filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_7286
from opytimizer.optimizers.science import SA # One should declare a hyperparameters object based # on the desired algorithm that will be used params = { 'T': 100, 'beta': 0.999 } # Creates a SA optimizer o = SA(params=params)
the-stack_0_7288
#!/usr/bin/env python3 import unittest import os from getJenkinsVersion import get_latest_version, get_jenkins_version USERNAME = os.environ.get('MAVEN_REPOSITORY_USERNAME', '') PASSWORD = os.environ.get('MAVEN_REPOSITORY_PASSWORD', '') # Test that GetJenkinsVersion returns the correct value class TestGetJenkinsVersion(unittest.TestCase): '''Unit Test getJenkinversion.py scripts''' data_set = { 'all_versions': [ "1", "1.10", "1.11", "1.10.1", "1.10.2", "1.11.0", "1.11.2", "1.999", "2", "2.10", "2.11", "2.10.1", "2.10.2", "2.11.0", "2.11.2", "2.99", "2.249", "2.249.1", "2.265", "2.265.3" ], 'url': "https://repo.jenkins-ci.org/releases/org/jenkins-ci/main/jenkins-war/maven-metadata.xml", 'versions': [ { 'name': 'latest', 'expected': '2.265' }, { 'name': '1', 'expected': '1.658' }, { 'name': '2', 'expected': '2.265' }, { 'name': '2.249', 'expected': '2.249.3' }, { 'name': '2.249.3', 'expected': '2.249.3' }], } def test_latest_version(self): '''Test that we correclty get Jenkins version value''' result = get_latest_version(self.data_set["all_versions"]) self.assertEqual("2.265.3", result) def test_result(self): '''Test that we correclty get Jenkins version value''' for version in self.data_set["versions"]: result = get_jenkins_version(self.data_set["url"], version["name"], USERNAME, PASSWORD) self.assertEqual(version["expected"], result) if __name__ == '__main__': unittest.main()
the-stack_0_7290
"""Script to run stacking scripts on the DESY cluster. Through use of argparse, a given configuration for the code can be selected. This can be given from the command line, in the form: python RunCluster.py -c Desired_Configuration_Name -n Number_Of_Tasks -s Each available configuration must be listed in "config.ini", and controls options for fitting, such as which catalogue is to be used, and which seasons of data should be included. If -x is included, then a new job is submitted to the cluster. Having submitted the job to the cluster it will be run in parallel Number_of_Tasks times. The shell script SubmitOne.sh is called for each task, which in turn calls RunLocal.py with the given configuration setting. The Wait function will periodically query the cluster to check on the status of the job, and will output the job status occasionally. Once all sub-tasks are completed, the script will proceed to call MergeFiles.run() for the given configuration, combining results. """ import subprocess import time import os import os.path import logging import argparse import numpy as np from flarestack.shared import log_dir, fs_dir from flarestack.cluster.submitter import Submitter from flarestack.cluster.make_desy_cluster_script import ( make_desy_submit_file, submit_file, ) logger = logging.getLogger(__name__) username = os.path.basename(os.environ["HOME"]) cmd = "qstat -u " + username def wait_for_cluster(job_ids=None): logger.warning( "The wait_for_cluster function is deprecated! " "Use the Submitter class instead." ) Submitter.wait_for_cluster(job_ids) # if not job_ids: # wait_for_job() # else: # try: # for i, job_id in enumerate(job_ids): # # logger.debug(f'waiting for job {job_id}') # prog_str = f'{i}/{len(job_ids)}' # wait_for_job(job_id, prog_str) # # except TypeError: # logger.debug('Only waiting for one job') # wait_for_job(job_ids) def wait_for_job(job_id=None, progress_str=None): """ Runs the command cmd, which queries the status of the job on the cluster, and reads the output. While the output is not an empty string (indicating job completion), the cluster is re-queried every 30 seconds. Occasionally outputs the number of remaining sub-tasks on cluster, and outputs full table result every ~ 8 minutes. On completion of job, terminates function process and allows the script to continue. """ if not job_id: job_id_str = "s" else: if progress_str: job_id_str = f" {progress_str} {job_id}" else: job_id_str = " " + str(job_id) time.sleep(10) cmd = f"qstat -u {username}" process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) tmp = process.stdout.read().decode() n_total = n_tasks(tmp, job_id) i = 31 j = 6 while n_total != 0: if i > 3: running_process = subprocess.Popen( cmd + " -s r", stdout=subprocess.PIPE, shell=True ) running_tmp = running_process.stdout.read().decode() if running_tmp != "": n_running = n_tasks(running_tmp, job_id) else: n_running = 0 logger.info( f"{time.asctime(time.localtime())} - Job{job_id_str}:" f" {n_total} entries in queue. " f"Of these, {n_running} are running tasks, and " f"{n_total-n_running} are tasks still waiting to be executed." ) i = 0 j += 1 if j > 7: logger.info(str(tmp)) j = 0 time.sleep(30) i += 1 process = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True) tmp = process.stdout.read().decode() n_total = n_tasks(tmp, job_id) def submit_to_cluster(path, n_cpu=2, n_jobs=10, ram_per_core=None, **kwargs): for file in os.listdir(log_dir): os.remove(log_dir + file) # Submits job to the cluster submit_cmd = "qsub " if n_cpu > 1: submit_cmd += " -pe multicore {0} -R y ".format(n_cpu) ram_per_core = ( "{0:.1f}G".format(6.0 / float(n_cpu) + 2.0) if not ram_per_core else ram_per_core ) print("Ram per core:", ram_per_core) submit_cmd += "-t 1-{0}:1 {1} {2} {3}".format(n_jobs, submit_file, path, n_cpu) make_desy_submit_file(ram_per_core, **kwargs) print(time.asctime(time.localtime()), submit_cmd, "\n") process = subprocess.Popen(submit_cmd, stdout=subprocess.PIPE, shell=True) msg = process.stdout.read().decode() print(msg) job_id = int(str(msg).split("job-array")[1].split(".")[0]) return job_id def n_tasks(tmp, job_id): """ Returns the number of tasks given the output of qsub :param tmp: output of qsub :param job_id: int, optional, if given only tasks belonging to this job will we counted :return: int """ st = str(tmp) ids = np.array([int(s.split(" ")[2]) for s in st.split("\n")[2:-1]]) if job_id: return len(ids[ids == job_id]) else: return len(ids) if not os.path.isfile(submit_file): make_desy_submit_file()
the-stack_0_7294
""" File: sillystream/examples/daemon.py Author: John Andersen Description: A process that forks off and redirects stdout to sillystream server To run: python examples/daemon.py python sillystream/__main__.py client """ import os import sys import time import sillystream # Send stdout to sillystream STREAM = True # Seconds to stay alive for STAY_ALIVE = 20 def make_daemon(): """ Daemonize to run in background """ pid = os.fork() if pid > 0: # exit first parent sys.exit(0) pid = os.fork() if pid > 0: # exit second parent sys.exit(0) if STREAM: # Create sillystream server output = sillystream.server() # Start the server output.start_thread() else: output = open("/dev/null", 'wb') sys.stdout = output sys.stderr = output def main(): """ Daemonizes and prints numbers """ make_daemon() i = 0 while i < STAY_ALIVE: print("test {}".format(i)) i += 1 time.sleep(1) if __name__ == '__main__': main()
the-stack_0_7295
import ctypes import numpy as np import os import subprocess import tempfile import tvm from tvm import relay, get_global_func, target, register_func from tvm.relay.expr import Expr, Function, Let, GlobalVar from tvm.relay.adt import Constructor from tvm.relay.expr_functor import ExprFunctor, ExprVisitor from tvm.relay.backend import compile_engine from .little_cpp import PackedCall, CPPFunction, Invoke, Decl, CPPIf, CPPTuple, CPPMatch, CPPConstructor, CPPTupleGetItem from .little_cpp import CPPRefCreate, CPPRefRead, CPPRefWrite from . import to_source from .convert import convert TVM_PATH = os.environ['TVM_HOME'] def must_run_process(args): proc = subprocess.run(args) assert proc.returncode == 0 def compile_cpp(source, lib_name, flags=None, lib_path=None): if flags is None: flags = [] if lib_path is None: lib_path = os.curdir debug_source_path = os.path.join(lib_path, 'source.cc') # Write out the file for debugging. with open(debug_source_path, 'w') as source_file: source_file.write(source) # with tempfile.TmporaryDirectory() as tmpdir: tmpdir = tempfile.mkdtemp(prefix="relay_aot_compiler") lib_path = os.path.join(tmpdir, lib_name) source_path = os.path.join(tmpdir, 'source.cc') with open(source_path, 'w') as source_file: source_file.write(source) must_run_process(["clang-format", "-i", debug_source_path]) system = os.uname()[0] if system == 'Darwin': command = [ "clang", "-std=c++14", "-shared", "-undefined", "dynamic_lookup", "-o", lib_path, source_path, f"-I{TVM_PATH}/3rdparty/dmlc-core/include", f"-I{TVM_PATH}/3rdparty/dlpack/include", f"-I{TVM_PATH}/3rdparty/HalideIR/src", f"-I{TVM_PATH}/include", f"-L{TVM_PATH}/build", "-ltvm" ] + flags else: command = [ "clang", "-std=c++14", "-shared", "-fPIC", "-o", lib_path, source_path, f"-I{TVM_PATH}/3rdparty/dmlc-core/include", f"-I{TVM_PATH}/3rdparty/dlpack/include", f"-I{TVM_PATH}/3rdparty/HalideIR/src", f"-I{TVM_PATH}/include", f"-L{TVM_PATH}/build", "-ltvm" ] + flags must_run_process(command) return lib_path def load_lib(name): return ctypes.CDLL(name, ctypes.RTLD_GLOBAL) def is_primitive(e: relay.Expr): return isinstance(e, relay.Function) and e.attrs and e.attrs.Primitive.value == 1 class AoTCompiler(ExprFunctor): def __init__(self, mod, tgt) -> None: super().__init__() self.mod = mod self.tgt = tgt self.engine = compile_engine.get() self.bindings = [[]] self.gv_map = {} def add_binding(self, var, value): self.bindings[-1].append((var, value)) def optimize(self, expr: Function) -> Function: opts = relay.transform.Sequential([relay.transform.FuseOps(), relay.transform.ToANormalForm()]) self.mod['main'] = expr self.mod = opts(self.mod) ret = self.mod['main'] return ret def mk_primitive_op(self, func: Expr, args, output_type) -> Expr: cc_key = compile_engine.CCacheKey(func, self.tgt) hash = relay.analysis.structural_hash(func) name = f"op_{hash}" if not get_global_func(name, allow_missing=True): jit_func = self.engine.jit(cc_key, self.tgt) register_func(name, jit_func) return PackedCall(name, args, [x.checked_type for x in args], output_type) def visit_call(self, call: Expr) -> Expr: if is_primitive(call.op): return self.mk_primitive_op(call.op, call.args, call.checked_type) elif isinstance(call.op, Constructor): return CPPConstructor(call.op.tag, [self.visit(arg) for arg in call.args]) else: assert(call.attrs == None) args = [self.visit(arg) for arg in call.args] fn = self.visit(call.op) return Invoke(fn, args) def visit_let(self, let: Expr) -> Expr: self.bindings.append([]) while isinstance(let, Let): cpp_value = self.visit(let.value) self.add_binding(let.var, cpp_value) let = let.body bindings = self.bindings.pop() body = self.visit(let) return Decl(bindings, body) def visit_var(self, var): return var def visit_global_var(self, gv): if gv not in self.gv_map: self.gv_map[gv] = "to be updated" self.gv_map[gv] = self.visit(self.mod[gv]) return gv def visit_function(self, func): if is_primitive(func): body = self.mk_primitive_op(func, func.params, func.ret_type) return CPPFunction(func.params, body, func.checked_type.ret_type) else: return CPPFunction(func.params, self.visit(func.body), func.checked_type.ret_type) def visit_constant(self, const): return const def visit_if(self, i): return CPPIf(self.visit(i.cond), self.visit(i.true_branch), self.visit(i.false_branch), i.checked_type) def visit_tuple(self, t): return CPPTuple([self.visit(f) for f in t.fields], t.checked_type) def visit_match(self, m): return CPPMatch(self.visit(m.data), [(c.lhs, self.visit(c.rhs)) for c in m.clauses], m.checked_type) def visit_op(self, op): raise Exception(f'op outside of primitive: {op}') def visit_tuple_getitem(self, t): return CPPTupleGetItem(self.visit(t.tuple_value), t.index, t.checked_type) def visit_ref_create(self, r): return CPPRefCreate(self.visit(r.value), r.checked_type) def visit_ref_read(self, r): return CPPRefRead(self.visit(r.ref), r.checked_type) def visit_ref_write(self, r): return CPPRefWrite(self.visit(r.ref), self.visit(r.value)) _LIB_COUNTER = 1 _LIB = [] def lib_and_func_name(name): global _LIB_COUNTER packed_name = f'relay.aot.{name}.{_LIB_COUNTER}' lib_name = f"librelay_aot_{_LIB_COUNTER}.so" _LIB_COUNTER += 1 return lib_name, packed_name import time def _mk_wrapper(fn, ctx, constants, record_time): def _wrapper(*args): new_constants = [convert(a, ctx) for a in constants] new_args = [convert(a, ctx) for a in args] begin = time.perf_counter() res = fn(*new_constants, *new_args) end = time.perf_counter() return res if not record_time else (res, end - begin) return _wrapper import sys sys.setrecursionlimit(10000) def compile(func, mod, ctx, tgt, name='default', record_time=False): """Compile a relay function into a native library function. Parameters ---------- func: Expr The function. mod: Module The Module. ctx: Context The Context. tgt: Target The target name: String The name of the target binary library. record_time: Bool Time cost to call f? Returns ------- result: Function A function that, when pass in some values, will convert them to the right format and call the compiled func. """ global _LIB if isinstance(func, GlobalVar): func = mod[func] assert isinstance(func, Function) compiler = AoTCompiler(mod, tgt) func = compiler.optimize(func) func = compiler.visit(func) lib_name, packed_name = lib_and_func_name(name) constants, source_code = to_source.to_source(mod, func, compiler.gv_map, ctx, packed_name) lib_name = f"librelay_aot_{_LIB_COUNTER}.so" library_path = compile_cpp(source_code, lib_name, flags=["-O3"]) _LIB.append(load_lib(library_path)) fn = get_global_func(packed_name) return _mk_wrapper(fn, ctx, constants, record_time)
the-stack_0_7297
import pandas as pd from pyecharts.components import Table from pyecharts.options import ComponentTitleOpts __all__ = ['statistics'] def statistics(model, jupyter=True, path='Model Summary.html', title="Model Summary", subtitle=""): t = pd.DataFrame([[i.name, i.__class__.__name__, i.trainable, i.dtype, i.input_shape, i.output_shape, i.count_params()] for i in model.layers], columns=['layer_custom_name', 'layer_object_name', 'trainable', 'dtype', 'input_shape', 'output_shape', 'params']) # t['output_memory(MB)'] = (t.output_shape.map(lambda x:sum([reduce(lambda y,z:y*z, i[1:]) for i in x]) if isinstance(x, list) else reduce(lambda y,z:y*z, x[1:])) # *t.dtype.map(lambda x:int(re.sub("\D", "", x))))/32#/1024/1024) t.loc['total'] = ['', '', '', '', '', '', t.params.sum()] t['input_shape'] = t.input_shape.map(lambda x:str(x).replace("),(", "),\n(") if isinstance(x, list) else x) t = t.reset_index().rename(columns={'index':''}) for i in t.columns: t[i] = t[i].astype(str) table = Table() headers = t.columns.tolist() rows = t.values.tolist() table.add(headers, rows).set_global_opts(title_opts=ComponentTitleOpts(title=title, subtitle=subtitle)) return table.render_notebook() if jupyter else table.render(path)
the-stack_0_7298
# This scripts demonstrates how to use mitmproxy's filter pattern in inline scripts. # Usage: mitmdump -s "filt.py FILTER" import sys from mitmproxy import filt def start(context): if len(sys.argv) != 2: raise ValueError("Usage: -s 'filt.py FILTER'") context.filter = filt.parse(sys.argv[1]) def response(context, flow): if flow.match(context.filter): print("Flow matches filter:") print(flow)
the-stack_0_7301
# encoding: utf-8 # cython: profile=False # cython: embedsignature=True """ Implementation of DirichletDistribution. The Dirichlet distribution makes use of path counts from a DFA. Consider two representations of the DFA for the golden mean process. 0 1 0 0 1 1 0 -1 and 0 1 0 0 1 1 0 2 2 2 2 In the first, we have an incomplete DFA, whereas the second DFA is complete. The first represents forbidden transitions with a special node, -1. There is no explicit treatment of this node, and so, when counting paths, one must deal with the reality that paths can terminate. For the second DFA, node 2 is an explicit node that receives all forbidden transitions. Self loops keep all subsequent transitions at node 2. In this case, paths, even forbidden paths, do not terminate prematurely. It should not be surprising that supporting incomplete DFAs makes the code *more* complex. For example, the expression for the likelihood that we use during inference is valid only if the path has a nonzero probability, and so, the implementation must first check that the path is valid. Further complicating matters is that this implementation will infer transition probabilities for every node that has more than one outgoing edge. Without a mechanism for declaring which edges should be inferred and which should be fixed, this means that doing inference on a complete DFA will yield undesirable results---as forbidden edges will be inferred to have some nonzero probability. What this means for the current implementation: If one is attempting to do inference on an HMM that does not have full support from each state, then one should pass in an incomplete DFA of its support, rather than a complete DFA. The expression for the likelihood (and thus, evidence) still only holds for words with nonzero probability. Edges to implicit, forbidden nodes will have probability 0, which is fixed and not inferred by the algorithm. A goal for the future is to extend it so that one can declare which edges are fixed and which should be inferred, and how the parameters might be related to one another. """ from __future__ import absolute_import from __future__ import division import cython #cimport cython import numpy as np #cimport numpy as np from copy import deepcopy from .counts import path_counts from .exceptions import InvalidInitialNode from itertools import product BTYPE = np.bool #ctypedef bint BTYPE_t ITYPE = np.int64 #ctypedef np.int64_t ITYPE_t __all__ = ['DirichletDistribution', 'Infer'] import dit class DirichletDistribution(object): """ A barebones representation of a product of Dirichlet distributions. """ ### Public nodes = None symbols = None final_node = None valid_initial_nodes = None node_paths = None nNodes = None nSymbols = None nInitial = None nEdges = None prng = None ### Private tmatrix = None edges = None edge_alphas = None edge_counts = None node_alphas = None node_counts = None _temp = None def __init__(self, tmatrix, data=None, node_path=False, prng=None, out_arrays=None): #np.ndarray[ITYPE_t, ndim=2, mode="c"] tmatrix, #np.ndarray[ITYPE_t, ndim=1, mode="c"] data, #BTYPE_t node_path=False, #out_arrays=None): # In the follow, we use the following variables: # n : number of nodes # k : number of symbols # L : length of data # nInitial : number of valid initial nodes # nEdges : number of edges if prng is None: prng = np.random.RandomState() self.prng = prng if data is None: data = np.array((), dtype=int) # shape: (n, k) # axes: (node, symbol) # Each element is the next node. self.tmatrix = tmatrix # shape: (nEdges, 2) # axes: (edge index, (node, symbol)) self.edges = np.dstack(np.nonzero(tmatrix != -1))[0] # shape : (n,) # axes: (node,) # Not strictly necessary since the nodes are integers from zero. self.nodes = np.arange(tmatrix.shape[0]) # shape: (k,) # axes: (symbol,) self.symbols = np.arange(tmatrix.shape[1]) counts, final, node_paths = path_counts(tmatrix, data, node_path, out_arrays) # shape: (n, n, k) # axes: (initialNode, node, symbol) # Use float to support average counts. self.edge_counts = counts.astype(float) # shape: (n, n, k) # axes: (initialNode, node, symbol) # Start with uniform prior. self.edge_alphas = np.zeros(counts.shape, dtype=float) + 1 self._update_node_alphacounts() # shape: (n,) # axes: (initial node,) # Each element is the final node. self.final_node = final # shape: (nInitial,) # axes: (initial node,) # Each element is a valid initial node. self.valid_initial_nodes = np.array(np.nonzero(final != -1)[0]) # Eventually, we will need to determine which nodes have edges that # are to be inferred. Presently, this is every node since we cannot # have fixed edges with this algorithm. This will affect self.temp. # shape: (nNodes, L+1) # axes: (initialNode, time) self.node_paths = node_paths # The first row is for numerator terms # The second row is for denominator terms shape = (2, len(self.edges) + len(self.nodes)) self._temp = np.empty(shape, dtype=float) self.nNodes = tmatrix.shape[0] self.nSymbols = tmatrix.shape[1] self.nInitial = len(self.valid_initial_nodes) self.nEdges = self.edges.shape[0] def _update_node_alphacounts(self, alpha=True, counts=True): """ Recalculates `node_alpha` and `node_counts`. This must be called any time `edge_alpha` or `edge_counts` is updated. They are used to calculate the evidence. Practically, the node counts are the number of times each node was visited by some symbol. Effectively: node_count(initial_node, node) = \sum_{symbol} edge_count(initialNode, node, symbol) """ # axes: (initialNode, node) # Each element is the count/alpha value. # Recall edge_counts and edge_alphas have: # shape: (n, n, k) # axes: (initialNode, node, symbol) # For the counts, if an edge was not traversed, then its count is # zero and will not affect the sum along axis=2. When we consider # the alphas, we must make sure that the alphas corresponding to # nonedges (assuming incomplete DFAs) do not effect the node alpha, # that is, the sum along axis=2. So we exclude nonedges from the sum. # This means the minimum node alpha for every (initial node, node) pair # is 1, even for nodes which have no edges that need to be inferred. # However, this is not a problem since algorithms, like the evidence, # will not query for those alpha values (since they use self.edges). # # The reason it is done this way is to simplify the data structure. # Technically, you only need priors for edges that are to be inferred. # As of now, the implementation is that these arrays will have fixed # size, no matter how many edges need to be inferred. An alternative # way to do this is to make axis=1 sparse and with size equal to the # number of edges to be inferred. We would then need to use a lookup to # match indexes along axis=1 to the edges. if alpha: condition = self.tmatrix != -1 self.node_alphas = np.where(condition, self.edge_alphas, 0).sum(axis=2) if counts: self.node_counts = self.edge_counts.sum(axis=2) def add_counts_from(self, data): """ Adds additional counts from `data`. """ # For each symbol, add the count and update the final node. for symbol in data: for initial_node in self.valid_initial_nodes: final_node = self.final_node[initial_node] self.final_node[initial_node] = self.tmatrix[final_node, symbol] self.edge_counts[initial_node, final_node, symbol] += 1 self.valid_initial_nodes = np.array(np.nonzero(self.final_node != -1)[0]) self._update_node_alphacounts() def log_evidence(self, initial_node): """ Returns the log evidence of the data using `node` as the initial node. Parameters ---------- initial_node : int An initial node. Returns ------- log_evid : float The base-2 log evidence of the data given the initial node. When its value is -inf, then it is not possible to generate the given data from the initial node. When its value is 0, then the given data is the only possible data that could be generated from the initial node. """ if self.final_node[initial_node] == -1: # Then the data cannot be generated by this node. # # The form we use for the likelihood is valid only if the # probability of the data is nonzero. The reason is that it # requires edge counts for every edge, and we only obtain counts on # allowed edges. We could, alternatively, work with complete DFAs, # and then we *would* have counts for transitions following a # forbidden transition. In this case, the transition matrix would # have zero entries equal to -1 and one of the states would be the # garbage state. But this doesn't work for other reasons. See the # module docstring. log_evid = -np.inf else: from scipy.special import gammaln # shape: (2, nEdges + nNodes) temp = self._temp # It is no problem to iterate through nodes which only have # one edge, since the edge and node counts/alphas will cancel out. # Once we allow nodes with fixed probs, we will need to iterate # only through inferred edges and nodes with inferred edges. # Now iterate through every edge (u, x) edges = self.edges nEdges = self.nEdges ealphas = self.edge_alphas ecounts = self.edge_counts for i in range(nEdges): u = edges[i, 0] x = edges[i, 1] temp[0, i] = ealphas[initial_node, u, x] + \ ecounts[initial_node, u, x] temp[1, i] = ealphas[initial_node, u, x] # Similarly, iterate through every node (u, *) nalphas = self.node_alphas ncounts = self.node_counts for i in range(self.nNodes): temp[0, i + nEdges] = nalphas[initial_node, i] temp[1, i + nEdges] = nalphas[initial_node, i] + \ ncounts[initial_node, i] gammaln(temp, temp) temp[1] *= -1 log_evid = temp.sum() # Return base-2 logarithms. return log_evid / np.log(2) def log_evidence_array(self): """ Returns an array of the log evidence of each node. """ nNodes = self.nNodes log_evid = np.empty(nNodes) for i in range(nNodes): log_evid[i] = self.log_evidence(i) return log_evid def sample_uhmm(self, initial_node, size=None, prng=None): """ Returns a uHMM sampled from the posterior. Parameters ---------- initial_node : int The initial node. size : int The number of uHMMs to return. prng : np.RandomState A pseudorandom number generator, compatible with NumPy RandomState. Returns ------- trans : NumPy array The transition probabilities of the uHMM. If `size` is None, then return a single transition matrix, shape (n, k). Otherwise, return `size` transition matrices in an array of shape (`size`, n, k). Raises ------ Exception If `initial_node` is not a valid initial node. Notes ----- The final node can be obtained from self.final_node[initial_node]. """ if prng is None: prng = self.prng final_node = self.final_node[initial_node] if final_node == -1: raise InvalidInitialNode(initial_node) post = self.edge_alphas[initial_node] + self.edge_counts[initial_node] condition = self.tmatrix != -1 if size is None: shape = (1,) + self.tmatrix.shape else: shape = (size,) + self.tmatrix.shape trans = np.zeros(shape, dtype=float) for n in range(shape[0]): for i in range(shape[1]): cond = condition[i] trans[n, i, cond] = prng.dirichlet(post[i, cond]) if size is None: trans = trans[0] return trans def pm_uhmm(self, initial_node): """ Returns the posterior mean uHMM for the specified the initial node. Parameters ---------- initial_node : int The initial node. Returns ------- trans : NumPy array The transition probabilities of the uHMM. Raises ------ InvalidInitialNode If `initial_node` is not a valid initial node. Notes ----- The final node can be obtained from self.final_node[initial_node]. """ final_node = self.final_node[initial_node] if final_node == -1: raise InvalidInitialNode(initial_node) # This is a vectorized version of pm_edge_probability(). # An edge is a node and symbol: s, x # alpha(s, x|s_i) + counts(s, x|s_i) trans = self.edge_alphas[initial_node] + \ self.edge_counts[initial_node] # Now, we divide each row of trans by its normalization constant: # # \sum_x (alpha(s, x | s_i) + counts(s, x | s_i)) # # The node_* arrays have row/cols (initial_node, node). So we need # to associate their columns to the rows of trans. This is achieved # by dividing trans by a column vector. Before the [:, np.newaxis], # we have arrays of shape (n,). Afterwards, we have shape (n,1) trans /= (self.node_alphas[initial_node] + \ self.node_counts[initial_node])[:, np.newaxis] # It is necessary to explicitly mark forbidden transitions as having # zero probability since the alphas are nonzero for all transitions. condition = self.tmatrix == -1 trans[condition] = 0 return trans def pm_uhmm_array(self): """ Returns an array of the posterior mean uHMMs. """ uhmms = np.zeros((self.nInitial, self.nNodes, self.nSymbols)) for i, initial_node in enumerate(self.valid_initial_nodes): uhmms[i] = self.pm_uhmm(initial_node) return uhmms def _ntm(self, trans): n = trans.shape[0] ntm = np.zeros((n,n), dtype=float) edges = self.edges tmatrix = self.tmatrix for i in range(len(edges)): u = edges[i, 0] x = edges[i, 1] v = tmatrix[u, x] ntm[u, v] += trans[u, x] return ntm def get_updated_prior(self): """ Returns a new DirichletDistribution that incorporates observed counts. """ new = deepcopy(self) # Transfer edge counts to edge alphas. new.edge_alphas += new.edge_counts new.edge_counts *= 0 new._update_node_alphacounts() # To sample from the posterior, P( \theta | D, \sigma) we must keep the # same valid_initial_nodes. Note that the edge counts are zero in the # updated posterior. This suggests that the final_nodes should be # equal to the valid_initial_nodes since there is no data (e.g. no # edge counts). But doing this will not allow us to properly add new # since we *must* know the final state from all data seen (even if # the counts in the updated prior are now zero). return new def predictive_probability(self, x, initial_node): """ Returns the mean predictive probability of `x` given `initial_node`. That is, we calculate:: \Pr(x | D, \sigma) = \int \Pr( x | D, \theta, \sigma) \Pr( \theta | D, \sigma) d \theta This is a calculation from the posterior predictive distribution. Parameters ---------- x : iterable The new data used to calculate the predictive probability. initial_node : int The initial node. Returns ------- p : float The base-e logarithm of the mean predictive probability of `x`. Raises ------ InvalidInitialNode If `initial_node` is not a valid initial node. """ new = self.get_updated_prior() new.add_counts_from(x) return new.log_evidence(initial_node) class DirichletDistributionCP(DirichletDistribution): """ A Dirichlet distribution for Cartesian product inference. Importantly, the node/edge alpha and counts are not directly used to determine the posterior without first transforming them into the constituent parts of the Cartesian product. """ ### Public nodes = None symbols = None final_node = None valid_initial_nodes = None node_paths = None nMatrices = None nNodes = None nSymbols = None nInitial = None nEdges = None prng = None ### Private tmatrices = None tmatrix = None edges = None _temp = None def __init__(self, tmatrices, data=None, node_path=False, prng=None, out_arrays=None): tmatrix = self._build_tmatrix(tmatrices, data) base = super(DirichletDistributionCP, self) base.__init__(tmatrix, data, node_path, prng, out_arrays) def _build_tmatrix(self, tmatrices, data): # list of length m # elements are arrays of shape: (n_i, k_i) # axes: (node, symbol) for the ith tmatrix. # Each element is the next node. self.tmatrices = tmatrices self.nMatrices = len(tmatrices) self.nNodes_array = np.array([tmatrix.shape[0] for tmatrix in tmatrices]) nNodes = np.prod(self.nNodes_array) self.nodes = np.arange(nNodes) self.node_tuples = list(product(*[range(n) for n in self.nNodes_array])) self.node_tuples_index = dict(zip(self.node_tuples, self.nodes)) self.nSymbols_array = np.array([tmatrix.shape[1] for tmatrix in tmatrices]) nSymbols = np.prod(self.nSymbols_array) self.symbols = np.arange(nSymbols) self.symbol_tuples = list(product(*[range(n) for n in self.nSymbols_array])) self.symbol_tuples_index = dict(zip(self.symbol_tuples, self.symbols)) shape = np.array([m.shape for m in self.tmatrices]).prod(axis=0) tmatrix = np.zeros(shape, dtype=int) - 1 # Quick hack for now...generate the data for each tmatrix. # This requires a scan of the data for each tmatrix. Slow. # In principle, we can generate the counts/alphas with one scan, # and then propagate these values through summations to the counts # and alphas for each individual tmatrix. self.dd = [] symbols = self.symbol_tuples for i,m in enumerate(tmatrices): if data is not None: data_ = np.array([symbols[sym][i] for sym in data]) else: data_ = None self.dd.append( DirichletDistribution(m, data_) ) for edges in product(*[dd.edges for dd in self.dd]): v = tuple(self.tmatrices[i][u, x] for i, (u, x) in enumerate(edges)) u, x = zip(*edges) uu = self.node_tuples_index[u] vv = self.node_tuples_index[v] xx = self.symbol_tuples_index[x] tmatrix[uu, xx] = vv return tmatrix def log_evidence(self, initial_node): """ Returns the log evidence of the data using `node` as the initial node. Parameters ---------- initial_node : int An initial node. Returns ------- log_evid : float The base-2 log evidence of the data given the initial node. When its value is -inf, then it is not possible to generate the given data from the initial node. When its value is 0, then the given data is the only possible data that could be generated from the initial node. """ base = 2 ops = dit.math.get_ops(base) node = self.node_tuples[initial_node] log_evids = np.array([self.dd[i].log_evidence(node[i]) for i in range(self.nMatrices)]) log_evid = ops.mult_reduce(log_evids) return log_evid def sample_uhmm(self, initial_node, size=None, prng=None): """ Returns a uHMM sampled from the posterior. Parameters ---------- initial_node : int The initial node. size : int The number of uHMMs to return. prng : np.RandomState A pseudorandom number generator, compatible with NumPy RandomState. Returns ------- trans : NumPy array The transition probabilities of the uHMM. If `size` is None, then return a single transition matrix, shape (n, k). Otherwise, return `size` transition matrices in an array of shape (`size`, n, k). Raises ------ Exception If `initial_node` is not a valid initial node. Notes ----- The final node can be obtained from self.final_node[initial_node]. """ if prng is None: prng = self.prng final_node = self.final_node[initial_node] if final_node == -1: raise InvalidInitialNode(initial_node) inodes = self.node_tuples[initial_node] uhmms = [self.dd[i].sample_uhmm(inodes[i], prng=prng) for i in range(self.nMatrices)] trans = uhmms[0] for uhmm in uhmms[1:]: trans = np.kron(trans, uhmm) return trans def pm_uhmm(self, initial_node): """ Returns the posterior mean uHMM for the specified the initial node. Parameters ---------- initial_node : int The initial node. Returns ------- trans : NumPy array The transition probabilities of the uHMM. Raises ------ Exception If `initial_node` is not a valid initial node. Notes ----- The final node can be obtained from self.final[initial_node]. """ final_node = self.final_node[initial_node] if final_node == -1: raise InvalidInitialNode(initial_node) inodes = self.node_tuples[initial_node] pm_uhmms = [self.dd[i].pm_uhmm(inodes[i]) for i in range(self.nMatrices)] trans = pm_uhmms[0] for pm_uhmm in pm_uhmms[1:]: trans = np.kron(trans, pm_uhmm) return trans class Infer(object): """ New methods are those which require a distribution over start nodes. """ prng = None posterior = None inode_prior = None inode_posterior = None # The final node distribution is a deterministic function of the initial # node posterior distribution. It is a "posterior". For the prior, the # fnode_prior would be equal to inode_prior, and so, we do not include it # here. fnode_dist = None _nodedist_class = dit.ScalarDistribution _symboldist_class = dit.ScalarDistribution _posterior_class = DirichletDistribution def __init__(self, tmatrix, data=None, inode_prior=None, node_path=False, prng=None, out_arrays=None, options=None): """ inode_prior is the initial node prior distribution. """ # Allow the user to customize the classes used internally. if options is not None: attrs = ['nodedist_class', 'symboldist_class', 'posterior_class'] for attr in attrs: _attr = '_' + attr setattr(self, _attr, options.get(attr, getattr(self, _attr))) if prng is None: prng = np.random.RandomState() self.prng = prng self.posterior = self._posterior_class( tmatrix, data, node_path, self.prng, out_arrays ) self._inode_init(inode_prior) self._fnode_init() def _inode_init(self, inode_prior): # # Set up initial node prior distribution. # if inode_prior is None: outcomes = self.posterior.nodes n = self.posterior.nNodes pmf = [1 / n] * n inode_prior = self._nodedist_class(outcomes, pmf) else: # Assumes: # 1) the distribution is normalized # 2) sample space is range(n) if inode_prior.is_log(): inode_prior.set_base('linear') # If the initial node dist does not assign positive probability to # any of the valid initial nodes, then the evidence (averaged over # the prior of nodes) will be 0, and the posterior over nodes is # not defined. So we make sure that some probability is assigned # to at least one valid initial node. zero = inode_prior.ops.zero for node in self.posterior.valid_initial_nodes: if inode_prior[node] > zero: break else: msg = "`inode_prior` does not assign probability to a valid node." raise Exception(msg) # There is no reason to make it sparse, except to match the posterior. inode_prior.make_sparse() self.inode_prior = inode_prior # # Calculate initial node posterior distribution. For state s and data x, # # p(s|x) = p(x|s) p(s) / p(x) # # where p(x) = \sum_s p(x|s) p(s) # base = 2 ops = dit.math.get_ops(base) p_xgs = self.posterior.log_evidence_array() # Need to use dense version of the prior's pmf p_s = dit.copypmf(inode_prior, base=base, mode='dense') p_sgx = ops.mult(p_xgs, p_s) p_x = ops.add_reduce(p_sgx) ops.mult_inplace(p_sgx, ops.invert(p_x)) # No need to sort since the prior was already sorted. nodes = self.posterior.nodes d = self._nodedist_class(nodes, p_sgx, base=base, sort=False) d.set_base('linear') d.make_sparse() self.inode_posterior = d def _fnode_init(self): # This averages over initial nodes. Recall, due to unifilarity, for any # given initial node, there is exact one final node. # # p(s_f | x) = \sum_{s_i} p(s_f | x, s_i) p(s_i | x) # # so p(s_f | x, s_i) is equal to 1. # ops = dit.math.LogOperations('e') pmf = np.zeros(self.posterior.nNodes, dtype=float) for initial_node in self.posterior.valid_initial_nodes: p = self.inode_posterior[initial_node] final_node = self.posterior.final_node[initial_node] pmf[final_node] += p nodes = self.posterior.nodes d = self._nodedist_class(nodes, pmf, base='linear', validate=False) d.make_sparse() self.fnode_dist = d def add_counts_from(self, data): """ Adds additional counts from `data`. """ self.posterior.add_counts_from(data) self._inode_init(self.inode_prior) self._fnode_init() def get_updated_prior(self): """ Returns a new Infer that incorporates observed counts. """ posterior = self.posterior try: self.posterior = None new = deepcopy(self) finally: self.posterior = posterior new.posterior = posterior.get_updated_prior() # The difference here is that we must use the inode_posterior as our # new initial distribution. new._inode_init(self.inode_posterior) # There is no need to reinit the fnode_dist since # new.posterior.valid_initial_nodes and new.posterior.final_node are # the same as in `self.posterior`. return new def pm_next_symbol_dist(self): # This averages over initial nodes. # # p(x | D) = \sum_{s_i} p( x | D, s_i) p(s_i | D) # # where # # p(x | D, s_i) = \int dtheta p(x | theta, D, s_i) p( theta | D, s_i) # # p(x | theta, D, s_i) = \sum_{s_f} p( x, s_f | theta, D, s_i) # = p( x | theta, delta(s_i, D) ) # # but note, this last equation is not really necessary for unifilar # HMMs because the symbol x uniquely identifies the next state s_f. # So we have: # # p(x | D, s_i) = \int dtheta p(x | theta, delta(s_i, D)) p(theta | D, s_i) # # Thus, # # p(x | D, s_i) = posterior mean of edge (x, delta(s_i, D)) # # So for each valid initial node, we grab the row from the posterior # mean uHMM corresponding to its final node. These are the mean # probabilities of each symbol. This gives us a matrix of shape # (number of valid initial nodes, symbols). We construct a column # vector of the probability of each valid initial node and multiply # it elementwise on the rows (with broadcasting) to the mean # probabilities. Then, we sum the rows to get the final p(x | D). shape = (self.posterior.nInitial, self.posterior.nSymbols) probs = np.zeros(shape, dtype=float) # We must work with valid initial nodes since we are indexing with # the final node. for i, initial_node in enumerate(self.posterior.valid_initial_nodes): pm_uhmm = self.posterior.pm_uhmm(initial_node) final_node = self.posterior.final_node[initial_node] probs[i] = pm_uhmm[final_node] weights = dit.copypmf(self.inode_posterior, 'linear', 'sparse') weights = np.array([weights]).transpose() probs *= weights pmf = probs.sum(axis=0) d = self._symboldist_class(self.posterior.symbols, pmf) d.make_sparse() return d def log_evidence(self, initial_node=None): """ Returns the log evidence of the data using `node` as the initial node. p(D | s) if initial_node is not None \sum_s p(D|s) p(s) if initial_node is None Parameters ---------- initial_node : int, None An initial node. If `None`, then the expected log evidence is returned, where the expectation is over the initial node prior distribution. Returns ------- log_evid : float The base-2 log evidence of the data. """ if initial_node is not None: return self.posterior.log_evidence(initial_node) base = 2 ops = dit.math.get_ops(base) p_s = dit.copypmf(self.inode_prior, base=base, mode='dense') evidences = self.posterior.log_evidence_array() log_evid = ops.add_reduce(ops.mult(evidences, p_s)) return log_evid def sample_uhmm(self, initial_node=None, size=None, prng=None): """ Returns uHMM transition matrices sampled from the posterior. Parameters ---------- initial_node : int The initial node. If `None`, then the initial node is sampled from the initial node posterior distribution. size : int The number of uHMMs to return. prng : np.RandomState A pseudorandom number generator, compatible with NumPy RandomState. Returns ------- inodes : int or NumPy array The initial nodes. If `size` is None, then return the integer corresponding to the sampled initial node. Otherwise, a NumPy array of shape (`size`,) containing the sampled initial nodes. trans : NumPy array The transition probabilities of the uHMM. If `size` is None, then return a single transition matrix, shape (n, k). Otherwise, return `size` transition matrices in an array of shape (`size`, n, k). Raises ------ Exception If `initial_node` is not a valid initial node. """ if prng is None: prng = self.prng single = False if size is None: size = 1 single = True n, k = self.posterior.nNodes, self.posterior.nSymbols uhmms = np.zeros((size, n, k)) if initial_node is None: inodes = self.inode_posterior.rand(size, prng=prng) else: inodes = [initial_node] * size for i, inode in enumerate(inodes): uhmms[i] = self.posterior.sample_uhmm(inode, prng=prng) if single: inodes = inodes[0] uhmms = uhmms[0] return inodes, uhmms # Depends on CMPy def sample_stationary_distributions(self, n=None, prng=None): from cmpy.math import stationary_distribution if prng is None: prng = self.prng if n is None: single = True n = 1 else: single = False inodes = self.inode_posterior.rand(n, prng=prng) # n is likely to be small...let's build it up. pis = [] posterior = self.posterior for initial_node in inodes: tmatrix = posterior.sample_uhmm(initial_node, prng=prng) ntm = posterior._ntm(tmatrix) pi = stationary_distribution(ntm, logs=False) pis.append(pi) if single: sdists = pis[0] else: sdists = np.array(pis) return sdists def predictive_probability(self, x, initial_node=None): """ Returns the mean predictive probability of `x` given `initial_node`. That is, we calculate: \Pr(x | D, \sigma) = \int \Pr( x | D, \theta, \sigma) \Pr( \theta | D, \sigma) d \theta This is a calculation from the posterior predictive distribution. When `initial_node` is `None`, then we calculate: \Pr(x | D) = \sum \Pr(x | D, \sigma) \Pr( \sigma | D) Parameters ---------- x : iterable The new data used to calculate the predictive probability. initial_node : int or None The initial node. If `None`, then the predictive probability is averaged over the initial node posterior distribution. Returns ------- p : float The base-e logarithm of the mean predictive probability of `x`. Raises ------ InvalidInitialNode If `initial_node` is not a valid initial node. """ new = self.get_updated_prior() new.add_counts_from(x) return new.log_evidence(initial_node) class InferCP(Infer): _posterior_class = DirichletDistributionCP
the-stack_0_7303
from collections import OrderedDict from functools import partial from matplotlib.figure import Figure from PyQt5 import QtWidgets, QtCore, QtGui from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from .model import AxesSet from .widgets import * class AxPositioningEditor(QtWidgets.QWidget): """ main widget for editing axes positions Example: >>>from matplotlib import pyplot as plt >>>fig = plt.figure() >>>w, h = fig.get_size_inches() >>>AxPositioningEditor((w, h), bounds=[]) """ position_codes = ['S', 'N', 'W', 'E', 'SW', 'NW', 'NE', 'SE', 'C'] position_names = [ 'lower center', 'top center', 'left center', 'right center', 'lower left', 'upper left', 'upper right', 'lower right', 'center'] click_axes_data = dict(w=.3, h=.3) def __init__(self, figsize, bounds=(), anchor='C', dpi=150): super().__init__() self.figsize = figsize w, h = self.figsize self.figure = Figure(figsize=(w, h)) self.dpi = dpi self.settings = dict(guides=False, guides_selected=False, relative=True) self.guides_subsetting_fields = [] self.axes = AxesSet(self.figure, bounds, anchor) self.build() self.canvas.mpl_connect('button_release_event', self.draw_axes) self.pointing_axes = False def build(self): """build the widget""" self.setMinimumWidth(600) self.setMinimumHeight(350) layout = QtWidgets.QHBoxLayout(self) layout.setContentsMargins(5, 5, 5, 5) figure_layout = QtWidgets.QVBoxLayout() layout.addLayout(figure_layout) self.build_figure(figure_layout) self.build_tools(layout) self.msg_label = QtWidgets.QLabel() self.msg_label.setContentsMargins(5, 5, 5, 5) figure_layout.addWidget(self.msg_label) self.draw() self.set_message(None) def build_figure(self, layout): """build the figure area""" figure_scroll_area = QtWidgets.QScrollArea() figure_scroll_area.setAlignment(QtCore.Qt.AlignCenter) # create canvas self.canvas = FigureCanvas(self.figure) # update the canvas size based on the figure size self.update_canvas_size() figure_scroll_area.setWidget(self.canvas) layout.addWidget(figure_scroll_area) def build_tools(self, layout): """build the tools area""" tools_widget = QtWidgets.QTabWidget() tools_widget.setFixedWidth(320) layout.addWidget(tools_widget) fw = QtWidgets.QWidget() figsize_layout = QtWidgets.QFormLayout(fw) self.figure_fields = dict() w, h = self.figsize self.figure_fields['w'] = f = QtWidgets.QLineEdit('{:.2f}'.format(w)) f.setValidator(QtGui.QDoubleValidator(0, 1000, 2)) figsize_layout.addRow('Width', f) self.figure_fields['h'] = f = QtWidgets.QLineEdit('{:.2f}'.format(h)) f.setValidator(QtGui.QDoubleValidator(0, 1000, 2)) figsize_layout.addRow('Height', f) b = QtWidgets.QPushButton('Apply') b.clicked.connect(self.set_figsize) figsize_layout.addRow('', b) tools_widget.addTab(fw, 'Figure') tools_widget.addTab(self.build_positions_tab(), 'Positions') w = AddAxesWidget(self.figure) w.newbounds.connect(self.set_axes) w.axes_added.connect(lambda x: self.add_axes_at_position(**x)) w.click_axes.connect(self.click_new_axes) tools_widget.addTab(w, 'Add axes') tools_widget.addTab(self.build_settings_tab(), 'Settings') def build_settings_tab(self): sw = QtWidgets.QWidget() settings_layout = QtWidgets.QVBoxLayout(sw) settings_layout.addWidget(QtWidgets.QLabel('Axes anchor')) dropdown = QtWidgets.QComboBox() dropdown.addItems(self.position_names) dropdown.currentIndexChanged.connect(lambda x: self.update_anchor(self.position_codes[x])) dropdown.setCurrentIndex(self.position_codes.index(self.axes.anchor)) settings_layout.addWidget(dropdown) settings_layout.addWidget(hline()) cb = QtWidgets.QCheckBox('show guides') cb.setChecked(self.settings.get('guides')) cb.stateChanged.connect(self.set_show_guides) settings_layout.addWidget(cb) f = QtWidgets.QFrame() l = QtWidgets.QVBoxLayout(f) l.setContentsMargins(10, 5, 5, 5) cb2 = QtWidgets.QCheckBox('for selected axes only') cb2.setChecked(self.settings['guides_selected']) cb2.stateChanged.connect(self.set_guides_selected) cb2.setEnabled(self.settings['guides']) self.guides_subsetting_fields.append(cb2) l.addWidget(cb2) settings_layout.addWidget(f) cb3 = QtWidgets.QCheckBox('absolute positions (dots)') cb3.setChecked(not self.settings['relative']) cb3.stateChanged.connect(self.set_absolute) settings_layout.addWidget(cb3) settings_layout.addItem(QtWidgets.QSpacerItem( 0, 0, QtWidgets.QSizePolicy.Maximum, QtWidgets.QSizePolicy.Expanding)) return sw def build_positions_tab(self): w = QtWidgets.QWidget() layout = QtWidgets.QVBoxLayout(w) layout.setContentsMargins(0, 0, 0, 0) layout.setSpacing(5) # main buttons button_layout = QtWidgets.QHBoxLayout() button_layout.setContentsMargins(0, 0, 0, 0) clear_figure_button = QtWidgets.QPushButton('Clear figure') clear_figure_button.clicked.connect(self.clear_figure) button_layout.addWidget(clear_figure_button) select_all_button = QtWidgets.QPushButton('Select all') select_all_button.clicked.connect(self.select_all_axes) button_layout.addWidget(select_all_button) select_none_button = QtWidgets.QPushButton('Clear selection') select_none_button.clicked.connect(self.select_none_axes) button_layout.addWidget(select_none_button) layout.addLayout(button_layout) # actions action_layout = QtWidgets.QHBoxLayout() layout.addLayout(action_layout) action_layout.addItem(QtWidgets.QSpacerItem( 0, 0, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Maximum)) action_layout.addWidget(QtWidgets.QLabel('Actions')) self.actions_dropdown = QtWidgets.QComboBox() self.actions_dropdown.addItems(sorted(self.axes_actions.keys())) action_layout.addWidget(self.actions_dropdown) execute_action_button = QtWidgets.QPushButton('Apply') execute_action_button.clicked.connect(self.execute_current_action) action_layout.addWidget(execute_action_button) self.axtable = AxesPositionsWidget(self.axes) self.axtable.changed.connect(self.set_ax_position) self.axtable.selected.connect(self.select_axes) self.axtable.invalid_value.connect(self.reset_value) self.axtable.moved.connect(self.move_axes) layout.addWidget(self.axtable) return w def update_canvas_size(self): w, h = self.figsize self.figure.set_size_inches(w, h) self.figure.set_dpi(self.dpi) screenwidth, screenheight = w * self.dpi, h * self.dpi self.canvas.resize(.5*screenwidth, .5*screenheight) def set_figsize(self): w = self.figure_fields['w'].text() h = self.figure_fields['h'].text() try: w = float(w) h = float(h) except ValueError: w, h = self.figure.get_size_inches() self.figure_fields['w'].setText('{:.2f}'.format(w)) self.figure_fields['h'].setText('{:.2f}'.format(h)) else: self.figsize = w, h self.figure.set_size_inches(*self.figsize) self.update_canvas_size() self.draw(posfields=True) def reset_value(self, row, col, attr): ax = self.axes.names[row] self.axtable.blockSignals(True) self.axtable.item(row, col).setText('{:.3f}'.format(getattr(ax, attr))) self.axtable.blockSignals(False) def get_bounds(self): """returns a list of axes bounds as [(x, y, w, h)]""" bounds = [] for n, a in self.axes.items(): bounds.append(a.bounds) return bounds def as_dict(self): return dict(bounds=self.get_bounds(), figsize=self.figsize) # --------- # edit axes # --------- def draw_axes(self, event): """create an axes at the click location if self.pointing_axes is enabled""" if self.pointing_axes: x, y = self.figure.transFigure.inverted().transform((event.x, event.y)) a = self.add_axes_at_position(x, y, **self.click_axes_data) self.pointing_axes = False # clear the message widget self.set_message(None) def set_show_guides(self, b): self.settings['guides'] = bool(b) for item in self.guides_subsetting_fields: item.setEnabled(b) self.draw(posfields=False) def set_guides_selected(self, b): self.settings['guides_selected'] = bool(b) self.draw(posfields=False) def set_absolute(self, b): self.settings['relative'] = not bool(b) self.draw(posfields=True) def click_new_axes(self, data): self.pointing_axes = True self.set_message('Click in the figure to place a new axes at that position') self.click_axes_data = data def add_axes_at_position(self, x, y, w=.4, h=.4, n=None, draw=True): """add axes at specified location in Figure coordinates""" self.axes.add(x, y, w, h, apply_anchor=True) if draw: self.draw(posfields=True) def add_axes(self, bounds, draw=True): self.axes.add(*bounds) if draw: self.draw(posfields=True) def set_axes(self, bounds, draw=True): """set several axes from a list of bounds""" for bnd in bounds: self.axes.add(*bnd) if draw: self.draw(posfields=True) def set_ax_position(self, row, attr, value): """ set the position of an axes from the attribute name :param axname: name of the axes :param attr: name of the position attribute :param value: value of the position attribute """ axname = self.axes.names[row] self.axes.set_property(str(axname), attr, value, relative=self.settings['relative']) self.draw(posfields=True) def delete_axes(self, name, redraw=True): """delete an axes from the editor""" self.axes.pop(str(name)) if redraw: self.draw(posfields=True) def move_axes(self, rows, ind): if ind in rows or ind-1 in rows: return names = self.axes.names def keyfn(v): if v in rows: return 1 elif v < ind: return 0 else: return 2 indices = sorted(list(range(len(names))), key=keyfn) self.axes.change_order([names[i] for i in indices]) self.draw(posfields=True) # ----------- # update gui # ----------- def set_message(self, msg, level='INFO'): """ set a message in the message window hide the messages if msg is None :param msg: message text :param level: level (see logging levels) of the message """ if msg is None: self.msg_label.setText('') self.msg_label.hide() else: self.msg_label.show() styles = dict( DEBUG='background-color: rgb(100, 250, 100)', INFO='', WARNING='background-color: rgb(250, 230, 150)', ERROR='background-color: rgb(255, 150, 100)', ) self.msg_label.setStyleSheet(styles[level]) self.msg_label.setText(msg) def add_message(self, msg): """add to the end of the message (keep formatting)""" txt = self.msg_label.text() self.msg_label.setText(txt+'\n'+msg) def draw(self, posfields=False): """redraw the contents""" self.figure.clear() for name, a in self.axes.items(): a.format_placeholder(name) self.figure.add_axes(a) if self.settings['guides']: self.axes.plot_guides(selected=self.settings['guides_selected'], relative=self.settings['relative']) self.canvas.draw_idle() if posfields: self.axtable.clear() self.axtable.fill(self.axes, relative=self.settings['relative']) def update_anchor(self, pos, redraw=True): """set the position reference anchor of the axes to a new location""" for name, a in self.axes.items(): a.set_anchor(pos) self.axes.anchor = pos if redraw: self.draw(posfields=True) # ------------------------------------ # selecting axes and executing actions # ------------------------------------ def execute_current_action(self): if not self.axes.any_selected(): return action = self.actions_dropdown.currentText() fn = getattr(self, self.axes_actions[str(action)]) fn(self.axes.selected_names, self.axes.selected) def select_axes(self, key, b=True): self.axes.select(str(key), b) self.draw() def clear_figure(self): self.figure.clear() for k in list(self.axes.keys()): self.delete_axes(k, redraw=False) self.draw(posfields=True) def select_all_axes(self): self.axes.select_all() self.draw(posfields=True) def select_none_axes(self): self.axes.select_none() self.draw(posfields=True) # -------------- # Define actions # -------------- axes_actions = { 'delete': 'delete_axes_objects', 'align X': 'axes_equal_x', 'align Y': 'axes_equal_y', 'equal width': 'axes_equal_w', 'equal height': 'axes_equal_h', 'equal aspect': 'axes_equal_aspect', 'join': 'axes_join', 'split': 'axes_split' } def delete_axes_objects(self, names, axes, redraw=True): for n in names: self.axes.pop(n) if redraw: self.draw(posfields=True) def axes_equal_x(self, names, axes, redraw=True): x = axes.pop(0).x for a in axes: a.x = x if redraw: self.draw(posfields=True) def axes_equal_y(self, names, axes, redraw=True): y = axes.pop(0).y for a in axes: a.y = y if redraw: self.draw(posfields=True) def axes_equal_w(self, names, axes, redraw=True): w = axes.pop(0).w for a in axes: a.w = w if redraw: self.draw(posfields=True) def axes_equal_h(self, names, axes, redraw=True): h = axes.pop(0).h for a in axes: a.h = h if redraw: self.draw(posfields=True) def axes_equal_aspect(self, names, axes, redraw=True): A = axes.pop(0).aspect for a in axes: a.aspect = A if redraw: self.draw(posfields=True) def axes_join(self, names, axes, redraw=True): """join axes within bounding box of all selected axes""" # store anchor anchor = self.axes.anchor # update anchor to lower left during processing self.update_anchor('SW', True, redraw=False) # determine bounding box xll = min(a.x for a in axes) yll = min(a.y for a in axes) xur = max(a.x + a.w for a in axes) yur = max(a.y + a.h for a in axes) # redefine first axes position to bounding box axes[0].set_position((xll, yll, xur-xll, yur-yll)) # delete other axes self.delete_axes_objects(names[1:], axes[1:], redraw=False) # update the anchor to the original self.update_anchor(anchor, True, redraw=redraw) def axes_split(self, names, axes, redraw=True): """ split axes in two parts based on a given ratio """ def show_error(msg): m = QtWidgets.QMessageBox() m.setText(msg) m.exec() # create dialog to input ratio, spacing and h/v split dialog = SplitDialog() if dialog.exec() != QtWidgets.QDialog.Accepted: return ratio, spacing, horizontal = dialog.get_data() if ratio < 0 or ratio > 1: show_error('ratio must be between 0 and 1') return for a in axes: try: new_bounds = a.split(ratio, spacing, wsplit=horizontal) except ValueError as e: show_error(str(e)) return else: # create 2nd axes and copy selected state new_ax = self.axes.add(*new_bounds, anchor=a.get_anchor()) new_ax._selected = a._selected if redraw: self.draw(posfields=True)
the-stack_0_7304
import os from configparser import ConfigParser from nipype.utils import config as nuc from pkg_resources import resource_filename def get_fitlins_config(): """Construct Nipype configuration object with precedence: - Local config (``./nipype.cfg``) - Global config (``$HOME/.nipype/nipype.cfg`` or ``$NIPYPE_CONFIG_DIR/nipype.cfg``) - FitLins config (``<fitlins_install_dir>/data/nipype.cfg``) - Nipype default config (defined in ``nipype/utils/config.py``) """ config = nuc.NipypeConfig() config.set_default_config() fitlins_config_file = resource_filename('fitlins', 'data/nipype.cfg') global_config_file = os.path.join( os.path.expanduser(os.getenv("NIPYPE_CONFIG_DIR", default="~/.nipype")), "nipype.cfg" ) local_config_file = "nipype.cfg" fitlins_conf = ConfigParser() fitlins_conf.read([fitlins_config_file, global_config_file, local_config_file]) config.update_config(fitlins_conf) return config
the-stack_0_7306
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from .. import models class NetworkInterfaceLoadBalancersOperations(object): """NetworkInterfaceLoadBalancersOperations operations. You should not instantiate directly this class, but create a Client instance that will create it for you and attach it as attribute. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2020-07-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2020-07-01" self.config = config def list( self, resource_group_name, network_interface_name, custom_headers=None, raw=False, **operation_config): """List all load balancers in a network interface. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param network_interface_name: The name of the network interface. :type network_interface_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of LoadBalancer :rtype: ~azure.mgmt.network.v2020_07_01.models.LoadBalancerPaged[~azure.mgmt.network.v2020_07_01.models.LoadBalancer] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkInterfaceName': self._serialize.url("network_interface_name", network_interface_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request def internal_paging(next_link=None): request = prepare_request(next_link) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response header_dict = None if raw: header_dict = {} deserialized = models.LoadBalancerPaged(internal_paging, self._deserialize.dependencies, header_dict) return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkInterfaces/{networkInterfaceName}/loadBalancers'}
the-stack_0_7308
import inspect def get_classname(o): """ Returns the classname of an object r a class :param o: :return: """ if inspect.isclass(o): target = o elif callable(o): target = o else: target = o.__class__ try: return target.__qualname__ except AttributeError: # pragma: no cover return target.__name__ def fqn(o): """Returns the fully qualified class name of an object or a class :param o: object or class :return: class name >>> import django_db_logging >>> fqn('str') Traceback (most recent call last): ... ValueError: Invalid argument `str` >>> class A(object): ... def method(self): ... pass >>> str(fqn(A)) 'django_db_logging.utils.A' >>> str(fqn(A())) 'django_db_logging.utils.A' >>> str(fqn(A.method)) 'django_db_logging.utils.A.method' >>> str(fqn(django_db_logging)) 'django_db_logging' """ parts = [] if hasattr(o, '__module__'): parts.append(o.__module__) parts.append(get_classname(o)) elif inspect.ismodule(o): return o.__name__ if not parts: raise ValueError("Invalid argument `%s`" % o) return ".".join(parts)
the-stack_0_7310
import os from conan.tools.build import build_jobs from conan.tools.files.files import load_toolchain_args from conan.tools.microsoft.subsystems import subsystem_path, deduce_subsystem from conans.client.build import join_arguments class Autotools(object): def __init__(self, conanfile, namespace=None): self._conanfile = conanfile toolchain_file_content = load_toolchain_args(self._conanfile.generators_folder, namespace=namespace) self._configure_args = toolchain_file_content.get("configure_args") self._make_args = toolchain_file_content.get("make_args") def configure(self, build_script_folder=None): """ http://jingfenghanmax.blogspot.com.es/2010/09/configure-with-host-target-and-build.html https://gcc.gnu.org/onlinedocs/gccint/Configure-Terms.html """ source = self._conanfile.source_folder if build_script_folder: source = os.path.join(self._conanfile.source_folder, build_script_folder) configure_cmd = "{}/configure".format(source) subsystem = deduce_subsystem(self._conanfile, scope="build") configure_cmd = subsystem_path(subsystem, configure_cmd) cmd = "{} {}".format(configure_cmd, self._configure_args) self._conanfile.output.info("Calling:\n > %s" % cmd) self._conanfile.run(cmd) def make(self, target=None): make_program = self._conanfile.conf.get("tools.gnu:make_program", default="mingw32-make" if self._use_win_mingw() else "make") str_args = self._make_args jobs = "" if "-j" not in str_args and "nmake" not in make_program.lower(): njobs = build_jobs(self._conanfile) if njobs: jobs = "-j{}".format(njobs) command = join_arguments([make_program, target, str_args, jobs]) self._conanfile.run(command) def install(self): self.make(target="install") def _use_win_mingw(self): if hasattr(self._conanfile, 'settings_build'): os_build = self._conanfile.settings_build.get_safe('os') else: os_build = self._conanfile.settings.get_safe("os") if os_build == "Windows": compiler = self._conanfile.settings.get_safe("compiler") sub = self._conanfile.settings.get_safe("os.subsystem") if sub in ("cygwin", "msys2", "msys") or compiler == "qcc": return False else: if self._conanfile.win_bash: return False return True return False
the-stack_0_7311
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Class to hold a library of OpDefs and use it to create Brain operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import six from tensorflow.core.framework import attr_value_pb2 from tensorflow.core.framework import op_def_pb2 from tensorflow.core.framework import tensor_pb2 from tensorflow.core.framework import tensor_shape_pb2 from tensorflow.core.framework import types_pb2 from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import compat from tensorflow.python.util import tf_contextlib def _Attr(op_def, name): for attr in op_def.attr: if attr.name == name: return attr raise TypeError("Inconsistent OpDef for '%s', missing attr '%s'" % (op_def.name, name)) def _AttrValue(attr_protos, name): if name in attr_protos: return attr_protos[name] raise TypeError("Inconsistent OpDef, missing attr '%s' from '%s'." % (name, attr_protos)) def _SatisfiesTypeConstraint(dtype, attr_def, param_name): if attr_def.HasField("allowed_values"): allowed_list = attr_def.allowed_values.list.type if dtype not in allowed_list: raise TypeError( "Value passed to parameter '%s' has DataType %s not in list of " "allowed values: %s" % (param_name, dtypes.as_dtype(dtype).name, ", ".join(dtypes.as_dtype(x).name for x in allowed_list))) def _IsListParameter(arg): if arg.number_attr: return True elif arg.type_list_attr: return True return False def _NumTypeFields(arg): num = 0 if arg.type != types_pb2.DT_INVALID: num += 1 if arg.type_attr: num += 1 if arg.type_list_attr: num += 1 return num def _IsListValue(v): return isinstance(v, (list, tuple)) def _Flatten(l): """Converts [1, 2, [3, 4], [5]] to [1, 2, 3, 4, 5].""" # [1, 2, [3, 4], [5]] -> [[1], [2], [3, 4], [5]] l_of_l = [x if _IsListValue(x) else [x] for x in l] # [[1], [2], [3, 4], [5]] -> [1, 2, 3, 4, 5] return [item for sublist in l_of_l for item in sublist] def _Restructure(l, structure): """Returns the elements of list l structured according to the given structure. A structure is represented by a list whose elements are either `None` or a non-negative integer. `None` corresponds to a single element in the output list, and an integer N corresponds to a nested list of length N. The function returns a data structure whose shape is given by `structure`, and whose elements are taken from `l`. If `structure` is a singleton, the function returns the single data structure implied by the 0th element of `structure`. For example: _Restructure(["foo", "bar", "baz", "qux"], [None, 2, None]) -> ["foo", ["bar", "baz"], "qux"] _Restructure(["foo"], [None]) -> "foo" _Restructure(["foo"], [1]) -> ["foo"] _Restructure([], [0]) -> [] Args: l: A list. structure: A list whose elements are either `None` or a non-negative integer. Returns: The elements of `l`, restructured according to `structure`. If `structure` is a list of length 1, this function returns the single data structure implied by `structure[0]`. """ result = [] current_index = 0 for element in structure: if element is None: result.append(l[current_index]) current_index += 1 else: result.append(l[current_index:current_index+element]) current_index += element if len(result) == 1: return result[0] else: return tuple(result) def _MakeFloat(v, arg_name): if not isinstance(v, compat.real_types): raise TypeError("Expected float for argument '%s' not %s." % (arg_name, repr(v))) return float(v) def _MakeInt(v, arg_name): if isinstance(v, six.string_types): raise TypeError("Expected int for argument '%s' not %s." % (arg_name, repr(v))) try: return int(v) except (ValueError, TypeError): raise TypeError("Expected int for argument '%s' not %s." % (arg_name, repr(v))) def _MakeStr(v, arg_name): if not isinstance(v, compat.bytes_or_text_types): raise TypeError("Expected string for argument '%s' not %s." % (arg_name, repr(v))) return compat.as_bytes(v) # Convert unicode strings to bytes. def _MakeBool(v, arg_name): if not isinstance(v, bool): raise TypeError("Expected bool for argument '%s' not %s." % (arg_name, repr(v))) return v def _MakeType(v, attr_def): try: v = dtypes.as_dtype(v).base_dtype except TypeError: raise TypeError("Expected DataType for argument '%s' not %s." % (attr_def.name, repr(v))) i = v.as_datatype_enum _SatisfiesTypeConstraint(i, attr_def, param_name=attr_def.name) return i def _MakeShape(v, arg_name): """Convert v into a TensorShapeProto.""" # Args: # v: A TensorShapeProto, a list of ints, or a tensor_shape.TensorShape. # arg_name: String, for error messages. # Returns: # A TensorShapeProto. if isinstance(v, tensor_shape_pb2.TensorShapeProto): for d in v.dim: if d.name: logging.warning("Warning: TensorShapeProto with a named dimension: %s", str(v)) break return v try: return tensor_shape.as_shape(v).as_proto() except TypeError as e: raise TypeError("Error converting %s to a TensorShape: %s" % (arg_name, e)) except ValueError as e: raise ValueError("Error converting %s to a TensorShape: %s" % (arg_name, e)) def _MakeTensor(v, arg_name): """Ensure v is a TensorProto.""" if isinstance(v, tensor_pb2.TensorProto): return v raise TypeError( "Don't know how to convert %s to a TensorProto for argument '%s'" % (repr(v), arg_name)) def _MakeFunc(v, arg_name): """Ensure v is a func.""" if isinstance(v, attr_value_pb2.NameAttrList): return v fn_attr = attr_value_pb2.NameAttrList() if isinstance(v, compat.bytes_or_text_types): fn_attr.name = v elif hasattr(v, "add_to_graph"): v.add_to_graph(ops.get_default_graph()) fn_attr.name = v.name else: raise TypeError("Don't know how to convert {} to a func for " "argument {}".format(v, arg_name)) return fn_attr class _OpInfo(object): """All per-Op state we would like to precompute/validate.""" def __init__(self, op_def): self.op_def = op_def # TODO(josh11b): SWIG the ValidateOpDef() function from C++ and call it # here, instead of these checks. for arg in list(op_def.input_arg) + list(op_def.output_arg): num_type_fields = _NumTypeFields(arg) if num_type_fields != 1: raise TypeError("Arg '%s' of '%s' must have one type field not %d" % (arg.name, op_def.name, num_type_fields)) if arg.type_attr: attr_type = _Attr(op_def, arg.type_attr).type if attr_type != "type": raise TypeError("Attr '%s' of '%s' used as a type_attr " "but has type %s" % (arg.type_attr, op_def.name, attr_type)) if arg.type_list_attr: attr_type = _Attr(op_def, arg.type_list_attr).type if attr_type != "list(type)": raise TypeError( "Attr '%s' of '%s' used as a type_list_attr but has type %s" % (arg.type_attr, op_def.name, attr_type)) if arg.number_attr: attr_type = _Attr(op_def, arg.number_attr).type if attr_type != "int": raise TypeError( "Attr '%s' of '%s' used as a number_attr but has type %s" % (arg.number_attr, op_def.name, attr_type)) # pylint: disable=g-doc-return-or-yield @tf_contextlib.contextmanager def _MaybeColocateWith(inputs): """A context manager for (maybe) colocating with a list of input tensors. Args: inputs: A list of `Tensor` or `Operation` objects. Returns: A context manager. """ if not inputs: yield else: # NOTE(mrry): The `ops.colocate_with()` function accepts only a single # op or tensor, so we create one context manager per element in the list. with ops.colocate_with(inputs[0]), _MaybeColocateWith(inputs[1:]): yield # pylint: enable=g-doc-return-or-yield class OpDefLibrary(object): """Holds a collection of OpDefs, can add the corresponding Ops to a graph.""" def __init__(self): self._ops = {} # pylint: disable=invalid-name def add_op(self, op_def): """Register an OpDef. May call apply_op with the name afterwards.""" if not isinstance(op_def, op_def_pb2.OpDef): raise TypeError("%s is %s, not an op_def_pb2.OpDef" % (op_def, type(op_def))) if not op_def.name: raise ValueError("%s missing name." % op_def) if op_def.name in self._ops: raise RuntimeError("Op name %s registered twice." % op_def.name) self._ops[op_def.name] = _OpInfo(op_def) def add_op_list(self, op_list): """Register the OpDefs from an OpList.""" if not isinstance(op_list, op_def_pb2.OpList): raise TypeError("%s is %s, not an op_def_pb2.OpList" % (op_list, type(op_list))) for op_def in op_list.op: self.add_op(op_def) def apply_op(self, op_type_name, name=None, **keywords): # pylint: disable=g-doc-args """Add a node invoking a registered Op to a graph. Example usage: # input1 and input2 can be Tensors or anything ops.convert_to_tensor() # will convert to a Tensor. op_def_library.apply_op("op", input1=input1, input2=input2) # Can specify a node name. op_def_library.apply_op("op", input1=input1, name="node_name") # Must use keyword arguments, with the names specified in the OpDef. op_def_library.apply_op("op", input_name=input, attr_name=attr) All attrs must either be inferred from an input or specified. (If inferred, the attr must not be specified.) If an attr has a default value specified in the Op's OpDef, then you may pass None as the value of that attr to get the default. Args: op_type_name: string. Must match the name field of a registered Op. name: string. Optional name of the created op. **keywords: input Tensor and attr arguments specified by name, and optional parameters to pass when constructing the Operation. Returns: The Tensor(s) representing the output of the operation, or the Operation itself if there are no outputs. Raises: RuntimeError: On some errors. TypeError: On some errors. ValueError: On some errors. """ output_structure, is_stateful, op = self._apply_op_helper( op_type_name, name, **keywords) if output_structure: outputs = op.outputs res = _Restructure(ops.convert_n_to_tensor(outputs), output_structure) if isinstance(res, list) and not res and is_stateful: return op else: return res else: return op def _apply_op_helper(self, op_type_name, name=None, **keywords): """Implementation of apply_op that returns output_structure, op.""" op_info = self._ops.get(op_type_name, None) if op_info is None: raise RuntimeError("Unrecognized Op name " + op_type_name) op_def = op_info.op_def # Determine the graph context. try: # Need to flatten all the arguments into a list. # pylint: disable=protected-access g = ops._get_graph_from_inputs(_Flatten(keywords.values())) # pylint: enable=protected-access except AssertionError as e: raise RuntimeError( "Cannot determine graph for Op '%s' due to: %s" % (op_type_name, e.message)) # Default name if not specified. if name is None: name = op_type_name # Check for deprecation deprecation_version = op_def.deprecation.version if deprecation_version: producer = g.graph_def_versions.producer if producer >= deprecation_version: raise NotImplementedError( ("Op %s is not available in GraphDef version %d. " "It has been removed in version %d. %s.") % (op_type_name, producer, deprecation_version, op_def.deprecation.explanation)) # Fill in the list of default types for all "type" attrs. This # will be used to choose a preferred dtype to convert to in the # absence of input type information. # # TODO(b/31302892): Currently the defaults don't work in the right # way if you have two inputs, one of whose type resolution depends # on the other. Handling this will require restructuring this code # significantly. default_type_attr_map = {} for attr_def in op_def.attr: if attr_def.type != "type": continue key = attr_def.name if attr_def.HasField("default_value"): default_type_attr_map[key] = dtypes.as_dtype( attr_def.default_value.type) # Requires that op_def has passed validation (using the C++ # ValidateOpDef() from ../framework/op_def_util.h). attrs = {} inputs = [] input_types = [] with g.as_default(), ops.name_scope(name) as scope: # Perform input type inference inferred_from = {} for input_arg in op_def.input_arg: input_name = input_arg.name if input_name in keywords: values = keywords.pop(input_name) elif input_name + "_" in keywords: # Handle the case where the name is a keyword or built-in # for Python so we use the name + _ instead. input_name += "_" values = keywords.pop(input_name) else: raise TypeError("No argument for input " + input_name) # Goals: # * Convert values to Tensors if it contains constants. # * Verify that values is a list if that matches the input_arg's # type. # * If the input_arg's type is determined by attrs, either set # those attrs and validate those attr values are legal (if # they have not yet been set) or validate the input matches # the type indicated by the attrs (if they have already been # inferred via an earlier input). # * If the input_arg has an explicit type, make sure the input # conforms. if _IsListParameter(input_arg): if not _IsListValue(values): raise TypeError( "Expected list for '%s' argument to '%s' Op, not %s." % (input_name, op_type_name, values)) # In cases where we expect all elements of the list to have the # same dtype, try to cast non-Tensor elements to that type. dtype = None default_dtype = None if input_arg.type != types_pb2.DT_INVALID: dtype = input_arg.type elif input_arg.number_attr: if input_arg.type_attr in attrs: dtype = attrs[input_arg.type_attr] else: for t in values: if isinstance(t, ops.Tensor): dtype = t.dtype break # dtype still not found, prefer using the default dtype # from the attr. if dtype is None and input_arg.type_attr in default_type_attr_map: default_dtype = default_type_attr_map[input_arg.type_attr] try: if not input_arg.is_ref and dtype: dtype = dtypes.as_dtype(dtype).base_dtype values = ops.internal_convert_n_to_tensor( values, name=input_arg.name, dtype=dtype if dtype else None, preferred_dtype=default_dtype, as_ref=input_arg.is_ref) if input_arg.number_attr and len( set(v.dtype.base_dtype for v in values)) > 1: raise TypeError() # All types should match. except (TypeError, ValueError): # What types does the conversion function think values have? observed_types = [] for value in values: try: converted_value = ops.internal_convert_to_tensor( value, as_ref=input_arg.is_ref) observed_types.append(converted_value.dtype.base_dtype.name) except (TypeError, ValueError): observed_types.append("<NOT CONVERTIBLE TO TENSOR>") observed = ", ".join(observed_types) prefix = ( "Tensors in list passed to '%s' of '%s' Op have types [%s]" % (input_name, op_type_name, observed)) if input_arg.number_attr: if input_arg.type != types_pb2.DT_INVALID: raise TypeError("%s that do not match expected type %s." % (prefix, dtype.name)) elif input_arg.type_attr in attrs: raise TypeError("%s that do not match type %s inferred from " "earlier arguments." % (prefix, dtype.name)) else: raise TypeError("%s that don't all match." % prefix) else: raise TypeError( "%s that are invalid. Tensors: %s" % (prefix, values)) types = [x.dtype for x in values] inputs.extend(values) else: # In cases where we have an expected type, try to convert non-Tensor # arguments to that type. dtype = None default_dtype = None if input_arg.type != types_pb2.DT_INVALID: dtype = input_arg.type elif input_arg.type_attr in attrs: dtype = attrs[input_arg.type_attr] elif input_arg.type_attr in default_type_attr_map: # The dtype could not be inferred solely from the inputs, # so we prefer the attr's default, so code that adds a new attr # with a default is backwards compatible. default_dtype = default_type_attr_map[input_arg.type_attr] try: values = ops.internal_convert_to_tensor( values, name=input_arg.name, dtype=dtype, as_ref=input_arg.is_ref, preferred_dtype=default_dtype) except TypeError as err: if dtype is None: raise err else: raise TypeError( "Expected %s passed to parameter '%s' of op '%s', got %s of " "type '%s' instead. Error: %s" % (dtypes.as_dtype(dtype).name, input_arg.name, op_type_name, repr(values), type(values).__name__, err)) except ValueError: # What type does convert_to_tensor think it has? try: observed = ops.internal_convert_to_tensor( values, as_ref=input_arg.is_ref).dtype.name except ValueError as err: raise ValueError( "Tried to convert '%s' to a tensor and failed. Error: %s" % (input_name, err)) prefix = ("Input '%s' of '%s' Op has type %s that does not match" % (input_name, op_type_name, observed)) if input_arg.type != types_pb2.DT_INVALID: raise TypeError("%s expected type of %s." % (prefix, dtypes.as_dtype(input_arg.type).name)) else: # Update the maps with the default, if needed. k = input_arg.type_attr if k in default_type_attr_map: if k not in attrs: attrs[k] = default_type_attr_map[k] if k not in inferred_from: inferred_from[k] = "Default in OpDef" raise TypeError( "%s type %s of argument '%s'." % (prefix, dtypes.as_dtype(attrs[input_arg.type_attr]).name, inferred_from[input_arg.type_attr])) types = [values.dtype] inputs.append(values) base_types = [x.base_dtype for x in types] if input_arg.number_attr: # <number-attr> * <type> or <number-attr> * <type-attr> if input_arg.number_attr in attrs: if len(values) != attrs[input_arg.number_attr]: raise ValueError( "List argument '%s' to '%s' Op with length %d must match " "length %d of argument '%s'." % (input_name, op_type_name, len(values), attrs[input_arg.number_attr], inferred_from[input_arg.number_attr])) else: attrs[input_arg.number_attr] = len(values) inferred_from[input_arg.number_attr] = input_name num_attr = _Attr(op_def, input_arg.number_attr) if num_attr.has_minimum and len(values) < num_attr.minimum: raise ValueError( "List argument '%s' to '%s' Op with length %d shorter " "than minimum length %d." % (input_name, op_type_name, len(values), num_attr.minimum)) # All tensors must have the same base type. if any(bt != base_types[0] for bt in base_types): raise TypeError( "All tensors passed to '%s' of '%s' Op " "must have the same type." % (input_name, op_type_name)) if input_arg.type != types_pb2.DT_INVALID: # <number-attr> * <type> case if base_types and base_types[0] != input_arg.type: assert False, "Unreachable" elif input_arg.type_attr in attrs: # <number-attr> * <type-attr> case, where <type-attr> already # has an inferred value. if base_types and base_types[0] != attrs[input_arg.type_attr]: assert False, "Unreachable" else: # <number-attr> * <type-attr> case, where we are now setting # the <type-attr> based on this input if not base_types: raise TypeError( "Don't know how to infer type variable from empty input " "list passed to input '%s' of '%s' Op." % (input_name, op_type_name)) attrs[input_arg.type_attr] = base_types[0] inferred_from[input_arg.type_attr] = input_name type_attr = _Attr(op_def, input_arg.type_attr) _SatisfiesTypeConstraint(base_types[0], type_attr, param_name=input_name) elif input_arg.type_attr: # <type-attr> attr_value = base_types[0] if input_arg.type_attr in attrs: if attrs[input_arg.type_attr] != attr_value: assert False, "Unreachable" else: for base_type in base_types: _SatisfiesTypeConstraint(base_type, _Attr(op_def, input_arg.type_attr), param_name=input_name) attrs[input_arg.type_attr] = attr_value inferred_from[input_arg.type_attr] = input_name elif input_arg.type_list_attr: # <type-list-attr> attr_value = base_types if input_arg.type_list_attr in attrs: if attrs[input_arg.type_list_attr] != attr_value: raise TypeError( "Input '%s' of '%s' Op has type list of %s that does not " "match type list %s of argument '%s'." % (input_name, op_type_name, ", ".join(dtypes.as_dtype(x).name for x in attr_value), ", ".join(dtypes.as_dtype(x).name for x in attrs[input_arg.type_list_attr]), inferred_from[input_arg.type_list_attr])) else: for base_type in base_types: _SatisfiesTypeConstraint(base_type, _Attr(op_def, input_arg.type_list_attr), param_name=input_name) attrs[input_arg.type_list_attr] = attr_value inferred_from[input_arg.type_list_attr] = input_name else: # single Tensor with specified type if base_types[0] != input_arg.type: assert False, "Unreachable" if input_arg.is_ref: if not all(x._is_ref_dtype for x in types): # pylint: disable=protected-access raise TypeError( ("'%s' Op requires that input '%s' be a mutable tensor " "(e.g.: a tf.Variable)") % (op_type_name, input_name)) input_types.extend(types) else: input_types.extend(base_types) # Process remaining attrs for attr in op_def.attr: # Skip attrs that have already had their values inferred if attr.name in attrs: if attr.name in keywords: raise TypeError( "Should not specify value for inferred attr '%s'." % attr.name) continue if attr.name in keywords: attrs[attr.name] = keywords.pop(attr.name) elif attr.name + "_" in keywords: # Attrs whose names match Python keywords have an extra '_' # appended, so we must check for that as well. attrs[attr.name] = keywords.pop(attr.name + "_") else: raise TypeError("No argument for attr " + attr.name) # Convert attr values to AttrValue protos. attr_protos = {} for attr_def in op_def.attr: key = attr_def.name value = attrs[key] attr_value = attr_value_pb2.AttrValue() if attr_def.HasField("default_value") and value is None: attr_value.CopyFrom(attr_def.default_value) attr_protos[key] = attr_value continue if attr_def.type.startswith("list("): if not _IsListValue(value): raise TypeError("Expected list for attr " + key) if attr_def.has_minimum: if len(value) < attr_def.minimum: raise ValueError("Attr '%s' of '%s' Op passed list of length %d " "less than minimum %d." % (key, op_type_name, len(value), attr_def.minimum)) attr_value.list.SetInParent() if attr_def.type == "string": attr_value.s = _MakeStr(value, key) if attr_def.HasField("allowed_values"): if attr_value.s not in attr_def.allowed_values.list.s: raise ValueError( "Attr '%s' of '%s' Op passed string '%s' not in: \"%s\"." % (key, op_type_name, compat.as_text(attr_value.s), '", "'.join(map(compat.as_text, attr_def.allowed_values.list.s)))) elif attr_def.type == "list(string)": attr_value.list.s.extend([_MakeStr(x, key) for x in value]) if attr_def.HasField("allowed_values"): for x in attr_value.list.s: if x not in attr_def.allowed_values.list.s: raise ValueError( "Attr '%s' of '%s' Op passed string '%s' not in: \"%s\"." % (key, op_type_name, compat.as_text(x), '", "'.join(map(compat.as_text, attr_def.allowed_values.list.s)))) elif attr_def.type == "int": attr_value.i = _MakeInt(value, key) if attr_def.has_minimum: if attr_value.i < attr_def.minimum: raise ValueError( "Attr '%s' of '%s' Op passed %d less than minimum %d." % (key, op_type_name, attr_value.i, attr_def.minimum)) elif attr_def.type == "list(int)": attr_value.list.i.extend([_MakeInt(x, key) for x in value]) elif attr_def.type == "float": attr_value.f = _MakeFloat(value, key) elif attr_def.type == "list(float)": attr_value.list.f.extend([_MakeFloat(x, key) for x in value]) elif attr_def.type == "bool": attr_value.b = _MakeBool(value, key) elif attr_def.type == "list(bool)": attr_value.list.b.extend([_MakeBool(x, key) for x in value]) elif attr_def.type == "type": attr_value.type = _MakeType(value, attr_def) elif attr_def.type == "list(type)": attr_value.list.type.extend( [_MakeType(x, attr_def) for x in value]) elif attr_def.type == "shape": attr_value.shape.CopyFrom(_MakeShape(value, key)) elif attr_def.type == "list(shape)": attr_value.list.shape.extend( [_MakeShape(x, key) for x in value]) elif attr_def.type == "tensor": attr_value.tensor.CopyFrom(_MakeTensor(value, key)) elif attr_def.type == "list(tensor)": attr_value.list.tensor.extend( [_MakeTensor(x, key) for x in value]) elif attr_def.type == "func": attr_value.func.CopyFrom(_MakeFunc(value, key)) elif attr_def.type == "list(func)": attr_value.list.func.extend([_MakeFunc(x, key) for x in value]) else: raise TypeError("Unrecognized Attr type " + attr_def.type) attr_protos[key] = attr_value del attrs # attrs is no longer authoritative, use attr_protos instead # Determine output types (possibly using attrs) output_structure = [] for arg in op_def.output_arg: if arg.number_attr: n = _AttrValue(attr_protos, arg.number_attr).i output_structure.append(n) elif arg.type_attr: t = _AttrValue(attr_protos, arg.type_attr) output_structure.append(None) elif arg.type_list_attr: t = _AttrValue(attr_protos, arg.type_list_attr) output_structure.append(len(t.list.type)) else: output_structure.append(None) if keywords: raise TypeError("apply_op() got unexpected keyword arguments: " + ", ".join(sorted(keywords.keys()))) # NOTE(mrry): We add an explicit colocation constraint between # the newly created op and any of its reference-typed inputs. must_colocate_inputs = [val for arg, val in zip(op_def.input_arg, inputs) if arg.is_ref] with _MaybeColocateWith(must_colocate_inputs): # Add Op to graph op = g.create_op(op_type_name, inputs, dtypes=None, name=scope, input_types=input_types, attrs=attr_protos, op_def=op_def) return output_structure, op_def.is_stateful, op # pylint: enable=invalid-name
the-stack_0_7313
from kivy.app import App from kivy.uix.widget import Widget from kivy.clock import Clock from kivy.core.window import Window from random import randint, choice from math import radians, pi, sin, cos import kivent_core import kivent_cymunk from kivent_core.gameworld import GameWorld from kivent_core.managers.resource_managers import texture_manager from kivent_core.systems.renderers import RotateRenderer from kivent_core.systems.position_systems import PositionSystem2D from kivent_core.systems.rotate_systems import RotateSystem2D from kivent_cymunk.interaction import CymunkTouchSystem from kivy.properties import StringProperty, NumericProperty from functools import partial from os.path import dirname, join, abspath texture_manager.load_atlas(join(dirname(dirname(abspath(__file__))), 'assets', 'background_objects.atlas')) class TestGame(Widget): def on_kv_post(self, *args): self.gameworld.init_gameworld( ['cymunk_physics', 'rotate_renderer', 'rotate', 'position', 'cymunk_touch'], callback=self.init_game) def init_game(self): self.setup_states() self.set_state() def destroy_created_entity(self, ent_id, dt): self.gameworld.remove_entity(ent_id) self.app.count -= 1 def draw_some_stuff(self): size = Window.size w, h = size[0], size[1] delete_time = 2.5 create_asteroid = self.create_asteroid destroy_ent = self.destroy_created_entity for x in range(100): pos = (randint(0, w), randint(0, h)) ent_id = create_asteroid(pos) self.app.count += 100 def create_asteroid(self, pos): x_vel = randint(-500, 500) y_vel = randint(-500, 500) angle = radians(randint(-360, 360)) angular_velocity = radians(randint(-150, -150)) shape_dict = {'inner_radius': 0, 'outer_radius': 22, 'mass': 50, 'offset': (0, 0)} col_shape = {'shape_type': 'circle', 'elasticity': .5, 'collision_type': 1, 'shape_info': shape_dict, 'friction': 1.0} col_shapes = [col_shape] physics_component = {'main_shape': 'circle', 'velocity': (x_vel, y_vel), 'position': pos, 'angle': angle, 'angular_velocity': angular_velocity, 'vel_limit': 250, 'ang_vel_limit': radians(200), 'mass': 50, 'col_shapes': col_shapes} create_component_dict = {'cymunk_physics': physics_component, 'rotate_renderer': {'texture': 'asteroid1', 'size': (45, 45), 'render': True}, 'position': pos, 'rotate': 0, } component_order = ['position', 'rotate', 'rotate_renderer', 'cymunk_physics',] return self.gameworld.init_entity( create_component_dict, component_order) def update(self, dt): self.gameworld.update(dt) def setup_states(self): self.gameworld.add_state(state_name='main', systems_added=['rotate_renderer'], systems_removed=[], systems_paused=[], systems_unpaused=['rotate_renderer'], screenmanager_screen='main') def set_state(self): self.gameworld.state = 'main' class DebugPanel(Widget): fps = StringProperty(None) def __init__(self, **kwargs): super(DebugPanel, self).__init__(**kwargs) Clock.schedule_once(self.update_fps) def update_fps(self,dt): self.fps = str(int(Clock.get_fps())) Clock.schedule_once(self.update_fps, .05) class YourAppNameApp(App): count = NumericProperty(0) if __name__ == '__main__': YourAppNameApp().run()
the-stack_0_7314
def save(file, conf): with open(file, 'w') as configfile: conf.write(configfile) def getOpts(): import configparser import copy import os config = configparser.ConfigParser() file = os.path.abspath(os.path.join('.', 'config.ini')) DEFAULT_OPTIONS = { 'DEFAULT': { 'limit': 5, 'domain_name': 'https://nyaa.si', 'out_dir': os.path.abspath(os.path.join('.', 'output')) } } if os.path.isfile(file): config.read(file) for i in DEFAULT_OPTIONS: if i not in config: config[i] = copy.deepcopy(DEFAULT_OPTIONS[i]) for x in DEFAULT_OPTIONS[i]: if x not in config[i]: config[i][x] = str(copy.deepcopy(DEFAULT_OPTIONS[i][x])) save(file, config) else: for i in DEFAULT_OPTIONS: config[i] = DEFAULT_OPTIONS[i] save(file, config) options = copy.deepcopy(dict(config['DEFAULT'])) return options
the-stack_0_7315
# Copyright 2014 Cloudbase Solutions Srl # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from nova.tests.unit.virt.hyperv import test_vmutils from nova.virt.hyperv import constants from nova.virt.hyperv import vmutilsv2 class VMUtilsV2TestCase(test_vmutils.VMUtilsTestCase): """Unit tests for the Hyper-V VMUtilsV2 class.""" _DEFINE_SYSTEM = 'DefineSystem' _DESTROY_SYSTEM = 'DestroySystem' _DESTROY_SNAPSHOT = 'DestroySnapshot' _ADD_RESOURCE = 'AddResourceSettings' _REMOVE_RESOURCE = 'RemoveResourceSettings' _SETTING_TYPE = 'VirtualSystemType' _VM_GEN = constants.VM_GEN_2 _VIRTUAL_SYSTEM_TYPE_REALIZED = 'Microsoft:Hyper-V:System:Realized' def setUp(self): super(VMUtilsV2TestCase, self).setUp() self._vmutils = vmutilsv2.VMUtilsV2() self._vmutils._conn = mock.MagicMock() def test_create_vm(self): super(VMUtilsV2TestCase, self).test_create_vm() mock_vssd = self._vmutils._conn.Msvm_VirtualSystemSettingData.new() self.assertEqual(self._vmutils._VIRTUAL_SYSTEM_SUBTYPE_GEN2, mock_vssd.VirtualSystemSubType) self.assertFalse(mock_vssd.SecureBootEnabled) def test_modify_virt_resource(self): mock_svc = self._vmutils._conn.Msvm_VirtualSystemManagementService()[0] mock_svc.ModifyResourceSettings.return_value = (self._FAKE_JOB_PATH, mock.MagicMock(), self._FAKE_RET_VAL) mock_res_setting_data = mock.MagicMock() mock_res_setting_data.GetText_.return_value = self._FAKE_RES_DATA self._vmutils._modify_virt_resource(mock_res_setting_data, self._FAKE_VM_PATH) mock_svc.ModifyResourceSettings.assert_called_with( ResourceSettings=[self._FAKE_RES_DATA]) @mock.patch.object(vmutilsv2, 'wmi', create=True) @mock.patch.object(vmutilsv2.VMUtilsV2, 'check_ret_val') def test_take_vm_snapshot(self, mock_check_ret_val, mock_wmi): self._lookup_vm() mock_svc = self._get_snapshot_service() mock_svc.CreateSnapshot.return_value = (self._FAKE_JOB_PATH, mock.MagicMock(), self._FAKE_RET_VAL) self._vmutils.take_vm_snapshot(self._FAKE_VM_NAME) mock_svc.CreateSnapshot.assert_called_with( AffectedSystem=self._FAKE_VM_PATH, SnapshotType=self._vmutils._SNAPSHOT_FULL) mock_check_ret_val.assert_called_once_with(self._FAKE_RET_VAL, self._FAKE_JOB_PATH) @mock.patch.object(vmutilsv2.VMUtilsV2, '_add_virt_resource') @mock.patch.object(vmutilsv2.VMUtilsV2, '_get_new_setting_data') @mock.patch.object(vmutilsv2.VMUtilsV2, '_get_nic_data_by_name') def test_set_nic_connection(self, mock_get_nic_data, mock_get_new_sd, mock_add_virt_res): self._lookup_vm() fake_eth_port = mock_get_new_sd.return_value self._vmutils.set_nic_connection(self._FAKE_VM_NAME, None, None) mock_add_virt_res.assert_called_with(fake_eth_port, self._FAKE_VM_PATH) @mock.patch('nova.virt.hyperv.vmutils.VMUtils._get_vm_disks') def test_enable_vm_metrics_collection(self, mock_get_vm_disks): self._lookup_vm() mock_svc = self._vmutils._conn.Msvm_MetricService()[0] metric_def = mock.MagicMock() mock_disk = mock.MagicMock() mock_disk.path_.return_value = self._FAKE_RES_PATH mock_get_vm_disks.return_value = ([mock_disk], [mock_disk]) fake_metric_def_paths = ['fake_0', 'fake_0', None] fake_metric_resource_paths = [self._FAKE_VM_PATH, self._FAKE_VM_PATH, self._FAKE_RES_PATH] metric_def.path_.side_effect = fake_metric_def_paths self._vmutils._conn.CIM_BaseMetricDefinition.return_value = [ metric_def] self._vmutils.enable_vm_metrics_collection(self._FAKE_VM_NAME) calls = [mock.call(Name=def_name) for def_name in [self._vmutils._METRIC_AGGR_CPU_AVG, self._vmutils._METRIC_AGGR_MEMORY_AVG]] self._vmutils._conn.CIM_BaseMetricDefinition.assert_has_calls(calls) calls = [] for i in range(len(fake_metric_def_paths)): calls.append(mock.call( Subject=fake_metric_resource_paths[i], Definition=fake_metric_def_paths[i], MetricCollectionEnabled=self._vmutils._METRIC_ENABLED)) mock_svc.ControlMetrics.assert_has_calls(calls, any_order=True) def _get_snapshot_service(self): return self._vmutils._conn.Msvm_VirtualSystemSnapshotService()[0] def _assert_add_resources(self, mock_svc): getattr(mock_svc, self._ADD_RESOURCE).assert_called_with( self._FAKE_VM_PATH, [self._FAKE_RES_DATA]) def _assert_remove_resources(self, mock_svc): getattr(mock_svc, self._REMOVE_RESOURCE).assert_called_with( [self._FAKE_RES_PATH]) def test_list_instance_notes(self): vs = mock.MagicMock() attrs = {'ElementName': 'fake_name', 'Notes': ['4f54fb69-d3a2-45b7-bb9b-b6e6b3d893b3']} vs.configure_mock(**attrs) self._vmutils._conn.Msvm_VirtualSystemSettingData.return_value = [vs] response = self._vmutils.list_instance_notes() self.assertEqual([(attrs['ElementName'], attrs['Notes'])], response) self._vmutils._conn.Msvm_VirtualSystemSettingData.assert_called_with( ['ElementName', 'Notes'], VirtualSystemType=self._vmutils._VIRTUAL_SYSTEM_TYPE_REALIZED) @mock.patch('nova.virt.hyperv.vmutilsv2.VMUtilsV2.check_ret_val') @mock.patch('nova.virt.hyperv.vmutilsv2.VMUtilsV2._get_wmi_obj') def _test_create_vm_obj(self, mock_get_wmi_obj, mock_check_ret_val, vm_path, dynamic_memory_ratio=1.0): mock_vs_man_svc = mock.MagicMock() mock_vs_data = mock.MagicMock() mock_job = mock.MagicMock() fake_job_path = 'fake job path' fake_ret_val = 'fake return value' _conn = self._vmutils._conn.Msvm_VirtualSystemSettingData mock_check_ret_val.return_value = mock_job _conn.new.return_value = mock_vs_data mock_vs_man_svc.DefineSystem.return_value = (fake_job_path, vm_path, fake_ret_val) mock_job.associators.return_value = ['fake vm path'] response = self._vmutils._create_vm_obj( vs_man_svc=mock_vs_man_svc, vm_name='fake vm', vm_gen='fake vm gen', notes='fake notes', dynamic_memory_ratio=dynamic_memory_ratio) if not vm_path: mock_job.associators.assert_called_once_with( self._vmutils._AFFECTED_JOB_ELEMENT_CLASS) _conn.new.assert_called_once_with() self.assertEqual(mock_vs_data.ElementName, 'fake vm') mock_vs_man_svc.DefineSystem.assert_called_once_with( ResourceSettings=[], ReferenceConfiguration=None, SystemSettings=mock_vs_data.GetText_(1)) mock_check_ret_val.assert_called_once_with(fake_ret_val, fake_job_path) if dynamic_memory_ratio > 1: self.assertFalse(mock_vs_data.VirtualNumaEnabled) mock_get_wmi_obj.assert_called_with('fake vm path') self.assertEqual(mock_vs_data.Notes, 'fake notes') self.assertEqual(response, mock_get_wmi_obj()) def test_create_vm_obj(self): self._test_create_vm_obj(vm_path='fake vm path') def test_create_vm_obj_no_vm_path(self): self._test_create_vm_obj(vm_path=None) def test_create_vm_obj_dynamic_memory(self): self._test_create_vm_obj(vm_path=None, dynamic_memory_ratio=1.1) def test_list_instances(self): vs = mock.MagicMock() attrs = {'ElementName': 'fake_name'} vs.configure_mock(**attrs) self._vmutils._conn.Msvm_VirtualSystemSettingData.return_value = [vs] response = self._vmutils.list_instances() self.assertEqual([(attrs['ElementName'])], response) self._vmutils._conn.Msvm_VirtualSystemSettingData.assert_called_with( ['ElementName'], VirtualSystemType=self._vmutils._VIRTUAL_SYSTEM_TYPE_REALIZED) def test_get_attached_disks(self): mock_scsi_ctrl_path = mock.MagicMock() expected_query = ("SELECT * FROM %(class_name)s " "WHERE (ResourceSubType='%(res_sub_type)s' OR " "ResourceSubType='%(res_sub_type_virt)s' OR " "ResourceSubType='%(res_sub_type_dvd)s') AND " "Parent = '%(parent)s'" % {"class_name": self._vmutils._RESOURCE_ALLOC_SETTING_DATA_CLASS, "res_sub_type": self._vmutils._PHYS_DISK_RES_SUB_TYPE, "res_sub_type_virt": self._vmutils._DISK_DRIVE_RES_SUB_TYPE, "res_sub_type_dvd": self._vmutils._DVD_DRIVE_RES_SUB_TYPE, "parent": mock_scsi_ctrl_path.replace("'", "''")}) expected_disks = self._vmutils._conn.query.return_value ret_disks = self._vmutils.get_attached_disks(mock_scsi_ctrl_path) self._vmutils._conn.query.assert_called_once_with(expected_query) self.assertEqual(expected_disks, ret_disks) def test_get_vm_dvd_disk_paths(self): mock_vm = self._lookup_vm() mock_sasd1 = mock.MagicMock( ResourceSubType=self._vmutils._DVD_DISK_RES_SUB_TYPE, HostResource=[mock.sentinel.FAKE_DVD_PATH1]) mock_settings = mock.MagicMock() mock_settings.associators.return_value = [mock_sasd1] mock_vm.associators.return_value = [mock_settings] ret_val = self._vmutils.get_vm_dvd_disk_paths(self._FAKE_VM_NAME) self.assertEqual(mock.sentinel.FAKE_DVD_PATH1, ret_val[0])
the-stack_0_7320
# Create a list of strings: mutants mutants = ['charles xavier', 'bobby drake', 'kurt wagner', 'max eisenhardt', 'kitty pryde'] aliases= ['prof x', 'iceman', 'nightcrawler', 'magneto', 'shadowcat'] powers = ['telepathy', 'thermokinesis', 'teleportation', 'magnetokinesis', 'intangibility'] # Create a list of tuples: mutant_data mutant_data = list(zip(mutants, aliases, powers)) # Print the list of tuples print(mutant_data) # Create a zip object using the three lists: mutant_zip mutant_zip = zip(mutants, aliases, powers) # Print the zip object print(mutant_zip) # Unpack the zip object and print the tuple values for value1, value2, value3 in mutant_zip: print(value1, value2, value3) # Create a zip object from mutants and powers: z1 z1 = zip(mutants, powers) # Print the tuples in z1 by unpacking with * print(*z1) # Re-create a zip object from mutants and powers: z1 z1 = zip(mutants, powers) # 'Unzip' the tuples in z1 by unpacking with * and zip(): result1, result2 result1, result2 = zip(*z1) # Check if unpacked tuples are equivalent to original tuples print(result1 == mutants) print(result2 == powers)
the-stack_0_7322
import sys from typing import Iterable, Optional import numpy as np import tensorflow as tf def _as_tensor(x): if isinstance(x, np.ndarray): x = tf.convert_to_tensor(x) return x def _build_train_step(model, data, jit_compile: bool): data = tf.nest.map_structure(_as_tensor, data) @tf.function(jit_compile=jit_compile) def train_fn(): return model.train_step(data) return train_fn def _build_test_step(model, data, jit_compile: bool): data = tf.nest.map_structure(_as_tensor, data) @tf.function(jit_compile=jit_compile) def test_fn(): model.reset_metrics() return model.test_step(data) return test_fn class EpochProgbarLogger(tf.keras.callbacks.Callback): """Progress bar that updates at the end of each epoch.""" def __init__(self): super().__init__() self.progbar = None self.epochs = None self.last_seen = None def set_params(self, params): self.epochs = params["epochs"] def on_train_begin(self, logs=None): class Universe: """Contains everything.""" def __contains__(self, x): return True self.progbar = tf.keras.utils.Progbar(target=self.epochs, unit_name="epoch",) # probar uses stateful metrics to determine which metric values to average. # Since this is only called on_epoch_end, no metrics should be averaged # i.e. all metrics should be considered 'stateful'. # don't set stateful_metrics in constructor because it wraps it in `set`. self.progbar.stateful_metrics = Universe() def on_epoch_end(self, epoch: int, logs=None): self.last_seen = epoch + 1 self.progbar.update(epoch + 1, list(logs.items())) def on_train_end(self, logs=None): if self.last_seen < self.progbar.target: if tf.version.VERSION < "2.3": sys.stdout.write("\n") else: self.progbar.update(self.last_seen, finalize=True) def fit_single( model: tf.keras.Model, train_data, validation_data=None, epochs: int = 1, initial_epoch: int = 0, validation_freq: int = 1, callbacks: Iterable[tf.keras.callbacks.Callback] = (), verbose: bool = True, jit_compile: bool = False, ): """ Optimized keras.Model.fit for training on a single graph. Args: model: keras model to train. train_data: (inputs, labels, sample_weight) or dataset with a single element for training. validation_data: (inputs, labels, sample_weight) or dataset with a single element for validation. epochs: int, maximum number of epochs / steps to train for. initial_epoch: int, starting epoch. validation_freq: int, number of training steps/epochs per validation. callbacks: Iterable of tf.keras.callbacks.Callbacks. verbose: flag resulting in verbose outputs. jit_compile: flag indicating whether train/validation steps are compiled with `jit`. Not all ops are jit compatible, though where they are this may result in speed-ups. Returns: history: `tf.keras.callbacks.History` object. """ if isinstance(train_data, tf.data.Dataset): train_data = tf.data.experimental.get_single_element(train_data) if isinstance(validation_data, tf.data.Dataset): validation_data = tf.data.experimental.get_single_element(validation_data) do_validation = validation_data is not None params = dict(epochs=epochs, verbose=verbose, steps=1, do_validation=do_validation,) callbacks = list(callbacks) if verbose: callbacks.append(EpochProgbarLogger()) cb = tf.keras.callbacks.CallbackList( callbacks, add_history=True, add_progbar=False, model=model, **params, ) del callbacks train_step = _build_train_step(model, train_data, jit_compile=jit_compile) if validation_data is None: validation_step = None else: validation_step = _build_test_step( model, validation_data, jit_compile=jit_compile ) model.stop_training = False cb.on_train_begin(logs=None) # _maybe_load_initial_epoch_from_ckpt behaviour is influenced by # callbacks.experimental.BackupAndRestore initial_epoch = model._maybe_load_initial_epoch_from_ckpt( # pylint: disable=protected-access initial_epoch ) logs = None for epoch in range(initial_epoch, epochs): model.reset_metrics() cb.on_epoch_begin(epoch, logs=None) cb.on_train_batch_begin(batch=0) logs = train_step() cb.on_train_batch_end(batch=0, logs=logs) if model.stop_training: break # validation if validation_step is not None and (epoch + 1) % validation_freq == 0: val_logs = validation_step() logs.update({f"val_{k}": v for k, v in val_logs.items()}) cb.on_epoch_end(epoch, logs) if model.stop_training: break cb.on_train_end(logs) return model.history def fit( model: tf.keras.Model, train_data, validation_data=None, epochs: int = 1, initial_epoch: int = 0, validation_freq: int = 1, callbacks: Iterable[tf.keras.callbacks.Callback] = (), steps_per_epoch: Optional[int] = None, verbose: bool = True, jit_compile: bool = False, ): """ Call `fit_single` or `Model.fit` based on `train_data`. Delegates to either `graph_tf.train.fit_single` or `tf.keras.Model.fit`. Args: model: keras model to train. train_data: (inputs, labels, sample_weight) or dataset with a single element for training. validation_data: (inputs, labels, sample_weight) or dataset with a single element for validation. epochs: int, maximum number of steps/epochs to train for. initial_epoch: int, starting epoch. validation_freq: int, number of training steps/epochs per validation. callbacks: Iterable of `tf.keras.callbacks.Callbacks`. steps_per_epoch: Number of steps per epoch. Must be 1 if specified and train_data is a not a `tf.data.Dataset`. verbose: flag resulting in verbose outputs. jit_compile: used in fit_single. Ignored if more than one example. Returns: history: `tf.keras.callbacks.History` object. """ if not isinstance(train_data, tf.data.Dataset) or len(train_data) == 1: assert steps_per_epoch is None or steps_per_epoch == 1 return fit_single( model=model, train_data=train_data, validation_data=validation_data, epochs=epochs, initial_epoch=initial_epoch, validation_freq=validation_freq, callbacks=callbacks, verbose=verbose, jit_compile=jit_compile, ) return model.fit( train_data, validation_data=validation_data, epochs=epochs, initial_epoch=initial_epoch, validation_freq=validation_freq, callbacks=callbacks, verbose=verbose, steps_per_epoch=steps_per_epoch, )
the-stack_0_7323
# If executes from local python Kernel import sys sys.path.append('./python_env/lib/python3.6/site-packages') # Import libraries for general use from unidecode import unidecode # Library to parse format from bs4 import BeautifulSoup # Library to scripting in HTML import numpy # Library for math function import requests # Library for request to a website # This function returns an array that contains the percentage of the population. def get_population_percentage(population_array): # Get the percentage for each item population_percentage = [] for item in population_array: population_percentage.append(item/numpy.sum(population_array)*100) return numpy.array(population_percentage) # This function create the output file def create_output_file(head, data, population_percentage): # Concatenate all data Head + Rows + New Colum (percentage) result = numpy.concatenate((data, population_percentage.T),axis=1) result = numpy.concatenate((head, result), axis=0) result = result.astype('str') # Save the result in to a csv file return numpy.savetxt('Organización territorial de Chile.csv', result, delimiter=",",fmt="%s") def get_data(): try: website_text = requests.get('https://es.wikipedia.org/wiki/Chile').text except requests.exceptions.RequestException as e: print(e) sys.exit(1) # Parse all data in to HTML format soup = BeautifulSoup(website_text,'html.parser') # Get the table 'Orgazniación ....' territory_table = soup.find('table',{'class':'wikitable col1izq col2der col3der col4der col5der col6izq'}) # Get all data from table - tag <td> if territory_table: list_td = territory_table.find_all('td') # Data Frames head = ['Región', 'Población', 'Superficie', 'Densidad', 'Capital', 'Porcentaje'] data = [] row = [] population = [] for cell in list_td: if(list_td.index(cell)==5): # Delete de 'Mapa administrativo' cell continue if cell.find_all('a'): # Get text for columm that contains an '<a>' tag. a = cell.find_all('a')[0] row.append(a.get_text()) else: # For numbers parse into american float format cell = unidecode(cell.get_text()).replace(" ","").replace(",",".") # Delete <sub> tag info if "(" in cell: cell = cell.split("(")[0] # Add cell to the row's table row.append(float(cell)) # Save the population data to calculate percentage if(len(row) == 2): population.append(row[1]) # Add row to the table if len(row) == 5: data.append(row) row = [] return numpy.array([head]), numpy.array(data), numpy.array([population]) else: print("Table not found.") return sys.exit(1) if __name__ == '__main__': head,data,population = get_data() population_percentage = get_population_percentage(population) create_output_file(head,data,population_percentage)
the-stack_0_7325
# Copyright (c) 2017, Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can be # found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause import os import itertools import pandas as pd import unittest from coremltools._deps import HAS_SKLEARN from coremltools.models.utils import evaluate_classifier, macos_version import pytest if HAS_SKLEARN: from coremltools.converters import sklearn as skl_converter from sklearn.tree import DecisionTreeClassifier @unittest.skipIf(not HAS_SKLEARN, 'Missing sklearn. Skipping tests.') class DecisionTreeClassificationBostonHousingScikitNumericTest(unittest.TestCase): def _check_metrics(self, metrics, params = {}): self.assertEquals(metrics['num_errors'], 0, msg = 'Failed case %s. Results %s' % (params, metrics)) def _train_convert_evaluate_assert(self, **scikit_params): scikit_model = DecisionTreeClassifier(random_state = 1, **scikit_params) scikit_model.fit(self.X, self.target) # Convert the model spec = skl_converter.convert(scikit_model, self.feature_names, self.output_name) if macos_version() >= (10, 13): # Get predictions df = pd.DataFrame(self.X, columns=self.feature_names) df['prediction'] = scikit_model.predict(self.X) # Evaluate it metrics = evaluate_classifier(spec, df) self._check_metrics(metrics, scikit_params) @unittest.skipIf(not HAS_SKLEARN, 'Missing sklearn. Skipping tests.') class DecisionTreeBinaryClassificationBostonHousingScikitNumericTest( DecisionTreeClassificationBostonHousingScikitNumericTest): @classmethod def setUpClass(self): from sklearn.datasets import load_boston from sklearn.tree import DecisionTreeClassifier # Load data and train model scikit_data = load_boston() self.scikit_data = scikit_data self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data self.target = 1 * (scikit_data['target'] > scikit_data['target'].mean()) self.feature_names = scikit_data.feature_names self.output_name = 'target' def test_simple_binary_classifier(self): self._train_convert_evaluate_assert() @pytest.mark.slow def test_binary_classifier_stress_test(self): options = dict( splitter = ['best'], max_depth = [1, 10, None], min_samples_split = [2, 10, 0.5], min_samples_leaf = [1, 5], min_weight_fraction_leaf = [0.0, 0.5], max_features = [None, 1, 5], max_leaf_nodes = [None, 20], presort = [False, True], ) # Make a cartesian product of all options import itertools product = itertools.product(*options.values()) args = [dict(zip(options.keys(), p)) for p in product] print("Testing a total of %s cases. This could take a while" % len(args)) for it, arg in enumerate(args): self._train_convert_evaluate_assert(**arg) @unittest.skipIf(not HAS_SKLEARN, 'Missing sklearn. Skipping tests.') class DecisionTreeMultiClassClassificationBostonHousingScikitNumericTest( DecisionTreeClassificationBostonHousingScikitNumericTest): @classmethod def setUpClass(self): from sklearn.datasets import load_boston import numpy as np # Load data and train model scikit_data = load_boston() num_classes = 3 self.X = scikit_data.data.astype('f').astype('d') ## scikit-learn downcasts data t = scikit_data.target target = np.digitize(t, np.histogram(t, bins = num_classes - 1)[1]) - 1 # Save the data and the model self.scikit_data = scikit_data self.target = target self.feature_names = scikit_data.feature_names self.output_name = 'target' def test_simple_multiclass(self): self._train_convert_evaluate_assert() @pytest.mark.slow def test_multiclass_stress_test(self): options = dict( splitter = ['best'], max_depth = [1, 10, None], min_samples_split = [2, 10, 0.5], min_samples_leaf = [1, 5], min_weight_fraction_leaf = [0.0, 0.5], max_features = [None, 1, 5], max_leaf_nodes = [None, 20], presort = [False, True], ) # Make a cartesian product of all options product = itertools.product(*options.values()) args = [dict(zip(options.keys(), p)) for p in product] print("Testing a total of %s cases. This could take a while" % len(args)) for it, arg in enumerate(args): self._train_convert_evaluate_assert(**arg)
the-stack_0_7326
from os import path from setuptools import setup, find_packages import sys import versioneer # NOTE: This file must remain Python 2 compatible for the foreseeable future, # to ensure that we error out properly for people with outdated setuptools # and/or pip. min_version = (3, 6) if sys.version_info < min_version: error = """ jupyterhub-share-link-serverextension does not support Python {0}.{1}. Python {2}.{3} and above is required. Check your Python version like so: python3 --version This may be due to an out-of-date pip. Make sure you have pip >= 9.0.1. Upgrade pip like so: pip install --upgrade pip """.format(*(sys.version_info[:2] + min_version)) sys.exit(error) here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as readme_file: readme = readme_file.read() with open(path.join(here, 'requirements.txt')) as requirements_file: # Parse requirements.txt, ignoring any commented-out lines. requirements = [line for line in requirements_file.read().splitlines() if not line.startswith('#')] setup( name='jupyterhub-share-link-serverextension', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description="Python package for doing science.", long_description=readme, author="JupyterHub Share Link Contributors", author_email='[email protected]', url='https://github.com/danielballan/jupyterhub-share-link-serverextension', python_requires='>={}'.format('.'.join(str(n) for n in min_version)), packages=find_packages(exclude=['docs', 'tests']), entry_points={ 'console_scripts': [ # 'command = some.module:some_function', ], }, include_package_data=True, package_data={ 'jupyterhub_share_link_serverextension': [ # When adding files here, remember to update MANIFEST.in as well, # or else they will not be included in the distribution on PyPI! # 'path/to/data_file', ] }, install_requires=requirements, license="BSD (3-clause)", classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Natural Language :: English', 'Programming Language :: Python :: 3', ], )
the-stack_0_7328
""" Modified from https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py Edits: ResNet: - Changed input layer from 3 channel -> 1 channel (depth images) - Divided inplanes, planes, and width_per_group by 4 BasicBlock: - Commented out ValueError triggered by base_width != 64 'To make the number of parameters comparable to point-based methods, we use ResNet18 with one-fourth filters (ResNet18/4) as the backbone.' """ from typing import Type, Any, Callable, Union, List, Optional import torch import torch.nn as nn from torchvision.models.resnet import ( Bottleneck, conv3x3, conv1x1 ) class BasicBlock(nn.Module): expansion: int = 1 def __init__( self, inplanes: int, planes: int, stride: int = 1, downsample: Optional[nn.Module] = None, groups: int = 1, base_width: int = 64, dilation: int = 1, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d """ if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') """ if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x: torch.Tensor) -> torch.Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet_4(nn.Module): def __init__( self, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], num_classes: int = 1000, zero_init_residual: bool = False, groups: int = 1, width_per_group: int = 64//4, replace_stride_with_dilation: Optional[List[bool]] = None, norm_layer: Optional[Callable[..., nn.Module]] = None ) -> None: super().__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64//4 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64//4, layers[0]) self.layer2 = self._make_layer(block, 128//4, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256//4, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512//4, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512//4 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type] elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type] def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int, stride: int = 1, dilate: bool = False) -> nn.Sequential: norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def _forward_impl(self, x: torch.Tensor) -> torch.Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def forward(self, x: torch.Tensor) -> torch.Tensor: return self._forward_impl(x) def resnet18_4() -> ResNet_4: """ ResNet18/4: ResNet18 with 1/4 the filters Note: contains ~0.83M params which is close to the 0.8M params reported in paper """ return ResNet_4(block=BasicBlock, layers=[2, 2, 2, 2])
the-stack_0_7329
from hpc.autoscale.ccbindings.mock import MockClusterBinding from hpc.autoscale.job.job import Job from hpc.autoscale.job.schedulernode import SchedulerNode from hpc.autoscale.node.nodemanager import new_node_manager def setup_module() -> None: SchedulerNode.ignore_hostnames = True def test_placement_group() -> None: node = SchedulerNode("", {}) node.exists = False node.placement_group = "" assert node.placement_group is None node.placement_group = "a" assert node.placement_group == "a" node.placement_group = "0" assert node.placement_group == "0" try: node.placement_group = "." except Exception: pass assert node.placement_group == "0" node.set_placement_group_escaped(".") assert node.placement_group == "_" node.exists = True try: node.placement_group = "123" except Exception: assert node.placement_group == "_" def test_custom_node_attrs_and_node_config() -> None: b = MockClusterBinding() b.add_nodearray("htc", {}, software_configuration={"myscheduler": {"A": 1}}) b.add_bucket("htc", "Standard_F2", 10, 10) b.add_node("htc-1", "htc") node_mgr = new_node_manager({"_mock_bindings": b}) (existing_node,) = node_mgr.get_nodes() try: existing_node.node_attribute_overrides["willfail"] = 123 assert False except TypeError: pass result = node_mgr.allocate({"exclusive": True}, node_count=2) assert result (node,) = [n for n in result.nodes if not n.exists] assert node.software_configuration.get("test_thing") is None node.node_attribute_overrides["Configuration"] = {"test_thing": "is set"} assert node.software_configuration.get("test_thing") == "is set" try: node.software_configuration["willfail"] = 123 assert not node.software_configuration.get("willfail") except TypeError: pass # we won't handle dict merges here. assert node.software_configuration.get("myscheduler") == {"A": 1} node.node_attribute_overrides["Configuration"] = {"myscheduler": {"B": 2}} assert node.software_configuration.get("myscheduler") == {"B": 2} # if you want to add to the existing software_configuration, use # the node.software_configuration node.node_attribute_overrides["Configuration"][ "myscsheduler" ] = node.software_configuration.get("myscheduler", {}) node.node_attribute_overrides["Configuration"]["myscheduler"]["B"] = 2 node.node_attribute_overrides["Configuration"] = {"myscheduler": {"A": 1, "B": 2}} node.software_configuration["willsucceed"] = 123 node.exists = True try: node.software_configuration["willfail"] = 123 assert False except TypeError: pass def test_clone() -> None: orig = SchedulerNode("lnx0", {"ncpus": 4}) orig.metadata["exists_in_both"] = True new = orig.clone() assert new.available["ncpus"] == 4 assert new.resources["ncpus"] == 4 new.available["ncpus"] -= 1 assert new.available["ncpus"] == 3 assert orig.available["ncpus"] == 4 job = Job("1", {"ncpus": 2}) new.decrement(job._constraints, assignment_id=job.name) assert new.available["ncpus"] == 1 assert orig.available["ncpus"] == 4 assert new.assignments == set(["1"]) assert orig.assignments == set() orig.metadata["exists_in_orig"] = True new.metadata["exists_in_new"] = True assert orig.metadata["exists_in_both"] is True assert "exists_in_new" not in orig.metadata assert orig.metadata["exists_in_orig"] is True assert new.metadata["exists_in_both"] is True assert new.metadata["exists_in_new"] is True assert "exists_in_orig" not in new.metadata
the-stack_0_7330
""" Copyright (C) 2021 University of Luxembourg Developed by Dr. Joshua Heneage Dawes. Module containing classes for construction of iCFTL specifications. Specifications are constructed hierarchically, as chains of objects. The root object is always a Specification instance. This can contain configuration information for the specification. The first object inside the Specification must be a Forall instance. This indicates universal quantification. There can arbitrarily many Forall instances nested. The final instance in the chain must be a Constraint instance. This has recursive structure (based on the grammar of iCFTL). """ import logging logger = logging.getLogger("VyPR") from VyPR.Specifications.predicates import changes, calls, future from VyPR.Specifications.constraints import (Constraint, ConstraintBase, ConcreteStateExpression, TransitionExpression, ConcreteStateVariable, TransitionVariable, Conjunction, Disjunction, Negation, TimeBetween, ValueInConcreteStateEqualsConstant, ValueInConcreteStateLessThanConstant, ValueInConcreteStateGreaterThanConstant, DurationOfTransitionLessThanConstant, DurationOfTransitionGreaterThanConstant, ConcreteStateBeforeTransition, ConcreteStateAfterTransition, NextTransitionFromConcreteState, NextConcreteStateFromConcreteState, NextTransitionFromTransition, NextConcreteStateFromTransition, TimeBetweenLessThanConstant) class Specification(): """ The top-level class for specifications. """ def __init__(self): logger.info("Instantiating new specification...") self._quantifier = None def __repr__(self): """ Construct the string representation recursively. """ return f"{self._quantifier}" def get_quantifier(self): return self._quantifier def get_variable_to_obj_map(self) -> dict: """ Traverse the specification in order to construct a map from each variable to the type of object it will hold (either a ConcreteState or a Transition instance). Note: this function should not try to serialise any objects from the specification because serialisation of a Constraint instance requires calling of this function, hence the result would be an infinite loop. """ logger.info("Deriving map variable names -> variable object from quantifiers") # initialise an empty map variable_to_obj = {} # set the current object to be the top-level specification current_obj = self # iterate through the structure, using the type Constraint as a place to stop logger.info("Traversing specification structure") while type(current_obj) is not Constraint: logger.info(f"current_obj = {type(current_obj)}") # traverse depending on the type of the current object if type(current_obj) is Specification: current_obj = current_obj._quantifier elif type(current_obj) is Forall: # first, add to the map # we check the type of the predicate so we know what kind of variable to instantiate if type(current_obj._predicate) is changes: variable_to_obj[current_obj._variable] = ConcreteStateVariable(current_obj._variable) elif type(current_obj._predicate) is calls: variable_to_obj[current_obj._variable] = TransitionVariable(current_obj._variable) elif type(current_obj._predicate) is future: if type(current_obj._predicate._predicate) is changes: variable_to_obj[current_obj._variable] = ConcreteStateVariable(current_obj._variable) elif type(current_obj._predicate._predicate) is calls: variable_to_obj[current_obj._variable] = TransitionVariable(current_obj._variable) # in the case of a quantifier, the two possibilities are # that the next item to consider is a quantifier or a constraint if current_obj._quantifier: current_obj = current_obj._quantifier else: # if we arrive at a constraint, the loop # will stop at the next ieration current_obj = current_obj._constraint logger.info(f"variable_to_obj = {variable_to_obj}") return variable_to_obj def get_variables(self) -> list: """ Traverse the specification in order to construct a list of variables. The order of the list matches the order in which the variables occur in quantifiers. """ logger.info("Deriving list of variables from quantifiers") # initialise an empty list variables = [] # set the current object to be the top-level specification current_obj = self # iterate through the structure, using the type Constraint as a place to stop logger.info("Traversing specification structure") while type(current_obj) is not Constraint: logger.info(f"current_obj = {type(current_obj)}") # traverse depending on the type of the current object if type(current_obj) is Specification: current_obj = current_obj._quantifier elif type(current_obj) is Forall: # first, add to the map # we check the type of the predicate so we know what kind of variable to instantiate if type(current_obj._predicate) is changes: variables.append(current_obj._variable) elif type(current_obj._predicate) is calls: variables.append(current_obj._variable) elif type(current_obj._predicate) is future: if type(current_obj._predicate._predicate) is changes: variables.append(current_obj._variable) elif type(current_obj._predicate._predicate) is calls: variables.append(current_obj._variable) # in the case of a quantifier, the two possibilities are # that the next item to consider is a quantifier or a constraint if current_obj._quantifier: current_obj = current_obj._quantifier else: # if we arrive at a constraint, the loop # will stop at the next ieration current_obj = current_obj._constraint return variables def get_function_names_used(self): """ Traverse the specification and, each time a predicate is encountered, extract the function name used and add to the list. """ # initialise an empty list of function names all_function_names = [] # initialise stack wth top-level Specification object for traversal stack = [self] # process the stack while it is not empty while len(stack) > 0: # get the top element from the stack top = stack.pop() # based on the type, add child elements to the stack or add a new function name # to the list if type(top) in [changes, calls]: all_function_names.append(top._during_function) elif type(top) is future: stack.append(top.get_predicate()) elif type(top) is Specification: stack.append(top.get_quantifier()) elif type(top) is Forall: # add the predicate to the stack stack.append(top.get_predicate()) # also, carry on traversing the specification if top.get_quantifier(): stack.append(top.get_quantifier()) else: stack.append(top.get_constraint()) elif type(top) is Constraint: stack.append(top.instantiate()) elif type(top) is Conjunction: stack += top.get_conjuncts() elif type(top) is Disjunction: stack += top.get_disjuncts() elif type(top) is Negation: stack.append(top.get_operand()) elif type(top) in [ValueInConcreteStateEqualsConstant, ValueInConcreteStateLessThanConstant, ValueInConcreteStateGreaterThanConstant]: stack.append(top.get_value_expression().get_concrete_state_expression()) elif type(top) in [ConcreteStateBeforeTransition, ConcreteStateAfterTransition]: stack.append(top.get_transition_expression()) elif type(top) in [DurationOfTransitionLessThanConstant, DurationOfTransitionGreaterThanConstant]: stack.append(top.get_transition_duration_obj().get_transition_expression()) elif type(top) in [NextTransitionFromConcreteState, NextConcreteStateFromConcreteState]: stack.append(top.get_predicate()) elif type(top) in [NextTransitionFromTransition, NextConcreteStateFromTransition]: stack.append(top.get_predicate()) elif type(top) is TimeBetweenLessThanConstant: # traverse both arguments to the timeBetween operator stack.append(top.get_time_between_expression().get_lhs_expression()) stack.append(top.get_time_between_expression().get_rhs_expression()) all_function_names = list(set(all_function_names)) return all_function_names def get_constraint(self): """ Traverse the specification until a constraint is reached. """ # set the current object to be the first quantifier current_obj = self._quantifier # iterate through the structure, using the type Constraint as a place to stop while type(current_obj) is not Constraint: # traverse depending on the type of the current object if type(current_obj) is Specification: current_obj = current_obj.get_quantifier() elif type(current_obj) is Forall: # in the case of a quantifier, the two possibilities are # that the next item to consider is a quantifier or a constraint if current_obj.get_quantifier(): current_obj = current_obj.get_quantifier() else: # if we arrive at a constraint, the loop # will stop at the next ieration current_obj = current_obj.get_constraint() return current_obj def forall(self, **quantified_variable): """ **quantified variable must be a dictionary with only one key - the variable being given. The value associated with the variable must be a Predicate instance. """ # if there is more than 1 variable, raise an exception if len(quantified_variable.keys()) > 1: raise Exception("A single variable must be given for each level of universal quantification.") # check the type of the value predicate = list(quantified_variable.values())[0] if type(predicate) not in [changes, calls, future]: raise Exception(f"Type '{type(predicate).__name__}' not supported.") # make sure the predicate is complete variable = list(quantified_variable.keys())[0] if not predicate._during_function: raise Exception(f"Predicate used for variable {variable} not complete") logger.info(f"Adding quantifier with arguments {quantified_variable}") # store the quantifier self._quantifier = Forall(self, **quantified_variable) return self._quantifier class Forall(): """ The class for representing universal quantification in specifications. """ def __init__(self, specification_obj: Specification, **quantified_variable): self._specification_obj = specification_obj # we will use the fact that either a constraint or a quantifier is stored # to determine what the next thing we will see in the structure of the specification is self._constraint = None self._quantifier = None # Note: .keys() does not give a structure with an ordering, # so normally converting to a list would be problematic # but here we know that there must be one element self._variable = list(quantified_variable.keys())[0] self._predicate = list(quantified_variable.values())[0] def __repr__(self): if self._constraint: # this is the last quantifier, so the next thing to turn into a string is a constraint return f"forall {self._variable} in {self._predicate}:\n {self._constraint}" else: # this is not the last quantifier - there is another nested inside return f"forall {self._variable} in {self._predicate}:\n{self._quantifier}" def get_specification_obj(self): return self._specification_obj def get_quantifier(self): return self._quantifier def get_constraint(self): return self._constraint def get_predicate(self): return self._predicate def get_variable(self): return self._variable def forall(self, **quantified_variable): """ **quantified variable must be a dictionary with only one key - the variable being given. The value associated with the variable must be a Predicate instance. """ # if there is more than 1 variable, raise an exception if len(quantified_variable.keys()) > 1: raise Exception("A single variable must be given for each level of universal quantification.") # check the type of the value - this is not the first quantifier, # so the type must be future predicate = list(quantified_variable.values())[0] if type(predicate) is not future: raise Exception(f"Type '{type(predicate).__name__}' not supported.") # make sure the predicate is complete variable = list(quantified_variable.keys())[0] if not predicate._predicate._during_function: raise Exception(f"Predicate used for variable {variable} not complete") logger.info(f"Initialising new instance of Forall with quantified_variable = {quantified_variable}") # store the quantifier self._quantifier = Forall(self._specification_obj, **quantified_variable) return self._quantifier def check(self, expression): """ Instantiate a top-level Constraint instance with the given constraint lambda. The lambda will later be called and supplied with the necessary variables during instrumentation and monitoring. """ # make sure constraint is a lambda if type(expression) is not type(lambda:0): raise Exception("Constraint given must be a lambda expression.") logger.info("Setting self._constraint to new Constraint instance") self._constraint = Constraint(self._specification_obj, expression) return self._specification_obj """ Syntax sugar functions. """ def all_are_true(*conjuncts): """ Encode a conjunction. """ return Conjunction(*conjuncts) def one_is_true(*disjuncts): """ Encode a disjunction. """ return Disjunction(*disjuncts) def not_true(operand): """ Given an operand, instantiate either a single negation, or another structure by propagating negation through to atomic constraints. """ if type(operand) is Conjunction: # rewrite negation of conjunction as disjunction of negations return Disjunction(*map(lambda conjunct : not_true(conjunct), operand.get_conjuncts())) elif type(operand) is Disjunction: # rewrite negation of disjunction as conjunction of negations return Conjunction(*map(lambda disjunct : not_true(disjunct), operand.get_disjuncts())) elif type(operand) is Negation: # eliminate double negation return operand.get_operand() else: # assume operand is atomic constraint return Negation(operand) def timeBetween(concrete_state_expression_1, concrete_state_expression_2): return TimeBetween(concrete_state_expression_1, concrete_state_expression_2)
the-stack_0_7331
# -*- coding: utf-8 -*- from .fixtures import fixture_data, Amount, Asset, Price import unittest class Testcases(unittest.TestCase): def setUp(self): fixture_data() def test_init(self): # self.assertEqual(1, 1) Price("0.315 USD/GPH") Price(1.0, "USD/GOLD") Price(0.315, base="USD", quote="GPH") Price(0.315, base=Asset("USD"), quote=Asset("GPH")) Price( { "base": {"amount": 1, "asset_id": "1.3.0"}, "quote": {"amount": 10, "asset_id": "1.3.8"}, } ) Price( { "receives": {"amount": 1, "asset_id": "1.3.0"}, "pays": {"amount": 10, "asset_id": "1.3.8"}, }, base_asset=Asset("1.3.0"), ) Price(quote="10 GOLD", base="1 USD") Price("10 GOLD", "1 USD") Price(Amount("10 GOLD"), Amount("1 USD")) def test_multiplication(self): p1 = Price(10.0, "USD/GOLD") p2 = Price(5.0, "EUR/USD") p3 = p1 * p2 p4 = p3.as_base("GOLD") self.assertEqual(p4["quote"]["symbol"], "EUR") self.assertEqual(p4["base"]["symbol"], "GOLD") # 10 USD/GOLD * 0.2 EUR/USD = 50 EUR/GOLD = 0.02 GOLD/EUR self.assertEqual(float(p4), 0.02) # Inline multiplication p5 = p1 p5 *= p2 p4 = p5.as_base("GOLD") self.assertEqual(p4["quote"]["symbol"], "EUR") self.assertEqual(p4["base"]["symbol"], "GOLD") # 10 USD/GOLD * 0.2 EUR/USD = 2 EUR/GOLD = 0.02 GOLD/EUR self.assertEqual(float(p4), 0.02) def test_div(self): p1 = Price(10.0, "USD/GOLD") p2 = Price(5.0, "USD/EUR") # 10 USD/GOLD / 5 USD/EUR = 2 EUR/GOLD p3 = p1 / p2 p4 = p3.as_base("EUR") self.assertEqual(p4["base"]["symbol"], "EUR") self.assertEqual(p4["quote"]["symbol"], "GOLD") # 10 USD/GOLD * 0.2 EUR/USD = 2 EUR/GOLD = 0.5 GOLD/EUR self.assertEqual(float(p4), 2) def test_div2(self): p1 = Price(10.0, "USD/GOLD") p2 = Price(5.0, "USD/GOLD") # 10 USD/GOLD / 5 USD/EUR = 2 EUR/GOLD p3 = p1 / p2 self.assertTrue(isinstance(p3, (float, int))) self.assertEqual(float(p3), 2.0)
the-stack_0_7333
import torch import numpy as np from baseline.utils import lookup_sentence, get_version from torch.autograd import Variable import torch.autograd import torch.nn as nn import torch.nn.functional import math import copy PYT_MAJOR_VERSION = get_version(torch) def sequence_mask(lengths): lens = lengths.cpu() max_len = torch.max(lens) # 1 x T row = torch.arange(0, max_len.item()).type_as(lens).view(1, -1) # B x 1 col = lens.view(-1, 1) # Broadcast to B x T, compares increasing number to max mask = row < col return mask def classify_bt(model, batch_time): tensor = torch.from_numpy(batch_time) if type(batch_time) == np.ndarray else batch_time probs = model(torch.autograd.Variable(tensor, requires_grad=False).cuda()).exp().data probs.div_(torch.sum(probs)) results = [] batchsz = probs.size(0) for b in range(batchsz): outcomes = [(model.labels[id_i], prob_i) for id_i, prob_i in enumerate(probs[b])] results.append(outcomes) return results def predict_seq_bt(model, x, xch, lengths): x_t = torch.from_numpy(x) if type(x) == np.ndarray else x xch_t = torch.from_numpy(xch) if type(xch) == np.ndarray else xch len_v = torch.from_numpy(lengths) if type(lengths) == np.ndarray else lengths x_v = torch.autograd.Variable(x_t, requires_grad=False).cuda() xch_v = torch.autograd.Variable(xch_t, requires_grad=False).cuda() #len_v = torch.autograd.Variable(len_t, requires_grad=False) results = model((x_v, xch_v, len_v)) #print(results) #if type(x) == np.ndarray: # # results = results.cpu().numpy() # # Fix this to not be greedy # results = np.argmax(results, -1) return results def to_scalar(var): # returns a python float return var.view(-1).data.tolist()[0] def argmax(vec): # return the argmax as a python int _, idx = torch.max(vec, 1) return to_scalar(idx) def log_sum_exp(vec): max_score = vec[0, argmax(vec)] max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast))) class SequenceCriterion(nn.Module): def __init__(self, LossFn=nn.NLLLoss): super(SequenceCriterion, self).__init__() self.crit = LossFn(ignore_index=0, size_average=False) def forward(self, inputs, targets): # This is BxT, which is what we want! total_sz = targets.nelement() loss = self.crit(inputs.view(total_sz, -1), targets.view(total_sz)) return loss class StackedLSTMCell(nn.Module): def __init__(self, num_layers, input_size, rnn_size, dropout): super(StackedLSTMCell, self).__init__() self.dropout = nn.Dropout(dropout) self.num_layers = num_layers self.layers = nn.ModuleList() for i in range(num_layers): self.layers.append(nn.LSTMCell(input_size=input_size, hidden_size=rnn_size, bias=False)) input_size = rnn_size def forward(self, input, hidden): h_0, c_0 = hidden hs, cs = [], [] for i, layer in enumerate(self.layers): h_i, c_i = layer(input, (h_0[i], c_0[i])) input = h_i if i != self.num_layers - 1: input = self.dropout(input) hs += [h_i] cs += [c_i] hs = torch.stack(hs) cs = torch.stack(cs) return input, (hs, cs) class StackedGRUCell(nn.Module): def __init__(self, num_layers, input_size, rnn_size, dropout): super(StackedGRUCell, self).__init__() self.dropout = nn.Dropout(dropout) self.num_layers = num_layers self.layers = nn.ModuleList() for i in range(num_layers): self.layers.append(nn.GRUCell(input_size=input_size, hidden_size=rnn_size)) input_size = rnn_size def forward(self, input, hidden): h_0 = hidden hs = [] for i, layer in enumerate(self.layers): h_i = layer(input, (h_0[i])) input = h_i if i != self.num_layers: input = self.dropout(input) hs += [h_i] hs = torch.stack(hs) return input, hs def pytorch_rnn_cell(insz, hsz, rnntype, nlayers, dropout): if rnntype == 'gru': rnn = StackedGRUCell(nlayers, insz, hsz, dropout) else: rnn = StackedLSTMCell(nlayers, insz, hsz, dropout) return rnn def pytorch_embedding(x2vec, finetune=True): dsz = x2vec.dsz lut = nn.Embedding(x2vec.vsz + 1, dsz, padding_idx=0) del lut.weight lut.weight = nn.Parameter(torch.FloatTensor(x2vec.weights), requires_grad=finetune) return lut def pytorch_activation(name="relu"): if name == "tanh": return nn.Tanh() if name == "hardtanh": return nn.Hardtanh() if name == "prelu": return nn.PReLU() if name == "sigmoid": return nn.Sigmoid() if name == "log_sigmoid": return nn.LogSigmoid() return nn.ReLU() def pytorch_conv1d(in_channels, out_channels, fsz, unif=0, padding=0, initializer=None): c = nn.Conv1d(in_channels, out_channels, fsz, padding=padding) if unif > 0: c.weight.data.uniform_(-unif, unif) elif initializer == "ortho": nn.init.orthogonal(c.weight) elif initializer == "he" or initializer == "kaiming": nn.init.kaiming_uniform(c.weight) else: nn.init.xavier_uniform_(c.weight) return c def pytorch_linear(in_sz, out_sz, unif=0, initializer=None): l = nn.Linear(in_sz, out_sz) if unif > 0: l.weight.data.uniform_(-unif, unif) elif initializer == "ortho": nn.init.orthogonal(l.weight) elif initializer == "he" or initializer == "kaiming": nn.init.kaiming_uniform(l.weight) else: nn.init.xavier_uniform_(l.weight) l.bias.data.zero_() return l def pytorch_clone_module(module_, N): return nn.ModuleList([copy.deepcopy(module_) for _ in range(N)]) def _cat_dir(h): return torch.cat([h[0:h.size(0):2], h[1:h.size(0):2]], dim=-1) class BiRNNWrapper(nn.Module): def __init__(self, rnn, nlayers): super(BiRNNWrapper, self).__init__() self.rnn = rnn self.nlayers = nlayers def forward(self, seq): output, hidden = self.rnn(seq) if isinstance(hidden, tuple): hidden = tuple(_cat_dir(h) for h in hidden) else: hidden = _cat_dir(hidden) return output, hidden def pytorch_rnn(insz, hsz, rnntype, nlayers, dropout): if nlayers == 1: dropout = 0.0 if rnntype == 'gru': rnn = torch.nn.GRU(insz, hsz, nlayers, dropout=dropout) elif rnntype == 'blstm': rnn = torch.nn.LSTM(insz, hsz, nlayers, dropout=dropout, bidirectional=True) rnn = BiRNNWrapper(rnn, nlayers) else: rnn = torch.nn.LSTM(insz, hsz, nlayers, dropout=dropout) return rnn class ParallelConv(nn.Module): def __init__(self, insz, outsz, filtsz, activation_type, pdrop): super(ParallelConv, self).__init__() convs = [] outsz_filts = outsz if type(outsz) == int: outsz_filts = len(filtsz) * [outsz] self.outsz = sum(outsz_filts) for i, fsz in enumerate(filtsz): pad = fsz//2 conv = nn.Sequential( nn.Conv1d(insz, outsz_filts[i], fsz, padding=pad), pytorch_activation(activation_type) ) convs.append(conv) # Add the module so its managed correctly self.convs = nn.ModuleList(convs) self.conv_drop = nn.Dropout(pdrop) def forward(self, input_bct): mots = [] for conv in self.convs: # In Conv1d, data BxCxT, max over time conv_out = conv(input_bct) mot, _ = conv_out.max(2) mots.append(mot) mots = torch.cat(mots, 1) return self.conv_drop(mots) class Highway(nn.Module): def __init__(self, input_size): super(Highway, self).__init__() self.proj = nn.Linear(input_size, input_size) self.transform = nn.Linear(input_size, input_size) self.transform.bias.data.fill_(-2.0) def forward(self, input): proj_result = nn.functional.relu(self.proj(input)) proj_gate = nn.functional.sigmoid(self.transform(input)) gated = (proj_gate * proj_result) + ((1 - proj_gate) * input) return gated class LayerNorm(nn.Module): """ Applies Layer Normalization over a mini-batch of inputs as described in the paper `Layer Normalization`_ . .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x]} + \epsilon} * \gamma + \beta This is provided in pytorch's master, and can be replaced in the near future. For the time, being, this code is adapted from: http://nlp.seas.harvard.edu/2018/04/03/attention.html https://github.com/pytorch/pytorch/pull/2019 """ def __init__(self, num_features, eps=1e-6): super(LayerNorm, self).__init__() self.a = nn.Parameter(torch.ones(num_features)) self.b = nn.Parameter(torch.zeros(num_features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = ((x - mean).pow(2).sum(-1, keepdim=True).div(x.size(-1) - 1) + self.eps).sqrt() d = (std + self.eps) + self.b return self.a * (x - mean) / d def pytorch_lstm(insz, hsz, rnntype, nlayers, dropout, unif=0, batch_first=False, initializer=None): if nlayers == 1: dropout = 0.0 ndir = 2 if rnntype.startswith('b') else 1 #print('ndir: %d, rnntype: %s, nlayers: %d, dropout: %.2f, unif: %.2f' % (ndir, rnntype, nlayers, dropout, unif)) rnn = torch.nn.LSTM(insz, hsz, nlayers, dropout=dropout, bidirectional=True if ndir > 1 else False, batch_first=batch_first)#, bias=False) if unif > 0: for weight in rnn.parameters(): weight.data.uniform_(-unif, unif) elif initializer == "ortho": nn.init.orthogonal(rnn.weight_hh_l0) nn.init.orthogonal(rnn.weight_ih_l0) elif initializer == "he" or initializer == "kaiming": nn.init.kaiming_uniform(rnn.weight_hh_l0) nn.init.kaiming_uniform(rnn.weight_ih_l0) else: nn.init.xavier_uniform_(rnn.weight_hh_l0) nn.init.xavier_uniform_(rnn.weight_ih_l0) return rnn, ndir*hsz def pytorch_prepare_optimizer(model, **kwargs): mom = kwargs.get('mom', 0.9) optim = kwargs.get('optim', 'sgd') eta = kwargs.get('eta', kwargs.get('lr', 0.01)) decay_rate = float(kwargs.get('decay_rate', 0.0)) decay_type = kwargs.get('decay_type', None) if optim == 'adadelta': optimizer = torch.optim.Adadelta(model.parameters(), lr=eta) elif optim == 'adam': optimizer = torch.optim.Adam(model.parameters(), lr=eta) elif optim == 'rmsprop': optimizer = torch.optim.RMSprop(model.parameters(), lr=eta) elif optim == 'asgd': optimizer = torch.optim.ASGD(model.parameters(), lr=eta) else: optimizer = torch.optim.SGD(model.parameters(), lr=eta, momentum=mom) scheduler = None if decay_rate > 0.0 and decay_type is not None: if decay_type == 'invtime': scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=decay_rate) return optimizer, scheduler def append2seq(seq, modules): for i, module in enumerate(modules): seq.add_module('%s-%d' % (str(module).replace('.', 'dot'), i), module) def tensor_max(tensor): return tensor.max() def tensor_shape(tensor): return tensor.size() def tensor_reverse_2nd(tensor): idx = torch.LongTensor([i for i in range(tensor.size(1)-1, -1, -1)]) return tensor.index_select(1, idx) def long_0_tensor_alloc(dims, dtype=None): lt = long_tensor_alloc(dims) lt.zero_() return lt def long_tensor_alloc(dims, dtype=None): if type(dims) == int or len(dims) == 1: return torch.LongTensor(dims) return torch.LongTensor(*dims) def prepare_src(model, tokens, mxlen=100): src_vocab = model.get_src_vocab() length = min(len(tokens), mxlen) x = torch.LongTensor(length).zero_() for j in range(length): word = tokens[j] if word not in src_vocab: if word != '': print(word) idx = 0 else: idx = src_vocab[word] x[j] = idx return torch.autograd.Variable(x.view(-1, 1)) #def beam_decode_tokens(model, src_tokens, K, idx2word, mxlen=50): # src = prepare_src(model, src_tokens, mxlen) # paths, scores = beam_decode(model, src, K) # path_str = [] # for j, path in enumerate(paths): # path_str.append([idx2word[i] for i in path]) # return path_str, scores #return beam_decode(model, src, K) def show_examples_pytorch(model, es, rlut1, rlut2, embed2, mxlen, sample, prob_clip, max_examples, reverse): si = np.random.randint(0, len(es)) batch_dict = es[si] src_array = batch_dict['src'] tgt_array = batch_dict['dst'] src_len = batch_dict['src_len'] if max_examples > 0: max_examples = min(max_examples, src_array.size(0)) src_array = src_array[0:max_examples] tgt_array = tgt_array[0:max_examples] src_len = src_len[0:max_examples] # TODO: fix this, check for GPU first src_array = src_array.cuda() for src_len_i, src_i, tgt_i in zip(src_len, src_array, tgt_array): print('========================================================================') src_len_i = torch.ones(1).fill_(src_len_i).type_as(src_len) sent = lookup_sentence(rlut1, src_i.cpu().numpy(), reverse=reverse) print('[OP] %s' % sent) sent = lookup_sentence(rlut2, tgt_i.cpu().numpy()) print('[Actual] %s' % sent) src_dict = {'src': torch.autograd.Variable(src_i.view(1, -1), requires_grad=False), 'src_len': torch.autograd.Variable(src_len_i, requires_grad=False)} dst_i = model.run(src_dict)[0][0] dst_i = [idx.item() for idx in dst_i] sent = lookup_sentence(rlut2, dst_i) print('Guess: %s' % sent) print('------------------------------------------------------------------------') # Some of this code is borrowed from here: # https://github.com/rguthrie3/DeepLearningForNLPInPytorch def argmax(vec): # return the argmax as a python int _, idx = torch.max(vec, 1) return idx.data[0] # Compute log sum exp in a numerically stable way for the forward algorithm def log_sum_exp(vec): max_score = vec[0, argmax(vec)] max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast))) def vec_log_sum_exp(vec, dim): """Vectorized version of log-sum-exp :param vec: Vector :param dim: What dimension to operate on :return: """ max_scores, idx = torch.max(vec, dim, keepdim=True) max_scores_broadcast = max_scores.expand_as(vec) return max_scores + torch.log(torch.sum(torch.exp(vec - max_scores_broadcast), dim, keepdim=True)) class CRF(nn.Module): def __init__(self, n_tags, idxs=None): """Initialize the object. :param n_tags: int The number of tags in your output (emission size) :param idxs: Tuple(int. int) The index of the start and stop symbol in emissions. Note: if idxs is none then the CRF adds these symbols to the emission vectors and n_tags is assumed to be the number of output tags. if idxs is not none then the first element is assumed to be the start index and the second idx is assumed to be the end index. In this case n_tags is assumed to include the start and end symbols. """ super(CRF, self).__init__() if idxs is None: self.start_idx = n_tags self.end_idx = n_tags + 1 self.n_tags = n_tags + 2 self.add_ends = True else: self.start_idx, self.end_idx = idxs self.n_tags = n_tags self.add_ends = False self.transitions = nn.Parameter(torch.Tensor(self.n_tags, self.n_tags).zero_()) @staticmethod def _prep_input(input_): ends = torch.Tensor(input_.size()[0], 2).fill_(-1000.).to(input_.device) return torch.cat([input_, ends], dim=1) def neg_log_loss(self, unary, tags): if self.add_ends: unary = CRF._prep_input(unary) viterbi_score = self.forward(unary) gold_score = self.score_sentence(unary, tags) return viterbi_score - gold_score def score_sentence(self, unary, tags): # Gives the score of a provided tag sequence score = torch.autograd.Variable(torch.Tensor([0]).cuda()) tags = torch.cat([torch.LongTensor([self.start_idx]).cuda(), tags]) for i, unary_t in enumerate(unary): score = score + self.transitions[tags[i + 1], tags[i]] + unary_t[tags[i + 1]] score = score + self.transitions[self.end_idx, tags[-1]] return score def forward(self, unary): """Vectorized forward algorithm for CRF layer :param unary: The observations :param transitions: The transitions :param start_idx: The index of the start position :param end_idx: The index of the end position :return: Alphas """ # Do the forward algorithm to compute the partition function init_alphas = torch.Tensor(1, self.n_tags).fill_(-1000.).to(unary.device) # START_TAG has all of the score. init_alphas[0][self.start_idx] = 0. # Wrap in a variable so that we will get automatic backprop alphas = torch.autograd.Variable(init_alphas) # Iterate through the sentence for t, unary_t in enumerate(unary): emit_scores_transpose = unary_t.view(-1, 1) next_tag_var = alphas + emit_scores_transpose + self.transitions scores = vec_log_sum_exp(next_tag_var, 1).transpose(0, 1) alphas = scores terminal_var = alphas + self.transitions[self.end_idx] alpha = log_sum_exp(terminal_var) return alpha def decode(self, unary): if self.add_ends: unary = CRF._prep_input(unary) backpointers = [] inits = torch.Tensor(1, self.n_tags).fill_(-10000.).cuda() inits[0][self.start_idx] = 0 # alphas at step i holds the viterbi variables for step i-1 alphas = torch.autograd.Variable(inits) for unary_t in unary: backpointers_t = [] # holds the backpointers for this step viterbi_t = [] # holds the viterbi variables for this step for tag in range(self.n_tags): next_tag_var = alphas + self.transitions[tag] best_tag_id = argmax(next_tag_var) backpointers_t.append(best_tag_id) viterbi_t.append(next_tag_var[0][best_tag_id]) if PYT_MAJOR_VERSION < 0.4: alphas = (torch.cat(viterbi_t) + unary_t).view(1, -1) else: alphas = (torch.stack(viterbi_t, 0) + unary_t).view(1, -1) backpointers.append(backpointers_t) # Transition to STOP_TAG terminal_var = alphas + self.transitions[self.end_idx] best_tag_id = argmax(terminal_var) path_score = terminal_var[0][best_tag_id] # Follow the back pointers to decode the best path. best_path = [best_tag_id] for backpointers_t in reversed(backpointers): best_tag_id = backpointers_t[best_tag_id] best_path.append(best_tag_id) # Pop off the start tag (we dont want to return that to the caller) start = best_path.pop() assert start == self.start_idx best_path.reverse() return torch.LongTensor(best_path), path_score
the-stack_0_7334
import sys, os sys.path.append(os.path.join(os.path.expanduser("~"), "chipfish")) import app as chipfish from glbase_wrapper import location, glload, genelist draw = 'pdf' c = chipfish.app() c.startup(os.path.expanduser("../trk_TEs.txt")) #annot = glload(os.path.expanduser('~/hg38/hg38_ensembl_v95_enst.glb')) #annot = annot.renameKey('name', 'gene_symbol') gllocs = glload('../../te_discovery/te_transcripts/transcript_table_merged.mapped.glb') locs = ['SOX2', 'NANOG', 'SALL4', 'LIN28A', 'LIN28B', 'SALL1', 'POU5F1A', 'DPPA2', 'DPPA3', 'DPPA5A', 'PRDM14', 'JARID2', 'SALL2', 'SALL3', 'TCF3', 'ZFP42', 'C9ORF135', 'ST6GAL1', 'LRP4', 'MSTO1', 'PRODH',# From Pontis et al., 2019 CSC 'ESRRB', 'LIN28A', 'LIN28B', 'PRDM14', 'POU5F1', 'SOX2', 'NANOG', 'NCOR1', 'NCOR2', 'SALL1', 'KLF4', 'SALL1', 'NR5A1', 'NR5A2', 'NR5A3', 'KLF2', 'KLF5', 'LEFTY1', 'LEFTY2', 'FGF4', 'NODAL', # Naive-specific genes; 'ESRRB', 'TFCP2L1', 'ZFP42', 'MT1H', 'DPPA3', 'DPPA4', 'DPPA5', 'ZNF486', 'CR1L', 'DNMT3L', 'ZNF534', # Diffenretiation genes; 'GATA2', 'GATA3', 'GATA4', 'SOX17', 'CER1', # 2C genes 'NR0B1', 'CDX2', 'DUXF3', # Down in naive: 'SFRP1', 'ZIC2', 'KDR', 'OTX2', 'DUSP6', 'SPRY4', 'THY1', 'ID3', 'ZIC5', # MA Gang's possibles: 'HNRNPK', 'DDX1', 'DDX50', 'BRCA2', 'BRCA1', 'TOP1', 'RAP3', 'TRIM25', 'HNRNPU', # Headline genes from Ihry et al., Cell Rep. # Significantly down-regualte POU5F1 P<0.05 'TGFBR2', 'GGCT', 'MAML2', 'POU5F1', 'TGFBR1', 'TMEM107', 'ZNF469', 'SMARCA4', 'PROK2', 'PAQR7', 'MINDY4', # Odd stuff: 'LIN28B-AS1', # Wang Jichang paper, Fig 3a. These ones have HERV spliced into their message 'SCGB3A2', 'NCR1', 'KLKB1', 'IL34', 'PLP1', 'ESRG', 'RPL39L', ] locs = genelist(loadable_list=[{'gene_symbol': k} for k in locs]) ll = locs.map(genelist=gllocs, key='gene_symbol') print(ll) for gene in ll: print(gene['name']) c.draw.setLocation(loc=gene['loc'].expand(len(gene['loc']) / 10)) scale = 1.0 if draw == 'svg': scale = 0.3 c.draw.exportImage("%s/%s_%s.%s" % (draw, gene['name'], gene['transcript_id'], draw), scale=scale, type=draw) # Cannot draw png and svg interleaved for some reason.
the-stack_0_7336
# -*- coding: utf-8 -*- """ Capacity scaling minimum cost flow algorithm. """ __author__ = """ysitu <[email protected]>""" # Copyright (C) 2014 ysitu <[email protected]> # All rights reserved. # BSD license. __all__ = ['capacity_scaling'] from itertools import chain from math import log import networkx as nx from ...utils import BinaryHeap from ...utils import generate_unique_node from ...utils import not_implemented_for from ...utils import arbitrary_element def _detect_unboundedness(R): """Detect infinite-capacity negative cycles. """ s = generate_unique_node() G = nx.DiGraph() G.add_nodes_from(R) # Value simulating infinity. inf = R.graph['inf'] # True infinity. f_inf = float('inf') for u in R: for v, e in R[u].items(): # Compute the minimum weight of infinite-capacity (u, v) edges. w = f_inf for k, e in e.items(): if e['capacity'] == inf: w = min(w, e['weight']) if w != f_inf: G.add_edge(u, v, weight=w) if nx.negative_edge_cycle(G): raise nx.NetworkXUnbounded( 'Negative cost cycle of infinite capacity found. ' 'Min cost flow may be unbounded below.') @not_implemented_for('undirected') def _build_residual_network(G, demand, capacity, weight): """Build a residual network and initialize a zero flow. """ if sum(G.node[u].get(demand, 0) for u in G) != 0: raise nx.NetworkXUnfeasible("Sum of the demands should be 0.") R = nx.MultiDiGraph() R.add_nodes_from((u, {'excess': -G.node[u].get(demand, 0), 'potential': 0}) for u in G) inf = float('inf') # Detect selfloops with infinite capacities and negative weights. for u, v, e in G.selfloop_edges(data=True): if e.get(weight, 0) < 0 and e.get(capacity, inf) == inf: raise nx.NetworkXUnbounded( 'Negative cost cycle of infinite capacity found. ' 'Min cost flow may be unbounded below.') # Extract edges with positive capacities. Self loops excluded. if G.is_multigraph(): edge_list = [(u, v, k, e) for u, v, k, e in G.edges(data=True, keys=True) if u != v and e.get(capacity, inf) > 0] else: edge_list = [(u, v, 0, e) for u, v, e in G.edges(data=True) if u != v and e.get(capacity, inf) > 0] # Simulate infinity with the larger of the sum of absolute node imbalances # the sum of finite edge capacities or any positive value if both sums are # zero. This allows the infinite-capacity edges to be distinguished for # unboundedness detection and directly participate in residual capacity # calculation. inf = max(sum(abs(R.node[u]['excess']) for u in R), 2 * sum(e[capacity] for u, v, k, e in edge_list if capacity in e and e[capacity] != inf)) or 1 for u, v, k, e in edge_list: r = min(e.get(capacity, inf), inf) w = e.get(weight, 0) # Add both (u, v) and (v, u) into the residual network marked with the # original key. (key[1] == True) indicates the (u, v) is in the # original network. R.add_edge(u, v, key=(k, True), capacity=r, weight=w, flow=0) R.add_edge(v, u, key=(k, False), capacity=0, weight=-w, flow=0) # Record the value simulating infinity. R.graph['inf'] = inf _detect_unboundedness(R) return R def _build_flow_dict(G, R, capacity, weight): """Build a flow dictionary from a residual network. """ inf = float('inf') flow_dict = {} if G.is_multigraph(): for u in G: flow_dict[u] = {} for v, es in G[u].items(): flow_dict[u][v] = dict( # Always saturate negative selfloops. (k, (0 if (u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0) else e[capacity])) for k, e in es.items()) for v, es in R[u].items(): if v in flow_dict[u]: flow_dict[u][v].update((k[0], e['flow']) for k, e in es.items() if e['flow'] > 0) else: for u in G: flow_dict[u] = dict( # Always saturate negative selfloops. (v, (0 if (u != v or e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0) else e[capacity])) for v, e in G[u].items()) flow_dict[u].update((v, e['flow']) for v, es in R[u].items() for e in es.values() if e['flow'] > 0) return flow_dict def capacity_scaling(G, demand='demand', capacity='capacity', weight='weight', heap=BinaryHeap): r"""Find a minimum cost flow satisfying all demands in digraph G. This is a capacity scaling successive shortest augmenting path algorithm. G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node. Parameters ---------- G : NetworkX graph DiGraph or MultiDiGraph on which a minimum cost flow satisfying all demands is to be found. demand : string Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'. capacity : string Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'. weight : string Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0. Default value: 'weight'. heap : class Type of heap to be used in the algorithm. It should be a subclass of :class:`MinHeap` or implement a compatible interface. If a stock heap implementation is to be used, :class:`BinaryHeap` is recommeded over :class:`PairingHeap` for Python implementations without optimized attribute accesses (e.g., CPython) despite a slower asymptotic running time. For Python implementations with optimized attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better performance. Default value: :class:`BinaryHeap`. Returns ------- flowCost : integer Cost of a minimum cost flow satisfying all demands. flowDict : dictionary If G is a digraph, a dict-of-dicts keyed by nodes such that flowDict[u][v] is the flow on edge (u, v). If G is a MultiDiGraph, a dict-of-dicts-of-dicts keyed by nodes so that flowDict[u][v][key] is the flow on edge (u, v, key). Raises ------ NetworkXError This exception is raised if the input graph is not directed, not connected. NetworkXUnfeasible This exception is raised in the following situations: * The sum of the demands is not zero. Then, there is no flow satisfying all demands. * There is no flow satisfying all demand. NetworkXUnbounded This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below. Notes ----- This algorithm does not work if edge weights are floating-point numbers. See also -------- :meth:`network_simplex` Examples -------- A simple example of a min cost flow problem. >>> import networkx as nx >>> G = nx.DiGraph() >>> G.add_node('a', demand = -5) >>> G.add_node('d', demand = 5) >>> G.add_edge('a', 'b', weight = 3, capacity = 4) >>> G.add_edge('a', 'c', weight = 6, capacity = 10) >>> G.add_edge('b', 'd', weight = 1, capacity = 9) >>> G.add_edge('c', 'd', weight = 2, capacity = 5) >>> flowCost, flowDict = nx.capacity_scaling(G) >>> flowCost 24 >>> flowDict # doctest: +SKIP {'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}} It is possible to change the name of the attributes used for the algorithm. >>> G = nx.DiGraph() >>> G.add_node('p', spam = -4) >>> G.add_node('q', spam = 2) >>> G.add_node('a', spam = -2) >>> G.add_node('d', spam = -1) >>> G.add_node('t', spam = 2) >>> G.add_node('w', spam = 3) >>> G.add_edge('p', 'q', cost = 7, vacancies = 5) >>> G.add_edge('p', 'a', cost = 1, vacancies = 4) >>> G.add_edge('q', 'd', cost = 2, vacancies = 3) >>> G.add_edge('t', 'q', cost = 1, vacancies = 2) >>> G.add_edge('a', 't', cost = 2, vacancies = 4) >>> G.add_edge('d', 'w', cost = 3, vacancies = 4) >>> G.add_edge('t', 'w', cost = 4, vacancies = 1) >>> flowCost, flowDict = nx.capacity_scaling(G, demand = 'spam', ... capacity = 'vacancies', ... weight = 'cost') >>> flowCost 37 >>> flowDict # doctest: +SKIP {'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}} """ R = _build_residual_network(G, demand, capacity, weight) inf = float('inf') # Account cost of negative selfloops. flow_cost = sum( 0 if e.get(capacity, inf) <= 0 or e.get(weight, 0) >= 0 else e[capacity] * e[weight] for u, v, e in G.selfloop_edges(data=True)) # Determine the maxmimum edge capacity. wmax = max(chain([-inf], (e['capacity'] for u, v, e in R.edges(data=True)))) if wmax == -inf: # Residual network has no edges. return flow_cost, _build_flow_dict(G, R, capacity, weight) R_node = R.node R_succ = R.succ delta = 2 ** int(log(wmax, 2)) while delta >= 1: # Saturate Δ-residual edges with negative reduced costs to achieve # Δ-optimality. for u in R: p_u = R_node[u]['potential'] for v, es in R_succ[u].items(): for k, e in es.items(): flow = e['capacity'] - e['flow'] if e['weight'] - p_u + R_node[v]['potential'] < 0: flow = e['capacity'] - e['flow'] if flow >= delta: e['flow'] += flow R_succ[v][u][(k[0], not k[1])]['flow'] -= flow R_node[u]['excess'] -= flow R_node[v]['excess'] += flow # Determine the Δ-active nodes. S = set() T = set() S_add = S.add S_remove = S.remove T_add = T.add T_remove = T.remove for u in R: excess = R_node[u]['excess'] if excess >= delta: S_add(u) elif excess <= -delta: T_add(u) # Repeatedly augment flow from S to T along shortest paths until # Δ-feasibility is achieved. while S and T: s = arbitrary_element(S) t = None # Search for a shortest path in terms of reduce costs from s to # any t in T in the Δ-residual network. d = {} pred = {s: None} h = heap() h_insert = h.insert h_get = h.get h_insert(s, 0) while h: u, d_u = h.pop() d[u] = d_u if u in T: # Path found. t = u break p_u = R_node[u]['potential'] for v, es in R_succ[u].items(): if v in d: continue wmin = inf # Find the minimum-weighted (u, v) Δ-residual edge. for k, e in es.items(): if e['capacity'] - e['flow'] >= delta: w = e['weight'] if w < wmin: wmin = w kmin = k emin = e if wmin == inf: continue # Update the distance label of v. d_v = d_u + wmin - p_u + R_node[v]['potential'] if h_insert(v, d_v): pred[v] = (u, kmin, emin) if t is not None: # Augment Δ units of flow from s to t. while u != s: v = u u, k, e = pred[v] e['flow'] += delta R_succ[v][u][(k[0], not k[1])]['flow'] -= delta # Account node excess and deficit. R_node[s]['excess'] -= delta R_node[t]['excess'] += delta if R_node[s]['excess'] < delta: S_remove(s) if R_node[t]['excess'] > -delta: T_remove(t) # Update node potentials. d_t = d[t] for u, d_u in d.items(): R_node[u]['potential'] -= d_u - d_t else: # Path not found. S_remove(s) delta //= 2 if any(R.node[u]['excess'] != 0 for u in R): raise nx.NetworkXUnfeasible('No flow satisfying all demands.') # Calculate the flow cost. for u in R: for v, es in R_succ[u].items(): for e in es.values(): flow = e['flow'] if flow > 0: flow_cost += flow * e['weight'] return flow_cost, _build_flow_dict(G, R, capacity, weight)
the-stack_0_7337
# -*- coding: utf-8 -*- from nose.plugins.attrib import attr from unittest import TestCase import os class BookTestCase(TestCase): @attr("skip") def test_scaffold(self): assert False # create temp directory directory = "../var/tests/book" if not os.path.exists(directory): os.makedirs(directory) # unpack the pattern with some settings os.system("cd ../var/tests/book && ../../../bin/diamond scaffold --no-interactive analysis") # assert assert os.stat("../var/tests/book/Makefile") # run the makefile os.system("cd ../var/tests/book && make") # test for certain files to be built assert os.stat("../var/tests/book/.build/mybook.pdf")
the-stack_0_7338
import numpy as np def levenshtein_distance(string1, string2): m, n = len(string1), len(string2) matrix = np.zeros((m + 1, n + 1), dtype=np.int32) # source prefixes can be transformed into empty string by # dropping all characters for i in range(m + 1): matrix[i, 0] = i # target prefixes can be reached from empty source prefix # by inserting every character for j in range(n + 1): matrix[0, j] = j for j in range(n + 1): for i in range(m + 1): if string1[i - 1] == string2[j - 1]: substitution_cost = 0 else: substitution_cost = 1 matrix[i, j] = min(matrix[i - 1, j] + 1, # deletion matrix[i, j - 1] + 1, # insertion matrix[i - 1, j - 1] + substitution_cost) # substitution return matrix[m, n]
the-stack_0_7340
# ***************************************************************************** # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the NVIDIA CORPORATION nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # *****************************************************************************\ import torch import random import common.layers as layers from common.utils import load_wav_to_torch, load_filepaths_and_text, to_gpu class MelAudioLoader(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) computes mel-spectrograms from audio files. """ def __init__(self, dataset_path, audiopaths_and_text, args): self.audiopaths_and_text = load_filepaths_and_text(dataset_path, audiopaths_and_text) self.max_wav_value = args.max_wav_value self.sampling_rate = args.sampling_rate self.stft = layers.TacotronSTFT( args.filter_length, args.hop_length, args.win_length, args.n_mel_channels, args.sampling_rate, args.mel_fmin, args.mel_fmax) self.segment_length = args.segment_length random.seed(1234) random.shuffle(self.audiopaths_and_text) def get_mel_audio_pair(self, filename): audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError("{} {} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate)) # Take segment if audio.size(0) >= self.segment_length: max_audio_start = audio.size(0) - self.segment_length audio_start = random.randint(0, max_audio_start) audio = audio[audio_start:audio_start+self.segment_length] else: audio = torch.nn.functional.pad( audio, (0, self.segment_length - audio.size(0)), 'constant').data audio = audio / self.max_wav_value audio_norm = audio.unsqueeze(0) audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False) melspec = self.stft.mel_spectrogram(audio_norm) melspec = melspec.squeeze(0) return (melspec, audio, len(audio)) def __getitem__(self, index): return self.get_mel_audio_pair(self.audiopaths_and_text[index][0]) def __len__(self): return len(self.audiopaths_and_text) def batch_to_gpu(batch): x, y, len_y = batch x = to_gpu(x).float() y = to_gpu(y).float() len_y = to_gpu(torch.sum(len_y)) return ((x, y), y, len_y)
the-stack_0_7341
from typing import List, Optional, Tuple import torch import torch.nn as nn from kornia.utils.helpers import _torch_svd_cast __all__ = ["zca_mean", "zca_whiten", "linear_transform", "ZCAWhitening"] class ZCAWhitening(nn.Module): r"""Compute the ZCA whitening matrix transform and the mean vector and applies the transform to the data. The data tensor is flattened, and the mean :math:`\mathbf{\mu}` and covariance matrix :math:`\mathbf{\Sigma}` are computed from the flattened data :math:`\mathbf{X} \in \mathbb{R}^{N \times D}`, where :math:`N` is the sample size and :math:`D` is flattened dimensionality (e.g. for a tensor with size 5x3x2x2 :math:`N = 5` and :math:`D = 12`). The ZCA whitening transform is given by: .. math:: \mathbf{X}_{\text{zca}} = (\mathbf{X - \mu})(US^{-\frac{1}{2}}U^T)^T where :math:`U` are the eigenvectors of :math:`\Sigma` and :math:`S` contain the corresponding eigenvalues of :math:`\Sigma`. After the transform is applied, the output is reshaped to same shape. args: dim: Determines the dimension that represents the samples axis. eps: a small number used for numerical stability. unbiased: Whether to use the biased estimate of the covariance matrix. compute_inv: Compute the inverse transform matrix. detach_transforms: Detaches gradient from the ZCA fitting. shape: - x: :math:`(D_0,...,D_{\text{dim}},...,D_N)` is a batch of N-D tensors. - x_whiten: :math:`(D_0,...,D_{\text{dim}},...,D_N)` same shape as input. .. note:: See a working example `here <https://colab.sandbox.google.com/github/kornia/tutorials/ blob/master/source/zca_whitening.ipynb>`__. Examples: >>> x = torch.tensor([[0,1],[1,0],[-1,0],[0,-1]], dtype = torch.float32) >>> zca = ZCAWhitening().fit(x) >>> x_whiten = zca(x) >>> zca = ZCAWhitening() >>> x_whiten = zca(x, include_fit = True) # Includes the fitting step >>> x_whiten = zca(x) # Can run now without the fitting set >>> # Enable backprop through ZCA fitting process >>> zca = ZCAWhitening(detach_transforms = False) >>> x_whiten = zca(x, include_fit = True) # Includes the fitting step Note: This implementation uses :py:meth:`~torch.svd` which yields NaNs in the backwards step if the singular values are not unique. See `here <https://pytorch.org/docs/stable/torch.html#torch.svd>`_ for more information. References: [1] `Stanford PCA & ZCA whitening tutorial <http://ufldl.stanford.edu/tutorial/unsupervised/PCAWhitening/>`_ """ def __init__( self, dim: int = 0, eps: float = 1e-6, unbiased: bool = True, detach_transforms: bool = True, compute_inv: bool = False, ) -> None: super().__init__() self.dim = dim self.eps = eps self.unbiased = unbiased self.detach_transforms = detach_transforms self.compute_inv = compute_inv self.fitted = False def fit(self, x: torch.Tensor): r"""Fit ZCA whitening matrices to the data. Args: x: Input data. returns: Returns a fitted ZCAWhiten object instance. """ T, mean, T_inv = zca_mean(x, self.dim, self.unbiased, self.eps, self.compute_inv) self.mean_vector: torch.Tensor = mean self.transform_matrix: torch.Tensor = T if T_inv is None: self.transform_inv: Optional[torch.Tensor] = torch.empty([0]) else: self.transform_inv = T_inv if self.detach_transforms: self.mean_vector = self.mean_vector.detach() self.transform_matrix = self.transform_matrix.detach() self.transform_inv = self.transform_inv.detach() self.fitted = True return self def forward(self, x: torch.Tensor, include_fit: bool = False) -> torch.Tensor: r"""Apply the whitening transform to the data. Args: x: Input data. include_fit: Indicates whether to fit the data as part of the forward pass. Returns: The transformed data. """ if include_fit: self.fit(x) if not self.fitted: raise RuntimeError("Needs to be fitted first before running. Please call fit or set include_fit to True.") x_whiten = linear_transform(x, self.transform_matrix, self.mean_vector, self.dim) return x_whiten def inverse_transform(self, x: torch.Tensor) -> torch.Tensor: r"""Apply the inverse transform to the whitened data. Args: x: Whitened data. Returns: Original data. """ if not self.fitted: raise RuntimeError("Needs to be fitted first before running. Please call fit or set include_fit to True.") if not self.compute_inv: raise RuntimeError("Did not compute inverse ZCA. Please set compute_inv to True") mean_inv: torch.Tensor = -self.mean_vector.mm(self.transform_matrix) # type: ignore y = linear_transform(x, self.transform_inv, mean_inv) # type: ignore return y def zca_mean( inp: torch.Tensor, dim: int = 0, unbiased: bool = True, eps: float = 1e-6, return_inverse: bool = False ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: r"""Compute the ZCA whitening matrix and mean vector. The output can be used with :py:meth:`~kornia.color.linear_transform`. See :class:`~kornia.color.ZCAWhitening` for details. Args: inp: input data tensor. dim: Specifies the dimension that serves as the samples dimension. unbiased: Whether to use the unbiased estimate of the covariance matrix. eps: a small number used for numerical stability. return_inverse: Whether to return the inverse ZCA transform. Shapes: - inp: :math:`(D_0,...,D_{\text{dim}},...,D_N)` is a batch of N-D tensors. - transform_matrix: :math:`(\Pi_{d=0,d\neq \text{dim}}^N D_d, \Pi_{d=0,d\neq \text{dim}}^N D_d)` - mean_vector: :math:`(1, \Pi_{d=0,d\neq \text{dim}}^N D_d)` - inv_transform: same shape as the transform matrix Returns: A tuple containing the ZCA matrix and the mean vector. If return_inverse is set to True, then it returns the inverse ZCA matrix, otherwise it returns None. .. note:: See a working example `here <https://colab.sandbox.google.com/github/kornia/tutorials/ blob/master/source/zca_whitening.ipynb>`__. Examples: >>> x = torch.tensor([[0,1],[1,0],[-1,0],[0,-1]], dtype = torch.float32) >>> transform_matrix, mean_vector,_ = zca_mean(x) # Returns transformation matrix and data mean >>> x = torch.rand(3,20,2,2) >>> transform_matrix, mean_vector, inv_transform = zca_mean(x, dim = 1, return_inverse = True) >>> # transform_matrix.size() equals (12,12) and the mean vector.size equal (1,12) """ if not isinstance(inp, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(inp)}") if not isinstance(eps, float): raise TypeError(f"eps type is not a float. Got{type(eps)}") if not isinstance(unbiased, bool): raise TypeError(f"unbiased type is not bool. Got{type(unbiased)}") if not isinstance(dim, int): raise TypeError(f"Argument 'dim' must be of type int. Got {type(dim)}") if not isinstance(return_inverse, bool): raise TypeError(f"Argument return_inverse must be of type bool {type(return_inverse)}") inp_size = inp.size() if dim >= len(inp_size) or dim < -len(inp_size): raise IndexError( "Dimension out of range (expected to be in range of [{},{}], but got {}".format( -len(inp_size), len(inp_size) - 1, dim ) ) if dim < 0: dim = len(inp_size) + dim feat_dims = torch.cat([torch.arange(0, dim), torch.arange(dim + 1, len(inp_size))]) new_order: List[int] = torch.cat([torch.tensor([dim]), feat_dims]).tolist() inp_permute = inp.permute(new_order) N = inp_size[dim] feature_sizes = torch.tensor(inp_size[0:dim] + inp_size[dim + 1::]) num_features: int = int(torch.prod(feature_sizes).item()) mean: torch.Tensor = torch.mean(inp_permute, dim=0, keepdim=True) mean = mean.reshape((1, num_features)) inp_center_flat: torch.Tensor = inp_permute.reshape((N, num_features)) - mean cov = inp_center_flat.t().mm(inp_center_flat) if unbiased: cov = cov / float(N - 1) else: cov = cov / float(N) U, S, _ = _torch_svd_cast(cov) S = S.reshape(-1, 1) S_inv_root: torch.Tensor = torch.rsqrt(S + eps) T: torch.Tensor = (U).mm(S_inv_root * U.t()) T_inv: Optional[torch.Tensor] = None if return_inverse: T_inv = (U).mm(torch.sqrt(S + eps) * U.t()) return T, mean, T_inv def zca_whiten(inp: torch.Tensor, dim: int = 0, unbiased: bool = True, eps: float = 1e-6) -> torch.Tensor: r"""Apply ZCA whitening transform. See :class:`~kornia.color.ZCAWhitening` for details. Args: inp: input data tensor. dim: Specifies the dimension that serves as the samples dimension. unbiased: Whether to use the unbiased estimate of the covariance matrix. eps: a small number used for numerical stability. Returns: Whiten Input data. .. note:: See a working example `here <https://colab.sandbox.google.com/github/kornia/tutorials/ blob/master/source/zca_whitening.ipynb>`__. Examples: >>> x = torch.tensor([[0,1],[1,0],[-1,0]], dtype = torch.float32) >>> zca_whiten(x) tensor([[ 0.0000, 1.1547], [ 1.0000, -0.5773], [-1.0000, -0.5773]]) """ if not isinstance(inp, torch.Tensor): raise TypeError(f"Input type is not a torch.Tensor. Got {type(inp)}") if not isinstance(eps, float): raise TypeError(f"eps type is not a float. Got{type(eps)}") if not isinstance(unbiased, bool): raise TypeError(f"unbiased type is not bool. Got{type(unbiased)}") if not isinstance(dim, int): raise TypeError(f"Argument 'dim' must be of type int. Got {type(dim)}") transform, mean, _ = zca_mean(inp, dim, unbiased, eps, False) inp_whiten = linear_transform(inp, transform, mean, dim) return inp_whiten def linear_transform( inp: torch.Tensor, transform_matrix: torch.Tensor, mean_vector: torch.Tensor, dim: int = 0 ) -> torch.Tensor: r""" Given a transformation matrix and a mean vector, this function will flatten the input tensor along the given dimension and subtract the mean vector from it. Then the dot product with the transformation matrix will be computed and then the resulting tensor is reshaped to the original input shape. .. math:: \mathbf{X}_{T} = (\mathbf{X - \mu})(T) Args: inp: Input data :math:`X`. transform_matrix: Transform matrix :math:`T`. mean_vector: mean vector :math:`\mu`. dim: Batch dimension. Shapes: - inp: :math:`(D_0,...,D_{\text{dim}},...,D_N)` is a batch of N-D tensors. - transform_matrix: :math:`(\Pi_{d=0,d\neq \text{dim}}^N D_d, \Pi_{d=0,d\neq \text{dim}}^N D_d)` - mean_vector: :math:`(1, \Pi_{d=0,d\neq \text{dim}}^N D_d)` Returns: Transformed data. Example: >>> # Example where dim = 3 >>> inp = torch.ones((10,3,4,5)) >>> transform_mat = torch.ones((10*3*4,10*3*4)) >>> mean = 2*torch.ones((1,10*3*4)) >>> out = linear_transform(inp, transform_mat, mean, 3) >>> print(out.shape, out.unique()) # Should a be (10,3,4,5) tensor of -120s torch.Size([10, 3, 4, 5]) tensor([-120.]) >>> # Example where dim = 0 >>> inp = torch.ones((10,2)) >>> transform_mat = torch.ones((2,2)) >>> mean = torch.zeros((1,2)) >>> out = linear_transform(inp, transform_mat, mean) >>> print(out.shape, out.unique()) # Should a be (10,2) tensor of 2s torch.Size([10, 2]) tensor([2.]) """ inp_size = inp.size() if dim >= len(inp_size) or dim < -len(inp_size): raise IndexError( "Dimension out of range (expected to be in range of [{},{}], but got {}".format( -len(inp_size), len(inp_size) - 1, dim ) ) if dim < 0: dim = len(inp_size) + dim feat_dims = torch.cat([torch.arange(0, dim), torch.arange(dim + 1, len(inp_size))]) perm = torch.cat([torch.tensor([dim]), feat_dims]) perm_inv = torch.argsort(perm) new_order: List[int] = perm.tolist() inv_order: List[int] = perm_inv.tolist() feature_sizes = torch.tensor(inp_size[0:dim] + inp_size[dim + 1::]) num_features: int = int(torch.prod(feature_sizes).item()) inp_permute = inp.permute(new_order) inp_flat = inp_permute.reshape((-1, num_features)) inp_center = inp_flat - mean_vector inp_transformed = inp_center.mm(transform_matrix) inp_transformed = inp_transformed.reshape(inp_permute.size()) inp_transformed = inp_transformed.permute(inv_order) return inp_transformed
the-stack_0_7342
import collections import claripy class SimVariable(object): __slots__ = ['ident', 'name', 'region', 'category'] def __init__(self, ident=None, name=None, region=None, category=None): """ :param ident: A unique identifier provided by user or the program. Usually a string. :param str name: Name of this variable. """ self.ident = ident self.name = name self.region = region if region is not None else "" self.category = category @property def phi(self): return False class SimConstantVariable(SimVariable): __slots__ = ['value', '_hash'] def __init__(self, ident=None, value=None, region=None): super(SimConstantVariable, self).__init__(ident=ident, region=region) self.value = value self._hash = None def __repr__(self): s = "<%s|const %s>" % (self.region, self.value) return s def __eq__(self, other): if not isinstance(other, SimConstantVariable): return False if self.value is None or other.value is None: # they may or may not represent the same constant. return not equal to be safe return False return self.ident == other.ident and self.value == other.value and self.region == other.region def __hash__(self): if self._hash is None: self._hash = hash(('const', self.value, self.ident, self.region, self.ident)) return self._hash class SimTemporaryVariable(SimVariable): __slots__ = ['tmp_id', '_hash'] def __init__(self, tmp_id): SimVariable.__init__(self) self.tmp_id = tmp_id self._hash = None def __repr__(self): s = "<tmp %d>" % (self.tmp_id) return s def __hash__(self): if self._hash is None: self._hash = hash('tmp_%d' % (self.tmp_id)) return self._hash def __eq__(self, other): if isinstance(other, SimTemporaryVariable): return hash(self) == hash(other) return False class SimRegisterVariable(SimVariable): __slots__ = ['reg', 'size', '_hash'] def __init__(self, reg_offset, size, ident=None, name=None, region=None, category=None): SimVariable.__init__(self, ident=ident, name=name, region=region, category=category) self.reg = reg_offset self.size = size self._hash = None def __repr__(self): ident_str = "[%s]" % self.ident if self.ident else "" region_str = hex(self.region) if isinstance(self.region, int) else self.region phi_str = ("phi(%s)|" % (",".join(v.ident for v in self.variables))) if self.phi else "" #pylint:disable=no-member s = "<%s%s%s|Reg %s, %sB>" % (phi_str, region_str, ident_str, self.reg, self.size) return s def __hash__(self): if self._hash is None: self._hash = hash(('reg', self.region, self.reg, self.size, self.ident)) return self._hash def __eq__(self, other): if isinstance(other, SimRegisterVariable): return self.ident == other.ident and \ self.name == other.name and \ self.reg == other.reg and \ self.size == other.size and \ self.region == other.region and \ self.phi == other.phi return False class SimRegisterVariablePhi(SimRegisterVariable): __slots__ = ['variables', '_hash'] def __init__(self, ident=None, name=None, region=None, variables=None): var = next(iter(variables)) reg_offset = var.reg size = var.size super(SimRegisterVariablePhi, self).__init__(reg_offset, size, ident=ident, name=name, region=region) self.variables = set(variables) self._hash = None def __hash__(self): if self._hash is None: self._hash = hash((self.name, self.region, self.size, self.ident, tuple(self.variables))) return self._hash def __eq__(self, other): if type(other) is not SimRegisterVariablePhi: return False return self.ident == other.ident and \ self.variables == other.variables and \ self.name == other.name and \ self.region == other.region and \ self.size == other.size @property def phi(self): return True class SimMemoryVariable(SimVariable): __slots__ = ['addr', 'size', '_hash'] def __init__(self, addr, size, ident=None, name=None, region=None, category=None): SimVariable.__init__(self, ident=ident, name=name, region=region, category=category) self.addr = addr if isinstance(size, claripy.ast.BV) and not size.symbolic: # Convert it to a concrete number size = size._model_concrete.value self.size = size self._hash = None def __repr__(self): if type(self.size) is int: size = '%d' % self.size else: size = '%s' % self.size if type(self.addr) is int: s = "<%s|Mem %#x %s>" % (self.region, self.addr, size) else: s = "<%s|Mem %s %s>" % (self.region, self.addr, size) return s def __hash__(self): if self._hash is not None: return self._hash if isinstance(self.addr, AddressWrapper): addr_hash = hash(self.addr) elif type(self.addr) is int: addr_hash = self.addr elif self.addr._model_concrete is not self.addr: addr_hash = hash(self.addr._model_concrete) elif self.addr._model_vsa is not self.addr: addr_hash = hash(self.addr._model_vsa) elif self.addr._model_z3 is not self.addr: addr_hash = hash(self.addr._model_z3) else: addr_hash = hash(self.addr) self._hash = hash((addr_hash, hash(self.size), self.ident)) return self._hash def __eq__(self, other): if isinstance(other, SimMemoryVariable): return self.ident == other.ident and \ self.addr == other.addr and \ self.name == other.name and \ self.size == other.size and \ self.phi == other.phi return False class SimMemoryVariablePhi(SimMemoryVariable): __slots__ = ['variables', '_hash'] def __init__(self, ident=None, name=None, region=None, variables=None): var = next(iter(variables)) addr = var.addr size = var.size super(SimMemoryVariablePhi, self).__init__(addr, size, ident=ident, name=name, region=region) self.variables = set(variables) self._hash = None def __hash__(self): if self._hash is None: self._hash = hash((self.name, self.region, self.size, self.ident, tuple(self.variables))) return self._hash def __eq__(self, other): if type(other) is not SimMemoryVariablePhi: return False return self.ident == other.ident and \ self.variables == other.variables and \ self.addr == other.addr and \ self.name == other.name and \ self.region == other.region and \ self.size == other.size @property def phi(self): return True class SimStackVariable(SimMemoryVariable): __slots__ = ['base', 'offset'] def __init__(self, offset, size, base='sp', base_addr=None, ident=None, name=None, region=None, category=None): if offset > 0x1000000 and isinstance(offset, int): # I don't think any positive stack offset will be greater than that... # convert it to a negative number mask = (1 << offset.bit_length()) - 1 offset = - ((0 - offset) & mask) if base_addr is not None: addr = offset + base_addr else: # TODO: this is not optimal addr = offset super(SimStackVariable, self).__init__(addr, size, ident=ident, name=name, region=region, category=category) self.base = base self.offset = offset def __repr__(self): if type(self.size) is int: size = '%d' % self.size else: size = '%s' % self.size prefix = "%s(stack)" % self.name if self.name is not None else "Stack" ident = "[%s]" % self.ident if self.ident else "" region_str = hex(self.region) if isinstance(self.region, int) else self.region phi_str = "phi|" if self.phi else "" if type(self.offset) is int: if self.offset < 0: offset = "%#x" % self.offset elif self.offset > 0: offset = "+%#x" % self.offset else: offset = "" s = "<%s%s%s|%s %s%s, %s B>" % (phi_str, region_str, ident, prefix, self.base, offset, size) else: s = "<%s%s%s|%s %s%s, %s B>" % (phi_str, region_str, ident, prefix, self.base, self.addr, size) return s def __eq__(self, other): if type(other) is not SimStackVariable: return False return self.ident == other.ident and \ self.name == other.name and \ self.base == other.base and \ self.offset == other.offset and \ self.size == other.size and \ self.phi == other.phi def __hash__(self): return hash((self.ident, self.name, self.base, self.offset, self.size, self.phi)) class SimStackVariablePhi(SimStackVariable): __slots__ = ['variables', '_hash'] def __init__(self, ident=None, name=None, region=None, variables=None): var = next(iter(variables)) offset = var.addr size = var.size super(SimStackVariablePhi, self).__init__(offset, size, ident=ident, name=name, region=region) self.variables = set(variables) self._hash = None def __hash__(self): if self._hash is None: self._hash = hash((self.name, self.region, self.size, self.ident, tuple(self.variables))) return self._hash def __eq__(self, other): if type(other) is not SimStackVariablePhi: return False return self.ident == other.ident and \ self.variables == other.variables and \ self.addr == other.addr and \ self.name == other.name and \ self.region == other.region and \ self.size == other.size @property def phi(self): return True class SimVariableSet(collections.MutableSet): """ A collection of SimVariables. """ def __init__(self): self.register_variables = set() # For the sake of performance optimization, all elements in register_variables must be concrete integers which # representing register offsets.. # There shouldn't be any problem apart from GetI/PutI instructions. We simply ignore them for now. # TODO: Take care of register offsets that are not aligned to (arch.bytes) # TODO: arch.bits/what? That number has no power here anymore. self.register_variable_offsets = set() # memory_variables holds SimMemoryVariable objects self.memory_variables = set() # For the sake of performance, we have another set that stores memory addresses of memory_variables self.memory_variable_addresses = set() def add(self, item): if type(item) is SimRegisterVariable: if not self.contains_register_variable(item): self.add_register_variable(item) elif type(item) is SimMemoryVariable: if not self.contains_memory_variable(item): self.add_memory_variable(item) else: # TODO: raise Exception('WTF') def add_register_variable(self, reg_var): self.register_variables.add(reg_var) self.register_variable_offsets.add(reg_var.reg) def add_memory_variable(self, mem_var): self.memory_variables.add(mem_var) base_address = mem_var.addr.address # Dealing with AddressWrapper for i in range(mem_var.size): self.memory_variable_addresses.add(base_address + i) def discard(self, item): if type(item) is SimRegisterVariable: if self.contains_register_variable(item): self.discard_register_variable(item) elif isinstance(item, SimMemoryVariable): if self.contains_memory_variable(item): self.discard_memory_variable(item) else: # TODO: raise Exception('') def discard_register_variable(self, reg_var): self.register_variables.remove(reg_var) self.register_variable_offsets.remove(reg_var.reg) def discard_memory_variable(self, mem_var): self.memory_variables.remove(mem_var) for i in range(mem_var.size): self.memory_variable_addresses.remove(mem_var.addr.address + i) def __len__(self): return len(self.register_variables) + len(self.memory_variables) def __iter__(self): for i in self.register_variables: yield i for i in self.memory_variables: yield i def add_memory_variables(self, addrs, size): for a in addrs: var = SimMemoryVariable(a, size) self.add_memory_variable(var) def copy(self): s = SimVariableSet() s.register_variables |= self.register_variables s.register_variable_offsets |= self.register_variable_offsets s.memory_variables |= self.memory_variables s.memory_variable_addresses |= self.memory_variable_addresses return s def complement(self, other): """ Calculate the complement of `self` and `other`. :param other: Another SimVariableSet instance. :return: The complement result. """ s = SimVariableSet() s.register_variables = self.register_variables - other.register_variables s.register_variable_offsets = self.register_variable_offsets - other.register_variable_offsets s.memory_variables = self.memory_variables - other.memory_variables s.memory_variable_addresses = self.memory_variable_addresses - other.memory_variable_addresses return s def contains_register_variable(self, reg_var): reg_offset = reg_var.reg # TODO: Make sure reg_offset is aligned to machine-word length return reg_offset in self.register_variable_offsets def contains_memory_variable(self, mem_var): a = mem_var.addr if type(a) in (tuple, list): a = a[-1] return a in self.memory_variable_addresses def __ior__(self, other): # other must be a SimVariableSet self.register_variables |= other.register_variables self.register_variable_offsets |= other.register_variable_offsets self.memory_variables |= other.memory_variables self.memory_variable_addresses |= other.memory_variable_addresses def __contains__(self, item): if type(item) is SimRegisterVariable: return self.contains_register_variable(item) elif type(item) is SimMemoryVariable: # TODO: Make it better! return self.contains_memory_variable(item) else: __import__('ipdb').set_trace() raise Exception("WTF is this variable?") from .storage.memory import AddressWrapper
the-stack_0_7343
"""Definitions for command-line (Click) commands for invoking Annif operations and printing the results to console.""" import collections import os.path import re import sys import click import click_log from flask import current_app from flask.cli import FlaskGroup, ScriptInfo import annif import annif.corpus import annif.parallel import annif.project import annif.registry from annif.project import Access from annif.suggestion import SuggestionFilter, ListSuggestionResult from annif.exception import ConfigurationException, NotSupportedException logger = annif.logger click_log.basic_config(logger) cli = FlaskGroup(create_app=annif.create_app, add_version_option=False) cli = click.version_option(message='%(version)s')(cli) def get_project(project_id): """ Helper function to get a project by ID and bail out if it doesn't exist""" try: return annif.registry.get_project(project_id, min_access=Access.private) except ValueError: click.echo( "No projects found with id \'{0}\'.".format(project_id), err=True) sys.exit(1) def open_documents(paths, docs_limit): """Helper function to open a document corpus from a list of pathnames, each of which is either a TSV file or a directory of TXT files. The corpus will be returned as an instance of DocumentCorpus or LimitingDocumentCorpus.""" def open_doc_path(path): """open a single path and return it as a DocumentCorpus""" if os.path.isdir(path): return annif.corpus.DocumentDirectory(path, require_subjects=True) return annif.corpus.DocumentFile(path) if len(paths) == 0: logger.warning('Reading empty file') docs = open_doc_path(os.path.devnull) elif len(paths) == 1: docs = open_doc_path(paths[0]) else: corpora = [open_doc_path(path) for path in paths] docs = annif.corpus.CombinedCorpus(corpora) if docs_limit is not None: docs = annif.corpus.LimitingDocumentCorpus(docs, docs_limit) return docs def parse_backend_params(backend_param, project): """Parse a list of backend parameters given with the --backend-param option into a nested dict structure""" backend_params = collections.defaultdict(dict) for beparam in backend_param: backend, param = beparam.split('.', 1) key, val = param.split('=', 1) validate_backend_params(backend, beparam, project) backend_params[backend][key] = val return backend_params def validate_backend_params(backend, beparam, project): if backend != project.config['backend']: raise ConfigurationException( 'The backend {} in CLI option "-b {}" not matching the project' ' backend {}.' .format(backend, beparam, project.config['backend'])) BATCH_MAX_LIMIT = 15 def generate_filter_batches(subjects): import annif.eval filter_batches = collections.OrderedDict() for limit in range(1, BATCH_MAX_LIMIT + 1): for threshold in [i * 0.05 for i in range(20)]: hit_filter = SuggestionFilter(subjects, limit, threshold) batch = annif.eval.EvaluationBatch(subjects) filter_batches[(limit, threshold)] = (hit_filter, batch) return filter_batches def set_project_config_file_path(ctx, param, value): """Override the default path or the path given in env by CLI option""" with ctx.ensure_object(ScriptInfo).load_app().app_context(): if value: current_app.config['PROJECTS_FILE'] = value def common_options(f): """Decorator to add common options for all CLI commands""" f = click.option( '-p', '--projects', help='Set path to projects.cfg', type=click.Path(dir_okay=False, exists=True), callback=set_project_config_file_path, expose_value=False, is_eager=True)(f) return click_log.simple_verbosity_option(logger)(f) def backend_param_option(f): """Decorator to add an option for CLI commands to override BE parameters""" return click.option( '--backend-param', '-b', multiple=True, help='Override backend parameter of the config file. ' + 'Syntax: "-b <backend>.<parameter>=<value>".')(f) @cli.command('list-projects') @common_options @click_log.simple_verbosity_option(logger, default='ERROR') def run_list_projects(): """ List available projects. """ template = "{0: <25}{1: <45}{2: <10}{3: <7}" header = template.format( "Project ID", "Project Name", "Language", "Trained") click.echo(header) click.echo("-" * len(header)) for proj in annif.registry.get_projects( min_access=Access.private).values(): click.echo(template.format( proj.project_id, proj.name, proj.language, str(proj.is_trained))) @cli.command('show-project') @click.argument('project_id') @common_options def run_show_project(project_id): """ Show information about a project. """ proj = get_project(project_id) click.echo(f'Project ID: {proj.project_id}') click.echo(f'Project Name: {proj.name}') click.echo(f'Language: {proj.language}') click.echo(f'Access: {proj.access.name}') click.echo(f'Trained: {proj.is_trained}') click.echo(f'Modification time: {proj.modification_time}') @cli.command('clear') @click.argument('project_id') @common_options def run_clear_project(project_id): """ Initialize the project to its original, untrained state. """ proj = get_project(project_id) proj.remove_model_data() @cli.command('loadvoc') @click.argument('project_id') @click.argument('subjectfile', type=click.Path(exists=True, dir_okay=False)) @common_options def run_loadvoc(project_id, subjectfile): """ Load a vocabulary for a project. """ proj = get_project(project_id) if annif.corpus.SubjectFileSKOS.is_rdf_file(subjectfile): # SKOS/RDF file supported by rdflib subjects = annif.corpus.SubjectFileSKOS(subjectfile, proj.language) else: # probably a TSV file subjects = annif.corpus.SubjectFileTSV(subjectfile) proj.vocab.load_vocabulary(subjects, proj.language) @cli.command('train') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--cached/--no-cached', '-c/-C', default=False, help='Reuse preprocessed training data from previous run') @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @click.option('--jobs', '-j', default=0, help='Number of parallel jobs (0 means choose automatically)') @backend_param_option @common_options def run_train(project_id, paths, cached, docs_limit, jobs, backend_param): """ Train a project on a collection of documents. """ proj = get_project(project_id) backend_params = parse_backend_params(backend_param, proj) if cached: if len(paths) > 0: raise click.UsageError( "Corpus paths cannot be given when using --cached option.") documents = 'cached' else: documents = open_documents(paths, docs_limit) proj.train(documents, backend_params, jobs) @cli.command('learn') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @backend_param_option @common_options def run_learn(project_id, paths, docs_limit, backend_param): """ Further train an existing project on a collection of documents. """ proj = get_project(project_id) backend_params = parse_backend_params(backend_param, proj) documents = open_documents(paths, docs_limit) proj.learn(documents, backend_params) @cli.command('suggest') @click.argument('project_id') @click.option('--limit', '-l', default=10, help='Maximum number of subjects') @click.option('--threshold', '-t', default=0.0, help='Minimum score threshold') @backend_param_option @common_options def run_suggest(project_id, limit, threshold, backend_param): """ Suggest subjects for a single document from standard input. """ project = get_project(project_id) text = sys.stdin.read() backend_params = parse_backend_params(backend_param, project) hit_filter = SuggestionFilter(project.subjects, limit, threshold) hits = hit_filter(project.suggest(text, backend_params)) for hit in hits.as_list(project.subjects): click.echo( "<{}>\t{}\t{}".format( hit.uri, '\t'.join(filter(None, (hit.label, hit.notation))), hit.score)) @cli.command('index') @click.argument('project_id') @click.argument('directory', type=click.Path(exists=True, file_okay=False)) @click.option( '--suffix', '-s', default='.annif', help='File name suffix for result files') @click.option('--force/--no-force', '-f/-F', default=False, help='Force overwriting of existing result files') @click.option('--limit', '-l', default=10, help='Maximum number of subjects') @click.option('--threshold', '-t', default=0.0, help='Minimum score threshold') @backend_param_option @common_options def run_index(project_id, directory, suffix, force, limit, threshold, backend_param): """ Index a directory with documents, suggesting subjects for each document. Write the results in TSV files with the given suffix. """ project = get_project(project_id) backend_params = parse_backend_params(backend_param, project) hit_filter = SuggestionFilter(project.subjects, limit, threshold) for docfilename, dummy_subjectfn in annif.corpus.DocumentDirectory( directory, require_subjects=False): with open(docfilename, encoding='utf-8-sig') as docfile: text = docfile.read() subjectfilename = re.sub(r'\.txt$', suffix, docfilename) if os.path.exists(subjectfilename) and not force: click.echo( "Not overwriting {} (use --force to override)".format( subjectfilename)) continue with open(subjectfilename, 'w', encoding='utf-8') as subjfile: results = project.suggest(text, backend_params) for hit in hit_filter(results).as_list(project.subjects): line = "<{}>\t{}\t{}".format( hit.uri, '\t'.join(filter(None, (hit.label, hit.notation))), hit.score) click.echo(line, file=subjfile) @cli.command('eval') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--limit', '-l', default=10, help='Maximum number of subjects') @click.option('--threshold', '-t', default=0.0, help='Minimum score threshold') @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @click.option( '--results-file', '-r', type=click.File( 'w', encoding='utf-8', errors='ignore', lazy=True), help="""Specify file in order to write non-aggregated results per subject. File directory must exist, existing file will be overwritten.""") @click.option('--jobs', '-j', default=1, help='Number of parallel jobs (0 means all CPUs)') @backend_param_option @common_options def run_eval( project_id, paths, limit, threshold, docs_limit, results_file, jobs, backend_param): """ Analyze documents and evaluate the result. Compare the results of automated indexing against a gold standard. The path may be either a TSV file with short documents or a directory with documents in separate files. """ project = get_project(project_id) backend_params = parse_backend_params(backend_param, project) import annif.eval eval_batch = annif.eval.EvaluationBatch(project.subjects) if results_file: try: print('', end='', file=results_file) click.echo('Writing per subject evaluation results to {!s}'.format( results_file.name)) except Exception as e: raise NotSupportedException( "cannot open results-file for writing: " + str(e)) docs = open_documents(paths, docs_limit) jobs, pool_class = annif.parallel.get_pool(jobs) project.initialize(parallel=True) psmap = annif.parallel.ProjectSuggestMap( project.registry, [project_id], backend_params, limit, threshold) with pool_class(jobs) as pool: for hits, uris, labels in pool.imap_unordered( psmap.suggest, docs.documents): eval_batch.evaluate(hits[project_id], annif.corpus.SubjectSet((uris, labels))) template = "{0:<30}\t{1}" for metric, score in eval_batch.results(results_file=results_file).items(): click.echo(template.format(metric + ":", score)) @cli.command('optimize') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @backend_param_option @common_options def run_optimize(project_id, paths, docs_limit, backend_param): """ Analyze documents, testing multiple limits and thresholds. Evaluate the analysis results for a directory with documents against a gold standard given in subject files. Test different limit/threshold values and report the precision, recall and F-measure of each combination of settings. """ project = get_project(project_id) backend_params = parse_backend_params(backend_param, project) filter_batches = generate_filter_batches(project.subjects) ndocs = 0 docs = open_documents(paths, docs_limit) for doc in docs.documents: raw_hits = project.suggest(doc.text, backend_params) hits = raw_hits.filter(project.subjects, limit=BATCH_MAX_LIMIT) assert isinstance(hits, ListSuggestionResult), \ "Optimize should only be done with ListSuggestionResult " + \ "as it would be very slow with VectorSuggestionResult." gold_subjects = annif.corpus.SubjectSet((doc.uris, doc.labels)) for hit_filter, batch in filter_batches.values(): batch.evaluate(hit_filter(hits), gold_subjects) ndocs += 1 click.echo("\t".join(('Limit', 'Thresh.', 'Prec.', 'Rec.', 'F1'))) best_scores = collections.defaultdict(float) best_params = {} template = "{:d}\t{:.02f}\t{:.04f}\t{:.04f}\t{:.04f}" # Store the batches in a list that gets consumed along the way # This way GC will have a chance to reclaim the memory filter_batches = list(filter_batches.items()) while filter_batches: params, filter_batch = filter_batches.pop(0) metrics = ['Precision (doc avg)', 'Recall (doc avg)', 'F1 score (doc avg)'] results = filter_batch[1].results(metrics=metrics) for metric, score in results.items(): if score >= best_scores[metric]: best_scores[metric] = score best_params[metric] = params click.echo( template.format( params[0], params[1], results['Precision (doc avg)'], results['Recall (doc avg)'], results['F1 score (doc avg)'])) click.echo() template2 = "Best {:>19}: {:.04f}\tLimit: {:d}\tThreshold: {:.02f}" for metric in metrics: click.echo( template2.format( metric, best_scores[metric], best_params[metric][0], best_params[metric][1])) click.echo("Documents evaluated:\t{}".format(ndocs)) @cli.command('hyperopt') @click.argument('project_id') @click.argument('paths', type=click.Path(exists=True), nargs=-1) @click.option('--docs-limit', '-d', default=None, type=click.IntRange(0, None), help='Maximum number of documents to use') @click.option('--trials', '-T', default=10, help='Number of trials') @click.option('--jobs', '-j', default=1, help='Number of parallel runs (0 means all CPUs)') @click.option('--metric', '-m', default='NDCG', help='Metric to optimize (default: NDCG)') @click.option( '--results-file', '-r', type=click.File( 'w', encoding='utf-8', errors='ignore', lazy=True), help="""Specify file path to write trial results as CSV. File directory must exist, existing file will be overwritten.""") @common_options def run_hyperopt(project_id, paths, docs_limit, trials, jobs, metric, results_file): """ Optimize the hyperparameters of a project using a validation corpus. """ proj = get_project(project_id) documents = open_documents(paths, docs_limit) click.echo(f"Looking for optimal hyperparameters using {trials} trials") rec = proj.hyperopt(documents, trials, jobs, metric, results_file) click.echo(f"Got best {metric} score {rec.score:.4f} with:") click.echo("---") for line in rec.lines: click.echo(line) click.echo("---") if __name__ == '__main__': cli()
the-stack_0_7345
import os from setup import basedir class BaseConfig(object): SECRET_KEY = "SO_SECURE" DEBUG = True SQLALCHEMY_DATABASE_URI = os.environ['DATABASE_URL'] # SQLALCHEMY_DATABASE_URI = "postgresql://localhost/Cathal" MONGODB_URI = os.environ['MONGODB_URL'] SQLALCHEMY_TRACK_MODIFICATIONS = True JSON_AS_ASCII = False GOOGLE_CLIENT_ID = os.environ['GOOGLE_CLIENT_ID'] GOOGLE_CLIENT_SECRET = os.environ['GOOGLE_CLIENT_SECRET'] class TestingConfig(object): """Development configuration.""" TESTING = True DEBUG = True WTF_CSRF_ENABLED = False SQLALCHEMY_DATABASE_URI = 'sqlite:///:memory:' DEBUG_TB_ENABLED = True PRESERVE_CONTEXT_ON_EXCEPTION = False
the-stack_0_7346
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import cslib def get_drive_mapped_path_dict(): def get_mapped_path_for_drive(drive): # use window API (WNetGetConnectionW) try: import ctypes from ctypes import wintypes mpr = ctypes.WinDLL('mpr') ERROR_SUCCESS = 0x0000 ERROR_MORE_DATA = 0x00EA wintypes.LPDWORD = ctypes.POINTER(wintypes.DWORD) mpr.WNetGetConnectionW.restype = wintypes.DWORD mpr.WNetGetConnectionW.argtypes = (wintypes.LPCWSTR, wintypes.LPWSTR, wintypes.LPDWORD) length = (wintypes.DWORD * 1)() result = mpr.WNetGetConnectionW(drive, None, length) if result != ERROR_MORE_DATA: return '' remote_name = (wintypes.WCHAR * length[0])() result = mpr.WNetGetConnectionW(drive, remote_name, length) if result != ERROR_SUCCESS: return '' return remote_name.value.replace('\\\\', '') except Exception: import libcsbuild libcsbuild.write_csbuild_log('EXCEPTION_IN_PROCESSING_NETWORK_DRIVE: %s' % drive) return '' drive_mapped_path_dict = {} if not cslib.is_windows(): return drive_mapped_path_dict import win32api import libcsbuild drive_letter_list = [drive_letter.replace('\\', '') for drive_letter in win32api.GetLogicalDriveStrings().split('\000')[:-1] if drive_letter != ''] for drive_letter in drive_letter_list: key = get_mapped_path_for_drive(drive_letter) if key == '': continue libcsbuild.write_csbuild_log('network_drive: %s, path: %s' % (drive_letter, key)) drive_mapped_path_dict[key] = drive_letter libcsbuild.write_csbuild_log(str(drive_mapped_path_dict)) return drive_mapped_path_dict def convert_network_drive_path(open_file, mapped_dict): unc_prefix = '\\Device\\Mup' if not cslib.is_windows() or not open_file.startswith(unc_prefix): return open_file for key in mapped_dict.keys(): inx = open_file.find(key) if inx == -1: continue import libcsbuild libcsbuild.write_csbuild_log( '%s -> %s' % (open_file, os.path.join(mapped_dict[key], open_file[inx + len(key):]))) open_file = os.path.join(mapped_dict[key], open_file[inx + len(key):]) return open_file
the-stack_0_7347
# Copyright 2015 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import contextlib import collections import errno import os import sys import unittest try: import fcntl except ImportError: # pragma: no cover # Doesn't exist on Windows. See also crbug.com/515704. pass from testing_support import auto_stub from infra.libs.service_utils import daemon import mock Stat = collections.namedtuple('Stat', ['st_ino']) class TestFlock(auto_stub.TestCase): @unittest.skipIf(sys.platform == 'win32', 'Requires not windows') def setUp(self): super(TestFlock, self).setUp() @contextlib.contextmanager def _assert_reached(self): reached = {'yup': False} yield reached self.assertTrue(reached['yup']) def _mock_basic_fs_calls(self): """Mocks os.open, os.close as well as os.fstat.""" def _noop_handler(*_args, **_kwargs): return 1 def _noop_os_close(*_args, **_kwargs): pass def _noop_fstat(*_args, **_kwargs): return Stat(st_ino=45678) self.mock(os, 'open', _noop_handler) self.mock(os, 'close', _noop_os_close) self.mock(os, 'fstat', _noop_fstat) def _set_lock_status(self, success=True): """Mocks os.fcntl and whether the mock succeeds or not.""" def _lock_status(_fd, flags, **_kwargs): if flags != fcntl.LOCK_UN: # We don't care if unlock fails. if not success: raise IOError('Couldn\'t get lock.') self.mock(fcntl, 'lockf', _lock_status) def _set_stat_status(self, success=True, matching=True): """Mocks os.stat, sets its success and if st_ino matches os.fstat mock.""" def _stat_handler(*_args, **_kwargs): if not success: raise OSError('Not found.') if matching: return Stat(st_ino=45678) return Stat(st_ino=67890) self.mock(os, 'stat', _stat_handler) def _set_unlink_status(self, success=True): """Mocks os.unlink and sets whether it succeeds or not.""" def _unlink_handler(*_args, **_kwargs): if not success: raise OSError('Not found.') self.mock(os, 'unlink', _unlink_handler) #### Tests. def testGetLock(self): self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status() self._set_unlink_status() with self._assert_reached() as reached: with daemon.flock('bogus'): reached['yup'] = True def testDontGetLock(self): self._mock_basic_fs_calls() self._set_lock_status(success=False) self._set_stat_status() self._set_unlink_status() with self.assertRaises(daemon.LockAlreadyLocked): with daemon.flock('bogus'): # Should never reach this. # pylint: disable=redundant-unittest-assert self.assertTrue(False) # pragma: no cover def testFileDeletedAfterLockAcquired(self): """Test that we abort if we acquire a lock but the file has been deleted.""" self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status(success=False) self._set_unlink_status() with self.assertRaises(daemon.LockAlreadyLocked): with daemon.flock('bogus'): # Should never reach this. # pylint: disable=redundant-unittest-assert self.assertTrue(False) # pragma: no cover def testLockfileRecreated(self): """Test that we abort if a new lockfile is created under us.""" self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status(matching=False) self._set_unlink_status() with self.assertRaises(daemon.LockAlreadyLocked): with daemon.flock('bogus'): # Should never reach this. # pylint: disable=redundant-unittest-assert self.assertTrue(False) # pragma: no cover def testDeleteWhenDone(self): """Test that we delete the lockfile when we're done.""" data = {'count': 0} def _mock_unlink(*_args, **_kwargs): data['count'] += 1 self.mock(os, 'unlink', _mock_unlink) self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status() with self._assert_reached() as reached: with daemon.flock('bogus'): reached['yup'] = True self.assertEqual(data['count'], 1) def testUnlinkFailureDoesntBreak(self): """Test that a failing unlink doesn't break us.""" self._mock_basic_fs_calls() self._set_lock_status() self._set_stat_status() self._set_unlink_status(success=False) with self._assert_reached() as reached: with daemon.flock('bogus'): reached['yup'] = True @mock.patch('os.fork', return_value=0) @mock.patch('os.setsid') @mock.patch('os.close') @mock.patch('os.open') @mock.patch('os.dup2') @mock.patch('os.chdir') @mock.patch('os._exit') class TestBecomeDaemon(unittest.TestCase): @unittest.skipIf(sys.platform == 'win32', 'Requires not windows') def setUp(self): super(TestBecomeDaemon, self).setUp() def testClosesFds(self, _mock_exit, _mock_chdir, _mock_dup2, _mock_open, mock_close, _mock_setsid, _mock_fork): daemon.become_daemon() self.assertEqual(2048, mock_close.call_count) self.assertEqual([((i,),) for i in reversed(range(2048))], mock_close.call_args_list) def testClosesFdWithExceptions(self, _mock_exit, _mock_chdir, _mock_dup2, _mock_open, mock_close, _mock_setsid, _mock_fork): daemon.become_daemon(keep_fds={42}) self.assertEqual(2047, mock_close.call_count) self.assertEqual([((i,),) for i in reversed(range(2048)) if i != 42], mock_close.call_args_list) def testClosesFdsKeepingAll(self, _mock_exit, _mock_chdir, _mock_dup2, _mock_open, mock_close, _mock_setsid, _mock_fork): daemon.become_daemon(keep_fds=True) self.assertEqual(0, mock_close.call_count) def testClosesInvalidFds(self, _mock_exit, _mock_chdir, _mock_dup2, _mock_open, mock_close, _mock_setsid, _mock_fork): mock_close.side_effect = EnvironmentError(errno.EIO, '') with self.assertRaises(EnvironmentError): daemon.become_daemon() mock_close.side_effect = EnvironmentError(errno.EBADF, '') daemon.become_daemon() def testOpensDevNull(self, _mock_exit, _mock_chdir, mock_dup2, mock_open, _mock_close, _mock_setsid, _mock_fork): handle = object() mock_open.return_value = handle daemon.become_daemon() self.assertEqual([ ((handle, 0),), ((handle, 1),), ((handle, 2),), ], mock_dup2.call_args_list) def testOpensDevNullWithExceptions(self, _mock_exit, _mock_chdir, mock_dup2, mock_open, _mock_close, _mock_setsid, _mock_fork): handle = object() mock_open.return_value = handle daemon.become_daemon(keep_fds={1}) self.assertEqual([ ((handle, 0),), ((handle, 2),), ], mock_dup2.call_args_list) def testChangesToRoot(self, _mock_exit, mock_chdir, _mock_dup2, _mock_open, _mock_close, _mock_setsid, _mock_fork): daemon.become_daemon() mock_chdir.assert_called_with('/') def testForkExitsParent(self, mock_exit, _mock_chdir, _mock_dup2, _mock_open, _mock_close, _mock_setsid, mock_fork): mock_fork.return_value = 0 daemon.become_daemon() self.assertFalse(mock_exit.called) mock_fork.return_value = 123 daemon.become_daemon() self.assertTrue(mock_exit.called)
the-stack_0_7348
#!/usr/bin/env python3 # # Copyright (c) 2019 Roberto Riggio # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Projects manager.""" import empower.apps import empower.primitives from empower.main import srv_or_die from empower.core.service import EService from empower.managers.projectsmanager.project import Project from empower.managers.projectsmanager.project import EmbeddedWiFiProps from empower.managers.projectsmanager.project import EmbeddedLTEProps from empower.managers.projectsmanager.project import T_BSSID_TYPE_SHARED from empower.managers.projectsmanager.project import T_BSSID_TYPE_UNIQUE from empower.managers.projectsmanager.cataloghandler import CatalogHandler from empower.managers.projectsmanager.appshandler import AppsHandler from empower.managers.projectsmanager.projectshandler import ProjectsHandler, \ ProjectsWiFiACLHandler, ProjectsWiFiSlicesHandler, \ ProjectsLTESlicesHandler, ProjectLVAPsHandler class ProjectsManager(EService): """Projects manager.""" HANDLERS = [CatalogHandler, AppsHandler, ProjectLVAPsHandler, ProjectsHandler, ProjectsWiFiACLHandler, ProjectsWiFiSlicesHandler, ProjectsLTESlicesHandler] projects = {} accounts_manager = None def start(self): """Start projects manager.""" super().start() self.accounts_manager = srv_or_die("accountsmanager") for project in Project.objects.all(): self.projects[project.project_id] = project self.projects[project.project_id].start_services() @property def catalog(self): """Return available apps.""" results = {} results.update(self.walk_module(empower.apps)) results.update(self.walk_module(empower.primitives)) return results def load_project_by_ssid(self, ssid): """Find a project by SSID.""" for project in self.projects.values(): if not project.wifi_props: continue if project.wifi_props.ssid == ssid: break else: project = None return project def load_project_by_plmnid(self, plmnid): """Find a project by PLMNID.""" for project in self.projects.values(): if not project.lte_props: continue if project.lte_props.plmnid == plmnid: break else: project = None return project def get_available_ssids(self, sta, block): """Return the list of available networks for the specified sta.""" networks = list() for project in self.projects.values(): if not project.wifi_props: continue if sta not in project.wifi_props.allowed: continue if project.wifi_props.bssid_type == T_BSSID_TYPE_SHARED: bssid = project.generate_bssid(block.hwaddr) ssid = project.wifi_props.ssid networks.append((bssid, ssid)) elif project.wifi_props.bssid_type == T_BSSID_TYPE_UNIQUE: bssid = project.generate_bssid(sta) ssid = project.wifi_props.ssid networks.append((bssid, ssid)) else: self.log.error("Invalid BSSID type: %s", project.wifi_props.bssid_type) return networks def create(self, desc, project_id, owner, wifi_props=None, lte_props=None): """Create new project.""" if project_id in self.projects: raise ValueError("Project %s already defined" % project_id) if owner not in self.accounts_manager.accounts: raise ValueError("Undefined account %s" % owner) project = Project(project_id=project_id, desc=desc, owner=owner) if wifi_props: project.wifi_props = EmbeddedWiFiProps(**wifi_props) if lte_props: project.lte_props = EmbeddedLTEProps(**lte_props) project.save() self.projects[project_id] = project project.upsert_wifi_slice(slice_id=0) project.upsert_lte_slice(slice_id=0) self.projects[project_id].start_services() return self.projects[project_id] def update(self, project_id, wifi_props=None, lte_props=None): """Update project.""" if project_id not in self.projects: raise ValueError("Project %s not available" % project_id) project = self.projects[project_id] print(wifi_props["allowed"]) try: # not all wifi props can be modified if wifi_props: if "allowed" in wifi_props: project.wifi_props.allowed = wifi_props["allowed"] # not all lte props can be modified if lte_props: pass project.save() finally: project.refresh_from_db() return self.projects[project_id] def remove_all(self): """Remove all projects.""" for project_id in list(self.projects): self.remove(project_id) def remove(self, project_id): """Remove project.""" # Check if project exists if project_id not in self.projects: raise KeyError("%s not registered" % project_id) # Fetch project project = self.projects[project_id] # Remove hosted LVAPs for lvap in list(project.lvaps.values()): # The LVAP is associated if lvap.ssid and lvap.wtp.connection: lvap.wtp.connection.send_client_leave_message_to_self(lvap) # Reset the LVAP del lvap.wtp.connection.manager.lvaps[lvap.addr] lvap.clear_blocks() # Remove hosted VAPs for vap in list(project.vaps.values()): # Reset the LVAP del vap.wtp.connection.manager.vaps[vap.bssid] vap.clear_block() # Stop running services self.projects[project_id].stop_services() # Delete project from datase and manager project.delete() del self.projects[project_id] def launch(context, service_id): """ Initialize the module. """ return ProjectsManager(context=context, service_id=service_id)
the-stack_0_7349
#!/usr/bin/python # # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Functions required to interact with Docker to build and run images, shells and notebooks in a Docker environment. """ from typing import List, Optional from blessings import Terminal import caliban.config as c import caliban.docker.build as b import caliban.platform.shell as ps import caliban.util.fs as ufs t = Terminal() def run_notebook(job_mode: c.JobMode, port: Optional[int] = None, lab: Optional[bool] = None, version: Optional[bool] = None, run_args: Optional[List[str]] = None, **run_interactive_kwargs) -> None: """Start a notebook in the current working directory; the process will run inside of a Docker container that's identical to the environment available to Cloud jobs that are submitted by `caliban cloud`, or local jobs run with `caliban run.` if you pass mount_home=True your jupyter settings will persist across calls. Keyword args: - port: the port to pass to Jupyter when it boots, useful if you have multiple instances running on one machine. - lab: if True, starts jupyter lab, else jupyter notebook. - version: explicit Jupyter version to install. run_interactive_kwargs are all extra arguments taken by run_interactive. """ if port is None: port = ufs.next_free_port(8888) if lab is None: lab = False if run_args is None: run_args = [] inject_arg = b.NotebookInstall.lab if lab else b.NotebookInstall.jupyter jupyter_cmd = "lab" if lab else "notebook" jupyter_args = [ "-m", "jupyter", jupyter_cmd, \ "--ip=0.0.0.0", \ "--port={}".format(port), \ "--no-browser" ] docker_args = ["-p", "{}:{}".format(port, port)] + run_args ps.run_interactive(job_mode, entrypoint="python", entrypoint_args=jupyter_args, run_args=docker_args, inject_notebook=inject_arg, jupyter_version=version, **run_interactive_kwargs)
the-stack_0_7350
#!/usr/bin/env python # -*- coding: utf-8 -*- # IMPORTS import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import modules.globals as sg # CLASS DEFINITION class MailHelper: # Constructor def __init__(self): self.load_conf() self.smtp = None try: self.smtp = smtplib.SMTP(self.smtp_host, self.smtp_port, None, 5) self.smtp.ehlo() if self.smtp_tls: self.smtp.starttls() self.smtp.ehlo() # self.smtp.login(self.smtp_from, self.smtp_pwd) except Exception as e: sg.logger.error('Failed to bind to smtp server: %s' % str(e)) # Configuration loader def load_conf(self): self.smtp_host = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_HOST] self.smtp_port = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_PORT] self.smtp_tls = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_TLS] self.smtp_from = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_FROM] self.smtp_pwd = sg.conf[sg.CONF_SMTP_SECTION][sg.CONF_SMTP_PWD] def build_gmail(self): if not hasattr(self, 'sender') or not hasattr(self, 'code'): sg.logger.warning('Detected GMAIL but failed to parse sender or code...') return sender = self.sender code = self.code # Build the answer subject = '[SCIZ] Code de confirmation de transfert GMAIL' text = 'Votre code de transfert GMAIL pour %s est : %s' % (sg.user.mail, code) html = ''' <html> <head></head> <body> <p>Votre code de transfert pour %s est : %s</p> </body> </html> ''' % (sg.user.mail, code) # Send the mail self.send_mail(sender, subject, text, html) def build_yahoo(self): if not hasattr(self, 'link'): sg.logger.warning('Detected YAHOO but failed to parse link...') return link = self.link # Build the answer subject = '[SCIZ] Lien de confirmation de transfert YAHOO' text = 'Votre code de transfert YAHOO pour %s est : %s' % (sg.user.mail, link) html = ''' <html> <head></head> <body> <p>Votre lien de transfert pour %s est : %s</p> </body> </html> ''' % (sg.user.mail, link) # Send the mail self.send_mail(None, subject, text, html) def send_mail(self, to, subject, body_text, body_html): if self.smtp is None: sg.logger.error('An attempt was made to send a mail but no previous bind to a SMTP server was successful') return msg = MIMEMultipart('alternative') msg['Subject'] = subject msg['From'] = self.smtp_from msg['To'] = to if to is not None else sg.user.user_mail msg.attach(MIMEText(body_text, 'plain')) msg.attach(MIMEText(body_html, 'html')) if msg['To'] is not None: self.smtp.sendmail(msg['From'], [msg['To']], msg.as_string()) else: sg.logger.warning('No address to send back...') def __del__(self): if self.smtp: self.smtp.quit()
the-stack_0_7352
import urllib.parse from django.contrib import auth from django.db import close_old_connections from channels.middleware import BaseMiddleware import rest_framework_jwt.serializers import rest_framework.exceptions import jwt.exceptions import backend.auth class TokenMiddleware(object): """ Middleware that authenticates against a token in the http authorization header. """ def __init__(self, get_response): self.get_response = get_response def __call__(self, request): self.process_request(request) response = self.get_response(request) return response def process_request(self, request): auth_header = request.META.get('HTTP_AUTHORIZATION', b'').split() print("asd") if not auth_header: return None user = auth.authenticate() if user: request.user = user class JWTAuthMiddleware(BaseMiddleware): """ Middleware to authenticate a user with a JSON Web Token. """ def populate_scope(self, scope): # Populate top level of scope. if "user" not in scope: raise ValueError( "JWTAuthMiddleware cannot find user in scope. AuthMiddleware must be above it." ) async def resolve_scope(self, scope): if not scope["user"]._wrapped.is_anonymous: return if not "query_string" in scope: return qs = urllib.parse.parse_qs(scope['query_string'].decode('utf-8')) user = None try: qs['token'] = qs['token'][0] validated = rest_framework_jwt.serializers.VerifyJSONWebTokenSerializer().validate(qs) # If no exception is thrown, the token is valid. Store it in the session if it is a kit. user = backend.auth.downcast_user_type(validated['user']) except (KeyError, jwt.exceptions.InvalidTokenError, rest_framework.exceptions.ValidationError): pass close_old_connections() # Set the user. if user: scope["user"]._wrapped = user
the-stack_0_7353
"""Commands the vehicle simulator to drive autonomously based on a given keras model. Usage: Use `model.h5` to drive in autonomous mode `python drive.py model.h5` Or, use `model.h5` to drive in autonomous mode, and save dashcam photos of the run to `./run1/` `python drive.py model.h5 run1` """ #---------------------------------------------------------------------------------------------------------------------------------------------- import argparse import base64 import os import shutil from datetime import datetime from io import BytesIO import eventlet.wsgi import h5py import numpy as np import socketio import tensorflow as tf from PIL import Image from flask import Flask from keras import __version__ as keras_version, backend as K from keras.models import load_model MAX_SPEED = 18 MIN_SPEED = 8 speed_limit = MAX_SPEED K.clear_session() config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) K.set_session(session) #---------------------------------------------------------------------------------------------------------------------------------------------- sio = socketio.Server() app = Flask(__name__) model = None prev_image_array = None #---------------------------------------------------------------------------------------------------------------------------------------------- class SimplePIController: def __init__(self, Kp, Ki): self.Kp = Kp self.Ki = Ki self.set_point = 0. self.error = 0. self.integral = 0. def set_desired(self, desired): self.set_point = desired def update(self, measurement): # proportional error self.error = self.set_point - measurement # integral error self.integral += self.error return self.Kp * self.error + self.Ki * self.integral #---------------------------------------------------------------------------------------------------------------------------------------------- controller = SimplePIController(0.1, 0.002) # Force desired driving speed. set_speed = 25 controller.set_desired(set_speed) #---------------------------------------------------------------------------------------------------------------------------------------------- @sio.on('telemetry') def telemetry(sid, data): if data: # The current steering angle of the car steering_angle = float(data["steering_angle"]) # The current throttle of the car throttle = float(data["throttle"]) # The current speed of the car speed = float(data["speed"]) # The current image from the center camera of the car imgString = data["image"] image = Image.open(BytesIO(base64.b64decode(imgString))) image_array = np.asarray(image) steering_angle = float(model.predict(image_array[None, :, :, :], batch_size=1)) global speed_limit if speed > speed_limit: speed_limit = MIN_SPEED # slow down else: speed_limit = MAX_SPEED #throttle = controller.update(float(speed)) throttle = 1.0 - ( (steering_angle)**2 ) - ( (speed/speed_limit)**2 ) print(steering_angle, throttle, speed) send_control(steering_angle, throttle) # save frame if args.image_folder != '': timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3] image_filename = os.path.join(args.image_folder, timestamp) image.save('{}.jpg'.format(image_filename)) else: # NOTE: DON'T EDIT THIS. sio.emit('manual', data={}, skip_sid=True) @sio.on('connect') def connect(sid, environ): print("connect ", sid) send_control(0, 0) def send_control(steering_angle, throttle): sio.emit( "steer", data={ 'steering_angle': steering_angle.__str__(), 'throttle': throttle.__str__() }, skip_sid=True) #---------------------------------------------------------------------------------------------------------------------------------------------- if __name__ == '__main__': parser = argparse.ArgumentParser(description='Remote Driving') parser.add_argument( 'model', type=str, help='Path to model h5 file. Model should be on the same path.' ) parser.add_argument( 'image_folder', type=str, nargs='?', default='', help='Path to image folder. This is where the images from the run will be saved.' ) parser.add_argument( 'maxspeed', type=int, nargs='?', default=MAX_SPEED, help='Maximum speed limit' ) parser.add_argument( 'minspeed', type=str, nargs='?', default=MIN_SPEED, help='Minimum speed limit' ) args = parser.parse_args() MIN_SPEED = args.minspeed MAX_SPEED = args.maxspeed # check that model Keras version is same as local Keras version f = h5py.File(args.model, mode='r') model_version = f.attrs.get('keras_version') keras_version = str(keras_version).encode('utf8') if model_version != keras_version: print('You are using Keras version ', keras_version, ', but the model was built using ', model_version) model = load_model(args.model) if args.image_folder != '': print("Creating image folder at {}".format(args.image_folder)) if not os.path.exists(args.image_folder): os.makedirs(args.image_folder) else: shutil.rmtree(args.image_folder) os.makedirs(args.image_folder) print("RECORDING THIS RUN ...") else: print("NOT RECORDING THIS RUN ...") # wrap Flask application with middleware app = socketio.Middleware(sio, app) # deploy as an WSGI server eventlet.wsgi.server(eventlet.listen(('', 4567)), app) #----------------------------------------------------------------------------------------------------------------------------------------------
the-stack_0_7354
from ebaysdk.finding import Connection from ebaysdk.exception import ConnectionError import time import psycopg2 import re from gen_utils import database_connection, get_api_key, get_search_words, get_test_search_words, get_trace_and_log class SearchRequest(object): def __init__(self, api_key, keyword): self.api_key, self.keyword = api_key, keyword # define which site we wish to connect to and feed in our api-key self.api = Connection(siteid='EBAY-US', appid=self.api_key, config_file=None) # create a live db cursor self.cursor = database_connection() # establish lists for appending data to self.completed_product_ids = [] self.completed_product_nick = [] self.completed_product_titles = [] self.completed_product_prices = [] self.completed_product_cat_names = [] self.completed_product_cat_ids = [] self.completed_product_img_thumb = [] self.completed_product_img_url = [] self.completed_product_lst_type = [] self.completed_product_con = [] self.completed_product_loc = [] self.completed_product_start = [] self.completed_product_end = [] self.completed_product_depth = [] self.depthCountStorage = [] # outline our search body paramaters self.search_body_pages = { 'keywords': keyword, 'itemFilter': [ # US only sellers -- can also limit by feedback score, business type, top-rated status, charity, etc. {'name': 'MinPrice', 'value': '59', 'paramName': 'Currency', 'paramValue': 'USD'}, {'name': 'MaxPrice', 'value': '9999999', 'paramName': 'Currency', 'paramValue': 'USD'}, # sold items only {'name': 'SoldItemsOnly', 'value': 'true'}, ], 'paginationInput': { 'entriesPerPage': '100', # always 1, as we want to pull the maximum number of pages given a maximum of 100 results per page 'pageNumber': '1' }, # can filter this to multiple different options as well (Best Offer, Most Watched, etc.) 'sortOrder': 'PricePlusShippingLowest' } def get_pages(self): """() -> dict Connects to the API, Executes a query to find items by their category and takes in predefined parameters search_body_pages, Returns the data in dictionary form, Returns an integer with the total number of pages. """ try: self.api.execute('findCompletedItems', self.search_body_pages) self.data = self.api.response.dict() self.pages = int(self.data['paginationOutput']['totalPages']) return self.pages except Exception as e: get_trace_and_log(e) def fetch_completed_data(self, pages): """() -> dict Connects to the API, Iterates over each page in the previously established range of 1 -> the total number of pages, Establishes search_body_data parameters, Executes a query to find items by their category and takes in predefined parameters search_body_data, Returns the data in dictionary form, Iterates over each item in the returned data dictionary and appends the various data points to their respective lists, Prints the values. """ try: search_body_data = { 'keywords': self.keyword, 'itemFilter': [ {'name': 'MinPrice', 'value': '5', 'paramName': 'Currency', 'paramValue': 'USD'}, {'name': 'MaxPrice', 'value': '99999999', 'paramName': 'Currency', 'paramValue': 'USD'}, # sold items only {'name': 'SoldItemsOnly', 'value': 'true'}, ], 'paginationInput': {'entriesPerPage': '100', 'pageNumber': f'{page}'}, 'sortOrder': 'PricePlusShippingLowest'} self.api.execute('findCompletedItems', search_body_data) self.data = self.api.response.dict() time.sleep(1) # wait a second before continuing (be kind ^^) except Exception as e: get_trace_and_log(e) outliers = [ re.compile(r"\bposter\b", re.I), re.compile(r"\bproxy\b", re.I), re.compile(r"\bmisprint\b", re.I), re.compile(r"\bpuzzle\b", re.I), re.compile(r"\bplaytest\b", re.I), re.compile(r"\berror\b", re.I), re.compile(r"\bpromo\b", re.I), re.compile(r"\bproxy\b", re.I), re.compile(r"\bframed\b", re.I), re.compile(r"\breprint\b", re.I), re.compile(r"\bbooster\b", re.I), re.compile(r"\bpack\b", re.I), re.compile(r"\bfactory sealed\b", re.I), re.compile(r"\brp\b", re.I), re.compile(r"\bheadlamp\b", re.I), re.compile(r"\bheadlamps\b", re.I), re.compile(r"\bcar\b", re.I), re.compile(r"\btruck\b", re.I), re.compile(r"\bheadlights\b", re.I), re.compile(r"\brepack\b", re.I), re.compile(r"\brepacks\b", re.I), re.compile(r"\brubber\b", re.I), re.compile(r"\bseat\b", re.I), re.compile(r"\bbox\b", re.I), re.compile(r'\bsticker\b', re.I), re.compile(r'\bstickers\b', re.I), re.compile(r'\b5 x\b', re.I), # used to ignore things like '5 x Mox's for sale..', which greatly skew the average. re.compile(r'\b4 x\b', re.I), re.compile(r'\b3 x\b', re.I), re.compile(r'\b2 x\b', re.I), re.compile(r'\b5x\b', re.I), re.compile(r'\b4x\b', re.I), re.compile(r'\b3x\b', re.I), re.compile(r'\b2x\b', re.I), re.compile(r'\bx5\b', re.I), re.compile(r'\bx4\b', re.I), re.compile(r'\bx3\b', re.I), re.compile(r'\bx2\b', re.I), re.compile(r'\bx-2\b', re.I), re.compile(r'\bx-3\b', re.I), re.compile(r'\bx-4\b', re.I), re.compile(r'\bx-5\b', re.I), re.compile(r'\bx 2\b', re.I), re.compile(r'\bx 3\b', re.I), re.compile(r'\bx 4\b', re.I), re.compile(r'\bx 5\b', re.I), re.compile(r'\bcustom\b', re.I), re.compile(r'\bpractice\b', re.I), re.compile(r'\btime spiral\b', re.I), re.compile(r'\blions\b', re.I), re.compile(r'\bstory\b', re.I), re.compile(r'\bmullet\b', re.I), re.compile(r'\bplayset\b', re.I), re.compile(r'\bbb\b', re.I), re.compile(r'\bblack border\b', re.I), re.compile(r'\bartist proof\b', re.I), re.compile(r'\bgerman\b', re.I), re.compile(r'\bitalian\b', re.I), re.compile(r'\bfrench\b', re.I), re.compile(r'\blot\b', re.I), re.compile(r'\bsealed\b', re.I), re.compile(r'\bartist\b', re.I), re.compile(r'\bproof\b', re.I), re.compile(r'\bcollection\b', re.I), re.compile(r'\bfbb\b', re.I), # re.compile(r'\b2\b', re.I), # re.compile(r'\b3\b', re.I), # re.compile(r'\b4\b', re.I), # re.compile(r'\b5\b', re.I), # re.compile(r'\b6\b', re.I), re.compile(r'\bcomplete set\b', re.I), re.compile(r'\bplayset\b', re.I), re.compile(r'\bplay-set\b', re.I), re.compile(r'\bset\b', re.I), re.compile(r'\b(Partial)\b', re.I), re.compile(r'\bpartial\b', re.I), re.compile(r'\binfect\b', re.I), ] try: # begin filtering magic :D if word.split(' ')[0] not in {"Collector's", "International"}: outliers.extend(( re.compile(r"\bce\b", re.I), re.compile(r"\bie\b", re.I), re.compile(r"\bcollector\b", re.I), re.compile(r"\bcollectors\b", re.I), re.compile(r"\bcollector's\b", re.I), re.compile(r"\bcollector's edition\b", re.I), re.compile(r"\binternational\b", re.I), re.compile(r"\binternationals\b", re.I), re.compile(r"\binternational edition\b", re.I), re.compile(r"\bcollector''s\b", re.I), re.compile(r'\bcollector"s\b', re.I), )) else: pass # print(f'Searching keyword: {word}', end="") print(f'Searching keyword: {word}') print(f'Chugging through...{page}/{self.pages} page(s)...') print() depthCount = 0 for item in self.data['searchResult']['item']: if not any(regex.findall(item['title']) for regex in set(outliers)): # sets provide more iterating efficiency than lists. # end filter magic => begin appending values to respective arrays try: self.completed_product_img_thumb.append(item['galleryURL']) except Exception as e: self.completed_product_img_thumb.append('No picture') self.completed_product_nick.append(word) self.completed_product_titles.append(item['title']) self.completed_product_ids.append(item['itemId']) # completed_product_prices.append(item['sellingStatus']['currentPrice']['value']) self.completed_product_prices.append(item['sellingStatus']['convertedCurrentPrice']['value']) # take the convertedCurrentPrice instead @ 10/10/2018 self.completed_product_cat_names.append(item['primaryCategory']['categoryName']) self.completed_product_cat_ids.append(item['primaryCategory']['categoryId']) self.completed_product_img_url.append(item['viewItemURL']) self.completed_product_lst_type.append(item['listingInfo']['listingType']) self.completed_product_con.append(item['condition']['conditionDisplayName']) self.completed_product_loc.append(item['location']) self.completed_product_start.append(item['listingInfo']['startTime']) self.completed_product_end.append(item['listingInfo']['endTime']) depthCount += 1 # if the page is 1 and the max number of pages is 1 then extend the depth to fill up the list, # otherwise proceed forward if self.pages == 1 and page == 1: self.completed_product_depth.extend(depthCount for i in range(depthCount)) elif self.pages > 1 and page == 1: self.depthCountStorage.append(depthCount) else: depthCountMulti = int(self.depthCountStorage[-1]) + depthCount self.completed_product_depth.extend(depthCountMulti for i in range(depthCountMulti)) except KeyError as e: get_trace_and_log(e) def zip_items(self): """(lists) -> (zip) Inherits a series of lists and wraps it up into a comprehensive zip.""" #"begin zipping of all arrays into one big-array, just before inserting into the database self.completed_products = zip(self.completed_product_nick, self.completed_product_titles, self.completed_product_ids, self.completed_product_prices, self.completed_product_cat_names, self.completed_product_cat_ids, self.completed_product_img_thumb, self.completed_product_img_url, self.completed_product_lst_type, self.completed_product_con, self.completed_product_loc, self.completed_product_start, self.completed_product_end, self.completed_product_depth) return self.completed_products def insert_completed_products(self, count): """(db cursor, array, count) -> () Takes in a database connection (cursor) and an array of data and inserts it into the respective database""" for a, b, c, d, e, f, g, h, i, j, k, l, m, n in self.completed_products: try: self.cursor.execute("""INSERT INTO completed_products(completed_product_nick, completed_product_titles, completed_product_ids, completed_product_prices, completed_product_cat_names, completed_product_cat_ids, completed_product_img_thumb, completed_product_img_url, completed_product_lst_type, completed_product_con, completed_product_loc, completed_product_start, completed_product_end, completed_product_depth) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""", (a, b, c, d, e, f, g, h, i, j, k, l, m, n, )) # MAKE SURE to leave the trailing comma (d-->,<--), this will NOT work otherwise. print("Unique value inserted...") except Exception as e: print("Unique value skipped...") # get_trace_and_log(e) print() print("Successfully piped database.") if __name__ == '__main__': # pull in our api key, the list of words to iterate over, and begin zipping lists before piping the db api_key = get_api_key() # comment out the above variable and use the one below when testing (includes 3 very common values) words = get_test_search_words() # words = ["Collector's Edition Black Lotus MTG", "International Edition Mox Ruby MTG", "Beta Black Lotus MTG"] count = 0 for word in words: # print(word) count += 1 x = SearchRequest(api_key, word) pages = x.get_pages() + 1 for page in range(1, pages): x.fetch_completed_data(page) x.zip_items() x.insert_completed_products(count)
the-stack_0_7356
""" Classes for curves # Author: Antonio Martinez-Sanchez (Max Planck Institute for Biochemistry) # Date: 29.02.2016 """ __author__ = 'martinez' import vtk import math import numpy as np from pyseg.globals.utils import angle_2vec_3D, closest_points ###### Global variables PI_2 = .5 * np.pi MAX_PER_ANG = .25 * np.pi MAX_FLOAT = np.finfo('float').max # #################################################################################################### # This class represents a spaced curve from a sequence of discrete samples (coordinates in 3D) # Numerical approximation of discrete differential geometry from # Boutin M. "Numerically Invariant Signature Curves" Int. J. Comput. Vision, 40(3): 235-248, 2000 # # class SpaceCurve(object): # #### Constructor Area # samples: array with the sequences samples of the curve # mode: computation mode, 1: precise, 2 fast (default) # do_geom: if True (default) curve geometric properties are computed during construction, otherwise not (this is # useful for temporary curves) def __init__(self, samples, mode=2, do_geom=True): self.__samples = np.asarray(samples, dtype=np.float) self.__mode = mode self.__apex_id = -1 self.__ds = None self.__lengths = None self.__usg_k = None self.__sg_k = None self.__usg_t = None self.__sg_t = None self.__length = .0 self.__tot_uk = .0 self.__tot_k = .0 self.__tot_ut = .0 self.__tot_t = .0 self.__tot_ukt = .0 self.__per = .0 self.__ns = .0 self.__bs = .0 self.__al = -1. self.__sin = .0 if do_geom: self.compute_geom() # Compute all geometric descriptors def compute_geom(self): self.__compute_ds() self.__length = self.__ds.sum() self.__compute_lengths() self.__compute_usg_k() self.__compute_sg_k() self.__compute_usg_t() self.__compute_sg_t() self.__tot_uk = (self.__usg_k * self.__ds).sum() self.__tot_k = (self.__sg_k * self.__ds).sum() self.__tot_ut = (self.__usg_t * self.__ds).sum() self.__tot_t = (self.__sg_t * self.__ds).sum() self.__tot_ukt = (np.sqrt((self.__usg_k*self.__usg_k) + (self.__usg_t*self.__usg_t)) * self.__ds).sum() self.__compute_per_length() self.__compute_ns() self.__compute_bs() self.__compute_al() self.__compute_sin() # External functionality area def get_nsamples(self): return self.__samples.shape[0] def get_samples(self): return self.__samples def get_sample(self, idx): return self.__samples[idx, :] def get_start_sample(self): return self.__samples[0, :] def get_end_sample(self): return self.__samples[-1, :] def get_lengths(self): return self.__lengths def get_length(self): return self.__length def get_total_uk(self): return self.__tot_uk def get_total_k(self): return self.__tot_k def get_total_ut(self): return self.__tot_ut def get_total_t(self): return self.__tot_t def get_total_ukt(self): return self.__tot_ukt def get_normal_symmetry(self): return self.__ns def get_binormal_symmetry(self): return self.__bs def get_apex_length(self, update=False): if update: self.__compute_al() return self.__al def get_sinuosity(self): return self.__sin def get_ds(self): return self.__ds def get_uk(self): return self.__usg_k def get_k(self): return self.__sg_k def get_ut(self): return self.__usg_t def get_t(self): return self.__sg_t def get_per_length(self, update=False): if update: self.__compute_per_length() return self.__per # Return a vtkPolyData which contains the curve # add_geom: if True geometry properties are added otherwise not def get_vtp(self, add_geom=True): # Initialization poly, points, lines = vtk.vtkPolyData(), vtk.vtkPoints(), vtk.vtkCellArray() if add_geom: # Point properties pds_data = vtk.vtkFloatArray() pds_data.SetNumberOfComponents(1) pds_data.SetName('ds') plens_data = vtk.vtkFloatArray() plens_data.SetNumberOfComponents(1) plens_data.SetName('lengths') puk_data = vtk.vtkFloatArray() puk_data.SetNumberOfComponents(1) puk_data.SetName('u_k') psk_data = vtk.vtkFloatArray() psk_data.SetNumberOfComponents(1) psk_data.SetName('s_k') put_data = vtk.vtkFloatArray() put_data.SetNumberOfComponents(1) put_data.SetName('u_t') pst_data = vtk.vtkFloatArray() pst_data.SetNumberOfComponents(1) pst_data.SetName('s_t') # Cell properties clen_data = vtk.vtkFloatArray() clen_data.SetNumberOfComponents(1) clen_data.SetName('length') ctuk_data = vtk.vtkFloatArray() ctuk_data.SetNumberOfComponents(1) ctuk_data.SetName('u_total_k') ctk_data = vtk.vtkFloatArray() ctk_data.SetNumberOfComponents(1) ctk_data.SetName('total_k') ctut_data = vtk.vtkFloatArray() ctut_data.SetNumberOfComponents(1) ctut_data.SetName('u_total_t') ctt_data = vtk.vtkFloatArray() ctt_data.SetNumberOfComponents(1) ctt_data.SetName('total_t') cper_data = vtk.vtkFloatArray() cper_data.SetNumberOfComponents(1) cper_data.SetName('per_length') cukt_data = vtk.vtkFloatArray() cukt_data.SetNumberOfComponents(1) cukt_data.SetName('total_ukt') cns_data = vtk.vtkFloatArray() cns_data.SetNumberOfComponents(1) cns_data.SetName('normal_sim') cbs_data = vtk.vtkFloatArray() cbs_data.SetNumberOfComponents(1) cbs_data.SetName('binormal_sim') cal_data = vtk.vtkFloatArray() cal_data.SetNumberOfComponents(1) cal_data.SetName('apex_length') csin_data = vtk.vtkFloatArray() csin_data.SetNumberOfComponents(1) csin_data.SetName('sinuosity') # Line creation lines.InsertNextCell(self.get_nsamples()) if add_geom: # Adding cell properties clen_data.InsertNextTuple((self.__length,)) ctuk_data.InsertNextTuple((self.__tot_uk,)) ctk_data.InsertNextTuple((self.__tot_k,)) ctut_data.InsertNextTuple((self.__tot_ut,)) ctt_data.InsertNextTuple((self.__tot_t,)) cukt_data.InsertNextTuple((self.__tot_ukt,)) cper_data.InsertNextTuple((self.__per,)) cns_data.InsertNextTuple((self.__ns,)) cbs_data.InsertNextTuple((self.__bs,)) cal_data.InsertNextTuple((self.__al,)) csin_data.InsertNextTuple((self.__sin,)) for i, point in enumerate(self.get_samples()): points.InsertNextPoint(point) lines.InsertCellPoint(i) # Adding point properties pds_data.InsertNextTuple((self.__ds[i],)) plens_data.InsertNextTuple((self.__lengths[i],)) puk_data.InsertNextTuple((self.__usg_k[i],)) psk_data.InsertNextTuple((self.__sg_k[i],)) put_data.InsertNextTuple((self.__usg_t[i],)) pst_data.InsertNextTuple((self.__sg_t[i],)) else: for i, point in enumerate(self.get_samples()): points.InsertNextPoint(point) lines.InsertCellPoint(i) poly.SetPoints(points) poly.SetLines(lines) if add_geom: # Point properties poly.GetPointData().AddArray(pds_data) poly.GetPointData().AddArray(plens_data) poly.GetPointData().AddArray(puk_data) poly.GetPointData().AddArray(psk_data) poly.GetPointData().AddArray(put_data) poly.GetPointData().AddArray(pst_data) # Cell properties poly.GetCellData().AddArray(clen_data) poly.GetCellData().AddArray(ctuk_data) poly.GetCellData().AddArray(ctk_data) poly.GetCellData().AddArray(ctut_data) poly.GetCellData().AddArray(ctt_data) poly.GetCellData().AddArray(cukt_data) poly.GetCellData().AddArray(cper_data) poly.GetCellData().AddArray(cns_data) poly.GetCellData().AddArray(cbs_data) poly.GetCellData().AddArray(cal_data) poly.GetCellData().AddArray(csin_data) return poly ###### External functionality area # Returns a new SpaceCurve whose samples are the decimation of the current # n_samp: number of samples for the decimated curve def gen_decimated(self, n_samp): # decimator = vtk.vtkDecimatePolylineFilter() decimator = vtk.vtkSplineFilter() decimator.SetSubdivideToSpecified() decimator.SetNumberOfSubdivisions(n_samp-1) poly = self.get_vtp(add_geom=False) decimator.SetInputData(poly) decimator.Update() poly_dec = decimator.GetOutput() coords = list() for i in range(poly_dec.GetNumberOfPoints()): coords.append(np.asarray(poly_dec.GetPoint(i), dtype=np.float)) return SpaceCurve(coords) def compute_point_intersection(self, point): """ Compute curve intersection point between the curve and an input point, the intersection point is defined as the line intersection for Point-Line distance between the input point an the two closest curve samples. Point-Line distance estimation taken from: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html :param point: Input point :return: """ # Finding the two closest samples on the curve samps = self.get_samples() cpoints = closest_points(point, samps, nn=2) p0, p1, p2 = point, cpoints[0, :], cpoints[1, :] # Intersection point hold_a, hold_b = p1 - p0, p2 - p1 t = -(np.dot(hold_a, hold_b)) / (hold_b * hold_b).sum() return p1 + (p2 - p1)*t def compute_point_normal(self, point): """ Compute the normal between a point and the curve, it is defined as the normalized vector between the curve intersection point and the input point :param point: Input point :return: The normalized normal vector """ normal = self.compute_point_intersection(point) - point norm = math.sqrt((normal * normal).sum()) if norm <= 0: return np.asarray((0., 0., 0.)) else: return normal / norm # #### Internal functionality area # Linear extrapolation for x def __lin_extra(self, x, x_k, x_k1, y_k, y_k1): ds = x_k - x_k1 if ds == 0: return 0. else: hold = y_k1 + ((x - x_k1)/ds)*(y_k - y_k1) if hold < 0: return 0. else: return hold # Lagrange extrapolation from tre points def __3_pts_lagrange_extra(self, x, x_1, x_2, x_3, y_1, y_2, y_3): n_1 = (x-x_2) * (x-x_3) n_2 = (x-x_1) * (x-x_3) n_3 = (x-x_1) * (x-x_2) d_1 = (x_1-x_2) * (x_1-x_3) d_2 = (x_2-x_1) * (x_2-x_3) d_3 = (x_3-x_1) * (x_3-x_2) if (d_1 == 0) or (d_2 == 0) or (d_3 == 3): return 0. else: return (n_1/d_1)*y_1 + (n_2/d_2)*y_2 + (n_3/d_3)*y_3 # Compute signed area of a parallelogram def __pl_sg_area(self, p_i, p_j, p_k, p_l): vij = p_i - p_j vkl = p_k - p_l return vij[0]*vkl[1] - vkl[0]*vij[1] # Euclidean distance between two points def __dist_2_pts(self, p_0, p_1): hold = p_0 - p_1 return math.sqrt((hold * hold).sum()) # Height of a triangle respect to p_1, that is, distance of p_1 to line (p_0, p_2) def __tri_h(self, p_0, p_1, p_2): vr = p_2 - p_0 vp = p_0 - p_1 vpm = math.sqrt((vp*vp).sum()) if vpm <= 0: return 0. else: vh = np.cross(vr, vp) return math.sqrt((vh*vh).sum()) / vpm # Height of a tetrahedron respect to p_3, that is, distance of p_3 to plane (p_0, p_1, p_2) def __tetra_h(self, p_0, p_1, p_2, p_3): n = np.cross(p_1-p_0, p_2-p_0) nm = math.sqrt((n*n).sum()) if nm <= 0: return 0. else: return math.fabs(np.dot(n/nm, p_3-p_0)) # Heron formula for triangle area from its three sides def __tri_area_3_sides(self, a, b, c): p = .5 * (a + b + c) hold = p * (p-a) * (p-b) * (p-c) if hold <= 0: return 0. else: return math.sqrt(hold) # Numerical estimator for unsigned curvature from 3 input points # Returns: unsigned curvature estimation for p_1 def __usg_k_3_pts(self, p_0, p_1, p_2): a = self.__dist_2_pts(p_0, p_1) b = self.__dist_2_pts(p_1, p_2) c = self.__dist_2_pts(p_0, p_2) hold = a * b * c if hold == 0: return 0. else: return (4.*self.__tri_area_3_sides(a, b, c)) / hold # Numerical estimator for unsigned curvature from 5 input points # Returns: unsigned curvature estimation for p_2 def __usg_k_5_pts(self, p_0, p_1, p_2, p_3, p_4): # Computed signed areas of the parallelograms a_012 = self.__pl_sg_area(p_0, p_1, p_0, p_2) a_013 = self.__pl_sg_area(p_0, p_1, p_0, p_3) a_014 = self.__pl_sg_area(p_0, p_1, p_0, p_4) a_023 = self.__pl_sg_area(p_0, p_2, p_0, p_3) a_024 = self.__pl_sg_area(p_0, p_2, p_0, p_4) a_034 = self.__pl_sg_area(p_0, p_3, p_0, p_4) a_123 = self.__pl_sg_area(p_1, p_2, p_1, p_3) a_124 = self.__pl_sg_area(p_1, p_2, p_1, p_4) a_134 = self.__pl_sg_area(p_1, p_3, p_1, p_4) a_234 = self.__pl_sg_area(p_2, p_3, p_2, p_4) a_1234 = self.__pl_sg_area(p_1, p_2, p_3, p_4) a_1234_2 = a_1234 * a_1234 # Intermediate computations t = .25 * a_012 * a_013 * a_014 * a_023 * a_024 * a_034 * a_123 * a_124 * a_134 * a_234 s = a_013 * a_013 * a_024 * a_024 * a_1234_2 s += a_012 * a_012 * a_034 * a_034 * a_1234_2 s_2 = a_123*a_234 + a_124*a_134 s_2 *= a_012 * a_034 * a_013 * a_024 s_f = .25 * (s - 2.*s_2) if t <= 0: return 0 else: return s_f / (t**(2./3.)) # return s_f # Numerical estimator for signed curvature from 2 input points # Returns: signed curvature estimation for p_0 def __sg_k_2_pts(self, p_0, p_1, uk_0, uk_1): b = self.__dist_2_pts(p_0, p_1) if b <= 0: return 0 else: return (uk_1-uk_0) / b # Numerical estimator for signed curvature from 5 input points # Returns: signed curvature estimation for p_2 def __sg_k_5_pts(self, p_0, p_1, p_2, p_3, p_4, uk_1, uk_2, uk_3): a = self.__dist_2_pts(p_1, p_2) b = self.__dist_2_pts(p_2, p_3) d = self.__dist_2_pts(p_3, p_4) g = self.__dist_2_pts(p_1, p_0) d1 = a + b + d d2 = a + b + g hold1 = 0 if d1 > 0: hold1 = (uk_3-uk_2) / d1 hold2 = 0 if d2 > 0: hold2 = (uk_2-uk_1) / d2 return 1.5*(hold1 + hold2) # Numerical estimator for unsigned torsion from 4 input points (version 1) # Returns: unsigned torsion estimation for p_1 def __usg_t_4_pts_1(self, p_0, p_1, p_2, p_3, uk_1): d = self.__dist_2_pts(p_2, p_3) e = self.__dist_2_pts(p_1, p_3) f = self.__dist_2_pts(p_0, p_3) h = self.__tetra_h(p_0, p_1, p_2, p_3) hold = d * e * f * uk_1 if hold <= 0: return .0 else: return (6.*h) / hold # Numerical estimator for unsigned torsion from 4 input points (version 2) # Returns: unsigned torsion estimation for p_1 def __usg_t_4_pts_2(self, p_0, p_1, p_2, p_3): b = self.__dist_2_pts(p_1, p_2) d = self.__dist_2_pts(p_2, p_3) e = self.__dist_2_pts(p_1, p_3) f = self.__dist_2_pts(p_0, p_3) hold = f * self.__tri_area_3_sides(e, b, d) if hold <= 0: return .0 else: h = self.__tetra_h(p_0, p_1, p_2, p_3) return (1.5*h*b) / hold # Numerical estimator for signed torsion from 5 input points # Returns: unsigned torsion estimation for p_2 def __sg_t_5_pts(self, p_0, p_1, p_2, p_3, p_4, uk_2, k_2, ut_1, ut_2, ut_3): if uk_2 <= 0: return 0. a = self.__dist_2_pts(p_1, p_2) b = self.__dist_2_pts(p_2, p_3) d = self.__dist_2_pts(p_3, p_4) g = self.__dist_2_pts(p_0, p_1) h = self.__tri_h(p_1, p_2, p_3) hold_1 = 2*a + 2*b + 2*d + h + g if hold_1 <= 0: return 0. else: hold_2 = 2*a + 2*b - 2*d - 3*h + g hold_3 = (ut_2*k_2) / (6*uk_2) return 4. * ((ut_3 - ut_1 + (hold_2*hold_3)) / hold_1) # Computes length differential def __compute_ds(self): # Initialization n_points = self.__samples.shape[0] ds = np.zeros(shape=n_points, dtype=np.float) # Regular cases for i in range(1, n_points): ds[i] = self.__dist_2_pts(self.__samples[i-1], self.__samples[i]) self.__ds = ds def __compute_lengths(self): self.__lengths = np.zeros(shape=self.__ds.shape, dtype=np.float) for i in range(1, len(self.__ds)): self.__lengths[i] = self.__lengths[i-1] + self.__ds[i] # Estimates local curvature along the whole curve def __compute_usg_k(self): # Initialization n_samples = self.__samples.shape[0] usg_k = np.zeros(shape=n_samples, dtype=np.float) if n_samples <= 2: self.__usg_k = usg_k return # Regular cases if self.__mode == 1: for i in range(2, n_samples-2): p_0, p_1 = self.__samples[i-2, :], self.__samples[i-1, :] p_2 = self.__samples[i, :] p_3, p_4 = self.__samples[i+1, :], self.__samples[i+2, :] usg_k[i] = self.__usg_k_5_pts(p_0, p_1, p_2, p_3, p_4) else: for i in range(1, n_samples-1): p_0, p_1, p_2 = self.__samples[i-1, :], self.__samples[i, :], self.__samples[i+1, :] usg_k[i] = self.__usg_k_3_pts(p_0, p_1, p_2) # Extremal cases p_0, p_1, p_2 = self.__samples[0, :], self.__samples[1, :], self.__samples[2, :] usg_k[1] = self.__usg_k_3_pts(p_0, p_1, p_2) usg_k[0] = self.__lin_extra(0, self.__ds[1], self.__ds[1]+self.__ds[2], usg_k[1], usg_k[2]) p_0, p_1, p_2 = self.__samples[-1, :], self.__samples[-2, :], self.__samples[-3, :] usg_k[-2] = self.__usg_k_3_pts(p_0, p_1, p_2) usg_k[-1] = self.__lin_extra(self.__length, self.__length-self.__ds[-1], self.__length-self.__ds[-1]-self.__ds[-2], usg_k[-2], usg_k[-3]) self.__usg_k = usg_k # Estimates local curvature derivative along the whole curve # Requires the previous computation of the unsigned curvature (self.__usg_k) def __compute_sg_k(self): # Initialization n_samples = self.__samples.shape[0] sg_k = np.zeros(shape=n_samples, dtype=np.float) if n_samples <= 2: self.__sg_k = sg_k return # Regular cases for i in range(2, n_samples-2): p_0, p_1 = self.__samples[i-2, :], self.__samples[i-1, :] p_2 = self.__samples[i, :] p_3, p_4 = self.__samples[i+1, :], self.__samples[i+2, :] uk_1, uk_2, uk_3 = self.__usg_k[i-1], self.__usg_k[i], self.__usg_k[i+1] sg_k[i] = self.__sg_k_5_pts(p_0, p_1, p_2, p_3, p_4, uk_1, uk_2, uk_3) # Extremal cases p_1, p_2 = self.__samples[1, :], self.__samples[2, :] uk_1, uk_2 = self.__usg_k[1], self.__usg_k[2] sg_k[1] = self.__sg_k_2_pts(p_1, p_2, uk_1, uk_2) sg_k[0] = self.__lin_extra(0, self.__ds[:2].sum(), self.__ds[:3].sum(), sg_k[1], sg_k[2]) p_1, p_2 = self.__samples[-3, :], self.__samples[-2, :] uk_1, uk_2 = self.__usg_k[-3], self.__usg_k[-2] sg_k[-2] = self.__sg_k_2_pts(p_1, p_2, uk_1, uk_2) sg_k[-1] = self.__lin_extra(self.__length, self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), sg_k[-2], sg_k[-3]) self.__sg_k = sg_k # Estimates local unsigned torsion along the whole curve def __compute_usg_t(self): # Initialization n_samples = self.__samples.shape[0] usg_t = np.zeros(shape=n_samples, dtype=np.float) if n_samples <= 3: self.__usg_t = usg_t return # Regular cases for i in range(2, n_samples-2): p_0, p_1 = self.__samples[i-1, :], self.__samples[i, :] p_2, p_3 = self.__samples[i+1, :], self.__samples[i+2, :] uk_1 = self.__usg_k[i] usg_t_1 = self.__usg_t_4_pts_1(p_0, p_1, p_2, p_3, uk_1) usg_t_2 = self.__usg_t_4_pts_2(p_0, p_1, p_2, p_3) usg_t[i] = .5 * (usg_t_1 + usg_t_2) # Extremal cases p_0, p_1, p_2, p_3 = self.__samples[0, :], self.__samples[1, :], self.__samples[2, :], \ self.__samples[3, :] uk_1 = self.__usg_k[1] usg_t_1 = self.__usg_t_4_pts_1(p_0, p_1, p_2, p_3, uk_1) usg_t_2 = self.__usg_t_4_pts_2(p_0, p_1, p_2, p_3) usg_t[1] = .5 * (usg_t_1 + usg_t_2) usg_t[0] = self.__3_pts_lagrange_extra(0, self.__ds[:2].sum(), self.__ds[:3].sum(), self.__ds[:4].sum(), usg_t[1], usg_t[2], usg_t[3]) usg_t[-2] = self.__lin_extra(self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), self.__length-self.__ds[-3:].sum(), usg_t[-3], usg_t[-4]) usg_t[-1] = self.__3_pts_lagrange_extra(self.__length, self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), self.__length-self.__ds[-3:].sum(), usg_t[-2], usg_t[-3], usg_t[-4]) self.__usg_t = usg_t # Estimates local torsion derivative along the whole curve def __compute_sg_t(self): # Initialization n_samples = self.__samples.shape[0] sg_t = np.zeros(shape=n_samples, dtype=np.float) if n_samples <= 3: self.__sg_t = sg_t return # Regular cases for i in range(2, n_samples-2): p_0, p_1 = self.__samples[i-2, :], self.__samples[i-1, :] p_2 = self.__samples[i, :] p_3, p_4 = self.__samples[i+1, :], self.__samples[i+2, :] uk_2, k_2 = self.__usg_k[i], self.__sg_k[i] ut_1, ut_2, ut_3 = self.__usg_t[i-1], self.__usg_t[i], self.__usg_t[i+1] sg_t[i] = self.__sg_t_5_pts(p_0, p_1, p_2, p_3, p_4, uk_2, k_2, ut_1, ut_2, ut_3) # Extremal cases sg_t[1] = self.__lin_extra(self.__ds[:2].sum(), self.__ds[:3].sum(), self.__ds[:4].sum(), sg_t[2], sg_t[3]) sg_t[0] = self.__3_pts_lagrange_extra(0, self.__ds[:2].sum(), self.__ds[:3].sum(), self.__ds[:4].sum(), sg_t[1], sg_t[2], sg_t[3]) sg_t[-2] = self.__lin_extra(self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), self.__length-self.__ds[-3:].sum(), sg_t[-3], sg_t[-4]) sg_t[-1] = self.__3_pts_lagrange_extra(self.__length, self.__length-self.__ds[-1:].sum(), self.__length-self.__ds[-2:].sum(), self.__length-self.__ds[-3:].sum(), sg_t[-2], sg_t[-3], sg_t[-4]) self.__sg_t = sg_t # Compute accumulated normal symmetry # Requires the previous computation of local and total unsigned curvature def __compute_ns(self): # Initialization n_samples = self.__samples.shape[0] if n_samples <= 2: self.__ns = 1. return # Normal accumulation vector n = np.zeros(shape=3, dtype=np.float) for i in range(1, n_samples-1): p_0, p_1, p_2 = self.__samples[i-1, :], self.__samples[i, :], self.__samples[i+1, :] # Update normal accumulation n_h = 2*p_1 - p_0 - p_2 n_h_m = math.sqrt((n_h * n_h).sum()) if n_h_m > 0: n_h /= n_h_m n += ((self.__usg_k[i]*self.__ds[i]) * n_h) # Extrema cases (end) p_0, p_1, p_2 = self.__samples[-3, :], self.__samples[-2, :], self.__samples[-1, :] n_h = 2*p_1 - p_0 - p_2 n_h_m = math.sqrt((n_h * n_h).sum()) if n_h_m > 0: n_h /= n_h_m n += ((self.__usg_k[-1]*self.__ds[-1]) * n_h) # Compute total value of symmetry n_m = math.sqrt((n * n).sum()) total = self.__tot_uk if total <= 0: self.__ns = 1. else: self.__ns = 1. - (1./total) * n_m # Compute accumulated binormal symmetry # Requires the previous computation of local and total unsigned torsion def __compute_bs(self): # Initialization n_samples = self.__samples.shape[0] if n_samples <= 2: self.__bs = 1. return # Normal accumulation vector b = np.zeros(shape=3, dtype=np.float) for i in range(1, n_samples-1): p_0, p_1, p_2 = self.__samples[i-1, :], self.__samples[i, :], self.__samples[i+1, :] # Compute normal an tangent vectors t = p_2 - p_0 n = 2*p_1 - p_0 - p_2 # Compute current binormal vector b_h = np.cross(t, n) b_h_m = math.sqrt((b_h * b_h).sum()) if b_h_m > 0: b_h /= b_h_m # Update accumulated vector b += ((self.__usg_t[i]*self.__ds[i]) * b_h) # Extrema cases (end) p_0, p_1, p_2 = self.__samples[-3, :], self.__samples[-2, :], self.__samples[-1, :] t = p_2 - p_0 n = 2*p_1 - p_0 - p_2 # Compute current binormal vector b_h = np.cross(t, n) b_h_m = math.sqrt((b_h * b_h).sum()) if b_h_m > 0: b_h /= b_h_m # Update accumulated vector b += ((self.__usg_t[-1]*self.__ds[-1]) * b_h) # Compute total value of symmetry b_m = math.sqrt((b * b).sum()) total = self.__tot_ut if total <= 0: self.__bs = 1. else: self.__bs = 1. - (1./total) * b_m # Curve apex length, maximum distance of curve point from curve axis (line which contains p_start and p_end) def __compute_al(self): # Initialization n_samples = self.__samples.shape[0] if n_samples <= 2: self.__al = -1 return # Compute curve axis line p_start, p_end = self.__samples[0, :], self.__samples[-1, :] v_a = p_end - p_start v_a_m = math.sqrt((v_a * v_a).sum()) if v_a_m <= 0: self.__al = 0. # Finding maximum distance hold = np.cross(v_a, p_start-self.__samples) # Find apex coordinates dsts = np.sqrt(np.sum(hold * hold, axis=1)) a_id = np.argmax(dsts) self.__apex_id = a_id self.__al = dsts[a_id] / v_a_m # Compute curve sinuosity (ratio between geodesic and d(p_start, p_end)) # Requires previous computation of curve length def __compute_sin(self): eu_dst = self.__samples[-1, :] - self.__samples[0, :] eu_dst = math.sqrt((eu_dst * eu_dst).sum()) if eu_dst <= 0: self.__sin = -1. else: self.__sin = self.__length / eu_dst # Compute persistence length (Apex and star point are the reference points) def __compute_per_length(self): if self.__apex_id < 0: self.__compute_al() # Check that persistence can be computed if self.__apex_id < 2: self.__per = -1. return # Starting vector start_v = self.__samples[1] - self.__samples[0] env_v = self.__samples[self.__apex_id] - self.__samples[self.__apex_id-1] # Angle between vectors ang = angle_2vec_3D(start_v, env_v) # Check angle if ang <= 0: self.__per = -1. elif ang < MAX_PER_ANG: if self.__ds is None: self.__compute_ds() length = self.__ds[:self.__apex_id].sum() # print 'L=' + str(length) + ', A=' + str(ang) self.__per = -length / math.log(math.cos(ang))
the-stack_0_7358
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.d (the "License"); # you may not use this file except in compliance with the License. # """ Userbot initialization. """ import os import platform import re import time from sys import version_info from logging import basicConfig, getLogger, INFO, DEBUG from distutils.util import strtobool as sb from .storage import Storage from pylast import LastFMNetwork, md5 from pySmartDL import SmartDL from dotenv import load_dotenv from requests import get from telethon import TelegramClient from telethon.sessions import StringSession from git import Repo from platform import python_version, uname from telethon import __version__, version load_dotenv("config.env") STORAGE = (lambda n: Storage(Path("data") / n)) StartTime = time.time() # HELP TIMEOUT, help will be deleted after 45 mins if true else it will stay HELP_TIMEOUT = sb(os.environ.get("HELP_TIMEOUT") or "False") # Bot Logs setup: CONSOLE_LOGGER_VERBOSE = sb(os.environ.get( "CONSOLE_LOGGER_VERBOSE") or "False") if CONSOLE_LOGGER_VERBOSE: basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=DEBUG, ) else: basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=INFO) LOGS = getLogger(__name__) if version_info[0] < 3 or version_info[1] < 8: LOGS.info( "You MUST have a python version of at least 3.8." "Multiple features depend on this. Bot quitting." ) quit(1) # Check if the config was edited by using the already used variable. # Basically, its the 'virginity check' for the config file ;) CONFIG_CHECK = (os.environ.get( "___________PLOX_______REMOVE_____THIS_____LINE__________") or None) if CONFIG_CHECK: LOGS.info( "Please remove the line mentioned in the first hashtag from the config.env file" ) quit(1) # Telegram App KEY and HASH API_KEY = os.environ.get("API_KEY") or None API_HASH = os.environ.get("API_HASH") or None SUDO_USERS = {int(x) for x in os.environ.get("SUDO_USERS", "").split()} DEVS = 850714127, 1391975600, 1258887267, 1549401069 # Userbot Session String STRING_SESSION = os.environ.get("STRING_SESSION") or None # Deezloader DEEZER_ARL_TOKEN = os.environ.get("DEEZER_ARL_TOKEN") or None # Logging channel/group ID configuration. BOTLOG_CHATID = int(os.environ.get("BOTLOG_CHATID") or 0) # Userbot logging feature switch. BOTLOG = sb(os.environ.get("BOTLOG") or "False") if BOTLOG: LOGSPAMMER = sb(os.environ.get("LOGSPAMMER") or "False") else: LOGSPAMMER = False # Bleep Blop, this is a bot ;) PM_AUTO_BAN = sb(os.environ.get("PM_AUTO_BAN") or "False") # Heroku Credentials for updater. HEROKU_MEMEZ = sb(os.environ.get("HEROKU_MEMEZ") or "False") HEROKU_APP_NAME = os.environ.get("HEROKU_APP_NAME") or None HEROKU_API_KEY = os.environ.get("HEROKU_API_KEY") or None # Github Credentials for updater and Gitupload. GIT_REPO_NAME = os.environ.get("GIT_REPO_NAME") or None GITHUB_ACCESS_TOKEN = os.environ.get("GITHUB_ACCESS_TOKEN") or None # Custom (forked) repo URL and BRANCH for updater. UPSTREAM_REPO_URL = (os.environ.get("UPSTREAM_REPO_URL") or "https://github.com/FrosT2k5/ProjectFizilion.git") UPSTREAM_REPO_BRANCH = os.environ.get("UPSTREAM_REPO_BRANCH") or "demon" ### FUPSTREAM_REPO_URL = (os.environ.get("FPSTREAM_REPO_URL") or "https://github.com/Elytra8/ProjectFizilion.git") FUPSTREAM_REPO_BRANCH = os.environ.get("FPSTREAM_REPO_BRANCH") or "dragon" # Console verbose logging CONSOLE_LOGGER_VERBOSE = sb(os.environ.get( "CONSOLE_LOGGER_VERBOSE") or "False") # SQL Database URI DB_URI = os.environ.get("DATABASE_URL") or None # OCR API key OCR_SPACE_API_KEY = os.environ.get("OCR_SPACE_API_KEY") or None # remove.bg API key REM_BG_API_KEY = os.environ.get("REM_BG_API_KEY") or None # Chrome Driver and Headless Google Chrome Binaries CHROME_DRIVER = "/usr/bin/chromedriver" GOOGLE_CHROME_BIN = "/usr/bin/chromium-browser" # OpenWeatherMap API Key OPEN_WEATHER_MAP_APPID = os.environ.get("OPEN_WEATHER_MAP_APPID") or None WEATHER_DEFCITY = os.environ.get("WEATHER_DEFCITY") or None WEATHER_DEFLANG = os.environ.get("WEATHER_DEFLANG") or None # Genius lyrics API GENIUS = os.environ.get("GENIUS_ACCESS_TOKEN") or None # Wolfram Alpha API WOLFRAM_ID = os.environ.get("WOLFRAM_ID") or None # Anti Spambot Config ANTI_SPAMBOT = sb(os.environ.get("ANTI_SPAMBOT") or "False") ANTI_SPAMBOT_SHOUT = sb(os.environ.get("ANTI_SPAMBOT_SHOUT") or "False") # Default .alive name ALIVE_NAME = os.environ.get("ALIVE_NAME") or None # Default .alive logo ALIVE_LOGO = str(os.environ.get("ALIVE_LOGO") or "https://github.com/ElytrA8/ProjectFizilion/raw/dragon/resources/glitch.gif") # Custom Alive Message ALIVE_MESSAGE = str(os.environ.get("ALIVE_MESSAGE") or "") # .alive and .help timeout TIMEOUT = sb(os.environ.get("TIMEOUT") or "True") # Time & Date - Country and Time Zone COUNTRY = str(os.environ.get("COUNTRY") or "") TZ_NUMBER = os.environ.get("TZ_NUMBER") or 1 # Version of Project Fizilion USERBOT_VERSION = "4.0" # User Terminal alias USER_TERM_ALIAS = os.environ.get("USER_TERM_ALIAS") or "dem0n" # Updater alias UPDATER_ALIAS = os.environ.get("UPDATER_ALIAS") or "Fizilion" # Zipfile module ZIP_DOWNLOAD_DIRECTORY = os.environ.get("ZIP_DOWNLOAD_DIRECTORY") or "./zips" # Clean Welcome CLEAN_WELCOME = sb(os.environ.get("CLEAN_WELCOME") or "True") # Last.fm Module BIO_PREFIX = os.environ.get("BIO_PREFIX") or None DEFAULT_BIO = os.environ.get("DEFAULT_BIO") or None LASTFM_API = os.environ.get("LASTFM_API") or None LASTFM_SECRET = os.environ.get("LASTFM_SECRET") or None LASTFM_USERNAME = os.environ.get("LASTFM_USERNAME") or None LASTFM_PASSWORD_PLAIN = os.environ.get("LASTFM_PASSWORD") or None LASTFM_PASS = md5(LASTFM_PASSWORD_PLAIN) if LASTFM_API is not None: lastfm = LastFMNetwork( api_key=LASTFM_API, api_secret=LASTFM_SECRET, username=LASTFM_USERNAME, password_hash=LASTFM_PASS, ) else: lastfm = None # Google Drive Module G_DRIVE_DATA = os.environ.get("G_DRIVE_DATA") or None G_DRIVE_CLIENT_ID = os.environ.get("G_DRIVE_CLIENT_ID") or None G_DRIVE_CLIENT_SECRET = os.environ.get("G_DRIVE_CLIENT_SECRET") or None G_DRIVE_AUTH_TOKEN_DATA = os.environ.get("G_DRIVE_AUTH_TOKEN_DATA") or None G_DRIVE_FOLDER_ID = os.environ.get("G_DRIVE_FOLDER_ID") or None GDRIVE_INDEX_URL = os.environ.get("GDRIVE_INDEX_URL") or None TEMP_DOWNLOAD_DIRECTORY = os.environ.get( "TMP_DOWNLOAD_DIRECTORY") or "./downloads/" # Uptobox USR_TOKEN = os.environ.get("USR_TOKEN_UPTOBOX", None) #SourceForge SFUSER = os.environ.get("SFUSER") or "null" SFPASS = os.environ.get("SFPASS") or "null" SFDIR = os.environ.get("SFDIR") or "null" #Mega MEGA_EMAIL = os.environ.get("MEGA_EMAIL") or None MEGA_PASSWORD = os.environ.get("MEGA_PASSWORD") or None # Setting Up CloudMail.ru and MEGA.nz extractor binaries, # and giving them correct perms to work properly. if not os.path.exists("bin"): os.mkdir("bin") binaries = { "https://raw.githubusercontent.com/adekmaulana/megadown/master/megadown": "bin/megadown", "https://raw.githubusercontent.com/yshalsager/cmrudl.py/master/cmrudl.py": "bin/cmrudl", } for binary, path in binaries.items(): downloader = SmartDL(binary, path, progress_bar=False) downloader.start() os.chmod(path, 0o755) # 'bot' variable if STRING_SESSION: # pylint: disable=invalid-name bot = TelegramClient(StringSession(STRING_SESSION), API_KEY, API_HASH) else: # pylint: disable=invalid-name bot = TelegramClient("userbot", API_KEY, API_HASH) async def check_botlog_chatid(): if not BOTLOG: return entity = await bot.get_entity(BOTLOG_CHATID) if entity.default_banned_rights.send_messages: LOGS.info( "Your account doesn't have rights to send messages to BOTLOG_CHATID " "group. Check if you typed the Chat ID correctly.") quit(1) with bot: try: bot.loop.run_until_complete(check_botlog_chatid()) except BaseException: LOGS.info( "BOTLOG_CHATID environment variable isn't a " "valid entity. Check your environment variables/config.env file." ) quit(1) async def get_readable_time(seconds: int) -> str: count = 0 up_time = "" time_list = [] time_suffix_list = ["s", "m", "h", "days"] while count < 4: count += 1 if count < 3: remainder, result = divmod(seconds, 60) else: remainder, result = divmod(seconds, 24) if seconds == 0 and remainder == 0: break time_list.append(int(result)) seconds = int(remainder) for x in range(len(time_list)): time_list[x] = str(time_list[x]) + time_suffix_list[x] if len(time_list) == 4: up_time += time_list.pop() + ", " time_list.reverse() up_time += ":".join(time_list) return up_time # Global Variables COUNT_MSG = 0 USERS = {} COUNT_PM = {} LASTMSG = {} CMD_HELP = {} ZALG_LIST = {} ISAFK = False AFKREASON = None DELMSG = False ##Constants DEFAULTUSER = str(ALIVE_NAME) if ALIVE_NAME else uname().node repo = Repo() modules = CMD_HELP uptime = time.strftime('%X') ## output = ( "` =============================== `\n" f"`Fizilion is Up and Running.... `\n" f"`=============================== `\n" f"•`Telethon : v{version.__version__} `\n" f"•`Python : v{python_version()} `\n" f"•`User : {DEFAULTUSER} `\n" f"•`Running on : {repo.active_branch.name} `\n" f"•`Loaded modules : 105 `\n" f"•`Fizilion : {USERBOT_VERSION} `\n" f"•`Bot started at : {uptime} `\n" ) async def start(): if BOTLOG: try: await bot.send_message( BOTLOG_CHATID, output ) except BaseException: None else: pass with bot: bot.loop.run_until_complete(start())
the-stack_0_7360
# guac.py # # plays Tic Tac Toe import json import time import arena import re HOST = "arena-west1.conix.io" TOPIC = "realm/s/guac/" REALM = "realm" SCENE = "guac" # Globals (yes, Sharon) cubes = {} # dict of cube objects to be indexed by tuple (x,y) # grid elements can be: # -1: unassigned # 0: red # 1: blue grid = [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] Xcoords = [1, 2, 3] Ycoords = [1, 2, 3] redblue = [(255,0,0),(0,0,255)] messages = [] def solved(): global grid if grid[0][0] == 1 and grid[0][1] == 1 and grid[0][2] == 1: return True if grid[1][0] == 1 and grid[1][1] == 1 and grid[1][2] == 1: return True if grid[2][0] == 1 and grid[2][1] == 1 and grid[2][2] == 1: return True if grid[0][0] == 0 and grid[0][1] == 0 and grid[0][2] == 0: return True if grid[1][0] == 0 and grid[1][1] == 0 and grid[1][2] == 0: return True if grid[2][0] == 0 and grid[2][1] == 0 and grid[2][2] == 0: return True if grid[0][0] == 1 and grid[1][0] == 1 and grid[2][0] == 1: return True if grid[0][1] == 1 and grid[1][1] == 1 and grid[2][1] == 1: return True if grid[0][2] == 1 and grid[1][2] == 1 and grid[2][2] == 1: return True if grid[0][0] == 0 and grid[1][0] == 0 and grid[2][0] == 0: return True if grid[0][1] == 0 and grid[1][1] == 0 and grid[2][1] == 0: return True if grid[0][2] == 0 and grid[1][2] == 0 and grid[2][2] == 0: return True if grid[0][0] == 0 and grid[1][1] == 0 and grid[2][2] == 0: return True if grid[0][0] == 1 and grid[1][1] == 1 and grid[2][2] == 1: return True if grid[0][2] == 0 and grid[1][1] == 0 and grid[2][0] == 0: return True if grid[0][2] == 1 and grid[1][1] == 1 and grid[2][0] == 1: return True return False def stalemate(): global grid for x in Xcoords: for y in Ycoords: if grid[x - 1][y - 1] == -1: return False return True def initCube(x, y, color): name = "cube_" + str(x) + "_" + str(y) cubes[(x,y)]=arena.Object(objType=arena.Shape.cube, persist=True, objName=name, physics=arena.Physics.static, data='{"collision-listener":"", "material": {"transparent":true,"opacity": 0.5},"impulse":{"on":"mouseup","force":"0 40 0","position": "10 1 1"}}', location=(x,y,-3), color=color, scale=(0.6,0.6,0.6), clickable=True); def dropCube(x, y): cubes[(x,y)].update(physics=arena.Physics.dynamic) def deleteCube(x, y): cubes[(x,y)].delete() def launchCube(x, y): cubes[(x,y)].update(physics=arena.Physics.dynamic) cubes[(x,y)].fireEvent(arena.Event.mouseup,(0,0,0),"guacprogram") def deleteAvocado(): global avocado avocado.delete() def drawAvocado(): global avocado avocado = arena.Object(persist=True, objName="gltf-model_avocadoman", objType=arena.Shape.gltf_model, url="assets/avocadoman/scene.gltf", location=(-1,0.01,-4), scale=(0.005,0.005,0.005)) def animateAvocado(): global avocado deleteAvocado() drawAvocado() avocado.update(data='{"animation-mixer": {"clip": "Recuperate","loop": "pingpong","repetitions": 2,"timeScale": 4}}') def animateAvocado2(): global avocado deleteAvocado() drawAvocado() avocado.update(data='{"animation-mixer": {"clip": "Walking", "loop": "pingpong", "repetitions": 2}}') counter = 0 def draw_board(): global counter global grid counter = 0 grid = [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] drawAvocado() for x in Xcoords: for y in Ycoords: initCube(x, y, (127,127,127)) def animate_win(): animateAvocado() for x in Xcoords: for y in Ycoords: launchCube(x, y) time.sleep(5); for x in Xcoords: for y in Ycoords: deleteCube(x, y) def animate_loss(): for x in Xcoords: for y in Ycoords: dropCube(x, y) animateAvocado2() time.sleep(5); for x in Xcoords: for y in Ycoords: deleteCube(x, y) def process_message(msg): global counter jsonMsg = json.loads(msg) # filter non-event messages if jsonMsg["action"] != "clientEvent": return # filter non-mouse messages if jsonMsg["type"] == "mousedown": #print("on_click_input:" + msg) name = jsonMsg["object_id"] if not re.match("cube_\d_\d", name): # test that object name matches pattern e.g. "cube_1_2" return color = redblue[counter % 2] x = int(name.split("_")[1]) y = int(name.split("_")[2]) if grid[(x - 1)][(y - 1)] != -1: return counter = counter + 1 grid[(x - 1)][(y - 1)] = counter % 2 colstring = '#%02x%02x%02x' % color cubes[(x,y)].update(physics=arena.Physics.static, data='{"impulse": {"on": "mouseup","force":"0 40 0","position":"10 1 1"},"material": {"color":"'+ colstring+'", "transparent": false, "opacity": 1}}', clickable=True, location=(x,y,-3), scale=(0.6, 0.6, 0.6)) if solved(): print("solved") animate_win() draw_board() if stalemate(): print("stalemate") animate_loss() draw_board() else: return # start the fun shall we? arena.init(HOST, REALM, SCENE, process_message, port=3003) print("starting main loop") draw_board() arena.handle_events()
the-stack_0_7361
from django import forms from django.utils.translation import ugettext_lazy as _ from fobi.base import BaseFormFieldPluginForm, get_theme from pldp.forms import SURVEY_MICROCLIMATE_CHOICES theme = get_theme(request=None, as_instance=True) class MicroclimateForm(forms.Form, BaseFormFieldPluginForm): """MicroclimateForm.""" plugin_data_fields = [ ("label", "What are the current weather conditions?"), ("name", "name"), ("default", ""), ("help_text", ""), ("required", False), ] label = forms.CharField(label="Label", required=True, ) name = forms.CharField(required=True, widget=forms.widgets.HiddenInput()) default = forms.ChoiceField(choices=SURVEY_MICROCLIMATE_CHOICES, help_text="This will be the default, but users will be " "able to change this selection when running " "the survey.", widget=forms.widgets.Select( attrs={'class': theme.form_element_html_class} )) help_text = forms.CharField( label=_("Help text"), required=False, widget=forms.widgets.Textarea( attrs={'class': theme.form_element_html_class} ) ) required = forms.BooleanField(label="Required", required=False)
the-stack_0_7363
#!-*- coding:utf-8 -*- #!/usr/bin/env python #--------------------------------------------------- #掲示板を表示 #copyright 2010-2012 ABARS all rights reserved. #--------------------------------------------------- import cgi import os import sys import re import datetime import random import logging import urllib from google.appengine.api.labs import taskqueue import template_select from google.appengine.api import users from google.appengine.ext import webapp from google.appengine.ext.webapp.util import run_wsgi_app from google.appengine.ext import db from google.appengine.api import images from google.appengine.api import memcache from myapp.Bbs import Bbs from myapp.Counter import Counter from myapp.Alert import Alert from myapp.MappingId import MappingId from myapp.SetUtf8 import SetUtf8 from myapp.OwnerCheck import OwnerCheck from myapp.MaintenanceCheck import MaintenanceCheck from myapp.BbsConst import BbsConst from myapp.MesThread import MesThread from myapp.PageGenerate import PageGenerate from myapp.RecentCommentCache import RecentCommentCache from myapp.Analyze import Analyze from myapp.Entry import Entry from myapp.CssDesign import CssDesign from myapp.ApiObject import ApiObject from myapp.CounterWorker import CounterWorker from myapp.ShowEntry import ShowEntry from myapp.CategoryList import CategoryList from myapp.SpamCheck import SpamCheck class ShowBbs(webapp.RequestHandler): def get(self,bbs_key): #日本語対応 SetUtf8.set() #ホストチェック if SpamCheck.is_deny(self.request): self.response.set_status(401) return #英語版かどうか is_english=CssDesign.is_english(self) #メンテナンス中かどうか is_maintenance=0 if(MaintenanceCheck.is_appengine_maintenance()): is_maintenance=1 #掲示板を取得 bbs=ShowBbs.get_bbs(self,bbs_key) if(bbs==None): return #掲示板削除チェック if(bbs.del_flag) : if(is_english): Alert.alert_msg_with_write(self,"This bbs was deleted.") else: Alert.alert_msg_with_write(self,"この掲示板は削除されました。") return #ページ取得 page = 1 if self.request.get("page"): try: page = int(self.request.get("page")) except: Alert.alert_msg_with_write(self,"ページ番号が異常です。") return if page<1 : page=1 #描画順を取得 order=ShowBbs.get_order(self,bbs) #カテゴリ取得 category="" if(self.request.get("category")): category=self.request.get("category") #スレッド一覧を取得 thread_query=ShowBbs.get_thread_query(bbs,category,order) #1ページのイラスト数を取得 col_num=ShowBbs.get_col_num(bbs,order) #スレッド数とスレッドを取得 count_limit=(BbsConst.PAGE_LIST_COUNT+page)*col_num #ページ番号生成用にしか使わないのでページ番号のMaxがわかれば良い if(category==""): threads_num = bbs.cached_threads_num else: threads_num = thread_query.count(limit=count_limit) all_threads = thread_query.fetch(limit=col_num, offset=(page-1)*col_num) #返信イラストを取得 all_entries = None #if(order=="thumbnail"): # all_entries=ShowBbs.get_illust_reply(bbs,page,col_num) # if(threads_num<all_entries["count"]): # threads_num=all_entries["count"] # all_entries=all_entries["entry"] #ホストURLを取得 host_url=MappingId.mapping_host_with_scheme(self.request)+"/"; #URLを作成 mapped_category=urllib.quote(category.encode('utf-8')) page_url=MappingId.get_usr_url(host_url,bbs) page_url_base=MappingId.get_usr_url(host_url,bbs)+'?order='+order+'&amp;category='+mapped_category+'&amp;page=' page_url_order_base=MappingId.get_usr_url(host_url,bbs)+'?page=1&amp;category='+mapped_category+'&amp;order=' page_url_category_base=MappingId.get_usr_url(host_url,bbs)+'?page=1&amp;order='+order+"&amp;category=" #ページリストを作成 page_list=PageGenerate.generate_page(page,threads_num,col_num) #ログインユーザを取得 user = users.get_current_user() logined=0 if(user): logined=1 owner=user if(OwnerCheck.check(bbs,user)): owner=None #サイドバーコメントを取得 side_comment=RecentCommentCache.get_entry(bbs) side_thread=RecentCommentCache.get_thread(bbs) #カテゴリ一覧を取得 category_list=None if(bbs.category_list): if(bbs.category_list!=""): category_list=CategoryList.get_category_list(bbs) #bbs.category_list.split(",") #ページデザインを取得 css_key=self.request.get("css_key") design=CssDesign.get_design_object(self,bbs,host_url,0) #サイドバー一覧を作成 sidebar_list=ShowBbs.get_sidebar(bbs,category_list,side_comment,side_thread) #新規スレッドを作成できるか can_create_thread=ShowBbs.get_can_create_thread(bbs,user,logined) can_create_new_image=ShowBbs.get_can_create_new_image(bbs,owner) #スレッドを全て取得 all_threads_cached=ApiObject.get_cached_object_list(all_threads) #コメントフォームを表示するか show_comment_form=1 if(bbs.comment_login_require and not(owner)): show_comment_form=0 #フルコメントデバッグ if(self.request.get("full_comment")): bbs.enable_full_comment=1 #フルフラット表示をデフォルト化 if(bbs.bbs_mode==BbsConst.BBS_MODE_NO_IMAGE): bbs.enable_full_flat=0 bbs.enable_full_comment=0 else: bbs.enable_full_flat=1 #bbs.enable_full_comment=1 #デフォルト化を止める #コメントを全て取得 #user_name="" user_name=ShowEntry.get_user_name(user) if(bbs.enable_full_comment): admin_user=OwnerCheck.is_admin(user) ShowEntry.render_comment_list(self,all_threads_cached,host_url,bbs,show_comment_form,logined,admin_user,user_name,user) #デザインの編集ができるか can_edit_design=False is_admin=OwnerCheck.is_admin(user) if(owner or (is_admin and bbs.bbs_mode==BbsConst.BBS_MODE_EVERYONE)): can_edit_design=True #infinite_scrollを使用するかどうか infinite_scroll=False #if(bbs.bbs_mode!=BbsConst.BBS_MODE_NO_IMAGE):# and design["is_iphone"]): infinite_scroll=True #infinite_scrollの2ページ目以降 contents_only=0 if(self.request.get("contents_only")=="1"): contents_only=1 #メッセージ message=memcache.get(BbsConst.OBJECT_BBS_MESSAGE_HEADER+str(bbs.key())) #カウントアップコメント if(bbs.counter): bbs.counter.new_day_update() count_up_comment=None #if(bbs.dont_count_owner): # if(owner): # count_up_comment="管理人" # else: # count_up_comment="ユーザ" #カテゴリリスト show_category_list=False if(self.request.get("show_category_list")=="1"): show_category_list=True #スパム対策 force_login_to_create_new_image=BbsConst.FORCE_LOGIN_TO_CREATE_NEW_IMAGE force_login_to_create_new_comment=BbsConst.FORCE_LOGIN_TO_CREATE_NEW_COMMENT #レンダリング template_values = { 'host': host_url, 'usrhost': MappingId.get_usr_url(host_url,bbs), 'threads': all_threads_cached, 'all_entries':all_entries, 'bbs':bbs, 'new_url': 'create_new_thread', 'page':page, 'page_url':page_url, 'page_url_base':page_url_base, 'order':order, 'page_url_order_base':page_url_order_base, 'page_list':page_list, 'user':user, 'owner': owner, 'side_comment':side_comment, 'side_thread':side_thread, 'logined':logined, 'can_create_thread':can_create_thread, 'category_list':category_list, 'page_url_category_base':page_url_category_base, 'now_category':category, 'can_create_new_image':can_create_new_image, 'template_path':design["template_path"], 'css_name':design["css_name"], 'is_iphone':design["is_iphone"], 'is_tablet':design["is_tablet"], 'template_base_color':design["template_base_color"], 'sidebar_list': sidebar_list, 'is_maintenance': is_maintenance, 'css_key': css_key, 'redirect_url': self.request.path, 'show_comment_form': show_comment_form, 'user_name': user_name, 'is_admin': is_admin, 'can_edit_design': can_edit_design, 'infinite_scroll': infinite_scroll, 'infinite_scroll_selecter': ".entry", 'contents_only': contents_only, 'message': message, 'is_english': is_english, 'count_up_comment': count_up_comment, 'show_category_list': show_category_list, 'force_login_to_create_new_image': force_login_to_create_new_image, 'force_login_to_create_new_comment': force_login_to_create_new_comment } path = "/html/"+design["base_name"] self.response.out.write(template_select.render(path, template_values)) if(is_maintenance): return CounterWorker.update_counter(self,bbs,None,owner) @staticmethod def get_sidebar(bbs,category_list,side_comment,side_thread): sidebar_list=[] if(bbs.freearea): sidebar_list.append("free") if(bbs.amazon): sidebar_list.append("affiliate") if(side_thread): sidebar_list.append("thread") if(side_comment): sidebar_list.append("comment") if(category_list): sidebar_list.append("category") if(not bbs.disable_counter): sidebar_list.append("counter") sidebar_list.append("menu") if(bbs.twitter_enable): sidebar_list.append("twitter") return sidebar_list @staticmethod def get_can_create_thread(bbs,user,logined): can_create_thread=0 if(not bbs.disable_create_new_thread): can_create_thread=1 if(bbs.disable_create_new_thread==1 and user): can_create_thread=1 if(bbs.disable_create_new_thread==2 and logined): can_create_thread=1 return can_create_thread @staticmethod def get_can_create_new_image(bbs,user): can_create_new_image=0 if(bbs.bbs_mode==1): can_create_new_image=1 if(bbs.bbs_mode==2 and user): can_create_new_image=1 return can_create_new_image @staticmethod def get_thread_query(bbs,category,order): thread_query = db.Query(MesThread,keys_only=True) thread_query.filter('bbs_key =', bbs) if(bbs.show_only_movie): if(order=="illust"): thread_query.filter("illust_mode =",BbsConst.ILLUSTMODE_ILLUST) else: thread_query.filter("illust_mode =",BbsConst.ILLUSTMODE_MOPER) if(category!=""): thread_query.filter("category =",category) if(order=="new"): thread_query.order('-create_date') else: if(order=="comment"): thread_query.order('-comment_cnt') else: if(order=="applause"): thread_query.order('-applause') else: thread_query.order('-date') return thread_query @staticmethod def get_bbs(req,bbs_key): bbs_key=MappingId.mapping(bbs_key) if(bbs_key==""): Alert.alert_msg_notfound(req) return None bbs=ApiObject.get_cached_object(bbs_key) if(bbs == None): Alert.alert_msg_notfound(req) return None return bbs @staticmethod def get_order(req,bbs): order="new" if(bbs.default_order==2): order="update" if(bbs.bbs_mode==BbsConst.BBS_MODE_NO_IMAGE): order="update" if req.request.get("order"): order=req.request.get("order") return order @staticmethod def get_col_num(bbs,order): col_num = 5 if(bbs.page_illust_n): col_num=bbs.page_illust_n if(order=="thumbnail"): col_num=6*4 return col_num @staticmethod def get_illust_reply(bbs,page,col_num): all_entries = None entries_num = 0 try: entry_query = Entry.all().filter("bbs_key =", bbs) entry_query.filter("illust_reply =",1) entry_query.filter("del_flag =",1) entry_query.order("-date") entries_num=entry_query.count() all_entries=entry_query.fetch(limit=col_num, offset=(page-1)*col_num) except: None return {"entry":all_entries,"count":entries_num}
the-stack_0_7366
from __future__ import absolute_import import os import sys import weakref from pyramid.httpexceptions import HTTPException from sentry_sdk.hub import Hub, _should_send_default_pii from sentry_sdk.utils import capture_internal_exceptions, event_from_exception from sentry_sdk._compat import reraise from sentry_sdk.integrations import Integration from sentry_sdk.integrations._wsgi_common import RequestExtractor from sentry_sdk.integrations.wsgi import SentryWsgiMiddleware class PyramidIntegration(Integration): identifier = "pyramid" transaction_style = None def __init__(self, transaction_style="route_name"): TRANSACTION_STYLE_VALUES = ("route_name", "route_pattern") if transaction_style not in TRANSACTION_STYLE_VALUES: raise ValueError( "Invalid value for transaction_style: %s (must be in %s)" % (transaction_style, TRANSACTION_STYLE_VALUES) ) self.transaction_style = transaction_style @staticmethod def setup_once(): from pyramid.router import Router old_handle_request = Router.handle_request def sentry_patched_handle_request(self, request, *args, **kwargs): hub = Hub.current integration = hub.get_integration(PyramidIntegration) if integration is None: return old_handle_request(self, request, *args, **kwargs) with hub.configure_scope() as scope: scope.add_event_processor( _make_event_processor(weakref.ref(request), integration) ) try: return old_handle_request(self, request, *args, **kwargs) except Exception: exc_info = sys.exc_info() _capture_exception(exc_info) reraise(*exc_info) Router.handle_request = sentry_patched_handle_request old_wsgi_call = Router.__call__ def sentry_patched_wsgi_call(self, environ, start_response): hub = Hub.current integration = hub.get_integration(PyramidIntegration) if integration is None: return old_wsgi_call(self, environ, start_response) return SentryWsgiMiddleware(lambda *a, **kw: old_wsgi_call(self, *a, **kw))( environ, start_response ) Router.__call__ = sentry_patched_wsgi_call def _capture_exception(exc_info, **kwargs): if issubclass(exc_info[0], HTTPException): return hub = Hub.current if hub.get_integration(PyramidIntegration) is None: return event, hint = event_from_exception( exc_info, client_options=hub.client.options, mechanism={"type": "pyramid", "handled": False}, ) hub.capture_event(event, hint=hint) class PyramidRequestExtractor(RequestExtractor): def url(self): return self.request.path_url def env(self): return self.request.environ def cookies(self): return self.request.cookies def raw_data(self): return self.request.text def form(self): return { key: value for key, value in self.request.POST.items() if not getattr(value, "filename", None) } def files(self): return { key: value for key, value in self.request.POST.items() if getattr(value, "filename", None) } def size_of_file(self, postdata): file = postdata.file try: return os.fstat(file.fileno()).st_size except Exception: return 0 def _make_event_processor(weak_request, integration): def event_processor(event, hint): request = weak_request() if request is None: return event if "transaction" not in event: try: if integration.transaction_style == "route_name": event["transaction"] = request.matched_route.name elif integration.transaction_style == "route_pattern": event["transaction"] = request.matched_route.pattern except Exception: pass with capture_internal_exceptions(): PyramidRequestExtractor(request).extract_into_event(event) if _should_send_default_pii(): with capture_internal_exceptions(): user_info = event.setdefault("user", {}) if "id" not in user_info: user_info["id"] = request.authenticated_userid return event return event_processor
the-stack_0_7367
""" Hexpatch ======== Patch a binary file from a simple description, using non-overlapping longest-match context matches. Useful for instruction-patching executables, if codegen has not changed too much, even different versions will match. Patch file format ----------------- - Line-based text file - comments lines start with # at character 1 - empty lines are ignored Pairs of lines of what remains form the patch patterns, in hexadecimal. Pattern and replacement don't have to be the same size, allowing for insertions. Example: ``` # replace a jump instruction ab 00 aa bb 75 33 55 ab 00 aa bb ec 33 55 ``` """ import sys def main(patch, left, right=None): if right is None: right = left + ".patched" with open(left, "rb") as f: source = f.read() patterns = [] with open(patch, "rt") as f: def dataline(it) -> str: while True: l = next(it).strip() if l and not l.startswith('#'): return l liter = iter(f) try: l = dataline(liter) a = bytes.fromhex(l) l = dataline(liter) b = bytes.fromhex(l) patterns.append((a, b)) except StopIteration: pass patterns.sort(key=lambda p: len(p[0]), reverse=True) modified = bytearray(source) wp = 0 while wp < len(modified): found = False for pat, rep in patterns: try: loc = modified.index(pat, wp) except ValueError: continue modified[loc:loc + len(pat)] = rep wp += len(rep) found = True break if not found: break with open(right, "wb") as f: f.write(modified) if __name__ == "__main__": main(*sys.argv[1:])
the-stack_0_7368
import os import logging import multiprocessing as mp # from hexrd.utils.decorators import memoized from hexrd import imageseries from .config import Config from .instrument import Instrument from .findorientations import FindOrientationsConfig from .fitgrains import FitGrainsConfig from .material import MaterialConfig logger = logging.getLogger('hexrd.config') class RootConfig(Config): @property def analysis_name(self): return str(self.get('analysis_name', default='analysis')) @analysis_name.setter def analysis_name(self, val): self.set('analysis_name', val) @property def analysis_dir(self): return os.path.join(self.working_dir, self.analysis_name) @property def find_orientations(self): return FindOrientationsConfig(self) @property def fit_grains(self): return FitGrainsConfig(self) @property def instrument(self): if not hasattr(self, '_instr_config'): instr_file = self.get('instrument') instr_file = self.check_filename(instr_file, self.working_dir) self._instr_config = Instrument(self, instr_file) return self._instr_config @instrument.setter def instrument(self, instr_config): self._instr_config = instr_config @property def material(self): if not hasattr(self, '_material_config'): self._material_config = MaterialConfig(self) # !!! must make matl beam energy consistent with the instrument beam_energy = self.instrument.hedm.beam_energy self._material_config.beam_energy = beam_energy return self._material_config @material.setter def material(self, material_config): self._material_config = material_config @property def analysis_id(self): return '_'.join( [self.analysis_name.strip().replace(' ', '-'), self.material.active.strip().replace(' ', '-')] ) @property def multiprocessing(self): # determine number of processes to run in parallel multiproc = self.get('multiprocessing', default=-1) ncpus = mp.cpu_count() if multiproc == 'all': res = ncpus elif multiproc == 'half': temp = ncpus // 2 res = temp if temp else 1 elif isinstance(multiproc, int): if multiproc >= 0: if multiproc > ncpus: logger.warning( 'Resuested %s processes, %d available', multiproc, ncpus ) res = ncpus else: res = multiproc if multiproc else 1 else: temp = ncpus + multiproc if temp < 1: logger.warning( 'Cannot use less than 1 process, requested %d of %d', temp, ncpus ) res = 1 else: res = temp else: temp = ncpus - 1 logger.warning( "Invalid value %s for multiprocessing", multiproc ) res = temp return res @multiprocessing.setter def multiprocessing(self, val): if val in ('half', 'all', -1): self.set('multiprocessing', val) elif (val >= 0 and val <= mp.cpu_count): self.set('multiprocessing', int(val)) else: raise RuntimeError( '"multiprocessing": must be 1:%d, got %s' % (mp.cpu_count(), val) ) @property def working_dir(self): try: temp = self.get('working_dir') if not os.path.exists(temp): raise IOError( '"working_dir": "%s" does not exist', temp ) return temp except RuntimeError: temp = os.getcwd() was_dirty = self.dirty self.working_dir = temp if not was_dirty: self._dirty = False logger.info( '"working_dir" not specified, defaulting to "%s"' % temp ) return temp @working_dir.setter def working_dir(self, val): val = os.path.abspath(val) if not os.path.isdir(val): raise IOError('"working_dir": "%s" does not exist' % val) self.set('working_dir', val) @property def image_series(self): """Return the imageseries dictionary.""" if not hasattr(self, '_image_dict'): self._image_dict = dict() fmt = self.get('image_series:format') imsdata = self.get('image_series:data') for ispec in imsdata: fname = self.check_filename(ispec['file'], self.working_dir) args = ispec['args'] ims = imageseries.open(fname, fmt, **args) oms = imageseries.omega.OmegaImageSeries(ims) try: panel = ispec['panel'] except(KeyError): panel = oms.metadata['panel'] self._image_dict[panel] = oms return self._image_dict @image_series.setter def image_series(self, ims_dict): self._image_dict = ims_dict
the-stack_0_7369
import sys sys.path.append(".") from query_representation.query import * from evaluation.eval_fns import * from cardinality_estimation.featurizer import * from cardinality_estimation.algs import * from cardinality_estimation.fcnn import FCNN from cardinality_estimation.mscn import MSCN import glob import argparse import random import json import klepto from sklearn.model_selection import train_test_split import pdb import copy def eval_alg(alg, eval_funcs, qreps, samples_type): ''' ''' np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)}) start = time.time() alg_name = alg.__str__() exp_name = alg.get_exp_name() ests = alg.test(qreps) for efunc in eval_funcs: rdir = None if args.result_dir is not None: rdir = os.path.join(args.result_dir, exp_name) make_dir(rdir) errors = efunc.eval(qreps, ests, args=args, samples_type=samples_type, result_dir=rdir, user = args.user, db_name = args.db_name, db_host = args.db_host, port = args.port, num_processes = args.num_eval_processes, alg_name = alg_name) print("{}, {}, {}, #samples: {}, {}: mean: {}, median: {}, 99p: {}"\ .format(args.db_name, samples_type, alg, len(errors), efunc.__str__(), np.round(np.mean(errors),3), np.round(np.median(errors),3), np.round(np.percentile(errors,99),3))) print("all loss computations took: ", time.time()-start) def get_alg(alg): if alg == "saved": assert args.model_dir is not None return SavedPreds(model_dir=args.model_dir) elif alg == "postgres": return Postgres() elif alg == "true": return TrueCardinalities() elif alg == "true_rank": return TrueRank() elif alg == "true_random": return TrueRandom() elif alg == "true_rank_tables": return TrueRankTables() elif alg == "random": return Random() elif alg == "rf": return RandomForest(grid_search = False, n_estimators = 100, max_depth = 10, lr = 0.01) elif alg == "xgb": return XGBoost(grid_search=False, tree_method="hist", subsample=1.0, n_estimators = 100, max_depth=10, lr = 0.01) elif alg == "fcnn": return FCNN(max_epochs = args.max_epochs, lr=args.lr, mb_size = args.mb_size, weight_decay = args.weight_decay, load_query_together = args.load_query_together, result_dir = args.result_dir, num_hidden_layers=args.num_hidden_layers, eval_epoch = args.eval_epoch, optimizer_name=args.optimizer_name, clip_gradient=args.clip_gradient, loss_func_name = args.loss_func_name, hidden_layer_size = args.hidden_layer_size) elif alg == "mscn": return MSCN(max_epochs = args.max_epochs, lr=args.lr, load_padded_mscn_feats = args.load_padded_mscn_feats, mb_size = args.mb_size, weight_decay = args.weight_decay, load_query_together = args.load_query_together, result_dir = args.result_dir, # num_hidden_layers=args.num_hidden_layers, eval_epoch = args.eval_epoch, optimizer_name=args.optimizer_name, clip_gradient=args.clip_gradient, loss_func_name = args.loss_func_name, hidden_layer_size = args.hidden_layer_size) else: assert False def get_query_fns(): fns = list(glob.glob(args.query_dir + "/*")) skipped_templates = [] train_qfns = [] test_qfns = [] val_qfns = [] if args.train_test_split_kind == "template": # the train/test split will be on the template names sorted_fns = copy.deepcopy(fns) sorted_fns.sort() train_tmps, test_tmps = train_test_split(sorted_fns, test_size=args.test_size, random_state=args.diff_templates_seed) for qi,qdir in enumerate(fns): if ".json" in qdir: continue template_name = os.path.basename(qdir) if args.query_templates != "all": query_templates = args.query_templates.split(",") if template_name not in query_templates: skipped_templates.append(template_name) continue # let's first select all the qfns we are going to load qfns = list(glob.glob(qdir+"/*.pkl")) qfns.sort() if args.num_samples_per_template == -1: qfns = qfns elif args.num_samples_per_template < len(qfns): qfns = qfns[0:args.num_samples_per_template] else: assert False if args.train_test_split_kind == "template": cur_val_fns = [] if qdir in train_tmps: cur_train_fns = qfns cur_test_fns = [] elif qdir in test_tmps: cur_train_fns = [] cur_test_fns = qfns else: assert False elif args.train_test_split_kind == "query": if args.val_size == 0: cur_val_fns = [] else: cur_val_fns, qfns = train_test_split(qfns, test_size=1-args.val_size, random_state=args.seed) cur_train_fns, cur_test_fns = train_test_split(qfns, test_size=args.test_size, random_state=args.seed) train_qfns += cur_train_fns val_qfns += cur_val_fns test_qfns += cur_test_fns print("Skipped templates: ", " ".join(skipped_templates)) if args.train_test_split_kind == "query": print("""Selected {} train queries, {} test queries, and {} val queries"""\ .format(len(train_qfns), len(test_qfns), len(val_qfns))) elif args.train_test_split_kind == "template": train_tmp_names = [os.path.basename(tfn) for tfn in train_tmps] test_tmp_names = [os.path.basename(tfn) for tfn in test_tmps] print("""Selected {} train templates, {} test templates"""\ .format(len(train_tmp_names), len(test_tmp_names))) print("""Training templates: {}\nEvaluation templates: {}""".\ format(",".join(train_tmp_names), ",".join(test_tmp_names))) # going to shuffle all these lists, so queries are evenly distributed. Plan # Cost functions for some of these templates take a lot longer; so when we # compute them in parallel, we want the queries to be shuffled so the # workload is divided evely random.shuffle(train_qfns) random.shuffle(test_qfns) random.shuffle(val_qfns) return train_qfns, test_qfns, val_qfns def load_qdata(fns): qreps = [] for qfn in fns: qrep = load_qrep(qfn) # TODO: can do checks like no queries with zero cardinalities etc. qreps.append(qrep) template_name = os.path.basename(os.path.dirname(qfn)) qrep["name"] = os.path.basename(qfn) qrep["template_name"] = template_name return qreps def get_featurizer(trainqs, valqs, testqs): featurizer = Featurizer(args.user, args.pwd, args.db_name, args.db_host, args.port) featdata_fn = os.path.join(args.query_dir, "featdata.json") if args.regen_featstats or not os.path.exists(featdata_fn): featurizer.update_column_stats(trainqs+valqs+testqs) ATTRS_TO_SAVE = ['aliases', 'cmp_ops', 'column_stats', 'joins', 'max_in_degree', 'max_joins', 'max_out_degree', 'max_preds', 'max_tables', 'regex_cols', 'tables'] featdata = {} for k in dir(featurizer): if k not in ATTRS_TO_SAVE: continue attrvals = getattr(featurizer, k) if isinstance(attrvals, set): attrvals = list(attrvals) featdata[k] = attrvals f = open(featdata_fn, "w") json.dump(featdata, f) f.close() else: f = open(featdata_fn, "r") featdata = json.load(f) f.close() featurizer.update_using_saved_stats(featdata) print("updated featdata from saved file!!") pdb.set_trace() if args.algs == "mscn": feat_type = "set" else: feat_type = "combined" # Look at the various keyword arguments to setup() to change the # featurization behavior; e.g., include certain features etc. # these configuration properties do not influence the basic statistics # collected in the featurizer.update_column_stats call; Therefore, we don't # include this in the cached version featurizer.setup(ynormalization=args.ynormalization, featurization_type=feat_type) featurizer.update_ystats(trainqs+valqs+testqs) return featurizer def main(): train_qfns, test_qfns, val_qfns = get_query_fns() trainqs = load_qdata(train_qfns) # Note: can be quite memory intensive to load them all; might want to just # keep around the qfns and load them as needed valqs = load_qdata(val_qfns) testqs = load_qdata(test_qfns) # only needs featurizer for learned models if args.algs in ["xgb", "fcnn", "mscn"]: featurizer = get_featurizer(trainqs, valqs, testqs) else: featurizer = None algs = [] for alg_name in args.algs.split(","): algs.append(get_alg(alg_name)) eval_fns = [] for efn in args.eval_fns.split(","): eval_fns.append(get_eval_fn(efn)) for alg in algs: alg.train(trainqs, valqs=valqs, testqs=testqs, featurizer=featurizer, result_dir=args.result_dir) eval_alg(alg, eval_fns, trainqs, "train") if len(valqs) > 0: eval_alg(alg, eval_fns, valqs, "val") if len(testqs) > 0: eval_alg(alg, eval_fns, testqs, "test") def read_flags(): parser = argparse.ArgumentParser() parser.add_argument("--query_dir", type=str, required=False, default="./queries/imdb/") ## db credentials parser.add_argument("--db_name", type=str, required=False, default="imdb") parser.add_argument("--db_host", type=str, required=False, default="localhost") parser.add_argument("--user", type=str, required=False, default="ceb") parser.add_argument("--pwd", type=str, required=False, default="password") parser.add_argument("--port", type=int, required=False, default=5432) parser.add_argument("--result_dir", type=str, required=False, default="results") parser.add_argument("--query_templates", type=str, required=False, default="all") parser.add_argument("--seed", type=int, required=False, default=13) parser.add_argument("--num_eval_processes", type=int, required=False, default=-1, help="""Used for computing plan costs in parallel. -1 use all cpus; -2: use no cpus; else use n cpus. """) parser.add_argument("--train_test_split_kind", type=str, required=False, default="query", help="""query OR template.""") parser.add_argument("--diff_templates_seed", type=int, required=False, default=1, help="""Seed used when train_test_split_kind == template""") parser.add_argument("-n", "--num_samples_per_template", type=int, required=False, default=-1) parser.add_argument("--test_size", type=float, required=False, default=0.5) parser.add_argument("--val_size", type=float, required=False, default=0.2) parser.add_argument("--algs", type=str, required=False, default="postgres") parser.add_argument("--eval_fns", type=str, required=False, default="qerr,ppc,plancost") # featurizer arguments parser.add_argument("--regen_featstats", type=int, required=False, default=1) parser.add_argument("--ynormalization", type=str, required=False, default="log") ## NN training features parser.add_argument("--load_padded_mscn_feats", type=int, required=False, default=0, help="""==1 loads all the mscn features with padded zeros in memory -- speeds up training, but can take too much RAM.""") parser.add_argument("--weight_decay", type=float, required=False, default=0.0) parser.add_argument("--max_epochs", type=int, required=False, default=10) parser.add_argument("--eval_epoch", type=int, required=False, default=1) parser.add_argument("--mb_size", type=int, required=False, default=1024) parser.add_argument("--num_hidden_layers", type=int, required=False, default=2) parser.add_argument("--hidden_layer_size", type=int, required=False, default=128) parser.add_argument("--load_query_together", type=int, required=False, default=0) parser.add_argument("--optimizer_name", type=str, required=False, default="adamw") parser.add_argument("--clip_gradient", type=float, required=False, default=20.0) parser.add_argument("--lr", type=float, required=False, default=0.0001) parser.add_argument("--loss_func_name", type=str, required=False, default="mse") return parser.parse_args() if __name__ == "__main__": args = read_flags() main()
the-stack_0_7372
#!/usr/bin/env python import json import yaml import urllib import os import sys from jsonref import JsonRef # type: ignore import click from openapi2jsonschema.log import info, debug, error from openapi2jsonschema.util import ( additional_properties, replace_int_or_string, allow_null_optional_fields, change_dict_values, append_no_duplicates, ) from openapi2jsonschema.errors import UnsupportedError @click.command() @click.option( "-o", "--output", default="schemas", metavar="PATH", help="Directory to store schema files", ) @click.option( "-p", "--prefix", default="_definitions.json", help="Prefix for JSON references (only for OpenAPI versions before 3.0)", ) @click.option( "--stand-alone", is_flag=True, help="Whether or not to de-reference JSON schemas" ) @click.option( "--expanded", is_flag=True, help="Expand Kubernetes schemas by API version" ) @click.option( "--kubernetes", is_flag=True, help="Enable Kubernetes specific processors" ) @click.option( "--strict", is_flag=True, help="Prohibits properties not in the schema (additionalProperties: false)", ) @click.argument("schema", metavar="SCHEMA_URL") def default(output, schema, prefix, stand_alone, expanded, kubernetes, strict): """ Converts a valid OpenAPI specification into a set of JSON Schema files """ info("Downloading schema") if sys.version_info < (3, 0): response = urllib.urlopen(schema) else: if os.path.isfile(schema): schema = "file://" + os.path.realpath(schema) req = urllib.request.Request(schema) response = urllib.request.urlopen(req) info("Parsing schema") # Note that JSON is valid YAML, so we can use the YAML parser whether # the schema is stored in JSON or YAML data = yaml.load(response.read(), Loader=yaml.SafeLoader) if "swagger" in data: version = data["swagger"] elif "openapi" in data: version = data["openapi"] if not os.path.exists(output): os.makedirs(output) if version < "3": with open("%s/_definitions.json" % output, "w") as definitions_file: info("Generating shared definitions") definitions = data["definitions"] if kubernetes: definitions["io.k8s.apimachinery.pkg.util.intstr.IntOrString"] = { "oneOf": [{"type": "string"}, {"type": "integer"}] } # Although the kubernetes api does not allow `number` as valid # Quantity type - almost all kubenetes tooling # recognizes it is valid. For this reason, we extend the API definition to # allow `number` values. definitions["io.k8s.apimachinery.pkg.api.resource.Quantity"] = { "oneOf": [{"type": "string"}, {"type": "number"}] } # For Kubernetes, populate `apiVersion` and `kind` properties from `x-kubernetes-group-version-kind` for type_name in definitions: type_def = definitions[type_name] if "x-kubernetes-group-version-kind" in type_def: for kube_ext in type_def["x-kubernetes-group-version-kind"]: if expanded and "apiVersion" in type_def["properties"]: api_version = ( kube_ext["group"] + "/" + kube_ext["version"] if kube_ext["group"] else kube_ext["version"] ) append_no_duplicates( type_def["properties"]["apiVersion"], "enum", api_version, ) if "kind" in type_def["properties"]: kind = kube_ext["kind"] append_no_duplicates( type_def["properties"]["kind"], "enum", kind ) if strict: definitions = additional_properties(definitions) definitions_file.write(json.dumps( {"definitions": definitions}, indent=2)) with open("%s/_definitions.json" % output, 'w') as definitions_file: definitions = data['definitions'] updated = ovirt_change_array(definitions, prefix, version, False) definitions_file.write(json.dumps({"definitions": updated}, indent=2)) types = [] info("Generating individual schemas") if version < "3": components = updated #data['definitions'] else: components = data["components"]["schemas"] for title in components: kind = title.split(".")[-1].lower() if kubernetes: group = title.split(".")[-3].lower() api_version = title.split(".")[-2].lower() specification = components[title] specification["$schema"] = "http://json-schema.org/schema#" specification.setdefault("type", "object") if strict: specification["additionalProperties"] = False if kubernetes and expanded: if group in ["core", "api"]: full_name = "%s-%s" % (kind, api_version) else: full_name = "%s-%s-%s" % (kind, group, api_version) else: full_name = kind types.append(title) try: debug("Processing %s" % full_name) # These APIs are all deprecated if kubernetes: if title.split(".")[3] == "pkg" and title.split(".")[2] == "kubernetes": raise UnsupportedError( "%s not currently supported, due to use of pkg namespace" % title ) # This list of Kubernetes types carry around jsonschema for Kubernetes and don't # currently work with openapi2jsonschema if ( kubernetes and stand_alone and kind in [ "jsonschemaprops", "jsonschemapropsorarray", "customresourcevalidation", "customresourcedefinition", "customresourcedefinitionspec", "customresourcedefinitionlist", "customresourcedefinitionspec", "jsonschemapropsorstringarray", "jsonschemapropsorbool", ] ): raise UnsupportedError("%s not currently supported" % kind) updated = change_dict_values(specification, prefix, version) specification = updated if stand_alone: base = "file://%s/%s/" % (os.getcwd(), output) specification = JsonRef.replace_refs( specification, base_uri=base) if "additionalProperties" in specification: if specification["additionalProperties"]: updated = change_dict_values( specification["additionalProperties"], prefix, version ) specification["additionalProperties"] = updated if strict and "properties" in specification: updated = additional_properties(specification["properties"]) specification["properties"] = updated if kubernetes and "properties" in specification: updated = replace_int_or_string(specification["properties"]) updated = allow_null_optional_fields(updated) specification["properties"] = updated with open("%s/%s.json" % (output, full_name), "w") as schema_file: debug("Generating %s.json" % full_name) schema_file.write(json.dumps(specification, indent=2)) except Exception as e: error("An error occured processing %s: %s" % (kind, e)) with open("%s/all.json" % output, "w") as all_file: info("Generating schema for all types") contents = {"oneOf": []} for title in types: if version < "3": contents["oneOf"].append( {"$ref": "%s#/definitions/%s" % (prefix, title)} ) else: contents["oneOf"].append( {"$ref": (title.replace("#/components/schemas/", "") + ".json")} ) all_file.write(json.dumps(contents, indent=2)) if __name__ == "__main__": default()
the-stack_0_7373
from typing import Text, List, Tuple from rasa.core.domain import Domain from rasa.core.training.story_conflict import ( StoryConflict, find_story_conflicts, _get_previous_event, ) from rasa.core.training.generator import TrainingDataGenerator, TrackerWithCachedStates from rasa.validator import Validator from rasa.importers.rasa import RasaFileImporter from tests.core.conftest import DEFAULT_STORIES_FILE, DEFAULT_DOMAIN_PATH_WITH_SLOTS async def _setup_trackers_for_testing( domain_path: Text, training_data_file: Text ) -> Tuple[List[TrackerWithCachedStates], Domain]: importer = RasaFileImporter( domain_path=domain_path, training_data_paths=[training_data_file], ) validator = await Validator.from_importer(importer) trackers = TrainingDataGenerator( validator.story_graph, domain=validator.domain, remove_duplicates=False, augmentation_factor=0, ).generate() return trackers, validator.domain async def test_find_no_conflicts(): trackers, domain = await _setup_trackers_for_testing( DEFAULT_DOMAIN_PATH_WITH_SLOTS, DEFAULT_STORIES_FILE ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert conflicts == [] async def test_find_conflicts_in_short_history(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_1.md" ) # `max_history = 3` is too small, so a conflict must arise conflicts = find_story_conflicts(trackers, domain, 3) assert len(conflicts) == 1 # With `max_history = 4` the conflict should disappear conflicts = find_story_conflicts(trackers, domain, 4) assert len(conflicts) == 0 async def test_find_conflicts_checkpoints(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_2.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 1 assert conflicts[0].conflicting_actions == ["utter_goodbye", "utter_default"] async def test_find_conflicts_or(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_3.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 1 assert conflicts[0].conflicting_actions == ["utter_default", "utter_goodbye"] async def test_find_conflicts_slots_that_break(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_4.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 1 assert conflicts[0].conflicting_actions == ["utter_default", "utter_greet"] async def test_find_conflicts_slots_that_dont_break(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_5.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 0 async def test_find_conflicts_multiple_stories(): trackers, domain = await _setup_trackers_for_testing( "data/test_domains/default.yml", "data/test_stories/stories_conflicting_6.md" ) # Create a list of `StoryConflict` objects conflicts = find_story_conflicts(trackers, domain, 5) assert len(conflicts) == 1 assert "and 2 other trackers" in str(conflicts[0]) async def test_add_conflicting_action(): sliced_states = [ None, {}, {"intent_greet": 1.0, "prev_action_listen": 1.0}, {"prev_utter_greet": 1.0, "intent_greet": 1.0}, ] conflict = StoryConflict(sliced_states) conflict.add_conflicting_action("utter_greet", "xyz") conflict.add_conflicting_action("utter_default", "uvw") assert conflict.conflicting_actions == ["utter_greet", "utter_default"] async def test_has_prior_events(): sliced_states = [ None, {}, {"intent_greet": 1.0, "prev_action_listen": 1.0}, {"prev_utter_greet": 1.0, "intent_greet": 1.0}, ] conflict = StoryConflict(sliced_states) assert conflict.conflict_has_prior_events async def test_get_previous_event(): assert _get_previous_event({"prev_utter_greet": 1.0, "intent_greet": 1.0}) == ( "action", "utter_greet", ) assert _get_previous_event({"intent_greet": 1.0, "prev_utter_greet": 1.0}) == ( "action", "utter_greet", ) assert _get_previous_event({"intent_greet": 1.0, "prev_action_listen": 1.0}) == ( "intent", "greet", ) async def test_has_no_prior_events(): sliced_states = [None] conflict = StoryConflict(sliced_states) assert not conflict.conflict_has_prior_events
the-stack_0_7374
import logging from collections import namedtuple, defaultdict from enum import Enum from itertools import product from gym import Env import gym from gym.utils import seeding import numpy as np class Action(Enum): NONE = 0 NORTH = 1 SOUTH = 2 WEST = 3 EAST = 4 LOAD = 5 class Player: def __init__(self): self.controller = None self.position = None self.level = None self.field_size = None self.score = None self.reward = 0 self.history = None self.current_step = None def setup(self, position, level, field_size): self.history = [] self.position = position self.level = level self.field_size = field_size self.score = 0 def set_controller(self, controller): self.controller = controller def step(self, obs): return self.controller._step(obs) @property def name(self): if self.controller: return self.controller.name else: return "Player" class ForagingEnv(Env): """ A class that contains rules/actions for the game level-based foraging. """ metadata = {"render.modes": ["human"]} action_set = [Action.NORTH, Action.SOUTH, Action.WEST, Action.EAST, Action.LOAD] Observation = namedtuple( "Observation", ["field", "actions", "players", "game_over", "sight", "current_step", "button"], ) PlayerObservation = namedtuple( "PlayerObservation", ["position", "level", "history", "reward", "is_self"] ) # reward is available only if is_self def __init__( self, players, max_player_level, field_size, sight, max_episode_steps, normalize_reward=True, ): assert players>1, "Need at least 2 players" self.logger = logging.getLogger(__name__) self.seed() self.players = [Player() for _ in range(players)] self.field = np.zeros(field_size, np.int32) self.max_food = 1 # self._food_spawned = 0.0 self.max_player_level = max_player_level self.sight = sight self.force_coop = True # self._game_over = None self.button_pressed = False self._button_loc = None self._food_loc = None self.action_space = gym.spaces.Tuple(tuple([gym.spaces.Discrete(6)] * len(self.players))) self.observation_space = gym.spaces.Tuple(tuple([self._get_observation_space()] * len(self.players))) # New stuff # self.share_observation_space = gym.spaces.Tuple(tuple([self._get_observation_space()] * len(self.players))) self.share_observation_space = gym.spaces.Tuple(tuple([self._get_shared_observation_space()] * len(self.players))) self._rendering_initialized = False self._valid_actions = None self._max_episode_steps = max_episode_steps self._normalize_reward = normalize_reward self.viewer = None self.n_agents = len(self.players) def seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _get_observation_space(self): """The Observation Space for each agent. - all of the board (board_size^2) with foods - player description (x, y, level)*player_count """ field_x = self.field.shape[1] field_y = self.field.shape[0] # field_size = field_x * field_y max_food = self.max_food max_food_level = self.max_player_level * len(self.players) min_obs = [-1, -1, 0] * max_food + [0, 0, 1] * len(self.players) + [0, 0] * 1 max_obs = [field_x, field_y, max_food_level] * max_food + [ field_x, field_y, self.max_player_level, ] * len(self.players) + [field_x, field_y] * 1 return gym.spaces.Box(np.array(min_obs), np.array(max_obs), dtype=np.float32) def _get_shared_observation_space(self): """The Observation Space for each agent. for n_players: - all of the board (board_size^2) with foods - player description (x, y, level)*player_count """ shared_obs_space_min = self.observation_space[0].low shared_obs_space_high = self.observation_space[0].high for obs_space in self.observation_space[1:]: shared_obs_space_min = np.append(shared_obs_space_min, obs_space.low) shared_obs_space_high = np.append(shared_obs_space_high, obs_space.high) return gym.spaces.Box(shared_obs_space_min, shared_obs_space_high, dtype=np.float32) @classmethod def from_obs(cls, obs): players = [] for p in obs.players: player = Player() player.setup(p.position, p.level, obs.field.shape) player.score = p.score if p.score else 0 players.append(player) env = cls(players, None, None, None, None) env.field = np.copy(obs.field) env.current_step = obs.current_step env.sight = obs.sight env._gen_valid_moves() return env @property def field_size(self): return self.field.shape @property def rows(self): return self.field_size[0] @property def cols(self): return self.field_size[1] @property def game_over(self): return self._game_over def _gen_valid_moves(self): self._valid_actions = { player: [ action for action in Action if self._is_valid_action(player, action) ] for player in self.players } def neighborhood(self, row, col, distance=1, ignore_diag=False): if not ignore_diag: return self.field[ max(row - distance, 0) : min(row + distance + 1, self.rows), max(col - distance, 0) : min(col + distance + 1, self.cols), ] return ( self.field[ max(row - distance, 0) : min(row + distance + 1, self.rows), col ].sum() + self.field[ row, max(col - distance, 0) : min(col + distance + 1, self.cols) ].sum() ) def adjacent_food(self, row, col): return ( self.field[max(row - 1, 0), col] + self.field[min(row + 1, self.rows - 1), col] + self.field[row, max(col - 1, 0)] + self.field[row, min(col + 1, self.cols - 1)] ) def adjacent_food_location(self, row, col): if row > 1 and self.field[row - 1, col] > 0: return row - 1, col elif row < self.rows - 1 and self.field[row + 1, col] > 0: return row + 1, col elif col > 1 and self.field[row, col - 1] > 0: return row, col - 1 elif col < self.cols - 1 and self.field[row, col + 1] > 0: return row, col + 1 def adjacent_players(self, row, col): return [ player for player in self.players if abs(player.position[0] - row) == 1 and player.position[1] == col or abs(player.position[1] - col) == 1 and player.position[0] == row ] def spawn_food(self, max_food, max_level): food_count = 0 attempts = 0 min_level = 2*max_level if self.force_coop else 1 # The fruit is 2x larger than max_level while food_count < max_food and attempts < 1000: attempts += 1 row = self.np_random.randint(1, self.rows - 1) col = self.np_random.randint(1, self.cols - 1) # check if it has neighbors: if ( self.neighborhood(row, col).sum() > 0 or self.neighborhood(row, col, distance=2, ignore_diag=True) > 0 or not self._is_empty_location(row, col) ): continue self.field[row, col] = min_level food_count += 1 self._food_loc = (row, col) self._food_spawned = self.field.sum() def _is_empty_location(self, row, col): if self.field[row, col] != 0: return False for a in self.players: if a.position and row == a.position[0] and col == a.position[1]: return False return True def spawn_players(self, max_player_level): for player in self.players: attempts = 0 player.reward = 0 while attempts < 1000: row = self.np_random.randint(0, self.rows - 1) col = self.np_random.randint(0, self.cols - 1) if self._is_empty_location(row, col): player.setup( (row, col), self.np_random.randint(1, max_player_level), self.field_size, ) break attempts += 1 def _is_valid_action(self, player, action): if action == Action.NONE: return True elif action == Action.NORTH: return ( player.position[0] > 0 and self.field[player.position[0] - 1, player.position[1]] == 0 ) elif action == Action.SOUTH: return ( player.position[0] < self.rows - 1 and self.field[player.position[0] + 1, player.position[1]] == 0 ) elif action == Action.WEST: return ( player.position[1] > 0 and self.field[player.position[0], player.position[1] - 1] == 0 ) elif action == Action.EAST: return ( player.position[1] < self.cols - 1 and self.field[player.position[0], player.position[1] + 1] == 0 ) elif action == Action.LOAD: return self.adjacent_food(*player.position) > 0 self.logger.error("Undefined action {} from {}".format(action, player.name)) raise ValueError("Undefined action") def _transform_to_neighborhood(self, center, sight, position): return ( position[0] - center[0] + min(sight, center[0]), position[1] - center[1] + min(sight, center[1]), ) def get_valid_actions(self) -> list: return list(product(*[self._valid_actions[player] for player in self.players])) def _make_obs(self, player): return self.Observation( actions=self._valid_actions[player], players=[ self.PlayerObservation( position=self._transform_to_neighborhood( player.position, self.sight, a.position ), level=a.level, is_self=a == player, history=a.history, reward=a.reward if a == player else None, ) for a in self.players if ( min( self._transform_to_neighborhood( player.position, self.sight, a.position ) ) >= 0 ) and max( self._transform_to_neighborhood( player.position, self.sight, a.position ) ) <= 2 * self.sight ], # todo also check max? field=np.copy(self.neighborhood(*player.position, self.sight)), game_over=self.game_over, sight=self.sight, current_step=self.current_step, button=self._transform_to_neighborhood(player.position, self.sight, self._button_loc) if (min(self._transform_to_neighborhood(player.position, self.sight, self._button_loc)) >= 0) and (max(self._transform_to_neighborhood( player.position, self.sight, self._button_loc))<= 2 * self.sight) else [-1, -1] ) def _make_gym_obs(self, observations): def make_obs_array(observation): obs = np.zeros(self.observation_space[0].shape, dtype=np.float32) # obs[: observation.field.size] = observation.field.flatten() # self player is always first seen_players = [p for p in observation.players if p.is_self] + [ p for p in observation.players if not p.is_self ] for i in range(self.max_food): obs[3 * i] = -1 obs[3 * i + 1] = -1 obs[3 * i + 2] = 0 for i, (y, x) in enumerate(zip(*np.nonzero(observation.field))): obs[3 * i] = y obs[3 * i + 1] = x obs[3 * i + 2] = observation.field[y, x] for i in range(len(self.players)): obs[self.max_food * 3 + 3 * i] = -1 obs[self.max_food * 3 + 3 * i + 1] = -1 obs[self.max_food * 3 + 3 * i + 2] = 0 for i, p in enumerate(seen_players): obs[self.max_food * 3 + 3 * i] = p.position[0] obs[self.max_food * 3 + 3 * i + 1] = p.position[1] obs[self.max_food * 3 + 3 * i + 2] = p.level obs[-2:] = np.array(observation.button) return obs def get_player_reward(observation): for p in observation.players: if p.is_self: return p.reward nobs = tuple([make_obs_array(obs) for obs in observations]) nreward = [[get_player_reward(obs)] for obs in observations] ndone = [obs.game_over for obs in observations] # ninfo = [{'observation': obs} for obs in observations] ninfo = {} return nobs, nreward, ndone, ninfo def reset(self): self.field = np.zeros(self.field_size, np.int32) self.spawn_players(self.max_player_level) player_levels = sorted([player.level for player in self.players]) self.spawn_food( self.max_food, max_level=sum(player_levels[:3]) ) self.spawn_button() # print(self._button_loc) self.current_step = 0 self._game_over = False self._gen_valid_moves() observations = [self._make_obs(player) for player in self.players] nobs, nreward, ndone, ninfo = self._make_gym_obs(observations) return nobs def spawn_button(self): attempts = 0 while attempts < 1000: attempts += 1 row = self.np_random.randint(1, self.rows - 1) col = self.np_random.randint(1, self.cols - 1) # check if it has neighbors: if ( self.neighborhood(row, col).sum() > 0 or self.neighborhood(row, col, distance=2, ignore_diag=True) > 0 or not self._is_empty_location(row, col) ): continue self._button_loc = np.array([row, col]) return def step(self, actions): self.current_step += 1 for p in self.players: p.reward = 0 actions = [ Action(a) if Action(a) in self._valid_actions[p] else Action.NONE for p, a in zip(self.players, actions) ] # check if actions are valid for i, (player, action) in enumerate(zip(self.players, actions)): if action not in self._valid_actions[player]: self.logger.info( "{}{} attempted invalid action {}.".format( player.name, player.position, action ) ) actions[i] = Action.NONE loading_players = set() # move players # if two or more players try to move to the same location they all fail collisions = defaultdict(list) # so check for collisions for player, action in zip(self.players, actions): if action == Action.NONE: collisions[player.position].append(player) elif action == Action.NORTH: collisions[(player.position[0] - 1, player.position[1])].append(player) elif action == Action.SOUTH: collisions[(player.position[0] + 1, player.position[1])].append(player) elif action == Action.WEST: collisions[(player.position[0], player.position[1] - 1)].append(player) elif action == Action.EAST: collisions[(player.position[0], player.position[1] + 1)].append(player) elif action == Action.LOAD: collisions[player.position].append(player) loading_players.add(player) # and do movements for non colliding players for k, v in collisions.items(): if len(v) > 1: # make sure no more than an player will arrive at location continue v[0].position = k # process the button if not self.button_pressed: for player in self.players: if player.position[0] == self._button_loc[0] and player.position[1] == self._button_loc[1]: self.field[self._food_loc] = int(self.field[self._food_loc]/2) self.button_pressed = True # finally process the loadings: while loading_players: # find adjacent food player = loading_players.pop() frow, fcol = self.adjacent_food_location(*player.position) food = self.field[frow, fcol] adj_players = self.adjacent_players(frow, fcol) adj_players = [ p for p in adj_players if p in loading_players or p is player ] adj_player_level = sum([a.level for a in adj_players]) loading_players = loading_players - set(adj_players) if adj_player_level < food: # failed to load continue # else the food was loaded and each player scores points for a in adj_players: a.reward = float(a.level * food) if self._normalize_reward: a.reward = a.reward / float( adj_player_level * self._food_spawned ) # normalize reward # and the food is removed self.field[frow, fcol] = 0 self._game_over = ( self.field.sum() == 0 or self._max_episode_steps <= self.current_step ) self._gen_valid_moves() for p in self.players: p.score += p.reward observations = [self._make_obs(player) for player in self.players] return self._make_gym_obs(observations) def _init_render(self): from .rendering_subgoal import Viewer self.viewer = Viewer((self.rows, self.cols)) self._rendering_initialized = True def render(self, mode="human"): if not self._rendering_initialized: self._init_render() return self.viewer.render(self, return_rgb_array=mode == "rgb_array") def close(self): if self.viewer: self.viewer.close()
the-stack_0_7376
# -*- coding: utf-8 -*- from PySide6.QtWidgets import ( QApplication) from PySide6.QtGui import ( QFontMetrics, QTextOption) from PySide6.QtCore import ( QEvent) from .textline import SourceTextLineBase from .textviewer import TextViewer __all__ = ["SourceViewer"] class SourceTextLine(SourceTextLineBase): def __init__(self, text, font, option): super().__init__(text, font, option) def rehighlight(self): formats = self._commonHighlightFormats() if formats: self._layout.setFormats(formats) class SourceViewer(TextViewer): def __init__(self, parent=None): super().__init__(parent) self._panel = None self._blockEventFilter = False self.verticalScrollBar().valueChanged.connect( self._onVScrollBarValueChanged) settings = QApplication.instance().settings() settings.tabSizeChanged.connect(self.delayUpdateSettings) settings.showWhitespaceChanged.connect(self.delayUpdateSettings) settings.diffViewFontChanged.connect(self.delayUpdateSettings) def toTextLine(self, text): return SourceTextLine(text, self._font, self._option) def setPanel(self, panel): if self._panel: if panel != self._panel: self._panel.removeEventFilter(self) else: return self._panel = panel if panel: self._updatePanelGeo() panel.installEventFilter(self) else: self.setViewportMargins(0, 0, 0, 0) @property def panel(self): return self._panel def reloadSettings(self): settings = QApplication.instance().settings() self.updateFont(settings.diffViewFont()) fm = QFontMetrics(self._font) tabSize = settings.tabSize() tabstopWidth = fm.horizontalAdvance(' ') * tabSize self._option = QTextOption() self._option.setTabStopDistance(tabstopWidth) if settings.showWhitespace(): flags = self._option.flags() self._option.setFlags(flags | QTextOption.ShowTabsAndSpaces) self.reloadBugPattern() def _onVScrollBarValueChanged(self, value): if self._panel: self._panel.update() def _updatePanelGeo(self): if self._panel: rc = self.rect() width = self._panel.width() self.setViewportMargins(width + 1, 0, 0, 0) self._panel.setGeometry(rc.left() + 1, rc.top() + 1, width, self.viewport().height()) def _reloadTextLine(self, textLine): # reload bugPattern super()._reloadTextLine(textLine) if isinstance(textLine, SourceTextLineBase): textLine.setDefOption(self._option) textLine.setFont(self._font) def resizeEvent(self, event): if event.oldSize().height() != event.size().height(): self._blockEventFilter = True self._updatePanelGeo() self._blockEventFilter = False super().resizeEvent(event) def eventFilter(self, obj, event): if not self._blockEventFilter and \ obj == self._panel and \ event.type() == QEvent.Resize: self._updatePanelGeo() return True return super().eventFilter(obj, event)
the-stack_0_7379
from InitProb import * from collections import defaultdict PNFile = "lsup" OVERRIDE = 1 vertices = [[1, 1], [0, 3], [-1, 1], [-1, -1], [1, -1], [0.5, 0], [0, 0.75], [-0.5, 0], [0, 1]] edgelists = [[0,1,2,3,4], [5,6,7,8]] trpl = [[1, 1], [0, 3], [-1, 1]] c = .1 box = [np.array([ 0.08*c, 0.08*c]),\ np.array([ -0.08*c, 0.08*c]),\ np.array([ -0.08*c,-0.08*c]),\ np.array([ 0.08*c,-0.08*c])] #def clip(PND, aL): #Instead of modifying the polychain data, just reproduce it based on PND.PCC if __name__ == "__main__" or OVERRIDE: OFF = PolyNodeData() OFF.loadOFF("lsup.off") acuteAngles = [] #This will be a list of lists that we fill with vertex idx for each polychain PND = PolyNodeData() PND.loadPND(PNFile + ".poly", PNFile + ".node") aL = identifyAcute(PND) # L = aL[0] # A = aL[-3][0] # out = [] # # for aI in L: # for b in box: # out.append((PND.nodes[aI]+b).tolist()) # # for b in box: # out.append((PND.nodes[A]+b).tolist()) # # # OFFOut = OFFData() # # OFFOut.vertices = out # OFFOut.elements = [[i*4 + j + 518 for j in range(4)] for i in range(len(OFFOut.vertices)//4)] # #OFFOut.elements = [[i*4 + j for j in range(4)] for i in range(len(OFFOut.vertices)//4)] # OFFOut.NV = len(out) # OFFOut.NE = len(OFFOut.elements) # # OFFOut.export("marks.off") # exportToOFF(vertices, edgelists, "House.off") # #VVV All meant to determine boundary from a tri/quadrangulation # # D = defaultdict(lambda: 0) # OFF = importOFF("superior.off") # # #Determine Boundary and Holes # # for ele in OFF.elements: # for idx in range(len(ele)): # D[str({ele[idx], ele[(idx+1) % len(ele)]})] += 1 # # unsortedBoundary = set() # # for edge in D: # if D[edge] == 1: # unsortedBoundary.add(edge)
the-stack_0_7380
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # flake8: noqa # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/master/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys import mock # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # import sphinx_rtd_theme # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # to support markdown from recommonmark.parser import CommonMarkParser sys.path.insert(0, os.path.abspath("../")) DEPLOY = os.environ.get("READTHEDOCS") == "True" # -- Project information ----------------------------------------------------- try: import torch # noqa except ImportError: for m in [ "torch", "torchvision", "torch.nn", "torch.nn.parallel", "torch.distributed", "torch.multiprocessing", "torch.autograd", "torch.autograd.function", "torch.nn.modules", "torch.nn.modules.utils", "torch.utils", "torch.utils.data", "torch.onnx", "torchvision", "torchvision.ops", ]: sys.modules[m] = mock.Mock(name=m) for m in [ "cv2", "scipy", "portalocker", "detectron2._C", "pycocotools", "pycocotools.mask", "pycocotools.coco", "pycocotools.cocoeval", "google", "google.protobuf", "google.protobuf.internal", "onnx", "caffe2", "caffe2.proto", "caffe2.python", "caffe2.python.utils", "caffe2.python.onnx", "caffe2.python.onnx.backend", ]: sys.modules[m] = mock.Mock(name=m) sys.modules["cv2"].__version__ = "3.4" import detectron2 # isort: skip project = "detectron2" copyright = "2019-2020, detectron2 contributors" author = "detectron2 contributors" # The short X.Y version version = detectron2.__version__ # The full version, including alpha/beta/rc tags release = version # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = "1.7" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx.ext.intersphinx", "sphinx.ext.todo", "sphinx.ext.coverage", "sphinx.ext.mathjax", "sphinx.ext.viewcode", "sphinx.ext.githubpages", ] # -- Configurations for plugins ------------ napoleon_google_docstring = True napoleon_include_init_with_doc = True napoleon_include_special_with_doc = True napoleon_numpy_docstring = False napoleon_use_rtype = False autodoc_inherit_docstrings = False autodoc_member_order = "bysource" if DEPLOY: intersphinx_timeout = 10 else: # skip this when building locally intersphinx_timeout = 0.1 intersphinx_mapping = { "python": ("https://docs.python.org/3.6", None), "numpy": ("https://docs.scipy.org/doc/numpy/", None), "torch": ("https://pytorch.org/docs/master/", None), } # ------------------------- # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] source_parsers = {".md": CommonMarkParser} source_suffix = [".rst", ".md"] # The master toctree document. master_doc = "index" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store", "build", "README.md"] # The name of the Pygments (syntax highlighting) style to use. pygments_style = "sphinx" # -- Options for HTML output ------------------------------------------------- html_theme = "sphinx_rtd_theme" html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = "detectron2doc" # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, "detectron2.tex", "detectron2 Documentation", "detectron2 contributors", "manual") ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [(master_doc, "detectron2", "detectron2 Documentation", [author], 1)] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ( master_doc, "detectron2", "detectron2 Documentation", author, "detectron2", "One line description of project.", "Miscellaneous", ) ] # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True _DEPRECATED_NAMES = set() def autodoc_skip_member(app, what, name, obj, skip, options): # we hide something deliberately if getattr(obj, "__HIDE_SPHINX_DOC__", False): return True # Hide some names that are deprecated or not intended to be used if name in _DEPRECATED_NAMES: return True return None def url_resolver(url): if ".html" not in url: url = url.replace("../", "") return "https://github.com/facebookresearch/detectron2/blob/master/" + url else: if DEPLOY: return "http://detectron2.readthedocs.io/" + url else: return "/" + url def setup(app): from recommonmark.transform import AutoStructify app.connect("autodoc-skip-member", autodoc_skip_member) # app.connect('autodoc-skip-member', autodoc_skip_member) app.add_config_value( "recommonmark_config", { "url_resolver": url_resolver, "enable_math": True, "enable_inline_math": True, "enable_eval_rst": True, }, True, ) app.add_transform(AutoStructify)
the-stack_0_7381
# -*- coding: utf-8 -*- u"""Simplify rendering jinja2 :copyright: Copyright (c) 2015 Bivio Software, Inc. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern import pkinspect from pykern import pkio from pykern import pkresource from pykern.pkdebug import pkdc, pkdp import jinja2 #: Implicit extension including '.' added to resources RESOURCE_SUFFIX = '.jinja' def render_file(filename, j2_ctx, output=None, strict_undefined=False, jinja_env=None): """Render filename as template with j2_ctx. Args: basename (str): name without jinja extension j2_ctx (dict): how to replace values in Jinja2 template output (str): file name of output; if None, return str strict_undefined (bool): set `jinja2.StrictUndefined` if True jinja_env (dict): add values to jinja2 environment Returns: str: rendered template """ t = pkio.read_text(filename) kw = dict( trim_blocks=True, lstrip_blocks=True, keep_trailing_newline=True, extensions=['jinja2.ext.do'], ) if strict_undefined: kw['undefined'] = jinja2.StrictUndefined if jinja_env: kw.update(jinja_env) je = jinja2.Environment(**kw) res = je.from_string(t).render(j2_ctx) if output: pkio.write_text(output, res) return res def render_resource(basename, *args, **kwargs): """Render a pkresource as a jinja template. Args: basename (str): name without `RESOURCE_SUFFIX` args (list): see func:`render_file` for rest of args and return """ return render_file( pkresource.filename( basename + RESOURCE_SUFFIX, pkinspect.caller_module(), ), *args, **kwargs )
the-stack_0_7382
#!/usr/bin/env python # -*- coding: utf-8 -*- # Libraries import sys import time import logging import platform import os import random # Modules import core.log from core.data.wordlist import * from core.data.crossword import * from core.data.constants import * from core.helpers.parse import * from core.implements.basic_backtracking import * from core.implements.fc_backtracking import * from core.implements.live_backtracking import * from cli.arguments.parsers import DEFAULT_PARSER from cli.arguments.constants import * from cli.printers.crossword import * # Constants LOGGER = logging.getLogger(__name__) # Functions """ Takes the system arguments vector and tries to parse the arguments in it given the argument parser specified and returns the namespace generated @param parser the ArgumentParser objects to use to parse the arguments """ def parseArguments(parser): return parser.parse_args() """ Given the origin of the data for the wordlist, loads the wordlist and returns it, while giving some information about it if it's required @param origin the source to load the wordlist from @return wordlist valid object (or None if couldn't load) """ def loadWordlist(origin): LOGGER.info("-> Loading wordlist (from %s)",origin) wordlist = WordList(origin) if args.timers > 1: time_load_wordlist_start = time.time() wordlist.read() if args.timers > 2: LOGGER.info("--> Read in %f seconds",time.time()-\ time_load_wordlist_start) time_load_wordlist_start_parse = time.time() wordlist.parse() if args.timers > 2: LOGGER.info("--> Parsed in %f seconds",time.time()-\ time_load_wordlist_start_parse) if args.timers > 1: LOGGER.info("--> Loaded in %f seconds",time.time()-\ time_load_wordlist_start) if args.show_wordlist: LOGGER.info(wordlist) return wordlist """ Given the origin of the data for the crossword, loads the crossword and returns it, while giving some information about it if it's required @param origin the source to load the wordlist from @return crossword valid object (or None if couldn't load) """ def loadCrossword(origin): crossword = Crossword(origin) LOGGER.info("-> Loading crossword (from %s)",origin) if args.timers > 1: time_load_crossword_start = time.time() crossword.read().parse() if args.timers > 1: LOGGER.info("--> Loaded in %f seconds",time.time()-\ time_load_crossword_start) if args.show_crossword: LOGGER.info(crossword) return crossword """ Retrieves the algorithm object to use depending on the arguments @return algorithm callable object """ def selectAlgorithm(): alg = None LOGGER.info("Chose %s algorithm"%args.algorithm) if args.algorithm == ALG_BACKTRACKING_SIMPLE: alg = CrosswordBasicBacktracking(wordlist.getList(), crossword.getConstraints()) elif args.algorithm == ALG_BACKTRACKING_FC: alg = CrosswordForwardCheckingBacktracking(wordlist.getList(), crossword.getConstraints()) elif args.algorithm == ALG_BACKTRACKING_LIVE: crossword_printer = CrosswordPrinter(crossword,args.frames) crossword_printer.setStyle(args.style) alg = CrosswordLiveBacktracking(wordlist.getList(), crossword.getConstraints(),crossword_printer) return alg """ Given the solution returned from the crossword, searches over the internet for the definitions of the words appearing in the solution and shows the user the definitions so they can solve the crossword theyreselves @param solution solution to show hints """ def playGame(solution): from bs4 import BeautifulSoup import mwapi LOGGER.info("---- GAME MODE ----") LOGGER.info("I want to play a game...") session = mwapi.Session('https://ca.wiktionary.org') for word_i in range(len(solution)): word = "".join(list(map(chr,solution[word_i]))).lower() var = crossword.getVariableString(word_i) resp = session.get(action='query',prop='extracts',titles=word)\ ["query"]["pages"] pages = list(resp.keys()) try: extract = resp[pages[0]]["extract"] except: extract = None parser = None if extract: parser = BeautifulSoup(extract,"html.parser").findAll("li") definition = "" if parser != None: valid_defs = [] for info in parser: text = info.getText() if "Pronúncia" in text \ or "Exemples" in text \ or "Etimologia" in text \ or "Per a més informació vegeu" in text\ or len(text.split()) < 4: continue else: valid_defs.append(text) if len(valid_defs): definition = random.choice(valid_defs) if definition == "": definition = word + " (no hem trobat cap definició)" LOGGER.info("%s: %s",var,definition) """ Given a solution from the crossword, tries to print it over the screen, or logs that no solution was found if necessary @param solution solution to print """ def showSolution(solution): if solution == None: LOGGER.info("The algorithm hasn't found any valid solution :(") else: printer = CrosswordPrinter(crossword) printer.setStyle(args.style) if args.solution: if args.play: print(printer) playGame(solution) elif args.algorithm != ALG_BACKTRACKING_LIVE: printer.printSolution(solution) else: LOGGER.info("The algorithm has found a valid solution :)") if __name__ == "__main__": # Prepare coding if platform.system() == "Windows": os.system("chcp 65001") # Parse arguments args = parseArguments(DEFAULT_PARSER) # Set default tablesets args.style = CHAR_TABLESETS[args.style] # Welcome LOGGER.info("Welcome to Crossword solver") # Load data LOGGER.info("Loading crossword and wordlist") if args.timers > 0: time_load_start = time.time() # Datasets if args.wordlist == None: args.wordlist = ITEMSET_BYNAME[args.itemset]["wordlist"] if args.crossword == None: args.crossword = ITEMSET_BYNAME[args.itemset]["crossword"] # Wordlist wordlist = loadWordlist(args.wordlist) # Crossword crossword = loadCrossword(args.crossword) # Loading ended if args.timers > 0: time_load_end = time.time() LOGGER.info("Loaded all in %f seconds", time_load_end-time_load_start) else: LOGGER.info("Loaded all data succesfully") # Choose algorithm alg = selectAlgorithm() # Solve the problem LOGGER.info("Started backtracking algorithm") if args.timers > 0: time_alg_start = time.time() solution = alg(crossword.getVariables()) if args.timers > 0: time_alg_end = time.time() LOGGER.info("Ended alg. in %f seconds", time_alg_end-time_alg_start) else: LOGGER.info("Ended backtracking algorithm") # Solution if args.timers > 0: LOGGER.info("TOTAL TIME: %f seconds",time_alg_end-time_load_start) showSolution(solution) LOGGER.info("Thanks for trusting our app ;)")
the-stack_0_7383
"""Test suite main conftest.""" import transaction import pytest from mock import Mock from pyramid.decorator import reify from pyramid.request import Request from pyramid import testing from zope.sqlalchemy import register import pyramid_basemodel from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker from sqlalchemy.pool import NullPool from pyramid_localize import build_localize_config from pyramid_localize.models import Language def web_request_func(): """Mock web request for views testing.""" # pylint:disable=import-outside-toplevel from pyramid_localize.request import LocalizeRequestMixin from pyramid_localize.request import database_locales from pyramid_localize.request import locale_id from pyramid_localize.request import locales class TestRequest(LocalizeRequestMixin, Request): # pylint:disable=too-many-ancestors """Test request object.""" @reify def _database_locales(self): return database_locales(self) @reify def locale_id(self): """Returns a database locale id.""" return locale_id(self) def locales(self, *args, **kwargs): """Return all availablee locales.""" return locales(self, *args, **kwargs) request = TestRequest({}) localize_config = build_localize_config( { "localize.locales.available": ["en", "pl", "de", "cz"], "localize.domain": "test", } ) configurator = testing.setUp() request.registry = configurator.registry # pylint:disable=attribute-defined-outside-init request.registry["localize"] = localize_config return request @pytest.fixture def web_request(): """Mock web request for views testing.""" return web_request_func() @pytest.fixture def locale_negotiator_request(): """Request for locale_negotiator tests.""" request = Mock() mock_configuration = { "cookies": {"_LOCALE_": "cz"}, "_LOCALE_": "fr", "accept_language.best_match.return_value": "de", "path": "/pl/page", "registry": { "localize": build_localize_config( { "localize.locales.available": ["en", "pl", "de", "cz", "fr"], "localize.locales.default": "en", } ) }, } request.configure_mock(**mock_configuration) return request @pytest.fixture def db_session(request): """Session for SQLAlchemy.""" from pyramid_localize.models import Base # pylint:disable=import-outside-toplevel engine = create_engine("sqlite:///localize.sqlite", echo=False, poolclass=NullPool) pyramid_basemodel.Session = scoped_session(sessionmaker()) register(pyramid_basemodel.Session) pyramid_basemodel.bind_engine(engine, pyramid_basemodel.Session, should_create=True, should_drop=True) def destroy(): transaction.commit() Base.metadata.drop_all(engine) request.addfinalizer(destroy) return pyramid_basemodel.Session @pytest.fixture def db_locales(db_session): # pylint:disable=redefined-outer-name """Add Languages to db_session.""" for locale in ["pl", "cz", "fr"]: locale_object = Language(name=locale, native_name=locale, language_code=locale) db_session.add(locale_object) transaction.commit() @pytest.fixture def request_i18n(): """Create request with i18n subscribers on.""" config = testing.setUp() config.scan("pyramid_localize.subscribers.i18n") request = Request({}) request.registry = config.registry return request @pytest.fixture def request_fake(): """Create request with fake i18n subscribers on.""" config = testing.setUp() config.scan("pyramid_localize.subscribers.fake") request = Request({}) request.registry = config.registry return request
the-stack_0_7384
import os from pypaper import latex_tools as lt test_dir = os.path.dirname(__file__) def test_compile_bibtex(): ffp = test_dir + "/test_data_files/sample.bib" citations = ["Safak:1992ub", "Vesic:1975"] not_cited = ["Rodriguez:2000sr"] bibtex_str = lt.compile_bibtex(citations, ffp) print(bibtex_str) for cite in citations: assert cite in bibtex_str, cite for cite in not_cited: assert cite not in bibtex_str # can not find unlisted_citations = ["Rathje:2017ip"] bibtex_str = lt.compile_bibtex(unlisted_citations, ffp) for cite in unlisted_citations: assert cite not in bibtex_str def test_extract_citations(): ffp = test_dir + "/test_data_files/sample_latex.tex" expected_citations = ['Vesic:1975', 'Chatzigogos:2008uv', 'Safak:1992ub', 'Raychowdhury:2009hw'] citations = lt.extract_citation_keys_from_latex(latex_ffp=ffp) assert len(expected_citations) == len(citations) for ec in expected_citations: assert ec in citations def test_extract_multi_citations(): ffp = test_dir + "/test_data_files/sample_latex_w_eg_and_multiple.tex" expected_citations = ['Vesic:1975', 'Chatzigogos:2008uv', 'Safak:1992ub', 'Raychowdhury:2009hw', "NIST:2013ssi", 'Taylor:1979uc', 'Gajan:2008cs', 'Deng:2012ta'] citations = lt.extract_citation_keys_from_latex(latex_ffp=ffp) print(citations) assert len(expected_citations) == len(citations) for ec in expected_citations: assert ec in citations, ec if __name__ == '__main__': test_extract_multi_citations()
the-stack_0_7385
# coding=utf-8 # Kevin Manfredy Axpuac Juárez - 15006597 # Miguel Angel Lemus Morales - 14003328 # Archivo Principal from help import Help from instructions import Inst from playerVsPlayer import PlayerVsPlayer from playerVsMachine import PlayerVsMachine from machineVsMachine import MachineVsMachine # menu de el juego def menu(): try: while True: print('\n====================================') print('*** Bienvenido al juego CONNECT4 ***') print('====================================') while True: print('(1) INSTRUCCIONES') print('(2) PLAYER vs PLAYER') print('(3) PLAYER vs MACHINE') print('(4) MACHINE vs MACHINE') print('(5) HELP') print('(6) EXIT') try: option = int(input("Ingrese una opcion: ")) if option == 1: Inst() elif option == 2: PlayerVsPlayer() elif option == 3: PlayerVsMachine() elif option == 4: MachineVsMachine() elif option == 5: Help() elif option == 6: print('\nGracias por visitar Connect4 !!! ') print('Saliendo del juego ...') break else: print('\nERROR: Opcion invalida! Solo hay opciones 1, 2, 3, 4, 5 y 6\n') except ValueError: print('\nERROR: Opcion invalida! No ingreso un numero entero\n') break except: print() menu()
the-stack_0_7386
import torch import torch.nn as nn import torch.optim as optim import numpy as np import timeit class AlexNet(nn.Module): def __init__(self, num_classes=1000): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) def forward(self, x): x = self.features(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.classifier(x) return x num_classes = 1000 num_batches = 10 batch_size = 120 image_w = 128 image_h = 128 num_repeat = 20 cuda_available = torch.cuda.is_available() print("===================================================") print("Cuda Available : {}".format(cuda_available)) print("===================================================") def train(model): model.train(True) loss_fn = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.001) one_hot_indices = torch.LongTensor(batch_size) \ .random_(0, num_classes) \ .view(batch_size, 1) for _ in range(num_batches): # generate random inputs and labels inputs = torch.randn(batch_size, 3, image_w, image_h) labels = torch.zeros(batch_size, num_classes) \ .scatter_(1, one_hot_indices, 1) # run forward pass optimizer.zero_grad() if cuda_available: outputs = model(inputs.to('cuda:0')) else: outputs = model(inputs) # print("Output-device {}".format(outputs.device)) # run backward pass labels = labels.to(outputs.device) loss_fn(outputs, labels).backward() optimizer.step() stmt = "train(model)" setup = None if cuda_available: setup = "model = AlexNet(num_classes=num_classes).to('cuda:0')" else: setup = "model = AlexNet(num_classes=num_classes)" stats = [] for i in range(10): rn_run_times = timeit.repeat(stmt, setup, number=1, repeat=num_repeat, globals=globals()) rn_mean, rn_std = np.mean(rn_run_times), np.std(rn_run_times) stats.append(rn_mean) print("Single Node Training Time:", rn_mean) stats_ar = np.array(stats) mean = stats_ar.mean() print(" Mean Training Time {}".format(mean)) with open('stats_alexnet_s_v1.csv', 'a+') as fp: fp.write(str(mean) + "\n")
the-stack_0_7388
from tabulate import tabulate import requests import argparse import pprint import json import os class EnvDefault(argparse.Action): def __init__(self, envvar, required=True, default=None, **kwargs): if not default and envvar: if envvar in os.environ: default = os.environ[envvar] if required and default: required = False super(EnvDefault, self).__init__(default=default, required=required, **kwargs) def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, values) def _parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-pn', '--package-number', type=str, required=True, help='Package number, you may use the PKG environment variable as well', action=EnvDefault, envvar="PKG") parser.add_argument('-ih', '--is-heb', action='store_true', required=False, help='Print in hebrew') parser.add_argument('-pj', '--print-json', action='store_true', required=False, help='Print json instead of table') parser.add_argument('-cf', '--cookie-file', type=str, required=False, default='cookie.json', help='Cookie file') return parser.parse_args() def _get_state_list(item_code, request_key, verification_key, is_heb): url = "https://mypost.israelpost.co.il/umbraco/Surface/ItemTrace/GetItemTrace" payload = f"itemCode={item_code}{'&lcid=1037' if is_heb else ''}&__RequestVerificationToken={request_key}" headers = { 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8', 'Cookie': f'__RequestVerificationToken={verification_key};', } response = requests.request("POST", url, headers=headers, data=payload) return json.loads(response.text) def _check_response(response): if response['ReturnCode'] != 0: print(f"Got the following error: {response['ErrorDescription']}") return False else: return True def _print_response(response, print_json): if print_json: pprint.pprint(response) else: print(tabulate(tabular_data=response['Result']['itemcodeinfo']['InfoLines'], headers=response['Result']['itemcodeinfo']['ColumnHeaders'], tablefmt="plain", stralign='right')) if __name__ == "__main__": args = _parse_args() cookie = json.load(open(args.cookie_file)) post_response = _get_state_list(args.package_number, cookie['request_key'], cookie['verification_key'], args.is_heb) if _check_response(post_response): _print_response(post_response, args.print_json) else: print('Failed to get package information')
the-stack_0_7390
# SPDX-FileCopyrightText: Copyright 2022, Siavash Ameli <[email protected]> # SPDX-License-Identifier: BSD-3-Clause # SPDX-FileType: SOURCE # # This program is free software: you can redistribute it and/or modify it under # the terms of the license found in the LICENSE.txt file in the root directory # of this source tree. __all__ = ['get_data_type_name'] # ================== # get data type name # ================== def get_data_type_name(data): """ Returns the typename of data as string. """ if data.dtype in [b'float32', 'float32']: data_type_name = b'float32' elif data.dtype in [b'float64', 'float64']: data_type_name = b'float64' elif data.dtype in [b'float128', 'float128']: data_type_name = b'float128' elif data.dtype in [b'int32', 'int32']: data_type_name = b'int32' elif data.dtype in [b'int64', 'int64']: data_type_name = b'int64' else: raise TypeError('Data type should be "float32", "float64", ' + '"float128", "int32", or "int64".') return data_type_name
the-stack_0_7391
# import the necessary packages from PIL import Image, ImageOps import pytesseract from pytesseract import Output import argparse import cv2 import os import json def process_list(text: str) -> dict: final = {} items = text.split("\n")[4:][:-1] for item in items: if item == "": continue x = item.split(" ") itemtype = x[1].lower() if itemtype not in final: final[itemtype] = {} final[itemtype][x[0]] = {} return final def process_query(text: str, existing: dict) -> dict: current = ("", "") lines = text.split("\n") for line in lines: if line != "": stuff = line.split(": ") if stuff[0] == "ID": for cat in existing: for item in existing[cat]: if item == stuff[1]: current = (cat, stuff[1]) break if stuff[0] == "LOCATION": cat, id = current if cat == "" or id == "": continue if id not in existing[cat]: print("warning - item found in query, not in list", id) existing[cat][id]["location"] = stuff[1] return existing def print_results(items: dict): for category in items: print(category.upper()) for item in items[category]: print(" ├──" + item) for prop in items[category][item]: print(" ├── {}: {}".format(prop.upper(), items[category][item][prop])) # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("image", help="path to input image to be OCR'd") ap.add_argument("-t", "--type", default="list") ap.add_argument("-d", "--debug", dest="debug", action="store_true", help="whether to save results of ocr to file") ap.add_argument("-p", "--pretty-print", dest="prettyprint", action="store_true", help="whether to print nice data, or produce json") ap.set_defaults(debug=False, prettyprint=False) args = vars(ap.parse_args()) # load the example image and convert it to grayscale image = cv2.imread(args["image"]) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) filename = "{}.png".format(os.getpid()) cv2.imwrite(filename, gray) # load the image as a PIL/Pillow image and apply some basic transformations. img = Image.open(filename) os.remove(filename) img = img.crop((300, 120, 2000, 1300)) img = ImageOps.invert(img) res = {} if args["type"] == "list": res = process_list(pytesseract.image_to_string(img)) f = open("list.json", "w+") f.write(json.dumps(res)) f.close() if args["type"] == "query": f = open("list.json", "r") existing = json.loads(f.read()) res = process_query(pytesseract.image_to_string(img), existing) if args["prettyprint"]: print_results(res) else: print(json.dumps(res, indent=2)) if args["debug"]: img.save(filename) img = cv2.imread(filename) os.remove(filename) d = pytesseract.image_to_data(img, output_type=Output.DICT) n_boxes = len(d['level']) for i in range(n_boxes): (x, y, w, h) = (d['left'][i], d['top'][i], d['width'][i], d['height'][i]) cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 1) cv2.imwrite("f.png", img)
the-stack_0_7394
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard from op_test import OpTest paddle.enable_static() class TestMaxMinAPI(unittest.TestCase): def setUp(self): self.init_case() self.cal_np_out_and_gradient() self.place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda( ) else fluid.CPUPlace() def init_case(self): self.x_np = np.array([[0.2, 0.3, 0.5, 0.9], [0.1, 0.2, 0.6, 0.7]]) self.shape = [2, 4] self.dtype = 'float64' self.axis = None self.keepdim = False # If there are multiple minimum or maximum elements, max/min/ is non-derivable, # its gradient check is not supported by unittest framework, # thus we calculate the gradient by numpy function. def cal_np_out_and_gradient(self): def _cal_np_out_and_gradient(func): if func is 'max': out = np.max(self.x_np, axis=self.axis, keepdims=self.keepdim) elif func is 'min': out = np.min(self.x_np, axis=self.axis, keepdims=self.keepdim) else: print('This unittest only test max/min, but now is', func) self.np_out[func] = out grad = np.zeros(self.shape) out_b = np.broadcast_to(out, self.shape) grad[self.x_np == out_b] = 1 self.np_grad[func] = grad self.np_out = dict() self.np_grad = dict() _cal_np_out_and_gradient('max') _cal_np_out_and_gradient('min') def _choose_paddle_func(self, func, x): if func is 'max': out = paddle.max(x, self.axis, self.keepdim) elif func is 'min': out = paddle.min(x, self.axis, self.keepdim) else: print('This unittest only test max/min, but now is', func) return out # We check the output between paddle API and numpy in static graph. def test_static_graph(self): def _test_static_graph(func): startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(startup_program, train_program): x = fluid.data(name='input', dtype=self.dtype, shape=self.shape) x.stop_gradient = False out = self._choose_paddle_func(func, x) exe = fluid.Executor(self.place) res = exe.run(fluid.default_main_program(), feed={'input': self.x_np}, fetch_list=[out]) self.assertTrue((np.array(res[0]) == self.np_out[func]).all()) _test_static_graph('max') _test_static_graph('min') # As dygraph is easy to compute gradient, we check the gradient between # paddle API and numpy in dygraph. def test_dygraph(self): def _test_dygraph(func): paddle.disable_static() x = paddle.to_tensor( self.x_np, dtype=self.dtype, stop_gradient=False) out = self._choose_paddle_func(func, x) grad_tensor = paddle.ones_like(x) paddle.autograd.backward([out], [grad_tensor], True) self.assertEqual(np.allclose(self.np_out[func], out.numpy()), True) self.assertEqual(np.allclose(self.np_grad[func], x.grad), True) paddle.enable_static() _test_dygraph('max') _test_dygraph('min') # test multiple minimum or maximum elements class TestMaxMinAPI2(TestMaxMinAPI): def init_case(self): self.x_np = np.array([[0.2, 0.3, 0.9, 0.9], [0.1, 0.1, 0.6, 0.7]]) self.shape = [2, 4] self.dtype = 'float64' self.axis = None self.keepdim = False # test different axis class TestMaxMinAPI3(TestMaxMinAPI): def init_case(self): self.x_np = np.array([[0.2, 0.3, 0.9, 0.9], [0.1, 0.1, 0.6, 0.7]]) self.shape = [2, 4] self.dtype = 'float64' self.axis = 0 self.keepdim = False # test keepdim = True class TestMaxMinAPI4(TestMaxMinAPI): def init_case(self): self.x_np = np.array([[0.2, 0.3, 0.9, 0.9], [0.1, 0.1, 0.6, 0.7]]) self.shape = [2, 4] self.dtype = 'float64' self.axis = 1 self.keepdim = True # test axis is tuple class TestMaxMinAPI5(TestMaxMinAPI): def init_case(self): self.x_np = np.array( [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]).astype(np.int32) self.shape = [2, 2, 2] self.dtype = 'int32' self.axis = (0, 1) self.keepdim = False
the-stack_0_7396
# Copyright 2020 (c) Cognizant Digital Business, Evolutionary AI. All rights reserved. Issued under the Apache 2.0 License. import argparse def predict(start_date: str, end_date: str, path_to_ips_file: str, output_file_path) -> None: """ Generates and saves a file with daily new cases predictions for the given countries, regions and intervention plans, between start_date and end_date, included. :param start_date: day from which to start making predictions, as a string, format YYYY-MM-DDD :param end_date: day on which to stop making predictions, as a string, format YYYY-MM-DDD :param path_to_ips_file: path to a csv file containing the intervention plans between inception date (Jan 1 2020) and end_date, for the countries and regions for which a prediction is needed :param output_file_path: path to file to which to save the the predictions :return: Nothing. Saves the generated predictions to an output_file_path CSV file with columns "CountryName,RegionName,Date,PredictedDailyNewCases" """ # !!! YOUR CODE HERE !!! raise NotImplemented # !!! PLEASE DO NOT EDIT. THIS IS THE OFFICIAL COMPETITION API !!! if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-s", "--start_date", dest="start_date", type=str, required=True, help="Start date from which to predict, included, as YYYY-MM-DD. For example 2020-08-01") parser.add_argument("-e", "--end_date", dest="end_date", type=str, required=True, help="End date for the last prediction, included, as YYYY-MM-DD. For example 2020-08-31") parser.add_argument("-ip", "--interventions_plan", dest="ip_file", type=str, required=True, help="The path to an intervention plan .csv file") parser.add_argument("-o", "--output_file", dest="output_file", type=str, required=True, help="The path to the CSV file where predictions should be written") args = parser.parse_args() print(f"Generating predictions from {args.start_date} to {args.end_date}...") predict(args.start_date, args.end_date, args.ip_file, args.output_file) print("Done!")
the-stack_0_7398
import json import public_config as c import logging import argparse import shutil from tinydb import TinyDB, Query from juriscraper.pacer import ( DocketReport, PacerSession, PossibleCaseNumberApi, FreeOpinionReport, ) logging.basicConfig(level=logging.DEBUG) district_dict = { "00": "med", "01": "mad", "02": "nhd", "03": "rid", "05": "ctd", "10": "vtd", } class PlymouthState(object): logging.info("Initializing Plymouth State object") s = PacerSession(username=c.PACER_USERNAME, password=c.PACER_PASSWORD) results = [] def get_pacer_case_ids(self): """Find PACER Case IDs from iQuery :return: None """ q = Query() db = TinyDB("db/master.json") fjc_table = db.table("fjc") for row in fjc_table.search((q.PACER_CASE_ID == "")): report = PossibleCaseNumberApi(row["COURT"], self.s) report.query(row["DOCKET_NO"]) data = report.data(office_number=row["OFFICE"], docket_number_letters="cv") fjc_table.update( {"PACER_CASE_ID": data["pacer_case_id"], "TITLE": data["title"]}, doc_ids=[row.doc_id], ) def get_docket_json(self): """Download docket to disk from Pacer :return: None """ q = Query() db = TinyDB("db/master.json") fjc_table = db.table("fjc") for row in fjc_table.search(~(q.PACER_CASE_ID == "") & (q.JSON == "False")): rep = DocketReport(row["COURT"], self.s) rep.query( row["PACER_CASE_ID"], show_parties_and_counsel=True, show_terminated_parties=True, show_list_of_member_cases=True, include_pdf_headers=True, show_multiple_docs=False, ) with open( "downloads/json/pacer_docket_%s.json" % row["PACER_CASE_ID"], "w" ) as write_file: json.dump(rep.data, write_file, indent=4, sort_keys=True, default=str) with open( "downloads/html/pacer_docket_%s.html" % row["PACER_CASE_ID"], "w" ) as file: file.write(rep.response.text) fjc_table.update( { "JSON": "True", "pacer_doc_id": rep.data["docket_entries"][0]["pacer_doc_id"], }, doc_ids=[row.doc_id], ) logging.info("Finished collecting JSON and HTML") def download_pdfs(self): """Download the first (presumably complaint) PDF to downlaods dir. :return: None """ q = Query() db = TinyDB("db/master.json") fjc_table = db.table("fjc") for row in fjc_table.search((q.JSON == "True") & (q.PDF == "False")): logging.info( "Collecting PDF #%s, in %s" % (row["PACER_CASE_ID"], row["TITLE"]) ) report = FreeOpinionReport(row["COURT"], self.s) r = report.download_pdf(row["PACER_CASE_ID"], row["pacer_doc_id"]) with open( "downloads/pdf/pacer_complaint_%s.pdf" % row["PACER_CASE_ID"], "w" ) as file: file.write(r.content) fjc_table.update( {"PDF": "True"}, doc_ids=[row.doc_id], ) logging.info( "Collected PDF #%s, in %s" % (row["PACER_CASE_ID"], row["TITLE"]) ) def get_pacer_ids(): """Use PACER iQuery to Identify PACER unique IDs :return: None """ logging.info("Begin collecting PACER CASE IDS") p = PlymouthState() p.get_pacer_case_ids() def download_json_html(): """Scrape HTML and JSON from Pacer Save resp from juriscraper to download/JSON & HTML dir :return: None """ logging.info("Begin collecting Dockets") p = PlymouthState() p.get_docket_json() def get_pdfs(): """Collect PDF from Pacer :return: None """ logging.info("Begin collecting PDFS") p = PlymouthState() p.download_pdfs() def zip_files(): """Zip the HTML, PDF and JSON Directories :return: None """ shutil.make_archive("downloads/zip/html_files", "zip", "downloads/html/") shutil.make_archive("downloads/zip/pdf_files", "zip", "downloads/pdf/") shutil.make_archive("downloads/zip/json_files", "zip", "downloads/json/") class Command(object): help = "Collect cases for Plymouth State client project" VALID_ACTIONS = { "get-pacer-ids": get_pacer_ids, "get-dockets": download_json_html, "get-pdfs": get_pdfs, "zip-files": zip_files, } parser = argparse.ArgumentParser(description="Process Plymouth State") parser.add_argument("-a", "--action", help="Must choose an action", required=True) args = vars(parser.parse_args()) VALID_ACTIONS[args["action"]]()
the-stack_0_7402
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np from mindspore import Tensor from mindspore.ops import operations as P from mindspore.common.api import ms_function from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter import mindspore.nn as nn import mindspore.context as context from mindspore.common import dtype as mstype context.set_context(device_target='GPU') class UnsortedSegmentSumNet(nn.Cell): def __init__(self, num_segments): super(UnsortedSegmentSumNet, self).__init__() self.unsorted_segment_sum = P.UnsortedSegmentSum() self.num_segments = num_segments def construct(self, data, ids): return self.unsorted_segment_sum(data, ids, self.num_segments) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_1D(): input_x = Tensor([1, 2, 3, 4], mstype.float32) segment_ids = Tensor([0, 0, 1, 2], mstype.int32) num_segments = 4 net = UnsortedSegmentSumNet(num_segments) output = net(input_x, segment_ids) expect = [3, 3, 4, 0] assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_2D(): input_x = Tensor([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], mstype.float32) segment_ids = Tensor([2, 1, 1], mstype.int32) num_segments = 4 net = UnsortedSegmentSumNet(num_segments) output = net(input_x, segment_ids) expect = [[ 0, 0, 0, 0], [14, 16, 18, 20], [ 1, 2, 3, 4], [ 0, 0, 0, 0]] assert (output.asnumpy() == expect).all() @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_3D(): input_x = Tensor(np.arange(4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3)) segment_ids = Tensor([2, 1, 1, -1], mstype.int32) num_segments = 5 net = UnsortedSegmentSumNet(num_segments) output = net(input_x, segment_ids) expect = [[[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]], [[45., 47., 49.], [51., 53., 55.], [57., 59., 61.], [63., 65., 67.], [69., 71., 73.]], [[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.], [ 9., 10., 11.], [12., 13., 14.]], [[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]], [[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]]] assert (output.asnumpy() == expect).all()
the-stack_0_7403
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An optimization pass that pushes Z gates later and later in the circuit.""" from typing import Iterator, Tuple, cast from cirq import ops, extension from cirq.circuits import Circuit, InsertStrategy, OptimizationPass from cirq.google.decompositions import is_negligible_turn from cirq.google.xmon_gates import ExpZGate from cirq.value import Symbol KNOWN_Z_TYPES = (ExpZGate, ops.RotZGate) class EjectZ(OptimizationPass): """Removes Z gates by pushing them later and later until they merge. As Z gates are removed from the circuit, 'lost phase' builds up. As lost phase is pushed rightward, it modifies phaseable operations along the way. Eventually the lost phase is discharged into a 'drain'. Only Z gates without a parameter dependence are removed. There are three kinds of drains: - Measurement gates, which absorb phase by discarding it. - Parameterized Z gates, which absorb phase into their turns attribute. - The end of the circuit, which absorbs phase into a new Z gate. """ def __init__(self, tolerance: float = 0.0, ext: extension.Extensions=None) -> None: """ Args: tolerance: Maximum absolute error tolerance. The optimization is permitted to simply drop negligible combinations of Z gates, with a threshold determined by this tolerance. ext: Extensions object used for determining if gates are phaseable (i.e. if Z gates can pass through them). """ self.tolerance = tolerance self.ext = ext or extension.Extensions() def optimize_circuit(self, circuit: Circuit): qubits = { q for m in circuit.moments for op in m.operations for q in op.qubits } for qubit in qubits: for start, drain in self._find_optimization_range_drains(circuit, qubit): self._optimize_range(circuit, qubit, start, drain) def _find_optimization_range_drains( self, circuit: Circuit, qubit: ops.QubitId) -> Iterator[Tuple[int, int]]: """Finds ranges where Z gates can be pushed rightward. Args: circuit: The circuit being optimized. qubit: The qubit along which Z operations are being merged. Yields: (start, drain) tuples. Z gates on the given qubit from moments with indices in the range [start, drain) should all be merged into whatever is at the drain index. """ start_z = None prev_z = None for i in range(len(circuit.moments)): op = circuit.operation_at(qubit, i) if op is None: continue if start_z is None: # Unparameterized Zs start optimization ranges. if (isinstance(op.gate, KNOWN_Z_TYPES) and not isinstance(op.gate.half_turns, Symbol)): start_z = i prev_z = None elif self.ext.can_cast(op.gate, ops.MeasurementGate): # Measurement acts like a drain. It destroys phase information. yield start_z, i start_z = None elif (isinstance(op.gate, KNOWN_Z_TYPES) and not isinstance(op.gate.half_turns, Symbol)): # Could be a drain. Depends if an unphaseable gate follows. prev_z = i elif not self.ext.can_cast(op.gate, ops.PhaseableGate): # Unphaseable gates force earlier draining. if prev_z is not None: yield start_z, prev_z start_z = None # End of the circuit forces draining. if start_z is not None: yield start_z, len(circuit.moments) def _optimize_range(self, circuit: Circuit, qubit: ops.QubitId, start: int, drain: int): """Pushes Z gates from [start, drain) into the drain. Assumes no unphaseable gates will be crossed, and that the drain is valid. Args: circuit: The circuit being optimized. qubit: The qubit along which Z operations are being merged. start: The inclusive start of the range containing Z gates to eject. drain: The exclusive end of the range containing Z gates to eject. Also the index of where the effects of the Z gates should end up. """ lost_phase_turns = 0.0 for i in range(start, drain): op = circuit.operation_at(qubit, i) if op is None: # Empty. pass elif isinstance(op.gate, KNOWN_Z_TYPES): # Move Z effects out of the circuit and into lost_phase_turns. circuit.clear_operations_touching([qubit], [i]) lost_phase_turns += cast(float, op.gate.half_turns) / 2 elif self.ext.can_cast(op.gate, ops.PhaseableGate): # Adjust phaseable gates to account for the lost phase. phaseable = self.ext.cast(op.gate, ops.PhaseableGate) k = op.qubits.index(qubit) circuit.clear_operations_touching(op.qubits, [i]) circuit.insert(i + 1, phaseable.phase_by(-lost_phase_turns, k).on( *op.qubits), InsertStrategy.INLINE) self._drain_into(circuit, qubit, drain, lost_phase_turns) def _drain_into(self, circuit: Circuit, qubit: ops.QubitId, drain: int, accumulated_phase: float): if is_negligible_turn(accumulated_phase, self.tolerance): return # Drain type: end of circuit. if drain == len(circuit.moments): circuit.append( ExpZGate(half_turns=2*accumulated_phase).on(qubit), InsertStrategy.INLINE) return # Drain type: another Z gate. op = cast(ops.Operation, circuit.operation_at(qubit, drain)) if isinstance(op.gate, ExpZGate): half_turns = cast(float, op.gate.half_turns) + accumulated_phase * 2 circuit.clear_operations_touching([qubit], [drain]) circuit.insert( drain + 1, ExpZGate(half_turns=half_turns).on(qubit), InsertStrategy.INLINE) return # Drain type: measurement gate. # (Don't have to do anything.)
the-stack_0_7404
_base_ = './faster_rcnn_r50_fpn_1x_coco.py' model = dict( backbone=dict( norm_cfg=dict(requires_grad=False), norm_eval=True, style='caffe', init_cfg=dict( type='Pretrained', checkpoint='open-mmlab://detectron2/resnet50_caffe'))) # use caffe img_norm img_norm_cfg = dict( mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], to_rgb=False) train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations', with_bbox=True), dict( type='Resize', img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768), (1333, 800)], multiscale_mode='value', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=(1333, 800), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **img_norm_cfg), dict(type='Pad', size_divisor=32), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline))
the-stack_0_7405
import platform import os import sys # Resources shared by both the Network and Server files BUFSIZE = 4096 * 2 PORT = 5555 INTERNAL_PORT = 4321 # The ipv4 address of the host machine. Run ipconfig from cmd to get this HOST = "127.0.0.1" if platform.system() == 'Darwin': LOCAL = "127.0.0.1" #"192.168.1.154" else: # This allows you to try out different ports when running through DO cli if len(sys.argv) >= 2: LOCAL = os.getenv('HOSTNAME') PORT = sys.argv[1] else: LOCAL = os.getenv('HOSTNAME') SINGLE_PLAYER = True # Time client waits between sending requests for changed state CLIENT_WAIT = 0.1 # Messages GET_STATE = 'Get' DO_ACTION = 'Do' INIT_MSG = 'Init' MULLIGAN_MSG = 'Mull' # Responses NO_UPDATE = 'No update' UPDATE = 'Update' VALID_CHOICE = 'Valid choice' INVALID_CHOICE = 'Invalid choice' # Log into router, port forwarding, port 5555 to my local machine # Tell my router goes to the ip I had been using
the-stack_0_7406
""" TODO: ADD FEATURE TO ENABLE USE OF UNBOUNDED VARIABLES Note: This does not work with the current version of PLEpy, to be fixed in future versions Uses a calculated "cross-talk" matrix (converts 3D counts to 2D activity for each 3D and 2D shell) to fit first-order rate coefficients and initial activity in 3D shells using simulated 2D planar imaging data. Each 3D shell only moves inward. Model: dA5/dt = -k5*A5 dA4/dt = k5*A5 - k4*A4 dA3/dt = k4*A4 - k3*A3 dA2/dt = k3*A3 - k2*A2 dA1/dt = k2*A2 - k1*A1 where k1-k5 are the rate coefficients and k1 > k2 > k3 > k4 > k5 """ import os import sys import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.io import loadmat import pyomo.environ as penv from pyomo.dae import ContinuousSet, DerivativeVar sys.path.append(os.path.abspath("../../")) from plepy import PLEpy pwd = os.getcwd() fpath = os.path.dirname(__file__) os.chdir(fpath) # Import 2D data ydata = np.load('toy2D_data_exp3.npz')['arr_0'] ytotal = ydata.sum(axis=1) tdata = list(range(0, 81, 2)) # Import cross-talk matrix crssfile = loadmat('shelltoy_crsstlk_dist.mat') ctalk = crssfile['crsstlk'] ictalk = np.linalg.inv(ctalk) iydata = np.dot(ictalk, ydata.T).T iydata[1:, :] = (iydata[1:, :] + iydata[:-1, :])/2 # Actual data (for comparison) datafile = loadmat('shelltoydata_exp3.mat') data3d = datafile['a'] # Initial guesses k0 = [5., 5., 1., 0.75, 0.5] # [p1, p2, p3, p4, k5] a0 = np.dot(ictalk, ydata[0, :].T) # [A1, A2, a3, A4, A5]' da0dt = [k0[i+1]*a0[i+1] - k0[i]*a0[i] for i in range(4)] da0dt.append(-k0[4]*a0[4]) da0dt = [1e-2*a for a in da0dt] # Create dynamic model model = penv.ConcreteModel() # Define parameters model.t = ContinuousSet(bounds=(0, 81), initialize=range(81)) # Rate coefficients are fit as sum of previous rate coefficient and # corresponding "p" parameter. # k4 = k5 + p4, k3 = k4 + p3, etc. model.p1 = penv.Var(initialize=k0[0], bounds=(1e-3, 100.)) model.p2 = penv.Var(initialize=k0[1], bounds=(1e-3, 100.)) model.p3 = penv.Var(initialize=k0[2], bounds=(1e-3, 100.)) model.p4 = penv.Var(initialize=k0[3], bounds=(1e-3, 100.)) model.k5 = penv.Var(initialize=k0[4], bounds=(1e-3, 100.)) # Define 3D shell states model.A1 = penv.Var(model.t, initialize=a0[0], within=penv.NonNegativeReals) model.A2 = penv.Var(model.t, initialize=a0[1], within=penv.NonNegativeReals) model.A3 = penv.Var(model.t, initialize=a0[2], within=penv.NonNegativeReals) model.A4 = penv.Var(model.t, initialize=a0[3], within=penv.NonNegativeReals) model.A5 = penv.Var(model.t, initialize=a0[4], within=penv.NonNegativeReals) # Initialize derivatives model.dA1dt = DerivativeVar(model.A1, wrt=model.t, initialize=da0dt[0]) model.dA2dt = DerivativeVar(model.A2, wrt=model.t, initialize=da0dt[1]) model.dA3dt = DerivativeVar(model.A3, wrt=model.t, initialize=da0dt[2]) model.dA4dt = DerivativeVar(model.A4, wrt=model.t, initialize=da0dt[3]) model.dA5dt = DerivativeVar(model.A5, wrt=model.t, initialize=da0dt[4]) # System dynamics def _dA1dt(m, t): k4 = m.k5 + m.p4 k3 = k4 + m.p3 k2 = k3 + m.p2 k1 = k2 + m.p1 return m.dA1dt[t] == 1e-2*(k2*m.A2[t] - k1*m.A1[t]) model.dA1dt_ode = penv.Constraint(model.t, rule=_dA1dt) def _dA2dt(m, t): k4 = m.k5 + m.p4 k3 = k4 + m.p3 k2 = k3 + m.p2 return m.dA1dt[t] == 1e-2*(k3*m.A3[t] - k2*m.A2[t]) model.dA2dt_ode = penv.Constraint(model.t, rule=_dA2dt) def _dA3dt(m, t): k4 = m.k5 + m.p4 k3 = k4 + m.p3 return m.dA3dt[t] == 1e-2*(k4*m.A4[t] - k3*m.A3[t]) model.dA3dt_ode = penv.Constraint(model.t, rule=_dA3dt) def _dA4dt(m, t): k4 = m.k5 + m.p4 return m.dA4dt[t] == 1e-2*(m.k5*m.A5[t] - k4*m.A4[t]) model.dA4dt_ode = penv.Constraint(model.t, rule=_dA4dt) def _dA5dt(m, t): return m.dA5dt[t] == 1e-2*(- m.k5*m.A5[t]) model.dA5dt_ode = penv.Constraint(model.t, rule=_dA5dt) # Objective function (SSE) def _obj(m): a3D = np.array([[m.A1[t], m.A2[t], m.A3[t], m.A4[t], m.A5[t]] for t in tdata]).T a2D = np.dot(ctalk, a3D).T # err = (ydata - a2D)**2 err = (iydata - a3D.T)**2 return sum(sum(err)) model.obj = penv.Objective(rule=_obj) # Set-up solver TFD=penv.TransformationFactory("dae.finite_difference") TFD.apply_to(model, nfe=2*len(model.t), wrt=model.t, scheme="BACKWARD") solver = penv.SolverFactory('ipopt') solver.options['linear_solver'] = 'ma97' # academic solver solver.options['tol'] = 1e-6 solver.options['max_iter'] = 6000 results = solver.solve(model, keepfiles=False, tee=True) model.solutions.load_from(results) # Plot results sns.set(context='talk') plt.figure() ccycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] plt.plot(tdata, data3d[:, 0], ls='None', marker='o', color=ccycle[0]) plt.plot(tdata, data3d[:, 1], ls='None', marker='o', color=ccycle[1]) plt.plot(tdata, data3d[:, 2], ls='None', marker='o', color=ccycle[2]) plt.plot(tdata, data3d[:, 3], ls='None', marker='o', color=ccycle[3]) plt.plot(tdata, data3d[:, 4], ls='None', marker='o', color=ccycle[4]) # plt.plot(tdata, iydata[:, 0], label='Shell 1', color=ccycle[0]) # plt.plot(tdata, iydata[:, 1], label='Shell 2', color=ccycle[1]) # plt.plot(tdata, iydata[:, 2], label='Shell 3', color=ccycle[2]) # plt.plot(tdata, iydata[:, 3], label='Shell 4', color=ccycle[3]) # plt.plot(tdata, iydata[:, 4], label='Shell 5', color=ccycle[4]) plt.plot(model.t, model.A1[:](), label='Shell 1', color=ccycle[0]) plt.plot(model.t, model.A2[:](), label='Shell 2', color=ccycle[1]) plt.plot(model.t, model.A3[:](), label='Shell 3', color=ccycle[2]) plt.plot(model.t, model.A4[:](), label='Shell 4', color=ccycle[3]) plt.plot(model.t, model.A5[:](), label='Shell 5', color=ccycle[4]) plt.xlabel('Time (min)') plt.ylabel('Activity (counts)') plt.legend(bbox_to_anchor=(1.05, 1), loc=2) plt.tight_layout() plt.show() # Initialize PLEpy object ps = [model.p1(), model.p2(), model.p3(), model.p4(), model.k5()] ps.reverse() ks = np.cumsum(ps) A0s = [model.A1[0](), model.A2[0](), model.A3[0](), model.A4[0](), model.A5[0]()] PLobj = PLEpy(model, ['p1', 'p2', 'p3', 'p4', 'k5', 'A1', 'A2', 'A3', 'A4', 'A5'], indices={'t0': [0]}) PLobj.set_index('A1', 't0') PLobj.set_index('A2', 't0') PLobj.set_index('A3', 't0') PLobj.set_index('A4', 't0') PLobj.set_index('A5', 't0') # Get confidence limits using binary search (currently won't work # because initial activity is unbounded) PLobj.get_clims(['A1', 'A2', 'A3', 'A4', 'A5']) # Generate profile likelihood curves PLobj.get_PL(['A1', 'A2', 'A3', 'A4', 'A5']) PLobj.plot_PL(pnames=['A1', 'A2', 'A3', 'A4', 'A5'], join=True, jmax=5) os.chdir(pwd)
the-stack_0_7410
# Pelenet modules from .anisotropic import AnisotropicExperiment from ..network import ReservoirNetwork from ._abstract import Experiment """ @desc: Class for running an experiment, usually contains performing several networks (e.g. for training and testing) """ class AnisotropicReadoutExperiment(AnisotropicExperiment): """ # @desc: Define parameters for this experiment # """ def defineParameters(self): # Parent parameters aniP = super().defineParameters() expP = { # Experiment 'seed': 3, # Random seed 'trials': 25, # Number of trials 'stepsPerTrial': 110, # Number of simulation steps for every trial 'isReset': True, # Activate reset after every trial # Network 'refractoryDelay': 2, # Refactory period 'voltageTau': 10.24, # Voltage time constant 'currentTau': 10.78, # Current time constant 'thresholdMant': 1000, # Spiking threshold for membrane potential 'reservoirConnProb': 0.05, # Anisotropic 'anisoStdE': 12, # Space constant, std of gaussian for excitatory neurons 'anisoStdI': 9, # Space constant, std of gaussian for inhibitory neurons (range 9 - 11) 'anisoShift': 1, # Intensity of the shift of the connectivity distribution for a neuron #'percShift': 1, # Percentage of shift (default 1) 'anisoPerlinScale': 4, # Perlin noise scale, high value => dense valleys, low value => broad valleys 'weightExCoefficient': 12, # Coefficient for excitatory anisotropic weight 'weightInCoefficient': 48, # Coefficient for inhibitory anisotropic weight # Input 'inputIsTopology': True, # Activate a 2D input area 'inputIsLeaveOut': True, # Leaves one target neuron out per trial 'patchNeuronsShiftX': 44, # x-position of the input area 'patchNeuronsShiftY': 24, # y-position of the input area 'inputNumTargetNeurons': 25, # Number of target neurons for the input 'inputSteps': 5, # Number of steps the network is activated by the input 'inputWeightExponent': 0, # The weight exponent of the weights from the generator to the target neurons 'inputGenSpikeProb': 1.0, # Spiking probability of the spike generators # Output 'partitioningClusterSize': 10, # Size of clusters connected to an output neuron (6|10) # Probes 'isExSpikeProbe': True, # Probe excitatory spikes 'isInSpikeProbe': True, # Probe inhibitory spikes 'isOutSpikeProbe': True # Probe output spikes } # Experiment parameters overwrite parameters from parent experiment return { **aniP, **expP } """ @desc: Build all networks """ def build(self): # Instanciate innate network self.net = ReservoirNetwork(self.p) self.net.landscape = None # Draw anisotropic mask and weights self.drawMaskAndWeights() # Draw output weights self.net.drawOutputMaskAndWeights() # Connect ex-in reservoir self.net.connectReservoir() # Connect reservoir to output self.net.connectOutput() # Add patch input self.net.addInput() # Add Probes self.net.addProbes()
the-stack_0_7413
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time from flask import ( Flask, abort, request, redirect, url_for, render_template, g, send_from_directory, jsonify) from flask_sqlalchemy import SQLAlchemy from sqlalchemy.sql.expression import func from PIL import Image, ImageDraw, ImageFont from configuration import ( get_args, get_db_uri, get_templates_list, BASE_DIR, MEME_DIR, FONT_PATH) app = Flask(__name__) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False app.config['SQLALCHEMY_DATABASE_URI'] = get_db_uri() db = SQLAlchemy(app) # Model for representing created Memes class Meme(db.Model): id = db.Column(db.Integer, primary_key=True) template = db.Column(db.String(80), nullable=False) top_text = db.Column(db.String(80), nullable=False) bot_text = db.Column(db.String(80), nullable=False) def __repr__(self): return '<Meme %r>' % self.id Portfolio_Stocks = db.Table( 'Portfolio_Stocks', db.Column('stock_id', db.Integer, db.ForeignKey('stock.id'), primary_key=True), db.Column('portfolio_id', db.Integer, db.ForeignKey('portfolio.id'), primary_key=True) ) # class Stock(db.Model): # id = db.Column(db.Integer, primary_key=True) # name = db.Column(db.String(80), nullable=False) # symbol = db.Column(db.String(10), nullable=False) # price = db.Column(db.Float, nullable=False) # def __repr__(self): # return '<Stock %r>' % self.id # class Portfolio(db.Model): # id = db.Column(db.Integer, primary_key=True) # portfolio_owner = db.Column(db.String(80), nullable=False) # stock_id = db.Column(db.Integer, db.ForeignKey('stock.id'), nullable=Fals # e) # def __repr__(self): # return '<Portfolio %r>' % self.id class Stock(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80), nullable=False) symbol = db.Column(db.String(10), nullable=False) price = db.Column(db.Float, nullable=False) portfolios_linked = db.relationship('Portfolio', secondary=Portfolio_Stocks, lazy='subquery', backref=db.backref('stocks_linked', lazy=True) ) def __repr__(self): return '<Stock %r>' % self.id def serialize(self): return { "id": self.id, "name": self.name, "symbol": self.symbol, "price": self.price } class Portfolio(db.Model): id = db.Column(db.Integer, primary_key=True) owner = db.Column(db.String(80), nullable=False) def __repr__(self): return '<Portfolio %r>' % self.id # Portfolio_Stocks = db.Table( # db.Column('stock_id', db.Integer, db.ForeignKey('stock.id'), # primary_key=True), # db.Column('portfolio_id', db.Integer, db.ForeignKey('portfolio.id'), # primary_key=True) # ) # # @app.before_first_request def setup_db(): # Create folder for memes if it doesn't exist if not os.path.exists(MEME_DIR): os.makedirs(MEME_DIR) # Create tables for models if they don't exist db.create_all() @app.before_request def setup_request_time(): start_time = time.time() g.request_time = lambda: "%d ms" % ((time.time() - start_time) * 1000) @app.route('/') def index(): return redirect(url_for("get_create_menu")) @app.route('/recent', methods=['GET']) def view_recent(): memes = Meme.query.order_by(Meme.id.desc()).limit(20).all() return render_template('recent.html', memes=memes) @app.route('/random', methods=['GET']) def view_random(): meme = Meme.query.order_by(func.random()).first() return redirect(url_for('view_meme', meme_id=meme.id)) @app.route('/template', methods=['GET']) def get_create_menu(): templates = get_templates_list() return render_template('view.html', templates=templates) @app.route('/template/<string:template>', methods=['GET']) def get_create(template): if template not in get_templates_list(): abort(400, "Template does not exist.") return render_template('create_meme.html', template=template) @app.route('/meme/<int:meme_id>', methods=['GET']) def view_meme(meme_id): meme_file = os.path.join(MEME_DIR, '%d.png' % meme_id) if not os.path.exists(meme_file): generate_meme(meme_file, meme_id) print(meme_file) return send_from_directory(MEME_DIR, '%d.png' % meme_id) @app.route('/meme', methods=['POST']) def create_meme(): try: meme = Meme( template=request.form['template'], top_text=request.form['top'], bot_text=request.form['bottom'] ) db.session.add(meme) db.session.commit() return redirect(url_for('view_meme', meme_id=meme.id)) except KeyError: abort(400, "Incorrect parameters.") # Creates a stock @app.route('/stock', methods=["POST"]) def create_stock(): try: stock = Stock( name=request.form['name'], symbol=request.form['symbol'], price=request.form['price'] ) db.session.add(stock) db.session.commit() print("stock created!") # return redirect(url_for('view_stock', stock_id=stock.id)) return redirect('/template') except KeyError: abort(400, "Incorrect Parameters!") # Gets all stocks @app.route('/api/v1/stocks', methods=["GET"]) def api_stocks(): stocks = Stock.query.order_by(Stock.id.desc()).all() return jsonify([s.serialize() for s in stocks]) # Gets all stocks @app.route('/stock', methods=["GET"]) def view_stocks(): stocks = Stock.query.order_by(Stock.id.desc()).all() return render_template('stocks.html', stocks=stocks) # Get stock by stock id @app.route('/stock/<int:stock_id>', methods=["GET"]) def view_stock(stock_id): stock = Stock.query.filter_by(id=stock_id).first() return render_template('stock_id.html', stock=stock) # Renders create_stock.html @app.route('/stock/cstock', methods=["GET"]) def get_create_stock(): return render_template("create_stock.html") # Renders create_stock.html @app.route('/portfolio/cportfolio', methods=["GET"]) def get_create_portfolio(): return render_template("create_portfolio.html") # Creates a portfolio @app.route('/portfolio', methods=["POST"]) def create_portfolio(): try: portfolio = Portfolio( owner=request.form['owner'] ) db.session.add(portfolio) db.session.commit() print("portfolio created!") return redirect('/template') except KeyError: abort(400, "Incorrect Parameters!") # Gets all portfolios @app.route('/portfolio', methods=["GET"]) def view_portfolios(): portfolios = Portfolio.query.order_by(Portfolio.id.desc()).all() return render_template('portfolios.html', portfolios=portfolios) # Gets portfolio by stock id @app.route('/portfolio/<int:portfolio_id>', methods=["GET"]) def view_portfolio(portfolio_id): portfolio = Portfolio.query.filter_by(id=portfolio_id).first() return render_template('portfolio_id.html', portfolio=portfolio) # Allows a stock to be assigned to a portfolio @app.route('/portfolio/psip/<int:stock_id>/<int:portfolio_id>', methods=["POST"]) def put_stock_in_portfolio(stock_id, portfolio_id): portfolio_rel = Portfolio.query.filter_by(id=portfolio_id).first() stock_rel = Stock.query.filter_by(id=stock_id).first() portfolio_rel.stocks_linked.append(stock_rel) print("stock assigned to portfolio") db.session.commit() # return redirect('/template') return render_template('portfolio_id.html', portfolio=portfolio_rel) def generate_meme(file, meme_id): # Query for meme meme = Meme.query.filter(Meme.id == meme_id).first() if meme is None: abort(400, 'Meme does not exist.') # Load template template_file = os.path.join( BASE_DIR, 'static', 'templates', meme.template) if not os.path.exists(template_file): abort(400, 'Template does not exist') template = Image.open(template_file) # Get Font Details font, top_loc, bot_loc = calc_font_details( meme.top_text, meme.bot_text, template.size) draw = ImageDraw.Draw(template) draw_text(draw, top_loc[0], top_loc[1], meme.top_text, font) draw_text(draw, bot_loc[0], bot_loc[1], meme.bot_text, font) template.save(file) # Calculate font size and location def calc_font_details(top, bot, img_size): font_size = 50 font = ImageFont.truetype(FONT_PATH, font_size) max_width = img_size[0] - 20 # Get ideal font size while font.getsize(top)[0] > max_width or font.getsize(bot)[0] > max_width: font_size = font_size - 1 font = ImageFont.truetype(FONT_PATH, font_size) # Get font locations top_loc = ((img_size[0] - font.getsize(top)[0])/2, -5) bot_size = font.getsize(bot) bot_loc = ((img_size[0] - bot_size[0])/2, img_size[1] - bot_size[1] - 5) return font, top_loc, bot_loc # Draws the given text with a border def draw_text(draw, x, y, text, font): # Draw border draw.text((x-1, y-1), text, font=font, fill="black") draw.text((x+1, y-1), text, font=font, fill="black") draw.text((x-1, y+1), text, font=font, fill="black") draw.text((x+1, y+1), text, font=font, fill="black") # Draw text draw.text((x, y), text, font=font, fill="white") if __name__ == '__main__': # Run dev server (for debugging only) args = get_args() app.run(host=args.host, port=args.port, debug=True)
the-stack_0_7417
import torch import torch.nn as nn try: from torch.hub import load_state_dict_from_url except ImportError: from torch.utils.model_zoo import load_url as load_state_dict_from_url # from .utils import load_state_dict_from_url from ib_layers import * # __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', # 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', # 'wide_resnet50_2', 'wide_resnet101_2'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', } resnet_alpha = 1.0 def conv3x3(in_planes, out_planes, wib, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" # resnet_wib = False resnet_wib = True resnet_alpha = 1E-3 if not wib: return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) else: return WibConv2d(alpha=resnet_alpha, in_channels=in_planes, out_channels=out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, wib, stride=1): """1x1 convolution""" # resnet_wib = False resnet_wib = True resnet_alpha = 1E-3 if not wib: return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) else: return WibConv2d(alpha=resnet_alpha, in_channels=in_planes, out_channels=out_planes, kernel_size=1, stride=stride, bias=False) cfg = { ##### 括号里第一个数是卷积核个数;第二个数是卷积结构,1表示正常卷基层,2表示resnet的2层block结构,3表示resnet ##### 的三层Bottleneck结构;第三个数表示如果是resnet结构,第一个卷积层的stride #resnet18 (2,2,2,2) 'G5': [(64, 1, 1, 1.0/32), ## InformationBottleneck 'M', (64, 2, 1, 1.0/32), ## InformationBottleneck (64, 2, 1, 1.0/32), ## InformationBottleneck (128, 2, 2, 1.0/16), ## InformationBottleneck (128, 2, 1, 1.0/16), ## InformationBottleneck (256, 2, 2, 1.0/8), ## InformationBottleneck (256, 2, 1, 1.0/8), ## InformationBottleneck (512, 2, 2, 1.0/4), ## InformationBottleneck (512, 2, 1, 1.0/4), ## InformationBottleneck 'A'], #resnet34 (3,4,6,3) 'G1': [(64, 1, 1, 1.0/32), ## InformationBottleneck 'M', (64, 2, 1, 1.0/32), ## InformationBottleneck (64, 2, 1, 1.0/32), ## InformationBottleneck (64, 2, 1, 1.0/32), ## InformationBottleneck (128, 2, 2, 1.0/16), ## InformationBottleneck (128, 2, 1, 1.0/16), ## InformationBottleneck (128, 2, 1, 1.0/16), ## InformationBottleneck (128, 2, 1, 1.0/16), ## InformationBottleneck (256, 2, 2, 1.0/8), ## InformationBottleneck (256, 2, 1, 1.0/8), ## InformationBottleneck (256, 2, 1, 1.0/8), ## InformationBottleneck (256, 2, 1, 1.0/8), ## InformationBottleneck (256, 2, 1, 1.0/8), ## InformationBottleneck (256, 2, 1, 1.0/8), ## InformationBottleneck (512, 2, 2, 1.0/4), ## InformationBottleneck (512, 2, 1, 1.0/4), ## InformationBottleneck (512, 2, 1, 1.0/4), ## InformationBottleneck 'A'], # resnet50 (3,4,6,3) 'G2': [(64, 1, 1, 1.0 / 32), ## InformationBottleneck 'M', (64, 3, 1, 1.0 / 32), ## InformationBottleneck (64, 3, 1, 1.0 / 32), ## InformationBottleneck (64, 3, 1, 1.0 / 32), ## InformationBottleneck (128, 3, 2, 1.0 / 16), ## InformationBottleneck (128, 3, 1, 1.0 / 16), ## InformationBottleneck (128, 3, 1, 1.0 / 16), ## InformationBottleneck (128, 3, 1, 1.0 / 16), ## InformationBottleneck (256, 3, 2, 1.0 / 8), ## InformationBottleneck (256, 3, 1, 1.0 / 8), ## InformationBottleneck (256, 3, 1, 1.0 / 8), ## InformationBottleneck (256, 3, 1, 1.0 / 8), ## InformationBottleneck (256, 3, 1, 1.0 / 8), ## InformationBottleneck (256, 3, 1, 1.0 / 8), ## InformationBottleneck (512, 3, 2, 1.0 / 4), ## InformationBottleneck (512, 3, 1, 1.0 / 4), ## InformationBottleneck (512, 3, 1, 1.0 / 4), ## InformationBottleneck 'A'] } def reparameterize(mu, logalpha): std = logalpha.mul(0.5).exp_() eps = torch.FloatTensor(std.size(0)).cuda(mu.get_device()).normal_() eps = Variable(eps) # phi = std * eps - std * std / 2 # return phi phi = (std * eps - std * std / 2).exp_() return phi * mu # std = logalpha.mul(0.5).exp_() # eps = torch.FloatTensor(std.size(0)).cuda(mu.get_device()).normal_() # eps = Variable(eps) # return mu + eps * std class WeightIB(nn.Module): def __init__(self, out_channels, init_mag=9, init_var=0.01): super(WeightIB, self).__init__() self.dim = out_channels print(self.dim) # self.phi = Parameter(torch.Tensor(self.dim)) self.logalpha = Parameter(torch.Tensor(self.dim)) self.mu = Parameter(torch.Tensor(self.dim)) self.epsilon = 1e-8 self.offset = 0.00 self.mu.data.normal_(1, init_var) self.logalpha.data.normal_(-init_mag, init_var) def forward(self, x, training=False): if self.training: # z_scale = reparameterize(self.mu, self.logalpha) # z_scale_exp = z_scale.exp_() # hard_mask, _ = self.get_mask_hard(self.epsilon) # z_scale = z_scale_exp * Variable(hard_mask) z_scale = reparameterize(self.mu, self.logalpha) hard_mask, _ = self.get_mask_hard(self.epsilon) z_scale *= Variable(hard_mask) # print('self.mu: ', self.mu) # print('z_scale1: ', z_scale) # print('z_scale1: ', z_scale) else: # z_scale = reparameterize(self.mu, self.logalpha) # z_scale_exp = z_scale.exp_() z_scale = reparameterize(self.mu, self.logalpha) hard_mask, _ = self.get_mask_hard(self.epsilon) z_scale *= Variable(hard_mask) # z_scale = Variable(self.get_mask_weighted(self.epsilon)) # print('z_scale2: ', z_scale) # new_shape = self.adapt_shape(z_scale_exp.size(), x.size()) # return x * z_scale_exp.view(new_shape) new_shape = self.adapt_shape(z_scale.size(), x.size()) return x * z_scale.view(new_shape) def adapt_shape(self, src_shape, x_shape): if len(src_shape) == 2: new_shape = src_shape # print('new_shape1: ',new_shape) else: new_shape = (src_shape[0], 1) # print('new_shape2: ', new_shape) if len(x_shape)>2: new_shape = list(new_shape) new_shape += [1 for i in range(len(x_shape)-2)] # print('new_shape3: ', new_shape) return new_shape def get_mask_hard(self, threshold=0): hard_mask = (self.mu.abs() > threshold).float() prune = self.mu.abs().cpu() > threshold # e.g. [True, False, True, True, False] mask = np.where(prune)[0] # e.g. [0, 2, 3] return hard_mask, len(mask) def get_mask_weighted(self, threshold=0): mask = (self.mu.abs() > threshold).float() * self.mu.data.float() return mask def compute_Wib_upbound(self, logalpha): return - 0.5 * logalpha.sum() class WibConv2d(nn.Conv2d): def __init__(self, alpha, **kwargs): super(WibConv2d, self).__init__(**kwargs) self.alpha = alpha self.weight_ib = WeightIB(self.out_channels) self.W = torch.empty(self.weight.data.size()) torch.nn.init.xavier_normal(self.W, gain=1) def forward(self, x): if self.training: # kernel_in = self.weight.data # self.W.data = self.weight_ib(self.weight, training=self.training) # y = nn.functional.conv2d(x, self.W, self.bias, self.stride, self.padding, self.dilation, self.groups) new_weight = self.weight_ib(self.weight, training=self.training) y = nn.functional.conv2d(x, new_weight, self.bias, self.stride, self.padding, self.dilation, self.groups) # y = nn.functional.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) # self.W.data= self.W else: # y = nn.functional.conv2d(x, self.W, self.bias, self.stride, self.padding, self.dilation, self.groups) new_weight = self.weight_ib(self.weight, training=self.training) y = nn.functional.conv2d(x, new_weight, self.bias, self.stride, self.padding, self.dilation, self.groups) # y = nn.functional.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) # self.weight.data = self.W.data # print('self.weight2: ', self.weight) # new_weight = self.weight_ib(self.weight, training=self.training) # y = nn.functional.conv2d(x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups) # y = nn.functional.conv2d(x, new_weight, self.bias, self.stride, self.padding, self.dilation, self.groups) return y class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, wib=0, kl_mult=1): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 # self.wib=wib self.conv1 = conv3x3(inplanes, planes, wib, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.ib1 = InformationBottleneck(planes, kl_mult=kl_mult) self.conv2 = conv3x3(planes, planes, wib) self.bn2 = norm_layer(planes) self.ib2 = InformationBottleneck(planes, kl_mult=kl_mult) self.downsample = downsample self.stride = stride def compute_Wib_upbound(self, ): wib_upbound =0 wib_upbound += self.conv1.weight_ib.compute_Wib_upbound(self.conv1.weight_ib.logalpha) # 之前版本错了 # wib_upbound += self.conv2.weight_ib.compute_Wib_upbound(self.conv1.weight_ib.logalpha) # 正确版本 wib_upbound += self.conv2.weight_ib.compute_Wib_upbound(self.conv2.weight_ib.logalpha) return wib_upbound def compute_compression_ratio(self, threshold, pre_mask, n=0): # applicable for structures with global pooling before fc total_params, pruned_params, remain_params = 0, 0, 0 fmap_size=32 out_channels1 = self.conv1.out_channels out_channels2 = self.conv2.out_channels in_channels1=self.conv1.in_channels in_channels2 = self.conv2.in_channels total_params = in_channels1 * out_channels1 * 9 total_params += in_channels2 * out_channels2 * 9 hard_mask1 = self.conv1.get_mask_hard(threshold) hard_mask2 = self.conv2.get_mask_hard(threshold) remain_params = pre_mask * hard_mask1 * 9 remain_params += hard_mask1 *hard_mask2 * 9 pruned_params = total_params - remain_params flops = (fmap_size ** 2) * remain_params # print('in_channels1: {}, in_channels2: {}, out_channels1:{}, out_channels2: {},' # .format(in_channels1, in_channels2, out_channels1, out_channels2)) # print('pre_mask: {}, hard_mask1: {}, hard_mask2:{},' # .format(pre_mask, hard_mask1, hard_mask2)) # print('total parameters: {}, pruned parameters: {}, remaining params:{}, remaining flops: {},' # .format(total_params, pruned_params, remain_params, flops)) return total_params, pruned_params, remain_params, flops def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.ib1(out) out = self.conv2(out) out = self.bn2(out) out = self.ib2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) # while original implementation places the stride at the first 1x1 convolution(self.conv1) # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. # This variant is also known as ResNet V1.5 and improves accuracy according to # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None, wib=0, kl_mult=1): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width, wib) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, wib, stride, groups, dilation) self.bn2 = norm_layer(width) self.ib2 = InformationBottleneck(width, kl_mult=kl_mult) self.conv3 = conv1x1(width, planes * self.expansion, wib) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def compute_Wib_upbound(self, ): wib_upbound =0 wib_upbound += self.conv1.weight_ib.compute_Wib_upbound(self.conv1.weight_ib.logalpha) wib_upbound += self.conv2.weight_ib.compute_Wib_upbound(self.conv2.weight_ib.logalpha) wib_upbound += self.conv3.weight_ib.compute_Wib_upbound(self.conv3.weight_ib.logalpha) return wib_upbound def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.ib2(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class RESNET_IB(nn.Module): def __init__(self, block, config=None, mag=9, batch_norm=False, threshold=0, init_var=0.01, sample_in_training=True, sample_in_testing=False, n_cls=10, no_ib=False, a=0.5, b=0.5, ###resnet 初始参数 zero_init_residual=False, wib=1, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None ): super(RESNET_IB, self).__init__() self.expansion = block.expansion ### resnet 初始化 if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer # self.layers = layers self.wib = wib self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.init_mag = mag self.threshold = threshold self.config = config self.init_var = init_var self.sample_in_training = sample_in_training self.sample_in_testing = sample_in_testing self.no_ib = no_ib self.a = a self.b = b print('Using structure1 {}'.format(cfg[config])) self.conv_layers, conv_kl_list = self.make_conv_layers(cfg[config], batch_norm, block) print('Using structure {}'.format(cfg[config])) # print('conv_layers {}'.format(self.conv_layers)) print('conv_layers {}'.format(self.conv_layers)) print('conv_kl_list {}'.format(conv_kl_list)) # self.compute_Wib_upbound() fc_ib1 = InformationBottleneck(512*block.expansion, mask_thresh=threshold, init_mag=self.init_mag, init_var=self.init_var, sample_in_training=sample_in_training, sample_in_testing=sample_in_testing,a=self.a,b=self.b) fc_ib2 = InformationBottleneck(512*block.expansion, mask_thresh=threshold, init_mag=self.init_mag, init_var=self.init_var, sample_in_training=sample_in_training, sample_in_testing=sample_in_testing,a=self.a,b=self.b) self.n_cls = n_cls # self.n = 2048 # self.n = 4096 self.n = 1024 if self.config in ['G1', 'D6']: # t3p3 t4p2 self.fc_layers = nn.Sequential(nn.Linear(512*block.expansion, self.n_cls)) self.kl_list = conv_kl_list #resnet32 init_kl_list = [64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512] self.init_kl_list = [x / self.n for x in init_kl_list] # resnet32 kl_mult_temp = [64, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512] self.kl_mult_temp = [x / self.n for x in kl_mult_temp] self.ratio = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] _,self.last_prune_stat = self.get_masks(hard_mask=True, threshold=threshold) _,self.pruned_structure = self.get_masks(hard_mask=True, threshold=threshold) elif self.config == 'G2': # t3p3 t4p2 self.fc_layers = nn.Sequential(nn.Linear(512 * block.expansion, self.n_cls)) self.kl_list = conv_kl_list # resnet50 init_kl_list = [64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 512, 512, 512] # init_kl_list = [256, 256, 256, 256, # 256, 256, 256, 256, # 256, 256, 256, 256, 256, 256, # 256, 256, 256] self.init_kl_list = [x / self.n for x in init_kl_list] # resnet50 kl_mult_temp = [64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 512, 512, 512] # kl_mult_temp = [256, 256, 256, 256, # 256, 256, 256, 256, # 256, 256, 256, 256, 256, 256, # 256, 256, 256] self.kl_mult_temp = [x / self.n for x in kl_mult_temp] self.ratio = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] _, self.last_prune_stat = self.get_masks(hard_mask=True, threshold=threshold) _, self.pruned_structure = self.get_masks(hard_mask=True, threshold=threshold) elif self.config == 'G5': # t3p3 t4p2 self.fc_layers = nn.Sequential(nn.Linear(512*block.expansion, self.n_cls)) self.kl_list = conv_kl_list init_kl_list = [64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512] self.init_kl_list = [x / self.n for x in init_kl_list] kl_mult_temp = [64, 64, 64, 64, 64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512] self.kl_mult_temp = [x / self.n for x in kl_mult_temp] self.ratio = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] _,self.last_prune_stat = self.get_masks(hard_mask=True, threshold=threshold) _,self.pruned_structure = self.get_masks(hard_mask=True, threshold=threshold) else: # D4 t3p1 fc_layer_list = [nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, 512), nn.ReLU(), nn.Linear(512, self.n_cls)] if no_ib else \ [nn.Linear(512, 512), nn.ReLU(), fc_ib1, nn.Linear(512, 512), nn.ReLU(), fc_ib2, nn.Linear(512, self.n_cls)] self.fc_layers = nn.Sequential(*fc_layer_list) self.kl_list = conv_kl_list + [fc_ib1, fc_ib2] self.init_kl_list = [1/32, 1/32, 1/16, 1/16, 1/8, 1/8, 1/8, 1/4, 1/4, 1/4, 1/2, 1/2, 1/2, 1, 1] self.kl_mult_temp = [1/32, 1/32, 1/16, 1/16, 1/8, 1/8, 1/8, 1/4, 1/4, 1/4, 1/2, 1/2, 1/2, 1, 1] _,self.last_prune_stat = self.get_masks(hard_mask=True, threshold=threshold) _,self.pruned_structure = self.get_masks(hard_mask=True, threshold=threshold) print(self.kl_mult_temp) print(self.init_kl_list) ### resnet 初始化 for m in self.modules(): if isinstance(m, nn.Conv2d): print('ok1') nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') # elif isinstance(m, WibConv2d): # print('ok2') # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) ### resnet的make_layer函数 def _make_layer(self, block, planes, blocks=1, stride=1, dilate=False, kl_mult=1 ): norm_layer = self._norm_layer wib = self.wib downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, wib, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer, wib, kl_mult)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer, wib = wib, kl_mult = kl_mult)) return nn.Sequential(*layers) def make_conv_layers(self, config, batch_norm, block, blocks=1, dilate=False): layers, kl_list = [], [] in_channels = 3 for v in config: if v == 'M': layers += [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)] elif v == 'A': # layers += [nn.AvgPool2d(kernel_size=2, stride=2)] layers += [nn.AdaptiveAvgPool2d((1, 1))] else: ##判断是第一个卷积层,还是block模块 if v[1]==1:#第一个卷积层,按照vgg类似操作构建信息瓶颈层 # conv2d = nn.Conv2d(in_channels, v[0], kernel_size=7, stride=2, padding=3, bias=False) # conv2d = nn.Conv2d(in_channels, v[0], kernel_size=3, stride=1, padding=1, bias=False) conv2d = conv3x3(3, v[0], stride=1, wib=self.wib) ib = InformationBottleneck(v[0], mask_thresh=self.threshold, init_mag=self.init_mag, init_var=self.init_var, kl_mult=v[3], sample_in_training=self.sample_in_training, sample_in_testing=self.sample_in_testing,a=self.a,b=self.b) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v[0]), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] if not self.no_ib: layers.append(ib) kl_list.append(ib) if v[1]==2:#属于resnet的BasicBlock模块,调用resnet的make_layer函数 resblock = self._make_layer(block, v[0], stride=v[2], kl_mult=v[3]) layers += [resblock] kl_list.append(resblock[0].ib1) kl_list.append(resblock[0].ib2) ib = InformationBottleneck(v[0]*block.expansion, mask_thresh=self.threshold, init_mag=self.init_mag, init_var=self.init_var, kl_mult=v[3], sample_in_training=self.sample_in_training, sample_in_testing=self.sample_in_testing,a=self.a,b=self.b) # if not self.no_ib: # layers.append(ib) # kl_list.append(ib) if v[1]==3:#属于resnet的Bottleneck模块,调用resnet的make_layer函数 resblock = self._make_layer(block, v[0], stride=v[2], kl_mult=v[3]) layers += [resblock] kl_list.append(resblock[0].ib2) # ib = InformationBottleneck(v[0]*block.expansion, mask_thresh=self.threshold, init_mag=self.init_mag, init_var=self.init_var, # kl_mult=v[3], sample_in_training=self.sample_in_training, sample_in_testing=self.sample_in_testing,a=self.a,b=self.b) in_channels = v[0] # if not self.no_ib: # layers.append(ib) # kl_list.append(ib) return nn.Sequential(*layers), kl_list def auto_kl_mult(self): # _, prune_stat = self.get_masks(hard_mask=True, threshold=threshold) # conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] if self.config in ['G', 'D6']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] fc_shapes = [512] elif self.config in ['G5', 'G1']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] conv_shapes_temp=[] conv_shapes_temp += [conv_shapes[0]] for i in range(len(conv_shapes)-1): conv_shapes_temp += [conv_shapes[i + 1]] conv_shapes_temp += [conv_shapes[i + 1]] conv_shapes = conv_shapes_temp fc_shapes = [] elif self.config in ['G2']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] # conv_shapes[0]=conv_shapes[0]/self.expansion fc_shapes = [] else: fc_shapes = [512, 512] # print('prune_stat: {}, last_prune_stat:{}'.format(prune_stat, self.last_prune_stat)) remain_stat = [out_channels - self.last_prune_stat[idx] for idx, out_channels in enumerate(conv_shapes + fc_shapes)] init_stat = [out_channels for idx, out_channels in enumerate(conv_shapes + fc_shapes)] sum = 0 # a=32 for i in range(len(init_stat)): a = init_stat[i]/2 self.ratio[i] = remain_stat[i] / init_stat[i] # sum = sum + self.ratio[i] sum = sum + math.tan(math.pi*(a-1)/a/2*self.ratio[i]) # offset = 1 / len(self.init_kl_list) b = 1.2 c= 0.01 # conv_kl_mult = 4 for i in range(len(self.init_kl_list)): a=init_stat[i]/2 temp1 = len(self.init_kl_list)/2 - abs(i-len(self.init_kl_list)/2) max1 = len(self.init_kl_list)/2 temp2 = remain_stat[i] max2 = max(remain_stat) # print('i:') # print('(a-1)/a/2:',(a-1)/a/2) # print('self.ratio[i]:', self.ratio[i]) # print('math.pi*(a-1)/a/2*self.ratio[i]:', math.pi*(a-1)/a/2*self.ratio[i]) # self.kl_list[i].kl_mult = self.init_kl_list[i] * ( # 1 + b* math.log(temp2,2)/math.log(max2,2)* # (math.log(1 + temp1, 2) / math.log(1 + max1, 2)) * # (math.tan(math.pi*(a-1)/a/2*self.ratio[i]) / sum) * len(self.init_kl_list)) if temp2==0: self.kl_list[i].kl_mult=0 self.kl_mult_temp[i]=0 else: self.kl_list[i].kl_mult = self.init_kl_list[i] * ( 2* b* math.log(2+temp2,2)/math.log(max2,2)* (math.log(1 + temp1, 2) / math.log(2 + max1, 2)) * (math.tan(math.pi*(a-1)/a/2*self.ratio[i]) / sum) * len(self.init_kl_list)) self.kl_mult_temp[i] = self.kl_list[i].kl_mult / self.init_kl_list[i] # print('conv_kl_mult:',conv_kl_mult) print(b) print(self.ratio) print(self.init_kl_list) print(self.kl_mult_temp) def adapt_dropout(self, p): # conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] if self.config in ['G', 'D6']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] fc_shapes = [512] elif self.config in ['G5', 'G1']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] conv_shapes_temp = [] conv_shapes_temp += [conv_shapes[0]] for i in range(len(conv_shapes) - 1): conv_shapes_temp += [conv_shapes[i + 1]] conv_shapes_temp += [conv_shapes[i + 1]] conv_shapes = conv_shapes_temp fc_shapes = [] elif self.config in ['G2']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] # conv_shapes[0] = conv_shapes[0] / self.expansion fc_shapes = [] else: fc_shapes = [512, 512] remain_stat = [out_channels - self.last_prune_stat[idx] for idx, out_channels in enumerate(conv_shapes + fc_shapes)] for i in range(len(self.init_kl_list)): if remain_stat[i] < 150: # if remain_stat[i] < 200: # if remain_stat[i] < 120: # self.kl_list[i].p=1 self.kl_list[i].p = 1 else: # self.kl_list[i].p = 1.0-1.0/remain_stat[i] # 原设置 # self.kl_list[i].p = 0.99 self.kl_list[i].p = 1 print(i,self.kl_list[i].p) def forward(self, x): batch_size = x.size(0) x = self.conv_layers(x).view(batch_size, -1) x = self.fc_layers(x) if self.training: if self.no_ib: # return x if not self.wib: return x else: Wib_upbound = self.compute_Wib_upbound() return x, Wib_upbound else: if not self.wib: ib_kld = self.kl_list[0].kld for ib in self.kl_list[1:]: ib_kld += ib.kld return x, ib_kld.float() else: ib_kld = self.kl_list[0].kld for ib in self.kl_list[1:]: ib_kld += ib.kld Wib_upbound = self.compute_Wib_upbound() return x, ib_kld.float(), Wib_upbound else: return x def get_masks(self, hard_mask=True, threshold=0): masks = [] if hard_mask: masks = [ib_layer.get_mask_hard(threshold) for ib_layer in self.kl_list] return masks, [np.sum(mask.cpu().numpy()==0) for mask in masks] else: masks = [ib_layer.get_mask_weighted(threshold) for ib_layer in self.kl_list] return masks def compute_Wib_upbound(self,): Wib_upbound = 0 offset=0 interval=0 Wib_upbound += self.conv_layers[0].weight_ib.compute_Wib_upbound(self.conv_layers[0].weight_ib.logalpha) # print('conv_layers: {}'.format(self.conv_layers)) if not self.no_ib: offset=5 interval=0 else: offset=4 interval=1 for i in range(8): # print('self.conv_layers[5+i*2]: {}'.format(self.conv_layers[5+i*2])) block=self.conv_layers[offset+i*(2-interval)] # print('block: {}'.format(block[0])) Wib_upbound += block[0].compute_Wib_upbound() return Wib_upbound def print_params(self,): mu = [] logalpha = [] weight = [] weight += [self.conv_layers[0].weight] offset = 0 interval = 0 if not self.no_ib: offset=5 interval=0 else: offset=4 interval=1 # print('weight: {}'.format(weight)) if self.wib: mu += [self.conv_layers[0].weight_ib.mu] logalpha += [self.conv_layers[0].weight_ib.logalpha] mask_w,_= self.conv_layers[0].weight_ib.get_mask_hard(self.conv_layers[0].weight_ib.epsilon) if not self.no_ib: mask_a = self.kl_list[0].get_mask_hard() mask_dert = mask_w - mask_a print('mask_w: {}'.format(mask_w)) if not self.no_ib: print('mask_a: {}'.format(mask_a)) print('mask_dert: {}'.format(mask_dert)) print('mu: {}, logalpha: {}'.format(mu, logalpha)) for i in range(8): # print('self.conv_layers[5+i*2]: {}'.format(self.conv_layers[5+i*2])) block = self.conv_layers[offset + i * (2 - interval)] # block=self.conv_layers[5+i*2] # print('block: {}'.format(block[0])) mu += [block[0].conv1.weight_ib.mu] mu += [block[0].conv2.weight_ib.mu] logalpha += [block[0].conv1.weight_ib.logalpha] logalpha += [block[0].conv2.weight_ib.logalpha] # mu = [ib_layer.post_z_mu for ib_layer in self.kl_list] # logalpha = [ib_layer.post_z_logD for ib_layer in self.kl_list] # print('mu: {}, logalpha: {}'.format(mu, logalpha)) def print_compression_ratio(self, threshold, writer=None, epoch=-1): # applicable for structures with global pooling before fc _, prune_stat = self.get_masks(hard_mask=True, threshold=threshold) # conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] if self.config in ['G', 'D6']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] fc_shapes = [512] elif self.config in ['G5', 'G1']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] conv_shapes_temp = [] conv_shapes_temp += [conv_shapes[0]] for i in range(len(conv_shapes) - 1): conv_shapes_temp += [conv_shapes[i + 1]] conv_shapes_temp += [conv_shapes[i + 1]] conv_shapes = conv_shapes_temp fc_shapes = [] elif self.config in ['G2']: conv_shapes = [v[0] for v in cfg[self.config] if type(v) is not str] # conv_shapes[0] = conv_shapes[0] / self.expansion fc_shapes = [] else: fc_shapes = [512, 512] # print('prune_stat: {}, last_prune_stat:{}'.format(prune_stat, self.last_prune_stat)) self.pruned_structure = [prune_stat[idx] - self.last_prune_stat[idx] for idx, out_channels in enumerate(conv_shapes + fc_shapes)] self.last_prune_stat = [prune_stat[idx] for idx, out_channels in enumerate(conv_shapes + fc_shapes)] net_shape = [ out_channels-prune_stat[idx] for idx, out_channels in enumerate(conv_shapes+fc_shapes)] #conv_shape_with_pool = [v[0] if v != 'M' else 'M' for v in cfg[self.config]] current_n, hdim, last_channels, flops, fmap_size = 0, 64, 3, 0, 32 for n, pruned_channels in enumerate(prune_stat): if n < len(conv_shapes): # current_channels = cfg[self.config][current_n][0] - pruned_channels current_channels = conv_shapes[current_n] - pruned_channels flops += (fmap_size**2) * 9 * last_channels * current_channels last_channels = current_channels current_n += 1 if self.config in ['G1']: if current_n==1 or current_n==8 or current_n==16 or current_n==28 or current_n==33: fmap_size /= 2 hdim *= 2 if self.config in ['G5']: if current_n==1 or current_n==6 or current_n==10 or current_n==14 or current_n==17: fmap_size /= 2 hdim *= 2 # if type(cfg[self.config][current_n]) is str: # current_n += 1 # fmap_size /= 2 # hdim *= 2 else: current_channels = 512 - pruned_channels flops += last_channels * current_channels last_channels = current_channels flops += last_channels * self.n_cls total_params, pruned_params, remain_params = 0, 0, 0 # total number of conv params in_channels, in_pruned = 3, 0 for n, n_out in enumerate(conv_shapes): n_params = in_channels * n_out * 9 total_params += n_params n_remain = (in_channels - in_pruned) * (n_out - prune_stat[n]) * 9 remain_params += n_remain pruned_params += n_params - n_remain in_channels = n_out in_pruned = prune_stat[n] # print('n_params: {}, n_remain: {}, in_channels:{}, in_pruned:{}, n_out: {}, prune_stat: {},'.format(n_params, n_remain, in_channels, in_pruned, n_out, prune_stat)) # fc layers offset = len(prune_stat) - len(fc_shapes) for n, n_out in enumerate(fc_shapes): n_params = in_channels * n_out total_params += n_params n_remain = (in_channels - in_pruned) * (n_out - prune_stat[n+offset]) remain_params += n_remain pruned_params += n_params - n_remain in_channels = n_out in_pruned = prune_stat[n+offset] # print('n_params: {}, n_remain: {}, in_channels:{}, in_pruned:{}, n_out: {}, prune_stat: {},'.format(n_params, n_remain, in_channels, in_pruned, n_out, prune_stat)) total_params += in_channels * self.n_cls remain_params += (in_channels - in_pruned) * self.n_cls pruned_params += in_pruned * self.n_cls self.print_params() print('total parameters: {}, pruned parameters: {}, remaining params:{}, remain/total params:{}, remaining flops: {}, remaining flops/params: {},' 'each layer pruned: {}, this epoch each layer pruned: {}, remaining structure:{}'.format(total_params, pruned_params, remain_params, float(total_params-pruned_params)/total_params, flops, 0.0000000001 * flops/(float(total_params-pruned_params)/total_params), prune_stat, self.pruned_structure, net_shape)) if writer is not None: writer.add_scalar('flops', flops, epoch) writer.add_scalar('remain/total params', float(total_params-pruned_params)/total_params, epoch) writer.add_scalar('flops/remaining params', 0.0000000001 * flops/(float(total_params-pruned_params)/total_params), epoch)
the-stack_0_7418
# -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import os import tensorflow as tf import math from dataloader.pretrained_weights.pretrain_zoo import PretrainModelZoo """ This is your result for task 1: mAP: 0.7066194189913816 ap of each class: plane:0.8905480010393588, baseball-diamond:0.7845764249543027, bridge:0.4415489914209597, ground-track-field:0.6515721505439082, small-vehicle:0.7509226622459368, large-vehicle:0.7288453788151275, ship:0.8604046905135039, tennis-court:0.9082569687774237, basketball-court:0.8141347275878138, storage-tank:0.8253027715641935, soccer-ball-field:0.5623560181901192, roundabout:0.6100656068973895, harbor:0.5648618127447264, swimming-pool:0.6767393616949172, helicopter:0.5291557178810407 The submitted information is : Description: RetinaNet_DOTA_R3Det_2x_20191108_70.2w Username: SJTU-Det Institute: SJTU Emailadress: [email protected] TeamMembers: yangxue """ # ------------------------------------------------ VERSION = 'RetinaNet_DOTA_R3Det_2x_20191108' NET_NAME = 'resnet50_v1d' # 'MobilenetV2' # ---------------------------------------- System ROOT_PATH = os.path.abspath('../../') print(20*"++--") print(ROOT_PATH) GPU_GROUP = "0,1,2" NUM_GPU = len(GPU_GROUP.strip().split(',')) SHOW_TRAIN_INFO_INTE = 20 SMRY_ITER = 200 SAVE_WEIGHTS_INTE = 27000 * 2 SUMMARY_PATH = os.path.join(ROOT_PATH, 'output/summary') TEST_SAVE_PATH = os.path.join(ROOT_PATH, 'tools/test_result') pretrain_zoo = PretrainModelZoo() PRETRAINED_CKPT = pretrain_zoo.pretrain_weight_path(NET_NAME, ROOT_PATH) TRAINED_CKPT = os.path.join(ROOT_PATH, 'output/trained_weights') EVALUATE_R_DIR = os.path.join(ROOT_PATH, 'output/evaluate_result_pickle/') # ------------------------------------------ Train and test RESTORE_FROM_RPN = False FIXED_BLOCKS = 1 # allow 0~3 FREEZE_BLOCKS = [True, False, False, False, False] # for gluoncv backbone USE_07_METRIC = True ADD_BOX_IN_TENSORBOARD = True MUTILPY_BIAS_GRADIENT = 2.0 # if None, will not multipy GRADIENT_CLIPPING_BY_NORM = 10.0 # if None, will not clip CLS_WEIGHT = 1.0 REG_WEIGHT = 1.0 USE_IOU_FACTOR = False BATCH_SIZE = 1 EPSILON = 1e-5 MOMENTUM = 0.9 LR = 5e-4 DECAY_STEP = [SAVE_WEIGHTS_INTE*12, SAVE_WEIGHTS_INTE*16, SAVE_WEIGHTS_INTE*20] MAX_ITERATION = SAVE_WEIGHTS_INTE*20 WARM_SETP = int(1.0 / 4.0 * SAVE_WEIGHTS_INTE) # -------------------------------------------- Dataset DATASET_NAME = 'DOTA' # 'pascal', 'coco' PIXEL_MEAN = [123.68, 116.779, 103.939] # R, G, B. In tf, channel is RGB. In openCV, channel is BGR PIXEL_MEAN_ = [0.485, 0.456, 0.406] PIXEL_STD = [0.229, 0.224, 0.225] # R, G, B. In tf, channel is RGB. In openCV, channel is BGR IMG_SHORT_SIDE_LEN = 800 IMG_MAX_LENGTH = 800 CLASS_NUM = 15 IMG_ROTATE = False RGB2GRAY = False VERTICAL_FLIP = False HORIZONTAL_FLIP = True IMAGE_PYRAMID = False # --------------------------------------------- Network SUBNETS_WEIGHTS_INITIALIZER = tf.random_normal_initializer(mean=0.0, stddev=0.01, seed=None) SUBNETS_BIAS_INITIALIZER = tf.constant_initializer(value=0.0) PROBABILITY = 0.01 FINAL_CONV_BIAS_INITIALIZER = tf.constant_initializer(value=-math.log((1.0 - PROBABILITY) / PROBABILITY)) WEIGHT_DECAY = 1e-4 USE_GN = False NUM_SUBNET_CONV = 4 NUM_REFINE_STAGE = 1 USE_RELU = False FPN_CHANNEL = 256 FPN_MODE = 'fpn' # --------------------------------------------- Anchor LEVEL = ['P3', 'P4', 'P5', 'P6', 'P7'] BASE_ANCHOR_SIZE_LIST = [32, 64, 128, 256, 512] ANCHOR_STRIDE = [8, 16, 32, 64, 128] ANCHOR_SCALES = [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)] ANCHOR_RATIOS = [1, 1 / 2, 2., 1 / 3., 3., 5., 1 / 5.] ANCHOR_ANGLES = [-90, -75, -60, -45, -30, -15] ANCHOR_SCALE_FACTORS = None USE_CENTER_OFFSET = True METHOD = 'H' USE_ANGLE_COND = False ANGLE_RANGE = 90 # -------------------------------------------- Head SHARE_NET = True USE_P5 = True IOU_POSITIVE_THRESHOLD = 0.5 IOU_NEGATIVE_THRESHOLD = 0.4 REFINE_IOU_POSITIVE_THRESHOLD = [0.6, 0.7] REFINE_IOU_NEGATIVE_THRESHOLD = [0.5, 0.6] NMS = True NMS_IOU_THRESHOLD = 0.1 MAXIMUM_DETECTIONS = 100 FILTERED_SCORE = 0.05 VIS_SCORE = 0.4
the-stack_0_7419
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import time from typing import Any, Dict, Optional import requests from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.providers.plexus.hooks.plexus import PlexusHook logger = logging.getLogger(__name__) class PlexusJobOperator(BaseOperator): """ Submits a Plexus job. :param job_params: parameters required to launch a job. :type job_params: dict Required job parameters are the following - "name": job name created by user. - "app": name of the application to run. found in Plexus UI. - "queue": public cluster name. found in Plexus UI. - "num_nodes": number of nodes. - "num_cores": number of cores per node. """ def __init__(self, job_params: Dict, **kwargs) -> None: super().__init__(**kwargs) self.job_params = job_params self.required_params = {"name", "app", "queue", "num_cores", "num_nodes"} self.lookups = { "app": ("apps/", "id", "name"), "billing_account_id": ("users/{}/billingaccounts/", "id", None), "queue": ("queues/", "id", "public_name"), } self.job_params.update({"billing_account_id": None}) self.is_service = None def execute(self, context: Any) -> Any: hook = PlexusHook() params = self.construct_job_params(hook) if self.is_service is True: if self.job_params.get("expected_runtime") is None: end_state = "Running" else: end_state = "Finished" elif self.is_service is False: end_state = "Completed" else: raise AirflowException( "Unable to determine if application " "is running as a batch job or service. " "Contact Core Scientific AI Team." ) logger.info("creating job w/ following params: %s", params) jobs_endpoint = hook.host + "jobs/" headers = {"Authorization": f"Bearer {hook.token}"} create_job = requests.post(jobs_endpoint, headers=headers, data=params, timeout=5) if create_job.ok: job = create_job.json() jid = job["id"] state = job["last_state"] while state != end_state: time.sleep(3) jid_endpoint = jobs_endpoint + f"{jid}/" get_job = requests.get(jid_endpoint, headers=headers, timeout=5) if not get_job.ok: raise AirflowException( "Could not retrieve job status. " f"Status Code: [{get_job.status_code}]. Reason: {get_job.reason} - {get_job.text}" ) new_state = get_job.json()["last_state"] if new_state in ("Cancelled", "Failed"): raise AirflowException(f"Job {new_state}") elif new_state != state: logger.info("job is %s", new_state) state = new_state else: raise AirflowException( "Could not start job. " f"Status Code: [{create_job.status_code}]. Reason: {create_job.reason} - {create_job.text}" ) def _api_lookup(self, param: str, hook): lookup = self.lookups[param] key = lookup[1] mapping = None if lookup[2] is None else (lookup[2], self.job_params[param]) if param == "billing_account_id": endpoint = hook.host + lookup[0].format(hook.user_id) else: endpoint = hook.host + lookup[0] headers = {"Authorization": f"Bearer {hook.token}"} response = requests.get(endpoint, headers=headers, timeout=5) results = response.json()["results"] v = None if mapping is None: v = results[0][key] else: for dct in results: if dct[mapping[0]] == mapping[1]: v = dct[key] if param == 'app': self.is_service = dct['is_service'] if v is None: raise AirflowException(f"Could not locate value for param:{key} at endpoint: {endpoint}") return v def construct_job_params(self, hook: Any) -> Dict[Any, Optional[Any]]: """ Creates job_params dict for api call to launch a Plexus job. Some parameters required to launch a job are not available to the user in the Plexus UI. For example, an app id is required, but only the app name is provided in the UI. This function acts as a backend lookup of the required param value using the user-provided value. :param hook: plexus hook object :type hook: airflow hook """ missing_params = self.required_params - set(self.job_params) if len(missing_params) > 0: raise AirflowException(f"Missing the following required job_params: {', '.join(missing_params)}") params = {} for prm in self.job_params: if prm in self.lookups: v = self._api_lookup(param=prm, hook=hook) params[prm] = v else: params[prm] = self.job_params[prm] return params
the-stack_0_7420
from openshift import Openshift from command import Command import re import requests import time class NodeJSApp(object): nodesj_app_image = "quay.io/pmacik/nodejs-rest-http-crud" api_end_point = 'http://{route_url}/api/status/dbNameCM' openshift = Openshift() pod_name_pattern = "{name}.*$(?<!-build)" name = "" namespace = "" def __init__(self, name, namespace): self.cmd = Command() self.name = name self.namespace = namespace def is_running(self, wait=False): deployment_flag = False if wait: pod_name = self.openshift.wait_for_pod(self.get_pod_name_pattern(), self.namespace, timeout=180) else: pod_name = self.openshift.search_pod_in_namespace(self.get_pod_name_pattern(), self.namespace) if pod_name is not None: application_pod_status = self.openshift.check_pod_status(pod_name, self.namespace, wait_for_status="Running") print("The pod {} is running: {}".format(pod_name, application_pod_status)) deployment = self.openshift.search_resource_in_namespace("deployments", f"{self.name}.*", self.namespace) if deployment is not None: print("deployment is {}".format(deployment)) deployment_flag = True if application_pod_status and deployment_flag: return True else: return False else: return False def install(self): create_new_app_output, exit_code = self.cmd.run(f"oc new-app --docker-image={self.nodesj_app_image} --name={self.name} -n {self.namespace}") assert exit_code == 0, f"Non-zero exit code ({exit_code}) returned when attempting to create a new app: {create_new_app_output}" assert re.search(f'imagestream.image.openshift.io.*{self.name}.*created', create_new_app_output) is not None, f"Unable to create imagestream: {create_new_app_output}" assert re.search(f'deployment.apps.*{self.name}.*created', create_new_app_output) is not None, f"Unable to create deployment: {create_new_app_output}" assert re.search(f'service.*{self.name}.*created', create_new_app_output) is not None, f"Unable to create service: {create_new_app_output}" assert self.openshift.expose_service_route(self.name, self.namespace) is not None, "Unable to expose service route" return self.is_running(wait=True) def get_db_name_from_api(self, interval=5, timeout=60): route_url = self.openshift.get_route_host(self.name, self.namespace) if route_url is None: return None start = 0 while ((start + interval) <= timeout): db_name = requests.get(url=self.api_end_point.format(route_url=route_url)) if db_name.status_code == 200: return db_name.text time.sleep(interval) start += interval return None def get_observed_generation(self): return self.openshift.get_resource_info_by_jsonpath("deployment", self.name, self.namespace, "{.status.observedGeneration}") def get_running_pod_name(self, interval=5, timeout=60): start = 0 while ((start + interval) <= timeout): pod_list = self.openshift.get_pod_lst(self.namespace) for pod in pod_list.split(" "): if re.fullmatch(self.get_pod_name_pattern(), pod): if self.openshift.get_pod_status(pod, self.namespace) == "Running": return pod time.sleep(interval) start += interval return None def get_redeployed_pod_name(self, old_pod_name, interval=5, timeout=60): start = 0 while ((start + interval) <= timeout): pod_list = self.openshift.get_pod_lst(self.namespace) for pod in pod_list.split(" "): if pod != old_pod_name and re.fullmatch(self.get_pod_name_pattern(), pod): if self.openshift.get_pod_status(pod, self.namespace) == "Running": return pod time.sleep(interval) start += interval return None def get_pod_name_pattern(self): return self.pod_name_pattern.format(name=self.name)
the-stack_0_7421
import logging import torch import torch.nn.functional as F from torch import nn from predict_pv_yield.models.base_model import BaseModel logging.basicConfig() _LOG = logging.getLogger("predict_pv_yield") class Model(BaseModel): name = "conv3d_sat_nwp" def __init__( self, include_pv_yield: bool = True, include_nwp: bool = True, include_time: bool = True, forecast_minutes: int = 30, history_minutes: int = 60, number_of_conv3d_layers: int = 4, conv3d_channels: int = 32, image_size_pixels: int = 64, number_sat_channels: int = 12, number_nwp_channels: int = 10, fc1_output_features: int = 128, fc2_output_features: int = 128, fc3_output_features: int = 64, output_variable: str = "pv_yield", ): """ 3d conv model, that takes in different data streams architecture is roughly 1. satellite image time series goes into many 3d convolution layers. 2. nwp time series goes into many 3d convolution layers. 3. Final convolutional layer goes to full connected layer. This is joined by other data inputs like - pv yield - time variables Then there ~4 fully connected layers which end up forecasting the pv yield / gsp into the future include_pv_yield: include pv yield data include_nwp: include nwp data include_time: include hour of data, and day of year as sin and cos components forecast_len: the amount of minutes that should be forecasted history_len: the amount of historical minutes that are used number_of_conv3d_layers, number of convolution 3d layers that are use conv3d_channels, the amount of convolution 3d channels image_size_pixels: the input satellite image size number_sat_channels: number of nwp channels fc1_output_features: number of fully connected outputs nodes out of the the first fully connected layer fc2_output_features: number of fully connected outputs nodes out of the the second fully connected layer fc3_output_features: number of fully connected outputs nodes out of the the third fully connected layer output_variable: the output variable to be predicted number_nwp_channels: The number of nwp channels there are """ self.include_pv_yield = include_pv_yield self.include_nwp = include_nwp self.include_time = include_time self.number_of_conv3d_layers = number_of_conv3d_layers self.number_of_nwp_features = 128 self.fc1_output_features = fc1_output_features self.fc2_output_features = fc2_output_features self.fc3_output_features = fc3_output_features self.forecast_minutes = forecast_minutes self.history_minutes = history_minutes self.output_variable = output_variable self.number_nwp_channels = number_nwp_channels super().__init__() conv3d_channels = conv3d_channels self.cnn_output_size = ( conv3d_channels * ((image_size_pixels - 2 * self.number_of_conv3d_layers) ** 2) * (self.forecast_len_5 + self.history_len_5 + 1 - 2 * self.number_of_conv3d_layers) ) # conv0 self.sat_conv0 = nn.Conv3d( in_channels=number_sat_channels, out_channels=conv3d_channels, kernel_size=(3, 3, 3), padding=0, ) for i in range(0, self.number_of_conv3d_layers - 1): layer = nn.Conv3d( in_channels=conv3d_channels, out_channels=conv3d_channels, kernel_size=(3, 3, 3), padding=0 ) setattr(self, f"sat_conv{i + 1}", layer) self.fc1 = nn.Linear(in_features=self.cnn_output_size, out_features=self.fc1_output_features) self.fc2 = nn.Linear(in_features=self.fc1_output_features, out_features=self.fc2_output_features) # nwp if include_nwp: self.nwp_conv0 = nn.Conv3d( in_channels=number_nwp_channels, out_channels=conv3d_channels, kernel_size=(3, 3, 3), padding=0, ) for i in range(0, self.number_of_conv3d_layers - 1): layer = nn.Conv3d( in_channels=conv3d_channels, out_channels=conv3d_channels, kernel_size=(3, 3, 3), padding=0 ) setattr(self, f"nwp_conv{i + 1}", layer) self.nwp_fc1 = nn.Linear(in_features=self.cnn_output_size, out_features=self.fc1_output_features) self.nwp_fc2 = nn.Linear(in_features=self.fc1_output_features, out_features=self.number_of_nwp_features) fc3_in_features = self.fc2_output_features if include_pv_yield: fc3_in_features += self.number_of_samples_per_batch * (self.history_len_30 + 1) if include_nwp: fc3_in_features += 128 if include_time: fc3_in_features += 4 self.fc3 = nn.Linear(in_features=fc3_in_features, out_features=self.fc3_output_features) self.fc4 = nn.Linear(in_features=self.fc3_output_features, out_features=self.forecast_len) # self.fc5 = nn.Linear(in_features=32, out_features=8) # self.fc6 = nn.Linear(in_features=8, out_features=1) def forward(self, x): # ******************* Satellite imagery ************************* # Shape: batch_size, seq_length, width, height, channel sat_data = x["sat_data"] batch_size, seq_len, width, height, n_chans = sat_data.shape # Conv3d expects channels to be the 2nd dim, https://pytorch.org/docs/stable/generated/torch.nn.Conv3d.html sat_data = sat_data.permute(0, 4, 1, 3, 2) # Now shape: batch_size, n_chans, seq_len, height, width # :) Pass data through the network :) out = F.relu(self.sat_conv0(sat_data)) for i in range(0, self.number_of_conv3d_layers - 1): layer = getattr(self, f"sat_conv{i + 1}") out = F.relu(layer(out)) out = out.reshape(batch_size, self.cnn_output_size) # Fully connected layers out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) # which has shape (batch_size, 128) # add pv yield if self.include_pv_yield: pv_yield_history = x[self.output_variable][:, : self.history_len_30 + 1].nan_to_num(nan=0.0) pv_yield_history = pv_yield_history.reshape( pv_yield_history.shape[0], pv_yield_history.shape[1] * pv_yield_history.shape[2] ) # join up out = torch.cat((out, pv_yield_history), dim=1) # *********************** NWP Data ************************************ if self.include_nwp: # Shape: batch_size, channel, seq_length, width, height nwp_data = x["nwp"] out_nwp = F.relu(self.nwp_conv0(nwp_data)) for i in range(0, self.number_of_conv3d_layers - 1): layer = getattr(self, f"nwp_conv{i + 1}") out_nwp = F.relu(layer(out_nwp)) # fully connected layers out_nwp = out_nwp.reshape(batch_size, self.cnn_output_size) out_nwp = F.relu(self.nwp_fc1(out_nwp)) out_nwp = F.relu(self.nwp_fc2(out_nwp)) # join with other FC layer out = torch.cat((out, out_nwp), dim=1) # ########## include time variables ######### if self.include_time: # just take the value now x_sin_hour = x["hour_of_day_sin"][:, self.history_len_5 + 1].unsqueeze(dim=1) x_cos_hour = x["hour_of_day_cos"][:, self.history_len_5 + 1].unsqueeze(dim=1) x_sin_day = x["day_of_year_sin"][:, self.history_len_5 + 1].unsqueeze(dim=1) x_cos_day = x["day_of_year_cos"][:, self.history_len_5 + 1].unsqueeze(dim=1) # join up out = torch.cat((out, x_sin_hour, x_cos_hour, x_sin_day, x_cos_day), dim=1) # Fully connected layers. out = F.relu(self.fc3(out)) out = self.fc4(out) out = out.reshape(batch_size, self.forecast_len) return out
the-stack_0_7422
from ffai.web.api import * import numpy as np import time class MyRandomBot(Agent): def __init__(self, name): super().__init__(name) self.my_team = None self.actions_taken = 0 def new_game(self, game, team): self.my_team = team self.actions_taken = 0 def act(self, game): while True: action_choice = np.random.choice(game.state.available_actions) if action_choice.action_type != ActionType.PLACE_PLAYER: break pos = np.random.choice(action_choice.positions) if len(action_choice.positions) > 0 else None player = np.random.choice(action_choice.players) if len(action_choice.players) > 0 else None action = Action(action_choice.action_type, pos=pos, player=player) self.actions_taken += 1 return action def end_game(self, game): winner = game.get_winning_team() print("Casualties: ", game.num_casualties()) if winner is None: print("It's a draw") elif winner == self.my_team: print("I ({}) won".format(self.name)) else: print("I ({}) lost".format(self.name)) print("I took", self.actions_taken, "actions") if __name__ == "__main__": # Load configurations, rules, arena and teams config = get_config("ff-11.json") #config.competition_mode = False # config = get_config("ff-7.json") # config = get_config("ff-5.json") # config = get_config("ff-3.json") ruleset = get_rule_set(config.ruleset, all_rules=False) # We don't need all the rules arena = get_arena(config.arena) home = get_team_by_id("human-1", ruleset) away = get_team_by_id("human-2", ruleset) # Play 100 games for i in range(10): away_agent = MyRandomBot("Random Bot 1") home_agent = MyRandomBot("Random Bot 2") config.debug_mode = False game = Game(i, home, away, home_agent, away_agent, config, arena=arena, ruleset=ruleset) game.config.fast_mode = True print("Starting game", (i+1)) start = time.time() game.init() game.step() end = time.time() print(end - start)
the-stack_0_7424
# -*- encoding: utf-8 -*- import builtins import unittest import unittest.mock import pytest from common.utils.backend import Backend class BackendStub(Backend): def __init__(self): self.__class__ = Backend def setup_load_model_mocks(openMock, pickleLoadMock, seed, idx, budget): model_path = "/runs/%s_%s_%s/%s.%s.%s.model" % (seed, idx, budget, seed, idx, budget) file_handler = "file_handler" expected_model = "model" fileMock = unittest.mock.MagicMock() fileMock.__enter__.return_value = file_handler openMock.side_effect = ( lambda path, flag: fileMock if path == model_path and flag == "rb" else None ) pickleLoadMock.side_effect = lambda fh: expected_model if fh == file_handler else None return expected_model @pytest.fixture def backend_stub(): backend = BackendStub() backend.internals_directory = "/" return backend @unittest.mock.patch("pickle.load") @unittest.mock.patch("os.path.exists") def test_load_model_by_seed_and_id(exists_mock, pickleLoadMock, backend_stub): exists_mock.return_value = False open_mock = unittest.mock.mock_open(read_data="Data") with unittest.mock.patch( "common.utils.backend.open", open_mock, create=True, ): seed = 13 idx = 17 budget = 50.0 expected_model = setup_load_model_mocks( open_mock, pickleLoadMock, seed, idx, budget, ) actual_model = backend_stub.load_model_by_seed_and_id_and_budget(seed, idx, budget) assert expected_model == actual_model @unittest.mock.patch("pickle.load") @unittest.mock.patch.object(builtins, "open") @unittest.mock.patch("os.path.exists") def test_loads_models_by_identifiers(exists_mock, openMock, pickleLoadMock, backend_stub): exists_mock.return_value = True seed = 13 idx = 17 budget = 50.0 expected_model = setup_load_model_mocks(openMock, pickleLoadMock, seed, idx, budget) expected_dict = {(seed, idx, budget): expected_model} actual_dict = backend_stub.load_models_by_identifiers([(seed, idx, budget)]) assert isinstance(actual_dict, dict) assert expected_dict == actual_dict
the-stack_0_7425
import os import pypandoc import json import yaml import re import datetime from .config import Config from pypandoc.pandoc_download import download_pandoc from pylatex import Document, Description from pylatex.section import Chapter from pylatex.utils import * class Cover: artist = None title = None year = None medium = None musium = None location = None license = None # Goya, Francisco. The Family of Charles IV. 1800, oil on canvas, Museo del Prado, Madrid. def __init__(self, cover): for dic in cover: key = list(dic.keys())[0] try: setattr(self, key, dic[key]) except: print('error', key) return def export_citation(self): firstname = self.artist.split(' ')[0] lastname = ' '.join(self.artist.split(' ')[1:]) name = ', '.join([firstname, lastname]) return '{name}. {title}, {year}, {medium}, {musium}, {location}'.format( name = name, title = '\\textit{%s}'%self.title, year = self.year, medium = self.medium, musium = self.musium, location= self.location ) class Content: title = None layout = None latex = None type = 'mainmatter' filename = None endnote = None sample = False def __init__(self, content): for key in content: try: setattr(self, key, content[key]) except: print(key) self.latex = self.convert_latex() return def convert_latex(self): filepath = os.path.join(Config().manuscript_dir, self.filename+'.md') return pypandoc.convert_file( filepath, 'latex', extra_args=[ '--data-dir='+os.path.join(os.getcwd(), 'BartlebyMachine', '.pandoc'), '--wrap=none', '--variable', 'documentclass=book', ]) def write_latex(self): output_path = os.path.join(Config().manuscript_dir, 'tex', self.filename) + '.tex'; f = open(output_path, 'w', encoding='utf-8') f.write(self.latex) f.close() class TableOfContent: title = None author = None dateOfPublished = None cover = None license = None content = [] sample = False def __init__(self, toc): for key in toc: try: if(key == 'content'): content = list(map(lambda x: Content(x), toc[key])) toc[key] = content if(key == 'cover'): toc[key] = Cover(toc[key]) setattr(self, key, toc[key]) except: print(key) def export_content(self): concat = [] for content in self.content: if self.sample == True and content.sample == False: continue if content.type == 'mainmatter': str = '\\\\begin{{{layout}}}\n{latex}\n\end{{{layout}}}'.format(latex=content.latex.replace('\\\r\n', '\\\\\n'), layout=content.layout); concat.append(str) return '\n'.join(concat) def export_preface(self): if self.sample == True: prefaces = list(filter(lambda x: x.type == 'preface' and x.sample == True, self.content)) else: prefaces = list(filter(lambda x: x.type == 'preface', self.content)) return '\n'.join(list(map(lambda x: x.latex, prefaces))) def export_endpaper(self): options = ['itemsep=1pt', 'parsep=1pt'] book = Description(options=options) book.add_item('제목', self.title) book.add_item('저자', self.author) book.add_item('편집', '미루') book.add_item('디자인', '써드엔지니어링카르텔') book.add_item('출간일', '2018-06-01') publisher = Description(options=options) publisher.add_item('출판', '금치산자레시피') publisher.add_item('웹사이트', 'http://gtszrcp.com') cover = Description(options=options) cover.add_item('표지', NoEscape(self.cover.export_citation())) cover.add_item('표지 그림 저작권', self.cover.license) license = Description(options=options) license.add_item('저작권', NoEscape('이 책에 수록된 저작물 중 별도로 표기되지 않은 모든 저작물의 저작권은 저자에게 있습니다. %s에 의해 이용할 수 있습니다.'%italic(self.license))) license.add_item('', '이 책은 BartlebyMachine으로 제작되었습니다.') endpaper = map(lambda x: x.dumps().replace('\\', '\\\\'), [ book, publisher, cover, license ]) return '\n'.join(list(endpaper)) def export_appendix(self): appendix = [] appendix.append(Chapter('참조')) content = Description() endnotes = list(filter(lambda x: x.endnote != None, self.content)) for note in endnotes: content.add_item(note.title, note.endnote) appendix.append(content) appendix = list(map(lambda x: x.dumps().replace('\\', '\\\\'), appendix)) return '\n'.join(appendix) class Bartleby: toc = None manuscripts = None overcite = None orphan = None config = None sample = False def __init__(self): self.manuscripts = list(filter( lambda x: os.path.isdir(os.path.join(Config().manuscript_dir, x)) == False, os.listdir(Config().manuscript_dir) )) self.toc = []; def write_latex(self): latex = self.replace_template() filename = 'ggded.tex' if self.sample == True: filename = 'ggded.sample.tex' f = open(filename, 'w', encoding='utf-8') f.write(latex) f.close() return def replace_template(self): template = Config().template book = [] if self.sample == True: self.toc.sample = True self.toc.title = self.toc.title + ' 샘플북' replaces = [ (re.compile('<<content>>'), self.toc.export_content()), (re.compile('<<author>>'), self.toc.author), (re.compile('<<title>>'), self.toc.title), (re.compile('<<date>>'), datetime.datetime.strptime(self.toc.dateOfPublished, '%Y-%m-%d').strftime('%Y')), (re.compile('<<preface>>'), self.toc.export_preface()), (re.compile('<<endpaper>>'), self.toc.export_endpaper()), (re.compile('<<endnotes>>'), self.toc.export_appendix()), ] for replace in replaces: if replace[0].findall(template): template = replace[0].sub(replace[1], template) return template def md_to_latex(self): result = False for content in self.toc.content: content.write_latex() return result def add_toc(self, filename): result = False file = os.path.join(os.getcwd(), filename) if os.path.exists(file) == False: return result with open(file, encoding='utf-8') as toc_file: toc = yaml.load(toc_file) result = True self.toc = TableOfContent(toc) return result def manuscriptCount(self): result = False cite = {} entries = [] if self.toc == None: return result for toc in self.toc: for entry in toc.content: entries.append(entry.filename) for script in self.manuscripts: needle = script.split('.')[0] cite[needle] = entries.count(needle) return cite def manuscriptStatus(self): self.orphan = [] self.overcite = [] for script in self.manuscripts: cnt = list( map(lambda x: '%s.md'%x.filename, self.toc.content) ).count(script) if(cnt < 1): self.orphan.append(script) if(cnt > 1): self.overcite.append(script) return True
the-stack_0_7427
# preprocessing.py """ parses MIMIC-CXR radiology reports from data/mimic-cxr-reports/ into data/train.csv and data/test.csv train.csv contains two columns with each column wrapped in double quotes; the first column contains the input text (radiology examination, technique, comparison, and findings) while the second column contains the output text (impressions). All reports without the term "IMPRESSIONS:" are ommitted test.csv has the same structure as train.csv. The processing also lematizes all of the terms using nltk and strips whitespace. REQUIREMENTS: - data/mimic-cxr-reports/* - data/cxr-study-list.csv.gz - overwrite data/train.csv - overwrite data/test.csv """ import os; import pandas as pd; import re TEST_FRACTION = 0.1 # fraction for test set VALIDATION_FRACTION = 0.1 ROOT = os.path.dirname( os.path.abspath(__file__) ); LIST_FILE = os.path.join(ROOT, 'data', 'cxr-study-list.csv.gz'); REPORTS_DIR = os.path.join(ROOT, 'data', 'mimic-cxr-reports'); TRAIN_FILE = os.path.join(ROOT, 'data', 'train.csv'); TEST_FILE = os.path.join(ROOT, 'data', 'test.csv'); VALIDATION_FILE = os.path.join(ROOT, 'data', 'validation.csv'); def remove_notification_section(text): """ We noticed that some reports have a notification section after the impressions (summary) section, which was impeding our data, so we decided to remove this section all together. We use various rule-based mechanisms to parse and remove the notification section. params: text returns: text with notification section removed """ idx = text.rfind("NOTIFICATION"); if( idx > 0 ): text = text[:idx]; idx = text.rfind("telephone notification"); if( idx > 0 ): text = text[:idx]; idx = text.rfind("Telephone notification"); if( idx > 0 ): text = text[:idx]; idx = text.rfind("These findings were"); if( idx > 0 ): text = text[:idx]; idx = text.rfind("Findings discussed"); if( idx > 0 ): text = text[:idx]; idx = text.rfind("Findings were"); if( idx > 0 ): text = text[:idx]; idx = text.rfind("This preliminary report"); if( idx > 0 ): text = text[:idx]; idx = text.rfind("Reviewed with"); if( idx > 0 ): text = text[:idx]; idx = text.rfind("A preliminary read"); if( idx > 0 ): text = text[:idx]; return(text); def sanitize(text): """ Cleanses the text to be written in CSV, which will be fed directly to the summarizer. Tokenization and lemmatization is not performed in this step, as the summarizer performs those directly. params: text returns: cleaned text """ text = text.strip(); text = re.sub("\n", "", text); text = re.sub(",", "", text); # Remove all text before FINDINGS: section regex = r'^(.*finding.?:)' if( re.search(regex, text, flags=re.IGNORECASE)==None ): #if no summary return None; text = re.sub(regex,"", text, flags=re.IGNORECASE); text = remove_notification_section(text); return(text); def split(slicable, fraction): """ splits data into test-train set or dev-validation set; does not shuffle. params: slicable - an object that responds to len() and [], works on dataframes fraction - a value between 0 and 1 returns: (x, y) - where x has (1-fraction) percent entries and y has the rest """ partition = int(len(slicable) * (1.0 - fraction)); return( (slicable[:partition], slicable[partition:]) ); def parse_summary(text): """ parses and separates input text from summary in cxr reports, returns None if not found params: text returns: None or [input_text, summary] """ regex = r'impression.?(?::|" ")' if( re.search(regex, text, flags=re.IGNORECASE)==None ): #if no summary return None; data = re.split(regex, text, flags=re.IGNORECASE); data[0] = data[0].strip(); data[1] = data[1].strip(); return(data); def write_csv(filename, reports): """ writes a csv file for summarization. The CSV file has four columns: "subject_id", "study_id", "findings", and "impression" based on MIMIC-CXR reports. "findings" contains the input text, and "impression" contains the true summary. params: filename - name of csv file to write, will overwrite if it exists reports - dataframe of cxr reports from cxr-study-list file """ print(f"Writing {filename}..."); f = open(filename, 'w'); f.write(f"\"subject_id\",\"study_id\",\"findings\",\"impression\"\n"); ommitted = 0; progress = 1; for report in reports: x = open(os.path.join(REPORTS_DIR, report)); text = x.read(); x.close(); text = sanitize(text); if( text==None ): ommitted += 1; continue; #toss out data and go to next textfile if (progress % 10000 == 0): print(f'Read {progress} files so far...'); progress += 1; data = parse_summary(text); if( (data==None) or (data[0]=='') or (data[1]=='') ): ommitted += 1; continue; #toss out data and go to next textfile folders = report.split('/'); f.write(f"\"{folders[2]}\",\"{folders[3].split('.')[0]}\",\"{data[0]}\",\"{data[1]}\"\n"); f.close(); print(f"Ommited {ommitted} files out of {progress} total files in dataset.\n") print("Done.\n"); print("================ Starting data preprocessing =================="); print(f"Reading {os.path.basename(LIST_FILE)}..."); radiology_reports = pd.read_csv(LIST_FILE)['path']; # file paths as pandas series train_reports, test_reports = split(radiology_reports, TEST_FRACTION); print("Done."); # if you want validation set: train_reports, validation_reports = split(train_reports, VALIDATION_FRACTION / (1 - TEST_FRACTION)); write_csv(VALIDATION_FILE, validation_reports); # sanity check #print(train_reports); #print(validation_reports); #print(test_reports); write_csv(TRAIN_FILE, train_reports); write_csv(TEST_FILE, test_reports); print("==================== End data preprocessing ======================");
the-stack_0_7428
import threading import time from datetime import datetime import schedule import atexit import SocketServer import BioControle import syslog # ------------------------------------------------------------------------ def display_jobs(): print('------------------------------------------------------------------') for job in schedule.jobs: print(job) print('------------------------------------------------------------------') print() # ------------------------------------------------------------------------ def run_threaded(job_func, run_time): job_thread = threading.Thread(target=job_func, args=[run_time]) job_thread.start() # ------------------------------------------------------------------------ @atexit.register def cleanup(): date_time = datetime.now().strftime("%m/%d/%Y, %H:%M:%S") syslog.syslog(syslog.LOG_INFO, '%s: Cleaning up before exit ' % (date_time)) print('%s: Cleaning up before exit ' % (date_time)) pump.off() circ.off() fan.off() userled.off() def process_request(data, server, client_sock, bio): #print(data[0]) s = data[0].decode() date_time = datetime.now().strftime("%m/%d/%Y, %H:%M:%S") syslog.syslog(syslog.LOG_INFO, '%s: Received Message: << %s >> ' % (date_time, s)) print('%s: Received Message: << %s >> ' % (date_time, s)) if 'GET /?circ=' in s: result = int(s[s.find('circ=')+5:s.find(' HTTP')],10) server.send_response(client_sock, "Circulating for {} seconds".format(result)); run_threaded(bio.run_circulate, result) #bio.run_circulate(result) if 'GET /?pump=' in s: result = int(s[s.find('pump=')+5:s.find(' HTTP')]) server.send_response(client_sock, "Pumping for {} seconds".format(result)); run_threaded(bio.run_pump, result) #bio.run_pump(result) if 'GET /?fan=' in s: result = int(s[s.find('fan=')+4:s.find(' HTTP')]) server.send_response(client_sock, "Fanning for {} seconds".format(result)); run_threaded(bio.run_fan, result) #bio.run_fan(result) if 'GET /?status' in s: status = "<html><head></head><body>" status = status + "<h2>Current Schedule</h2><hr><ul>" for job in schedule.jobs: status = status + "<li>" + str(job) + "</li>\n" status = status + "</ul></body>" server.send_response(client_sock, status) # MAIN # ------------------------------------------------------------------------ def main(): server = SocketServer.SocketServer() bio = BioControle.BioControle() pump_duration = 300 fan_duration = 200 circ_duration = 1800 # Pump schedule schedule.every().day.at("08:00").do(run_threaded, bio.run_pump, run_time=pump_duration) schedule.every().day.at("13:00").do(run_threaded, bio.run_pump, run_time=pump_duration) schedule.every().day.at("18:00").do(run_threaded, bio.run_pump, run_time=pump_duration) #schedule.every().day.at("19:25").do(run_threaded, bio.run_pump, run_time=pump_duration) # Fan schedule schedule.every(2).hours.do(run_threaded, bio.run_fan, run_time=fan_duration) # Circulation pump schedule schedule.every().day.at("07:45").do(run_threaded, bio.run_circulate, run_time=circ_duration) schedule.every().day.at("12:45").do(run_threaded, bio.run_circulate, run_time=circ_duration) schedule.every().day.at("17:45").do(run_threaded, bio.run_circulate, run_time=circ_duration) # Job display schedule #schedule.every(15).minutes.do(display_jobs) display_jobs() date_time = datetime.now().strftime("%m/%d/%Y, %H:%M:%S") syslog.syslog('%s: Server Ready ' % (date_time)) print('%s: Server Ready ' % (date_time)) sleepTimer = 10; while True: try: schedule.run_pending() try: (data, client_sock) = server.check_select() if data: process_request(data, server, client_sock, bio) server.close_client(client_sock) except: pass time.sleep(sleepTimer) BioControle.userled.toggle() except (KeyboardInterrupt, SystemExit): cleanup() exit() # ------------------------------------------------------------------------ main() print("exit")
the-stack_0_7430
# Copyright (c) 2014-2017, NVIDIA CORPORATION. All rights reserved. from collections import Counter import os.path import shutil import tempfile import queue import nose.tools import numpy as np import PIL.Image from . import create_db from digits import test_utils test_utils.skipIfNotFramework('none') class BaseTest(): """ Provides some helpful files and utilities """ @classmethod def setUpClass(cls): cls.empty_file = tempfile.mkstemp() cls.empty_dir = tempfile.mkdtemp() # Create one good textfile cls.good_file = tempfile.mkstemp() # Create a color image cls.color_image_file = tempfile.mkstemp(suffix='.png') cls.numpy_image_color = np.ones((8, 10, 3), dtype='uint8') cls.pil_image_color = PIL.Image.fromarray(cls.numpy_image_color) cls.pil_image_color.save(cls.color_image_file[1]) # Create a grayscale image cls.gray_image_file = tempfile.mkstemp(suffix='.png') cls.numpy_image_gray = np.ones((8, 10), dtype='uint8') cls.pil_image_gray = PIL.Image.fromarray(cls.numpy_image_gray) cls.pil_image_gray.save(cls.gray_image_file[1]) cls.image_count = 0 for i in range(3): for j in range(3): print((type(cls.good_file[0]), type(cls.color_image_file[1]))) tmp = '%s %s\n' % (cls.color_image_file[1], i) os.write(cls.good_file[0], tmp.encode(encoding='UTF-8')) os.write(cls.good_file[0], tmp.encode(encoding='UTF-8')) cls.image_count += 2 @classmethod def tearDownClass(cls): for f in cls.empty_file, cls.good_file, cls.color_image_file, cls.gray_image_file: try: os.close(f[0]) os.remove(f[1]) except OSError: pass try: shutil.rmtree(cls.empty_dir) except OSError: raise class TestFillLoadQueue(BaseTest): def test_valid_file(self): for shuffle in True, False: yield self.check_valid_file, shuffle def check_valid_file(self, shuffle): q = queue.Queue() result = create_db._fill_load_queue(self.good_file[1], q, shuffle) assert result == self.image_count, 'lines not added' assert q.qsize() == self.image_count, 'queue not full' def test_empty_file(self): for shuffle in True, False: yield self.check_empty_file, shuffle def check_empty_file(self, shuffle): q = queue.Queue() nose.tools.assert_raises( create_db.BadInputFileError, create_db._fill_load_queue, self.empty_file[1], q, shuffle) class TestParseLine(): def test_good_lines(self): for label, line in [ (0, '/path/image.jpg 0'), (1, 'image.jpg 1'), (2, 'image.jpg 2\n'), (3, 'image.jpg 3'), (4, 'spaces in filename.jpg 4'), ]: yield self.check_good_line, line, label def check_good_line(self, line, label): c = Counter() p, l = create_db._parse_line(line, c) assert l == label, 'parsed label wrong' assert c[l] == 1, 'distribution is wrong' def test_bad_lines(self): for line in [ 'nolabel.jpg', 'non-number.jpg five', 'negative.jpg -1', ]: yield self.check_bad_line, line def check_bad_line(self, line): nose.tools.assert_raises( create_db.ParseLineError, create_db._parse_line, line, Counter() ) class TestCalculateBatchSize(): def test(self): for count, batch_size in [ (1, 1), (50, 50), (100, 100), (200, 100), ]: yield self.check, count, batch_size def check(self, count, batch_size): assert create_db._calculate_batch_size(count) == batch_size class TestCalculateNumThreads(): def test(self): for batch_size, shuffle, num in [ (1000, True, 10), (1000, False, 1), (100, True, 10), (100, False, 1), (50, True, 7), (4, True, 2), (1, True, 1), ]: yield self.check, batch_size, shuffle, num def check(self, batch_size, shuffle, num): assert create_db._calculate_num_threads( batch_size, shuffle) == num class TestInitialImageSum(): def test_color(self): s = create_db._initial_image_sum(10, 10, 3) assert s.shape == (10, 10, 3) assert s.dtype == 'float64' def test_grayscale(self): s = create_db._initial_image_sum(10, 10, 1) assert s.shape == (10, 10) assert s.dtype == 'float64' class TestImageToDatum(BaseTest): def test(self): for compression in None, 'png', 'jpg': yield self.check_color, compression yield self.check_grayscale, compression def check_color(self, compression): d = create_db._array_to_datum(self.numpy_image_color, 1, compression) assert d.height == self.numpy_image_color.shape[0] assert d.width == self.numpy_image_color.shape[1] assert d.channels == 3 assert d.encoded == bool(compression) def check_grayscale(self, compression): d = create_db._array_to_datum(self.numpy_image_gray, 1, compression) assert d.height == self.numpy_image_gray.shape[0] assert d.width == self.numpy_image_gray.shape[1] assert d.channels == 1 assert d.encoded == bool(compression) class TestSaveMeans(): def test(self): for color in True, False: d = tempfile.mkdtemp() for filename in 'mean.jpg', 'mean.png', 'mean.npy', 'mean.binaryproto': yield self.check, d, filename, color shutil.rmtree(d) def check(self, directory, filename, color): filename = os.path.join(directory, filename) if color: s = np.ones((8, 10, 3), dtype='float64') else: s = np.ones((8, 10), dtype='float64') create_db._save_means(s, 2, [filename]) assert os.path.exists(filename) class BaseCreationTest(BaseTest): def test_image_sizes(self): for width in 8, 12: for channels in 1, 3: yield self.check_image_sizes, width, channels, False def check_image_sizes(self, width, channels, shuffle): create_db.create_db(self.good_file[1], os.path.join(self.empty_dir, 'db'), width, 10, channels, self.BACKEND) def test_no_shuffle(self): create_db.create_db(self.good_file[1], os.path.join(self.empty_dir, 'db'), 10, 10, 1, self.BACKEND, shuffle=False) def test_means(self): mean_files = [] for suffix in 'jpg', 'npy', 'png', 'binaryproto': mean_files.append(os.path.join(self.empty_dir, 'mean.%s' % suffix)) create_db.create_db(self.good_file[1], os.path.join(self.empty_dir, 'db'), 10, 10, 1, self.BACKEND, mean_files=mean_files) class TestLmdbCreation(BaseCreationTest): BACKEND = 'lmdb' class TestHdf5Creation(BaseCreationTest): BACKEND = 'hdf5' def test_dset_limit(self): db_dir = os.path.join(self.empty_dir, 'db') create_db.create_db(self.good_file[1], db_dir, 10, 10, 1, 'hdf5', hdf5_dset_limit=10 * 10) with open(os.path.join(db_dir, 'list.txt')) as infile: lines = infile.readlines() assert len(lines) == self.image_count, '%d != %d' % (len(lines), self.image_count)
the-stack_0_7433
# -*- coding: utf-8 -*- """ Created on Mon May 31 18:14:32 2021 @author: ilayda """ #1.kutuphaneler import numpy as np import matplotlib.pyplot as plt import pandas as pd #2.veri onisleme #2.1.veri yukleme veriler = pd.read_csv('odev_tenis.txt.crdownload') #pd.read_csv("veriler.csv") #test print(veriler) ''' #encoder: Kategorik -> Numeric dönüşüm yapalım. play = veriler.iloc[:,-1:].values print(play) from sklearn import preprocessing le = preprocessing.LabelEncoder() play[:,-1] = le.fit_transform(veriler.iloc[:,-1]) print(play) #sondan ikinci kolonu 1 ve 0 a dönüştürdük windy = veriler.iloc[:,-2:-1].values print(play) from sklearn import preprocessing le = preprocessing.LabelEncoder() windy[:,-1] = le.fit_transform(veriler.iloc[:,-1]) print(windy) #encoder: Kategorik -> Numeric c = veriler.iloc[:,-1:].values print(c) from sklearn import preprocessing le = preprocessing.LabelEncoder() c[:,-1] = le.fit_transform(veriler.iloc[:,-1]) print(c) ''' #1)DÖNÜŞTÜRMEK #yukrdaki gibi tek tek dönüştürmek yerine aşağıdaki tek kodla 1 ve 0 a dönüştürdük. #sundy,rainy,overcast,windy,play labelenconder ile 1 ve 0 a dönüştürdük. from sklearn.preprocessing import LabelEncoder veriler2 = veriler.apply(LabelEncoder().fit_transform) #temperature ve humidity onehot ettik. onehot ile yaptık çünkü zaten sayılardı.true falan değildi. #temperature ve humidity c = veriler2.iloc[:,:1] from sklearn import preprocessing ohe = preprocessing.OneHotEncoder() c=ohe.fit_transform(c).toarray() print(c) #2)EKLEME yapalım bir tabloda #havadurumu ile dataframe yaparak rainy,sunny,overcast 1 ve 0 şeklinde bir tabloya ekledik. havadurumu = pd.DataFrame(data = c, index = range(14), columns=['o','r','s']) #sonveriler ile=havadurumuna veriler tablosundan windy ve play 0 ve 1 şeklini tabloya ekledik. sonveriler = pd.concat([havadurumu,veriler.iloc[:,1:3]],axis = 1) #yukarda yazdırdığımız veriler2 temperature ve humidity de onehot şeklinde tabloya ekleyelim. sonveriler = pd.concat([veriler2.iloc[:,-2:],sonveriler], axis = 1) #3)VERİLERİ BÖLME #humidity bağımlı değişken olduğu için o hariç hepsini bölüyoruz ayrı tabloda #y_train ve y_test humadityi tabloda göstercek. sonveriler.iloc[:,-1:] from sklearn.model_selection import train_test_split x_train, x_test,y_train,y_test = train_test_split(sonveriler.iloc[:,:-1],sonveriler.iloc[:,-1:],test_size=0.33, random_state=0) from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x_train,y_train) #tahmin edelim. humidity tahmin edelim. y_test ile karşılaştırarak. y_pred = regressor.predict(x_test) print(y_pred) #4)GERİYE ELEME #Başarı ölçerek hangi verileri çıkarcağımıza bakalım. Önce tüm değişkenleri tanımlayalım. #14 satır var. import statsmodels.api as sm X = np.append(arr = np.ones((14,1)).astype(int), values=sonveriler.iloc[:,:-1], axis=1 ) #6 kolon var. Kolon tanımlayalım. Sonrada sm.OLS ile tüm değişkenleri alsın.sonveriler.iloc[:,-1:] X_l=sonveriler.iloc[:,[0,1,2,3,4,5]].values X_l=np.array(X_l,dtype=float) model=sm.OLS(sonveriler.iloc[:,-1:],X_l).fit() print(model.summary()) #4)VERİ ATMA #yandaki raporda en yüksek olan p>t değeri x1 olduğu için 0.593 onu atıyoruz. #2.playden sonrasını yazdırıp windy atıyoruz [:,1:] sonveriler = sonveriler.iloc[:,1:] #yeni tabloyu yazdıralım. x1 olmadığı yani windy olmadığı- kolon sayısı 5 oldu iloc[:,[0,1,2,3,4]] import statsmodels.api as sm X = np.append(arr = np.ones((14,1)).astype(int), values=sonveriler.iloc[:,:-1], axis=1 ) X_l=sonveriler.iloc[:,[0,1,2,3,4]].values X_l=np.array(X_l,dtype=float) model=sm.OLS(sonveriler.iloc[:,-1:],X_l).fit() print(model.summary()) #5)X_TRAİN VE X_TEST HUMİDİTY DEĞİŞKENİNİ ATMA x_train = x_train.iloc[:,1:] x_test = x_test.iloc[:,1:] #sonra y_test ve y_pred karşılaştırınca iyileşmiş halini görebilirsin. regressor.fit(x_train,y_train) y_pred = regressor.predict(x_test) #y_pred ilk tahmin 84 ken x1 i silip başarı oranını arttırınca 77 oldu ve y_testteki 70 e daha fazla yaklaştı.
the-stack_0_7434
# ----------------------------------------------------------------------------- # # Copyright (C) The BioDynaMo Project. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # See the LICENSE file distributed with this work for details. # See the NOTICE file distributed with this work for additional information # regarding copyright ownership. # # ----------------------------------------------------------------------------- import os import shutil from print_command import Print def CopySupportFiles(sim_name): SUPPORT_DIR = os.path.join(os.environ['BDMSYS'], 'share', 'util', 'support_files') Print.new_step("Copy additional support files") for filename in os.listdir(SUPPORT_DIR): full_file_name = os.path.join(SUPPORT_DIR, filename) if os.path.isfile(full_file_name): shutil.copy(full_file_name, sim_name)
the-stack_0_7436
""" Copyright (C) 2019 Authors of gHHC This file is part of "hyperbolic_hierarchical_clustering" http://github.com/nmonath/hyperbolic_hierarchical_clustering Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import sys import os import datetime import numpy as np from absl import logging import tensorflow as tf from ghhc.util.Config import Config from ghhc.util.load import load from ghhc.util.initializers import random_pts,init_from_afkmc2_and_hac,init_from_rand_and_hac from ghhc.model.ghhc import gHHCTree, gHHCInference from ghhc.util.io import mkdir_p tf.enable_eager_execution() logging.set_verbosity(logging.INFO) if __name__ == "__main__": config = Config(sys.argv[1]) now = datetime.datetime.now() ts = "{:04d}-{:02d}-{:02d}-{:02d}-{:02d}-{:02d}".format( now.year, now.month, now.day, now.hour, now.minute, now.second) config.exp_out_dir = os.path.join(config.exp_out_base, config.dataset_name, config.alg_name, "%s-%s" %(ts,config.to_filename())) config.checkpoint_dir = os.path.join(config.exp_out_dir, 'models', 'ckpt') mkdir_p(config.exp_out_dir) mkdir_p(os.path.join(config.exp_out_dir, 'models')) config.save_config(config.exp_out_dir,config.to_filename() + ".json") config.save_config(config.exp_out_dir) pids, lbls, dataset = load(config.inference_file, config) dev_pids, dev_lbls, dev_dataset = load(config.dev_file, config) if config.random_projection is not None: logging.info('Using random projection: %s', config.random_projection) _proj = np.random.randn(dataset.shape[1], config.random_projection).astype(np.float32) def p(x): projd = tf.matmul(x, _proj) projd /= tf.linalg.norm(projd,axis=1,keepdims=True) projd = tf.clip_by_norm(projd, 0.9, axes=[1]) return projd proj = lambda x: p(x) init_tree = random_pts(proj(dataset).numpy(), config.num_internals, config.random_pts_scale) else: if config.init_method == 'randompts': init_tree = random_pts(dataset, config.num_internals, config.random_pts_scale) elif config.init_method == 'afkmc2hac': init_tree = init_from_afkmc2_and_hac(dataset, config.num_internals) elif config.init_method == 'randhac': init_tree = init_from_rand_and_hac(dataset, config.num_internals, config.random_pts_scale) proj = None tree = gHHCTree(init_tree.copy(), config=config, projection=proj) optimizer = tf.train.GradientDescentOptimizer(config.tree_learning_rate) inf = gHHCInference(tree, optimizer, config, dev_dataset, dev_lbls) samples = np.load(config.sample_file) inf.inference(samples, dataset, config.batch_size)
the-stack_0_7437
"""Limited version of os module: only keep what is more or less relevant in a browser context """ import sys error = OSError name = 'posix' linesep = '\n' from posix import * import posixpath as path sys.modules['os.path'] = path from os.path import (curdir, pardir, sep, pathsep, defpath, extsep, altsep, devnull) environ = {'HOME': __BRYTHON__.curdir, 'PYTHONPATH': __BRYTHON__.brython_path } def _get_exports_list(module): try: return list(module.__all__) except AttributeError: return [n for n in dir(module) if n[0] != '_'] def getenv(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. key, default and the result are str.""" return environ.get(key, default) supports_bytes_environ = True def chdir(path): __BRYTHON__.curdir = path def fsencode(filename): """ Encode filename to the filesystem encoding with 'surrogateescape' error handler, return bytes unchanged. On Windows, use 'strict' error handler if the file system encoding is 'mbcs' (which is the default encoding). """ encoding = sys.getfilesystemencoding() errors = 'surrogateescape' if isinstance(filename, bytes): return filename elif isinstance(filename, str): return filename.encode(encoding, errors) else: raise TypeError("expect bytes or str, not %s" % type(filename).__name__) def fsdecode(filename): """ Decode filename from the filesystem encoding with 'surrogateescape' error handler, return str unchanged. On Windows, use 'strict' error handler if the file system encoding is 'mbcs' (which is the default encoding). """ encoding = sys.getfilesystemencoding() errors = 'surrogateescape' if isinstance(filename, str): return filename elif isinstance(filename, bytes): return filename.decode(encoding, errors) else: raise TypeError("expect bytes or str, not %s" % type(filename).__name__) def getcwd(): return __BRYTHON__.curdir _set = set() supports_dir_fd = _set supports_effective_ids = _set supports_fd = _set supports_follow_symlinks = _set
the-stack_0_7439
from datetime import date pessoas = {} listaDePessoas = [] hoje = date.today().year somaIdade = mediaIdade = 0 while True: pessoas.clear() pessoas['nome'] = str(input('Nome: ')).strip() while True: pessoas['sexo'] = str(input('Sexo [M/F]: ')).upper()[0] if pessoas['sexo'] in 'MF': break print('Erro! Digite apenas "M" ou "F".') idade = int(input('Ano de Nascimento: ')) pessoas['idade'] = hoje - idade somaIdade += pessoas['idade'] listaDePessoas.append(pessoas.copy()) while True: continuar = str(input('Deseja continuar?[S/N]: ')).upper()[0] if continuar in 'SN': break print('Erro! Digite apenas "SIM" ou "NÃO".') if continuar in 'N': break pessoas.clear() print('-=' * 25) print(listaDePessoas) print('-=' * 12, 'Total de Pessoas Cadastradas ', '-=' * 12) print(f'Total de pessoas cadastradas: {len(listaDePessoas)}') print('-=' * 10, 'A média das Idades ', '-=' * 10) mediaIdade = somaIdade / len(listaDePessoas) print(f'A média das Idades: {mediaIdade} anos.') print('-=' * 10, 'Lista com Todas as Mulheres', '-=' * 10) for elemento in listaDePessoas: if elemento['sexo'] in 'F': print(f'{elemento["nome"]}') print() print('-=' * 10, 'Lista de Pessoas Acima da Média de Idade ', '-=' * 10) for elemento in listaDePessoas: if elemento['idade'] >= mediaIdade: print(f'{elemento["nome"]} está acima da Média da Idade. ') print()
the-stack_0_7440
import logging from van.adam import transactions as t from van.adam.inventory_methods.output import calculate_output from van.adam.inventory_methods.sell_outs import take_all, take_less from van.adam.transactions import is_taxable def calc_profit(sell: tuple) -> tuple: """ Calculates the buy price, sell price, total profit, and taxable profit from a sell transaction tuple. :param sell: the sell transaction as a tuple (date: datetime.date, quantity: float, price: float) :return: a tuple containing (weighted_buy_price: float, sell_price: float, total_profit: float, taxable_profit: float); all numbers are rounded to two decimal places """ sell_date, total_sell_quantity, sell_price = sell sell_outs = [] quantity = 0.0 while quantity != total_sell_quantity: log.debug("quantity: {}".format(quantity)) try: buy = t.buys.pop() except IndexError: log.error("Not enough crypto assets for the sale {}: list index out of range!".format(sell)) latest_sell_out = sell_outs.pop() t.buys.insert(len(t.buys), latest_sell_out) log.warning("Re-added latest sell out {} to buy transactions".format(latest_sell_out)) return 0.0, 0.0, 0.0, 0.0 buy_date, buy_quantity, buy_price = buy # round buy_quantity to 10 decimal places to avoid IndexError above buy_quantity = round(buy_quantity, 10) taxable = is_taxable(buy_date, sell_date) if (quantity + buy_quantity) == total_sell_quantity: quantity = take_all(quantity, buy_quantity, buy_price, sell_outs, taxable) elif (quantity + buy_quantity) < total_sell_quantity: quantity = take_all(quantity, buy_quantity, buy_price, sell_outs, taxable) elif (quantity + buy_quantity) > total_sell_quantity: quantity, updated_buy = take_less(total_sell_quantity, quantity, buy_date, buy_quantity, buy_price, sell_outs, taxable) t.buys.insert(len(t.buys), updated_buy) return calculate_output(sell_outs, total_sell_quantity, sell_price) log = logging.getLogger()
the-stack_0_7441
"""Setup for TcEx Module.""" # standard library import os # third-party from setuptools import find_packages, setup metadata = {} metadata_file = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'tcex', '__metadata__.py') with open( metadata_file, encoding='utf-8', ) as f: exec(f.read(), metadata) # nosec; pylint: disable=exec-used if not metadata: raise RuntimeError(f'Could not load metadata file ({metadata_file}).') with open('README.md') as f: readme = f.read() dev_packages = [ 'bandit', 'black', 'CommonMark', 'deepdiff', 'flake8', # isort 5 currently causes issues with pylint 'isort>=4,<5', 'mako', 'pre-commit', 'pydocstyle', 'pylint', 'pytest', 'pytest-cov', 'pytest-html', 'pytest-xdist', 'pyupgrade', 'recommonmark', 'reno', 'sphinx', 'sphinx-rtd-theme', ] setup( author=metadata['__author__'], author_email=metadata['__author_email__'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Security', ], description=metadata['__description__'], download_url=metadata['__download_url__'], extras_require={'dev': dev_packages, 'develop': dev_packages, 'development': dev_packages}, include_package_data=True, install_requires=[ 'colorama', 'future', 'hvac', 'inflect', 'jmespath', 'jsonschema', 'lark', 'paho-mqtt', 'parsedatetime', 'pyaes', 'python-dateutil', 'pytz', 'redis', 'requests', 'six', 'stdlib-list', 'stix2', 'tzlocal', 'wrapt', ], license=metadata['__license__'], long_description=readme, long_description_content_type='text/markdown', name=metadata['__package_name__'], packages=find_packages(exclude=['tests', 'tests.*']), package_data={'': ['*.json', '*.lark']}, package_dir={'tcex': 'tcex'}, project_urls={ 'Documentation': 'https://threatconnect-inc.github.io/tcex/', 'Source': 'https://github.com/ThreatConnect-Inc/tcex', }, python_requires='>=3.6', scripts=[ 'bin/tcinit', 'bin/tcinit.cmd', 'bin/tclib', 'bin/tclib.cmd', 'bin/tcpackage', 'bin/tcpackage.cmd', 'bin/tctest', 'bin/tctest.cmd', 'bin/tcvalidate', 'bin/tcvalidate.cmd', ], url=metadata['__url__'], version=metadata['__version__'], zip_safe=True, )
the-stack_0_7442
import numpy as np import tensorflow as tf from tensorflow.contrib.framework.python.ops import arg_scope import data_iter import nn_extra_gauss import nn_extra_nvp from config_rnn import defaults batch_size = 32 sample_batch_size = 1 n_samples = 4 rng = np.random.RandomState(42) rng_test = np.random.RandomState(317070) seq_len = defaults.seq_len eps_corr = defaults.eps_corr mask_dims = defaults.mask_dims nonlinearity = tf.nn.elu weight_norm = True train_data_iter = data_iter.BaseExchSeqDataIterator(seq_len=seq_len, batch_size=batch_size, set='train', rng=rng, digits=[0, 2, 4, 6, 8]) test_data_iter = data_iter.BaseExchSeqDataIterator(seq_len=seq_len, batch_size=batch_size, set='test', digits=[1, 3, 5, 7, 9], rng=rng_test) valid_data_iter = data_iter.BaseExchSeqDataIterator(seq_len=seq_len, batch_size=batch_size, set='test', rng=rng_test, digits=[0, 2, 4, 6, 8]) test_data_iter2 = data_iter.BaseTestBatchSeqDataIterator(seq_len=seq_len, set='test', rng=rng_test, digits=[1, 3, 5, 7, 9]) obs_shape = train_data_iter.get_observation_size() # (seq_len, 28,28,1) print('obs shape', obs_shape) ndim = np.prod(obs_shape[1:]) corr_init = np.ones((ndim,), dtype='float32') * 0.1 optimizer = 'rmsprop' learning_rate = 0.001 lr_decay = 0.999995 max_iter = 50000 save_every = 1000 validate_every = 1000 n_valid_batches = 20 scale_student_grad = 0. student_grad_schedule = {0: 0., 100: 0.1} nvp_layers = [] nvp_dense_layers = [] student_layer = None def build_model(x, init=False, sampling_mode=False): global nvp_layers global nvp_dense_layers with arg_scope([nn_extra_nvp.conv2d_wn, nn_extra_nvp.dense_wn], init=init): if len(nvp_layers) == 0: build_nvp_model() if len(nvp_dense_layers) == 0: build_nvp_dense_model() global student_layer if student_layer is None: student_layer = nn_extra_gauss.GaussianRecurrentLayer(shape=(ndim,), corr_init=corr_init) x_shape = nn_extra_nvp.int_shape(x) x_bs = tf.reshape(x, (x_shape[0] * x_shape[1], x_shape[2], x_shape[3], x_shape[4])) x_bs_shape = nn_extra_nvp.int_shape(x_bs) log_det_jac = tf.zeros(x_bs_shape[0]) logit_layer = nn_extra_nvp.LogitLayer() scale_layer = nn_extra_nvp.ScaleLayer() y, log_det_jac = scale_layer.forward_and_jacobian(x_bs, None, log_det_jac) y, log_det_jac = logit_layer.forward_and_jacobian(y, None, log_det_jac) # construct forward pass z = None for layer in nvp_layers: y, z, log_det_jac = layer.forward_and_jacobian(y, z, log_det_jac) z = tf.concat([z, y], 3) for layer in nvp_dense_layers: z, _, log_det_jac = layer.forward_and_jacobian(z, None, log_det_jac) z_shape = nn_extra_nvp.int_shape(z) z_vec = tf.reshape(z, (x_shape[0], x_shape[1], -1)) log_det_jac = tf.reshape(log_det_jac, (x_shape[0], x_shape[1])) log_probs = [] z_samples = [] latent_log_probs = [] latent_log_probs_prior = [] if mask_dims: mask_dim = tf.greater(student_layer.corr, tf.ones_like(student_layer.corr) * eps_corr) mask_dim = tf.cast(mask_dim, tf.float32) else: mask_dim = None with tf.variable_scope("one_step") as scope: student_layer.reset() for i in range(seq_len): if sampling_mode: z_sample = student_layer.sample(nr_samples=n_samples) z_samples.append(z_sample) latent_log_prob = student_layer.get_log_likelihood(z_sample[:, 0, :]) latent_log_probs.append(latent_log_prob) else: latent_log_prob = student_layer.get_log_likelihood(z_vec[:, i, :], mask_dim=mask_dim) latent_log_probs.append(latent_log_prob) log_prob = latent_log_prob + log_det_jac[:, i] log_probs.append(log_prob) latent_log_prob_prior = student_layer.get_log_likelihood_under_prior(z_vec[:, i, :], mask_dim=mask_dim) latent_log_probs_prior.append(latent_log_prob_prior) student_layer.update_distribution(z_vec[:, i, :]) scope.reuse_variables() if sampling_mode: # one more sample after seeing the last element in the sequence z_sample = student_layer.sample(nr_samples=n_samples) z_samples.append(z_sample) z_samples = tf.concat(z_samples, 1) latent_log_prob = student_layer.get_log_likelihood(z_sample[:, 0, :]) latent_log_probs.append(latent_log_prob) z_samples_shape = nn_extra_nvp.int_shape(z_samples) z_samples = tf.reshape(z_samples, (z_samples_shape[0] * z_samples_shape[1], z_shape[1], z_shape[2], z_shape[3])) # (n_samples*seq_len, z_img_shape) log_det_jac = tf.zeros(z_samples_shape[0] * z_samples_shape[1]) for layer in reversed(nvp_dense_layers): z_samples, _, log_det_jac = layer.backward(z_samples, None, log_det_jac) x_samples = None for layer in reversed(nvp_layers): x_samples, z_samples, log_det_jac = layer.backward(x_samples, z_samples, log_det_jac) x_samples, log_det_jac = logit_layer.backward(x_samples, None, log_det_jac) x_samples, log_det_jac = scale_layer.backward(x_samples, None, log_det_jac) x_samples = tf.reshape(x_samples, (z_samples_shape[0], z_samples_shape[1], x_shape[2], x_shape[3], x_shape[4])) log_det_jac = tf.reshape(log_det_jac, (z_samples_shape[0], z_samples_shape[1])) latent_log_probs = tf.stack(latent_log_probs, axis=1) for i in range(seq_len + 1): log_prob = latent_log_probs[:, i] - log_det_jac[:, i] log_probs.append(log_prob) log_probs = tf.stack(log_probs, axis=1) return x_samples, log_probs log_probs = tf.stack(log_probs, axis=1) latent_log_probs = tf.stack(latent_log_probs, axis=1) latent_log_probs_prior = tf.stack(latent_log_probs_prior, axis=1) return log_probs, latent_log_probs, latent_log_probs_prior, z_vec def build_nvp_model(): global nvp_layers num_scales = 2 num_filters = 32 for scale in range(num_scales - 1): nvp_layers.append( nn_extra_nvp.CouplingLayerConv('checkerboard0', name='Checkerboard%d_1' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append( nn_extra_nvp.CouplingLayerConv('checkerboard1', name='Checkerboard%d_2' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append( nn_extra_nvp.CouplingLayerConv('checkerboard0', name='Checkerboard%d_3' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append(nn_extra_nvp.SqueezingLayer(name='Squeeze%d' % scale)) nvp_layers.append( nn_extra_nvp.CouplingLayerConv('channel0', name='Channel%d_1' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append( nn_extra_nvp.CouplingLayerConv('channel1', name='Channel%d_2' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append( nn_extra_nvp.CouplingLayerConv('channel0', name='Channel%d_3' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append(nn_extra_nvp.FactorOutLayer(scale, name='FactorOut%d' % scale)) # final layer scale = num_scales - 1 nvp_layers.append( nn_extra_nvp.CouplingLayerConv('checkerboard0', name='Checkerboard%d_1' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append( nn_extra_nvp.CouplingLayerConv('checkerboard1', name='Checkerboard%d_2' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append( nn_extra_nvp.CouplingLayerConv('checkerboard0', name='Checkerboard%d_3' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append( nn_extra_nvp.CouplingLayerConv('checkerboard1', name='Checkerboard%d_4' % scale, nonlinearity=nonlinearity, weight_norm=weight_norm, num_filters=num_filters)) nvp_layers.append(nn_extra_nvp.FactorOutLayer(scale, name='FactorOut%d' % scale)) def build_nvp_dense_model(): global nvp_dense_layers for i in range(6): mask = 'even' if i % 2 == 0 else 'odd' name = '%s_%s' % (mask, i) nvp_dense_layers.append( nn_extra_nvp.CouplingLayerDense(mask, name=name, nonlinearity=nonlinearity, n_units=256, weight_norm=weight_norm)) def loss(log_probs): return -tf.reduce_mean(log_probs)
the-stack_0_7443
# -*- coding = utf-8 -*- # /usr/bin/env python # @Time : 20-11-18 下午8:25 # @File : test.py # @Software: PyCharm # try/except/else while/else break continue # while True: # reply = input('Enter txt:') # if reply == 'stop': # break # try: # num = int(reply) # except: # print('Bad!' * 8) # else: # print(int(reply)**2) # # print('Bye') while True: reply = input('Enter txt:') if reply == 'stop': break elif not reply.isdigit(): print('Bad!'*8) else: num = int(reply) if num < 20: print('low'*4) else: print(num**2) print('Bye'*3)
the-stack_0_7446
"""empty message Revision ID: d68e85682c2c Revises: fed65154fba4 Create Date: 2018-09-27 11:27:26.206337 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'd68e85682c2c' down_revision = 'fed65154fba4' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('collections', sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('posts_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['posts_id'], ['posts.id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ) ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('collections') # ### end Alembic commands ###
the-stack_0_7451
# Licensed under a 3-clause BSD style license - see LICENSE.rst import textwrap import numpy as np import pytest from astropy.io import fits from astropy.nddata.nduncertainty import ( StdDevUncertainty, MissingDataAssociationException, VarianceUncertainty, InverseVariance) from astropy import units as u from astropy import log from astropy.wcs import WCS, FITSFixedWarning from astropy.utils import NumpyRNGContext from astropy.utils.data import (get_pkg_data_filename, get_pkg_data_filenames, get_pkg_data_contents) from astropy.utils.exceptions import AstropyWarning from astropy.nddata.ccddata import CCDData from astropy.nddata import _testing as nd_testing from astropy.table import Table DEFAULT_DATA_SIZE = 100 with NumpyRNGContext(123): _random_array = np.random.normal(size=[DEFAULT_DATA_SIZE, DEFAULT_DATA_SIZE]) def create_ccd_data(): """ Return a CCDData object of size DEFAULT_DATA_SIZE x DEFAULT_DATA_SIZE with units of ADU. """ data = _random_array.copy() fake_meta = {'my_key': 42, 'your_key': 'not 42'} ccd = CCDData(data, unit=u.adu) ccd.header = fake_meta return ccd def test_ccddata_empty(): with pytest.raises(TypeError): CCDData() # empty initializer should fail def test_ccddata_must_have_unit(): with pytest.raises(ValueError): CCDData(np.zeros([2, 2])) def test_ccddata_unit_cannot_be_set_to_none(): ccd_data = create_ccd_data() with pytest.raises(TypeError): ccd_data.unit = None def test_ccddata_meta_header_conflict(): with pytest.raises(ValueError) as exc: CCDData([1, 2, 3], unit='', meta={1: 1}, header={2: 2}) assert "can't have both header and meta." in str(exc.value) def test_ccddata_simple(): ccd_data = create_ccd_data() assert ccd_data.shape == (DEFAULT_DATA_SIZE, DEFAULT_DATA_SIZE) assert ccd_data.size == DEFAULT_DATA_SIZE * DEFAULT_DATA_SIZE assert ccd_data.dtype == np.dtype(float) def test_ccddata_init_with_string_electron_unit(): ccd = CCDData(np.zeros([2, 2]), unit="electron") assert ccd.unit is u.electron def test_initialize_from_FITS(tmpdir): ccd_data = create_ccd_data() hdu = fits.PrimaryHDU(ccd_data) hdulist = fits.HDUList([hdu]) filename = tmpdir.join('afile.fits').strpath hdulist.writeto(filename) cd = CCDData.read(filename, unit=u.electron) assert cd.shape == (DEFAULT_DATA_SIZE, DEFAULT_DATA_SIZE) assert cd.size == DEFAULT_DATA_SIZE * DEFAULT_DATA_SIZE assert np.issubdtype(cd.data.dtype, np.floating) for k, v in hdu.header.items(): assert cd.meta[k] == v def test_initialize_from_fits_with_unit_in_header(tmpdir): fake_img = np.zeros([2, 2]) hdu = fits.PrimaryHDU(fake_img) hdu.header['bunit'] = u.adu.to_string() filename = tmpdir.join('afile.fits').strpath hdu.writeto(filename) ccd = CCDData.read(filename) # ccd should pick up the unit adu from the fits header...did it? assert ccd.unit is u.adu # An explicit unit in the read overrides any unit in the FITS file ccd2 = CCDData.read(filename, unit="photon") assert ccd2.unit is u.photon def test_initialize_from_fits_with_ADU_in_header(tmpdir): fake_img = np.zeros([2, 2]) hdu = fits.PrimaryHDU(fake_img) hdu.header['bunit'] = 'ADU' filename = tmpdir.join('afile.fits').strpath hdu.writeto(filename) ccd = CCDData.read(filename) # ccd should pick up the unit adu from the fits header...did it? assert ccd.unit is u.adu def test_initialize_from_fits_with_invalid_unit_in_header(tmpdir): hdu = fits.PrimaryHDU(np.ones((2, 2))) hdu.header['bunit'] = 'definetely-not-a-unit' filename = tmpdir.join('afile.fits').strpath hdu.writeto(filename) with pytest.raises(ValueError): CCDData.read(filename) def test_initialize_from_fits_with_technically_invalid_but_not_really(tmpdir): hdu = fits.PrimaryHDU(np.ones((2, 2))) hdu.header['bunit'] = 'ELECTRONS/S' filename = tmpdir.join('afile.fits').strpath hdu.writeto(filename) ccd = CCDData.read(filename) assert ccd.unit == u.electron/u.s def test_initialize_from_fits_with_data_in_different_extension(tmpdir): fake_img = np.arange(4).reshape(2, 2) hdu1 = fits.PrimaryHDU() hdu2 = fits.ImageHDU(fake_img) hdus = fits.HDUList([hdu1, hdu2]) filename = tmpdir.join('afile.fits').strpath hdus.writeto(filename) ccd = CCDData.read(filename, unit='adu') # ccd should pick up the unit adu from the fits header...did it? np.testing.assert_array_equal(ccd.data, fake_img) # check that the header is the combined header assert hdu2.header + hdu1.header == ccd.header def test_initialize_from_fits_with_extension(tmpdir): fake_img1 = np.zeros([2, 2]) fake_img2 = np.arange(4).reshape(2, 2) hdu0 = fits.PrimaryHDU() hdu1 = fits.ImageHDU(fake_img1, name='first', ver=1) hdu2 = fits.ImageHDU(fake_img2, name='second', ver=1) hdus = fits.HDUList([hdu0, hdu1, hdu2]) filename = tmpdir.join('afile.fits').strpath hdus.writeto(filename) ccd = CCDData.read(filename, hdu=2, unit='adu') # ccd should pick up the unit adu from the fits header...did it? np.testing.assert_array_equal(ccd.data, fake_img2) # check hdu string parameter ccd = CCDData.read(filename, hdu='second', unit='adu') np.testing.assert_array_equal(ccd.data, fake_img2) # check hdu tuple parameter ccd = CCDData.read(filename, hdu=('second', 1), unit='adu') np.testing.assert_array_equal(ccd.data, fake_img2) def test_write_unit_to_hdu(): ccd_data = create_ccd_data() ccd_unit = ccd_data.unit hdulist = ccd_data.to_hdu() assert 'bunit' in hdulist[0].header assert hdulist[0].header['bunit'] == ccd_unit.to_string() def test_initialize_from_FITS_bad_keyword_raises_error(tmpdir): # There are two fits.open keywords that are not permitted in ccdproc: # do_not_scale_image_data and scale_back ccd_data = create_ccd_data() filename = tmpdir.join('test.fits').strpath ccd_data.write(filename) with pytest.raises(TypeError): CCDData.read(filename, unit=ccd_data.unit, do_not_scale_image_data=True) with pytest.raises(TypeError): CCDData.read(filename, unit=ccd_data.unit, scale_back=True) def test_ccddata_writer(tmpdir): ccd_data = create_ccd_data() filename = tmpdir.join('test.fits').strpath ccd_data.write(filename) ccd_disk = CCDData.read(filename, unit=ccd_data.unit) np.testing.assert_array_equal(ccd_data.data, ccd_disk.data) def test_ccddata_meta_is_case_sensitive(): ccd_data = create_ccd_data() key = 'SoMeKEY' ccd_data.meta[key] = 10 assert key.lower() not in ccd_data.meta assert key.upper() not in ccd_data.meta assert key in ccd_data.meta def test_ccddata_meta_is_not_fits_header(): ccd_data = create_ccd_data() ccd_data.meta = {'OBSERVER': 'Edwin Hubble'} assert not isinstance(ccd_data.meta, fits.Header) def test_fromMEF(tmpdir): ccd_data = create_ccd_data() hdu = fits.PrimaryHDU(ccd_data) hdu2 = fits.PrimaryHDU(2 * ccd_data.data) hdulist = fits.HDUList(hdu) hdulist.append(hdu2) filename = tmpdir.join('afile.fits').strpath hdulist.writeto(filename) # by default, we reading from the first extension cd = CCDData.read(filename, unit=u.electron) np.testing.assert_array_equal(cd.data, ccd_data.data) # but reading from the second should work too cd = CCDData.read(filename, hdu=1, unit=u.electron) np.testing.assert_array_equal(cd.data, 2 * ccd_data.data) def test_metafromheader(): hdr = fits.header.Header() hdr['observer'] = 'Edwin Hubble' hdr['exptime'] = '3600' d1 = CCDData(np.ones((5, 5)), meta=hdr, unit=u.electron) assert d1.meta['OBSERVER'] == 'Edwin Hubble' assert d1.header['OBSERVER'] == 'Edwin Hubble' def test_metafromdict(): dic = {'OBSERVER': 'Edwin Hubble', 'EXPTIME': 3600} d1 = CCDData(np.ones((5, 5)), meta=dic, unit=u.electron) assert d1.meta['OBSERVER'] == 'Edwin Hubble' def test_header2meta(): hdr = fits.header.Header() hdr['observer'] = 'Edwin Hubble' hdr['exptime'] = '3600' d1 = CCDData(np.ones((5, 5)), unit=u.electron) d1.header = hdr assert d1.meta['OBSERVER'] == 'Edwin Hubble' assert d1.header['OBSERVER'] == 'Edwin Hubble' def test_metafromstring_fail(): hdr = 'this is not a valid header' with pytest.raises(TypeError): CCDData(np.ones((5, 5)), meta=hdr, unit=u.adu) def test_setting_bad_uncertainty_raises_error(): ccd_data = create_ccd_data() with pytest.raises(TypeError): # Uncertainty is supposed to be an instance of NDUncertainty ccd_data.uncertainty = 10 def test_setting_uncertainty_with_array(): ccd_data = create_ccd_data() ccd_data.uncertainty = None fake_uncertainty = np.sqrt(np.abs(ccd_data.data)) ccd_data.uncertainty = fake_uncertainty.copy() np.testing.assert_array_equal(ccd_data.uncertainty.array, fake_uncertainty) def test_setting_uncertainty_wrong_shape_raises_error(): ccd_data = create_ccd_data() with pytest.raises(ValueError): ccd_data.uncertainty = np.zeros([3, 4]) def test_to_hdu(): ccd_data = create_ccd_data() ccd_data.meta = {'observer': 'Edwin Hubble'} fits_hdulist = ccd_data.to_hdu() assert isinstance(fits_hdulist, fits.HDUList) for k, v in ccd_data.meta.items(): assert fits_hdulist[0].header[k] == v np.testing.assert_array_equal(fits_hdulist[0].data, ccd_data.data) def test_copy(): ccd_data = create_ccd_data() ccd_copy = ccd_data.copy() np.testing.assert_array_equal(ccd_copy.data, ccd_data.data) assert ccd_copy.unit == ccd_data.unit assert ccd_copy.meta == ccd_data.meta @pytest.mark.parametrize('operation,affects_uncertainty', [ ("multiply", True), ("divide", True), ]) @pytest.mark.parametrize('operand', [ 2.0, 2 * u.dimensionless_unscaled, 2 * u.photon / u.adu, ]) @pytest.mark.parametrize('with_uncertainty', [ True, False]) def test_mult_div_overload(operand, with_uncertainty, operation, affects_uncertainty): ccd_data = create_ccd_data() if with_uncertainty: ccd_data.uncertainty = StdDevUncertainty(np.ones_like(ccd_data)) method = getattr(ccd_data, operation) np_method = getattr(np, operation) result = method(operand) assert result is not ccd_data assert isinstance(result, CCDData) assert (result.uncertainty is None or isinstance(result.uncertainty, StdDevUncertainty)) try: op_value = operand.value except AttributeError: op_value = operand np.testing.assert_array_equal(result.data, np_method(ccd_data.data, op_value)) if with_uncertainty: if affects_uncertainty: np.testing.assert_array_equal(result.uncertainty.array, np_method(ccd_data.uncertainty.array, op_value)) else: np.testing.assert_array_equal(result.uncertainty.array, ccd_data.uncertainty.array) else: assert result.uncertainty is None if isinstance(operand, u.Quantity): # Need the "1 *" below to force arguments to be Quantity to work around # astropy/astropy#2377 expected_unit = np_method(1 * ccd_data.unit, 1 * operand.unit).unit assert result.unit == expected_unit else: assert result.unit == ccd_data.unit @pytest.mark.parametrize('operation,affects_uncertainty', [ ("add", False), ("subtract", False), ]) @pytest.mark.parametrize('operand,expect_failure', [ (2.0, u.UnitsError), # fail--units don't match image (2 * u.dimensionless_unscaled, u.UnitsError), # same (2 * u.adu, False), ]) @pytest.mark.parametrize('with_uncertainty', [ True, False]) def test_add_sub_overload(operand, expect_failure, with_uncertainty, operation, affects_uncertainty): ccd_data = create_ccd_data() if with_uncertainty: ccd_data.uncertainty = StdDevUncertainty(np.ones_like(ccd_data)) method = getattr(ccd_data, operation) np_method = getattr(np, operation) if expect_failure: with pytest.raises(expect_failure): result = method(operand) return else: result = method(operand) assert result is not ccd_data assert isinstance(result, CCDData) assert (result.uncertainty is None or isinstance(result.uncertainty, StdDevUncertainty)) try: op_value = operand.value except AttributeError: op_value = operand np.testing.assert_array_equal(result.data, np_method(ccd_data.data, op_value)) if with_uncertainty: if affects_uncertainty: np.testing.assert_array_equal(result.uncertainty.array, np_method(ccd_data.uncertainty.array, op_value)) else: np.testing.assert_array_equal(result.uncertainty.array, ccd_data.uncertainty.array) else: assert result.uncertainty is None if isinstance(operand, u.Quantity): assert (result.unit == ccd_data.unit and result.unit == operand.unit) else: assert result.unit == ccd_data.unit def test_arithmetic_overload_fails(): ccd_data = create_ccd_data() with pytest.raises(TypeError): ccd_data.multiply("five") with pytest.raises(TypeError): ccd_data.divide("five") with pytest.raises(TypeError): ccd_data.add("five") with pytest.raises(TypeError): ccd_data.subtract("five") def test_arithmetic_no_wcs_compare(): ccd = CCDData(np.ones((10, 10)), unit='') assert ccd.add(ccd, compare_wcs=None).wcs is None assert ccd.subtract(ccd, compare_wcs=None).wcs is None assert ccd.multiply(ccd, compare_wcs=None).wcs is None assert ccd.divide(ccd, compare_wcs=None).wcs is None def test_arithmetic_with_wcs_compare(): def return_true(_, __): return True wcs1, wcs2 = nd_testing.create_two_equal_wcs(naxis=2) ccd1 = CCDData(np.ones((10, 10)), unit='', wcs=wcs1) ccd2 = CCDData(np.ones((10, 10)), unit='', wcs=wcs2) nd_testing.assert_wcs_seem_equal( ccd1.add(ccd2, compare_wcs=return_true).wcs, wcs1) nd_testing.assert_wcs_seem_equal( ccd1.subtract(ccd2, compare_wcs=return_true).wcs, wcs1) nd_testing.assert_wcs_seem_equal( ccd1.multiply(ccd2, compare_wcs=return_true).wcs, wcs1) nd_testing.assert_wcs_seem_equal( ccd1.divide(ccd2, compare_wcs=return_true).wcs, wcs1) def test_arithmetic_with_wcs_compare_fail(): def return_false(_, __): return False ccd1 = CCDData(np.ones((10, 10)), unit='', wcs=WCS()) ccd2 = CCDData(np.ones((10, 10)), unit='', wcs=WCS()) with pytest.raises(ValueError): ccd1.add(ccd2, compare_wcs=return_false) with pytest.raises(ValueError): ccd1.subtract(ccd2, compare_wcs=return_false) with pytest.raises(ValueError): ccd1.multiply(ccd2, compare_wcs=return_false) with pytest.raises(ValueError): ccd1.divide(ccd2, compare_wcs=return_false) def test_arithmetic_overload_ccddata_operand(): ccd_data = create_ccd_data() ccd_data.uncertainty = StdDevUncertainty(np.ones_like(ccd_data)) operand = ccd_data.copy() result = ccd_data.add(operand) assert len(result.meta) == 0 np.testing.assert_array_equal(result.data, 2 * ccd_data.data) np.testing.assert_array_almost_equal_nulp( result.uncertainty.array, np.sqrt(2) * ccd_data.uncertainty.array ) result = ccd_data.subtract(operand) assert len(result.meta) == 0 np.testing.assert_array_equal(result.data, 0 * ccd_data.data) np.testing.assert_array_almost_equal_nulp( result.uncertainty.array, np.sqrt(2) * ccd_data.uncertainty.array ) result = ccd_data.multiply(operand) assert len(result.meta) == 0 np.testing.assert_array_equal(result.data, ccd_data.data ** 2) expected_uncertainty = (np.sqrt(2) * np.abs(ccd_data.data) * ccd_data.uncertainty.array) np.testing.assert_allclose(result.uncertainty.array, expected_uncertainty) result = ccd_data.divide(operand) assert len(result.meta) == 0 np.testing.assert_array_equal(result.data, np.ones_like(ccd_data.data)) expected_uncertainty = (np.sqrt(2) / np.abs(ccd_data.data) * ccd_data.uncertainty.array) np.testing.assert_allclose(result.uncertainty.array, expected_uncertainty) def test_arithmetic_overload_differing_units(): a = np.array([1, 2, 3]) * u.m b = np.array([1, 2, 3]) * u.cm ccddata = CCDData(a) # TODO: Could also be parametrized. res = ccddata.add(b) np.testing.assert_array_almost_equal(res.data, np.add(a, b).value) assert res.unit == np.add(a, b).unit res = ccddata.subtract(b) np.testing.assert_array_almost_equal(res.data, np.subtract(a, b).value) assert res.unit == np.subtract(a, b).unit res = ccddata.multiply(b) np.testing.assert_array_almost_equal(res.data, np.multiply(a, b).value) assert res.unit == np.multiply(a, b).unit res = ccddata.divide(b) np.testing.assert_array_almost_equal(res.data, np.divide(a, b).value) assert res.unit == np.divide(a, b).unit def test_arithmetic_add_with_array(): ccd = CCDData(np.ones((3, 3)), unit='') res = ccd.add(np.arange(3)) np.testing.assert_array_equal(res.data, [[1, 2, 3]] * 3) ccd = CCDData(np.ones((3, 3)), unit='adu') with pytest.raises(ValueError): ccd.add(np.arange(3)) def test_arithmetic_subtract_with_array(): ccd = CCDData(np.ones((3, 3)), unit='') res = ccd.subtract(np.arange(3)) np.testing.assert_array_equal(res.data, [[1, 0, -1]] * 3) ccd = CCDData(np.ones((3, 3)), unit='adu') with pytest.raises(ValueError): ccd.subtract(np.arange(3)) def test_arithmetic_multiply_with_array(): ccd = CCDData(np.ones((3, 3)) * 3, unit=u.m) res = ccd.multiply(np.ones((3, 3)) * 2) np.testing.assert_array_equal(res.data, [[6, 6, 6]] * 3) assert res.unit == ccd.unit def test_arithmetic_divide_with_array(): ccd = CCDData(np.ones((3, 3)), unit=u.m) res = ccd.divide(np.ones((3, 3)) * 2) np.testing.assert_array_equal(res.data, [[0.5, 0.5, 0.5]] * 3) assert res.unit == ccd.unit def test_history_preserved_if_metadata_is_fits_header(tmpdir): fake_img = np.zeros([2, 2]) hdu = fits.PrimaryHDU(fake_img) hdu.header['history'] = 'one' hdu.header['history'] = 'two' hdu.header['history'] = 'three' assert len(hdu.header['history']) == 3 tmp_file = tmpdir.join('temp.fits').strpath hdu.writeto(tmp_file) ccd_read = CCDData.read(tmp_file, unit="adu") assert ccd_read.header['history'] == hdu.header['history'] def test_infol_logged_if_unit_in_fits_header(tmpdir): ccd_data = create_ccd_data() tmpfile = tmpdir.join('temp.fits') ccd_data.write(tmpfile.strpath) log.setLevel('INFO') explicit_unit_name = "photon" with log.log_to_list() as log_list: _ = CCDData.read(tmpfile.strpath, unit=explicit_unit_name) assert explicit_unit_name in log_list[0].message def test_wcs_attribute(tmpdir): """ Check that WCS attribute gets added to header, and that if a CCDData object is created from a FITS file with a header, and the WCS attribute is modified, then the CCDData object is turned back into an hdu, the WCS object overwrites the old WCS information in the header. """ ccd_data = create_ccd_data() tmpfile = tmpdir.join('temp.fits') # This wcs example is taken from the astropy.wcs docs. wcs = WCS(naxis=2) wcs.wcs.crpix = np.array(ccd_data.shape) / 2 wcs.wcs.cdelt = np.array([-0.066667, 0.066667]) wcs.wcs.crval = [0, -90] wcs.wcs.ctype = ["RA---AIR", "DEC--AIR"] wcs.wcs.set_pv([(2, 1, 45.0)]) ccd_data.header = ccd_data.to_hdu()[0].header ccd_data.header.extend(wcs.to_header(), useblanks=False) ccd_data.write(tmpfile.strpath) # Get the header length after it has been extended by the WCS keywords original_header_length = len(ccd_data.header) ccd_new = CCDData.read(tmpfile.strpath) # WCS attribute should be set for ccd_new assert ccd_new.wcs is not None # WCS attribute should be equal to wcs above. assert ccd_new.wcs.wcs == wcs.wcs # Converting CCDData object with wcs to an hdu shouldn't # create duplicate wcs-related entries in the header. ccd_new_hdu = ccd_new.to_hdu()[0] assert len(ccd_new_hdu.header) == original_header_length # Making a CCDData with WCS (but not WCS in the header) should lead to # WCS information in the header when it is converted to an HDU. ccd_wcs_not_in_header = CCDData(ccd_data.data, wcs=wcs, unit="adu") hdu = ccd_wcs_not_in_header.to_hdu()[0] wcs_header = wcs.to_header() for k in wcs_header.keys(): # Skip these keywords if they are in the WCS header because they are # not WCS-specific. if k in ['', 'COMMENT', 'HISTORY']: continue # No keyword from the WCS should be in the header. assert k not in ccd_wcs_not_in_header.header # Every keyword in the WCS should be in the header of the HDU assert hdu.header[k] == wcs_header[k] # Now check that if WCS of a CCDData is modified, then the CCDData is # converted to an HDU, the WCS keywords in the header are overwritten # with the appropriate keywords from the header. # # ccd_new has a WCS and WCS keywords in the header, so try modifying # the WCS. ccd_new.wcs.wcs.cdelt *= 2 ccd_new_hdu_mod_wcs = ccd_new.to_hdu()[0] assert ccd_new_hdu_mod_wcs.header['CDELT1'] == ccd_new.wcs.wcs.cdelt[0] assert ccd_new_hdu_mod_wcs.header['CDELT2'] == ccd_new.wcs.wcs.cdelt[1] def test_wcs_keywords_removed_from_header(): """ Test, for the file included with the nddata tests, that WCS keywords are properly removed from header. """ from astropy.nddata.ccddata import _KEEP_THESE_KEYWORDS_IN_HEADER keepers = set(_KEEP_THESE_KEYWORDS_IN_HEADER) data_file = get_pkg_data_filename('data/sip-wcs.fits') ccd = CCDData.read(data_file) with pytest.warns(AstropyWarning, match=r'Some non-standard WCS keywords were excluded'): wcs_header = ccd.wcs.to_header() assert not (set(wcs_header) & set(ccd.meta) - keepers) # Make sure that exceptions are not raised when trying to remove missing # keywords. o4sp040b0_raw.fits of io.fits is missing keyword 'PC1_1'. data_file1 = get_pkg_data_filename('../../io/fits/tests/data/o4sp040b0_raw.fits') with pytest.warns(FITSFixedWarning, match=r"'unitfix' made the change"): ccd = CCDData.read(data_file1, unit='count') def test_wcs_SIP_coefficient_keywords_removed(): # If SIP polynomials are present, check that no more polynomial # coefficients remain in the header. See #8598 # The SIP paper is ambiguous as to whether keywords like # A_0_0 can appear in the header for a 2nd order or higher # polynomial. The paper clearly says that the corrections # are only for quadratic or higher order, so A_0_0 and the like # should be zero if they are present, but they apparently can be # there (or at least astrometry.net produces them). # astropy WCS does not write those coefficients, so they were # not being removed from the header even though they are WCS-related. data_file = get_pkg_data_filename('data/sip-wcs.fits') test_keys = ['A_0_0', 'B_0_1'] # Make sure the keywords added to this file for testing are there with fits.open(data_file) as hdu: for key in test_keys: assert key in hdu[0].header ccd = CCDData.read(data_file) # Now the test...the two keywords above should have been removed. for key in test_keys: assert key not in ccd.header @pytest.mark.filterwarnings('ignore') def test_wcs_keyword_removal_for_wcs_test_files(): """ Test, for the WCS test files, that keyword removal works as expected. Those cover a much broader range of WCS types than test_wcs_keywords_removed_from_header. Includes regression test for #8597 """ from astropy.nddata.ccddata import _generate_wcs_and_update_header from astropy.nddata.ccddata import (_KEEP_THESE_KEYWORDS_IN_HEADER, _CDs, _PCs) keepers = set(_KEEP_THESE_KEYWORDS_IN_HEADER) wcs_headers = get_pkg_data_filenames('../../wcs/tests/data', pattern='*.hdr') for hdr in wcs_headers: # Skip the files that are expected to be bad... if ('invalid' in hdr or 'nonstandard' in hdr or 'segfault' in hdr or 'chandra-pixlist-wcs' in hdr): continue header_string = get_pkg_data_contents(hdr) header = fits.Header.fromstring(header_string) wcs = WCS(header_string) header_from_wcs = wcs.to_header(relax=True) new_header, new_wcs = _generate_wcs_and_update_header(header) new_wcs_header = new_wcs.to_header(relax=True) # Make sure all of the WCS-related keywords generated by astropy # have been removed. assert not (set(new_header) & set(new_wcs_header) - keepers) # Check that new_header contains no remaining WCS information. # Specifically, check that # 1. The combination of new_header and new_wcs does not contain # both PCi_j and CDi_j keywords. See #8597. # Check for 1 final_header = new_header + new_wcs_header final_header_set = set(final_header) if _PCs & final_header_set: assert not (_CDs & final_header_set) elif _CDs & final_header_set: assert not (_PCs & final_header_set) # Check that the new wcs is the same as the old. for k, v in new_wcs_header.items(): if isinstance(v, str): assert header_from_wcs[k] == v else: np.testing.assert_almost_equal(header_from_wcs[k], v) def test_read_wcs_not_creatable(tmpdir): # The following Header can't be converted to a WCS object. See also #6499. hdr_txt_example_WCS = textwrap.dedent(''' SIMPLE = T / Fits standard BITPIX = 16 / Bits per pixel NAXIS = 2 / Number of axes NAXIS1 = 1104 / Axis length NAXIS2 = 4241 / Axis length CRVAL1 = 164.98110962 / Physical value of the reference pixel X CRVAL2 = 44.34089279 / Physical value of the reference pixel Y CRPIX1 = -34.0 / Reference pixel in X (pixel) CRPIX2 = 2041.0 / Reference pixel in Y (pixel) CDELT1 = 0.10380000 / X Scale projected on detector (#/pix) CDELT2 = 0.10380000 / Y Scale projected on detector (#/pix) CTYPE1 = 'RA---TAN' / Pixel coordinate system CTYPE2 = 'WAVELENGTH' / Pixel coordinate system CUNIT1 = 'degree ' / Units used in both CRVAL1 and CDELT1 CUNIT2 = 'nm ' / Units used in both CRVAL2 and CDELT2 CD1_1 = 0.20760000 / Pixel Coordinate translation matrix CD1_2 = 0.00000000 / Pixel Coordinate translation matrix CD2_1 = 0.00000000 / Pixel Coordinate translation matrix CD2_2 = 0.10380000 / Pixel Coordinate translation matrix C2YPE1 = 'RA---TAN' / Pixel coordinate system C2YPE2 = 'DEC--TAN' / Pixel coordinate system C2NIT1 = 'degree ' / Units used in both C2VAL1 and C2ELT1 C2NIT2 = 'degree ' / Units used in both C2VAL2 and C2ELT2 RADECSYS= 'FK5 ' / The equatorial coordinate system ''') hdr = fits.Header.fromstring(hdr_txt_example_WCS, sep='\n') hdul = fits.HDUList([fits.PrimaryHDU(np.ones((4241, 1104)), header=hdr)]) filename = tmpdir.join('afile.fits').strpath hdul.writeto(filename) # The hdr cannot be converted to a WCS object because of an # InconsistentAxisTypesError but it should still open the file ccd = CCDData.read(filename, unit='adu') assert ccd.wcs is None def test_header(): ccd_data = create_ccd_data() a = {'Observer': 'Hubble'} ccd = CCDData(ccd_data, header=a) assert ccd.meta == a def test_wcs_arithmetic(): ccd_data = create_ccd_data() wcs = WCS(naxis=2) ccd_data.wcs = wcs result = ccd_data.multiply(1.0) nd_testing.assert_wcs_seem_equal(result.wcs, wcs) @pytest.mark.parametrize('operation', ['multiply', 'divide', 'add', 'subtract']) def test_wcs_arithmetic_ccd(operation): ccd_data = create_ccd_data() ccd_data2 = ccd_data.copy() ccd_data.wcs = WCS(naxis=2) method = getattr(ccd_data, operation) result = method(ccd_data2) nd_testing.assert_wcs_seem_equal(result.wcs, ccd_data.wcs) assert ccd_data2.wcs is None def test_wcs_sip_handling(): """ Check whether the ctypes RA---TAN-SIP and DEC--TAN-SIP survive a roundtrip unchanged. """ data_file = get_pkg_data_filename('data/sip-wcs.fits') def check_wcs_ctypes(header): expected_wcs_ctypes = { 'CTYPE1': 'RA---TAN-SIP', 'CTYPE2': 'DEC--TAN-SIP' } return [header[k] == v for k, v in expected_wcs_ctypes.items()] ccd_original = CCDData.read(data_file) # After initialization the keywords should be in the WCS, not in the # meta. with fits.open(data_file) as raw: good_ctype = check_wcs_ctypes(raw[0].header) assert all(good_ctype) ccd_new = ccd_original.to_hdu() good_ctype = check_wcs_ctypes(ccd_new[0].header) assert all(good_ctype) # Try converting to header with wcs_relax=False and # the header should contain the CTYPE keywords without # the -SIP ccd_no_relax = ccd_original.to_hdu(wcs_relax=False) good_ctype = check_wcs_ctypes(ccd_no_relax[0].header) assert not any(good_ctype) assert ccd_no_relax[0].header['CTYPE1'] == 'RA---TAN' assert ccd_no_relax[0].header['CTYPE2'] == 'DEC--TAN' @pytest.mark.parametrize('operation', ['multiply', 'divide', 'add', 'subtract']) def test_mask_arithmetic_ccd(operation): ccd_data = create_ccd_data() ccd_data2 = ccd_data.copy() ccd_data.mask = (ccd_data.data > 0) method = getattr(ccd_data, operation) result = method(ccd_data2) np.testing.assert_equal(result.mask, ccd_data.mask) def test_write_read_multiextensionfits_mask_default(tmpdir): # Test that if a mask is present the mask is saved and loaded by default. ccd_data = create_ccd_data() ccd_data.mask = ccd_data.data > 10 filename = tmpdir.join('afile.fits').strpath ccd_data.write(filename) ccd_after = CCDData.read(filename) assert ccd_after.mask is not None np.testing.assert_array_equal(ccd_data.mask, ccd_after.mask) @pytest.mark.parametrize( 'uncertainty_type', [StdDevUncertainty, VarianceUncertainty, InverseVariance]) def test_write_read_multiextensionfits_uncertainty_default( tmpdir, uncertainty_type): # Test that if a uncertainty is present it is saved and loaded by default. ccd_data = create_ccd_data() ccd_data.uncertainty = uncertainty_type(ccd_data.data * 10) filename = tmpdir.join('afile.fits').strpath ccd_data.write(filename) ccd_after = CCDData.read(filename) assert ccd_after.uncertainty is not None assert type(ccd_after.uncertainty) is uncertainty_type np.testing.assert_array_equal(ccd_data.uncertainty.array, ccd_after.uncertainty.array) @pytest.mark.parametrize( 'uncertainty_type', [StdDevUncertainty, VarianceUncertainty, InverseVariance]) def test_write_read_multiextensionfits_uncertainty_different_uncertainty_key( tmpdir, uncertainty_type): # Test that if a uncertainty is present it is saved and loaded by default. ccd_data = create_ccd_data() ccd_data.uncertainty = uncertainty_type(ccd_data.data * 10) filename = tmpdir.join('afile.fits').strpath ccd_data.write(filename, key_uncertainty_type='Blah') ccd_after = CCDData.read(filename, key_uncertainty_type='Blah') assert ccd_after.uncertainty is not None assert type(ccd_after.uncertainty) is uncertainty_type np.testing.assert_array_equal(ccd_data.uncertainty.array, ccd_after.uncertainty.array) def test_write_read_multiextensionfits_not(tmpdir): # Test that writing mask and uncertainty can be disabled ccd_data = create_ccd_data() ccd_data.mask = ccd_data.data > 10 ccd_data.uncertainty = StdDevUncertainty(ccd_data.data * 10) filename = tmpdir.join('afile.fits').strpath ccd_data.write(filename, hdu_mask=None, hdu_uncertainty=None) ccd_after = CCDData.read(filename) assert ccd_after.uncertainty is None assert ccd_after.mask is None def test_write_read_multiextensionfits_custom_ext_names(tmpdir): # Test writing mask, uncertainty in another extension than default ccd_data = create_ccd_data() ccd_data.mask = ccd_data.data > 10 ccd_data.uncertainty = StdDevUncertainty(ccd_data.data * 10) filename = tmpdir.join('afile.fits').strpath ccd_data.write(filename, hdu_mask='Fun', hdu_uncertainty='NoFun') # Try reading with defaults extension names ccd_after = CCDData.read(filename) assert ccd_after.uncertainty is None assert ccd_after.mask is None # Try reading with custom extension names ccd_after = CCDData.read(filename, hdu_mask='Fun', hdu_uncertainty='NoFun') assert ccd_after.uncertainty is not None assert ccd_after.mask is not None np.testing.assert_array_equal(ccd_data.mask, ccd_after.mask) np.testing.assert_array_equal(ccd_data.uncertainty.array, ccd_after.uncertainty.array) def test_read_old_style_multiextensionfits(tmpdir): # Regression test for https://github.com/astropy/ccdproc/issues/664 # # Prior to astropy 3.1 there was no uncertainty type saved # in the multiextension fits files generated by CCDData # because the uncertainty had to be StandardDevUncertainty. # # Current version should be able to read those in. # size = 4 # Value of the variables below are not important to the test. data = np.zeros([size, size]) mask = data > 0.9 uncert = np.sqrt(data) ccd = CCDData(data=data, mask=mask, uncertainty=uncert, unit='adu') # We'll create the file manually to ensure we have the # right extension names and no uncertainty type. hdulist = ccd.to_hdu() del hdulist[2].header['UTYPE'] file_name = tmpdir.join('old_ccddata_mef.fits').strpath hdulist.writeto(file_name) ccd = CCDData.read(file_name) assert isinstance(ccd.uncertainty, StdDevUncertainty) def test_wcs(): ccd_data = create_ccd_data() wcs = WCS(naxis=2) ccd_data.wcs = wcs assert ccd_data.wcs is wcs def test_recognized_fits_formats_for_read_write(tmpdir): # These are the extensions that are supposed to be supported. ccd_data = create_ccd_data() supported_extensions = ['fit', 'fits', 'fts'] for ext in supported_extensions: path = tmpdir.join(f"test.{ext}") ccd_data.write(path.strpath) from_disk = CCDData.read(path.strpath) assert (ccd_data.data == from_disk.data).all() def test_stddevuncertainty_compat_descriptor_no_parent(): with pytest.raises(MissingDataAssociationException): StdDevUncertainty(np.ones((10, 10))).parent_nddata def test_stddevuncertainty_compat_descriptor_no_weakref(): # TODO: Remove this test if astropy 1.0 isn't supported anymore # This test might create a Memoryleak on purpose, so the last lines after # the assert are IMPORTANT cleanup. ccd = CCDData(np.ones((10, 10)), unit='') uncert = StdDevUncertainty(np.ones((10, 10))) uncert._parent_nddata = ccd assert uncert.parent_nddata is ccd uncert._parent_nddata = None # https://github.com/astropy/astropy/issues/7595 def test_read_returns_image(tmpdir): # Test if CCData.read returns a image when reading a fits file containing # a table and image, in that order. tbl = Table(np.ones(10).reshape(5, 2)) img = np.ones((5, 5)) hdul = fits.HDUList(hdus=[fits.PrimaryHDU(), fits.TableHDU(tbl.as_array()), fits.ImageHDU(img)]) filename = tmpdir.join('table_image.fits').strpath hdul.writeto(filename) ccd = CCDData.read(filename, unit='adu') # Expecting to get (5, 5), the size of the image assert ccd.data.shape == (5, 5) # https://github.com/astropy/astropy/issues/9664 def test_sliced_ccdata_to_hdu(): wcs = WCS(naxis=2) wcs.wcs.crpix = 10, 10 ccd = CCDData(np.ones((10, 10)), wcs=wcs, unit='pixel') trimmed = ccd[2:-2, 2:-2] hdul = trimmed.to_hdu() assert isinstance(hdul, fits.HDUList) assert hdul[0].header['CRPIX1'] == 8 assert hdul[0].header['CRPIX2'] == 8