filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_10549
#!/usr/bin/env python # Copyright (c) 2012-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Extract _("...") strings for translation and convert to Qt stringdefs so that they can be picked up by Qt linguist. ''' from __future__ import division,print_function,unicode_literals from subprocess import Popen, PIPE import operator import os import sys OUT_CPP="qt/zalgocoinstrings.cpp" EMPTY=['""'] def parse_po(text): """ Parse 'po' format produced by xgettext. Return a list of (msgid,msgstr) tuples. """ messages = [] msgid = [] msgstr = [] in_msgid = False in_msgstr = False for line in text.split('\n'): line = line.rstrip('\r') if line.startswith('msgid '): if in_msgstr: messages.append((msgid, msgstr)) in_msgstr = False # message start in_msgid = True msgid = [line[6:]] elif line.startswith('msgstr '): in_msgid = False in_msgstr = True msgstr = [line[7:]] elif line.startswith('"'): if in_msgid: msgid.append(line) if in_msgstr: msgstr.append(line) if in_msgstr: messages.append((msgid, msgstr)) return messages files = sys.argv[1:] # xgettext -n --keyword=_ $FILES XGETTEXT=os.getenv('XGETTEXT', 'xgettext') if not XGETTEXT: print('Cannot extract strings: xgettext utility is not installed or not configured.',file=sys.stderr) print('Please install package "gettext" and re-run \'./configure\'.',file=sys.stderr) exit(1) child = Popen([XGETTEXT,'--output=-','-n','--keyword=_'] + files, stdout=PIPE) (out, err) = child.communicate() messages = parse_po(out.decode('utf-8')) f = open(OUT_CPP, 'w') f.write(""" #include <QtGlobal> // Automatically generated by extract_strings_qt.py #ifdef __GNUC__ #define UNUSED __attribute__((unused)) #else #define UNUSED #endif """) f.write('static const char UNUSED *zalgocoin_strings[] = {\n') f.write('QT_TRANSLATE_NOOP("zalgocoin-core", "%s"),\n' % (os.getenv('PACKAGE_NAME'),)) f.write('QT_TRANSLATE_NOOP("zalgocoin-core", "%s"),\n' % (os.getenv('COPYRIGHT_HOLDERS'),)) if os.getenv('COPYRIGHT_HOLDERS_SUBSTITUTION') != os.getenv('PACKAGE_NAME'): f.write('QT_TRANSLATE_NOOP("zalgocoin-core", "%s"),\n' % (os.getenv('COPYRIGHT_HOLDERS_SUBSTITUTION'),)) messages.sort(key=operator.itemgetter(0)) for (msgid, msgstr) in messages: if msgid != EMPTY: f.write('QT_TRANSLATE_NOOP("zalgocoin-core", %s),\n' % ('\n'.join(msgid))) f.write('};\n') f.close()
the-stack_0_10550
""" Syntax difference of two functions - using diff utility and filtering the result. """ from subprocess import check_output, CalledProcessError from tempfile import mkdtemp import os def syntax_diff(first_file, second_file, name, kind, first_line, second_line): """Get diff of a C function or type between first_file and second_file""" tmpdir = mkdtemp() command = ["diff", "-C", "1", os.path.join(tmpdir, "1"), os.path.join(tmpdir, "2")] if kind == "function": terminator_list = ["}", ");"] elif kind == "type": terminator_list = ["};"] # Use the provided arguments "first_line" and "second_line" that contain # the lines on which the function starts in each file to extract both # functions into temporary files for filename in [first_file, second_file]: tmp_file = "1" if filename == first_file else "2" with open(filename, "r", encoding='utf-8') as input_file, \ open(os.path.join(tmpdir, tmp_file), "w", encoding='utf-8') as output_file: lines = input_file.readlines() start = first_line if filename == first_file else second_line # The end of the function is detected as a line that contains # nothing but an ending curly bracket line_index = start - 1 line = lines[line_index] while line.rstrip() not in terminator_list: line_index += 1 if line_index == len(lines): return "Error: cannot get diff\n" output_file.write(line) line = lines[line_index] output_file.write(line) # check_output fails when the two files are different due to the error code # (1), which in fact signalizes success; the exception has to be caught and # the error code evaluated manually try: diff = check_output(command).decode('utf-8') except CalledProcessError as e: if e.returncode == 1: diff = e.output.decode('utf-8') else: raise if diff.isspace() or diff == "": # Empty diff return diff # Split off filename names and fix line numbers diff_lines = diff.split('\n')[2:] diff_lines_new = [] for line in diff_lines: def fix_line(x): offset = first_line if polarity == "*" else second_line return str(int(x) + offset - 1) # Add function header if set(list(line)) == set(["*"]): with open(os.path.join(tmpdir, "1"), "r") as extract: line += " " + extract.readline().strip() # Check whether the line is a line number line number_line_set = set([" ", "*", "-", ","] + list(map(str, list(range(0, 10))))) if ((not set(list(line)).issubset(number_line_set)) or (not any(char.isdigit() for char in line)) or line.isspace() or line == ""): diff_lines_new += [line] continue polarity = "*" if line.count("*") > 1 else "-" line = line.replace("*", "").replace("-", "").replace(" ", "") line = ",".join(map(fix_line, line.split(","))) line = polarity * 3 + " " + line + " " + polarity * 3 diff_lines_new += [line] diff = "\n".join(diff_lines_new) return diff
the-stack_0_10551
import copy import datetime import errno import hashlib import os import time from collections import defaultdict, deque, OrderedDict import torch import torch.distributed as dist class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ t = reduce_across_processes([self.count, self.total]) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value ) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"] ) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time) ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print("{} Total time: {}".format(header, total_time_str)) class ExponentialMovingAverage(torch.optim.swa_utils.AveragedModel): """Maintains moving averages of model parameters using an exponential decay. ``ema_avg = decay * avg_model_param + (1 - decay) * model_param`` `torch.optim.swa_utils.AveragedModel <https://pytorch.org/docs/stable/optim.html#custom-averaging-strategies>`_ is used to compute the EMA. """ def __init__(self, model, decay, device="cpu"): def ema_avg(avg_model_param, model_param, num_averaged): return decay * avg_model_param + (1 - decay) * model_param super().__init__(model, device, ema_avg) def update_parameters(self, model): for p_swa, p_model in zip(self.module.state_dict().values(), model.state_dict().values()): device = p_swa.device p_model_ = p_model.detach().to(device) if self.n_averaged == 0: p_swa.detach().copy_(p_model_) else: p_swa.detach().copy_(self.avg_fn(p_swa.detach(), p_model_, self.n_averaged.to(device))) self.n_averaged += 1 def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.inference_mode(): maxk = max(topk) batch_size = target.size(0) if target.ndim == 2: target = target.max(dim=1)[1] _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target[None]) res = [] for k in topk: correct_k = correct[:k].flatten().sum(dtype=torch.float32) res.append(correct_k * (100.0 / batch_size)) return res def mkdir(path): try: os.makedirs(path) except OSError as e: if e.errno != errno.EEXIST: raise def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): return get_rank() == 0 def save_on_master(*args, **kwargs): if is_main_process(): torch.save(*args, **kwargs) def init_distributed_mode(args): if "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ["LOCAL_RANK"]) elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() elif hasattr(args, "rank"): pass else: print("Not using distributed mode") args.distributed = False return args.distributed = True torch.cuda.set_device(args.gpu) args.dist_backend = "nccl" print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True) torch.distributed.init_process_group( backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank ) setup_for_distributed(args.rank == 0) def average_checkpoints(inputs): """Loads checkpoints from inputs and returns a model with averaged weights. Original implementation taken from: https://github.com/pytorch/fairseq/blob/a48f235636557b8d3bc4922a6fa90f3a0fa57955/scripts/average_checkpoints.py#L16 Args: inputs (List[str]): An iterable of string paths of checkpoints to load from. Returns: A dict of string keys mapping to various values. The 'model' key from the returned dict should correspond to an OrderedDict mapping string parameter names to torch Tensors. """ params_dict = OrderedDict() params_keys = None new_state = None num_models = len(inputs) for fpath in inputs: with open(fpath, "rb") as f: state = torch.load( f, map_location=(lambda s, _: torch.serialization.default_restore_location(s, "cpu")), ) # Copies over the settings from the first checkpoint if new_state is None: new_state = state model_params = state["model"] model_params_keys = list(model_params.keys()) if params_keys is None: params_keys = model_params_keys elif params_keys != model_params_keys: raise KeyError( "For checkpoint {}, expected list of params: {}, " "but found: {}".format(f, params_keys, model_params_keys) ) for k in params_keys: p = model_params[k] if isinstance(p, torch.HalfTensor): p = p.float() if k not in params_dict: params_dict[k] = p.clone() # NOTE: clone() is needed in case of p is a shared parameter else: params_dict[k] += p averaged_params = OrderedDict() for k, v in params_dict.items(): averaged_params[k] = v if averaged_params[k].is_floating_point(): averaged_params[k].div_(num_models) else: averaged_params[k] //= num_models new_state["model"] = averaged_params return new_state def store_model_weights(model, checkpoint_path, checkpoint_key="model", strict=True): """ This method can be used to prepare weights files for new models. It receives as input a model architecture and a checkpoint from the training script and produces a file with the weights ready for release. Examples: from torchvision import models as M # Classification model = M.mobilenet_v3_large(pretrained=False) print(store_model_weights(model, './class.pth')) # Quantized Classification model = M.quantization.mobilenet_v3_large(pretrained=False, quantize=False) model.fuse_model() model.qconfig = torch.quantization.get_default_qat_qconfig('qnnpack') _ = torch.quantization.prepare_qat(model, inplace=True) print(store_model_weights(model, './qat.pth')) # Object Detection model = M.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=False, pretrained_backbone=False) print(store_model_weights(model, './obj.pth')) # Segmentation model = M.segmentation.deeplabv3_mobilenet_v3_large(pretrained=False, pretrained_backbone=False, aux_loss=True) print(store_model_weights(model, './segm.pth', strict=False)) Args: model (pytorch.nn.Module): The model on which the weights will be loaded for validation purposes. checkpoint_path (str): The path of the checkpoint we will load. checkpoint_key (str, optional): The key of the checkpoint where the model weights are stored. Default: "model". strict (bool): whether to strictly enforce that the keys in :attr:`state_dict` match the keys returned by this module's :meth:`~torch.nn.Module.state_dict` function. Default: ``True`` Returns: output_path (str): The location where the weights are saved. """ # Store the new model next to the checkpoint_path checkpoint_path = os.path.abspath(checkpoint_path) output_dir = os.path.dirname(checkpoint_path) # Deep copy to avoid side-effects on the model object. model = copy.deepcopy(model) checkpoint = torch.load(checkpoint_path, map_location="cpu") # Load the weights to the model to validate that everything works # and remove unnecessary weights (such as auxiliaries, etc) if checkpoint_key == "model_ema": del checkpoint[checkpoint_key]["n_averaged"] torch.nn.modules.utils.consume_prefix_in_state_dict_if_present(checkpoint[checkpoint_key], "module.") model.load_state_dict(checkpoint[checkpoint_key], strict=strict) tmp_path = os.path.join(output_dir, str(model.__hash__())) torch.save(model.state_dict(), tmp_path) sha256_hash = hashlib.sha256() with open(tmp_path, "rb") as f: # Read and update hash string value in blocks of 4K for byte_block in iter(lambda: f.read(4096), b""): sha256_hash.update(byte_block) hh = sha256_hash.hexdigest() output_path = os.path.join(output_dir, "weights-" + str(hh[:8]) + ".pth") os.replace(tmp_path, output_path) return output_path def reduce_across_processes(val): if not is_dist_avail_and_initialized(): return val t = torch.tensor(val, device="cuda") dist.barrier() dist.all_reduce(t) return t
the-stack_0_10554
"""Plotting and visualization tools.""" # stdlib import logging from datetime import datetime from pathlib import Path # external import plotly.express as px import plotly.graph_objects as go LOG = logging.getLogger(__name__) output_path = Path("output/images") def line(x, y): """Plots line plot. Supports up to 2D data. Args: x (array_like): 1st dimension of data. y (array_like): 2nd dimension of data. Returns: plotly.figure: figure object. """ fig = px.line(x=x, y=y, markers=True) fig.show() return fig def surface(x, y, z): """Plots surface data. Supports up to 3D data. Args: x (array_like[float]): x-coordinate data. y (array_like[float]): y-coordinate data. z (array_like[float]): height data. Returns: plotly.figure: figure object. """ fig = go.Figure(data=[go.Surface(z=z, x=x, y=y)]) fig.update_traces( contours_z=dict( show=True, usecolormap=True, highlightcolor="limegreen", project_z=True ) ) fig.show() return fig def scatter(x, y, z=None, w=None): """Plots scatter plot. Supports up to 4D data. Args: x (array_like): 1st dimension of data. y (array_like): 2nd dimension of data. color (array_like, optional): 3rd dimension of data. Defaults to None. size (array_like, optional): 4th dimension of data. Defaults to None. Returns: plotly.figure: figure object. """ fig = px.scatter(x=x, y=y, color=z, size=w) fig.show() return fig def scatter3(x, y, z, w=None, v=None): """Plots 3D scatter plot. Supports up to 5D data. Args: x (array_like): 1st dimension of data. y (array_like): 2nd dimension of data. z (array-like): 3rd dimension of data. w (array_like, optional): 4th dimension of data. Defaults to None. Returns: plotly.figure: figure object. """ fig = px.scatter_3d(x=x, y=y, z=z, color=w, size=v, size_max=18, opacity=0.9) fig.show() return fig def save(fig, filename): # Unable to find installation candidates for kaleido """Saves figure to output path. Args: fig (plotly.figure): figure object. filename (str): filename. """ timestamp = datetime.now().strftime("%Y-%m-%d_%H:%M:%S.%f") file_path = output_path / f"{filename}_{timestamp}.png" fig.write_image(file_path) LOG.info(f"Saved figure to {file_path}")
the-stack_0_10555
import pprint from time import strftime, gmtime import pandas as pd import boto3 import sagemaker from sagemaker import get_execution_role from sagemaker.model import Model from sagemaker.xgboost.model import XGBoostModel from sagemaker.model_monitor import DataCaptureConfig, DatasetFormat, DefaultModelMonitor sess = boto3.Session() sm = sess.client('sagemaker') role = sagemaker.get_execution_role() #Supress default INFO loggingd import logging logger = logging.getLogger() logger.setLevel(logging.CRITICAL) def get_endpoint_from_lab4(): print("Getting solution from Lab 4...") print("Please wait ~10 minutes for the endpoint to be deployed.") # Set the paths for the datasets saved locally path_to_lab2 = "/root/sagemaker-end-to-end-workshop/2-Modeling/" path_to_lab5 = "/root/sagemaker-end-to-end-workshop/5-Monitoring/" local_train_path = path_to_lab2 + 'config/train.csv' train_df = pd.read_csv(local_train_path, header=None) local_validation_path = path_to_lab2 + 'config/validation.csv' validation_df = pd.read_csv(local_validation_path, header=None) model_artifact_path = path_to_lab5 + 'config/model.tar.gz' inference_code_path = path_to_lab5 + 'config/inference.py' region = sess.region_name account_id = sess.client('sts', region_name=region).get_caller_identity()["Account"] bucket = 'sagemaker-studio-{}-{}'.format(sess.region_name, account_id) prefix = 'xgboost-churn' train_dir = f"{prefix}/train" val_dir = f"{prefix}/validation" model_dir = f"{prefix}/model" try: if sess.region_name == "us-east-1": sess.client('s3').create_bucket(Bucket=bucket) else: sess.client('s3').create_bucket(Bucket=bucket, CreateBucketConfiguration={'LocationConstraint': sess.region_name}) except Exception as e: print("Looks like you already have a bucket of this name. That's good. Uploading the data files...") # Return the URLs of the uploaded file, so they can be reviewed or used elsewhere print("Uploading data and model files to S3") s3url_train = sagemaker.s3.S3Uploader.upload(local_train_path, 's3://{}/{}'.format(bucket, train_dir)) s3url_validation = sagemaker.s3.S3Uploader.upload(local_validation_path, 's3://{}/{}'.format(bucket, val_dir)) s3url_model_artifact = sagemaker.s3.S3Uploader.upload(model_artifact_path, 's3://{}/{}'.format(bucket, model_dir)) boto_sess = boto3.Session() region = boto_sess.region_name role = sagemaker.get_execution_role() sm_sess = sagemaker.session.Session() region = sess.region_name framework_version = '1.2-2' docker_image_name = sagemaker.image_uris.retrieve(framework='xgboost', region=region, version=framework_version) xgb_inference_model = Model( model_data=s3url_model_artifact, role=role, image_uri=docker_image_name, ) data_capture_prefix = '{}/datacapture'.format(prefix) endpoint_name = "model-xgboost-customer-churn-" + strftime("%Y-%m-%d-%H-%M-%S", gmtime()) print(f"Deploying Endpoint with name = {endpoint_name}...") predictor = xgb_inference_model.deploy( initial_instance_count=1, instance_type='ml.m4.xlarge', endpoint_name=endpoint_name, data_capture_config=DataCaptureConfig( enable_capture=True, sampling_percentage=100, destination_s3_uri='s3://{}/{}'.format(bucket, data_capture_prefix), csv_content_types=['text/csv'] ) ) return endpoint_name, predictor
the-stack_0_10558
# # Pyserini: Reproducible IR research with sparse and dense representations # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import hashlib import os import re import shutil import unittest import json import gzip from random import randint from pyserini.util import download_url, download_prebuilt_index class TestSearchIntegration(unittest.TestCase): def setUp(self): curdir = os.getcwd() if curdir.endswith('clprf'): self.pyserini_root = '../..' else: self.pyserini_root = '.' self.tmp = f'{self.pyserini_root}/integrations/tmp{randint(0, 10000)}' # In the rare event there's a collision if os.path.exists(self.tmp): shutil.rmtree(self.tmp) os.mkdir(self.tmp) os.mkdir(f'{self.tmp}/runs') self.round5_runs = { 'https://ir.nist.gov/covidSubmit/archive/round5/covidex.r5.d2q.1s.gz': '2181ae5b7fe8bafbd3b41700f3ccde02', 'https://ir.nist.gov/covidSubmit/archive/round5/covidex.r5.d2q.2s.gz': 'e61f9b6de5ffbe1b5b82d35216968154', 'https://ir.nist.gov/covidSubmit/archive/round5/covidex.r5.2s.gz': '6e517a5e044d8b7ce983f7e165cf4aeb', 'https://ir.nist.gov/covidSubmit/archive/round5/covidex.r5.1s.gz': 'dc9b4b45494294a8448cf0693f07f7fd' } for url in self.round5_runs: print(f'Verifying stored run at {url}...') filename = url.split('/')[-1] filename = re.sub('\\?dl=1$', '', filename) # Remove the Dropbox 'force download' parameter gzip_filename = (".").join(filename.split('.')[:-1]) download_url(url, f'{self.tmp}/runs/', md5=self.round5_runs[url], force=True) self.assertTrue(os.path.exists(os.path.join(f'{self.tmp}/runs/', filename))) with gzip.open(f'{self.tmp}/runs/{filename}', 'rb') as f_in: with open(f'{self.tmp}/runs/{gzip_filename}', 'wb') as f_out: shutil.copyfileobj(f_in, f_out) def test_round5(self): tmp_folder_name = self.tmp.split('/')[-1] prebuilt_index_path = download_prebuilt_index('trec-covid-r5-abstract') os.system(f'python {self.pyserini_root}/scripts/classifier_prf/rank_trec_covid.py \ -alpha 0.6 \ -clf lr \ -vectorizer tfidf \ -new_qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round5.txt \ -base {self.tmp}/runs/covidex.r5.d2q.1s \ -tmp_base {tmp_folder_name} \ -qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round4-cumulative.txt \ -index {prebuilt_index_path} \ -tag covidex.r5.d2q.1s \ -output {self.tmp}/output.json') with open(f'{self.tmp}/output.json') as json_file: data = json.load(json_file) self.assertEqual("0.3859", data['map']) self.assertEqual("0.8221", data['ndcg']) os.system(f'python {self.pyserini_root}/scripts/classifier_prf/rank_trec_covid.py \ -alpha 0.6 \ -clf lr \ -vectorizer tfidf \ -new_qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round5.txt \ -base {self.tmp}/runs/covidex.r5.d2q.2s \ -tmp_base {tmp_folder_name} \ -qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round4-cumulative.txt \ -index {prebuilt_index_path} \ -tag covidex.r5.d2q.2s \ -output {self.tmp}/output.json') with open(f'{self.tmp}/output.json') as json_file: data = json.load(json_file) self.assertEqual("0.3875", data['map']) self.assertEqual("0.8304", data['ndcg']) os.system(f'python {self.pyserini_root}/scripts/classifier_prf/rank_trec_covid.py \ -alpha 0.6 \ -clf lr \ -vectorizer tfidf \ -new_qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round5.txt \ -base {self.tmp}/runs/covidex.r5.1s \ -tmp_base {tmp_folder_name} \ -qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round4-cumulative.txt \ -index {prebuilt_index_path} \ -tag covidex.r5.1s \ -output {self.tmp}/output.json') with open(f'{self.tmp}/output.json') as json_file: data = json.load(json_file) self.assertEqual("0.3885", data['map']) self.assertEqual("0.8135", data['ndcg']) os.system(f'python {self.pyserini_root}/scripts/classifier_prf/rank_trec_covid.py \ -alpha 0.6 \ -clf lr \ -vectorizer tfidf \ -new_qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round5.txt \ -base {self.tmp}/runs/covidex.r5.2s \ -tmp_base {tmp_folder_name} \ -qrels {self.pyserini_root}/tools/topics-and-qrels/qrels.covid-round4-cumulative.txt \ -index {prebuilt_index_path} \ -tag covidex.r5.2s \ -output {self.tmp}/output.json') with open(f'{self.tmp}/output.json') as json_file: data = json.load(json_file) self.assertEqual("0.3922", data['map']) self.assertEqual("0.8311", data['ndcg']) def tearDown(self): shutil.rmtree(self.tmp) if __name__ == '__main__': unittest.main()
the-stack_0_10559
import math import json import random class Vector: def __init__(self, x=0, y=0): self.x = x self.y = y def __str__(self): return "(%d,%d)" % (self.x, self.y) def add(self,p): return Vector(self.x+p.x,self.y+p.y) def subtract(self,p): return Vector(self.x-p.x,self.y-p.y) def scale(self,a): return Vector(a*self.x,a*self.y) def dot(self,p): return self.x*p.x+self.y*p.y def cross(self,p): return self.x*p.y - self.y*p.x def mod2(self): return self.x*self.x + self.y*self.y def mod(self): return math.sqrt(self.mod2()) def normalised(self): return Vector(self.x,self.y).scale(1/self.mod()) class Planet: def __init__(self, p, v, nid, r=1): self.position = p self.velocity = v self.radius = r self.mass = r**2 self.elasticity = 1 self.nid=nid self.num_boundaries = 0 def intersects(self,p): return self.position.subtract(p.position).mod2() < math.pow(self.radius + p.radius,2) def accelerate(self,force,clock_tick): self.velocity = self.velocity.add(force.scale(clock_tick/self.mass)) #adds to velocity vector def attract(self,otherp,clock_tick): between = self.position.subtract(otherp.position) dist = between.mod() force = 150*(self.mass * otherp.mass / dist ** 2) self.accelerate(between.scale(-force),clock_tick) otherp.accelerate(between.scale(force),clock_tick) #Scale force to clock tick? def move(self,clock_tick=1): self.position = self.position.add(self.velocity.scale(clock_tick)) def update_mass(self, k = 1): om = self.mass self.mass = self.radius**2 self.velocity = self.velocity.scale(k*om/self.mass+1-k) def get_rebound_vectors(p1, p2): n = p2.position.subtract(p1.position).normalised() u1 = p1.velocity.dot(n) u2 = p2.velocity.dot(n) v1 = ((p1.mass-p2.mass)*u1 + 2*p2.mass*u2) / (p1.mass+p2.mass) v2 = ((p2.mass-p1.mass)*u2 + 2*p1.mass*u1) / (p1.mass+p2.mass) return (p1.velocity.subtract(n.scale(u1-v1)), p2.velocity.subtract(n.scale(u2-v2))) class Universe: def __init__(self, R, r, extras=False): if extras: p1 = Planet(Vector(30,150), Vector(2,5),1, 30) p2 = Planet(Vector(100,50), Vector(2,-5), 500, 30) p3 = Planet(Vector(300,50), Vector(0,10), 20, 30) self.planets = [p1,p2,p3] else: self.planets = [] self.map_radius = R self.elasticity = 0.95 self.clock_tick = r def get_json(self): data = [] for i,p in enumerate(self.planets): data.append({'x': p.position.x, 'y': p.position.y, 'r': p.radius,'id':p.nid, 's':p.num_boundaries}) return json.dumps(data) def shrink(self,planet_id): #Selection by list comprehensilson? lol selected_planet = [x for x in self.planets if x.nid==planet_id][0] if (selected_planet.radius - 10 < 20): return selected_planet.radius -= 10 selected_planet.update_mass(0.6); def grow(self,planet_id): selected_planet = [x for x in self.planets if x.nid==planet_id][0] if (selected_planet.radius + 10 > 80): return selected_planet.radius += 10 selected_planet.update_mass() player_slots = [-1] def add_planet(self, competition_mode=True): new_id = random.randint(0,100000) ids = [x.nid for x in self.planets] ##To make sure Ids are unique lol while new_id in ids: new_id = random.randint(0,100000) p = Vector(self.map_radius, self.map_radius) if competition_mode: if all(i >= 0 for i in self.player_slots): self.player_slots = [j for i in self.player_slots for j in [i,-1]] for i,v in enumerate(self.player_slots): if v < 0: self.player_slots[i] = new_id t = math.pi*(-0.75 - 2*i/len(self.player_slots)) p = p.add(Vector(math.cos(t), math.sin(t)).scale(self.map_radius*0.6)) break ivel = 50 newp = Planet(p,Vector(2*ivel*(random.random()-0.5),2*ivel*(random.random()-0.5)),new_id,20) self.planets.append(newp) return new_id def remove_planet(self,planet_id): ids = [x.nid for x in self.planets] self.player_slots = [-1 if i == planet_id else i for i in self.player_slots] if all(i < 0 for i in self.player_slots): self.player_slots = [-1] if planet_id in ids: remove_index = ids.index(planet_id) del self.planets[remove_index] def run_loop(self): for i in range(len(self.planets)): pos = self.planets[i].position rad = self.planets[i].radius # circular boundary cv = pos.subtract(Vector(self.map_radius, self.map_radius)) if cv.mod() + rad > self.map_radius: self.planets[i].num_boundaries += 1 n = cv.normalised() v = self.planets[i].velocity u = n.scale(v.dot(n)) self.planets[i].velocity = v.subtract(n.scale((1+self.elasticity)*v.dot(n))) self.planets[i].position = pos.subtract(n.scale(cv.mod() + rad - self.map_radius)) # bouncing for j in range(i): p1 = self.planets[i] p2 = self.planets[j] if p1.intersects(p2): vi, vj = get_rebound_vectors(p1,p2) p1.velocity = vi p2.velocity = vj ##Fix for intersecting o = p1.radius + p2.radius - p1.position.subtract(p2.position).mod() n = p2.position.subtract(p1.position).normalised() p2.position = p2.position.add(n.scale(o/2)) p1.position = p1.position.add(n.scale(-o/2)) p1.attract(p2,self.clock_tick) for p in self.planets: p.move(self.clock_tick) #self.planets[i].position = pos.add(self.planets[i].velocity.scale(self.clock_tick))
the-stack_0_10560
# coding: utf-8 import sys from python_environment_check import check_packages import pandas as pd import matplotlib.pyplot as plt from mlxtend.plotting import scatterplotmatrix import numpy as np from mlxtend.plotting import heatmap from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.linear_model import RANSACRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from sklearn.metrics import r2_score from sklearn.linear_model import Lasso from sklearn.linear_model import Ridge from sklearn.linear_model import ElasticNet from sklearn.preprocessing import PolynomialFeatures from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor # # Machine Learning with PyTorch and Scikit-Learn # # -- Code Examples # ## Package version checks # Add folder to path in order to load from the check_packages.py script: sys.path.insert(0, '..') # Check recommended package versions: d = { 'numpy': '1.21.2', 'mlxtend': '0.19.0', 'matplotlib': '3.4.3', 'sklearn': '1.0', 'pandas': '1.3.2', } check_packages(d) # # Chapter 09 - Predicting Continuous Target Variables with Regression Analysis # ### Overview # - [Introducing regression](#Introducing-linear-regression) # - [Simple linear regression](#Simple-linear-regression) # - [Exploring the Ames Housing Dataset](#Exploring-the-Ames-Housing-Dataset) # - [Loading the Ames Housing dataset into a data frame](Loading-the-Ames-Housing-dataset-into-a-data-frame) # - [Visualizing the important characteristics of a dataset](#Visualizing-the-important-characteristics-of-a-dataset) # - [Implementing an ordinary least squares linear regression model](#Implementing-an-ordinary-least-squares-linear-regression-model) # - [Solving regression for regression parameters with gradient descent](#Solving-regression-for-regression-parameters-with-gradient-descent) # - [Estimating the coefficient of a regression model via scikit-learn](#Estimating-the-coefficient-of-a-regression-model-via-scikit-learn) # - [Fitting a robust regression model using RANSAC](#Fitting-a-robust-regression-model-using-RANSAC) # - [Evaluating the performance of linear regression models](#Evaluating-the-performance-of-linear-regression-models) # - [Using regularized methods for regression](#Using-regularized-methods-for-regression) # - [Turning a linear regression model into a curve - polynomial regression](#Turning-a-linear-regression-model-into-a-curve---polynomial-regression) # - [Modeling nonlinear relationships in the Ames Housing dataset](#Modeling-nonlinear-relationships-in-the-Ames-Housing-dataset) # - [Dealing with nonlinear relationships using random forests](#Dealing-with-nonlinear-relationships-using-random-forests) # - [Decision tree regression](#Decision-tree-regression) # - [Random forest regression](#Random-forest-regression) # - [Summary](#Summary) # # Introducing linear regression # ## Simple linear regression # ## Multiple linear regression # # Exploring the Ames Housing dataset # ## Loading the Ames Housing dataset into a data frame # - Dataset source: http://jse.amstat.org/v19n3/decock/AmesHousing.txt # - Dataset documentation: http://jse.amstat.org/v19n3/decock/DataDocumentation.txt # - Dataset write-up: http://jse.amstat.org/v19n3/decock.pdf # - `'Overall Qual'`: Rates the overall material and finish of the house # # 10 Very Excellent # 9 Excellent # 8 Very Good # 7 Good # 6 Above Average # 5 Average # 4 Below Average # 3 Fair # 2 Poor # 1 Very Poor # # - `'Overall Cond'`: Rates the overall condition of the house # # 10 Very Excellent # 9 Excellent # 8 Very Good # 7 Good # 6 Above Average # 5 Average # 4 Below Average # 3 Fair # 2 Poor # 1 Very Poor # - `'Gr Liv Area'`: Above grade (ground) living area square feet # - `'Central Air'`: Central air conditioning # # N No # Y Yes # # - `'Total Bsmt SF'`: Total square feet of basement area # - `'SalePrice'`: Sale price $$ columns = ['Overall Qual', 'Overall Cond', 'Gr Liv Area', 'Central Air', 'Total Bsmt SF', 'SalePrice'] df = pd.read_csv('http://jse.amstat.org/v19n3/decock/AmesHousing.txt', sep='\t', usecols=columns) df.head() df.shape df['Central Air'] = df['Central Air'].map({'N': 0, 'Y': 1}) df.isnull().sum() # remove rows that contain missing values df = df.dropna(axis=0) df.isnull().sum() # ## Visualizing the important characteristics of a dataset scatterplotmatrix(df.values, figsize=(12, 10), names=df.columns, alpha=0.5) plt.tight_layout() #plt.savefig('figures/09_04.png', dpi=300) plt.show() cm = np.corrcoef(df.values.T) hm = heatmap(cm, row_names=df.columns, column_names=df.columns) plt.tight_layout() #plt.savefig('figures/09_05.png', dpi=300) plt.show() # # Implementing an ordinary least squares linear regression model # ... # ## Solving regression for regression parameters with gradient descent class LinearRegressionGD: def __init__(self, eta=0.01, n_iter=50, random_state=1): self.eta = eta self.n_iter = n_iter self.random_state = random_state def fit(self, X, y): rgen = np.random.RandomState(self.random_state) self.w_ = rgen.normal(loc=0.0, scale=0.01, size=X.shape[1]) self.b_ = np.array([0.]) self.losses_ = [] for i in range(self.n_iter): output = self.net_input(X) errors = (y - output) self.w_ += self.eta * 2.0 * X.T.dot(errors) / X.shape[0] self.b_ += self.eta * 2.0 * errors.mean() loss = (errors**2).mean() self.losses_.append(loss) return self def net_input(self, X): return np.dot(X, self.w_) + self.b_ def predict(self, X): return self.net_input(X) X = df[['Gr Liv Area']].values y = df['SalePrice'].values sc_x = StandardScaler() sc_y = StandardScaler() X_std = sc_x.fit_transform(X) y_std = sc_y.fit_transform(y[:, np.newaxis]).flatten() lr = LinearRegressionGD(eta=0.1) lr.fit(X_std, y_std) plt.plot(range(1, lr.n_iter+1), lr.losses_) plt.ylabel('MSE') plt.xlabel('Epoch') plt.tight_layout() #plt.savefig('figures/09_06.png', dpi=300) plt.show() def lin_regplot(X, y, model): plt.scatter(X, y, c='steelblue', edgecolor='white', s=70) plt.plot(X, model.predict(X), color='black', lw=2) return lin_regplot(X_std, y_std, lr) plt.xlabel('Living area above ground (standardized)') plt.ylabel('Sale price (standardized)') #plt.savefig('figures/09_07.png', dpi=300) plt.show() feature_std = sc_x.transform(np.array([[2500]])) target_std = lr.predict(feature_std) target_reverted = sc_y.inverse_transform(target_std.reshape(-1, 1)) print(f'Sale price: ${target_reverted.flatten()[0]:.2f}') print(f'Slope: {lr.w_[0]:.3f}') print(f'Intercept: {lr.b_[0]:.3f}') # ## Estimating the coefficient of a regression model via scikit-learn slr = LinearRegression() slr.fit(X, y) y_pred = slr.predict(X) print(f'Slope: {slr.coef_[0]:.3f}') print(f'Intercept: {slr.intercept_:.3f}') lin_regplot(X, y, slr) plt.xlabel('Living area above ground in square feet') plt.ylabel('Sale price in U.S. dollars') plt.tight_layout() #plt.savefig('figures/09_08.png', dpi=300) plt.show() # **Normal Equations** alternative: # adding a column vector of "ones" Xb = np.hstack((np.ones((X.shape[0], 1)), X)) w = np.zeros(X.shape[1]) z = np.linalg.inv(np.dot(Xb.T, Xb)) w = np.dot(z, np.dot(Xb.T, y)) print(f'Slope: {w[1]:.3f}') print(f'Intercept: {w[0]:.3f}') # # Fitting a robust regression model using RANSAC ransac = RANSACRegressor(LinearRegression(), max_trials=100, # default min_samples=0.95, loss='absolute_error', # default residual_threshold=None, # default random_state=123) ransac.fit(X, y) inlier_mask = ransac.inlier_mask_ outlier_mask = np.logical_not(inlier_mask) line_X = np.arange(3, 10, 1) line_y_ransac = ransac.predict(line_X[:, np.newaxis]) plt.scatter(X[inlier_mask], y[inlier_mask], c='steelblue', edgecolor='white', marker='o', label='Inliers') plt.scatter(X[outlier_mask], y[outlier_mask], c='limegreen', edgecolor='white', marker='s', label='Outliers') plt.plot(line_X, line_y_ransac, color='black', lw=2) plt.xlabel('Living area above ground in square feet') plt.ylabel('Sale price in U.S. dollars') plt.legend(loc='upper left') plt.tight_layout() #plt.savefig('figures/09_09.png', dpi=300) plt.show() print(f'Slope: {ransac.estimator_.coef_[0]:.3f}') print(f'Intercept: {ransac.estimator_.intercept_:.3f}') def mean_absolute_deviation(data): return np.mean(np.abs(data - np.mean(data))) mean_absolute_deviation(y) ransac = RANSACRegressor(LinearRegression(), max_trials=100, # default min_samples=0.95, loss='absolute_error', # default residual_threshold=65000, # default random_state=123) ransac.fit(X, y) inlier_mask = ransac.inlier_mask_ outlier_mask = np.logical_not(inlier_mask) line_X = np.arange(3, 10, 1) line_y_ransac = ransac.predict(line_X[:, np.newaxis]) plt.scatter(X[inlier_mask], y[inlier_mask], c='steelblue', edgecolor='white', marker='o', label='Inliers') plt.scatter(X[outlier_mask], y[outlier_mask], c='limegreen', edgecolor='white', marker='s', label='Outliers') plt.plot(line_X, line_y_ransac, color='black', lw=2) plt.xlabel('Living area above ground in square feet') plt.ylabel('Sale price in U.S. dollars') plt.legend(loc='upper left') plt.tight_layout() #plt.savefig('figures/09_10.png', dpi=300) plt.show() print(f'Slope: {ransac.estimator_.coef_[0]:.3f}') print(f'Intercept: {ransac.estimator_.intercept_:.3f}') # # Evaluating the performance of linear regression models target = 'SalePrice' features = df.columns[df.columns != target] X = df[features].values y = df[target].values X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=123) slr = LinearRegression() slr.fit(X_train, y_train) y_train_pred = slr.predict(X_train) y_test_pred = slr.predict(X_test) x_max = np.max([np.max(y_train_pred), np.max(y_test_pred)]) x_min = np.min([np.min(y_train_pred), np.min(y_test_pred)]) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3), sharey=True) ax1.scatter(y_test_pred, y_test_pred - y_test, c='limegreen', marker='s', edgecolor='white', label='Test data') ax2.scatter(y_train_pred, y_train_pred - y_train, c='steelblue', marker='o', edgecolor='white', label='Training data') ax1.set_ylabel('Residuals') for ax in (ax1, ax2): ax.set_xlabel('Predicted values') ax.legend(loc='upper left') ax.hlines(y=0, xmin=x_min-100, xmax=x_max+100, color='black', lw=2) plt.tight_layout() #plt.savefig('figures/09_11.png', dpi=300) plt.show() mse_train = mean_squared_error(y_train, y_train_pred) mse_test = mean_squared_error(y_test, y_test_pred) print(f'MSE train: {mse_train:.2f}') print(f'MSE test: {mse_test:.2f}') mae_train = mean_absolute_error(y_train, y_train_pred) mae_test = mean_absolute_error(y_test, y_test_pred) print(f'MAE train: {mae_train:.2f}') print(f'MAE test: {mae_test:.2f}') r2_train = r2_score(y_train, y_train_pred) r2_test =r2_score(y_test, y_test_pred) print(f'R^2 train: {r2_train:.2f}') print(f'R^2 test: {r2_test:.2f}') # # Using regularized methods for regression lasso = Lasso(alpha=1.0) lasso.fit(X_train, y_train) y_train_pred = lasso.predict(X_train) y_test_pred = lasso.predict(X_test) print(lasso.coef_) train_mse = mean_squared_error(y_train, y_train_pred) test_mse = mean_squared_error(y_test, y_test_pred) print(f'MSE train: {train_mse:.3f}, test: {test_mse:.3f}') train_r2 = r2_score(y_train, y_train_pred) test_r2 = r2_score(y_test, y_test_pred) print(f'R^2 train: {train_r2:.3f}, {test_r2:.3f}') # Ridge regression: ridge = Ridge(alpha=1.0) # LASSO regression: lasso = Lasso(alpha=1.0) # Elastic Net regression: elanet = ElasticNet(alpha=1.0, l1_ratio=0.5) # # Turning a linear regression model into a curve - polynomial regression X = np.array([258.0, 270.0, 294.0, 320.0, 342.0, 368.0, 396.0, 446.0, 480.0, 586.0])\ [:, np.newaxis] y = np.array([236.4, 234.4, 252.8, 298.6, 314.2, 342.2, 360.8, 368.0, 391.2, 390.8]) lr = LinearRegression() pr = LinearRegression() quadratic = PolynomialFeatures(degree=2) X_quad = quadratic.fit_transform(X) # fit linear features lr.fit(X, y) X_fit = np.arange(250, 600, 10)[:, np.newaxis] y_lin_fit = lr.predict(X_fit) # fit quadratic features pr.fit(X_quad, y) y_quad_fit = pr.predict(quadratic.fit_transform(X_fit)) # plot results plt.scatter(X, y, label='Training points') plt.plot(X_fit, y_lin_fit, label='Linear fit', linestyle='--') plt.plot(X_fit, y_quad_fit, label='Quadratic fit') plt.xlabel('Explanatory variable') plt.ylabel('Predicted or known target values') plt.legend(loc='upper left') plt.tight_layout() #plt.savefig('figures/09_12.png', dpi=300) plt.show() y_lin_pred = lr.predict(X) y_quad_pred = pr.predict(X_quad) mse_lin = mean_squared_error(y, y_lin_pred) mse_quad = mean_squared_error(y, y_quad_pred) print(f'Training MSE linear: {mse_lin:.3f}' f', quadratic: {mse_quad:.3f}') r2_lin = r2_score(y, y_lin_pred) r2_quad = r2_score(y, y_quad_pred) print(f'Training R^2 linear: {r2_lin:.3f}' f', quadratic: {r2_quad:.3f}') # ## Modeling nonlinear relationships in the Ames Housing dataset X = df[['Gr Liv Area']].values y = df['SalePrice'].values X = X[(df['Gr Liv Area'] < 4000)] y = y[(df['Gr Liv Area'] < 4000)] regr = LinearRegression() # create quadratic features quadratic = PolynomialFeatures(degree=2) cubic = PolynomialFeatures(degree=3) X_quad = quadratic.fit_transform(X) X_cubic = cubic.fit_transform(X) # fit features X_fit = np.arange(X.min()-1, X.max()+2, 1)[:, np.newaxis] regr = regr.fit(X, y) y_lin_fit = regr.predict(X_fit) linear_r2 = r2_score(y, regr.predict(X)) regr = regr.fit(X_quad, y) y_quad_fit = regr.predict(quadratic.fit_transform(X_fit)) quadratic_r2 = r2_score(y, regr.predict(X_quad)) regr = regr.fit(X_cubic, y) y_cubic_fit = regr.predict(cubic.fit_transform(X_fit)) cubic_r2 = r2_score(y, regr.predict(X_cubic)) # plot results plt.scatter(X, y, label='Training points', color='lightgray') plt.plot(X_fit, y_lin_fit, label=f'Linear (d=1), $R^2$={linear_r2:.2f}', color='blue', lw=2, linestyle=':') plt.plot(X_fit, y_quad_fit, label=f'Quadratic (d=2), $R^2$={quadratic_r2:.2f}', color='red', lw=2, linestyle='-') plt.plot(X_fit, y_cubic_fit, label=f'Cubic (d=3), $R^2$={cubic_r2:.2f}', color='green', lw=2, linestyle='--') plt.xlabel('Living area above ground in square feet') plt.ylabel('Sale price in U.S. dollars') plt.legend(loc='upper left') plt.tight_layout() plt.savefig('figures/09_13.png', dpi=300) plt.show() X = df[['Overall Qual']].values y = df['SalePrice'].values regr = LinearRegression() # create quadratic features quadratic = PolynomialFeatures(degree=2) cubic = PolynomialFeatures(degree=3) X_quad = quadratic.fit_transform(X) X_cubic = cubic.fit_transform(X) # fit features X_fit = np.arange(X.min()-1, X.max()+2, 1)[:, np.newaxis] regr = regr.fit(X, y) y_lin_fit = regr.predict(X_fit) linear_r2 = r2_score(y, regr.predict(X)) regr = regr.fit(X_quad, y) y_quad_fit = regr.predict(quadratic.fit_transform(X_fit)) quadratic_r2 = r2_score(y, regr.predict(X_quad)) regr = regr.fit(X_cubic, y) y_cubic_fit = regr.predict(cubic.fit_transform(X_fit)) cubic_r2 = r2_score(y, regr.predict(X_cubic)) # plot results plt.scatter(X, y, label='Training points', color='lightgray') plt.plot(X_fit, y_lin_fit, label=f'Linear (d=1), $R^2$={linear_r2:.2f}', color='blue', lw=2, linestyle=':') plt.plot(X_fit, y_quad_fit, label=f'Quadratic (d=2), $R^2$={quadratic_r2:.2f}', color='red', lw=2, linestyle='-') plt.plot(X_fit, y_cubic_fit, label=f'Cubic (d=3), $R^2$={cubic_r2:.2f}', color='green', lw=2, linestyle='--') plt.xlabel('Overall quality of the house') plt.ylabel('Sale price in U.S. dollars') plt.legend(loc='upper left') plt.tight_layout() #plt.savefig('figures/09_14.png', dpi=300) plt.show() # # Dealing with nonlinear relationships using random forests # ... # ## Decision tree regression X = df[['Gr Liv Area']].values y = df['SalePrice'].values tree = DecisionTreeRegressor(max_depth=3) tree.fit(X, y) sort_idx = X.flatten().argsort() lin_regplot(X[sort_idx], y[sort_idx], tree) plt.xlabel('Living area above ground in square feet') plt.ylabel('Sale price in U.S. dollars') plt.tight_layout() #plt.savefig('figures/09_15.png', dpi=300) plt.show() tree_r2 = r2_score(y, tree.predict(X)) tree_r2 # ## Random forest regression target = 'SalePrice' features = df.columns[df.columns != target] X = df[features].values y = df[target].values X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.3, random_state=123) forest = RandomForestRegressor(n_estimators=1000, criterion='squared_error', random_state=1, n_jobs=-1) forest.fit(X_train, y_train) y_train_pred = forest.predict(X_train) y_test_pred = forest.predict(X_test) mae_train = mean_absolute_error(y_train, y_train_pred) mae_test = mean_absolute_error(y_test, y_test_pred) print(f'MAE train: {mae_train:.2f}') print(f'MAE test: {mae_test:.2f}') r2_train = r2_score(y_train, y_train_pred) r2_test =r2_score(y_test, y_test_pred) print(f'R^2 train: {r2_train:.2f}') print(f'R^2 test: {r2_test:.2f}') x_max = np.max([np.max(y_train_pred), np.max(y_test_pred)]) x_min = np.min([np.min(y_train_pred), np.min(y_test_pred)]) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(7, 3), sharey=True) ax1.scatter(y_test_pred, y_test_pred - y_test, c='limegreen', marker='s', edgecolor='white', label='Test data') ax2.scatter(y_train_pred, y_train_pred - y_train, c='steelblue', marker='o', edgecolor='white', label='Training data') ax1.set_ylabel('Residuals') for ax in (ax1, ax2): ax.set_xlabel('Predicted values') ax.legend(loc='upper left') ax.hlines(y=0, xmin=x_min-100, xmax=x_max+100, color='black', lw=2) plt.tight_layout() #plt.savefig('figures/09_16.png', dpi=300) plt.show() # # Summary # ... # --- # # Readers may ignore the next cell.
the-stack_0_10562
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle from op_test import OpTest class TestEinsumBinary(OpTest): def setUp(self): paddle.enable_static() self.op_type = "einsum" self.disable = False self.set_mandatory() self.init_input() np.random.seed(123) out = np.einsum(self.equation, *self.inputs) self.operands = [] for idx, inp in enumerate(self.inputs): self.operands.append(("x" + str(idx), inp)) self.inputs = {"Operands": self.operands} self.attrs = {"equation": self.equation} self.outputs = { 'Out': out, "InnerCache": [('cache_' + str(i), np.array([1.0])) for i in range(len(self.operands))] } def init_input(self): self.inputs = [] for t, s in zip(self.types, self.shapes): self.inputs.append(np.random.random(s).astype(t)) def set_mandatory(self): self.disable = False self.shapes = [(10, 10, 20), (20, 6)] self.types = [np.float64, np.float64] self.equation = "mij,jk->ki" def test_check_output(self): if not self.disable: self.check_output(no_check_set=["InnerCache"]) def test_grad(self): if not self.disable: self.check_grad([op[0] for op in self.operands], ["Out"]) class TestEinsum1(TestEinsumBinary): def set_mandatory(self): self.shapes = [(20, 3, 3), (20, 3, 3)] self.types = [np.float64, np.float64] self.equation = "mij,mjk->mik" class TestEinsum2(TestEinsumBinary): def set_mandatory(self): self.shapes = [(20, 3, 3), (20, 3, 3)] self.types = [np.float64, np.float64] self.equation = "mij,mjk->ikm" class TestEinsum3(TestEinsumBinary): def set_mandatory(self): self.shapes = [(10, 10), (10, 10)] self.types = [np.float64, np.float64] self.equation = "ij,jk->ik" # }}} class TestEinsumWithReduction(TestEinsumBinary): def set_mandatory(self): self.shapes = [(10, 3, 5), (5, 30)] self.types = [np.float64, np.float64] self.equation = "ijk,kl->jl" class TestEinsumWithReduction1(TestEinsumBinary): def set_mandatory(self): self.shapes = [(10, 3, 3, 5), (10, 5, 10, 10)] self.types = [np.float64, np.float64] self.equation = "mijk,mklh->ljm" class TestEinsumWithUnary(TestEinsumBinary): def set_mandatory(self): self.shapes = [(10, 10, 3, 5)] self.types = [np.float64] self.equation = "mijk->mi" class TestEinsumWithUnary1(TestEinsumBinary): def set_mandatory(self): self.shapes = [(5, 10, 3, 3), (3, 6, 3, 10)] self.types = [np.float64, np.float64] self.equation = "imjl,jklm->imk" class TestEinsumWithBroadcast1(TestEinsumBinary): def set_mandatory(self): self.shapes = [(5, 10, 3, 3)] self.types = [np.float64] self.equation = "i...->..." class TestEinsumWithBroadcast2(TestEinsumBinary): def set_mandatory(self): self.shapes = [(10, 11), (3, 4, 5, 10)] self.types = [np.float64, np.float64] self.equation = "...ij,...i->j..." class TestEinsumWithBroadcast3(TestEinsumBinary): def set_mandatory(self): self.shapes = [(10, 3, 2, 3, 4), (12, 10)] self.types = [np.float64, np.float64] self.equation = "k...,...jk->...k" class TestEinsumWithBroadcast4(TestEinsumBinary): def set_mandatory(self): self.shapes = [(10, 3, 2, 3, 4), (12, 10)] self.types = [np.float64, np.float64] self.equation = "a...d,...cb->...abcd" class TestEinsumWithBroadcast5(TestEinsumBinary): def set_mandatory(self): self.shapes = [(3, 2, 2, 10), (10, 3, 2, 2)] self.types = [np.float64, np.float64] self.equation = "...a,a...->..." class TestEinsumWithBroadcast6(TestEinsumBinary): def set_mandatory(self): self.shapes = [(100), (100)] self.types = [np.float64, np.float64] self.equation = "i,i->" if __name__ == "__main__": unittest.main()
the-stack_0_10563
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Libunwind(AutotoolsPackage): """A portable and efficient C programming interface (API) to determine the call-chain of a program.""" homepage = "http://www.nongnu.org/libunwind/" url = "http://download.savannah.gnu.org/releases/libunwind/libunwind-1.1.tar.gz" git = "https://github.com/libunwind/libunwind" maintainers = ['mwkrentel'] version('master', branch='master') version('1.5-head', branch='v1.5-stable') version('1.5-rc1', sha256='3e0cbc6dee326592097ef06e97cf76ef597987eddd0df8bea49b0594e587627a') version('1.4-head', branch='v1.4-stable') version('1.4.0', sha256='df59c931bd4d7ebfd83ee481c943edf015138089b8e50abed8d9c57ba9338435', preferred=True) version('1.4-rc1', sha256='1928459139f048f9b4aca4bb5010540cb7718d44220835a2980b85429007fa9f') version('1.3.1', sha256='43997a3939b6ccdf2f669b50fdb8a4d3205374728c2923ddc2354c65260214f8') version('1.2.1', sha256='3f3ecb90e28cbe53fba7a4a27ccce7aad188d3210bb1964a923a731a27a75acb') version('1.1', sha256='9dfe0fcae2a866de9d3942c66995e4b460230446887dbdab302d41a8aee8d09a') variant('xz', default=False, description='Support xz (lzma) compressed symbol tables.') variant('zlib', default=False, description='Support zlib compressed symbol tables ' '(1.5 and later).') # The libunwind releases contain the autotools generated files, # but the git repo snapshots do not. depends_on('autoconf', type='build', when='@master,1.4-head,1.5-head') depends_on('automake', type='build', when='@master,1.4-head,1.5-head') depends_on('libtool', type='build', when='@master,1.4-head,1.5-head') depends_on('m4', type='build', when='@master,1.4-head,1.5-head') depends_on('xz', type='link', when='+xz') depends_on('zlib', type='link', when='+zlib') conflicts('platform=darwin', msg='Non-GNU libunwind needs ELF libraries Darwin does not have') provides('unwind') flag_handler = AutotoolsPackage.build_system_flags def configure_args(self): spec = self.spec args = [] if '+xz' in spec: args.append('--enable-minidebuginfo') else: args.append('--disable-minidebuginfo') # zlib support is available in 1.5.x and later if spec.satisfies('@1.5:'): if '+zlib' in spec: args.append('--enable-zlibdebuginfo') else: args.append('--disable-zlibdebuginfo') return args
the-stack_0_10564
# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: [email protected] import sys sys.path.append('.') import glob import joblib import argparse import numpy as np import json import os.path as osp from lib.models import spin from lib.core.config import MP_DB_DIR from lib.utils.utils import tqdm_enumerate from lib.data_utils.feature_extractor import extract_features from lib.data_utils.kp_utils import get_posetrack_original_kp_names, convert_kps def read_data(folder, set): dataset = { 'img_name' : [] , 'joints2D': [], 'bbox': [], 'vid_name': [], 'features': [], } model = spin.get_pretrained_hmr() file_names = glob.glob(osp.join(folder, 'posetrack_data/annotations/', f'{set}/*.json')) file_names = sorted(file_names) nn_corrupted = 0 tot_frames = 0 min_frame_number = 8 for fid,fname in tqdm_enumerate(file_names): if fname == osp.join(folder, 'annotations/train/021133_mpii_train.json'): continue with open(fname, 'r') as entry: anns = json.load(entry) # num_frames = anns['images'][0]['nframes'] anns['images'] = [item for item in anns['images'] if item['is_labeled'] ] num_frames = len(anns['images']) frame2imgname = dict() for el in anns['images']: frame2imgname[el['frame_id']] = el['file_name'] num_people = -1 for x in anns['annotations']: if num_people < x['track_id']: num_people = x['track_id'] num_people += 1 posetrack_joints = get_posetrack_original_kp_names() idxs = [anns['categories'][0]['keypoints'].index(h) for h in posetrack_joints if h in anns['categories'][0]['keypoints']] for x in anns['annotations']: kps = np.array(x['keypoints']).reshape((17,3)) kps = kps[idxs,:] x['keypoints'] = list(kps.flatten()) tot_frames += num_people * num_frames for p_id in range(num_people): annot_pid = [(item['keypoints'], item['bbox'], item['image_id']) for item in anns['annotations'] if item['track_id'] == p_id and not(np.count_nonzero(item['keypoints']) == 0) ] if len(annot_pid) < min_frame_number: nn_corrupted += len(annot_pid) continue bbox = np.zeros((len(annot_pid),4)) # perm_idxs = get_perm_idxs('posetrack', 'common') kp_2d = np.zeros((len(annot_pid), len(annot_pid[0][0])//3 ,3)) img_paths = np.zeros((len(annot_pid))) for i, (key2djnts, bbox_p, image_id) in enumerate(annot_pid): if (bbox_p[2]==0 or bbox_p[3]==0) : nn_corrupted +=1 continue img_paths[i] = image_id key2djnts[2::3] = len(key2djnts[2::3])*[1] kp_2d[i,:] = np.array(key2djnts).reshape(int(len(key2djnts)/3),3) # [perm_idxs, :] for kp_loc in kp_2d[i,:]: if kp_loc[0] == 0 and kp_loc[1] == 0: kp_loc[2] = 0 x_tl = bbox_p[0] y_tl = bbox_p[1] w = bbox_p[2] h = bbox_p[3] bbox_p[0] = x_tl + w / 2 bbox_p[1] = y_tl + h / 2 # w = h = np.where(w / h > 1, w, h) w = h = h * 0.8 bbox_p[2] = w bbox_p[3] = h bbox[i, :] = bbox_p img_paths = list(img_paths) img_paths = [osp.join(folder, frame2imgname[item]) if item != 0 else 0 for item in img_paths ] bbx_idxs = [] for bbx_id, bbx in enumerate(bbox): if np.count_nonzero(bbx) == 0: bbx_idxs += [bbx_id] kp_2d = np.delete(kp_2d, bbx_idxs, 0) img_paths = np.delete(np.array(img_paths), bbx_idxs, 0) bbox = np.delete(bbox, np.where(~bbox.any(axis=1))[0], axis=0) # Convert to common 2d keypoint format if bbox.size == 0 or bbox.shape[0] < min_frame_number: nn_corrupted += 1 continue kp_2d = convert_kps(kp_2d, src='posetrack', dst='spin') dataset['vid_name'].append(np.array([f'{fname}_{p_id}']*img_paths.shape[0])) dataset['img_name'].append(np.array(img_paths)) dataset['joints2D'].append(kp_2d) dataset['bbox'].append(np.array(bbox)) # compute_features features = extract_features( model, np.array(img_paths), bbox, kp_2d=kp_2d, dataset='spin', debug=False, ) assert kp_2d.shape[0] == img_paths.shape[0] == bbox.shape[0] dataset['features'].append(features) print(nn_corrupted, tot_frames) for k in dataset.keys(): dataset[k] = np.array(dataset[k]) for k in dataset.keys(): dataset[k] = np.concatenate(dataset[k]) for k,v in dataset.items(): print(k, v.shape) return dataset if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--dir', type=str, help='dataset directory', default='data/posetrack') args = parser.parse_args() dataset_train = read_data(args.dir, 'train') joblib.dump(dataset_train, osp.join(MP_DB_DIR, 'posetrack_train_db.pt'))
the-stack_0_10567
"""Console adapted from Python's console found in code.py. An earlier version of this code was subclassing code.InteractiveConsole. However, as more and more changes were introduced, dealing with code transformation and especially customized error handling, it seemed to make sense to "rewrite" every relevant part in this single module. """ import os import platform import friendly_traceback from . import version from .converter import convert from .session import state from .my_gettext import gettext_lang class AvantPyInteractiveConsole(friendly_traceback.FriendlyConsole): """A Python console that tries to emulate the normal Python interpreter except that it support experimental code transformations. It is adapted from cPython's ``code.InteractiveConsole`` and its parent. Like the normal Python interactive console, it attempts to evaluate code entered one line at a time by a user. """ def __init__(self, locals=None): self.locals = locals if locals is not None else {} super().__init__(locals=locals) self.name = "<AvantPy console>" self.resetbuffer() state.console_active = True def push(self, line): """Pushes a transformed line to the interpreter. The line should not have a trailing newline; it may have internal newlines. The line is transformed and appended to a buffer. The interpreter's run_source() method is called with the concatenated contents of the buffer as source. If this indicates that the command was executed or invalid, the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was appended. The return value is True if more input is required, False if the line was dealt with in some way (this is the same as run_source()). """ assert not line.endswith("\n"), "Forbidden trailing newline in push()." _ = gettext_lang.lang self.buffer.append(line) self.source = "\n".join(self.buffer) self.counter += 1 self.name = "<avantpy-console:%d>" % self.counter friendly_traceback.cache.add(self.name, self.source) try: self.converted = convert(self.source, filename=self.name) except SystemExit: os._exit(1) except Exception: friendly_traceback.explain() self.resetbuffer() return False try: more = self.runsource(self.converted, filename=self.name) except SystemExit: os._exit(1) except Exception: friendly_traceback.explain() self.resetbuffer() return False if not more: self.resetbuffer() return more def runsource(self, source, filename="<input>", symbol="single"): """Compile and run some source in the interpreter. Arguments are as for compile_command(). One several things can happen: 1) The input is incorrect; compile_command() raised an exception (SyntaxError or OverflowError). A syntax traceback will be printed by calling the showsyntaxerror() method. 2) The input is incomplete, and more input is required; compile_command() returned None. Nothing happens. 3) The input is complete; compile_command() returned a code object. The code is executed by calling self.runcode() (which also handles run-time exceptions, except for SystemExit). The return value is True in case 2, False in the other cases (unless an exception is raised). The return value can be used to decide whether to use sys.ps1 or sys.ps2 to prompt the next line. """ try: code = self.compile(source, filename, symbol) except (OverflowError, SyntaxError, ValueError): # Case 1 friendly_traceback.explain() return False if code is None: # Case 2 return True # Case 3 self.runcode(code) return False def start_console(local_vars=None): """Starts a console; modified from code.interact""" console_defaults = {"set_lang": state.set_lang, "set_dialect": state.set_dialect} if local_vars is None: local_vars = console_defaults else: local_vars.update(console_defaults) console = AvantPyInteractiveConsole(locals=local_vars) banner = "AvantPy version {} [Python: {}; Friendly-traceback: {}]\n".format( version.__version__, platform.python_version(), friendly_traceback.version.__version__, ) console.interact(banner=banner)
the-stack_0_10569
# -*- coding: utf-8 -*- """ Created on Fri Apr 11 19:05:26 2014 Module for linking with the Allen brain atlas @author: tim """ import csv from os import path, rename, remove from glob import glob import numpy as np from scipy import stats from matplotlib import pyplot as plt from maybrain import brain # from maybrain.plotting import mayavi_wrapper as plot class AllenBrain: """ An object the combines a network generated from imaging data with gene expression data taken from the Allen brain atlas. Genetic data can be downloaded from http://human.brain-map.org/static/download. An example will be available on the wiki soon. """ def __init__(self, allen_subj, assoc_matrix, allen_dir="allen_data", delim=None, imaging_spatial_file="atlas471_xyz_flip_xy.txt", nodesToExclude=[], symmetrise=False, mirror=False, signif_value=1.0, convert_mni=False): """ This object contains two 'brain' network objects, one for the imaging data and one for the Allen data. Embedded functions make a comparison between the imaging and Allen data by pairing nodes between the two network objects. Convert MNI converts 2mm space to MNI space - useful if comparing to a standard template. """ self.allen_dir = allen_dir # directory where data is located self.allen_subj = allen_subj # subject number, eg 178236545 # files in the subject directory to assign gene properties self.annotation_file = "SampleAnnot.csv" self.microarray_expression_file = "MicroarrayExpression.csv" self.probe_file = "Probes.csv" self.signif_value = signif_value # set significance value for gene correlations # if symmetrise is true then regions are identified by the structure # name, if symmetrise is false, then regions are identified by the # structural acronym these refer to headers in the SampleAnnot.csv file if symmetrise: self.s_lab = "structure_acronym" else: self.s_lab = "structure_name" self.mirror = mirror if symmetrise and self.mirror: print("Please select either a symmetrised or mirrored graph, \ ignoring mirror=True") self.mirror = False node_counter = 0 # import probe data file = open(path.join(self.allen_dir, self.allen_subj, self.annotation_file), "r") reader = csv.DictReader(file, delimiter=",", quotechar='"') self.headers = ['probe'] self.s_id_dict = {} self.expr_brain = load_allen(self.allen_subj, self.allen_dir, self.annotation_file, self.s_lab, convert_mni, mirror) # set up brain with graph properties self.imaging_brain = brain.Brain() self.imaging_brain.import_adj_file(assoc_matrix, delimiter=delim, nodes_to_exclude=nodesToExclude) self.imaging_brain.import_spatial_info(imaging_spatial_file, convert_mni=convert_mni) def comparison(self, max_dist=None): """ set up dictionary to link nodes from probe data and graph keys are the mri nodes and values are disctionaries containing two keys: key 1= allen, value= (node_count=sa_id of closest allen node, dist=distance to closest allen node) key 2= mri, value= (node_count=sa_id of closest other mri node, dist=distance to closest mri node) max_dist is the maximum distance allowed between node pairs. This should be mandatory if 'mirror' or 'symmetrise' is used, otherwise nodes will be paired across hemispheres. """ imaging_node_dict = {} # iterate through the imaging nodes and find the closest Allen brain nodes for node in self.imaging_brain.G.nodes(): d_other = (None, 999.) # dummy length of 999 d_own = (None, 999.) # iterate through the Allen nodes for node_count in self.expr_brain.G.nodes(): # find the distance between the imaging and Allen nodes dist = np.linalg.norm(np.array(self.imaging_brain.G.node[node]['xyz'] - np.array(self.expr_brain.G.node[node_count]['xyz']))) if dist < d_other[1]: d_other = (node_count, dist) # check if the distance exceeds the maximum specified if max_dist: if d_other[1] > max_dist: d_other = (None, None) # now iterate through the imaging nodes to find the closest imaging node for node_count in [v for v in self.imaging_brain.G.nodes() if not v == node]: dist = np.linalg.norm(np.array(self.imaging_brain.G.node[node]['xyz'] - np.array(self.imaging_brain.G.node[node_count]['xyz']))) if dist < d_own[1]: d_own = (node_count, dist) # check if the distance exceeds the maximum specified if max_dist: if d_own[1] > max_dist: d_own = (None, None) imaging_node_dict[node] = {"allen":d_other, "MRIs":d_own} node_pairs = [] # create a list of node pairs # for each MRI node.. for node in list(imaging_node_dict.keys()): # ...find closest allen node 'node_count' node_count = imaging_node_dict[node]['allen'][0] self.imaging_brain.G.node[node]['pair'] = node_count try: self.expr_brain.G.node[node_count]['pair'] = node except KeyError: pass node_pairs.append((node, node_count)) # iterate through the list of nodes to assign pairs and remove unpaired nodes node_list = [v for v in self.expr_brain.G.nodes()] for node in node_list: if 'pair' not in list(self.expr_brain.G.node[node].keys()): self.expr_brain.G.remove_node(node) def probedata(self, prop_dict, graph_metric_name="gm", node_list=None, scatter_plot=False, probe_list=[], probe_numbers=[], thresh=False): ''' Explanation required. ''' probes = open(path.join(self.allen_dir, self.allen_subj, "Probes.csv"), "r") probe_reader = csv.DictReader(probes, delimiter=",", quotechar='"') probe_dict = {line['probe_id']:[line['gene_symbol'], line['gene_name']] for line in probe_reader} if probe_list: probe_numbers = [] for probe in probe_list: probe_numbers.extend([v for v in list(probe_dict.keys()) if any([probe in probe_dict[v][1], probe in probe_dict[v][0]])]) print((" ".join(["Probe numbers:", ' '.join(probe_numbers)]))) else: probe_numbers = None out_file = path.join(self.allen_subj, graph_metric_name+'.txt') print(("Saving data in:"+out_file)) if path.exists(out_file): rename(out_file, out_file+'.old') file = open(out_file, "w") file.writelines(', '.join(['probe_id', 'gene_name', 'r', 'probe\node_count'])) file.close() if node_list: for node in self.imaging_brain.G.nodes(): if not node in node_list: self.expr_brain.G.remove_node(self.imaging_brain.G.node[node]['pair']) self.imaging_brain.G.remove_node(node) # import probe data file = open(path.join(self.allen_dir, self.allen_subj, self.microarray_expression_file), "r") reader = csv.DictReader(file, delimiter=",", fieldnames=self.headers, quotechar='"') for line in reader: if thresh: self.probesubt(line, prop_dict, probe_dict, graph_metric_name, out_file, probe_numbers) else: self.probesub(line, prop_dict, probe_dict, graph_metric_name, out_file, scatter_plot, probe_numbers) file.close() def xmatrix(self, out_file="Xmatrix.csv", probe_numbers=None, temp_mat_name="tempMat.txt", st_dev=False, st_dev_file="NodesSd.txt"): """ Needs writing """ # get all probes if otherwise unspecified if not probe_numbers: file = open(path.join(self.allen_dir, self.allen_subj, self.probe_file)) probe_numbers = [line['probe_id'] for line in csv.DictReader(file, delimiter=",", quotechar='"')] file.close() # set up out file out = open(self.allen_subj+out_file, "wb") headers = ["Gene"] headers.extend([str(v) for v in self.imaging_brain.G.nodes()]) writer = csv.DictWriter(out, fieldnames=headers, delimiter=" ") writer.writeheader() # set up matrix y = len(probe_numbers) z = len(self.imaging_brain.G.nodes()) st = np.max([len(list(self.s_id_dict.values()))]) # max numbers of nodes for any region probe_mat = np.memmap(temp_mat_name, dtype="float64", mode="w+", shape=(y, z, st)) # set up gene list gene_flag = True probe_file = open(path.join(self.allen_dir, self.allen_subj, self.probe_file)) probe_reader = csv.DictReader(probe_file, delimiter=",", quotechar='"') probe_dict = {line['probe_id']:line['gene_symbol'] for line in probe_reader} gene_list = list(probe_dict.values()) set(gene_list) gene_list = {gene:[] for gene in gene_list} s_id_list = [v for v in self.headers if v != 'probe'] s_id_list = set(s_id_list) # get the corresponding node names in the MRI graph # c_nodes is a dict whose keys are all the MRI nodes and values are the matched alen nodes #### PV modified line below which constructed c_nodes by looping through allen nodes # but with PV's lax matching criteria several mri nodes can be matched to same allen node # the mri pair of these allen nodes gets overwritten in self.expr_brain.G.nodes and so # not all mri nodes will appear as pairs of allen nodes in this dict... # need to look up pairs in self.imaging_brain.G.nodes instead, where # each mri node is matched to an allen region # c_nodes = {str(self.expr_brain.G.node[v]['pair']):v for v in self.expr_brain.G.nodes()} c_nodes = {str(v):self.imaging_brain.G.node[v]['pair'] for v in self.imaging_brain.G.nodes()} # assign values to matrix print((str(self.allen_subj))) print('\node_count') # Generate custom fieldnames list for DictReader which doesn'thresh rely on structure_id # ************************************* fieldnames_pv = ['probe'] my_node_dict = {} temp_headers = self.headers temp_headers.remove('probe') for p, q in enumerate(self.headers): my_node_dict[p] = q fieldnames_pv.append(str(p)) ##### # ************************************* # import probe data file = open(path.join(self.allen_dir, self.allen_subj, self.microarray_expression_file), "r") reader = csv.DictReader(file, delimiter=",", fieldnames=fieldnames_pv, quotechar='"') y = 0 for line in reader: if line['probe']in probe_numbers: for node in self.expr_brain.G.nodes(): if line[self.expr_brain.G.node[node][self.s_lab]]: self.expr_brain.G.node[node][line['probe']] = line[self.expr_brain.G.node[node][self.s_lab]] else: self.expr_brain.G.node[node][line['probe']] = None aa_mat = np.zeros((len(self.imaging_brain.G.nodes()), 3)) for node_count, c_node in enumerate(self.imaging_brain.G.nodes()): node = self.imaging_brain.G.node[c_node]['pair'] if prop_dict[self.expr_brain.G.node[node]['pair']]: aa_mat[node_count, 0] = self.expr_brain.G.node[node][line['probe']] aa_mat[node_count, 1] = prop_dict[c_node] aa_mat[node_count, 2] = c_node else: aa_mat[node_count, :] = [np.nan, np.nan, np.nan] aa_mat = aa_mat[~np.isnan(aa_mat)] aa_mat.shape = (len(aa_mat)/3, 3) r, p = stats.pearsonr(aa_mat[:, 0], aa_mat[:, 1]) if p < self.signif_value: print(line['probe']) # plot graph out = open(out_file, "a") out.writelines(', '.join([str(v) for v in [line['probe'], '"' + probe_dict[line['probe']][1]+'"', r, p]])+'\node_count') out.close() if scatter_plot: plt.scatter(aa_mat[:, 1], aa_mat[:, 0]) plt.savefig(out_file.replace('.txt', line['probe']+'.png'), dpi=300) plt.close() # save data print("Saving data in :"+out_file.replace('.txt', line['probe']+graph_metric_name+'.txt')) dat_file = open(out_file.replace('.txt', line['probe']+graph_metric_name+'.txt'), "wb") dat_file.writelines(' '.join([line['probe'], graph_metric_name, "node", "subj"])+'\node_count') dat_file.writelines('\node_count'.join([' '.join([str(aa_mat[node_count, 0]), str(aa_mat[node_count, 1]), str(aa_mat[node_count, 2]), self.allen_subj]) for node_count in range(len(aa_mat[:, 1]))])) dat_file.close() else: pass def probesubt(self, line, prop_dict, probe_dict, graph_metric_name, out_file, probe_numbers=None): ''' line is a line from the probe file. The purpose of this function is to write thresholded data to a datafile eg for use in ANOVA ''' probe = line['probe'] dat_file = None if probe_numbers: if probe in probe_numbers: # assign probe values to sample numbers for node in self.expr_brain.G.nodes(): if line[str(node)]: self.expr_brain.G.node[node][probe] = line[str(node)] else: self.expr_brain.G.node[node][probe] = None out_dict = {probe:probe, 'subj':self.allen_subj} for probe in list(prop_dict.keys()): out_dict[probe] = prop_dict[probe] if not dat_file: headers = [probe, "subj"] gm_subjs = list(prop_dict[list(probe_dict.keys())[0]].keys()) gm_subjs.sort() headers.extend(gm_subjs) dat_file = open(out_file.replace('.txt', probe+graph_metric_name+'.txt'), "wb") writer = csv.DictWriter(dat_file, fieldnames=headers, delimiter=" ") writer.writeheader() writer.writerow(out_dict) class multisubj: """ This object contains two 'brain' network objects, one for the imaging data and one for the Allen data. Embedded functions make a comparison between the imaging and Allen data by pairing nodes between the two network objects. """ def __init__(self, assoc_matrix, allen_dir="allen_data", nodesToExclude=[], delim=" ", subj_list=None, imaging_spatial_file="parcel_500.txt", symmetrise=False, convert_mni=True, mirror=True): self.allen_dir = allen_dir if subj_list: self.allen_subj_list = subj_list else: self.allen_subj_list = [path.basename(v) for v in glob(path.join(self.allen_dir, "17823*")) if path.isdir(path.join(self.allen_dir, v))] self.annotation_file = "SampleAnnot.csv" self.microarray_expression_file = "MicroarrayExpression.csv" self.probe_file = "Probes.csv" self.mirror = mirror # if symmetrise is true then regions are identified by the structure name, # if symmetrise is false, then regions are identified by the structural acronym # these refer to headers in the SampleAnnot.csv file if symmetrise: self.s_lab = "structure_acronym" else: self.s_lab = "structure_name" # set up brain for expression data self.expr_brain = brain.Brain() node_counter = 0 self.headers = {} # dictionary storing the list of nodes for each structural sa_id by subject # for use later in averaging across all subjects self.s_id_dict = {} for subj in self.allen_subj_list: self.s_id_dict[subj] = {} self.expr_brain = load_allen(subj, self.allen_dir, self.annotation_file, self.s_lab, convert_mni, mirror, node_counter, input_brain=self.expr_brain) node_counter = len(self.expr_brain.G.nodes()) # set up brain with graph properties self.imaging_brain = brain.Brain() self.imaging_brain.import_adj_file(assoc_matrix, delimiter=delim, nodes_to_exclude=nodesToExclude) self.imaging_brain.import_spatial_info(imaging_spatial_file, convert_mni=convert_mni) def comparison(self): """ set up dictionary to link nodes from probe data and graph keys are the mri nodes and values are dictionaries containing two keys: key 1= allen, value= (node_count=sa_id of closest allen node, dist=distance to closest allen node) key 2= mri, value= (node_count=sa_id of closest other mri node, dist=distance to closest mri node) """ imaging_node_dict = {} # iterate through the imaging nodes and find the closest Allen brain nodes for node in self.imaging_brain.G.nodes(): d_other = (None, 999.) # dummy length of 999 d_own = (None, 999.) # iterate through the Allen nodes for node_count in self.expr_brain.G.nodes(): # find the distance between the imaging and Allen nodes dist = np.linalg.norm(np.array(self.imaging_brain.G.node[node]['xyz'] - np.array(self.expr_brain.G.node[node_count]['xyz']))) if dist < d_other[1]: d_other = (node_count, dist) # now iterate through the imaging nodes to find the closest imaging node for node_count in [v for v in self.imaging_brain.G.nodes() if not v == node]: dist = np.linalg.norm(np.array(self.imaging_brain.G.node[node]['xyz'] - np.array(self.imaging_brain.G.node[node_count]['xyz']))) if dist < d_own[1]: d_own = (node_count, dist) imaging_node_dict[node] = {"allen":d_other, "MRIs":d_own} # iterate through the allen nodes to find the closest imaging node allen_node_dict = {} for node in self.expr_brain.G.nodes(): d_other = (None, 999.) d_own = (None, 999.) # iterate through the imaging nodes for node_count in self.imaging_brain.G.nodes(): dist = np.linalg.norm(np.array(self.expr_brain.G.node[node]['xyz'] - np.array(self.imaging_brain.G.node[node_count]['xyz']))) if dist < d_other[1]: d_other = (node_count, dist) # iterate through the allen nodes to find the closes node for node_count in [v for v in self.expr_brain.G.nodes() if not v == node]: dist = np.linalg.norm(np.array(self.expr_brain.G.node[node]['xyz'] - np.array(self.expr_brain.G.node[node_count]['xyz']))) if dist < d_own[1]: d_own = (node_count, dist) allen_node_dict[node] = {"allen":d_own, "MRIs":d_other} node_pairs = [] # create a list of node pairs # for each MRI node for node in list(imaging_node_dict.keys()): # find closest allen node 'node_count' node_count = imaging_node_dict[node]['allen'][0] self.imaging_brain.G.node[node]['pair'] = node_count self.expr_brain.G.node[node_count]['pair'] = node node_pairs.append((node, node_count)) for node in [v for v in self.expr_brain.G.nodes()]: if 'pair' not in list(self.expr_brain.G.node[node].keys()): self.expr_brain.G.remove_node(node) def comparisonaveraged(self): """ This function should generate sets of nodes in the imaging data associated with single nodes in the Allen data, ie all the closest imaging data nodes will be associated with any specific Allen node. """ for node_count in self.expr_brain.G.nodes(): self.expr_brain.G.node[node_count]['pairNodes'] = [] # iterate through imaging nodes to find closes Allen node for node in self.imaging_brain.G.nodes(): d_other = (None, 999.) # dummy length of 999 for node_count in self.expr_brain.G.nodes(): dist = np.linalg.norm(np.array(self.imaging_brain.G.node[node]['xyz'] - np.array(self.expr_brain.G.node[node_count]['xyz']))) if dist < d_other[1]: d_other = (node_count, dist) self.expr_brain.G.node[d_other[0]]['pairNodes'].append(node) for node in self.expr_brain.G.nodes(): if not self.expr_brain.G.node[node]['pairNodes']: self.expr_brain.G.remove_node(node) def probedata(self, probe_numbers=[], mean_vals=True): """ If mean_vals is specified, this takes the mean probe value across subjects """ for subj in self.allen_subj_list: # import probe data file = open(path.join(self.allen_dir, subj, self.microarray_expression_file), "r") reader = csv.DictReader(file, delimiter=",", fieldnames=self.headers[subj], quotechar='"') for line in reader: probe = line['probe'] if probe in probe_numbers: # assign probe values to sample numbers for c_node in self.imaging_brain.G.nodes(): node = self.imaging_brain.G.node[c_node]['pair'] s_id = self.expr_brain.G.node[node][self.s_lab] if not probe in list(self.expr_brain.G.node[node].keys()): self.expr_brain.G.node[node][probe] = {} if s_id in list(line.keys()): self.expr_brain.G.node[node][probe][subj] = line[s_id] file.close() del reader # self.expr_brain.G.nodes is a dict containing every # UNIQUE structure sa_id (across all subjects) if mean_vals: for node_count in self.expr_brain.G.nodes(): for probe in probe_numbers: self.expr_brain.G.node[node_count][probe] = np.mean([float(v) for v in list(self.expr_brain.G.node[node_count][probe].values())]) def xmatrix(self, out_file="Xmatrix.csv", allen_dir="allen_data", probe_numbers=None, temp_mat_name="tempMat.txt", st_dev=False, st_dev_file="NodesSd.txt"): """ Needs writing """ # get all probes if otherwise unspecified if not probe_numbers: file = open(path.join(allen_dir, self.allen_subj_list[0], self.probe_file)) reader = csv.DictReader(file, delimiter=",", quotechar='"') probe_numbers = [line['probe_id'] for line in reader] del reader file.close() # set up out file out = open(out_file, "wb") headers = ["Gene"] headers.extend([str(v) for v in self.imaging_brain.G.nodes()]) writer = csv.DictWriter(out, fieldnames=headers, delimiter=" ") writer.writeheader() # set up matrix x = len(self.allen_subj_list) y = len(probe_numbers) z = len(self.imaging_brain.G.nodes()) # max numbers of nodes for any region st = np.max([np.max([len(v) for v in list(self.s_id_dict[subj].values())]) for subj in list(self.s_id_dict.keys())]) probe_mat = np.memmap(temp_mat_name, dtype="float64", mode="w+", shape=(y, z, st*x)) # set up gene list gene_flag = True probe_file = open(path.join(allen_dir, self.allen_subj_list[0], self.probe_file)) probe_reader = csv.DictReader(probe_file, delimiter=",", quotechar='"') probe_dict = {line['probe_id']:line['gene_symbol'] for line in probe_reader} gene_list = list(probe_dict.values()) set(gene_list) gene_list = {gene:[] for gene in gene_list} s_id_list = [] for subj in self.allen_subj_list: s_id_list.extend([v for v in self.headers[subj] if not v == 'probe']) s_id_list = set(s_id_list) # get the corresponding node names in the MRI graph # c_nodes is a dict whose keys are all the MRI nodes and values are the matched alen nodes #### PV modified line below which constructed c_nodes by looping through allen nodes # but with PV's lax matching criteria several mri nodes can be matched to same allen node # the mri pair of these allen nodes gets overwritten in self.expr_brain.G.nodes and so not # all mri nodes will appear as pairs of allen nodes in this dict... need to look up pairs # in self.imaging_brain.G.nodes instead, where each mri node is matched to an allen region # c_nodes = {str(self.expr_brain.G.node[v]['pair']):v for v in self.expr_brain.G.nodes()} c_nodes = {str(v):self.imaging_brain.G.node[v]['pair'] for v in self.imaging_brain.G.nodes()} # assign values to matrix for x, subj in enumerate(self.allen_subj_list): print((str(subj))) print('\node_count') # Generate custom fieldnames list for DictReader which doesn'thresh rely on structure_id # ************************************* fieldnames_pv = ['probe'] my_node_dict = {} temp_headers = self.headers[subj] temp_headers.remove('probe') for p, q in enumerate(self.headers[subj]): my_node_dict[p] = q fieldnames_pv.append(str(p)) ##### # ************************************* # import probe data file = open(path.join(self.allen_dir, subj, self.microarray_expression_file), "r") reader = csv.DictReader(file, delimiter=",", fieldnames=fieldnames_pv, quotechar='"') y = 0 for line in reader: probe = line['probe'] if probe in probe_numbers: # assign probe values to sample numbers for z, c_node in enumerate(self.imaging_brain.G.nodes()): a_node = c_nodes[str(c_node)] # ************************************* # Find structure_acronym corresponding to the matched allen node acronym = self.expr_brain.G.node[a_node][self.s_lab] # Initialise list for summing expression values for # allen nodes with same structure_acronym total_expression = [] # Loop over allen nodes to find all those with the correct acronym # for the current MRI node and add their expression values to # the list for averaging s = 0 for sa_id, struct_ac in list(my_node_dict.items()): if struct_ac == acronym: # print(sa_id, struct_ac, line[str(sa_id)]) # print('\node_count') # if line[str(sa_id)]: total_expression.append(float(line[str(sa_id)])) probe_mat[y, z, st*x + s] = float(line[str(sa_id)]) s += 1 if gene_flag: # records the position of the probe in a dictionary with genes as a key gene_list[probe_dict[probe]].append(y) y += 1 file.close() del reader # get values to normalise expression levels for each probe within subject for y in range(probe_mat.shape[0]): # create a masked array removing the 0. values subj_mat = np.ma.array(probe_mat[y, :, st*x:st*x+st], mask=probe_mat[y, :, st*x:st*x+st] == 0., dtype="float64") subj_mat = (subj_mat - np.mean(np.ma.array(subj_mat, mask=subj_mat == 0.))) / np.std(np.ma.array(subj_mat, mask=subj_mat == 0.)) probe_mat[y, :, st*x:st*x+st] = subj_mat gene_flag = False # collapse across subjects and probes by gene gene_names = list(gene_list.keys()) gene_names.sort() # sort in to alphabetical order # collapse across nodes within regions (averaging across all subjects) sh = probe_mat.shape probe_mat_temp = np.memmap("probe_mat_temp.txt", mode="w+", dtype="float64", shape=sh[:2]) # write out the standard deviation for each probe if specified if st_dev: st_dev_out = open(st_dev_file, "wb") st_dev_out.writelines("Probe Node st_dev\node_count") for y in range(sh[0]): for z in range(sh[1]): # mask out unused values, ie where there are less than the maximum number # of homolous nodes in a structural region probe_mat_temp[y, z] = np.mean(np.ma.array(probe_mat[y, z], mask=probe_mat[y, z] == 0.)) if st_dev: std = np.std(np.ma.array(probe_mat[y, z], mask=probe_mat[y, z] == 0.)) st_dev_out.writelines(' '.join([str(int(probe_numbers[y])), str(self.imaging_brain.G.nodes()[z]), "{:2.5f}".format(float(std))])+'\node_count') if st_dev: st_dev_out.close() # reassign the probe matrix and delete temporary memory-mapped file probe_mat = probe_mat_temp del probe_mat_temp remove(temp_mat_name) for gene in gene_names: if gene_list[gene]: x = probe_mat.shape[1] # number of nodes y = len(gene_list[gene]) # number of probes gene_mat = np.zeros(shape=(x, y), dtype="float64") # nb: probe is the position of the probe recorded above for node_count, probe in enumerate(gene_list[gene]): gene_mat[:, node_count] = probe_mat[probe, :] # collapse values across probes for each gene mean_gene = np.mean(np.ma.array(gene_mat, mask=np.isnan(gene_mat)), axis=1) out_dict = dict(list(zip([str(v) for v in self.imaging_brain.G.nodes()], ["{:10.20f}".format(v) for v in mean_gene]))) out_dict["Gene"] = gene writer.writerow(out_dict) out.close() remove("probe_mat_temp.txt") # delete memory map file def ymatrixgroup(self, metric_dict, subj="Control", allen_dir="allen_data", out_file="YmatrixGroup.csv"): ''' Collates metrics in to a matrix for use in partial least squares analysis. Note, the metric_dict contains the metric name as a key and filename as the value. Takes group level measures ''' out = open(out_file, "wb") headers = ["Metric"] headers.extend([str(v) for v in self.imaging_brain.G.nodes()]) writer = csv.DictWriter(out, fieldnames=headers) writer.writeheader() # iterate through the metrics for m in list(metric_dict.keys()): file = open(path.join(allen_dir, subj, metric_dict[m]), "r") reader = csv.DictReader(file, delimiter=" ") line = next(reader) # remove non-numeric keys for v in list(line.keys()): try: int(v) except ValueError: del line[v] m_dict = {v:line[v] for v in list(line.keys()) if int(v) in self.imaging_brain.G.nodes()} file.close() # normalise within metric mean_metric = np.mean([float(v) for v in list(m_dict.values())]) sd_metric = np.std([float(v) for v in list(m_dict.values())]) m_dict = {str(v):(float(m_dict[str(v)])-mean_metric)/sd_metric for v in list(m_dict.keys())} m_dict["Metric"] = m writer.writerow(m_dict) def ymatrixindividuals(self, metric_dict, subj_list, allen_dir="allen_data", out_file="YmatrixInd.csv"): ''' Collates metrics in to a matrix for use in partial least squares analysis. Note, the metric_dict contains the metric name as a key and filename as the value. Takes metrics for individual subjects defined in the subject list. ''' out = open(out_file, "wb") headers = ["Metric", "Subject"] headers.extend([str(v) for v in self.imaging_brain.G.nodes()]) writer = csv.DictWriter(out, fieldnames=headers) writer.writeheader() # iterate through the metrics for m in list(metric_dict.keys()): for subj in subj_list: file = open(path.join(allen_dir, subj, metric_dict[m]), "r") reader = csv.DictReader(file, delimiter=" ") line = next(reader) # remove non-numeric keys for v in list(line.keys()): try: int(v) except ValueError: del line[v] m_dict = {v:line[v] for v in list(line.keys()) if int(v) in self.imaging_brain.G.nodes()} file.close() # normalise within metric mean_metric = np.mean([float(v) for v in list(m_dict.values())]) sd_metric = np.std([float(v) for v in list(m_dict.values())]) m_dict = {str(v):(float(m_dict[str(v)]) - mean_metric) / sd_metric for v in list(m_dict.keys())} m_dict["Metric"] = m m_dict["Subject"] = subj writer.writerow(m_dict) def load_allen(subject, allen_dir, annotation_file, s_lab, convert_mni, mirror, node_counter=0, input_brain=None ): """ Function for loading the data from a single Allen Brain atlas subject. subject = number of the allen subject allen_dir = the directory where allen data is located annotation_file = the file containing allen annotation, usually SampleAnnot.csv s_lab = Structural label, dictated by whether the brain is being symmetrised convert_mni = whether to convert allen data to MNI space mirror = whether to mirror the values node_count = numbers nodes, important if multiple subjects are being imported and compared input_brain = existing brain object, useful if multiple subjects """ # import probe data file = open(path.join(allen_dir, subject, annotation_file), "r") reader = csv.DictReader(file, delimiter=",", quotechar='"') # define brain object if input_brain: expr_brain = input_brain else: expr_brain = brain.Brain() # import probe data file = open(path.join(allen_dir, subject, annotation_file), "r") reader = csv.DictReader(file, delimiter=",", quotechar='"') for line in reader: s_id = line[s_lab] expr_brain.G.add_node(node_counter) # give nodes unique incremental sa_id (across all subjects) brain.nx.set_node_attributes(expr_brain.G, {node_counter: line}) # store the structure_acronym/structure_name for the node brain.nx.set_node_attributes(expr_brain.G, {node_counter: {'s_id': s_id}}) node_counter += 1 # store structure_acronym or structure_name depending on symmetrise # headers.append(s_id) # if not s_id in list(s_id_dict.keys()): # s_id_dict[s_id] = [node_count] # else: # s_id_dict[s_id].append(node_count) file.close() if convert_mni: # convert location data for Allen brain from MNI space for node_count in expr_brain.G.nodes(): x = 45 - (float(expr_brain.G.node[node_count]['mni_x'])/2) y = 63 + (float(expr_brain.G.node[node_count]['mni_y'])/2) z = 36 + (float(expr_brain.G.node[node_count]['mni_z'])/2) expr_brain.G.node[node_count]['xyz'] = (x, y, z) midline = 45 # midline for mirroring nodes conv = "neuro" else: for node_count in expr_brain.G.nodes(): x = float(expr_brain.G.node[node_count]['mni_x']) y = float(expr_brain.G.node[node_count]['mni_y']) z = float(expr_brain.G.node[node_count]['mni_z']) expr_brain.G.node[node_count]['xyz'] = (x, y, z) midline = 0 # midline for mirroring nodes conv = "radio" # copy hemisphere if required if mirror and len(expr_brain.G.nodes()) < 600: expr_brain.copy_hemisphere(hsphere="L", midline=midline, conv=conv) return(expr_brain)
the-stack_0_10570
import pytest # type: ignore from openstates.cli.update import override_settings class _Settings: pass @pytest.fixture def settings(): ret = _Settings() ret.foo = "bar" ret.baz = "bob" return ret def test_override_settings(settings): with override_settings(settings, {"baz": "fez"}): assert settings.foo == "bar" assert settings.baz == "fez" assert settings.foo == "bar" assert settings.baz == "bob" def test_override_settings_unset(settings): with override_settings(settings, {"qux": "fez"}): assert settings.qux == "fez" assert not hasattr(settings, "qux")
the-stack_0_10573
import os from saleor.account import models import secrets from itertools import chain from typing import Iterable, Tuple, Union import graphene from django.core.exceptions import ( NON_FIELD_ERRORS, ImproperlyConfigured, ValidationError, ) from django.core.files.storage import default_storage from django.db.models.fields.files import FileField from graphene import ObjectType from graphene.types.mutation import MutationOptions from graphene_django.registry import get_global_registry from graphql.error import GraphQLError from ...core.exceptions import PermissionDenied from ...core.permissions import AccountPermissions from ..decorators import staff_member_or_app_required from ..utils import get_nodes, resolve_global_ids_to_primary_keys from .descriptions import DEPRECATED_IN_3X_FIELD from .types import File, Upload from .types.common import UploadError from .utils import from_global_id_or_error, snake_to_camel_case from .utils.error_codes import get_error_code_from_error registry = get_global_registry() def get_model_name(model): """Return name of the model with first letter lowercase.""" model_name = model.__name__ return model_name[:1].lower() + model_name[1:] def get_error_fields(error_type_class, error_type_field, deprecation_reason=None): error_field = graphene.Field( graphene.List( graphene.NonNull(error_type_class), description="List of errors that occurred executing the mutation.", ), default_value=[], required=True, ) if deprecation_reason is not None: error_field.deprecation_reason = deprecation_reason return {error_type_field: error_field} def validation_error_to_error_type( validation_error: ValidationError, error_type_class ) -> list: """Convert a ValidationError into a list of Error types.""" err_list = [] error_class_fields = set(error_type_class._meta.fields.keys()) if hasattr(validation_error, "error_dict"): # convert field errors for field, field_errors in validation_error.error_dict.items(): field = None if field == NON_FIELD_ERRORS else snake_to_camel_case(field) for err in field_errors: error = error_type_class( field=field, message=err.messages[0], code=get_error_code_from_error(err), ) attach_error_params(error, err.params, error_class_fields) err_list.append(error) else: # convert non-field errors for err in validation_error.error_list: error = error_type_class( message=err.messages[0], code=get_error_code_from_error(err), ) attach_error_params(error, err.params, error_class_fields) err_list.append(error) return err_list def attach_error_params(error, params: dict, error_class_fields: set): if not params: return {} # If some of the params key overlap with error class fields # attach param value to the error error_fields_in_params = set(params.keys()) & error_class_fields for error_field in error_fields_in_params: setattr(error, error_field, params[error_field]) class ModelMutationOptions(MutationOptions): exclude = None model = None return_field_name = None class BaseMutation(graphene.Mutation): class Meta: abstract = True @classmethod def __init_subclass_with_meta__( cls, description=None, permissions: Tuple = None, _meta=None, error_type_class=None, error_type_field=None, errors_mapping=None, **options, ): if not _meta: _meta = MutationOptions(cls) if not description: raise ImproperlyConfigured("No description provided in Meta") if not error_type_class: raise ImproperlyConfigured("No error_type_class provided in Meta.") if isinstance(permissions, str): permissions = (permissions,) if permissions and not isinstance(permissions, tuple): raise ImproperlyConfigured( "Permissions should be a tuple or a string in Meta" ) _meta.permissions = permissions _meta.error_type_class = error_type_class _meta.error_type_field = error_type_field _meta.errors_mapping = errors_mapping super().__init_subclass_with_meta__( description=description, _meta=_meta, **options ) if error_type_field: deprecated_msg = f"{DEPRECATED_IN_3X_FIELD} Use `errors` field instead." cls._meta.fields.update( get_error_fields( error_type_class, error_type_field, deprecated_msg, ) ) cls._meta.fields.update(get_error_fields(error_type_class, "errors")) @classmethod def _update_mutation_arguments_and_fields(cls, arguments, fields): cls._meta.arguments.update(arguments) cls._meta.fields.update(fields) @classmethod def _get_node_by_pk( cls, info, graphene_type: ObjectType, pk: Union[int, str], qs=None ): """Attempt to resolve a node from the given internal ID. Whether by using the provided query set object or by calling type's get_node(). """ if qs is not None: return qs.filter(pk=pk).first() get_node = getattr(graphene_type, "get_node", None) if get_node: return get_node(info, pk) return None @classmethod def get_global_id_or_error( cls, id: str, only_type: Union[ObjectType, str] = None, field: str = "id" ): try: _object_type, pk = from_global_id_or_error(id, only_type, raise_error=True) except GraphQLError as e: raise ValidationError( {field: ValidationError(str(e), code="graphql_error")} ) return pk @classmethod def get_node_or_error(cls, info, node_id, field="id", only_type=None, qs=None): if not node_id: return None try: object_type, pk = from_global_id_or_error( node_id, only_type, raise_error=True ) if isinstance(object_type, str): object_type = info.schema.get_type(object_type).graphene_type node = cls._get_node_by_pk(info, graphene_type=object_type, pk=pk, qs=qs) except (AssertionError, GraphQLError) as e: raise ValidationError( {field: ValidationError(str(e), code="graphql_error")} ) else: if node is None: raise ValidationError( { field: ValidationError( "Couldn't resolve to a node: %s" % node_id, code="not_found" ) } ) return node @classmethod def get_global_ids_or_error( cls, ids: Iterable[str], only_type: Union[ObjectType, str] = None, field: str = "ids", ): try: _nodes_type, pks = resolve_global_ids_to_primary_keys( ids, only_type, raise_error=True ) except GraphQLError as e: raise ValidationError( {field: ValidationError(str(e), code="graphql_error")} ) return pks @classmethod def get_nodes_or_error(cls, ids, field, only_type=None, qs=None): try: instances = get_nodes(ids, only_type, qs=qs) except GraphQLError as e: raise ValidationError( {field: ValidationError(str(e), code="graphql_error")} ) return instances @staticmethod def remap_error_fields(validation_error, field_map): """Rename validation_error fields according to provided field_map. Skips renaming fields from field_map that are not on validation_error. """ for old_field, new_field in field_map.items(): try: validation_error.error_dict[ new_field ] = validation_error.error_dict.pop(old_field) except KeyError: pass @classmethod def clean_instance(cls, info, instance): """Clean the instance that was created using the input data. Once an instance is created, this method runs `full_clean()` to perform model validation. """ try: instance.full_clean() except ValidationError as error: if hasattr(cls._meta, "exclude"): # Ignore validation errors for fields that are specified as # excluded. new_error_dict = {} for field, errors in error.error_dict.items(): if field not in cls._meta.exclude: new_error_dict[field] = errors error.error_dict = new_error_dict if cls._meta.errors_mapping: cls.remap_error_fields(error, cls._meta.errors_mapping) if error.error_dict: raise error @classmethod def construct_instance(cls, instance, cleaned_data): """Fill instance fields with cleaned data. The `instance` argument is either an empty instance of a already existing one which was fetched from the database. `cleaned_data` is data to be set in instance fields. Returns `instance` with filled fields, but not saved to the database. """ from django.db import models opts = instance._meta for f in opts.fields: if any( [ not f.editable, isinstance(f, models.AutoField), f.name not in cleaned_data, ] ): continue data = cleaned_data[f.name] if data is None: # We want to reset the file field value when None was passed # in the input, but `FileField.save_form_data` ignores None # values. In that case we manually pass False which clears # the file. if isinstance(f, FileField): data = False if not f.null: data = f._get_default() f.save_form_data(instance, data) return instance @classmethod def check_permissions(cls, context, permissions=None): """Determine whether user or app has rights to perform this mutation. Default implementation assumes that account is allowed to perform any mutation. By overriding this method or defining required permissions in the meta-class, you can restrict access to it. The `context` parameter is the Context instance associated with the request. """ permissions = permissions or cls._meta.permissions if not permissions: return True user: models.User = context.user if user.has_perms(permissions): return True app = getattr(context, "app", None) if app: # for now MANAGE_STAFF permission for app is not supported if AccountPermissions.MANAGE_STAFF in permissions: return False return app.has_perms(permissions) return False @classmethod def mutate(cls, root, info, **data): if not cls.check_permissions(info.context): raise PermissionDenied() try: response = cls.perform_mutation(root, info, **data) if response.errors is None: response.errors = [] return response except ValidationError as e: return cls.handle_errors(e) @classmethod def perform_mutation(cls, root, info, **data): pass @classmethod def handle_errors(cls, error: ValidationError, **extra): error_list = validation_error_to_error_type(error, cls._meta.error_type_class) return cls.handle_typed_errors(error_list, **extra) @classmethod def handle_typed_errors(cls, errors: list, **extra): """Return class instance with errors.""" if cls._meta.error_type_field is not None: extra.update({cls._meta.error_type_field: errors}) return cls(errors=errors, **extra) class ModelMutation(BaseMutation): class Meta: abstract = True @classmethod def __init_subclass_with_meta__( cls, arguments=None, model=None, exclude=None, return_field_name=None, _meta=None, **options, ): if not model: raise ImproperlyConfigured("model is required for ModelMutation") if not _meta: _meta = ModelMutationOptions(cls) if exclude is None: exclude = [] if not return_field_name: return_field_name = get_model_name(model) if arguments is None: arguments = {} _meta.model = model _meta.return_field_name = return_field_name _meta.exclude = exclude super().__init_subclass_with_meta__(_meta=_meta, **options) model_type = cls.get_type_for_model() if not model_type: raise ImproperlyConfigured( "Unable to find type for model %s in graphene registry" % model.__name__ ) fields = {return_field_name: graphene.Field(model_type)} cls._update_mutation_arguments_and_fields(arguments=arguments, fields=fields) @classmethod def clean_input(cls, info, instance, data, input_cls=None): """Clean input data received from mutation arguments. Fields containing IDs or lists of IDs are automatically resolved into model instances. `instance` argument is the model instance the mutation is operating on (before setting the input data). `input` is raw input data the mutation receives. Override this method to provide custom transformations of incoming data. """ def is_list_of_ids(field): if isinstance(field.type, graphene.List): of_type = field.type.of_type if isinstance(of_type, graphene.NonNull): of_type = of_type.of_type return of_type == graphene.ID return False def is_id_field(field): return ( field.type == graphene.ID or isinstance(field.type, graphene.NonNull) and field.type.of_type == graphene.ID ) def is_upload_field(field): if hasattr(field.type, "of_type"): return field.type.of_type == Upload return field.type == Upload if not input_cls: input_cls = getattr(cls.Arguments, "input") cleaned_input = {} for field_name, field_item in input_cls._meta.fields.items(): if field_name in data: value = data[field_name] # handle list of IDs field if value is not None and is_list_of_ids(field_item): instances = ( cls.get_nodes_or_error(value, field_name) if value else [] ) cleaned_input[field_name] = instances # handle ID field elif value is not None and is_id_field(field_item): instance = cls.get_node_or_error(info, value, field_name) cleaned_input[field_name] = instance # handle uploaded files elif value is not None and is_upload_field(field_item): value = info.context.FILES.get(value) cleaned_input[field_name] = value # handle other fields else: cleaned_input[field_name] = value return cleaned_input @classmethod def _save_m2m(cls, info, instance, cleaned_data): opts = instance._meta for f in chain(opts.many_to_many, opts.private_fields): if not hasattr(f, "save_form_data"): continue if f.name in cleaned_data and cleaned_data[f.name] is not None: f.save_form_data(instance, cleaned_data[f.name]) @classmethod def success_response(cls, instance): """Return a success response.""" return cls(**{cls._meta.return_field_name: instance, "errors": []}) @classmethod def save(cls, info, instance, cleaned_input): instance.save() @classmethod def get_type_for_model(cls): return registry.get_type_for_model(cls._meta.model) @classmethod def get_instance(cls, info, **data): """Retrieve an instance from the supplied global id. The expected graphene type can be lazy (str). """ object_id = data.get("id") qs = data.get("qs") if object_id: model_type = cls.get_type_for_model() instance = cls.get_node_or_error( info, object_id, only_type=model_type, qs=qs ) else: instance = cls._meta.model() return instance @classmethod def post_save_action(cls, info, instance, cleaned_input): """Perform an action after saving an object and its m2m.""" pass @classmethod def perform_mutation(cls, _root, info, **data): """Perform model mutation. Depending on the input data, `mutate` either creates a new instance or updates an existing one. If `id` argument is present, it is assumed that this is an "update" mutation. Otherwise, a new instance is created based on the model associated with this mutation. """ instance = cls.get_instance(info, **data) data = data.get("input") cleaned_input = cls.clean_input(info, instance, data) instance = cls.construct_instance(instance, cleaned_input) cls.clean_instance(info, instance) cls.save(info, instance, cleaned_input) cls._save_m2m(info, instance, cleaned_input) cls.post_save_action(info, instance, cleaned_input) return cls.success_response(instance) class ModelDeleteMutation(ModelMutation): class Meta: abstract = True @classmethod def clean_instance(cls, info, instance): """Perform additional logic before deleting the model instance. Override this method to raise custom validation error and abort the deletion process. """ @classmethod def perform_mutation(cls, _root, info, **data): """Perform a mutation that deletes a model instance.""" if not cls.check_permissions(info.context): raise PermissionDenied() node_id = data.get("id") model_type = cls.get_type_for_model() instance = cls.get_node_or_error(info, node_id, only_type=model_type) if instance: cls.clean_instance(info, instance) db_id = instance.id instance.delete() # After the instance is deleted, set its ID to the original database's # ID so that the success response contains ID of the deleted object. instance.id = db_id return cls.success_response(instance) class BaseBulkMutation(BaseMutation): count = graphene.Int( required=True, description="Returns how many objects were affected." ) class Meta: abstract = True @classmethod def __init_subclass_with_meta__(cls, model=None, _meta=None, **kwargs): if not model: raise ImproperlyConfigured("model is required for bulk mutation") if not _meta: _meta = ModelMutationOptions(cls) _meta.model = model super().__init_subclass_with_meta__(_meta=_meta, **kwargs) @classmethod def clean_instance(cls, info, instance): """Perform additional logic. Override this method to raise custom validation error and prevent bulk action on the instance. """ @classmethod def bulk_action(cls, info, queryset, **kwargs): """Implement action performed on queryset.""" raise NotImplementedError @classmethod def perform_mutation(cls, _root, info, ids, **data): """Perform a mutation that deletes a list of model instances.""" clean_instance_ids, errors = [], {} # Allow to pass empty list for dummy mutation if not ids: return 0, errors instance_model = cls._meta.model model_type = registry.get_type_for_model(instance_model) try: instances = cls.get_nodes_or_error(ids, "id", model_type) except ValidationError as error: return 0, error for instance, node_id in zip(instances, ids): instance_errors = [] # catch individual validation errors to raise them later as # a single error try: cls.clean_instance(info, instance) except ValidationError as e: msg = ". ".join(e.messages) instance_errors.append(msg) if not instance_errors: clean_instance_ids.append(instance.pk) else: instance_errors_msg = ". ".join(instance_errors) ValidationError({node_id: instance_errors_msg}).update_error_dict( errors ) if errors: errors = ValidationError(errors) count = len(clean_instance_ids) if count: qs = instance_model.objects.filter(pk__in=clean_instance_ids) cls.bulk_action(info=info, queryset=qs, **data) return count, errors @classmethod def mutate(cls, root, info, **data): if not cls.check_permissions(info.context): raise PermissionDenied() count, errors = cls.perform_mutation(root, info, **data) if errors: return cls.handle_errors(errors, count=count) return cls(errors=errors, count=count) class ModelBulkDeleteMutation(BaseBulkMutation): class Meta: abstract = True @classmethod def bulk_action(cls, info, queryset): queryset.delete() class FileUpload(BaseMutation): uploaded_file = graphene.Field(File) class Arguments: file = Upload( required=True, description="Represents a file in a multipart request." ) class Meta: description = ( "Upload a file. This mutation must be sent as a `multipart` " "request. More detailed specs of the upload format can be found here: " "https://github.com/jaydenseric/graphql-multipart-request-spec" ) error_type_class = UploadError error_type_field = "upload_errors" @classmethod @staff_member_or_app_required def perform_mutation(cls, _root, info, **data): file_data = info.context.FILES.get(data["file"]) # add unique text fragment to the file name to prevent file overriding file_name, format = os.path.splitext(file_data._name) hash = secrets.token_hex(nbytes=4) new_name = f"file_upload/{file_name}_{hash}{format}" path = default_storage.save(new_name, file_data.file) return FileUpload( uploaded_file=File(url=path, content_type=file_data.content_type) )
the-stack_0_10574
import librosa import numpy as np from .utils import Util from sklearn.preprocessing import StandardScaler import pandas as pd from numpy.linalg import det from multiprocessing.dummy import Pool as ThreadPool #from multiprocessing import Pool from concurrent.futures import ThreadPoolExecutor class FeatureAggregator(object): def __init__(self, data, parallel=False): self.data = data self.parallel = parallel def get_features(self, feature_to_extract=None): generators = [MFCC, ZeroCrossing, CentroidsRolloff, Rhythm, Energy] MFCC_names = ['MFCC_' + str(i) for i in range(1,21)] + ['det_cov_MFCC'] statistics = ['median', 'mean', 'max', 'min', 'std'] ZRC_names = ['ZRC_' + statistic for statistic in statistics] Centroids_names = ['Centroids_' + statistic for statistic in statistics] Rolloff_names = ['Rolloff_' + statistic for statistic in statistics] Rhythm_names = ['tempo'] + ['AutoCorr_mean'] + ['AutoCorr_std'] +\ ['Tempogram_' + statistic for statistic in statistics] Energy_names = ['Chroma_' + str(i) for i in range(1,13)] + ['Low_energy'] +\ ['Flux' + statistic for statistic in statistics] if self.parallel: with ThreadPoolExecutor(len(generators)) as pool: parallel_results = pool.map(self.generate, generators) result = np.hstack(parallel_results) else: result = [np.hstack([generator(self.data).generate() for generator in generators])] return (result, MFCC_names + ZRC_names + Centroids_names + Rolloff_names + Rhythm_names + Energy_names) def generate(self, generator): result = generator(self.data).generate() print("Done ", generator) return result class FeatureExtractor(object): def __init__(self, data, verbose=True, sr=22050): self.data = data self.util = Util() self.verbose = verbose self.sr = sr def generate(self): raise NotImplementedError() class MFCC(FeatureExtractor): def __init__(self, data, sr=22050, n_mfcc=20): self.n_mfcc = n_mfcc super().__init__(data, sr) def generate(self): mfcc_means = np.empty((len(self.data), self.n_mfcc + 1)) # Generate mfcc means matrix MxN_MFCC for i, song in enumerate(self.data): if self.verbose and i % 100 == 0: print("Got mfcc for {0} songs".format(i)) mfcc = librosa.feature.mfcc(song, sr=self.sr, n_mfcc=self.n_mfcc) #mfcc_scaled = self.std_scaler.fit_transform(mfcc) mfcc_mean = mfcc.mean(axis=1) mfcc_means[i] = np.append(mfcc_mean, det( np.cov(mfcc, rowvar=True))) return mfcc_means class ZeroCrossing(FeatureExtractor): def generate(self): zero_crossing_rates = np.empty((len(self.data), 5)) for i, song in enumerate(self.data): if self.verbose and i % 100 == 0: print("Got zero_cross_rate for {0} songs".format(i)) zcr = librosa.feature.zero_crossing_rate(song) features = self.util.vector_to_features(zcr) zero_crossing_rates[i] = features return zero_crossing_rates class CentroidsRolloff(FeatureExtractor): def generate(self): """ Generate centroids, rolloff features """ centroid_meanstd = np.empty((len(self.data), 5)) rolloff_meanstd = np.empty((len(self.data), 5)) for i, song in enumerate(self.data): if self.verbose and i % 100 == 0: print("Got centroid data for {0} songs".format(i)) cent = librosa.feature.spectral_centroid(y=song, sr=self.sr) centroid_features = self.util.vector_to_features(cent) centroid_meanstd[i] = centroid_features rolloff = librosa.feature.spectral_rolloff( y=song, sr=self.sr, roll_percent=0.85)[0] rolloff_features = self.util.vector_to_features(rolloff) rolloff_meanstd[i, :] = rolloff_features result = np.hstack([centroid_meanstd, rolloff_meanstd]) return result class Rhythm(FeatureExtractor): def generate(self): rhythm_bpm = np.empty((len(self.data), 8)) for i, song in enumerate(self.data): if self.verbose and i % 100 == 0: print("Got rhythm data for {0} songs".format(i)) oenv = librosa.onset.onset_strength(y=song, sr=self.sr) # tempo = librosa.beat.tempo(onset_envelope=onset_env, sr=self.sr) # dtempo = librosa.beat.tempo( # onset_envelope=onset_env, sr=self.sr, aggregate=None) tempogram = librosa.feature.tempogram( onset_envelope=oenv, sr=self.sr) tempogram_features = self.util.vector_to_features(tempogram) ac_global = librosa.autocorrelate( oenv, max_size=tempogram.shape[0]) ac_global = librosa.util.normalize(ac_global) tempo = librosa.beat.tempo(onset_envelope=oenv, sr=self.sr) rhythm_bpm[i] = np.hstack([tempo, ac_global.mean(), ac_global.std(), tempogram_features]) return rhythm_bpm class Energy(FeatureExtractor): def generate(self): flux_meanstd = np.empty((len(self.data), 5)) low_energy = np.empty((len(self.data), 1)) chroma_feature = np.empty((len(self.data), 12)) for i, song in enumerate(self.data): if self.verbose and i % 100 == 0: print("Got rmse data for {0} songs".format(i)) rmse = librosa.feature.rmse(y=song) mean_rmse = rmse.mean() low_energy[i] = np.sum(rmse <= mean_rmse) / len(rmse) max_rmse = rmse.max() rmse = np.where(rmse == 0, 1, rmse) D = librosa.stft(y=song) / rmse flux = np.sqrt((np.abs((D[:, 1:] - D[:, :-1]))**2).sum(axis=0)) flux_features = self.util.vector_to_features(flux) flux_meanstd[i] = flux_features chroma = librosa.feature.chroma_cens(y=song, sr=self.sr) chroma_feature[i] = chroma.mean(axis=1) result = np.hstack([chroma_feature, low_energy, flux_meanstd]) return result
the-stack_0_10575
################################################################################## # name: classifier # file: sort.py # date: 11-05-2021 # author: @nilspinnau, Nils Pinnau # description: file to split the data into training + validating and testing set ################################################################################## import os import argparse import csv import random import os parser = argparse.ArgumentParser( description="Sorting class folders for training + validating + testing") parser.add_argument("--set", help="set to sort") parser.add_argument( "--dir", help="root dir where char images are located") parser.add_argument( "--val_size", help="size in decimal (1.0 - 0.0) of val set") parser.add_argument( "--max_size", type=int, help="max size of elements in each set") parser.add_argument( "--remove", action="store_true", help="remove wrong images") def main(): args = parser.parse_args() class_set = "set" if args.set: class_set = args.set root_dir = "./" if args.dir: root_dir = args.dir if args.remove: remove(root_dir) return val_size = 0.2 if args.val_size: val_size = args.val_size labels = os.listdir(os.path.join(root_dir, class_set)) val_csv = open(os.path.join(root_dir, class_set, "val.csv"), "w") train_csv = open(os.path.join(root_dir, class_set, "train.csv"), "w") test_csv = open(os.path.join(root_dir, class_set, "test.csv"), "w") test_csv = csv.writer(test_csv) val_csv = csv.writer(val_csv) train_csv = csv.writer(train_csv) # high performance gain by only iterating once over the images and not 4 times ?! for i in labels: # separate the images images = [os.path.relpath(os.path.join(root_dir, class_set, str(i), p)) for p in os.listdir(os.path.join( root_dir, class_set, str(i))) if p.endswith(('jpg', 'png'))] # randomize the images for validation and trainset j = 0 to_test = args.max_size/len(images) for img in images: if (j < 0.1 * len(images)): test_csv.writerow([img, str(i)]) elif (random.random() > to_test): test_csv.writerow([img, str(i)]) continue j += 1 if random.random() < float(val_size): val_csv.writerow([img, str(i)]) else: train_csv.writerow([img, str(i)]) return 0 if __name__ == "__main__": main()
the-stack_0_10577
from minqlx import Plugin, thread, next_frame import time import random import threading class thirtysecwarn(Plugin): """Created by Thomas Jones on 01/09/2016 - [email protected] thirtysecwarn.py - a minqlx plugin to play unused VO when a CA game is nearing the round time limit. This plugin is released to everyone, for any purpose. It comes with no warranty, no guarantee it works, it's released AS IS. You can modify everything, except for lines 1-4 and the !tomtec_versions code. They're there to indicate I whacked this together originally. Please make it better :D Completely rebuild by iouonegirl and Gelenkbusfahrer on 25/09/2017, customization of sounds and unit tests added by ShiN0 somewhen in October 2017 """ def __init__(self): super().__init__() self.add_hook("round_start", self.handle_round_start) self.add_hook("round_end", self.handle_round_end) self.add_hook("game_start", self.handle_game_start) self.set_cvar_once("qlx_thirtySecondWarnAnnouncer", "standard") self.announcerMap = { "standard": "sound/vo/30_second_warning.ogg", "female": "sound/vo_female/30_second_warning.ogg", "evil": "sound/vo_evil/30_second_warning.ogg" } self.warner_thread_name = None def handle_game_start(self, game): self.warner_thread_name = None def handle_round_end(self, data): self.warner_thread_name = None def handle_round_start(self, round_number): self.warntimer() @thread def warntimer(self): warner_thread_name = threading.current_thread().name self.warner_thread_name = warner_thread_name timer_delay = self.get_cvar("roundtimelimit", int) - 30 time.sleep(timer_delay) self.play_thirty_second_warning(warner_thread_name) @next_frame def play_thirty_second_warning(self, warner_thread_name): if not self.game: return if not self.game.type_short == "ca": return if not self.game.state == "in_progress": return if not self.warner_thread_name == warner_thread_name: return # passed all conditions, play sound Plugin.play_sound(self.get_announcer_sound()) def get_announcer_sound(self): qlx_thirtySecondWarnAnnouncer = self.get_cvar("qlx_thirtySecondWarnAnnouncer") if qlx_thirtySecondWarnAnnouncer == "random": return self.random_announcer() if qlx_thirtySecondWarnAnnouncer not in self.announcerMap: qlx_thirtySecondWarnAnnouncer = "standard" return self.announcerMap[qlx_thirtySecondWarnAnnouncer] def random_announcer(self): key, sound = random.choice(list(self.announcerMap.items())) return sound
the-stack_0_10578
from appdirs import user_config_dir, site_config_dir, user_cache_dir import os import platform APP_NAME = "xicam" APP_AUTHOR = "CAMERA" user_cache_dir = user_cache_dir(appname=APP_NAME, appauthor=APP_AUTHOR) site_config_dir = site_config_dir(appname=APP_NAME, appauthor=APP_AUTHOR) user_config_dir = user_config_dir(appname=APP_NAME, appauthor=APP_AUTHOR) user_dev_dir = os.path.expanduser("~/Xi-cam/plugins") op_sys = platform.system() if op_sys == "Darwin": # User config dir incompatible with venv on darwin (space in path name conflicts) user_plugin_dir = os.path.join(user_cache_dir, "plugins") else: user_plugin_dir = os.path.join(user_config_dir, "plugins") site_plugin_dir = os.path.join(site_config_dir, "plugins") def init_dir(path): try: os.makedirs(path) except FileExistsError: pass def init_dirs(): for path in [user_cache_dir, user_config_dir, user_plugin_dir, user_dev_dir]: init_dir(path)
the-stack_0_10579
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=invalid-name, import-self, len-as-condition, unused-argument, too-many-lines # pylint: disable=import-outside-toplevel """ONNX: Open Neural Network Exchange frontend for Relay.""" import numpy as np import tvm from tvm.ir import IRModule from ... import nd as _nd from .. import analysis from .. import expr as _expr from .. import function as _function from .. import op as _op from .. import vision as _vision from .common import AttrCvt, Renamer from .common import get_relay_op, new_var, infer_shape, infer_channels from .common import infer_type, infer_value, infer_value_simulated, get_name __all__ = ['from_onnx'] class onnx_input(): """ Dual purpose list or dictionary access object.""" def __init__(self): self.input_keys = [] self.input_dict = {} def __getitem__(self, item): if isinstance(item, int): return self.input_dict[self.input_keys[item]] if isinstance(item, str): if item not in self.input_keys: return None return self.input_dict[item] if isinstance(item, slice): keys = self.input_keys[item] return [self.input_dict[key] for key in keys] raise ValueError("Only integer, string, and slice accesses allowed.") def __setitem__(self, item, value): if isinstance(item, int): self.input_dict[self.input_keys[item]] = value elif isinstance(item, str): self.input_keys.append(item) self.input_dict[item] = value else: raise ValueError("Only integer and string indexed writes allowed.") def keys(self): return self.input_keys def __len__(self): return len(self.input_keys) def __iter__(self): self.n = 0 return self def __next__(self): if self.n < len(self.input_keys): output = self.input_dict[self.input_keys[self.n]] self.n += 1 return output raise StopIteration def get_numpy(tensor_proto): """Grab data in TensorProto and convert to numpy array.""" try: from onnx.numpy_helper import to_array except ImportError as e: raise ImportError( "Unable to import onnx which is required {}".format(e)) return to_array(tensor_proto) def dimension_picker(prefix, suffix=''): """Check that dimensions are supported.""" def _impl(attr): kernel = attr['kernel_shape'] if len(kernel) == 1: return prefix + '1d' + suffix if len(kernel) == 2: return prefix + '2d' + suffix if len(kernel) == 3: return prefix + '3d' + suffix msg = 'Only 1D, 2D, and 3D kernels are supported for operator {}.' op_name = prefix + '1d/2d/3d' raise tvm.error.OpAttributeInvalid(msg.format(op_name)) return _impl def revert_caffe2_pad(pads): """Caffe2 requires two times the normal padding.""" if len(pads) == 4: pads = pads[:2] elif len(pads) == 2: pass else: raise tvm.error.OpAttributeInvalid( 'Number of pads must be either 2 or 4.') return pads def get_pad_pair(input1d, kernel1d, stride1d): """infer pad size""" if input1d % stride1d == 0: pad = max(kernel1d - stride1d, 0) else: pad = max(kernel1d - (input1d % stride1d), 0) pad_before = pad // 2 pad_after = pad - pad_before return [pad_before, pad_after] def onnx_default_layout(dims): if dims == 1: return 'NCW' if dims == 2: return 'NCHW' if dims == 3: return 'NCDHW' msg = "Only 1D, 2D and 3D layouts are currently supported" raise tvm.error.OpAttributeInvalid(msg.format(op_name)) def onnx_storage_order2layout(storage_order, dims=2): """converter of onnx storage order parameter to tvm storage order format""" if storage_order not in (0, 1): raise tvm.error.OpAttributeInvalid('Mode of storage_order must be either 0 or 1') if dims == 1: return 'NCW' if storage_order == 0 else 'NWC' if dims == 2: return 'NCHW' if storage_order == 0 else 'NHWC' if dims == 3: return 'NCDHW' if storage_order == 0 else 'NDHWC' msg = "Only 1D, 2D and 3D layouts are currently supported" raise tvm.error.OpAttributeInvalid(msg.format(op_name)) def dimension_constraint(): def _dim_check(attrs): if len(attrs['kernel_shape']) in [1, 2, 3]: return True return False return _dim_check, "Only 1d, 2d and 3d kernel supported." class OnnxOpConverter(object): """ A helper class for holding onnx op converters. """ @classmethod def get_converter(cls, opset): """ Get converter matches given opset. Parameters ---------- opset: int opset from model. Returns ------- converter, which should be `_impl_vx`. Number x is the biggest number smaller than or equal to opset belongs to all support versions. """ versions = [ int(d.replace('_impl_v', '')) for d in dir(cls) if '_impl_v' in d ] versions = sorted(versions + [opset]) version = versions[ max([i for i, v in enumerate(versions) if v == opset]) - 1] if hasattr(cls, '_impl_v{}'.format(version)): return getattr(cls, '_impl_v{}'.format(version)) raise NotImplementedError( 'opset version {} of {} not implemented'.format( version, cls.__name__)) class Unary(OnnxOpConverter): """ A helper class for unary op converters. """ name = '' @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 1, "Unary math op {} takes 1 input, {} given".format( cls.name, len(inputs)) op_name = cls.name return get_relay_op(op_name)(*inputs) class Elemwise(OnnxOpConverter): """ A helper class for elemwise op converters. """ name = '' @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 2, "Math op {} take 2 inputs, {} given".format( cls.name, len(inputs)) op_name = cls.name conv_ops = ["conv2d", "conv2d_transpose"] if attr.get('broadcast', 0) and any(x in str(inputs[0]) for x in conv_ops): # TODO(zhreshold): remove hard coded infershape axis = int(attr.get('axis', 0)) inputs[1] = _op.expand_dims(inputs[1], axis=axis, num_newaxis=2) return get_relay_op(op_name)(*inputs) class Pool(OnnxOpConverter): """ A helper class for pool op converters. """ name = '' @classmethod def _impl_v1(cls, inputs, attr, params): input_shape = infer_shape(inputs[0]) if 'auto_pad' in attr: attr['auto_pad'] = attr['auto_pad'].decode('utf-8') if attr['auto_pad'] in ('SAME_UPPER', 'SAME_LOWER'): pad_tuple = [] for axis in range(len(input_shape) - 2): axis_shape = input_shape[2 + axis] stride = attr['strides'][axis] kernel = attr['kernel_shape'][axis] pad = get_pad_pair(axis_shape, kernel, stride) pad_tuple.append(pad) pad_tuple = tuple([val for pair in zip(*pad_tuple) for val in pair]) attr['pads'] = pad_tuple elif attr['auto_pad'] == 'VALID': attr['pads'] = 0 elif attr['auto_pad'] == 'NOTSET': pass else: msg = 'Value {} in attribute "auto_pad" of operator {} is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr['auto_pad'], cls.name)) attr.pop("auto_pad") if 'storage_order' in attr: attr['layout'] = onnx_storage_order2layout(attr['storage_order'], dims=(len(input_shape) - 2)) else: attr['layout'] = onnx_default_layout(dims=(len(input_shape) - 2)) return AttrCvt( op_name=dimension_picker(cls.name), transforms={ 'kernel_shape': 'pool_size', 'pads': ('padding', 0) }, ignores=['dilations'], custom_check=dimension_constraint())(inputs, attr, params) class Absolute(Unary): """ Operator converter for Absolute. """ name = 'abs' class Add(Elemwise): """ Operator converter for Add. """ name = 'add' class AveragePool(Pool): """ Operator converter for AveragePool. """ name = 'avg_pool' class BatchNorm(OnnxOpConverter): """ Operator converter for BatchNorm. """ @classmethod def _impl_v1(cls, inputs, attr, params): # TODO(zhreshold): 'spatial' is not properly handled here. out = AttrCvt( op_name='batch_norm', ignores=['spatial', 'is_test', 'consumed_inputs', 'momentum'])(inputs, attr, params) return out[0] class InstanceNorm(OnnxOpConverter): """ Operator converter for BatchNorm. """ @classmethod def _impl_v1(cls, inputs, attr, params): return AttrCvt(op_name='instance_norm')(inputs, attr, params) class Conv(OnnxOpConverter): """ Operator converter for Conv. """ @classmethod def _impl_v1(cls, inputs, attr, params): # Use shape of input to determine convolution type. input_shape = infer_shape(inputs[0]) if 'auto_pad' in attr: attr['auto_pad'] = attr['auto_pad'].decode('utf-8') if attr['auto_pad'] in ('SAME_UPPER', 'SAME_LOWER'): pad_tuple = [] for axis in range(len(input_shape) - 2): axis_shape = input_shape[2 + axis] stride = attr['strides'][axis] kernel = attr['kernel_shape'][axis] dilation = attr['dilations'][axis] dilated_kernel = (kernel - 1) * dilation + 1 pad = get_pad_pair(axis_shape, dilated_kernel, stride) pad_tuple.append(pad) pad_tuple = tuple([val for pair in zip(*pad_tuple) for val in pair]) attr['pads'] = pad_tuple elif attr['auto_pad'] == 'VALID': attr['pads'] = tuple([0 for i in range(len(input_shape) - 2)]) elif attr['auto_pad'] == 'NOTSET': pass else: msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr['auto_pad'])) attr.pop('auto_pad') elif len(attr['kernel_shape']) == 2: sym_pad = True if 'pads' in attr: padding = attr['pads'] else: padding = [0, 0, 0, 0] for i in range(0, len(padding), 2): sym_pad = sym_pad and padding[i] == padding[i + 1] if sym_pad: attr['pads'] = padding[0::2] out = AttrCvt( op_name=dimension_picker('conv'), transforms={ 'kernel_shape': 'kernel_size', 'dilations': ('dilation', 1), 'pads': ('padding', 0), 'group': ('groups', 1) }, custom_check=dimension_constraint())(inputs[:2], attr, params) use_bias = len(inputs) == 3 if use_bias: out = _op.nn.bias_add(out, inputs[2]) return out class ConvTranspose(OnnxOpConverter): """ Operator converter for ConvTranspose. """ @classmethod def _impl_v1(cls, inputs, attr, params): # get number of channels channels = infer_channels(inputs[1], True) attr['channels'] = channels groups = attr.pop('group') attr['groups'] = groups # infer pads for auto_pad if 'auto_pad' in attr: attr['auto_pad'] = attr['auto_pad'].decode('utf-8') if attr['auto_pad'] in ('SAME_UPPER', 'SAME_LOWER'): input_shape = infer_shape(inputs[0]) in_h, in_w = input_shape[2], input_shape[3] stride_h, stride_w = attr['strides'] kernel_h, kernel_w = attr['kernel_shape'] dilation_h, dilation_w = attr['dilations'] dilated_kernel_h = (kernel_h - 1) * dilation_h + 1 dilated_kernel_w = (kernel_w - 1) * dilation_w + 1 pad_v = get_pad_pair(in_h, dilated_kernel_h, stride_h) pad_h = get_pad_pair(in_w, dilated_kernel_w, stride_w) attr['pads'] = (pad_v[0], pad_h[0], pad_v[1], pad_h[1]) elif attr['auto_pad'] == 'VALID': attr['pads'] = (0, 0) elif attr['auto_pad'] == 'NOTSET': pass else: msg = 'Value {} in attribute "auto_pad" of operator Conv is invalid.' raise tvm.error.OpAttributeInvalid(msg.format(attr['auto_pad'])) attr.pop('auto_pad') out = AttrCvt( op_name=dimension_picker('conv', '_transpose'), transforms={ 'kernel_shape': 'kernel_size', 'dilations': ('dilation', (0, 0)), 'pads': ('padding', (0, 0), revert_caffe2_pad) }, disables=['output_shape'], custom_check=dimension_constraint())(inputs[:2], attr, params) use_bias = len(inputs) == 3 if use_bias: out = _op.nn.bias_add(out, inputs[2]) return out class Div(Elemwise): """ Operator converter for Divide. """ name = 'divide' class Elu(OnnxOpConverter): """ Operator converter for Elu. """ @classmethod def _impl_v1(cls, inputs, attr, params): alpha = float(attr.get('alpha', 1.0)) return _expr.const(-alpha) * _op.nn.relu(_expr.const(1.) - _op.exp(inputs[0])) + \ _op.nn.relu(inputs[0]) class Gemm(OnnxOpConverter): """ Operator converter for Gemm. """ @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 3, "Gemm op take 3 inputs, {} given".format( len(inputs)) # Y = alpha * A * B + beta * C alpha = float(attr.get('alpha', 1.0)) beta = float(attr.get('beta', 1.0)) transA = int(attr.get('transA', 0)) transB = int(attr.get('transB', 0)) # get number of channels channels = infer_channels(inputs[1], not transB) if transA: inputs[0] = _op.transpose(inputs[0], axes=(1, 0)) if not transB: inputs[1] = _op.transpose(inputs[1], axes=(1, 0)) inputs[0] = _op.nn.batch_flatten(inputs[0]) out = _op.nn.dense(_expr.const(alpha) * inputs[0], inputs[1], units=channels) return _op.nn.bias_add(out, _expr.const(beta) * inputs[2]) class MatMul(OnnxOpConverter): """ Operator converter for MatMul. """ @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 2, "MatMul op take 2 inputs, {} given".format(len(inputs)) # Need to check input shape as batch matmul must be supported. a_shape = infer_shape(inputs[0]) # When performing a batch matmul, we need to properly handle N-dim shapes. if len(a_shape) > 2: b_shape = infer_shape(inputs[1]) # Convert a and b into 3 dimensional tensors. a = _op.reshape(inputs[0], [-1, a_shape[-2], a_shape[-1]]) b = _op.reshape(inputs[1], [-1, b_shape[-2], b_shape[-1]]) # Broadcast b to match batch size of a new_b_shape = list(infer_shape(b)) new_a_shape = infer_shape(a) if new_a_shape[0] > new_b_shape[0]: new_b_shape[0] = new_a_shape[0] b = _op.broadcast_to(b, new_b_shape) # Transpose matrix dimensions of b. b = _op.transpose(b, [0, 2, 1]) # Perform a batch matmul. output = _op.nn.batch_matmul(a, b) # Reshape output to original dimensions. return _op.reshape(output, [*a_shape[:-2], a_shape[-2], b_shape[-1]]) # Otherwise a simple dense op will get the job done. input_1_t = _op.transpose(inputs[1], axes=(1, 0)) return _op.nn.dense(inputs[0], input_1_t) class MaxPool(Pool): """ Operator converter for MaxPool """ name = 'max_pool' class Mul(Elemwise): """ Operator converter for Multiply. """ name = 'multiply' class Pad(OnnxOpConverter): """ Operator converter for Pad. """ @classmethod def _impl_v1(cls, inputs, attr, params): pad_width = [] pads = attr.pop('paddings') dims = int(len(pads) / 2) for i in range(dims): pad_width.append((pads[i], pads[i+dims])) attr['pad_width'] = pad_width pad_mode = attr.get('mode', b'constant').decode('utf-8') if pad_mode in ['constant', 'edge', 'reflect']: attr['pad_mode'] = pad_mode attr.pop('mode', None) else: raise tvm.error.OpAttributeInvalid( 'Value ' + pad_mode + ' in attribute "mode" is invalid for operator Pad.') return AttrCvt( _op.nn.pad, transforms={ 'value': 'pad_value', }, )(inputs, attr, params) @classmethod def _impl_v2(cls, inputs, attr, params): pad_width = [] pads = attr.pop('pads') dims = int(len(pads) / 2) for i in range(dims): pad_width.append((pads[i], pads[i+dims])) attr['pad_width'] = pad_width pad_mode = attr.get('mode', b'constant').decode('utf-8') if pad_mode in ['constant', 'edge', 'reflect']: attr['pad_mode'] = pad_mode attr.pop('mode', None) else: raise tvm.error.OpAttributeInvalid( 'Value ' + pad_mode + ' in attribute "mode" is invalid for operator Pad.') return AttrCvt( 'pad', transforms={ 'value': 'pad_value', }, )(inputs, attr, params) @classmethod def _impl_v11(cls, inputs, attr, params): pad_width = [] pads = infer_value_simulated(inputs[1], params).asnumpy() if len(inputs) == 3: value = infer_value_simulated(inputs[2], params).asnumpy().item() else: value = 0 attr["pad_value"] = value dims = int(len(pads) / 2) for i in range(dims): pad_width.append((pads[i], pads[i+dims])) attr['pad_width'] = pad_width pad_mode = attr.get('mode', b'constant').decode('utf-8') if pad_mode in ['constant', 'edge', 'reflect']: attr['pad_mode'] = pad_mode attr.pop('mode', None) else: raise tvm.error.OpAttributeInvalid( 'Value ' + pad_mode + ' in attribute "mode" is invalid for operator Pad.') return AttrCvt('pad')(inputs[:1], attr, params) class ParametricSoftPlus(OnnxOpConverter): """ Operator converter for ParametricSoftPlus. """ @classmethod def _impl_v1(cls, inputs, attr, params): alpha = _expr.const(float(attr.get('alpha', 1.0))) beta = _expr.const(float(attr.get('beta', 1.0))) return _op.log(_op.exp(beta * inputs[0]) + _expr.const(1.)) * alpha class Prelu(OnnxOpConverter): """ Operator converter for Prelu. """ @classmethod def _impl_v1(cls, inputs, attr, params): assert len(inputs) == 2, "Prelu need 2 inputs, {} given".format(len(inputs)) alpha_shape = infer_shape(inputs[1]) if len(alpha_shape) != 1: alpha = _op.reshape(inputs[1], (-1,)) else: alpha = inputs[1] return _op.nn.prelu(inputs[0], alpha) class Reciprocal(OnnxOpConverter): """ Operator converter for Reciprocal. """ @classmethod def _impl_v1(cls, inputs, attr, params): return _expr.const(1.0) / inputs[0] class Flatten(OnnxOpConverter): """ Operator converter for Flatten. """ @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get('axis', 1) if axis == 1: out = _op.nn.batch_flatten(inputs[0]) else: newshape = [0] * (axis + 1) newshape[axis] = -1 out = _op.reshape(inputs[0], list(newshape)) return out class Reshape(OnnxOpConverter): """ Operator converter for Reshape. """ @classmethod def _impl_v1(cls, inputs, attr, params): return _op.reshape(inputs[0], attr['shape']) @classmethod def _impl_v5(cls, inputs, attr, params): if get_name(inputs[1]) in params: # pop shape out of parameters since it wont be needed later. shape = tuple(params.pop(inputs[1].name_hint).asnumpy().astype("int32")) out = _op.reshape(inputs[0], shape) else: data, shape = inputs static_shape = infer_value_simulated(shape, params) out = _op.reshape(data, newshape=tuple( static_shape.asnumpy().astype('int32'))) return out class DepthToSpace(OnnxOpConverter): """ Operator converter for DepthToSpace. """ @classmethod def _impl_v11(cls, inputs, attr, params): block_size = int(attr['blocksize']) mode = attr.get('mode', b'DCR').decode('utf-8') return _op.nn.depth_to_space(inputs[0], block_size, mode=mode) class SpaceToDepth(OnnxOpConverter): """ Operator converter for SpaceToDepth. """ @classmethod def _impl_v1(cls, inputs, attr, params): block_size = int(attr['blocksize']) return _op.nn.space_to_depth(inputs[0], block_size) class Concat(OnnxOpConverter): """ Operator converter for Concat. """ @classmethod def _impl_v1(cls, inputs, args, params): return AttrCvt(op_name='concatenate')((inputs,), args) class Scale(OnnxOpConverter): """ Operator converter for Scale. """ @classmethod def _impl_v1(cls, inputs, attr, params): scale = float(attr.get('scale', 1.0)) return inputs[0] * _expr.const(scale) class Selu(OnnxOpConverter): """ Operator converter for Selu. """ @classmethod def _impl_v1(cls, inputs, attr, params): alpha = float(attr.get('alpha', 1.6732)) gamma = float(attr.get('gamma', 1.0507)) return _expr.const(gamma) * (_expr.const(-alpha) * _op.nn.relu(_expr.const(1.) - _op.exp(inputs[0])) + _op.nn.relu(inputs[0])) class ScaledTanh(OnnxOpConverter): """ Operator converter for ScaledTanh. """ @classmethod def _impl_v1(cls, inputs, attr, params): alpha = float(attr.get('alpha', 1.0)) beta = float(attr.get('beta', 1.0)) return _op.tanh(_expr.const(beta) * inputs[0]) * _expr.const(alpha) class SoftPlus(OnnxOpConverter): """ Operator converter for SoftPlus. """ @classmethod def _impl_v1(cls, inputs, attr, params): return _op.log(_op.exp(inputs[0]) + _expr.const(1.)) class Softsign(OnnxOpConverter): """ Operator converter for Softsign. """ @classmethod def _impl_v1(cls, inputs, attr, params): return inputs[0] / (_expr.const(1.) + Absolute.get_converter(1)(inputs, attr, params)) class Sub(Elemwise): """ Operator converter for Subtract. """ name = 'subtract' class Sum(OnnxOpConverter): """ Operator converter for Sum. """ @classmethod def _impl_v1(cls, inputs, attr, params): # Onnx Sum Operator for in_index in range(len(inputs) - 1): inputs[in_index + 1] = _op.add(inputs[in_index], inputs[in_index + 1]) return inputs[len(inputs) - 1] class Affine(OnnxOpConverter): """ Operator converter for Affine transformation. """ @classmethod def _impl_v1(cls, inputs, attr, params): alpha = _expr.const(attr.get('alpha', 1.0)) beta = _expr.const(attr.get('beta', 0.0)) return (alpha * inputs[0]) + beta class ThresholdedRelu(OnnxOpConverter): """ Operator converter for ThresholdedRelu. """ @classmethod def _impl_v1(cls, inputs, attr, params): alpha = float(attr.get('alpha', 1.0)) alpha_tensor = _op.full_like(inputs[0], fill_value=_expr.const(alpha)) mask = _op.greater(inputs[0], alpha_tensor).astype("float32") return inputs[0] * mask def _broadcast_constraint(): def _broadcast_check(attrs): if attrs.get('axis', None): return False return True return _broadcast_check, "Specifying broadcast axis not allowed." def _fully_connected(opset): def _impl(inputs, attr, params): # get number of channels channels = infer_channels(inputs[1], params) attr['units'] = channels return AttrCvt('dense', ignores=['axis', 'axis_w'])(inputs, attr) return _impl class Upsample(OnnxOpConverter): """ Operator converter for Upsample (nearest mode). """ @classmethod def _impl_v9(cls, inputs, attr, params): scales = attr.get('scales') if not scales: #Here we are going to higher OPSET version. assert len(inputs) == 2, "Upsample op take 2 inputs, {} given".format(len(inputs)) if get_name(inputs[1]) in params: scales = params[inputs[1].name_hint].asnumpy() else: scales = infer_value_simulated(inputs[1], params).asnumpy() inputs = inputs[:1] assert scales[0] == 1.0 and scales[1] == 1.0 input_shape = infer_shape(inputs[0]) dims = len(input_shape) mode = attr.get('mode') if mode == b'nearest': method = "nearest_neighbor" elif mode == b'linear': method = "trilinear" if dims == 5 else "bilinear" else: raise tvm.error.OpAttributeInvalid( 'Value {} in attribute "mode" of operator Upsample is not valid.'.format(mode)) attr = {'scale_h': scales[-2], 'scale_w': scales[-1], 'method': method} if dims == 5: assert len(scales) == 5 attr['scale_d'] = scales[-3] attr['layout'] = 'NCDHW' op_name = 'upsampling3d' else: assert len(scales) == 4 attr['layout'] = 'NCHW' attr['align_corners'] = True op_name = 'upsampling' return AttrCvt(op_name)(inputs, attr) class Shape(OnnxOpConverter): """ Operator converter for Shape. """ @classmethod def _impl_v1(cls, inputs, attr, params): return _op.shape_of(inputs[0], "int64") class Cast(OnnxOpConverter): """ Operator converter for Cast. """ @classmethod def _impl_v1(cls, inputs, attr, params): return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr) @classmethod def _impl_v5(cls, inputs, attr, params): try: from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE attr['to'] = str(TENSOR_TYPE_TO_NP_TYPE[attr['to']]) except ImportError as e: raise ImportError( "Unable to import onnx.mapping which is required {}".format(e)) return AttrCvt(op_name='cast', transforms={'to': 'dtype'})(inputs, attr) class Unsqueeze(OnnxOpConverter): """ Operator converter for Unsqueeze. """ @classmethod def _impl_v1(cls, inputs, attr, params): for axes in attr['axes']: inputs[0] = _op.expand_dims(inputs[0], axis=axes, num_newaxis=1) return inputs[0] class Split(OnnxOpConverter): """ Operator converter for Split. """ @classmethod def _impl_v1(cls, inputs, attr, params): splits = attr.get('split', False) if splits: attr['indices_or_sections'] = [] index = 0 for i in splits[:-1]: index += i attr['indices_or_sections'].append(index) # When splits isnt specified divide evenly over axis. else: in_shape = infer_shape(inputs[0]) attr['indices_or_sections'] = in_shape[attr['axis']] return AttrCvt( 'split', ignores=['split'])(inputs, attr, params) class Slice(OnnxOpConverter): """ Operator converter for Slice. """ @classmethod def _common(cls, starts, ends, axes): new_axes = [] new_starts = [] new_ends = [] pop_index = 0 for i in range(max(axes) + 1): if i in axes: new_axes.append(i) new_starts.append(starts[pop_index]) new_ends.append(ends[pop_index]) pop_index += 1 else: new_axes.append(i) new_starts.append(0) new_ends.append(np.iinfo(np.int32).max) return new_starts, new_ends, new_axes @classmethod def _impl_v1(cls, inputs, attr, params): if isinstance(attr['starts'], int): attr['starts'] = (attr['starts'],) attr['ends'] = (attr['ends'],) try: # Update the starts and ends according to axes if required. if isinstance(attr['axes'], int): attr['axes'] = (attr['axes'],) if (max(attr['axes']) + 1) != len(attr['axes']): new_starts, new_ends, new_axes = cls._common( attr['starts'], attr['ends'], attr['axes']) attr['axes'] = new_axes attr['starts'] = new_starts attr['ends'] = new_ends except KeyError: pass return AttrCvt('strided_slice', transforms={'starts': 'begin', 'ends': 'end'}, ignores=['axes'])(inputs, attr) @classmethod def _impl_v10(cls, inputs, attr, params): starts = params[get_name(inputs[1])].asnumpy() ends = params[get_name(inputs[2])].asnumpy() # Update the starts and ends according to axes if required. if len(inputs) >= 4: axes = params[get_name(inputs[3])].asnumpy() if max(axes + 1) != len(axes): new_starts, new_ends, _ = cls._common( starts, ends, axes) starts = new_starts ends = new_ends return _op.strided_slice(inputs[0], begin=starts, end=ends) class Gather(OnnxOpConverter): """ Operator converter for Gather. """ @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get('axis', 0) return AttrCvt('take', extras={'axis': axis})(inputs, {}) class GatherND(OnnxOpConverter): """ Operator converter for GatherND. """ @classmethod def _impl_v1(cls, inputs, attr, params): return _op.gather_nd(inputs[0], inputs[1]) class Greater(OnnxOpConverter): """ Operator logical greater. """ @classmethod def _impl_v7(cls, inputs, attr, params): return _op.greater(inputs[0], inputs[1]) class Less(OnnxOpConverter): """ Operator logical less than. """ @classmethod def _impl_v7(cls, inputs, attr, params): return _op.less(inputs[0], inputs[1]) class LRN(OnnxOpConverter): """ Operator converter for Local Response Normalization. """ @classmethod def _impl_v1(cls, inputs, attr, params): """LRN support only NCHW format https://github.com/onnx/onnx/blob/master/docs/Operators.md#LRN """ axis = 1 alpha = attr.get('alpha', 0.0001) beta = attr.get('beta', 0.75) bias = attr.get('bias', 1.0) nsize = attr.get('size') attr = {'size': nsize, 'axis': axis, 'alpha': alpha, 'beta': beta, 'bias': bias} return AttrCvt('lrn')(inputs, attr) class Maximum(OnnxOpConverter): """ Operator converter for Maximum. """ @classmethod def _impl_v1(cls, inputs, attr, params): if not isinstance(inputs, (list, onnx_input)) or len(inputs) < 2: raise ValueError("Expect minimum 2 inputs") _max = inputs[0] for i in range(1, len(inputs)): _max = AttrCvt('maximum')([_max, inputs[i]], {}) return _max class Minimum(OnnxOpConverter): """ Operator converter for Minimum. """ @classmethod def _impl_v1(cls, inputs, attr, params): if not isinstance(inputs, (list, onnx_input)) or len(inputs) < 2: raise ValueError("Expect minimum 2 inputs") _min = inputs[0] for i in range(1, len(inputs)): _min = AttrCvt('minimum')([_min, inputs[i]], {}) return _min class Mean(OnnxOpConverter): """ Operator converter for Mean. """ @classmethod def _impl_v1(cls, inputs, attr, params): if not isinstance(inputs, (list, onnx_input)) or len(inputs) < 2: raise ValueError("Expect minimum 2 inputs") # avoid overflow concat = _op.concatenate([_op.expand_dims(x, axis=0) for x in inputs], axis=0) return _op.mean(concat, axis=0, keepdims=False) class HardSigmoid(OnnxOpConverter): """ Operator converter for HardSigmoid. """ @classmethod def _impl_v1(cls, inputs, attr, params): alpha = attr.get('alpha', 0.2) beta = attr.get('beta', 0.5) transformX = (inputs[0] * _expr.const(alpha)) + _expr.const(beta) attr = {'a_min': 0, 'a_max': 1} return AttrCvt('clip')([transformX], attr) class Reduce(OnnxOpConverter): """ Operator converter for reduce ops. """ name = '' @classmethod def _impl_v1(cls, inputs, attr, params): if 'axes' in attr: axis = attr.get('axes', 0) else: axis_len = len(infer_shape(inputs[0])) axis = list(range(axis_len)) attr = {'axis': axis, 'keepdims': attr.get('keepdims', True)} return AttrCvt(cls.name)(inputs, attr) class ReduceMax(Reduce): """ Operator converter for ReduceMax. """ name = 'max' class ReduceMin(Reduce): """ Operator converter for ReduceMin. """ name = 'min' class ReduceSum(Reduce): """ Operator converter for ReduceSum. """ name = 'sum' class ReduceMean(Reduce): """ Operator converter for ReduceMean. """ name = 'mean' class ReduceProd(Reduce): """ Operator converter for ReduceProd. """ name = 'prod' class ReduceLogSumExp(Reduce): """ Operator converter for ReduceLogSumExp. """ name = 'logsumexp' class ArgMax(OnnxOpConverter): """ Operator converter for ArgMax. """ @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get('axis', 0) keepdims = attr.get('keepdims', True) attr = {'axis': axis, 'keepdims': keepdims} return AttrCvt('argmax')(inputs, attr) class ArgMin(OnnxOpConverter): """ Operator converter for ArgMin. """ @classmethod def _impl_v1(cls, inputs, attr, params): axis = attr.get('axis', 0) keepdims = attr.get('keepdims', True) attr = {'axis': axis, 'keepdims': keepdims} return AttrCvt('argmin')(inputs, attr) class Softmax(OnnxOpConverter): """ Operator converter for Softmax. """ @classmethod def _impl_v1(cls, inputs, attr, params): # set default value when axis is not set in the model if 'axis' not in attr: attr['axis'] = 1 return AttrCvt('softmax', transforms={'axis': ('axis', 1)})(inputs, attr, params) class OneHot(OnnxOpConverter): """ Operator converter for OneHot. """ @classmethod def _impl_v9(cls, inputs, attr, params): # Extract relay one_hot inputs. indices, depth, values = inputs # Split onnx on off values into two separate expressions. off_value, on_value = _op.take( values, _op.const(0)), _op.take(values, _op.const(1)) # Extract the datatype of the output from on_value. dtype = infer_type(on_value).checked_type.dtype # Convert depth into an integer. depth = int(infer_value(depth, params).asnumpy()[0]) # set default value when axis is not set in the model if 'axis' not in attr: attr['axis'] = -1 return _op.one_hot(indices, on_value, off_value, depth, int(attr['axis']), dtype=dtype) class ConstantOfShape(OnnxOpConverter): """ Operator converter for ConstantOfShape. """ @classmethod def _impl_v9(cls, inputs, attr, params): if 'value' in attr: np_value = get_numpy(attr.pop('value'))[0] value = _expr.const(np_value) dtype = np_value.dtype.name else: value = _expr.const(0) dtype = 'float32' static_shape = infer_value_simulated(inputs[0], params) output = _op.full( value, shape=tuple(static_shape.asnumpy().astype('int32')), dtype=dtype) return output class Sign(OnnxOpConverter): """ Operator converter for Sign. """ @classmethod def _impl_v1(cls, inputs, attr, params): return _op.sign(inputs[0]) class Equal(Elemwise): """ Operator converter for Equal. """ name = 'equal' class Not(Elemwise): """ Operator converter for Not. """ @classmethod def _impl_v1(cls, inputs, attr, params): return _op.logical_not(inputs[0]) class And(Elemwise): """ Operator converter for And. """ @classmethod def _impl_v1(cls, inputs, attr, params): return _op.logical_and(inputs[0], inputs[1]) class Tile(Elemwise): """Operator converter for Tile """ @classmethod def _impl_v1(cls, inputs, attr, params): if 'repeats' not in attr: raise tvm.error.OpAttributeInvalid('Attribute "repeats" should be set ' 'for operator Tile.') reps = attr.pop('repeats') # The number of times repeating the tensor data. return _op.tile(inputs[0], reps) @classmethod def _impl_v6(cls, inputs, attr, params): reps = tuple(infer_value_simulated( inputs[1], params).asnumpy().astype('int32')) return _op.tile(inputs[0], reps) class Erf(OnnxOpConverter): """Operator converter for Erf """ @classmethod def _impl_v1(cls, inputs, attr, params): return _op.erf(inputs[0]) class Where(OnnxOpConverter): """Operator converter for Where """ @classmethod def _impl_v9(cls, inputs, attr, params): condition_shape = infer_shape(inputs[0]) x_shape = infer_shape(inputs[1]) y_shape = infer_shape(inputs[2]) # condition, x, and y can all be broadcasted. # broadcast each of them to the longest shape. # if two shapes have the same number of dimensions, # try to choose the one that doesn't have "1" as # a dimension. shapes = [condition_shape, x_shape, y_shape] shape_lens = [len(shape) for shape in shapes] max_size = max(shape_lens) max_size_idxs = [i for i, x in enumerate(shape_lens) if x == max_size] broadcast_idx = max_size_idxs[0] if len(max_size_idxs) > 1: for idx in max_size_idxs: if 1 not in shapes[idx]: broadcast_idx = idx broadcast_shape = shapes[broadcast_idx] if condition_shape != broadcast_shape: inputs[0] = _op.broadcast_to(inputs[0], broadcast_shape) if x_shape != broadcast_shape: inputs[1] = _op.broadcast_to(inputs[1], broadcast_shape) if y_shape != broadcast_shape: inputs[2] = _op.broadcast_to(inputs[2], broadcast_shape) return _op.where(inputs[0], inputs[1], inputs[2]) class Or(Elemwise): """ Operator converter for Or. """ @classmethod def _impl_v7(cls, inputs, attr, params): return _op.logical_or(inputs[0], inputs[1]) class Expand(OnnxOpConverter): """ Operator converter for Expand. """ @classmethod def _impl_v8(cls, inputs, attr, params): in_shape = np.array(infer_shape(inputs[0])).astype('int32') if get_name(inputs[1]) in params: shape = params[inputs[1].name_hint].asnumpy().astype('int32') else: shape = infer_value_simulated(inputs[1], params).asnumpy().astype('int32') # Currently 'op.broadcast_to' expect the rank of the given 'shape' # (the 2nd input) is always higher than that of the given 'input' (the 1st input) # However, ONNX Expand supports multi-directional broadcasting, which allows # above pattern and also some extent of 'shape' can be smaller than the corresponding # extent of 'input'. In this case, the extent of 'shape' must be 1. # https://github.com/onnx/onnx/blob/master/docs/Broadcasting.md # In above cases, we cannot directorly apply 'op.broadcast_to' instead of 'expand' # so, here we solved this problem by expanding the given 'shape' itself. def expand_shape(in_shape, shape): """ A function expands the shape when the rank is lower than that of the given intput. Also it replaces the extent of the shape with the corresponding extent of the intput when it is 1. """ # here we flip the shapes because this can be more simply written # when the innermost dimension is located at the index 0. in_shape = np.flip(in_shape, axis=0) shape = np.flip(shape, axis=0) if in_shape.size < shape.size: for i in range(shape.size): if i < in_shape.size and in_shape[i] > shape[i]: shape[i] = in_shape[i] else: for i in range(in_shape.size): if i >= shape.size: np.append(shape, in_shape[i]) elif shape[i] == 1: shape[i] = in_shape[i] new_shape = np.flip(shape, axis=0) return new_shape shape = expand_shape(in_shape, shape) return _op.broadcast_to(inputs[0], shape=tuple(shape)) class LSTM(OnnxOpConverter): """ Operator converter for LSTM. """ @classmethod def _activation_helper(cls, activation, alpha, beta): convert_map = _get_convert_map(1) attrs = {} if alpha is not None: attrs['alpha'] = alpha if beta is not None: attrs['beta'] = beta return lambda x: convert_map[activation.decode("utf-8")]([x], attrs, {}) @classmethod def _activation_needs_alpha(cls, activation): needs_alpha = [ "Affine", "LeakyRelu", "ThresholdedRelu", "ScaledTanh", "HardSigmoid", "Elu", ] return activation.decode("utf-8") in needs_alpha @classmethod def _activation_needs_beta(cls, activation): needs_beta = [ "Affine", "ScaledTanh", "HardSigmoid", ] return activation.decode("utf-8") in needs_beta @classmethod def _impl_v7(cls, inputs, attr, params): # Unpack inputs, note that if optional and not provided then value will be None. X = inputs[0] W = inputs[1] R = inputs[2] B = inputs['B'] # Sequence length currently unused as it can be inferred from shapes. #sequence_lens = inputs['sequence_lens'] h_0 = inputs['initial_h'] c_0 = inputs['initial_c'] P = inputs['P'] num_directions = infer_shape(W)[0] W_dtype = infer_type(W).type_annotation.dtype if num_directions != 1: raise NotImplementedError("Bidirectional LSTMs not yet supported.") # Remove num_directions axis from weights. W = _op.squeeze(W, axis=[0]) R = _op.squeeze(R, axis=[0]) if B is not None: B = _op.squeeze(B, axis=[0]) X_shape = infer_shape(X) hidden_size = infer_shape(R)[-1] batch_size = X_shape[1] # Initialize state if not provided. # Otherwise remove bidirectional axis. if h_0 is None: h_0 = _op.zeros((batch_size, hidden_size), W_dtype) else: h_0 = _op.squeeze(h_0, axis=[0]) if c_0 is None: c_0 = _op.zeros((batch_size, hidden_size), W_dtype) else: c_0 = _op.squeeze(c_0, axis=[0]) if P is not None: P = _op.squeeze(P, axis=[0]) p_i, p_o, p_f = _op.split(P, 3) H_t = h_0 C_t = c_0 h_list = [] if 'activations' in attr: activations = attr['activations'] if len(activations) != 3: raise NotImplementedError("LSTM assumes 3 activation functions are provided") alpha_loc = 0 alphas = attr.get('activation_alpha', []) if isinstance(alphas, float): alphas = [alphas] beta_loc = 0 betas = attr.get('activation_beta', []) if isinstance(betas, float): betas = [betas] acts = [] for i in range(3): alpha = None beta = None activation = activations[i] if cls._activation_needs_alpha(activation) and len(alphas) > alpha_loc: alpha = alphas[alpha_loc] alpha_loc += 1 if cls._activation_needs_beta(activation) and len(betas) > beta_loc: beta = betas[beta_loc] beta_loc += 1 acts.append(cls._activation_helper(activation, alpha, beta)) f_act, g_act, h_act = acts else: f_act = _op.sigmoid g_act = _op.tanh h_act = _op.tanh X_steps = _op.split(X, indices_or_sections=X_shape[0], axis=0) for step in X_steps: step = _op.squeeze(step, axis=[0]) gates = _op.nn.dense(step, W) + _op.nn.dense(H_t, R) if B is not None: WB, RB = _op.split(B, 2) gates += WB + RB i, o, f, c = _op.split(gates, 4, axis=-1) if P is not None: i = f_act(i + p_i * C_t) f = f_act(f + p_f * C_t) else: i = f_act(i) f = f_act(f) c = g_act(c) C = f * C_t + i * c if P is not None: o = f_act(o + p_o * C) else: o = f_act(o) H = o * h_act(C) H_t = H C_t = C h_list.append(_op.expand_dims(H, axis=0)) # Concatenate outputs and add back in direction axis. concatenated = _op.concatenate(h_list, 0) output = _op.expand_dims(concatenated, axis=1) H_t = _op.expand_dims(H_t, axis=0) C_t = _op.expand_dims(C_t, axis=0) return _expr.TupleWrapper(_expr.Tuple((output, H_t, C_t)), 3) class Resize(OnnxOpConverter): """Operator converter for Resize """ @classmethod def _impl_v11(cls, inputs, attr, params): mode = attr.get('mode') if mode == b'nearest': method = "nearest_neighbor" elif mode == b'linear': method = "bilinear" else: raise tvm.error.OpAttributeInvalid( 'Value {} in attribute "mode" of operator Resize is not valid.'.format(mode)) in_size = np.array(infer_shape(inputs[0])) scale = infer_value_simulated(inputs[2], params).asnumpy() if len(inputs) == 4: assert len(scale) == 0, "One of scale or size should be passed, not both." size = infer_value_simulated(inputs[3], params).asnumpy().astype(np.int32) else: assert len(scale) != 0, "One of scale or size should be passed." size = (in_size * scale).astype(np.int32) coord_trans = attr.get('coordinate_transformation_mode') if coord_trans in [b'pytorch_half_pixel', b'half_pixel']: coord_trans = "half_pixel" elif coord_trans == b'align_corners': coord_trans = "align_corners" elif coord_trans == b'asymmetric' or method == "nearest_neighbor": coord_trans = "asymmetric" else: raise tvm.error.OpAttributeInvalid( 'Unsupported coordinate_transformation_mode: {}'.format(coord_trans)) layout = "NCHW" # ONNX assumes NCHW layout out_size = (size[2], size[3]) return _op.image.resize(inputs[0], out_size, layout, method, coord_trans) class NonZero(OnnxOpConverter): """Operator converter for NonZero """ @classmethod def _impl_v9(cls, inputs, attr, params): if len(inputs) > 1: raise ValueError("Expect 1 input only") output = AttrCvt(op_name='argwhere')(inputs, attr, params) # ONNX NonZero always outputs int64 output = _op.cast(output, "int64") return _op.transpose(output, axes=(1, 0)) class TopK(OnnxOpConverter): """Operator converter for TopK """ @classmethod def _impl_v1(cls, inputs, attr, params): if len(inputs) != 2: raise ValueError("Expect 2 input only") axis = attr.get("axis", -1) largest = attr.get("largest", 1) if largest == 0: raise ValueError("TVM only supports finding TopK largest elements") K = int(infer_value(inputs[1], params).asnumpy()[0]) return _op.topk(inputs[0], k=K, axis=axis) class RoiAlign(OnnxOpConverter): """Operator converter for TopK """ @classmethod def _impl_v1(cls, inputs, attr, params): if len(inputs) != 3: raise ValueError("Expect 3 inputs only") x = inputs[0] rois = inputs[1] batch_indices = inputs[2] mode = attr.get("mode", "avg") if mode != b'avg': raise ValueError("RoiAlign in Relay only uses avg mode") output_height = attr.get("output_height", 1) output_width = attr.get("output_width", 1) sampling_ratio = attr.get("sampling_ratio", 0) spatial_scale = attr.get("spatial_scale", 1.0) batch_indices = _op.expand_dims(batch_indices, axis=1, num_newaxis=1) batch_indices = _op.cast( batch_indices, infer_type(rois).type_annotation.dtype) rois = _op.concatenate([batch_indices, rois], 1) return _vision.roi_align(x, rois, [output_height, output_width], spatial_scale, sampling_ratio) # compatible operators that do NOT require any conversion. _identity_list = [] # _convert_map defines maps of name to converter functor(callable) # for 1 to 1 mapping, use Renamer if nothing but name is different # use AttrCvt if attributes need to be converted # for 1 to N mapping(composed), use custom callable functions # for N to 1 mapping, currently not supported(?) def _get_convert_map(opset): return { # defs/experimental 'Identity': Renamer('copy'), 'Affine': Affine.get_converter(opset), 'ThresholdedRelu': ThresholdedRelu.get_converter(opset), 'ScaledTanh': ScaledTanh.get_converter(opset), 'ParametricSoftplus': ParametricSoftPlus.get_converter(opset), 'ConstantOfShape': ConstantOfShape.get_converter(opset), # 'GivenTensorFill' 'FC': AttrCvt('dense', ignores=['axis', 'axis_w']), 'Scale': Scale.get_converter(opset), # 'GRUUnit' # 'ATen' # 'ImageScaler' # 'MeanVarianceNormalization' # 'Crop' # 'Embedding' 'Upsample': Upsample.get_converter(opset), 'SpatialBN': BatchNorm.get_converter(opset), # defs/generator # 'Constant' # Implemented # 'RandomUniform' # 'RandomNormal' # 'RandomUniformLike' # 'RandomNormalLike' # defs/logical # defs/math 'Add': Add.get_converter(opset), 'Sub': Sub.get_converter(opset), 'Mul': Mul.get_converter(opset), 'Div': Div.get_converter(opset), 'Neg': Renamer('negative'), 'Abs': Absolute.get_converter(opset), 'Reciprocal': Reciprocal.get_converter(opset), 'Floor': Renamer('floor'), 'Ceil': Renamer('ceil'), 'Round': Renamer('round'), 'IsInf': Renamer('isinf'), 'IsNaN': Renamer('isnan'), 'Sqrt': Renamer('sqrt'), 'Relu': Renamer('relu'), 'LeakyRelu': Renamer('leaky_relu'), 'Selu': Selu.get_converter(opset), 'Elu': Elu.get_converter(opset), 'Exp': Renamer('exp'), 'Greater': Greater.get_converter(opset), 'Less': Less.get_converter(opset), 'Log': Renamer('log'), 'Tanh': Renamer('tanh'), 'Pow': Renamer('power'), 'PRelu': Prelu.get_converter(opset), 'Sigmoid': Renamer('sigmoid'), 'HardSigmoid': HardSigmoid.get_converter(opset), 'Max': Maximum.get_converter(opset), 'Min': Minimum.get_converter(opset), 'Sum': Sum.get_converter(opset), 'Mean': Mean.get_converter(opset), 'Clip': AttrCvt('clip', transforms={'min': 'a_min', 'max': 'a_max'}), # softmax default axis is different in onnx 'Softmax': Softmax.get_converter(opset), 'LogSoftmax': AttrCvt('log_softmax', {'axis': ('axis', 1)}), 'OneHot': OneHot.get_converter(opset), # 'Hardmax' 'Softsign': Softsign.get_converter(opset), 'SoftPlus': SoftPlus.get_converter(opset), 'Gemm': Gemm.get_converter(opset), 'MatMul': MatMul.get_converter(opset), # defs/nn 'AveragePool': AveragePool.get_converter(opset), 'MaxPool': MaxPool.get_converter(opset), 'Conv': Conv.get_converter(opset), 'ConvTranspose': ConvTranspose.get_converter(opset), 'GlobalAveragePool': Renamer('global_avg_pool2d'), 'GlobalMaxPool': Renamer('global_max_pool2d'), 'BatchNormalization': BatchNorm.get_converter(opset), 'InstanceNormalization': InstanceNorm.get_converter(opset), # 'LpNormalization' 'Dropout': AttrCvt('dropout', {'ratio': 'rate'}, ignores=['is_test']), 'Flatten': Flatten.get_converter(opset), 'LRN': LRN.get_converter(opset), # Recurrent Layers 'LSTM': LSTM.get_converter(opset), # defs/vision 'RoiAlign': RoiAlign.get_converter(opset), # defs/reduction 'ReduceMax': ReduceMax.get_converter(opset), 'ReduceMin': ReduceMin.get_converter(opset), 'ReduceSum': ReduceSum.get_converter(opset), 'ReduceMean': ReduceMean.get_converter(opset), 'ReduceProd': ReduceProd.get_converter(opset), 'ReduceLogSumExp': ReduceLogSumExp.get_converter(opset), #defs/sorting 'ArgMax': ArgMax.get_converter(opset), 'ArgMin': ArgMin.get_converter(opset), 'TopK': TopK.get_converter(opset), # defs/tensor 'Cast': Cast.get_converter(opset), 'Reshape': Reshape.get_converter(opset), 'Expand': Expand.get_converter(opset), 'Concat': Concat.get_converter(opset), 'Split': Split.get_converter(opset), 'Slice': Slice.get_converter(opset), 'Transpose': AttrCvt('transpose', {'perm': 'axes'}), 'DepthToSpace': DepthToSpace.get_converter(opset), 'SpaceToDepth': SpaceToDepth.get_converter(opset), 'Gather': Gather.get_converter(opset), 'GatherND': GatherND.get_converter(opset), 'Squeeze': AttrCvt('squeeze', {'axes': 'axis'}), 'Unsqueeze': Unsqueeze.get_converter(opset), 'Pad': Pad.get_converter(opset), 'Shape': Shape.get_converter(opset), 'Sign': Sign.get_converter(opset), 'Equal': Equal.get_converter(opset), 'Not': Not.get_converter(opset), 'And': And.get_converter(opset), 'Tile': Tile.get_converter(opset), 'Erf': Erf.get_converter(opset), 'Where': Where.get_converter(opset), 'Or': Or.get_converter(opset), 'Resize': Resize.get_converter(opset), 'NonZero': NonZero.get_converter(opset), } class GraphProto(object): """A helper class for handling Relay expression copying from pb2.GraphProto. Definition: https://github.com/onnx/onnx/blob/master/onnx/onnx.proto Parameters ---------- shape : dict of str to tuple, optional The input shape to the graph dtype : str or dict of str to str The input types to the graph """ def __init__(self, shape, dtype): self._nodes = {} self._params = {} self._renames = {} self._num_input = 0 self._num_param = 0 self._shape = shape if shape else {} self._dtype = dtype def from_onnx(self, graph, opset): """Construct Relay expression from ONNX graph. Onnx graph is a python protobuf object. The companion parameters will be handled automatically. However, the input names from onnx graph is vague, mixing inputs and network weights/bias such as "1", "2"... For convenience, we rename the `real` input names to "input_0", "input_1"... And renaming parameters to "param_0", "param_1"... Parameters ---------- graph : onnx protobuf object The loaded onnx graph opset : opset version Returns ------- mod : tvm.IRModule The returned relay module params : dict A dict of name: tvm.nd.array pairs, used as pretrained weights """ # parse network inputs to relay, aka parameters for init_tensor in graph.initializer: if not init_tensor.name.strip(): raise ValueError("Tensor's name is required.") self._params[init_tensor.name] = self._parse_array(init_tensor) self._nodes[init_tensor.name] = new_var(init_tensor.name, shape=self._params[init_tensor.name].shape, dtype=self._params[init_tensor.name].dtype) for i in graph.input: # from onnx v0.2, GraphProto.input has type ValueInfoProto, # and the name is 'i.name' i_name = self._parse_value_proto(i) d_type = self._parse_dtype(i, 'float32') if i_name in self._params: # i is a param instead of input self._num_param += 1 self._params[i_name] = self._params.pop(i_name) self._nodes[i_name] = new_var(i_name, shape=self._params[i_name].shape, dtype=self._params[i_name].dtype) else: self._num_input += 1 if i_name in self._shape: tshape = self._shape[i_name] else: raise ValueError("Must provide an input shape for `{0}`.".format(i_name)) if isinstance(self._dtype, dict): dtype = self._dtype[i_name] if i_name in self._dtype else d_type else: dtype = d_type self._nodes[i_name] = new_var(i_name, shape=tshape, dtype=dtype) # get list of unsupported ops convert_map = _get_convert_map(opset) unsupported_ops = set() for node in graph.node: op_name = node.op_type if op_name not in convert_map and \ op_name != 'Constant' and \ op_name not in _identity_list: unsupported_ops.add(op_name) if unsupported_ops: msg = 'The following operators are not supported for frontend ONNX: ' msg += ', '.join(unsupported_ops) raise tvm.error.OpNotImplemented(msg) # construct nodes, nodes are stored as directed acyclic graph for node in graph.node: op_name = node.op_type attr = self._parse_attr(node.attribute) # Create and populate onnx input object. inputs = onnx_input() for i in node.input: if i != '': inputs[i] = self._nodes[self._renames.get(i, i)] if op_name == "Constant": t_proto = self._parse_attr(node.attribute)["value"] self._num_param += 1 # We should convert scalar integers to int32, to normalize. array = self._parse_array(t_proto) self._params[node.output[0]] = array self._nodes[node.output[0]] = new_var( node.output[0], shape=list(t_proto.dims), dtype=array.dtype) else: i_name = self._parse_value_proto(node) attr['tvm_custom'] = {} attr['tvm_custom']['name'] = i_name op = self._convert_operator(op_name, inputs, attr, opset) node_output = self._fix_outputs(op_name, node.output) if not isinstance(op, _expr.TupleWrapper): outputs_num = 1 else: outputs_num = len(op) assert len(node_output) == outputs_num, ( "Number of output mismatch {} vs {} in {}.".format( len(node_output), outputs_num, op_name)) if outputs_num == 1: self._nodes[node_output[0]] = op else: for k, i in zip(list(node_output), range(len(node_output))): self._nodes[k] = op[i] # now return the outputs outputs = [self._nodes[self._parse_value_proto(i)] for i in graph.output] outputs = outputs[0] if len(outputs) == 1 else _expr.Tuple(outputs) func = _function.Function(analysis.free_vars(outputs), outputs) return IRModule.from_expr(func), self._params def _parse_value_proto(self, value_proto): """Parse ValueProto or raw str.""" try: name = value_proto.name except AttributeError: name = value_proto return name def _parse_dtype(self, value_proto, dtype): """Parse dtype.""" try: from onnx.mapping import TENSOR_TYPE_TO_NP_TYPE return TENSOR_TYPE_TO_NP_TYPE[value_proto.type.tensor_type.elem_type].name except AttributeError: return dtype def _parse_array(self, tensor_proto): np_array = get_numpy(tensor_proto).reshape(tuple(tensor_proto.dims)) return _nd.array(np_array) def _parse_attr(self, attr_proto): """Convert a list of AttributeProto to a dict, with names as keys.""" attrs = {} for a in attr_proto: for f in ['f', 'i', 's']: if a.HasField(f): attrs[a.name] = getattr(a, f) for f in ['floats', 'ints', 'strings']: if list(getattr(a, f)): assert a.name not in attrs, "Only one type of attr is allowed" attrs[a.name] = tuple(getattr(a, f)) for f in ['t']: if a.HasField(f): attrs[a.name] = getattr(a, f) for f in ['tensors']: if list(getattr(a, f)): assert a.name not in attrs, "Only one type of attr is allowed" attrs[a.name] = tuple(getattr(a, f)) for f in ['g']: if a.HasField(f): raise NotImplementedError( "Filed {} is not supported in relay.".format(f)) for f in ['graphs']: if list(getattr(a, f)): raise NotImplementedError( "Filed {} is not supported in relay.".format(f)) if a.name not in attrs: raise ValueError("Cannot parse attribute: \n{}\n.".format(a)) return attrs def _convert_operator(self, op_name, inputs, attrs, opset): """Convert ONNX operator into a Relay operator. The converter must specify conversions explicitly for incompatible name, and apply handlers to operator attributes. Parameters ---------- op_name : str Operator name, such as Convolution, FullyConnected inputs : list of tvm.relay.function.Function List of inputs. attrs : dict Dict of operator attributes opset : int Opset version Returns ------- sym : tvm.relay.function.Function Converted relay function """ convert_map = _get_convert_map(opset) if op_name in _identity_list: sym = get_relay_op(op_name)(*inputs, **attrs) elif op_name in convert_map: sym = convert_map[op_name](inputs, attrs, self._params) else: raise NotImplementedError( "Operator {} not implemented.".format(op_name)) return sym def _fix_outputs(self, op_name, outputs): """A hack to handle dropout or similar operator that have more than one out in ONNX. """ if op_name == 'Dropout': if len(outputs) == 1: return outputs # TODO(zhreshold): support dropout mask? outputs = outputs[:-1] return outputs def from_onnx(model, shape=None, dtype="float32", opset=None): """Convert a ONNX model into an equivalent Relay Function. ONNX graphs are represented as Python Protobuf objects. The companion parameters will be handled automatically. However, the input names from onnx graph is vague, mixing inputs and network weights/bias such as "1", "2"... For convenience, we rename the `real` input names to "input_0", "input_1"... And renaming parameters to "param_0", "param_1"... Parameters ---------- model : protobuf object ONNX ModelProto after ONNX v1.1.0 shape : dict of str to tuple, optional The input shape to the graph dtype : str or dict of str to str The input types to the graph opset : int, optional Override to autodetected opset. This can be helpful for some testing. Returns ------- mod : tvm.IRModule The relay module for compilation params : dict of str to tvm.nd.NDArray The parameter dict to be used by relay """ try: import onnx if hasattr(onnx.checker, 'check_model'): # try use onnx's own model checker before converting any model try: onnx.checker.check_model(model) except onnx.onnx_cpp2py_export.checker.ValidationError as e: import warnings # the checker is a bit violent about errors, so simply print warnings here warnings.warn(str(e)) except ImportError: pass g = GraphProto(shape, dtype) graph = model.graph if opset is None: try: opset = model.opset_import[0].version if model.opset_import else 1 except AttributeError: opset = 1 mod, params = g.from_onnx(graph, opset) return mod, params
the-stack_0_10580
import numpy as np import EggNet def _read_np_tensor(weight_file: str): if weight_file.endswith('.npy'): is_binary = True elif weight_file.endswith('.txt'): is_binary = False else: raise NotImplementedError() if is_binary: return np.load(weight_file) else: with open(weight_file) as f: init_line = f.readline() # assume the first line is a comment assert init_line[0] == '#' p1 = init_line.find('(') p2 = init_line.find(')') dims = [int(ds) for ds in init_line[p1 + 1:p2].split(sep=',') if len(ds) > 0] return np.loadtxt(weight_file).reshape(dims) def read_np_torch(ordering='BCHW', binary=True, target_dtype=None): if binary: d = { 'cn1.b': _read_np_tensor('np/t_0.0.bias.npy'), 'cn1.k': _read_np_tensor('np/t_0.0.weight.npy'), 'cn2.b': _read_np_tensor('np/t_3.0.bias.npy'), 'cn2.k': _read_np_tensor('np/t_3.0.weight.npy'), 'fc1.b': _read_np_tensor('np/t_7.0.bias.npy'), 'fc1.w': _read_np_tensor('np/t_7.0.weight.npy'), 'fc2.b': _read_np_tensor('np/t_9.bias.npy'), 'fc2.w': _read_np_tensor('np/t_9.weight.npy'), } else: d = { 'cn1.b': _read_np_tensor('np/t_0.0.bias.txt'), 'cn1.k': _read_np_tensor('np/t_0.0.weight.txt'), 'cn2.b': _read_np_tensor('np/t_3.0.bias.txt'), 'cn2.k': _read_np_tensor('np/t_3.0.weight.txt'), 'fc1.b': _read_np_tensor('np/t_7.0.bias.txt'), 'fc1.w': _read_np_tensor('np/t_7.0.weight.txt'), 'fc2.b': _read_np_tensor('np/t_9.bias.txt'), 'fc2.w': _read_np_tensor('np/t_9.weight.txt'), } if ordering is 'BCHW': pass elif ordering is 'BHWC': k1 = np.moveaxis(d['cn1.k'], [0, 1], [3, 2]) k2 = np.moveaxis(d['cn2.k'], [0, 1], [3, 2]) # k1 = reorder(d['cn1.k']) # k2 = reorder(d['cn2.k']) assert k1[1, 2, 0, 4] == d['cn1.k'][4, 0, 1, 2] assert k2[1, 2, 3, 4] == d['cn2.k'][4, 3, 1, 2] d['cn1.k'] = k1 d['cn2.k'] = k2 d['fc1.w'] = np.moveaxis(d['fc1.w'], 0, 1) d['fc2.w'] = np.moveaxis(d['fc2.w'], 0, 1) x = d['fc1.w'].transpose() # Hack: Because torch positions the channels first, we have to reorder the following FC weights # Input Tensor is: [batch, channels, 7, 7] # Reshaped to: [batch, channels * 7 * 7] x = x.reshape((-1, 32, 7, 7)) x = np.moveaxis(x, 1, 3) x = np.reshape(x, (32, -1)) x = x.transpose() d['fc1.w'] = x else: raise NotImplementedError('Expected ordering to be "BCHW" or "BHWC" but is: {}'.format(ordering)) if target_dtype is not None: d_old = d d = {} for key, values in d_old.items(): d[key] = values.astype(target_dtype) return d def read_np_keras(binary=True, target_dtype=None): if binary: d = { 'cn1.b': _read_np_tensor('np/k_cn1.bias.npy'), 'cn1.k': _read_np_tensor('np/k_cn1.weight.npy'), 'cn2.b': _read_np_tensor('np/k_cn2.bias.npy'), 'cn2.k': _read_np_tensor('np/k_cn2.weight.npy'), 'fc1.b': _read_np_tensor('np/k_fc1.bias.npy'), 'fc1.w': _read_np_tensor('np/k_fc1.weight.npy'), 'fc2.b': _read_np_tensor('np/k_fc2.bias.npy'), 'fc2.w': _read_np_tensor('np/k_fc2.weight.npy'), } else: d = { 'cn1.b': _read_np_tensor('np/k_0.0.bias.txt'), 'cn1.k': _read_np_tensor('np/k_0.0.weight.txt'), 'cn2.b': _read_np_tensor('np/k_3.0.bias.txt'), 'cn2.k': _read_np_tensor('np/k_3.0.weight.txt'), 'fc1.b': _read_np_tensor('np/k_7.0.bias.txt'), 'fc1.w': _read_np_tensor('np/k_7.0.weight.txt'), 'fc2.b': _read_np_tensor('np/k_9.bias.txt'), 'fc2.w': _read_np_tensor('np/k_9.weight.txt'), } if target_dtype is not None: d_old = d d = {} for key, values in d_old.items(): d[key] = values.astype(target_dtype) return d def reorder(x): co, ci, h, w, = x.shape x_ = np.zeros(shape=(h, w, ci, co), dtype=x.dtype) for hx in range(h): for wx in range(w): for cix in range(ci): for cox in range(co): x_[hx, wx, cix, cox] = x[cox, cix, hx, wx] return x_ def perform_real_quant(weight_dict, in_bits: np.ndarray, in_frac: np.ndarray, w_bits: np.ndarray, w_frac: np.ndarray, out_bits: np.ndarray, out_frac: np.ndarray, activations_signed: np.ndarray, additions=np.ndarray([16, 32, 1568, 32]), traget_dtype=np.int32): """ Performs real quantization, meaning all values will be rounded to their fixed point representation Args: weight_dict: Dictionary containing numpy arrays target_bits: Target bit length of the integer values frac_bits: Target fraction bit width Returns: Dictionary with original keys, containing quantized values """ # Use short notations ia_b = in_bits ia_f = in_frac w_b = w_bits w_f = w_frac oa_b = out_bits oa_f = out_frac # Check if consistent: input2 must be output 1 assert np.all(oa_b[:-1] == ia_b[1:]) assert np.all(oa_f[:-1] == ia_f[1:]) # Temporary bits and fractions while adding (for bias) t_b = ia_b + w_b t_f = ia_f + w_f shift = t_f - oa_f # v = Q * 2^-m # Q = v * 2^m # Scaling for weights bias_max = 2.0 ** (t_b - 1) - 1 bias_min = -2.0 ** (t_b - 1) bias_scale = 1 / 2 ** t_f w_max = 2.0 ** (w_bits - 1) - 1 w_min = -2.0 ** (w_bits - 1) w_scale = 1 / 2 ** w_f out_max = np.zeros_like(out_bits) out_min = np.zeros_like(out_bits) out_scale = np.zeros_like(out_bits) for i in range(len(out_bits)): if activations_signed[i]: out_max[i] = 2.0 ** (oa_b[i] - 1) - 1 out_min[i] = -2.0 ** (oa_b[i] - 1) out_scale[i] = 1 / 2 ** oa_f[i] else: out_max[i] = 2.0 ** (oa_b[i]) - 1 out_min[i] = 0 out_scale[i] = 1 / 2 ** oa_f[i] options = { 'input_bits': ia_b, 'input_frac': ia_f, 'output_bits': oa_b, 'output_frac': oa_f, 'weight_bits': w_b, 'weight_frac': w_f, 'w_max': w_max, 'w_min': w_min, 'w_scale': w_scale, 'bias_max': bias_max, 'bias_min': bias_min, 'bias_scale': bias_scale, 'out_max': out_max, 'out_min': out_min, 'out_max_f': out_max * out_scale, 'out_min_f': out_min * out_scale, 'out_scale': out_scale, 'shifts': shift } # ToDo: This becomes a bit hacky wi = 0 bi = 0 d_out = {} for i, (key, value) in enumerate(weight_dict.items()): # check key if it is weight or bias if key.endswith('.b'): w = np.clip(value / bias_scale[bi], a_min=bias_min[bi], a_max=bias_max[bi]).round().astype(traget_dtype) bi += 1 else: w = np.clip(value / w_scale[wi], a_min=w_min[wi], a_max=w_max[wi]).round().astype(traget_dtype) wi += 1 # Those are now ints, convert back to floats d_out[key] = w return d_out, shift, options def quant2float(qweights, options): w_scale = options['w_scale'] bias_scale = options['bias_scale'] wi = 0 bi = 0 d_out = {} for i, (key, value) in enumerate(qweights.items()): # check key if it is weight or bias if key.endswith('.b'): w = value * bias_scale[bi] bi += 1 else: w = value * w_scale[wi] wi += 1 # Those are now ints, convert back to floats d_out[key] = w return d_out def perform_fake_quant(weight_dict, target_bits, frac_bits, target_dtype=np.float64): """ Performs fake quantization, meaning all values will be rounded to their expression Args: weight_dict: Dictionary containing numpy arrays target_bits: Target bit length of the integer values frac_bits: Target fraction bit width Returns: Dictionary with original keys, containing quantized values """ assert target_bits > frac_bits value_bits = target_bits - frac_bits a_max = 2.0 ** (value_bits - 1) - 1 a_min = -2.0 ** (value_bits - 1) scale = 1 / 2 ** frac_bits d_out = {} for key, value in weight_dict.items(): # round weights w = np.clip(value / scale, a_min=a_min, a_max=a_max).round() w = (w * scale).astype(dtype=target_dtype) # All values d_out[key] = w return d_out def init_network_from_weights(qweights, from_torch): our_net = EggNet.LeNet(reshape_torch=from_torch) our_net.cn1.weights = qweights['cn1.k'] our_net.cn1.bias = qweights['cn1.b'] our_net.cn2.weights = qweights['cn2.k'] our_net.cn2.bias = qweights['cn2.b'] our_net.fc1.weights = qweights['fc1.w'] our_net.fc1.bias = qweights['fc1.b'] our_net.fc2.weights = qweights['fc2.w'] our_net.fc2.bias = qweights['fc2.b'] return our_net def init_fake_network_from_weights(qweights, shift, options): our_net = EggNet.FpiLeNet(qweights, shifts=shift, options=options, real_quant=False) return our_net def init_quant_network_from_weights(qweights, shift, options): our_net = EggNet.FpiLeNet(qweights, shifts=shift, options=options, real_quant=True) return our_net def evaluate_network_full(batch_size, network, train_images, train_labels, images_as_int=False, n_batches=None, intermediates=False): i = 0 total_correct = 0 confusion_matrix = np.zeros(shape=(10, 10)) INTERESTING_LAYER_INDICES = (1, 3, 6, 7) y_layers_out = None while i < train_images.shape[0]: if images_as_int: x = train_images[i:i + batch_size].astype(np.int32) else: x = train_images[i:i + batch_size] / 255.0 y_ = train_labels[i:i + batch_size] y, y_layers = network.forward_intermediate(x) if intermediates: if y_layers_out is None: y_layers_out = y_layers else: for ix in INTERESTING_LAYER_INDICES: y_layers_out[ix] = np.concatenate((y_layers_out[ix], y_layers[ix]), axis=0) y = y.argmax(-1) # ToDo: Might be a faster way for pred, label in zip(y, y_): confusion_matrix[pred, label] = confusion_matrix[pred, label] + 1 total_correct += np.sum(y == y_) i += batch_size if n_batches is not None and i / batch_size > n_batches: break accuracy = total_correct / train_images.shape[0] if intermediates: # Remove other layers y_layers_out = [y_layers_out[i] for i in INTERESTING_LAYER_INDICES] return accuracy, confusion_matrix, y_layers_out else: return accuracy, confusion_matrix def evaluate_network(batch_size, network, train_images, train_labels): a, _, _ = evaluate_network_full(batch_size, network, train_images, train_labels) return a def plot_confusion_matrix(cm: np.ndarray, title='Confusion matrix', target_names=None, normalize=True, cmap=None, filename=None): """ Plot a confusion matrix. Taken from: https://www.kaggle.com/grfiv4/plot-a-confusion-matrix Args: cm: Confusion matrix itself, must be a 2D numpy array title: Plot title target_names: Axes labels normalize: True, for normalized values, false otherwise cmap: Optional color map filename: Optional filename if the plot should be saved Returns: """ assert cm.ndim == 2 import matplotlib.pyplot as plt import itertools accuracy = np.trace(cm) / float(np.sum(cm)) misclass = 1 - accuracy if cmap is None: cmap = plt.get_cmap('Blues') if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] fig = plt.figure(figsize=(8, 6)) ax = plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() if target_names is not None: tick_marks = np.arange(len(target_names)) plt.xticks(tick_marks, target_names, rotation=45) plt.yticks(tick_marks, target_names) thresh = cm.max() / 1.5 if normalize else cm.max() / 2 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): if normalize: plt.text(j, i, "{:0.2f}".format(cm[i, j]), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") else: plt.text(j, i, "{:,}".format(cm[i, j]), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label\naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass)) plt.show() if filename is not None: fig.savefig(fname=filename, dpi=300) def plot_convolutions(kernel, nrows=4, c_out=None, order='keras', title='Convolution Kernels', target_names=None, normalize=True, labels=None, cmap=None, filename=None): if order is 'keras': # Keras order is fine pass elif order is 'torch': # Convert to keras # Tensor is: [Co, Ci, H, W] # Tensor should be: [H, W, Ci, Co] # Use numpy for conversion kernel = np.moveaxis(kernel, source=(0, 1), destination=(2, 3)) pass else: raise NotImplementedError(f'Not currently implemented. Should be "keras" or "torch" but is: {order}') import matplotlib.pyplot as plt fh, fw, ci, co = kernel.shape ncols = ci // nrows + 1 fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(8, 6)) for c_out in co: for r in range(nrows): axes.set_ylabel('') for c in range(ncols): axes[r, c].matshow(np.mean(kernel[:, :, :, c_out], axis=-1)) plt.show() def plot_kernel_density(): """ Check out: https://stackoverflow.com/questions/30145957/plotting-2d-kernel-density-estimation-with-python Returns: """ pass
the-stack_0_10582
# -*- coding: utf-8 -*- # Adapted from nlxio written by Bernard Willards <https://github.com/bwillers/nlxio> import numpy as np import nept def load_events(filename, labels): """Loads neuralynx events Parameters ---------- filename: str labels: dict With event name as the key and Neuralynx event string as the value. Returns ------- timestamps: dict """ nev_data = load_nev(filename) idx = {key: [] for key in labels} for key in labels: for i, event in enumerate(nev_data['event_str']): if event.decode() == labels[key]: idx[key].append(i) timestamps = {label: [] for label in labels} times = nev_data['time'].astype(float) * 1e-6 for label in labels: timestamps[label] = times[idx[label]] return timestamps def load_lfp(filename): """Loads LFP as nept.LocalFieldPotential Parameters ---------- filename: str Returns ------- lfp: nept.LocalFieldPotential """ data, time = load_ncs(filename) return nept.LocalFieldPotential(data, time) def load_position(filename, pxl_to_cm): """Loads videotracking position as nept.Position Parameters ---------- filename: str pxl_to_cm: tuple With (x, y) conversion factors Returns ------- position: nept.Position """ nvt_data = load_nvt(filename) xy = np.hstack(np.array([nvt_data['x'] / pxl_to_cm[0], nvt_data['y'] / pxl_to_cm[1]])[..., np.newaxis]) return nept.Position(xy, nvt_data['time']) def load_neuralynx_header(filename): """Loads a neuralynx header. Parameters ---------- filename: str Returns ------- header: byte str """ with open(filename, 'rb') as f: # Neuralynx files have a 16kbyte header header = f.read(16 * 2**10) return header def load_ncs(filename): """Loads a neuralynx .ncs electrode file. Parameters ---------- filename: str Returns ------- cscs: np.array Voltage trace (V) times: np.array Timestamps (microseconds) """ with open(filename, 'rb') as f: # Neuralynx files have a 16kbyte header header = f.read(16 * 2**10) # The format for a .ncs files according the the neuralynx docs is # uint64 - timestamp in microseconds # uint32 - channel number # uint32 - sample freq # uint32 - number of valid samples # int16 x 512 - actual csc samples dt = np.dtype([('time', '<Q'), ('channel', '<i'), ('freq', '<i'), ('valid', '<i'), ('csc', '<h', (512,))]) data = np.fromfile(f, dt) # unpack the csc matrix csc = data['csc'].reshape((data['csc'].size,)) data_times = data['time'] * 1e-6 # find the frequency frequency = np.unique(data['freq']) if len(frequency) > 1: raise IOError("only one frequency allowed") frequency = frequency[0] # .ncs files have a timestamp for every ~512 data points. # Here, we assign timestamps for each data sample based on the sampling frequency # for each of the 512 data points. Sometimes a block will have fewer than 512 data entries, # number is set in data['valid']. this_idx = 0 n_block = 512. offsets = np.arange(0, n_block / frequency, 1. / frequency) times = np.zeros(csc.shape) for i, (time, n_valid) in enumerate(zip(data_times, data['valid'])): times[this_idx:this_idx + n_valid] = time + offsets[:n_valid] this_idx += n_valid # now find analog_to_digital conversion factor in the header analog_to_digital = None for line in header.split(b'\n'): if line.strip().startswith(b'-ADBitVolts'): analog_to_digital = np.array(float(line.split(b' ')[1].decode())) if analog_to_digital is None: raise IOError("ADBitVolts not found in .ncs header for " + filename) cscs = csc * analog_to_digital return cscs, times def load_nev(filename): """Loads a neuralynx .nev file. Parameters ---------- filename: str Returns ------- nev_data: dict With time (uint64), id (uint16), nttl (uint16), and event_str (charx128) as the most usable keys. """ with open(filename, 'rb') as f: # There's nothing useful in the header for .nev files, so skip past it f.seek(2 ** 14) # An event record is as follows: # int16 - nstx - reserved # int16 - npkt_id - id of the originating system # int16 - npkt_data_size - this value should always be 2 # uint64 - timestamp, microseconds # int16 - nevent_id - ID value for event # int16 - nttl - decimal TTL value read from the TTL input port # int16 - ncrc - record crc check, not used in consumer applications # int16 - ndummy1 - reserved # int16 - ndummy2 - reserved # int32x8 - dnExtra - extra bit values for this event # string(128) - event string dt = np.dtype([('filler1', '<h', 3), ('time', '<Q'), ('id', '<h'), ('nttl', '<h'), ('filler2', '<h', 3), ('extra', '<i', 8), ('event_str', np.dtype('a128'))]) nev_data = np.fromfile(f, dt) return nev_data def load_ntt(filename): """Loads a neuralynx .ntt tetrode spike file. Parameters ---------- filename: str Returns ------- timestamps: np.array Spikes as (num_spikes, length_waveform, num_channels) spikes: np.array Spike times as uint64 (us) frequency: float Sampling frequency in waveforms (Hz) Usage: timestamps, spikes, frequency = load_ntt('TT13.ntt') """ with open(filename, 'rb')as f: # A tetrode spike record is as folows: # uint64 - timestamp bytes 0:8 # uint32 - acquisition entity number bytes 8:12 # uint32 - classified cel number bytes 12:16 # 8 * uint32- params bytes 16:48 # 32 * 4 * int16 - waveform points # hence total record size is 2432 bits, 304 bytes # header is 16kbyte, i.e. 16 * 2^10 = 2^14 header = f.read(16 * 2**10) # Read the header and find the conversion factors / sampling frequency analog_to_digital = None frequency = None for line in header.split(b'\n'): if line.strip().startswith(b'-ADBitVolts'): analog_to_digital = np.array(float(line.split(b' ')[1].decode())) if line.strip().startswith(b'-SamplingFrequency'): frequency = float(line.split(b' ')[1].decode()) f.seek(2 ** 14) # start of the spike, records # Neuralynx write little endian for some dumb reason dt = np.dtype([('time', '<Q'), ('filer', '<i', 10), ('spikes', np.dtype('<h'), (32, 4))]) data = np.fromfile(f, dt) if analog_to_digital is None: raise IOError("ADBitVolts not found in .ntt header for " + filename) if frequency is None: raise IOError("Frequency not found in .ntt header for " + filename) f.close() return data['time'], data['spikes'] * analog_to_digital, frequency def load_nvt(filename, remove_empty=True): """Loads a neuralynx .nvt file. Parameters ---------- filename: str remove_empty: bool Returns ------- nvt_data: dict With time, x, and y as keys. """ with open(filename, 'rb') as f: # Neuralynx files have a 16kbyte header header = f.read(16 * 2**10) # The format for .nvt files according the the neuralynx docs is # uint16 - beginning of the record # uint16 - ID for the system # uint16 - size of videorec in bytes # uint64 - timestamp in microseconds # uint32 x 400 - points with the color bitfield values # int16 - unused # int32 - extracted X location of target # int32 - extracted Y location of target # int32 - calculated head angle in degrees clockwise from the positive Y axis # int32 x 50 - colored targets using the same bitfield format used to extract colors earlier dt = np.dtype([('filler1', '<h', 3), ('time', '<Q'), ('points', '<i', 400), ('filler2', '<h'), ('x', '<i'), ('y', '<i'), ('head_angle', '<i'), ('targets', '<i', 50)]) data = np.fromfile(f, dt) nvt_data = dict() nvt_data['time'] = data['time'] * 1e-6 nvt_data['x'] = np.array(data['x'], dtype=float) nvt_data['y'] = np.array(data['y'], dtype=float) nvt_data['targets'] = np.array(data['targets'], dtype=float) empty_idx = (data['x'] == 0) & (data['y'] == 0) for key in nvt_data: if remove_empty: nvt_data[key] = nvt_data[key][~empty_idx] return nvt_data
the-stack_0_10585
from pyscf import gto, dft from automr import guess #mf=guess.from_fch_simp("v2.fchk", xc='pbe0') #mf2.verbose=9 #mf2.stability() mol = gto.Mole(atom='''Cr 0.0 0.0 0.0; Cr 0.0 0.0 1.6''', basis='def2-tzvp', verbose=5).build() mf = dft.RKS(mol) mf.xc = 'pbe0' mf.kernel() mf2 = guess.check_stab(mf, newton=True, res=True)
the-stack_0_10586
#!/usr/bin/env python3 # Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import os import sys import platform import subprocess lib_env_key = "PATH" if platform.system() == "Windows" else "LD_LIBRARY_PATH" if lib_env_key not in os.environ: os.environ[lib_env_key] = "" python_path_key = "PYTHONPATH" if python_path_key not in os.environ: os.environ[python_path_key] = "" ov_frontend_path_key = "OV_FRONTEND_PATH" if ov_frontend_path_key not in os.environ: os.environ[ov_frontend_path_key] = "" lib_path_orig = os.environ[lib_env_key] python_path_orig = os.environ[python_path_key] ov_frontend_path_orig = os.environ[ov_frontend_path_key] def setup_env(module="", libs=[]): """ Update os.environ variables with given values. :param module: path to python module :param libs: list with paths to libraries """ os.environ[python_path_key] = os.pathsep.join([module, os.environ[python_path_key]]) os.environ[lib_env_key] = os.pathsep.join([*libs, os.environ[lib_env_key]]) if len(os.getenv(ov_frontend_path_key)) == 0: os.environ[ov_frontend_path_key] = os.pathsep.join([*libs]) def reset_env(): """ Reset os.environ variables to default values """ os.environ[python_path_key] = python_path_orig os.environ[lib_env_key] = lib_path_orig os.environ[ov_frontend_path_key] = ov_frontend_path_orig def try_to_import_ie(module="", libs=[], silent=False): """ Check if Inference Engine Python API modules exists and in case of success environment will be set with given values. :param module: path to python module :param libs: list with paths to libraries :param silent: hide all output """ path_to_script = os.path.join(os.path.realpath(os.path.dirname(__file__)), 'check_ie_bindings.py') # We need to execute python modules checker in subprocess to avoid issue with environment # in case if previous import was unsuccessful it can fail further imports even if sys.path # will be restored to initial default values. # To pass environment to sub-process PATH/LD_LIBRARY_PATH and PYTHONPATH are used from # os.environ that is set after setup_env() setup_env(module=module, libs=libs) cmd_args = [sys.executable, path_to_script, "--path_to_module", "PYTHONPATH" if module == "" else module] if silent: cmd_args.append("--silent") status = subprocess.run(cmd_args, env=os.environ) if status.returncode == 0: return True else: reset_env() return False def find_ie_version(silent=False): """ Tries to import Inference Engine Python API bindings. In case of successful import PATH/LD_LIBRARY_PATH and PYTHONPATH environment variables will be set This variables must be passed to subprocess in order to execute IE python bindings. Example: if find_ie_version(): subprocess.run([sys.executable, path_to_script], env=os.environ) """ if try_to_import_ie(silent=silent): return True python_version = 'python{}.{}'.format(sys.version_info[0], sys.version_info[1]) script_path = os.path.realpath(os.path.dirname(__file__)) # Windows bindings_paths_windows = [ # Local builds { "module": os.path.join(script_path, '../../../../../../bin/intel64/Release/python_api/', python_version), "libs": [ os.path.join(script_path, '../../../../../../bin/intel64'), os.path.join(script_path, '../../../../../../bin/intel64/Release'), os.path.join(script_path, '../../../../../../temp/tbb/bin'), ] }, { "module": os.path.join(script_path, '../../../../../../bin/intel64/Debug/python_api/', python_version), "libs": [ os.path.join(script_path, '../../../../../../bin/intel64'), os.path.join(script_path, '../../../../../../bin/intel64/Debug'), os.path.join(script_path, '../../../../../../temp/tbb/bin'), ] }, ] # Linux / Darwin bindings_paths_linux = [ # Local builds { "module": os.path.join(script_path, '../../../../../../bin/intel64/Release/lib/python_api/', python_version), "libs": [ os.path.join(script_path, '../../../../../../bin/intel64/Release/lib'), ] }, { "module": os.path.join(script_path, '../../../../../../bin/intel64/RelWithDebInfo/lib/python_api/', python_version), "libs": [ os.path.join(script_path, '../../../../../../bin/intel64/RelWithDebInfo/lib'), ] }, { "module": os.path.join(script_path, '../../../../../../bin/intel64/Debug/lib/python_api/', python_version), "libs": [ os.path.join(script_path, '../../../../../../bin/intel64/Debug/lib'), ] } ] bindings_paths = bindings_paths_windows if platform.system() == "Windows" else bindings_paths_linux for item in bindings_paths: module = item['module'] if not os.path.exists(module): continue if try_to_import_ie(module=os.path.normpath(module), libs=item['libs'] if 'libs' in item else [], silent=silent): return True return False if __name__ == "__main__": if not find_ie_version(): exit(1)
the-stack_0_10587
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Primitives for dealing with datastore indexes. Example index.yaml file: ------------------------ indexes: - kind: Cat ancestor: no properties: - name: name - name: age direction: desc - kind: Cat properties: - name: name direction: ascending - name: whiskers direction: descending - kind: Store ancestor: yes properties: - name: business direction: asc - name: owner direction: asc """ from google.appengine.api import datastore_types from google.appengine.api import validation from google.appengine.api import yaml_errors from google.appengine.api import yaml_object from google.appengine.datastore import datastore_pb from google.appengine.datastore import entity_pb class Property(validation.Validated): """Representation for an individual property of an index. Attributes: name: Name of attribute to sort by. direction: Direction of sort. """ ATTRIBUTES = { 'name': validation.Type(str, convert=False), 'direction': validation.Options(('asc', ('ascending',)), ('desc', ('descending',)), default='asc'), } class Index(validation.Validated): """Individual index definition. Order of the properties determines a given indexes sort priority. Attributes: kind: Datastore kind that index belongs to. ancestors: Include ancestors in index. properties: Properties to sort on. """ ATTRIBUTES = { 'kind': validation.Type(str, convert=False), 'ancestor': validation.Type(bool, convert=False, default=False), 'properties': validation.Optional(validation.Repeated(Property)), } class IndexDefinitions(validation.Validated): """Top level for index definition file. Attributes: indexes: List of Index definitions. """ ATTRIBUTES = { 'indexes': validation.Optional(validation.Repeated(Index)), } def ParseIndexDefinitions(document, open_fn=None): """Parse an individual index definitions document from string or stream. Args: document: Yaml document as a string or file-like stream. open_fn: Function for opening files. Unused. Raises: EmptyConfigurationFile when the configuration file is empty. MultipleConfigurationFile when the configuration file contains more than one document. Returns: Single parsed yaml file if one is defined, else None. """ try: return yaml_object.BuildSingleObject(IndexDefinitions, document) except yaml_errors.EmptyConfigurationFile: return None def ParseMultipleIndexDefinitions(document): """Parse multiple index definitions documents from a string or stream. Args: document: Yaml document as a string or file-like stream. Returns: A list of datstore_index.IndexDefinitions objects, one for each document. """ return yaml_object.BuildObjects(IndexDefinitions, document) def IndexDefinitionsToKeys(indexes): """Convert IndexDefinitions to set of keys. Args: indexes: A datastore_index.IndexDefinitions instance, or None. Returns: A set of keys constructed from the argument, each key being a tuple of the form (kind, ancestor, properties) where properties is a tuple of (name, direction) pairs, direction being ASCENDING or DESCENDING (the enums). """ keyset = set() if indexes is not None: if indexes.indexes: for index in indexes.indexes: keyset.add(IndexToKey(index)) return keyset def IndexToKey(index): """Convert Index to key. Args: index: A datastore_index.Index instance (not None!). Returns: A tuple of the form (kind, ancestor, properties) where properties is a tuple of (name, direction) pairs, direction being ASCENDING or DESCENDING (the enums). """ props = [] if index.properties is not None: for prop in index.properties: if prop.direction == 'asc': direction = ASCENDING else: direction = DESCENDING props.append((prop.name, direction)) return index.kind, index.ancestor, tuple(props) ASCENDING = datastore_pb.Query_Order.ASCENDING DESCENDING = datastore_pb.Query_Order.DESCENDING EQUALITY_OPERATORS = set((datastore_pb.Query_Filter.EQUAL, )) INEQUALITY_OPERATORS = set((datastore_pb.Query_Filter.LESS_THAN, datastore_pb.Query_Filter.LESS_THAN_OR_EQUAL, datastore_pb.Query_Filter.GREATER_THAN, datastore_pb.Query_Filter.GREATER_THAN_OR_EQUAL, )) EXISTS_OPERATORS = set((datastore_pb.Query_Filter.EXISTS, )) _DIRECTION_MAP = { 'asc': entity_pb.Index_Property.ASCENDING, 'ascending': entity_pb.Index_Property.ASCENDING, 'desc': entity_pb.Index_Property.DESCENDING, 'descending': entity_pb.Index_Property.DESCENDING, } def Normalize(filters, orders, properties): """ Normalizes filter and order query components. The resulting components have the same effect as the given components if used in a query. Returns: (filter, orders) the reduced set of filters and orders """ eq_properties = set() inequality_properties = set() for f in filters: if f.op() == datastore_pb.Query_Filter.IN and f.property_size() == 1: f.set_op(datastore_pb.Query_Filter.EQUAL) if f.op() in EQUALITY_OPERATORS: eq_properties.add(f.property(0).name()) elif f.op() in INEQUALITY_OPERATORS: inequality_properties.add(f.property(0).name()) eq_properties -= inequality_properties remove_set = eq_properties.copy() new_orders = [] for o in orders: if o.property() not in remove_set: remove_set.add(o.property()) new_orders.append(o) orders = new_orders remove_set.update(inequality_properties) new_filters = [] for f in filters: if f.op() not in EXISTS_OPERATORS: new_filters.append(f) continue name = f.property(0).name() if name not in remove_set: remove_set.add(name) new_filters.append(f) for prop in properties: if prop not in remove_set: remove_set.add(prop) new_filter = datastore_pb.Query_Filter() new_filter.set_op(datastore_pb.Query_Filter.EXISTS) new_prop = new_filter.add_property() new_prop.set_name(prop) new_prop.set_multiple(False) new_prop.mutable_value() new_filters.append(new_filter) filters = new_filters if datastore_types.KEY_SPECIAL_PROPERTY in eq_properties: orders = [] new_orders = [] for o in orders: if o.property() == datastore_types.KEY_SPECIAL_PROPERTY: new_orders.append(o) break new_orders.append(o) orders = new_orders return (filters, orders) def RemoveNativelySupportedComponents(filters, orders, properties): """ Removes query components that are natively supported by the datastore. The resulting filters and orders should not be used in an actual query. Returns (filters, orders) the reduced set of filters and orders """ (filters, orders) = Normalize(filters, orders, properties) for f in filters: if f.op() in EXISTS_OPERATORS: return (filters, orders) has_key_desc_order = False if orders and orders[-1].property() == datastore_types.KEY_SPECIAL_PROPERTY: if orders[-1].direction() == ASCENDING: orders = orders[:-1] else: has_key_desc_order = True if not has_key_desc_order: for f in filters: if (f.op() in INEQUALITY_OPERATORS and f.property(0).name() != datastore_types.KEY_SPECIAL_PROPERTY): break else: filters = [f for f in filters if f.property(0).name() != datastore_types.KEY_SPECIAL_PROPERTY] return (filters, orders) def CompositeIndexForQuery(query): """Return the composite index needed for a query. A query is translated into a tuple, as follows: - The first item is the kind string, or None if we're not filtering on kind (see below). - The second item is a bool giving whether the query specifies an ancestor. - After that come (property, ASCENDING) pairs for those Filter entries whose operator is EQUAL or IN. Since the order of these doesn't matter, they are sorted by property name to normalize them in order to avoid duplicates. - After that comes at most one (property, ASCENDING) pair for a Filter entry whose operator is on of the four inequalities. There can be at most one of these. - After that come all the (property, direction) pairs for the Order entries, in the order given in the query. Exceptions: (a) if there is a Filter entry with an inequality operator that matches the first Order entry, the first order pair is omitted (or, equivalently, in this case the inequality pair is omitted). (b) if an Order entry corresponds to an equality filter, it is ignored (since there will only ever be one value returned). (c) if there is an equality filter on __key__ all orders are dropped (since there will be at most one result returned). (d) if there is an order on __key__ all further orders are dropped (since keys are unique). (e) orders on __key__ ASCENDING are dropped (since this is supported natively by the datastore). - Finally, if there are Filter entries whose operator is EXISTS, and whose property names are not already listed, they are added, with the direction set to ASCENDING. This algorithm should consume all Filter and Order entries. Additional notes: - The low-level implementation allows queries that don't specify a kind; but the Python API doesn't support this yet. - If there's an inequality filter and one or more sort orders, the first sort order *must* match the inequality filter. - The following indexes are always built in and should be suppressed: - query on kind only; - query on kind and one filter *or* one order; - query on ancestor only, without kind (not exposed in Python yet); - query on kind and equality filters only, no order (with or without ancestor). - While the protocol buffer allows a Filter to contain multiple properties, we don't use this. It is only needed for the IN operator but this is (currently) handled on the client side, so in practice each Filter is expected to have exactly one property. Args: query: A datastore_pb.Query instance. Returns: A tuple of the form (required, kind, ancestor, properties). required: boolean, whether the index is required; kind: the kind or None; ancestor: True if this is an ancestor query; properties: A tuple consisting of any number of: - Sets of property names: Indicates these properties can appear in any order with any direction. - Tuples of (property name, direction) tuples. Indicating the properties must appear in the exact order with the given direction. direction can be None if direction does not matter. """ required = True kind = query.kind() ancestor = query.has_ancestor() filters = query.filter_list() orders = query.order_list() for filter in filters: assert filter.op() != datastore_pb.Query_Filter.IN, 'Filter.op()==IN' nprops = len(filter.property_list()) assert nprops == 1, 'Filter has %s properties, expected 1' % nprops if not kind: required = False filters, orders = RemoveNativelySupportedComponents( filters, orders, query.property_name_list()) eq_filters = [f for f in filters if f.op() in EQUALITY_OPERATORS] ineq_filters = [f for f in filters if f.op() in INEQUALITY_OPERATORS] exists_filters = [f for f in filters if f.op() in EXISTS_OPERATORS] assert (len(eq_filters) + len(ineq_filters) + len(exists_filters)) == len(filters), 'Not all filters used' if (kind and not ineq_filters and not exists_filters and not orders): names = set(f.property(0).name() for f in eq_filters) if not names.intersection(datastore_types._SPECIAL_PROPERTIES): required = False ineq_property = None if ineq_filters: for filter in ineq_filters: if (filter.property(0).name() == datastore_types._UNAPPLIED_LOG_TIMESTAMP_SPECIAL_PROPERTY): continue if not ineq_property: ineq_property = filter.property(0).name() else: assert filter.property(0).name() == ineq_property prefix = frozenset(f.property(0).name() for f in eq_filters) postfix_ordered = [(order.property(), order.direction()) for order in orders] postfix_unordered = frozenset(f.property(0).name() for f in exists_filters) if ineq_property: if orders: assert ineq_property == orders[0].property() else: postfix_ordered.append((ineq_property, None)) property_count = len(prefix) + len(postfix_ordered) + len(postfix_unordered) if kind and not ancestor and property_count <= 1: required = False if postfix_ordered: prop, dir = postfix_ordered[0] if prop == datastore_types.KEY_SPECIAL_PROPERTY and dir is DESCENDING: required = True return (required, kind, ancestor, (prefix, tuple(postfix_ordered), postfix_unordered)) def GetRecommendedIndexProperties(properties): """Converts the properties returned by datastore_index.CompositeIndexForQuery into a recommended list of index properties and directions. All unordered components are sorted and assigned an ASCENDING direction. All ordered components with out a direction are assigned an ASCEDNING direction. Args: properties: See datastore_index.CompositeIndexForQuery Returns: A tuple of (name, direction) tuples where: name: a property name direction: datastore_pb.Query_Order.ASCENDING or ...DESCENDING """ result = [] for sub_list in properties: if isinstance(sub_list, (frozenset, set)): for prop in sorted(sub_list): result.append((prop, ASCENDING)) else: for prop, dir in sub_list: result.append((prop, dir if dir is not None else ASCENDING)) return tuple(result) def MinimalCompositeIndexForQuery(query, index_defs): """Computes the minimal composite index for this query. Unlike datastore_index.CompositeIndexForQuery, this function takes into account indexes that already exist in the system. Args: query: the datastore_pb.Query to compute suggestions for index_defs: a list of datastore_index.Index objects that already exist. Returns: None if no index is needed, otherwise the minimal index in the form (is_most_efficient, kind, ancestor, properties). Where is_most_efficient is a boolean denoting if the suggested index is the most efficient (i.e. the one returned by datastore_index.CompositeIndexForQuery). kind, ancestor, and properties are the same variables returned by datastore_index.CompositeIndexForQuery. """ required, kind, ancestor, props = CompositeIndexForQuery(query) if not required: return None prefix, postfix_ordered, postfix_unordered = props remaining_dict = {} for definition in index_defs: if (kind != definition.kind or (not ancestor and definition.ancestor)): continue _, _, index_props = IndexToKey(definition) postfix_split = len(index_props) - 1 while (postfix_split >= 0 and index_props[postfix_split][0] in postfix_unordered): postfix_split -= 1 postfix_split += 1 index_postfix_unordered = index_props[postfix_split:] if (set(prop for prop, _ in index_postfix_unordered) != postfix_unordered or len(index_postfix_unordered) != len(postfix_unordered)): continue postfix_start = postfix_split - len(postfix_ordered) if postfix_start < 0: continue index_postfix_ordered = index_props[postfix_start:postfix_split] match = True for (index_prop, index_dir), (prop, dir) in zip(index_postfix_ordered, postfix_ordered): if index_prop != prop or (dir is not None and index_dir != dir): match = False break if not match: continue index_prefix = set(prop for prop, dir in index_props[:postfix_start]) if index_prefix - prefix: continue index_postfix = tuple(index_postfix_ordered + index_postfix_unordered) remaining = remaining_dict.get(index_postfix) if remaining is None: remaining = prefix.copy(), ancestor props_remaining, ancestor_remaining = remaining props_remaining = props_remaining - index_prefix if definition.ancestor: ancestor_remaining = False if not (props_remaining or ancestor_remaining): return None if (props_remaining, ancestor_remaining) == remaining: continue remaining_dict[index_postfix] = (props_remaining, ancestor_remaining) if not remaining_dict: return (True, kind, ancestor, props) def calc_cost(minimal_props, minimal_ancestor): result = len(minimal_props) if minimal_ancestor: result += 2 minimal_postfix, remaining = remaining_dict.popitem() minimal_props, minimal_ancestor = remaining minimal_cost = calc_cost(minimal_props, minimal_ancestor) for index_postfix, (props_remaining, ancestor_remaining) in remaining_dict: cost = calc_cost(props_remaining, ancestor_remaining) if cost < minimal_cost: minimal_cost = cost minimal_postfix = index_postfix minimal_props = props_remaining minimal_ancestor = ancestor_remaining return False, kind, minimal_ancestor, (frozenset(minimal_props), minimal_postfix, frozenset()) def IndexYamlForQuery(kind, ancestor, props): """Return the composite index definition YAML needed for a query. Given a query, the arguments for this method can be computed with: _, kind, ancestor, props = datastore_index.CompositeIndexForQuery(query) props = datastore_index.GetRecommendedIndexProperties(props) Args: kind: the kind or None ancestor: True if this is an ancestor query, False otherwise props: tuples of the form (name, direction) where: name - a property name; direction - datastore_pb.Query_Order.ASCENDING or ...DESCENDING; Returns: A string with the YAML for the composite index needed by the query. """ yaml = [] yaml.append('- kind: %s' % kind) if ancestor: yaml.append(' ancestor: yes') if props: yaml.append(' properties:') for name, direction in props: yaml.append(' - name: %s' % name) if direction == DESCENDING: yaml.append(' direction: desc') return '\n'.join(yaml) def IndexXmlForQuery(kind, ancestor, props): """Return the composite index definition XML needed for a query. Given a query, the arguments for this method can be computed with: _, kind, ancestor, props = datastore_index.CompositeIndexForQuery(query) props = datastore_index.GetRecommendedIndexProperties(props) Args: kind: the kind or None ancestor: True if this is an ancestor query, False otherwise props: tuples of the form (name, direction) where: name - a property name; direction - datastore_pb.Query_Order.ASCENDING or ...DESCENDING; Returns: A string with the XML for the composite index needed by the query. """ xml = [] xml.append('<datastore-index kind="%s" ancestor="%s">' % (kind, 'true' if ancestor else 'false')) for name, direction in props: xml.append(' <property name="%s" direction="%s" />' % (name, 'asc' if direction == ASCENDING else 'desc')) xml.append('</datastore-index>') return '\n'.join(xml) def IndexDefinitionToProto(app_id, index_definition): """Transform individual Index definition to protocol buffer. Args: app_id: Application id for new protocol buffer CompositeIndex. index_definition: datastore_index.Index object to transform. Returns: New entity_pb.CompositeIndex with default values set and index information filled in. """ proto = entity_pb.CompositeIndex() proto.set_app_id(app_id) proto.set_id(0) proto.set_state(entity_pb.CompositeIndex.WRITE_ONLY) definition_proto = proto.mutable_definition() definition_proto.set_entity_type(index_definition.kind) definition_proto.set_ancestor(index_definition.ancestor) if index_definition.properties is not None: for prop in index_definition.properties: prop_proto = definition_proto.add_property() prop_proto.set_name(prop.name) prop_proto.set_direction(_DIRECTION_MAP[prop.direction]) return proto def IndexDefinitionsToProtos(app_id, index_definitions): """Transform multiple index definitions to composite index records Args: app_id: Application id for new protocol buffer CompositeIndex. index_definition: A list of datastore_index.Index objects to transform. Returns: A list of tranformed entity_pb.Compositeindex entities with default values set and index information filled in. """ return [IndexDefinitionToProto(app_id, index) for index in index_definitions] def ProtoToIndexDefinition(proto): """Transform individual index protocol buffer to index definition. Args: proto: An instance of entity_pb.CompositeIndex to transform. Returns: A new instance of datastore_index.Index. """ properties = [] proto_index = proto.definition() for prop_proto in proto_index.property_list(): prop_definition = Property(name=prop_proto.name()) if prop_proto.direction() == entity_pb.Index_Property.DESCENDING: prop_definition.direction = 'descending' properties.append(prop_definition) index = Index(kind=proto_index.entity_type(), properties=properties) if proto_index.ancestor(): index.ancestor = True return index def ProtosToIndexDefinitions(protos): """Transform multiple index protocol buffers to index definitions. Args: A list of entity_pb.Index records. """ return [ProtoToIndexDefinition(definition) for definition in protos]
the-stack_0_10590
#!/usr/bin/env python from glob import glob import sipprcommon.runMetadata as runMetadata from sipprcommon.offhours import Offhours from sipprcommon.accessoryfunctions.accessoryFunctions import * # Import ElementTree - try first to import the faster C version, if that doesn't # work, try to import the regular version try: import xml.etree.cElementTree as ElementTree except ImportError: import xml.etree.ElementTree as ElementTree __author__ = 'adamkoziol' class CreateFastq(object): def createfastq(self): """Uses bcl2fastq to create .fastq files from a MiSeqRun""" from time import sleep from subprocess import call # Initialise samplecount samplecount = 0 # If the fastq destination folder is not provided, make the default value of :path/:miseqfoldername self.fastqdestination = self.fastqdestination if self.fastqdestination else self.path + self.miseqfoldername # Make the path make_path(self.fastqdestination) # Initialise variables for storing index information index = '' indexlength = int() # bcl2fastq requires an older version of the sample sheet, this recreates the required version # Create the new sample sheet with open(os.path.join(self.fastqdestination, 'SampleSheet_modified.csv'), "w") as modifiedsamplesheet: # Write the required headings to the file modifiedsamplesheet.write( "FCID,Lane,SampleID,SampleRef,Index,Description,Control,Recipe,Operator,SampleProject\n") for strain in self.samples: # Create a combined index of index1-index2 try: strain.run.modifiedindex = '{}-{}'.format(strain.run.index, strain.run.index2) indexlength = 16 index = 'I8,I8' except KeyError: strain.run.modifiedindex = strain.run.index indexlength = 6 index = 'I6' # The list of items to print to each line of the modified sample sheet printlist = [self.flowcell, '1', strain.name, str(strain.run.SampleNumber), strain.run.modifiedindex, strain.run.Description, 'N', 'NA', strain.run.InvestigatorName, self.projectname] modifiedsamplesheet.write('{}\n'.format(",".join(printlist))) samplecount += 1 # Set :forward/reverse length to :header.forward/reverse length if the argument is not provided, or it's 'full', # otherwise use the supplied argument self.forwardlength = self.metadata.header.forwardlength if self.forwardlength.lower()\ == 'full' else self.forwardlength # Set :reverselength to :header.reverselength self.reverselength = self.metadata.header.reverselength if self.reverselength.lower() \ == 'full' else self.reverselength # As the number of cycles required is the number of forward reads + the index(8) + the second index(8) # Also set the basemask variable as required if self.reverselength != '0': self.readsneeded = int(self.forwardlength) + int(self.reverselength) + indexlength basemask = "Y{}n*,{},Y{}n*".format(self.forwardlength, index, self.reverselength) nohup = "nohup make -j 16 > nohup.out" else: # + 1 self.readsneeded = int(self.forwardlength) + indexlength basemask = "Y{}n*,{},n*".format(self.forwardlength, index) nohup = "nohup make -j 16 r1 > nohup.out" # Handle plurality appropriately samples = 'samples' if samplecount > 1 else 'sample' number = 'are' if samplecount > 1 else 'is' printtime('There {} {} {} in this run. ' 'Running fastq creating module with the following parameters:\n' 'MiSeqPath: {},\n' 'MiSeqFolder: {},\n' 'Fastq destination: {},\n' 'SampleSheet: {}' .format(number, samplecount, samples, self.miseqpath, self.miseqfolder, self.fastqdestination, os.path.join(self.fastqdestination, 'SampleSheet_modified.csv')), self.start) # Count the number of completed cycles in the run of interest cycles = glob(os.path.join(self.miseqpath, self.miseqfolder, 'Data', 'Intensities', 'BaseCalls', 'L001', 'C*')) while len(cycles) < self.readsneeded: printtime('Currently at {} cycles. Waiting until the MiSeq reaches cycle {}'.format(len(cycles), self.readsneeded), self.start) sleep(300) cycles = glob(os.path.join(self.miseqpath, self.miseqfolder, 'Data', 'Intensities', 'BaseCalls', 'L001', 'C*')) # configureBClToFastq requires :self.miseqfolder//Data/Intensities/BaseCalls/config.xml in order to work # When you download runs from BaseSpace, this file is not provided. There is an empty config.xml file that # can be populated with run-specific values and moved to the appropriate folder if not os.path.isfile(os.path.join(self.miseqfolder, 'Data', 'Intensities', 'BaseCalls', 'config.xml')): self.configfilepopulator() # Define the bcl2fastq system call bclcall = "configureBclToFastq.pl --input-dir {}Data/Intensities/BaseCalls " \ "--output-dir {} --force --sample-sheet {}/SampleSheet_modified.csv " \ "--mismatches 1 --no-eamss --fastq-cluster-count 0 --compression none --use-bases-mask {}"\ .format(self.miseqfolder, self.fastqdestination, self.fastqdestination, basemask) # Define the nohup system call nohupcall = "cd {} && {}".format(self.fastqdestination, nohup) fnull = open(os.devnull, 'wb') if not os.path.isdir(os.path.join(self.fastqdestination, 'Project_{}'.format(self.projectname))): # Call configureBclToFastq.pl printtime('Running bcl2fastq', self.start) # Run the commands call(bclcall, shell=True, stdout=fnull, stderr=fnull) call(nohupcall, shell=True, stdout=fnull, stderr=fnull) # Populate the metadata for sample in self.metadata.samples: sample.commands = GenObject() sample.commands.nohup = nohupcall sample.commands.bcl = bclcall sample.run.forwardlength = self.forwardlength sample.run.reverselength = self.reverselength # Copy the fastq files to a central folder so they can be processed self.fastqmover() def configfilepopulator(self): """Populates an unpopulated config.xml file with run-specific values and creates the file in the appropriate location""" # Set the number of cycles for each read and index using the number of reads specified in the sample sheet self.forwardlength = self.metadata.header.forwardlength self.reverselength = self.metadata.header.reverselength # Create a list of lists containing [cycle start, cycle end, and :runid] for each of forward reads, index 1 # index 2, and reverse reads cycles = [[1, self.forwardlength, self.runid], [self.forwardlength + 1, self.forwardlength + 8, self.runid], [self.forwardlength + 9, self.forwardlength + 16, self.runid], [self.forwardlength + 17, self.forwardlength + 16 + self.reverselength, self.runid]] # A dictionary of parameters (keys) and the values to use when repopulating the config file parameters = {'RunFolder': self.runid, 'RunFolderDate': self.metadata.date.replace("-", ""), 'RunFolderId': self.metadata.runnumber, 'RunFlowcellId': self.metadata.flowcell} # Load the xml file using element tree config = ElementTree.parse(os.path.join(self.homepath, 'config.xml')) # Get the root of the tree configroot = config.getroot() # The run node is the only child node of the root for run in configroot: # Iterate through the child nodes. There are three nodes sections that must be populated for child in run: # Find the cycles tag if child.tag == 'Cycles': # Set the attributes with a dictionary containing the total reads child.attrib = {'Last': '{}'.format(self.forwardlength + 16 + self.reverselength), 'Number': '{}'.format(self.totalreads), 'First': '1'} elif child.tag == 'RunParameters': # Name the child as runparameter for easier coding runparameters = child for runparameter in runparameters: # This replaces data in both 'ImagingReads' and 'Reads' nodes if 'Reads' in runparameter.tag: # Enumerate through the run parameters for indexcount, reads in enumerate(runparameter): # The values for the index are 1, 2, 3, 4. Subtract one to get the index of the first # list in cycles index = int(runparameter.attrib['Index']) - 1 # Set the text value as the appropriate value from cycles reads.text = str(cycles[index][indexcount]) # Populate the instrument value if runparameter.tag == 'Instrument': runparameter.text = self.instrument # Iterate through the parameters in the parameter dictionary for parameter in parameters: # If the key is encountered if runparameter.tag == parameter: # Replace the text with the value runparameter.text = parameters[parameter] if 'Barcode' in runparameter.tag: for cycle, barcode in enumerate(runparameter): # Add the barcode cycles. These are the number of forward reads (+ 1 as the barcode # starts 1 cycle after the first run) plus the current iterator barcode.text = str(self.forwardlength + 1 + cycle) # Write the modified config file to the desired location config.write(os.path.join(self.miseqfolder, 'Data', 'Intensities', 'BaseCalls', 'config.xml')) def fastqmover(self): """Links .fastq files created above to :sequencepath""" from re import sub import errno # Create the project path variable self.projectpath = os.path.join(self.fastqdestination, "Project_{}".format(self.projectname)) # Create the sequence path if necessary make_path(self.sequencepath) # Iterate through all the sample names for sample in self.metadata.samples: # Make directory variables outputdir = os.path.join(self.sequencepath, sample.name) sampledir = os.path.join(self.projectpath, 'Sample_{}'.format(sample.name)) # Glob all the .gz files in the subfolders - projectpath/Sample_:sample.name/*.gz for fastq in sorted(glob(os.path.join(sampledir, '*.gz'))): fastqname = os.path.basename(fastq) # Set the name of the destination file renamed with the sample number. # 2015-SEQ-1283_GGACTCCT-GCGTAAGA_L001_R1_001.fastq.gz is renamed: # 2015-SEQ-1283_S1_L001_R1_001.fastq.gz outputfile = os.path.join(self.sequencepath, os.path.basename( sub( sample.run.modifiedindex, 'S{}'.format(sample.run.SampleNumber), fastq))) if not self.copy: # Try/except loop link .gz files to self.path try: # Symlink fastq file to the seq path relativepath = os.path.relpath(sampledir, self.sequencepath) os.symlink( os.path.join(relativepath, fastqname), os.path.join(outputfile) ) # Except os errors except OSError as exception: # If there is an exception other than the file exists, raise it if exception.errno != errno.EEXIST: raise else: import shutil # Copy the file if it doesn't already exist if not os.path.isfile(outputfile): shutil.copyfile(fastq, outputfile) # Repopulate .strainfastqfiles with the freshly-linked/copied files fastqfiles = glob(os.path.join(self.sequencepath, '{}*.fastq*'.format(sample.name))) fastqfiles = [fastq for fastq in fastqfiles if 'trimmed' not in fastq] # Populate the metadata object with the name/path of the fastq files sample.general.fastqfiles = fastqfiles # Save the outputdir to the metadata object sample.run.outputdirectory = outputdir sample.general.outputdirectory = outputdir sample.general.bestassemblyfile = True sample.general.trimmedcorrectedfastqfiles = sample.general.fastqfiles sample.commands = GenObject() def __init__(self, inputobject): """Initialise variables""" self.path = inputobject.path self.sequencepath = inputobject.sequencepath self.start = inputobject.starttime self.fastqdestination = inputobject.fastqdestination self.homepath = inputobject.homepath self.miseqout = str() self.projectname = 'fastqCreation' self.projectpath = str() self.numreads = inputobject.numreads self.forwardlength = inputobject.forwardlength self.reverselength = inputobject.reverselength if self.numreads > 1 else '0' self.readsneeded = 0 self.commit = inputobject.commit self.copy = inputobject.copy if inputobject.miseqpath: self.miseqpath = os.path.join(inputobject.miseqpath, '') else: print('MiSeqPath argument is required in order to use the fastq creation module. Please provide this ' 'argument and run the script again.') quit() self.customsamplesheet = inputobject.customsamplesheet if self.customsamplesheet: assert os.path.isfile(self.customsamplesheet), 'Cannot find custom sample sheet as specified {}' \ .format(self.customsamplesheet) # Use the assertions module from offhours to validate whether provided arguments are valid self.assertions = Offhours(inputobject) self.assertions.assertpathsandfiles() # Populate variables from this object self.miseqfolder = self.assertions.miseqfolder self.miseqfoldername = self.assertions.miseqfoldername self.customsamplesheet = self.assertions.customsamplesheet if self.assertions.customsamplesheet \ else os.path.join(self.miseqfolder, 'SampleSheet.csv') self.runinfo = os.path.join(self.miseqfolder, 'RunInfo.xml') # Parse the sample sheet and other metadata files here self.metadata = runMetadata.Metadata(self) self.metadata.parseruninfo() # Create variables from this method self.flowcell = self.metadata.flowcell self.instrument = self.metadata.instrument self.samples = self.metadata.samples self.runid = self.metadata.runid # self.header = self.metadata. self.ids = self.metadata.ids self.date = self.metadata.date self.totalreads = self.metadata.totalreads # Create fastq files self.createfastq() # If the script is called from the command line, then call the argument parser if __name__ == '__main__': import subprocess from time import time # Get the current commit of the pipeline from git # Extract the path of the current script from the full path + file name homepath = os.path.split(os.path.abspath(__file__))[0] # Find the commit of the script by running a command to change to the directory containing the script and run # a git command to return the short version of the commit hash commit = subprocess.Popen('cd {} && git tag | tail -n 1'.format(homepath), shell=True, stdout=subprocess.PIPE).communicate()[0].rstrip() from argparse import ArgumentParser # Parser for arguments parser = ArgumentParser(description='Assemble genomes from Illumina fastq files') parser.add_argument('-v', '--version', action='version', version='%(prog)s commit {}'.format(commit)) parser.add_argument('path', help='Specify path') parser.add_argument('-n', '--numreads', default=2, type=int, help='Specify the number of reads. Paired-reads:' ' 2, unpaired-reads: 1. Default is paired-end') parser.add_argument('-t', '--threads', help='Number of threads. Default is the number of cores in the system') parser.add_argument('-d', '--fastqdestination', help='Optional folder path to store .fastq files created using the fastqCreation module. ' 'Defaults to path/miseqfolder') parser.add_argument('-m', '--miseqpath', required=True, help='Path of the folder containing MiSeq run data folder e.g. /mnt/MiSeq') parser.add_argument('-f', '--miseqfolder', required=True, help='Name of the folder containing MiSeq run data e.g. 161129_M02466_0007_000000000-AW5L5') parser.add_argument('-r1', '--forwardlength', default='full', help='Length of forward reads to use. Can specify "full" to take the full length of forward ' 'reads specified on the SampleSheet. Defaults to "full"') parser.add_argument('-r2', '--reverselength', default='full', help='Length of reverse reads to use. Can specify "full" to take the full length of reverse ' 'reads specified on the SampleSheet. Defaults to "full"') parser.add_argument('-c', '--customsamplesheet', help='Path of folder containing a custom sample sheet and name of sample sheet file ' 'e.g. /home/name/folder/BackupSampleSheet.csv. Note that this sheet must still have the ' 'same format of Illumina SampleSheet.csv files') parser.add_argument('-C', '--copy', action='store_true', help='Normally, the program will create symbolic links of the files into the sequence path, ' 'however, the are occasions when it is necessary to copy the files instead') # Get the arguments into an object arguments = parser.parse_args() arguments.starttime = time() arguments.commit = commit arguments.homepath = homepath # Run the pipeline CreateFastq(arguments) # Print a bold, green exit statement print('\033[92m' + '\033[1m' + "\nElapsed Time: %0.2f seconds" % (time() - arguments.starttime) + '\033[0m')
the-stack_0_10591
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Font(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen - A list or array of any of the above Returns ------- str|numpy.ndarray """ return self["color"] @color.setter def color(self, val): self["color"] = val # colorsrc # -------- @property def colorsrc(self): """ Sets the source reference on plot.ly for color . The 'colorsrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["colorsrc"] @colorsrc.setter def colorsrc(self, val): self["colorsrc"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string - A tuple, list, or one-dimensional numpy array of the above Returns ------- str|numpy.ndarray """ return self["family"] @family.setter def family(self, val): self["family"] = val # familysrc # --------- @property def familysrc(self): """ Sets the source reference on plot.ly for family . The 'familysrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["familysrc"] @familysrc.setter def familysrc(self, val): self["familysrc"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] - A tuple, list, or one-dimensional numpy array of the above Returns ------- int|float|numpy.ndarray """ return self["size"] @size.setter def size(self, val): self["size"] = val # sizesrc # ------- @property def sizesrc(self): """ Sets the source reference on plot.ly for size . The 'sizesrc' property must be specified as a string or as a plotly.grid_objs.Column object Returns ------- str """ return self["sizesrc"] @sizesrc.setter def sizesrc(self, val): self["sizesrc"] = val # property parent name # -------------------- @property def _parent_path_str(self): return "table.hoverlabel" # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . """ def __init__( self, arg=None, color=None, colorsrc=None, family=None, familysrc=None, size=None, sizesrc=None, **kwargs ): """ Construct a new Font object Sets the font used in hover labels. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.table.hoverlabel.Font` color colorsrc Sets the source reference on plot.ly for color . family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". familysrc Sets the source reference on plot.ly for family . size sizesrc Sets the source reference on plot.ly for size . Returns ------- Font """ super(Font, self).__init__("font") # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.table.hoverlabel.Font constructor must be a dict or an instance of :class:`plotly.graph_objs.table.hoverlabel.Font`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) # Import validators # ----------------- from plotly.validators.table.hoverlabel import font as v_font # Initialize validators # --------------------- self._validators["color"] = v_font.ColorValidator() self._validators["colorsrc"] = v_font.ColorsrcValidator() self._validators["family"] = v_font.FamilyValidator() self._validators["familysrc"] = v_font.FamilysrcValidator() self._validators["size"] = v_font.SizeValidator() self._validators["sizesrc"] = v_font.SizesrcValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) self["color"] = color if color is not None else _v _v = arg.pop("colorsrc", None) self["colorsrc"] = colorsrc if colorsrc is not None else _v _v = arg.pop("family", None) self["family"] = family if family is not None else _v _v = arg.pop("familysrc", None) self["familysrc"] = familysrc if familysrc is not None else _v _v = arg.pop("size", None) self["size"] = size if size is not None else _v _v = arg.pop("sizesrc", None) self["sizesrc"] = sizesrc if sizesrc is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False __all__ = ["Font"]
the-stack_0_10592
import socket import os import cv2 import pickle import threading import struct def sendImage(): os.system('python sender.py') t1 = threading.Thread(target=sendImage) t1.start() client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) host_ip = '192.168.43.6' port = 9900 client_socket.connect((host_ip, port)) data = b"" payload_size = struct.calcsize("Q") while True: while len(data) < payload_size: packet = client_socket.recv(4 * 1024) if not packet: break data += packet packed_msg_size = data[:payload_size] data = data[payload_size:] msg_size = struct.unpack("Q", packed_msg_size)[0] while len(data) < msg_size: data += client_socket.recv(4 * 1024) frame_data = data[:msg_size] data = data[msg_size:] frame = pickle.loads(frame_data) cv2.imshow("Live Streaming Video Chat", frame) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break client_socket.close()
the-stack_0_10593
import sys from setuptools import setup, find_packages import versioneer with open("README.md", "r") as fh: long_description = fh.read() # from https://github.com/pytest-dev/pytest-runner#conditional-requirement needs_pytest = {'pytest', 'test', 'ptr'}.intersection(sys.argv) pytest_runner = ['pytest-runner'] if needs_pytest else [] setup( name="atesa", version="1.0", author="Tucker Burgin", author_email="[email protected]", description="Python program for automating Aimless Transition Ensemble Sampling and Analysis (ATESA) with the Amber molecular simulations package.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/team-mayes/atesa", packages=find_packages(), classifiers=( "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ), scripts=['atesa/atesa.py'] )
the-stack_0_10594
# Copyright (c) 2006-2007, 2009-2014 LOGILAB S.A. (Paris, FRANCE) <[email protected]> # Copyright (c) 2013-2016 Claudiu Popa <[email protected]> # Copyright (c) 2014 Google, Inc. # Copyright (c) 2015 Florian Bruhin <[email protected]> # Copyright (c) 2015-2016 Cara Vinson <[email protected]> # Licensed under the LGPL: https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html # For details: https://github.com/PyCQA/astroid/blob/master/COPYING.LESSER """tests for specific behaviour of astroid nodes """ import os import sys import textwrap import unittest import warnings import six import astroid from astroid import bases from astroid import builder from astroid import context as contextmod from astroid import exceptions from astroid import node_classes from astroid import nodes from astroid import parse from astroid import util from astroid import test_utils from astroid import transforms from astroid.tests import resources abuilder = builder.AstroidBuilder() BUILTINS = six.moves.builtins.__name__ class AsStringTest(resources.SysPathSetup, unittest.TestCase): def test_tuple_as_string(self): def build(string): return abuilder.string_build(string).body[0].value self.assertEqual(build('1,').as_string(), '(1, )') self.assertEqual(build('1, 2, 3').as_string(), '(1, 2, 3)') self.assertEqual(build('(1, )').as_string(), '(1, )') self.assertEqual(build('1, 2, 3').as_string(), '(1, 2, 3)') @test_utils.require_version(minver='3.0') def test_func_signature_issue_185(self): code = textwrap.dedent(''' def test(a, b, c=42, *, x=42, **kwargs): print(a, b, c, args) ''') node = parse(code) self.assertEqual(node.as_string().strip(), code.strip()) def test_as_string_for_list_containing_uninferable(self): node = builder.extract_node(''' def foo(): bar = [arg] * 1 ''') binop = node.body[0].value inferred = next(binop.infer()) self.assertEqual(inferred.as_string(), '[Uninferable]') self.assertEqual(binop.as_string(), '([arg]) * (1)') def test_frozenset_as_string(self): ast_nodes = builder.extract_node(''' frozenset((1, 2, 3)) #@ frozenset({1, 2, 3}) #@ frozenset([1, 2, 3,]) #@ frozenset(None) #@ frozenset(1) #@ ''') ast_nodes = [next(node.infer()) for node in ast_nodes] self.assertEqual(ast_nodes[0].as_string(), 'frozenset((1, 2, 3))') self.assertEqual(ast_nodes[1].as_string(), 'frozenset({1, 2, 3})') self.assertEqual(ast_nodes[2].as_string(), 'frozenset([1, 2, 3])') self.assertNotEqual(ast_nodes[3].as_string(), 'frozenset(None)') self.assertNotEqual(ast_nodes[4].as_string(), 'frozenset(1)') def test_varargs_kwargs_as_string(self): ast = abuilder.string_build('raise_string(*args, **kwargs)').body[0] self.assertEqual(ast.as_string(), 'raise_string(*args, **kwargs)') def test_module_as_string(self): """check as_string on a whole module prepared to be returned identically """ module = resources.build_file('data/module.py', 'data.module') with open(resources.find('data/module.py'), 'r') as fobj: self.assertMultiLineEqual(module.as_string(), fobj.read()) def test_module2_as_string(self): """check as_string on a whole module prepared to be returned identically """ module2 = resources.build_file('data/module2.py', 'data.module2') with open(resources.find('data/module2.py'), 'r') as fobj: self.assertMultiLineEqual(module2.as_string(), fobj.read()) def test_as_string(self): """check as_string for python syntax >= 2.7""" code = '''one_two = {1, 2} b = {v: k for (k, v) in enumerate('string')} cdd = {k for k in b}\n\n''' ast = abuilder.string_build(code) self.assertMultiLineEqual(ast.as_string(), code) @test_utils.require_version('3.0') def test_3k_as_string(self): """check as_string for python 3k syntax""" code = '''print() def function(var): nonlocal counter try: hello except NameError as nexc: (*hell, o) = b'hello' raise AttributeError from nexc \n''' ast = abuilder.string_build(code) self.assertEqual(ast.as_string(), code) @test_utils.require_version('3.0') @unittest.expectedFailure def test_3k_annotations_and_metaclass(self): code_annotations = textwrap.dedent(''' def function(var:int): nonlocal counter class Language(metaclass=Natural): """natural language""" ''') ast = abuilder.string_build(code_annotations) self.assertEqual(ast.as_string(), code_annotations) def test_ellipsis(self): ast = abuilder.string_build('a[...]').body[0] self.assertEqual(ast.as_string(), 'a[...]') def test_slices(self): for code in ('a[0]', 'a[1:3]', 'a[:-1:step]', 'a[:,newaxis]', 'a[newaxis,:]', 'del L[::2]', 'del A[1]', 'del Br[:]'): ast = abuilder.string_build(code).body[0] self.assertEqual(ast.as_string(), code) def test_slice_and_subscripts(self): code = """a[:1] = bord[2:] a[:1] = bord[2:] del bree[3:d] bord[2:] del av[d::f], a[df:] a[:1] = bord[2:] del SRC[::1,newaxis,1:] tous[vals] = 1010 del thousand[key] del a[::2], a[:-1:step] del Fee.form[left:] aout.vals = miles.of_stuff del (ccok, (name.thing, foo.attrib.value)), Fee.form[left:] if all[1] == bord[0:]: pass\n\n""" ast = abuilder.string_build(code) self.assertEqual(ast.as_string(), code) class _NodeTest(unittest.TestCase): """test transformation of If Node""" CODE = None @property def astroid(self): try: return self.__class__.__dict__['CODE_Astroid'] except KeyError: module = builder.parse(self.CODE) self.__class__.CODE_Astroid = module return module class IfNodeTest(_NodeTest): """test transformation of If Node""" CODE = """ if 0: print() if True: print() else: pass if "": print() elif []: raise if 1: print() elif True: print() elif func(): pass else: raise """ def test_if_elif_else_node(self): """test transformation for If node""" self.assertEqual(len(self.astroid.body), 4) for stmt in self.astroid.body: self.assertIsInstance(stmt, nodes.If) self.assertFalse(self.astroid.body[0].orelse) # simple If self.assertIsInstance(self.astroid.body[1].orelse[0], nodes.Pass) # If / else self.assertIsInstance(self.astroid.body[2].orelse[0], nodes.If) # If / elif self.assertIsInstance(self.astroid.body[3].orelse[0].orelse[0], nodes.If) def test_block_range(self): # XXX ensure expected values self.assertEqual(self.astroid.block_range(1), (0, 22)) self.assertEqual(self.astroid.block_range(10), (0, 22)) # XXX (10, 22) ? self.assertEqual(self.astroid.body[1].block_range(5), (5, 6)) self.assertEqual(self.astroid.body[1].block_range(6), (6, 6)) self.assertEqual(self.astroid.body[1].orelse[0].block_range(7), (7, 8)) self.assertEqual(self.astroid.body[1].orelse[0].block_range(8), (8, 8)) class TryExceptNodeTest(_NodeTest): CODE = """ try: print ('pouet') except IOError: pass except UnicodeError: print() else: print() """ def test_block_range(self): # XXX ensure expected values self.assertEqual(self.astroid.body[0].block_range(1), (1, 8)) self.assertEqual(self.astroid.body[0].block_range(2), (2, 2)) self.assertEqual(self.astroid.body[0].block_range(3), (3, 8)) self.assertEqual(self.astroid.body[0].block_range(4), (4, 4)) self.assertEqual(self.astroid.body[0].block_range(5), (5, 5)) self.assertEqual(self.astroid.body[0].block_range(6), (6, 6)) self.assertEqual(self.astroid.body[0].block_range(7), (7, 7)) self.assertEqual(self.astroid.body[0].block_range(8), (8, 8)) class TryFinallyNodeTest(_NodeTest): CODE = """ try: print ('pouet') finally: print ('pouet') """ def test_block_range(self): # XXX ensure expected values self.assertEqual(self.astroid.body[0].block_range(1), (1, 4)) self.assertEqual(self.astroid.body[0].block_range(2), (2, 2)) self.assertEqual(self.astroid.body[0].block_range(3), (3, 4)) self.assertEqual(self.astroid.body[0].block_range(4), (4, 4)) class TryExceptFinallyNodeTest(_NodeTest): CODE = """ try: print('pouet') except Exception: print ('oops') finally: print ('pouet') """ def test_block_range(self): # XXX ensure expected values self.assertEqual(self.astroid.body[0].block_range(1), (1, 6)) self.assertEqual(self.astroid.body[0].block_range(2), (2, 2)) self.assertEqual(self.astroid.body[0].block_range(3), (3, 4)) self.assertEqual(self.astroid.body[0].block_range(4), (4, 4)) self.assertEqual(self.astroid.body[0].block_range(5), (5, 5)) self.assertEqual(self.astroid.body[0].block_range(6), (6, 6)) @unittest.skipIf(six.PY3, "Python 2 specific test.") class TryExcept2xNodeTest(_NodeTest): CODE = """ try: hello except AttributeError, (retval, desc): pass """ def test_tuple_attribute(self): handler = self.astroid.body[0].handlers[0] self.assertIsInstance(handler.name, nodes.Tuple) class ImportNodeTest(resources.SysPathSetup, unittest.TestCase): def setUp(self): super(ImportNodeTest, self).setUp() self.module = resources.build_file('data/module.py', 'data.module') self.module2 = resources.build_file('data/module2.py', 'data.module2') def test_import_self_resolve(self): myos = next(self.module2.igetattr('myos')) self.assertTrue(isinstance(myos, nodes.Module), myos) self.assertEqual(myos.name, 'os') self.assertEqual(myos.qname(), 'os') self.assertEqual(myos.pytype(), '%s.module' % BUILTINS) def test_from_self_resolve(self): namenode = next(self.module.igetattr('NameNode')) self.assertTrue(isinstance(namenode, nodes.ClassDef), namenode) self.assertEqual(namenode.root().name, 'astroid.node_classes') self.assertEqual(namenode.qname(), 'astroid.node_classes.Name') self.assertEqual(namenode.pytype(), '%s.type' % BUILTINS) abspath = next(self.module2.igetattr('abspath')) self.assertTrue(isinstance(abspath, nodes.FunctionDef), abspath) self.assertEqual(abspath.root().name, 'os.path') self.assertEqual(abspath.qname(), 'os.path.abspath') self.assertEqual(abspath.pytype(), '%s.function' % BUILTINS) def test_real_name(self): from_ = self.module['NameNode'] self.assertEqual(from_.real_name('NameNode'), 'Name') imp_ = self.module['os'] self.assertEqual(imp_.real_name('os'), 'os') self.assertRaises(exceptions.AttributeInferenceError, imp_.real_name, 'os.path') imp_ = self.module['NameNode'] self.assertEqual(imp_.real_name('NameNode'), 'Name') self.assertRaises(exceptions.AttributeInferenceError, imp_.real_name, 'Name') imp_ = self.module2['YO'] self.assertEqual(imp_.real_name('YO'), 'YO') self.assertRaises(exceptions.AttributeInferenceError, imp_.real_name, 'data') def test_as_string(self): ast = self.module['modutils'] self.assertEqual(ast.as_string(), "from astroid import modutils") ast = self.module['NameNode'] self.assertEqual(ast.as_string(), "from astroid.node_classes import Name as NameNode") ast = self.module['os'] self.assertEqual(ast.as_string(), "import os.path") code = """from . import here from .. import door from .store import bread from ..cave import wine\n\n""" ast = abuilder.string_build(code) self.assertMultiLineEqual(ast.as_string(), code) def test_bad_import_inference(self): # Explication of bug '''When we import PickleError from nonexistent, a call to the infer method of this From node will be made by unpack_infer. inference.infer_from will try to import this module, which will fail and raise a InferenceException (by mixins.do_import_module). The infer_name will catch this exception and yield and Uninferable instead. ''' code = ''' try: from pickle import PickleError except ImportError: from nonexistent import PickleError try: pass except PickleError: pass ''' module = builder.parse(code) handler_type = module.body[1].handlers[0].type excs = list(node_classes.unpack_infer(handler_type)) # The number of returned object can differ on Python 2 # and Python 3. In one version, an additional item will # be returned, from the _pickle module, which is not # present in the other version. self.assertIsInstance(excs[0], nodes.ClassDef) self.assertEqual(excs[0].name, 'PickleError') self.assertIs(excs[-1], util.Uninferable) def test_absolute_import(self): module = resources.build_file('data/absimport.py') ctx = contextmod.InferenceContext() # will fail if absolute import failed ctx.lookupname = 'message' next(module['message'].infer(ctx)) ctx.lookupname = 'email' m = next(module['email'].infer(ctx)) self.assertFalse(m.file.startswith(os.path.join('data', 'email.py'))) def test_more_absolute_import(self): module = resources.build_file('data/module1abs/__init__.py', 'data.module1abs') self.assertIn('sys', module.locals) class CmpNodeTest(unittest.TestCase): def test_as_string(self): ast = abuilder.string_build("a == 2").body[0] self.assertEqual(ast.as_string(), "a == 2") class ConstNodeTest(unittest.TestCase): def _test(self, value): # pylint: disable=no-member; union type in const_factory, this shouldn't happen node = nodes.const_factory(value) self.assertIsInstance(node._proxied, nodes.ClassDef) self.assertEqual(node._proxied.name, value.__class__.__name__) self.assertIs(node.value, value) self.assertTrue(node._proxied.parent) self.assertEqual(node._proxied.root().name, value.__class__.__module__) def test_none(self): self._test(None) def test_bool(self): self._test(True) def test_int(self): self._test(1) def test_float(self): self._test(1.0) def test_complex(self): self._test(1.0j) def test_str(self): self._test('a') def test_unicode(self): self._test(u'a') class NameNodeTest(unittest.TestCase): def test_assign_to_True(self): """test that True and False assignments don't crash""" code = """ True = False def hello(False): pass del True """ if sys.version_info >= (3, 0): with self.assertRaises(exceptions.AstroidBuildingError): builder.parse(code) else: ast = builder.parse(code) assign_true = ast['True'] self.assertIsInstance(assign_true, nodes.AssignName) self.assertEqual(assign_true.name, "True") del_true = ast.body[2].targets[0] self.assertIsInstance(del_true, nodes.DelName) self.assertEqual(del_true.name, "True") class AnnAssignNodeTest(unittest.TestCase): @test_utils.require_version(minver='3.6') def test_primitive(self): code = textwrap.dedent(""" test: int = 5 """) assign = builder.extract_node(code) self.assertIsInstance(assign, nodes.AnnAssign) self.assertEqual(assign.target.name, "test") self.assertEqual(assign.annotation.name, "int") self.assertEqual(assign.value.value, 5) self.assertEqual(assign.simple, 1) @test_utils.require_version(minver='3.6') def test_primitive_without_initial_value(self): code = textwrap.dedent(""" test: str """) assign = builder.extract_node(code) self.assertIsInstance(assign, nodes.AnnAssign) self.assertEqual(assign.target.name, "test") self.assertEqual(assign.annotation.name, "str") self.assertEqual(assign.value, None) @test_utils.require_version(minver='3.6') def test_complex(self): code = textwrap.dedent(""" test: Dict[List[str]] = {} """) assign = builder.extract_node(code) self.assertIsInstance(assign, nodes.AnnAssign) self.assertEqual(assign.target.name, "test") self.assertIsInstance(assign.annotation, astroid.Subscript) self.assertIsInstance(assign.value, astroid.Dict) @test_utils.require_version(minver='3.6') def test_as_string(self): code = textwrap.dedent(""" print() test: int = 5 test2: str test3: List[Dict[(str, str)]] = [] """) ast = abuilder.string_build(code) self.assertEqual(ast.as_string().strip(), code.strip()) class ArgumentsNodeTC(unittest.TestCase): def test_linenumbering(self): ast = builder.parse(''' def func(a, b): pass x = lambda x: None ''') self.assertEqual(ast['func'].args.fromlineno, 2) self.assertFalse(ast['func'].args.is_statement) xlambda = next(ast['x'].infer()) self.assertEqual(xlambda.args.fromlineno, 4) self.assertEqual(xlambda.args.tolineno, 4) self.assertFalse(xlambda.args.is_statement) if sys.version_info < (3, 0): self.assertEqual(ast['func'].args.tolineno, 3) else: self.skipTest('FIXME http://bugs.python.org/issue10445 ' '(no line number on function args)') @test_utils.require_version(minver='3.0') def test_kwoargs(self): ast = builder.parse(''' def func(*, x): pass ''') args = ast['func'].args self.assertTrue(args.is_argument('x')) class UnboundMethodNodeTest(unittest.TestCase): def test_no_super_getattr(self): # This is a test for issue # https://bitbucket.org/logilab/astroid/issue/91, which tests # that UnboundMethod doesn't call super when doing .getattr. ast = builder.parse(''' class A(object): def test(self): pass meth = A.test ''') node = next(ast['meth'].infer()) with self.assertRaises(exceptions.AttributeInferenceError): node.getattr('__missssing__') name = node.getattr('__name__')[0] self.assertIsInstance(name, nodes.Const) self.assertEqual(name.value, 'test') class BoundMethodNodeTest(unittest.TestCase): def test_is_property(self): ast = builder.parse(''' import abc def cached_property(): # Not a real decorator, but we don't care pass def reify(): # Same as cached_property pass def lazy_property(): pass def lazyproperty(): pass def lazy(): pass class A(object): @property def builtin_property(self): return 42 @abc.abstractproperty def abc_property(self): return 42 @cached_property def cached_property(self): return 42 @reify def reified(self): return 42 @lazy_property def lazy_prop(self): return 42 @lazyproperty def lazyprop(self): return 42 def not_prop(self): pass @lazy def decorated_with_lazy(self): return 42 cls = A() builtin_property = cls.builtin_property abc_property = cls.abc_property cached_p = cls.cached_property reified = cls.reified not_prop = cls.not_prop lazy_prop = cls.lazy_prop lazyprop = cls.lazyprop decorated_with_lazy = cls.decorated_with_lazy ''') for prop in ('builtin_property', 'abc_property', 'cached_p', 'reified', 'lazy_prop', 'lazyprop', 'decorated_with_lazy'): inferred = next(ast[prop].infer()) self.assertIsInstance(inferred, nodes.Const, prop) self.assertEqual(inferred.value, 42, prop) inferred = next(ast['not_prop'].infer()) self.assertIsInstance(inferred, bases.BoundMethod) class AliasesTest(unittest.TestCase): def setUp(self): self.transformer = transforms.TransformVisitor() def parse_transform(self, code): module = parse(code, apply_transforms=False) return self.transformer.visit(module) def test_aliases(self): def test_from(node): node.names = node.names + [('absolute_import', None)] return node def test_class(node): node.name = 'Bar' return node def test_function(node): node.name = 'another_test' return node def test_callfunc(node): if node.func.name == 'Foo': node.func.name = 'Bar' return node def test_assname(node): if node.name == 'foo': return nodes.AssignName('bar', node.lineno, node.col_offset, node.parent) def test_assattr(node): if node.attrname == 'a': node.attrname = 'b' return node def test_getattr(node): if node.attrname == 'a': node.attrname = 'b' return node def test_genexpr(node): if node.elt.value == 1: node.elt = nodes.Const(2, node.lineno, node.col_offset, node.parent) return node self.transformer.register_transform(nodes.From, test_from) self.transformer.register_transform(nodes.Class, test_class) self.transformer.register_transform(nodes.Function, test_function) self.transformer.register_transform(nodes.CallFunc, test_callfunc) self.transformer.register_transform(nodes.AssName, test_assname) self.transformer.register_transform(nodes.AssAttr, test_assattr) self.transformer.register_transform(nodes.Getattr, test_getattr) self.transformer.register_transform(nodes.GenExpr, test_genexpr) string = ''' from __future__ import print_function class Foo: pass def test(a): return a foo = Foo() foo.a = test(42) foo.a (1 for _ in range(0, 42)) ''' module = self.parse_transform(string) self.assertEqual(len(module.body[0].names), 2) self.assertIsInstance(module.body[0], nodes.ImportFrom) self.assertEqual(module.body[1].name, 'Bar') self.assertIsInstance(module.body[1], nodes.ClassDef) self.assertEqual(module.body[2].name, 'another_test') self.assertIsInstance(module.body[2], nodes.FunctionDef) self.assertEqual(module.body[3].targets[0].name, 'bar') self.assertIsInstance(module.body[3].targets[0], nodes.AssignName) self.assertEqual(module.body[3].value.func.name, 'Bar') self.assertIsInstance(module.body[3].value, nodes.Call) self.assertEqual(module.body[4].targets[0].attrname, 'b') self.assertIsInstance(module.body[4].targets[0], nodes.AssignAttr) self.assertIsInstance(module.body[5], nodes.Expr) self.assertEqual(module.body[5].value.attrname, 'b') self.assertIsInstance(module.body[5].value, nodes.Attribute) self.assertEqual(module.body[6].value.elt.value, 2) self.assertIsInstance(module.body[6].value, nodes.GeneratorExp) @unittest.skipIf(six.PY3, "Python 3 doesn't have Repr nodes.") def test_repr(self): def test_backquote(node): node.value.name = 'bar' return node self.transformer.register_transform(nodes.Backquote, test_backquote) module = self.parse_transform('`foo`') self.assertEqual(module.body[0].value.value.name, 'bar') self.assertIsInstance(module.body[0].value, nodes.Repr) class DeprecationWarningsTest(unittest.TestCase): def test_asstype_warnings(self): string = ''' class C: pass c = C() with warnings.catch_warnings(record=True) as w: pass ''' module = parse(string) filter_stmts_mixin = module.body[0] assign_type_mixin = module.body[1].targets[0] parent_assign_type_mixin = module.body[2] with warnings.catch_warnings(record=True) as w: with test_utils.enable_warning(PendingDeprecationWarning): filter_stmts_mixin.ass_type() self.assertIsInstance(w[0].message, PendingDeprecationWarning) with warnings.catch_warnings(record=True) as w: with test_utils.enable_warning(PendingDeprecationWarning): assign_type_mixin.ass_type() self.assertIsInstance(w[0].message, PendingDeprecationWarning) with warnings.catch_warnings(record=True) as w: with test_utils.enable_warning(PendingDeprecationWarning): parent_assign_type_mixin.ass_type() self.assertIsInstance(w[0].message, PendingDeprecationWarning) def test_isinstance_warnings(self): msg_format = ("%r is deprecated and slated for removal in astroid " "2.0, use %r instead") for cls in (nodes.Discard, nodes.Backquote, nodes.AssName, nodes.AssAttr, nodes.Getattr, nodes.CallFunc, nodes.From): with warnings.catch_warnings(record=True) as w: with test_utils.enable_warning(PendingDeprecationWarning): isinstance(42, cls) self.assertIsInstance(w[0].message, PendingDeprecationWarning) actual_msg = msg_format % (cls.__class__.__name__, cls.__wrapped__.__name__) self.assertEqual(str(w[0].message), actual_msg) @test_utils.require_version('3.5') class Python35AsyncTest(unittest.TestCase): def test_async_await_keywords(self): async_def, async_for, async_with, await_node = builder.extract_node(''' async def func(): #@ async for i in range(10): #@ f = __(await i) async with test(): #@ pass ''') self.assertIsInstance(async_def, nodes.AsyncFunctionDef) self.assertIsInstance(async_for, nodes.AsyncFor) self.assertIsInstance(async_with, nodes.AsyncWith) self.assertIsInstance(await_node, nodes.Await) self.assertIsInstance(await_node.value, nodes.Name) def _test_await_async_as_string(self, code): ast_node = parse(code) self.assertEqual(ast_node.as_string().strip(), code.strip()) def test_await_as_string(self): code = textwrap.dedent(''' async def function(): await 42 ''') self._test_await_async_as_string(code) def test_asyncwith_as_string(self): code = textwrap.dedent(''' async def function(): async with (42): pass ''') self._test_await_async_as_string(code) def test_asyncfor_as_string(self): code = textwrap.dedent(''' async def function(): async for i in range(10): await 42 ''') self._test_await_async_as_string(code) class ContextTest(unittest.TestCase): def test_subscript_load(self): node = builder.extract_node('f[1]') self.assertIs(node.ctx, astroid.Load) def test_subscript_del(self): node = builder.extract_node('del f[1]') self.assertIs(node.targets[0].ctx, astroid.Del) def test_subscript_store(self): node = builder.extract_node('f[1] = 2') subscript = node.targets[0] self.assertIs(subscript.ctx, astroid.Store) def test_list_load(self): node = builder.extract_node('[]') self.assertIs(node.ctx, astroid.Load) def test_list_del(self): node = builder.extract_node('del []') self.assertIs(node.targets[0].ctx, astroid.Del) def test_list_store(self): with self.assertRaises(exceptions.AstroidSyntaxError): builder.extract_node('[0] = 2') def test_tuple_load(self): node = builder.extract_node('(1, )') self.assertIs(node.ctx, astroid.Load) def test_tuple_store(self): with self.assertRaises(exceptions.AstroidSyntaxError): builder.extract_node('(1, ) = 3') @test_utils.require_version(minver='3.5') def test_starred_load(self): node = builder.extract_node('a = *b') starred = node.value self.assertIs(starred.ctx, astroid.Load) @test_utils.require_version(minver='3.0') def test_starred_store(self): node = builder.extract_node('a, *b = 1, 2') starred = node.targets[0].elts[1] self.assertIs(starred.ctx, astroid.Store) if __name__ == '__main__': unittest.main()
the-stack_0_10595
"""Module implementing a wrapper for the Prod2Vec model""" import logging from functools import partial from multiprocessing import cpu_count from multiprocessing.pool import ThreadPool import pandas as pd from gensim.models import Word2Vec from tqdm import tqdm from ..data.initializer import DataLoaderSaver from .base import BaseRecommender WORKERS = cpu_count() def _restrict_to_target_users(interactions, target_users): """ Merge interactions with target users on user column :param interactions: Interactions dataset :param target_users: Target user dataset :return: Interactions dataset for target users """ return interactions.merge( pd.DataFrame(target_users).rename(columns={0: "user"}), on="user" ) def _interactions_to_list_of_lists(interactions): """ Transforms interactions dataframe user, item to user, [item1, item2] dataframe :param interactions: Interactions dataframe :return: Interactions dataframe format user, [item1, item2] """ interactions = interactions.sort_values(by="timestamp") return interactions.groupby("user")["item"].apply(list) class Prod2Vec(BaseRecommender, DataLoaderSaver): """ Wrapper over Word2Vec model """ def __init__( self, vector_size=48, alpha=0.1, window=5, min_count=2, sample=1e-3, workers=WORKERS, min_alpha=0.0001, sg=1, hs=0, negative=50, ns_exponent=0.75, cbow_mean=1, epochs=20, show_progress=True, ): """ Source: https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/word2vec.py vector_size : int, optional Dimensionality of the word vectors. window : int, optional Maximum distance between the current and predicted word within a sentence. min_count : int, optional Ignores all words with total frequency lower than this. workers : int, optional Use these many worker threads to train the model (=faster training with multicore machines). sg : {0, 1}, optional Training algorithm: 1 for skip-gram; otherwise CBOW. hs : {0, 1}, optional If 1, hierarchical softmax will be used for model training. If 0, and `negative` is non-zero, negative sampling will be used. negative : int, optional If > 0, negative sampling will be used, the int for negative specifies how many "noise words" should be drawn (usually between 5-20). If set to 0, no negative sampling is used. ns_exponent : float, optional The exponent used to shape the negative sampling distribution. A value of 1.0 samples exactly in proportion to the frequencies, 0.0 samples all words equally, while a negative value samples low-frequency words more than high-frequency words. The popular default value of 0.75 was chosen by the original Word2Vec paper. More recently, in https://arxiv.org/abs/1804.04212, Caselles-Dupré, Lesaint, & Royo-Letelier suggest that other values may perform better for recommendation applications. cbow_mean : {0, 1}, optional If 0, use the sum of the context word vectors. If 1, use the mean, only applies when cbow is used. alpha : float, optional The initial learning rate. min_alpha : float, optional Learning rate will linearly drop to `min_alpha` as training progresses. sample : float, optional The threshold for configuring which higher-frequency words are randomly downsampled, useful range is (0, 1e-5). epochs : int, optional Number of iterations (epochs) over the corpus. (Formerly: `iter`) """ super().__init__() # model self.model = Word2Vec( vector_size=vector_size, alpha=alpha, window=window, min_count=min_count, sample=sample, workers=workers, min_alpha=min_alpha, sg=sg, hs=hs, negative=negative, ns_exponent=ns_exponent, cbow_mean=cbow_mean, epochs=epochs, ) # data self.interactions = None self.train_sequences = None self.user_sequences = None self.show_progress = show_progress if not show_progress: logging.getLogger("gensim").setLevel(logging.WARNING) def _restrict_to_vocab(self, interactions): known_items = pd.DataFrame( self.model.wv.key_to_index.keys(), columns=["item"] ).astype(str) return interactions.merge(known_items, on="item") def _prepare_user_sequences(self, interactions, target_users): """ It returns pd.Series with user as Index and a list of interacted items from model vocabulary as value. :param target_users: list of target users to be considered in the output, for None all users with interactions will be considered """ restricted_interactions = _restrict_to_target_users(interactions, target_users) restricted_interactions = self._restrict_to_vocab(restricted_interactions) return _interactions_to_list_of_lists(restricted_interactions) def preprocess(self): """ Prepare sequences for training the Word2Vec model """ self.train_sequences = _interactions_to_list_of_lists(self.interactions) def fit(self): """ Returns Word2VecKeyedVectors from trained i2vCF model """ # Build vocabulary self.model.build_vocab(self.train_sequences) # Train self.model.train( self.train_sequences, total_examples=self.model.corpus_count, epochs=self.model.epochs, ) # Precompute L2-normalized vectors self.model.wv.init_sims(replace=True) def recommend( self, target_users, n_recommendations, filter_out_interacted_items=True, show_progress=True, ): """ Recommends n_recommendations items for target_users :return: pd.DataFrame (user, item_1, item_2, ..., item_n) """ self.user_sequences = self._prepare_user_sequences( self.interactions, target_users ) with ThreadPool() as thread_pool: recommendations = list( tqdm( thread_pool.imap( partial( self.recommend_per_user, n_recommendations=n_recommendations, filter_out_interacted_items=filter_out_interacted_items, ), target_users, ), disable=not self.show_progress, ) ) return pd.DataFrame(recommendations) def recommend_per_user( self, user, n_recommendations, filter_out_interacted_items=True ): """ Recommends n items per user :param user: User id :param n_recommendations: Number of recommendations :param filter_out_interacted_items: boolean value to filter interacted items :return: list of format [user_id, item1, item2 ...] """ u_recommended_items = [] if self.user_sequences.get(user) is not None: u_items = self.user_sequences.get(user) u_recommended_items = list( list( zip( *self.model.wv.most_similar( u_items, topn=n_recommendations + len(u_items) * filter_out_interacted_items, ) ) )[0] ) if filter_out_interacted_items: u_recommended_items = [ i for i in u_recommended_items if i not in u_items ][:n_recommendations] return ( [user] + u_recommended_items + [None] * (n_recommendations - len(u_recommended_items)) )
the-stack_0_10596
''' Support for reading source files, including unpacking from cat/dat files. Includes File_Missing_Exception for when a file is not found. Import as: from Source_Reader import * ''' import os from pathlib import Path # TODO: convert all from os to pathlib. from ..Common.Settings import Settings from .Logs import * from collections import OrderedDict from .File_Types import * from .File_Paths import * from .Cat_Reader import * from .. import Common import gzip ''' Notes on X3 Plugin Manager generated TWareT.pck file: This file does not work with standard gzip, though does appear to open with X3 Editor 2. Exploration into reasons led down this path: - Look through X3 Editor source code (c#) to trace compression. - This uses x2fd.dll. - Look through x2fd source code (c++). - Find a file reading in catpck.cpp, function DecompressBuffer. The apparent decompression used is: magic_value = bytestream[0] ^ 0xC8 file_binary_demagicked = bytestream[1:] ^ magic_value file_contents = gzip.decompress(file_binary_demagicked) This does not match up with the magic values or approaches used in the actual cat files (running magic value for cats, 0x33 for dats, no dropping of the first byte), and the standalone pck files in scripts are all plain gzipped. At any rate, if normal gzip fails, this decompression can be applied as a second pass to see if it works better. ''' class Source_Reader_class: ''' Class used to find and read the highest priority source files. The general search order is: * Source folder defined in the settings. * Loose folders, including scripts. * Cat files in the addon folder numbered 01 through the highest contiguous 2-digit number, higher number taking precedence. * Cat files in the base X3 directory, treated similarly to the addon folder. Note: the addon/mods folder is ignored, due to ambiguity on which mod located there might be in use for a given game session. Files which were generated on a prior customizer run (identified by matching a hash in the prior run's log) will be skipped. Files which were backed up on a prior run will be checked. Cat files will be parsed as they are reached in the search order, not before, to avoid excessive startup time when deeper cat files may never be needed. Attributes: * source_file_path_dict - Dict, keyed by virtual_path, holding the system path for where the file is located, for files in the source folder specified in the Settings. * script_file_path_dict - Dict, keyed by script name (without path), holding the full path for a script in the addon/scripts folder. - pending development. * catalog_file_dict - OrderedDict of Cat_Reader objects, keyed by file path, organized by priority, where the first entry is the highest priority cat. - Early catalogs are from the addon folder, later catalogs are from the base x3 folder. - Dict entries are initially None, and get replaced with Catalog_Files as the cats are searched. * file_to_cat_dict - Dict, keyed by file name, with the Cat_Reader object that holds the file with the highest priority. - Used for code result reuse, and is not an exhaustive list. * prior_customizer_cat_path - String, path for any catalog file from a prior customizer run. - The dat file has a matched path, changing extension. - This path may need to get replaced with an empty cat file if the user added more catalogs after the prior run, to maintain indexing order. * prior_customizer_cat_needs_dummy - Bool, if True then a dummy catalog should be generated using the prior_customizer_cat_path during file cleanup (after the prior cat is deleted normally). - Any new catalog file will always be at least 2 steps higher than the prior cat file in this case. ''' def __init__(s): s.source_file_path_dict = {} s.catalog_file_dict = OrderedDict() s.file_to_cat_dict = {} s.prior_customizer_cat_path = None s.prior_customizer_cat_needs_dummy = False def Init(s): ''' Initializes the file system by finding files in the source folder, and finding all cat files in priority order. This should be run after paths have been set up in Settings. ''' # Look up the source folder. source_folder = Settings.Get_Source_Folder() # If it is not None, look into it. if source_folder != None: # Dynamically find all files in the source folder. # These will all be copied at final writeout, even if not modified, # eg. if a transform was formerly run on a file but then commented # out, need to overwrite the previous results with a non-transformed # version of the file. # Uses os.walk to go through the source folder and all subfolders. # Note: dir_path is the relative dir from the source folder, including # the source folder. This could be removed by doing a nested walk # from each folder in the source_folder, though this wouldn't work if # the user just wanted to give a basic list of files to transform and # manually handle moving around outputs. # Edits to the path can remove the first folder, though are clumsy # to implement. # The working directory could be moved to the source directory # temporarily for this, though starting walk using '.' will have # that as the start of the path still (which might be fine). original_cwd = os.getcwd() os.chdir(source_folder) for dir_path, folder_names, file_names in os.walk('.'): # Loop over the file names. for file_name in file_names: # Record the absolute path. s.Record_New_Source_File( os.path.abspath( os.path.join(dir_path, file_name))) # Restore the working directory. os.chdir(original_cwd) # Search for cat files the game will recognize. # These start at 01.cat, and count up as 2-digit values until # the count is broken. # For convenience, the first pass will fill in a list with low # to high priority, then the list can be reversed at the end. cat_dir_list_low_to_high = [] # Loop over the base x3 folder and the addon folder, doing x3 # first since it is lower priority. for path in [Settings.Get_X3_Folder(), Settings.Get_Addon_Folder()]: # Loop until a cat index not found. cat_index = 1 while 1: # Error if hit 100. assert cat_index < 100 cat_name = '{:02d}.cat'.format( cat_index ) cat_path = os.path.join(path, cat_name) # Stop if the cat file is not found. if not os.path.exists(cat_path): break # Record the path if the cat is not from a prior run. if not Log_Old.File_Is_From_Last_Run(cat_path): cat_dir_list_low_to_high.append(cat_path) # If a prior cat file was found before this, then this # was added by the user since the last customizer run. # If this cat file is not the highest priority, # toss a warning, since this indicates the user added # a higher numbered cat since the last customizer # run. # Only print this warning once, by checking the dummy # flag. if (s.prior_customizer_cat_path != None and s.prior_customizer_cat_needs_dummy == False): s.prior_customizer_cat_needs_dummy = True print('Warning: cat file {} is from a prior' ' Customizer run but is not the highest' ' numbered cat file.'.format( s.prior_customizer_cat_path)) else: s.prior_customizer_cat_path = cat_path # Increment for the next cat. cat_index += 1 # Note on the mods folder: # One cat/dat pair in the addon/mods folder can be selected for # use by the game. At this time, no effort has been put into # knowing which pair a user might have selected, so mods applied # in that way will be ignored for now. # Fill in dict entries with the list paths, in reverse order. for path in reversed(cat_dir_list_low_to_high): s.catalog_file_dict[path] = None return def Get_Next_Higher_Cat_Index(s): ''' Returns a 2-digit string, the next catalog index, 1 higher than the existing highest index when ignoring any catalogs generated by prior runs. To be used if writing modified files to a catalog. ''' # The first catalog_file_dict entry is the highest priority. # This will get the file path. # Convert to a Path for convenience. highest_index_path = Path(next(iter(s.catalog_file_dict.keys()))) # Get the index. highest_index = int(highest_index_path.stem) # Increment and convert back to a 2-digit string. next_index_str = '{:02}'.format(highest_index + 1) assert len(next_index_str) == 2 return next_index_str def Record_New_Source_File(s, sys_path): ''' Records a new file in the source folder, placed there after init. The provided path should be absolute. ''' virtual_path = System_Path_to_Virtual_Path(sys_path) s.source_file_path_dict[virtual_path] = sys_path def Decompress(s, file_binary, virtual_path): ''' Decompress the given binary using gzip. This will attempt to decompress the binary as-is, and if failing, will decompress as if an x2 file (gzipped with an xor pass and prefix byte) to support X3 Plugin Manager generated pck files. * file_binary - Byte string or Bytearray with the original file binary data. * virtual_path - String, virtual path of the file to look up. - Only used for printouts. ''' try: decompressed_binary = gzip.decompress(file_binary) except: # Print a nice message in dev mode to indicate this fallback # code is being used. TODO: remove this if code seems robust. if Settings.developer: print('First gzip pass on {} failed, attempting to apply' ' x2 style decompression.'\ .format(virtual_path)) # Try method 2. See notes way up above for what is # going on, but in short, the first byte xors with 0xC8 # to get a magic value to Xor with all other bytes, then # that is all decompressed with gzip. magic = file_binary[0] ^ 0xC8 file_binary = bytearray(x ^ magic for x in file_binary) try: # Toss the first byte for this. decompressed_binary = gzip.decompress(file_binary[1:]) except Exception as ex: if Settings.developer: # Dev mode will give a little extra info. print('Gzip error for file {}'.format(virtual_path)) raise ex else: # Swap to a generic exception. raise Common.Gzip_Exception() return decompressed_binary def Read(s, virtual_path, error_if_not_found = True, copy_to_source_folder = False ): ''' Returns a Game_File including the contents read from the source folder or unpacked from a cat file. Contents may be binary or text, depending on the Game_File subclass. This will search for packed versions as well, automatically unzipping the contents. If the file contents are empty, this returns None; this may occur for LU dummy files. * virtual_path - String, virtual path of the file to look up. - For files which may be gzipped into a pck file, give the expected non-zipped extension (.xml, .txt, etc.). * error_if_not_found - Bool, if True an exception will be thrown if the file cannot be found, otherwise None is returned. * copy_to_source_folder - Bool, if True and the file is read from a cat/dat pair, then a copy of the data will be placed into the source folder. - The copy is made after any unzipping is applied. - Pending development. ''' # Grab the extension. file_extension = virtual_path.rsplit('.',1)[1] # Determine the name for a possibly packed version. # This is None if the file is not expected to be packed. virtual_path_pck = Unpacked_Path_to_Packed_Path(virtual_path) # Flag to indicate if the binary was loaded from a pck file, and # needs unzipping. file_binary_is_zipped = False # Binary data read from a file. # Once a source is found, this will be filled in, so later # source checks can be skipped once this is not None. file_binary = None # For debug, the path of the file sourced from, maybe a cat. file_source_path = None # Check the source folder. # This could do a full path check, but will reuse the parsed # files found during Init. # Pck takes precedence over other files when X3 loads them. for test_virtual_path in [virtual_path_pck, virtual_path]: # Skip empty packed paths. if test_virtual_path == None: continue # Skip if not found. if test_virtual_path not in s.source_file_path_dict: continue # Open the file and grab the binary data. # If this needs to be treated as text, it will be # reinterpretted elsewhere. file_source_path = s.source_file_path_dict[test_virtual_path] with open(file_source_path, 'rb') as file: file_binary = file.read() # If it was pck, clarify as zipped. file_binary_is_zipped = test_virtual_path == virtual_path_pck # Don't check the other suffix after a match is found. break # Check for a loose file outside the source folder, unless # this is disabled in the settings. if file_binary == None and Settings.ignore_loose_files == False: sys_path = Virtual_Path_to_System_Path(virtual_path) sys_path_pck = Unpacked_Path_to_Packed_Path(sys_path) # Loop over pck and standard versions. for test_sys_path in [sys_path_pck, sys_path]: # Skip empty packed paths. if test_sys_path == None: continue # Following checks will look for a renamed file or a file with # the original name. # TODO: consider doing a more generic renamed file check. file_path_to_source = None # If the file was not created by the customizer on a previous # run, and exists, use it. # This allows a user to overwrite a customizer file with a new # version, and have it get used over any prior backup. if (not Log_Old.File_Is_From_Last_Run(test_sys_path) and os.path.exists(test_sys_path)): file_path_to_source = test_sys_path # Check if there is a renamed version of the file, if the main # path was not valid. if file_path_to_source == None: renamed_sys_path = Log_Old.Get_Renamed_File_Path(test_sys_path) # Source from the renamed file, if it still exists. if (renamed_sys_path != None and os.path.exists(renamed_sys_path)): file_path_to_source = renamed_sys_path # If no path found, go to next loop iteration. if file_path_to_source == None: continue # Load from the selected file. file_source_path = file_path_to_source with open(file_path_to_source, 'rb') as file: file_binary = file.read() # If it was pck, clarify as zipped. # (Use the test_sys_path, since the actual path may # have a backup extension.) file_binary_is_zipped = test_sys_path == sys_path_pck # If still no binary found, check the cat/dat pairs. # Special check: if looking for a script, they are never # in the cat/dats, so can skip checks early. # Note: it is possible unpacked versions of files (with a packed # version) are not recognized in catalogs by the game, but this # will look for them anyway. if (file_binary == None and not virtual_path.startswith('scripts/')): # Get the cat versions of the file path. cat_path = Virtual_Path_to_Cat_Path(virtual_path) cat_path_pck = Unpacked_Path_to_Packed_Path(cat_path) # Loop over the cats in priority order. for cat_file, cat_reader in s.catalog_file_dict.items(): # If the reader hasn't been created, make it. if cat_reader == None: cat_reader = Cat_Reader(cat_file) s.catalog_file_dict[cat_file] = cat_reader # Loop over the pck and standard versions. # Note: this is done in the inner loop, checking each cat # for a pck or non-pck before moving on to the next. # (It is unclear on how the game handles this, though it # should be fine since the cats are expected to not # mix packed and unpacked versions.) for test_cat_path in [cat_path_pck, cat_path]: # Skip empty packed paths. if test_cat_path == None: continue # Check the cat for the file. file_binary = cat_reader.Read(test_cat_path) if file_binary == None: continue # If it returned something, then it matched, so can # stop searching. file_source_path = cat_file # If it was pck, clarify as zipped. file_binary_is_zipped = test_cat_path == cat_path_pck break # Stop looping over cats once a match found. if file_binary != None: break # If no binary was found, error. if file_binary == None: if error_if_not_found: raise Common.File_Missing_Exception( 'Could not find a match for file {}'.format(virtual_path)) return None # Decompress if needed. if file_binary_is_zipped: file_binary = s.Decompress(file_binary, virtual_path) # If the binary is an empty string, this is an LU dummy file, # so return None. if not file_binary: return None # Convert the binary into a Game_File object. # The object constructors will handle parsing of binary data, # so this just checks file extensions and picks the right class. # Some special lookups will be done for select files. if virtual_path == 'types/Globals.txt': game_file_class = Globals_File elif file_extension == 'xml': game_file_class = XML_File elif file_extension == 'obj': game_file_class = Obj_File elif file_extension == 'txt': game_file_class = T_File else: raise Exception('File type for {} not understood.'.format(virtual_path)) # Construct the game file. # These will also record the path used, to help know where to place # an edited file in the folder structure. game_file = game_file_class( file_binary = file_binary, virtual_path = virtual_path, file_source_path = file_source_path, ) if Settings.write_file_source_paths_to_message_log: Write_Summary_Line( 'Loaded file {} from {}'.format(virtual_path, file_source_path)) return game_file # Single, global copy of the reader. # TODO: make a copy part of a File_System or similar object, instead # of keeping one here. Source_Reader = Source_Reader_class()
the-stack_0_10599
""" Pytest fixtures: High level Resource Management and base setup fixtures """ import datetime import random import string import sys import os import time import allure import re import logging from _pytest.fixtures import SubRequest from pyparsing import Optional ALLURE_ENVIRONMENT_PROPERTIES_FILE = 'environment.properties' ALLUREDIR_OPTION = '--alluredir' # if "logs" not in os.listdir(): # os.mkdir("logs/") # logging.basicConfig(level=logging.INFO, filename="logs/" + '{:%Y-%m-%d-%H-%M-%S}.log'.format(datetime.datetime.now())) sys.path.append( os.path.dirname( os.path.realpath(__file__) ) ) if "libs" not in sys.path: sys.path.append(f'../libs') for folder in 'py-json', 'py-scripts': if folder not in sys.path: sys.path.append(f'../lanforge/lanforge-scripts/{folder}') sys.path.append(f"../lanforge/lanforge-scripts/py-scripts/tip-cicd-sanity") sys.path.append(f'../libs') sys.path.append(f'../libs/lanforge/') from LANforge.LFUtils import * if 'py-json' not in sys.path: sys.path.append('../py-scripts') from apnos.apnos import APNOS from controller.controller_1x.controller import FirmwareUtility import pytest from lanforge.lf_tests import RunTest from cv_test_manager import cv_test from configuration import CONFIGURATION from configuration import open_flow from configuration import RADIUS_SERVER_DATA from configuration import RADIUS_ACCOUNTING_DATA from configuration import RATE_LIMITING_RADIUS_SERVER_DATA from configuration import RATE_LIMITING_RADIUS_ACCOUNTING_DATA from lanforge.scp_util import SCP_File from testrails.testrail_api import APIClient from testrails.reporting import Reporting from lf_tools import ChamberView from os import path from typing import Any, Callable, Optional from _pytest.fixtures import SubRequest from pytest import fixture import fixtures_1x from fixtures_1x import Fixtures_1x import fixtures_2x from fixtures_2x import Fixtures_2x ALLURE_ENVIRONMENT_PROPERTIES_FILE = 'environment.properties' ALLUREDIR_OPTION = '--alluredir' def pytest_addoption(parser): """pytest addoption function: contains ini objects and options""" parser.addini("tr_url", "Test Rail URL") parser.addini("tr_prefix", "Test Rail Prefix (Generally Testbed_name_)") parser.addini("tr_user", "Testrail Username") parser.addini("tr_pass", "Testrail Password") parser.addini("tr_project_id", "Testrail Project ID") parser.addini("milestone", "milestone Id") parser.addini("influx_host", "Influx Host", default="influx.cicd.lab.wlan.tip.build") parser.addini("influx_port", "Influx Port", default=80) parser.addini("influx_token", "Influx Token", default="TCkdATXAbHmNbn4QyNaj43WpGBYxFrzV") parser.addini("influx_bucket", "influx bucket", default="tip-cicd") parser.addini("influx_org", "influx organization", default="tip") parser.addini(name="firmware", type='string', help="AP Firmware build URL", default="0") parser.addini("cloud_ctlr", "AP Firmware build URL", default="0") parser.addini("num_stations", "Number of Stations/Clients for testing") # change behaviour parser.addoption( "--skip-upgrade", action="store_true", default=False, help="skip updating firmware on the AP (useful for local testing)" ) parser.addoption( "--skip-lanforge", action="store_true", default=False, help="skip to do any interactions on lanforge (to be used in case of interop)" ) # change behaviour parser.addoption( "--exit-on-fail", action="store_true", default=False, help="skip updating firmware on the AP (useful for local testing)" ) # change to Ucentral Ctlr parser.addoption( "--1.x", action="store_true", default=False, help="Option to run Test Cases on 1.x SDK" ) # change behaviour parser.addoption( "--force-upgrade", action="store_true", default=False, help="force Upgrading Firmware even if it is already latest version" ) parser.addoption( "--force-upload", action="store_true", default=False, help="force Uploading Firmware even if it is already latest version" ) # this has to be the last argument # example: --access-points ECW5410 EA8300-EU parser.addoption( "--testbed", # nargs="+", default="basic-01", help="AP Model which is needed to test" ) parser.addoption( "--use-testrail", action="store_false", default=True, help="Stop using Testrails" ) # Perfecto Parameters parser.addini("perfectoURL", "Cloud URL") parser.addini("securityToken", "Security Token") parser.addini("platformName-iOS", "iOS Platform") parser.addini("platformName-android", "Android Platform") parser.addini("model-iOS", "iOS Devices") parser.addini("model-android", "Android Devices") parser.addini("bundleId-iOS", "iOS Devices") parser.addini("bundleId-iOS-Settings", "iOS Settings App") parser.addini("appPackage-android", "Android Devices") parser.addini("bundleId-iOS-Safari", "Safari BundleID") parser.addini("wifi-SSID-2g-Pwd", "Wifi 2g Password") parser.addini("Default-SSID-5gl-perfecto-b", "Wifi 5g AP Name") parser.addini("Default-SSID-2g-perfecto-b", "Wifi 2g AP Name") parser.addini("Default-SSID-perfecto-b", "Wifi AP Name") parser.addini("bundleId-iOS-Ping", "Ping Bundle ID") parser.addini("browserType-iOS", "Mobile Browser Name") parser.addini("projectName", "Project Name") parser.addini("projectVersion", "Project Version") parser.addini("jobName", "CI Job Name") parser.addini("jobNumber", "CI Job Number") parser.addini("reportTags", "Report Tags") parser.addoption( "--access-points-perfecto", # nargs="+", default=["Perfecto"], help="list of access points to test" ) """ Test session base fixture """ # To be depreciated as testrails will go @pytest.fixture(scope="session") def test_cases(): """Yields the test cases from configuration.py: will be depreciated""" yield [] @pytest.fixture(scope="session") def testbed(request): """yields the testbed option selection""" var = request.config.getoption("--testbed") yield var @pytest.fixture(scope="session") def should_upload_firmware(request): """yields the --force-upload option for firmware upload selection""" yield request.config.getoption("--force-upload") @pytest.fixture(scope="session") def should_upgrade_firmware(request): """yields the --force-upgrade option for firmware upgrade selection""" yield request.config.getoption("--force-upgrade") @pytest.fixture(scope="session") def exit_on_fail(request): """yields the --exit-on-fail option for exiting the test case if it fails without teardown""" yield request.config.getoption("--exit-on-fail") @pytest.fixture(scope="session") def radius_info(): """yields the radius server information from lab info file""" yield RADIUS_SERVER_DATA @pytest.fixture(scope="session") def radius_accounting_info(): """yields the radius accounting information from lab info file""" yield RADIUS_ACCOUNTING_DATA @pytest.fixture(scope="session") def rate_radius_info(): """yields the radius server information from lab info file""" yield RATE_LIMITING_RADIUS_SERVER_DATA @pytest.fixture(scope="session") def rate_radius_accounting_info(): """yields the radius accounting information from lab info file""" yield RATE_LIMITING_RADIUS_ACCOUNTING_DATA @pytest.fixture(scope="session") def get_configuration(testbed, request): """yields the selected testbed information from lab info file (configuration.py)""" if request.config.getini("cloud_ctlr") != "0": CONFIGURATION[testbed]["controller"]["url"] = request.config.getini("cloud_ctlr") if request.config.getini("firmware") != "0": version = request.config.getini("firmware") version_list = version.split(",") for i in range(len(CONFIGURATION[testbed]["access_point"])): CONFIGURATION[testbed]["access_point"][i]["version"] = version_list[i] yield CONFIGURATION[testbed] @pytest.fixture(scope="session") def get_apnos(): """yields the LIBRARY for APNOS, Reduces the use of imports across files""" yield APNOS @pytest.fixture(scope="session") def get_equipment_ref(request, setup_controller, testbed, get_configuration): """""" if request.config.getoption("1.x"): equipment_id_list = [] for i in get_configuration['access_point']: equipment_id_list.append(setup_controller.get_equipment_id( serial_number=i['serial'])) else: equipment_id_list = [] for i in get_configuration['access_point']: equipment_id_list.append(i['serial']) yield equipment_id_list @pytest.fixture(scope="session") def get_sdk_version(fixtures_ver): version = fixtures_ver.get_sdk_version() yield version @pytest.fixture(scope="session") def get_uci_show(fixtures_ver, get_apnos, get_configuration): uci_show = fixtures_ver.get_uci_show(get_apnos, get_configuration) yield uci_show @pytest.fixture(scope="session") def skip_lf(request): yield request.config.getoption("--skip-lanforge") @pytest.fixture(scope="session") def get_openflow(): yield open_flow # Controller Fixture @pytest.fixture(scope="session") def setup_controller(request, get_configuration, add_env_properties, fixtures_ver): """sets up the controller connection and yields the sdk_client object""" sdk_client = fixtures_ver.controller_obj request.addfinalizer(fixtures_ver.disconnect) yield sdk_client @pytest.fixture(scope="session") def setup_firmware(setup_controller): """ Fixture to Setup Firmware with the selected sdk """ setup_controller.instantiate_firmware() yield True @pytest.fixture(scope="session") def instantiate_firmware(request, setup_controller, get_configuration): """sets up firmware utility and yields the object for firmware upgrade""" if request.config.getoption("--1.x"): firmware_client_obj = [] for access_point_info in get_configuration['access_point']: version = access_point_info["version"] if request.config.getini("build").__contains__("https://tip.jfrog.io/artifactory/tip-wlan-ap-firmware/"): version = request.config.getini("build") firmware_client = FirmwareUtility(sdk_client=setup_controller, model=access_point_info["model"], version_url=version) firmware_client_obj.append(firmware_client) yield firmware_client_obj else: # 2.x pass @pytest.fixture(scope="session") def get_latest_firmware(request, instantiate_firmware): """yields the list of firmware version""" if request.config.getoption("--1.x"): fw_version_list = [] try: for fw_obj in instantiate_firmware: latest_firmware = fw_obj.get_fw_version() latest_firmware = latest_firmware.replace(".tar.gz", "") fw_version_list.append(latest_firmware) except Exception as e: print(e) fw_version_list = [] yield fw_version_list else: # 2.x pass @pytest.fixture(scope="session") def upload_firmware(request, should_upload_firmware, instantiate_firmware): """yields the firmware_id that is uploaded to cloud""" if request.config.getoption("--1.x"): firmware_id_list = [] for i in range(0, len(instantiate_firmware)): firmware_id = instantiate_firmware[i].upload_fw_on_cloud(force_upload=should_upload_firmware) firmware_id_list.append(firmware_id) yield firmware_id_list else: # 2.x release yield True @pytest.fixture(scope="session") def upgrade_firmware(request, instantiate_firmware, get_equipment_ref, check_ap_firmware_cloud, get_latest_firmware, should_upgrade_firmware, should_upload_firmware, get_apnos, get_configuration): """yields the status of upgrade of firmware. waits for 300 sec after each upgrade request""" print(should_upgrade_firmware, should_upload_firmware) if request.config.getoption("--1.x"): status_list = [] active_fw_list = [] try: for access_point in get_configuration['access_point']: ap_ssh = get_apnos(access_point, sdk="1.x") active_fw = ap_ssh.get_active_firmware() active_fw_list.append(active_fw) except Exception as e: print(e) active_fw_list = [] print(active_fw_list, get_latest_firmware) if get_latest_firmware != active_fw_list: if request.config.getoption("--skip-upgrade"): status = "skip-upgrade" status_list.append(status) else: for i in range(0, len(instantiate_firmware)): status = instantiate_firmware[i].upgrade_fw(equipment_id=get_equipment_ref[i], force_upload=True, force_upgrade=should_upgrade_firmware) status_list.append(status) else: if should_upgrade_firmware: for i in range(0, len(instantiate_firmware)): status = instantiate_firmware[i].upgrade_fw(equipment_id=get_equipment_ref[i], force_upload=should_upload_firmware, force_upgrade=should_upgrade_firmware) status_list.append(status) else: status = "skip-upgrade Version Already Available" status_list.append(status) yield status_list else: # 2.x release pass @pytest.fixture(scope="session") def check_ap_firmware_cloud(request, setup_controller, get_equipment_ref): """yields the active version of firmware on cloud""" if request.config.getoption("--1.x"): ap_fw_list = [] for i in get_equipment_ref: ap_fw_list.append(setup_controller.get_ap_firmware_old_method(equipment_id=i)) yield ap_fw_list else: # 2.x pass @pytest.fixture(scope="session") def check_ap_firmware_ssh(get_configuration, request): """yields the active version of firmware on ap""" if request.config.getoption("--1.x"): active_fw_list = [] try: for access_point in get_configuration['access_point']: ap_ssh = APNOS(access_point) active_fw = ap_ssh.get_active_firmware() active_fw_list.append(active_fw) except Exception as e: print(e) active_fw_list = [] yield active_fw_list else: # 2.x pass @pytest.fixture(scope="session") def setup_test_run(setup_controller, request, upgrade_firmware, get_configuration, get_equipment_ref, get_latest_firmware, get_apnos): """used to upgrade the firmware on AP and should be called on each test case on a module level""" if request.config.getoption("--1.x"): active_fw_list = [] try: for access_point in get_configuration['access_point']: ap_ssh = get_apnos(access_point, sdk="1.x") active_fw = ap_ssh.get_active_firmware() active_fw_list.append(active_fw) except Exception as e: print(e) active_fw_list = [] print(active_fw_list, get_latest_firmware) if active_fw_list == get_latest_firmware: yield True else: pytest.exit("AP is not Upgraded tp Target Firmware versions") else: # 2.x pass """ Instantiate Reporting """ @pytest.fixture(scope="session") def update_report(request, testbed, get_configuration): """used to update the test report on testrail/allure""" if request.config.getoption("--use-testrail"): tr_client = Reporting() else: tr_client = APIClient(request.config.getini("tr_url"), request.config.getini("tr_user"), request.config.getini("tr_pass"), request.config.getini("tr_project_id")) if request.config.getoption("--use-testrail"): tr_client.rid = "skip testrails" else: projId = tr_client.get_project_id(project_name=request.config.getini("tr_project_id")) test_run_name = request.config.getini("tr_prefix") + testbed + "_" + str( datetime.date.today()) + "_" + get_configuration['access_point'][0]['version'] tr_client.create_testrun(name=test_run_name, case_ids=list(TEST_CASES.values()), project_id=projId, milestone_id=request.config.getini("milestone"), description="Automated Nightly Sanity test run for new firmware build") rid = tr_client.get_run_id(test_run_name=test_run_name) tr_client.rid = rid yield tr_client """ FRAMEWORK MARKER LOGIC """ @pytest.fixture(scope="session") def get_security_flags(): """used to get the essential markers on security and band""" # Add more classifications as we go security = ["open", "wpa", "wep", "wpa2_personal", "wpa3_personal", "wpa3_personal_mixed", "wpa_wpa2_enterprise_mixed", "wpa2_eap", "wpa2_only_eap", "wpa_wpa2_personal_mixed", "wpa_enterprise", "wpa2_enterprise", "wpa3_enterprise_mixed", "wpa3_enterprise", "twog", "fiveg", "radius"] yield security @pytest.fixture(scope="session") def get_markers(request, get_security_flags): """used to get the markers on the selected test case class, used in setup_profiles""" session = request.node markers = list() security = get_security_flags security_dict = dict().fromkeys(security) for item in session.items: for j in item.iter_markers(): markers.append(j.name) for i in security: if set(markers).__contains__(i): security_dict[i] = True else: security_dict[i] = False yield security_dict @pytest.fixture(scope="session") def test_access_point(fixtures_ver, request, get_configuration, get_apnos): """used to check the manager status of AP, should be used as a setup to verify if ap can reach cloud""" status = fixtures_ver.get_ap_cloud_connectivity_status(get_configuration, get_apnos) def teardown_session(): data = [] data.append(False) for s in status: data.append(s[0]) print(data) if False not in data: pytest.exit("AP is Not connected to ucentral gw") allure.attach(name=str(status), body="") request.addfinalizer(teardown_session) yield status @pytest.fixture(scope="session") def test_ap_connection_status(fixtures_ver, request, get_configuration, get_apnos): """used to check the manager status of AP, should be used as a setup to verify if ap can reach cloud""" connection, redirector_value = fixtures_ver.get_ap_status_logs(get_configuration, get_apnos) yield connection, redirector_value @pytest.fixture(scope="session") def traffic_generator_connectivity(testbed, get_configuration): """Verify if traffic generator is reachable""" if get_configuration['traffic_generator']['name'] == "lanforge": lanforge_ip = get_configuration['traffic_generator']['details']['ip'] lanforge_port = get_configuration['traffic_generator']['details']['port'] # Condition : # if gui connection is not available # yield False # Condition : # If Gui Connection is available # yield the gui version try: cv = cv_test(lanforge_ip, lanforge_port) url_data = cv.get_ports("/") lanforge_GUI_version = url_data["VersionInfo"]["BuildVersion"] lanforge_gui_git_version = url_data["VersionInfo"]["GitVersion"] lanforge_gui_build_date = url_data["VersionInfo"]["BuildDate"] print(lanforge_GUI_version, lanforge_gui_build_date, lanforge_gui_git_version) if not (lanforge_GUI_version or lanforge_gui_build_date or lanforge_gui_git_version): yield False else: yield lanforge_GUI_version except: yield False else: yield True @pytest.fixture(scope="session") def create_lanforge_chamberview_dut(lf_tools, skip_lf): dut_name = "" if not skip_lf: dut_object, dut_name = lf_tools.Create_Dut() return dut_name @pytest.fixture(scope="session") def lf_tools(get_configuration, testbed, skip_lf): """ Create a DUT on LANforge""" if not skip_lf: obj = ChamberView(lanforge_data=get_configuration["traffic_generator"]["details"], testbed=testbed, access_point_data=get_configuration["access_point"]) else: obj = False yield obj @pytest.fixture(scope="session") def lf_test(get_configuration, setup_influx, request, skip_lf): if not skip_lf: if request.config.getoption("--exit-on-fail"): obj = RunTest(lanforge_data=get_configuration['traffic_generator']['details'], influx_params=setup_influx, debug=True) if request.config.getoption("--exit-on-fail") is False: obj = RunTest(lanforge_data=get_configuration['traffic_generator']['details'], influx_params=setup_influx, debug=False) yield obj @pytest.fixture(scope="session") def setup_influx(request, testbed, get_configuration): """ Setup Influx Parameters: Used in CV Automation""" influx_params = { "influx_host": request.config.getini("influx_host"), "influx_port": request.config.getini("influx_port"), "influx_token": request.config.getini("influx_token"), "influx_bucket": request.config.getini("influx_bucket"), "influx_org": request.config.getini("influx_org"), "influx_tag": [testbed, get_configuration["access_point"][0]["model"]], } yield influx_params # Need for Perforce Mobile Device Execution def pytest_sessionstart(session): session.results = dict() @fixture(scope='session', autouse=True) def add_allure_environment_property(request: SubRequest) -> Optional[Callable]: environment_properties = dict() def maker(key: str, value: Any): environment_properties.update({key: value}) yield maker alluredir = request.config.getoption(ALLUREDIR_OPTION) if not alluredir or not os.path.isdir(alluredir) or not environment_properties: return allure_env_path = path.join(alluredir, ALLURE_ENVIRONMENT_PROPERTIES_FILE) with open(allure_env_path, 'w') as _f: data = '\n'.join([f'{variable}={value}' for variable, value in environment_properties.items()]) _f.write(data) @fixture(scope='session') def add_env_properties(get_configuration, get_sdk_version, get_apnos, fixtures_ver, add_allure_environment_property: Callable) -> None: add_allure_environment_property('Access-Point-Model', get_configuration["access_point"][0]["model"]) add_allure_environment_property('SDK-Version', get_sdk_version) try: add_allure_environment_property('Access-Point-Firmware-Version', fixtures_ver.get_ap_version(get_apnos, get_configuration)[0].split("\n")[1]) except Exception as e: print(e) pass add_allure_environment_property('Cloud-Controller-SDK-URL', get_configuration["controller"]["url"]) add_allure_environment_property('AP-Serial-Number', get_configuration["access_point"][0]["serial"] + "\n") @pytest.fixture(scope="session") def fixtures_ver(request, get_configuration): if request.config.getoption("1.x") is False: print("2.x") obj = Fixtures_2x(configuration=get_configuration) if request.config.getoption("1.x"): print("1.x") obj = Fixtures_1x(configuration=get_configuration) yield obj @pytest.fixture(scope="session") def firmware_upgrade(fixtures_ver, get_apnos, get_configuration): upgrade_status = fixtures_ver.setup_firmware(get_apnos, get_configuration) yield upgrade_status """ Logs related Fixtures """ @pytest.fixture(scope="function") def get_ap_logs(request, get_apnos, get_configuration): S = 9 instance_name = ''.join(random.choices(string.ascii_uppercase + string.digits, k=S)) for ap in get_configuration['access_point']: ap_ssh = get_apnos(ap, pwd="../libs/apnos/", sdk="2.x") ap_ssh.run_generic_command(cmd="logger start testcase: " + instance_name) def collect_logs(): for ap in get_configuration['access_point']: ap_ssh = get_apnos(ap, pwd="../libs/apnos/", sdk="2.x") ap_ssh.run_generic_command(cmd="logger stop testcase: " + instance_name) ap_logs = ap_ssh.get_logread(start_ref="start testcase: " + instance_name, stop_ref="stop testcase: " + instance_name) allure.attach(name='logread', body=str(ap_logs)) pass request.addfinalizer(collect_logs) @pytest.fixture(scope="function") def get_lf_logs(request, get_apnos, get_configuration): ip = get_configuration["traffic_generator"]["details"]["ip"] port = get_configuration["traffic_generator"]["details"]["ssh_port"] def collect_logs_lf(): log_0 = "/home/lanforge/lanforge_log_0.txt" log_1 = "/home/lanforge/lanforge_log_1.txt" obj = SCP_File(ip=ip, port=port, username="root", password="lanforge", remote_path=log_0, local_path=".") obj.pull_file() allure.attach.file(source="lanforge_log_0.txt", name="lanforge_log_0") obj = SCP_File(ip=ip, port=port, username="root", password="lanforge", remote_path=log_1, local_path=".") obj.pull_file() allure.attach.file(source="lanforge_log_1.txt", name="lanforge_log_1") request.addfinalizer(collect_logs_lf)
the-stack_0_10600
# -*- coding: utf-8 -*- """ Created on Wed Jan 24 22:53:59 2018 @authors: a.pakbin, T.J. Ashby """ from sklearn.model_selection import StratifiedKFold from auxiliary import grid_search,ICD9_categorizer, save_fold_data, convert_numbers_to_names, min_max_mean_auc_for_labels, train_test_one_hot_encoder, possible_values_finder,train_test_normalizer, train_test_imputer, feature_importance_saver, feature_importance_updator, save_roc_curve, data_reader, vectors_to_csv, create_subfolder_if_not_existing, feature_rankings_among_all_labels_saver import numpy as np import pandas as pd from fmeasure import roc, maximize_roc from xgboost.sklearn import XGBClassifier import random as rnd from sklearn.metrics import roc_auc_score import pickle import gc import sys import logging as lg # # NB: the original code base contains code that will trigger # "pandas.core.common.SettingWithCopyError: A value is trying to be set on a # copy of a slice from a DataFrame" errors if the code is run with # pd.set_option('mode.chained_assignment', 'raise'). Hence I'm not using it. # def main(file_name, data_address, writing_address): lg.basicConfig(stream=sys.stderr, level=lg.DEBUG) mpl_logger = lg.getLogger('matplotlib') mpl_logger.setLevel(lg.WARNING) pd.set_option('display.max_colwidth', None) pd.set_option('display.max_columns', 20) data_address = str(data_address) writing_address = str(writing_address) #the address where MIMIC III tables are in .csv.gz format. The tables are: D_ICD_PROCEDURES.csv.gz, D_ITEMS.csv.gz and D_LABITEMS.csv.gz #conversion_tables_address='../data' conversion_tables_address = data_address #outcome labels can contain: '24hrs' ,'48hrs','72hrs', '24hrs~72hrs','7days','30days', 'Bounceback' outcome_labels=['24hrs' ,'48hrs','72hrs', '24hrs~72hrs','7days','30days', 'Bounceback'] normalize_data=False save_folds_data=True values_for_grid_search=[np.linspace(start=1, stop=6, num=6),[50,100,200,1000,1500],[0.1]] num_of_folds=5 ################################# categorical_column_names=['ADMISSION_TYPE', 'INSURANCE', 'LANGUAGE', 'RELIGION', 'MARITAL_STATUS', 'ETHNICITY','FIRST_CAREUNIT', 'GENDER'] # Read the CSV file # - The form of the CSV file is: # - data=data_reader(data_address, file_name) # Returns a dictionary where each column name is a key, and the result is the # set of values that can appear (with NaN etc removed) possible_values=possible_values_finder(data, categorical_column_names) # Fill in the target data column data['IsReadmitted_24hrs~72hrs']=[1 if x>0 else 0 for x in (data['IsReadmitted_72hrs']-data['IsReadmitted_24hrs'])] # List of non-feature column names non_attribute_column_names=['HADM_ID', 'ICUSTAY_ID', 'INTIME', 'OUTTIME', 'SUBJECT_ID', 'IsReadmitted_24hrs','IsReadmitted_Bounceback','IsReadmitted_24hrs~72hrs' ,'IsReadmitted_48hrs','IsReadmitted_72hrs','IsReadmitted_7days','IsReadmitted_30days', 'Time_To_readmission', 'hospital_expire_flag'] if 'Subset' in data.columns: # # NB: If doing subsetting, you should NOT add the test fold from subset A to # the real test data from subset B, otherwise you'll get better results than # you should (as the model is trained on subset A and so will do well on the # slice of subset A included in the test set). # testOnSubsetA = False else: # # However, if there is no subsetting (everything is subset A), then you need # to use the test data from subset A, otherwise there is no test data. Hence # the flag. # lg.info("No subsetting in input data") data.loc[:, 'Subset'] = 'A' testOnSubsetA = True non_attribute_column_names.append('Subset') #TODO: for excludig insurance, language, religion, marital status and ethnicity from the data, uncomment the following line #non_attribute_column_names += ['INSURANCE', 'LANGUAGE', 'RELIGION', 'MARITAL_STATUS', 'ETHNICITY'] # # The function ICD9_categorizer() coarsens the ICD codes to a higher level # by dropping the last code digit - but, it looks like there may be some # issues with the original code as it treats the ICD codes as numbers rather # than strings and so doesn't take into account the semantically meaningful # leading and trailing zeros. # data=ICD9_categorizer(data) model_type='XGB' PREDICTIONS=list() current_folder=writing_address # # Loop over target labels to predict # for idx, label_column_name in enumerate(['IsReadmitted_'+outcome_label for outcome_label in outcome_labels]): # # Original code (replaced because we need to handle subsets for the # experiments): # icu_stays=data['ICUSTAY_ID'].values # y=data[label_column_name].values # X=data.drop(non_attribute_column_names, axis=1) # # # Subsetting # # Labels to predict (sklearn format) y=data.loc[data['Subset'] == "A", label_column_name].values y_testB = data.loc[data['Subset'] == "B", label_column_name].values # Input features X = data.loc[data['Subset'] == "A", :].drop(non_attribute_column_names, axis=1) X_testB = data.loc[data['Subset'] == "B", :].drop(non_attribute_column_names, axis=1) # Output folder current_subfolder=current_folder+'/'+outcome_labels[idx] create_subfolder_if_not_existing(current_subfolder) auc_list=list() ICUstayID=list() Prediction=list() accumulative_feature_importance=None print ('\n',model_type, ' '*5,'LABEL: ', outcome_labels[idx]) skf=StratifiedKFold(n_splits=num_of_folds, shuffle=True, random_state=rnd.randint(1,1e6)) # # Loop over folds # - Each fold is a train/test split, with the test being used for the final score # fold_number=0 for train_index, test_index in skf.split(X, y): fold_number+=1 print ('\n fold',fold_number) # # Original code (replaced because we need to handle subsets for the # experiments): # X_train, X_test = X.iloc[train_index], X.iloc[test_index] # y_train, y_test = y[train_index], y[test_index] # icustay_id_train, icustay_id_test=icu_stays[train_index],icu_stays[test_index] # X_train = X.iloc[train_index] y_train = y[train_index] if testOnSubsetA == True: X_test = pd.concat([X_testB, X.iloc[test_index]]) y_test = np.concatenate((y_testB, y[test_index])) else: X_test = X_testB y_test = y_testB lg.debug("len X_test: {}, len y_test: {}".format(len(X_test), len(y_test))) # # Original code (replaced because we need to handle subsets for the # experiments): # icustay_id_train, icustay_id_test=icu_stays[train_index],icu_stays[test_index] # icustay_id_train = (data.loc[data['Subset'] == "A", 'ICUSTAY_ID'].values)[train_index] testB = data.loc[data['Subset'] == "B", 'ICUSTAY_ID'].values if testOnSubsetA == True: testA = (data.loc[data['Subset'] == "A", 'ICUSTAY_ID'].values)[test_index] icustay_id_test = np.concatenate((testB, testA)) else: icustay_id_test = testB lg.debug("len icustay_id_test: {}".format(len(icustay_id_test))) # Fill in missing values in train and test sets [X_TRAIN_IMPUTED, X_TEST_IMPUTED]=train_test_imputer(X_train, X_test, categorical_column_names) if normalize_data: [X_TRAIN_NORMALIZED, X_TEST_NORMALIZED]=train_test_normalizer(X_TRAIN_IMPUTED, X_TEST_IMPUTED, categorical_column_names) else: [X_TRAIN_NORMALIZED, X_TEST_NORMALIZED]=[X_TRAIN_IMPUTED, X_TEST_IMPUTED] # Do one-hot encoding for categorical variables [X_TRAIN_NORMALIZED, X_TEST_NORMALIZED]=train_test_one_hot_encoder(X_TRAIN_NORMALIZED, X_TEST_NORMALIZED, categorical_column_names, possible_values) if save_folds_data: # Save the train and test inputs for this fold save_fold_data(current_subfolder, fold_number, icustay_id_train, X_TRAIN_NORMALIZED, y_train, icustay_id_test, X_TEST_NORMALIZED, y_test, convert_names=True, conversion_tables_address=conversion_tables_address) [max_depths, n_estimators, learning_rates]=values_for_grid_search # # Grid search to find best hyperparams # - Hyper params picked per fold (?) # - Hyper params picked using nested k-fold with 2 folds (?) # best_settings=grid_search(X=X_TRAIN_NORMALIZED, y=y_train, num_of_folds=2, verbose=True, return_auc_values=False, first_dim=max_depths, second_dim=n_estimators, third_dim=learning_rates) print ('{:<4s}{:<16s}: max_depth: {:<1s}, n_estimators: {:<2s}, learning_rate: {:<2s}'.format('','best hyperparameters', str(best_settings[0]), str(best_settings[1]), str(best_settings[2]))) model=XGBClassifier(max_depth=int(best_settings[0]), n_estimators=int(best_settings[1]), learning_rate=best_settings[2]) # # Do the actual training (with the best hyperparams) # model.fit(X_TRAIN_NORMALIZED, y_train) feature_importance=model.feature_importances_ accumulative_feature_importance=feature_importance_updator(accumulative_feature_importance, feature_importance) # Dump the feature importances to file pd.DataFrame(data={'FEATURE_NAME': convert_numbers_to_names(X_TRAIN_NORMALIZED.columns, conversion_tables_address), 'IMPORTANCE': feature_importance}).sort_values(by='IMPORTANCE', ascending=False).reset_index(drop=True).to_csv(current_subfolder+'/'+'fold_'+str(fold_number)+'_ranked_feature_importances.csv') # # Make the predictions on the test set # predictions=model.predict_proba(X_TEST_NORMALIZED)[:,1] # Append results to an array (?) # These variables seem to be only assigned to, never used ICUstayID=np.append(ICUstayID,icustay_id_test) Prediction=np.append(Prediction,predictions) # Write stuff out... lg.debug("Vector lengths: 1 icustay_id_test: {}, 2 predictions: {}, 3 y_test: {}".format(len(icustay_id_test), len(predictions), len(y_test))) vectors_to_csv(current_subfolder, file_name='fold_'+str(fold_number), vector_one=icustay_id_test, label_one='ICUSTAY_ID', vector_two=predictions, label_two='PREDICTION', vector_three=y_test, label_three='LABEL') auc=roc_auc_score(y_true=y_test, y_score=predictions) auc_list.append(auc) ROC=roc(predicted=predictions, labels=y_test) ROC.to_csv(current_subfolder+'/'+'fold_'+str(fold_number)+'_roc.csv') maximum=maximize_roc(ROC, maximization_criteria='fscore') maximum.to_csv(current_subfolder+'/'+'fold_'+str(fold_number)+'_optimum_point.csv') TPR, FPR = ROC['recall'].values, 1-ROC['specificity'] # Minor change here to allow different figure formats figtype = 'png' save_roc_curve(current_subfolder+'/'+'fold_'+str(fold_number)+'_roc_curve.'+figtype, TPR, FPR, auc) pickle.dump(model, open(current_subfolder+'/'+'fold_'+str(fold_number)+'.model','wb')) print (' '+'-'*30) feature_importance_saver(address=current_subfolder, col_names=convert_numbers_to_names(X_TRAIN_NORMALIZED.columns, conversion_tables_address), accumulative_feature_importance=accumulative_feature_importance, num_of_folds=num_of_folds) # Minor change here to avoid complications with python generator functions vectors_to_csv(current_subfolder, file_name='folds_AUC', vector_one=auc_list, label_one='AUC', vector_two=list(range(1,num_of_folds+1)), label_two='FOLD_NUMBER') gc.collect() current_folder=writing_address min_max_mean_auc_for_labels(current_folder, outcome_labels) feature_rankings_among_all_labels_saver(current_folder,outcome_labels, conversion_tables_address) if __name__=='__main__': file_name = sys.argv[1] data_address = sys.argv[2] writing_address = sys.argv[3] main(file_name, data_address, writing_address)
the-stack_0_10601
from acmacs_py import * from .. import utils from .log import Log import acmacs # ---------------------------------------------------------------------- class MapMaker: def __init__(self, chain_setup, minimum_column_basis, log :Log): self.chain_setup = chain_setup self.minimum_column_basis = minimum_column_basis self.log = log def individual_map_directory_name(self): return f"i-{self.minimum_column_basis}" def command(self, source :Path, target :Path): """returns command (list) or None if making is not necessary (already made)""" target.parent.mkdir(parents=True, exist_ok=True) if utils.older_than(target, source): if self.process(source): return [self.command_name(), *self.command_args(), "--grid-json", target.with_suffix(".grid.json"), self.preprocess(source, target.parent), target] else: self.log.info(f"{target} ignored") return None else: # self.log.info(f"{target} up to date") return None def command_name(self): return "chart-relax-grid" def command_args(self): return [ "-n", self.chain_setup.number_of_optimizations(), "-d", self.chain_setup.number_of_dimensions(), "-m", self.minimum_column_basis, *self.args_keep_projections(), *self.args_reorient(), *self.args_disconnect() ] def args_keep_projections(self): return ["--keep-projections", self.chain_setup.projections_to_keep()] def args_reorient(self): reorient_to = self.chain_setup.reorient_to() if reorient_to: return ["--reorient", reorient_to] else: return [] def args_disconnect(self): if not self.chain_setup.disconnect_having_few_titers(): return ["--no-disconnect-having-few-titers"] else: return [] def process(self, source): return True def preprocess(self, source :Path, output_directory :Path): return source @classmethod def add_threads_to_commands(cls, threads :int, commands :list): """Modifies commands to make it limit threads number. Returns modified command""" return [command + ["--threads", threads] for command in commands] # ---------------------------------------------------------------------- class MapMakerInSteps (MapMaker): """ 1. multiple chart-relax (without grid) to run on multiple machines (nodes) 2. combine results 3. muiltipe chart-grid-test for the best result of 2, for different sets of antigens and sera to run on multiple nodes 4. combine results, move trapped points, relax, then repeat 3 """ # ---------------------------------------------------------------------- class IndividualMapMaker (MapMaker): def __init__(self, *args, ignore_tables_with_too_few_sera, **kwargs): super().__init__(*args, **kwargs) self.ignore_tables_with_too_few_sera = ignore_tables_with_too_few_sera def process(self, source): return not self.ignore(source) def preprocess(self, source :Path, output_directory :Path): return self.chain_setup.individual_table_preprocess(source, output_directory=output_directory) def ignore(self, source): if self.ignore_tables_with_too_few_sera: if isinstance(source, acmacs.Chart): chart = source chart_name = chart.make_name() else: chart = acmacs.Chart(source) chart_name = source if chart.number_of_antigens() < 3 or chart.number_of_sera() < 3: self.log.info(f"chart has too few antigens ({chart.number_of_antigens()}) or sera ({chart.number_of_sera()}), ignored ({chart_name})") return True return False # ---------------------------------------------------------------------- class IndividualMapWithMergeColumnBasesMaker (IndividualMapMaker): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # self.output_dir_name = output_dir_name self.source = None # nothing to do self.target = None # nothing to do def prepare(self, source :Path, merge_column_bases :dict, merge_path :Path, output_dir :Path, output_prefix :str): self.log.info(f"Individual table map ({source.name}) with column bases from the merge ({merge_path.name})") chart = acmacs.Chart(self.preprocess(source, output_directory=output_dir)) mcb_source = output_dir.joinpath(f"{output_prefix}{chart.date()}.mcb-table{source.suffix}") mcb_target = output_dir.joinpath(f"{output_prefix}{chart.date()}.mcb{source.suffix}") if utils.older_than(mcb_target, source): if not self.ignore(chart): cb = chart.column_bases(self.minimum_column_basis) orig_cb = str(cb) updated = False for sr_no, serum in chart.select_all_sera(): mcb = merge_column_bases.get(serum.name_full()) if mcb is None: message = f"No column basis for {serum.name_full()} in the merge column bases (source: {source.name}:\n{pprint.pformat(merge_column_bases, width=200)}" self.log.info(f"ERROR {message}") raise RuntimeError(message) if mcb != cb[sr_no]: if mcb < cb[sr_no]: self.log.info(f"Column basis for {serum.name_full()} in the merge ({mcb}) is less than in the individual table ({cb[sr_no]})") cb[sr_no] = mcb updated = True if updated: chart.column_bases(cb) self.log.info(f"{mcb_source} <-- {source}: column basis updated from merge:\n orig: {orig_cb}\n new: {cb}") self.source = mcb_source self.target = mcb_target chart.export(self.source, program_name=sys.argv[0]) else: self.log.info("column basis in the merge are the same as in the original individual table") # else: # self.log.info(f"{mcb_source} up to date") self.log.separator(newlines_before=1) # ---------------------------------------------------------------------- class IncrementalMapMaker (MapMaker): def command_name(self): return "chart-relax-incremental" def command_args(self): return [ "-n", self.chain_setup.number_of_optimizations(), "--grid-test", "--remove-source-projection", *self.args_keep_projections(), # *self.args_reorient(), *self.args_disconnect() ] # ---------------------------------------------------------------------- def extract_column_bases(chart): return {serum.name_full(): chart.column_basis(sr_no) for sr_no, serum in chart.select_all_sera()} # ====================================================================== ### Local Variables: ### eval: (if (fboundp 'eu-rename-buffer) (eu-rename-buffer)) ### End:
the-stack_0_10602
import json import os from flask import Flask, render_template, redirect, request import tv import logging log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) app = Flask(__name__) BUTTONS = {} @app.route('/') def index(): return render_template('index.html', tv_state=tv.get_state(), buttons=BUTTONS.values()) @app.route('/off') def hello_world(): tv.off() return redirect("/", code=302) @app.route('/button/<btn>') def button(btn): b = BUTTONS.get(btn) if b: tv.do_script(b['script']) return redirect("/", code=302) @app.route('/shutdown') def shutdown(): func = request.environ.get('werkzeug.server.shutdown') if func is None: raise RuntimeError('Not running with the Werkzeug Server') func() return 'Server shutting down...' def load_buttons(): dir, file = os.path.split(os.path.abspath(__file__)) with open(os.path.join(dir, 'buttons.json')) as json_data: btns = json.load(json_data) for btn in btns: BUTTONS[btn["id"]] = btn if __name__ == "__main__": load_buttons() try: app.run(host='0.0.0.0', port=5000) finally: tv.cleanup()
the-stack_0_10604
import numpy as np import random import copy from collections import namedtuple, deque from ddpg_models import Actor, Critic from ou_noise import OUNoise from replay_buffer import ReplayBuffer import torch import torch.nn.functional as F import torch.optim as optim BUFFER_SIZE = int(1e6) # replay buffer size BATCH_SIZE = 1024 # minibatch size GAMMA = 0.99 # discount factor TAU = 1e-3 # for soft update of target parameters LR_ACTOR = 1e-4 # learning rate of the actor LR_CRITIC = 1e-3 # learning rate of the critic WEIGHT_DECAY = 0 # L2 weight decay device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") class Agent(): """Interacts with and learns from the environment.""" def __init__(self, state_size, action_size, random_seed): """Initialize an Agent object. Params ====== state_size (int): dimension of each state action_size (int): dimension of each action random_seed (int): random seed """ self.state_size = state_size self.action_size = action_size self.seed = random.seed(random_seed) # Actor Network (w/ Target Network) self.actor_local = Actor(state_size, action_size, random_seed).to(device) self.actor_target = Actor(state_size, action_size, random_seed).to(device) self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR) # Critic Network (w/ Target Network) self.critic_local = Critic(state_size, action_size, random_seed).to(device) self.critic_target = Critic(state_size, action_size, random_seed).to(device) self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY) # Noise process self.noise = OUNoise(action_size, random_seed) # Replay memory self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed) def step(self, states, actions, rewards, next_states, dones): """Save experience in replay memory, and use random sample from buffer to learn.""" # Save experience / reward for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones): self.memory.add(state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > BATCH_SIZE: experiences = self.memory.sample() self.learn(experiences, GAMMA) def act(self, state, add_noise=True): """Returns actions for given state as per current policy.""" state = torch.from_numpy(state).float().to(device) self.actor_local.eval() with torch.no_grad(): action = self.actor_local(state).cpu().data.numpy() self.actor_local.train() if add_noise: action += self.noise.sample() return np.clip(action, -1, 1) def reset(self): """reset the noise function values""" self.noise.reset() def learn(self, experiences, gamma): """Update policy and value parameters using given batch of experience tuples. Q_targets = r + γ * critic_target(next_state, actor_target(next_state)) where: actor_target(state) -> action critic_target(state, action) -> Q-value Params ====== experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples gamma (float): discount factor """ states, actions, rewards, next_states, dones = experiences # ---------------------------- update critic ---------------------------- # # Get predicted next-state actions and Q values from target models actions_next = self.actor_target(next_states) Q_targets_next = self.critic_target(next_states, actions_next) # Compute Q targets for current states (y_i) Q_targets = rewards + (gamma * Q_targets_next * (1 - dones)) # Compute critic loss Q_expected = self.critic_local(states, actions) critic_loss = F.mse_loss(Q_expected, Q_targets) # Minimize the loss self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # ---------------------------- update actor ---------------------------- # # Compute actor loss actions_pred = self.actor_local(states) actor_loss = -self.critic_local(states, actions_pred).mean() # Minimize the loss self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # ----------------------- update target networks ----------------------- # self.soft_update(self.critic_local, self.critic_target, TAU) self.soft_update(self.actor_local, self.actor_target, TAU) def soft_update(self, local_model, target_model, tau): """Soft update model parameters. θ_target = τ*θ_local + (1 - τ)*θ_target Params ====== local_model: PyTorch model (weights will be copied from) target_model: PyTorch model (weights will be copied to) tau (float): interpolation parameter """ for target_param, local_param in zip(target_model.parameters(), local_model.parameters()): target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
the-stack_0_10606
import warnings import rdflib from rdflib import OWL, RDF, RDFS, BNode from ..exceptions import NeuroLangNotImplementedError from ..expressions import Constant, Symbol from ..logic import Conjunction, Implication, Union from .constraints_representation import RightImplication class OntologyParser: """ This class is in charge of generating the rules that can be derived from an ontology, both at entity and constraint levels. """ def __init__(self, paths, load_format="xml"): self.namespaces_dic = None self.owl_dic = None if isinstance(paths, list): self._load_ontology(paths, load_format) else: self._load_ontology([paths], [load_format]) self._triple = Symbol.fresh() self._pointer = Symbol.fresh() self._dom = Symbol.fresh() self.parsed_restrictions = [ OWL.allValuesFrom, OWL.hasValue, OWL.minCardinality, OWL.maxCardinality, OWL.cardinality, OWL.someValuesFrom, ] def _load_ontology(self, paths, load_format): g = rdflib.Graph() for counter, path in enumerate(paths): g.load(path, format=load_format[counter]) self.graph = g def parse_ontology(self): extensional_predicate_tuples, union_of_constraints_dom = ( self._load_domain() ) union_of_constraints_prop = self._load_properties() union_of_constraints = self._load_constraints() union_of_constraints = Union( union_of_constraints_dom.formulas + union_of_constraints_prop.formulas + union_of_constraints.formulas ) return extensional_predicate_tuples, union_of_constraints def get_triples_symbol(self): return self._triple def get_pointers_symbol(self): return self._pointer def get_domain_symbol(self): return self._dom def _load_domain(self): pointers = frozenset( (str(x),) for x in self.graph.subjects() if isinstance(x, BNode) ) triples = frozenset( (str(x[0]), str(x[1]), str(x[2])) for x in self.get_triples() ) x = Symbol.fresh() y = Symbol.fresh() z = Symbol.fresh() dom1 = RightImplication(self._triple(x, y, z), self._dom(x)) dom2 = RightImplication(self._triple(x, y, z), self._dom(y)) dom3 = RightImplication(self._triple(x, y, z), self._dom(z)) extensional_predicate_tuples = {} extensional_predicate_tuples[self._triple] = triples extensional_predicate_tuples[self._pointer] = pointers union_of_constraints = Union((dom1, dom2, dom3)) return extensional_predicate_tuples, union_of_constraints def _load_properties(self): """ Function that parse all the properties defined in the ontology. """ x = Symbol.fresh() z = Symbol.fresh() constraints = () for pred in set(self.graph.predicates()): symbol_name = str(pred) symbol = Symbol(symbol_name) const = Constant(symbol_name) constraints += ( RightImplication(self._triple(x, const, z), symbol(x, z)), ) return Union(constraints) def _load_constraints(self): """ Function in charge of parsing the ontology's restrictions. It needs a function "_process_X", where X is the name of the restriction to be processed, to be defined. """ restriction_ids = [ s for s, _, _ in self.graph.triples((None, None, OWL.Restriction)) ] union_of_constraints = Union(()) for rest in restriction_ids: cut_graph = list(self.graph.triples((rest, None, None))) res_type = self._identify_restriction_type(cut_graph) try: process_restriction_method = getattr( self, f"_process_{res_type}" ) constraints = process_restriction_method(cut_graph) union_of_constraints = Union( union_of_constraints.formulas + constraints.formulas ) except AttributeError as err: raise NeuroLangNotImplementedError( f"""Ontology parser doesn\'t handle restrictions of type {res_type}""" ) return union_of_constraints def _identify_restriction_type(self, list_of_triples): """ Given a list of nodes associated to a restriction, this function returns the name of the restriction to be applied (hasValue, minCardinality, etc). Parameters ---------- list_of_triples : list List of nodes associated to a restriction. Returns ------- str the name of the restriction or an empty string if the name cannot be identified. """ for triple in list_of_triples: if triple[1] == OWL.onProperty or triple[1] == RDF.type: continue else: return triple[1].rsplit("#")[-1] return "" def _process_hasValue(self, cut_graph): """ A restriction containing a owl:hasValue constraint describes a class of all individuals for which the property concerned has at least one value semantically equal to V (it may have other values as well) The following example describes the class of individuals who have the individual referred to as Clinton as their parent: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:hasValue rdf:resource="#Clinton" /> </owl:Restriction> """ parsed_prop, restricted_node, value = self._parse_restriction_nodes( cut_graph ) rdfs_type = Constant(str(RDF.type)) property_symbol = Symbol(str(parsed_prop)) x = Symbol.fresh() constraint = Union( ( RightImplication( self._triple(x, rdfs_type, Constant(str(restricted_node))), property_symbol(x, Constant(str(value))), ), ) ) return constraint def _process_minCardinality(self, cut_graph): """ A restriction containing an owl:minCardinality constraint describes a class of all individuals that have at least N semantically distinct values (individuals or data values) for the property concerned, where N is the value of the cardinality constraint. The following example describes a class of individuals that have at least two parents: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger"> 2 </owl:minCardinality> </owl:Restriction> Note that an owl:minCardinality of one or more means that all instances of the class must have a value for the property. """ _, restricted_node, _ = self._parse_restriction_nodes( cut_graph ) warnings.warn( f"""The restriction minCardinality cannot be parsed for {restricted_node}.""" ) return Union(()) def _process_maxCardinality(self, cut_graph): """ A restriction containing an owl:maxCardinality constraint describes a class of all individuals that have at most N semantically distinct values (individuals or data values) for the property concerned, where N is the value of the cardinality constraint. The following example describes a class of individuals that have at most two parents: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger"> 2 </owl:maxCardinality> </owl:Restriction> """ _, restricted_node, _ = self._parse_restriction_nodes( cut_graph ) warnings.warn( f"""The restriction maxCardinality cannot be parsed for {restricted_node}""" ) return Union(()) def _process_cardinality(self, cut_graph): """ A restriction containing an owl:cardinality constraint describes a class of all individuals that have exactly N semantically distinct values (individuals or data values) for the property concerned, where N is the value of the cardinality constraint. This construct is in fact redundant as it can always be replaced by a pair of matching owl:minCardinality and owl:maxCardinality constraints with the same value. It is included as a convenient shorthand for the user. The following example describes a class of individuals that have exactly two parents: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:cardinality rdf:datatype="&xsd;nonNegativeInteger"> 2 </owl:cardinality> </owl:Restriction> """ _, restricted_node, _ = self._parse_restriction_nodes( cut_graph ) warnings.warn( f"""The restriction cardinality cannot be parsed for {restricted_node}""" ) return Union(()) def _process_someValuesFrom(self, cut_graph): """ It defines a class of individuals x for which there is at least one y (either an instance of the class description or value of the data range) such that the pair (x,y) is an instance of P. This does not exclude that there are other instances (x,y') of P for which y' does not belong to the class description or data range. The following example defines a class of individuals which have at least one parent who is a physician: <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:someValuesFrom rdf:resource="#Physician" /> </owl:Restriction> """ parsed_prop, restricted_node, values = self._parse_restriction_nodes( cut_graph ) nodes_someValuesFrom = self._parse_list(values) constraints = Union(()) property_symbol = Symbol(str(parsed_prop)) rdfs_type = Constant(str(RDF.type)) y = Symbol.fresh() for value in nodes_someValuesFrom: constraints = Union( constraints.formulas + ( RightImplication( self._triple( y, rdfs_type, Constant(str(restricted_node)) ), property_symbol(y, Constant(str(value))), ), ) ) return constraints def _process_allValuesFrom(self, cut_graph): """ AllValuesFrom defines a class of individuals x for which holds that if the pair (x,y) is an instance of P (the property concerned), then y should be an instance of the class description. <owl:Restriction> <owl:onProperty rdf:resource="#hasParent" /> <owl:allValuesFrom rdf:resource="#Human" /> </owl:Restriction> This example describes an anonymous OWL class of all individuals for which the hasParent property only has values of class Human """ parsed_prop, restricted_node, values = self._parse_restriction_nodes( cut_graph ) allValuesFrom = self._parse_list(values) constraints = Union(()) property_symbol = Symbol(str(parsed_prop)) rdf_type = Constant(str(RDF.type)) rdf_symbol = Symbol(str(RDF.type)) y = Symbol.fresh() x = Symbol.fresh() for value in allValuesFrom: constraints = Union( constraints.formulas + ( RightImplication( Conjunction( ( self._triple( y, rdf_type, Constant(str(restricted_node)) ), property_symbol(y, x), ) ), rdf_symbol(x, Constant(str(value))), ), ) ) return constraints def _parse_restriction_nodes(self, cut_graph): """ Given the list of nodes associated with a restriction, this function returns: The restricted node, the property that restricts it and the value associated to it. Parameters ---------- cut_graph : list List of nodes associated to a restriction. Returns ------- parsed_property : URIRef The node of the property. restricted_node : URIRef The node restricted by the property. value : URIRef The value of the property """ restricted_node = list( self.graph.triples((None, None, cut_graph[0][0])) )[0][0] for triple in cut_graph: if OWL.onProperty == triple[1]: parsed_property = triple[2] elif triple[1] in self.parsed_restrictions: value = triple[2] return parsed_property, restricted_node, value def _parse_list(self, initial_node): """ This function receives an initial BNode from a list of nodes and goes through the list collecting the values from it and returns them as an array Parameters ---------- initial_node : BNode Initial node of the list that you want to go through. Returns ------- values : list Array of nodes that are part of the list. """ if not isinstance(initial_node, BNode): return [initial_node] list_node = RDF.nil values = [] for node_triples in self.graph.triples((initial_node, None, None)): if OWL.unionOf == node_triples[1]: list_node = node_triples[2] else: values.append(node_triples[0]) while list_node != RDF.nil and list_node is not None: list_iter = self.graph.triples((list_node, None, None)) values.append(self._get_list_first_value(list_iter)) list_node = self._get_list_rest_value(list_iter) return values def _get_list_first_value(self, list_iter): """ Given a list of triples, as a result of the iteration of a list, this function returns the node associated to the rdf:first property. Parameters ---------- list_iter : generator Generator that represents the list of nodes that form a position in a list. Returns ------- URIRef Node associated to the rdf:first property. """ for triple in list_iter: if RDF.first == triple[1]: return triple[2] def _get_list_rest_value(self, list_iter): """ Given a list of triples, as a result of the iteration of a list, this function returns the node associated to the rdf:rest property. Parameters ---------- list_iter : generator Generator that represents the list of nodes that form a position in a list. Returns ------- URIRef Node associated to the rdf:rest property. """ for triple in list_iter: if RDF.rest == triple[1]: return triple[2] def get_triples(self): return self.graph.triples((None, None, None))
the-stack_0_10608
import os import json import numpy as np from pychemia.crystal import KPoints from ...tasks import Task from ..abinit import AbinitJob __author__ = 'Guillermo Avendano-Franco' class StaticCalculation(Task): def __init__(self, structure, workdir='.', binary='abinit', ecut=50, kpoints=None, kp_density=1E4): self.ecut = ecut if kpoints is None: kp = KPoints.optimized_grid(structure.lattice, kp_density=kp_density, force_odd=True) self.kpoints = kp else: self.kpoints = kpoints self.task_params = {'ecut': self.ecut, 'kpoints': self.kpoints.to_dict} Task.__init__(self, structure=structure, task_params=self.task_params, workdir=workdir, binary=binary) self.abinitjob = AbinitJob() self.abinitjob.initialize(workdir=workdir, structure=structure, binary=binary) def run(self, nparal=1): self.abinitjob.set_kpoints(kpoints=self.kpoints) self.abinitjob.job_static() self.abinitjob.set_ecut(self.ecut) self.abinitjob.set_psps() self.abinitjob.write_all() self.abinitjob.run(use_mpi=True, omp_max_threads=nparal, mpi_num_procs=nparal) def plot(self, figname='static_calculation.pdf'): if not self.finished: print('The task is not finished') return import matplotlib.pyplot as plt plt.switch_backend('agg') plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=0.09, bottom=0.08, right=0.95, top=0.95, wspace=None, hspace=None) data = np.array(self.output['energies']) plt.plot(data[:, 1], data[:, 2], 'b.-') plt.xlabel('SCF cycle') plt.ylabel('Energy [eV]') a = plt.axes([.6, .6, .3, .3], axisbg='0.9') a.semilogy(data[:, 1], data[:, 2] - np.min(data[:, 2])) a.set_title('min energy %7.3f eV' % np.min(data[:, 2])) if figname is not None: plt.savefig(figname) return plt.gcf() def load(self, filename=None): if filename is None: filename = self.workdir + os.sep + 'task.json' rf = open(filename) data = json.load(rf) rf.close() self.task_params = data['task_params'] self.output = data['output'] self.ecut = self.task_params['ecut'] self.kpoints = KPoints.from_dict(self.task_params['kpoints']) def report(self, file_format='html'): from lxml.builder import ElementMaker, E self.plot(figname=self.report_dir + os.sep + 'static.jpg') element_maker = ElementMaker(namespace=None, nsmap={None: "http://www.w3.org/1999/xhtml"}) html = element_maker.html(E.head(E.title("ABINIT Static Calculation")), E.body(E.h1("ABINIT Static Calculation"), E.h2('Structure'), E.pre(str(self.structure)), E.h2('Self Consistent Field Convergence'), E.p(E.img(src='static.jpg', width="800", height="600", alt="Static Calculation")) )) return self.report_end(html, file_format)
the-stack_0_10609
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== r"""Script for training model. Simple command to get up and running: python train.py --memory_size=8192 \ --batch_size=16 --validation_length=50 \ --episode_width=5 --episode_length=30 """ import logging import os import random import numpy as np import tensorflow as tf import data_utils import model FLAGS = tf.flags.FLAGS tf.flags.DEFINE_integer('rep_dim', 128, 'dimension of keys to use in memory') tf.flags.DEFINE_integer('episode_length', 100, 'length of episode') tf.flags.DEFINE_integer('episode_width', 5, 'number of distinct labels in a single episode') tf.flags.DEFINE_integer('memory_size', None, 'number of slots in memory. ' 'Leave as None to default to episode length') tf.flags.DEFINE_integer('batch_size', 16, 'batch size') tf.flags.DEFINE_integer('num_episodes', 100000, 'number of training episodes') tf.flags.DEFINE_integer('validation_frequency', 20, 'every so many training episodes, ' 'assess validation accuracy') tf.flags.DEFINE_integer('validation_length', 10, 'number of episodes to use to compute ' 'validation accuracy') tf.flags.DEFINE_integer('seed', 888, 'random seed for training sampling') tf.flags.DEFINE_string('save_dir', '', 'directory to save model to') tf.flags.DEFINE_bool('use_lsh', False, 'use locality-sensitive hashing ' '(NOTE: not fully tested)') class Trainer(object): """Class that takes care of training, validating, and checkpointing model.""" def __init__(self, train_data, valid_data, input_dim, output_dim=None): self.train_data = train_data self.valid_data = valid_data self.input_dim = input_dim self.rep_dim = FLAGS.rep_dim self.episode_length = FLAGS.episode_length self.episode_width = FLAGS.episode_width self.batch_size = FLAGS.batch_size self.memory_size = (self.episode_length * self.batch_size if FLAGS.memory_size is None else FLAGS.memory_size) self.use_lsh = FLAGS.use_lsh self.output_dim = (output_dim if output_dim is not None else self.episode_width) def get_model(self): # vocab size is the number of distinct values that # could go into the memory key-value storage vocab_size = self.episode_width * self.batch_size return model.Model( self.input_dim, self.output_dim, self.rep_dim, self.memory_size, vocab_size, use_lsh=self.use_lsh) def sample_episode_batch(self, data, episode_length, episode_width, batch_size): """Generates a random batch for training or validation. Structures each element of the batch as an 'episode'. Each episode contains episode_length examples and episode_width distinct labels. Args: data: A dictionary mapping label to list of examples. episode_length: Number of examples in each episode. episode_width: Distinct number of labels in each episode. batch_size: Batch size (number of episodes). Returns: A tuple (x, y) where x is a list of batches of examples with size episode_length and y is a list of batches of labels. """ episodes_x = [[] for _ in xrange(episode_length)] episodes_y = [[] for _ in xrange(episode_length)] assert len(data) >= episode_width keys = data.keys() for b in xrange(batch_size): episode_labels = random.sample(keys, episode_width) remainder = episode_length % episode_width remainders = [0] * (episode_width - remainder) + [1] * remainder episode_x = [ random.sample(data[lab], r + (episode_length - remainder) / episode_width) for lab, r in zip(episode_labels, remainders)] episode = sum([[(x, i, ii) for ii, x in enumerate(xx)] for i, xx in enumerate(episode_x)], []) random.shuffle(episode) # Arrange episode so that each distinct label is seen before moving to # 2nd showing episode.sort(key=lambda elem: elem[2]) assert len(episode) == episode_length for i in xrange(episode_length): episodes_x[i].append(episode[i][0]) episodes_y[i].append(episode[i][1] + b * episode_width) return ([np.array(xx).astype('float32') for xx in episodes_x], [np.array(yy).astype('int32') for yy in episodes_y]) def compute_correct(self, ys, y_preds): return np.mean(np.equal(y_preds, np.array(ys))) def individual_compute_correct(self, y, y_pred): return y_pred == y def run(self): """Performs training. Trains a model using episodic training. Every so often, runs some evaluations on validation data. """ train_data, valid_data = self.train_data, self.valid_data input_dim, output_dim = self.input_dim, self.output_dim rep_dim, episode_length = self.rep_dim, self.episode_length episode_width, memory_size = self.episode_width, self.memory_size batch_size = self.batch_size train_size = len(train_data) valid_size = len(valid_data) logging.info('train_size (number of labels) %d', train_size) logging.info('valid_size (number of labels) %d', valid_size) logging.info('input_dim %d', input_dim) logging.info('output_dim %d', output_dim) logging.info('rep_dim %d', rep_dim) logging.info('episode_length %d', episode_length) logging.info('episode_width %d', episode_width) logging.info('memory_size %d', memory_size) logging.info('batch_size %d', batch_size) assert all(len(v) >= float(episode_length) / episode_width for v in train_data.itervalues()) assert all(len(v) >= float(episode_length) / episode_width for v in valid_data.itervalues()) output_dim = episode_width self.model = self.get_model() self.model.setup() sess = tf.Session() sess.run(tf.initialize_all_variables()) saver = tf.train.Saver(max_to_keep=10) ckpt = None if FLAGS.save_dir: ckpt = tf.train.get_checkpoint_state(FLAGS.save_dir) if ckpt and ckpt.model_checkpoint_path: logging.info('restoring from %s', ckpt.model_checkpoint_path) saver.restore(sess, ckpt.model_checkpoint_path) logging.info('starting now') losses = [] random.seed(FLAGS.seed) np.random.seed(FLAGS.seed) for i in xrange(FLAGS.num_episodes): x, y = self.sample_episode_batch( train_data, episode_length, episode_width, batch_size) outputs = self.model.episode_step(sess, x, y, clear_memory=True) loss = outputs losses.append(loss) if i % FLAGS.validation_frequency == 0: logging.info('episode batch %d, avg train loss %f', i, np.mean(losses)) losses = [] # validation correct = [] correct_by_shot = dict((k, []) for k in xrange(self.episode_width + 1)) for _ in xrange(FLAGS.validation_length): x, y = self.sample_episode_batch( valid_data, episode_length, episode_width, 1) outputs = self.model.episode_predict( sess, x, y, clear_memory=True) y_preds = outputs correct.append(self.compute_correct(np.array(y), y_preds)) # compute per-shot accuracies seen_counts = [[0] * episode_width for _ in xrange(batch_size)] # loop over episode steps for yy, yy_preds in zip(y, y_preds): # loop over batch examples for k, (yyy, yyy_preds) in enumerate(zip(yy, yy_preds)): yyy, yyy_preds = int(yyy), int(yyy_preds) count = seen_counts[k][yyy % self.episode_width] if count in correct_by_shot: correct_by_shot[count].append( self.individual_compute_correct(yyy, yyy_preds)) seen_counts[k][yyy % self.episode_width] = count + 1 logging.info('validation overall accuracy %f', np.mean(correct)) logging.info('%d-shot: %.3f, ' * (self.episode_width + 1), *sum([[k, np.mean(correct_by_shot[k])] for k in xrange(self.episode_width + 1)], [])) if saver and FLAGS.save_dir: saved_file = saver.save(sess, os.path.join(FLAGS.save_dir, 'model.ckpt'), global_step=self.model.global_step) logging.info('saved model to %s', saved_file) def main(unused_argv): train_data, valid_data = data_utils.get_data() trainer = Trainer(train_data, valid_data, data_utils.IMAGE_NEW_SIZE ** 2) trainer.run() if __name__ == '__main__': logging.basicConfig(level=logging.INFO) tf.app.run()
the-stack_0_10610
""" Copyright (c) 2015 SONATA-NFV, 2017 5GTANGO ALL RIGHTS RESERVED. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Neither the name of the SONATA-NFV, 5GTANGO nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. This work has been performed in the framework of the SONATA project, funded by the European Commission under Grant number 671517 through the Horizon 2020 and 5G-PPP programmes. The authors would like to acknowledge the contributions of their colleagues of the SONATA partner consortium (www.sonata-nfv.eu). This work has been performed in the framework of the 5GTANGO project, funded by the European Commission under Grant number 761493 through the Horizon 2020 and 5G-PPP programmes. The authors would like to acknowledge the contributions of their colleagues of the 5GTANGO partner consortium (www.5gtango.eu). """ import logging import yaml import time from smbase.smbase import smbase try: from ds import ssh except: import ssh logging.basicConfig(level=logging.INFO) LOG = logging.getLogger("fsm-ds") LOG.setLevel(logging.DEBUG) logging.getLogger("son-mano-base:messaging").setLevel(logging.INFO) class dsFSM(smbase): def __init__(self, connect_to_broker=True): """ :param specific_manager_type: specifies the type of specific manager that could be either fsm or ssm. :param service_name: the name of the service that this specific manager belongs to. :param function_name: the name of the function that this specific manager belongs to, will be null in SSM case :param specific_manager_name: the actual name of specific manager (e.g., scaling, placement) :param id_number: the specific manager id number which is used to distinguish between multiple SSM/FSM that are created for the same objective (e.g., scaling with algorithm 1 and 2) :param version: version :param description: description """ self.sm_id = "sonfsmcommunication-pilotds-vnfcss1" self.sm_version = "0.1" super(self.__class__, self).__init__(sm_id=self.sm_id, sm_version=self.sm_version, connect_to_broker=connect_to_broker) def on_registration_ok(self): # The fsm registration was successful LOG.debug("Received registration ok event.") # send the status to the SMR status = 'Subscribed, waiting for alert message' message = {'name': self.sm_id, 'status': status} self.manoconn.publish(topic='specific.manager.registry.ssm.status', message=yaml.dump(message)) # Subscribing to the topics that the fsm needs to listen on topic = "generic.fsm." + str(self.sfuuid) self.manoconn.subscribe(self.message_received, topic) LOG.info("Subscribed to " + topic + " topic.") def message_received(self, ch, method, props, payload): """ This method handles received messages """ # Decode the content of the message request = yaml.load(payload) # Don't trigger on non-request messages if "fsm_type" not in request.keys(): LOG.info("Received a non-request message, ignoring...") return # Create the response response = None # the 'fsm_type' field in the content indicates for which type of # fsm this message is intended. if str(request["fsm_type"]) == "start": LOG.info("Start event received: " + str(request["content"])) response = self.start_event(request["content"]) if str(request["fsm_type"]) == "stop": LOG.info("Stop event received: " + str(request["content"])) response = self.stop_event(request["content"]) if str(request["fsm_type"]) == "configure": LOG.info("Config event received: " + str(request["content"])) response = self.configure_event(request["content"]) # If a response message was generated, send it back to the FLM LOG.info("Response to request generated:" + str(response)) topic = "generic.fsm." + str(self.sfuuid) corr_id = props.correlation_id self.manoconn.notify(topic, yaml.dump(response), correlation_id=corr_id) return def start_event(self, content): """ This method handles a start event. """ # Dummy content response = {'status': 'completed'} return response def stop_event(self, content): """ This method handles a stop event. """ # Dummy content response = {'status': 'completed'} return response def configure_event(self, content): """ This method handles a configure event. The configure event changes the configuration of the Dispatcher. """ # Extract VNF-DS management IP and VNF-BS internal IP ds_ip = '' bs_ip = '' for vnfr in content['vnfrs']: if vnfr['virtual_deployment_units'][0]['vdu_reference'][:2] == 'bs': for cp in vnfr['virtual_deployment_units'][0]['vnfc_instance'][0]['connection_points']: if cp['id'] == 'internal': bs_ip = cp['interface']['address'] break if vnfr['virtual_deployment_units'][0]['vdu_reference'][:2] == 'ds': for cp in vnfr['virtual_deployment_units'][0]['vnfc_instance'][0]['connection_points']: if cp['id'] == 'mgmt': ds_ip = cp['interface']['address'] break LOG.info('ds ip: ' + ds_ip) LOG.info('bs ip: ' + bs_ip) # Initiate SSH connection with the VM ssh_client = ssh.Client(ds_ip, username='ubuntu', logger=LOG, key_filename='/root/ds/sandbox.pem', retries=40) # Enable user ubuntu in tmp folder ssh_client.sendCommand("sudo chown -R ubuntu:ubuntu /tmp/") # Change qss config ssh_client.sendCommand("sudo sed -r -i '/mongodbUrl: .*$/c\ mongodbUrl: \"mongodb:\/\/" + bs_ip + "/dispatcher\",' /opt/sippo/janus-dispatcher/janus-dispatcher-current/quobis-dispatcher-config.js") # Restart the services ssh_client.sendCommand( "pm2 restart /opt/sippo/janus-dispatcher/janus-dispatcher-current/process.json") if ssh_client.connected: response = {'status': 'COMPLETED', 'error': 'None'} else: response = {'status': 'FAILED', 'error': 'FSM SSH connection failed'} return response def main(): dsFSM() if __name__ == '__main__': main()
the-stack_0_10613
from django.test.testcases import TestCase from mock import patch from robber import expect from data import cache_managers class CacheManagersTestCase(TestCase): @patch('data.cache_managers.allegation_cache_manager.cache_data') @patch('data.cache_managers.officer_cache_manager.cache_data') @patch('data.cache_managers.salary_cache_manager.cache_data') @patch('activity_grid.cache_managers.activity_pair_card_cache_manager.cache_data') def test_cache_all( self, salary_cache_mock, officer_cache_mock, allegation_cache_mock, activity_pair_card_cache_mock ): cache_managers.cache_all() expect(salary_cache_mock).to.be.called_once() expect(officer_cache_mock).to.be.called_once() expect(allegation_cache_mock).to.be.called_once() expect(activity_pair_card_cache_mock).to.be.called_once() expect(len(cache_managers.managers)).to.eq(4)
the-stack_0_10614
#!/usr/bin/python3 import argparse import itertools import os import pprint import sys import yaml from PIL import Image, ImageDraw import bs4 THUMB_MARGIN = 10 def get_polys(html): with open(html) as f: soup = bs4.BeautifulSoup(f.read(), features="html5lib") out = {} for a in soup.find_all("area"): assert a["shape"] == "poly" name = a["href"] coords = a["coords"] coords = [int(i) for i in coords.split(",")] coords = list(zip(coords[::2], coords[1::2])) out[name] = coords return out class Patch: MARGIN = 5 def __init__(self, image, coords): mask = Image.new("L", image.size, 0) d = ImageDraw.Draw(mask) d.polygon(coords, 255) masked = Image.new("RGBA", image.size, (0,0,0,0)) masked.paste(image, (0,0), mask) min_x = min(p[0] for p in coords) - self.MARGIN max_x = max(p[0] for p in coords) + self.MARGIN min_y = min(p[1] for p in coords) - self.MARGIN max_y = max(p[1] for p in coords) + self.MARGIN if min_x < 0: min_x = 0 if min_y < 0: min_y = 0 if max_x > image.size[0]: max_x = image.size[0] if max_y > image.size[1]: max_y = image.size[1] self.origin = [min_x, min_y] self.size = [max_x - min_x, max_y - min_y] self.image = masked.crop((min_x, min_y, max_x, max_y)) t = [] for x, y in coords: t.append(str(x)) t.append(str(y)) self.coords_str = ",".join(t) self.highlight = Image.new("RGBA", self.image.size, (255,255,255,0)) for ox in range(-2, 3): for oy in range(-2, 3): if ox in (-2,2) and oy in (-2,2): continue self.highlight.paste((255,255,255,255), (ox,oy), self.image) pixels = set() for j in range(self.size[1]): for i in range(self.size[0]): if self.image.getpixel((i,j))[3]: pixels.add((i,j)) elif self.highlight.getpixel((i,j))[3]: pixels.add((i,j)) if not pixels: self.image = None self.highlight = None return min_x = min(p[0] for p in pixels) max_x = max(p[0] for p in pixels) min_y = min(p[1] for p in pixels) max_y = max(p[1] for p in pixels) w = max_x + 1 - min_x h = max_y + 1 - min_y self.image = self.image.crop((min_x, min_y, max_x, max_y)) self.highlight = self.highlight.crop((min_x, min_y, max_x, max_y)) self.origin = [self.origin[0] + min_x, self.origin[1] + min_y] self.size = [w, h] def main(): parser = argparse.ArgumentParser( description="Extract icons from images and a map.") parser.add_argument("--output_dir", default=".", help="Directory for output icons") parser.add_argument("--max_thumb_height", type=int, default=260, help="Max height of thumb images") parser.add_argument("--background_color", default="#f8f8f8", help="Background color for map") parser.add_argument("--output_yaml", default="land.yaml", help="File for yaml data output") parser.add_argument("html", help="Image map HTML") parser.add_argument("source_image") parser.add_argument("--under_image", default=None) parser.add_argument("--under_html", default=None) options = parser.parse_args() assert options.background_color[0] == "#" and len(options.background_color) == 7 options.background_color = tuple(int(options.background_color[i*2+1:i*2+3], 16) for i in range(3)) html_map = get_polys(options.html) if options.under_html: under_map = get_polys(options.under_html) else: under_map = html_map source_image = Image.open(options.source_image).convert("RGBA") if options.under_image: under_image = Image.open(options.under_image).convert("RGBA") assert under_image.size == source_image.size else: under_image = None size = source_image.size icons = {} for name, coords in html_map.items(): out = {} icons[name] = out patch = Patch(source_image, coords) if patch.image: od = {} out["image"] = od od["pos"] = patch.origin od["poly"] = patch.coords_str od["size"] = patch.size patch.image.save(os.path.join(options.output_dir, f"image_{name}.png")) if patch.highlight: od = {} out["mask"] = od od["pos"] = patch.origin[:] od["size"] = patch.size[:] patch.highlight.save(os.path.join(options.output_dir, f"mask_{name}.png")) if under_image: under_coords = under_map.get(name) if under_coords: under_patch = Patch(under_image, under_coords) if under_patch.image: od = {} out["under"] = od od["pos"] = under_patch.origin od["poly"] = under_patch.coords_str od["size"] = under_patch.size under_patch.image.save(os.path.join(options.output_dir, f"under_{name}.png")) y = { "icons": icons } with open(os.path.join(options.output_dir, options.output_yaml), "w") as f: f.write(yaml.dump(y)) if __name__ == "__main__": main()
the-stack_0_10615
""" Frequency-split parameters ========================== Split spectra and plot parameters """ import matplotlib.pyplot as plt from wavespectra import read_ww3 dset = read_ww3("../_static/ww3file.nc") fcut = 1 / 8 sea = dset.spec.split(fmin=fcut) swell = dset.spec.split(fmax=fcut) plt.figure(figsize=(8, 4.5)) p1 = dset.spec.hs().isel(site=0).plot(label="Full spectrum", marker="o") p2 = sea.spec.hs().isel(site=0).plot(label="Sea", marker="o") p3 = swell.spec.hs().isel(site=0).plot(label="Swell", marker="o") l = plt.legend(loc=0, fontsize=8) plt.title("") plt.ylabel("$Hs$ (m)") plt.xlabel("")
the-stack_0_10616
# coded by: salism3 # 23 - 05 - 2020 23:18 (Malam Takbir) from .checker import check_login from .output import Output, People, Group from . import parsing import re @check_login def msgUrl(ses, next = None): html = ses.session.get("https://mbasic.facebook.com/messages" if not next else next).text data = parsing.parsing_href(html, "/read/") next = parsing.parsing_href_regex(html, r"[?]pageNum.*selectable", one = True) return Output(ses, msgUrl, items = data, next = next, html = html) @check_login def myGroup(ses): html = ses.session.get("https://mbasic.facebook.com/groups/?seemore&refid=27").text data = parsing.parsing_href_regex(html, r"/groups/\d+\W", bs4_class = True) data = [(x.text, re.search(r"/(\d+)\W", x["href"]).group(1)) for x in data] return Output(ses, myGroup, items = data, html = html) def find_people(ses, name): html = ses.session.get("https://mbasic.facebook.com/search/people/?q={}&source=filter&isTrending=0".format(name)).text url = parsing.parsing_href(html, "__xts__", one = True) try: html = ses.session.get(url).text return People(ses, html) except: return def find_group(ses, name): html = ses.session.get("https://mbasic.facebook.com/search/groups/?q={}&source=filter&isTrending=0".format(name)).text url = parsing.parsing_href(html, "__xts__", one = True) try: # print("in try") id_ = re.search(r"/(\d+)\Wrefid", url).group(1) html = ses.session.get("https://mbasic.facebook.com/groups/{}?view=info".format(id_)).text return Group(ses, html) except: return
the-stack_0_10620
from django.db import connection from django.urls import resolve class QueryCountDebugMiddleware: """ This middleware will log the number of queries run and the total time taken for each request (with a status code of 200). It does not currently support multi-db setups. """ def __init__(self, get_response): self.get_response = get_response def __call__(self, request): current_url = resolve(request.path_info).url_name response = self.get_response(request) total_time = 0 for index, query in enumerate(connection.queries, 1): query_time = query.get('time') sql_query = query.get('sql') if query_time is None: query_time = query.get('duration', 0) / 1000 total_time += float(query_time) print(f"\n{index}: ({query_time}) {sql_query}") print(f"{current_url}: {request.get_raw_uri()}") print(f"{len(connection.queries)} queries run, total {total_time} seconds\n", "-" * 100) return response
the-stack_0_10622
#!/usr/bin/python import sys import usb.core import usb.util import uinput import time from array import array try: # hexadecimal vendor and product values dev = usb.core.find(idVendor=0x084f, idProduct=0xee05) if dev == None: print("Could not detect Brigthsign Tochboard") raise SystemExit # first endpoint interface = 0 endpoint = dev[0][(0,0)][0] # if the OS kernel already claimed the device, which is most likely true # thanks to http://stackoverflow.com/questions/8218683/pyusb-cannot-set-configuration if dev.is_kernel_driver_active(interface) is True: # tell the kernel to detach dev.detach_kernel_driver(interface) # claim the device usb.util.claim_interface(dev, interface) keys = { 'KEY_UP': array('B', [ 2, 0, 85, 92]), 'KEY_RIGHT': array('B', [ 32, 0, 85, 92]), 'KEY_DOWN': array('B', [ 128, 0, 85, 92]), 'KEY_LEFT': array('B', [ 8, 0, 85, 92]), 'KEY_ENTER': array('B', [ 16, 0, 85, 92]), 'KEY_ESC': array('B', [ 1, 0, 85, 92]), 'KEY_VOLUMEUP': array('B', [ 0, 2, 85, 92]), 'KEY_VOLUMEDOWN': array('B', [ 0, 4, 85, 92]), 'KEY_RELEASE': array('B', [ 0, 0, 85, 92]) } brightsign_keys = [ uinput.KEY_UP, uinput.KEY_RIGHT, uinput.KEY_DOWN, uinput.KEY_LEFT, uinput.KEY_ENTER, uinput.KEY_ESC, uinput.KEY_VOLUMEUP, uinput.KEY_VOLUMEDOWN ] key_pressed = False last_key = "KEY_ESC" touchboard = uinput.Device( brightsign_keys ) while True: try: data = dev.read(endpoint.bEndpointAddress,endpoint.wMaxPacketSize) for key, code in keys.items(): if code == data[0:4]: if 'KEY_RELEASE' != key: touchboard.emit(eval('uinput.'+key), value=1) # press key last_key = key else: touchboard.emit(eval('uinput.'+last_key), value=0) except usb.core.USBError as e: data = None if e.args == ('Operation timed out',): continue finally: # release the device usb.util.release_interface(dev, interface) touchboard.destroy() # reattach the device to the OS kernel dev.attach_kernel_driver(interface)
the-stack_0_10623
# Задача: От A до Z ''' Напишите функцию, которая будет принимать строку — диапазон букв английского алфавита. Функция должна возвращать строку из всех букв этого диапазона. Если в диапазоне заданы заглавные буквы, в результирующей строке тоже должны быть заглавные. Примечания Диапазон будет задаваться двумя буквами с дефисом между ними. Обрабатывать ошибки не нужно (при указании диапазона обе буквы будут в одинаковом регистре и располагаться будут в алфавитном порядке). Примеры gimme_the_letters("a-z") ➞ "abcdefghijklmnopqrstuvwxyz" gimme_the_letters("h-o") ➞ "hijklmno" gimme_the_letters("Q-Z") ➞ "QRSTUVWXYZ" gimme_the_letters("J-J") ➞ J" ''' # Первый Вариант: Успех def gimme_the_letters1(sp): return "".join(chr(n) for n in range(ord(sp[0]), ord(sp[-1])+1)) gtl1 = gimme_the_letters1("a-z"), gimme_the_letters1("h-o"), gimme_the_letters1("Q-Z"), gimme_the_letters1("J-J") print(gtl1) # Второй Вариант: Успех def gimme_the_letters2(spectrum1): a = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" x, y = spectrum1.split('-') return a[a.index(x):a.index(y) + 1] gtl2 = gimme_the_letters2("a-z"), gimme_the_letters2("h-o"), gimme_the_letters2("Q-Z"), gimme_the_letters2("J-J") print(gtl2) # Трейти Вариант: Успех def gimme_the_letters3(spectrum2): start, end = [ord(i) for i in spectrum2.split('-')] return ''.join(chr(i) for i in range(start, end+1)) gtl3 = gimme_the_letters3("a-z"), gimme_the_letters3("h-o"), gimme_the_letters3("Q-Z"), gimme_the_letters3("J-J") print(gtl3)
the-stack_0_10624
""" ``fish_http_status`` 包含最通用的一些网络状态码 https://github.com/openstack/swift/blob/master/swift/common/http.py """ def is_informational(status): """ 检查状态码是否信息提示 :param: * status: http 状态码 :return: * result: True or False """ return 100 <= status <= 199 def is_success(status): """ 检查状态码是否成功 :param: * status: http 状态码 :return: * result: True or False """ return 200 <= status <= 299 def is_redirection(status): """ 检查状态码是否重定向 :param: * status: http 状态码 :return: * result: True or False """ return 300 <= status <= 399 def is_client_error(status): """ 检查状态码是否客户端错误 :param: * status: http 状态码 :return: * result: True or False """ return 400 <= status <= 499 def is_server_error(status): """ 检查状态码是否服务端错误 :param: * status: http 状态码 :return: * result: True or False """ return 500 <= status <= 599 # List of HTTP status codes ############################################################################### # 1xx Informational ############################################################################### HTTP_CONTINUE = 100 HTTP_SWITCHING_PROTOCOLS = 101 HTTP_PROCESSING = 102 # WebDAV HTTP_CHECKPOINT = 103 HTTP_REQUEST_URI_TOO_LONG = 122 ############################################################################### # 2xx Success ############################################################################### HTTP_OK = 200 HTTP_CREATED = 201 HTTP_ACCEPTED = 202 HTTP_NON_AUTHORITATIVE_INFORMATION = 203 HTTP_NO_CONTENT = 204 HTTP_RESET_CONTENT = 205 HTTP_PARTIAL_CONTENT = 206 HTTP_MULTI_STATUS = 207 # WebDAV HTTP_IM_USED = 226 ############################################################################### # 3xx Redirection ############################################################################### HTTP_MULTIPLE_CHOICES = 300 HTTP_MOVED_PERMANENTLY = 301 HTTP_FOUND = 302 HTTP_SEE_OTHER = 303 HTTP_NOT_MODIFIED = 304 HTTP_USE_PROXY = 305 HTTP_SWITCH_PROXY = 306 HTTP_TEMPORARY_REDIRECT = 307 HTTP_RESUME_INCOMPLETE = 308 ############################################################################### # 4xx Client Error ############################################################################### HTTP_BAD_REQUEST = 400 HTTP_UNAUTHORIZED = 401 HTTP_PAYMENT_REQUIRED = 402 HTTP_FORBIDDEN = 403 HTTP_NOT_FOUND = 404 HTTP_METHOD_NOT_ALLOWED = 405 HTTP_NOT_ACCEPTABLE = 406 HTTP_PROXY_AUTHENTICATION_REQUIRED = 407 HTTP_REQUEST_TIMEOUT = 408 HTTP_CONFLICT = 409 HTTP_GONE = 410 HTTP_LENGTH_REQUIRED = 411 HTTP_PRECONDITION_FAILED = 412 HTTP_REQUEST_ENTITY_TOO_LARGE = 413 HTTP_REQUEST_URI_TOO_LONG = 414 HTTP_UNSUPPORTED_MEDIA_TYPE = 415 HTTP_REQUESTED_RANGE_NOT_SATISFIABLE = 416 HTTP_EXPECTATION_FAILED = 417 HTTP_IM_A_TEAPOT = 418 HTTP_UNPROCESSABLE_ENTITY = 422 # WebDAV HTTP_LOCKED = 423 # WebDAV HTTP_FAILED_DEPENDENCY = 424 # WebDAV HTTP_UNORDERED_COLLECTION = 425 HTTP_UPGRADE_REQUIED = 426 HTTP_PRECONDITION_REQUIRED = 428 HTTP_TOO_MANY_REQUESTS = 429 HTTP_REQUEST_HEADER_FIELDS_TOO_LARGE = 431 HTTP_NO_RESPONSE = 444 HTTP_RETRY_WITH = 449 HTTP_BLOCKED_BY_WINDOWS_PARENTAL_CONTROLS = 450 HTTP_CLIENT_CLOSED_REQUEST = 499 ############################################################################### # 5xx Server Error ############################################################################### HTTP_INTERNAL_SERVER_ERROR = 500 HTTP_NOT_IMPLEMENTED = 501 HTTP_BAD_GATEWAY = 502 HTTP_SERVICE_UNAVAILABLE = 503 HTTP_GATEWAY_TIMEOUT = 504 HTTP_VERSION_NOT_SUPPORTED = 505 HTTP_VARIANT_ALSO_NEGOTIATES = 506 HTTP_INSUFFICIENT_STORAGE = 507 # WebDAV HTTP_BANDWIDTH_LIMIT_EXCEEDED = 509 HTTP_NOT_EXTENDED = 510 HTTP_NETWORK_AUTHENTICATION_REQUIRED = 511 HTTP_NETWORK_READ_TIMEOUT_ERROR = 598 # not used in RFC HTTP_NETWORK_CONNECT_TIMEOUT_ERROR = 599 # not used in RFC
the-stack_0_10625
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os import sys import argparse import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common import dtype as mstype from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Adam from mindspore.ops import operations as P from mindspore.common.initializer import TruncatedNormal from mindspore.parallel._ps_context import _is_role_pserver, _is_role_worker parser = argparse.ArgumentParser(description="test_sparse_embedding") parser.add_argument("--device_target", type=str, default="Ascend") args, _ = parser.parse_known_args() device_target = args.device_target context.set_context( mode=context.GRAPH_MODE, device_target=device_target, enable_sparse=True ) context.set_ps_context(enable_ps=True) def fc_with_initialize(input_channels, out_channels): """weight initial for fc layer""" weight = weight_variable() bias = weight_variable() return nn.Dense(input_channels, out_channels, weight, bias) def weight_variable(): """weight initial""" return TruncatedNormal(0.02) class LeNet5(nn.Cell): def __init__(self, num_class=10): super(LeNet5, self).__init__() self.cast = P.Cast() self.flatten = nn.Flatten() self.embedding = nn.EmbeddingLookup(16, 4) self.relu = nn.ReLU() self.fc = fc_with_initialize(12, num_class) def construct(self, x): x = self.cast(x, mstype.int32) x = self.embedding(x) x = self.flatten(x) x = self.fc(x) return x def do_sparse_embedding(ps=False): epoch = 10 net = LeNet5(10) if ps: net.embedding.embedding_table.set_param_ps() optimizer = Adam(filter(lambda x: x.requires_grad, net.get_parameters())) optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU") criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_with_criterion = WithLossCell(net, criterion) train_network = TrainOneStepCell(net_with_criterion, optimizer) train_network.set_train() losses = [] for _ in range(epoch): data = Tensor(np.random.randint(0, 15, (32, 3), np.int32)) label = Tensor(np.random.randint(0, 9, (32), np.int32)) if _is_role_pserver(): train_network(data, label) sys.exit() else: loss = train_network(data, label).asnumpy() losses.append(loss) print(losses) return losses envs = os.environ if __name__ == "__main__": np.random.seed(0) ps_loss = do_sparse_embedding(True) if _is_role_worker(): context.reset_ps_context() np.random.seed(0) no_ps_loss = do_sparse_embedding() context.set_ps_context(enable_ps=True) assert np.allclose(ps_loss, no_ps_loss, rtol=1.0e-6, atol=1.0e-6)
the-stack_0_10626
"""write log to file.""" import logging import os ROOT_PATH = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) def get_logger(filename, logger_name=None, on_screen=False, level=None): """Return logger.""" if not logger_name: logger_name = filename logger = logging.getLogger(logger_name) formatter = logging.Formatter( '[%(asctime)s] %(levelname)s - %(filename)s:%(lineno)d - %(message)s', '%Y-%m-%d %X') if level is None or level == "info": level = logging.INFO elif level == "debug": level = logging.DEBUG elif level == "warning": level = logging.WARN elif level == "error": level = logging.ERROR elif level == "critical": level = logging.CRITICAL stream_handler = logging.StreamHandler() stream_handler.setLevel(level) file_handler = logging.FileHandler('%s/logs/%s.log' % (ROOT_PATH, filename)) file_handler.setLevel(level) file_handler.setFormatter(formatter) stream_handler.setFormatter(formatter) logger.addHandler(file_handler) if on_screen: logger.addHandler(stream_handler) logger.setLevel(level) return logger
the-stack_0_10627
# # This file made available under CC0 1.0 Universal (https://creativecommons.org/publicdomain/zero/1.0/legalcode) # # Created with the Rule Development Kit: https://github.com/awslabs/aws-config-rdk # Can be used stand-alone or with the Rule Compliance Engine: https://github.com/awslabs/aws-config-engine-for-compliance-as-code # import sys import unittest try: from unittest.mock import MagicMock, patch, ANY except ImportError: import mock from mock import MagicMock, patch, ANY import botocore from botocore.exceptions import ClientError ############## # Parameters # ############## # Define the default resource to report to Config Rules DEFAULT_RESOURCE_TYPE = 'AWS::ApiGateway::RestApi' ############# # Main Code # ############# config_client_mock = MagicMock() sts_client_mock = MagicMock() apigw_client_mock = MagicMock() class Boto3Mock(): def client(self, client_name, *args, **kwargs): if client_name == 'config': return config_client_mock elif client_name == 'sts': return sts_client_mock elif client_name == 'apigateway': return apigw_client_mock else: raise Exception("Attempting to create an unknown client") sys.modules['boto3'] = Boto3Mock() rule = __import__('API_GW_NOT_EDGE_OPTIMISED') class ParameterTest(unittest.TestCase): get_rest_apis_private = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['PRIVATE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['PRIVATE']}}] } invalid_rule_parameters = '{"ExceptionList":"apiid-1"}' def test_api_invalid_parameter(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_private) response = rule.lambda_handler(build_lambda_scheduled_event(rule_parameters=self.invalid_rule_parameters), {}) assert_customer_error_response( self, response, 'InvalidParameterValueException', 'Invalid value in the ExceptionList: apiid-1') class ComplianceTest(unittest.TestCase): rule_parameters = '{"ExceptionList":"apiid1,apiid2"}' invoking_event_iam_role_sample = '{"configurationItem":{"relatedEvents":[],"relationships":[],"configuration":{},"tags":{},"configurationItemCaptureTime":"2018-07-02T03:37:52.418Z","awsAccountId":"123456789012","configurationItemStatus":"ResourceDiscovered","resourceType":"AWS::IAM::Role","resourceId":"some-resource-id","resourceName":"some-resource-name","ARN":"some-arn"},"notificationCreationTime":"2018-07-02T23:05:34.445Z","messageType":"ConfigurationItemChangeNotification"}' get_rest_apis_private = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['PRIVATE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['PRIVATE']}}] } get_rest_apis_regional = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['REGIONAL']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['REGIONAL']}}] } get_rest_apis_edge = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['EDGE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['EDGE']}}] } get_rest_apis_mix_compliant_only = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['REGIONAL']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['PRIVATE']}}] } get_rest_apis_mix = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['EDGE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['REGIONAL']}}, {'id': 'apiid3', 'endpointConfiguration': {'types': ['PRIVATE']}}] } get_rest_apis_multi_type = { 'items': [{'id': 'apiid1', 'endpointConfiguration': {'types': ['EDGE', 'PRIVATE']}}, {'id': 'apiid2', 'endpointConfiguration': {'types': ['REGIONAL']}}] } def test_no_gw(self): apigw_client_mock.get_rest_apis = MagicMock(return_value={"items": []}) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('NOT_APPLICABLE', '123456789012', 'AWS::::Account')) assert_successful_evaluation(self, response, resp_expected) def test_private_only_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_private) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1')) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) assert_successful_evaluation(self, response, resp_expected, 2) def test_regional_only_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_regional) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1')) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) assert_successful_evaluation(self, response, resp_expected, 2) def test_edge_only_NON_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_edge) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('NON_COMPLIANT', 'apiid1', annotation="EDGE OPTIMIZED API Gateway is present.")) resp_expected.append(build_expected_response('NON_COMPLIANT', 'apiid2', annotation="EDGE OPTIMIZED API Gateway is present.")) assert_successful_evaluation(self, response, resp_expected, 2) def test_mix_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_mix_compliant_only) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1')) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) assert_successful_evaluation(self, response, resp_expected, 2) def test_mix(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_mix) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('NON_COMPLIANT', 'apiid1', annotation="EDGE OPTIMIZED API Gateway is present.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) resp_expected.append(build_expected_response('COMPLIANT', 'apiid3')) assert_successful_evaluation(self, response, resp_expected, 3) def test_edge_exception_COMPLIANT(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_edge) response = rule.lambda_handler(build_lambda_scheduled_event(rule_parameters=self.rule_parameters), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1', annotation="API is part of exception list.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2', annotation="API is part of exception list.")) assert_successful_evaluation(self, response, resp_expected, 2) def test_mix_with_exceptions(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_mix) response = rule.lambda_handler(build_lambda_scheduled_event(rule_parameters=self.rule_parameters), {}) resp_expected = [] resp_expected.append(build_expected_response('COMPLIANT', 'apiid1', annotation="API is part of exception list.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2', annotation="API is part of exception list.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid3')) assert_successful_evaluation(self, response, resp_expected, 3) def test_multi_type(self): apigw_client_mock.get_rest_apis = MagicMock(return_value=self.get_rest_apis_multi_type) response = rule.lambda_handler(build_lambda_scheduled_event(), {}) resp_expected = [] resp_expected.append(build_expected_response('NON_COMPLIANT', 'apiid1', annotation="EDGE OPTIMIZED API Gateway is present.")) resp_expected.append(build_expected_response('COMPLIANT', 'apiid2')) assert_successful_evaluation(self, response, resp_expected, 2) #################### # Helper Functions # #################### def build_lambda_configurationchange_event(invoking_event, rule_parameters=None): event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_lambda_scheduled_event(rule_parameters=None): invoking_event = '{"messageType":"ScheduledNotification","notificationCreationTime":"2017-12-23T22:11:18.158Z"}' event_to_return = { 'configRuleName':'myrule', 'executionRoleArn':'roleArn', 'eventLeftScope': False, 'invokingEvent': invoking_event, 'accountId': '123456789012', 'configRuleArn': 'arn:aws:config:us-east-1:123456789012:config-rule/config-rule-8fngan', 'resultToken':'token' } if rule_parameters: event_to_return['ruleParameters'] = rule_parameters return event_to_return def build_expected_response(compliance_type, compliance_resource_id, compliance_resource_type=DEFAULT_RESOURCE_TYPE, annotation=None): if not annotation: return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type } return { 'ComplianceType': compliance_type, 'ComplianceResourceId': compliance_resource_id, 'ComplianceResourceType': compliance_resource_type, 'Annotation': annotation } def assert_successful_evaluation(testClass, response, resp_expected, evaluations_count=1): if isinstance(response, dict): testClass.assertEquals(resp_expected['ComplianceType'], response['ComplianceType']) testClass.assertEquals(resp_expected['ComplianceResourceType'], response['ComplianceResourceType']) testClass.assertEquals(resp_expected['ComplianceResourceId'], response['ComplianceResourceId']) testClass.assertTrue(response['OrderingTimestamp']) if 'Annotation' in resp_expected or 'Annotation' in response: testClass.assertEquals(resp_expected['Annotation'], response['Annotation']) elif isinstance(response, list): testClass.assertEquals(evaluations_count, len(response)) for i, response_expected in enumerate(resp_expected): testClass.assertEquals(response_expected['ComplianceType'], response[i]['ComplianceType']) testClass.assertEquals(response_expected['ComplianceResourceType'], response[i]['ComplianceResourceType']) testClass.assertEquals(response_expected['ComplianceResourceId'], response[i]['ComplianceResourceId']) testClass.assertTrue(response[i]['OrderingTimestamp']) if 'Annotation' in response_expected or 'Annotation' in response[i]: testClass.assertEquals(response_expected['Annotation'], response[i]['Annotation']) def assert_customer_error_response(testClass, response, customerErrorCode=None, customerErrorMessage=None): if customerErrorCode: testClass.assertEqual(customerErrorCode, response['customerErrorCode']) if customerErrorMessage: testClass.assertEqual(customerErrorMessage, response['customerErrorMessage']) testClass.assertTrue(response['customerErrorCode']) testClass.assertTrue(response['customerErrorMessage']) if "internalErrorMessage" in response: testClass.assertTrue(response['internalErrorMessage']) if "internalErrorDetails" in response: testClass.assertTrue(response['internalErrorDetails']) def sts_mock(): assume_role_response = { "Credentials": { "AccessKeyId": "string", "SecretAccessKey": "string", "SessionToken": "string"}} sts_client_mock.reset_mock(return_value=True) sts_client_mock.assume_role = MagicMock(return_value=assume_role_response) ################## # Common Testing # ################## class TestStsErrors(unittest.TestCase): def test_sts_unknown_error(self): rule.ASSUME_ROLE_MODE = True sts_client_mock.assume_role = MagicMock(side_effect=botocore.exceptions.ClientError( {'Error': {'Code': 'unknown-code', 'Message': 'unknown-message'}}, 'operation')) response = rule.lambda_handler(build_lambda_configurationchange_event('{}'), {}) assert_customer_error_response( self, response, 'InternalError', 'InternalError') def test_sts_access_denied(self): rule.ASSUME_ROLE_MODE = True sts_client_mock.assume_role = MagicMock(side_effect=botocore.exceptions.ClientError( {'Error': {'Code': 'AccessDenied', 'Message': 'access-denied'}}, 'operation')) response = rule.lambda_handler(build_lambda_configurationchange_event('{}'), {}) assert_customer_error_response( self, response, 'AccessDenied', 'AWS Config does not have permission to assume the IAM role.')
the-stack_0_10630
# -*- coding: utf-8 -*- # (c) 2009-2018 Martin Wendt and contributors; see WsgiDAV https://github.com/mar10/wsgidav # Original PyFileServer (c) 2005 Ho Chun Wei. # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license.php """ WSGI middleware used for debugging (optional). This module dumps request and response information to the console, depending on current debug configuration. On init: Define HTTP methods and litmus tests, that should turn on the verbose mode (currently hard coded). For every request: Increase value of ``environ['verbose']``, if the request should be debugged. Also dump request and response headers and body. Then pass the request to the next middleware. These configuration settings are evaluated: *verbose* This is also used by other modules. This filter adds additional information depending on the value. ======= =================================================================== verbose Effect ======= =================================================================== <= 3 No additional output (only standard request logging). 4 Dump headers of all requests and responses. 5 Dump headers and bodies of all requests and responses. ======= =================================================================== *debug_methods* Boost verbosity to 3 while processing certain request methods. This option is ignored, when ``verbose < 2``. Configured like:: debug_methods = ["PROPPATCH", "PROPFIND", "GET", "HEAD", "DELET E", "PUT", "COPY", "MOVE", "LOCK", "UNLOCK", ] *debug_litmus* Boost verbosity to 3 while processing litmus tests that contain certain substrings. This option is ignored, when ``verbose < 2``. Configured like:: debug_litmus = ["notowner_modify", "props: 16", ] """ import sys import threading from wsgidav import compat, util from wsgidav.middleware import BaseMiddleware from wsgidav.util import safe_re_encode __docformat__ = "reStructuredText" _logger = util.get_module_logger(__name__) class WsgiDavDebugFilter(BaseMiddleware): def __init__(self, wsgidav_app, next_app, config): super(WsgiDavDebugFilter, self).__init__(wsgidav_app, next_app, config) self._config = config # self.out = sys.stdout self.passedLitmus = {} # These methods boost verbose=2 to verbose=3 self.debug_methods = config.get("debug_methods", []) # Litmus tests containing these string boost verbose=2 to verbose=3 self.debug_litmus = config.get("debug_litmus", []) # Exit server, as soon as this litmus test has finished self.break_after_litmus = [ # "locks: 15", ] def __call__(self, environ, start_response): """""" # srvcfg = environ["wsgidav.config"] verbose = self._config.get("verbose", 3) method = environ["REQUEST_METHOD"] debugBreak = False dumpRequest = False dumpResponse = False if verbose >= 5: dumpRequest = dumpResponse = True # Process URL commands if "dump_storage" in environ.get("QUERY_STRING", ""): dav = environ.get("wsgidav.provider") if dav.lockManager: dav.lockManager._dump() if dav.propManager: dav.propManager._dump() # Turn on max. debugging for selected litmus tests litmusTag = environ.get("HTTP_X_LITMUS", environ.get("HTTP_X_LITMUS_SECOND")) if litmusTag and verbose >= 3: _logger.info("----\nRunning litmus test '{}'...".format(litmusTag)) for litmusSubstring in self.debug_litmus: if litmusSubstring in litmusTag: verbose = 5 debugBreak = True dumpRequest = True dumpResponse = True break for litmusSubstring in self.break_after_litmus: if ( litmusSubstring in self.passedLitmus and litmusSubstring not in litmusTag ): _logger.info(" *** break after litmus {}".format(litmusTag)) sys.exit(-1) if litmusSubstring in litmusTag: self.passedLitmus[litmusSubstring] = True # Turn on max. debugging for selected request methods if verbose >= 3 and method in self.debug_methods: verbose = 5 debugBreak = True dumpRequest = True dumpResponse = True # Set debug options to environment environ["wsgidav.verbose"] = verbose # environ["wsgidav.debug_methods"] = self.debug_methods environ["wsgidav.debug_break"] = debugBreak environ["wsgidav.dump_request_body"] = dumpRequest environ["wsgidav.dump_response_body"] = dumpResponse # Dump request headers if dumpRequest: _logger.info("{} Request ---".format(method)) # _logger.info("<{}> --- {} Request ---".format( # threading.currentThread().ident, method)) for k, v in environ.items(): if k == k.upper(): _logger.info("{:<20}: '{}'".format(k, safe_re_encode(v, "utf8"))) _logger.info("\n") # Intercept start_response # sub_app_start_response = util.SubAppStartResponse() nbytes = 0 first_yield = True app_iter = self.next_app(environ, sub_app_start_response) for v in app_iter: # Start response (the first time) if first_yield: # Success! start_response( sub_app_start_response.status, sub_app_start_response.response_headers, sub_app_start_response.exc_info, ) # Dump response headers if first_yield and dumpResponse: _logger.info( "<{}> ---{} Response({}): ---".format( threading.currentThread().ident, method, sub_app_start_response.status, ) ) headersdict = dict(sub_app_start_response.response_headers) for envitem in headersdict.keys(): _logger.info("{}: {}".format(envitem, repr(headersdict[envitem]))) _logger.info("") # Check, if response is a binary string, otherwise we probably have # calculated a wrong content-length assert compat.is_bytes(v), v # Dump response body drb = environ.get("wsgidav.dump_response_body") if compat.is_basestring(drb): # Middleware provided a formatted body representation _logger.info(drb) drb = environ["wsgidav.dump_response_body"] = None elif drb is True: # Else dump what we get, (except for long GET responses) if method == "GET": if first_yield: _logger.info("{}...".format(v[:50])) elif len(v) > 0: _logger.info(v) nbytes += len(v) first_yield = False yield v if hasattr(app_iter, "close"): app_iter.close() # Start response (if it hasn't been done yet) if first_yield: # Success! start_response( sub_app_start_response.status, sub_app_start_response.response_headers, sub_app_start_response.exc_info, ) if dumpResponse: _logger.info( "<{}> --- End of {} Response ({:d} bytes) ---".format( threading.currentThread().ident, method, nbytes ) ) return
the-stack_0_10631
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes and methods related to model_fn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import six from tensorflow.python.estimator.export.export_output import ExportOutput from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.saved_model import signature_constants from tensorflow.python.training import monitored_session from tensorflow.python.training import session_run_hook from tensorflow.python.util import nest class ModeKeys(object): """Standard names for model modes. The following standard keys are defined: * `TRAIN`: training mode. * `EVAL`: evaluation mode. * `PREDICT`: inference mode. """ TRAIN = 'train' EVAL = 'eval' PREDICT = 'infer' LOSS_METRIC_KEY = 'loss' AVERAGE_LOSS_METRIC_KEY = 'average_loss' class EstimatorSpec( collections.namedtuple('EstimatorSpec', [ 'predictions', 'loss', 'train_op', 'eval_metric_ops', 'export_outputs', 'training_chief_hooks', 'training_hooks', 'scaffold', 'evaluation_hooks' ])): """Ops and objects returned from a `model_fn` and passed to an `Estimator`. `EstimatorSpec` fully defines the model to be run by an `Estimator`. """ def __new__(cls, mode, predictions=None, loss=None, train_op=None, eval_metric_ops=None, export_outputs=None, training_chief_hooks=None, training_hooks=None, scaffold=None, evaluation_hooks=None): """Creates a validated `EstimatorSpec` instance. Depending on the value of `mode`, different arguments are required. Namely * For `mode == ModeKeys.TRAIN`: required fields are `loss` and `train_op`. * For `mode == ModeKeys.EVAL`: required field is `loss`. * For `mode == ModeKeys.PREDICT`: required fields are `predictions`. model_fn can populate all arguments independent of mode. In this case, some arguments will be ignored by an `Estimator`. E.g. `train_op` will be ignored in eval and infer modes. Example: ```python def my_model_fn(mode, features, labels): predictions = ... loss = ... train_op = ... return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op) ``` Alternatively, model_fn can just populate the arguments appropriate to the given mode. Example: ```python def my_model_fn(mode, features, labels): if (mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL): loss = ... else: loss = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = ... else: train_op = None if mode == tf.estimator.ModeKeys.PREDICT: predictions = ... else: predictions = None return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op) ``` Args: mode: A `ModeKeys`. Specifies if this is training, evaluation or prediction. predictions: Predictions `Tensor` or dict of `Tensor`. loss: Training loss `Tensor`. Must be either scalar, or with shape `[1]`. train_op: Op for the training step. eval_metric_ops: Dict of metric results keyed by name. The values of the dict are the results of calling a metric function, namely a `(metric_tensor, update_op)` tuple. export_outputs: Describes the output signatures to be exported to `SavedModel` and used during serving. A dict `{name: output}` where: * name: An arbitrary name for this output. * output: an `ExportOutput` object such as `ClassificationOutput`, `RegressionOutput`, or `PredictOutput`. Single-headed models only need to specify one entry in this dictionary. Multi-headed models should specify one entry for each head, one of which must be named using signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY. training_chief_hooks: Iterable of `tf.train.SessionRunHook` objects to run on the chief worker during training. training_hooks: Iterable of `tf.train.SessionRunHook` objects to run on all workers during training. scaffold: A `tf.train.Scaffold` object that can be used to set initialization, saver, and more to be used in training. evaluation_hooks: Iterable of `tf.train.SessionRunHook` objects to run during evaluation. Returns: A validated `EstimatorSpec` object. Raises: ValueError: If validation fails. TypeError: If any of the arguments is not the expected type. """ # Validate train_op. if train_op is None: if mode == ModeKeys.TRAIN: raise ValueError('Missing train_op.') else: _check_is_tensor_or_operation(train_op, 'train_op') # Validate loss. if loss is None: if mode in (ModeKeys.TRAIN, ModeKeys.EVAL): raise ValueError('Missing loss.') else: loss = _check_is_tensor(loss, 'loss') loss_shape = loss.get_shape() if loss_shape.num_elements() not in (None, 1): raise ValueError('Loss must be scalar, given: {}'.format(loss)) if not loss_shape.is_compatible_with(tensor_shape.scalar()): loss = array_ops.reshape(loss, []) # Validate predictions. if predictions is None: if mode == ModeKeys.PREDICT: raise ValueError('Missing predictions.') predictions = {} else: if isinstance(predictions, dict): predictions = { k: _check_is_tensor(v, 'predictions[{}]'.format(k)) for k, v in six.iteritems(predictions) } else: predictions = _check_is_tensor(predictions, 'predictions') # Validate eval_metric_ops. if eval_metric_ops is None: eval_metric_ops = {} else: if not isinstance(eval_metric_ops, dict): raise TypeError( 'eval_metric_ops must be a dict, given: {}'.format(eval_metric_ops)) for key, metric_value_and_update in six.iteritems(eval_metric_ops): if (not isinstance(metric_value_and_update, tuple) or len(metric_value_and_update) != 2): raise TypeError( 'Values of eval_metric_ops must be (metric_value, update_op) ' 'tuples, given: {} for key: {}'.format( metric_value_and_update, key)) metric_value, metric_update = metric_value_and_update for metric_value_member in nest.flatten(metric_value): # Allow (possibly nested) tuples for metric values, but require that # each of them be Tensors or Operations. _check_is_tensor_or_operation(metric_value_member, 'eval_metric_ops[{}]'.format(key)) _check_is_tensor_or_operation(metric_update, 'eval_metric_ops[{}]'.format(key)) # Validate export_outputs. if export_outputs is not None: if not isinstance(export_outputs, dict): raise TypeError('export_outputs must be dict, given: {}'.format( export_outputs)) for v in six.itervalues(export_outputs): if not isinstance(v, ExportOutput): raise TypeError( 'Values in export_outputs must be ExportOutput objects. ' 'Given: {}'.format(export_outputs)) # Note export_outputs is allowed to be empty. if len(export_outputs) == 1: (key, value), = export_outputs.items() if key != signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: export_outputs[ signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = value if len(export_outputs) > 1: if (signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY not in export_outputs): raise ValueError( 'Multiple export_outputs were provided, but none of them is ' 'specified as the default. Do this by naming one of them with ' 'signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY.') # Validate that all tensors and ops are from the default graph. default_graph = ops.get_default_graph() # We enumerate possible error causes here to aid in debugging. error_message_template = ( '{0} with "{1}" must be from the default graph. ' 'Possible causes of this error include: \n\n' '1) {0} was created outside the context of the default graph.' '\n\n' '2) The object passed through to EstimatorSpec was not created ' 'in the most recent call to "model_fn".') if isinstance(predictions, dict): for key, value in six.iteritems(predictions): if value.graph is not default_graph: raise ValueError(error_message_template.format( 'prediction values', '{0}: {1}'.format(key, value.name))) elif predictions is not None: # 'predictions' must be a single Tensor. if predictions.graph is not default_graph: raise ValueError(error_message_template.format( 'prediction values', predictions.name)) if loss is not None and loss.graph is not default_graph: raise ValueError(error_message_template.format('loss', loss.name)) if train_op is not None and train_op.graph is not default_graph: raise ValueError(error_message_template.format('train_op', train_op.name)) for key, value in list(six.iteritems(eval_metric_ops)): values = nest.flatten(value) for value in values: if value.graph is not default_graph: raise ValueError(error_message_template.format( 'eval_metric_ops', '{0}: {1}'.format(key, value.name))) # Validate hooks. training_chief_hooks = tuple(training_chief_hooks or []) training_hooks = tuple(training_hooks or []) evaluation_hooks = tuple(evaluation_hooks or []) for hook in training_hooks + training_chief_hooks + evaluation_hooks: if not isinstance(hook, session_run_hook.SessionRunHook): raise TypeError( 'All hooks must be SessionRunHook instances, given: {}'.format( hook)) scaffold = scaffold or monitored_session.Scaffold() # Validate scaffold. if not isinstance(scaffold, monitored_session.Scaffold): raise TypeError( 'scaffold must be tf.train.Scaffold. Given: {}'.format(scaffold)) return super(EstimatorSpec, cls).__new__( cls, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops, export_outputs=export_outputs, training_chief_hooks=training_chief_hooks, training_hooks=training_hooks, scaffold=scaffold, evaluation_hooks=evaluation_hooks) def _check_is_tensor_or_operation(x, name): if not (isinstance(x, ops.Operation) or isinstance(x, ops.Tensor)): raise TypeError('{} must be Operation or Tensor, given: {}'.format(name, x)) def _check_is_tensor(x, tensor_name): """Returns `x` if it is a `Tensor`, raises TypeError otherwise.""" if not isinstance(x, ops.Tensor): raise TypeError('{} must be Tensor, given: {}'.format(tensor_name, x)) return x
the-stack_0_10632
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None def delete(start,root,sec_node,k): if(root==None): return start.next if(k==0 and sec_node==None): sec_node=root return delete(start.next,root,sec_node.next,k) if(k==0 and sec_node.next==None): start.next=start.next.next return elif(k!=0): return delete(start,root.next,sec_node,k-1) return delete(start.next,root,sec_node.next,k) class Solution: # @param A : head node of linked list # @param B : integer # @return the head node in the linked list def removeNthFromEnd(self, root, k): if(root==None or (root.next==None and k==1)): return None # ans=delete(root,root,None,k) # return root if ans==None else ans sec_node=root top=root while(sec_node.next!=None): if(k!=0): sec_node=sec_node.next k-=1 else: sec_node=sec_node.next top=top.next if(k!=0): return root.next top.next=top.next.next return root """ Remove Nth Node from List End Problem Description Given a linked list A, remove the B-th node from the end of list and return its head. For example, Given linked list: 1->2->3->4->5, and B = 2. After removing the second node from the end, the linked list becomes 1->2->3->5. NOTE: If B is greater than the size of the list, remove the first node of the list. NOTE: Try doing it using constant additional space. Problem Constraints 1 <= |A| <= 106 Input Format The first argument of input contains a pointer to the head of the linked list. The second argument of input contains the integer B. Output Format Return the head of the linked list after deleting the B-th element from the end. Example Input Input 1: A = [1, 2, 3, 4, 5] B = 2 Input 2: A = [1] B = 1 Example Output Output 1: [1, 2, 3, 5] Output 2: [] Example Explanation Explanation 1: In the first example, 4 is the second last element. Explanation 2: In the second example, 1 is the first and the last element. """
the-stack_0_10633
import numpy as np import random import milk.supervised.svm import milk.supervised.multi from milk.supervised.classifier import ctransforms from .fast_classifier import fast_classifier import milksets.wine features,labels = milksets.wine.load() A = np.arange(len(features)) random.seed(9876543210) random.shuffle(A) features = features[A] labels = labels[A] labelset = set(labels) base = ctransforms(milk.supervised.svm.svm_raw(C=2.,kernel=milk.supervised.svm.rbf_kernel(2.**-3)),milk.supervised.svm.svm_binary()) def test_one_against_rest(): M = milk.supervised.multi.one_against_rest(base) M = M.train(features[:100,:],labels[:100]) tlabels = [M.apply(f) for f in features[100:]] for tl in tlabels: assert tl in labelset def test_one_against_one(): M = milk.supervised.multi.one_against_one(base) M = M.train(features[:100,:],labels[:100]) tlabels = [M.apply(f) for f in features[100:]] for tl in tlabels: assert tl in labelset tlabels_many = M.apply_many(features[100:]) assert np.all(tlabels == tlabels_many) def test_two_thirds(): np.random.seed(2345) C = milk.supervised.defaultclassifier('fast') X = np.random.rand(120,4) X[:40] += np.random.rand(40,4) X[:40] += np.random.rand(40,4) X[40:80] -= np.random.rand(40,4) X[40:80] -= np.random.rand(40,4) Y = np.repeat(np.arange(3), 40) model = C.train(X,Y) Y_ = np.array([model.apply(x) for x in X]) assert (Y_ == Y).mean() * 3 > 2 def test_multi_labels(): clabels = [[lab, lab+7] for lab in labels] multi_label = milk.supervised.multi.one_against_rest_multi(base) model = multi_label.train(features[::2], clabels[::2]) test_vals = [model.apply(f) for f in features[1::2]] for ts in test_vals: if 0.0 in ts: assert 7.0 in ts if 1.0 in ts: assert 8.0 in ts if 2.0 in ts: assert 9.0 in ts def test_classifier_no_set_options(): # Basically these should not raise an exception milk.supervised.multi.one_against_rest_multi(fast_classifier()) milk.supervised.multi.one_against_rest(fast_classifier()) milk.supervised.multi.one_against_one(fast_classifier()) def test_tree(): mtree = milk.supervised.multi.multi_tree_learner(fast_classifier()) labels = [0,1,2,2,3,3,3,3] features = np.random.random_sample((len(labels), 8)) model = mtree.train(features, labels) counts = np.zeros(4) for ell in labels: counts[ell] += 1 g0,g1 = milk.supervised.multi.split(counts) assert np.all(g0 == [3]) or np.all(g1 == [3]) def list_to_zero(v): if isinstance(v, list): return 1000 return v def r(m): if len(m) == 1: return int(m[0]) else: return sorted([r(m[1]), r(m[2])], key=list_to_zero) assert r(model.model) == [3,[2,[0,1]]]
the-stack_0_10634
#!/usr/bin/env python import math import os import sys from PIL import Image from escpos.printer import Serial STRIP_WIDTH = 8 MAX_WIDTH = 540 if len(sys.argv) != 2: print("\033[1;31;40musage: {} imagefile.png\033[0m".format(sys.argv[0]), file=sys.stderr) sys.exit(1) image = Image.open(sys.argv[1]) print("Loaded image: {}".format(sys.argv[1])) print("Size: {}".format(image.size)) # Resize picture if too wide (img_w, img_h) = image.size if img_w > MAX_WIDTH: img_h = int(MAX_WIDTH * img_h / float(img_w)) img_w = MAX_WIDTH image = image.resize((img_w, img_h), Image.ANTIALIAS) print("Too large, resizing to: {}".format((img_w, img_h))) image = image.convert('L') num_strips = math.ceil(img_h / STRIP_WIDTH) print("Total Strips: {}".format(num_strips)) print("Strip size: {}".format((img_w, STRIP_WIDTH))) strips = [None] * num_strips for i in range(num_strips): area = (0, STRIP_WIDTH * i, img_w, STRIP_WIDTH * (i + 1)) strips[i] = image.crop(area) if img_h % STRIP_WIDTH != 0: strips[-1] = strips[-1].crop((0, 0, img_w, img_h % STRIP_WIDTH)) # Dump strips into a temporary directory if not os.path.exists('.temp'): os.mkdir('.temp') for i in range(num_strips): strips[i].save(os.path.join('.temp', "strip{0:03}.png".format(i))) # Do the printing p = Serial(devfile='COM5', baudrate=9600, parity='N', stopbits=1, timeout=1.00, dsrdtr=True) p.text("\033@") # Reset p.text("\033C\20") # Set sheet eject length p.text("\0331") # Select 1/8-inch line spacing p.text("\033$\000\000") # Set left margin p.text("\033a\001") # Center align for i in range(num_strips): p.image(os.path.join('.temp', "strip{0:03}.png".format(i))) p.text("\033a\000") # Left align #p.cut()
the-stack_0_10635
import json from flask import render_template, url_for, redirect, request, send_from_directory, g, flash from flask_login import current_user, login_user, logout_user, login_required from flask_babel import _, get_locale from flask_babel import lazy_gettext as _l from wtforms import RadioField, TextAreaField from wtforms.validators import DataRequired, Length from app import app, db, moment from app.models import Class, User, Group, Test, Result, TestResume, LogRequest, LogClick from app.forms import EmptyForm, LoginForm, RegisterForm, AddGroupForm, UpdateGroupForm, AddTestForm, UpdateTestForm, UpdateProfileForm from app.spec_checks import check_test_9 from datetime import datetime # ------------------------ main pages ------------------------ # @app.route('/') @app.route('/index') def index(): groups = Group.query.all() return render_template( "index.html", title = _("All tests"), menu = _("Test by groups"), groups = groups ) @app.route('/group/<int:id>') def group(id): group = Group.query.get(id) link = url_for( 'index' ) path = f"<a href='{link}'>{_('All tests')}</a> / {group.title}" return render_template( "group.html", title = f"{group.title}", path = path, menu = "Тесты в группе", group = group ) @app.route('/test/<int:id>') def test(id): test = Test.query.get(id) group = Group.query.get(test.id_group) link0 = url_for( 'index' ) link1 = url_for( 'group', id = group.id ) path = f"<a href={link0}>{_('All tests')}</a> / <a href={link1}>{group.title}</a> / {test.name}" return render_template( "test-base.html", title = test.name + " / " + _("Info"), path = path, test = test ) @app.route('/testing/<int:id>', methods = [ 'GET', 'POST' ]) def testing(id): test = Test.query.get(id) group = Group.query.get(test.id_group) link0 = url_for( 'index' ) link1 = url_for( 'group', id = group.id ) path = f"<a href={link0}>{_('All tests')}</a> / <a href={link1}>{group.title}</a> / {test.name}" class TestingForm(EmptyForm): pass for question in test.questions: setattr( TestingForm, str(question.id), RadioField( question.text, choices = [ ( a.id, a.text ) for a in question.answers ] , validators = [ DataRequired() ] ) ) form = TestingForm() if form.validate_on_submit(): arr = form.data score = -1 mark = 0 quests = test.questions.count() percent = -1 if current_user.is_authenticated: id_user = current_user.id else: id_user = None if id != 9: # Checks usual tests score = 0 for question in test.questions: if arr[ str(question.id) ] == str( question.true_answer() ): score += 1 percent = round( ( score / quests ) * 100, 1 ) if percent >= 90: mark = 5 elif 75 < percent < 90: mark = 4 elif 50 < percent <= 75: mark = 3 elif percent <= 50: mark = 2 elif id == 9: # Check test 9 mark = check_test_9( arr ) print( mark ) result = Result( id_test = test.id, id_user = id_user, mark = mark, score = score, quests = quests, percent = percent ) db.session.add( result ) db.session.commit() last_insert_id = result.id return redirect( url_for( "result", id = last_insert_id ) ) return render_template( "test.html", title = test.name + " / " + _("Testing"), path = path, form = form, test = test ) @app.route('/result/<int:id>') def result(id): result = Result.query.get( id ) test = Test.query.get( result.id_test ) group = Group.query.get( test.id_group ) if result.id_user is None: user = "None" else: user = User.query.get( result.id_user ) link0 = url_for( 'index' ) link1 = url_for( 'group', id = group.id ) path = f"<a href={link0}>{_('All tests')}</a> / <a href={link1}>{group.title}</a> / {test.name}" return render_template( "test-result.html", title = test.name + " / " + _("Result"), path = path, result = result, test = test, user = user ) @app.route('/edit_profile', methods = [ 'GET', 'POST' ]) # @login_required def profile(): form = UpdateProfileForm(current_user.username) classes = Class.query.all() classes_list = [(c.id, c.abbr) for c in classes] form.id_class.choices = classes_list if form.validate_on_submit(): current_user.username = form.username.data current_user.name = form.name.data current_user.lastname = form.lastname.data current_user.description = form.description.data current_user.id_class = form.id_class.data current_user.role = form.role.data current_user.sex = form.sex.data db.session.commit() return redirect( url_for( 'profile' ) ) elif request.method == 'GET': form.username.data = current_user.username form.name.data = current_user.name form.lastname.data = current_user.lastname form.description.data = current_user.description form.id_class.data = current_user.id_class form.role.data = current_user.role form.sex.data = current_user.sex return render_template( "forms/profile.html", title = _( 'Profile' ), form = form ) # ------------------------ login system ------------------------ # @app.route('/login', methods = [ 'GET', 'POST' ]) def login(): if current_user.is_authenticated: return redirect( url_for( "index" ) ) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by( username = form.username.data ).first() if user is None or not user.check_password( form.password.data ): return redirect( url_for( "login" ) ) login_user( user, remember = form.remember_me.data ) return redirect( url_for( "index" ) ) return render_template( "login.html", title = _("Sign in"), form = form ) @app.route('/register', methods = [ 'GET', 'POST' ]) def register(): if current_user.is_authenticated: return redirect( url_for("index") ) classes = Class.query.all() classes_list = [ ( c.id, c.abbr ) for c in classes ] form = RegisterForm() form.id_class.choices = classes_list if form.validate_on_submit(): user = User( username = form.username.data, name = form.name.data, lastname = form.lastname.data, email = form.email.data, id_class = form.id_class.data, role = form.role.data ) user.set_password( password = form.password.data ) db.session.add( user ) db.session.commit() return redirect( url_for( "login" ) ) return render_template( "register.html", title = _( "Register" ), form = form ) @app.route('/logout') def logout(): logout_user() return redirect( url_for( "index" ) ) # ------------------------ forms pages ------------------------ # @app.route('/add_group', methods = [ 'GET', 'POST' ]) @login_required def add_group(): form = AddGroupForm() if form.validate_on_submit(): group = Group( title = form.title.data, description = form.description.data ) db.session.add( group ) db.session.commit() last_insert_id = group.id return redirect( url_for( "group", id = last_insert_id ) ) return render_template( "forms/group-add.html", title = _( "Add group" ), form = form ) @app.route('/update_group/<int:id>', methods = [ 'GET', 'POST' ]) def update_group(id): form = UpdateGroupForm() group = Group.query.get( id ) if form.validate_on_submit(): group.title = form.title.data group.description = form.description.data db.session.commit() return redirect( url_for( "group", id = id ) ) elif request.method == 'GET': form.title.data = group.title form.description.data = group.description return render_template( "forms/group-update.html", title = _('Change of group'), form = form ) @app.route('/add_test', methods = [ 'GET', 'POST' ]) @login_required def add_test(): groups = Group.query.all() groups_list = [ ( g.id, g.title ) for g in groups ] form = AddTestForm() form.id_group.choices = groups_list if form.validate_on_submit(): test = Test( id_group = form.id_group.data, name = form.name.data, annotation = form.annotation.data, description = form.description.data ) db.session.add( test ) db.session.commit() last_insert_id = test.id return redirect( url_for( "test", id = last_insert_id ) ) return render_template( "forms/test-add.html", title = _( "Add test" ), form = form ) @app.route('/update_test/<int:id>', methods = ['GET', 'POST']) @login_required def update_test(id): groups = Group.query.all() groups_list = [(g.id, g.title) for g in groups] test = Test.query.get( id ) class UpdateSpecTestForm(UpdateTestForm): pass min_key = 0 max_key = 0 name_key = "" if test.is_usual(): min_key = 2 max_key = 6 name_key = _l( "Test resume for mark " ) else: if id == 9: min_key = -1 max_key = 11 name_key = _l( "Test resume for key " ) for i in range( min_key, max_key ): setattr( UpdateSpecTestForm, f'test_resume_{i}', TextAreaField( "{}'{}'".format( name_key, i ), validators = [DataRequired(), Length( min = 32, max = 512 )] ) ) form = UpdateSpecTestForm() form.id_group.choices = groups_list if form.validate_on_submit(): test.id_group = form.id_group.data test.name = form.name.data test.difficult = form.difficult.data test.annotation = form.annotation.data test.description = form.description.data for i in range(min_key, max_key): test.set_description_mark( i, form[ f'test_resume_{i}' ].data ) db.session.commit() return redirect( url_for( "test", id = id ) ) elif request.method == 'GET': form.id_group.data = test.id_group form.name.data = test.name form.difficult.data = test.difficult form.annotation.data = test.annotation form.description.data = test.description for i in range( min_key, max_key ): form[ f'test_resume_{i}' ].data = test.get_description_mark(i) return render_template( "forms/test-update.html", title = _('Change of test'), form = form, min_key = min_key, max_key = max_key ) # ------------------------ admin pages ------------------------ # @app.route('/admin/tables') def admin_tables(): user = User class_ = Class group = Group test = Test result = Result return render_template( "admin/tables.html", title = _('Admin-panel') + ' / ' + _('Tables'), user = user, group = group, test = test, result = result, class_ = class_ ) @app.route('/admin/table/users') def admin_table_classes(): classes = Class.query.all() title = f"{_( 'Admin-panel' )} / {_( 'Tables' )} / {_( 'Classes' )}" link0 = url_for( 'admin_tables' ) path = f"{_('Admin-panel')} / <a href='{link0}'>{_('Tables')}</a> / {_('Classes')}" return render_template( "admin/table-classes.html", title = title, path = path, classes = classes, wide = True ) @app.route('/admin/table/users') def admin_table_users(): users = User.query.all() title = f"{_( 'Admin-panel' )} / {_( 'Tables' )} / {_( 'Users' )}" link0 = url_for( 'admin_tables' ) path = f"{_('Admin-panel')} / <a href='{link0}'>{_('Tables')}</a> / {_('Users')}" return render_template( "admin/table-users.html", title = title, path = path, users = users, wide = True ) @app.route('/admin/table/groups') def admin_table_groups(): groups = Group.query.all() title = f"{_( 'Admin-panel' )} / {_( 'Tables' )} / {_( 'Groups' )}" link0 = url_for( 'admin_tables' ) path = f"{_( 'Admin-panel' )} / <a href='{link0}'>{_( 'Tables' )}</a> / {_( 'Groups' )}" return render_template( "admin/table-groups.html", title = title, path = path, groups = groups, wide = True ) @app.route('/admin/table/tests') def admin_table_tests(): tests = Test.query.all() title = _( 'Admin-panel' ) + ' / ' + _( 'Tables' ) + ' / ' + _( 'Tests' ) link0 = url_for( 'admin_tables' ) path = f"{_( 'Admin-panel' )} / <a href='{link0}'>{_( 'Tables' )}</a> / {_( 'Tests' )}" return render_template( "admin/table-tests.html", title = title, path = path, tests = tests, wide = True ) @app.route('/admin/table/results') def admin_table_results(): results = Result.query.all() title = _( 'Admin-panel' ) + ' / ' + _( 'Tables' ) + ' / ' + _( 'Results' ) link0 = url_for( 'admin_tables' ) path = f"{_( 'Admin-panel' )} / <a href='{link0}'>{_( 'Tables' )}</a> / {_( 'Results' )}" return render_template( "admin/table-results.html", title = title, path = path, results = results, wide = True ) @app.route('/admin/statistic') def admin_statistic(): clicks = LogClick.query requests = LogRequest.query return render_template( "admin/statistic.html", title = _('Admin-panel') + ' / ' + _('Statistic'), clicks = clicks, requests = requests ) # ------------------------ API pages ------------------------ # @app.route('/api') def api(): return render_template("api.html", title = _('API methods list')) # --- users --- @app.route('/api/get_users_count') def api_get_users_count(): count = User.query.count() return str( count ) # --- groups --- @app.route('/api/get_groups_count') def api_get_groups_count(): count = Group.query.count() return str( count ) @app.route('/api/get_groups_list') def api_get_groups_list(): list = Group.query.all() arr = [] for item in list: arr.append( { 'id': item.id, 'title': item.title } ) return json.dumps(arr) # --- tests --- @app.route('/api/get_tests_count') def api_get_tests_count(): count = Test.query.count() return str( count ) @app.route('/api/get_tests_list') def api_get_tests_list(): list = Test.query.all() arr = [] for item in list: arr.append( { 'id': item.id, 'id_group': item.id_group, 'name': item.name } ) return json.dumps( arr ) @app.route('/api/get_tests_count_by_group/<int:id>') def api_get_tests_count_by_group(id): if Group.query.get( id ): count = Test.query.filter( Test.id_group == id ).count() else: count = 'null' return str( count ) @app.route('/api/get_tests_list_by_group/<int:id>') def api_get_tests_list_by_group(id): if Group.query.get( id ): list = Test.query.filter( Test.id_group == id ).all() arr = [] for item in list: arr.append( { 'id': item.id, 'id_group': item.id_group, 'name': item.name } ) return json.dumps( arr ) else: response = 'null' return str( response ) # --- results --- @app.route('/api/get_results_count') def api_get_results_count(): count = Result.query.count() return str( count ) @app.route('/api/get_results_list') def api_get_results_list(): list = Result.query.all() arr = [] for item in list: arr.append( { 'id': item.id, 'id_test': item.id_test, 'id_user': item.id_user, 'mark': item.mark } ) return json.dumps( arr ) @app.route('/api/get_results_count_by_test/<int:id>') def api_get_results_count_by_test(id): if Test.query.get( id ): count = Result.query.filter( Result.id_test == id ).count() else: count = 'null' return str( count ) # ------------------------ system pages ------------------------ # @app.route('/about_system') def about_system(): return render_template( "about-system.html", title = _('About TeSi') ) @app.route('/about_us') def about_us(): return render_template( "about-us.html", title = _('About us') ) # ------------------------ technical pages ------------------------ # @app.route('/null') def null(): return "null" @app.route('/favicon.ico') @app.route('/robots.txt') @app.route('/sitemap.xml') def static_from_root(): return send_from_directory(app.static_folder, request.path[1:]) @app.errorhandler(404) def error_404(e): path = _('Errors') + " / 400 / " + _('Error 404') return render_template( "errors/404.html", title = _( 'Error 404' ), path = path ), 404 @app.errorhandler(405) def error_405(e): path = _('Errors') + " / 400 / " + _('Error 405') return render_template( "errors/405.html", title = _( 'Error 405' ), path = path ), 405 @app.errorhandler(500) def error_500(e): path = _('Errors') + " / 500 / " + _('Error 500') return render_template( "errors/500.html", title = _( 'Error 500' ), path = path ), 500 @app.before_request def before_request(): if current_user.is_authenticated: current_user.datetime_last = datetime.utcnow() db.session.commit() g.locale = str( get_locale() ) g.theme = 'dark'
the-stack_0_10636
from dagster import Field, RepositoryDefinition, Shape, composite_solid, pipeline, seven, solid @solid( config={ 'cluster_cfg': Shape( { 'num_mappers': Field(int), 'num_reducers': Field(int), 'master_heap_size_mb': Field(int), 'worker_heap_size_mb': Field(int), } ), 'name': Field(str), } ) def hello(context): context.log.info(seven.json.dumps(context.solid_config['cluster_cfg'])) return 'Hello, %s!' % context.solid_config['name'] def config_mapping_fn(cfg): return { 'hello': { 'config': { 'cluster_cfg': { 'num_mappers': 100, 'num_reducers': 20, 'master_heap_size_mb': 1024, 'worker_heap_size_mb': 8192, }, 'name': cfg['name'], } } } @composite_solid( config_fn=config_mapping_fn, config={'name': Field(str, is_required=False, default_value='Sam')}, ) def hello_external(): return hello() @pipeline def my_pipeline(): hello_external() def define_repository(): return RepositoryDefinition('config_mapping', pipeline_defs=[my_pipeline])
the-stack_0_10638
import glob import importlib import itertools import json import logging from io import StringIO from os import path from pprint import pprint import click import conllu import mlflow import pandas as pd import spacy from gensim.models.keyedvectors import KeyedVectors from lemmy import Lemmatizer from sklearn.model_selection import train_test_split from spacy.gold import GoldParse from spacy.scorer import Scorer from tqdm import tqdm import conll17_ud_eval from model_builder.eval import lemmy_accuracy from model_builder.io import ( parse_szk_morph, parse_szk_dep, sentence_repr, read_conllu_data_for_lemmy, RESOURCES_ROOT, format_as_conllu, ) from model_builder.ner import SpacyNerTrainer, DataIterator, sentence_to_str logging.basicConfig(level=logging.INFO) @click.group() def cli(): pass @cli.command() @click.argument("from_path") @click.argument("to_path") def convert_vectors_to_txt(from_path, to_path): model = KeyedVectors.load_word2vec_format( from_path, binary=True, unicode_errors="replace" ) model.save_word2vec_format(to_path, binary=False) @cli.command() @click.argument("vectors_path") def eval_vectors(vectors_path): model = KeyedVectors.load_word2vec_format( vectors_path, binary=False, unicode_errors="replace" ) analogies_result = model.wv.evaluate_word_analogies( path.join(RESOURCES_ROOT, "questions-words-hu.txt"), dummy4unknown=True, restrict_vocab=None, case_insensitive=False, ) pprint(analogies_result[0]) @cli.command() @click.argument("model_name") def smoke_test(model_name): nlp = spacy.load(model_name) doc = nlp( "Csiribiri csiribiri zabszalma - négy csillag közt alszom ma. " "Csiribiri csiribiri bojtorján lélek lép a lajtorján." ) print(nlp) print(doc, type(doc)) pprint( [ dict( text=t.text, lemma=t.lemma_, pos=t.pos_, tag=t.tag_, dep=t.dep_, head=t.head, is_stop=t.is_stop, has_vector=t.has_vector, brown_cluser=t.cluster, prob=t.prob, ) for t in doc ] ) @cli.command() @click.argument("input_file") @click.argument("output_file") def normalize_ud_corpus(input_file, output_file): with open(input_file) as f, open(output_file, "w") as of: for line in tqdm(f): stripped_line = line.strip() if len(stripped_line) == 0 or stripped_line[0] == "#": of.write(line) else: parts = stripped_line.split("\t") dep_label = parts[7] dep_label = dep_label.split(":")[0] parts[7] = dep_label of.write("\t".join(parts) + "\n") @cli.command() @click.argument("from_glob") @click.argument("to_path") @click.argument("dev_path") @click.argument("test_path") @click.option("--morph/--dep", default=False) def convert_szk_to_conllu(from_glob, to_path, dev_path, test_path, morph): ignored = [] for fpath in [dev_path, test_path]: with open(fpath) as f: ignored.extend(map(sentence_repr, conllu.parse(f.read()))) parser = parse_szk_morph if morph else parse_szk_dep ignored = set(ignored) parsed = [] for fpath in glob.glob(from_glob): for sent in conllu.parse("\n\n".join(parser(fpath))): if sentence_repr(sent) not in ignored: parsed.append(sent) logging.info("Read {} sentences".format(len(parsed))) with open(to_path, "w") as outf: out = "".join(sent.serialize() for sent in parsed) outf.write(out) @cli.command() @click.argument("train_path") @click.argument("test_path") @click.argument("model_path") def train_lemmy(train_path, test_path, model_path): X_train, y_train = read_conllu_data_for_lemmy(train_path) X_test, y_test = read_conllu_data_for_lemmy(test_path) lemmatizer = Lemmatizer() lemmatizer.fit(X_train, y_train) lemmy_accuracy(lemmatizer, X_test, y_test) with open(model_path, "w") as f: json.dump(lemmatizer.rules, f) @cli.command() @click.argument("model_name") @click.argument("test_data_path") @click.argument("ner_test_data") def benchmark_model(model_name, test_data_path, ner_test_data): with open(test_data_path) as f: data = conllu.parse(f.read()) text = " ".join(d.metadata["text"] for d in data) load_model = getattr(importlib.import_module(model_name), "load") nlp = load_model() _parsed = StringIO(format_as_conllu(nlp(text), 1)) parsed = conll17_ud_eval.load_conllu(_parsed) gold = conll17_ud_eval.load_conllu_file(test_data_path) results = pd.DataFrame( {k: v.__dict__ for k, v in conll17_ud_eval.evaluate(gold, parsed).items()} ).T print(results) diterator = DataIterator() test_sents = list(itertools.islice(diterator.tagged_sentences(ner_test_data), None)) scorer = Scorer() for sentence, annot in test_sents: doc_gold_text = nlp.make_doc(sentence) gold = GoldParse(doc_gold_text, entities=annot) predicted = nlp(sentence) scorer.score(predicted, gold) print(scorer.scores) @cli.command() @click.argument("model_name") @click.argument("output_path") @click.argument("train_data") @click.argument("dev_data") @click.argument("test_data") @click.argument("dropout") @click.argument("n_iter") @click.argument("patience") def train_ner(model_name, output_path, train_data, dev_data, test_data, dropout, n_iter, patience): mlflow.set_tracking_uri("./mlruns") mlflow.set_experiment("Spacy NER") mlflow.start_run(run_name="Using all") if model_name in ["None", "False", "", "blank"]: model_name = None trainer = SpacyNerTrainer(model_name, output_path) logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s") logging.info("Reading train data") diterator = DataIterator() train_sentences = list(tqdm(itertools.islice(diterator.tagged_sentences(train_data), None))) logging.info("Got {} sentences with at least one entity".format(len(train_sentences))) logging.info("Reading test data") test_sentences = list(tqdm(diterator.tagged_sentences(test_data))) logging.info("Got {} sentences with at least one entity".format(len(test_sentences))) logging.info("Reading dev data") dev_sentences = list(tqdm(diterator.tagged_sentences(dev_data))) logging.info("Got {} sentences with at least one entity".format(len(dev_sentences))) trainer(train_sentences, dev_sentences, test_sentences, int(n_iter), float(dropout), int(patience)) mlflow.end_run() @cli.command() @click.argument("szegedner_data") @click.argument("train_data") @click.argument("dev_data") @click.argument("test_data") def split_ner_data(szegedner_data, train_data, dev_data, test_data): diterator = DataIterator() logging.info("Reading gold data") gold_sents = list(tqdm(itertools.islice(diterator.sentences_with_tags(szegedner_data), None))) train_sents, all_test_sents = train_test_split(gold_sents, test_size=.2, random_state=42) dev_sents, test_sents = train_test_split(all_test_sents, test_size=.5, random_state=42) logging.info("Storing training data") with open(train_data, "w") as f: for i, s in tqdm(enumerate(train_sents)): f.write(sentence_to_str(s)) f.write("\n") f.write("\n") logging.info("Storing test data") with open(dev_data, "w") as f: for i, s in tqdm(enumerate(dev_sents)): f.write(sentence_to_str(s)) f.write("\n") f.write("\n") logging.info("Storing test data") with open(test_data, "w") as f: for i, s in tqdm(enumerate(test_sents)): f.write(sentence_to_str(s)) f.write("\n") f.write("\n") if __name__ == "__main__": cli()
the-stack_0_10639
import psyco; psyco.full() from fltk import * import copy import numpy as np import sys #if '../PyCommon/modules' not in sys.path: # sys.path.append('../PyCommon/modules') if './modules' not in sys.path: sys.path.append('./modules') import Math.mmMath as mm import Resource.ysMotionLoader as yf import Renderer.ysRenderer as yr import Renderer.csVpRenderer as cvr import Simulator.csVpWorld as cvw import Simulator.csVpModel as cvm import GUI.ysSimpleViewer as ysv import Optimization.ysAnalyticConstrainedOpt as yac import ArticulatedBody.ysJacobian as yjc import Util.ysPythonEx as ype import ArticulatedBody.ysReferencePoints as yrp import ArticulatedBody.ysMomentum as ymt import ArticulatedBody.ysControl as yct import Motion.ysHierarchyEdit as yme import Simulator.ysPhysConfig as ypc import numpy.linalg as npl import mtOptimize as mot import mtInitialize_005 as mit contactState = 0 g_applyForce = False g_initFlag = 0 softConstPoint = [0, 0, 0] forceShowFrame = 0 forceApplyFrame = 0 JsysPre = 0 JsupPreL = 0 JsupPreR = 0 JsupPre = 0 stage = 0 ## Constant STATIC_BALANCING = 0 MOTION_TRACKING = 1 DYNAMIC_BALANCING = 2 POWERFUL_BALANCING = 3 POWERFUL_MOTION_TRACKING = 4 FLYING = 5 def checkAll(list, value) : for i in range(len(list)) : if list[i] != value : return 0 return 1 def getDesFootLinearAcc(refModel, controlModel, footIndex, ModelOffset, CM_ref, CM, Kk, Dk) : desLinearAcc = [0,0,0] refPos = refModel.getBodyPositionGlobal(footIndex) curPos = controlModel.getBodyPositionGlobal(footIndex) refVecL = refPos - CM_ref if stage == MOTION_TRACKING: refPos = CM + refVecL #refPos[1] += 0.05 #refPos[0] -= 0.05 elif stage == POWERFUL_BALANCING: refPos = copy.copy(curPos) refPos[1] = 0 elif stage == DYNAMIC_BALANCING: refPos = CM + refVecL else: refPos[0] += ModelOffset[0] refVel = refModel.getBodyVelocityGlobal(footIndex) curVel = controlModel.getBodyVelocityGlobal(footIndex) #refAcc = (0,0,0) refAcc = refModel.getBodyAccelerationGlobal(footIndex) if stage != MOTION_TRACKING: refPos[1] = 0.032 #refPos[1] = 0.0416 if refPos[1] < 0.0 : refPos[1] = 0.032 #refPos[1] = 0.0416 desLinearAcc = yct.getDesiredAcceleration(refPos, curPos, refVel, curVel, refAcc, Kk, Dk) return desLinearAcc, refPos def getDesFootAngularAcc(refModel, controlModel, footIndex, Kk, Dk) : desAngularAcc = [0,0,0] curAng = [controlModel.getBodyOrientationGlobal(footIndex)] refAngVel = refModel.getBodyAngVelocityGlobal(footIndex) curAngVel = controlModel.getBodyAngVelocityGlobal(footIndex) refAngAcc = (0,0,0) curAngY = np.dot(curAng, np.array([0,1,0])) refAngY = np.array([0,1,0]) if stage == MOTION_TRACKING+10: refAng = [refModel.getBodyOrientationGlobal(footIndex)] refAngY2 = np.dot(refAng, np.array([0,1,0])) refAngY = refAngY2[0] aL = mm.logSO3(mm.getSO3FromVectors(curAngY[0], refAngY)) desAngularAcc = Kk*aL + Dk*(refAngVel-curAngVel) return desAngularAcc def main(): np.set_printoptions(precision=4, linewidth=200) # motion, mcfg, wcfg, stepsPerFrame, config = mit.create_vchain_5() motion, mcfg, wcfg, stepsPerFrame, config = mit.create_biped() vpWorld = cvw.VpWorld(wcfg) motionModel = cvm.VpMotionModel(vpWorld, motion[0], mcfg) motionModel.recordVelByFiniteDiff() controlModel = cvm.VpControlModel(vpWorld, motion[0], mcfg) vpWorld.initialize() controlModel.initializeHybridDynamics() #ModelOffset = (1.5, -0.01, 0) ModelOffset = (1.5, 0.0, 0) controlModel.translateByOffset(ModelOffset) totalDOF = controlModel.getTotalDOF() DOFs = controlModel.getDOFs() # parameter Kt = config['Kt']; Dt = config['Dt'] # tracking gain Kl = config['Kl']; Dl = config['Dl'] # linear balance gain Kh = config['Kh']; Dh = config['Dh'] # angular balance gain Ks = config['Ks']; Ds = config['Ds'] # penalty force spring gain Bt = config['Bt'] Bl = config['Bl'] Bh = config['Bh'] w = mot.getTrackingWeight(DOFs, motion[0].skeleton, config['weightMap']) w2 = mot.getTrackingWeight(DOFs, motion[0].skeleton, config['weightMap2']) #w_IK = mot.getTrackingWeight(DOFs, motion[0].skeleton, config['IKweightMap']) supL = motion[0].skeleton.getJointIndex(config['supLink']) supR = motion[0].skeleton.getJointIndex(config['supLink2']) rootB = motion[0].skeleton.getJointIndex(config['root']) selectedBody = motion[0].skeleton.getJointIndex(config['end']) #constBody = motion[0].skeleton.getJointIndex('LeftForeArm') constBody = motion[0].skeleton.getJointIndex(config['const']) # jacobian Jsup = yjc.makeEmptyJacobian(DOFs, 1) dJsup = Jsup.copy() JsupPre = Jsup.copy() Jsys = yjc.makeEmptyJacobian(DOFs, controlModel.getBodyNum()) dJsys = Jsys.copy() JsysPre = Jsys.copy() Jconst = yjc.makeEmptyJacobian(DOFs, 1) dJconst = Jconst.copy() ############### footPartNum = config['FootPartNum'] indexFootL = [None]*footPartNum indexFootR = [None]*footPartNum jFootL = [None]*footPartNum dJFootL = [None]*footPartNum jFootR = [None]*footPartNum dJFootR = [None]*footPartNum jointMasksFootL = [None]*footPartNum jointMasksFootR = [None]*footPartNum jAngFootL = [None]*footPartNum dJAngFootL = [None]*footPartNum jAngFootR = [None]*footPartNum dJAngFootR = [None]*footPartNum for i in range(footPartNum) : jFootL[i] = yjc.makeEmptyJacobian(DOFs, 1) dJFootL[i] = jFootL[i].copy() jFootR[i] = yjc.makeEmptyJacobian(DOFs, 1) dJFootR[i] = jFootR[i].copy() jAngFootL[i] = yjc.makeEmptyJacobian(DOFs, 1, False) dJAngFootL[i] = jAngFootL[i].copy() jAngFootR[i] = yjc.makeEmptyJacobian(DOFs, 1, False) dJAngFootR[i] = jAngFootR[i].copy() indexFootL[i] = motion[0].skeleton.getJointIndex(config['FootLPart'][i]) indexFootR[i] = motion[0].skeleton.getJointIndex(config['FootRPart'][i]) jointMasksFootL[i] = [yjc.getLinkJointMask(motion[0].skeleton, indexFootL[i])] jointMasksFootR[i] = [yjc.getLinkJointMask(motion[0].skeleton, indexFootR[i])] constJointMasks = [yjc.getLinkJointMask(motion[0].skeleton, constBody)] allLinkJointMasks = yjc.getAllLinkJointMasks(motion[0].skeleton) ''' maskArray = [foreSupLJointMasks, foreSupRJointMasks, rearSupLJointMasks, rearSupRJointMasks] parentArray = [supL, supR, supL, supR] effectorArray = [foreSupL, foreSupR, rearSupL, rearSupR] for j in range(4) : for i in range(len(foreSupLJointMasks)) : if i == parentArray[j] or i == effectorArray[j] : maskArray[j][0][i] = 1 else : maskArray[j][0][i] = 0 ''' # momentum matrix linkMasses = controlModel.getBodyMasses() totalMass = controlModel.getTotalMass() TO = ymt.make_TO(linkMasses) dTO = ymt.make_dTO(len(linkMasses)) # optimization problem = yac.LSE(totalDOF, 6) a_sup = (0,0,0, 0,0,0) #L #a_sup2 = (0,0,0, 0,0,0)#R a_sup2 = [0,0,0, 0,0,0]#R a_sup_2 = [0,0,0, 0,0,0, 0,0,0, 0,0,0] CP_old = [mm.v3(0.,0.,0.)] # penalty method bodyIDsToCheck = range(vpWorld.getBodyNum()) mus = [1.]*len(bodyIDsToCheck) # flat data structure ddth_des_flat = ype.makeFlatList(totalDOF) dth_flat = ype.makeFlatList(totalDOF) ddth_sol = ype.makeNestedList(DOFs) d_th_IK = ype.makeNestedList(DOFs) d_th_IK_L = ype.makeNestedList(DOFs) d_th_IK_R = ype.makeNestedList(DOFs) dd_th_IK = ype.makeNestedList(DOFs) dd_th_IK_flat = ype.makeFlatList(totalDOF) d_th_IK_flat = ype.makeFlatList(totalDOF) ddth_c_flat = ype.makeFlatList(totalDOF) # viewer rd_footCenter = [None] rd_footCenter_ref = [None] rd_footCenterL = [None] rd_footCenterR = [None] rd_CM_plane = [None] rd_CM_plane_ref = [None] rd_CM_ref = [None] rd_CM = [None] rd_CM_vec = [None] rd_CM_ref_vec = [None] rd_CP = [None] rd_CP_des = [None] rd_dL_des_plane = [None] rd_dH_des = [None] rd_grf_des = [None] rd_exf_des = [None] rd_root_des = [None] rd_soft_const_vec = [None] rd_root = [None] rd_footL_vec = [None] rd_footR_vec = [None] rd_CMP = [None] rd_DesPosL = [None] rd_DesPosR = [None] rd_DesForePosL = [None] rd_DesForePosR = [None] rd_DesRearPosL = [None] rd_DesRearPosR = [None] rootPos = [None] selectedBodyId = [selectedBody] extraForce = [None] applyedExtraForce = [None] applyedExtraForce[0] = [0,0,0] normalVector = [[0,2,0]] viewer = ysv.SimpleViewer() # viewer.record(False) # viewer.doc.addRenderer('motion', yr.JointMotionRenderer(motion, (0,255,255), yr.LINK_BONE)) viewer.doc.addObject('motion', motion) viewer.doc.addRenderer('motionModel', cvr.VpModelRenderer(motionModel, (150,150,255), yr.POLYGON_FILL)) viewer.doc.addRenderer('controlModel', cvr.VpModelRenderer(controlModel, (255,240,255), yr.POLYGON_FILL)) viewer.doc.addRenderer('rd_footCenter', yr.PointsRenderer(rd_footCenter)) #viewer.doc.addRenderer('rd_footCenterL', yr.PointsRenderer(rd_footCenterL)) #viewer.doc.addRenderer('rd_footCenterR', yr.PointsRenderer(rd_footCenterR)) #viewer.doc.addRenderer('rd_CM_plane', yr.PointsRenderer(rd_CM_plane, (255,255,0))) viewer.doc.addRenderer('rd_CM', yr.PointsRenderer(rd_CM, (255,255,0))) viewer.doc.addRenderer('rd_CP_des', yr.PointsRenderer(rd_CP_des, (0,255,0))) #viewer.doc.addRenderer('rd_CP_des', yr.PointsRenderer(rd_CP_des, (255,0,255))) # viewer.doc.addRenderer('rd_dL_des_plane', yr.VectorsRenderer(rd_dL_des_plane, rd_CM, (255,255,0))) # viewer.doc.addRenderer('rd_dH_des', yr.VectorsRenderer(rd_dH_des, rd_CM, (0,255,0))) viewer.doc.addRenderer('rd_grf_des', yr.ForcesRenderer(rd_grf_des, rd_CP, (0,255,255), .001)) viewer.doc.addRenderer('rd_exf_des', yr.ForcesRenderer(rd_exf_des, rd_root_des, (0,255,0), .009, 0.05)) #viewer.doc.addRenderer('rd_CMP', yr.PointsRenderer(rd_CMP, (0,0,255))) viewer.doc.addRenderer('rd_DesPosL', yr.PointsRenderer(rd_DesPosL, (0,0,255))) viewer.doc.addRenderer('rd_DesPosR', yr.PointsRenderer(rd_DesPosR, (0,100,255))) viewer.doc.addRenderer('rd_DesForePosL', yr.PointsRenderer(rd_DesForePosL, (150,0,200))) viewer.doc.addRenderer('rd_DesForePosR', yr.PointsRenderer(rd_DesForePosR, (150,0,250))) viewer.doc.addRenderer('rd_DesRearPosL', yr.PointsRenderer(rd_DesRearPosL, (0,150,200))) viewer.doc.addRenderer('rd_DesRearPosR', yr.PointsRenderer(rd_DesRearPosR, (0,150,250))) #viewer.doc.addRenderer('softConstraint', yr.VectorsRenderer(rd_soft_const_vec, rd_CMP, (255,0,0), 3)) viewer.doc.addRenderer('rd_footLVec', yr.VectorsRenderer(rd_footL_vec, rd_footCenterL, (255,0,0), 3)) viewer.doc.addRenderer('rd_footRVec', yr.VectorsRenderer(rd_footR_vec, rd_footCenterL, (255,255,0), 3)) #viewer.doc.addRenderer('rd_footCenter_ref', yr.PointsRenderer(rd_footCenter_ref)) viewer.doc.addRenderer('rd_CM_plane_ref', yr.PointsRenderer(rd_CM_plane_ref, (255,255,0))) viewer.doc.addRenderer('rd_refNormalVec', yr.VectorsRenderer(normalVector, rd_footCenter_ref, (255,0,0), 3)) viewer.doc.addRenderer('rd_refCMVec', yr.VectorsRenderer(rd_CM_ref_vec, rd_footCenter_ref, (255,0,255), 3)) viewer.doc.addRenderer('rd_curNormalVec', yr.VectorsRenderer(normalVector, rd_footCenter, (255,0,0), 3)) viewer.doc.addRenderer('rd_CMVec', yr.VectorsRenderer(rd_CM_vec, rd_footCenter, (255,0,255), 3)) stage = STATIC_BALANCING def simulateCallback(frame): global g_initFlag global forceShowFrame global forceApplyFrame global JsysPre global JsupPreL global JsupPreR global JsupPre global softConstPoint global stage motionModel.update(motion[frame]) Kt, Kk, Kl, Kh, Ksc, Bt, Bl, Bh, Bsc = viewer.GetParam() Dt = 2*(Kt**.5) Dk = 2*(Kk**.5) Dl = 2*(Kl**.5) Dh = 2*(Kh**.5) Dsc = 2*(Ksc**.5) if Bsc == 0.0 : viewer.doc.showRenderer('softConstraint', False) viewer.motionViewWnd.update(1, viewer.doc) else: viewer.doc.showRenderer('softConstraint', True) renderer1 = viewer.doc.getRenderer('softConstraint') renderer1.rc.setLineWidth(0.1+Bsc*3) viewer.motionViewWnd.update(1, viewer.doc) # tracking th_r = motion.getDOFPositions(frame) th = controlModel.getDOFPositions() dth_r = motion.getDOFVelocities(frame) dth = controlModel.getDOFVelocities() ddth_r = motion.getDOFAccelerations(frame) ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r, Kt, Dt) ddth_c = controlModel.getDOFAccelerations() ype.flatten(ddth_des, ddth_des_flat) ype.flatten(dth, dth_flat) ype.flatten(ddth_c, ddth_c_flat) # jacobian refFootL = motionModel.getBodyPositionGlobal(supL) refFootR = motionModel.getBodyPositionGlobal(supR) positionFootL = [None]*footPartNum positionFootR = [None]*footPartNum for i in range(footPartNum): positionFootL[i] = controlModel.getBodyPositionGlobal(indexFootL[i]) positionFootR[i] = controlModel.getBodyPositionGlobal(indexFootR[i]) linkPositions = controlModel.getBodyPositionsGlobal() linkVelocities = controlModel.getBodyVelocitiesGlobal() linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal() linkInertias = controlModel.getBodyInertiasGlobal() jointPositions = controlModel.getJointPositionsGlobal() jointAxeses = controlModel.getDOFAxeses() CM = yrp.getCM(linkPositions, linkMasses, totalMass) dCM = yrp.getCM(linkVelocities, linkMasses, totalMass) CM_plane = copy.copy(CM); CM_plane[1]=0. dCM_plane = copy.copy(dCM); dCM_plane[1]=0. linkPositions_ref = motionModel.getBodyPositionsGlobal() CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass) CM_plane_ref = copy.copy(CM_ref) CM_plane_ref[1] = 0. P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM, linkInertias) dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses, linkVelocities, dCM, linkAngVelocities, linkInertias) yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses, linkPositions, allLinkJointMasks) yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions, jointAxeses, linkAngVelocities, linkPositions, allLinkJointMasks) if g_initFlag == 0: softConstPoint = controlModel.getBodyPositionGlobal(constBody) softConstPoint[1] -= .3 g_initFlag = 1 yjc.computeJacobian2(jFootL[0], DOFs, jointPositions, jointAxeses, [positionFootL[0]], jointMasksFootL[0]) yjc.computeJacobianDerivative2(dJFootL[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[0]], jointMasksFootL[0], False) yjc.computeJacobian2(jFootR[0], DOFs, jointPositions, jointAxeses, [positionFootR[0]], jointMasksFootR[0]) yjc.computeJacobianDerivative2(dJFootR[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[0]], jointMasksFootR[0], False) yjc.computeAngJacobian2(jAngFootL[0], DOFs, jointPositions, jointAxeses, [positionFootL[0]], jointMasksFootL[0]) yjc.computeAngJacobianDerivative2(dJAngFootL[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[0]], jointMasksFootL[0], False) yjc.computeAngJacobian2(jAngFootR[0], DOFs, jointPositions, jointAxeses, [positionFootR[0]], jointMasksFootR[0]) yjc.computeAngJacobianDerivative2(dJAngFootR[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[0]], jointMasksFootR[0], False) bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds) CP = yrp.getCP(contactPositions, contactForces) for i in range(len(bodyIDsToCheck)) : controlModel.SetBodyColor(bodyIDsToCheck[i], 0, 0, 0) contactFlagFootL = [0]*footPartNum contactFlagFootR = [0]*footPartNum for i in range(len(bodyIDs)) : controlModel.SetBodyColor(bodyIDs[i], 255, 105, 105) index = controlModel.id2index(bodyIDs[i]) for j in range(len(indexFootL)): if index == indexFootL[j]: contactFlagFootL[j] = 1 if j != 0: yjc.computeJacobian2(jFootL[j], DOFs, jointPositions, jointAxeses, [positionFootL[j]], jointMasksFootL[j]) yjc.computeJacobianDerivative2(dJFootL[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[j]], jointMasksFootL[j], False) break for j in range(len(indexFootR)): if index == indexFootR[j]: contactFlagFootR[j] = 1 if j != 0: yjc.computeJacobian2(jFootR[j], DOFs, jointPositions, jointAxeses, [positionFootR[j]], jointMasksFootR[j]) yjc.computeJacobianDerivative2(dJFootR[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[j]], jointMasksFootR[j], False) break for j in range(len(indexFootL)): yjc.computeAngJacobian2(jAngFootL[j], DOFs, jointPositions, jointAxeses, [positionFootL[j]], jointMasksFootL[j]) yjc.computeAngJacobianDerivative2(dJAngFootL[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[j]], jointMasksFootL[j], False) yjc.computeAngJacobian2(jAngFootR[j], DOFs, jointPositions, jointAxeses, [positionFootR[j]], jointMasksFootR[j]) yjc.computeAngJacobianDerivative2(dJAngFootR[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[j]], jointMasksFootR[j], False) ''' if frame < 100 : if stage == POWERFUL_BALANCING: #if stage != MOTION_TRACKING: footCenterL = controlModel.getBodyPositionGlobal(supL) footCenterR = controlModel.getBodyPositionGlobal(supR) else: footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1]) footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1]) else: ''' if footPartNum == 1: footCenterL = controlModel.getBodyPositionGlobal(supL) footCenterR = controlModel.getBodyPositionGlobal(supR) else: if ((contactFlagFootL[3] == 1 or contactFlagFootL[4] == 1) and contactFlagFootL[0] == 0) or ((contactFlagFootR[3] == 1 or contactFlagFootR[4] == 1) and contactFlagFootR[0] == 0): footCenterL = (controlModel.getBodyPositionGlobal(supL) + controlModel.getBodyPositionGlobal(indexFootL[1]))/2.0 footCenterR = (controlModel.getBodyPositionGlobal(supR) + controlModel.getBodyPositionGlobal(indexFootR[1]))/2.0 #footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1]) #footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1]) else : footCenterL = (controlModel.getBodyPositionGlobal(supL) + controlModel.getBodyPositionGlobal(indexFootL[1]))/2.0 footCenterR = (controlModel.getBodyPositionGlobal(supR) + controlModel.getBodyPositionGlobal(indexFootR[1]))/2.0 #footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1]) #footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1]) footCenter = footCenterL + (footCenterR - footCenterL)/2.0 footCenter[1] = 0. footCenter_ref = refFootL + (refFootR - refFootL)/2.0 #footCenter_ref[1] = 0. # if checkAll(contactFlagFootL, 0) == 1 and checkAll(contactFlagFootR, 0) == 1: footCenter = footCenter elif checkAll(contactFlagFootL, 0) == 1 : footCenter = footCenterR elif checkAll(contactFlagFootR, 0) == 1 : footCenter = footCenterL footCenter[1] = 0. desForeSupLAcc = [0,0,0] desForeSupRAcc = [0,0,0] totalNormalForce = [0,0,0] for i in range(len(contactForces)): totalNormalForce[0] += contactForces[i][0] totalNormalForce[1] += contactForces[i][1] totalNormalForce[2] += contactForces[i][2] # linear momentum CM_ref_plane = footCenter dL_des_plane = Kl*totalMass*(CM_ref_plane - CM_plane) - Dl*totalMass*dCM_plane # angular momentum CP_ref = footCenter timeStep = 30. if CP_old[0]==None or CP==None: dCP = None else: dCP = (CP - CP_old[0])/(1/timeStep) CP_old[0] = CP if CP!=None and dCP!=None: ddCP_des = Kh*(CP_ref - CP) - Dh*(dCP) CP_des = CP + dCP*(1/timeStep) + .5*ddCP_des*((1/timeStep)**2) dH_des = np.cross((CP_des - CM), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity))) #dH_des = np.cross((CP_des - CM_plane), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity))) else: dH_des = None # momentum matrix RS = np.dot(P, Jsys) R, S = np.vsplit(RS, 2) rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat) r_bias, s_bias = np.hsplit(rs, 2) ############################## # soft point constraint P_des = softConstPoint P_cur = controlModel.getBodyPositionGlobal(constBody) dP_des = [0, 0, 0] dP_cur = controlModel.getBodyVelocityGlobal(constBody) ddP_des1 = Ksc*(P_des - P_cur) - Dsc*(dP_cur - dP_des) r = P_des - P_cur I = np.vstack(([1,0,0],[0,1,0],[0,0,1])) Z = np.hstack((I, mm.getCrossMatrixForm(-r))) yjc.computeJacobian2(Jconst, DOFs, jointPositions, jointAxeses, [softConstPoint], constJointMasks) JL, JA = np.vsplit(Jconst, 2) Q1 = np.dot(Z, Jconst) q1 = np.dot(JA, dth_flat) q2 = np.dot(mm.getCrossMatrixForm(q1), np.dot(mm.getCrossMatrixForm(q1), r)) yjc.computeJacobianDerivative2(dJconst, DOFs, jointPositions, jointAxeses, linkAngVelocities, [softConstPoint], constJointMasks, False) q_bias1 = np.dot(np.dot(Z, dJconst), dth_flat) + q2 ############################## flagContact = True if dH_des==None or np.any(np.isnan(dH_des)) == True: flagContact = False viewer.doc.showRenderer('rd_grf_des', False) viewer.motionViewWnd.update(1, viewer.doc) else: viewer.doc.showRenderer('rd_grf_des', True) viewer.motionViewWnd.update(1, viewer.doc) ''' 0 : initial 1 : contact 2 : fly 3 : landing ''' #MOTION = FORWARD_JUMP if mit.MOTION == mit.FORWARD_JUMP : frame_index = [136, 100] #frame_index = [100000, 100000] elif mit.MOTION == mit.TAEKWONDO: frame_index = [130, 100] #frame_index = [100000, 100000] elif mit.MOTION == mit.TAEKWONDO2: frame_index = [130+40, 100] else : frame_index = [1000000, 1000000] #MOTION = TAEKWONDO #frame_index = [135, 100] ''' if frame > 300 : if stage != DYNAMIC_BALANCING: print("#", frame,"-DYNAMIC_BALANCING") stage = DYNAMIC_BALANCING Kk = Kk*1 Dk = 2*(Kk**.5) ''' if frame > frame_index[0] : if stage != POWERFUL_BALANCING: print("#", frame,"-POWERFUL_BALANCING") stage = POWERFUL_BALANCING Kk = Kk*2 Dk = 2*(Kk**.5) elif frame > frame_index[1]: if stage != MOTION_TRACKING: print("#", frame,"-MOTION_TRACKING") stage = MOTION_TRACKING trackingW = w if stage == MOTION_TRACKING: trackingW = w2 Bt = Bt*2 # optimization mot.addTrackingTerms(problem, totalDOF, Bt, trackingW, ddth_des_flat) mot.addSoftPointConstraintTerms(problem, totalDOF, Bsc, ddP_des1, Q1, q_bias1) if flagContact == True: if stage != MOTION_TRACKING+10: mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R, r_bias) mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias) a_sup_2 = [None] Jsup_2 = [None] dJsup_2 = [None] ############################## # Hard constraint if stage != MOTION_TRACKING: Kk2 = Kk * 2.0 else : Kk2 = Kk * 1.5 Dk2 = 2*(Kk2**.5) ''' desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, supL, ModelOffset, CM_ref, CM, Kk2, Dk2) desLinearAccR, desPosR = getDesFootLinearAcc(motionModel, controlModel, supR, ModelOffset, CM_ref, CM, Kk2, Dk2) desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, supL, Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, supR, Kk2, Dk2) ''' if stage != MOTION_TRACKING: idx = 0 #LEFT/RIGHT_TOES desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[idx], ModelOffset, CM_ref, CM, Kk2, Dk2) desLinearAccR, desPosR = getDesFootLinearAcc(motionModel, controlModel, indexFootR[idx], ModelOffset, CM_ref, CM, Kk2, Dk2) desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[idx], Kk2, Dk2) a_sup_2 = np.hstack(( np.hstack((desLinearAccL, desAngularAccL)), np.hstack((desLinearAccR, desAngularAccR)) )) Jsup_2 = np.vstack((jFootL[idx], jFootR[idx])) dJsup_2 = np.vstack((dJFootL[idx], dJFootR[idx])) rd_DesPosL[0] = desPosL.copy() rd_DesPosR[0] = desPosR.copy() else: if footPartNum == 5: idx = 3 desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[idx], Kk2, Dk2) a_sup_2 = np.hstack(( desAngularAccL, desAngularAccR )) Jsup_2 = np.vstack((jAngFootL[idx], jAngFootR[idx])) dJsup_2 = np.vstack((dJAngFootL[idx], dJAngFootR[idx])) else: idx = 1 desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[idx], Kk2, Dk2) a_sup_2 = np.hstack(( desAngularAccL, desAngularAccR )) Jsup_2 = np.vstack((jAngFootL[idx], jAngFootR[idx])) dJsup_2 = np.vstack((dJAngFootL[idx], dJAngFootR[idx])) ############################## ############################## # Additional constraint if stage != MOTION_TRACKING: #Kk2 = Kk * 2.5 Kk2 = Kk * 2.5 Dk2 = 2*(Kk2**.5) desForePosL = [0,0,0] desForePosR = [0,0,0] desRearPosL = [0,0,0] desRearPosR = [0,0,0] for i in range(1, footPartNum) : if contactFlagFootL[i] == 1: desLinearAccL, desForePosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[i], ModelOffset, CM_ref, CM, Kk2, Dk2) desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[i], Kk2, Dk2) a_sup_2 = np.hstack(( a_sup_2, np.hstack((desLinearAccL, desAngularAccL)) )) Jsup_2 = np.vstack(( Jsup_2, jFootL[i] )) dJsup_2 = np.vstack(( dJsup_2, dJFootL[i] )) if contactFlagFootR[i] == 1: desLinearAccR, desForePosR = getDesFootLinearAcc(motionModel, controlModel, indexFootR[i], ModelOffset, CM_ref, CM, Kk2, Dk2) desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[i], Kk2, Dk2) a_sup_2 = np.hstack(( a_sup_2, np.hstack((desLinearAccR, desAngularAccR)) )) Jsup_2 = np.vstack(( Jsup_2, jFootR[i] )) dJsup_2 = np.vstack(( dJsup_2, dJFootR[i] )) rd_DesForePosL[0] = desForePosL rd_DesForePosR[0] = desForePosR rd_DesRearPosL[0] = desRearPosL rd_DesRearPosR[0] = desRearPosR ############################## mot.setConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat, a_sup_2) r = problem.solve() problem.clear() ype.nested(r['x'], ddth_sol) rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody) localPos = [[0, 0, 0]] for i in range(stepsPerFrame): # apply penalty force bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds) vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals, contactForces) extraForce[0] = viewer.GetForce() if (extraForce[0][0] != 0 or extraForce[0][1] != 0 or extraForce[0][2] != 0) : forceApplyFrame += 1 #vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce) controlModel.applyBodyForceGlobal(selectedBody, extraForce[0]) applyedExtraForce[0] = extraForce[0] if forceApplyFrame*wcfg.timeStep > 0.1: viewer.ResetForce() forceApplyFrame = 0 controlModel.setDOFAccelerations(ddth_sol) controlModel.solveHybridDynamics() ''' extraForce[0] = viewer.GetForce() if (extraForce[0][0] != 0 or extraForce[0][1] != 0 or extraForce[0][2] != 0) : forceApplyFrame += 1 vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce) applyedExtraForce[0] = extraForce[0] if forceApplyFrame*wcfg.timeStep > 0.1: viewer.ResetForce() forceApplyFrame = 0 ''' vpWorld.step() # rendering rd_footCenter[0] = footCenter rd_CM[0] = CM.copy() rd_CM_plane[0] = CM_plane.copy() rd_footCenter_ref[0] = footCenter_ref rd_CM_plane_ref[0] = CM_ref.copy() rd_CM_ref[0] = CM_ref.copy() rd_CM_ref_vec[0] = (CM_ref - footCenter_ref)*3. rd_CM_vec[0] = (CM - footCenter)*3 #rd_CM_plane[0][1] = 0. if CP!=None and dCP!=None: rd_CP[0] = CP rd_CP_des[0] = CP_des rd_dL_des_plane[0] = dL_des_plane rd_dH_des[0] = dH_des rd_grf_des[0] = totalNormalForce - totalMass*mm.s2v(wcfg.gravity)#dL_des_plane - totalMass*mm.s2v(wcfg.gravity) rd_exf_des[0] = applyedExtraForce[0] rd_root_des[0] = rootPos[0] rd_CMP[0] = softConstPoint rd_soft_const_vec[0] = controlModel.getBodyPositionGlobal(constBody)-softConstPoint if (forceApplyFrame == 0) : applyedExtraForce[0] = [0, 0, 0] viewer.setSimulateCallback(simulateCallback) viewer.startTimer(1/60.) viewer.show() Fl.run() main()
the-stack_0_10640
# SPDX-License-Identifier: BSD-3-Clause # # Copyright (c) 2021 Vít Labuda. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Class diagram: # A A # / \ | # / \ | # B C B # \ / | # \ / | # D1 D2 class A: def __init__(self): print("A") # In the case of the D1 class, this method gets called twice (because both B and C call A's __init__). class B(A): def __init__(self, x): print("B ({})".format(x)) A.__init__(self) class C(A): def __init__(self, x): print("C ({})".format(x)) A.__init__(self) class D1(B, C): def __init__(self, x): print("D1 ({})".format(x)) B.__init__(self, x) C.__init__(self, x) class D2(B): def __init__(self, x): print("D2 ({})".format(x)) B.__init__(self, x) if __name__ == '__main__': print(D1.__mro__) D1("x") print() print(D2.__mro__) D2("x") # Output: # (<class '__main__.D1'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>) # D1 (x) # B (x) # A # C (x) # A # # (<class '__main__.D2'>, <class '__main__.B'>, <class '__main__.A'>, <class 'object'>) # D2 (x) # B (x) # A
the-stack_0_10641
import unittest from django.contrib.gis.gdal import HAS_GDAL from django.contrib.gis.tests.utils import ( SpatialRefSys, oracle, postgis, spatialite, ) from django.db import connection from django.test import skipUnlessDBFeature from django.utils import six test_srs = ({ 'srid': 4326, 'auth_name': ('EPSG', True), 'auth_srid': 4326, # Only the beginning, because there are differences depending on installed libs 'srtext': 'GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84"', # +ellps=WGS84 has been removed in the 4326 proj string in proj-4.8 'proj4_re': r'\+proj=longlat (\+ellps=WGS84 )?(\+datum=WGS84 |\+towgs84=0,0,0,0,0,0,0 )\+no_defs ', 'spheroid': 'WGS 84', 'name': 'WGS 84', 'geographic': True, 'projected': False, 'spatialite': True, # From proj's "cs2cs -le" and Wikipedia (semi-minor only) 'ellipsoid': (6378137.0, 6356752.3, 298.257223563), 'eprec': (1, 1, 9), }, { 'srid': 32140, 'auth_name': ('EPSG', False), 'auth_srid': 32140, 'srtext': ( 'PROJCS["NAD83 / Texas South Central",GEOGCS["NAD83",' 'DATUM["North_American_Datum_1983",SPHEROID["GRS 1980"' ), 'proj4_re': r'\+proj=lcc \+lat_1=30.28333333333333 \+lat_2=28.38333333333333 \+lat_0=27.83333333333333 ' r'\+lon_0=-99 \+x_0=600000 \+y_0=4000000 (\+ellps=GRS80 )?' r'(\+datum=NAD83 |\+towgs84=0,0,0,0,0,0,0 )?\+units=m \+no_defs ', 'spheroid': 'GRS 1980', 'name': 'NAD83 / Texas South Central', 'geographic': False, 'projected': True, 'spatialite': False, # From proj's "cs2cs -le" and Wikipedia (semi-minor only) 'ellipsoid': (6378137.0, 6356752.31414, 298.257222101), 'eprec': (1, 5, 10), }) @unittest.skipUnless(HAS_GDAL, "SpatialRefSysTest needs gdal support") @skipUnlessDBFeature("has_spatialrefsys_table") class SpatialRefSysTest(unittest.TestCase): def test_retrieve(self): """ Test retrieval of SpatialRefSys model objects. """ for sd in test_srs: srs = SpatialRefSys.objects.get(srid=sd['srid']) self.assertEqual(sd['srid'], srs.srid) # Some of the authority names are borked on Oracle, e.g., SRID=32140. # also, Oracle Spatial seems to add extraneous info to fields, hence the # the testing with the 'startswith' flag. auth_name, oracle_flag = sd['auth_name'] if postgis or (oracle and oracle_flag): self.assertEqual(True, srs.auth_name.startswith(auth_name)) self.assertEqual(sd['auth_srid'], srs.auth_srid) # No proj.4 and different srtext on oracle backends :( if postgis: self.assertTrue(srs.wkt.startswith(sd['srtext'])) six.assertRegex(self, srs.proj4text, sd['proj4_re']) def test_osr(self): """ Test getting OSR objects from SpatialRefSys model objects. """ for sd in test_srs: sr = SpatialRefSys.objects.get(srid=sd['srid']) self.assertEqual(True, sr.spheroid.startswith(sd['spheroid'])) self.assertEqual(sd['geographic'], sr.geographic) self.assertEqual(sd['projected'], sr.projected) if not (spatialite and not sd['spatialite']): # Can't get 'NAD83 / Texas South Central' from PROJ.4 string # on SpatiaLite self.assertEqual(True, sr.name.startswith(sd['name'])) # Testing the SpatialReference object directly. if postgis or spatialite: srs = sr.srs six.assertRegex(self, srs.proj4, sd['proj4_re']) # No `srtext` field in the `spatial_ref_sys` table in SpatiaLite < 4 if not spatialite or connection.ops.spatial_version[0] >= 4: self.assertTrue(srs.wkt.startswith(sd['srtext'])) def test_ellipsoid(self): """ Test the ellipsoid property. """ for sd in test_srs: # Getting the ellipsoid and precision parameters. ellps1 = sd['ellipsoid'] prec = sd['eprec'] # Getting our spatial reference and its ellipsoid srs = SpatialRefSys.objects.get(srid=sd['srid']) ellps2 = srs.ellipsoid for i in range(3): self.assertAlmostEqual(ellps1[i], ellps2[i], prec[i]) @skipUnlessDBFeature('supports_add_srs_entry') def test_add_entry(self): """ Test adding a new entry in the SpatialRefSys model using the add_srs_entry utility. """ from django.contrib.gis.utils import add_srs_entry add_srs_entry(3857) self.assertTrue( SpatialRefSys.objects.filter(srid=3857).exists() ) srs = SpatialRefSys.objects.get(srid=3857) self.assertTrue( SpatialRefSys.get_spheroid(srs.wkt).startswith('SPHEROID[') )
the-stack_0_10642
from typing import Any, Type def subclasses_of(klass: Type[Any]): subclasses = [] stack = [klass] while stack: parent = stack.pop() for subclass in parent.__subclasses__(): if subclass not in subclasses: stack.append(subclass) subclasses.append(subclass) return subclasses
the-stack_0_10643
# Copyright 2018 Google. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides utilities to preprocess images for the Inception networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow as tf from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import random_ops flags.DEFINE_float( 'cb_distortion_range', 0.1, 'Cb distortion range +/-') flags.DEFINE_float( 'cr_distortion_range', 0.1, 'Cr distortion range +/-') flags.DEFINE_boolean( 'use_fast_color_distort', True, 'apply fast color/chroma distortion if True, else apply' 'brightness/saturation/hue/contrast distortion') FLAGS = flags.FLAGS def apply_with_random_selector(x, func, num_cases): """Computes func(x, sel), with sel sampled from [0...num_cases-1]. Args: x: input Tensor. func: Python function to apply. num_cases: Python int32, number of cases to sample sel from. Returns: The result of func(x, sel), where func receives the value of the selector as a python integer, but sel is sampled dynamically. """ sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32) # Pass the real x only to one of the func calls. return control_flow_ops.merge([ func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case) for case in range(num_cases)])[0] def distort_color(image, color_ordering=0, fast_mode=True, scope=None): """Distort the color of a Tensor image. Each color distortion is non-commutative and thus ordering of the color ops matters. Ideally we would randomly permute the ordering of the color ops. Rather then adding that level of complication, we select a distinct ordering of color ops for each preprocessing thread. Args: image: 3-D Tensor containing single image in [0, 1]. color_ordering: Python int, a type of distortion (valid values: 0-3). fast_mode: Avoids slower ops (random_hue and random_contrast) scope: Optional scope for name_scope. Returns: 3-D Tensor color-distorted image on range [0, 1] Raises: ValueError: if color_ordering not in [0, 3] """ with tf.name_scope(scope, 'distort_color', [image]): if fast_mode: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) else: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) elif color_ordering == 2: image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) elif color_ordering == 3: image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: raise ValueError('color_ordering must be in [0, 3]') # The random_* ops do not necessarily clamp. return tf.minimum(tf.maximum(image, 0.0), 1.0) def distort_color_fast(image, scope=None): """Distort the color of a Tensor image. Distort brightness and chroma values of input image Args: image: 3-D Tensor containing single image in [0, 1]. scope: Optional scope for name_scope. Returns: 3-D Tensor color-distorted image on range [0, 1] """ with tf.name_scope(scope, 'distort_color', [image]): br_delta = random_ops.random_uniform([], -32./255., 32./255., seed=None) cb_factor = random_ops.random_uniform( [], -FLAGS.cb_distortion_range, FLAGS.cb_distortion_range, seed=None) cr_factor = random_ops.random_uniform( [], -FLAGS.cr_distortion_range, FLAGS.cr_distortion_range, seed=None) channels = tf.split(axis=2, num_or_size_splits=3, value=image) red_offset = 1.402 * cr_factor + br_delta green_offset = -0.344136 * cb_factor - 0.714136 * cr_factor + br_delta blue_offset = 1.772 * cb_factor + br_delta channels[0] += red_offset channels[1] += green_offset channels[2] += blue_offset image = tf.concat(axis=2, values=channels) image = tf.minimum(tf.maximum(image, 0.), 1.) return image def distorted_bounding_box_crop(image, bbox, min_object_covered=0.1, aspect_ratio_range=(3./4., 4./3.), area_range=(0.05, 1.0), max_attempts=100, scope=None): """Generates cropped_image using a one of the bboxes randomly distorted. See `tf.image.sample_distorted_bounding_box` for more documentation. Args: image: 3-D Tensor of image (it will be converted to floats in [0, 1]). bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. If num_boxes is 0 then it would use the whole image. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. aspect_ratio_range: An optional list of `floats`. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `floats`. The cropped area of the image must contain a fraction of the supplied image within in this range. max_attempts: An optional `int`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. scope: Optional scope for name_scope. Returns: A tuple, a 3-D Tensor cropped_image and the distorted bbox """ with tf.name_scope(scope, 'distorted_bounding_box_crop', [image, bbox]): # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. # A large fraction of image datasets contain a human-annotated bounding # box delineating the region of the image containing the object of interest. # We choose to create a new bounding box for the object which is a randomly # distorted version of the human-annotated bounding box that obeys an # allowed range of aspect ratios, sizes and overlap with the human-annotated # bounding box. If no box is supplied, then we assume the bounding box is # the entire image. sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box # Crop the image to the specified bounding box. cropped_image = tf.slice(image, bbox_begin, bbox_size) return cropped_image, distort_bbox def preprocess_for_train(image, height, width, bbox, fast_mode=True, scope=None, add_image_summaries=True): """Distort one image for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Additionally it would create image_summaries to display the different transformations applied to the image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. fast_mode: Optional boolean, if True avoids slower transformations (i.e. bi-cubic resizing, random_hue or random_contrast). scope: Optional scope for name_scope. add_image_summaries: Enable image summaries. Returns: 3-D float Tensor of distorted image used for training with range [-1, 1]. """ with tf.name_scope(scope, 'distort_image', [image, height, width, bbox]): if bbox is None: bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) if add_image_summaries: # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox) tf.summary.image('image_with_bounding_boxes', image_with_box) distorted_image, distorted_bbox = distorted_bounding_box_crop(image, bbox) # Restore the shape since the dynamic slice based upon the bbox_size loses # the third dimension. distorted_image.set_shape([None, None, 3]) if add_image_summaries: image_with_distorted_box = tf.image.draw_bounding_boxes( tf.expand_dims(image, 0), distorted_bbox) tf.summary.image('images_with_distorted_bounding_box', image_with_distorted_box) # This resizing operation may distort the images because the aspect # ratio is not respected. We select a resize method in a round robin # fashion based on the thread number. # Note that ResizeMethod contains 4 enumerated resizing methods. # We select only 1 case for fast_mode bilinear. num_resize_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, method: tf.image.resize_images(x, [height, width], method), num_cases=num_resize_cases) if add_image_summaries: tf.summary.image('cropped_resized_image', tf.expand_dims(distorted_image, 0)) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Randomly distort the colors. There are 1 or 4 ways to do it. if FLAGS.use_fast_color_distort: distorted_image = distort_color_fast(distorted_image) else: num_distort_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, ordering: distort_color(x, ordering, fast_mode), num_cases=num_distort_cases) if add_image_summaries: tf.summary.image('final_distorted_image', tf.expand_dims(distorted_image, 0)) return distorted_image def preprocess_for_eval(image, height, width, central_fraction=0.875, scope=None): """Prepare one image for evaluation. If height and width are specified it would output an image with that size by applying resize_bilinear. If central_fraction is specified it would crop the central fraction of the input image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer central_fraction: Optional Float, fraction of the image to crop. scope: Optional scope for name_scope. Returns: 3-D float Tensor of prepared image. """ with tf.name_scope(scope, 'eval_image', [image, height, width]): if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) # Crop the central region of the image with an area containing 87.5% of # the original image. if central_fraction: image = tf.image.central_crop(image, central_fraction=central_fraction) if height and width: # Resize the image to the specified height and width. image = tf.expand_dims(image, 0) image = tf.image.resize_bilinear(image, [height, width], align_corners=False) image = tf.squeeze(image, [0]) image.set_shape([height, width, 3]) return image def preprocess_image(image, output_height, output_width, is_training=False, scaled_images=True, bbox=None, fast_mode=True, add_image_summaries=False): """Pre-process one image for training or evaluation. Args: image: 3-D Tensor [height, width, channels] with the image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). output_height: integer, image expected height. output_width: integer, image expected width. is_training: Boolean. If true it would transform an image for train, otherwise it would transform it for evaluation. scaled_images: Whether to scale pixel values to the range [-1, 1]. If set to false, pixel values are in the range [0, 1]. bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. fast_mode: Optional boolean, if True avoids slower transformations. add_image_summaries: Enable image summaries. Returns: 3-D float Tensor containing an appropriately scaled image Raises: ValueError: if user does not provide bounding box """ if is_training: image = preprocess_for_train( image, output_height, output_width, bbox, fast_mode, add_image_summaries=add_image_summaries) else: image = preprocess_for_eval(image, output_height, output_width) if scaled_images: image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image
the-stack_0_10644
# Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.contrib.python.checks.checker.pyflakes import PyflakesChecker from pants.contrib.python.checks.tasks.checkstyle.plugin_subsystem_base import PluginSubsystemBase class FlakeCheckSubsystem(PluginSubsystemBase): options_scope = 'pycheck-pyflakes' @classmethod def register_plugin_options(cls, register): register('--ignore', fingerprint=True, type=list, default=[], help='List of warning codes to ignore.') @classmethod def plugin_type(cls): return PyflakesChecker
the-stack_0_10647
from cereal import car from opendbc.can.parser import CANParser from opendbc.can.can_define import CANDefine from selfdrive.config import Conversions as CV from selfdrive.car.interfaces import CarStateBase from selfdrive.car.chrysler.values import DBC, STEER_THRESHOLD class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) can_define = CANDefine(DBC[CP.carFingerprint]['pt']) self.shifter_values = can_define.dv["GEAR"]['PRNDL'] def update(self, cp, cp_cam): ret = car.CarState.new_message() self.frame = int(cp.vl["EPS_STATUS"]['COUNTER']) ret.doorOpen = any([cp.vl["DOORS"]['DOOR_OPEN_FL'], cp.vl["DOORS"]['DOOR_OPEN_FR'], cp.vl["DOORS"]['DOOR_OPEN_RL'], cp.vl["DOORS"]['DOOR_OPEN_RR']]) ret.seatbeltUnlatched = cp.vl["SEATBELT_STATUS"]['SEATBELT_DRIVER_UNLATCHED'] == 1 ret.brakePressed = cp.vl["BRAKE_2"]['BRAKE_PRESSED_2'] == 5 # human-only ret.brake = 0 ret.brakeLights = ret.brakePressed ret.gas = cp.vl["ACCEL_GAS_134"]['ACCEL_134'] ret.gasPressed = ret.gas > 1e-5 ret.espDisabled = (cp.vl["TRACTION_BUTTON"]['TRACTION_OFF'] == 1) ret.wheelSpeeds.fl = cp.vl['WHEEL_SPEEDS']['WHEEL_SPEED_FL'] ret.wheelSpeeds.rr = cp.vl['WHEEL_SPEEDS']['WHEEL_SPEED_RR'] ret.wheelSpeeds.rl = cp.vl['WHEEL_SPEEDS']['WHEEL_SPEED_RL'] ret.wheelSpeeds.fr = cp.vl['WHEEL_SPEEDS']['WHEEL_SPEED_FR'] ret.vEgoRaw = (cp.vl['SPEED_1']['SPEED_LEFT'] + cp.vl['SPEED_1']['SPEED_RIGHT']) / 2. ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = not ret.vEgoRaw > 0.001 ret.leftBlinker = cp.vl["STEERING_LEVERS"]['TURN_SIGNALS'] == 1 ret.rightBlinker = cp.vl["STEERING_LEVERS"]['TURN_SIGNALS'] == 2 ret.steeringAngle = cp.vl["STEERING"]['STEER_ANGLE'] ret.steeringRate = cp.vl["STEERING"]['STEERING_RATE'] ret.gearShifter = self.parse_gear_shifter(self.shifter_values.get(cp.vl['GEAR']['PRNDL'], None)) ret.cruiseState.enabled = cp.vl["ACC_2"]['ACC_STATUS_2'] == 7 # ACC is green. ret.cruiseState.available = ret.cruiseState.enabled # FIXME: for now same as enabled ret.cruiseState.speed = cp.vl["DASHBOARD"]['ACC_SPEED_CONFIG_KPH'] * CV.KPH_TO_MS ret.steeringTorque = cp.vl["EPS_STATUS"]["TORQUE_DRIVER"] ret.steeringTorqueEps = cp.vl["EPS_STATUS"]["TORQUE_MOTOR"] ret.steeringPressed = abs(ret.steeringTorque) > STEER_THRESHOLD steer_state = cp.vl["EPS_STATUS"]["LKAS_STATE"] ret.steerError = steer_state == 4 or (steer_state == 0 and ret.vEgo > self.CP.minSteerSpeed) ret.genericToggle = bool(cp.vl["STEERING_LEVERS"]['HIGH_BEAM_FLASH']) self.lkas_counter = cp_cam.vl["LKAS_COMMAND"]['COUNTER'] self.lkas_car_model = cp_cam.vl["LKAS_HUD"]['CAR_MODEL'] self.lkas_status_ok = cp_cam.vl["LKAS_HEARTBIT"]['LKAS_STATUS_OK'] return ret @staticmethod def get_can_parser(CP): signals = [ # sig_name, sig_address, default ("PRNDL", "GEAR", 0), ("DOOR_OPEN_FL", "DOORS", 0), ("DOOR_OPEN_FR", "DOORS", 0), ("DOOR_OPEN_RL", "DOORS", 0), ("DOOR_OPEN_RR", "DOORS", 0), ("BRAKE_PRESSED_2", "BRAKE_2", 0), ("ACCEL_134", "ACCEL_GAS_134", 0), ("SPEED_LEFT", "SPEED_1", 0), ("SPEED_RIGHT", "SPEED_1", 0), ("WHEEL_SPEED_FL", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_RR", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_RL", "WHEEL_SPEEDS", 0), ("WHEEL_SPEED_FR", "WHEEL_SPEEDS", 0), ("STEER_ANGLE", "STEERING", 0), ("STEERING_RATE", "STEERING", 0), ("TURN_SIGNALS", "STEERING_LEVERS", 0), ("ACC_STATUS_2", "ACC_2", 0), ("HIGH_BEAM_FLASH", "STEERING_LEVERS", 0), ("ACC_SPEED_CONFIG_KPH", "DASHBOARD", 0), ("TORQUE_DRIVER", "EPS_STATUS", 0), ("TORQUE_MOTOR", "EPS_STATUS", 0), ("LKAS_STATE", "EPS_STATUS", 1), ("COUNTER", "EPS_STATUS", -1), ("TRACTION_OFF", "TRACTION_BUTTON", 0), ("SEATBELT_DRIVER_UNLATCHED", "SEATBELT_STATUS", 0), ] checks = [ # sig_address, frequency ("BRAKE_2", 50), ("EPS_STATUS", 100), ("SPEED_1", 100), ("WHEEL_SPEEDS", 50), ("STEERING", 100), ("ACC_2", 50), ] return CANParser(DBC[CP.carFingerprint]['pt'], signals, checks, 0) @staticmethod def get_cam_can_parser(CP): signals = [ # sig_name, sig_address, default ("COUNTER", "LKAS_COMMAND", -1), ("CAR_MODEL", "LKAS_HUD", -1), ("LKAS_STATUS_OK", "LKAS_HEARTBIT", -1) ] checks = [] return CANParser(DBC[CP.carFingerprint]['pt'], signals, checks, 2)
the-stack_0_10648
from random import randint from typing import Dict from uuid import uuid4 import pytest from pydantic import BaseModel, ValidationError from geojson_pydantic.features import Feature, FeatureCollection from geojson_pydantic.geometries import Geometry, MultiPolygon, Polygon class GenericProperties(BaseModel): id: str description: str size: int properties = { "id": str(uuid4()), "description": str(uuid4()), "size": randint(0, 1000), } polygon = { "type": "Polygon", "coordinates": [ [ [13.38272, 52.46385], [13.42786, 52.46385], [13.42786, 52.48445], [13.38272, 52.48445], [13.38272, 52.46385], ] ], } test_feature = { "type": "Feature", "geometry": polygon, "properties": properties, } def test_geometry_collection_iteration(): """test if feature collection is iterable""" gc = FeatureCollection(features=[test_feature, test_feature]) iter(gc) def test_generic_properties_is_dict(): feature = Feature(**test_feature) assert feature.properties["id"] == test_feature["properties"]["id"] assert type(feature.properties) == dict assert not hasattr(feature.properties, "id") def test_generic_properties_is_object(): feature = Feature[Geometry, GenericProperties](**test_feature) assert feature.properties.id == test_feature["properties"]["id"] assert type(feature.properties) == GenericProperties assert hasattr(feature.properties, "id") def test_generic_geometry(): feature = Feature[Polygon, GenericProperties](**test_feature) assert feature.properties.id == test_feature["properties"]["id"] assert type(feature.geometry) == Polygon assert type(feature.properties) == GenericProperties assert hasattr(feature.properties, "id") feature = Feature[Polygon, Dict](**test_feature) assert type(feature.geometry) == Polygon assert feature.properties["id"] == test_feature["properties"]["id"] assert type(feature.properties) == dict assert not hasattr(feature.properties, "id") with pytest.raises(ValidationError): Feature[MultiPolygon, Dict](**({"type": "Feature", "geometry": polygon})) def test_generic_properties_should_raise_for_string(): with pytest.raises(ValidationError): Feature( **({"type": "Feature", "geometry": polygon, "properties": "should raise"}) ) def test_feature_collection_generic(): fc = FeatureCollection[Polygon, GenericProperties]( features=[test_feature, test_feature] ) assert len(fc) == 2 assert type(fc[0].properties) == GenericProperties assert type(fc[0].geometry) == Polygon def test_geo_interface_protocol(): class Pointy: __geo_interface__ = {"type": "Point", "coordinates": (0.0, 0.0)} feat = Feature(geometry=Pointy()) assert feat.geometry.dict() == Pointy.__geo_interface__
the-stack_0_10649
import torch import torch.nn as nn import torch.nn.functional as F def kl_loss(x, mu, logsigma, beta): kl = -0.5 * torch.sum(1 + logsigma - mu.pow(2) - logsigma.exp()) return beta * (kl / torch.numel(x)) def vae_loss(x, mu, logsigma, recon_x, beta=1): recon_loss = F.mse_loss(x, recon_x, reduction='mean') kl = kl_loss(x, mu, logsigma, beta) return recon_loss + kl def reparameterize(mu, logsigma): std = torch.exp(0.5*logsigma) eps = torch.randn_like(std) return mu + eps*std def carracing_encoder(input_channel): return nn.Sequential( nn.Conv2d(input_channel, 32, 4, stride=2), nn.ReLU(), nn.Conv2d(32, 64, 4, stride=2), nn.ReLU(), nn.Conv2d(64, 128, 4, stride=2), nn.ReLU(), nn.Conv2d(128, 256, 4, stride=2), nn.ReLU() ) def carracing_decoder(flatten_size): return nn.Sequential( nn.ConvTranspose2d(flatten_size, 128, 5, stride=2), nn.ReLU(), nn.ConvTranspose2d(128, 64, 5, stride=2), nn.ReLU(), nn.ConvTranspose2d(64, 32, 6, stride=2), nn.ReLU(), nn.ConvTranspose2d(32, 3, 6, stride=2), nn.Sigmoid() )
the-stack_0_10650
from collections import namedtuple, deque import difflib import pygments.formatters import pygments.lexers import pygments.token import re from typing import List, Tuple, Optional, Iterator, Iterable from literate.annot import Span, Annot, SpanMerger, \ cut_annot, merge_annot, sub_annot, fill_annot from literate.file import File, Line, Diff, DiffBlock, Hunk, OutputLine from literate.points import Point, cut_annot_at_points # Regex for finding runs of identical non-space characters RUN_RE = re.compile(r'([^ \n])\1*') def parse_intra_annot(s: str) -> Annot[str]: '''Parse an `ndiff` detail (`?`) line and convert it to an annotation indicating intraline edits in the text of the preceding line. The annotation labels inserted, deleted, and changed characters with `'ins'`, `'del'`, and `'chg'` respectively.''' spans = [] for m in RUN_RE.finditer(s): c = m.group(1) # Map the symbols used by `ndiff` to something more meaningful. label = { '+': 'ins', '-': 'del', '^': 'chg', }[c] spans.append(Span(m.start(), m.end(), label)) return spans DiffLine = Tuple[bool, bool, Optional[Annot[str]], Optional[Annot[str]]] def diff_lines(old_lines: List[str], new_lines: List[str]) -> Iterator[DiffLine]: '''Compute a diff of `old` and `new`, and yield a sequence of (old_line, new_line, old_detail, new_detail). Each `line` is a boolean indicating whether there is a line present in the old/new file, and each `detail` is an intraline edit annotation (see `parse_intra_annot`). Possible outputs: - (True, True, None, None): Unmodified/context line - (True, False, None, None): Deletion of a line from the old text. - (False, True, None, None): Insertion of a line in the new text. - (True, True, [...], [...]): Changed line, modified via the indicated intraline insertions and deletions. ''' # We buffer up to two previous result tuples. This lets us handle # intraline change markers, and in particular, the nasty '-+?' case, where # we don't find out that we're in an intraline change ('?') until we've # seen both the '-' and '+' lines. buf = deque() for dl in difflib.ndiff(old_lines, new_lines): prefix = dl[0:2] if prefix == ' ': # Context line. Flush the whole buffer. while buf: yield buf.popleft() yield (True, True, None, None) elif prefix == '- ': while buf: yield buf.popleft() buf.append((True, False, None, None)) elif prefix == '+ ': # Try to fold into a previous intraline edit quad, if one exists. if len(buf) > 0: old_line, new_line, old_detail, new_detail = buf[-1] if not new_line and old_detail is not None: # Previously saw a '-' and a '?'. Fold in this '+'. assert not new_line buf[-1] = (old_line, True, old_detail, None) continue # If there's no old_detail ('?'), then we aren't in an # intraline edit. If there's a new_line, then the intraline # edit is already finished. In either case, we want to do the # default action of just adding the '+' on its own. while len(buf) > 2: yield buf.popleft() buf.append((False, True, None, None)) elif prefix == '? ': detail = parse_intra_annot(dl[2:]) # Add this detail to the previous buffered line. We may also need # to merge a pair of previous '-' and '+' lines, if we didn't # previously know that they were part of an intraline change quad. assert len(buf) > 0 old_line, new_line, old_detail, new_detail = buf.pop() if new_line: if old_line: # The previous line is a rollup of a '-' and a '+'. # (Context lines are not included in the buffer.) assert old_detail is not None buf.append((True, True, old_detail, detail)) else: # The previous line is just a '+'. There must be a '-' # before it, so roll up both of those together with the new # detail. old_line2, new_line2, old_detail2, new_detail2 = buf.pop() assert old_line2 assert not new_line2 assert old_detail2 is None assert new_detail2 is None buf.append((True, True, None, detail)) else: # The previous line is just a '-'. Roll this detail into it. # Next we should see a '+', which will get rolled in, so this # bogus (True, False, [...], None) entry will never be yielded. buf.append((True, False, detail, None)) # Flush any remaining buffered entries. while buf: yield buf.popleft() def adjust_closing_brace(old_lines: List[str], new_lines: List[str], diff: Iterable[DiffLine]) -> Iterator[DiffLine]: '''Adjust the output of `diff_lines` to turn this: fn f() { ... +} +fn g() { + ... } into this: fn f() { ... } +fn g() { + ... +} ''' # Specifically: at the end of every run of insertions or deletions, if the # first context line after the run consists of solely a '}' character (with # whitespace), then we scan from the top of the run for an identical # inserted line. If found, we change the earlier line from an insertion to # context, and change the context line to an insertion. mode = None buf = [] buf_start = None old_i = -1 new_i = -1 for dl in diff: old_line, new_line, old_detail, new_detail = dl if old_line and not new_line: new_mode = 'del' old_i += 1 elif not old_line and new_line: new_mode = 'ins' new_i += 1 else: new_mode = None old_i += 1 new_i += 1 if new_mode != mode: if new_mode is None: # Switching from ins or del mode to context mode. If the # current line is a '}', we try to do the block adjustment. check_lines = new_lines if mode == 'ins' else old_lines i = new_i if mode == 'ins' else old_i if check_lines[i].strip() == '}': # Yield everything from buf, while scanning for an earlier # matching line. found_dl = None for j, buf_dl in enumerate(buf): if check_lines[buf_start + j] == check_lines[i]: found_dl = buf_dl yield (True, True, None, None) # We're stopping early, so yield the remaining # elements. yield from buf[j + 1:] break else: yield buf_dl if found_dl: yield found_dl else: yield (True, True, None, None) else: yield from buf yield dl mode = None buf = [] buf_start = None # We already yielded the correct info, so don't fall through to # the default logic. continue else: if mode is not None: yield from buf mode = new_mode buf = [] buf_start = new_i if mode == 'ins' else old_i if mode is None: yield dl else: buf.append(dl) # There are no more lines, so there can't be a `}` line following `buf` to # trigger our heuristic. That means we can blindly dump everything in # `buf`. yield from buf WORD_BREAK_RE = re.compile(r'\b') def token_annot(line: Line) -> Annot[None]: '''Annotate the tokens of `l`. Each token (and some sub-token strings) gets a separate span. This is a helper function for `calc_tokenized_intra`.''' annot = fill_annot(line.highlight, len(line.text)) # Special cases: treat word boundaries inside strings and comments as token # breaks. This essentially gives us the behavior of `git`'s `--word-diff` # feature. extra_cuts = [] for span in annot: # We don't handle String subtypes (only String itself) because we don't # want to break up `\x00` and similar escapes. if span.label == pygments.token.String or \ span.label in pygments.token.Comment: text = line.text[span.start : span.end] for m in WORD_BREAK_RE.finditer(text): extra_cuts.append(Point(span.start + m.start())) return cut_annot_at_points(annot, extra_cuts) def calc_tokenized_intra(l1: Line, l2: Line) -> Tuple[Annot[str], Annot[str]]: '''Calculate token-based intraline edit annotations for `l1` and `l2`. `difflib.ndiff` does a pretty good job of matching up similar lines, but it computes intraline changes character-by-character, which often produces bad results. For example, it might turn `unsafe` into `malloc` by replacing `uns` -> `m` and `fe` -> `lloc`, instead of doing `unsafe` -> `malloc` in one go. Here we calculate some intraline edits that are easier to read, using the tokenization provided by `pygments` to align edit boundaries to the boundaries of source tokens.''' annot1 = token_annot(l1) annot2 = token_annot(l2) tokens1 = [l1.text[s.start : s.end] for s in annot1] tokens2 = [l2.text[s.start : s.end] for s in annot2] intra1 = [] intra2 = [] sm = difflib.SequenceMatcher(a=tokens1, b=tokens2) for tag, i1, i2, j1, j2 in sm.get_opcodes(): if tag == 'equal': continue while i1 < i2 and tokens1[i1].isspace(): i1 += 1 while i2 > i1 and tokens1[i2 - 1].isspace(): i2 -= 1 while j1 < j2 and tokens2[j1].isspace(): j1 += 1 while j2 > j1 and tokens2[j2 - 1].isspace(): j2 -= 1 if i1 != i2: intra1.append(Span(annot1[i1].start, annot1[i2 - 1].end, 'chg' if tag == 'replace' else 'del')) if j1 != j2: intra2.append(Span(annot2[j1].start, annot2[j2 - 1].end, 'chg' if tag == 'replace' else 'ins')) return (intra1, intra2) def diff_files(f1: File, f2: File) -> Diff: '''Diff two files, returning a `Diff` between them and also setting the `intra` annotation on the lines of both files.''' dls = diff_lines(f1.line_text, f2.line_text) dls = adjust_closing_brace(f1.line_text, f2.line_text, dls) # Accumulator for diff blocks. diff_blocks = [] # Start and current position of the current block. old_start = 0 old_cur = 0 new_start = 0 new_cur = 0 # Is the current block a change? (If not, it's context.) changed = True def flush(): nonlocal old_start, new_start # This check means we can blindly call `flush()` without worrying about # cluttering the output with zero-length blocks. if old_cur - old_start > 0 or new_cur - new_start > 0: diff_blocks.append(DiffBlock(changed, Span(old_start, old_cur), Span(new_start, new_cur))) old_start = old_cur new_start = new_cur for old_line, new_line, old_detail, new_detail in dls: next_changed = not (old_line and new_line and old_detail is None and new_detail is None) has_intra = old_detail is not None or new_detail is not None if next_changed != changed: flush() if has_intra: # Emit each `intra` line as its own block, to ensure they're # aligned in the output. flush() intra1, intra2 = calc_tokenized_intra( f1.lines[old_cur], f2.lines[new_cur]) if len(intra1) > 0: f1.lines[old_cur].set_intra(intra1) if len(intra2) > 0: f2.lines[new_cur].set_intra(intra2) flush() if old_line: old_cur += 1 if new_line: new_cur += 1 changed = next_changed flush() return Diff(f1, f2, diff_blocks) def context_annot(blocks: List[DiffBlock], new: bool, context_lines: int) -> Annot[None]: '''Generate an annotation of the old or new file's lines, indicating which lines are changes or context for changes (within `context_lines` distance).''' result = SpanMerger() for (changed, old_span, new_span) in blocks: if not changed: continue span = new_span if new else old_span result.add(Span( span.start - context_lines, span.end + context_lines)) return result.finish() def split_hunks(blocks: List[DiffBlock]) -> List[Hunk]: '''Split the output of `filter_unchanged` into hunks, anywhere there's a gap in the old or new line numbers.''' last_old = 0 last_new = 0 cur = [] hunks = [] def flush(): nonlocal cur if len(cur) > 0: hunks.append(Hunk(cur)) cur = [] for b in blocks: changed, old_span, new_span = b if old_span.start != last_old or new_span.start != last_new: flush() cur.append(b) last_old = old_span.end last_new = new_span.end flush() return hunks def annotate_blocks(blocks: List[DiffBlock]) \ -> Tuple[Annot[Span[None]], Annot[Span[None]]]: '''Return annotations on the old and new files, labeling each line with the block that contains it.''' old = [] new = [] for b in blocks: old.append(Span(b.old_span.start, b.old_span.end, b)) new.append(Span(b.new_span.start, b.new_span.end, b)) return old, new def build_diff_hunks(d: Diff, context_diff: bool=True): '''Build a list of output hunks, and assign it to `d.hunks`. If `d.old_file` or `d.new_file` has a `keep_mark_lines` annotation, all annotated lines will be kept as additional context.''' # Find the set of lines each file wants to keep. def calc_file_keep(f, is_new): if context_diff: keep = context_annot(d.blocks, is_new, 5) if f.keep_mark_lines is not None: keep = merge_annot(keep, f.keep_mark_lines) else: if len(f.line_annot) > 0: keep = [Span(0, f.line_annot[-1].end)] else: keep = [] if f.drop_irrelevant_lines is not None: keep = sub_annot(keep, f.drop_irrelevant_lines) return keep keep_old = calc_file_keep(d.old_file, False) keep_new = calc_file_keep(d.new_file, True) # In unchanged blocks, add each file's keep lines to the other file's set. # This works because unchanged blocks have the same number of lines on each # side. old_blocks, new_blocks = annotate_blocks(d.blocks) extra_keep_old = [] extra_keep_new = [] for block_span, keep_spans in cut_annot(keep_old, old_blocks): if block_span.label.changed: continue base = block_span.label.new_span.start extra_keep_new.extend(s + base for s in keep_spans) for block_span, keep_spans in cut_annot(keep_new, new_blocks): if block_span.label.changed: continue base = block_span.label.old_span.start extra_keep_old.extend(s + base for s in keep_spans) keep_old = merge_annot(keep_old, extra_keep_old) keep_new = merge_annot(keep_new, extra_keep_new) # For changed blocks, we can't match up lines from different files, so we # just hope for the best. (Normally all changed lines are kept, so there's # no need to match - the only exception is when the `irrelevant_*_regex` # options are set.) # Build the filtered list of blocks. There can be different numbers of # blocks on the old and new sides. We use a fairly naive strategy to match # them up, but it generally seems to work okay. blocks = [] for (old_block, old_keeps), (new_block, new_keeps) in zip( cut_annot(keep_old, old_blocks), cut_annot(keep_new, new_blocks)): # `old_blocks` and `new_blocks` have corresponding entries (based on # the same block) at corresponding positions. assert old_block.label is new_block.label block = old_block.label # Match up `old_keeps` and `new_keeps` entries by position. In most # cases, the two lists will have the same length. for old_keep, new_keep in zip(old_keeps, new_keeps): blocks.append(DiffBlock(block.changed, old_keep + block.old_span.start, new_keep + block.new_span.start)) for old_keep in old_keeps[len(new_keeps):]: blocks.append(DiffBlock(block.changed, old_keep + block.old_span.start, Span(block.new_span.end, block.new_span.end))) for new_keep in new_keeps[len(old_keeps):]: blocks.append(DiffBlock(block.changed, Span(block.old_span.end, block.old_span.end), new_keep + block.new_span.start)) # Split the new blocks into hunks, and save them in the `Diff`. hunks = split_hunks(blocks) d.set_hunks(hunks) def hunk_output_lines(h: Hunk) -> List[OutputLine]: result = [] for changed, old_span, new_span in h.blocks: common_lines = min(len(old_span), len(new_span)) for i in range(0, common_lines): result.append(OutputLine(changed, old_span.start + i, new_span.start + i)) for i in range(common_lines, len(old_span)): result.append(OutputLine(changed, old_span.start + i, None)) for i in range(common_lines, len(new_span)): result.append(OutputLine(changed, None, new_span.start + i)) return result def build_output_lines(d: Diff): '''Build a list of two-column output lines for each hunk of `d`, and set the `Hunk.output_lines` fields.''' for h in d.hunks: output_lines = hunk_output_lines(h) h.set_output_lines(output_lines)
the-stack_0_10652
# -*- coding: utf-8 -*- ############################ Copyrights and license ############################ # # # Copyright 2012 Steve English <[email protected]> # # Copyright 2012 Vincent Jacques <[email protected]> # # Copyright 2012 Zearin <[email protected]> # # Copyright 2013 AKFish <[email protected]> # # Copyright 2013 Cameron White <[email protected]> # # Copyright 2013 Vincent Jacques <[email protected]> # # Copyright 2013 poulp <[email protected]> # # Copyright 2014 Tomas Radej <[email protected]> # # Copyright 2014 Vincent Jacques <[email protected]> # # Copyright 2016 E. Dunham <[email protected]> # # Copyright 2016 Jannis Gebauer <[email protected]> # # Copyright 2016 Peter Buckley <[email protected]> # # Copyright 2017 Balázs Rostás <[email protected]> # # Copyright 2017 Jannis Gebauer <[email protected]> # # Copyright 2017 Simon <[email protected]> # # Copyright 2018 Wan Liuyang <[email protected]> # # Copyright 2018 bryanhuntesl <[email protected]> # # Copyright 2018 sfdye <[email protected]> # # Copyright 2018 itsbruce <[email protected]> # # # # This file is part of PyGithub. # # http://pygithub.readthedocs.io/ # # # # PyGithub is free software: you can redistribute it and/or modify it under # # the terms of the GNU Lesser General Public License as published by the Free # # Software Foundation, either version 3 of the License, or (at your option) # # any later version. # # # # PyGithub is distributed in the hope that it will be useful, but WITHOUT ANY # # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # # FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more # # details. # # # # You should have received a copy of the GNU Lesser General Public License # # along with PyGithub. If not, see <http://www.gnu.org/licenses/>. # # # ################################################################################ import datetime import github.GithubObject import github.PaginatedList import github.Gist import github.Repository import github.NamedUser import github.Plan import github.Organization import github.UserKey import github.Issue import github.Event import github.Authorization import github.Notification import github.Migration from . import Consts class AuthenticatedUser(github.GithubObject.CompletableGithubObject): """ This class represents AuthenticatedUsers as returned by https://developer.github.com/v3/users/#get-the-authenticated-user An AuthenticatedUser object can be created by calling ``get_user()`` on a Github object. """ def __repr__(self): return self.get__repr__({"login": self._login.value}) @property def avatar_url(self): """ :type: string """ self._completeIfNotSet(self._avatar_url) return self._avatar_url.value @property def bio(self): """ :type: string """ self._completeIfNotSet(self._bio) return self._bio.value @property def blog(self): """ :type: string """ self._completeIfNotSet(self._blog) return self._blog.value @property def collaborators(self): """ :type: integer """ self._completeIfNotSet(self._collaborators) return self._collaborators.value @property def company(self): """ :type: string """ self._completeIfNotSet(self._company) return self._company.value @property def created_at(self): """ :type: datetime.datetime """ self._completeIfNotSet(self._created_at) return self._created_at.value @property def disk_usage(self): """ :type: integer """ self._completeIfNotSet(self._disk_usage) return self._disk_usage.value @property def email(self): """ :type: string """ self._completeIfNotSet(self._email) return self._email.value @property def events_url(self): """ :type: string """ self._completeIfNotSet(self._events_url) return self._events_url.value @property def followers(self): """ :type: integer """ self._completeIfNotSet(self._followers) return self._followers.value @property def followers_url(self): """ :type: string """ self._completeIfNotSet(self._followers_url) return self._followers_url.value @property def following(self): """ :type: integer """ self._completeIfNotSet(self._following) return self._following.value @property def following_url(self): """ :type: string """ self._completeIfNotSet(self._following_url) return self._following_url.value @property def gists_url(self): """ :type: string """ self._completeIfNotSet(self._gists_url) return self._gists_url.value @property def gravatar_id(self): """ :type: string """ self._completeIfNotSet(self._gravatar_id) return self._gravatar_id.value @property def hireable(self): """ :type: bool """ self._completeIfNotSet(self._hireable) return self._hireable.value @property def html_url(self): """ :type: string """ self._completeIfNotSet(self._html_url) return self._html_url.value @property def id(self): """ :type: integer """ self._completeIfNotSet(self._id) return self._id.value @property def location(self): """ :type: string """ self._completeIfNotSet(self._location) return self._location.value @property def login(self): """ :type: string """ self._completeIfNotSet(self._login) return self._login.value @property def name(self): """ :type: string """ self._completeIfNotSet(self._name) return self._name.value @property def organizations_url(self): """ :type: string """ self._completeIfNotSet(self._organizations_url) return self._organizations_url.value @property def owned_private_repos(self): """ :type: integer """ self._completeIfNotSet(self._owned_private_repos) return self._owned_private_repos.value @property def plan(self): """ :type: :class:`github.Plan.Plan` """ self._completeIfNotSet(self._plan) return self._plan.value @property def private_gists(self): """ :type: integer """ self._completeIfNotSet(self._private_gists) return self._private_gists.value @property def public_gists(self): """ :type: integer """ self._completeIfNotSet(self._public_gists) return self._public_gists.value @property def public_repos(self): """ :type: integer """ self._completeIfNotSet(self._public_repos) return self._public_repos.value @property def received_events_url(self): """ :type: string """ self._completeIfNotSet(self._received_events_url) return self._received_events_url.value @property def repos_url(self): """ :type: string """ self._completeIfNotSet(self._repos_url) return self._repos_url.value @property def site_admin(self): """ :type: bool """ self._completeIfNotSet(self._site_admin) return self._site_admin.value @property def starred_url(self): """ :type: string """ self._completeIfNotSet(self._starred_url) return self._starred_url.value @property def subscriptions_url(self): """ :type: string """ self._completeIfNotSet(self._subscriptions_url) return self._subscriptions_url.value @property def total_private_repos(self): """ :type: integer """ self._completeIfNotSet(self._total_private_repos) return self._total_private_repos.value @property def type(self): """ :type: string """ self._completeIfNotSet(self._type) return self._type.value @property def updated_at(self): """ :type: datetime.datetime """ self._completeIfNotSet(self._updated_at) return self._updated_at.value @property def url(self): """ :type: string """ self._completeIfNotSet(self._url) return self._url.value def add_to_emails(self, *emails): """ :calls: `POST /user/emails <http://developer.github.com/v3/users/emails>`_ :param email: string :rtype: None """ assert all(isinstance(element, str) for element in emails), emails post_parameters = emails headers, data = self._requester.requestJsonAndCheck( "POST", "/user/emails", input=post_parameters ) def add_to_following(self, following): """ :calls: `PUT /user/following/:user <http://developer.github.com/v3/users/followers>`_ :param following: :class:`github.NamedUser.NamedUser` :rtype: None """ assert isinstance(following, github.NamedUser.NamedUser), following headers, data = self._requester.requestJsonAndCheck( "PUT", "/user/following/" + following._identity ) def add_to_starred(self, starred): """ :calls: `PUT /user/starred/:owner/:repo <http://developer.github.com/v3/activity/starring>`_ :param starred: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(starred, github.Repository.Repository), starred headers, data = self._requester.requestJsonAndCheck( "PUT", "/user/starred/" + starred._identity ) def add_to_subscriptions(self, subscription): """ :calls: `PUT /user/subscriptions/:owner/:repo <http://developer.github.com/v3/activity/watching>`_ :param subscription: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(subscription, github.Repository.Repository), subscription headers, data = self._requester.requestJsonAndCheck( "PUT", "/user/subscriptions/" + subscription._identity ) def add_to_watched(self, watched): """ :calls: `PUT /repos/:owner/:repo/subscription <http://developer.github.com/v3/activity/watching>`_ :param watched: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(watched, github.Repository.Repository), watched headers, data = self._requester.requestJsonAndCheck( "PUT", "/repos/" + watched._identity + "/subscription", input={"subscribed": True} ) def create_authorization(self, scopes=github.GithubObject.NotSet, note=github.GithubObject.NotSet, note_url=github.GithubObject.NotSet, client_id=github.GithubObject.NotSet, client_secret=github.GithubObject.NotSet, onetime_password=None): """ :calls: `POST /authorizations <http://developer.github.com/v3/oauth>`_ :param scopes: list of string :param note: string :param note_url: string :param client_id: string :param client_secret: string :param onetime_password: string :rtype: :class:`github.Authorization.Authorization` """ assert scopes is github.GithubObject.NotSet or all(isinstance(element, str) for element in scopes), scopes assert note is github.GithubObject.NotSet or isinstance(note, str), note assert note_url is github.GithubObject.NotSet or isinstance(note_url, str), note_url assert client_id is github.GithubObject.NotSet or isinstance(client_id, str), client_id assert client_secret is github.GithubObject.NotSet or isinstance(client_secret, str), client_secret assert onetime_password is None or isinstance(onetime_password, str), onetime_password post_parameters = dict() if scopes is not github.GithubObject.NotSet: post_parameters["scopes"] = scopes if note is not github.GithubObject.NotSet: post_parameters["note"] = note if note_url is not github.GithubObject.NotSet: post_parameters["note_url"] = note_url if client_id is not github.GithubObject.NotSet: post_parameters["client_id"] = client_id if client_secret is not github.GithubObject.NotSet: post_parameters["client_secret"] = client_secret if onetime_password is not None: request_header = {Consts.headerOTP: onetime_password} # pragma no cover (Should be covered) else: request_header = None headers, data = self._requester.requestJsonAndCheck( "POST", "/authorizations", input=post_parameters, headers=request_header, ) return github.Authorization.Authorization(self._requester, headers, data, completed=True) def create_fork(self, repo): """ :calls: `POST /repos/:owner/:repo/forks <http://developer.github.com/v3/repos/forks>`_ :param repo: :class:`github.Repository.Repository` :rtype: :class:`github.Repository.Repository` """ assert isinstance(repo, github.Repository.Repository), repo headers, data = self._requester.requestJsonAndCheck( "POST", "/repos/" + repo.owner.login + "/" + repo.name + "/forks" ) return github.Repository.Repository(self._requester, headers, data, completed=True) def create_gist(self, public, files, description=github.GithubObject.NotSet): """ :calls: `POST /gists <http://developer.github.com/v3/gists>`_ :param public: bool :param files: dict of string to :class:`github.InputFileContent.InputFileContent` :param description: string :rtype: :class:`github.Gist.Gist` """ assert isinstance(public, bool), public assert all(isinstance(element, github.InputFileContent) for element in files.values()), files assert description is github.GithubObject.NotSet or isinstance(description, str), description post_parameters = { "public": public, "files": dict((key, value._identity) for key, value in files.items()), } if description is not github.GithubObject.NotSet: post_parameters["description"] = description headers, data = self._requester.requestJsonAndCheck( "POST", "/gists", input=post_parameters ) return github.Gist.Gist(self._requester, headers, data, completed=True) def create_key(self, title, key): """ :calls: `POST /user/keys <http://developer.github.com/v3/users/keys>`_ :param title: string :param key: string :rtype: :class:`github.UserKey.UserKey` """ assert isinstance(title, str), title assert isinstance(key, str), key post_parameters = { "title": title, "key": key, } headers, data = self._requester.requestJsonAndCheck( "POST", "/user/keys", input=post_parameters ) return github.UserKey.UserKey(self._requester, headers, data, completed=True) def create_repo(self, name, description=github.GithubObject.NotSet, homepage=github.GithubObject.NotSet, private=github.GithubObject.NotSet, has_issues=github.GithubObject.NotSet, has_wiki=github.GithubObject.NotSet, has_downloads=github.GithubObject.NotSet, has_projects=github.GithubObject.NotSet, auto_init=github.GithubObject.NotSet, license_template=github.GithubObject.NotSet, gitignore_template=github.GithubObject.NotSet, allow_squash_merge=github.GithubObject.NotSet, allow_merge_commit=github.GithubObject.NotSet, allow_rebase_merge=github.GithubObject.NotSet): """ :calls: `POST /user/repos <http://developer.github.com/v3/repos>`_ :param name: string :param description: string :param homepage: string :param private: bool :param has_issues: bool :param has_wiki: bool :param has_downloads: bool :param has_projects: bool :param auto_init: bool :param license_template: string :param gitignore_template: string :param allow_squash_merge: bool :param allow_merge_commit: bool :param allow_rebase_merge: bool :rtype: :class:`github.Repository.Repository` """ assert isinstance(name, str), name assert description is github.GithubObject.NotSet or isinstance(description, str), description assert homepage is github.GithubObject.NotSet or isinstance(homepage, str), homepage assert private is github.GithubObject.NotSet or isinstance(private, bool), private assert has_issues is github.GithubObject.NotSet or isinstance(has_issues, bool), has_issues assert has_wiki is github.GithubObject.NotSet or isinstance(has_wiki, bool), has_wiki assert has_downloads is github.GithubObject.NotSet or isinstance(has_downloads, bool), has_downloads assert has_projects is github.GithubObject.NotSet or isinstance(has_projects, bool), has_projects assert auto_init is github.GithubObject.NotSet or isinstance(auto_init, bool), auto_init assert license_template is github.GithubObject.NotSet or isinstance(license_template, str), license_template assert gitignore_template is github.GithubObject.NotSet or isinstance(gitignore_template, str), gitignore_template assert allow_squash_merge is github.GithubObject.NotSet or isinstance(allow_squash_merge, bool), allow_squash_merge assert allow_merge_commit is github.GithubObject.NotSet or isinstance(allow_merge_commit, bool), allow_merge_commit assert allow_rebase_merge is github.GithubObject.NotSet or isinstance(allow_rebase_merge, bool), allow_rebase_merge post_parameters = { "name": name, } if description is not github.GithubObject.NotSet: post_parameters["description"] = description if homepage is not github.GithubObject.NotSet: post_parameters["homepage"] = homepage if private is not github.GithubObject.NotSet: post_parameters["private"] = private if has_issues is not github.GithubObject.NotSet: post_parameters["has_issues"] = has_issues if has_wiki is not github.GithubObject.NotSet: post_parameters["has_wiki"] = has_wiki if has_downloads is not github.GithubObject.NotSet: post_parameters["has_downloads"] = has_downloads if has_projects is not github.GithubObject.NotSet: post_parameters["has_projects"] = has_projects if auto_init is not github.GithubObject.NotSet: post_parameters["auto_init"] = auto_init if license_template is not github.GithubObject.NotSet: post_parameters["license_template"] = license_template if gitignore_template is not github.GithubObject.NotSet: post_parameters["gitignore_template"] = gitignore_template if allow_squash_merge is not github.GithubObject.NotSet: post_parameters["allow_squash_merge"] = allow_squash_merge if allow_merge_commit is not github.GithubObject.NotSet: post_parameters["allow_merge_commit"] = allow_merge_commit if allow_rebase_merge is not github.GithubObject.NotSet: post_parameters["allow_rebase_merge"] = allow_rebase_merge headers, data = self._requester.requestJsonAndCheck( "POST", "/user/repos", input=post_parameters ) return github.Repository.Repository(self._requester, headers, data, completed=True) def edit(self, name=github.GithubObject.NotSet, email=github.GithubObject.NotSet, blog=github.GithubObject.NotSet, company=github.GithubObject.NotSet, location=github.GithubObject.NotSet, hireable=github.GithubObject.NotSet, bio=github.GithubObject.NotSet): """ :calls: `PATCH /user <http://developer.github.com/v3/users>`_ :param name: string :param email: string :param blog: string :param company: string :param location: string :param hireable: bool :param bio: string :rtype: None """ assert name is github.GithubObject.NotSet or isinstance(name, str), name assert email is github.GithubObject.NotSet or isinstance(email, str), email assert blog is github.GithubObject.NotSet or isinstance(blog, str), blog assert company is github.GithubObject.NotSet or isinstance(company, str), company assert location is github.GithubObject.NotSet or isinstance(location, str), location assert hireable is github.GithubObject.NotSet or isinstance(hireable, bool), hireable assert bio is github.GithubObject.NotSet or isinstance(bio, str), bio post_parameters = dict() if name is not github.GithubObject.NotSet: post_parameters["name"] = name if email is not github.GithubObject.NotSet: post_parameters["email"] = email if blog is not github.GithubObject.NotSet: post_parameters["blog"] = blog if company is not github.GithubObject.NotSet: post_parameters["company"] = company if location is not github.GithubObject.NotSet: post_parameters["location"] = location if hireable is not github.GithubObject.NotSet: post_parameters["hireable"] = hireable if bio is not github.GithubObject.NotSet: post_parameters["bio"] = bio headers, data = self._requester.requestJsonAndCheck( "PATCH", "/user", input=post_parameters ) self._useAttributes(data) def get_authorization(self, id): """ :calls: `GET /authorizations/:id <http://developer.github.com/v3/oauth>`_ :param id: integer :rtype: :class:`github.Authorization.Authorization` """ assert isinstance(id, int), id headers, data = self._requester.requestJsonAndCheck( "GET", "/authorizations/" + str(id) ) return github.Authorization.Authorization(self._requester, headers, data, completed=True) def get_authorizations(self): """ :calls: `GET /authorizations <http://developer.github.com/v3/oauth>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Authorization.Authorization` """ return github.PaginatedList.PaginatedList( github.Authorization.Authorization, self._requester, "/authorizations", None ) def get_emails(self): """ :calls: `GET /user/emails <http://developer.github.com/v3/users/emails>`_ :rtype: list of string """ headers, data = self._requester.requestJsonAndCheck( "GET", "/user/emails" ) return data def get_events(self): """ :calls: `GET /events <http://developer.github.com/v3/activity/events>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Event.Event` """ return github.PaginatedList.PaginatedList( github.Event.Event, self._requester, "/events", None ) def get_followers(self): """ :calls: `GET /user/followers <http://developer.github.com/v3/users/followers>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.NamedUser.NamedUser` """ return github.PaginatedList.PaginatedList( github.NamedUser.NamedUser, self._requester, "/user/followers", None ) def get_following(self): """ :calls: `GET /user/following <http://developer.github.com/v3/users/followers>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.NamedUser.NamedUser` """ return github.PaginatedList.PaginatedList( github.NamedUser.NamedUser, self._requester, "/user/following", None ) def get_gists(self, since=github.GithubObject.NotSet): """ :calls: `GET /gists <http://developer.github.com/v3/gists>`_ :param since: datetime.datetime format YYYY-MM-DDTHH:MM:SSZ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Gist.Gist` """ assert since is github.GithubObject.NotSet or isinstance(since, datetime.datetime), since url_parameters = dict() if since is not github.GithubObject.NotSet: url_parameters["since"] = since.strftime("%Y-%m-%dT%H:%M:%SZ") return github.PaginatedList.PaginatedList( github.Gist.Gist, self._requester, "/gists", url_parameters ) def get_issues(self, filter=github.GithubObject.NotSet, state=github.GithubObject.NotSet, labels=github.GithubObject.NotSet, sort=github.GithubObject.NotSet, direction=github.GithubObject.NotSet, since=github.GithubObject.NotSet): """ :calls: `GET /issues <http://developer.github.com/v3/issues>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue` :param filter: string :param state: string :param labels: list of :class:`github.Label.Label` :param sort: string :param direction: string :param since: datetime.datetime :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue` """ assert filter is github.GithubObject.NotSet or isinstance(filter, str), filter assert state is github.GithubObject.NotSet or isinstance(state, str), state assert labels is github.GithubObject.NotSet or all(isinstance(element, github.Label.Label) for element in labels), labels assert sort is github.GithubObject.NotSet or isinstance(sort, str), sort assert direction is github.GithubObject.NotSet or isinstance(direction, str), direction assert since is github.GithubObject.NotSet or isinstance(since, datetime.datetime), since url_parameters = dict() if filter is not github.GithubObject.NotSet: url_parameters["filter"] = filter if state is not github.GithubObject.NotSet: url_parameters["state"] = state if labels is not github.GithubObject.NotSet: url_parameters["labels"] = ",".join(label.name for label in labels) if sort is not github.GithubObject.NotSet: url_parameters["sort"] = sort if direction is not github.GithubObject.NotSet: url_parameters["direction"] = direction if since is not github.GithubObject.NotSet: url_parameters["since"] = since.strftime("%Y-%m-%dT%H:%M:%SZ") return github.PaginatedList.PaginatedList( github.Issue.Issue, self._requester, "/issues", url_parameters ) def get_user_issues(self, filter=github.GithubObject.NotSet, state=github.GithubObject.NotSet, labels=github.GithubObject.NotSet, sort=github.GithubObject.NotSet, direction=github.GithubObject.NotSet, since=github.GithubObject.NotSet): """ :calls: `GET /user/issues <http://developer.github.com/v3/issues>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue` :param filter: string :param state: string :param labels: list of :class:`github.Label.Label` :param sort: string :param direction: string :param since: datetime.datetime :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Issue.Issue` """ assert filter is github.GithubObject.NotSet or isinstance(filter, str), filter assert state is github.GithubObject.NotSet or isinstance(state, str), state assert labels is github.GithubObject.NotSet or all(isinstance(element, github.Label.Label) for element in labels), labels assert sort is github.GithubObject.NotSet or isinstance(sort, str), sort assert direction is github.GithubObject.NotSet or isinstance(direction, str), direction assert since is github.GithubObject.NotSet or isinstance(since, datetime.datetime), since url_parameters = dict() if filter is not github.GithubObject.NotSet: url_parameters["filter"] = filter if state is not github.GithubObject.NotSet: url_parameters["state"] = state if labels is not github.GithubObject.NotSet: url_parameters["labels"] = ",".join(label.name for label in labels) if sort is not github.GithubObject.NotSet: url_parameters["sort"] = sort if direction is not github.GithubObject.NotSet: url_parameters["direction"] = direction if since is not github.GithubObject.NotSet: url_parameters["since"] = since.strftime("%Y-%m-%dT%H:%M:%SZ") return github.PaginatedList.PaginatedList( github.Issue.Issue, self._requester, "/issues", url_parameters ) def get_key(self, id): """ :calls: `GET /user/keys/:id <http://developer.github.com/v3/users/keys>`_ :param id: integer :rtype: :class:`github.UserKey.UserKey` """ assert isinstance(id, int), id headers, data = self._requester.requestJsonAndCheck( "GET", "/user/keys/" + str(id) ) return github.UserKey.UserKey(self._requester, headers, data, completed=True) def get_keys(self): """ :calls: `GET /user/keys <http://developer.github.com/v3/users/keys>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.UserKey.UserKey` """ return github.PaginatedList.PaginatedList( github.UserKey.UserKey, self._requester, "/user/keys", None ) def get_notification(self, id): """ :calls: `GET /notifications/threads/:id <http://developer.github.com/v3/activity/notifications>`_ :rtype: :class:`github.Notification.Notification` """ assert isinstance(id, str), id headers, data = self._requester.requestJsonAndCheck( "GET", "/notifications/threads/" + id ) return github.Notification.Notification(self._requester, headers, data, completed=True) def get_notifications(self, all=github.GithubObject.NotSet, participating=github.GithubObject.NotSet): """ :calls: `GET /notifications <http://developer.github.com/v3/activity/notifications>`_ :param all: bool :param participating: bool :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Notification.Notification` """ assert all is github.GithubObject.NotSet or isinstance(all, bool), all assert participating is github.GithubObject.NotSet or isinstance(participating, bool), participating params = dict() if all is not github.GithubObject.NotSet: params["all"] = all if participating is not github.GithubObject.NotSet: params["participating"] = participating # TODO: implement parameter "since" return github.PaginatedList.PaginatedList( github.Notification.Notification, self._requester, "/notifications", params ) def get_organization_events(self, org): """ :calls: `GET /users/:user/events/orgs/:org <http://developer.github.com/v3/activity/events>`_ :param org: :class:`github.Organization.Organization` :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Event.Event` """ assert isinstance(org, github.Organization.Organization), org return github.PaginatedList.PaginatedList( github.Event.Event, self._requester, "/users/" + self.login + "/events/orgs/" + org.login, None ) def get_orgs(self): """ :calls: `GET /user/orgs <http://developer.github.com/v3/orgs>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Organization.Organization` """ return github.PaginatedList.PaginatedList( github.Organization.Organization, self._requester, "/user/orgs", None ) def get_repo(self, name): """ :calls: `GET /repos/:owner/:repo <http://developer.github.com/v3/repos>`_ :param name: string :rtype: :class:`github.Repository.Repository` """ assert isinstance(name, str), name headers, data = self._requester.requestJsonAndCheck( "GET", "/repos/" + self.login + "/" + name ) return github.Repository.Repository(self._requester, headers, data, completed=True) def get_repos(self, visibility=github.GithubObject.NotSet, affiliation=github.GithubObject.NotSet, type=github.GithubObject.NotSet, sort=github.GithubObject.NotSet, direction=github.GithubObject.NotSet): """ :calls: `GET /user/repos <http://developer.github.com/v3/repos>` :param visibility: string :param affiliation: string :param type: string :param sort: string :param direction: string :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository` """ assert visibility is github.GithubObject.NotSet or isinstance(visibility, str), visibility assert affiliation is github.GithubObject.NotSet or isinstance(affiliation, str), affiliation assert type is github.GithubObject.NotSet or isinstance(type, str), type assert sort is github.GithubObject.NotSet or isinstance(sort, str), sort assert direction is github.GithubObject.NotSet or isinstance(direction, str), direction url_parameters = dict() if visibility is not github.GithubObject.NotSet: url_parameters["visibility"] = visibility if affiliation is not github.GithubObject.NotSet: url_parameters["affiliation"] = affiliation if type is not github.GithubObject.NotSet: url_parameters["type"] = type if sort is not github.GithubObject.NotSet: url_parameters["sort"] = sort if direction is not github.GithubObject.NotSet: url_parameters["direction"] = direction return github.PaginatedList.PaginatedList( github.Repository.Repository, self._requester, "/user/repos", url_parameters ) def get_starred(self): """ :calls: `GET /user/starred <http://developer.github.com/v3/activity/starring>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository` """ return github.PaginatedList.PaginatedList( github.Repository.Repository, self._requester, "/user/starred", None ) def get_starred_gists(self): """ :calls: `GET /gists/starred <http://developer.github.com/v3/gists>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Gist.Gist` """ return github.PaginatedList.PaginatedList( github.Gist.Gist, self._requester, "/gists/starred", None ) def get_subscriptions(self): """ :calls: `GET /user/subscriptions <http://developer.github.com/v3/activity/watching>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository` """ return github.PaginatedList.PaginatedList( github.Repository.Repository, self._requester, "/user/subscriptions", None ) def get_teams(self): """ :calls: `GET /user/teams <http://developer.github.com/v3/orgs/teams>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Team.Team` """ return github.PaginatedList.PaginatedList( github.Team.Team, self._requester, "/user/teams", None ) def get_watched(self): """ :calls: `GET /user/subscriptions <http://developer.github.com/v3/activity/watching>`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Repository.Repository` """ return github.PaginatedList.PaginatedList( github.Repository.Repository, self._requester, "/user/subscriptions", None ) def has_in_following(self, following): """ :calls: `GET /user/following/:user <http://developer.github.com/v3/users/followers>`_ :param following: :class:`github.NamedUser.NamedUser` :rtype: bool """ assert isinstance(following, github.NamedUser.NamedUser), following status, headers, data = self._requester.requestJson( "GET", "/user/following/" + following._identity ) return status == 204 def has_in_starred(self, starred): """ :calls: `GET /user/starred/:owner/:repo <http://developer.github.com/v3/activity/starring>`_ :param starred: :class:`github.Repository.Repository` :rtype: bool """ assert isinstance(starred, github.Repository.Repository), starred status, headers, data = self._requester.requestJson( "GET", "/user/starred/" + starred._identity ) return status == 204 def has_in_subscriptions(self, subscription): """ :calls: `GET /user/subscriptions/:owner/:repo <http://developer.github.com/v3/activity/watching>`_ :param subscription: :class:`github.Repository.Repository` :rtype: bool """ assert isinstance(subscription, github.Repository.Repository), subscription status, headers, data = self._requester.requestJson( "GET", "/user/subscriptions/" + subscription._identity ) return status == 204 def has_in_watched(self, watched): """ :calls: `GET /repos/:owner/:repo/subscription <http://developer.github.com/v3/activity/watching>`_ :param watched: :class:`github.Repository.Repository` :rtype: bool """ assert isinstance(watched, github.Repository.Repository), watched status, headers, data = self._requester.requestJson( "GET", "/repos/" + watched._identity + "/subscription" ) return status == 200 def mark_notifications_as_read(self, last_read_at=datetime.datetime.utcnow()): """ :calls: `PUT /notifications <https://developer.github.com/v3/activity/notifications>`_ :param last_read_at: datetime """ assert isinstance(last_read_at, datetime.datetime) put_parameters = { "last_read_at": last_read_at.strftime('%Y-%m-%dT%H:%M:%SZ') } headers, data = self._requester.requestJsonAndCheck( "PUT", "/notifications", input=put_parameters ) def remove_from_emails(self, *emails): """ :calls: `DELETE /user/emails <http://developer.github.com/v3/users/emails>`_ :param email: string :rtype: None """ assert all(isinstance(element, str) for element in emails), emails post_parameters = emails headers, data = self._requester.requestJsonAndCheck( "DELETE", "/user/emails", input=post_parameters ) def remove_from_following(self, following): """ :calls: `DELETE /user/following/:user <http://developer.github.com/v3/users/followers>`_ :param following: :class:`github.NamedUser.NamedUser` :rtype: None """ assert isinstance(following, github.NamedUser.NamedUser), following headers, data = self._requester.requestJsonAndCheck( "DELETE", "/user/following/" + following._identity ) def remove_from_starred(self, starred): """ :calls: `DELETE /user/starred/:owner/:repo <http://developer.github.com/v3/activity/starring>`_ :param starred: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(starred, github.Repository.Repository), starred headers, data = self._requester.requestJsonAndCheck( "DELETE", "/user/starred/" + starred._identity ) def remove_from_subscriptions(self, subscription): """ :calls: `DELETE /user/subscriptions/:owner/:repo <http://developer.github.com/v3/activity/watching>`_ :param subscription: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(subscription, github.Repository.Repository), subscription headers, data = self._requester.requestJsonAndCheck( "DELETE", "/user/subscriptions/" + subscription._identity ) def remove_from_watched(self, watched): """ :calls: `DELETE /repos/:owner/:repo/subscription <http://developer.github.com/v3/activity/watching>`_ :param watched: :class:`github.Repository.Repository` :rtype: None """ assert isinstance(watched, github.Repository.Repository), watched headers, data = self._requester.requestJsonAndCheck( "DELETE", "/repos/" + watched._identity + "/subscription" ) def accept_invitation(self, invitation): """ :calls: `PATCH /user/repository_invitations/:invitation_id <https://developer.github.com/v3/repos/invitations/>` :param invitation: :class:`github.Invitation.Invitation` or int :rtype: None """ assert isinstance(invitation, github.Invitation.Invitation) or isinstance(invitation, int) if isinstance(invitation, github.Invitation.Invitation): invitation = invitation.id headers, data = self._requester.requestJsonAndCheck( "PATCH", "/user/repository_invitations/" + str(invitation), input={} ) def create_migration(self, repos, lock_repositories=github.GithubObject.NotSet, exclude_attachments=github.GithubObject.NotSet): """ :calls: `POST /user/migrations`_ :param repos: list or tuple of str :param lock_repositories: bool :param exclude_attachments: bool :rtype: :class:`github.Migration.Migration` """ assert isinstance(repos, (list, tuple)), repos assert all(isinstance(repo, str) for repo in repos), repos assert lock_repositories is github.GithubObject.NotSet or isinstance(lock_repositories, bool), lock_repositories assert exclude_attachments is github.GithubObject.NotSet or isinstance(exclude_attachments, bool), exclude_attachments post_parameters = { "repositories": repos } if lock_repositories is not github.GithubObject.NotSet: post_parameters["lock_repositories"] = lock_repositories if exclude_attachments is not github.GithubObject.NotSet: post_parameters["exclude_attachments"] = exclude_attachments headers, data = self._requester.requestJsonAndCheck( "POST", "/user/migrations", input=post_parameters, headers={ "Accept": Consts.mediaTypeMigrationPreview } ) return github.Migration.Migration(self._requester, headers, data, completed=True) def get_migrations(self): """ :calls: `GET /user/migrations`_ :rtype: :class:`github.PaginatedList.PaginatedList` of :class:`github.Migration.Migration` """ return github.PaginatedList.PaginatedList( github.Migration.Migration, self._requester, "/user/migrations", None, headers={ "Accept": Consts.mediaTypeMigrationPreview } ) def _initAttributes(self): self._avatar_url = github.GithubObject.NotSet self._bio = github.GithubObject.NotSet self._blog = github.GithubObject.NotSet self._collaborators = github.GithubObject.NotSet self._company = github.GithubObject.NotSet self._created_at = github.GithubObject.NotSet self._disk_usage = github.GithubObject.NotSet self._email = github.GithubObject.NotSet self._events_url = github.GithubObject.NotSet self._followers = github.GithubObject.NotSet self._followers_url = github.GithubObject.NotSet self._following = github.GithubObject.NotSet self._following_url = github.GithubObject.NotSet self._gists_url = github.GithubObject.NotSet self._gravatar_id = github.GithubObject.NotSet self._hireable = github.GithubObject.NotSet self._html_url = github.GithubObject.NotSet self._id = github.GithubObject.NotSet self._location = github.GithubObject.NotSet self._login = github.GithubObject.NotSet self._name = github.GithubObject.NotSet self._organizations_url = github.GithubObject.NotSet self._owned_private_repos = github.GithubObject.NotSet self._plan = github.GithubObject.NotSet self._private_gists = github.GithubObject.NotSet self._public_gists = github.GithubObject.NotSet self._public_repos = github.GithubObject.NotSet self._received_events_url = github.GithubObject.NotSet self._repos_url = github.GithubObject.NotSet self._site_admin = github.GithubObject.NotSet self._starred_url = github.GithubObject.NotSet self._subscriptions_url = github.GithubObject.NotSet self._total_private_repos = github.GithubObject.NotSet self._type = github.GithubObject.NotSet self._updated_at = github.GithubObject.NotSet self._url = github.GithubObject.NotSet def _useAttributes(self, attributes): if "avatar_url" in attributes: # pragma no branch self._avatar_url = self._makeStringAttribute(attributes["avatar_url"]) if "bio" in attributes: # pragma no branch self._bio = self._makeStringAttribute(attributes["bio"]) if "blog" in attributes: # pragma no branch self._blog = self._makeStringAttribute(attributes["blog"]) if "collaborators" in attributes: # pragma no branch self._collaborators = self._makeIntAttribute(attributes["collaborators"]) if "company" in attributes: # pragma no branch self._company = self._makeStringAttribute(attributes["company"]) if "created_at" in attributes: # pragma no branch self._created_at = self._makeDatetimeAttribute(attributes["created_at"]) if "disk_usage" in attributes: # pragma no branch self._disk_usage = self._makeIntAttribute(attributes["disk_usage"]) if "email" in attributes: # pragma no branch self._email = self._makeStringAttribute(attributes["email"]) if "events_url" in attributes: # pragma no branch self._events_url = self._makeStringAttribute(attributes["events_url"]) if "followers" in attributes: # pragma no branch self._followers = self._makeIntAttribute(attributes["followers"]) if "followers_url" in attributes: # pragma no branch self._followers_url = self._makeStringAttribute(attributes["followers_url"]) if "following" in attributes: # pragma no branch self._following = self._makeIntAttribute(attributes["following"]) if "following_url" in attributes: # pragma no branch self._following_url = self._makeStringAttribute(attributes["following_url"]) if "gists_url" in attributes: # pragma no branch self._gists_url = self._makeStringAttribute(attributes["gists_url"]) if "gravatar_id" in attributes: # pragma no branch self._gravatar_id = self._makeStringAttribute(attributes["gravatar_id"]) if "hireable" in attributes: # pragma no branch self._hireable = self._makeBoolAttribute(attributes["hireable"]) if "html_url" in attributes: # pragma no branch self._html_url = self._makeStringAttribute(attributes["html_url"]) if "id" in attributes: # pragma no branch self._id = self._makeIntAttribute(attributes["id"]) if "location" in attributes: # pragma no branch self._location = self._makeStringAttribute(attributes["location"]) if "login" in attributes: # pragma no branch self._login = self._makeStringAttribute(attributes["login"]) if "name" in attributes: # pragma no branch self._name = self._makeStringAttribute(attributes["name"]) if "organizations_url" in attributes: # pragma no branch self._organizations_url = self._makeStringAttribute(attributes["organizations_url"]) if "owned_private_repos" in attributes: # pragma no branch self._owned_private_repos = self._makeIntAttribute(attributes["owned_private_repos"]) if "plan" in attributes: # pragma no branch self._plan = self._makeClassAttribute(github.Plan.Plan, attributes["plan"]) if "private_gists" in attributes: # pragma no branch self._private_gists = self._makeIntAttribute(attributes["private_gists"]) if "public_gists" in attributes: # pragma no branch self._public_gists = self._makeIntAttribute(attributes["public_gists"]) if "public_repos" in attributes: # pragma no branch self._public_repos = self._makeIntAttribute(attributes["public_repos"]) if "received_events_url" in attributes: # pragma no branch self._received_events_url = self._makeStringAttribute(attributes["received_events_url"]) if "repos_url" in attributes: # pragma no branch self._repos_url = self._makeStringAttribute(attributes["repos_url"]) if "site_admin" in attributes: # pragma no branch self._site_admin = self._makeBoolAttribute(attributes["site_admin"]) if "starred_url" in attributes: # pragma no branch self._starred_url = self._makeStringAttribute(attributes["starred_url"]) if "subscriptions_url" in attributes: # pragma no branch self._subscriptions_url = self._makeStringAttribute(attributes["subscriptions_url"]) if "total_private_repos" in attributes: # pragma no branch self._total_private_repos = self._makeIntAttribute(attributes["total_private_repos"]) if "type" in attributes: # pragma no branch self._type = self._makeStringAttribute(attributes["type"]) if "updated_at" in attributes: # pragma no branch self._updated_at = self._makeDatetimeAttribute(attributes["updated_at"]) if "url" in attributes: # pragma no branch self._url = self._makeStringAttribute(attributes["url"])
the-stack_0_10655
import unittest from ultrasonic.driver import UltrasonicDriver class UltrasonicSensorTest(unittest.TestCase): def test_parse_data(self): test_data = "SensorA: 34\nSensorB: 0\nSensorC: 0\nSensorA: 40\nSensorD: 0" parsed_data = [] for line in test_data.split("\n"): parsed_data.append(UltrasonicDriver.parse_data(line)) self.assertIn(("A", 0.34), parsed_data) if __name__ == '__main__': unittest.main()
the-stack_0_10656
import os import re from poetry.semver import Version from poetry.version.requirements import Requirement from .dependency import Dependency from .dependency_package import DependencyPackage from .directory_dependency import DirectoryDependency from .file_dependency import FileDependency from .locker import Locker from .package import Package from .package_collection import PackageCollection from .project_package import ProjectPackage from .utils.link import Link from .utils.utils import convert_markers from .utils.utils import group_markers from .utils.utils import is_archive_file from .utils.utils import is_installable_dir from .utils.utils import is_url from .utils.utils import path_to_url from .utils.utils import strip_extras from .vcs_dependency import VCSDependency def dependency_from_pep_508(name): # Removing comments parts = name.split("#", 1) name = parts[0].strip() if len(parts) > 1: rest = parts[1] if ";" in rest: name += ";" + rest.split(";", 1)[1] req = Requirement(name) if req.marker: markers = convert_markers(req.marker) else: markers = {} name = req.name path = os.path.normpath(os.path.abspath(name)) link = None if is_url(name): link = Link(name) else: p, extras = strip_extras(path) if os.path.isdir(p) and (os.path.sep in name or name.startswith(".")): if not is_installable_dir(p): raise ValueError( "Directory {!r} is not installable. File 'setup.py' " "not found.".format(name) ) link = Link(path_to_url(p)) elif is_archive_file(p): link = Link(path_to_url(p)) # it's a local file, dir, or url if link: # Handle relative file URLs if link.scheme == "file" and re.search(r"\.\./", link.url): link = Link(path_to_url(os.path.normpath(os.path.abspath(link.path)))) # wheel file if link.is_wheel: m = re.match(r"^(?P<namever>(?P<name>.+?)-(?P<ver>\d.*?))", link.filename) if not m: raise ValueError("Invalid wheel name: {}".format(link.filename)) name = m.group("name") version = m.group("ver") dep = Dependency(name, version) else: name = link.egg_fragment if link.scheme == "git": dep = VCSDependency(name, "git", link.url_without_fragment) else: dep = Dependency(name, "*") else: if req.pretty_constraint: constraint = req.constraint else: constraint = "*" dep = Dependency(name, constraint) if "extra" in markers: # If we have extras, the dependency is optional dep.deactivate() for or_ in markers["extra"]: for _, extra in or_: dep.in_extras.append(extra) if "python_version" in markers: ors = [] for or_ in markers["python_version"]: ands = [] for op, version in or_: # Expand python version if op == "==": version = "~" + version op = "" elif op == "!=": version += ".*" elif op in ("<=", ">"): parsed_version = Version.parse(version) if parsed_version.precision == 1: if op == "<=": op = "<" version = parsed_version.next_major.text elif op == ">": op = ">=" version = parsed_version.next_major.text elif parsed_version.precision == 2: if op == "<=": op = "<" version = parsed_version.next_minor.text elif op == ">": op = ">=" version = parsed_version.next_minor.text elif op in ("in", "not in"): versions = [] for v in re.split("[ ,]+", version): split = v.split(".") if len(split) in [1, 2]: split.append("*") op_ = "" if op == "in" else "!=" else: op_ = "==" if op == "in" else "!=" versions.append(op_ + ".".join(split)) glue = " || " if op == "in" else ", " if versions: ands.append(glue.join(versions)) continue ands.append("{}{}".format(op, version)) ors.append(" ".join(ands)) dep.python_versions = " || ".join(ors) if req.marker: dep.marker = req.marker # Extras for extra in req.extras: dep.extras.append(extra) return dep
the-stack_0_10658
""" Message delivery Various interfaces to messaging services. Currently: - ``pushover`` - a platform for sending and receiving push notifications is supported. AUTHORS: - Martin Albrecht (2012) - initial implementation """ import http.client as httplib from urllib.parse import urlencode from ssl import SSLContext pushover_defaults = {"token": "Eql67F14ohOZJ0AtEBJJU7FiLAk8wK"} def pushover(message, **kwds): """ Send a push notification with ``message`` to ``user`` using https://pushover.net/. Pushover is a platform for sending and receiving push notifications. On the server side, it provides an HTTP API for queueing messages to deliver to devices. On the device side, iOS and Android clients receive those push notifications, show them to the user, and store them for offline viewing. An account on https://pushover.net is required and the Pushover app must be installed on your phone for this function to be able to deliver messages to you. INPUT: - ``message`` - your message - ``user`` - the user key (not e-mail address) of your user (or you), viewable when logged into the Pushover dashboard. (default: ``None``) - ``device`` - your user's device identifier to send the message directly to that device, rather than all of the user's devices (default: ``None``) - ``title`` - your message's title, otherwise uses your app's name (default: ``None``) - ``url`` - a supplementary URL to show with your message (default: ``None``) - ``url_title`` - a title for your supplementary URL (default: ``None``) - ``priority`` - set to 1 to display as high-priority and bypass quiet hours, or -1 to always send as a quiet notification (default: ``0``) - ``timestamp`` - set to a unix timestamp to have your message show with a particular time, rather than now (default: ``None``) - ``sound`` - set to the name of one of the sounds supported by device clients to override the user's default sound choice (default: ``None``) - ``token`` - your application's API token (default: Sage's default App token) EXAMPLES:: sage: import sage.misc.messaging sage: sage.misc.messaging.pushover("Hi, how are you?", user="XXX") # not tested To set default values populate ``pushover_defaults``:: sage: sage.misc.messaging.pushover_defaults["user"] = "USER_TOKEN" sage: sage.misc.messaging.pushover("Hi, how are you?") # not tested .. note:: You may want to populate ``sage.misc.messaging.pushover_defaults`` with default values such as the default user in ``$HOME/.sage/init.sage``. """ request = {"message": message} request.update(pushover_defaults) request.update(kwds) conn = httplib.HTTPSConnection("api.pushover.net:443", context=SSLContext()) conn.request("POST", "/1/messages.json", urlencode(request), {"Content-type": "application/x-www-form-urlencoded"}) return conn.getresponse().status == 200
the-stack_0_10660
""" @file @brief Helpers to run examples created with function @see fn export2tf2onnx. """ import collections import inspect import numpy from onnx.numpy_helper import from_array from onnx.helper import ( make_node, make_graph, make_model, set_model_props, make_tensor) from onnx import AttributeProto from ..onnx2py_helper import guess_dtype, guess_proto_dtype from ..onnx_tools import ensure_topological_order _make_name_id = 0 def make_name(name): "Creates a unique name." global _make_name_id # pylint: disable=W0603 name = "%s_%d" % (name, _make_name_id) _make_name_id += 1 return name def make_sure(cond, msg, *args): "Raises an exception if cond is not verified." if not cond: raise RuntimeError(msg % tuple(args)) def map_onnx_to_numpy_type(onnx_dtype): "Converts ONNX type into numpy type." return guess_dtype(onnx_dtype) class tf_op: """ Decorator to register any new converter. :param name: type of the operator to rewrite :param domain: domain """ _OPSETS = collections.OrderedDict() def __init__(self, name, domain='', **kwargs): if not isinstance(name, list): name = [name] self.names = name self.domain = domain self.kwargs = kwargs def __call__(self, func): for ke, va in inspect.getmembers(func, inspect.ismethod): if ke.startswith("version_"): version = int(ke.replace("version_", "")) self._register_handler( va, version, self.names, self.domain, self.kwargs) return func def _register_handler(self, func, version, names, domain, kwargs): opset = tf_op._OPSETS.get(domain) if not opset: opset = [] tf_op._OPSETS[domain] = opset while version >= len(opset): opset.append({}) opset_dict = opset[version] for name in names: opset_dict[name] = (func, kwargs) class Tf2OnnxConvert: """ Applies the converter on an ONNX graph. :param onnx_model: ONNX graph :param tf_op: class which register :param verbose: verbosity :param target_opset: targetted opsets """ def __init__(self, onnx_model, _tf_op=None, verbose=None, target_opset=None): self._onnx_model = onnx_model self._tf_op = _tf_op or tf_op self.verbose = verbose if isinstance(target_opset, int): self.target_opsets = {'': target_opset} elif isinstance(target_opset, dict): self.target_opsets = target_opset elif target_opset is None: opsets = {} for oimp in onnx_model.opset_import: if oimp.domain == '': opsets[oimp.domain] = oimp.version opset = oimp.version else: opsets[oimp.domain] = opset self.target_opsets = opsets else: raise ValueError( # pragma: no cover "Unexepected value for target_opset=%r." % target_opset) self._names = {} for node in onnx_model.graph.node: self._names[node.name] = node for init in onnx_model.graph.initializer: self._names[init.name] = init # _forbidden_new_names contains current names and deleted names. self._forbidden_new_names = set(self._names) if '' in self.target_opsets: self.opset = self.target_opsets[''] if not hasattr(self, 'opset'): raise RuntimeError( # pragma: no cover "Attribute opset is missing, target_opset=%r." % target_opset) def get_node_by_name(self, name): """ Retrieves a node by its name. :param name: node name :return: node name """ if name not in self._names: raise RuntimeError( "Unable to find node name %r among %r." % ( name, ", ".join(sorted(self._names)))) return self._names[name] def _add_node_name(self, obj): """ Registers an object in in the graph by its name. :param name: node or initializer """ if obj.name in self._forbidden_new_names: raise RuntimeError( "Name %r is already registered." % obj.name) self._names[obj.name] = obj self._forbidden_new_names.add(obj.name) def make_node(self, op_type, inputs, attr=None, outputs=None, name=None, domain='', output_count=1): """ Adds a node to the list of nodes. :param op_type: operator type :param inputs: list of strings :param attr: dictionary of attributes :param outputs: None or list of strings :param output_count: used if outputs is None to guess the number of outputs of this node :param name: name of the node :param domain: domain :return: created node """ if self.verbose: print("[Tf2OnnxConvert.make_node] op_type=%r inputs=%r" % ( op_type, inputs)) if attr is None: attr = {} if name is None: name = make_name(op_type) if name in self._names: raise RuntimeError( "Node name %r already exists in %r." % ( name, ", ".join(sorted(self._names)))) if outputs is None: outputs = [(name + ":" + str(i)) for i in range(output_count)] output_count = len(outputs) raw_attr = {} onnx_attrs = [] for a, v in attr.items(): if isinstance(v, AttributeProto): onnx_attrs.append(v) else: raw_attr[a] = v onnx_node = make_node( op_type, inputs, outputs, name=name, domain=domain, **raw_attr) self._add_node_name(onnx_node) return onnx_node def make_const(self, name, np_val, skip_conversion=False, raw=True): """ Make a new constants in the graph. :param name: const node name, must be unique. :param np_val: value of type numpy ndarray. :param skip_conversion: bool, indicate whether this created node would be mapped during conversion :param raw: whether to store data at field of raw_data or the specific field according to its dtype :return: create initializer """ if name in self._names: raise RuntimeError( "Initializer name %r already exists in %r." % ( name, ", ".join(sorted(self._names)))) np_val_flat = np_val.flatten() is_bytes = (np_val.dtype == numpy.object and len(np_val_flat) > 0 and isinstance(np_val_flat[0], bytes)) if raw and not is_bytes: onnx_tensor = from_array(np_val, name) else: onnx_tensor = make_tensor( name, guess_proto_dtype(np_val.dtype), np_val.shape, np_val_flat, raw=False) self._add_node_name(onnx_tensor) return onnx_tensor def get_dtype(self, input_name): """ Returns the type of one node or None if unknown. :param input_name: result name :return: numpy dtype """ inputs = self._onnx_model.graph.input names = [_.name for _ in inputs] if input_name not in names: return None # pragma: no cover ind = names.index(input_name) return inputs[ind].type.tensor_type.elem_type def replace_all_inputs(self, old_name, new_name): """ Every taking *old_name* as inputs will take *new_name* instead. Looks in the output as well but in that case, it creates an identity node to avoid changing an output name. :param old_name: name to replace :param new_name: new name :return: list of impacted nodes """ res = [] for node in self._names.values(): if not hasattr(node, 'input'): continue if old_name not in node.input: continue new_inputs = [new_name if i.name == old_name else i.name for i in node.input] node.input[:] = new_inputs[:] res.append(node) if self.verbose: print("[Tf2OnnxConvert.replace_all_inputs] replace %r by %r in node %r" % ( old_name, new_name, node.name)) for o in self._onnx_model.graph.output: if o.name != old_name: continue n = self.make_node("Identity", [new_name], outputs=[old_name], name=make_name("IdOutputReplaced")) res.append(n) if self.verbose: print("[Tf2OnnxConvert.replace_all_inputs] add id node from %r to %r " "with node %r." % ( old_name, new_name, n.name)) # pylint: disable=E1101 return res def remove_node(self, name): """ Removes a node name from the list. """ if name not in self._names: raise RuntimeError( "Unable to delete name %r because it does not exists." % name) del self._names[name] if self.verbose: print("[Tf2OnnxConvert.remove_node] delete name %r" % name) def get_shape(self, input_name): """ Returns the type of one node or None if unknown. :param input_name: result name :return: numpy dtype """ inputs = self._onnx_model.graph.input names = [_.name for _ in inputs] if input_name not in names: return None # pragma: no cover ind = names.index(input_name) dims = inputs[ind].type.tensor_type.shape.dim return tuple(dims) def run(self): """ Calls the registered converters on the graph held by this instance. Returns the new onnx graph. :return: ONNX graph """ if len(self._tf_op._OPSETS) == 0: raise RuntimeError( # pragma: no cover "No converter was registered.") if self.verbose: print("[Tf2OnnxConvert.run]") done = {} modif = 1 while modif > 0: modif = 0 # The converter may alter the current list of nodes, we freeze it. current_values = list(self._names.values()) for node in current_values: if not hasattr(node, 'domain'): # initializer continue if done.get(node.name, False): continue domain = node.domain if domain not in self._tf_op._OPSETS: continue # look for a converter rews = self._tf_op._OPSETS[domain] target = min(self.target_opsets[domain], len(rews)) conv = None for i in range(len(rews) - 1, -1, -1): if node.op_type in rews[i]: conv = rews[i][node.op_type] break if conv is None: continue # applies the converter if self.verbose: print("[Tf2OnnxConvert.run] convert node type=%r opset=%r name=%r" "" % (node.op_type, target, node.name)) fct, kwargs = conv fct(self, node, target_opset=target, **kwargs) modif += 1 return self.make_model() def make_model(self): """ Produces the new ONNX graph with the updated sets of nodes. """ inputs = self._onnx_model.graph.input outputs = self._onnx_model.graph.output inits = [init[1] for init in sorted(self._names.items()) if not hasattr(init[1], 'domain')] nodes = [node[1] for node in sorted(self._names.items()) if hasattr(node[1], 'domain')] nodes = ensure_topological_order(inputs, inits, nodes) if self.verbose: print( "[Tf2OnnxConvert.make_node] %d nodes %d inputs %d " "outputs %d initializers" "" % (len(nodes), len(inputs), len(outputs), len(inits))) graph = make_graph(nodes, self._onnx_model.graph.name, inputs, outputs, inits) onnx_model = make_model(graph) onnx_model.ir_version = self._onnx_model.ir_version onnx_model.producer_name = self._onnx_model.producer_name + "-mlprodict" onnx_model.producer_version = self._onnx_model.producer_version onnx_model.domain = self._onnx_model.domain onnx_model.model_version = self._onnx_model.model_version onnx_model.doc_string = self._onnx_model.doc_string metadata = {p.key: p.value for p in self._onnx_model.metadata_props} set_model_props(onnx_model, metadata) # opsets del onnx_model.opset_import[:] # pylint: disable=E1101 for dom, value in self.target_opsets.items(): op_set = onnx_model.opset_import.add() # pylint: disable=E1101 op_set.domain = dom op_set.version = value return onnx_model class GraphBuilder: """ Helpers to build graph. :param graph! """ def __init__(self, graph): self._g = graph @property def graph(self): "Returns the graph." return self._g def make_slice(self, kwargs, name=None, shapes=None, dtypes=None, return_node=False): """ slice changes its schema at opset 10: it treats some attributes as dynamic input so this function has to process inputs according to graph's opset version to get "inputs" and "attr" to feed "make_node" kwargs: key could be ["data", "starts", "ends", "axes", "steps", "outputs"]. """ outputs = kwargs.pop("outputs", None) if self.graph.opset < 10: # "data" is string # "starts", "ends" and "axes" are attributes, and "axes" is optional. data = kwargs.pop("data") starts = self._convert_to_attribute(kwargs.pop("starts")) ends = self._convert_to_attribute(kwargs.pop("ends")) axes = self._convert_to_attribute( kwargs.pop("axes", None), is_optional=True) attr = {"starts": starts, "ends": ends, "axes": axes} inputs = [data] else: # slice-10 has 3 required inputs "data", "starts", "ends"l # and 2 optional inputs "axes", "steps" # input sequence should be "data", "starts", "ends", "axes", "steps" attr = {} data = kwargs.pop("data") starts = self._convert_to_input(kwargs.pop( "starts"), "const_starts", dtype=numpy.int64) ends = self._convert_to_input(kwargs.pop( "ends"), "const_ends", dtype=numpy.int64) axes = self._convert_to_input(kwargs.pop( "axes", None), "const_axes", is_optional=True, dtype=numpy.int64) steps = self._convert_to_input(kwargs.pop( "steps", None), "const_steps", is_optional=True, dtype=numpy.int64) inputs = [data, starts.name, ends.name, axes.name, steps.name] # pro-process inputs and attr make_sure(not kwargs, "kwargs contains un-used key") new_attr = {} for key, val in attr.items(): if val is not None: new_attr[key] = val attr = new_attr for ind, val in enumerate(inputs): if val is None: inputs[ind] = "" # empty string means no connection in ONNX # remove tailing "" while inputs[-1] == "": inputs = inputs[:-1] if self.graph.opset >= 10: dtype = self.graph.get_dtype(inputs[1]) for input_data in inputs[1:]: if input_data != "": make_sure(dtype == self.graph.get_dtype( input_data), "dtype should be same") node = self.graph.make_node(op_type="Slice", inputs=inputs, attr=attr, name=name, outputs=outputs, shapes=shapes, dtypes=dtypes) if return_node: return node raise NotImplementedError("return_node must be True") def make_squeeze(self, kwargs, name=None, shapes=None, dtypes=None, return_node=False, op_name_scope=None): """ Squeeze changes its schema at opset 13: it treats axes as a dynamic input kwargs: key could be ["data", "axes"]. """ outputs = kwargs.pop("outputs", None) if self.graph.opset < 13: data = kwargs.pop("data") axes = self._convert_to_attribute( kwargs.pop("axes", None), is_optional=True) attr = {"axes": axes} inputs = [data] else: data = kwargs.pop("data") axes = self._convert_to_input(kwargs.pop( "axes", None), "const_axes", is_optional=True, dtype=numpy.int64) attr = {} inputs = [data, axes.name] make_sure(not kwargs, "kwargs contains un-used key") new_attr = {} for key, val in attr.items(): if val is not None: new_attr[key] = val attr = new_attr for ind, val in enumerate(inputs): if val is None: inputs[ind] = "" # empty string means no connection in ONNX # remove tailing "" while inputs[-1] == "": inputs = inputs[:-1] node = self.graph.make_node(op_type="Squeeze", inputs=inputs, attr=attr, name=name, outputs=outputs) if return_node: return node raise NotImplementedError("return_node must be True") def make_unsqueeze(self, kwargs, name=None, shapes=None, dtypes=None, return_node=False, op_name_scope=None): """ Unsqueeze changes its schema at opset 13: it treats axes as a dynamic input kwargs: key could be ["data", "axes"]. """ outputs = kwargs.pop("outputs", None) if self.graph.opset < 13: data = kwargs.pop("data") axes = self._convert_to_attribute( kwargs.pop("axes", None), is_optional=True) attr = {"axes": axes} inputs = [data] else: data = kwargs.pop("data") axes = self._convert_to_input(kwargs.pop( "axes", None), "const_axes", is_optional=True, dtype=numpy.int64) attr = {} inputs = [data, axes.name] make_sure(not kwargs, "kwargs contains un-used key") new_attr = {} for key, val in attr.items(): if val is not None: new_attr[key] = val attr = new_attr for ind, val in enumerate(inputs): if val is None: inputs[ind] = "" # empty string means no connection in ONNX # remove tailing "" while inputs[-1] == "": inputs = inputs[:-1] node = self.graph.make_node(op_type="Unsqueeze", inputs=inputs, attr=attr, name=name, outputs=outputs) if return_node: return node raise NotImplementedError("return_node must be True") def _convert_to_input(self, tensor, const_name, is_optional=False, dtype=None): """in ONNX, input shold come from node, so it must be a string""" if is_optional and tensor is None: return None make_sure(tensor is not None, "input is required so it couldn't be None") res = tensor if isinstance(tensor, list): res = self.graph.make_const( make_name(const_name), numpy.array(tensor, dtype)) return res def _convert_to_attribute(self, tensor, is_optional=False): if is_optional and tensor is None: return None make_sure(tensor is not None, "input is required so it couldn't be None") res = tensor if isinstance(tensor, str): const_node = self.graph.get_node_by_output(tensor) res = const_node.get_tensor_value(as_list=True) make_sure(isinstance(res, list), "input is an attr, so a list is needed") return res
the-stack_0_10661
from lbry.testcase import CommandTestCase class AddressManagement(CommandTestCase): async def test_address_list(self): addresses = await self.out(self.daemon.jsonrpc_address_list()) self.assertEqual(27, len(addresses)) single = await self.out(self.daemon.jsonrpc_address_list(addresses[11]['address'])) self.assertEqual(1, len(single)) self.assertEqual(single[0], addresses[11])
the-stack_0_10662
#!/usr/bin/env python """ ZetCode wxPython tutorial In this example, we create a wx.ListBox widget. author: Jan Bodnar website: www.zetcode.com last modified: July 2020 """ import wx class Example(wx.Frame): def __init__(self, *args, **kw): super(Example, self).__init__(*args, **kw) self.InitUI() def InitUI(self): panel = wx.Panel(self) hbox = wx.BoxSizer(wx.HORIZONTAL) self.listbox = wx.ListBox(panel) hbox.Add(self.listbox, wx.ID_ANY, wx.EXPAND | wx.ALL, 20) btnPanel = wx.Panel(panel) vbox = wx.BoxSizer(wx.VERTICAL) newBtn = wx.Button(btnPanel, wx.ID_ANY, 'New', size=(90, 30)) renBtn = wx.Button(btnPanel, wx.ID_ANY, 'Rename', size=(90, 30)) delBtn = wx.Button(btnPanel, wx.ID_ANY, 'Delete', size=(90, 30)) clrBtn = wx.Button(btnPanel, wx.ID_ANY, 'Clear', size=(90, 30)) self.Bind(wx.EVT_BUTTON, self.NewItem, id=newBtn.GetId()) self.Bind(wx.EVT_BUTTON, self.OnRename, id=renBtn.GetId()) self.Bind(wx.EVT_BUTTON, self.OnDelete, id=delBtn.GetId()) self.Bind(wx.EVT_BUTTON, self.OnClear, id=clrBtn.GetId()) self.Bind(wx.EVT_LISTBOX_DCLICK, self.OnRename) vbox.Add((-1, 20)) vbox.Add(newBtn) vbox.Add(renBtn, 0, wx.TOP, 5) vbox.Add(delBtn, 0, wx.TOP, 5) vbox.Add(clrBtn, 0, wx.TOP, 5) btnPanel.SetSizer(vbox) hbox.Add(btnPanel, 0.6, wx.EXPAND | wx.RIGHT, 20) panel.SetSizer(hbox) self.SetTitle('wx.ListBox') self.Centre() def NewItem(self, event): text = wx.GetTextFromUser('Enter a new item', 'Insert dialog') if text != '': self.listbox.Append(text) def OnRename(self, event): sel = self.listbox.GetSelection() text = self.listbox.GetString(sel) renamed = wx.GetTextFromUser('Rename item', 'Rename dialog', text) if renamed != '': self.listbox.Delete(sel) item_id = self.listbox.Insert(renamed, sel) self.listbox.SetSelection(item_id) def OnDelete(self, event): sel = self.listbox.GetSelection() if sel != -1: self.listbox.Delete(sel) def OnClear(self, event): self.listbox.Clear() def main(): app = wx.App() ex = Example(None) ex.Show() app.MainLoop() if __name__ == '__main__': main()
the-stack_0_10664
from abc import ( ABC, abstractmethod ) from argparse import ( ArgumentParser, Namespace, _SubParsersAction, ) import asyncio from enum import ( auto, Enum, ) import logging from multiprocessing import ( Process ) from typing import ( Any, Dict, NamedTuple, ) from lahja import ( BaseEvent, ) from trinity.config import ( TrinityConfig ) from trinity.endpoint import ( TrinityEventBusEndpoint, ) from trinity.extensibility.events import ( PluginStartedEvent, ) from trinity.extensibility.exceptions import ( InvalidPluginStatus, ) from trinity._utils.mp import ( ctx, ) from trinity._utils.logging import ( setup_log_levels, setup_queue_logging, ) from trinity._utils.os import ( friendly_filename_or_url, ) class PluginStatus(Enum): NOT_READY = auto() READY = auto() STARTED = auto() STOPPED = auto() INVALID_START_STATUS = (PluginStatus.NOT_READY, PluginStatus.STARTED,) class TrinityBootInfo(NamedTuple): args: Namespace trinity_config: TrinityConfig boot_kwargs: Dict[str, Any] = None class BasePlugin(ABC): _status: PluginStatus = PluginStatus.NOT_READY def __init__(self, boot_info: TrinityBootInfo) -> None: self.boot_info = boot_info @property @abstractmethod def event_bus(self) -> TrinityEventBusEndpoint: pass @property @abstractmethod def name(self) -> str: """ Describe the name of the plugin. """ pass @property def normalized_name(self) -> str: """ The normalized (computer readable) name of the plugin """ return friendly_filename_or_url(self.name) @classmethod def get_logger(cls) -> logging.Logger: return logging.getLogger(f'trinity.extensibility.plugin(#{cls.__name__})') @property def logger(self) -> logging.Logger: return self.get_logger() @property def running(self) -> bool: """ Return ``True`` if the ``status`` is ``PluginStatus.STARTED``, otherwise return ``False``. """ return self._status is PluginStatus.STARTED @property def status(self) -> PluginStatus: """ Return the current :class:`~trinity.extensibility.plugin.PluginStatus` of the plugin. """ return self._status def ready(self, manager_eventbus: TrinityEventBusEndpoint) -> None: """ Set the ``status`` to ``PluginStatus.READY`` and delegate to :meth:`~trinity.extensibility.plugin.BasePlugin.on_ready` """ self._status = PluginStatus.READY self.on_ready(manager_eventbus) def on_ready(self, manager_eventbus: TrinityEventBusEndpoint) -> None: """ Notify the plugin that it is ready to bootstrap itself. The ``manager_eventbus`` refers to the instance of the :class:`~lahja.endpoint.Endpoint` that the :class:`~trinity.extensibility.plugin_manager.PluginManager` uses which may or may not be the same :class:`~lahja.endpoint.Endpoint` as the plugin uses depending on the type of the plugin. The plugin should use this :class:`~lahja.endpoint.Endpoint` instance to listen for events *before* the plugin has started. """ pass @classmethod def configure_parser(cls, arg_parser: ArgumentParser, subparser: _SubParsersAction) -> None: """ Give the plugin a chance to amend the Trinity CLI argument parser. This hook is called before :meth:`~trinity.extensibility.plugin.BasePlugin.on_ready` """ pass def start(self) -> None: """ Delegate to :meth:`~trinity.extensibility.plugin.BasePlugin.do_start` and set ``running`` to ``True``. Broadcast a :class:`~trinity.extensibility.events.PluginStartedEvent` on the event bus and hence allow other plugins to act accordingly. """ if self._status in INVALID_START_STATUS: raise InvalidPluginStatus( f"Can not start plugin when the plugin status is {self.status}" ) self._status = PluginStatus.STARTED self.do_start() self.event_bus.broadcast_nowait( PluginStartedEvent(type(self)) ) self.logger.info("Plugin started: %s", self.name) def do_start(self) -> None: """ Perform the actual plugin start routine. In the case of a `BaseIsolatedPlugin` this method will be called in a separate process. This method should usually be overwritten by subclasses with the exception of plugins that set ``func`` on the ``ArgumentParser`` to redefine the entire host program. """ pass class BaseAsyncStopPlugin(BasePlugin): """ A :class:`~trinity.extensibility.plugin.BaseAsyncStopPlugin` unwinds asynchronoulsy, hence needs to be awaited. """ def __init__(self, boot_info: TrinityBootInfo, event_bus: TrinityEventBusEndpoint) -> None: super().__init__(boot_info) self._event_bus = event_bus @property def event_bus(self) -> TrinityEventBusEndpoint: return self._event_bus async def do_stop(self) -> None: """ Asynchronously stop the plugin. Should be overwritten by subclasses. """ pass async def stop(self) -> None: """ Delegate to :meth:`~trinity.extensibility.plugin.BaseAsyncStopPlugin.do_stop` causing the plugin to stop asynchronously and setting ``running`` to ``False``. """ await self.do_stop() self._status = PluginStatus.STOPPED class BaseMainProcessPlugin(BasePlugin): """ A :class:`~trinity.extensibility.plugin.BaseMainProcessPlugin` overtakes the whole main process early before any of the subsystems started. In that sense it redefines the whole meaning of the ``trinity`` command. """ @property def event_bus(self) -> TrinityEventBusEndpoint: raise NotImplementedError('BaseMainProcessPlugins do not have event busses') class BaseIsolatedPlugin(BasePlugin): """ A :class:`~trinity.extensibility.plugin.BaseIsolatedPlugin` runs in an isolated process and hence provides security and flexibility by not making assumptions about its internal operations. Such plugins are free to use non-blocking asyncio as well as synchronous calls. When an isolated plugin is stopped it does first receive a SIGINT followed by a SIGTERM soon after. It is up to the plugin to handle these signals accordingly. """ _process: Process = None _event_bus: TrinityEventBusEndpoint = None @property def process(self) -> Process: """ Return the ``Process`` created by the isolated plugin. """ return self._process def start(self) -> None: """ Prepare the plugin to get started and eventually call ``do_start`` in a separate process. """ self._status = PluginStatus.STARTED self._process = ctx.Process( target=self._spawn_start, ) self._process.start() self.logger.info("Plugin started: %s (pid=%d)", self.name, self._process.pid) @abstractmethod def _spawn_start(self) -> None: pass def stop(self) -> None: """ Set the ``status`` to `STOPPED`` but rely on the :class:`~trinity.extensibility.plugin_manager.PluginManager` to tear down the process. This allows isolated plugins to be taken down concurrently without depending on a running event loop. """ self._status = PluginStatus.STOPPED def _setup_logging(self) -> None: log_queue = self.boot_info.boot_kwargs['log_queue'] level = self.boot_info.boot_kwargs.get('log_level', logging.INFO) setup_queue_logging(log_queue, level) if self.boot_info.args.log_levels: setup_log_levels(self.boot_info.args.log_levels) class DebugPlugin(BaseAsyncStopPlugin): """ This is a dummy plugin useful for demonstration and debugging purposes """ @property def name(self) -> str: return "Debug Plugin" @classmethod def configure_parser(cls, arg_parser: ArgumentParser, subparser: _SubParsersAction) -> None: arg_parser.add_argument("--debug-plugin", type=bool, required=False) def handle_event(self, activation_event: BaseEvent) -> None: self.logger.info("Debug plugin: handle_event called: %s", activation_event) def do_start(self) -> None: self.logger.info("Debug plugin: start called") asyncio.ensure_future(self.count_forever()) async def count_forever(self) -> None: i = 0 while True: self.logger.info(i) i += 1 await asyncio.sleep(1) async def do_stop(self) -> None: self.logger.info("Debug plugin: stop called")
the-stack_0_10665
from datetime import datetime as dt from common.logger import get_logger from orchestrator.config import ORDER_EXPIRATION_THRESHOLD_IN_MINUTES from orchestrator.order_status import OrderStatus logger = get_logger(__name__) class TransactionHistoryDAO: def __init__(self, repo): self.__repo = repo def insert_transaction_history(self, obj_transaction_history): transaction_history = obj_transaction_history.get_transaction_history() query_response = self.__repo.execute( "INSERT INTO transaction_history (username, order_id, order_type, status, payment_id, payment_method, " "raw_payment_data, transaction_hash, row_created, row_updated)" "VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) " "ON DUPLICATE KEY UPDATE payment_id = %s, payment_method = %s, raw_payment_data = %s, transaction_hash = %s, row_updated = %s", [ transaction_history["username"], transaction_history["order_id"], transaction_history["order_type"], transaction_history["status"], transaction_history["payment_id"], transaction_history["payment_method"], transaction_history["raw_payment_data"], transaction_history["transaction_hash"], dt.utcnow(), dt.utcnow(), transaction_history["payment_id"], transaction_history["payment_method"], transaction_history["raw_payment_data"], transaction_history["transaction_hash"], dt.utcnow() ] ) if query_response[0] == 1: return True return False def get_order_id_for_expired_transaction(self): params = [OrderStatus.PAYMENT_INITIATED.value, OrderStatus.PAYMENT_INITIATION_FAILED.value, OrderStatus.PAYMENT_EXECUTION_FAILED.value, ORDER_EXPIRATION_THRESHOLD_IN_MINUTES] order_id_raw_data = self.__repo.execute( "SELECT order_id FROM transaction_history WHERE status IN (%s, %s, %s) AND " "TIMESTAMPDIFF(MINUTE, row_created, NOW()) > %s ", [OrderStatus.PAYMENT_INITIATED.value, OrderStatus.PAYMENT_INITIATION_FAILED.value, OrderStatus.PAYMENT_EXECUTION_FAILED.value, ORDER_EXPIRATION_THRESHOLD_IN_MINUTES]) list_of_order_id = [rec["order_id"] for rec in order_id_raw_data] return list_of_order_id def update_transaction_status(self, list_of_order_id, status): if len(list_of_order_id) == 0: return "No order id found" temp_holder = ("%s, " * len(list_of_order_id))[:-2] params = [status] + list_of_order_id + [OrderStatus.PAYMENT_INITIATED.value, OrderStatus.PAYMENT_INITIATION_FAILED.value, OrderStatus.PAYMENT_EXECUTION_FAILED.value] update_transaction_status_response = self.__repo.execute( "UPDATE transaction_history SET status = %s WHERE order_id IN (" + temp_holder + ") AND status IN (%s, %s, %s)", params) logger.info(f"update_transaction_status: {update_transaction_status_response}") return update_transaction_status_response def get_transaction_details_for_given_order_id(self, order_id): transaction_data = self.__repo.execute( "SELECT username, order_id, order_type, status, payment_id, payment_type, payment_method, raw_payment_data, " "transaction_hash FROM transaction_history WHERE order_id = %s", [order_id]) if len(transaction_data) == 0: raise Exception("Order Id does not exist.") return transaction_data[0]
the-stack_0_10666
""" This file offers the methods to automatically retrieve the graph Marinobacter salinus. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def MarinobacterSalinus( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Marinobacter salinus graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Marinobacter salinus graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="MarinobacterSalinus", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
the-stack_0_10667
import abc import numpy as np import math import random import itertools as it from hklearn_genetic.board_conflicts import conflict from deap import tools, gp class ProblemInterface(metaclass=abc.ABCMeta): @classmethod def __subclasshook__(cls, subclass): return (hasattr(subclass, 'evaluate') and callable(subclass.evaluate) and hasattr(subclass, 'stop_criteria') and callable(subclass.stop_criteria) and hasattr(subclass, 'populate') and callable(subclass.populate) and hasattr(subclass, 'decode') and callable(subclass.decode) and hasattr(subclass, 'crossover') and callable(subclass.crossover) and hasattr(subclass, 'mutate') and callable(subclass.mutate)) @ProblemInterface.register class IProblem: """Evalua las soluciones potenciales del problema""" def evaluate(self, X): pass """Regresa si la población ha llegado al criterio de paro""" def stop_criteria(self, X_eval): pass """Crea una poblacion inicial de posibles soluciones""" def populate(self, n_individuals): pass """Pasa a la población del genotipo al fenotipo""" def decode(self, X_encoded): pass """Efectúa la cruza con los elementos de la población""" def crossover(self, X, pc, elitism): pass """Efectúa la mutación con los elementos de la población""" def mutate(self, X, pm, elitism): pass class BaseProblem(IProblem): def get_crossover_probs(self, n_cross): return np.random.rand(1 , n_cross)[0,:] def get_crossover_points(self, length): return np.random.randint(0, length) @abc.abstractmethod def a_eval(self, X_decoded): pass def evaluate(self, X): decoded_rep = self.decode(X) X_eval = self.a_eval(decoded_rep, X) return X_eval def crossover(self, X, pc, elitism): if not elitism: n_cross = X.shape[0] // 2 elitism_num = 0 else: elitism_num = math.floor(elitism * X.shape[0]) n_cross = (X.shape[0] - elitism_num) // 2 prob_cross = self.get_crossover_probs(n_cross) for i, p in enumerate(prob_cross): if p <= pc: cross_point = self.get_crossover_points(X.shape[1] - 1) son1 = X[2*i + elitism_num,:].copy() son2 = X[2*i + 1 + elitism_num, :].copy() son1[cross_point : X.shape[1]] = X[2*i + 1 + elitism_num, cross_point : X.shape[1]].copy() son2[cross_point : X.shape[1]] = X[2*i + elitism_num, cross_point : X.shape[1]].copy() X[2*i + elitism_num,:] = son1 X[2*i + 1 + elitism_num,:] = son2 return X class _BaseGeneticProgrammingProblem(BaseProblem): def __init__(self, mutation_type = "Branch"): self.avg_lengths = [] self.mutation_type = mutation_type def populate(self, n_individuals): return tools.initRepeat(list, lambda: gp.genHalfAndHalf(self.pset, min_=1, max_=2), n_individuals) def decode(self, X_encoded): X_decoded = [] length_sum = 0 for x_i in X_encoded: tree = gp.PrimitiveTree(x_i) length_sum += len(tree) X_decoded += [gp.compile(tree, self.pset)] self.avg_lengths += [length_sum/len(X_decoded)] return X_decoded def crossover(self, X, pc, elitism): if not elitism: n_cross = len(X) // 2 elitism_num = 0 else: elitism_num = math.floor(elitism * len(X)) n_cross = (len(X) - elitism_num) // 2 prob_cross = self.get_crossover_probs(n_cross) for i, p in enumerate(prob_cross): if p <= pc: parent1 = gp.PrimitiveTree(X[2*i + elitism_num]) parent2 = gp.PrimitiveTree(X[2*i + 1 + elitism_num]) offspring = gp.cxOnePoint(parent1, parent2) if offspring[0].height < self.height_limit: X[2*i + elitism_num] = offspring[0] else: r = random.uniform(0, 1) X[2*i + elitism_num] = X[2*i + 1 + elitism_num].copy() if r >= 0.5 else X[2*i + elitism_num] if offspring[1].height < self.height_limit: X[2*i + 1 + elitism_num] = offspring[1] else: r = random.uniform(0, 1) X[2*i + 1 + elitism_num] = X[2*i + elitism_num].copy() if r >= 0.5 else X[2*i + 1 + elitism_num] return X def mutate(self, X, pm, elitism): if pm > 0: mutate_m = np.random.uniform(size = (len(X), 1)) mutate_m = mutate_m <= pm func = lambda pset, type_ : gp.genFull(pset, min_=0, max_=2) if not elitism: for i, m in enumerate(mutate_m): #if m <= 1./len(X[i]): if m: if self.mutation_type == "Branch": offspring = gp.mutUniform(gp.PrimitiveTree(X[i]), func, self.pset) elif self.mutation_type == "Node": offspring = gp.mutNodeReplacement(gp.PrimitiveTree(X[i]), self.pset) if offspring[0].height <= self.height_limit: X[i] = offspring[0] else: elitism_num = math.floor(elitism * len(X)) for i in range(elitism_num, len(X)): #if mutate_m[i] <= 1./len(X[i]): if mutate_m[i]: if self.mutation_type == "Branch": offspring = gp.mutUniform(gp.PrimitiveTree(X[i]), func, self.pset) elif self.mutation_type == "Node": offspring = gp.mutNodeReplacement(gp.PrimitiveTree(X[i]), self.pset) if offspring[0].height <= self.height_limit: X[i] = offspring[0] return X class SymbolicRegressionProblem(_BaseGeneticProgrammingProblem): def __init__(self, bounds, pset, real_values, height_limit, stop_thresh = 0.2, mutation_type = "Branch"): super().__init__(mutation_type) self.bounds = bounds self.height_limit = height_limit self.pset = pset self.real_values = real_values self.stop_thresh = stop_thresh param_values = [] for param_bound in self.bounds: param_values += [list(np.linspace(param_bound[0], param_bound[1], num = len(real_values)))] self.points = list(it.product(*param_values)) def a_eval(self, X_decoded, X_encoded): m = len(self.points) X_fitness = [] for j, func in enumerate(X_decoded): try: s = 0 for i in range(m): s += (func(*self.points[i]) - self.real_values[i])**2 X_fitness += [- (1./m)*s] except Exception as e: print(e) x_encoded = X_encoded[j] print(gp.PrimitiveTree(x_encoded)) return np.array(list(zip(X_fitness, list(range(len(X_fitness))))), dtype = [('fitness', float),('index', int)]) def stop_criteria(self, X_eval): return list(np.where(X_eval >= - self.stop_thresh)[0]) class BitParityCheck(_BaseGeneticProgrammingProblem): def __init__(self, pset, real_values, height_limit, mutation_type = "Branch"): super().__init__(mutation_type) self.height_limit = height_limit self.pset = pset self.real_values = real_values self.points = list(map(list, it.product([False, True], repeat=int(math.log2(len(self.real_values)))))) def stop_criteria(self, X_eval): return list(np.where(X_eval >= 0)[0]) def a_eval(self, X_decoded, X_encoded): m = len(self.points) X_fitness = [] for j, func in enumerate(X_decoded): try: X_fitness += [-sum(func(*in_) == out for in_, out in zip(self.points, self.real_values))] except Exception as e: print(e) print(gp.PrimitiveTree(X_encoded[j])) return X_fitness class NeutralityProblem(_BaseGeneticProgrammingProblem): def __init__(self, pset, T, height_limit, terminals, mutation_type = "Branch"): super().__init__(mutation_type) self.height_limit = height_limit self.pset = pset self.T = T self.str_terminals = [str(t) for t in terminals] for t in terminals: self.pset.addTerminal(t) self.gene_counts = {t : [] for t in self.str_terminals} def stop_criteria(self, X_eval): return [] def a_eval(self, X_decoded, X_encoded): X_fitness = [] for j, x_i in enumerate(X_decoded): try: X_fitness += [-abs(self.T - x_i)] except Exception as e: print(e) print(gp.PrimitiveTree(X_encoded[j])) for gene in self.gene_counts.keys(): self.gene_counts[gene]+=[0] for x in X_encoded: x_tree = gp.PrimitiveTree(x) x_tree_str = str(x_tree) for s in x_tree_str: if s in self.str_terminals: self.gene_counts[s][-1] += 1 return X_fitness class _BaseBinaryProblem(BaseProblem): def __init__(self, thresh, bounds, n_dim = 2, n_prec = 4): self.bounds = bounds self.n_dim = n_dim self.gene_length = math.ceil(math.log2((self.bounds[1] - self.bounds[0])*10**n_prec)) self.thresh = thresh def stop_criteria(self, X_eval): return list(np.where(X_eval >= self.thresh)[0]) def populate(self, n_individuals): return np.random.randint(2, size = (n_individuals, self.gene_length*self.n_dim)) def decode(self, X_encoded): decoded_rep = np.zeros((X_encoded.shape[0], self.n_dim)) for i in range(self.n_dim): decoded_rep[:,i] = (X_encoded[:, i*self.gene_length : (i + 1)*self.gene_length]@(2**np.arange(X_encoded[:, i*self.gene_length : (i + 1)*self.gene_length].shape[1], dtype = np.float64)[::-1][:, np.newaxis])).T return self.bounds[0] + decoded_rep*(self.bounds[1] - self.bounds[0])/(2**self.gene_length - 1) def get_mutation(self, shape): return np.random.uniform(size = shape) def mutate(self, X, pm, elitism): mutate_m = self.get_mutation((X.shape[0], X.shape[1])) mutate_m = mutate_m <= pm X_bit = X == 1 if not elitism: X = np.logical_xor(X_bit, mutate_m) else: elitism_num = math.floor(elitism * X.shape[0]) X[elitism_num : X.shape[0], :] = np.logical_xor(X_bit, mutate_m)[elitism_num : X.shape[0], :] X = X.astype(int) return X class _BaseIntegerProblem(BaseProblem): def __init__(self, thresh, n_dim = 2): self.n_dim = n_dim self.thresh = thresh def stop_criteria(self, X_eval): return list(np.where(X_eval >= self.thresh)[0]) def populate(self, n_individuals): return np.random.randint(self.n_dim, size = (n_individuals, self.n_dim)) def decode(self, X_encoded): return X_encoded def get_mutation(self, shape): return np.random.uniform(size = shape) def mutate(self, X, pm, elitism): mutate_m = self.get_mutation((X.shape[0], 1)) mutate_m = mutate_m <= pm if not elitism: for i, m in enumerate(mutate_m): if m: indices = np.random.permutation(X.shape[1])[0 : 2] X[i,indices[0]], X[i, indices[1]] = X[i, indices[1]], X[i, indices[0]] else: elitism_num = math.floor(elitism * X.shape[0]) for i in range(elitism_num, X.shape[0]): if mutate_m[i]: indices = np.random.permutation(X.shape[1])[0 : 2] X[i,indices[0]], X[i, indices[1]] = X[i, indices[1]], X[i, indices[0]] return X class _BaseRealProblem(BaseProblem): def __init__(self, thresh, bounds, rang_param = 0.1, n_dim = 2): self.n_dim = n_dim self.thresh = thresh self.bounds = bounds self.rang_param = rang_param def stop_criteria(self, X_eval): return list(np.where(X_eval >= self.thresh)[0]) def populate(self, n_individuals): return np.random.uniform(self.bounds[0], self.bounds[1] + 0.1, size = (n_individuals, self.n_dim)) def decode(self, X_encoded): return X_encoded def get_crossover_points(self, length): return np.random.uniform(low = -.25 , high = 1.25, size = length) def crossover(self, X, pc, elitism): if not elitism: n_cross = X.shape[0] // 2 elitism_num = 0 else: elitism_num = math.floor(elitism * X.shape[0]) n_cross = (X.shape[0] - elitism_num) // 2 prob_cross = self.get_crossover_probs(n_cross) for i, p in enumerate(prob_cross): if p <= pc: alphas = self.get_crossover_points(X.shape[1]) X[2*i + elitism_num,:] += alphas * (X[2*i + 1 + elitism_num, :] - X[2*i + elitism_num,:]) X[2*i + 1 + elitism_num,:] += alphas * (X[2*i + elitism_num,:] - X[2*i + 1 + elitism_num, :]) X[2*i + elitism_num,:] = np.clip(X[2*i + elitism_num,:], self.bounds[0], self.bounds[1]) X[2*i + 1 + elitism_num,:] = np.clip(X[2*i + 1 + elitism_num,:], self.bounds[0], self.bounds[1]) return X def get_mutation(self, shape): return np.random.uniform(size = shape) def mutate(self, X, pm, elitism): if not elitism: elitism = 0 rang = (self.bounds[1] - self.bounds[0])*self.rang_param mutate_m = self.get_mutation((X.shape[0], X.shape[1])) mutate_plus_minus = self.get_mutation((X.shape[0], X.shape[1])) mutate_m[mutate_m <= pm] = 1. mutate_m[mutate_m < 1.] = 0. mutate_plus_minus[mutate_plus_minus <= .5] = 1.0 mutate_plus_minus[mutate_plus_minus > .5] = -1.0 elitism_num = math.floor(elitism * X.shape[0]) for i in range(elitism_num, X.shape[0]): mutate_delta = self.get_mutation((X.shape[1], X.shape[1])) mutate_delta[mutate_delta <= 1./self.n_dim] = 1. mutate_delta[mutate_delta < 1.] = 0. deltas = (mutate_delta @ (2**-np.arange(self.n_dim, dtype = np.float64)[:, np.newaxis])).T X[i, :] = X[i, :] + mutate_m[i, :] * mutate_plus_minus[i, :] * rang * deltas X[i, :] = np.clip(X[i, :], self.bounds[0], self.bounds[1]) return X class BaseNQueen(BaseProblem): def a_eval(self, X_decoded): X_fitness = np.zeros(X_decoded.shape[0]) for i, x in enumerate(X_decoded): X_fitness[i] = -conflict(x) #print(X_fitness) return np.array(list(zip(X_fitness, list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class IntegerNQueen(_BaseIntegerProblem, BaseNQueen): def __init__(self, n_dim = 2): super().__init__(0, n_dim = n_dim) class RealNQueen(_BaseRealProblem, BaseNQueen): def __init__(self, n_dim = 2): super().__init__(0, (0, 5.), n_dim = n_dim) def decode(self, X_encoded): X_decoded = np.zeros(X_encoded.shape, dtype=np.int64) for i, x in enumerate(X_encoded): indexed = np.array(list(zip(x, list(range(X_decoded.shape[1])))), dtype = [('real_rep', float),('index', int)]) indexed = np.sort(indexed, order=["real_rep"]) X_decoded[i, :] = indexed["index"] return X_decoded class BinaryNQueen(_BaseBinaryProblem, BaseNQueen): def __init__(self, n_dim = 2, n_prec = 4): super().__init__(0, (0.01, n_dim), n_dim = n_dim, n_prec=n_prec) def decode(self, X_encoded): return np.ceil(super().decode(X_encoded)).astype(int) - 1 class BaseRastrigin(BaseProblem): def __init__(self): self.rank = 100. def a_eval(self, X_decoded): return np.array(list(zip(self.rank - (10.*self.n_dim + np.sum(X_decoded**2 - 10.*np.cos(2.*np.pi*X_decoded), axis = 1)), list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class BaseBeale(BaseProblem): def __init__(self): self.rank = 150000. def a_eval(self, X_decoded): first_term = (1.5 - X_decoded[:, 0] + X_decoded[:, 0]*X_decoded[:, 1])**2 second_term = (2.25 - X_decoded[:, 0] + X_decoded[:, 0]*(X_decoded[:, 1]**2))**2 third_term = (2.625 - X_decoded[:, 0] + X_decoded[:, 0]*(X_decoded[:, 1]**3))**2 return np.array(list(zip(self.rank - (first_term + second_term + third_term), list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class BaseHimmelblau(BaseProblem): def __init__(self): self.rank = 2200. def a_eval(self, X_decoded): first_term = (X_decoded[:, 0]**2 + X_decoded[:, 1] - 11.)**2 second_term = (X_decoded[:, 0] + X_decoded[:, 1]**2 - 7.)**2 return np.array(list(zip(self.rank - (first_term + second_term), list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class BaseEggholder(BaseProblem): def __init__(self): self.rank = 1200. def a_eval(self, X_decoded): first_term = - (X_decoded[:, 1] + 47)*np.sin(np.sqrt(np.abs(X_decoded[:, 0]/2. + (X_decoded[:, 1] + 47)))) second_term = - X_decoded[:, 0]*np.sin(np.sqrt(np.abs(X_decoded[:, 0] - (X_decoded[:, 1] + 47)))) return np.array(list(zip(self.rank - (first_term + second_term), list(range(X_decoded.shape[0])))), dtype = [('fitness', float),('index', int)]) class BinaryRastrigin(_BaseBinaryProblem, BaseRastrigin): def __init__(self, n_dim = 2, n_prec = 4): super().__init__(99.99, (-5.12, 5.12), n_dim=n_dim, n_prec=n_prec) BaseRastrigin.__init__(self) class BinaryBeale(_BaseBinaryProblem, BaseBeale): def __init__(self, n_prec = 4): super().__init__(149999.99, (-4.5, 4.5), n_dim=2, n_prec=n_prec) BaseBeale.__init__(self) class BinaryHimmelblau(_BaseBinaryProblem, BaseHimmelblau): def __init__(self, n_prec = 4): super().__init__(2199.99, (-5., 5.), n_dim=2, n_prec=n_prec) BaseHimmelblau.__init__(self) class BinaryEggholder(_BaseBinaryProblem, BaseEggholder): def __init__(self, n_prec = 4): super().__init__(2157., (-512., 512.), n_dim=2, n_prec=n_prec) BaseEggholder.__init__(self) class RealRastrigin(_BaseRealProblem, BaseRastrigin): def __init__(self, rang_param = .0001, n_dim = 2): super().__init__(99.99, (-5.12, 5.12), rang_param, n_dim=n_dim) BaseRastrigin.__init__(self) class RealBeale(_BaseRealProblem, BaseBeale): def __init__(self, rang_param = .0001): super().__init__(149999.99, (-4.5, 4.5), rang_param, n_dim=2) BaseBeale.__init__(self) class RealHimmelblau(_BaseRealProblem, BaseHimmelblau): def __init__(self, rang_param = .001): super().__init__(2199.99, (-5., 5.), rang_param, n_dim=2) BaseHimmelblau.__init__(self) class RealEggholder(_BaseRealProblem, BaseEggholder): def __init__(self, rang_param = .001): super().__init__(2157., (-512., 512.), rang_param, n_dim=2) BaseEggholder.__init__(self) class RealRastriginPSO(_BaseRealProblem): def __init__(self, n_dim = 2): super().__init__(99.99, (-5.12, 5.12), n_dim=n_dim) class RealBealePSO(_BaseRealProblem): def __init__(self): super().__init__(149999.99, (-4.5, 4.5), n_dim=2) class RealHimmelblauPSO(_BaseRealProblem): def __init__(self): super().__init__(2199.99, (-5., 5.), n_dim=2) class RealEggholderPSO(_BaseRealProblem): def __init__(self): super().__init__(2157., (-512., 512.), n_dim=2)
the-stack_0_10668
import re import subprocess import pygit2 tag_ref = re.compile('^refs/tags/') committer = pygit2.Signature('Git Worker', '[email protected]') def git_show(path, commitish, obj): repo = pygit2.Repository(path) commit, _ = repo.resolve_refish(commitish) data = (commit.tree / obj).read_raw().decode() return data def delete_tag(path, tag): repo = pygit2.Repository(path) repo.references.delete(f'refs/tags/{tag}') def git_tag(repo): return [repo.references[r] for r in repo.references if tag_ref.match(r)] def git_commit(repo, file_paths, author=None, message="[OpenNeuro] Recorded changes", parents=None): """Commit array of paths at HEAD.""" # Refresh index with git-annex specific handling annex_command = ["git-annex", "add"] + file_paths subprocess.run(annex_command, check=True, cwd=repo.workdir) repo.index.add_all(file_paths) repo.index.write() return git_commit_index(repo, author, message, parents) def git_commit_index(repo, author=None, message="[OpenNeuro] Recorded changes", parents=None): """Commit any existing index changes.""" if not author: author = committer if parents is None: parent_commits = [repo.head.target.hex] else: parent_commits = parents tree = repo.index.write_tree() commit = repo.create_commit( 'refs/heads/master', author, committer, message, tree, parent_commits) repo.head.set_target(commit) return commit
the-stack_0_10669
import pdb import pickle import pandas as pd import os import numpy as np import sys sys.path.insert(1,"../") sys.path.insert(1,"../../") sys.path.insert(1,"../../../") from config_u import base project_base_path = base current_path = "scripts/cpmg/automated_metabolite_quantification/" sys.path.insert(1, os.path.join(project_base_path, current_path)) from data_utils import split_to_kfold, spectrum2ppm, spectrum_peak_unit_quantification # load fully quantified samples datapath_base = os.path.join(project_base_path, "data/raw_data_cpmg/") with open(os.path.join(datapath_base, "fully_quantified_samples_spectra"), "rb") as f: c_spectra = pickle.load(f) with open(os.path.join(datapath_base, "fully_quantified_samples_quantification"), "rb") as f: c_quantification = pickle.load(f) with open(os.path.join(project_base_path, "data/raw_data_cpmg/metabolite_names"), "rb") as f: metabolite_names = pickle.load(f) c_statistics = pd.read_pickle(os.path.join(datapath_base, "fully_quantified_samples_statistics")) # find samples with invalid pathologic classification (i.e. "*") index = c_statistics.index condition = c_statistics["Pathologic Classification"] == "*" invalid_pc_idx = index[condition].tolist() statistics = c_statistics.iloc[invalid_pc_idx, :].reset_index(drop=True) spectra = c_spectra[invalid_pc_idx, :] quant = c_quantification[invalid_pc_idx, :] # scale CPMG spectra with respect to reference Acetate and sample mass mass = np.array(statistics["Mass"].tolist()).astype(float) mass_factor = np.repeat(mass.reshape(-1,1), spectra.shape[1], axis=1) normalized_spectra = np.divide(spectra, mass_factor) scaled_spectra = normalized_spectra * spectrum_peak_unit_quantification # calculate ppm spectra ppm_spectra = spectrum2ppm(scaled_spectra) # rename variables to be accessed from other scripts fq_i_ppm_spectra = ppm_spectra fq_i_spectra = scaled_spectra fq_i_statistics = statistics fq_i_quant = quant
the-stack_0_10670
import os from pywps import Process from pywps import LiteralInput from pywps import ComplexOutput from pywps import FORMATS, Format from pywps import configuration from pywps.app.Common import Metadata # from c4cds.regridder import Regridder, REGIONAL from c4cds.subsetter import Subsetter from c4cds.plotter import Plotter from c4cds.search import Search from c4cds.ncdump import ncdump from c4cds import util CORDEX_DOMAIN_MAP = { 'Egypt': 'AFR-44i', 'UK': 'EUR-44i', 'France': 'EUR-44i', 'Germany': 'EUR-44i', } class CordexSubsetter(Process): def __init__(self): inputs = [ LiteralInput('country', 'Country', abstract='Choose a Country like UK.', data_type='string', allowed_values=['UK', 'France', 'Germany', 'Egypt'], default='UK'), LiteralInput('model', 'Model', abstract='Choose a model like MOHC-HadRM3P.', data_type='string', allowed_values=['MOHC-HadRM3P'], default='MOHC-HadRM3P'), LiteralInput('experiment', 'Experiment', abstract='Choose an experiment like evaluation.', data_type='string', allowed_values=['evaluation'], default='evaluation'), LiteralInput('variable', 'Variable', abstract='Choose a variable like tas.', data_type='string', allowed_values=['tas', 'tasmax', 'tasmin'], default='tas'), LiteralInput('year', 'Match year', data_type='integer', abstract='File should match this year.', allowed_values=[1990, 2000, 2010], default="1990"), ] outputs = [ ComplexOutput('output', 'Subsetted Dataset', abstract='Subsetted Dataset.', as_reference=True, supported_formats=[FORMATS.NETCDF]), ComplexOutput('ncdump', 'Metadata', abstract='ncdump of subsetted Dataset.', as_reference=True, supported_formats=[FORMATS.TEXT]), ComplexOutput('preview', 'Preview', abstract='Preview of subsetted Dataset.', as_reference=True, supported_formats=[Format('image/png')]), ] super(CordexSubsetter, self).__init__( self._handler, identifier='cordex_subsetter', version='1.0', title='CORDEX Subsetter', abstract='CORDEX Subsetter working on the Copernicus C3S CORDEX archive. ' 'The selected CORDEX file is subsetted by the bounding-box of a Country ' 'using the CDO "sellonlatbox" operator.', metadata=[ Metadata('CP4CDS Portal', 'https://cp4cds.github.io/'), Metadata('Documentation', 'https://c4cds-wps.readthedocs.io/en/latest/processes.html#cordex_subsetter', role=util.WPS_ROLE_DOC), Metadata('Media', 'https://c4cds-wps.readthedocs.io/en/latest/_static/media/cordex_subsetter_thumbnail.png', role=util.WPS_ROLE_MEDIA), ], inputs=inputs, outputs=outputs, store_supported=True, status_supported=True ) def _handler(self, request, response): search = Search(configuration.get_config_value("data", "cordex_archive_root")) nc_file = search.search_cordex( model=request.inputs['model'][0].data, experiment=request.inputs['experiment'][0].data, variable=request.inputs['variable'][0].data, domain=CORDEX_DOMAIN_MAP[request.inputs['country'][0].data], start_year=request.inputs['year'][0].data, end_year=request.inputs['year'][0].data, ) if not nc_file: raise Exception("Could not find CORDEX file.") response.update_status('search done.', 10) # regridding # regridder = Regridder( # archive_base=configuration.get_config_value("data", "cordex_archive_root"), # output_dir=os.path.join(self.workdir, 'out_regrid') # ) # regridded_file = regridder.regrid(input_file=nc_file, domain_type=REGIONAL) # response.update_status('regridding done.', 60) # subset by country subsetter = Subsetter( output_dir=os.path.join(self.workdir, 'out_subset') ) subsetted_file = subsetter.subset_by_country( nc_file, country=request.inputs['country'][0].data) response.outputs['output'].file = subsetted_file response.update_status('subsetting done.', 70) # plot preview title = "{} {} {} {} {}".format( request.inputs['country'][0].data, request.inputs['model'][0].data, request.inputs['experiment'][0].data, request.inputs['variable'][0].data, request.inputs['year'][0].data, ) plotter = Plotter( output_dir=os.path.join(self.workdir, 'out_plot') ) preview_file = plotter.plot_preview(subsetted_file, title) response.outputs['preview'].file = preview_file response.update_status('plot done.', 80) # run ncdump with open(os.path.join(self.workdir, "nc_dump.txt"), 'w') as fp: response.outputs['ncdump'].file = fp.name fp.writelines(ncdump(subsetted_file)) response.update_status('ncdump done.', 90) # done response.update_status("done.", 100) return response
the-stack_0_10671
import argparse import logging import time import ast from tf_pose import common import cv2 import numpy as np from tf_pose.estimator import TfPoseEstimator from tf_pose.networks import get_graph_path, model_wh from tf_pose.lifting.prob_model import Prob3dPose from tf_pose.lifting.draw import plot_pose logger = logging.getLogger('TfPoseEstimator') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) if __name__ == '__main__': parser = argparse.ArgumentParser(description='tf-pose-estimation run') parser.add_argument('--image', type=str, default='./images/p1.jpg') parser.add_argument('--model', type=str, default='cmu', help='cmu / mobilenet_thin / mobilenet_v2_large / mobilenet_v2_small') parser.add_argument('--resize', type=str, default='0x0', help='if provided, resize images before they are processed. ' 'default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ') parser.add_argument('--resize-out-ratio', type=float, default=4.0, help='if provided, resize heatmaps before they are post-processed. default=1.0') args = parser.parse_args() w, h = model_wh(args.resize) if w == 0 or h == 0: e = TfPoseEstimator(get_graph_path(args.model), target_size=(432, 368)) else: e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h)) # estimate human poses from a single image ! image = common.read_imgfile(args.image, None, None) # image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21) if image is None: logger.error('Image can not be read, path=%s' % args.image) sys.exit(-1) t = time.time() humans = e.inference(image, resize_to_default=(w > 0 and h > 0), upsample_size=args.resize_out_ratio) elapsed = time.time() - t logger.info('inference image: %s in %.4f seconds.' % (args.image, elapsed)) image = TfPoseEstimator.draw_humans(image, humans, imgcopy=False) # cv2.imshow('tf-pose-estimation result', image) # cv2.waitKey() import matplotlib.pyplot as plt fig = plt.figure() a = fig.add_subplot(2, 2, 1) a.set_title('Result') plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) bgimg = cv2.cvtColor(image.astype(np.uint8), cv2.COLOR_BGR2RGB) bgimg = cv2.resize(bgimg, (e.heatMat.shape[1], e.heatMat.shape[0]), interpolation=cv2.INTER_AREA) # show network output a = fig.add_subplot(2, 2, 2) plt.imshow(bgimg, alpha=0.5) tmp = np.amax(e.heatMat[:, :, :-1], axis=2) plt.imshow(tmp, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() tmp2 = e.pafMat.transpose((2, 0, 1)) tmp2_odd = np.amax(np.absolute(tmp2[::2, :, :]), axis=0) tmp2_even = np.amax(np.absolute(tmp2[1::2, :, :]), axis=0) a = fig.add_subplot(2, 2, 3) a.set_title('Vectormap-x') # plt.imshow(CocoPose.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5) plt.imshow(tmp2_odd, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() a = fig.add_subplot(2, 2, 4) a.set_title('Vectormap-y') # plt.imshow(CocoPose.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5) plt.imshow(tmp2_even, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() plt.show() #import sys #actisys.exit(0) logger.info('3d lifting initialization.') poseLifting = Prob3dPose('./tf_pose/lifting/models/prob_model_params.mat') image_h, image_w = image.shape[:2] standard_w = 640 standard_h = 480 pose_2d_mpiis = [] visibilities = [] for human in humans: pose_2d_mpii, visibility = common.MPIIPart.from_coco(human) pose_2d_mpiis.append([(int(x * standard_w + 0.5), int(y * standard_h + 0.5)) for x, y in pose_2d_mpii]) visibilities.append(visibility) pose_2d_mpiis = np.array(pose_2d_mpiis) visibilities = np.array(visibilities) transformed_pose2d, weights = poseLifting.transform_joints(pose_2d_mpiis, visibilities) pose_3d = poseLifting.compute_3d(transformed_pose2d, weights) for i, single_3d in enumerate(pose_3d): plot_pose(single_3d) plt.show() pass
the-stack_0_10672
# Copyright 2015 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import netaddr from neutron_lib import constants def check_subnet_ip(cidr, ip_address, port_owner=''): """Validate that the IP address is on the subnet.""" ip = netaddr.IPAddress(ip_address) net = netaddr.IPNetwork(cidr) # Check that the IP is valid on subnet. In IPv4 this cannot be the # network or the broadcast address if net.version == constants.IP_VERSION_6: # NOTE(njohnston): In some cases the code cannot know the owner of the # port. In these cases port_owner should an empty string, and we pass # it through here. return ((port_owner in (constants.ROUTER_PORT_OWNERS + ('', )) or ip != net.network) and ip in net) else: return ip != net.network and ip != net.broadcast and ip in net def check_gateway_invalid_in_subnet(cidr, gateway): """Check whether the gw IP address is invalid on the subnet.""" ip = netaddr.IPAddress(gateway) net = netaddr.IPNetwork(cidr) # Check whether the gw IP is in-valid on subnet. # If gateway is in the subnet, it cannot be the # 'network' or the 'broadcast address (only in IPv4)'. # If gateway is out of subnet, there is no way to # check since we don't have gateway's subnet cidr. return (ip in net and (net.version == constants.IP_VERSION_4 and ip in (net.network, net[-1]))) def generate_pools(cidr, gateway_ip): """Create IP allocation pools for a specified subnet The Neutron API defines a subnet's allocation pools as a list of IPRange objects for defining the pool range. """ # Auto allocate the pool around gateway_ip net = netaddr.IPNetwork(cidr) ip_version = net.version first = netaddr.IPAddress(net.first, ip_version) last = netaddr.IPAddress(net.last, ip_version) if first == last: # handle single address subnet case return [netaddr.IPRange(first, last)] first_ip = first + 1 # last address is broadcast in v4 last_ip = last - (ip_version == 4) if first_ip >= last_ip: # /31 lands here return [] ipset = netaddr.IPSet(netaddr.IPRange(first_ip, last_ip)) if gateway_ip: ipset.remove(netaddr.IPAddress(gateway_ip, ip_version)) return list(ipset.iter_ipranges())
the-stack_0_10673
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from sedona.core.SpatialRDD import CircleRDD from sedona.core.enums import GridType, IndexType from sedona.core.formatMapper import WktReader from sedona.core.spatialOperator.join_params import JoinParams from sedona.core.spatialOperator.join_query_raw import JoinQueryRaw from sedona.core.spatialOperator.range_query_raw import RangeQueryRaw from tests.test_base import TestBase import os from tests.tools import tests_resource from shapely.wkt import loads bank_csv_path = os.path.join(tests_resource, "small/points.csv") areas_csv_path = os.path.join(tests_resource, "small/areas.csv") class TestOmitPythonJvmSerdeToRDD(TestBase): expected_pois_within_areas_ids = [['4', '4'], ['1', '6'], ['2', '1'], ['3', '3'], ['3', '7']] def test_spatial_join_to_spatial_rdd(self): poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False) areas_polygon_rdd = WktReader.readToGeometryRDD(self.sc, areas_csv_path, 1, False, False) poi_point_rdd.analyze() areas_polygon_rdd.analyze() poi_point_rdd.spatialPartitioning(GridType.QUADTREE) areas_polygon_rdd.spatialPartitioning(poi_point_rdd.getPartitioner()) jvm_sedona_rdd = JoinQueryRaw.spatialJoin(poi_point_rdd, areas_polygon_rdd, JoinParams()) sedona_rdd = jvm_sedona_rdd.to_rdd().collect() assert sedona_rdd.__len__() == 5 def test_distance_join_query_flat_to_df(self): poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False) circle_rdd = CircleRDD(poi_point_rdd, 2.0) circle_rdd.analyze() poi_point_rdd.analyze() poi_point_rdd.spatialPartitioning(GridType.QUADTREE) circle_rdd.spatialPartitioning(poi_point_rdd.getPartitioner()) jvm_sedona_rdd = JoinQueryRaw.DistanceJoinQueryFlat(poi_point_rdd, circle_rdd, False, True) assert jvm_sedona_rdd.to_rdd().collect().__len__() == 10 def test_spatial_join_query_flat_to_df(self): poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False) areas_polygon_rdd = WktReader.readToGeometryRDD(self.sc, areas_csv_path, 1, False, False) poi_point_rdd.analyze() areas_polygon_rdd.analyze() poi_point_rdd.spatialPartitioning(GridType.QUADTREE) areas_polygon_rdd.spatialPartitioning(poi_point_rdd.getPartitioner()) jvm_sedona_rdd = JoinQueryRaw.SpatialJoinQueryFlat( poi_point_rdd, areas_polygon_rdd, False, True) assert jvm_sedona_rdd.to_rdd().collect().__len__() == 5 def test_range_query_flat_to_df(self): poi_point_rdd = WktReader.readToGeometryRDD(self.sc, bank_csv_path, 1, False, False) poi_point_rdd.analyze() poi_point_rdd.spatialPartitioning(GridType.QUADTREE) poi_point_rdd.buildIndex(IndexType.QUADTREE, False) result = RangeQueryRaw.SpatialRangeQuery( poi_point_rdd, loads("POLYGON((0 0, 0 20, 20 20, 20 0, 0 0))"), True, True ) rdd = result.to_rdd() assert rdd.collect().__len__() == 4
the-stack_0_10674
import torch import torch.nn as nn import sys sys.path.insert(0, '../../../../..') import libs_layers class Model(torch.nn.Module): def __init__(self, input_shape, outputs_count, hidden_count = 512): super(Model, self).__init__() self.device = "cpu" self.layers = [ nn.Linear(input_shape[0], hidden_count), nn.ReLU(), libs_layers.NoisyLinearFull(hidden_count, hidden_count//2), nn.ReLU(), libs_layers.NoisyLinearFull(hidden_count//2, outputs_count), nn.Tanh() ] torch.nn.init.xavier_uniform_(self.layers[0].weight) torch.nn.init.xavier_uniform_(self.layers[2].weight) torch.nn.init.uniform_(self.layers[4].weight, -0.3, 0.3) self.model = nn.Sequential(*self.layers) self.model.to(self.device) print("model_actor") print(self.model) print("\n\n") def forward(self, state): return self.model(state) def save(self, path): torch.save(self.model.state_dict(), path + "trained/model_actor.pt") def load(self, path): self.model.load_state_dict(torch.load(path + "trained/model_actor.pt", map_location = self.device)) self.model.eval()
the-stack_0_10675
from labels import LabelsPlugin from electrum.plugins import hook class Plugin(LabelsPlugin): @hook def load_wallet(self, wallet, window): self.window = window self.start_wallet(wallet) def on_pulled(self, wallet): self.print_error('on pulled') self.window._trigger_update_history()
the-stack_0_10676
# -*- coding: utf-8 -*- # # Copyright © 2009-2010 CEA # Pierre Raybaut # Licensed under the terms of the CECILL License # (see guidata/__init__.py for details) """ All guidata DataItem objects demo A DataSet object is a set of parameters of various types (integer, float, boolean, string, etc.) which may be edited in a dialog box thanks to the 'edit' method. Parameters are defined by assigning DataItem objects to a DataSet class definition: each parameter type has its own DataItem class (IntItem for integers, FloatItem for floats, StringItem for strings, etc.) """ from __future__ import print_function SHOW = True # Show test in GUI-based test launcher import tempfile, atexit, shutil, datetime, numpy as np from guidata.dataset.datatypes import DataSet, BeginGroup, EndGroup from guidata.dataset.dataitems import (FloatItem, IntItem, BoolItem, ChoiceItem, MultipleChoiceItem, ImageChoiceItem, FilesOpenItem, StringItem, TextItem, ColorItem, FileSaveItem, FileOpenItem, DirectoryItem, FloatArrayItem, DateItem, DateTimeItem) # Creating temporary files and registering cleanup functions TEMPDIR = tempfile.mkdtemp(prefix="test_") atexit.register(shutil.rmtree, TEMPDIR) FILE_ETA = tempfile.NamedTemporaryFile(suffix=".eta", dir=TEMPDIR) atexit.register(FILE_ETA.close) FILE_CSV = tempfile.NamedTemporaryFile(suffix=".csv", dir=TEMPDIR) atexit.register(FILE_CSV.close) class TestParameters(DataSet): """ DataSet test The following text is the DataSet 'comment': <br>Plain text or <b>rich text<sup>2</sup></b> are both supported, as well as special characters (α, β, γ, δ, ...) """ dir = DirectoryItem("Directory", TEMPDIR) fname = FileOpenItem("Open file", ("csv", "eta"), FILE_CSV.name) fnames = FilesOpenItem("Open files", "csv", FILE_CSV.name) fname_s = FileSaveItem("Save file", "eta", FILE_ETA.name) string = StringItem("String") text = TextItem("Text") float_slider = FloatItem("Float (with slider)", default=0.5, min=0, max=1, step=0.01, slider=True) integer = IntItem("Integer", default=5, min=3, max=16, slider=True ).set_pos(col=1) dtime = DateTimeItem("Date/time", default=datetime.datetime(2010, 10, 10)) date = DateItem("Date", default=datetime.date(2010, 10, 10)).set_pos(col=1) bool1 = BoolItem("Boolean option without label") bool2 = BoolItem("Boolean option with label", "Label") _bg = BeginGroup("A sub group") color = ColorItem("Color", default="red") choice = ChoiceItem("Single choice 1", [('16', "first choice"), ('32', "second choice"), ('64', "third choice")]) mchoice2 = ImageChoiceItem("Single choice 2", [("rect", "first choice", "gif.png" ), ("ell", "second choice", "txt.png" ), ("qcq", "third choice", "file.png" )] ) _eg = EndGroup("A sub group") floatarray = FloatArrayItem("Float array", default=np.ones( (50, 5), float), format=" %.2e ").set_pos(col=1) mchoice3 = MultipleChoiceItem("MC type 1", [ str(i) for i in range(12)] ).horizontal(4) mchoice1 = MultipleChoiceItem("MC type 2", ["first choice", "second choice", "third choice"]).vertical(1).set_pos(col=1) if __name__ == "__main__": # Create QApplication import guidata _app = guidata.qapplication() e = TestParameters() e.floatarray[:, 0] = np.linspace( -5, 5, 50) print(e) if e.edit(): print(e) e.view()
the-stack_0_10678
import logging import os from quasimodo.parts_of_facts import PartsOfFacts from quasimodo.data_structures.submodule_interface import SubmoduleInterface from quasimodo.assertion_fusion.trainer import Trainer from quasimodo.parameters_reader import ParametersReader save_weights = True parameters_reader = ParametersReader() annotations_file = parameters_reader.get_parameter("annotations-file") or "data/training_active_learning.tsv" save_file = parameters_reader.get_parameter("weights-file") or os.path.dirname(__file__) + "/../temp/weights.tsv" def _save_weights(parts_of_facts): annotations = get_annotated_data() header = parts_of_facts.get_header() header.append("label") save = ["\t".join(header)] for fact in parts_of_facts.get_all_facts(): row = parts_of_facts.get_fact_row(fact) row.append(annotations.get((fact.get_subject().get(), fact.get_predicate().get(), fact.get_object().get(), str(int(fact.is_negative()))), -1)) row = [str(x) for x in row] save.append("\t".join(row)) with open(save_file, "w") as f: for element in save: f.write(element + "\n") class LinearCombinationWeightedSubmodule(SubmoduleInterface): def __init__(self, module_reference): super().__init__() self._module_reference = module_reference self._name = "Linear Combination Per Module Submodule" def process(self, input_interface): logging.info("Start linear combining per module submodule") logging.info("Grouping facts") parts_of_facts = PartsOfFacts.from_generated_facts(input_interface.get_generated_facts()) if save_weights: logging.info("Saving weights facts") _save_weights(parts_of_facts) logging.info("Training the model...") trainer = Trainer(save_file) trainer.train() logging.info("Generating new facts") new_generated_facts = [] for fact in parts_of_facts.get_all_facts(): new_generated_facts.append(parts_of_facts.get_generated_fact_with_score_from_classifier(fact, trainer)) new_generated_facts = sorted(new_generated_facts, key=lambda x: -sum([score[0] for score in x.get_score().scores])) return input_interface.replace_generated_facts(new_generated_facts) def get_annotated_data(): annotations = dict() with open(annotations_file) as f: for line in f: line = line.strip().split("\t") annotations[(line[0], line[1], line[2], line[3])] = line[4] return annotations
the-stack_0_10679
import sys, os import numpy as np import time import gym import tensorflow as tf from spinup.utils.logx import EpochLogger from common_utils import * from core import * # configure gpu use and supress tensorflow warnings gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.6) tf_config = tf.compat.v1.ConfigProto(gpu_options=gpu_options) tf_config.gpu_options.allow_growth = True os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) """ Soft Actor-Critic (With slight variations that bring it closer to TD3) """ def sac(env_fn, logger_kwargs=dict(), network_params=dict(), rl_params=dict()): # env params thresh = rl_params['thresh'] # control params seed = rl_params['seed'] epochs = rl_params['epochs'] steps_per_epoch = rl_params['steps_per_epoch'] replay_size = rl_params['replay_size'] batch_size = rl_params['batch_size'] start_steps = rl_params['start_steps'] max_ep_len = rl_params['max_ep_len'] save_freq = rl_params['save_freq'] render = rl_params['render'] # rl params gamma = rl_params['gamma'] polyak = rl_params['polyak'] lr = rl_params['lr'] grad_clip_val = rl_params['grad_clip_val'] # entropy params alpha = rl_params['alpha'] target_entropy = rl_params['target_entropy'] logger = EpochLogger(**logger_kwargs) if save_freq is not None: logger.save_config(locals()) train_env, test_env = env_fn(), env_fn() obs = train_env.observation_space act = train_env.action_space tf.set_random_seed(seed) np.random.seed(seed) train_env.seed(seed) train_env.action_space.np_random.seed(seed) test_env.seed(seed) test_env.action_space.np_random.seed(seed) # get the size after resize obs_dim = network_params['input_dims'] act_dim = act.shape[0] # init a state buffer for storing last m states train_state_buffer = StateBuffer(m=obs_dim[2]) test_state_buffer = StateBuffer(m=obs_dim[2]) # Experience buffer replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size) # Inputs to computation graph x_ph, a_ph, x2_ph, r_ph, d_ph = placeholders(obs_dim, act_dim, obs_dim, None, None) # Main outputs from computation graph with tf.variable_scope('main'): mu, pi, logp_pi, q1_a, q2_a = build_models(x_ph, a_ph, act, act_dim, network_params) with tf.variable_scope('main', reuse=True): # compose q with pi, for pi-learning _, _, _, q1_pi, q2_pi = build_models(x_ph, pi, act, act_dim, network_params) # get actions and log probs of actions for next states, for Q-learning _, pi_next, logp_pi_next, _, _ = build_models(x2_ph, a_ph, act, act_dim, network_params) # Target value network with tf.variable_scope('target'): _, _, _, q1_pi_targ, q2_pi_targ = build_models(x2_ph, pi_next, act, act_dim, network_params) # alpha Params if target_entropy == 'auto': target_entropy = tf.cast(-act_dim, tf.float32) else: target_entropy = tf.cast(target_entropy, tf.float32) log_alpha = tf.get_variable('log_alpha', dtype=tf.float32, initializer=0.0) if alpha == 'auto': # auto tune alpha alpha = tf.exp(log_alpha) else: # fixed alpha alpha = tf.get_variable('alpha', dtype=tf.float32, initializer=alpha) # Count variables var_counts = tuple(count_vars(scope) for scope in ['log_alpha', 'main/pi', 'main/q1', 'main/q2', 'main']) print("""\nNumber of other parameters: alpha: %d, pi: %d, q1: %d, q2: %d, total: %d\n"""%var_counts) # Min Double-Q: min_q_pi = tf.minimum(q1_pi, q2_pi) min_q_pi_targ = tf.minimum(q1_pi_targ, q2_pi_targ) # Targets for Q and V regression q_backup = tf.stop_gradient(r_ph + gamma*(1-d_ph)*(min_q_pi_targ - alpha*logp_pi_next)) # critic losses q1_loss = 0.5 * tf.reduce_mean((q_backup - q1_a)**2) q2_loss = 0.5 * tf.reduce_mean((q_backup - q2_a)**2) value_loss = q1_loss + q2_loss # Soft actor losses pi_loss = tf.reduce_mean(alpha * logp_pi - min_q_pi) # alpha loss for temperature parameter alpha_backup = tf.stop_gradient(logp_pi + target_entropy) alpha_loss = -tf.reduce_mean(log_alpha * alpha_backup) # Policy train op pi_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04) if grad_clip_val is not None: gvs = pi_optimizer.compute_gradients(pi_loss, var_list=get_vars('main/pi')) capped_gvs = [(ClipIfNotNone(grad, grad_clip_val), var) for grad, var in gvs] train_pi_op = pi_optimizer.apply_gradients(capped_gvs) else: train_pi_op = pi_optimizer.minimize(pi_loss, var_list=get_vars('main/pi')) # Value train op value_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04) with tf.control_dependencies([train_pi_op]): if grad_clip_val is not None: gvs = value_optimizer.compute_gradients(value_loss, var_list=get_vars('main/q')) capped_gvs = [(ClipIfNotNone(grad, grad_clip_val), var) for grad, var in gvs] train_value_op = value_optimizer.apply_gradients(capped_gvs) else: train_value_op = value_optimizer.minimize(value_loss, var_list=get_vars('main/q')) alpha_optimizer = tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-04) with tf.control_dependencies([train_value_op]): train_alpha_op = alpha_optimizer.minimize(alpha_loss, var_list=get_vars('log_alpha')) # Polyak averaging for target variables # (control flow because sess.run otherwise evaluates in nondeterministic order) with tf.control_dependencies([train_value_op]): target_update = tf.group([tf.assign(v_targ, polyak*v_targ + (1-polyak)*v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target'))]) # All ops to call during one training step step_ops = [pi_loss, q1_loss, q2_loss, q1_a, q2_a, logp_pi, target_entropy, alpha_loss, alpha, train_pi_op, train_value_op, train_alpha_op, target_update] # Initializing targets to match main variables target_init = tf.group([tf.assign(v_targ, v_main) for v_main, v_targ in zip(get_vars('main'), get_vars('target'))]) sess = tf.Session(config=tf_config) sess.run(tf.global_variables_initializer()) sess.run(target_init) # Setup model saving if save_freq is not None: logger.setup_tf_saver(sess, inputs={'x_ph': x_ph, 'a_ph': a_ph}, outputs={'mu': mu, 'pi': pi, 'q1_a': q1_a, 'q2_a': q2_a}) def get_action(state, deterministic=False): state = state.astype('float32') / 255. act_op = mu if deterministic else pi return sess.run(act_op, feed_dict={x_ph: [state]})[0] def reset(env, state_buffer): o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 o = process_image_observation(o, obs_dim, thresh) state = state_buffer.init_state(init_obs=o) return o, r, d, ep_ret, ep_len, state def test_agent(n=10, render=True): for j in range(n): o, r, d, ep_ret, ep_len, test_state = reset(test_env, test_state_buffer) if render: test_env.render() while not(d or (ep_len == max_ep_len)): # Take deterministic actions at test time o, r, d, _ = test_env.step(get_action(test_state, True)) o = process_image_observation(o, obs_dim, thresh) test_state = test_state_buffer.append_state(o) ep_ret += r ep_len += 1 if render: test_env.render() if render: test_env.close() logger.store(TestEpRet=ep_ret, TestEpLen=ep_len) start_time = time.time() o, r, d, ep_ret, ep_len, state = reset(train_env, train_state_buffer) total_steps = steps_per_epoch * epochs save_iter = 0 # Main loop: collect experience in env and update/log each epoch for t in range(total_steps): """ Until start_steps have elapsed, randomly sample actions from a uniform distribution for better exploration. Afterwards, use the learned policy. """ if t > start_steps: a = get_action(state) else: a = train_env.action_space.sample() # Step the env o2, r, d, _ = train_env.step(a) o2 = process_image_observation(o2, obs_dim, thresh) next_state = train_state_buffer.append_state(o2) ep_ret += r ep_len += 1 # Ignore the "done" signal if it comes from hitting the time # horizon (that is, when it's an artificial terminal signal # that isn't based on the agent's state) d = False if ep_len==max_ep_len else d # Store experience to replay buffer replay_buffer.store(state, a, r, next_state, d) # Super critical, easy to overlook step: make sure to update # most recent observation! o = o2 state = next_state if d or (ep_len == max_ep_len): """ Perform all SAC updates at the end of the trajectory. This is a slight difference from the SAC specified in the original paper. """ for j in range(ep_len): batch = replay_buffer.sample_batch(batch_size) feed_dict = {x_ph: batch['obs1'], x2_ph: batch['obs2'], a_ph: batch['acts'], r_ph: batch['rews'], d_ph: batch['done'], } outs = sess.run(step_ops, feed_dict) logger.store(LossPi=outs[0], LossQ1=outs[1], LossQ2=outs[2], Q1Vals=outs[3], Q2Vals=outs[4], LogPi=outs[5], TargEntropy=outs[6], LossAlpha=outs[7], Alpha=outs[8]) logger.store(EpRet=ep_ret, EpLen=ep_len) o, r, d, ep_ret, ep_len, state = reset(train_env, train_state_buffer) # End of epoch wrap-up if t > 0 and t % steps_per_epoch == 0: epoch = t // steps_per_epoch # Save model if save_freq is not None: if (epoch % save_freq == 0) or (epoch == epochs-1): logger.save_state({'env': train_env}, itr=save_iter) save_iter+=1 # Test the performance of the deterministic version of the agent. test_agent(n=2, render=render) # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('TestEpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('TestEpLen', average_only=True) logger.log_tabular('TotalEnvInteracts', t) logger.log_tabular('Q1Vals', with_min_and_max=True) logger.log_tabular('Q2Vals', with_min_and_max=True) logger.log_tabular('LogPi', average_only=True) logger.log_tabular('TargEntropy', average_only=True) logger.log_tabular('Alpha', average_only=True) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossQ1', average_only=True) logger.log_tabular('LossQ2', average_only=True) logger.log_tabular('LossAlpha', average_only=True) logger.log_tabular('Time', time.time()-start_time) logger.dump_tabular() if __name__ == '__main__': from spinup.utils.run_utils import setup_logger_kwargs network_params = { 'input_dims':[96,96,4], 'conv_filters':(16, 32), 'kernel_width':(8,4), 'strides':(4,2), 'pooling':'none', 'pooling_width':2, 'pooling_strides':1, 'dense_units':(512,), 'hidden_activation':'relu', 'output_activation':'linear', 'batch_norm':False, 'dropout':0.0 } rl_params = { # env params 'env_name':'CarRacing-v0', 'thresh':False, # control params 'seed':int(0), 'epochs':int(50), 'steps_per_epoch':5000, 'replay_size':int(1e5), 'batch_size':64, 'start_steps':4000, 'max_ep_len':1000, 'save_freq':5, 'render':True, # rl params 'gamma':0.99, 'polyak':0.995, 'lr':0.001, 'grad_clip_val':None, # entropy params 'alpha': 'auto', # fixed or auto balance 'target_entropy':'auto', # fixed or auto define with act_dim } saved_model_dir = '../../saved_models' logger_kwargs = setup_logger_kwargs(exp_name='sac_cont_image_' + rl_params['env_name'], seed=rl_params['seed'], data_dir=saved_model_dir, datestamp=False) env = gym.make(rl_params['env_name']) sac(lambda:env, logger_kwargs=logger_kwargs, network_params=network_params, rl_params=rl_params)
the-stack_0_10680
#!/usr/bin/env python """ _Template_ Template class for all Step Template implementations to inherit and implement the API """ import os from WMCore.WMSpec.WMStep import WMStepHelper from WMCore.WMSpec.ConfigSectionTree import nodeName class CoreHelper(WMStepHelper): """ _CoreHelper_ Helper API for core settings """ def stepName(self): """ _stepName_ Get the name of the step """ return nodeName(self.data) def addEnvironmentVariable(self, varname, setting): """ _addEnvironmentVariable_ add a key = value style setting to the environment for this step """ setattr(self.data.environment.variables, varname, setting) return def addEnvironmentPath(self, pathname, setting): """ _addEnvironmentPath_ add a key = value1:value2:value3 environment setting to this step """ if getattr(self.data.environment.paths, pathname, None) == None: setattr(self.data.environment.paths, pathname, []) pathentry = getattr(self.data.environment.paths, pathname) pathentry.append(setting) return def environment(self): """ _environment_ Get the environment settings for this step """ return self.data.environment def addDirectory(self, dirName): """ _addDirectory_ Add a subdirectory structure to the template that will be built by the builder """ split = dirName.split("/") split = [ x for x in split if x.strip() != "" ] dirs = getattr(self.data.build.directories, self.stepName()) for subdir in split: exists = getattr(dirs, subdir, None) if exists == None: dirs.section_(subdir) dirs = getattr(dirs, subdir) return dirs def addFile(self, fileName, newLocation = None): """ _addFile_ Add a file to the job at build time. This file must be a local filesystem file available at fileName. An optional location within the step can be specified which may include a path structure that gets translated into calls to addDirectory """ dirs = getattr(self.data.build.directories, self.stepName()) if newLocation != None: filename = os.path.basename(newLocation) dirname = os.path.dirname(newLocation) dirs = self.addDirectory(dirname) setattr(dirs, filename, { "Source" : fileName, "Target" : filename}) else: filename = os.path.basename(fileName) setattr(dirs, filename, {"Target" : filename, "Source" : fileName }) return def directoryStructure(self): """ _directoryStructure_ Util to retrieve the directory structure """ return self.data.build.directories class Template: """ _Template_ Base interface definition for any WMStep Template """ def __init__(self): pass def __call__(self, step): """ _operator(step)_ Install the template on the step instance provided """ self.coreInstall(step) self.install(step) def coreInstall(self, step): """ _coreInstall_ Install attributes common to all steps """ # Environment settings to pass to the step step.section_("environment") step.environment.section_("variables") step.environment.section_("paths") # Directory structure and files to be included in the job # beyond those that would be added by a Step Specific builder # Step Specific subclasses can simply append to these to get files # and dirs into the job step.section_("build") step.build.section_("directories") step.build.directories.section_(nodeName(step)) def install(self, step): """ _install_ Override this method to install the required attributes in the step Instance provided """ msg = "WMSpec.Steps.Template.install method not overridden in " msg += "implementation: %s\n" % self.__class__.__name__ raise NotImplementedError(msg) def helper(self, step): """ _helper_ Wrap the step instance in a helper class tailored to this particular step type """ msg = "WMSpec.Steps.Template.helper method not overridden in " msg += "implementation: %s\n" % self.__class__.__name__ raise NotImplementedError(msg)
the-stack_0_10684
import enum from ipaddress import IPv4Address import yaml from CybORG import CybORG from CybORG.Emulator.AWS import AWSConfig def enum_representer(dumper, data): return dumper.represent_scalar(u'tag:yaml.org,2002:str', f'{str(data.name)}') def ipv4_representer(dumper, data): return dumper.represent_scalar(u'tag:yaml.org,2002:str', f'{str(data)}') yaml.add_multi_representer(enum.Enum, enum_representer) yaml.add_representer(IPv4Address, ipv4_representer) scenario = '/home/max/PycharmProjects/Autonomous-Cyber-Ops/CybORG/Shared/Scenarios/SingleHostScenario.yaml' image = "Velociraptor_Server" sm = {'Hosts': {'Test_Host': {'image': image}}} cyborg = CybORG(scenario, environment='aws', env_config={ "config": AWSConfig.load_and_setup_logger(test=True), "create_tunnel": False }) #This checks to see that the data given has all the required information and prints #that the state is true as it dumps the data into the outfile. try: info_required = {'Test_Host': {'User_info': 'All', 'System_info': 'All', 'Processes': 'All', 'Files': ['/root', '/bin', '/sbin', '/etc', '/home', '/usr/sbin/', '/usr/bin/']}} true_state = cyborg.get_true_state(info_required) true_state.data.pop('success') assert true_state.data != {} for key, data in true_state.data.items(): if "Interface" in data: data.pop("Interface") if 'Processes' in data: for proc in data['Processes']: if 'Known Process' in proc: proc.pop('Known Process') if 'Known Path' in proc: proc.pop('Known Path') if 'System info' in data and 'Hostname' in data['System info']: data['System info'].pop('Hostname') if 'User Info' in data: for user in data['User Info']: if 'Groups' in user: for group in user['Groups']: if 'Builtin Group' in group: group.pop('Builtin Group') print(true_state) with open(f'{image}_image.yaml', 'w') as outfile: yaml.dump(true_state.data, outfile, default_flow_style=False) finally: cyborg.shutdown(teardown=True)
the-stack_0_10686
import hashlib import requests from datetime import datetime, timedelta from .filter import McDailyFilter class McDailyAccount: def __init__(self): """ User info """ self.username = '' # Username self.password = '' # Password self.access_token = '' # Token self.param_string = '' # username + password self.card_no = '' # Card no """ System info """ self.str1 = datetime.strftime(datetime.now(), '%Y/%m/%d %H:%M:%S') # Device Time self.str2 = '2.2.0' # App Version self.str3 = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S') # Call time self.model_id = 'Pixel XL' # Model ID self.os_version = '9' # Android OS Version self.platform = 'Android' # platform self.device_uuid = 'device_uuid' # Device Uuid self.order_no = self.device_uuid + self.str3 # Order No """ Request json data """ self.json = { "access_token" : self.access_token, "source_info" : { "app_version" : self.str2, "device_time" : self.str1, "device_uuid" : self.device_uuid, "model_id" : self.model_id, "os_version" : self.os_version, "platform" : self.platform, } } def login(self, username, password): self.username = username self.password = password self.param_string = username + password """ Mask = md5('Mc' + order_no + platform + os_version + model_id + device_uuid + str1 + str2 + param_string + 'Donalds') """ data = 'Mc%s%s%s%s%s%s%s%sDonalds' % ( self.order_no, self.platform, self.os_version, self.model_id, self.device_uuid, self.str1, self.str2, self.param_string ) hash = hashlib.md5() hash.update(data.encode('utf-8')) json = { "account" : self.username, "password" : self.password, "OrderNo" : self.order_no, "mask" : hash.hexdigest(), "source_info" : { "app_version" : self.str2, "device_time" : self.str1, "device_uuid" : self.device_uuid, "model_id" : self.model_id, "os_version" : self.os_version, "Platform" : self.platform, } } response = requests.post('https://api.mcddaily.com.tw/login_by_mobile', json = json, headers = {'user-agent' : 'okhttp/3.10.0'}) self.set_token(response.json()['results']['member_info']['access_token']) return response def set_token(self, access_token): self.access_token = access_token self.json['access_token'] = access_token def get_card_query(self, card_no): self.card_no = card_no """ Mask = md5('Mc' + order_no + access_token + card_no + callTime + 'Donalds') """ data = 'Mc%s%s%s%sDonalds' % ( self.order_no, self.access_token, self.card_no, self.str3, ) hash = hashlib.md5() hash.update(data.encode('utf-8')) json = { "OrderNo" : self.order_no, "access_token" : self.access_token, "callTime" : self.str3, "cardNo" : self.card_no, "mask" : mask.hexdigest(), } respones = requests.post('https://api.mcddaily.com.tw/queryBonus', json = json, headers = {'user-agent' : 'okhttp/3.10.0'}) return respones def lottery_get_item(self): respones = requests.post('https://api1.mcddailyapp.com/lottery/get_item', json = self.json, headers = {'user-agent' : 'okhttp/3.10.0'}) return McDailyFilter(respones.json()).get_object() def coupon_get_list(self): respones = requests.post('https://api1.mcddailyapp.com/coupon/get_list', json = self.json, headers = {'user-agent' : 'okhttp/3.10.0'}) return McDailyFilter(respones.json()).get_object() def sticker_get_list(self): respones = requests.post('https://api1.mcddailyapp.com/sticker/get_list', json = self.json, headers = {'user-agent' : 'okhttp/3.10.0'}) return McDailyFilter(respones.json()).get_object() def sticker_redeem(self): sticker_list = self.sticker_get_list() if len(sticker_list) < 6: return 'Just %d stickers' % len(sticker_list) sticker_id_list = [] for i in range(6): sticker_id_list.append(sticker_list[i].sticker_id) json = self.json json['sticker_ids'] = sticker_id_list respones = requests.post('https://api1.mcddailyapp.com/sticker/redeem', json = json, headers = {'user-agent' : 'okhttp/3.10.0'}) return McDailyFilter(respones.json()).get_object()
the-stack_0_10690
#!/usr/bin/python3 import binascii import json import logging import re import sys from collections import defaultdict MASK_MAGIC_REGEX = re.compile(r'[*?!@$]') def to_unixnano(timestamp): return int(timestamp) * (10**9) # include/atheme/channels.h CMODE_FLAG_TO_MODE = { 0x001: 'i', # CMODE_INVITE 0x010: 'n', # CMODE_NOEXT 0x080: 's', # CMODE_SEC 0x100: 't', # CMODE_TOPIC } # attempt to interpret certfp as a hex-encoded SHA-256 fingerprint def validate_certfp(certfp): try: dec = binascii.unhexlify(certfp) except: return False return len(dec) == 32 def convert(infile): out = { 'version': 1, 'source': 'atheme', 'users': defaultdict(dict), 'channels': defaultdict(dict), } group_to_founders = defaultdict(list) channel_to_founder = defaultdict(lambda: (None, None)) while True: line = infile.readline() if not line: break line = line.rstrip(b'\r\n') try: line = line.decode('utf-8') except UnicodeDecodeError: line = line.decode('utf-8', 'replace') logging.warning("line contained invalid utf8 data " + line) parts = line.split(' ') category = parts[0] if category == 'GACL': # Note: all group definitions precede channel access entries (token CA) by design, so it # should be safe to read this in using one pass. groupname = parts[1] user = parts[2] flags = parts[3] if 'F' in flags: group_to_founders[groupname].append(user) elif category == 'MU': # user account # MU AAAAAAAAB shivaram $1$hcspif$nCm4r3S14Me9ifsOPGuJT. [email protected] 1600134392 1600467343 +sC default name = parts[2] user = {'name': name, 'hash': parts[3], 'email': parts[4], 'registeredAt': to_unixnano(parts[5])} out['users'][name].update(user) pass elif category == 'MN': # grouped nick # MN shivaram slingamn 1600218831 1600467343 username, groupednick = parts[1], parts[2] if username != groupednick: user = out['users'][username] user.setdefault('additionalnicks', []).append(groupednick) elif category == 'MDU': if parts[2] == 'private:usercloak': username = parts[1] out['users'][username]['vhost'] = parts[3] elif category == 'MCFP': username, certfp = parts[1], parts[2] if validate_certfp(certfp): user = out['users'][username] user.setdefault('certfps', []).append(certfp.lower()) elif category == 'MC': # channel registration # MC #mychannel 1600134478 1600467343 +v 272 0 0 # MC #NEWCHANNELTEST 1602270889 1602270974 +vg 1 0 0 jaeger4 chname = parts[1] chdata = out['channels'][chname] # XXX just give everyone +nt, regardless of lock status; they can fix it later chdata.update({'name': chname, 'registeredAt': to_unixnano(parts[2])}) if parts[8] != '': chdata['key'] = parts[8] modes = {'n', 't'} mlock_on, mlock_off = int(parts[5]), int(parts[6]) for flag, mode in CMODE_FLAG_TO_MODE.items(): if flag & mlock_on != 0: modes.add(mode) elif flag & mlock_off != 0 and mode in modes: modes.remove(mode) chdata['modes'] = ''.join(sorted(modes)) chdata['limit'] = int(parts[7]) elif category == 'MDC': # auxiliary data for a channel registration # MDC #mychannel private:topic:setter s # MDC #mychannel private:topic:text hi again # MDC #mychannel private:topic:ts 1600135864 chname = parts[1] category = parts[2] if category == 'private:topic:text': out['channels'][chname]['topic'] = line.split(maxsplit=3)[3] elif category == 'private:topic:setter': out['channels'][chname]['topicSetBy'] = parts[3] elif category == 'private:topic:ts': out['channels'][chname]['topicSetAt'] = to_unixnano(parts[3]) elif category == 'private:mlockext': # the channel forward mode is +L on insp/unreal, +f on charybdis # charybdis has a +L ("large banlist") taking no argument # and unreal has a +f ("flood limit") taking two colon-delimited numbers, # so check for an argument that starts with a # if parts[3].startswith('L#') or parts[3].startswith('f#'): out['channels'][chname]['forward'] = parts[3][1:] elif category == 'CA': # channel access lists # CA #mychannel shivaram +AFORafhioqrstv 1600134478 shivaram chname, username, flags, set_at = parts[1], parts[2], parts[3], int(parts[4]) chname = parts[1] chdata = out['channels'][chname] flags = parts[3] set_at = int(parts[4]) if 'amode' not in chdata: chdata['amode'] = {} # see libathemecore/flags.c: +o is op, +O is autoop, etc. if 'F' in flags: # If the username starts with "!", it's actually a GroupServ group. if username.startswith('!'): group_founders = group_to_founders.get(username) if not group_founders: # skip this and warn about it later continue # attempt to promote the first group founder to channel founder username = group_founders[0] # but everyone gets the +q flag for founder in group_founders: chdata['amode'][founder] = 'q' # there can only be one founder preexisting_founder, preexisting_set_at = channel_to_founder[chname] if preexisting_founder is None or set_at < preexisting_set_at: chdata['founder'] = username channel_to_founder[chname] = (username, set_at) # but multiple people can receive the 'q' amode chdata['amode'][username] = 'q' continue if MASK_MAGIC_REGEX.search(username): # ignore groups, masks, etc. for any field other than founder continue # record the first appearing successor, if necessary if 'S' in flags: if not chdata.get('successor'): chdata['successor'] = username # finally, handle amodes if 'q' in flags: chdata['amode'][username] = 'q' elif 'a' in flags: chdata['amode'][username] = 'a' elif 'o' in flags or 'O' in flags: chdata['amode'][username] = 'o' elif 'h' in flags or 'H' in flags: chdata['amode'][username] = 'h' elif 'v' in flags or 'V' in flags: chdata['amode'][username] = 'v' else: pass # do some basic integrity checks def validate_user(name): if not name: return False return bool(out['users'].get(name)) invalid_channels = [] for chname, chdata in out['channels'].items(): if not validate_user(chdata.get('founder')): if validate_user(chdata.get('successor')): chdata['founder'] = chdata['successor'] else: invalid_channels.append(chname) for chname in invalid_channels: logging.warning("Unable to find a valid founder for channel %s, discarding it", chname) del out['channels'][chname] return out def main(): if len(sys.argv) != 3: raise Exception("Usage: atheme2json.py atheme_db output.json") with open(sys.argv[1], 'rb') as infile: output = convert(infile) with open(sys.argv[2], 'w') as outfile: json.dump(output, outfile) if __name__ == '__main__': logging.basicConfig() sys.exit(main())
the-stack_0_10691
# # Python Macro Language for Dragon NaturallySpeaking # (c) Copyright 1999 by Joel Gould # Portions (c) Copyright 1999 by Dragon Systems, Inc. # # _mouse.py # Sample macro file which implements mouse and keyboard movement modes # similar to DragonDictate for Windows # # April 1, 2000 # Updates from Jonathan Epstein # - cancel arrow movement when the active window changes # - add support for tray icon during arrow movement # # In the grammar we map some keywords into pixel counts according to the # following dictionary. These numbers can be safely changed within reason. amountDict = { 'little':3, # as in 'move a little left' 'lot':10 } # as in 'move left a lot' # For caret movement, this represents the default speed in milliseconds # between arrow keys defaultMoveSpeed = 250 # For caret movement, this is the rate change applied when you make it # faster. For example, 1.5 is a 50% speed increase. moveRateChange = 2.0 # For mouse movement, this represents the default speed in milliseconds # between pixel movements and the default number of pixels per move. We # do not want the update rate to be less than 50 milliseconds so if it # gets faster than that, we adjust the mouse pixels instead. defaultMouseSpeed = 100 defaultMousePixels = 1 # For mouse movement, this is the rate change applied when you make it # faster. For example, 1.5 is a 50% speed increase. mouseRateChange = 3.0 ############################################################################ # # Here are some of our instance variables # # self.haveCallback set when the timer callback in installed # self.curMode 1 for caret movement, 2 for mouse movement, or None # self.curSpeed current movement speed (milliseconds for timer) # self.curPixels for mouse movement, pixels per move # self.lastClock time of last timer callback or 0 # self.curDirection direction of movement as string # import string # for atoi import time # for clock import natlink from natlinkutils import * class ThisGrammar(GrammarBase): # when we unload the grammar, we must make sure we clear the timer # callback so we keep a variable which is set when we currently own # the timer callback def __init__(self): self.haveCallback = 0 self.curMode = None self.iconState = 0 GrammarBase.__init__(self) def unload(self): if self.haveCallback: natlink.setTimerCallback(None,0) self.haveCallback = 0 GrammarBase.unload(self) # This is our grammar. The rule 'start' is what is normally active. The # rules 'nowMoving' and 'nowMousing' are used when we are in caret or # mouse movement mode. gramDefn = """ # this is the rule which is normally active <start> exported = <startMoving> | <startMousing> | <nudgeMouse> | <mouseButton>; # this rule is active when we are moving the caret <nowMoving> exported = [ move ] ( {direction} | [much] faster | [much] slower ) | stop [ moving ]; # this rule is active when we are moving the mouse <nowMousing> exported = [ move ] ( {direction} | faster | slower ) | stop [ moving ] | <mouseButton> | <mouseButton>; # here are the subrules which deal with caret movement <startMoving> = move {direction} | start moving {direction}; # here are the subrules which deal with mouse movement <startMousing> = [ start moving ] mouse {direction}; <nudgeMouse> = nudge mouse {direction} | [ move ] mouse {direction} ( a little | a lot | {count} pixels ) | [ move ] mouse ( a little | a lot | {count} pixels ) {direction}; <mouseButton> = [ mouse ] [ left | middle | right ] [ single | double ] click; """ # These are the lists which we use in our grammar. The directions and # counts are implemented as lists to make parsing easier (words from # lists are referenced as part of the rule which includes the list). listDefn = { 'direction' : ['up','down','left','right'], 'count' : ['1','2','3','4','5','6','7','8','9','10','11','12','13', '14','15','16','17','18','19','20','25','30','35','40','45','50'] } # Load the grammar, build the direction and count lists and activate the # main rule ('start') def initialize(self): self.load(self.gramDefn) for listName in self.listDefn.keys(): self.setList(listName,self.listDefn[listName]) self.activateSet(['start'],exclusive=0) # This subroutine moves the mouse cursor in an indicated direction # by an indicated number of pixels def moveMouse(self,direction,count): xPos,yPos = natlink.getCursorPos() if direction == 'up': yPos = yPos - count elif direction == 'down': yPos = yPos + count elif direction == 'left': xPos = xPos - count elif direction == 'right': xPos = xPos + count xSize,ySize = natlink.getScreenSize() if xPos < 0: xPos = 0 if xPos >= xSize: xPos = xSize - 1 if yPos < 0: yPos = 0 if yPos >= ySize: yPos = ySize - 1 natlink.playEvents([(wm_mousemove,xPos,yPos)]) # This subroutine cancels any active movement mode def cancelMode(self): self.curMode = None if self.haveCallback: natlink.setTimerCallback(None,0) self.haveCallback = 0 self.activateSet(['start'],exclusive=0) natlink.setTrayIcon() # This function is called on a timer event. If we are in a movement # mode then we move the mouse or caret by the indicated amount. # # The apparent speed for mouse movement is the speed divided by the # number of pixels per move. We calculate the number of pixels per # move to ensure that the speed is never faster than 50 milliseconds. def onTimer(self): if self.lastClock: diff = int( (time.clock() - self.lastClock) * 1000 ) self.lastClock = time.clock() if self.curMode == 1: moduleInfo = natlink.getCurrentModule() if natlink.getMicState() == 'on' and moduleInfo == self.moduleInfo: self.setTrayIcon(1) # Note: it is often during a playString operation that the # "stop moving" command occurs natlink.playString('{'+self.curDirection+'}') else: self.cancelMode() elif self.curMode == 2: self.moveMouse(self.curDirection,self.curPixels) # This handles the nudgeMouse rule. We want to extract the direction # and the count or amount. def gotResults_nudgeMouse(self,words,fullResults): self.cancelMode() direction = findKeyWord(words,self.listDefn['direction']) count = findKeyWord(words,self.listDefn['count']) amount = findKeyWord(words,amountDict.keys()) if count: count = string.atoi(count) elif amount: count = amountDict[amount] self.moveMouse(direction,count) # This handles the mouseButton rule. We want to extract the button # name (if specified) and whether this is a single or double click. def gotResults_mouseButton(self,words,fullResults): self.cancelMode() which = findKeyWord(words,['left','right','middle']) if not which: which = 'left' if 'double' in words: count = 2 else: count = 1 buttonClick(which,count) # This handles the startMoving rule. We only need to extract the # direction. To turn on cursor movement mode we need to install a # timer callback (warning: this is global) and set the recognition # state to be exclusively from the rule <nowMoving>. The cursor only # moves in the timer callback itself. def gotResults_startMoving(self,words,fullResults): self.cancelMode() direction = findKeyWord(words,self.listDefn['direction']) self.curMode = 1 self.curDirection = direction self.setTrayIcon(0) self.moduleInfo = natlink.getCurrentModule() self.curSpeed = defaultMoveSpeed self.lastClock = time.clock() natlink.setTimerCallback(self.onTimer,defaultMoveSpeed) self.haveCallback = 1 self.activateSet(['nowMoving'],exclusive=1) # This handles the nowMoving rule. We want to extract the keyword which # tells us what to do. def gotResults_nowMoving(self,words,fullResults): direction = findKeyWord(words,self.listDefn['direction']) if direction: self.curDirection = direction self.setTrayIcon(0) elif 'stop' in words: self.cancelMode() elif 'faster' in words: speed = int(self.curSpeed / moveRateChange) if 'much' in words: speed = int(speed / (moveRateChange*moveRateChange)) if speed < 50: speed = 50 self.curSpeed = speed natlink.setTimerCallback(self.onTimer,speed) elif 'slower' in words: speed = int(self.curSpeed * moveRateChange) if 'much' in words: speed = int(speed * (moveRateChange*moveRateChange)) if speed > 4000: speed = 4000 self.curSpeed = speed natlink.setTimerCallback(self.onTimer,speed) # This handles the startMousing rule. We only need to extract the # direction. To turn on cursor movement mode we need to install a # timer callback (warning: this is global) and set the recognition # state to be exclusively from the rule <nowMoving>. The cursor only # moves in the timer callback itself. def gotResults_startMousing(self,words,fullResults): self.cancelMode() direction = findKeyWord(words,self.listDefn['direction']) self.curMode = 2 self.curDirection = direction self.curSpeed = defaultMouseSpeed self.curPixels = defaultMousePixels self.lastClock = time.clock() natlink.setTimerCallback(self.onTimer,defaultMouseSpeed) self.haveCallback = 1 self.activateSet(['nowMousing'],exclusive=1) # This handles the nowMousing rule. We want to extract the keyword which # tells us what to do. def gotResults_nowMousing(self,words,fullResults): direction = findKeyWord(words,self.listDefn['direction']) if direction: self.curDirection = direction elif 'stop' in words: self.cancelMode() elif 'faster' in words: speed = int(self.curSpeed / moveRateChange) pixels = self.curPixels while speed < 50: speed = speed * 2 pixels = pixels * 2 if pixels > 10: pixels = 10 self.curSpeed = speed self.curPixels = pixels natlink.setTimerCallback(self.onTimer,speed) elif 'slower' in words: speed = int(self.curSpeed * moveRateChange) pixels = self.curPixels while pixels > defaultMousePixels and speed >= 2*50: speed = speed / 2 pixels = pixels / 2 if speed > 2000: speed = 2000 self.curSpeed = speed self.curPixels = pixels natlink.setTimerCallback(self.onTimer,speed) # This turns on the tray icon depending on the movement direction. # self.iconState is used to toggle the image to animate the icon. def setTrayIcon(self,toggleIcon): iconName = self.curDirection toolTip = 'moving '+self.curDirection if not toggleIcon or self.iconState: self.iconState = 0 else: self.iconState = 1 iconName = iconName + '2' natlink.setTrayIcon(iconName,toolTip,self.onTrayIcon) # This is called if the user clicks on the tray icon. We simply cancel # movement in all cases. def onTrayIcon(self,message): self.cancelMode() # This is a simple utility subroutine. It takes two lists of words and # returns the first word it finds which is in both lists. We use this to # extract special words (like the direction) from recognition results. def findKeyWord(list1,list2): for word in list1: if word in list2: return word return None # # Here is the initialization and termination code. See wordpad.py for more # comments. # thisGrammar = ThisGrammar() thisGrammar.initialize() def unload(): global thisGrammar if thisGrammar: thisGrammar.unload() thisGrammar = None
the-stack_0_10692
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2016 Twitter. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' log.py ''' import logging import logging.handlers # Create the logger Log = logging.getLogger('heron-state') def configure(level, logfile=None): """ configure logging """ log_format = "%(asctime)s-%(levelname)s: %(message)s" date_format = '%a, %d %b %Y %H:%M:%S' logging.basicConfig(format=log_format, datefmt=date_format) Log.setLevel(level) if logfile is not None: fh = logging.FileHandler(logfile) fh.setFormatter(logging.Formatter(log_format)) Log.addHandler(fh)
the-stack_0_10694
from django.db import models from django.utils import timezone # Create your models here. class Feedback(models.Model): data = models.DateTimeField(blank = True) result = models.CharField(max_length = 3, null=True) def store(self): self.data = timezone.now() self.save() class Document(models.Model): upload = models.FileField()
the-stack_0_10696
import argparse import logging import numpy as np import os import random from sklearn.linear_model import LogisticRegression from sklearn.metrics import f1_score import sys from baselines.vectorizers import build_vectorizer_from_df, load_vectorized_data from baselines.avg_fasttext import build_avg_fasttext_from_df, load_avg_fasttext from baselines.doc2vec import build_doc2vec_from_df, load_doc2vec from shared.global_constants import RES_DIR from shared.loaders import load_train_val_nodes from shared.utils import save_cli_options, save_dict_to_json logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) def parse_arguments(args_to_parse): """ Parse CLI arguments """ descr = 'Train a baseline model' parser = argparse.ArgumentParser(description=descr) general = parser.add_argument_group('General settings') general.add_argument('name', type=str, help="The name of the experimental directory - used for saving and loading.") general.add_argument( '--input-data-dir', type=str, required=True, help="The name of the directory from which to load the pre-processed data", ) general.add_argument( "--stemmer-path", type=str, required=True, help="Path to the SALAMA stemming dictionary", ) general.add_argument( '--model', type=str, default='tf-idf', choices=['tf-idf', 'count', 'doc2vec', 'fasttext'], help='Select the model type to use before feeding into a logistic regression layer', ) general.add_argument("--seed", type=int, default=12321, help='Random seed for reproducability') training = parser.add_argument_group('Training settings') training.add_argument( '--train-set-label-proportion', type=float, default=0.2, choices=[0.01, 0.05, 0.1, 0.2], help='Ratio of nodes in the training set which we keep labelled', ) # CLI options of the form `--doc2vec-XXXX` pertain to doc2vec training.add_argument( '--doc2vec-epochs', type=int, default=10, help="The number of epochs to run when training Doc2Vec", ) training.add_argument( '--doc2vec-feature-dims', type=int, default=300, help="The Doc2vec feature vector size", ) training.add_argument( '--doc2vec-dm', type=int, choices=[0, 1], default=1, help="The training regime to use for Doc2Vec: Distributed Memory (1) or Distributed Bag of Words (0)", ) return parser.parse_args(args_to_parse) def main(args): """ Entry point for training a doc2vec model """ random.seed(args.seed) np.random.seed(args.seed) results_dir = os.path.join(RES_DIR, args.name) os.makedirs(results_dir, exist_ok=True) save_cli_options(args, results_dir) preproc_dir = os.path.join(results_dir, 'preproc') if args.model == 'tf-idf' or args.model == 'count': if not os.path.isdir(preproc_dir): os.makedirs(preproc_dir, exist_ok=True) build_vectorizer_from_df( vectorizer_name=args.model, save_dir=preproc_dir, df_path=os.path.join(RES_DIR, args.input_data_dir, 'dataset.csv'), stemming_map_path=os.path.join(RES_DIR, args.stemmer_path), text_column='document_content', label_column='document_type', ) print(f'Load {args.model} data...') input_features, labels = load_vectorized_data(preproc_dir, args.model) elif args.model == 'fasttext': if not os.path.isdir(preproc_dir): os.makedirs(preproc_dir, exist_ok=True) build_avg_fasttext_from_df( save_dir=preproc_dir, df_path=os.path.join(RES_DIR, args.input_data_dir, 'dataset.csv'), stemming_map_path=os.path.join(RES_DIR, args.stemmer_path), text_column='document_content', label_column='document_type', ) print('Load average FastText data...') input_features, labels = load_avg_fasttext(preproc_dir) elif args.model == 'doc2vec': if not os.path.isdir(preproc_dir): os.makedirs(preproc_dir, exist_ok=True) build_doc2vec_from_df( save_dir=preproc_dir, df_path=os.path.join(RES_DIR, args.input_data_dir, 'dataset.csv'), stemming_map_path=os.path.join(RES_DIR, args.stemmer_path), text_column='document_content', label_column='document_type', training_regime=args.doc2vec_dm, embedding_dimension=args.doc2vec_feature_dims, num_epochs=args.doc2vec_epochs, ) print('Load Doc2vec data...') input_features, labels = load_doc2vec(preproc_dir) else: raise Exception(f'Unrecognised model type: {args.model}') train_nodes, val_nodes, test_nodes = load_train_val_nodes( preproc_dir=os.path.join(RES_DIR, args.input_data_dir), train_set_label_proportion=args.train_set_label_proportion, as_numpy=True, ) print('Train classifier ...') classifier = LogisticRegression(random_state=args.seed).fit(input_features[train_nodes, :], labels[train_nodes]) print('Get accuracies...') train_predictions = classifier.predict(input_features[train_nodes, :]) val_predictions = classifier.predict(input_features[val_nodes, :]) test_predictions = classifier.predict(input_features[test_nodes, :]) train_accuracy = sum(train_predictions == labels[train_nodes]) / len(train_predictions) val_accuracy = sum(val_predictions == labels[val_nodes]) / len(val_predictions) test_accuracy = sum(test_predictions == labels[test_nodes]) / len(test_predictions) test_micro_f1 = f1_score(labels[test_nodes], test_predictions, average='micro') test_macro_f1 = f1_score(labels[test_nodes], test_predictions, average='macro') print(f'Train Accuracy: {train_accuracy}') print(f'Validation Accuracy: {val_accuracy}') print(f'Test Accuracy: {test_accuracy}') print(f'Test Micro F1: {test_micro_f1}') print(f'Test Macro F1: {test_macro_f1}') output_save_dir = os.path.join(results_dir, f'model_{args.train_set_label_proportion}') os.makedirs(output_save_dir, exist_ok=True) save_dict_to_json( { 'train_accuracy': train_accuracy, 'val_accuracy': val_accuracy, 'test_accuracy': test_accuracy, 'test_micro_f1': test_micro_f1, 'test_macro_f1': test_macro_f1, }, os.path.join(output_save_dir, 'metric.json'), ) # from sklearn.model_selection import learning_curve # train_sizes, train_scores, test_scores = learning_curve( # classifier, input_features[train_nodes, :], labels[train_nodes] # ) # print(train_scores) if __name__ == '__main__': args = parse_arguments(sys.argv[1:]) main(args)