filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_10704
import cv2 from CameraOrMarker import * from scipy.linalg import sqrtm class SolvePnpInputs: def __init__(self, camera_not_marker, corners_f_images, t_world_xxx_cvecs): self.camera_not_marker = camera_not_marker # t_world_xxx_cvecs are for a camera self.corners_f_images = corners_f_images self.t_world_xxx_cvecs = t_world_xxx_cvecs class CameraMarkerCalculations: def __init__(self, scenario): self.sc = scenario # Constants for Sigma Point generation self.n0 = 8 # 8 coordinates of the corner points self.n1 = 14 # 8 + 6 self.alpha = 1.0 self.betta = 2.0 self.k0 = 3.0 - self.n0 self.k1 = 3.0 - self.n1 self.lam0 = self.alpha ** 2 * (self.n0 + self.k0) - self.n0 self.lam1 = self.alpha ** 2 * (self.n1 + self.k1) - self.n1 self.gamma0 = np.sqrt(self.n0 + self.lam0) self.gamma1 = np.sqrt(self.n1 + self.lam1) def _get_corners_f_marker(self): m2 = self.sc.marker_len / 2.0 marker_corners_f_marker = np.array([[-m2, m2, 0.], [m2, m2, 0.], [m2, -m2, 0.], [-m2, -m2, 0.]]).T return marker_corners_f_marker def _project_points(self, camera, marker): # get corners in the marker frame corners_f_marker = self._get_corners_f_marker().T # get the transforms t_world_camera = camera.t_world_xxx t_world_marker = marker.t_world_xxx # calculate rvec, tvec from t_camera_marker t_camera_marker = t_world_camera.as_inverse() \ .as_right_combined(t_world_marker) rvec, tvec = t_camera_marker.as_rvec_tvec() # project the points using t_camera_marker corners_f_image, _ = cv2.projectPoints(corners_f_marker, rvec, tvec, self.sc.camera_matrix, self.sc.dist_coeffs) return corners_f_image.reshape(8, 1) def generate_corners_f_image(self, camera, marker): assert camera.camera_not_marker assert not marker.camera_not_marker return self._project_points(camera, marker) def _generate_sigma_points(self, com, corners_f_image): # TODO figure out real sigma points. com_cvec = com.t_world_xxx.as_cvec() gamma = self.gamma0 if com.simulated_not_derived else self.gamma1 corners_f_images = np.zeros([8, 17] if com.simulated_not_derived else [8, 29]) t_world_xxx_cvecs = np.zeros([6, 17] if com.simulated_not_derived else [6, 29]) var = self.sc.std_corners_f_image f = corners_f_image * np.ones([8, 17]) f[:, 1:9] += np.eye(8) * var * gamma f[:, 9:17] -= np.eye(8) * var * gamma corners_f_images[:, :17] = f t_world_xxx_cvecs[:, :17] = com_cvec * np.ones([6, 17]) if not com.simulated_not_derived: s = sqrtm(com.cov) # var = np.sqrt(np.diag(com.cov).reshape(6, 1)) # var = np.diag(com.cov).reshape(6, 1) f = com_cvec * np.ones([6, 12]) f[:, :6] += s * gamma f[:, 6:12] -= s * gamma corners_f_images[:, 17:29] = corners_f_image * np.ones([8, 12]) t_world_xxx_cvecs[:, 17:29] = f return SolvePnpInputs(com.camera_not_marker, corners_f_images, t_world_xxx_cvecs) def generate_solve_pnp_inputs(self, camera_not_marker, camera, marker): assert camera.camera_not_marker assert not marker.camera_not_marker com = camera if camera_not_marker else marker # Get corners using the poses of the camera and marker corners_f_image = self._project_points(camera, marker) if self.sc.use_sigma_points: return self._generate_sigma_points(com, corners_f_image) # Make many of these corner bundles corners_f_images = corners_f_image + \ np.random.normal(0., self.sc.std_corners_f_image ** 2, size=[8, self.sc.num_generated_samples]) # Now get many cvecs if com.simulated_not_derived: t_world_xxx_cvec = com.t_world_xxx.as_cvec() t_world_xxx_cvecs = np.tile(t_world_xxx_cvec, (1, self.sc.num_generated_samples)) elif self.sc.use_dist_params: t_world_xxx_cvecs = np.random.multivariate_normal(com.mu[:, 0], com.cov, self.sc.num_generated_samples).T else: assert com.samples is not None t_world_xxx_cvecs = com.samples return SolvePnpInputs(camera_not_marker, corners_f_images, t_world_xxx_cvecs) def solve_pnp(self, inputs): t_world_xxx_cvecs = np.zeros(inputs.t_world_xxx_cvecs.shape) # get corners in the marker frame corners_f_marker = self._get_corners_f_marker().T for i in range(t_world_xxx_cvecs.shape[1]): # Given the location of the corners in the image, find the pose of the marker in the camera frame. ret, rvecs, tvecs = cv2.solvePnP(corners_f_marker, inputs.corners_f_images[:, i].reshape(4, 2), self.sc.camera_matrix, self.sc.dist_coeffs) t_camera_marker = tf.Transformation.from_rodrigues(rvecs[:, 0], translation=tvecs[:, 0]) input_t_world_xxx = tf.Transformation.from_cvec(inputs.t_world_xxx_cvecs[:, i]) t_camera_marker_factor = t_camera_marker if not inputs.camera_not_marker: t_camera_marker_factor = t_camera_marker_factor.as_inverse() output_t_world_xxx = input_t_world_xxx.as_right_combined(t_camera_marker_factor) t_world_xxx_cvecs[:, i] = output_t_world_xxx.as_cvec().T mu = np.mean(t_world_xxx_cvecs, axis=1).reshape(6, 1) cov = np.cov(t_world_xxx_cvecs) return CameraOrMarker.from_mu(not inputs.camera_not_marker, mu, cov, t_world_xxx_cvecs)
the-stack_0_10705
# -*- coding: utf-8 -*- # Copyright (C) 2017 - 2018 by Pedro Mendes, Virginia Tech Intellectual # Properties, Inc., University of Heidelberg, and University of # of Connecticut School of Medicine. # All rights reserved. # Copyright (C) 2010 - 2016 by Pedro Mendes, Virginia Tech Intellectual # Properties, Inc., University of Heidelberg, and The University # of Manchester. # All rights reserved. # Copyright (C) 2009 by Pedro Mendes, Virginia Tech Intellectual # Properties, Inc., EML Research, gGmbH, University of Heidelberg, # and The University of Manchester. # All rights reserved. # This is an example on how to import an sbml file # create a report for a time course simulation # and run a time course simulation # from COPASI import * import sys # create a datamodel try: dataModel = CRootContainer.addDatamodel() except: dataModel = CCopasiRootContainer.addDatamodel() def main(args): # the only argument to the main routine should be the name of an SBML file if len(args) != 1: sys.stderr.write("Usage: example3 SBMLFILE\n") return 1; filename = args[0] try: # load the model if not dataModel.importSBML(filename): print("Couldn't load {0}:".format(filename)) print(CCopasiMessage.getAllMessageText()) except: sys.stderr.write("Error while importing the model from file named \"" + filename + "\".\n") return 1 model = dataModel.getModel() assert model is not None # get the trajectory task object trajectoryTask = dataModel.getTask("Time-Course") assert (isinstance(trajectoryTask, CTrajectoryTask)) # run a deterministic time course trajectoryTask.setMethodType(CTaskEnum.Method_deterministic) # activate the task so that it will be run when the model is saved # and passed to CopasiSE trajectoryTask.setScheduled(True) # create a new report that captures the time course result report = create_report(model) # set the report for the task trajectoryTask.getReport().setReportDefinition(report) # set the output filename trajectoryTask.getReport().setTarget("example3.txt") # don't append output if the file exists, but overwrite the file trajectoryTask.getReport().setAppend(False) # get the problem for the task to set some parameters problem = trajectoryTask.getProblem() assert (isinstance(problem, CTrajectoryProblem)) # simulate 100 steps problem.setStepNumber(100) # start at time 0 dataModel.getModel().setInitialTime(0.0) # simulate a duration of 10 time units problem.setDuration(10) # tell the problem to actually generate time series data problem.setTimeSeriesRequested(True) # tell the problem, that we want exactly 100 simulation steps (not automatically controlled) problem.setAutomaticStepSize(False) # tell the problem, that we don't want additional output points for event assignments problem.setOutputEvent(False) # set some parameters for the LSODA method through the method method = trajectoryTask.getMethod() parameter = method.getParameter("Absolute Tolerance") assert parameter is not None assert parameter.getType() == CCopasiParameter.Type_UDOUBLE parameter.setValue(1.0e-12) try: # now we run the actual trajectory result=trajectoryTask.process(True) except: sys.stderr.write("Error. Running the time course simulation failed.\n") # check if there are additional error messages if CCopasiMessage.size() > 0: # print the messages in chronological order sys.stderr.write(CCopasiMessage.getAllMessageText(True)) return 1 if not result: sys.stderr.write("Error. Running the time course simulation failed.\n" ) # check if there are additional error messages if CCopasiMessage.size() > 0: # print the messages in chronological order sys.stderr.write(CCopasiMessage.getAllMessageText(True)) return 1 # look at the timeseries print_results(trajectoryTask) def print_results(trajectoryTask): timeSeries = trajectoryTask.getTimeSeries() # we simulated 100 steps, including the initial state, this should be # 101 step in the timeseries assert timeSeries.getRecordedSteps() == 101 print ("The time series consists of {0} steps.".format(timeSeries.getRecordedSteps())) print ("Each step contains {0} variables.".format(timeSeries.getNumVariables())) print ("\nThe final state is: ") iMax = timeSeries.getNumVariables() lastIndex = timeSeries.getRecordedSteps() - 1 for i in range(0, iMax): # here we get the particle number (at least for the species) # the unit of the other variables may not be particle numbers # the concentration data can be acquired with getConcentrationData print (" {0}: {1}".format(timeSeries.getTitle(i), timeSeries.getData(lastIndex, i))) # the CTimeSeries class now has some new methods to get all variable titles # as a python list (getTitles()) # and methods to get the complete time course data for a certain variable based on # the variables index or the corresponding model object. # E.g. to get the particle numbers of the second variable as a python list # you can use getDataForIndex(1) and to get the concentration data you use # getConcentrationDataForIndex(1) # To get the complete particle number data for the second metabolite of the model # you can use getDataForObject(model.getMetabolite(1)) and to get the concentration # data you use getConcentrationDataForObject. # print timeSeries.getTitles() # print timeSeries.getDataForIndex(1) # print timeSeries.getDataForObject(model) def create_report(model): # create a report with the correct filename and all the species against # time. reports = dataModel.getReportDefinitionList() # create a report definition object report = reports.createReportDefinition("Report", "Output for timecourse") # set the task type for the report definition to timecourse report.setTaskType(CTaskEnum.Task_timeCourse) # we don't want a table report.setIsTable(False) # the entries in the output should be separated by a ", " report.setSeparator(CCopasiReportSeparator(", ")) # we need a handle to the header and the body # the header will display the ids of the metabolites and "time" for # the first column # the body will contain the actual timecourse data header = report.getHeaderAddr() body = report.getBodyAddr() body.push_back( CRegisteredCommonName(CCommonName(dataModel.getModel().getCN().getString() + ",Reference=Time").getString())) body.push_back(CRegisteredCommonName(report.getSeparator().getCN().getString())) header.push_back(CRegisteredCommonName(CDataString("time").getCN().getString())) header.push_back(CRegisteredCommonName(report.getSeparator().getCN().getString())) iMax = model.getMetabolites().size() for i in range(0, iMax): metab = model.getMetabolite(i) assert metab is not None # we don't want output for FIXED metabolites right now if metab.getStatus() != CModelEntity.Status_FIXED: # we want the concentration oin the output # alternatively, we could use "Reference=Amount" to get the # particle number body.push_back( CRegisteredCommonName(metab.getObject(CCommonName("Reference=Concentration")).getCN().getString())) # add the corresponding id to the header header.push_back(CRegisteredCommonName(CDataString(metab.getSBMLId()).getCN().getString())) # after each entry, we need a separator if i != iMax - 1: body.push_back(CRegisteredCommonName(report.getSeparator().getCN().getString())) header.push_back(CRegisteredCommonName(report.getSeparator().getCN().getString())) return report if __name__ == '__main__': main(sys.argv[1:])
the-stack_0_10706
from ..constants import _file_to_fh from ..functions import open_files_threshold_exceeded, close_one_file #, abspath from .umread.umfile import File, UMFileException _file_to_UM = _file_to_fh.setdefault('UM', {}) def _open_um_file(filename, aggregate=True, fmt=None, word_size=None, byte_ordering=None): '''Open a UM fields file or PP file and read it into a `umread.umfile.File` object. If there is already a `umread.umfile.File` object for the file then it is returned with an open file descriptor. :Parameters: filename : str The file to be opened. :Returns: out : umread.umfile.File The opened file with an open file descriptor. :Examples: ''' # filename = abspath(filename) f = _file_to_UM.get(filename) if f is not None: if f.fd is None: if open_files_threshold_exceeded(): # Close a random data array file to make way for this # one close_one_file() f.open_fd() #--- End: if return f if open_files_threshold_exceeded(): # Close a random data array file to make way for this one close_one_file() try: f = File(filename, byte_ordering=byte_ordering, word_size=word_size, format=fmt) except Exception as error: try: f.close_fd() except: pass raise Exception(error) # Add a close method to the file object f.close = f.close_fd # Update the _file_to_UM dictionary _file_to_UM[filename] = f return f #--- End: def def _close_um_file(filename): '''Close a PP or UM fields file. Does nothing if the file is already closed. :Parameters: filename : str The file to be closed. :Returns: None :Examples: ''' f = _file_to_UM.pop(filename, None) if f is not None: f.close_fd() #--- End: def
the-stack_0_10708
from pyxform.tests_v1.pyxform_test_case import PyxformTestCase class XlsFormHeadersTest(PyxformTestCase): def test_label_caps_alternatives(self): """ re: https://github.com/SEL-Columbia/pyxform/issues/76 Capitalization of 'label' column can lead to confusing errors. """ s1 = self.md_to_pyxform_survey(""" | survey | | | | | | type | name | label | | | note | q | Q | """) s2 = self.md_to_pyxform_survey(""" | survey | | | | | | type | name | Label | # <-- note: capital L | | note | q | Q | """) self.assertEqual(s1.to_xml(), s2.to_xml()) def test_calculate_alias(self): self.assertPyxformXform( name="calculatealias", md=""" | survey | | | | | | | type | name | label | calculate | | | decimal | amount | Counter | | | | calculate | doubled | Doubled | ${amount} * 2 | """, errored=False, debug=True)
the-stack_0_10709
#!/usr/bin/python # -*- coding: utf-8 -*- # # Copyright (C) 2012 Tristan Fischer ([email protected]) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # from xbmcswift2 import Plugin, xbmc from resources.lib.api import \ ItunesPodcastApi, NetworkError, NoEnclosureException plugin = Plugin() api = ItunesPodcastApi() my_podcasts = plugin.get_storage('my_podcasts.json', file_format='json') STRINGS = { 'all': 30000, 'browse_by_genre': 30002, 'show_my_podcasts': 30003, 'search_podcast': 30004, 'video': 30005, 'audio': 30006, 'add_to_my_podcasts': 30010, 'remove_from_my_podcasts': 30011, 'network_error': 30200, 'no_media_found': 30007, } @plugin.route('/') def show_root(): content_type = plugin.request.args.get('content_type') if not content_type: url = plugin.url_for(endpoint='show_content_types') return plugin.redirect(url) if isinstance(content_type, (list, tuple)): content_type = content_type[0] items = ( {'label': _('browse_by_genre'), 'path': plugin.url_for( endpoint='show_genres', content_type=content_type )}, {'label': _('show_my_podcasts'), 'path': plugin.url_for( endpoint='show_my_podcasts', content_type=content_type )}, {'label': _('search_podcast'), 'path': plugin.url_for( endpoint='search', content_type=content_type )}, ) return plugin.finish(items) @plugin.route('/content_types/') def show_content_types(): items = ( {'label': _('video'), 'path': plugin.url_for( endpoint='show_root', content_type='video' )}, {'label': _('audio'), 'path': plugin.url_for( endpoint='show_root', content_type='audio' )} ) return plugin.finish(items) @plugin.route('/<content_type>/genres/') def show_genres(content_type): show_subgenres = plugin.get_setting('show_subgenres', bool) genres = api.get_genres(flat=show_subgenres) items = [] for genre in genres: if genre['name'] == 'Podcasts': genre['name'] = _('all') item = { 'label': genre['name'], 'path': plugin.url_for( endpoint='show_podcasts', content_type=content_type, genre_id=genre['id'] ) } items.append(item) return plugin.finish(items) @plugin.route('/<content_type>/podcasts/by-genre/<genre_id>/') def show_podcasts(content_type, genre_id): num_podcasts_list = plugin.get_setting('num_podcasts_list', int) podcasts = api.get_podcasts( content_type=content_type, genre_id=genre_id, limit=num_podcasts_list ) return __add_podcasts(content_type, podcasts) @plugin.route('/<content_type>/podcast/items/<podcast_id>/') def show_items(content_type, podcast_id): try: podcast_items = api.get_podcast_items( podcast_id=podcast_id ) except NoEnclosureException: plugin.notify(msg=_('no_media_found')) return plugin.finish(succeeded=False) return __add_podcast_items(content_type, podcast_id, podcast_items) @plugin.route('/<content_type>/podcast/items/<podcast_id>/<item_url>') def watch_item(content_type, podcast_id, item_url): return plugin.set_resolved_url(item_url) @plugin.route('/<content_type>/podcasts/my/') def show_my_podcasts(content_type): podcasts = my_podcasts.get(content_type, {}).values() return __add_podcasts(content_type, podcasts) @plugin.route('/<content_type>/podcasts/my/add/<podcast_id>') def add_to_my_podcasts(content_type, podcast_id): podcast = api.get_single_podcast(podcast_id=podcast_id) if not content_type in my_podcasts: my_podcasts[content_type] = {} my_podcasts[content_type][podcast_id] = podcast my_podcasts.sync() @plugin.route('/<content_type>/podcasts/my/del/<podcast_id>') def del_from_my_podcasts(content_type, podcast_id): if podcast_id in my_podcasts.get(content_type, {}): del my_podcasts[content_type][podcast_id] my_podcasts.sync() @plugin.route('/<content_type>/podcasts/search/') def search(content_type): search_string = plugin.keyboard(heading=_('search')) if search_string: url = plugin.url_for( endpoint='search_result', content_type=content_type, search_string=search_string ) plugin.redirect(url) @plugin.route('/<content_type>/podcasts/search/<search_string>/') def search_result(content_type, search_string): num_podcasts_search = plugin.get_setting('num_podcasts_search', int) podcasts = api.search_podcast( search_term=search_string, limit=num_podcasts_search ) return __add_podcasts(content_type, podcasts) def __add_podcasts(content_type, podcasts): my_podcasts_ids = my_podcasts.get(content_type, {}).keys() items = [] for i, podcast in enumerate(podcasts): podcast_id = str(podcast['id']) if not podcast_id in my_podcasts_ids: context_menu = [( _('add_to_my_podcasts'), 'XBMC.RunPlugin(%s)' % plugin.url_for( endpoint='add_to_my_podcasts', content_type=content_type, podcast_id=podcast_id ) )] else: context_menu = [( _('remove_from_my_podcasts'), 'XBMC.RunPlugin(%s)' % plugin.url_for( endpoint='del_from_my_podcasts', content_type=content_type, podcast_id=podcast_id ) )] item = { 'label': podcast['name'], 'thumbnail': podcast['thumb'], 'info': { 'title': podcast['name'], 'count': i, 'plot': podcast['summary'] or '', 'studio': podcast['author'] or '', 'genre': podcast['genre'] or '', 'tagline': podcast['rights'] or '', 'date': podcast['release_date'] or '' }, 'context_menu': context_menu, 'path': plugin.url_for( endpoint='show_items', content_type=content_type, podcast_id=podcast_id ) } items.append(item) finish_kwargs = { 'sort_methods': ('PLAYLIST_ORDER', 'TITLE', 'DATE') } if plugin.get_setting('force_viewmode_podcasts', bool): finish_kwargs['view_mode'] = 'thumbnail' return plugin.finish(items, **finish_kwargs) def __add_podcast_items(content_type, podcast_id, podcast_items): items = [{ 'label': item['title'], 'thumbnail': item['thumb'], 'info': { 'title': item['title'], 'count': i, 'plot': item['summary'] or '', 'studio': item['author'] or '', 'size': item['size'] or 0, 'date': item['pub_date'] or '', 'tagline': item['rights'] or '' }, 'path': plugin.url_for( endpoint='watch_item', content_type=content_type, podcast_id=podcast_id, item_url=item['item_url'].encode('utf-8') ), 'is_playable': True } for i, item in enumerate(podcast_items)] finish_kwargs = { 'sort_methods': ('PLAYLIST_ORDER', 'TITLE', 'DATE', 'SIZE') } if plugin.get_setting('force_viewmode_items', bool): finish_kwargs['view_mode'] = 'thumbnail' return plugin.finish(items, **finish_kwargs) def __get_country(): if not plugin.get_setting('country_already_set'): lang_country_mapping = ( ('chin', 'CN'), ('denm', 'DK'), ('fin', 'FI'), ('fre', 'FR'), ('germa', 'DE'), ('greec', 'GR'), ('ital', 'IT'), ('japa', 'JP'), ('kor', 'KR'), ('dutch', 'NL'), ('norw', 'NO'), ('pol', 'PL'), ('port', 'PT'), ('roma', 'RO'), ('russ', 'RU'), ('span', 'ES'), ('swed', 'SE'), ('turk', 'TR'), ('engl', 'US') ) country = None xbmc_language = xbmc.getLanguage().lower() for lang, country_code in lang_country_mapping: if xbmc_language.startswith(lang): country = country_code plugin.set_setting('country', country) break if not country: plugin.open_settings() country = plugin.get_setting('country') or 'US' plugin.set_setting('country_already_set', '1') return country def _(string_id): if string_id in STRINGS: return plugin.get_string(STRINGS[string_id]) else: plugin.log.warning('String is missing: %s' % string_id) return string_id if __name__ == '__main__': country = __get_country() api.set_country(country=country) try: plugin.run() except NetworkError: plugin.notify(msg=_('network_error'))
the-stack_0_10710
import time class MergeSort: """ This class is a python implementation of the problem discussed in this video by mycodeschool - https://www.youtube.com/watch?v=TzeBrDU-JaY :Authors: pranaychandekar """ @staticmethod def merge(left: list, right: list, original: list): """ This method implements the merge logic to merge two halves of a list. :param left: The left half of the original list. :param right: The right half of the original list. :param original: The original list. :type left: list :type right: list :type original: list """ left_length = len(left) right_length = len(right) left_pointer = right_pointer = original_pointer = 0 while left_pointer < left_length and right_pointer < right_length: if left[left_pointer] <= right[right_pointer]: original[original_pointer] = left[left_pointer] left_pointer = left_pointer + 1 else: original[original_pointer] = right[right_pointer] right_pointer = right_pointer + 1 original_pointer = original_pointer + 1 if left_pointer < left_length: original[original_pointer:] = left[left_pointer:] if right_pointer < right_length: original[original_pointer:] = right[right_pointer:] def merge_sort(self, unsorted_list: list): """ This method sorts a given list in ascending order using Merge Sort algorithm. :param unsorted_list: The list which needs to be sorted. :type unsorted_list: list """ unsorted_list_size = len(unsorted_list) if unsorted_list_size < 2: return mid = int(unsorted_list_size / 2) left = unsorted_list[0:mid] right = unsorted_list[mid:] self.merge_sort(left) self.merge_sort(right) self.merge(left, right, unsorted_list) if __name__ == "__main__": tic = time.time() print("\nYou are currently running Merge Sort test case.") unsorted_list = [2, 7, 4, 1, 5, 3] print("\nUnsorted List: ") for element in unsorted_list: print(str(element), end=", ") print() solution = MergeSort() solution.merge_sort(unsorted_list) print("\nSorted List: ") for element in unsorted_list: print(str(element), end=", ") print() toc = time.time() print("\nTotal time taken:", toc - tic, "seconds.")
the-stack_0_10711
import http.client import requests import random import string import sqlite3 from sqlite3 import Error import sys from faker import Faker fake = Faker() withdraw = False address = "D87S8xBmWjgy6UWUhBjeRs8cMjpMyXdQe5" db = sqlite3.connect('database.db') conn = http.client.HTTPSConnection("dogeminer.fun") def query(sql): cursor = db.cursor() res = cursor.execute(sql) db.commit() return res def getSession(): length_of_string = 40 letters_and_digits = string.ascii_lowercase + string.digits random_string = "" for _ in range(length_of_string): random_string += random.choice(letters_and_digits) print(random_string) ci_session = "wolven_core_session=" + random_string return ci_session def getAddress(): URL = "http://localhost:3000/get-target-linked-address" r = requests.get(url = URL) data = r.json() address = data['data'] return address.strip() def register(username,address): session_id = getSession() payload = 'user_name='+username+'&email='+username+'%40gmail.com&email_repeat='+username+'%40gmail.com&password=123456&password_repeat=123456&address='+address+'&tos_agree=1&register=Register%2BSecurely' headers = { 'authority': 'dogeminer.fun', 'cache-control': 'max-age=0', 'upgrade-insecure-requests': '1', 'origin': 'https://dogeminer.fun', 'content-type': 'application/x-www-form-urlencoded', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'navigate', 'sec-fetch-user': '?1', 'sec-fetch-dest': 'document', 'referer': 'https://dogeminer.fun/account/register', 'accept-language': 'en-US,en;q=0.9', 'cookie': session_id } conn.request("POST", "/account/register", payload, headers) res = conn.getresponse() data = res.read() print(data) print(res.status) if("Your account was successfully created" in str(data)): print("Register Success : " + username) query("insert into dogeminner_address (username,address,status) values('"+username+"','"+address+"','Pending')") def withdraw_doge(username): session_id = getSession() payload = 'user_name='+username+'&password=123456&login=Login%2BSecurely' headers = { 'authority': 'dogeminer.fun', 'cache-control': 'max-age=0', 'upgrade-insecure-requests': '1', 'origin': 'https://dogeminer.fun', 'content-type': 'application/x-www-form-urlencoded', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'navigate', 'sec-fetch-user': '?1', 'sec-fetch-dest': 'document', 'referer': 'https://dogeminer.fun/account/login', 'accept-language': 'en-US,en;q=0.9', 'cookie': session_id } conn.request("POST", "/account/login", payload, headers) res = conn.getresponse() res.read() payload = 'claim=Start%2BAuto%2BFaucet' headers = { 'authority': 'dogeminer.fun', 'cache-control': 'max-age=0', 'upgrade-insecure-requests': '1', 'origin': 'https://dogeminer.fun', 'content-type': 'application/x-www-form-urlencoded', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'navigate', 'sec-fetch-user': '?1', 'sec-fetch-dest': 'document', 'referer': 'https://dogeminer.fun/page/dashboard', 'accept-language': 'en-US,en;q=0.9', 'cookie': session_id } conn.request("POST", "/page/dashboard", payload, headers) res = conn.getresponse() res.read() redirectUrl = res.headers['Location'] print("RedirectUrl: " + str(redirectUrl)) payload = '' headers = { 'authority': 'dogeminer.fun', 'cache-control': 'max-age=0', 'upgrade-insecure-requests': '1', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.141 Safari/537.36', 'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9', 'sec-fetch-site': 'same-origin', 'sec-fetch-mode': 'navigate', 'sec-fetch-user': '?1', 'sec-fetch-dest': 'document', 'referer': 'https://dogeminer.fun/page/dashboard', 'accept-language': 'en-US,en;q=0.9', 'cookie': session_id } conn.request("GET", redirectUrl, payload, headers) res = conn.getresponse() res.read() print("Withdraw Complete for User : " + username) def initialize(): sql = """ CREATE TABLE IF NOT EXISTS dogeminner_address ( id integer PRIMARY KEY , username text, address text, status text ); """ query(sql) res = query("select count(*) as count from dogeminner_address") rows = res.fetchall() data_count = rows[0][0] min_data_count = 500 if(data_count < min_data_count): for _ in range(min_data_count-data_count): name = fake.name().split(" ")[1] number = '{:03d}'.format(random.randrange(1, 999)) username = (name + number) register(username,address) def do_main_job(): cursor = db.cursor() sql = "select username from dogeminner_address where status = 'Pending' LIMIT 1" res = cursor.execute(sql) rows = res.fetchall() if(len(rows)==0): sql = "update dogeminner_address set status = 'Pending'" res = cursor.execute(sql) db.commit() do_main_job() return username = rows[0][0] sql = "update dogeminner_address set status = 'Completed' where username = '"+username+"'" res = cursor.execute(sql) db.commit() withdraw_doge(username) do_main_job() initialize() do_main_job()
the-stack_0_10713
# standard library imports import os import secrets from contextlib import closing from urllib.parse import urlparse from functools import cached_property from mimetypes import guess_extension # pip imports from magic import from_buffer import psycopg2 from flask import url_for, current_app from werkzeug.datastructures import FileStorage from werkzeug.utils import safe_join, secure_filename # local imports from app import config from app.helpers.utils import create_hmac_hexdigest from app.helpers.discord import FileEmbed, ShortUrlEmbed conn = psycopg2.connect("user=postgres1 dbname=shrpy password=postgres") conn.set_session(autocommit=True) with conn.cursor() as cursor: cursor.execute("CREATE TABLE IF NOT EXISTS urls (token VARCHAR(10) NOT NULL PRIMARY KEY, url TEXT NOT NULL)") class File: def __init__(self, file_instance: FileStorage, use_original_filename=True): """Class for uploaded files which takes the `werkzeug.datastructures.FileStorage` from `flask.Request.files` as first parameter.""" if isinstance(file_instance, FileStorage) is False: raise InvalidFileException(file_instance) self.use_original_filename = use_original_filename # Private FileStorage instance self.__file = file_instance @cached_property def filename(self) -> str: """Returns random filename.""" custom_filename = secrets.token_urlsafe(config.FILE_TOKEN_BYTES) if self.use_original_filename: filename = f'{custom_filename}-{self.original_filename_root[:config.ORIGINAL_FILENAME_LENGTH]}' else: filename = custom_filename return f'{filename}.{self.extension}' @cached_property def extension(self) -> str: """Returns extension using `python-magic` and `mimetypes`.""" file_bytes = self.__file.read(config.MAGIC_BUFFER_BYTES) mime = from_buffer(file_bytes, mime=True).lower() ext = guess_extension(mime) if ext is None: current_app.logger.error(f'Unable to determine file extension for file {self.__file.filename} - MIME type {mime}') return ext.replace('.', '') @cached_property def original_filename_root(self): """Returns the original filename without extension.""" sec_filename = secure_filename(self.__file.filename.lower()) root, ext = os.path.splitext(sec_filename) return root @cached_property def hmac(self) -> str: """Returns HMAC digest calculated from filename, `flask.current_app.secret_key` is used as secret.""" return create_hmac_hexdigest(self.filename, current_app.secret_key) @cached_property def url(self) -> str: """Returns file URL using `flask.url_for`.""" return url_for('main.uploads', filename=self.filename, _external=True) @cached_property def deletion_url(self) -> str: """Returns deletion URL using `flask.url_for`.""" return url_for('api.delete_file', hmac_hash=self.hmac, filename=self.filename, _external=True) @staticmethod def delete(filename: str) -> bool: """Deletes the file from `config.UPLOAD_DIR`, if it exists.""" file_path = safe_join(config.UPLOAD_DIR, filename) if os.path.isfile(file_path) is False: return False current_app.logger.info(f'Deleted file {file_path}') os.remove(file_path) return True def is_allowed(self) -> bool: """Check if file is allowed, based on `config.ALLOWED_EXTENSIONS`.""" if not config.ALLOWED_EXTENSIONS: return True allowed = self.extension in config.ALLOWED_EXTENSIONS if allowed is False: current_app.logger.warning(f'File {self.__file.filename} (detected extension {self.extension}) is not allowed') return allowed def save(self, save_directory = config.UPLOAD_DIR) -> None: """Saves the file to `UPLOAD_DIR`.""" if os.path.isdir(save_directory) is False: os.makedirs(save_directory) save_path = safe_join(save_directory, self.filename) current_app.logger.info(f'Saving file {self.__file.filename} to {save_path}') current_app.logger.info(f'URLs: {self.url} - {self.deletion_url}') # Set file descriptor back to beginning of the file so save works correctly self.__file.seek(os.SEEK_SET) self.__file.save(save_path) def embed(self) -> FileEmbed: """Returns FileEmbed instance for this file.""" return FileEmbed( content_url=self.url, deletion_url=self.deletion_url ) class InvalidFileException(Exception): """Raised when `File` is initialized using wrong `file_instance`.""" def __init__(self, file_instance, *args): self.file_instance = file_instance super().__init__(*args) def __str__(self): file_instance_type = type(self.file_instance) return f'{self.file_instance} ({file_instance_type}) is not an instance of werkzeug.datastructures.FileStorage ({FileStorage})' class ShortUrl: def __init__(self, url: str): url = ''.join(url.lower().split()) if not url.startswith(('https://', 'http://')): url = f'https://{url}' self.url = url @cached_property def token(self) -> str: return secrets.token_urlsafe(config.URL_TOKEN_BYTES) @cached_property def hmac(self) -> str: """Returns HMAC hash calculated from token, `flask.current_app.secret_key` is used as secret.""" return create_hmac_hexdigest(self.token, current_app.secret_key) @cached_property def shortened_url(self) -> str: """Returns the shortened URL using `flask.url_for`.""" return url_for('main.short_url', token=self.token, _external=True) @cached_property def deletion_url(self) -> str: """Returns deletion URL using `flask.url_for`.""" return url_for('api.delete_short_url', hmac_hash=self.hmac, token=self.token, _external=True) def is_valid(self) -> bool: """Checks if URL is valid""" parsed = urlparse(self.url) # Parsed URL must have at least scheme and netloc (e.g. domain name) try: valid = all([parsed.scheme, parsed.netloc]) and parsed.netloc.split('.')[1] except IndexError: valid = False if valid is False: current_app.logger.warning(f'URL {self.url} is invalid') return valid def add(self): """Inserts the URL and token to database.""" current_app.logger.info(f'Saving short URL for {self.url} as {self.shortened_url}') current_app.logger.info(f'URLs: {self.shortened_url} - {self.deletion_url}') with closing(self.get_cursor()) as cursor: cursor.execute("INSERT INTO urls VALUES (%s, %s)", ( self.token, self.url )) def embed(self) -> ShortUrlEmbed: """Returns ShorturlEmbed instance for this URL.""" return ShortUrlEmbed( content_url=self.shortened_url, deletion_url=self.deletion_url, original_url=self.url, shortened_url=self.shortened_url ) @classmethod def get_by_token(cls, token: str): """Returns the URL for given token from database.""" result = None with closing(cls.get_cursor()) as cursor: row = cursor.execute("SELECT url FROM urls WHERE token = %s", (token,)) url_row = row.fetchone() if url_row: result = url_row['url'] return result @classmethod def delete(cls, token: str) -> bool: """DELETEs URL using given token from database.""" url = cls.get_by_token(token) with closing(cls.get_cursor()) as cursor: execute = cursor.execute("DELETE FROM urls WHERE token = %s", (token,)) deleted = execute.rowcount > 0 if deleted: current_app.logger.info(f'Deleted short URL for {url} using token {token}') return deleted @staticmethod def get_cursor(): cursor = conn.cursor() return cursor
the-stack_0_10714
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this file contains helper methods for BBOX processing from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import random import math import cv2 def meet_emit_constraint(src_bbox, sample_bbox): center_x = (src_bbox[2] + src_bbox[0]) / 2 center_y = (src_bbox[3] + src_bbox[1]) / 2 if center_x >= sample_bbox[0] and \ center_x <= sample_bbox[2] and \ center_y >= sample_bbox[1] and \ center_y <= sample_bbox[3]: return True return False def clip_bbox(src_bbox): src_bbox[0] = max(min(src_bbox[0], 1.0), 0.0) src_bbox[1] = max(min(src_bbox[1], 1.0), 0.0) src_bbox[2] = max(min(src_bbox[2], 1.0), 0.0) src_bbox[3] = max(min(src_bbox[3], 1.0), 0.0) return src_bbox def bbox_area(src_bbox): if src_bbox[2] < src_bbox[0] or src_bbox[3] < src_bbox[1]: return 0. else: width = src_bbox[2] - src_bbox[0] height = src_bbox[3] - src_bbox[1] return width * height def is_overlap(object_bbox, sample_bbox): if object_bbox[0] >= sample_bbox[2] or \ object_bbox[2] <= sample_bbox[0] or \ object_bbox[1] >= sample_bbox[3] or \ object_bbox[3] <= sample_bbox[1]: return False else: return True def filter_and_process(sample_bbox, bboxes, labels, scores=None, keypoints=None): new_bboxes = [] new_labels = [] new_scores = [] new_keypoints = [] new_kp_ignore = [] for i in range(len(bboxes)): new_bbox = [0, 0, 0, 0] obj_bbox = [bboxes[i][0], bboxes[i][1], bboxes[i][2], bboxes[i][3]] if not meet_emit_constraint(obj_bbox, sample_bbox): continue if not is_overlap(obj_bbox, sample_bbox): continue sample_width = sample_bbox[2] - sample_bbox[0] sample_height = sample_bbox[3] - sample_bbox[1] new_bbox[0] = (obj_bbox[0] - sample_bbox[0]) / sample_width new_bbox[1] = (obj_bbox[1] - sample_bbox[1]) / sample_height new_bbox[2] = (obj_bbox[2] - sample_bbox[0]) / sample_width new_bbox[3] = (obj_bbox[3] - sample_bbox[1]) / sample_height new_bbox = clip_bbox(new_bbox) if bbox_area(new_bbox) > 0: new_bboxes.append(new_bbox) new_labels.append([labels[i][0]]) if scores is not None: new_scores.append([scores[i][0]]) if keypoints is not None: sample_keypoint = keypoints[0][i] for j in range(len(sample_keypoint)): kp_len = sample_height if j % 2 else sample_width sample_coord = sample_bbox[1] if j % 2 else sample_bbox[0] sample_keypoint[j] = ( sample_keypoint[j] - sample_coord) / kp_len sample_keypoint[j] = max(min(sample_keypoint[j], 1.0), 0.0) new_keypoints.append(sample_keypoint) new_kp_ignore.append(keypoints[1][i]) bboxes = np.array(new_bboxes) labels = np.array(new_labels) scores = np.array(new_scores) if keypoints is not None: keypoints = np.array(new_keypoints) new_kp_ignore = np.array(new_kp_ignore) return bboxes, labels, scores, (keypoints, new_kp_ignore) return bboxes, labels, scores def bbox_area_sampling(bboxes, labels, scores, target_size, min_size): new_bboxes = [] new_labels = [] new_scores = [] for i, bbox in enumerate(bboxes): w = float((bbox[2] - bbox[0]) * target_size) h = float((bbox[3] - bbox[1]) * target_size) if w * h < float(min_size * min_size): continue else: new_bboxes.append(bbox) new_labels.append(labels[i]) if scores is not None and scores.size != 0: new_scores.append(scores[i]) bboxes = np.array(new_bboxes) labels = np.array(new_labels) scores = np.array(new_scores) return bboxes, labels, scores def generate_sample_bbox(sampler): scale = np.random.uniform(sampler[2], sampler[3]) aspect_ratio = np.random.uniform(sampler[4], sampler[5]) aspect_ratio = max(aspect_ratio, (scale**2.0)) aspect_ratio = min(aspect_ratio, 1 / (scale**2.0)) bbox_width = scale * (aspect_ratio**0.5) bbox_height = scale / (aspect_ratio**0.5) xmin_bound = 1 - bbox_width ymin_bound = 1 - bbox_height xmin = np.random.uniform(0, xmin_bound) ymin = np.random.uniform(0, ymin_bound) xmax = xmin + bbox_width ymax = ymin + bbox_height sampled_bbox = [xmin, ymin, xmax, ymax] return sampled_bbox def generate_sample_bbox_square(sampler, image_width, image_height): scale = np.random.uniform(sampler[2], sampler[3]) aspect_ratio = np.random.uniform(sampler[4], sampler[5]) aspect_ratio = max(aspect_ratio, (scale**2.0)) aspect_ratio = min(aspect_ratio, 1 / (scale**2.0)) bbox_width = scale * (aspect_ratio**0.5) bbox_height = scale / (aspect_ratio**0.5) if image_height < image_width: bbox_width = bbox_height * image_height / image_width else: bbox_height = bbox_width * image_width / image_height xmin_bound = 1 - bbox_width ymin_bound = 1 - bbox_height xmin = np.random.uniform(0, xmin_bound) ymin = np.random.uniform(0, ymin_bound) xmax = xmin + bbox_width ymax = ymin + bbox_height sampled_bbox = [xmin, ymin, xmax, ymax] return sampled_bbox def data_anchor_sampling(bbox_labels, image_width, image_height, scale_array, resize_width): num_gt = len(bbox_labels) # np.random.randint range: [low, high) rand_idx = np.random.randint(0, num_gt) if num_gt != 0 else 0 if num_gt != 0: norm_xmin = bbox_labels[rand_idx][0] norm_ymin = bbox_labels[rand_idx][1] norm_xmax = bbox_labels[rand_idx][2] norm_ymax = bbox_labels[rand_idx][3] xmin = norm_xmin * image_width ymin = norm_ymin * image_height wid = image_width * (norm_xmax - norm_xmin) hei = image_height * (norm_ymax - norm_ymin) range_size = 0 area = wid * hei for scale_ind in range(0, len(scale_array) - 1): if area > scale_array[scale_ind] ** 2 and area < \ scale_array[scale_ind + 1] ** 2: range_size = scale_ind + 1 break if area > scale_array[len(scale_array) - 2]**2: range_size = len(scale_array) - 2 scale_choose = 0.0 if range_size == 0: rand_idx_size = 0 else: # np.random.randint range: [low, high) rng_rand_size = np.random.randint(0, range_size + 1) rand_idx_size = rng_rand_size % (range_size + 1) if rand_idx_size == range_size: min_resize_val = scale_array[rand_idx_size] / 2.0 max_resize_val = min(2.0 * scale_array[rand_idx_size], 2 * math.sqrt(wid * hei)) scale_choose = random.uniform(min_resize_val, max_resize_val) else: min_resize_val = scale_array[rand_idx_size] / 2.0 max_resize_val = 2.0 * scale_array[rand_idx_size] scale_choose = random.uniform(min_resize_val, max_resize_val) sample_bbox_size = wid * resize_width / scale_choose w_off_orig = 0.0 h_off_orig = 0.0 if sample_bbox_size < max(image_height, image_width): if wid <= sample_bbox_size: w_off_orig = np.random.uniform(xmin + wid - sample_bbox_size, xmin) else: w_off_orig = np.random.uniform(xmin, xmin + wid - sample_bbox_size) if hei <= sample_bbox_size: h_off_orig = np.random.uniform(ymin + hei - sample_bbox_size, ymin) else: h_off_orig = np.random.uniform(ymin, ymin + hei - sample_bbox_size) else: w_off_orig = np.random.uniform(image_width - sample_bbox_size, 0.0) h_off_orig = np.random.uniform(image_height - sample_bbox_size, 0.0) w_off_orig = math.floor(w_off_orig) h_off_orig = math.floor(h_off_orig) # Figure out top left coordinates. w_off = float(w_off_orig / image_width) h_off = float(h_off_orig / image_height) sampled_bbox = [ w_off, h_off, w_off + float(sample_bbox_size / image_width), h_off + float(sample_bbox_size / image_height) ] return sampled_bbox else: return 0 def jaccard_overlap(sample_bbox, object_bbox): if sample_bbox[0] >= object_bbox[2] or \ sample_bbox[2] <= object_bbox[0] or \ sample_bbox[1] >= object_bbox[3] or \ sample_bbox[3] <= object_bbox[1]: return 0 intersect_xmin = max(sample_bbox[0], object_bbox[0]) intersect_ymin = max(sample_bbox[1], object_bbox[1]) intersect_xmax = min(sample_bbox[2], object_bbox[2]) intersect_ymax = min(sample_bbox[3], object_bbox[3]) intersect_size = (intersect_xmax - intersect_xmin) * ( intersect_ymax - intersect_ymin) sample_bbox_size = bbox_area(sample_bbox) object_bbox_size = bbox_area(object_bbox) overlap = intersect_size / ( sample_bbox_size + object_bbox_size - intersect_size) return overlap def intersect_bbox(bbox1, bbox2): if bbox2[0] > bbox1[2] or bbox2[2] < bbox1[0] or \ bbox2[1] > bbox1[3] or bbox2[3] < bbox1[1]: intersection_box = [0.0, 0.0, 0.0, 0.0] else: intersection_box = [ max(bbox1[0], bbox2[0]), max(bbox1[1], bbox2[1]), min(bbox1[2], bbox2[2]), min(bbox1[3], bbox2[3]) ] return intersection_box def bbox_coverage(bbox1, bbox2): inter_box = intersect_bbox(bbox1, bbox2) intersect_size = bbox_area(inter_box) if intersect_size > 0: bbox1_size = bbox_area(bbox1) return intersect_size / bbox1_size else: return 0. def satisfy_sample_constraint(sampler, sample_bbox, gt_bboxes, satisfy_all=False): if sampler[6] == 0 and sampler[7] == 0: return True satisfied = [] for i in range(len(gt_bboxes)): object_bbox = [ gt_bboxes[i][0], gt_bboxes[i][1], gt_bboxes[i][2], gt_bboxes[i][3] ] overlap = jaccard_overlap(sample_bbox, object_bbox) if sampler[6] != 0 and \ overlap < sampler[6]: satisfied.append(False) continue if sampler[7] != 0 and \ overlap > sampler[7]: satisfied.append(False) continue satisfied.append(True) if not satisfy_all: return True if satisfy_all: return np.all(satisfied) else: return False def satisfy_sample_constraint_coverage(sampler, sample_bbox, gt_bboxes): if sampler[6] == 0 and sampler[7] == 0: has_jaccard_overlap = False else: has_jaccard_overlap = True if sampler[8] == 0 and sampler[9] == 0: has_object_coverage = False else: has_object_coverage = True if not has_jaccard_overlap and not has_object_coverage: return True found = False for i in range(len(gt_bboxes)): object_bbox = [ gt_bboxes[i][0], gt_bboxes[i][1], gt_bboxes[i][2], gt_bboxes[i][3] ] if has_jaccard_overlap: overlap = jaccard_overlap(sample_bbox, object_bbox) if sampler[6] != 0 and \ overlap < sampler[6]: continue if sampler[7] != 0 and \ overlap > sampler[7]: continue found = True if has_object_coverage: object_coverage = bbox_coverage(object_bbox, sample_bbox) if sampler[8] != 0 and \ object_coverage < sampler[8]: continue if sampler[9] != 0 and \ object_coverage > sampler[9]: continue found = True if found: return True return found def crop_image_sampling(img, sample_bbox, image_width, image_height, target_size): # no clipping here xmin = int(sample_bbox[0] * image_width) xmax = int(sample_bbox[2] * image_width) ymin = int(sample_bbox[1] * image_height) ymax = int(sample_bbox[3] * image_height) w_off = xmin h_off = ymin width = xmax - xmin height = ymax - ymin cross_xmin = max(0.0, float(w_off)) cross_ymin = max(0.0, float(h_off)) cross_xmax = min(float(w_off + width - 1.0), float(image_width)) cross_ymax = min(float(h_off + height - 1.0), float(image_height)) cross_width = cross_xmax - cross_xmin cross_height = cross_ymax - cross_ymin roi_xmin = 0 if w_off >= 0 else abs(w_off) roi_ymin = 0 if h_off >= 0 else abs(h_off) roi_width = cross_width roi_height = cross_height roi_y1 = int(roi_ymin) roi_y2 = int(roi_ymin + roi_height) roi_x1 = int(roi_xmin) roi_x2 = int(roi_xmin + roi_width) cross_y1 = int(cross_ymin) cross_y2 = int(cross_ymin + cross_height) cross_x1 = int(cross_xmin) cross_x2 = int(cross_xmin + cross_width) sample_img = np.zeros((height, width, 3)) sample_img[roi_y1: roi_y2, roi_x1: roi_x2] = \ img[cross_y1: cross_y2, cross_x1: cross_x2] sample_img = cv2.resize( sample_img, (target_size, target_size), interpolation=cv2.INTER_AREA) return sample_img def is_poly(segm): assert isinstance(segm, (list, dict)), \ "Invalid segm type: {}".format(type(segm)) return isinstance(segm, list) def gaussian_radius(bbox_size, min_overlap): height, width = bbox_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = np.sqrt(b1**2 - 4 * a1 * c1) radius1 = (b1 + sq1) / (2 * a1) a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = np.sqrt(b2**2 - 4 * a2 * c2) radius2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = np.sqrt(b3**2 - 4 * a3 * c3) radius3 = (b3 + sq3) / 2 return min(radius1, radius2, radius3) def draw_gaussian(heatmap, center, radius, k=1, delte=6): diameter = 2 * radius + 1 sigma = diameter / delte gaussian = gaussian2D((diameter, diameter), sigma_x=sigma, sigma_y=sigma) x, y = center height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left: radius + right] np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) def gaussian2D(shape, sigma_x=1, sigma_y=1): m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x / (2 * sigma_x * sigma_x) + y * y / (2 * sigma_y * sigma_y))) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_umich_gaussian(heatmap, center, radius, k=1): """ draw_umich_gaussian, refer to https://github.com/xingyizhou/CenterNet/blob/master/src/lib/utils/image.py#L126 """ diameter = 2 * radius + 1 gaussian = gaussian2D( (diameter, diameter), sigma_x=diameter / 6, sigma_y=diameter / 6) x, y = int(center[0]), int(center[1]) height, width = heatmap.shape[0:2] left, right = min(x, radius), min(width - x, radius + 1) top, bottom = min(y, radius), min(height - y, radius + 1) masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] masked_gaussian = gaussian[radius - top:radius + bottom, radius - left: radius + right] if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: np.maximum(masked_heatmap, masked_gaussian * k, out=masked_heatmap) return heatmap def get_border(border, size): i = 1 while size - border // i <= border // i: i *= 2 return border // i
the-stack_0_10715
from typing import Union, List class DaysOfWeek: """An object that stores a boolean value for each day of the week. It can read or produce a one byte code compatible with what AlarmClock uses. """ days = { 'Monday': 1, 'Tuesday': 2, 'Wednesday': 3, 'Thursday': 4, 'Friday': 5, 'Saturday': 6, 'Sunday': 7, } def __init__(self, code: int = 0): """Initialize the DaysOfWeek object with specified code or 0x00. Code is a single byte binary representation of the object. 0x00 means all stored values are False. """ # Filter out bit 0. It has no meaning and should always be zero. self.code = code & 0xFE @classmethod def from_list(cls, li: Union[List[str], List[int]]): """Create an instance from a list of str names or numbers of days.""" dow = cls() for day in li: dow.set_day(day, True) return dow def get_day(self, day: Union[str, int]) -> bool: """Get the boolean value for a single day of the week.""" if isinstance(day, str): if day not in self.days: raise TypeError(f'unknown day: {repr(day)}') day = self.days[day] if day < 1 or day > 7: raise ValueError(f"{day} is not a valid day of the week") return self.code & (2**day) > 0 def set_day(self, day: Union[str, int], value: bool) -> None: """Set the boolean value for a single day of the week.""" if isinstance(day, str): if day not in self.days: raise TypeError(f'unknown day: {repr(day)}') day = self.days[day] if day < 1 or day > 7: raise ValueError(f"{day} is not a valid day of the week") if value: self.code |= (2**day) else: self.code &= ~(2**day) Monday = property(lambda self: self.get_day('Monday'), lambda self, value: self.set_day('Monday', value)) Tuesday = property(lambda self: self.get_day('Tuesday'), lambda self, value: self.set_day('Tuesday', value)) Wednesday = property(lambda self: self.get_day('Wednesday'), lambda self, value: self.set_day('Wednesday', value)) Thursday = property(lambda self: self.get_day('Thursday'), lambda self, value: self.set_day('Thursday', value)) Friday = property(lambda self: self.get_day('Friday'), lambda self, value: self.set_day('Friday', value)) Saturday = property(lambda self: self.get_day('Saturday'), lambda self, value: self.set_day('Saturday', value)) Sunday = property(lambda self: self.get_day('Sunday'), lambda self, value: self.set_day('Sunday', value)) @property def active_days(self) -> List[str]: """Get an array of days of the week for which the stored value is True. Names of the days of the week are returned as strings with the first letter capitalized. """ return [day for day in self.days if self.get_day(day)] def __str__(self) -> str: """Get all days for which the stored value is True joined with ', '.""" return ', '.join(self.active_days) def __repr__(self) -> str: return f'{self.__class__.__name__}({repr(self.code)})' def __eq__(self, other): return self.code == other.code
the-stack_0_10717
"""Support for wired switches attached to a Konnected device.""" import logging from homeassistant.components.konnected import ( DOMAIN as KONNECTED_DOMAIN, PIN_TO_ZONE, CONF_ACTIVATION, CONF_MOMENTARY, CONF_PAUSE, CONF_REPEAT, STATE_LOW, STATE_HIGH) from homeassistant.helpers.entity import ToggleEntity from homeassistant.const import ( ATTR_STATE, CONF_DEVICES, CONF_NAME, CONF_PIN, CONF_SWITCHES) _LOGGER = logging.getLogger(__name__) DEPENDENCIES = ['konnected'] async def async_setup_platform( hass, config, async_add_entities, discovery_info=None): """Set switches attached to a Konnected device.""" if discovery_info is None: return data = hass.data[KONNECTED_DOMAIN] device_id = discovery_info['device_id'] switches = [ KonnectedSwitch(device_id, pin_data.get(CONF_PIN), pin_data) for pin_data in data[CONF_DEVICES][device_id][CONF_SWITCHES]] async_add_entities(switches) class KonnectedSwitch(ToggleEntity): """Representation of a Konnected switch.""" def __init__(self, device_id, pin_num, data): """Initialize the Konnected switch.""" self._data = data self._device_id = device_id self._pin_num = pin_num self._activation = self._data.get(CONF_ACTIVATION, STATE_HIGH) self._momentary = self._data.get(CONF_MOMENTARY) self._pause = self._data.get(CONF_PAUSE) self._repeat = self._data.get(CONF_REPEAT) self._state = self._boolean_state(self._data.get(ATTR_STATE)) self._unique_id = '{}-{}'.format(device_id, PIN_TO_ZONE[pin_num]) self._name = self._data.get(CONF_NAME) @property def unique_id(self) -> str: """Return the unique id.""" return self._unique_id @property def name(self): """Return the name of the switch.""" return self._name @property def is_on(self): """Return the status of the sensor.""" return self._state @property def client(self): """Return the Konnected HTTP client.""" return \ self.hass.data[KONNECTED_DOMAIN][CONF_DEVICES][self._device_id].\ get('client') def turn_on(self, **kwargs): """Send a command to turn on the switch.""" resp = self.client.put_device( self._pin_num, int(self._activation == STATE_HIGH), self._momentary, self._repeat, self._pause ) if resp.get(ATTR_STATE) is not None: self._set_state(True) if self._momentary and resp.get(ATTR_STATE) != -1: # Immediately set the state back off for momentary switches self._set_state(False) def turn_off(self, **kwargs): """Send a command to turn off the switch.""" resp = self.client.put_device( self._pin_num, int(self._activation == STATE_LOW)) if resp.get(ATTR_STATE) is not None: self._set_state(self._boolean_state(resp.get(ATTR_STATE))) def _boolean_state(self, int_state): if int_state is None: return False if int_state == 0: return self._activation == STATE_LOW if int_state == 1: return self._activation == STATE_HIGH def _set_state(self, state): self._state = state self.schedule_update_ha_state() _LOGGER.debug('Setting status of %s actuator pin %s to %s', self._device_id, self.name, state) async def async_added_to_hass(self): """Store entity_id.""" self._data['entity_id'] = self.entity_id
the-stack_0_10718
# coding: utf-8 import pprint import re import six class VideoContrast: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'name': 'str', 'execution_order': 'int', 'contrast': 'str', 'brightness': 'str' } attribute_map = { 'name': 'name', 'execution_order': 'execution_order', 'contrast': 'contrast', 'brightness': 'brightness' } def __init__(self, name=None, execution_order=None, contrast=None, brightness=None): """VideoContrast - a model defined in huaweicloud sdk""" self._name = None self._execution_order = None self._contrast = None self._brightness = None self.discriminator = None if name is not None: self.name = name if execution_order is not None: self.execution_order = execution_order if contrast is not None: self.contrast = contrast if brightness is not None: self.brightness = brightness @property def name(self): """Gets the name of this VideoContrast. 对比度算法名称\"hw-contrast\"。 :return: The name of this VideoContrast. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this VideoContrast. 对比度算法名称\"hw-contrast\"。 :param name: The name of this VideoContrast. :type: str """ self._name = name @property def execution_order(self): """Gets the execution_order of this VideoContrast. 1 表示视频处理时第一个执行,2表示第二个执行,以此类推;除不执行,各视频处理算法的执行次序不可相同。 :return: The execution_order of this VideoContrast. :rtype: int """ return self._execution_order @execution_order.setter def execution_order(self, execution_order): """Sets the execution_order of this VideoContrast. 1 表示视频处理时第一个执行,2表示第二个执行,以此类推;除不执行,各视频处理算法的执行次序不可相同。 :param execution_order: The execution_order of this VideoContrast. :type: int """ self._execution_order = execution_order @property def contrast(self): """Gets the contrast of this VideoContrast. 对比度调节的程度, 值越大, 对比度越高。 :return: The contrast of this VideoContrast. :rtype: str """ return self._contrast @contrast.setter def contrast(self, contrast): """Sets the contrast of this VideoContrast. 对比度调节的程度, 值越大, 对比度越高。 :param contrast: The contrast of this VideoContrast. :type: str """ self._contrast = contrast @property def brightness(self): """Gets the brightness of this VideoContrast. 1 表示视频处理时第一个执行,2表示第二个执行,以此类推;除不执行,各视频处理算法的执行次序不可相同。 :return: The brightness of this VideoContrast. :rtype: str """ return self._brightness @brightness.setter def brightness(self, brightness): """Sets the brightness of this VideoContrast. 1 表示视频处理时第一个执行,2表示第二个执行,以此类推;除不执行,各视频处理算法的执行次序不可相同。 :param brightness: The brightness of this VideoContrast. :type: str """ self._brightness = brightness def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, VideoContrast): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
the-stack_0_10720
import os import lit.util # pylint: disable=import-error import libcxx.test.config import libcxx.test.target_info import libcxx.android.build import libcxx.ndk.test.format class AndroidTargetInfo(libcxx.test.target_info.DefaultTargetInfo): def platform(self): return 'android' def system(self): raise NotImplementedError def add_cxx_compile_flags(self, flags): flags.extend(['-D__STDC_FORMAT_MACROS']) def platform_ver(self): raise NotImplementedError def platform_name(self): raise NotImplementedError def supports_locale(self, loc): raise NotImplementedError class Configuration(libcxx.test.config.Configuration): def __init__(self, lit_config, config): super(Configuration, self).__init__(lit_config, config) self.cxx_under_test = None self.build_cmds_dir = None self.cxx_template = None self.link_template = None self.with_availability = False def configure(self): self.configure_target_info() self.configure_cxx() self.configure_triple() self.configure_src_root() self.configure_obj_root() self.configure_cxx_stdlib_under_test() self.configure_cxx_library_root() self.configure_compile_flags() self.configure_link_flags() self.configure_features() def configure_target_info(self): self.target_info = AndroidTargetInfo(self) def configure_compile_flags(self): super(Configuration, self).configure_compile_flags() self.cxx.flags.append('-stdlib=libc++') arch = self.get_lit_conf('arch') if arch == 'arm': self.cxx.flags.extend([ '-march=armv7-a', '-mfloat-abi=softfp', '-mfpu=vfpv3-d16', '-mthumb', ]) def configure_link_flags(self): triple = self.get_lit_conf('target_triple') if triple.startswith('arm-') or triple.startswith('armv7-'): self.cxx.link_flags.append('-Wl,--exclude-libs,libunwind.a') self.cxx.link_flags.append('-lcompiler_rt-extras') self.cxx.link_flags.append( '-Wl,--exclude-libs,libcompiler_rt-extras.a') self.cxx.link_flags.append('-Wl,--exclude-libs,libatomic.a') self.cxx.link_flags.append('-Wl,--exclude-libs,libgcc.a') self.cxx.link_flags.append('-pie') def configure_features(self): self.config.available_features.add(self.get_lit_conf('std')) self.config.available_features.add('long_tests') def get_test_format(self): # Note that we require that the caller has cleaned this directory, # ensured its existence, and copied libc++_shared.so into it. tmp_dir = getattr(self.config, 'device_dir', '/data/local/tmp/libcxx') build_only = self.get_lit_conf('build_only', False) build_dir = self.get_lit_conf('build_dir') return libcxx.ndk.test.format.TestFormat( self.cxx, self.libcxx_src_root, self.libcxx_obj_root, build_dir, tmp_dir, getattr(self.config, 'timeout', '300'), exec_env={'LD_LIBRARY_PATH': tmp_dir}, build_only=build_only)
the-stack_0_10722
# -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import functools import os import os.path import numpy as np from blueoil import data_processor from blueoil.utils.image import load_image from blueoil.datasets.base import Base class Ilsvrc2012(Base): extend_dir = "ILSVRC2012" # classes = [str(n) for n in range(0, 1000)] num_classes = 1000 # `test` subsets don't have ground truth. available_subsets = ["train", "validation"] def __init__( self, *args, **kwargs ): super().__init__(*args, **kwargs,) self.dirs = { "train": os.path.join(self.data_dir, "train"), "validation": os.path.join(self.data_dir, "val"), "test": os.path.join(self.data_dir, "test"), } self.texts = { "train": os.path.join(self.data_dir, "train.txt"), "validation": os.path.join(self.data_dir, "val.txt"), "test": os.path.join(self.data_dir, "test.txt"), } self._init_files_and_annotations() @property @functools.lru_cache(maxsize=None) def classes(self): # wget https://raw.githubusercontent.com/Lasagne/Recipes/master/examples/resnet50/imagenet_classes.txt with open(os.path.join(self.data_dir, 'imagenet_classes.txt')) as f: return [line.rstrip('\n') for line in f] @property def num_per_epoch(self): files, _ = self._files_and_annotations() return len(files) def _init_files_and_annotations(self): self.files, self.annotations = self._files_and_annotations() @functools.lru_cache(maxsize=None) def _files_and_annotations(self): txt_file = self.texts[self.subset] files, labels = list(), list() with open(txt_file) as f: for line in f: items = line.split() files.append(items[0]) labels.append(int(items[1])) files = [os.path.join(self.dirs[self.subset], filename) for filename in files] return files, labels def __getitem__(self, i): filename = self.files[i] image = load_image(filename) label = data_processor.binarize(self.annotations[i], self.num_classes) label = np.reshape(label, (self.num_classes)) return (image, label) def __len__(self): return self.num_per_epoch
the-stack_0_10728
# 5.5.1 Storing High Scores for a Game_Optimistic version class Scoreboard(): """Fixed-length sequence of high scores in nondecreasing order.""" class _GameEntry: """Nonpublic class for storing entry. Represents one entry of a list of high scores.""" __slots__ = '_name','_score' def __init__(self,name,score): self._name = name self._score = score def get_name(self): return self._name def get_score(self): return self._score def __str__(self): return '({0}, {1})'.format(self._name,self._score) # e.g., 'Bob,98' def __init__(self,capacity = 10): """Initialize scoreboard with given maximum capacity. All entries are initially None. """ self._board = [None] * capacity # reserve space for future scores self._n = 0 # number of actual entries def __getitem__(self,k): """Return entry at index k.""" return self._board[k] def __str__(self): """Return string representation of the high score list.""" return '\n'.join(str(self._board[j]) for j in range(self._n)) def add(self,name,score): """Consider adding entry to high scores.""" entry = self._GameEntry(name, score) score = entry.get_score() # Does new entry qualify as a high score? # answer is yes if board not full or score is higher than last entry good = self._n < len(self._board) or score > self._board[-1].get_score() if good: if self._n < len(self._board): # no score drops from list self._n += 1 # so overall number increases # shift lower scores rightward to make room for new entry j = self._n - 1 while j > 0 and self._board[j-1].get_score() < score: self._board[j] = self._board[j-1] # shift entry from j-1 to j j -= 1 # and decrement j self._board[j] = entry # when done, add new entry #----------------------------- my main function ----------------------------- a = Scoreboard(3) a.add('LiuPeng',93) a.add('zhangDi',98) a.add('LiYue',22) print('---------- first record ----------') print(a.__str__()) print('---------- get item ----------') print(a.__getitem__(2)) a.add('Torvalds',100) print('---------- second record ----------') print(a.__str__())
the-stack_0_10729
#!/usr/bin/env python # -*- coding: utf-8 -*- import matplotlib as mpl import numpy as np import scipy as sc NUMPY_VERSION = np.__version__ MATPLOTLIB_VERSION = mpl.__version__ SCIPY_VERSION = sc.__version__ message = f"""La versión de NumPy es {NUMPY_VERSION}. La versión de Matplotlib es {MATPLOTLIB_VERSION}. La versión de SciPy es {SCIPY_VERSION}.""" if __name__ == "__main__": print(message)
the-stack_0_10733
from universal_computation.experiment import run_experiment if __name__ == '__main__': experiment_name = 'fpt' experiment_params = dict( task='cifar100', n=1000, # ignored if not a bit task num_patterns=5, # ignored if not a bit task patch_size=16, model_name='gpt2', pretrained=True, # if vit this is forced to true, if lstm this is forced to false freeze_trans=True, # if False, we don't check arguments other than in and out freeze_in=False, freeze_pos=False, freeze_ln=False, freeze_attn=True, freeze_ff=True, freeze_out=False, in_layer_sizes=None, # not in paper, but can specify layer sizes for an MLP, out_layer_sizes=None, # ex. [32, 32] creates a 2-layer MLP with dimension 32 learning_rate=1e-3, batch_size=4, dropout=0.1, orth_gain=1.41, # orthogonal initialization of input layer ) exp_args = dict( num_iters=10, device="cpu", ) run_experiment(experiment_name, experiment_params, exp_args)
the-stack_0_10734
from typing import Optional, Tuple from cadquery import Workplane from paramak import Shape class RotateCircleShape(Shape): """Rotates a circular 3d CadQuery solid from a central point and a radius Args: radius: radius of the shape rotation_angle: The rotation_angle to use when revolving the solid (degrees). Defaults to 360.0. """ def __init__( self, radius: float, rotation_angle: Optional[float] = 360.0, color: Optional[Tuple[float, float, float, Optional[float]]] = (1., 1., 0.6), **kwargs ): super().__init__( color=color, **kwargs ) self.radius = radius self.rotation_angle = rotation_angle @property def rotation_angle(self): return self._rotation_angle @rotation_angle.setter def rotation_angle(self, value): self._rotation_angle = value @property def radius(self): return self._radius @radius.setter def radius(self, value): self._radius = value def create_solid(self): """Creates a rotated 3d solid using points with circular edges. Returns: A CadQuery solid: A 3D solid volume """ wire = ( Workplane(self.workplane) .moveTo(self.points[0][0], self.points[0][1]) .circle(self.radius) ) self.wire = wire solid = wire.revolve(self.rotation_angle) solid = self.rotate_solid(solid) solid = self.perform_boolean_operations(solid) self.solid = solid return solid
the-stack_0_10735
from setuptools import setup, Extension from setuptools.command.build_ext import build_ext as _build_ext from setuptools.command.sdist import sdist as _sdist from distutils.command.clean import clean as _clean from distutils.errors import CompileError from warnings import warn import os import sys from glob import glob import tarfile import shutil import requests from urllib.request import urlretrieve # use cython if we can import it successfully try: from Cython.Distutils import build_ext as _build_ext except ImportError: use_cython = False else: use_cython = True # wrap the build_ext command to handle numpy bootstrap and compilation errors class build_ext(_build_ext): # see http://stackoverflow.com/q/19919905 for explanation def finalize_options(self): _build_ext.finalize_options(self) __builtins__.__NUMPY_SETUP__ = False import numpy as np self.include_dirs.append(np.get_include()) # if extension modules fail to build, keep going anyway def run(self): try: _build_ext.run(self) except CompileError: warn('Failed to build extension modules') import traceback print(traceback.format_exc(), file=sys.stderr) # wrap the sdist command to try to generate cython sources class sdist(_sdist): def run(self): try: from Cython.Build import cythonize cythonize(os.path.join('pyhlm','**','*.pyx'), compiler_directives={'language_level' : "3"}) except: warn('Failed to generate extension files from Cython sources') finally: _sdist.run(self) # wrap the clean command to remove object files class clean(_clean): def run(self): try: for f in glob(os.path.join('pyhlm','**','*.so')): # not recursive before Python 3.5 os.remove(f) except: warn('Failed to remove all object files') finally: _clean.run(self) # make dependency directory if not os.path.exists('deps'): os.mkdir('deps') # download Eigen if we don't have it in deps eigenurl = 'https://gitlab.com/libeigen/eigen/-/archive/3.3.7/eigen-3.3.7.tar.gz' eigentarpath = os.path.join('deps', 'Eigen.tar.gz') eigenpath = os.path.join('deps', 'Eigen') if not os.path.exists(eigenpath): print('Downloading Eigen...') r = requests.get(eigenurl) with open(eigentarpath, 'wb') as f: f.write(r.content) with tarfile.open(eigentarpath, 'r') as tar: tar.extractall('deps') thedir = glob(os.path.join('deps', 'eigen-*'))[0] shutil.move(os.path.join(thedir, 'Eigen'), eigenpath) print('...done!') # make a list of extension modules extension_pathspec = os.path.join('pyhlm','**','*.pyx') # not recursive before Python 3.5 paths = [os.path.splitext(fp)[0] for fp in glob(extension_pathspec)] names = ['.'.join(os.path.split(p)) for p in paths] with open("requirements.txt", "r") as f: requirements = list(f.readlines()) ext_modules = [ Extension( name, sources=[path + '.cpp'], include_dirs=['deps'], extra_compile_args=['-O3','-std=c++11','-DNDEBUG','-w','-DHLM_TEMPS_ON_HEAP']) for name, path in zip(names,paths)] # if using cython, rebuild the extension files from the .pyx sources if use_cython: from Cython.Build import cythonize try: ext_modules = cythonize(extension_pathspec, compiler_directives={'language_level' : "3"}) except: warn('Failed to generate extension module code from Cython files') # put it all together with a call to setup() setup(name='pyhlm', version='1.0.3', description="Bayesian inference in HLMs", author='Ryo Ozaki', author_email='[email protected]', url="https://github.com/RyoOzaki/npbdaa", license='MIT', packages=['pyhlm', 'pyhlm.internals', 'pyhlm.util'], platforms='ALL', keywords=['bayesian', 'inference', 'mcmc', 'time-series', 'monte-carlo', 'double articulation', 'hierarchical Dirichlet process hidden language model'], install_requires=requirements, setup_requires=['numpy', "future", "six"], ext_modules=ext_modules, classifiers=[ 'Intended Audience :: Science/Research', 'Programming Language :: Python', 'Programming Language :: C++'], cmdclass={'build_ext': build_ext, 'sdist': sdist, 'clean': clean})
the-stack_0_10736
""" =============================================================================== Phosphene drawings from Beyeler et al. (2019) =============================================================================== This example shows how to use the Beyeler et al. (2019) dataset. [Beyeler2019]_ asked Argus I/II users to draw what they see in response to single-electrode stimulation. .. important :: For this dataset you will need to install both `Pandas <https://pandas.pydata.org>`_ (``pip install pandas``) and `HDF4 for Python <https://www.h5py.org>`_ (``pip install h5py``). Loading the dataset ------------------- Due to its size (263 MB), the dataset is not included with pulse2percept, but can be downloaded from the Open Science Framework (OSF). By default, the dataset will be stored in a local directory ‘~/pulse2percept_data/’ within your user directory (but a different path can be specified). This way, the datasets is only downloaded once, and future calls to the fetch function will load the dataset from your local copy. The data itself will be provided as a Pandas ``DataFrame``: """ # sphinx_gallery_thumbnail_number = 2 from pulse2percept.datasets import fetch_beyeler2019 data = fetch_beyeler2019() print(data) ############################################################################### # # Inspecting the DataFrame tells us that there are 400 phosphene drawings # (the rows) each with 16 different attributes (the columns). # # These attributes include specifiers such as "subject", "electrode", and # "image". We can print all column names using: data.columns ############################################################################### # .. note :: # # The meaning of all column names is explained in the docstring of # the :py:func:`~pulse2percept.datasets.fetch_beyeler2019` function. # # For example, "subject" contains the different subject IDs used in the study: data.subject.unique() ############################################################################### # To select all drawings from Subject 2, we can index into the DataFrame as # follows: print(data[data.subject == 'S2']) ############################################################################### # This leaves us with 110 rows, each of which correspond to one phosphene # drawings from a number of different electrodes and trials. # # An alternative to indexing into the DataFrame is to load only a subset of # the data: print(fetch_beyeler2019(subjects='S2')) ############################################################################### # Plotting the data # ----------------- # # Arguably the most important column is "image". This is the phosphene drawing # obtained during a particular trial. # # Each phosphene drawing is a 2D black-and-white NumPy array, so we can just # plot it using Matplotlib like any other image: import matplotlib.pyplot as plt plt.imshow(data.loc[0, 'image'], cmap='gray') ############################################################################### # However, we might be more interested in seeing how phosphene shape differs # for different electrodes. # For this we can use :py:func:`~pulse2percept.viz.plot_argus_phosphenes` from # the :py:mod:`~pulse2percept.viz` module. # In addition to the ``data`` matrix, the function will also want an # :py:class:`~pulse2percept.implants.ArgusII` object implanted at the correct # location. # # Consulting [Beyeler2019]_ tells us that the prosthesis was roughly implanted # in the following location: from pulse2percept.implants import ArgusII argus = ArgusII(x=-1331, y=-850, rot=-0.495, eye='RE') ############################################################################### # (We also need to specify the dimensions of the screens that the subject used, # expressed in degrees of visual angle, so that we can scale the phosphene # drawing appropriately. This should really be part of the Beyeler dataset and # will be fixed in a future version. # For now, we add the necessary columns ourselves.) import pandas as pd data = fetch_beyeler2019(subjects='S2') data['img_x_dva'] = pd.Series([(-30, 30)] * len(data), index=data.index) data['img_y_dva'] = pd.Series([(-22.5, 22.5)] * len(data), index=data.index) ############################################################################### # Passing both ``data`` and ``argus`` to # :py:func:`~pulse2percept.viz.plot_argus_phosphenes` will then allow the # function to overlay the phosphene drawings over a schematic of the implant. # Here, phosphene drawings from different trials are averaged, and aligned with # the center of the electrode that was used to obtain the drawing: from pulse2percept.viz import plot_argus_phosphenes plot_argus_phosphenes(data, argus) ############################################################################### # Great! We have just reproduced a panel from Figure 2 in [Beyeler2019]_. # # As [Beyeler2019]_ went on to show, the orientation of these phosphenes is # well aligned with the map of nerve fiber bundles (NFBs) in each subject's # eye. # # To see how the phosphene drawings line up with the NFBs, we can also pass an # :py:class:`~pulse2percept.models.AxonMapModel` to the function. # Of course, we need to make sure that we use the correct dimensions. Subject # S2 had their optic disc center located 14 deg nasally, 2.4 deg superior from # the fovea: from pulse2percept.models import AxonMapModel model = AxonMapModel(loc_od=(14, 2.4)) plot_argus_phosphenes(data, argus, axon_map=model) ############################################################################### # Analyzing phosphene shape # ------------------------- # # The phosphene drawings also come annotated with different shape descriptors: # area, orientation, and elongation. # Elongation is also called eccentricity in the computer vision literature, # which is not to be confused with retinal eccentricity. It is simply a number # between 0 and 1, where 0 corresponds to a circle and 1 corresponds to an # infinitesimally thin line (note that the Methods section of [Beyeler2019]_ # got it wrong). # # [Beyeler2019]_ made the point that if each phosphene could be considered a # pixel (or essentially a blob), as is so often assumed in the literature, then # most phosphenes should have zero elongation. # # Instead, using Matplotlib's histogram function, we can convince ourselves # that most phosphenes are in fact elongated: data = fetch_beyeler2019() data.eccentricity.plot(kind='hist') plt.xlabel('phosphene elongation') ############################################################################### # Phosphenes are not pixels! # And we have just reproduced Fig. 3C of [Beyeler2019]_.
the-stack_0_10738
# -*- coding: utf-8 -*- r""" Free Dendriform Algebras AUTHORS: Frédéric Chapoton (2017) """ # **************************************************************************** # Copyright (C) 2010-2015 Frédéric Chapoton <[email protected]>, # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # http://www.gnu.org/licenses/ # **************************************************************************** from six import iteritems from sage.categories.hopf_algebras import HopfAlgebras from sage.combinat.free_module import CombinatorialFreeModule from sage.combinat.words.alphabet import Alphabet from sage.combinat.binary_tree import (BinaryTrees, BinaryTree, LabelledBinaryTrees, LabelledBinaryTree) from sage.categories.pushout import (ConstructionFunctor, CompositeConstructionFunctor, IdentityConstructionFunctor) from sage.categories.rings import Rings from sage.categories.functor import Functor from sage.misc.lazy_attribute import lazy_attribute from sage.misc.cachefunc import cached_method from sage.sets.family import Family class FreeDendriformAlgebra(CombinatorialFreeModule): r""" The free dendriform algebra. Dendriform algebras are associative algebras, where the associative product `*` is decomposed as a sum of two binary operations .. MATH:: x * y = x \succ y + x \prec y that satisfy the axioms: .. MATH:: (x \succ y) \prec z = x \succ (y \prec z), .. MATH:: (x \prec y) \prec z = x \prec (y * z). .. MATH:: (x * y) \succ z = x \succ (y \succ z). The free Dendriform algebra on a given set `E` has an explicit description using (planar) binary trees, just as the free associative algebra can be described using words. The underlying vector space has a basis indexed by finite binary trees endowed with a map from their vertices to `E`. In this basis, the associative product of two (decorated) binary trees `S * T` is the sum over all possible ways of identifying (glueing) the rightmost path in `S` and the leftmost path in `T`. The decomposition of the associative product as the sum of two binary operations `\succ` and `\prec` is made by separating the terms according to the origin of the root vertex. For `x \succ y`, one keeps the terms where the root vertex comes from `y`, whereas for `x \prec y` one keeps the terms where the root vertex comes from `x`. The free dendriform algebra can also be considered as the free algebra over the Dendriform operad. .. NOTE:: The usual binary operator `*` is used for the associative product. EXAMPLES:: sage: F = algebras.FreeDendriform(ZZ, 'xyz') sage: x,y,z = F.gens() sage: (x * y) * z B[x[., y[., z[., .]]]] + B[x[., z[y[., .], .]]] + B[y[x[., .], z[., .]]] + B[z[x[., y[., .]], .]] + B[z[y[x[., .], .], .]] The free dendriform algebra is associative:: sage: x * (y * z) == (x * y) * z True The associative product decomposes in two parts:: sage: x * y == F.prec(x, y) + F.succ(x, y) True The axioms hold:: sage: F.prec(F.succ(x, y), z) == F.succ(x, F.prec(y, z)) True sage: F.prec(F.prec(x, y), z) == F.prec(x, y * z) True sage: F.succ(x * y, z) == F.succ(x, F.succ(y, z)) True When there is only one generator, unlabelled trees are used instead:: sage: F1 = algebras.FreeDendriform(QQ) sage: w = F1.gen(0); w B[[., .]] sage: w * w * w B[[., [., [., .]]]] + B[[., [[., .], .]]] + B[[[., .], [., .]]] + B[[[., [., .]], .]] + B[[[[., .], .], .]] REFERENCES: - [LodayRonco]_ """ @staticmethod def __classcall_private__(cls, R, names=None): """ Normalize input to ensure a unique representation. EXAMPLES:: sage: F1 = algebras.FreeDendriform(QQ, 'xyz') sage: F2 = algebras.FreeDendriform(QQ, ['x','y','z']) sage: F3 = algebras.FreeDendriform(QQ, Alphabet('xyz')) sage: F1 is F2 and F1 is F3 True """ if names is not None: if ',' in names: names = [u for u in names if u != ','] names = Alphabet(names) if R not in Rings(): raise TypeError("argument R must be a ring") return super(FreeDendriformAlgebra, cls).__classcall__(cls, R, names) def __init__(self, R, names=None): """ Initialize ``self``. TESTS:: sage: A = algebras.FreeDendriform(QQ, '@'); A Free Dendriform algebra on one generator ['@'] over Rational Field sage: TestSuite(A).run() # long time (3s) sage: F = algebras.FreeDendriform(QQ, 'xy') sage: TestSuite(F).run() # long time (3s) """ if names is None: Trees = BinaryTrees() key = BinaryTree._sort_key self._alphabet = Alphabet(['o']) else: Trees = LabelledBinaryTrees() key = LabelledBinaryTree._sort_key self._alphabet = names # Here one would need LabelledBinaryTrees(names) # so that one can restrict the labels to some fixed set cat = HopfAlgebras(R).WithBasis().Graded().Connected() CombinatorialFreeModule.__init__(self, R, Trees, latex_prefix="", sorting_key=key, category=cat) def variable_names(self): r""" Return the names of the variables. EXAMPLES:: sage: R = algebras.FreeDendriform(QQ, 'xy') sage: R.variable_names() {'x', 'y'} """ return self._alphabet def _repr_(self): """ Return the string representation of ``self``. EXAMPLES:: sage: algebras.FreeDendriform(QQ, '@') # indirect doctest Free Dendriform algebra on one generator ['@'] over Rational Field """ n = self.algebra_generators().cardinality() if n == 1: gen = "one generator" else: gen = "{} generators".format(n) s = "Free Dendriform algebra on {} {} over {}" try: return s.format(gen, self._alphabet.list(), self.base_ring()) except NotImplementedError: return s.format(gen, self._alphabet, self.base_ring()) def gen(self, i): r""" Return the ``i``-th generator of the algebra. INPUT: - ``i`` -- an integer EXAMPLES:: sage: F = algebras.FreeDendriform(ZZ, 'xyz') sage: F.gen(0) B[x[., .]] sage: F.gen(4) Traceback (most recent call last): ... IndexError: argument i (= 4) must be between 0 and 2 """ G = self.algebra_generators() n = G.cardinality() if i < 0 or not i < n: m = "argument i (= {}) must be between 0 and {}".format(i, n - 1) raise IndexError(m) return G[G.keys().unrank(i)] @cached_method def algebra_generators(self): r""" Return the generators of this algebra. These are the binary trees with just one vertex. EXAMPLES:: sage: A = algebras.FreeDendriform(ZZ, 'fgh'); A Free Dendriform algebra on 3 generators ['f', 'g', 'h'] over Integer Ring sage: list(A.algebra_generators()) [B[f[., .]], B[g[., .]], B[h[., .]]] sage: A = algebras.FreeDendriform(QQ, ['x1','x2']) sage: list(A.algebra_generators()) [B[x1[., .]], B[x2[., .]]] """ Trees = self.basis().keys() return Family(self._alphabet, lambda a: self.monomial(Trees([], a))) def change_ring(self, R): """ Return the free dendriform algebra in the same variables over `R`. INPUT: - ``R`` -- a ring EXAMPLES:: sage: A = algebras.FreeDendriform(ZZ, 'fgh') sage: A.change_ring(QQ) Free Dendriform algebra on 3 generators ['f', 'g', 'h'] over Rational Field """ return FreeDendriformAlgebra(R, names=self.variable_names()) def gens(self): """ Return the generators of ``self`` (as an algebra). EXAMPLES:: sage: A = algebras.FreeDendriform(ZZ, 'fgh') sage: A.gens() (B[f[., .]], B[g[., .]], B[h[., .]]) """ return tuple(self.algebra_generators()) def degree_on_basis(self, t): """ Return the degree of a binary tree in the free Dendriform algebra. This is the number of vertices. EXAMPLES:: sage: A = algebras.FreeDendriform(QQ,'@') sage: RT = A.basis().keys() sage: u = RT([], '@') sage: A.degree_on_basis(u.over(u)) 2 """ return t.node_number() @cached_method def an_element(self): """ Return an element of ``self``. EXAMPLES:: sage: A = algebras.FreeDendriform(QQ, 'xy') sage: A.an_element() B[x[., .]] + 2*B[x[., x[., .]]] + 2*B[x[x[., .], .]] """ o = self.gen(0) return o + 2 * o * o def some_elements(self): """ Return some elements of the free dendriform algebra. EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: A.some_elements() [B[.], B[[., .]], B[[., [., .]]] + B[[[., .], .]], B[.] + B[[., [., .]]] + B[[[., .], .]]] With several generators:: sage: A = algebras.FreeDendriform(QQ, 'xy') sage: A.some_elements() [B[.], B[x[., .]], B[x[., x[., .]]] + B[x[x[., .], .]], B[.] + B[x[., x[., .]]] + B[x[x[., .], .]]] """ u = self.one() o = self.gen(0) x = o * o y = u + x return [u, o, x, y] def one_basis(self): """ Return the index of the unit. EXAMPLES:: sage: A = algebras.FreeDendriform(QQ, '@') sage: A.one_basis() . sage: A = algebras.FreeDendriform(QQ, 'xy') sage: A.one_basis() . """ Trees = self.basis().keys() return Trees(None) def product_on_basis(self, x, y): r""" Return the `*` associative dendriform product of two trees. This is the sum over all possible ways of identifying the rightmost path in `x` and the leftmost path in `y`. Every term corresponds to a shuffle of the vertices on the rightmost path in `x` and the vertices on the leftmost path in `y`. .. SEEALSO:: - :meth:`succ_product_on_basis`, :meth:`prec_product_on_basis` EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: RT = A.basis().keys() sage: x = RT([]) sage: A.product_on_basis(x, x) B[[., [., .]]] + B[[[., .], .]] """ return self.sum(self.basis()[u] for u in x.dendriform_shuffle(y)) def succ_product_on_basis(self, x, y): r""" Return the `\succ` dendriform product of two trees. This is the sum over all possible ways to identify the rightmost path in `x` and the leftmost path in `y`, with the additional condition that the root vertex of the result comes from `y`. The usual symbol for this operation is `\succ`. .. SEEALSO:: - :meth:`product_on_basis`, :meth:`prec_product_on_basis` EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: RT = A.basis().keys() sage: x = RT([]) sage: A.succ_product_on_basis(x, x) B[[[., .], .]] TESTS:: sage: u = A.one().support()[0] sage: A.succ_product_on_basis(u, u) Traceback (most recent call last): ... ValueError: dendriform products | < | and | > | are not defined """ if y.is_empty(): if x.is_empty(): raise ValueError("dendriform products | < | and | > | are " "not defined") else: return [] if x.is_empty(): return [y] K = self.basis().keys() if hasattr(y, 'label'): return self.sum(self.basis()[K([u, y[1]], y.label())] for u in x.dendriform_shuffle(y[0])) return self.sum(self.basis()[K([u, y[1]])] for u in x.dendriform_shuffle(y[0])) @lazy_attribute def succ(self): r""" Return the `\succ` dendriform product. This is the sum over all possible ways of identifying the rightmost path in `x` and the leftmost path in `y`, with the additional condition that the root vertex of the result comes from `y`. The usual symbol for this operation is `\succ`. .. SEEALSO:: :meth:`product`, :meth:`prec`, :meth:`over`, :meth:`under` EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: RT = A.basis().keys() sage: x = A.gen(0) sage: A.succ(x, x) B[[[., .], .]] """ suc = self.succ_product_on_basis return self._module_morphism(self._module_morphism(suc, position=0, codomain=self), position=1) def prec_product_on_basis(self, x, y): r""" Return the `\prec` dendriform product of two trees. This is the sum over all possible ways of identifying the rightmost path in `x` and the leftmost path in `y`, with the additional condition that the root vertex of the result comes from `x`. The usual symbol for this operation is `\prec`. .. SEEALSO:: - :meth:`product_on_basis`, :meth:`succ_product_on_basis` EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: RT = A.basis().keys() sage: x = RT([]) sage: A.prec_product_on_basis(x, x) B[[., [., .]]] TESTS:: sage: u = A.one().support()[0] sage: A.prec_product_on_basis(u, u) Traceback (most recent call last): ... ValueError: dendriform products | < | and | > | are not defined """ if x.is_empty() and y.is_empty(): raise ValueError("dendriform products | < | and | > | are " "not defined") if x.is_empty(): return [] if y.is_empty(): return [x] K = self.basis().keys() if hasattr(y, 'label'): return self.sum(self.basis()[K([x[0], u], x.label())] for u in x[1].dendriform_shuffle(y)) return self.sum(self.basis()[K([x[0], u])] for u in x[1].dendriform_shuffle(y)) @lazy_attribute def prec(self): r""" Return the `\prec` dendriform product. This is the sum over all possible ways to identify the rightmost path in `x` and the leftmost path in `y`, with the additional condition that the root vertex of the result comes from `x`. The usual symbol for this operation is `\prec`. .. SEEALSO:: :meth:`product`, :meth:`succ`, :meth:`over`, :meth:`under` EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: RT = A.basis().keys() sage: x = A.gen(0) sage: A.prec(x, x) B[[., [., .]]] """ pre = self.prec_product_on_basis return self._module_morphism(self._module_morphism(pre, position=0, codomain=self), position=1) @lazy_attribute def over(self): r""" Return the over product. The over product `x/y` is the binary tree obtained by grafting the root of `y` at the rightmost leaf of `x`. The usual symbol for this operation is `/`. .. SEEALSO:: :meth:`product`, :meth:`succ`, :meth:`prec`, :meth:`under` EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: RT = A.basis().keys() sage: x = A.gen(0) sage: A.over(x, x) B[[., [., .]]] """ def ov(x, y): return self._monomial(x.over(y)) return self._module_morphism(self._module_morphism(ov, position=0, codomain=self), position=1) @lazy_attribute def under(self): r""" Return the under product. The over product `x \backslash y` is the binary tree obtained by grafting the root of `x` at the leftmost leaf of `y`. The usual symbol for this operation is `\backslash`. .. SEEALSO:: :meth:`product`, :meth:`succ`, :meth:`prec`, :meth:`over` EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: RT = A.basis().keys() sage: x = A.gen(0) sage: A.under(x, x) B[[[., .], .]] """ def und(x, y): return self._monomial(x.under(y)) return self._module_morphism(self._module_morphism(und, position=0, codomain=self), position=1) def coproduct_on_basis(self, x): """ Return the coproduct of a binary tree. EXAMPLES:: sage: A = algebras.FreeDendriform(QQ) sage: x = A.gen(0) sage: ascii_art(A.coproduct(A.one())) # indirect doctest 1 # 1 sage: ascii_art(A.coproduct(x)) # indirect doctest 1 # B + B # 1 o o sage: A = algebras.FreeDendriform(QQ, 'xyz') sage: x, y, z = A.gens() sage: w = A.under(z,A.over(x,y)) sage: A.coproduct(z) B[.] # B[z[., .]] + B[z[., .]] # B[.] sage: A.coproduct(w) B[.] # B[x[z[., .], y[., .]]] + B[x[., .]] # B[z[., y[., .]]] + B[x[., .]] # B[y[z[., .], .]] + B[x[., y[., .]]] # B[z[., .]] + B[x[z[., .], .]] # B[y[., .]] + B[x[z[., .], y[., .]]] # B[.] """ B = self.basis() Trees = B.keys() if not x.node_number(): return self.one().tensor(self.one()) L, R = list(x) try: root = x.label() except AttributeError: root = '@' resu = self.one().tensor(self.monomial(x)) resu += sum(cL * cR * self.monomial(Trees([LL[0], RR[0]], root)).tensor( self.monomial(LL[1]) * self.monomial(RR[1])) for LL, cL in self.coproduct_on_basis(L) for RR, cR in self.coproduct_on_basis(R)) return resu # after this line : coercion def _element_constructor_(self, x): r""" Convert ``x`` into ``self``. EXAMPLES:: sage: R = algebras.FreeDendriform(QQ, 'xy') sage: x, y = R.gens() sage: R(x) B[x[., .]] sage: R(x+4*y) B[x[., .]] + 4*B[y[., .]] sage: Trees = R.basis().keys() sage: R(Trees([],'x')) B[x[., .]] sage: D = algebras.FreeDendriform(ZZ, 'xy') sage: X, Y = D.gens() sage: R(X-Y).parent() Free Dendriform algebra on 2 generators ['x', 'y'] over Rational Field """ if x in self.basis().keys(): return self.monomial(x) try: P = x.parent() if isinstance(P, FreeDendriformAlgebra): if P is self: return x return self.element_class(self, x.monomial_coefficients()) except AttributeError: raise TypeError('not able to coerce this in this algebra') # Ok, not a dendriform algebra element (or should not be viewed as one). def _coerce_map_from_(self, R): r""" Return ``True`` if there is a coercion from ``R`` into ``self`` and ``False`` otherwise. The things that coerce into ``self`` are - free dendriform algebras in a subset of variables of ``self`` over a base with a coercion map into ``self.base_ring()`` EXAMPLES:: sage: F = algebras.FreeDendriform(GF(7), 'xyz'); F Free Dendriform algebra on 3 generators ['x', 'y', 'z'] over Finite Field of size 7 Elements of the free dendriform algebra canonically coerce in:: sage: x, y, z = F.gens() sage: F.coerce(x+y) == x+y True The free dendriform algebra over `\ZZ` on `x, y, z` coerces in, since `\ZZ` coerces to `\GF{7}`:: sage: G = algebras.FreeDendriform(ZZ, 'xyz') sage: Gx,Gy,Gz = G.gens() sage: z = F.coerce(Gx+Gy); z B[x[., .]] + B[y[., .]] sage: z.parent() is F True However, `\GF{7}` does not coerce to `\ZZ`, so the free dendriform algebra over `\GF{7}` does not coerce to the one over `\ZZ`:: sage: G.coerce(y) Traceback (most recent call last): ... TypeError: no canonical coercion from Free Dendriform algebra on 3 generators ['x', 'y', 'z'] over Finite Field of size 7 to Free Dendriform algebra on 3 generators ['x', 'y', 'z'] over Integer Ring TESTS:: sage: F = algebras.FreeDendriform(ZZ, 'xyz') sage: G = algebras.FreeDendriform(QQ, 'xyz') sage: H = algebras.FreeDendriform(ZZ, 'y') sage: F._coerce_map_from_(G) False sage: G._coerce_map_from_(F) True sage: F._coerce_map_from_(H) True sage: F._coerce_map_from_(QQ) False sage: G._coerce_map_from_(QQ) False sage: F.has_coerce_map_from(PolynomialRing(ZZ, 3, 'x,y,z')) False """ # free dendriform algebras in a subset of variables # over any base that coerces in: if isinstance(R, FreeDendriformAlgebra): if all(x in self.variable_names() for x in R.variable_names()): if self.base_ring().has_coerce_map_from(R.base_ring()): return True return False def construction(self): """ Return a pair ``(F, R)``, where ``F`` is a :class:`DendriformFunctor` and `R` is a ring, such that ``F(R)`` returns ``self``. EXAMPLES:: sage: P = algebras.FreeDendriform(ZZ, 'x,y') sage: x,y = P.gens() sage: F, R = P.construction() sage: F Dendriform[x,y] sage: R Integer Ring sage: F(ZZ) is P True sage: F(QQ) Free Dendriform algebra on 2 generators ['x', 'y'] over Rational Field """ return DendriformFunctor(self.variable_names()), self.base_ring() class DendriformFunctor(ConstructionFunctor): """ A constructor for dendriform algebras. EXAMPLES:: sage: P = algebras.FreeDendriform(ZZ, 'x,y') sage: x,y = P.gens() sage: F = P.construction()[0]; F Dendriform[x,y] sage: A = GF(5)['a,b'] sage: a, b = A.gens() sage: F(A) Free Dendriform algebra on 2 generators ['x', 'y'] over Multivariate Polynomial Ring in a, b over Finite Field of size 5 sage: f = A.hom([a+b,a-b],A) sage: F(f) Generic endomorphism of Free Dendriform algebra on 2 generators ['x', 'y'] over Multivariate Polynomial Ring in a, b over Finite Field of size 5 sage: F(f)(a * F(A)(x)) (a+b)*B[x[., .]] """ rank = 9 def __init__(self, vars): """ EXAMPLES:: sage: F = sage.combinat.free_dendriform_algebra.DendriformFunctor(['x','y']) sage: F Dendriform[x,y] sage: F(ZZ) Free Dendriform algebra on 2 generators ['x', 'y'] over Integer Ring """ Functor.__init__(self, Rings(), Rings()) self.vars = vars def _apply_functor(self, R): """ Apply the functor to an object of ``self``'s domain. EXAMPLES:: sage: R = algebras.FreeDendriform(ZZ, 'x,y,z') sage: F = R.construction()[0]; F Dendriform[x,y,z] sage: type(F) <class 'sage.combinat.free_dendriform_algebra.DendriformFunctor'> sage: F(ZZ) # indirect doctest Free Dendriform algebra on 3 generators ['x', 'y', 'z'] over Integer Ring """ return FreeDendriformAlgebra(R, self.vars) def _apply_functor_to_morphism(self, f): """ Apply the functor ``self`` to the ring morphism `f`. TESTS:: sage: R = algebras.FreeDendriform(ZZ, 'x').construction()[0] sage: R(ZZ.hom(GF(3))) # indirect doctest Generic morphism: From: Free Dendriform algebra on one generator ['x'] over Integer Ring To: Free Dendriform algebra on one generator ['x'] over Finite Field of size 3 """ dom = self(f.domain()) codom = self(f.codomain()) def action(x): return codom._from_dict({a: f(b) for a, b in iteritems(x.monomial_coefficients())}) return dom.module_morphism(function=action, codomain=codom) def __eq__(self, other): """ EXAMPLES:: sage: F = algebras.FreeDendriform(ZZ, 'x,y,z').construction()[0] sage: G = algebras.FreeDendriform(QQ, 'x,y,z').construction()[0] sage: F == G True sage: G == loads(dumps(G)) True sage: G = algebras.FreeDendriform(QQ, 'x,y').construction()[0] sage: F == G False """ if not isinstance(other, DendriformFunctor): return False return self.vars == other.vars def __ne__(self, other): """ EXAMPLES:: sage: F = algebras.FreeDendriform(ZZ, 'x,y,z').construction()[0] sage: G = algebras.FreeDendriform(QQ, 'x,y,z').construction()[0] sage: F != G False sage: G != loads(dumps(G)) False sage: G = algebras.FreeDendriform(QQ, 'x,y').construction()[0] sage: F != G True """ return not (self == other) def __mul__(self, other): """ If two Dendriform functors are given in a row, form a single Dendriform functor with all of the variables. EXAMPLES:: sage: F = sage.combinat.free_dendriform_algebra.DendriformFunctor(['x','y']) sage: G = sage.combinat.free_dendriform_algebra.DendriformFunctor(['t']) sage: G * F Dendriform[x,y,t] """ if isinstance(other, IdentityConstructionFunctor): return self if isinstance(other, DendriformFunctor): if set(self.vars).intersection(other.vars): raise CoercionException("Overlapping variables (%s,%s)" % (self.vars, other.vars)) return DendriformFunctor(other.vars + self.vars) elif (isinstance(other, CompositeConstructionFunctor) and isinstance(other.all[-1], DendriformFunctor)): return CompositeConstructionFunctor(other.all[:-1], self * other.all[-1]) else: return CompositeConstructionFunctor(other, self) def merge(self, other): """ Merge ``self`` with another construction functor, or return ``None``. EXAMPLES:: sage: F = sage.combinat.free_dendriform_algebra.DendriformFunctor(['x','y']) sage: G = sage.combinat.free_dendriform_algebra.DendriformFunctor(['t']) sage: F.merge(G) Dendriform[x,y,t] sage: F.merge(F) Dendriform[x,y] Now some actual use cases:: sage: R = algebras.FreeDendriform(ZZ, 'x,y,z') sage: x,y,z = R.gens() sage: 1/2 * x 1/2*B[x[., .]] sage: parent(1/2 * x) Free Dendriform algebra on 3 generators ['x', 'y', 'z'] over Rational Field sage: S = algebras.FreeDendriform(QQ, 'zt') sage: z,t = S.gens() sage: x + t B[t[., .]] + B[x[., .]] sage: parent(x + t) Free Dendriform algebra on 4 generators ['z', 't', 'x', 'y'] over Rational Field """ if isinstance(other, DendriformFunctor): if self.vars == other.vars: return self ret = list(self.vars) cur_vars = set(ret) for v in other.vars: if v not in cur_vars: ret.append(v) return DendriformFunctor(Alphabet(ret)) else: return None def _repr_(self): """ TESTS:: sage: algebras.FreeDendriform(QQ,'x,y,z,t').construction()[0] Dendriform[x,y,z,t] """ return "Dendriform[%s]" % ','.join(self.vars)
the-stack_0_10739
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from gaiatest import GaiaTestCase from gaiatest.apps.settings.app import Settings class TestSettingsCellData(GaiaTestCase): def test_enable_cell_data_via_settings_app(self): """ https://moztrap.mozilla.org/manage/case/1373/ """ settings = Settings(self.marionette) settings.launch() cell_and_data_settings = settings.open_cell_and_data_settings() # verify that a carrier is displayed self.assertTrue(len(cell_and_data_settings.carrier_name) > 0) # enable cell data self.assertFalse(cell_and_data_settings.is_data_toggle_checked) cell_data_prompt = cell_and_data_settings.enable_data() # deal with prompt that sometimes appears (on first setting) if cell_data_prompt.is_displayed: # Cell data should not be enabled until we turn it on via the prompt self.assertFalse(cell_and_data_settings.is_data_toggle_checked) self.assertFalse(self.data_layer.get_setting('ril.data.enabled'), "Cell data was enabled before responding to the prompt") cell_data_prompt.turn_on() # Wait for cell data to be turned on self.wait_for_condition(lambda m: cell_and_data_settings.is_data_toggle_checked) # verify that cell data is now enabled and connected self.assertTrue(self.data_layer.is_cell_data_enabled, "Cell data was not enabled via Settings app") self.wait_for_condition( lambda m: self.data_layer.is_cell_data_connected, message='Cell data was not connected via Settings app')
the-stack_0_10740
# MIT License # # Copyright (c) 2020-2021 Parakoopa and the SkyTemple Contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import argparse import json import os import sys from typing import Tuple, List, Union from explorerscript.cli import check_settings, SETTINGS_PERFORMANCE_PROGRESS_LIST_VAR_NAME, SETTINGS, \ SETTINGS_DUNGEON_MODE_CONSTANTS, SETTINGS_DMC_OPEN, SETTINGS_DMC_CLOSED, SETTINGS_DMC_REQUEST, \ SETTINGS_DMC_OPEN_REQUEST from explorerscript.ssb_converting.compiler.utils import Counter from explorerscript.ssb_converting.ssb_data_types import SsbCoroutine, SsbOperation, SsbRoutineInfo, \ DungeonModeConstants, SsbRoutineType, SsbOpParamConstant, SsbOpParamConstString, SsbOpParamLanguageString, \ SsbOpParamPositionMarker, SsbOpCode from explorerscript.ssb_converting.ssb_decompiler import ExplorerScriptSsbDecompiler from explorerscript.util import open_utf8, exps_int counter = Counter() def parse_pos_mark_arg(arg_str): arg_str_arr = arg_str.split('.') if len(arg_str_arr) < 2: return exps_int(arg_str), 0 if arg_str_arr[1] != '5' or len(arg_str_arr) > 2: raise ValueError("Invalid position mark") return exps_int(arg_str_arr[0]), 2 def read_ops(ops: List[dict]) -> List[SsbOperation]: out_ops = [] for op in ops: if "params" not in op: raise ValueError("Params for an op not set.") if "opcode" not in op: raise ValueError("Opcode for an op not set.") params = [] for param in op["params"]: if isinstance(param, int): params.append(param) elif isinstance(param, dict): if "type" not in param or "value" not in param: raise ValueError("Invalid param for op.") if param["type"] == "CONSTANT": params.append(SsbOpParamConstant(param["value"])) elif param["type"] == "CONST_STRING": params.append(SsbOpParamConstString(param["value"])) elif param["type"] == "LANG_STRING": params.append(SsbOpParamLanguageString(param["value"])) elif param["type"] == "POSITION_MARK": x_offset, x_relative = parse_pos_mark_arg(param["value"]["x"]) y_offset, y_relative = parse_pos_mark_arg(param["value"]["y"]) params.append(SsbOpParamPositionMarker( param["value"]["name"], x_offset, y_offset, x_relative, y_relative )) else: raise ValueError("Invalid param for op.") else: raise ValueError("Invalid param for op.") out_ops.append(SsbOperation( counter(), SsbOpCode(-1, op["opcode"]), params )) return out_ops def read_routines(routines: List[dict]) -> Tuple[List[SsbRoutineInfo], List[SsbCoroutine], List[List[SsbOperation]]]: routine_infos = [] named_coroutines = [] routine_ops = [] for r in routines: if "ops" not in r: raise ValueError("Ops for a routine not set.") if "type" not in r: raise ValueError("Type for a routine not set.") if r["type"] == "COROUTINE": if "name" not in r: raise ValueError("Target for a routine not set.") named_coroutines.append(SsbCoroutine(-1, r["name"])) routine_infos.append(SsbRoutineInfo(SsbRoutineType.COROUTINE, -1)) routine_ops.append(read_ops(r["ops"])) elif r["type"] == "GENERIC": named_coroutines.append(SsbCoroutine(-1, "n/a")) routine_infos.append(SsbRoutineInfo(SsbRoutineType.GENERIC, -1)) routine_ops.append(read_ops(r["ops"])) elif r["type"] == "ACTOR": if "target_id" not in r: raise ValueError("Target for a routine not set.") linked_to = -1 linked_to_name = None if isinstance(r["target_id"], int): linked_to = r["target_id"] else: linked_to_name = str(r["target_id"]) named_coroutines.append(SsbCoroutine(-1, "n/a")) routine_infos.append(SsbRoutineInfo(SsbRoutineType.ACTOR, linked_to, linked_to_name)) routine_ops.append(read_ops(r["ops"])) elif r["type"] == "OBJECT": if "target_id" not in r: raise ValueError("Target for a routine not set.") linked_to = -1 linked_to_name = None if isinstance(r["target_id"], int): linked_to = r["target_id"] else: linked_to_name = str(r["target_id"]) named_coroutines.append(SsbCoroutine(-1, "n/a")) routine_infos.append(SsbRoutineInfo(SsbRoutineType.OBJECT, linked_to, linked_to_name)) routine_ops.append(read_ops(r["ops"])) elif r["type"] == "PERFORMER": if "target_id" not in r: raise ValueError("Target for a routine not set.") linked_to = -1 linked_to_name = None if isinstance(r["target_id"], int): linked_to = r["target_id"] else: linked_to_name = str(r["target_id"]) named_coroutines.append(SsbCoroutine(-1, "n/a")) routine_infos.append(SsbRoutineInfo(SsbRoutineType.PERFORMER, linked_to, linked_to_name)) routine_ops.append(read_ops(r["ops"])) else: raise ValueError(f"Invalid type for a routine: {r['type']}.") return routine_infos, named_coroutines, routine_ops if __name__ == '__main__': parser = argparse.ArgumentParser(description='Decompile a JSON representation of PMD EoS SSB into ExplorerScript.') parser.add_argument('ssb_path', metavar='SSB_JSON_PATH', help='SSB JSON to decompile, including the compiler settings.') parser.add_argument('--source-map', dest='source_map', default=None, metavar='PATH', help='If specified, output a source map at that location.') args = parser.parse_args() if not os.path.exists(args.ssb_path): print("JSON file does not exist.", file=sys.stderr) exit(1) with open_utf8(args.ssb_path, 'r') as f: ssb_file = json.load(f) check_settings(ssb_file) routine_infos, named_coroutines, routine_ops = read_routines(ssb_file["routines"]) dmodes = ssb_file[SETTINGS][SETTINGS_DUNGEON_MODE_CONSTANTS] decompiler = ExplorerScriptSsbDecompiler( routine_infos, routine_ops, named_coroutines, ssb_file[SETTINGS][SETTINGS_PERFORMANCE_PROGRESS_LIST_VAR_NAME], DungeonModeConstants( dmodes[SETTINGS_DMC_CLOSED], dmodes[SETTINGS_DMC_OPEN], dmodes[SETTINGS_DMC_REQUEST], dmodes[SETTINGS_DMC_OPEN_REQUEST] ) ) exps_src, source_map = decompiler.convert() if args.source_map is not None: with open_utf8(args.source_map, 'w') as f: f.write(source_map.serialize()) print(exps_src)
the-stack_0_10741
""" Authors: Randy Heiland ([email protected]) Adam Morrow, Grant Waldrow, Drew Willis, Kim Crevecoeur Dr. Paul Macklin ([email protected]) --- Versions --- 0.1 - initial version """ import sys from PySide6 import QtCore, QtGui from PySide6.QtWidgets import * from PySide6.QtGui import QDoubleValidator class QHLine(QFrame): def __init__(self): super(QHLine, self).__init__() self.setFrameShape(QFrame.HLine) self.setFrameShadow(QFrame.Sunken) class SubstrateDef(QWidget): def __init__(self): super().__init__() # global self.microenv_params self.current_substrate = None self.xml_root = None self.celldef_tab = None #--------------- # self.cell_defs = CellDefInstances() self.microenv_hbox = QHBoxLayout() splitter = QSplitter() tree_widget_width = 160 self.tree = QTreeWidget() # self.tree.setStyleSheet("background-color: lightgray") self.tree.setFixedWidth(tree_widget_width) # self.tree.currentChanged(self.tree_item_changed_cb) self.tree.itemClicked.connect(self.tree_item_changed_cb) # self.tree.itemSelectionChanged() # self.tree.setColumnCount(1) # self.tree.setCurrentItem(0) # rwh/TODO header = QTreeWidgetItem(["--- Substrate ---"]) self.tree.setHeaderItem(header) # cellname = QTreeWidgetItem(["virus"]) # self.tree.insertTopLevelItem(0,cellname) # cellname = QTreeWidgetItem(["interferon"]) # self.tree.insertTopLevelItem(1,cellname) self.microenv_hbox.addWidget(self.tree) self.scroll_cell_def_tree = QScrollArea() self.scroll_cell_def_tree.setWidget(self.tree) # splitter.addWidget(self.tree) splitter.addWidget(self.scroll_cell_def_tree) #------------------------------------------- # self.tab = QWidget() # self.tabs.resize(200,5) #------------------------------------------- label_width = 150 units_width = 70 # self.scroll = QScrollArea() self.scroll_area = QScrollArea() splitter.addWidget(self.scroll_area) # self.microenv_hbox.addWidget(self.scroll_area) self.microenv_params = QWidget() self.vbox = QVBoxLayout() self.vbox.addStretch(0) # self.microenv_hbox.addWidget(self.) #------------------ controls_hbox = QHBoxLayout() self.new_button = QPushButton("New") controls_hbox.addWidget(self.new_button) self.copy_button = QPushButton("Copy") controls_hbox.addWidget(self.copy_button) self.delete_button = QPushButton("Delete") self.delete_button.clicked.connect(self.delete_substrate) controls_hbox.addWidget(self.delete_button) # self.vbox.addLayout(hbox) # self.vbox.addWidget(QHLine()) #------------------ hbox = QHBoxLayout() label = QLabel("Name of substrate:") label.setFixedWidth(180) label.setAlignment(QtCore.Qt.AlignRight) hbox.addWidget(label) self.substrate_name = QLineEdit() # Want to validate name, e.g., starts with alpha, no special chars, etc. # self.cycle_trate0_0.setValidator(QtGui.QDoubleValidator()) # self.cycle_trate0_1.enter.connect(self.save_xml) hbox.addWidget(self.substrate_name) self.vbox.addLayout(hbox) #------------------ hbox = QHBoxLayout() label = QLabel("diffusion coefficient") label.setFixedWidth(label_width) label.setAlignment(QtCore.Qt.AlignRight) hbox.addWidget(label) self.diffusion_coef = QLineEdit() self.diffusion_coef.setValidator(QtGui.QDoubleValidator()) # self.diffusion_coef.enter.connect(self.save_xml) hbox.addWidget(self.diffusion_coef) units = QLabel("micron^2/min") units.setFixedWidth(units_width) hbox.addWidget(units) self.vbox.addLayout(hbox) #---------- hbox = QHBoxLayout() label = QLabel("decay rate") label.setFixedWidth(label_width) label.setAlignment(QtCore.Qt.AlignRight) hbox.addWidget(label) self.decay_rate = QLineEdit() self.decay_rate.setValidator(QtGui.QDoubleValidator()) # self.decay_rate.enter.connect(self.save_xml) hbox.addWidget(self.decay_rate) units = QLabel("1/min") units.setFixedWidth(units_width) hbox.addWidget(units) self.vbox.addLayout(hbox) #---------- hbox = QHBoxLayout() label = QLabel("initial condition") label.setFixedWidth(label_width) label.setAlignment(QtCore.Qt.AlignRight) hbox.addWidget(label) self.init_cond = QLineEdit() self.init_cond.setValidator(QtGui.QDoubleValidator()) # self.init_cond.enter.connect(self.save_xml) hbox.addWidget(self.init_cond) units = QLabel("mmol") units.setFixedWidth(units_width) hbox.addWidget(units) self.vbox.addLayout(hbox) #---------- hbox = QHBoxLayout() label = QLabel("Dirichlet BC") label.setFixedWidth(label_width) label.setAlignment(QtCore.Qt.AlignRight) hbox.addWidget(label) self.dirichlet_bc = QLineEdit() self.dirichlet_bc.setValidator(QtGui.QDoubleValidator()) # self.bdy_cond.enter.connect(self.save_xml) hbox.addWidget(self.dirichlet_bc) units = QLabel("mmol") units.setFixedWidth(units_width) hbox.addWidget(units) self.dirichlet_bc_enabled = QCheckBox("on/off") # self.motility_enabled.setAlignment(QtCore.Qt.AlignRight) # label.setFixedWidth(label_width) hbox.addWidget(self.dirichlet_bc_enabled) self.vbox.addLayout(hbox) #------------- hbox = QHBoxLayout() self.gradients = QCheckBox("calculate gradients") hbox.addWidget(self.gradients) self.vbox.addLayout(hbox) hbox = QHBoxLayout() self.track_in_agents = QCheckBox("track in agents") hbox.addWidget(self.track_in_agents) self.vbox.addLayout(hbox) #-------------------------- # <Dirichlet_boundary_condition units="dimensionless" enabled="false">0</Dirichlet_boundary_condition> # <!-- # <Dirichlet_options> # <boundary_value ID="xmin" enabled="false">0</boundary_value> # <boundary_value ID="xmax" enabled="false">0</boundary_value> # <boundary_value ID="ymin" enabled="false">0</boundary_value> # <boundary_value ID="ymax" enabled="false">0</boundary_value> # <boundary_value ID="zmin" enabled="false">1</boundary_value> # <boundary_value ID="zmax" enabled="false">0</boundary_value> # </Dirichlet_options> # --> # </variable> #-------------------------- # Dummy widget for filler?? # label = QLabel("") # label.setFixedHeight(1000) # # label.setStyleSheet("background-color: orange") # label.setAlignment(QtCore.Qt.AlignCenter) # self.vbox.addWidget(label) #================================================================== # self.vbox.setAlignment(QtCore.Qt.AlignTop) # spacerItem = QSpacerItem(20, 237, QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Expanding) # spacerItem = QSpacerItem(100,500) # self.vbox.addItem(spacerItem) self.vbox.addStretch() self.microenv_params.setLayout(self.vbox) self.scroll_area.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn) self.scroll_area.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn) self.scroll_area.setWidgetResizable(True) self.scroll_area.setWidget(self.microenv_params) # self.save_button = QPushButton("Save") # self.text = QLabel("Hello World",alignment=QtCore.Qt.AlignCenter) self.layout = QVBoxLayout(self) self.layout.addLayout(controls_hbox) # self.layout.addWidget(self.tabs) # self.layout.addWidget(QHLine()) # self.layout.addWidget(self.params) # self.layout.addWidget(self.scroll_area) self.layout.addWidget(splitter) # self.layout.addWidget(self.vbox) # self.layout.addWidget(self.text) # self.layout.addWidget(self.save_button) # self.save_button.clicked.connect(self.save_xml) @QtCore.Slot() def delete_substrate(self): print('------ delete_substrate') item_idx = self.tree.indexFromItem(self.tree.currentItem()).row() print('------ item_idx=',item_idx) # self.tree.removeItemWidget(self.tree.currentItem(), 0) self.tree.takeTopLevelItem(self.tree.indexOfTopLevelItem(self.tree.currentItem())) self.celldef_tab.delete_substrate_from_comboboxes(item_idx) print('------ new name=',self.tree.currentItem().text(0)) self.current_substrate = self.tree.currentItem().text(0) self.fill_gui(self.current_substrate) # @QtCore.Slot() # def save_xml(self): # # self.text.setText(random.choice(self.hello)) # pass # def tree_item_changed(self,idx1,idx2): def tree_item_changed_cb(self, it,col): print('tree_item_changed:', it, col, it.text(col) ) self.current_substrate = it.text(col) print('self.current_substrate= ',self.current_substrate ) # print('self.= ',self.tree.indexFromItem ) # fill in the GUI with this one's params self.fill_gui(self.current_substrate) def populate_tree(self): uep = self.xml_root.find(".//microenvironment_setup") if uep: self.tree.clear() idx = 0 # <microenvironment_setup> # <variable name="food" units="dimensionless" ID="0"> for var in uep: # print(cell_def.attrib['name']) if var.tag == 'variable': var_name = var.attrib['name'] subname = QTreeWidgetItem([var_name]) self.tree.insertTopLevelItem(idx,subname) idx += 1 def first_substrate_name(self): uep = self.xml_root.find(".//microenvironment_setup//variable") if uep: return(uep.attrib['name']) def fill_gui(self, substrate_name): # <microenvironment_setup> # <variable name="food" units="dimensionless" ID="0"> uep = self.xml_root.find('.//microenvironment_setup') # find unique entry point if substrate_name == None: substrate_name = self.xml_root.find(".//microenvironment_setup//variable").attrib['name'] self.substrate_name.setText(substrate_name) vp = [] # pointers to <variable> nodes if uep: # self.tree.clear() idx = 0 for var in uep.findall('variable'): vp.append(var) # print(var.attrib['name']) name = var.attrib['name'] subname = QTreeWidgetItem([name]) # self.tree.insertTopLevelItem(idx,substrate_name) if subname.text(0) == substrate_name: print("break out of substrate (variable) name loop with idx=",idx) break idx += 1 # self.tree.setCurrentItem(substrate_name,0) # RWH/TODO: select 1st (0th?) item upon startup or loading new model idx += 1 # we use 1-offset indices below var_param_path = self.xml_root.find(".//microenvironment_setup//variable[" + str(idx) + "]//physical_parameter_set") var_path = self.xml_root.find(".//microenvironment_setup//variable[" + str(idx) + "]") # uep = self.xml_root.find('.//microenvironment_setup') # find unique entry point # <variable name="oxygen" units="mmHg" ID="0"> # <physical_parameter_set> # <diffusion_coefficient units="micron^2/min">100000.0</diffusion_coefficient> # <decay_rate units="1/min">0.1</decay_rate> # </physical_parameter_set> # <initial_condition units="mmHg">38.0</initial_condition> # <Dirichlet_boundary_condition units="mmHg" enabled="true">38.0</ # self.substrate_name.setText(var.attrib['name']) self.diffusion_coef.setText(var_param_path.find('.//diffusion_coefficient').text) self.decay_rate.setText(var_param_path.find('.//decay_rate').text) self.init_cond.setText(var_path.find('.initial_condition').text) self.dirichlet_bc.setText(var_path.find('.Dirichlet_boundary_condition').text) # self.chemical_A_decay_rate.value = float(vp[0].find('.//decay_rate').text) # self.chemical_A_initial_condition.value = float(vp[0].find('.//initial_condition').text) # self.chemical_A_Dirichlet_boundary_condition.value = float(vp[0].find('.//Dirichlet_boundary_condition').text) # if vp[0].find('.//Dirichlet_boundary_condition').attrib['enabled'].lower() == 'true': # self.chemical_A_Dirichlet_boundary_condition_toggle.value = True # else: # self.chemical_A_Dirichlet_boundary_condition_toggle.value = False # self.chemical_B_diffusion_coefficient.value = float(vp[1].find('.//diffusion_coefficient').text) # self.chemical_B_decay_rate.value = float(vp[1].find('.//decay_rate').text) # self.chemical_B_initial_condition.value = float(vp[1].find('.//initial_condition').text) # self.chemical_B_Dirichlet_boundary_condition.value = float(vp[1].find('.//Dirichlet_boundary_condition').text) # if vp[1].find('.//Dirichlet_boundary_condition').attrib['enabled'].lower() == 'true': # self.chemical_B_Dirichlet_boundary_condition_toggle.value = True # else: # self.chemical_B_Dirichlet_boundary_condition_toggle.value = False # self.chemical_C_diffusion_coefficient.value = float(vp[2].find('.//diffusion_coefficient').text) # self.chemical_C_decay_rate.value = float(vp[2].find('.//decay_rate').text) # self.chemical_C_initial_condition.value = float(vp[2].find('.//initial_condition').text) # self.chemical_C_Dirichlet_boundary_condition.value = float(vp[2].find('.//Dirichlet_boundary_condition').text) # if vp[2].find('.//Dirichlet_boundary_condition').attrib['enabled'].lower() == 'true': # self.chemical_C_Dirichlet_boundary_condition_toggle.value = True # else: # self.chemical_C_Dirichlet_boundary_condition_toggle.value = False # if uep.find('.//options//calculate_gradients').text.lower() == 'true': # self.calculate_gradient.value = True # else: # self.calculate_gradient.value = False # if uep.find('.//options//track_internalized_substrates_in_each_agent').text.lower() == 'true': # self.track_internal.value = True # else: # self.track_internal.value = False #---------------------------------------------------------------------------- # Read values from the GUI widgets and generate/write a new XML # <microenvironment_setup> # <variable name="director signal" units="dimensionless" ID="0"> # <physical_parameter_set> # <diffusion_coefficient units="micron^2/min">1000</diffusion_coefficient> # <decay_rate units="1/min">.1</decay_rate> # </physical_parameter_set> # <initial_condition units="dimensionless">0</initial_condition> # <Dirichlet_boundary_condition units="dimensionless" enabled="false">1</Dirichlet_boundary_condition> # </variable> # <variable name="cargo signal" units="dimensionless" ID="1"> # <physical_parameter_set> # <diffusion_coefficient units="micron^2/min">1000</diffusion_coefficient> # <decay_rate units="1/min">.4</decay_rate> # </physical_parameter_set> # <initial_condition units="dimensionless">0</initial_condition> # <Dirichlet_boundary_condition units="dimensionless" enabled="false">1</Dirichlet_boundary_condition> # </variable> # <options> # <calculate_gradients>true</calculate_gradients> # <track_internalized_substrates_in_each_agent>false</track_internalized_substrates_in_each_agent> # <initial_condition type="matlab" enabled="false"> # <filename>./config/initial.mat</filename> # </initial_condition> # <dirichlet_nodes type="matlab" enabled="false"> # <filename>./config/dirichlet.mat</filename> # </dirichlet_nodes> # </options> # </microenvironment_setup> def fill_xml(self): # pass uep = self.xml_root.find('.//microenvironment_setup') vp = [] # pointers to <variable> nodes if uep: for var in uep.findall('variable'): vp.append(var) uep = self.xml_root.find('.//microenvironment_setup') # self.diffusion_coef.setText(var_param_path.find('.//diffusion_coefficient').text) # self.decay_rate.setText(var_param_path.find('.//decay_rate').text) # self.init_cond.setText(var_path.find('.initial_condition').text) # self.dirichlet_bc.setText(var_path.find('.Dirichlet_boundary_condition').text) vp[0].find('.//diffusion_coefficient').text = str(self.diffusion_coef.text) # vp[0].find('.//diffusion_coefficient').text = str(self.director_signal_diffusion_coefficient.value) # vp[0].find('.//decay_rate').text = str(self.director_signal_decay_rate.value) # vp[0].find('.//initial_condition').text = str(self.director_signal_initial_condition.value) # vp[0].find('.//Dirichlet_boundary_condition').text = str(self.director_signal_Dirichlet_boundary_condition.value) # vp[0].find('.//Dirichlet_boundary_condition').attrib['enabled'] = str(self.director_signal_Dirichlet_boundary_condition_toggle.value).lower() # vp[1].find('.//diffusion_coefficient').text = str(self.cargo_signal_diffusion_coefficient.value) # vp[1].find('.//decay_rate').text = str(self.cargo_signal_decay_rate.value) # vp[1].find('.//initial_condition').text = str(self.cargo_signal_initial_condition.value) # vp[1].find('.//Dirichlet_boundary_condition').text = str(self.cargo_signal_Dirichlet_boundary_condition.value) # vp[1].find('.//Dirichlet_boundary_condition').attrib['enabled'] = str(self.cargo_signal_Dirichlet_boundary_condition_toggle.value).lower() # uep.find('.//options//calculate_gradients').text = str(self.calculate_gradient.value) # uep.find('.//options//track_internalized_substrates_in_each_agent').text = str(self.track_internal.value) def clear_gui(self): pass
the-stack_0_10742
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest from typing import Any, Dict from unittest import mock from google.cloud.language_v1.proto.language_service_pb2 import Document from airflow.providers.google.cloud.hooks.natural_language import CloudNaturalLanguageHook from tests.providers.google.cloud.utils.base_gcp_mock import mock_base_gcp_hook_no_default_project_id API_RESPONSE = {} # type: Dict[Any, Any] DOCUMENT = Document( content="Airflow is a platform to programmatically author, schedule and monitor workflows." ) ENCODING_TYPE = "UTF32" class TestCloudNaturalLanguageHook(unittest.TestCase): def setUp(self): with mock.patch( "airflow.providers.google.common.hooks.base_google.GoogleBaseHook.__init__", new=mock_base_gcp_hook_no_default_project_id, ): self.hook = CloudNaturalLanguageHook(gcp_conn_id="test") @mock.patch( "airflow.providers.google.cloud.hooks.natural_language.CloudNaturalLanguageHook.client_info", new_callable=mock.PropertyMock, ) @mock.patch( "airflow.providers.google.cloud.hooks.natural_language.CloudNaturalLanguageHook." "_get_credentials" ) @mock.patch("airflow.providers.google.cloud.hooks.natural_language.LanguageServiceClient") def test_language_service_client_creation(self, mock_client, mock_get_creds, mock_client_info): result = self.hook.get_conn() mock_client.assert_called_once_with( credentials=mock_get_creds.return_value, client_info=mock_client_info.return_value ) self.assertEqual(mock_client.return_value, result) self.assertEqual(self.hook._conn, result) @mock.patch( "airflow.providers.google.cloud.hooks.natural_language.CloudNaturalLanguageHook.get_conn", ) def test_analyze_entities(self, get_conn): get_conn.return_value.analyze_entities.return_value = API_RESPONSE result = self.hook.analyze_entities(document=DOCUMENT, encoding_type=ENCODING_TYPE) self.assertEqual(result, API_RESPONSE) get_conn.return_value.analyze_entities.assert_called_once_with( document=DOCUMENT, encoding_type=ENCODING_TYPE, retry=None, timeout=None, metadata=None ) @mock.patch( "airflow.providers.google.cloud.hooks.natural_language.CloudNaturalLanguageHook.get_conn", ) def test_analyze_entity_sentiment(self, get_conn): get_conn.return_value.analyze_entity_sentiment.return_value = API_RESPONSE result = self.hook.analyze_entity_sentiment(document=DOCUMENT, encoding_type=ENCODING_TYPE) self.assertEqual(result, API_RESPONSE) get_conn.return_value.analyze_entity_sentiment.assert_called_once_with( document=DOCUMENT, encoding_type=ENCODING_TYPE, retry=None, timeout=None, metadata=None ) @mock.patch( "airflow.providers.google.cloud.hooks.natural_language.CloudNaturalLanguageHook.get_conn", ) def test_analyze_sentiment(self, get_conn): get_conn.return_value.analyze_sentiment.return_value = API_RESPONSE result = self.hook.analyze_sentiment(document=DOCUMENT, encoding_type=ENCODING_TYPE) self.assertEqual(result, API_RESPONSE) get_conn.return_value.analyze_sentiment.assert_called_once_with( document=DOCUMENT, encoding_type=ENCODING_TYPE, retry=None, timeout=None, metadata=None ) @mock.patch( "airflow.providers.google.cloud.hooks.natural_language.CloudNaturalLanguageHook.get_conn", ) def test_analyze_syntax(self, get_conn): get_conn.return_value.analyze_syntax.return_value = API_RESPONSE result = self.hook.analyze_syntax(document=DOCUMENT, encoding_type=ENCODING_TYPE) self.assertEqual(result, API_RESPONSE) get_conn.return_value.analyze_syntax.assert_called_once_with( document=DOCUMENT, encoding_type=ENCODING_TYPE, retry=None, timeout=None, metadata=None ) @mock.patch( "airflow.providers.google.cloud.hooks.natural_language.CloudNaturalLanguageHook.get_conn", ) def test_annotate_text(self, get_conn): get_conn.return_value.annotate_text.return_value = API_RESPONSE result = self.hook.annotate_text(document=DOCUMENT, encoding_type=ENCODING_TYPE, features=None) self.assertEqual(result, API_RESPONSE) get_conn.return_value.annotate_text.assert_called_once_with( document=DOCUMENT, encoding_type=ENCODING_TYPE, features=None, retry=None, timeout=None, metadata=None, ) @mock.patch( "airflow.providers.google.cloud.hooks.natural_language.CloudNaturalLanguageHook.get_conn", ) def test_classify_text(self, get_conn): get_conn.return_value.classify_text.return_value = API_RESPONSE result = self.hook.classify_text(document=DOCUMENT) self.assertEqual(result, API_RESPONSE) get_conn.return_value.classify_text.assert_called_once_with( document=DOCUMENT, retry=None, timeout=None, metadata=None )
the-stack_0_10743
import os import subprocess import sys from typing import List import psutil import logging def pip_install(pkg: str, pipbin: str = "pip3.10"): all_pkgs = [_.decode('ascii').lower() for _ in subprocess.check_output( [f"{pipbin}", 'list']).split()] if pkg in all_pkgs: logging.info(f"pkg= , {pkg}, is present") return "already present" else: os.system(f"{pipbin} install {pkg}") return "installed" class Error: pass error = Error() def exec_cmd(cmdl: List[str], errcheck: str = ""): """ """ try: res = subprocess.check_output(cmdl, stderr=subprocess.STDOUT) return res except subprocess.CalledProcessError as e: if errcheck in str(e.output): logging.info(f"{cmdl[0]} already active") else: raise e def append_to_file(fullfp: str, apstr: str): dirn = os.path.dirname(fullfp) fn = os.path.basename(fullfp) if os.path.exists(fullfp): os.system(f"doas cp {fullfp} {fullfp}.premod") os.system(f"cp {fullfp} /tmp/{fn}") with open(f"/tmp/{fn}", "a") as fh: fh.write(apstr) os.system(f"doas mv /tmp/{fn} {fullfp}") def checkIfProcessRunning(processName): ''' Check if there is any running process that contains the given name processName. ''' # Iterate over the all the running process for proc in psutil.process_iter(): try: # Check if process name contains the given name string. if processName.lower() in proc.name().lower(): return True except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess): pass return False
the-stack_0_10744
from copy import deepcopy import numpy as np import pandas as pd import torch from torch.optim import Adam import gym import time import spinup.algos.pytorch.ddpg.core as core from spinup.utils.logx import EpochLogger class ReplayBuffer: """ A simple FIFO experience replay buffer for DDPG agents. """ def __init__(self, obs_dim, act_dim, size): self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.obs2_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.done_buf = np.zeros(size, dtype=np.float32) self.ptr, self.size, self.max_size = 0, 0, size def store(self, obs, act, rew, next_obs, done): self.obs_buf[self.ptr] = obs self.obs2_buf[self.ptr] = next_obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.done_buf[self.ptr] = done self.ptr = (self.ptr+1) % self.max_size self.size = min(self.size+1, self.max_size) def sample_batch(self, batch_size=32): idxs = np.random.randint(0, self.size, size=batch_size) batch = dict(obs=self.obs_buf[idxs], obs2=self.obs2_buf[idxs], act=self.act_buf[idxs], rew=self.rew_buf[idxs], done=self.done_buf[idxs]) return {k: torch.as_tensor(v, dtype=torch.float32) for k,v in batch.items()} """ The following parameters have been changed: env_fn: default value set to core.ALMEnv epochs: default value changed from 100 to 300 act_noise: default value changed from .1 to .01 time_horizon: added parameter, with default value 80 discount_rate: added parameter, with default value .06 """ def ddpg(env_fn = core.ALMEnv, actor_critic = core.MLPActorCritic, ac_kwargs = dict(), seed = 0, steps_per_epoch = 4000, epochs = 300, replay_size = int(1e6), gamma = 0.99, polyak=0.995, pi_lr = 1e-3, q_lr = 1e-3, batch_size = 100, start_steps = 10000, update_after = 1000, update_every = 50, act_noise = .01, num_test_episodes = 10, max_ep_len = 1000, logger_kwargs = dict(), save_freq = 1, time_horizon = 80, discount_rate = .06): """ Deep Deterministic Policy Gradient (DDPG) Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. In this version, the default environment is 'ALMEnv' actor_critic: The constructor method for a PyTorch Module with an ``act`` method, a ``pi`` module, and a ``q`` module. The ``act`` method and ``pi`` module should accept batches of observations as inputs, and ``q`` should accept a batch of observations and a batch of actions as inputs. When called, these should return: =========== ================ ====================================== Call Output Shape Description =========== ================ ====================================== ``act`` (batch, act_dim) | Numpy array of actions for each | observation. ``pi`` (batch, act_dim) | Tensor containing actions from policy | given observations. ``q`` (batch,) | Tensor containing the current estimate | of Q* for the provided observations | and actions. (Critical: make sure to | flatten this!) =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object you provided to DDPG. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs to run and train agent. replay_size (int): Maximum length of replay buffer. gamma (float): Discount factor. (Always between 0 and 1.) polyak (float): Interpolation factor in polyak averaging for target networks. Target networks are updated towards main networks according to: .. math:: \\theta_{\\text{targ}} \\leftarrow \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta where :math:`\\rho` is polyak. (Always between 0 and 1, usually close to 1.) pi_lr (float): Learning rate for policy. q_lr (float): Learning rate for Q-networks. batch_size (int): Minibatch size for SGD. start_steps (int): Number of steps for uniform-random action selection, before running real policy. Helps exploration. update_after (int): Number of env interactions to collect before starting to do gradient descent updates. Ensures replay buffer is full enough for useful updates. update_every (int): Number of env interactions that should elapse between gradient descent updates. Note: Regardless of how long you wait between updates, the ratio of env steps to gradient steps is locked to 1. act_noise (float): Stddev for Gaussian exploration noise added to policy at training time. (At test time, no noise is added.) num_test_episodes (int): Number of episodes to test the deterministic policy at the end of each epoch. max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. """ logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) torch.manual_seed(seed) np.random.seed(seed) # env, test_env = env_fn(), env_fn() original OpenAI SpinningUp entry env = env_fn(T = time_horizon, rate = discount_rate) # Added by the author test_env = env_fn(T = time_horizon, rate = discount_rate) # Added by the author obs_dim = env.observation_space.shape act_dim = env.action_space.shape[0] # Action limit for clamping: critically, assumes all dimensions share the same bound! act_limit = env.action_space.high[0] # Create actor-critic module and target networks ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs) ac_targ = deepcopy(ac) # Freeze target networks with respect to optimizers (only update via polyak averaging) for p in ac_targ.parameters(): p.requires_grad = False # Experience buffer replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size) # Count variables (protip: try to get a feel for how different size networks behave!) var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.q]) logger.log('\nNumber of parameters: \t pi: %d, \t q: %d\n'%var_counts) # Set up function for computing DDPG Q-loss def compute_loss_q(data): o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done'] q = ac.q(o,a) # Bellman backup for Q function with torch.no_grad(): q_pi_targ = ac_targ.q(o2, ac_targ.pi(o2)) backup = r + gamma * (1 - d) * q_pi_targ # MSE loss against Bellman backup loss_q = ((q - backup)**2).mean() # Useful info for logging loss_info = dict(QVals=q.detach().numpy()) return loss_q, loss_info # Set up function for computing DDPG pi loss def compute_loss_pi(data): o = data['obs'] q_pi = ac.q(o, ac.pi(o)) return -q_pi.mean() # Set up optimizers for policy and q-function pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr) q_optimizer = Adam(ac.q.parameters(), lr=q_lr) # Set up model saving logger.setup_pytorch_saver(ac) def update(data): # First run one gradient descent step for Q. q_optimizer.zero_grad() loss_q, loss_info = compute_loss_q(data) loss_q.backward() q_optimizer.step() # Freeze Q-network so you don't waste computational effort # computing gradients for it during the policy learning step. for p in ac.q.parameters(): p.requires_grad = False # Next run one gradient descent step for pi. pi_optimizer.zero_grad() loss_pi = compute_loss_pi(data) loss_pi.backward() pi_optimizer.step() # Unfreeze Q-network so you can optimize it at next DDPG step. for p in ac.q.parameters(): p.requires_grad = True # Record things logger.store(LossQ=loss_q.item(), LossPi=loss_pi.item(), **loss_info) # Finally, update target networks by polyak averaging. with torch.no_grad(): for p, p_targ in zip(ac.parameters(), ac_targ.parameters()): # NB: We use an in-place operations "mul_", "add_" to update target # params, as opposed to "mul" and "add", which would make new tensors. p_targ.data.mul_(polyak) p_targ.data.add_((1 - polyak) * p.data) def get_action(o, noise_scale): a = ac.act(torch.as_tensor(o, dtype=torch.float32)) a = a * (noise_scale * np.random.randn(act_dim) + 1) # Added by the author return (a / np.sum(a)) # Added by the author # a += noise_scale * np.random.randn(act_dim) Original OpenAI SpinningUp entry # return np.clip(a, -act_limit, act_limit) Original OpenAI SpinningUp entry def test_agent(): for j in range(num_test_episodes): o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0 while not(d or (ep_len == max_ep_len)): # Take deterministic actions at test time (noise_scale=0) o, r, d, _ = test_env.step(get_action(o, 0)) ep_ret += r ep_len += 1 logger.store(TestEpRet=ep_ret, TestEpLen=ep_len) # Prepare for interaction with environment total_steps = steps_per_epoch * epochs start_time = time.time() o, ep_ret, ep_len = env.reset(), 0, 0 # Main loop: collect experience in env and update/log each epoch for t in range(total_steps): """ Until start_steps have elapsed, randomly sample actions from a uniform distribution for better exploration. Afterwards, use the learned policy (with some noise, via act_noise). """ if t > start_steps: a = get_action(o, act_noise) else: a = env.action_space.sample() # Step the env o2, r, d, _ = env.step(a) ep_ret += r ep_len += 1 # Ignore the "done" signal if it comes from hitting the time # horizon (that is, when it's an artificial terminal signal # that isn't based on the agent's state) d = False if ep_len==max_ep_len else d # Store experience to replay buffer replay_buffer.store(o, a, r, o2, d) # Super critical, easy to overlook step: make sure to update # most recent observation! o = o2 # End of trajectory handling if d or (ep_len == max_ep_len): logger.store(EpRet=ep_ret, EpLen=ep_len) o, ep_ret, ep_len = env.reset(), 0, 0 # Update handling if t >= update_after and t % update_every == 0: for _ in range(update_every): batch = replay_buffer.sample_batch(batch_size) update(data=batch) # End of epoch handling if (t+1) % steps_per_epoch == 0: epoch = (t+1) // steps_per_epoch # Save model if (epoch % save_freq == 0) or (epoch == epochs): logger.save_state({'env': env}, None) # Test the performance of the deterministic version of the agent. test_agent() # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('TestEpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('TestEpLen', average_only=True) logger.log_tabular('TotalEnvInteracts', t) logger.log_tabular('QVals', with_min_and_max=True) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossQ', average_only=True) logger.log_tabular('Time', time.time()-start_time) logger.dump_tabular() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() # parser.add_argument('--env', type=str, default='HalfCheetah-v2') Original OpenAI SpinningUp entry parser.add_argument('--hid', type=int, default=256) parser.add_argument('--l', type=int, default=2) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--time_horizon', type = int, default = 80) # Added by the author parser.add_argument('--discount_rate', type = float, default = 0.06) # Added by the author parser.add_argument('--exp_name', type=str, default='ddpg') args = parser.parse_args() from spinup.utils.run_utils import setup_logger_kwargs logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed) ddpg(env_fn = core.ALMEnv, actor_critic=core.MLPActorCritic, ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma, seed=args.seed, epochs=args.epochs, logger_kwargs=logger_kwargs, time_horizon = args.time_horizon, discount_rate = args.discount_rate)
the-stack_0_10745
import os outlines = ( """#!/usr/bin/env bash #################################### # USAGE: ./sequential_projids.sh & # #################################### # sector 6, first galactic field reduction """ ) projidlines = [] for projid in range(1500,1517): projidlines.append( '( source activate trex_37; source projid_{}.sh; wait ) & wait\n'. format(projid) ) outname = 'tess_tuning_scripts/sector6_reduction.sh' with open(outname, 'w') as f: f.writelines(outlines) f.writelines(projidlines) print('wrote {}'.format(outname))
the-stack_0_10746
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" """ Test that we can actually build a simple program using our generated Visual Studio 10.0 project (.vcxproj) and solution (.sln) files using Visual Studio 10.0 (Professional edition). """ import os import sys import TestSConsMSVS test = TestSConsMSVS.TestSConsMSVS() if sys.platform != 'win32': msg = "Skipping Visual Studio test on non-Windows platform '%s'\n" % sys.platform test.skip_test(msg) msvs_version = '10.0' if not msvs_version in test.msvs_versions(): msg = "Visual Studio %s not installed; skipping test.\n" % msvs_version test.skip_test(msg) # Let SCons figure out the Visual Studio environment variables for us and # print out a statement that we can exec to suck them into our external # environment so we can execute devenv and really try to build something. test.run(arguments = '-n -q -Q -f -', stdin = """\ env = Environment(tools = ['msvc'], MSVS_VERSION='%(msvs_version)s') print("os.environ.update(%%s)" %% repr(env['ENV'])) """ % locals()) exec(test.stdout()) test.subdir('sub dir') test.write(['sub dir', 'SConstruct'], """\ env=Environment(MSVS_VERSION = '%(msvs_version)s') env.MSVSProject(target = 'foo.vcxproj', srcs = ['foo.c'], buildtarget = 'foo.exe', variant = 'Release') env.Program('foo.c') """ % locals()) test.write(['sub dir', 'foo.c'], r""" int main(int argc, char *argv) { printf("foo.c\n"); exit (0); } """) test.run(chdir='sub dir', arguments='.') test.vcproj_sys_path(test.workpath('sub dir', 'foo.vcxproj')) import SCons.Platform.win32 system_dll_path = os.path.join( SCons.Platform.win32.get_system_root(), 'System32' ) os.environ['PATH'] = os.environ['PATH'] + os.pathsep + system_dll_path test.run(chdir='sub dir', program=[test.get_msvs_executable(msvs_version)], arguments=['foo.sln', '/build', 'Release']) test.run(program=test.workpath('sub dir', 'foo'), stdout="foo.c\n") test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
the-stack_0_10749
from __future__ import unicode_literals import os.path import threading import time from future.builtins import str import zmq from zmq.eventloop import ioloop, zmqstream import tornado.testing ioloop.install() def test_server_creation(): from pseud import Server user_id = b'echo' server = Server(user_id) assert server.user_id == user_id assert server.security_plugin == 'noop_auth_backend' def test_server_can_bind(): from pseud import Server user_id = b'echo' endpoint = 'inproc://{}'.format(__name__).encode() server = Server(user_id, security_plugin='noop_auth_backend') server.bind(endpoint) def test_server_can_connect(): from pseud import Server user_id = b'echo' endpoint = b'tcp://127.0.0.1:5000' server = Server(user_id, security_plugin='noop_auth_backend') server.connect(endpoint) def test_server_with_its_loop_instance(): from pseud import SyncClient, Server endpoint = b'ipc:///tmp/test_socket' def start_server(): server = Server(b'a') server.bind(endpoint) server.register_rpc(str.lower) server.io_loop.add_timeout(server.io_loop.time() + .2, server.stop) server.start() server_thread = threading.Thread(target=start_server) server_thread.start() client = SyncClient() client.connect(endpoint) result = client.lower('TOTO') assert result == 'toto' class ServerTestCase(tornado.testing.AsyncTestCase): timeout = 2 def make_one_client_socket(self, endpoint): context = zmq.Context.instance() req_sock = context.socket(zmq.ROUTER) req_sock.connect(endpoint) return req_sock def make_one_server(self, user_id, endpoint): from pseud import Server server = Server(user_id, io_loop=self.io_loop) server.bind(endpoint) return server @tornado.testing.gen_test def test_job_running(self): from pseud.interfaces import EMPTY_DELIMITER, OK, VERSION, WORK from pseud.packer import Packer from pseud.utils import register_rpc user_id = b'echo' endpoint = 'inproc://{}'.format(self.__class__.__name__).encode() @register_rpc def job_success(a, b, c, d=None): time.sleep(.2) return True server = self.make_one_server(user_id, endpoint) socket = self.make_one_client_socket(endpoint) stream = zmqstream.ZMQStream(socket, io_loop=self.io_loop) work = Packer().packb(('job_success', (1, 2, 3), {'d': False})) yield tornado.gen.Task(stream.send_multipart, [user_id, EMPTY_DELIMITER, VERSION, b'', WORK, work]) yield server.start() response = yield tornado.gen.Task(stream.on_recv) assert response == [user_id, EMPTY_DELIMITER, VERSION, b'', OK, Packer().packb(True)] server.stop() @tornado.testing.gen_test def test_job_not_found(self): import pseud from pseud.interfaces import EMPTY_DELIMITER, ERROR, VERSION, WORK from pseud.packer import Packer user_id = b'echo' endpoint = 'inproc://{}'.format(self.__class__.__name__).encode() server = self.make_one_server(user_id, endpoint) socket = self.make_one_client_socket(endpoint) stream = zmqstream.ZMQStream(socket, io_loop=self.io_loop) work = Packer().packb(('thisIsNotAFunction', (), {})) yield server.start() yield tornado.gen.Task(stream.send_multipart, [user_id, EMPTY_DELIMITER, VERSION, b'', WORK, work]) response = yield tornado.gen.Task(stream.on_recv) assert response[:-1] == [user_id, EMPTY_DELIMITER, VERSION, b'', ERROR] klass, message, traceback = Packer().unpackb(response[-1]) assert klass == 'ServiceNotFoundError' assert message == 'thisIsNotAFunction' # pseud.__file__ might ends with .pyc assert os.path.dirname(pseud.__file__) in traceback server.stop() @tornado.testing.gen_test def test_job_raise(self): from pseud.interfaces import ERROR, VERSION, WORK from pseud.packer import Packer from pseud.utils import register_rpc user_id = b'echo' endpoint = 'inproc://{}'.format(self.__class__.__name__).encode() @register_rpc def job_buggy(*args, **kw): raise ValueError('too bad') server = self.make_one_server(user_id, endpoint) socket = self.make_one_client_socket(endpoint) stream = zmqstream.ZMQStream(socket, io_loop=self.io_loop) work = Packer().packb(('job_buggy', (), {})) yield server.start() yield tornado.gen.Task(stream.send_multipart, [user_id, b'', VERSION, b'', WORK, work]) response = yield tornado.gen.Task(stream.on_recv) assert response[:-1] == [user_id, b'', VERSION, b'', ERROR] klass, message, traceback = Packer().unpackb(response[-1]) assert klass == 'ValueError' assert message == 'too bad' assert __file__ in traceback server.stop()
the-stack_0_10750
""" Copyright 2020 Google LLC Copyright 2020 PerfectVIPs Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. """ import argparse import logging import sys import vsc from bitstring import BitArray from pygen_src.riscv_instr_pkg import mtvec_mode_t, f_rounding_mode_t, \ riscv_reg_t, privileged_mode_t, \ riscv_instr_group_t from pygen_src.target.rv32i import riscv_core_setting as rcs @vsc.randobj class riscv_instr_gen_config: def __init__(self, argv): # TODO Support for command line argument self.main_program_instr_cnt = 100 # count of main_prog self.sub_program_instr_cnt = [] # count of sub_prog self.debug_program_instr_cnt = 0 # count of debug_rom self.debug_sub_program_instr_cnt = [] # count of debug sub_progrms # Commenting out for now # self.data_page_pattern = list( # map(lambda dta_pg: dta_pg.name, data_pattern_t)) # dicts for exception_cause_t & interrupt_cause_t Enum classes self.m_mode_exception_delegation = {} self.s_mode_exception_delegation = {} self.m_mode_interrupt_delegation = {} self.s_mode_interrupt_delegation = {} # init_privileged_mode default to MACHINE_MODE self.init_privileged_mode = privileged_mode_t.MACHINE_MODE self.mstatus = BitArray(bin(0b0), length=rcs.XLEN - 1) self.mie = BitArray(bin(0b0), length=rcs.XLEN - 1) self.sstatus = BitArray(bin(0b0), length=rcs.XLEN - 1) self.sie = BitArray(bin(0b0), length=rcs.XLEN - 1) self.ustatus = BitArray(bin(0b0), length=rcs.XLEN - 1) self.uie = BitArray(bin(0b0), length=rcs.XLEN - 1) self.mstatus_mprv = 0 self.mstatus_mxr = 0 self.mstatus_sum = 0 self.mstatus_tvm = 0 self.mstatus_fs = BitArray(bin(0b0), length=2) self.mstatus_vs = BitArray(bin(0b0), length=2) self.mtvec_mode = vsc.rand_enum_t(mtvec_mode_t) self.tvec_alignment = argv.tvec_alignment self.fcsr_rm = list(map(lambda csr_rm: csr_rm.name, f_rounding_mode_t)) self.enable_sfence = 0 self.gpr = vsc.rand_list_t(vsc.enum_t(riscv_reg_t), sz =4) self.scratch_reg = vsc.rand_enum_t(riscv_reg_t) self.pmp_reg = vsc.rand_enum_t(riscv_reg_t) self.sp = vsc.rand_enum_t(riscv_reg_t) self.tp = vsc.rand_enum_t(riscv_reg_t) self.ra = vsc.rand_enum_t(riscv_reg_t) self.check_misa_init_val = 0 self.check_xstatus = 1 self.virtual_addr_translation_on = 0 # Commenting out for now # vector_cfg = riscv_vector_cfg # TODO # pmp_cfg = riscv_pmp_cfg # TODO # self.mem_region = [] # TODO # Self.amo_region = [] # TODO self.stack_len = 5000 # Self.s_mem_region = [] # TODO self.kernel_stack_len = 4000 self.kernel_program_instr_cnt = 400 # list of main implemented CSRs self.invalid_priv_mode_csrs = [] self.num_of_sub_program = argv.num_of_sub_program self.instr_cnt = argv.instr_cnt self.num_of_tests = argv.num_of_tests self.no_data_page = argv.no_data_page self.no_branch_jump = argv.no_branch_jump self.no_load_store = argv.no_load_store self.no_csr_instr = argv.no_csr_instr self.no_ebreak = argv.no_ebreak self.no_dret = argv.no_dret self.no_fence = argv.no_fence self.no_wfi = argv.no_wfi self.enable_unaligned_load_store = argv.enable_unaligned_load_store self.illegal_instr_ratio = argv.illegal_instr_ratio self.hint_instr_ratio = argv.hint_instr_ratio self.num_of_harts = argv.num_of_harts self.fix_sp = argv.fix_sp self.use_push_data_section = argv.use_push_data_section self.boot_mode_opts = "" self.enable_page_table_exception = argv.enable_page_table_exception self.no_directed_instr = argv.no_directed_instr self.asm_test_suffix = "" self.enable_interrupt = argv.enable_interrupt self.enable_nested_interrupt = argv.enable_nested_interrupt self.enable_timer_irq = argv.enable_timer_irq self.bare_program_mode = argv.bare_program_mode self.enable_illegal_csr_instruction = argv.enable_illegal_csr_instruction self.enable_access_invalid_csr_level = argv.enable_access_invalid_csr_level self.enable_misaligned_instr = argv.enable_misaligned_instr self.enable_dummy_csr_write = argv.enable_dummy_csr_write self.randomize_csr = argv.randomize_csr self.allow_sfence_exception = argv.allow_sfence_exception self.no_delegation = argv.no_delegation self.force_m_delegation = argv.force_m_delegation self.force_s_delegation = argv.force_s_delegation self.support_supervisor_mode = 0 self.disable_compressed_instr = argv.disable_compressed_instr self.require_signature_addr = argv.require_signature_addr if(self.require_signature_addr): self.signature_addr = int(argv.signature_addr, 16) else: self.signature_addr = 0xdeadbeef self.gen_debug_section = argv.gen_debug_section self.enable_ebreak_in_debug_rom = argv.enable_ebreak_in_debug_rom self.set_dcsr_ebreak = argv.set_dcsr_ebreak self.num_debug_sub_program = argv.num_debug_sub_program self.enable_debug_single_step = argv.enable_debug_single_step self.single_step_iterations = 0 self.set_mstatus_tw = argv.set_mstatus_tw self.set_mstatus_mprv = argv.set_mstatus_mprv self.min_stack_len_per_program = 10 * (rcs.XLEN / 8) self.max_stack_len_per_program = 16 * (rcs.XLEN / 8) self.max_branch_step = 20 self.max_directed_instr_stream_seq = 20 self.reserved_regs = vsc.list_t(vsc.enum_t(riscv_reg_t)) self.enable_floating_point = argv.enable_floating_point self.enable_vector_extension = argv.enable_vector_extension self.enable_b_extension = argv.enable_b_extension # Commenting out for now # self.enable_bitmanip_groups = ['ZBB', 'ZBS', 'ZBP', 'ZBE', 'ZBF', # 'ZBC', 'ZBR', 'ZBM', 'ZBT', 'ZB_TMP'] self.dist_control_mode = 0 self.category_dist = {} @vsc.constraint def gpr_c(self): pass # TODO def check_setting(self): support_64b = 0 support_128b = 0 # list of satp_mode_t from riscv_core_setting.py stp_md_lst = rcs.SATP_MODE # list of riscv_instr_group_t with names of riscv_instr_name_t in it. supported_isa_lst = list(map(lambda z: z.name, riscv_instr_group_t)) # check the valid isa support for x in rcs.supported_isa: if x == (supported_isa_lst[1] or supported_isa_lst[3] or supported_isa_lst[5] or supported_isa_lst[8] or supported_isa_lst[11] or supported_isa_lst[13] or supported_isa_lst[19]): support_64b = 1 logging.info("support_64b=%d" % support_64b) logging.debug("Supported ISA=%s" % x) elif x == (supported_isa_lst[14] or supported_isa_lst[15]): support_128b = 1 logging.info("support_128b=%d" % support_128b) logging.debug("Supported ISA=%s" % x) if (support_128b == 1) and (rcs.XLEN != 128): logging.critical("XLEN should be set to 128 based on \ riscv_core_setting.supported_isa setting") logging.info("XLEN Value=%d" % rcs.XLEN) sys.exit("XLEN is not equal to 128, set it Accordingly!") if (support_128b == 0) and (support_64b == 1) and (rcs.XLEN != 64): logging.critical("XLEN should be set to 64 based on \ riscv_core_setting.supported_isa setting") logging.info("XLEN Value=%d" % rcs.XLEN) sys.exit("XLEN is not equal to 64, set it Accordingly!") if not(support_128b or support_64b) and (rcs.XLEN != 32): logging.critical("XLEN should be set to 32 based on \ riscv_core_setting.supported_isa setting") logging.info("XLEN Value=%d" % rcs.XLEN) sys.exit("XLEN is not equal to 32, set it Accordingly!") if not(support_128b or support_64b) and not(('SV32' in stp_md_lst) or ('BARE' in stp_md_lst)): logging.critical("SATP mode is not supported for RV32G ISA") logging.info(stp_md_lst) sys.exit("Supported SATP mode is not provided") # TODO def setup_instr_distribution(self): pass def init_delegation(self): for i in self.mode_exp_lst: if i == self.mode_exp_lst[0]: continue self.m_mode_exception_delegation[i] = 0 self.s_mode_exception_delegation[i] = 0 for j in self.mode_intrpt_lst: if j == self.mode_intrpt_lst[0]: continue self.m_mode_interrupt_delegation[j] = 0 self.s_mode_interrupt_delegation[j] = 0 def pre_randomize(self): for x in rcs.supported_privileged_mode: if(x == "SUPERVISOR_MODE"): self.support_supervisor_mode = 1 def get_non_reserved_gpr(self): pass def post_randomize(self): self.reserved_regs.append(self.tp) self.reserved_regs.append(self.sp) self.reserved_regs.append(self.scratch_reg) self.min_stack_len_per_program = 2 * (rcs.XLEN / 8) logging.info("min_stack_len_per_program value = %d" % self.min_stack_len_per_program) self.check_setting() # to check the setting is legal # TODO, Need to change the logic once the constraints are up. if "USER_MODE" == self.init_privileged_mode: logging.info("mode=%s" % "USER_MODE") self.no_wfi = 1 def get_invalid_priv_lvl_csr(self): invalid_lvl = [] # Debug CSRs are inaccessible from all but Debug Mode # and we cannot boot into Debug Mode. invalid_lvl.append('D') # TODO Need to change the logic once the constraints are up. for mode in self.init_privileged_mode: if mode == "MACHINE_MODE": continue elif mode == 'SUPERVISOR_MODE': invalid_lvl.append('M') logging.info("supr_mode---") logging.debug(invalid_lvl) elif mode == 'USER_MODE': invalid_lvl.append('S') invalid_lvl.append('M') logging.info("usr_mode---") logging.debug(invalid_lvl) else: logging.critical("Unsupported initialization privilege mode") # implemented_csr from riscv_core_setting.py for x in rcs.implemented_csr: if x[0] in invalid_lvl: self.invalid_priv_mode_csrs.append(x) # This function calls all the above defined function which should # be called in init function as per SV logic.This function as to be # called after every instance of the gen_config handle def func_call_init(self): self.init_delegation() # self.setup_instr_distribution() # TODO self.get_invalid_priv_lvl_csr() def parse_args(): parse = argparse.ArgumentParser() parse.add_argument('--num_of_tests', help = 'num_of_tests', type = int, default = 1) parse.add_argument('--enable_page_table_exception', help = 'enable_page_table_exception', type = int, default = 0) parse.add_argument('--enable_interrupt', help = 'enable_interrupt', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_nested_interrupt', help = 'enable_nested_interrupt', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_timer_irq', help = 'enable_timer_irq', choices = [0, 1], type = int, default = 0) parse.add_argument('--num_of_sub_program', help = 'num_of_sub_program', type = int, default = 5) parse.add_argument('--instr_cnt', help = 'instr_cnt', type = int, default = 200) parse.add_argument('--tvec_alignment', help = 'tvec_alignment', type = int, default = 2) parse.add_argument('--no_ebreak', help = 'no_ebreak', choices = [0, 1], type = int, default = 1) parse.add_argument('--no_dret', help = 'no_dret', choices = [0, 1], type = int, default = 1) parse.add_argument('--no_wfi', help = 'no_wfi', choices = [0, 1], type = int, default = 1) parse.add_argument('--no_branch_jump', help = 'no_branch_jump', choices = [0, 1], type = int, default = 0) parse.add_argument('--no_load_store', help = 'no_load_store', choices = [0, 1], type = int, default = 0) parse.add_argument('--no_csr_instr', help = 'no_csr_instr', choices = [0, 1], type = int, default = 0) parse.add_argument('--fix_sp', help = 'fix_sp', choices = [0, 1], type = int, default = 0) parse.add_argument('--use_push_data_section', help = 'use_push_data_section', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_illegal_csr_instruction', help = 'enable_illegal_csr_instruction', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_access_invalid_csr_level', help = 'enable_access_invalid_csr_level', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_misaligned_instr', help = 'enable_misaligned_instr', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_dummy_csr_write', help = 'enable_dummy_csr_write', choices = [0, 1], type = int, default = 0) parse.add_argument('--allow_sfence_exception', help = 'allow_sfence_exception', choices = [0, 1], type = int, default = 0) parse.add_argument('--no_data_page', help = 'no_data_page', choices = [0, 1], type = int, default = 0) parse.add_argument('--no_directed_instr', help = 'no_directed_instr', choices = [0, 1], type = int, default = 0) parse.add_argument('--no_fence', help = 'no_fence', choices = [0, 1], type = int, default = 1) parse.add_argument('--no_delegation', help = 'no_delegation', choices = [0, 1], type = int, default = 1) parse.add_argument('--illegal_instr_ratio', help = 'illegal_instr_ratio', type = int, default = 0) parse.add_argument('--hint_instr_ratio', help = 'hint_instr_ratio', type = int, default = 0) parse.add_argument('--num_of_harts', help = 'num_of_harts', type = int, default = rcs.NUM_HARTS) parse.add_argument('--enable_unaligned_load_store', help = 'enable_unaligned_load_store', choices = [0, 1], type = int, default = 0) parse.add_argument('--force_m_delegation', help = 'force_m_delegation', choices = [0, 1], type = int, default = 0) parse.add_argument('--force_s_delegation', help = 'force_s_delegation', choices = [0, 1], type = int, default = 0) parse.add_argument('--require_signature_addr', help = 'require_signature_addr', choices = [0, 1], type = int, default = 0) parse.add_argument('--signature_addr', help = 'signature_addr', default = 0xdeadbeef) parse.add_argument('--disable_compressed_instr', help = 'disable_compressed_instr', choices = [0, 1], type = int, default = 0) parse.add_argument('--randomize_csr', help = 'randomize_csr', choices = [0, 1], type = int, default = 0) parse.add_argument('--gen_debug_section', help = 'gen_debug_section', choices = [0, 1], type = int, default = 0) parse.add_argument('--bare_program_mode', help = 'bare_program_mode', choices = [0, 1], type = int, default = 0) parse.add_argument('--num_debug_sub_program', help = 'num_debug_sub_program', type = int, default = 0) parse.add_argument('--enable_ebreak_in_debug_rom', help = 'enable_ebreak_in_debug_rom', choices = [0, 1], type = int, default = 0) parse.add_argument('--set_dcsr_ebreak', help = 'set_dcsr_ebreak', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_debug_single_step', help = 'enable_debug_single_step', choices = [0, 1], type = int, default = 0) parse.add_argument('--set_mstatus_tw', help = 'set_mstatus_tw', choices = [0, 1], type = int, default = 0) parse.add_argument('--set_mstatus_mprv', help = 'set_mstatus_mprv', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_floating_point', help = 'enable_floating_point', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_vector_extension', help = 'enable_vector_extension', choices = [0, 1], type = int, default = 0) parse.add_argument('--enable_b_extension', help = 'enable_b_extension', choices = [0, 1], type = int, default = 0) # TODO ''' cmdline_enum_processor #(b_ext_group_t)::get_array_values("+enable_bitmanip_groups=", enable_bitmanip_groups); if(inst.get_arg_value("+boot_mode=", boot_mode_opts)) begin `uvm_info(get_full_name(), $sformatf( "Got boot mode option - %0s", boot_mode_opts), UVM_LOW) case(boot_mode_opts) "m" : init_privileged_mode = MACHINE_MODE; "s" : init_privileged_mode = SUPERVISOR_MODE; "u" : init_privileged_mode = USER_MODE; default: `uvm_fatal(get_full_name(), $sformatf("Illegal boot mode option - %0s", boot_mode_opts)) endcase init_privileged_mode.rand_mode(0); addr_translaction_rnd_order_c.constraint_mode(0); end `uvm_info(`gfn, $sformatf("riscv_instr_pkg::supported_privileged_mode = %0d", riscv_instr_pkg::supported_privileged_mode.size()), UVM_LOW) void'(inst.get_arg_value("+asm_test_suffix=", asm_test_suffix)); // Directed march list from the runtime options, ex. RV32I, RV32M etc. cmdline_enum_processor #(riscv_instr_group_t)::get_array_values("+march=", march_isa); if (march_isa.size != 0) riscv_instr_pkg::supported_isa = march_isa; ''' args = parse.parse_args() return args args = parse_args() cfg = riscv_instr_gen_config(args)
the-stack_0_10753
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations COUNTRY_REGION = [ ("Myanmar", "Asia"), ("Angola","Africa"), ("Cambodia","Asia"), ("Cayman Islands","Caribbean"), ("Dominica","Caribbean"), ("Greenland","Europe"), ("Honduras","Latin America"), ("Hong Kong","Asia"), ("Iraq","Middle East"), ("Jordan","Middle East"), ("Macao","Asia"), ("Papua New Guinea","Pacific"), ("Russia","Europe"), ("Rwanda","Africa"), ("Seychelles","Africa"), ("Timor-Leste","Asia"), ("Uzbekistan","Asia"), ] def get_region_map(CountryRegion): from django_countries import countries region_map = {} # Map new country code(s) to regions for country_region in COUNTRY_REGION: code = countries.by_name(country_region[0]) if code: if country_region[1] in region_map: region_map[country_region[1]].append(code) else: region_map[country_region[1]] = [code] return region_map def code(apps, schema_editor): CountryRegion = apps.get_model("forms", "CountryRegion") db_alias = schema_editor.connection.alias # Update countries regions CountryRegion.objects.using(db_alias).filter(country="CY").update(region="Europe") CountryRegion.objects.using(db_alias).filter(country="KZ").update(region="Asia") CountryRegion.objects.using(db_alias).filter(country="PR").update(region="Caribbean") CountryRegion.objects.using(db_alias).filter(country="VU").update(region="Pacific") # Create CountryRegion objects for supplied pairs region_map = get_region_map(CountryRegion) for region, country_code_list in region_map.items(): for country_code in country_code_list: CountryRegion.objects.using(db_alias).create( country=country_code, region=region ) def reverse_code(apps, schema_editor): CountryRegion = apps.get_model("forms", "CountryRegion") db_alias = schema_editor.connection.alias # Reverse Update regions CountryRegion.objects.using(db_alias).filter(country="CY").update(region="Middle East") CountryRegion.objects.using(db_alias).filter(country="KZ").update(region="Europe") # Delete CountryRegion objects for supplied pairs region_map = get_region_map(CountryRegion) for region, country_code_list in region_map.items(): for country_code in country_code_list: CountryRegion.objects.using(db_alias).filter( country=country_code, region=region ).delete() class Migration(migrations.Migration): dependencies = [ ("forms", "0058_add_deleted_attribute"), ] operations = [ migrations.RunPython(code, reverse_code), ]
the-stack_0_10754
from sympy import * import sys sys.path.insert(1, '..') from rodrigues_R_utils import * px, py, pz = symbols('px py pz') sx, sy, sz = symbols('sx sy sz') tie_px, tie_py, tie_pz = symbols('tie_px tie_py tie_pz'); cols, rows = symbols('cols rows'); pi = symbols('pi') u_kp, v_kp = symbols('u_kp v_kp') position_symbols = [px, py, pz] rodrigues_symbols = [sx, sy, sz] tie_point_symbols = [tie_px, tie_py, tie_pz] all_symbols = position_symbols + rodrigues_symbols + tie_point_symbols RT_wc = matrix44FromRodrigues(px, py, pz, sx, sy, sz) r=RT_wc[:-1,:-1] t=Matrix([px, py, pz]).vec() pos_w=Matrix([tie_px, tie_py, tie_pz]).vec() bearing = r * pos_w + t; norm = sqrt(bearing[0]*bearing[0] + bearing[1]*bearing[1] + bearing[2]*bearing[2]) bearing=bearing/norm latitude=-asin(bearing[1]) longitude=atan2(bearing[0], bearing[2]) u=cols*(0.5 + longitude / (2.0 * pi)) v=rows*(0.5 - latitude/pi) u_delta = u_kp - u; v_delta = v_kp - v; obs_eq = Matrix([u_delta, v_delta]).vec() obs_eq_jacobian = obs_eq.jacobian(all_symbols) print(obs_eq) print(obs_eq_jacobian) with open("equirectangular_camera_colinearity_rodrigues_wc_jacobian.h",'w') as f_cpp: f_cpp.write("inline void observation_equation_equrectangular_camera_colinearity_rodrigues_wc(Eigen::Matrix<double, 2, 1> &delta, double rows, double cols, double pi, double px, double py, double pz, double sx, double sy, double sz, double tie_px, double tie_py, double tie_pz, double u_kp, double v_kp)\n") f_cpp.write("{") f_cpp.write("delta.coeffRef(0,0) = %s;\n"%(ccode(obs_eq[0,0]))) f_cpp.write("delta.coeffRef(1,0) = %s;\n"%(ccode(obs_eq[1,0]))) f_cpp.write("}") f_cpp.write("\n") f_cpp.write("inline void observation_equation_equrectangular_camera_colinearity_rodrigues_wc_jacobian(Eigen::Matrix<double, 2, 9, Eigen::RowMajor> &j, double rows, double cols, double pi, double px, double py, double pz, double sx, double sy, double sz, double tie_px, double tie_py, double tie_pz, double u_kp, double v_kp)\n") f_cpp.write("{") for i in range (2): for j in range (9): f_cpp.write("j.coeffRef(%d,%d) = %s;\n"%(i,j, ccode(obs_eq_jacobian[i,j]))) f_cpp.write("}")
the-stack_0_10760
#!/usr/bin/env python3 import app_api import argparse import random import sys import os import time import subprocess import pickle from datetime import datetime, timezone, timedelta import json from signal import SIGTERM from app_api import CH_CONF_PATH as CONFIG_PATH def init_tel(logger): name = 'initial_tel_data' args = '''["-f","tel-data/CLYDE_EPS.csv", "/challenge/mission-apps/tel-data/NOVATEL_GPS.csv", "/challenge/mission-apps/tel-data/REACTION_WHEEL.csv"]''' start_app_request = ''' mutation{ startApp(name: "%s", config: "%s", args: %s){ success, errors, pid } } ''' % (name, CONFIG_PATH, args) app_status_req = '{appStatus(name: "initial_tel_data"){pid}}' app_unin_req = 'mutation{uninstall(name: "initial_tel_data"){success, errors}}' try: response = SERVICES.query(service='app-service', query=start_app_request) # #print(response) pid = response['startApp']['pid'] # #print(pid) while((SERVICES.query(service='app-service', query=app_status_req))['appStatus'][0]['pid'] == pid): #print(f'{logger} info: Waiting for initalization to finish...') time.sleep(1) response = SERVICES.query(service='app-service', query=app_unin_req) # #print(response) except Exception as e: error_msg = "Initializing Telemetry data failed: " + str(e) + "" print(error_msg) return def find_kill_services(logger): # Kill all kubos services. pid_list = [] list_cmds = [] ports = ['8000', '8010', '8020', '8030', '8110', '8120'] for port in ports: list_cmds.append(['lsof', '-t','-i:%s' % port]) for cmd in list_cmds: start_sch = subprocess.Popen(cmd, stdout=subprocess.PIPE) ppid = start_sch.stdout.read().decode('ascii').split('\n') for pid in ppid: if pid != '': pid_list.append(pid) for pid in pid_list: #print("Killing %s" % pid) os.kill(int(pid), SIGTERM) return def delete_by_force(logger): sch_path = '/challenge/target/release/schedules/stage_one/' if os.path.exists(sch_path): f_list = os.listdir(sch_path) for f in f_list: os.unlink(sch_path + f.split('/')[-1]) # in case of malicious file names. os.rmdir(sch_path) return def delete_all_info(logger): requests = [] requestSafeMode = 'mutation{safeMode{success, errors}}' requestRemoveMode = 'mutation{removeMode(name:"stage_one"){success, errors}}' mapps = ['critical_tel_check', 'initial_tel_data', 'update_tel', 'housekeeping', 'request_flag_telemetry', 'sunpoint', 'enable_groundlink', 'groundpoint', 'sunpoint'] for mapp in mapps: requestUninstall = 'mutation{uninstall(name: "%s"){success, errors}}' % mapp requests.append(requestUninstall) app_count = 0 for request in requests: try: response = SERVICES.query(service='app-service', query=request) #print(f"Deleted %s: {response['uninstall']['success']} | {response['uninstall']['errors']}" % mapps[app_count]) # DEBUG TAKE OUT except Exception as e: error_msg = "Deleting app %s failed: " % request + str(e) + "" print(error_msg) app_count += 1 try: response = SERVICES.query(service='scheduler-service', query=requestSafeMode) #print("Turned on safe mode.") time.sleep(1) response = SERVICES.query(service='scheduler-service', query=requestRemoveMode) #print("Removed mode stage_one.") except Exception as e: error_msg = "Deleting all schedules failed: " + str(e) + "" print(error_msg) delete_by_force(logger) find_kill_services(logger) return def activate_mode(logger, mode_name): request = ''' mutation { activateMode(name: "%s") { success errors } } ''' % mode_name #print(f"{logger} info: Activating mode %s." % mode_name) # DEBUG try: response = SERVICES.query(service='scheduler-service', query=request) # #print(response) except Exception as e: error_msg = "Starting mode %s failed: " % mode_name + str(e) + "" print(error_msg) # DEBUG return def create_mode(logger, mode_name): #Create the stage 1 mode request = """ mutation { createMode(name: "%s") { success errors } }""" % mode_name #print(f"{logger} info: Creating mode %s." % mode_name) # DEBUG try: response = SERVICES.query(service='scheduler-service', query=request) # #print(response) except Exception as e: error_msg = "Creating mode %s failed: " % mode_name + str(e) + "" print(error_msg) # DEBUG return def create_mode_schedule(logger, mode_name): sch_name = "nominal-op" schedule_path = os.getcwd() + f"/../{mode_name}.json" request = ''' mutation { importTaskList(name: "%s", path: "%s", mode: "%s") { success errors } } ''' % (sch_name, schedule_path, mode_name) #print(f"{logger} info: Creating schedule %s for mode %s." % (sch_name, mode_name)) try: response = SERVICES.query(service='scheduler-service', query=request) #print(response) except Exception as e: error_msg = "Importing schedule %s in mode %s failed: " % (sch_name, mode_name) + str(e) + "" print(error_msg) return def register_all_apps(logger): cwd = os.getcwd() # Stage one apps to register init_tel_app = cwd + "/../initial_tel_data" crit_check_app = cwd + "/../critical_tel_check" eps_tel_app = cwd + "/../update_tel" # Stage two apps to register p_apps_app = cwd + "/../../stage_two/print_all_apps" req_flag_app = cwd + "/../../stage_two/req_flag_base" en_down_app = cwd + "/../../stage_two/enable_downlink" gndpoint_app = cwd + "/../../stage_two/groundpoint" sunpoint_app = cwd + "/../../stage_two/sunpoint" low_power_app = cwd + "/../../stage_two/low_power" act_trans_app = cwd + "/../../stage_two/activate_tranmsission_mode" registrations = [init_tel_app, crit_check_app, eps_tel_app, p_apps_app, req_flag_app, en_down_app, gndpoint_app, sunpoint_app, low_power_app, act_trans_app] for mapp in registrations: #print(f"{logger} info: Registering, %s" % mapp.split('/')[-1] + " app.") register_app(logger, mapp) return def register_app(logger, app_path): request = """ mutation { register(path: "%s") { success, errors, entry { app { name executable } } } } """ % app_path try: response = SERVICES.query(service='app-service', query=request) ##print(response) except Exception as e: error_msg = "Registering %s failed: " % app_path + str(e) + "" print(error_msg) def store_latest_json(logger): current_tel = "" with open('/challenge/mission-apps/pkls/current_tel.json', 'w') as js_file: json.dump(current_tel, js_file) return def store_low_power_json(logger, low_power_time): with open('../low_power.json', 'r') as js_file: low_power_json = json.load(js_file) low_power_json['tasks'][1]['time'] = low_power_time with open('../low_power.json', 'w') as js_file: json.dump(low_power_json, js_file) def store_transmission_json(logger): SEED = int(os.getenv('SEED', 0)) random.seed(SEED) utc_dt = datetime.now(tz=timezone.utc) base_time = utc_dt + timedelta( seconds= ( (60.0) * (50.0 + random.randrange(0,10)) ) ) time_offsets = [0.0, 20.0, 25.0, 30.0] with open('../transmission.json', 'r') as js_file: transmission_json = json.load(js_file) for app, offset in zip(transmission_json['tasks'], time_offsets): app['time'] = (base_time + timedelta(seconds=offset)).strftime("%Y-%m-%d %H:%M:%S") # print("DEBUG: " + str(transmission_json)) with open('../transmission.json', 'w') as js_file: json.dump(transmission_json, js_file) low_power_time_str = (base_time + timedelta(seconds=-10)).strftime("%Y-%m-%d %H:%M:%S") #low_power_time_obj = (base_time + timedelta(seconds=-10)) with open('/challenge/mission-apps/pkls/transmission_time.pkl', 'wb') as pkl_file: pickle.dump(low_power_time_str, pkl_file) return low_power_time_str def main(): logger = "start_stage_one " parser = argparse.ArgumentParser() parser.add_argument('--config', '-c', nargs=1) parser.add_argument('--delete', '-d', help='Deletes all app and service data', action='store_true') args = parser.parse_args() if args.config is not None: global SERVICES SERVICES = app_api.Services(args.config[0]) else: SERVICES = app_api.Services(CONFIG_PATH) #print(f"{logger} info: Begining stage_one") if args.delete: #print(f"{logger} info: Deleting app and service data.") delete_all_info(logger) else: register_all_apps(logger) init_tel(logger) create_mode(logger, "transmission") low_power_time_str = store_transmission_json(logger) create_mode_schedule(logger, "transmission") create_mode(logger, "low_power") store_low_power_json(logger, low_power_time_str) create_mode_schedule(logger, "low_power") create_mode(logger, "station-keeping") create_mode_schedule(logger, "station-keeping") activate_mode(logger, "station-keeping") store_latest_json(logger) print("\n** Welcome to spaceDB **\n" + '-'* 25) if __name__ == "__main__": main()
the-stack_0_10761
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making BK-BASE 蓝鲸基础平台 available. Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. BK-BASE 蓝鲸基础平台 is licensed under the MIT License. License for BK-BASE 蓝鲸基础平台: -------------------------------------------------------------------- Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import absolute_import, print_function, unicode_literals import math from lifecycle.metrics.app_code import get_app_code_count from lifecycle.metrics.cost import ( get_cost_score, get_hdfs_capacity, get_tspider_capacity, ) from lifecycle.metrics.heat import ( get_heat_score, get_query_count, get_rd_query_list_group, ) from lifecycle.metrics.importance import ( biz_data_correct, get_asset_value_score, get_biz_info, get_dataset_info, get_heat_range_importance_score, get_project_score, ) from lifecycle.metrics.range import get_node_info, get_range_info, get_range_score # 数据敏感度 SENSITIVITY_DICT = {"public": 0, "private": 1, "confidential": 2, "topsecret": 3} # 存储评分阈值 THRESHOLD = 20.41 class Entity(object): def _get_data(self): return {} def __getattr__(self, item): """ get the attribute of a object when the attribute can not be gotten directly :param item: :return: """ if item in self._get_data(): return self._get_data()[item] super(Entity, self).__getattr__(item) class Project(Entity): def __init__(self, project_id): self.project_id = project_id self.get_project_score() def get_project_score(self): """ get project score and project active :return: """ self.project_score, self.active = get_project_score(self.project_id) class BkBiz(Entity): def __init__(self, biz_config): self.biz_config = biz_config self.biz_data_correct() def _get_data(self): return self.biz_config def biz_data_correct(self): """ correct biz attributes :return: """ if self.biz_config: ( self.bip_grade_id, self.oper_state, self.app_important_level, self.oper_state_name, self.bip_grade_name, self.app_important_level_name, ) = biz_data_correct(self.biz_config) else: self.bip_grade_id = None self.oper_state = None self.app_important_level = None self.oper_state_name = None self.bip_grade_name = None self.app_important_level_name = None @property def is_bip(self): """ is_bip :return: """ return True if self.biz_config.get("BizV1.IsBip") == "是" else False @property def biz_score(self): """ biz_score :return: """ if ( self.oper_state is None and self.bip_grade_id is None and self.app_important_level is None ): return 0 return ( self.oper_state + self.bip_grade_id + self.app_important_level + 1 if self.is_bip is True else self.oper_state + self.bip_grade_id + self.app_important_level ) class Range(Entity): def __init__(self, dataset_id, dataset_type): self.dataset_id = dataset_id self.dataset_type = dataset_type self.biz_count = 1 self.project_count = 1 self.weighted_node_count = 0.0 self.node_count_list = "[]" self.node_count = 0 self.depth = 0 self.range_score = 0.0 self.normalized_range_score = 13.1 self.app_code_count = 0 self.range_related_dict = self.get_range_info() self.set_range_dict() def get_range_info(self): return get_range_info(self.dataset_id, self.dataset_type) def get_biz_count(self): """ get the count of bizs which apply the dataset if the dataset does not have lineage, biz_count=1 (the biz of itslef) :return: """ biz_list = self.range_related_dict.get("data", {}).get("bk_biz_id", []) return len(biz_list[0].get("@groupby")) if biz_list else 1 def get_project_count(self): """ get the count of projects which apply the dataset if the dataset does not have lineage, project_count=1 (the project of itslef) :return: """ project_list = self.range_related_dict.get("data", {}).get("project_count", []) return ( project_list[0].get("count") if project_list and project_list[0].get("count") > 0 else 1 ) def get_node_info(self): """ get the successor node info :return: """ return get_node_info(self.dataset_id, self.dataset_type) def get_range_score(self): """ get range_score & normalized_range_score :return: """ return get_range_score( self.weighted_node_count, self.biz_count, self.project_count ) def get_app_code_count(self): """ get the count of apps which query the dataset :return: """ return get_app_code_count(self.dataset_id) def set_range_dict(self): if self.range_related_dict: self.biz_count = self.get_biz_count() self.project_count = self.get_project_count() ( self.weighted_node_count, self.node_count_list, self.node_count, self.depth, ) = self.get_node_info() self.range_score, self.normalized_range_score = self.get_range_score() self.app_code_count = self.get_app_code_count() class Heat(Entity): def __init__(self, heat_config): self.heat_config = heat_config self.queue_service_count = 0 self.heat_score = 0.0 def _get_data(self): return self.heat_config def set_heat_score(self): self.heat_score = get_heat_score( self.heat_config["dataset_id"], self.heat_config["dataset_type"], self.query_count, ) class StorageCapacity(Entity): def __init__(self, dataset_id, dataset_type): self.dataset_id = dataset_id self.dataset_type = dataset_type self.set_hdfs_capacity() self.set_tspider_capacity() self.set_total_capacity() self.set_log_capacity() self.set_capacity_score(THRESHOLD) def set_hdfs_capacity(self): if self.dataset_type == "result_table": self.hdfs_capacity = get_hdfs_capacity(self.dataset_id) else: self.hdfs_capacity = 0 def set_tspider_capacity(self): if self.dataset_type == "result_table": self.tspider_capacity = get_tspider_capacity(self.dataset_id) else: self.tspider_capacity = 0 def set_total_capacity(self): """ get total capacity (hdfs_capacity + tspider_capacity) :return: """ self.total_capacity = self.hdfs_capacity + self.tspider_capacity def set_log_capacity(self): """ get log capacity :return: """ if self.total_capacity: self.log_capacity = math.log(self.total_capacity) else: self.log_capacity = -1 def set_capacity_score(self, threshold): """ get capacity_score :return: """ if self.log_capacity and self.log_capacity >= 0: self.capacity_score = ( 99.99 if self.log_capacity / float(threshold) * 100 > 99.99 else round(self.log_capacity / float(threshold) * 100, 2) ) else: self.capacity_score = -1 class DataSet(Entity): def __init__(self, dataset_config): self.dataset_config = dataset_config self.heat_score = 0 self.normalized_range_score = 0 self.importance_score = 0 self.asset_value_score = 0 self.query_count = 0 def _get_data(self): return self.dataset_config def set_dataset_info(self): """ get the dataset attributes :return: """ ( self.biz_id, self.project_id, self.sensitivity, self.generate_type, ) = get_dataset_info(self.data_set_id, self.data_set_type) def get_storage_capacity(self): return StorageCapacity( self.dataset_config["data_set_id"], self.dataset_config["data_set_type"] ) @property def storage_capacity(self): """ storage_capacity stucture :return: """ if not hasattr(self, "_storage_capacity"): self._storage_capacity = self.get_storage_capacity() return self._storage_capacity def get_biz(self): """ get the biz structure :return: """ biz_dict = get_biz_info(self.biz_id) return BkBiz(biz_dict) @property def biz(self): """ biz structure :return: """ if not hasattr(self, "_biz"): self._biz = self.get_biz() return self._biz def get_range(self): """ get the range structure :return: """ return Range( self.dataset_config["data_set_id"], self.dataset_config["data_set_type"] ) @property def range(self): """ range structure :return: """ if not hasattr(self, "_range"): self._range = self.get_range() return self._range def get_heat(self): """ get the heat structure :return: """ return Heat( { "dataset_id": self.dataset_config["data_set_id"], "dataset_type": self.dataset_config["data_set_type"], "query_count": self.query_count, } ) @property def heat(self): """ heat structure :return: """ if not hasattr(self, "_heat"): self._heat = self.get_heat() return self._heat def get_project(self): """ get the project structure :return: """ return Project(self.project_id) @property def project(self): """ project structure :return: """ if not hasattr(self, "_project"): self._project = self.get_project() return self._project @property def dataset_score(self): """ dataset_score :return: """ return ( SENSITIVITY_DICT.get(self.sensitivity, 0) + 1 if self.generate_type == "user" else SENSITIVITY_DICT.get(self.sensitivity, 0) ) @property def id(self): """ id :return: """ return "{}_{}".format(self.data_set_id, self.data_set_type) def get_importance_score(self, norm_score=18): """ get importance_score :param norm_score: normalized_score :return: """ importance_score = round( (self.dataset_score + self.biz.biz_score + self.project.project_score) / float(norm_score) * 100, 2, ) importance_score = importance_score if importance_score <= 99.99 else 99.99 self.importance_score = importance_score return importance_score def set_heat_range_importance_score(self): """ get heat_score & range_score & importance_score :return: """ ( self.heat_score, self.normalized_range_score, self.importance_score, ) = get_heat_range_importance_score(self.id) def get_importance_dict(self, norm_score=18): """ get all properties related to importance :param norm_score: normalized_score :return: """ self.set_dataset_info() if self.biz_id and self.sensitivity and self.generate_type: return { "id": self.id, "data_set_id": self.data_set_id, "data_set_type": self.data_set_type, "dataset_score": self.dataset_score, "biz_score": self.biz.biz_score, "is_bip": self.biz.is_bip, "oper_state_name": self.biz.oper_state_name, "oper_state": self.biz.oper_state, "bip_grade_name": self.biz.bip_grade_name, "bip_grade_id": self.biz.bip_grade_id, "app_important_level_name": self.biz.app_important_level_name, "app_important_level": self.biz.app_important_level, "project_score": self.project.project_score, "active": self.project.active, "importance_score": self.get_importance_score(norm_score), } else: return {} def get_asset_value_score(self): self.asset_value_score = round( (self.importance_score + self.heat_score + self.normalized_range_score) / 3.0, 2, ) @property def target_id(self): return self.dataset_config["data_set_id"] @property def target_type(self): return ( "access_raw_data" if self.dataset_config["data_set_type"] == "raw_data" else self.dataset_config["data_set_type"] ) def get_asset_value_dict(self): """ get all properties related to asset_value :return: """ self.set_heat_range_importance_score() if ( self.heat_score is not None and self.normalized_range_score is not None and self.importance_score is not None ): self.get_asset_value_score() return { "id": self.id, "data_set_id": self.data_set_id, "data_set_type": self.data_set_type, "range_id": self.id, "normalized_range_score": self.normalized_range_score, "heat_id": self.id, "heat_score": self.heat_score, "importance_id": self.id, "importance_score": self.importance_score, "asset_value_score": self.asset_value_score, "target_id": self.target_id, "target_type": self.target_type, } else: return {} def get_storage_capacity_dict(self): """ get all properties related to storage_capacity :return: """ return { "id": self.id, "hdfs_capacity": self.storage_capacity.hdfs_capacity, "tspider_capacity": self.storage_capacity.tspider_capacity, "total_capacity": self.storage_capacity.total_capacity, "log_capacity": self.storage_capacity.log_capacity, "capacity_score": self.storage_capacity.capacity_score, } def get_cost_dict(self): """ get all properties related to cost :return: """ return { "id": self.id, "target_id": self.target_id, "target_type": self.target_type, "capacity_id": self.id, "capacity_score": self.storage_capacity.capacity_score, } def set_cost_score(self): """ get cost_score :return: """ self.cost_score = get_cost_score(self.id) def set_asset_value_score_via_erp(self): """ get asset_value_score :return: """ self.asset_value_score = get_asset_value_score(self.id) @property def assetvalue_to_cost(self): if self.cost_score and self.cost_score != -1: return ( round(self.asset_value_score / float(self.cost_score), 2) if self.cost_score >= 0 else -1.0 ) else: return -1.0 def get_lifecycle_dict(self): """ get all properties related to lifecycle :return: """ self.set_asset_value_score_via_erp() self.set_cost_score() if self.asset_value_score is not None and self.cost_score is not None: return { "id": self.id, "data_set_id": self.data_set_id, "data_set_type": self.data_set_type, "target_id": self.target_id, "target_type": self.target_type, "range_id": self.id, "heat_id": self.id, "importance_id": self.id, "asset_value_id": self.id, "cost_id": self.id, "assetvalue_to_cost": self.assetvalue_to_cost, } else: return {} def get_range_dict(self): """ get all properties related to range :return: """ return { "id": self.id, "data_set_id": self.data_set_id, "data_set_type": self.data_set_type, "biz_count": self.range.biz_count, "project_count": self.range.project_count, "depth": self.range.depth, "node_count_list": self.range.node_count_list, "node_count": self.range.node_count, "weighted_node_count": self.range.weighted_node_count, "app_code_count": self.range.app_code_count, "range_score": self.range.range_score, "normalized_range_score": self.range.normalized_range_score, } def set_query_count(self): self.query_count = get_query_count( self.data_set_id, self.data_set_type, self.query_dataset_dict ) def get_heat_dict(self): """ get all properties related to heat :return: """ self.set_query_count() self.heat.set_heat_score() return { "data_set_id": self.data_set_id, "data_set_type": self.data_set_type, "id": self.id, "query_count": self.heat.query_count, "queue_service_count": self.heat.queue_service_count, "heat_score": self.heat.heat_score, } def get_day_query_count_dict(self, query_config_dict): """ get the query_count_list of dataset per day :return: """ heat = self.get_heat() heat.set_heat_score() metric_dict = { "queue_service_count": heat.queue_service_count, "app_query_count": query_config_dict["app_query_count"], "day_query_count": query_config_dict["day_query_count"], "query_count": heat.query_count, "statistics_timestamp": query_config_dict["timestamp"], "heat_score": heat.heat_score, } dimension_dict = { "app_code": query_config_dict["app_code"], "statistics_time": query_config_dict["time_str"], } return metric_dict, dimension_dict def get_day_query_count_list(self): """ get the query_count_list of dataset per day, the query_count of rd is gotten by the clean rts of rd :return: """ day_query_count_list = [] if ( self.data_set_type == "result_table" and self.data_set_id in self.day_query_rt_list ): for each_day in self.day_query_rt_dict[self.data_set_id]["query_list"]: self.query_count = self.day_query_rt_dict[self.data_set_id][ "query_count" ] metric_dict, dimension_dict = self.get_day_query_count_dict(each_day) day_query_count_list.append( {"metric_dict": metric_dict, "dimension_dict": dimension_dict} ) elif self.data_set_type == "raw_data": rd_query_list_group = get_rd_query_list_group( self.data_set_id, self.day_query_rt_list, self.day_query_rt_dict ) for key, group in rd_query_list_group: sum_query_count = 0 for g in group: sum_query_count += g.get("day_query_count") g["app_query_count"] = 0 g["day_query_count"] = sum_query_count self.query_count = 0 metric_dict, dimension_dict = self.get_day_query_count_dict(g) day_query_count_list.append( {"metric_dict": metric_dict, "dimension_dict": dimension_dict} ) return day_query_count_list
the-stack_0_10763
import json import requests from .constants import HTTP_STATUS_CODE, ERROR_CODE, URL from .errors import (BadRequestError, GatewayError, ServerError) from . import resources from types import ModuleType def capitalize_camel_case(string): return "".join(map(str.capitalize, string.split('_'))) # Create a dict of resource classes RESOURCE_CLASSES = {} for name, module in resources.__dict__.items(): if isinstance(module, ModuleType) and \ capitalize_camel_case(name) in module.__dict__: RESOURCE_CLASSES[name] = module.__dict__[capitalize_camel_case(name)] class Client: """TapPayment client class""" DEFAULTS = { 'base_url': URL.BASE_URL, } def __init__(self, session=None, api_token=None, **options): """ Initialize a Client object with session, optional auth handler, and options """ self.session = session or requests.Session() self.api_token = api_token self.auth = None self.base_url = self.DEFAULTS['base_url'] # intializes each resource # injecting this client object into the constructor for name, Klass in RESOURCE_CLASSES.items(): setattr(self, name, Klass(self)) def _update_header(self, options): token_header = {'Authorization': 'Bearer ' + self.api_token } if 'headers' not in options: options['headers'] = {} options['headers'].update({'Content-type': 'application/json'}) options['headers'].update(token_header) return options def request(self, method, path, **options): """ Dispatches a request to the TapPayment HTTP API """ options = self._update_header(options) url = "{}{}".format(self.base_url, path) print(url) response = getattr(self.session, method)(url, auth=self.auth, **options) print(response.json()) if ((response.status_code >= HTTP_STATUS_CODE.OK) and (response.status_code < HTTP_STATUS_CODE.REDIRECT)): return response.json() else: msg = "" code = "" json_response = response.json() if 'error' in json_response: if 'description' in json_response['error']: msg = json_response['error']['description'] if 'code' in json_response['error']: code = str(json_response['error']['code']) if str.upper(code) == ERROR_CODE.BAD_REQUEST_ERROR: raise BadRequestError(msg) elif str.upper(code) == ERROR_CODE.GATEWAY_ERROR: raise GatewayError(msg) elif str.upper(code) == ERROR_CODE.SERVER_ERROR: raise ServerError(msg) else: raise ServerError(msg) def get(self, path, params, **options): """ Parses GET request options and dispatches a request """ return self.request('get', path, params=params, **options) def post(self, path, data, **options): """ Parses POST request options and dispatches a request """ data, options = self._update_request(data, options) return self.request('post', path, data=data, **options) def patch(self, path, data, **options): """ Parses PATCH request options and dispatches a request """ data, options = self._update_request(data, options) return self.request('patch', path, data=data, **options) def delete(self, path, data, **options): """ Parses DELETE request options and dispatches a request """ data, options = self._update_request(data, options) return self.request('delete', path, data=data, **options) def put(self, path, data, **options): """ Parses PUT request options and dispatches a request """ data, options = self._update_request(data, options) return self.request('put', path, data=data, **options) def _update_request(self, data, options): """ Updates The resource data and header options """ data = json.dumps(data) token_header = {'Authorization': 'Bearer ' + self.api_token } if 'headers' not in options: options['headers'] = {} options['headers'].update({'Content-type': 'application/json'}) options['headers'].update(token_header) return data, options
the-stack_0_10764
#!/usr/bin/env python # # Copyright 2009 Facebook # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Implementations of various third-party authentication schemes. All the classes in this file are class Mixins designed to be used with web.py RequestHandler classes. The primary methods for each service are authenticate_redirect(), authorize_redirect(), and get_authenticated_user(). The former should be called to redirect the user to, e.g., the OpenID authentication page on the third party service, and the latter should be called upon return to get the user data from the data returned by the third party service. They all take slightly different arguments due to the fact all these services implement authentication and authorization slightly differently. See the individual service classes below for complete documentation. Example usage for Google OpenID:: class GoogleHandler(tornado.web.RequestHandler, tornado.auth.GoogleMixin): @tornado.web.asynchronous def get(self): if self.get_argument("openid.mode", None): self.get_authenticated_user(self.async_callback(self._on_auth)) return self.authenticate_redirect() def _on_auth(self, user): if not user: raise tornado.web.HTTPError(500, "Google auth failed") # Save the user with, e.g., set_secure_cookie() """ from __future__ import absolute_import, division, with_statement import base64 import binascii import hashlib import hmac import logging import time import urllib import urlparse import uuid from tornado import httpclient from tornado import escape from tornado.httputil import url_concat from tornado.util import bytes_type, b class OpenIdMixin(object): """Abstract implementation of OpenID and Attribute Exchange. See GoogleMixin below for example implementations. """ def authenticate_redirect(self, callback_uri=None, ax_attrs=["name", "email", "language", "username"]): """Returns the authentication URL for this service. After authentication, the service will redirect back to the given callback URI. We request the given attributes for the authenticated user by default (name, email, language, and username). If you don't need all those attributes for your app, you can request fewer with the ax_attrs keyword argument. """ callback_uri = callback_uri or self.request.uri args = self._openid_args(callback_uri, ax_attrs=ax_attrs) self.redirect(self._OPENID_ENDPOINT + "?" + urllib.urlencode(args)) def get_authenticated_user(self, callback, http_client=None): """Fetches the authenticated user data upon redirect. This method should be called by the handler that receives the redirect from the authenticate_redirect() or authorize_redirect() methods. """ # Verify the OpenID response via direct request to the OP args = dict((k, v[-1]) for k, v in self.request.arguments.iteritems()) args["openid.mode"] = u"check_authentication" url = self._OPENID_ENDPOINT if http_client is None: http_client = self.get_auth_http_client() http_client.fetch(url, self.async_callback( self._on_authentication_verified, callback), method="POST", body=urllib.urlencode(args)) def _openid_args(self, callback_uri, ax_attrs=[], oauth_scope=None): url = urlparse.urljoin(self.request.full_url(), callback_uri) args = { "openid.ns": "http://specs.openid.net/auth/2.0", "openid.claimed_id": "http://specs.openid.net/auth/2.0/identifier_select", "openid.identity": "http://specs.openid.net/auth/2.0/identifier_select", "openid.return_to": url, "openid.realm": urlparse.urljoin(url, '/'), "openid.mode": "checkid_setup", } if ax_attrs: args.update({ "openid.ns.ax": "http://openid.net/srv/ax/1.0", "openid.ax.mode": "fetch_request", }) ax_attrs = set(ax_attrs) required = [] if "name" in ax_attrs: ax_attrs -= set(["name", "firstname", "fullname", "lastname"]) required += ["firstname", "fullname", "lastname"] args.update({ "openid.ax.type.firstname": "http://axschema.org/namePerson/first", "openid.ax.type.fullname": "http://axschema.org/namePerson", "openid.ax.type.lastname": "http://axschema.org/namePerson/last", }) known_attrs = { "email": "http://axschema.org/contact/email", "language": "http://axschema.org/pref/language", "username": "http://axschema.org/namePerson/friendly", } for name in ax_attrs: args["openid.ax.type." + name] = known_attrs[name] required.append(name) args["openid.ax.required"] = ",".join(required) if oauth_scope: args.update({ "openid.ns.oauth": "http://specs.openid.net/extensions/oauth/1.0", "openid.oauth.consumer": self.request.host.split(":")[0], "openid.oauth.scope": oauth_scope, }) return args def _on_authentication_verified(self, callback, response): if response.error or b("is_valid:true") not in response.body: logging.warning("Invalid OpenID response: %s", response.error or response.body) callback(None) return # Make sure we got back at least an email from attribute exchange ax_ns = None for name in self.request.arguments.iterkeys(): if name.startswith("openid.ns.") and \ self.get_argument(name) == u"http://openid.net/srv/ax/1.0": ax_ns = name[10:] break def get_ax_arg(uri): if not ax_ns: return u"" prefix = "openid." + ax_ns + ".type." ax_name = None for name in self.request.arguments.iterkeys(): if self.get_argument(name) == uri and name.startswith(prefix): part = name[len(prefix):] ax_name = "openid." + ax_ns + ".value." + part break if not ax_name: return u"" return self.get_argument(ax_name, u"") email = get_ax_arg("http://axschema.org/contact/email") name = get_ax_arg("http://axschema.org/namePerson") first_name = get_ax_arg("http://axschema.org/namePerson/first") last_name = get_ax_arg("http://axschema.org/namePerson/last") username = get_ax_arg("http://axschema.org/namePerson/friendly") locale = get_ax_arg("http://axschema.org/pref/language").lower() user = dict() name_parts = [] if first_name: user["first_name"] = first_name name_parts.append(first_name) if last_name: user["last_name"] = last_name name_parts.append(last_name) if name: user["name"] = name elif name_parts: user["name"] = u" ".join(name_parts) elif email: user["name"] = email.split("@")[0] if email: user["email"] = email if locale: user["locale"] = locale if username: user["username"] = username claimed_id = self.get_argument("openid.claimed_id", None) if claimed_id: user["claimed_id"] = claimed_id callback(user) def get_auth_http_client(self): """Returns the AsyncHTTPClient instance to be used for auth requests. May be overridden by subclasses to use an http client other than the default. """ return httpclient.AsyncHTTPClient() class OAuthMixin(object): """Abstract implementation of OAuth. See TwitterMixin and FriendFeedMixin below for example implementations. """ def authorize_redirect(self, callback_uri=None, extra_params=None, http_client=None): """Redirects the user to obtain OAuth authorization for this service. Twitter and FriendFeed both require that you register a Callback URL with your application. You should call this method to log the user in, and then call get_authenticated_user() in the handler you registered as your Callback URL to complete the authorization process. This method sets a cookie called _oauth_request_token which is subsequently used (and cleared) in get_authenticated_user for security purposes. """ if callback_uri and getattr(self, "_OAUTH_NO_CALLBACKS", False): raise Exception("This service does not support oauth_callback") if http_client is None: http_client = self.get_auth_http_client() if getattr(self, "_OAUTH_VERSION", "1.0a") == "1.0a": http_client.fetch( self._oauth_request_token_url(callback_uri=callback_uri, extra_params=extra_params), self.async_callback( self._on_request_token, self._OAUTH_AUTHORIZE_URL, callback_uri)) else: http_client.fetch( self._oauth_request_token_url(), self.async_callback( self._on_request_token, self._OAUTH_AUTHORIZE_URL, callback_uri)) def get_authenticated_user(self, callback, http_client=None): """Gets the OAuth authorized user and access token on callback. This method should be called from the handler for your registered OAuth Callback URL to complete the registration process. We call callback with the authenticated user, which in addition to standard attributes like 'name' includes the 'access_key' attribute, which contains the OAuth access you can use to make authorized requests to this service on behalf of the user. """ request_key = escape.utf8(self.get_argument("oauth_token")) oauth_verifier = self.get_argument("oauth_verifier", None) request_cookie = self.get_cookie("_oauth_request_token") if not request_cookie: logging.warning("Missing OAuth request token cookie") callback(None) return self.clear_cookie("_oauth_request_token") cookie_key, cookie_secret = [base64.b64decode(escape.utf8(i)) for i in request_cookie.split("|")] if cookie_key != request_key: logging.info((cookie_key, request_key, request_cookie)) logging.warning("Request token does not match cookie") callback(None) return token = dict(key=cookie_key, secret=cookie_secret) if oauth_verifier: token["verifier"] = oauth_verifier if http_client is None: http_client = self.get_auth_http_client() http_client.fetch(self._oauth_access_token_url(token), self.async_callback(self._on_access_token, callback)) def _oauth_request_token_url(self, callback_uri=None, extra_params=None): consumer_token = self._oauth_consumer_token() url = self._OAUTH_REQUEST_TOKEN_URL args = dict( oauth_consumer_key=escape.to_basestring(consumer_token["key"]), oauth_signature_method="HMAC-SHA1", oauth_timestamp=str(int(time.time())), oauth_nonce=escape.to_basestring(binascii.b2a_hex(uuid.uuid4().bytes)), oauth_version=getattr(self, "_OAUTH_VERSION", "1.0a"), ) if getattr(self, "_OAUTH_VERSION", "1.0a") == "1.0a": if callback_uri == "oob": args["oauth_callback"] = "oob" elif callback_uri: args["oauth_callback"] = urlparse.urljoin( self.request.full_url(), callback_uri) if extra_params: args.update(extra_params) signature = _oauth10a_signature(consumer_token, "GET", url, args) else: signature = _oauth_signature(consumer_token, "GET", url, args) args["oauth_signature"] = signature return url + "?" + urllib.urlencode(args) def _on_request_token(self, authorize_url, callback_uri, response): if response.error: raise Exception("Could not get request token") request_token = _oauth_parse_response(response.body) data = (base64.b64encode(request_token["key"]) + b("|") + base64.b64encode(request_token["secret"])) self.set_cookie("_oauth_request_token", data) args = dict(oauth_token=request_token["key"]) if callback_uri == "oob": self.finish(authorize_url + "?" + urllib.urlencode(args)) return elif callback_uri: args["oauth_callback"] = urlparse.urljoin( self.request.full_url(), callback_uri) self.redirect(authorize_url + "?" + urllib.urlencode(args)) def _oauth_access_token_url(self, request_token): consumer_token = self._oauth_consumer_token() url = self._OAUTH_ACCESS_TOKEN_URL args = dict( oauth_consumer_key=escape.to_basestring(consumer_token["key"]), oauth_token=escape.to_basestring(request_token["key"]), oauth_signature_method="HMAC-SHA1", oauth_timestamp=str(int(time.time())), oauth_nonce=escape.to_basestring(binascii.b2a_hex(uuid.uuid4().bytes)), oauth_version=getattr(self, "_OAUTH_VERSION", "1.0a"), ) if "verifier" in request_token: args["oauth_verifier"] = request_token["verifier"] if getattr(self, "_OAUTH_VERSION", "1.0a") == "1.0a": signature = _oauth10a_signature(consumer_token, "GET", url, args, request_token) else: signature = _oauth_signature(consumer_token, "GET", url, args, request_token) args["oauth_signature"] = signature return url + "?" + urllib.urlencode(args) def _on_access_token(self, callback, response): if response.error: logging.warning("Could not fetch access token") callback(None) return access_token = _oauth_parse_response(response.body) self._oauth_get_user(access_token, self.async_callback( self._on_oauth_get_user, access_token, callback)) def _oauth_get_user(self, access_token, callback): raise NotImplementedError() def _on_oauth_get_user(self, access_token, callback, user): if not user: callback(None) return user["access_token"] = access_token callback(user) def _oauth_request_parameters(self, url, access_token, parameters={}, method="GET"): """Returns the OAuth parameters as a dict for the given request. parameters should include all POST arguments and query string arguments that will be sent with the request. """ consumer_token = self._oauth_consumer_token() base_args = dict( oauth_consumer_key=escape.to_basestring(consumer_token["key"]), oauth_token=escape.to_basestring(access_token["key"]), oauth_signature_method="HMAC-SHA1", oauth_timestamp=str(int(time.time())), oauth_nonce=escape.to_basestring(binascii.b2a_hex(uuid.uuid4().bytes)), oauth_version=getattr(self, "_OAUTH_VERSION", "1.0a"), ) args = {} args.update(base_args) args.update(parameters) if getattr(self, "_OAUTH_VERSION", "1.0a") == "1.0a": signature = _oauth10a_signature(consumer_token, method, url, args, access_token) else: signature = _oauth_signature(consumer_token, method, url, args, access_token) base_args["oauth_signature"] = signature return base_args def get_auth_http_client(self): """Returns the AsyncHTTPClient instance to be used for auth requests. May be overridden by subclasses to use an http client other than the default. """ return httpclient.AsyncHTTPClient() class OAuth2Mixin(object): """Abstract implementation of OAuth v 2.""" def authorize_redirect(self, redirect_uri=None, client_id=None, client_secret=None, extra_params=None): """Redirects the user to obtain OAuth authorization for this service. Some providers require that you register a Callback URL with your application. You should call this method to log the user in, and then call get_authenticated_user() in the handler you registered as your Callback URL to complete the authorization process. """ args = { "redirect_uri": redirect_uri, "client_id": client_id } if extra_params: args.update(extra_params) self.redirect( url_concat(self._OAUTH_AUTHORIZE_URL, args)) def _oauth_request_token_url(self, redirect_uri=None, client_id=None, client_secret=None, code=None, extra_params=None): url = self._OAUTH_ACCESS_TOKEN_URL args = dict( redirect_uri=redirect_uri, code=code, client_id=client_id, client_secret=client_secret, ) if extra_params: args.update(extra_params) return url_concat(url, args) class TwitterMixin(OAuthMixin): """Twitter OAuth authentication. To authenticate with Twitter, register your application with Twitter at http://twitter.com/apps. Then copy your Consumer Key and Consumer Secret to the application settings 'twitter_consumer_key' and 'twitter_consumer_secret'. Use this Mixin on the handler for the URL you registered as your application's Callback URL. When your application is set up, you can use this Mixin like this to authenticate the user with Twitter and get access to their stream:: class TwitterHandler(tornado.web.RequestHandler, tornado.auth.TwitterMixin): @tornado.web.asynchronous def get(self): if self.get_argument("oauth_token", None): self.get_authenticated_user(self.async_callback(self._on_auth)) return self.authorize_redirect() def _on_auth(self, user): if not user: raise tornado.web.HTTPError(500, "Twitter auth failed") # Save the user using, e.g., set_secure_cookie() The user object returned by get_authenticated_user() includes the attributes 'username', 'name', and all of the custom Twitter user attributes describe at http://apiwiki.twitter.com/Twitter-REST-API-Method%3A-users%C2%A0show in addition to 'access_token'. You should save the access token with the user; it is required to make requests on behalf of the user later with twitter_request(). """ _OAUTH_REQUEST_TOKEN_URL = "http://api.twitter.com/oauth/request_token" _OAUTH_ACCESS_TOKEN_URL = "http://api.twitter.com/oauth/access_token" _OAUTH_AUTHORIZE_URL = "http://api.twitter.com/oauth/authorize" _OAUTH_AUTHENTICATE_URL = "http://api.twitter.com/oauth/authenticate" _OAUTH_NO_CALLBACKS = False _TWITTER_BASE_URL = "http://api.twitter.com/1" def authenticate_redirect(self, callback_uri=None): """Just like authorize_redirect(), but auto-redirects if authorized. This is generally the right interface to use if you are using Twitter for single-sign on. """ http = self.get_auth_http_client() http.fetch(self._oauth_request_token_url(callback_uri=callback_uri), self.async_callback( self._on_request_token, self._OAUTH_AUTHENTICATE_URL, None)) def twitter_request(self, path, callback, access_token=None, post_args=None, **args): """Fetches the given API path, e.g., "/statuses/user_timeline/btaylor" The path should not include the format (we automatically append ".json" and parse the JSON output). If the request is a POST, post_args should be provided. Query string arguments should be given as keyword arguments. All the Twitter methods are documented at http://apiwiki.twitter.com/Twitter-API-Documentation. Many methods require an OAuth access token which you can obtain through authorize_redirect() and get_authenticated_user(). The user returned through that process includes an 'access_token' attribute that can be used to make authenticated requests via this method. Example usage:: class MainHandler(tornado.web.RequestHandler, tornado.auth.TwitterMixin): @tornado.web.authenticated @tornado.web.asynchronous def get(self): self.twitter_request( "/statuses/update", post_args={"status": "Testing Tornado Web Server"}, access_token=user["access_token"], callback=self.async_callback(self._on_post)) def _on_post(self, new_entry): if not new_entry: # Call failed; perhaps missing permission? self.authorize_redirect() return self.finish("Posted a message!") """ if path.startswith('http:') or path.startswith('https:'): # Raw urls are useful for e.g. search which doesn't follow the # usual pattern: http://search.twitter.com/search.json url = path else: url = self._TWITTER_BASE_URL + path + ".json" # Add the OAuth resource request signature if we have credentials if access_token: all_args = {} all_args.update(args) all_args.update(post_args or {}) method = "POST" if post_args is not None else "GET" oauth = self._oauth_request_parameters( url, access_token, all_args, method=method) args.update(oauth) if args: url += "?" + urllib.urlencode(args) callback = self.async_callback(self._on_twitter_request, callback) http = self.get_auth_http_client() if post_args is not None: http.fetch(url, method="POST", body=urllib.urlencode(post_args), callback=callback) else: http.fetch(url, callback=callback) def _on_twitter_request(self, callback, response): if response.error: logging.warning("Error response %s fetching %s", response.error, response.request.url) callback(None) return callback(escape.json_decode(response.body)) def _oauth_consumer_token(self): self.require_setting("twitter_consumer_key", "Twitter OAuth") self.require_setting("twitter_consumer_secret", "Twitter OAuth") return dict( key=self.settings["twitter_consumer_key"], secret=self.settings["twitter_consumer_secret"]) def _oauth_get_user(self, access_token, callback): callback = self.async_callback(self._parse_user_response, callback) self.twitter_request( "/users/show/" + escape.native_str(access_token[b("screen_name")]), access_token=access_token, callback=callback) def _parse_user_response(self, callback, user): if user: user["username"] = user["screen_name"] callback(user) class FriendFeedMixin(OAuthMixin): """FriendFeed OAuth authentication. To authenticate with FriendFeed, register your application with FriendFeed at http://friendfeed.com/api/applications. Then copy your Consumer Key and Consumer Secret to the application settings 'friendfeed_consumer_key' and 'friendfeed_consumer_secret'. Use this Mixin on the handler for the URL you registered as your application's Callback URL. When your application is set up, you can use this Mixin like this to authenticate the user with FriendFeed and get access to their feed:: class FriendFeedHandler(tornado.web.RequestHandler, tornado.auth.FriendFeedMixin): @tornado.web.asynchronous def get(self): if self.get_argument("oauth_token", None): self.get_authenticated_user(self.async_callback(self._on_auth)) return self.authorize_redirect() def _on_auth(self, user): if not user: raise tornado.web.HTTPError(500, "FriendFeed auth failed") # Save the user using, e.g., set_secure_cookie() The user object returned by get_authenticated_user() includes the attributes 'username', 'name', and 'description' in addition to 'access_token'. You should save the access token with the user; it is required to make requests on behalf of the user later with friendfeed_request(). """ _OAUTH_VERSION = "1.0" _OAUTH_REQUEST_TOKEN_URL = "https://friendfeed.com/account/oauth/request_token" _OAUTH_ACCESS_TOKEN_URL = "https://friendfeed.com/account/oauth/access_token" _OAUTH_AUTHORIZE_URL = "https://friendfeed.com/account/oauth/authorize" _OAUTH_NO_CALLBACKS = True _OAUTH_VERSION = "1.0" def friendfeed_request(self, path, callback, access_token=None, post_args=None, **args): """Fetches the given relative API path, e.g., "/bret/friends" If the request is a POST, post_args should be provided. Query string arguments should be given as keyword arguments. All the FriendFeed methods are documented at http://friendfeed.com/api/documentation. Many methods require an OAuth access token which you can obtain through authorize_redirect() and get_authenticated_user(). The user returned through that process includes an 'access_token' attribute that can be used to make authenticated requests via this method. Example usage:: class MainHandler(tornado.web.RequestHandler, tornado.auth.FriendFeedMixin): @tornado.web.authenticated @tornado.web.asynchronous def get(self): self.friendfeed_request( "/entry", post_args={"body": "Testing Tornado Web Server"}, access_token=self.current_user["access_token"], callback=self.async_callback(self._on_post)) def _on_post(self, new_entry): if not new_entry: # Call failed; perhaps missing permission? self.authorize_redirect() return self.finish("Posted a message!") """ # Add the OAuth resource request signature if we have credentials url = "http://friendfeed-api.com/v2" + path if access_token: all_args = {} all_args.update(args) all_args.update(post_args or {}) method = "POST" if post_args is not None else "GET" oauth = self._oauth_request_parameters( url, access_token, all_args, method=method) args.update(oauth) if args: url += "?" + urllib.urlencode(args) callback = self.async_callback(self._on_friendfeed_request, callback) http = self.get_auth_http_client() if post_args is not None: http.fetch(url, method="POST", body=urllib.urlencode(post_args), callback=callback) else: http.fetch(url, callback=callback) def _on_friendfeed_request(self, callback, response): if response.error: logging.warning("Error response %s fetching %s", response.error, response.request.url) callback(None) return callback(escape.json_decode(response.body)) def _oauth_consumer_token(self): self.require_setting("friendfeed_consumer_key", "FriendFeed OAuth") self.require_setting("friendfeed_consumer_secret", "FriendFeed OAuth") return dict( key=self.settings["friendfeed_consumer_key"], secret=self.settings["friendfeed_consumer_secret"]) def _oauth_get_user(self, access_token, callback): callback = self.async_callback(self._parse_user_response, callback) self.friendfeed_request( "/feedinfo/" + access_token["username"], include="id,name,description", access_token=access_token, callback=callback) def _parse_user_response(self, callback, user): if user: user["username"] = user["id"] callback(user) class GoogleMixin(OpenIdMixin, OAuthMixin): """Google Open ID / OAuth authentication. No application registration is necessary to use Google for authentication or to access Google resources on behalf of a user. To authenticate with Google, redirect with authenticate_redirect(). On return, parse the response with get_authenticated_user(). We send a dict containing the values for the user, including 'email', 'name', and 'locale'. Example usage:: class GoogleHandler(tornado.web.RequestHandler, tornado.auth.GoogleMixin): @tornado.web.asynchronous def get(self): if self.get_argument("openid.mode", None): self.get_authenticated_user(self.async_callback(self._on_auth)) return self.authenticate_redirect() def _on_auth(self, user): if not user: raise tornado.web.HTTPError(500, "Google auth failed") # Save the user with, e.g., set_secure_cookie() """ _OPENID_ENDPOINT = "https://www.google.com/accounts/o8/ud" _OAUTH_ACCESS_TOKEN_URL = "https://www.google.com/accounts/OAuthGetAccessToken" def authorize_redirect(self, oauth_scope, callback_uri=None, ax_attrs=["name", "email", "language", "username"]): """Authenticates and authorizes for the given Google resource. Some of the available resources are: * Gmail Contacts - http://www.google.com/m8/feeds/ * Calendar - http://www.google.com/calendar/feeds/ * Finance - http://finance.google.com/finance/feeds/ You can authorize multiple resources by separating the resource URLs with a space. """ callback_uri = callback_uri or self.request.uri args = self._openid_args(callback_uri, ax_attrs=ax_attrs, oauth_scope=oauth_scope) self.redirect(self._OPENID_ENDPOINT + "?" + urllib.urlencode(args)) def get_authenticated_user(self, callback): """Fetches the authenticated user data upon redirect.""" # Look to see if we are doing combined OpenID/OAuth oauth_ns = "" for name, values in self.request.arguments.iteritems(): if name.startswith("openid.ns.") and \ values[-1] == u"http://specs.openid.net/extensions/oauth/1.0": oauth_ns = name[10:] break token = self.get_argument("openid." + oauth_ns + ".request_token", "") if token: http = self.get_auth_http_client() token = dict(key=token, secret="") http.fetch(self._oauth_access_token_url(token), self.async_callback(self._on_access_token, callback)) else: OpenIdMixin.get_authenticated_user(self, callback) def _oauth_consumer_token(self): self.require_setting("google_consumer_key", "Google OAuth") self.require_setting("google_consumer_secret", "Google OAuth") return dict( key=self.settings["google_consumer_key"], secret=self.settings["google_consumer_secret"]) def _oauth_get_user(self, access_token, callback): OpenIdMixin.get_authenticated_user(self, callback) class FacebookMixin(object): """Facebook Connect authentication. New applications should consider using `FacebookGraphMixin` below instead of this class. To authenticate with Facebook, register your application with Facebook at http://www.facebook.com/developers/apps.php. Then copy your API Key and Application Secret to the application settings 'facebook_api_key' and 'facebook_secret'. When your application is set up, you can use this Mixin like this to authenticate the user with Facebook:: class FacebookHandler(tornado.web.RequestHandler, tornado.auth.FacebookMixin): @tornado.web.asynchronous def get(self): if self.get_argument("session", None): self.get_authenticated_user(self.async_callback(self._on_auth)) return self.authenticate_redirect() def _on_auth(self, user): if not user: raise tornado.web.HTTPError(500, "Facebook auth failed") # Save the user using, e.g., set_secure_cookie() The user object returned by get_authenticated_user() includes the attributes 'facebook_uid' and 'name' in addition to session attributes like 'session_key'. You should save the session key with the user; it is required to make requests on behalf of the user later with facebook_request(). """ def authenticate_redirect(self, callback_uri=None, cancel_uri=None, extended_permissions=None): """Authenticates/installs this app for the current user.""" self.require_setting("facebook_api_key", "Facebook Connect") callback_uri = callback_uri or self.request.uri args = { "api_key": self.settings["facebook_api_key"], "v": "1.0", "fbconnect": "true", "display": "page", "next": urlparse.urljoin(self.request.full_url(), callback_uri), "return_session": "true", } if cancel_uri: args["cancel_url"] = urlparse.urljoin( self.request.full_url(), cancel_uri) if extended_permissions: if isinstance(extended_permissions, (unicode, bytes_type)): extended_permissions = [extended_permissions] args["req_perms"] = ",".join(extended_permissions) self.redirect("http://www.facebook.com/login.php?" + urllib.urlencode(args)) def authorize_redirect(self, extended_permissions, callback_uri=None, cancel_uri=None): """Redirects to an authorization request for the given FB resource. The available resource names are listed at http://wiki.developers.facebook.com/index.php/Extended_permission. The most common resource types include: * publish_stream * read_stream * email * sms extended_permissions can be a single permission name or a list of names. To get the session secret and session key, call get_authenticated_user() just as you would with authenticate_redirect(). """ self.authenticate_redirect(callback_uri, cancel_uri, extended_permissions) def get_authenticated_user(self, callback): """Fetches the authenticated Facebook user. The authenticated user includes the special Facebook attributes 'session_key' and 'facebook_uid' in addition to the standard user attributes like 'name'. """ self.require_setting("facebook_api_key", "Facebook Connect") session = escape.json_decode(self.get_argument("session")) self.facebook_request( method="facebook.users.getInfo", callback=self.async_callback( self._on_get_user_info, callback, session), session_key=session["session_key"], uids=session["uid"], fields="uid,first_name,last_name,name,locale,pic_square," "profile_url,username") def facebook_request(self, method, callback, **args): """Makes a Facebook API REST request. We automatically include the Facebook API key and signature, but it is the callers responsibility to include 'session_key' and any other required arguments to the method. The available Facebook methods are documented here: http://wiki.developers.facebook.com/index.php/API Here is an example for the stream.get() method:: class MainHandler(tornado.web.RequestHandler, tornado.auth.FacebookMixin): @tornado.web.authenticated @tornado.web.asynchronous def get(self): self.facebook_request( method="stream.get", callback=self.async_callback(self._on_stream), session_key=self.current_user["session_key"]) def _on_stream(self, stream): if stream is None: # Not authorized to read the stream yet? self.redirect(self.authorize_redirect("read_stream")) return self.render("stream.html", stream=stream) """ self.require_setting("facebook_api_key", "Facebook Connect") self.require_setting("facebook_secret", "Facebook Connect") if not method.startswith("facebook."): method = "facebook." + method args["api_key"] = self.settings["facebook_api_key"] args["v"] = "1.0" args["method"] = method args["call_id"] = str(long(time.time() * 1e6)) args["format"] = "json" args["sig"] = self._signature(args) url = "http://api.facebook.com/restserver.php?" + \ urllib.urlencode(args) http = self.get_auth_http_client() http.fetch(url, callback=self.async_callback( self._parse_response, callback)) def _on_get_user_info(self, callback, session, users): if users is None: callback(None) return callback({ "name": users[0]["name"], "first_name": users[0]["first_name"], "last_name": users[0]["last_name"], "uid": users[0]["uid"], "locale": users[0]["locale"], "pic_square": users[0]["pic_square"], "profile_url": users[0]["profile_url"], "username": users[0].get("username"), "session_key": session["session_key"], "session_expires": session.get("expires"), }) def _parse_response(self, callback, response): if response.error: logging.warning("HTTP error from Facebook: %s", response.error) callback(None) return try: json = escape.json_decode(response.body) except Exception: logging.warning("Invalid JSON from Facebook: %r", response.body) callback(None) return if isinstance(json, dict) and json.get("error_code"): logging.warning("Facebook error: %d: %r", json["error_code"], json.get("error_msg")) callback(None) return callback(json) def _signature(self, args): parts = ["%s=%s" % (n, args[n]) for n in sorted(args.keys())] body = "".join(parts) + self.settings["facebook_secret"] if isinstance(body, unicode): body = body.encode("utf-8") return hashlib.md5(body).hexdigest() def get_auth_http_client(self): """Returns the AsyncHTTPClient instance to be used for auth requests. May be overridden by subclasses to use an http client other than the default. """ return httpclient.AsyncHTTPClient() class FacebookGraphMixin(OAuth2Mixin): """Facebook authentication using the new Graph API and OAuth2.""" _OAUTH_ACCESS_TOKEN_URL = "https://graph.facebook.com/oauth/access_token?" _OAUTH_AUTHORIZE_URL = "https://graph.facebook.com/oauth/authorize?" _OAUTH_NO_CALLBACKS = False def get_authenticated_user(self, redirect_uri, client_id, client_secret, code, callback, extra_fields=None): """Handles the login for the Facebook user, returning a user object. Example usage:: class FacebookGraphLoginHandler(LoginHandler, tornado.auth.FacebookGraphMixin): @tornado.web.asynchronous def get(self): if self.get_argument("code", False): self.get_authenticated_user( redirect_uri='/auth/facebookgraph/', client_id=self.settings["facebook_api_key"], client_secret=self.settings["facebook_secret"], code=self.get_argument("code"), callback=self.async_callback( self._on_login)) return self.authorize_redirect(redirect_uri='/auth/facebookgraph/', client_id=self.settings["facebook_api_key"], extra_params={"scope": "read_stream,offline_access"}) def _on_login(self, user): logging.error(user) self.finish() """ http = self.get_auth_http_client() args = { "redirect_uri": redirect_uri, "code": code, "client_id": client_id, "client_secret": client_secret, } fields = set(['id', 'name', 'first_name', 'last_name', 'locale', 'picture', 'link']) if extra_fields: fields.update(extra_fields) http.fetch(self._oauth_request_token_url(**args), self.async_callback(self._on_access_token, redirect_uri, client_id, client_secret, callback, fields)) def _on_access_token(self, redirect_uri, client_id, client_secret, callback, fields, response): if response.error: logging.warning('Facebook auth error: %s' % str(response)) callback(None) return args = escape.parse_qs_bytes(escape.native_str(response.body)) session = { "access_token": args["access_token"][-1], "expires": args.get("expires") } self.facebook_request( path="/me", callback=self.async_callback( self._on_get_user_info, callback, session, fields), access_token=session["access_token"], fields=",".join(fields) ) def _on_get_user_info(self, callback, session, fields, user): if user is None: callback(None) return fieldmap = {} for field in fields: fieldmap[field] = user.get(field) fieldmap.update({"access_token": session["access_token"], "session_expires": session.get("expires")}) callback(fieldmap) def facebook_request(self, path, callback, access_token=None, post_args=None, **args): """Fetches the given relative API path, e.g., "/btaylor/picture" If the request is a POST, post_args should be provided. Query string arguments should be given as keyword arguments. An introduction to the Facebook Graph API can be found at http://developers.facebook.com/docs/api Many methods require an OAuth access token which you can obtain through authorize_redirect() and get_authenticated_user(). The user returned through that process includes an 'access_token' attribute that can be used to make authenticated requests via this method. Example usage:: class MainHandler(tornado.web.RequestHandler, tornado.auth.FacebookGraphMixin): @tornado.web.authenticated @tornado.web.asynchronous def get(self): self.facebook_request( "/me/feed", post_args={"message": "I am posting from my Tornado application!"}, access_token=self.current_user["access_token"], callback=self.async_callback(self._on_post)) def _on_post(self, new_entry): if not new_entry: # Call failed; perhaps missing permission? self.authorize_redirect() return self.finish("Posted a message!") """ url = "https://graph.facebook.com" + path all_args = {} if access_token: all_args["access_token"] = access_token all_args.update(args) if all_args: url += "?" + urllib.urlencode(all_args) callback = self.async_callback(self._on_facebook_request, callback) http = self.get_auth_http_client() if post_args is not None: http.fetch(url, method="POST", body=urllib.urlencode(post_args), callback=callback) else: http.fetch(url, callback=callback) def _on_facebook_request(self, callback, response): if response.error: logging.warning("Error response %s fetching %s", response.error, response.request.url) callback(None) return callback(escape.json_decode(response.body)) def get_auth_http_client(self): """Returns the AsyncHTTPClient instance to be used for auth requests. May be overridden by subclasses to use an http client other than the default. """ return httpclient.AsyncHTTPClient() def _oauth_signature(consumer_token, method, url, parameters={}, token=None): """Calculates the HMAC-SHA1 OAuth signature for the given request. See http://oauth.net/core/1.0/#signing_process """ parts = urlparse.urlparse(url) scheme, netloc, path = parts[:3] normalized_url = scheme.lower() + "://" + netloc.lower() + path base_elems = [] base_elems.append(method.upper()) base_elems.append(normalized_url) base_elems.append("&".join("%s=%s" % (k, _oauth_escape(str(v))) for k, v in sorted(parameters.items()))) base_string = "&".join(_oauth_escape(e) for e in base_elems) key_elems = [escape.utf8(consumer_token["secret"])] key_elems.append(escape.utf8(token["secret"] if token else "")) key = b("&").join(key_elems) hash = hmac.new(key, escape.utf8(base_string), hashlib.sha1) return binascii.b2a_base64(hash.digest())[:-1] def _oauth10a_signature(consumer_token, method, url, parameters={}, token=None): """Calculates the HMAC-SHA1 OAuth 1.0a signature for the given request. See http://oauth.net/core/1.0a/#signing_process """ parts = urlparse.urlparse(url) scheme, netloc, path = parts[:3] normalized_url = scheme.lower() + "://" + netloc.lower() + path base_elems = [] base_elems.append(method.upper()) base_elems.append(normalized_url) base_elems.append("&".join("%s=%s" % (k, _oauth_escape(str(v))) for k, v in sorted(parameters.items()))) base_string = "&".join(_oauth_escape(e) for e in base_elems) key_elems = [escape.utf8(urllib.quote(consumer_token["secret"], safe='~'))] key_elems.append(escape.utf8(urllib.quote(token["secret"], safe='~') if token else "")) key = b("&").join(key_elems) hash = hmac.new(key, escape.utf8(base_string), hashlib.sha1) return binascii.b2a_base64(hash.digest())[:-1] def _oauth_escape(val): if isinstance(val, unicode): val = val.encode("utf-8") return urllib.quote(val, safe="~") def _oauth_parse_response(body): p = escape.parse_qs(body, keep_blank_values=False) token = dict(key=p[b("oauth_token")][0], secret=p[b("oauth_token_secret")][0]) # Add the extra parameters the Provider included to the token special = (b("oauth_token"), b("oauth_token_secret")) token.update((k, p[k][0]) for k in p if k not in special) return token
the-stack_0_10765
import demoDay21_recsys_music.hyj.config_hyj as conf import pandas as pd import demoDay21_recsys_music.hyj.gen_cf_data_hyj as gen import tensorflow as tf import numpy as np data=gen.user_item_socre(nrows=500) # 定义label stay_seconds/total_timelen>0.9 -> 1 data['label']=data['score'].apply(lambda x:1 if x>=0.9 else 0) # 关联用户信息和item信息到data user_profile=conf.user_profile() music_meta=conf.music_data() # data数据结构 # user_id item_id score label gender age salary province item_name total_timelen location tags # 0 0000066b1be6f28ad5e40d47b8d3e51c 426100349 1.280 1 女 26-35 10000-20000 香港 刘德华 - 回家的路 2015央视春晚 现场版 250 港台 - # 1 000072fc29132acaf20168c589269e1c 426100349 1.276 1 女 36-45 5000-10000 湖北 刘德华 - 回家的路 2015央视春晚 现场版 250 港台 - # 2 000074ec4874ab7d99d543d0ce419118 426100349 1.084 1 男 36-45 2000-5000 宁夏 刘德华 - 回家的路 2015央视春晚 现场版 250 港台 - data=data.merge(user_profile,how='inner',on='user_id').merge(music_meta,how='inner',on='item_id') ''' 定义特征X''' #用户特征 user_feat=['age','gender','salary','province'] # 物品特征 item_feat=['location','total_timelen'] item_text_feat=['item_name','tags'] # 交叉特征 watch_feat=['stay_seconds','score','hour'] # 离散和连续特征 dispersed_feat=user_feat+['location'] continue_feat=['score'] # 获取Y (label) labels=data['label'] del data['label'] # 离散特征-one-hot处理 # df数据结构 : # age_0-18 age_19-25 age_26-35 age_36-45 age_46-100 gender_女 gender_男 salary_0-2000 salary_10000-20000 salary_2000-5000 ... province_香港 province_黑龙江 location_- location_亚洲 location_国内 location_日韩 location_日韩,日本 location_日韩,韩国 location_欧美 location_港台 # 0 0 0 1 0 0 1 0 0 1 0 ... 1 0 0 0 0 0 0 0 0 1 # 1 0 0 0 1 0 1 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 1 # 2 0 0 0 1 0 0 1 0 0 1 ... 0 0 0 0 0 0 0 0 0 1 # 3 0 1 0 0 0 1 0 0 0 1 ... 0 0 0 0 0 0 0 0 0 1 # 4 0 0 0 1 0 0 1 0 1 0 ... 0 0 0 0 0 0 0 0 0 1 # get_dummies one-hot处理: 将每列展开成多列,有值的为1,否则为0(根据每列的所有取值,如用户性别男 gender取值有男女 则展开为gender_女 0 gender_男 1) df=pd.get_dummies(data[dispersed_feat]) # 离散特征数组 # one-hot数据结构 # Index(['age_0-18', 'age_19-25', 'age_26-35', 'age_36-45', 'age_46-100', # 'gender_女', 'gender_男', 'salary_0-2000', 'salary_10000-20000', # 'salary_2000-5000', 'salary_20000-100000', 'salary_5000-10000', # 'province_上海', 'province_云南', 'province_内蒙古', 'province_北京', # 'province_台湾', 'province_吉林', 'province_四川', 'province_天津', # 'province_宁夏', 'province_安徽', 'province_山东', 'province_山西', # 'province_广东', 'province_广西', 'province_新疆', 'province_江苏', # 'province_江西', 'province_河北', 'province_河南', 'province_浙江', # 'province_海南', 'province_湖北', 'province_湖南', 'province_澳门', # 'province_甘肃', 'province_福建', 'province_西藏', 'province_贵州', # 'province_辽宁', 'province_重庆', 'province_陕西', 'province_青海', # 'province_香港', 'province_黑龙江', 'location_-', 'location_亚洲', # 'location_国内', 'location_日韩', 'location_日韩,日本', 'location_日韩,韩国', # 'location_欧美', 'location_港台'], # dtype='object') one_hot_cols=df.columns # 连续特征不做one-hot 直接存储 df[continue_feat]=data[continue_feat] df['label']=labels pre='F:\\00-data\\nn\\' df_file=pre+'music_data.csv' df.to_csv(df_file,index=False) print('df to csv done') chunks = pd.read_csv(df_file,iterator = True,chunksize=1000) chunk = chunks.get_chunk(5) print(chunk) print(np.array(chunk)) # 定义超参数 sample_num=len(df) x_col_num=len(df.columns)-1 y_class_num=2 x=tf.placeholder(dtype=tf.float32,shape=[None,x_col_num],name='X') y=tf.placeholder(dtype=tf.float32,shape=[None,y_class_num],name='Y') max_epoches=10000 learning_rate=0.01 batch_size=50 seed=0 n_hidden=30 del df # 定义权重和偏置变量 w={'h1':tf.Variable(tf.random_normal([x_col_num,n_hidden],seed=seed)), 'res':tf.Variable(tf.random_normal([n_hidden,y_class_num],seed=seed)) } b={'h1':tf.Variable(tf.random_normal([1,n_hidden],seed=seed)), 'res':tf.Variable(tf.random_normal([1,y_class_num],seed=seed)) } # 创建模型 def multilayer(x,w,b): # 隐藏层net值 h_1=tf.add(tf.matmul(x,w['h1']),b['h1']) # 隐藏层out值 h1_out=tf.sigmoid(h_1) # 输出层net值 res_net=tf.add(tf.matmul(h1_out,w['res']),b['res']) return res_net,res_net,h1_out,h_1 # 为正向传播、误差、梯度和更新计算创建计算图 y_hat,y_net,h_out,h_net=multilayer(x,w,b) ''' # softmax_cross_entropy_with_logits 表示先求softmax,再求交叉熵 等价于 loss2 = (-tf.reduce_sum(y*tf.log(tf.clip_by_value(softmax(y_hat),1e-10,1.0)))) clip_by_value防止y_hat取对数为0 ''' loss=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_hat)) # 梯度优化器 optimizer=tf.train.AdamOptimizer().minimize(loss) # 变量初始化器 init=tf.global_variables_initializer() # 读取数据 def data_gen(filename): f_queue=tf.train.string_input_producer(filename) reader=tf.TextLineReader(skip_header_lines=1) _,value=reader.read(f_queue) record_defaults=[[0.0] for _ in range(x_col_num+1)] data=tf.decode_csv(value,record_defaults=record_defaults) print(type(data)) feats=tf.stack(tf.gather_nd(data,indices=[[i] for i in range(x_col_num)])) label=data[-1] dad=10*batch_size cap=20*batch_size feat_batch,label_batch=tf.train.shuffle_batch([feats,label],batch_size=batch_size,min_after_dequeue=dad,capacity=cap) return feat_batch,label_batch def gen_data(feat_batch,label_batch): with tf.Session() as sess: coord=tf.train.Coordinator() threads=tf.train.start_queue_runners(coord=coord) feats,labels=sess.run([feat_batch,label_batch]) # for _ in range(5): coord.request_stop() coord.join(threads) return feats,labels auc_bool_arr=tf.equal(tf.argmax(y,1),tf.argmax(y_hat,1)) auc=tf.reduce_mean(tf.cast(auc_bool_arr,tf.float32)) # 保存模型 saver = tf.train.Saver() def train(): for i in range(5): coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # 每次训练batch_size的样本量 batch_xs, batch_ys = data_gen([df_file]) train_auc(batch_xs, batch_ys) coord.request_stop() coord.join(threads) # try: # while not coord.should_stop(): # # except tf.errors.OutOfRangeError: # print('read done') # finally: # pass # Wait for threads to finish. def train_auc(batch_xs, batch_ys): print(batch_xs.shape) batch_xs_val, batch_ys_val = sess.run([batch_xs, batch_ys]) print(batch_xs_val[-1], batch_ys_val[-1]) batch_ys2 = [] for j in batch_ys_val: if j < 1.0: batch_ys2.append([1., 0.]) else: batch_ys2.append([0., 1.]) y_hat_out, _, loss_val, auc_val = sess.run([y_hat, optimizer, loss, auc], feed_dict={x: batch_xs_val, y: batch_ys2}) print('loss %s,auc %s' % (loss_val, auc_val)) with tf.Session() as sess: sess.run(init) # writer=tf.summary.FileWriter('graphs',graph=sess.graph) for epoch in range(20): loss_avg=0. loss_avg2=0. # 总的批次数 num_of_batch=int(sample_num/batch_size) print('epoch %s'%epoch) train() saver.save(sess,save_path=pre+'nn_softmax_model.ckpt') print('main done')
the-stack_0_10766
# -*- encoding: utf-8 -*- """ Copyright (c) 2019 - present AppSeed.us """ from django.contrib.auth.decorators import login_required from django.shortcuts import render, get_object_or_404, redirect from django.template import loader from django.http import HttpResponse from django import template from .forms import * from .models import * from django.core.paginator import Paginator from django.shortcuts import render from django.contrib import messages import os from django.shortcuts import render, redirect, get_object_or_404 # from .models import Document # from .forms import DocumentForm from .helper_functions import similarity from datetime import datetime @login_required(login_url="/login/") def index(request): context = {} context['segment'] = 'index' html_template = loader.get_template('index.html') return HttpResponse(html_template.render(context, request)) def file_uploader_view(request): msg = None if request.method == "POST": form = UploadFileForm(request.POST, request.FILES) if form.is_valid(): form.save() msg = 'User created.' return redirect("/documents/repository/") else: msg = 'Form is not valid' else: form = UploadFileForm() return render(request, "uploader.html", {"form": form, "msg": msg}) def checker_view(request): msg = None if request.method == "POST": form = UploadFileForm(request.POST, request.FILES) if form.is_valid(): instance = form.save() msg = 'User created.' uploaded_file_name = instance.file.name print(f'name of file = {uploaded_file_name}') percentages = [] directory = os.listdir("core/media/documents/") if len(directory) != 1: print(f'dirtype = {type(directory)}') for file in directory: filename = os.fsdecode(file) print(f'name of FILE4 = {file}') if filename.endswith(".docx") and uploaded_file_name != 'documents/' + filename: print(f'name of file2 = {filename}') percentage = similarity(uploaded_file_name, filename) percentages.append(percentage) actual_percentage = round(float(sum(percentages) / len(percentages) - 1)) print(f'Actual %age = {actual_percentage}') return render(request, 'result.html', {'result': actual_percentage}) else: form = UploadFileForm() messages.error(request, "Sorry! No file to check against.") return render(request, "checker.html", {"form": form, "msg": msg}) else: msg = 'Form is not valid' else: form = UploadFileForm() return render(request, "checker.html", {"form": form, "msg": msg}) def uploads_view(request): uploads = Uploads.objects.all() paginator = Paginator(uploads, 5) page_number = request.GET.get('page') page_obj = paginator.get_page(page_number) return render(request, "uploads.html", {'page_obj': page_obj}) @login_required(login_url="/login/") def pages(request): context = {} # All resource paths end in .html. # Pick out the html file name from the url. And load that template. try: load_template = request.path.split('/')[-1] context['segment'] = load_template html_template = loader.get_template(load_template) return HttpResponse(html_template.render(context, request)) except template.TemplateDoesNotExist: html_template = loader.get_template('page-404.html') return HttpResponse(html_template.render(context, request)) except: html_template = loader.get_template('page-500.html') return HttpResponse(html_template.render(context, request))
the-stack_0_10767
import sys import pytest import textwrap import subprocess import numpy as np import numpy.core._multiarray_tests as _multiarray_tests from numpy import array, arange, nditer, all from numpy.testing import ( assert_, assert_equal, assert_array_equal, assert_raises, HAS_REFCOUNT, suppress_warnings ) def iter_multi_index(i): ret = [] while not i.finished: ret.append(i.multi_index) i.iternext() return ret def iter_indices(i): ret = [] while not i.finished: ret.append(i.index) i.iternext() return ret def iter_iterindices(i): ret = [] while not i.finished: ret.append(i.iterindex) i.iternext() return ret @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_iter_refcount(): # Make sure the iterator doesn't leak # Basic a = arange(6) dt = np.dtype('f4').newbyteorder() rc_a = sys.getrefcount(a) rc_dt = sys.getrefcount(dt) with nditer(a, [], [['readwrite', 'updateifcopy']], casting='unsafe', op_dtypes=[dt]) as it: assert_(not it.iterationneedsapi) assert_(sys.getrefcount(a) > rc_a) assert_(sys.getrefcount(dt) > rc_dt) # del 'it' it = None assert_equal(sys.getrefcount(a), rc_a) assert_equal(sys.getrefcount(dt), rc_dt) # With a copy a = arange(6, dtype='f4') dt = np.dtype('f4') rc_a = sys.getrefcount(a) rc_dt = sys.getrefcount(dt) it = nditer(a, [], [['readwrite']], op_dtypes=[dt]) rc2_a = sys.getrefcount(a) rc2_dt = sys.getrefcount(dt) it2 = it.copy() assert_(sys.getrefcount(a) > rc2_a) assert_(sys.getrefcount(dt) > rc2_dt) it = None assert_equal(sys.getrefcount(a), rc2_a) assert_equal(sys.getrefcount(dt), rc2_dt) it2 = None assert_equal(sys.getrefcount(a), rc_a) assert_equal(sys.getrefcount(dt), rc_dt) del it2 # avoid pyflakes unused variable warning def test_iter_best_order(): # The iterator should always find the iteration order # with increasing memory addresses # Test the ordering for 1-D to 5-D shapes for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: a = arange(np.prod(shape)) # Test each combination of positive and negative strides for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, [], [['readonly']]) assert_equal([x for x in i], a) # Fortran-order i = nditer(aview.T, [], [['readonly']]) assert_equal([x for x in i], a) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), [], [['readonly']]) assert_equal([x for x in i], a) def test_iter_c_order(): # Test forcing C order # Test the ordering for 1-D to 5-D shapes for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: a = arange(np.prod(shape)) # Test each combination of positive and negative strides for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, order='C') assert_equal([x for x in i], aview.ravel(order='C')) # Fortran-order i = nditer(aview.T, order='C') assert_equal([x for x in i], aview.T.ravel(order='C')) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), order='C') assert_equal([x for x in i], aview.swapaxes(0, 1).ravel(order='C')) def test_iter_f_order(): # Test forcing F order # Test the ordering for 1-D to 5-D shapes for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: a = arange(np.prod(shape)) # Test each combination of positive and negative strides for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, order='F') assert_equal([x for x in i], aview.ravel(order='F')) # Fortran-order i = nditer(aview.T, order='F') assert_equal([x for x in i], aview.T.ravel(order='F')) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), order='F') assert_equal([x for x in i], aview.swapaxes(0, 1).ravel(order='F')) def test_iter_c_or_f_order(): # Test forcing any contiguous (C or F) order # Test the ordering for 1-D to 5-D shapes for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: a = arange(np.prod(shape)) # Test each combination of positive and negative strides for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, order='A') assert_equal([x for x in i], aview.ravel(order='A')) # Fortran-order i = nditer(aview.T, order='A') assert_equal([x for x in i], aview.T.ravel(order='A')) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), order='A') assert_equal([x for x in i], aview.swapaxes(0, 1).ravel(order='A')) def test_iter_best_order_multi_index_1d(): # The multi-indices should be correct with any reordering a = arange(4) # 1D order i = nditer(a, ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0,), (1,), (2,), (3,)]) # 1D reversed order i = nditer(a[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(3,), (2,), (1,), (0,)]) def test_iter_best_order_multi_index_2d(): # The multi-indices should be correct with any reordering a = arange(6) # 2D C-order i = nditer(a.reshape(2, 3), ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)]) # 2D Fortran-order i = nditer(a.reshape(2, 3).copy(order='F'), ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)]) # 2D reversed C-order i = nditer(a.reshape(2, 3)[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 0), (1, 1), (1, 2), (0, 0), (0, 1), (0, 2)]) i = nditer(a.reshape(2, 3)[:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 2), (0, 1), (0, 0), (1, 2), (1, 1), (1, 0)]) i = nditer(a.reshape(2, 3)[::-1, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 2), (1, 1), (1, 0), (0, 2), (0, 1), (0, 0)]) # 2D reversed Fortran-order i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 0), (0, 0), (1, 1), (0, 1), (1, 2), (0, 2)]) i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 2), (1, 2), (0, 1), (1, 1), (0, 0), (1, 0)]) i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 2), (0, 2), (1, 1), (0, 1), (1, 0), (0, 0)]) def test_iter_best_order_multi_index_3d(): # The multi-indices should be correct with any reordering a = arange(12) # 3D C-order i = nditer(a.reshape(2, 3, 2), ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1)]) # 3D Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1)]) # 3D reversed C-order i = nditer(a.reshape(2, 3, 2)[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 2, 0), (1, 2, 1), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (0, 2, 0), (0, 2, 1)]) i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 2, 0), (0, 2, 1), (0, 1, 0), (0, 1, 1), (0, 0, 0), (0, 0, 1), (1, 2, 0), (1, 2, 1), (1, 1, 0), (1, 1, 1), (1, 0, 0), (1, 0, 1)]) i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0, 1), (0, 0, 0), (0, 1, 1), (0, 1, 0), (0, 2, 1), (0, 2, 0), (1, 0, 1), (1, 0, 0), (1, 1, 1), (1, 1, 0), (1, 2, 1), (1, 2, 0)]) # 3D reversed Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(1, 0, 0), (0, 0, 0), (1, 1, 0), (0, 1, 0), (1, 2, 0), (0, 2, 0), (1, 0, 1), (0, 0, 1), (1, 1, 1), (0, 1, 1), (1, 2, 1), (0, 2, 1)]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 2, 0), (1, 2, 0), (0, 1, 0), (1, 1, 0), (0, 0, 0), (1, 0, 0), (0, 2, 1), (1, 2, 1), (0, 1, 1), (1, 1, 1), (0, 0, 1), (1, 0, 1)]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1], ['multi_index'], [['readonly']]) assert_equal(iter_multi_index(i), [(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 2, 1), (1, 2, 1), (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 2, 0), (1, 2, 0)]) def test_iter_best_order_c_index_1d(): # The C index should be correct with any reordering a = arange(4) # 1D order i = nditer(a, ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3]) # 1D reversed order i = nditer(a[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [3, 2, 1, 0]) def test_iter_best_order_c_index_2d(): # The C index should be correct with any reordering a = arange(6) # 2D C-order i = nditer(a.reshape(2, 3), ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5]) # 2D Fortran-order i = nditer(a.reshape(2, 3).copy(order='F'), ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 3, 1, 4, 2, 5]) # 2D reversed C-order i = nditer(a.reshape(2, 3)[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [3, 4, 5, 0, 1, 2]) i = nditer(a.reshape(2, 3)[:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [2, 1, 0, 5, 4, 3]) i = nditer(a.reshape(2, 3)[::-1, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0]) # 2D reversed Fortran-order i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [3, 0, 4, 1, 5, 2]) i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [2, 5, 1, 4, 0, 3]) i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [5, 2, 4, 1, 3, 0]) def test_iter_best_order_c_index_3d(): # The C index should be correct with any reordering a = arange(12) # 3D C-order i = nditer(a.reshape(2, 3, 2), ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 3D Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11]) # 3D reversed C-order i = nditer(a.reshape(2, 3, 2)[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5]) i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7]) i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10]) # 3D reversed Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1], ['c_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10]) def test_iter_best_order_f_index_1d(): # The Fortran index should be correct with any reordering a = arange(4) # 1D order i = nditer(a, ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3]) # 1D reversed order i = nditer(a[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [3, 2, 1, 0]) def test_iter_best_order_f_index_2d(): # The Fortran index should be correct with any reordering a = arange(6) # 2D C-order i = nditer(a.reshape(2, 3), ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 2, 4, 1, 3, 5]) # 2D Fortran-order i = nditer(a.reshape(2, 3).copy(order='F'), ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5]) # 2D reversed C-order i = nditer(a.reshape(2, 3)[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 3, 5, 0, 2, 4]) i = nditer(a.reshape(2, 3)[:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 2, 0, 5, 3, 1]) i = nditer(a.reshape(2, 3)[::-1, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [5, 3, 1, 4, 2, 0]) # 2D reversed Fortran-order i = nditer(a.reshape(2, 3).copy(order='F')[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4]) i = nditer(a.reshape(2, 3).copy(order='F')[:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1]) i = nditer(a.reshape(2, 3).copy(order='F')[::-1, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [5, 4, 3, 2, 1, 0]) def test_iter_best_order_f_index_3d(): # The Fortran index should be correct with any reordering a = arange(12) # 3D C-order i = nditer(a.reshape(2, 3, 2), ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 6, 2, 8, 4, 10, 1, 7, 3, 9, 5, 11]) # 3D Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F'), ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) # 3D reversed C-order i = nditer(a.reshape(2, 3, 2)[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 7, 3, 9, 5, 11, 0, 6, 2, 8, 4, 10]) i = nditer(a.reshape(2, 3, 2)[:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 10, 2, 8, 0, 6, 5, 11, 3, 9, 1, 7]) i = nditer(a.reshape(2, 3, 2)[:,:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [6, 0, 8, 2, 10, 4, 7, 1, 9, 3, 11, 5]) # 3D reversed Fortran-order i = nditer(a.reshape(2, 3, 2).copy(order='F')[::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [4, 5, 2, 3, 0, 1, 10, 11, 8, 9, 6, 7]) i = nditer(a.reshape(2, 3, 2).copy(order='F')[:,:, ::-1], ['f_index'], [['readonly']]) assert_equal(iter_indices(i), [6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5]) def test_iter_no_inner_full_coalesce(): # Check no_inner iterators which coalesce into a single inner loop for shape in [(5,), (3, 4), (2, 3, 4), (2, 3, 4, 3), (2, 3, 2, 2, 3)]: size = np.prod(shape) a = arange(size) # Test each combination of forward and backwards indexing for dirs in range(2**len(shape)): dirs_index = [slice(None)]*len(shape) for bit in range(len(shape)): if ((2**bit) & dirs): dirs_index[bit] = slice(None, None, -1) dirs_index = tuple(dirs_index) aview = a.reshape(shape)[dirs_index] # C-order i = nditer(aview, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (size,)) # Fortran-order i = nditer(aview.T, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (size,)) # Other order if len(shape) > 2: i = nditer(aview.swapaxes(0, 1), ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (size,)) def test_iter_no_inner_dim_coalescing(): # Check no_inner iterators whose dimensions may not coalesce completely # Skipping the last element in a dimension prevents coalescing # with the next-bigger dimension a = arange(24).reshape(2, 3, 4)[:,:, :-1] i = nditer(a, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 2) assert_equal(i[0].shape, (3,)) a = arange(24).reshape(2, 3, 4)[:, :-1,:] i = nditer(a, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 2) assert_equal(i[0].shape, (8,)) a = arange(24).reshape(2, 3, 4)[:-1,:,:] i = nditer(a, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (12,)) # Even with lots of 1-sized dimensions, should still coalesce a = arange(24).reshape(1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1) i = nditer(a, ['external_loop'], [['readonly']]) assert_equal(i.ndim, 1) assert_equal(i[0].shape, (24,)) def test_iter_dim_coalescing(): # Check that the correct number of dimensions are coalesced # Tracking a multi-index disables coalescing a = arange(24).reshape(2, 3, 4) i = nditer(a, ['multi_index'], [['readonly']]) assert_equal(i.ndim, 3) # A tracked index can allow coalescing if it's compatible with the array a3d = arange(24).reshape(2, 3, 4) i = nditer(a3d, ['c_index'], [['readonly']]) assert_equal(i.ndim, 1) i = nditer(a3d.swapaxes(0, 1), ['c_index'], [['readonly']]) assert_equal(i.ndim, 3) i = nditer(a3d.T, ['c_index'], [['readonly']]) assert_equal(i.ndim, 3) i = nditer(a3d.T, ['f_index'], [['readonly']]) assert_equal(i.ndim, 1) i = nditer(a3d.T.swapaxes(0, 1), ['f_index'], [['readonly']]) assert_equal(i.ndim, 3) # When C or F order is forced, coalescing may still occur a3d = arange(24).reshape(2, 3, 4) i = nditer(a3d, order='C') assert_equal(i.ndim, 1) i = nditer(a3d.T, order='C') assert_equal(i.ndim, 3) i = nditer(a3d, order='F') assert_equal(i.ndim, 3) i = nditer(a3d.T, order='F') assert_equal(i.ndim, 1) i = nditer(a3d, order='A') assert_equal(i.ndim, 1) i = nditer(a3d.T, order='A') assert_equal(i.ndim, 1) def test_iter_broadcasting(): # Standard NumPy broadcasting rules # 1D with scalar i = nditer([arange(6), np.int32(2)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (6,)) # 2D with scalar i = nditer([arange(6).reshape(2, 3), np.int32(2)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (2, 3)) # 2D with 1D i = nditer([arange(6).reshape(2, 3), arange(3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (2, 3)) i = nditer([arange(2).reshape(2, 1), arange(3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (2, 3)) # 2D with 2D i = nditer([arange(2).reshape(2, 1), arange(3).reshape(1, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 6) assert_equal(i.shape, (2, 3)) # 3D with scalar i = nditer([np.int32(2), arange(24).reshape(4, 2, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) # 3D with 1D i = nditer([arange(3), arange(24).reshape(4, 2, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(3), arange(8).reshape(4, 2, 1)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) # 3D with 2D i = nditer([arange(6).reshape(2, 3), arange(24).reshape(4, 2, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(2).reshape(2, 1), arange(24).reshape(4, 2, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(3).reshape(1, 3), arange(8).reshape(4, 2, 1)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) # 3D with 3D i = nditer([arange(2).reshape(1, 2, 1), arange(3).reshape(1, 1, 3), arange(4).reshape(4, 1, 1)], ['multi_index'], [['readonly']]*3) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(6).reshape(1, 2, 3), arange(4).reshape(4, 1, 1)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) i = nditer([arange(24).reshape(4, 2, 3), arange(12).reshape(4, 1, 3)], ['multi_index'], [['readonly']]*2) assert_equal(i.itersize, 24) assert_equal(i.shape, (4, 2, 3)) def test_iter_itershape(): # Check that allocated outputs work with a specified shape a = np.arange(6, dtype='i2').reshape(2, 3) i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], op_axes=[[0, 1, None], None], itershape=(-1, -1, 4)) assert_equal(i.operands[1].shape, (2, 3, 4)) assert_equal(i.operands[1].strides, (24, 8, 2)) i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']], op_axes=[[0, 1, None], None], itershape=(-1, -1, 4)) assert_equal(i.operands[1].shape, (3, 2, 4)) assert_equal(i.operands[1].strides, (8, 24, 2)) i = nditer([a.T, None], [], [['readonly'], ['writeonly', 'allocate']], order='F', op_axes=[[0, 1, None], None], itershape=(-1, -1, 4)) assert_equal(i.operands[1].shape, (3, 2, 4)) assert_equal(i.operands[1].strides, (2, 6, 12)) # If we specify 1 in the itershape, it shouldn't allow broadcasting # of that dimension to a bigger value assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['writeonly', 'allocate']], op_axes=[[0, 1, None], None], itershape=(-1, 1, 4)) # Test bug that for no op_axes but itershape, they are NULLed correctly i = np.nditer([np.ones(2), None, None], itershape=(2,)) def test_iter_broadcasting_errors(): # Check that errors are thrown for bad broadcasting shapes # 1D with 1D assert_raises(ValueError, nditer, [arange(2), arange(3)], [], [['readonly']]*2) # 2D with 1D assert_raises(ValueError, nditer, [arange(6).reshape(2, 3), arange(2)], [], [['readonly']]*2) # 2D with 2D assert_raises(ValueError, nditer, [arange(6).reshape(2, 3), arange(9).reshape(3, 3)], [], [['readonly']]*2) assert_raises(ValueError, nditer, [arange(6).reshape(2, 3), arange(4).reshape(2, 2)], [], [['readonly']]*2) # 3D with 3D assert_raises(ValueError, nditer, [arange(36).reshape(3, 3, 4), arange(24).reshape(2, 3, 4)], [], [['readonly']]*2) assert_raises(ValueError, nditer, [arange(8).reshape(2, 4, 1), arange(24).reshape(2, 3, 4)], [], [['readonly']]*2) # Verify that the error message mentions the right shapes try: nditer([arange(2).reshape(1, 2, 1), arange(3).reshape(1, 3), arange(6).reshape(2, 3)], [], [['readonly'], ['readonly'], ['writeonly', 'no_broadcast']]) raise AssertionError('Should have raised a broadcast error') except ValueError as e: msg = str(e) # The message should contain the shape of the 3rd operand assert_(msg.find('(2,3)') >= 0, 'Message "%s" doesn\'t contain operand shape (2,3)' % msg) # The message should contain the broadcast shape assert_(msg.find('(1,2,3)') >= 0, 'Message "%s" doesn\'t contain broadcast shape (1,2,3)' % msg) try: nditer([arange(6).reshape(2, 3), arange(2)], [], [['readonly'], ['readonly']], op_axes=[[0, 1], [0, np.newaxis]], itershape=(4, 3)) raise AssertionError('Should have raised a broadcast error') except ValueError as e: msg = str(e) # The message should contain "shape->remappedshape" for each operand assert_(msg.find('(2,3)->(2,3)') >= 0, 'Message "%s" doesn\'t contain operand shape (2,3)->(2,3)' % msg) assert_(msg.find('(2,)->(2,newaxis)') >= 0, ('Message "%s" doesn\'t contain remapped operand shape' + '(2,)->(2,newaxis)') % msg) # The message should contain the itershape parameter assert_(msg.find('(4,3)') >= 0, 'Message "%s" doesn\'t contain itershape parameter (4,3)' % msg) try: nditer([np.zeros((2, 1, 1)), np.zeros((2,))], [], [['writeonly', 'no_broadcast'], ['readonly']]) raise AssertionError('Should have raised a broadcast error') except ValueError as e: msg = str(e) # The message should contain the shape of the bad operand assert_(msg.find('(2,1,1)') >= 0, 'Message "%s" doesn\'t contain operand shape (2,1,1)' % msg) # The message should contain the broadcast shape assert_(msg.find('(2,1,2)') >= 0, 'Message "%s" doesn\'t contain the broadcast shape (2,1,2)' % msg) def test_iter_flags_errors(): # Check that bad combinations of flags produce errors a = arange(6) # Not enough operands assert_raises(ValueError, nditer, [], [], []) # Too many operands assert_raises(ValueError, nditer, [a]*100, [], [['readonly']]*100) # Bad global flag assert_raises(ValueError, nditer, [a], ['bad flag'], [['readonly']]) # Bad op flag assert_raises(ValueError, nditer, [a], [], [['readonly', 'bad flag']]) # Bad order parameter assert_raises(ValueError, nditer, [a], [], [['readonly']], order='G') # Bad casting parameter assert_raises(ValueError, nditer, [a], [], [['readonly']], casting='noon') # op_flags must match ops assert_raises(ValueError, nditer, [a]*3, [], [['readonly']]*2) # Cannot track both a C and an F index assert_raises(ValueError, nditer, a, ['c_index', 'f_index'], [['readonly']]) # Inner iteration and multi-indices/indices are incompatible assert_raises(ValueError, nditer, a, ['external_loop', 'multi_index'], [['readonly']]) assert_raises(ValueError, nditer, a, ['external_loop', 'c_index'], [['readonly']]) assert_raises(ValueError, nditer, a, ['external_loop', 'f_index'], [['readonly']]) # Must specify exactly one of readwrite/readonly/writeonly per operand assert_raises(ValueError, nditer, a, [], [[]]) assert_raises(ValueError, nditer, a, [], [['readonly', 'writeonly']]) assert_raises(ValueError, nditer, a, [], [['readonly', 'readwrite']]) assert_raises(ValueError, nditer, a, [], [['writeonly', 'readwrite']]) assert_raises(ValueError, nditer, a, [], [['readonly', 'writeonly', 'readwrite']]) # Python scalars are always readonly assert_raises(TypeError, nditer, 1.5, [], [['writeonly']]) assert_raises(TypeError, nditer, 1.5, [], [['readwrite']]) # Array scalars are always readonly assert_raises(TypeError, nditer, np.int32(1), [], [['writeonly']]) assert_raises(TypeError, nditer, np.int32(1), [], [['readwrite']]) # Check readonly array a.flags.writeable = False assert_raises(ValueError, nditer, a, [], [['writeonly']]) assert_raises(ValueError, nditer, a, [], [['readwrite']]) a.flags.writeable = True # Multi-indices available only with the multi_index flag i = nditer(arange(6), [], [['readonly']]) assert_raises(ValueError, lambda i:i.multi_index, i) # Index available only with an index flag assert_raises(ValueError, lambda i:i.index, i) # GotoCoords and GotoIndex incompatible with buffering or no_inner def assign_multi_index(i): i.multi_index = (0,) def assign_index(i): i.index = 0 def assign_iterindex(i): i.iterindex = 0 def assign_iterrange(i): i.iterrange = (0, 1) i = nditer(arange(6), ['external_loop']) assert_raises(ValueError, assign_multi_index, i) assert_raises(ValueError, assign_index, i) assert_raises(ValueError, assign_iterindex, i) assert_raises(ValueError, assign_iterrange, i) i = nditer(arange(6), ['buffered']) assert_raises(ValueError, assign_multi_index, i) assert_raises(ValueError, assign_index, i) assert_raises(ValueError, assign_iterrange, i) # Can't iterate if size is zero assert_raises(ValueError, nditer, np.array([])) def test_iter_slice(): a, b, c = np.arange(3), np.arange(3), np.arange(3.) i = nditer([a, b, c], [], ['readwrite']) with i: i[0:2] = (3, 3) assert_equal(a, [3, 1, 2]) assert_equal(b, [3, 1, 2]) assert_equal(c, [0, 1, 2]) i[1] = 12 assert_equal(i[0:2], [3, 12]) def test_iter_assign_mapping(): a = np.arange(24, dtype='f8').reshape(2, 3, 4).T it = np.nditer(a, [], [['readwrite', 'updateifcopy']], casting='same_kind', op_dtypes=[np.dtype('f4')]) with it: it.operands[0][...] = 3 it.operands[0][...] = 14 assert_equal(a, 14) it = np.nditer(a, [], [['readwrite', 'updateifcopy']], casting='same_kind', op_dtypes=[np.dtype('f4')]) with it: x = it.operands[0][-1:1] x[...] = 14 it.operands[0][...] = -1234 assert_equal(a, -1234) # check for no warnings on dealloc x = None it = None def test_iter_nbo_align_contig(): # Check that byte order, alignment, and contig changes work # Byte order change by requesting a specific dtype a = np.arange(6, dtype='f4') au = a.byteswap().newbyteorder() assert_(a.dtype.byteorder != au.dtype.byteorder) i = nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) with i: # context manager triggers UPDATEIFCOPY on i at exit assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder) assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder) assert_equal(i.operands[0], a) i.operands[0][:] = 2 assert_equal(au, [2]*6) del i # should not raise a warning # Byte order change by requesting NBO a = np.arange(6, dtype='f4') au = a.byteswap().newbyteorder() assert_(a.dtype.byteorder != au.dtype.byteorder) with nditer(au, [], [['readwrite', 'updateifcopy', 'nbo']], casting='equiv') as i: # context manager triggers UPDATEIFCOPY on i at exit assert_equal(i.dtypes[0].byteorder, a.dtype.byteorder) assert_equal(i.operands[0].dtype.byteorder, a.dtype.byteorder) assert_equal(i.operands[0], a) i.operands[0][:] = 12345 i.operands[0][:] = 2 assert_equal(au, [2]*6) # Unaligned input a = np.zeros((6*4+1,), dtype='i1')[1:] a.dtype = 'f4' a[:] = np.arange(6, dtype='f4') assert_(not a.flags.aligned) # Without 'aligned', shouldn't copy i = nditer(a, [], [['readonly']]) assert_(not i.operands[0].flags.aligned) assert_equal(i.operands[0], a) # With 'aligned', should make a copy with nditer(a, [], [['readwrite', 'updateifcopy', 'aligned']]) as i: assert_(i.operands[0].flags.aligned) # context manager triggers UPDATEIFCOPY on i at exit assert_equal(i.operands[0], a) i.operands[0][:] = 3 assert_equal(a, [3]*6) # Discontiguous input a = arange(12) # If it is contiguous, shouldn't copy i = nditer(a[:6], [], [['readonly']]) assert_(i.operands[0].flags.contiguous) assert_equal(i.operands[0], a[:6]) # If it isn't contiguous, should buffer i = nditer(a[::2], ['buffered', 'external_loop'], [['readonly', 'contig']], buffersize=10) assert_(i[0].flags.contiguous) assert_equal(i[0], a[::2]) def test_iter_array_cast(): # Check that arrays are cast as requested # No cast 'f4' -> 'f4' a = np.arange(6, dtype='f4').reshape(2, 3) i = nditer(a, [], [['readwrite']], op_dtypes=[np.dtype('f4')]) with i: assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('f4')) # Byte-order cast '<f4' -> '>f4' a = np.arange(6, dtype='<f4').reshape(2, 3) with nditer(a, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('>f4')]) as i: assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('>f4')) # Safe case 'f4' -> 'f8' a = np.arange(24, dtype='f4').reshape(2, 3, 4).swapaxes(1, 2) i = nditer(a, [], [['readonly', 'copy']], casting='safe', op_dtypes=[np.dtype('f8')]) assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('f8')) # The memory layout of the temporary should match a (a is (48,4,16)) # except negative strides get flipped to positive strides. assert_equal(i.operands[0].strides, (96, 8, 32)) a = a[::-1,:, ::-1] i = nditer(a, [], [['readonly', 'copy']], casting='safe', op_dtypes=[np.dtype('f8')]) assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('f8')) assert_equal(i.operands[0].strides, (96, 8, 32)) # Same-kind cast 'f8' -> 'f4' -> 'f8' a = np.arange(24, dtype='f8').reshape(2, 3, 4).T with nditer(a, [], [['readwrite', 'updateifcopy']], casting='same_kind', op_dtypes=[np.dtype('f4')]) as i: assert_equal(i.operands[0], a) assert_equal(i.operands[0].dtype, np.dtype('f4')) assert_equal(i.operands[0].strides, (4, 16, 48)) # Check that WRITEBACKIFCOPY is activated at exit i.operands[0][2, 1, 1] = -12.5 assert_(a[2, 1, 1] != -12.5) assert_equal(a[2, 1, 1], -12.5) a = np.arange(6, dtype='i4')[::-2] with nditer(a, [], [['writeonly', 'updateifcopy']], casting='unsafe', op_dtypes=[np.dtype('f4')]) as i: assert_equal(i.operands[0].dtype, np.dtype('f4')) # Even though the stride was negative in 'a', it # becomes positive in the temporary assert_equal(i.operands[0].strides, (4,)) i.operands[0][:] = [1, 2, 3] assert_equal(a, [1, 2, 3]) def test_iter_array_cast_errors(): # Check that invalid casts are caught # Need to enable copying for casts to occur assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readonly']], op_dtypes=[np.dtype('f8')]) # Also need to allow casting for casts to occur assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readonly', 'copy']], casting='no', op_dtypes=[np.dtype('f8')]) assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readonly', 'copy']], casting='equiv', op_dtypes=[np.dtype('f8')]) assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], [['writeonly', 'updateifcopy']], casting='no', op_dtypes=[np.dtype('f4')]) assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], [['writeonly', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) # '<f4' -> '>f4' should not work with casting='no' assert_raises(TypeError, nditer, arange(2, dtype='<f4'), [], [['readonly', 'copy']], casting='no', op_dtypes=[np.dtype('>f4')]) # 'f4' -> 'f8' is a safe cast, but 'f8' -> 'f4' isn't assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readwrite', 'updateifcopy']], casting='safe', op_dtypes=[np.dtype('f8')]) assert_raises(TypeError, nditer, arange(2, dtype='f8'), [], [['readwrite', 'updateifcopy']], casting='safe', op_dtypes=[np.dtype('f4')]) # 'f4' -> 'i4' is neither a safe nor a same-kind cast assert_raises(TypeError, nditer, arange(2, dtype='f4'), [], [['readonly', 'copy']], casting='same_kind', op_dtypes=[np.dtype('i4')]) assert_raises(TypeError, nditer, arange(2, dtype='i4'), [], [['writeonly', 'updateifcopy']], casting='same_kind', op_dtypes=[np.dtype('f4')]) def test_iter_scalar_cast(): # Check that scalars are cast as requested # No cast 'f4' -> 'f4' i = nditer(np.float32(2.5), [], [['readonly']], op_dtypes=[np.dtype('f4')]) assert_equal(i.dtypes[0], np.dtype('f4')) assert_equal(i.value.dtype, np.dtype('f4')) assert_equal(i.value, 2.5) # Safe cast 'f4' -> 'f8' i = nditer(np.float32(2.5), [], [['readonly', 'copy']], casting='safe', op_dtypes=[np.dtype('f8')]) assert_equal(i.dtypes[0], np.dtype('f8')) assert_equal(i.value.dtype, np.dtype('f8')) assert_equal(i.value, 2.5) # Same-kind cast 'f8' -> 'f4' i = nditer(np.float64(2.5), [], [['readonly', 'copy']], casting='same_kind', op_dtypes=[np.dtype('f4')]) assert_equal(i.dtypes[0], np.dtype('f4')) assert_equal(i.value.dtype, np.dtype('f4')) assert_equal(i.value, 2.5) # Unsafe cast 'f8' -> 'i4' i = nditer(np.float64(3.0), [], [['readonly', 'copy']], casting='unsafe', op_dtypes=[np.dtype('i4')]) assert_equal(i.dtypes[0], np.dtype('i4')) assert_equal(i.value.dtype, np.dtype('i4')) assert_equal(i.value, 3) # Readonly scalars may be cast even without setting COPY or BUFFERED i = nditer(3, [], [['readonly']], op_dtypes=[np.dtype('f8')]) assert_equal(i[0].dtype, np.dtype('f8')) assert_equal(i[0], 3.) def test_iter_scalar_cast_errors(): # Check that invalid casts are caught # Need to allow copying/buffering for write casts of scalars to occur assert_raises(TypeError, nditer, np.float32(2), [], [['readwrite']], op_dtypes=[np.dtype('f8')]) assert_raises(TypeError, nditer, 2.5, [], [['readwrite']], op_dtypes=[np.dtype('f4')]) # 'f8' -> 'f4' isn't a safe cast if the value would overflow assert_raises(TypeError, nditer, np.float64(1e60), [], [['readonly']], casting='safe', op_dtypes=[np.dtype('f4')]) # 'f4' -> 'i4' is neither a safe nor a same-kind cast assert_raises(TypeError, nditer, np.float32(2), [], [['readonly']], casting='same_kind', op_dtypes=[np.dtype('i4')]) def test_iter_object_arrays_basic(): # Check that object arrays work obj = {'a':3,'b':'d'} a = np.array([[1, 2, 3], None, obj, None], dtype='O') if HAS_REFCOUNT: rc = sys.getrefcount(obj) # Need to allow references for object arrays assert_raises(TypeError, nditer, a) if HAS_REFCOUNT: assert_equal(sys.getrefcount(obj), rc) i = nditer(a, ['refs_ok'], ['readonly']) vals = [x_[()] for x_ in i] assert_equal(np.array(vals, dtype='O'), a) vals, i, x = [None]*3 if HAS_REFCOUNT: assert_equal(sys.getrefcount(obj), rc) i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'], ['readonly'], order='C') assert_(i.iterationneedsapi) vals = [x_[()] for x_ in i] assert_equal(np.array(vals, dtype='O'), a.reshape(2, 2).ravel(order='F')) vals, i, x = [None]*3 if HAS_REFCOUNT: assert_equal(sys.getrefcount(obj), rc) i = nditer(a.reshape(2, 2).T, ['refs_ok', 'buffered'], ['readwrite'], order='C') with i: for x in i: x[...] = None vals, i, x = [None]*3 if HAS_REFCOUNT: assert_(sys.getrefcount(obj) == rc-1) assert_equal(a, np.array([None]*4, dtype='O')) def test_iter_object_arrays_conversions(): # Conversions to/from objects a = np.arange(6, dtype='O') i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], casting='unsafe', op_dtypes='i4') with i: for x in i: x[...] += 1 assert_equal(a, np.arange(6)+1) a = np.arange(6, dtype='i4') i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], casting='unsafe', op_dtypes='O') with i: for x in i: x[...] += 1 assert_equal(a, np.arange(6)+1) # Non-contiguous object array a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'O')]) a = a['a'] a[:] = np.arange(6) i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], casting='unsafe', op_dtypes='i4') with i: for x in i: x[...] += 1 assert_equal(a, np.arange(6)+1) #Non-contiguous value array a = np.zeros((6,), dtype=[('p', 'i1'), ('a', 'i4')]) a = a['a'] a[:] = np.arange(6) + 98172488 i = nditer(a, ['refs_ok', 'buffered'], ['readwrite'], casting='unsafe', op_dtypes='O') with i: ob = i[0][()] if HAS_REFCOUNT: rc = sys.getrefcount(ob) for x in i: x[...] += 1 if HAS_REFCOUNT: assert_(sys.getrefcount(ob) == rc-1) assert_equal(a, np.arange(6)+98172489) def test_iter_common_dtype(): # Check that the iterator finds a common data type correctly i = nditer([array([3], dtype='f4'), array([0], dtype='f8')], ['common_dtype'], [['readonly', 'copy']]*2, casting='safe') assert_equal(i.dtypes[0], np.dtype('f8')) assert_equal(i.dtypes[1], np.dtype('f8')) i = nditer([array([3], dtype='i4'), array([0], dtype='f4')], ['common_dtype'], [['readonly', 'copy']]*2, casting='safe') assert_equal(i.dtypes[0], np.dtype('f8')) assert_equal(i.dtypes[1], np.dtype('f8')) i = nditer([array([3], dtype='f4'), array(0, dtype='f8')], ['common_dtype'], [['readonly', 'copy']]*2, casting='same_kind') assert_equal(i.dtypes[0], np.dtype('f4')) assert_equal(i.dtypes[1], np.dtype('f4')) i = nditer([array([3], dtype='u4'), array(0, dtype='i4')], ['common_dtype'], [['readonly', 'copy']]*2, casting='safe') assert_equal(i.dtypes[0], np.dtype('u4')) assert_equal(i.dtypes[1], np.dtype('u4')) i = nditer([array([3], dtype='u4'), array(-12, dtype='i4')], ['common_dtype'], [['readonly', 'copy']]*2, casting='safe') assert_equal(i.dtypes[0], np.dtype('i8')) assert_equal(i.dtypes[1], np.dtype('i8')) i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), array([2j], dtype='c8'), array([9], dtype='f8')], ['common_dtype'], [['readonly', 'copy']]*4, casting='safe') assert_equal(i.dtypes[0], np.dtype('c16')) assert_equal(i.dtypes[1], np.dtype('c16')) assert_equal(i.dtypes[2], np.dtype('c16')) assert_equal(i.dtypes[3], np.dtype('c16')) assert_equal(i.value, (3, -12, 2j, 9)) # When allocating outputs, other outputs aren't factored in i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], [], [['readonly', 'copy'], ['writeonly', 'allocate'], ['writeonly']], casting='safe') assert_equal(i.dtypes[0], np.dtype('i4')) assert_equal(i.dtypes[1], np.dtype('i4')) assert_equal(i.dtypes[2], np.dtype('c16')) # But, if common data types are requested, they are i = nditer([array([3], dtype='i4'), None, array([2j], dtype='c16')], ['common_dtype'], [['readonly', 'copy'], ['writeonly', 'allocate'], ['writeonly']], casting='safe') assert_equal(i.dtypes[0], np.dtype('c16')) assert_equal(i.dtypes[1], np.dtype('c16')) assert_equal(i.dtypes[2], np.dtype('c16')) def test_iter_copy_if_overlap(): # Ensure the iterator makes copies on read/write overlap, if requested # Copy not needed, 1 op for flag in ['readonly', 'writeonly', 'readwrite']: a = arange(10) i = nditer([a], ['copy_if_overlap'], [[flag]]) with i: assert_(i.operands[0] is a) # Copy needed, 2 ops, read-write overlap x = arange(10) a = x[1:] b = x[:-1] with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) as i: assert_(not np.shares_memory(*i.operands)) # Copy not needed with elementwise, 2 ops, exactly same arrays x = arange(10) a = x b = x i = nditer([a, b], ['copy_if_overlap'], [['readonly', 'overlap_assume_elementwise'], ['readwrite', 'overlap_assume_elementwise']]) with i: assert_(i.operands[0] is a and i.operands[1] is b) with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['readwrite']]) as i: assert_(i.operands[0] is a and not np.shares_memory(i.operands[1], b)) # Copy not needed, 2 ops, no overlap x = arange(10) a = x[::2] b = x[1::2] i = nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']]) assert_(i.operands[0] is a and i.operands[1] is b) # Copy needed, 2 ops, read-write overlap x = arange(4, dtype=np.int8) a = x[3:] b = x.view(np.int32)[:1] with nditer([a, b], ['copy_if_overlap'], [['readonly'], ['writeonly']]) as i: assert_(not np.shares_memory(*i.operands)) # Copy needed, 3 ops, read-write overlap for flag in ['writeonly', 'readwrite']: x = np.ones([10, 10]) a = x b = x.T c = x with nditer([a, b, c], ['copy_if_overlap'], [['readonly'], ['readonly'], [flag]]) as i: a2, b2, c2 = i.operands assert_(not np.shares_memory(a2, c2)) assert_(not np.shares_memory(b2, c2)) # Copy not needed, 3 ops, read-only overlap x = np.ones([10, 10]) a = x b = x.T c = x i = nditer([a, b, c], ['copy_if_overlap'], [['readonly'], ['readonly'], ['readonly']]) a2, b2, c2 = i.operands assert_(a is a2) assert_(b is b2) assert_(c is c2) # Copy not needed, 3 ops, read-only overlap x = np.ones([10, 10]) a = x b = np.ones([10, 10]) c = x.T i = nditer([a, b, c], ['copy_if_overlap'], [['readonly'], ['writeonly'], ['readonly']]) a2, b2, c2 = i.operands assert_(a is a2) assert_(b is b2) assert_(c is c2) # Copy not needed, 3 ops, write-only overlap x = np.arange(7) a = x[:3] b = x[3:6] c = x[4:7] i = nditer([a, b, c], ['copy_if_overlap'], [['readonly'], ['writeonly'], ['writeonly']]) a2, b2, c2 = i.operands assert_(a is a2) assert_(b is b2) assert_(c is c2) def test_iter_op_axes(): # Check that custom axes work # Reverse the axes a = arange(6).reshape(2, 3) i = nditer([a, a.T], [], [['readonly']]*2, op_axes=[[0, 1], [1, 0]]) assert_(all([x == y for (x, y) in i])) a = arange(24).reshape(2, 3, 4) i = nditer([a.T, a], [], [['readonly']]*2, op_axes=[[2, 1, 0], None]) assert_(all([x == y for (x, y) in i])) # Broadcast 1D to any dimension a = arange(1, 31).reshape(2, 3, 5) b = arange(1, 3) i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [0, -1, -1]]) assert_equal([x*y for (x, y) in i], (a*b.reshape(2, 1, 1)).ravel()) b = arange(1, 4) i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [-1, 0, -1]]) assert_equal([x*y for (x, y) in i], (a*b.reshape(1, 3, 1)).ravel()) b = arange(1, 6) i = nditer([a, b], [], [['readonly']]*2, op_axes=[None, [np.newaxis, np.newaxis, 0]]) assert_equal([x*y for (x, y) in i], (a*b.reshape(1, 1, 5)).ravel()) # Inner product-style broadcasting a = arange(24).reshape(2, 3, 4) b = arange(40).reshape(5, 2, 4) i = nditer([a, b], ['multi_index'], [['readonly']]*2, op_axes=[[0, 1, -1, -1], [-1, -1, 0, 1]]) assert_equal(i.shape, (2, 3, 5, 2)) # Matrix product-style broadcasting a = arange(12).reshape(3, 4) b = arange(20).reshape(4, 5) i = nditer([a, b], ['multi_index'], [['readonly']]*2, op_axes=[[0, -1], [-1, 1]]) assert_equal(i.shape, (3, 5)) def test_iter_op_axes_errors(): # Check that custom axes throws errors for bad inputs # Wrong number of items in op_axes a = arange(6).reshape(2, 3) assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0], [1], [0]]) # Out of bounds items in op_axes assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[2, 1], [0, 1]]) assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 1], [2, -1]]) # Duplicate items in op_axes assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 0], [0, 1]]) assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 1], [1, 1]]) # Different sized arrays in op_axes assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 1], [0, 1, 0]]) # Non-broadcastable dimensions in the result assert_raises(ValueError, nditer, [a, a], [], [['readonly']]*2, op_axes=[[0, 1], [1, 0]]) def test_iter_copy(): # Check that copying the iterator works correctly a = arange(24).reshape(2, 3, 4) # Simple iterator i = nditer(a) j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) i.iterindex = 3 j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) # Buffered iterator i = nditer(a, ['buffered', 'ranged'], order='F', buffersize=3) j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) i.iterindex = 3 j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) i.iterrange = (3, 9) j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) i.iterrange = (2, 18) next(i) next(i) j = i.copy() assert_equal([x[()] for x in i], [x[()] for x in j]) # Casting iterator with nditer(a, ['buffered'], order='F', casting='unsafe', op_dtypes='f8', buffersize=5) as i: j = i.copy() assert_equal([x[()] for x in j], a.ravel(order='F')) a = arange(24, dtype='<i4').reshape(2, 3, 4) with nditer(a, ['buffered'], order='F', casting='unsafe', op_dtypes='>f8', buffersize=5) as i: j = i.copy() assert_equal([x[()] for x in j], a.ravel(order='F')) @pytest.mark.parametrize("dtype", np.typecodes["All"]) @pytest.mark.parametrize("loop_dtype", np.typecodes["All"]) @pytest.mark.filterwarnings("ignore::numpy.ComplexWarning") def test_iter_copy_casts(dtype, loop_dtype): # Ensure the dtype is never flexible: if loop_dtype.lower() == "m": loop_dtype = loop_dtype + "[ms]" elif np.dtype(loop_dtype).itemsize == 0: loop_dtype = loop_dtype + "50" # Make things a bit more interesting by requiring a byte-swap as well: arr = np.ones(1000, dtype=np.dtype(dtype).newbyteorder()) try: expected = arr.astype(loop_dtype) except Exception: # Some casts are not possible, do not worry about them return it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"], op_dtypes=[loop_dtype], casting="unsafe") if np.issubdtype(np.dtype(loop_dtype), np.number): # Casting to strings may be strange, but for simple dtypes do not rely # on the cast being correct: assert_array_equal(expected, np.ones(1000, dtype=loop_dtype)) it_copy = it.copy() res = next(it) del it res_copy = next(it_copy) del it_copy assert_array_equal(res, expected) assert_array_equal(res_copy, expected) def test_iter_copy_casts_structured(): # Test a complicated structured dtype for casting, as it requires # both multiple steps and a more complex casting setup. # Includes a structured -> unstructured (any to object), and many other # casts, which cause this to require all steps in the casting machinery # one level down as well as the iterator copy (which uses NpyAuxData clone) in_dtype = np.dtype([("a", np.dtype("i,")), ("b", np.dtype(">i,<i,>d,S17,>d,(3)f,O,i1"))]) out_dtype = np.dtype([("a", np.dtype("O")), ("b", np.dtype(">i,>i,S17,>d,>U3,(3)d,i1,O"))]) arr = np.ones(1000, dtype=in_dtype) it = np.nditer((arr,), ["buffered", "external_loop", "refs_ok"], op_dtypes=[out_dtype], casting="unsafe") it_copy = it.copy() res1 = next(it) del it res2 = next(it_copy) del it_copy expected = arr["a"].astype(out_dtype["a"]) assert_array_equal(res1["a"], expected) assert_array_equal(res2["a"], expected) for field in in_dtype["b"].names: # Note that the .base avoids the subarray field expected = arr["b"][field].astype(out_dtype["b"][field].base) assert_array_equal(res1["b"][field], expected) assert_array_equal(res2["b"][field], expected) def test_iter_allocate_output_simple(): # Check that the iterator will properly allocate outputs # Simple case a = arange(6) i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')]) assert_equal(i.operands[1].shape, a.shape) assert_equal(i.operands[1].dtype, np.dtype('f4')) def test_iter_allocate_output_buffered_readwrite(): # Allocated output with buffering + delay_bufalloc a = arange(6) i = nditer([a, None], ['buffered', 'delay_bufalloc'], [['readonly'], ['allocate', 'readwrite']]) with i: i.operands[1][:] = 1 i.reset() for x in i: x[1][...] += x[0][...] assert_equal(i.operands[1], a+1) def test_iter_allocate_output_itorder(): # The allocated output should match the iteration order # C-order input, best iteration order a = arange(6, dtype='i4').reshape(2, 3) i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')]) assert_equal(i.operands[1].shape, a.shape) assert_equal(i.operands[1].strides, a.strides) assert_equal(i.operands[1].dtype, np.dtype('f4')) # F-order input, best iteration order a = arange(24, dtype='i4').reshape(2, 3, 4).T i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')]) assert_equal(i.operands[1].shape, a.shape) assert_equal(i.operands[1].strides, a.strides) assert_equal(i.operands[1].dtype, np.dtype('f4')) # Non-contiguous input, C iteration order a = arange(24, dtype='i4').reshape(2, 3, 4).swapaxes(0, 1) i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']], order='C', op_dtypes=[None, np.dtype('f4')]) assert_equal(i.operands[1].shape, a.shape) assert_equal(i.operands[1].strides, (32, 16, 4)) assert_equal(i.operands[1].dtype, np.dtype('f4')) def test_iter_allocate_output_opaxes(): # Specifying op_axes should work a = arange(24, dtype='i4').reshape(2, 3, 4) i = nditer([None, a], [], [['writeonly', 'allocate'], ['readonly']], op_dtypes=[np.dtype('u4'), None], op_axes=[[1, 2, 0], None]) assert_equal(i.operands[0].shape, (4, 2, 3)) assert_equal(i.operands[0].strides, (4, 48, 16)) assert_equal(i.operands[0].dtype, np.dtype('u4')) def test_iter_allocate_output_types_promotion(): # Check type promotion of automatic outputs i = nditer([array([3], dtype='f4'), array([0], dtype='f8'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('f8')) i = nditer([array([3], dtype='i4'), array([0], dtype='f4'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('f8')) i = nditer([array([3], dtype='f4'), array(0, dtype='f8'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('f4')) i = nditer([array([3], dtype='u4'), array(0, dtype='i4'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('u4')) i = nditer([array([3], dtype='u4'), array(-12, dtype='i4'), None], [], [['readonly']]*2+[['writeonly', 'allocate']]) assert_equal(i.dtypes[2], np.dtype('i8')) def test_iter_allocate_output_types_byte_order(): # Verify the rules for byte order changes # When there's just one input, the output type exactly matches a = array([3], dtype='u4').newbyteorder() i = nditer([a, None], [], [['readonly'], ['writeonly', 'allocate']]) assert_equal(i.dtypes[0], i.dtypes[1]) # With two or more inputs, the output type is in native byte order i = nditer([a, a, None], [], [['readonly'], ['readonly'], ['writeonly', 'allocate']]) assert_(i.dtypes[0] != i.dtypes[2]) assert_equal(i.dtypes[0].newbyteorder('='), i.dtypes[2]) def test_iter_allocate_output_types_scalar(): # If the inputs are all scalars, the output should be a scalar i = nditer([None, 1, 2.3, np.float32(12), np.complex128(3)], [], [['writeonly', 'allocate']] + [['readonly']]*4) assert_equal(i.operands[0].dtype, np.dtype('complex128')) assert_equal(i.operands[0].ndim, 0) def test_iter_allocate_output_subtype(): # Make sure that the subtype with priority wins class MyNDArray(np.ndarray): __array_priority__ = 15 # subclass vs ndarray a = np.array([[1, 2], [3, 4]]).view(MyNDArray) b = np.arange(4).reshape(2, 2).T i = nditer([a, b, None], [], [['readonly'], ['readonly'], ['writeonly', 'allocate']]) assert_equal(type(a), type(i.operands[2])) assert_(type(b) is not type(i.operands[2])) assert_equal(i.operands[2].shape, (2, 2)) # If subtypes are disabled, we should get back an ndarray. i = nditer([a, b, None], [], [['readonly'], ['readonly'], ['writeonly', 'allocate', 'no_subtype']]) assert_equal(type(b), type(i.operands[2])) assert_(type(a) is not type(i.operands[2])) assert_equal(i.operands[2].shape, (2, 2)) def test_iter_allocate_output_errors(): # Check that the iterator will throw errors for bad output allocations # Need an input if no output data type is specified a = arange(6) assert_raises(TypeError, nditer, [a, None], [], [['writeonly'], ['writeonly', 'allocate']]) # Allocated output should be flagged for writing assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['allocate', 'readonly']]) # Allocated output can't have buffering without delayed bufalloc assert_raises(ValueError, nditer, [a, None], ['buffered'], ['allocate', 'readwrite']) # Must specify at least one input assert_raises(ValueError, nditer, [None, None], [], [['writeonly', 'allocate'], ['writeonly', 'allocate']], op_dtypes=[np.dtype('f4'), np.dtype('f4')]) # If using op_axes, must specify all the axes a = arange(24, dtype='i4').reshape(2, 3, 4) assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')], op_axes=[None, [0, np.newaxis, 1]]) # If using op_axes, the axes must be within bounds assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')], op_axes=[None, [0, 3, 1]]) # If using op_axes, there can't be duplicates assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['writeonly', 'allocate']], op_dtypes=[None, np.dtype('f4')], op_axes=[None, [0, 2, 1, 0]]) # Not all axes may be specified if a reduction. If there is a hole # in op_axes, this is an error. a = arange(24, dtype='i4').reshape(2, 3, 4) assert_raises(ValueError, nditer, [a, None], ["reduce_ok"], [['readonly'], ['readwrite', 'allocate']], op_dtypes=[None, np.dtype('f4')], op_axes=[None, [0, np.newaxis, 2]]) def test_iter_remove_axis(): a = arange(24).reshape(2, 3, 4) i = nditer(a, ['multi_index']) i.remove_axis(1) assert_equal([x for x in i], a[:, 0,:].ravel()) a = a[::-1,:,:] i = nditer(a, ['multi_index']) i.remove_axis(0) assert_equal([x for x in i], a[0,:,:].ravel()) def test_iter_remove_multi_index_inner_loop(): # Check that removing multi-index support works a = arange(24).reshape(2, 3, 4) i = nditer(a, ['multi_index']) assert_equal(i.ndim, 3) assert_equal(i.shape, (2, 3, 4)) assert_equal(i.itviews[0].shape, (2, 3, 4)) # Removing the multi-index tracking causes all dimensions to coalesce before = [x for x in i] i.remove_multi_index() after = [x for x in i] assert_equal(before, after) assert_equal(i.ndim, 1) assert_raises(ValueError, lambda i:i.shape, i) assert_equal(i.itviews[0].shape, (24,)) # Removing the inner loop means there's just one iteration i.reset() assert_equal(i.itersize, 24) assert_equal(i[0].shape, tuple()) i.enable_external_loop() assert_equal(i.itersize, 24) assert_equal(i[0].shape, (24,)) assert_equal(i.value, arange(24)) def test_iter_iterindex(): # Make sure iterindex works buffersize = 5 a = arange(24).reshape(4, 3, 2) for flags in ([], ['buffered']): i = nditer(a, flags, buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 2 assert_equal(iter_iterindices(i), list(range(2, 24))) i = nditer(a, flags, order='F', buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 5 assert_equal(iter_iterindices(i), list(range(5, 24))) i = nditer(a[::-1], flags, order='F', buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 9 assert_equal(iter_iterindices(i), list(range(9, 24))) i = nditer(a[::-1, ::-1], flags, order='C', buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 13 assert_equal(iter_iterindices(i), list(range(13, 24))) i = nditer(a[::1, ::-1], flags, buffersize=buffersize) assert_equal(iter_iterindices(i), list(range(24))) i.iterindex = 23 assert_equal(iter_iterindices(i), list(range(23, 24))) i.reset() i.iterindex = 2 assert_equal(iter_iterindices(i), list(range(2, 24))) def test_iter_iterrange(): # Make sure getting and resetting the iterrange works buffersize = 5 a = arange(24, dtype='i4').reshape(4, 3, 2) a_fort = a.ravel(order='F') i = nditer(a, ['ranged'], ['readonly'], order='F', buffersize=buffersize) assert_equal(i.iterrange, (0, 24)) assert_equal([x[()] for x in i], a_fort) for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: i.iterrange = r assert_equal(i.iterrange, r) assert_equal([x[()] for x in i], a_fort[r[0]:r[1]]) i = nditer(a, ['ranged', 'buffered'], ['readonly'], order='F', op_dtypes='f8', buffersize=buffersize) assert_equal(i.iterrange, (0, 24)) assert_equal([x[()] for x in i], a_fort) for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: i.iterrange = r assert_equal(i.iterrange, r) assert_equal([x[()] for x in i], a_fort[r[0]:r[1]]) def get_array(i): val = np.array([], dtype='f8') for x in i: val = np.concatenate((val, x)) return val i = nditer(a, ['ranged', 'buffered', 'external_loop'], ['readonly'], order='F', op_dtypes='f8', buffersize=buffersize) assert_equal(i.iterrange, (0, 24)) assert_equal(get_array(i), a_fort) for r in [(0, 24), (1, 2), (3, 24), (5, 5), (0, 20), (23, 24)]: i.iterrange = r assert_equal(i.iterrange, r) assert_equal(get_array(i), a_fort[r[0]:r[1]]) def test_iter_buffering(): # Test buffering with several buffer sizes and types arrays = [] # F-order swapped array arrays.append(np.arange(24, dtype='c16').reshape(2, 3, 4).T.newbyteorder().byteswap()) # Contiguous 1-dimensional array arrays.append(np.arange(10, dtype='f4')) # Unaligned array a = np.zeros((4*16+1,), dtype='i1')[1:] a.dtype = 'i4' a[:] = np.arange(16, dtype='i4') arrays.append(a) # 4-D F-order array arrays.append(np.arange(120, dtype='i4').reshape(5, 3, 2, 4).T) for a in arrays: for buffersize in (1, 2, 3, 5, 8, 11, 16, 1024): vals = [] i = nditer(a, ['buffered', 'external_loop'], [['readonly', 'nbo', 'aligned']], order='C', casting='equiv', buffersize=buffersize) while not i.finished: assert_(i[0].size <= buffersize) vals.append(i[0].copy()) i.iternext() assert_equal(np.concatenate(vals), a.ravel(order='C')) def test_iter_write_buffering(): # Test that buffering of writes is working # F-order swapped array a = np.arange(24).reshape(2, 3, 4).T.newbyteorder().byteswap() i = nditer(a, ['buffered'], [['readwrite', 'nbo', 'aligned']], casting='equiv', order='C', buffersize=16) x = 0 with i: while not i.finished: i[0] = x x += 1 i.iternext() assert_equal(a.ravel(order='C'), np.arange(24)) def test_iter_buffering_delayed_alloc(): # Test that delaying buffer allocation works a = np.arange(6) b = np.arange(1, dtype='f4') i = nditer([a, b], ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok'], ['readwrite'], casting='unsafe', op_dtypes='f4') assert_(i.has_delayed_bufalloc) assert_raises(ValueError, lambda i:i.multi_index, i) assert_raises(ValueError, lambda i:i[0], i) assert_raises(ValueError, lambda i:i[0:2], i) def assign_iter(i): i[0] = 0 assert_raises(ValueError, assign_iter, i) i.reset() assert_(not i.has_delayed_bufalloc) assert_equal(i.multi_index, (0,)) with i: assert_equal(i[0], 0) i[1] = 1 assert_equal(i[0:2], [0, 1]) assert_equal([[x[0][()], x[1][()]] for x in i], list(zip(range(6), [1]*6))) def test_iter_buffered_cast_simple(): # Test that buffering can handle a simple cast a = np.arange(10, dtype='f4') i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('f8')], buffersize=3) with i: for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='f4')) def test_iter_buffered_cast_byteswapped(): # Test that buffering can handle a cast which requires swap->cast->swap a = np.arange(10, dtype='f4').newbyteorder().byteswap() i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('f8').newbyteorder()], buffersize=3) with i: for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='f4')) with suppress_warnings() as sup: sup.filter(np.ComplexWarning) a = np.arange(10, dtype='f8').newbyteorder().byteswap() i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='unsafe', op_dtypes=[np.dtype('c8').newbyteorder()], buffersize=3) with i: for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='f8')) def test_iter_buffered_cast_byteswapped_complex(): # Test that buffering can handle a cast which requires swap->cast->copy a = np.arange(10, dtype='c8').newbyteorder().byteswap() a += 2j i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('c16')], buffersize=3) with i: for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='c8') + 4j) a = np.arange(10, dtype='c8') a += 2j i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('c16').newbyteorder()], buffersize=3) with i: for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype='c8') + 4j) a = np.arange(10, dtype=np.clongdouble).newbyteorder().byteswap() a += 2j i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('c16')], buffersize=3) with i: for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype=np.clongdouble) + 4j) a = np.arange(10, dtype=np.longdouble).newbyteorder().byteswap() i = nditer(a, ['buffered', 'external_loop'], [['readwrite', 'nbo', 'aligned']], casting='same_kind', op_dtypes=[np.dtype('f4')], buffersize=7) with i: for v in i: v[...] *= 2 assert_equal(a, 2*np.arange(10, dtype=np.longdouble)) def test_iter_buffered_cast_structured_type(): # Tests buffering of structured types # simple -> struct type (duplicates the value) sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')] a = np.arange(3, dtype='f4') + 0.5 i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt) vals = [np.array(x) for x in i] assert_equal(vals[0]['a'], 0.5) assert_equal(vals[0]['b'], 0) assert_equal(vals[0]['c'], [[(0.5)]*3]*2) assert_equal(vals[0]['d'], 0.5) assert_equal(vals[1]['a'], 1.5) assert_equal(vals[1]['b'], 1) assert_equal(vals[1]['c'], [[(1.5)]*3]*2) assert_equal(vals[1]['d'], 1.5) assert_equal(vals[0].dtype, np.dtype(sdt)) # object -> struct type sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')] a = np.zeros((3,), dtype='O') a[0] = (0.5, 0.5, [[0.5, 0.5, 0.5], [0.5, 0.5, 0.5]], 0.5) a[1] = (1.5, 1.5, [[1.5, 1.5, 1.5], [1.5, 1.5, 1.5]], 1.5) a[2] = (2.5, 2.5, [[2.5, 2.5, 2.5], [2.5, 2.5, 2.5]], 2.5) if HAS_REFCOUNT: rc = sys.getrefcount(a[0]) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt) vals = [x.copy() for x in i] assert_equal(vals[0]['a'], 0.5) assert_equal(vals[0]['b'], 0) assert_equal(vals[0]['c'], [[(0.5)]*3]*2) assert_equal(vals[0]['d'], 0.5) assert_equal(vals[1]['a'], 1.5) assert_equal(vals[1]['b'], 1) assert_equal(vals[1]['c'], [[(1.5)]*3]*2) assert_equal(vals[1]['d'], 1.5) assert_equal(vals[0].dtype, np.dtype(sdt)) vals, i, x = [None]*3 if HAS_REFCOUNT: assert_equal(sys.getrefcount(a[0]), rc) # single-field struct type -> simple sdt = [('a', 'f4')] a = np.array([(5.5,), (8,)], dtype=sdt) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes='i4') assert_equal([x_[()] for x_ in i], [5, 8]) # make sure multi-field struct type -> simple doesn't work sdt = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] a = np.array([(5.5, 7, 'test'), (8, 10, 11)], dtype=sdt) assert_raises(TypeError, lambda: ( nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes='i4'))) # struct type -> struct type (field-wise copy) sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] sdt2 = [('d', 'u2'), ('a', 'O'), ('b', 'f8')] a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) assert_equal([np.array(x_) for x_ in i], [np.array((1, 2, 3), dtype=sdt2), np.array((4, 5, 6), dtype=sdt2)]) def test_iter_buffered_cast_structured_type_failure_with_cleanup(): # make sure struct type -> struct type with different # number of fields fails sdt1 = [('a', 'f4'), ('b', 'i8'), ('d', 'O')] sdt2 = [('b', 'O'), ('a', 'f8')] a = np.array([(1, 2, 3), (4, 5, 6)], dtype=sdt1) for intent in ["readwrite", "readonly", "writeonly"]: # If the following assert fails, the place where the error is raised # within nditer may change. That is fine, but it may make sense for # a new (hard to design) test to replace it. The `simple_arr` is # designed to require a multi-step cast (due to having fields). assert np.can_cast(a.dtype, sdt2, casting="unsafe") simple_arr = np.array([1, 2], dtype="i,i") # requires clean up with pytest.raises(ValueError): nditer((simple_arr, a), ['buffered', 'refs_ok'], [intent, intent], casting='unsafe', op_dtypes=["f,f", sdt2]) def test_buffered_cast_error_paths(): with pytest.raises(ValueError): # The input is cast into an `S3` buffer np.nditer((np.array("a", dtype="S1"),), op_dtypes=["i"], casting="unsafe", flags=["buffered"]) # The `M8[ns]` is cast into the `S3` output it = np.nditer((np.array(1, dtype="i"),), op_dtypes=["S1"], op_flags=["writeonly"], casting="unsafe", flags=["buffered"]) with pytest.raises(ValueError): with it: buf = next(it) buf[...] = "a" # cannot be converted to int. @pytest.mark.skipif(not HAS_REFCOUNT, reason="PyPy seems to not hit this.") def test_buffered_cast_error_paths_unraisable(): # The following gives an unraisable error. Pytest sometimes captures that # (depending python and/or pytest version). So with Python>=3.8 this can # probably be cleaned out in the future to check for # pytest.PytestUnraisableExceptionWarning: code = textwrap.dedent(""" import numpy as np it = np.nditer((np.array(1, dtype="i"),), op_dtypes=["S1"], op_flags=["writeonly"], casting="unsafe", flags=["buffered"]) buf = next(it) buf[...] = "a" del buf, it # Flushing only happens during deallocate right now. """) res = subprocess.check_output([sys.executable, "-c", code], stderr=subprocess.STDOUT, text=True) assert "ValueError" in res def test_iter_buffered_cast_subarray(): # Tests buffering of subarrays # one element -> many (copies it to all) sdt1 = [('a', 'f4')] sdt2 = [('a', 'f8', (3, 2, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) for x, count in zip(i, list(range(6))): assert_(np.all(x['a'] == count)) # one element -> many -> back (copies it to all) sdt1 = [('a', 'O', (1, 1))] sdt2 = [('a', 'O', (3, 2, 2))] a = np.zeros((6,), dtype=sdt1) a['a'][:, 0, 0] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], casting='unsafe', op_dtypes=sdt2) with i: assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_(np.all(x['a'] == count)) x['a'][0] += 2 count += 1 assert_equal(a['a'], np.arange(6).reshape(6, 1, 1)+2) # many -> one element -> back (copies just element 0) sdt1 = [('a', 'O', (3, 2, 2))] sdt2 = [('a', 'O', (1,))] a = np.zeros((6,), dtype=sdt1) a['a'][:, 0, 0, 0] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readwrite'], casting='unsafe', op_dtypes=sdt2) with i: assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], count) x['a'] += 2 count += 1 assert_equal(a['a'], np.arange(6).reshape(6, 1, 1, 1)*np.ones((1, 3, 2, 2))+2) # many -> one element -> back (copies just element 0) sdt1 = [('a', 'f8', (3, 2, 2))] sdt2 = [('a', 'O', (1,))] a = np.zeros((6,), dtype=sdt1) a['a'][:, 0, 0, 0] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], count) count += 1 # many -> one element (copies just element 0) sdt1 = [('a', 'O', (3, 2, 2))] sdt2 = [('a', 'f4', (1,))] a = np.zeros((6,), dtype=sdt1) a['a'][:, 0, 0, 0] = np.arange(6) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], count) count += 1 # many -> matching shape (straightforward copy) sdt1 = [('a', 'O', (3, 2, 2))] sdt2 = [('a', 'f4', (3, 2, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*3*2*2).reshape(6, 3, 2, 2) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], a[count]['a']) count += 1 # vector -> smaller vector (truncates) sdt1 = [('a', 'f8', (6,))] sdt2 = [('a', 'f4', (2,))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*6).reshape(6, 6) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'], a[count]['a'][:2]) count += 1 # vector -> bigger vector (pads with zeros) sdt1 = [('a', 'f8', (2,))] sdt2 = [('a', 'f4', (6,))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*2).reshape(6, 2) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'][:2], a[count]['a']) assert_equal(x['a'][2:], [0, 0, 0, 0]) count += 1 # vector -> matrix (broadcasts) sdt1 = [('a', 'f8', (2,))] sdt2 = [('a', 'f4', (2, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*2).reshape(6, 2) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'][0], a[count]['a']) assert_equal(x['a'][1], a[count]['a']) count += 1 # vector -> matrix (broadcasts and zero-pads) sdt1 = [('a', 'f8', (2, 1))] sdt2 = [('a', 'f4', (3, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*2).reshape(6, 2, 1) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'][:2, 0], a[count]['a'][:, 0]) assert_equal(x['a'][:2, 1], a[count]['a'][:, 0]) assert_equal(x['a'][2,:], [0, 0]) count += 1 # matrix -> matrix (truncates and zero-pads) sdt1 = [('a', 'f8', (2, 3))] sdt2 = [('a', 'f4', (3, 2))] a = np.zeros((6,), dtype=sdt1) a['a'] = np.arange(6*2*3).reshape(6, 2, 3) i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt2) assert_equal(i[0].dtype, np.dtype(sdt2)) count = 0 for x in i: assert_equal(x['a'][:2, 0], a[count]['a'][:, 0]) assert_equal(x['a'][:2, 1], a[count]['a'][:, 1]) assert_equal(x['a'][2,:], [0, 0]) count += 1 def test_iter_buffering_badwriteback(): # Writing back from a buffer cannot combine elements # a needs write buffering, but had a broadcast dimension a = np.arange(6).reshape(2, 3, 1) b = np.arange(12).reshape(2, 3, 2) assert_raises(ValueError, nditer, [a, b], ['buffered', 'external_loop'], [['readwrite'], ['writeonly']], order='C') # But if a is readonly, it's fine nditer([a, b], ['buffered', 'external_loop'], [['readonly'], ['writeonly']], order='C') # If a has just one element, it's fine too (constant 0 stride, a reduction) a = np.arange(1).reshape(1, 1, 1) nditer([a, b], ['buffered', 'external_loop', 'reduce_ok'], [['readwrite'], ['writeonly']], order='C') # check that it fails on other dimensions too a = np.arange(6).reshape(1, 3, 2) assert_raises(ValueError, nditer, [a, b], ['buffered', 'external_loop'], [['readwrite'], ['writeonly']], order='C') a = np.arange(4).reshape(2, 1, 2) assert_raises(ValueError, nditer, [a, b], ['buffered', 'external_loop'], [['readwrite'], ['writeonly']], order='C') def test_iter_buffering_string(): # Safe casting disallows shrinking strings a = np.array(['abc', 'a', 'abcd'], dtype=np.bytes_) assert_equal(a.dtype, np.dtype('S4')) assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'], op_dtypes='S2') i = nditer(a, ['buffered'], ['readonly'], op_dtypes='S6') assert_equal(i[0], b'abc') assert_equal(i[0].dtype, np.dtype('S6')) a = np.array(['abc', 'a', 'abcd'], dtype=np.unicode_) assert_equal(a.dtype, np.dtype('U4')) assert_raises(TypeError, nditer, a, ['buffered'], ['readonly'], op_dtypes='U2') i = nditer(a, ['buffered'], ['readonly'], op_dtypes='U6') assert_equal(i[0], u'abc') assert_equal(i[0].dtype, np.dtype('U6')) def test_iter_buffering_growinner(): # Test that the inner loop grows when no buffering is needed a = np.arange(30) i = nditer(a, ['buffered', 'growinner', 'external_loop'], buffersize=5) # Should end up with just one inner loop here assert_equal(i[0].size, a.size) @pytest.mark.slow def test_iter_buffered_reduce_reuse(): # large enough array for all views, including negative strides. a = np.arange(2*3**5)[3**5:3**5+1] flags = ['buffered', 'delay_bufalloc', 'multi_index', 'reduce_ok', 'refs_ok'] op_flags = [('readonly',), ('readwrite', 'allocate')] op_axes_list = [[(0, 1, 2), (0, 1, -1)], [(0, 1, 2), (0, -1, -1)]] # wrong dtype to force buffering op_dtypes = [float, a.dtype] def get_params(): for xs in range(-3**2, 3**2 + 1): for ys in range(xs, 3**2 + 1): for op_axes in op_axes_list: # last stride is reduced and because of that not # important for this test, as it is the inner stride. strides = (xs * a.itemsize, ys * a.itemsize, a.itemsize) arr = np.lib.stride_tricks.as_strided(a, (3, 3, 3), strides) for skip in [0, 1]: yield arr, op_axes, skip for arr, op_axes, skip in get_params(): nditer2 = np.nditer([arr.copy(), None], op_axes=op_axes, flags=flags, op_flags=op_flags, op_dtypes=op_dtypes) with nditer2: nditer2.operands[-1][...] = 0 nditer2.reset() nditer2.iterindex = skip for (a2_in, b2_in) in nditer2: b2_in += a2_in.astype(np.int_) comp_res = nditer2.operands[-1] for bufsize in range(0, 3**3): nditer1 = np.nditer([arr, None], op_axes=op_axes, flags=flags, op_flags=op_flags, buffersize=bufsize, op_dtypes=op_dtypes) with nditer1: nditer1.operands[-1][...] = 0 nditer1.reset() nditer1.iterindex = skip for (a1_in, b1_in) in nditer1: b1_in += a1_in.astype(np.int_) res = nditer1.operands[-1] assert_array_equal(res, comp_res) def test_iter_no_broadcast(): # Test that the no_broadcast flag works a = np.arange(24).reshape(2, 3, 4) b = np.arange(6).reshape(2, 3, 1) c = np.arange(12).reshape(3, 4) nditer([a, b, c], [], [['readonly', 'no_broadcast'], ['readonly'], ['readonly']]) assert_raises(ValueError, nditer, [a, b, c], [], [['readonly'], ['readonly', 'no_broadcast'], ['readonly']]) assert_raises(ValueError, nditer, [a, b, c], [], [['readonly'], ['readonly'], ['readonly', 'no_broadcast']]) class TestIterNested: def test_basic(self): # Test nested iteration basic usage a = arange(12).reshape(2, 3, 2) i, j = np.nested_iters(a, [[0], [1, 2]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) i, j = np.nested_iters(a, [[0, 1], [2]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) i, j = np.nested_iters(a, [[0, 2], [1]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) def test_reorder(self): # Test nested iteration basic usage a = arange(12).reshape(2, 3, 2) # In 'K' order (default), it gets reordered i, j = np.nested_iters(a, [[0], [2, 1]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) i, j = np.nested_iters(a, [[1, 0], [2]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) i, j = np.nested_iters(a, [[2, 0], [1]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) # In 'C' order, it doesn't i, j = np.nested_iters(a, [[0], [2, 1]], order='C') vals = [list(j) for _ in i] assert_equal(vals, [[0, 2, 4, 1, 3, 5], [6, 8, 10, 7, 9, 11]]) i, j = np.nested_iters(a, [[1, 0], [2]], order='C') vals = [list(j) for _ in i] assert_equal(vals, [[0, 1], [6, 7], [2, 3], [8, 9], [4, 5], [10, 11]]) i, j = np.nested_iters(a, [[2, 0], [1]], order='C') vals = [list(j) for _ in i] assert_equal(vals, [[0, 2, 4], [6, 8, 10], [1, 3, 5], [7, 9, 11]]) def test_flip_axes(self): # Test nested iteration with negative axes a = arange(12).reshape(2, 3, 2)[::-1, ::-1, ::-1] # In 'K' order (default), the axes all get flipped i, j = np.nested_iters(a, [[0], [1, 2]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11]]) i, j = np.nested_iters(a, [[0, 1], [2]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11]]) i, j = np.nested_iters(a, [[0, 2], [1]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) # In 'C' order, flipping axes is disabled i, j = np.nested_iters(a, [[0], [1, 2]], order='C') vals = [list(j) for _ in i] assert_equal(vals, [[11, 10, 9, 8, 7, 6], [5, 4, 3, 2, 1, 0]]) i, j = np.nested_iters(a, [[0, 1], [2]], order='C') vals = [list(j) for _ in i] assert_equal(vals, [[11, 10], [9, 8], [7, 6], [5, 4], [3, 2], [1, 0]]) i, j = np.nested_iters(a, [[0, 2], [1]], order='C') vals = [list(j) for _ in i] assert_equal(vals, [[11, 9, 7], [10, 8, 6], [5, 3, 1], [4, 2, 0]]) def test_broadcast(self): # Test nested iteration with broadcasting a = arange(2).reshape(2, 1) b = arange(3).reshape(1, 3) i, j = np.nested_iters([a, b], [[0], [1]]) vals = [list(j) for _ in i] assert_equal(vals, [[[0, 0], [0, 1], [0, 2]], [[1, 0], [1, 1], [1, 2]]]) i, j = np.nested_iters([a, b], [[1], [0]]) vals = [list(j) for _ in i] assert_equal(vals, [[[0, 0], [1, 0]], [[0, 1], [1, 1]], [[0, 2], [1, 2]]]) def test_dtype_copy(self): # Test nested iteration with a copy to change dtype # copy a = arange(6, dtype='i4').reshape(2, 3) i, j = np.nested_iters(a, [[0], [1]], op_flags=['readonly', 'copy'], op_dtypes='f8') assert_equal(j[0].dtype, np.dtype('f8')) vals = [list(j) for _ in i] assert_equal(vals, [[0, 1, 2], [3, 4, 5]]) vals = None # writebackifcopy - using context manager a = arange(6, dtype='f4').reshape(2, 3) i, j = np.nested_iters(a, [[0], [1]], op_flags=['readwrite', 'updateifcopy'], casting='same_kind', op_dtypes='f8') with i, j: assert_equal(j[0].dtype, np.dtype('f8')) for x in i: for y in j: y[...] += 1 assert_equal(a, [[0, 1, 2], [3, 4, 5]]) assert_equal(a, [[1, 2, 3], [4, 5, 6]]) # writebackifcopy - using close() a = arange(6, dtype='f4').reshape(2, 3) i, j = np.nested_iters(a, [[0], [1]], op_flags=['readwrite', 'updateifcopy'], casting='same_kind', op_dtypes='f8') assert_equal(j[0].dtype, np.dtype('f8')) for x in i: for y in j: y[...] += 1 assert_equal(a, [[0, 1, 2], [3, 4, 5]]) i.close() j.close() assert_equal(a, [[1, 2, 3], [4, 5, 6]]) def test_dtype_buffered(self): # Test nested iteration with buffering to change dtype a = arange(6, dtype='f4').reshape(2, 3) i, j = np.nested_iters(a, [[0], [1]], flags=['buffered'], op_flags=['readwrite'], casting='same_kind', op_dtypes='f8') assert_equal(j[0].dtype, np.dtype('f8')) for x in i: for y in j: y[...] += 1 assert_equal(a, [[1, 2, 3], [4, 5, 6]]) def test_0d(self): a = np.arange(12).reshape(2, 3, 2) i, j = np.nested_iters(a, [[], [1, 0, 2]]) vals = [list(j) for _ in i] assert_equal(vals, [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]]) i, j = np.nested_iters(a, [[1, 0, 2], []]) vals = [list(j) for _ in i] assert_equal(vals, [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]) i, j, k = np.nested_iters(a, [[2, 0], [], [1]]) vals = [] for x in i: for y in j: vals.append([z for z in k]) assert_equal(vals, [[0, 2, 4], [1, 3, 5], [6, 8, 10], [7, 9, 11]]) def test_iter_nested_iters_dtype_buffered(self): # Test nested iteration with buffering to change dtype a = arange(6, dtype='f4').reshape(2, 3) i, j = np.nested_iters(a, [[0], [1]], flags=['buffered'], op_flags=['readwrite'], casting='same_kind', op_dtypes='f8') with i, j: assert_equal(j[0].dtype, np.dtype('f8')) for x in i: for y in j: y[...] += 1 assert_equal(a, [[1, 2, 3], [4, 5, 6]]) def test_iter_reduction_error(): a = np.arange(6) assert_raises(ValueError, nditer, [a, None], [], [['readonly'], ['readwrite', 'allocate']], op_axes=[[0], [-1]]) a = np.arange(6).reshape(2, 3) assert_raises(ValueError, nditer, [a, None], ['external_loop'], [['readonly'], ['readwrite', 'allocate']], op_axes=[[0, 1], [-1, -1]]) def test_iter_reduction(): # Test doing reductions with the iterator a = np.arange(6) i = nditer([a, None], ['reduce_ok'], [['readonly'], ['readwrite', 'allocate']], op_axes=[[0], [-1]]) # Need to initialize the output operand to the addition unit with i: i.operands[1][...] = 0 # Do the reduction for x, y in i: y[...] += x # Since no axes were specified, should have allocated a scalar assert_equal(i.operands[1].ndim, 0) assert_equal(i.operands[1], np.sum(a)) a = np.arange(6).reshape(2, 3) i = nditer([a, None], ['reduce_ok', 'external_loop'], [['readonly'], ['readwrite', 'allocate']], op_axes=[[0, 1], [-1, -1]]) # Need to initialize the output operand to the addition unit with i: i.operands[1][...] = 0 # Reduction shape/strides for the output assert_equal(i[1].shape, (6,)) assert_equal(i[1].strides, (0,)) # Do the reduction for x, y in i: # Use a for loop instead of ``y[...] += x`` # (equivalent to ``y[...] = y[...].copy() + x``), # because y has zero strides we use for the reduction for j in range(len(y)): y[j] += x[j] # Since no axes were specified, should have allocated a scalar assert_equal(i.operands[1].ndim, 0) assert_equal(i.operands[1], np.sum(a)) # This is a tricky reduction case for the buffering double loop # to handle a = np.ones((2, 3, 5)) it1 = nditer([a, None], ['reduce_ok', 'external_loop'], [['readonly'], ['readwrite', 'allocate']], op_axes=[None, [0, -1, 1]]) it2 = nditer([a, None], ['reduce_ok', 'external_loop', 'buffered', 'delay_bufalloc'], [['readonly'], ['readwrite', 'allocate']], op_axes=[None, [0, -1, 1]], buffersize=10) with it1, it2: it1.operands[1].fill(0) it2.operands[1].fill(0) it2.reset() for x in it1: x[1][...] += x[0] for x in it2: x[1][...] += x[0] assert_equal(it1.operands[1], it2.operands[1]) assert_equal(it2.operands[1].sum(), a.size) def test_iter_buffering_reduction(): # Test doing buffered reductions with the iterator a = np.arange(6) b = np.array(0., dtype='f8').byteswap().newbyteorder() i = nditer([a, b], ['reduce_ok', 'buffered'], [['readonly'], ['readwrite', 'nbo']], op_axes=[[0], [-1]]) with i: assert_equal(i[1].dtype, np.dtype('f8')) assert_(i[1].dtype != b.dtype) # Do the reduction for x, y in i: y[...] += x # Since no axes were specified, should have allocated a scalar assert_equal(b, np.sum(a)) a = np.arange(6).reshape(2, 3) b = np.array([0, 0], dtype='f8').byteswap().newbyteorder() i = nditer([a, b], ['reduce_ok', 'external_loop', 'buffered'], [['readonly'], ['readwrite', 'nbo']], op_axes=[[0, 1], [0, -1]]) # Reduction shape/strides for the output with i: assert_equal(i[1].shape, (3,)) assert_equal(i[1].strides, (0,)) # Do the reduction for x, y in i: # Use a for loop instead of ``y[...] += x`` # (equivalent to ``y[...] = y[...].copy() + x``), # because y has zero strides we use for the reduction for j in range(len(y)): y[j] += x[j] assert_equal(b, np.sum(a, axis=1)) # Iterator inner double loop was wrong on this one p = np.arange(2) + 1 it = np.nditer([p, None], ['delay_bufalloc', 'reduce_ok', 'buffered', 'external_loop'], [['readonly'], ['readwrite', 'allocate']], op_axes=[[-1, 0], [-1, -1]], itershape=(2, 2)) with it: it.operands[1].fill(0) it.reset() assert_equal(it[0], [1, 2, 1, 2]) # Iterator inner loop should take argument contiguity into account x = np.ones((7, 13, 8), np.int8)[4:6,1:11:6,1:5].transpose(1, 2, 0) x[...] = np.arange(x.size).reshape(x.shape) y_base = np.arange(4*4, dtype=np.int8).reshape(4, 4) y_base_copy = y_base.copy() y = y_base[::2,:,None] it = np.nditer([y, x], ['buffered', 'external_loop', 'reduce_ok'], [['readwrite'], ['readonly']]) with it: for a, b in it: a.fill(2) assert_equal(y_base[1::2], y_base_copy[1::2]) assert_equal(y_base[::2], 2) def test_iter_buffering_reduction_reuse_reduce_loops(): # There was a bug triggering reuse of the reduce loop inappropriately, # which caused processing to happen in unnecessarily small chunks # and overran the buffer. a = np.zeros((2, 7)) b = np.zeros((1, 7)) it = np.nditer([a, b], flags=['reduce_ok', 'external_loop', 'buffered'], op_flags=[['readonly'], ['readwrite']], buffersize=5) with it: bufsizes = [x.shape[0] for x, y in it] assert_equal(bufsizes, [5, 2, 5, 2]) assert_equal(sum(bufsizes), a.size) def test_iter_writemasked_badinput(): a = np.zeros((2, 3)) b = np.zeros((3,)) m = np.array([[True, True, False], [False, True, False]]) m2 = np.array([True, True, False]) m3 = np.array([0, 1, 1], dtype='u1') mbad1 = np.array([0, 1, 1], dtype='i1') mbad2 = np.array([0, 1, 1], dtype='f4') # Need an 'arraymask' if any operand is 'writemasked' assert_raises(ValueError, nditer, [a, m], [], [['readwrite', 'writemasked'], ['readonly']]) # A 'writemasked' operand must not be readonly assert_raises(ValueError, nditer, [a, m], [], [['readonly', 'writemasked'], ['readonly', 'arraymask']]) # 'writemasked' and 'arraymask' may not be used together assert_raises(ValueError, nditer, [a, m], [], [['readonly'], ['readwrite', 'arraymask', 'writemasked']]) # 'arraymask' may only be specified once assert_raises(ValueError, nditer, [a, m, m2], [], [['readwrite', 'writemasked'], ['readonly', 'arraymask'], ['readonly', 'arraymask']]) # An 'arraymask' with nothing 'writemasked' also doesn't make sense assert_raises(ValueError, nditer, [a, m], [], [['readwrite'], ['readonly', 'arraymask']]) # A writemasked reduction requires a similarly smaller mask assert_raises(ValueError, nditer, [a, b, m], ['reduce_ok'], [['readonly'], ['readwrite', 'writemasked'], ['readonly', 'arraymask']]) # But this should work with a smaller/equal mask to the reduction operand np.nditer([a, b, m2], ['reduce_ok'], [['readonly'], ['readwrite', 'writemasked'], ['readonly', 'arraymask']]) # The arraymask itself cannot be a reduction assert_raises(ValueError, nditer, [a, b, m2], ['reduce_ok'], [['readonly'], ['readwrite', 'writemasked'], ['readwrite', 'arraymask']]) # A uint8 mask is ok too np.nditer([a, m3], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=['f4', None], casting='same_kind') # An int8 mask isn't ok assert_raises(TypeError, np.nditer, [a, mbad1], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=['f4', None], casting='same_kind') # A float32 mask isn't ok assert_raises(TypeError, np.nditer, [a, mbad2], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=['f4', None], casting='same_kind') def _is_buffered(iterator): try: iterator.itviews except ValueError: return True return False @pytest.mark.parametrize("a", [np.zeros((3,), dtype='f8'), np.zeros((9876, 3*5), dtype='f8')[::2, :], np.zeros((4, 312, 124, 3), dtype='f8')[::2, :, ::2, :]]) def test_iter_writemasked(a): # Note, the slicing above is to ensure that nditer cannot combine multiple # axes into one. The repetition is just to make things a bit more # interesting. shape = a.shape reps = shape[-1] // 3 msk = np.empty(shape, dtype=bool) msk[...] = [True, True, False] * reps # When buffering is unused, 'writemasked' effectively does nothing. # It's up to the user of the iterator to obey the requested semantics. it = np.nditer([a, msk], [], [['readwrite', 'writemasked'], ['readonly', 'arraymask']]) with it: for x, m in it: x[...] = 1 # Because we violated the semantics, all the values became 1 assert_equal(a, np.broadcast_to([1, 1, 1] * reps, shape)) # Even if buffering is enabled, we still may be accessing the array # directly. it = np.nditer([a, msk], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']]) # @seberg: I honestly don't currently understand why a "buffered" iterator # would end up not using a buffer for the small array here at least when # "writemasked" is used, that seems confusing... Check by testing for # actual memory overlap! is_buffered = True with it: for x, m in it: x[...] = 2.5 if np.may_share_memory(x, a): is_buffered = False if not is_buffered: # Because we violated the semantics, all the values became 2.5 assert_equal(a, np.broadcast_to([2.5, 2.5, 2.5] * reps, shape)) else: # For large sizes, the iterator may be buffered: assert_equal(a, np.broadcast_to([2.5, 2.5, 1] * reps, shape)) a[...] = 2.5 # If buffering will definitely happening, for instance because of # a cast, only the items selected by the mask will be copied back from # the buffer. it = np.nditer([a, msk], ['buffered'], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=['i8', None], casting='unsafe') with it: for x, m in it: x[...] = 3 # Even though we violated the semantics, only the selected values # were copied back assert_equal(a, np.broadcast_to([3, 3, 2.5] * reps, shape)) def test_iter_writemasked_decref(): # force casting (to make it interesting) by using a structured dtype. arr = np.arange(10000).astype(">i,O") original = arr.copy() mask = np.random.randint(0, 2, size=10000).astype(bool) it = np.nditer([arr, mask], ['buffered', "refs_ok"], [['readwrite', 'writemasked'], ['readonly', 'arraymask']], op_dtypes=["<i,O", "?"]) singleton = object() if HAS_REFCOUNT: count = sys.getrefcount(singleton) for buf, mask_buf in it: buf[...] = (3, singleton) del buf, mask_buf, it # delete everything to ensure corrrect cleanup if HAS_REFCOUNT: # The buffer would have included additional items, they must be # cleared correctly: assert sys.getrefcount(singleton) - count == np.count_nonzero(mask) assert_array_equal(arr[~mask], original[~mask]) assert (arr[mask] == np.array((3, singleton), arr.dtype)).all() del arr if HAS_REFCOUNT: assert sys.getrefcount(singleton) == count def test_iter_non_writable_attribute_deletion(): it = np.nditer(np.ones(2)) attr = ["value", "shape", "operands", "itviews", "has_delayed_bufalloc", "iterationneedsapi", "has_multi_index", "has_index", "dtypes", "ndim", "nop", "itersize", "finished"] for s in attr: assert_raises(AttributeError, delattr, it, s) def test_iter_writable_attribute_deletion(): it = np.nditer(np.ones(2)) attr = [ "multi_index", "index", "iterrange", "iterindex"] for s in attr: assert_raises(AttributeError, delattr, it, s) def test_iter_element_deletion(): it = np.nditer(np.ones(3)) try: del it[1] del it[1:2] except TypeError: pass except Exception: raise AssertionError def test_iter_allocated_array_dtypes(): # If the dtype of an allocated output has a shape, the shape gets # tacked onto the end of the result. it = np.nditer(([1, 3, 20], None), op_dtypes=[None, ('i4', (2,))]) for a, b in it: b[0] = a - 1 b[1] = a + 1 assert_equal(it.operands[1], [[0, 2], [2, 4], [19, 21]]) # Check the same (less sensitive) thing when `op_axes` with -1 is given. it = np.nditer(([[1, 3, 20]], None), op_dtypes=[None, ('i4', (2,))], flags=["reduce_ok"], op_axes=[None, (-1, 0)]) for a, b in it: b[0] = a - 1 b[1] = a + 1 assert_equal(it.operands[1], [[0, 2], [2, 4], [19, 21]]) # Make sure this works for scalars too it = np.nditer((10, 2, None), op_dtypes=[None, None, ('i4', (2, 2))]) for a, b, c in it: c[0, 0] = a - b c[0, 1] = a + b c[1, 0] = a * b c[1, 1] = a / b assert_equal(it.operands[2], [[8, 12], [20, 5]]) def test_0d_iter(): # Basic test for iteration of 0-d arrays: i = nditer([2, 3], ['multi_index'], [['readonly']]*2) assert_equal(i.ndim, 0) assert_equal(next(i), (2, 3)) assert_equal(i.multi_index, ()) assert_equal(i.iterindex, 0) assert_raises(StopIteration, next, i) # test reset: i.reset() assert_equal(next(i), (2, 3)) assert_raises(StopIteration, next, i) # test forcing to 0-d i = nditer(np.arange(5), ['multi_index'], [['readonly']], op_axes=[()]) assert_equal(i.ndim, 0) assert_equal(len(i), 1) i = nditer(np.arange(5), ['multi_index'], [['readonly']], op_axes=[()], itershape=()) assert_equal(i.ndim, 0) assert_equal(len(i), 1) # passing an itershape alone is not enough, the op_axes are also needed with assert_raises(ValueError): nditer(np.arange(5), ['multi_index'], [['readonly']], itershape=()) # Test a more complex buffered casting case (same as another test above) sdt = [('a', 'f4'), ('b', 'i8'), ('c', 'c8', (2, 3)), ('d', 'O')] a = np.array(0.5, dtype='f4') i = nditer(a, ['buffered', 'refs_ok'], ['readonly'], casting='unsafe', op_dtypes=sdt) vals = next(i) assert_equal(vals['a'], 0.5) assert_equal(vals['b'], 0) assert_equal(vals['c'], [[(0.5)]*3]*2) assert_equal(vals['d'], 0.5) def test_object_iter_cleanup(): # see gh-18450 # object arrays can raise a python exception in ufunc inner loops using # nditer, which should cause iteration to stop & cleanup. There were bugs # in the nditer cleanup when decref'ing object arrays. # This test would trigger valgrind "uninitialized read" before the bugfix. assert_raises(TypeError, lambda: np.zeros((17000, 2), dtype='f4') * None) # this more explicit code also triggers the invalid access arr = np.arange(np.BUFSIZE * 10).reshape(10, -1).astype(str) oarr = arr.astype(object) oarr[:, -1] = None assert_raises(TypeError, lambda: np.add(oarr[:, ::-1], arr[:, ::-1])) # followup: this tests for a bug introduced in the first pass of gh-18450, # caused by an incorrect fallthrough of the TypeError class T: def __bool__(self): raise TypeError("Ambiguous") assert_raises(TypeError, np.logical_or.reduce, np.array([T(), T()], dtype='O')) def test_object_iter_cleanup_reduce(): # Similar as above, but a complex reduction case that was previously # missed (see gh-18810). # The following array is special in that it cannot be flattened: arr = np.array([[None, 1], [-1, -1], [None, 2], [-1, -1]])[::2] with pytest.raises(TypeError): np.sum(arr) @pytest.mark.parametrize("arr", [ np.ones((8000, 4, 2), dtype=object)[:, ::2, :], np.ones((8000, 4, 2), dtype=object, order="F")[:, ::2, :], np.ones((8000, 4, 2), dtype=object)[:, ::2, :].copy("F")]) def test_object_iter_cleanup_large_reduce(arr): # More complicated calls are possible for large arrays: out = np.ones(8000, dtype=np.intp) # force casting with `dtype=object` res = np.sum(arr, axis=(1, 2), dtype=object, out=out) assert_array_equal(res, np.full(8000, 4, dtype=object)) def test_iter_too_large(): # The total size of the iterator must not exceed the maximum intp due # to broadcasting. Dividing by 1024 will keep it small enough to # give a legal array. size = np.iinfo(np.intp).max // 1024 arr = np.lib.stride_tricks.as_strided(np.zeros(1), (size,), (0,)) assert_raises(ValueError, nditer, (arr, arr[:, None])) # test the same for multiindex. That may get more interesting when # removing 0 dimensional axis is allowed (since an iterator can grow then) assert_raises(ValueError, nditer, (arr, arr[:, None]), flags=['multi_index']) def test_iter_too_large_with_multiindex(): # When a multi index is being tracked, the error is delayed this # checks the delayed error messages and getting below that by # removing an axis. base_size = 2**10 num = 1 while base_size**num < np.iinfo(np.intp).max: num += 1 shape_template = [1, 1] * num arrays = [] for i in range(num): shape = shape_template[:] shape[i * 2] = 2**10 arrays.append(np.empty(shape)) arrays = tuple(arrays) # arrays are now too large to be broadcast. The different modes test # different nditer functionality with or without GIL. for mode in range(6): with assert_raises(ValueError): _multiarray_tests.test_nditer_too_large(arrays, -1, mode) # but if we do nothing with the nditer, it can be constructed: _multiarray_tests.test_nditer_too_large(arrays, -1, 7) # When an axis is removed, things should work again (half the time): for i in range(num): for mode in range(6): # an axis with size 1024 is removed: _multiarray_tests.test_nditer_too_large(arrays, i*2, mode) # an axis with size 1 is removed: with assert_raises(ValueError): _multiarray_tests.test_nditer_too_large(arrays, i*2 + 1, mode) def test_writebacks(): a = np.arange(6, dtype='f4') au = a.byteswap().newbyteorder() assert_(a.dtype.byteorder != au.dtype.byteorder) it = nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) with it: it.operands[0][:] = 100 assert_equal(au, 100) # do it again, this time raise an error, it = nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) try: with it: assert_equal(au.flags.writeable, False) it.operands[0][:] = 0 raise ValueError('exit context manager on exception') except: pass assert_equal(au, 0) assert_equal(au.flags.writeable, True) # cannot reuse i outside context manager assert_raises(ValueError, getattr, it, 'operands') it = nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) with it: x = it.operands[0] x[:] = 6 assert_(x.flags.writebackifcopy) assert_equal(au, 6) assert_(not x.flags.writebackifcopy) x[:] = 123 # x.data still valid assert_equal(au, 6) # but not connected to au it = nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) # reentering works with it: with it: for x in it: x[...] = 123 it = nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) # make sure exiting the inner context manager closes the iterator with it: with it: for x in it: x[...] = 123 assert_raises(ValueError, getattr, it, 'operands') # do not crash if original data array is decrefed it = nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) del au with it: for x in it: x[...] = 123 # make sure we cannot reenter the closed iterator enter = it.__enter__ assert_raises(RuntimeError, enter) def test_close_equivalent(): ''' using a context amanger and using nditer.close are equivalent ''' def add_close(x, y, out=None): addop = np.add it = np.nditer([x, y, out], [], [['readonly'], ['readonly'], ['writeonly','allocate']]) for (a, b, c) in it: addop(a, b, out=c) ret = it.operands[2] it.close() return ret def add_context(x, y, out=None): addop = np.add it = np.nditer([x, y, out], [], [['readonly'], ['readonly'], ['writeonly','allocate']]) with it: for (a, b, c) in it: addop(a, b, out=c) return it.operands[2] z = add_close(range(5), range(5)) assert_equal(z, range(0, 10, 2)) z = add_context(range(5), range(5)) assert_equal(z, range(0, 10, 2)) def test_close_raises(): it = np.nditer(np.arange(3)) assert_equal (next(it), 0) it.close() assert_raises(StopIteration, next, it) assert_raises(ValueError, getattr, it, 'operands') def test_close_parameters(): it = np.nditer(np.arange(3)) assert_raises(TypeError, it.close, 1) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") def test_warn_noclose(): a = np.arange(6, dtype='f4') au = a.byteswap().newbyteorder() with suppress_warnings() as sup: sup.record(RuntimeWarning) it = np.nditer(au, [], [['readwrite', 'updateifcopy']], casting='equiv', op_dtypes=[np.dtype('f4')]) del it assert len(sup.log) == 1 @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") @pytest.mark.parametrize(["in_dtype", "buf_dtype"], [("i", "O"), ("O", "i"), # most simple cases ("i,O", "O,O"), # structured partially only copying O ("O,i", "i,O"), # structured casting to and from O ]) @pytest.mark.parametrize("steps", [1, 2, 3]) def test_partial_iteration_cleanup(in_dtype, buf_dtype, steps): value = 123 # relies on python cache (leak-check will still find it) arr = np.full(int(np.BUFSIZE * 2.5), value).astype(in_dtype) count = sys.getrefcount(value) it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)], flags=["buffered", "external_loop", "refs_ok"], casting="unsafe") for step in range(steps): # The iteration finishes in 3 steps, the first two are partial next(it) # Note that resetting does not free references del it assert count == sys.getrefcount(value) # Repeat the test with `iternext` it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)], flags=["buffered", "external_loop", "refs_ok"], casting="unsafe") for step in range(steps): it.iternext() del it # should ensure cleanup assert count == sys.getrefcount(value) @pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts") @pytest.mark.parametrize(["in_dtype", "buf_dtype"], [("O", "i"), # most simple cases ("O,i", "i,O"), # structured casting to and from O ]) def test_partial_iteration_error(in_dtype, buf_dtype): value = 123 # relies on python cache (leak-check will still find it) arr = np.full(int(np.BUFSIZE * 2.5), value).astype(in_dtype) if in_dtype == "O": arr[int(np.BUFSIZE * 1.5)] = None else: arr[int(np.BUFSIZE * 1.5)]["f0"] = None count = sys.getrefcount(value) it = np.nditer(arr, op_dtypes=[np.dtype(buf_dtype)], flags=["buffered", "external_loop", "refs_ok"], casting="unsafe") with pytest.raises(TypeError): # pytest.raises seems to have issues with the error originating # in the for loop, so manually unravel: next(it) next(it) # raises TypeError # Repeat the test with `iternext` after resetting, the buffers should # already be cleared from any references, so resetting is sufficient. it.reset() with pytest.raises(TypeError): it.iternext() it.iternext() assert count == sys.getrefcount(value) def test_debug_print(capfd): """ Matches the expected output of a debug print with the actual output. Note that the iterator dump should not be considered stable API, this test is mainly to ensure the print does not crash. Currently uses a subprocess to avoid dealing with the C level `printf`s. """ # the expected output with all addresses and sizes stripped (they vary # and/or are platform dependend). expected = """ ------ BEGIN ITERATOR DUMP ------ | Iterator Address: | ItFlags: BUFFER REDUCE REUSE_REDUCE_LOOPS | NDim: 2 | NOp: 2 | IterSize: 50 | IterStart: 0 | IterEnd: 50 | IterIndex: 0 | Iterator SizeOf: | BufferData SizeOf: | AxisData SizeOf: | | Perm: 0 1 | DTypes: | DTypes: dtype('float64') dtype('int32') | InitDataPtrs: | BaseOffsets: 0 0 | Operands: | Operand DTypes: dtype('int64') dtype('float64') | OpItFlags: | Flags[0]: READ CAST ALIGNED | Flags[1]: READ WRITE CAST ALIGNED REDUCE | | BufferData: | BufferSize: 50 | Size: 5 | BufIterEnd: 5 | REDUCE Pos: 0 | REDUCE OuterSize: 10 | REDUCE OuterDim: 1 | Strides: 8 4 | Ptrs: | REDUCE Outer Strides: 40 0 | REDUCE Outer Ptrs: | ReadTransferFn: | ReadTransferData: | WriteTransferFn: | WriteTransferData: | Buffers: | | AxisData[0]: | Shape: 5 | Index: 0 | Strides: 16 8 | Ptrs: | AxisData[1]: | Shape: 10 | Index: 0 | Strides: 80 0 | Ptrs: ------- END ITERATOR DUMP ------- """.strip().splitlines() arr1 = np.arange(100, dtype=np.int64).reshape(10, 10)[:, ::2] arr2 = np.arange(5.) it = np.nditer((arr1, arr2), op_dtypes=["d", "i4"], casting="unsafe", flags=["reduce_ok", "buffered"], op_flags=[["readonly"], ["readwrite"]]) it.debug_print() res = capfd.readouterr().out res = res.strip().splitlines() assert len(res) == len(expected) for res_line, expected_line in zip(res, expected): # The actual output may have additional pointers listed that are # stripped from the example output: assert res_line.startswith(expected_line.strip())
the-stack_0_10768
# -*- coding: utf-8 -*- """ Created on Mon Jun 28 23:36:19 2021 @author: Bruno Ferrari """ _path="C:/Users/Bruno Ferrari/Documents/Bruno/2019/2s/MC/artigos revisão/Artigos Mes/GD/" import pandas as pd import numpy as np import bgraph from concurrent.futures import ThreadPoolExecutor def gera_txt(nome, G): with open((_path+'bdp/dbdp_instances/GraphData/{inst}.txt').format(inst=nome), 'w') as arq: arq.write(str(G.v1()) + "\n") arq.write(str(G.v2()) + "\n") arq.write(str(G.edges())) def gera_grafo(path): graph_data = pd.read_csv(path) graph_data_exp = graph_data.iloc[:,0].str.split(" ",expand=True) n_1 = int(graph_data_exp.iloc[0,0]) n_2 = int(graph_data_exp.iloc[0,1]) graph_edges = [] for key, row in enumerate(graph_data.iloc[1:n_1+1, 0]): for adj in row.split(" ")[2:]: #if int(adj) not in graph_adj_nodes_incre: graph_edges.append((key, int(adj))) order_1 = dict(zip(range(0,n_1),graph_data_exp.iloc[1:n_1+1,1].astype(int).values + 1)) order_2 = dict(zip(range(n_1,n_1+n_2),graph_data_exp.iloc[n_1+1:n_1+1+n_2,1].astype(int).values + 1)) New = bgraph.BGraph() New.v1(list(order_1.keys())) New.v2(list(order_2.keys())) New.edges(graph_edges) return New # Descosidera vertices adicionais (ie com linha == 0) def gera_grafo_2(path): graph_data = pd.read_csv(path) graph_data_exp = graph_data.iloc[:,0].str.split(" ",expand=True) n_1 = int(graph_data_exp.iloc[0,0]) aux = (graph_data_exp[1:n_1+1].set_index(0).loc['1']) graph_edges = [(int(v), int(u)) for v in aux.iloc[:,0] for u in aux.set_index(1).loc[v] if u != None] New = bgraph.BGraph() New.v1(np.unique(np.array(np.matrix(graph_edges)[:,0])).tolist()) New.v2(np.unique(np.array(np.matrix(graph_edges)[:,1])).tolist()) New.edges(graph_edges) return New def gera_features(output): for o in output: _aux_deg = list(o.degree().values()) yield (o.n_v(), #vertices o.n_edge(), #arestas abs(o.n_v1() - o.n_v2()), #diff nos np.mean(_aux_deg), #mean deg np.std(_aux_deg), #std deg np.median(_aux_deg), #median deg o.density(), #graph density o.n_v1(), o.n_v2(), np.min(_aux_deg)) #aux feat #df_results = pd.read_excel(_path+"bdp/dbdp_instances/stallman_reduced.xlsx", sheet_name="Sheet1") df_results = pd.read_excel(_path+"bdp/dbdp_instances/instance.xlsx", sheet_name="instances").replace(regex=".txt", value="") output_list = [] for i in range(130)[::10]: with ThreadPoolExecutor(6) as ex: output = list(ex.map(lambda x: gera_grafo_2((_path+"bdp/dbdp_instances/instances/{name}.txt").format(name=x)), list(df_results['Instance'][i-10:i]))) with ThreadPoolExecutor(6) as ex: ex.map(lambda x: gera_txt(x[0], x[1]), zip(df_results['Instance'][i-10:i].replace(regex="inc", value=""), output)) output_list.append(pd.DataFrame(gera_features(output))) if not(i % 20): with pd.ExcelWriter(_path+"bdp/dbdp_instances/metafeat3.xlsx") as writer: pd.concat([df_results.replace(regex="inc", value=""), pd.concat(output_list, axis=0).reset_index(drop=True)],axis=1).to_excel(writer, sheet_name="results", index=False)
the-stack_0_10769
# Deepforest Preprocessing model """The preprocessing module is used to reshape data into format suitable for training or prediction. For example cutting large tiles into smaller images. """ import os import numpy as np import pandas as pd try: import slidingwindow from PIL import Image except: pass def image_name_from_path(image_path): """Convert path to image name for use in indexing.""" image_name = os.path.basename(image_path) image_name = os.path.splitext(image_name)[0] return image_name def compute_windows(numpy_image, patch_size, patch_overlap): """Create a sliding window object from a raster tile. Args: numpy_image (array): Raster object as numpy array to cut into crops Returns: windows (list): a sliding windows object """ if patch_overlap > 1: raise ValueError("Patch overlap {} must be between 0 - 1".format(patch_overlap)) # Generate overlapping sliding windows windows = slidingwindow.generate(numpy_image, slidingwindow.DimOrder.HeightWidthChannel, patch_size, patch_overlap) return (windows) def select_annotations(annotations, windows, index, allow_empty=False): """Select annotations that overlap with selected image crop. Args: image_name (str): Name of the image in the annotations file to lookup. annotations_file: path to annotations file in the format -> image_path, xmin, ymin, xmax, ymax, label windows: A sliding window object (see compute_windows) index: The index in the windows object to use a crop bounds allow_empty (bool): If True, allow window crops that have no annotations to be included Returns: selected_annotations: a pandas dataframe of annotations """ # Window coordinates - with respect to tile window_xmin, window_ymin, w, h = windows[index].getRect() window_xmax = window_xmin + w window_ymax = window_ymin + h # buffer coordinates a bit to grab boxes that might start just against # the image edge. Don't allow boxes that start and end after the offset offset = 40 selected_annotations = annotations[(annotations.xmin > (window_xmin - offset)) & (annotations.xmin < (window_xmax)) & (annotations.xmax > (window_xmin)) & (annotations.ymin > (window_ymin - offset)) & (annotations.xmax < (window_xmax + offset)) & (annotations.ymin < (window_ymax)) & (annotations.ymax > (window_ymin)) & (annotations.ymax < (window_ymax + offset))].copy() # change the image name image_name = os.path.splitext("{}".format(annotations.image_path.unique()[0]))[0] image_basename = os.path.splitext(image_name)[0] selected_annotations.image_path = "{}_{}.png".format(image_basename, index) # If no matching annotations, return a line with the image name, but no records if selected_annotations.empty: if allow_empty: selected_annotations = pd.DataFrame( ["{}_{}.png".format(image_basename, index)], columns=["image_path"]) selected_annotations["xmin"] = "" selected_annotations["ymin"] = "" selected_annotations["xmax"] = "" selected_annotations["ymax"] = "" selected_annotations["label"] = "" else: return None else: # update coordinates with respect to origin selected_annotations.xmax = (selected_annotations.xmin - window_xmin) + ( selected_annotations.xmax - selected_annotations.xmin) selected_annotations.xmin = (selected_annotations.xmin - window_xmin) selected_annotations.ymax = (selected_annotations.ymin - window_ymin) + ( selected_annotations.ymax - selected_annotations.ymin) selected_annotations.ymin = (selected_annotations.ymin - window_ymin) # cut off any annotations over the border. selected_annotations.loc[selected_annotations.xmin < 0, "xmin"] = 0 selected_annotations.loc[selected_annotations.xmax > w, "xmax"] = w selected_annotations.loc[selected_annotations.ymin < 0, "ymin"] = 0 selected_annotations.loc[selected_annotations.ymax > h, "ymax"] = h return selected_annotations def save_crop(base_dir, image_name, index, crop): """Save window crop as image file to be read by PIL. Filename should match the image_name + window index """ # create dir if needed if not os.path.exists(base_dir): os.makedirs(base_dir) im = Image.fromarray(crop) image_basename = os.path.splitext(image_name)[0] filename = "{}/{}_{}.png".format(base_dir, image_basename, index) im.save(filename) return filename def split_raster(path_to_raster, annotations_file, base_dir=".", patch_size=400, patch_overlap=0.05, allow_empty=False): """Divide a large tile into smaller arrays. Each crop will be saved to file. Args: path_to_raster: (str): Path to a tile that can be read by rasterio on disk annotations_file (str): Path to annotations file (with column names) data in the format -> image_path, xmin, ymin, xmax, ymax, label base_dir (str): Where to save the annotations and image crops relative to current working dir patch_size (int): Maximum dimensions of square window patch_overlap (float): Percent of overlap among windows 0->1 allow_empty: If True, include images with no annotations to be included in the dataset Returns: A pandas dataframe with annotations file for training. """ # Load raster as image raster = Image.open(path_to_raster) numpy_image = np.array(raster) # Check that its 3 band bands = numpy_image.shape[2] if not bands == 3: raise IOError("Input file {} has {} bands. DeepForest only accepts 3 band RGB " "rasters in the order (height, width, channels). " "If the image was cropped and saved as a .jpg, " "please ensure that no alpha channel was used.".format( path_to_raster, bands)) # Check that patch size is greater than image size height = numpy_image.shape[0] width = numpy_image.shape[1] if any(np.array([height, width]) < patch_size): raise ValueError("Patch size of {} is larger than the image dimensions {}".format( patch_size, [height, width])) # Compute sliding window index windows = compute_windows(numpy_image, patch_size, patch_overlap) # Get image name for indexing image_name = os.path.basename(path_to_raster) # Load annotations file and coerce dtype annotations = pd.read_csv(annotations_file) # open annotations file image_annotations = annotations[annotations.image_path == image_name].copy() # Sanity checks if image_annotations.empty: raise ValueError( "No image names match between the file:{} and the image_path: {}. " "Reminder that image paths should be the relative " "path (e.g. 'image_name.tif'), not the full path " "(e.g. path/to/dir/image_name.tif)".format(annotations_file, image_name)) if not annotations.shape[1] == 6: raise ValueError("Annotations file has {} columns, should have " "format image_path, xmin, ymin, xmax, ymax, label".format( annotations.shape[1])) annotations_files = [] for index, window in enumerate(windows): #Crop image crop = numpy_image[windows[index].indices()] # Find annotations, image_name is the basename of the path crop_annotations = select_annotations(image_annotations, windows, index, allow_empty) # If empty images not allowed, select annotations returns None if crop_annotations is not None: # save annotations annotations_files.append(crop_annotations) # save image crop save_crop(base_dir, image_name, index, crop) if len(annotations_files) == 0: raise ValueError( "Input file has no overlapping annotations and allow_empty is {}".format( allow_empty)) annotations_files = pd.concat(annotations_files) # Checkpoint csv files, useful for parallelization # Use filename of the raster path to save the annotations image_basename = os.path.splitext(image_name)[0] file_path = image_basename + ".csv" file_path = os.path.join(base_dir, file_path) annotations_files.to_csv(file_path, index=False, header=False) return annotations_files
the-stack_0_10773
import json import dml import prov.model import datetime import uuid import pandas as pd class topCertifiedCompanies(dml.Algorithm): contributor = 'ashwini_gdukuray_justini_utdesai' reads = ['ashwini_gdukuray_justini_utdesai.topCompanies', 'ashwini_gdukuray_justini_utdesai.masterList'] writes = ['ashwini_gdukuray_justini_utdesai.topCertCompanies'] @staticmethod def execute(trial=False): '''Retrieve some data sets (not using the API here for the sake of simplicity).''' startTime = datetime.datetime.now() # Set up the database connection. client = dml.pymongo.MongoClient() repo = client.repo repo.authenticate('ashwini_gdukuray_justini_utdesai', 'ashwini_gdukuray_justini_utdesai') masterList = repo['ashwini_gdukuray_justini_utdesai.masterList'] topCompanies = repo['ashwini_gdukuray_justini_utdesai.topCompanies'] masterListDF = pd.DataFrame(list(masterList.find())) topCompaniesDF = pd.DataFrame(list(topCompanies.find())) topCompaniesDF = topCompaniesDF.rename(index=str, columns={'Firm': 'Business Name'}) # create a more uniform ID businessIDs = [] for index, row in topCompaniesDF.iterrows(): busName = row['Business Name'] cleanedText = busName.upper().strip().replace(' ','').replace('.','').replace(',','').replace('-','') businessIDs.append(cleanedText) topCompaniesDF['B_ID'] = pd.Series(businessIDs, index=topCompaniesDF.index) merged = pd.merge(masterListDF, topCompaniesDF, how='inner', on=['B_ID']) #print(merged['B_ID']) #records = json.loads(topCompaniesDF.T.to_json()).values() repo.dropCollection("topCertCompanies") repo.createCollection("topCertCompanies") repo['ashwini_gdukuray_justini_utdesai.topCertCompanies'].insert_many(merged.to_dict('records')) repo['ashwini_gdukuray_justini_utdesai.topCertCompanies'].metadata({'complete': True}) print(repo['ashwini_gdukuray_justini_utdesai.topCertCompanies'].metadata()) repo.logout() endTime = datetime.datetime.now() return {"start": startTime, "end": endTime} @staticmethod def provenance(doc=prov.model.ProvDocument(), startTime=None, endTime=None): ''' Create the provenance document describing everything happening in this script. Each run of the script will generate a new document describing that invocation event. ''' # Set up the database connection. client = dml.pymongo.MongoClient() repo = client.repo repo.authenticate('ashwini_gdukuray_justini_utdesai', 'ashwini_gdukuray_justini_utdesai') doc.add_namespace('alg', 'http://datamechanics.io/algorithm/') # The scripts are in <folder>#<filename> format. doc.add_namespace('dat', 'http://datamechanics.io/data/') # The data sets are in <user>#<collection> format. doc.add_namespace('ont', 'http://datamechanics.io/ontology#') # 'Extension', 'DataResource', 'DataSet', 'Retrieval', 'Query', or 'Computation'. doc.add_namespace('log', 'http://datamechanics.io/log/') # The event log. this_script = doc.agent('alg:ashwini_gdukuray_justini_utdesai#topCertifiedCompanies', {prov.model.PROV_TYPE: prov.model.PROV['SoftwareAgent'], 'ont:Extension': 'py'}) topCompanies = doc.entity('dat:ashwini_gdukuray_justini_utdesai#topCompanies', {'prov:label': '311, Service Requests', prov.model.PROV_TYPE: 'ont:DataResource', 'ont:Extension': 'json'}) masterList = doc.entity('dat:ashwini_gdukuray_justini_utdesai#masterList', {'prov:label': '311, Service Requests', prov.model.PROV_TYPE: 'ont:DataResource', 'ont:Extension': 'json'}) topCertCompanies = doc.entity('dat:ashwini_gdukuray_justini_utdesai#topCertCompanies', {'prov:label': '311, Service Requests', prov.model.PROV_TYPE: 'ont:DataResource', 'ont:Extension': 'json'}) act = doc.activity('log:uuid' + str(uuid.uuid4()), startTime, endTime) doc.wasAssociatedWith(act, this_script) doc.usage(act, topCompanies, startTime, None, {prov.model.PROV_TYPE: 'ont:Retrieval', 'ont:Query': '?type=Animal+Found&$select=type,latitude,longitude,OPEN_DT' } ) doc.usage(act, masterList, startTime, None, {prov.model.PROV_TYPE: 'ont:Retrieval', 'ont:Query': '?type=Animal+Found&$select=type,latitude,longitude,OPEN_DT' } ) doc.wasAttributedTo(topCertCompanies, this_script) doc.wasGeneratedBy(topCertCompanies, act, endTime) doc.wasDerivedFrom(topCertCompanies, topCompanies, act, act, act) doc.wasDerivedFrom(topCertCompanies, masterList, act, act, act) repo.logout() return doc ''' # This is example code you might use for debugging this module. # Please remove all top-level function calls before submitting. example.execute() doc = example.provenance() print(doc.get_provn()) print(json.dumps(json.loads(doc.serialize()), indent=4)) ''' ## eof
the-stack_0_10775
# Copyright (C) 2020 The Electrum developers # Copyright (C) 2021 The DECENOMY Core Developers # Distributed under the MIT software license, see the accompanying # file LICENCE or http://www.opensource.org/licenses/mit-license.php from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QWidget, QVBoxLayout, QGridLayout, QLabel, QListWidget, QListWidgetItem from electrum.i18n import _ from electrum.network import Network from electrum.bip39_recovery import account_discovery from electrum.logging import get_logger from .util import WindowModalDialog, MessageBoxMixin, TaskThread, Buttons, CancelButton, OkButton _logger = get_logger(__name__) class Bip39RecoveryDialog(WindowModalDialog): ROLE_ACCOUNT = Qt.UserRole def __init__(self, parent: QWidget, get_account_xpub, on_account_select): self.get_account_xpub = get_account_xpub self.on_account_select = on_account_select WindowModalDialog.__init__(self, parent, _('BIP39 Recovery')) self.setMinimumWidth(400) vbox = QVBoxLayout(self) self.content = QVBoxLayout() self.content.addWidget(QLabel(_('Scanning common paths for existing accounts...'))) vbox.addLayout(self.content) self.ok_button = OkButton(self) self.ok_button.clicked.connect(self.on_ok_button_click) self.ok_button.setEnabled(False) vbox.addLayout(Buttons(CancelButton(self), self.ok_button)) self.finished.connect(self.on_finished) self.show() self.thread = TaskThread(self) self.thread.finished.connect(self.deleteLater) # see #3956 self.thread.add(self.recovery, self.on_recovery_success, None, self.on_recovery_error) def on_finished(self): self.thread.stop() def on_ok_button_click(self): item = self.list.currentItem() account = item.data(self.ROLE_ACCOUNT) self.on_account_select(account) def recovery(self): network = Network.get_instance() coroutine = account_discovery(network, self.get_account_xpub) return network.run_from_another_thread(coroutine) def on_recovery_success(self, accounts): self.clear_content() if len(accounts) == 0: self.content.addWidget(QLabel(_('No existing accounts found.'))) return self.content.addWidget(QLabel(_('Choose an account to restore.'))) self.list = QListWidget() for account in accounts: item = QListWidgetItem(account['description']) item.setData(self.ROLE_ACCOUNT, account) self.list.addItem(item) self.list.clicked.connect(lambda: self.ok_button.setEnabled(True)) self.content.addWidget(self.list) def on_recovery_error(self, exc_info): self.clear_content() self.content.addWidget(QLabel(_('Error: Account discovery failed.'))) _logger.error(f"recovery error", exc_info=exc_info) def clear_content(self): for i in reversed(range(self.content.count())): self.content.itemAt(i).widget().setParent(None)
the-stack_0_10778
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations def make_many_types(apps, schema_editor): """ Adds the Author object in Book.author to the many-to-many relationship in Book.authors """ Organization = apps.get_model('organization', 'Organization') for organization in Organization.objects.all(): if organization.organization_type: organization.organization_types.add(organization.organization_type) if organization.investor_type: organization.investor_types.add(organization.investor_type) class Migration(migrations.Migration): dependencies = [ ('organization', '0015_auto_20160405_1139'), ] operations = [ migrations.RunPython(make_many_types), ]
the-stack_0_10781
import logging from typing import Text, Any, Dict, Optional, List from rasa.core.constants import DEFAULT_REQUEST_TIMEOUT from rasa.core.nlg.generator import NaturalLanguageGenerator from rasa.core.trackers import DialogueStateTracker, EventVerbosity from rasa.utils.endpoints import EndpointConfig import os logger = logging.getLogger(__name__) NLG_QUERY = """ query( $template: StringOrListOfStrings! $arguments: Any $tracker: ConversationInput $channel: NlgRequestChannel ) { getResponse( template: $template arguments: $arguments tracker: $tracker channel: $channel ) { text metadata ...on QuickReplyPayload { buttons { title, type, ...on WebUrlButton { url } ...on PostbackButton { payload } } } ...on ImagePayload { image } ...on CustomPayload { buttons { title, type, ...on WebUrlButton { url } ...on PostbackButton { payload } }, elements, attachment, image, custom } } } """ def nlg_response_format_spec(): """Expected response schema for an NLG endpoint. Used for validation of the response returned from the NLG endpoint.""" return { "type": "object", "properties": { "text": {"type": ["string", "null"]}, "buttons": {"type": ["array", "null"], "items": {"type": "object"}}, "elements": {"type": ["array", "null"], "items": {"type": "object"}}, "attachment": {"type": ["object", "null"]}, "image": {"type": ["string", "null"]}, }, } def nlg_request_format_spec(): """Expected request schema for requests sent to an NLG endpoint.""" return { "type": "object", "properties": { "template": {"type": "string"}, "arguments": {"type": "object"}, "tracker": { "type": "object", "properties": { "sender_id": {"type": "string"}, "slots": {"type": "object"}, "latest_message": {"type": "object"}, "latest_event_time": {"type": "number"}, "paused": {"type": "boolean"}, "events": {"type": "array"}, }, }, "channel": {"type": "object", "properties": {"name": {"type": "string"}}}, }, } def nlg_request_format( template_name: Text, tracker: DialogueStateTracker, output_channel: Text, **kwargs: Any, ) -> Dict[Text, Any]: """Create the json body for the NLG json body for the request.""" tracker_state = tracker.current_state(EventVerbosity.ALL) return { "template": template_name, "arguments": kwargs, "tracker": tracker_state, "channel": {"name": output_channel}, } class GraphQLNaturalLanguageGenerator(NaturalLanguageGenerator): """Like Rasa's CallbackNLG, but queries Botfront's GraphQL endpoint""" def __init__(self, **kwargs) -> None: endpoint_config = kwargs.get("endpoint_config") self.nlg_endpoint = endpoint_config async def generate( self, template_name: Text, tracker: DialogueStateTracker, output_channel: Text, **kwargs: Any, ) -> List[Dict[Text, Any]]: fallback_language_slot = tracker.slots.get("fallback_language") fallback_language = fallback_language_slot.initial_value if fallback_language_slot else None language = tracker.latest_message.metadata.get("language") or fallback_language body = nlg_request_format( template_name, tracker, output_channel, **kwargs, language=language, projectId=os.environ.get("BF_PROJECT_ID"), ) logger.debug( "Requesting NLG for {} from {}." "".format(template_name, self.nlg_endpoint.url) ) try: if "graphql" in self.nlg_endpoint.url: from sgqlc.endpoint.http import HTTPEndpoint response = HTTPEndpoint(self.nlg_endpoint.url)(NLG_QUERY, body) response = response["data"]["getResponse"] else: response = await self.nlg_endpoint.request( method="post", json=body, timeout=DEFAULT_REQUEST_TIMEOUT ) response = response[0] # legacy route, use first message in seq except Exception as e: logger.error("NLG web endpoint returned an invalid response: {}".format(e)) return {"text": template_name} if self.validate_response(response): return response else: logger.error("NLG web endpoint returned an invalid response.") return {"text": template_name} @staticmethod def validate_response(content: Optional[Dict[Text, Any]]) -> bool: """Validate the NLG response. Raises exception on failure.""" from jsonschema import validate from jsonschema import ValidationError try: if content is None or content == "": # means the endpoint did not want to respond with anything return True else: validate(content, nlg_response_format_spec()) return True except ValidationError as e: e.message += ( ". Failed to validate NLG response from API, make sure your " "response from the NLG endpoint is valid. " "For more information about the format please consult the " "`nlg_response_format_spec` function from this same module: " "https://github.com/RasaHQ/rasa/blob/master/rasa/core/nlg/callback.py#L12" ) raise e
the-stack_0_10782
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import sys import os from .tools import logger, run_process, try_to_wrap_executable, find_output_arg, execute, check_program from .constants import CC, CXX, WASI_SYSROOT, STUBS_SYSTEM_LIB, STUBS_SYSTEM_PREAMBLE def run(args): main_program = CXX if args[0].endswith("wasmc++") else CC check_program(main_program) if '--version' in args: print('''wasienv (wasienv gcc/clang-like replacement)''') return 0 if len(args) == 1 and args[0] == '-v': # -v with no inputs # autoconf likes to see 'GNU' in the output to enable shared object support print('wasienv (wasienv gcc/clang-like replacement + linker emulating GNU ld)', file=sys.stderr) code = run_process([main_program, '-v'], check=False).returncode return code has_target = any([arg.startswith("--target") for arg in args]) # Flags decided by following: https://github.com/wasienv/wasienv/pull/8 args.append("--no-standard-libraries") args.append("-Wl,--export-all") args.append("-Wl,--no-entry") if not has_target: args.append("--target=wasm32-unknown-unknown") proc_args = [main_program]+args[1:] return_code = run_process(proc_args, check=False) target, outargs = find_output_arg(args) if target: try_to_wrap_executable(target) return return_code if __name__ == '__main__': execute(run)
the-stack_0_10783
#!/usr/bin/env python # -*- coding: utf-8 -*- import io import os import sys import platform from shutil import rmtree from setuptools import find_packages, setup, Command if platform.system() == 'Windows': import py2exe NAME = 'sysl' DESCRIPTION = 'System specification language with compiler and code generator' URL = 'https://github.com/anz-bank/sysl' EMAIL = '[email protected]' AUTHOR = 'ANZ' REQUIRED = [ 'httplib2', 'urllib3==1.24.2', 'openpyxl', 'plantuml', 'protobuf', 'pylint', 'PyYAML', 'requests', 'six' ] here = os.path.abspath(os.path.dirname(__file__)) with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = '\n' + f.read() about = {} with open(os.path.join(here, 'src', NAME, '__version__.py')) as f: exec(f.read(), about) setup( name=NAME, version=about['__version__'], description=DESCRIPTION, long_description=long_description, long_description_content_type='text/markdown', author=AUTHOR, author_email=EMAIL, url=URL, package_dir={'': 'src'}, packages=find_packages('src', exclude=('tests',)), entry_points={ 'console_scripts': [ 'sysl=sysl.core.__main__:main', 'reljam=sysl.reljam.reljam:main', ], }, install_requires=REQUIRED, include_package_data=True, license='Apache 2.0', classifiers=[ 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', ], extras_require={ 'dev': [ 'pytest', 'flake8', ] }, # py2exe options={'py2exe': { 'bundle_files': 1, 'dll_excludes': ['w9xpopen.exe', 'libstdc++-6.dll', 'libgcc_s_dw2-1.dll'] }}, console=[{ 'script': 'src/sysl/core/__main__.py', 'dest_base': 'sysl', 'icon_resources': [(1, 'docs/favicon.ico')] }, { 'script': 'src/sysl/reljam/__main__.py', 'dest_base': 'reljam', 'icon_resources': [(1, 'docs/favicon.ico')] }], zipfile=None )
the-stack_0_10784
"""Provide access to Python's configuration information. The specific configuration variables available depend heavily on the platform and configuration. The values may be retrieved using get_config_var(name), and the list of variables is available via get_config_vars().keys(). Additional convenience functions are also available. Written by: Fred L. Drake, Jr. Email: <[email protected]> """ __revision__ = "$Id$" import os import re import string import sys from distutils.errors import DistutilsPlatformError # These are needed in a couple of spots, so just compute them once. PREFIX = os.path.normpath(sys.prefix) EXEC_PREFIX = os.path.normpath(sys.exec_prefix) # Path to the base directory of the project. On Windows the binary may # live in project/PCBuild9. If we're dealing with an x64 Windows build, # it'll live in project/PCbuild/amd64. if sys.executable: project_base = os.path.dirname(os.path.abspath(sys.executable)) else: # sys.executable can be empty if argv[0] has been changed and Python is # unable to retrieve the real program name project_base = os.getcwd() if os.name == "nt" and "pcbuild" in project_base[-8:].lower(): project_base = os.path.abspath(os.path.join(project_base, os.path.pardir)) # PC/VS7.1 if os.name == "nt" and "\\pc\\v" in project_base[-10:].lower(): project_base = os.path.abspath(os.path.join(project_base, os.path.pardir, os.path.pardir)) # PC/AMD64 if os.name == "nt" and "\\pcbuild\\amd64" in project_base[-14:].lower(): project_base = os.path.abspath(os.path.join(project_base, os.path.pardir, os.path.pardir)) # set for cross builds if "_PYTHON_PROJECT_BASE" in os.environ: # this is the build directory, at least for posix project_base = os.path.normpath(os.environ["_PYTHON_PROJECT_BASE"]) # python_build: (Boolean) if true, we're either building Python or # building an extension with an un-installed Python, so we use # different (hard-wired) directories. # Setup.local is available for Makefile builds including VPATH builds, # Setup.dist is available on Windows def _python_build(): for fn in ("Setup.dist", "Setup.local"): if os.path.isfile(os.path.join(project_base, "Modules", fn)): return True return False python_build = _python_build() def get_python_version(): """Return a string containing the major and minor Python version, leaving off the patchlevel. Sample return values could be '1.5' or '2.2'. """ return sys.version[:3] def get_python_inc(plat_specific=0, prefix=None): """Return the directory containing installed Python header files. If 'plat_specific' is false (the default), this is the path to the non-platform-specific header files, i.e. Python.h and so on; otherwise, this is the path to platform-specific header files (namely pyconfig.h). If 'prefix' is supplied, use it instead of sys.prefix or sys.exec_prefix -- i.e., ignore 'plat_specific'. """ if prefix is None: prefix = plat_specific and EXEC_PREFIX or PREFIX if os.name == "posix": if python_build: if sys.executable: buildir = os.path.dirname(sys.executable) else: # sys.executable can be empty if argv[0] has been changed # and Python is unable to retrieve the real program name buildir = os.getcwd() if plat_specific: # python.h is located in the buildir inc_dir = buildir else: # the source dir is relative to the buildir srcdir = os.path.abspath(os.path.join(buildir, get_config_var('srcdir'))) # Include is located in the srcdir inc_dir = os.path.join(srcdir, "Include") return inc_dir return os.path.join(prefix, "include", "python" + get_python_version()) elif os.name == "nt": return os.path.join(prefix, "include") elif os.name == "os2": return os.path.join(prefix, "Include") else: raise DistutilsPlatformError( "I don't know where Python installs its C header files " "on platform '%s'" % os.name) def get_python_lib(plat_specific=0, standard_lib=0, prefix=None): """Return the directory containing the Python library (standard or site additions). If 'plat_specific' is true, return the directory containing platform-specific modules, i.e. any module from a non-pure-Python module distribution; otherwise, return the platform-shared library directory. If 'standard_lib' is true, return the directory containing standard Python library modules; otherwise, return the directory for site-specific modules. If 'prefix' is supplied, use it instead of sys.prefix or sys.exec_prefix -- i.e., ignore 'plat_specific'. """ if prefix is None: prefix = plat_specific and EXEC_PREFIX or PREFIX if os.name == "posix": libpython = os.path.join(prefix, "lib", "python" + get_python_version()) if standard_lib: return libpython else: return os.path.join(libpython, "site-packages") elif os.name == "nt": if standard_lib: return os.path.join(prefix, "Lib") else: if get_python_version() < "2.2": return prefix else: return os.path.join(prefix, "Lib", "site-packages") elif os.name == "os2": if standard_lib: return os.path.join(prefix, "Lib") else: return os.path.join(prefix, "Lib", "site-packages") else: raise DistutilsPlatformError( "I don't know where Python installs its library " "on platform '%s'" % os.name) def customize_compiler(compiler): """Do any platform-specific customization of a CCompiler instance. Mainly needed on Unix, so we can plug in the information that varies across Unices and is stored in Python's Makefile. """ if compiler.compiler_type == "unix": if sys.platform == "darwin": # Perform first-time customization of compiler-related # config vars on OS X now that we know we need a compiler. # This is primarily to support Pythons from binary # installers. The kind and paths to build tools on # the user system may vary significantly from the system # that Python itself was built on. Also the user OS # version and build tools may not support the same set # of CPU architectures for universal builds. global _config_vars # Use get_config_var() to ensure _config_vars is initialized. if not get_config_var('CUSTOMIZED_OSX_COMPILER'): import _osx_support _osx_support.customize_compiler(_config_vars) _config_vars['CUSTOMIZED_OSX_COMPILER'] = 'True' (cc, cxx, cflags, ccshared, ldshared, so_ext, ar, ar_flags) = \ get_config_vars('CC', 'CXX', 'CFLAGS', 'CCSHARED', 'LDSHARED', 'SO', 'AR', 'ARFLAGS') if 'CC' in os.environ: newcc = os.environ['CC'] if (sys.platform == 'darwin' and 'LDSHARED' not in os.environ and ldshared.startswith(cc)): # On OS X, if CC is overridden, use that as the default # command for LDSHARED as well ldshared = newcc + ldshared[len(cc):] cc = newcc if 'CXX' in os.environ: cxx = os.environ['CXX'] if 'LDSHARED' in os.environ: ldshared = os.environ['LDSHARED'] if 'CPP' in os.environ: cpp = os.environ['CPP'] else: cpp = cc + " -E" # not always if 'LDFLAGS' in os.environ: ldshared = ldshared + ' ' + os.environ['LDFLAGS'] if 'CFLAGS' in os.environ: cflags = cflags + ' ' + os.environ['CFLAGS'] ldshared = ldshared + ' ' + os.environ['CFLAGS'] if 'CPPFLAGS' in os.environ: cpp = cpp + ' ' + os.environ['CPPFLAGS'] cflags = cflags + ' ' + os.environ['CPPFLAGS'] ldshared = ldshared + ' ' + os.environ['CPPFLAGS'] if 'AR' in os.environ: ar = os.environ['AR'] if 'ARFLAGS' in os.environ: archiver = ar + ' ' + os.environ['ARFLAGS'] else: archiver = ar + ' ' + ar_flags cc_cmd = cc + ' ' + cflags compiler.set_executables( preprocessor=cpp, compiler=cc_cmd, compiler_so=cc_cmd + ' ' + ccshared, compiler_cxx=cxx, linker_so=ldshared, linker_exe=cc, archiver=archiver) compiler.shared_lib_extension = so_ext def get_config_h_filename(): """Return full pathname of installed pyconfig.h file.""" if python_build: if os.name == "nt": inc_dir = os.path.join(project_base, "PC") else: inc_dir = project_base else: inc_dir = get_python_inc(plat_specific=1) if get_python_version() < '2.2': config_h = 'config.h' else: # The name of the config.h file changed in 2.2 config_h = 'pyconfig.h' return os.path.join(inc_dir, config_h) def get_makefile_filename(): """Return full pathname of installed Makefile from the Python build.""" if python_build: return os.path.join(project_base, "Makefile") lib_dir = get_python_lib(plat_specific=1, standard_lib=1) return os.path.join(lib_dir, "config", "Makefile") def parse_config_h(fp, g=None): """Parse a config.h-style file. A dictionary containing name/value pairs is returned. If an optional dictionary is passed in as the second argument, it is used instead of a new dictionary. """ if g is None: g = {} define_rx = re.compile("#define ([A-Z][A-Za-z0-9_]+) (.*)\n") undef_rx = re.compile("/[*] #undef ([A-Z][A-Za-z0-9_]+) [*]/\n") # while 1: line = fp.readline() if not line: break m = define_rx.match(line) if m: n, v = m.group(1, 2) try: v = int(v) except ValueError: pass g[n] = v else: m = undef_rx.match(line) if m: g[m.group(1)] = 0 return g # Regexes needed for parsing Makefile (and similar syntaxes, # like old-style Setup files). _variable_rx = re.compile("([a-zA-Z][a-zA-Z0-9_]+)\s*=\s*(.*)") _findvar1_rx = re.compile(r"\$\(([A-Za-z][A-Za-z0-9_]*)\)") _findvar2_rx = re.compile(r"\${([A-Za-z][A-Za-z0-9_]*)}") def parse_makefile(fn, g=None): """Parse a Makefile-style file. A dictionary containing name/value pairs is returned. If an optional dictionary is passed in as the second argument, it is used instead of a new dictionary. """ from distutils.text_file import TextFile fp = TextFile(fn, strip_comments=1, skip_blanks=1, join_lines=1) if g is None: g = {} done = {} notdone = {} while 1: line = fp.readline() if line is None: # eof break m = _variable_rx.match(line) if m: n, v = m.group(1, 2) v = v.strip() # `$$' is a literal `$' in make tmpv = v.replace('$$', '') if "$" in tmpv: notdone[n] = v else: try: v = int(v) except ValueError: # insert literal `$' done[n] = v.replace('$$', '$') else: done[n] = v # do variable interpolation here while notdone: for name in notdone.keys(): value = notdone[name] m = _findvar1_rx.search(value) or _findvar2_rx.search(value) if m: n = m.group(1) found = True if n in done: item = str(done[n]) elif n in notdone: # get it on a subsequent round found = False elif n in os.environ: # do it like make: fall back to environment item = os.environ[n] else: done[n] = item = "" if found: after = value[m.end():] value = value[:m.start()] + item + after if "$" in after: notdone[name] = value else: try: value = int(value) except ValueError: done[name] = value.strip() else: done[name] = value del notdone[name] else: # bogus variable reference; just drop it since we can't deal del notdone[name] fp.close() # strip spurious spaces for k, v in done.items(): if isinstance(v, str): done[k] = v.strip() # save the results in the global dictionary g.update(done) return g def expand_makefile_vars(s, vars): """Expand Makefile-style variables -- "${foo}" or "$(foo)" -- in 'string' according to 'vars' (a dictionary mapping variable names to values). Variables not present in 'vars' are silently expanded to the empty string. The variable values in 'vars' should not contain further variable expansions; if 'vars' is the output of 'parse_makefile()', you're fine. Returns a variable-expanded version of 's'. """ # This algorithm does multiple expansion, so if vars['foo'] contains # "${bar}", it will expand ${foo} to ${bar}, and then expand # ${bar}... and so forth. This is fine as long as 'vars' comes from # 'parse_makefile()', which takes care of such expansions eagerly, # according to make's variable expansion semantics. while 1: m = _findvar1_rx.search(s) or _findvar2_rx.search(s) if m: (beg, end) = m.span() s = s[0:beg] + vars.get(m.group(1)) + s[end:] else: break return s _config_vars = None def _init_posix(): """Initialize the module as appropriate for POSIX systems.""" # _sysconfigdata is generated at build time, see the sysconfig module from _sysconfigdata import build_time_vars global _config_vars _config_vars = {} _config_vars.update(build_time_vars) def _init_nt(): """Initialize the module as appropriate for NT""" g = {} # set basic install directories g['LIBDEST'] = get_python_lib(plat_specific=0, standard_lib=1) g['BINLIBDEST'] = get_python_lib(plat_specific=1, standard_lib=1) # XXX hmmm.. a normal install puts include files here g['INCLUDEPY'] = get_python_inc(plat_specific=0) g['SO'] = '.pyd' g['EXE'] = ".exe" g['VERSION'] = get_python_version().replace(".", "") g['BINDIR'] = os.path.dirname(os.path.abspath(sys.executable)) global _config_vars _config_vars = g def _init_os2(): """Initialize the module as appropriate for OS/2""" g = {} # set basic install directories g['LIBDEST'] = get_python_lib(plat_specific=0, standard_lib=1) g['BINLIBDEST'] = get_python_lib(plat_specific=1, standard_lib=1) # XXX hmmm.. a normal install puts include files here g['INCLUDEPY'] = get_python_inc(plat_specific=0) g['SO'] = '.pyd' g['EXE'] = ".exe" global _config_vars _config_vars = g def get_config_vars(*args): """With no arguments, return a dictionary of all configuration variables relevant for the current platform. Generally this includes everything needed to build extensions and install both pure modules and extensions. On Unix, this means every variable defined in Python's installed Makefile; on Windows and Mac OS it's a much smaller set. With arguments, return a list of values that result from looking up each argument in the configuration variable dictionary. """ global _config_vars if _config_vars is None: func = globals().get("_init_" + os.name) if func: func() else: _config_vars = {} # Normalized versions of prefix and exec_prefix are handy to have; # in fact, these are the standard versions used most places in the # Distutils. _config_vars['prefix'] = PREFIX _config_vars['exec_prefix'] = EXEC_PREFIX # OS X platforms require special customization to handle # multi-architecture, multi-os-version installers if sys.platform == 'darwin': import _osx_support _osx_support.customize_config_vars(_config_vars) if args: vals = [] for name in args: vals.append(_config_vars.get(name)) return vals else: return _config_vars def get_config_var(name): """Return the value of a single variable using the dictionary returned by 'get_config_vars()'. Equivalent to get_config_vars().get(name) """ return get_config_vars().get(name)
the-stack_0_10785
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import copy import warnings import paddle from paddle.fluid.framework import dygraph_only from paddle.fluid import compiler from .role_maker import UserDefinedRoleMaker, PaddleCloudRoleMaker, RoleMakerBase from .strategy_compiler import StrategyCompiler from .distributed_strategy import DistributedStrategy from .meta_optimizer_factory import MetaOptimizerFactory from .runtime_factory import RuntimeFactory from paddle.fluid.wrapped_decorator import wrap_decorator from paddle.fluid.dygraph import parallel_helper def _inited_runtime_handler_(func): def __impl__(*args, **kwargs): cls = args[0] if cls._runtime_handle is None: raise ValueError("Fleet can not find suitable runtime handler") return func(*args, **kwargs) return __impl__ def _is_non_distributed_check_(func): def __impl__(*args, **kwargs): cls = args[0] if cls._role_maker is not None and cls._role_maker._is_non_distributed( ) is True: warnings.warn( "%s() function doesn't work when use non_distributed fleet." % (func.__name__)) return return func(*args, **kwargs) return __impl__ inited_runtime_handler = wrap_decorator(_inited_runtime_handler_) is_non_distributed_check = wrap_decorator(_is_non_distributed_check_) class Fleet(object): """ Unified API for distributed training of PaddlePaddle Please reference the https://github.com/PaddlePaddle/FleetX for details Returns: Fleet: A Fleet instance Example for collective training: .. code-block:: python import paddle paddle.enable_static() import paddle.distributed.fleet as fleet fleet.init(is_collective=True) strategy = fleet.DistributedStrategy() optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) # do distributed training Example for parameter server training: .. code-block:: python import paddle paddle.enable_static() import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() fleet.init(strategy=strategy) optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer = fleet.distributed_optimizer(optimizer) if fleet.is_first_worker(): print("this is first worker") print("current node index: {}".format(fleet.worker_index())) print("total number of worker num: {}".format(fleet.worker_num())) if fleet.is_worker(): print("this is worker") print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True))) print("server num: {}".format(fleet.server_num())) print("server endpoints: {}".format(fleet.server_endpoints(to_string=True))) if fleet.is_server(): print("this is server") fleet.stop_worker() """ def __init__(self): self._role_maker = None self.strategy_compiler = None self._is_collective = False self._runtime_handle = None self._util = None self._context = {} def init(self, role_maker=None, is_collective=False, strategy=None): """ Initialize role_maker in Fleet. This function is responsible for the distributed architecture what you want to run your code behind. Args: role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration of environment variables related to distributed training.If you did not initialize the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker. The default value is None. is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program runs on the CPU or GPU. False means set distributed training using CPU, and True means GPU.The default value is False.The default value is False. strategy (DistributedStrategy): Extra properties for distributed training. For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None. Returns: None Examples1: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() Examples2: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init(is_collective=True) Examples3: .. code-block:: python import paddle.distributed.fleet as fleet role = fleet.PaddleCloudRoleMaker() fleet.init(role) Examples4: .. code-block:: python import paddle.distributed.fleet as fleet strategy = fleet.DistributedStrategy() fleet.init(strategy=strategy) """ if strategy is None: strategy = DistributedStrategy() self._user_defined_strategy = copy.deepcopy(strategy) if role_maker is None: if isinstance(is_collective, bool): self._is_collective = is_collective self._role_maker = PaddleCloudRoleMaker( is_collective=self._is_collective) else: raise ValueError( "`is_collective` should be instance of `bool`, but got {}". format(type(is_collective))) else: if isinstance(role_maker, RoleMakerBase): self._role_maker = role_maker else: raise ValueError( "`role_maker` should be subclass of `RoleMakerBase`, but got {}". format(type(role_maker))) self._role_maker._generate_role() import paddle.distributed.fleet as fleet fleet.util._set_role_maker(self._role_maker) self.strategy_compiler = StrategyCompiler() if self._role_maker._is_non_distributed() and self._is_collective: if paddle.fluid.core.is_compiled_with_cuda(): gpus_num = paddle.fluid.core.get_cuda_device_count() if gpus_num != 1: raise ValueError( "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program." ) if paddle.fluid.framework.in_dygraph_mode(): if self.worker_num() == 1: return if parallel_helper._is_parallel_ctx_initialized(): warnings.warn( "The dygraph parallel environment has been initialized.") else: paddle.distributed.init_parallel_env() def is_first_worker(self): """ Check whether the node is the first instance of worker. Returns: bool: True if this is the first node of worker, False if not. Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.is_first_worker() """ return self._role_maker._is_first_worker() def worker_index(self): """ Get current worker index. Returns: int: node id Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.worker_index() """ return self._role_maker._worker_index() def worker_num(self): """ Get current total worker number. Returns: int: worker numbers Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.worker_num() """ return self._role_maker._worker_num() def is_worker(self): """ Check whether the node is an instance of worker. Returns: bool: True if this is a node of worker, False if not. Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.is_worker() """ return self._role_maker._is_worker() def worker_endpoints(self, to_string=False): """ Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"]. Returns: list/string: server endpoints Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.worker_endpoints() """ if to_string: return ",".join(self._role_maker._get_trainer_endpoints()) else: return self._role_maker._get_trainer_endpoints() def server_num(self): """ Get current total worker number. Returns: int: server number Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.server_num() """ return len(self._role_maker._get_pserver_endpoints()) def server_index(self): """ Get current server index. Returns: int: node id Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.server_index() """ return self._role_maker._server_index() def server_endpoints(self, to_string=False): """ Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"]. Returns: list/string: server endpoints Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.server_endpoints() """ if to_string: return ",".join(self._role_maker._get_pserver_endpoints()) else: return self._role_maker._get_pserver_endpoints() def is_server(self): """ Check whether the node is an instance of server. Returns: bool: True if this is a node of server, False if not. Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() fleet.is_server() """ return self._role_maker._is_server( ) or self._role_maker._is_heter_worker() def barrier_worker(self): """ barrier all workers Returns: None """ self._role_maker._barrier("worker") @is_non_distributed_check @inited_runtime_handler def init_worker(self): """ initialize `Communicator` for parameter server training. Returns: None Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() # build net # fleet.distributed_optimizer(...) fleet.init_worker() """ self._runtime_handle._init_worker() @is_non_distributed_check @inited_runtime_handler def init_server(self, *args, **kwargs): """ init_server executor to initialize startup program, if the `args` is not empty, it will run load_persistables for increment training. Returns: None Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() # build net # fleet.distributed_optimizer(...) fleet.init_server() """ self._runtime_handle._init_server(*args, **kwargs) @is_non_distributed_check @inited_runtime_handler def run_server(self): """ run server will run pserver main program with executor. Returns: None Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() # build net # fleet.distributed_optimizer(...) if fleet.is_server(): fleet.init_server() """ self._runtime_handle._run_server() @is_non_distributed_check @inited_runtime_handler def stop_worker(self): """ stop `Communicator` and give training complete notice to parameter server. Returns: None Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() # build net # fleet.distributed_optimizer(...) fleet.init_server() """ self._runtime_handle._stop_worker() def save_inference_model(self, executor, dirname, feeded_var_names, target_vars, main_program=None, export_for_deployment=True): """ save inference model for inference. Returns: None Examples: .. code-block:: python import paddle.distributed.fleet as fleet fleet.init() # build net # fleet.distributed_optimizer(...) fleet.init_server() """ self._runtime_handle._save_inference_model( executor, dirname, feeded_var_names, target_vars, main_program, export_for_deployment) def save_persistables(self, executor, dirname, main_program=None, mode=1): """ saves all persistable tensors from :code:`main_program` to the folder :code:`dirname`. You can refer to The :code:`dirname` is used to specify the folder where persistable tensors are going to be saved. If you would like to save tensors in separate files, set :code:`filename` None. Args: executor(Executor): The executor to run for saving persistable tensors. You can refer to :ref:`api_guide_executor_en` for more details. dirname(str, optional): The saving directory path. When you need to save the parameter to the memory, set it to None. main_program(Program, optional): The program whose persistbale tensors will be saved. Default: None. Returns: None Examples: .. code-block:: text import paddle paddle.enable_static() import paddle.distributed.fleet as fleet fleet.init() # build net # fleet.distributed_optimizer(...) exe = paddle.static.Executor(paddle.CPUPlace()) fleet.save_persistables(exe, "dirname", paddle.static.default_main_program()) """ self._runtime_handle._save_persistables(executor, dirname, main_program, mode) def distributed_optimizer(self, optimizer, strategy=None): """ Optimizer for distributed training. For the distributed training, this method would rebuild a new instance of DistributedOptimizer. Which has basic Optimizer function and special features for distributed training. Args: optimizer(Optimizer): The executor to run for init server. strategy(DistributedStrategy): Extra properties for distributed optimizer. It is recommended to use DistributedStrategy in fleet.init(). The strategy here is for compatibility. If the strategy in fleet.distributed_optimizer() is not None, then it will overwrite the DistributedStrategy in fleet.init(), which will take effect in distributed training. Returns: Fleet: instance of fleet. Examples: .. code-block:: python import paddle import paddle.distributed.fleet as fleet fleet.init(is_collective=True) strategy = fleet.DistributedStrategy() optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) """ self.user_defined_optimizer = optimizer if strategy is not None: warnings.warn( "It is recommended to use DistributedStrategy " "in fleet.init(). The strategy here is only for compatibility. " "If the strategy in fleet.distributed_optimizer() is " "not None, then it will overwrite the DistributedStrategy in fleet.init(), " "which will take effect in distributed training.") self._user_defined_strategy = copy.deepcopy(strategy) self._context = {} return self @dygraph_only def distributed_model(self, model): """ Return distributed data parallel model (Only work in dygraph mode) Args: model (Layer): the user-defind model which inherits Layer. Returns: distributed data parallel model which inherits Layer. Examples: .. code-block:: python import paddle import paddle.nn as nn from paddle.distributed import fleet class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) # 1. initialize fleet environment fleet.init(is_collective=True) # 2. create layer & optimizer layer = LinearNet() loss_fn = nn.MSELoss() adam = paddle.optimizer.Adam( learning_rate=0.001, parameters=layer.parameters()) # 3. get data_parallel model using fleet adam = fleet.distributed_optimizer(adam) dp_layer = fleet.distributed_model(layer) # 4. run layer inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) print("loss:", loss.numpy()) loss.backward() adam.step() adam.clear_grad() """ assert model is not None self.model = paddle.DataParallel( model, comm_buffer_size=self._user_defined_strategy.fuse_grad_size_in_MB, last_comm_buffer_size=self._user_defined_strategy. last_comm_group_size_MB) return self.model @dygraph_only def state_dict(self): """ Get state dict information from optimizer. (Only work in dygraph mode) Returns: state_dict(dict) : dict contains all the Tensor used by optimizer Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import fleet fleet.init(is_collective=True) value = np.arange(26).reshape(2, 13).astype("float32") a = paddle.to_tensor(value) layer = paddle.nn.Linear(13, 5) adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters()) adam = fleet.distributed_optimizer(adam) dp_layer = fleet.distributed_model(layer) state_dict = adam.state_dict() """ # imitate target optimizer retrieval return self.user_defined_optimizer.state_dict() @dygraph_only def set_state_dict(self, state_dict): """ Load optimizer state dict. (Only work in dygraph mode) Args: state_dict(dict) : Dict contains all the Tensor needed by optimizer Returns: None Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import fleet fleet.init(is_collective=True) value = np.arange(26).reshape(2, 13).astype("float32") a = paddle.to_tensor(value) layer = paddle.nn.Linear(13, 5) adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters()) adam = fleet.distributed_optimizer(adam) dp_layer = fleet.distributed_model(layer) state_dict = adam.state_dict() paddle.save(state_dict, "paddle_dy") para_state_dict = paddle.load("paddle_dy") adam.set_state_dict(para_state_dict) """ # imitate target optimizer retrieval return self.user_defined_optimizer.set_state_dict(state_dict) @dygraph_only def set_lr(self, value): """ Set the value of the learning rate manually in the optimizer. (Only work in dygraph mode) Args: value (float|Tensor): the value of learning rate Returns: None Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import fleet fleet.init(is_collective=True) value = np.arange(26).reshape(2, 13).astype("float32") a = paddle.to_tensor(value) layer = paddle.nn.Linear(13, 5) adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters()) adam = fleet.distributed_optimizer(adam) dp_layer = fleet.distributed_model(layer) lr_list = [0.2, 0.3, 0.4, 0.5, 0.6] for i in range(5): adam.set_lr(lr_list[i]) lr = adam.get_lr() print("current lr is {}".format(lr)) # Print: # current lr is 0.2 # current lr is 0.3 # current lr is 0.4 # current lr is 0.5 # current lr is 0.6 """ # imitate target optimizer retrieval return self.user_defined_optimizer.set_lr(value) @dygraph_only def get_lr(self): """ Get current step learning rate. (Only work in dygraph mode) Returns: float: The learning rate of the current step. Examples: .. code-block:: python import numpy as np import paddle from paddle.distributed import fleet fleet.init(is_collective=True) value = np.arange(26).reshape(2, 13).astype("float32") a = paddle.to_tensor(value) layer = paddle.nn.Linear(13, 5) adam = paddle.optimizer.Adam(learning_rate=0.01, parameters=layer.parameters()) adam = fleet.distributed_optimizer(adam) dp_layer = fleet.distributed_model(layer) lr = adam.get_lr() print(lr) # 0.01 """ # imitate target optimizer retrieval return self.user_defined_optimizer.get_lr() @dygraph_only def step(self): """ Execute the optimizer once. (Only work in dygraph mode) Returns: None Examples: .. code-block:: python import paddle import paddle.nn as nn from paddle.distributed import fleet class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) # 1. initialize fleet environment fleet.init(is_collective=True) # 2. create layer & optimizer layer = LinearNet() loss_fn = nn.MSELoss() adam = paddle.optimizer.Adam( learning_rate=0.001, parameters=layer.parameters()) # 3. get data_parallel model using fleet adam = fleet.distributed_optimizer(adam) dp_layer = fleet.distributed_model(layer) # 4. run layer inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) print("loss:", loss.numpy()) loss.backward() adam.step() adam.clear_grad() """ # imitate target optimizer retrieval return self.user_defined_optimizer.step() @dygraph_only def clear_grad(self): """ Clear the gradients of all optimized parameters for model. (Only work in dygraph mode) Returns: None Examples: .. code-block:: python import paddle import paddle.nn as nn from paddle.distributed import fleet class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) # 1. initialize fleet environment fleet.init(is_collective=True) # 2. create layer & optimizer layer = LinearNet() loss_fn = nn.MSELoss() adam = paddle.optimizer.Adam( learning_rate=0.001, parameters=layer.parameters()) # 3. get data_parallel model using fleet adam = fleet.distributed_optimizer(adam) dp_layer = fleet.distributed_model(layer) # 4. run layer inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) print("loss:", loss.numpy()) loss.backward() adam.step() adam.clear_grad() """ # imitate target optimizer retrieval return self.user_defined_optimizer.clear_grad() def _final_strategy(self): if "valid_strategy" not in self._context: print( "WARNING: You may need to call minimize function before this function is called" ) return {} else: return self._context["valid_strategy"] def _get_applied_meta_list(self): if "applied_meta_list" not in self._context: print( "WARNING: You may need to call minimize function before _get_applied_meta_list called" ) return [] else: return self._context["applied_meta_list"] def _get_applied_graph_list(self): if "applied_graph_list" not in self._context: print( "WARNING: You may need to call minimize function before _get_applied_graph_list called" ) return [] else: return self._context["applied_graph_list"] def minimize(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): """ Add distributed operations to minimize ``loss`` by updating ``parameter_list``. Args: loss (Tensor): A ``Tensor`` containing the value to minimize. startup_program (Program, optional): :ref:`api_fluid_Program` for initializing parameters in ``parameter_list``. The default value is None, at this time :ref:`api_fluid_default_startup_program` will be used. parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update to minimize ``loss``. The default value is None, at this time all parameters will be updated. no_grad_set (set, optional): Set of ``Tensor`` or ``Tensor.name`` that don't need to be updated. The default value is None. Returns: tuple: tuple (optimize_ops, params_grads), A list of operators appended by minimize and a list of (param, grad) tensor pairs, param is ``Parameter``, grad is the gradient value corresponding to the parameter. The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to indicate program pruning. If so, the program will be pruned by ``feed`` and ``fetch_list`` before run, see details in ``Executor``. Examples: .. code-block:: python import paddle paddle.enable_static() import paddle.distributed.fleet as fleet import paddle.nn.functional as F hid_dim = 10 label_dim = 2 input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32') input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64') fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh') fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh') prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax') cost = F.cross_entropy(input=prediction, label=input_y) avg_cost = paddle.mean(x=cost) fleet.init(is_collective=True) strategy = fleet.DistributedStrategy() optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy) optimizer.minimize(avg_cost) # for more examples, please reference https://github.com/PaddlePaddle/FleetX """ context = {} context["user_defined_strategy"] = copy.deepcopy( self._user_defined_strategy) if paddle.fluid.framework.in_dygraph_mode(): # imitate target optimizer retrieval target_opt = self.user_defined_optimizer self._context = context return target_opt.minimize(loss) # cache original feed forward program self.origin_main_program = loss.block.program context["origin_main_program"] = self.origin_main_program context["loss"] = loss if startup_program == None: self.origin_startup_program = \ paddle.static.default_startup_program().clone(for_test=False) startup_program = paddle.static.default_startup_program() else: self.origin_startup_program = \ startup_program.clone(for_test=False) context["origin_startup_program"] = startup_program context["role_maker"] = self._role_maker # compile time distributed_optimizer_list = \ MetaOptimizerFactory()._get_valid_meta_optimizers( self.user_defined_optimizer) context["user_defined_strategy"] = copy.deepcopy( self._user_defined_strategy) copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy) # trigger the auto-parallel in very strict condition # strategy = DistributedStrategy() # strategy.auto = True # optimizer = paddle.optimizer.SGD(learning_rate=0.1) # optimizer = fleet.distributed_optimizer(optimizer, strategy) if copy_user_defined_strategy._is_strict_auto(): # turn on all the strategy for each optimizer for opt in distributed_optimizer_list: opt._enable_strategy(copy_user_defined_strategy, context) valid_optimizer_list = [] valid_graph_optimizer_list = [] can_not_apply_optimizer_list = [] # recall meta optimizers for ranking for opt in distributed_optimizer_list: opt._set_basic_info(loss, self._role_maker, self.user_defined_optimizer, copy_user_defined_strategy) if opt._can_apply() and not opt._is_graph_out(): valid_optimizer_list.append(opt) elif opt._can_apply() and opt._is_graph_out(): valid_graph_optimizer_list.append(opt) else: can_not_apply_optimizer_list.append(opt) # combine recalled meta optimizers to be a valid meta optimizer meta_optimizer, graph_optimizer = \ self.strategy_compiler.generate_optimizer( loss, self._role_maker, self.user_defined_optimizer, copy_user_defined_strategy, valid_optimizer_list, valid_graph_optimizer_list) valid_strategy = self.strategy_compiler._get_valid_strategy( copy_user_defined_strategy, can_not_apply_optimizer_list) context["valid_strategy"] = copy.deepcopy(valid_strategy) applied_meta_list = self.strategy_compiler._get_applied_meta_list() applied_graph_list = self.strategy_compiler._get_applied_graph_list() context['applied_meta_list'] = applied_meta_list context['applied_graph_list'] = applied_graph_list self._context = context self.valid_strategy = valid_strategy self.valid_strategy._enable_env() optimize_ops = [] params_grads = [] if self._role_maker._is_non_distributed() and not self._is_collective: if self._runtime_handle is None: self._runtime_handle = RuntimeFactory()._create_runtime(context) compiled_program = compiler.CompiledProgram( self.origin_main_program).with_data_parallel( loss_name=loss.name, share_vars_from=None) loss.block.program._graph = compiled_program return self.user_defined_optimizer.minimize( loss, startup_program, parameter_list, no_grad_set=no_grad_set) if meta_optimizer: optimize_ops, params_grads = meta_optimizer.minimize( loss, startup_program, parameter_list, no_grad_set=no_grad_set) default_program = paddle.static.default_main_program() if id(default_program) != id(loss.block.program): paddle.fluid.framework.switch_main_program(loss.block.program) else: optimize_ops, params_grads = self.user_defined_optimizer.minimize( loss, startup_program, parameter_list, no_grad_set=no_grad_set) context["program_optimize_ops"] = optimize_ops context["program_params_grads"] = params_grads if graph_optimizer: optimize_ops, params_grads = graph_optimizer.minimize( loss, startup_program, parameter_list, no_grad_set=no_grad_set) # since we do not encourage users to use graph operations # if a graph optimizer takes effect, mostly # optimizers_ops and params_grads are None # i.e. users can not modify current computation graph anymore context["graph_optimize_ops"] = optimize_ops context["graph_optimize_grads"] = params_grads if self._runtime_handle is None: self._runtime_handle = RuntimeFactory()._create_runtime(context) import paddle.distributed.fleet as fleet fleet.util._set_strategy(context["valid_strategy"]) return optimize_ops, params_grads
the-stack_0_10786
# Examples - Simple from dataclasses import dataclass from flask import Flask from miko import Manager app = Flask(__name__) manager = Manager() @dataclass class User: name: str comment: str @app.get("/") def index(): return manager.render( "index.html", user=User( "麻弓=タイム", "小さい胸は貴重なのよっ、ステータスなのよっ!?" ), logged_in=True ) app.run()
the-stack_0_10787
r""" Yang-Baxter Graphs """ #***************************************************************************** # Copyright (C) 2009 Franco Saliola <[email protected]> # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ #***************************************************************************** from sage.graphs.digraph import DiGraph from sage.structure.sage_object import SageObject from sage.misc.lazy_attribute import lazy_attribute from sage.combinat.partition import Partition from sage.combinat.permutation import Permutation def YangBaxterGraph(partition=None, root=None, operators=None): r""" Construct the Yang-Baxter graph from ``root`` by repeated application of ``operators``, or the Yang-Baxter graph associated to ``partition``. INPUT: The user needs to provide either ``partition`` or both ``root`` and ``operators``, where - ``partition`` -- a partition of a positive integer - ``root`` -- the root vertex - ``operator`` - a function that maps vertices `u` to a list of tuples of the form `(v, l)` where `v` is a successor of `u` and `l` is the label of the edge from `u` to `v`. OUTPUT: - Either: - :class:`YangBaxterGraph_partition` - if partition is defined - :class:`YangBaxterGraph_generic` - if partition is ``None`` EXAMPLES: The Yang-Baxter graph defined by a partition `[p_1,\dots,p_k]` is the labelled directed graph with vertex set obtained by bubble-sorting `(p_k-1,p_k-2,\dots,0,\dots,p_1-1,p_1-2,\dots,0)`; there is an arrow from `u` to `v` labelled by `i` if `v` is obtained by swapping the `i`-th and `(i+1)`-th elements of `u`. For example, if the partition is `[3,1]`, then we begin with `(0,2,1,0)` and generate all tuples obtained from it by swapping two adjacent entries if they are increasing:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: bubbleswaps = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=bubbleswaps); Y Yang-Baxter graph with root vertex (0, 2, 1, 0) sage: Y.vertices() [(2, 0, 1, 0), (2, 1, 0, 0), (0, 2, 1, 0)] The ``partition`` keyword is a shorthand for the above construction. :: sage: Y = YangBaxterGraph(partition=[3,1]); Y Yang-Baxter graph of [3, 1], with top vertex (0, 2, 1, 0) sage: Y.vertices() [(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)] The permutahedron can be realized as a Yang-Baxter graph. :: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: swappers = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(1,2,3,4), operators=swappers); Y Yang-Baxter graph with root vertex (1, 2, 3, 4) sage: Y.plot() Graphics object consisting of 97 graphics primitives The Cayley graph of a finite group can be realized as a Yang-Baxter graph. :: sage: def left_multiplication_by(g): ... return lambda h : h*g sage: G = CyclicPermutationGroup(4) sage: operators = [ left_multiplication_by(gen) for gen in G.gens() ] sage: Y = YangBaxterGraph(root=G.identity(), operators=operators); Y Yang-Baxter graph with root vertex () sage: Y.plot(edge_labels=False) Graphics object consisting of 9 graphics primitives sage: G = SymmetricGroup(4) sage: operators = [left_multiplication_by(gen) for gen in G.gens()] sage: Y = YangBaxterGraph(root=G.identity(), operators=operators); Y Yang-Baxter graph with root vertex () sage: Y.plot(edge_labels=False) Graphics object consisting of 96 graphics primitives AUTHORS: - Franco Saliola (2009-04-23) """ if partition is None: return YangBaxterGraph_generic(root=root, operators=operators) else: return YangBaxterGraph_partition(partition=Partition(partition)) ##### General class for Yang-Baxter Graphs ################################ class YangBaxterGraph_generic(SageObject): def __init__(self, root, operators): r""" A class to model the Yang-Baxter graph defined by ``root`` and ``operators``. INPUT: - ``root`` -- the root vertex of the graph - ``operators`` -- a list of callables that map vertices to (new) vertices. .. NOTE:: This is a lazy implementation: the digraph is only computed when it is needed. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops); Y Yang-Baxter graph with root vertex (1, 0, 2, 1, 0) sage: loads(dumps(Y)) == Y True AUTHORS: - Franco Saliola (2009-04-23) """ self._root = root self._operators = operators def _successors(self, u): r""" Return a list of tuples for the form `(op(u), op)`, where op is one of the operators defining ``self``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y._successors((1,0,2,1,0)) [((1, 2, 0, 1, 0), Swap-if-increasing at position 1)] """ successors = set() for op in self._operators: v = op(u) if v != u: successors.add((v, op)) return list(successors) def __repr__(self): r""" EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(2)] sage: Y = YangBaxterGraph(root=(1,2,3), operators=ops) sage: Y.__repr__() 'Yang-Baxter graph with root vertex (1, 2, 3)' """ return "Yang-Baxter graph with root vertex %s" % (self._root,) @lazy_attribute def _digraph(self): r""" Constructs the underlying digraph and stores the result as an attribute. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(2)] sage: Y = YangBaxterGraph(root=(1,2,3), operators=ops) sage: Y._digraph Digraph on 6 vertices """ digraph = DiGraph() digraph.add_vertex(self._root) queue = [self._root] while queue: u = queue.pop() for (v, l) in self._successors(u): if v not in digraph: queue.append(v) digraph.add_edge(u, v, l) return digraph def __hash__(self): r""" TESTS:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(2)] sage: Y = YangBaxterGraph(root=(1,2,3), operators=ops) sage: hash(Y) 1028420699 # 32-bit 7656306018247013467 # 64-bit """ # TODO: this is ugly but unavoidable: the Yang Baxter graphs are being # used in containers but are mutable. return hash(self._digraph.copy(immutable=True)) def __eq__(self, other): r""" EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y1 = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y2 = YangBaxterGraph(root=(2,0,2,1,0), operators=ops) sage: Y3 = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y1.__eq__(Y2) False sage: Y2.__eq__(Y2) True sage: Y1.__eq__(Y1) True sage: Y3.__eq__(Y1) True sage: Y3.__eq__(Y2) False """ return type(self) is type(other) and self._digraph.__eq__(other._digraph) def __ne__(self, other): r""" Test non-equality. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y1 = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y2 = YangBaxterGraph(root=(2,0,2,1,0), operators=ops) sage: Y3 = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y1.__ne__(Y2) True sage: Y2.__ne__(Y2) False sage: Y1.__ne__(Y1) False sage: Y3.__ne__(Y1) False sage: Y3.__ne__(Y2) True """ return not self.__eq__(other) def __iter__(self): r""" Returns an iterator of the vertices in ``self``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: uniq(Y.__iter__()) [(1, 0, 2, 1, 0), (1, 2, 0, 1, 0), (1, 2, 1, 0, 0), (2, 1, 0, 1, 0), (2, 1, 1, 0, 0)] """ return self._digraph.vertex_iterator() def __len__(self): r""" Returns the number of vertices in ``self``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y.__len__() 5 sage: ops = [SwapIncreasingOperator(i) for i in range(5)] sage: Y = YangBaxterGraph(root=(0,1,0,2,1,0), operators=ops) sage: Y.__len__() 16 """ return self._digraph.num_verts() def __copy__(self): r""" Returns a copy of ``self``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops); Y Yang-Baxter graph with root vertex (1, 0, 2, 1, 0) sage: B = copy(Y); B Yang-Baxter graph with root vertex (1, 0, 2, 1, 0) sage: Y is B False sage: Y == B True """ from copy import copy Y = self.__class__(self._root, self._operators) Y._digraph = copy(self._digraph) return Y def _edges_in_bfs(self): r""" Returns an iterator of the edges of the digraph traversed in a breadth-first search of the vertices beginning at ``self.root()``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: list(Y._edges_in_bfs()) [((1, 0, 2, 1, 0), (1, 2, 0, 1, 0), Swap-if-increasing at position 1), ((1, 2, 0, 1, 0), (1, 2, 1, 0, 0), Swap-if-increasing at position 2), ((1, 2, 0, 1, 0), (2, 1, 0, 1, 0), Swap-if-increasing at position 0), ((2, 1, 0, 1, 0), (2, 1, 1, 0, 0), Swap-if-increasing at position 2)] """ digraph = self._digraph seen = {} queue = [self._root] seen[self._root] = True while queue: u = queue.pop() for w in digraph.neighbor_out_iterator(u): if w not in seen: seen[w] = True queue.append(w) yield (u,w,digraph.edge_label(u,w)) def root(self): r""" Returns the root vertex of ``self``. If ``self`` is the Yang-Baxter graph of the partition `[p_1,p_2,\dots,p_k]`, then this is the vertex `(p_k-1,p_k-2,\dots,0,\dots,p_1-1,p_1-2,\dots,0)`. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y.root() (1, 0, 2, 1, 0) sage: Y = YangBaxterGraph(root=(0,1,0,2,1,0), operators=ops) sage: Y.root() (0, 1, 0, 2, 1, 0) sage: Y = YangBaxterGraph(root=(1,0,3,2,1,0), operators=ops) sage: Y.root() (1, 0, 3, 2, 1, 0) sage: Y = YangBaxterGraph(partition=[3,2]) sage: Y.root() (1, 0, 2, 1, 0) """ return self._root def successors(self, v): r""" Return the successors of the vertex ``v``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y.successors(Y.root()) [(1, 2, 0, 1, 0)] sage: Y.successors((1, 2, 0, 1, 0)) [(1, 2, 1, 0, 0), (2, 1, 0, 1, 0)] """ return [a for (a,b) in self._successors(v)] def plot(self, *args, **kwds): r""" Plots ``self`` as a digraph. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(4)] sage: Y = YangBaxterGraph(root=(1,0,2,1,0), operators=ops) sage: Y.plot() Graphics object consisting of 16 graphics primitives sage: Y.plot(edge_labels=False) Graphics object consisting of 11 graphics primitives """ if "edge_labels" not in kwds: kwds["edge_labels"] = True if "vertex_labels" not in kwds: kwds["vertex_labels"] = True return self._digraph.plot(*args, **kwds) def vertices(self): r""" Returns the vertices of ``self``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: Y.vertices() [(2, 0, 1, 0), (2, 1, 0, 0), (0, 2, 1, 0)] """ return list(self) def edges(self): r""" Returns the (labelled) edges of ``self``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: Y.edges() [((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0), (2, 1, 0, 0), Swap-if-increasing at position 1)] """ return self._digraph.edges() def vertex_relabelling_dict(self, v, relabel_operator): r""" Return a dictionary pairing vertices ``u`` of ``self`` with the object obtained from ``v`` by applying the ``relabel_operator`` along a path from the root to ``u``. Note that the root is paired with ``v``. INPUT: - ``v`` -- an object - ``relabel_operator`` -- function mapping a vertex and a label to the image of the vertex OUTPUT: - dictionary pairing vertices with the corresponding image of ``v`` EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: def relabel_operator(op, u): ... i = op.position() ... return u[:i] + u[i:i+2][::-1] + u[i+2:] sage: Y.vertex_relabelling_dict((1,2,3,4), relabel_operator) {(0, 2, 1, 0): (1, 2, 3, 4), (2, 0, 1, 0): (2, 1, 3, 4), (2, 1, 0, 0): (2, 3, 1, 4)} """ relabelling = {self._root:v} for (u,w,i) in self._edges_in_bfs(): relabelling[w] = relabel_operator(i, relabelling[u]) return relabelling def relabel_vertices(self, v, relabel_operator, inplace=True): r""" Relabel the vertices ``u`` of ``self`` by the object obtained from ``u`` by applying the ``relabel_operator`` to ``v`` along a path from ``self.root()`` to ``u``. Note that the ``self.root()`` is paired with ``v``. INPUT: - ``v`` -- tuple, Permutation, CombinatorialObject - ``inplace`` -- if ``True``, modifies ``self``; otherwise returns a modified copy of ``self``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: def relabel_op(op, u): ... i = op.position() ... return u[:i] + u[i:i+2][::-1] + u[i+2:] sage: d = Y.relabel_vertices((1,2,3,4), relabel_op, inplace=False); d Yang-Baxter graph with root vertex (1, 2, 3, 4) sage: Y.vertices() [(2, 0, 1, 0), (2, 1, 0, 0), (0, 2, 1, 0)] sage: e = Y.relabel_vertices((1,2,3,4), relabel_op); e sage: Y.vertices() [(2, 1, 3, 4), (1, 2, 3, 4), (2, 3, 1, 4)] """ from copy import copy relabelling = self.vertex_relabelling_dict(v, relabel_operator) Y = self if inplace else copy(self) Y._root = relabelling[Y._root] Y._digraph.relabel(relabelling, inplace=True) if inplace is False: return Y def relabel_edges(self, edge_dict, inplace=True): r""" Relabel the edges of ``self``. INPUT: - ``edge_dict`` -- a dictionary keyed by the (unlabelled) edges. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: ops = [SwapIncreasingOperator(i) for i in range(3)] sage: Y = YangBaxterGraph(root=(0,2,1,0), operators=ops) sage: def relabel_op(op, u): ... i = op.position() ... return u[:i] + u[i:i+2][::-1] + u[i+2:] sage: Y.edges() [((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0), (2, 1, 0, 0), Swap-if-increasing at position 1)] sage: d = {((0,2,1,0),(2,0,1,0)):17, ((2,0,1,0),(2,1,0,0)):27} sage: Y.relabel_edges(d, inplace=False).edges() [((0, 2, 1, 0), (2, 0, 1, 0), 17), ((2, 0, 1, 0), (2, 1, 0, 0), 27)] sage: Y.edges() [((0, 2, 1, 0), (2, 0, 1, 0), Swap-if-increasing at position 0), ((2, 0, 1, 0), (2, 1, 0, 0), Swap-if-increasing at position 1)] sage: Y.relabel_edges(d, inplace=True) sage: Y.edges() [((0, 2, 1, 0), (2, 0, 1, 0), 17), ((2, 0, 1, 0), (2, 1, 0, 0), 27)] """ if inplace: Y = self else: from copy import copy Y = copy(self) digraph = Y._digraph for (u,v,i) in digraph.edges(): digraph.set_edge_label(u,v,edge_dict[u,v]) if not inplace: return Y ##### Yang-Baxter Graphs defined by a partition ########################### class YangBaxterGraph_partition(YangBaxterGraph_generic): def __init__(self, partition): r""" A class to model the Yang-Baxter graph of a partition. The Yang-Baxter graph defined by a partition `[p_1,\dots,p_k]` is the labelled directed graph with vertex set obtained by bubble-sorting `(p_k-1,p_k-2,\dots,0,\dots,p_1-1,p_1-2,\dots,0)`; there is an arrow from `u` to `v` labelled by `i` if `v` is obtained by swapping the `i`-th and `(i+1)`-th elements of `u`. .. note:: This is a lazy implementation: the digraph is only computed when it is needed. EXAMPLES:: sage: Y = YangBaxterGraph(partition=[3,2,1]); Y Yang-Baxter graph of [3, 2, 1], with top vertex (0, 1, 0, 2, 1, 0) sage: loads(dumps(Y)) == Y True AUTHORS: - Franco Saliola (2009-04-23) """ self._partition = partition beta = sorted(self._partition, reverse=True) root = tuple(sum(map(range,beta), []))[::-1] operators = [SwapIncreasingOperator(i) for i in range(sum(partition)-1)] super(YangBaxterGraph_partition, self).__init__(root, operators) def __repr__(self): r""" EXAMPLES:: sage: Y = YangBaxterGraph(partition=[3,2]) sage: Y.__repr__() 'Yang-Baxter graph of [3, 2], with top vertex (1, 0, 2, 1, 0)' """ return "Yang-Baxter graph of %s, with top vertex %s" % (self._partition, self._root) def __copy__(self): r""" Returns a copy of ``self``. EXAMPLES:: sage: Y = YangBaxterGraph(partition=[3,2]); Y Yang-Baxter graph of [3, 2], with top vertex (1, 0, 2, 1, 0) sage: B = copy(Y); B Yang-Baxter graph of [3, 2], with top vertex (1, 0, 2, 1, 0) sage: Y is B False sage: Y == B True """ from copy import copy Y = self.__class__(self._partition) Y._digraph = copy(self._digraph) return Y @lazy_attribute def _digraph(self): r""" Constructs the underlying digraph and stores the result as an attribute. EXAMPLES:: sage: Y = YangBaxterGraph(partition=[2,1]) sage: Y._digraph Digraph on 2 vertices sage: Y.edges() [((0, 1, 0), (1, 0, 0), Swap positions 0 and 1)] """ digraph = super(YangBaxterGraph_partition, self)._digraph for (u,v,op) in digraph.edges(): digraph.set_edge_label(u,v,SwapOperator(op.position())) return digraph @lazy_attribute def _vertex_ordering(self): r""" Returns a list of the vertices of ``self``, sorted using Pythons ``sorted`` method. EXAMPLES:: sage: Y = YangBaxterGraph(partition=[3,2]) sage: Y._vertex_ordering [(1, 0, 2, 1, 0), (1, 2, 0, 1, 0), (1, 2, 1, 0, 0), (2, 1, 0, 1, 0), (2, 1, 1, 0, 0)] """ return sorted(self._digraph.vertices()) def __iter__(self): r""" Iterate over the vertices ``self``. .. NOTE:: The vertices are first sorted using Python's sorted command. EXAMPLES:: sage: Y = YangBaxterGraph(partition=[3,2]) sage: list(Y.__iter__()) [(1, 0, 2, 1, 0), (1, 2, 0, 1, 0), (1, 2, 1, 0, 0), (2, 1, 0, 1, 0), (2, 1, 1, 0, 0)] """ for v in self._vertex_ordering: yield v def _swap_operator(self, operator, u): r""" Return the image of ``u`` under ``operator``. INPUT: - ``i`` -- positive integer between 1 and len(u)-1, inclusive - ``u`` -- tuple, list, permutation, CombinatorialObject, .... EXAMPLES:: sage: Y = YangBaxterGraph(partition=[3,1]) sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: ops = [SwapOperator(i) for i in range(3)] sage: [Y._swap_operator(op, (1,2,3,4)) for op in ops] [(2, 1, 3, 4), (1, 3, 2, 4), (1, 2, 4, 3)] sage: [Y._swap_operator(op, [4,3,2,1]) for op in ops] [[3, 4, 2, 1], [4, 2, 3, 1], [4, 3, 1, 2]] sage: [Y._swap_operator(op, Permutation([1,2,3,4])) for op in ops] [[2, 1, 3, 4], [1, 3, 2, 4], [1, 2, 4, 3]] """ return operator(u) def vertex_relabelling_dict(self, v): r""" Return a dictionary pairing vertices ``u`` of ``self`` with the object obtained from ``v`` by applying transpositions corresponding to the edges labels along a path from the root to ``u``. Note that the root is paired with ``v``. INPUT: - ``v`` -- an object OUTPUT: - dictionary pairing vertices with the corresponding image of ``v`` EXAMPLES:: sage: Y = YangBaxterGraph(partition=[3,1]) sage: Y.vertex_relabelling_dict((1,2,3,4)) {(0, 2, 1, 0): (1, 2, 3, 4), (2, 0, 1, 0): (2, 1, 3, 4), (2, 1, 0, 0): (2, 3, 1, 4)} sage: Y.vertex_relabelling_dict((4,3,2,1)) {(0, 2, 1, 0): (4, 3, 2, 1), (2, 0, 1, 0): (3, 4, 2, 1), (2, 1, 0, 0): (3, 2, 4, 1)} """ return super(YangBaxterGraph_partition, self).vertex_relabelling_dict(v, self._swap_operator) def relabel_vertices(self, v, inplace=True): r""" Relabel the vertices of ``self`` with the object obtained from ``v`` by applying the transpositions corresponding to the edge labels along some path from the root to the vertex. INPUT: - ``v`` -- tuple, Permutation, CombinatorialObject - ``inplace`` -- if ``True``, modifies ``self``; otherwise returns a modified copy of ``self``. EXAMPLES:: sage: Y = YangBaxterGraph(partition=[3,1]); Y Yang-Baxter graph of [3, 1], with top vertex (0, 2, 1, 0) sage: d = Y.relabel_vertices((1,2,3,4), inplace=False); d Digraph on 3 vertices sage: Y.vertices() [(0, 2, 1, 0), (2, 0, 1, 0), (2, 1, 0, 0)] sage: e = Y.relabel_vertices((1,2,3,4)); e sage: Y.vertices() [(1, 2, 3, 4), (2, 1, 3, 4), (2, 3, 1, 4)] """ relabelling = self.vertex_relabelling_dict(v) if inplace: Y = self Y._root = relabelling[Y._root] Y._digraph.relabel(relabelling, inplace=inplace) Y._vertex_ordering = sorted(Y._digraph.vertices()) return else: from copy import copy Y = copy(self) Y._root = relabelling[Y._root] return Y._digraph.relabel(relabelling, inplace=inplace) ##### Some Yang-Baxter operators ########################################## class SwapOperator(SageObject): def __init__(self, i): r""" The operator that swaps the items in positions ``i`` and ``i+1``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s3 = SwapOperator(3) sage: s3 == loads(dumps(s3)) True """ self._position = i def __hash__(self): r""" TESTS:: sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s = [SwapOperator(i) for i in range(3)] sage: map(hash, s) [0, 1, 2] """ return hash(self._position) def __cmp__(self, other): r""" Compare two swap operators. The comparison is done by comparing the positions. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s = [SwapOperator(i) for i in range(3)] sage: s[0] == s[0] True sage: s[1] < s[0] False sage: s[1] < s[2] True """ if type(self) is type(other): return cmp(self._position, other._position) else: return cmp(type(self), type(other)) def __repr__(self): r""" Representation string. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s3 = SwapOperator(3) sage: s3.__repr__() 'Swap positions 3 and 4' """ return "Swap positions %s and %s" % (self._position, self._position+1) def __str__(self): r""" A short str representation (used, for example, in labelling edges of graphs). EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s3 = SwapOperator(3) sage: s3.__str__() '3' """ return "%s" % self._position def __call__(self, u): r""" Return the object obtained from swapping the items in positions ``i`` and ``i+1`` of ``u``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s3 = SwapOperator(3) sage: s3((1,2,3,4,5)) (1, 2, 3, 5, 4) sage: s3([1,2,3,4,5]) [1, 2, 3, 5, 4] """ i = self._position if isinstance(u, Permutation): return Permutation(u[:i] + u[i:i+2][::-1] + u[i+2:]) return type(u)(u[:i] + u[i:i+2][::-1] + u[i+2:]) def position(self): r""" ``self`` is the operator that swaps positions ``i`` and ``i+1``. This method returns ``i``. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapOperator sage: s3 = SwapOperator(3) sage: s3.position() 3 """ return self._position class SwapIncreasingOperator(SwapOperator): def __repr__(self): r""" Representation string. EXAMPLES:: sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: s3 = SwapIncreasingOperator(3) sage: s3.__repr__() 'Swap-if-increasing at position 3' """ return "Swap-if-increasing at position %s" % self._position def __call__(self, u): r""" Returns a copy of ``u`` with ``u[i-1]`` and ``u[i]`` swapped if ``u[i-1] > u[i]``; otherwise returns ``u``. INPUT: - ``i`` -- positive integer between ``1`` and ``len(u)-1``, inclusive - ``u`` -- tuple, list, permutation, CombinatorialObject, .... EXAMPLES:: sage: Y = YangBaxterGraph(partition=[2,2]) sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator sage: operators = [SwapIncreasingOperator(i) for i in range(3)] sage: [op((1,2,3,4)) for op in operators] [(2, 1, 3, 4), (1, 3, 2, 4), (1, 2, 4, 3)] sage: [op([4,3,2,1]) for op in operators] [[4, 3, 2, 1], [4, 3, 2, 1], [4, 3, 2, 1]] sage: [op(Permutation([1,3,2,4])) for op in operators] [[3, 1, 2, 4], [1, 3, 2, 4], [1, 3, 4, 2]] """ i = self._position j = i+1 if u[i] < u[j]: v = list(u) (v[j], v[i]) = (v[i], v[j]) if isinstance(u, Permutation): return Permutation(v) return type(u)(v) else: return u
the-stack_0_10791
import logging import os import tempfile from gensim import corpora from gensim.parsing.preprocessing import STOPWORDS from pprint import pprint # pretty-printer from collections import defaultdict class Indexer: def __init__(self): logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) self.TEMP_FOLDER = tempfile.gettempdir() print('Folder "{}" will be used to save temporary dictionary and corpus.'.format(self.TEMP_FOLDER)) self.documents = None def set_documents(self, documents): if documents is None: self.documents = ["Human machine interface for lab abc computer applications", "A survey of user opinion of computer system response time", "The EPS user interface management system", "System and human system engineering testing of EPS", "Relation of user perceived response time to error measurement", "The generation of random binary unordered trees", "The intersection graph of paths in trees", "Graph minors IV Widths of trees and well quasi ordering", "Graph minors A survey"] else: self.documents = documents def remove_stopwords(self): # remove common words and tokenize texts = [[word for word in document.lower().split() if word not in STOPWORDS] for document in self.documents] return texts def clean_low_freq_words(self, texts): # remove words that appear only once frequency = defaultdict(int) for text in texts: for token in text: frequency[token] += 1 texts = [[token for token in text if frequency[token] > 1] for text in texts] pprint(texts) if __name__ == "__main__": indexer = Indexer() indexer.set_documents(None) texts = indexer.remove_stopwords() indexer.clean_low_freq_words(texts)
the-stack_0_10793
from src.utils import * import numpy as np class SO3: #  tolerance criterion TOL = 1e-8 Id = torch.eye(3).cuda().float() dId = torch.eye(3).cuda().double() @classmethod # cls: class def exp(cls, phi): angle = phi.norm(dim=1, keepdim=True) mask = angle[:, 0] < cls.TOL dim_batch = phi.shape[0] Id = cls.Id.expand(dim_batch, 3, 3) axis = phi[~mask] / angle[~mask] c = angle[~mask].cos().unsqueeze(2)# add a 1 on second dimension s = angle[~mask].sin().unsqueeze(2) Rot = phi.new_empty(dim_batch, 3, 3) Rot[mask] = Id[mask] + SO3.wedge(phi[mask]) Rot[~mask] = c*Id[~mask] + \ (1-c)*cls.bouter(axis, axis) + s*cls.wedge(axis) return Rot @classmethod def log(cls, Rot): dim_batch = Rot.shape[0] Id = cls.Id.expand(dim_batch, 3, 3) cos_angle = (0.5 * cls.btrace(Rot) - 0.5).clamp(-1., 1.) #min:-1, max:+1 # Clip cos(angle) to its proper domain to avoid NaNs from rounding # errors angle = cos_angle.acos() mask = angle < cls.TOL if mask.sum() == 0: angle = angle.unsqueeze(1).unsqueeze(1) return cls.vee((0.5 * angle/angle.sin())*(Rot-Rot.transpose(1, 2))) elif mask.sum() == dim_batch: # If angle is close to zero, use first-order Taylor expansion return cls.vee(Rot - Id) phi = cls.vee(Rot - Id) angle = angle phi[~mask] = cls.vee((0.5 * angle[~mask]/angle[~mask].sin()).unsqueeze( 1).unsqueeze(2)*(Rot[~mask] - Rot[~mask].transpose(1, 2))) return phi @staticmethod def vee(Phi): return torch.stack((Phi[:, 2, 1], Phi[:, 0, 2], Phi[:, 1, 0]), dim=1) @staticmethod def wedge(phi): dim_batch = phi.shape[0] zero = phi.new_zeros(dim_batch) return torch.stack((zero, -phi[:, 2], phi[:, 1], phi[:, 2], zero, -phi[:, 0], -phi[:, 1], phi[:, 0], zero), 1).view(dim_batch, 3, 3) @classmethod def from_rpy(cls, roll, pitch, yaw):# rotation sequence z y' x'' return cls.rotz(yaw).bmm(cls.roty(pitch).bmm(cls.rotx(roll)))# tensor.bmm: batch matrix-matrix product,bij * bjk = bik @classmethod def rotx(cls, angle_in_radians): c = angle_in_radians.cos() s = angle_in_radians.sin() mat = c.new_zeros((c.shape[0], 3, 3))# is it the dim of c or (c.shape[0],3,3), should be latter one mat[:, 0, 0] = 1 mat[:, 1, 1] = c mat[:, 2, 2] = c mat[:, 1, 2] = -s mat[:, 2, 1] = s return mat @classmethod def roty(cls, angle_in_radians): c = angle_in_radians.cos() s = angle_in_radians.sin() mat = c.new_zeros((c.shape[0], 3, 3)) mat[:, 1, 1] = 1 mat[:, 0, 0] = c mat[:, 2, 2] = c mat[:, 0, 2] = s mat[:, 2, 0] = -s return mat @classmethod def rotz(cls, angle_in_radians): c = angle_in_radians.cos() s = angle_in_radians.sin() mat = c.new_zeros((c.shape[0], 3, 3)) mat[:, 2, 2] = 1 mat[:, 0, 0] = c mat[:, 1, 1] = c mat[:, 0, 1] = -s mat[:, 1, 0] = s return mat @classmethod def isclose(cls, x, y): return (x-y).abs() < cls.TOL @classmethod def to_rpy(cls, Rots): """Convert a rotation matrix to RPY Euler angles.""" pitch = torch.atan2(-Rots[:, 2, 0], torch.sqrt(Rots[:, 0, 0]**2 + Rots[:, 1, 0]**2)) yaw = pitch.new_empty(pitch.shape) roll = pitch.new_empty(pitch.shape) near_pi_over_two_mask = cls.isclose(pitch, np.pi / 2.) near_neg_pi_over_two_mask = cls.isclose(pitch, -np.pi / 2.) remainder_inds = ~(near_pi_over_two_mask | near_neg_pi_over_two_mask) yaw[near_pi_over_two_mask] = 0 roll[near_pi_over_two_mask] = torch.atan2( Rots[near_pi_over_two_mask, 0, 1], Rots[near_pi_over_two_mask, 1, 1]) yaw[near_neg_pi_over_two_mask] = 0. roll[near_neg_pi_over_two_mask] = -torch.atan2( Rots[near_neg_pi_over_two_mask, 0, 1], Rots[near_neg_pi_over_two_mask, 1, 1]) sec_pitch = 1/pitch[remainder_inds].cos() remainder_mats = Rots[remainder_inds] yaw = torch.atan2(remainder_mats[:, 1, 0] * sec_pitch, remainder_mats[:, 0, 0] * sec_pitch) roll = torch.atan2(remainder_mats[:, 2, 1] * sec_pitch, remainder_mats[:, 2, 2] * sec_pitch) rpys = torch.cat([roll.unsqueeze(dim=1), pitch.unsqueeze(dim=1), yaw.unsqueeze(dim=1)], dim=1) return rpys @classmethod def from_quaternion(cls, quat, ordering='wxyz'): """Form a rotation matrix from a unit length quaternion. Valid orderings are 'xyzw' and 'wxyz'. """ if ordering is 'xyzw': qx = quat[:, 0] qy = quat[:, 1] qz = quat[:, 2] qw = quat[:, 3] elif ordering is 'wxyz': qw = quat[:, 0] qx = quat[:, 1] qy = quat[:, 2] qz = quat[:, 3] # Form the matrix mat = quat.new_empty(quat.shape[0], 3, 3) qx2 = qx * qx qy2 = qy * qy qz2 = qz * qz mat[:, 0, 0] = 1. - 2. * (qy2 + qz2) mat[:, 0, 1] = 2. * (qx * qy - qw * qz) mat[:, 0, 2] = 2. * (qw * qy + qx * qz) mat[:, 1, 0] = 2. * (qw * qz + qx * qy) mat[:, 1, 1] = 1. - 2. * (qx2 + qz2) mat[:, 1, 2] = 2. * (qy * qz - qw * qx) mat[:, 2, 0] = 2. * (qx * qz - qw * qy) mat[:, 2, 1] = 2. * (qw * qx + qy * qz) mat[:, 2, 2] = 1. - 2. * (qx2 + qy2) return mat @classmethod def to_quaternion(cls, Rots, ordering='wxyz'): """Convert a rotation matrix to a unit length quaternion. Valid orderings are 'xyzw' and 'wxyz'. """ tmp = 1 + Rots[:, 0, 0] + Rots[:, 1, 1] + Rots[:, 2, 2] tmp[tmp < 0] = 0 qw = 0.5 * torch.sqrt(tmp) qx = qw.new_empty(qw.shape[0]) qy = qw.new_empty(qw.shape[0]) qz = qw.new_empty(qw.shape[0]) near_zero_mask = qw.abs() < cls.TOL if near_zero_mask.sum() > 0: cond1_mask = near_zero_mask * \ (Rots[:, 0, 0] > Rots[:, 1, 1])*(Rots[:, 0, 0] > Rots[:, 2, 2]) cond1_inds = cond1_mask.nonzero() if len(cond1_inds) > 0: cond1_inds = cond1_inds.squeeze() R_cond1 = Rots[cond1_inds].view(-1, 3, 3) #.view() is subset of .reshape() d = 2. * torch.sqrt(1. + R_cond1[:, 0, 0] - R_cond1[:, 1, 1] - R_cond1[:, 2, 2]).view(-1) qw[cond1_inds] = (R_cond1[:, 2, 1] - R_cond1[:, 1, 2]) / d qx[cond1_inds] = 0.25 * d qy[cond1_inds] = (R_cond1[:, 1, 0] + R_cond1[:, 0, 1]) / d qz[cond1_inds] = (R_cond1[:, 0, 2] + R_cond1[:, 2, 0]) / d cond2_mask = near_zero_mask * (Rots[:, 1, 1] > Rots[:, 2, 2]) cond2_inds = cond2_mask.nonzero() if len(cond2_inds) > 0: cond2_inds = cond2_inds.squeeze() R_cond2 = Rots[cond2_inds].view(-1, 3, 3) d = 2. * torch.sqrt(1. + R_cond2[:, 1, 1] - R_cond2[:, 0, 0] - R_cond2[:, 2, 2]).squeeze() tmp = (R_cond2[:, 0, 2] - R_cond2[:, 2, 0]) / d qw[cond2_inds] = tmp qx[cond2_inds] = (R_cond2[:, 1, 0] + R_cond2[:, 0, 1]) / d qy[cond2_inds] = 0.25 * d qz[cond2_inds] = (R_cond2[:, 2, 1] + R_cond2[:, 1, 2]) / d cond3_mask = near_zero_mask & cond1_mask.logical_not() & cond2_mask.logical_not() cond3_inds = cond3_mask if len(cond3_inds) > 0: R_cond3 = Rots[cond3_inds].view(-1, 3, 3) d = 2. * \ torch.sqrt(1. + R_cond3[:, 2, 2] - R_cond3[:, 0, 0] - R_cond3[:, 1, 1]).squeeze() qw[cond3_inds] = (R_cond3[:, 1, 0] - R_cond3[:, 0, 1]) / d qx[cond3_inds] = (R_cond3[:, 0, 2] + R_cond3[:, 2, 0]) / d qy[cond3_inds] = (R_cond3[:, 2, 1] + R_cond3[:, 1, 2]) / d qz[cond3_inds] = 0.25 * d far_zero_mask = near_zero_mask.logical_not() far_zero_inds = far_zero_mask if len(far_zero_inds) > 0: R_fz = Rots[far_zero_inds] d = 4. * qw[far_zero_inds] qx[far_zero_inds] = (R_fz[:, 2, 1] - R_fz[:, 1, 2]) / d qy[far_zero_inds] = (R_fz[:, 0, 2] - R_fz[:, 2, 0]) / d qz[far_zero_inds] = (R_fz[:, 1, 0] - R_fz[:, 0, 1]) / d # Check ordering last if ordering is 'xyzw': quat = torch.stack([qx, qy, qz, qw], dim=1) elif ordering is 'wxyz': quat = torch.stack([qw, qx, qy, qz], dim=1) return quat @classmethod def normalize(cls, Rots): U, _, V = torch.svd(Rots) S = cls.Id.clone().repeat(Rots.shape[0], 1, 1) S[:, 2, 2] = torch.det(U) * torch.det(V) return U.bmm(S).bmm(V.transpose(1, 2)) @classmethod def dnormalize(cls, Rots): U, _, V = torch.svd(Rots) S = cls.dId.clone().repeat(Rots.shape[0], 1, 1) S[:, 2, 2] = torch.det(U) * torch.det(V) return U.bmm(S).bmm(V.transpose(1, 2)) @classmethod def qmul(cls, q, r, ordering='wxyz'): """ Multiply quaternion(s) q with quaternion(s) r. """ terms = cls.bouter(r, q) w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3] x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2] y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1] z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0] xyz = torch.stack((x, y, z), dim=1) xyz[w < 0] *= -1 w[w < 0] *= -1 if ordering == 'wxyz': q = torch.cat((w.unsqueeze(1), xyz), dim=1) else: q = torch.cat((xyz, w.unsqueeze(1)), dim=1) return q / q.norm(dim=1, keepdim=True) @staticmethod def sinc(x): return x.sin() / x @classmethod def qexp(cls, xi, ordering='wxyz'): """ Convert exponential maps to quaternions. """ theta = xi.norm(dim=1, keepdim=True) w = (0.5*theta).cos() xyz = 0.5*cls.sinc(0.5*theta/np.pi)*xi return torch.cat((w, xyz), 1) @classmethod def qlog(cls, q, ordering='wxyz'): """ Applies the log map to quaternions. """ n = 0.5*torch.norm(q[:, 1:], p=2, dim=1, keepdim=True) n = torch.clamp(n, min=1e-8) q = q[:, 1:] * torch.acos(torch.clamp(q[:, :1], min=-1.0, max=1.0)) r = q / n return r @classmethod def qinv(cls, q, ordering='wxyz'): "Quaternion inverse" r = torch.empty_like(q) if ordering == 'wxyz': r[:, 1:4] = -q[:, 1:4] r[:, 0] = q[:, 0] else: r[:, :3] = -q[:, :3] r[:, 3] = q[:, 3] return r @classmethod def qnorm(cls, q): "Quaternion normalization" return q / q.norm(dim=1, keepdim=True) @classmethod def qinterp(cls, qs, t, t_int): idxs = np.searchsorted(t, t_int) idxs0 = idxs-1 idxs0[idxs0 < 0] = 0 idxs1 = idxs idxs1[idxs1 == t.shape[0]] = t.shape[0] - 1 q0 = qs[idxs0] q1 = qs[idxs1] tau = torch.zeros_like(t_int) dt = (t[idxs1]-t[idxs0])[idxs0 != idxs1] tau[idxs0 != idxs1] = (t_int-t[idxs0])[idxs0 != idxs1]/dt return cls.slerp(q0, q1, tau) @classmethod def slerp(cls, q0, q1, tau, DOT_THRESHOLD = 0.9995): """Spherical linear interpolation.""" dot = (q0*q1).sum(dim=1) q1[dot < 0] = -q1[dot < 0] dot[dot < 0] = -dot[dot < 0] q = torch.zeros_like(q0) tmp = q0 + tau.unsqueeze(1) * (q1 - q0) tmp = tmp[dot > DOT_THRESHOLD] q[dot > DOT_THRESHOLD] = tmp / tmp.norm(dim=1, keepdim=True) theta_0 = dot.acos() sin_theta_0 = theta_0.sin() theta = theta_0 * tau sin_theta = theta.sin() s0 = (theta.cos() - dot * sin_theta / sin_theta_0).unsqueeze(1) s1 = (sin_theta / sin_theta_0).unsqueeze(1) q[dot < DOT_THRESHOLD] = ((s0 * q0) + (s1 * q1))[dot < DOT_THRESHOLD] return q / q.norm(dim=1, keepdim=True) @staticmethod def bouter(vec1, vec2): """batch outer product""" return torch.einsum('bi, bj -> bij', vec1, vec2) @staticmethod def btrace(mat): """batch matrix trace""" return torch.einsum('bii -> b', mat) class CPUSO3: # tolerance criterion TOL = 1e-8 Id = torch.eye(3) @classmethod def qmul(cls, q, r): """ Multiply quaternion(s) q with quaternion(s) r. """ # Compute outer product terms = cls.outer(r, q) w = terms[0, 0] - terms[1, 1] - terms[2, 2] - terms[3, 3] x = terms[0, 1] + terms[1, 0] - terms[2, 3] + terms[3, 2] y = terms[0, 2] + terms[1, 3] + terms[2, 0] - terms[3, 1] z = terms[0, 3] - terms[1, 2] + terms[2, 1] + terms[3, 0] return torch.stack((w, x, y, z)) @staticmethod def outer(a, b): return torch.einsum('i, j -> ij', a, b)
the-stack_0_10794
""" 自动取消(订单,拼团)异步任务 """ import datetime import os # import sentry_sdk from django.utils.timezone import make_aware # from sentry_sdk.integrations.celery import CeleryIntegration from django_redis import get_redis_connection from config.services import get_receipt_by_shop_id, get_msg_notify_by_shop_id from groupon.constant import GrouponStatus, GrouponAttendStatus from order.constant import OrderPayType, OrderRefundType, OrderType from groupon.services import ( get_shop_groupon_by_id, get_shop_groupon_attend_by_id, list_paid_details_by_groupon_attend_id ) from order.selectors import ( list_waitting_order_by_groupon_attend_id, list_unpaid_order_by_groupon_attend_id, ) from order.services import ( cancel_order, # direct_pay, refund_order, get_order_by_shop_id_and_id, direct_pay) from promotion.events import GrouponEvent from promotion.services import publish_product_promotion, get_product_promotion, PRODUCT_PROMOTION_KEY # from .celery_tplmsg_task import ( # GrouponOrderFailAttendTplMsg, # GrouponOrderRefundFailTplMsg, # GrouponOrderSuccessAttendTplMsg, # ) from celery_tasks.main import app # sentry_sdk.init(SENTRY_DSN, integrations=[CeleryIntegration()]) @app.task(bind=True, name="auto_cancel_order") def auto_cancel_order(self, shop_id, order_id): """ 超时未支付(15min)自动取消订单 """ success, _ = cancel_order(shop_id, order_id) if success: return order = get_order_by_shop_id_and_id(shop_id, order_id) if not order: return elif order.order_type == OrderType.GROUPON: auto_validate_groupon_attend.apply_async( args=[order.shop_id, order.groupon_attend_id] ) @app.task(bind=True, name="auto_publish_groupon") def auto_publish_groupon(self, shop_id, groupon_id): """ 自动发布拼团事件 """ now = make_aware(datetime.datetime.now()) success, groupon = get_shop_groupon_by_id(shop_id, groupon_id) if not success: print("Groupon [id={}] publish failed: {}".format(groupon_id, groupon)) return if groupon.status != GrouponStatus.ON: print( "Groupon [id={}] publish failed: 状态错误{}".format( groupon_id, groupon.status ) ) return if groupon.to_datetime < now: print( "Groupon [id={}] publish failed: 已过期{}".format( groupon_id, groupon.to_datetime ) ) return content = { "id": groupon.id, "price": round(float(groupon.price), 2), "to_datetime": groupon.to_datetime.strftime("%Y-%m-%d %H:%M:%S"), "groupon_type": groupon.groupon_type, "success_size": groupon.success_size, "quantity_limit": groupon.quantity_limit, "succeeded_count": groupon.succeeded_count, "success_limit": groupon.success_limit, "succeeded_quantity": int(round(groupon.succeeded_quantity)), } event = GrouponEvent(content) ttl = (groupon.to_datetime - now).total_seconds() publish_product_promotion( groupon.shop_id, groupon.product_id, event, ttl=int(ttl) ) print("Groupon [id={}] publish success".format(groupon.id)) @app.task(bind=True, name="auto_expire_groupon") def auto_expire_groupon(self, shop_id, groupon_id): """ 拼团自动过期 """ success, groupon = get_shop_groupon_by_id(shop_id, groupon_id) if not success: print("Groupon [id={}] expire failed: {}".format(groupon_id, groupon)) return if groupon.status == GrouponStatus.EXPIRED: print( "Groupon [id={}] expire failed: 状态错误{}".format( groupon_id, groupon.status ) ) return # 任务提前10s过期算作提前 if groupon.to_datetime - make_aware(datetime.datetime.now()) > datetime.timedelta( seconds=10 ): print( "Groupon [id={}] expire failed: 未到过期时间{}".format( groupon_id, make_aware(datetime.datetime.now()) ) ) return groupon.set_expired() groupon.save() print("Groupon [id={}] expire failed".format(groupon_id)) @app.task(bind=True, name="auto_validate_groupon_attend") def auto_validate_groupon_attend( self, shop_id: int, groupon_attend_id: int, force: bool = False ): """ 自动验证拼团参与,如果满员,走订单直接支付 """ success, groupon_attend = get_shop_groupon_attend_by_id( shop_id, groupon_attend_id, for_update=True ) if not success: raise ValueError(groupon_attend) if groupon_attend.size < groupon_attend.success_size: print("拼团验证: 拼团参与{}还未满员".format(groupon_attend_id)) return if groupon_attend.status != GrouponAttendStatus.WAITTING: raise ValueError( "拼团验证: 拼团参与{}状态错误{}".format(groupon_attend_id, groupon_attend.status) ) paid_attend_details = list_paid_details_by_groupon_attend_id(groupon_attend.id) if len(paid_attend_details) < groupon_attend.size and not force: print( "拼团验证: 拼团参与{}还在等待团员支付,当前支付人数{}".format( groupon_attend_id, len(paid_attend_details) ) ) return waitting_orders = list_waitting_order_by_groupon_attend_id(groupon_attend.id) if len(waitting_orders) != len(paid_attend_details): raise ValueError( "拼团验证: 拼团参与{}付款人数{}和订单人数{}不匹配".format( groupon_attend_id, len(paid_attend_details), len(waitting_orders) ) ) promotion = get_product_promotion(shop_id, groupon_attend.groupon.product_id) pattern = PRODUCT_PROMOTION_KEY.format( shop_id=shop_id, product_id=groupon_attend.groupon.product_id ) groupon_attend.set_succeeded() groupon_attend.groupon.succeeded_count += 1 redis_conn = get_redis_connection("subscribe") redis_conn.hset(pattern, "succeeded_count", groupon_attend.groupon.succeeded_count) for waitting_order in waitting_orders: if promotion and isinstance(promotion, GrouponEvent): quantity = int( round(float(waitting_order.amount_net) / float(promotion.price)) ) groupon_attend.groupon.succeeded_quantity += quantity redis_conn.hset( pattern, "succeeded_quantity", int(groupon_attend.groupon.succeeded_quantity), ) direct_pay(waitting_order) print("拼团验证: 拼团参与{}成团成功".format(groupon_attend_id)) groupon_attend.save() # 拼团成功, 发送拼团成功的模板消息 msg_notify = get_msg_notify_by_shop_id(shop_id) # if msg_notify.group_success_wx: # for waitting_order in waitting_orders: # GrouponOrderSuccessAttendTplMsg.send(order_id=waitting_order.id) @app.task(bind=True, name="auto_fail_groupon_attend") def auto_fail_groupon_attend(self, shop_id: int, groupon_attend_id: int, reason: str): """ 拼团参与自动失败 """ success, groupon_attend = get_shop_groupon_attend_by_id( shop_id, groupon_attend_id, for_update=True ) if not success: raise ValueError(groupon_attend) if groupon_attend.status != GrouponAttendStatus.WAITTING: print("拼团失败: 拼团参与{}状态错误{}".format(groupon_attend_id, groupon_attend.status)) return paid_attend_details = list_paid_details_by_groupon_attend_id( groupon_attend.id ) waitting_orders = list_waitting_order_by_groupon_attend_id( groupon_attend.id ) if len(waitting_orders) != len(paid_attend_details): raise ValueError( "拼团失败: 拼团参与{}付款人数{}和订单人数{}不匹配".format( groupon_attend_id, len(paid_attend_details), len(waitting_orders) ) ) groupon_attend.set_failed(reason) groupon_attend.save() # 拼团中订单自动退款 map_refund_order = {True: [], False: []} for waitting_order in waitting_orders: refund_type = ( OrderRefundType.WEIXIN_JSAPI_REFUND if waitting_order.pay_type == OrderPayType.WEIXIN_JSAPI else OrderRefundType.UNDERLINE_REFUND ) success, _ = refund_order( waitting_order.shop.id, waitting_order, refund_type ) map_refund_order[success].append(waitting_order.id) # 未支付订单自动取消 unpaid_orders = list_unpaid_order_by_groupon_attend_id( groupon_attend.id ) for unpaid_order in unpaid_orders: cancel_order(unpaid_order.shop_id, unpaid_order.id) print( "拼团失败: 拼团参与{},退款成功{},退款失败".format( groupon_attend_id, len(map_refund_order.get(True)), len(map_refund_order.get(False)), ) ) # 拼团失败, 发送拼团失败退款的模板消息 msg_notify = get_msg_notify_by_shop_id(shop_id) # if msg_notify.group_failed_wx: # for order_id in map_refund_order.get(True): # GrouponOrderFailAttendTplMsg.send(order_id=order_id) # for order_id in map_refund_order.get(False): # GrouponOrderRefundFailTplMsg.send(order_id=order_id)
the-stack_0_10795
# -*- coding: utf-8 -*- """Example for gam.AdditiveModel and PolynomialSmoother This example was written as a test case. The data generating process is chosen so the parameters are well identified and estimated. Created on Fri Nov 04 13:45:43 2011 Author: Josef Perktold """ from statsmodels.compat.python import lrange import numpy as np from statsmodels.sandbox.gam import AdditiveModel from statsmodels.regression.linear_model import OLS np.random.seed(8765993) #seed is chosen for nice result, not randomly #other seeds are pretty off in the prediction #DGP: simple polynomial order = 3 sigma_noise = 0.5 nobs = 1000 #1000 #with 1000, OLS and Additivemodel aggree in params at 2 decimals lb, ub = -3.5, 4#2.5 x1 = np.linspace(lb, ub, nobs) x2 = np.sin(2*x1) x = np.column_stack((x1/x1.max()*2, x2)) exog = (x[:,:,None]**np.arange(order+1)[None, None, :]).reshape(nobs, -1) idx = lrange((order+1)*2) del idx[order+1] exog_reduced = exog[:,idx] #remove duplicate constant y_true = exog.sum(1) / 2. z = y_true #alias check d = x y = y_true + sigma_noise * np.random.randn(nobs) example = 1 if example == 1: m = AdditiveModel(d) m.fit(y) y_pred = m.results.predict(d) for ss in m.smoothers: print(ss.params) res_ols = OLS(y, exog_reduced).fit() print(res_ols.params) #from numpy.testing import assert_almost_equal #assert_almost_equal(y_pred, res_ols.fittedvalues, 3) if example > 0: import matplotlib.pyplot as plt plt.figure() plt.plot(exog) y_pred = m.results.mu# + m.results.alpha #m.results.predict(d) plt.figure() plt.subplot(2,2,1) plt.plot(y, '.', alpha=0.25) plt.plot(y_true, 'k-', label='true') plt.plot(res_ols.fittedvalues, 'g-', label='OLS', lw=2, alpha=-.7) plt.plot(y_pred, 'r-', label='AM') plt.legend(loc='upper left') plt.title('gam.AdditiveModel') counter = 2 for ii, xx in zip(['z', 'x1', 'x2'], [z, x[:,0], x[:,1]]): sortidx = np.argsort(xx) #plt.figure() plt.subplot(2, 2, counter) plt.plot(xx[sortidx], y[sortidx], '.', alpha=0.25) plt.plot(xx[sortidx], y_true[sortidx], 'k.', label='true', lw=2) plt.plot(xx[sortidx], y_pred[sortidx], 'r.', label='AM') plt.legend(loc='upper left') plt.title('gam.AdditiveModel ' + ii) counter += 1 plt.show()
the-stack_0_10796
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from . import BaseWrapperDataset class PrependTokenDataset(BaseWrapperDataset): def __init__(self, dataset, token=None, pad_token=None): super().__init__(dataset) self.token = token self.pad_token = pad_token if token is not None: self._sizes = np.array(dataset.sizes) + 1 else: self._sizes = dataset.sizes def __getitem__(self, idx): item = self.dataset[idx] if self.token is not None: if self.pad_token is not None: # char ngram data item_len = item.size(1) item = torch.cat([item.new([[self.token] + [self.pad_token]*(item_len-1)]), item]) else: item = torch.cat([item.new([self.token]), item]) return item @property def sizes(self): return self._sizes def num_tokens(self, index): n = self.dataset.num_tokens(index) if self.token is not None: n += 1 return n def size(self, index): n = self.dataset.size(index) if self.token is not None: n += 1 return n
the-stack_0_10797
import json import os from maidfiddler.util.util import BASE_DIR from maidfiddler.util.config import CONFIG from maidfiddler.util.logger import logger import random current_translation = {} def tr(obj): return tr_str(obj.whatsThis()) def tr_str(original): if "translation" not in current_translation: return original parts = original.split(".") cur = current_translation["translation"] for arg in parts: if arg not in cur: return get_original(original, parts) cur = cur[arg] return cur MINIFY = None def get_original(s, parts): global MINIFY if MINIFY is None: logger.debug("Fetching MINIFY") MINIFY = CONFIG.getboolean("Developer", "minify-untranslated-tags", fallback=True) return s if not MINIFY else parts[-1] def load_translation(name): global current_translation path = os.path.join(BASE_DIR, "translations", name) logger.debug(f"TL path: {path}") if not os.path.isfile(path): return with open(path, "r", encoding="utf-8-sig") as tl_file: current_translation = json.load(tl_file) if "translation" not in current_translation: logger.warning("translation invalid") current_translation = {} return def get_random_title(): if "titles" not in current_translation or len(current_translation["titles"]) == 0: return None return random.choice(current_translation["titles"]) def get_language_name(path): if not os.path.isfile(path): return None try: with open(path, "r", encoding="utf-8-sig") as tl_file: tl = json.load(tl_file) return tl["info"]["language"] except: return None
the-stack_0_10799
import pandas as pd import glob import csv import os import seaborn as sns import matplotlib.pyplot as plt from builtins import any class CrystalBall: def __init__(self, list_of_csvs:list, csvname_to_colnames_list:dict, csvname_to_IDs:dict, csvname_to_nonIDs:dict, all_IDs:list, all_nonIDs:list, csvname_to_one_ID:list): # get list of all files in current directory that end in .csv self.list_of_csvs = list_of_csvs # create dictionary where csvname maps to colnames self.csvname_to_colnames_list = csvname_to_colnames_list # create dictionary where csvname maps to colnames that have the substring "ID" self.csvname_to_IDs = csvname_to_IDs # create dictionary where csvname maps to colnames that do not have the substring "ID" self.csvname_to_nonIDs = csvname_to_nonIDs # create list of only unique IDs self.all_IDs = all_IDs # create list of only unique nonIDs self.all_nonIDs = all_nonIDs # create list of all column names (IDs + nonIDs) self.all_colnames = list(all_IDs.union(all_nonIDs)) # create dictionary that maps out relationship, one csvname to one ID self.csvname_to_one_ID = csvname_to_one_ID @classmethod def run(self, rel_dir): """ Initialize the Crystal Ball object for a given directory that contains the CSVs. Parameters ---------- rel_dir : str - A string that contains the relative directory, which contains the CSVs to analyze. Returns -------- CrystalBall - CrystalBall that has all class variables initialized by this run script. Examples -------- .. code-block:: python relative_directory = './folder1/folder2' crystalBall = CrystalBall.run(relative_directory) """ rel_dir = rel_dir + '/*.csv' list_of_csvs = sorted(glob.glob(rel_dir)) csvname_to_colnames_list = {} csvname_to_IDs = {} csvname_to_nonIDs = {} all_IDs = set() all_nonIDs = set() csvname_to_one_ID = [] for csv_name in list_of_csvs: with open(csv_name, "rt") as f: reader = csv.reader(f) try: col_names = next(reader) csvname_to_colnames_list[csv_name] = col_names ids = [] non_ids = [] for col_name in col_names: if 'ID' in col_name or 'Id' in col_name: csvname_to_one_ID.append([os.path.split(csv_name)[1], col_name]) ids.append(col_name) else: non_ids.append(col_name) csvname_to_IDs[csv_name] = ids csvname_to_nonIDs[csv_name] = non_ids all_IDs.update(ids) all_nonIDs.update(non_ids) continue except StopIteration: continue except: continue return CrystalBall(list_of_csvs, csvname_to_colnames_list, csvname_to_IDs, csvname_to_nonIDs, all_IDs, all_nonIDs, csvname_to_one_ID) def contains(self, keywords: list, all_colnames: list=None) -> list: """ Check if keywords exist in all_colnames. - Determine whether a keyword (substring) exists in a given list of column names (strings). - Note: This search is case sensitive! Parameters ---------- keywords : list[str] - List of key words that the user is interested in all_colnames : list[str] - List of column names of a table, or for many tables. - If no argument is provided, this function will use the column names generated when the run method was called. Returns ------- list - Each index corresponds to a keyword. - For each index, True if substring exists in list of strings, otherwise False. Examples -------- >>> colnames = ['id', 'name', 'title'] >>> cb.contains(['name'], colnames) [True] >>> cb.contains(['Name'], colnames) [False] >>> cb.contains(['name', 'Name'], colnames) [True, False] """ if all_colnames is None: return [any(keyword in colname for colname in self.all_colnames) for keyword in keywords] else: return [any(keyword in colname for colname in all_colnames) for keyword in keywords] def featureSearch(self, keywords: list, all_colnames: list=None, mode: str='UNION') -> list: """ Find the columns that contain the keywords. - Find features (column names) that contain the substrings specified in keywords. - Note: This search is case sensitive! Parameters ---------- keywords : list[str] - List of key words that the user is interested in colnames : list[str] - List of column names of a table, or for many tables. - If no argument is provided, this function will use the column names generated when the run method was called. Returns -------- DataFrame - DataFrame will contain all features (column names) that contains one/all substrings found in keywords. - DataFrame will be sorted in alphabetical order. Examples (update example, outputs a DataFrame instead of a list) -------- >>> colnames = ['id', 'name', 'nameType', 'subSpeciesName', 'title'] >>> cb.featureSearch(['name'], colnames) ['name', 'nameType'] >>> cb.featureSearch(['Name'], colnames) ['subSpeciesName'] >>> cb.featureSearch(['name', 'Name'], colnames) ['name', 'nameType', 'subSpeciesName'] """ ##implement INTERSECTION mode later def search(keywords, colnames): suggested_colnames = set() for colname in colnames: for keyword in keywords: if keyword in colname: suggested_colnames.add(colname) return pd.DataFrame( {'featureName': sorted(list(suggested_colnames))}) if type(keywords) is not list: raise Exception('keywords argument expects a list') if mode is 'UNION': if all_colnames is None: return search(keywords, self.all_colnames) else: return search(keywords, all_colnames) elif mode is "INTERSECTION": print('to implement later') def tableSearch(self, keywords, csvname_to_colnames_list=None, mode='UNION'): """ Find the tables that contain the keywords. - Find tables that contain column names which have the substrings specified in keywords. - Note: This search is case sensitive! Parameters ---------- keywords : list[str] - List of key words that the user is interested in csvname_to_colnames_list : dict[str] = list - Dictionary that maps a string (table name) to a list of column names it contains. - If no argument is provided, this function will use the dictionary generated when the run method was called. mode : str - If mode is UNION, then return all tables that contain at least one keyword. - If mode is INTERSECTION, then return all tables that contain all the keywords. Returns -------- list[str] - List will contain all tables that contain a match with keywords. - List will be sorted in alphabetical order. Examples -------- >>> csvname_to_colnames_list = {'table1': ['colName1', 'colName2'], 'table2':['colName3', 'colName4']} >>> cb.tableSearch(['colName1'], csvname_to_colnames_list) ['table1'] >>> cb.tableSearch(['colName3'], csvname_to_colnames_list) ['table2'] >>> cb.tableSearch(['colName1', 'colName2'], csvname_to_colnames_list) ['table1', 'table2'] """ def columnNamesContainKeyword(keyword, colname_list): return any(keyword in colname for colname in colname_list) if mode is 'UNION': if csvname_to_colnames_list is None: return list(filter(lambda x: x is not None, [key if False not in [True if any(keyword in colname for colname in self.csvname_to_colnames_list[key]) else False for keyword in keywords] else None for key in self.csvname_to_colnames_list])) else: return list(filter(lambda x: x is not None, [key if False not in [True if any(keyword in colname for colname in csvname_to_colnames_list[key]) else False for keyword in keywords] else None for key in csvname_to_colnames_list])) elif mode is 'INTERSECTION': csv_matches = [] if csvname_to_colnames_list is None: for csvname in self.csvname_to_colnames_list: keyword_checklist = [] for keyword in keywords: keyword_checklist.append(columnNamesContainKeyword(keyword, self.csvname_to_colnames_list[csvname])) if False not in keyword_checklist: csv_matches.append(csvname) return sorted(csv_matches) else: print("implement later") def openTable(self, rel_dir, indices=None, encoding='utf-8'): """ Open the csv that is referenced by the given relative directory. Parameters ---------- rel_dir : str - A path to the table that is relative to where the user is running Crystal Ball. indices : list[int] - Sets the (multi)index by columns represented by their numerical integer-locations. Returns -------- DataFrame - The DataFrame containing the contents of the csv. Examples -------- (link juptyer notebook) """ df = pd.read_csv(rel_dir, engine='python', encoding=encoding , error_bad_lines=False) if indices is not None: df.set_index(list(df.columns[indices]), inplace=True) return df def subTable(self, supertable, chosen_index:list, chosen_columns:list): """ Create a subtable from a supertable. Parameters ---------- supertable : DataFrame - Table from which to select chosen_columns from in order to form a subtable chosen_index : list[str] - The column names that will form the new (multi)index for the subtable. chosen_columns : list[str] - The column names that will form the new columns for the subtable. Returns -------- DataFrame - DataFrame (the newly-formed subtable) that will have the (multi)index and columns specified in the arguments. Examples -------- (link juptyer notebook) """ ## chosen_columns should default to empty list # if len(chosen_columns) == 0: # use all the columns from supertable combined = chosen_index.copy() combined.extend(chosen_columns) subtable = supertable[combined].set_index(chosen_index) return subtable def mergeTables(self, tables:list): """ Sequentially merge a list of tables that all share a common index. - Merge defaults to using inner joins over the index. Parameters ---------- tables : list[DataFrame] - Contains a list of DataFrames that will be merged sequentially. Returns -------- DataFrame - Table that results from sequentially merging the DataFrames given in the argument. Examples -------- (link juptyer notebook) """ # replace sequential mergeing with concat... # TO IMPLEMENT LATER: other types of joins, merging by non-index def chooseLargestString(string_list): largest_string = string_list[0] for string in string_list: if len(string) > len(largest_string): largest_string = string return largest_string if len(tables) < 2: raise Exception("need at least two tables in order to merge") num_of_dropped_rows = 0 max_num_of_rows = max(len(tables[0]), len(tables[1])) current_merge = tables[0].merge(tables[1], how='inner', left_index=True, right_index=True) diff = max_num_of_rows - len(current_merge) max_num_of_rows = len(current_merge) num_of_dropped_rows += diff index_names = [tables[0].index.name, tables[1].index.name] if len(tables) - 2 > 0: for i in range(2, len(tables)): current_merge = current_merge.merge(table[i], how='inner', left_index=True, right_index=True) diff = max_num_of_rows - len(current_merge) max_num_of_rows = len(current_merge) num_of_dropped_rows += diff index_names.append(tables[i].index.name) print('Number of Dropped Rows: ',num_of_dropped_rows) current_merge.index.name = chooseLargestString(index_names) # CHECK FOR MULTI INDEX CASE, WHETHER THE ABOVE LINE BREAKS return current_merge def analyzeRelationships(self, to_analyze:list, visualize=True): """ Analyze basic stats of one or more different indexes. By comparing boxplots, you should be able to determine which indices are related. Parameters ---------- to_analyze : list[list[str, Series]] - A list of lists. The later should be of length two, in which the 0th index stores the table name and the 1st index contains a Series. - The Series should contain the values of the column derived from the table associated with the name stored in the 0th index. Returns -------- DataFrame - Table that contains basic stats about each given Series. Examples -------- (link juptyer notebook) """ descriptions = [] boxplot_data = [] boxplot_xtick_labels = [] for pair in to_analyze: new_name = pair[1].name + ' from ' + pair[0] descriptions.append(pair[1].describe().rename(new_name)) boxplot_data.append(pair[1]) boxplot_xtick_labels.append(new_name) # add labels to the quartile ranges for exact measurment. if visualize: g = sns.boxplot(data=boxplot_data) g.set( title='Relationship Analysis', xlabel='Features', ylabel='Numerical Values', xticklabels=boxplot_xtick_labels ) plt.xticks(rotation=-10) description_table = pd.concat(descriptions, axis=1) return description_table def compareRelationship(self, to_analyze1, to_analyze2, visualize=False): """ Compare and contrast the difference between two Series. By comparing boxplots, you should be able to determine which indices are related. Parameters ---------- to_analyze1 : list[str, Series] - A list that contains the name of the first table, and the contents of a specifc column from that table as a Series. to_analyze2 : list[str, Series] - A list that contains the name of the second table, and the contents of a specifc column from that table as a Series. Returns -------- DataFrame - Table that contains basic stats about each given Series, as well as a third column that contains the difference between the stats. Examples -------- (link juptyer notebook) """ descriptions = [] boxplot_data = [] boxplot_xtick_labels = [] new_name = to_analyze1[1].name + ' from ' + to_analyze1[0] description1 = to_analyze1[1].describe().rename(new_name) descriptions.append(description1) boxplot_data.append(to_analyze1[1]) boxplot_xtick_labels.append(new_name) new_name = to_analyze2[1].name + ' from ' + to_analyze2[0] description2 = to_analyze2[1].describe().rename(new_name) descriptions.append(description2) boxplot_data.append(to_analyze2[1]) boxplot_xtick_labels.append(new_name) if visualize: g = sns.boxplot(data=boxplot_data) g.set( title='Relationship Analysis', xlabel='Features', ylabel='Numerical Values', xticklabels=boxplot_xtick_labels ) plt.xticks(rotation=-10) diff_description = abs(description1 - description2) diff_description.name = "Difference" descriptions.append(diff_description) description_table = pd.concat(descriptions, axis=1) return description_table def export(self, df_to_export, write_to, export_type="CSV"): """ Exports contents of dataframe to relative location specified by write_to parameter. - Default export type is CSV Parameters ---------- df_to_export : DataFrame - DataFrame whose contents will be exported into a specifed location. write_to : str - Relative location (including file) that you will write into. export_type : str - Format that contents of df_to_export will be exported as. Returns -------- None Examples -------- (link juptyer notebook) """ if export_type is "CSV": df_to_export.to_csv(write_to, encoding='utf-8', index=True, index_label=df_to_export.index.name) else: print('implemnt sql format') # to implement later # featureSearch should return a dictionary, where key is the index and value is the name of the feature # this makes it easier for people to select the feature they want # search function should also have an 'is_exact' option, to make search more precise. # check if a lower case letter surrounds either side of the keyword, implies that it is an interjection # create a function that let's you index into a python list with another list. useful for selecting many names at once # from featureSearch result # format output of lists better... can actually use DataFrame for formatting # Print out "You have found the following column names/table names/etc." to make it easier for people to # understand what they are seeing.
the-stack_0_10800
import asyncio import ssl import sys from aiohttp import web import aiogram from aiogram import Bot, types, Version from aiogram.contrib.fsm_storage.memory import MemoryStorage from aiogram.dispatcher import Dispatcher from aiogram.dispatcher.webhook import get_new_configured_app, SendMessage from aiogram.types import ChatType, ParseMode, ContentType from aiogram.utils.markdown import hbold, bold, text, link TOKEN = 'BOT TOKEN HERE' WEBHOOK_HOST = 'example.com' # Domain name or IP addres which your bot is located. WEBHOOK_PORT = 443 # Telegram Bot API allows only for usage next ports: 443, 80, 88 or 8443 WEBHOOK_URL_PATH = '/webhook' # Part of URL # This options needed if you use self-signed SSL certificate # Instructions: https://core.telegram.org/bots/self-signed WEBHOOK_SSL_CERT = './webhook_cert.pem' # Path to the ssl certificate WEBHOOK_SSL_PRIV = './webhook_pkey.pem' # Path to the ssl private key WEBHOOK_URL = f"https://{WEBHOOK_HOST}:{WEBHOOK_PORT}{WEBHOOK_URL_PATH}" # Web app settings: # Use LAN address to listen webhooks # User any available port in range from 1024 to 49151 if you're using proxy, or WEBHOOK_PORT if you're using direct webhook handling WEBAPP_HOST = 'localhost' WEBAPP_PORT = 3001 BAD_CONTENT = ContentType.PHOTO & ContentType.DOCUMENT & ContentType.STICKER & ContentType.AUDIO loop = asyncio.get_event_loop() bot = Bot(TOKEN, loop=loop) storage = MemoryStorage() dp = Dispatcher(bot, storage=storage) async def cmd_start(message: types.Message): # Yep. aiogram allows to respond into webhook. # https://core.telegram.org/bots/api#making-requests-when-getting-updates return SendMessage(chat_id=message.chat.id, text='Hi from webhook!', reply_to_message_id=message.message_id) async def cmd_about(message: types.Message): # In this function markdown utils are userd for formatting message text return SendMessage(message.chat.id, text( bold('Hi! I\'m just a simple telegram bot.'), '', text('I\'m powered by', bold('Python', Version(*sys.version_info[:]))), text('With', link(text('aiogram', aiogram.VERSION), 'https://github.com/aiogram/aiogram')), sep='\n' ), parse_mode=ParseMode.MARKDOWN) async def cancel(message: types.Message): # Get current state context state = dp.current_state(chat=message.chat.id, user=message.from_user.id) # If current user in any state - cancel it. if await state.get_state() is not None: await state.set_state(state=None) return SendMessage(message.chat.id, 'Current action is canceled.') # Otherwise do nothing async def unknown(message: types.Message): """ Handler for unknown messages. """ return SendMessage(message.chat.id, f"I don\'t know what to do with content type `{message.content_type()}`. Sorry :c") async def cmd_id(message: types.Message): """ Return info about user. """ if message.reply_to_message: target = message.reply_to_message.from_user chat = message.chat elif message.forward_from and message.chat.type == ChatType.PRIVATE: target = message.forward_from chat = message.forward_from or message.chat else: target = message.from_user chat = message.chat result_msg = [hbold('Info about user:'), f"First name: {target.first_name}"] if target.last_name: result_msg.append(f"Last name: {target.last_name}") if target.username: result_msg.append(f"Username: {target.mention}") result_msg.append(f"User ID: {target.id}") result_msg.extend([hbold('Chat:'), f"Type: {chat.type}", f"Chat ID: {chat.id}"]) if chat.type != ChatType.PRIVATE: result_msg.append(f"Title: {chat.title}") else: result_msg.append(f"Title: {chat.full_name}") return SendMessage(message.chat.id, '\n'.join(result_msg), reply_to_message_id=message.message_id, parse_mode=ParseMode.HTML) async def on_startup(app): # Demonstrate one of the available methods for registering handlers # This command available only in main state (state=None) dp.register_message_handler(cmd_start, commands=['start']) # This handler is available in all states at any time. dp.register_message_handler(cmd_about, commands=['help', 'about'], state='*') dp.register_message_handler(unknown, content_types=BAD_CONTENT, func=lambda message: message.chat.type == ChatType.PRIVATE) # You are able to register one function handler for multiple conditions dp.register_message_handler(cancel, commands=['cancel'], state='*') dp.register_message_handler(cancel, func=lambda message: message.text.lower().strip() in ['cancel'], state='*') dp.register_message_handler(cmd_id, commands=['id'], state='*') dp.register_message_handler(cmd_id, func=lambda message: message.forward_from or message.reply_to_message and message.chat.type == ChatType.PRIVATE, state='*') # Get current webhook status webhook = await bot.get_webhook_info() # If URL is bad if webhook.url != WEBHOOK_URL: # If URL doesnt match current - remove webhook if not webhook.url: await bot.delete_webhook() # Set new URL for webhook await bot.set_webhook(WEBHOOK_URL, certificate=open(WEBHOOK_SSL_CERT, 'rb')) # If you want to use free certificate signed by LetsEncrypt you need to set only URL without sending certificate. async def on_shutdown(app): """ Graceful shutdown. This method is recommended by aiohttp docs. """ # Remove webhook. await bot.delete_webhook() # Close Redis connection. await dp.storage.close() await dp.storage.wait_closed() if __name__ == '__main__': # Get instance of :class:`aiohttp.web.Application` with configured router. app = get_new_configured_app(dispatcher=dp, path=WEBHOOK_URL_PATH) # Setup event handlers. app.on_startup.append(on_startup) app.on_shutdown.append(on_shutdown) # Generate SSL context context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) context.load_cert_chain(WEBHOOK_SSL_CERT, WEBHOOK_SSL_PRIV) # Start web-application. web.run_app(app, host=WEBAPP_HOST, port=WEBAPP_PORT, ssl_context=context) # Note: # If you start your bot using nginx or Apache web server, SSL context is not required. # Otherwise you need to set `ssl_context` parameter.
the-stack_0_10801
# -*- coding: utf-8 -*- # Natural Language Toolkit: An Incremental Earley Chart Parser # # Copyright (C) 2001-2014 NLTK Project # Author: Peter Ljunglöf <[email protected]> # Rob Speer <[email protected]> # Edward Loper <[email protected]> # Steven Bird <[email protected]> # Jean Mark Gawron <[email protected]> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT """ Data classes and parser implementations for *incremental* chart parsers, which use dynamic programming to efficiently parse a text. A "chart parser" derives parse trees for a text by iteratively adding \"edges\" to a \"chart\". Each "edge" represents a hypothesis about the tree structure for a subsequence of the text. The "chart" is a \"blackboard\" for composing and combining these hypotheses. A parser is "incremental", if it guarantees that for all i, j where i < j, all edges ending at i are built before any edges ending at j. This is appealing for, say, speech recognizer hypothesis filtering. The main parser class is ``EarleyChartParser``, which is a top-down algorithm, originally formulated by Jay Earley (1970). """ from __future__ import print_function, division from nltk.compat import xrange from nltk.parse.chart import (Chart, ChartParser, EdgeI, LeafEdge, LeafInitRule, BottomUpPredictRule, BottomUpPredictCombineRule, TopDownInitRule, SingleEdgeFundamentalRule, EmptyPredictRule, CachedTopDownPredictRule, FilteredSingleEdgeFundamentalRule, FilteredBottomUpPredictCombineRule) from nltk.parse.featurechart import (FeatureChart, FeatureChartParser, FeatureTopDownInitRule, FeatureTopDownPredictRule, FeatureEmptyPredictRule, FeatureBottomUpPredictRule, FeatureBottomUpPredictCombineRule, FeatureSingleEdgeFundamentalRule) #//////////////////////////////////////////////////////////// # Incremental Chart #//////////////////////////////////////////////////////////// class IncrementalChart(Chart): def initialize(self): # A sequence of edge lists contained in this chart. self._edgelists = tuple([] for x in self._positions()) # The set of child pointer lists associated with each edge. self._edge_to_cpls = {} # Indexes mapping attribute values to lists of edges # (used by select()). self._indexes = {} def edges(self): return list(self.iteredges()) def iteredges(self): return (edge for edgelist in self._edgelists for edge in edgelist) def select(self, end, **restrictions): edgelist = self._edgelists[end] # If there are no restrictions, then return all edges. if restrictions=={}: return iter(edgelist) # Find the index corresponding to the given restrictions. restr_keys = sorted(restrictions.keys()) restr_keys = tuple(restr_keys) # If it doesn't exist, then create it. if restr_keys not in self._indexes: self._add_index(restr_keys) vals = tuple(restrictions[key] for key in restr_keys) return iter(self._indexes[restr_keys][end].get(vals, [])) def _add_index(self, restr_keys): # Make sure it's a valid index. for key in restr_keys: if not hasattr(EdgeI, key): raise ValueError('Bad restriction: %s' % key) # Create the index. index = self._indexes[restr_keys] = tuple({} for x in self._positions()) # Add all existing edges to the index. for end, edgelist in enumerate(self._edgelists): this_index = index[end] for edge in edgelist: vals = tuple(getattr(edge, key)() for key in restr_keys) this_index.setdefault(vals, []).append(edge) def _register_with_indexes(self, edge): end = edge.end() for (restr_keys, index) in self._indexes.items(): vals = tuple(getattr(edge, key)() for key in restr_keys) index[end].setdefault(vals, []).append(edge) def _append_edge(self, edge): self._edgelists[edge.end()].append(edge) def _positions(self): return xrange(self.num_leaves() + 1) class FeatureIncrementalChart(IncrementalChart, FeatureChart): def select(self, end, **restrictions): edgelist = self._edgelists[end] # If there are no restrictions, then return all edges. if restrictions=={}: return iter(edgelist) # Find the index corresponding to the given restrictions. restr_keys = sorted(restrictions.keys()) restr_keys = tuple(restr_keys) # If it doesn't exist, then create it. if restr_keys not in self._indexes: self._add_index(restr_keys) vals = tuple(self._get_type_if_possible(restrictions[key]) for key in restr_keys) return iter(self._indexes[restr_keys][end].get(vals, [])) def _add_index(self, restr_keys): # Make sure it's a valid index. for key in restr_keys: if not hasattr(EdgeI, key): raise ValueError('Bad restriction: %s' % key) # Create the index. index = self._indexes[restr_keys] = tuple({} for x in self._positions()) # Add all existing edges to the index. for end, edgelist in enumerate(self._edgelists): this_index = index[end] for edge in edgelist: vals = tuple(self._get_type_if_possible(getattr(edge, key)()) for key in restr_keys) this_index.setdefault(vals, []).append(edge) def _register_with_indexes(self, edge): end = edge.end() for (restr_keys, index) in self._indexes.items(): vals = tuple(self._get_type_if_possible(getattr(edge, key)()) for key in restr_keys) index[end].setdefault(vals, []).append(edge) #//////////////////////////////////////////////////////////// # Incremental CFG Rules #//////////////////////////////////////////////////////////// class CompleteFundamentalRule(SingleEdgeFundamentalRule): def _apply_incomplete(self, chart, grammar, left_edge): end = left_edge.end() # When the chart is incremental, we only have to look for # empty complete edges here. for right_edge in chart.select(start=end, end=end, is_complete=True, lhs=left_edge.nextsym()): new_edge = left_edge.move_dot_forward(right_edge.end()) if chart.insert_with_backpointer(new_edge, left_edge, right_edge): yield new_edge class CompleterRule(CompleteFundamentalRule): _fundamental_rule = CompleteFundamentalRule() def apply(self, chart, grammar, edge): if not isinstance(edge, LeafEdge): for new_edge in self._fundamental_rule.apply(chart, grammar, edge): yield new_edge class ScannerRule(CompleteFundamentalRule): _fundamental_rule = CompleteFundamentalRule() def apply(self, chart, grammar, edge): if isinstance(edge, LeafEdge): for new_edge in self._fundamental_rule.apply(chart, grammar, edge): yield new_edge class PredictorRule(CachedTopDownPredictRule): pass class FilteredCompleteFundamentalRule(FilteredSingleEdgeFundamentalRule): def apply(self, chart, grammar, edge): # Since the Filtered rule only works for grammars without empty productions, # we only have to bother with complete edges here. if edge.is_complete(): for new_edge in self._apply_complete(chart, grammar, edge): yield new_edge #//////////////////////////////////////////////////////////// # Incremental FCFG Rules #//////////////////////////////////////////////////////////// class FeatureCompleteFundamentalRule(FeatureSingleEdgeFundamentalRule): def _apply_incomplete(self, chart, grammar, left_edge): fr = self._fundamental_rule end = left_edge.end() # When the chart is incremental, we only have to look for # empty complete edges here. for right_edge in chart.select(start=end, end=end, is_complete=True, lhs=left_edge.nextsym()): for new_edge in fr.apply(chart, grammar, left_edge, right_edge): yield new_edge class FeatureCompleterRule(CompleterRule): _fundamental_rule = FeatureCompleteFundamentalRule() class FeatureScannerRule(ScannerRule): _fundamental_rule = FeatureCompleteFundamentalRule() class FeaturePredictorRule(FeatureTopDownPredictRule): pass #//////////////////////////////////////////////////////////// # Incremental CFG Chart Parsers #//////////////////////////////////////////////////////////// EARLEY_STRATEGY = [LeafInitRule(), TopDownInitRule(), CompleterRule(), ScannerRule(), PredictorRule()] TD_INCREMENTAL_STRATEGY = [LeafInitRule(), TopDownInitRule(), CachedTopDownPredictRule(), CompleteFundamentalRule()] BU_INCREMENTAL_STRATEGY = [LeafInitRule(), EmptyPredictRule(), BottomUpPredictRule(), CompleteFundamentalRule()] BU_LC_INCREMENTAL_STRATEGY = [LeafInitRule(), EmptyPredictRule(), BottomUpPredictCombineRule(), CompleteFundamentalRule()] LC_INCREMENTAL_STRATEGY = [LeafInitRule(), FilteredBottomUpPredictCombineRule(), FilteredCompleteFundamentalRule()] class IncrementalChartParser(ChartParser): """ An *incremental* chart parser implementing Jay Earley's parsing algorithm: | For each index end in [0, 1, ..., N]: | For each edge such that edge.end = end: | If edge is incomplete and edge.next is not a part of speech: | Apply PredictorRule to edge | If edge is incomplete and edge.next is a part of speech: | Apply ScannerRule to edge | If edge is complete: | Apply CompleterRule to edge | Return any complete parses in the chart """ def __init__(self, grammar, strategy=BU_LC_INCREMENTAL_STRATEGY, trace=0, trace_chart_width=50, chart_class=IncrementalChart): """ Create a new Earley chart parser, that uses ``grammar`` to parse texts. :type grammar: CFG :param grammar: The grammar used to parse texts. :type trace: int :param trace: The level of tracing that should be used when parsing a text. ``0`` will generate no tracing output; and higher numbers will produce more verbose tracing output. :type trace_chart_width: int :param trace_chart_width: The default total width reserved for the chart in trace output. The remainder of each line will be used to display edges. :param chart_class: The class that should be used to create the charts used by this parser. """ self._grammar = grammar self._trace = trace self._trace_chart_width = trace_chart_width self._chart_class = chart_class self._axioms = [] self._inference_rules = [] for rule in strategy: if rule.NUM_EDGES == 0: self._axioms.append(rule) elif rule.NUM_EDGES == 1: self._inference_rules.append(rule) else: raise ValueError("Incremental inference rules must have " "NUM_EDGES == 0 or 1") def chart_parse(self, tokens, trace=None): if trace is None: trace = self._trace trace_new_edges = self._trace_new_edges tokens = list(tokens) self._grammar.check_coverage(tokens) chart = self._chart_class(tokens) grammar = self._grammar # Width, for printing trace edges. trace_edge_width = self._trace_chart_width // (chart.num_leaves() + 1) if trace: print(chart.pp_leaves(trace_edge_width)) for axiom in self._axioms: new_edges = list(axiom.apply(chart, grammar)) trace_new_edges(chart, axiom, new_edges, trace, trace_edge_width) inference_rules = self._inference_rules for end in range(chart.num_leaves()+1): if trace > 1: print("\n* Processing queue:", end, "\n") agenda = list(chart.select(end=end)) while agenda: edge = agenda.pop() for rule in inference_rules: new_edges = list(rule.apply(chart, grammar, edge)) trace_new_edges(chart, rule, new_edges, trace, trace_edge_width) for new_edge in new_edges: if new_edge.end()==end: agenda.append(new_edge) return chart class EarleyChartParser(IncrementalChartParser): def __init__(self, grammar, **parser_args): IncrementalChartParser.__init__(self, grammar, EARLEY_STRATEGY, **parser_args) pass class IncrementalTopDownChartParser(IncrementalChartParser): def __init__(self, grammar, **parser_args): IncrementalChartParser.__init__(self, grammar, TD_INCREMENTAL_STRATEGY, **parser_args) class IncrementalBottomUpChartParser(IncrementalChartParser): def __init__(self, grammar, **parser_args): IncrementalChartParser.__init__(self, grammar, BU_INCREMENTAL_STRATEGY, **parser_args) class IncrementalBottomUpLeftCornerChartParser(IncrementalChartParser): def __init__(self, grammar, **parser_args): IncrementalChartParser.__init__(self, grammar, BU_LC_INCREMENTAL_STRATEGY, **parser_args) class IncrementalLeftCornerChartParser(IncrementalChartParser): def __init__(self, grammar, **parser_args): if not grammar.is_nonempty(): raise ValueError("IncrementalLeftCornerParser only works for grammars " "without empty productions.") IncrementalChartParser.__init__(self, grammar, LC_INCREMENTAL_STRATEGY, **parser_args) #//////////////////////////////////////////////////////////// # Incremental FCFG Chart Parsers #//////////////////////////////////////////////////////////// EARLEY_FEATURE_STRATEGY = [LeafInitRule(), FeatureTopDownInitRule(), FeatureCompleterRule(), FeatureScannerRule(), FeaturePredictorRule()] TD_INCREMENTAL_FEATURE_STRATEGY = [LeafInitRule(), FeatureTopDownInitRule(), FeatureTopDownPredictRule(), FeatureCompleteFundamentalRule()] BU_INCREMENTAL_FEATURE_STRATEGY = [LeafInitRule(), FeatureEmptyPredictRule(), FeatureBottomUpPredictRule(), FeatureCompleteFundamentalRule()] BU_LC_INCREMENTAL_FEATURE_STRATEGY = [LeafInitRule(), FeatureEmptyPredictRule(), FeatureBottomUpPredictCombineRule(), FeatureCompleteFundamentalRule()] class FeatureIncrementalChartParser(IncrementalChartParser, FeatureChartParser): def __init__(self, grammar, strategy=BU_LC_INCREMENTAL_FEATURE_STRATEGY, trace_chart_width=20, chart_class=FeatureIncrementalChart, **parser_args): IncrementalChartParser.__init__(self, grammar, strategy=strategy, trace_chart_width=trace_chart_width, chart_class=chart_class, **parser_args) class FeatureEarleyChartParser(FeatureIncrementalChartParser): def __init__(self, grammar, **parser_args): FeatureIncrementalChartParser.__init__(self, grammar, EARLEY_FEATURE_STRATEGY, **parser_args) class FeatureIncrementalTopDownChartParser(FeatureIncrementalChartParser): def __init__(self, grammar, **parser_args): FeatureIncrementalChartParser.__init__(self, grammar, TD_INCREMENTAL_FEATURE_STRATEGY, **parser_args) class FeatureIncrementalBottomUpChartParser(FeatureIncrementalChartParser): def __init__(self, grammar, **parser_args): FeatureIncrementalChartParser.__init__(self, grammar, BU_INCREMENTAL_FEATURE_STRATEGY, **parser_args) class FeatureIncrementalBottomUpLeftCornerChartParser(FeatureIncrementalChartParser): def __init__(self, grammar, **parser_args): FeatureIncrementalChartParser.__init__(self, grammar, BU_LC_INCREMENTAL_FEATURE_STRATEGY, **parser_args) #//////////////////////////////////////////////////////////// # Demonstration #//////////////////////////////////////////////////////////// def demo(print_times=True, print_grammar=False, print_trees=True, trace=2, sent='I saw John with a dog with my cookie', numparses=5): """ A demonstration of the Earley parsers. """ import sys, time from nltk.parse.chart import demo_grammar # The grammar for ChartParser and SteppingChartParser: grammar = demo_grammar() if print_grammar: print("* Grammar") print(grammar) # Tokenize the sample sentence. print("* Sentence:") print(sent) tokens = sent.split() print(tokens) print() # Do the parsing. earley = EarleyChartParser(grammar, trace=trace) t = time.clock() chart = earley.chart_parse(tokens) parses = list(chart.parses(grammar.start())) t = time.clock()-t # Print results. if numparses: assert len(parses)==numparses, 'Not all parses found' if print_trees: for tree in parses: print(tree) else: print("Nr trees:", len(parses)) if print_times: print("Time:", t) if __name__ == '__main__': demo()
the-stack_0_10804
# Copyright 2017 Artyom Losev # Copyright 2018 Kolushov Alexandr <https://it-projects.info/team/KolushovAlexandr> # License MIT (https://opensource.org/licenses/MIT). from odoo import _, api, fields, models SO_CHANNEL = "pos_sale_orders" INV_CHANNEL = "pos_invoices" class PosOrder(models.Model): _inherit = "pos.order" @api.model def create_from_ui(self, orders): invoices_to_pay = [o for o in orders if o.get("data").get("invoice_to_pay")] original_orders = [o for o in orders if o not in invoices_to_pay] res = super(PosOrder, self).create_from_ui(original_orders) if invoices_to_pay: for inv in invoices_to_pay: self.process_invoice_payment(inv) return res @api.model def process_invoice_payment(self, invoice): for statement in invoice["data"]["statement_ids"]: inv_id = invoice["data"]["invoice_to_pay"]["id"] inv_obj = self.env["account.invoice"].browse(inv_id) journal_id = statement[2]["journal_id"] journal = self.env["account.journal"].browse(journal_id) amount = min( statement[2]["amount"], # amount payed including change invoice["data"]["invoice_to_pay"]["residual"], # amount required to pay ) cashier = invoice["data"]["user_id"] writeoff_acc_id = False payment_difference_handling = "open" vals = { "journal_id": journal.id, "payment_method_id": 1, "payment_date": invoice["data"]["creation_date"], "communication": invoice["data"]["invoice_to_pay"]["number"], "invoice_ids": [(4, inv_id, None)], "payment_type": "inbound", "amount": amount, "currency_id": inv_obj.currency_id.id, "partner_id": invoice["data"]["invoice_to_pay"]["partner_id"][0], "partner_type": "customer", "payment_difference_handling": payment_difference_handling, "writeoff_account_id": writeoff_acc_id, "pos_session_id": invoice["data"]["pos_session_id"], "cashier": cashier, } payment = self.env["account.payment"].create(vals) payment.post() @api.model def process_invoices_creation(self, sale_order_id): order = self.env["sale.order"].browse(sale_order_id) inv_id = order.action_invoice_create() self.env["account.invoice"].browse(inv_id).action_invoice_open() return inv_id class AccountPayment(models.Model): _inherit = "account.payment" pos_session_id = fields.Many2one("pos.session", string="POS session") cashier = fields.Many2one("res.users") datetime = fields.Datetime(string="Datetime", default=fields.Datetime.now) class AccountInvoice(models.Model): _inherit = "account.invoice" def action_updated_invoice(self): message = {"channel": INV_CHANNEL, "id": self.id} self.env["pos.config"].search([])._send_to_channel(INV_CHANNEL, message) @api.model def get_invoice_lines_for_pos(self, invoice_ids): res = [] invoice_lines = self.env["account.invoice.line"].search( [("invoice_id", "in", invoice_ids)] ) for l in invoice_lines: line = { "invoice_id": l.invoice_id.id, "id": l.id, "name": l.name, "account": l.account_id.name, "product": l.product_id.name, "price_unit": l.price_unit, "qty": l.quantity, "tax": [tax.name or " " for tax in l.invoice_line_tax_ids], "discount": l.discount, "amount": l.price_subtotal, } res.append(line) return res @api.depends("payment_move_line_ids.amount_residual") def _get_payment_info_JSON(self): for record in self: if not record.payment_move_line_ids: pass for move in record.payment_move_line_ids: if move.payment_id.cashier: if move.move_id.ref: move.move_id.ref = "{} by {}".format( move.move_id.ref, move.payment_id.cashier.name ) else: move.move_id.name = "{} by {}".format( move.move_id.name, move.payment_id.cashier.name ) data = super(AccountInvoice, self)._get_payment_info_JSON() return data class SaleOrder(models.Model): _inherit = "sale.order" def action_updated_sale_order(self): message = {"channel": SO_CHANNEL, "id": self.id} self.env["pos.config"].search([])._send_to_channel(SO_CHANNEL, message) @api.model def get_order_lines_for_pos(self, sale_order_ids): res = [] order_lines = self.env["sale.order.line"].search( [("order_id", "in", sale_order_ids)] ) for l in order_lines: line = { "order_id": l.order_id.id, "id": l.id, "name": l.name, "product": l.product_id.name, "uom_qty": l.product_uom_qty, "qty_delivered": l.qty_delivered, "qty_invoiced": l.qty_invoiced, "tax": [tax.name or " " for tax in l.tax_id], "discount": l.discount, "subtotal": l.price_subtotal, "total": l.price_total, "invoiceble": ( (l.qty_delivered > 0) or (l.product_id.invoice_policy == "order") ), } res.append(line) return res class PosConfig(models.Model): _inherit = "pos.config" def _get_default_writeoff_account(self): acc = self.env["account.account"].search([("code", "=", 220000)]).id return acc if acc else False show_invoices = fields.Boolean(help="Show invoices in POS", default=True) show_sale_orders = fields.Boolean(help="Show sale orders in POS", default=True) pos_invoice_pay_writeoff_account_id = fields.Many2one( "account.account", string="Difference Account", help="The account is used for the difference between due and paid amount", default=_get_default_writeoff_account, ) invoice_cashier_selection = fields.Boolean( string="Select Invoice Cashier", help="Ask for a cashier when fetch invoices", defaul=True, ) sale_order_cashier_selection = fields.Boolean( string="Select Sale Order Cashier", help="Ask for a cashier when fetch orders", defaul=True, ) class PosSession(models.Model): _inherit = "pos.session" session_payments = fields.One2many( "account.payment", "pos_session_id", string="Invoice Payments", help="Show invoices paid in the Session", ) session_invoices_total = fields.Float( "Invoices", compute="_compute_session_invoices_total" ) def _compute_session_invoices_total(self): for rec in self: rec.session_invoices_total = sum( rec.session_payments.mapped("invoice_ids").mapped("amount_total") + [0] ) def action_invoice_payments(self): payments = self.env["account.payment"].search( [("pos_session_id", "in", self.ids)] ) invoices = payments.mapped("invoice_ids").ids domain = [("id", "in", invoices)] return { "name": _("Invoice Payments"), "type": "ir.actions.act_window", "domain": domain, "res_model": "account.invoice", "view_type": "form", "view_mode": "tree,form", }
the-stack_0_10809
# File name: subtitles.py import kivy kivy.require('1.9.0') from kivy.network.urlrequest import UrlRequest class Subtitles: def __init__(self, url): self.subtitles = [] req = UrlRequest(url, self.got_subtitles) def got_subtitles(self, req, results): self.subtitles = results['captions'] def next(self, secs): for sub in self.subtitles: ms = secs*1000 - 12000 st = 'startTime' d = 'duration' if ms >= sub[st] and ms <= sub[st] + sub[d]: return sub return None
the-stack_0_10810
from os import environ import os from urllib.parse import urlparse import aiohttp from pyrogram import Client, filters import requests from bs4 import BeautifulSoup import re API_ID = environ.get('API_ID', '4029928') API_HASH = environ.get('API_HASH', '99dae01a51f441a77499e01ab08ebdd0') BOT_TOKEN = environ.get('BOT_TOKEN') PDISK_API_KEY = environ.get('PDISK_API_KEY') CHANNEL = environ.get('CHANNEL', 'KayiChat_Official') bot = Client('pdisk bot', api_id=API_ID, api_hash=API_HASH, bot_token=BOT_TOKEN, workers=50, sleep_threshold=0) @bot.on_message(filters.command('start') & filters.private) async def start(bot, message): await message.reply( f"**Hiya 👋{message.chat.first_name}!**\n\n" "**A Simple PDisk Uploader Bot.\n\n➠ Send Me Any Direct Link, YouTube Link Or Video Link I Will Upload To PDisk And Give Direct Link\n\nMade With❤BY @BamsiByrek**") @bot.on_message(filters.text & filters.private) async def pdisk_uploader(bot, message): new_string = str(message.text) try: pdisk_link = await multi_pdisk_up(new_string) await message.reply(f'{pdisk_link}', quote=True) except Exception as e: await message.reply(f'Error: {e}', quote=True) @bot.on_message(filters.photo & filters.private) async def pdisk_uploader(bot, message): new_string = str(message.caption) try: pdisk_link = await multi_pdisk_up(new_string) if(len(pdisk_link) > 1020): await message.reply(f'{pdisk_link}', quote=True) else: await bot.send_photo(message.chat.id, message.photo.file_id, caption=f'{pdisk_link}') except Exception as e: await message.reply(f'Error: {e}', quote=True) async def get_ptitle(url): html_text = requests.get(url).text soup = BeautifulSoup(html_text, 'html.parser') for title in soup.find_all('title'): pass title = list(title.get_text()) title = title[8:] str = '@' + CHANNEL + ' ' for i in title: str = str + i lst = list(html_text.split(",")) c = 0 for i in lst: if ("""videoid""" in i): found = lst[c] break c += 1 # pdisk.net link pdisk_video_id = list(found.split(":")) video_id = pdisk_video_id[2] video_id = list(video_id.split(",")) v_id = video_id[0] v_len = len(v_id) v_id = v_id[1:v_len - 2] v_url = 'https://www.pdisks.com/share-video?videoid=' + v_id res = [str, v_url] return res async def pdisk_up(link): if ('pdisk' in link or 'kuklink' in link or 'kofilink' in link or 'cofilink' in link or 'bit' in link): res = await get_ptitle(link) title_pdisk = res[0] link = res[1] else: title_new = urlparse(link) title_new = os.path.basename(title_new.path) title_pdisk = '@' + CHANNEL + title_new res = requests.get( 'http://linkapi.net/open/create_item?link_type=link&content_src=' + link + '&source=2000&api_key=' + PDISK_API_KEY + '&dir_id=0&title=' + title_pdisk + '&description=Join_' + CHANNEL + '_for_more_like_this') data = res.json() data = dict(data) print(data) v_id = data['data']['item_id'] v_url = 'https://www.pdisks.com/share-video?videoid=' + v_id return (v_url) async def multi_pdisk_up(ml_string): new_ml_string = list(map(str, ml_string.split(" "))) new_ml_string = await remove_username(new_ml_string) new_join_str = "".join(new_ml_string) urls = re.findall(r'(https?://[^\s]+)', new_join_str) nml_len = len(new_ml_string) u_len = len(urls) url_index = [] count = 0 for i in range(nml_len): for j in range(u_len): if (urls[j] in new_ml_string[i]): url_index.append(count) count += 1 new_urls = await new_pdisk_url(urls) url_index = list(dict.fromkeys(url_index)) i = 0 for j in url_index: new_ml_string[j] = new_ml_string[j].replace(urls[i], new_urls[i]) i += 1 new_string = " ".join(new_ml_string) return await addFooter(new_string) async def new_pdisk_url(urls): new_urls = [] for i in urls: new_urls.append(await pdisk_up(i)) return new_urls async def remove_username(new_List): for i in new_List: if('@' in i or 't.me' in i or 'https://bit.ly/3m4gabB' in i or 'https://bit.ly/pdisk_tuts' in i or 'telegra.ph' in i): new_List.remove(i) return new_List async def addFooter(str): footer = """ ━━━━━━━━━━━━━━━ ⦿ Made With♥️BY @bamsibyrek ━━━━━━━━━━━━━━━ ✪ »JOIN CHANNEL ➡️ t.me/""" + CHANNEL return str + footer bot.run()
the-stack_0_10813
# Copyright (c) 2020, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from conftest import is_allowing_any_non_gpu, get_non_gpu_allowed from pyspark.sql import SparkSession, DataFrame from spark_init_internal import get_spark_i_know_what_i_am_doing def _from_scala_map(scala_map): ret = {} # The value we get is a scala map, not a java map, so we need to jump through some hoops keys = scala_map.keys().iterator() while keys.hasNext(): key = keys.next() ret[key] = scala_map.get(key).get() return ret _spark = get_spark_i_know_what_i_am_doing() # Have to reach into a private member to get access to the API we need _orig_conf = _from_scala_map(_spark.conf._jconf.getAll()) _orig_conf_keys = _orig_conf.keys() def is_tz_utc(spark=_spark): """ true if the tz is UTC else false """ # Now we have to do some kind of ugly internal java stuff jvm = spark.sparkContext._jvm utc = jvm.java.time.ZoneId.of('UTC').normalized() sys_tz = jvm.java.time.ZoneId.systemDefault().normalized() return utc == sys_tz def _set_all_confs(conf): for key, value in conf.items(): if _spark.conf.get(key, None) != value: _spark.conf.set(key, value) def reset_spark_session_conf(): """Reset all of the configs for a given spark session.""" _set_all_confs(_orig_conf) #We should clear the cache _spark.catalog.clearCache() # Have to reach into a private member to get access to the API we need current_keys = _from_scala_map(_spark.conf._jconf.getAll()).keys() for key in current_keys: if key not in _orig_conf_keys: _spark.conf.unset(key) def _check_for_proper_return_values(something): """We don't want to return an DataFrame or Dataset from a with_spark_session. You will not get what you expect""" if (isinstance(something, DataFrame)): raise RuntimeError("You should never return a DataFrame from a with_*_session, you will not get the results that you expect") def with_spark_session(func, conf={}): """Run func that takes a spark session as input with the given configs set.""" reset_spark_session_conf() _set_all_confs(conf) ret = func(_spark) _check_for_proper_return_values(ret) return ret def with_cpu_session(func, conf={}): """Run func that takes a spark session as input with the given configs set on the CPU.""" copy = dict(conf) copy['spark.rapids.sql.enabled'] = 'false' return with_spark_session(func, conf=copy) def with_gpu_session(func, conf={}): """ Run func that takes a spark session as input with the given configs set on the GPU. Note that this forces you into test mode unless. It is not a requirement, but is simplest for right now. """ copy = dict(conf) copy['spark.rapids.sql.enabled'] = 'true' if is_allowing_any_non_gpu(): copy['spark.rapids.sql.test.enabled'] = 'false' else: copy['spark.rapids.sql.test.enabled'] = 'true' copy['spark.rapids.sql.test.allowedNonGpu'] = ','.join(get_non_gpu_allowed()) return with_spark_session(func, conf=copy)
the-stack_0_10815
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import copy from collections import OrderedDict from typing import Dict, Any, Optional, List, Iterator, Tuple import torch import torch.nn as nn from fbgemm_gpu.split_table_batched_embeddings_ops import ( IntNBitTableBatchedEmbeddingBagsCodegen, EmbeddingLocation, ) from torch import Tensor from torchrec.modules.embedding_configs import ( EmbeddingBagConfig, DataType, DATA_TYPE_NUM_BITS, data_type_to_sparse_type, dtype_to_data_type, pooling_type_to_pooling_mode, ) from torchrec.modules.embedding_modules import ( EmbeddingBagCollection as OriginalEmbeddingBagCollection, ebc_get_embedding_names, ) from torchrec.modules.embedding_modules import EmbeddingBagCollectionInterface from torchrec.sparse.jagged_tensor import ( KeyedJaggedTensor, KeyedTensor, ) try: torch.ops.load_library("//deeplearning/fbgemm/fbgemm_gpu:sparse_ops") except OSError: pass # OSS try: import fbgemm_gpu # @manual # noqa except ImportError: pass def quantize_state_dict( module: nn.Module, table_name_to_quantized_weights: Dict[str, Tuple[Tensor, Tensor]], data_type: DataType, ) -> torch.device: device = torch.device("cpu") for key, tensor in module.state_dict().items(): # Extract table name from state dict key. # e.g. ebc.embedding_bags.t1.weight splits = key.split(".") assert splits[-1] == "weight" table_name = splits[-2] device = tensor.device num_bits = DATA_TYPE_NUM_BITS[data_type] if tensor.is_meta: quant_weight = torch.empty( (tensor.shape[0], (tensor.shape[1] * num_bits) // 8), device="meta", # pyre-fixme[16]: Item `Tensor` of `Union[Tensor, Module]` has # no attribute `weight`. dtype=module.qconfig.weight().dtype, ) scale_shift = torch.empty( (tensor.shape[0], 4), device="meta", # pyre-fixme[16]: Item `Tensor` of `Union[Tensor, Module]` has # no attribute `weight`. dtype=module.qconfig.weight().dtype, ) else: quant_res = torch.ops.fbgemm.FloatToFusedNBitRowwiseQuantizedSBHalf( tensor, num_bits ) quant_weight, scale_shift = ( quant_res[:, :-4], quant_res[:, -4:], ) table_name_to_quantized_weights[table_name] = (quant_weight, scale_shift) return device class EmbeddingBagCollection(EmbeddingBagCollectionInterface): """ EmbeddingBagCollection represents a collection of pooled embeddings (EmbeddingBags). This EmbeddingBagCollection is quantized for lower precision. It relies on fbgemm quantized ops It processes sparse data in the form of KeyedJaggedTensor with values of the form [F X B X L] F: features (keys) B: batch size L: Length of sparse features (jagged) and outputs a KeyedTensor with values of the form [B * (F * D)] where F: features (keys) D: each feature's (key's) embedding dimension B: batch size Constructor Args: table_name_to_quantized_weights (Dict[str, Tuple[Tensor, Tensor]]): map of tables to quantized weights embedding_configs (List[EmbeddingBagConfig]): list of embedding tables is_weighted: (bool): whether input KeyedJaggedTensor is weighted device: (Optional[torch.device]): default compute device Call Args: features: KeyedJaggedTensor, Returns: KeyedTensor Example:: table_0 = EmbeddingBagConfig( name="t1", embedding_dim=3, num_embeddings=10, feature_names=["f1"] ) table_1 = EmbeddingBagConfig( name="t2", embedding_dim=4, num_embeddings=10, feature_names=["f2"] ) ebc = EmbeddingBagCollection(tables=[eb1_config, eb2_config]) # 0 1 2 <-- batch # "f1" [0,1] None [2] # "f2" [3] [4] [5,6,7] # ^ # feature features = KeyedJaggedTensor( keys=["f1", "f2"], values=torch.tensor([0, 1, 2, 3, 4, 5, 6, 7]), offsets=torch.tensor([0, 2, 2, 3, 4, 5, 8]), ) ebc.qconfig = torch.quantization.QConfig( activation=torch.quantization.PlaceholderObserver.with_args( dtype=torch.qint8 ), weight=torch.quantization.PlaceholderObserver.with_args(dtype=torch.qint8), ) qebc = QuantEmbeddingBagCollection.from_float(ebc) quantized_embeddings = qebc(features) """ def __init__( self, table_name_to_quantized_weights: Dict[str, Tuple[Tensor, Tensor]], embedding_configs: List[EmbeddingBagConfig], is_weighted: bool, device: torch.device, ) -> None: super().__init__() self._is_weighted = is_weighted self._embedding_bag_configs: List[EmbeddingBagConfig] = embedding_configs self.embedding_bags: nn.ModuleList = nn.ModuleList() self._lengths_per_embedding: List[int] = [] table_names = set() for emb_config in self._embedding_bag_configs: if emb_config.name in table_names: raise ValueError(f"Duplicate table name {emb_config.name}") table_names.add(emb_config.name) emb_module = IntNBitTableBatchedEmbeddingBagsCodegen( embedding_specs=[ ( "", emb_config.num_embeddings, emb_config.embedding_dim, data_type_to_sparse_type(emb_config.data_type), EmbeddingLocation.HOST if device.type == "cpu" else EmbeddingLocation.DEVICE, ) ], pooling_mode=pooling_type_to_pooling_mode(emb_config.pooling), weight_lists=[table_name_to_quantized_weights[emb_config.name]], device=device, ) self.embedding_bags.append(emb_module) if not emb_config.feature_names: emb_config.feature_names = [emb_config.name] self._lengths_per_embedding.extend( len(emb_config.feature_names) * [emb_config.embedding_dim] ) self._embedding_names: List[str] = ebc_get_embedding_names(embedding_configs) def forward( self, features: KeyedJaggedTensor, ) -> KeyedTensor: pooled_embeddings: List[Tensor] = [] length_per_key: List[int] = [] feature_dict = features.to_dict() for emb_config, emb_module in zip( self._embedding_bag_configs, self.embedding_bags ): for feature_name in emb_config.feature_names: f = feature_dict[feature_name] values = f.values() offsets = f.offsets() pooled_embeddings.append( emb_module( indices=values.int(), offsets=offsets.int(), per_sample_weights=f.weights() if self._is_weighted else None, ).float() ) length_per_key.append(emb_config.embedding_dim) return KeyedTensor( keys=self._embedding_names, values=torch.cat(pooled_embeddings, dim=1), length_per_key=self._lengths_per_embedding, ) # pyre-fixme[14]: `state_dict` overrides method defined in `Module` inconsistently. def state_dict( self, destination: Optional[Dict[str, Any]] = None, prefix: str = "", keep_vars: bool = False, ) -> Dict[str, Any]: if destination is None: destination = OrderedDict() # pyre-ignore [16] destination._metadata = OrderedDict() for emb_config, emb_module in zip( self._embedding_bag_configs, self.embedding_bags, ): (weight, _) = emb_module.split_embedding_weights(split_scale_shifts=False)[ 0 ] destination[prefix + f"embedding_bags.{emb_config.name}.weight"] = weight return destination def named_buffers( self, prefix: str = "", recurse: bool = True ) -> Iterator[Tuple[str, nn.Parameter]]: state_dict = self.state_dict(prefix=prefix, keep_vars=True) for key, value in state_dict.items(): yield key, value def _get_name(self) -> str: return "QuantizedEmbeddingBagCollection" @classmethod def from_float( cls, module: OriginalEmbeddingBagCollection ) -> "EmbeddingBagCollection": assert hasattr( module, "qconfig" ), "EmbeddingBagCollection input float module must have qconfig defined" # pyre-ignore [16] data_type = dtype_to_data_type(module.qconfig.weight().dtype) embedding_bag_configs = copy.deepcopy(module.embedding_bag_configs) for config in embedding_bag_configs: config.data_type = data_type table_name_to_quantized_weights: Dict[str, Tuple[Tensor, Tensor]] = {} device = quantize_state_dict(module, table_name_to_quantized_weights, data_type) return cls( table_name_to_quantized_weights, embedding_bag_configs, module.is_weighted, device=device, ) @property def embedding_bag_configs( self, ) -> List[EmbeddingBagConfig]: return self._embedding_bag_configs @property def is_weighted(self) -> bool: return self._is_weighted
the-stack_0_10816
# import easydict from multiprocessing import Process import yaml from pathlib import Path import argparse import torch import tqdm import numpy as np import copy # torch import torchvision from torchvision.models.detection import FasterRCNN from torchvision.models.detection.rpn import AnchorGenerator from torchvision.models import mobilenet_v2 from torchvision.models.detection.faster_rcnn import FastRCNNPredictor from torchvision import transforms # from yolov5.train_dt import yolov5 from EfficientObjectDetection.train_new_reward import EfficientOD # import fr_utils import munch import os import utils from utils import load_filenames, load_dataset, load_dataloader, compute_map, convert_yolo2coco, label2idx, label_matching, reduce_dict, make_results opt = {'epochs':100, 'batch_size':12, 'device':1, 'test_epoch':10, 'eval_epoch':2, 'step_batch_size':100, 'save_path':'save', 'save_freq': 5, 'rl_weight':None, 'print_freq': 50, 'h_detector_weight':'', 'l_detector_weight':'', 'fine_tr':'config/fine_tr.yaml', 'fine_eval':'config/fine_eval.yaml', 'coarse_tr':'config/coarse_tr.yaml', 'coarse_eval':'config/coarse_eval.yaml', 'EfficientOD':'config/EfficientOD.yaml', 'split': 4} opt = munch.AutoMunch(opt) # GPU Device gpu_id = opt.device os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_id) use_cuda = torch.cuda.is_available() print("GPU device " , use_cuda) device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # training option load from yaml files with open(opt.fine_tr) as f: fine_tr = yaml.load(f, Loader=yaml.FullLoader) with open(opt.fine_eval) as f: fine_eval = yaml.load(f, Loader=yaml.FullLoader) with open(opt.coarse_tr) as f: coarse_tr = yaml.load(f, Loader=yaml.FullLoader) with open(opt.coarse_eval) as f: coarse_eval = yaml.load(f, Loader=yaml.FullLoader) with open(opt.EfficientOD) as f: efficient_config = yaml.load(f, Loader=yaml.FullLoader) efficient_config['load'] = None # bug fix epochs = opt.epochs bs = opt.batch_size # fine_detector = yolov5(fine_tr, fine_eval, epochs, bs) # coarse_detector = yolov5(coarse_tr, coarse_eval, epochs, bs) rl_agent = EfficientOD(efficient_config) split_train_path = '/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_0/rl_ver/train/images' split_val_path = '/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_0/rl_ver/val/images' split_test_path = '/home/SSDD/ICIP21_dataset/800_HRSID/split_data_4_0/rl_ver/test/images' split = 4 original_img_path = '/home/SSDD/ICIP21_dataset/800_HRSID/origin_data/rl_ver/' original_img_path_train = original_img_path + 'train/images' original_img_path_val = original_img_path + 'val/images' original_img_path_test = original_img_path + 'test/images' assert bs % split == 0, 'batch size should be divided with image split patch size' num_classes = 2 fine_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes, pretrained_backbone=False) coarse_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False, num_classes=num_classes, pretrained_backbone=False) # # # # replace the classifier with a new one, that has # # # # num_classes which is user-defined # # # get number of input features for the classifier fine_in_features = fine_model.roi_heads.box_predictor.cls_score.in_features coarse_in_features = coarse_model.roi_heads.box_predictor.cls_score.in_features # # # replace the pre-trained head with a new one fine_model.roi_heads.box_predictor = FastRCNNPredictor(fine_in_features, num_classes) coarse_model.roi_heads.box_predictor = FastRCNNPredictor(coarse_in_features, num_classes) for fine_p, coarse_p in zip(fine_model.parameters(), coarse_model.parameters()): fine_p.requires_grad = True coarse_p.requires_grad = True fine_model.to(device) coarse_model.to(device) # Optimizer fine_params = [p for p in fine_model.parameters() if p.requires_grad] coarse_params = [p for p in coarse_model.parameters() if p.requires_grad] fine_optim = torch.optim.SGD(fine_params, lr=0.005, momentum=0.9, weight_decay=0.0005) coarse_optim = torch.optim.SGD(coarse_params, lr=0.005, momentum=0.9, weight_decay=0.0005) fine_lr_scheduler = torch.optim.lr_scheduler.StepLR(fine_optim, step_size=50) coarse_lr_scheduler = torch.optim.lr_scheduler.StepLR(coarse_optim, step_size=50) for e in range(epochs): # label이 없더라도 loader에 image 생성 train_imgs = load_filenames(split_train_path, split, bs).files_array() fine_train_dataset = load_dataset(train_imgs, fine_tr, bs) coarse_train_dataset = load_dataset(train_imgs, fine_tr, bs) fine_train_loader = load_dataloader(bs, fine_train_dataset) coarse_train_loader = load_dataloader(bs, coarse_train_dataset) fine_train_nb = len(fine_train_loader) coarse_train_nb = len(coarse_train_loader) assert fine_train_nb == coarse_train_nb, 'fine & coarse train batch number is not matched' nb = fine_train_nb # Logger fine_metric_logger = utils.MetricLogger(delimiter=" ") fine_metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) coarse_metric_logger = utils.MetricLogger(delimiter=" ") coarse_metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) fine_header = 'Fine Epoch: [{}]'.format(e) coarse_header = 'Coarse Epoch: [{}]'.format(e) # # warmup fine_lr_scheduler = None corase_lr_scheduler = None if e == 0: warmup_factor = 1. / 1000 warmup_iters = min(1000, fine_train_nb-1) fine_lr_scheduler = utils.warmup_lr_scheduler(fine_optim, warmup_iters, warmup_factor) coarse_lr_scheduler = utils.warmup_lr_scheduler(coarse_optim, warmup_iters, warmup_factor) for i, (fine_train, coarse_train) in enumerate(zip(fine_train_loader, coarse_train_loader)): # train fine_model.train() coarse_model.train() #### fine train ### # Label mathching fine_imgs, fine_labels = label_matching(fine_train, device) fine_imgs = fine_imgs.to(device) / 255. ## train: img normalization --> not, zerodivision err fine_loss_dict = fine_model(fine_imgs, copy.deepcopy(fine_labels)) fine_losses = sum(loss for loss in fine_loss_dict.values()) fine_loss_dict_reduced = reduce_dict(fine_loss_dict) fine_loss_reduced = sum(loss for loss in fine_loss_dict_reduced.values()) fine_loss_val = fine_loss_reduced.item() # optimizer fine_optim.zero_grad() fine_losses.backward() fine_optim.step() if fine_lr_scheduler is not None: fine_lr_scheduler.step() fine_metric_logger.update(loss=fine_loss_reduced, **fine_loss_dict_reduced) fine_metric_logger.update(lr=fine_optim.param_groups[0]["lr"]) if i % opt.print_freq ==0: space_fmt = ':' + str(len(str(fine_train_nb))) + 'd' log_msg = fine_metric_logger.delimiter.join([fine_header, '[{0' + space_fmt + '}/{1}]', '{meters}']) print(log_msg.format(i, fine_train_nb, meters=str(fine_metric_logger))) ### coarse train ### # Label mathching coarse_imgs, coarse_labels = label_matching(coarse_train, device) coarse_imgs = coarse_imgs.to(device) / 255. ## train: img normalization --> not, zerodivision err coarse_loss_dict = coarse_model(coarse_imgs, copy.deepcopy(coarse_labels)) coarse_losses = sum(loss for loss in coarse_loss_dict.values()) # utils coarse_loss_dict_reduced = reduce_dict(coarse_loss_dict) coarse_loss_reduced = sum(loss for loss in coarse_loss_dict_reduced.values()) coarse_loss_val = coarse_loss_reduced.item() # optimizer coarse_optim.zero_grad() coarse_losses.backward() coarse_optim.step() if coarse_lr_scheduler is not None: coarse_lr_scheduler.step() coarse_metric_logger.update(loss=coarse_loss_reduced, **coarse_loss_dict_reduced) coarse_metric_logger.update(lr=fine_optim.param_groups[0]["lr"]) if i % opt.print_freq ==0: space_fmt = ':' + str(len(str(fine_train_nb))) + 'd' log_msg = coarse_metric_logger.delimiter.join([coarse_header, '[{0' + space_fmt + '}/{1}]', '{meters}']) print(log_msg.format(i, fine_train_nb, meters=str(coarse_metric_logger))) ## train eval # result = (source_path, paths[si], mp, mr, map50, nl, stats) # file_name, od_file_dir, mp=0(skip), ma=0(skip), map50(will be soon), objnum, stat # stat = 4 # make_results(model, dataset, device) fine_results = make_results(fine_model, fine_train, device) coarse_results = make_results(coarse_model, coarse_train, device) # conf_thresh=0.001 / iou_thres=0.6 rl_agent.train(e, i, nb, fine_results, coarse_results, original_data_path=original_img_path_train) ## Validation if e % 1 == 0: fine_dataset, coarse_dataset, policies = rl_agent.eval(split_val_path, original_img_path_val) print(len(fine_dataset.tolist())) print(len(coarse_dataset.tolist())) fine_results, coarse_results = [], [] if len(fine_dataset.tolist()) > 0: fine_val_dataset = load_dataset(fine_dataset, fine_tr, bs) fine_val_loader = load_dataloader(bs, fine_val_dataset) fine_nb = len(fine_val_loader) for i, fine_val in tqdm.tqdm(enumerate(fine_val_loader), total=fine_nb): fine_results += make_results(fine_model, fine_val, device) if len(coarse_dataset.tolist()) > 0: coarse_val_dataset = load_dataset(coarse_dataset, fine_tr, bs) coarse_val_loader = load_dataloader(bs, coarse_val_dataset) coarse_nb = len(coarse_train_loader) for i, coarse_val in tqdm.tqdm(enumerate(coarse_val_loader), total=coarse_nb): coarse_results += make_results(coarse_model, coarse_val, device) map50 = compute_map(fine_results, coarse_results) print('Validation MAP: \n', map50) # save if e % opt.save_freq == 0: torch.save(fine_model, os.path.join(opt.save, 'fine_model')) torch.save(coarse_model, os.path.join(opt.save, 'coarse_model')) # Testing fine_dataset, coarse_dataset, policies = rl_agent.eval(split_test_path, original_img_path_test) fine_results, coarse_results = [], [] if len(fine_dataset.tolist()) > 0: fine_test_dataset = load_dataset(fine_dataset, fine_tr, bs) fine_test_loader = load_dataloader(bs, fine_test_dataset) fine_nb = len(fine_test_loader) for i, fine_test in tqdm.tqdm(enumerate(fine_test_loader), total=fine_nb): fine_results += make_results(fine_model, fine_test, device) if len(coarse_dataset.tolist()) > 0: coarse_test_dataset = load_dataset(coarse_dataset, fine_tr, bs) coarse_test_loader = load_dataloader(bs, coarse_test_dataset) coarse_nb = len(coarse_test_loader) for i, coarse_test in tqdm.tqdm(enumerate(coarse_test_loader), total=coarse_nb): coarse_results += make_results(coarse_model, coarse_test, device) map50 = compute_map(fine_results, coarse_results) print('MAP: \n', map50) with open('test_result.txt', 'a') as f: f.write(str(map50)) with open('test_policies.txt', 'a') as f: f.write(str(policies))
the-stack_0_10817
# references: # https://github.com/una-dinosauria/3d-pose-baseline/blob/master/src/predict_3dpose.py#L305 import numpy as np from ..utils import data_utils, procrustes class Human36M_JointErrorEvaluator: def __init__(self, human36m, predict_14=False, apply_procrustes_alignment=False): """ Args: human36m (Human36MDatasetHandler): Human3.6M dataset. predict_14 (bool, optional): Whether to predict 14 3d-joints. Defaults to False. apply_procrustes_alignment (bool, optional): Whether to apply procrustes alignment to the predicted poses. """ self.human36m = human36m self.predict_14 = predict_14 self.apply_procrustes_alignment = apply_procrustes_alignment self.n_joints = ( 14 if self.predict_14 else 17 ) # 17 = predicted 16 joints + root (Hip joint) self.reset() def reset(self): """Remove all samples added so far. """ self.joint_distances = [] self.actions = [] def add_samples(self, pred_3d_poses, truth_3d_poses, actions): """Add pairs of predicted and ground-truth poses to evaluate. Args: pred_3d_poses (numpy.array): Predicted 3d poses (normalized). `[batch_size, n_joints, 3]`. truth_3d_poses (numpy.array): Ground-truth 3d poses (normalized). `[batch_size, n_joints, 3]`. actions (list[str]): Actions to which the poses belong. """ # Compute distances of corresponding joints of pred/truth poses. pred = self._preprocess_poses(pred_3d_poses) # [batch_size, n_joints x 3] truth = self._preprocess_poses(truth_3d_poses) # [batch_size, n_joints x 3] if self.apply_procrustes_alignment: pred = self._apply_procrustes_alignment( sources=pred, targets=truth ) # [batch_size, n_joints x 3] d = self._compute_joint_distances(pred, truth) # [batch_size, n_joints] self.joint_distances.append(d) # Cache action of each frame for per action evaluation. self.actions.extend(actions) def get_metrics(self): """Get evaluation results. Returns: (dict): evaluation results. """ joint_distances = np.vstack(self.joint_distances) # [N, n_joints] actions = np.array(self.actions) # [N,] assert len(joint_distances) == len(actions) # Evaluate joint position errors over all actions. mpjpe = np.mean(joint_distances) # mean per joint position error: float pjpe = np.mean(joint_distances, axis=0) # per joint position error: [n_joints,] metrics = { "MPJPE": mpjpe, "PJPE": pjpe.tolist(), } # Evaluate joint position error per action. for action in data_utils.H36M_ACTIONS: mask = actions == action if np.sum(mask) == 0: # In case no sample is found in the action, mpjpe = pjpe = -1 # set errors as -1. print("Warining: no test sample was found in the action: {action}. ") else: joint_distances_masked = joint_distances[mask] mpjpe = np.mean(joint_distances_masked) pjpe = np.mean(joint_distances_masked, axis=0) metrics["MPJPE/{}".format(action)] = mpjpe metrics["PJPE/{}".format(action)] = pjpe.tolist() return metrics def _preprocess_poses(self, poses_3d): mean_3d = self.human36m.mean_3d std_3d = self.human36m.std_3d dim_to_ignore_3d = self.human36m.dim_to_ignore_3d dim_to_use_3d = self.human36m.dim_to_use_3d # Unnormalize 3d poses. poses = data_utils.unnormalize_data( poses_3d, mean_3d, std_3d, dim_to_ignore_3d ) # [batch_size, 32 x 3] # Keep only the relevant joints. dim_to_keep = ( dim_to_use_3d if self.predict_14 else np.hstack([np.arange(3), dim_to_use_3d]) # Add root (Hip joint) if the model predicts 16 joints. # XXX: Assuming the first 3 values represent root joint 3d position. ) poses = poses[:, dim_to_keep] # [batch_size, n_joints x 3] return poses def _apply_procrustes_alignment(self, sources, targets): sources_aligned = [] batch_size = len(sources) for i in range(batch_size): target = targets[i].reshape(-1, 3) # [n_joints, 3] source = sources[i].reshape(-1, 3) # [n_joints, 3] _, _, T, b, c = procrustes.compute_similarity_transform( target, source, compute_optimal_scale=True ) aligned = (b * source.dot(T)) + c aligned = aligned.reshape((-1, self.n_joints * 3)) # [1, n_joints x 3] sources_aligned.append(aligned) return np.vstack(sources_aligned) # [batch_size, n_joints x 3] def _compute_joint_distances(self, pred, truth): # Compute Euclidean distance error per joint. d_squared = (pred - truth) ** 2 # [batch_size, n_joints x 3] d_squared = d_squared.reshape( (-1, self.n_joints, 3) ) # [batch_size, n_joints, 3] d_squared = np.sum(d_squared, axis=2) # [batch_size, n_joints] d = np.sqrt(d_squared) # [batch_size, n_joints] return d
the-stack_0_10820
import numpy as np import pickle from sklearn.neighbors._kde import KernelDensity import os import sys import joblib import torch import json from tqdm import tqdm sys.path.append("/NAS2020/Workspaces/DRLGroup/zbzhu/lfo-ppuu/lfo") from dataloader import DataLoader from map_i80_ctrl import ControlledI80 from tianshou.env import SubprocVectorEnv from rlkit.torch.sac.policies import MakeDeterministic from rlkit.data_management.split_dict import split_dict s_std = np.tile(np.array([392.1703, 44.0625, 24.4669, 1.0952]), 7) s_mean = np.tile(np.array([887.6, 117.67, 36.453, -0.23616]), 7) def kl_divergence(x1, x2): p = kde_prob(x1, min_v=0, max_v=1, scale=100) q = kde_prob(x2, min_v=0, max_v=1, scale=100) return np.sum(np.where(p != 0, p * np.log(p / q), 0)) def kde_prob(x, min_v=0, max_v=1, scale=100): kde = KernelDensity(kernel="gaussian", bandwidth=(max_v - min_v) * 1.0 / scale).fit( list(x) ) # x.shape: [None, 2] data = [ (i * 1.0 / scale, j * 1.0 / scale) for i in range(min_v * scale, max_v * scale) for j in range(min_v * scale, max_v * scale) ] prob = np.exp(kde.score_samples(data)) + 1e-4 # x.shape: [None, 1] return prob def obs_unnorm(obs): obs *= s_std obs += s_mean return obs def make_env(env_kwargs, rank, seed=0, car_index=None): def _init(): """ env_specs: env_name: 'halfcheetah' env_kwargs: {} # kwargs to pass to the env constructor call """ env = ControlledI80(**env_kwargs) env.seed(rank + seed) if car_index is not None and hasattr(env, "set_train_indx"): env.set_train_indx(car_index) return env return _init class opt: debug = 0 demo_path = "/NAS2020/Workspaces/DRLGroup/zbzhu/lfo-ppuu/expert_demo_xy.pkl" test_idx_path = "/NAS2020/Workspaces/DRLGroup/zbzhu/lfo-ppuu/lfo/demos/expert_trajs_50/PPUU/test_indx_final.pkl" log_path = "/NAS2020/Workspaces/DRLGroup/zbzhu/lfo-ppuu/lfo/logs/gailfo-ppuu-final/gailfo_ppuu_final--2021_01_26_03_20_45--s-0" model_path = os.path.join(log_path, "best.pkl") variant_path = os.path.join(log_path, "variant.json") with open(variant_path, "rb") as f: variant = json.load(f) env_kwargs = dict( fps=30, nb_states=1, display=False, delta_t=0.1, store=False, show_frame_count=False, data_dir="ppuu_logs/", ) if __name__ == "__main__": env_num = 50 env_wait_num = 25 with open(test_idx_path, "rb") as f: test_idx = pickle.load(f) splited_eval_dict = split_dict(test_idx, env_num) eval_car_num = [len(d) for d in splited_eval_dict] envs = SubprocVectorEnv( [ make_env( env_kwargs, i, car_index=splited_eval_dict[i], ) for i in range(env_num) ], wait_num=env_wait_num, ) if os.path.isfile(demo_path): with open(demo_path, "rb") as f: all_demo_x, all_demo_y = pickle.load(f) else: dataloader = DataLoader(None, opt, "i80") all_demo_x, all_demo_y = [], [] for idx in test_idx.keys(): all_demo_x.extend(dataloader.states[idx][:, 0, 0].numpy()) all_demo_y.extend(dataloader.states[idx][:, 0, 1].numpy()) with open(demo_path, "wb") as f: pickle.dump((all_demo_x, all_demo_y), f) model = joblib.load(model_path) policy = model["policy"] eval_policy = MakeDeterministic(policy) all_agent_x, all_agent_y = [], [] items = list(test_idx.items()) ready_env_ids = np.arange(env_num) finished_env_ids = [] obs_list = envs.reset() done = False episode_step = np.zeros(env_num) env_finished_car_num = np.zeros(env_num) pbar = tqdm(total=len(items)) while True: actions = [] for obs in obs_list[ready_env_ids]: ori_obs = obs_unnorm(obs.copy()) agent_x = ori_obs[0] agent_y = ori_obs[1] all_agent_x.append(agent_x) all_agent_y.append(agent_y) with torch.no_grad(): action, _ = eval_policy.get_action(obs_np=obs) actions.append(action) actions = np.array(actions) next_obs_list, rews, dones, env_infos = envs.step(actions, id=ready_env_ids) ready_env_ids = np.array([i["env_id"] for i in env_infos]) obs_list[ready_env_ids] = next_obs_list for idx, done in enumerate(dones): env_id = ready_env_ids[idx] episode_step[env_id] += 1 if done or episode_step[env_id] > 1500: env_finished_car_num[env_id] += 1 pbar.update(1) if not done: obs_list[env_id] = envs.reset(id=env_id) if env_finished_car_num[env_id] == eval_car_num[env_id]: finished_env_ids.append(env_id) ready_env_ids = np.array( [x for x in ready_env_ids if x not in finished_env_ids] ) if len(finished_env_ids) == env_num: assert len(ready_env_ids) == 0 break pbar.close() all_agent_x = np.array(all_agent_x)[:, np.newaxis] / 1600 all_agent_y = np.array(all_agent_y)[:, np.newaxis] / 200 all_agent_pos = np.concatenate((all_agent_x, all_agent_y), 1) all_demo_x = np.array(all_demo_x)[:, np.newaxis] / 1600 all_demo_y = np.array(all_demo_y)[:, np.newaxis] / 200 all_demo_pos = np.concatenate((all_demo_x, all_demo_y), 1) kld = kl_divergence(all_agent_pos, all_demo_pos) print(kld)
the-stack_0_10822
from pawpyseed.core.wavefunction import * class NCLWavefunction(pawpyc.CNCLWavefunction, Wavefunction): def __init__(self, struct, pwf, cr, dim, symprec=1e-4, setup_projectors=False): """ Arguments: struct (pymatgen.core.Structure): structure that the wavefunction describes pwf (pawpyc.PWFPointer): holder class for pswf_t and k-points/k-point weights cr (CoreRegion): Contains the pseudopotentials, with projectors and partials waves, for the structure dim (pymatgen.io.vasp.outputs.Outcar OR np.ndarry OR list of length 3): Outcar object for reading ngf or the dimensions NG* of the FFT grid setup_projectors (bool, False): Whether to set up the core region components of the wavefunctions. Pawpyseed will set up the projectors automatically when they are first needed, so this generally can be left as False. Returns: Wavefunction object """ self.band_props = pwf.band_props.copy(order="C") super(Wavefunction, self).__init__(pwf) if not self.ncl: raise PAWpyError( "Pseudowavefunction is collinear! Call Wavefunction(...) instead" ) self.structure = struct self.cr = cr self.dim = np.array(dim).astype(np.int32) if setup_projectors: self.check_c_projectors() @staticmethod def from_files( struct="CONTCAR", wavecar="WAVECAR", cr="POTCAR", vr="vasprun.xml", setup_projectors=False, ): """ Construct a Wavefunction object from file paths. Arguments: struct (str): VASP POSCAR or CONTCAR file path wavecar (str): VASP WAVECAR file path cr (str): VASP POTCAR file path vr (str): VASP vasprun file path outcar (str): VASP OUTCAR file path setup_projectors (bool, False): Whether to set up the core region components of the wavefunctions. Pawpyseed will set up the projectors automatically when they are first needed, so this generally can be left as False. Returns: Wavefunction object """ vr = Vasprun(vr) dim = np.array( [vr.parameters["NGX"], vr.parameters["NGY"], vr.parameters["NGZ"]] ) symprec = vr.parameters["SYMPREC"] pwf = pawpyc.PWFPointer(wavecar, vr) return NCLWavefunction( Poscar.from_file(struct).structure, pwf, CoreRegion(Potcar.from_file(cr)), dim, symprec, setup_projectors, ) @staticmethod def from_directory(path, setup_projectors=False): """ Assumes VASP output has the default filenames and is located in the directory specificed by path. Arguments: path (str): VASP output directory setup_projectors (bool, False): Whether to set up the core region components of the wavefunctions. Pawpyseed will set up the projectors automatically when they are first needed, so this generally can be left as False. Returns: Wavefunction object """ filepaths = [] for d in ["CONTCAR", "WAVECAR", "POTCAR", "vasprun.xml"]: filepaths.append(str(os.path.join(path, d))) args = filepaths + [setup_projectors] return NCLWavefunction.from_files(*args) def desymmetrized_copy(self, allkpts=None, weights=None): raise NotImplementedError() def write_state_realspace( self, b, k, s, fileprefix="", dim=None, scale=1, remove_phase=False ): """ Writes the real and imaginary parts of a given band to two files, prefixed by fileprefix Args: b (int): band number (0-indexed!) k (int): kpoint number (0-indexed!) s (int): spin number (0-indexed!) fileprefix (string, ""): first part of the file name dim (numpy array of 3 ints, None): dimensions of the FFT grid scale (scalar, 1): number to multiply the realspace wavefunction by. For example, VASP multiplies charge density by the volume of the structure. remove_phase (False): If True, removes the e^(ikr) phase from the wavefunction (this does not necessarily mean the wavefunction is real). This is useful if you want to visualize the wavefunction because the e^(ikr) phase makes the wavefunction non-periodic Returns: A 3D array (indexed by x,y,z where x,y,z are fractional coordinates) with complex double values for the realspace wavefunction The wavefunction is written in two files with z the slow index. """ self.check_c_projectors() if dim is not None: self.update_dim(np.array(dim)) filename_base = "%sB%dK%dS%d" % (fileprefix, b, k, s) filename1 = "%s_UP_REAL.vasp" % filename_base filename2 = "%s_UP_IMAG.vasp" % filename_base filename3 = "%s_DOWN_REAL.vasp" % filename_base filename4 = "%s_DOWN_IMAG.vasp" % filename_base res0, res1 = self._write_realspace_state( filename1, filename2, filename3, filename4, scale, b, k, s, remove_phase=remove_phase, ) self._convert_to_vasp_volumetric(filename1, self.dim) self._convert_to_vasp_volumetric(filename2, self.dim) self._convert_to_vasp_volumetric(filename3, self.dim) self._convert_to_vasp_volumetric(filename4, self.dim) return res0, res1 def write_density_realspace(self, filename="PYAECCAR.vasp", dim=None, scale=1): """ Writes the real and imaginary parts of a given band to two files, prefixed by fileprefix Args: b (int): band number (0-indexed!) k (int): kpoint number (0-indexed!) s (int): spin number (0-indexed!) fileprefix (string, ""): first part of the file name dim (numpy array of 3 ints, None): dimensions of the FFT grid scale (scalar, 1): number to multiply the realspace wavefunction by. For example, VASP multiplies charge density by the volume of the structure. Returns: A 3D array (indexed by x,y,z where x,y,z are fractional coordinates) with complex double values for the realspace wavefunction The charge density is written with z the slow index. """ self.check_c_projectors() if dim is not None: self.update_dim(np.array(dim)) res = self._write_realspace_density(filename, scale) self._convert_to_vasp_volumetric(filename, self.dim) return res
the-stack_0_10823
#!/usr/bin/env python from common.realtime import sec_since_boot from cereal import car from selfdrive.config import Conversions as CV from selfdrive.controls.lib.drive_helpers import EventTypes as ET, create_event from selfdrive.controls.lib.vehicle_model import VehicleModel from selfdrive.car.toyota.carstate import CarState, get_can_parser, get_cam_can_parser from selfdrive.car.toyota.values import ECU, check_ecu_msgs, CAR, NO_STOP_TIMER_CAR from selfdrive.swaglog import cloudlog try: from selfdrive.car.toyota.carcontroller import CarController except ImportError: CarController = None class CarInterface(object): def __init__(self, CP, sendcan=None): self.CP = CP self.VM = VehicleModel(CP) self.frame = 0 self.gas_pressed_prev = False self.brake_pressed_prev = False self.can_invalid_count = 0 self.cam_can_valid_count = 0 self.cruise_enabled_prev = False # *** init the major players *** self.CS = CarState(CP) self.cp = get_can_parser(CP) self.cp_cam = get_cam_can_parser(CP) self.forwarding_camera = False # sending if read only is False if sendcan is not None: self.sendcan = sendcan self.CC = CarController(self.cp.dbc_name, CP.carFingerprint, CP.enableCamera, CP.enableDsu, CP.enableApgs) @staticmethod def compute_gb(accel, speed): return float(accel) / 3.0 @staticmethod def calc_accel_override(a_ego, a_target, v_ego, v_target): return 1.0 @staticmethod def get_params(candidate, fingerprint): # kg of standard extra cargo to count for drive, gas, etc... std_cargo = 136 ret = car.CarParams.new_message() ret.carName = "toyota" ret.carFingerprint = candidate ret.safetyModel = car.CarParams.SafetyModels.toyota # pedal ret.enableCruise = not ret.enableGasInterceptor # FIXME: hardcoding honda civic 2016 touring params so they can be used to # scale unknown params for other cars mass_civic = 2923 * CV.LB_TO_KG + std_cargo wheelbase_civic = 2.70 centerToFront_civic = wheelbase_civic * 0.4 centerToRear_civic = wheelbase_civic - centerToFront_civic rotationalInertia_civic = 2500 tireStiffnessFront_civic = 192150 tireStiffnessRear_civic = 202500 ret.steerActuatorDelay = 0.12 # Default delay, Prius has larger delay if candidate != CAR.PRIUS: ret.lateralTuning.init('pid') ret.lateralTuning.pid.kiBP, ret.lateralTuning.pid.kpBP = [[0.], [0.]] if candidate == CAR.PRIUS: stop_and_go = True ret.safetyParam = 66 # see conversion factor for STEER_TORQUE_EPS in dbc file ret.wheelbase = 2.70 ret.steerRatio = 16.00 # unknown end-to-end spec tire_stiffness_factor = 1.0 # hand-tune ret.mass = 3375 * CV.LB_TO_KG + std_cargo ret.lateralTuning.init('indi') ret.lateralTuning.indi.innerLoopGain = 4.75 ret.lateralTuning.indi.outerLoopGain = 2.0 ret.lateralTuning.indi.timeConstant = 3.0 ret.lateralTuning.indi.actuatorEffectiveness = 1.5 ret.steerActuatorDelay = 0.5 ret.steerRateCost = 0.5 elif candidate in [CAR.RAV4, CAR.RAV4H]: stop_and_go = True if (candidate in CAR.RAV4H) else False ret.safetyParam = 73 # see conversion factor for STEER_TORQUE_EPS in dbc file ret.wheelbase = 2.65 ret.steerRatio = 16.30 # 14.5 is spec end-to-end tire_stiffness_factor = 0.5533 ret.mass = 3650 * CV.LB_TO_KG + std_cargo # mean between normal and hybrid ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.05]] ret.lateralTuning.pid.kf = 0.00006 # full torque for 10 deg at 80mph means 0.00007818594 elif candidate == CAR.COROLLA: stop_and_go = False ret.safetyParam = 100 # see conversion factor for STEER_TORQUE_EPS in dbc file ret.wheelbase = 2.70 ret.steerRatio = 17.8 tire_stiffness_factor = 0.444 ret.mass = 2860 * CV.LB_TO_KG + std_cargo # mean between normal and hybrid ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.2], [0.05]] ret.lateralTuning.pid.kf = 0.00003 # full torque for 20 deg at 80mph means 0.00007818594 elif candidate == CAR.LEXUS_RXH: stop_and_go = True ret.safetyParam = 100 # see conversion factor for STEER_TORQUE_EPS in dbc file ret.wheelbase = 2.79 ret.steerRatio = 16. # 14.8 is spec end-to-end tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 4481 * CV.LB_TO_KG + std_cargo # mean between min and max ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.lateralTuning.pid.kf = 0.00006 # full torque for 10 deg at 80mph means 0.00007818594 elif candidate in [CAR.CHR, CAR.CHRH]: stop_and_go = True ret.safetyParam = 100 ret.wheelbase = 2.63906 ret.steerRatio = 13.6 tire_stiffness_factor = 0.7933 ret.mass = 3300. * CV.LB_TO_KG + std_cargo ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.723], [0.0428]] ret.lateralTuning.pid.kf = 0.00006 elif candidate in [CAR.CAMRY, CAR.CAMRYH]: stop_and_go = True ret.safetyParam = 100 ret.wheelbase = 2.82448 ret.steerRatio = 13.7 tire_stiffness_factor = 0.7933 ret.mass = 3400 * CV.LB_TO_KG + std_cargo #mean between normal and hybrid ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.1]] ret.lateralTuning.pid.kf = 0.00006 elif candidate in [CAR.HIGHLANDER, CAR.HIGHLANDERH]: stop_and_go = True ret.safetyParam = 100 ret.wheelbase = 2.78 ret.steerRatio = 16.0 tire_stiffness_factor = 0.444 # not optimized yet ret.mass = 4607 * CV.LB_TO_KG + std_cargo #mean between normal and hybrid limited ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.6], [0.05]] ret.lateralTuning.pid.kf = 0.00006 elif candidate == CAR.AVALON: stop_and_go = False ret.safetyParam = 73 # see conversion factor for STEER_TORQUE_EPS in dbc file ret.wheelbase = 2.82 ret.steerRatio = 14.8 #Found at https://pressroom.toyota.com/releases/2016+avalon+product+specs.download tire_stiffness_factor = 0.7983 ret.mass = 3505 * CV.LB_TO_KG + std_cargo # mean between normal and hybrid ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.17], [0.03]] ret.lateralTuning.pid.kf = 0.00006 elif candidate == CAR.RAV4_2019: stop_and_go = True ret.safetyParam = 100 ret.wheelbase = 2.68986 ret.steerRatio = 14.3 tire_stiffness_factor = 0.7933 ret.mass = 3370. * CV.LB_TO_KG + std_cargo ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.05]] ret.lateralTuning.pid.kf = 0.00007818594 elif candidate == CAR.COROLLA_HATCH: stop_and_go = True ret.safetyParam = 100 ret.wheelbase = 2.63906 ret.steerRatio = 13.9 tire_stiffness_factor = 0.444 ret.mass = 3060. * CV.LB_TO_KG + std_cargo ret.lateralTuning.pid.kpV, ret.lateralTuning.pid.kiV = [[0.3], [0.05]] ret.lateralTuning.pid.kf = 0.00007818594 ret.steerRateCost = 1. ret.centerToFront = ret.wheelbase * 0.44 #detect the Pedal address ret.enableGasInterceptor = 0x201 in fingerprint # min speed to enable ACC. if car can do stop and go, then set enabling speed # to a negative value, so it won't matter. ret.minEnableSpeed = -1. if (stop_and_go or ret.enableGasInterceptor) else 19. * CV.MPH_TO_MS centerToRear = ret.wheelbase - ret.centerToFront # TODO: get actual value, for now starting with reasonable value for # civic and scaling by mass and wheelbase ret.rotationalInertia = rotationalInertia_civic * \ ret.mass * ret.wheelbase**2 / (mass_civic * wheelbase_civic**2) # TODO: start from empirically derived lateral slip stiffness for the civic and scale by # mass and CG position, so all cars will have approximately similar dyn behaviors ret.tireStiffnessFront = (tireStiffnessFront_civic * tire_stiffness_factor) * \ ret.mass / mass_civic * \ (centerToRear / ret.wheelbase) / (centerToRear_civic / wheelbase_civic) ret.tireStiffnessRear = (tireStiffnessRear_civic * tire_stiffness_factor) * \ ret.mass / mass_civic * \ (ret.centerToFront / ret.wheelbase) / (centerToFront_civic / wheelbase_civic) # no rear steering, at least on the listed cars above ret.steerRatioRear = 0. ret.steerControlType = car.CarParams.SteerControlType.torque # steer, gas, brake limitations VS speed ret.steerMaxBP = [16. * CV.KPH_TO_MS, 45. * CV.KPH_TO_MS] # breakpoints at 1 and 40 kph ret.steerMaxV = [1., 1.] # 2/3rd torque allowed above 45 kph ret.brakeMaxBP = [5., 20.] ret.brakeMaxV = [1., 0.8] ret.enableCamera = not check_ecu_msgs(fingerprint, ECU.CAM) ret.enableDsu = not check_ecu_msgs(fingerprint, ECU.DSU) ret.enableApgs = False #not check_ecu_msgs(fingerprint, ECU.APGS) ret.openpilotLongitudinalControl = ret.enableCamera and ret.enableDsu cloudlog.warn("ECU Camera Simulated: %r", ret.enableCamera) cloudlog.warn("ECU DSU Simulated: %r", ret.enableDsu) cloudlog.warn("ECU APGS Simulated: %r", ret.enableApgs) cloudlog.warn("ECU Gas Interceptor: %r", ret.enableGasInterceptor) ret.steerLimitAlert = False ret.longitudinalTuning.deadzoneBP = [0., 9.] ret.longitudinalTuning.deadzoneV = [0., .15] ret.longitudinalTuning.kpBP = [0., 5., 35.] ret.longitudinalTuning.kiBP = [0., 35.] ret.stoppingControl = False ret.startAccel = 0.0 if ret.enableGasInterceptor: ret.gasMaxBP = [0., 9., 35] ret.gasMaxV = [0.2, 0.5, 0.7] ret.longitudinalTuning.kpV = [1.2, 0.8, 0.5] ret.longitudinalTuning.kiV = [0.18, 0.12] else: ret.gasMaxBP = [0.] ret.gasMaxV = [0.5] ret.longitudinalTuning.kpV = [3.6, 2.4, 1.5] ret.longitudinalTuning.kiV = [0.54, 0.36] return ret # returns a car.CarState def update(self, c): # ******************* do can recv ******************* canMonoTimes = [] self.cp.update(int(sec_since_boot() * 1e9), False) # run the cam can update for 10s as we just need to know if the camera is alive if self.frame < 1000: self.cp_cam.update(int(sec_since_boot() * 1e9), False) self.CS.update(self.cp, self.cp_cam) # create message ret = car.CarState.new_message() # speeds ret.vEgo = self.CS.v_ego ret.vEgoRaw = self.CS.v_ego_raw ret.aEgo = self.CS.a_ego ret.yawRate = self.VM.yaw_rate(self.CS.angle_steers * CV.DEG_TO_RAD, self.CS.v_ego) ret.standstill = self.CS.standstill ret.wheelSpeeds.fl = self.CS.v_wheel_fl ret.wheelSpeeds.fr = self.CS.v_wheel_fr ret.wheelSpeeds.rl = self.CS.v_wheel_rl ret.wheelSpeeds.rr = self.CS.v_wheel_rr # gear shifter ret.gearShifter = self.CS.gear_shifter # gas pedal ret.gas = self.CS.car_gas if self.CP.enableGasInterceptor: # use interceptor values to disengage on pedal press ret.gasPressed = self.CS.pedal_gas > 15 else: ret.gasPressed = self.CS.pedal_gas > 0 # brake pedal ret.brake = self.CS.user_brake ret.brakePressed = self.CS.brake_pressed != 0 ret.brakeLights = self.CS.brake_lights # steering wheel ret.steeringAngle = self.CS.angle_steers ret.steeringRate = self.CS.angle_steers_rate ret.steeringTorque = self.CS.steer_torque_driver ret.steeringPressed = self.CS.steer_override # cruise state ret.cruiseState.enabled = self.CS.pcm_acc_active ret.cruiseState.speed = self.CS.v_cruise_pcm * CV.KPH_TO_MS ret.cruiseState.available = bool(self.CS.main_on) ret.cruiseState.speedOffset = 0. if self.CP.carFingerprint in NO_STOP_TIMER_CAR or self.CP.enableGasInterceptor: # ignore standstill in hybrid vehicles, since pcm allows to restart without # receiving any special command # also if interceptor is detected ret.cruiseState.standstill = False else: ret.cruiseState.standstill = self.CS.pcm_acc_status == 7 buttonEvents = [] if self.CS.left_blinker_on != self.CS.prev_left_blinker_on: be = car.CarState.ButtonEvent.new_message() be.type = 'leftBlinker' be.pressed = self.CS.left_blinker_on != 0 buttonEvents.append(be) if self.CS.right_blinker_on != self.CS.prev_right_blinker_on: be = car.CarState.ButtonEvent.new_message() be.type = 'rightBlinker' be.pressed = self.CS.right_blinker_on != 0 buttonEvents.append(be) ret.buttonEvents = buttonEvents ret.leftBlinker = bool(self.CS.left_blinker_on) ret.rightBlinker = bool(self.CS.right_blinker_on) ret.doorOpen = not self.CS.door_all_closed ret.seatbeltUnlatched = not self.CS.seatbelt ret.genericToggle = self.CS.generic_toggle # events events = [] if not self.CS.can_valid: self.can_invalid_count += 1 if self.can_invalid_count >= 5: events.append(create_event('commIssue', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE])) else: self.can_invalid_count = 0 if self.CS.cam_can_valid: self.cam_can_valid_count += 1 if self.cam_can_valid_count >= 5: self.forwarding_camera = True if not ret.gearShifter == 'drive' and self.CP.enableDsu: events.append(create_event('wrongGear', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if ret.doorOpen: events.append(create_event('doorOpen', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if ret.seatbeltUnlatched: events.append(create_event('seatbeltNotLatched', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if self.CS.esp_disabled and self.CP.enableDsu: events.append(create_event('espDisabled', [ET.NO_ENTRY, ET.SOFT_DISABLE])) if not self.CS.main_on and self.CP.enableDsu: events.append(create_event('wrongCarMode', [ET.NO_ENTRY, ET.USER_DISABLE])) if ret.gearShifter == 'reverse' and self.CP.enableDsu: events.append(create_event('reverseGear', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE])) if self.CS.steer_error: events.append(create_event('steerTempUnavailable', [ET.NO_ENTRY, ET.WARNING])) if self.CS.low_speed_lockout and self.CP.enableDsu: events.append(create_event('lowSpeedLockout', [ET.NO_ENTRY, ET.PERMANENT])) if ret.vEgo < self.CP.minEnableSpeed and self.CP.enableDsu: events.append(create_event('speedTooLow', [ET.NO_ENTRY])) if c.actuators.gas > 0.1: # some margin on the actuator to not false trigger cancellation while stopping events.append(create_event('speedTooLow', [ET.IMMEDIATE_DISABLE])) if ret.vEgo < 0.001: # while in standstill, send a user alert events.append(create_event('manualRestart', [ET.WARNING])) # enable request in prius is simple, as we activate when Toyota is active (rising edge) if ret.cruiseState.enabled and not self.cruise_enabled_prev: events.append(create_event('pcmEnable', [ET.ENABLE])) elif not ret.cruiseState.enabled: events.append(create_event('pcmDisable', [ET.USER_DISABLE])) # disable on pedals rising edge or when brake is pressed and speed isn't zero if (ret.gasPressed and not self.gas_pressed_prev) or \ (ret.brakePressed and (not self.brake_pressed_prev or ret.vEgo > 0.001)): events.append(create_event('pedalPressed', [ET.NO_ENTRY, ET.USER_DISABLE])) if ret.gasPressed: events.append(create_event('pedalPressed', [ET.PRE_ENABLE])) ret.events = events ret.canMonoTimes = canMonoTimes self.gas_pressed_prev = ret.gasPressed self.brake_pressed_prev = ret.brakePressed self.cruise_enabled_prev = ret.cruiseState.enabled return ret.as_reader() # pass in a car.CarControl # to be called @ 100hz def apply(self, c): self.CC.update(self.sendcan, c.enabled, self.CS, self.frame, c.actuators, c.cruiseControl.cancel, c.hudControl.visualAlert, c.hudControl.audibleAlert, self.forwarding_camera, c.hudControl.leftLaneVisible, c.hudControl.rightLaneVisible, c.hudControl.leadVisible, c.hudControl.leftLaneDepart, c.hudControl.rightLaneDepart) self.frame += 1 return False
the-stack_0_10824
import swift # instantiate 3D browser-based visualizer import roboticstoolbox as rtb from spatialmath import SE3 import numpy as np env = swift.Swift() env.launch(realtime=True) # activate it robot = rtb.models.Panda() robot.q = robot.qr T = SE3(0.5, 0.2, 0.1) * SE3.OA([0, 1, 0], [0, 0, -1]) sol = robot.ikine_LM(T) # solve IK q_pickup = sol.q qt = rtb.jtraj(robot.qr, q_pickup, 50) env.add(robot) # add robot to the 3D scene for qk in qt.q: # for each joint configuration on trajectory robot.q = qk # update the robot state # robot.q = robot.qr env.step(0.05) # update visualization env.hold()
the-stack_0_10825
""" This file contains the hyperparameter values used for training and testing RL agents. """ import os BASE_DIR = './results/' ENV_ID = 'gym_anm:ANM6Easy-v0' GAMMA = 0.995 POLICY = 'MlpPolicy' TRAIN_STEPS = 3000000 MAX_TRAINING_EP_LENGTH = 5000 EVAL_FREQ = 10000 N_EVAL_EPISODES = 5 MAX_EVAL_EP_LENGTH = 3000 LOG_DIR = BASE_DIR + ENV_ID + '/' os.makedirs(LOG_DIR, exist_ok=True) # Create a new directory for this run. i = 0 while os.path.isdir(LOG_DIR + f'run_{i}/'): i += 1 LOG_DIR += f'run_{i}/' os.makedirs(LOG_DIR, exist_ok=True) TENSORBOARD_LOG = LOG_DIR + 'tensorboard/' os.makedirs(TENSORBOARD_LOG, exist_ok=True) TB_LOG_NAME = 'run' if __name__ == '__main__': print('Done.')
the-stack_0_10826
''' Generalizes hmm_discrete_lib so it can handle any kind of observation distribution (eg Gaussian, Poisson, GMM, product of Bernoullis). It is based on https://github.com/probml/pyprobml/blob/master/scripts/hmm_lib.py and operates within the log space. Author : Aleyna Kara(@karalleyna) ''' from jax.random import split import jax.numpy as jnp from jax import jit, lax, vmap from jax.nn import logsumexp, log_softmax, one_hot from functools import partial import superimport import flax import distrax ''' Hidden Markov Model class in which trans_dist and init_dist are categorical-like distribution from distrax, and obs_dist is any instance of distrax.Distribution. The functions of optimizers expect that the type of its parameters is pytree. So, they cannot work on a vanilla dataclass. To see more: https://github.com/google/jax/issues/2371 Since the flax.dataclass is registered pytree beforehand, it facilitates to use jit, vmap and optimizers on the hidden markov model. ''' @flax.struct.dataclass class HMM: trans_dist: distrax.Distribution obs_dist: distrax.Distribution init_dist: distrax.Distribution def logdotexp(u, v, axis=-1): ''' Calculates jnp.log(jnp.exp(u) * jnp.exp(v)) in a stable way. Parameters ---------- u : array v : array axis : int Returns ------- * array Logarithm of the Hadamard product of u and v ''' max_u = jnp.max(u, axis=axis, keepdims=True) max_v = jnp.max(v, axis=axis, keepdims=True) diff_u = jnp.nan_to_num(u - max_u, -jnp.inf) diff_v = jnp.nan_to_num(v - max_v, -jnp.inf) u_dot_v = jnp.log(jnp.exp(diff_u) * jnp.exp(diff_v)) u_dot_v = u_dot_v + max_u + max_v return u_dot_v def log_normalize(u, axis=-1): ''' Normalizes the values within the axis in a way that the exponential of each values within the axis sums up to 1. Parameters ---------- u : array axis : int Returns ------- * array The Log of normalized version of the given matrix * array(seq_len, n_hidden) : The values of the normalizer ''' c = logsumexp(u, axis=axis) return jnp.where(u == -jnp.inf, -jnp.inf, u - c), c @partial(jit, static_argnums=(1,)) def hmm_sample_log(params, seq_len, rng_key): ''' Samples an observation of given length according to the defined hidden markov model and gives the sequence of the hidden states as well as the observation. Parameters ---------- params : HMM Hidden Markov Model seq_len: array(seq_len) The length of the observation sequence rng_key : array Random key of shape (2,) and dtype uint32 Returns ------- * array(seq_len,) Hidden state sequence * array(seq_len,) : Observation sequence ''' trans_dist, obs_dist, init_dist = params.trans_dist, params.obs_dist, params.init_dist rng_key, rng_init = split(rng_key) initial_state = init_dist.sample(seed=rng_init) def draw_state(prev_state, key): state = trans_dist.sample(seed=key)[prev_state] return state, state rng_key, rng_state, rng_obs = split(rng_key, 3) keys = split(rng_state, seq_len - 1) final_state, states = lax.scan(draw_state, initial_state, keys) states = jnp.append(initial_state, states) def draw_obs(z, key): return obs_dist.sample(seed=key)[z] keys = split(rng_obs, seq_len) obs_seq = vmap(draw_obs, in_axes=(0, 0))(states, keys) return states, obs_seq @jit def hmm_forwards_log(params, obs_seq, length=None): ''' Calculates a belief state Parameters ---------- params : HMM Hidden Markov Model obs_seq: array(seq_len) History of observable events Returns ------- * float The loglikelihood giving log(p(x|model)) * array(seq_len, n_hidden) : Log of alpha values ''' seq_len = len(obs_seq) if length is None: length = seq_len trans_dist, obs_dist, init_dist = params.trans_dist, params.obs_dist, params.init_dist n_states = obs_dist.batch_shape[0] def scan_fn(carry, t): (alpha_prev, log_ll_prev) = carry alpha_n = jnp.where(t < length, obs_dist.log_prob(obs_seq[t]) + logsumexp( logdotexp(alpha_prev[:, None], trans_dist.logits), axis=0), -jnp.inf + jnp.zeros_like(alpha_prev)) alpha_n, cn = log_normalize(alpha_n) carry = (alpha_n, cn + log_ll_prev) return carry, alpha_n # initial belief state alpha_0, c0 = log_normalize(init_dist.logits + obs_dist.log_prob(obs_seq[0])) # setup scan loop init_state = (alpha_0, c0) ts = jnp.arange(1, seq_len) carry, alpha_hist = lax.scan(scan_fn, init_state, ts) # post-process alpha_hist = jnp.vstack([alpha_0.reshape(1, n_states), alpha_hist]) (alpha_final, log_ll) = carry return log_ll, alpha_hist @jit def hmm_backwards_log(params, obs_seq, length=None): ''' Computes the backwards probabilities Parameters ---------- params : HMM Hidden Markov Model obs_seq: array(seq_len,) History of observable events length : array(seq_len,) The valid length of the observation sequence Returns ------- * array(seq_len, n_states) Log of beta values ''' seq_len = len(obs_seq) if length is None: length = seq_len trans_dist, obs_dist, init_dist = params.trans_dist, params.obs_dist, params.init_dist n_states = trans_dist.batch_shape[0] beta_t = jnp.zeros((n_states,)) def scan_fn(beta_prev, t): beta_t = jnp.where(t > length, -jnp.inf + jnp.zeros_like(beta_prev), log_normalize(logsumexp(beta_prev + obs_dist.log_prob(obs_seq[-t + 1]) + trans_dist.logits, axis=1))[0]) return beta_t, beta_t ts = jnp.arange(2, seq_len + 1) _, beta_hist = lax.scan(scan_fn, beta_t, ts) beta_hist = jnp.flip(jnp.vstack([beta_t.reshape(1, n_states), beta_hist]), axis=0) return beta_hist @jit def hmm_forwards_backwards_log(params, obs_seq, length=None): ''' Computes, for each time step, the marginal conditional probability that the Hidden Markov Model was in each possible state given the observations that were made at each time step, i.e. P(z[i] | x[0], ..., x[num_steps - 1]) for all i from 0 to num_steps - 1 Parameters ---------- params : HMM Hidden Markov Model obs_seq: array(seq_len) History of observed states Returns ------- * array(seq_len, n_states) The log of alpha values * array(seq_len, n_states) The log of beta values * array(seq_len, n_states) The log of marginal conditional probability * float The loglikelihood giving log(p(x|model)) ''' seq_len = len(obs_seq) if length is None: length = seq_len def gamma_t(t): gamma_t = jnp.where(t < length, alpha[t] + beta[t - length], jnp.zeros((n_states,))) return gamma_t ll, alpha = hmm_forwards_log(params, obs_seq, length) n_states = alpha.shape[1] beta = hmm_backwards_log(params, obs_seq, length) ts = jnp.arange(seq_len) gamma = vmap(gamma_t, (0))(ts) # gamma = alpha * jnp.roll(beta, -seq_len + length, axis=0) #: Alternative gamma = vmap(lambda x: log_normalize(x, axis=0)[0])(gamma) return alpha, beta, gamma, ll @jit def hmm_viterbi_log(params, obs_seq, length=None): ''' Computes, for each time step, the marginal conditional probability that the Hidden Markov Model was in each possible state given the observations that were made at each time step, i.e. P(z[i] | x[0], ..., x[num_steps - 1]) for all i from 0 to num_steps - 1 It is based on https://github.com/deepmind/distrax/blob/master/distrax/_src/utils/hmm.py Parameters ---------- params : HMM Hidden Markov Model obs_seq: array(seq_len) History of observed states Returns ------- * array(seq_len, n_states) Alpha values * array(seq_len, n_states) Beta values * array(seq_len, n_states) Marginal conditional probability * float The loglikelihood giving log(p(x|model)) ''' seq_len = len(obs_seq) if length is None: length = seq_len trans_dist, obs_dist, init_dist = params.trans_dist, params.obs_dist, params.init_dist trans_log_probs = log_softmax(trans_dist.logits) init_log_probs = log_softmax(init_dist.logits) n_states = obs_dist.batch_shape[0] first_log_prob = init_log_probs + obs_dist.log_prob(obs_seq[0]) if seq_len == 1: return jnp.expand_dims(jnp.argmax(first_log_prob), axis=0) def viterbi_forward(prev_logp, t): obs_logp = obs_dist.log_prob(obs_seq[t]) logp = jnp.where(t <= length, prev_logp[..., None] + trans_log_probs + obs_logp[..., None, :], -jnp.inf + jnp.zeros_like(trans_log_probs)) max_logp_given_successor = jnp.where(t <= length, jnp.max(logp, axis=-2), prev_logp) most_likely_given_successor = jnp.where(t <= length, jnp.argmax(logp, axis=-2), -1) return max_logp_given_successor, most_likely_given_successor ts = jnp.arange(1, seq_len) final_log_prob, most_likely_sources = lax.scan(viterbi_forward, first_log_prob, ts) most_likely_initial_given_successor = jnp.argmax( trans_log_probs + first_log_prob, axis=-2) most_likely_sources = jnp.concatenate([ jnp.expand_dims(most_likely_initial_given_successor, axis=0), most_likely_sources], axis=0) def viterbi_backward(state, t): state = jnp.where(t <= length, jnp.sum(most_likely_sources[t] * one_hot(state, n_states)).astype(jnp.int64), state) most_likely = jnp.where(t <= length, state, -1) return state, most_likely final_state = jnp.argmax(final_log_prob) _, most_likely_path = lax.scan(viterbi_backward, final_state, ts, reverse=True) final_state = jnp.where(length == seq_len, final_state, -1) return jnp.append(most_likely_path, final_state)
the-stack_0_10827
''' Collect results in Quantum ESPRESSO ''' import sys import numpy as np from pymatgen.core import Structure from . import structure as qe_structure from ... import utility from ...IO import pkl_data from ...IO import read_input as rin def collect_qe(current_id, work_path): # ---------- check optimization in previous stage try: with open(work_path+rin.qe_outfile, 'r') as fpout: lines = fpout.readlines() check_opt = 'not_yet' for line in lines: if 'End final coordinates' in line: check_opt = 'done' except Exception as e: print(e) check_opt = 'no_file' # ---------- obtain energy and magmom try: with open(work_path+rin.qe_outfile, 'r') as fpout: lines = fpout.readlines() energy = np.nan for line in reversed(lines): if line.startswith('!'): energy = float(line.split()[-2]) # in Ry energy = energy * utility.ry2ev / float(rin.natot) # Ry/cell --> eV/atom break magmom = np.nan # implemented by H. Sawahata 2020/10/04 for line in reversed(lines): if line.find("total magnetization") >= 0: muB = line.split() magmom = float(muB[3]) break except Exception as e: energy = np.nan # error magmom = np.nan # error print(e) print(' Structure ID {0}, could not obtain energy from {1}'.format( current_id, rin.qe_outfile)) # ---------- collect the last structure try: lines_cell = qe_structure.extract_cell_parameters( work_path+rin.qe_outfile) if lines_cell is None: lines_cell = qe_structure.extract_cell_parameters( work_path+rin.qe_infile) lines_atom = qe_structure.extract_atomic_positions( work_path+rin.qe_outfile) if lines_atom is None: lines_atom = qe_structure.extract_atomic_positions( work_path+rin.qe_infile) opt_struc = qe_structure.from_lines(lines_cell, lines_atom) # ------ opt_qe-structure with open('./data/opt_qe-structure', 'a') as fstruc: fstruc.write('# ID {0:d}\n'.format(current_id)) qe_structure.write(opt_struc, './data/opt_qe-structure', mode='a') except Exception as e: print(e) opt_struc = None # ---------- check if np.isnan(energy): opt_struc = None if opt_struc is None: energy = np.nan magmom = np.nan # ---------- return return opt_struc, energy, magmom, check_opt def get_energy_step_qe(energy_step_data, current_id, work_path): ''' get energy step data in eV/atom energy_step_data[ID][stage][step] energy_step_data[ID][0] <-- stage 1 energy_step_data[ID][1] <-- stage 2 ''' try: # ---------- read output file with open(work_path+rin.qe_outfile, 'r') as f: lines = f.readlines() # ---------- get energy step energy_step = [] final_flag = False # End final coordinates vc_flag = False # vc-relax for line in lines: if line.startswith('!'): energy_step.append(line.split()[4]) # ------ check opt and vc-relax if 'End final coordinates' in line: final_flag = True if 'CELL_PARAMETERS' in line: vc_flag = True # ------ delete last energy (after End final coordinates) if final_flag and vc_flag: energy_step.pop(-1) # ------ list --> array, Ry/cell --> eV/atom if not energy_step: energy_step = None # if empty print('#### ID: {0}: failed to parse energy_step\n'.format( current_id), file=sys.stderr) else: energy_step = utility.ry2ev / rin.natot * np.array(energy_step, dtype='float') except Exception as e: energy_step = None print(e, '#### ID: {0}: failed to parse energy_step\n'.format( current_id), file=sys.stderr) # ---------- append energy_step if energy_step_data.get(current_id) is None: energy_step_data[current_id] = [] # initialize energy_step_data[current_id].append(energy_step) # ---------- save energy_step_data pkl_data.save_energy_step(energy_step_data) # ---------- return return energy_step_data def get_struc_step_qe(struc_step_data, current_id, work_path): ''' get structure step data # ---------- args struc_step_data: (dict) the key is structure ID struc_step_data[ID][stage][step] struc_step_data[ID][0] <-- stage 1 struc_step_data[ID][1] <-- stage 2 ''' try: struc_step = [] # ------ init struc from pwscf.in _extract_struc_qe(work_path+rin.qe_infile, struc_step) # ------ struc step from pwscf.out _extract_struc_qe(work_path+rin.qe_outfile, struc_step) # ------ delete last structure due to duplication struc_step.pop(-1) except Exception as e: struc_step = None print(e ,'#### ID: {0}: failed to parse in struc_step\n'.format( current_id), file=sys.stderr) # ---------- append struc_step_data if struc_step_data.get(current_id) is None: struc_step_data[current_id] = [] # initialize struc_step_data[current_id].append(struc_step) # ---------- save struc_step_data pkl_data.save_struc_step(struc_step_data) # ---------- return return struc_step_data def _extract_struc_qe(filename, struc_step): # ---------- read a file with open(filename, 'r') as f: lines = f.readlines() # ---------- extract struc read_cell = False read_coords = False vc_flag = False # in case of vc-relax for line in lines: # ------ cell part if read_cell: lattice.append(line.split()) if len(lattice) == 3: read_cell = False lattice = np.array(lattice, dtype='float') if 'CELL_PARAMETERS' in line: read_cell = True vc_flag = True lattice = [] # ------ coords part if read_coords: lsplit = line.split() species.append(lsplit[0]) coords.append(lsplit[1:]) if len(coords) == rin.natot: read_coords = False coords = np.array(coords, dtype='float') # ---- gen struc if not vc_flag: # empty lattice, use init lattice lattice = struc_step[0].lattice struc = Structure(lattice, species, coords) struc_step.append(struc) if 'ATOMIC_POSITIONS' in line: read_coords = True species = [] coords = [] def get_force_step_qe(force_step_data, current_id, work_path): ''' get force step data in eV/angstrom # ---------- args force_step_data: (dict) the key is structure ID force_step_data[ID][stage][step] force_step_data[ID][0] <-- stage 1 force_step_data[ID][1] <-- stage 2 ''' try: # ---------- read output file with open(work_path+rin.qe_outfile, 'r') as f: lines = f.readlines() # ---------- get force step force_step = [] read_force = False final_flag = False # End final coordinates vc_flag = False # in case of vc-relax for line in lines: if 'atom 1 type 1 force' in line: read_force = True force = [] if read_force: force.append(line.split()[6:]) if len(force) == rin.natot: read_force = False force_step.append(utility.ry2ev / utility.bohr2ang * np.array( force, dtype='float')) # ------ check opt and vc-relax if 'End final coordinates' in line: final_flag = True if 'CELL_PARAMETERS' in line: vc_flag = True # ------ delete last energy (after End final coordinates) if final_flag and vc_flag: force_step.pop(-1) # ------ if empty if len(force_step) == 0: force_step = None print('#### ID: {0}: failed to parse force_step\n'.format( current_id), file=sys.stderr) except Exception as e: force_step = None print(e, '#### ID: {0}: failed to parse in force_step\n'.format( current_id), file=sys.stderr) # ---------- append force_step if force_step_data.get(current_id) is None: force_step_data[current_id] = [] # initialize force_step_data[current_id].append(force_step) # ---------- save force_step_data pkl_data.save_force_step(force_step_data) # ---------- return return force_step_data def get_stress_step_qe(stress_step_data, current_id, work_path): ''' get stress step data in eV/ang**3 # ---------- args stress_step_data: (dict) the key is structure ID stress_step_data[ID][stage][step] stress_step_data[ID][0] <-- stage 1 stress_step_data[ID][1] <-- stage 2 ''' try: # ---------- read output file with open(work_path+rin.qe_outfile, 'r') as f: lines = f.readlines() # ---------- get stress step stress_step = [] read_stress = False final_flag = False # End final coordinates vc_flag = False # in case of vc-relax for line in lines: if read_stress: stress.append(line.split()[3:]) if len(stress) == 3: read_stress = False stress_step.append(utility.kbar2ev_ang3 * np.array( stress, dtype='float')) if 'total stress (Ry/bohr**3)' in line: read_stress = True stress = [] # ------ check opt and vc-relax if 'End final coordinates' in line: final_flag = True if 'CELL_PARAMETERS' in line: vc_flag = True # ------ delete last energy (after End final coordinates) if final_flag and vc_flag: stress_step.pop(-1) # ------ if empty if len(stress_step) == 0: stress_step = None print('#### ID: {0}: failed to parse stress_step\n'.format( current_id), file=sys.stderr) except Exception as e: stress_step = None print(e, '#### ID: {0}: failed to parse in stress_step\n'.format( current_id), file=sys.stderr) # ---------- append stress_step if stress_step_data.get(current_id) is None: stress_step_data[current_id] = [] # initialize stress_step_data[current_id].append(stress_step) # ---------- save stress_step_data pkl_data.save_stress_step(stress_step_data) # ---------- return return stress_step_data
the-stack_0_10830
''' @Author: [email protected] @Date: 2020-03-01 18:33:41 @LastEditors: [email protected] @LastEditTime: 2020-03-10 19:51:30 @Description: 代理校验器 ''' import os import requests import asyncio import time import json import ssl from GeeProxy.utils.logger import proxy_validator from aiohttp import ClientSession, ClientTimeout, ClientError, ClientSSLError from aiohttp.client_exceptions import ClientHttpProxyError from aiohttp_proxy import ProxyConnector from GeeProxy.settings import VAILDATORS_TIMEOUT,\ VAILDATORS_RETRY, PROXY_REQUEST_DELAY, PUBLIC_IP,\ ANONYMOUS_CHECK_API from GeeProxy.utils.user_agent import UserAgent class AiohttpSingleton(ClientSession): ''' This is a redis singleton connect client class ''' def __new__(cls, *args, **keywords): pid = os.getpid() if not hasattr(cls, '_instance') or pid != cls._pid: print("Aiohttp PID is {} and father PID is {}".format( os.getpid(), os.getppid())) if hasattr(cls, "_pid"): print("Aiohttp Instance PID is {} and PID is {}".format( cls._pid, pid)) cls._instance = ClientSession(*args, **keywords) cls._pid = os.getpid() return cls._instance @property def connector(self, connector): proxy_connector = connector self._instance._connector = proxy_connector class ValidateResult: """ 校验结果 """ def __init__(self, proxy=None, web_key=None, delay=-1, dst=None, useful=1): """ :param proxy: 代理地址 :param web_key: 缓存key :param delay: 延迟 :param dst: 目标站点 :param useful: 是否可用 """ # 代理地址 self.proxy = proxy # 缓存key self.web_key = web_key # 延迟 self.delay = delay # 目标站点 self.dst = dst # 是否为可匿代理 # self.anonymous = anonymous # 是否可用 self.available = useful class ProxyValidator: """ 异步代理校验器,校验过程如下,通过代理请求目标站点,若超时, 则重试,当重试次数大于给定的阈值时,请求仍失败就认为这个代理不可用, 期间会计算请求过程的延迟。 """ def __init__(self): self._retry = 0 self._timeout = ClientTimeout(total=VAILDATORS_TIMEOUT) self._ua = UserAgent() self._result = {} async def check_proxy(self, proxy: str, dst: str, web_key: str) -> ValidateResult: """ 校验代理的可用性 :param proxy: 待校验的代理 :param dst: 目标站点地址 :param web_key: 目标站点 :return: 校验结果 """ result = ValidateResult(proxy=proxy, delay=-1, web_key=web_key, dst=dst, useful=1) time_start = time.time() try: # 启用代理 connector = ProxyConnector(verify_ssl=False).from_url(proxy) requests.urllib3.disable_warnings() # 异步http请求 async with ClientSession(connector=connector, timeout=self._timeout) as session: params = { "url": dst, "verify_ssl": False, "timeout": self._timeout, "headers": { "User-Agent": self._ua.random() } } # verify_ssl = False if "https" in proxy.split(":"): params["verify_ssl"] = False # 异步http请求 async with session.get(**params) as response: proxy_validator.info( "wait proxy {} for {} response".format(proxy, dst)) await response.text() await session.close() time_end = time.time() delay = time_end - time_start proxy_validator.info( "check proxy {} for {} success cost {} s".format( proxy, dst, delay)) result.delay = delay result.available = 1 # 请求超时就认为代理不可用 if delay > PROXY_REQUEST_DELAY: result.available = 0 return result except (BaseException, asyncio.TimeoutError, ClientError, ClientHttpProxyError, ClientSSLError) as e: err_msg = e if isinstance(e, asyncio.TimeoutError) or isinstance( e, ClientHttpProxyError): err_msg = "Http request timeout" if not isinstance(e, ClientSSLError) or not isinstance( e, ssl.SSLError): result.available = 0 # 重试 if self._retry <= VAILDATORS_RETRY: # 重试次数小于阈值就再试一次 self._retry = self._retry + 1 result = await self.check_proxy(proxy, dst, web_key) return result time_end = time.time() proxy_validator.error("check proxy {} {} times fail for {} " "and cost {} s".format(proxy, self._retry, dst, time_end - time_start)) proxy_validator.error("check proxy {} for {} " "error:{} type {}".format(proxy, dst, err_msg, type(e))) self._retry = 0 result.delay = time_end - time_start return result @staticmethod async def check_anonymous(proxy: str) -> bool: """ 检测代理的匿名程度 :param proxy: 待校验的代理 :return: 校验结果,如果是高匿代理就返回True """ anonymous = True try: connector = ProxyConnector.from_url(proxy) requests.urllib3.disable_warnings() ua = UserAgent() async with ClientSession(connector=connector, timeout=5) as session: # 异步http请求 async with session.get(ANONYMOUS_CHECK_API, ssl=False, headers={"User-Agent": ua.random()}, timeout=5) as response: res = await response.text() res = json.loads(res) anonymous = ProxyValidator.is_anonymous(res) if anonymous: proxy_validator.info("The proxy {} is anonymous".format(proxy)) await session.close() return anonymous except Exception as e: proxy_validator.error("Checking proxy {} anonymous " "has an error:{} type {}".format(proxy, str(e), type(e))) raise ClientError("check anonymous") @staticmethod def is_anonymous(response: dict) -> bool: """ 通过接口判断当前代理的可匿程度 :param response: 请检测api的响应 :return: 校验结果,如果是高匿代理就返回True """ origin = response["origin"] proxy_connection = response.get("Proxy-Connection", "") proxy_validator.info( "Checking anonymous proxy response is {}".format(response)) if origin != PUBLIC_IP and not proxy_connection: return True return False
the-stack_0_10832
from functools import partial from pubsub import pub from threading import Thread from time import sleep import wx from wx.lib.agw.floatspin import FloatSpin from spacq.gui.tool.box import load_csv, save_csv, Dialog, MessageDialog from spacq.interface.units import Quantity """ Configuration for a ch4VoltageSource. """ class ch4VoltageSourceTunerDialog(Dialog): """ A dialog for tuning a voltage source port. """ def __init__(self, parent, global_store, ok_callback, port, *args, **kwargs): Dialog.__init__(self, parent, title='Port {0} tuning'.format(port.num)) self.global_store = global_store self.ok_callback = ok_callback self.port = port # Dialog. dialog_box = wx.BoxSizer(wx.VERTICAL) ## Self-calibration. calibration_static_box = wx.StaticBox(self, label='DAC self-calibration') calibration_box = wx.StaticBoxSizer(calibration_static_box, wx.VERTICAL) dialog_box.Add(calibration_box, flag=wx.EXPAND|wx.ALL, border=5) self.calibrate_button = wx.Button(self, label='Self-calibrate') self.Bind(wx.EVT_BUTTON, self.OnCalibrate, self.calibrate_button) calibration_box.Add(self.calibrate_button, flag=wx.EXPAND) ## Tuning. tuning_static_box = wx.StaticBox(self, label='Tuning') tuning_box = wx.StaticBoxSizer(tuning_static_box, wx.VERTICAL) dialog_box.Add(tuning_box, flag=wx.EXPAND) ### Autotune. autotuning_static_box = wx.StaticBox(self, label='Autotuning') autotuning_box = wx.StaticBoxSizer(autotuning_static_box, wx.VERTICAL) tuning_box.Add(autotuning_box, flag=wx.EXPAND|wx.ALL, border=5) autotuning_sizer = wx.FlexGridSizer(rows=3, cols=2, hgap=5) autotuning_box.Add(autotuning_sizer, flag=wx.CENTER) autotuning_sizer.Add(wx.StaticText(self, label='Resource name:'), flag=wx.ALIGN_CENTER_VERTICAL|wx.ALIGN_RIGHT) self.resource_name_input = wx.TextCtrl(self, size=(300,-1)) autotuning_sizer.Add(self.resource_name_input) autotuning_sizer.Add(wx.StaticText(self, label='Max:'), flag=wx.ALIGN_CENTER_VERTICAL|wx.ALIGN_RIGHT) self.automax_input = FloatSpin(self, value=1, min_val=-10, max_val=10, increment=1, digits=5) autotuning_sizer.Add(self.automax_input) autotuning_sizer.Add(wx.StaticText(self, label='Min:'), flag=wx.ALIGN_CENTER_VERTICAL|wx.ALIGN_RIGHT) self.automin_input = FloatSpin(self, value=-1, min_val=-10, max_val=10, increment=1, digits=5) autotuning_sizer.Add(self.automin_input) self.autotune_button = wx.Button(self, label='Autotune') self.Bind(wx.EVT_BUTTON, self.OnAutotune, self.autotune_button) autotuning_box.Add(self.autotune_button, flag=wx.EXPAND) ### Manual tune. tuning_sizer = wx.FlexGridSizer(rows=2, cols=2, hgap=5) tuning_box.Add(tuning_sizer, flag=wx.CENTER) tuning_sizer.Add(wx.StaticText(self, label='Gain:'), flag=wx.ALIGN_CENTER_VERTICAL|wx.ALIGN_RIGHT) self.gain_input = FloatSpin(self, value=0, min_val=-1e6, max_val=1e6, increment=1, digits=5) tuning_sizer.Add(self.gain_input) tuning_sizer.Add(wx.StaticText(self, label='Offset:'), flag=wx.ALIGN_CENTER_VERTICAL|wx.ALIGN_RIGHT) self.offset_input = FloatSpin(self, value=0, min_val=-1e6, max_val=1e6, increment=1, digits=5) tuning_sizer.Add(self.offset_input) ## End buttons. button_box = wx.BoxSizer(wx.HORIZONTAL) dialog_box.Add(button_box, flag=wx.CENTER|wx.ALL, border=5) ok_button = wx.Button(self, wx.ID_OK) self.Bind(wx.EVT_BUTTON, self.OnOk, ok_button) button_box.Add(ok_button) cancel_button = wx.Button(self, wx.ID_CANCEL) button_box.Add(cancel_button) self.SetSizerAndFit(dialog_box) def autotune(self, resource): gain, offset = self.port.autotune(resource, set_result=False, min_value=self.automin_input.GetValue(), max_value=self.automax_input.GetValue()) wx.CallAfter(self.gain_input.SetValue, gain) wx.CallAfter(self.offset_input.SetValue, offset) wx.CallAfter(self.autotune_button.Enable) def self_calbrate(self): self.port.apply_settings(calibrate=True) sleep(self.port.calibration_delay) wx.CallAfter(self.calibrate_button.Enable) def SetValue(self, gain, offset): self.gain_input.SetValue(gain) self.offset_input.SetValue(offset) def GetValue(self): return (self.gain_input.GetValue(), self.offset_input.GetValue()) def OnAutotune(self, evt=None): name = self.resource_name_input.Value if not name: MessageDialog(self, 'No resource provided').Show() return try: resource = self.global_store.resources[name] except KeyError: MessageDialog(self, name, 'Missing resource').Show() return if not resource.readable: MessageDialog(self, name, 'Unreadable resource').Show() return self.autotune_button.Disable() thr = Thread(target=self.autotune, args=(resource,)) thr.daemon = True thr.start() def OnCalibrate(self, evt=None): self.calibrate_button.Disable() thr = Thread(target=self.self_calbrate) thr.daemon = True thr.start() def OnOk(self, evt=None): self.ok_callback(self) self.Destroy() class ch4VoltageSourceSettingsPanel(wx.Panel): """ All the settings for a voltage source. """ def __init__(self, parent, global_store, vsrc, *args, **kwargs): wx.Panel.__init__(self, parent, *args, **kwargs) self.global_store = global_store self.vsrc = vsrc self.port_value_inputs = [] self.port_buttons = [] # Panel. panel_box = wx.BoxSizer(wx.VERTICAL) ## Ports. ports_box = wx.FlexGridSizer(rows=3, cols=2) panel_box.Add(ports_box) for port in range(4): port_static_box = wx.StaticBox(self, label='Port {0} '.format(port)) port_box = wx.StaticBoxSizer(port_static_box, wx.HORIZONTAL) ports_box.Add(port_box, flag=wx.ALL, border=5) spin = FloatSpin(self, value=0, min_val=-10, max_val=10, increment=1, digits=6) self.port_value_inputs.append(spin) port_box.Add(spin) port_box.Add(wx.StaticText(self, label='V')) set_button = wx.Button(self, label='Set', style=wx.BU_EXACTFIT) set_button.Bind(wx.EVT_BUTTON, partial(self.OnSetVoltage, port)) port_box.Add(set_button) tune_button = wx.Button(self, label='Tune...', style=wx.BU_EXACTFIT) tune_button.Bind(wx.EVT_BUTTON, partial(self.OnTune, port)) port_box.Add(tune_button) self.port_buttons.append((set_button, tune_button)) ## All ports. button_static_box = wx.StaticBox(self, label='All ports') button_box = wx.StaticBoxSizer(button_static_box, wx.HORIZONTAL) panel_box.Add(button_box, flag=wx.CENTER) ### Zero. zero_all_button = wx.Button(self, label='Zero') self.Bind(wx.EVT_BUTTON, self.OnZeroAll, zero_all_button) button_box.Add(zero_all_button, flag=wx.CENTER) ### Self-calibrate. self.calibrate_all_button = wx.Button(self, label='Self-calibrate') self.Bind(wx.EVT_BUTTON, self.OnCalibrateAll, self.calibrate_all_button) button_box.Add(self.calibrate_all_button, flag=wx.CENTER) ### Load tuning. tuning_data_static_box = wx.StaticBox(self, label='Tuning data') tuning_data_box = wx.StaticBoxSizer(tuning_data_static_box, wx.HORIZONTAL) button_box.Add(tuning_data_box) #### Save. tuning_data_save_button = wx.Button(self, label='Save...') self.Bind(wx.EVT_BUTTON, self.OnSave, tuning_data_save_button) tuning_data_box.Add(tuning_data_save_button) #### Load. tuning_data_load_button = wx.Button(self, label='Load...') self.Bind(wx.EVT_BUTTON, self.OnLoad, tuning_data_load_button) tuning_data_box.Add(tuning_data_load_button) self.SetSizer(panel_box) def self_calbrate_all(self): delay = 0 # s for port in self.vsrc.ports: # Use the largest delay. if port.calibration_delay > delay: delay = port.calibration_delay port.apply_settings(calibrate=True) sleep(delay) wx.CallAfter(self.calibrate_all_button.Enable) def zero_all(self): for port in self.vsrc.ports: port.voltage = Quantity(0.0, 'V') def OnSetVoltage(self, port_num, evt=None): try: self.vsrc.ports[port_num].voltage = Quantity(self.port_value_inputs[port_num].GetValue(), 'V') except ValueError as e: MessageDialog(self, str(e), 'Invalid value').Show() def OnTune(self, port_num, evt=None): port = self.vsrc.ports[port_num] def ok_callback(dlg): port.gain, port.offset = dlg.GetValue() dlg = ch4VoltageSourceTunerDialog(self, self.global_store, ok_callback, port) dlg.SetValue(port.gain, port.offset) dlg.Show() def OnCalibrateAll(self, evt=None): self.calibrate_all_button.Disable() thr = Thread(target=self.self_calbrate_all) thr.daemon = True thr.start() def OnZeroAll(self, evt=None): thr = Thread(target=self.zero_all) thr.daemon = True thr.start() def OnSave(self, evt=None): values = [[port.gain, port.offset] for port in self.vsrc.ports] try: save_csv(self, values) except IOError as e: MessageDialog(self, str(e), 'Save error').Show() return def OnLoad(self, evt=None): try: result = load_csv(self) if result is None: return has_header, values, _ = result if has_header: port_values = values[1:] else: port_values = values if len(port_values) != len(self.vsrc.ports): raise ValueError('Invalid number of ports.') for i, port_value in enumerate(port_values): if len(port_value) != 2: raise ValueError('Invalid number of settings for port {0}.'.format(i)) try: float(port_value[0]) float(port_value[1]) except TypeError: raise ValueError('Not a number for port {0}.'.format(i)) except (IOError, ValueError) as e: MessageDialog(self, str(e), 'Load error').Show() return for port, values in zip(self.vsrc.ports, port_values): port.gain = float(values[0]) port.offset = float(values[1]) class ch4VoltageSourceSettingsDialog(Dialog): """ A wrapper for ch4VoltageSourceSettingsPanel. """ def __init__(self, parent, global_store, vsrc_name, *args, **kwargs): # If the device doesn't exist, give up. try: vsrc = global_store.devices[vsrc_name].device except (KeyError, AttributeError): self.Destroy() return Dialog.__init__(self, parent, title='Four channel voltage source settings', *args, **kwargs) self.vsrc_name = vsrc_name # Dialog. dialog_box = wx.BoxSizer(wx.VERTICAL) ## Settings panel. self.panel = ch4VoltageSourceSettingsPanel(self, global_store, vsrc) dialog_box.Add(self.panel) self.SetSizerAndFit(dialog_box) # Subscriptions. pub.subscribe(self.msg_device, 'device.added') pub.subscribe(self.msg_device, 'device.removed') def msg_device(self, name, value=None): if name == self.vsrc_name: # Device has changed, so we can't trust it anymore. self.Destroy() return
the-stack_0_10833
import copy from decimal import Decimal from django.apps.registry import Apps from django.db.backends.base.schema import BaseDatabaseSchemaEditor from django.db.backends.ddl_references import Statement from django.db.transaction import atomic from django.db.utils import NotSupportedError class DatabaseSchemaEditor(BaseDatabaseSchemaEditor): sql_delete_table = "DROP TABLE %(table)s" sql_create_inline_fk = "REFERENCES %(to_table)s (%(to_column)s) DEFERRABLE INITIALLY DEFERRED" sql_create_unique = "CREATE UNIQUE INDEX %(name)s ON %(table)s (%(columns)s)" sql_delete_unique = "DROP INDEX %(name)s" sql_foreign_key_constraint = None def __enter__(self): # Some SQLite schema alterations need foreign key constraints to be # disabled. Enforce it here for the duration of the schema edition. if not self.connection.disable_constraint_checking(): raise NotSupportedError( 'SQLite schema editor cannot be used while foreign key ' 'constraint checks are enabled. Make sure to disable them ' 'before entering a transaction.atomic() context because ' 'SQLite does not support disabling them in the middle of ' 'a multi-statement transaction.' ) return super().__enter__() def __exit__(self, exc_type, exc_value, traceback): self.connection.check_constraints() super().__exit__(exc_type, exc_value, traceback) self.connection.enable_constraint_checking() def quote_value(self, value): # The backend "mostly works" without this function and there are use # cases for compiling Python without the sqlite3 libraries (e.g. # security hardening). try: import sqlite3 value = sqlite3.adapt(value) except ImportError: pass except sqlite3.ProgrammingError: pass # Manual emulation of SQLite parameter quoting if isinstance(value, bool): return str(int(value)) elif isinstance(value, (Decimal, float, int)): return str(value) elif isinstance(value, str): return "'%s'" % value.replace("\'", "\'\'") elif value is None: return "NULL" elif isinstance(value, (bytes, bytearray, memoryview)): # Bytes are only allowed for BLOB fields, encoded as string # literals containing hexadecimal data and preceded by a single "X" # character. return "X'%s'" % value.hex() else: raise ValueError("Cannot quote parameter value %r of type %s" % (value, type(value))) def _is_referenced_by_fk_constraint(self, table_name, column_name=None, ignore_self=False): """ Return whether or not the provided table name is referenced by another one. If `column_name` is specified, only references pointing to that column are considered. If `ignore_self` is True, self-referential constraints are ignored. """ with self.connection.cursor() as cursor: for other_table in self.connection.introspection.get_table_list(cursor): if ignore_self and other_table.name == table_name: continue constraints = self.connection.introspection._get_foreign_key_constraints(cursor, other_table.name) for constraint in constraints.values(): constraint_table, constraint_column = constraint['foreign_key'] if (constraint_table == table_name and (column_name is None or constraint_column == column_name)): return True return False def alter_db_table(self, model, old_db_table, new_db_table, disable_constraints=True): if (not self.connection.features.supports_atomic_references_rename and disable_constraints and self._is_referenced_by_fk_constraint(old_db_table)): if self.connection.in_atomic_block: raise NotSupportedError(( 'Renaming the %r table while in a transaction is not ' 'supported on SQLite < 3.26 because it would break referential ' 'integrity. Try adding `atomic = False` to the Migration class.' ) % old_db_table) self.connection.enable_constraint_checking() super().alter_db_table(model, old_db_table, new_db_table) self.connection.disable_constraint_checking() else: super().alter_db_table(model, old_db_table, new_db_table) def alter_field(self, model, old_field, new_field, strict=False): old_field_name = old_field.name table_name = model._meta.db_table _, old_column_name = old_field.get_attname_column() if (new_field.name != old_field_name and not self.connection.features.supports_atomic_references_rename and self._is_referenced_by_fk_constraint(table_name, old_column_name, ignore_self=True)): if self.connection.in_atomic_block: raise NotSupportedError(( 'Renaming the %r.%r column while in a transaction is not ' 'supported on SQLite < 3.26 because it would break referential ' 'integrity. Try adding `atomic = False` to the Migration class.' ) % (model._meta.db_table, old_field_name)) with atomic(self.connection.alias): super().alter_field(model, old_field, new_field, strict=strict) # Follow SQLite's documented procedure for performing changes # that don't affect the on-disk content. # https://sqlite.org/lang_altertable.html#otheralter with self.connection.cursor() as cursor: schema_version = cursor.execute('PRAGMA schema_version').fetchone()[0] cursor.execute('PRAGMA writable_schema = 1') references_template = ' REFERENCES "%s" ("%%s") ' % table_name new_column_name = new_field.get_attname_column()[1] search = references_template % old_column_name replacement = references_template % new_column_name cursor.execute('UPDATE sqlite_master SET sql = replace(sql, %s, %s)', (search, replacement)) cursor.execute('PRAGMA schema_version = %d' % (schema_version + 1)) cursor.execute('PRAGMA writable_schema = 0') # The integrity check will raise an exception and rollback # the transaction if the sqlite_master updates corrupt the # database. cursor.execute('PRAGMA integrity_check') # Perform a VACUUM to refresh the database representation from # the sqlite_master table. with self.connection.cursor() as cursor: cursor.execute('VACUUM') else: super().alter_field(model, old_field, new_field, strict=strict) def _remake_table(self, model, create_field=None, delete_field=None, alter_field=None): """ Shortcut to transform a model from old_model into new_model This follows the correct procedure to perform non-rename or column addition operations based on SQLite's documentation https://www.sqlite.org/lang_altertable.html#caution The essential steps are: 1. Create a table with the updated definition called "new__app_model" 2. Copy the data from the existing "app_model" table to the new table 3. Drop the "app_model" table 4. Rename the "new__app_model" table to "app_model" 5. Restore any index of the previous "app_model" table. """ # Self-referential fields must be recreated rather than copied from # the old model to ensure their remote_field.field_name doesn't refer # to an altered field. def is_self_referential(f): return f.is_relation and f.remote_field.model is model # Work out the new fields dict / mapping body = { f.name: f.clone() if is_self_referential(f) else f for f in model._meta.local_concrete_fields } # Since mapping might mix column names and default values, # its values must be already quoted. mapping = {f.column: self.quote_name(f.column) for f in model._meta.local_concrete_fields} # This maps field names (not columns) for things like unique_together rename_mapping = {} # If any of the new or altered fields is introducing a new PK, # remove the old one restore_pk_field = None if getattr(create_field, 'primary_key', False) or ( alter_field and getattr(alter_field[1], 'primary_key', False)): for name, field in list(body.items()): if field.primary_key: field.primary_key = False restore_pk_field = field if field.auto_created: del body[name] del mapping[field.column] # Add in any created fields if create_field: body[create_field.name] = create_field # Choose a default and insert it into the copy map if not create_field.many_to_many and create_field.concrete: mapping[create_field.column] = self.quote_value( self.effective_default(create_field) ) # Add in any altered fields if alter_field: old_field, new_field = alter_field body.pop(old_field.name, None) mapping.pop(old_field.column, None) body[new_field.name] = new_field if old_field.null and not new_field.null: case_sql = "coalesce(%(col)s, %(default)s)" % { 'col': self.quote_name(old_field.column), 'default': self.quote_value(self.effective_default(new_field)) } mapping[new_field.column] = case_sql else: mapping[new_field.column] = self.quote_name(old_field.column) rename_mapping[old_field.name] = new_field.name # Remove any deleted fields if delete_field: del body[delete_field.name] del mapping[delete_field.column] # Remove any implicit M2M tables if delete_field.many_to_many and delete_field.remote_field.through._meta.auto_created: return self.delete_model(delete_field.remote_field.through) # Work inside a new app registry apps = Apps() # Work out the new value of unique_together, taking renames into # account unique_together = [ [rename_mapping.get(n, n) for n in unique] for unique in model._meta.unique_together ] # Work out the new value for index_together, taking renames into # account index_together = [ [rename_mapping.get(n, n) for n in index] for index in model._meta.index_together ] indexes = model._meta.indexes if delete_field: indexes = [ index for index in indexes if delete_field.name not in index.fields ] constraints = list(model._meta.constraints) # Provide isolated instances of the fields to the new model body so # that the existing model's internals aren't interfered with when # the dummy model is constructed. body_copy = copy.deepcopy(body) # Construct a new model with the new fields to allow self referential # primary key to resolve to. This model won't ever be materialized as a # table and solely exists for foreign key reference resolution purposes. # This wouldn't be required if the schema editor was operating on model # states instead of rendered models. meta_contents = { 'app_label': model._meta.app_label, 'db_table': model._meta.db_table, 'unique_together': unique_together, 'index_together': index_together, 'indexes': indexes, 'constraints': constraints, 'apps': apps, } meta = type("Meta", (), meta_contents) body_copy['Meta'] = meta body_copy['__module__'] = model.__module__ type(model._meta.object_name, model.__bases__, body_copy) # Construct a model with a renamed table name. body_copy = copy.deepcopy(body) meta_contents = { 'app_label': model._meta.app_label, 'db_table': 'new__%s' % model._meta.db_table, 'unique_together': unique_together, 'index_together': index_together, 'indexes': indexes, 'constraints': constraints, 'apps': apps, } meta = type("Meta", (), meta_contents) body_copy['Meta'] = meta body_copy['__module__'] = model.__module__ new_model = type('New%s' % model._meta.object_name, model.__bases__, body_copy) # Create a new table with the updated schema. self.create_model(new_model) # Copy data from the old table into the new table self.execute("INSERT INTO %s (%s) SELECT %s FROM %s" % ( self.quote_name(new_model._meta.db_table), ', '.join(self.quote_name(x) for x in mapping), ', '.join(mapping.values()), self.quote_name(model._meta.db_table), )) # Delete the old table to make way for the new self.delete_model(model, handle_autom2m=False) # Rename the new table to take way for the old self.alter_db_table( new_model, new_model._meta.db_table, model._meta.db_table, disable_constraints=False, ) # Run deferred SQL on correct table for sql in self.deferred_sql: self.execute(sql) self.deferred_sql = [] # Fix any PK-removed field if restore_pk_field: restore_pk_field.primary_key = True def delete_model(self, model, handle_autom2m=True): if handle_autom2m: super().delete_model(model) else: # Delete the table (and only that) self.execute(self.sql_delete_table % { "table": self.quote_name(model._meta.db_table), }) # Remove all deferred statements referencing the deleted table. for sql in list(self.deferred_sql): if isinstance(sql, Statement) and sql.references_table(model._meta.db_table): self.deferred_sql.remove(sql) def add_field(self, model, field): """ Create a field on a model. Usually involves adding a column, but may involve adding a table instead (for M2M fields). """ # Special-case implicit M2M tables if field.many_to_many and field.remote_field.through._meta.auto_created: return self.create_model(field.remote_field.through) self._remake_table(model, create_field=field) def remove_field(self, model, field): """ Remove a field from a model. Usually involves deleting a column, but for M2Ms may involve deleting a table. """ # M2M fields are a special case if field.many_to_many: # For implicit M2M tables, delete the auto-created table if field.remote_field.through._meta.auto_created: self.delete_model(field.remote_field.through) # For explicit "through" M2M fields, do nothing # For everything else, remake. else: # It might not actually have a column behind it if field.db_parameters(connection=self.connection)['type'] is None: return self._remake_table(model, delete_field=field) def _alter_field(self, model, old_field, new_field, old_type, new_type, old_db_params, new_db_params, strict=False): """Perform a "physical" (non-ManyToMany) field update.""" # Use "ALTER TABLE ... RENAME COLUMN" if only the column name # changed and there aren't any constraints. if (self.connection.features.can_alter_table_rename_column and old_field.column != new_field.column and self.column_sql(model, old_field) == self.column_sql(model, new_field) and not (old_field.remote_field and old_field.db_constraint or new_field.remote_field and new_field.db_constraint)): return self.execute(self._rename_field_sql(model._meta.db_table, old_field, new_field, new_type)) # Alter by remaking table self._remake_table(model, alter_field=(old_field, new_field)) # Rebuild tables with FKs pointing to this field if the PK type changed. if old_field.primary_key and new_field.primary_key and old_type != new_type: for rel in new_field.model._meta.related_objects: if not rel.many_to_many: self._remake_table(rel.related_model) def _alter_many_to_many(self, model, old_field, new_field, strict): """Alter M2Ms to repoint their to= endpoints.""" if old_field.remote_field.through._meta.db_table == new_field.remote_field.through._meta.db_table: # The field name didn't change, but some options did; we have to propagate this altering. self._remake_table( old_field.remote_field.through, alter_field=( # We need the field that points to the target model, so we can tell alter_field to change it - # this is m2m_reverse_field_name() (as opposed to m2m_field_name, which points to our model) old_field.remote_field.through._meta.get_field(old_field.m2m_reverse_field_name()), new_field.remote_field.through._meta.get_field(new_field.m2m_reverse_field_name()), ), ) return # Make a new through table self.create_model(new_field.remote_field.through) # Copy the data across self.execute("INSERT INTO %s (%s) SELECT %s FROM %s" % ( self.quote_name(new_field.remote_field.through._meta.db_table), ', '.join([ "id", new_field.m2m_column_name(), new_field.m2m_reverse_name(), ]), ', '.join([ "id", old_field.m2m_column_name(), old_field.m2m_reverse_name(), ]), self.quote_name(old_field.remote_field.through._meta.db_table), )) # Delete the old through table self.delete_model(old_field.remote_field.through) def add_constraint(self, model, constraint): self._remake_table(model) def remove_constraint(self, model, constraint): self._remake_table(model)
the-stack_0_10834
import datetime import voluptuous as vol from homeassistant.core import callback from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_NAME, CONF_ICON, CONF_WEEKDAY, ATTR_DATE import homeassistant.util.dt as dt_util from homeassistant.helpers.event import async_track_point_in_utc_time import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity CONF_EPOCH = 'epoch' CONF_FREQUENCY = 'frequency' DATE_STR_FORMAT = '%A, %Y-%m-%d' WEEKDAY_STR_FORMAT = '%A' DEFAULT_NAME = 'Upcoming Event' DEFAULT_ICON = 'mdi:calendar-clock' PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_EPOCH): cv.date, vol.Optional(CONF_ICON): cv.icon, vol.Required(CONF_FREQUENCY): vol.Coerce(int), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, }) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Setup the sensor platform.""" sensor_name = config.get(CONF_NAME) icon = config.get(CONF_ICON) epoch = config.get(CONF_EPOCH) frequency = config.get(CONF_FREQUENCY) sensors = [ PeriodicEventSensor(hass, f'{sensor_name} Date', icon, epoch, frequency), PeriodicEventRelativeSensor(hass, sensor_name, icon, epoch, frequency), ] for sensor in sensors: async_track_point_in_utc_time( hass, sensor.point_in_time_listener, sensor.get_next_interval()) async_add_entities(sensors, True) class PeriodicEventSensor(Entity): def __init__(self, hass, name, icon, epoch, frequency): """Initialize the sensor.""" self.hass = hass self._name = name self._icon = icon self._epoch = epoch self._frequency = frequency self._state = None self._next_event = None self._update_internal_state(dt_util.utcnow()) @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the sensor.""" return self._state @property def icon(self): """Return the icon of the sensor.""" return self._icon @property def device_state_attributes(self): return { ATTR_DATE: self._next_event.isoformat(), CONF_WEEKDAY: self._next_event.strftime(WEEKDAY_STR_FORMAT) } def _get_next_event(self, now): """ Compute the next event """ from dateutil import relativedelta today = dt_util.as_local(now).date() weekday = relativedelta.weekdays[self._epoch.weekday()] next_event = today + relativedelta.relativedelta(weekday=weekday) # Check if this date matches the frequency after epoch, or else # calculate the correct date remainder = (next_event - self._epoch).days / 7 % self._frequency if remainder != 0: next_event = next_event + \ datetime.timedelta(weeks=self._frequency - remainder) return next_event def get_next_interval(self, now=None): """Compute next time update should occur (at next event).""" if not now: now = dt_util.utcnow() next_event = self._get_next_event(now) return datetime.datetime( next_event.year, next_event.month, next_event.day) def _update_internal_state(self, now): self._next_event = self._get_next_event(now) self._state = self._next_event.strftime(DATE_STR_FORMAT) @callback def point_in_time_listener(self, now): """Update state and schedule same listener to run again.""" self._update_internal_state(now) self.async_schedule_update_ha_state() async_track_point_in_utc_time( self.hass, self.point_in_time_listener, self.get_next_interval()) class PeriodicEventRelativeSensor(PeriodicEventSensor): def get_next_interval(self, now=None): """Compute next time update should occur (eg updates daily).""" if now is None: now = dt_util.utcnow() start_of_day = dt_util.start_of_local_day(dt_util.as_local(now)) return start_of_day + datetime.timedelta(days=1) def _update_internal_state(self, now): from natural.date import duration super()._update_internal_state(now) # Compute the human-readable text between today and the next event today = dt_util.as_local(now).date() difference = self._next_event - today if (difference.days == 0): self._state = 'Today' elif (difference.days == 1): self._state = 'Tomorrow' else: self._state = duration(self._next_event, now=today, precision=2)
the-stack_0_10836
from numpy import argsort as numpy_argsort from numpy import atleast_1d as numpy_atleast_1d from numpy import ndarray as numpy_ndarray from copy import deepcopy from .functions import RTOL, ATOL, equals from .functions import inspect as cf_inspect class Flags: '''Self-describing CF flag values. Stores the flag_values, flag_meanings and flag_masks CF attributes in an internally consistent manner. ''' def __init__(self, **kwargs): '''**Initialization** :Parameters: flag_values : optional The flag_values CF property. Sets the `flag_values` attribute. flag_meanings : optional The flag_meanings CF property. Sets the `flag_meanings` attribute. flag_masks : optional The flag_masks CF property. Sets the `flag_masks` attribute. ''' for attr, value in kwargs.items(): if value is not None: setattr(self, attr, value) def __eq__(self, other): '''x.__eq__(y) <==> x==y <==> x.equals(y) ''' return self.equals(other) def __ne__(self, other): '''x.__ne__(y) <==> x!=y <==> not x.equals(y) ''' return not self.equals(other) def __hash__(self): '''Return the hash value of the flags. Note that the flags will be sorted in place. :Returns: `int` The hash value. **Examples:** >>> hash(f) -956218661958673979 ''' self.sort() x = [tuple(getattr(self, attr, ())) for attr in ('_flag_meanings', '_flag_values', '_flag_masks')] return hash(tuple(x)) def __bool__(self): '''x.__bool__() <==> x!=0 ''' for attr in ('_flag_meanings', '_flag_values', '_flag_masks'): if hasattr(self, attr): return True #--- End: for return False # ---------------------------------------------------------------- # Attributes # ---------------------------------------------------------------- @property def flag_values(self): '''The flag_values CF attribute. Stored as a 1-d numpy array but may be set as any array-like object. **Examples:* >>> f.flag_values = ['a', 'b', 'c'] >>> f.flag_values array(['a', 'b', 'c'], dtype='|S1') >>> f.flag_values = numpy.arange(4, dtype='int8') >>> f.flag_values array([1, 2, 3, 4], dtype=int8) >>> f.flag_values = 1 >>> f.flag_values array([1]) ''' try: return self._flag_values except AttributeError: raise AttributeError("'%s' has no attribute 'flag_values'" % self.__class__.__name__) @flag_values.setter def flag_values(self, value): if not isinstance(value, numpy_ndarray): value = numpy_atleast_1d(value) self._flag_values = value @flag_values.deleter def flag_values(self): try: del self._flag_values except AttributeError: raise AttributeError("Can't delete '%s' attribute 'flag_values'" % self.__class__.__name__) # ---------------------------------------------------------------- # Property attribute: flag_masks # ---------------------------------------------------------------- @property def flag_masks(self): '''The flag_masks CF attribute. Stored as a 1-d numpy array but may be set as array-like object. **Examples:* >>> f.flag_masks = numpy.array([1, 2, 4], dtype='int8') >>> f.flag_masks array([1, 2, 4], dtype=int8) >>> f.flag_masks = 1 >>> f.flag_masks array([1]) ''' try: return self._flag_masks except AttributeError: raise AttributeError("'%s' object has no attribute 'flag_masks'" % self.__class__.__name__) @flag_masks.setter def flag_masks(self, value): if not isinstance(value, numpy_ndarray): value = numpy_atleast_1d(value) self._flag_masks = value @flag_masks.deleter def flag_masks(self): try: del self._flag_masks except AttributeError: raise AttributeError("Can't delete '%s' attribute 'flag_masks'" % self.__class__.__name__) @property def flag_meanings(self): '''The flag_meanings CF attribute. Stored as a 1-d numpy string array but may be set as a space delimited string or any array-like object. **Examples:* >>> f.flag_meanings = 'low medium high' >>> f.flag_meanings array(['low', 'medium', 'high'], dtype='|S6') >>> f.flag_meanings = ['left', 'right'] >>> f.flag_meanings array(['left', 'right'], dtype='|S5') >>> f.flag_meanings = 'ok' >>> f.flag_meanings array(['ok'], dtype='|S2') >>> f.flag_meanings = numpy.array(['a', 'b']) >>> f.flag_meanings array(['a', 'b'], dtype='|S1') ''' try: return self._flag_meanings except AttributeError: raise AttributeError("'%s' object has no attribute 'flag_meanings'" % self.__class__.__name__) @flag_meanings.setter def flag_meanings(self, value): if isinstance(value, str): value = numpy_atleast_1d(value.split()) elif not isinstance(value, numpy_ndarray): value = numpy_atleast_1d(value) self._flag_meanings = value @flag_meanings.deleter def flag_meanings(self): try: del self._flag_meanings except AttributeError: raise AttributeError("Can't delete '%s' attribute 'flag_meanings'" % self.__class__.__name__) def __repr__(self): '''x.__repr__() <==> repr(x) ''' string = [] if hasattr(self, 'flag_values'): string.append('flag_values=%s' % str(self.flag_values)) if hasattr(self, 'flag_masks'): string.append('flag_masks=%s' % str(self.flag_masks)) if hasattr(self, 'flag_meanings'): string.append('flag_meanings=%s' % str(self.flag_meanings)) return '<CF %s: %s>' % (self.__class__.__name__, ', '.join(string)) def copy(self): '''Return a deep copy. Equivalent to ``copy.deepcopy(f)`` :Returns: The deep copy. **Examples:* >>> f.copy() ''' return deepcopy(self) def dump(self, display=True, _level=0): '''Return a string containing a full description of the instance. :Parameters: display : bool, optional If False then return the description as a string. By default the description is printed, i.e. ``f.dump()`` is equivalent to ``print(f.dump(display=False))``. :Returns: `None` or `str` A string containing the description. ''' indent0 = ' ' * _level indent1 = ' ' * (_level+1) string = ['%sFlags:' % indent0] for attr in ('_flag_values', '_flag_meanings', '_flag_masks'): value = getattr(self, attr, None) if value is not None: string.append('%s%s = %s' % (indent1, attr[1:], list(value))) #--- End: for string = '\n'.join(string) if display: print(string) else: return(string) def equals(self, other, rtol=None, atol=None, ignore_fill_value=False, verbose=False, traceback=False): '''True if two groups of flags are logically equal, False otherwise. Note that both instances are sorted in place prior to the comparison. :Parameters: other: The object to compare for equality. atol: float, optional The absolute tolerance for all numerical comparisons, By default the value returned by the `ATOL` function is used. rtol: float, optional The relative tolerance for all numerical comparisons, By default the value returned by the `RTOL` function is used. ignore_fill_value: bool, optional If True then data arrays with different fill values are considered equal. By default they are considered unequal. traceback: deprecated at version 3.0.0. Use *verbose* instead. :Returns: `bool` Whether or not the two instances are equal. **Examples:* >>> f <CF Flags: flag_values=[1 0 2], flag_masks=[2 0 2], flag_meanings=['medium' 'low' 'high']> >>> g <CF Flags: flag_values=[2 0 1], flag_masks=[2 0 2], flag_meanings=['high' 'low' 'medium']> >>> f.equals(g) True >>> f <CF Flags: flag_values=[0 1 2], flag_masks=[0 2 2], flag_meanings=['low' 'medium' 'high']> >>> g <CF Flags: flag_values=[0 1 2], flag_masks=[0 2 2], flag_meanings=['low' 'medium' 'high']> ''' if traceback: _DEPRECATION_ERROR_KWARGS(self, 'equals', traceback=True) # pragma: no cover # Check that each instance is the same type if self.__class__ != other.__class__: if verbose: print("%s: Different type: %s, %s" % (self.__class__.__name__, self.__class__.__name__, other.__class__.__name__)) # pragma: no cover return False self.sort() other.sort() # Set default tolerances if rtol is None: rtol = RTOL() if atol is None: atol = ATOL() for attr in ('_flag_meanings', '_flag_values', '_flag_masks'): if hasattr(self, attr): if not hasattr(other, attr): if verbose: print("%s: Different attributes: %s" % (self.__class__.__name__, attr[1:])) # pragma: no cover return False x = getattr(self, attr) y = getattr(other, attr) if (x.shape != y.shape or not equals(x, y, rtol=rtol, atol=atol, ignore_fill_value=ignore_fill_value, verbose=verbose)): if verbose: print("%s: Different '%s': %r, %r" % (self.__class__.__name__, attr[1:], x, y)) # pragma: no cover return False elif hasattr(other, attr): if verbose: print("%s: Different attributes: %s" % (self.__class__.__name__, attr[1:])) # pragma: no cover return False #--- End: for return True def inspect(self): '''Inspect the object for debugging. .. seealso:: `cf.inspect` :Returns: `None` ''' print(cf_inspect(self)) # pragma: no cover def sort(self): '''Sort the flags in place. By default sort by flag values. If flag values are not present then sort by flag meanings. If flag meanings are not present then sort by flag_masks. :Returns: `None` **Examples:* >>> f <CF Flags: flag_values=[2 0 1], flag_masks=[2 0 2], flag_meanings=['high' 'low' 'medium']> >>> f.sort() >>> f <CF Flags: flag_values=[0 1 2], flag_masks=[0 2 2], flag_meanings=['low' 'medium' 'high']> ''' if not self: return # Sort all three attributes for attr in ('flag_values', '_flag_meanings', '_flag_masks'): if hasattr(self, attr): indices = numpy_argsort(getattr(self, attr)) break #--- End: for for attr in ('_flag_values', '_flag_meanings', '_flag_masks'): if hasattr(self, attr): array = getattr(self, attr).view() array[...] = array[indices] #--- End: for #--- End: class
the-stack_0_10837
"""Added transactions table Revision ID: 5632aa202d89 Revises: 3a47813ce501 Create Date: 2015-03-18 14:54:09.061787 """ # revision identifiers, used by Alembic. revision = '5632aa202d89' down_revision = '4d3ed7925db3' from alembic import op import sqlalchemy as sa def upgrade(): op.create_table('quark_transactions', sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('id', sa.Integer(), nullable=False), sa.PrimaryKeyConstraint('id'), mysql_engine='InnoDB') op.add_column(u'quark_ip_addresses', sa.Column('transaction_id', sa.Integer(), nullable=True)) op.create_foreign_key('fk_quark_ips_transaction_id', 'quark_ip_addresses', 'quark_transactions', ['transaction_id'], ['id']) def downgrade(): op.drop_constraint('fk_quark_ips_transaction_id', 'quark_ip_addresses', type_='foreignkey') op.drop_column(u'quark_ip_addresses', 'transaction_id') op.drop_table('quark_transactions')
the-stack_0_10838
from django.http import HttpResponse from django.shortcuts import render_to_response from django.template.base import Template from django.template.context import RequestContext from cms.test_utils.project.placeholderapp.models import (Example1, MultilingualExample1) from cms.utils import get_language_from_request def example_view(request): context = RequestContext(request) context['examples'] = Example1.objects.all() return render_to_response('placeholderapp.html', context) def _base_detail(request, instance, template_name='detail.html', item_name="char_1", template_string='',): context = RequestContext(request) context['instance'] = instance context['item_name'] = item_name if template_string: template = Template(template_string) return HttpResponse(template.render(context)) else: return render_to_response(template_name, context) def list_view_multi(request): context = RequestContext(request) context['examples'] = MultilingualExample1.objects.language( get_language_from_request(request)).all() return render_to_response('list.html', context) def detail_view_multi(request, pk, template_name='detail_multi.html', item_name="char_1", template_string='',): instance = MultilingualExample1.objects.language( get_language_from_request(request)).get(pk=pk) return _base_detail(request, instance, template_name, item_name, template_string) def list_view(request): context = RequestContext(request) context['examples'] = Example1.objects.all() return render_to_response('list.html', context) def detail_view(request, pk, template_name='detail.html', item_name="char_1", template_string='',): instance = Example1.objects.get(pk=pk) return _base_detail(request, instance, template_name, item_name, template_string)
the-stack_0_10839
# Copied from cellSNP, https://raw.githubusercontent.com/single-cell-genetics/cellSNP/purePython/cellSNP/utils/vcf_utils.py # Utilility functions for processing vcf files # Author: Yuanhua Huang # Date: 09/06/2019 import os import sys import gzip import subprocess import numpy as np def parse_sample_info(sample_dat, sparse=True): """ Parse genotype information for each sample Note, it requires the format for each variants to be the same. """ if sample_dat == [] or sample_dat is None: return None # require the same format for all variants format_all = [x[0] for x in sample_dat] if format_all.count(format_all[0]) != len(format_all): print("Error: require the same format for all variants.") exit() format_list = format_all[0].split(":") RV = {} for _format in format_list: RV[_format] = [] if sparse: RV['indices'] = [] RV['indptr'] = [0] RV['shape'] = (len(sample_dat[0][1:]), len(sample_dat)) missing_val = ":".join(["."] * len(format_list)) cnt = 0 for j in range(len(sample_dat)): #variant j _line = sample_dat[j] for i in range(len(_line[1:])): #cell i if _line[i+1] == missing_val: continue _line_key = _line[i+1].split(":") for k in range(len(format_list)): RV[format_list[k]].append(_line_key[k]) cnt += 1 RV['indices'].append(i) RV['indptr'].append(cnt) else: for _line in sample_dat: _line_split = [x.split(":") for x in _line[1:]] for k in range(len(format_list)): _line_key = [x[k] for x in _line_split] RV[format_list[k]].append(_line_key) return RV def load_VCF(vcf_file, biallelic_only=False, load_sample=True, sparse=True): """ Load whole VCF file ------------------- Initially designed to load VCF from cellSNP output, requiring 1) all variants have the same format list; 2) a line starting with "#CHROM", with sample ids. If these two requirements are satisfied, this function also supports general VCF files, e.g., genotype for multiple samples. Note, it may take a large memory, please filter the VCF with bcftools first. """ if vcf_file[-3:] == ".gz" or vcf_file[-4:] == ".bgz": infile = gzip.open(vcf_file, "rb") is_gzip = True else: infile = open(vcf_file, "r") is_gzip = False FixedINFO = {} contig_lines = [] comment_lines = [] var_ids, obs_ids, obs_dat = [], [], [] for line in infile: if is_gzip: line = line.decode('utf-8') if line.startswith("#"): if line.startswith("##contig="): contig_lines.append(line.rstrip()) if line.startswith("#CHROM"): obs_ids = line.rstrip().split("\t")[9:] key_ids = line[1:].rstrip().split("\t")[:8] for _key in key_ids: FixedINFO[_key] = [] else: comment_lines.append(line.rstrip()) else: list_val = line.rstrip().split("\t") #[:5] #:8 if biallelic_only: if len(list_val[3]) > 1 or len(list_val[4]) > 1: continue if load_sample: obs_dat.append(list_val[8:]) for i in range(len(key_ids)): FixedINFO[key_ids[i]].append(list_val[i]) var_ids.append("_".join([list_val[x] for x in [0, 1, 3, 4]])) infile.close() RV = {} RV["variants"] = var_ids RV["FixedINFO"] = FixedINFO RV["samples"] = obs_ids RV["GenoINFO"] = parse_sample_info(obs_dat, sparse=sparse) RV["contigs"] = contig_lines RV["comments"] = comment_lines return RV def write_VCF_to_hdf5(VCF_dat, out_file): """ Write vcf data into hdf5 file """ import h5py f = h5py.File(out_file, 'w') f.create_dataset("contigs", data=np.string_(VCF_dat['contigs']), compression="gzip", compression_opts=9) f.create_dataset("samples", data=np.string_(VCF_dat['samples']), compression="gzip", compression_opts=9) f.create_dataset("variants", data=np.string_(VCF_dat['variants']), compression="gzip", compression_opts=9) f.create_dataset("comments", data=np.string_(VCF_dat['comments']), compression="gzip", compression_opts=9) ## variant fixed information fixed = f.create_group("FixedINFO") for _key in VCF_dat['FixedINFO']: fixed.create_dataset(_key, data=np.string_(VCF_dat['FixedINFO'][_key]), compression="gzip", compression_opts=9) ## genotype information for each sample geno = f.create_group("GenoINFO") for _key in VCF_dat['GenoINFO']: geno.create_dataset(_key, data=np.string_(VCF_dat['GenoINFO'][_key]), compression="gzip", compression_opts=9) f.close() def read_sparse_GeneINFO(GenoINFO, keys=['AD', 'DP']): M, N = np.array(GenoINFO['shape']).astype('int') indptr = np.array(GenoINFO['indptr']).astype('int') indices = np.array(GenoINFO['indices']).astype('int') from scipy.sparse import csr_matrix RV = {} for _key in keys: data = np.array(GenoINFO[_key]).astype('float') RV[_key] = csr_matrix((data, indices, indptr), shape=(N, M)) return RV def merge_vcf(out_file, out_files, hdf5_out=True): """Merge vcf for all chromsomes """ if out_file.endswith(".gz"): out_file_use = out_file.split(".gz")[0] else: out_file_use = out_file CNT = 0 fid_out = open(out_file_use, "w") for _file in out_files: with open(_file, "r") as fid_in: for line in fid_in: if line.startswith("#") and _file != out_files[0]: continue else: CNT += 1 fid_out.writelines(line) os.remove(_file) fid_out.close() print("[cellSNP] %d lines in final vcf file" %CNT) import shutil if shutil.which("bgzip") is not None: bashCommand = "bgzip -f %s" %(out_file_use) else: bashCommand = "gzip -f %s" %(out_file_use) pro = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) pro.communicate()[0] ## save to hdf5 file if hdf5_out: vcf_dat = load_VCF(out_file_use + ".gz", load_sample=True, sparse=True) write_VCF_to_hdf5(vcf_dat, out_file_use + ".h5") return None def VCF_to_sparseMat(vcf_file, tags=["AD", "DP"], out_dir=None): """ Write VCF sample info into sparse matrices with given tags """ # out samples, out_var, tag_files var_info = [] tag_mat_list = [] for _tag in tags: _dict = {"data": [], "row": [], "col": []} tag_mat_list.append(_dict) if vcf_file[-3:] == ".gz" or vcf_file[-4:] == ".bgz": infile = gzip.open(vcf_file, "rb") is_gzip = True else: infile = open(vcf_file, "r") is_gzip = False var_idx, obs_idx = 0, 0 for line in infile: if is_gzip: line = line.decode('utf-8') if line.startswith("#"): if line.startswith("#CHROM"): samples = line.rstrip().split("\t")[9:] continue ## variants line var_idx += 1 list_val = line.rstrip().split("\t") var_info.append(list_val[:8]) FORMAT = list_val[8].split(":") tag_idx = [] for _tag in tags: if _tag in FORMAT: tag_idx.append(FORMAT.index(_tag)) else: tag_idx.append(None) for obs_idx in range(len(list_val[9:])): _samp_dat = list_val[9 + obs_idx] if _samp_dat == ".": continue _samp_val = _samp_dat.split(":") for ii in range(len(tags)): if tag_idx[ii] is None: continue tag_dat = _samp_val[tag_idx[ii]] if (tag_dat != "." and tag_dat != "0" and tag_dat.count(".,") == 0): tag_mat_list[ii]["data"].append(tag_dat) tag_mat_list[ii]["row"].append(var_idx) tag_mat_list[ii]["col"].append(obs_idx + 1) infile.close() if out_dir is not None: if not os.path.exists(out_dir): os.mkdir(out_dir) fid_obs = open(out_dir + "/cellSNP.samples.tsv", "w") fid_obs.writelines("\n".join(samples) + "\n") fid_obs.close() fid_var = open(out_dir + "/cellSNP.base.vcf", "w") fid_var.writelines("##fileformat=VCFv4.2\n") fid_var.writelines("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\n") for _var_info in var_info: fid_var.writelines("\t".join(_var_info) + "\n") fid_var.close() try: import shutil if shutil.which("bgzip") is not None: bashCommand = "bgzip -f %s" %(out_dir + "/cellSNP.base.vcf") else: bashCommand = "gzip -f %s" %(out_dir + "/cellSNP.base.vcf") pro = subprocess.Popen(bashCommand.split(), stdout=subprocess.PIPE) pro.communicate()[0] except: print("sparse matrix: VCF uncmpressed.") for ii in range(len(tags)): _mat = tag_mat_list[ii] _dat = _mat["data"] _row = _mat["row"] _col = _mat["col"] fid = open(out_dir + "/cellSNP.tag.%s.mtx" %(tags[ii]), "w") fid.writelines("%" + "%MatrixMarket matrix coordinate integer general\n") fid.writelines("%\n") fid.writelines("%d\t%d\t%d\n" %(len(var_info), len(samples), len(_dat))) for jj in range(len(_dat)): fid.writelines("%d\t%d\t%s\n" %(_row[jj], _col[jj], _dat[jj])) fid.close() return var_info, samples, tag_mat_list
the-stack_0_10840
# (C) Datadog, Inc. 2021-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import pytest from datadog_checks.dev.tooling.configuration.consumers.model.model_consumer import VALIDATORS_DOCUMENTATION from ...utils import get_model_consumer, normalize_yaml pytestmark = [pytest.mark.conf, pytest.mark.conf_consumer, pytest.mark.conf_consumer_model] def test(): consumer = get_model_consumer( """ name: test version: 0.0.0 files: - name: test.yaml options: - template: instances options: - name: foo required: true description: words value: type: string - name: example description: words value: example: bar type: string - name: default_precedence description: words value: example: bar default: baz type: string - name: example_ignored_array description: words value: example: - test type: array items: type: string - name: example_ignored_object description: words value: example: key: value type: object additionalProperties: true - name: long_default_formatted description: words value: default: - ["01", "02", "03", "04", "05"] - ["06", "07", "08", "09", "10"] - ["11", "12", "13", "14", "15"] - ["16", "17", "18", "19", "20"] - ["21", "22", "23", "24", "25"] type: array items: type: array items: type: string """ ) model_definitions = consumer.render() assert len(model_definitions) == 1 files = model_definitions['test.yaml'] assert len(files) == 4 validators_contents, validators_errors = files['validators.py'] assert not validators_errors assert validators_contents == VALIDATORS_DOCUMENTATION package_root_contents, package_root_errors = files['__init__.py'] assert not package_root_errors assert package_root_contents == normalize_yaml( """ from .instance import InstanceConfig class ConfigMixin: _config_model_instance: InstanceConfig @property def config(self) -> InstanceConfig: return self._config_model_instance """ ) defaults_contents, defaults_errors = files['defaults.py'] assert not defaults_errors assert defaults_contents == normalize_yaml( """ from datadog_checks.base.utils.models.fields import get_default_field_value def instance_default_precedence(field, value): return 'baz' def instance_example(field, value): return 'bar' def instance_example_ignored_array(field, value): return get_default_field_value(field, value) def instance_example_ignored_object(field, value): return get_default_field_value(field, value) def instance_long_default_formatted(field, value): return [ ['01', '02', '03', '04', '05'], ['06', '07', '08', '09', '10'], ['11', '12', '13', '14', '15'], ['16', '17', '18', '19', '20'], ['21', '22', '23', '24', '25'], ] """ ) instance_model_contents, instance_model_errors = files['instance.py'] assert not instance_model_errors assert instance_model_contents == normalize_yaml( """ from __future__ import annotations from typing import Any, Mapping, Optional, Sequence from pydantic import BaseModel, root_validator, validator from datadog_checks.base.utils.functions import identity from datadog_checks.base.utils.models import validation from . import defaults, validators class InstanceConfig(BaseModel): class Config: allow_mutation = False default_precedence: Optional[str] example: Optional[str] example_ignored_array: Optional[Sequence[str]] example_ignored_object: Optional[Mapping[str, Any]] foo: str long_default_formatted: Optional[Sequence[Sequence[str]]] @root_validator(pre=True) def _initial_validation(cls, values): return validation.core.initialize_config(getattr(validators, 'initialize_instance', identity)(values)) @validator('*', pre=True, always=True) def _ensure_defaults(cls, v, field): if v is not None or field.required: return v return getattr(defaults, f'instance_{field.name}')(field, v) @validator('*') def _run_validations(cls, v, field): if not v: return v return getattr(validators, f'instance_{field.name}', identity)(v, field=field) @root_validator(pre=False) def _final_validation(cls, values): return validation.core.finalize_config(getattr(validators, 'finalize_instance', identity)(values)) """ )
the-stack_0_10842
import typing import sys import numpy as np import numba as nb @nb.njit def sort_csgraph( n: int, g: np.ndarray, ) -> typing.Tuple[np.ndarray, np.ndarray, np.ndarray]: sort_idx = np.argsort(g[:, 0], kind='mergesort') g = g[sort_idx] edge_idx = np.searchsorted(g[:, 0], np.arange(n + 1)) original_idx = np.arange(len(g))[sort_idx] return g, edge_idx, original_idx @nb.njit def csgraph_to_undirected(g: np.ndarray) -> np.ndarray: m = len(g) g = np.vstack((g, g)) g[m:, :2] = g[m:, 1::-1] return g @nb.njit((nb.i8, nb.i8[:, :]), cache=True) def connected_components_bfs(n: int, g: np.ndarray): g = csgraph_to_undirected(g) g, edge_idx, _ = sort_csgraph(n, g) label = np.full(n, -1, np.int64) l = 0 for i in range(n): if label[i] != -1: continue label[i] = l que = [i] for u in que: for v in g[edge_idx[u]:edge_idx[u + 1], 1]: if label[v] != -1: continue label[v] = l que.append(v) l += 1 return label @nb.njit((nb.i8[:], ), cache=True) def solve(a: np.ndarray) -> typing.NoReturn: n = a.size a = np.searchsorted(np.unique(a), a) m = a.max() + 1 g = np.empty((n, 2), np.int64) idx_to_add = 0 def add_edge(u, v): nonlocal idx_to_add g[idx_to_add] = (u, v) idx_to_add += 1 for i in range(n // 2): x, y = a[i], a[n - 1 - i] add_edge(x, y) add_edge(y, x) g = g[:idx_to_add] label = connected_components_bfs(m, g) print(m - label.max() - 1) def main() -> typing.NoReturn: n = int(input()) a = np.array( sys.stdin.readline().split(), dtype=np.int64, ) solve(a) main()
the-stack_0_10843
#!/usr/bin/env python3 import argparse import os import sys import numpy as np from functools import reduce from collections import OrderedDict import pandas as pd ## merge filtered/summarized files with qsim values by user-specified comparison def getOptions(): parser = argparse.ArgumentParser(description='Merges together filtered/summarized comparate count tables by user-specified comparison') parser.add_argument("-output", "--output", dest="output", action="store", required=True, help="Output directory for complete merged comparate files ready for Bayesian") parser.add_argument("-comp", "--comp", dest="comp", action='store', required=True, help="Input filtered/summarized count tables per one comparate") parser.add_argument("-design", "--design", dest="design", action='store', required=True, help="Design file") args=parser.parse_args() return(args) def main(): args = getOptions() ### Read in design file as dataframe df_design = pd.read_csv(args.design) ### Create subset of design file of comparate specification columns (will quantify # comparates by number of columns left) ### Store compID to name output file c1_g1_list = df_design['C1_G1'].tolist() c1_g2_list = df_design['C1_G2'].tolist() c2_g1_list = df_design['C2_G1'].tolist() c2_g2_list = df_design['C2_G2'].tolist() c1_list = df_design['Comparate_1'].tolist() c2_list = df_design['Comparate_2'].tolist() del df_design['C1_G1'] del df_design['C1_G2'] del df_design['C2_G1'] del df_design['C2_G2'] dict = {} col_list = list(df_design.columns.values) row_list = [] comparison_list = df_design['compID'].tolist() del df_design['compID'] ### Create dictionaries per design file row to store the row's comparate files for index, sample in df_design.iterrows(): dict[index] = list(sample) ## If there are comparison columns (column # > 1) for key in dict: row_list = dict[key] file_list = [] comp_dict = {} comparison = comparison_list[key] c1_g1= c1_g1_list[key] c1_g2= c1_g2_list[key] c2_g1= c2_g1_list[key] c2_g2= c2_g2_list[key] c1= c1_list[key] c2= c2_list[key] for i, comp in enumerate(row_list): comp_dict[i+1] = comp ### Assign filename so it can be called row_list[i] = args.comp + '/bayesian_input_' + comp + '.csv' file = pd.read_csv(row_list[i], index_col=None, header =0) file_list.append(file) df_merged = reduce(lambda x, y: pd.merge(x, y, on = ['FEATURE_ID']), file_list) ### drop columns you don't want before merge df_merged = df_merged[df_merged.columns.drop(list(df_merged.filter(regex='comp')))] df_merged.set_index('FEATURE_ID', inplace=True) ## AMM fixing below line get_values is deprecated ## merged_headers = list(df_merged.columns.get_values()) merged_headers = list(df_merged.columns.to_numpy()) ### For stan model, requires headers to have general comparate input names ### This reassigns comparate names to be c1, c2, c3... depending on design file specifications for x in comp_dict: for i in range(len(merged_headers)): if c1 in merged_headers[i]: merged_headers[i] = merged_headers[i].replace(c1, 'c1') if c2 in merged_headers[i]: merged_headers[i] = merged_headers[i].replace(c2, 'c2') df_merged.columns=merged_headers df_filtered = df_merged outfile = args.output + '/bayesian_input_' + comparison + '.csv' df_filtered.to_csv(outfile) if __name__=='__main__': main()
the-stack_0_10845
from django.conf import settings IS_TEST = False TEST_FLAG = '__TEST' class DbRouterMiddleware(object): def process_request( self, request): global IS_TEST IS_TEST = request.GET.get(TEST_FLAG) return None def process_response( self, request, response ): global IS_TEST IS_TEST = False return response class DatabaseRouter (object): # def db_for_read( self, model, **hints ): # return 'test' if IS_TEST else 'default'; # # def db_for_write( self, model, **hints ): # return 'test' if IS_TEST else 'default'; # # def allow_relation( self, obj1, obj2, **hints ): # return True # # def allow_migrate( self, db, app_label, model_name=None, **hints ): # return True def db_for_read(self, model, **hints): """"Point all read operations to the specific database.""" if model._meta.app_label in settings.DATABASE_APPS_MAPPING: return settings.DATABASE_APPS_MAPPING[model._meta.app_label] return 'test' if IS_TEST else 'default'; def db_for_write(self, model, **hints): """Point all write operations to the specific database.""" if model._meta.app_label in settings.DATABASE_APPS_MAPPING: return settings.DATABASE_APPS_MAPPING[model._meta.app_label] return 'test' if IS_TEST else 'default'; def allow_relation(self, obj1, obj2, **hints): """Allow any relation between apps that use the same database.""" db_obj1 = settings.DATABASE_APPS_MAPPING.get(obj1._meta.app_label) db_obj2 = settings.DATABASE_APPS_MAPPING.get(obj2._meta.app_label) if db_obj1 and db_obj2: if db_obj1 == db_obj2: return True else: return False return True def allow_migrate(self, db, model): """Make sure that apps only appear in the related database.""" """ No migrate all database no_sql and model have ap_label = no_sql""" if db == 'no_sql' or model._meta.app_label == "no_sql": return False else: return True
the-stack_0_10847
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Wrappers around spark that correspond to common pandas functions. """ from typing import Any, Optional, Union, List, Tuple, Sized, cast from collections import OrderedDict from collections.abc import Iterable from distutils.version import LooseVersion from functools import reduce from io import BytesIO import json import numpy as np import pandas as pd from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype, is_list_like import pyarrow as pa import pyarrow.parquet as pq import pyspark from pyspark import sql as spark from pyspark.sql import functions as F from pyspark.sql.functions import pandas_udf, PandasUDFType from pyspark.sql.types import ( ByteType, ShortType, IntegerType, LongType, FloatType, DoubleType, BooleanType, TimestampType, DecimalType, StringType, DateType, StructType, ) from pyspark import pandas as pp # noqa: F401 from pyspark.pandas.base import IndexOpsMixin from pyspark.pandas.utils import ( align_diff_frames, default_session, is_name_like_tuple, name_like_string, same_anchor, scol_for, validate_axis, ) from pyspark.pandas.frame import DataFrame, _reduce_spark_multi from pyspark.pandas.internal import ( InternalFrame, DEFAULT_SERIES_NAME, HIDDEN_COLUMNS, ) from pyspark.pandas.series import Series, first_series from pyspark.pandas.spark.utils import as_nullable_spark_type, force_decimal_precision_scale from pyspark.pandas.indexes import Index, DatetimeIndex __all__ = [ "from_pandas", "range", "read_csv", "read_delta", "read_table", "read_spark_io", "read_parquet", "read_clipboard", "read_excel", "read_html", "to_datetime", "date_range", "get_dummies", "concat", "melt", "isna", "isnull", "notna", "notnull", "read_sql_table", "read_sql_query", "read_sql", "read_json", "merge", "to_numeric", "broadcast", "read_orc", ] def from_pandas(pobj: Union[pd.DataFrame, pd.Series, pd.Index]) -> Union[Series, DataFrame, Index]: """Create a Koalas DataFrame, Series or Index from a pandas DataFrame, Series or Index. This is similar to Spark's `SparkSession.createDataFrame()` with pandas DataFrame, but this also works with pandas Series and picks the index. Parameters ---------- pobj : pandas.DataFrame or pandas.Series pandas DataFrame or Series to read. Returns ------- Series or DataFrame If a pandas Series is passed in, this function returns a Koalas Series. If a pandas DataFrame is passed in, this function returns a Koalas DataFrame. """ if isinstance(pobj, pd.Series): return Series(pobj) elif isinstance(pobj, pd.DataFrame): return DataFrame(pobj) elif isinstance(pobj, pd.Index): return DataFrame(pd.DataFrame(index=pobj)).index else: raise ValueError("Unknown data type: {}".format(type(pobj).__name__)) _range = range # built-in range def range( start: int, end: Optional[int] = None, step: int = 1, num_partitions: Optional[int] = None ) -> DataFrame: """ Create a DataFrame with some range of numbers. The resulting DataFrame has a single int64 column named `id`, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. If only the first parameter (i.e. start) is specified, we treat it as the end value with the start value being 0. This is similar to the range function in SparkSession and is used primarily for testing. Parameters ---------- start : int the start value (inclusive) end : int, optional the end value (exclusive) step : int, optional, default 1 the incremental step num_partitions : int, optional the number of partitions of the DataFrame Returns ------- DataFrame Examples -------- When the first parameter is specified, we generate a range of values up till that number. >>> pp.range(5) id 0 0 1 1 2 2 3 3 4 4 When start, end, and step are specified: >>> pp.range(start = 100, end = 200, step = 20) id 0 100 1 120 2 140 3 160 4 180 """ sdf = default_session().range(start=start, end=end, step=step, numPartitions=num_partitions) return DataFrame(sdf) def read_csv( path, sep=",", header="infer", names=None, index_col=None, usecols=None, squeeze=False, mangle_dupe_cols=True, dtype=None, nrows=None, parse_dates=False, quotechar=None, escapechar=None, comment=None, **options ) -> Union[DataFrame, Series]: """Read CSV (comma-separated) file into DataFrame or Series. Parameters ---------- path : str The path string storing the CSV file to be read. sep : str, default ‘,’ Delimiter to use. Must be a single character. header : int, list of int, default ‘infer’ Whether to to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to `header=0` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to `header=None`. Explicitly pass `header=0` to be able to replace existing names names : str or array-like, optional List of column names to use. If file contains no header row, then you should explicitly pass `header=None`. Duplicates in this list will cause an error to be issued. If a string is given, it should be a DDL-formatted string in Spark SQL, which is preferred to avoid schema inference for better performance. index_col: str or list of str, optional, default: None Index column of table in Spark. usecols : list-like or callable, optional Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to `True`. squeeze : bool, default False If the parsed data only contains one column then return a Series. mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X0', 'X1', ... 'XN', rather than 'X' ... 'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. Currently only `True` is allowed. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use str or object together with suitable na_values settings to preserve and not interpret dtype. nrows : int, default None Number of rows to read from the CSV file. parse_dates : boolean or list of ints or names or list of lists or dict, default `False`. Currently only `False` is allowed. quotechar : str (length 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. escapechar : str (length 1), default None One-character string used to escape delimiter comment: str, optional Indicates the line should not be parsed. options : dict All other options passed directly into Spark's data source. Returns ------- DataFrame or Series See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. Examples -------- >>> pp.read_csv('data.csv') # doctest: +SKIP """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore if mangle_dupe_cols is not True: raise ValueError("mangle_dupe_cols can only be `True`: %s" % mangle_dupe_cols) if parse_dates is not False: raise ValueError("parse_dates can only be `False`: %s" % parse_dates) if usecols is not None and not callable(usecols): usecols = list(usecols) if usecols is None or callable(usecols) or len(usecols) > 0: reader = default_session().read reader.option("inferSchema", True) reader.option("sep", sep) if header == "infer": header = 0 if names is None else None if header == 0: reader.option("header", True) elif header is None: reader.option("header", False) else: raise ValueError("Unknown header argument {}".format(header)) if quotechar is not None: reader.option("quote", quotechar) if escapechar is not None: reader.option("escape", escapechar) if comment is not None: if not isinstance(comment, str) or len(comment) != 1: raise ValueError("Only length-1 comment characters supported") reader.option("comment", comment) reader.options(**options) if isinstance(names, str): sdf = reader.schema(names).csv(path) column_labels = OrderedDict((col, col) for col in sdf.columns) else: sdf = reader.csv(path) if is_list_like(names): names = list(names) if len(set(names)) != len(names): raise ValueError("Found non-unique column index") if len(names) != len(sdf.columns): raise ValueError( "The number of names [%s] does not match the number " "of columns [%d]. Try names by a Spark SQL DDL-formatted " "string." % (len(sdf.schema), len(names)) ) column_labels = OrderedDict(zip(names, sdf.columns)) elif header is None: column_labels = OrderedDict(enumerate(sdf.columns)) else: column_labels = OrderedDict((col, col) for col in sdf.columns) if usecols is not None: if callable(usecols): column_labels = OrderedDict( (label, col) for label, col in column_labels.items() if usecols(label) ) missing = [] elif all(isinstance(col, int) for col in usecols): new_column_labels = OrderedDict( (label, col) for i, (label, col) in enumerate(column_labels.items()) if i in usecols ) missing = [ col for col in usecols if col >= len(column_labels) or list(column_labels)[col] not in new_column_labels ] column_labels = new_column_labels elif all(isinstance(col, str) for col in usecols): new_column_labels = OrderedDict( (label, col) for label, col in column_labels.items() if label in usecols ) missing = [col for col in usecols if col not in new_column_labels] column_labels = new_column_labels else: raise ValueError( "'usecols' must either be list-like of all strings, " "all unicode, all integers or a callable." ) if len(missing) > 0: raise ValueError( "Usecols do not match columns, columns expected but not " "found: %s" % missing ) if len(column_labels) > 0: sdf = sdf.select([scol_for(sdf, col) for col in column_labels.values()]) else: sdf = default_session().createDataFrame([], schema=StructType()) else: sdf = default_session().createDataFrame([], schema=StructType()) column_labels = OrderedDict() if nrows is not None: sdf = sdf.limit(nrows) if index_col is not None: if isinstance(index_col, (str, int)): index_col = [index_col] for col in index_col: if col not in column_labels: raise KeyError(col) index_spark_column_names = [column_labels[col] for col in index_col] index_names = [(col,) for col in index_col] # type: List[Tuple] column_labels = OrderedDict( (label, col) for label, col in column_labels.items() if label not in index_col ) else: index_spark_column_names = [] index_names = [] kdf = DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in index_spark_column_names], index_names=index_names, column_labels=[ label if is_name_like_tuple(label) else (label,) for label in column_labels ], data_spark_columns=[scol_for(sdf, col) for col in column_labels.values()], ) ) # type: DataFrame if dtype is not None: if isinstance(dtype, dict): for col, tpe in dtype.items(): kdf[col] = kdf[col].astype(tpe) else: for col in kdf.columns: kdf[col] = kdf[col].astype(dtype) if squeeze and len(kdf.columns) == 1: return first_series(kdf) else: return kdf def read_json( path: str, lines: bool = True, index_col: Optional[Union[str, List[str]]] = None, **options ) -> DataFrame: """ Convert a JSON string to DataFrame. Parameters ---------- path : string File path lines : bool, default True Read the file as a json object per line. It should be always True for now. index_col : str or list of str, optional, default: None Index column of table in Spark. options : dict All other options passed directly into Spark's data source. Examples -------- >>> df = pp.DataFrame([['a', 'b'], ['c', 'd']], ... columns=['col 1', 'col 2']) >>> df.to_json(path=r'%s/read_json/foo.json' % path, num_files=1) >>> pp.read_json( ... path=r'%s/read_json/foo.json' % path ... ).sort_values(by="col 1") col 1 col 2 0 a b 1 c d >>> df.to_json(path=r'%s/read_json/foo.json' % path, num_files=1, lineSep='___') >>> pp.read_json( ... path=r'%s/read_json/foo.json' % path, lineSep='___' ... ).sort_values(by="col 1") col 1 col 2 0 a b 1 c d You can preserve the index in the roundtrip as below. >>> df.to_json(path=r'%s/read_json/bar.json' % path, num_files=1, index_col="index") >>> pp.read_json( ... path=r'%s/read_json/bar.json' % path, index_col="index" ... ).sort_values(by="col 1") # doctest: +NORMALIZE_WHITESPACE col 1 col 2 index 0 a b 1 c d """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore if not lines: raise NotImplementedError("lines=False is not implemented yet.") return read_spark_io(path, format="json", index_col=index_col, **options) def read_delta( path: str, version: Optional[str] = None, timestamp: Optional[str] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> DataFrame: """ Read a Delta Lake table on some file system and return a DataFrame. If the Delta Lake table is already stored in the catalog (aka the metastore), use 'read_table'. Parameters ---------- path : string Path to the Delta Lake table. version : string, optional Specifies the table version (based on Delta's internal transaction version) to read from, using Delta's time travel feature. This sets Delta's 'versionAsOf' option. timestamp : string, optional Specifies the table version (based on timestamp) to read from, using Delta's time travel feature. This must be a valid date or timestamp string in Spark, and sets Delta's 'timestampAsOf' option. index_col : str or list of str, optional, default: None Index column of table in Spark. options Additional options that can be passed onto Delta. Returns ------- DataFrame See Also -------- DataFrame.to_delta read_table read_spark_io read_parquet Examples -------- >>> pp.range(1).to_delta('%s/read_delta/foo' % path) # doctest: +SKIP >>> pp.read_delta('%s/read_delta/foo' % path) # doctest: +SKIP id 0 0 >>> pp.range(10, 15, num_partitions=1).to_delta('%s/read_delta/foo' % path, ... mode='overwrite') # doctest: +SKIP >>> pp.read_delta('%s/read_delta/foo' % path) # doctest: +SKIP id 0 10 1 11 2 12 3 13 4 14 >>> pp.read_delta('%s/read_delta/foo' % path, version=0) # doctest: +SKIP id 0 0 You can preserve the index in the roundtrip as below. >>> pp.range(10, 15, num_partitions=1).to_delta( ... '%s/read_delta/bar' % path, index_col="index") # doctest: +SKIP >>> pp.read_delta('%s/read_delta/bar' % path, index_col="index") # doctest: +SKIP id index 0 10 1 11 2 12 3 13 4 14 """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore if version is not None: options["versionAsOf"] = version if timestamp is not None: options["timestampAsOf"] = timestamp return read_spark_io(path, format="delta", index_col=index_col, **options) def read_table(name: str, index_col: Optional[Union[str, List[str]]] = None) -> DataFrame: """ Read a Spark table and return a DataFrame. Parameters ---------- name : string Table name in Spark. index_col : str or list of str, optional, default: None Index column of table in Spark. Returns ------- DataFrame See Also -------- DataFrame.to_table read_delta read_parquet read_spark_io Examples -------- >>> pp.range(1).to_table('%s.my_table' % db) >>> pp.read_table('%s.my_table' % db) id 0 0 >>> pp.range(1).to_table('%s.my_table' % db, index_col="index") >>> pp.read_table('%s.my_table' % db, index_col="index") # doctest: +NORMALIZE_WHITESPACE id index 0 0 """ sdf = default_session().read.table(name) index_spark_columns, index_names = _get_index_map(sdf, index_col) return DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names ) ) def read_spark_io( path: Optional[str] = None, format: Optional[str] = None, schema: Union[str, "StructType"] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> DataFrame: """Load a DataFrame from a Spark data source. Parameters ---------- path : string, optional Path to the data source. format : string, optional Specifies the output data source format. Some common ones are: - 'delta' - 'parquet' - 'orc' - 'json' - 'csv' schema : string or StructType, optional Input schema. If none, Spark tries to infer the schema automatically. The schema can either be a Spark StructType, or a DDL-formatted string like `col0 INT, col1 DOUBLE`. index_col : str or list of str, optional, default: None Index column of table in Spark. options : dict All other options passed directly into Spark's data source. See Also -------- DataFrame.to_spark_io DataFrame.read_table DataFrame.read_delta DataFrame.read_parquet Examples -------- >>> pp.range(1).to_spark_io('%s/read_spark_io/data.parquet' % path) >>> pp.read_spark_io( ... '%s/read_spark_io/data.parquet' % path, format='parquet', schema='id long') id 0 0 >>> pp.range(10, 15, num_partitions=1).to_spark_io('%s/read_spark_io/data.json' % path, ... format='json', lineSep='__') >>> pp.read_spark_io( ... '%s/read_spark_io/data.json' % path, format='json', schema='id long', lineSep='__') id 0 10 1 11 2 12 3 13 4 14 You can preserve the index in the roundtrip as below. >>> pp.range(10, 15, num_partitions=1).to_spark_io('%s/read_spark_io/data.orc' % path, ... format='orc', index_col="index") >>> pp.read_spark_io( ... path=r'%s/read_spark_io/data.orc' % path, format="orc", index_col="index") ... # doctest: +NORMALIZE_WHITESPACE id index 0 10 1 11 2 12 3 13 4 14 """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore sdf = default_session().read.load(path=path, format=format, schema=schema, **options) index_spark_columns, index_names = _get_index_map(sdf, index_col) return DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names ) ) def read_parquet(path, columns=None, index_col=None, pandas_metadata=False, **options) -> DataFrame: """Load a parquet object from the file path, returning a DataFrame. Parameters ---------- path : string File path columns : list, default=None If not None, only these columns will be read from the file. index_col : str or list of str, optional, default: None Index column of table in Spark. pandas_metadata : bool, default: False If True, try to respect the metadata if the Parquet file is written from pandas. options : dict All other options passed directly into Spark's data source. Returns ------- DataFrame See Also -------- DataFrame.to_parquet DataFrame.read_table DataFrame.read_delta DataFrame.read_spark_io Examples -------- >>> pp.range(1).to_parquet('%s/read_spark_io/data.parquet' % path) >>> pp.read_parquet('%s/read_spark_io/data.parquet' % path, columns=['id']) id 0 0 You can preserve the index in the roundtrip as below. >>> pp.range(1).to_parquet('%s/read_spark_io/data.parquet' % path, index_col="index") >>> pp.read_parquet('%s/read_spark_io/data.parquet' % path, columns=['id'], index_col="index") ... # doctest: +NORMALIZE_WHITESPACE id index 0 0 """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore if columns is not None: columns = list(columns) index_names = None if index_col is None and pandas_metadata: if LooseVersion(pyspark.__version__) < LooseVersion("3.0.0"): raise ValueError("pandas_metadata is not supported with Spark < 3.0.") # Try to read pandas metadata @pandas_udf("index_col array<string>, index_names array<string>", PandasUDFType.SCALAR) def read_index_metadata(pser): binary = pser.iloc[0] metadata = pq.ParquetFile(pa.BufferReader(binary)).metadata.metadata if b"pandas" in metadata: pandas_metadata = json.loads(metadata[b"pandas"].decode("utf8")) if all(isinstance(col, str) for col in pandas_metadata["index_columns"]): index_col = [] index_names = [] for col in pandas_metadata["index_columns"]: index_col.append(col) for column in pandas_metadata["columns"]: if column["field_name"] == col: index_names.append(column["name"]) break else: index_names.append(None) return pd.DataFrame({"index_col": [index_col], "index_names": [index_names]}) return pd.DataFrame({"index_col": [None], "index_names": [None]}) index_col, index_names = ( default_session() .read.format("binaryFile") .load(path) .limit(1) .select(read_index_metadata("content").alias("index_metadata")) .select("index_metadata.*") .head() ) kdf = read_spark_io(path=path, format="parquet", options=options, index_col=index_col) if columns is not None: new_columns = [c for c in columns if c in kdf.columns] if len(new_columns) > 0: kdf = kdf[new_columns] else: sdf = default_session().createDataFrame([], schema=StructType()) index_spark_columns, index_names = _get_index_map(sdf, index_col) kdf = DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names, ) ) if index_names is not None: kdf.index.names = index_names return kdf def read_clipboard(sep=r"\s+", **kwargs) -> DataFrame: r""" Read text from clipboard and pass to read_csv. See read_csv for the full argument list Parameters ---------- sep : str, default '\s+' A string or regex delimiter. The default of '\s+' denotes one or more whitespace characters. See Also -------- DataFrame.to_clipboard : Write text out to clipboard. Returns ------- parsed : DataFrame """ return cast(DataFrame, from_pandas(pd.read_clipboard(sep, **kwargs))) def read_excel( io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds ) -> Union[DataFrame, Series, OrderedDict]: """ Read an Excel file into a Koalas DataFrame or Series. Support both `xls` and `xlsx` file extensions from a local filesystem or URL. Support an option to read a single sheet or a list of sheets. Parameters ---------- io : str, file descriptor, pathlib.Path, ExcelFile or xlrd.Book The string could be a URL. The value URL must be available in Spark's DataFrameReader. .. note:: If the underlying Spark is below 3.0, the parameter as a string is not supported. You can use `pp.from_pandas(pd.read_excel(...))` as a workaround. sheet_name : str, int, list, or None, default 0 Strings are used for sheet names. Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. Available cases: * Defaults to ``0``: 1st sheet as a `DataFrame` * ``1``: 2nd sheet as a `DataFrame` * ``"Sheet1"``: Load sheet with name "Sheet1" * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5" as a dict of `DataFrame` * None: All sheets. header : int, list of int, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None. index_col : int, list of int, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. usecols : int, str, list-like, or callable default None Return a subset of the columns. * If None, then parse all columns. * If str, then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. * If list of int, then indicates list of column numbers to be parsed. * If list of string, then indicates list of column names to be parsed. * If callable, then evaluate each column name against it and parse the column if the callable returns ``True``. squeeze : bool, default False If the parsed data only contains one column then return a Series. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : str, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd. converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True. false_values : list, default None Values to consider as False. skiprows : list-like Rows to skip at the beginning (0-indexed). nrows : int, default None Number of rows to parse. na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. parse_dates : bool, list-like, or dict, default False The behavior is as follows: * bool. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call result 'foo' If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv`` Note: A fast-path exists for iso8601-formatted dates. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Koalas will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skipfooter : int, default 0 Rows at the end to skip (0-indexed). convert_float : bool, default True Convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally. mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a dict of DataFrames is returned. See Also -------- DataFrame.to_excel : Write DataFrame to an Excel file. DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- The file can be read using the file name as string or an open file object: >>> pp.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP Name Value 0 string1 1 1 string2 2 2 #Comment 3 >>> pp.read_excel(open('tmp.xlsx', 'rb'), ... sheet_name='Sheet3') # doctest: +SKIP Unnamed: 0 Name Value 0 0 string1 1 1 1 string2 2 2 2 #Comment 3 Index and header can be specified via the `index_col` and `header` arguments >>> pp.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 #Comment 3 Column types are inferred but can be explicitly specified >>> pp.read_excel('tmp.xlsx', index_col=0, ... dtype={'Name': str, 'Value': float}) # doctest: +SKIP Name Value 0 string1 1.0 1 string2 2.0 2 #Comment 3.0 True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings! >>> pp.read_excel('tmp.xlsx', index_col=0, ... na_values=['string1', 'string2']) # doctest: +SKIP Name Value 0 None 1 1 None 2 2 #Comment 3 Comment lines in the excel input file can be skipped using the `comment` kwarg >>> pp.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP Name Value 0 string1 1.0 1 string2 2.0 2 None NaN """ def pd_read_excel(io_or_bin, sn, sq): return pd.read_excel( io=BytesIO(io_or_bin) if isinstance(io_or_bin, (bytes, bytearray)) else io_or_bin, sheet_name=sn, header=header, names=names, index_col=index_col, usecols=usecols, squeeze=sq, dtype=dtype, engine=engine, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, keep_default_na=keep_default_na, verbose=verbose, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, mangle_dupe_cols=mangle_dupe_cols, **kwds ) if isinstance(io, str): if LooseVersion(pyspark.__version__) < LooseVersion("3.0.0"): raise ValueError( "The `io` parameter as a string is not supported if the underlying Spark is " "below 3.0. You can use `pp.from_pandas(pd.read_excel(...))` as a workaround" ) # 'binaryFile' format is available since Spark 3.0.0. binaries = default_session().read.format("binaryFile").load(io).select("content").head(2) io_or_bin = binaries[0][0] single_file = len(binaries) == 1 else: io_or_bin = io single_file = True pdf_or_psers = pd_read_excel(io_or_bin, sn=sheet_name, sq=squeeze) if single_file: if isinstance(pdf_or_psers, dict): return OrderedDict( [(sn, from_pandas(pdf_or_pser)) for sn, pdf_or_pser in pdf_or_psers.items()] ) else: return cast(Union[DataFrame, Series], from_pandas(pdf_or_psers)) else: def read_excel_on_spark(pdf_or_pser, sn): if isinstance(pdf_or_pser, pd.Series): pdf = pdf_or_pser.to_frame() else: pdf = pdf_or_pser kdf = from_pandas(pdf) return_schema = force_decimal_precision_scale( as_nullable_spark_type(kdf._internal.spark_frame.drop(*HIDDEN_COLUMNS).schema) ) def output_func(pdf): pdf = pd.concat( [pd_read_excel(bin, sn=sn, sq=False) for bin in pdf[pdf.columns[0]]] ) reset_index = pdf.reset_index() for name, col in reset_index.iteritems(): dt = col.dtype if is_datetime64_dtype(dt) or is_datetime64tz_dtype(dt): continue reset_index[name] = col.replace({np.nan: None}) pdf = reset_index # Just positionally map the column names to given schema's. return pdf.rename(columns=dict(zip(pdf.columns, return_schema.names))) sdf = ( default_session() .read.format("binaryFile") .load(io) .select("content") .mapInPandas(lambda iterator: map(output_func, iterator), schema=return_schema) ) kdf = DataFrame(kdf._internal.with_new_sdf(sdf)) if squeeze and len(kdf.columns) == 1: return first_series(kdf) else: return kdf if isinstance(pdf_or_psers, dict): return OrderedDict( [ (sn, read_excel_on_spark(pdf_or_pser, sn)) for sn, pdf_or_pser in pdf_or_psers.items() ] ) else: return read_excel_on_spark(pdf_or_psers, sheet_name) def read_html( io, match=".+", flavor=None, header=None, index_col=None, skiprows=None, attrs=None, parse_dates=False, thousands=",", encoding=None, decimal=".", converters=None, na_values=None, keep_default_na=True, displayed_only=True, ) -> List[DataFrame]: r"""Read HTML tables into a ``list`` of ``DataFrame`` objects. Parameters ---------- io : str or file-like A URL, a file-like object, or a raw string containing HTML. Note that lxml only accepts the http, ftp and file url protocols. If you have a URL that starts with ``'https'`` you might try removing the ``'s'``. match : str or compiled regular expression, optional The set of tables containing text matching this regex or string will be returned. Unless the HTML is extremely simple you will probably need to pass a non-empty string here. Defaults to '.+' (match any non-empty string). The default value will return all tables contained on a page. This value is converted to a regular expression so that there is consistent behavior between Beautiful Soup and lxml. flavor : str or None, container of strings The parsing engine to use. 'bs4' and 'html5lib' are synonymous with each other, they are both there for backwards compatibility. The default of ``None`` tries to use ``lxml`` to parse and if that fails it falls back on ``bs4`` + ``html5lib``. header : int or list-like or None, optional The row (or list of rows for a :class:`~pp.MultiIndex`) to use to make the columns headers. index_col : int or list-like or None, optional The column (or list of columns) to use to create the index. skiprows : int or list-like or slice or None, optional 0-based. Number of rows to skip after parsing the column integer. If a sequence of integers or a slice is given, will skip the rows indexed by that sequence. Note that a single element sequence means 'skip the nth row' whereas an integer means 'skip n rows'. attrs : dict or None, optional This is a dictionary of attributes that you can pass to use to identify the table in the HTML. These are not checked for validity before being passed to lxml or Beautiful Soup. However, these attributes must be valid HTML table attributes to work correctly. For example, :: attrs = {'id': 'table'} is a valid attribute dictionary because the 'id' HTML tag attribute is a valid HTML attribute for *any* HTML tag as per `this document <http://www.w3.org/TR/html-markup/global-attributes.html>`__. :: attrs = {'asdf': 'table'} is *not* a valid attribute dictionary because 'asdf' is not a valid HTML attribute even if it is a valid XML attribute. Valid HTML 4.01 table attributes can be found `here <http://www.w3.org/TR/REC-html40/struct/tables.html#h-11.2>`__. A working draft of the HTML 5 spec can be found `here <http://www.w3.org/TR/html-markup/table.html>`__. It contains the latest information on table attributes for the modern web. parse_dates : bool, optional See :func:`~pp.read_csv` for more details. thousands : str, optional Separator to use to parse thousands. Defaults to ``','``. encoding : str or None, optional The encoding used to decode the web page. Defaults to ``None``.``None`` preserves the previous encoding behavior, which depends on the underlying parser library (e.g., the parser library will try to use the encoding provided by the document). decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the cell (not column) content, and return the transformed content. na_values : iterable, default None Custom NA values keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they're appended to displayed_only : bool, default True Whether elements with "display: none" should be parsed Returns ------- dfs : list of DataFrames See Also -------- read_csv DataFrame.to_html """ pdfs = pd.read_html( io=io, match=match, flavor=flavor, header=header, index_col=index_col, skiprows=skiprows, attrs=attrs, parse_dates=parse_dates, thousands=thousands, encoding=encoding, decimal=decimal, converters=converters, na_values=na_values, keep_default_na=keep_default_na, displayed_only=displayed_only, ) return cast(List[DataFrame], [from_pandas(pdf) for pdf in pdfs]) # TODO: add `coerce_float` and 'parse_dates' parameters def read_sql_table( table_name, con, schema=None, index_col=None, columns=None, **options ) -> DataFrame: """ Read SQL database table into a DataFrame. Given a table name and a JDBC URI, returns a DataFrame. Parameters ---------- table_name : str Name of SQL table in database. con : str A JDBC URI could be provided as as str. .. note:: The URI must be JDBC URI instead of Python's database URI. schema : str, default None Name of SQL schema in database to query (if database flavor supports this). Uses default schema if None (default). index_col : str or list of str, optional, default: None Column(s) to set as index(MultiIndex). columns : list, default None List of column names to select from SQL table. options : dict All other options passed directly into Spark's JDBC data source. Returns ------- DataFrame A SQL table is returned as two-dimensional data structure with labeled axes. See Also -------- read_sql_query : Read SQL query into a DataFrame. read_sql : Read SQL query or database table into a DataFrame. Examples -------- >>> pp.read_sql_table('table_name', 'jdbc:postgresql:db_name') # doctest: +SKIP """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore reader = default_session().read reader.option("dbtable", table_name) reader.option("url", con) if schema is not None: reader.schema(schema) reader.options(**options) sdf = reader.format("jdbc").load() index_spark_columns, index_names = _get_index_map(sdf, index_col) kdf = DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names ) ) # type: DataFrame if columns is not None: if isinstance(columns, str): columns = [columns] kdf = kdf[columns] return kdf # TODO: add `coerce_float`, `params`, and 'parse_dates' parameters def read_sql_query(sql, con, index_col=None, **options) -> DataFrame: """Read SQL query into a DataFrame. Returns a DataFrame corresponding to the result set of the query string. Optionally provide an `index_col` parameter to use one of the columns as the index, otherwise default index will be used. .. note:: Some database might hit the issue of Spark: SPARK-27596 Parameters ---------- sql : string SQL query SQL query to be executed. con : str A JDBC URI could be provided as as str. .. note:: The URI must be JDBC URI instead of Python's database URI. index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex). options : dict All other options passed directly into Spark's JDBC data source. Returns ------- DataFrame See Also -------- read_sql_table : Read SQL database table into a DataFrame. read_sql Examples -------- >>> pp.read_sql_query('SELECT * FROM table_name', 'jdbc:postgresql:db_name') # doctest: +SKIP """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore reader = default_session().read reader.option("query", sql) reader.option("url", con) reader.options(**options) sdf = reader.format("jdbc").load() index_spark_columns, index_names = _get_index_map(sdf, index_col) return DataFrame( InternalFrame( spark_frame=sdf, index_spark_columns=index_spark_columns, index_names=index_names ) ) # TODO: add `coerce_float`, `params`, and 'parse_dates' parameters def read_sql(sql, con, index_col=None, columns=None, **options) -> DataFrame: """ Read SQL query or database table into a DataFrame. This function is a convenience wrapper around ``read_sql_table`` and ``read_sql_query`` (for backward compatibility). It will delegate to the specific function depending on the provided input. A SQL query will be routed to ``read_sql_query``, while a database table name will be routed to ``read_sql_table``. Note that the delegated function might have more specific notes about their functionality not listed here. .. note:: Some database might hit the issue of Spark: SPARK-27596 Parameters ---------- sql : string SQL query to be executed or a table name. con : str A JDBC URI could be provided as as str. .. note:: The URI must be JDBC URI instead of Python's database URI. index_col : string or list of strings, optional, default: None Column(s) to set as index(MultiIndex). columns : list, default: None List of column names to select from SQL table (only used when reading a table). options : dict All other options passed directly into Spark's JDBC data source. Returns ------- DataFrame See Also -------- read_sql_table : Read SQL database table into a DataFrame. read_sql_query : Read SQL query into a DataFrame. Examples -------- >>> pp.read_sql('table_name', 'jdbc:postgresql:db_name') # doctest: +SKIP >>> pp.read_sql('SELECT * FROM table_name', 'jdbc:postgresql:db_name') # doctest: +SKIP """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore striped = sql.strip() if " " not in striped: # TODO: identify the table name or not more precisely. return read_sql_table(sql, con, index_col=index_col, columns=columns, **options) else: return read_sql_query(sql, con, index_col=index_col, **options) def to_datetime( arg, errors="raise", format=None, unit=None, infer_datetime_format=False, origin="unix" ): """ Convert argument to datetime. Parameters ---------- arg : integer, float, string, datetime, list, tuple, 1-d array, Series or DataFrame/dict-like errors : {'ignore', 'raise', 'coerce'}, default 'raise' - If 'raise', then invalid parsing will raise an exception - If 'coerce', then invalid parsing will be set as NaT - If 'ignore', then invalid parsing will return the input format : string, default None strftime to parse time, eg "%d/%m/%Y", note that "%f" will parse all the way up to nanoseconds. unit : string, default None unit of the arg (D,s,ms,us,ns) denote the unit, which is an integer or float number. This will be based off the origin. Example, with unit='ms' and origin='unix' (the default), this would calculate the number of milliseconds to the unix epoch start. infer_datetime_format : boolean, default False If True and no `format` is given, attempt to infer the format of the datetime strings, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by ~5-10x. origin : scalar, default 'unix' Define the reference date. The numeric values would be parsed as number of units (defined by `unit`) since this reference date. - If 'unix' (or POSIX) time; origin is set to 1970-01-01. - If 'julian', unit must be 'D', and origin is set to beginning of Julian Calendar. Julian day number 0 is assigned to the day starting at noon on January 1, 4713 BC. - If Timestamp convertible, origin is set to Timestamp identified by origin. Returns ------- ret : datetime if parsing succeeded. Return type depends on input: - list-like: DatetimeIndex - Series: Series of datetime64 dtype - scalar: Timestamp In case when it is not possible to return designated types (e.g. when any element of input is before Timestamp.min or after Timestamp.max) return will have datetime.datetime type (or corresponding array/Series). Examples -------- Assembling a datetime from multiple columns of a DataFrame. The keys can be common abbreviations like ['year', 'month', 'day', 'minute', 'second', 'ms', 'us', 'ns']) or plurals of the same >>> df = pp.DataFrame({'year': [2015, 2016], ... 'month': [2, 3], ... 'day': [4, 5]}) >>> pp.to_datetime(df) 0 2015-02-04 1 2016-03-05 dtype: datetime64[ns] If a date does not meet the `timestamp limitations <http://pandas.pydata.org/pandas-docs/stable/timeseries.html #timeseries-timestamp-limits>`_, passing errors='ignore' will return the original input instead of raising any exception. Passing errors='coerce' will force an out-of-bounds date to NaT, in addition to forcing non-dates (or non-parseable dates) to NaT. >>> pp.to_datetime('13000101', format='%Y%m%d', errors='ignore') datetime.datetime(1300, 1, 1, 0, 0) >>> pp.to_datetime('13000101', format='%Y%m%d', errors='coerce') NaT Passing infer_datetime_format=True can often-times speedup a parsing if its not an ISO8601 format exactly, but in a regular format. >>> s = pp.Series(['3/11/2000', '3/12/2000', '3/13/2000'] * 1000) >>> s.head() 0 3/11/2000 1 3/12/2000 2 3/13/2000 3 3/11/2000 4 3/12/2000 dtype: object >>> import timeit >>> timeit.timeit( ... lambda: repr(pp.to_datetime(s, infer_datetime_format=True)), ... number = 1) # doctest: +SKIP 0.35832712500000063 >>> timeit.timeit( ... lambda: repr(pp.to_datetime(s, infer_datetime_format=False)), ... number = 1) # doctest: +SKIP 0.8895321660000004 Using a unix epoch time >>> pp.to_datetime(1490195805, unit='s') Timestamp('2017-03-22 15:16:45') >>> pp.to_datetime(1490195805433502912, unit='ns') Timestamp('2017-03-22 15:16:45.433502912') Using a non-unix epoch origin >>> pp.to_datetime([1, 2, 3], unit='D', origin=pd.Timestamp('1960-01-01')) DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None) """ def pandas_to_datetime(pser_or_pdf) -> Series[np.datetime64]: if isinstance(pser_or_pdf, pd.DataFrame): pser_or_pdf = pser_or_pdf[["year", "month", "day"]] return pd.to_datetime( pser_or_pdf, errors=errors, format=format, unit=unit, infer_datetime_format=infer_datetime_format, origin=origin, ) if isinstance(arg, Series): return arg.koalas.transform_batch(pandas_to_datetime) if isinstance(arg, DataFrame): kdf = arg[["year", "month", "day"]] return kdf.koalas.transform_batch(pandas_to_datetime) return pd.to_datetime( arg, errors=errors, format=format, unit=unit, infer_datetime_format=infer_datetime_format, origin=origin, ) def date_range( start=None, end=None, periods=None, freq=None, tz=None, normalize=False, name=None, closed=None, **kwargs ) -> DatetimeIndex: """ Return a fixed frequency DatetimeIndex. Parameters ---------- start : str or datetime-like, optional Left bound for generating dates. end : str or datetime-like, optional Right bound for generating dates. periods : int, optional Number of periods to generate. freq : str or DateOffset, default 'D' Frequency strings can have multiples, e.g. '5H'. tz : str or tzinfo, optional Time zone name for returning localized DatetimeIndex, for example 'Asia/Hong_Kong'. By default, the resulting DatetimeIndex is timezone-naive. normalize : bool, default False Normalize start/end dates to midnight before generating date range. name : str, default None Name of the resulting DatetimeIndex. closed : {None, 'left', 'right'}, optional Make the interval closed with respect to the given frequency to the 'left', 'right', or both sides (None, the default). **kwargs For compatibility. Has no effect on the result. Returns ------- rng : DatetimeIndex See Also -------- DatetimeIndex : An immutable container for datetimes. Notes ----- Of the four parameters ``start``, ``end``, ``periods``, and ``freq``, exactly three must be specified. If ``freq`` is omitted, the resulting ``DatetimeIndex`` will have ``periods`` linearly spaced elements between ``start`` and ``end`` (closed on both sides). To learn more about the frequency strings, please see `this link <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`__. Examples -------- **Specifying the values** The next four examples generate the same `DatetimeIndex`, but vary the combination of `start`, `end` and `periods`. Specify `start` and `end`, with the default daily frequency. >>> pp.date_range(start='1/1/2018', end='1/08/2018') # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq=None) Specify `start` and `periods`, the number of periods (days). >>> pp.date_range(start='1/1/2018', periods=8) # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04', '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'], dtype='datetime64[ns]', freq=None) Specify `end` and `periods`, the number of periods (days). >>> pp.date_range(end='1/1/2018', periods=8) # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2017-12-25', '2017-12-26', '2017-12-27', '2017-12-28', '2017-12-29', '2017-12-30', '2017-12-31', '2018-01-01'], dtype='datetime64[ns]', freq=None) Specify `start`, `end`, and `periods`; the frequency is generated automatically (linearly spaced). >>> pp.date_range( ... start='2018-04-24', end='2018-04-27', periods=3 ... ) # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2018-04-24 00:00:00', '2018-04-25 12:00:00', '2018-04-27 00:00:00'], dtype='datetime64[ns]', freq=None) **Other Parameters** Changed the `freq` (frequency) to ``'M'`` (month end frequency). >>> pp.date_range(start='1/1/2018', periods=5, freq='M') # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31', '2018-04-30', '2018-05-31'], dtype='datetime64[ns]', freq=None) Multiples are allowed >>> pp.date_range(start='1/1/2018', periods=5, freq='3M') # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq=None) `freq` can also be specified as an Offset object. >>> pp.date_range( ... start='1/1/2018', periods=5, freq=pd.offsets.MonthEnd(3) ... ) # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2018-01-31', '2018-04-30', '2018-07-31', '2018-10-31', '2019-01-31'], dtype='datetime64[ns]', freq=None) `closed` controls whether to include `start` and `end` that are on the boundary. The default includes boundary points on either end. >>> pp.date_range( ... start='2017-01-01', end='2017-01-04', closed=None ... ) # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq=None) Use ``closed='left'`` to exclude `end` if it falls on the boundary. >>> pp.date_range( ... start='2017-01-01', end='2017-01-04', closed='left' ... ) # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03'], dtype='datetime64[ns]', freq=None) Use ``closed='right'`` to exclude `start` if it falls on the boundary. >>> pp.date_range( ... start='2017-01-01', end='2017-01-04', closed='right' ... ) # doctest: +NORMALIZE_WHITESPACE DatetimeIndex(['2017-01-02', '2017-01-03', '2017-01-04'], dtype='datetime64[ns]', freq=None) """ assert freq not in ["N", "ns"], "nanoseconds is not supported" assert tz is None, "Localized DatetimeIndex is not supported" return cast( DatetimeIndex, pp.from_pandas( pd.date_range( start=start, end=end, periods=periods, freq=freq, tz=tz, normalize=normalize, name=name, closed=closed, **kwargs ) ), ) def get_dummies( data, prefix=None, prefix_sep="_", dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None, ) -> DataFrame: """ Convert categorical variable into dummy/indicator variables, also known as one hot encoding. Parameters ---------- data : array-like, Series, or DataFrame prefix : string, list of strings, or dict of strings, default None String to append DataFrame column names. Pass a list with length equal to the number of columns when calling get_dummies on a DataFrame. Alternatively, `prefix` can be a dictionary mapping column names to prefixes. prefix_sep : string, default '_' If appending prefix, separator/delimiter to use. Or pass a list or dictionary as with `prefix.` dummy_na : bool, default False Add a column to indicate NaNs, if False NaNs are ignored. columns : list-like, default None Column names in the DataFrame to be encoded. If `columns` is None then all the columns with `object` or `category` dtype will be converted. sparse : bool, default False Whether the dummy-encoded columns should be be backed by a :class:`SparseArray` (True) or a regular NumPy array (False). In Koalas, this value must be "False". drop_first : bool, default False Whether to get k-1 dummies out of k categorical levels by removing the first level. dtype : dtype, default np.uint8 Data type for new columns. Only a single dtype is allowed. Returns ------- dummies : DataFrame See Also -------- Series.str.get_dummies Examples -------- >>> s = pp.Series(list('abca')) >>> pp.get_dummies(s) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 >>> df = pp.DataFrame({'A': ['a', 'b', 'a'], 'B': ['b', 'a', 'c'], ... 'C': [1, 2, 3]}, ... columns=['A', 'B', 'C']) >>> pp.get_dummies(df, prefix=['col1', 'col2']) C col1_a col1_b col2_a col2_b col2_c 0 1 1 0 0 1 0 1 2 0 1 1 0 0 2 3 1 0 0 0 1 >>> pp.get_dummies(pp.Series(list('abcaa'))) a b c 0 1 0 0 1 0 1 0 2 0 0 1 3 1 0 0 4 1 0 0 >>> pp.get_dummies(pp.Series(list('abcaa')), drop_first=True) b c 0 0 0 1 1 0 2 0 1 3 0 0 4 0 0 >>> pp.get_dummies(pp.Series(list('abc')), dtype=float) a b c 0 1.0 0.0 0.0 1 0.0 1.0 0.0 2 0.0 0.0 1.0 """ if sparse is not False: raise NotImplementedError("get_dummies currently does not support sparse") if columns is not None: if not is_list_like(columns): raise TypeError("Input must be a list-like for parameter `columns`") if dtype is None: dtype = "byte" if isinstance(data, Series): if prefix is not None: prefix = [str(prefix)] kdf = data.to_frame() column_labels = kdf._internal.column_labels remaining_columns = [] else: if isinstance(prefix, str): raise NotImplementedError( "get_dummies currently does not support prefix as string types" ) kdf = data.copy() if columns is None: column_labels = [ label for label in kdf._internal.column_labels if isinstance( kdf._internal.spark_type_for(label), _get_dummies_default_accept_types ) ] else: if is_name_like_tuple(columns): column_labels = [ label for label in kdf._internal.column_labels if label[: len(columns)] == columns ] if len(column_labels) == 0: raise KeyError(name_like_string(columns)) if prefix is None: prefix = [ str(label[len(columns):]) if len(label) > len(columns) + 1 else label[len(columns)] if len(label) == len(columns) + 1 else "" for label in column_labels ] elif any(isinstance(col, tuple) for col in columns) and any( not is_name_like_tuple(col) for col in columns ): raise ValueError( "Expected tuple, got {}".format( type(set(col for col in columns if not is_name_like_tuple(col)).pop()) ) ) else: column_labels = [ label for key in columns for label in kdf._internal.column_labels if label == key or label[0] == key ] if len(column_labels) == 0: if columns is None: return kdf raise KeyError("{} not in index".format(columns)) if prefix is None: prefix = [str(label) if len(label) > 1 else label[0] for label in column_labels] column_labels_set = set(column_labels) remaining_columns = [ ( kdf[label] if kdf._internal.column_labels_level == 1 else kdf[label].rename(name_like_string(label)) ) for label in kdf._internal.column_labels if label not in column_labels_set ] if any( not isinstance(kdf._internal.spark_type_for(label), _get_dummies_acceptable_types) for label in column_labels ): raise NotImplementedError( "get_dummies currently only accept {} values".format( ", ".join([t.typeName() for t in _get_dummies_acceptable_types]) ) ) if prefix is not None and len(column_labels) != len(prefix): raise ValueError( "Length of 'prefix' ({}) did not match the length of " "the columns being encoded ({}).".format(len(prefix), len(column_labels)) ) elif isinstance(prefix, dict): prefix = [prefix[column_label[0]] for column_label in column_labels] all_values = _reduce_spark_multi( kdf._internal.spark_frame, [F.collect_set(kdf._internal.spark_column_for(label)) for label in column_labels], ) for i, label in enumerate(column_labels): values = all_values[i] if isinstance(values, np.ndarray): values = values.tolist() values = sorted(values) if drop_first: values = values[1:] def column_name(value): if prefix is None or prefix[i] == "": return value else: return "{}{}{}".format(prefix[i], prefix_sep, value) for value in values: remaining_columns.append( (kdf[label].notnull() & (kdf[label] == value)) .astype(dtype) .rename(column_name(value)) ) if dummy_na: remaining_columns.append(kdf[label].isnull().astype(dtype).rename(column_name(np.nan))) return kdf[remaining_columns] # TODO: there are many parameters to implement and support. See pandas's pd.concat. def concat(objs, axis=0, join="outer", ignore_index=False, sort=False) -> Union[Series, DataFrame]: """ Concatenate Koalas objects along a particular axis with optional set logic along the other axes. Parameters ---------- objs : a sequence of Series or DataFrame Any None objects will be dropped silently unless they are all None in which case a ValueError will be raised axis : {0/'index', 1/'columns'}, default 0 The axis to concatenate along. join : {'inner', 'outer'}, default 'outer' How to handle indexes on other axis (or axes). ignore_index : bool, default False If True, do not use the index values along the concatenation axis. The resulting axis will be labeled 0, ..., n - 1. This is useful if you are concatenating objects where the concatenation axis does not have meaningful indexing information. Note the index values on the other axes are still respected in the join. sort : bool, default False Sort non-concatenation axis if it is not already aligned. Returns ------- object, type of objs When concatenating all ``Series`` along the index (axis=0), a ``Series`` is returned. When ``objs`` contains at least one ``DataFrame``, a ``DataFrame`` is returned. When concatenating along the columns (axis=1), a ``DataFrame`` is returned. See Also -------- Series.append : Concatenate Series. DataFrame.join : Join DataFrames using indexes. DataFrame.merge : Merge DataFrames by indexes or columns. Examples -------- >>> from pyspark.pandas.config import set_option, reset_option >>> set_option("compute.ops_on_diff_frames", True) Combine two ``Series``. >>> s1 = pp.Series(['a', 'b']) >>> s2 = pp.Series(['c', 'd']) >>> pp.concat([s1, s2]) 0 a 1 b 0 c 1 d dtype: object Clear the existing index and reset it in the result by setting the ``ignore_index`` option to ``True``. >>> pp.concat([s1, s2], ignore_index=True) 0 a 1 b 2 c 3 d dtype: object Combine two ``DataFrame`` objects with identical columns. >>> df1 = pp.DataFrame([['a', 1], ['b', 2]], ... columns=['letter', 'number']) >>> df1 letter number 0 a 1 1 b 2 >>> df2 = pp.DataFrame([['c', 3], ['d', 4]], ... columns=['letter', 'number']) >>> df2 letter number 0 c 3 1 d 4 >>> pp.concat([df1, df2]) letter number 0 a 1 1 b 2 0 c 3 1 d 4 Combine ``DataFrame`` and ``Series`` objects with different columns. >>> pp.concat([df2, s1]) letter number 0 0 c 3.0 None 1 d 4.0 None 0 None NaN a 1 None NaN b Combine ``DataFrame`` objects with overlapping columns and return everything. Columns outside the intersection will be filled with ``None`` values. >>> df3 = pp.DataFrame([['c', 3, 'cat'], ['d', 4, 'dog']], ... columns=['letter', 'number', 'animal']) >>> df3 letter number animal 0 c 3 cat 1 d 4 dog >>> pp.concat([df1, df3]) letter number animal 0 a 1 None 1 b 2 None 0 c 3 cat 1 d 4 dog Sort the columns. >>> pp.concat([df1, df3], sort=True) animal letter number 0 None a 1 1 None b 2 0 cat c 3 1 dog d 4 Combine ``DataFrame`` objects with overlapping columns and return only those that are shared by passing ``inner`` to the ``join`` keyword argument. >>> pp.concat([df1, df3], join="inner") letter number 0 a 1 1 b 2 0 c 3 1 d 4 >>> df4 = pp.DataFrame([['bird', 'polly'], ['monkey', 'george']], ... columns=['animal', 'name']) Combine with column axis. >>> pp.concat([df1, df4], axis=1) letter number animal name 0 a 1 bird polly 1 b 2 monkey george >>> reset_option("compute.ops_on_diff_frames") """ if isinstance(objs, (DataFrame, IndexOpsMixin)) or not isinstance( objs, Iterable ): # TODO: support dict raise TypeError( "first argument must be an iterable of Koalas " "objects, you passed an object of type " '"{name}"'.format(name=type(objs).__name__) ) if len(cast(Sized, objs)) == 0: raise ValueError("No objects to concatenate") objs = list(filter(lambda obj: obj is not None, objs)) if len(objs) == 0: raise ValueError("All objects passed were None") for obj in objs: if not isinstance(obj, (Series, DataFrame)): raise TypeError( "cannot concatenate object of type " "'{name}" "; only pp.Series " "and pp.DataFrame are valid".format(name=type(objs).__name__) ) if join not in ["inner", "outer"]: raise ValueError("Only can inner (intersect) or outer (union) join the other axis.") axis = validate_axis(axis) if axis == 1: kdfs = [obj.to_frame() if isinstance(obj, Series) else obj for obj in objs] level = min(kdf._internal.column_labels_level for kdf in kdfs) kdfs = [ DataFrame._index_normalized_frame(level, kdf) if kdf._internal.column_labels_level > level else kdf for kdf in kdfs ] concat_kdf = kdfs[0] column_labels = concat_kdf._internal.column_labels.copy() kdfs_not_same_anchor = [] for kdf in kdfs[1:]: duplicated = [label for label in kdf._internal.column_labels if label in column_labels] if len(duplicated) > 0: pretty_names = [name_like_string(label) for label in duplicated] raise ValueError( "Labels have to be unique; however, got duplicated labels %s." % pretty_names ) column_labels.extend(kdf._internal.column_labels) if same_anchor(concat_kdf, kdf): concat_kdf = DataFrame( concat_kdf._internal.with_new_columns( [ concat_kdf._kser_for(label) for label in concat_kdf._internal.column_labels ] + [kdf._kser_for(label) for label in kdf._internal.column_labels] ) ) else: kdfs_not_same_anchor.append(kdf) if len(kdfs_not_same_anchor) > 0: def resolve_func(kdf, this_column_labels, that_column_labels): raise AssertionError("This should not happen.") for kdf in kdfs_not_same_anchor: if join == "inner": concat_kdf = align_diff_frames( resolve_func, concat_kdf, kdf, fillna=False, how="inner", ) elif join == "outer": concat_kdf = align_diff_frames( resolve_func, concat_kdf, kdf, fillna=False, how="full", ) concat_kdf = concat_kdf[column_labels] if ignore_index: concat_kdf.columns = list(map(str, _range(len(concat_kdf.columns)))) if sort: concat_kdf = concat_kdf.sort_index() return concat_kdf # Series, Series ... # We should return Series if objects are all Series. should_return_series = all(map(lambda obj: isinstance(obj, Series), objs)) # DataFrame, Series ... & Series, Series ... # In this case, we should return DataFrame. new_objs = [] num_series = 0 series_names = set() for obj in objs: if isinstance(obj, Series): num_series += 1 series_names.add(obj.name) obj = obj.to_frame(DEFAULT_SERIES_NAME) new_objs.append(obj) objs = new_objs column_labels_levels = set(obj._internal.column_labels_level for obj in objs) if len(column_labels_levels) != 1: raise ValueError("MultiIndex columns should have the same levels") # DataFrame, DataFrame, ... # All Series are converted into DataFrame and then compute concat. if not ignore_index: indices_of_kdfs = [kdf.index for kdf in objs] index_of_first_kdf = indices_of_kdfs[0] for index_of_kdf in indices_of_kdfs: if index_of_first_kdf.names != index_of_kdf.names: raise ValueError( "Index type and names should be same in the objects to concatenate. " "You passed different indices " "{index_of_first_kdf} and {index_of_kdf}".format( index_of_first_kdf=index_of_first_kdf.names, index_of_kdf=index_of_kdf.names ) ) column_labels_of_kdfs = [kdf._internal.column_labels for kdf in objs] if ignore_index: index_names_of_kdfs = [[] for _ in objs] # type: List else: index_names_of_kdfs = [kdf._internal.index_names for kdf in objs] if all(name == index_names_of_kdfs[0] for name in index_names_of_kdfs) and all( idx == column_labels_of_kdfs[0] for idx in column_labels_of_kdfs ): # If all columns are in the same order and values, use it. kdfs = objs else: if join == "inner": interested_columns = set.intersection(*map(set, column_labels_of_kdfs)) # Keep the column order with its firsts DataFrame. merged_columns = [ label for label in column_labels_of_kdfs[0] if label in interested_columns ] # When multi-index column, although pandas is flaky if `join="inner" and sort=False`, # always sort to follow the `join="outer"` case behavior. if (len(merged_columns) > 0 and len(merged_columns[0]) > 1) or sort: # FIXME: better ordering merged_columns = sorted(merged_columns, key=name_like_string) kdfs = [kdf[merged_columns] for kdf in objs] elif join == "outer": merged_columns = [] for labels in column_labels_of_kdfs: merged_columns.extend(label for label in labels if label not in merged_columns) assert len(merged_columns) > 0 if LooseVersion(pd.__version__) < LooseVersion("0.24"): # Always sort when multi-index columns, and if there are Series, never sort. sort = len(merged_columns[0]) > 1 or (num_series == 0 and sort) else: # Always sort when multi-index columns or there are more than two Series, # and if there is only one Series, never sort. sort = len(merged_columns[0]) > 1 or num_series > 1 or (num_series != 1 and sort) if sort: # FIXME: better ordering merged_columns = sorted(merged_columns, key=name_like_string) kdfs = [] for kdf in objs: columns_to_add = list(set(merged_columns) - set(kdf._internal.column_labels)) # TODO: NaN and None difference for missing values. pandas seems filling NaN. sdf = kdf._internal.resolved_copy.spark_frame for label in columns_to_add: sdf = sdf.withColumn(name_like_string(label), F.lit(None)) data_columns = kdf._internal.data_spark_column_names + [ name_like_string(label) for label in columns_to_add ] kdf = DataFrame( kdf._internal.copy( spark_frame=sdf, index_spark_columns=[ scol_for(sdf, col) for col in kdf._internal.index_spark_column_names ], column_labels=(kdf._internal.column_labels + columns_to_add), data_spark_columns=[scol_for(sdf, col) for col in data_columns], data_dtypes=(kdf._internal.data_dtypes + ([None] * len(columns_to_add))), ) ) kdfs.append(kdf[merged_columns]) if ignore_index: sdfs = [kdf._internal.spark_frame.select(kdf._internal.data_spark_columns) for kdf in kdfs] else: sdfs = [ kdf._internal.spark_frame.select( kdf._internal.index_spark_columns + kdf._internal.data_spark_columns ) for kdf in kdfs ] concatenated = reduce(lambda x, y: x.union(y), sdfs) if ignore_index: index_spark_column_names = [] index_names = [] index_dtypes = [] else: index_spark_column_names = kdfs[0]._internal.index_spark_column_names index_names = kdfs[0]._internal.index_names index_dtypes = kdfs[0]._internal.index_dtypes result_kdf = DataFrame( kdfs[0]._internal.copy( spark_frame=concatenated, index_spark_columns=[scol_for(concatenated, col) for col in index_spark_column_names], index_names=index_names, index_dtypes=index_dtypes, data_spark_columns=[ scol_for(concatenated, col) for col in kdfs[0]._internal.data_spark_column_names ], data_dtypes=None, # TODO: dtypes? ) ) # type: DataFrame if should_return_series: # If all input were Series, we should return Series. if len(series_names) == 1: name = series_names.pop() else: name = None return first_series(result_kdf).rename(name) else: return result_kdf def melt(frame, id_vars=None, value_vars=None, var_name=None, value_name="value") -> DataFrame: return DataFrame.melt(frame, id_vars, value_vars, var_name, value_name) melt.__doc__ = DataFrame.melt.__doc__ def isna(obj): """ Detect missing values for an array-like object. This function takes a scalar or array-like object and indicates whether values are missing (``NaN`` in numeric arrays, ``None`` or ``NaN`` in object arrays). Parameters ---------- obj : scalar or array-like Object to check for null or missing values. Returns ------- bool or array-like of bool For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing. See Also -------- Series.isna : Detect missing values in a Series. Series.isnull : Detect missing values in a Series. DataFrame.isna : Detect missing values in a DataFrame. DataFrame.isnull : Detect missing values in a DataFrame. Index.isna : Detect missing values in an Index. Index.isnull : Detect missing values in an Index. Examples -------- Scalar arguments (including strings) result in a scalar boolean. >>> pp.isna('dog') False >>> pp.isna(np.nan) True ndarrays result in an ndarray of booleans. >>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]]) >>> array array([[ 1., nan, 3.], [ 4., 5., nan]]) >>> pp.isna(array) array([[False, True, False], [False, False, True]]) For Series and DataFrame, the same type is returned, containing booleans. >>> df = pp.DataFrame({'a': ['ant', 'bee', 'cat'], 'b': ['dog', None, 'fly']}) >>> df a b 0 ant dog 1 bee None 2 cat fly >>> pp.isna(df) a b 0 False False 1 False True 2 False False >>> pp.isnull(df.b) 0 False 1 True 2 False Name: b, dtype: bool """ # TODO: Add back: # notnull : Boolean inverse of pandas.isnull. # into the See Also in the docstring. It does not find the method in the latest numpydoc. if isinstance(obj, (DataFrame, Series)): return obj.isnull() else: return pd.isnull(obj) isnull = isna def notna(obj): """ Detect existing (non-missing) values. Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. NA values, such as None or :attr:`numpy.NaN`, get mapped to False values. Returns ------- bool or array-like of bool Mask of bool values for each element that indicates whether an element is not an NA value. See Also -------- isna : Detect missing values for an array-like object. Series.notna : Boolean inverse of Series.isna. DataFrame.notnull : Boolean inverse of DataFrame.isnull. Index.notna : Boolean inverse of Index.isna. Index.notnull : Boolean inverse of Index.isnull. Examples -------- Show which entries in a DataFrame are not NA. >>> df = pp.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker >>> df.notnull() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are not NA. >>> ser = pp.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64 >>> pp.notna(ser) 0 True 1 True 2 False dtype: bool >>> pp.notna(ser.index) True """ # TODO: Add back: # Series.notnull :Boolean inverse of Series.isnull. # DataFrame.notna :Boolean inverse of DataFrame.isna. # into the See Also in the docstring. It does not find the method in the latest numpydoc. if isinstance(obj, (DataFrame, Series)): return obj.notna() else: return pd.notna(obj) notnull = notna def merge( obj, right: "DataFrame", how: str = "inner", on: Union[Any, List[Any], Tuple, List[Tuple]] = None, left_on: Union[Any, List[Any], Tuple, List[Tuple]] = None, right_on: Union[Any, List[Any], Tuple, List[Tuple]] = None, left_index: bool = False, right_index: bool = False, suffixes: Tuple[str, str] = ("_x", "_y"), ) -> "DataFrame": """ Merge DataFrame objects with a database-style join. The index of the resulting DataFrame will be one of the following: - 0...n if no index is used for merging - Index of the left DataFrame if merged only on the index of the right DataFrame - Index of the right DataFrame if merged only on the index of the left DataFrame - All involved indices if merged using the indices of both DataFrames e.g. if `left` with indices (a, x) and `right` with indices (b, x), the result will be an index (x, a, b) Parameters ---------- right: Object to merge with. how: Type of merge to be performed. {'left', 'right', 'outer', 'inner'}, default 'inner' left: use only keys from left frame, similar to a SQL left outer join; preserve key order. right: use only keys from right frame, similar to a SQL right outer join; preserve key order. outer: use union of keys from both frames, similar to a SQL full outer join; sort keys lexicographically. inner: use intersection of keys from both frames, similar to a SQL inner join; preserve the order of the left keys. on: Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. left_on: Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on: Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index: Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels. right_index: Use the index from the right DataFrame as the join key. Same caveats as left_index. suffixes: Suffix to apply to overlapping column names in the left and right side, respectively. Returns ------- DataFrame A DataFrame of the two merged objects. Examples -------- >>> df1 = pp.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}, ... columns=['lkey', 'value']) >>> df2 = pp.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}, ... columns=['rkey', 'value']) >>> df1 lkey value 0 foo 1 1 bar 2 2 baz 3 3 foo 5 >>> df2 rkey value 0 foo 5 1 bar 6 2 baz 7 3 foo 8 Merge df1 and df2 on the lkey and rkey columns. The value columns have the default suffixes, _x and _y, appended. >>> merged = pp.merge(df1, df2, left_on='lkey', right_on='rkey') >>> merged.sort_values(by=['lkey', 'value_x', 'rkey', 'value_y']) # doctest: +ELLIPSIS lkey value_x rkey value_y ...bar 2 bar 6 ...baz 3 baz 7 ...foo 1 foo 5 ...foo 1 foo 8 ...foo 5 foo 5 ...foo 5 foo 8 >>> left_kdf = pp.DataFrame({'A': [1, 2]}) >>> right_kdf = pp.DataFrame({'B': ['x', 'y']}, index=[1, 2]) >>> pp.merge(left_kdf, right_kdf, left_index=True, right_index=True).sort_index() A B 1 2 x >>> pp.merge(left_kdf, right_kdf, left_index=True, right_index=True, how='left').sort_index() A B 0 1 None 1 2 x >>> pp.merge(left_kdf, right_kdf, left_index=True, right_index=True, how='right').sort_index() A B 1 2.0 x 2 NaN y >>> pp.merge(left_kdf, right_kdf, left_index=True, right_index=True, how='outer').sort_index() A B 0 1.0 None 1 2.0 x 2 NaN y Notes ----- As described in #263, joining string columns currently returns None for missing values instead of NaN. """ return obj.merge( right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, suffixes=suffixes, ) def to_numeric(arg): """ Convert argument to a numeric type. Parameters ---------- arg : scalar, list, tuple, 1-d array, or Series Returns ------- ret : numeric if parsing succeeded. See Also -------- DataFrame.astype : Cast argument to a specified dtype. to_datetime : Convert argument to datetime. to_timedelta : Convert argument to timedelta. numpy.ndarray.astype : Cast a numpy array to a specified type. Examples -------- >>> kser = pp.Series(['1.0', '2', '-3']) >>> kser 0 1.0 1 2 2 -3 dtype: object >>> pp.to_numeric(kser) 0 1.0 1 2.0 2 -3.0 dtype: float32 If given Series contains invalid value to cast float, just cast it to `np.nan` >>> kser = pp.Series(['apple', '1.0', '2', '-3']) >>> kser 0 apple 1 1.0 2 2 3 -3 dtype: object >>> pp.to_numeric(kser) 0 NaN 1 1.0 2 2.0 3 -3.0 dtype: float32 Also support for list, tuple, np.array, or a scalar >>> pp.to_numeric(['1.0', '2', '-3']) array([ 1., 2., -3.]) >>> pp.to_numeric(('1.0', '2', '-3')) array([ 1., 2., -3.]) >>> pp.to_numeric(np.array(['1.0', '2', '-3'])) array([ 1., 2., -3.]) >>> pp.to_numeric('1.0') 1.0 """ if isinstance(arg, Series): return arg._with_new_scol(arg.spark.column.cast("float")) else: return pd.to_numeric(arg) def broadcast(obj) -> DataFrame: """ Marks a DataFrame as small enough for use in broadcast joins. Parameters ---------- obj : DataFrame Returns ------- ret : DataFrame with broadcast hint. See Also -------- DataFrame.merge : Merge DataFrame objects with a database-style join. DataFrame.join : Join columns of another DataFrame. DataFrame.update : Modify in place using non-NA values from another DataFrame. DataFrame.hint : Specifies some hint on the current DataFrame. Examples -------- >>> df1 = pp.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [1, 2, 3, 5]}, ... columns=['lkey', 'value']).set_index('lkey') >>> df2 = pp.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'], ... 'value': [5, 6, 7, 8]}, ... columns=['rkey', 'value']).set_index('rkey') >>> merged = df1.merge(pp.broadcast(df2), left_index=True, right_index=True) >>> merged.spark.explain() # doctest: +ELLIPSIS == Physical Plan == ... ...BroadcastHashJoin... ... """ if not isinstance(obj, DataFrame): raise ValueError("Invalid type : expected DataFrame got {}".format(type(obj).__name__)) return DataFrame( obj._internal.with_new_sdf(F.broadcast(obj._internal.resolved_copy.spark_frame)) ) def read_orc( path, columns: Optional[List[str]] = None, index_col: Optional[Union[str, List[str]]] = None, **options ) -> "DataFrame": """ Load an ORC object from the file path, returning a DataFrame. Parameters ---------- path : str The path string storing the ORC file to be read. columns : list, default None If not None, only these columns will be read from the file. index_col : str or list of str, optional, default: None Index column of table in Spark. options : dict All other options passed directly into Spark's data source. Returns ------- DataFrame Examples -------- >>> pp.range(1).to_orc('%s/read_spark_io/data.orc' % path) >>> pp.read_orc('%s/read_spark_io/data.orc' % path, columns=['id']) id 0 0 You can preserve the index in the roundtrip as below. >>> pp.range(1).to_orc('%s/read_spark_io/data.orc' % path, index_col="index") >>> pp.read_orc('%s/read_spark_io/data.orc' % path, columns=['id'], index_col="index") ... # doctest: +NORMALIZE_WHITESPACE id index 0 0 """ if "options" in options and isinstance(options.get("options"), dict) and len(options) == 1: options = options.get("options") # type: ignore kdf = read_spark_io(path, format="orc", index_col=index_col, **options) if columns is not None: kdf_columns = kdf.columns new_columns = list() for column in list(columns): if column in kdf_columns: new_columns.append(column) else: raise ValueError("Unknown column name '{}'".format(column)) kdf = kdf[new_columns] return kdf def _get_index_map( sdf: spark.DataFrame, index_col: Optional[Union[str, List[str]]] = None ) -> Tuple[Optional[List[spark.Column]], Optional[List[Tuple]]]: if index_col is not None: if isinstance(index_col, str): index_col = [index_col] sdf_columns = set(sdf.columns) for col in index_col: if col not in sdf_columns: raise KeyError(col) index_spark_columns = [ scol_for(sdf, col) for col in index_col ] # type: Optional[List[spark.Column]] index_names = [(col,) for col in index_col] # type: Optional[List[Tuple]] else: index_spark_columns = None index_names = None return index_spark_columns, index_names _get_dummies_default_accept_types = (DecimalType, StringType, DateType) _get_dummies_acceptable_types = _get_dummies_default_accept_types + ( ByteType, ShortType, IntegerType, LongType, FloatType, DoubleType, BooleanType, TimestampType, ) def _test(): import os import doctest import shutil import sys import tempfile import uuid from pyspark.sql import SparkSession import pyspark.pandas.namespace os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.namespace.__dict__.copy() globs["pp"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]") .appName("pyspark.pandas.namespace tests") .getOrCreate() ) db_name = "db%s" % str(uuid.uuid4()).replace("-", "") spark.sql("CREATE DATABASE %s" % db_name) globs["db"] = db_name path = tempfile.mkdtemp() globs["path"] = path (failure_count, test_count) = doctest.testmod( pyspark.pandas.namespace, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) shutil.rmtree(path, ignore_errors=True) spark.sql("DROP DATABASE IF EXISTS %s CASCADE" % db_name) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
the-stack_0_10848
""" Read a SAS XPort format file into a Pandas DataFrame. Based on code from Jack Cushman (github.com/jcushman/xport). The file format is defined here: https://support.sas.com/techsup/technote/ts140.pdf """ from collections import abc from datetime import datetime import struct import warnings import numpy as np from pandas.util._decorators import Appender import pandas as pd from pandas.io.common import get_filepath_or_buffer from pandas.io.sas.sasreader import ReaderBase _correct_line1 = ( "HEADER RECORD*******LIBRARY HEADER RECORD!!!!!!!" "000000000000000000000000000000 " ) _correct_header1 = ( "HEADER RECORD*******MEMBER HEADER RECORD!!!!!!!000000000000000001600000000" ) _correct_header2 = ( "HEADER RECORD*******DSCRPTR HEADER RECORD!!!!!!!" "000000000000000000000000000000 " ) _correct_obs_header = ( "HEADER RECORD*******OBS HEADER RECORD!!!!!!!" "000000000000000000000000000000 " ) _fieldkeys = [ "ntype", "nhfun", "field_length", "nvar0", "name", "label", "nform", "nfl", "num_decimals", "nfj", "nfill", "niform", "nifl", "nifd", "npos", "_", ] _base_params_doc = """\ Parameters ---------- filepath_or_buffer : string or file-like object Path to SAS file or object implementing binary read method.""" _params2_doc = """\ index : identifier of index column Identifier of column that should be used as index of the DataFrame. encoding : string Encoding for text data. chunksize : int Read file `chunksize` lines at a time, returns iterator.""" _format_params_doc = """\ format : string File format, only `xport` is currently supported.""" _iterator_doc = """\ iterator : boolean, default False Return XportReader object for reading file incrementally.""" _read_sas_doc = f"""Read a SAS file into a DataFrame. {_base_params_doc} {_format_params_doc} {_params2_doc} {_iterator_doc} Returns ------- DataFrame or XportReader Examples -------- Read a SAS Xport file: >>> df = pd.read_sas('filename.XPT') Read a Xport file in 10,000 line chunks: >>> itr = pd.read_sas('filename.XPT', chunksize=10000) >>> for chunk in itr: >>> do_something(chunk) """ _xport_reader_doc = f"""\ Class for reading SAS Xport files. {_base_params_doc} {_params2_doc} Attributes ---------- member_info : list Contains information about the file fields : list Contains information about the variables in the file """ _read_method_doc = """\ Read observations from SAS Xport file, returning as data frame. Parameters ---------- nrows : int Number of rows to read from data file; if None, read whole file. Returns ------- A DataFrame. """ def _parse_date(datestr: str) -> datetime: """ Given a date in xport format, return Python date. """ try: # e.g. "16FEB11:10:07:55" return datetime.strptime(datestr, "%d%b%y:%H:%M:%S") except ValueError: return pd.NaT def _split_line(s: str, parts): """ Parameters ---------- s: str Fixed-length string to split parts: list of (name, length) pairs Used to break up string, name '_' will be filtered from output. Returns ------- Dict of name:contents of string at given location. """ out = {} start = 0 for name, length in parts: out[name] = s[start : start + length].strip() start += length del out["_"] return out def _handle_truncated_float_vec(vec, nbytes): # This feature is not well documented, but some SAS XPORT files # have 2-7 byte "truncated" floats. To read these truncated # floats, pad them with zeros on the right to make 8 byte floats. # # References: # https://github.com/jcushman/xport/pull/3 # The R "foreign" library if nbytes != 8: vec1 = np.zeros(len(vec), np.dtype("S8")) dtype = np.dtype(f"S{nbytes},S{8 - nbytes}") vec2 = vec1.view(dtype=dtype) vec2["f0"] = vec return vec2 return vec def _parse_float_vec(vec): """ Parse a vector of float values representing IBM 8 byte floats into native 8 byte floats. """ dtype = np.dtype(">u4,>u4") vec1 = vec.view(dtype=dtype) xport1 = vec1["f0"] xport2 = vec1["f1"] # Start by setting first half of ieee number to first half of IBM # number sans exponent ieee1 = xport1 & 0x00FFFFFF # The fraction bit to the left of the binary point in the ieee # format was set and the number was shifted 0, 1, 2, or 3 # places. This will tell us how to adjust the ibm exponent to be a # power of 2 ieee exponent and how to shift the fraction bits to # restore the correct magnitude. shift = np.zeros(len(vec), dtype=np.uint8) shift[np.where(xport1 & 0x00200000)] = 1 shift[np.where(xport1 & 0x00400000)] = 2 shift[np.where(xport1 & 0x00800000)] = 3 # shift the ieee number down the correct number of places then # set the second half of the ieee number to be the second half # of the ibm number shifted appropriately, ored with the bits # from the first half that would have been shifted in if we # could shift a double. All we are worried about are the low # order 3 bits of the first half since we're only shifting by # 1, 2, or 3. ieee1 >>= shift ieee2 = (xport2 >> shift) | ((xport1 & 0x00000007) << (29 + (3 - shift))) # clear the 1 bit to the left of the binary point ieee1 &= 0xFFEFFFFF # set the exponent of the ieee number to be the actual exponent # plus the shift count + 1023. Or this into the first half of the # ieee number. The ibm exponent is excess 64 but is adjusted by 65 # since during conversion to ibm format the exponent is # incremented by 1 and the fraction bits left 4 positions to the # right of the radix point. (had to add >> 24 because C treats & # 0x7f as 0x7f000000 and Python doesn't) ieee1 |= ((((((xport1 >> 24) & 0x7F) - 65) << 2) + shift + 1023) << 20) | ( xport1 & 0x80000000 ) ieee = np.empty((len(ieee1),), dtype=">u4,>u4") ieee["f0"] = ieee1 ieee["f1"] = ieee2 ieee = ieee.view(dtype=">f8") ieee = ieee.astype("f8") return ieee class XportReader(ReaderBase, abc.Iterator): __doc__ = _xport_reader_doc def __init__( self, filepath_or_buffer, index=None, encoding="ISO-8859-1", chunksize=None ): self._encoding = encoding self._lines_read = 0 self._index = index self._chunksize = chunksize if isinstance(filepath_or_buffer, str): filepath_or_buffer = get_filepath_or_buffer( filepath_or_buffer, encoding=encoding ).filepath_or_buffer if isinstance(filepath_or_buffer, (str, bytes)): self.filepath_or_buffer = open(filepath_or_buffer, "rb") else: # Since xport files include non-text byte sequences, xport files # should already be opened in binary mode in Python 3. self.filepath_or_buffer = filepath_or_buffer self._read_header() def close(self): self.filepath_or_buffer.close() def _get_row(self): return self.filepath_or_buffer.read(80).decode() def _read_header(self): self.filepath_or_buffer.seek(0) # read file header line1 = self._get_row() if line1 != _correct_line1: self.close() raise ValueError("Header record is not an XPORT file.") line2 = self._get_row() fif = [["prefix", 24], ["version", 8], ["OS", 8], ["_", 24], ["created", 16]] file_info = _split_line(line2, fif) if file_info["prefix"] != "SAS SAS SASLIB": self.close() raise ValueError("Header record has invalid prefix.") file_info["created"] = _parse_date(file_info["created"]) self.file_info = file_info line3 = self._get_row() file_info["modified"] = _parse_date(line3[:16]) # read member header header1 = self._get_row() header2 = self._get_row() headflag1 = header1.startswith(_correct_header1) headflag2 = header2 == _correct_header2 if not (headflag1 and headflag2): self.close() raise ValueError("Member header not found") # usually 140, could be 135 fieldnamelength = int(header1[-5:-2]) # member info mem = [ ["prefix", 8], ["set_name", 8], ["sasdata", 8], ["version", 8], ["OS", 8], ["_", 24], ["created", 16], ] member_info = _split_line(self._get_row(), mem) mem = [["modified", 16], ["_", 16], ["label", 40], ["type", 8]] member_info.update(_split_line(self._get_row(), mem)) member_info["modified"] = _parse_date(member_info["modified"]) member_info["created"] = _parse_date(member_info["created"]) self.member_info = member_info # read field names types = {1: "numeric", 2: "char"} fieldcount = int(self._get_row()[54:58]) datalength = fieldnamelength * fieldcount # round up to nearest 80 if datalength % 80: datalength += 80 - datalength % 80 fielddata = self.filepath_or_buffer.read(datalength) fields = [] obs_length = 0 while len(fielddata) >= fieldnamelength: # pull data for one field field, fielddata = ( fielddata[:fieldnamelength], fielddata[fieldnamelength:], ) # rest at end gets ignored, so if field is short, pad out # to match struct pattern below field = field.ljust(140) fieldstruct = struct.unpack(">hhhh8s40s8shhh2s8shhl52s", field) field = dict(zip(_fieldkeys, fieldstruct)) del field["_"] field["ntype"] = types[field["ntype"]] fl = field["field_length"] if field["ntype"] == "numeric" and ((fl < 2) or (fl > 8)): self.close() msg = f"Floating field width {fl} is not between 2 and 8." raise TypeError(msg) for k, v in field.items(): try: field[k] = v.strip() except AttributeError: pass obs_length += field["field_length"] fields += [field] header = self._get_row() if not header == _correct_obs_header: self.close() raise ValueError("Observation header not found.") self.fields = fields self.record_length = obs_length self.record_start = self.filepath_or_buffer.tell() self.nobs = self._record_count() self.columns = [x["name"].decode() for x in self.fields] # Setup the dtype. dtypel = [ ("s" + str(i), "S" + str(field["field_length"])) for i, field in enumerate(self.fields) ] dtype = np.dtype(dtypel) self._dtype = dtype def __next__(self): return self.read(nrows=self._chunksize or 1) def _record_count(self) -> int: """ Get number of records in file. This is maybe suboptimal because we have to seek to the end of the file. Side effect: returns file position to record_start. """ self.filepath_or_buffer.seek(0, 2) total_records_length = self.filepath_or_buffer.tell() - self.record_start if total_records_length % 80 != 0: warnings.warn("xport file may be corrupted") if self.record_length > 80: self.filepath_or_buffer.seek(self.record_start) return total_records_length // self.record_length self.filepath_or_buffer.seek(-80, 2) last_card = self.filepath_or_buffer.read(80) last_card = np.frombuffer(last_card, dtype=np.uint64) # 8 byte blank ix = np.flatnonzero(last_card == 2314885530818453536) if len(ix) == 0: tail_pad = 0 else: tail_pad = 8 * len(ix) self.filepath_or_buffer.seek(self.record_start) return (total_records_length - tail_pad) // self.record_length def get_chunk(self, size=None): """ Reads lines from Xport file and returns as dataframe Parameters ---------- size : int, defaults to None Number of lines to read. If None, reads whole file. Returns ------- DataFrame """ if size is None: size = self._chunksize return self.read(nrows=size) def _missing_double(self, vec): v = vec.view(dtype="u1,u1,u2,u4") miss = (v["f1"] == 0) & (v["f2"] == 0) & (v["f3"] == 0) miss1 = ( ((v["f0"] >= 0x41) & (v["f0"] <= 0x5A)) | (v["f0"] == 0x5F) | (v["f0"] == 0x2E) ) miss &= miss1 return miss @Appender(_read_method_doc) def read(self, nrows=None): if nrows is None: nrows = self.nobs read_lines = min(nrows, self.nobs - self._lines_read) read_len = read_lines * self.record_length if read_len <= 0: self.close() raise StopIteration raw = self.filepath_or_buffer.read(read_len) data = np.frombuffer(raw, dtype=self._dtype, count=read_lines) df = pd.DataFrame(index=range(read_lines)) for j, x in enumerate(self.columns): vec = data["s" + str(j)] ntype = self.fields[j]["ntype"] if ntype == "numeric": vec = _handle_truncated_float_vec(vec, self.fields[j]["field_length"]) miss = self._missing_double(vec) v = _parse_float_vec(vec) v[miss] = np.nan elif self.fields[j]["ntype"] == "char": v = [y.rstrip() for y in vec] if self._encoding is not None: v = [y.decode(self._encoding) for y in v] df[x] = v if self._index is None: df.index = range(self._lines_read, self._lines_read + read_lines) else: df = df.set_index(self._index) self._lines_read += read_lines return df
the-stack_0_10851
#!/usr/bin/python3 # -*- coding: utf-8 -*- """Day 5 of AdventOfCode.com: regex matching""" import re import os class RegexMatchCounter(object): """This class counts strings which satisfy all specified regular expressions """ def __init__(self, regex_strings): """The constructor needs a list of valid regular expressions. :param regex_strings: list of valid regular expressions to be matched""" self.__regexes = [re.compile(regex) for regex in regex_strings] self.__count = 0 def check(self, target): """This method checks its string argument against regexes and, if all of them matched, increases the counter :param target: string to be matched """ if all(reg.search(target) is not None for reg in self.__regexes): self.__count += 1 def count(self): """:return: the current value of how many strings have matched regexes """ return self.__count matchers = [ RegexMatchCounter([r'([aeiou].*){3}', r'(.)\1', r'^((?!(ab)|(cd)|(pq)|(xy)).)*$']), RegexMatchCounter([r'(..).*\1', r'(.).\1']) ] with open(os.path.dirname(os.path.realpath('__file__')) + "/input/day5.txt", "r") as datafile: for line in datafile: for matcher in matchers: matcher.check(line) for matcher in matchers: print(matcher.count())
the-stack_0_10852
from ldpc.encoder.base_encoder import Encoder import numpy.typing as npt import numpy as np from bitstring import Bits from ldpc.utils.custom_exceptions import IncorrectLength from ldpc.utils.qc_format import QCFile import os from numpy.typing import NDArray from ldpc.wifi_spec_codes import WiFiSpecCode from typing import Any class EncoderWiFi(Encoder): """Encode messages according to the codes in the IEEE802.11n standard""" _spec_base_path: str = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'code_specs', 'ieee802.11') def __init__(self, spec: WiFiSpecCode) -> None: """ :param spec: specify which code from the spec we use """ self.spec = spec qc_file = QCFile.from_file(os.path.join(self._spec_base_path, spec.name + ".qc")) self.h = qc_file.to_array() self.m, n = self.h.shape k = n - self.m self.z = qc_file.z self.block_structure = qc_file.block_structure super().__init__(k, n) def encode(self, information_bits: Bits) -> Bits: """Based on: Efficient encoding of IEEE 802.11n LDPC codes, https://www.researchgate.net/publication/3389450_Efficient_encoding_of_IEEE_80211n_LDPC_codes """ if len(information_bits) != self.k: raise IncorrectLength shifted_messages = self._shifted_messages(information_bits) parities: npt.NDArray[np.int_] = np.zeros((self.m//self.z, self.z), dtype=np.int_) # special parts see article parities[0, :] = np.sum(shifted_messages, axis=0) % 2 # find first batch of z parity bits parities[1, :] = (shifted_messages[0, :] + np.roll(parities[0, :], -1)) % 2 # find second set of z parity bits parities[-1, :] = (shifted_messages[-1, :] + np.roll(parities[0, :], -1)) % 2 # find last set of z parity bits for idx in range(1, (self.m//self.z)-2): # -1 needed to avoid exceeding memory limits due to idx+1 below. # -2 needed as bottom row is a special case. if self.block_structure[idx][self.k // self.z] >= 0: # special treatment of x-th row, see article parities[idx+1, :] = (parities[idx, :] + shifted_messages[idx, :] + parities[0, :]) % 2 else: parities[idx+1, :] = (parities[idx, :] + shifted_messages[idx, :]) % 2 return information_bits + Bits(np.ravel(parities)) def _shifted_messages(self, information_bits: Bits) -> NDArray[np.int_]: # break message bits into groups (rows) of Z bits. Each row is a subset of z bits, overall k message bits bit_blocks: npt.NDArray[np.int_] = np.array(information_bits, dtype=np.int_).reshape((self.k // self.z, self.z)) # find shifted messages (termed lambda_i in article) shifted_messages: npt.NDArray[np.int_] = np.zeros((self.m // self.z, self.z), dtype=np.int_) # each row is a sum of circular shifts of # message bits (some lambda_i in article). One row per block of h. for i in range(self.m // self.z): for j in range(self.k // self.z): if self.block_structure[i][j] >= 0: # zero blocks don't contribute to parity bits # multiply by translation reduces to shift. vec: npt.NDArray[Any] = np.roll(bit_blocks[j, :], -self.block_structure[i][j]) shifted_messages[i, :] = np.logical_xor(shifted_messages[i, :], vec) # xor as sum mod 2 return shifted_messages
the-stack_0_10853
# Basic python import numpy as np import scipy as scp from scipy.stats import gamma from scipy.stats import mode from scipy.stats import itemfreq from scipy.stats import mode import pandas as pd import random # Parallelization import multiprocessing as mp from multiprocessing import Process from multiprocessing import Pool import psutil import argparse # System utilities from datetime import datetime import time import os import pickle import uuid import glob import gc # My own code import kde_class #import ddm_data_simulation as ddm_simulator import boundary_functions as bf from cdwiener import batch_fptd # Plotting import matplotlib.pyplot as plt # /users/afengler/data/kde/full_ddm/training_data_binned_0_nbins_0_n_20000/full_ddm_nchoices_2_train_data_binned_0_nbins_0_n_20000_213.pickle # /users/afengler/data/kde/full_ddm/training_data_binned_0_nbins_0_n_20000/simulator_statistics_213.pickle def filter_simulations_fast(base_simulation_folder = '', file_name_prefix = '', file_id = 0, method_params = [], param_ranges = 'none', # either 'none' or dict that specifies allowed ranges for parameters filters = {'mode': 20, # != (checking if mode is max_rt) 'choice_cnt': 0, # > (checking that each choice receive at least 10 samples in simulator) 'mean_rt': 15, # < (checking that mean_rt is smaller than specified value 'std': 0, # > (checking that std is positive for each choice) 'mode_cnt_rel': 0.5 # < (checking that mode does not receive more than a proportion of samples for each choice) } ): file_ = pickle.load(open( base_simulation_folder + file_name_prefix + '_' + str(file_id) + '.pickle', 'rb' )) init_cols = method_params['param_names'] + method_params['boundary_param_names'] n_datasets = file_[1].shape[0] # Initialize data frame sim_stat_data = pd.DataFrame(file_[0], columns = init_cols) # MAX RT BY SIMULATION: TEST SHOULD BE CONSISTENT n_simulations = file_[1].shape[1] #['n_samples'] # TODO: BASE SIMULATIONS FILES NEED TO HOLD THE N-CHOICES PROPERTY DIRECTLY # TODO RESOLVED n_choices = len(file_[2]['possible_choices']) #n_choices = len(np.unique(file_[1][0, :, 1])) # ['n_choices'] # TODO: BASE SIMULATIONS NEED TO HOLD THE UNIQUE CHOICES PROPERTY DIRECTLY # RIGHT NOW THIS CODE USES THE DATA ITSELF TO RECOVER THE POSSIBLE CHOICES BUT THIS ALLOWS FOR READING IN N CHOICES < REAL N CHOICES # TODO RESOLVED choices = file_[2]['possible_choices'] #choices = np.unique(file_[1][0, :, 1]) #n_choices = len(file_[0][2]['possible_choices']) #choices = file_[0][2]['possible_choices'] max_rts = np.zeros((n_datasets, 1)) max_t = file_[2]['max_t'] sim_stat_data['max_t'] = max_t #max_ts[:] = max_t max_ts = np.zeros((n_datasets, 1)) stds = np.zeros((n_datasets, n_choices)) mean_rts = np.zeros((n_datasets, n_choices)) choice_cnts = np.zeros((n_datasets, n_choices)) modes = np.zeros((n_datasets, n_choices)) mode_cnts = np.zeros((n_datasets, n_choices)) #sim_stat_data = [None] * n_datasets cnt = 0 for i in range(n_datasets): max_rts[i] = (file_[1][i, :, 0].max().round(2)) max_ts[i] = max_t #max_ts[i] = (file_[1][i][2]['max_t']) # Standard deviation of reaction times choice_cnt = 0 for choice_tmp in choices: tmp_rts = file_[1][i, :, 0][file_[1][i, :, 1] == choice_tmp] n_c = len(tmp_rts) choice_cnts[cnt, choice_cnt] = n_c mode_tmp = mode(tmp_rts) if n_c > 0: mean_rts[cnt, choice_cnt] = np.mean(tmp_rts) stds[cnt, choice_cnt] = np.std(tmp_rts) modes[cnt, choice_cnt] = float(mode_tmp[0]) mode_cnts[cnt, choice_cnt] = int(mode_tmp[1]) else: mean_rts[cnt, choice_cnt] = - 1 stds[cnt, choice_cnt] = - 1 modes[cnt, choice_cnt] = - 1 mode_cnts[cnt, choice_cnt] = 0 choice_cnt += 1 # Basic data column # TODO: Put this back in respecting new input format #sim_stat_data[cnt] = [file_[i][2][key] for key in list(file_[i][2].keys())] cnt += 1 if cnt % 1000 == 0: print(cnt) #sim_stat_data = pd.DataFrame(sim_stat_data, columns = file_[0][2].keys()) # Compute some more columns for i in range(0, n_choices, 1): sim_stat_data['mean_rt_' + str(i)] = mean_rts[:, i] sim_stat_data['std_' + str(i)] = stds[:, i] sim_stat_data['choice_cnt_' + str(i)] = choice_cnts[:,i] sim_stat_data['mode_' + str(i)] = modes[:, i] sim_stat_data['mode_cnt_' + str(i)] = mode_cnts[:, i] # Derived Columns sim_stat_data['choice_prop_' + str(i)] = sim_stat_data['choice_cnt_' + str(i)] / n_simulations sim_stat_data['mode_cnt_rel_' + str(i)] = sim_stat_data['mode_cnt_' + str(i)] / sim_stat_data['choice_cnt_' + str(i)] # Clean-up sim_stat_data = sim_stat_data.round(decimals = 2) sim_stat_data = sim_stat_data.fillna(value = 0) # check that max_t is consistently the same value across simulations #assert len(np.unique(max_ts)) == 1 # Now filtering # FILTER 1: PARAMETER RANGES if param_ranges == 'none': keep = sim_stat_data['max_t'] >= 0 # should return a vector of all true's else: cnt = 0 for param in param_ranges.keys(): if cnt == 0: keep = (sim_stat_data[param] >= param_ranges[param][0]) & (sim_stat_data[param] <= param_ranges[param][1]) else: keep = (keep) & \ (sim_stat_data[param] >= param_ranges[param][0]) & (sim_stat_data[param] <= param_ranges[param][1]) cnt += 1 # FILTER 2: SANITY CHECKS (Filter-bank) for i in range(0, n_choices, 1): keep = (keep) & \ (sim_stat_data['mode_' + str(i)] != filters['mode']) & \ (sim_stat_data['choice_cnt_' + str(i)] > filters['choice_cnt']) & \ (sim_stat_data['mean_rt_' + str(i)] < filters['mean_rt']) & \ (sim_stat_data['std_' + str(i)] > filters['std']) & \ (sim_stat_data['mode_cnt_rel_' + str(i)] < filters['mode_cnt_rel']) # Add keep_file column to sim_stat_data['keep_file'] = keep # Write files: #pickle.dump(list(sim_stat_data.loc[keep, 'file']), open(base_simulation_folder + '/keep_files.pickle', 'wb')) pickle.dump(sim_stat_data, open(base_simulation_folder + '/simulator_statistics' + '_' + str(file_id) + '.pickle', 'wb')) return sim_stat_data def make_kde_data(data = [], metadata = [], n_kde = 100, n_unif_up = 100, n_unif_down = 100, idx = 0): # def make_kde_data(n_kde = 100, n_unif_up = 100, n_unif_down = 100, idx = 0): # meta_data = file_[2] # data = file_[1][idx, :, :] out = np.zeros((n_kde + n_unif_up + n_unif_down, 3)) tmp_kde = kde_class.logkde((data[:, 0], data[:, 1], metadata)) # Get kde part samples_kde = tmp_kde.kde_sample(n_samples = n_kde) likelihoods_kde = tmp_kde.kde_eval(data = samples_kde).ravel() out[:n_kde, 0] = samples_kde[0].ravel() out[:n_kde, 1] = samples_kde[1].ravel() out[:n_kde, 2] = likelihoods_kde # Get positive uniform part: choice_tmp = np.random.choice(metadata['possible_choices'], size = n_unif_up) if metadata['max_t'] < 100: rt_tmp = np.random.uniform(low = 0.0001, high = metadata['max_t'], size = n_unif_up) else: rt_tmp = np.random.uniform(low = 0.0001, high = 100, size = n_unif_up) likelihoods_unif = tmp_kde.kde_eval(data = (rt_tmp, choice_tmp)).ravel() out[n_kde:(n_kde + n_unif_up), 0] = rt_tmp out[n_kde:(n_kde + n_unif_up), 1] = choice_tmp out[n_kde:(n_kde + n_unif_up), 2] = likelihoods_unif # Get negative uniform part: choice_tmp = np.random.choice(metadata['possible_choices'], #['possible_choices'], size = n_unif_down) rt_tmp = np.random.uniform(low = - 1.0, high = 0.0001, size = n_unif_down) out[(n_kde + n_unif_up):, 0] = rt_tmp out[(n_kde + n_unif_up):, 1] = choice_tmp out[(n_kde + n_unif_up):, 2] = -66.77497 if idx % 10 == 0: print(idx) return out.astype(np.float) def make_fptd_data(data = [], params = [], metadata = [], n_kde = 100, n_unif_up = 100, n_unif_down = 100, idx = 0): out = np.zeros((n_kde + n_unif_up + n_unif_down, 3)) tmp_kde = kde_class.logkde((data[:, 0], data[:, 1], metadata)) # Get kde part samples_kde = tmp_kde.kde_sample(n_samples = n_kde) out[:n_kde, 0] = samples_kde[0].ravel() out[:n_kde, 1] = samples_kde[1].ravel() # If we have 4 parameters we know we have the ddm --> use default sdv = 0 if len(params) == 4: out[:n_kde, 2] = np.log(batch_fptd(out[:n_kde, 0] * out[:n_kde, 1] * ( -1), params[0], params[1] * 2, params[2], params[3])) # If we have 5 parameters but analytic we know we need to use the ddm_sdv --> supply sdv value to batch_fptd if len(params) == 5: out[:n_kde, 2] = np.log(batch_fptd(out[:n_kde, 0] * out[:n_kde, 1] * ( -1), params[0], params[1] * 2, params[2], params[3], params[4])) # Get positive uniform part: choice_tmp = np.random.choice(metadata['possible_choices'], size = n_unif_up) if metadata['max_t'] < 100: rt_tmp = np.random.uniform(low = 0.0001, high = metadata['max_t'], size = n_unif_up) else: rt_tmp = np.random.uniform(low = 0.0001, high = 100, size = n_unif_up) likelihoods_unif = tmp_kde.kde_eval(data = (rt_tmp, choice_tmp)).ravel() out[n_kde:(n_kde + n_unif_up), 0] = rt_tmp out[n_kde:(n_kde + n_unif_up), 1] = choice_tmp # If we have 4 parameters we know we have the ddm --> use default sdv = 0 if len(params) == 4: out[n_kde:(n_kde + n_unif_up), 2] = np.log(batch_fptd(out[n_kde:(n_kde + n_unif_up), 0] * out[n_kde:(n_kde + n_unif_up), 1] * (- 1), params[0], params[1] * 2, params[2], params[3])) # If we have 5 parameters but analytic we know we need to use the ddm_sdv --> supply sdv value to batch_fptd if len(params) == 5: out[n_kde:(n_kde + n_unif_up), 2] = np.log(batch_fptd(out[n_kde:(n_kde + n_unif_up), 0] * out[n_kde:(n_kde + n_unif_up), 1] * (- 1), params[0], params[1] * 2, params[2], params[3], params[4])) # Get negative uniform part: choice_tmp = np.random.choice(metadata['possible_choices'], size = n_unif_down) rt_tmp = np.random.uniform(low = - 1.0, high = 0.0001, size = n_unif_down) out[(n_kde + n_unif_up):, 0] = rt_tmp out[(n_kde + n_unif_up):, 1] = choice_tmp out[(n_kde + n_unif_up):, 2] = -66.77497 if idx % 10 == 0: print(idx) return out.astype(np.float) # We should be able to parallelize this ! def kde_from_simulations_fast_parallel(base_simulation_folder = '', file_name_prefix = '', file_id = 1, target_folder = '', n_by_param = 3000, mixture_p = [0.8, 0.1, 0.1], process_params = ['v', 'a', 'w', 'c1', 'c2'], print_info = False, n_processes = 'all', analytic = False): # Parallel if n_processes == 'all': n_cpus = psutil.cpu_count(logical = False) else: n_cpus = n_processes print('Number of cpus: ') print(n_cpus) file_ = pickle.load(open( base_simulation_folder + '/' + file_name_prefix + '_' + str(file_id) + '.pickle', 'rb' ) ) stat_ = pickle.load(open( base_simulation_folder + '/simulator_statistics' + '_' + str(file_id) + '.pickle', 'rb' ) ) # Initialize dataframe # Initializations n_kde = int(n_by_param * mixture_p[0]) n_unif_down = int(n_by_param * mixture_p[1]) n_unif_up = int(n_by_param * mixture_p[2]) n_kde = n_kde + (n_by_param - n_kde - n_unif_up - n_unif_down) # correct n_kde if sum != n_by_param # Add possible choices to file_[2] which is the meta data for the simulator (expected when loaded the kde class) # TODO: THIS INFORMATION SHOULD BE INCLUDED AS META-DATA INTO THE BASE SIMULATOIN FILES file_[2]['possible_choices'] = np.unique([-1, 1]) #file_[2]['possible_choices'] = np.unique(file_[1][0, :, 1]) file_[2]['possible_choices'].sort() # CONTINUE HERE # Preparation loop -------------------------------------------------------------------- #s_id_kde = np.sum(stat_['keep_file']) * (n_unif_down + n_unif_up) cnt = 0 starmap_iterator = () tmp_sim_data_ok = 0 results = [] for i in range(file_[1].shape[0]): if stat_['keep_file'][i]: # Don't remember what this part is doing.... if tmp_sim_data_ok: pass else: tmp_sim_data = file_[1][i] tmp_sim_data_ok = 1 lb = cnt * (n_unif_down + n_unif_up + n_kde) # Allocate to starmap tuple for mixture component 3 if analytic: starmap_iterator += ((file_[1][i, :, :].copy(), file_[0][i, :].copy(), file_[2].copy(), n_kde, n_unif_up, n_unif_down, cnt), ) else: starmap_iterator += ((file_[1][i, :, :], file_[2], n_kde, n_unif_up, n_unif_down, cnt), ) cnt += 1 if (cnt % 100 == 0) or (i == file_[1].shape[0] - 1): with Pool(processes = n_cpus, maxtasksperchild = 200) as pool: results.append(np.array(pool.starmap(make_kde_data, starmap_iterator)).reshape((-1, 3))) starmap_iterator = () print(i, 'arguments generated') if not stat_['keep_file'][i]: if (i == (file_[1].shape[0] - 1)) and len(starmap_iterator) > 0: with Pool(processes = n_cpus, maxtasksperchild = 200) as pool: results.append(np.array(pool.starmap(make_kde_data, starmap_iterator)).reshape((-1, 3))) starmap_iterator = () print(i, 'last dataset was not kept') my_columns = process_params + ['rt', 'choice', 'log_l'] data = pd.DataFrame(np.zeros((np.sum(stat_['keep_file']) * n_by_param, len(my_columns))), columns = my_columns) data.values[:, -3:] = np.concatenate(results) # Filling in training data frame --------------------------------------------------- cnt = 0 tmp_sim_data_ok = 0 for i in range(file_[1].shape[0]): if stat_['keep_file'][i]: # Don't remember what this part is doing.... if tmp_sim_data_ok: pass else: tmp_sim_data = file_[1][i] tmp_sim_data_ok = 1 lb = cnt * (n_unif_down + n_unif_up + n_kde) # Make empty dataframe of appropriate size p_cnt = 0 for param in process_params: data.iloc[(lb):(lb + n_unif_down + n_unif_up + n_kde), my_columns.index(param)] = file_[0][i, p_cnt] p_cnt += 1 cnt += 1 # ---------------------------------------------------------------------------------- # Store data print('writing data to file: ', target_folder + '/data_' + str(file_id) + '.pickle') pickle.dump(data.values, open(target_folder + '/data_' + str(file_id) + '.pickle', 'wb'), protocol = 4) #data.to_pickle(target_folder + '/data_' + str(file_id) + '.pickle' , protocol = 4) # Write metafile if it doesn't exist already # Hack for now: Just copy one of the base simulations files over if os.path.isfile(target_folder + '/meta_data.pickle'): pass else: pickle.dump(tmp_sim_data, open(target_folder + '/meta_data.pickle', 'wb') ) return 0 #data # UNUSED FROM PREV FUNCTION # Garbage collection before starting pool: # del file_ # gc.collect() # if analytic: # with Pool(processes = n_cpus, maxtasksperchild = 200) as pool: # #result = np.array(pool.starmap(make_fptd_data, starmap_iterator)) #.reshape((-1, 3)) # result = pool.starmap(make_fptd_data, starmap_iterator) # else: # with Pool(processes = n_cpus, maxtasksperchild = 200) as pool: # #result = np.array(pool.starmap(make_kde_data, starmap_iterator)) #.reshape((-1, 3)) # result = pool.starmap(make_kde_data, starmap_iterator) # result = np.array(result).reshape((-1, 3)) # Make dataframe to save # Initialize dataframe def kde_from_simulations_fast(base_simulation_folder = '', file_name_prefix = '', file_id = 1, target_folder = '', n_by_param = 3000, mixture_p = [0.8, 0.1, 0.1], process_params = ['v', 'a', 'w', 'c1', 'c2'], print_info = False ): file_ = pickle.load(open( base_simulation_folder + '/' + file_name_prefix + '_' + str(file_id) + '.pickle', 'rb' ) ) stat_ = pickle.load(open( base_simulation_folder + '/simulator_statistics' + '_' + str(file_id) + '.pickle', 'rb' ) ) # Initialize dataframe my_columns = process_params + ['rt', 'choice', 'log_l'] data = pd.DataFrame(np.zeros((np.sum(stat_['keep_file']) * n_by_param, len(my_columns))), columns = my_columns) n_kde = int(n_by_param * mixture_p[0]) n_unif_down = int(n_by_param * mixture_p[1]) n_unif_up = int(n_by_param * mixture_p[2]) n_kde = n_kde + (n_by_param - n_kde - n_unif_up - n_unif_down) # correct n_kde if sum != n_by_param # Add possible choices to file_[2] which is the meta data for the simulator (expected when loaded the kde class) # TODO: THIS INFORMATION SHOULD BE INCLUDED AS META-DATA INTO THE BASE SIMULATOIN FILES file_[2]['possible_choices'] = np.unique([-1,1]) #file_[2]['possible_choices'] = np.unique(file_[1][0, :, 1]) file_[2]['possible_choices'].sort() # CONTINUE HERE # Main while loop -------------------------------------------------------------------- #row_cnt = 0 cnt = 0 for i in range(file_[1].shape[0]): if stat_['keep_file'][i]: # Read in simulator file tmp_sim_data = file_[1][i] lb = cnt * n_by_param # Make empty dataframe of appropriate size p_cnt = 0 for param in process_params: data.iloc[(lb):(lb + n_by_param), my_columns.index(param)] = file_[0][i, p_cnt] #tmp_sim_data[2][param] p_cnt += 1 # MIXTURE COMPONENT 1: Get simulated data from kde ------------------------------- tmp_kde = kde_class.logkde((file_[1][i, :, 0], file_[1][i, :, 1], file_[2])) #[tmp_sim_data) tmp_kde_samples = tmp_kde.kde_sample(n_samples = n_kde) data.iloc[lb:(lb + n_kde), my_columns.index('rt')] = tmp_kde_samples[0].ravel() data.iloc[lb:(lb + n_kde), my_columns.index('choice')] = tmp_kde_samples[1].ravel() data.iloc[lb:(lb + n_kde), my_columns.index('log_l')] = tmp_kde.kde_eval(data = tmp_kde_samples).ravel() # -------------------------------------------------------------------------------- # MIXTURE COMPONENT 2: Negative uniform part ------------------------------------- choice_tmp = np.random.choice(file_[2]['possible_choices'], #['possible_choices'], size = n_unif_down) rt_tmp = np.random.uniform(low = - 1, high = 0.0001, size = n_unif_down) data.iloc[(lb + n_kde):(lb + n_kde + n_unif_down), my_columns.index('rt')] = rt_tmp data.iloc[(lb + n_kde):(lb + n_kde + n_unif_down), my_columns.index('choice')] = choice_tmp data.iloc[(lb + n_kde):(lb + n_kde + n_unif_down), my_columns.index('log_l')] = -66.77497 # the number corresponds to log(1e-29) # --------------------------------------------------------------------------------- # MIXTURE COMPONENT 3: Positive uniform part -------------------------------------- choice_tmp = np.random.choice(file_[2]['possible_choices'], size = n_unif_up) if file_[2]['max_t'] < 100: rt_tmp = np.random.uniform(low = 0.0001, high = file_[2]['max_t'], size = n_unif_up) else: rt_tmp = np.random.uniform(low = 0.0001, high = 100, size = n_unif_up) data.iloc[(lb + n_kde + n_unif_down):(lb + n_by_param), my_columns.index('rt')] = rt_tmp data.iloc[(lb + n_kde + n_unif_down):(lb + n_by_param), my_columns.index('choice')] = choice_tmp data.iloc[(lb + n_kde + n_unif_down):(lb + n_by_param), my_columns.index('log_l')] = tmp_kde.kde_eval(data = (rt_tmp, choice_tmp)) # ---------------------------------------------------------------------------------- cnt += 1 if i % 10 == 0: print(i, 'kdes generated') # ----------------------------------------------------------------------------------- # Store data print('writing data to file: ', target_folder + '/data_' + str(file_id) + '.pickle') pickle.dump(data.values, open(target_folder + '/data_' + str(file_id) + '.pickle', 'wb'), protocol = 4) # Write metafile if it doesn't exist already # Hack for now: Just copy one of the base simulations files over if os.path.isfile(target_folder + '/meta_data.pickle'): pass else: pickle.dump(tmp_sim_data, open(target_folder + '/meta_data.pickle', 'wb') ) return data def kde_load_data_new(path = '', file_id_list = '', prelog_cutoff_low = 1e-29, prelog_cutoff_high = 100, n_samples_by_dataset = 10000000, return_log = True, make_split = True, val_p = 0.01): # Read in two datasets to get meta data for the subsequent print('Reading in initial dataset') tmp_data = np.load(path + file_id_list[0], allow_pickle = True) # Collect some meta data n_files = len(file_id_list) print('n_files: ', n_files) print('n_samples_by_dataset: ', n_samples_by_dataset) # Allocate memory for data print('Allocating data arrays') features = np.zeros((n_files * n_samples_by_dataset, tmp_data.shape[1] - 1)) labels = np.zeros((n_files * n_samples_by_dataset, 1)) # Read in data of initialization files cnt_samples = tmp_data.shape[0] features[:cnt_samples, :] = tmp_data[:, :-1] labels[:cnt_samples, 0] = tmp_data[:, -1] # Read in remaining files into preallocated np.array for i in range(1, n_files, 1): tmp_data = np.load(path + file_id_list[i], allow_pickle = True) n_rows_tmp = tmp_data.shape[0] features[(cnt_samples): (cnt_samples + n_rows_tmp), :] = tmp_data[:, :-1] labels[(cnt_samples): (cnt_samples + n_rows_tmp), 0] = tmp_data[:, -1] cnt_samples += n_rows_tmp print(i, ' files processed') features.resize((cnt_samples, features.shape[1]), refcheck = False) labels.resize((cnt_samples, labels.shape[1]), refcheck = False) print('new n rows features: ', features.shape[0]) print('new n rows labels: ', labels.shape[0]) if prelog_cutoff_low != 'none': labels[labels < np.log(prelog_cutoff_low)] = np.log(prelog_cutoff_low) if prelog_cutoff_high != 'none': labels[labels > np.log(prelog_cutoff_high)] = np.log(prelog_cutoff_high) if return_log == False: labels = np.exp(labels) if make_split: # Making train test split print('Making train test split...') train_idx = np.random.choice(a = [False, True], size = cnt_samples, p = [val_p, 1 - val_p]) test_idx = np.invert(train_idx) return ((features[train_idx, :], labels[train_idx, :]), (features[test_idx, :], labels[test_idx, :])) else: return features, labels
the-stack_0_10855
"""FragmentVC model architecture.""" from typing import Tuple, List, Optional import torch.nn as nn import torch.nn.functional as F from torch import Tensor from .convolutional_transformer import Smoother, Extractor class FragmentVC(nn.Module): """ FragmentVC uses Wav2Vec feature of the source speaker to query and attend on mel spectrogram of the target speaker. """ def __init__(self, d_model=512): super().__init__() self.unet = UnetBlock(d_model) self.smoothers = nn.TransformerEncoder(Smoother(d_model, 2, 1024), num_layers=3) self.mel_linear = nn.Linear(d_model, 80) self.post_net = nn.Sequential( nn.Conv1d(80, 512, kernel_size=5, padding=2), nn.BatchNorm1d(512), nn.Tanh(), nn.Dropout(0.5), nn.Conv1d(512, 512, kernel_size=5, padding=2), nn.BatchNorm1d(512), nn.Tanh(), nn.Dropout(0.5), nn.Conv1d(512, 512, kernel_size=5, padding=2), nn.BatchNorm1d(512), nn.Tanh(), nn.Dropout(0.5), nn.Conv1d(512, 512, kernel_size=5, padding=2), nn.BatchNorm1d(512), nn.Tanh(), nn.Dropout(0.5), nn.Conv1d(512, 80, kernel_size=5, padding=2), nn.BatchNorm1d(80), nn.Dropout(0.5), ) def forward( self, srcs: Tensor, refs: Tensor, refs_features: Optional[Tensor] = None, src_masks: Optional[Tensor] = None, ref_masks: Optional[Tensor] = None, ) -> Tuple[Tensor, List[Optional[Tensor]]]: """Forward function. Args: srcs: (batch, src_len, 768) src_masks: (batch, src_len) refs: (batch, 80, ref_len) refs_features: (batch, ref_len, 768) ref_masks: (batch, ref_len) """ # out: (src_len, batch, d_model) out, attns = self.unet(srcs, refs, refs_features=refs_features, src_masks=src_masks, ref_masks=ref_masks) # out: (src_len, batch, d_model) out = self.smoothers(out, src_key_padding_mask=src_masks) # out: (src_len, batch, 80) out = self.mel_linear(out) # out: (batch, 80, src_len) out = out.transpose(1, 0).transpose(2, 1) refined = self.post_net(out) out = out + refined # out: (batch, 80, src_len) return out, attns class UnetBlock(nn.Module): """Hierarchically attend on references.""" def __init__(self, d_model: int): super(UnetBlock, self).__init__() self.conv1 = nn.Conv1d(80, d_model, 3, padding=1, padding_mode="replicate") self.conv2 = nn.Conv1d(d_model, d_model, 3, padding=1, padding_mode="replicate") self.conv3 = nn.Conv1d(d_model, d_model, 3, padding=1, padding_mode="replicate") self.prenet = nn.Sequential( nn.Linear(768, 768), nn.ReLU(), nn.Linear(768, d_model), ) self.features_prenet = nn.Sequential( nn.Linear(768, 768), nn.ReLU(), nn.Linear(768, d_model), ) self.extractor1 = Extractor(d_model, 2, 1024, no_residual=True) self.extractor2 = Extractor(d_model, 2, 1024) self.extractor3 = Extractor(d_model, 2, 1024) def forward( self, srcs: Tensor, refs: Tensor, refs_features: Optional[Tensor] = None, src_masks: Optional[Tensor] = None, ref_masks: Optional[Tensor] = None, ) -> Tuple[Tensor, List[Optional[Tensor]]]: """Forward function. Args: srcs: (batch, src_len, 768) src_masks: (batch, src_len) refs: (batch, 80, ref_len) refs_features: (batch, ref_len, 768) ref_masks: (batch, ref_len) """ # tgt: (batch, tgt_len, d_model) tgt = self.prenet(srcs) refs_features = None if refs_features is None else self.features_prenet(refs_features) # tgt: (tgt_len, batch, d_model) tgt = tgt.transpose(0, 1) # ref*: (batch, d_model, mel_len) ref1 = self.conv1(refs) ref2 = self.conv2(F.relu(ref1)) ref3 = self.conv3(F.relu(ref2)) # out*: (tgt_len, batch, d_model) out, attn1 = self.extractor1( tgt, ref3.transpose(1, 2).transpose(0, 1), memory_features=refs_features.transpose(0, 1), tgt_key_padding_mask=src_masks, memory_key_padding_mask=ref_masks, ) out, attn2 = self.extractor2( out, ref2.transpose(1, 2).transpose(0, 1), tgt_key_padding_mask=src_masks, memory_key_padding_mask=ref_masks, ) out, attn3 = self.extractor3( out, ref1.transpose(1, 2).transpose(0, 1), tgt_key_padding_mask=src_masks, memory_key_padding_mask=ref_masks, ) # out: (tgt_len, batch, d_model) return out, [attn1, attn2, attn3]
the-stack_0_10856
import argparse import matplotlib.pyplot as plt import numpy as np from joblib import dump from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error descript = """Using parameters to edit OpenFOAM parameters""" parser = argparse.ArgumentParser(description=descript) parser.add_argument("-workspace", help="The DAG spec root") args = parser.parse_args() training_percent = 0.6 timestep = -1 fontsize = 20 WORKSPACE = args.workspace inputs_dir = WORKSPACE + "/merlin_info" outputs_dir = WORKSPACE + "/combine_outputs" outputs = np.load(outputs_dir + "/data.npz") U = outputs["arr_0"] enstrophy = outputs["arr_1"] energy_byhand = np.sum(np.sum(U ** 2, axis=3), axis=2) / U.shape[2] / 2 enstrophy_all = np.sum(enstrophy, axis=2) X = np.load(inputs_dir + "/samples.npy") y = np.concatenate( ( enstrophy_all[:, timestep].reshape(-1, 1), energy_byhand[:, timestep].reshape(-1, 1), ), axis=1, ) X[:, 1] = np.log10(X[:, 0] / X[:, 1]) # np.log10(X) y = np.log10(y) training_size = int(training_percent * len(X)) X_train = X[:training_size] y_train = y[:training_size] X_test = X[training_size:] y_test = y[training_size:] regr = RandomForestRegressor(max_depth=10, random_state=0, n_estimators=7) regr.fit(X_train, y_train) print("training score:", regr.score(X_train, y_train)) print("testing score: ", regr.score(X_test, y_test)) print(mean_squared_error(y_test, regr.predict(X_test))) dump(regr, "trained_model.joblib") fig, ax = plt.subplots(3, 2, figsize=(25, 25), constrained_layout=True) plt.rcParams.update({"font.size": 25}) plt.rcParams["lines.linewidth"] = 5 x = np.linspace(-5, 8, 100) y1 = 1 * x ax[0][0].plot(x, y1, "-r", label="y=x", linewidth=1) y_pred = regr.predict(X_train) ax[0][0].scatter(y_train[:, 0], y_pred[:, 0], label="Log10 Enstrophy") ax[0][0].scatter(y_train[:, 1], y_pred[:, 1], label="Log10 Energy") ax[0][0].set_title("Velocity Magnitude %s" % timestep) ax[0][0].set_xlabel("Actual", fontsize=fontsize) ax[0][0].set_ylabel("Predicted", fontsize=fontsize) ax[0][0].set_title("Training Data, # Points: %s" % len(y_pred)) ax[0][0].legend() ax[0][0].grid() x_min = np.min([np.min(y_train[:, 0]), np.min(y_train[:, 1])]) y_min = np.min([np.min(y_pred[:, 0]), np.min(y_pred[:, 1])]) x_max = np.max([np.max(y_train[:, 0]), np.max(y_train[:, 1])]) y_max = np.max([np.max(y_pred[:, 0]), np.max(y_pred[:, 1])]) y_pred = regr.predict(X_test) ax[0][1].plot(x, y1, "-r", label="y=x", linewidth=1) ax[0][1].scatter(y_test[:, 0], y_pred[:, 0], label="Log10 Enstrophy") ax[0][1].scatter(y_test[:, 1], y_pred[:, 1], label="Log10 Energy") ax[0][1].set_xlabel("Actual", fontsize=fontsize) ax[0][1].set_ylabel("Predicted", fontsize=fontsize) ax[0][1].set_title("Testing Data, # Points: %s" % len(y_pred)) ax[0][1].legend() ax[0][1].grid() x_min = np.min([np.min(y_test[:, 0]), np.min(y_test[:, 1]), x_min]) - 0.1 y_min = np.min([np.min(y_pred[:, 0]), np.min(y_pred[:, 1]), y_min]) - 0.1 x_max = np.max([np.max(y_test[:, 0]), np.max(y_test[:, 1]), x_max]) + 0.1 y_max = np.max([np.max(y_pred[:, 0]), np.max(y_pred[:, 1]), y_max]) + 0.1 ax[0][0].set_xlim([x_min, x_max]) ax[0][0].set_ylim([y_min, y_max]) ax[0][1].set_xlim([x_min, x_max]) ax[0][1].set_ylim([y_min, y_max]) y_pred_all = regr.predict(X) input_enstrophy = ax[1][1].scatter(X[:, 0], 10 ** y[:, 1], s=100, edgecolors="black") ax[1][1].set_xlabel(r"Lidspeed ($\frac{m}{s}$)", fontsize=fontsize) ax[1][1].set_ylabel(r"$Energy$", fontsize=fontsize) ax[1][1].set_title("Average Energy Variation with Lidspeed") ax[1][1].grid() input_energy = ax[1][0].scatter( X[:, 0], X[:, 1], s=100, edgecolors="black", c=10 ** y[:, 1], cmap=plt.get_cmap("viridis"), ) ax[1][0].set_xlabel(r"Lidspeed ($\frac{m}{s}$)", fontsize=fontsize) ax[1][0].set_ylabel(r"$Log_{10}$(Reynolds Number)", fontsize=fontsize) ax[1][0].set_title("Inputs vs Average Energy") ax[1][0].grid() cbar = plt.colorbar(input_energy, ax=ax[1][0]) cbar.ax.set_ylabel(r"$Energy$", rotation=270, labelpad=30) ax[1][0].tick_params(axis="both", which="major", labelsize=fontsize) ax[1][1].tick_params(axis="both", which="major", labelsize=fontsize) ax[1][0].tick_params(axis="both", which="major", labelsize=fontsize) ax[1][1].tick_params(axis="both", which="major", labelsize=fontsize) y_pred_all = regr.predict(X) input_enstrophy = ax[2][0].scatter( X[:, 0], X[:, 1], s=100, edgecolors="black", c=y[:, 0] - y_pred_all[:, 0], cmap=plt.get_cmap("Spectral"), ) ax[2][0].set_xlabel(r"Lidspeed ($\frac{m}{s}$)", fontsize=fontsize) ax[2][0].set_ylabel(r"$Log_{10}$(Reynolds Number)", fontsize=fontsize) ax[2][0].set_title("Inputs vs Enstrophy error") ax[2][0].grid() cbar = plt.colorbar(input_enstrophy, ax=ax[2][0]) cbar.ax.set_ylabel(r"$y_{act} - y_{pred}$", rotation=270, labelpad=30) input_energy = ax[2][1].scatter( X[:, 0], X[:, 1], s=100, edgecolors="black", c=y[:, 1] - y_pred_all[:, 1], cmap=plt.get_cmap("Spectral"), ) ax[2][1].set_xlabel(r"Lidspeed ($\frac{m}{s}$)", fontsize=fontsize) ax[2][1].set_ylabel(r"$Log_{10}$(Reynolds Number)", fontsize=fontsize) ax[2][1].set_title("Inputs vs Energy error") ax[2][1].grid() cbar = plt.colorbar(input_energy, ax=ax[2][1]) cbar.ax.set_ylabel(r"$y_{act} - y_{pred}$", rotation=270, labelpad=30) ax[0][0].tick_params(axis="both", which="major", labelsize=fontsize) ax[0][1].tick_params(axis="both", which="major", labelsize=fontsize) ax[2][0].tick_params(axis="both", which="major", labelsize=fontsize) ax[2][1].tick_params(axis="both", which="major", labelsize=fontsize) plt.savefig("prediction.png")
the-stack_0_10861
import numpy as np import os os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') def conv_layer(input, shape): W = weight_variable(shape) b = bias_variable([shape[3]]) return tf.nn.relu(conv2d(input, W) + b) def full_layer(input, size): in_size = int(input.get_shape()[1]) W = weight_variable([in_size, size]) b = bias_variable([size]) return tf.matmul(input, W) + b x = tf.placeholder(tf.float32, shape=[None, 784]) y_ = tf.placeholder(tf.float32, shape=[None, 10]) x_image = tf.reshape(x, [-1, 28, 28, 1]) conv1 = conv_layer(x_image, shape=[5, 5, 1, 32]) conv1_pool = max_pool_2x2(conv1) conv2 = conv_layer(conv1_pool, shape=[5, 5, 32, 64]) conv2_pool = max_pool_2x2(conv2) conv2_flat = tf.reshape(conv2_pool, [-1, 7*7*64]) full_1 = tf.nn.relu(full_layer(conv2_flat, 1024)) keep_prob = tf.placeholder(tf.float32) full1_drop = tf.nn.dropout(full_1, keep_prob=keep_prob) y_conv = full_layer(full1_drop, 10) DATA_DIR = '../data/MNIST_DATA' NUM_STEPS = 1000 MINIBATCH_SIZE = 50 mnist = input_data.read_data_sets(DATA_DIR, one_hot=True) cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_)) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(NUM_STEPS): batch = mnist.train.next_batch(MINIBATCH_SIZE) if i % 100==0: train_accuracy = sess.run(accuracy, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) print("step {}, training accuracy {}".format(i, train_accuracy)) sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) X = mnist.test.images.reshape(10, 1000, 784) Y = mnist.test.labels.reshape(10, 1000, 10) test_accuracy = np.mean([ sess.run(accuracy, feed_dict={x:X[i], y_:Y[i], keep_prob:1.0}) for i in range(10) ]) print("test accuracy: {}".format(test_accuracy))
the-stack_0_10862
########################################################################## # # Copyright (c) 2012, John Haddon. All rights reserved. # Copyright (c) 2013-2014, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import math import imath import inspect import six import time import unittest import IECore import IECoreScene import Gaffer import GafferTest import GafferDispatch import GafferScene import GafferSceneTest class InstancerTest( GafferSceneTest.SceneTestCase ) : def test( self ) : sphere = IECoreScene.SpherePrimitive() instanceInput = GafferSceneTest.CompoundObjectSource() instanceInput["in"].setValue( IECore.CompoundObject( { "bound" : IECore.Box3fData( imath.Box3f( imath.V3f( -2 ), imath.V3f( 2 ) ) ), "children" : { "sphere" : { "object" : sphere, "bound" : IECore.Box3fData( sphere.bound() ), "transform" : IECore.M44fData( imath.M44f().scale( imath.V3f( 2 ) ) ), }, } } ) ) seeds = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( 1, 0, 0 ), imath.V3f( 1, 1, 0 ), imath.V3f( 0, 1, 0 ), imath.V3f( 0, 0, 0 ) ] ) ) seedsInput = GafferSceneTest.CompoundObjectSource() seedsInput["in"].setValue( IECore.CompoundObject( { "bound" : IECore.Box3fData( imath.Box3f( imath.V3f( 1, 0, 0 ), imath.V3f( 2, 1, 0 ) ) ), "children" : { "seeds" : { "bound" : IECore.Box3fData( seeds.bound() ), "transform" : IECore.M44fData( imath.M44f().translate( imath.V3f( 1, 0, 0 ) ) ), "object" : seeds, }, }, }, ) ) instancer = GafferScene.Instancer() instancer["in"].setInput( seedsInput["out"] ) instancer["prototypes"].setInput( instanceInput["out"] ) instancer["parent"].setValue( "/seeds" ) instancer["name"].setValue( "instances" ) self.assertEqual( instancer["out"].object( "/" ), IECore.NullObject() ) self.assertEqual( instancer["out"].transform( "/" ), imath.M44f() ) self.assertEqual( instancer["out"].bound( "/" ), imath.Box3f( imath.V3f( -1, -2, -2 ), imath.V3f( 4, 3, 2 ) ) ) self.assertEqual( instancer["out"].childNames( "/" ), IECore.InternedStringVectorData( [ "seeds" ] ) ) self.assertEqual( instancer["out"].object( "/seeds" ), IECore.NullObject() ) self.assertEqual( instancer["out"].transform( "/seeds" ), imath.M44f().translate( imath.V3f( 1, 0, 0 ) ) ) self.assertEqual( instancer["out"].bound( "/seeds" ), imath.Box3f( imath.V3f( -2, -2, -2 ), imath.V3f( 3, 3, 2 ) ) ) self.assertEqual( instancer["out"].childNames( "/seeds" ), IECore.InternedStringVectorData( [ "instances" ] ) ) self.assertEqual( instancer["out"].object( "/seeds/instances" ), IECore.NullObject() ) self.assertEqual( instancer["out"].transform( "/seeds/instances" ), imath.M44f() ) self.assertEqual( instancer["out"].bound( "/seeds/instances" ), imath.Box3f( imath.V3f( -2, -2, -2 ), imath.V3f( 3, 3, 2 ) ) ) self.assertEqual( instancer["out"].childNames( "/seeds/instances" ), IECore.InternedStringVectorData( [ "sphere" ] ) ) self.assertEqual( instancer["out"].object( "/seeds/instances/sphere" ), IECore.NullObject() ) self.assertEqual( instancer["out"].transform( "/seeds/instances/sphere" ), imath.M44f() ) self.assertEqual( instancer["out"].bound( "/seeds/instances/sphere" ), imath.Box3f( imath.V3f( -2, -2, -2 ), imath.V3f( 3, 3, 2 ) ) ) self.assertEqual( instancer["out"].childNames( "/seeds/instances/sphere" ), IECore.InternedStringVectorData( [ "0", "1", "2", "3" ] ) ) for i in range( 0, 4 ) : instancePath = "/seeds/instances/sphere/%d" % i self.assertEqual( instancer["out"].object( instancePath ), sphere ) self.assertEqual( instancer["out"].transform( instancePath ), imath.M44f().scale( imath.V3f( 2 ) ) * imath.M44f().translate( seeds["P"].data[i] ) ) self.assertEqual( instancer["out"].bound( instancePath ), sphere.bound() ) self.assertEqual( instancer["out"].childNames( instancePath ), IECore.InternedStringVectorData() ) # Test paths that don't exist - the transform will trigger an error, the other functions don't depend on # the index, so will just return a reasonable value six.assertRaisesRegex( self, Gaffer.ProcessException, 'Instancer.out.transform : Instance id "77" is invalid, instancer produces only 4 children. Topology may have changed during shutter.', instancer["out"].transform, "/seeds/instances/sphere/77" ) self.assertEqual( instancer["out"].object( "/seeds/instances/sphere/77" ), sphere ) self.assertEqual( instancer["out"].bound( "/seeds/instances/sphere/77" ), sphere.bound() ) self.assertEqual( instancer["out"].childNames( "/seeds/instances/sphere/77" ), IECore.InternedStringVectorData() ) # Test passthrough when disabled instancer["enabled"].setValue( False ) self.assertScenesEqual( instancer["in"], instancer["out"] ) instancer["enabled"].setValue( True ) # Test encapsulation options encapInstancer = GafferScene.Instancer() encapInstancer["in"].setInput( seedsInput["out"] ) encapInstancer["prototypes"].setInput( instanceInput["out"] ) encapInstancer["parent"].setValue( "/seeds" ) encapInstancer["name"].setValue( "instances" ) encapInstancer["encapsulateInstanceGroups"].setValue( True ) unencapFilter = GafferScene.PathFilter() unencapFilter["paths"].setValue( IECore.StringVectorData( [ "/..." ] ) ) unencap = GafferScene.Unencapsulate() unencap["in"].setInput( encapInstancer["out"] ) unencap["filter"].setInput( unencapFilter["out"] ) self.assertTrue( isinstance( encapInstancer["out"].object( "/seeds/instances/sphere/" ), GafferScene.Capsule ) ) self.assertEqual( encapInstancer["out"].childNames( "/seeds/instances/sphere/" ), IECore.InternedStringVectorData() ) self.assertScenesEqual( unencap["out"], instancer["out"] ) # Edit seeds object freezeTransform = GafferScene.FreezeTransform() freezeTransform["in"].setInput( seedsInput["out"] ) freezeTransform["filter"].setInput( unencapFilter["out"] ) instancer["in"].setInput( freezeTransform["out"] ) encapInstancer["in"].setInput( freezeTransform["out"] ) self.assertScenesEqual( unencap["out"], instancer["out"] ) # Then set it back ( to make sure that returning to a previously cached value after # changing the seeds doesn't pull an expired Capsule out of the cache ) freezeTransform["enabled"].setValue( False ) self.assertScenesEqual( unencap["out"], instancer["out"] ) # Test passthrough when disabled instancer["enabled"].setValue( False ) self.assertScenesEqual( instancer["in"], instancer["out"] ) def testThreading( self ) : sphere = IECoreScene.SpherePrimitive() instanceInput = GafferSceneTest.CompoundObjectSource() instanceInput["in"].setValue( IECore.CompoundObject( { "bound" : IECore.Box3fData( imath.Box3f( imath.V3f( -2 ), imath.V3f( 2 ) ) ), "children" : { "sphere" : { "object" : sphere, "bound" : IECore.Box3fData( sphere.bound() ), "transform" : IECore.M44fData( imath.M44f().scale( imath.V3f( 2 ) ) ), }, } } ) ) seeds = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( 1, 0, 0 ), imath.V3f( 1, 1, 0 ), imath.V3f( 0, 1, 0 ), imath.V3f( 0, 0, 0 ) ] ) ) seedsInput = GafferSceneTest.CompoundObjectSource() seedsInput["in"].setValue( IECore.CompoundObject( { "bound" : IECore.Box3fData( imath.Box3f( imath.V3f( 1, 0, 0 ), imath.V3f( 2, 1, 0 ) ) ), "children" : { "seeds" : { "bound" : IECore.Box3fData( seeds.bound() ), "transform" : IECore.M44fData( imath.M44f().translate( imath.V3f( 1, 0, 0 ) ) ), "object" : seeds, }, }, }, ) ) instancer = GafferScene.Instancer() instancer["in"].setInput( seedsInput["out"] ) instancer["prototypes"].setInput( instanceInput["out"] ) instancer["parent"].setValue( "/seeds" ) instancer["name"].setValue( "instances" ) GafferSceneTest.traverseScene( instancer["out"] ) def testNamePlugDefaultValue( self ) : n = GafferScene.Instancer() self.assertEqual( n["name"].defaultValue(), "instances" ) self.assertEqual( n["name"].getValue(), "instances" ) def testAffects( self ) : n = GafferScene.Instancer() a = n.affects( n["name"] ) self.assertGreaterEqual( { x.relativeName( n ) for x in a }, { "out.childNames", "out.bound", "out.set" } ) def testParentBoundsWhenNoInstances( self ) : sphere = GafferScene.Sphere() sphere["type"].setValue( sphere.Type.Primitive ) # no points, so we can't instance onto it instancer = GafferScene.Instancer() instancer["in"].setInput( sphere["out"] ) instancer["parent"].setValue( "/sphere" ) instancer["prototypes"].setInput( sphere["out"] ) self.assertSceneValid( instancer["out"] ) self.assertEqual( instancer["out"].bound( "/sphere" ), sphere["out"].bound( "/sphere" ) ) def testEmptyName( self ) : plane = GafferScene.Plane() instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["parent"].setValue( "/plane" ) instancer["name"].setValue( "" ) f = GafferScene.PathFilter() f["paths"].setValue( IECore.StringVectorData( [ "/plane" ] ) ) deleteObject = GafferScene.DeleteObject() deleteObject["in"].setInput( plane["out"] ) deleteObject["filter"].setInput( f["out"] ) self.assertScenesEqual( instancer["out"], deleteObject["out"] ) def testEmptyParent( self ) : plane = GafferScene.Plane() sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "" ) self.assertScenesEqual( instancer["out"], plane["out"] ) self.assertSceneHashesEqual( instancer["out"], plane["out"] ) def testSeedsAffectBound( self ) : plane = GafferScene.Plane() sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/plane" ) h1 = instancer["out"].boundHash( "/plane/instances" ) b1 = instancer["out"].bound( "/plane/instances" ) plane["dimensions"].setValue( plane["dimensions"].getValue() * 2 ) h2 = instancer["out"].boundHash( "/plane/instances" ) b2 = instancer["out"].bound( "/plane/instances" ) self.assertNotEqual( h1, h2 ) self.assertNotEqual( b1, b2 ) def testBoundHashIsStable( self ) : plane = GafferScene.Plane() sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/plane" ) h = instancer["out"].boundHash( "/plane/instances" ) for i in range( 0, 100 ) : self.assertEqual( instancer["out"].boundHash( "/plane/instances" ), h ) def testObjectAffectsChildNames( self ) : plane = GafferScene.Plane() sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/plane" ) cs = GafferTest.CapturingSlot( instancer.plugDirtiedSignal() ) plane["divisions"]["x"].setValue( 2 ) dirtiedPlugs = [ s[0] for s in cs ] self.assertTrue( instancer["out"]["childNames"] in dirtiedPlugs ) self.assertTrue( instancer["out"]["bound"] in dirtiedPlugs ) self.assertTrue( instancer["out"]["transform"] in dirtiedPlugs ) def testPythonExpressionAndGIL( self ) : script = Gaffer.ScriptNode() script["plane"] = GafferScene.Plane() script["plane"]["divisions"].setValue( imath.V2i( 20 ) ) script["sphere"] = GafferScene.Sphere() script["expression"] = Gaffer.Expression() script["expression"].setExpression( "parent['sphere']['radius'] = context.getFrame()" ) script["instancer"] = GafferScene.Instancer() script["instancer"]["in"].setInput( script["plane"]["out"] ) script["instancer"]["prototypes"].setInput( script["sphere"]["out"] ) script["instancer"]["parent"].setValue( "/plane" ) # The Instancer spawns its own threads, so if we don't release the GIL # when invoking it, and an upstream node enters Python, we'll end up # with a deadlock. Test that isn't the case. We increment the frame # between each test to ensure the expression result is not cached and # we do truly enter python. with Gaffer.Context() as c : c.setFrame( 1 ) script["instancer"]["out"]["globals"].getValue() c.setFrame( 101 ) script["instancer"]["out"]["globals"].hash() c["scene:path"] = IECore.InternedStringVectorData( [ "plane" ] ) c.setFrame( 2 ) script["instancer"]["out"]["bound"].getValue() c.setFrame( 3 ) script["instancer"]["out"]["transform"].getValue() c.setFrame( 4 ) script["instancer"]["out"]["object"].getValue() c.setFrame( 5 ) script["instancer"]["out"]["attributes"].getValue() c.setFrame( 6 ) script["instancer"]["out"]["childNames"].getValue() c.setFrame( 7 ) c.setFrame( 102 ) script["instancer"]["out"]["bound"].hash() c.setFrame( 103 ) script["instancer"]["out"]["transform"].hash() c.setFrame( 104 ) script["instancer"]["out"]["object"].hash() c.setFrame( 105 ) script["instancer"]["out"]["attributes"].hash() c.setFrame( 106 ) script["instancer"]["out"]["childNames"].hash() c.setFrame( 107 ) # The same applies for the higher level helper functions on ScenePlug c.setFrame( 200 ) script["instancer"]["out"].bound( "/plane" ) c.setFrame( 201 ) script["instancer"]["out"].transform( "/plane" ) c.setFrame( 202 ) script["instancer"]["out"].fullTransform( "/plane" ) c.setFrame( 203 ) script["instancer"]["out"].attributes( "/plane" ) c.setFrame( 204 ) script["instancer"]["out"].fullAttributes( "/plane" ) c.setFrame( 205 ) script["instancer"]["out"].object( "/plane" ) c.setFrame( 206 ) script["instancer"]["out"].childNames( "/plane" ) c.setFrame( 207 ) c.setFrame( 300 ) script["instancer"]["out"].boundHash( "/plane" ) c.setFrame( 301 ) script["instancer"]["out"].transformHash( "/plane" ) c.setFrame( 302 ) script["instancer"]["out"].fullTransformHash( "/plane" ) c.setFrame( 303 ) script["instancer"]["out"].attributesHash( "/plane" ) c.setFrame( 304 ) script["instancer"]["out"].fullAttributesHash( "/plane" ) c.setFrame( 305 ) script["instancer"]["out"].objectHash( "/plane" ) c.setFrame( 306 ) script["instancer"]["out"].childNamesHash( "/plane" ) c.setFrame( 307 ) def testDynamicPlugsAndGIL( self ) : script = Gaffer.ScriptNode() script["plane"] = GafferScene.Plane() script["plane"]["divisions"].setValue( imath.V2i( 20 ) ) script["sphere"] = GafferScene.Sphere() script["expression"] = Gaffer.Expression() script["expression"].setExpression( "parent['sphere']['radius'] = context.getFrame()" ) script["instancer"] = GafferScene.Instancer() script["instancer"]["in"].setInput( script["plane"]["out"] ) script["instancer"]["prototypes"].setInput( script["sphere"]["out"] ) script["instancer"]["parent"].setValue( "/plane" ) script["attributes"] = GafferScene.CustomAttributes() script["attributes"]["in"].setInput( script["instancer"]["out"] ) script["outputs"] = GafferScene.Outputs() script["outputs"]["in"].setInput( script["attributes"]["out"] ) # Simulate an InteractiveRender or Viewer traversal of the scene # every time it is dirtied. If the GIL isn't released when dirtiness # is signalled, we'll end up with a deadlock as the traversal enters # python on another thread to evaluate the expression. We increment the frame # between each test to ensure the expression result is not cached and # we do truly enter python. traverseConnection = Gaffer.ScopedConnection( GafferSceneTest.connectTraverseSceneToPlugDirtiedSignal( script["outputs"]["out"] ) ) with Gaffer.Context() as c : c.setFrame( 1 ) script["attributes"]["attributes"].addChild( Gaffer.NameValuePlug( "test1", IECore.IntData( 10 ) ) ) c.setFrame( 2 ) script["attributes"]["attributes"].addChild( Gaffer.NameValuePlug( "test2", IECore.IntData( 20 ), True ) ) c.setFrame( 3 ) script["attributes"]["attributes"].addMembers( IECore.CompoundData( { "test3" : 30, "test4" : 40, } ) ) c.setFrame( 4 ) p = script["attributes"]["attributes"][0] del script["attributes"]["attributes"][p.getName()] c.setFrame( 5 ) script["attributes"]["attributes"].addChild( p ) c.setFrame( 6 ) script["attributes"]["attributes"].removeChild( p ) c.setFrame( 7 ) script["attributes"]["attributes"].setChild( p.getName(), p ) c.setFrame( 8 ) script["attributes"]["attributes"].removeChild( p ) c.setFrame( 9 ) script["attributes"]["attributes"][p.getName()] = p c.setFrame( 10 ) script["outputs"].addOutput( "test", IECoreScene.Output( "beauty.exr", "exr", "rgba" ) ) def testLoadReferenceAndGIL( self ) : script = Gaffer.ScriptNode() script["plane"] = GafferScene.Plane() script["plane"]["divisions"].setValue( imath.V2i( 20 ) ) script["sphere"] = GafferScene.Sphere() script["expression"] = Gaffer.Expression() script["expression"].setExpression( "parent['sphere']['radius'] = 0.1 + context.getFrame()" ) script["instancer"] = GafferScene.Instancer() script["instancer"]["in"].setInput( script["plane"]["out"] ) script["instancer"]["prototypes"].setInput( script["sphere"]["out"] ) script["instancer"]["parent"].setValue( "/plane" ) script["box"] = Gaffer.Box() script["box"]["in"] = GafferScene.ScenePlug( flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) script["box"]["out"] = GafferScene.ScenePlug( direction = Gaffer.Plug.Direction.Out, flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) script["box"]["out"].setInput( script["box"]["in"] ) script["box"].exportForReference( self.temporaryDirectory() + "/test.grf" ) script["reference"] = Gaffer.Reference() script["reference"].load( self.temporaryDirectory() + "/test.grf" ) script["reference"]["in"].setInput( script["instancer"]["out"] ) script["attributes"] = GafferScene.CustomAttributes() script["attributes"]["in"].setInput( script["reference"]["out"] ) traverseConnection = Gaffer.ScopedConnection( GafferSceneTest.connectTraverseSceneToPlugDirtiedSignal( script["attributes"]["out"] ) ) with Gaffer.Context() as c : script["reference"].load( self.temporaryDirectory() + "/test.grf" ) def testContextChangedAndGIL( self ) : script = Gaffer.ScriptNode() script["plane"] = GafferScene.Plane() script["plane"]["divisions"].setValue( imath.V2i( 20 ) ) script["sphere"] = GafferScene.Sphere() script["expression"] = Gaffer.Expression() script["expression"].setExpression( "parent['sphere']['radius'] = context.get( 'minRadius', 0.1 ) + context.getFrame()" ) script["instancer"] = GafferScene.Instancer() script["instancer"]["in"].setInput( script["plane"]["out"] ) script["instancer"]["prototypes"].setInput( script["sphere"]["out"] ) script["instancer"]["parent"].setValue( "/plane" ) context = Gaffer.Context() traverseConnection = Gaffer.ScopedConnection( GafferSceneTest.connectTraverseSceneToContextChangedSignal( script["instancer"]["out"], context ) ) with context : context.setFrame( 10 ) context.setFramesPerSecond( 50 ) context.setTime( 1 ) context.set( "a", 1 ) context.set( "a", 2.0 ) context.set( "a", "a" ) context.set( "a", imath.V2i() ) context.set( "a", imath.V3i() ) context.set( "a", imath.V2f() ) context.set( "a", imath.V3f() ) context.set( "a", imath.Color3f() ) context.set( "a", IECore.BoolData( True ) ) context["b"] = 1 context["b"] = 2.0 context["b"] = "b" context["b"] = imath.V2i() context["b"] = imath.V3i() context["b"] = imath.V2f() context["b"] = imath.V3f() context["b"] = imath.Color3f() context["b"] = IECore.BoolData( True ) with Gaffer.BlockedConnection( traverseConnection ) : # Must add it with the connection disabled, otherwise # the addition causes a traversal, and then remove() gets # all its results from the cache. context["minRadius"] = 0.2 context.remove( "minRadius" ) with Gaffer.BlockedConnection( traverseConnection ) : context["minRadius"] = 0.3 del context["minRadius"] def testDispatchAndGIL( self ) : script = Gaffer.ScriptNode() script["plane"] = GafferScene.Plane() script["plane"]["divisions"].setValue( imath.V2i( 20 ) ) script["sphere"] = GafferScene.Sphere() script["expression"] = Gaffer.Expression() script["expression"].setExpression( "parent['sphere']['radius'] = context.get( 'minRadius', 0.1 ) + context.getFrame()" ) script["instancer"] = GafferScene.Instancer() script["instancer"]["in"].setInput( script["plane"]["out"] ) script["instancer"]["prototypes"].setInput( script["sphere"]["out"] ) script["instancer"]["parent"].setValue( "/plane" ) script["pythonCommand"] = GafferDispatch.PythonCommand() script["pythonCommand"]["command"].setValue( "pass" ) traverseConnection = Gaffer.ScopedConnection( GafferSceneTest.connectTraverseSceneToPreDispatchSignal( script["instancer"]["out"] ) ) dispatcher = GafferDispatch.LocalDispatcher() dispatcher["jobsDirectory"].setValue( self.temporaryDirectory() ) with Gaffer.Context() as c : for i in range( 1, 10 ) : c.setFrame( i ) dispatcher.dispatch( [ script["pythonCommand"] ] ) def testTransform( self ) : point = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( 4, 0, 0 ) ] ) ) point["orientation"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.QuatfVectorData( [ imath.Quatf().setAxisAngle( imath.V3f( 0, 1, 0 ), math.pi / 2.0 ) ] ) ) point["scale"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.V3fVectorData( [ imath.V3f( 2, 3, 4 ) ] ) ) point["uniformScale"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 10 ] ) ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( point ) sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/object" ) self.assertEqual( instancer["out"].transform( "/object/instances/sphere/0" ), imath.M44f().translate( imath.V3f( 4, 0, 0 ) ) ) instancer["orientation"].setValue( "orientation" ) self.assertTrue( imath.V3f( 4, 0, -1 ).equalWithAbsError( imath.V3f( 1, 0, 0 ) * instancer["out"].transform( "/object/instances/sphere/0" ), 0.00001 ) ) instancer["scale"].setValue( "scale" ) self.assertTrue( imath.V3f( 4, 0, -2 ).equalWithAbsError( imath.V3f( 1, 0, 0 ) * instancer["out"].transform( "/object/instances/sphere/0" ), 0.00001 ) ) instancer["scale"].setValue( "uniformScale" ) self.assertTrue( imath.V3f( 4, 0, -10 ).equalWithAbsError( imath.V3f( 1, 0, 0 ) * instancer["out"].transform( "/object/instances/sphere/0" ), 0.00001 ) ) def testIndexedRootsListWithEmptyList( self ) : points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 0, 4 ) ] ) ) points["index"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ 0, 1, 1, 0 ] ), ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( points ) sphere = GafferScene.Sphere() cube = GafferScene.Cube() instances = GafferScene.Parent() instances["in"].setInput( sphere["out"] ) instances["children"][0].setInput( cube["out"] ) instances["parent"].setValue( "/" ) instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( instances["out"] ) instancer["parent"].setValue( "/object" ) instancer["prototypeIndex"].setValue( "index" ) self.assertEqual( instancer["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "sphere", "cube" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere" ), IECore.InternedStringVectorData( [ "0", "3" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/cube" ), IECore.InternedStringVectorData( [ "1", "2" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere/0" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere/3" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].childNames( "/object/instances/cube/1" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].childNames( "/object/instances/cube/2" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/sphere" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/cube" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/sphere/0" ), sphere["out"].object( "/sphere" ) ) self.assertEqual( instancer["out"].object( "/object/instances/sphere/3" ), sphere["out"].object( "/sphere" ) ) self.assertEqual( instancer["out"].object( "/object/instances/cube/1" ), cube["out"].object( "/cube" ) ) self.assertEqual( instancer["out"].object( "/object/instances/cube/2" ), cube["out"].object( "/cube" ) ) self.assertSceneValid( instancer["out"] ) def buildPrototypeRootsScript( self ) : # we don't strictly require a script, but its the easiest way to # maintain references to all the nodes for use in client tests. script = Gaffer.ScriptNode() points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 0, 4 ) ] ) ) points["index"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ 0, 1, 1, 0 ] ), ) # for use with RootPerVertex mode points["root"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.StringVectorData( [ "/foo", "/bar" ] ), IECore.IntVectorData( [ 0, 1, 1, 0 ] ), ) script["objectToScene"] = GafferScene.ObjectToScene() script["objectToScene"]["object"].setValue( points ) # for use with IndexedRootsVariable mode script["variables"] = GafferScene.PrimitiveVariables() script["variables"]["primitiveVariables"].addChild( Gaffer.NameValuePlug( "prototypeRoots", Gaffer.StringVectorDataPlug( "value", defaultValue = IECore.StringVectorData( [ ] ), flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic, ), True, "prototypeRoots", Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) ) script["variables"]["primitiveVariables"]["prototypeRoots"]["name"].setValue( 'prototypeRoots' ) script["variables"]["in"].setInput( script["objectToScene"]["out"] ) script["filter"] = GafferScene.PathFilter() script["filter"]["paths"].setValue( IECore.StringVectorData( [ "/object" ] ) ) script["variables"]["filter"].setInput( script["filter"]["out"] ) # /foo/bar/sphere script["sphere"] = GafferScene.Sphere() script["group"] = GafferScene.Group() script["group"]["name"].setValue( "bar" ) script["group"]["in"][0].setInput( script["sphere"]["out"] ) script["group2"] = GafferScene.Group() script["group2"]["name"].setValue( "foo" ) script["group2"]["in"][0].setInput( script["group"]["out"] ) # /bar/baz/cube script["cube"] = GafferScene.Cube() script["group3"] = GafferScene.Group() script["group3"]["name"].setValue( "baz" ) script["group3"]["in"][0].setInput( script["cube"]["out"] ) script["group4"] = GafferScene.Group() script["group4"]["name"].setValue( "bar" ) script["group4"]["in"][0].setInput( script["group3"]["out"] ) script["prototypes"] = GafferScene.Parent() script["prototypes"]["in"].setInput( script["group2"]["out"] ) script["prototypes"]["children"][0].setInput( script["group4"]["out"] ) script["prototypes"]["parent"].setValue( "/" ) script["instancer"] = GafferScene.Instancer() script["instancer"]["in"].setInput( script["variables"]["out"] ) script["instancer"]["prototypes"].setInput( script["prototypes"]["out"] ) script["instancer"]["parent"].setValue( "/object" ) script["instancer"]["prototypeIndex"].setValue( "index" ) return script def assertRootsMatchPrototypeSceneChildren( self, script ) : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "foo", "bar" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo" ), IECore.InternedStringVectorData( [ "0", "3" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar" ), IECore.InternedStringVectorData( [ "1", "2" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar" ), IECore.NullObject.defaultNullObject() ) for i in [ "0", "3" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "bar" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo/{i}/bar".format( i=i ) ), IECore.InternedStringVectorData( [ "sphere" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}/bar".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}/bar/sphere".format( i=i ) ), script["sphere"]["out"].object( "/sphere" ) ) for i in [ "1", "2" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "baz" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar/{i}/baz".format( i=i ) ), IECore.InternedStringVectorData( [ "cube" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}/baz".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}/baz/cube".format( i=i ) ), script["cube"]["out"].object( "/cube" ) ) self.assertSceneValid( script["instancer"]["out"] ) def assertUnderspecifiedRoots( self, script ) : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) def assertSingleRoot( self, script ) : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "foo" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo" ), IECore.InternedStringVectorData( [ "0", "1", "2", "3" ] ) ) for i in [ "0", "1", "2", "3" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "bar" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo/{i}/bar".format( i=i ) ), IECore.InternedStringVectorData( [ "sphere" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}/bar".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}/bar/sphere".format( i=i ) ), script["sphere"]["out"].object( "/sphere" ) ) self.assertSceneValid( script["instancer"]["out"] ) def assertConflictingRootNames( self, script ) : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "bar", "bar1" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar" ), IECore.InternedStringVectorData( [ "0", "3" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar1" ), IECore.InternedStringVectorData( [ "1", "2" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar1" ), IECore.NullObject.defaultNullObject() ) for i in [ "0", "3" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "sphere" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar/{i}/sphere".format( i=i ) ), IECore.InternedStringVectorData( [] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}/sphere".format( i=i ) ), script["sphere"]["out"].object( "/sphere" ) ) for i in [ "1", "2" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar1/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "baz" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar1/{i}/baz".format( i=i ) ), IECore.InternedStringVectorData( [ "cube" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar1/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar1/{i}/baz".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar1/{i}/baz/cube".format( i=i ) ), script["cube"]["out"].object( "/cube" ) ) self.assertSceneValid( script["instancer"]["out"] ) def assertSwappedRoots( self, script ) : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "bar", "foo" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar" ), IECore.InternedStringVectorData( [ "0", "3" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo" ), IECore.InternedStringVectorData( [ "1", "2" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo" ), IECore.NullObject.defaultNullObject() ) for i in [ "0", "3" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "baz" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar/{i}/baz".format( i=i ) ), IECore.InternedStringVectorData( [ "cube" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}/baz".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}/baz/cube".format( i=i ) ), script["cube"]["out"].object( "/cube" ) ) for i in [ "1", "2" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "bar" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/foo/{i}/bar".format( i=i ) ), IECore.InternedStringVectorData( [ "sphere" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}/bar".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/foo/{i}/bar/sphere".format( i=i ) ), script["sphere"]["out"].object( "/sphere" ) ) self.assertSceneValid( script["instancer"]["out"] ) def assertSkippedRoots( self, script ) : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "bar" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar" ), IECore.InternedStringVectorData( [ "1", "2" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar" ), IECore.NullObject.defaultNullObject() ) for i in [ "1", "2" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "baz" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/bar/{i}/baz".format( i=i ) ), IECore.InternedStringVectorData( [ "cube" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}/baz".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/bar/{i}/baz/cube".format( i=i ) ), script["cube"]["out"].object( "/cube" ) ) self.assertSceneValid( script["instancer"]["out"] ) def assertRootsToLeaves( self, script ) : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "sphere", "cube" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/sphere" ), IECore.InternedStringVectorData( [ "0", "3" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/cube" ), IECore.InternedStringVectorData( [ "1", "2" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/sphere" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/cube" ), IECore.NullObject.defaultNullObject() ) for i in [ "0", "3" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/sphere/{i}".format( i=i ) ), IECore.InternedStringVectorData( [] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/sphere/{i}".format( i=i ) ), script["sphere"]["out"].object( "/sphere" ) ) for i in [ "1", "2" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/cube/{i}".format( i=i ) ), IECore.InternedStringVectorData( [] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/cube/{i}".format( i=i ) ), script["cube"]["out"].object( "/cube" ) ) self.assertSceneValid( script["instancer"]["out"] ) def assertRootsToRoot( self, script ) : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "root" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/root" ), IECore.InternedStringVectorData( [ "0", "1", "2", "3" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/root" ), IECore.NullObject.defaultNullObject() ) for i in [ "0", "1", "2", "3" ] : self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/root/{i}".format( i=i ) ), IECore.InternedStringVectorData( [ "foo", "bar" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/root/{i}/foo".format( i=i ) ), IECore.InternedStringVectorData( [ "bar" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/root/{i}/foo/bar".format( i=i ) ), IECore.InternedStringVectorData( [ "sphere" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/root/{i}/bar".format( i=i ) ), IECore.InternedStringVectorData( [ "baz" ] ) ) self.assertEqual( script["instancer"]["out"].childNames( "/object/instances/root/{i}/bar/baz".format( i=i ) ), IECore.InternedStringVectorData( [ "cube" ] ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/root/{i}".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/root/{i}/foo".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/root/{i}/foo/bar".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/root/{i}/foo/bar/sphere".format( i=i ) ), script["sphere"]["out"].object( "/sphere" ) ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/root/{i}/bar".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/root/{i}/bar/baz".format( i=i ) ), IECore.NullObject.defaultNullObject() ) self.assertEqual( script["instancer"]["out"].object( "/object/instances/root/{i}/bar/baz/cube".format( i=i ) ), script["cube"]["out"].object( "/cube" ) ) def testIndexedRootsList( self ) : script = self.buildPrototypeRootsScript() script["instancer"]["prototypeMode"].setValue( GafferScene.Instancer.PrototypeMode.IndexedRootsList ) script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [] ) ) self.assertRootsMatchPrototypeSceneChildren( script ) script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "", ] ) ) self.assertUnderspecifiedRoots( script ) script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/foo", ] ) ) self.assertSingleRoot( script ) # roots list matching the prototype root children # we expect the same results as without a roots list script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/foo", "/bar" ] ) ) self.assertRootsMatchPrototypeSceneChildren( script ) script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/foo/bar", "/bar" ] ) ) self.assertConflictingRootNames( script ) # opposite order to the prototype root children script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/bar", "/foo" ] ) ) self.assertSwappedRoots( script ) script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "", "/bar" ] ) ) self.assertSkippedRoots( script ) # roots all the way to the leaf level of the prototype scene script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/foo/bar/sphere", "/bar/baz/cube" ] ) ) self.assertRootsToLeaves( script ) # we can specify the root of the prototype scene script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/" ] ) ) self.assertRootsToRoot( script ) script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/foo", "/does/not/exist" ] ) ) six.assertRaisesRegex( self, Gaffer.ProcessException, '.*Prototype root "/does/not/exist" does not exist.*', script["instancer"]["out"].childNames, "/object/instances", ) def testIndexedRootsVariable( self ) : script = self.buildPrototypeRootsScript() script["instancer"]["prototypeMode"].setValue( GafferScene.Instancer.PrototypeMode.IndexedRootsVariable ) script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [] ) ) six.assertRaisesRegex( self, Gaffer.ProcessException, ".*must specify at least one root location.*", script["instancer"]["out"].childNames, "/object/instances", ) script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "", ] ) ) self.assertUnderspecifiedRoots( script ) script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "/foo", ] ) ) self.assertSingleRoot( script ) # roots list matching the prototype root children # we expect the same results as without a roots list script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "/foo", "/bar" ] ) ) self.assertRootsMatchPrototypeSceneChildren( script ) script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "/foo/bar", "/bar" ] ) ) self.assertConflictingRootNames( script ) # opposite order to the prototype root children script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "/bar", "/foo" ] ) ) self.assertSwappedRoots( script ) script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "", "/bar" ] ) ) self.assertSkippedRoots( script ) # roots all the way to the leaf level of the prototype scene script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "/foo/bar/sphere", "/bar/baz/cube" ] ) ) self.assertRootsToLeaves( script ) # we can specify the root of the prototype scene script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "/" ] ) ) self.assertRootsToRoot( script ) script["variables"]["primitiveVariables"]["prototypeRoots"]["value"].setValue( IECore.StringVectorData( [ "/foo", "/does/not/exist" ] ) ) six.assertRaisesRegex( self, Gaffer.ProcessException, '.*Prototype root "/does/not/exist" does not exist.*', script["instancer"]["out"].childNames, "/object/instances", ) script["instancer"]["prototypeRoots"].setValue( "notAPrimVar" ) six.assertRaisesRegex( self, Gaffer.ProcessException, ".*must be Constant StringVectorData when using IndexedRootsVariable mode.*does not exist.*", script["instancer"]["out"].childNames, "/object/instances", ) # the vertex primvar should fail script["instancer"]["prototypeRoots"].setValue( "root" ) six.assertRaisesRegex( self, Gaffer.ProcessException, ".*must be Constant StringVectorData when using IndexedRootsVariable mode.*", script["instancer"]["out"].childNames, "/object/instances", ) def testRootPerVertex( self ) : script = self.buildPrototypeRootsScript() script["instancer"]["prototypeMode"].setValue( GafferScene.Instancer.PrototypeMode.RootPerVertex ) script["instancer"]["prototypeRoots"].setValue( "root" ) def updateRoots( roots, indices ) : points = script["objectToScene"]["object"].getValue() points["root"] = IECoreScene.PrimitiveVariable( points["root"].interpolation, roots, indices ) script["objectToScene"]["object"].setValue( points ) updateRoots( IECore.StringVectorData( [] ), IECore.IntVectorData( [] ) ) six.assertRaisesRegex( self, Gaffer.ProcessException, ".*must specify at least one root location.*", script["instancer"]["out"].childNames, "/object/instances", ) updateRoots( IECore.StringVectorData( [ "", ] ), IECore.IntVectorData( [ 0, 0, 0, 0 ] ) ) self.assertUnderspecifiedRoots( script ) updateRoots( IECore.StringVectorData( [ "/foo", ] ), IECore.IntVectorData( [ 0, 0, 0, 0 ] ) ) self.assertSingleRoot( script ) # roots list matching the prototype root children # we expect the same results as without a roots list updateRoots( IECore.StringVectorData( [ "/foo", "/bar" ] ), IECore.IntVectorData( [ 0, 1, 1, 0 ] ) ) self.assertRootsMatchPrototypeSceneChildren( script ) updateRoots( IECore.StringVectorData( [ "/foo/bar", "/bar" ] ), IECore.IntVectorData( [ 0, 1, 1, 0 ] ) ) self.assertConflictingRootNames( script ) # opposite order to the prototype root children updateRoots( IECore.StringVectorData( [ "/bar", "/foo" ] ), IECore.IntVectorData( [ 0, 1, 1, 0 ] ) ) self.assertSwappedRoots( script ) updateRoots( IECore.StringVectorData( [ "", "/bar" ] ), IECore.IntVectorData( [ 0, 1, 1, 0 ] ) ) self.assertSkippedRoots( script ) # roots all the way to the leaf level of the prototype scene updateRoots( IECore.StringVectorData( [ "/foo/bar/sphere", "/bar/baz/cube" ] ), IECore.IntVectorData( [ 0, 1, 1, 0 ] ) ) self.assertRootsToLeaves( script ) # we can specify the root of the prototype scene updateRoots( IECore.StringVectorData( [ "/", ] ), IECore.IntVectorData( [ 0, 0, 0, 0 ] ) ) self.assertRootsToRoot( script ) updateRoots( IECore.StringVectorData( [ "/foo", "/does/not/exist" ] ), IECore.IntVectorData( [ 0, 1, 1, 0 ] ) ) six.assertRaisesRegex( self, Gaffer.ProcessException, '.*Prototype root "/does/not/exist" does not exist.*', script["instancer"]["out"].childNames, "/object/instances", ) script["instancer"]["prototypeRoots"].setValue( "notAPrimVar" ) six.assertRaisesRegex( self, Gaffer.ProcessException, ".*must be Vertex StringVectorData when using RootPerVertex mode.*does not exist.*", script["instancer"]["out"].childNames, "/object/instances", ) # the constant primvar should fail script["instancer"]["prototypeRoots"].setValue( "prototypeRoots" ) six.assertRaisesRegex( self, Gaffer.ProcessException, ".*must be Vertex StringVectorData when using RootPerVertex mode.*", script["instancer"]["out"].childNames, "/object/instances", ) def testSets( self ) : points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 0, 4 ) ] ) ) points["index"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ 0, 1, 1, 0 ] ), ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( points ) sphere = GafferScene.Sphere() sphere["sets"].setValue( "sphereSet" ) cube = GafferScene.Cube() cube["sets"].setValue( "cubeSet" ) cubeGroup = GafferScene.Group() cubeGroup["name"].setValue( "cubeGroup" ) cubeGroup["in"][0].setInput( cube["out"] ) instances = GafferScene.Parent() instances["in"].setInput( sphere["out"] ) instances["children"][0].setInput( cubeGroup["out"] ) instances["parent"].setValue( "/" ) instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( instances["out"] ) instancer["parent"].setValue( "/object" ) instancer["prototypeIndex"].setValue( "index" ) self.assertEqual( instancer["out"]["setNames"].getValue(), IECore.InternedStringVectorData( [ "sphereSet", "cubeSet" ] ) ) self.assertEqual( set( instancer["out"].set( "sphereSet" ).value.paths() ), { "/object/instances/sphere/0", "/object/instances/sphere/3", } ) self.assertEqual( set( instancer["out"].set( "cubeSet" ).value.paths() ), { "/object/instances/cubeGroup/1/cube", "/object/instances/cubeGroup/2/cube", } ) # Test encapsulation options encapInstancer = GafferScene.Instancer() encapInstancer["in"].setInput( objectToScene["out"] ) encapInstancer["prototypes"].setInput( instances["out"] ) encapInstancer["parent"].setValue( "/object" ) encapInstancer["prototypeIndex"].setValue( "index" ) encapInstancer["encapsulateInstanceGroups"].setValue( True ) unencapFilter = GafferScene.PathFilter() unencapFilter["paths"].setValue( IECore.StringVectorData( [ "/..." ] ) ) unencap = GafferScene.Unencapsulate() unencap["in"].setInput( encapInstancer["out"] ) unencap["filter"].setInput( unencapFilter["out"] ) # Sets should be empty while encapsulated self.assertEqual( encapInstancer["out"].set( "sphereSet" ).value.paths(), [] ) self.assertEqual( encapInstancer["out"].set( "cubeSet" ).value.paths(), [] ) # But should match after unencapsulating self.assertScenesEqual( unencap["out"], instancer["out"] ) def testSetsWithDeepPrototypeRoots( self ) : script = self.buildPrototypeRootsScript() script["sphere"]["sets"].setValue( "sphereSet" ) script["cube"]["sets"].setValue( "cubeSet" ) script["set"] = GafferScene.Set() script["set"]["name"].setValue( "barSet" ) script["set"]["in"].setInput( script["prototypes"]["out"] ) script["barFilter"] = GafferScene.PathFilter() script["barFilter"]["paths"].setValue( IECore.StringVectorData( [ "/foo/bar", "/bar" ] ) ) script["set"]["filter"].setInput( script["barFilter"]["out"] ) script["instancer"]["prototypes"].setInput( script["set"]["out"] ) script["instancer"]["prototypeMode"].setValue( GafferScene.Instancer.PrototypeMode.IndexedRootsList ) script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/foo/bar", "/bar" ] ) ) self.assertEqual( script["instancer"]["out"]["setNames"].getValue(), IECore.InternedStringVectorData( [ "sphereSet", "cubeSet", "barSet" ] ) ) self.assertEqual( set( script["instancer"]["out"].set( "sphereSet" ).value.paths() ), { "/object/instances/bar/0/sphere", "/object/instances/bar/3/sphere", } ) self.assertEqual( set( script["instancer"]["out"].set( "cubeSet" ).value.paths() ), { "/object/instances/bar1/1/baz/cube", "/object/instances/bar1/2/baz/cube", } ) self.assertEqual( set( script["instancer"]["out"].set( "barSet" ).value.paths() ), { "/object/instances/bar/0", "/object/instances/bar/3", "/object/instances/bar1/1", "/object/instances/bar1/2", } ) def testIds( self ) : points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 0, 4 ) ] ) ) points["id"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ 10, 100, 111, 5 ] ), ) points["index"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ 0, 1, 0, 1 ] ), ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( points ) sphere = GafferScene.Sphere() cube = GafferScene.Cube() instances = GafferScene.Parent() instances["in"].setInput( sphere["out"] ) instances["children"][0].setInput( cube["out"] ) instances["parent"].setValue( "/" ) instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( instances["out"] ) instancer["parent"].setValue( "/object" ) instancer["prototypeIndex"].setValue( "index" ) instancer["id"].setValue( "id" ) self.assertEqual( instancer["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "sphere", "cube" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere" ), IECore.InternedStringVectorData( [ "10", "111" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/cube" ), IECore.InternedStringVectorData( [ "5", "100" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere/10" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere/111" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].childNames( "/object/instances/cube/100" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].childNames( "/object/instances/cube/5" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/sphere" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/cube" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/sphere/10" ), sphere["out"].object( "/sphere" ) ) self.assertEqual( instancer["out"].object( "/object/instances/sphere/111" ), sphere["out"].object( "/sphere" ) ) self.assertEqual( instancer["out"].object( "/object/instances/cube/100" ), cube["out"].object( "/cube" ) ) self.assertEqual( instancer["out"].object( "/object/instances/cube/5" ), cube["out"].object( "/cube" ) ) self.assertEqual( instancer["out"].transform( "/object/instances" ), imath.M44f() ) self.assertEqual( instancer["out"].transform( "/object/instances/sphere" ), imath.M44f() ) self.assertEqual( instancer["out"].transform( "/object/instances/cube" ), imath.M44f() ) self.assertEqual( instancer["out"].transform( "/object/instances/sphere/10" ), imath.M44f() ) self.assertEqual( instancer["out"].transform( "/object/instances/sphere/111" ), imath.M44f().translate( imath.V3f( 2, 0, 0 ) ) ) self.assertEqual( instancer["out"].transform( "/object/instances/cube/100" ), imath.M44f().translate( imath.V3f( 1, 0, 0 ) ) ) self.assertEqual( instancer["out"].transform( "/object/instances/cube/5" ), imath.M44f().translate( imath.V3f( 3, 0, 0 ) ) ) six.assertRaisesRegex( self, Gaffer.ProcessException, 'Instancer.out.transform : Instance id "77" is invalid. Topology may have changed during shutter.', instancer["out"].transform, "/object/instances/cube/77" ) self.assertSceneValid( instancer["out"] ) def testNegativeIdsAndIndices( self ) : points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 0, 2 ) ] ) ) points["id"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ -10, -5 ] ), ) points["index"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ -1, -2 ] ), ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( points ) sphere = GafferScene.Sphere() cube = GafferScene.Cube() instances = GafferScene.Parent() instances["in"].setInput( sphere["out"] ) instances["children"][0].setInput( cube["out"] ) instances["parent"].setValue( "/" ) instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( instances["out"] ) instancer["parent"].setValue( "/object" ) instancer["prototypeIndex"].setValue( "index" ) instancer["id"].setValue( "id" ) self.assertEqual( instancer["out"].childNames( "/object/instances" ), IECore.InternedStringVectorData( [ "sphere", "cube" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere" ), IECore.InternedStringVectorData( [ "-5" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/cube" ), IECore.InternedStringVectorData( [ "-10" ] ) ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere/-5" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].childNames( "/object/instances/cube/-10" ), IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].object( "/object/instances" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/sphere" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/cube" ), IECore.NullObject.defaultNullObject() ) self.assertEqual( instancer["out"].object( "/object/instances/sphere/-5" ), sphere["out"].object( "/sphere" ) ) self.assertEqual( instancer["out"].object( "/object/instances/cube/-10" ), cube["out"].object( "/cube" ) ) self.assertSceneValid( instancer["out"] ) def testDuplicateIds( self ) : points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 6 ) ] ) ) points["id"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ 0, 0, 2, 2, 4, 4 ] ), ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( points ) sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/object" ) instancer["id"].setValue( "id" ) self.assertSceneValid( instancer["out"] ) self.assertEqual( instancer["out"].childNames( "/object/instances/sphere" ), IECore.InternedStringVectorData( [ "0", "2", "4" ] ) ) self.assertEqual( instancer["out"].transform( "/object/instances/sphere/0" ), imath.M44f().translate( imath.V3f( 0, 0, 0 ) ) ) self.assertEqual( instancer["out"].transform( "/object/instances/sphere/2" ), imath.M44f().translate( imath.V3f( 2, 0, 0 ) ) ) self.assertEqual( instancer["out"].transform( "/object/instances/sphere/4" ), imath.M44f().translate( imath.V3f( 4, 0, 0 ) ) ) def testAttributes( self ) : points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 0, 2 ) ] ) ) points["testFloat"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 0, 1 ] ), ) points["testColor"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.Color3fVectorData( [ imath.Color3f( 1, 0, 0 ), imath.Color3f( 0, 1, 0 ) ] ), ) points["testPoint"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.V3fVectorData( [ imath.V3f( 0, 0, 0 ), imath.V3f( 1, 1, 1 ) ], IECore.GeometricData.Interpretation.Point ), ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( points ) sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/object" ) self.assertEqual( instancer["out"].attributes( "/object/instances" ), IECore.CompoundObject() ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere" ), IECore.CompoundObject() ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/0" ), IECore.CompoundObject() ) instancer["attributes"].setValue( "testFloat testColor testPoint" ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/0" ), IECore.CompoundObject( { "testFloat" : IECore.FloatData( 0.0 ), "testColor" : IECore.Color3fData( imath.Color3f( 1, 0, 0 ) ), "testPoint" : IECore.V3fData( imath.V3f( 0 ), IECore.GeometricData.Interpretation.Point ) } ) ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/1" ), IECore.CompoundObject( { "testFloat" : IECore.FloatData( 1.0 ), "testColor" : IECore.Color3fData( imath.Color3f( 0, 1, 0 ) ), "testPoint" : IECore.V3fData( imath.V3f( 1 ), IECore.GeometricData.Interpretation.Point ) } ) ) instancer["attributePrefix"].setValue( "user:" ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/0" ), IECore.CompoundObject( { "user:testFloat" : IECore.FloatData( 0.0 ), "user:testColor" : IECore.Color3fData( imath.Color3f( 1, 0, 0 ) ), "user:testPoint" : IECore.V3fData( imath.V3f( 0 ), IECore.GeometricData.Interpretation.Point ) } ) ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/1" ), IECore.CompoundObject( { "user:testFloat" : IECore.FloatData( 1.0 ), "user:testColor" : IECore.Color3fData( imath.Color3f( 0, 1, 0 ) ), "user:testPoint" : IECore.V3fData( imath.V3f( 1 ), IECore.GeometricData.Interpretation.Point ) } ) ) instancer["attributePrefix"].setValue( "foo:" ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/0" ), IECore.CompoundObject( { "foo:testFloat" : IECore.FloatData( 0.0 ), "foo:testColor" : IECore.Color3fData( imath.Color3f( 1, 0, 0 ) ), "foo:testPoint" : IECore.V3fData( imath.V3f( 0 ), IECore.GeometricData.Interpretation.Point ) } ) ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/1" ), IECore.CompoundObject( { "foo:testFloat" : IECore.FloatData( 1.0 ), "foo:testColor" : IECore.Color3fData( imath.Color3f( 0, 1, 0 ) ), "foo:testPoint" : IECore.V3fData( imath.V3f( 1 ), IECore.GeometricData.Interpretation.Point ) } ) ) def testEmptyAttributesHaveConstantHash( self ) : points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 0, 2 ) ] ) ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( points ) sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/object" ) self.assertEqual( instancer["out"].attributesHash( "/object/instances/sphere/0" ), instancer["out"].attributesHash( "/object/instances/sphere/1" ), ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/0" ), instancer["out"].attributes( "/object/instances/sphere/1" ), ) def testEditAttributes( self ) : points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( x, 0, 0 ) for x in range( 0, 2 ) ] ) ) points["testFloat"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 0, 1 ] ), ) objectToScene = GafferScene.ObjectToScene() objectToScene["object"].setValue( points ) sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( objectToScene["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["parent"].setValue( "/object" ) instancer["attributes"].setValue( "test*" ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/0" ), IECore.CompoundObject( { "testFloat" : IECore.FloatData( 0.0 ), } ) ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/1" ), IECore.CompoundObject( { "testFloat" : IECore.FloatData( 1.0 ), } ) ) points["testFloat"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 1, 2 ] ), ) objectToScene["object"].setValue( points ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/0" ), IECore.CompoundObject( { "testFloat" : IECore.FloatData( 1.0 ), } ) ) self.assertEqual( instancer["out"].attributes( "/object/instances/sphere/1" ), IECore.CompoundObject( { "testFloat" : IECore.FloatData( 2.0 ), } ) ) def testPrototypeAttributes( self ) : script = self.buildPrototypeRootsScript() # add some attributes throughout the prototype hierarchies script["attrFilter"] = GafferScene.PathFilter() script["attrFilter"]["paths"].setValue( IECore.StringVectorData( [ "/foo", "/foo/bar", "/bar", "/bar/baz/cube" ] ) ) script["attributes"] = GafferScene.StandardAttributes() script["attributes"]["in"].setInput( script["instancer"]["prototypes"].getInput() ) script["attributes"]["filter"].setInput( script["attrFilter"]["out"] ) script["attributes"]["attributes"]["deformationBlur"]["enabled"].setValue( True ) script["attrSpreadsheet"] = Gaffer.Spreadsheet() script["attrSpreadsheet"]["selector"].setValue( "${scene:path}" ) script["attrSpreadsheet"]["rows"].addColumn( script["attributes"]["attributes"]["deformationBlur"]["value"] ) script["attributes"]["attributes"]["deformationBlur"]["value"].setInput( script["attrSpreadsheet"]["out"][0] ) for location, value in ( ( "/foo", False ), ( "/foo/bar", True ), ( "/bar", True ), ( "/bar/baz/cube", False ) ) : row = script["attrSpreadsheet"]["rows"].addRow() row["name"].setValue( location ) row["cells"][0]["value"].setValue( value ) script["instancer"]["prototypes"].setInput( script["attributes"]["out"] ) script["instancer"]["prototypeMode"].setValue( GafferScene.Instancer.PrototypeMode.IndexedRootsList ) script["instancer"]["prototypeRootsList"].setValue( IECore.StringVectorData( [ "/foo", "/bar" ] ) ) self.assertEqual( script["instancer"]["out"].attributes( "/object/instances" ), IECore.CompoundObject() ) self.assertEqual( script["instancer"]["out"].attributes( "/object/instances/foo" ), IECore.CompoundObject() ) self.assertEqual( script["instancer"]["out"].attributes( "/object/instances/bar" ), IECore.CompoundObject() ) for i in [ "0", "3" ] : self.assertEqual( script["instancer"]["out"].attributes( "/object/instances/foo/{i}".format( i=i ) )["gaffer:deformationBlur"].value, False ) self.assertEqual( script["instancer"]["out"].fullAttributes( "/object/instances/foo/{i}".format( i=i ) )["gaffer:deformationBlur"].value, False ) self.assertEqual( script["instancer"]["out"].attributes( "/object/instances/foo/{i}/bar".format( i=i ) )["gaffer:deformationBlur"].value, True ) self.assertEqual( script["instancer"]["out"].attributes( "/object/instances/foo/{i}/bar/sphere" ), IECore.CompoundObject() ) self.assertEqual( script["instancer"]["out"].fullAttributes( "/object/instances/foo/{i}/bar/sphere".format( i=i ) )["gaffer:deformationBlur"].value, True ) for i in [ "1", "2" ] : self.assertEqual( script["instancer"]["out"].attributes( "/object/instances/bar/{i}".format( i=i ) )["gaffer:deformationBlur"].value, True ) self.assertEqual( script["instancer"]["out"].fullAttributes( "/object/instances/bar/{i}".format( i=i ) )["gaffer:deformationBlur"].value, True ) self.assertEqual( script["instancer"]["out"].attributes( "/object/instances/bar/{i}/baz".format( i=i ) ), IECore.CompoundObject() ) self.assertEqual( script["instancer"]["out"].fullAttributes( "/object/instances/bar/{i}/baz".format( i=i ) )["gaffer:deformationBlur"].value, True ) self.assertEqual( script["instancer"]["out"].attributes( "/object/instances/bar/{i}/baz/cube".format( i=i ) )["gaffer:deformationBlur"].value, False ) self.assertSceneValid( script["instancer"]["out"] ) def testUnconnectedInstanceInput( self ) : plane = GafferScene.Plane() plane["sets"].setValue( "A" ) plane["divisions"].setValue( imath.V2i( 1, 500 ) ) instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["parent"].setValue( "/plane" ) self.assertEqual( instancer["out"].set( "A" ).value.paths(), [ "/plane" ] ) def testDirtyPropagation( self ) : plane = GafferScene.Plane() instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["prototypes"].setInput( plane["out"] ) cs = GafferTest.CapturingSlot( instancer.plugDirtiedSignal() ) instancer["parent"].setValue( "plane" ) self.assertIn( instancer["out"]["childNames"], { x[0] for x in cs } ) del cs[:] filter = GafferScene.PathFilter() instancer["filter"].setInput( filter["out"] ) self.assertIn( instancer["out"]["childNames"], { x[0] for x in cs } ) def testNoPrimitiveAtParent( self ) : group = GafferScene.Group() sphere = GafferScene.Sphere() sphere["sets"].setValue( "setA" ) groupFilter = GafferScene.PathFilter() groupFilter["paths"].setValue( IECore.StringVectorData( [ "/group" ] ) ) instancer = GafferScene.Instancer() instancer["in"].setInput( group["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["filter"].setInput( groupFilter["out"] ) self.assertSceneValid( instancer["out"] ) self.assertEqual( instancer["out"].childNames( "/group/instances" ) , IECore.InternedStringVectorData() ) self.assertEqual( instancer["out"].set( "setA" ) , IECore.PathMatcherData() ) def testSetPassThroughs( self ) : # If the prototypes don't provide a set, then we should do a perfect # pass through. plane = GafferScene.Plane() plane["sets"].setValue( "A" ) planeFilter = GafferScene.PathFilter() planeFilter["paths"].setValue( IECore.StringVectorData( [ "/plane" ] ) ) sphere = GafferScene.Sphere() instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["prototypes"].setInput( sphere["out"] ) instancer["filter"].setInput( planeFilter["out"] ) self.assertTrue( instancer["out"].exists( "/plane/instances/sphere/0" ) ) self.assertEqual( instancer["out"].setHash( "A" ), instancer["in"].setHash( "A" ) ) self.assertEqual( instancer["out"].set( "A" ), instancer["in"].set( "A" ) ) self.assertEqual( instancer["out"].set( "A" ).value.paths(), [ "/plane" ] ) def testContexts( self ): points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( i, 0, 0 ) for i in range( 100 ) ] ) ) points["floatVar"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ 2 * math.sin( i ) for i in range( 100 ) ] ) ) points["vectorVar"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.V3fVectorData( [ imath.V3f( i + 2, i + 3, i + 4 ) for i in range( 100 ) ] ) ) points["uvVar"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.V2fVectorData( [ imath.V2f( i * 0.01, i * 0.02 ) for i in range( 100 ) ] ) ) points["intVar"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.IntVectorData( [ i for i in range( 100 ) ] ) ) points["colorVar"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.Color3fVectorData( [ imath.Color3f( i * 0.1 + 2, i * 0.1 + 3, i * 0.1 + 4 ) for i in range( 100 ) ] ) ) points["color4fVar"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.Color4fVectorData( [ imath.Color4f( i * 0.1 + 2, i * 0.1 + 3, i * 0.1 + 4, i * 0.1 + 5 ) for i in range( 100 ) ] ) ) points["stringVar"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.StringVectorData( [ "foo%i"%(i//34) for i in range( 100 ) ] ) ) points["unindexedRoots"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.StringVectorData( [ ["cube","plane","sphere"][i//34] for i in range( 100 ) ] ) ) points["indexedRoots"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.StringVectorData( [ "cube","plane","sphere"] ), IECore.IntVectorData( [(i//34) for i in range( 100 )] ), ) pointsSource = GafferScene.ObjectToScene() pointsSource["name"].setValue( "points" ) pointsSource["object"].setValue( points ) attributeSphere = GafferScene.Sphere() sphereFilter = GafferScene.PathFilter() sphereFilter["paths"].setValue( IECore.StringVectorData( [ '/sphere' ] ) ) # In any practical situation where we just needed to set up attributes, we could use the "attributes" # plug to set them up more cheaply. But for testing, setting up attributes is simpler than any realistic # test customAttributes = GafferScene.CustomAttributes() customAttributes["in"].setInput( attributeSphere["out"] ) customAttributes["filter"].setInput( sphereFilter["out"] ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "floatAttr", Gaffer.FloatPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ), True, "member1" ) ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "vectorAttr", Gaffer.V3fPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ), True, "member2" ) ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "uvAttr", Gaffer.V2fPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ), True, "member3" ) ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "intAttr", Gaffer.IntPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic, ), True, "member4" ) ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "colorAttr", Gaffer.Color3fPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ), True, "member5" ) ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "color4fAttr", Gaffer.Color4fPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ), True, "member6" ) ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "stringAttr", Gaffer.StringPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ), True, "member7" ) ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "seedAttr", Gaffer.IntPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic, ), True, "member8" ) ) customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "frameAttr", Gaffer.FloatPlug( "value", flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic, ), True, "member9" ) ) customAttributes["ReadContextExpression"] = Gaffer.Expression() customAttributes["ReadContextExpression"].setExpression( inspect.cleandoc( """ parent["attributes"]["member1"]["value"] = context.get( "floatVar", -1 ) parent["attributes"]["member2"]["value"] = context.get( "vectorVar", imath.V3f(-1) ) parent["attributes"]["member3"]["value"] = context.get( "uvVar", imath.V2f(-1) ) parent["attributes"]["member4"]["value"] = context.get( "intVar", -1 ) parent["attributes"]["member5"]["value"] = context.get( "colorVar", imath.Color3f( -1 ) ) parent["attributes"]["member6"]["value"] = context.get( "color4fVar", imath.Color4f( -1 ) ) parent["attributes"]["member7"]["value"] = context.get( "stringVar", "" ) parent["attributes"]["member8"]["value"] = context.get( "seed", -1 ) parent["attributes"]["member9"]["value"] = context.get( "frame", -1 ) """ ) ) group = GafferScene.Group() group["in"][0].setInput( customAttributes["out"] ) group["name"].setValue( 'withAttrs' ) cube = GafferScene.Cube() plane = GafferScene.Plane() sphere = GafferScene.Sphere() parent = GafferScene.Parent() parent["parent"].setValue( '/' ) parent["in"].setInput( group["out"] ) parent["children"][0].setInput( cube["out"] ) parent["children"][1].setInput( plane["out"] ) parent["children"][2].setInput( sphere["out"] ) pointsFilter = GafferScene.PathFilter() pointsFilter["paths"].setValue( IECore.StringVectorData( [ '/points' ] ) ) instancer = GafferScene.Instancer() instancer["in"].setInput( pointsSource["out"] ) instancer["filter"].setInput( pointsFilter["out"] ) instancer["prototypes"].setInput( parent["out"] ) def uniqueCounts(): return dict( [ (i[0], i[1].value) for i in instancer["variations"].getValue().items() ] ) def childNameStrings( location ): return [ i.value() for i in instancer['out'].childNames( location ) ] def testAttributes( **expected ): a = [ instancer['out'].attributes( "points/instances/withAttrs/" + i.value() + "/sphere" ) for i in instancer['out'].childNames( "points/instances/withAttrs" ) ] r = {} for n in a[0].keys(): r = [ i[n].value for i in a] if n + "_seedCount" in expected: self.assertEqual( len( set( r ) ), expected[ n + "_seedCount" ] ) elif n in expected: self.assertEqual( len(r), len(expected[n]) ) if type( r[0] ) == float: if r != expected[n]: for i in range( len( r ) ): self.assertAlmostEqual( r[i], expected[n][i], places = 6 ) else: self.assertEqual( r, expected[n] ) else: if type( r[0] ) == str: self.assertEqual( r, [""] * len( r ) ) else: self.assertEqual( r, [type( r[0] )( -1 )] * len( r ) ) # Compatible with C++ rounding def compatRound( x ): if x >= 0.0: return math.floor(x + 0.5) else: return math.ceil(x - 0.5) def quant( x, q ): return compatRound( float( x ) / q ) * q self.assertEqual( uniqueCounts(), { "" : 1 } ) self.assertEqual( childNameStrings( "points/instances" ), [ "withAttrs", "cube", "plane", "sphere" ] ) self.assertEqual( childNameStrings( "points/instances/withAttrs" ), [ str(i) for i in range( 100 ) ] ) self.assertEqual( childNameStrings( "points/instances/cube" ), [] ) self.assertEqual( childNameStrings( "points/instances/plane" ), [] ) self.assertEqual( childNameStrings( "points/instances/sphere" ), [] ) instancer["prototypeMode"].setValue( GafferScene.Instancer.PrototypeMode.RootPerVertex ) instancer["prototypeRoots"].setValue( "indexedRoots" ) self.assertEqual( uniqueCounts(), { "" : 3 } ) self.assertEqual( childNameStrings( "points/instances/cube" ), [ str(i) for i in range( 0, 34 ) ] ) self.assertEqual( childNameStrings( "points/instances/plane" ), [ str(i) for i in range( 34, 68 ) ] ) self.assertEqual( childNameStrings( "points/instances/sphere" ), [ str(i) for i in range( 68, 100 ) ] ) instancer["prototypeRoots"].setValue( "unindexedRoots" ) """ # How things should work self.assertEqual( uniqueCounts(), { "" : 3 } ) self.assertEqual( childNameStrings( "points/instances/cube" ), [ str(i) for i in range( 0, 34 ) ] ) self.assertEqual( childNameStrings( "points/instances/plane" ), [ str(i) for i in range( 34, 68 ) ] ) self.assertEqual( childNameStrings( "points/instances/sphere" ), [ str(i) for i in range( 68, 100 ) ] ) """ # How things currently work self.assertEqual( uniqueCounts(), { "" : 1 } ) self.assertEqual( childNameStrings( "points/instances/cube" ), [ str(i) for i in range( 100 ) ] ) self.assertEqual( childNameStrings( "points/instances/plane" ), [] ) self.assertEqual( childNameStrings( "points/instances/sphere" ), [] ) instancer["prototypeMode"].setValue( GafferScene.Instancer.PrototypeMode.IndexedRootsList ) instancer["prototypeIndex"].setValue( 'intVar' ) self.assertEqual( uniqueCounts(), { "" : 4 } ) self.assertEqual( childNameStrings( "points/instances/withAttrs" ), [ str(i) for i in range( 0, 100, 4 ) ] ) self.assertEqual( childNameStrings( "points/instances/cube" ), [ str(i) for i in range( 1, 100, 4 ) ] ) self.assertEqual( childNameStrings( "points/instances/plane" ), [ str(i) for i in range( 2, 100, 4 ) ] ) self.assertEqual( childNameStrings( "points/instances/sphere" ), [ str(i) for i in range( 3, 100, 4 ) ] ) # No context overrides yet testAttributes( frameAttr = [ 1 ] * 25 ) instancer["contextVariables"].addChild( GafferScene.Instancer.ContextVariablePlug( "context" ) ) instancer["contextVariables"][0]["name"].setValue( "floatVar" ) instancer["contextVariables"][0]["quantize"].setValue( 0 ) # With zero quantization, everything is now unique testAttributes( frameAttr = [ 1 ] * 25, floatAttr = [ 2 * math.sin( i ) for i in range(0, 100, 4) ] ) # Check both the global unique count, and the per-context variable unique counts self.assertEqual( uniqueCounts(), { "" : 100, "floatVar" : 100 } ) # With massive quantization, all values collapse instancer["contextVariables"][0]["quantize"].setValue( 100 ) testAttributes( frameAttr = [ 1 ] * 25, floatAttr = [ 0 for i in range(0, 100, 4) ] ) self.assertEqual( uniqueCounts(), { "" : 4, "floatVar" : 1 } ) # With moderate quantization, we can see how different prototypes combine with the contexts to produce # more unique values instancer["contextVariables"][0]["quantize"].setValue( 1 ) floatExpected = [ compatRound( 2 * math.sin( i ) ) for i in range(0, 100, 4) ] testAttributes( frameAttr = [ 1 ] * 25, floatAttr = floatExpected ) self.assertEqual( uniqueCounts(), { "" : 20, "floatVar" : 5 } ) instancer["prototypeRootsList"].setValue( IECore.StringVectorData( [ "withAttrs", "cube", "plane", "sphere" ] ) ) testAttributes( frameAttr = [ 1 ] * 25, floatAttr = floatExpected ) self.assertEqual( uniqueCounts(), { "" : 20, "floatVar" : 5 } ) # Test an empty root instancer["prototypeRootsList"].setValue( IECore.StringVectorData( [ "withAttrs", "", "plane", "sphere" ] ) ) self.assertEqual( uniqueCounts(), { "" : 15, "floatVar" : 5 } ) # Now lets just focus on context variation instancer["prototypeRootsList"].setValue( IECore.StringVectorData( [] ) ) instancer["prototypeIndex"].setValue( '' ) floatExpected = [ compatRound( 2 * math.sin( i ) ) for i in range(0, 100) ] testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected ) self.assertEqual( uniqueCounts(), { "" : 5, "floatVar" : 5 } ) # Add a second context variation instancer["contextVariables"].addChild( GafferScene.Instancer.ContextVariablePlug( "context" ) ) instancer["contextVariables"][1]["name"].setValue( "vectorVar" ) instancer["contextVariables"][1]["quantize"].setValue( 0 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, vectorAttr = [ imath.V3f( i + 2, i + 3, i + 4 ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "vectorVar" : 100, "" : 100 } ) instancer["contextVariables"][1]["quantize"].setValue( 10 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, vectorAttr = [ imath.V3f( quant( i + 2, 10 ), quant( i + 3, 10 ), quant( i + 4, 10 ) ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "vectorVar" : 31, "" : 64 } ) # Try all the different types instancer["contextVariables"][1]["name"].setValue( "uvVar" ) instancer["contextVariables"][1]["quantize"].setValue( 0 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, uvAttr = [ imath.V2f( i * 0.01, i * 0.02 ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "uvVar" : 100, "" : 100 } ) instancer["contextVariables"][1]["quantize"].setValue( 1 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, uvAttr = [ imath.V2f( compatRound( i * 0.01 ), compatRound( i * 0.02 ) ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "uvVar" : 4, "" : 20 } ) instancer["contextVariables"][1]["name"].setValue( "intVar" ) instancer["contextVariables"][1]["quantize"].setValue( 0 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, intAttr = [ i for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "intVar" : 100, "" : 100 } ) instancer["contextVariables"][1]["quantize"].setValue( 10 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, intAttr = [ quant( i, 10 ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "intVar" : 11, "" : 48 } ) instancer["contextVariables"][1]["name"].setValue( "stringVar" ) instancer["contextVariables"][1]["quantize"].setValue( 0 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, stringAttr = [ "foo%i" % ( i / 34 ) for i in range(100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "stringVar" : 3, "" : 15 } ) instancer["contextVariables"][1]["quantize"].setValue( 10 ) six.assertRaisesRegex( self, Gaffer.ProcessException, 'Instancer.out.attributes : Context variable "0" : cannot quantize variable of type StringVectorData', instancer['out'].attributes, "points/instances/withAttrs/0/sphere" ) six.assertRaisesRegex( self, Gaffer.ProcessException, 'Instancer.variations : Context variable "0" : cannot quantize variable of type StringVectorData', uniqueCounts ) instancer["contextVariables"][1]["name"].setValue( "colorVar" ) instancer["contextVariables"][1]["quantize"].setValue( 0 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, colorAttr = [ imath.Color3f( i * 0.1 + 2, i * 0.1 + 3, i * 0.1 + 4 ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "colorVar" : 100, "" : 100 } ) instancer["contextVariables"][1]["quantize"].setValue( 1 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, colorAttr = [ imath.Color3f( compatRound( i * 0.1 + 2 ), compatRound( i * 0.1 + 3 ), compatRound( i * 0.1 + 4 ) ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "colorVar" : 11, "" : 48 } ) instancer["contextVariables"][1]["name"].setValue( "color4fVar" ) instancer["contextVariables"][1]["quantize"].setValue( 0 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, color4fAttr = [ imath.Color4f( i * 0.1 + 2, i * 0.1 + 3, i * 0.1 + 4, i * 0.1 + 5 ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 100, "" : 100 } ) instancer["contextVariables"][1]["quantize"].setValue( 1 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, color4fAttr = [ imath.Color4f( compatRound( i * 0.1 + 2 ), compatRound( i * 0.1 + 3 ), compatRound( i * 0.1 + 4 ), compatRound( i * 0.1 + 5 ) ) for i in range(0, 100) ] ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 11, "" : 48 } ) # Set a high quantize so we can see how these variations interact with other types of variations instancer["contextVariables"][1]["quantize"].setValue( 10 ) color4fExpected = [ imath.Color4f( quant( i * 0.1 + 2, 10 ), quant( i * 0.1 + 3, 10 ), quant( i * 0.1 + 4, 10 ), quant( i * 0.1 + 5, 10 ) ) for i in range(0, 100) ] testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, color4fAttr = color4fExpected ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "" : 20 } ) instancer["seedEnabled"].setValue( True ) instancer["rawSeed"].setValue( True ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, color4fAttr = color4fExpected, seedAttr = list( range( 100 ) ) ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "seed" : 100, "" : 100 } ) instancer["rawSeed"].setValue( False ) instancer["seeds"].setValue( 10 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, color4fAttr = color4fExpected, seedAttr_seedCount = 10 ) initialFirstVal = instancer['out'].attributes( '/points/instances/withAttrs/0/sphere' )["seedAttr"] self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "seed" : 10, "" : 67 } ) # Changing the seed changes individual values, but not the overall behaviour instancer["seedPermutation"].setValue( 1 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, color4fAttr = color4fExpected, seedAttr_seedCount = 10 ) self.assertNotEqual( initialFirstVal, instancer['out'].attributes( '/points/instances/withAttrs/0/sphere' )["seedAttr"] ) # Total variation count is a bit different because the different variation sources line up differently self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "seed" : 10, "" : 69 } ) # If we generate 100 seeds from 100 ids, we will get many collisions, and only 67 unique values instancer["seeds"].setValue( 100 ) testAttributes( frameAttr = [ 1 ] * 100, floatAttr = floatExpected, color4fAttr = color4fExpected, seedAttr_seedCount = 67 ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "seed" : 67, "" : 94 } ) # Now turn on time offset as well and play with everything together instancer["seeds"].setValue( 10 ) instancer["timeOffset"]["enabled"].setValue( True ) instancer["timeOffset"]["name"].setValue( 'floatVar' ) instancer["timeOffset"]["quantize"].setValue( 0.0 ) testAttributes( frameAttr = [ 1 + 2 * math.sin( i ) for i in range(0, 100) ], floatAttr = floatExpected, color4fAttr = color4fExpected, seedAttr_seedCount = 10 ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "seed" : 10, "frame" : 100, "" : 100 } ) instancer["timeOffset"]["quantize"].setValue( 0.5 ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "seed" : 10, "frame" : 9, "" : 82 } ) instancer["timeOffset"]["quantize"].setValue( 1 ) testAttributes( frameAttr = [ i + 1 for i in floatExpected ], floatAttr = floatExpected, color4fAttr = color4fExpected, seedAttr_seedCount = 10 ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "seed" : 10, "frame" : 5, "" : 69 } ) c = Gaffer.Context() c["frame"] = IECore.FloatData( 42 ) with c: testAttributes( frameAttr = [ i + 42 for i in floatExpected ], floatAttr = floatExpected, color4fAttr = color4fExpected, seedAttr_seedCount = 10 ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "seed" : 10, "frame" : 5, "" : 69 } ) # Now reduce back down the variations to test different cumulative combinations instancer["seedEnabled"].setValue( False ) testAttributes( frameAttr = [ i + 1 for i in floatExpected ], floatAttr = floatExpected, color4fAttr = color4fExpected ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "color4fVar" : 4, "frame" : 5, "" : 20 } ) # With just one context var, driven by the same prim var as frame, with the same quantization, # the variations don't multiply del instancer["contextVariables"][1] testAttributes( frameAttr = [ i + 1 for i in floatExpected ], floatAttr = floatExpected ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "frame" : 5, "" : 5 } ) # Using a different source primVar means the variations will multiply instancer["timeOffset"]["name"].setValue( 'intVar' ) instancer["timeOffset"]["quantize"].setValue( 0 ) testAttributes( frameAttr = [ i + 1 for i in range(100) ], floatAttr = floatExpected ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "frame" : 100, "" : 100 } ) instancer["timeOffset"]["quantize"].setValue( 20 ) testAttributes( frameAttr = [ ((i+10)//20)*20 + 1 for i in range(100) ], floatAttr = floatExpected ) self.assertEqual( uniqueCounts(), { "floatVar" : 5, "frame" : 6, "" : 30 } ) # Test with multiple point sources pointsMerge = GafferScene.Parent() pointsMerge["parent"].setValue( '/' ) pointSources = [] for j in range( 3 ): points = IECoreScene.PointsPrimitive( IECore.V3fVectorData( [ imath.V3f( i, 0, 0 ) for i in range( 10 ) ] ) ) points["floatVar"] = IECoreScene.PrimitiveVariable( IECoreScene.PrimitiveVariable.Interpolation.Vertex, IECore.FloatVectorData( [ i * 0.1 + j for i in range( 10 ) ] ) ) pointSources.append( GafferScene.ObjectToScene() ) pointSources[-1]["name"].setValue( "points" ) pointSources[-1]["object"].setValue( points ) parent["children"][-1].setInput( pointSources[-1]["out"] ) instancer["in"].setInput( parent["out"] ) instancer["timeOffset"]["enabled"].setValue( False ) instancer["contextVariables"][0]["quantize"].setValue( 0 ) pointsFilter["paths"].setValue( IECore.StringVectorData( [ '/points*' ] ) ) self.assertAlmostEqual( instancer['out'].attributes( "points/instances/withAttrs/2/sphere" )["floatAttr"].value, 0.2 ) self.assertAlmostEqual( instancer['out'].attributes( "points1/instances/withAttrs/3/sphere" )["floatAttr"].value, 1.3 ) self.assertAlmostEqual( instancer['out'].attributes( "points2/instances/withAttrs/5/sphere" )["floatAttr"].value, 2.5 ) self.assertEqual( uniqueCounts(), { "floatVar" : 30, "" : 30 } ) instancer["contextVariables"][0]["quantize"].setValue( 0.2001 ) self.assertAlmostEqual( instancer['out'].attributes( "points/instances/withAttrs/2/sphere" )["floatAttr"].value, 0.2001, places = 6 ) self.assertAlmostEqual( instancer['out'].attributes( "points1/instances/withAttrs/3/sphere" )["floatAttr"].value, 1.2006, places = 6 ) self.assertAlmostEqual( instancer['out'].attributes( "points2/instances/withAttrs/5/sphere" )["floatAttr"].value, 2.4012, places = 6 ) self.assertEqual( uniqueCounts(), { "floatVar" : 15, "" : 15 } ) # Test invalid location for func in [ instancer["out"].object, instancer["out"].childNames, instancer["out"].bound, instancer["out"].transform ]: six.assertRaisesRegex( self, Gaffer.ProcessException, 'Instancer.out.' + func.__name__ + ' : Instance id "777" is invalid, instancer produces only 10 children. Topology may have changed during shutter.', func, "/points/instances/withAttrs/777" ) # Test passthrough when disabled instancer["enabled"].setValue( False ) self.assertScenesEqual( instancer["in"], instancer["out"] ) def testContextSet( self ): baseSphere = GafferScene.Sphere() childSphere = GafferScene.Sphere() parent = GafferScene.Parent() parent["in"].setInput( baseSphere["out"] ) parent["children"][0].setInput( childSphere["out"] ) parent["parent"].setValue( '/sphere' ) parent["expression"] = Gaffer.Expression() # Note that we must supply a default for the value of "seed", since the setNames will be evaluated # with no context set parent["expression"].setExpression( 'parent["enabled"] = context.get( "seed", 0 ) % 2' ) allFilter = GafferScene.PathFilter() allFilter["paths"].setValue( IECore.StringVectorData( [ '/...' ] ) ) setNode = GafferScene.Set() setNode["in"].setInput( parent["out"] ) setNode["filter"].setInput( allFilter["out"] ) plane = GafferScene.Plane() pathFilter = GafferScene.PathFilter() pathFilter["paths"].setValue( IECore.StringVectorData( [ '/plane' ] ) ) instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["filter"].setInput( pathFilter["out"] ) instancer["prototypes"].setInput( setNode["out"] ) instancer["rawSeed"].setValue( True ) with Gaffer.Context() as c : c["seed"] = 0 self.assertEqual( set( instancer["out"].set( "set" ).value.paths() ), set( [ "/plane/instances/sphere/" + i for i in [ "0", "1", "2", "3" ] ] ) ) c["seed"] = 1 self.assertEqual( set( instancer["out"].set( "set" ).value.paths() ), set( [ "/plane/instances/sphere/" + i for i in [ "0", "1", "2", "3", "0/sphere", "1/sphere", "2/sphere", "3/sphere" ] ] ) ) instancer["seedEnabled"].setValue( True ) self.assertEqual( set( instancer["out"].set( "set" ).value.paths() ), set( [ "/plane/instances/sphere/" + i for i in [ "0", "1", "2", "3", "1/sphere", "3/sphere" ] ] ) ) # When encapsulating, we shouldn't pay any time cost for evaluating the set, even with a huge # number of instances plane["divisions"].setValue( imath.V2i( 1000 ) ) instancer["encapsulateInstanceGroups"].setValue( True ) t = time.time() instancer["out"].set( "set" ) totalTime = time.time() - t self.assertLess( totalTime, 0.001 ) # Test passthrough when disabled instancer["enabled"].setValue( False ) self.assertScenesEqual( instancer["in"], instancer["out"] ) def runTestContextSetPerf( self, useContexts, parallelEvaluate ): plane = GafferScene.Plane() plane["divisions"].setValue( imath.V2i( 1000 ) ) plane["divisionExpression"] = Gaffer.Expression() plane["divisionExpression"].setExpression( 'parent["divisions"] = imath.V2i( 1000 + int( context["collect:rootName"][-1:] ) )' ) # Duplicate the source points, so that we are measuring the perf of an Instancer targeting multiple locations collectScenes = GafferScene.CollectScenes() collectScenes["in"].setInput( plane["out"] ) collectScenes["rootNames"].setValue( IECore.StringVectorData( [ 'plane0', 'plane1', 'plane2', 'plane3', 'plane4' ] ) ) collectScenes["sourceRoot"].setValue( '/plane' ) # Source scene, with a little hierarchy, so paths aren't trivial to merge sphere = GafferScene.Sphere() group = GafferScene.Group( "group" ) group["in"][0].setInput( sphere["out"] ) # Create a set leafFilter = GafferScene.PathFilter() leafFilter["paths"].setValue( IECore.StringVectorData( [ '/group/sphere' ] ) ) setNode = GafferScene.Set() setNode["in"].setInput( group["out"] ) setNode["filter"].setInput( leafFilter["out"] ) # Instancer instancerFilter = GafferScene.PathFilter() instancerFilter["paths"].setValue( IECore.StringVectorData( [ '/plane*' ] ) ) instancer = GafferScene.Instancer() instancer["in"].setInput( collectScenes["out"] ) instancer["filter"].setInput( instancerFilter["out"] ) instancer["prototypes"].setInput( setNode["out"] ) instancer["seedEnabled"].setValue( useContexts ) if not parallelEvaluate: with GafferTest.TestRunner.PerformanceScope() : instancer["out"].set( "set" ) else: # Set up a slightly realistic scene which results in the set plug being # pulled multiple times in parallel, to check whether TaskCollaborate is working setFilter = GafferScene.SetFilter() setFilter["setExpression"].setValue( 'set' ) customAttributes = GafferScene.CustomAttributes() customAttributes["attributes"].addChild( Gaffer.NameValuePlug( "", Gaffer.BoolPlug( "value", defaultValue = False, flags = Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic, ), True, "member1", Gaffer.Plug.Flags.Default | Gaffer.Plug.Flags.Dynamic ) ) customAttributes["in"].setInput( instancer["out"] ) customAttributes["filter"].setInput( setFilter["out"] ) customAttributes["attributes"]["member1"]["name"].setValue( 'testAttr' ) customAttributes["attributes"]["member1"]["value"].setValue( True ) subTree = GafferScene.SubTree() subTree["in"].setInput( customAttributes["out"] ) subTree["root"].setValue( '/plane0/instances/group' ) isolateFilter = GafferScene.PathFilter() isolateFilter["paths"].setValue( IECore.StringVectorData( [ '/67000*' ] ) ) isolate = GafferScene.Isolate() isolate["in"].setInput( subTree["out"] ) isolate["filter"].setInput( isolateFilter["out"] ) with GafferTest.TestRunner.PerformanceScope() : GafferSceneTest.traverseScene( isolate["out"] ) def testEmptyPrototypes( self ) : plane = GafferScene.Plane() planeFilter = GafferScene.PathFilter() planeFilter["paths"].setValue( IECore.StringVectorData( [ "/plane" ] ) ) instancer = GafferScene.Instancer() instancer["in"].setInput( plane["out"] ) instancer["filter"].setInput( planeFilter["out"] ) self.assertEqual( instancer["variations"].getValue(), IECore.CompoundData( { "" : IECore.IntData( 0 ) } ) ) @unittest.skipIf( GafferTest.inCI(), "Performance not relevant on CI platform" ) @GafferTest.TestRunner.PerformanceTestMethod() def testContextSetPerfNoVariationsSingleEvaluate( self ): self.runTestContextSetPerf( False, False ) @unittest.skipIf( GafferTest.inCI(), "Performance not relevant on CI platform" ) @GafferTest.TestRunner.PerformanceTestMethod() def testContextSetPerfNoVariationsParallelEvaluate( self ): self.runTestContextSetPerf( False, True ) @unittest.skipIf( GafferTest.inCI(), "Performance not relevant on CI platform" ) @GafferTest.TestRunner.PerformanceTestMethod() def testContextSetPerfWithVariationsSingleEvaluate( self ): self.runTestContextSetPerf( True, False ) @unittest.skipIf( GafferTest.inCI(), "Performance not relevant on CI platform" ) @GafferTest.TestRunner.PerformanceTestMethod() def testContextSetPerfWithVariationsParallelEvaluate( self ): self.runTestContextSetPerf( True, True ) if __name__ == "__main__": unittest.main()
the-stack_0_10864
import chainer class ParsevalAddition(chainer.function.Function): """Implementation of aggregation layer for Parseval networks. Only two to one mapping is supported. """ def forward(self, inputs): x0, x1, alpha = inputs return x0 * alpha[0] + x1 * alpha[1], def backward(self, inputs, grad_outputs): x0, x1, alpha = inputs gy = grad_outputs[0] xp = chainer.cuda.get_array_module(gy) ga = xp.array([(gy * x0).sum(), (gy * x1).sum()], xp.float32) return gy * alpha[0], gy * alpha[1], ga
the-stack_0_10867
from sef_dr.linear import LinearSEF import numpy as np from sklearn.neighbors import NearestCentroid def test_linear_sef(): """ Performs some basic testing using the LinearSEF :return: """ np.random.seed(1) train_data = np.random.randn(100, 50) train_labels = np.random.randint(0, 2, 100) proj = LinearSEF(50, output_dimensionality=12) proj._initialize(train_data) proj_data = proj.transform(train_data, batch_size=8) assert proj_data.shape[0] == 100 assert proj_data.shape[1] == 12 ncc = NearestCentroid() ncc.fit(proj_data, train_labels) acc_before = ncc.score(proj_data, train_labels) loss = proj.fit(data=train_data, target_labels=train_labels, epochs=200, target='supervised', batch_size=8, regularizer_weight=0, learning_rate=0.0001, verbose=False) # Ensure that loss is reducing assert loss[0] > loss[-1] proj_data = proj.transform(train_data, batch_size=8) assert proj_data.shape[0] == 100 assert proj_data.shape[1] == 12 ncc = NearestCentroid() ncc.fit(proj_data, train_labels) acc_after = ncc.score(proj_data, train_labels) assert acc_after > acc_before
the-stack_0_10868
import time from absl import app, flags, logging from absl.flags import FLAGS import cv2 import tensorflow as tf from yolov3_tf2.models import ( YoloV3, YoloV3Tiny ) from yolov3_tf2.dataset import transform_images from yolov3_tf2.utils import draw_outputs flags.DEFINE_string('classes', './data/coco.names', 'path to classes file') flags.DEFINE_string('weights', './checkpoints/yolov3.tf', 'path to weights file') flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny') flags.DEFINE_integer('size', 416, 'resize images to') flags.DEFINE_string('video', './data/video.mp4', 'path to video file or number for webcam)') flags.DEFINE_string('output', None, 'path to output video') flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving video to file') flags.DEFINE_integer('num_classes', 2 , 'number of classes in the model') def main(_argv): physical_devices = tf.config.experimental.list_physical_devices('GPU') for physical_device in physical_devices: tf.config.experimental.set_memory_growth(physical_device, True) if FLAGS.tiny: yolo = YoloV3Tiny(classes=FLAGS.num_classes) else: yolo = YoloV3(classes=FLAGS.num_classes) yolo.load_weights(FLAGS.weights) logging.info('weights loaded') class_names = [c.strip() for c in open(FLAGS.classes).readlines()] logging.info('classes loaded') times = [] try: vid = cv2.VideoCapture(int(FLAGS.video)) except: vid = cv2.VideoCapture(FLAGS.video) out = None if FLAGS.output: # by default VideoCapture returns float instead of int width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) fps = int(vid.get(cv2.CAP_PROP_FPS)) codec = cv2.VideoWriter_fourcc(*FLAGS.output_format) out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height)) while True: _, img = vid.read() if img is None: logging.warning("Empty Frame") time.sleep(0.1) break img_in = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_in = tf.expand_dims(img_in, 0) img_in = transform_images(img_in, FLAGS.size) t1 = time.time() boxes, scores, classes, nums = yolo.predict(img_in) t2 = time.time() times.append(t2-t1) times = times[-20:] img = draw_outputs(img, (boxes, scores, classes, nums), class_names) img = cv2.putText(img, "Time: {:.2f}ms".format(sum(times)/len(times)*1000), (0, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2) if FLAGS.output: out.write(img) cv2.imshow('output', img) if cv2.waitKey(1) == ord('q'): break cv2.destroyAllWindows() if __name__ == '__main__': try: app.run(main) except SystemExit: pass
the-stack_0_10870
import json with open("data/story.json", "r") as story_file: story = json.load(story_file) messages,\ defaults,\ zones\ = story.values() # for zone in zones: # rooms = zones[zone] # for room in rooms: # # room is currently the key of the room obj # features = rooms[room]["features"] # items = rooms[room]["items"] # print(f"{room}: ->") # print(f" feats-") # for feature in features: # print(" " + feature) # print(f" items-") # for item in items: # print(" " + item)