) -> None: plot1 = figure() plot1.circle([], []) plot2 = figure() plot2.circle([], []) # This is a testing artefact, users dont' have to do this in practice curdoc().add_root(plot1) curdoc().add_root(plot2) r = bes.components(plot1) assert len(r) == 2 _, divs = bes.components((plot1, plot2)) assert isinstance(divs, tuple) _, divs = bes.components([plot1, plot2]) assert isinstance(divs, tuple) _, divs = bes.components({"Plot 1": plot1, "Plot 2": plot2}) assert isinstance(divs, dict) assert all(isinstance(x, str) for x in divs.keys()) _, divs = bes.components(OrderedDict([("Plot 1", plot1), ("Plot 2", plot2)])) assert isinstance(divs, OrderedDict) assert all(isinstance(x, str) for x in divs.keys()) @patch('bokeh.embed.util.make_globally_unique_id', new_callable=lambda: stable_id) def test_plot_dict_returned_when_wrap_plot_info_is_false(self, mock_make_id) -> None: doc = Document() plot1 = figure() plot1.circle([], []) doc.add_root(plot1) plot2 = figure() plot2.circle([], []) doc.add_root(plot2) expected_plotdict_1 = RenderRoot(elementid="ID", id="ID") expected_plotdict_2 = RenderRoot(elementid="ID", id="ID") _, plotdict = bes.components(plot1, wrap_plot_info=False) assert plotdict == expected_plotdict_1 _, plotids = bes.components((plot1, plot2), wrap_plot_info=False) assert plotids == (expected_plotdict_1, expected_plotdict_2) _, plotiddict = bes.components({'p1': plot1, 'p2': plot2}, wrap_plot_info=False) assert plotiddict == {'p1': expected_plotdict_1, 'p2': expected_plotdict_2} def test_result_attrs(self, test_plot) -> None: script, div = bes.components(test_plot) html = bs4.BeautifulSoup(script, "html.parser") scripts = html.findAll(name='script') assert len(scripts) == 1 assert scripts[0].attrs == {'type': 'text/javascript'} @patch('bokeh.embed.util.make_globally_unique_id', new=stable_id) def test_div_attrs(self, test_plot) -> None: script, div = bes.components(test_plot) html = bs4.BeautifulSoup(div, "html.parser") divs = html.findAll(name='div') assert len(divs) == 1 div = divs[0] assert set(div.attrs) == set(['class', 'id', 'data-root-id']) assert div.attrs['class'] == ['bk-root'] assert div.attrs['id'] == 'ID' assert div.attrs['data-root-id'] == test_plot.id assert div.string is None def test_script_is_utf8_encoded(self, test_plot) -> None: script, div = bes.components(test_plot) assert isinstance(script, str) def test_quoting(self, test_plot) -> None: script, div = bes.components(test_plot) assert "&quot;" not in script assert "'foo'" not in script assert "&#x27;foo&#x27;" in script def test_output_is_without_script_tag_when_wrap_script_is_false(self, test_plot) -> None: script, div = bes.components(test_plot) html = bs4.BeautifulSoup(script, "html.parser") scripts = html.findAll(name='script') assert len(scripts) == 1 # XXX: this needs to account for indentation #script_content = scripts[0].getText() #rawscript, div = bes.components(test_plot, wrap_script=False) #self.maxDiff = None #assert rawscript.strip() == script_content.strip() class Test_file_html(object): def test_return_type(self, test_plot) -> None: class fake_template: def __init__(self, tester, user_template_variables=None): self.tester = tester self.template_variables = { "title", "bokeh_js", "bokeh_css", "plot_script", "doc", "docs", "base", } if user_template_variables is not None: self.template_variables.update(user_template_variables) def render(self, template_variables): assert self.template_variables.issubset(set(template_variables.keys())) return "template result" r = bes.file_html(test_plot, CDN, "title") assert isinstance(r, str) r = bes.file_html(test_plot, CDN, "title", fake_template(self)) assert isinstance(r, str) r = bes.file_html(test_plot, CDN, "title", fake_template(self, {"test_var"}), {"test_var": "test"}) assert isinstance(r, str) @patch('bokeh.embed.bundle.warn') def test_file_html_handles_js_only_resources(self, mock_warn, test_plot) -> None: js_resources = JSResources(mode="relative", components=["bokeh"]) template = Template("<head>{{ bokeh_js }}</head><body></body>") output = bes.file_html(test_plot, (js_resources, None), "title", template=template) html = "<head>%s</head><body></body>" % js_resources.render_js() assert output == html @patch('bokeh.embed.bundle.warn') def test_file_html_provides_warning_if_no_css(self, mock_warn, test_plot) -> None: js_resources = JSResources() bes.file_html(test_plot, (js_resources, None), "title") mock_warn.assert_called_once_with( 'No Bokeh CSS Resources provided to template. If required you will need to provide them manually.' ) @patch('bokeh.embed.bundle.warn') def test_file_html_handles_css_only_resources(self, mock_warn, test_plot) -> None: css_resources = CSSResources(mode="relative", components=["bokeh"]) template = Template("<head>{{ bokeh_css }}</head><body></body>") output = bes.file_html(test_plot, (None, css_resources), "title", template=template) html = "<head>%s</head><body></body>" % css_resources.render_css() assert output == html @patch('bokeh.embed.bundle.warn') def test_file_html_provides_warning_if_no_js(self, mock_warn, test_plot) -> None: css_resources = CSSResources() bes.file_html(test_plot, (None, css_resources), "title") mock_warn.assert_called_once_with( 'No Bokeh JS Resources provided to template. If required you will need to provide them manually.' ) def test_file_html_title_is_escaped(self, test_plot) -> None: r = bes.file_html(test_plot, CDN, "&<") assert "<title>&amp;&lt;</title>" in r def test_entire_doc_is_not_used(self) -> None: from bokeh.document import Document from bokeh.models import Button fig = figure() fig.x([0], [0]) button = Button(label="Button") d = Document() d.add_root(fig) d.add_root(button) out = bes.file_html([fig], CDN) # this is a very coarse test but it will do assert "bokeh-widgets" not in out class Test_json_item(object): def test_with_target_id(self, test_plot) -> None: out = bes.json_item(test_plot, target="foo") assert out['target_id'] == "foo" def test_without_target_id(self, test_plot) -> None: out = bes.json_item(test_plot) assert out['target_id'] == None def test_doc_json(self, test_plot) -> None: out = bes.json_item(test_plot, target="foo") expected = list(standalone_docs_json([test_plot]).values())[0] assert out['doc'] == expected def test_doc_title(self, test_plot) -> None: out = bes.json_item(test_plot, target="foo") assert out['doc']['title'] == "" def test_root_id(self, test_plot) -> None: out = bes.json_item(test_plot, target="foo") assert out['doc']['roots']['root_ids'][0] == out['root_id'] @patch('bokeh.embed.standalone.OutputDocumentFor') def test_apply_theme(self, mock_OFD, test_plot) -> None: # the subsequent call inside ODF will fail since the model was never # added to a document. Ignoring that since we just want to make sure # ODF is called with the expected theme arg. try: bes.json_item(test_plot, theme="foo") except ValueError: pass mock_OFD.assert_called_once_with([test_plot], apply_theme="foo") #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- class Test__title_from_models(object): pass #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
the-stack_0_7147
from voximplant.apiclient import VoximplantAPI, VoximplantException if __name__ == "__main__": voxapi = VoximplantAPI("credentials.json") # Delete the application 1 and 3. APPLICATION_ID = [1, 3] try: res = voxapi.del_application(application_id=APPLICATION_ID) print(res) except VoximplantException as e: print("Error: {}".format(e.message))
the-stack_0_7149
# -*- coding: utf-8 -*- #------------------------------------------------------------------------------- # Name: possibility.py # Purpose: music21 class to define rule checking methods for a possibility # represented as a tuple. # Authors: Jose Cabal-Ugaz # # Copyright: Copyright © 2011 Michael Scott Cuthbert and the music21 Project # License: LGPL or BSD, see license.txt #------------------------------------------------------------------------------- ''' A possibility is a tuple with pitches, and is intended to encapsulate a possible solution to a :class:`~music21.figuredBass.segment.Segment`. Unlike a :class:`~music21.chord.Chord`, the ordering of a possibility does matter. The assumption throughout fbRealizer is that a possibility is always in order from highest part to lowest part, and the last element of each possibility is the bass. .. note:: fbRealizer supports voice crossing, so the order of pitches from lowest to highest may not correspond to the ordering of parts. Here, a possibility is created. G5 is in the highest part, and C4 is the bass. The highest part contains the highest Pitch, and the lowest part contains the lowest Pitch. No voice crossing is present. >>> from music21 import pitch >>> G5 = pitch.Pitch('G5') >>> C5 = pitch.Pitch('C5') >>> E4 = pitch.Pitch('E4') >>> C4 = pitch.Pitch('C4') >>> p1 = (G5, C5, E4, C4) Here, another possibility is created with the same pitches, but this time, with voice crossing present. C5 is in the highest part, but the highest Pitch G5 is in the second highest part. >>> p2 = (C5, G5, E4, C4) The methods in this module are applied to possibilities, and fall into three main categories: 1) Single Possibility Methods. These methods are applied in finding correct possibilities in :meth:`~music21.figuredBass.segment.Segment.allCorrectSinglePossibilities`. 2) Consecutive Possibility Methods. These methods are applied to (possibA, possibB) pairs in :meth:`~music21.figuredBass.segment.Segment.allCorrectConsecutivePossibilities`, possibA being any correct possibility in segmentA and possibB being any correct possibility in segmentB. 3) Special Resolution Methods. These methods are applied in :meth:`~music21.figuredBass.segment.Segment.allCorrectConsecutivePossibilities` as applicable if the pitch names of a Segment correctly spell out an augmented sixth, dominant seventh, or diminished seventh chord. They are located in :mod:`~music21.figuredBass.resolution`. The application of these methods is controlled by corresponding instance variables in a :class:`~music21.figuredBass.rules.Rules` object provided to a Segment. .. note:: The number of parts and maxPitch are universal for a :class:`~music21.figuredBass.realizer.FiguredBassLine`. ''' import unittest from music21 import chord from music21 import exceptions21 from music21 import interval from music21 import pitch from music21 import voiceLeading from music21.ext import six izip = six.moves.zip # @UndefinedVariable # SINGLE POSSIBILITY RULE-CHECKING METHODS # ---------------------------------------- def voiceCrossing(possibA): ''' Returns True if there is voice crossing present between any two parts in possibA. The parts from lowest part to highest part (right to left) must correspond to increasingly higher pitches in order for there to be no voice crossing. Comparisons between pitches are done using pitch comparison methods, which are based on pitch space values (see :class:`~music21.pitch.Pitch`). >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C4 = pitch.Pitch('C4') >>> E4 = pitch.Pitch('E4') >>> C5 = pitch.Pitch('C5') >>> G5 = pitch.Pitch('G5') >>> possibA1 = (C5, G5, E4) >>> possibility.voiceCrossing(possibA1) # G5 > C5 True >>> possibA2 = (C5, E4, C4) >>> possibility.voiceCrossing(possibA2) False ''' hasVoiceCrossing = False for part1Index in range(len(possibA)): higherPitch = possibA[part1Index] for part2Index in range(part1Index + 1, len(possibA)): lowerPitch = possibA[part2Index] if higherPitch < lowerPitch: hasVoiceCrossing = True return hasVoiceCrossing return hasVoiceCrossing def isIncomplete(possibA, pitchNamesToContain): ''' Returns True if possibA is incomplete, if it doesn't contain at least one of every pitch name in pitchNamesToContain. For a Segment, pitchNamesToContain is :attr:`~music21.figuredBass.segment.Segment.pitchNamesInChord`. If possibA contains excessive pitch names, a PossibilityException is raised, although this is not a concern with the current implementation of fbRealizer. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C3 = pitch.Pitch('C3') >>> E4 = pitch.Pitch('E4') >>> G4 = pitch.Pitch('G4') >>> C5 = pitch.Pitch('C5') >>> Bb5 = pitch.Pitch('B-5') >>> possibA1 = (C5, G4, E4, C3) >>> pitchNamesA1 = ['C', 'E', 'G', 'B-'] >>> possibility.isIncomplete(possibA1, pitchNamesA1) # Missing B- True >>> pitchNamesA2 = ['C', 'E', 'G'] >>> possibility.isIncomplete(possibA1, pitchNamesA2) False ''' isIncomplete = False pitchNamesContained = [] for givenPitch in possibA: if givenPitch.name not in pitchNamesContained: pitchNamesContained.append(givenPitch.name) for pitchName in pitchNamesToContain: if pitchName not in pitchNamesContained: isIncomplete = True if not isIncomplete and (len(pitchNamesContained) > len(pitchNamesToContain)): isIncomplete = False #raise PossibilityException(str(possibA) + " contains pitch names not found in pitchNamesToContain.") return isIncomplete def upperPartsWithinLimit(possibA, maxSemitoneSeparation = 12): ''' Returns True if the pitches in the upper parts of possibA are found within maxSemitoneSeparation of each other. The upper parts of possibA are all the pitches except the last. The default value of maxSemitoneSeparation is 12 semitones, enharmonically equivalent to a perfect octave. If this method returns True for this default value, then all the notes in the upper parts can be played by most adult pianists using just the right hand. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C3 = pitch.Pitch('C3') >>> E3 = pitch.Pitch('E3') >>> E4 = pitch.Pitch('E4') >>> G4 = pitch.Pitch('G4') >>> C5 = pitch.Pitch('C5') >>> possibA1 = (C5, G4, E4, C3) >>> possibility.upperPartsWithinLimit(possibA1) True Here, C5 and E3 are separated by almost two octaves. >>> possibA2 = (C5, G4, E3, C3) >>> possibility.upperPartsWithinLimit(possibA2) False ''' upperPartsWithinLimit = True if maxSemitoneSeparation == None: return upperPartsWithinLimit upperParts = possibA[0:len(possibA)-1] for part1Index in range(len(upperParts)): higherPitch = upperParts[part1Index] for part2Index in range(part1Index + 1, len(upperParts)): lowerPitch = upperParts[part2Index] if abs(higherPitch.ps - lowerPitch.ps) > maxSemitoneSeparation: upperPartsWithinLimit = False return upperPartsWithinLimit return upperPartsWithinLimit def pitchesWithinLimit(possibA, maxPitch = pitch.Pitch('B5')): ''' Returns True if all pitches in possibA are less than or equal to the maxPitch provided. Comparisons between pitches are done using pitch comparison methods, which are based on pitch space values (see :class:`~music21.pitch.Pitch`). Used in :class:`~music21.figuredBass.segment.Segment` to filter resolutions of special Segments which can have pitches exceeeding the universal maxPitch of a :class:`~music21.figuredBass.realizer.FiguredBassLine`. >>> from music21.figuredBass import possibility >>> from music21.figuredBass import resolution >>> from music21 import pitch >>> G2 = pitch.Pitch('G2') >>> D4 = pitch.Pitch('D4') >>> F5 = pitch.Pitch('F5') >>> B5 = pitch.Pitch('B5') >>> domPossib = (B5, F5, D4, G2) >>> possibility.pitchesWithinLimit(domPossib) True >>> resPossib = resolution.dominantSeventhToMajorTonic(domPossib) >>> resPossib # Contains C6 > B5 (<music21.pitch.Pitch C6>, <music21.pitch.Pitch E5>, <music21.pitch.Pitch C4>, <music21.pitch.Pitch C3>) >>> possibility.pitchesWithinLimit(resPossib) False ''' for givenPitch in possibA: if givenPitch > maxPitch: return False return True def limitPartToPitch(possibA, partPitchLimits = {}): ''' Takes in partPitchLimits containing (partNumber, partPitch) pairs, each of which limits a part in possibA to a certain :class:`~music21.pitch.Pitch`. Returns True if all limits are followed in possibA, False otherwise. >>> from music21.figuredBass import possibility >>> from music21 import pitch >>> C4 = pitch.Pitch('C4') >>> E4 = pitch.Pitch('E4') >>> G4 = pitch.Pitch('G4') >>> C5 = pitch.Pitch('C5') >>> G5 = pitch.Pitch('G5') >>> sopranoPitch = pitch.Pitch('G5') >>> possibA1 = (C5, G4, E4, C4) >>> possibility.limitPartToPitch(possibA1, {1: sopranoPitch}) False >>> possibA2 = (G5, G4, E4, C4) >>> possibility.limitPartToPitch(possibA2, {1: sopranoPitch}) True ''' for (partNumber, partPitch) in partPitchLimits.items(): if not (possibA[partNumber - 1] == partPitch): return False return True # CONSECUTIVE POSSIBILITY RULE-CHECKING METHODS # --------------------------------------------- #Speedup tables parallelFifthsTable = {} parallelOctavesTable = {} hiddenFifthsTable = {} hiddenOctavesTable = {} def parallelFifths(possibA, possibB): ''' Returns True if there are parallel fifths between any two shared parts of possibA and possibB. If pitchA1 and pitchA2 in possibA are separated by a simple interval of a perfect fifth, and they move to a pitchB1 and pitchB2 in possibB also separated by the simple interval of a perfect fifth, then this constitutes parallel fifths between these two parts. If the method returns False, then no two shared parts have parallel fifths. The method returns True as soon as two shared parts with parallel fifths are found. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C3 = pitch.Pitch('C3') >>> D3 = pitch.Pitch('D3') >>> G3 = pitch.Pitch('G3') >>> A3 = pitch.Pitch('A3') >>> A4 = pitch.Pitch('A4') >>> B4 = pitch.Pitch('B4') Here, the bass moves from C3 to D3 and the tenor moves from G3 to A3. The interval between C3 and G3, as well as between D3 and A3, is a perfect fifth. These two parts, and therefore the two possibilities, have parallel fifths. >>> possibA1 = (B4, G3, C3) >>> possibB1 = (A4, A3, D3) >>> possibility.parallelFifths(possibA1, possibB1) True Now, the tenor moves instead to F3. The interval between D3 and F3 is a minor third. The bass and tenor parts don't form parallel fifths. The soprano part forms parallel fifths with neither the bass nor tenor parts. The two possibilities, therefore, have no parallel fifths. >>> F3 = pitch.Pitch('F3') >>> possibA2 = (B4, G3, C3) >>> possibB2 = (A4, F3, D3) >>> possibility.parallelFifths(possibA2, possibB2) False ''' hasParallelFifths = False pairsList = partPairs(possibA, possibB) for pair1Index in range(len(pairsList)): (higherPitchA, higherPitchB) = pairsList[pair1Index] for pair2Index in range(pair1Index + 1, len(pairsList)): (lowerPitchA, lowerPitchB) = pairsList[pair2Index] if not abs(higherPitchA.ps - lowerPitchA.ps) % 12 == 7: continue if not abs(higherPitchB.ps - lowerPitchB.ps) % 12 == 7: continue #Very high probability of ||5, but still not certain. pitchQuartet = (lowerPitchA, lowerPitchB, higherPitchA, higherPitchB) if pitchQuartet in parallelFifthsTable: hasParallelFifths = parallelFifthsTable[pitchQuartet] if hasParallelFifths: return hasParallelFifths vlq = voiceLeading.VoiceLeadingQuartet(*pitchQuartet) if vlq.parallelFifth(): hasParallelFifths = True parallelFifthsTable[pitchQuartet] = hasParallelFifths if hasParallelFifths: return hasParallelFifths return hasParallelFifths def parallelOctaves(possibA, possibB): ''' Returns True if there are parallel octaves between any two shared parts of possibA and possibB. If pitchA1 and pitchA2 in possibA are separated by a simple interval of a perfect octave, and they move to a pitchB1 and pitchB2 in possibB also separated by the simple interval of a perfect octave, then this constitutes parallel octaves between these two parts. If the method returns False, then no two shared parts have parallel octaves. The method returns True as soon as two shared parts with parallel octaves are found. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C3 = pitch.Pitch('C3') >>> D3 = pitch.Pitch('D3') >>> G3 = pitch.Pitch('G3') >>> A3 = pitch.Pitch('A3') >>> C4 = pitch.Pitch('C4') >>> D4 = pitch.Pitch('D4') Here, the soprano moves from C4 to D4 and the bass moves from C3 to D3. The interval between C3 and C4, as well as between D3 and D4, is a parallel octave. The two parts, and therefore the two possibilities, have parallel octaves. >>> possibA1 = (C4, G3, C3) >>> possibB1 = (D4, A3, D3) >>> possibility.parallelOctaves(possibA1, possibB1) True Now, the soprano moves down to B3. The interval between D3 and B3 is a major sixth. The soprano and bass parts no longer have parallel octaves. The tenor part forms a parallel octave with neither the bass nor soprano, so the two possibilities do not have parallel octaves. (Notice, however, the parallel fifth between the bass and tenor!) >>> B3 = pitch.Pitch('B3') >>> possibA2 = (C4, G3, C3) >>> possibB2 = (B3, A3, D3) >>> possibility.parallelOctaves(possibA2, possibB2) False ''' hasParallelOctaves = False pairsList = partPairs(possibA, possibB) for pair1Index in range(len(pairsList)): (higherPitchA, higherPitchB) = pairsList[pair1Index] for pair2Index in range(pair1Index + 1, len(pairsList)): (lowerPitchA, lowerPitchB) = pairsList[pair2Index] if not abs(higherPitchA.ps - lowerPitchA.ps) % 12 == 0: continue if not abs(higherPitchB.ps - lowerPitchB.ps) % 12 == 0: continue #Very high probability of ||8, but still not certain. pitchQuartet = (lowerPitchA, lowerPitchB, higherPitchA, higherPitchB) if pitchQuartet in parallelOctavesTable: hasParallelOctaves = parallelOctavesTable[pitchQuartet] if hasParallelOctaves: return hasParallelOctaves vlq = voiceLeading.VoiceLeadingQuartet(*pitchQuartet) if vlq.parallelOctave(): hasParallelOctaves = True parallelOctavesTable[pitchQuartet] = hasParallelOctaves if hasParallelOctaves: return hasParallelOctaves return hasParallelOctaves def hiddenFifth(possibA, possibB): ''' Returns True if there is a hidden fifth between shared outer parts of possibA and possibB. The outer parts here are the first and last elements of each possibility. If sopranoPitchA and bassPitchA in possibA move to a sopranoPitchB and bassPitchB in possibB in similar motion, and the simple interval between sopranoPitchB and bassPitchB is that of a perfect fifth, then this constitutes a hidden octave between the two possibilities. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C3 = pitch.Pitch('C3') >>> D3 = pitch.Pitch('D3') >>> E3 = pitch.Pitch('E3') >>> F3 = pitch.Pitch('F3') >>> E5 = pitch.Pitch('E5') >>> A5 = pitch.Pitch('A5') Here, the bass part moves up from C3 to D3 and the soprano part moves up from E5 to A5. The simple interval between D3 and A5 is a perfect fifth. Therefore, there is a hidden fifth between the two possibilities. >>> possibA1 = (E5, E3, C3) >>> possibB1 = (A5, F3, D3) >>> possibility.hiddenFifth(possibA1, possibB1) True Here, the soprano and bass parts also move in similar motion, but the simple interval between D3 and Ab5 is a diminished fifth. Consequently, there is no hidden fifth. >>> Ab5 = pitch.Pitch('A-5') >>> possibA2 = (E5, E3, C3) >>> possibB2 = (Ab5, F3, D3) >>> possibility.hiddenFifth(possibA2, possibB2) False Now, we have the soprano and bass parts again moving to A5 and D3, whose simple interval is a perfect fifth. However, the bass moves up while the soprano moves down. Therefore, there is no hidden fifth. >>> E6 = pitch.Pitch('E6') >>> possibA3 = (E6, E3, C3) >>> possibB3 = (A5, F3, D3) >>> possibility.hiddenFifth(possibA3, possibB3) False ''' hasHiddenFifth = False pairsList = partPairs(possibA, possibB) (highestPitchA, highestPitchB) = pairsList[0] (lowestPitchA, lowestPitchB) = pairsList[-1] if abs(highestPitchB.ps - lowestPitchB.ps) % 12 == 7: #Very high probability of hidden fifth, but still not certain. pitchQuartet = (lowestPitchA, lowestPitchB, highestPitchA, highestPitchB) if pitchQuartet in hiddenFifthsTable: hasHiddenFifth = hiddenFifthsTable[pitchQuartet] return hasHiddenFifth vlq = voiceLeading.VoiceLeadingQuartet(*pitchQuartet) if vlq.hiddenFifth(): hasHiddenFifth = True hiddenFifthsTable[pitchQuartet] = hasHiddenFifth return hasHiddenFifth def hiddenOctave(possibA, possibB): ''' Returns True if there is a hidden octave between shared outer parts of possibA and possibB. The outer parts here are the first and last elements of each possibility. If sopranoPitchA and bassPitchA in possibA move to a sopranoPitchB and bassPitchB in possibB in similar motion, and the simple interval between sopranoPitchB and bassPitchB is that of a perfect octave, then this constitutes a hidden octave between the two possibilities. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C3 = pitch.Pitch('C3') >>> D3 = pitch.Pitch('D3') >>> E3 = pitch.Pitch('E3') >>> F3 = pitch.Pitch('F3') >>> A5 = pitch.Pitch('A5') >>> D6 = pitch.Pitch('D6') Here, the bass part moves up from C3 to D3 and the soprano part moves up from A5 to D6. The simple interval between D3 and D6 is a perfect octave. Therefore, there is a hidden octave between the two possibilities. >>> possibA1 = (A5, E3, C3) >>> possibB1 = (D6, F3, D3) #Perfect octave between soprano and bass. >>> possibility.hiddenOctave(possibA1, possibB1) True Here, the bass part moves up from C3 to D3 but the soprano part moves down from A6 to D6. There is no hidden octave since the parts move in contrary motion. >>> A6 = pitch.Pitch('A6') >>> possibA2 = (A6, E3, C3) >>> possibB2 = (D6, F3, D3) >>> possibility.hiddenOctave(possibA2, possibB2) False ''' hasHiddenOctave = False pairsList = partPairs(possibA, possibB) (highestPitchA, highestPitchB) = pairsList[0] (lowestPitchA, lowestPitchB) = pairsList[-1] if abs(highestPitchB.ps - lowestPitchB.ps) % 12 == 0: #Very high probability of hidden octave, but still not certain. pitchQuartet = (lowestPitchA, lowestPitchB, highestPitchA, highestPitchB) if pitchQuartet in hiddenOctavesTable: hasHiddenOctave = hiddenOctavesTable[pitchQuartet] return hasHiddenOctave vlq = voiceLeading.VoiceLeadingQuartet(*pitchQuartet) if vlq.hiddenOctave(): hasHiddenOctave = True hiddenOctavesTable[pitchQuartet] = hasHiddenOctave return hasHiddenOctave def voiceOverlap(possibA, possibB): ''' Returns True if there is voice overlap between any two shared parts of possibA and possibB. Voice overlap can occur in two ways: 1) If a pitch in a lower part in possibB is higher than a pitch in a higher part in possibA. This case is demonstrated below. 2) If a pitch in a higher part in possibB is lower than a pitch in a lower part in possibA. .. image:: images/figuredBass/fbPossib_voiceOverlap.* :width: 75 In the above example, possibA has G4 in the bass and B4 in the soprano. If the bass moves up to C5 in possibB, that would constitute voice overlap because the bass in possibB would be higher than the soprano in possibA. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C4 = pitch.Pitch('C4') >>> D4 = pitch.Pitch('D4') >>> E4 = pitch.Pitch('E4') >>> F4 = pitch.Pitch('F4') >>> G4 = pitch.Pitch('G4') >>> C5 = pitch.Pitch('C5') Here, case #2 is demonstrated. There is overlap between the soprano and alto parts, because F4 in the soprano in possibB1 is lower than the G4 in the alto in possibA1. Note that neither possibility has to have voice crossing for voice overlap to occur, as shown. >>> possibA1 = (C5, G4, E4, C4) >>> possibB1 = (F4, F4, D4, D4) >>> possibility.voiceOverlap(possibA1, possibB1) True >>> possibility.voiceCrossing(possibA1) False >>> possibility.voiceCrossing(possibB1) False Here is the same example as above, except the soprano of the second possibility is now B4, which does not overlap the G4 of the first. Now, there is no voice overlap. >>> B4 = pitch.Pitch('B4') >>> possibA2 = (C5, G4, E4, C4) >>> possibB2 = (B4, F4, D4, D4) >>> possibility.voiceOverlap(possibA2, possibB2) False ''' hasVoiceOverlap = False pairsList = partPairs(possibA, possibB) for pair1Index in range(len(pairsList)): (higherPitchA, higherPitchB) = pairsList[pair1Index] for pair2Index in range(pair1Index + 1, len(pairsList)): (lowerPitchA, lowerPitchB) = pairsList[pair2Index] if lowerPitchB > higherPitchA or higherPitchB < lowerPitchA: hasVoiceOverlap = True return hasVoiceOverlap return hasVoiceOverlap def partMovementsWithinLimits(possibA, possibB, partMovementLimits = []): ''' Returns True if all movements between shared parts of possibA and possibB are within limits, as specified by partMovementLimits, which consists of (partNumber, maxSeparation) tuples. * partNumber: Specified from 1 to n, where 1 is the soprano or highest part and n is the bass or lowest part. * maxSeparation: For a given part, the maximum separation to allow between a pitch in possibA and a corresponding pitch in possibB, in semitones. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C4 = pitch.Pitch('C4') >>> D4 = pitch.Pitch('D4') >>> E4 = pitch.Pitch('E4') >>> F4 = pitch.Pitch('F4') >>> G4 = pitch.Pitch('G4') >>> A4 = pitch.Pitch('A4') >>> B4 = pitch.Pitch('B4') >>> C5 = pitch.Pitch('C5') Here, we limit the soprano part to motion of two semitones, enharmonically equivalent to a major second. Moving from C5 to B4 is allowed because it constitutes stepwise motion, but moving to A4 is not allowed because the distance between A4 and C5 is three semitones. >>> partMovementLimits = [(1, 2)] >>> possibA1 = (C5, G4, E4, C4) >>> possibB1 = (B4, F4, D4, D4) >>> possibility.partMovementsWithinLimits(possibA1, possibB1, partMovementLimits) True >>> possibB2 = (A4, F4, D4, D4) >>> possibility.partMovementsWithinLimits(possibA1, possibB2, partMovementLimits) False ''' withinLimits = True for (partNumber, maxSeparation) in partMovementLimits: pitchA = possibA[partNumber - 1] pitchB = possibB[partNumber - 1] if abs(pitchB.ps - pitchA.ps) > maxSeparation: withinLimits = False return withinLimits return withinLimits def upperPartsSame(possibA, possibB): ''' Returns True if the upper parts are the same. False otherwise. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C4 = pitch.Pitch('C4') >>> D4 = pitch.Pitch('D4') >>> E4 = pitch.Pitch('E4') >>> F4 = pitch.Pitch('F4') >>> G4 = pitch.Pitch('G4') >>> B4 = pitch.Pitch('B4') >>> C5 = pitch.Pitch('C5') >>> possibA1 = (C5, G4, E4, C4) >>> possibB1 = (B4, F4, D4, D4) >>> possibB2 = (C5, G4, E4, D4) >>> possibility.upperPartsSame(possibA1, possibB1) False >>> possibility.upperPartsSame(possibA1, possibB2) True ''' pairsList = partPairs(possibA, possibB) for (pitchA, pitchB) in pairsList[0:-1]: if not (pitchA == pitchB): return False return True def partsSame(possibA, possibB, partsToCheck = None): ''' Takes in partsToCheck, a list of part numbers. Checks if pitches at those part numbers of possibA and possibB are equal, determined by pitch space. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C4 = pitch.Pitch('C4') >>> E4 = pitch.Pitch('E4') >>> G4 = pitch.Pitch('G4') >>> B4 = pitch.Pitch('B4') >>> C5 = pitch.Pitch('C5') >>> possibA1 = (C5, G4, E4, C4) >>> possibB1 = (B4, G4, E4, C4) >>> possibility.partsSame(possibA1, possibB1, [2,3,4]) True ''' if partsToCheck == None: return True pairsList = partPairs(possibA, possibB) for partIndex in partsToCheck: (pitchA, pitchB) = pairsList[partIndex - 1] if not (pitchA == pitchB): return False return True def couldBeItalianA6Resolution(possibA, possibB, threePartChordInfo = None, restrictDoublings = True): ''' Speed-enhanced but designed to stand alone. Returns True if possibA is an Italian A6 chord and possibB could possibly be an acceptable resolution. If restrictDoublings is set to True, only the tonic can be doubled. Setting restrictDoublings to False opens up the chance that the root or the third can be doubled. Controlled in the :class:`~music21.figuredBass.rules.Rules` object by :attr:`~music21.figuredBass.rules.Rules.restrictDoublingsInItalianA6Resolution`. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> A2 = pitch.Pitch('A2') >>> Bb2 = pitch.Pitch('B-2') >>> Cs4 = pitch.Pitch('C#4') >>> D4 = pitch.Pitch('D4') >>> E4 = pitch.Pitch('E4') >>> Fs4 = pitch.Pitch('F#4') >>> Gs4 = pitch.Pitch('G#4') >>> A4 = pitch.Pitch('A4') >>> possibA1 = (Gs4, D4, D4, Bb2) >>> possibB1 = (A4, Cs4, E4, A2) >>> possibB2 = (A4, E4, Cs4, A2) >>> possibB3 = (A4, D4, Fs4, A2) >>> possibility.couldBeItalianA6Resolution(possibA1, possibB1) True >>> possibility.couldBeItalianA6Resolution(possibA1, possibB1) True >>> possibility.couldBeItalianA6Resolution(possibA1, possibB3) True A PossibilityException is raised if possibA is not an Italian A6 chord, but this only applies only if threePartChordInfo = None, because otherwise the chord information is coming from :class:`~music21.figuredBass.segment.Segment` and the fact that possibA is an It+6 chord is assumed. >>> possibA2 = (Gs4, E4, D4, Bb2) >>> possibB2 = (A4, E4, Cs4, A2) >>> possibility.couldBeItalianA6Resolution(possibA2, possibB2) Traceback (most recent call last): PossibilityException: possibA does not spell out an It+6 chord. The method is called "couldBeItalianA6Resolution" as opposed to "isItalianA6Resolution" because it is designed to work in tandem with :meth:`~music21.figuredBass.possibility.parallelOctaves` and :meth:`~music21.figuredBass.possibility.isIncomplete` in a Segment. Consider the following examples with possibA1 above as the augmented sixth chord to resolve. >>> possibA1 = (Gs4, D4, D4, Bb2) >>> possibB4 = (A4, D4, D4, A2) # No 3rd >>> possibB5 = (A4, Cs4, Cs4, A2) # No 5th >>> possibility.couldBeItalianA6Resolution(possibA1, possibB4) True >>> possibility.couldBeItalianA6Resolution(possibA1, possibB5) # parallel octaves True >>> possibA3 = (Gs4, Gs4, D4, Bb2) >>> possibB6 = (A4, A4, Cs4, A2) >>> possibility.couldBeItalianA6Resolution(possibA3, possibB6, restrictDoublings = True) False >>> possibility.couldBeItalianA6Resolution(possibA3, possibB6, restrictDoublings = False) True ''' if threePartChordInfo == None: augSixthChord = chord.Chord(possibA) if not augSixthChord.isItalianAugmentedSixth(): raise PossibilityException("possibA does not spell out an It+6 chord.") bass = augSixthChord.bass() root = augSixthChord.root() third = augSixthChord.getChordStep(3) fifth = augSixthChord.getChordStep(5) threePartChordInfo = [bass, root, third, fifth] allowedIntervalNames = ['M3','m3','M2','m-2'] rootResolved = False [bass, root, third, fifth] = threePartChordInfo for pitchIndex in range(len(possibA)): pitchA = possibA[pitchIndex] pitchB = possibB[pitchIndex] if pitchA.name == fifth.name: if pitchA == pitchB: continue if abs(pitchA.ps - pitchB.ps) > 4.0: return False tt = interval.Interval(pitchA, pitchB) if not tt.directedSimpleName in allowedIntervalNames: return False elif pitchA.name == bass.name and pitchA == bass: if not (pitchA.ps - pitchB.ps) == 1.0: return False i = interval.Interval(pitchA, pitchB) if not i.directedName == 'm-2': return False elif pitchA.name == root.name: if rootResolved == True and restrictDoublings: # there can't be more than one root return False if not (pitchB.ps - pitchA.ps) == 1.0: return False i = interval.Interval(pitchA, pitchB) if not i.directedName == 'm2': return False rootResolved = True elif pitchA.name == third.name: if restrictDoublings: # there can't be more than one third, which is in the bass. return False if not (pitchA.ps - pitchB.ps) == 1.0: return False i = interval.Interval(pitchA, pitchB) if not i.directedName == 'm-2': return False ''' # Part 1: Check if possibA is A6 chord, and if it is properly formed. bass = possibA[-1] root = None rootIndex = 0 for pitchA in possibA[0:-1]: if not (pitchA.ps - bass.ps) % 12 == 10: rootIndex += 1 continue br = interval.Interval(bass, pitchA) isAugmentedSixth = (br.directedSimpleName == 'A6') if isAugmentedSixth: root = pitchA break tonic = bass.transpose('M3') #Restrict doublings, It+6 for pitchIndex in range(len(possibA) - 1): if pitchIndex == rootIndex: continue pitchA = possibA[pitchIndex] if not pitchA.name == tonic.name: return False #Part 2: If possibA is Italian A6 chord, check that it resolves properly in possibB. fifth = root.transpose('m2') pairsList = partPairs(possibA, possibB) (bassA, bassB) = pairsList[-1] (rootA, rootB) = pairsList[rootIndex] if not (bassB.name == fifth.name and rootB.name == fifth.name): return False if not (bassB.ps - bassA.ps == -1.0 and rootB.ps - rootA.ps == 1.0): return False allowedIntervalNames = ['M3','m3','M2','m-2'] for pitchIndex in range(len(pairsList) - 1): if pitchIndex == rootIndex: continue (tonicA, tonicB) = pairsList[pitchIndex] if tonicA == tonicB: continue tt = interval.Interval(tonicA, tonicB) if not tt.directedSimpleName in allowedIntervalNames: return False ''' return True # HELPER METHODS # -------------- def partPairs(possibA, possibB): ''' Groups together pitches of possibA and possibB which correspond to the same part, constituting a shared part. >>> from music21 import pitch >>> from music21.figuredBass import possibility >>> C4 = pitch.Pitch('C4') >>> D4 = pitch.Pitch('D4') >>> E4 = pitch.Pitch('E4') >>> F4 = pitch.Pitch('F4') >>> G4 = pitch.Pitch('G4') >>> B4 = pitch.Pitch('B4') >>> C5 = pitch.Pitch('C5') >>> possibA1 = (C5, G4, E4, C4) >>> possibB1 = (B4, F4, D4, D4) >>> possibility.partPairs(possibA1, possibA1) [(<music21.pitch.Pitch C5>, <music21.pitch.Pitch C5>), (<music21.pitch.Pitch G4>, <music21.pitch.Pitch G4>), (<music21.pitch.Pitch E4>, <music21.pitch.Pitch E4>), (<music21.pitch.Pitch C4>, <music21.pitch.Pitch C4>)] >>> possibility.partPairs(possibA1, possibB1) [(<music21.pitch.Pitch C5>, <music21.pitch.Pitch B4>), (<music21.pitch.Pitch G4>, <music21.pitch.Pitch F4>), (<music21.pitch.Pitch E4>, <music21.pitch.Pitch D4>), (<music21.pitch.Pitch C4>, <music21.pitch.Pitch D4>)] ''' return list(izip(possibA, possibB)) # apply a function to one pitch of possibA at a time # apply a function to two pitches of possibA at a time # apply a function to one partPair of possibA, possibB at a time # apply a function to two partPairs of possibA, possibB at a time # use an iterator that fails when the first false is returned singlePossibilityMethods = [voiceCrossing, isIncomplete, upperPartsWithinLimit, pitchesWithinLimit] #singlePossibilityMethods.sort(None, lambda x: x.__name__) consequentPossibilityMethods = [parallelFifths, parallelOctaves, hiddenFifth, hiddenOctave, voiceOverlap, partMovementsWithinLimits, upperPartsSame, couldBeItalianA6Resolution] #consequentPossibilityMethods.sort(None, lambda x: x.__name__) _DOC_ORDER = singlePossibilityMethods + [partPairs] + consequentPossibilityMethods class PossibilityException(exceptions21.Music21Exception): pass #------------------------------------------------------------------------------- class Test(unittest.TestCase): def runTest(self): pass if __name__ == "__main__": import music21 music21.mainTest(Test) #------------------------------------------------------------------------------ # eof
the-stack_0_7150
#!/usr/bin/env python import pygame # pylint: disable=import-error # Define some colors BLACK = ( 0, 0, 0) WHITE = ( 255, 255, 255) # This is a simple class that will help us print to the screen # It has nothing to do with the joysticks, just outputting the # information. class TextPrint: def __init__(self): self.reset() self.font = pygame.font.Font(None, 20) def printf(self, screen, textString): textBitmap = self.font.render(textString, True, BLACK) screen.blit(textBitmap, [self.x, self.y]) self.y += self.line_height def reset(self): self.x = 10 self.y = 10 self.line_height = 15 def indent(self): self.x += 10 def unindent(self): self.x -= 10 pygame.init() # Set the width and height of the screen [width,height] size = [500, 700] screen = pygame.display.set_mode(size) pygame.display.set_caption("My Game") #Loop until the user clicks the close button. done = False # Used to manage how fast the screen updates clock = pygame.time.Clock() # Initialize the joysticks pygame.joystick.init() # Get ready to print textPrint = TextPrint() # -------- Main Program Loop ----------- while done==False: # EVENT PROCESSING STEP for event in pygame.event.get(): # User did something if event.type == pygame.QUIT: # If user clicked close done=True # Flag that we are done so we exit this loop # Possible joystick actions: JOYAXISMOTION JOYBALLMOTION JOYBUTTONDOWN JOYBUTTONUP JOYHATMOTION if event.type == pygame.JOYBUTTONDOWN: print("Joystick button pressed.") if event.type == pygame.JOYBUTTONUP: print("Joystick button released.") # DRAWING STEP # First, clear the screen to white. Don't put other drawing commands # above this, or they will be erased with this command. screen.fill(WHITE) textPrint.reset() # Get count of joysticks joystick_count = pygame.joystick.get_count() textPrint.printf(screen, "Number of joysticks: {}".format(joystick_count) ) textPrint.indent() # For each joystick: joystick = pygame.joystick.Joystick(0) joystick.init() textPrint.printf(screen, "Joystick {}".format(0) ) textPrint.indent() # Get the name from the OS for the controller/joystick name = joystick.get_name() textPrint.printf(screen, "Joystick name: {}".format(name) ) # Usually axis run in pairs, up/down for one, and left/right for # the other. axes = joystick.get_numaxes() textPrint.printf(screen, "Number of axes: {}".format(axes) ) textPrint.indent() for i in range( axes ): axis = joystick.get_axis( i ) textPrint.printf(screen, "Axis {} value: {:>6.3f}".format(i, axis) ) textPrint.unindent() buttons = joystick.get_numbuttons() textPrint.printf(screen, "Number of buttons: {}".format(buttons) ) textPrint.indent() for i in range( buttons ): button = joystick.get_button( i ) textPrint.printf(screen, "Button {:>2} value: {}".format(i,button) ) textPrint.unindent() textPrint.unindent() # ALL CODE TO DRAW SHOULD GO ABOVE THIS COMMENT # Go ahead and update the screen with what we've drawn. pygame.display.flip() # Limit to 20 frames per second clock.tick(20) # Close the window and quit. # If you forget this line, the program will 'hang' # on exit if running from IDLE. pygame.quit ()
the-stack_0_7153
import math from config.config import config class Plot: @staticmethod def line(prices, size=(100, 100), position=(0, 0), draw=None, fill=None): assert draw max_price = max(prices) min_price = min(prices) normalised_prices = [(price - min_price) / (max_price - min_price) for price in prices] plot_data = [] for i, element in enumerate(normalised_prices): x = i * (size[0] / len(normalised_prices)) + position[0] y = size[1] - (element * size[1]) + position[1] plot_data.append((x, y)) draw.line(plot_data, fill=fill) @staticmethod def y_axis_labels(prices, font, position_first=(0, 0), position_last=(0, 0), draw=None, fill=None, labels_number=3): def center_x(price): area_width = position_last[0] - position_first[0] text_width, _ = draw.textsize(price, font) if area_width >= text_width: return position_first[0] + (area_width - text_width) / 2 else: return position_first[0] max_price = max(prices) min_price = min(prices) price_step = (max_price - min_price) / (labels_number - 1) y_step = (position_last[1] - position_first[1]) / (labels_number - 1) for i in range(0, labels_number): human_price = Plot.human_format(min_price + i * price_step, 5) draw.text((center_x(human_price), position_last[1] - i * y_step), human_price, font=font, fill=fill) @staticmethod def percentage(prices, x_middle, y, font, draw, fill=None): open = prices[0][0] close = prices[len(prices) - 1][3] percentage = ((1 - (close / open)) * -1) * 100 price_text = Plot.human_format(percentage, 4, 0) price_text = price_text + "%" if percentage > 0: price_text = "+" + price_text text_width, _ = draw.textsize(price_text, font) price_position = ((x_middle - (text_width / 2)), y) draw.text(price_position, price_text, font=font, fill=fill) return text_width @staticmethod #offset name #offset price def caption(price, y, screen_width, font, draw, name, fill=None, currency_offset=4, price_offset=4): #draw.text((currency_offset, y), config.currency[:3], font=font, fill=fill) draw.text((currency_offset, y), name, font=font, fill=fill) price_text = Plot.human_format(price, 2, 2) text_width, _ = draw.textsize(price_text, font) #price_position = (((screen_width - text_width - price_offset) / 2) + price_offset, y) price_position = ((screen_width - text_width - price_offset), y) draw.text(price_position, price_text, font=font, fill=fill) @staticmethod def candle(data, size=(100, 100), position=(0, 0), draw=None, fill_neg="#000000", fill_pos=None): width = size[0] height = size[1] candle_width = 9 space = 1 num_of_candles = width // (candle_width + space) leftover_space = width % (candle_width + space) windows_per_candle = len(data) // num_of_candles data_offset = len(data) % num_of_candles candle_data = [] for i in range(data_offset, len(data), windows_per_candle): window = data[i:i + windows_per_candle] open = window[0][0] close = window[len(window) - 1][3] high = max([i[1] for i in window]) low = min([i[2] for i in window]) candle_data.append((open, high, low, close)) all_values = [item for sublist in candle_data for item in sublist] max_price = max(all_values) min_price = min(all_values) normalised_data = [] for line in candle_data: normalised_line = [] normalised_data.append(normalised_line) for i in range(len(line)): price = line[i] normalised_line.append((price - min_price) / (max_price - min_price)) def y_flip(y): return height - (y * height) + position[1] for i, element in enumerate(normalised_data): open = element[0] close = element[3] high = element[1] low = element[2] x = candle_width * i + space * i + leftover_space / 2 + position[0] # high price wick_x = x + (candle_width // 2) draw.line([wick_x, y_flip(high), wick_x, y_flip(max(open, close))], fill=fill_pos) # low price draw.line([wick_x, y_flip(low), wick_x, y_flip(min(open, close))], fill=fill_pos) open_y = math.floor(y_flip(open)) close_y = math.floor(y_flip(close)) if open_y == close_y: draw.line([x, open_y, x + candle_width - 1, close_y], fill=fill_pos) else: if open < close: draw.rectangle([x, open_y, x + candle_width - 1, close_y], fill=fill_pos) else: draw.rectangle([x, open_y, x + candle_width - 1, close_y], fill=fill_neg) # TODO: Adapt for big numbers 1k, 1m, etc @staticmethod def human_format(number, length, fractional_minimal=0): magnitude = 0 num = number while abs(num) >= 10: magnitude += 1 num /= 10.0 format_string = f'%.{fractional_minimal}f' if length >= magnitude + fractional_minimal + 2: fractional_length = length - magnitude - 2 format_string = f'%.{fractional_length}f' return format_string % number
the-stack_0_7154
""" Explores the kbase draft to see if any metabolic genes are present which are not present in iSG3 """ import os from settings import INTERMEDIATE_MODEL_ROOT import pandas as pd import re import cobra as cb df = pd.read_excel(os.path.join(INTERMEDIATE_MODEL_ROOT,'kbase-draft', 'draft_dsm.xls'), sheet_name='ModelReactions') df = df.replace(pd.np.nan, '', regex=True) draft_genes = [] for ind, row in df.iterrows(): match = re.findall(r'(CLO1313_RS[0-9]+)', row['gpr']) draft_genes.extend(match) isg = cb.io.load_json_model(os.path.join(INTERMEDIATE_MODEL_ROOT, 'iSG_3.json')) isg_genes = [gene.id for gene in isg.genes] not_in_isg = set(draft_genes) - set(isg_genes) print('The draft model contains {} metabolic genes which are not in iSG'.format(len(not_in_isg))) pattern = '|'.join(list(not_in_isg)) df2 = df[df['gpr'].str.contains(pattern)] df2.to_csv(os.path.join(INTERMEDIATE_MODEL_ROOT, 'kbase-draft', 'not_in_isg3.csv'), index=False) print('These genes span {} metabolic reactions'.format(len(df2)))
the-stack_0_7155
"""xception in pytorch [1] François Chollet Xception: Deep Learning with Depthwise Separable Convolutions https://arxiv.org/abs/1610.02357 """ import torch import torch.nn as nn __all__ = ['xception'] class SeperableConv2d(nn.Module): #***Figure 4. An “extreme” version of our Inception module, #with one spatial convolution per output channel of the 1x1 #convolution.""" def __init__(self, input_channels, output_channels, kernel_size, **kwargs): super().__init__() self.depthwise = nn.Conv2d( input_channels, input_channels, kernel_size, groups=input_channels, bias=False, **kwargs ) self.pointwise = nn.Conv2d(input_channels, output_channels, 1, bias=False) def forward(self, x): x = self.depthwise(x) x = self.pointwise(x) return x class EntryFlow(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Sequential( nn.Conv2d(3, 32, 3, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(32, 64, 3, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True) ) self.conv3_residual = nn.Sequential( SeperableConv2d(64, 128, 3, padding=1), nn.BatchNorm2d(128), nn.ReLU(inplace=True), SeperableConv2d(128, 128, 3, padding=1), nn.BatchNorm2d(128), nn.MaxPool2d(3, stride=2, padding=1), ) self.conv3_shortcut = nn.Sequential( nn.Conv2d(64, 128, 1, stride=2), nn.BatchNorm2d(128), ) self.conv4_residual = nn.Sequential( nn.ReLU(inplace=True), SeperableConv2d(128, 256, 3, padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), SeperableConv2d(256, 256, 3, padding=1), nn.BatchNorm2d(256), nn.MaxPool2d(3, stride=2, padding=1) ) self.conv4_shortcut = nn.Sequential( nn.Conv2d(128, 256, 1, stride=2), nn.BatchNorm2d(256), ) #no downsampling self.conv5_residual = nn.Sequential( nn.ReLU(inplace=True), SeperableConv2d(256, 728, 3, padding=1), nn.BatchNorm2d(728), nn.ReLU(inplace=True), SeperableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728), nn.MaxPool2d(3, 1, padding=1) ) #no downsampling self.conv5_shortcut = nn.Sequential( nn.Conv2d(256, 728, 1), nn.BatchNorm2d(728) ) def forward(self, x): x = self.conv1(x) x = self.conv2(x) residual = self.conv3_residual(x) shortcut = self.conv3_shortcut(x) x = residual + shortcut residual = self.conv4_residual(x) shortcut = self.conv4_shortcut(x) x = residual + shortcut residual = self.conv5_residual(x) shortcut = self.conv5_shortcut(x) x = residual + shortcut return x class MiddleFLowBlock(nn.Module): def __init__(self): super().__init__() self.shortcut = nn.Sequential() self.conv1 = nn.Sequential( nn.ReLU(inplace=True), SeperableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728) ) self.conv2 = nn.Sequential( nn.ReLU(inplace=True), SeperableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728) ) self.conv3 = nn.Sequential( nn.ReLU(inplace=True), SeperableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728) ) def forward(self, x): residual = self.conv1(x) residual = self.conv2(residual) residual = self.conv3(residual) shortcut = self.shortcut(x) return shortcut + residual class MiddleFlow(nn.Module): def __init__(self, block): super().__init__() #"""then through the middle flow which is repeated eight times""" self.middel_block = self._make_flow(block, 8) def forward(self, x): x = self.middel_block(x) return x def _make_flow(self, block, times): flows = [] for i in range(times): flows.append(block()) return nn.Sequential(*flows) class ExitFLow(nn.Module): def __init__(self): super().__init__() self.residual = nn.Sequential( nn.ReLU(), SeperableConv2d(728, 728, 3, padding=1), nn.BatchNorm2d(728), nn.ReLU(), SeperableConv2d(728, 1024, 3, padding=1), nn.BatchNorm2d(1024), nn.MaxPool2d(3, stride=2, padding=1) ) self.shortcut = nn.Sequential( nn.Conv2d(728, 1024, 1, stride=2), nn.BatchNorm2d(1024) ) self.conv = nn.Sequential( SeperableConv2d(1024, 1536, 3, padding=1), nn.BatchNorm2d(1536), nn.ReLU(inplace=True), SeperableConv2d(1536, 2048, 3, padding=1), nn.BatchNorm2d(2048), nn.ReLU(inplace=True) ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) def forward(self, x): shortcut = self.shortcut(x) residual = self.residual(x) output = shortcut + residual output = self.conv(output) output = self.avgpool(output) return output class Xception(nn.Module): def __init__(self, block, num_classes=100): super().__init__() self.entry_flow = EntryFlow() self.middel_flow = MiddleFlow(block) self.exit_flow = ExitFLow() self.fc = nn.Linear(2048, num_classes) def forward(self, x): x = self.entry_flow(x) x = self.middel_flow(x) x = self.exit_flow(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def xception(num_classes=10): return Xception(MiddleFLowBlock, num_classes=num_classes)
the-stack_0_7156
import unittest import numpy as np import openmdao.api as om import numpy.testing as npt import wisdem.commonse.wind_wave_drag as wwd from openmdao.utils.assert_utils import assert_check_partials npts = 100 myones = np.ones((npts,)) class TestDrag(unittest.TestCase): def setUp(self): self.params = {} self.unknowns = {} self.resid = None # variables self.params["U"] = 2.0 * myones self.params["A"] = 4.0 * myones self.params["p"] = 3.0 * myones self.params["cm"] = 1.0 self.params["d"] = 10.0 * myones self.params["rho_water"] = 0.5 self.params["mu_water"] = 1e-3 self.params["z"] = -100.0 * myones self.params["beta_wave"] = 0.0 self.params["cd_usr"] = -1.0 self.wave = wwd.CylinderWaveDrag(nPoints=npts) def testRegular(self): U = 2.0 A = 4.0 # cm = 1.0 r = 5.0 rho = 0.5 # mu = 1e-3 # Re = rho*U*2*r/mu q = 0.5 * rho * U * U cd = 1.11 area = 2 * r D = q * area * cd Fi = rho * A * np.pi * r * r Fp = Fi + D self.wave.compute(self.params, self.unknowns) npt.assert_equal(self.unknowns["waveLoads_Px"], Fp) npt.assert_equal(self.unknowns["waveLoads_Py"], 0.0) npt.assert_equal(self.unknowns["waveLoads_Pz"], 0.0) npt.assert_equal(self.unknowns["waveLoads_qdyn"], q) npt.assert_equal(self.unknowns["waveLoads_pt"], q + 3.0) npt.assert_equal(self.unknowns["waveLoads_z"], -100.0) npt.assert_equal(self.unknowns["waveLoads_beta"], 0.0) npt.assert_equal(self.unknowns["waveLoads_d"], 10.0) def testCDset(self): self.params["cd_usr"] = 2.0 U = 2.0 A = 4.0 r = 5.0 rho = 0.5 q = 0.5 * rho * U * U area = 2 * r D = q * area * 2.0 Fi = rho * A * np.pi * r * r Fp = Fi + D self.wave.compute(self.params, self.unknowns) npt.assert_equal(self.unknowns["waveLoads_Px"], Fp) def test_wave_derivs(self): nPoints = 5 prob = om.Problem() comp = wwd.CylinderWaveDrag(nPoints=nPoints) prob.model.add_subsystem("comp", comp, promotes=["*"]) prob.setup(force_alloc_complex=True) # Add some arbitrary inputs prob.set_val("U", np.arange(nPoints), units="m/s") prob.set_val("A", np.ones(nPoints), units="m/s**2") prob.set_val("p", np.ones(nPoints) * 0.5, units="N/m**2") prob.set_val("z", np.linspace(0.0, 10.0, nPoints), units="m") prob.set_val("d", np.ones(nPoints), units="m") prob.set_val("beta_wave", 1.2, units="deg") prob.set_val("rho_water", 1.0, units="kg/m**3") prob.set_val("mu_water", 0.001, units="kg/(m*s)") prob.set_val("cm", 10.0) prob.set_val("cd_usr", 0.01) prob.run_model() check = prob.check_partials(out_stream=None, compact_print=True, method="fd") assert_check_partials(check, rtol=5e-5, atol=1e-1) def test_wind_derivs(self): nPoints = 5 prob = om.Problem() comp = wwd.CylinderWindDrag(nPoints=nPoints) prob.model.add_subsystem("comp", comp, promotes=["*"]) prob.setup(force_alloc_complex=True) # Add some arbitrary inputs prob.set_val("U", np.arange(nPoints), units="m/s") prob.set_val("z", np.linspace(0.0, 10.0, nPoints), units="m") prob.set_val("d", np.ones(nPoints), units="m") prob.set_val("beta_wind", 1.2, units="deg") prob.set_val("rho_air", 1.0, units="kg/m**3") prob.set_val("mu_air", 0.001, units="kg/(m*s)") prob.set_val("cd_usr", 0.01) prob.run_model() check = prob.check_partials(out_stream=None, compact_print=True, method="fd") assert_check_partials(check, rtol=5e-5, atol=1e-1) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestDrag)) return suite if __name__ == "__main__": result = unittest.TextTestRunner().run(suite()) if result.wasSuccessful(): exit(0) else: exit(1)
the-stack_0_7158
import sys import pickle import numpy as np from scipy.stats import bernoulli sys.path.append('./../') sys.path.append('./../../') from src.FullModel.model import Model as parent_model from src.LocalGlobalAttentionModel.model import Model as super_model from .vel_param import VelParam as vel_param from src.HMC.hmc import HMC delta = 10 ** -200 class Model(parent_model): """ This class implements the Fixed Choice model as described in the paper. It has the same local and global policis like the full model and the difference is in the calculation of rho. Here rho has a fixed value. """ def __init__(self, saliencies, rho, epsilon, xi, cov_ratio=1): # epsilon and xi should be the objects from parent_model, with fix_dist_ind = 0 # rho should be from this model super_model.__init__(self, saliencies) self.rho = rho self.epsilon = epsilon self.xi = xi self.cov_ratio = cov_ratio self.fix_dist_ind = 0 def calc_ros(self, *args): return self.rho.value # Methods for generating data def generate_gamma(self, s_t): """ This method generates gamma according to a Bernouli distribution with p = rho :param s_t: here just to be compatible with the parent class. :return: gamma \sim Ber(rho) """ return bernoulli.rvs(self.rho.value) # Methods for parameters inference via Gibbs sampling def sample_gamma(self): """ This methods samples form the conditional posterior distribution of gamma. For details see the paper. :return: a sample \gamma_i for each data point """ BF = self.calc_BF() gammas = [] for i, sal_ts in enumerate(self.saliencies_ts): gammas.append([]) for s, subject in enumerate(sal_ts): ros = self.rho.value / (self.rho.value + BF[i][s] * (1 - self.rho.value)) gammas[-1].append(bernoulli.rvs(ros)) return gammas def sample(self, num_samples, save_steps, file_path, sample_gammas=True): """ This method perform Gibbs sampling for the model parameters. :param num_samples: number of samples in the chain :param save_steps: whether to save the chains. :param file_path: path to a file to save the chains :param sample_gammas: whether to sample gamma or not, :return: array with samples for each of the model parameters - b, s_0, epsilon, xi """ # initialize the arrays that will hold the samples. samples_rho = np.zeros(num_samples) samples_epsilon = np.zeros((num_samples, 2)) samples_xi = np.zeros((num_samples, 2)) # set variables needed for the HMC inference of epsilon and xi vel_eps = vel_param([1, 1]) vel_xi = vel_param([1, 1]) delta_xi = 0.5 delta_eps = 0.03 n = 10 m = 1 hmc_eps = HMC(self.epsilon, vel_eps, delta_eps, n, m) hmc_xi = HMC(self.xi, vel_xi, delta_xi, n, m) if not sample_gammas: self.remove_first_gamma() for i in range(num_samples): if sample_gammas: self.gammas = self.sample_gamma() if i == 0: if not self.rho.is_fixed: self.rho.set_num_time_steps(self.gammas) rho_samp = self.rho.conditional_posterior(self.gammas) self.rho.set_value(rho_samp) if not self.epsilon.is_fixed: hmc_eps.HMC(self.xi.value, self.cov_ratio, self.saliencies, self.gammas, self.fix_dists_2, self.dist_mat_per_fix, self.xi.alpha, self.xi.betta) epsilon_samp = hmc_eps.state_param.value if not self.xi.is_fixed: hmc_xi.HMC(self.epsilon.value, self.cov_ratio, self.saliencies, self.gammas, self.fix_dists_2, self.dist_mat_per_fix, self.epsilon.alpha, self.epsilon.betta) xi_samp = hmc_xi.state_param.value samples_rho[i] = rho_samp samples_epsilon[i] = epsilon_samp samples_xi[i] = xi_samp if save_steps and not i % 50: with open(file_path, 'wb') as f: pickle.dump([samples_rho[:i], samples_epsilon[:i], samples_xi[:i]], f) if save_steps: with open(file_path, 'wb') as f: pickle.dump([samples_rho, samples_epsilon, samples_xi], f) return samples_rho, samples_epsilon, samples_xi
the-stack_0_7164
#!/usr/bin/env python3 import functools import os.path import numpy as np class CExample(object): def __init__(self, x, y, w, z=1): self.x = x self.y = y self.w = w self.z = z def copy(self): return CExample(self.x, self.y, self.w, self.z) class CDataSet(object): def __init__(self, all_data=None, train=None, test=None, log_data=None, online_data=None, r=None): self.all_data = [] if all_data is None else [x.copy() for x in all_data] self.train_data = [] if train is None else [x.copy() for x in train] self.test_data = [] if test is None else [x.copy() for x in test] self.log_data = None if log_data is None else [x.copy() for x in log_data] self.online_data = None if online_data is None else [x.copy() for x in online_data] def load_data(self, filename, handler): self.all_data = [] with open(filename) as file: if handler == data_parser_libsvm: self.all_data = data_parser_libsvm([line for line in file]) else: self.all_data = [handler(line.strip().split(',')) for line in file] def copy_all(self): return CDataSet(self.all_data, self.train_data, self.test_data) def copy(self): return CDataSet(self.all_data, self.train_data, self.test_data, self.log_data, self.online_data) def random_split(self, prop, r): self.train_data = [x for x in self.all_data] r.shuffle(self.train_data) cnt = int(len(self.all_data)*prop) self.test_data = self.train_data[cnt:] self.train_data = self.train_data[:cnt] def split_log(self, prop): cnt = int(len(self.train_data)*prop) self.log_data = self.train_data[:cnt] self.online_data = self.train_data[cnt:] def to_binary_label(dataset, rule): return CDataSet([CExample(d.x, rule(d.y), d.w, d.z) for d in dataset.all_data if rule(d.y)!=0]) def normalize(dataset): lb = functools.reduce(np.minimum, [e.x for e in dataset.all_data]) ub = functools.reduce(np.maximum, [e.x for e in dataset.all_data]) mid = (lb+ub)/2 diff = np.array([x if x>0 else 1 for x in ub-lb]) return CDataSet([CExample((e.x-mid)/diff*2, e.y, e.w, e.z) for e in dataset.all_data]) def gen_synthetic_uniform(n, d, r): w = r.rand(d) - r.rand(d) X = r.rand(n, d) - r.rand(n, d) return w, [CExample(x, (1 if np.inner(x,w)>=0 else -1)*(-1 if r.rand()<0.05 else 1), 1, 1) for x in X] def gen_synthetic_bandit(data, Q, r): prop = [Q(dp.x) for dp in data] tmp = [CExample(dp[0].x, dp[0].y, 1.0/dp[1], 1 if r.rand()<dp[1] else 0) for dp in zip(data, prop)] return [CExample(tmp[i].x, tmp[i].y, tmp[i].w, i+1) for i in range(0, len(tmp)) if tmp[i].z==1] def data_parser_rear(l): features = np.array([float(x) for x in l[:-1]]) return CExample(features, l[-1], 1, 1) def data_parser_front(l): features = np.array([float(x) for x in l[1:]]) return CExample(features, l[0], 1, 1) def data_parser_libsvm(ls): split_ls = [l.strip().split() for l in ls] num_features = max([max([0] + [int(e.split(":")[0]) for e in l[1:]]) for l in split_ls]) examples = [] for l in split_ls: f = [0]*num_features for e in l[1:]: idx, val = e.split(":") f[int(idx)-1] = float(val) examples.append(CExample(np.array(f), l[0].strip(), 1, 1)) return examples DATA_COLLECTION_PATHS = ["../data/", "../../data/", "../../../data/", \ "/media/songbai/Files/research/observational/logged data/code/data/", \ "N:\\research\\observational\\logged data\\code\\data\\"] LibsvmBinaryRule = lambda s: 1 if float(s) > 0.5 else -1 DatasetInfo = {"skin": ("skin.txt", data_parser_rear, lambda s: 1 if s=="1" else -1),\ "magic": ("magic04.data", data_parser_rear, lambda s: 1 if s=="g" else -1),\ "eeg": ("eeg.data", data_parser_rear, lambda s: 1 if s=="1" else -1),\ "covtype": ("covtype.data", data_parser_rear, lambda s: 1 if s=="1" else (-1 if s=="2" else 0)),\ "letter": ("letter.data", data_parser_front, lambda s: 1 if s=="U" else (-1 if s=="P" else 0)),\ "a9a": ("a9a.txt", data_parser_libsvm, LibsvmBinaryRule),\ "a5a": ("a5a", data_parser_libsvm, LibsvmBinaryRule),\ "cod-rna": ("cod-rna.txt", data_parser_libsvm, LibsvmBinaryRule),\ "german": ("german.numer_scale", data_parser_libsvm, LibsvmBinaryRule),\ "ijcnn1": ("ijcnn1.tr", data_parser_libsvm, LibsvmBinaryRule),\ "mushrooms": ("mushrooms.txt", data_parser_libsvm, lambda s: 1 if int(s)==1 else -1),\ "phishing": ("phishing.txt", data_parser_libsvm, LibsvmBinaryRule),\ "splice": ("splice.t", data_parser_libsvm, LibsvmBinaryRule),\ "svmguide1": ("svmguide1.t", data_parser_libsvm, LibsvmBinaryRule),\ "w7a": ("w7a", data_parser_libsvm, LibsvmBinaryRule),} def load_data(dataset_name, r, max_sz = None): if dataset_name == "synthetic": return CDataSet(gen_synthetic_uniform(6000 if max_sz is None else max_sz, 30, r)[1]) if dataset_name not in DatasetInfo: print("dataset " + dataset_name +" is unknown") return None dataset_path = None info = DatasetInfo[dataset_name] for path in DATA_COLLECTION_PATHS: #print(path+"/"+dataset_name) if os.path.isfile(path+"/"+info[0]): dataset_path = path+"/"+info[0] break if dataset_path is None: print("data file for " + dataset_name +" does not exist") return None dataset = CDataSet() dataset.load_data(dataset_path, info[1]) dataset = normalize(to_binary_label(dataset, info[2])) if max_sz != None: r.shuffle(dataset.all_data) dataset = CDataSet(dataset.all_data[:max_sz]) return dataset
the-stack_0_7168
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models from django.conf import settings import django.db.models.deletion import utils.time class Migration(migrations.Migration): dependencies = [ ('events', '0037_merge'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='HasVoted', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, primary_key=True, auto_created=True)), ], options={ 'verbose_name': 'deltagare i omröstningen', 'verbose_name_plural': 'deltagarna i omröstningen', }, ), migrations.CreateModel( name='Options', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, primary_key=True, auto_created=True)), ('name', models.CharField(verbose_name='alternativ', max_length=255)), ], options={ 'verbose_name': 'alternativ', 'verbose_name_plural': 'alternativen', }, ), migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, primary_key=True, auto_created=True)), ('name', models.CharField(verbose_name='namn', max_length=255)), ('body', models.TextField(verbose_name='utförlig information', help_text='Utförligare information till frågan.')), ('result', models.CharField(default='p', choices=[('d', 'Publik tillgång till detaljerad information om röstingen.'), ('l', 'Publik tillgång till begränsad information om röstningen.'), ('p', 'Privat åtkomst enbart för administratörer')], max_length=1)), ('question_status', models.CharField(default='c', choices=[('o', 'Öppen'), ('c', 'Stängd')], max_length=1)), ('nr_of_picks', models.IntegerField(default=1, verbose_name='Antal val en användare kan kryssa i på frågan.')), ('anonymous', models.BooleanField(default=True, verbose_name='namn')), ('modified_by', models.ForeignKey(help_text='Användaren som ändrat på frågan.', on_delete=django.db.models.deletion.SET_NULL, verbose_name='användare', to=settings.AUTH_USER_MODEL, null=True)), ], options={ 'verbose_name': 'fråga', 'verbose_name_plural': 'frågor', }, ), migrations.CreateModel( name='QuestionGroup', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, primary_key=True, auto_created=True)), ('question_status', models.CharField(default='e', choices=[('e', 'Incheckade deltagare på ett event kan rösta.'), ('a', 'Alla medlemmar kan rösta')], max_length=1)), ('visible_from', models.DateTimeField(default=utils.time.now, verbose_name='publicering', help_text='Publiceringsdatum')), ('visible_to', models.DateTimeField(default=utils.time.now_plus_one_month, verbose_name='avpublicering', help_text='Avpubliceringsdatum')), ('event', models.ForeignKey(verbose_name='event', to='events.Event', blank=True, null=True)), ], options={ 'verbose_name': 'frågegrupp', 'verbose_name_plural': 'frågegrupper', }, ), migrations.CreateModel( name='Votes', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, primary_key=True, auto_created=True)), ('option', models.ForeignKey(verbose_name='alternativ', to='votings.Options')), ('question', models.ForeignKey(verbose_name='fråga', to='votings.Question')), ('user', models.ForeignKey(verbose_name='användare', to=settings.AUTH_USER_MODEL, blank=True, null=True)), ], options={ 'verbose_name': 'röst', 'verbose_name_plural': 'röster', }, ), migrations.AddField( model_name='question', name='question_group', field=models.ForeignKey(verbose_name='frågegrupp', to='votings.QuestionGroup'), ), migrations.AddField( model_name='options', name='question', field=models.ForeignKey(verbose_name='fråga', to='votings.Question'), ), migrations.AddField( model_name='hasvoted', name='question', field=models.ForeignKey(verbose_name='fråga', to='votings.Question'), ), migrations.AddField( model_name='hasvoted', name='user', field=models.ForeignKey(verbose_name='användare', to=settings.AUTH_USER_MODEL), ), ]
the-stack_0_7169
#!/usr/bin/env python """This module serializes AFF4 objects in various ways.""" import yaml from grr.lib import aff4 from grr.lib import rdfvalue def YamlDumper(aff4object): """Dumps the given aff4object into a yaml representation.""" aff4object.Flush() result = {} for attribute, values in aff4object.synced_attributes.items(): result[attribute.predicate] = [] for value in values: # This value is really a LazyDecoder() instance. We need to get at the # real data here. value = value.ToRDFValue() result[attribute.predicate].append([ value.__class__.__name__, value.SerializeToString(), str(value.age) ]) return yaml.dump( dict( aff4_class=aff4object.__class__.__name__, _urn=aff4object.urn.SerializeToString(), attributes=result, age_policy=aff4object.age_policy,)) def YamlLoader(string): """Load an AFF4 object from a serialized YAML representation.""" representation = yaml.load(string) result_cls = aff4.FACTORY.AFF4Object(representation["aff4_class"]) aff4_attributes = {} for predicate, values in representation["attributes"].items(): attribute = aff4.Attribute.PREDICATES[predicate] tmp = aff4_attributes[attribute] = [] for rdfvalue_cls_name, value, age in values: rdfvalue_cls = aff4.FACTORY.RDFValue(rdfvalue_cls_name) value = rdfvalue_cls(value, age=rdfvalue.RDFDatetime(age)) tmp.append(value) # Ensure the object is dirty so when we save it, it can be written to the data # store. result = result_cls( urn=representation["_urn"], clone=aff4_attributes, mode="rw", age=representation["age_policy"]) result.new_attributes, result.synced_attributes = result.synced_attributes, {} result._dirty = True # pylint: disable=protected-access return result
the-stack_0_7170
import streamlit as st import pandas as pd import pickle import numpy as np st.write(""" ## Forest Fires """) st.sidebar.header('User Input') st.sidebar.subheader('Please enter your data:') # -- Define function to display widgets and store data def get_input(): # Display widgets and store their values in variables v_X = st.sidebar.radio('X', ['1', '2', '3', '4', '5', '6', '7', '8', '9']) v_Y = st.sidebar.radio('Y', ['2', '3', '4', '5', '6', '7', '8', '9']) v_month = st.sidebar.radio('month', ['February','March','April','June','July','August','September','October','December']) v_day = st.sidebar.radio('Day', ['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday','Sunday']) v_FFMC = st.sidebar.slider('FFMC', 18.7, 96.2, 0.1) v_DMC = st.sidebar.slider('DMC', 1.1, 291.3, 0.1) v_DC = st.sidebar.slider('DC', 7.9, 860.6, 0.1) v_ISI = st.sidebar.slider('ISI', 0.0, 56.1, 0.1) v_temp = st.sidebar.slider('temp', 2.2, 33.3, 0.1) v_RH = st.sidebar.slider('RH', 15, 100, 1) v_wind = st.sidebar.slider('wind', 0.4, 9.4, 0.1) v_rain = st.sidebar.slider('rain', 0.0, 6.4, 0.1) # Month if v_month == 'February': v_month = '2' elif v_month == 'March': v_month = '3' elif v_month == 'April': v_month = '4' elif v_month == 'June': v_month = '6' elif v_month == 'July': v_month = '7' elif v_month == 'August': v_month = '8' elif v_month == 'September': v_month = '9' elif v_month == 'October': v_month = '10' elif v_month == 'December': v_month = '12' # Day if v_day == 'Monday': v_day = '1' elif v_day == 'Tuesday': v_day = '2' elif v_day == 'Wednesday': v_day = '3' elif v_day == 'Thursday': v_day = '4' elif v_day == 'Friday': v_day = '5' elif v_day == 'Saturday': v_day = '6' elif v_day == 'Sunday': v_day = '7' # Store user input data in a dictionary data = {'X': v_X, 'Y': v_Y, 'month': v_month, 'day': v_day, 'FFMC': v_FFMC, 'DMC': v_DMC, 'DC': v_DC, 'ISI': v_ISI, 'temp': v_temp, 'RH': v_RH, 'wind': v_wind, 'rain': v_rain,} # Create a data frame from the above dictionary data_df = pd.DataFrame(data, index=[0]) return data_df # -- Call function to display widgets and get data from user df = get_input() st.header('Application of Status Prediction:') # -- Display new data from user inputs: st.subheader('User Input:') st.write(df) # -- Data Pre-processing for New Data: # Combines user input data with sample dataset # The sample data contains unique values for each nominal features # This will be used for the One-hot encoding data_sample = pd.read_csv('ML_A.csv') df = pd.concat([df, data_sample],axis=0) ###Data Cleaning & Feature Engineering### #drop df = df.drop(columns=['area']) df = df.drop(columns=['Unnamed: 0']) df_num=df # -- Display pre-processed new data: st.subheader('Pre-Processed Input:') st.write(df_num) # -- Reads the saved normalization model load_nor = pickle.load(open('normalization_ML1.pkl', 'rb')) #Apply the normalization model to new data x_new = load_nor.transform(df) x_new = x_new[:1] st.subheader('Normalization Input:') st.write(x_new) # -- Reads the saved classification model load_LR = pickle.load(open('LR_ML1.pkl', 'rb')) # Apply model for prediction prediction = load_LR.predict(x_new) prediction = prediction[:1] st.subheader('Prediction:') st.write(prediction)
the-stack_0_7172
"""Tests downloading and reading of the GO annotation file from NCBI Gene. python test_NCBI_Entrez_annotations.py """ __copyright__ = "Copyright (C) 2016, DV Klopfenstein, H Tang. All rights reserved." __author__ = "DV Klopfenstein" import sys from goatools.associations import get_assoc_ncbi_taxids from collections import defaultdict from goatools.test_data.genes_NCBI_9606_ProteinCoding import GeneID2nt as GeneID2nt_hsa from goatools.test_data.genes_NCBI_7227_ProteinCoding import GeneID2nt as GeneID2nt_dme def test_ncbi_gene2go(log=sys.stdout): """Return GO associations to Entrez GeneIDs. Download if necessary. Example report generated with Feb 22, 2013 download of: NCBI Gene tables and associations in gene2go 49672 items found in gene2go from NCBI's ftp server taxid GOs GeneIDs Description ----- ------ ------- ----------- 10090 16,807 18,971 all DNA items 7227 7,022 12,019 all DNA items 7227 6,956 10,590 76% GO coverage of 13,919 protein-coding genes 9606 16,299 18,680 all DNA items 9606 16,296 18,253 87% GO coverage of 20,913 protein-coding genes """ # Get associations for human(9606), mouse(10090), and fly(7227) # (optional) multi-level dictionary separate associations by taxid taxid2asscs = defaultdict(lambda: defaultdict(lambda: defaultdict(set))) # Simple dictionary containing id2gos id2gos = get_assoc_ncbi_taxids(taxids=[9606, 10090, 7227], taxid2asscs=taxid2asscs) log.write(" {N} items found in gene2go from NCBI's ftp server\n".format(N=len(id2gos))) taxid2pc = {9606:GeneID2nt_hsa, 7227:GeneID2nt_dme} # Report findings log.write(" taxid GOs GeneIDs Description\n") log.write(" ----- ------ ------- -----------\n") for taxid, asscs in taxid2asscs.items(): num_gene2gos_all = len(asscs['GeneID2GOs']) num_go2genes_all = len(asscs['GO2GeneIDs']) log.write(" {TAXID:>6} {N:>6,} {M:>7,} all DNA items\n".format( TAXID=taxid, N=num_go2genes_all, M=num_gene2gos_all)) # Basic check to ensure gene2go was downloaded and data was returned. assert num_gene2gos_all > 11000 assert num_go2genes_all > 6000 if taxid in taxid2pc.keys(): rpt_coverage(taxid, asscs, taxid2pc[taxid], log) def rpt_coverage(taxid, asscs, pc2nt, log): """Calculate and report GO coverage on protein-coding genes. Example report generated with Feb 22, 2013 download of: NCBI Gene tables and associations in gene2go taxid GOs GeneIDs Description ----- ------ ------- ----------- 7227 6,956 10,590 76% GO coverage of 13,919 protein-coding genes 9606 16,296 18,253 87% GO coverage of 20,913 protein-coding genes """ # List of all protein-coding genes have GO terms associated with them geneid2gos = asscs['GeneID2GOs'] pcgene_w_gos = set(geneid2gos.keys()).intersection(set(pc2nt.keys())) num_pcgene_w_gos = len(pcgene_w_gos) num_pc_genes = len(pc2nt) perc_cov = 100.0*num_pcgene_w_gos/num_pc_genes # Get list of GOs associated with protein-coding genes gos_pcgenes = set() for geneid in pcgene_w_gos: gos_pcgenes |= geneid2gos[geneid] log.write(" {TAXID:>6} {N:>6,} {M:>7,} {COV:2.0f}% GO coverage of {TOT:,} protein-coding genes\n".format( TAXID=taxid, N=len(gos_pcgenes), M=num_pcgene_w_gos, COV=perc_cov, TOT=num_pc_genes)) if __name__ == '__main__': test_ncbi_gene2go()
the-stack_0_7173
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for CreateTensorboardExperiment # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-aiplatform # [START aiplatform_generated_aiplatform_v1_TensorboardService_CreateTensorboardExperiment_sync] from google.cloud import aiplatform_v1 def sample_create_tensorboard_experiment(): # Create a client client = aiplatform_v1.TensorboardServiceClient() # Initialize request argument(s) request = aiplatform_v1.CreateTensorboardExperimentRequest( parent="parent_value", tensorboard_experiment_id="tensorboard_experiment_id_value", ) # Make the request response = client.create_tensorboard_experiment(request=request) # Handle the response print(response) # [END aiplatform_generated_aiplatform_v1_TensorboardService_CreateTensorboardExperiment_sync]
the-stack_0_7174
# ============================================================================== # Copyright 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import print_function import pytest import tensorflow as tf import ngraph_bridge # Test ngraph_bridge config options def test_set_backend(): ngraph_bridge.enable() backend_cpu = 'CPU' backend_interpreter = 'INTERPRETER' found_cpu = False found_interpreter = False # These will only print when running pytest with flag "-s" print("Number of supported backends ", ngraph_bridge.backends_len()) supported_backends = ngraph_bridge.list_backends() print(" ****** Supported Backends ****** ") for backend_name in supported_backends: print(backend_name) if backend_name == backend_cpu: found_cpu = True if backend_name == backend_interpreter: found_interpreter = True print(" ******************************** ") assert (found_cpu and found_interpreter) == True # Create Graph val = tf.placeholder(tf.float32) out1 = tf.abs(val) out2 = tf.abs(out1) # set INTERPRETER backend assert ngraph_bridge.is_supported_backend(backend_interpreter) == True ngraph_bridge.set_backend(backend_interpreter) currently_set_backend = ngraph_bridge.get_currently_set_backend_name() assert currently_set_backend == backend_interpreter # create new session to execute graph # If you want to re-confirm which backend the graph was executed # currently the only way is to enable NGRAPH_TF_VLOG_LEVEL=5 with tf.Session() as sess: sess.run((out2,), feed_dict={val: ((1.4, -0.5, -1))}) currently_set_backend = ngraph_bridge.get_currently_set_backend_name() assert currently_set_backend == backend_interpreter # set CPU backend assert ngraph_bridge.is_supported_backend(backend_cpu) == True ngraph_bridge.set_backend(backend_cpu) currently_set_backend = ngraph_bridge.get_currently_set_backend_name() assert currently_set_backend == backend_cpu # create new session to execute graph with tf.Session() as sess: sess.run((out2,), feed_dict={val: ((1.4, -0.5, -1))}) currently_set_backend = ngraph_bridge.get_currently_set_backend_name() assert currently_set_backend == backend_cpu
the-stack_0_7177
from collections import namedtuple from itertools import chain from django.conf.urls import url from django.contrib.auth.models import User from django.forms import ValidationError from django.http import Http404, HttpResponse, HttpResponseNotFound from django.urls import reverse from django.utils.translation import ugettext_noop from memoized import memoized_property from tastypie import fields, http from tastypie.authorization import ReadOnlyAuthorization from tastypie.bundle import Bundle from tastypie.exceptions import BadRequest, ImmediateHttpResponse, NotFound from tastypie.http import HttpForbidden, HttpUnauthorized from tastypie.resources import ModelResource, Resource, convert_post_to_patch from tastypie.utils import dict_strip_unicode_keys from casexml.apps.stock.models import StockTransaction from corehq.apps.api.resources.serializers import ListToSingleObjectSerializer from corehq.apps.sms.models import MessagingEvent from phonelog.models import DeviceReportEntry from corehq import privileges from corehq.apps.accounting.utils import domain_has_privilege from corehq.apps.api.odata.serializers import ( ODataCaseSerializer, ODataFormSerializer, ) from corehq.apps.api.odata.utils import record_feed_access_in_datadog from corehq.apps.api.odata.views import ( add_odata_headers, raise_odata_permissions_issues, ) from corehq.apps.api.resources.auth import ( AdminAuthentication, ODataAuthentication, RequirePermissionAuthentication, LoginAuthentication) from corehq.apps.api.resources.meta import CustomResourceMeta from corehq.apps.api.util import get_obj from corehq.apps.app_manager.models import Application from corehq.apps.domain.auth import HQApiKeyAuthentication from corehq.apps.domain.forms import clean_password from corehq.apps.domain.models import Domain from corehq.apps.es import UserES from corehq.apps.export.esaccessors import ( get_case_export_base_query, get_form_export_base_query, ) from corehq.apps.export.models import CaseExportInstance, FormExportInstance from corehq.apps.groups.models import Group from corehq.apps.locations.permissions import location_safe from corehq.apps.reports.analytics.esaccessors import ( get_case_types_for_domain_es, ) from corehq.apps.reports.standard.cases.utils import ( query_location_restricted_cases, query_location_restricted_forms, ) from corehq.apps.sms.util import strip_plus from corehq.apps.userreports.columns import UCRExpandDatabaseSubcolumn from corehq.apps.userreports.models import ( ReportConfiguration, StaticReportConfiguration, report_config_id_is_static, ) from corehq.apps.userreports.reports.data_source import ( ConfigurableReportDataSource, ) from corehq.apps.userreports.reports.view import ( get_filter_values, query_dict_to_dict, ) from corehq.apps.users.dbaccessors.all_commcare_users import ( get_all_user_id_username_pairs_by_domain, ) from corehq.apps.users.models import ( CommCareUser, CouchUser, Permissions, UserRole, WebUser, ) from corehq.apps.users.util import raw_username from corehq.const import USER_CHANGE_VIA_API from corehq.util import get_document_or_404 from corehq.util.couch import DocumentNotFound, get_document_or_not_found from corehq.util.model_log import ModelAction, log_model_change from corehq.util.timer import TimingContext from . import ( CouchResourceMixin, DomainSpecificResourceMixin, HqBaseResource, v0_1, v0_4, CorsResourceMixin) from .pagination import DoesNothingPaginator, NoCountingPaginator MOCK_BULK_USER_ES = None def user_es_call(domain, q, fields, size, start_at): query = (UserES() .domain(domain) .fields(fields) .size(size) .start(start_at)) if q is not None: query.set_query({"query_string": {"query": q}}) return query.run().hits def _set_role_for_bundle(kwargs, bundle): # check for roles associated with the domain domain_roles = UserRole.by_domain_and_name(kwargs['domain'], bundle.data.get('role')) if domain_roles: qualified_role_id = domain_roles[0].get_qualified_id() bundle.obj.set_role(kwargs['domain'], qualified_role_id) else: # check for preset roles and now create them for the domain permission_preset_name = UserRole.get_preset_permission_by_name(bundle.data.get('role')) if permission_preset_name: bundle.obj.set_role(kwargs['domain'], permission_preset_name) class BulkUserResource(HqBaseResource, DomainSpecificResourceMixin): """ A read-only user data resource based on elasticsearch. Supported Params: limit offset q fields """ type = "bulk-user" id = fields.CharField(attribute='id', readonly=True, unique=True) email = fields.CharField(attribute='email') username = fields.CharField(attribute='username', unique=True) first_name = fields.CharField(attribute='first_name', null=True) last_name = fields.CharField(attribute='last_name', null=True) phone_numbers = fields.ListField(attribute='phone_numbers', null=True) @staticmethod def to_obj(user): ''' Takes a flat dict and returns an object ''' if '_id' in user: user['id'] = user.pop('_id') return namedtuple('user', list(user))(**user) class Meta(CustomResourceMeta): authentication = RequirePermissionAuthentication(Permissions.edit_commcare_users) list_allowed_methods = ['get'] detail_allowed_methods = ['get'] object_class = object resource_name = 'bulk-user' def dehydrate(self, bundle): fields = bundle.request.GET.getlist('fields') data = {} if not fields: return bundle for field in fields: data[field] = bundle.data[field] bundle.data = data return bundle def obj_get_list(self, bundle, **kwargs): request_fields = bundle.request.GET.getlist('fields') for field in request_fields: if field not in self.fields: raise BadRequest('{0} is not a valid field'.format(field)) params = bundle.request.GET param = lambda p: params.get(p, None) fields = list(self.fields) fields.remove('id') fields.append('_id') fn = MOCK_BULK_USER_ES or user_es_call users = fn( domain=kwargs['domain'], q=param('q'), fields=fields, size=param('limit'), start_at=param('offset'), ) return list(map(self.to_obj, users)) def detail_uri_kwargs(self, bundle_or_obj): return { 'pk': get_obj(bundle_or_obj).id } class CommCareUserResource(v0_1.CommCareUserResource): class Meta(v0_1.CommCareUserResource.Meta): detail_allowed_methods = ['get', 'put', 'delete'] list_allowed_methods = ['get', 'post'] always_return_data = True def serialize(self, request, data, format, options=None): if not isinstance(data, dict) and request.method == 'POST': data = {'id': data.obj._id} return self._meta.serializer.serialize(data, format, options) def get_resource_uri(self, bundle_or_obj=None, url_name='api_dispatch_detail'): if bundle_or_obj is None: return super(CommCareUserResource, self).get_resource_uri(bundle_or_obj, url_name) elif isinstance(bundle_or_obj, Bundle): obj = bundle_or_obj.obj else: obj = bundle_or_obj return reverse('api_dispatch_detail', kwargs=dict(resource_name=self._meta.resource_name, domain=obj.domain, api_name=self._meta.api_name, pk=obj._id)) def _update(self, bundle): should_save = False for key, value in bundle.data.items(): if getattr(bundle.obj, key, None) != value: if key == 'phone_numbers': bundle.obj.phone_numbers = [] for idx, phone_number in enumerate(bundle.data.get('phone_numbers', [])): bundle.obj.add_phone_number(strip_plus(phone_number)) if idx == 0: bundle.obj.set_default_phone_number(strip_plus(phone_number)) should_save = True elif key == 'groups': bundle.obj.set_groups(bundle.data.get("groups", [])) should_save = True elif key in ['email', 'username']: setattr(bundle.obj, key, value.lower()) should_save = True elif key == 'password': domain = Domain.get_by_name(bundle.obj.domain) if domain.strong_mobile_passwords: try: clean_password(bundle.data.get("password")) except ValidationError as e: if not hasattr(bundle.obj, 'errors'): bundle.obj.errors = [] bundle.obj.errors.append(str(e)) return False bundle.obj.set_password(bundle.data.get("password")) should_save = True elif key == 'user_data': try: bundle.obj.update_metadata(value) except ValueError as e: raise BadRequest(str(e)) else: setattr(bundle.obj, key, value) should_save = True return should_save def obj_create(self, bundle, request=None, **kwargs): try: bundle.obj = CommCareUser.create( domain=kwargs['domain'], username=bundle.data['username'].lower(), password=bundle.data['password'], created_by=bundle.request.user, created_via=USER_CHANGE_VIA_API, email=bundle.data.get('email', '').lower(), ) del bundle.data['password'] self._update(bundle) bundle.obj.save() except Exception: if bundle.obj._id: bundle.obj.retire(deleted_by=request.user, deleted_via=USER_CHANGE_VIA_API) try: django_user = bundle.obj.get_django_user() except User.DoesNotExist: pass else: django_user.delete() log_model_change(request.user, django_user, message=f"deleted_via: {USER_CHANGE_VIA_API}", action=ModelAction.DELETE) return bundle def obj_update(self, bundle, **kwargs): bundle.obj = CommCareUser.get(kwargs['pk']) assert bundle.obj.domain == kwargs['domain'] if self._update(bundle): assert bundle.obj.domain == kwargs['domain'] bundle.obj.save() return bundle else: raise BadRequest(''.join(chain.from_iterable(bundle.obj.errors))) def obj_delete(self, bundle, **kwargs): user = CommCareUser.get(kwargs['pk']) if user: user.retire(deleted_by=bundle.request.user, deleted_via=USER_CHANGE_VIA_API) return ImmediateHttpResponse(response=http.HttpAccepted()) class WebUserResource(v0_1.WebUserResource): class Meta(v0_1.WebUserResource.Meta): detail_allowed_methods = ['get', 'put', 'delete'] list_allowed_methods = ['get', 'post'] always_return_data = True def serialize(self, request, data, format, options=None): if not isinstance(data, dict) and request.method == 'POST': data = {'id': data.obj._id} return self._meta.serializer.serialize(data, format, options) def dispatch(self, request_type, request, **kwargs): """ Override dispatch to check for proper params for user create : role and admin permissions """ if request.method == 'POST': details = self._meta.serializer.deserialize(request.body) if details.get('is_admin', False): if self._admin_assigned_another_role(details): raise BadRequest("An admin can have only one role : Admin") else: if not details.get('role', None): raise BadRequest("Please assign role for non admin user") elif self._invalid_user_role(request, details): raise BadRequest("Invalid User Role %s" % details.get('role', None)) return super(WebUserResource, self).dispatch(request_type, request, **kwargs) def get_resource_uri(self, bundle_or_obj=None, url_name='api_dispatch_detail'): if isinstance(bundle_or_obj, Bundle): domain = bundle_or_obj.request.domain obj = bundle_or_obj.obj elif bundle_or_obj is None: return None return reverse('api_dispatch_detail', kwargs=dict(resource_name=self._meta.resource_name, domain=domain, api_name=self._meta.api_name, pk=obj._id)) def _update(self, bundle): should_save = False for key, value in bundle.data.items(): if getattr(bundle.obj, key, None) != value: if key == 'phone_numbers': bundle.obj.phone_numbers = [] for idx, phone_number in enumerate(bundle.data.get('phone_numbers', [])): bundle.obj.add_phone_number(strip_plus(phone_number)) if idx == 0: bundle.obj.set_default_phone_number(strip_plus(phone_number)) should_save = True elif key in ['email', 'username']: setattr(bundle.obj, key, value.lower()) should_save = True else: setattr(bundle.obj, key, value) should_save = True return should_save def obj_create(self, bundle, request=None, **kwargs): try: self._meta.domain = kwargs['domain'] bundle.obj = WebUser.create( domain=kwargs['domain'], username=bundle.data['username'].lower(), password=bundle.data['password'], created_by=bundle.request.user, created_via=USER_CHANGE_VIA_API, email=bundle.data.get('email', '').lower(), is_admin=bundle.data.get('is_admin', False) ) del bundle.data['password'] self._update(bundle) # is_admin takes priority over role if not bundle.obj.is_admin and bundle.data.get('role'): _set_role_for_bundle(kwargs, bundle) bundle.obj.save() except Exception: bundle.obj.delete() return bundle def obj_update(self, bundle, **kwargs): bundle.obj = WebUser.get(kwargs['pk']) assert kwargs['domain'] in bundle.obj.domains if self._update(bundle): assert kwargs['domain'] in bundle.obj.domains bundle.obj.save() return bundle def _invalid_user_role(self, request, details): return details.get('role') not in UserRole.preset_and_domain_role_names(request.domain) def _admin_assigned_another_role(self, details): # default value Admin since that will be assigned later anyway since is_admin is True return details.get('role', 'Admin') != 'Admin' class AdminWebUserResource(v0_1.UserResource): domains = fields.ListField(attribute='domains') def obj_get(self, bundle, **kwargs): return WebUser.get(kwargs['pk']) def obj_get_list(self, bundle, **kwargs): if 'username' in bundle.request.GET: return [WebUser.get_by_username(bundle.request.GET['username'])] return [WebUser.wrap(u) for u in UserES().web_users().run().hits] class Meta(WebUserResource.Meta): authentication = AdminAuthentication() detail_allowed_methods = ['get'] list_allowed_methods = ['get'] class GroupResource(v0_4.GroupResource): class Meta(v0_4.GroupResource.Meta): detail_allowed_methods = ['get', 'put', 'delete'] list_allowed_methods = ['get', 'post', 'patch'] always_return_data = True def serialize(self, request, data, format, options=None): if not isinstance(data, dict): if 'error_message' in data.data: data = {'error_message': data.data['error_message']} elif request.method == 'POST': data = {'id': data.obj._id} return self._meta.serializer.serialize(data, format, options) def patch_list(self, request=None, **kwargs): """ Exactly copied from https://github.com/toastdriven/django-tastypie/blob/v0.9.14/tastypie/resources.py#L1466 (BSD licensed) and modified to pass the kwargs to `obj_create` and support only create method """ request = convert_post_to_patch(request) deserialized = self.deserialize(request, request.body, format=request.META.get('CONTENT_TYPE', 'application/json')) collection_name = self._meta.collection_name if collection_name not in deserialized: raise BadRequest("Invalid data sent: missing '%s'" % collection_name) if len(deserialized[collection_name]) and 'put' not in self._meta.detail_allowed_methods: raise ImmediateHttpResponse(response=http.HttpMethodNotAllowed()) bundles_seen = [] status = http.HttpAccepted for data in deserialized[collection_name]: data = self.alter_deserialized_detail_data(request, data) bundle = self.build_bundle(data=dict_strip_unicode_keys(data), request=request) try: self.obj_create(bundle=bundle, **self.remove_api_resource_names(kwargs)) except AssertionError as e: status = http.HttpBadRequest bundle.data['_id'] = str(e) bundles_seen.append(bundle) to_be_serialized = [bundle.data['_id'] for bundle in bundles_seen] return self.create_response(request, to_be_serialized, response_class=status) def post_list(self, request, **kwargs): """ Exactly copied from https://github.com/toastdriven/django-tastypie/blob/v0.9.14/tastypie/resources.py#L1314 (BSD licensed) and modified to catch Exception and not returning traceback """ deserialized = self.deserialize(request, request.body, format=request.META.get('CONTENT_TYPE', 'application/json')) deserialized = self.alter_deserialized_detail_data(request, deserialized) bundle = self.build_bundle(data=dict_strip_unicode_keys(deserialized), request=request) try: updated_bundle = self.obj_create(bundle, **self.remove_api_resource_names(kwargs)) location = self.get_resource_uri(updated_bundle) if not self._meta.always_return_data: return http.HttpCreated(location=location) else: updated_bundle = self.full_dehydrate(updated_bundle) updated_bundle = self.alter_detail_data_to_serialize(request, updated_bundle) return self.create_response(request, updated_bundle, response_class=http.HttpCreated, location=location) except AssertionError as e: bundle.data['error_message'] = str(e) return self.create_response(request, bundle, response_class=http.HttpBadRequest) def _update(self, bundle): should_save = False for key, value in bundle.data.items(): if key == 'name' and getattr(bundle.obj, key, None) != value: if not Group.by_name(bundle.obj.domain, value): setattr(bundle.obj, key, value or '') should_save = True else: raise Exception("A group with this name already exists") if key == 'users' and getattr(bundle.obj, key, None) != value: users_to_add = set(value) - set(bundle.obj.users) users_to_remove = set(bundle.obj.users) - set(value) for user in users_to_add: bundle.obj.add_user(user) should_save = True for user in users_to_remove: bundle.obj.remove_user(user) should_save = True elif getattr(bundle.obj, key, None) != value: setattr(bundle.obj, key, value) should_save = True return should_save def get_resource_uri(self, bundle_or_obj=None, url_name='api_dispatch_detail'): if bundle_or_obj is None: return super(GroupResource, self).get_resource_uri(bundle_or_obj, url_name) elif isinstance(bundle_or_obj, Bundle): obj = bundle_or_obj.obj else: obj = bundle_or_obj return self._get_resource_uri(obj) def _get_resource_uri(self, obj): # This function is called up to 1000 times per request # so build url from a known string template # to avoid calling the expensive `reverse` function each time return self._get_resource_uri_template.format(domain=obj.domain, pk=obj._id) @memoized_property def _get_resource_uri_template(self): """Returns the literal string "/a/{domain}/api/v0.5/group/{pk}/" in a DRY way""" return reverse('api_dispatch_detail', kwargs=dict( resource_name=self._meta.resource_name, api_name=self._meta.api_name, domain='__domain__', pk='__pk__')).replace('__pk__', '{pk}').replace('__domain__', '{domain}') def obj_create(self, bundle, request=None, **kwargs): if not Group.by_name(kwargs['domain'], bundle.data.get("name")): bundle.obj = Group(bundle.data) bundle.obj.name = bundle.obj.name or '' bundle.obj.domain = kwargs['domain'] bundle.obj.save() for user in bundle.obj.users: CommCareUser.get(user).set_groups([bundle.obj._id]) else: raise AssertionError("A group with name %s already exists" % bundle.data.get("name")) return bundle def obj_update(self, bundle, **kwargs): bundle.obj = Group.get(kwargs['pk']) assert bundle.obj.domain == kwargs['domain'] if self._update(bundle): assert bundle.obj.domain == kwargs['domain'] bundle.obj.save() return bundle def obj_delete(self, bundle, **kwargs): group = self.obj_get(bundle, **kwargs) group.soft_delete() return bundle class DomainAuthorization(ReadOnlyAuthorization): def __init__(self, domain_key='domain', *args, **kwargs): self.domain_key = domain_key def read_list(self, object_list, bundle): return object_list.filter(**{self.domain_key: bundle.request.domain}) class DeviceReportResource(HqBaseResource, ModelResource): class Meta(object): queryset = DeviceReportEntry.objects.all() list_allowed_methods = ['get'] detail_allowed_methods = ['get'] resource_name = 'device-log' authentication = RequirePermissionAuthentication(Permissions.edit_data) authorization = DomainAuthorization() paginator_class = NoCountingPaginator filtering = { # this is needed for the domain filtering but any values passed in via the URL get overridden "domain": ('exact',), "date": ('exact', 'gt', 'gte', 'lt', 'lte', 'range'), "user_id": ('exact',), "username": ('exact',), "type": ('exact',), "xform_id": ('exact',), "device_id": ('exact',), } class StockTransactionResource(HqBaseResource, ModelResource): class Meta(object): queryset = StockTransaction.objects.all() list_allowed_methods = ['get'] detail_allowed_methods = ['get'] resource_name = 'stock_transaction' authentication = RequirePermissionAuthentication(Permissions.view_reports) paginator_class = NoCountingPaginator authorization = DomainAuthorization(domain_key='report__domain') filtering = { "case_id": ('exact',), "section_id": ('exact'), } fields = ['case_id', 'product_id', 'type', 'section_id', 'quantity', 'stock_on_hand'] include_resource_uri = False def build_filters(self, filters=None): orm_filters = super(StockTransactionResource, self).build_filters(filters) if 'start_date' in filters: orm_filters['report__date__gte'] = filters['start_date'] if 'end_date' in filters: orm_filters['report__date__lte'] = filters['end_date'] return orm_filters def dehydrate(self, bundle): bundle.data['product_name'] = bundle.obj.sql_product.name bundle.data['transaction_date'] = bundle.obj.report.date return bundle ConfigurableReportData = namedtuple("ConfigurableReportData", [ "data", "columns", "id", "domain", "total_records", "get_params", "next_page" ]) class ConfigurableReportDataResource(HqBaseResource, DomainSpecificResourceMixin): """ A resource that replicates the behavior of the ajax part of the ConfigurableReportView view. """ data = fields.ListField(attribute="data", readonly=True) columns = fields.ListField(attribute="columns", readonly=True) total_records = fields.IntegerField(attribute="total_records", readonly=True) next_page = fields.CharField(attribute="next_page", readonly=True) LIMIT_DEFAULT = 50 LIMIT_MAX = 50 def _get_start_param(self, bundle): try: start = int(bundle.request.GET.get('offset', 0)) if start < 0: raise ValueError except (ValueError, TypeError): raise BadRequest("start must be a positive integer.") return start def _get_limit_param(self, bundle): try: limit = int(bundle.request.GET.get('limit', self.LIMIT_DEFAULT)) if limit < 0: raise ValueError except (ValueError, TypeError): raise BadRequest("limit must be a positive integer.") if limit > self.LIMIT_MAX: raise BadRequest("Limit may not exceed {}.".format(self.LIMIT_MAX)) return limit def _get_next_page(self, domain, id_, start, limit, total_records, get_query_dict): if total_records > start + limit: start += limit new_get_params = get_query_dict.copy() new_get_params["offset"] = start # limit has not changed, but it may not have been present in get params before. new_get_params["limit"] = limit return reverse('api_dispatch_detail', kwargs=dict( api_name=self._meta.api_name, resource_name=self._meta.resource_name, domain=domain, pk=id_, )) + "?" + new_get_params.urlencode() else: return "" def _get_report_data(self, report_config, domain, start, limit, get_params): report = ConfigurableReportDataSource.from_spec(report_config, include_prefilters=True) string_type_params = [ filter.name for filter in report_config.ui_filters if getattr(filter, 'datatype', 'string') == "string" ] filter_values = get_filter_values( report_config.ui_filters, query_dict_to_dict(get_params, domain, string_type_params) ) report.set_filter_values(filter_values) page = list(report.get_data(start=start, limit=limit)) columns = [] for column in report.columns: simple_column = { "header": column.header, "slug": column.slug, } if isinstance(column, UCRExpandDatabaseSubcolumn): simple_column['expand_column_value'] = column.expand_value columns.append(simple_column) total_records = report.get_total_records() return page, columns, total_records def obj_get(self, bundle, **kwargs): domain = kwargs['domain'] pk = kwargs['pk'] start = self._get_start_param(bundle) limit = self._get_limit_param(bundle) report_config = self._get_report_configuration(pk, domain) page, columns, total_records = self._get_report_data( report_config, domain, start, limit, bundle.request.GET) return ConfigurableReportData( data=page, columns=columns, total_records=total_records, id=report_config._id, domain=domain, get_params=bundle.request.GET, next_page=self._get_next_page( domain, report_config._id, start, limit, total_records, bundle.request.GET, ) ) def _get_report_configuration(self, id_, domain): """ Fetch the required ReportConfiguration object :param id_: The id of the ReportConfiguration :param domain: The domain of the ReportConfiguration :return: A ReportConfiguration """ try: if report_config_id_is_static(id_): return StaticReportConfiguration.by_id(id_, domain=domain) else: return get_document_or_not_found(ReportConfiguration, domain, id_) except DocumentNotFound: raise NotFound def detail_uri_kwargs(self, bundle_or_obj): return { 'domain': get_obj(bundle_or_obj).domain, 'pk': get_obj(bundle_or_obj).id, } def get_resource_uri(self, bundle_or_obj=None, url_name='api_dispatch_list'): uri = super(ConfigurableReportDataResource, self).get_resource_uri(bundle_or_obj, url_name) if bundle_or_obj is not None and uri: get_params = get_obj(bundle_or_obj).get_params.copy() if "offset" not in get_params: get_params["offset"] = 0 if "limit" not in get_params: get_params["limit"] = self.LIMIT_DEFAULT uri += "?{}".format(get_params.urlencode()) return uri class Meta(CustomResourceMeta): authentication = RequirePermissionAuthentication(Permissions.view_reports, allow_session_auth=True) list_allowed_methods = [] detail_allowed_methods = ["get"] class SimpleReportConfigurationResource(CouchResourceMixin, HqBaseResource, DomainSpecificResourceMixin): id = fields.CharField(attribute='get_id', readonly=True, unique=True) title = fields.CharField(readonly=True, attribute="title", null=True) filters = fields.ListField(readonly=True) columns = fields.ListField(readonly=True) def dehydrate_filters(self, bundle): obj_filters = bundle.obj.filters return [{ "type": f["type"], "datatype": f["datatype"], "slug": f["slug"] } for f in obj_filters] def dehydrate_columns(self, bundle): obj_columns = bundle.obj.columns return [{ "column_id": c['column_id'], "display": c['display'], "type": c["type"], } for c in obj_columns] def obj_get(self, bundle, **kwargs): domain = kwargs['domain'] pk = kwargs['pk'] try: report_configuration = get_document_or_404(ReportConfiguration, domain, pk) except Http404 as e: raise NotFound(str(e)) return report_configuration def obj_get_list(self, bundle, **kwargs): domain = kwargs['domain'] return ReportConfiguration.by_domain(domain) def detail_uri_kwargs(self, bundle_or_obj): return { 'domain': get_obj(bundle_or_obj).domain, 'pk': get_obj(bundle_or_obj)._id, } class Meta(CustomResourceMeta): list_allowed_methods = ["get"] detail_allowed_methods = ["get"] paginator_class = DoesNothingPaginator UserDomain = namedtuple('UserDomain', 'domain_name project_name') UserDomain.__new__.__defaults__ = ('', '') class UserDomainsResource(CorsResourceMixin, Resource): domain_name = fields.CharField(attribute='domain_name') project_name = fields.CharField(attribute='project_name') class Meta(object): resource_name = 'user_domains' authentication = LoginAuthentication(allow_session_auth=True) object_class = UserDomain include_resource_uri = False def dispatch_list(self, request, **kwargs): try: return super(UserDomainsResource, self).dispatch_list(request, **kwargs) except ImmediateHttpResponse as immediate_http_response: if isinstance(immediate_http_response.response, HttpUnauthorized): raise ImmediateHttpResponse( response=HttpUnauthorized( content='Username or API Key is incorrect', content_type='text/plain' ) ) else: raise def obj_get_list(self, bundle, **kwargs): return self.get_object_list(bundle.request) def get_object_list(self, request): couch_user = CouchUser.from_django_user(request.user) results = [] for domain in couch_user.get_domains(): if not domain_has_privilege(domain, privileges.ZAPIER_INTEGRATION): continue domain_object = Domain.get_by_name(domain) results.append(UserDomain( domain_name=domain_object.name, project_name=domain_object.hr_name or domain_object.name )) return results class IdentityResource(CorsResourceMixin, Resource): id = fields.CharField(attribute='get_id', readonly=True) username = fields.CharField(attribute='username', readonly=True) first_name = fields.CharField(attribute='first_name', readonly=True) last_name = fields.CharField(attribute='last_name', readonly=True) email = fields.CharField(attribute='email', readonly=True) def obj_get_list(self, bundle, **kwargs): return [bundle.request.couch_user] class Meta(object): resource_name = 'identity' authentication = LoginAuthentication() serializer = ListToSingleObjectSerializer() detail_allowed_methods = [] list_allowed_methods = ['get'] object_class = CouchUser include_resource_uri = False Form = namedtuple('Form', 'form_xmlns form_name') Form.__new__.__defaults__ = ('', '') class DomainForms(Resource): """ Returns: list of forms for a given domain with form name formatted for display in Zapier """ form_xmlns = fields.CharField(attribute='form_xmlns') form_name = fields.CharField(attribute='form_name') class Meta(object): resource_name = 'domain_forms' authentication = RequirePermissionAuthentication(Permissions.access_api) object_class = Form include_resource_uri = False allowed_methods = ['get'] limit = 200 max_limit = 1000 def obj_get_list(self, bundle, **kwargs): application_id = bundle.request.GET.get('application_id') if not application_id: raise NotFound('application_id parameter required') results = [] application = Application.get(docid=application_id) if not application: return [] forms_objects = application.get_forms(bare=False) for form_object in forms_objects: form = form_object['form'] module = form_object['module'] form_name = '{} > {} > {}'.format(application.name, module.default_name(), form.default_name()) results.append(Form(form_xmlns=form.xmlns, form_name=form_name)) return results # Zapier requires id and name; case_type has no obvious id, placeholder inserted instead. CaseType = namedtuple('CaseType', 'case_type placeholder') CaseType.__new__.__defaults__ = ('', '') class DomainCases(Resource): """ Returns: list of case types for a domain Note: only returns case types for which at least one case has been made """ placeholder = fields.CharField(attribute='placeholder') case_type = fields.CharField(attribute='case_type') class Meta(object): resource_name = 'domain_cases' authentication = RequirePermissionAuthentication(Permissions.access_api) object_class = CaseType include_resource_uri = False allowed_methods = ['get'] limit = 100 max_limit = 1000 def obj_get_list(self, bundle, **kwargs): domain = kwargs['domain'] case_types = get_case_types_for_domain_es(domain) results = [CaseType(case_type=case_type) for case_type in case_types] return results UserInfo = namedtuple('UserInfo', 'user_id user_name') UserInfo.__new__.__defaults__ = ('', '') class DomainUsernames(Resource): """ Returns: list of usernames for a domain. """ user_id = fields.CharField(attribute='user_id') user_name = fields.CharField(attribute='user_name') class Meta(object): resource_name = 'domain_usernames' authentication = RequirePermissionAuthentication(Permissions.view_commcare_users) object_class = User include_resource_uri = False allowed_methods = ['get'] def obj_get_list(self, bundle, **kwargs): domain = kwargs['domain'] user_ids_username_pairs = get_all_user_id_username_pairs_by_domain(domain) results = [UserInfo(user_id=user_pair[0], user_name=raw_username(user_pair[1])) for user_pair in user_ids_username_pairs] return results class BaseODataResource(HqBaseResource, DomainSpecificResourceMixin): config_id = None table_id = None def dispatch(self, request_type, request, **kwargs): if not domain_has_privilege(request.domain, privileges.ODATA_FEED): raise ImmediateHttpResponse( response=HttpResponseNotFound('Feature flag not enabled.') ) self.config_id = kwargs['config_id'] self.table_id = int(kwargs.get('table_id', 0)) with TimingContext() as timer: response = super(BaseODataResource, self).dispatch( request_type, request, **kwargs ) record_feed_access_in_datadog(request, self.config_id, timer.duration, response) return response def create_response(self, request, data, response_class=HttpResponse, **response_kwargs): data['domain'] = request.domain data['config_id'] = self.config_id data['api_path'] = request.path data['table_id'] = self.table_id response = super(BaseODataResource, self).create_response( request, data, response_class, **response_kwargs) return add_odata_headers(response) def detail_uri_kwargs(self, bundle_or_obj): # Not sure why this is required but the feed 500s without it return { 'pk': get_obj(bundle_or_obj)['_id'] } def determine_format(self, request): # Results should be sent as JSON return 'application/json' @location_safe class ODataCaseResource(BaseODataResource): def obj_get_list(self, bundle, domain, **kwargs): config = get_document_or_404(CaseExportInstance, domain, self.config_id) if raise_odata_permissions_issues(bundle.request.couch_user, domain, config): raise ImmediateHttpResponse( HttpForbidden(ugettext_noop( "You do not have permission to view this feed." )) ) query = get_case_export_base_query(domain, config.case_type) for filter in config.get_filters(): query = query.filter(filter.to_es_filter()) if not bundle.request.couch_user.has_permission( domain, 'access_all_locations' ): query = query_location_restricted_cases(query, bundle.request) return query class Meta(v0_4.CommCareCaseResource.Meta): authentication = ODataAuthentication() resource_name = 'odata/cases' serializer = ODataCaseSerializer() limit = 2000 max_limit = 10000 def prepend_urls(self): return [ url(r"^(?P<resource_name>{})/(?P<config_id>[\w\d_.-]+)/(?P<table_id>[\d]+)/feed".format( self._meta.resource_name), self.wrap_view('dispatch_list')), url(r"^(?P<resource_name>{})/(?P<config_id>[\w\d_.-]+)/feed".format( self._meta.resource_name), self.wrap_view('dispatch_list')), ] @location_safe class ODataFormResource(BaseODataResource): def obj_get_list(self, bundle, domain, **kwargs): config = get_document_or_404(FormExportInstance, domain, self.config_id) if raise_odata_permissions_issues(bundle.request.couch_user, domain, config): raise ImmediateHttpResponse( HttpForbidden(ugettext_noop( "You do not have permission to view this feed." )) ) query = get_form_export_base_query(domain, config.app_id, config.xmlns, include_errors=False) for filter in config.get_filters(): query = query.filter(filter.to_es_filter()) if not bundle.request.couch_user.has_permission( domain, 'access_all_locations' ): query = query_location_restricted_forms(query, bundle.request) return query class Meta(v0_4.XFormInstanceResource.Meta): authentication = ODataAuthentication() resource_name = 'odata/forms' serializer = ODataFormSerializer() limit = 2000 max_limit = 10000 def prepend_urls(self): return [ url(r"^(?P<resource_name>{})/(?P<config_id>[\w\d_.-]+)/(?P<table_id>[\d]+)/feed".format( self._meta.resource_name), self.wrap_view('dispatch_list')), url(r"^(?P<resource_name>{})/(?P<config_id>[\w\d_.-]+)/feed".format( self._meta.resource_name), self.wrap_view('dispatch_list')), ] class MessagingEventResource(HqBaseResource, ModelResource): class Meta(object): queryset = MessagingEvent.objects.all() list_allowed_methods = ['get'] detail_allowed_methods = ['get'] resource_name = 'messaging-event' authentication = RequirePermissionAuthentication(Permissions.edit_data) authorization = DomainAuthorization() paginator_class = NoCountingPaginator filtering = { # this is needed for the domain filtering but any values passed in via the URL get overridden "domain": ('exact',), "date": ('exact', 'gt', 'gte', 'lt', 'lte', 'range'), "source": ('exact',), "content_type": ('exact',), "status": ('exact',), } ordering = [ 'date', ]
the-stack_0_7178
from shared import readAssets def doExtract(args): print("Larkstongue v0.0.1-alpha") def readGfx(): readLine = line.strip("\n") if len(readLine) > 0: areaGfx.append(readLine) def readGff(): readLine = line.strip("\n") if len(readLine) > 0: areaGff.append(readLine) def readMap(): readLine = line.strip("\n") if len(readLine) > 0: areaMap.append(readLine) def readSfx(): readLine = line.strip("\n") if len(readLine) > 0: encodedLine = "" header = readLine[:8] for i in range(8, len(readLine), 5): pitchHex = readLine[i : i + 2] waveformHex = readLine[i + 2] volumeHex = readLine[i + 3] effectHex = readLine[i + 4] pitchDec = int(pitchHex, 16) pitchBinary = format(pitchDec, "06b") waveformDec = int(waveformHex, 16) waveformBinary = format(waveformDec, "04b") instrumentBit = waveformBinary[0] waveformBinary = waveformBinary[1:] volumeDec = int(volumeHex, 16) volumeBinary = format(volumeDec, "03b") effectDec = int(effectHex, 16) effectBinary = format(effectDec, "03b") noteBinary = waveformBinary[1:] + pitchBinary + instrumentBit + effectBinary + volumeBinary + waveformBinary[0] noteDec = int(noteBinary, 2) noteHex = format(noteDec, "04x") encodedLine = encodedLine + noteHex encodedLine = encodedLine + header areaSfx.append(encodedLine) def readMusic(): readLine = line.strip("\n") if len(readLine) > 0: flagHex = readLine[1] flagDec = int(flagHex, 16) flagBinary = format(flagDec, "04b") channelsHex = [] for i in range(3, len(readLine), 2): channelsHex.append(readLine[i : i+2]) encodedBinary = [] for i in range(3, -1, -1): encodedBinary.append(flagBinary[i]) encodedLine = "" for i in range(0, 4): channelDec = int(channelsHex[i], 16) channelBinary = format(channelDec, "07b") encodedBinary[i] = encodedBinary[i] + channelBinary encodedDec = int(encodedBinary[i], 2) encodedHex = format(encodedDec, "02x") encodedLine = encodedLine + encodedHex areaMusic.append(encodedLine) def cropBitmap(): if len(areaGfx) == 0: print("Bitmap not found on cart!") quit() cropScanline = "" while len(cropScanline) < 128: cropScanline += args.bgcolor while areaGfx[0] == cropScanline: areaGfx.pop(0) while areaGfx[-1] == cropScanline: areaGfx.pop(-1) marginFound = False for leftMargin in range(0, 127): for y in range(0, len(areaGfx)): if areaGfx[y][leftMargin] != args.bgcolor: marginFound = True break if marginFound == True: break marginFound = False for rightMargin in range(128, 0, -1): for y in range(0, len(areaGfx)): if areaGfx[y][rightMargin - 1] != args.bgcolor: marginFound = True break if marginFound == True: break cropWidth = rightMargin - leftMargin if cropWidth % 2 != 0: if rightMargin < 128: rightMargin += 1 else: leftMargin -= 1 for i in range(0, len(areaGfx)): areaGfx[i] = areaGfx[i][leftMargin : rightMargin] def swapGfxNibbles(): for i in range(0, len(areaGfx)): line = areaGfx[i] swappedLine = "" for j in range(0, len(line), 2): swappedLine += line[j + 1] + line[j] areaGfx[i] = swappedLine def writeBitmap(): for line in areaGfx: outputFile.write("bitmap=" + line + "\n") def areaToString(areaID): if areaID == "gfx": readArea = areaGfx areaLength = 16384 elif areaID == "gff": readArea = areaGff areaLength = 512 elif areaID == "map": readArea = areaMap areaLength = 8192 elif areaID == "sfx": readArea = areaSfx areaLength = 8704 elif areaID == "music": readArea = areaMusic areaLength = 512 outputString = "" for line in readArea: outputString += line while len(outputString) < areaLength: if readArea == areaMusic: outputString += "40" else: outputString += "0" return outputString def writeSoundtrack(): fullString = "" fullString += areaToString("music") fullString += areaToString("sfx") outputFile.write("data=" + fullString + "\n") def writeAllData(): fullString = "" fullString += areaToString("gfx") fullString += areaToString("map") fullString += areaToString("gff") fullString += areaToString("music") fullString += areaToString("sfx") outputFile.write("data=" + fullString + "\n") areaGfx = [] areaGff = [] areaMap = [] areaSfx = [] areaMusic = [] try: file = open(args.input, "r") except FileNotFoundError: print(args.input + " not found!") quit() cartContent = file.readlines() file.close() if args.source == "bitmap": acceptedBgColorInputs = "0123456789abcdef" if len(args.bgcolor) != 1 or args.bgcolor not in acceptedBgColorInputs: print("Error: Background color input must be a single hexadecimal digit in lowercase!") quit() readMode = 0 readModes = { 1: readGfx, 2: readGff, 3: readMap, 4: readSfx, 5: readMusic } for line in cartContent: if len(line) > 1: if line.startswith("__gfx__") and args.source in ["bitmap", "gfx", "all"]: readMode = 1 elif line.startswith("__gff__") and args.source in ["gff", "all"]: readMode = 2 elif line.startswith("__map__") and args.source in ["map", "all"]: readMode = 3 elif line.startswith("__sfx__") and args.source in ["soundtrack", "sfx", "all"]: readMode = 4 elif line.startswith("__music__") and args.source in ["soundtrack", "music", "all"]: readMode = 5 elif line.startswith("__label__"): readMode = 0 elif readMode != 0: readModes[readMode]() if args.source == "bitmap": cropBitmap() elif len(areaGfx) > 0: swapGfxNibbles() assetList = readAssets(args.output, False) dupeFound = False for asset in assetList: if asset.name == args.assetname: dupeFound = True if dupeFound: print("An asset named \"" + args.assetname + "\" already found in " + args.output + ", overwrite?") while True: userInput = input("(y/n): ") if userInput == "y": break if userInput == "n": print("Extract cancelled!") quit() assetList = list(filter(lambda a: a.name != args.assetname, assetList)) try: outputFile = open(args.output, "w") except PermissionError: print("Error! Cannot write to " + args.output + " due to a permission error") for a in assetList: outputFile.write("name=" + a.name + "\n") if a.bitmap != None: for line in a.bitmap: outputFile.write("bitmap=" + line + "\n") if a.data != None: outputFile.write("data=" + a.data + "\n") outputFile.write("-\n") outputFile.write("name=" + args.assetname + "\n") if args.source == "bitmap": writeBitmap() elif args.source == "soundtrack": writeSoundtrack() elif args.source == "all": writeAllData() else: outputString = areaToString(args.source) outputFile.write("data=" + outputString + "\n") outputFile.write("-\n") outputFile.close print("Asset extracted successfully!")
the-stack_0_7179
import logging import pandas as pd from bots import imps from openbb_terminal.decorators import log_start_end from openbb_terminal.economy import wsj_model logger = logging.getLogger(__name__) @log_start_end(log=logger) def futures_coms_command(): """Futures and commodities overview [Wall St. Journal]""" # Debug user input if imps.DEBUG: logger.debug("econ-futures") # Retrieve data df = wsj_model.top_commodities() # Check for argument if df.empty: raise Exception("No available data found") df["Last Price"] = pd.to_numeric(df["Price"].astype(float)) df["Change"] = pd.to_numeric(df["Chg"].astype(float)) df["%Chg"] = pd.to_numeric(df["%Chg"].astype(float)) # Debug user output if imps.DEBUG: logger.debug(df.to_string()) formats = { "Last Price": "${:.2f}", "Change": "${:.2f}", "%Chg": "<b>{:.2f}%</b>", } for col, value in formats.items(): df[col] = df[col].map(lambda x: value.format(x)) # pylint: disable=W0640 df["Change"] = df.apply(lambda x: f"{x['Change']} (<b>{x['%Chg']}</b>)", axis=1) df = df.fillna("") df.set_index(" ", inplace=True) font_color = ["white"] * 2 + [ ["#e4003a" if boolv else "#00ACFF" for boolv in df["%Chg"].str.contains("-")] ] df = df.drop(columns=["Price", "Chg", "%Chg"]) fig = imps.plot_df( df, fig_size=(620, (40 + (40 * len(df.index)))), col_width=[4, 2.4, 3], tbl_header=imps.PLT_TBL_HEADER, tbl_cells=imps.PLT_TBL_CELLS, font=imps.PLT_TBL_FONT, row_fill_color=imps.PLT_TBL_ROW_COLORS, paper_bgcolor="rgba(0, 0, 0, 0)", ) fig.update_traces( cells=( dict( align=["center", "right"], font=dict(color=font_color), ) ) ) imagefile = imps.save_image("econ-futures.png", fig) return {"title": "Economy: [WSJ] Futures/Commodities", "imagefile": imagefile}
the-stack_0_7180
"""Support for Tasmota lights.""" from hatasmota.light import ( LIGHT_TYPE_COLDWARM, LIGHT_TYPE_NONE, LIGHT_TYPE_RGB, LIGHT_TYPE_RGBCW, LIGHT_TYPE_RGBW, ) from homeassistant.components import light from homeassistant.components.light import ( ATTR_BRIGHTNESS, ATTR_COLOR_TEMP, ATTR_EFFECT, ATTR_HS_COLOR, ATTR_TRANSITION, ATTR_WHITE_VALUE, SUPPORT_BRIGHTNESS, SUPPORT_COLOR, SUPPORT_COLOR_TEMP, SUPPORT_EFFECT, SUPPORT_TRANSITION, SUPPORT_WHITE_VALUE, LightEntity, ) from homeassistant.core import callback from homeassistant.helpers.dispatcher import async_dispatcher_connect import homeassistant.util.color as color_util from .const import DATA_REMOVE_DISCOVER_COMPONENT, DOMAIN as TASMOTA_DOMAIN from .discovery import TASMOTA_DISCOVERY_ENTITY_NEW from .mixins import TasmotaAvailability, TasmotaDiscoveryUpdate DEFAULT_BRIGHTNESS_MAX = 255 TASMOTA_BRIGHTNESS_MAX = 100 async def async_setup_entry(hass, config_entry, async_add_entities): """Set up Tasmota light dynamically through discovery.""" @callback def async_discover(tasmota_entity, discovery_hash): """Discover and add a Tasmota light.""" async_add_entities( [TasmotaLight(tasmota_entity=tasmota_entity, discovery_hash=discovery_hash)] ) hass.data[ DATA_REMOVE_DISCOVER_COMPONENT.format(light.DOMAIN) ] = async_dispatcher_connect( hass, TASMOTA_DISCOVERY_ENTITY_NEW.format(light.DOMAIN, TASMOTA_DOMAIN), async_discover, ) class TasmotaLight( TasmotaAvailability, TasmotaDiscoveryUpdate, LightEntity, ): """Representation of a Tasmota light.""" def __init__(self, **kwds): """Initialize Tasmota light.""" self._state = False self._supported_features = 0 self._brightness = None self._color_temp = None self._effect = None self._hs = None self._white_value = None self._flash_times = None super().__init__( discovery_update=self.discovery_update, **kwds, ) self._setup_from_entity() async def discovery_update(self, update, write_state=True): """Handle updated discovery message.""" await super().discovery_update(update, write_state=False) self._setup_from_entity() self.async_write_ha_state() def _setup_from_entity(self): """(Re)Setup the entity.""" supported_features = 0 light_type = self._tasmota_entity.light_type if light_type != LIGHT_TYPE_NONE: supported_features |= SUPPORT_BRIGHTNESS supported_features |= SUPPORT_TRANSITION if light_type in [LIGHT_TYPE_COLDWARM, LIGHT_TYPE_RGBCW]: supported_features |= SUPPORT_COLOR_TEMP if light_type in [LIGHT_TYPE_RGB, LIGHT_TYPE_RGBW, LIGHT_TYPE_RGBCW]: supported_features |= SUPPORT_COLOR supported_features |= SUPPORT_EFFECT if light_type in [LIGHT_TYPE_RGBW, LIGHT_TYPE_RGBCW]: supported_features |= SUPPORT_WHITE_VALUE self._supported_features = supported_features @callback def state_updated(self, state, **kwargs): """Handle state updates.""" self._state = state attributes = kwargs.get("attributes") if attributes: if "brightness" in attributes: brightness = float(attributes["brightness"]) percent_bright = brightness / TASMOTA_BRIGHTNESS_MAX self._brightness = percent_bright * 255 if "color" in attributes: color = attributes["color"] self._hs = color_util.color_RGB_to_hs(*color) if "color_temp" in attributes: self._color_temp = attributes["color_temp"] if "effect" in attributes: self._effect = attributes["effect"] if "white_value" in attributes: white_value = float(attributes["white_value"]) percent_white = white_value / TASMOTA_BRIGHTNESS_MAX self._white_value = percent_white * 255 self.async_write_ha_state() @property def brightness(self): """Return the brightness of this light between 0..255.""" return self._brightness @property def color_temp(self): """Return the color temperature in mired.""" return self._color_temp @property def min_mireds(self): """Return the coldest color_temp that this light supports.""" return self._tasmota_entity.min_mireds @property def max_mireds(self): """Return the warmest color_temp that this light supports.""" return self._tasmota_entity.max_mireds @property def effect(self): """Return the current effect.""" return self._effect @property def effect_list(self): """Return the list of supported effects.""" return self._tasmota_entity.effect_list @property def hs_color(self): """Return the hs color value.""" return self._hs @property def white_value(self): """Return the white property.""" return self._white_value @property def is_on(self): """Return true if device is on.""" return self._state @property def supported_features(self): """Flag supported features.""" return self._supported_features async def async_turn_on(self, **kwargs): """Turn the entity on.""" supported_features = self._supported_features attributes = {} if ATTR_HS_COLOR in kwargs and supported_features & SUPPORT_COLOR: hs_color = kwargs[ATTR_HS_COLOR] attributes["color"] = {} rgb = color_util.color_hsv_to_RGB(hs_color[0], hs_color[1], 100) attributes["color"] = [rgb[0], rgb[1], rgb[2]] if ATTR_TRANSITION in kwargs: attributes["transition"] = kwargs[ATTR_TRANSITION] if ATTR_BRIGHTNESS in kwargs and supported_features & SUPPORT_BRIGHTNESS: brightness_normalized = kwargs[ATTR_BRIGHTNESS] / DEFAULT_BRIGHTNESS_MAX device_brightness = min( round(brightness_normalized * TASMOTA_BRIGHTNESS_MAX), TASMOTA_BRIGHTNESS_MAX, ) # Make sure the brightness is not rounded down to 0 device_brightness = max(device_brightness, 1) attributes["brightness"] = device_brightness if ATTR_COLOR_TEMP in kwargs and supported_features & SUPPORT_COLOR_TEMP: attributes["color_temp"] = int(kwargs[ATTR_COLOR_TEMP]) if ATTR_EFFECT in kwargs: attributes["effect"] = kwargs[ATTR_EFFECT] if ATTR_WHITE_VALUE in kwargs: white_value_normalized = kwargs[ATTR_WHITE_VALUE] / DEFAULT_BRIGHTNESS_MAX device_white_value = min( round(white_value_normalized * TASMOTA_BRIGHTNESS_MAX), TASMOTA_BRIGHTNESS_MAX, ) attributes["white_value"] = device_white_value self._tasmota_entity.set_state(True, attributes) async def async_turn_off(self, **kwargs): """Turn the entity off.""" attributes = {"state": "OFF"} if ATTR_TRANSITION in kwargs: attributes["transition"] = kwargs[ATTR_TRANSITION] self._tasmota_entity.set_state(False, attributes)
the-stack_0_7181
#!/usr/bin/env python # This is a helper used by `update-pdfjs` to update the Mustache template for # serving PDFs with PDFJS with the local dev server. import os import sys # Header to insert at the top of the generated PDF.js viewer template FILE_HEADER = """ <!-- AUTO-GENERATED BY {}. DO NOT EDIT. --> """.format( sys.argv[0] ) # Header to insert after the original `<title>` tag in the PDF viewer HTML # mustache template. # # This header is responsible for: # # - Adding a `<base>` tag so that relative URLs in the pre-built viewer HTML # resolve to the right URL. # - Injecting custom PDF.js viewer configuration # - Injecting the Hypothesis client entry point and configuration # # The header needs to be inserted after the `<title>` tag so we can override it, # but before any relative asset links which will be affected by the `<base>` # tag. # HYPOTHESIS_HEADER = """ <!-- Begin Hypothesis modifications --> <base href="/scripts/pdfjs/web/"> <title>via Hypothesis</title> <!-- It's worth noting that this link tag is *not* currently used by the Hypothesis client to determine the URL of this page. For consistency with how these pages are served on via, however, we serve it with the PDF.js viewer application. --> <link rel="canonical" href="{{{ documentUrl }}}"/> <script> window.DOCUMENT_URL = '{{{documentUrl}}}'; window.PDF_URL = '{{{ url }}}'; window.CLIENT_URL = '{{{clientUrl}}}'.replace('{current_host}', document.location.hostname); </script> <script src="/scripts/pdfjs-init.js"></script> <!-- Configure Hypothesis client. --> {{{hypothesisConfig}}} <!-- End Hypothesis modifications --> """ def insert_after(str_, search_str, insert_str): return str_.replace(search_str, search_str + insert_str) input_file_path = sys.argv[1] output_file_path = sys.argv[2] input_file = open(input_file_path, "r") output_file = open(output_file_path, "w") base_dir = os.path.dirname(input_file_path) viewer_html = input_file.read() viewer_html = insert_after(viewer_html, "<!DOCTYPE html>", FILE_HEADER) viewer_html = insert_after( viewer_html, "</title>", HYPOTHESIS_HEADER.replace("$BASEDIR", base_dir) ) output_file.write(viewer_html)
the-stack_0_7182
""" Simple Python class to access the JLR Remote Car API https://github.com/ardevd/jlrpy """ from urllib.request import Request, build_opener import json import datetime import calendar import uuid import time class Connection(object): """Connection to the JLR Remote Car API""" def __init__(self, email='', password='', device_id='', ): """Init the connection object The email address and password associated with your Jaguar InControl account is required. """ self.email = email if device_id: self.device_id = device_id else: self.device_id = str(uuid.uuid4()) self.oauth = { "grant_type": "password", "username": email, "password": password} self.expiration = 0 # force credential refresh self.connect() self.vehicles = [] try: for v in self.get_vehicles(self.head)['vehicles']: self.vehicles.append(Vehicle(v, self)) except TypeError: print("[-] No vehicles associated with this account") def get(self, command, url, headers): """GET data from API""" return self.post(command, url, headers, None) def post(self, command, url, headers, data=None): """POST data to API""" now = calendar.timegm(datetime.datetime.now().timetuple()) if now > self.expiration: # Auth expired, reconnect self.connect() return self.__open("%s/%s" % (url, command), headers=headers, data=data) def connect(self): print("[*] Connecting...") auth = self.__authenticate(data=self.oauth) self.__register_auth(auth) print("[*] 1/3 authenticated") self.__setheader(auth['access_token'], auth['expires_in']) self.__register_device(self.head) print("[*] 2/3 device id registered") self.__login_user(self.head) print("[*] 3/3 user logged in, user id retrieved") def __open(self, url, headers=None, data=None): req = Request(url, headers=headers) if data: req.data = bytes(json.dumps(data), encoding="utf8") opener = build_opener() resp = opener.open(req) charset = resp.info().get('charset', 'utf-8') return json.loads(resp.read().decode(charset)) def __register_auth(self, auth): self.access_token = auth['access_token'] now = calendar.timegm(datetime.datetime.now().timetuple()) self.expiration = now + int(auth['expires_in']) self.auth_token = auth['authorization_token'] self.refresh_token = auth['refresh_token'] def __setheader(self, access_token, expiration=float('inf')): """Set HTTP header fields""" self.head = { "Authorization": "Bearer %s" % access_token, "X-Device-Id": self.device_id, "Content-Type": "application/json"} def __authenticate(self, data=None): """Raw urlopen command to the auth url""" url = "https://jlp-ifas.wirelesscar.net/ifas/jlr/tokens" auth_headers = { "Authorization": "Basic YXM6YXNwYXNz", "Content-Type": "application/json", "X-Device-Id": self.device_id} req = Request(url, headers=auth_headers) # Convert data to json req.data = bytes(json.dumps(data), encoding="utf8") opener = build_opener() resp = opener.open(req) charset = resp.info().get('charset', 'utf-8') return json.loads(resp.read().decode(charset)) def __register_device(self, headers=None): """Register the device Id""" url = "https://jlp-ifop.wirelesscar.net/ifop/jlr/users/%s/clients" % self.email data = { "access_token": self.access_token, "authorization_token": self.auth_token, "expires_in": "86400", "deviceID": self.device_id } req = Request(url, headers=headers) req.data = bytes(json.dumps(data), encoding="utf8") opener = build_opener() resp = opener.open(req) # TODO: Check for response code def __login_user(self, headers=None): """Login the user""" url = "https://jlp-ifoa.wirelesscar.net/if9/jlr/users?loginName=%s" % self.email user_login_header = headers.copy() user_login_header["Accept"] = "application/vnd.wirelesscar.ngtp.if9.User-v3+json" req = Request(url, headers=user_login_header) opener = build_opener() resp = opener.open(req) charset = resp.info().get('charset', 'utf-8') """Register user id""" userdata = json.loads(resp.read().decode(charset)) self.user_id = userdata['userId'] return userdata def get_vehicles(self, headers): """Get vehicles for user""" url = "https://jlp-ifoa.wirelesscar.net/if9/jlr/users/%s/vehicles?primaryOnly=true" % self.user_id req = Request(url, headers=headers) opener = build_opener() resp = opener.open(req) charset = resp.info().get('charset', 'utf-8') return json.loads(resp.read().decode(charset)) def get_user_info(self): """Get user information""" return self.get(self.user_id, "https://jlp-ifoa.wirelesscar.net/if9/jlr/users", self.head) class Vehicle(dict): """Vehicle class. You can request data or send commands to vehicle. Consult the JLR API documentation for details """ def __init__(self, data, connection): """Initialize the vehicle class.""" super().__init__(data) self.connection = connection self.vin = data['vin'] # Authentiate to VHS self.__authenticate_vhs() def get_attributes(self): """Get vehicle attributes""" headers = self.connection.head.copy() headers["Accept"] = "application/vnd.ngtp.org.VehicleAttributes-v3+json" result = self.get('attributes', headers) return result def get_status(self): """Get vehicle status""" headers = self.connection.head.copy() headers["Accept"] = "application/vnd.ngtp.org.if9.healthstatus-v2+json" result = self.get('status', headers) return result def get_health_status(self): """Get vehicle health status""" headers = self.connection.head.copy() headers["Accept"] = "application/vnd.wirelesscar.ngtp.if9.ServiceStatus-v4+json" headers["Content-Type"] = "application/vnd.wirelesscar.ngtp.if9.StartServiceConfiguration-v3+json; charset=utf-8" return self.post('healthstatus', headers, self.vhs_data) def get_departure_timers(self): """Get vehicle departure timers""" headers = self.connection.head.copy() headers["Accept"] = "application/vnd.wirelesscar.ngtp.if9.DepartureTimerSettings-v1+json" return self.get("departuretimers", headers) def get_wakeup_time(self): """Get configured wakeup time for vehicle""" headers = self.connection.head.copy() headers["Accept"] = "application/vnd.wirelesscar.ngtp.if9.VehicleWakeupTime-v2+json" return self.get("wakeuptime", headers) def get_subscription_packages(self): """Get vehicle status""" result = self.get('subscriptionpackages', self.connection.head) return result def get_trips(self): """Get the last 1000 trips associated with vehicle""" return self.get('trips?count=1000', self.connection.head) def get_position(self): """Get current vehicle position""" return self.get('position', self.connection.head) def honk_blink(self): """Sound the horn and blink lights""" headers = self.connection.head.copy() headers["Accept"] = "application/vnd.wirelesscar.ngtp.if9.ServiceStatus-v4+json" headers["Content-Type"] = "application/vnd.wirelesscar.ngtp.if9.StartServiceConfiguration-v3+json; charset=utf-8" return self.post("honkBlink", headers, self.vhs_data) def __authenticate_vhs(self): """Authenticate to vhs and get token""" data = { "serviceName": "VHS", "pin": ""} headers = self.connection.head.copy() headers["Content-Type"] = "application/vnd.wirelesscar.ngtp.if9.AuthenticateRequest-v2+json; charset=utf-8" vhs_auth_data = self.post("users/%s/authenticate" % self.connection.user_id, headers, data) self.vhs_data = { "token": vhs_auth_data['token']} def post(self, command, headers, data): """Utility command to post data to VHS""" return self.connection.post(command, 'https://jlp-ifoa.wirelesscar.net/if9/jlr/vehicles/%s' % self.vin, headers, data) def get(self, command, headers): """Utility command to get vehicle data from API""" return self.connection.get(command, 'https://jlp-ifoa.wirelesscar.net/if9/jlr/vehicles/%s' % self.vin, headers)
the-stack_0_7183
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # python3 """BC networks definition.""" import dataclasses from typing import Optional, Tuple from acme import specs from acme.agents.jax import actor_core, actors from acme.jax import networks as networks_lib from acme.jax import utils import gin import haiku as hk import jax import jax.numpy as jnp import numpy as np from jrl.utils.networks import procgen_networks distributional = networks_lib.distributional atari = networks_lib.atari @dataclasses.dataclass class BCNetworks: """Network and pure functions for the BC agent.""" policy_network: networks_lib.FeedForwardNetwork log_prob: networks_lib.LogProbFn sample: networks_lib.SampleFn sample_eval: Optional[networks_lib.SampleFn] = None img_encoder: Optional[networks_lib.FeedForwardNetwork] = None def apply_policy_and_sample( networks, eval_mode = False): """Returns a function that computes actions.""" sample_fn = networks.sample if not eval_mode else networks.sample_eval if not sample_fn: raise ValueError('sample function is not provided') def apply_and_sample(params, key, obs): return sample_fn(networks.policy_network.apply(params, obs), key) return actor_core.batched_feed_forward_to_actor_core(apply_and_sample) def apply_policy_and_sample_with_img_encoder( networks, eval_mode = False): """Returns a function that computes actions.""" sample_fn = networks.sample if not eval_mode else networks.sample_eval if not sample_fn: raise ValueError('sample function is not provided') def apply_and_sample(params, key, obs): img = obs['state_image'] img_embedding = networks.img_encoder.apply(params[1], img) x = dict(state_image=img_embedding, state_dense=obs['state_dense']) return sample_fn(networks.policy_network.apply(params[0], x), key) return actor_core.batched_feed_forward_to_actor_core(apply_and_sample) w_init = hk.initializers.VarianceScaling(1.0, "fan_avg", "truncated_normal") b_init = jnp.zeros dist_w_init = hk.initializers.VarianceScaling(1.0, "fan_avg", "truncated_normal") dist_b_init = jnp.zeros @gin.register def build_standard_actor_fn( num_dimensions, actor_hidden_layer_sizes = (256, 256, 256),): def _actor_fn(obs): # # for matching Ilya's codebase # relu_orthogonal = hk.initializers.Orthogonal(scale=2.0**0.5) # near_zero_orthogonal = hk.initializers.Orthogonal(1e-2) # x = obs # for hid_dim in actor_hidden_layer_sizes: # x = hk.Linear(hid_dim, w_init=relu_orthogonal, b_init=jnp.zeros)(x) # x = jax.nn.relu(x) # dist = networks_lib.NormalTanhDistribution( # num_dimensions, # w_init=near_zero_orthogonal, # b_init=jnp.zeros)(x) # return dist network = hk.Sequential([ hk.nets.MLP( list(actor_hidden_layer_sizes), # w_init=hk.initializers.VarianceScaling(1.0, 'fan_in', 'uniform'), # w_init=hk.initializers.VarianceScaling(1.0, "fan_avg", "truncated_normal"), w_init=w_init, b_init=b_init, activation=jax.nn.relu, activate_final=True), # networks_lib.NormalTanhDistribution(num_dimensions), networks_lib.NormalTanhDistribution( num_dimensions, w_init=dist_w_init, b_init=dist_b_init, min_scale=1e-2, ), ]) return network(obs) return _actor_fn def make_networks( spec, build_actor_fn=build_standard_actor_fn, img_encoder_fn=None, ): """Creates networks used by the agent.""" # Create dummy observations and actions to create network parameters. dummy_action = utils.zeros_like(spec.actions) dummy_obs = utils.zeros_like(spec.observations) dummy_action = utils.add_batch_dim(dummy_action) dummy_obs = utils.add_batch_dim(dummy_obs) if isinstance(spec.actions, specs.DiscreteArray): num_dimensions = spec.actions.num_values # _actor_fn = procgen_networks.build_procgen_actor_fn(num_dimensions) else: num_dimensions = np.prod(spec.actions.shape, dtype=int) _actor_fn = build_actor_fn(num_dimensions) if img_encoder_fn is not None: img_encoder = hk.without_apply_rng( hk.transform(img_encoder_fn, apply_rng=True)) key = jax.random.PRNGKey(seed=42) temp_encoder_params = img_encoder.init(key, dummy_obs['state_image']) dummy_hidden = img_encoder.apply(temp_encoder_params, dummy_obs['state_image']) img_encoder_network = networks_lib.FeedForwardNetwork( lambda key: img_encoder.init(key, dummy_hidden), img_encoder.apply) dummy_policy_input = dict( state_image=dummy_hidden, state_dense=dummy_obs['state_dense'],) else: img_encoder_fn = None dummy_policy_input = dummy_obs img_encoder_network = None policy = hk.without_apply_rng(hk.transform(_actor_fn, apply_rng=True)) return BCNetworks( policy_network=networks_lib.FeedForwardNetwork( lambda key: policy.init(key, dummy_policy_input), policy.apply), log_prob=lambda params, actions: params.log_prob(actions), sample=lambda params, key: params.sample(seed=key), sample_eval=lambda params, key: params.mode(), img_encoder=img_encoder_network,)
the-stack_0_7184
# Copyright (c) 2013 Tencent Inc. # All rights reserved. # # Author: LI Yi <[email protected]> # Created: September 27, 2013 """ This module defines cu_library, cu_binary and cu_test rules for cuda development. """ from __future__ import absolute_import import os from blade import build_manager from blade import build_rules from blade import config from blade.blade_util import var_to_list from blade.cc_targets import CcTarget class CuTarget(CcTarget): """This class is derived from CcTarget and is the base class of cu_library, cu_binary etc. """ def __init__(self, name, target_type, srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, blade, kwargs): srcs = var_to_list(srcs) deps = var_to_list(deps) extra_cppflags = var_to_list(extra_cppflags) extra_linkflags = var_to_list(extra_linkflags) CcTarget.__init__(self, name, target_type, srcs, deps, None, warning, defs, incs, [], [], extra_cppflags, extra_linkflags, blade, kwargs) def _get_cu_flags(self): """Return the nvcc flags according to the BUILD file and other configs. """ nvcc_flags = [] # Warnings if self.data.get('warning', '') == 'no': nvcc_flags.append('-w') # Defs defs = self.data.get('defs', []) nvcc_flags += [('-D' + macro) for macro in defs] # Optimize flags if (self.blade.get_options().profile == 'release' or self.data.get('always_optimize')): nvcc_flags += self._get_optimize_flags() # Incs incs = self._get_incs_list() return nvcc_flags, incs def _cu_objects_rules(self): env_name = self._env_name() flags_from_option, incs_list = self._get_cu_flags() incs_string = " -I".join(incs_list) flags_string = " ".join(flags_from_option) objs = [] for src in self.srcs: obj = 'obj_%s' % self._var_name_of(src) target_path = os.path.join( self.build_path, self.path, '%s.objs' % self.name, src) self._write_rule( '%s = %s.NvccObject(NVCCFLAGS="-I%s %s", target="%s" + top_env["OBJSUFFIX"]' ', source="%s")' % (obj, env_name, incs_string, flags_string, target_path, self._target_file_path(src))) objs.append(obj) self._write_rule('%s = [%s]' % (self._objs_name(), ','.join(objs))) class CuLibrary(CuTarget): """This class is derived from CuTarget and generates the cu_library rules according to user options. """ def __init__(self, name, srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, blade, kwargs): CuTarget.__init__(self, name, 'cu_library', srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, blade, kwargs) def scons_rules(self): """Generate scons rules according to user options. """ self._prepare_to_generate_rule() self._cu_objects_rules() self._cc_library() def cu_library(name, srcs=[], deps=[], warning='yes', defs=[], incs=[], extra_cppflags=[], extra_linkflags=[], **kwargs): target = CuLibrary(name, srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, build_manager.instance, kwargs) build_manager.instance.register_target(target) build_rules.register_function(cu_library) class CuBinary(CuTarget): """This class is derived from CuTarget and generates the cu_binary rules according to user options. """ def __init__(self, name, srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, blade, kwargs): CuTarget.__init__(self, name, 'cu_binary', srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, blade, kwargs) def _cc_binary(self): env_name = self._env_name() var_name = self._var_name() (link_all_symbols_lib_list, lib_str, whole_link_flags) = self._get_static_deps_lib_list() if whole_link_flags: self._write_rule( '%s.Append(LINKFLAGS=[%s])' % (env_name, whole_link_flags)) if self.data.get('export_dynamic'): self._write_rule( '%s.Append(LINKFLAGS="-rdynamic")' % env_name) self._setup_link_flags() self._write_rule('{0}.Replace(' 'CC={0}["NVCC"], ' 'CPP={0}["NVCC"], ' 'CXX={0}["NVCC"], ' 'LINK={0}["NVCC"])'.format(env_name)) self._write_rule('%s = %s.Program("%s", %s, %s)' % ( var_name, env_name, self._target_file_path(), self._objs_name(), lib_str)) self._write_rule('%s.Depends(%s, %s)' % ( env_name, var_name, self._objs_name())) if link_all_symbols_lib_list: self._write_rule('%s.Depends(%s, [%s])' % ( env_name, var_name, ', '.join(link_all_symbols_lib_list))) # self._write_rule('%s.Append(LINKFLAGS=str(version_obj[0]))' % env_name) self._write_rule('%s.Requires(%s, version_obj)' % ( env_name, var_name)) def scons_rules(self): """Generate scons rules according to user options. """ self._prepare_to_generate_rule() self._cu_objects_rules() self._cc_binary() def cu_binary(name, srcs=[], deps=[], warning='yes', defs=[], incs=[], extra_cppflags=[], extra_linkflags=[], **kwargs): target = CuBinary(name, srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, build_manager.instance, kwargs) build_manager.instance.register_target(target) build_rules.register_function(cu_binary) class CuTest(CuBinary): """This class is derived from CuBinary and generates the cu_test rules according to user options. """ def __init__(self, name, srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, testdata, always_run, exclusive, blade, kwargs): # pylint: disable=too-many-locals CuBinary.__init__(self, name, srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, blade, kwargs) self.type = 'cu_test' self.data['testdata'] = var_to_list(testdata) self.data['always_run'] = always_run self.data['exclusive'] = exclusive cc_test_config = config.get_section('cc_test_config') gtest_lib = var_to_list(cc_test_config['gtest_libs']) gtest_main_lib = var_to_list(cc_test_config['gtest_main_libs']) # Hardcode deps rule to thirdparty gtest main lib. self._add_hardcode_library(gtest_lib) self._add_hardcode_library(gtest_main_lib) def cu_test(name, srcs=[], deps=[], warning='yes', defs=[], incs=[], extra_cppflags=[], extra_linkflags=[], testdata=[], always_run=False, exclusive=False, **kwargs): target = CuTest(name, srcs, deps, warning, defs, incs, extra_cppflags, extra_linkflags, testdata, always_run, exclusive, build_manager.instance, kwargs) build_manager.instance.register_target(target) build_rules.register_function(cu_test)
the-stack_0_7186
# Working test of textblob # https://www.geeksforgeeks.org/spelling-checker-in-python/ from textblob import TextBlob message = "Hello confsion houes" print("entered: "+str(message)) corrected = TextBlob(message) # prints the corrected spelling print("corrected: "+str(corrected.correct()))
the-stack_0_7187
import argparse import os import random import shutil import time import warnings import math import numpy as np import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models import torch.nn.functional as F from datasets import dataset from networks import nets model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) model_names += ['resnext50_32x4d_reslt','resnet10_reslt', 'resnext101_32x4d_reslt'] parser = argparse.ArgumentParser(description='PyTorch ImageNet Training') parser.add_argument('--root_path', type=str, default='data') parser.add_argument('-dataset', type=str, help='path to dataset') parser.add_argument('--data_path', type=str, default=None) parser.add_argument('-a', '--arch', metavar='ARCH', default='ResNeXt152', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: resnet18)') parser.add_argument('-j', '--workers', default=32, type=int, metavar='N', help='number of data loading workers (default: 4)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('-b', '--batch-size', default=None, type=int, metavar='N', help='mini-batch size (default: 256), this is the total ' 'batch size of all GPUs on the current node when ' 'using Data Parallel or Distributed Data Parallel') parser.add_argument('--lr', '--learning-rate', default=0.2, type=float, metavar='LR', help='initial learning rate', dest='lr') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') parser.add_argument('--wd', '--weight-decay', default=5e-4, type=float, metavar='W', help='weight decay (default: 1e-4)', dest='weight_decay') parser.add_argument('-p', '--print-freq', default=100, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set') parser.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') parser.add_argument('--world-size', default=-1, type=int, help='number of nodes for distributed training') parser.add_argument('--rank', default=-1, type=int, help='node rank for distributed training') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--seed', default=None, type=int, help='seed for initializing training. ') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.') parser.add_argument('--multiprocessing-distributed', action='store_true', help='Use multi-processing distributed training to launch ' 'N processes per node, which has N GPUs. This is the ' 'fastest way to use PyTorch for either single node or ' 'multi node data parallel training') # ResLT parser.add_argument('--mark', default=None, type=str, help='prefix of log file') parser.add_argument('--beta', default=None, type=float) parser.add_argument('--num_works', default=None, type=int) parser.add_argument('--dropout', default=False, type=bool) parser.add_argument('--lsm', default=0, type=float) parser.add_argument('--warmup_epochs', default=5, type=int) parser.add_argument('--after_1x1conv', action='store_true') parser.add_argument('--gamma', default=0.5, type=float) parser.add_argument('--num_classes', default=1000, type=int) best_acc1 = 0 args = parser.parse_args() args.root_model = f'{args.root_path}/{args.dataset}/{args.mark}' os.makedirs(args.root_model, exist_ok=True) def crossEntropy(softmax, logit, label, weight, num_classes): label = F.one_hot(label, num_classes=num_classes) target = label_smoothing(label, num_classes, delta=args.lsm) loss = - (weight * (target * torch.log(softmax(logit)+1e-7)).sum(dim=1)).sum() return loss def disable_conv(model): for module in model.modules(): if isinstance(module, nn.Conv2d): module.weight.requires_grad=False def label_smoothing(y_batch_tensor, num_classes, delta): y_batch_smooth = (1 - delta - delta / (num_classes - 1)) * y_batch_tensor + delta / (num_classes - 1) return y_batch_smooth def main(): if args.seed is not None: random.seed(args.seed) torch.manual_seed(args.seed) cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely ' 'disable data parallelism.') if args.dist_url == "env://" and args.world_size == -1: args.world_size = int(os.environ["WORLD_SIZE"]) args.distributed = args.world_size > 1 or args.multiprocessing_distributed ngpus_per_node = torch.cuda.device_count() if args.multiprocessing_distributed: # Since we have ngpus_per_node processes per node, the total world_size # needs to be adjusted accordingly args.world_size = ngpus_per_node * args.world_size # Use torch.multiprocessing.spawn to launch distributed processes: the # main_worker process function mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args)) else: # Simply call main_worker function main_worker(args.gpu, ngpus_per_node, args) def main_worker(gpu, ngpus_per_node, args): global best_acc1 args.gpu = gpu if args.gpu is not None: print("Use GPU: {} for training".format(args.gpu)) if args.distributed: if args.dist_url == "env://" and args.rank == -1: args.rank = int(os.environ["RANK"]) if args.multiprocessing_distributed: # For multiprocessing distributed training, rank needs to be the # global rank among all the processes args.rank = args.rank * ngpus_per_node + gpu dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) # create model if args.pretrained: print("=> using pre-trained model '{}'".format(args.arch)) model = models.__dict__[args.arch](pretrained=True) else: print("=> creating model '{}'".format(args.arch)) model = getattr(nets, args.arch)(dropout=args.dropout, after_1x1conv=args.after_1x1conv, gamma=args.gamma) if args.distributed: # For multiprocessing distributed, DistributedDataParallel constructor # should always set the single device scope, otherwise, # DistributedDataParallel will use all available devices. if args.gpu is not None: torch.cuda.set_device(args.gpu) model.cuda(args.gpu) # When using a single GPU per process and per # DistributedDataParallel, we need to divide the batch size # ourselves based on the total number of GPUs we have args.batch_size = int(args.batch_size / ngpus_per_node) args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node) model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) else: model.cuda() # DistributedDataParallel will divide and allocate batch_size to all # available GPUs if device_ids are not set model = torch.nn.parallel.DistributedDataParallel(model) elif args.gpu is not None: torch.cuda.set_device(args.gpu) model = model.cuda(args.gpu) else: # DataParallel will divide and allocate batch_size to all available GPUs if args.arch.startswith('alexnet') or args.arch.startswith('vgg'): model.features = torch.nn.DataParallel(model.features) model.cuda() else: model = torch.nn.DataParallel(model).cuda() filename = "checkpoints/ImageNet/"+args.mark+'_checkpoint.pth.tar' if os.path.exists(filename): args.resume = filename # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().cuda(args.gpu) optimizer = torch.optim.SGD(model.parameters(), args.lr, momentum=args.momentum, weight_decay=args.weight_decay) # optionally resume from a checkpoint if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) if args.gpu is None: checkpoint = torch.load(args.resume) else: # Map model to be loaded to specified single gpu. loc = 'cuda:{}'.format(args.gpu) checkpoint = torch.load(args.resume, map_location=loc) args.start_epoch = checkpoint['epoch'] best_acc1 = checkpoint['best_acc1'] if args.gpu is not None: # best_acc1 may be from a checkpoint from a different GPU best_acc1 = best_acc1.to(args.gpu) model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'".format(args.resume)) cudnn.benchmark = True # Data loading code print(args.dataset," ",type(args.dataset)) data=getattr(dataset,args.dataset)(batch_size=args.batch_size, num_works=args.num_works, root=args.data_path) train_loader=data.train val_loader=data.test if args.evaluate: validate(val_loader, model, criterion, args) return for epoch in range(args.start_epoch, args.epochs): if args.distributed: train_sampler.set_epoch(epoch) adjust_learning_rate(optimizer, epoch, args) # train for one epoch train(train_loader, model, criterion, optimizer, epoch, args) # evaluate on validation set acc1 = validate(val_loader, model, criterion, args) # remember best acc@1 and save checkpoint is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if not args.multiprocessing_distributed or (args.multiprocessing_distributed and args.rank % ngpus_per_node == 0): save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_acc1': best_acc1, 'optimizer' : optimizer.state_dict(), }, is_best) def train(train_loader, model, criterion, optimizer, epoch, args): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') F_losses = AverageMeter('F_Loss', ':.4e') I_losses = AverageMeter('I_Loss', ':.4e') top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') progress = ProgressMeter( len(train_loader), [batch_time, data_time, F_losses, I_losses, top1, top5], prefix="Epoch: [{}]".format(epoch)) # switch to train mode model.train() softmax = nn.Softmax(dim=1) end = time.time() for i, (images, target) in enumerate(train_loader): # measure data loading time data_time.update(time.time() - end) if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output logitH, logitM, logitT = model(images) ######## ResLT labelH=F.one_hot(target, num_classes=args.num_classes).sum(dim=1) labelM=F.one_hot(target, num_classes=args.num_classes)[:,:825].sum(dim=1) labelT=F.one_hot(target, num_classes=args.num_classes)[:,:220].sum(dim=1) I_loss=(crossEntropy(softmax, logitH, target, labelH, args.num_classes) + crossEntropy(softmax, logitM, target, labelM, args.num_classes) \ + crossEntropy(softmax, logitT, target, labelT, args.num_classes)) / (labelH.sum() + labelM.sum() + labelT.sum()) logit = (logitH + logitM + logitT) F_loss = crossEntropy(softmax, logit, target, labelH, args.num_classes) / labelH.sum() loss= (1-args.beta) * F_loss + args.beta * I_loss # measure accuracy and record loss acc1, acc5 = accuracy(logit, target, topk=(1, 5)) F_losses.update(F_loss.detach().item(), images.size(0)) I_losses.update(I_loss.detach().item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do SGD step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i, args) def validate(val_loader, model, criterion, args): batch_time = AverageMeter('Time', ':6.3f') losses = AverageMeter('Loss', ':.4e') top1 = AverageMeter('All_Acc@1', ':6.2f') top5 = AverageMeter('All_Acc@5', ':6.2f') progress = ProgressMeter( len(val_loader), [batch_time, losses, top1, top5], prefix='Test: ') # switch to evaluate mode model.eval() class_num=torch.zeros(1000).cuda() correct=torch.zeros(1000).cuda() with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): if args.gpu is not None: images = images.cuda(args.gpu, non_blocking=True) target = target.cuda(args.gpu, non_blocking=True) # compute output logitH, logitM, logitT = model(images) output = logitH + logitM + logitT loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() _, predicted = output.max(1) target_one_hot = F.one_hot(target, num_classes=args.num_classes) predict_one_hot = F.one_hot(predicted, num_classes=args.num_classes) class_num = class_num + target_one_hot.sum(dim=0).to(torch.float) correct=correct + (target_one_hot + predict_one_hot==2).sum(dim=0).to(torch.float) if i % args.print_freq == 0: progress.display(i, args) # TODO: this should also be done with the ProgressMeter acc_classes = correct / class_num head_acc = acc_classes[610:].mean() medium_acc = acc_classes[165:610].mean() tail_acc = acc_classes[:165].mean() open(args.root_model+"/"+"train.log","a+").write((' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f} HAcc {head_acc:.3f} MAcc {medium_acc:.3f} TAcc {tail_acc:.3f} \n').format(top1=top1, top5=top5, head_acc=head_acc, medium_acc=medium_acc, tail_acc=tail_acc)) return top1.avg def save_checkpoint(state, is_best, filename=args.root_model+'/checkpoint.pth.tar'): torch.save(state, filename) if is_best: shutil.copyfile(filename, args.root_model+'/model_best.pth.tar') class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch, args): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] open(args.root_model+"/train.log","a+").write('\t'.join(entries)+"\n") def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def adjust_learning_rate(optimizer, epoch, args): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" lr_min = 0 lr_max = args.lr if epoch < args.warmup_epochs: lr = args.lr / args.warmup_epochs * (epoch+1) else: lr= lr_min + 0.5 * (lr_max - lr_min) * (1 + math.cos( (epoch - args.warmup_epochs + 1) / (args.epochs - args.warmup_epochs + 1) * 3.1415926)) for param_group in optimizer.param_groups: param_group['lr'] = lr def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res if __name__ == '__main__': main()
the-stack_0_7188
#!/usr/bin/env python # Copyright (c) 2014 Wladimir J. van der Laan # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Run this script from the root of the repository to update all translations from transifex. It will do the following automatically: - fetch all translations using the tx tool - post-process them into valid and committable format - remove invalid control characters - remove location tags (makes diffs less noisy) TODO: - auto-add new translations to the build system according to the translation process ''' from __future__ import division, print_function import subprocess import re import sys import os import io import xml.etree.ElementTree as ET # Name of transifex tool TX = 'tx' # Name of source language file SOURCE_LANG = 'sheet_en.ts' # Directory with locale files LOCALE_DIR = 'src/qt/locale' # Minimum number of messages for translation to be considered at all MIN_NUM_MESSAGES = 10 def check_at_repository_root(): if not os.path.exists('.git'): print('No .git directory found') print('Execute this script at the root of the repository', file=sys.stderr) sys.exit(1) def fetch_all_translations(): if subprocess.call([TX, 'pull', '-f', '-a']): print('Error while fetching translations', file=sys.stderr) sys.exit(1) def find_format_specifiers(s): '''Find all format specifiers in a string.''' pos = 0 specifiers = [] while True: percent = s.find('%', pos) if percent < 0: break specifiers.append(s[percent+1]) pos = percent+2 return specifiers def split_format_specifiers(specifiers): '''Split format specifiers between numeric (Qt) and others (strprintf)''' numeric = [] other = [] for s in specifiers: if s in {'1','2','3','4','5','6','7','8','9'}: numeric.append(s) else: other.append(s) # If both numeric format specifiers and "others" are used, assume we're dealing # with a Qt-formatted message. In the case of Qt formatting (see https://doc.qt.io/qt-5/qstring.html#arg) # only numeric formats are replaced at all. This means "(percentage: %1%)" is valid, without needing # any kind of escaping that would be necessary for strprintf. Without this, this function # would wrongly detect '%)' as a printf format specifier. if numeric: other = [] # numeric (Qt) can be present in any order, others (strprintf) must be in specified order return set(numeric),other def sanitize_string(s): '''Sanitize string for printing''' return s.replace('\n',' ') def check_format_specifiers(source, translation, errors, numerus): source_f = split_format_specifiers(find_format_specifiers(source)) # assert that no source messages contain both Qt and strprintf format specifiers # if this fails, go change the source as this is hacky and confusing! assert(not(source_f[0] and source_f[1])) try: translation_f = split_format_specifiers(find_format_specifiers(translation)) except IndexError: errors.append("Parse error in translation for '%s': '%s'" % (sanitize_string(source), sanitize_string(translation))) return False else: if source_f != translation_f: if numerus and source_f == (set(), ['n']) and translation_f == (set(), []) and translation.find('%') == -1: # Allow numerus translations to omit %n specifier (usually when it only has one possible value) return True errors.append("Mismatch between '%s' and '%s'" % (sanitize_string(source), sanitize_string(translation))) return False return True def all_ts_files(suffix=''): for filename in os.listdir(LOCALE_DIR): # process only language files, and do not process source language if not filename.endswith('.ts'+suffix) or filename == SOURCE_LANG+suffix: continue if suffix: # remove provided suffix filename = filename[0:-len(suffix)] filepath = os.path.join(LOCALE_DIR, filename) yield(filename, filepath) FIX_RE = re.compile(b'[\x00-\x09\x0b\x0c\x0e-\x1f]') def remove_invalid_characters(s): '''Remove invalid characters from translation string''' return FIX_RE.sub(b'', s) # Override cdata escape function to make our output match Qt's (optional, just for cleaner diffs for # comparison, disable by default) _orig_escape_cdata = None def escape_cdata(text): text = _orig_escape_cdata(text) text = text.replace("'", '&apos;') text = text.replace('"', '&quot;') return text def postprocess_translations(reduce_diff_hacks=False): print('Checking and postprocessing...') if reduce_diff_hacks: global _orig_escape_cdata _orig_escape_cdata = ET._escape_cdata ET._escape_cdata = escape_cdata for (filename,filepath) in all_ts_files(): os.rename(filepath, filepath+'.orig') have_errors = False for (filename,filepath) in all_ts_files('.orig'): # pre-fixups to cope with transifex output parser = ET.XMLParser(encoding='utf-8') # need to override encoding because 'utf8' is not understood only 'utf-8' with open(filepath + '.orig', 'rb') as f: data = f.read() # remove control characters; this must be done over the entire file otherwise the XML parser will fail data = remove_invalid_characters(data) tree = ET.parse(io.BytesIO(data), parser=parser) # iterate over all messages in file root = tree.getroot() for context in root.findall('context'): for message in context.findall('message'): numerus = message.get('numerus') == 'yes' source = message.find('source').text translation_node = message.find('translation') # pick all numerusforms if numerus: translations = [i.text for i in translation_node.findall('numerusform')] else: translations = [translation_node.text] for translation in translations: if translation is None: continue errors = [] valid = check_format_specifiers(source, translation, errors, numerus) for error in errors: print('%s: %s' % (filename, error)) if not valid: # set type to unfinished and clear string if invalid translation_node.clear() translation_node.set('type', 'unfinished') have_errors = True # Remove location tags for location in message.findall('location'): message.remove(location) # Remove entire message if it is an unfinished translation if translation_node.get('type') == 'unfinished': context.remove(message) # check if document is (virtually) empty, and remove it if so num_messages = 0 for context in root.findall('context'): for message in context.findall('message'): num_messages += 1 if num_messages < MIN_NUM_MESSAGES: print('Removing %s, as it contains only %i messages' % (filepath, num_messages)) continue # write fixed-up tree # if diff reduction requested, replace some XML to 'sanitize' to qt formatting if reduce_diff_hacks: out = io.BytesIO() tree.write(out, encoding='utf-8') out = out.getvalue() out = out.replace(b' />', b'/>') with open(filepath, 'wb') as f: f.write(out) else: tree.write(filepath, encoding='utf-8') return have_errors if __name__ == '__main__': check_at_repository_root() fetch_all_translations() postprocess_translations()
the-stack_0_7189
# Copyright 2018 The Exoplanet ML Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Postprocessing utility functions for CLIF.""" # CLIF postprocessor for a C++ function with signature: # bool MyFunc(input_arg1, ..., *output_arg1, *output_arg2, ..., *error) # # If MyFunc returns True, returns (output_arg1, output_arg2, ...) # If MyFunc returns False, raises ValueError(error). def ValueErrorOnFalse(ok, *output_args): """Raises ValueError if not ok, otherwise returns the output arguments.""" n_outputs = len(output_args) if n_outputs < 2: raise ValueError( "Expected 2 or more output_args. Got: {}".format(n_outputs)) if not ok: error = output_args[-1] raise ValueError(error) if n_outputs == 2: output = output_args[0] else: output = output_args[0:-1] return output # CLIF postprocessor for a C++ function with signature: # *result MyFactory(input_arg1, ..., *error) # # If result is not null, returns result. # If result is null, raises ValueError(error). def ValueErrorOnNull(result, error): """Raises ValueError(error) if result is None, otherwise returns result.""" if result is None: raise ValueError(error) return result
the-stack_0_7191
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from fairseq_mod.data.encoders import register_tokenizer @register_tokenizer('moses') class MosesTokenizer(object): @staticmethod def add_args(parser): # fmt: off parser.add_argument('--moses-source-lang', metavar='SRC', help='source language') parser.add_argument('--moses-target-lang', metavar='TARGET', help='target language') parser.add_argument('--moses-no-dash-splits', action='store_true', default=False, help='don\'t apply dash split rules') parser.add_argument('--moses-no-escape', action='store_true', default=False, help='don\'t perform HTML escaping on apostrophy, quotes, etc.') # fmt: on def __init__(self, args): self.args = args if getattr(args, 'moses_source_lang', None) is None: args.moses_source_lang = getattr(args, 'source_lang', 'en') if getattr(args, 'moses_target_lang', None) is None: args.moses_target_lang = getattr(args, 'target_lang', 'en') try: from sacremoses import MosesTokenizer, MosesDetokenizer self.tok = MosesTokenizer(args.moses_source_lang) self.detok = MosesDetokenizer(args.moses_target_lang) except ImportError: raise ImportError('Please install Moses tokenizer with: pip install sacremoses') def encode(self, x: str) -> str: return self.tok.tokenize( x, aggressive_dash_splits=(not self.args.moses_no_dash_splits), return_str=True, escape=(not self.args.moses_no_escape), ) def decode(self, x: str) -> str: return self.detok.detokenize(x.split())
the-stack_0_7193
""" Default exit plugin """ import shutil import logging import os class ExitPlugin(object): """ Removes temporary files and exits the program """ def __init__(self, skye): self.skye = skye def close_program(self): """ Closes the program """ self.skye.speak("Goodbye") logging.debug("Removing temporary folders") if os.path.exists("temp"): shutil.rmtree("temp", ignore_errors=True) logging.info("Exiting") quit() def setup(skye): """Called when the plugin is set up. Used to register commands and other initializations Arguments: skye {Skye} -- The singleton Skye instance """ exit_plugin = ExitPlugin(skye) skye.register_command(("exit", "leave", "quit", "stop"), exit_plugin.close_program)
the-stack_0_7194
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch from seq2seq.models.decoder import Classifier class Stage3(torch.nn.Module): def __init__(self): super(Stage3, self).__init__() self.layer5 = torch.nn.LSTM(2048, 1024) self.layer8 = Classifier(1024, 32320) def forward(self, input1, input3, input0): input2 = [None] out0 = input0.clone() out1 = input1.clone() out2 = input2[0] out3 = input3.clone() out4 = torch.cat([out0, out1], 2) out5 = self.layer5(out4, out2) out6 = out5[0] out6 = out6 + out3 out8 = self.layer8(out6) return out8 def _initialize_weights(self): for m in self.modules(): if isinstance(m, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.BatchNorm2d): torch.nn.init.constant_(m.weight, 1) torch.nn.init.constant_(m.bias, 0) elif isinstance(m, torch.nn.Linear): torch.nn.init.normal_(m.weight, 0, 0.01) torch.nn.init.constant_(m.bias, 0)
the-stack_0_7196
#chainer good bc of ACER #https://github.com/chainer/chainerrl import numpy as np import gym import h4rm0ny import chainer import chainer.functions as F import chainer.links as L import chainerrl from chainerrl.action_value import DiscreteActionValue from chainerrl import links from chainerrl.agents import acer from chainerrl.distribution import SoftmaxDistribution from chainerrl import misc from chainerrl.optimizers import rmsprop_async from chainerrl import policies from chainerrl import q_functions from chainerrl.replay_buffer import EpisodicReplayBuffer from chainerrl import v_functions from chainerrl.initializers import LeCunNormal from tqdm import tqdm #creates an ACER agent def create_acer_agent(env): #our observation space dimension of malware obs_dim = env.observation_space.shape[0] #the list of actions that we can perform on the malware n_actions = env.action_space.n #our acer network #consists of pi (our policy) and our q (our q function) model = acer.ACERSeparateModel( pi=links.Sequence( L.Linear( obs_dim, 1024, initialW=LeCunNormal(1e-3)), F.relu, L.Linear( 1024, 512, initialW=LeCunNormal(1e-3)), F.relu, L.Linear( 512, n_actions, initialW=LeCunNormal(1e-3)), SoftmaxDistribution), q=links.Sequence( L.Linear( obs_dim, 1024, initialW=LeCunNormal(1e-3)), F.relu, L.Linear( 1024, 512, initialW=LeCunNormal(1e-3)), F.relu, L.Linear( 512, n_actions, initialW=LeCunNormal(1e-3)), DiscreteActionValue), ) #optimizer for the acer opt = rmsprop_async.RMSpropAsync( lr=7e-4, eps=1e-2, alpha=0.99) opt.setup( model ) #hook to the chainer model opt.add_hook( chainer.optimizer.GradientClipping(40) ) replay_buffer = EpisodicReplayBuffer( 128 ) #the agent itself, params from original file agent = acer.ACER( model, opt, gamma=0.95, # reward discount factor t_max=32, # update the model after this many local steps replay_buffer=replay_buffer, n_times_replay=4, # number of times experience replay is repeated for each update replay_start_size=64, # don't start replay unless we have this many experiences in the buffer disable_online_update=True, # rely only on experience buffer use_trust_region=True, # enable trust region policy optimiztion trust_region_delta=0.1, # a parameter for TRPO truncation_threshold=5.0, # truncate large importance weights beta=1e-2, # entropy regularization parameter phi= lambda obs: obs.astype(np.float32, copy=False) ) return agent class QFunction(chainer.Chain): def __init__(self, obs_size, n_actions, n_hidden_channels=[1024,256]): super(QFunction,self).__init__() net = [] inpdim = obs_size for i,n_hid in enumerate(n_hidden_channels): net += [ ('l{}'.format(i), L.Linear( inpdim, n_hid ) ) ] net += [ ('norm{}'.format(i), L.BatchNormalization( n_hid ) ) ] net += [ ('_act{}'.format(i), F.relu ) ] inpdim = n_hid net += [('output', L.Linear( inpdim, n_actions) )] with self.init_scope(): for n in net: if not n[0].startswith('_'): setattr(self, n[0], n[1]) self.forward = net def __call__(self, x, test=False): """ Args: x (ndarray or chainer.Variable): An observation test (bool): a flag indicating whether it is in test mode """ for n, f in self.forward: if not n.startswith('_'): x = getattr(self, n)(x) else: x = f(x) return chainerrl.action_value.DiscreteActionValue(x) def create_ddqn_agent(env): obs_dim = env.observation_space.shape[0] n_actions = env.action_space.n q_func = QFunction(obs_dim, n_actions) optimizer = chainer.optimizers.Adam(eps=1e-2) optimizer.setup(q_func) # Set the discount factor that discounts future rewards. gamma = 0.95 # Use epsilon-greedy for exploration explorer = chainerrl.explorers.Boltzmann() # DQN uses Experience Replay. # Specify a replay buffer and its capacity. replay_buffer = chainerrl.replay_buffer.ReplayBuffer(capacity=1000) # Chainer only accepts numpy.float32 by default, make sure # a converter as a feature extractor function phi. phi = lambda x: x.astype(np.float32, copy=False) # Now create an agent that will interact with the environment. # DQN agent as described in Mnih (2013) and Mnih (2015). # http://arxiv.org/pdf/1312.5602.pdf # http://arxiv.org/abs/1509.06461 agent = chainerrl.agents.DoubleDQN( q_func, optimizer, replay_buffer, gamma, explorer, replay_start_size=32, update_interval=1, target_update_interval=100, phi=phi) return agent import os def get_latest_model_from(basedir): dirs = os.listdir(basedir) lastmodel = -1 for d in dirs: try: if int(d) > lastmodel: lastmodel = int(d) except ValueError: continue assert lastmodel >= 0, "No saved models!" return os.path.join(basedir, str(lastmodel)) from h4rm0ny.envs.utils import interface, malconv from h4rm0ny.envs.controls import modifier import random ACTION_LOOKUP = { i: act for i, act in enumerate(modifier.ACTION_TABLE.keys()) } def get_latest_model_from(basedir): dirs = os.listdir(basedir) lastmodel = -1 for d in dirs: try: if int(d) > lastmodel: lastmodel = int(d) except ValueError: continue assert lastmodel >= 0, "No saved models!" return os.path.join(basedir, str(lastmodel)) def gen_dataset(train_path, test_path, agent=None): if not os.path.exists(test_path): os.makedirs(test_path) if not os.path.exists(train_path): os.makedirs(train_path) mc = malconv.MalConv() sha256_train = interface.get_available_sha256('/home/jovyan/Research/malware_rl/rl_train_exp.csv')[:700] sha256_test = interface.get_available_sha256('/home/jovyan/Research/malware_rl/rl_test_exp.csv')[:300] print(sha256_train) def __gen(sha, ouput_path): for s in tqdm(sha): if not agent: action = random.choice(ACTION_LOOKUP) else: mal = np.array(mc.extract(interface.fetch_file(s))) action = ACTION_LOOKUP[agent.act(mal)] bytez = interface.fetch_file(s) bytez = modifier.modify_sample(bytez, action) evade_path = os.path.join(ouput_path, os.path.basename(s)) with open(evade_path, 'wb') as out: out.write(bytez) __gen(sha256_train, train_path, ) __gen(sha256_test, test_path, ) #training the ACER agent def train_agent(rounds=10000, use_score=False, name='result_dir', test_set = "/home/jovyan/Research/malware_rl/sets/test_set", train_set = "/home/jovyan/Research/malware_rl/sets/train_set", create_agent=create_acer_agent, gym_env = "malconv-train-v0", train=True): if(train): print("inside train") if(name == "random"): gen_dataset(train_set, test_set, agent=None) return 1 #we are training on the malconv gym env = gym.make( gym_env ) #setting random seeds so we can reproduce results np.random.seed(41) env.seed(41) #creating our agent agent = create_agent(env) #run through training, evaluate and give reward based on outcome chainerrl.experiments.train_agent_with_evaluation( agent, env, steps=rounds, # Train the agent for this many rounds steps train_max_episode_len=600, # Maximum length of each episodes eval_interval=10, # Evaluate the agent after every step eval_n_episodes = 10, #eval every episode eval_n_steps = None, save_best_so_far_agent = False, outdir=name) # Save everything to 'result' directory gen_dataset(train_set, test_set, agent) else: print("not in train") env = gym.make(gym_env) agent = create_acer_agent(env) # pull latest stored model #last_model_dir = get_latest_model_from("/home/jovyan/Research/malware_rl/" +name + "_1/500_finish") agent.load( "/home/jovyan/Research/malware_rl/" +name + "_1/500_finish" ) gen_dataset(train_set, test_set, agent) #training the ACER agent def test(rounds=10, use_score=False, name='result_dir', create_agent=create_acer_agent, gym_env = "malconv-train-v0"): #we are training on the malconv gym env = gym.make( gym_env ) #setting random seeds so we can reproduce results np.random.seed(42) env.seed(42) #creating our agent agent = create_agent(env) # pull latest stored model last_model_dir = get_latest_model_from('models/') agent.load( last_model_dir ) chainerrl.experiments.collect_demonstrations(agent,env,steps = rounds,episodes = 1,outdir = name) # Save everything to 'result' directory if __name__ == '__main__': print("We go") agent_score = train_agent(rounds=50000, use_score=True, name='models/', create_agent=create_acer_agent) # allow agent to see scores # models are automatically saved print("done score") #use this model if you want to see if the RL can learn against a black box model agent_blackbox = train_agent( rounds=50000, use_score=False, name='models/acer_chainer', create_agent=create_acer_agent) # black blox # models are automatically saved
the-stack_0_7198
import logging, itertools, os from datetime import date import astropy.io.ascii as at import matplotlib.pyplot as plt from k2spin.config import * from k2spin import plot today = date.today().isoformat() def plot_list(results_list): """ """ res = at.read(base_path+"tables/"+results_list) f = open("/home/stephanie/my_papers/hyadesk2/figure_sets/f8.tbl","w") count = 1 for i, epic in enumerate(res["EPIC"]): logging.info(epic) outfilename = "ktwo{0}-c04_lc_analysis.png".format(epic) plot.paper_lcs(epic,res[i]) plt.savefig(base_path+"plot_outputs/"+outfilename,bbox_inches="tight") if ((epic==2107361051) or (epic==2107361050) or (epic==210963067) or (epic==2109630670) or (epic==210675409)): # Use lc from smaller centroiding box for 210735105 # but daofind lc for 210963067 # 210675409 is too bright but still in my list somehow # note I never ran 211037886 continue elif epic==2109630671: save_epic = 210963067 else: save_epic = epic figsetname = "f8_{0}.eps".format(count) f.write("{0} & EPIC {1}\n".format(figsetname,save_epic)) plt.savefig("/home/stephanie/my_papers/hyadesk2/figure_sets/"+figsetname,bbox_inches="tight") plt.close("all") count += 1 f.close() if __name__=="__main__": plot_list("c4_lcs_aps_results_2015-12-18_comments.csv") """ lc_file = "ktwo210408563-c04.csv" epic = "210408563" ap = 5 res = at.read(base_path+"tables/c4_lcs_aps_results_2015-12-18.csv") plot.paper_lcs(epic,res[4]) plt.savefig("/home/stephanie/my_papers/hyadesk2/sample_lc.eps", bbox_inches="tight") plt.savefig("/home/stephanie/Dropbox/plots_for_sharing/sample_lc.png", bbox_inches="tight") """
the-stack_0_7200
# -*- coding: utf-8 -*- import pickle from os import path import jieba import matplotlib.pyplot as plt from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator comment = [] with open('quan.txt', mode = 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: arr = line.split(',') if len(arr) == 5: comment.append(arr[4].replace('\n','')) # comment_after_split = jieba.cut(str(comment),cut_all=False) # wl_space_split = ''.join(comment_after_split) # wordcloud=WordCloud(font_path="fyuan.ttf",background_color="black",width=600,height=300,max_words=50).generate(wl_space_split) # #3.生成图片 # image=wordcloud.to_image() # #4.显示图片 # image.show() comment_after_split = jieba.cut(str(comment),cut_all=False) wl_space_split = ' '.join(comment_after_split) # # print(wl_space_split) backgroud_Image = plt.imread('IMG_3246.JPG') # 设置屏蔽词 stopwords = STOPWORDS.copy() stopwords.add('电影') stopwords.add('一部') stopwords.add('里面') stopwords.add('讲') stopwords.add('是') stopwords.add('有点') stopwords.add('还是') stopwords.add('这部') stopwords.add('真的') stopwords.add('也许') stopwords.add('可能') stopwords.add('之后') # 设置词云的字体,背景色,最大词大小,背景图 wc = WordCloud(width=1024, height=768, background_color='white', mask=backgroud_Image, font_path='fyuan.ttf', stopwords=stopwords, max_font_size = 400, random_state = 50 ) wc.generate_from_text(wl_space_split) img_colors = ImageColorGenerator(backgroud_Image) wc.recolor(color_func=img_colors) plt.imshow(wc) plt.axis('off') plt.show() wc.to_file('./image.jpg')
the-stack_0_7201
from setuptools import find_packages, setup def readme(): with open("README.md") as f: return f.read() # read version file exec(open("alibi_detect/version.py").read()) extras_require = {"examples": ["seaborn>=0.9.0", "tqdm>=4.28.1", "nlp>=0.3.0"], "prophet": ["fbprophet>=0.5, <0.7", "holidays==0.9.11", "pystan<3.0"], "torch": ["torch>=1.0"]} setup( name="alibi-detect", author="Seldon Technologies Ltd.", author_email="[email protected]", version=__version__, # type: ignore # noqa F821 description="Algorithms for outlier detection, concept drift and metrics.", long_description=readme(), long_description_content_type="text/markdown", url="https://github.com/SeldonIO/alibi-detect", license="Apache 2.0", packages=find_packages(), include_package_data=True, python_requires=">=3.6", # lower bounds based on Debian Stable versions where available install_requires=[ "matplotlib>=3.0.0, <4.0.0", "numpy>=1.16.2, <2.0.0", "pandas>=0.23.3, <2.0.0", "Pillow>=5.4.1, <9.0.0", "opencv-python>=3.2.0, <5.0.0", "scipy>=1.3.0, <2.0.0", 'scikit-image>=0.14.2, !=0.17.1, <0.19', # https://github.com/SeldonIO/alibi/issues/215 "scikit-learn>=0.20.2, <0.25.0", "tensorflow>=2.0.0, <2.5.0", "tensorflow_probability>=0.8.0, <0.13.0", "transformers>=2.10.0, <5.0.0" ], extras_require=extras_require, test_suite="tests", zip_safe=False, )
the-stack_0_7202
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model import numpy as np import cv2 import os prototxtPath = os.path.sep.join(["Res10Face_Detector", "deploy.prototxt"]) weightsPath = os.path.sep.join(["Res10Face_Detector", "res10_300x300_ssd_iter_140000.caffemodel"]) net = cv2.dnn.readNet(prototxtPath, weightsPath) model = load_model("Models/mask_detector.model") def classify(image): (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0)) net.setInput(blob) detections = net.forward() count= 0 labels = [] for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > 0.5: count+=1 box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") (startX, startY) = (max(0, startX), max(0, startY)) (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) face = image[startY:endY, startX:endX] face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) (mask, withoutMask) = model.predict(face)[0] label = "Mask" if mask > withoutMask else "No Mask" labels.append(label) color = (0, 255, 0) if label == "Mask" else (0, 0, 255) label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) cv2.putText(image, label, (startX, startY - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) cv2.rectangle(image, (startX, startY), (endX, endY), color, 2) return (count, labels, image)
the-stack_0_7203
import sys import numpy as np def coadd_cameras(flux_cam, wave_cam, ivar_cam, mask_cam=None): """Adds spectra from the three cameras as long as they have the same number of wavelength bins. This is not a replacement for desispec.coaddition.coadd_cameras, but a simpler (versatile and faster) implementation which uses only numpy. This also assumes the input spectra grid are already aligned (i.e. same wavelength grid in the overlapping regions), This is likely the case if the spectra are from the official data releases. Parameters ---------- flux_cam : dict Dictionary containing the flux values from the three cameras wave_cam : dict Dictionary containing the wavelength values from the three cameras ivar_cam : dict Dictionary containing the inverse variance values from the three cameras mask_cam : dict, optional Dictionary containing the mask values from the three cameras Returns ------- Tuple returns the combined flux, wavelength and inverse variance grids. """ sbands = np.array(["b", "r", "z"]) # bands sorted by inc. wavelength # create wavelength array wave = None tolerance = 0.0001 # A , tolerance shifts = {} for b in sbands: wave_camera = np.atleast_2d(wave_cam[b].copy()) if wave is None: wave = wave_camera else: shifts[b] = np.sum( np.all((wave + tolerance) < wave_camera[:, 0][:, None], axis=0) ) wave = np.append( wave, wave_camera[ :, np.all(wave_camera > (wave[:, -1][:, None] + tolerance), axis=0) ], axis=1, ) nwave = wave.shape[1] blue = sbands[0] ntarget = len(flux_cam[blue]) flux = None ivar = None mask = None for b in sbands: flux_camera = np.atleast_2d(flux_cam[b].copy()) ivar_camera = np.atleast_2d(ivar_cam[b].copy()) ivar_camera[ivar_camera <= 0] = 0 if mask_cam is not None: mask_camera = np.atleast_2d(mask_cam[b].astype(bool)) ivar_camera[mask_camera] = 0 if flux is None: flux = np.zeros((ntarget, nwave), dtype=flux_cam[blue].dtype) flux[:, : flux_camera.shape[1]] += flux_camera * ivar_camera ivar = np.zeros((ntarget, nwave), dtype=flux_cam[blue].dtype) ivar[:, : ivar_camera.shape[1]] += ivar_camera if mask is not None: mask = np.ones((ntarget, nwave), dtype=mask_cam[blue].dtype) mask[:, : mask_camera.shape[1]] &= mask_camera else: flux[:, shifts[b] : (shifts[b] + flux_camera.shape[1])] += ( flux_camera * ivar_camera ) ivar[:, shifts[b] : (shifts[b] + ivar_camera.shape[1])] += ivar_camera if mask is not None: mask[:, shifts[b] : (shifts[b] + mask_camera.shape[1])] &= mask_camera flux = flux / ivar flux[~np.isfinite(flux)] = 0 ivar[~np.isfinite(ivar)] = 0 if wave_cam[blue].ndim == 1: wave = np.squeeze(wave) if mask_cam is not None: return flux, wave, ivar, mask else: return flux, wave, ivar
the-stack_0_7204
#!/usr/bin/env python3 """Make rhyming words""" import argparse import re import string # -------------------------------------------------- def get_args(): """get command-line arguments""" parser = argparse.ArgumentParser( description='Make rhyming "words"', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('word', metavar='str', help='A word to rhyme') return parser.parse_args() # -------------------------------------------------- def main(): """Make a jazz noise here""" args = get_args() prefixes = list('bcdfghjklmnpqrstvwxyz') + ( 'bl br ch cl cr dr fl fr gl gr pl pr sc ' 'sh sk sl sm sn sp st sw th tr tw thw wh wr ' 'sch scr shr sph spl spr squ str thr').split() start, rest = stemmer(args.word) if rest: print('\n'.join(sorted([p + rest for p in prefixes if p != start]))) else: print(f'Cannot rhyme "{args.word}"') # -------------------------------------------------- def stemmer(word): """Return leading consonants (if any), and 'stem' of word""" vowels = 'aeiou' consonants = ''.join( [c for c in string.ascii_lowercase if c not in vowels]) pattern = ( '([' + consonants + ']+)?' # capture one or more, optional '(' # start capture '[' + vowels + ']' # at least one vowel '.*' # zero or more of anything else ')?') # end capture, optional group match = re.match(pattern, word.lower()) return (match.group(1) or '', match.group(2) or '') if match else ('', '') # -------------------------------------------------- def test_stemmer(): """test the stemmer""" assert stemmer('') == ('', '') assert stemmer('cake') == ('c', 'ake') assert stemmer('chair') == ('ch', 'air') assert stemmer('APPLE') == ('', 'apple') assert stemmer('RDNZL') == ('rdnzl', '') # -------------------------------------------------- if __name__ == '__main__': main()
the-stack_0_7205
from sys import argv from Bio import SeqIO, Seq, AlignIO import pandas as pd # user input: aligned_fasta_path = argv[1] outfile_path = argv[2] regions_table_path = argv[3] # tables of regions of the genome, to determine translation reading frame in translation. excel_mutations_table_path = argv[4] # TODO: pipeline - add as argument def highlight_row(row): """ Highlight the mutations cells in excel, row by row. :param row: row to return it's colors :return: colors list matching row indices. """ colors_list = [""] * 7 + ["background-color: silver"] * 2 # color of the fixed part of the table # (the mutation table part, first 8 columns) mut = row["mut"] ref = row["REF"] for samp in row[9:]: # now color all other cells (each column belongs to a different sample) if samp != ref: # highlight cell if it has a mutation. if samp == mut: # highlight only if the mutation is matching the mutation in table color = "background-color: yellow" else: # sample == 'X' -> do not color. color = '' else: color = '' colors_list.append(color) return colors_list codon_map = { "TTT": "F", "TTC": "F", "TTA": "L", "TTG": "L", "TCT": "S", "TCC": "S", "TCA": "S", "TCG": "S", "TAT": "Y", "TAC": "Y", "TAA": "*", "TAG": "*", "TGT": "C", "TGC": "C", "TGA": "*", "TGG": "W", "CTT": "L", "CTC": "L", "CTA": "L", "CTG": "L", "CCT": "P", "CCC": "P", "CCA": "P", "CCG": "P", "CAT": "H", "CAC": "H", "CAA": "Q", "CAG": "Q", "CGT": "R", "CGC": "R", "CGA": "R", "CGG": "R", "ATT": "I", "ATC": "I", "ATA": "I", "ATG": "M", "ACT": "T", "ACC": "T", "ACA": "T", "ACG": "T", "AAT": "N", "AAC": "N", "AAA": "K", "AAG": "K", "AGT": "S", "AGC": "S", "AGA": "R", "AGG": "R", "GTT": "V", "GTC": "V", "GTA": "V", "GTG": "V", "GCT": "A", "GCC": "A", "GCA": "A", "GCG": "A", "GAT": "D", "GAC": "D", "GAA": "E", "GAG": "E", "GGT": "G", "GGC": "G", "GGA": "G", "GGG": "G" } def full_codon_gaps(sequence, start, end, gap='-'): """ avoid partial gaps in codon and convert to whole gaps codon exmple: from A-- to --- :param sequence: Seq object (Biopython) :param start: start of reading frame :param end: end of reading frame :param gap: gap character. default: '-' :return: new sequence, with full codons """ old_seq = str(sequence) new_seq = old_seq[:start] for i in range(start-1, end, 3): codon = old_seq[i: i+3] if '-' in codon: codon = '---' new_seq += codon new_seq += old_seq[end:] return Seq.Seq(new_seq) def translate(sequence, start, end, codon_table): """ translate nucleotides sequence in given region to amino acid sequence according to codons in region start->end :param sequence: nucleotides sequence as str # :param start: position of first nucleotide :param end: position of last nucleotide :param codon_table: dictionary of codons as keys and AA name as values, for translation. :return: translated sequence (aa seq) """ tranlsated = [] for i in range(start, end, 3): codon = sequence[i:i+3] if codon in codon_table: aa = codon_table[codon] # get the codon's matching amino acid by codon table dictionary else: aa = 'X' # ignore frameshifts tranlsated.append(aa) return tranlsated # 1. load sequences and tables regionsTable = pd.read_csv(regions_table_path) multifasta = SeqIO.to_dict(SeqIO.parse(aligned_fasta_path, 'fasta')) multifasta.pop('NC_045512.2', None) # remove refseq sequence from alignment file if exists. multifasta.pop('REF_NC_045512.2', None) mutTable_excel = pd.read_excel(excel_mutations_table_path, sheet_name=None, engine='openpyxl') for name in mutTable_excel: mutTable_excel[name]['lineage'] = name # add a lineage column to all variant's tables mutTable = pd.concat(mutTable_excel.values(), ignore_index=True) # select only part of the columns: mutTable = mutTable[['Position', 'Reference', 'Mutation', 'protein', 'variant', 'Mutation type', 'lineage', 'annotation']] # compress identical mutations into one line and concat lineage names in the lineage column: # mutTable = mutTable.groupby( # to create compressed table: # ['Position', 'Reference', 'Mutation', 'protein', 'variant', 'Mutation type', 'annotation'], as_index=False).agg( # {'lineage': ';'.join} # ) # 2. keep only non-synonymous mutations # comparing in lower case to avoid mistakes such as SNP_Stop != SNP_stop. to catch all cases. mutTable = mutTable[(mutTable['Mutation type'].str.lower() == 'snp') | (mutTable['Mutation type'].str.lower() == 'snp_stop')] finalTable = mutTable # 3. iterate over mutations and create final table. for sample, record in multifasta.items(): # each sample found in fasta will create a column of final table next to mutations info. seq = record.seq # 1 fasta sequence as string sample_muts = [] # will aggregate translated value of each mutation to this list that will be added as column. for mut in mutTable.iterrows(): pos = mut[1][0] gene = mut[1][3] aa = mut[1][4] aa_number = int(aa[1:-1]) # strip letters of both sides (snp mutations example: Q57H) letter-number-letter aa_from = aa[0] # original AA aa_to = aa[-1] # mutated AA # get start and end regions sequence location from regions table. region_start = int(regionsTable[regionsTable.id == gene].start.values[0]) region_end = int(regionsTable[regionsTable.id == gene].end.values[0]) # translate region (with translate() function in the top of the page) region_translated = translate(str(seq), region_start-1, region_end, codon_map) alt = region_translated[aa_number-1] # get the specific aa by its number (in its name) sample_muts.append(alt) # add to mutations list of the specific mutation to create a column to the final table finalTable[sample] = sample_muts # add the column of the sample. varcol = finalTable.apply(lambda row: row[8:].unique(), axis=1) # add a 'var' column to list unique values of row finalTable.insert(6, 'var', varcol) # insert var column finalTable = finalTable.sort_values(by=["lineage", "protein"], ascending=[True, False]) # sort by lineage and then gene finalTable = finalTable.rename(columns={'Position': 'nuc pos', 'Mutation type': 'type', 'protein': 'gene', 'variant': 'name', 'Reference': 'REF', 'Mutation': 'mut'}) # rename columns (old: new) sorted_cols = ['nuc pos', 'type', 'gene', 'var', 'name', 'lineage', 'annotation', 'REF', 'mut'] # re-order columns finalTable = finalTable[sorted_cols + [col for col in finalTable.columns if col not in sorted_cols]] # re-order columns # write to file # add highlights with designated function in the top of the page finalTable.style.apply(lambda row: highlight_row(row), axis=1).to_excel(outfile_path, index=False) # add highlights
the-stack_0_7206
# -*- coding: utf-8 -*- import pandas as pd import os file_path = os.path.dirname(os.path.realpath(__file__)) # File uploads - Extended Data Figure 5 other = pd.read_excel(file_path + "/../../data/other_category.xlsx") # Plot colors c = ['#725843', '#9f7f65', '#7c7b78', '#bbbbbb', '#90b493'] # Plotting ax = other.plot(x='Year', kind='area', color = c, legend='reverse', xlim=(1900, 2014),ylim=(0, 22), xticks=[1910, 1930, 1950, 1970, 1990, 2010], yticks=[0, 4, 8, 12, 16, 20], lw=0) ax.set_xticklabels([1910, 1930, 1950, 1970, 1990, 2010], rotation=0, fontsize=6) ax.set_yticklabels([0, 4, 8, 12, 16, 20], rotation=0, fontsize=6) ax.set_xlabel('year', fontsize=7) ax.set_ylabel('dry weight (Gigatonnes)', fontsize=7) handles, labels = ax.get_legend_handles_labels() ax.legend(reversed(handles), reversed(labels), prop={'size': 6}, bbox_to_anchor=(0, 1.680/1.750), loc="upper left",frameon=False) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.figure.set_figheight(2.3) ax.figure.set_figwidth(3.5) file_out_name = file_path + '/../output/extended_data_figure5' ax.figure.savefig(file_out_name+'.png', bbox_inches='tight', pad_inches = 0.05, dpi = 600) ax.figure.savefig(file_out_name+'.eps', bbox_inches='tight', pad_inches = 0.05) ax.figure.savefig(file_out_name+'.svg', bbox_inches='tight', pad_inches = 0.05)
the-stack_0_7208
import math ''' isReceiving returns true if a transaction was a return Integer transactionAmount ''' def isReceiving(transactionAmount): if transactionAmount == 0: return None # should not happen else: return transactionAmount > 0 ''' isPaying returns true is a transaction was a payment Integer transactionAmount ''' def isPaying(transactionAmount): if transactionAmount == 0: return None # should not happen return transactionAmount < 0 ''' getAbsoluteAmount returns the absolute value of a relative transaction amount Integer transactionAmount ''' def getAbsoluteAmount(transactionAmount): return math.fabs(transactionAmount) ''' checks if a String represents a Fractional or Integral ''' def isNumber(str): if (str[0] == '.' or str[len(str) - 1] == '.'): return False foundFloatingPoint = False for digit in str: if not digit.isdigit(): if (digit == '.'): if (foundFloatingPoint): return False else: foundFloatingPoint = True else: return False return True ''' accepted characters: A-z (case-insensitive), 0-9 and underscores. length: 5-32 characters. ''' def isValidTelegramUsername(string): length = len(string) validLength = length >= 5 and length <= 32 if validLength: for char in string: if not(char.isalpha() or char.isdigit() or char == '_'): return False return True else: return False ''' tests ''' def main(): print(isPaying(-1), isPaying(1), isReceiving(-1), isReceiving(1), getAbsoluteAmount(-1), getAbsoluteAmount(-1)) if __name__ == '__main__': main()
the-stack_0_7209
# -*- coding: utf-8 -*- from __future__ import unicode_literals from h._compat import xrange from unittest.mock import Mock import datetime import pytest from h.activity import bucketing from tests.common import factories UTCNOW = datetime.datetime(year=1970, month=2, day=21, hour=19, minute=30) FIVE_MINS_AGO = UTCNOW - datetime.timedelta(minutes=5) YESTERDAY = UTCNOW - datetime.timedelta(days=1) THIRD_MARCH_1968 = datetime.datetime(year=1968, month=3, day=3) FIFTH_NOVEMBER_1969 = datetime.datetime(year=1969, month=11, day=5) class timeframe_with: # noqa: N801 def __init__(self, label, document_buckets): self.label = label self.document_buckets = document_buckets def __eq__(self, timeframe): return ( self.label == timeframe.label and self.document_buckets == timeframe.document_buckets ) def __repr__(self): return '{class_} "{label}" with {n} document buckets'.format( class_=self.__class__, label=self.label, n=len(self.document_buckets) ) @pytest.mark.usefixtures("factories") class TestDocumentBucket: def test_init_sets_the_document_title(self, db_session, document): title_meta = factories.DocumentMeta( type="title", value=["The Document Title"], document=document ) document.title = "The Document Title" db_session.add(title_meta) db_session.flush() bucket = bucketing.DocumentBucket(document) assert bucket.title == "The Document Title" def test_init_uses_the_document_web_uri(self, db_session, document): document.web_uri = "http://example.com" bucket = bucketing.DocumentBucket(document) assert bucket.uri == "http://example.com" def test_init_sets_None_uri_when_no_http_or_https_can_be_found( self, db_session, document ): document.web_uri = None bucket = bucketing.DocumentBucket(document) assert bucket.uri is None def test_init_sets_the_domain_from_the_extracted_uri(self, db_session, document): document.web_uri = "https://www.example.com/foobar.html" bucket = bucketing.DocumentBucket(document) assert bucket.domain == "www.example.com" def test_init_sets_domain_to_local_file_when_no_uri_is_set( self, db_session, document ): docuri_pdf = factories.DocumentURI( uri="urn:x-pdf:fingerprint", document=document ) db_session.add(docuri_pdf) db_session.flush() bucket = bucketing.DocumentBucket(document) assert bucket.domain == "Local file" def test_annotations_count_returns_count_of_annotations(self, db_session, document): bucket = bucketing.DocumentBucket(document) for _ in xrange(7): annotation = factories.Annotation() bucket.append(annotation) assert bucket.annotations_count == 7 def test_append_appends_the_annotation(self, document): bucket = bucketing.DocumentBucket(document) annotations = [] for _ in xrange(7): annotation = factories.Annotation() annotations.append(annotation) bucket.append(annotation) assert bucket.annotations == annotations def test_append_adds_unique_annotation_tag_to_bucket(self, document): ann_1 = factories.Annotation(tags=["foo", "bar"]) ann_2 = factories.Annotation(tags=["foo", "baz"]) bucket = bucketing.DocumentBucket(document) bucket.append(ann_1) bucket.append(ann_2) assert bucket.tags == set(["foo", "bar", "baz"]) def test_append_adds_unique_annotation_user_to_bucket(self, document): ann_1 = factories.Annotation(userid="luke") ann_2 = factories.Annotation(userid="alice") ann_3 = factories.Annotation(userid="luke") bucket = bucketing.DocumentBucket(document) bucket.append(ann_1) bucket.append(ann_2) bucket.append(ann_3) assert bucket.users == set(["luke", "alice"]) def test_eq(self, document): bucket_1 = bucketing.DocumentBucket(document) bucket_2 = bucketing.DocumentBucket(document) for _ in xrange(5): annotation = factories.Annotation() bucket_1.append(annotation) bucket_2.append(annotation) assert bucket_1 == bucket_2 def test_eq_annotations_mismatch(self, document): bucket_1 = bucketing.DocumentBucket(document) bucket_2 = bucketing.DocumentBucket(document) bucket_1.annotations = [1, 2, 3] bucket_2.annotations = [2, 3, 4] assert not bucket_1 == bucket_2 def test_eq_tags_mismatch(self, document): bucket_1 = bucketing.DocumentBucket(document) bucket_2 = bucketing.DocumentBucket(document) bucket_1.tags.update(["foo", "bar"]) bucket_2.tags.update(["foo", "baz"]) assert not bucket_1 == bucket_2 def test_eq_users_mismatch(self, document): bucket_1 = bucketing.DocumentBucket(document) bucket_2 = bucketing.DocumentBucket(document) bucket_1.users.update(["alice", "luke"]) bucket_2.users.update(["luke", "paula"]) assert not bucket_1 == bucket_2 def test_eq_uri_mismatch(self, document): bucket_1 = bucketing.DocumentBucket(document) bucket_2 = bucketing.DocumentBucket(document) bucket_1.uri = "http://example.com" bucket_2.uri = "http://example.org" assert not bucket_1 == bucket_2 def test_eq_domain_mismatch(self, document): bucket_1 = bucketing.DocumentBucket(document) bucket_2 = bucketing.DocumentBucket(document) bucket_1.domain = "example.com" bucket_2.domain = "example.org" assert not bucket_1 == bucket_2 def test_eq_title_mismatch(self, document): bucket_1 = bucketing.DocumentBucket(document) bucket_2 = bucketing.DocumentBucket(document) bucket_1.title = "First Title" bucket_2.title = "Second Title" assert not bucket_1 == bucket_2 def test_incontext_link_returns_link_to_first_annotation(self, document, patch): incontext_link = patch("h.links.incontext_link") bucket = bucketing.DocumentBucket(document) ann = factories.Annotation() bucket.append(ann) request = Mock() assert bucket.incontext_link(request) == incontext_link.return_value def test_incontext_link_returns_none_if_bucket_empty(self, document, patch): patch("h.links.incontext_link") bucket = bucketing.DocumentBucket(document) request = Mock() assert bucket.incontext_link(request) is None @pytest.fixture def document(self, db_session): document = factories.Document() db_session.add(document) db_session.flush() return document @pytest.mark.usefixtures("factories", "utcnow") class TestBucket: def test_no_annotations(self): assert bucketing.bucket([]) == [] @pytest.mark.parametrize( "annotation_datetime,timeframe_label", [(FIVE_MINS_AGO, "Last 7 days"), (THIRD_MARCH_1968, "Mar 1968")], ) def test_one_annotation(self, annotation_datetime, timeframe_label): annotation = factories.Annotation( document=factories.Document(), updated=annotation_datetime ) timeframes = bucketing.bucket([annotation]) assert timeframes == [ timeframe_with( timeframe_label, { annotation.document: bucketing.DocumentBucket( annotation.document, [annotation] ) }, ) ] @pytest.mark.parametrize( "annotation_datetime,timeframe_label", [(FIVE_MINS_AGO, "Last 7 days"), (THIRD_MARCH_1968, "Mar 1968")], ) def test_multiple_annotations_of_one_document_in_one_timeframe( self, annotation_datetime, timeframe_label ): results = [ factories.Annotation( target_uri="https://example.com", updated=annotation_datetime ) for _ in range(3) ] timeframes = bucketing.bucket(results) document = results[0].document assert timeframes == [ timeframe_with( timeframe_label, {document: bucketing.DocumentBucket(document, results)} ) ] @pytest.mark.parametrize( "annotation_datetime,timeframe_label", [(YESTERDAY, "Last 7 days"), (THIRD_MARCH_1968, "Mar 1968")], ) def test_annotations_of_multiple_documents_in_one_timeframe( self, annotation_datetime, timeframe_label ): annotation_1 = factories.Annotation( target_uri="http://example1.com", updated=annotation_datetime ) annotation_2 = factories.Annotation( target_uri="http://example2.com", updated=annotation_datetime ) annotation_3 = factories.Annotation( target_uri="http://example3.com", updated=annotation_datetime ) timeframes = bucketing.bucket([annotation_1, annotation_2, annotation_3]) assert timeframes == [ timeframe_with( timeframe_label, { annotation_1.document: bucketing.DocumentBucket( annotation_1.document, [annotation_1] ), annotation_2.document: bucketing.DocumentBucket( annotation_2.document, [annotation_2] ), annotation_3.document: bucketing.DocumentBucket( annotation_3.document, [annotation_3] ), }, ) ] def test_annotations_of_the_same_document_in_different_timeframes(self): results = [ factories.Annotation(), factories.Annotation(updated=FIFTH_NOVEMBER_1969), factories.Annotation(updated=THIRD_MARCH_1968), ] document = factories.Document() for annotation in results: annotation.document = document timeframes = bucketing.bucket(results) expected_bucket_1 = bucketing.DocumentBucket(document, [results[0]]) expected_bucket_2 = bucketing.DocumentBucket(document, [results[1]]) expected_bucket_3 = bucketing.DocumentBucket(document, [results[2]]) assert timeframes == [ timeframe_with("Last 7 days", {document: expected_bucket_1}), timeframe_with("Nov 1969", {document: expected_bucket_2}), timeframe_with("Mar 1968", {document: expected_bucket_3}), ] def test_recent_and_older_annotations_together(self): results = [ factories.Annotation(target_uri="http://example1.com"), factories.Annotation(target_uri="http://example2.com"), factories.Annotation(target_uri="http://example3.com"), factories.Annotation( target_uri="http://example4.com", updated=THIRD_MARCH_1968 ), factories.Annotation( target_uri="http://example5.com", updated=THIRD_MARCH_1968 ), factories.Annotation( target_uri="http://example6.com", updated=THIRD_MARCH_1968 ), ] timeframes = bucketing.bucket(results) expected_bucket_1 = bucketing.DocumentBucket(results[0].document, [results[0]]) expected_bucket_2 = bucketing.DocumentBucket(results[1].document, [results[1]]) expected_bucket_3 = bucketing.DocumentBucket(results[2].document, [results[2]]) expected_bucket_4 = bucketing.DocumentBucket(results[3].document, [results[3]]) expected_bucket_5 = bucketing.DocumentBucket(results[4].document, [results[4]]) expected_bucket_6 = bucketing.DocumentBucket(results[5].document, [results[5]]) assert timeframes == [ timeframe_with( "Last 7 days", { results[0].document: expected_bucket_1, results[1].document: expected_bucket_2, results[2].document: expected_bucket_3, }, ), timeframe_with( "Mar 1968", { results[3].document: expected_bucket_4, results[4].document: expected_bucket_5, results[5].document: expected_bucket_6, }, ), ] def test_annotations_from_different_days_in_same_month(self): """ Test bucketing multiple annotations from different days of same month. Annotations from different days of the same month should go into one bucket. """ one_month_ago = UTCNOW - datetime.timedelta(days=30) annotations = [ factories.Annotation( target_uri="http://example.com", updated=one_month_ago ), factories.Annotation( target_uri="http://example.com", updated=one_month_ago - datetime.timedelta(days=1), ), factories.Annotation( target_uri="http://example.com", updated=one_month_ago - datetime.timedelta(days=2), ), ] timeframes = bucketing.bucket(annotations) expected_bucket = bucketing.DocumentBucket(annotations[0].document) expected_bucket.update(annotations) assert timeframes == [ timeframe_with("Jan 1970", {annotations[0].document: expected_bucket}) ] @pytest.fixture def utcnow(self, patch): utcnow = patch("h.activity.bucketing.utcnow") utcnow.return_value = UTCNOW return utcnow
the-stack_0_7210
from django import forms class SearchForm(forms.Form): CHOICES = [ (u'ISBN', u'ISBN'), (u'书名', u'书名'), (u'作者', u'作者') ] search_by = forms.ChoiceField( label='', choices=CHOICES, widget=forms.RadioSelect(), initial=u'书名', ) keyword = forms.CharField( label='', max_length=32, widget=forms.TextInput(attrs={ 'class': 'form-control input-lg', 'placeholder': u'请输入需要检索的图书信息', 'name': 'keyword', }) )
the-stack_0_7212
""" (C) IBM Corporation 2021 Description: Creates new config files within the default config file dir. Uses both user input and authentification file for auth informations. Repository: https://github.com/IBM/spectrum-protect-sppmon Author: Niels Korschinsky """ import argparse import json import logging import os import re import signal import subprocess import sys from os.path import dirname, isfile, join, realpath from typing import Any, Dict, List from utils import Utils LOGGER: logging.Logger class ConfigFileSetup: """ Creates new config files within the default config file dir. Uses both user input and authentification file for auth informations. Functions: addSshClient - Asks for ssh-login information for a certain ssh-client type. createServerDict - Asks SPP-REST-Server information from user and returns them. createInfluxDict - Reads InfluxDB config from authfile or asks user. main - See description above. """ @staticmethod def addSshClient(ssh_type: str) -> List[Dict[str, Any]]: """Asks for ssh-login information for a certain ssh-client type. Args: ssh_type (str): Type of ssh-client. Returns: List[Dict[str, Any]]: List of added ssh-clients. """ ssh_clients: List[Dict[str, Any]] = [] Utils.printRow() LOGGER.info( f"> Collecting {ssh_type} ssh information") # counter for naming like: vsnap-1 / vsnap-2 counter: int = 1 while(Utils.confirm(f"Do you want to add (another) {ssh_type}-client?")): try: ssh_client: Dict[str, Any] = {} print( "> Test the requested logins by logging into" + f"the {ssh_type}-client via ssh yourself.") ssh_client["name"] = Utils.prompt_string( f"Please enter the name of the {ssh_type}-client (display only)", f"{ssh_type}-{counter}") counter += 1 # resetted on next ssh_type ssh_client["srv_address"] = Utils.prompt_string( f"Please enter the server address of the {ssh_type}-client") ssh_client["srv_port"] = int( Utils.prompt_string( f"Please enter the port of the {ssh_type}-client", "22", filter=(lambda x: x.isdigit()))) ssh_client["username"] = Utils.prompt_string( f"Please enter the {ssh_type}-client username (equal to login via ssh)") ssh_client["password"] = Utils.prompt_string( f"Please enter the {ssh_type}-client user password (equal to login via ssh)", is_password=True) ssh_client["type"] = ssh_type # Saving config ssh_clients.append(ssh_client) Utils.printRow() except ValueError as err: LOGGER.error(err) LOGGER.info( "Aborted adding this ssh client. Continuing with next client") return ssh_clients @staticmethod def createServerDict() -> Dict[str, Any]: """ Asks SPP-REST-Server information from user and returns them. Returns: Dict[str, Any]: All Informations for SPP-REST-Access """ spp_server: Dict[str, Any] = {} spp_server["username"] = Utils.prompt_string( "Please enter the SPP REST-API Username (equal to login via website)") spp_server["password"] = Utils.prompt_string( "Please enter the REST-API Users Password (equal to login via website)", is_password=True) spp_server["srv_address"] = Utils.prompt_string( "Please enter the SPP server address") spp_server["srv_port"] = int( Utils.prompt_string( "Please enter the SPP server port", "443", filter=(lambda x: x.isdigit()))) spp_server["jobLog_retention"] = Utils.prompt_string( "How long are the JobLogs saved within the Server? (Format: 48h, 60d, 2w)", "60d", filter=(lambda x: bool(re.match(r"^[0-9]+[hdw]$", x)))) return spp_server @staticmethod def createInfluxDict(server_name: str) -> Dict[str, Any]: """ Reads InfluxDB config from authfile or asks user. Args: server_name (str): Name of SPP server to set influxDB-name Returns: Dict[str, Any]: All Informations for Influx-Access """ influxDB: Dict[str, Any] = {} influxDB["username"] = Utils.readAuthOrInput( "influxAdminName", "Please enter the influxAdmin username", "influxAdmin" ) influxDB["password"] = Utils.readAuthOrInput( "influxAdminPassword", "Please enter the influxAdmin user password", is_password=True ) influxDB["ssl"] = bool(Utils.readAuthOrInput( "sslEnabled", "Please enter whether ssl is enabled (True/False)", "True", filter=(lambda x: bool(re.match(r"^(True)|(False)$", x))) )) # Only check this if ssl is enabled # Note: verify_ssl is the logical opposite of unsafeSsl influxDB["verify_ssl"] = False if (not influxDB["ssl"]) else not bool(Utils.readAuthOrInput( "unsafeSsl", "Please enter whether the ssl certificate is selfsigned (True/False)", filter=(lambda x: bool(re.match(r"^(True)|(False)$", x))) )) influxDB["srv_address"] = Utils.readAuthOrInput( "influxAddress", "Please enter the influx server address" ) influxDB["srv_port"] = int(Utils.readAuthOrInput( "influxPort", "Please enter the influx server port", "8086", filter=(lambda x: x.isdigit()) )) # Need to remove any illegal characters from the db name. For now, we will limit the characters # to letters and numbers dbName = ''.join(filter(str.isalnum, server_name)) LOGGER.info( f"> Your influxDB database name for this server is \"{dbName}\"") influxDB["dbName"] = dbName return influxDB def main(self, config_path: str, auth_file: str, auto_confirm: bool): """ Creates new config files within the default config file dir. Uses both user input and authentification file for auth informations. Args: config_path (str): Config file DIR auth_file (str): File with pairs of authentification data auto_confirm (bool): Skip any confirm messages """ fileDirPath = dirname(sys.argv[0]) logPath = join(fileDirPath, "logs", "installLog.txt") global LOGGER_NAME LOGGER_NAME = 'configFileLogger' global LOGGER LOGGER = Utils.setupLogger(LOGGER_NAME, logPath) Utils.printRow() Utils.auto_confirm = auto_confirm Utils.LOGGER = LOGGER signal.signal(signal.SIGINT, Utils.signalHandler) LOGGER.info("> Checking for sudo rights") # Only works on Linux, therefore error here. if os.name == 'posix': if os.geteuid() == 0: print("Already root") else: print("Root rights required to run script.") subprocess.call(['sudo', 'python3', *sys.argv]) sys.exit() LOGGER.info("> Generating new Config files") # ### Config dir setup config_path = realpath(config_path) LOGGER.info( f"> All new configurations files will be written into the directory:\n {config_path}") # ### authFile setup try: if(not auth_file): LOGGER.info("> No authentification file specifed") Utils.setupAuthFile(None) else: # take none if not exists, otherwise take auth path Utils.setupAuthFile(auth_file) except Exception as error: LOGGER.info(f"> Setup of auth-file failed due error: {error}") # ########## EXECUTION ################ LOGGER.info("> You may add multiple SPP-Server now.") print("> Each server requires it's own config file") try: while(Utils.confirm("\nDo you want to to add a new SPP-Server now?")): config_file_path: str = "" server_name: str = "" while(not config_file_path or not server_name): # Servername for filename and config server_name = Utils.prompt_string( "What is the name of the SPP-Server? (Human Readable, no Spaces)", filter=(lambda x: not " " in x)) # Replace spaces config_file_path = join( realpath(config_path), server_name + ".conf") if(isfile(config_file_path)): LOGGER.info( f"> There is already a file at {config_file_path}.") if(not Utils.confirm("Do you want to replace it?")): LOGGER.info( "> Please re-enter a different server name") # remove content to allow loop to continue config_file_path = "" server_name = "" else: LOGGER.info("> Overwriting old config file") os.system("touch " + config_file_path) os.system("sudo chmod 600 " + config_file_path) LOGGER.info(f"> Created config file under {config_file_path}") # Overwrite existing file with open(config_file_path, "w") as config_file: LOGGER.info( f"> Accessed config file under {config_file_path}") # Structure of the config file configs: Dict[str, Any] = {} # #################### SERVER ############################### Utils.printRow() LOGGER.info("> collecting server information") # Saving config configs["sppServer"] = ConfigFileSetup.createServerDict() LOGGER.info("> finished collecting server information") # #################### influxDB ############################### Utils.printRow() LOGGER.info("> collecting influxDB information") # Saving config configs["influxDB"] = ConfigFileSetup.createInfluxDict( server_name) LOGGER.info("> finished collecting influxdb information") # #################### ssh clients ############################### Utils.printRow() LOGGER.info("> collecting ssh client information") ssh_clients: List[Dict[str, Any]] = [] print("") print("> NOTE: You will now be asked for multiple ssh logins") print( "> You may test all these logins yourself by logging in via ssh") print("> Following categories will be asked:") # server excluded here ssh_types: List[str] = [ "vsnap", "vadp", "cloudproxy", "other"] LOGGER.info("> server, " + ", ".join(ssh_types)) print("> Please add all clients accordingly.") print() print( "> If you misstyped anything you may edit the config file manually afterwards") print( "> NOTE: It is highly recommended to add at least one vSnap client") if(not Utils.confirm("Do you want to continue now?")): json.dump(configs, config_file, indent=4) LOGGER.info( f"> saved all information into file {config_file_path}") LOGGER.info("> finished setup for this server.") continue # Contiuing to the next server config file loop # #################### ssh clients: SERVER ############################### Utils.printRow() LOGGER.info("> Collecting SPP-Server ssh information") ssh_server: Dict[str, Any] = {} print( "> Test the requested logins by logging into the SPP-Server via ssh yourself.") ssh_server["name"] = server_name spp_server_dict: Dict[str, Any] = configs["sppServer"] ssh_server["srv_address"] = spp_server_dict["srv_address"] ssh_server["srv_port"] = int( Utils.prompt_string( f"Please enter the SSH port of the SPP server", "22", filter=(lambda x: x.isdigit()))) ssh_server["username"] = Utils.prompt_string( "Please enter the SPP-Server SSH username (equal to login via ssh)") ssh_server["password"] = Utils.prompt_string( "Please enter the SPP-Server SSH user password (equal to login via ssh)", is_password=True) ssh_server["type"] = "server" # Saving config ssh_clients.append(ssh_server) # #################### ssh clients all other ############################### for ssh_type in ssh_types: try: ssh_clients.extend(ConfigFileSetup.addSshClient(ssh_type)) except ValueError as err: LOGGER.error(err) LOGGER.info( "Skipped this type of SSH-Client. Continuing with next type.") # save all ssh-clients configs["sshclients"] = ssh_clients print("> Finished setting up SSH Clients") # #################### SAVE & EXIT ############################### LOGGER.info("> Writing into config file") json.dump(configs, config_file, indent=4) LOGGER.info( f"> Configuraton saved into the file:\n{config_file_path}") Utils.printRow() continue # Contiuing to the next server config file loop except ValueError as err: LOGGER.error(err) LOGGER.info("> Finished config file creation") if __name__ == "__main__": fileDirPath = dirname(sys.argv[0]) configPathDefault = realpath(join(fileDirPath, "..", "config_files")) authPathDefault = realpath(join(fileDirPath, "delete_me_auth.txt")) parser = argparse.ArgumentParser( "Support agent to create new server configuration files for SPPMon") parser.add_argument("--configPath", dest="config_path", default=configPathDefault, help=f"Path to folder containing the config files (default: `{configPathDefault}`)") parser.add_argument("--authFile", dest="auth_file", required=False, default=authPathDefault, help=f"Path to authentification file (default: `{authPathDefault}`)") parser.add_argument("--autoConfirm", dest="auto_confirm", action="store_true", help="Autoconfirm most confirm prompts") args = parser.parse_args() ConfigFileSetup().main(args.config_path, args.auth_file, args.auto_confirm)
the-stack_0_7213
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2016, Anaconda, Inc. All rights reserved. # # Licensed under the terms of the BSD 3-Clause License. # The full license is in the file LICENSE.txt, distributed with this software. # ----------------------------------------------------------------------------- from __future__ import absolute_import from copy import deepcopy import os import platform import pytest import subprocess import sys from anaconda_project.test.environ_utils import minimal_environ, strip_environ from anaconda_project.test.project_utils import project_no_dedicated_env from anaconda_project.internal.test.tmpfile_utils import (with_directory_contents, with_directory_contents_completing_project_file) from anaconda_project.internal import conda_api from anaconda_project.prepare import (prepare_without_interaction, unprepare, prepare_in_stages, PrepareSuccess, PrepareFailure, _after_stage_success, _FunctionPrepareStage) from anaconda_project.project import Project from anaconda_project.project_file import DEFAULT_PROJECT_FILENAME from anaconda_project.project_commands import ProjectCommand from anaconda_project.requirements_registry.requirement import UserConfigOverrides from anaconda_project.conda_manager import (push_conda_manager_class, pop_conda_manager_class, CondaManager, CondaEnvironmentDeviations, CondaLockSet) @pytest.mark.slow def test_prepare_empty_directory(): def prepare_empty(dirname): project = Project(dirname) environ = minimal_environ() result = prepare_without_interaction(project, environ=environ) assert result.errors == [] assert result assert result.env_prefix is not None assert dict(PROJECT_DIR=project.directory_path) == strip_environ(result.environ) assert dict() == strip_environ(environ) assert result.command_exec_info is None with_directory_contents(dict(), prepare_empty) def test_prepare_bad_provide_mode(): def prepare_bad_provide_mode(dirname): with pytest.raises(ValueError) as excinfo: project = project_no_dedicated_env(dirname) environ = minimal_environ() prepare_in_stages(project, mode="BAD_PROVIDE_MODE", environ=environ) assert "invalid provide mode" in repr(excinfo.value) with_directory_contents(dict(), prepare_bad_provide_mode) @pytest.mark.slow @pytest.mark.skipif(platform.system() == 'Windows' and not (sys.version_info.major == 3 and sys.version_info.minor == 4), reason="on Windows, can't delete env dir except on python 3.4, don't know why") def test_unprepare_empty_directory(): def unprepare_empty(dirname): project = Project(dirname) environ = minimal_environ() result = prepare_without_interaction(project, environ=environ) assert result.errors == [] assert result status = unprepare(project, result) assert status.errors == [] assert status with_directory_contents(dict(), unprepare_empty) def test_unprepare_problem_project(): def unprepare_problems(dirname): project = project_no_dedicated_env(dirname) environ = minimal_environ() result = prepare_without_interaction(project, environ=environ) assert not result assert result.env_prefix is None status = unprepare(project, result) assert not status assert status.status_description == 'Unable to load the project.' assert status.errors == [('%s: variables section contains wrong value type 42, ' + 'should be dict or list of requirements') % project.project_file.basename] with_directory_contents_completing_project_file({DEFAULT_PROJECT_FILENAME: "variables:\n 42"}, unprepare_problems) @pytest.mark.slow def test_unprepare_nothing_to_do(): def unprepare_nothing(dirname): project = Project(dirname) environ = minimal_environ() result = prepare_without_interaction(project, environ=environ) assert result.errors == [] assert result status = unprepare(project, result, whitelist=[]) assert status.errors == [] assert status assert status.status_description == 'Nothing to clean up.' with_directory_contents(dict(), unprepare_nothing) def test_default_to_system_environ(): def prepare_system_environ(dirname): project = project_no_dedicated_env(dirname) os_environ_copy = deepcopy(os.environ) result = prepare_without_interaction(project) assert project.directory_path == strip_environ(result.environ)['PROJECT_DIR'] # os.environ wasn't modified assert os_environ_copy == os.environ # result.environ inherits everything in os.environ for key in os_environ_copy: if key == 'PATH' and platform.system() == 'Windows' and result.environ[key] != os.environ[key]: print("prepare changed PATH on Windows and ideally it would not.") else: if key == 'PATH' and result.environ[key] != os.environ[key]: original = os.environ[key].split(os.pathsep) updated = result.environ[key].split(os.pathsep) print("ORIGINAL PATH: " + repr(original)) print("UPDATED PATH: " + repr(updated)) assert original == updated assert result.errors == [] assert result assert result.environ.get(key) == os.environ.get(key) with_directory_contents_completing_project_file( { DEFAULT_PROJECT_FILENAME: """ packages: [] """ }, prepare_system_environ) def test_prepare_some_env_var_already_set(): def prepare_some_env_var(dirname): project = project_no_dedicated_env(dirname) environ = minimal_environ(FOO='bar') result = prepare_without_interaction(project, environ=environ) assert result.errors == [] assert result assert dict(FOO='bar', PROJECT_DIR=project.directory_path) == strip_environ(result.environ) assert dict(FOO='bar') == strip_environ(environ) with_directory_contents_completing_project_file( {DEFAULT_PROJECT_FILENAME: """ variables: FOO: {} """}, prepare_some_env_var) def test_prepare_some_env_var_not_set(): def prepare_some_env_var(dirname): project = project_no_dedicated_env(dirname) environ = minimal_environ(BAR='bar') result = prepare_without_interaction(project, environ=environ) assert not result assert result.env_prefix is not None assert dict(BAR='bar') == strip_environ(environ) with_directory_contents_completing_project_file( {DEFAULT_PROJECT_FILENAME: """ variables: FOO: {} """}, prepare_some_env_var) def test_prepare_some_env_var_not_set_keep_going(): def prepare_some_env_var_keep_going(dirname): project = project_no_dedicated_env(dirname) environ = minimal_environ(BAR='bar') stage = prepare_in_stages(project, environ=environ, keep_going_until_success=True) assert "Set up project." == stage.description_of_action assert ['FOO', 'CONDA_PREFIX'] == [status.requirement.env_var for status in stage.statuses_before_execute] # there's an initial stage to set the conda env next_stage = stage.execute() assert ['FOO', 'CONDA_PREFIX'] == [status.requirement.env_var for status in stage.statuses_after_execute] assert not stage.failed assert stage.environ['PROJECT_DIR'] == dirname assert "Set up project." == next_stage.description_of_action assert ['FOO', 'CONDA_PREFIX'] == [status.requirement.env_var for status in next_stage.statuses_before_execute] stage = next_stage for i in range(1, 10): next_stage = stage.execute() assert next_stage is not None assert stage.failed assert stage.environ['PROJECT_DIR'] == dirname stage = next_stage assert dict(BAR='bar') == strip_environ(environ) with_directory_contents_completing_project_file( {DEFAULT_PROJECT_FILENAME: """ variables: FOO: {} """}, prepare_some_env_var_keep_going) def test_prepare_with_app_entry(): def prepare_with_app_entry(dirname): project = project_no_dedicated_env(dirname) environ = minimal_environ(FOO='bar') env_path = conda_api.environ_get_prefix(environ) result = prepare_without_interaction(project, environ=environ) assert result command = result.command_exec_info assert 'FOO' in command.env assert command.cwd == project.directory_path if platform.system() == 'Windows': commandpath = os.path.join(env_path, "python.exe") else: commandpath = os.path.join(env_path, "bin", "python") assert command.args == [commandpath, 'echo.py', env_path, 'foo', 'bar'] p = command.popen(stdout=subprocess.PIPE, stderr=subprocess.PIPE) (out, err) = p.communicate() # strip is to pull off the platform-specific newline assert out.decode().strip() == ("['echo.py', '%s', 'foo', 'bar']" % (env_path.replace("\\", "\\\\"))) assert err.decode() == "" with_directory_contents_completing_project_file( {DEFAULT_PROJECT_FILENAME: """ variables: FOO: {} commands: default: conda_app_entry: python echo.py ${PREFIX} foo bar """, "echo.py": """ from __future__ import print_function import sys print(repr(sys.argv)) """}, prepare_with_app_entry) def test_prepare_choose_command(): def check(dirname): project = project_no_dedicated_env(dirname) environ = minimal_environ() result = prepare_without_interaction(project, environ=environ, command_name='foo') assert result.errors == [] assert result assert os.path.join(project.directory_path, 'foo.py') in result.command_exec_info.args environ = minimal_environ() result = prepare_without_interaction(project, environ=environ, command_name='bar') assert result.errors == [] assert result assert os.path.join(project.directory_path, 'bar.py') in result.command_exec_info.args with_directory_contents_completing_project_file( {DEFAULT_PROJECT_FILENAME: """ commands: foo: bokeh_app: foo.py bar: bokeh_app: bar.py packages: - bokeh """, "foo.py": "# foo", "bar.py": "# bar"}, check) def test_prepare_command_not_in_project(): def check(dirname): # create a command that isn't in the Project project = project_no_dedicated_env(dirname) command = ProjectCommand(name="foo", attributes=dict(bokeh_app="foo.py", env_spec=project.default_env_spec_name)) environ = minimal_environ() result = prepare_without_interaction(project, environ=environ, command=command) assert result.errors == [] assert result assert os.path.join(project.directory_path, 'foo.py') in result.command_exec_info.args with_directory_contents_completing_project_file( {DEFAULT_PROJECT_FILENAME: """ commands: decoy: description: "do not use me" unix: foobar windows: foobar """, "foo.py": "# foo"}, check) def test_prepare_bad_command_name(): def check(dirname): project = project_no_dedicated_env(dirname) environ = minimal_environ(BAR='bar') result = prepare_without_interaction(project, environ=environ, command_name="blah") assert not result assert result.env_prefix is None assert result.errors assert "Command name 'blah' is not in" in result.errors[0] with_directory_contents_completing_project_file({DEFAULT_PROJECT_FILENAME: """ """}, check) def _push_fake_env_creator(): class HappyCondaManager(CondaManager): def __init__(self, frontend): pass def resolve_dependencies(self, package_specs, channels, platforms): return CondaLockSet({}) def find_environment_deviations(self, prefix, spec): return CondaEnvironmentDeviations(summary="all good", missing_packages=(), wrong_version_packages=(), missing_pip_packages=(), wrong_version_pip_packages=()) def fix_environment_deviations(self, prefix, spec, deviations=None, create=True): pass def remove_packages(self, prefix, packages): pass push_conda_manager_class(HappyCondaManager) def _pop_fake_env_creator(): pop_conda_manager_class() def test_prepare_choose_environment(): def check(dirname): env_var = conda_api.conda_prefix_variable() try: _push_fake_env_creator() project = Project(dirname) environ = minimal_environ() result = prepare_without_interaction(project, environ=environ, env_spec_name='foo') expected_path = project.env_specs['foo'].path(project.directory_path) assert result.environ[env_var] == expected_path environ = minimal_environ() result = prepare_without_interaction(project, environ=environ, env_spec_name='bar') assert result.errors == [] assert result expected_path = project.env_specs['bar'].path(project.directory_path) assert result.environ[env_var] == expected_path finally: _pop_fake_env_creator() with_directory_contents( {DEFAULT_PROJECT_FILENAME: """ name: blah platforms: [linux-32,linux-64,osx-64,win-32,win-64] env_specs: foo: {} bar: {} """}, check) def test_prepare_use_command_specified_env_spec(): def check(dirname): env_var = conda_api.conda_prefix_variable() try: _push_fake_env_creator() project = Project(dirname) environ = minimal_environ() # we specify the command name but not the # env_spec_name but it should imply the proper env # spec name. result = prepare_without_interaction(project, environ=environ, command_name='hello') expected_path = project.env_specs['foo'].path(project.directory_path) assert result.environ[env_var] == expected_path finally: _pop_fake_env_creator() with_directory_contents( {DEFAULT_PROJECT_FILENAME: """ name: blah platforms: [linux-32,linux-64,osx-64,win-32,win-64] env_specs: default: {} foo: {} bar: {} commands: hello: env_spec: foo unix: echo hello windows: echo hello """}, check) def test_update_environ(): def prepare_then_update_environ(dirname): project = project_no_dedicated_env(dirname) environ = minimal_environ(FOO='bar') result = prepare_without_interaction(project, environ=environ) assert result.errors == [] assert result other = minimal_environ(BAR='baz') result.update_environ(other) assert dict(FOO='bar', BAR='baz', PROJECT_DIR=dirname) == strip_environ(other) with_directory_contents_completing_project_file( {DEFAULT_PROJECT_FILENAME: """ variables: FOO: {} """}, prepare_then_update_environ) def test_attempt_to_grab_result_early(): def early_result_grab(dirname): project = project_no_dedicated_env(dirname) first_stage = prepare_in_stages(project) with pytest.raises(RuntimeError) as excinfo: first_stage.result assert "result property isn't available" in repr(excinfo.value) with_directory_contents(dict(), early_result_grab) def test_attempt_to_grab_statuses_early(): def early_status_grab(dirname): project = project_no_dedicated_env(dirname) first_stage = prepare_in_stages(project) with pytest.raises(RuntimeError) as excinfo: first_stage.statuses_after_execute assert "statuses_after_execute isn't available" in repr(excinfo.value) with_directory_contents(dict(), early_status_grab) def test_skip_after_success_function_when_second_stage_fails(): state = {'state': 'start'} def do_first(stage): assert state['state'] == 'start' state['state'] = 'first' stage.set_result( PrepareSuccess(statuses=(), command_exec_info=None, environ=dict(), overrides=UserConfigOverrides(), env_spec_name='first'), []) def last(stage): assert state['state'] == 'first' state['state'] = 'second' stage.set_result( PrepareFailure(statuses=(), errors=[], environ=dict(), overrides=UserConfigOverrides(), env_spec_name='last'), []) return None return _FunctionPrepareStage(dict(), UserConfigOverrides(), "second", [], last) first_stage = _FunctionPrepareStage(dict(), UserConfigOverrides(), "first", [], do_first) def after(updated_statuses): raise RuntimeError("should not have been called") stage = _after_stage_success(first_stage, after) assert stage.overrides is first_stage.overrides assert isinstance(stage.environ, dict) while stage is not None: next_stage = stage.execute() result = stage.result if result.failed: assert stage.failed break else: assert not stage.failed stage = next_stage assert result.failed assert state['state'] == 'second' def test_run_after_success_function_when_second_stage_succeeds(): state = {'state': 'start'} def do_first(stage): assert state['state'] == 'start' state['state'] = 'first' stage.set_result( PrepareSuccess(statuses=(), command_exec_info=None, environ=dict(), overrides=UserConfigOverrides(), env_spec_name='foo'), []) def last(stage): assert state['state'] == 'first' state['state'] = 'second' stage.set_result( PrepareSuccess(statuses=(), command_exec_info=None, environ=dict(), overrides=UserConfigOverrides(), env_spec_name='bar'), []) return None return _FunctionPrepareStage(dict(), UserConfigOverrides(), "second", [], last) first_stage = _FunctionPrepareStage(dict(), UserConfigOverrides(), "first", [], do_first) def after(updated_statuses): assert state['state'] == 'second' state['state'] = 'after' stage = _after_stage_success(first_stage, after) assert stage.overrides is first_stage.overrides assert stage.description_of_action == first_stage.description_of_action assert stage.environ == first_stage.environ assert stage.statuses_before_execute is first_stage.statuses_before_execute stage.configure() # checking it doesn't raise while stage is not None: next_stage = stage.execute() if hasattr(stage, '_stage'): assert stage.statuses_after_execute is stage._stage.statuses_after_execute assert stage.failed is stage._stage.failed result = stage.result if result.failed: assert stage.failed break else: assert not stage.failed stage = next_stage assert not result.failed assert state['state'] == 'after' def _monkeypatch_download_file(monkeypatch, dirname, filename='MYDATA', checksum=None): from tornado import gen @gen.coroutine def mock_downloader_run(self, loop): class Res: pass res = Res() res.code = 200 with open(os.path.join(dirname, filename), 'w') as out: out.write('data') if checksum: self._hash = checksum raise gen.Return(res) monkeypatch.setattr("anaconda_project.internal.http_client.FileDownloader.run", mock_downloader_run) def test_provide_whitelist(monkeypatch): def check(dirname): from anaconda_project.requirements_registry.requirements.conda_env import CondaEnvRequirement _monkeypatch_download_file(monkeypatch, dirname, filename="nope") no_foo = [('missing requirement to run this project: A downloaded file which is ' + 'referenced by FOO.'), ' Environment variable FOO is not set.'] # whitelist only the env req by class project = project_no_dedicated_env(dirname) environ = minimal_environ() result = prepare_without_interaction(project, provide_whitelist=(CondaEnvRequirement, ), environ=environ) assert result.errors == no_foo # whitelist by instance env_req = [req for req in project.requirements(None) if isinstance(req, CondaEnvRequirement)][0] result = prepare_without_interaction(project, provide_whitelist=(env_req, ), environ=environ) assert result.errors == no_foo # whitelist by variable name result = prepare_without_interaction(project, provide_whitelist=(env_req.env_var, ), environ=environ) assert result.errors == no_foo # whitelist the download result = prepare_without_interaction(project, provide_whitelist=(env_req, project.download_requirements(None)[0]), environ=environ) assert result.errors == [] assert 'FOO' in result.environ with_directory_contents_completing_project_file( {DEFAULT_PROJECT_FILENAME: """ downloads: FOO: "http://example.com/nope" """}, check)
the-stack_0_7214
# clone import os import repo # フォルダを削除 def rmtree(top): for root, dirs, files in os.walk(top, topdown=False): for name in files: filename = os.path.join(root, name) os.chmod(filename, 0o777) os.remove(filename) for name in dirs: os.rmdir(os.path.join(root, name)) os.rmdir(top) def run(first_flag): root_path = "project" # レポジトリのパス print("解析するレポジトリのURLを入力してください") url = input(">>> ") # 最初だけ確認 if os.path.isdir(root_path): if first_flag == 0: rmtree(root_path) # projectフォルダが存在していれば削除 clone_flag = True while clone_flag: try: # "://"でURLか判定 if url.find("://"): file_name = url[url.rfind('/') + 1:] # 一番後ろのファイル名を抽出 path = root_path + "/" + file_name # project/.. # 既にクローン済みの場合、pathの最後に(i)をつける i = 1 while os.path.isdir(path): path = root_path + "/" + file_name + "({:d})".format(i) i += 1 repo.clone_repo(url, path) # レポジトリをクローン print("レポジトリをクローンしました\n") clone_flag = False except Exception as err: print("レポジトリをクローン出来ませんでした\nもう一度、入力してください") url = input(">>> ")
the-stack_0_7215
from django.contrib import admin from blogs.models import Post, Category_post, Comment from django_summernote.admin import SummernoteModelAdmin # Register your models here. class PostAdmin(SummernoteModelAdmin): summernote_fields = ('content',) list_display = ('title', 'slug', 'short_desciption', 'status','created_on') list_filter = ("status",) search_fields = ['title', 'content'] prepopulated_fields = {'slug': ('title',)} class CommentAdmin(admin.ModelAdmin): list_display = ('name', 'email', 'body') admin.site.register(Post, PostAdmin) admin.site.register(Comment, CommentAdmin) admin.site.register(Category_post)
the-stack_0_7216
from scipy.spatial import ConvexHull, Delaunay import numpy as np class WeightedDelaunay: def __init__(self, points, weights): self.points = points self.weights = weights self.complete = False self.tri = None def triangulation(self): if not self.complete: num, dim = np.shape(self.points) lifted = np.zeros((num, dim + 1)) for i in range(num): p = self.points[i, :] lifted[i, :] = np.append(p, np.sum(p ** 2) - self.weights[i] ** 2) lifted = np.vstack((lifted, np.append(np.zeros((1, dim)), 1e12))) hull = ConvexHull(lifted) delaunay = [] for simplex in hull.simplices: if num not in simplex: delaunay.append(simplex.tolist()) self.tri = delaunay self.complete = True return self.tri def add_point(self, point, weight): num, dim = np.shape(self.points) tmp = np.ndarray((num + 1, dim)) for i in range(num): tmp[i] = self.points[i] tmp[num] = point self.points = tmp self.weights.append(weight) self.complete = False
the-stack_0_7218
# coding=utf-8 import tensorflow as tf import tensorflow_compression as tfc import os import sys import math import numpy as np # tf.enable_eager_execution() from collections import namedtuple # BASE_DIR = os.path.dirname(os.path.abspath(__file__)) BASE_DIR = '/home/wenxuanzheng/pc_compression/pc_compression' sys.path.append(os.path.join(BASE_DIR, 'utils')) import part_dataset from transform_nets import input_transform_net import tf_utils def py_func_decorator(output_types=None, output_shapes=None, stateful=True, name=None): def decorator(func): def call(*args, **kwargs): return tf.contrib.framework.py_func( func=func, args=args, kwargs=kwargs, output_types=output_types, output_shapes=output_shapes, stateful=stateful, name=name ) return call return decorator def from_indexable(iterator, output_types, output_shapes=None, num_parallel_calls=None, stateful=True, name=None): ds = tf.data.Dataset.range(len(iterator)) @py_func_decorator(output_types, output_shapes, stateful=stateful, name=name) def index_to_entry(index): return iterator[index] return ds.map(index_to_entry, num_parallel_calls=num_parallel_calls) def get_learning_rate(batch): learning_rate = tf.train.exponential_decay( 0.0001, batch , # global_step 当前迭代次数 10000, 0.7, staircase = True) # global_step / decay_steps始终取整数 learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE! return learning_rate def get_bn_decay(batch): bn_momentum = tf.train.exponential_decay( 0.5, batch, 20000, 0.5, staircase=True) bn_decay = tf.minimum(0.99, 1 - bn_momentum) return bn_decay def input_fn(features, batch_size, preprocess_threads, repeat=True, prefetch_size=1): with tf.device('/cpu:0'): # 需要iter对象 # dataset = tf.data.Dataset.from_tensor_slices(features) dataset = from_indexable(features, output_types=tf.float32,output_shapes=[2048, 3], num_parallel_calls=preprocess_threads) if repeat: dataset = dataset.shuffle(buffer_size=len(features)) dataset = dataset.repeat() dataset = dataset.batch(batch_size, drop_remainder=True) # 流水线,一边生成一边使用 dataset = dataset.prefetch(buffer_size=prefetch_size) return dataset def model_fn(features, labels, mode, params): ''' :param features: batch_features from input_fn :param labels: batch_labels from input_fn :param mode: An instance of tf.estimator.ModeKeys :param params: Additional configuration :return: ''' #del para del labels if params.get('decompress') is None: params['decompress'] = False # if params.decompression: # assert mode == tf.estimator.ModeKeys.PREDICT, 'Decompression must use prediction mode' params = namedtuple('Struct', params.keys())(*params.values()) training = (mode == tf.estimator.ModeKeys.TRAIN) num_points = (params.batch_size * params.num_points) pc = features bn_decay = get_bn_decay(tf.train.get_global_step()) learning_rate = get_learning_rate(tf.train.get_global_step()) tf.summary.scalar('bn_decay', bn_decay) tf.summary.scalar('learning_rate', learning_rate) # ============= encoder ============= nasmples = params.knn y = pc_encoder(pc, nasmples, is_training=training, bn_decay=bn_decay) entropy_bottleneck = tfc.EntropyBottleneck() y_tilde, likelihoods = entropy_bottleneck(y, training=True) # ============= decoder ============= x_tilde = pc_decoder(y_tilde, is_training=training, bn_decay=bn_decay) # number of bits divided by number of points train_bpp = tf.reduce_sum(tf.log(likelihoods)) / (-np.log(2) * num_points) # 预测模式直接返回结果 if mode == tf.estimator.ModeKeys.PREDICT: string = entropy_bottleneck.compress(y) predictions = { 'x_tilde': x_tilde, 'likelihoods': likelihoods, 'y_tilde': y_tilde } return tf.estimator.EstimatorSpec(mode, predictions=predictions) # 生成predict字典 # 训练和评估 losses = tf_utils.get_loss(x_tilde, pc) rd_loss = losses + params.lmbda * train_bpp # tf.summary.scalar('likelihoods',likelihoods) tf.summary.scalar('loss', losses) tf.summary.scalar('rd_loss', rd_loss) tf.summary.scalar('bpp', train_bpp) if mode == tf.estimator.ModeKeys.TRAIN: main_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) main_step = main_optimizer.minimize(rd_loss, global_step=tf.train.get_global_step()) aux_optimizer = tf.train.AdamOptimizer(learning_rate=1e-3) aux_step = aux_optimizer.minimize(entropy_bottleneck.losses[0]) train_op = tf.group(main_step, aux_step, entropy_bottleneck.updates[0]) return tf.estimator.EstimatorSpec(mode, loss=rd_loss, train_op=train_op) if mode == tf.estimator.ModeKeys.EVAL: summary_hook = tf.train.SummarySaverHook( save_steps=5, output_dir=os.path.join(params.checkpoint_dir, 'eval'), summary_op=tf.summary.merge_all()) return tf.estimator.EstimatorSpec(mode, loss=rd_loss, evaluation_hooks=[summary_hook]) def pc_encoder(point_cloud, nasmples, is_training, bn_decay=None): nn_dis, idx_batch = tf_utils.get_knn(point_cloud, nasmples) batch_size = point_cloud.get_shape()[0].value num_point = point_cloud.get_shape()[1].value point_dim = point_cloud.get_shape()[2].value idx_batch = tf.cast(idx_batch, dtype=tf.int32) latent_feature = {} # con_point = tf.concat([point_cloud, cov_batch], axis=2) # encoder_input = tf.expand_dims(con_point, -1) # (32 2048 3 1) encoder_input = tf.expand_dims(point_cloud, -1) # (32 2048 3 1) # (32, 2048, 1, 64) net = tf_utils.conv2d(encoder_input, 64, [1, 3], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='mlp_1', bn_decay=bn_decay) # (32, 2048, 1, 64) net = tf_utils.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='mlp_2', bn_decay=bn_decay) # (32, 2048, 1, 64) net = tf_utils.conv2d(net, 64, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='mlp_3', bn_decay=bn_decay) net = tf_utils.conv2d(net, 128, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='mlp_4', bn_decay=bn_decay) net = tf_utils.conv2d(net, 1024, [1, 1], padding='VALID', stride=[1, 1], bn=True, is_training=is_training, scope='mlp_5', bn_decay=bn_decay) global_feat = tf_utils.max_pool2d(net, [num_point, 1], padding='VALID', scope='maxpool') net = tf.reshape(global_feat, [batch_size, -1]) return net def pc_decoder(y_tilde, is_training, bn_decay): # UPCONV Decoder batch_size = y_tilde.get_shape()[0].value net = tf_utils.fully_connected(y_tilde, 1024, bn=True, is_training=is_training, scope='fc1', bn_decay=bn_decay) net = tf_utils.fully_connected(net, 1024, bn=True, is_training=is_training, scope='fc2', bn_decay=bn_decay) net = tf_utils.fully_connected(net, 2048 * 3, activation_fn=None, scope='fc3') net = tf.reshape(net, (batch_size, 2048, 3)) return net if __name__=='__main__': tf.enable_eager_execution() TRAIN_DATASET = part_dataset.PartDataset( root='/data/dataset/shapenetcore_partanno_segmentation_benchmark_v0', npoints=2048, classification=False, class_choice=None, split='trainval') print('=============') print(input_fn(TRAIN_DATASET,2,8,repeat=True,prefetch_size=6))
the-stack_0_7221
# -*- coding: utf-8 -*- # # Dataverse Documentation build configuration file, created by # sphinx-quickstart on Wed Apr 16 09:34:18 2014. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os from datetime import datetime sys.path.insert(0, os.path.abspath('../../')) import sphinx_bootstrap_theme # Activate the theme. # html_theme = 'bootstrap' # html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.graphviz' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Dataverse' copyright = u'%d, The President & Fellows of Harvard College' % datetime.now().year # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '5.6' # The full version, including alpha/beta/rc tags. release = '5.6' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. language = 'en' # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all # documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'bootstrap' # Custom Setup: add the CSS file to the app's theme. # def setup(app): # app.add_stylesheet( "docsdataverse_org.css" ) # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} html_theme_options = { # Navigation bar title. (Default: ``project`` value) # 'navbar_title': "Demo", # Tab name for entire site. (Default: "Site") # 'navbar_site_name': "Site", # A list of tuples containing pages or urls to link to. # Valid tuples should be in the following forms: # (name, page) # a link to a page # (name, "/aa/bb", 1) # a link to an arbitrary relative url # (name, "http://example.com", True) # arbitrary absolute url # Note the "1" or "True" value above as the third argument to indicate # an arbitrary url. # 'navbar_links': [ # ("Examples", "examples"), # ("Link", "http://example.com", True), # ], 'navbar_links': [ ("View 3.6.2 Guides", "http://docs.dataverse.org/en/3.6.2/", True), ], # Global TOC depth for "site" navbar tab. (Default: 1) # Switching to -1 shows all levels. 'globaltoc_depth': -1, # Include hidden TOCs in Site navbar? # # Note: If this is "false", you cannot have mixed ``:hidden:`` and # non-hidden ``toctree`` directives in the same page, or else the build # will break. # # Values: "true" (default) or "false" 'globaltoc_includehidden': "false", # HTML navbar class (Default: "navbar") to attach to <div> element. # For black navbar, do "navbar navbar-inverse" 'navbar_class': "navbar", # Fix navigation bar to top of page? # Values: "true" (default) or "false" #'navbar_fixed_top': "true", # Location of link to source. # Options are "nav" (default), "footer" or anything else to exclude. #'source_link_position': "nav", # Bootswatch (http://bootswatch.com/) theme. # # Options are nothing with "" (default) or the name of a valid theme such # as "amelia" or "cosmo". # # Themes: # * amelia # * cerulean # * cosmo # * cyborg # * cupid (v3 only) # * flatly # * journal # * lumen (v3 only) # * readable # * simplex # * slate # * spacelab # * spruce (v2 only) # * superhero # * united # * yeti (v3 only) #'bootswatch_theme': "cupid", # Choose Bootstrap version. # Values: "3" (default) or "2" (in quotes) 'bootstrap_version': "3", } # Add any paths that contain custom themes here, relative to this directory. # ``get_html_theme_path`` returns a list, so you can concatenate with # any other theme directories you would like. html_theme_path = sphinx_bootstrap_theme.get_html_theme_path() # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> Documentation". html_title = 'Dataverse.org' # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static', '_static/fontcustom-preview.html'] #html_js_files = [] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. #html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} #html_sidebars = {'sidebar': ['localtoc.html', 'sourcelink.html', 'searchbox.html']} html_sidebars = {'**': ['searchbox.html', 'sidebartoc.html']} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None htmlhelp_basename = 'Dataversedoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ ('index', 'Dataverse.tex', u'Dataverse Documentation', u'Dataverse Team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None latex_logo = "_static/logo.png" # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'dataverse40', u'Dataverse 4.0 Documentation', [u'Dataverse Team'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Dataverse40', u'Dataverse 4.0 Documentation', u'Dataverse Team', 'Dataverse40', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output ---------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'Dataverse' epub_author = u'Dataverse Team' epub_publisher = u'Dataverse Team' epub_copyright = u'%d, The President & Fellows of Harvard College' % datetime.now().year # The basename for the epub file. It defaults to the project name. #epub_basename = u'Consilience Documentation' # The HTML theme for the epub output. Since the default themes are not optimized # for small screen space, using the same theme for HTML and epub output is # usually not wise. This defaults to 'epub', a theme designed to save visual # space. #epub_theme = 'epub' # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Choose between 'default' and 'includehidden'. #epub_tocscope = 'default' # Fix unsupported image types using the PIL. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # How to display URL addresses: 'footnote', 'no', or 'inline'. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/': None} # Suppress "WARNING: unknown mimetype for ..." https://github.com/IQSS/dataverse/issues/3391 suppress_warnings = ['epub.unknown_project_files'] rst_prolog = """ .. |toctitle| replace:: Contents: .. |anotherSub| replace:: Yes, there can be multiple. """
the-stack_0_7222
#!/usr/bin/env python # # Copyright 2014 Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, with_statement from contextlib import closing import os import socket from tornado.concurrent import Future from tornado.netutil import bind_sockets, Resolver from tornado.tcpclient import TCPClient, _Connector from tornado.tcpserver import TCPServer from tornado.testing import AsyncTestCase, gen_test from tornado.test.util import skipIfNoIPv6, unittest, refusing_port # Fake address families for testing. Used in place of AF_INET # and AF_INET6 because some installations do not have AF_INET6. AF1, AF2 = 1, 2 class TestTCPServer(TCPServer): def __init__(self, family): super(TestTCPServer, self).__init__() self.streams = [] sockets = bind_sockets(None, 'localhost', family) self.add_sockets(sockets) self.port = sockets[0].getsockname()[1] def handle_stream(self, stream, address): self.streams.append(stream) def stop(self): super(TestTCPServer, self).stop() for stream in self.streams: stream.close() class TCPClientTest(AsyncTestCase): def setUp(self): super(TCPClientTest, self).setUp() self.server = None self.client = TCPClient() def start_server(self, family): if family == socket.AF_UNSPEC and 'TRAVIS' in os.environ: self.skipTest("dual-stack servers often have port conflicts on travis") self.server = TestTCPServer(family) return self.server.port def stop_server(self): if self.server is not None: self.server.stop() self.server = None def tearDown(self): self.client.close() self.stop_server() super(TCPClientTest, self).tearDown() def skipIfLocalhostV4(self): # The port used here doesn't matter, but some systems require it # to be non-zero if we do not also pass AI_PASSIVE. Resolver().resolve('localhost', 80, callback=self.stop) addrinfo = self.wait() families = set(addr[0] for addr in addrinfo) if socket.AF_INET6 not in families: self.skipTest("localhost does not resolve to ipv6") @gen_test def do_test_connect(self, family, host): port = self.start_server(family) stream = yield self.client.connect(host, port) with closing(stream): stream.write(b"hello") data = yield self.server.streams[0].read_bytes(5) self.assertEqual(data, b"hello") def test_connect_ipv4_ipv4(self): self.do_test_connect(socket.AF_INET, '127.0.0.1') def test_connect_ipv4_dual(self): self.do_test_connect(socket.AF_INET, 'localhost') @skipIfNoIPv6 def test_connect_ipv6_ipv6(self): self.skipIfLocalhostV4() self.do_test_connect(socket.AF_INET6, '::1') @skipIfNoIPv6 def test_connect_ipv6_dual(self): self.skipIfLocalhostV4() if Resolver.configured_class().__name__.endswith('TwistedResolver'): self.skipTest('TwistedResolver does not support multiple addresses') self.do_test_connect(socket.AF_INET6, 'localhost') def test_connect_unspec_ipv4(self): self.do_test_connect(socket.AF_UNSPEC, '127.0.0.1') @skipIfNoIPv6 def test_connect_unspec_ipv6(self): self.skipIfLocalhostV4() self.do_test_connect(socket.AF_UNSPEC, '::1') def test_connect_unspec_dual(self): self.do_test_connect(socket.AF_UNSPEC, 'localhost') @gen_test def test_refused_ipv4(self): cleanup_func, port = refusing_port() self.addCleanup(cleanup_func) with self.assertRaises(IOError): yield self.client.connect('127.0.0.1', port) class TestConnectorSplit(unittest.TestCase): def test_one_family(self): # These addresses aren't in the right format, but split doesn't care. primary, secondary = _Connector.split( [(AF1, 'a'), (AF1, 'b')]) self.assertEqual(primary, [(AF1, 'a'), (AF1, 'b')]) self.assertEqual(secondary, []) def test_mixed(self): primary, secondary = _Connector.split( [(AF1, 'a'), (AF2, 'b'), (AF1, 'c'), (AF2, 'd')]) self.assertEqual(primary, [(AF1, 'a'), (AF1, 'c')]) self.assertEqual(secondary, [(AF2, 'b'), (AF2, 'd')]) class ConnectorTest(AsyncTestCase): class FakeStream(object): def __init__(self): self.closed = False def close(self): self.closed = True def setUp(self): super(ConnectorTest, self).setUp() self.connect_futures = {} self.streams = {} self.addrinfo = [(AF1, 'a'), (AF1, 'b'), (AF2, 'c'), (AF2, 'd')] def tearDown(self): # Unless explicitly checked (and popped) in the test, we shouldn't # be closing any streams for stream in self.streams.values(): self.assertFalse(stream.closed) super(ConnectorTest, self).tearDown() def create_stream(self, af, addr): future = Future() self.connect_futures[(af, addr)] = future return future def assert_pending(self, *keys): self.assertEqual(sorted(self.connect_futures.keys()), sorted(keys)) def resolve_connect(self, af, addr, success): future = self.connect_futures.pop((af, addr)) if success: self.streams[addr] = ConnectorTest.FakeStream() future.set_result(self.streams[addr]) else: future.set_exception(IOError()) def start_connect(self, addrinfo): conn = _Connector(addrinfo, self.io_loop, self.create_stream) # Give it a huge timeout; we'll trigger timeouts manually. future = conn.start(3600) return conn, future def test_immediate_success(self): conn, future = self.start_connect(self.addrinfo) self.assertEqual(list(self.connect_futures.keys()), [(AF1, 'a')]) self.resolve_connect(AF1, 'a', True) self.assertEqual(future.result(), (AF1, 'a', self.streams['a'])) def test_immediate_failure(self): # Fail with just one address. conn, future = self.start_connect([(AF1, 'a')]) self.assert_pending((AF1, 'a')) self.resolve_connect(AF1, 'a', False) self.assertRaises(IOError, future.result) def test_one_family_second_try(self): conn, future = self.start_connect([(AF1, 'a'), (AF1, 'b')]) self.assert_pending((AF1, 'a')) self.resolve_connect(AF1, 'a', False) self.assert_pending((AF1, 'b')) self.resolve_connect(AF1, 'b', True) self.assertEqual(future.result(), (AF1, 'b', self.streams['b'])) def test_one_family_second_try_failure(self): conn, future = self.start_connect([(AF1, 'a'), (AF1, 'b')]) self.assert_pending((AF1, 'a')) self.resolve_connect(AF1, 'a', False) self.assert_pending((AF1, 'b')) self.resolve_connect(AF1, 'b', False) self.assertRaises(IOError, future.result) def test_one_family_second_try_timeout(self): conn, future = self.start_connect([(AF1, 'a'), (AF1, 'b')]) self.assert_pending((AF1, 'a')) # trigger the timeout while the first lookup is pending; # nothing happens. conn.on_timeout() self.assert_pending((AF1, 'a')) self.resolve_connect(AF1, 'a', False) self.assert_pending((AF1, 'b')) self.resolve_connect(AF1, 'b', True) self.assertEqual(future.result(), (AF1, 'b', self.streams['b'])) def test_two_families_immediate_failure(self): conn, future = self.start_connect(self.addrinfo) self.assert_pending((AF1, 'a')) self.resolve_connect(AF1, 'a', False) self.assert_pending((AF1, 'b'), (AF2, 'c')) self.resolve_connect(AF1, 'b', False) self.resolve_connect(AF2, 'c', True) self.assertEqual(future.result(), (AF2, 'c', self.streams['c'])) def test_two_families_timeout(self): conn, future = self.start_connect(self.addrinfo) self.assert_pending((AF1, 'a')) conn.on_timeout() self.assert_pending((AF1, 'a'), (AF2, 'c')) self.resolve_connect(AF2, 'c', True) self.assertEqual(future.result(), (AF2, 'c', self.streams['c'])) # resolving 'a' after the connection has completed doesn't start 'b' self.resolve_connect(AF1, 'a', False) self.assert_pending() def test_success_after_timeout(self): conn, future = self.start_connect(self.addrinfo) self.assert_pending((AF1, 'a')) conn.on_timeout() self.assert_pending((AF1, 'a'), (AF2, 'c')) self.resolve_connect(AF1, 'a', True) self.assertEqual(future.result(), (AF1, 'a', self.streams['a'])) # resolving 'c' after completion closes the connection. self.resolve_connect(AF2, 'c', True) self.assertTrue(self.streams.pop('c').closed) def test_all_fail(self): conn, future = self.start_connect(self.addrinfo) self.assert_pending((AF1, 'a')) conn.on_timeout() self.assert_pending((AF1, 'a'), (AF2, 'c')) self.resolve_connect(AF2, 'c', False) self.assert_pending((AF1, 'a'), (AF2, 'd')) self.resolve_connect(AF2, 'd', False) # one queue is now empty self.assert_pending((AF1, 'a')) self.resolve_connect(AF1, 'a', False) self.assert_pending((AF1, 'b')) self.assertFalse(future.done()) self.resolve_connect(AF1, 'b', False) self.assertRaises(IOError, future.result)
the-stack_0_7223
import os import paddle import math from paddle.optimizer.optimizer import Optimizer from collections import defaultdict from paddle.fluid import core from paddle.fluid import framework from paddle.fluid.framework import Variable from paddle.fluid import layers from paddle.fluid import unique_name from paddle.fluid.framework import in_dygraph_mode, _dygraph_tracer from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.dygraph import base as imperative_base import numpy as np from paddle.utils.cpp_extension import get_build_directory # op build_dir = get_build_directory() op_lib = os.path.join(build_dir, "ranger_op/ranger_op.so") if op_lib is not None and os.path.isfile(op_lib): # Maybe it has been loadad by `ext_utils.load` paddle.utils.cpp_extension.load_op_meta_info_and_register_op( op_lib) class Ranger(Optimizer): _moment1_acc_str = "moment1" _moment2_acc_str = "moment2" _beta1_pow_acc_str = "beta1_pow_acc" _beta2_pow_acc_str = "beta2_pow_acc" _slow_str = "slow" #_inf_norm_acc_str = "inf_norm" def __init__(self, learning_rate=0.001, alpha=0.5, k=6, # Look Ahead beta1=0.95, beta2=0.999, epsilon=1e-5, weight_decay=0.0, N_sma_threshhold=5., # RAdam use_gc=True,gc_conv_only=False, # gradient centralization parameters=None, name=None): if not isinstance(beta1, Variable): if not 0 <= beta1 < 1: raise ValueError( "Invaild value of beta1, expect beta1 in [0,1).") if not isinstance(beta2, Variable): if not 0 <= beta2 < 1: raise ValueError( "Invaild value of beta2, expect beta2 in [0,1).") if not isinstance(epsilon, Variable): if not 0 <= epsilon: raise ValueError( "Invaild value of epsilon, expect epsilon >= 0.") assert ( 0.0 <= alpha <= 1.0 ), "alpha should be larger or equal to 0.0, and less or equal than 1.0" assert (isinstance(k, int) and k > 0), "k should be a positive integer" super(Ranger, self).__init__( learning_rate=learning_rate, parameters=parameters, weight_decay=None, name=name) self.type = "ranger" self._beta1 = beta1 self._beta2 = beta2 self._epsilon = epsilon self._weight_decay = weight_decay self._N_sma_threshhold = N_sma_threshhold self._N_sma_max = 2 / (1 - beta2) - 1 # ρ无穷 self.use_gc = use_gc self.gc_gradient_threshold = 3 if gc_conv_only else 1 self.alpha = alpha self.k = k self.helper = LayerHelper(self.__class__.__name__) #self._k_var = None #self._global_step_var = None #self._step_size_var = None #self._sma_flag_var = None self._global_step = 0 self._step_size = None self._sma_flag = None def _get_accumulator(self, name, param): if self._name is not None: name = self._name + "_" + name if (name not in self._accumulators or param.name not in self._accumulators[name]): raise Exception("Accumulator {} does not exist for parameter {}". format(name, param.name)) return self._accumulators[name][param.name] def _add_moments_pows(self, p): self._add_accumulator(self._moment1_acc_str, p) self._add_accumulator(self._moment2_acc_str, p) #self._add_accumulator(self._inf_norm_acc_str, p) self._add_accumulator( name=self._beta1_pow_acc_str, param=p, fill_value=self._beta1, shape=[1]) self._add_accumulator( name=self._beta2_pow_acc_str, param=p, fill_value=self._beta2, shape=[1]) """ def _increment_global_var(self): # 如果不行的话,把加一放到c文件里面 if self._global_step_var is None: self._global_step_var = layers.create_global_var( name=unique_name.generate("lookhead_step"), shape=[1], value=0, dtype='int32', persistable=True ) self.helper.append_op( type='increment', inputs={'X': [self._global_step_var]}, outputs={'Out':[self._global_step_var]}, attrs={'step': 1.0} ) """ def _cal_sma(self): """ beta2_pow = self._beta2**self._global_step_var beta1_pow = self._beta1**self._global_step_var N_sma = self._N_sma_max - 2. * self._global_step_var * beta2_pow / (1. - beta2_pow) sma_flag = N_sma > self._N_sma_threshhold if sma_flag: step_size = paddle.sqrt( (1.-beta2_pow) * (N_sma-4.) / (self._N_sma_max-4.) * (N_sma-2.) / N_sma * self._N_sma_max /(self._N_sma_max-2.)) / (1.-beta1_pow) else: step_size = 1./(1. - beta1_pow) if self._step_size_var is None: self._step_size_var = layers.create_global_var( name=unique_name.generate("radam_step_size"), shape=[1], value=step_size, dtype='int32', persistable=True ) if self._sma_flag_var is None: self._sma_flag_var = layers.create_global_var( name=unique_name.generate("radam_sma_flag"), shape=[1], value=sma_flag, dtype='bool', persistable=True ) paddle.assign(step_size, self._step_size_var) paddle.assign(sma_flag, self._sma_flag_var) """ beta2_pow = self._beta2**self._global_step beta1_pow = self._beta1**self._global_step N_sma = self._N_sma_max - 2. * self._global_step * beta2_pow / (1. - beta2_pow) sma_flag = N_sma > self._N_sma_threshhold if sma_flag: step_size = math.sqrt( (1.-beta2_pow) * (N_sma-4.) / (self._N_sma_max-4.) * (N_sma-2.) / N_sma * self._N_sma_max /(self._N_sma_max-2.)) / (1.-beta1_pow) else: step_size = 1./(1. - beta1_pow) self._step_size = step_size self._sma_flag = sma_flag def _append_optimize_op(self, block, param_and_grad): # gradient centralization对于grad,不是param # GC operation for Conv layers and FC layers # GC可以看作是具有受约束损失函数的投影梯度下降方法。受约束损失函数及其梯度的Lipschitzness更好, # 因此训练过程变得更加有效和稳定。 g_tmp = param_and_grad[1] if self.use_gc and g_tmp.dim() > self.gc_gradient_threshold: #print("grad before gc:", g_tmp) g_tmp = g_tmp - g_tmp.mean(axis=tuple(range(1, g_tmp.dim())), keepdim=True) #print("grad after gc:",g_tmp) """ moment = self._get_accumulator(self._moment1_acc_str, param_and_grad[0]) inf_norm = self._get_accumulator(self._inf_norm_acc_str, param_and_grad[0]) beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str, param_and_grad[0]) # create the adamax optimize op adamax_op = block.append_op( type="adamax", inputs={ "Param": param_and_grad[0], "Grad": param_and_grad[1], "LearningRate": self._create_param_lr(param_and_grad), "Moment": moment, "InfNorm": inf_norm, "Beta1Pow": beta1_pow_acc }, outputs={ "ParamOut": param_and_grad[0], "MomentOut": moment, "InfNormOut": inf_norm }, attrs={ "beta1": self._beta1, "beta2": self._beta2, "epsilon": self._epsilon }, stop_gradient=True)""" # RAdam assert isinstance(block, framework.Block) moment1 = self._get_accumulator(self._moment1_acc_str, param_and_grad[0]) moment2 = self._get_accumulator(self._moment2_acc_str, param_and_grad[0]) beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str, param_and_grad[0]) beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str, param_and_grad[0]) block.append_op( type=self.type, inputs={ "Param": param_and_grad[0], "Grad": g_tmp, "LearningRate": self._create_param_lr(param_and_grad), "Moment1": moment1, "Moment2": moment2, "Beta1Pow": beta1_pow_acc, "Beta2Pow": beta2_pow_acc, #"StepSize": [self._step_size_var], #"SmaFlag": [self._sma_flag_var] }, outputs={ "ParamOut": param_and_grad[0], "Moment1Out": moment1, "Moment2Out": moment2, "Beta1PowOut": beta1_pow_acc, "Beta2PowOut": beta2_pow_acc }, attrs={ "beta1": self._beta1, "beta2": self._beta2, "epsilon": self._epsilon, "weight_decay": self._weight_decay, "step_size": self._step_size, "sma_flag": self._sma_flag }, stop_gradient=True) #print("after radam, param:", param_and_grad[0]) #print("after radam, grad:", param_and_grad[1]) # Look ahead """ one_var = paddle.ones(shape=[1], dtype='int32', name='lookahead_ones') zero_var = paddle.zeros(shape=[1], dtype='int32', name='lookhead_zeros') k_var = layers.create_global_var( name=unique_name.generate("lookahead_k"), shape=[1], value=self.k, dtype='int32', persistable=True ) # paddle.mod代替? https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/mod_cn.html#mod mod = paddle.mod(self._global_step_var, k_var) cond_1 = paddle.equal(self._global_step_var, one_var) # global step是不是等于1 cond_1 = paddle.cast(cond_1, dtype='float32') cond_2 = paddle.equal(mod, zero_var) # global step%k是不是等于0 cond_2 = paddle.cast(cond_2, dtype='float32') slow_var = self._get_accumulator(self._slow_str, param_and_grad[0]) # 缓存的slow var # 初始化slow_var tmp_var = cond_1 * param_and_grad[0] + (1 - cond_1) * slow_var paddle.assign(tmp_var, slow_var) # 融合model param tmp_var = self.alpha * param_and_grad[0] + (1.0 - self.alpha) * slow_var tmp_var_1 = cond_2 * tmp_var + (1 - cond_2) * param_and_grad[0] paddle.assign(tmp_var_1, param_and_grad[0]) tmp_var_1 = cond_2 * tmp_var + (1 - cond_2) * slow_var paddle.assign(tmp_var_1, slow_var) """ # look ahead的if写法 mod = self._global_step % self.k slow_var = self._get_accumulator(self._slow_str, param_and_grad[0]) # 缓存的slow var if self._global_step == 1: paddle.assign(param_and_grad[0], slow_var) if mod == 0: tmp_var = self.alpha * param_and_grad[0] + (1.0 - self.alpha) * slow_var paddle.assign(tmp_var, slow_var) paddle.assign(tmp_var, param_and_grad[0]) return None def _create_accumulators(self, block, parameters): assert isinstance(block, framework.Block) for p in parameters: self._add_accumulator(self._slow_str, p) self._add_moments_pows(p) @imperative_base.no_grad @framework.dygraph_only def step(self): # Look Ahead global_step+1 #self._increment_global_var() self._global_step += 1 # RAdam 计算N_sma和step_size,然后对于op,传入N_sma>N_sma_threshold的bool值和step_size self._cal_sma() if not isinstance(self._parameter_list[0], dict): params_grads = [] for param in self._parameter_list: if param.stop_gradient: continue if param._grad_ivar() is not None: grad_var = param._grad_ivar() if hasattr(grad_var, "_is_sparse") and grad_var._is_sparse( ) and self.regularization is not None: raise RuntimeError( "Ranger don't support weight_decay with sparse parameters, please set it to None." ) params_grads.append((param, grad_var)) #print(params_grads[0]) #print(params_grads[1]) optimize_ops = self._apply_optimize( loss=None, startup_program=None, params_grads=params_grads) else: # optimize parameters in groups for param_group in self._param_groups: params_grads = defaultdict(lambda: list()) for param in param_group['params']: if param.stop_gradient: continue if param._grad_ivar() is not None: grad_var = param._grad_ivar() params_grads['params'].append((param, grad_var)) params_grads.update( {k: v for k, v in param_group.items() if k != 'params'}) #print(params_grads[0]) #print(params_grads[1]) self._apply_optimize( loss=None, startup_program=None, params_grads=params_grads)
the-stack_0_7225
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score, balanced_accuracy_score def get_commonscores(y_true, y_pred): """ Calculate the precision, recall, f1, accuracy, balanced_accuracy scores Args: y_true (pd.Series): y_true (with limited set of index) y_pred (pd.Series): y_pred (with limited set of index) Returns: dict : scores calculated on intersection of index. Keys Precision, recall, f1, accuracy, balanced_accuracy """ commonindex = y_true.index.intersection(y_pred.index) myscores = dict() y2_true = y_true.loc[commonindex] y2_pred = y_pred.loc[commonindex] myscores['precision'] = precision_score(y_true=y2_true, y_pred=y2_pred) myscores['recall'] = recall_score(y_true=y2_true, y_pred=y2_pred) myscores['f1'] = f1_score(y_true=y2_true, y_pred=y2_pred) myscores['accuracy'] = accuracy_score(y_true=y2_true, y_pred=y2_pred) myscores['balanced_accuracy'] = balanced_accuracy_score(y_true=y2_true, y_pred=y2_pred) return myscores suffixexact = 'exact' suffixtoken = 'token' suffixfuzzy = 'simple' name_freetext = 'FreeText' name_exact = 'Exact' name_pruning_threshold = 'threshold' name_usescores = 'use_scores' name_stop_words = 'stop_words' navalue_score = 0
the-stack_0_7228
from opytimizer.spaces import HyperComplexSpace # Defines the number of agents, decision variables, # and search space dimensions n_agents = 2 n_variables = 5 n_dimensions = 4 # Creates the HyperComplexSpace s = HyperComplexSpace(n_agents=n_agents, n_variables=n_variables, n_dimensions=n_dimensions) # Prints out some properties print(s.n_agents, s.n_variables, s.n_dimensions) print(s.agents, s.best_agent) print(s.best_agent.position)
the-stack_0_7229
#!/usr/bin/env python2 from Tkinter import * import Tkinter as tk import ttk import tkFileDialog import tkMessageBox from tkFileDialog import askdirectory import six from pkg_resources import resource_stream import os from os import listdir from os.path import isfile, join from os import walk from subprocess import Popen from subprocess import PIPE import keyword import re from multiprocessing import Process import paramiko from access_ssh import access_ssh from method_dialog import method_dialog from editor import EditorClass from find_and_replace_dialog import find_and_replace_dialog from remote_file_chooser import remote_file_chooser from new_dialog import new_dialog from new_folder_dialog import new_folder_dialog from open_file_dialog import open_file_dialog from change_color import change_color from interface import Paramiko_Interface from create_config import create_config from run_script import run_script_python_2 from run_script import run_script_python_3 from about_dialog import about_dialog from project_opener import project_opener from project_manager import project_manager class App: def open_file(self, path): if isfile(path): if not path in self.tab_names: pane = PanedWindow(self.n, orient=HORIZONTAL, opaqueresize=True) ed = EditorClass(self.root, path, self) pane.add(ed.frame) self.n.add(pane, text=path) self.n.grid(row=0, column=1, rowspan=40, sticky=N+S+E+W) w = self.root.winfo_width() h = self.root.winfo_height() self.tab_names.append(path) ed.text.config(insertbackground='white') ed.text.config(background=self.background) ed.text.config(foreground=self.foreground) with open(path, 'r') as f_in: text = f_in.read() lines = text.split('\n') for line in lines: ed.text.insert(END, line+'\n') ed.lnText.config(foreground=self.line_num_color) ed.lnText.config(background=self.line_num_background_color) ed.syntax_coloring(None) self.eds.append(ed) self.n.select(self.tab_names.index(path)) def change_ed_colors(self): for ed in self.eds: ed.text.config(insertbackground='white') ed.text.config(background=self.background) ed.text.config(foreground=self.foreground) ed.text.tag_configure('Token.Keyword', foreground=self.token_keyword) ed.text.tag_configure('Token.Keyword.Constant', foreground=self.token_keyword) ed.text.tag_configure('Token.Keyword.Declaration', foreground=self.token_keyword) ed.text.tag_configure('Token.Keyword.Namespace', foreground=self.token_keyword) ed.text.tag_configure('Token.Keyword.Pseudo', foreground=self.token_keyword) ed.text.tag_configure('Token.Keyword.Reserved', foreground=self.token_keyword) ed.text.tag_configure('Token.Keyword.Type', foreground=self.token_keyword) ed.text.tag_configure('Token.Name', foreground=self.token_name) ed.text.tag_configure('Token.Name.Attribute', foreground=self.token_name) ed.text.tag_configure('Token.Name.Builtin', foreground=self.token_name) ed.text.tag_configure('Token.Name.Builtin.Pseudo', foreground=self.token_name) ed.text.tag_configure('Token.Name.Class', foreground=self.token_name) ed.text.tag_configure('Token.Name.Constant', foreground=self.token_name) ed.text.tag_configure('Token.Name.Decorator', foreground=self.token_name) ed.text.tag_configure('Token.Name.Entity', foreground=self.token_name) ed.text.tag_configure('Token.Name.Exception', foreground=self.token_name) ed.text.tag_configure('Token.Name.Function', foreground=self.token_name) ed.text.tag_configure('Token.Name.Label', foreground=self.token_name) ed.text.tag_configure('Token.Name.Namespace', foreground=self.token_name) ed.text.tag_configure('Token.Name.Other', foreground=self.token_name) ed.text.tag_configure('Token.Name.Tag', foreground=self.token_name) ed.text.tag_configure('Token.Name.Variable', foreground=self.token_name) ed.text.tag_configure('Token.Name.Variable.Class', foreground=self.token_name) ed.text.tag_configure('Token.Name.Variable.Global', foreground=self.token_name) ed.text.tag_configure('Token.Name.Variable.Instance', foreground=self.token_name) ed.text.tag_configure('Token.Literal', foreground=self.token_literal) ed.text.tag_configure('Token.Literal.Date', foreground=self.token_literal) ed.text.tag_configure('Token.Literal.String', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Backtick', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Char', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Doc', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Double', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Escape', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Heredoc', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Interpol', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Other', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Regex', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Single', foreground=self.token_string) ed.text.tag_configure('Token.Literal.String.Symbol', foreground=self.token_string) ed.text.tag_configure('Token.Literal.Number', foreground=self.token_number) ed.text.tag_configure('Token.Literal.Number.Bin', foreground=self.token_number) ed.text.tag_configure('Token.Literal.Number.Float', foreground=self.token_number) ed.text.tag_configure('Token.Literal.Number.Hex', foreground=self.token_number) ed.text.tag_configure('Token.Literal.Number.Integer', foreground=self.token_number) ed.text.tag_configure('Token.Literal.Number.Integer.Long', foreground=self.token_number) ed.text.tag_configure('Token.Literal.Number.Oct', foreground=self.token_number) ed.text.tag_configure('Token.Operator', foreground=self.token_operators) ed.text.tag_configure('Token.Operator.Word', foreground=self.token_operators) ed.text.tag_configure('Token.Punctuation', foreground=self.token_punctuation) ed.text.tag_configure('Token.Comment', foreground=self.token_comments) ed.text.tag_configure('Token.Comment.Hashbang', foreground=self.token_comments) ed.text.tag_configure('Token.Comment.Multiline', foreground=self.token_comments) ed.text.tag_configure('Token.Comment.Preproc', foreground=self.token_comments) ed.text.tag_configure('Token.Comment.Single', foreground=self.token_comments) ed.text.tag_configure('Token.Comment.Special', foreground=self.token_comments) ed.text.tag_configure('Token.Generic', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Deleted', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Emph', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Error', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Heading', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Inserted', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Output', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Prompt', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Strong', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Subheading', foreground=self.token_generic) ed.text.tag_configure('Token.Generic.Traceback', foreground=self.token_generic) self.tree.tag_configure('directory', background=self.background, foreground=self.dir_color) self.tree.tag_configure('file', background=self.background, foreground=self.file_color) self.menubar.config(background=self.file_bar_color) self.root.configure(background=self.background) self.menubar.config(background=self.file_bar_color, foreground=self.file_bar_text_color) ttk.Style().configure("TNotebook", background=self.notebook_background) def copy_click(self): index = self.n.tabs().index(self.n.select()) self.eds[index].text.clipboard_clear() text = self.eds[index].text.get(tk.SEL_FIRST, tk.SEL_LAST) self.eds[index].text.clipboard_append(text) def cut_click(self): index = self.n.tabs().index(self.n.select()) self.copy_click() self.eds[index].text.delete(tk.SEL_FIRST, tk.SEL_LAST) def paste_click(self): index = self.n.tabs().index(self.n.select()) text = self.eds[index].text.selection_get(selection='CLIPBOARD') self.eds[index].text.insert('insert', text) def recursive_find_nodes(self, rootDir, parent, indent): for lists in os.listdir(rootDir): path = os.path.join(rootDir, lists) #self.files.append(path) if os.name == 'posix': if os.path.isdir(path): parent.children.append(node(path[path.rfind('/'):], parent, indent, path, 'folder', self.top, self)) self.recursive_find(path, parent.children[len(parent.children) - 1], indent + 1) else: parent.children.append(node(path[path.rfind('/'):], parent, indent, path, 'file', self.top, self)) else: if os.path.isdir(path): parent.children.append(node(path[path.rfind('\\'):], parent, indent, path, 'folder', self.top, self)) self.recursive_find(path, parent.children[len(parent.children) - 1], indent + 1) else: parent.children.append(node(path[path.rfind('\\'):], parent, indent, path, 'file', self.top, self)) return parent def recursive_print_nodes(self, parent): for child in parent.children: self.recursive_print(child) print(('-' * parent.indent) + parent.name) def list_nodes(self, path, tree, parent, full_path): self.root = node(os.getcwd()[os.getcwd().rfind('\\'):], None, 0, os.getcwd(), 'folder', self.top, self) self.root = self.recursive_find(os.getcwd(), self.root, 1) self.recursive_print(self.root) def draw_structure(self, parent, height): parent.name_label.place(anchor=NW, x=parent.indent*10 + 20, y=height) parent.image_label.place(anchor=NW, x=parent.indent*10, y=height) self.name_labels.append(parent.name_label) self.image_labels.append(parent.image_label) if parent.display_children: for child in parent.children: height = height + 20 height = self.draw_structure(child, height) return height def recursive_find(self, rootDir): for lists in os.listdir(rootDir): path = os.path.join(rootDir, lists) self.files.append(path) if os.path.isdir(path): self.recursive_find(path) def list_files(self, path, tree, parent, full_path): self.files = [os.getcwd()] self.recursive_find(os.getcwd()) counter = 0 for f in self.files: if counter != 0: if os.name == 'posix': if(isfile(f)): tree.insert(f[:f.rfind('/')], 0, f, text=f[f.rfind('/') + 1:], tags = ('file',)) else: tree.insert(f[:f.rfind('/')], 0, f, text=f[f.rfind('/') + 1:], tags = ('directory',)) else: if(isfile(f)): tree.insert(f[:f.rfind('\\')], 0, f, text=f[f.rfind('\\') + 1:], tags = ('file',)) else: tree.insert(f[:f.rfind('\\')], 0, f, text=f[f.rfind('\\') + 1:], tags = ('directory',)) else: if os.name == 'posix': tree.insert('', 3, f, text=f[f.rfind('/') + 1:], tags = ('directory',)) else: tree.insert('', 3, f, text=f[f.rfind('\\') + 1:], tags = ('directory',)) counter = counter + 1 return tree def on_double_click(self, event): item = self.tree.selection()[0] self.open_file(item) def close_all_tabs(self): val = tkMessageBox.askokcancel('Open New Folder', "This will close all current tabs, continue?") if val: for i in range(0, len(self.n.tabs())): self.n.forget(0) del(self.tab_names[0]) del(self.eds[0]) return val def close_tab(self): index = self.n.tabs().index(self.n.select()) self.n.forget(self.n.select()) del(self.tab_names[index]) del(self.eds[index]) def close_tab_event(self, event): index = self.n.tabs().index(self.n.select()) self.n.forget(self.n.select()) del(self.tab_names[index]) del(self.eds[index]) def open_click(self): of = open_file_dialog(self.root, self, os.getcwd().replace('\\', '/')) def save_click(self): path = self.n.tab(self.n.select())['text'] index = self.n.tabs().index(self.n.select()) with open(path, 'w') as f_out: f_out.write(self.eds[index].text.get("1.0",END)) self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd().replace('\\', '/'), open=True) if self.editing_pi: transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.put(path,path[path.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]) except: print('Could not push for some reason') def save_type(self, event): path = self.n.tab(self.n.select())['text'] index = self.n.tabs().index(self.n.select()) with open(path, 'w') as f_out: f_out.write(self.eds[index].text.get("1.0",END)) self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd(), open=True) if self.editing_pi: transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.put(path,path[path.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]) except: print('Could not push for some reason') def exit_click(self): sys.exit() def keyPressed(self, event): print("--") if event.keysym == 's': self.save_click def open_folder_click(self): val = self.close_all_tabs() if val: folder = askdirectory().replace('\\', '/') os.chdir(folder) self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd(), open=True) self.folder = folder self.lines[19] = self.lines[19][:self.lines[19].find('=')+1]+self.folder self.write_config() self.editing_pi = False def open_folder(self, folder): val = self.close_all_tabs() if val: os.chdir(folder) self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd(), open=True) self.folder = folder self.lines[19] = self.lines[19][:self.lines[19].find('=')+1]+self.folder self.write_config() self.editing_pi = False def find_text_dialog(self): temp = find_and_replace_dialog(self.root, self) self.root.wait_window(temp.top) def find(self, f): index = self.n.tabs().index(self.n.select()) ed = self.eds[index] ed.highlight_pattern(f, "highlight") def find_one(self, f): index = self.n.tabs().index(self.n.select()) ed = self.eds[index] text = ed.text.get("1.0",END) count = text.count(f) if self.find_counter >= count: self.find_counter = 0 ed.highlight_one(f, "highlight", self.find_counter) self.find_counter = self.find_counter + 1 def replace(self, f, r): index = self.n.tabs().index(self.n.select()) text = self.eds[index].text.get("1.0",END) self.eds[index].text.delete("1.0",END) text = text.replace(f, r, 1) self.eds[index].text.insert(END, text[:-1]) def replace_all(self, f, r): index = self.n.tabs().index(self.n.select()) text = self.eds[index].text.get("1.0",END) self.eds[index].text.delete("1.0",END) text = text.replace(f, r) self.eds[index].text.insert(END, text[:-1]) def undo_command(self): index = self.n.tabs().index(self.n.select()) self.eds[index].undo(None) def redo_command(self): index = self.n.tabs().index(self.n.select()) self.eds[index].redo(None) def reset_counters(self): self.find_counter = 0 def find_type(self, event): path = self.n.tab(self.n.select())['text'] self.find_text_dialog() def tree_rename(self): item = self.tree.selection()[0] path = item found = True if found: args = ['python2', self.meringue_path + '/' + 'rename.py', 'test'] p = Popen(args, stdin=PIPE, stdout=PIPE, shell=False) p.wait() out = p.stdout.read().replace('\n', '') if not out == '!!DO NOT RENAME!!': i = path.replace('\\', '/').rfind('/') try: if i != -1: os.rename(path, path[:path.rfind('/')]+'/'+out) else: os.rename(path, out) except: print('file does not exist, not renaming anything but the tab') self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd().replace('\\', '/'), open=True) if self.editing_pi: new_name = path[:path.rfind('/')]+'/'+out new_name = new_name[new_name.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):] transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.rename(item[item.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):], new_name) except: print('not a file') try: sftp.rmdir(item[item.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):], new_name) except: print('not a directory') def delete(self): if tkMessageBox.askyesno("Delete", "Delte this file or folder?"): item = self.tree.selection()[0] try: os.remove(item) if self.editing_pi: transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.remove(item[item.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]) except: print('not a file') except: print('Not a file') try: self.delete_file(item) except: print('Not a directory') self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd(), open=True) def delete_file(self, path): dirs = [f for f in listdir(path) if not isfile(join(path, f))] files = [f for f in listdir(path) if isfile(join(path, f))] for f in files: os.remove(path+'/'+f) if self.editing_pi: transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.remove(path[path.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]+'/'+f) except: print('not a file') for d in dirs: self.delete_file(path+'/'+d) os.rmdir(path) if self.editing_pi: transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.rmdir(path[path.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]+'/'+d) except: print('not a directory') def show_menu(self, event): self.directory_menu.post(event.x_root, event.y_root) def on_right_click(self, event): if len(self.tree.selection()) > 0: self.selected_file_dir = self.tree.selection()[0] self.show_menu(event) def save_project(self): with open(self.meringue_path + '/data/projects.txt', 'w') as f_out: f_out.write('TEMP;{}'.format(self.folder)) def tab_rename(self, event): path = self.n.tab(self.n.select())['text'] if os.name == 'nt': print(self.meringue_path) args = ['python', self.meringue_path + 'rename.py', path[path.rfind('\\')+1:]] else: args = ['python2', self.meringue_path + 'rename.py', path[path.rfind('/')+1:]] p = Popen(args, stdin=PIPE, stdout=PIPE, shell=False) p.wait() out = p.stdout.read().replace('\n', '') if not out == '!!DO NOT RENAME!!': self.n.tab(self.n.select(), text=out) def end_find(self, event): for ed in self.eds: ed.remove_highlight(None) def function_dialog(self, event): dialog = method_dialog(self.root, self) def ssh(self, event=None): dialog = access_ssh(self.root, self) def open_terminal(self): if sys.platform == "linux" or sys.platform == "linux2": os.system('gnome-terminal') if sys.platform == 'darwin': os.system('open Terminal') if sys.platform == 'win32': os.system('start cmd') def open_project(self): project_opener(self.root, self) def manage_projects(self): project_manager(self.root, self) def start(self, noOfEditors, noOfLines): ''' scroll_style = ttk.Style() scroll_style.element_create("My.Scrollbar.trough", "from", "default") scroll_style.element_create("My.Scrollbar.bg", "from", "default") scroll_style.element_create("My.Scrollbar.activebackground", "from", "default") # Redefine the horizontal scrollbar layout to use the custom trough. # This one is appropriate for the 'vista' theme. scroll_style.layout("My.TScrollbar", [('My.Scrollbar.trough', {'children': [('Horizontal.Scrollbar.leftarrow', {'side': 'left', 'sticky': ''}), ('Horizontal.Scrollbar.rightarrow', {'side': 'right', 'sticky': ''}), ('Horizontal.Scrollbar.thumb', {'unit': '1', 'children': [('Horizontal.Scrollbar.grip', {'sticky': ''})], 'sticky': 'nswe'})], 'sticky': 'we'})]) # Copy original style configuration and add our new custom configuration option. scroll_style.configure("My.TScrollbar", *scroll_style.configure("Horizontal.TScrollbar")) scroll_style.configure("My.TScrollbar", troughcolor="black") ''' #s.configure('Tab_Style', background='cyan') try: self.read_config() except: create_config(self.meringue_path) self.read_config() ''' self.pane = PanedWindow(self.n, orient=HORIZONTAL, opaqueresize=True) ed = EditorClass(self.root, 'untitled') ed.text.config(insertbackground='white') ed.text.config(background=self.background) ed.text.config(foreground=self.foreground) #ed.vScrollbar.config(style="My.TScrollbar") ed.text.tag_configure("highlight", background=self.highlight_background, foreground=self.highlight_foreground) ed.text.tag_configure("keyword", foreground=self.highlight_keyword) ed.text.tag_configure("function_name", foreground=self.highlight_function_name) ed.text.tag_configure("function", foreground=self.highlight_function) ed.text.tag_configure("boolean", foreground=self.highlight_boolean) ed.text.tag_configure("string", foreground=self.highlight_string) ed.text.tag_configure("number", foreground=self.highlight_number) ed.text.tag_configure("operator", foreground=self.highlight_operator) #ed.text.tag_configure('normal', foreground=self.highlight_normal) ed.text.tag_configure('comment', foreground=self.highlight_comment) ed.lnText.config(foreground=self.line_num_color) ed.lnText.config(background=self.line_num_background_color) self.pane.add(ed.frame) self.eds.append(ed) ''' ttk.Style().configure('TFrame', fieldbackground=self.background, background=self.background) self.tree_frame = Frame(self.root, bg=self.background, width=200, height=10000) #ttk.Style().configure('TFrame', fieldbackground=self.background, background=self.background) #self.tree_frame = Frame(self.root, bg=self.background, width=200, height=10000) self.bg_frame = Frame(self.tree_frame, width=200, height=10000, bg=self.background) #self.display_frame = Frame(self.root, width=150, height=10000, bg=self.background) self.tree = ttk.Treeview(self.tree_frame) #self.tree["columns"]=("Files_and_Folders") self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd(), open=True) if os.name != 'nt': self.tree.tag_configure('directory', background=self.background, foreground=self.dir_color) self.tree.tag_configure('file', background=self.background, foreground=self.file_color) ttk.Style().configure("Treeview", fieldbackground=self.background, background=self.background) self.treeScroll = ttk.Scrollbar(self.tree_frame, orient=VERTICAL) self.treeScroll.configure(command=self.tree.yview) self.treeScroll.grid(row=0, column=1, rowspan=40, sticky=N+S) self.tree.configure(xscrollcommand=self.treeScroll.set) self.tree.bind("<3>", self.on_right_click) self.tree.bind("<2>", self.on_right_click) self.tree.bind("<Double-1>", self.on_double_click) self.tree.grid(row=0, column=0, rowspan=40, sticky=N+S) self.tree_frame.grid(row=0, column=0, rowspan=40, sticky=N+S) #self.display_frame.pack(side=RIGHT, fill=Y, expand=0) #self.pane.pack(fill='both', expand=1) #self.n.add(self.pane, text='untitled') self.n.bind("<Double-1>", self.tab_rename) self.n.bind('<3>', self.close_tab_event) self.n.bind('<2>', self.close_tab_event) #self.n.bind("<1>", self.reset_display_text) self.n.grid(row=0, column=1, rowspan=40, columnspan=60, sticky=N+S+E+W) ttk.Style().configure("TNotebook", background=self.notebook_background) #ttk.Style().configure("TPanedwindow", background=self.pane_color, foreground=self.notebook_foreground) #self.tab_names.append('untitled') filemenu = Menu(self.menubar, tearoff=0) filemenu.add_command(label="Open", command=self.open_click) filemenu.add_command(label="Open Folder", command=self.open_folder_click) filemenu.add_command(label="Save", command=self.save_click) filemenu.add_command(label="Close Tab", command=self.close_tab) filemenu.add_separator() filemenu.add_command(label='Open Project', command = self.open_project) filemenu.add_command(label='Save Project', command = self.save_project) filemenu.add_command(label='Manage Projects', command = self.manage_projects) filemenu.add_separator() filemenu.add_command(label="Exit", command=self.exit_click) self.menubar.add_cascade(label="File", menu=filemenu) editmenu = Menu(self.menubar, tearoff=0) editmenu.add_command(label="Undo", command=self.undo_command) editmenu.add_command(label="Redo", command=self.redo_command) editmenu.add_separator() editmenu.add_command(label="Change Editor Colors", command=self.color_config) self.menubar.add_cascade(label="Edit", menu=editmenu) viewmenu = Menu(self.menubar, tearoff=0) viewmenu.add_command(label="Toggle Menubar", command=self.hide_show_menubar_command) viewmenu.add_command(label="Toggle File Explorer", command=self.hide_show_tree_command) self.menubar.add_cascade(label="View", menu=viewmenu) #optionsmenu = Menu(self.menubar, tearoff=0) #optionsmenu.add_command(label="Change Colors", command=self.color_config) #self.menubar.add_cascade(label="Options", menu=optionsmenu) helpmenu = Menu(self.menubar, tearoff=0) helpmenu.add_command(label="About", command=self.open_about) self.menubar.add_cascade(label="Help", menu=helpmenu) #self.menubar.add_command(label="Close Tab", command=self.close_tab) terminalmenu = Menu(self.menubar, tearoff=0) terminalmenu.add_command(label="Local Terminal", command=self.open_terminal) terminalmenu.add_command(label="Remote Terminal", command=self.open_remote_terminal) self.menubar.add_cascade(label="Open Terminal", menu=terminalmenu) remotemenu = Menu(self.menubar, tearoff=0) remotemenu.add_command(label='Connect to Remote', command=self.ssh) #remotemenu.add_command(label='Edit Directory', command=self.remote_folder_choose) remotemenu.add_command(label="Open Explorer", command=self.paramiko_interface_open) self.menubar.add_cascade(label="Remote Actions", menu=remotemenu) #runmenu = Menu(self.menubar, tearoff=0) runmenu = Menu(self.menubar, tearoff=0) runmenu.add_command(label='Python 2', command=self.run_file_python_2) runmenu.add_command(label='Python 3', command=self.run_file_python_3) self.menubar.add_cascade(label="Run File", menu=runmenu) #self.menubar.add_command(label="Open Terminal", command=self.open_terminal) self.menubar.config(background=self.file_bar_color, foreground=self.file_bar_text_color) self.root.configure(background=self.background) self.root.title("meringue") self.root.bind('<Control-s>', self.save_type) self.root.bind('<Control-f>', self.find_type) #self.root.bind('<Control-Shift-p>', self.git_commands) self.root.bind('<Escape>', self.end_find) #self.root.bind('<Control-r>', self.function_dialog) self.root.bind('<Control-h>', self.ssh) self.root.bind('<Alt_R>', self.hide_show_menubar); self.root.bind('<Control-e>', self.hide_show_tree); #self.root.bind("<Configure>", self.configure) self.root['bg'] = 'black' self.root.geometry('{}x{}'.format(600, 400)) self.root.config(menu=self.menubar) if os.name == 'nt': ttk.Style().theme_use('default') for x in range(60): Grid.columnconfigure(self.n, x, weight=1) for y in range(30): Grid.rowconfigure(self.n, y, weight=1) for x in range(60): Grid.columnconfigure(self.tree, x, weight=1) for y in range(30): Grid.rowconfigure(self.tree, y, weight=1) for x in range(60): Grid.columnconfigure(self.tree_frame, x, weight=1) for y in range(30): Grid.rowconfigure(self.tree_frame, y, weight=1) for x in range(60): Grid.columnconfigure(self.root, x, weight=1) for y in range(30): Grid.rowconfigure(self.root, y, weight=1) self.hide_menubar = True; self.hide_tree = True; self.emptyMenu = Menu(self.root) def open_about(self): about_dialog(self) def hide_show_menubar(self, event): if self.hide_menubar: self.root.config(menu=self.emptyMenu) self.hide_menubar = False; else: self.root.config(menu=self.menubar) self.hide_menubar = True def hide_show_tree(self, event): if self.hide_tree: self.tree_frame.grid_forget() self.hide_tree = False else: self.tree_frame.grid(row=0, column=0, rowspan=40, sticky=N+S) self.hide_tree = True def hide_show_menubar_command(self): self.hide_show_menubar(None) def hide_show_tree_command(self): self.hide_show_tree(None) def run_file_python_2(self): index = self.n.tabs().index(self.n.select()) print(self.tab_names[index]) run_script_python_2(self.tab_names[index], self.root) def run_file_python_3(self): index = self.n.tabs().index(self.n.select()) print(self.tab_names[index]) run_script_python_3(self.tab_names[index], self.root) def paramiko_interface_open(self): Paramiko_Interface(self, self.username, self.password, self.ip, self.port) def remote_folder_choose(self): #We're going to store the directory tree here self.remote_tree_array = [] #Let's ssh into the remote machine try: ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh.connect(self.ip, username=self.username, password=self.password, port=int(self.port)) #Capture the directory output print('Running and capturing directories') tkMessageBox.showwarning("SSH Connect", "Pulling the directory structure -- please wait") stdin, stdout, stderr = ssh.exec_command('tree -f -i -l -d') stdin.close() #Extract the name of all of the directories from the tree and store them for line in stdout.read().splitlines(): if ' -> ' in line: self.remote_tree_array.append(line[:line.find(' -> ')]) else: self.remote_tree_array.append(line) #Elimiate the top directory as it is not needed self.remote_tree_array = self.remote_tree_array[:-1] #Go to letting the user select the directory that they want rfc = remote_file_chooser(self, self, self.username, self.ip, self.password, ssh, int(self.port)) except: #If something failed throw an error message tkMessageBox.showwarning("SSH Connect", "Something failed -- Please try again") ssh.close() def open_remote_terminal(self): self.current_directory = '.' if sys.platform == "win32": try: #os.system('start python ' + self.meringue_path + 'paramiko_terminal.py "{}" {} {} {} {}'.format(self.current_directory, self.ip, self.username, self.password, self.port)) os.system('start python "' + self.meringue_path + 'paramiko_terminal.py" "{}" {} {} {} {}'.format(self.current_directory, self.ip, self.username, self.password, self.port)) except: # try: # os.system('start python2 paramiko_terminal.py {} {} {} {} {}'.format(self.current_directory, self.ip, self.username, self.password, self.port)) # except: pass if sys.platform == "darwin": #try: # os.system('open python paramiko_terminal.py {} {} {} {} {}'.format(self.current_directory, self.ip, self.username, self.password, self.port)) #except: try: os.system('open python2 "' + self.meringue_path + 'paramiko_terminal.py" "{}" {} {} {} {}'.format(self.current_directory, self.ip, self.username, self.password, self.port)) except: pass if sys.platform == "linux" or sys.platform == "linux2": #try: # os.system('xterm -hold -e python paramiko_terminal.py {} {} {} {} {}'.format(self.current_directory, self.ip, self.username, self.password, self.port)) #except: try: os.system('xterm -e python2 "' + self.meringue_path + 'paramiko_terminal.py" "{}" {} {} {} {}'.format(self.current_directory, self.ip, self.username, self.password, self.port)) except: pass def copy_file(self): if len(self.tree.selection()) > 0: item = self.tree.selection()[0] self.copy_path = item def paste_file(self): if self.copy_path != '': if len(self.tree.selection()) > 0: item = self.tree.selection()[0] dirs = [item+'/'+f for f in listdir(item) if not isfile(join(item, f))] files = [item+'/'+f for f in listdir(item) if isfile(join(item, f))] if not isfile(item): f_name = self.copy_path[self.copy_path.rfind('/')+1:] write_path = item+'/'+f_name if isfile(self.copy_path): counter = 1 temp_write_path = write_path while temp_write_path in files: temp_write_path = write_path+'.'+str(counter) counter = counter + 1 write_path = temp_write_path with open(write_path, 'w') as f_out: with open(self.copy_path, 'r') as f_in: text = f_in.read() f_out.write(text) else: counter = 1 temp_write_path = write_path while temp_write_path in dirs: temp_write_path = write_path+'.'+str(counter) counter = counter + 1 write_path = temp_write_path self.recursive_paste(write_path) copy_path = '' if self.editing_pi: transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.put(write_path, write_path[write_path.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]) except: print('not a file') self.recursive_paste_sftp(write_path, sftp) self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd(), open=True) def recursive_paste(self, path): os.mkdir(path) dirs = [f for f in listdir(self.copy_path) if not isfile(join(self.copy_path, f))] files = [f for f in listdir(self.copy_path) if isfile(join(self.copy_path, f))] for f in files: with open(path+'/'+f, 'w') as f_out: with open(self.copy_path+'/'+f, 'r') as f_in: text = f_in.read() f_out.write(text) for d in dirs: self.recursive_paste(path+'/'+d) def recursive_paste_sftp(self, path, sftp): sftp.mkdir(path[path.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]) dirs = [path+'/'+f for f in listdir(path) if not isfile(join(path, f))] files = [path+'/'+f for f in listdir(path) if isfile(join(path, f))] print(dirs) print(files) for f in files: sftp.put(f, f[f.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]) for d in dirs: self.recursive_paste(d, sftp) def read_config(self): with open(self.meringue_path + '/data/meringue_config.ini', 'r') as f_in: self.lines = f_in.read().split('\n') self.foreground = self.lines[0].split('=')[1] self.foreground = self.foreground[:7] self.background = self.lines[1].split('=')[1] self.background = self.background[:7] self.file_color = self.lines[2].split('=')[1] self.file_color = self.file_color[:7] self.dir_color = self.lines[3].split('=')[1] self.dir_color = self.dir_color[:7] self.line_num_color = self.lines[4].split('=')[1] self.line_num_color = self.line_num_color[:7] self.line_num_background_color = self.lines[5].split('=')[1] self.line_num_background_color = self.line_num_background_color[:7] self.file_bar_color = self.lines[6].split('=')[1] self.file_bar_color = self.file_bar_color[:7] self.file_bar_text_color = self.lines[7].split('=')[1] self.file_bar_text_color = self.file_bar_text_color[:7] self.notebook_background = self.lines[8].split('=')[1] self.notebook_background = self.notebook_background[:7] self.highlight_foreground = self.lines[9].split('=')[1] self.highlight_foreground = self.highlight_foreground[:7] self.highlight_background = self.lines[10].split('=')[1] self.highlight_background = self.highlight_background[:7] self.token_keyword = self.lines[11].split('=')[1] self.token_keyword = self.token_keyword[:7] self.token_name = self.lines[12].split('=')[1] self.token_name = self.token_name[:7] self.token_literal = self.lines[13].split('=')[1] self.token_literal = self.token_literal[:7] self.token_string = self.lines[14].split('=')[1] self.token_string = self.token_string[:7] self.token_number = self.lines[15].split('=')[1] self.token_number = self.token_number[:7] self.token_operators = self.lines[16].split('=')[1] self.token_operators = self.token_operators[:7] self.token_punctuation = self.lines[17].split('=')[1] self.token_punctuation = self.token_punctuation[:7] self.token_comments = self.lines[18].split('=')[1] self.token_comments = self.token_comments[:7] self.token_generic = self.lines[19].split('=')[1] self.token_generic = self.token_generic[:7] self.folder = self.lines[20].split('=')[1] if not self.folder: self.folder = askdirectory() self.lines[20] = self.lines[20][:self.lines[20].find('=')+1]+self.folder self.write_config() try: os.chdir(self.folder) except: self.folder = askdirectory() self.lines[20] = self.lines[20][:self.lines[20].find('=')+1]+self.folder self.write_config() os.chdir(self.folder) def new_file(self): nd = new_dialog(self.root, self) def new_file_func(self, name): item = self.tree.selection()[0] if not isfile(item): with open(item+'/'+name, 'w') as f_out: f_out.write('') self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd(), open=True) if self.editing_pi: transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.put(item+'/'+name,item[item.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]+'/'+name) except: print('Could not push for some reason') else: tkMessageBox.showwarning("File Creation", "Please select the parent folder for the new file and then try creating it again") def new_folder(self): nfd = new_folder_dialog(self.root, self) def new_folder_func(self, name): item = self.tree.selection()[0] if not isfile(item): #with open(item+'/'+name, 'w') as f_out: # f_out.write('') os.mkdir(item+'/'+name) self.tree.delete(*self.tree.get_children()) self.tree = self.list_files('.', self.tree, "", '.') self.tree.item(os.getcwd(), open=True) if self.editing_pi: transport = paramiko.Transport((self.ip, 22)) transport.connect(username=self.username, password=self.password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.mkdir(item[item.find(self.meringue_path + '/local/') + len(self.meringue_path + '/local/'):]+'/'+name) except: print('Could not push for some reason') else: tkMessageBox.showwarning("File Creation", "Please select the parent folder for the new file and then try creating it again") def color_config(self): cc = change_color(self.root, self) def make_directory_menu(self, w): self.directory_menu = Menu(self.root, tearoff=0) self.directory_menu.add_command(label="Delete", command=self.delete) self.directory_menu.add_command(label="Rename", command=self.tree_rename) self.directory_menu.add_command(label="Copy", command=self.copy_file) self.directory_menu.add_command(label="Paste", command=self.paste_file) self.directory_menu.add_command(label='New File', command=self.new_file) self.directory_menu.add_command(label='New Folder', command=self.new_folder) #self.directory.menu.add_command(label='Copy', command=self.copy_item) #self.directory.menu.add_command(label='Paste', command=self.paste_item) def write_config(self): print('writing') with open(self.meringue_path + '/data/meringue_config.ini', 'w') as f_out: for line in self.lines: f_out.write(line + '\n') f_out.flush() def __init__(self): self.meringue_path = os.path.realpath(__file__) if os.name == 'nt': self.meringue_path = self.meringue_path[:self.meringue_path.rfind('\\') + 1] else: self.meringue_path = self.meringue_path[:self.meringue_path.rfind('/') + 1] print(self.meringue_path) sys.stdout.flush() #os.chdir(os.path.join(os.path.expanduser('~'), 'Documents')) self.root = Tk() img = PhotoImage(file=self.meringue_path + 'icon.gif') self.root.tk.call('wm', 'iconphoto', self.root._w, img) #self.root.iconbitmap(self.meringue_path + '/' + 'icon.gif') self.eds = [] self.n = ttk.Notebook(self.root) self.menubar = Menu(self.root) self.tab_names = [] self.find_string = '' self.find_counter = 0 self.copy_path = '' self.selected_file_dir = '' self.tree_array = [] self.remote_tree_array = [] self.remote_tree_file_array = [] self.editing_pi = False self.username = '' self.password = '' self.ip = '' self.port = 22 self.new_file_or_folder_name = '' self.folder = '' self.highligh_foreground = '' self.highlight_background = '' self.highlight_keyword = '' self.highlight_function_name = '' self.highlight_function = '' self.highlight_boolean = '' self.highlight_string = '' self.highlight_number = '' self.highlight_operator = '' #self.highlight_normal = '' self.foreground = '' self.background = '' self.start(1, 9999) self.make_directory_menu(self.root) self.jump_counter = 0 self.find_counter = 0 try: if os.name == 'posix': os.makedirs(self.meringue_path+'local') else: os.makedirs(self.meringue_path.replace('\\', '/')+'local') except: pass if os.name == 'posix': self.recursive_delete(self.meringue_path+'local') else: self.recursive_delete(self.meringue_path.replace('\\', '/')+'local') self.sftp_stem = '' mainloop() def recursive_delete(self, rootDir): for lists in os.listdir(rootDir): path = os.path.join(rootDir, lists) if os.path.isdir(path): self.recursive_delete(path) else: try: os.remove(path) except: pass try: os.rmdir(path) except: pass def __main__(self): App() def main(): App() if __name__ == '__main__': main()
the-stack_0_7230
import random import httpx from utils.log import logger ''' api返回格式为 字段名 数据类型 说明 pid int 作品 pid p int 作品所在页 uid int 作者 uid title string 作品标题 author string 作者名(入库时,并过滤掉 @ 及其后内容) r18 boolean 是否 R18(在库中的分类,不等同于作品本身的 R18 标识) width int 原图宽度 px height int 原图高度 px tags string[] 作品标签,包含标签的中文翻译(有的话) ext string 图片扩展名 uploadDate number 作品上传日期;时间戳,单位为毫秒 urls object 包含了所有指定size的图片地址 ''' _url = "https://api.lolicon.app/setu/v2" async def fetch_lolicon_random_img(): """ 从lolicon接口获取一张随机色图,并按照规范输出 """ j = httpx.get(_url).json() error = j['error'] logger.info(f'请求结果: {j}') if len(error) > 0: raise Exception(f'接口异常: {error}') # 返回图片列表的随机一张图 data = j['data'] data_len = len(data) if data_len == 0: raise Exception(f'返回数据为空') # 随机获取一张图片对象 random_idx = random.randint(0, data_len - 1) logger.info(f'随机位置: {random_idx}\n图片列表: {data}') item = data[random_idx] return item['title'], item["author"], item["urls"]["original"]
the-stack_0_7231
import random import string from django.db import transaction from django.db.models import fields from rest_framework import serializers from rest_framework.exceptions import ValidationError from vbb_backend.users.models import Teacher, User, UserTypeEnum def random_char(y): return "".join(random.choice(string.ascii_letters) for x in range(y)) class TeacherUserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ( "first_name", "last_name", "date_of_birth", "time_zone", "initials", "personal_email", "phone", "city", "notes", ) def validate(self, attrs): attrs["user_type"] = UserTypeEnum.TEACHER.value return super().validate(attrs) class TeacherSerializer(serializers.ModelSerializer): id = serializers.UUIDField(source="external_id", read_only=True) user = TeacherUserSerializer(required=True) class Meta: model = Teacher exclude = ("deleted", "external_id") def validate(self, attrs): user = attrs["user"] with transaction.atomic(): if self.instance: user_obj = self.instance.user user = TeacherUserSerializer(user_obj, data=user) user.is_valid(raise_exception=True) instance = user.save() attrs["user"] = instance else: user = TeacherUserSerializer(data=user) user.is_valid(raise_exception=True) instance = user.save(email=random_char(20) + "@vbb.com") attrs["user"] = instance return super().validate(attrs)
the-stack_0_7232
import math, logging import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from ..tokenization import WordTokenizer class GRUEncoder(nn.Module): def __init__(self, token2id, max_length=128, hidden_size=230, word_size=50, blank_padding=True, word2vec=None, bidirectional=True, dropout=0, activation_function=F.tanh, mask_entity=False): """ Args: token2id: dictionary of token->idx mapping max_length: max length of sentence hidden_size: hidden size word_size: size of word embedding blank_padding: padding for RNN word2vec: pretrained word2vec numpy bidirectional: if it is a bidirectional RNN activation_function: the activation function of RNN, tanh/relu """ # Hyperparameters super(GRUEncoder, self).__init__() self.token2id = token2id self.max_length = max_length + 4 # 4 == take into account PIs self.num_token = len(token2id) self.num_position = max_length * 2 self.bidirectional = bidirectional self.mask_entity = mask_entity if word2vec is None: self.word_size = word_size else: self.word_size = word2vec.shape[-1] self.hidden_size = hidden_size self.input_size = word_size self.blank_padding = blank_padding # Position Indicators (PI) if not '<head>' in self.token2id: self.token2id['<head>'] = len(self.token2id) self.num_token += 1 if not '</head>' in self.token2id: self.token2id['</head>'] = len(self.token2id) self.num_token += 1 if not '<tail>' in self.token2id: self.token2id['<tail>'] = len(self.token2id) self.num_token += 1 if not '</tail>' in self.token2id: self.token2id['</tail>'] = len(self.token2id) self.num_token += 1 # add [UNK] and [PAD] tokens if not '[UNK]' in self.token2id: self.token2id['[UNK]'] = len(self.token2id) self.num_token += 1 if not '[PAD]' in self.token2id: self.token2id['[PAD]'] = len(self.token2id) self.num_token += 1 # Word embedding self.word_embedding = nn.Embedding(self.num_token, self.word_size) if word2vec is not None: logging.info("Initializing word embedding with word2vec.") word2vec = torch.from_numpy(word2vec) if self.num_token == len(word2vec) + 6: # 6 == <head>, </head>, <tail>, </tail>, [UNK], [PAD] hsp = torch.randn(1, self.word_size) / math.sqrt(self.word_size) hep = torch.randn(1, self.word_size) / math.sqrt(self.word_size) tsp = torch.randn(1, self.word_size) / math.sqrt(self.word_size) tep = torch.randn(1, self.word_size) / math.sqrt(self.word_size) unk = torch.randn(1, self.word_size) / math.sqrt(self.word_size) pad = torch.zeros(1, self.word_size) self.word_embedding.weight.data.copy_(torch.cat([word2vec, hsp, hep, tsp, tep, unk, pad], 0)) else: self.word_embedding.weight.data.copy_(word2vec) self.tokenizer = WordTokenizer(vocab=self.token2id, unk_token="[UNK]") self.drop = nn.Dropout(dropout) self.act = activation_function self.gru_fw = nn.GRU(self.input_size, self.hidden_size, batch_first=True) if self.bidirectional: self.gru_bw = nn.GRU(self.input_size, self.hidden_size, batch_first=True) self.pool = nn.MaxPool1d(self.max_length) def forward(self, token): """ Args: token: (B, L), index of tokens Return: (B, H), representations for sentences """ # Check size of tensors if len(token.size()) != 2: raise Exception("Size of token should be (B, L)") # Get non padding mask and sentence lengths (B,) non_pad_mask, length = self.non_padding_mask(token) x = self.word_embedding(token) # (B, L, EMBED) out_fw, _ = self.gru_fw(x) out = non_pad_mask * out_fw if self.bidirectional: x_bw = self.reverse_padded_sequence(x, length, batch_first=True) out_bw, _ = self.gru_bw(x_bw) out_bw = non_pad_mask * out_bw out_bw = self.reverse_padded_sequence(out_bw, length, batch_first=True) out = torch.add(out, out_bw) # (B, L, H) out = out.transpose(1, 2) # (B, H, L) out = self.pool(out).squeeze(-1) # (B, H) out = self.act(out) out = self.drop(out) return out def tokenize(self, item): """ Args: item: input instance, including sentence, entity positions, etc. Return: index number of tokens and positions """ if 'text' in item: sentence = item['text'] is_token = False else: sentence = item['token'] is_token = True pos_head = item['h']['pos'] pos_tail = item['t']['pos'] # Sentence -> token if not is_token: if pos_head[0] > pos_tail[0]: pos_min, pos_max = [pos_tail, pos_head] rev = True else: pos_min, pos_max = [pos_head, pos_tail] rev = False sent_0 = self.tokenizer.tokenize(sentence[:pos_min[0]]) sent_1 = self.tokenizer.tokenize(sentence[pos_min[1]:pos_max[0]]) sent_2 = self.tokenizer.tokenize(sentence[pos_max[1]:]) ent_0 = self.tokenizer.tokenize(sentence[pos_min[0]:pos_min[1]]) ent_1 = self.tokenizer.tokenize(sentence[pos_max[0]:pos_max[1]]) if self.mask_entity: ent_0 = ['[UNK]'] ent_1 = ['[UNK]'] if rev: ent_0 = ['<tail>'] + ent_0 + ['</tail>'] ent_1 = ['<head>'] + ent_1 + ['</head>'] else: ent_0 = ['<head>'] + ent_0 + ['</head>'] ent_1 = ['<tail>'] + ent_1 + ['</tail>'] tokens = sent_0 + ent_0 + sent_1 + ent_1 + sent_2 else: tokens = sentence # Token -> index if self.blank_padding: indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokens, self.max_length, self.token2id['[PAD]'], self.token2id['[UNK]']) else: indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokens, unk_id = self.token2id['[UNK]']) if self.blank_padding: indexed_tokens = indexed_tokens[:self.max_length] indexed_tokens = torch.tensor(indexed_tokens).long().unsqueeze(0) # (1, L) return indexed_tokens def reverse_padded_sequence(self, x, lengths, batch_first=True): """Reverses sequences according to their lengths. Inputs should have size ``T x B x *`` if ``batch_first`` is False, or ``B x T x *`` if True. T is the length of the longest sequence (or larger), B is the batch size, and * is any number of dimensions (including 0). Arguments: x (tensor): padded batch of variable length sequences. lengths (list[int]): list of sequence lengths batch_first (bool, optional): if True, inputs should be B x T x *. Returns: A tensor with the same size as inputs, but with each sequence reversed according to its length. """ if not batch_first: x = x.transpose(0, 1) if x.size(0) != len(lengths): raise ValueError('inputs incompatible with lengths.') reversed_indices = [list(range(x.size(1))) for _ in range(x.size(0))] for i, length in enumerate(lengths): if length > 0: reversed_indices[i][:length] = reversed_indices[i][length - 1::-1] reversed_indices = (torch.LongTensor(reversed_indices).unsqueeze(2).expand_as(x)) reversed_indices = reversed_indices.to(x.device) reversed_x = torch.gather(x, 1, reversed_indices) if not batch_first: reversed_x = reversed_x.transpose(0, 1) return reversed_x def non_padding_mask(self, token): non_pad_mask = token.ne(self.token2id['[PAD]']).type(torch.float) length = torch.count_nonzero(non_pad_mask, dim=1) return non_pad_mask.unsqueeze(-1), length
the-stack_0_7233
# Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import datetime import faulthandler import logging import os import signal import sys import threading import traceback from contextlib import contextmanager from typing import Callable, Iterator, Optional import setproctitle from pants.base.exiter import Exiter from pants.util.dirutil import safe_mkdir, safe_open from pants.util.osutil import Pid logger = logging.getLogger(__name__) class SignalHandler: """A specification for how to handle a fixed set of nonfatal signals. This is subclassed and registered with ExceptionSink.reset_signal_handler() whenever the signal handling behavior is modified for different pants processes, for example in the remote client when pantsd is enabled. The default behavior is to exit "gracefully" by leaving a detailed log of which signal was received, then exiting with failure. Note that the terminal will convert a ctrl-c from the user into a SIGINT. """ @property def signal_handler_mapping(self): """A dict mapping (signal number) -> (a method handling the signal).""" # Could use an enum here, but we never end up doing any matching on the specific signal value, # instead just iterating over the registered signals to set handlers, so a dict is probably # better. return { signal.SIGINT: self._handle_sigint_if_enabled, signal.SIGQUIT: self.handle_sigquit, signal.SIGTERM: self.handle_sigterm, } def __init__(self): self._ignore_sigint_lock = threading.Lock() self._threads_ignoring_sigint = 0 self._ignoring_sigint_v2_engine = False def _check_sigint_gate_is_correct(self): assert self._threads_ignoring_sigint >= 0, \ "This should never happen, someone must have modified the counter outside of SignalHandler." def _handle_sigint_if_enabled(self, signum, _frame): with self._ignore_sigint_lock: self._check_sigint_gate_is_correct() threads_ignoring_sigint = self._threads_ignoring_sigint ignoring_sigint_v2_engine = self._ignoring_sigint_v2_engine if threads_ignoring_sigint == 0 and not ignoring_sigint_v2_engine: self.handle_sigint(signum, _frame) def _toggle_ignoring_sigint_v2_engine(self, toggle: bool): with self._ignore_sigint_lock: self._ignoring_sigint_v2_engine = toggle @contextmanager def _ignoring_sigint(self): with self._ignore_sigint_lock: self._check_sigint_gate_is_correct() self._threads_ignoring_sigint += 1 try: yield finally: with self._ignore_sigint_lock: self._threads_ignoring_sigint -= 1 self._check_sigint_gate_is_correct() def handle_sigint(self, signum, _frame): raise KeyboardInterrupt('User interrupted execution with control-c!') # TODO(#7406): figure out how to let sys.exit work in a signal handler instead of having to raise # this exception! class SignalHandledNonLocalExit(Exception): """Raised in handlers for non-fatal signals to overcome Python limitations. When waiting on a subprocess and in a signal handler, sys.exit appears to be ignored, and causes the signal handler to return. We want to (eventually) exit after these signals, not ignore them, so we raise this exception instead and check it in our sys.excepthook override. """ def __init__(self, signum, signame): self.signum = signum self.signame = signame self.traceback_lines = traceback.format_stack() super(SignalHandler.SignalHandledNonLocalExit, self).__init__() def handle_sigquit(self, signum, _frame): raise self.SignalHandledNonLocalExit(signum, 'SIGQUIT') def handle_sigterm(self, signum, _frame): raise self.SignalHandledNonLocalExit(signum, 'SIGTERM') class ExceptionSink: """A mutable singleton object representing where exceptions should be logged to.""" # NB: see the bottom of this file where we call reset_log_location() and other mutators in order # to properly setup global state. _log_dir = None # We need an exiter in order to know what to do after we log a fatal exception or handle a # catchable signal. _exiter: Optional[Exiter] = None # Where to log stacktraces to in a SIGUSR2 handler. _interactive_output_stream = None # Whether to print a stacktrace in any fatal error message printed to the terminal. _should_print_backtrace_to_terminal = True # An instance of `SignalHandler` which is invoked to handle a static set of specific # nonfatal signals (these signal handlers are allowed to make pants exit, but unlike SIGSEGV they # don't need to exit immediately). _signal_handler: Optional[SignalHandler] = None # These persistent open file descriptors are kept so the signal handler can do almost no work # (and lets faulthandler figure out signal safety). _pid_specific_error_fileobj = None _shared_error_fileobj = None def __new__(cls, *args, **kwargs): raise TypeError('Instances of {} are not allowed to be constructed!' .format(cls.__name__)) class ExceptionSinkError(Exception): pass @classmethod def reset_should_print_backtrace_to_terminal(cls, should_print_backtrace): """Set whether a backtrace gets printed to the terminal error stream on a fatal error. Class state: - Overwrites `cls._should_print_backtrace_to_terminal`. """ cls._should_print_backtrace_to_terminal = should_print_backtrace # All reset_* methods are ~idempotent! @classmethod def reset_log_location(cls, new_log_location): """Re-acquire file handles to error logs based in the new location. Class state: - Overwrites `cls._log_dir`, `cls._pid_specific_error_fileobj`, and `cls._shared_error_fileobj`. OS state: - May create a new directory. - Overwrites signal handlers for many fatal and non-fatal signals (but not SIGUSR2). :raises: :class:`ExceptionSink.ExceptionSinkError` if the directory does not exist or is not writable. """ # We could no-op here if the log locations are the same, but there's no reason not to have the # additional safety of re-acquiring file descriptors each time (and erroring out early if the # location is no longer writable). # Create the directory if possible, or raise if not writable. cls._check_or_create_new_destination(new_log_location) pid_specific_error_stream, shared_error_stream = cls._recapture_fatal_error_log_streams( new_log_location) # NB: mutate process-global state! if faulthandler.is_enabled(): logger.debug('re-enabling faulthandler') # Call Py_CLEAR() on the previous error stream: # https://github.com/vstinner/faulthandler/blob/master/faulthandler.c faulthandler.disable() # Send a stacktrace to this file if interrupted by a fatal error. faulthandler.enable(file=pid_specific_error_stream, all_threads=True) # NB: mutate the class variables! cls._log_dir = new_log_location cls._pid_specific_error_fileobj = pid_specific_error_stream cls._shared_error_fileobj = shared_error_stream class AccessGlobalExiterMixin: @property def _exiter(self) -> Optional[Exiter]: return ExceptionSink.get_global_exiter() @classmethod def get_global_exiter(cls) -> Optional[Exiter]: return cls._exiter @classmethod @contextmanager def exiter_as(cls, new_exiter_fun: Callable[[Optional[Exiter]], Exiter]) -> Iterator[None]: """Temporarily override the global exiter. NB: We don't want to try/finally here, because we want exceptions to propagate with the most recent exiter installed in sys.excepthook. If we wrap this in a try:finally, exceptions will be caught and exiters unset. """ previous_exiter = cls._exiter new_exiter = new_exiter_fun(previous_exiter) cls._reset_exiter(new_exiter) yield cls._reset_exiter(previous_exiter) @classmethod @contextmanager def exiter_as_until_exception(cls, new_exiter_fun: Callable[[Optional[Exiter]], Exiter]) -> Iterator[None]: """Temporarily override the global exiter, except this will unset it when an exception happens.""" previous_exiter = cls._exiter new_exiter = new_exiter_fun(previous_exiter) try: cls._reset_exiter(new_exiter) yield finally: cls._reset_exiter(previous_exiter) @classmethod def _reset_exiter(cls, exiter: Optional[Exiter]) -> None: """ Class state: - Overwrites `cls._exiter`. Python state: - Overwrites sys.excepthook. """ assert(isinstance(exiter, Exiter)) logger.debug(f"overriding the global exiter with {exiter} (from {cls._exiter})") # NB: mutate the class variables! This is done before mutating the exception hook, because the # uncaught exception handler uses cls._exiter to exit. cls._exiter = exiter # NB: mutate process-global state! sys.excepthook = cls._log_unhandled_exception_and_exit @classmethod def reset_interactive_output_stream( cls, interactive_output_stream, override_faulthandler_destination=True ): """ Class state: - Overwrites `cls._interactive_output_stream`. OS state: - Overwrites the SIGUSR2 handler. This method registers a SIGUSR2 handler, which permits a non-fatal `kill -31 <pants pid>` for stacktrace retrieval. This is also where the the error message on fatal exit will be printed to. """ try: # NB: mutate process-global state! # This permits a non-fatal `kill -31 <pants pid>` for stacktrace retrieval. if override_faulthandler_destination: faulthandler.register(signal.SIGUSR2, interactive_output_stream, all_threads=True, chain=False) # NB: mutate the class variables! cls._interactive_output_stream = interactive_output_stream except ValueError: # Warn about "ValueError: IO on closed file" when the stream is closed. cls.log_exception( "Cannot reset interactive_output_stream -- stream (probably stderr) is closed") @classmethod def exceptions_log_path(cls, for_pid=None, in_dir=None): """Get the path to either the shared or pid-specific fatal errors log file.""" if for_pid is None: intermediate_filename_component = '' else: assert(isinstance(for_pid, Pid)) intermediate_filename_component = '.{}'.format(for_pid) in_dir = in_dir or cls._log_dir return os.path.join( in_dir, 'logs', 'exceptions{}.log'.format(intermediate_filename_component)) @classmethod def log_exception(cls, msg): """Try to log an error message to this process's error log and the shared error log. NB: Doesn't raise (logs an error instead). """ pid = os.getpid() fatal_error_log_entry = cls._format_exception_message(msg, pid) # We care more about this log than the shared log, so write to it first. try: cls._try_write_with_flush(cls._pid_specific_error_fileobj, fatal_error_log_entry) except Exception as e: logger.error( "Error logging the message '{}' to the pid-specific file handle for {} at pid {}:\n{}" .format(msg, cls._log_dir, pid, e)) # Write to the shared log. try: # TODO: we should probably guard this against concurrent modification by other pants # subprocesses somehow. cls._try_write_with_flush(cls._shared_error_fileobj, fatal_error_log_entry) except Exception as e: logger.error( "Error logging the message '{}' to the shared file handle for {} at pid {}:\n{}" .format(msg, cls._log_dir, pid, e)) @classmethod def _try_write_with_flush(cls, fileobj, payload): """This method is here so that it can be patched to simulate write errors. This is because mock can't patch primitive objects like file objects. """ fileobj.write(payload) fileobj.flush() @classmethod def _check_or_create_new_destination(cls, destination): try: safe_mkdir(destination) except Exception as e: raise cls.ExceptionSinkError( "The provided exception sink path at '{}' is not writable or could not be created: {}." .format(destination, str(e)), e) @classmethod def _recapture_fatal_error_log_streams(cls, new_log_location): # NB: We do not close old file descriptors under the assumption their lifetimes are managed # elsewhere. # We recapture both log streams each time. pid = os.getpid() pid_specific_log_path = cls.exceptions_log_path(for_pid=pid, in_dir=new_log_location) shared_log_path = cls.exceptions_log_path(in_dir=new_log_location) assert(pid_specific_log_path != shared_log_path) try: # Truncate the pid-specific error log file. pid_specific_error_stream = safe_open(pid_specific_log_path, mode='w') # Append to the shared error file. shared_error_stream = safe_open(shared_log_path, mode='a') except Exception as e: raise cls.ExceptionSinkError( "Error opening fatal error log streams for log location '{}': {}" .format(new_log_location, str(e))) return (pid_specific_error_stream, shared_error_stream) @classmethod def reset_signal_handler(cls, signal_handler): """ Class state: - Overwrites `cls._signal_handler`. OS state: - Overwrites signal handlers for SIGINT, SIGQUIT, and SIGTERM. NB: This method calls signal.signal(), which will crash if not called from the main thread! :returns: The :class:`SignalHandler` that was previously registered, or None if this is the first time this method was called. """ assert(isinstance(signal_handler, SignalHandler)) # NB: Modify process-global state! for signum, handler in signal_handler.signal_handler_mapping.items(): signal.signal(signum, handler) # Retry any system calls interrupted by any of the signals we just installed handlers for # (instead of having them raise EINTR). siginterrupt(3) says this is the default behavior on # Linux and OSX. signal.siginterrupt(signum, False) previous_signal_handler = cls._signal_handler # NB: Mutate the class variables! cls._signal_handler = signal_handler return previous_signal_handler @classmethod @contextmanager def trapped_signals(cls, new_signal_handler): """ A contextmanager which temporarily overrides signal handling. NB: This method calls signal.signal(), which will crash if not called from the main thread! """ previous_signal_handler = cls.reset_signal_handler(new_signal_handler) try: yield finally: cls.reset_signal_handler(previous_signal_handler) @classmethod @contextmanager def ignoring_sigint(cls): """ A contextmanager which disables handling sigint in the current signal handler. This allows threads that are not the main thread to ignore sigint. NB: Only use this if you can't use ExceptionSink.trapped_signals(). Class state: - Toggles `self._ignore_sigint` in `cls._signal_handler`. """ with cls._signal_handler._ignoring_sigint(): yield @classmethod def toggle_ignoring_sigint_v2_engine(cls, toggle: bool) -> None: assert cls._signal_handler is not None cls._signal_handler._toggle_ignoring_sigint_v2_engine(toggle) @classmethod def _iso_timestamp_for_now(cls): return datetime.datetime.now().isoformat() # NB: This includes a trailing newline, but no leading newline. _EXCEPTION_LOG_FORMAT = """\ timestamp: {timestamp} process title: {process_title} sys.argv: {args} pid: {pid} {message} """ @classmethod def _format_exception_message(cls, msg, pid): return cls._EXCEPTION_LOG_FORMAT.format( timestamp=cls._iso_timestamp_for_now(), process_title=setproctitle.getproctitle(), args=sys.argv, pid=pid, message=msg) _traceback_omitted_default_text = '(backtrace omitted)' @classmethod def _format_traceback(cls, traceback_lines, should_print_backtrace): if should_print_backtrace: traceback_string = '\n{}'.format(''.join(traceback_lines)) else: traceback_string = ' {}'.format(cls._traceback_omitted_default_text) return traceback_string _UNHANDLED_EXCEPTION_LOG_FORMAT = """\ Exception caught: ({exception_type}){backtrace} Exception message: {exception_message}{maybe_newline} """ @classmethod def _format_unhandled_exception_log(cls, exc, tb, add_newline, should_print_backtrace): exc_type = type(exc) exception_full_name = '{}.{}'.format(exc_type.__module__, exc_type.__name__) exception_message = str(exc) if exc else '(no message)' maybe_newline = '\n' if add_newline else '' return cls._UNHANDLED_EXCEPTION_LOG_FORMAT.format( exception_type=exception_full_name, backtrace=cls._format_traceback(traceback_lines=traceback.format_tb(tb), should_print_backtrace=should_print_backtrace), exception_message=exception_message, maybe_newline=maybe_newline) _EXIT_FAILURE_TERMINAL_MESSAGE_FORMAT = """\ {timestamp_msg}{terminal_msg}{details_msg} """ @classmethod def _exit_with_failure(cls, terminal_msg): timestamp_msg = (f'timestamp: {cls._iso_timestamp_for_now()}\n' if cls._should_print_backtrace_to_terminal else '') details_msg = ('' if cls._should_print_backtrace_to_terminal else '\n\n(Use --print-exception-stacktrace to see more error details.)') terminal_msg = terminal_msg or '<no exit reason provided>' formatted_terminal_msg = cls._EXIT_FAILURE_TERMINAL_MESSAGE_FORMAT.format( timestamp_msg=timestamp_msg, terminal_msg=terminal_msg, details_msg=details_msg) # Exit with failure, printing a message to the terminal (or whatever the interactive stream is). cls._exiter.exit_and_fail(msg=formatted_terminal_msg, out=cls._interactive_output_stream) @classmethod def _log_unhandled_exception_and_exit(cls, exc_class=None, exc=None, tb=None, add_newline=False): """A sys.excepthook implementation which logs the error and exits with failure.""" exc_class = exc_class or sys.exc_info()[0] exc = exc or sys.exc_info()[1] tb = tb or sys.exc_info()[2] # This exception was raised by a signal handler with the intent to exit the program. if exc_class == SignalHandler.SignalHandledNonLocalExit: return cls._handle_signal_gracefully(exc.signum, exc.signame, exc.traceback_lines) extra_err_msg = None try: # Always output the unhandled exception details into a log file, including the traceback. exception_log_entry = cls._format_unhandled_exception_log(exc, tb, add_newline, should_print_backtrace=True) cls.log_exception(exception_log_entry) except Exception as e: extra_err_msg = 'Additional error logging unhandled exception {}: {}'.format(exc, e) logger.error(extra_err_msg) # Generate an unhandled exception report fit to be printed to the terminal (respecting the # Exiter's should_print_backtrace field). if cls._should_print_backtrace_to_terminal: stderr_printed_error = cls._format_unhandled_exception_log( exc, tb, add_newline, should_print_backtrace=cls._should_print_backtrace_to_terminal) if extra_err_msg: stderr_printed_error = '{}\n{}'.format(stderr_printed_error, extra_err_msg) else: # If the user didn't ask for a backtrace, show a succinct error message without # all the exception-related preamble. A power-user/pants developer can still # get all the preamble info along with the backtrace, but the end user shouldn't # see that boilerplate by default. error_msgs = getattr(exc, 'end_user_messages', lambda: [str(exc)])() stderr_printed_error = '\n' + '\n'.join(f'ERROR: {msg}' for msg in error_msgs) cls._exit_with_failure(stderr_printed_error) _CATCHABLE_SIGNAL_ERROR_LOG_FORMAT = """\ Signal {signum} ({signame}) was raised. Exiting with failure.{formatted_traceback} """ @classmethod def _handle_signal_gracefully(cls, signum, signame, traceback_lines): """Signal handler for non-fatal signals which raises or logs an error and exits with failure.""" # Extract the stack, and format an entry to be written to the exception log. formatted_traceback = cls._format_traceback(traceback_lines=traceback_lines, should_print_backtrace=True) signal_error_log_entry = cls._CATCHABLE_SIGNAL_ERROR_LOG_FORMAT.format( signum=signum, signame=signame, formatted_traceback=formatted_traceback) # TODO: determine the appropriate signal-safe behavior here (to avoid writing to our file # descriptors re-entrantly, which raises an IOError). # This method catches any exceptions raised within it. cls.log_exception(signal_error_log_entry) # Create a potentially-abbreviated traceback for the terminal or other interactive stream. formatted_traceback_for_terminal = cls._format_traceback( traceback_lines=traceback_lines, should_print_backtrace=cls._should_print_backtrace_to_terminal) terminal_log_entry = cls._CATCHABLE_SIGNAL_ERROR_LOG_FORMAT.format( signum=signum, signame=signame, formatted_traceback=formatted_traceback_for_terminal) # Exit, printing the output to the terminal. cls._exit_with_failure(terminal_log_entry) # Setup global state such as signal handlers and sys.excepthook with probably-safe values at module # import time. # Set the log location for writing logs before bootstrap options are parsed. ExceptionSink.reset_log_location(os.getcwd()) # Sets except hook for exceptions at import time. ExceptionSink._reset_exiter(Exiter(exiter=sys.exit)) # Sets a SIGUSR2 handler. ExceptionSink.reset_interactive_output_stream(sys.stderr.buffer) # Sets a handler that logs nonfatal signals to the exception sink before exiting. ExceptionSink.reset_signal_handler(SignalHandler()) # Set whether to print stacktraces on exceptions or signals during import time. # NB: This will be overridden by bootstrap options in PantsRunner, so we avoid printing out a full # stacktrace when a user presses control-c during import time unless the environment variable is set # to explicitly request it. The exception log will have any stacktraces regardless so this should # not hamper debugging. ExceptionSink.reset_should_print_backtrace_to_terminal( should_print_backtrace=os.environ.get('PANTS_PRINT_EXCEPTION_STACKTRACE', 'True') == 'True')
the-stack_0_7234
import pytest from world.layer import Layer from data import TileType @pytest.fixture(name="tilemap") def _tilemap(origin, a, b): layer = Layer() layer[origin] = TileType.GROUND layer[a] = TileType.SPACE layer[b] = TileType.WATER return layer def test_serializable(tilemap, origin, a, b): data = tilemap.json print(data) assert data["__TYPE__"] == "Layer" assert data["0,0,0"] == 1 assert data["1,2,-3"] == 0 assert data["-4,1,3"] == 2 reserialized = Layer.load(data) assert tilemap[origin] == reserialized[origin] assert tilemap[a] == reserialized[a] assert tilemap[b] == reserialized[b] assert tilemap[a] == TileType.SPACE assert tilemap[b] == TileType.WATER
the-stack_0_7236
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import time import urlparse from telemetry.core import exceptions from telemetry.internal.actions.drag import DragAction from telemetry.internal.actions.javascript_click import ClickElementAction from telemetry.internal.actions.key_event import KeyPressAction from telemetry.internal.actions.load_media import LoadMediaAction from telemetry.internal.actions.loop import LoopAction from telemetry.internal.actions.mouse_click import MouseClickAction from telemetry.internal.actions.navigate import NavigateAction from telemetry.internal.actions.page_action import GESTURE_SOURCE_DEFAULT from telemetry.internal.actions.page_action import SUPPORTED_GESTURE_SOURCES from telemetry.internal.actions.pinch import PinchAction from telemetry.internal.actions.play import PlayAction from telemetry.internal.actions.repaint_continuously import ( RepaintContinuouslyAction) from telemetry.internal.actions.repeatable_scroll import RepeatableScrollAction from telemetry.internal.actions.scroll import ScrollAction from telemetry.internal.actions.scroll_bounce import ScrollBounceAction from telemetry.internal.actions.scroll_to_element import ScrollToElementAction from telemetry.internal.actions.seek import SeekAction from telemetry.internal.actions.swipe import SwipeAction from telemetry.internal.actions.tap import TapAction from telemetry.internal.actions.wait import WaitForElementAction from telemetry.web_perf import timeline_interaction_record from py_trace_event import trace_event import py_utils _DUMP_WAIT_TIME = 3 class ActionRunner(object): __metaclass__ = trace_event.TracedMetaClass def __init__(self, tab, skip_waits=False): self._tab = tab self._skip_waits = skip_waits @property def tab(self): """Returns the tab on which actions are performed.""" return self._tab def _RunAction(self, action): action.WillRunAction(self._tab) action.RunAction(self._tab) def CreateInteraction(self, label, repeatable=False): """ Create an action.Interaction object that issues interaction record. An interaction record is a labeled time period containing interaction that developers care about. Each set of metrics specified in flags will be calculated for this time period. To mark the start of interaction record, call Begin() method on the returned object. To mark the finish of interaction record, call End() method on it. Or better yet, use the with statement to create an interaction record that covers the actions in the with block. e.g: with action_runner.CreateInteraction('Animation-1'): action_runner.TapElement(...) action_runner.WaitForJavaScriptCondition(...) Args: label: A label for this particular interaction. This can be any user-defined string, but must not contain '/'. repeatable: Whether other interactions may use the same logical name as this interaction. All interactions with the same logical name must have the same flags. Returns: An instance of action_runner.Interaction """ flags = [] if repeatable: flags.append(timeline_interaction_record.REPEATABLE) return Interaction(self, label, flags) def CreateGestureInteraction(self, label, repeatable=False): """ Create an action.Interaction object that issues gesture-based interaction record. This is similar to normal interaction record, but it will auto-narrow the interaction time period to only include the synthetic gesture event output by Chrome. This is typically use to reduce noise in gesture-based analysis (e.g., analysis for a swipe/scroll). The interaction record label will be prepended with 'Gesture_'. e.g: with action_runner.CreateGestureInteraction('Scroll-1'): action_runner.ScrollPage() Args: label: A label for this particular interaction. This can be any user-defined string, but must not contain '/'. repeatable: Whether other interactions may use the same logical name as this interaction. All interactions with the same logical name must have the same flags. Returns: An instance of action_runner.Interaction """ return self.CreateInteraction('Gesture_' + label, repeatable) def WaitForNetworkQuiescence(self, timeout_in_seconds=10): """ Wait for network quiesence on the page. Args: timeout_in_seconds: maximum amount of time (seconds) to wait for network quiesence unil raising exception. Raises: py_utils.TimeoutException when the timeout is reached but the page's network is not quiet. """ py_utils.WaitFor(self.tab.HasReachedQuiescence, timeout_in_seconds) def MeasureMemory(self, deterministic_mode=False): """Add a memory measurement to the trace being recorded. Behaves as a no-op if tracing is not enabled. TODO(perezju): Also behave as a no-op if tracing is enabled but memory-infra is not. Args: deterministic_mode: A boolean indicating whether to attempt or not to control the environment (force GCs, clear caches) before making the measurement in an attempt to obtain more deterministic results. Returns: GUID of the generated dump if one was triggered, None otherwise. """ if not self.tab.browser.platform.tracing_controller.is_tracing_running: logging.warning('Tracing is off. No memory dumps are being recorded.') return None if deterministic_mode: self.Wait(_DUMP_WAIT_TIME) self.ForceGarbageCollection() self.Wait(_DUMP_WAIT_TIME) dump_id = self.tab.browser.DumpMemory() if not dump_id: raise exceptions.StoryActionError('Unable to obtain memory dump') return dump_id def Navigate(self, url, script_to_evaluate_on_commit=None, timeout_in_seconds=60): """Navigates to |url|. If |script_to_evaluate_on_commit| is given, the script source string will be evaluated when the navigation is committed. This is after the context of the page exists, but before any script on the page itself has executed. """ if urlparse.urlparse(url).scheme == 'file': url = self._tab.browser.platform.http_server.UrlOf(url[7:]) self._RunAction(NavigateAction( url=url, script_to_evaluate_on_commit=script_to_evaluate_on_commit, timeout_in_seconds=timeout_in_seconds)) def NavigateBack(self): """ Navigate back to the previous page.""" self.ExecuteJavaScript('window.history.back()') def WaitForNavigate(self, timeout_in_seconds_seconds=60): start_time = time.time() self._tab.WaitForNavigate(timeout_in_seconds_seconds) time_left_in_seconds = (start_time + timeout_in_seconds_seconds - time.time()) time_left_in_seconds = max(0, time_left_in_seconds) self._tab.WaitForDocumentReadyStateToBeInteractiveOrBetter( time_left_in_seconds) def ReloadPage(self): """Reloads the page.""" self._tab.ExecuteJavaScript('window.location.reload()') self._tab.WaitForDocumentReadyStateToBeInteractiveOrBetter() def ExecuteJavaScript(self, *args, **kwargs): """Executes a given JavaScript statement. Does not return the result. Example: runner.ExecuteJavaScript('var foo = {{ value }};', value='hi'); Args: statement: The statement to execute (provided as a string). Optional keyword args: timeout: The number of seconds to wait for the statement to execute. Additional keyword arguments provide values to be interpolated within the statement. See telemetry.util.js_template for details. Raises: EvaluationException: The statement failed to execute. """ return self._tab.ExecuteJavaScript(*args, **kwargs) def EvaluateJavaScript(self, *args, **kwargs): """Returns the result of evaluating a given JavaScript expression. The evaluation results must be convertible to JSON. If the result is not needed, use ExecuteJavaScript instead. Example: runner.ExecuteJavaScript('document.location.href'); Args: expression: The expression to execute (provided as a string). Optional keyword args: timeout: The number of seconds to wait for the expression to evaluate. Additional keyword arguments provide values to be interpolated within the expression. See telemetry.util.js_template for details. Raises: EvaluationException: The statement expression failed to execute or the evaluation result can not be JSON-ized. """ return self._tab.EvaluateJavaScript(*args, **kwargs) def WaitForJavaScriptCondition(self, *args, **kwargs): """Wait for a JavaScript condition to become true. Example: runner.WaitForJavaScriptCondition('window.foo == 10'); Args: condition: The JavaScript condition (provided as string). Optional keyword args: timeout: The number in seconds to wait for the condition to become True (default to 60). Additional keyword arguments provide values to be interpolated within the expression. See telemetry.util.js_template for details. """ return self._tab.WaitForJavaScriptCondition(*args, **kwargs) def Wait(self, seconds): """Wait for the number of seconds specified. Args: seconds: The number of seconds to wait. """ if not self._skip_waits: time.sleep(seconds) def WaitForElement(self, selector=None, text=None, element_function=None, timeout_in_seconds=60): """Wait for an element to appear in the document. The element may be selected via selector, text, or element_function. Only one of these arguments must be specified. Args: selector: A CSS selector describing the element. text: The element must contains this exact text. element_function: A JavaScript function (as string) that is used to retrieve the element. For example: '(function() { return foo.element; })()'. timeout_in_seconds: The timeout in seconds (default to 60). """ self._RunAction(WaitForElementAction( selector=selector, text=text, element_function=element_function, timeout_in_seconds=timeout_in_seconds)) def TapElement(self, selector=None, text=None, element_function=None): """Tap an element. The element may be selected via selector, text, or element_function. Only one of these arguments must be specified. Args: selector: A CSS selector describing the element. text: The element must contains this exact text. element_function: A JavaScript function (as string) that is used to retrieve the element. For example: '(function() { return foo.element; })()'. """ self._RunAction(TapAction( selector=selector, text=text, element_function=element_function)) def ClickElement(self, selector=None, text=None, element_function=None): """Click an element. The element may be selected via selector, text, or element_function. Only one of these arguments must be specified. Args: selector: A CSS selector describing the element. text: The element must contains this exact text. element_function: A JavaScript function (as string) that is used to retrieve the element. For example: '(function() { return foo.element; })()'. """ self._RunAction(ClickElementAction( selector=selector, text=text, element_function=element_function)) def DragPage(self, left_start_ratio, top_start_ratio, left_end_ratio, top_end_ratio, speed_in_pixels_per_second=800, use_touch=False, selector=None, text=None, element_function=None): """Perform a drag gesture on the page. You should specify a start and an end point in ratios of page width and height (see drag.js for full implementation). Args: left_start_ratio: The horizontal starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. top_start_ratio: The vertical starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. left_end_ratio: The horizontal ending coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. top_end_ratio: The vertical ending coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. speed_in_pixels_per_second: The speed of the gesture (in pixels/s). use_touch: Whether dragging should be done with touch input. """ self._RunAction(DragAction( left_start_ratio=left_start_ratio, top_start_ratio=top_start_ratio, left_end_ratio=left_end_ratio, top_end_ratio=top_end_ratio, speed_in_pixels_per_second=speed_in_pixels_per_second, use_touch=use_touch, selector=selector, text=text, element_function=element_function)) def PinchPage(self, left_anchor_ratio=0.5, top_anchor_ratio=0.5, scale_factor=None, speed_in_pixels_per_second=800): """Perform the pinch gesture on the page. It computes the pinch gesture automatically based on the anchor coordinate and the scale factor. The scale factor is the ratio of of the final span and the initial span of the gesture. Args: left_anchor_ratio: The horizontal pinch anchor coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. top_anchor_ratio: The vertical pinch anchor coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. scale_factor: The ratio of the final span to the initial span. The default scale factor is 3.0 / (window.outerWidth/window.innerWidth). speed_in_pixels_per_second: The speed of the gesture (in pixels/s). """ self._RunAction(PinchAction( left_anchor_ratio=left_anchor_ratio, top_anchor_ratio=top_anchor_ratio, scale_factor=scale_factor, speed_in_pixels_per_second=speed_in_pixels_per_second)) def PinchElement(self, selector=None, text=None, element_function=None, left_anchor_ratio=0.5, top_anchor_ratio=0.5, scale_factor=None, speed_in_pixels_per_second=800): """Perform the pinch gesture on an element. It computes the pinch gesture automatically based on the anchor coordinate and the scale factor. The scale factor is the ratio of of the final span and the initial span of the gesture. Args: selector: A CSS selector describing the element. text: The element must contains this exact text. element_function: A JavaScript function (as string) that is used to retrieve the element. For example: 'function() { return foo.element; }'. left_anchor_ratio: The horizontal pinch anchor coordinate of the gesture, as a ratio of the visible bounding rectangle for the element. top_anchor_ratio: The vertical pinch anchor coordinate of the gesture, as a ratio of the visible bounding rectangle for the element. scale_factor: The ratio of the final span to the initial span. The default scale factor is 3.0 / (window.outerWidth/window.innerWidth). speed_in_pixels_per_second: The speed of the gesture (in pixels/s). """ self._RunAction(PinchAction( selector=selector, text=text, element_function=element_function, left_anchor_ratio=left_anchor_ratio, top_anchor_ratio=top_anchor_ratio, scale_factor=scale_factor, speed_in_pixels_per_second=speed_in_pixels_per_second)) def ScrollPage(self, left_start_ratio=0.5, top_start_ratio=0.5, direction='down', distance=None, distance_expr=None, speed_in_pixels_per_second=800, use_touch=False, synthetic_gesture_source=GESTURE_SOURCE_DEFAULT): """Perform scroll gesture on the page. You may specify distance or distance_expr, but not both. If neither is specified, the default scroll distance is variable depending on direction (see scroll.js for full implementation). Args: left_start_ratio: The horizontal starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. top_start_ratio: The vertical starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. direction: The direction of scroll, either 'left', 'right', 'up', 'down', 'upleft', 'upright', 'downleft', or 'downright' distance: The distance to scroll (in pixel). distance_expr: A JavaScript expression (as string) that can be evaluated to compute scroll distance. Example: 'window.scrollTop' or '(function() { return crazyMath(); })()'. speed_in_pixels_per_second: The speed of the gesture (in pixels/s). use_touch: Whether scrolling should be done with touch input. synthetic_gesture_source: the source input device type for the synthetic gesture: 'DEFAULT', 'TOUCH' or 'MOUSE'. """ assert synthetic_gesture_source in SUPPORTED_GESTURE_SOURCES self._RunAction(ScrollAction( left_start_ratio=left_start_ratio, top_start_ratio=top_start_ratio, direction=direction, distance=distance, distance_expr=distance_expr, speed_in_pixels_per_second=speed_in_pixels_per_second, use_touch=use_touch, synthetic_gesture_source=synthetic_gesture_source)) def ScrollPageToElement(self, selector=None, element_function=None, container_selector=None, container_element_function=None, speed_in_pixels_per_second=800): """Perform scroll gesture on container until an element is in view. Both the element and the container can be specified by a CSS selector xor a JavaScript function, provided as a string, which returns an element. The element is required so exactly one of selector and element_function must be provided. The container is optional so at most one of container_selector and container_element_function can be provided. The container defaults to document.scrollingElement or document.body if scrollingElement is not set. Args: selector: A CSS selector describing the element. element_function: A JavaScript function (as string) that is used to retrieve the element. For example: 'function() { return foo.element; }'. container_selector: A CSS selector describing the container element. container_element_function: A JavaScript function (as a string) that is used to retrieve the container element. speed_in_pixels_per_second: Speed to scroll. """ self._RunAction(ScrollToElementAction( selector=selector, element_function=element_function, container_selector=container_selector, container_element_function=container_element_function, speed_in_pixels_per_second=speed_in_pixels_per_second)) def RepeatableBrowserDrivenScroll(self, x_scroll_distance_ratio=0.0, y_scroll_distance_ratio=0.5, repeat_count=0, repeat_delay_ms=250, timeout=60, prevent_fling=None, speed=None): """Perform a browser driven repeatable scroll gesture. The scroll gesture is driven from the browser, this is useful because the main thread often isn't resposive but the browser process usually is, so the delay between the scroll gestures should be consistent. Args: x_scroll_distance_ratio: The horizontal length of the scroll as a fraction of the screen width. y_scroll_distance_ratio: The vertical length of the scroll as a fraction of the screen height. repeat_count: The number of additional times to repeat the gesture. repeat_delay_ms: The delay in milliseconds between each scroll gesture. prevent_fling: Prevents a fling gesture. speed: Swipe speed in pixels per second. """ self._RunAction(RepeatableScrollAction( x_scroll_distance_ratio=x_scroll_distance_ratio, y_scroll_distance_ratio=y_scroll_distance_ratio, repeat_count=repeat_count, repeat_delay_ms=repeat_delay_ms, timeout=timeout, prevent_fling=prevent_fling, speed=speed)) def ScrollElement(self, selector=None, text=None, element_function=None, left_start_ratio=0.5, top_start_ratio=0.5, direction='down', distance=None, distance_expr=None, speed_in_pixels_per_second=800, use_touch=False, synthetic_gesture_source=GESTURE_SOURCE_DEFAULT): """Perform scroll gesture on the element. The element may be selected via selector, text, or element_function. Only one of these arguments must be specified. You may specify distance or distance_expr, but not both. If neither is specified, the default scroll distance is variable depending on direction (see scroll.js for full implementation). Args: selector: A CSS selector describing the element. text: The element must contains this exact text. element_function: A JavaScript function (as string) that is used to retrieve the element. For example: 'function() { return foo.element; }'. left_start_ratio: The horizontal starting coordinate of the gesture, as a ratio of the visible bounding rectangle for the element. top_start_ratio: The vertical starting coordinate of the gesture, as a ratio of the visible bounding rectangle for the element. direction: The direction of scroll, either 'left', 'right', 'up', 'down', 'upleft', 'upright', 'downleft', or 'downright' distance: The distance to scroll (in pixel). distance_expr: A JavaScript expression (as string) that can be evaluated to compute scroll distance. Example: 'window.scrollTop' or '(function() { return crazyMath(); })()'. speed_in_pixels_per_second: The speed of the gesture (in pixels/s). use_touch: Whether scrolling should be done with touch input. synthetic_gesture_source: the source input device type for the synthetic gesture: 'DEFAULT', 'TOUCH' or 'MOUSE'. """ assert synthetic_gesture_source in SUPPORTED_GESTURE_SOURCES self._RunAction(ScrollAction( selector=selector, text=text, element_function=element_function, left_start_ratio=left_start_ratio, top_start_ratio=top_start_ratio, direction=direction, distance=distance, distance_expr=distance_expr, speed_in_pixels_per_second=speed_in_pixels_per_second, use_touch=use_touch, synthetic_gesture_source=synthetic_gesture_source)) def ScrollBouncePage(self, left_start_ratio=0.5, top_start_ratio=0.5, direction='down', distance=100, overscroll=10, repeat_count=10, speed_in_pixels_per_second=400): """Perform scroll bounce gesture on the page. This gesture scrolls the page by the number of pixels specified in distance, in the given direction, followed by a scroll by (distance + overscroll) pixels in the opposite direction. The above gesture is repeated repeat_count times. Args: left_start_ratio: The horizontal starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. top_start_ratio: The vertical starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. direction: The direction of scroll, either 'left', 'right', 'up', 'down', 'upleft', 'upright', 'downleft', or 'downright' distance: The distance to scroll (in pixel). overscroll: The number of additional pixels to scroll back, in addition to the givendistance. repeat_count: How often we want to repeat the full gesture. speed_in_pixels_per_second: The speed of the gesture (in pixels/s). """ self._RunAction(ScrollBounceAction( left_start_ratio=left_start_ratio, top_start_ratio=top_start_ratio, direction=direction, distance=distance, overscroll=overscroll, repeat_count=repeat_count, speed_in_pixels_per_second=speed_in_pixels_per_second)) def ScrollBounceElement( self, selector=None, text=None, element_function=None, left_start_ratio=0.5, top_start_ratio=0.5, direction='down', distance=100, overscroll=10, repeat_count=10, speed_in_pixels_per_second=400): """Perform scroll bounce gesture on the element. This gesture scrolls on the element by the number of pixels specified in distance, in the given direction, followed by a scroll by (distance + overscroll) pixels in the opposite direction. The above gesture is repeated repeat_count times. Args: selector: A CSS selector describing the element. text: The element must contains this exact text. element_function: A JavaScript function (as string) that is used to retrieve the element. For example: 'function() { return foo.element; }'. left_start_ratio: The horizontal starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. top_start_ratio: The vertical starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. direction: The direction of scroll, either 'left', 'right', 'up', 'down', 'upleft', 'upright', 'downleft', or 'downright' distance: The distance to scroll (in pixel). overscroll: The number of additional pixels to scroll back, in addition to the given distance. repeat_count: How often we want to repeat the full gesture. speed_in_pixels_per_second: The speed of the gesture (in pixels/s). """ self._RunAction(ScrollBounceAction( selector=selector, text=text, element_function=element_function, left_start_ratio=left_start_ratio, top_start_ratio=top_start_ratio, direction=direction, distance=distance, overscroll=overscroll, repeat_count=repeat_count, speed_in_pixels_per_second=speed_in_pixels_per_second)) def MouseClick(self, selector=None): """Mouse click the given element. Args: selector: A CSS selector describing the element. """ self._RunAction(MouseClickAction(selector=selector)) def SwipePage(self, left_start_ratio=0.5, top_start_ratio=0.5, direction='left', distance=100, speed_in_pixels_per_second=800): """Perform swipe gesture on the page. Args: left_start_ratio: The horizontal starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. top_start_ratio: The vertical starting coordinate of the gesture, as a ratio of the visible bounding rectangle for document.body. direction: The direction of swipe, either 'left', 'right', 'up', or 'down' distance: The distance to swipe (in pixel). speed_in_pixels_per_second: The speed of the gesture (in pixels/s). """ self._RunAction(SwipeAction( left_start_ratio=left_start_ratio, top_start_ratio=top_start_ratio, direction=direction, distance=distance, speed_in_pixels_per_second=speed_in_pixels_per_second)) def SwipeElement(self, selector=None, text=None, element_function=None, left_start_ratio=0.5, top_start_ratio=0.5, direction='left', distance=100, speed_in_pixels_per_second=800): """Perform swipe gesture on the element. The element may be selected via selector, text, or element_function. Only one of these arguments must be specified. Args: selector: A CSS selector describing the element. text: The element must contains this exact text. element_function: A JavaScript function (as string) that is used to retrieve the element. For example: 'function() { return foo.element; }'. left_start_ratio: The horizontal starting coordinate of the gesture, as a ratio of the visible bounding rectangle for the element. top_start_ratio: The vertical starting coordinate of the gesture, as a ratio of the visible bounding rectangle for the element. direction: The direction of swipe, either 'left', 'right', 'up', or 'down' distance: The distance to swipe (in pixel). speed_in_pixels_per_second: The speed of the gesture (in pixels/s). """ self._RunAction(SwipeAction( selector=selector, text=text, element_function=element_function, left_start_ratio=left_start_ratio, top_start_ratio=top_start_ratio, direction=direction, distance=distance, speed_in_pixels_per_second=speed_in_pixels_per_second)) def PressKey(self, key, repeat_count=1, repeat_delay_ms=100, timeout=60): """Perform a key press. Args: key: DOM value of the pressed key (e.g. 'PageDown', see https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/key). repeat_count: How many times the key should be pressed. repeat_delay_ms: Delay after each keypress (including the last one) in milliseconds. """ for _ in xrange(repeat_count): self._RunAction(KeyPressAction(key, timeout=timeout)) self.Wait(repeat_delay_ms / 1000.0) def EnterText(self, text, character_delay_ms=100, timeout=60): """Enter text by performing key presses. Args: text: The text to enter. character_delay_ms: Delay after each keypress (including the last one) in milliseconds. """ for c in text: self.PressKey(c, repeat_delay_ms=character_delay_ms, timeout=timeout) def LoadMedia(self, selector=None, event_timeout_in_seconds=0, event_to_await='canplaythrough'): """Invokes load() on media elements and awaits an event. Args: selector: A CSS selector describing the element. If none is specified, play the first media element on the page. If the selector matches more than 1 media element, all of them will be played. event_timeout_in_seconds: Maximum waiting time for the event to be fired. 0 means do not wait. event_to_await: Which event to await. For example: 'canplaythrough' or 'loadedmetadata'. Raises: TimeoutException: If the maximum waiting time is exceeded. """ self._RunAction(LoadMediaAction( selector=selector, timeout_in_seconds=event_timeout_in_seconds, event_to_await=event_to_await)) def PlayMedia(self, selector=None, playing_event_timeout_in_seconds=0, ended_event_timeout_in_seconds=0): """Invokes the "play" action on media elements (such as video). Args: selector: A CSS selector describing the element. If none is specified, play the first media element on the page. If the selector matches more than 1 media element, all of them will be played. playing_event_timeout_in_seconds: Maximum waiting time for the "playing" event (dispatched when the media begins to play) to be fired. 0 means do not wait. ended_event_timeout_in_seconds: Maximum waiting time for the "ended" event (dispatched when playback completes) to be fired. 0 means do not wait. Raises: TimeoutException: If the maximum waiting time is exceeded. """ self._RunAction(PlayAction( selector=selector, playing_event_timeout_in_seconds=playing_event_timeout_in_seconds, ended_event_timeout_in_seconds=ended_event_timeout_in_seconds)) def SeekMedia(self, seconds, selector=None, timeout_in_seconds=0, log_time=True, label=''): """Performs a seek action on media elements (such as video). Args: seconds: The media time to seek to. selector: A CSS selector describing the element. If none is specified, seek the first media element on the page. If the selector matches more than 1 media element, all of them will be seeked. timeout_in_seconds: Maximum waiting time for the "seeked" event (dispatched when the seeked operation completes) to be fired. 0 means do not wait. log_time: Whether to log the seek time for the perf measurement. Useful when performing multiple seek. label: A suffix string to name the seek perf measurement. Raises: TimeoutException: If the maximum waiting time is exceeded. """ self._RunAction(SeekAction( seconds=seconds, selector=selector, timeout_in_seconds=timeout_in_seconds, log_time=log_time, label=label)) def LoopMedia(self, loop_count, selector=None, timeout_in_seconds=None): """Loops a media playback. Args: loop_count: The number of times to loop the playback. selector: A CSS selector describing the element. If none is specified, loop the first media element on the page. If the selector matches more than 1 media element, all of them will be looped. timeout_in_seconds: Maximum waiting time for the looped playback to complete. 0 means do not wait. None (the default) means to wait loop_count * 60 seconds. Raises: TimeoutException: If the maximum waiting time is exceeded. """ self._RunAction(LoopAction( loop_count=loop_count, selector=selector, timeout_in_seconds=timeout_in_seconds)) def ForceGarbageCollection(self): """Forces garbage collection on all relevant systems. This includes: - Java heap for browser and child subprocesses (on Android). - JavaScript on the current renderer. - System caches (on supported platforms). """ if self._tab.browser.supports_java_heap_garbage_collection: self._tab.browser.ForceJavaHeapGarbageCollection() self._tab.CollectGarbage() if self._tab.browser.platform.SupportFlushEntireSystemCache(): self._tab.browser.platform.FlushEntireSystemCache() def SimulateMemoryPressureNotification(self, pressure_level): """Simulate memory pressure notification. Args: pressure_level: 'moderate' or 'critical'. """ self._tab.browser.SimulateMemoryPressureNotification(pressure_level) def PauseInteractive(self): """Pause the page execution and wait for terminal interaction. This is typically used for debugging. You can use this to pause the page execution and inspect the browser state before continuing. """ raw_input("Interacting... Press Enter to continue.") def RepaintContinuously(self, seconds): """Continuously repaints the visible content. It does this by requesting animation frames until the given number of seconds have elapsed AND at least three RAFs have been fired. Times out after max(60, self.seconds), if less than three RAFs were fired.""" self._RunAction(RepaintContinuouslyAction( seconds=0 if self._skip_waits else seconds)) class Interaction(object): def __init__(self, action_runner, label, flags): assert action_runner assert label assert isinstance(flags, list) self._action_runner = action_runner self._label = label self._flags = flags self._started = False def __enter__(self): self.Begin() return self def __exit__(self, exc_type, exc_value, traceback): if exc_value is None: self.End() else: logging.warning( 'Exception was raised in the with statement block, the end of ' 'interaction record is not marked.') def Begin(self): assert not self._started self._started = True self._action_runner.ExecuteJavaScript( 'console.time({{ marker }});', marker=timeline_interaction_record.GetJavaScriptMarker( self._label, self._flags)) def End(self): assert self._started self._started = False self._action_runner.ExecuteJavaScript( 'console.timeEnd({{ marker }});', marker=timeline_interaction_record.GetJavaScriptMarker( self._label, self._flags))
the-stack_0_7237
import hassapi as hass # pylint: disable=import-error class cover_tag_scanned(hass.Hass): """ Opens or closes a cover based on an nfc_tag being scanned """ def initialize(self): self.listen_event( self.door_tag_scanned, "tag_scanned", tag_id=self.args["tag_id"], ) def door_tag_scanned(self, event_name, data, kwargs): """Open the door if it's closed. Close the door if it's open. Ignore the event if the door is opening or closing. If a device list is provided, ignore the scan if it didn't come from a device in the list. 'data' looks like this: 'data': {'tag_id': 'cae3c8c5-faac-4585-be93-a1199fa98fcd', 'device_id': 'effd5529caba2c3f'}""" self.log( "tag_id = " + data["tag_id"] + ". device_id = " + data["device_id"], level="DEBUG", ) if "devices" in self.args and data["device_id"] not in self.args["devices"]: self.log( "Ignoring scan from unlisted device " + data["device_id"] + ".", level="INFO", ) return if self.get_state(self.args["cover_entity"]) == "open": self.log( "Closing garage door due to NFC tag scan by device " + data["device_id"] + ".", level="INFO", ) self.call_service("cover/close_cover", entity_id=self.args["cover_entity"]) elif self.get_state(self.args["cover_entity"]) == "closed": self.log( "Opening garage door due to NFC tag scan by device " + data["device_id"] + ".", level="INFO", ) self.call_service("cover/open_cover", entity_id=self.args["cover_entity"])
the-stack_0_7238
import json import time class Vehicle: ip = None brand = None model = None vrn = None rotates = None gear = None direction = None directionAsText = None speed = None action = None actionAsText = None _lastUpdateAt = None def update(self, ip, brand, model, vrn, rotates, gear, direction, directionAsText, speed, action, actionAsText, t = time.time): self.ip = ip self.brand = brand self.model = model self.vrn = vrn self.rotates = rotates self.gear = gear self.direction = direction self.directionAsText = directionAsText self.speed = speed self.action = action self.actionAsText = actionAsText self._lastUpdateAt = t() def isReachable(self, time): return time <= self._lastUpdateAt + 3 def echo(self, name, alt = "Zisťujem..."): val = getattr(self, name) if val == None: return alt else: return val def fromJson(self, data, requiresAboutMe = False): data = json.loads(data) if requiresAboutMe and not data.get("aboutMe"): return None if self == None: self = Vehicle() self.update(data.get("ip"), data.get("brand"), data.get("model"), data.get("vrn"), data.get("rotates"), data.get("gear"), data.get("direction"), data.get("directionAsText"), data.get("speed"), data.get("action"), data.get("actionAsText")) return self
the-stack_0_7240
############################################################################# # # Copyright (c) 2006 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """catalog package test runner """ import re import unittest import doctest from zope.testing import module import zope.component.testing import zope.component.factory import zope.component.interfaces from zope.testing import renormalizing import zc.catalog from zc.catalog import index from zc.catalog import extentcatalog from zc.catalog import globber from zc.catalog import catalogindex from zc.catalog import stemmer import zc.catalog.interfaces import BTrees.Interfaces import BTrees.LOBTree import BTrees.OLBTree import BTrees.LFBTree class TestAbstractIndex(unittest.TestCase): def test_family_on_cls(self): self.assertIsInstance(index.AbstractIndex.family, index.FamilyProperty) def test_clear_cruft(self): i = index.AbstractIndex() i.__dict__['BTreeAPI'] = None del i.__dict__['family'] self.assertIn('BTreeAPI', i.__dict__) getattr(i, 'family') self.assertNotIn('BTreeAPI', i.__dict__) def test_family(self): class Family(object): class OO(object): class BTree(object): pass IO = OO i = index.AbstractIndex(family=Family) self.assertIs(i.family, Family) def test_empty_values(self): i = index.AbstractIndex() res = i.values(doc_id=1) self.assertEqual((), res) class TestValueIndex(unittest.TestCase): def test_empty_values(self): i = index.ValueIndex() res = i.values(doc_id=1) self.assertEqual((), res) class TestSetIndex(unittest.TestCase): def test_removed(self): i = index.SetIndex() i.index_doc(1, ('foo', 'bar')) i.index_doc(1, ('foo',)) self.assertEqual(1, i.wordCount.value) def test_appy_all_of_empty(self): i = index.SetIndex() res = i.apply({'all_of': ()}) self.assertEqual(len(res), 0) class TestNormalizationWrapper(unittest.TestCase): def test_pass_to_index(self): i = index.SetIndex() class Normaziler(object): @classmethod def value(cls, v): return v n = index.NormalizationWrapper(i, Normaziler) self.assertEqual(i.documentCount(), n.documentCount()) self.assertEqual(i.wordCount(), n.wordCount()) n.clear() n.index_doc(1, ('foo',)) self.assertEqual(i.wordCount(), n.wordCount()) self.assertEqual(n.containsValue('foo'), i.containsValue('foo')) class TestExtent(unittest.TestCase): def test_BTreeAPI(self): i = extentcatalog.Extent() self.assertIsNotNone(i.BTreeAPI) def test_bool(self): i = extentcatalog.Extent() self.assertFalse(i) i.add(1, None) self.assertTrue(i) self.assertEqual(1, len(i)) def test_discard_missing(self): i = extentcatalog.Extent() i.discard(0) self.assertEqual(0, len(i)) def test_catalog_update(self): from zope.interface.interfaces import ComponentLookupError c = extentcatalog.Catalog(extentcatalog.Extent()) i = index.SetIndex() i.__parent__ = None self.assertRaises(ComponentLookupError, c.updateIndex, i) class TestGlob(unittest.TestCase): def test_bad_parse(self): class Lexicon(object): pass res = globber.glob('', Lexicon()) self.assertIsNone(res) class TestCatalogIndex(unittest.TestCase): def test_datetimevalueindex(self): i = catalogindex.DateTimeValueIndex(field_name='foo') self.assertTrue(zc.catalog.interfaces.IValueIndex.providedBy(i)) def test_datetimesetindex(self): i = catalogindex.DateTimeSetIndex(field_name='foo') self.assertTrue(zc.catalog.interfaces.ISetIndex.providedBy(i)) @unittest.skipUnless(stemmer.broken, "Only for broken stemmers") class TestBrokenStemmer(unittest.TestCase): def test_broken(self): s = stemmer.Stemmer() self.assertIs(stemmer.broken, s.stemmer) self.assertEqual('word', s.stemmer.stem("word")) def setUp32bit(test): zope.component.testing.setUp(test) test.globs["btrees_family"] = BTrees.family32 def modSetUp32bit(test): setUp32bit(test) module.setUp(test, 'zc.catalog.doctest_test') def setUp64bit(test): zope.component.testing.setUp(test) test.globs["btrees_family"] = BTrees.family64 def modSetUp64bit(test): setUp64bit(test) module.setUp(test, 'zc.catalog.doctest_test') def tearDown(test): zope.component.testing.tearDown(test) def modTearDown(test): module.tearDown(test) zope.component.testing.tearDown(test) def test_suite(): checker = renormalizing.RENormalizing(( (re.compile(r"<class 'BTrees."), "<type 'BTrees."), (re.compile(r"<module 'BTrees\._"), "<module 'BTrees."), )) tests = unittest.TestSuite(( # 32 bits doctest.DocFileSuite( 'extentcatalog.rst', setUp=modSetUp32bit, tearDown=modTearDown), doctest.DocFileSuite( 'setindex.rst', setUp=setUp32bit, tearDown=tearDown), doctest.DocFileSuite( 'valueindex.rst', setUp=setUp32bit, tearDown=tearDown), doctest.DocFileSuite( 'normalizedindex.rst', setUp=setUp32bit, tearDown=tearDown), doctest.DocFileSuite( 'globber.rst', setUp=setUp32bit, tearDown=tearDown), doctest.DocFileSuite( 'callablewrapper.rst', setUp=setUp32bit, tearDown=tearDown), # 64 bits doctest.DocFileSuite( 'extentcatalog.rst', setUp=modSetUp64bit, tearDown=modTearDown), doctest.DocFileSuite('setindex.rst', setUp=setUp64bit, tearDown=tearDown), doctest.DocFileSuite('valueindex.rst', setUp=setUp64bit, tearDown=tearDown), doctest.DocFileSuite('normalizedindex.rst', setUp=setUp64bit, tearDown=tearDown), doctest.DocFileSuite('globber.rst', setUp=setUp64bit, tearDown=tearDown), doctest.DocFileSuite('callablewrapper.rst', setUp=setUp64bit, tearDown=tearDown), # legacy data support doctest.DocFileSuite( 'legacy.rst', optionflags=doctest.ELLIPSIS, checker=checker), )) if not stemmer.broken: # pragma: no cover tests.addTest(doctest.DocFileSuite('stemmer.rst')) tests.addTest(unittest.defaultTestLoader.loadTestsFromName(__name__)) return tests
the-stack_0_7241
# -*- coding: utf-8 -*- """Defining functions and classes for arrhythmia detection through ECG signals. The contents of this module define functions and classes for analyzing, visualizing, and making predictions based on data from the MIT-BIH Arrhythmia Database. Explore this repository at: https://github.com/chance-alvarado/arrhythmia-detector Author: Chance Alvarado LinkedIn: https://www.linkedin.com/in/chance-alvarado/ GitHub: https://github.com/chance-alvarado/ """ # Set random seeds for reproducability from numpy.random import seed seed(1) import tensorflow tensorflow.random.set_seed(2) import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from matplotlib import colors from sklearn.metrics import confusion_matrix from matplotlib.animation import FuncAnimation from keras.models import load_model def create_dataframe(path): """Alias of Pandas' read_csv without an additional import.""" df = pd.read_csv(path, header=None) return df def sample_dataframe(path): """Preview 5 rows of DataFrame.""" df_sample = pd.read_csv(path, nrows=5, header=None) return df_sample class DataVisualization: """Class for data exploration through visualization.""" def plot_setup(self, axs): """Set up general plot attributes.""" # Loop through all axis objects for ax in axs: # Set facecolor to black ax.set_facecolor('k') # Remove spines ax.spines["top"].set_visible(False) ax.spines["left"].set_visible(False) ax.spines["right"].set_visible(False) ax.spines["bottom"].set_visible(False) # Add grid ax.grid(linestyle='-', color='w', alpha=.2) def save_plot(self, save_location): """Save plot based on user's preference.""" # Try to save plot if user speciefies a save location if save_location: plt.savefig(save_location, facecolor='k') plt.close() # Else show plot else: plt.show() def label_counts(self, df): """Create vectors of unique labels and their counts.""" # Find target column target = df.iloc[:, -1] # Unique labels unique_labels = target.unique() # Count number of unique occurances for each label unique_count = [] for label in unique_labels: unique_count.append(target[target == label].count()) return unique_labels, unique_count def class_bar(self, df, save_location=None): """Create bar chart for showing classs balance.""" # Collect necessary data unique_labels, unique_count = self.label_counts(df) # Create figure fig, ax = plt.subplots(1, 1, figsize=(7, 4), facecolor='k') # General plot setup self.plot_setup([ax]) # Title fig.suptitle('Arrhythmia Type Breakdown', c='w', fontsize=18, y=.95) # Set proper color ax.tick_params(colors='w') # Add x label ax.set_xlabel('Arrhythmia Type', c='w', fontsize=14, alpha=0.8) # Change scale of y ax.set_yticks(np.arange(0, sum(unique_count), sum(unique_count)/10) ) # Plot with glow ax.bar(unique_labels, unique_count, width=.9, color='r', alpha=0.75) ax.bar(unique_labels, unique_count, width=.93, color='r', alpha=0.4) ax.bar(unique_labels, unique_count, width=.95, color='w', alpha=0.2) # Save plot self.save_plot(save_location) def ecg_scatter(self, df, save_location=None): """Create scatter plot of 100 of each type of arrhythmia.""" # Collect necessary data unique_labels, _ = self.label_counts(df) target_vect = df.iloc[:, -1] # Create figure fig, axs = plt.subplots(nrows=5, ncols=1, figsize=(8, 12), facecolor='k' ) # General plot setup self.plot_setup(axs) # Add title fig.suptitle('Averaged ECG Signals', c='w', fontsize=16, y=0.92) # Iterate through all labels for col, label in enumerate(unique_labels): # Plot text box with arrhythmia type axs[col].text(df.shape[1], .95, ('Arrhythmia Type: %s' % (str(int(label)))), size=14, ha="right", va="top", c='w', bbox=dict(boxstyle="round", ec=(1., 0.5, 0.5), fc='r', alpha=.7 ) ) # Scatter plot for arrhythmia matching_rows = (target_vect == label) for i in range(100): # Dataframe of only relevant rows temp_df = df.iloc[:, :-1][matching_rows].round(decimals=1) # Data to plot data = temp_df.iloc[i, :] t_span = range(len(data)) # Plot iteration axs[col].scatter(t_span, data, alpha=0.05, c='r', s=2) # Save plot self.save_plot(save_location) def ecg_line(self, row, viz_type='static', save_location=None): """Create a line plot of an individual ecg signal.""" # Get relevant data signal = row[:-1] target = row.iloc[-1] # Create figure fig, ax = plt.subplots(1, 1, figsize=(7, 3), facecolor='k') # Create title fig.suptitle('ECG Signal', fontsize=18, color='white', ) # General plot setup self.plot_setup([ax]) # Hide tick labels ax.set_xticklabels([]) ax.set_yticklabels([]) # Add titles ax.set_xlabel('Time', c='w', fontsize=14, alpha=0.8) ax.set_ylabel('Amplitude', c='w', fontsize=14, alpha=0.8,) # Plot text box with arrhythmia type plt.text(len(signal), .95, ('Arrhythmia Type: %s' % (str(int(target)))), size=14, ha="right", va="top", c='w', bbox=dict(boxstyle="round", ec=(1., 0.5, 0.5), fc='r', alpha=.7 ) ) # Check type if viz_type == 'static': # Plot with subtle glow effect ax.plot(signal, color='r', linewidth=2, alpha=.7) ax.plot(signal, color='r', linewidth=3, alpha=.4) ax.plot(signal, color='w', linewidth=5, alpha=.2) # Save plot self.save_plot(save_location) # Check type elif viz_type == 'dynamic': # Time vector time_vect = list(range(len(signal))) # Create line objects line, = ax.plot(time_vect, signal, color='r', linewidth=2, alpha=.7 ) line_g1, = ax.plot(time_vect, signal, color='r', linewidth=3, alpha=.4 ) line_g2, = ax.plot(time_vect, signal, color='w', linewidth=5, alpha=.2 ) # Update function def update(num, time_vect, signal, line): """Define function to update plot every frame.""" # Scaling value scaling_factor = 10 end = num*scaling_factor if end > 100: start = end-100 else: start = 0 for line_obj in [line, line_g1, line_g2]: line_obj.set_data(time_vect[start:end], signal[start:end] ) return [(line,), (line_g1,), (line_g2,)] # Create animation anim = FuncAnimation(fig, update, interval=40, frames=40, fargs=[time_vect, signal, line] ) # Save animation anim.save(save_location, writer='imagemagick', fps=20, savefig_kwargs={'facecolor': 'k', 'transparent': True}) plt.close() class DataProcessing: """Class for processing ecg data before training model.""" def resample(self, num_samples, df): """Resample data to have 'num_samples' of each label.""" # New DataFrame df_resample = pd.DataFrame() # Define target vector target = df.iloc[:, -1] # Resample for each unique value in target for t in target.unique(): temp_df = df[target == t].sample(num_samples, replace=True) df_resample = pd.concat([df_resample, temp_df], ignore_index=True) return df_resample def shuffle(self, df): """Randomly shuffle data.""" df = df.sample(frac=1).reset_index(drop=True) return df def add_noise(self, df, noise_level=0.05): """Add normal noise with standard deviation 'noise_level'.""" # Get shape rows, cols = df.shape # Iterate through rows for index in range(rows): # Create new noise noise = np.random.normal(0, 0.05, cols-1) noise = np.append(noise, 0.) # Add noise df.iloc[index, :] += noise # Keep all values between 0 and 1 for ind, val in enumerate(df.iloc[index, :-1]): if val > 1: df.iloc[index, ind] = 1 elif val < 0: df.iloc[index, ind] = 0 return df def feature_target_split(self, df): """Split DataFrame intto a feature matrix and target vector.""" feature_mat = df.iloc[:, :-1].to_numpy() target_vect = df.iloc[:, -1].to_numpy() return feature_mat, target_vect def one_hot_encoder(self, vect): """One hot encode categorical numerical values given Pandas Series.""" # New target list target_vect_enc = [] # Number of columns in encoded vector num_cols = len(np.unique(vect)) # Iterate through each value in vector for val in vect: # Create vector to append bin_vect = np.zeros(num_cols) bin_vect[int(val)] = 1 # Append target_vect_enc.append(bin_vect) return np.array(target_vect_enc) class ModelEvaluation: """Class for evaluation of predictive model's metrics.""" def undo_encode(self, vect): """Undo one hot encoding used in training and predictions.""" # New target list unencoded_target_vect = [] # Add array index to list for val in vect: unencoded_target_vect.append(np.argmax(val)) return unencoded_target_vect def import_best_model(self): """Import best model saved in directory.""" model = load_model('resources/model/best_model.h5') return model def best_parameters(self, model): """Print the best parameters for each layer of model.""" # Get configuration json config = model.get_config() # Iterate through all layers and print relevant info for layer in config['layers']: layer_type = layer['class_name'] if layer_type == 'Dense': print('Dense Layer Nodes: %d' % (layer['config']['units'])) elif layer_type == 'Dropout': print('Dropout Rate: %d' % (layer['config']['rate'])) elif layer_type == 'InputLayer': print('Input Layer Nodes: %d' % (layer['config']['batch_input_shape'][1]) ) def evaluate_model(self, model, test_X, test_y): """Evaluate model on the test data.""" acc = model.evaluate(test_X, test_y, verbose=0)[1] print('Accuracy on testing data: ', acc) def plot_confusion_matrix(self, model, test_X, y_true): """Plot confusion matrix with custom colormap.""" # List of target labels labels = [0, 1, 2, 3, 4] # Make predictions y_pred = model.predict(test_X) # Unencode target vector y_pred = self.undo_encode(y_pred) # Get number of samples num_samples = len(y_pred) # Create confusion matrix cm = confusion_matrix(y_true, y_pred) # Normalize confusion matrix and round cm_norm = np.zeros(shape=cm.shape) for i in range(cm.shape[0]): for j in range(cm.shape[1]): val = round((cm[i][j] / num_samples), ndigits=2) cm_norm[i, j] = val # Create figure fig, ax = plt.subplots(facecolor='k', figsize=(7, 6)) # Create black to red color gradient # Thanks to SpghttCd on stackoverflow for this code def NonLinCdict(steps, hexcol_array): cdict = {'red': (), 'green': (), 'blue': ()} for s, hexcol in zip(steps, hexcol_array): rgb = colors.hex2color(hexcol) cdict['red'] = cdict['red'] + ((s, rgb[0], rgb[0]),) cdict['green'] = cdict['green'] + ((s, rgb[1], rgb[1]),) cdict['blue'] = cdict['blue'] + ((s, rgb[2], rgb[2]),) return cdict hc = ['#000000', '#5b0000', '#ac0000', '#c80000', '#ff0000'] th = [0, 0.01, 0.03, 0.05, 1] cdict = NonLinCdict(th, hc) black_red_cmap = colors.LinearSegmentedColormap('black_red_cmap', cdict ) # Plot sns.heatmap(cm_norm, annot=True, cmap=black_red_cmap, ax=ax, fmt="g", cbar=False, annot_kws={"size": 14}, linewidths=1, linecolor='w' ) # Add suptitle fig.suptitle('Confusion Matrix', c='w', y=.95, fontsize=18) # Set axis labels ax.set_xlabel('Predicted Arrhythmia Type', fontsize=14, c='w') ax.set_ylabel('Actual Arrhythmia Type', fontsize=14, c='w') # Set tick parameters ax.tick_params(axis='both', which='major', labelsize=12, ) ax.set_xticklabels(labels=labels, color='w') ax.set_yticklabels(labels=labels, color='w', rotation=0) # Show plot plt.show()
the-stack_0_7242
import json from django.conf import settings from django.http import JsonResponse from django.shortcuts import get_object_or_404 from django.views.decorators.http import require_POST from requests import RequestException from rootnroll import RootnRollClient from rootnroll.constants import ServerStatus from games.models import Game """ Session structure: game_id -> {'server_id': '123...', 'terminal_id': '234...',} """ def _terminal_response_ok(terminal): return JsonResponse({ 'status': 'ok', 'terminal_id': terminal['id'], 'kaylee_url': terminal['config']['kaylee_url'], }) def _terminal_response_creating(): return JsonResponse({ 'status': 'creating', }) def _terminal_response_error(info=None): return JsonResponse({ 'status': 'error', 'info': info, }) def get_rnr_client(): return RootnRollClient(username=settings.ROOTNROLL_USERNAME, password=settings.ROOTNROLL_PASSWORD, api_url=settings.RNR_API_URL) @require_POST def terminals(request): """ The main API endpoint for getting a terminal. TODO: split into several endpoints? """ data = json.loads(request.body.decode()) game_id = data.get('id') game = get_object_or_404(Game, id=game_id) rnr_client = get_rnr_client() terminals_map = request.session.get('terminals_map', {}) game_dict = terminals_map.get(str(game_id), {}) server_id = game_dict.get('server_id') terminal_id = game_dict.get('terminal_id') if terminal_id: # Active terminal exists terminal = rnr_client.get_terminal(terminal_id) if terminal: return _terminal_response_ok(terminal) if server_id: # Server exists? server = rnr_client.get_server(server_id) if server and server['status'] == ServerStatus.ACTIVE: # Server is ready, create a terminal terminal = rnr_client.create_terminal(server) if terminal: game_dict['terminal_id'] = terminal['id'] terminals_map[str(game_id)] = game_dict request.session['terminals_map'] = terminals_map return _terminal_response_ok(terminal) elif server and server['status'] != ServerStatus.ERROR: # Waiting for server to come up return _terminal_response_creating() # Server does not exist or invalid try: # Compute the current number of servers servers_count = rnr_client.list_servers().get("count") if servers_count >= settings.SERVERS_NUMBER_HARD_LIMIT: return _terminal_response_error("No servers available") server = rnr_client.create_server(game.rnr_image_id) except RequestException as e: return _terminal_response_error() if server and 'id' in server: game_dict['server_id'] = server['id'] terminals_map[str(game_id)] = game_dict request.session['terminals_map'] = terminals_map return _terminal_response_creating() else: # Cannot create the server return _terminal_response_error()
the-stack_0_7243
import random import numpy as np #import matplotlib.pyplot as plt # parameters N = 100 # No. of training points D = 2 # 2-dimension # area between f & g area = 0 cnt0 = 0 for irun in range(1000): # training data x1, x2 = np.zeros((N, 1)), np.zeros((N, 1)) for iN in range(N): x1[iN] = random.uniform(-1, 1) x2[iN] = random.uniform(-1, 1) xtrain = np.c_[np.ones((N, 1)), x1, x2] # target function: passes through two points x11, x21 = random.uniform(-1, 1), random.uniform(-1, 1) # 1st point x12, x22 = random.uniform(-1, 1), random.uniform(-1, 1) # 2nd point x0 = np.arange(-1, 1, .1) # for plotting purpose y0 = (x22 - x21)/(x12 - x11) * (x0 - x11) + x21 # target: expected output y = np.zeros(N) for iN in range(N): f = (x22 - x21)/(x12 - x11) * (x1[iN] - x11) + x21 if f < x2[iN]: y[iN] = 1 elif f > x2[iN]: y[iN] = -1 # # visualize # plt.plot(x0, y0) # plt.scatter(x1, x2) # weight vector w = np.zeros(D+1) # initially, all points mis-classified # estimated label through Perceptron yp = np.zeros(N) # initially all 0 cnt = 0 while np.all(yp == y) == False: evlt = list(np.equal(yp, y)) iN = evlt.index(False) w += y[iN] * xtrain[iN, :] # update the weight factor yp = np.sign(w.dot(xtrain.T)) cnt += 1 # # visualize # g0 = -(w[0] + w[1]*x0)/w[2] # plt.plot(x0, g0) # for i in range(N): # plt.text(x1[i], x2[i], str(yp[i])) # plt.pause(1) # input('Press enter to continue') cnt0 += cnt # No. of iterations to converge # estimate the difference between f & g using Monte Carlo ntest = 1000 count = 0 for itest in range(ntest): x1test, x2test = random.uniform(-1, 1), random.uniform(-1, 1) # target fx2 = x21 + (x22-x21)/(x12-x11) * (x1test-x11) if fx2 < x2test: target = 1 elif fx2 > x2test: target = -1 else: target = 0 # estimate estimate = np.sign(w.dot([1, x1test, x2test])) if estimate != target: count += 1 area += count / ntest print(area / 1000) print(cnt0 / 1000)
the-stack_0_7244
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Awaitable, Callable, Dict, Optional, Sequence, Union import packaging.version import pkg_resources import google.auth # type: ignore import google.api_core # type: ignore from google.api_core import exceptions as core_exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.api_core import operations_v1 # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.oauth2 import service_account # type: ignore from google.cloud.aiplatform_v1beta1.types import specialist_pool from google.cloud.aiplatform_v1beta1.types import specialist_pool_service from google.longrunning import operations_pb2 # type: ignore try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution( "google-cloud-aiplatform", ).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() try: # google.auth.__version__ was added in 1.26.0 _GOOGLE_AUTH_VERSION = google.auth.__version__ except AttributeError: try: # try pkg_resources if it is available _GOOGLE_AUTH_VERSION = pkg_resources.get_distribution("google-auth").version except pkg_resources.DistributionNotFound: # pragma: NO COVER _GOOGLE_AUTH_VERSION = None class SpecialistPoolServiceTransport(abc.ABC): """Abstract transport class for SpecialistPoolService.""" AUTH_SCOPES = ("https://www.googleapis.com/auth/cloud-platform",) DEFAULT_HOST: str = "aiplatform.googleapis.com" def __init__( self, *, host: str = DEFAULT_HOST, credentials: ga_credentials.Credentials = None, credentials_file: Optional[str] = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, **kwargs, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A list of scopes. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host scopes_kwargs = self._get_scopes_kwargs(self._host, scopes) # Save the scopes. self._scopes = scopes # If no credentials are provided, then determine the appropriate # defaults. if credentials and credentials_file: raise core_exceptions.DuplicateCredentialArgs( "'credentials_file' and 'credentials' are mutually exclusive" ) if credentials_file is not None: credentials, _ = google.auth.load_credentials_from_file( credentials_file, **scopes_kwargs, quota_project_id=quota_project_id ) elif credentials is None: credentials, _ = google.auth.default( **scopes_kwargs, quota_project_id=quota_project_id ) # If the credentials is service account credentials, then always try to use self signed JWT. if ( always_use_jwt_access and isinstance(credentials, service_account.Credentials) and hasattr(service_account.Credentials, "with_always_use_jwt_access") ): credentials = credentials.with_always_use_jwt_access(True) # Save the credentials. self._credentials = credentials # TODO(busunkim): This method is in the base transport # to avoid duplicating code across the transport classes. These functions # should be deleted once the minimum required versions of google-auth is increased. # TODO: Remove this function once google-auth >= 1.25.0 is required @classmethod def _get_scopes_kwargs( cls, host: str, scopes: Optional[Sequence[str]] ) -> Dict[str, Optional[Sequence[str]]]: """Returns scopes kwargs to pass to google-auth methods depending on the google-auth version""" scopes_kwargs = {} if _GOOGLE_AUTH_VERSION and ( packaging.version.parse(_GOOGLE_AUTH_VERSION) >= packaging.version.parse("1.25.0") ): scopes_kwargs = {"scopes": scopes, "default_scopes": cls.AUTH_SCOPES} else: scopes_kwargs = {"scopes": scopes or cls.AUTH_SCOPES} return scopes_kwargs def _prep_wrapped_messages(self, client_info): # Precompute the wrapped methods. self._wrapped_methods = { self.create_specialist_pool: gapic_v1.method.wrap_method( self.create_specialist_pool, default_timeout=5.0, client_info=client_info, ), self.get_specialist_pool: gapic_v1.method.wrap_method( self.get_specialist_pool, default_timeout=5.0, client_info=client_info, ), self.list_specialist_pools: gapic_v1.method.wrap_method( self.list_specialist_pools, default_timeout=5.0, client_info=client_info, ), self.delete_specialist_pool: gapic_v1.method.wrap_method( self.delete_specialist_pool, default_timeout=5.0, client_info=client_info, ), self.update_specialist_pool: gapic_v1.method.wrap_method( self.update_specialist_pool, default_timeout=5.0, client_info=client_info, ), } @property def operations_client(self) -> operations_v1.OperationsClient: """Return the client designed to process long-running operations.""" raise NotImplementedError() @property def create_specialist_pool( self, ) -> Callable[ [specialist_pool_service.CreateSpecialistPoolRequest], Union[operations_pb2.Operation, Awaitable[operations_pb2.Operation]], ]: raise NotImplementedError() @property def get_specialist_pool( self, ) -> Callable[ [specialist_pool_service.GetSpecialistPoolRequest], Union[ specialist_pool.SpecialistPool, Awaitable[specialist_pool.SpecialistPool] ], ]: raise NotImplementedError() @property def list_specialist_pools( self, ) -> Callable[ [specialist_pool_service.ListSpecialistPoolsRequest], Union[ specialist_pool_service.ListSpecialistPoolsResponse, Awaitable[specialist_pool_service.ListSpecialistPoolsResponse], ], ]: raise NotImplementedError() @property def delete_specialist_pool( self, ) -> Callable[ [specialist_pool_service.DeleteSpecialistPoolRequest], Union[operations_pb2.Operation, Awaitable[operations_pb2.Operation]], ]: raise NotImplementedError() @property def update_specialist_pool( self, ) -> Callable[ [specialist_pool_service.UpdateSpecialistPoolRequest], Union[operations_pb2.Operation, Awaitable[operations_pb2.Operation]], ]: raise NotImplementedError() __all__ = ("SpecialistPoolServiceTransport",)
the-stack_0_7245
#!/bin/python3 import os import sys from subprocess import call, run, PIPE from getFiles import get_files, get_main from colorama import Fore, Style answ_linestart = 'Answer: ' def compile_java(task, output_path='.', source_path=''): cmd = ['javac', '-d', output_path] cmd.extend(get_files(task, source_path)) call(cmd) def run_tests(task, out_path='out', src_path='src', test_path='test'): compile_java(task, out_path, src_path) for fn in os.listdir(test_path): if fn.endswith('.theotest'): with open(os.path.join(test_path, fn), 'r') as f: test_case = f.read().split('\n') answer = test_case.pop() p = run(['java', get_main(task)], cwd=out_path, input='\n'.join(test_case) + '\n', stdout=PIPE, universal_newlines=True) if answer.startswith(answ_linestart): output = str(p.stdout)[:-1] if output == answer[len(answ_linestart):]: print(f'{Fore.GREEN}pass {fn}{Style.RESET_ALL}') else: print( f'{Fore.RED}fail {fn}: expected {answer[len(answ_linestart):]}, got {output}{Style.RESET_ALL}') run_tests(*sys.argv[1:])
the-stack_0_7247
# Copyright 2021 Alexey Tochin # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from collections import Callable from typing import Any, Dict, Optional import tensorflow as tf from tf_dataclass.get_type import get_output_type, get_input_type_dict from tf_dataclass.modified_dataclass import is_dataclass def unpack(value: Any, temple: Optional[type] = None) -> Any: if temple is None: temple = type(value) if is_dataclass(temple): return value.as_tuple elif temple == tuple or (hasattr(temple, "__origin__") and temple.__origin__ == tuple): return tuple(map(lambda sub_value, sub_temple: unpack(sub_value, sub_temple), value, temple.__args__)) else: return value def pack(unpacked_value: Any, temple: type) -> Any: if is_dataclass(temple): return temple.from_tuple(data_tuple=unpacked_value) else: return unpacked_value def pack_function(func: Callable, input_type_dict: Dict[str, type], output_type: type): """ Returns a version of @param func where its input and outputs are replaced by their unpacked versions. func -> pack . func . unpack @param func: input1, input2, ... -> output @return: input1_tuple, input2_tuple, ... -> output_tuple """ def dictorized_func(**kwargs): if kwargs.keys() != input_type_dict.keys(): raise ValueError( f"The keyword arguments set from type annotation does not coincide with actual arguments.\n" f"From type annotations: {set(input_type_dict.keys())}\n" f"Actual arguments: {set(kwargs.keys())}" ) packed_arg_dict = { arg_name: pack(unpacked_value=kwargs[arg_name], temple=type_val) for arg_name, type_val in input_type_dict.items() } output = func(**packed_arg_dict) unpacked_output = unpack(value=output, temple=output_type) return unpacked_output return dictorized_func def unpack_function(packed_func: Callable, input_type_dict: Dict[str, type], output_type: type): """ Returns a version of @param func where its input and outputs are replaced by their unpacked versions. func -> unpack . func . pack @param packed_func: input1_tuple, input2_tuple, ... -> output_tuple @return: input1, input2, ... -> output """ def undictorized_func(*args, **kwargs): if args: raise ValueError("Only keyword arguments are currently supported.") if kwargs.keys() != input_type_dict.keys(): raise ValueError( f"The arguments set from type annotation does not coincide with actual arguments.\n" f"From type annotations: {set(input_type_dict.keys())}\n" f"Actual arguments: {set(kwargs.keys())}" ) input_kwargs = {} for arg_name, arg_value in kwargs.items(): unpacked_arg = unpack(value=arg_value, temple=input_type_dict[arg_name]) input_kwargs[arg_name] = unpacked_arg output_dict = packed_func(**input_kwargs) output = pack(unpacked_value=output_dict, temple=output_type) return output return undictorized_func def function(func: Callable, **kwargs) -> Callable: """ Modification of tensorflow.function for dataclass input/output support. 1. dataclass decorator must be imported form tf_dataclass module 2. Type hint for @parm func return type is mandatory 3. Only keword arguments for the returned function are currently supported. 4. Other arguments are the same as for tensorlfow.function See https://github.com/alexeytochin/tf-dataclass/blob/main/README.md for further details. @param func: the same as for tensorflow.function but requires typehints for the return type. @param kwargs: this argumets are pathed to tensorflow.function @return: callable object that accepts dataclass objects as input and/or output. Only keyword arguments for the decorated function are currently supported Example 1: >>> from tf_dataclass import dataclass, function >>> @dataclass >>> class Sequential: >>> feature: tf.Tensor # shape = [batch, length, channels], dtype = tf.float32 >>> length: tf.Tensor # shape = [batch], dtype = tf.int32 >>> input = Sequential( >>> feature = tf.random.normal(shape=[2, 6, 3]), >>> length = tf.constant([6, 4], dtype=tf.int32), >>> ) >>> @function >>> def convolution(input: Sequential, filters: tf.Tensor, stride: int) -> Sequential: >>> return Sequential( >>> feature = tf.nn.conv1d(input.feature, filters, stride), >>> length = tf.math.floordiv(input.length, stride), >>> ) >>> output = convolution( >>> input = input, >>> filters = tf.random.normal(shape=[1, 3, 7]), >>> stride = 2, >>> ) >>> assert isinstance(output, Sequential) >>> print(output.length) # -> tf.Tensor([3 2], shape=(2,), dtype=int32) Example 2: >>> from typing import Tuple >>> from tf_dataclass import dataclass, function >>> @dataclass >>> class MyDataclass: >>> ... >>> @function >>> def my_func(...) -> Tuple[tf.Tensor, MyDataclass]: >>> ... >>> return some_tensor, my_dataclass_instance """ input_type_dict = get_input_type_dict(func) output_type = get_output_type(func) dictorized_func = pack_function(func, input_type_dict, output_type) tf_func = tf.function(func=dictorized_func, **kwargs) undictorized_func = unpack_function(tf_func, input_type_dict, output_type) return undictorized_func
the-stack_0_7248
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for `utils.py`.""" from absl.testing import absltest from dm_c19_modelling.modelling import definitions from dm_c19_modelling.modelling.models import utils import numpy as np class RolloutFeaturesTest(absltest.TestCase): def test_expected_rollout(self): feature_names = ["feature1", definitions.SITE_ID_INTEGER, "feature2", "feature3", definitions.WEEK_DAY_INTEGER] target_names = ["feature3", "feature1"] constant_features = ["feature2"] cadence = 2 features = np.array([ # First date. Day #2. [ # First site. [10.1, 25., 30., 40.1, 2], # Second site. [10.2, 27., 30., 40.2, 2], ], # Second date. Day #4. [ # First site. [11.1, 25., 30., 41.1, 4], # Second site. [11.2, 27., 30., 41.2, 4], ], ]) next_steps_targets = np.array([ # Third date. Day #6. [ # First site. [42.1, 12.1], # Second site. [42.2, 12.2], ], # Fourth date. Day #8. [ # First site. [43.1, 13.1], # Second site. [43.2, 13.2], ], ]) output = utils.rollout_features_with_predictions( features=features, next_steps_targets=next_steps_targets, feature_names=feature_names, target_names=target_names, cadence=cadence, constant_features=constant_features) expected_additional_features = np.array([ # Third date. Day #6. [ # First site. [12.1, 25., 30., 42.1, 6], # Second site. [12.2, 27., 30., 42.2, 6], ], # Fourth date. Day #8. [ # First site. [13.1, 25., 30., 43.1, 1], # Second site. [13.2, 27., 30., 43.2, 1], ], ]) expected_output = np.concatenate( [features, expected_additional_features], axis=0) np.testing.assert_allclose(output, expected_output) if __name__ == "__main__": absltest.main()
the-stack_0_7249
import torch import torch.nn as nn def dice_loss(input, target): input = torch.sigmoid(input) smooth = 1e-5 iflat = input.view(-1) tflat = target.view(-1) intersection = (iflat * tflat).sum() return 1 - ((2. * intersection + smooth) / (iflat.sum() + tflat.sum() + smooth)) def focal_loss(input, target, reduction='mean', beta=0.5, gamma=2., eps=1e-7, **kwargs): """ Focal loss, see arXiv:1708.02002 input: [B, 1, H, W] tensor that contains predictions to compare target: [B, 1, H, W] tensor that contains targets to compare to reduction: one of mean, sum or none. Used to choose how loss is reduced over batches beta: weight in [0; 1] to give to positive targets. The higher it is, the more true positive and false negative are important. Negative targets have weight 1-beta gamma: parameter that reduces the loss contribution from easy examples and extends the range in which an example receives low loss. It also gives more weight to misclassified examples eps: constant used for numerical stability return: [1] or [B] (if reduction='none') tensor containing loss between input and target """ n = input.size(0) iflat = torch.sigmoid(input).view(n, -1).clamp(eps, 1 - eps) tflat = target.view(n, -1) focal = -(beta * tflat * (1 - iflat).pow(gamma) * iflat.log() + (1 - beta) * (1 - tflat) * iflat.pow(gamma) * (1 - iflat).log()).mean(-1) if reduction == 'mean': return focal.mean() elif reduction == 'sum': return focal.sum() else: return focal class FocalDiceLoss(nn.Module): """ Weighted linear combination of focal and dice losses a: weight of binary cross-entropy b: weight of dice smooth: value added to both numerator and denominator of dice to avoid division by zero and smooth gradient around 0 beta: weight in [0; 1] to give to positive targets. The higher it is, the more true positive and false negative are important. Negative targets have weight 1-beta gamma: parameter that reduces the loss contribution from easy examples and extends the range in which an example receives low loss. It also gives more weight to misclassified examples reduction: one of mean, sum or none. Used to choose how loss is reduced over batches """ def __init__(self, a=0.5, b=0.5, smooth=1., beta=0.5, gamma=2., reduction='mean'): super().__init__() self.a = a self.b = b self.smooth = smooth self.beta = beta self.gamma = gamma self.reduction = reduction def forward(self, input, target): """ input: [B, 1, H, W] tensor that contains predictions to compare target: [B, 1, H, W] tensor that contains targets to compare to return: [1] or [B] (if self.reduction='none') tensor containing loss between input and target """ focal = focal_loss( input, target, beta=self.beta, gamma=self.gamma, reduction=self.reduction) dice = dice_loss(input, target) return self.a * focal + self.b * dice
the-stack_0_7250
# Princeton University licenses this file to You under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. You may obtain a copy of the License at: # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and limitations under the License. # ************************************** DefaultControlMechanism ************************************************ """ The DefaultControlMechanism is created for a `System` if no other controller type is specified. The DefaultControlMechanism creates an `ControlSignal` for each `ControlProjection` it is assigned, and uses `defaultControlAllocation` as the `value <ControlSignal.value>` for the ControlSignal. By default, `defaultControlAllocation` = 1, so that ControlProjections from the DefaultControlMechanism have no effect on their parameters. However, it can be used to uniformly control the parameters that receive ControlProjections from it, by manually changing the value of `defaultControlAllocation`. See `ControlMechanism <ControlMechanism>` for additional details of how ControlMechanism are created, executed and their attributes. COMMENT: ADD LINK FOR defaultControlAllocation TEST FOR defaultControlAllocation: |defaultControlAllocation| ANOTHER TEST FOR defaultControlAllocation: :py:print:`defaultControlAllocation` AND YET ANOTHER TEST FOR defaultControlAllocation: :py:print:|defaultControlAllocation| LINK TO DEFAULTS: :doc:`Defaults` COMMENT """ import numpy as np import typecheck as tc from psyneulink.components.mechanisms.adaptive.control.controlmechanism import ControlMechanism from psyneulink.components.mechanisms.processing.objectivemechanism import ObjectiveMechanism from psyneulink.components.states.inputstate import InputState from psyneulink.globals.defaults import defaultControlAllocation from psyneulink.globals.keywords import CONTROL, FUNCTION, FUNCTION_PARAMS, INPUT_STATES, INTERCEPT, MODULATION, NAME, OBJECTIVE_MECHANISM, SLOPE from psyneulink.globals.preferences.componentpreferenceset import is_pref_set from psyneulink.globals.preferences.preferenceset import PreferenceLevel from psyneulink.globals.utilities import ContentAddressableList from psyneulink.scheduling.time import TimeScale __all__ = [ 'DefaultControlMechanism', 'DefaultControlMechanismError' ] class DefaultControlMechanismError(Exception): def __init__(self, error_value): self.error_value = error_value class DefaultControlMechanism(ControlMechanism): """Subclass of `ControlMechanism <ControlMechanism>` that implements a DefaultControlMechanism. COMMENT: Description: Implements default source of control signals, with one inputState and outputState for each. Uses defaultControlAllocation as input(s) and pass value(s) unchanged to outputState(s) and ControlProjection(s) Every ControlProjection is assigned this Mechanism as its sender by default (i.e., unless a sender is explicitly specified in its constructor). An inputState and outputState is created for each ControlProjection assigned: the inputState is assigned the :py:constant:`defaultControlAllocation <Defaults.defaultControlAllocation>` value; when the DefaultControlMechanism executes, it simply assigns the same value to the ControlProjection. Class attributes: + componentType (str): System Default Mechanism + paramClassDefaults (dict): + FUNCTION: Linear COMMENT """ componentType = "DefaultControlMechanism" classPreferenceLevel = PreferenceLevel.SUBTYPE # classPreferenceLevel = PreferenceLevel.TYPE # Any preferences specified below will override those specified in TypeDefaultPreferences # Note: only need to specify setting; level will be assigned to Type automatically # classPreferences = { # kwPreferenceSetName: 'DefaultControlMechanismCustomClassPreferences', # kp<pref>: <setting>...} from psyneulink.components.functions.function import Linear paramClassDefaults = ControlMechanism.paramClassDefaults.copy() paramClassDefaults.update({FUNCTION:Linear, FUNCTION_PARAMS:{SLOPE:1, INTERCEPT:0}, OBJECTIVE_MECHANISM:None, MODULATION:None, }) @tc.typecheck def __init__(self, # default_variable=None, # size=None, system=None, objective_mechanism:tc.optional(tc.any(ObjectiveMechanism, list))=None, control_signals:tc.optional(list)=None, params=None, name=None, prefs:is_pref_set=None): super(DefaultControlMechanism, self).__init__(# default_variable=default_variable, # size=size, objective_mechanism=objective_mechanism, control_signals=control_signals, params=params, name=name, prefs=prefs, context=self) def _instantiate_input_states(self, context=None): """Instantiate input_value attribute Instantiate input_states and monitored_output_states attributes (in case they are referenced) and assign any OutputStates that project to the input_states to monitored_output_states IMPLEMENTATION NOTE: At present, these are dummy assignments, simply to satisfy the requirements for subclasses of ControlMechanism; in the future, an _instantiate_objective_mechanism() method should be implemented that also implements an _instantiate_monitored_output_states method, and that can be used to add OutputStates/Mechanisms to be monitored. """ if not hasattr(self, INPUT_STATES): self._input_states = None elif self.input_states: for input_state in self.input_states: for projection in input_state.path_afferents: self.monitored_output_states.append(projection.sender) def _instantiate_control_signal(self, control_signal, context=None): """Instantiate requested ControlSignal, ControlProjection and associated InputState """ from psyneulink.components.states.parameterstate import ParameterState if isinstance(control_signal, dict): if CONTROL in control_signal: projection = control_signal[CONTROL][0] input_name = 'DefaultControlAllocation for ' + projection.receiver.name + '_ControlSignal' elif NAME in control_signal: input_name = 'DefaultControlAllocation for ' + control_signal[NAME] + '_ControlSignal' elif isinstance(control_signal, tuple): input_name = 'DefaultControlAllocation for ' + control_signal[0] + '_ControlSignal' elif isinstance(control_signal, ParameterState): input_name = 'DefaultControlAllocation for ' + control_signal.name + '_ControlSignal' else: raise DefaultControlMechanismError("control signal ({}) was not a dict, tuple, or ParameterState". format(control_signal)) # Instantiate input_states and allocation_policy attribute for control_signal allocations self._instantiate_default_input_state(input_name, defaultControlAllocation, context=context) self.allocation_policy = self.input_values # Call super to instantiate ControlSignal # Note: any params specified with ControlProjection for the control_signal # should be in PARAMS entry of dict passed in control_signal arg control_signal = super()._instantiate_control_signal(control_signal=control_signal, context=context) def _instantiate_default_input_state(self, input_state_name, input_state_value, context=None): """Instantiate inputState for ControlMechanism NOTE: This parallels ObjectMechanism._instantiate_input_state_for_monitored_state() It is implemented here to spare having to instantiate a "dummy" (and superfluous) ObjectiveMechanism for the sole purpose of creating input_states for each value of defaultControlAllocation to assign to the ControlProjections. Extend self.instance_defaults.variable by one item to accommodate new inputState Instantiate the inputState using input_state_name and input_state_value Update self.input_state and self.input_states Args: input_state_name (str): input_state_value (2D np.array): context: Returns: input_state (InputState): """ # First, test for initialization conditions: # This is for generality (in case, for any subclass in the future, variable is assigned to None on init) if self.instance_defaults.variable is None: self.instance_defaults.variable = np.atleast_2d(input_state_value) # If there is a single item in self.instance_defaults.variable, it could be the one assigned on initialization # (in order to validate ``function`` and get its return value as a template for self.value); # in that case, there should be no input_states yet, so pass # (i.e., don't bother to extend self.instance_defaults.variable): it will be used for the new inputState elif len(self.instance_defaults.variable) == 1: if self.input_states: self.instance_defaults.variable = np.append(self.instance_defaults.variable, np.atleast_2d(input_state_value), 0) else: # If there are no input_states, this is the usual initialization condition; # Pass to create a new inputState that will be assigned to existing the first item of self.instance_defaults.variable pass # Other than on initialization (handled above), it is a PROGRAM ERROR if # the number of input_states is not equal to the number of items in self.instance_defaults.variable elif len(self.instance_defaults.variable) != len(self.input_states): raise DefaultControlMechanismError( "PROGRAM ERROR: The number of input_states ({}) does not match " "the number of items found for the variable attribute ({}) of {}" "when creating {}".format( len(self.input_states), len(self.instance_defaults.variable), self.name, input_state_name, ) ) # Extend self.instance_defaults.variable to accommodate new inputState else: self.instance_defaults.variable = np.append(self.instance_defaults.variable, np.atleast_2d(input_state_value), 0) variable_item_index = self.instance_defaults.variable.size-1 # Instantiate inputState from psyneulink.components.states.state import _instantiate_state from psyneulink.components.states.inputstate import InputState input_state = _instantiate_state(owner=self, state_type=InputState, name=input_state_name, # state_spec=defaultControlAllocation, reference_value=np.array(self.instance_defaults.variable[variable_item_index]), reference_value_name='Default control allocation', params=None, context=context) # Update inputState and input_states if self.input_states: self._input_states[input_state.name] = input_state else: from psyneulink.components.states.state import State_Base self._input_states = ContentAddressableList(component_type=State_Base, list=[input_state], name=self.name+'.input_states') # self.input_value = [state.value for state in self.input_states] return input_state
the-stack_0_7251
# -*- coding: utf8 -*- import sys import os import unittest import platform from pygame.tests.test_utils import example_path, AssertRaisesRegexMixin import pygame from pygame import mixer from pygame.compat import unicode_, as_bytes, bytes_ IS_PYPY = "PyPy" == platform.python_implementation() ################################### CONSTANTS ################################## FREQUENCIES = [11025, 22050, 44100, 48000] SIZES = [-16, -8, 8, 16] if pygame.get_sdl_version()[0] >= 2: SIZES.append(32) CHANNELS = [1, 2] BUFFERS = [3024] CONFIGS = [ {"frequency": f, "size": s, "channels": c} for f in FREQUENCIES for s in SIZES for c in CHANNELS ] # Using all CONFIGS fails on a Mac; probably older SDL_mixer; we could do: # if platform.system() == 'Darwin': # But using all CONFIGS is very slow (> 10 sec for example) # And probably, we don't need to be so exhaustive, hence: CONFIG = {"frequency": 22050, "size": -16, "channels": 2} # base config if pygame.get_sdl_version()[0] >= 2: CONFIG = {"frequency": 44100, "size": 32, "channels": 2} # base config class InvalidBool(object): """To help test invalid bool values.""" __nonzero__ = None __bool__ = None ############################## MODULE LEVEL TESTS ############################## class MixerModuleTest(unittest.TestCase): def tearDown(self): mixer.quit() mixer.pre_init(0, 0, 0, 0) def test_init__keyword_args(self): # note: this test used to loop over all CONFIGS, but it's very slow.. mixer.init(**CONFIG) mixer_conf = mixer.get_init() self.assertEqual(mixer_conf[0], CONFIG["frequency"]) # Not all "sizes" are supported on all systems, hence "abs". self.assertEqual(abs(mixer_conf[1]), abs(CONFIG["size"])) self.assertEqual(mixer_conf[2], CONFIG["channels"]) def test_pre_init__keyword_args(self): # note: this test used to loop over all CONFIGS, but it's very slow.. mixer.pre_init(**CONFIG) mixer.init() mixer_conf = mixer.get_init() self.assertEqual(mixer_conf[0], CONFIG["frequency"]) # Not all "sizes" are supported on all systems, hence "abs". self.assertEqual(abs(mixer_conf[1]), abs(CONFIG["size"])) self.assertEqual(mixer_conf[2], CONFIG["channels"]) def test_pre_init__zero_values(self): # Ensure that argument values of 0 are replaced with # default values. No way to check buffer size though. mixer.pre_init(22050, -8, 1) # Non default values mixer.pre_init(0, 0, 0) # Should reset to default values mixer.init() self.assertEqual(mixer.get_init(), (44100, -16, 2)) def test_init__zero_values(self): # Ensure that argument values of 0 are replaced with # preset values. No way to check buffer size though. mixer.pre_init(44100, 8, 1, allowedchanges=0) # None default values mixer.init(0, 0, 0) self.assertEqual(mixer.get_init(), (44100, 8, 1)) @unittest.skip("SDL_mixer bug") def test_get_init__returns_exact_values_used_for_init(self): # fix in 1.9 - I think it's a SDL_mixer bug. # TODO: When this bug is fixed, testing through every combination # will be too slow so adjust as necessary, at the moment it # breaks the loop after first failure for init_conf in CONFIGS: frequency, size, channels if (frequency, size) == (22050, 16): continue mixer.init(frequency, size, channels) mixer_conf = mixer.get_init() self.assertEqual(init_conf, mixer_conf) mixer.quit() def test_get_init__returns_None_if_mixer_not_initialized(self): self.assertIsNone(mixer.get_init()) def test_get_num_channels__defaults_eight_after_init(self): mixer.init() self.assertEqual(mixer.get_num_channels(), 8) def test_set_num_channels(self): mixer.init() default_num_channels = mixer.get_num_channels() for i in range(1, default_num_channels + 1): mixer.set_num_channels(i) self.assertEqual(mixer.get_num_channels(), i) def test_quit(self): """ get_num_channels() Should throw pygame.error if uninitialized after mixer.quit() """ mixer.init() mixer.quit() self.assertRaises(pygame.error, mixer.get_num_channels) # TODO: FIXME: appveyor fails here sometimes. @unittest.expectedFailure def test_sound_args(self): def get_bytes(snd): return snd.get_raw() mixer.init() sample = as_bytes("\x00\xff") * 24 wave_path = example_path(os.path.join("data", "house_lo.wav")) uwave_path = unicode_(wave_path) bwave_path = uwave_path.encode(sys.getfilesystemencoding()) snd = mixer.Sound(file=wave_path) self.assertTrue(snd.get_length() > 0.5) snd_bytes = get_bytes(snd) self.assertTrue(len(snd_bytes) > 1000) self.assertEqual(get_bytes(mixer.Sound(wave_path)), snd_bytes) self.assertEqual(get_bytes(mixer.Sound(file=uwave_path)), snd_bytes) self.assertEqual(get_bytes(mixer.Sound(uwave_path)), snd_bytes) arg_emsg = "Sound takes either 1 positional or 1 keyword argument" with self.assertRaises(TypeError) as cm: mixer.Sound() self.assertEqual(str(cm.exception), arg_emsg) with self.assertRaises(TypeError) as cm: mixer.Sound(wave_path, buffer=sample) self.assertEqual(str(cm.exception), arg_emsg) with self.assertRaises(TypeError) as cm: mixer.Sound(sample, file=wave_path) self.assertEqual(str(cm.exception), arg_emsg) with self.assertRaises(TypeError) as cm: mixer.Sound(buffer=sample, file=wave_path) self.assertEqual(str(cm.exception), arg_emsg) with self.assertRaises(TypeError) as cm: mixer.Sound(foobar=sample) self.assertEqual(str(cm.exception), "Unrecognized keyword argument 'foobar'") snd = mixer.Sound(wave_path, **{}) self.assertEqual(get_bytes(snd), snd_bytes) snd = mixer.Sound(*[], **{"file": wave_path}) with self.assertRaises(TypeError) as cm: mixer.Sound([]) self.assertEqual(str(cm.exception), "Unrecognized argument (type list)") with self.assertRaises(TypeError) as cm: snd = mixer.Sound(buffer=[]) emsg = "Expected object with buffer interface: got a list" self.assertEqual(str(cm.exception), emsg) ufake_path = unicode_("12345678") self.assertRaises(IOError, mixer.Sound, ufake_path) self.assertRaises(IOError, mixer.Sound, "12345678") with self.assertRaises(TypeError) as cm: mixer.Sound(buffer=unicode_("something")) emsg = "Unicode object not allowed as buffer object" self.assertEqual(str(cm.exception), emsg) self.assertEqual(get_bytes(mixer.Sound(buffer=sample)), sample) if type(sample) != str: somebytes = get_bytes(mixer.Sound(sample)) # on python 2 we do not allow using string except as file name. self.assertEqual(somebytes, sample) self.assertEqual(get_bytes(mixer.Sound(file=bwave_path)), snd_bytes) self.assertEqual(get_bytes(mixer.Sound(bwave_path)), snd_bytes) snd = mixer.Sound(wave_path) with self.assertRaises(TypeError) as cm: mixer.Sound(wave_path, array=snd) self.assertEqual(str(cm.exception), arg_emsg) with self.assertRaises(TypeError) as cm: mixer.Sound(buffer=sample, array=snd) self.assertEqual(str(cm.exception), arg_emsg) snd2 = mixer.Sound(array=snd) self.assertEqual(snd.get_raw(), snd2.get_raw()) def test_sound_unicode(self): """test non-ASCII unicode path""" mixer.init() import shutil ep = unicode_(example_path("data")) temp_file = os.path.join(ep, u"你好.wav") org_file = os.path.join(ep, u"house_lo.wav") shutil.copy(org_file, temp_file) try: with open(temp_file, "rb") as f: pass except IOError: raise unittest.SkipTest("the path cannot be opened") try: sound = mixer.Sound(temp_file) del sound finally: os.remove(temp_file) @unittest.skipIf( os.environ.get("SDL_AUDIODRIVER") == "disk", "this test fails without real sound card", ) def test_array_keyword(self): try: from numpy import ( array, arange, zeros, int8, uint8, int16, uint16, int32, uint32, ) except ImportError: self.skipTest("requires numpy") freq = 22050 format_list = [-8, 8, -16, 16] channels_list = [1, 2] a_lists = dict((f, []) for f in format_list) a32u_mono = arange(0, 256, 1, uint32) a16u_mono = a32u_mono.astype(uint16) a8u_mono = a32u_mono.astype(uint8) au_list_mono = [(1, a) for a in [a8u_mono, a16u_mono, a32u_mono]] for format in format_list: if format > 0: a_lists[format].extend(au_list_mono) a32s_mono = arange(-128, 128, 1, int32) a16s_mono = a32s_mono.astype(int16) a8s_mono = a32s_mono.astype(int8) as_list_mono = [(1, a) for a in [a8s_mono, a16s_mono, a32s_mono]] for format in format_list: if format < 0: a_lists[format].extend(as_list_mono) a32u_stereo = zeros([a32u_mono.shape[0], 2], uint32) a32u_stereo[:, 0] = a32u_mono a32u_stereo[:, 1] = 255 - a32u_mono a16u_stereo = a32u_stereo.astype(uint16) a8u_stereo = a32u_stereo.astype(uint8) au_list_stereo = [(2, a) for a in [a8u_stereo, a16u_stereo, a32u_stereo]] for format in format_list: if format > 0: a_lists[format].extend(au_list_stereo) a32s_stereo = zeros([a32s_mono.shape[0], 2], int32) a32s_stereo[:, 0] = a32s_mono a32s_stereo[:, 1] = -1 - a32s_mono a16s_stereo = a32s_stereo.astype(int16) a8s_stereo = a32s_stereo.astype(int8) as_list_stereo = [(2, a) for a in [a8s_stereo, a16s_stereo, a32s_stereo]] for format in format_list: if format < 0: a_lists[format].extend(as_list_stereo) for format in format_list: for channels in channels_list: try: mixer.init(freq, format, channels) except pygame.error: # Some formats (e.g. 16) may not be supported. continue try: __, f, c = mixer.get_init() if f != format or c != channels: # Some formats (e.g. -8) may not be supported. continue for c, a in a_lists[format]: self._test_array_argument(format, a, c == channels) finally: mixer.quit() def _test_array_argument(self, format, a, test_pass): from numpy import array, all as all_ try: snd = mixer.Sound(array=a) except ValueError: if not test_pass: return self.fail("Raised ValueError: Format %i, dtype %s" % (format, a.dtype)) if not test_pass: self.fail( "Did not raise ValueError: Format %i, dtype %s" % (format, a.dtype) ) a2 = array(snd) a3 = a.astype(a2.dtype) lshift = abs(format) - 8 * a.itemsize if lshift >= 0: # This is asymmetric with respect to downcasting. a3 <<= lshift self.assertTrue(all_(a2 == a3), "Format %i, dtype %s" % (format, a.dtype)) def _test_array_interface_fail(self, a): self.assertRaises(ValueError, mixer.Sound, array=a) def test_array_interface(self): mixer.init(22050, -16, 1, allowedchanges=0) snd = mixer.Sound(buffer=as_bytes("\x00\x7f") * 20) d = snd.__array_interface__ self.assertTrue(isinstance(d, dict)) if pygame.get_sdl_byteorder() == pygame.LIL_ENDIAN: typestr = "<i2" else: typestr = ">i2" self.assertEqual(d["typestr"], typestr) self.assertEqual(d["shape"], (20,)) self.assertEqual(d["strides"], (2,)) self.assertEqual(d["data"], (snd._samples_address, False)) @unittest.skipIf(not pygame.HAVE_NEWBUF, "newbuf not implemented") def test_newbuf__one_channel(self): mixer.init(22050, -16, 1) self._NEWBUF_export_check() @unittest.skipIf(not pygame.HAVE_NEWBUF, "newbuf not implemented") def test_newbuf__twho_channel(self): mixer.init(22050, -16, 2) self._NEWBUF_export_check() def _NEWBUF_export_check(self): freq, fmt, channels = mixer.get_init() ndim = 1 if (channels == 1) else 2 itemsize = abs(fmt) // 8 formats = { 8: "B", -8: "b", 16: "=H", -16: "=h", 32: "=I", -32: "=i", # 32 and 64 for future consideration 64: "=Q", -64: "=q", } format = formats[fmt] from pygame.tests.test_utils import buftools Exporter = buftools.Exporter Importer = buftools.Importer is_lil_endian = pygame.get_sdl_byteorder() == pygame.LIL_ENDIAN fsys, frev = ("<", ">") if is_lil_endian else (">", "<") shape = (10, channels)[:ndim] strides = (channels * itemsize, itemsize)[2 - ndim :] exp = Exporter(shape, format=frev + "i") snd = mixer.Sound(array=exp) buflen = len(exp) * itemsize * channels imp = Importer(snd, buftools.PyBUF_SIMPLE) self.assertEqual(imp.ndim, 0) self.assertTrue(imp.format is None) self.assertEqual(imp.len, buflen) self.assertEqual(imp.itemsize, itemsize) self.assertTrue(imp.shape is None) self.assertTrue(imp.strides is None) self.assertTrue(imp.suboffsets is None) self.assertFalse(imp.readonly) self.assertEqual(imp.buf, snd._samples_address) imp = Importer(snd, buftools.PyBUF_WRITABLE) self.assertEqual(imp.ndim, 0) self.assertTrue(imp.format is None) self.assertEqual(imp.len, buflen) self.assertEqual(imp.itemsize, itemsize) self.assertTrue(imp.shape is None) self.assertTrue(imp.strides is None) self.assertTrue(imp.suboffsets is None) self.assertFalse(imp.readonly) self.assertEqual(imp.buf, snd._samples_address) imp = Importer(snd, buftools.PyBUF_FORMAT) self.assertEqual(imp.ndim, 0) self.assertEqual(imp.format, format) self.assertEqual(imp.len, buflen) self.assertEqual(imp.itemsize, itemsize) self.assertTrue(imp.shape is None) self.assertTrue(imp.strides is None) self.assertTrue(imp.suboffsets is None) self.assertFalse(imp.readonly) self.assertEqual(imp.buf, snd._samples_address) imp = Importer(snd, buftools.PyBUF_ND) self.assertEqual(imp.ndim, ndim) self.assertTrue(imp.format is None) self.assertEqual(imp.len, buflen) self.assertEqual(imp.itemsize, itemsize) self.assertEqual(imp.shape, shape) self.assertTrue(imp.strides is None) self.assertTrue(imp.suboffsets is None) self.assertFalse(imp.readonly) self.assertEqual(imp.buf, snd._samples_address) imp = Importer(snd, buftools.PyBUF_STRIDES) self.assertEqual(imp.ndim, ndim) self.assertTrue(imp.format is None) self.assertEqual(imp.len, buflen) self.assertEqual(imp.itemsize, itemsize) self.assertEqual(imp.shape, shape) self.assertEqual(imp.strides, strides) self.assertTrue(imp.suboffsets is None) self.assertFalse(imp.readonly) self.assertEqual(imp.buf, snd._samples_address) imp = Importer(snd, buftools.PyBUF_FULL_RO) self.assertEqual(imp.ndim, ndim) self.assertEqual(imp.format, format) self.assertEqual(imp.len, buflen) self.assertEqual(imp.itemsize, 2) self.assertEqual(imp.shape, shape) self.assertEqual(imp.strides, strides) self.assertTrue(imp.suboffsets is None) self.assertFalse(imp.readonly) self.assertEqual(imp.buf, snd._samples_address) imp = Importer(snd, buftools.PyBUF_FULL_RO) self.assertEqual(imp.ndim, ndim) self.assertEqual(imp.format, format) self.assertEqual(imp.len, buflen) self.assertEqual(imp.itemsize, itemsize) self.assertEqual(imp.shape, exp.shape) self.assertEqual(imp.strides, strides) self.assertTrue(imp.suboffsets is None) self.assertFalse(imp.readonly) self.assertEqual(imp.buf, snd._samples_address) imp = Importer(snd, buftools.PyBUF_C_CONTIGUOUS) self.assertEqual(imp.ndim, ndim) self.assertTrue(imp.format is None) self.assertEqual(imp.strides, strides) imp = Importer(snd, buftools.PyBUF_ANY_CONTIGUOUS) self.assertEqual(imp.ndim, ndim) self.assertTrue(imp.format is None) self.assertEqual(imp.strides, strides) if ndim == 1: imp = Importer(snd, buftools.PyBUF_F_CONTIGUOUS) self.assertEqual(imp.ndim, 1) self.assertTrue(imp.format is None) self.assertEqual(imp.strides, strides) else: self.assertRaises(BufferError, Importer, snd, buftools.PyBUF_F_CONTIGUOUS) def todo_test_fadeout(self): # __doc__ (as of 2008-08-02) for pygame.mixer.fadeout: # pygame.mixer.fadeout(time): return None # fade out the volume on all sounds before stopping # # This will fade out the volume on all active channels over the time # argument in milliseconds. After the sound is muted the playback will # stop. # self.fail() def todo_test_find_channel(self): # __doc__ (as of 2008-08-02) for pygame.mixer.find_channel: # pygame.mixer.find_channel(force=False): return Channel # find an unused channel # # This will find and return an inactive Channel object. If there are # no inactive Channels this function will return None. If there are no # inactive channels and the force argument is True, this will find the # Channel with the longest running Sound and return it. # # If the mixer has reserved channels from pygame.mixer.set_reserved() # then those channels will not be returned here. # self.fail() def todo_test_get_busy(self): # __doc__ (as of 2008-08-02) for pygame.mixer.get_busy: # pygame.mixer.get_busy(): return bool # test if any sound is being mixed # # Returns True if the mixer is busy mixing any channels. If the mixer # is idle then this return False. # self.fail() def todo_test_pause(self): # __doc__ (as of 2008-08-02) for pygame.mixer.pause: # pygame.mixer.pause(): return None # temporarily stop playback of all sound channels # # This will temporarily stop all playback on the active mixer # channels. The playback can later be resumed with # pygame.mixer.unpause() # self.fail() def todo_test_set_reserved(self): # __doc__ (as of 2008-08-02) for pygame.mixer.set_reserved: # pygame.mixer.set_reserved(count): return None # reserve channels from being automatically used # # The mixer can reserve any number of channels that will not be # automatically selected for playback by Sounds. If sounds are # currently playing on the reserved channels they will not be stopped. # # This allows the application to reserve a specific number of channels # for important sounds that must not be dropped or have a guaranteed # channel to play on. # self.fail() def todo_test_stop(self): # __doc__ (as of 2008-08-02) for pygame.mixer.stop: # pygame.mixer.stop(): return None # stop playback of all sound channels # # This will stop all playback of all active mixer channels. self.fail() def todo_test_unpause(self): # __doc__ (as of 2008-08-02) for pygame.mixer.unpause: # pygame.mixer.unpause(): return None # resume paused playback of sound channels # # This will resume all active sound channels after they have been paused. self.fail() def test_get_sdl_mixer_version(self): """Ensures get_sdl_mixer_version works correctly with no args.""" expected_length = 3 expected_type = tuple expected_item_type = int version = pygame.mixer.get_sdl_mixer_version() self.assertIsInstance(version, expected_type) self.assertEqual(len(version), expected_length) for item in version: self.assertIsInstance(item, expected_item_type) def test_get_sdl_mixer_version__args(self): """Ensures get_sdl_mixer_version works correctly using args.""" expected_length = 3 expected_type = tuple expected_item_type = int for value in (True, False): version = pygame.mixer.get_sdl_mixer_version(value) self.assertIsInstance(version, expected_type) self.assertEqual(len(version), expected_length) for item in version: self.assertIsInstance(item, expected_item_type) def test_get_sdl_mixer_version__kwargs(self): """Ensures get_sdl_mixer_version works correctly using kwargs.""" expected_length = 3 expected_type = tuple expected_item_type = int for value in (True, False): version = pygame.mixer.get_sdl_mixer_version(linked=value) self.assertIsInstance(version, expected_type) self.assertEqual(len(version), expected_length) for item in version: self.assertIsInstance(item, expected_item_type) def test_get_sdl_mixer_version__invalid_args_kwargs(self): """Ensures get_sdl_mixer_version handles invalid args and kwargs.""" invalid_bool = InvalidBool() with self.assertRaises(TypeError): version = pygame.mixer.get_sdl_mixer_version(invalid_bool) with self.assertRaises(TypeError): version = pygame.mixer.get_sdl_mixer_version(linked=invalid_bool) def test_get_sdl_mixer_version__linked_equals_compiled(self): """Ensures get_sdl_mixer_version's linked/compiled versions are equal. """ linked_version = pygame.mixer.get_sdl_mixer_version(linked=True) complied_version = pygame.mixer.get_sdl_mixer_version(linked=False) self.assertTupleEqual(linked_version, complied_version) ############################## CHANNEL CLASS TESTS ############################# class ChannelTypeTest(AssertRaisesRegexMixin, unittest.TestCase): @classmethod def setUpClass(cls): # Initializing the mixer is slow, so minimize the times it is called. mixer.init() @classmethod def tearDownClass(cls): mixer.quit() def setUp(cls): # This makes sure the mixer is always initialized before each test (in # case a test calls pygame.mixer.quit()). if mixer.get_init() is None: mixer.init() def test_channel(self): """Ensure Channel() creation works.""" channel = mixer.Channel(0) self.assertIsInstance(channel, mixer.ChannelType) self.assertEqual(channel.__class__.__name__, "Channel") def test_channel__without_arg(self): """Ensure exception for Channel() creation with no argument.""" with self.assertRaises(TypeError): mixer.Channel() def test_channel__invalid_id(self): """Ensure exception for Channel() creation with an invalid id.""" with self.assertRaises(IndexError): mixer.Channel(-1) def test_channel__before_init(self): """Ensure exception for Channel() creation with non-init mixer.""" mixer.quit() with self.assertRaisesRegex(pygame.error, "mixer not initialized"): mixer.Channel(0) def todo_test_fadeout(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.fadeout: # Channel.fadeout(time): return None # stop playback after fading channel out # # Stop playback of a channel after fading out the sound over the given # time argument in milliseconds. # self.fail() def test_get_busy(self): """Ensure an idle channel's busy state is correct.""" expected_busy = False channel = mixer.Channel(0) busy = channel.get_busy() self.assertEqual(busy, expected_busy) def todo_test_get_busy__active(self): """Ensure an active channel's busy state is correct.""" self.fail() def todo_test_get_endevent(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.get_endevent: # Channel.get_endevent(): return type # get the event a channel sends when playback stops # # Returns the event type to be sent every time the Channel finishes # playback of a Sound. If there is no endevent the function returns # pygame.NOEVENT. # self.fail() def todo_test_get_queue(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.get_queue: # Channel.get_queue(): return Sound # return any Sound that is queued # # If a Sound is already queued on this channel it will be returned. # Once the queued sound begins playback it will no longer be on the # queue. # self.fail() def todo_test_get_sound(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.get_sound: # Channel.get_sound(): return Sound # get the currently playing Sound # # Return the actual Sound object currently playing on this channel. If # the channel is idle None is returned. # self.fail() def test_get_volume(self): """Ensure a channel's volume can be retrieved.""" expected_volume = 1.0 # default channel = mixer.Channel(0) volume = channel.get_volume() self.assertAlmostEqual(volume, expected_volume) def todo_test_get_volume__while_playing(self): """Ensure a channel's volume can be retrieved while playing.""" self.fail() def todo_test_pause(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.pause: # Channel.pause(): return None # temporarily stop playback of a channel # # Temporarily stop the playback of sound on a channel. It can be # resumed at a later time with Channel.unpause() # self.fail() def todo_test_play(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.play: # Channel.play(Sound, loops=0, maxtime=0, fade_ms=0): return None # play a Sound on a specific Channel # # This will begin playback of a Sound on a specific Channel. If the # Channel is currently playing any other Sound it will be stopped. # # The loops argument has the same meaning as in Sound.play(): it is # the number of times to repeat the sound after the first time. If it # is 3, the sound will be played 4 times (the first time, then three # more). If loops is -1 then the playback will repeat indefinitely. # # As in Sound.play(), the maxtime argument can be used to stop # playback of the Sound after a given number of milliseconds. # # As in Sound.play(), the fade_ms argument can be used fade in the sound. self.fail() def todo_test_queue(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.queue: # Channel.queue(Sound): return None # queue a Sound object to follow the current # # When a Sound is queued on a Channel, it will begin playing # immediately after the current Sound is finished. Each channel can # only have a single Sound queued at a time. The queued Sound will # only play if the current playback finished automatically. It is # cleared on any other call to Channel.stop() or Channel.play(). # # If there is no sound actively playing on the Channel then the Sound # will begin playing immediately. # self.fail() def todo_test_set_endevent(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.set_endevent: # Channel.set_endevent(): return None # Channel.set_endevent(type): return None # have the channel send an event when playback stops # # When an endevent is set for a channel, it will send an event to the # pygame queue every time a sound finishes playing on that channel # (not just the first time). Use pygame.event.get() to retrieve the # endevent once it's sent. # # Note that if you called Sound.play(n) or Channel.play(sound,n), the # end event is sent only once: after the sound has been played "n+1" # times (see the documentation of Sound.play). # # If Channel.stop() or Channel.play() is called while the sound was # still playing, the event will be posted immediately. # # The type argument will be the event id sent to the queue. This can # be any valid event type, but a good choice would be a value between # pygame.locals.USEREVENT and pygame.locals.NUMEVENTS. If no type # argument is given then the Channel will stop sending endevents. # self.fail() def todo_test_set_volume(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.set_volume: # Channel.set_volume(value): return None # Channel.set_volume(left, right): return None # set the volume of a playing channel # # Set the volume (loudness) of a playing sound. When a channel starts # to play its volume value is reset. This only affects the current # sound. The value argument is between 0.0 and 1.0. # # If one argument is passed, it will be the volume of both speakers. # If two arguments are passed and the mixer is in stereo mode, the # first argument will be the volume of the left speaker and the second # will be the volume of the right speaker. (If the second argument is # None, the first argument will be the volume of both speakers.) # # If the channel is playing a Sound on which set_volume() has also # been called, both calls are taken into account. For example: # # sound = pygame.mixer.Sound("s.wav") # channel = s.play() # Sound plays at full volume by default # sound.set_volume(0.9) # Now plays at 90% of full volume. # sound.set_volume(0.6) # Now plays at 60% (previous value replaced). # channel.set_volume(0.5) # Now plays at 30% (0.6 * 0.5). self.fail() def todo_test_stop(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.stop: # Channel.stop(): return None # stop playback on a Channel # # Stop sound playback on a channel. After playback is stopped the # channel becomes available for new Sounds to play on it. # self.fail() def todo_test_unpause(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Channel.unpause: # Channel.unpause(): return None # resume pause playback of a channel # # Resume the playback on a paused channel. self.fail() ############################### SOUND CLASS TESTS ############################## class SoundTypeTest(AssertRaisesRegexMixin, unittest.TestCase): @classmethod def tearDownClass(cls): mixer.quit() def setUp(cls): # This makes sure the mixer is always initialized before each test (in # case a test calls pygame.mixer.quit()). if mixer.get_init() is None: mixer.init() # See MixerModuleTest's methods test_sound_args(), test_sound_unicode(), # and test_array_keyword() for additional testing of Sound() creation. def test_sound(self): """Ensure Sound() creation with a filename works.""" filename = example_path(os.path.join("data", "house_lo.wav")) sound1 = mixer.Sound(filename) sound2 = mixer.Sound(file=filename) self.assertIsInstance(sound1, mixer.Sound) self.assertIsInstance(sound2, mixer.Sound) def test_sound__from_file_object(self): """Ensure Sound() creation with a file object works.""" filename = example_path(os.path.join("data", "house_lo.wav")) # Using 'with' ensures the file is closed even if test fails. with open(filename, "rb") as file_obj: sound = mixer.Sound(file_obj) self.assertIsInstance(sound, mixer.Sound) def test_sound__from_sound_object(self): """Ensure Sound() creation with a Sound() object works.""" filename = example_path(os.path.join("data", "house_lo.wav")) sound_obj = mixer.Sound(file=filename) sound = mixer.Sound(sound_obj) self.assertIsInstance(sound, mixer.Sound) def todo_test_sound__from_buffer(self): """Ensure Sound() creation with a buffer works.""" self.fail() def todo_test_sound__from_array(self): """Ensure Sound() creation with an array works.""" self.fail() def test_sound__without_arg(self): """Ensure exception raised for Sound() creation with no argument.""" with self.assertRaises(TypeError): mixer.Sound() def test_sound__before_init(self): """Ensure exception raised for Sound() creation with non-init mixer.""" mixer.quit() filename = example_path(os.path.join("data", "house_lo.wav")) with self.assertRaisesRegex(pygame.error, "mixer not initialized"): mixer.Sound(file=filename) @unittest.skipIf(IS_PYPY, "pypy skip") def test_samples_address(self): """Test the _samples_address getter.""" try: from ctypes import pythonapi, c_void_p, py_object try: Bytes_FromString = pythonapi.PyBytes_FromString # python 3 except: Bytes_FromString = pythonapi.PyString_FromString # python 2 Bytes_FromString.restype = c_void_p Bytes_FromString.argtypes = [py_object] samples = as_bytes("abcdefgh") # keep byte size a multiple of 4 sample_bytes = Bytes_FromString(samples) snd = mixer.Sound(buffer=samples) self.assertNotEqual(snd._samples_address, sample_bytes) finally: pygame.mixer.quit() with self.assertRaisesRegex(pygame.error, "mixer not initialized"): snd._samples_address def todo_test_fadeout(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Sound.fadeout: # Sound.fadeout(time): return None # stop sound playback after fading out # # This will stop playback of the sound after fading it out over the # time argument in milliseconds. The Sound will fade and stop on all # actively playing channels. # self.fail() def test_get_length(self): """Tests if get_length returns a correct length.""" try: for size in SIZES: pygame.mixer.quit() pygame.mixer.init(size=size) filename = example_path(os.path.join("data", "punch.wav")) sound = mixer.Sound(file=filename) # The sound data is in the mixer output format. So dividing the # length of the raw sound data by the mixer settings gives # the expected length of the sound. sound_bytes = sound.get_raw() mix_freq, mix_bits, mix_channels = pygame.mixer.get_init() mix_bytes = abs(mix_bits) / 8 expected_length = float(len(sound_bytes)) / mix_freq / mix_bytes / mix_channels self.assertAlmostEqual(expected_length, sound.get_length()) finally: pygame.mixer.quit() with self.assertRaisesRegex(pygame.error, "mixer not initialized"): sound.get_length() def test_get_num_channels(self): """ Tests if Sound.get_num_channels returns the correct number of channels playing a specific sound. """ try: filename = example_path(os.path.join("data", "house_lo.wav")) sound = mixer.Sound(file=filename) self.assertEqual(sound.get_num_channels(), 0) sound.play() self.assertEqual(sound.get_num_channels(), 1) sound.play() self.assertEqual(sound.get_num_channels(), 2) sound.stop() self.assertEqual(sound.get_num_channels(), 0) finally: pygame.mixer.quit() with self.assertRaisesRegex(pygame.error, "mixer not initialized"): sound.get_num_channels() def test_get_volume(self): """Ensure a sound's volume can be retrieved.""" try: expected_volume = 1.0 # default filename = example_path(os.path.join("data", "house_lo.wav")) sound = mixer.Sound(file=filename) volume = sound.get_volume() self.assertAlmostEqual(volume, expected_volume) finally: pygame.mixer.quit() with self.assertRaisesRegex(pygame.error, "mixer not initialized"): sound.get_volume() def todo_test_get_volume__while_playing(self): """Ensure a sound's volume can be retrieved while playing.""" self.fail() def todo_test_play(self): # __doc__ (as of 2008-08-02) for pygame.mixer.Sound.play: # Sound.play(loops=0, maxtime=0, fade_ms=0): return Channel # begin sound playback # # Begin playback of the Sound (i.e., on the computer's speakers) on an # available Channel. This will forcibly select a Channel, so playback # may cut off a currently playing sound if necessary. # # The loops argument controls how many times the sample will be # repeated after being played the first time. A value of 5 means that # the sound will be played once, then repeated five times, and so is # played a total of six times. The default value (zero) means the # Sound is not repeated, and so is only played once. If loops is set # to -1 the Sound will loop indefinitely (though you can still call # stop() to stop it). # # The maxtime argument can be used to stop playback after a given # number of milliseconds. # # The fade_ms argument will make the sound start playing at 0 volume # and fade up to full volume over the time given. The sample may end # before the fade-in is complete. # # This returns the Channel object for the channel that was selected. self.fail() def test_set_volume(self): """Ensure a sound's volume can be set.""" try: float_delta = 1.0 / 128 # SDL volume range is 0 to 128 filename = example_path(os.path.join("data", "house_lo.wav")) sound = mixer.Sound(file=filename) current_volume = sound.get_volume() # (volume_set_value : expected_volume) volumes = ( (-1, current_volume), # value < 0 won't change volume (0, 0.0), (0.01, 0.01), (0.1, 0.1), (0.5, 0.5), (0.9, 0.9), (0.99, 0.99), (1, 1.0), (1.1, 1.0), (2.0, 1.0), ) for volume_set_value, expected_volume in volumes: sound.set_volume(volume_set_value) self.assertAlmostEqual( sound.get_volume(), expected_volume, delta=float_delta ) finally: pygame.mixer.quit() with self.assertRaisesRegex(pygame.error, "mixer not initialized"): sound.set_volume(1) def todo_test_set_volume__while_playing(self): """Ensure a sound's volume can be set while playing.""" self.fail() def test_stop(self): """Ensure stop can be called while not playing a sound.""" try: expected_channels = 0 filename = example_path(os.path.join("data", "house_lo.wav")) sound = mixer.Sound(file=filename) sound.stop() self.assertEqual(sound.get_num_channels(), expected_channels) finally: pygame.mixer.quit() with self.assertRaisesRegex(pygame.error, "mixer not initialized"): sound.stop() def todo_test_stop__while_playing(self): """Ensure stop stops a playing sound.""" self.fail() def test_get_raw(self): """Ensure get_raw returns the correct bytestring.""" try: samples = as_bytes("abcdefgh") # keep byte size a multiple of 4 snd = mixer.Sound(buffer=samples) raw = snd.get_raw() self.assertIsInstance(raw, bytes_) self.assertEqual(raw, samples) finally: pygame.mixer.quit() with self.assertRaisesRegex(pygame.error, "mixer not initialized"): snd.get_raw() ##################################### MAIN ##################################### if __name__ == "__main__": unittest.main()
the-stack_0_7252
# coding=utf-8 __author__ = 'lxn3032' import os import requests import time import warnings import threading import atexit from airtest.core.api import connect_device, device as current_device from airtest.core.android.ime import YosemiteIme from hrpc.client import RpcClient from hrpc.transport.http import HttpTransport from poco.pocofw import Poco from poco.agent import PocoAgent from poco.sdk.Attributor import Attributor from poco.sdk.interfaces.screen import ScreenInterface from poco.utils.hrpc.hierarchy import RemotePocoHierarchy from poco.utils.airtest.input import AirtestInput from poco.utils import six from poco.drivers.android.utils.installation import install, uninstall __all__ = ['AndroidUiautomationPoco', 'AndroidUiautomationHelper'] this_dir = os.path.dirname(os.path.realpath(__file__)) PocoServicePackage = 'com.netease.open.pocoservice' PocoServicePackageTest = 'com.netease.open.pocoservice.test' class AndroidRpcClient(RpcClient): def __init__(self, endpoint): self.endpoint = endpoint super(AndroidRpcClient, self).__init__(HttpTransport) def initialize_transport(self): return HttpTransport(self.endpoint, self) # deprecated class AttributorWrapper(Attributor): """ 部分手机上仍不支持Accessibility.ACTION_SET_TEXT,使用YosemiteIme还是兼容性最好的方案 这个class会hook住set_text,然后改用ime的text方法 """ def __init__(self, remote, ime): self.remote = remote self.ime = ime def getAttr(self, node, attrName): return self.remote.getAttr(node, attrName) def setAttr(self, node, attrName, attrVal): if attrName == 'text' and attrVal != '': # 先清除了再设置,虽然这样不如直接用ime的方法好,但是也能凑合用着 current_val = self.remote.getAttr(node, 'text') if current_val: self.remote.setAttr(node, 'text', '') self.ime.text(attrVal) else: self.remote.setAttr(node, attrName, attrVal) class ScreenWrapper(ScreenInterface): def __init__(self, screen): super(ScreenWrapper, self).__init__() self.screen = screen def getScreen(self, width): # Android上PocoService的实现为仅返回b64编码的图像,格式固定位jpg b64img = self.screen.getScreen(width) return b64img, 'jpg' def getPortSize(self): return self.screen.getPortSize() class AndroidPocoAgent(PocoAgent): def __init__(self, endpoint, ime, use_airtest_input=False): self.client = AndroidRpcClient(endpoint) remote_poco = self.client.remote('poco-uiautomation-framework') dumper = remote_poco.dumper selector = remote_poco.selector attributor = remote_poco.attributor hierarchy = RemotePocoHierarchy(dumper, selector, attributor) if use_airtest_input: inputer = AirtestInput() else: inputer = remote_poco.inputer super(AndroidPocoAgent, self).__init__(hierarchy, inputer, ScreenWrapper(remote_poco.screen), None) def on_bind_driver(self, driver): super(AndroidPocoAgent, self).on_bind_driver(driver) if isinstance(self.input, AirtestInput): self.input.add_preaction_cb(driver) class KeepRunningInstrumentationThread(threading.Thread): """Keep pocoservice running""" def __init__(self, poco, port_to_ping): super(KeepRunningInstrumentationThread, self).__init__() self._stop_event = threading.Event() self.poco = poco self.port_to_ping = port_to_ping self.daemon = True def stop(self): self._stop_event.set() def stopped(self): return self._stop_event.is_set() def run(self): while not self.stopped(): if getattr(self.poco, "_instrument_proc", None) is not None: stdout, stderr = self.poco._instrument_proc.communicate() print('[pocoservice.apk] stdout: {}'.format(stdout)) print('[pocoservice.apk] stderr: {}'.format(stderr)) if not self.stopped(): self.poco._start_instrument(self.port_to_ping) # 尝试重启 time.sleep(1) class AndroidUiautomationPoco(Poco): """ Poco Android implementation for testing **Android native apps**. Args: device (:py:obj:`Device`): :py:obj:`airtest.core.device.Device` instance provided by ``airtest``. leave the parameter default and the default device will be chosen. more details refer to ``airtest doc`` using_proxy (:py:obj:`bool`): whether use adb forward to connect the Android device or not force_restart (:py:obj:`bool`): whether always restart the poco-service-demo running on Android device or not options: see :py:class:`poco.pocofw.Poco` Examples: The simplest way to initialize AndroidUiautomationPoco instance and no matter your device network status:: from poco.drivers.android.uiautomation import AndroidUiautomationPoco poco = AndroidUiautomationPoco() poco('android:id/title').click() ... """ def __init__(self, device=None, using_proxy=True, force_restart=False, use_airtest_input=False, **options): # 加这个参数为了不在最新的pocounit方案中每步都截图 self.screenshot_each_action = True if options.get('screenshot_each_action') is False: self.screenshot_each_action = False self.device = device or current_device() if not self.device: self.device = connect_device("Android:///") self.adb_client = self.device.adb if using_proxy: self.device_ip = self.adb_client.host or "127.0.0.1" else: self.device_ip = self.device.get_ip_address() # save current top activity (@nullable) current_top_activity_package = self.device.get_top_activity_name() if current_top_activity_package is not None: current_top_activity_package = current_top_activity_package.split('/')[0] # install ime self.ime = YosemiteIme(self.adb_client) self.ime.start() # install self._instrument_proc = None self._install_service() # forward if using_proxy: p0, _ = self.adb_client.setup_forward("tcp:10080") p1, _ = self.adb_client.setup_forward("tcp:10081") else: p0 = 10080 p1 = 10081 # start if self._is_running('com.github.uiautomator'): warnings.warn('{} should not run together with "uiautomator". "uiautomator" will be killed.' .format(self.__class__.__name__)) self.adb_client.shell(['am', 'force-stop', 'com.github.uiautomator']) ready = self._start_instrument(p0, force_restart=force_restart) if not ready: # 启动失败则需要卸载再重启,instrument的奇怪之处 uninstall(self.adb_client, PocoServicePackage) self._install_service() ready = self._start_instrument(p0) if current_top_activity_package is not None: current_top_activity2 = self.device.get_top_activity_name() if current_top_activity2 is None or current_top_activity_package not in current_top_activity2: self.device.start_app(current_top_activity_package, activity=True) if not ready: raise RuntimeError("unable to launch AndroidUiautomationPoco") if ready: # 首次启动成功后,在后台线程里监控这个进程的状态,保持让它不退出 self._keep_running_thread = KeepRunningInstrumentationThread(self, p0) self._keep_running_thread.start() endpoint = "http://{}:{}".format(self.device_ip, p1) agent = AndroidPocoAgent(endpoint, self.ime, use_airtest_input) super(AndroidUiautomationPoco, self).__init__(agent, **options) def _install_service(self): updated = install(self.adb_client, os.path.join(this_dir, 'lib', 'pocoservice-debug.apk')) install(self.adb_client, os.path.join(this_dir, 'lib', 'pocoservice-debug-androidTest.apk'), updated) return updated def _is_running(self, package_name): processes = self.adb_client.shell(['ps']).splitlines() for ps in processes: ps = ps.strip() if ps.endswith(package_name): return True return False def _start_instrument(self, port_to_ping, force_restart=False): if not force_restart: try: state = requests.get('http://{}:{}/uiautomation/connectionState'.format(self.device_ip, port_to_ping), timeout=10) state = state.json() if state.get('connected'): # skip starting instrumentation if UiAutomation Service already connected. return True except: pass if self._instrument_proc is not None: if self._instrument_proc.poll() is None: self._instrument_proc.kill() self._instrument_proc = None ready = False self.adb_client.shell(['am', 'force-stop', PocoServicePackage]) # 启动instrument之前,先把主类activity启动起来,不然instrumentation可能失败 self.adb_client.shell('am start -n {}/.TestActivity'.format(PocoServicePackage)) instrumentation_cmd = [ 'am', 'instrument', '-w', '-e', 'debug', 'false', '-e', 'class', '{}.InstrumentedTestAsLauncher'.format(PocoServicePackage), '{}.test/android.support.test.runner.AndroidJUnitRunner'.format(PocoServicePackage)] self._instrument_proc = self.adb_client.start_shell(instrumentation_cmd) def cleanup_proc(proc): def wrapped(): try: proc.kill() except: pass return wrapped atexit.register(cleanup_proc(self._instrument_proc)) time.sleep(2) for i in range(10): try: requests.get('http://{}:{}'.format(self.device_ip, port_to_ping), timeout=10) ready = True break except requests.exceptions.Timeout: break except requests.exceptions.ConnectionError: if self._instrument_proc.poll() is not None: warnings.warn("[pocoservice.apk] instrumentation test server process is no longer alive") stdout = self._instrument_proc.stdout.read() stderr = self._instrument_proc.stderr.read() print('[pocoservice.apk] stdout: {}'.format(stdout)) print('[pocoservice.apk] stderr: {}'.format(stderr)) time.sleep(1) print("still waiting for uiautomation ready.") continue return ready def on_pre_action(self, action, ui, args): if self.screenshot_each_action: # airteset log用 from airtest.core.api import snapshot msg = repr(ui) if not isinstance(msg, six.text_type): msg = msg.decode('utf-8') snapshot(msg=msg) def stop_running(self): print('[pocoservice.apk] stopping PocoService') self._keep_running_thread.stop() self._keep_running_thread.join(3) self.adb_client.shell(['am', 'force-stop', PocoServicePackage]) class AndroidUiautomationHelper(object): _nuis = {} @classmethod def get_instance(cls, device): """ This is only a slot to store and get already initialized poco instance rather than initializing again. You can simply pass the ``current device instance`` provided by ``airtest`` to get the AndroidUiautomationPoco instance. If no such AndroidUiautomationPoco instance, a new instance will be created and stored. Args: device (:py:obj:`airtest.core.device.Device`): more details refer to ``airtest doc`` Returns: poco instance """ if cls._nuis.get(device) is None: cls._nuis[device] = AndroidUiautomationPoco(device) return cls._nuis[device]
the-stack_0_7253
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Copyright (c) 2017-2020 The Raven Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the RBF code.""" from test_framework.test_framework import RavenTestFramework from test_framework.util import satoshi_round, assert_raises_rpc_error, assert_equal, Decimal from test_framework.script import CScript from test_framework.mininode import COIN, CTransaction, CTxIn, COutPoint, CTxOut MAX_REPLACEMENT_LIMIT = 100 def tx_to_hex(tx): return tx.serialize().hex() def make_utxo(node, amount, confirmed=True, script_pub_key=CScript([1])): """Create a txout with a given amount and scriptPubKey Mines coins as needed. confirmed - txouts created will be confirmed in the blockchain; unconfirmed otherwise. """ fee = 1 * COIN while node.getbalance() < satoshi_round((amount + fee) / COIN): node.generate(100) new_addr = node.getnewaddress() txid = node.sendtoaddress(new_addr, satoshi_round((amount + fee) / COIN)) tx1 = node.getrawtransaction(txid, 1) txid = int(txid, 16) i = None for i, txout in enumerate(tx1['vout']): if txout['scriptPubKey']['addresses'] == [new_addr]: break assert i is not None tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(txid, i))] tx2.vout = [CTxOut(amount, script_pub_key)] tx2.rehash() signed_tx = node.signrawtransaction(tx_to_hex(tx2)) txid = node.sendrawtransaction(signed_tx['hex'], True) # If requested, ensure txouts are confirmed. if confirmed: mempool_size = len(node.getrawmempool()) while mempool_size > 0: node.generate(1) new_size = len(node.getrawmempool()) # Error out if we have something stuck in the mempool, as this # would likely be a bug. assert (new_size < mempool_size) mempool_size = new_size return COutPoint(int(txid, 16), 0) class ReplaceByFeeTest(RavenTestFramework): def set_test_params(self): self.num_nodes = 2 self.extra_args = [["-maxorphantx=1000", "-whitelist=127.0.0.1", "-limitancestorcount=50", "-limitancestorsize=101", "-limitdescendantcount=200", "-limitdescendantsize=101"], ["-mempoolreplacement=0"]] def run_test(self): # Leave IBD self.nodes[0].generate(1) make_utxo(self.nodes[0], 1 * COIN) # Ensure nodes are synced self.sync_all() self.log.info("Running test simple doublespend...") self.test_simple_doublespend() self.log.info("Running test doublespend chain...") self.test_doublespend_chain() self.log.info("Running test doublespend tree...") self.test_doublespend_tree() self.log.info("Running test replacement feeperkb...") self.test_replacement_fee_per_kb() self.log.info("Running test spends of conflicting outputs...") self.test_spends_of_conflicting_outputs() self.log.info("Running test new unconfirmed inputs...") self.test_new_unconfirmed_inputs() self.log.info("Running test too many replacements...") self.test_too_many_replacements() self.log.info("Running test opt-in...") self.test_opt_in() self.log.info("Running test RPC...") self.test_rpc() self.log.info("Running test prioritised transactions...") self.test_prioritised_transactions() self.log.info("All Tests Passed") def test_simple_doublespend(self): """Simple doublespend""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1 * COIN)) # make_utxo may have generated a bunch of blocks, so we need to sync # before we can spend the coins generated, or else the resulting # transactions might not be accepted by our peers. self.sync_all() tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, n_sequence=0)] tx1a.vout = [CTxOut(1 * COIN, CScript([b'a']))] tx1a_hex = tx_to_hex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) self.sync_all() # Should fail because we haven't changed the fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, n_sequence=0)] tx1b.vout = [CTxOut(1 * COIN, CScript([b'b']))] tx1b_hex = tx_to_hex(tx1b) # This will raise an exception due to insufficient fee assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, True) # This will raise an exception due to transaction replacement being disabled assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[1].sendrawtransaction, tx1b_hex, True) # Extra 0.1 RVN fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, n_sequence=0)] tx1b.vout = [CTxOut(int(0.9 * COIN), CScript([b'b']))] tx1b_hex = tx_to_hex(tx1b) # Replacement still disabled even with "enough fee" assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[1].sendrawtransaction, tx1b_hex, True) # Works when enabled tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) mempool = self.nodes[0].getrawmempool() assert (tx1a_txid not in mempool) assert (tx1b_txid in mempool) assert_equal(tx1b_hex, self.nodes[0].getrawtransaction(tx1b_txid)) # Second node is running mempoolreplacement=0, will not replace originally-seen txn mempool = self.nodes[1].getrawmempool() assert tx1a_txid in mempool assert tx1b_txid not in mempool def test_doublespend_chain(self): """Doublespend of a long chain""" initial_n_value = 5000 * COIN tx0_outpoint = make_utxo(self.nodes[0], initial_n_value) prevout = tx0_outpoint remaining_value = initial_n_value chain_txids = [] while remaining_value > 1000 * COIN: remaining_value -= 100 * COIN tx = CTransaction() tx.vin = [CTxIn(prevout, n_sequence=0)] tx.vout = [CTxOut(remaining_value, CScript([1]))] tx_hex = tx_to_hex(tx) txid = self.nodes[0].sendrawtransaction(tx_hex, True) chain_txids.append(txid) prevout = COutPoint(int(txid, 16), 0) # Whether the double-spend is allowed is evaluated by including all # child fees - 40 RVN - so this attempt is rejected. dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, n_sequence=0)] dbl_tx.vout = [CTxOut(initial_n_value - 30 * COIN, CScript([1]))] dbl_tx_hex = tx_to_hex(dbl_tx) # This will raise an exception due to insufficient fee assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, dbl_tx_hex, True) # Accepted with sufficient fee dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, n_sequence=0)] dbl_tx.vout = [CTxOut(1 * COIN, CScript([1]))] dbl_tx_hex = tx_to_hex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, True) mempool = self.nodes[0].getrawmempool() for doublespent_txid in chain_txids: assert (doublespent_txid not in mempool) def test_doublespend_tree(self): """Doublespend of a big tree of transactions""" initial_n_value = 50 * COIN tx0_outpoint = make_utxo(self.nodes[0], initial_n_value) def branch(prevout, initial_value, max_txs, tree_width=5, fee_val=0.0001 * COIN, _total_txs=None): if _total_txs is None: _total_txs = [0] if _total_txs[0] >= max_txs: return txout_value = (initial_value - fee_val) // tree_width if txout_value < fee_val: return vout = [CTxOut(txout_value, CScript([i + 1])) for i in range(tree_width)] tx_data = CTransaction() tx_data.vin = [CTxIn(prevout, n_sequence=0)] tx_data.vout = vout tx_hex = tx_to_hex(tx_data) assert (len(tx_data.serialize()) < 100000) txid = self.nodes[0].sendrawtransaction(tx_hex, True) yield tx_data _total_txs[0] += 1 txid = int(txid, 16) for i, _ in enumerate(tx_data.vout): for x in branch(COutPoint(txid, i), txout_value, max_txs, tree_width=tree_width, fee_val=fee_val, _total_txs=_total_txs): yield x fee = int(0.0001 * COIN) n = MAX_REPLACEMENT_LIMIT tree_txs = list(branch(tx0_outpoint, initial_n_value, n, fee_val=fee)) assert_equal(len(tree_txs), n) # Attempt double-spend, will fail because too little fee paid dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, n_sequence=0)] dbl_tx.vout = [CTxOut(initial_n_value - fee * n, CScript([1]))] dbl_tx_hex = tx_to_hex(dbl_tx) # This will raise an exception due to insufficient fee assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, dbl_tx_hex, True) # 1 RVN fee is enough dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, n_sequence=0)] dbl_tx.vout = [CTxOut(initial_n_value - fee * n - 1 * COIN, CScript([1]))] dbl_tx_hex = tx_to_hex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, True) mempool = self.nodes[0].getrawmempool() for tx in tree_txs: tx.rehash() assert (tx.hash not in mempool) # Try again, but with more total transactions than the "max txs # double-spent at once" anti-DoS limit. for n in (MAX_REPLACEMENT_LIMIT + 1, MAX_REPLACEMENT_LIMIT * 2): fee = int(0.0001 * COIN) tx0_outpoint = make_utxo(self.nodes[0], initial_n_value) tree_txs = list(branch(tx0_outpoint, initial_n_value, n, fee_val=fee)) assert_equal(len(tree_txs), n) dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, n_sequence=0)] dbl_tx.vout = [CTxOut(initial_n_value - 2 * fee * n, CScript([1]))] dbl_tx_hex = tx_to_hex(dbl_tx) # This will raise an exception assert_raises_rpc_error(-26, "too many potential replacements", self.nodes[0].sendrawtransaction, dbl_tx_hex, True) for tx in tree_txs: tx.rehash() self.nodes[0].getrawtransaction(tx.hash) def test_replacement_fee_per_kb(self): """Replacement requires fee-per-KB to be higher""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1 * COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, n_sequence=0)] tx1a.vout = [CTxOut(1 * COIN, CScript([b'a']))] tx1a_hex = tx_to_hex(tx1a) self.nodes[0].sendrawtransaction(tx1a_hex, True) # Higher fee, but the fee per KB is much lower, so the replacement is # rejected. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, n_sequence=0)] tx1b.vout = [CTxOut(int(0.001 * COIN), CScript([b'a' * 999000]))] tx1b_hex = tx_to_hex(tx1b) # This will raise an exception due to insufficient fee assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, True) def test_spends_of_conflicting_outputs(self): """Replacements that spend conflicting tx outputs are rejected""" utxo1 = make_utxo(self.nodes[0], int(1.2 * COIN)) utxo2 = make_utxo(self.nodes[0], 3 * COIN) tx1a = CTransaction() tx1a.vin = [CTxIn(utxo1, n_sequence=0)] tx1a.vout = [CTxOut(int(1.1 * COIN), CScript([b'a']))] tx1a_hex = tx_to_hex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) tx1a_txid = int(tx1a_txid, 16) # Direct spend an output of the transaction we're replacing. tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, n_sequence=0), CTxIn(utxo2, n_sequence=0)] tx2.vin.append(CTxIn(COutPoint(tx1a_txid, 0), n_sequence=0)) tx2.vout = tx1a.vout tx2_hex = tx_to_hex(tx2) # This will raise an exception assert_raises_rpc_error(-26, "bad-txns-spends-conflicting-tx", self.nodes[0].sendrawtransaction, tx2_hex, True) # Spend tx1a's output to test the indirect case. tx1b = CTransaction() tx1b.vin = [CTxIn(COutPoint(tx1a_txid, 0), n_sequence=0)] tx1b.vout = [CTxOut(1 * COIN, CScript([b'a']))] tx1b_hex = tx_to_hex(tx1b) tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) tx1b_txid = int(tx1b_txid, 16) tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, n_sequence=0), CTxIn(utxo2, n_sequence=0), CTxIn(COutPoint(tx1b_txid, 0))] tx2.vout = tx1a.vout tx2_hex = tx_to_hex(tx2) # This will raise an exception assert_raises_rpc_error(-26, "bad-txns-spends-conflicting-tx", self.nodes[0].sendrawtransaction, tx2_hex, True) def test_new_unconfirmed_inputs(self): """Replacements that add new unconfirmed inputs are rejected""" confirmed_utxo = make_utxo(self.nodes[0], int(1.1 * COIN)) unconfirmed_utxo = make_utxo(self.nodes[0], int(0.1 * COIN), False) tx1 = CTransaction() tx1.vin = [CTxIn(confirmed_utxo)] tx1.vout = [CTxOut(1 * COIN, CScript([b'a']))] tx1_hex = tx_to_hex(tx1) self.nodes[0].sendrawtransaction(tx1_hex, True) tx2 = CTransaction() tx2.vin = [CTxIn(confirmed_utxo), CTxIn(unconfirmed_utxo)] tx2.vout = tx1.vout tx2_hex = tx_to_hex(tx2) # This will raise an exception assert_raises_rpc_error(-26, "replacement-adds-unconfirmed", self.nodes[0].sendrawtransaction, tx2_hex, True) def test_too_many_replacements(self): """Replacements that evict too many transactions are rejected""" # Try directly replacing more than MAX_REPLACEMENT_LIMIT # transactions # Start by creating a single transaction with many outputs initial_n_value = 10 * COIN utxo = make_utxo(self.nodes[0], initial_n_value) fee = int(0.0001 * COIN) split_value = int((initial_n_value - fee) / (MAX_REPLACEMENT_LIMIT + 1)) outputs = [] for i in range(MAX_REPLACEMENT_LIMIT + 1): outputs.append(CTxOut(split_value, CScript([1]))) splitting_tx = CTransaction() splitting_tx.vin = [CTxIn(utxo, n_sequence=0)] splitting_tx.vout = outputs splitting_tx_hex = tx_to_hex(splitting_tx) txid = self.nodes[0].sendrawtransaction(splitting_tx_hex, True) txid = int(txid, 16) # Now spend each of those outputs individually for i in range(MAX_REPLACEMENT_LIMIT + 1): tx_i = CTransaction() tx_i.vin = [CTxIn(COutPoint(txid, i), n_sequence=0)] tx_i.vout = [CTxOut(split_value - fee, CScript([b'a']))] tx_i_hex = tx_to_hex(tx_i) self.nodes[0].sendrawtransaction(tx_i_hex, True) # Now create doublespend of the whole lot; should fail. # Need a big enough fee to cover all spending transactions and have # a higher fee rate double_spend_value = (split_value - 100 * fee) * (MAX_REPLACEMENT_LIMIT + 1) inputs = [] for i in range(MAX_REPLACEMENT_LIMIT + 1): inputs.append(CTxIn(COutPoint(txid, i), n_sequence=0)) double_tx = CTransaction() double_tx.vin = inputs double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = tx_to_hex(double_tx) # This will raise an exception assert_raises_rpc_error(-26, "too many potential replacements", self.nodes[0].sendrawtransaction, double_tx_hex, True) # If we remove an input, it should pass double_tx = CTransaction() double_tx.vin = inputs[0:-1] double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = tx_to_hex(double_tx) self.nodes[0].sendrawtransaction(double_tx_hex, True) def test_opt_in(self): """Replacing should only work if orig tx opted in""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1 * COIN)) # Create a non-opting in transaction tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, n_sequence=0xffffffff)] tx1a.vout = [CTxOut(1 * COIN, CScript([b'a']))] tx1a_hex = tx_to_hex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Shouldn't be able to double-spend tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, n_sequence=0)] tx1b.vout = [CTxOut(int(0.9 * COIN), CScript([b'b']))] tx1b_hex = tx_to_hex(tx1b) # This will raise an exception assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[0].sendrawtransaction, tx1b_hex, True) tx1_outpoint = make_utxo(self.nodes[0], int(1.1 * COIN)) # Create a different non-opting in transaction tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, n_sequence=0xfffffffe)] tx2a.vout = [CTxOut(1 * COIN, CScript([b'a']))] tx2a_hex = tx_to_hex(tx2a) tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, True) # Still shouldn't be able to double-spend tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, n_sequence=0)] tx2b.vout = [CTxOut(int(0.9 * COIN), CScript([b'b']))] tx2b_hex = tx_to_hex(tx2b) # This will raise an exception assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[0].sendrawtransaction, tx2b_hex, True) # Now create a new transaction that spends from tx1a and tx2a # opt-in on one of the inputs # Transaction should be replaceable on either input tx1a_txid = int(tx1a_txid, 16) tx2a_txid = int(tx2a_txid, 16) tx3a = CTransaction() tx3a.vin = [CTxIn(COutPoint(tx1a_txid, 0), n_sequence=0xffffffff), CTxIn(COutPoint(tx2a_txid, 0), n_sequence=0xfffffffd)] tx3a.vout = [CTxOut(int(0.9 * COIN), CScript([b'c'])), CTxOut(int(0.9 * COIN), CScript([b'd']))] tx3a_hex = tx_to_hex(tx3a) self.nodes[0].sendrawtransaction(tx3a_hex, True) tx3b = CTransaction() tx3b.vin = [CTxIn(COutPoint(tx1a_txid, 0), n_sequence=0)] tx3b.vout = [CTxOut(int(0.5 * COIN), CScript([b'e']))] tx3b_hex = tx_to_hex(tx3b) tx3c = CTransaction() tx3c.vin = [CTxIn(COutPoint(tx2a_txid, 0), n_sequence=0)] tx3c.vout = [CTxOut(int(0.5 * COIN), CScript([b'f']))] tx3c_hex = tx_to_hex(tx3c) self.nodes[0].sendrawtransaction(tx3b_hex, True) # If tx3b was accepted, tx3c won't look like a replacement, # but make sure it is accepted anyway self.nodes[0].sendrawtransaction(tx3c_hex, True) def test_prioritised_transactions(self): # Ensure that fee deltas used via prioritisetransaction are # correctly used by replacement logic # 1. Check that feeperkb uses modified fees tx0_outpoint = make_utxo(self.nodes[0], int(1.1 * COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, n_sequence=0)] tx1a.vout = [CTxOut(1 * COIN, CScript([b'a']))] tx1a_hex = tx_to_hex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, True) # Higher fee, but the actual fee per KB is much lower. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, n_sequence=0)] tx1b.vout = [CTxOut(int(0.001 * COIN), CScript([b'a' * 740000]))] tx1b_hex = tx_to_hex(tx1b) # Verify tx1b cannot replace tx1a. assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, True) # Use prioritisetransaction to set tx1a's fee to 0. self.nodes[0].prioritisetransaction(txid=tx1a_txid, fee_delta=int(-0.1 * COIN)) # Now tx1b should be able to replace tx1a tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, True) assert (tx1b_txid in self.nodes[0].getrawmempool()) # 2. Check that absolute fee checks use modified fee. tx1_outpoint = make_utxo(self.nodes[0], int(1.1 * COIN)) tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, n_sequence=0)] tx2a.vout = [CTxOut(1 * COIN, CScript([b'a']))] tx2a_hex = tx_to_hex(tx2a) self.nodes[0].sendrawtransaction(tx2a_hex, True) # Lower fee, but we'll prioritise it tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, n_sequence=0)] tx2b.vout = [CTxOut(int(1.01 * COIN), CScript([b'a']))] tx2b.rehash() tx2b_hex = tx_to_hex(tx2b) # Verify tx2b cannot replace tx2a. assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx2b_hex, True) # Now prioritise tx2b to have a higher modified fee self.nodes[0].prioritisetransaction(txid=tx2b.hash, fee_delta=int(0.1 * COIN)) # tx2b should now be accepted tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, True) assert (tx2b_txid in self.nodes[0].getrawmempool()) def test_rpc(self): us0 = self.nodes[0].listunspent()[0] ins = [us0] outs = {self.nodes[0].getnewaddress(): Decimal(1.0000000)} rawtx0 = self.nodes[0].createrawtransaction(ins, outs, 0, True) rawtx1 = self.nodes[0].createrawtransaction(ins, outs, 0, False) json0 = self.nodes[0].decoderawtransaction(rawtx0) json1 = self.nodes[0].decoderawtransaction(rawtx1) assert_equal(json0["vin"][0]["sequence"], 4294967293) assert_equal(json1["vin"][0]["sequence"], 4294967295) rawtx2 = self.nodes[0].createrawtransaction([], outs) f_raw_tx2a = self.nodes[0].fundrawtransaction(rawtx2, {"replaceable": True}) f_raw_tx2b = self.nodes[0].fundrawtransaction(rawtx2, {"replaceable": False}) json0 = self.nodes[0].decoderawtransaction(f_raw_tx2a['hex']) json1 = self.nodes[0].decoderawtransaction(f_raw_tx2b['hex']) assert_equal(json0["vin"][0]["sequence"], 4294967293) assert_equal(json1["vin"][0]["sequence"], 4294967294) if __name__ == '__main__': ReplaceByFeeTest().main()
the-stack_0_7254
"""Setup script for shreddit. """ from setuptools import setup from codecs import open from os import path VERSION = "6.1.0" DESCRIPTION = " Remove your comment history on Reddit as deleting an account does not do so." here = path.abspath(path.dirname(__file__)) with open(path.join(here, "README.md"), encoding='utf-8') as filein: long_description = filein.read() setup( name="shreddit", version=VERSION, description=DESCRIPTION, long_description=long_description, url="https://github.com/niktheblak/Shreddit", author="David John", author_email="[email protected]", classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: End Users/Desktop", "License :: OSI Approved :: BSD License", "Programming Language :: Python"], license="FreeBSD License", packages=["shreddit"], install_requires=[ "arrow", "praw>=4", "PyYAML", "requests", "six", "loremipsum"], package_data={ "shreddit": ["*.example"]}, entry_points={ "console_scripts": ["shreddit=shreddit.app:main"]})
the-stack_0_7256
import json import math import os.path from src.cleaning.clean_drinks_4 import main as clean_drinks from pathlib import Path # clean_json_5.py def main(): print("Cleaning json from cleaned Drink Data") if not os.path.isfile(Path("../Savefiles/drinks_C2.txt")): print("Cleaned Drinks Savefiles not found. Creating one") clean_drinks() Drinks = [] before = ("gin", "rum", "vodka", "tequila", "tonic", "coke", "orange juice", "grenadine", "mate", "cola") after = ("gin", "rum", "vodka", "tequila", "tonic", "coke", "oj", "gren", "mate", "coke") with open(Path("../Savefiles/drinks_C2.txt"), "r") as f: items = json.loads(f.read())["items"] for item in items: Drink = {} print(item["drink_name"]) Drink['name'] = item["drink_name"].strip() Drink['color'] = "black" full_ammount = 0 for ing in item["ingredients"]: full_ammount = full_ammount + int(math.ceil(float(ing["ing_ammount"]))) multiplicator = float(200) / float(full_ammount) Drink["recipe"] = [] for ing in item["ingredients"]: Drink["recipe"].append({"name": after[before.index(ing["ing_name"])], "amt": int(float(ing["ing_ammount"]) * multiplicator)}) Drinks.append(Drink) with open(Path("../Savefiles/Drinks.drk"), "w+") as f: f.write(json.dumps({"Drinks": Drinks}, indent=4, sort_keys=True)) print("Cleaned JSON from cleaned Drink Data") if __name__ == "__main__": main()
the-stack_0_7259
import io from setuptools import setup NAME = 'plex-lastfm-scrobbler' VERSION = '4.1.1' description = 'Scrobble audio tracks played via Plex Media Center' try: with io.open('README.rst', encoding="utf-8") as fh: long_description = fh.read() except IOError: long_description = description setup( name='plex-scrobble', version=VERSION, author='Jesse Ward', author_email='[email protected]', description=description, long_description=long_description, license='MIT', url='https://github.com/jesseward/plex-lastfm-scrobbler', packages=['plex_scrobble'], entry_points={ 'console_scripts': [ 'plex-scrobble = plex_scrobble.__main__:main' ] }, install_requires=[ 'click>=6.2', 'pylast>=1.6.0', 'toml>=0.9.1', 'requests>=2.12.0', ], classifiers=[ 'Environment :: Console', 'Development Status :: 5 - Production/Stable', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', ], )
the-stack_0_7260
''' MIT License Copyright (c) 2021 Chen Guojun Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' bl_info = { "name": "Grab Frame", "author": "GuoJun Chen ([email protected])", "version": (1, 0, 0), "blender": (2, 80, 0), "location": "3D View >Tool> Grab Frame", "description": '''Use keyboard shortcuts to change the current frame by a specified number of frames.ctrl + left arrow : back frame,ctrl + right arrow : forward frame''', "category": "Animation"} from . import grab_frame def register(): grab_frame.register() def unregister(): grab_frame.unregister() if __name__ == "__main__": register()
the-stack_0_7261
import numpy as np import matplotlib.pyplot as plt # set width of bar barWidth = 0.25 # fig = plt.subplots(figsize =(12, 8)) # set height of bar PDR=[0.633136094675,0.7,0.846153846154,0.990990990991,0.021822849807445] Filter=[0.723032069970845,0.71,0.88,0.976909413854352,0.217672413793103] # Set position of bar on X axis br1 = np.arange(2,len(PDR)+2) print(br1) br2 = [x + barWidth for x in br1] br3 = [x + barWidth for x in br2] colors = iter([plt.cm.tab20(i) for i in range(20)]) # next(colors) # next(colors) # next(colors) # plt.grid(color='#95a5a6', linestyle='--', linewidth=1, axis='y', alpha=0.5) # Make the plot plt.bar(br1, Filter, width = barWidth, edgecolor ='black', label ='Control', color=[next(colors)]) next(colors) plt.bar(br2, PDR, width = barWidth, edgecolor ='black', label ='Data',color=[next(colors)],hatch = '/') # plt.bar(br3, RPL, width = barWidth, # edgecolor ='black', label ='RPL PDR [#]',color=[next(colors)],hatch = '/') # Adding Xticks plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.xlabel('Number of neighbors', fontweight ='bold', fontsize=15) plt.ylabel('Reception Ratio [%]', fontweight ='bold', fontsize=15) # plt.yticks(fontsize=15) plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.1), ncol=3, fancybox=True, shadow=True, fontsize=15) plt.show() RMSE=[1.43394533652394,1.44394533652394,1.45860840464733,1.47824637203261,2.45796016765343] # fig = plt.subplots(figsize =(14, 8)) # plt.grid(color='#95a5a6', linestyle='--', linewidth=1, axis='y', alpha=0.5) plt.bar(br1, RMSE, width = barWidth, edgecolor ='black', label ='RMSE [m]', color=[next(colors)]) plt.xlabel('Number of neighbors', fontweight ='bold', fontsize=15) plt.ylabel('Localization Error [m]', fontweight ='bold', fontsize=15) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.show() # fig = plt.subplots(figsize =(14, 8)) # plt.grid(color='#95a5a6', linestyle='--', linewidth=1, axis='y', alpha=0.5) delay=[191.863,200.1,209.961,218.996, 861.0759] plt.bar(br1, delay, width = barWidth, edgecolor ='black', label ='E2E delay [ms]', color=[next(colors)]) plt.xlabel('Number of neighbors', fontweight ='bold', fontsize=15) plt.ylabel('E2E delay [ms]', fontweight ='bold', fontsize=15) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.show()
the-stack_0_7263
#!/usr/bin/env python3 import os import random # Discuss: random module import sys # Constants # Discuss: set data structure NSFW = {'bong', 'sodomized', 'kiss', 'head-in', 'telebears'} # Main Execution def main(): characters = [] # Discuss: os.popen for index, line in enumerate(os.popen('cowsay -l')): if not index: # Discuss: enumerate continue for character in line.split(): # Review: str.split if character not in NSFW: # Review: searching collection characters.append(character) # Review: list.append selected = random.choice(characters) os.system(f'cowsay -f {selected}') # Variant: check exist status if __name__ == '__main__': main()
the-stack_0_7266
# Copyright (c) 2020, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause import numpy as np from coremltools.converters.mil.mil import types from coremltools.converters.mil.mil.types import is_compatible_type from coremltools.converters.mil.mil.types.symbolic import is_symbolic, any_symbolic from . import SPACES from .block import curr_block from .input_type import TupleInputType, DefaultInputs from .var import Var, InternalVar, ListVar VALUE = 1 SYMBOL = 2 NONE = 4 ALL = 7 def _is_compatible_symbolic_array(a, b): """ A helper function which check if two numpy array with symbolic value. For instance, a = np.array([is0, is2]) b = np.array([is1, 1]) are considered compatible. a = np.array([is0, 1]) b = np.array([is1, -1]) are not. """ if not a.shape == b.shape: return False a = a.flatten() b = b.flatten() for t, v in zip(a, b): if not is_symbolic(t) and not is_symbolic(v): if t != v: return False return True def precondition(allow=ALL): """ A helper decorator for value_inference method. Decorate value_inference with parameter VALUE/SYMBOL/NONE or ALL. For VALUE/SYMBOL/NONE use logical or ( | ) for multiple allowance. Note that: 1. ALL == VALUE | SYMBOL | NONE 2. Chosen flag (some or all VALUE/SYMBOL/NONE) must be satisfied by EVERY INPUTS for the precondition to be satisfied. The meaning for each flag is: VALUE: value that can be materialized during compile time SYMBOL: value that cannot be materialized by exist as a symbol value NONE: a None value Usage: @precondition(allow=VALUE|SYMBOL) def value_inference(self): '''some value_inference implementation''' """ ALLOW_VALUE = allow & VALUE ALLOW_SYMBOL = allow & SYMBOL ALLOW_NONE = allow & NONE def process(v, has_value, has_symbol, has_none): """ v: Var Return updated has_value, has_symbol, has_none """ if any_symbolic(v.sym_val): return has_value, True, has_none elif v.val is None: return has_value, has_symbol, True return True, has_symbol, has_none def decorator(func): def wrapper(self): HAS_VALUE = False HAS_SYMBOL = False HAS_NONE = False for in_name, in_type in self._input_types.items(): if in_type.optional: # Optional inputs are not required to invoke value_inference() continue if isinstance(in_type, TupleInputType): for v in self._input_vars[in_name]: HAS_VALUE, HAS_SYMBOL, HAS_NONE = process( v, HAS_VALUE, HAS_SYMBOL, HAS_NONE ) else: HAS_VALUE, HAS_SYMBOL, HAS_NONE = process( self._input_vars[in_name], HAS_VALUE, HAS_SYMBOL, HAS_NONE ) if HAS_VALUE and not ALLOW_VALUE: msg = "Implementation of value_inference() for op {} doesn't support input with VALUE" raise NotImplementedError(msg.format(self.op_type)) elif HAS_SYMBOL and not ALLOW_SYMBOL: msg = "Implementation of value_inference() for op {} doesn't support input with SYMBOL" raise NotImplementedError(msg.format(self.op_type)) elif HAS_NONE and not ALLOW_NONE: msg = "Implementation of value_inference() for op {} doesn't support input with NONE" raise NotImplementedError(msg.format(self.op_type)) else: return func(self) return wrapper return decorator def is_internal_input(arg_name): return arg_name[0] == "_" class mil_list(object): ''' A wrapper around python list ''' def __init__(self, ls=None): self.ls = ls if ls is not None else [] if not isinstance(self.ls, list): raise TypeError("Type of 'ls' must be list in the 'mil_list' class") class Operation(object): """ Represents Operation in MIL. # Properties name (str): The name of the operation input_types (InputSpec, class attr): Read-only named input types from all subclasses. Input types are used to validate `inputs`. inputs [_input_vars] (dict of str --> Var): An Operation (subclass of Operation) only has access to input Var, which is already validated against `input_spec`. outputs [_output_vars] (list of Var): List of output var based on type inference. Read-only """ def __init__(self, **kwargs): self._input_types = self.input_spec.input_types self.name = kwargs.get("name", None) self._output_vars = None self._input_vars = {} self.blocks = [] self.enclosing_block = curr_block() # Initialize inputs as object attributes (all None) for k in self._input_types.keys(): setattr(self, k, None) self._input_vars[k] = None self._check_expected_inputs(kwargs) # Set inputs from kwargs input_kv = {k: v for k, v in kwargs.items() \ if k in self._input_types and v is not None} self._validate_and_set_inputs(input_kv) self._ensure_required_inputs() def _check_expected_inputs(self, kwargs): """ Check that all kwargs inputs are one of the followings: - system inputs (non-attributes) - op inputs (self._input_types.keys()) """ non_attributes = [ "name", "symbolic_datatype", "datatype", "symbolic_value", "value", "version", "before_op", "no_check_var_visibility", # no_check_var_visibility==True to deviate from SSA "no_check_var_types", # no_check_var_types==True to force set inputs, even if type does not match with earlier ones ] for k in kwargs.keys(): if k not in non_attributes and k not in self._input_types: raise ValueError( "Unknown input '{}' for op '{}'".format( k, self.op_type) ) def set_inputs(self, no_check_var_types=False, type_inference=False, **input_kvs): """ Parameters ---------- - input_kvs: Dict[str, Var] Value cannot be None - type_inference: bool True to perform type inference and recreate output Var. """ self._validate_and_set_inputs(input_kvs, no_check_var_types=no_check_var_types) if type_inference and not no_check_var_types: self.type_value_inference() self._ensure_required_inputs() def get_flattened_inputs(self): """ Returns: list[Var]. Flatten all tuple inputs """ flat_inputs = [] for v in self.inputs.values(): if isinstance(v, (list, tuple)): flat_inputs.extend(v) else: flat_inputs.append(v) return flat_inputs def type_value_inference(self, overwrite_output=False): """ Perform type inference and auto_val computation based on new input Vars in kwargs. If self._output_vars is None then we generate _output_vars; otherwise no new Var is created, but type inference result is verified against existing _output_vars, if overwrite_output is False. If overwrite_output is True, then the type inference result overwrites the existing _output_vars """ output_types = self.type_inference() if not isinstance(output_types, tuple): output_types = (output_types,) output_vals = self._auto_val(output_types) try: output_names = self.output_names() if not isinstance(output_names, tuple): output_names = (output_names,) except NotImplementedError as e: if len(output_types) > 1: output_names = tuple(str(i) for i, _ in enumerate(output_types)) else: output_names = ("",) # output name same as op name. # Combine (output_names, output_types, output_vals) to create output # Vars. if self._output_vars is None: self._output_vars = [] for i, (n, sym_type, sym_val) in enumerate( zip(output_names, output_types, output_vals) ): name = self.name + ":" + n if n != "" else self.name if types.is_list(sym_type): new_var = ListVar( name, elem_type=sym_type.T[0], init_length=sym_type.T[1], dynamic_length=sym_type.T[2], sym_val=sym_val if (sym_val is not None and isinstance(sym_val.val, list)) else None, op=self, op_output_idx=i, ) else: new_var = Var(name, sym_type, sym_val, op=self, op_output_idx=i) self._output_vars.append(new_var) else: # Check new inference result against existing self._output_vars. for i, (n, sym_type, sym_val) in enumerate( zip(output_names, output_types, output_vals) ): out_var = self._output_vars[i] # Check type inference if overwrite_output: out_var._sym_type = sym_type elif not is_compatible_type(sym_type, out_var.sym_type): msg = "Output Var {} in op {} type changes with new input Vars" raise ValueError(msg.format(out_var.name, self.name)) # Check value inference if overwrite_output: out_var._sym_val = sym_val if sym_val is not None and out_var.sym_val is not None: if np.any(sym_val.val != out_var.sym_val): if overwrite_output: out_var._sym_val = sym_val else: msg = 'value_inference differs for var {} in op {}' if not _is_compatible_symbolic_array(sym_val.val, out_var.sym_val): raise ValueError(msg.format(out_var.name, self.name)) def _auto_val(self, output_types): """ # Evaluation is two stage: # # Stage 1: Check whether the method value_inference() is implemented # # Stage 2: Check if there's an value_inference() implementation # for given input types. # # Suppose input are all SYMBOL: # Case 1: No value_inference() implemented => fail at stage 1 # Case 2: If value_inference() implemented, but requires all VALUE not # SYMBOL => fail at stage 2 # Case 3: If value_inference() implemented, and has no restriction on # input types => Success # # If either stage fails, outputs[i].val is None. # Otherwise, output[i].sym_val is not None. output_types: tuple of builtin types Returns: output_vals: tuple of builtin type with value, or tuple of None """ do_auto_val = True if do_auto_val: # Is self.value_inference implemented for corresponding input? try: vals = self.value_inference() except NotImplementedError as e: do_auto_val = False if not do_auto_val: # No auto_val possible. return tuple(None for _ in output_types) if not isinstance(vals, (tuple, list)): vals = (vals,) for val in vals: if val is None: do_auto_val = False if not do_auto_val: # No auto_val possible. return tuple(None for _ in output_types) auto_val = [] for t, v in zip(output_types, vals): builtin_val = t() if isinstance(v, mil_list): builtin_val.val = v.ls else: builtin_val.val = v auto_val.append(builtin_val) return auto_val def value_inference(self): """ Optional Python implementation of the op based on (materialized) values in `self.input_var`. Return a builtin value (single output) or a tuple of builtin values (multi-outputs) of the same length as returned by ` type_inference` """ msg = "value_inference() is not implemented by op {}" raise NotImplementedError(msg.format(self.op_type)) def default_inputs(self): """ Optional. Returns default values for optional inputs. The function is guaranteed to have access to all required inputs and possibly some optional inputs should the user supply them. They may be used to construct default values, such as `strides=[1]*num_spatial_dims` in conv, where `num_spatial_dims` may be inferred from the rank of required inputs """ return DefaultInputs() def output_names(self): """ Optional. If implemented, we set the output var i name as self.name + "/" + output_names[i] Returns a string (single output) or tuple of strings """ msg = "output_names() is not implemented by op {}" raise NotImplementedError(msg.format(self.op_type)) def type_inference(self): """ Return (builtin_type, builtin_val) pair from type inference. builtin_val may be None if symbolic_value is not attainable at compile time. """ raise NotImplementedError("This function must be implemented by each op") def build_nested_blocks(self): """ Build nested blocks (for cond and while_loop and other composite blocks) """ pass def _ensure_required_inputs(self): """ Raise value error if required inputs aren't present """ for name, input_type in self._input_types.items(): if not input_type.optional and \ self._input_vars[name] is None: msg_prefix = 'Op \"{}\" (op_type: {}) '.format(self.name, self.op_type) raise ValueError(msg_prefix + \ "Required input {} is missing".format(name)) def _validate_and_set_inputs(self, input_kvs, no_check_var_types=False): """ For each k, v in `input_kvs`, perform the followings: - Check k exists in `self.input_specs` - Check that v satisfies the correspodning `InputType` - Set input, possibly replacing existing input. Note that it does not ensure all required inputs are satisfied. Use _ensure_required_inputs() for that. Parameters ---------- - input_kvs: Dict[str, Var] Each key in input_kvs must exist in `self.input_specs`. Its values must be a Var. - no_check_var_types: bool True to check var types against input_specs only, but not enforcing new input vars to be a subtype of existing input vars """ for key in input_kvs.keys(): if key not in self._input_types: raise RuntimeError( "Unknown input '{}' for op '{}'".format(key, self.op_type) ) def check_and_detach(v_new, v_old, op, no_check_var_types): # Check new var's sym_type is compatible with the # existing's sym_type. if ( not is_compatible_type(v_new.sym_type, v_old.sym_type) and not no_check_var_types ): msg = "New var type {} not a subtype of " + "existing var type {}" raise ValueError(msg.format(v_new.sym_type, v_old.sym_type)) v_old.remove_child_op(op, no_check_var_types) self.input_spec.validate_inputs(self.name, self.op_type, input_kvs) for name, var in input_kvs.items(): # TODO: remove InternalVar check #if not isinstance(var, InternalVar): # Remove this operation itself from existing input # Var's child_ops existing_input_var = self._input_vars[name] if existing_input_var is not None: if isinstance(existing_input_var, (list, tuple)): for v_old, v_new in zip(existing_input_var, var): check_and_detach(v_new, v_old, self, no_check_var_types) else: check_and_detach( var, existing_input_var, self, no_check_var_types ) # Set var as input_var if isinstance(var, Var): var.add_child_op(self) elif isinstance(var, (tuple, list)): for v in var: v.add_child_op(self) # ignore function inputs self._input_vars[name] = var setattr(self, name, var) @property def inputs(self): """ Returns ------- - inputs: Dict[str, Union[Var, Tuple[Var]]] """ # Filter out InternalVar return {k: v for k, v in self._input_vars.items() if not isinstance(v, InternalVar) and v is not None} @property def outputs(self): return self._output_vars @property def op_type(self): return type(self).__name__ def remove_from_block(self): """ Remove / detach itself from the enclosing block. See Block.remove_ops for details. """ self.enclosing_block.remove_ops([self]) @staticmethod def var_to_str(v): if isinstance(v, (tuple, list)): return "(" + ", ".join(["%" + s.name for s in v]) + ")" else: return "%" + v.name def indented_str(self, indent=""): s = indent if self.outputs is not None: s += ", ".join([str(o) for o in self.outputs]) s += " = " + self.op_type + "(" if self.op_type == "const": if self.mode.val == "immediate_value": if isinstance(self.val.sym_val, (np.generic, np.ndarray)): val_str = str(self.val.sym_val.tolist()) else: val_str = ( '"' + self.val.sym_val + '"' if isinstance(self.val.sym_val, str) else str(self.val.sym_val) ) s += "val=" + val_str else: s += "val=(file_value)" else: s += ", ".join( [ k + "=" + Operation.var_to_str(self.inputs[k]) for k in self._input_types.keys() if k in self.inputs and not is_internal_input(k) ] ) s += ', name="{}")\n'.format(self.name) for b in self.blocks: s += b.indented_str(indent=indent + SPACES) return s def __repr__(self): return str(self) def __str__(self): return self.indented_str(SPACES)
the-stack_0_7267
import sqlite3 from abc import abstractmethod from ipaddress import IPv4Address from ipaddress import IPv6Address as IPv6AddressPython from typing import (Callable, FrozenSet, Generic, Optional, Set, Sized, TypeVar, Union) from .blockchain import Miner, Node, Version from .db import Cursor, Database, ForeignKey, Model, Table from .geolocation import Geolocation from .serialization import DateTime, IntFlag, IPv6Address N = TypeVar("N", bound=Node) class HostInfo(Model): ip: IPv6Address isp: str os: str timestamp: DateTime def __hash__(self): return hash(self.ip) class CrawlState(IntFlag): UNKNOWN = 0 DISCOVERED = 1 GEOLOCATED = 2 ATTEMPTED_CONNECTION = DISCOVERED | 4 CONNECTION_FAILED = ATTEMPTED_CONNECTION | 8 CONNECTED = ATTEMPTED_CONNECTION | 16 CONNECTION_RESET = CONNECTED | 32 REQUESTED_NEIGHBORS = CONNECTED | 64 GOT_NEIGHBORS = REQUESTED_NEIGHBORS | 128 REQUESTED_VERSION = CONNECTED | 256 GOT_VERSION = REQUESTED_VERSION | 512 class CrawledNode(Model["CrawlDatabase"]): ip: IPv6Address port: int is_miner: Miner state: CrawlState source: str def __hash__(self): return hash((self.ip, self.port)) def get_events(self) -> Cursor["CrawlEvent"]: return self.db.events.select( node=self.rowid, order_by="timestamp", order_direction="DESC" ) def get_version(self) -> Optional[Version]: for version_event in self.db.events.select( node=self.rowid, order_by="timestamp", order_direction="DESC", limit=1, event="version", ): return Version(version_event.description, version_event.timestamp) return None def get_location(self) -> Optional[Geolocation]: return self.db.locations.select( ip=self.ip, order_by="timestamp DESC", limit=1 ).fetchone() def last_crawled(self) -> Optional[DateTime]: max_edge = Cursor( self.db.edges, "SELECT a.* FROM edges a LEFT OUTER JOIN edges b ON a.rowid = b.rowid AND a.timestamp < b.timestamp " "WHERE b.rowid is NULL AND a.from_node = ? LIMIT 1", (self.rowid,), ).fetchone() if max_edge is None: return None return max_edge.timestamp def get_latest_edges(self) -> Set["CrawledNode"]: return { edge.to_node.row for edge in Cursor( self.db.edges, "SELECT a.* FROM edges a LEFT OUTER JOIN edges b ON a.rowid = b.rowid AND a.timestamp < b.timestamp " "WHERE b.rowid is NULL AND a.from_node = ?", (self.rowid,), ) } def out_degree(self) -> int: cur = self.db.con.cursor() try: result = cur.execute( "SELECT count(a.*) FROM edges a " "LEFT OUTER JOIN edges b ON a.rowid = b.rowid AND a.timestamp < b.timestamp " "WHERE b.rowid is NULL AND a.from_node = ?", (self.rowid,), ) return result.fetchone()[0] finally: cur.close() class Edge(Model): from_node: ForeignKey["nodes", CrawledNode] # noqa: F821 to_node: ForeignKey["nodes", CrawledNode] # noqa: F821 timestamp: DateTime class CrawlEvent(Model): node: ForeignKey["nodes", CrawledNode] # noqa: F821 timestamp: DateTime event: str description: str class CrawlDatabase(Database): nodes: Table[CrawledNode] events: Table[CrawlEvent] locations: Table[Geolocation] edges: Table[Edge] hosts: Table[HostInfo] def __init__(self, path: str = ":memory:"): super().__init__(path) @property def crawled_nodes(self) -> Cursor[CrawledNode]: return Cursor( self.nodes, f"SELECT DISTINCT n.*, n.rowid FROM {self.nodes.name} n WHERE n.state >= ?", (CrawlState.CONNECTED,), ) class Crawl(Generic[N], Sized): @abstractmethod def __contains__(self, node: N) -> bool: raise NotImplementedError() @abstractmethod def __getitem__(self, node: N) -> CrawledNode: raise NotImplementedError() @abstractmethod def get_node(self, node: N) -> CrawledNode: raise NotImplementedError() @abstractmethod def add_event( self, node: CrawledNode, event: str, description: str, timestamp: Optional[DateTime] = None, ): raise NotImplementedError() @abstractmethod def set_location(self, ip: IPv6Address, location: Geolocation): raise NotImplementedError() @abstractmethod def get_neighbors(self, node: N) -> FrozenSet[N]: raise NotImplementedError() @abstractmethod def set_neighbors(self, node: N, neighbors: FrozenSet[N]): raise NotImplementedError() @abstractmethod def set_miner(self, node: N, miner: Miner): raise NotImplementedError() @abstractmethod def set_host_info(self, host_info: HostInfo): raise NotImplementedError() @abstractmethod def add_state(self, node: Union[N, CrawledNode], state: CrawlState): raise NotImplementedError() @abstractmethod def update_node(self, node: CrawledNode): raise NotImplementedError() def commit(self): pass class DatabaseCrawl(Generic[N], Crawl[N]): def __init__( self, constructor: Callable[[Union[str, IPv4Address, IPv6AddressPython], int], N], db: CrawlDatabase, ): super().__init__() self.constructor: Callable[ [Union[str, IPv4Address, IPv6AddressPython], int], N ] = constructor self.db: CrawlDatabase = db def __contains__(self, node: N) -> bool: return self.db.nodes.select(ip=node.ip, port=node.port).fetchone() is not None def __getitem__(self, node: N) -> CrawledNode: try: return next(iter(self.db.nodes.select(ip=node.address, port=node.port))) except StopIteration: pass raise KeyError(node) def commit(self): self.db.con.commit() def get_node(self, node: N) -> CrawledNode: try: return self[node] except KeyError: # this is a new node pass ret = CrawledNode(ip=node.address, port=node.port, source=node.source) self.db.nodes.append(ret) return ret def update_node(self, node: CrawledNode): with self.db: self.db.nodes.update(node) def add_event( self, node: CrawledNode, event: str, description: str, timestamp: Optional[DateTime] = None, ): with self.db: if timestamp is None: timestamp = DateTime() self.db.events.append( CrawlEvent( node=node.rowid, event=event, description=description, timestamp=timestamp, ) ) def get_neighbors(self, node: N) -> FrozenSet[N]: return frozenset( { self.constructor(neighbor.ip, neighbor.port) for neighbor in self.get_node(node).get_latest_edges() } ) def set_neighbors(self, node: N, neighbors: FrozenSet[N]): with self.db: crawled_node = self.get_node(node) timestamp = DateTime() self.db.edges.extend( [ Edge( from_node=crawled_node, to_node=self.get_node(neighbor), timestamp=timestamp, ) for neighbor in neighbors ] ) self.add_state(node, CrawlState.GOT_NEIGHBORS) for neighbor in neighbors: # Make sure we record that we discovered the neighbor _ = self.get_node(neighbor) # (simply getting the node for the neighbor will ensure that its state's "discovered" flag is set) def set_location(self, ip: IPv6Address, location: Geolocation): with self.db: self.db.locations.append(location) def set_miner(self, node: N, miner: Miner): with self.db: crawled_node = self.get_node(node) crawled_node.is_miner = miner self.db.nodes.update(crawled_node) def set_host_info(self, host_info: HostInfo): with self.db: self.db.hosts.append(host_info) def add_state(self, node: Union[N, CrawledNode], state: CrawlState): with self.db: if isinstance(node, CrawledNode): crawled_node = node else: crawled_node = self.get_node(node) if crawled_node.state & state != state: crawled_node.state = crawled_node.state | state self.db.nodes.update(crawled_node) def __len__(self) -> int: return len(self.db.nodes)
the-stack_0_7268
from __future__ import print_function from __future__ import absolute_import from __future__ import unicode_literals from __future__ import division import numpy as np from scipy.constants import mu_0, pi, epsilon_0 from scipy.special import erf from SimPEG import Utils def Qfun(R, L, f, alpha=None): if alpha is None: omega = np.pi*2*f tau = L/R alpha = omega*tau Q = (alpha**2+1j*alpha) / (1+alpha**2) return alpha, Q def Mijfun(x,y,z,incl,decl,x1,y1,z1,incl1,decl1, area=1.,area0=1.): """ Compute mutual inductance between two loops This Parameters ---------- x : array x location of the Tx loop y : array y location of the Tx loop z : array z location of the Tx loop incl: XXX decl: XXX x1 : array XXX y1 : array XXX z1 : array XXX incl1: XXX decl1: XXX """ # Pretty sure below assumes dipole x = np.array(x, dtype=float) y = np.array(y, dtype=float) z = np.array(z, dtype=float) x1 = np.array(x1, dtype=float) y1 = np.array(y1, dtype=float) z1 = np.array(z1, dtype=float) incl = np.array(incl, dtype=float) decl = np.array(decl, dtype=float) incl1 = np.array(incl1, dtype=float) decl1 = np.array(decl1, dtype=float) di=np.pi*incl/180.0 dd=np.pi*decl/180.0 cx=np.cos(di)*np.cos(dd) cy=np.cos(di)*np.sin(dd) cz=np.sin(di) ai=np.pi*incl1/180.0 ad=np.pi*decl1/180.0 ax=np.cos(ai)*np.cos(ad) ay=np.cos(ai)*np.sin(ad) az=np.sin(ai) # begin the calculation a=x-x1 b=y-y1 h=z-z1 rt=np.sqrt(a**2.+b**2.+h**2.)**5. txy=3.*a*b/rt txz=3.*a*h/rt tyz=3.*b*h/rt txx=(2.*a**2.-b**2.-h**2.)/rt tyy=(2.*b**2.-a**2.-h**2.)/rt tzz=-(txx+tyy) scale = mu_0*np.pi*area*area0/4 # scale = 1. bx= (txx*cx+txy*cy+txz*cz) by= (txy*cx+tyy*cy+tyz*cz) bz= (txz*cx+tyz*cy+tzz*cz) return scale*(bx*ax+by*ay+bz*az) def Cfun(L,R,xc,yc,zc,incl,decl,S,ht,f,xyz): """ Compute coupling coefficients .. math:: - \frac{M_{12} M_{23}}{M_{13}L_2} Parameters ---------- """ L = np.array(L, dtype=float) R = np.array(R, dtype=float) xc = np.array(xc, dtype=float) yc = np.array(yc, dtype=float) zc = np.array(zc, dtype=float) incl = np.array(incl, dtype=float) decl = np.array(decl, dtype=float) S = np.array(S, dtype=float) f = np.array(f, dtype=float) # This is a bug, hence needs to be fixed later x = xyz[:,1] y = xyz[:,0] z = xyz[:,2] # simulate anomalies yt=y-S/2. yr=y+S/2. dm=-S/2. dp= S/2. # Computes mutual inducances # Mijfun(x,y,z,incl,decl,x1,y1,z1,incl1,decl1) M13=Mijfun(0.,dm,0.,90.,0., 0., dp, 0., 90.,0.) M12=Mijfun(x,yt,z,90.,0.,xc,yc,zc,incl,decl,area=1.,area0=3.) M23=Mijfun(xc,yc,zc,incl,decl,x,yr,z,90.,0.,area=3.,area0=1.) C = -M12*M23/(M13*L) return C, M12, M23, M13*np.ones_like(C) if __name__ == '__main__': out = Mijfun(0., 0., 0., 0., 0., 10., 0, 0., 0., 0.) anal = mu_0*np.pi / (2*10**3) err = abs(out-anal) print(err) showIt = False import matplotlib.pyplot as plt f = np.logspace(-3, 3, 61) alpha, Q = Qfun(1., 0.1, f) if showIt: plt.semilogx(alpha, Q.real) plt.semilogx(alpha, Q.imag) plt.show() L = 1. R = 2000. xc = 0. yc = 0. zc = 2. incl = 0. decl = 90. S = 4. ht = 0. f = 10000. xmin = -10. xmax = 10. dx = 0.25 xp = np.linspace(xmin, xmax, 101) yp = xp.copy() zp = np.r_[-ht] [Y, X] = np.meshgrid(yp, xp) xyz = np.c_[X.flatten(), Y.flatten(), np.ones_like(X.flatten())*ht] C, M12, M23, M13 = Cfun(L,R,xc,yc,zc,incl,decl,S,ht,f,xyz) [Xp, Yp] = np.meshgrid(xp, yp) if showIt: plt.contourf(X, Y, C.reshape(X.shape), 100) plt.show() # xyz = np.c_[xp, np.zeros_like(yp), np.zeros_like(yp)] # C, M12, M23, M13 = Cfun(L,R,xc,yc,zc,incl,decl,S,ht,f,xyz) # plt.plot(xp, C, 'k') # plt.plot(xp, M12, 'b') # plt.plot(xp, M23, 'g') # plt.plot(xp, M13, 'r') # plt.show()
the-stack_0_7269
import inspect class ProblemSizeCounter: def __init__ (self, J, F, L, M, P): self._initNumberOfVariables(J, F, L, M, P) self._initNumberOfConstraints(J, F, L, M, P) def _initNumberOfVariables(self, J, F, L, M, P): self.numberOfVariablesX = P * L * F self.numberOfVariablesY = P * F * J self.totalNumberOfVariables = self.numberOfVariablesX + self.numberOfVariablesY def _initNumberOfConstraints(self, J, F, L, M, P): self.numberOfDemandConstraints = J * P self.numberOfMachineCapacityConstraints = L * F self.numberOfVariablesCompatibilityConstraints = P * F self.numberOfResourcesConstraints = M * F self.totalNumberOfConstraints = self.numberOfDemandConstraints \ + self.numberOfMachineCapacityConstraints \ + self.numberOfVariablesCompatibilityConstraints \ + self.numberOfResourcesConstraints def __str__ (self): attributesToPrint = [ "numberOfVariablesX", "numberOfVariablesY", "totalNumberOfVariables", "numberOfDemandConstraints", "numberOfMachineCapacityConstraints", "numberOfVariablesCompatibilityConstraints", "numberOfResourcesConstraints", "totalNumberOfConstraints" ] string = "ProblemSizeCounter[\n" for attribute in attributesToPrint: value = getattr(self, attribute) string += f"\t{attribute} = {value}\n" string += "]" return string
the-stack_0_7271
# coding: utf-8 from __future__ import unicode_literals import re from .common import InfoExtractor class JeuxVideoIE(InfoExtractor): _VALID_URL = r'https?://.*?\.jeuxvideo\.com/.*/(.*?)\.htm' _TESTS = [{ 'url': 'http://www.jeuxvideo.com/reportages-videos-jeux/0004/00046170/tearaway-playstation-vita-gc-2013-tearaway-nous-presente-ses-papiers-d-identite-00115182.htm', 'md5': '046e491afb32a8aaac1f44dd4ddd54ee', 'info_dict': { 'id': '114765', 'ext': 'mp4', 'title': 'Tearaway : GC 2013 : Tearaway nous présente ses papiers d\'identité', 'description': 'Lorsque les développeurs de LittleBigPlanet proposent un nouveau titre, on ne peut que s\'attendre à un résultat original et fort attrayant.', }, }, { 'url': 'http://www.jeuxvideo.com/videos/chroniques/434220/l-histoire-du-jeu-video-la-saturn.htm', 'only_matching': True, }] def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) title = mobj.group(1) webpage = self._download_webpage(url, title) title = self._html_search_meta('name', webpage) or self._og_search_title(webpage) config_url = self._html_search_regex( r'data-src(?:set-video)?="(/contenu/medias/video.php.*?)"', webpage, 'config URL') config_url = 'http://www.jeuxvideo.com' + config_url video_id = self._search_regex( r'id=(\d+)', config_url, 'video ID') config = self._download_json( config_url, title, 'Downloading JSON config') formats = [{ 'url': source['file'], 'format_id': source['label'], 'resolution': source['label'], } for source in reversed(config['sources'])] return { 'id': video_id, 'title': title, 'formats': formats, 'description': self._og_search_description(webpage), 'thumbnail': config.get('image'), }
the-stack_0_7272
class ConfigStruct(object): def __init__(self): # Location of the star catalog self.CAL_DIR = '../data/' self.CAL_NAME = 'gaia_dr2_mag_11.5.npy' # Location of the MPC data self.OURS_DIR = '../data/' self.OURS_NAME = 'mpc_data.txt' # Location of finder data self.FINDER_DIR = '../data/' self.FINDER_NAME = '2019-01-02.txt' # Location of the query results self.QUERY_DIR = '../data/' self.QUERY_NAME = 'query_results.txt' # Where the RAW imaging coordinates are saved self.SAVE_DIR = '../data/' self.SAVE_NAME = 'saved_coordinates.txt' # Where the imaging coordinates IN TELESCOPE FORMAT are saved self.FINAL_DIR = '../data/' self.FINAL_NAME = 'saved_coord_telescope.txt' # Ask the user for limiting magnitude and FOV size self.LIM_MAG = 11.5 self.X_SPAN = 0.7317 self.Y_SPAN = 0.7317 config = ConfigStruct()
the-stack_0_7275
import secrets def _get_header(token): return f''' rule encoding_geary_{token}:''' def _get_benchmark(benchmark_out): return f''' benchmark: "{benchmark_out}"''' def _get_main(fasta_in, classes_in, length_in, geary_out): return f''' input: fasta_in="{fasta_in}", classes_in="{classes_in}", length_in="{length_in}" output: csv_out={geary_out} threads: 1000 params: snakefile="nodes/encodings/geary/Snakefile", configfile="nodes/encodings/geary/config.yaml" run: with WorkflowExecuter(dict(input), dict(output), params.configfile, cores=CORES) as e: shell(f"""{{e.snakemake}} -s {{params.snakefile}} --configfile {{params.configfile}}""") ''' def rule(fasta_in, classes_in, length_in, geary_out, benchmark_dir=None): """ Computes the Geary correlation encoding. Category: encodings \n Node: geary :param fasta_in: The path to the fasta file. :param classes_in: The path to the classes file. :param length_in: The path to the file, containing the allowed parameter space. :param geary_out: A list of output file paths to store the encoded datasets. :param benchmark_dir: The path to the directory to store the benchmark results. If None, benchmark will be not executed (default). :return: A string object representing a Snakemake rule. """ token = secrets.token_hex(4) rule = _get_header(token) if benchmark_dir is not None: benchmark_out = f"{benchmark_dir}encoding_geary_{token}.txt" rule += _get_benchmark(benchmark_out) rule += _get_main(fasta_in, classes_in, length_in, geary_out) return rule
the-stack_0_7276
from copy import deepcopy import setpath import vtbase import functions import heapq ### Classic stream iterator registered=True class StreamIntersect(vtbase.VT): def BestIndex(self, constraints, orderbys): return (None, 0, None, True, 1000) def VTiter(self, *parsedArgs,**envars): largs, dictargs = self.full_parse(parsedArgs) if len(largs) < 1: raise functions.OperatorError(__name__.rsplit('.')[-1],"Not defined union tables ") streams = str(largs[0]).split(",") if len(streams) < 2: raise functions.OperatorError(__name__.rsplit('.')[-1],"Union tables must be more than one ") cursors = [] execs = [] for stream in streams: cursors.append(envars['db'].cursor()) execs.append(cursors[-1].execute("select * from " + str(stream) + ";")) comparedcursor = str(cursors[0].getdescriptionsafe()) # for cursor in cursors: # if str(cursor.getdescriptionsafe()) != comparedcursor: # raise functions.OperatorError(__name__.rsplit('.')[-1],"Union tables with different schemas ") if 'cols' in dictargs: try: cols = int(dictargs['cols']) except ValueError: try: cols = [y[0] for y in cursors[0].getdescriptionsafe()].index(dictargs['cols']) except ValueError: raise functions.OperatorError(__name__.rsplit('.')[-1],"Column name does not exists ") else: cols=0 if cols >= len(cursors[0].getdescriptionsafe()): raise functions.OperatorError(__name__.rsplit('.')[-1],"Column position does not exists ") for x in range(0, len(streams)): if x is 0: execs[0] = ((v[cols], (0,) + v) for v in execs[0]) elif x is 1: execs[1] = ((v[cols], (1,) + v) for v in execs[1]) elif x is 2: execs[2] = ((v[cols], (2,) + v) for v in execs[2]) elif x is 3: execs[3] = ((v[cols], (3,) + v) for v in execs[3]) elif x is 4: execs[4] = ((v[cols], (4,) + v) for v in execs[4]) try: yield list(cursors[0].getdescriptionsafe()) except StopIteration: try: raise finally: try: for cur in cursors: cur.close() except: pass currentgroup = None lists = [[]] * len(streams) for k, v in heapq.merge(*execs): if currentgroup is None or currentgroup != k: for t in set(lists[0]).intersection(*lists[1:]): yield t lists = [[]] * len(streams) lists[v[0]] = lists[v[0]] + [tuple(v[1:])] currentgroup = k for t in set(lists[0]).intersection(*lists[1:]): yield t def Source(): return vtbase.VTGenerator(StreamIntersect) if not ('.' in __name__): """ This is needed to be able to test the function, put it at the end of every new function you create """ import sys import setpath from functions import * testfunction() if __name__ == "__main__": reload(sys) sys.setdefaultencoding('utf-8') import doctest doctest.testmod()
the-stack_0_7279
from sympy import ( Rational, Symbol, N, I, Abs, sqrt, exp, Float, sin, cos, symbols) from sympy.matrices import eye, Matrix from sympy.matrices.matrices import MatrixEigen from sympy.matrices.common import _MinimalMatrix, _CastableMatrix from sympy.core.singleton import S from sympy.testing.pytest import raises, XFAIL from sympy.matrices.matrices import NonSquareMatrixError, MatrixError from sympy.simplify.simplify import simplify from sympy.matrices.immutable import ImmutableMatrix from sympy.testing.pytest import slow class EigenOnlyMatrix(_MinimalMatrix, _CastableMatrix, MatrixEigen): pass def test_eigen(): R = Rational M = Matrix.eye(3) assert M.eigenvals(multiple=False) == {S.One: 3} assert M.eigenvals(multiple=True) == [1, 1, 1] assert M.eigenvects() == ( [(1, 3, [Matrix([1, 0, 0]), Matrix([0, 1, 0]), Matrix([0, 0, 1])])]) assert M.left_eigenvects() == ( [(1, 3, [Matrix([[1, 0, 0]]), Matrix([[0, 1, 0]]), Matrix([[0, 0, 1]])])]) M = Matrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) assert M.eigenvals() == {2*S.One: 1, -S.One: 1, S.Zero: 1} assert M.eigenvects() == ( [ (-1, 1, [Matrix([-1, 1, 0])]), ( 0, 1, [Matrix([0, -1, 1])]), ( 2, 1, [Matrix([R(2, 3), R(1, 3), 1])]) ]) assert M.left_eigenvects() == ( [ (-1, 1, [Matrix([[-2, 1, 1]])]), (0, 1, [Matrix([[-1, -1, 1]])]), (2, 1, [Matrix([[1, 1, 1]])]) ]) a = Symbol('a') M = Matrix([[a, 0], [0, 1]]) assert M.eigenvals() == {a: 1, S.One: 1} M = Matrix([[1, -1], [1, 3]]) assert M.eigenvects() == ([(2, 2, [Matrix(2, 1, [-1, 1])])]) assert M.left_eigenvects() == ([(2, 2, [Matrix([[1, 1]])])]) M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) a = R(15, 2) b = 3*33**R(1, 2) c = R(13, 2) d = (R(33, 8) + 3*b/8) e = (R(33, 8) - 3*b/8) def NS(e, n): return str(N(e, n)) r = [ (a - b/2, 1, [Matrix([(12 + 24/(c - b/2))/((c - b/2)*e) + 3/(c - b/2), (6 + 12/(c - b/2))/e, 1])]), ( 0, 1, [Matrix([1, -2, 1])]), (a + b/2, 1, [Matrix([(12 + 24/(c + b/2))/((c + b/2)*d) + 3/(c + b/2), (6 + 12/(c + b/2))/d, 1])]), ] r1 = [(NS(r[i][0], 2), NS(r[i][1], 2), [NS(j, 2) for j in r[i][2][0]]) for i in range(len(r))] r = M.eigenvects() r2 = [(NS(r[i][0], 2), NS(r[i][1], 2), [NS(j, 2) for j in r[i][2][0]]) for i in range(len(r))] assert sorted(r1) == sorted(r2) eps = Symbol('eps', real=True) M = Matrix([[abs(eps), I*eps ], [-I*eps, abs(eps) ]]) assert M.eigenvects() == ( [ ( 0, 1, [Matrix([[-I*eps/abs(eps)], [1]])]), ( 2*abs(eps), 1, [ Matrix([[I*eps/abs(eps)], [1]]) ] ), ]) assert M.left_eigenvects() == ( [ (0, 1, [Matrix([[I*eps/Abs(eps), 1]])]), (2*Abs(eps), 1, [Matrix([[-I*eps/Abs(eps), 1]])]) ]) M = Matrix(3, 3, [1, 2, 0, 0, 3, 0, 2, -4, 2]) M._eigenvects = M.eigenvects(simplify=False) assert max(i.q for i in M._eigenvects[0][2][0]) > 1 M._eigenvects = M.eigenvects(simplify=True) assert max(i.q for i in M._eigenvects[0][2][0]) == 1 M = Matrix([[Rational(1, 4), 1], [1, 1]]) assert M.eigenvects(simplify=True) == [ (Rational(5, 8) - sqrt(73)/8, 1, [Matrix([[-sqrt(73)/8 - Rational(3, 8)], [1]])]), (Rational(5, 8) + sqrt(73)/8, 1, [Matrix([[Rational(-3, 8) + sqrt(73)/8], [1]])])] assert M.eigenvects(simplify=False) == [ (Rational(5, 8) - sqrt(73)/8, 1, [Matrix([[-1/(-Rational(3, 8) + sqrt(73)/8)], [1]])]), (Rational(5, 8) + sqrt(73)/8, 1, [Matrix([[8/(3 + sqrt(73))], [1]])])] # issue 10719 assert Matrix([]).eigenvals() == {} assert Matrix([]).eigenvects() == [] # issue 15119 raises(NonSquareMatrixError, lambda : Matrix([[1, 2], [0, 4], [0, 0]]).eigenvals()) raises(NonSquareMatrixError, lambda : Matrix([[1, 0], [3, 4], [5, 6]]).eigenvals()) raises(NonSquareMatrixError, lambda : Matrix([[1, 2, 3], [0, 5, 6]]).eigenvals()) raises(NonSquareMatrixError, lambda : Matrix([[1, 0, 0], [4, 5, 0]]).eigenvals()) raises(NonSquareMatrixError, lambda : Matrix([[1, 2, 3], [0, 5, 6]]).eigenvals(error_when_incomplete = False)) raises(NonSquareMatrixError, lambda : Matrix([[1, 0, 0], [4, 5, 0]]).eigenvals(error_when_incomplete = False)) # issue 15125 from sympy.core.function import count_ops q = Symbol("q", positive = True) m = Matrix([[-2, exp(-q), 1], [exp(q), -2, 1], [1, 1, -2]]) assert count_ops(m.eigenvals(simplify=False)) > count_ops(m.eigenvals(simplify=True)) assert count_ops(m.eigenvals(simplify=lambda x: x)) > count_ops(m.eigenvals(simplify=True)) assert isinstance(m.eigenvals(simplify=True, multiple=False), dict) assert isinstance(m.eigenvals(simplify=True, multiple=True), list) assert isinstance(m.eigenvals(simplify=lambda x: x, multiple=False), dict) assert isinstance(m.eigenvals(simplify=lambda x: x, multiple=True), list) def test_float_eigenvals(): m = Matrix([[1, .6, .6], [.6, .9, .9], [.9, .6, .6]]) evals = [ Rational(5, 4) - sqrt(385)/20, sqrt(385)/20 + Rational(5, 4), S.Zero] n_evals = m.eigenvals(rational=True, multiple=True) n_evals = sorted(n_evals) s_evals = [x.evalf() for x in evals] s_evals = sorted(s_evals) for x, y in zip(n_evals, s_evals): assert abs(x-y) < 10**-9 @XFAIL def test_eigen_vects(): m = Matrix(2, 2, [1, 0, 0, I]) raises(NotImplementedError, lambda: m.is_diagonalizable(True)) # !!! bug because of eigenvects() or roots(x**2 + (-1 - I)*x + I, x) # see issue 5292 assert not m.is_diagonalizable(True) raises(MatrixError, lambda: m.diagonalize(True)) (P, D) = m.diagonalize(True) def test_issue_8240(): # Eigenvalues of large triangular matrices x, y = symbols('x y') n = 200 diagonal_variables = [Symbol('x%s' % i) for i in range(n)] M = [[0 for i in range(n)] for j in range(n)] for i in range(n): M[i][i] = diagonal_variables[i] M = Matrix(M) eigenvals = M.eigenvals() assert len(eigenvals) == n for i in range(n): assert eigenvals[diagonal_variables[i]] == 1 eigenvals = M.eigenvals(multiple=True) assert set(eigenvals) == set(diagonal_variables) # with multiplicity M = Matrix([[x, 0, 0], [1, y, 0], [2, 3, x]]) eigenvals = M.eigenvals() assert eigenvals == {x: 2, y: 1} eigenvals = M.eigenvals(multiple=True) assert len(eigenvals) == 3 assert eigenvals.count(x) == 2 assert eigenvals.count(y) == 1 # EigenOnlyMatrix tests def test_eigenvals(): M = EigenOnlyMatrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) assert M.eigenvals() == {2*S.One: 1, -S.One: 1, S.Zero: 1} # if we cannot factor the char poly, we raise an error m = Matrix([ [3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m.eigenvals()) def test_eigenvects(): M = EigenOnlyMatrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) vecs = M.eigenvects() for val, mult, vec_list in vecs: assert len(vec_list) == 1 assert M*vec_list[0] == val*vec_list[0] def test_left_eigenvects(): M = EigenOnlyMatrix([[0, 1, 1], [1, 0, 0], [1, 1, 1]]) vecs = M.left_eigenvects() for val, mult, vec_list in vecs: assert len(vec_list) == 1 assert vec_list[0]*M == val*vec_list[0] @slow def test_bidiagonalize(): M = Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) assert M.bidiagonalize() == M assert M.bidiagonalize(upper=False) == M assert M.bidiagonalize() == M assert M.bidiagonal_decomposition() == (M, M, M) assert M.bidiagonal_decomposition(upper=False) == (M, M, M) assert M.bidiagonalize() == M import random #Real Tests for real_test in range(2): test_values = [] row = 2 col = 2 for _ in range(row * col): value = random.randint(-1000000000, 1000000000) test_values = test_values + [value] # L -> Lower Bidiagonalization # M -> Mutable Matrix # N -> Immutable Matrix # 0 -> Bidiagonalized form # 1,2,3 -> Bidiagonal_decomposition matrices # 4 -> Product of 1 2 3 M = Matrix(row, col, test_values) N = ImmutableMatrix(M) N1, N2, N3 = N.bidiagonal_decomposition() M1, M2, M3 = M.bidiagonal_decomposition() M0 = M.bidiagonalize() N0 = N.bidiagonalize() N4 = N1 * N2 * N3 M4 = M1 * M2 * M3 N2.simplify() N4.simplify() N0.simplify() M0.simplify() M2.simplify() M4.simplify() LM0 = M.bidiagonalize(upper=False) LM1, LM2, LM3 = M.bidiagonal_decomposition(upper=False) LN0 = N.bidiagonalize(upper=False) LN1, LN2, LN3 = N.bidiagonal_decomposition(upper=False) LN4 = LN1 * LN2 * LN3 LM4 = LM1 * LM2 * LM3 LN2.simplify() LN4.simplify() LN0.simplify() LM0.simplify() LM2.simplify() LM4.simplify() assert M == M4 assert M2 == M0 assert N == N4 assert N2 == N0 assert M == LM4 assert LM2 == LM0 assert N == LN4 assert LN2 == LN0 #Complex Tests for complex_test in range(2): test_values = [] size = 2 for _ in range(size * size): real = random.randint(-1000000000, 1000000000) comp = random.randint(-1000000000, 1000000000) value = real + comp * I test_values = test_values + [value] M = Matrix(size, size, test_values) N = ImmutableMatrix(M) # L -> Lower Bidiagonalization # M -> Mutable Matrix # N -> Immutable Matrix # 0 -> Bidiagonalized form # 1,2,3 -> Bidiagonal_decomposition matrices # 4 -> Product of 1 2 3 N1, N2, N3 = N.bidiagonal_decomposition() M1, M2, M3 = M.bidiagonal_decomposition() M0 = M.bidiagonalize() N0 = N.bidiagonalize() N4 = N1 * N2 * N3 M4 = M1 * M2 * M3 N2.simplify() N4.simplify() N0.simplify() M0.simplify() M2.simplify() M4.simplify() LM0 = M.bidiagonalize(upper=False) LM1, LM2, LM3 = M.bidiagonal_decomposition(upper=False) LN0 = N.bidiagonalize(upper=False) LN1, LN2, LN3 = N.bidiagonal_decomposition(upper=False) LN4 = LN1 * LN2 * LN3 LM4 = LM1 * LM2 * LM3 LN2.simplify() LN4.simplify() LN0.simplify() LM0.simplify() LM2.simplify() LM4.simplify() assert M == M4 assert M2 == M0 assert N == N4 assert N2 == N0 assert M == LM4 assert LM2 == LM0 assert N == LN4 assert LN2 == LN0 M = Matrix(18, 8, range(1, 145)) M = M.applyfunc(lambda i: Float(i)) assert M.bidiagonal_decomposition()[1] == M.bidiagonalize() assert M.bidiagonal_decomposition(upper=False)[1] == M.bidiagonalize(upper=False) a, b, c = M.bidiagonal_decomposition() diff = a * b * c - M assert abs(max(diff)) < 10**-12 def test_diagonalize(): m = EigenOnlyMatrix(2, 2, [0, -1, 1, 0]) raises(MatrixError, lambda: m.diagonalize(reals_only=True)) P, D = m.diagonalize() assert D.is_diagonal() assert D == Matrix([ [-I, 0], [ 0, I]]) # make sure we use floats out if floats are passed in m = EigenOnlyMatrix(2, 2, [0, .5, .5, 0]) P, D = m.diagonalize() assert all(isinstance(e, Float) for e in D.values()) assert all(isinstance(e, Float) for e in P.values()) _, D2 = m.diagonalize(reals_only=True) assert D == D2 def test_is_diagonalizable(): a, b, c = symbols('a b c') m = EigenOnlyMatrix(2, 2, [a, c, c, b]) assert m.is_symmetric() assert m.is_diagonalizable() assert not EigenOnlyMatrix(2, 2, [1, 1, 0, 1]).is_diagonalizable() m = EigenOnlyMatrix(2, 2, [0, -1, 1, 0]) assert m.is_diagonalizable() assert not m.is_diagonalizable(reals_only=True) def test_jordan_form(): m = Matrix(3, 2, [-3, 1, -3, 20, 3, 10]) raises(NonSquareMatrixError, lambda: m.jordan_form()) # the next two tests test the cases where the old # algorithm failed due to the fact that the block structure can # *NOT* be determined from algebraic and geometric multiplicity alone # This can be seen most easily when one lets compute the J.c.f. of a matrix that # is in J.c.f already. m = EigenOnlyMatrix(4, 4, [2, 1, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2 ]) P, J = m.jordan_form() assert m == J m = EigenOnlyMatrix(4, 4, [2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2 ]) P, J = m.jordan_form() assert m == J A = Matrix([[ 2, 4, 1, 0], [-4, 2, 0, 1], [ 0, 0, 2, 4], [ 0, 0, -4, 2]]) P, J = A.jordan_form() assert simplify(P*J*P.inv()) == A assert EigenOnlyMatrix(1, 1, [1]).jordan_form() == ( Matrix([1]), Matrix([1])) assert EigenOnlyMatrix(1, 1, [1]).jordan_form( calc_transform=False) == Matrix([1]) # make sure if we cannot factor the characteristic polynomial, we raise an error m = Matrix([[3, 0, 0, 0, -3], [0, -3, -3, 0, 3], [0, 3, 0, 3, 0], [0, 0, 3, 0, 3], [3, 0, 0, 3, 0]]) raises(MatrixError, lambda: m.jordan_form()) # make sure that if the input has floats, the output does too m = Matrix([ [ 0.6875, 0.125 + 0.1875*sqrt(3)], [0.125 + 0.1875*sqrt(3), 0.3125]]) P, J = m.jordan_form() assert all(isinstance(x, Float) or x == 0 for x in P) assert all(isinstance(x, Float) or x == 0 for x in J) def test_singular_values(): x = Symbol('x', real=True) A = EigenOnlyMatrix([[0, 1*I], [2, 0]]) # if singular values can be sorted, they should be in decreasing order assert A.singular_values() == [2, 1] A = eye(3) A[1, 1] = x A[2, 2] = 5 vals = A.singular_values() # since Abs(x) cannot be sorted, test set equality assert set(vals) == {5, 1, Abs(x)} A = EigenOnlyMatrix([[sin(x), cos(x)], [-cos(x), sin(x)]]) vals = [sv.trigsimp() for sv in A.singular_values()] assert vals == [S.One, S.One] A = EigenOnlyMatrix([ [2, 4], [1, 3], [0, 0], [0, 0] ]) assert A.singular_values() == \ [sqrt(sqrt(221) + 15), sqrt(15 - sqrt(221))] assert A.T.singular_values() == \ [sqrt(sqrt(221) + 15), sqrt(15 - sqrt(221)), 0, 0] def test___eq__(): assert (EigenOnlyMatrix( [[0, 1, 1], [1, 0, 0], [1, 1, 1]]) == {}) is False def test_definite(): # Examples from Gilbert Strang, "Introduction to Linear Algebra" # Positive definite matrices m = Matrix([[2, -1, 0], [-1, 2, -1], [0, -1, 2]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[5, 4], [4, 5]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Positive semidefinite matrices m = Matrix([[2, -1, -1], [-1, 2, -1], [-1, -1, 2]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[1, 2], [2, 4]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Examples from Mathematica documentation # Non-hermitian positive definite matrices m = Matrix([[2, 3], [4, 8]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[1, 2*I], [-I, 4]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False # Symbolic matrices examples a = Symbol('a', positive=True) b = Symbol('b', negative=True) m = Matrix([[a, 0, 0], [0, a, 0], [0, 0, a]]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == False m = Matrix([[b, 0, 0], [0, b, 0], [0, 0, b]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == False assert m.is_negative_definite == True assert m.is_negative_semidefinite == True assert m.is_indefinite == False m = Matrix([[a, 0], [0, b]]) assert m.is_positive_definite == False assert m.is_positive_semidefinite == False assert m.is_negative_definite == False assert m.is_negative_semidefinite == False assert m.is_indefinite == True m = Matrix([ [0.0228202735623867, 0.00518748979085398, -0.0743036351048907, -0.00709135324903921], [0.00518748979085398, 0.0349045359786350, 0.0830317991056637, 0.00233147902806909], [-0.0743036351048907, 0.0830317991056637, 1.15859676366277, 0.340359081555988], [-0.00709135324903921, 0.00233147902806909, 0.340359081555988, 0.928147644848199] ]) assert m.is_positive_definite == True assert m.is_positive_semidefinite == True assert m.is_indefinite == False
the-stack_0_7280
#!/usr/bin/env python # Copyright Contributors to the Open Shading Language project. # SPDX-License-Identifier: BSD-3-Clause # https://github.com/AcademySoftwareFoundation/OpenShadingLanguage from __future__ import print_function, absolute_import import os import glob import sys import platform import subprocess import difflib import filecmp import shutil from itertools import chain from optparse import OptionParser def make_relpath (path, start=os.curdir): "Wrapper around os.path.relpath which always uses '/' as the separator." p = os.path.relpath (path, start) return p if sys.platform != "win32" else p.replace ('\\', '/') # # Get standard testsuite test arguments: srcdir exepath # srcdir = "." tmpdir = "." OSL_BUILD_DIR = os.environ.get("OSL_BUILD_DIR", "..") OSL_SOURCE_DIR = os.environ.get("OSL_SOURCE_DIR", "../../..") OSL_TESTSUITE_DIR = os.path.join(OSL_SOURCE_DIR, "testsuite") OpenImageIO_ROOT = os.environ.get("OpenImageIO_ROOT", None) OSL_TESTSUITE_ROOT = make_relpath(os.getenv('OSL_TESTSUITE_ROOT', '../../../testsuite')) os.environ['OSLHOME'] = os.path.join(OSL_SOURCE_DIR, "src") OSL_REGRESSION_TEST = os.environ.get("OSL_REGRESSION_TEST", None) # Options for the command line parser = OptionParser() parser.add_option("-p", "--path", help="add to executable path", action="store", type="string", dest="path", default="") parser.add_option("--devenv-config", help="use a MS Visual Studio configuration", action="store", type="string", dest="devenv_config", default="") parser.add_option("--solution-path", help="MS Visual Studio solution path", action="store", type="string", dest="solution_path", default="") (options, args) = parser.parse_args() if args and len(args) > 0 : srcdir = args[0] srcdir = os.path.abspath (srcdir) + "/" os.chdir (srcdir) if args and len(args) > 1 : OSL_BUILD_DIR = args[1] OSL_BUILD_DIR = os.path.normpath (OSL_BUILD_DIR) tmpdir = "." tmpdir = os.path.abspath (tmpdir) if platform.system() == 'Windows' : redirect = " >> out.txt 2>&1 " else : redirect = " >> out.txt 2>>out.txt " refdir = "ref/" mytest = os.path.split(os.path.abspath(os.getcwd()))[-1] if str(mytest).endswith('.opt') or str(mytest).endswith('.optix') : mytest = mytest.split('.')[0] test_source_dir = os.getenv('OSL_TESTSUITE_SRC', os.path.join(OSL_TESTSUITE_ROOT, mytest)) #test_source_dir = os.path.join(OSL_TESTSUITE_DIR, # os.path.basename(os.path.abspath(srcdir))) command = "" outputs = [ "out.txt" ] # default failureok = 0 failthresh = 0.004 hardfail = 0.01 failpercent = 0.02 cleanup_on_success = False if int(os.getenv('TESTSUITE_CLEANUP_ON_SUCCESS', '0')) : cleanup_on_success = True; oslcargs = "-Wall" image_extensions = [ ".tif", ".tx", ".exr", ".jpg", ".png", ".rla", ".dpx", ".iff", ".psd" ] compile_osl_files = True splitsymbol = ';' #print ("srcdir = " + srcdir) #print ("tmpdir = " + tmpdir) #print ("path = " + path) #print ("refdir = " + refdir) print ("test source dir = ", test_source_dir) if platform.system() == 'Windows' : if not os.path.exists("./ref") : test_source_ref_dir = os.path.join (test_source_dir, "ref") if os.path.exists(test_source_ref_dir) : shutil.copytree (test_source_ref_dir, "./ref") if os.path.exists (os.path.join (test_source_dir, "src")) and not os.path.exists("./src") : shutil.copytree (os.path.join (test_source_dir, "src"), "./src") if not os.path.exists(os.path.abspath("data")) : shutil.copytree (test_source_dir, os.path.abspath("data")) else : if not os.path.exists("./ref") : test_source_ref_dir = os.path.join (test_source_dir, "ref") if os.path.exists(test_source_ref_dir) : os.symlink (test_source_ref_dir, "./ref") if os.path.exists (os.path.join (test_source_dir, "src")) and not os.path.exists("./src") : os.symlink (os.path.join (test_source_dir, "src"), "./src") if not os.path.exists("./data") : os.symlink (test_source_dir, "./data") pythonbin = 'python' if os.getenv("PYTHON_VERSION") : pythonbin += os.getenv("PYTHON_VERSION") #print ("pythonbin = ", pythonbin) ########################################################################### # Handy functions... # Compare two text files. Returns 0 if they are equal otherwise returns # a non-zero value and writes the differences to "diff_file". # Based on the command-line interface to difflib example from the Python # documentation def text_diff (fromfile, tofile, diff_file=None): import time try: fromdate = time.ctime (os.stat (fromfile).st_mtime) todate = time.ctime (os.stat (tofile).st_mtime) fromlines = open (fromfile, 'r').readlines() tolines = open (tofile, 'r').readlines() except: print ("Unexpected error:", sys.exc_info()[0]) return -1 diff = difflib.unified_diff(fromlines, tolines, fromfile, tofile, fromdate, todate) # Diff is a generator, but since we need a way to tell if it is # empty we just store all the text in advance diff_lines = [l for l in diff] if not diff_lines: return 0 if diff_file: try: open (diff_file, 'w').writelines (diff_lines) print ("Diff " + fromfile + " vs " + tofile + " was:\n-------") # print (diff) print ("".join(diff_lines)) except: print ("Unexpected error:", sys.exc_info()[0]) return 1 def run_app (app, silent=False, concat=True) : command = app if not silent : command += redirect if concat: command += " ;\n" return command def osl_app (app): apath = os.path.join(OSL_BUILD_DIR, "bin") if (platform.system () == 'Windows'): # when we use Visual Studio, built applications are stored # in the app/$(OutDir)/ directory, e.g., Release or Debug. apath = os.path.join(apath, options.devenv_config) return os.path.join(apath, app) + " " def oiio_app (app): if OpenImageIO_ROOT : return os.path.join (OpenImageIO_ROOT, "bin", app) + " " else : return app + " " # Construct a command that will compile the shader file, appending output to # the file "out.txt". def oslc (args) : return (osl_app("oslc") + oslcargs + " " + args + redirect + " ;\n") # Construct a command that will run oslinfo, appending output to # the file "out.txt". def oslinfo (args) : return (osl_app("oslinfo") + args + redirect + " ;\n") # Construct a command that runs oiiotool, appending console output # to the file "out.txt". def oiiotool (args, silent=False) : oiiotool_cmd = (oiio_app("oiiotool") + args) if not silent : oiiotool_cmd += redirect oiiotool_cmd += " ;\n" return oiiotool_cmd; # Construct a command that runs maketx, appending console output # to the file "out.txt". def maketx (args) : return (oiio_app("maketx") + args + redirect + " ;\n") # Construct a command that will compare two images, appending output to # the file "out.txt". We allow a small number of pixels to have up to # 1 LSB (8 bit) error, it's very hard to make different platforms and # compilers always match to every last floating point bit. def oiiodiff (fileA, fileB, extraargs="", silent=True, concat=True) : command = (oiio_app("idiff") + "-a" + " -fail " + str(failthresh) + " -failpercent " + str(failpercent) + " -hardfail " + str(hardfail) + " -warn " + str(2*failthresh) + " -warnpercent " + str(failpercent) + " " + extraargs + " " + make_relpath(fileA,tmpdir) + " " + make_relpath(fileB,tmpdir)) if not silent : command += redirect if concat: command += " ;\n" return command # Construct a command that run testshade with the specified arguments, # appending output to the file "out.txt". def testshade (args) : if os.environ.__contains__('OSL_TESTSHADE_NAME') : testshadename = os.environ['OSL_TESTSHADE_NAME'] + " " else : testshadename = osl_app("testshade") return (testshadename + args + redirect + " ;\n") # Construct a command that run testrender with the specified arguments, # appending output to the file "out.txt". def testrender (args) : os.environ["optix_log_level"] = "0" return (osl_app("testrender") + " " + args + redirect + " ;\n") # Construct a command that run testoptix with the specified arguments, # appending output to the file "out.txt". def testoptix (args) : # Disable OptiX logging to prevent messages from the library from # appearing in the program output. os.environ["optix_log_level"] = "0" return (osl_app("testoptix") + " " + args + redirect + " ;\n") # Run 'command'. For each file in 'outputs', compare it to the copy # in 'ref/'. If all outputs match their reference copies, return 0 # to pass. If any outputs do not match their references return 1 to # fail. def runtest (command, outputs, failureok=0, failthresh=0, failpercent=0, regression=None) : # print ("working dir = " + tmpdir) os.chdir (srcdir) open ("out.txt", "w").close() # truncate out.txt if options.path != "" : sys.path = [options.path] + sys.path test_environ = None if (platform.system () == 'Windows') and (options.solution_path != "") and \ (os.path.isdir (options.solution_path)): test_environ = os.environ libOIIO_path = options.solution_path + "\\libOpenImageIO\\" if options.devenv_config != "": libOIIO_path = libOIIO_path + '\\' + options.devenv_config test_environ["PATH"] = libOIIO_path + ';' + test_environ["PATH"] if regression == "BATCHED" : if test_environ == None : test_environ = os.environ test_environ["TESTSHADE_BATCHED"] = "1" print ("command = ", command) for sub_command in command.split(splitsymbol): sub_command = sub_command.lstrip().rstrip() #print ("running = ", sub_command) cmdret = subprocess.call (sub_command, shell=True, env=test_environ) if cmdret != 0 and failureok == 0 : print ("#### Error: this command failed: ", sub_command) print ("FAIL") print ("Output was:\n--------") print (open ("out.txt", 'r').read()) print ("--------") return (1) err = 0 if regression == "BASELINE" : if not os.path.exists("./baseline") : os.mkdir("./baseline") for out in outputs : shutil.move(out, "./baseline/"+out) else : for out in outputs : extension = os.path.splitext(out)[1] ok = 0 # We will first compare out to ref/out, and if that fails, we # will compare it to everything else with the same extension in # the ref directory. That allows us to have multiple matching # variants for different platforms, etc. if regression != None: testfiles = ["baseline/"+out] else : testfiles = ["ref/"+out] + glob.glob (os.path.join ("ref", "*"+extension)) for testfile in (testfiles) : # print ("comparing " + out + " to " + testfile) if extension == ".tif" or extension == ".exr" : # images -- use idiff cmpcommand = oiiodiff (out, testfile, concat=False, silent=True) # print ("cmpcommand = ", cmpcommand) cmpresult = os.system (cmpcommand) elif extension == ".txt" : cmpresult = text_diff (out, testfile, out + ".diff") else : # anything else cmpresult = 0 if filecmp.cmp (out, testfile) else 1 if cmpresult == 0 : ok = 1 break # we're done if ok : # if extension == ".tif" or extension == ".exr" or extension == ".jpg" or extension == ".png": # # If we got a match for an image, save the idiff results # os.system (oiiodiff (out, testfile, silent=False)) print ("PASS: ", out, " matches ", testfile) else : err = 1 print ("NO MATCH for ", out) print ("FAIL ", out) if extension == ".txt" : # If we failed to get a match for a text file, print the # file and the diff, for easy debugging. print ("-----" + out + "----->") print (open(out,'r').read() + "<----------") print ("Diff was:\n-------") print (open (out+".diff", 'r').read()) if extension == ".tif" or extension == ".exr" or extension == ".jpg" or extension == ".png": # If we failed to get a match for an image, send the idiff # results to the console testfile = None if regression != None: testfile = os.path.join ("baseline/", out) else : testfile = os.path.join (refdir, out) os.system (oiiodiff (out, testfile, silent=False)) return (err) ########################################################################## # # Read the individual run.py file for this test, which will define # command and outputs. # with open(os.path.join(test_source_dir,"run.py")) as f: code = compile(f.read(), "run.py", 'exec') exec (code) # if os.path.exists("run.py") : # execfile ("run.py") # Allow a little more slop for slight pixel differences when in DEBUG mode. if "DEBUG" in os.environ and os.environ["DEBUG"] : failthresh *= 2.0 hardfail *= 2.0 failpercent *= 2.0 # Force out.txt to be in the outputs ##if "out.txt" not in outputs : ## outputs.append ("out.txt") # Force any local shaders to compile automatically, prepending the # compilation onto whatever else the individual run.py file requested. for filetype in [ "*.osl", "*.h", "*.oslgroup", "*.xml" ] : for testfile in glob.glob (os.path.join (test_source_dir, filetype)) : shutil.copyfile (testfile, os.path.basename(testfile)) if compile_osl_files : compiles = "" oslfiles = glob.glob ("*.osl") oslfiles.sort() ## sort the shaders to compile so that they always compile in the same order for testfile in oslfiles : compiles += oslc (testfile) command = compiles + command # If either out.exr or out.tif is in the reference directory but somehow # is not in the outputs list, put it there anyway! if (os.path.exists("ref/out.exr") and ("out.exr" not in outputs)) : outputs.append ("out.exr") if (os.path.exists("ref/out.tif") and ("out.tif" not in outputs)) : outputs.append ("out.tif") # Run the test and check the outputs if OSL_REGRESSION_TEST != None : # need to produce baseline images ret = runtest (command, outputs, failureok=failureok, failthresh=failthresh, failpercent=failpercent, regression="BASELINE") if ret == 0 : # run again comparing against baseline, not ref ret = runtest (command, outputs, failureok=failureok, failthresh=failthresh, failpercent=failpercent, regression=OSL_REGRESSION_TEST) else : ret = runtest (command, outputs, failureok=failureok, failthresh=failthresh, failpercent=failpercent) if ret == 0 and cleanup_on_success : for ext in image_extensions + [ ".txt", ".diff" ] : files = glob.iglob (srcdir + '/*' + ext) baselineFiles = glob.iglob (srcdir + '/baseline/*' + ext) for f in chain(files,baselineFiles) : os.remove(f) #print('REMOVED ', f) sys.exit (ret)
the-stack_0_7282
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Mar 3 14:11:25 2017 @author: juan """ #This program implements the clamped cubic spline with zero derivative at the #endpoints import numpy as np def deltaGrid(grid): deltas = () for i in range(1, len(grid)): deltas += (grid[i] - grid[i - 1], ) return deltas def firstLinearRelation(functionValues, deltas): b = np.array(range(len(deltas) - 1)) for j in range(len(b)): b[j] = 6 * (((functionValues[j + 2] - functionValues[j + 1])/(deltas[j + 1])) - ((functionValues[j + 1] - functionValues[j])/(deltas[j]))) return b def firstVector(functionValues, deltas): a = np.array([0]) c = np.array([1]) b = firstLinearRelation(functionValues, deltas) return np.concatenate((a, b, c)) def secondLinearRelation(rowLength, j, deltas): a = np.array([deltas[j + 1], 2 * (deltas[j] + deltas[j + 1]), deltas[j]]) b = np.array([0]) c = a for i in range(j): c = np.concatenate((b, c)) for i in range(rowLength - (j + 2)): c = np.concatenate((c, b)) return c def matrix(deltas): firstRow = np.array([1]) lastRow = np.array([1]) zero = np.array([0]) for i in range(len(deltas)): firstRow = np.concatenate((firstRow, zero)) for i in range(len(deltas)): lastRow = np.concatenate((zero, lastRow)) matrix = firstRow for i in range(len(deltas) - 1): matrix = np.vstack((matrix, secondLinearRelation(len(deltas), i, deltas))) matrix = np.vstack((matrix, lastRow)) return matrix def Derivatives(grid, functionValues): deltas = deltaGrid(grid) y = firstVector(functionValues, deltas) matriz = matrix(deltas) sigmas = np.linalg.solve(matriz, y) return sigmas def cubicPolynomialCoeficients(lowerLimit, upperLimit, lowerLimitValue, upperLimitValue, lowerDerivative, upperDerivative): A = np.matrix([[1, lowerLimit, lowerLimit ** 2, lowerLimit ** 3], [1, upperLimit, upperLimit ** 2, upperLimit ** 3], [0, 0, 2, 6 * (lowerLimit ** 1)], [0, 0, 2, 6 * (upperLimit ** 1)]]) y = np.array([lowerLimitValue, upperLimitValue, lowerDerivative, upperDerivative]) x = np.linalg.solve(A, y) return x def closestIntervalIndex(x, grid): for i in range(len(grid) - 1): if grid[i] <= x and x <= grid[i + 1]: return i if x < grid[0]: return 0 return len(grid)-2 def polynomialFromCoeficients(x, coeficients): value = 0.0 for i in range(len(coeficients)): value += coeficients[i] * (x ** i) return value def naturalCubicSpline(x, sample, functionValues,derivatives): closest = closestIntervalIndex(x, sample) x_j = sample[closest] x_j_1 = sample[closest + 1] f_x_j = functionValues[closest] f_x_j_1 = functionValues[closest + 1] f_2_x_j = derivatives[closest] f_2_x_j_1 = derivatives[closest + 1] coeficients = cubicPolynomialCoeficients(x_j, x_j_1, f_x_j, f_x_j_1, f_2_x_j, f_2_x_j_1 ) spline = polynomialFromCoeficients(x, coeficients) return spline
the-stack_0_7284
# Copyright 2021 Dakewe Biotech Corporation. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import io import os import sys from shutil import rmtree from setuptools import Command from setuptools import find_packages from setuptools import setup # Configure library params. NAME = "dcgan_pytorch" DESCRIPTION = "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks." URL = "https://github.com/Lornatang/DCGAN-PyTorch" EMAIL = "[email protected]" AUTHOR = "Liu Goodfellow" REQUIRES_PYTHON = ">=3.8.0" VERSION = "1.0.0" # Libraries that must be installed. REQUIRED = [ "torch" ] # The following libraries directory need to be installed if you need to run all scripts. EXTRAS = { } # Find the current running location. here = os.path.abspath(os.path.dirname(__file__)) # About README file description. try: with io.open(os.path.join(here, "README.md"), encoding="utf-8") as f: long_description = "\n" + f.read() except FileNotFoundError: long_description = DESCRIPTION # Set Current Library Version. about = {} if not VERSION: project_slug = NAME.lower().replace("-", "_").replace(" ", "_") with open(os.path.join(here, project_slug, "__version__.py")) as f: exec(f.read(), about) else: about["__version__"] = VERSION class UploadCommand(Command): description = "Build and publish the package." user_options = [] @staticmethod def status(s): print("\033[1m{0}\033[0m".format(s)) def initialize_options(self): pass def finalize_options(self): pass def run(self): try: self.status("Removing previous builds…") rmtree(os.path.join(here, "dist")) except OSError: pass self.status("Building Source and Wheel (universal) distribution…") os.system("{0} setup.py sdist bdist_wheel --universal".format(sys.executable)) self.status("Uploading the package to PyPI via Twine…") os.system("twine upload dist/*") self.status("Pushing git tags…") os.system("git tag v{0}".format(about["__version__"])) os.system("git push --tags") sys.exit() setup(name=NAME, version=about["__version__"], description=DESCRIPTION, long_description=long_description, long_description_content_type="text/markdown", author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, packages=find_packages(exclude=["tests", "*.tests", "*.tests.*", "tests.*"]), install_requires=REQUIRED, extras_require=EXTRAS, include_package_data=True, license="Apache", classifiers=[ # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3 :: Only" ], cmdclass={ "upload": UploadCommand, }, )
the-stack_0_7285
# qubit number=4 # total number=33 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += CNOT(0,3) # number=10 prog += X(3) # number=11 prog += H(3) # number=13 prog += CZ(0,3) # number=14 prog += H(1) # number=18 prog += CZ(3,1) # number=19 prog += Z(3) # number=25 prog += H(1) # number=20 prog += RX(-3.141592653589793,3) # number=26 prog += H(3) # number=15 prog += H(1) # number=2 prog += H(2) # number=3 prog += H(2) # number=17 prog += H(3) # number=4 prog += H(0) # number=5 prog += H(1) # number=6 prog += H(2) # number=7 prog += H(3) # number=8 prog += H(0) # number=9 prog += H(0) # number=27 prog += CZ(1,0) # number=28 prog += H(0) # number=29 prog += H(0) # number=30 prog += CZ(1,0) # number=31 prog += H(0) # number=32 prog += X(1) # number=23 prog += X(1) # number=24 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil1941.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()