filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_11036
# -*- coding: utf-8 -*- # ============================================================================= # Copyright (c) 2020 NVIDIA. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= from collections.abc import MutableMapping from typing import Any, Dict, List, Optional from frozendict import frozendict from nemo.utils import logging from nemo.utils.neural_graph.connection import StepModulePort class GraphOutput(object): """ A helper class represenging a single bound output. """ def __init__(self, ntype: "NeuralType", producer_step_module_port: StepModulePort): """ Initializes object. Args: ntype: a NeuralType object. producer_step_module_port: a producer StepModulePort tuple (step number (module name), port name). """ self._ntype = ntype self._producer_step_module_port = producer_step_module_port @property def ntype(self) -> "NeuralType": """ Returns: NeuralType of a given output. """ return self._ntype @property def producer_step_module_port(self) -> StepModulePort: """ Returns producer step port (step number (module), port name) tuple. """ return self._producer_step_module_port class GraphOutputs(MutableMapping): ''' A specialized dictionary that contains bound outputs of a Neural Graph. In fact stores two lists of "outputs": - "default" outputs with default keys taken from outputs of modules, and - "manual" used for specifying the subset of outputs. When accessing the outputs, it returns the one of those two lists following the rule: return "manual" outputs if they were define (at least one manual output defined by the user), otherwise return the "default" outputs. ''' def __init__(self, tensors_ref): """ Initializes two (empty) dictionaries. Args: tensors_ref - reference to neural graph's tensor (dict of dict). """ # Tensors[step][output_port_name] passed from the external neural graph object. self._tensors_ref = tensors_ref # This dictionary stores the output tensors collected during the "default" tensor recording. # As they are using the default port names, the second/next tensor published on the same port # will generate a new unique name following the (step_number.module.port_name) pattern. self._default_outputs = {} # This dictionary stores list of output tensors of module "manually" indicated by the user. # In this case tring to overwriting the existing ports with new tensors will be forbidden (Exception). self._manual_outputs = {} def __setitem__(self, key: str, value: "NmTensor"): """ This method is used to set the manual output - creates a GraphOutput item and adds it to the list. Args: key: The name of the output (port). value: NmTensor that will be used to create a given GraphOutput. """ # Make sure that user passed a NmTensor. if type(value).__name__ != "NmTensor": raise TypeError("Port `{}` definition must be must be set using a NmTensor".format(key)) if key in self._manual_outputs.keys(): raise KeyError("Overwriting of a port `{}` that was previously manually bound is not allowed".format(key)) # Ok, set thee "manual" output. self._manual_outputs[key] = GraphOutput(value.ntype, value.producer_step_module_port) def __getitem__(self, key: str) -> GraphOutput: """ Returns the bound output associated with the given key. Uses default or manual dict depending whether there are some manual outputs or not. Args: key: Name of the bound input. """ if len(self._manual_outputs) > 0: return self._manual_outputs[key] else: # Use default dict. return self._default_outputs[key] def __delitem__(self, key: str): """ Raises: TypeError as deletion of a bound input port is not allowed. """ raise TypeError("Deleting a bound output is not allowed") def __iter__(self): """ Returns: Iterator over the outputs - depending whether there are some manual outputs or not. """ if len(self._manual_outputs) > 0: return iter(self._manual_outputs) else: # Use default dict. return iter(self._default_outputs) def __len__(self) -> int: """ Returns: The number of outputs - depending whether there are some manual outputs or not. """ if len(self._manual_outputs) > 0: return len(self._manual_outputs) else: # Use default dict. return len(self._default_outputs) def bind(self, tensors_ref: List["NmTensor"], port_names: Optional[str] = None): """ Binds the "default" outputs. Args: tensors_ref: List of tensors to be added. port_names: List of port names (visible outside). If None: using internal tensor "output port names". """ # Set names. if port_names is None: port_names = [tensor.name for tensor in tensors_ref] for name, tensor in zip(port_names, tensors_ref): # Check the presence of the port name in "default" dictionary. if name in self._default_outputs.keys(): # Name present - use the name being combination of producer and port names. name = ( str(tensor.producer_step_number) + "_" + tensor.producer_name + "_" + tensor.name ) # last = port name logging.debug( "Setting unigue name of the default output port `{}` produced in step {} by `{}` to `{}`".format( tensor.name, tensor.producer_step_number, tensor.producer_name, name ) ) # Store the output. self._default_outputs[name] = GraphOutput(tensor.ntype, tensor.producer_step_module_port) @property def definitions(self) -> Dict[str, GraphOutput]: """ Property returns definitions of the output ports by extracting them on the fly from the bound outputs. ..info: This property actually returns a FrozenDict containing port definitions to indicate that port definitions SHOULD not be used during the actual binding. Returns: Dictionary of neural types associated with bound outputs. """ # Get the right output dictionary. d = self._manual_outputs if len(self._manual_outputs) > 0 else self._default_outputs # Extract port definitions (Neural Types) and return an immutable dictionary, # so the user won't be able to modify its content by an accident! return frozendict({k: v.ntype for k, v in d.items()}) @property def tensors(self) -> Dict[str, "NmTensor"]: """ Property returns output tensors by extracting them on the fly from the bound outputs. Returns: Dictionary of tensors in the format (output-name: tensor). """ # Get the right output dictionary. d = self._manual_outputs if len(self._manual_outputs) > 0 else self._default_outputs output_tensors = {} # Get tensors by acessing the producer-ports. # At that point all keys (k) are unigue - we made sure of that during binding/__setitem__. for k, v in d.items(): producer_step = v.producer_step_module_port.step_number producer_port_name = v.producer_step_module_port.port_name # Find the right output tensor. tensor = self._tensors_ref[producer_step][producer_port_name] # Add it to the dictionary. output_tensors[k] = tensor # Return the result as an immutable dictionary, # so the user won't be able to modify its content by an accident! return frozendict(output_tensors) @property def tensor_list(self) -> List["NmTensor"]: """ Property returns output tensors by extracting them on the fly from the bound outputs. Returns: List of tensors. """ # Get the right output dictionary. d = self._manual_outputs if len(self._manual_outputs) > 0 else self._default_outputs output_tensor_list = [] # Get tensors by acessing the producer-ports. for k, v in d.items(): producer_step = v.producer_step_module_port.step_number producer_port_name = v.producer_step_module_port.port_name # Find the right output tensor. tensor = self._tensors_ref[producer_step][producer_port_name] # Add it to the list. output_tensor_list.append(tensor) # Return the result. return output_tensor_list def serialize(self) -> Dict[str, Any]: """ Method responsible for serialization of the graph outputs. Returns: List containing mappings (step.module.output_port -> output | ntype). """ serialized_outputs = {"mappings": []} # Get the right output dictionary. if len(self._manual_outputs) > 0: serialized_outputs["type"] = "manual" d = self._manual_outputs else: serialized_outputs["type"] = "default" d = self._default_outputs # Iterate through "bindings" (GraphOutputs). for key, binding in d.items(): # Serialize: step.module.port -> output | ntype. smp = binding.producer_step_module_port source = str(smp.step_number) + "." + smp.module_name + "." + smp.port_name # Get type. ntype_str = str(binding.ntype) # Serialize! serialized_outputs["mappings"].append(source + "->" + key + " | " + ntype_str) # Return the result. return serialized_outputs def deserialize(self, serialized_outputs: Dict[str, Any], modules: Dict[str, 'NeuralModule']): """ Method responsible for deserialization of graph outputs. Args: serialized_outputs: A list of serialized outputs in the form of ("step.module.output_port->key | ntype") modules: List of modules required for neural type copying/checking. """ # Check type. if serialized_outputs["type"] == "default": # We still need to deserialize. # Use-case: deserialization of a graph with nested graph with bound output. d = self._default_outputs else: d = self._manual_outputs # Iterate through serialized inputs one by one. for i in serialized_outputs["mappings"]: # Deserialize! [producer, key_ntype] = i.split("->") [key, ntype_str] = key_ntype.split(" | ") [step_number, producer_name, producer_port_name] = producer.split(".") # Get neural type from module output port definition. ntype = modules[producer_name].output_ports[producer_port_name] # Make sure the graph bound port type matches the deserialized type. assert ntype_str == str(ntype) # Create a new input. go = GraphOutput(ntype, StepModulePort(int(step_number), producer_name, producer_port_name)) d[key] = go # Done.
the-stack_0_11037
#!/usr/bin/env python DESC = """ ____ _ _ __ __ __ ____ _____ | __ ) ___ __ _ _ _| |_(_)/ _|_ _| \/ | _ \___ / | _ \ / _ \/ _` | | | | __| | |_| | | | |\/| | |_) ||_ \ | |_) | __/ (_| | |_| | |_| | _| |_| | | | | __/___) | |____/ \___|\__,_|\__,_|\__|_|_| \__, |_| |_|_| |____/ |___/ ______________________________________________________________ | | | Edit Metadata of MP3 files based on file name | |____________________________________________________________| """ import sys import shutil import os from os import chdir, listdir, rename, walk, path, environ from os.path import basename, dirname, realpath import spotipy import argparse import configparser import spotipy.oauth2 as oauth2 import re from titlecase import titlecase import requests from bs4 import BeautifulSoup import eyed3 import argparse def setup_config(): ''' read api keys from config.ini file ''' global CONFIG, GENIUS_KEY, SP_SECRET, SP_ID, config_path CONFIG = configparser.ConfigParser() config_path = realpath(__file__).replace(basename(__file__), '') config_path = config_path + 'config.ini' CONFIG.read(config_path) GENIUS_KEY = CONFIG['keys']['genius_key'] SP_SECRET = CONFIG['keys']['spotify_client_secret'] SP_ID = CONFIG['keys']['spotify_client_id'] if GENIUS_KEY == '<insert genius key here>': print('Warning, you are missing Genius key. Add it using --config\n\n') if SP_SECRET == '<insert spotify client secret here>': print('Warning, you are missing Spotify Client Secret. Add it using --config\n\n') if SP_ID == '<insert spotify client id here>': print('Warning, you are missing Spotify Client ID. Add it using --config\n\n') def add_config_keys(): ''' Adds configuration keys in the config.ini file ''' GENIUS_KEY = CONFIG['keys']['genius_key'] SP_SECRET = CONFIG['keys']['spotify_client_secret'] SP_ID = CONFIG['keys']['spotify_client_id'] if GENIUS_KEY == '<insert genius key here>': genius_key = input('Enter Genius Client Access token : ') CONFIG['keys']['genius_key'] = str(genius_key) if SP_SECRET == '<insert spotify client secret here>': sp_secret = input('Enter Spotify Secret token : ') CONFIG['keys']['spotify_client_secret'] = str(sp_secret) if SP_ID == '<insert spotify client id here>': sp_id = input('Enter Spotify Client ID : ') CONFIG['keys']['spotify_client_id'] = str(sp_id) with open(config_path, 'w') as configfile: CONFIG.write(configfile) def improve_song_name(song): ''' removes all unwanted words and numbers from file name so that the spotify search results can be improved removes all numbers from beginning, then strip all punctuation marks from the string, then remove words in word_filters, then remove unwanted space ''' audiofile = eyed3.load(song) tag = audiofile.tag artist = tag.artist.split(";", 1)[0] song = artist + ' - ' + tag.title char_filters = "()[]{}-:_/=!+\"\'" word_filters = ('lyrics', 'lyric', 'by', 'video', 'official', 'hd', 'dirty', 'with', 'lyrics', 'original', 'mix', 'www', 'com', '.', 'mp3', 'audio', 'full', 'feat', 'version', 'music', 'hq', 'uploaded', 'explicit') reg_exp = 's/^\d\d //' song = song.strip() song = song.lstrip("0123456789.- ") # re.sub(reg_exp, '', song) song = song[0:-4] song = ''.join( map(lambda c: " " if c in char_filters else c, song)) song = re.sub('|'.join(re.escape(key) for key in word_filters), "", song, flags=re.IGNORECASE) song = ' '.join(song.split()).strip() print(song) return song def get_song_name(title, artist): ''' return search query for spotify api call ''' return title + ' - ' + artist def get_metadata_spotify(spotify, song_name): ''' call spotify.com api to get the metadata required, as much as possible ''' print("trying to find data on Spotify...") metadata = {} try: meta_tags = spotify.search(song_name, limit=1)['tracks']['items'][0] except IndexError: print("Could not find the song on Spotify") return [] metadata['title'] = meta_tags['name'] metadata['artist'] = meta_tags['artists'][0]['name'] metadata['album'] = meta_tags['album']['name'] metadata['album_artist'] = meta_tags['album']['artists'][0]['name'] album_id = meta_tags['album']['id'] album_meta_tags = spotify.album(album_id) metadata['release_date'] = album_meta_tags['release_date'] print(album_meta_tags['genres']) try: metadata['genre'] = titlecase(album_meta_tags['genres'][0]) #genre = "; ".join((album_meta_tags['genres'])) #metadata['genre'] = titlecase(genre) except IndexError: try: artist_id = meta_tags['artists'][0]['id'] artist_meta_tags = spotify.artist(artist_id) #metadata['genre'] = titlecase(artist_meta_tags['genres'][0]) genre = "; ".join((artist_meta_tags['genres'])) metadata['genre'] = titlecase(genre) except IndexError: print("song genre could not be found.") pass metadata['track_num'] = meta_tags['track_number'] metadata['disc_num'] = meta_tags['disc_number'] print() return metadata def list_files(): ''' list all files in current directory with extension .mp3 ''' files = [] return [f for f in listdir('.') if f.endswith('.mp3')] def set_metadata(file_name, metadata): ''' call eyed3 module to set mp3 song metadata as received from spotify ''' print("setting metadata for " + file_name) print() audiofile = eyed3.load(file_name) tag = audiofile.tag if 'genre' in metadata: #tag.genre = metadata['genre'] #tag.comments.set = metadata['genre'] tag.comments.set(metadata['genre']) tag.save(version=(2, 3, 0)) #tag.save() # if not norename: # song_title = rename_format.format( # title=metadata['title'] + ' -', # artist=metadata['artist'] + ' -', # album=metadata['album'] + ' -') # song_title = song_title[:-1] if song_title.endswith('-') else song_title # song_title = ' '.join(song_title.split()).strip() # print("renaming " + file_name + "to " + song_title) # new_path = path.dirname(file_name) + '{}.mp3'.format(song_title) # rename(file_name, new_path) print() return def fix_music_file(spotify, file_name, norename, rename_format): print("------------------------------------------------------------------------") print() print() print("Currently processing " + file_name) metadata = get_metadata_spotify(spotify, improve_song_name(file_name)) if not metadata: is_improvemet_needed = True return is_improvemet_needed else: set_metadata(file_name, metadata) is_improvemet_needed = False rename_file = rename_to_format( file_name, norename, rename_format, metadata) shutil.move(rename_file, 'Organized') return is_improvemet_needed def rename_to_format(file_name, norename, rename_format, metadata): # if not norename: # song_title = rename_format.format( # title=metadata['title'] + ' -', # artist=metadata['artist'] + ' -', # album=metadata['album'] + ' -') # song_title = song_title[:-1] if song_title.endswith('-') else song_title # song_title = ' '.join(song_title.split()).strip() song_title = file_name print("renaming " + file_name + "to " + song_title) new_path = path.dirname(file_name) + '{}.mp3'.format(song_title) rename(file_name, new_path) return new_path def fix_music_files(spotify, files, norename, rename_format): need_to_improve = [] for file_name in files: response = fix_music_file(spotify, file_name, norename, rename_format) if response is True: need_to_improve.append(file_name) ("------------------------------------------------------------------------") print() print() return need_to_improve def main(): ''' Deals with arguements and calls other functions ''' setup_config() parser = argparse.ArgumentParser( description="{}".format(DESC), formatter_class=argparse.RawDescriptionHelpFormatter ) # group = parser.add_mutually_exclusive_group(required=True) parser.add_argument('-d', '--dir', action="store", dest='repair_directory', help='give path of music files\' directory', default=os.getcwd()) parser.add_argument('-s', '--song', action='store', dest='song_name', help='Only fix metadata of the file specified', default=None) parser.add_argument('-c', '--config', action='store_true', dest='config', help="Add API Keys to config\n\n") parser.add_argument('-n', '--norename', action='store_true', help='Does not rename files to song title\n\n') parser.add_argument('-f', '--format', action='store', dest='rename_format', help='''Specify the Name format used in renaming, Valid Keywords are: {title}{artist}{album}\n\n)''') args = parser.parse_args() repair_directory = args.repair_directory or '.' song_name = args.song_name or None norename = args.norename or False rename_format = args.rename_format or '{title}' config = args.config if config: add_config_keys() auth = oauth2.SpotifyClientCredentials( client_id="622a0e16a4914e3eadc2a37b4a134f1e", client_secret="6fe008a8b7754954a58a9849fa3172df") token = auth.get_access_token() spotify = spotipy.Spotify(auth=token) files = [] if song_name is not None: need_to_improve = fix_music_file( spotify, song_name, norename, rename_format) if need_to_improve is True: print(song_name) elif repair_directory: chdir(repair_directory or '.') if not os.path.exists("Organized"): os.makedirs("Organized") files = list_files() need_to_improve = fix_music_files( spotify, files, norename, rename_format) print(need_to_improve) if __name__ == "__main__": main()
the-stack_0_11040
# Copyright 2010-2012 the SGC project developers. # See the LICENSE file at the top-level directory of this distribution # and at http://program.sambull.org/sgc/license.html. import warnings import pygame from pygame.locals import * from .._locals import * class SelectableText: _text = "" _text_offset = _text_pos = 0 __blink = True _blink_time = 0 _chars = ((0,0),) _repeat_key = None _repeat_time = 0 _select = None # Starting point of selection __cursor_pos = 0 @property def _blink(self): """Always return False when a selection is made.""" return self.__blink and not bool(self._select) @_blink.setter def _blink(self, value): self.__blink = value def _select_fix(self): """ Returns the selection area corrected, so if the selection is right-to-left it returns the positions reversed. """ if self._select > self._cursor_pos: return (self._cursor_pos, self._select) else: return (self._select, self._cursor_pos) def _calc_chars(self): """ Calculates the position and size of each character. Stores the results in self._chars as a tuple of (pos, width) tuples. """ p = self._settings["font"].size(self._text[0])[0] chars = [(0,p)] for c in range(len(self._text)): w = self._settings["font"].size(self._text[:c+2])[0] xmax, advance = self._settings["font"].metrics( self._text[c])[0][1::3] if xmax > advance: # Adjust for overhang chars.append((p - (xmax - advance), w - p)) else: chars.append((p, w - p)) p = w self._chars = tuple(chars) def _mouse_cursor(self, mouse_pos): """Return the text cursor position of the mouse.""" pos = mouse_pos[0] - self.rect_abs.x - self._text_pos for index, (p,w) in enumerate(self._chars): if pos <= p + w/2: break return index def _update_select_text(self, time): """ Update text stuff for selectable text. Should be called from widget's update() method. """ # Repeat key if held down if self._repeat_key: self._repeat_time += time while self._repeat_time > self._settings["repeat_begin"]: self._repeat_time -= self._settings["repeat_interval"] self._event(self._repeat_key) def _event_select_text(self, event): """ Handles events for selectable text. Call from widget's _event() method. """ if event.type == MOUSEBUTTONDOWN and event.button == 1: # Begin drawing selection if pygame.key.get_mods() & KMOD_SHIFT and self._select is None: self._select = self._cursor_pos self._cursor_pos = self._mouse_cursor(event.pos) if not pygame.key.get_mods() & KMOD_SHIFT: self._select = self._cursor_pos elif event.type == MOUSEMOTION and event.buttons[0]: # Continue drawing selection while mouse held down self._cursor_pos = self._mouse_cursor(event.pos) elif event.type == MOUSEBUTTONUP: # Set cursor position with mouse click self._cursor_pos = self._mouse_cursor(event.pos) if self._select == self._cursor_pos: self._select = None elif event.type == KEYDOWN: # Save last key press for repeat if self._repeat_key != event: self._repeat_key = event self._repeat_time = 0 if event.key == K_ESCAPE: self._select = None elif event.key == K_LEFT: if not event.mod & KMOD_SHIFT: self._select = None # Break selection elif self._select is None: # Reset selection if not selecting self._select = self._cursor_pos self._cursor_pos -= 1 # Remove selection when cursor is at same position if self._select == self._cursor_pos: self._select = None elif event.key == K_RIGHT: if not event.mod & KMOD_SHIFT: self._select = None # Break selection elif self._select is None: self._select = self._cursor_pos self._cursor_pos += 1 if self._select == self._cursor_pos: self._select = None elif event.key == K_HOME: if not event.mod & KMOD_SHIFT: self._select = None elif self._select is None: self._select = self._cursor_pos self._cursor_pos = 0 if self._select == self._cursor_pos: self._select = None elif event.key == K_END: if not event.mod & KMOD_SHIFT: self._select = None elif self._select is None: self._select = self._cursor_pos self._cursor_pos = len(self._text) if self._select == self._cursor_pos: self._select = None '''elif event.mod & KMOD_CTRL: if event.key == K_a: # Select all self._select = 0 self._cursor_pos = len(self._text) elif event.key == K_c and self._select is not None: # Copy select = self._select_fix() string = "".join(self._text[select[0]:select[1]]) try: pygame.scrap.put(SCRAP_TEXT, string) except pygame.error: warnings.warn("Please run 'pygame.scrap.init()'" " to use the clipboard.", RuntimeWarning)''' elif event.type == KEYUP: if self._repeat_key and self._repeat_key.key == event.key: self._repeat_key = None # Stop repeat def _update_modify_text(self, time): """ Update text stuff for editable text (e.g. input box). Should be called from widget's update() method. """ # If enough time has passed, blink cursor self._blink_time += time if self._blink_time > self._settings["blink_interval"]: self._blink_time -= self._settings["blink_interval"] self._blink = not self._blink def _event_modify_text(self, event): """ Handles events for editable text (e.g. input box). Should be called from widget's _event() method. Will typically be used alongside `_event_select_text()`. """ if event.type == KEYDOWN: # Reset cursor blink when typing self._blink_time = 0 self._blink = True if event.key in (9,K_RETURN,K_ESCAPE,K_KP_ENTER): # Keys to ignore return if event.key == K_BACKSPACE: if self._select is not None: self._delete_selection() elif self._cursor_pos > 0: self._cursor_pos -= 1 self._text.pop(self._cursor_pos) self._calc_chars() elif event.key == K_DELETE: if self._select is not None: self._delete_selection() elif self._cursor_pos < len(self._text): self._text.pop(self._cursor_pos) self._calc_chars() elif event.unicode: if event.mod & KMOD_CTRL: if event.key == K_v: # Paste text = None#pygame.scrap.get(SCRAP_TEXT) '''if text: if self._select is not None: sel = self._select_fix() self._select = None else: sel = (self._cursor_pos, self._cursor_pos) # Get list of text to insert into input_text text = [unicode(char) for char in text] self._text[sel[0]:sel[1]] = text self._calc_chars() self._cursor_pos = sel[0] + len(text)''' elif event.key == K_x and self._select is not None: # Cut select = None#self._select_fix() '''string = "".join(self._text[select[0]:select[1]]) try: pygame.scrap.put(SCRAP_TEXT, string) except pygame.error: warnings.warn("Please run 'pygame.scrap.init()'" " to use the clipboard", RuntimeWarning) self._delete_selection()''' else: # Delete selection if self._select is not None: self._delete_selection() # Insert new character if len(self._text) < self._settings["max_chars"]: self._text.insert(self._cursor_pos, event.unicode) self._calc_chars() self._cursor_pos += 1 def _delete_selection(self): """Delete the current selection of text.""" select = self._select_fix() del self._text[select[0]:select[1]] self._select = None self._cursor_pos = select[0] self._calc_chars() def _draw_selection(self, image, y, height): """Draw selection onto image. Does nothing if no selection.""" if self._select is None: return select = self._select_fix() # Semi-transparent selection rectangle w = self._chars[select[1]][0] - self._chars[select[0]][0] x = self._chars[select[0]][0] + self._text_pos - 1 r = Rect((x,y), (w+2,height)) selection = pygame.surface.Surface(r.size, flags=SRCALPHA) selection.fill(self._settings["col_selection"] + (100,)) image.blit(selection, r) # Border around selection rectangle pygame.draw.rect(image, self._settings["col_selection"], r, 1) @property def _cursor_pos(self): """ The cursor position in characters. Will ensure cursor is always in valid location when set. """ return self.__cursor_pos @_cursor_pos.setter def _cursor_pos(self, value): # Keep cursor position within text self.__cursor_pos = min(max(value, 0), len(self._text)) # Ensure text is visible when less than full width if self._chars[-1][0] < self.rect.w - self._text_offset: self._text_pos = self._text_offset else: # Scroll text in input box when it's too long pos = self._chars[self._cursor_pos][0] if pos > (self.rect.w - self._text_pos): self._text_pos = -(pos - self.rect.w + self._text_offset) elif pos < (self._text_offset - self._text_pos): self._text_pos = self._text_offset - pos # Ensure no unnecessary space is left at right-edge right_edge = self._chars[-1][0] - self.rect.w + self._text_offset if right_edge > 0: self._text_pos = max(-right_edge, self._text_pos)
the-stack_0_11041
#!/usr/bin/env python3 # ============================================================================== # Copyright 2019 - Philip Paquette # # NOTICE: Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # ============================================================================== """ Renders a same tournament game Argument: File path to .json in history folder """ import argparse import os import multiprocessing import shutil from diplomacy import Game import ujson as json from diplomacy_research.proto.diplomacy_proto.game_pb2 import SavedGame as SavedGameProto from diplomacy_research.utils.proto import proto_to_dict, read_next_proto def render_saved_game(saved_game, output_dir, prefix=''): """ Renders a specific saved game :param saved_game: The saved game to render :param output_dir: The output directory where to save the rendering :param prefix: An optional prefix to add before the game id """ if prefix: output_dir = os.path.join(output_dir, prefix + '_' + saved_game['id']) else: output_dir = os.path.join(output_dir, saved_game['id']) nb_phases = len(saved_game['phases']) svg_count = 0 # Checking if already generated # Otherwise, regenerating completely if os.path.exists(output_dir): nb_svg = len([os.path.join(output_dir, file) for file in os.listdir(output_dir) if file[-4:] == '.svg']) if nb_svg == 2 * nb_phases: print('Rendered {} (Skipped)'.format(saved_game['id'])) return shutil.rmtree(output_dir, ignore_errors=True) os.makedirs(output_dir, exist_ok=True) # Creating a Game to replay all orders, and a new Game object per phase to validate entire_game = Game() if saved_game['phases']: entire_game.set_state(saved_game['phases'][0]['state']) # Rendering for phase in saved_game['phases']: phase_game = Game() # Setting state state = phase['state'] phase_game.set_state(state) entire_game.note = phase_game.note # Setting orders phase_game.clear_orders() orders = phase['orders'] for power_name in orders: phase_game.set_orders(power_name, orders[power_name]) entire_game.set_orders(power_name, orders[power_name]) # Validating that we are at the same place for power_name in orders: assert sorted(phase_game.get_units(power_name)) == sorted(entire_game.get_units(power_name)) assert sorted(phase_game.get_centers(power_name)) == sorted(entire_game.get_centers(power_name)) # Rendering with and without orders with open(os.path.join(output_dir, '%03d%s' % (svg_count, '.svg')), 'w') as file: file.write(entire_game.render(incl_orders=False)) svg_count += 1 with open(os.path.join(output_dir, '%03d%s' % (svg_count, '.svg')), 'w') as file: file.write(entire_game.render(incl_orders=True)) # Processing (for entire game) svg_count += 1 entire_game.process() print('Rendered {}'.format(saved_game['id'])) # ========================================= # ------- JSON RENDERING ---------- # ========================================= def render_json(file_path): """ Renders a specific json file :param file_path: The full path to the json file :return: Nothing, but creates a directory (file_path without '.json') containing the rendered images """ dir_path = os.path.dirname(file_path) # Aborting if file doesn't exist if not os.path.exists(file_path): print('File {} does not exist.'.format(file_path)) return # Loading saved game file_content = open(file_path, 'r').read() saved_game = json.loads(file_content) # Rendering render_saved_game(saved_game, dir_path) def render_multi_json_per_folder(history_dir, nb_json_per_folder): """ Finds all subfolders under history and renders 'nb_jsons' games in each subfolder found :param history_dir: The full path to the history folder :param nb_json_per_folder: The number of jsons to render per subfolder :return: Nothing """ jsons_to_render = [] # Finding files to render subfolders = [os.path.join(history_dir, path) for path in os.listdir(history_dir) if os.path.isdir(os.path.join(history_dir, path))] for folder in subfolders: json_games = sorted([os.path.join(folder, json_filename) for json_filename in os.listdir(folder) if json_filename[-5:] == '.json']) json_games = json_games[:nb_json_per_folder] for json_path in json_games: jsons_to_render += [json_path] # Running over multiple processes nb_cores = multiprocessing.cpu_count() with multiprocessing.Pool(nb_cores) as pool: pool.map(render_json, jsons_to_render) # ========================================= # ------- PROTO RENDERING ---------- # ========================================= def render_saved_game_proto(saved_game_proto, output_dir, prefix='', json_only=False): """ Renders a saved game proto :param saved_game_proto: A `.proto.game.SavedGame` object :param output_dir: The output directory where the save the renderings :param prefix: An optional prefix to add before the game id :param json_only: Indicates we only want to extract the underlying JSON """ saved_game = proto_to_dict(saved_game_proto) if json_only: os.makedirs(os.path.join(output_dir, 'json'), exist_ok=True) output_path = os.path.join(output_dir, 'json', prefix + '_' + saved_game['id'] + '.json') with open(output_path, 'w') as file: file.write(json.dumps(saved_game)) print('Saved JSON for {}'.format(saved_game['id'])) else: render_saved_game(saved_game, output_dir, prefix) def render_proto_file(file_path, args, compressed=True): """ Renders all saved game proto in a proto file :param file_path: The path to the proto file :param args: The parsed command line arguments :param compressed: Boolean that indicates if compression was used. """ dir_path = os.path.dirname(file_path) game_count = 0 # Aborting if file doesn't exist if not os.path.exists(file_path): print('File {} does not exist.'.format(file_path)) return # Processing filter games_to_render = [] if args.filter: for part in args.filter.split(','): if '-' in part: start, stop = part.split('-') games_to_render += list(range(int(start), int(stop) + 1)) elif ':' in part: start, stop, step = part.split(':') games_to_render += list(range(int(start), int(stop) + 1, int(step))) else: games_to_render += [int(part)] # Rendering each game in the proto file with open(file_path, 'rb') as file: while True: saved_game_proto = read_next_proto(SavedGameProto, file, compressed) if saved_game_proto is None: break game_count += 1 if game_count in games_to_render or (not games_to_render and not args.count): print('(Game #%d) ' % game_count, end='') render_saved_game_proto(saved_game_proto, dir_path, prefix='%05d' % game_count, json_only=args.json) if game_count % 100 == 0 and args.count: print('... %d games found so far.' % game_count) # Printing the number of games in the proto file if args.count: print('Found %d games in the proto file.' % game_count) # ========================================= if __name__ == '__main__': PARSER = argparse.ArgumentParser(description='Render some saved games.') PARSER.add_argument('--count', action='store_true', help='Count the number of games in the file') PARSER.add_argument('--json', action='store_true', help='Only extract jsons without rendering the games') PARSER.add_argument('--filter', help='Only render some games e.g. 1-5,6,8,10:100:2') PARSER.add_argument('--nb_per_folder', type=int, default=0, help='The number of games per folder to generate') PARSER.add_argument('file_path', help='The file path containing the saved games.') ARGS = PARSER.parse_args() # Rendering a single JSON # Syntax: render.py <json path> if ARGS.file_path[-5:] == '.json': render_json(ARGS.file_path) exit(0) # Render a series of game in a .pb file # Syntax: render.py <pb path> if ARGS.file_path[-3:] == '.pb': render_proto_file(ARGS.file_path, ARGS, compressed=False) exit(0) if ARGS.file_path[-4:] == '.pbz': render_proto_file(ARGS.file_path, ARGS, compressed=True) exit(0) # Rendering a certain number of JSON per folder # Syntax: render.py <history/> --nb_per_folder <# of json per folder to generate> if os.path.exists(ARGS.file_path) and ARGS.nb_per_folder: render_multi_json_per_folder(ARGS.file_path, ARGS.nb_per_folder) exit(0) # Invalid syntax PARSER.print_help() exit(-1)
the-stack_0_11042
""" Copyright (c) IBM 2015-2017. All Rights Reserved. Project name: c4-high-availability This project is licensed under the MIT License, see LICENSE """ import sys from setuptools import setup, find_packages import versioneer needs_pytest = {"pytest", "test", "ptr", "coverage"}.intersection(sys.argv) pytest_runner = ["pytest-runner"] if needs_pytest else [] setup( name = "c4-high-availability", version = versioneer.get_version(), cmdclass = versioneer.get_cmdclass(), packages = find_packages(), install_requires = ["c4-systemmanager"], setup_requires = [] + pytest_runner, tests_require = ["pytest", "pytest-cov"], author = "IBM", author_email = "", description = "This is a high availability implementation based on device managers", license = "MIT", keywords = "python c4 ha", url = "", )
the-stack_0_11046
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import datetime import re from bs4 import BeautifulSoup import scrape_common as sc url = 'https://www.jura.ch/fr/Autorites/Coronavirus/Chiffres-H-JU/Evolution-des-cas-COVID-19-dans-le-Jura.html' d = sc.download(url, silent=True) d = d.replace('&nbsp;', ' ') soup = BeautifulSoup(d, 'html.parser') is_first = True data_table = soup.find('caption', string=re.compile(r'Evolution du nombre de cas.*Jura')).find_parent('table') if data_table: headers = [" ".join(cell.stripped_strings) for cell in data_table.find('tr').find_all(['td', 'th'])] assert len(headers) == 6, f"Number of headers changed: {len(headers)} != 6" rows = [] for row in data_table.find_all('tr')[1:-1]: data = {} for col_num, cell in enumerate(row.find_all(['th', 'td'])): content = " ".join(cell.stripped_strings).strip() if content: data[headers[col_num]] = content rows.append(data) if rows: for i, row in enumerate(rows[:-1]): if not row.get('Date') or row.get('Date') == 'Date': continue if not is_first: print('-' * 10) is_first = False dd = sc.DayData(canton='JU', url=url) current_year = datetime.datetime.now().year if row.get('Date') and not re.search(f'{current_year}', row.get('Date')): dd.datetime = f"{row.get('Date', '')} {current_year}" else: dd.datetime = row.get('Date', '') dd.datetime = dd.datetime.replace('1 er', '1') dd.cases = row.get('Cumul des cas confirmés') dd.hospitalized = row.get('Nombre de cas actuellement hospitalisés') dd.icu = row.get('Nombre de cas actuellement en soins intensifs') dd.deaths = sum(int(str(r.get('Nombre de nouveaux décès', 0)).replace('*', '')) for r in rows[i:] if r.get('Nombre de nouveaux décès')) print(dd)
the-stack_0_11048
""" Source: https://pe.usps.com/text/pub28/welcome.htm """ STREET_NAME_POST_ABBREVIATIONS = { "ALLEE": "ALY", "ALLEY": "ALY", "ALLY": "ALY", "ALY": "ALY", "ANEX": "ANX", "ANNEX": "ANX", "ANNX": "ANX", "ANX": "ANX", "ARC": "ARC", "ARC ": "ARC", "ARCADE": "ARC", "ARCADE ": "ARC", "AV": "AVE", "AVE": "AVE", "AVEN": "AVE", "AVENU": "AVE", "AVENUE": "AVE", "AVN": "AVE", "AVNUE": "AVE", "BAYOO": "BYU", "BAYOU": "BYU", "BCH": "BCH", "BEACH": "BCH", "BEND": "BND", "BLF": "BLF", "BLUF": "BLF", "BLUFF": "BLF", "BLUFFS": "BLFS", "BLUFFS ": "BLFS", "BLVD": "BLVD", "BND": "BND", "BOT": "BTM", "BOTTM": "BTM", "BOTTOM": "BTM", "BOUL": "BLVD", "BOULEVARD": "BLVD", "BOULEVARD ": "BLVD", "BOULV": "BLVD", "BR": "BR", "BRANCH": "BR", "BRDGE": "BRG", "BRG": "BRG", "BRIDGE": "BRG", "BRK": "BRK", "BRNCH": "BR", "BROOK": "BRK", "BROOKS": "BRKS", "BROOKS ": "BRKS", "BTM": "BTM", "BURG": "BG", "BURGS": "BGS", "BYP": "BYP", "BYPA": "BYP", "BYPAS": "BYP", "BYPASS": "BYP", "BYPS": "BYP", "CAMP": "CP", "CANYN": "CYN", "CANYON": "CYN", "CAPE": "CPE", "CAUSEWAY": "CSWY", "CAUSWA": "CSWY", "CAUSWAY": "CSWY", "CEN": "CTR", "CENT": "CTR", "CENTER": "CTR", "CENTERS": "CTRS", "CENTERS ": "CTRS", "CENTR": "CTR", "CENTRE": "CTR", "CIR": "CIR", "CIRC": "CIR", "CIRCL": "CIR", "CIRCLE": "CIR", "CIRCLES": "CIRS", "CK": "CRK", "CLB": "CLB", "CLF": "CLF", "CLFS": "CLFS", "CLIFF": "CLF", "CLIFFS": "CLFS", "CLUB": "CLB", "CMP": "CP", "CNTER": "CTR", "CNTR": "CTR", "CNYN": "CYN", "COMMON": "CMN", "COMMONS": "CMNS", "COR": "COR", "CORNER": "COR", "CORNERS": "CORS", "CORS": "CORS", "COURSE": "CRSE", "COURT": "CT", "COURTS": "CTS", "COVE": "CV", "COVES": "CVS", "CP": "CP", "CPE": "CPE", "CR": "CRK", "CRCL": "CIR", "CRCLE": "CIR", "CRECENT": "CRES", "CREEK": "CRK", "CRES": "CRES", "CRESCENT": "CRES", "CRESENT": "CRES", "CREST": "CRST", "CRK": "CRK", "CROSSING": "XING", "CROSSING ": "XING", "CROSSROAD": "XRD", "CROSSROADS": "XRDS", "CRSCNT": "CRES", "CRSE": "CRSE", "CRSENT": "CRES", "CRSNT": "CRES", "CRSSING": "XING", "CRSSNG": "XING", "CRSSNG ": "XING", "CRT": "CT", "CSWY": "CSWY", "CT": "CT", "CTR": "CTR", "CTS": "CTS", "CURVE": "CURV", "CURVE ": "CURV", "CV": "CV", "CYN": "CYN", "DALE": "DL", "DALE ": "DL", "DAM": "DM", "DAM ": "DM", "DIV": "DV", "DIVIDE": "DV", "DL": "DL", "DL ": "DL", "DM": "DM", "DM ": "DM", "DR": "DR", "DRIV": "DR", "DRIVE": "DR", "DRIVES": "DRS", "DRV": "DR", "DV": "DV", "DVD": "DV", "EST": "EST", "ESTATE": "EST", "ESTATES": "ESTS", "ESTS": "ESTS", "EXP": "EXPY", "EXPR": "EXPY", "EXPRESS": "EXPY", "EXPRESSWAY": "EXPY", "EXPW": "EXPY", "EXPY": "EXPY", "EXT": "EXT", "EXTENSION": "EXT", "EXTENSIONS": "EXTS", "EXTN": "EXT", "EXTNSN": "EXT", "EXTS": "EXTS", "FALL": "FALL", "FALLS": "FLS", "FERRY": "FRY", "FIELD": "FLD", "FIELDS": "FLDS", "FLAT": "FLT", "FLATS": "FLTS", "FLD": "FLD", "FLDS": "FLDS", "FLS": "FLS", "FLT": "FLT", "FLTS": "FLTS", "FORD": "FRD", "FORDS": "FRDS", "FOREST": "FRST", "FORESTS": "FRST", "FORG": "FRG", "FORGE": "FRG", "FORGES": "FRGS", "FORK": "FRK", "FORKS": "FRKS", "FORT": "FT", "FRD": "FRD", "FREEWAY": "FWY", "FREEWY": "FWY", "FRG": "FRG", "FRK": "FRK", "FRKS": "FRKS", "FRRY": "FRY", "FRST": "FRST", "FRT": "FT", "FRWAY": "FWY", "FRWY": "FWY", "FRY": "FRY", "FT": "FT", "FWY": "FWY", "GARDEN": "GDN", "GARDENS": "GDNS", "GARDN": "GDN", "GATEWAY": "GTWY", "GATEWY": "GTWY", "GATWAY": "GTWY", "GDN": "GDN", "GDNS": "GDNS", "GLEN": "GLN", "GLENS": "GLNS", "GLN": "GLN", "GRDEN": "GDN", "GRDN": "GDN", "GRDNS": "GDNS", "GREEN": "GRN", "GREENS": "GRNS", "GRN": "GRN", "GROV": "GRV", "GROVE": "GRV", "GROVES": "GRVS", "GRV": "GRV", "GTWAY": "GTWY", "GTWY": "GTWY", "HARB": "HBR", "HARBOR": "HBR", "HARBORS": "HBRS", "HARBR": "HBR", "HAVEN": "HVN", "HAVN": "HVN", "HBR": "HBR", "HEIGHT": "HTS", "HEIGHTS": "HTS", "HGTS": "HTS", "HIGHWAY": "HWY", "HIGHWY": "HWY", "HILL": "HL", "HILLS": "HLS", "HIWAY": "HWY", "HIWY": "HWY", "HL": "HL", "HLLW": "HOLW", "HLS": "HLS", "HOLLOW": "HOLW", "HOLLOWS": "HOLW", "HOLW": "HOLW", "HOLWS": "HOLW", "HRBOR": "HBR", "HT": "HTS", "HTS": "HTS", "HVN": "HVN", "HWAY": "HWY", "HWY": "HWY", "INLET": "INLT", "INLT": "INLT", "IS": "IS", "ISLAND": "IS", "ISLANDS": "ISS", "ISLE": "ISLE", "ISLES": "ISLE", "ISLND": "IS", "ISLNDS": "ISS", "ISS": "ISS", "JCT": "JCT", "JCTION": "JCT", "JCTN": "JCT", "JCTNS": "JCTS", "JCTS": "JCTS", "JUNCTION": "JCT", "JUNCTIONS": "JCTS", "JUNCTN": "JCT", "JUNCTON": "JCT", "KEY": "KY", "KEYS": "KYS", "KNL": "KNL", "KNLS": "KNLS", "KNOL": "KNL", "KNOLL": "KNL", "KNOLLS": "KNLS", "KY": "KY", "KYS": "KYS", "LA": "LN", "LAKE": "LK", "LAKES": "LKS", "LAND": "LAND", "LANDING": "LNDG", "LANE": "LN", "LANES": "LN", "LCK": "LCK", "LCKS": "LCKS", "LDG": "LDG", "LDGE": "LDG", "LF": "LF", "LGT": "LGT", "LIGHT": "LGT", "LIGHTS": "LGTS", "LK": "LK", "LKS": "LKS", "LN": "LN", "LNDG": "LNDG", "LNDNG": "LNDG", "LOAF": "LF", "LOCK": "LCK", "LOCKS": "LCKS", "LODG": "LDG", "LODGE": "LDG", "LOOP": "LOOP", "LOOPS": "LOOP", "MALL": "MALL", "MANOR": "MNR", "MANORS": "MNRS", "MDW": "MDW", "MDWS": "MDWS", "MEADOW": "MDW", "MEADOWS": "MDWS", "MEDOWS": "MDWS", "MEWS": "MEWS", "MILL": "ML", "MILLS": "MLS", "MISSION": "MSN", "MISSN": "MSN", "ML": "ML", "MLS": "MLS", "MNR": "MNR", "MNRS": "MNRS", "MNT": "MT", "MNTAIN": "MTN", "MNTN": "MTN", "MNTNS": "MTNS", "MOTORWAY": "MTWY", "MOUNT": "MT", "MOUNTAIN": "MTN", "MOUNTAINS": "MTNS", "MOUNTIN": "MTN", "MSN": "MSN", "MSSN": "MSN", "MT": "MT", "MTIN": "MTN", "MTN": "MTN", "NCK": "NCK", "NECK": "NCK", "ORCH": "ORCH", "ORCHARD": "ORCH", "ORCHRD": "ORCH", "OVAL": "OVAL", "OVERPASS": "OPAS", "OVL": "OVAL", "PARK": "PARK", "PARKS": "PARK", "PARKWAY": "PKWY", "PARKWAYS": "PKWY", "PARKWY": "PKWY", "PASS": "PASS", "PASSAGE": "PSGE", "PATH": "PATH", "PATHS": "PATH", "PIKE": "PIKE", "PIKES": "PIKE", "PINE": "PNE", "PINES": "PNES", "PK": "PARK", "PKWAY": "PKWY", "PKWY": "PKWY", "PKWYS": "PKWY", "PKY": "PKWY", "PL": "PL", "PLACE": "PL", "PLAIN": "PLN", "PLAINES": "PLNS", "PLAINS": "PLNS", "PLAZA": "PLZ", "PLN": "PLN", "PLNS": "PLNS", "PLZ": "PLZ", "PLZA": "PLZ", "PNES": "PNES", "POINT": "PT", "POINTS": "PTS", "PORT": "PRT", "PORTS": "PRTS", "PR": "PR", "PRAIRIE": "PR", "PRARIE": "PR", "PRK": "PARK", "PRR": "PR", "PRT": "PRT", "PRTS": "PRTS", "PT": "PT", "PTS": "PTS", "RAD": "RADL", "RADIAL": "RADL", "RADIEL": "RADL", "RADL": "RADL", "RAMP": "RAMP", "RANCH": "RNCH", "RANCHES": "RNCH", "RAPID": "RPD", "RAPIDS": "RPDS", "RD": "RD", "RDG": "RDG", "RDGE": "RDG", "RDGS": "RDGS", "RDS": "RDS", "REST": "RST", "RIDGE": "RDG", "RIDGES": "RDGS", "RIV": "RIV", "RIVER": "RIV", "RIVR": "RIV", "RNCH": "RNCH", "RNCHS": "RNCH", "ROAD": "RD", "ROADS": "RDS", "ROUTE": "RTE", "ROW": "ROW", "RPD": "RPD", "RPDS": "RPDS", "RST": "RST", "RUE": "RUE", "RUN": "RUN", "RVR": "RIV", "SHL": "SHL", "SHLS": "SHLS", "SHOAL": "SHL", "SHOALS": "SHLS", "SHOAR": "SHR", "SHOARS": "SHRS", "SHORE": "SHR", "SHORES": "SHRS", "SHR": "SHR", "SHRS": "SHRS", "SKYWAY": "SKWY", "SMT": "SMT", "SPG": "SPG", "SPGS": "SPGS", "SPNG": "SPG", "SPNGS": "SPGS", "SPRING": "SPG", "SPRINGS": "SPGS", "SPRNG": "SPG", "SPRNGS": "SPGS", "SPUR": "SPUR", "SPURS": "SPUR", "SQ": "SQ", "SQR": "SQ", "SQRE": "SQ", "SQRS": "SQS", "SQU": "SQ", "SQUARE": "SQ", "SQUARES": "SQS", "ST": "ST", "STA": "STA", "STATION": "STA", "STATN": "STA", "STN": "STA", "STR": "ST", "STRA": "STRA", "STRAV": "STRA", "STRAVE": "STRA", "STRAVEN": "STRA", "STRAVENUE": "STRA", "STRAVN": "STRA", "STREAM": "STRM", "STREET": "ST", "STREETS": "STS", "STREME": "STRM", "STRM": "STRM", "STRT": "ST", "STRVN": "STRA", "STRVNUE": "STRA", "SUMIT": "SMT", "SUMITT": "SMT", "SUMMIT": "SMT", "TER": "TER", "TERR": "TER", "TERRACE": "TER", "THROUGHWAY": "TRWY", "TPK": "TPKE", "TPKE": "TPKE", "TR": "TRL", "TRACE": "TRCE", "TRACES": "TRCE", "TRACK": "TRAK", "TRACKS": "TRAK", "TRAFFICWAY": "TRFY", "TRAIL": "TRL", "TRAILER": "TRLR", "TRAILS": "TRL", "TRAK": "TRAK", "TRCE": "TRCE", "TRFY": "TRFY", "TRK": "TRAK", "TRKS": "TRAK", "TRL": "TRL", "TRLR": "TRLR", "TRLRS": "TRLR", "TRLS": "TRL", "TRNPK": "TPKE", "TRPK": "TPKE", "TUNEL": "TUNL", "TUNL": "TUNL", "TUNLS": "TUNL", "TUNNEL": "TUNL", "TUNNELS": "TUNL", "TUNNL": "TUNL", "TURNPIKE": "TPKE", "TURNPK": "TPKE", "UN": "UN", "UNDERPASS": "UPAS", "UNION": "UN", "UNIONS": "UNS", "VALLEY": "VLY", "VALLEYS": "VLYS", "VALLY": "VLY", "VDCT": "VIA", "VIA": "VIA", "VIADCT": "VIA", "VIADUCT": "VIA", "VIEW": "VW", "VIEWS": "VWS", "VILL": "VLG", "VILLAG": "VLG", "VILLAGE": "VLG", "VILLAGES": "VLGS", "VILLE": "VL", "VILLG": "VLG", "VILLIAGE": "VLG", "VIS": "VIS", "VIST": "VIS", "VISTA": "VIS", "VL": "VL", "VLG": "VLG", "VLGS": "VLGS", "VLLY": "VLY", "VLY": "VLY", "VLYS": "VLYS", "VST": "VIS", "VSTA": "VIS", "VW": "VW", "VWS": "VWS", "WALK": "WALK", "WALKS": "WALK", "WALL": "WALL", "WAY": "WAY", "WAYS": "WAYS", "WELL": "WL", "WELLS": "WLS", "WLS": "WLS", "WY": "WAY", "XING": "XING", "XING ": "XING" } # Even though we don't care about normalizing the state names themselves, # state names may appear inside of street names (i.e. Kentucky Highway). STATE_ABBREVIATIONS = { 'ALABAMA': 'AL', 'ALA': 'AL', 'ALASKA': 'AK', 'ALAS': 'AK', 'ARIZONA': 'AZ', 'ARIZ': 'AZ', 'ARKANSAS': 'AR', 'ARK': 'AR', 'CALIFORNIA': 'CA', 'CALIF': 'CA', 'CAL': 'CA', 'COLORADO': 'CO', 'COLO': 'CO', 'COL': 'CO', 'CONNECTICUT': 'CT', 'CONN': 'CT', 'DELAWARE': 'DE', 'DEL': 'DE', 'DISTRICT OF COLUMBIA': 'DC', 'FLORIDA': 'FL', 'FLA': 'FL', 'FLOR': 'FL', 'GEORGIA': 'GA', 'GA': 'GA', 'HAWAII': 'HI', 'IDAHO': 'ID', 'IDA': 'ID', 'ILLINOIS': 'IL', 'ILL': 'IL', 'INDIANA': 'IN', 'IND': 'IN', 'IOWA': 'IA', 'KANSAS': 'KS', 'KANS': 'KS', 'KAN': 'KS', 'KENTUCKY': 'KY', 'KEN': 'KY', 'KENT': 'KY', 'LOUISIANA': 'LA', 'MAINE': 'ME', 'MARYLAND': 'MD', 'MASSACHUSETTS': 'MA', 'MASS': 'MA', 'MICHIGAN': 'MI', 'MICH': 'MI', 'MINNESOTA': 'MN', 'MINN': 'MN', 'MISSISSIPPI': 'MS', 'MISS': 'MS', 'MISSOURI': 'MO', 'MONTANA': 'MT', 'MONT': 'MT', 'NEBRASKA': 'NE', 'NEBR': 'NE', 'NEB': 'NE', 'NEVADA': 'NV', 'NEV': 'NV', 'NEW HAMPSHIRE': 'NH', 'NEW JERSEY': 'NJ', 'NEW MEXICO': 'NM', 'N MEX': 'NM', 'NEW M': 'NM', 'NEW YORK': 'NY', 'NORTH CAROLINA': 'NC', 'NORTH DAKOTA': 'ND', 'N DAK': 'ND', 'OHIO': 'OH', 'OKLAHOMA': 'OK', 'OKLA': 'OK', 'OREGON': 'OR', 'OREG': 'OR', 'ORE': 'OR', 'PENNSYLVANIA': 'PA', 'PENN': 'PA', 'RHODE ISLAND': 'RI', 'SOUTH CAROLINA': 'SC', 'SOUTH DAKOTA': 'SD', 'S DAK': 'SD', 'TENNESSEE': 'TN', 'TENN': 'TN', 'TEXAS': 'TX', 'TEX': 'TX', 'UTAH': 'UT', 'VERMONT': 'VT', 'VIRGINIA': 'VA', 'WASHINGTON': 'WA', 'WASH': 'WA', 'WEST VIRGINIA': 'WV', 'W VA': 'WV', 'WISCONSIN': 'WI', 'WIS': 'WI', 'WISC': 'WI', 'WYOMING': 'WY', 'WYO': 'WY' } STREET_NAME_ABBREVIATIONS = { 'COUNTY HWY': 'COUNTY HIGHWAY', 'CNTY HWY': 'COUNTY HIGHWAY', 'COUNTY RD': 'COUNTY ROAD', 'CR': 'COUNTY ROAD', 'CNTY RD': 'COUNTY ROAD', 'CORD': 'COUNTY ROAD', 'CO. RD': 'COUNTY ROAD', 'CO RD': 'COUNTY ROAD', 'CR-': 'COUNTY ROAD', 'CR #': 'COUNTY ROAD', 'CNTY. RD': 'COUNTY ROAD', 'CR.': 'COUNTY ROAD', 'FARM TO MARKET': 'FM', 'HWY FM': 'FM', 'HIWAY': 'HIGHWAY', 'HWY': 'HIGHWAY', 'FRONTAGE ROAD': 'FRONTAGE RD', 'BYPASS': 'BYP', 'BYP RD': 'BYPASS RD', 'INTERSTATE HWY': 'INTERSTATE', 'IH': 'INTERSTATE', 'I': 'INTERSTATE', #to account for cases like I10 OR I 55 'RD': 'ROAD', 'RT': 'ROUTE', 'RTE': 'ROUTE', 'RANCH ROAD': 'RANCH ROAD', 'ST HWY': 'STATE HIGHWAY', 'STHWY': 'STATE HIGHWAY', 'ST-HWY': 'STATE HIGHWAY', 'ST.HWY.': 'STATE HIGHWAY', 'STATE HIGH WAY': 'STATE HIGHWAY', 'S HWY': 'STATE HIGHWAY', 'ST HIGHWAY': 'STATE HIGHWAY', 'STATE HWY': 'STATE HIGHWAY', 'SR': 'STATE ROAD', 'ST RT': 'STATE ROUTE', 'STATE RTE': 'STATE ROUTE', 'TSR': 'TOWNSHIP ROAD', 'TWP HWY': 'TOWNSHIP HIGHWAY', 'TWN HWY': 'TOWNSHIP HIGHWAY', 'TNHW': 'TOWNSHIP HIGHWAY', 'US': 'US HIGHWAY', 'US HWY' : 'US HIGHWAY', 'USHWY' : 'US HIGHWAY', 'US HWY': 'US HIGHWAY', 'US-HWY': 'US HIGHWAY', 'US.HWY.': 'US HIGHWAY', 'PR': 'PRIAVATE ROAD', } # Can be used for pre and post directional info DIRECTIONAL_ABBREVIATIONS = { 'EAST': 'E', 'WEST': 'W', 'NORTH': 'N', 'SOUTH': 'S', 'NORTHEAST': 'NE', 'NORTHWEST': 'NW', 'SOUTHEAST': 'SE', 'SOUTHWEST': 'SW', "NORTE": "N", "NO": "N", "NORESTE": "NE", "NOROESTE": "NW", "SUR": "S", "SO": "S", "SURESTE": "SE", "SUROESTE": "SW", "ESTE": "E", "EA": "E", "OESTE": "W", "WE": "W" } #From USPS "C2 Secondary Unit Designators" #Subaddress Type/WSDESC1 (?) OCCUPANCY_TYPE_ABBREVIATIONS = { 'APARTMENT': 'APT', 'BUILDING': 'BLDG', 'BASEMENT': 'BSMT', 'DEPARTMENT': 'DEPT', 'FLOOR': 'FL', 'FRONT': 'FRNT', 'HANGER': 'HNGR', 'KEY': 'KEY', 'LOBBY': 'LBBY', 'LOT': 'LOT', 'LOWER': 'LOWR', 'OFFICE': 'OFC', 'PENTHOUSE': 'PH', 'PIER': 'PIER', 'REAR': 'REAR', 'ROOM': 'RM', 'SIDE': 'SIDE', 'SLIP': 'SLIP', 'SPACE': 'SPC', 'STOP': 'STOP', 'SUITE': 'STE', 'TRAILER': 'TRLR', 'UNIT': 'UNIT', 'UPPER': 'UPPER' } DIRECTION_CODES = { "N": 1, "S": 2, "E": 3, "W": 4, "NE": 5, "NW": 6, "SE": 7, "SW": 8 } EXTENSION_CODES = { "EXTD": 1, "EXTN": 2, "LP": 3, "BYP": 4, "ALT": 5, "BUS": 6, "OLD": 7, "SPUR": 8 } STREET_TYPE_CODES = { "ALY": 11, "ALT": 12, "ARC": 15, "ARRY": 16, "APTA": 17, "AVA": 18, "AVE": 19, "BLVD": 26, "BLV": 32, "BSRT": 33, "BYP": 34, "CLLE": 36, "CJA": 37, "CJON": 38, "CAM": 39, "CARR": 47, "CSWY": 48, "CTR": 51, "CIR": 57, "CORD": 70, "CT": 71, "CV": 73, "CRES": 76, "XING": 77, "CRU": 78, "DR": 87, "EXP": 93, "EXPY": 94, "FM": 99, "4WD": 110, "FWY": 112, "HWY": 122, "I-": 133, "JPTR": 138, "LN": 146, "LOOP": 151, "MARG": 154, "MTWY": 164, "MRO": 167, "OVPS": 178, "PARK": 179, "PKY": 180, "PAS": 182, "PSO": 183, "PASS": 185, "PATH": 187, "PIKE": 189, "PSTA": 191, "PL": 192, "PLZ": 193, "PTE": 202, "RML": 208, "RMP": 210, "ROAD": 223, "RT": 227, "ROW": 228, "RUE": 229, "RUN": 230, "RUTA": 232, "SNDR": 239, "SVRD": 240, "SKWY": 248, "SPWY": 253, "SQ": 256, "STHY": 259, "ST": 263, "TER": 268, "THFR": 269, "THWY": 270, "TWHY": 273, "TFWY": 274, "TRL": 275, "TUN": 278, "TUNL": 279, "TPKE": 280, "UNPS": 281, "USHY": 283, "UNRD": 286, "VRDA": 288, "VIA": 289, "WALK": 291, "WKWY": 292, "WALL": 293, "WAY": 296, "NFD": 302, "OVAL": 303, "EST": 304, "VLLA": 305, "DRWY": 306, "RDWY": 307, "STRA": 308, "CLUB": 309, "CTS": 310, "JCT": 311, "LNDG": 312, "LDGE": 313, "MALL": 314, "MNR": 315, "STA": 316, "VLG": 317, "CORS": 318, "COMN": 319, "PRRD": 320, "EMS": 321 } #Frankly, I don't know when we actually use this Building_Codes = { "AFB": 1, "ARPT": 2, "APTS": 3, "ARC": 4, "BAZR": 5, "BLDG": 6, "BSPK": 7, "CTR": 8, "CLUB": 9, "CLTN": 10, "CMMN": 11, "CPLX": 12, "COND": 13, "CNCN": 14, "CORS": 15, "CTHS": 16, "CTS": 17, "CTYD": 18, "XING": 19, "XRDS": 20, "EDIF": 21, "ESP": 22, "EXCH": 23, "FEST": 24, "GALR": 25, "HALL": 26, "HOME": 27, "HOSP": 28, "HOTEL": 29, "HOUSE": 30, "INPK": 31, "INN": 32, "JCT": 33, "LNDG": 34, "LDGE": 35, "MALL": 36, "MNR": 37, "MKT": 38, "MERC": 39, "MTL": 40, "NAS": 41, "OFPK": 42, "OTLT": 43, "PARK": 44, "PAVL": 45, "PLNT": 46, "PLZ": 47, "PROM": 49, "QTRS": 50, "RES": 51, "7 CO": 52, "SC": 53, "SQ": 54, "STA": 55, "STES": 56, "TOWER": 57, "TWNH": 58, "TRPK": 59, "VLLA": 60, "VLG": 61, "VIVI": 62, "ESTS": 63, "COLL": 64, "COTT": 65, "PROJ": 66, "TORRE": 67 }
the-stack_0_11049
import nltk class Analyzer(): """Implements sentiment analysis.""" def __init__(self, positives, negatives): """Initialize Analyzer.""" # load positive and negative words # Set, list or dict?: # http://stackoverflow.com/questions/3489071/in-python-when-to-use-a-dictionary-list-or-set # In this case, only having a particular value matters and not the order. Hence use set() self.positives = set() self.negatives = set() # with open - opens the file and automatically closes once finishes with open ("positive-words.txt", "r") as fpos: for line in fpos: # C (!) is (not) in python # http://stackoverflow.com/questions/6117733/negation-in-python if not line.startswith((";", " ")): # Standardization that every text files has "\n" for every end of line self.positives.add(line.strip("\n")) with open ("negative-words.txt", "r") as fneg: for line in fneg: if not line.startswith((";", " ")): self.negatives.add(line.strip("\n")) def analyze(self, text): """Analyze text for sentiment, returning its score.""" # http://www.nltk.org/api/nltk.tokenize.html # This breaks the lines into list of words # and stores them as tokens self.tokenizer = nltk.tokenize.TweetTokenizer() tokens = self.tokenizer.tokenize(text) ind = 0 # Cross check text with positive and negative list and returns appropriate indicator for token in tokens: # indicator for sentiment score if token.lower() in self.positives: ind += 1 elif token.lower() in self.negatives: ind -= 1 return ind
the-stack_0_11050
import numpy as np from .trading_env import TradingEnv, Actions, Positions class ForexEnv(TradingEnv): def __init__(self, df, window_size, frame_bound, min_index_start, unit_side='left'): assert len(frame_bound) == 2 assert unit_side.lower() in ['left', 'right'] self.frame_bound = frame_bound self.unit_side = unit_side.lower() self.min_index_start = min_index_start super().__init__(df, window_size, min_index_start) self.trade_fee = 0.0003 # unit def _process_data(self): prices = self.df.loc[:, 'Close'].to_numpy() prices[self.frame_bound[0] - self.window_size] # validate index (TODO: Improve validation) prices = prices[self.frame_bound[0]-self.window_size:self.frame_bound[1]] diff = np.insert(np.diff(prices), 0, 0) signal_features = np.column_stack((prices, diff)) return prices, signal_features def _calculate_reward(self, action): step_reward = 0 # pip trade = False if ((action == Actions.Buy.value and self._position == Positions.Short) or (action == Actions.Sell.value and self._position == Positions.Long)): trade = True if trade: current_price = self.prices[self._current_tick] last_trade_price = self.prices[self._last_trade_tick] price_diff = current_price - last_trade_price if self._position == Positions.Short: step_reward += -price_diff * 10000 elif self._position == Positions.Long: step_reward += price_diff * 10000 return step_reward def _update_profit(self, action): trade = False if ((action == Actions.Buy.value and self._position == Positions.Short) or (action == Actions.Sell.value and self._position == Positions.Long)): trade = True if trade or self._done: current_price = self.prices[self._current_tick] last_trade_price = self.prices[self._last_trade_tick] if self.unit_side == 'left': if self._position == Positions.Short: quantity = self._total_profit * (last_trade_price - self.trade_fee) self._total_profit = quantity / current_price elif self.unit_side == 'right': if self._position == Positions.Long: quantity = self._total_profit / last_trade_price self._total_profit = quantity * (current_price - self.trade_fee) def max_possible_profit(self): current_tick = self._start_tick last_trade_tick = current_tick - 1 profit = 1. while current_tick <= self._end_tick: position = None if self.prices[current_tick] < self.prices[current_tick - 1]: while (current_tick <= self._end_tick and self.prices[current_tick] < self.prices[current_tick - 1]): current_tick += 1 position = Positions.Short else: while (current_tick <= self._end_tick and self.prices[current_tick] >= self.prices[current_tick - 1]): current_tick += 1 position = Positions.Long current_price = self.prices[current_tick - 1] last_trade_price = self.prices[last_trade_tick] if self.unit_side == 'left': if position == Positions.Short: quantity = profit * (last_trade_price - self.trade_fee) profit = quantity / current_price elif self.unit_side == 'right': if position == Positions.Long: quantity = profit / last_trade_price profit = quantity * (current_price - self.trade_fee) last_trade_tick = current_tick - 1 return profit
the-stack_0_11051
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from lib.actions import OrionBaseAction from lib.utils import send_user_error class GetNodeCustomProperty(OrionBaseAction): def run(self, node, custom_property): """ Gets a specific Node Custom Property. """ self.connect() orion_node = self.get_node(node) if not orion_node.npm: msg = "Node ({}) does not exist".format(node) send_user_error(msg) raise ValueError(msg) swql = """SELECT {1} FROM Orion.NodesCustomProperties WHERE NodeID={0}""".format(orion_node.npm_id, custom_property) data = self.query(swql) if 'results' not in data: msg = "No results from Orion: {}".format(data) self.logger.info(msg) raise Exception(msg) if len(data['results']) == 1: results = data['results'][0] return results.get(custom_property) elif len(data['results']) >= 2: self.logger.debug( "Muliple Properties match '{}'".format(node)) raise ValueError("Muliple Properties match '{}'".format(node))
the-stack_0_11052
def selecao(a, b, c, d): if (b > c) and (d > a) and ((c+d) > (a+b)) and (c > 0) and (d > 0) and (a % 2 == 0): return print('Valores aceitos') else: return print('Valores nao aceitos') def entrada(): valores = input().split(' ') valor_a = int(valores[0]) valor_b = int(valores[1]) valor_c = int(valores[2]) valor_d = int(valores[3]) return valor_a, valor_b, valor_c, valor_d n1, n2, n3, n4 = entrada() selecao(n1, n2, n3, n4)
the-stack_0_11055
import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras.layers import * from tensorflow.keras import regularizers import numpy as np #tf.enable_eager_execution() #added. so as to be able to use numpy arrays easily def limit_mem(): config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True tf.compat.v1.InteractiveSession(config=config) class PeriodicPadding2D(tf.keras.layers.Layer): def __init__(self, pad_width, **kwargs): super().__init__(**kwargs) self.pad_width = pad_width def call(self, inputs, **kwargs): if self.pad_width == 0: return inputs inputs_padded = tf.concat( [inputs[:, :, -self.pad_width:, :], inputs, inputs[:, :, :self.pad_width, :]], axis=2) # Zero padding in the lat direction inputs_padded = tf.pad(inputs_padded, [[0, 0], [self.pad_width, self.pad_width], [0, 0], [0, 0]]) return inputs_padded def get_config(self): config = super().get_config() config.update({'pad_width': self.pad_width}) return config class ChannelReLU2D(tf.keras.layers.Layer): def __init__(self, relu_idxs, **kwargs): super().__init__(**kwargs) self.relu_idxs = relu_idxs if type(relu_idxs) is list else [relu_idxs] def call(self, inputs, **kwargs): if inputs.shape[-1] == len(self.relu_idxs): return tf.nn.relu(inputs) else: channels = [inputs[..., i] for i in range(inputs.shape[-1])] for i, t in enumerate(channels): if i in self.relu_idxs: channels[i] = tf.nn.relu(t) return tf.stack(channels, -1) def get_config(self): config = super().get_config() config.update({'relu_idxs': self.relu_idxs}) return config class PeriodicConv2D(tf.keras.layers.Layer): def __init__(self, filters, kernel_size, conv_kwargs={}, **kwargs, ): super().__init__(**kwargs) self.filters = filters self.kernel_size = kernel_size self.conv_kwargs = conv_kwargs if type(kernel_size) is not int: assert kernel_size[0] == kernel_size[1], 'PeriodicConv2D only works for square kernels' kernel_size = kernel_size[0] pad_width = (kernel_size - 1) // 2 self.padding = PeriodicPadding2D(pad_width) self.conv = Conv2D( filters, kernel_size, padding='valid', **conv_kwargs ) def call(self, inputs): return self.conv(self.padding(inputs)) def get_config(self): config = super().get_config() config.update({'filters': self.filters, 'kernel_size': self.kernel_size, 'conv_kwargs': self.conv_kwargs}) return config class ChannelSlice(tf.keras.layers.Layer): def __init__(self, n_out, **kwargs): self.n_out = n_out super().__init__(**kwargs) def _slice(self, inputs): # Input: [samples, lat, lon, filters] return inputs[..., :self.n_out] def __call__(self, inputs): out = Lambda(self._slice)(inputs) return out def convblock(inputs, filters, kernel=3, stride=1, bn_position=None, l2=0, use_bias=True, dropout=0, activation='relu'): x = inputs if bn_position == 'pre': x = BatchNormalization()(x) x = PeriodicConv2D( filters, kernel, conv_kwargs={ 'kernel_regularizer': regularizers.l2(l2), 'use_bias': use_bias } )(x) if bn_position == 'mid': x = BatchNormalization()(x) x = LeakyReLU()(x) if activation == 'leakyrelu' else Activation(activation)(x) if bn_position == 'post': x = BatchNormalization()(x) if dropout > 0: x = Dropout(dropout)(x) return x def resblock(inputs, filters, kernel, bn_position=None, l2=0, use_bias=True, dropout=0, skip=True, activation='relu', down=False, up=False): x = inputs if down: x = MaxPooling2D()(x) for i in range(2): x = convblock( x, filters, kernel, bn_position=bn_position, l2=l2, use_bias=use_bias, dropout=dropout, activation=activation ) if down or up: inputs = PeriodicConv2D( filters, kernel, conv_kwargs={ 'kernel_regularizer': regularizers.l2(l2), 'use_bias': use_bias, 'strides': 2 if down else 1 } )(inputs) if skip: x = Add()([inputs, x]) return x def build_uresnet(filters, kernels, unres, input_shape, bn_position=None, use_bias=True, l2=0, skip=True, dropout=0, activation='relu', **kwargs): """ filters 0: init Conv2D 1: first and last resblock [2:-1]: all down layers -1: last conv2d nres has to have len(filters) - 2 """ if len(unres) == 1: nres = [unres]*(len(filters)-2) x = input = Input(shape=input_shape) # First conv block to get up to shape x = convblock( x, filters[0], kernels[0], bn_position=bn_position, l2=l2, use_bias=use_bias, dropout=dropout, activation=activation ) # Resblocks for _ in range(unres[0]): x = resblock(x, filters[1], kernels[1], bn_position=bn_position, l2=l2, use_bias=use_bias, dropout=dropout, skip=skip, activation=activation) connections = [] for f, k, nr in zip(filters[2:-1], kernels[2:-1], unres[1:]): connections.append(x) for i in range(nr): x = resblock(x, f, k, bn_position=bn_position, l2=l2, use_bias=use_bias, dropout=dropout, skip=skip, activation=activation, down=i == 0) for c, f, k, nr in zip(connections[::-1], filters[1:-2][::-1], kernels[1:-2][::-1], unres[:-1][::-1]): x = UpSampling2D()(x) x = Concatenate()([c, x]) for i in range(nr): x = resblock(x, f, k, bn_position=bn_position, l2=l2, use_bias=use_bias, dropout=dropout, skip=skip, activation=activation, up=i == 0) # Final convolution output = PeriodicConv2D( filters[-1], kernels[-1], conv_kwargs={'kernel_regularizer': regularizers.l2(l2)}, )(x) output = Activation('linear', dtype='float32')(output) return keras.models.Model(input, output) def build_resnet(filters, kernels, input_shape, bn_position=None, use_bias=True, l2=0, skip=True, dropout=0, activation='relu', long_skip=False, relu_idxs=None, categorical=False, nvars=None, **kwargs): x = input = Input(shape=input_shape) # First conv block to get up to shape x = ls = convblock( x, filters[0], kernels[0], bn_position=bn_position, l2=l2, use_bias=use_bias, dropout=dropout, activation=activation ) # Resblocks for f, k in zip(filters[1:-1], kernels[1:-1]): x = resblock(x, f, k, bn_position=bn_position, l2=l2, use_bias=use_bias, dropout=dropout, skip=skip, activation=activation) if long_skip: x = Add()([x, ls]) # Final convolution output = PeriodicConv2D( filters[-1], kernels[-1], conv_kwargs={'kernel_regularizer': regularizers.l2(l2)}, )(x) if not relu_idxs is None: output = ChannelReLU2D(relu_idxs)(output) if categorical: bins = int(filters[-1] / nvars) outputs = [] for i in range(nvars): o = Softmax()(output[..., i*bins:(i+1)*bins]) outputs.append(o) output = tf.stack(outputs, axis=3) output = Activation('linear', dtype='float32')(output) return keras.models.Model(input, output) def build_unet(input_shape, n_layers, filters_start, channels_out, kernel=3, u_skip=True, res_skip=True, l2=0, bn_position=None, dropout=0): "https://github.com/Nishanksingla/UNet-with-ResBlock/blob/master/resnet34_unet_model.py" x = input = Input(shape=input_shape) filters = filters_start # Down down_layers = [] for i in range(n_layers): # Resblock x_res = PeriodicConv2D( filters, 1, conv_kwargs={ 'use_bias': False, 'kernel_regularizer': regularizers.l2(l2)})(x) x = convblock(x, filters, kernel, bn_position=bn_position, l2=l2, dropout=dropout) x = convblock(x, filters, kernel, bn_position=bn_position, l2=l2, activation='linear', dropout=dropout) if res_skip: x = Add()([x, x_res]) x = ReLU()(x) if not i == n_layers - 1: down_layers.append(x) # Downsampling x = MaxPooling2D()(x) filters *= 2 # Up for dl in reversed(down_layers): filters //= 2 # Upsample x = UpSampling2D()(x) x = PeriodicConv2D(filters, 3, conv_kwargs={'kernel_regularizer': regularizers.l2(l2)})(x) x = ReLU()(x) # Concatenate if u_skip: x = Concatenate()([x, dl]) # Resblock x_res = PeriodicConv2D(filters, 1, conv_kwargs={'use_bias': False})(x) x = convblock(x, filters, kernel, bn_position=bn_position, l2=l2, dropout=dropout) x = convblock(x, filters, kernel, bn_position=bn_position, l2=l2, activation='linear', dropout=dropout) if res_skip: x = Add()([x, x_res]) x = ReLU()(x) x = PeriodicConv2D(channels_out, 1, conv_kwargs={'kernel_regularizer': regularizers.l2(l2)})(x) return keras.models.Model(input, x) def create_lat_mse(lat): weights_lat = np.cos(np.deg2rad(lat)).values weights_lat /= weights_lat.mean() def lat_mse(y_true, y_pred): error = y_true - y_pred mse = error**2 * weights_lat[None, : , None, None] return mse return lat_mse def create_lat_mae(lat): weights_lat = np.cos(np.deg2rad(lat)).values weights_lat /= weights_lat.mean() def lat_mae(y_true, y_pred): error = y_true - y_pred mae = tf.abs(error) * weights_lat[None, : , None, None] return mae return lat_mae def create_lat_rmse(lat): weights_lat = np.cos(np.deg2rad(lat)).values weights_lat /= weights_lat.mean() def lat_rmse(y_true, y_pred): error = y_true - y_pred mse = error**2 * weights_lat[None, : , None, None] return tf.math.sqrt(tf.math.reduce_mean(mse, axis=(1, 2, 3))) return lat_rmse def create_lat_crps(lat, n_vars, relu=False): weights_lat = np.cos(np.deg2rad(lat)).values weights_lat /= weights_lat.mean() def crps_loss(y_true, y_pred): # Split input mu = y_pred[:, :, :, :n_vars] sigma = y_pred[:, :, :, n_vars:] # To stop sigma from becoming negative we first have to # convert it the the variance and then take the square # root again. if relu: sigma = tf.nn.relu(sigma) else: sigma = tf.math.sqrt(tf.math.square(sigma)) # The following three variables are just for convenience loc = (y_true - mu) / tf.maximum(1e-7, sigma) phi = 1.0 / np.sqrt(2.0 * np.pi) * tf.math.exp(-tf.math.square(loc) / 2.0) Phi = 0.5 * (1.0 + tf.math.erf(loc / np.sqrt(2.0))) # First we will compute the crps for each input/target pair crps = sigma * (loc * (2. * Phi - 1.) + 2 * phi - 1. / np.sqrt(np.pi)) crps = crps * weights_lat[None, : , None, None] # Then we take the mean. The cost is now a scalar return tf.reduce_mean(crps) return crps_loss def gev_cdf_tf(y, mu, sigma, xi): y = (y-mu)/sigma x = 1 + xi * y # x[x < 0] = 0 x = tf.where(x<0, 0., x) x = x**(-1/xi) return tf.where(tf.math.is_inf(tf.exp(-x)), 0., tf.exp(-x)) def crps_lcgev_tf(y, mu, sigma, xi, dtype='float32'): SCdSH = sigma/xi Gam1mSH = tf.exp(tf.math.lgamma(1-xi)) # print(Gam1mSH) probY = gev_cdf_tf(y, mu, sigma, xi) prob0 = gev_cdf_tf(tf.constant(0., dtype), mu, sigma, xi) igammaY = tf.cast(tf.math.igamma(1-tf.cast(xi, 'float64'), -tf.math.log(tf.cast(probY, 'float64'))), dtype) igamma0 = tf.cast(tf.math.igamma(1-tf.cast(xi, 'float64'), -2 * tf.math.log(tf.cast(prob0, 'float64'))), dtype) T1 = (y-mu) * (2*probY-1) + mu * prob0**2 T2 = SCdSH * ( 1-prob0**2 - 2**xi*Gam1mSH*igamma0) T3 = -2*SCdSH * ( 1-probY - Gam1mSH*igammaY) # print(T1, T2, T3) return T1 + T2 + T3 def create_lat_crps_lcgev(lat, n_vars): weights_lat = np.cos(np.deg2rad(lat)).values weights_lat /= weights_lat.mean() def crps_lcgev_loss(y_true, y_pred): mu, sigma, xi = y_pred[..., 0], y_pred[..., 1], y_pred[..., 2] sigma = tf.nn.relu(sigma) # Make sure xi isn't 0 # eps = 1e-7 # xi = tf.where(tf.abs(xi)<eps, eps, xi) # # Keep xi in bounds xi = tf.clip_by_value(xi, -0.278, 0.999) # import pdb # pdb.set_trace() return crps_lcgev_tf(y_true[..., 0], mu, sigma, xi) * weights_lat[None, : , None] return crps_lcgev_loss def create_lat_crps_mae(lat, n_vars, beta=1.): weights_lat = np.cos(np.deg2rad(lat)).values weights_lat /= weights_lat.mean() def crps_mae(y_true, y_pred): ### CRPS # Split input mu = y_pred[:, :, :, :n_vars] sigma = y_pred[:, :, :, n_vars:] # To stop sigma from becoming negative we first have to # convert it the the variance and then take the square # root again. sigma = tf.nn.relu(sigma) # The following three variables are just for convenience loc = (y_true - mu) / tf.maximum(1e-7, sigma) phi = 1.0 / np.sqrt(2.0 * np.pi) * tf.math.exp(-tf.math.square(loc) / 2.0) Phi = 0.5 * (1.0 + tf.math.erf(loc / np.sqrt(2.0))) # First we will compute the crps for each input/target pair crps = sigma * (loc * (2. * Phi - 1.) + 2 * phi - 1. / np.sqrt(np.pi)) crps = crps * weights_lat[None, : , None, None] # Then we take the mean. The cost is now a scalar crps = tf.reduce_mean(crps) ### MAE error = y_true - mu mae = tf.abs(error) * weights_lat[None, :, None, None] mae = tf.reduce_mean(mae) return crps + beta * mae return crps_mae def create_lat_log_loss(lat, n_vars): weights_lat = np.cos(np.deg2rad(lat)).values weights_lat /= weights_lat.mean() def log_loss(y_true, y_pred): # Split input mu = y_pred[:, :, :, :n_vars] sigma = y_pred[:, :, :, n_vars:] sigma = tf.nn.relu(sigma) # Compute PDF eps = 1e-7 sigma = tf.maximum(eps, sigma) prob = 1 / sigma / np.sqrt(2 * np.pi) * tf.math.exp( -0.5 * ((y_true - mu) / sigma) ** 2 ) # Compute log loss ll = - tf.math.log(tf.maximum(prob, eps)) ll = ll * weights_lat[None, :, None, None] return tf.reduce_mean(ll) return log_loss def create_lat_categorical_loss(lat, n_vars): weights_lat = np.cos(np.deg2rad(lat)).values weights_lat /= weights_lat.mean() def categorical_loss(y_true, y_pred): cce = tf.keras.losses.categorical_crossentropy loss = 0 for i in range(n_vars): loss += cce(y_true[:,:,:,i,:], y_pred[:,:,:,i,:])*weights_lat[None, :, None] return loss return categorical_loss # Agrawal et al version def basic_block(x, filters, dropout): shortcut = x x = PeriodicConv2D(filters, kernel_size=3)(x) x = BatchNormalization()(x) x = LeakyReLU()(x) x = PeriodicConv2D(filters, kernel_size=3)(x) if dropout > 0: x = Dropout(dropout)(x) shortcut = PeriodicConv2D(filters, kernel_size=3)(shortcut) return Add()([x, shortcut]) def downsample_block(x, filters, dropout): shortcut = x x = BatchNormalization()(x) x = LeakyReLU()(x) x = MaxPooling2D()(x) x = BatchNormalization()(x) x = LeakyReLU()(x) x = PeriodicConv2D(filters, kernel_size=3)(x) if dropout > 0: x = Dropout(dropout)(x) shortcut = PeriodicConv2D(filters, kernel_size=3, conv_kwargs={'strides': 2})(shortcut) return Add()([x, shortcut]) def upsample_block(x, from_down, filters, dropout): x = Concatenate()([x, from_down]) x = UpSampling2D()(x) shortcut = x x = BatchNormalization()(x) x = LeakyReLU()(x) x = PeriodicConv2D(filters, kernel_size=3)(x) x = BatchNormalization()(x) x = LeakyReLU()(x) x = PeriodicConv2D(filters, kernel_size=3)(x) if dropout > 0: x = Dropout(dropout)(x) shortcut = PeriodicConv2D(filters, kernel_size=3)(shortcut) return Add()([x, shortcut]) def build_unet_google(filters, input_shape, output_channels, dropout=0): inputs = x = Input(input_shape) x = basic_block(x, filters[0], dropout=dropout) # Encoder from_down = [] for f in filters[:-1]: x = downsample_block(x, f, dropout=dropout) from_down.append(x) # Bottleneck x = basic_block(x, filters[-1], dropout=dropout) # Decoder for f, d in zip(filters[:-1][::-1], from_down[::-1]): x = upsample_block(x, d, f, dropout=dropout) # Final outputs = PeriodicConv2D(output_channels, kernel_size=1)(x) return keras.models.Model(inputs, outputs) ### def create_multi_dt_model(model, multi_dt, dg_train): const_inp = Input((len(dg_train.data.lat), len(dg_train.data.lon), len(dg_train.const_idxs))) x = inp = Input((len(dg_train.data.lat), len(dg_train.data.lon), len(dg_train.not_const_idxs))) outputs = [] for _ in range(multi_dt): x = model(Concatenate()([x, const_inp])) outputs.append(x) model2 = keras.models.Model([inp, const_inp], outputs) return model2
the-stack_0_11056
import matplotlib.pyplot as plt import numpy as np import torch from torch import nn from torch.autograd import Variable x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], [9.779], [6.182], [7.59], [2.167], [7.042], [10.791], [5.313], [7.997], [3.1]], dtype=np.float32) y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], [3.366], [2.596], [2.53], [1.221], [2.827], [3.465], [1.65], [2.904], [1.3]], dtype=np.float32) # from sklearn.utils import check_random_state # n = 100 # x = np.arange(n) # rs = check_random_state(0) # y = rs.randint(-50, 50, size=(n,)) + 50. * np.log1p(np.arange(n)) # x_train = np.array(x.reshape(-1, 1), dtype=np.float32) # y_train = np.array(y.reshape(-1, 1), dtype=np.float32) # numpy array to tensor x_train = torch.from_numpy(x_train) y_train = torch.from_numpy(y_train) # define a linear regression model class linear_regression(nn.Module): def __init__(self): super(linear_regression, self).__init__() self.linear = nn.Linear(1, 1) # input and output is 1 dimension def forward(self, x): out = self.linear(x) return out model = linear_regression() # define loss and optimization function criterion = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-4) # start training num_epochs = 1000 epoch = 0 loss = float('inf') for epoch in range(1, 21): inputs = x_train target = y_train # forward out = model(inputs) loss = criterion(out, target) # backward optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 20 == 0: print(f'Epoch[{epoch}/{num_epochs}], loss: {loss.item(): .6f}') # eval mode - prevent batchnorm and dropout operations model.eval() with torch.no_grad(): predictions = model(x_train) predictions = predictions.data.numpy() fig = plt.figure(figsize=(10, 5)) plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data') # ro for red circles plt.plot(x_train.numpy(), predictions, 'o-', color='#1f77b4', label='Fitting Line') # show diagram plt.legend() plt.show() # # save the model to file PATH = './linear.pth' # model parameters only # torch.save(model.state_dict(), PATH) # parameters needed for resuming training torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': loss}, PATH) # load the model and continuously train for another 999 epochs model = linear_regression() optimizer = torch.optim.SGD(model.parameters(), lr=1e-4) checkpoint = torch.load(PATH) model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epoch = checkpoint['epoch'] loss = checkpoint['loss'] print(f'last epoch is {epoch}, loss is {loss}') criterion = nn.MSELoss() # training mode model.train() # eval mode - prevent batchnorm and dropout operations # model.eval() for epoch in range(epoch+1, num_epochs+1): inputs = x_train target = y_train # forward out = model(inputs) loss = criterion(out, target) # backward optimizer.zero_grad() loss.backward() optimizer.step() if epoch % 20 == 0: print(f'Epoch[{epoch}/{num_epochs}], loss: {loss.item(): .6f}') # eval mode - prevent batchnorm and dropout operations model.eval() with torch.no_grad(): predictions = model(x_train) predictions = predictions.data.numpy() fig = plt.figure(figsize=(10, 5)) plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data') # ro for red circles plt.plot(x_train.numpy(), predictions, 'o-', color='#1f77b4', label='Fitting Line') plt.legend() plt.show() # ------------------------------------------------- # model save load another way (entire model) -- not recommand # torch.save(model, './entire_model.pth') # model = torch.load('./entire_model.pth')
the-stack_0_11057
# SPDX-License-Identifier: Apache-2.0 # Copyright Contributors to the Rez Project """ Sends a post-release email """ from __future__ import print_function from rez.release_hook import ReleaseHook from rez.system import system from email.mime.text import MIMEText from rez.utils.logging_ import print_warning, print_error from rez.utils.yaml import load_yaml from rez.utils.scope import scoped_formatter from rez.vendor.schema.schema import Or from rez.vendor.six import six import os.path import smtplib basestring = six.string_types[0] class EmailReleaseHook(ReleaseHook): schema_dict = { "subject": basestring, "body": basestring, "smtp_host": basestring, "smtp_port": int, "sender": basestring, "recipients": Or(basestring, [basestring]) } @classmethod def name(cls): return "emailer" def __init__(self, source_path): super(EmailReleaseHook, self).__init__(source_path) def post_release(self, user, install_path, variants, release_message=None, changelog=None, previous_version=None, **kwargs): if not variants: return # nothing was released # construct email body release_dict = dict(path=install_path, previous_version=previous_version or "None.", message=release_message or "No release message.", changelog=changelog or "No changelog.") paths_str = '\n'.join(x.root for x in variants) variants_dict = dict(count=len(variants), paths=paths_str) formatter = scoped_formatter(release=release_dict, variants=variants_dict, system=system, package=self.package) body = formatter.format(self.settings.body) body = body.strip() body = body.replace("\n\n\n", "\n\n") # construct subject line, send email subject = formatter.format(self.settings.subject) self.send_email(subject, body) def send_email(self, subject, body): if not self.settings.recipients: return # nothing to do, sending email to nobody if not self.settings.smtp_host: print_warning("did not send release email: " "SMTP host is not specified") return recipients = self.get_recipients() if not recipients: return print("Sending release email to:") print('\n'.join("- %s" % x for x in recipients)) msg = MIMEText(body) msg["Subject"] = subject msg["From"] = self.settings.sender msg["To"] = str(',').join(recipients) try: s = smtplib.SMTP(self.settings.smtp_host, self.settings.smtp_port) s.sendmail(from_addr=self.settings.sender, to_addrs=recipients, msg=msg.as_string()) print('Email(s) sent.') except Exception as e: print_error("release email delivery failed: %s" % str(e)) def get_recipients(self): value = self.settings.recipients if isinstance(value, list): return value if os.path.exists(value): filepath = value try: return self.load_recipients(filepath) except Exception as e: print_error("failed to load recipients config: %s. Emails " "not sent" % str(e)) elif '@' in value: return [value] # assume it's an email address else: print_error("email recipient file does not exist: %s. Emails not " "sent" % value) return [] def load_recipients(self, filepath): def test(value, type_): if not isinstance(value, type_): raise TypeError("Expected %s, not %s" % type_, value) return value conf = load_yaml(filepath) recipients = set() for rule in test(conf.get("rules", []), list): filters = rule.get("filters") match = True if filters: for attr, test_value in test(filters, dict).items(): missing = object() value = getattr(self.package, attr, missing) if value is missing: match = False elif test_value is None: match = True elif isinstance(test_value, list): match = (value in test_value) else: match = (value == test_value) if not match: break if match: rule_recipients = rule.get("recipients") recipients.update(test(rule_recipients, list)) return sorted(recipients) def register_plugin(): return EmailReleaseHook
the-stack_0_11059
#coding:utf-8 ''' filename:relationship_of_point_circle.py chap:6 subject:8 conditions:Point(),Circle() solution:relationship between circle and point ''' from circle import Circle from point import Point import math class Relationship: def __init__(self,circle:Circle,point:Point): self.c=circle self.p=point def get_relation(self): distance = abs(self.c.center - self.p) rst = '' if distance < self.c.r: rst = 'in' elif math.isclose(distance,self.c.r): rst = 'on' elif distance > self.c.r: rst = 'outside' return 'The {!r} is {} the {!r}.'.format(self.p,rst,self.c) def __str__(self): return self.get_relation() if __name__ == '__main__': p1 = Point(0,0) p2 = Point(1,0) p3 = Point(1,1) c = Circle(1,p2) print(Relationship(c,p1)) print(Relationship(c,p2)) print(Relationship(c,p3))
the-stack_0_11060
#!/usr/bin/python """ (C) Copyright 2018-2022 Intel Corporation. SPDX-License-Identifier: BSD-2-Clause-Patent """ import re import traceback from daos_utils_base import DaosCommandBase class DaosCommand(DaosCommandBase): # pylint: disable=too-many-ancestors,too-many-public-methods """Defines a object representing a daos command.""" METHOD_REGEX = { "run": r"(.*)", "container_query": r"Pool UUID:\s+([0-9a-f-]+)\n" + r"Container UUID:\s+([0-9a-f-]+)\n" + r"Number of snapshots:\s+(\d+)\n" + r"Latest Persistent Snapshot:\s+(\d+)\n" + r"Highest Aggregated Epoch:\s+(\d+)", } def pool_query(self, pool, sys_name=None, sys=None): """Query a pool. Args: pool (str): pool UUID sys_name (str, optional): DAOS system name context for servers. Defaults to None. sys (str, optional): [description]. Defaults to None. Returns: dict: JSON output Raises: CommandFailure: if the daos pool query command fails. """ return self._get_json_result( ("pool", "query"), pool=pool, sys_name=sys_name, sys=sys) def pool_autotest(self, pool): """Runs autotest for pool Args: pool (str): pool UUID Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos pool autotest command fails. """ return self._get_result( ("pool", "autotest"), pool=pool) def container_create(self, pool, sys_name=None, cont=None, path=None, cont_type=None, oclass=None, chunk_size=None, properties=None, acl_file=None): # pylint: disable=too-many-arguments """Create a container. Args: pool (str): UUID of the pool in which to create the container sys_name (str, optional): DAOS system name context for servers. Defaults to None. cont (str, optional): container UUID. Defaults to None. path (str, optional): container namespace path. Defaults to None. cont_type (str, optional): the type of container to create. Defaults to None. oclass (str, optional): object class. Defaults to None. chunk_size (str, optional): chunk size of files created. Supports suffixes: K (KB), M (MB), G (GB), T (TB), P (PB), E (EB). Defaults to None. properties (str, optional): String of comma-separated <name>:<value> pairs defining the container properties. Defaults to None acl_file (str, optional): ACL file. Defaults to None. Returns: dict: the daos json command output converted to a python dictionary Raises: CommandFailure: if the daos container create command fails. """ return self._get_json_result( ("container", "create"), pool=pool, sys_name=sys_name, cont=cont, path=path, type=cont_type, oclass=oclass, chunk_size=chunk_size, properties=properties, acl_file=acl_file) def container_clone(self, src, dst): """Clone a container to a new container. Args: src (str): the source, formatted as daos://<pool>/<cont> dst (str): the destination, formatted as daos://<pool>/<cont> Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container clone command fails. """ return self._get_result( ("container", "clone"), src=src, dst=dst) def container_destroy(self, pool, cont, force=None, sys_name=None): """Destroy a container. Args: pool (str): UUID of the pool in which to create the container cont (str): container UUID. force (bool, optional): Force the container destroy. Defaults to None. sys_name (str, optional): DAOS system name context for servers. Defaults to None. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container destroy command fails. """ return self._get_result( ("container", "destroy"), pool=pool, sys_name=sys_name, cont=cont, force=force) def container_check(self, pool, cont, sys_name=None, path=None): """Check the integrity of container objects. Args: pool (str): UUID of the pool in which to create the container cont (str): container UUID. sys_name (str, optional): DAOS system name context for servers. Defaults to None. path (str): Container namespace path. Defaults to None Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container check command fails. """ return self._get_result( ("container", "check"), pool=pool, cont=cont, sys_name=sys_name, path=path) def container_get_acl(self, pool, cont, verbose=False, outfile=None): """Get the ACL for a given container. Args: pool (str): Pool UUID cont (str): Container for which to get the ACL. verbose (bool, optional): Verbose mode. outfile (str, optional): Write ACL to file. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container get-acl command fails. """ return self._get_result( ("container", "get-acl"), pool=pool, cont=cont, verbose=verbose, outfile=outfile) def container_delete_acl(self, pool, cont, principal): """Delete an entry for a given principal in an existing container ACL. Args: pool (str): Pool UUID cont (str): Container for which to get the ACL. principal (str): principal portion of the ACL. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container delete-acl command fails. """ return self._get_result( ("container", "delete-acl"), pool=pool, cont=cont, principal=principal) def container_overwrite_acl(self, pool, cont, acl_file): """Overwrite the ACL for a given container. Args: pool (str): Pool UUID cont (str): Container for which to get the ACL. acl_file (str): input file containing ACL Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container overwrite-acl command fails. """ return self._get_result( ("container", "overwrite-acl"), pool=pool, cont=cont, acl_file=acl_file) def container_update_acl(self, pool, cont, entry=None, acl_file=None): """Add or update the ACL entries for a given container. Args: pool (str): Pool UUID cont (str): Container for which to get the ACL. entry (bool, optional): Add or modify a single ACL entry acl_file (str, optional): Input file containing ACL Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container get-acl command fails. """ return self._get_result( ("container", "update-acl"), pool=pool, cont=cont, entry=entry, acl_file=acl_file) def container_list(self, pool, sys_name=None): """List containers in the given pool. Args: pool (str): Pool label or UUID sys_name (str, optional): System name. Defaults to None. Returns: dict: JSON output Raises: CommandFailure: if the daos container list command fails. """ # Sample output. # { # "response": [ # { # "UUID": "bad80a98-aabd-498c-b001-6547cd061c8c", # "Label": "container_label_not_set" # }, # { # "UUID": "dd9fc365-5729-4736-9d34-e46504a4a92d", # "Label": "mkc1" # } # ], # "error": null, # "status": 0 # } return self._get_json_result( ("container", "list"), pool=pool, sys_name=sys_name) def pool_set_attr(self, pool, attr, value, sys_name=None): """Set pool attribute. Args: pool (str): Pool UUID. attr (str): Attribute name. value (str): Attribute value. sys_name (str): DAOS system name. Defaults to None. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos pool set-attr command fails. """ return self._get_result( ("pool", "set-attr"), pool=pool, attr=attr, value=value, sys_name=sys_name) def pool_get_attr(self, pool, attr, sys_name=None): """Set pool attribute. Args: pool (str): Pool UUID. attr (str): Pool UUID. sys_name (str): DAOS system name. Defaults to None. Returns: dict: JSON output Raises: CommandFailure: if the daos pool query command fails. """ return self._get_json_result( ("pool", "get-attr"), pool=pool, attr=attr, sys_name=sys_name) def pool_list_attrs(self, pool, sys_name=None, verbose=False): """List pool attributes. Args: pool (str): Pool UUID. sys_name (str): DAOS system name. Defaults to None. verbose (bool): False - name only. True - name and value. Defaults to False. Returns: dict: JSON output Raises: CommandFailure: if the daos pool list-attrs command fails. """ return self._get_json_result( ("pool", "list-attrs"), pool=pool, sys_name=sys_name, verbose=verbose) def container_query(self, pool, cont, sys_name=None): """Query a container. Args: pool (str): Pool UUID. cont (str): Container UUID. sys_name (str, optional): DAOS system name context for servers. Defaults to None. Returns: dict: JSON output Raises: CommandFailure: if the daos container query command fails. """ return self._get_json_result( ("container", "query"), pool=pool, cont=cont, sys_name=sys_name) def container_set_prop(self, pool, cont, prop, value): """Call daos container set-prop. Args: pool (str): Pool UUID. cont (str): Container UUID. prop (str): Container property-name. value (str): Container property-name value to set. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container set-prop command fails. """ prop_value = ":".join([prop, value]) return self._get_result( ("container", "set-prop"), pool=pool, cont=cont, prop=prop_value) def container_get_prop(self, pool, cont): """Call daos container get-prop. Args: pool (str): Pool UUID. cont (str): Container UUID. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container get-prop command fails. """ return self._get_result( ("container", "get-prop"), pool=pool, cont=cont) def container_set_owner(self, pool, cont, user, group): """Call daos container set-owner. Args: pool (str): Pool UUID. cont (str): Container UUID. user (str): New-user who will own the container. group (str): New-group who will own the container. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container set-owner command fails. """ return self._get_result( ("container", "set-owner"), pool=pool, cont=cont, user=user, group=group) def container_set_attr( self, pool, cont, attr, val, sys_name=None): """Call daos container set-attr. Args: pool (str): Pool UUID. cont (str): Container UUID. attr (str): Attribute name. val (str): Attribute value. sys_name (str, optional): DAOS system name context for servers. Defaults to None. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container set-attr command fails. """ return self._get_result( ("container", "set-attr"), pool=pool, cont=cont, sys_name=sys_name, attr=attr, value=val) def container_get_attr(self, pool, cont, attr, sys_name=None): """Call daos container get-attr. Args: pool (str): Pool UUID. cont (str): Container UUID. attr (str): Attribute name. sys_name (str, optional): DAOS system name context for servers. Defaults to None. Returns: dict: the daos json command output converted to a python dictionary Raises: CommandFailure: if the daos get-attr command fails. """ return self._get_json_result( ("container", "get-attr"), pool=pool, cont=cont, attr=attr, sys_name=sys_name) def container_list_attrs(self, pool, cont, sys_name=None, verbose=False): """Call daos container list-attrs. Args: pool (str): Pool UUID. cont (str): Container UUID. sys_name (str, optional): DAOS system name context for servers. Defaults to None. verbose (bool, optional): True - fetch values of all attributes. Returns: dict: the daos json command output converted to a python dictionary Raises: CommandFailure: if the daos container list-attrs command fails. """ return self._get_json_result( ("container", "list-attrs"), pool=pool, cont=cont, sys_name=sys_name, verbose=verbose) def container_create_snap(self, pool, cont, snap_name=None, epoch=None, sys_name=None): """Call daos container create-snap. Args: pool (str): Pool UUID. cont (str): Container UUID. snap_name (str, optional): Snapshot name. Defaults to None. epoch (str, optional): Epoch number. Defaults to None. sys_name (str, optional): DAOS system name context for servers. Defaults to None. Returns: dict: Dictionary that stores the created epoch in the key "epoch". Raises: CommandFailure: if the daos container create-snap command fails. """ self._get_result( ("container", "create-snap"), pool=pool, cont=cont, sys_name=sys_name, snap=snap_name, epc=epoch) # Sample create-snap output. # snapshot/epoch 0x51e719907180000 has been created data = {} match = re.findall(r"[A-Za-z\/]+\s(0x[0-9a-fA-F]+)\s[a-z\s]+", self.result.stdout_text) if match: data["epoch"] = match[0] return data def container_destroy_snap(self, pool, cont, snap_name=None, epc=None, sys_name=None, epcrange=None): """Call daos container destroy-snap. Args: pool (str): Pool UUID. cont (str): Container UUID. snap_name (str, optional): Snapshot name. Defaults to None. epc (str, optional): Epoch value of the snapshot to be destroyed. Defaults to None. sys_name (str, optional): DAOS system name context for servers. Defaults to None. epcrange (str, optional): Epoch range in the format "<start>-<end>". Defaults to None. Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos container destroy-snap command fails. """ kwargs = { "pool": pool, "cont": cont, "sys_name": sys_name, "snap": snap_name, "epc": epc, "epcrange": epcrange } return self._get_result(("container", "destroy-snap"), **kwargs) def container_list_snaps(self, pool, cont): """List snapshot in a container. Args: pool (str): Pool UUID. cont (str): Container UUID. Returns: dict: Dictionary that contains epoch values in key "epochs". Value is a list of string. """ self._get_result( ("container", "list-snaps"), pool=pool, cont=cont) # Sample container list-snaps output. # Container's snapshots : # 0x51ebe2f21500000 # 0x51ebe4f5b6c0000 # 0x51ebe5233780000 data = {} match = re.findall(r"(0x[0-9a-fA-F]+)", self.result.stdout_text) if match: data["epochs"] = match return data def object_query(self, pool, cont, oid, sys_name=None): """Call daos object query and return its output with a dictionary. Args: pool (str): Pool UUID cont (str): Container UUID oid (str): oid hi lo value in the format <hi>.<lo> sys_name (str, optional): System name. Defaults to None. Returns: dict: cmd output oid: (oid.hi, oid.lo) ver: num grp_nr: num layout: [{grp: num, replica: [(n0, n1), (n2, n3)...]}, ...] Each row of replica nums is a tuple and stored top->bottom. Raises: CommandFailure: if the daos object query command fails. """ self._get_result( ("object", "query"), pool=pool, cont=cont, oid=oid, sys_name=sys_name) # Sample daos object query output. # oid: 1152922453794619396.1 ver 0 grp_nr: 2 # grp: 0 # replica 0 1 # replica 1 0 # grp: 1 # replica 0 0 # replica 1 1 data = {} vals = re.findall( r"oid:\s+([\d.]+)\s+ver\s+(\d+)\s+grp_nr:\s+(\d+)|"\ r"grp:\s+(\d+)\s+|"\ r"replica\s+(\d+)\s+(\d+)\s*", self.result.stdout_text) try: oid_vals = vals[0][0] oid_list = oid_vals.split(".") oid_hi = oid_list[0] oid_lo = oid_list[1] data["oid"] = (oid_hi, oid_lo) data["ver"] = vals[0][1] data["grp_nr"] = vals[0][2] data["layout"] = [] for i in range(1, len(vals)): if vals[i][3] == "": if "replica" in data["layout"][-1]: data["layout"][-1]["replica"].append( (vals[i][4], vals[i][5])) else: data["layout"][-1]["replica"] = [( vals[i][4], vals[i][5])] else: data["layout"].append({"grp": vals[i][3]}) except IndexError: traceback.print_exc() self.log.error("--- re.findall output ---") self.log.error(vals) return data def filesystem_copy(self, src, dst, preserve_props=None): """Copy a POSIX container or path to another POSIX container or path. Args: src (str): The source, formatted as daos:<pool>/<cont>/<path> or posix:<path> dst (str): The destination, formatted as daos:<pool>/<cont>/<path> or posix:<path> preserve_props (str): The filename to read or write container properties Returns: CmdResult: Object that contains exit status, stdout, and other information. Raises: CommandFailure: if the daos filesystem copy command fails. """ return self._get_result( ("filesystem", "copy"), src=src, dst=dst, preserve_props=preserve_props) def version(self): """Call daos version. Returns: CmdResult: an avocado CmdResult object containing the dmg command information, e.g. exit status, stdout, stderr, etc. Raises: CommandFailure: if the dmg storage query command fails. """ return self._get_result(["version"])
the-stack_0_11061
# -*- coding: utf-8 -*- from app.constants import S_OK, S_ERR import random import math import base64 import time import ujson as json from wand.image import Image from StringIO import StringIO from app.constants import * from app import cfg from app import util _CONTENT_TYPE_POSTFIX_MAP = { 'image/jpeg': 'jpg', 'image/jpg': 'jpg', 'image/gif': 'gif', 'image/png': 'png', 'application/pdf': 'pdf', 'application/x-pdf': 'pdf', } _IMG_TYPES = ['png', 'jpg', 'gif'] _IMG_TYPE_MAP = { 'jpg': 'jpeg', } def p_img_handler(data, content_type, idx): idx = util._int(idx) postfix = _parse_postfix(content_type) result = _save_img(data, postfix, content_type) result['the_idx'] = idx return result def _save_img(data, postfix, content_type): the_timestamp = util.get_timestamp() the_datetime = util.timestamp_to_datetime(the_timestamp) the_id = str(the_timestamp) + "_" + util.uuid() filename = the_id + '.' + postfix the_dir = '/data/img/bee/' + the_datetime.strftime('%Y-%m-%d') util.makedirs(the_dir) with open(the_dir + '/' + filename, 'w') as f: f.write(data) (the_thumbnail, thumbnail_postfix) = _make_thumbnail(data, postfix) the_dir = '/data/thumbnail/bee/' + the_datetime.strftime('%Y-%m-%d') util.makedirs(the_dir) thumbnail_filename = the_id + '.' + thumbnail_postfix with open(the_dir + '/' + thumbnail_filename, 'w') as f: f.write(the_thumbnail) db_data = {"filename": the_datetime.strftime('%Y-%m-%d/') + filename, "thumbnail_filename": the_datetime.strftime("%Y-%m-%d/") + thumbnail_filename, "the_id": the_id, 'content_type': content_type, 'save_time': the_timestamp} util.db_insert('bee_img', [db_data]) if '_id' in db_data: del db_data['_id'] return db_data def _parse_postfix(content_type): return _CONTENT_TYPE_POSTFIX_MAP.get(content_type.lower(), 'unknown') def _make_thumbnail(data, postfix): postfix = 'png' converted_data = '' try: with Image(blob=data) as img: (width, height) = img.size (resized_width, resized_height) = _parse_resize(width, height) img.resize(resized_width, resized_height) converted_data = img.make_blob(_IMG_TYPE_MAP.get(postfix, postfix)) except Exception as e: logging.exception('unable to _make_thumbnail: postfix: %s e: %s', postfix, e) converted_data = data return (converted_data, postfix) def _parse_resize(width, height): max_size = max(width, height) the_ratio = float(RESIZE_SIZE) / max_size resize_width = int(width * the_ratio) resize_height = int(height * the_ratio) cfg.logger.debug('width: %s height: %s resize_width: %s resize_height: %s', width, height, resize_width, resize_height) return (resize_width, resize_height)
the-stack_0_11063
from collections import ( defaultdict, ) from operator import ( attrgetter, ) from typing import ( Any, Iterable, Optional, Union, get_args, get_origin, ) from uuid import ( UUID, ) from minos.common import ( TypeHintBuilder, is_model_type, ) from .models import ( ModelRef, ) class ModelRefExtractor: """Model Reference Extractor class.""" def __init__(self, value: Any, type_: Optional[type] = None, as_uuids: bool = True): if type_ is None: type_ = TypeHintBuilder(value).build() self.value = value self.type_ = type_ self.as_uuids = as_uuids def build(self) -> dict[str, set[UUID]]: """Run the model reference extractor. :return: A dictionary in which the keys are the class names and the values are the identifiers. """ ans = defaultdict(set) self._build(self.value, self.type_, ans) if self.as_uuids: ans = {k: set(map(attrgetter("uuid"), v)) for k, v in ans.items()} return ans def _build(self, value: Any, type_: type, ans: dict[str, set[ModelRef]]) -> None: if get_origin(type_) is Union: type_ = next((t for t in get_args(type_) if get_origin(t) is ModelRef), type_) if isinstance(value, (tuple, list, set)): self._build_iterable(value, get_args(type_)[0], ans) elif isinstance(value, dict): self._build_iterable(value.keys(), get_args(type_)[0], ans) self._build_iterable(value.values(), get_args(type_)[1], ans) elif isinstance(value, ModelRef): cls = value.data_cls or get_args(type_)[0] name = cls.__name__ ans[name].add(value) elif is_model_type(value): # noinspection PyUnresolvedReferences for field in value.fields.values(): self._build(field.value, field.type, ans) def _build_iterable(self, value: Iterable, value_: type, ans: dict[str, set[ModelRef]]) -> None: for sub_value in value: self._build(sub_value, value_, ans)
the-stack_0_11064
from django.db import models from django.core.validators import MaxValueValidator, MinValueValidator from django.utils import timezone from .custom_functions import isOnlyOneTrue from users.models import OpticUser, Account import decimal from termcolor import colored # Create your models here. class Patient(models.Model): """ Tabla con los campos del paciente """ class Gender(models.TextChoices): MALE = 'MALE', 'Masculino' FEMALE = 'FEMALE', 'Femenino' OTHER = 'OTHER', 'Otro' patient_optic_id = models.PositiveIntegerField(blank=True) optic = models.ForeignKey( OpticUser, verbose_name="Optica", on_delete=models.CASCADE, null=False) full_name = models.CharField("Nombre completo", max_length=100) dni = models.CharField( "Dni o Pasaporte", max_length=20, blank=True, null=True) age = models.PositiveSmallIntegerField("Edad", blank=True, null=True) gender = models.CharField("Genero", max_length=20, blank=True, choices=Gender.choices) phone = models.CharField("Celular", max_length=30, blank=True) job = models.CharField('Ocupacion', max_length=70, blank=True) class Meta: verbose_name = "Paciente" verbose_name_plural = "Pacientes" unique_together = (('optic', 'dni'), ('optic', 'patient_optic_id')) def __str__(self): return f"{self.full_name}" def save(self, force_insert=False, force_update=False, using=None, update_fields=None): if self._state.adding is True: optic = OpticUser.objects.get(pk=self.optic.id) last_patient = optic.patient_set.last() if last_patient: patient_optic_id = last_patient.patient_optic_id + 1 else: patient_optic_id = 1 self.patient_optic_id = patient_optic_id return super().save(force_insert=force_insert, force_update=force_update, using=using, update_fields=update_fields) class DiagnosisChoices(models.TextChoices): """ Diagnosticos a sugerir """ MYOPIA = 'MYOPIA', 'Miopía' ASTIGMATISM = 'ASTIGMATISM', 'Astigmatismo' FARSIGHTEDNESS = 'FARSIGHTEDNESS', 'Hipermetropía' PRESBYOPIA = 'PRESBYOPIA', 'Presbicia' SQUINT = 'SQUINT', 'Estrabismo' AMBLYOPIA = 'AMBLYOPIA', 'Ambliopía' DIOPIA = 'DIOPIA', 'Diopía' GLAUCOMA = 'GLAUCOMA', 'Glaucoma' DETACHED_RETINA = 'DETACHED_RETINA', 'Desprendimiento de la retina' CATARACT = 'CATARACT', 'Catarata' DALTONISM = 'DALTONISM', 'Daltonismo' CONJUNCTIVITIS = 'CONJUNCTIVITIS', 'Conjuntivitis' DIABETIC_RETINOPATHY = 'DIABETIC_RETINOPATHY', 'Retinopatía diabética' DRY_EYE = 'DRY_EYE', 'Ojo seco' MACULAR_DEGENERATION = 'MACULAR_DEGENERATION', 'Degeneración macular' class Subsidiary(models.Model): """ Tabla de sucursales """ subsidiary_name = models.CharField( "Nombre Sucursal", max_length=30, blank=True) direction = models.CharField("Dirección", max_length=50, blank=True) phone = models.CharField("Telefono", max_length=23, blank=True) optic = models.ForeignKey( OpticUser, verbose_name="Optica", on_delete=models.CASCADE, null=False) class Meta: verbose_name = "Sucursal" verbose_name_plural = "Sucursales" def __str__(self): return self.subsidiary_name class Laboratory(models.Model): """ Tabla de laboratorio """ laboratory_name = models.CharField( "Laboratorio", max_length=40, null=False) direction = models.CharField("Dirección", max_length=50, blank=True) phone = models.CharField("Telefono", max_length=23, blank=True) optic = models.ForeignKey( OpticUser, verbose_name="Optica", on_delete=models.CASCADE, null=False) class Meta: verbose_name = "Laboratorio" verbose_name_plural = "Laboratorios" def __str__(self): return self.laboratory_name class CrystalTreatments(models.Model): """ Tabla de tratamiento """ treatment_name = models.CharField("Nombre del tratamiento", max_length=50) description = models.TextField("Descripcion", blank=True) optic = models.ForeignKey( OpticUser, verbose_name="Optica", on_delete=models.CASCADE, null=False) class Meta: verbose_name = "Tratamiento" verbose_name_plural = "Tratamientos" def __str__(self): return self.treatment_name class CrystalMaterial(models.Model): """ Tabla de material """ material_name = models.CharField("Nombre del Material", max_length=50) refractive_index = models.DecimalField( "Indice de refracción", max_digits=4, decimal_places=3, blank=True, null=True) abbe = models.DecimalField( "Valor abbe", max_digits=3, decimal_places=1, blank=True, null=True) description = models.TextField("Descripcion", blank=True) optic = models.ForeignKey( OpticUser, verbose_name="Optica", on_delete=models.CASCADE, null=False) class Meta: verbose_name = "Material de la luna" verbose_name_plural = "Materiales de las lunas" def __str__(self): return self.material_name class Crystal(models.Model): """ Tabla de lunas """ crystal_name = models.CharField("Nombre Luna", max_length=70) material = models.ForeignKey( CrystalMaterial, verbose_name="Material", on_delete=models.SET_NULL, null=True, blank=True) treatments = models.ManyToManyField( CrystalTreatments, verbose_name="Tratamientos", blank=True) default_price = models.DecimalField('Precio de los lentes', max_digits=10, decimal_places=2, validators=[ MinValueValidator(0, 'No se permite el valor ingresado')], blank=True, null=True) optic = models.ForeignKey( OpticUser, verbose_name="Optica", on_delete=models.CASCADE, null=False) class Meta: verbose_name = "Luna" verbose_name_plural = "Lunas" def __str__(self): return self.crystal_name def get_treatments(self): treatments = list(self.treatments.all()) treatments = [treatment.treatment_name for treatment in treatments] if len(treatments) == 0: return "--" return ", ".join(treatments) class Prescription(models.Model): """ Tabla de prescripcion """ class PrescriptionType(models.TextChoices): MONOFOCAL = 'MONOFOCAL', 'Monofocal' BIFOCAL = 'BIFOCAL', 'Bifocal' OCCUPATIONAL = 'OCCUPATIONAL', 'Ocupacional' PROGRESSIVE = 'PROGRESSIVE', 'Progressivo' @staticmethod def generateChoices(start, end): choices = [(decimal.Decimal(f'{i*0.25}0') if i % 2 == 0 else decimal.Decimal(f'{i*0.25}'), (f'{i*0.25}0' if i <= 0 else f'+{i*0.25}0') if i % 2 == 0 else (f'{i*0.25}' if i <= 0 else f'+{i*0.25}')) for i in range(end-1, start-1, -1)] for i, (value, name) in enumerate(choices): if value == decimal.Decimal(0): choices.insert(i, ('', '--')) break return choices spherical_choices = generateChoices.__func__(-100, 101) cylinder_choices = generateChoices.__func__(-40, 1) axis_choices = [(i, f'{i}°') for i in range(180, -1, -1)] axis_choices.append(('', '--')) dip_choices = [(i, f'{i}mm') for i in range(81, 40, -1)] dip_choices.append(('', '--')) dnp_choices = [(decimal.Decimal(f'{i/2}') if i % 2 == 0 else decimal.Decimal( f'{i/2}'), f'{i/2}mm' if i % 2 == 1 else f'{int(i/2)}mm') for i in range(81, 40, -1)] dnp_choices.append(('', '--')) add_choices = generateChoices.__func__(1, 25) add_choices.append(('', '--')) # print(colored(spherical_choices,'green')) # print(colored(cylinder_choices,'red')) # print(colored(axis_choices,'green')) # print(colored(dip_choices,'red')) # print(colored(add_choices,'green')) optic = models.ForeignKey( OpticUser, verbose_name="Optica", on_delete=models.CASCADE, null=False) is_dip = models.BooleanField('Dip o Dnp') patient = models.ForeignKey( Patient, on_delete=models.PROTECT, verbose_name="Paciente") subsidiary = models.ForeignKey( Subsidiary, on_delete=models.SET_NULL, verbose_name="Sucursal", blank=True, null=True) laboratory = models.ForeignKey( Laboratory, verbose_name="Laboratorio", on_delete=models.SET_NULL, null=True, blank=True) doctor = models.ForeignKey( Account, verbose_name="Doctor", on_delete=models.SET_NULL, blank=True, null=True) prescription_optic_id = models.PositiveIntegerField(blank=True) prescription_type = models.CharField( "Tipo", max_length=50, choices=PrescriptionType.choices, null=True, blank=True) date = models.DateField(verbose_name='Fecha', default=timezone.now) time = models.TimeField(verbose_name='Hora', default=timezone.now) far_spherical_right = models.DecimalField( "Esf. derecho Lejos", max_digits=4, decimal_places=2, blank=True, null=True, choices=spherical_choices) far_cylinder_right = models.DecimalField( "Cil. derecho Lejos", max_digits=4, decimal_places=2, blank=True, null=True, choices=cylinder_choices) far_axis_right = models.PositiveSmallIntegerField("Eje derecho Lejos", validators=[MaxValueValidator( 180, 'El eje solo permite valores entre 0° y 180°')], blank=True, null=True, choices=axis_choices) far_av_right = models.CharField( "Av. derecho lejos", max_length=50, blank=True, null=True) far_dnp_right = models.DecimalField( "Dnp. derecho lejos", max_digits=3, decimal_places=1, blank=True, null=True, choices=dnp_choices) far_spherical_left = models.DecimalField( "Esf. izquierdo Lejos", max_digits=4, decimal_places=2, blank=True, null=True, choices=spherical_choices) far_cylinder_left = models.DecimalField( "Cil. izquierdo Lejos", max_digits=4, decimal_places=2, blank=True, null=True, choices=cylinder_choices) far_axis_left = models.PositiveSmallIntegerField("Eje izquierdo Lejos", validators=[MaxValueValidator( 180, 'El eje solo permite valores entre 0° y 180°')], blank=True, null=True, choices=axis_choices) far_av_left = models.CharField( "Av. izquierdo lejos", max_length=50, blank=True, null=True) far_dnp_left = models.DecimalField( "Dnp. izquierdo lejos", max_digits=3, decimal_places=1, blank=True, null=True, choices=dnp_choices) intermediate_spherical_right = models.DecimalField( "Esf. derecho intermedio", max_digits=4, decimal_places=2, blank=True, null=True, choices=spherical_choices) intermediate_cylinder_right = models.DecimalField( "Cil. derecho intermedio", max_digits=4, decimal_places=2, blank=True, null=True, choices=cylinder_choices) intermediate_axis_right = models.PositiveSmallIntegerField("Eje derecho Lintermedio", validators=[MaxValueValidator( 180, 'El eje solo permite valores entre 0° y 180°')], blank=True, null=True, choices=axis_choices) intermediate_av_right = models.CharField( "Av. derecho intermedio", max_length=50, blank=True, null=True) intermediate_dnp_right = models.DecimalField( "Dnp. derecho intermedio", max_digits=3, decimal_places=1, blank=True, null=True, choices=dnp_choices) intermediate_spherical_left = models.DecimalField( "Esf. izquierdo intermedio", max_digits=4, decimal_places=2, blank=True, null=True, choices=spherical_choices) intermediate_cylinder_left = models.DecimalField( "Cil. izquierdo intermedio", max_digits=4, decimal_places=2, blank=True, null=True, choices=cylinder_choices) intermediate_axis_left = models.PositiveSmallIntegerField("Eje izquierdo intermedio", validators=[MaxValueValidator( 180, 'El eje solo permite valores entre 0° y 180°')], blank=True, null=True, choices=axis_choices) intermediate_av_left = models.CharField( "Av. izquierdo intermedio", max_length=50, blank=True, null=True) intermediate_dnp_left = models.DecimalField( "Dnp. izquierdo intermedio", max_digits=3, decimal_places=1, blank=True, null=True, choices=dnp_choices) near_spherical_right = models.DecimalField( "Esf. derecho Cerca", max_digits=4, decimal_places=2, blank=True, null=True, choices=spherical_choices) near_cylinder_right = models.DecimalField( "Cil. derecho Cerca", max_digits=4, decimal_places=2, blank=True, null=True, choices=cylinder_choices) near_axis_right = models.PositiveSmallIntegerField("Eje derecho Cerca", validators=[MaxValueValidator( 180, 'El eje solo permite valores entre 0° y 180°')], blank=True, null=True, choices=axis_choices) near_av_right = models.CharField( "Av. derecho Cerca", max_length=50, blank=True, null=True) near_dnp_right = models.DecimalField( "Dnp. derecho Cerca", max_digits=3, decimal_places=1, blank=True, null=True, choices=dnp_choices) near_spherical_left = models.DecimalField( "Esf. izquierdo Cerca", max_digits=4, decimal_places=2, blank=True, null=True, choices=spherical_choices) near_cylinder_left = models.DecimalField( "Cil. izquierdo Cerca", max_digits=4, decimal_places=2, blank=True, null=True, choices=cylinder_choices) near_axis_left = models.PositiveSmallIntegerField("Eje izquierdo Cerca", validators=[MaxValueValidator( 180, 'El eje solo permite valores entre 0 y 180')], blank=True, null=True, choices=axis_choices) near_av_left = models.CharField( "Av. izquierdo Cerca", max_length=50, blank=True, null=True) near_dnp_left = models.DecimalField( "Dnp. izquierdo Cerca", max_digits=3, decimal_places=1, blank=True, null=True, choices=dnp_choices) patient_notes = models.TextField("Notas para el paciente", blank=True) laboratory_notes = models.TextField( "Notas para el laboratorio", blank=True) optic_notes = models.TextField("Notas para tu optica", blank=True) intermediate_add = models.DecimalField( "Add. intermedio", max_digits=4, decimal_places=2, blank=True, null=True, choices=add_choices) near_add = models.DecimalField( "Add. cerca", max_digits=4, decimal_places=2, blank=True, null=True, choices=add_choices) diagnosis = models.CharField("Diagnostico", max_length=84, blank=True, help_text="Diagnostico del paciente según las medidas") measure_price = models.DecimalField('Precio de la medida', max_digits=10, decimal_places=2, default=0, validators=[ MinValueValidator(0, 'No se permite el valor ingresado')], blank=True, null=True) crystals = models.ForeignKey( Crystal, on_delete=models.SET_NULL, verbose_name="Lunas", blank=True, null=True) crystals_cost = models.DecimalField('Costo de las lunas', max_digits=10, decimal_places=2, validators=[ MinValueValidator(0, 'No se permite el valor ingresado')], blank=True, null=True) crystals_price = models.DecimalField('Precio de venta de las lunas', max_digits=10, decimal_places=2, validators=[ MinValueValidator(0, 'No se permite el valor ingresado')], blank=True, null=True) frame = models.CharField("Descripcion de la montura", max_length=120, null=True, blank=True) frame_price = models.DecimalField('Precio de venta de la montura', max_digits=10, decimal_places=2, validators=[ MinValueValidator(0, 'No se permite el valor ingresado')], blank=True, null=True) class Meta: verbose_name = "Receta" verbose_name_plural = "Recetas" unique_together = ('optic', 'prescription_optic_id') def __str__(self): return f"""{self.patient}""" # ODL:{self.far_spherical_right if self.far_spherical_right is not None else '?'}({self.far_cylinder_right if self.far_cylinder_right is not None else '?'}){self.far_axis_right if self.far_axis_right is not None else '?'}° # OIL:{self.far_spherical_left if self.far_spherical_left is not None else '?'}({self.far_cylinder_left if self.far_cylinder_left is not None else '?'}){self.far_axis_left if self.far_axis_left is not None else '?'}° # ODC:{self.near_spherical_right if self.near_spherical_right is not None else '?'}({self.near_cylinder_right if self.near_cylinder_right is not None else '?'}){self.near_axis_right if self.near_axis_right is not None else '?'}° # OIC:{self.near_spherical_left if self.near_spherical_left is not None else '?'}({self.near_cylinder_left if self.near_cylinder_left is not None else '?'}){self.near_axis_left if self.near_axis_left is not None else '?'}° def save(self, force_insert=False, force_update=False, using=None, update_fields=None): if self._state.adding is True: optic = OpticUser.objects.get(pk=self.optic.id) last_prescription = optic.prescription_set.last() if last_prescription: prescription_optic_id = last_prescription.prescription_optic_id + 1 else: prescription_optic_id = 1 self.prescription_optic_id = prescription_optic_id near = self.has_near_table() or self.near_add is not None intermediate = self.has_intermediate_table() or self.intermediate_add is not None far = self.has_far_table() if isOnlyOneTrue(near, intermediate, far): self.prescription_type = Prescription.PrescriptionType.MONOFOCAL elif near and intermediate and far: self.prescription_type = Prescription.PrescriptionType.PROGRESSIVE elif near and intermediate: self.prescription_type = Prescription.PrescriptionType.OCCUPATIONAL elif (near and far) or (intermediate and far): self.prescription_type = Prescription.PrescriptionType.BIFOCAL else: self.prescription_type = None super().save(force_insert=force_insert, force_update=force_update, using=using, update_fields=update_fields) def get_total(self): if self.frame_price is None and self.crystals_price is None and self.measure_price is None: return None if self.frame_price is None: frame_price = 0 else: frame_price = self.frame_price if self.crystals_price is None: crystals_price = 0 else: crystals_price = self.crystals_price if self.measure_price is None: measure_price = 0 else: measure_price = self.measure_price total = frame_price + crystals_price + measure_price return total def has_far_table(self): """ Comprueba si la prescripcion tiene tabla de lejos """ if (self.far_spherical_right is not None or self.far_cylinder_right is not None or self.far_axis_right is not None or self.far_av_right is not None or self.far_dnp_right is not None or self.far_spherical_left is not None or self.far_cylinder_left is not None or self.far_axis_left is not None or self.far_av_left is not None or self.far_dnp_left is not None): return True return False def has_intermediate_table(self): """ Comprueba si la repscripciones tiene tabla intermedia """ if (self.intermediate_spherical_right is not None or self.intermediate_cylinder_right is not None or self.intermediate_axis_right is not None or self.intermediate_av_right is not None or self.intermediate_dnp_right is not None or self.intermediate_spherical_left is not None or self.intermediate_cylinder_left is not None or self.intermediate_axis_left is not None or self.intermediate_av_left is not None or self.intermediate_dnp_left is not None): return True return False def has_near_table(self): """ Comprueba si la prescripcion tiene tabla de cerca """ if (self.near_spherical_right is not None or self.near_cylinder_right is not None or self.near_axis_right is not None or self.near_av_right is not None or self.near_dnp_right is not None or self.near_spherical_left is not None or self.near_cylinder_left is not None or self.near_axis_left is not None or self.near_av_left is not None or self.near_dnp_left is not None): return True return False
the-stack_0_11065
#!/usr/bin/env python # Licensed under a 3-clause BSD style license - see LICENSE.rst import glob import os import sys import ah_bootstrap from setuptools import setup # A dirty hack to get around some early import/configurations ambiguities import builtins builtins._ASTROPY_SETUP_ = True from astropy_helpers.setup_helpers import (register_commands, get_debug_option, get_package_info) from astropy_helpers.git_helpers import get_git_devstr from astropy_helpers.version_helpers import generate_version_py # Get some values from the setup.cfg from configparser import ConfigParser conf = ConfigParser() conf.read(['setup.cfg']) metadata = dict(conf.items('metadata')) PACKAGENAME = metadata.get('package_name', 'pyvo') DESCRIPTION = metadata.get('description', 'Astropy affiliated package') AUTHOR = metadata.get('author', '') AUTHOR_EMAIL = metadata.get('author_email', '') LICENSE = metadata.get('license', 'unknown') URL = metadata.get('url', '') # order of priority for long_description: # (1) set in setup.cfg, # (2) load LONG_DESCRIPTION.rst, # (3) load README.rst, # (4) package docstring readme_glob = 'README*' _cfg_long_description = metadata.get('long_description', '') if _cfg_long_description: LONG_DESCRIPTION = _cfg_long_description elif os.path.exists('LONG_DESCRIPTION.rst'): with open('LONG_DESCRIPTION.rst') as f: LONG_DESCRIPTION = f.read() elif len(glob.glob(readme_glob)) > 0: with open(glob.glob(readme_glob)[0]) as f: LONG_DESCRIPTION = f.read() else: # Get the long description from the package's docstring __import__(PACKAGENAME) package = sys.modules[PACKAGENAME] LONG_DESCRIPTION = package.__doc__ # Store the package name in a built-in variable so it's easy # to get from other parts of the setup infrastructure builtins._ASTROPY_PACKAGE_NAME_ = PACKAGENAME # VERSION should be PEP440 compatible (http://www.python.org/dev/peps/pep-0440) VERSION = metadata.get('version', '0.0.dev') # Indicates if this version is a release version RELEASE = 'dev' not in VERSION if not RELEASE: VERSION += get_git_devstr(False) # Populate the dict of setup command overrides; this should be done before # invoking any other functionality from distutils since it can potentially # modify distutils' behavior. cmdclassd = register_commands(PACKAGENAME, VERSION, RELEASE) # Freeze build information in version.py generate_version_py(PACKAGENAME, VERSION, RELEASE, get_debug_option(PACKAGENAME)) # Get configuration information from all of the various subpackages. # See the docstring for setup_helpers.update_package_files for more # details. package_info = get_package_info() # Add the project-global data package_info['package_data'].setdefault(PACKAGENAME, []) package_info['package_data'][PACKAGENAME].append('data/*') # Define entry points for command-line scripts entry_points = {'console_scripts': []} entry_point_list = conf.items('entry_points') for entry_point in entry_point_list: entry_points['console_scripts'].append('{} = {}'.format(entry_point[0], entry_point[1])) # Include all .c files, recursively, including those generated by # Cython, since we can not do this in MANIFEST.in with a "dynamic" # directory name. c_files = [] for root, dirs, files in os.walk(PACKAGENAME): for filename in files: if filename.endswith('.c'): c_files.append( os.path.join( os.path.relpath(root, PACKAGENAME), filename)) package_info['package_data'][PACKAGENAME].extend(c_files) # Note that requires and provides should not be included in the call to # ``setup``, since these are now deprecated. See this link for more details: # https://groups.google.com/forum/#!topic/astropy-dev/urYO8ckB2uM setup(name=PACKAGENAME, version=VERSION, description=DESCRIPTION, python_requires='>=3.7', install_requires=metadata.get('install_requires', 'astropy').strip().split(), author=AUTHOR, author_email=AUTHOR_EMAIL, license=LICENSE, url=URL, long_description=LONG_DESCRIPTION, cmdclass=cmdclassd, zip_safe=False, use_2to3=False, entry_points=entry_points, **package_info )
the-stack_0_11066
from unittest.mock import patch from django.core.management import call_command from django.db.utils import OperationalError from django.test import TestCase class CommandsTestCase(TestCase): def test_wait_for_db_ready(self): """Test waiting for db when db is available""" with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.return_value = True call_command('wait_for_db') self.assertEqual(gi.call_count, 1) @patch('time.sleep', return_value=True) def test_wait_for_db(self, ts): """Test waiting for db""" with patch('django.db.utils.ConnectionHandler.__getitem__') as gi: gi.side_effect = [OperationalError] * 5 + [True] call_command('wait_for_db') self.assertEqual(gi.call_count, 6)
the-stack_0_11068
from PyTsetlinMachineCUDA.tm import MultiClassConvolutionalTsetlinMachine2D import numpy as np from time import time from keras.datasets import mnist (X_train, Y_train), (X_test, Y_test) = mnist.load_data() X_train = np.where(X_train >= 75, 1, 0) X_test = np.where(X_test >= 75, 1, 0) tm = MultiClassConvolutionalTsetlinMachine2D(2000, 50*15, 5.0, (10, 10), max_weight=16) print("\nAccuracy over 50 epochs:\n") for i in range(50): start_training = time() tm.fit(X_train, Y_train, epochs=1, incremental=True) stop_training = time() start_testing = time() result = 100*(tm.predict(X_test) == Y_test).mean() stop_testing = time() print("#%d Accuracy: %.2f%% Training: %.2fs Testing: %.2fs" % (i+1, result, stop_training-start_training, stop_testing-start_testing))
the-stack_0_11070
# Copyright 2021 The SODA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import TestCase, mock from delfin import context from delfin.drivers.dell_emc.vplex.rest_handler import RestHandler from delfin.drivers.dell_emc.vplex.vplex_stor import VplexStorageDriver ACCESS_INFO = { "storage_id": "12345", "vendor": "dell_emc", "model": "vplex", "rest": { "host": "8.44.162.250", "port": 443, "username": "service", "password": "Abcdef@123" } } TRAP_INFO = { "1.3.6.1.2.1.1.3.0": "0", '1.3.6.1.6.3.1.1.4.1.0': '1.3.6.1.4.1.1139.21.0', '1.3.6.1.4.1.1139.21.1.5.0': 'this is test', '1.3.6.1.4.1.1139.21.1.3.0': '123321' } trap_result = { 'alert_id': '123321', 'alert_name': 'this is test', 'severity': 'Informational', 'category': 'Fault', 'type': 'EquipmentAlarm', 'occur_time': 1614067724000, 'description': 'this is test', 'resource_type': 'Storage', 'location': '', 'match_key': '8c6d115258631625b625486f81b09532' } GET_ALL_CLUSTER = { "context": [{ "children": [{ "name": "cluster-1", "type": "cluster" } ] } ] } GET_ALL_LUNS = { "context": [ { "children": [ { "name": "device_VPLEX_LUN0_1_vol", "type": "virtual-volume" } ] } ] } GET_LUN = { "context": [ { "attributes": [ { "name": "capacity", "value": "644245094400B" }, { "name": "health-state", "value": "ok" }, { "name": "operational-status", "value": "ok" }, { "name": "supporting-device", "value": "device__VPLEX_LUN0_1" }, { "name": "thin-enabled", "value": "unavailable" }, { "name": "vpd-id", "value": "VPD83T3:60000000000000000000000000000000" } ] } ] } volume_result = [{ 'name': 'device_VPLEX_LUN0_1_vol', 'storage_id': '12345', 'description': 'EMC VPlex volume', 'status': 'normal', 'native_volume_id': 'VPD83T3:60000000000000000000000000000000', 'native_storage_pool_id': 'device__VPLEX_LUN0_1', 'type': 'thick', 'total_capacity': 644245094400, 'used_capacity': 644245094400, 'free_capacity': 0, 'wwn': '60000000000000000000000000000000' } ] GET_ALL_POOLS = { "context": [ { "children": [ { "name": "Device_KLM_test01", "type": "local-device" } ] } ] } GET_POOL = { "context": [ { "attributes": [ { "name": "capacity", "value": "732212254720B" }, { "name": "health-state", "value": "ok" }, { "name": "operational-status", "value": "ok" }, { "name": "system-id", "value": "Device_KLM_test01" }, { "name": "virtual-volume", "value": "Volume_CLARiiON0041_KLM_test01" } ] } ] } pool_result = [ { 'name': 'Device_KLM_test01', 'storage_id': '12345', 'native_storage_pool_id': 'Device_KLM_test01', 'description': 'EMC VPlex Pool', 'status': 'normal', 'storage_type': 'block', 'total_capacity': 732212254720, 'used_capacity': 732212254720, 'free_capacity': 0 } ] GET_HEALH_CHECK = { "context": None, "message": "health-check -l", "exception": None, "custom-data": "Product Version: 6.1.0.01.00.13\n" "Product Type: Local\n" } GET_CLUSTER = { "context": [ { "type": "cluster", "parent": "/clusters", "attributes": [ { "name": "health-state", "value": "major-failure" }, { "name": "operational-status", "value": "degraded" }, { "name": "top-level-assembly", "value": "FNM00000000000" } ], } ] } storage_result = { 'name': 'cluster-1', 'vendor': 'DELL EMC', 'description': 'EMC VPlex Storage', 'status': 'abnormal', 'serial_number': 'FNM00000000000', 'firmware_version': ' 6.1.0.01.00.13', 'model': 'EMC VPLEX Local', 'location': '', 'raw_capacity': 12754334882201, 'total_capacity': 11654823254425, 'used_capacity': 8983009998929, 'free_capacity': 2671813255496, 'subscribed_capacity': 0 } GET_ALL_STORAGE_VOLUME_SUMMARY = { "custom-data": "Capacity total 11.6T\n\n" } GET_ALL_POOLS_SUMMARY = { "custom-data": "total capacity 1.88T total capacity " "8.68T total capacity 10.6T\n\n" } GET_ALL_LUNS_SUMMARY = { "custom-data": "Total virtual-volume capacity is 8.17T." } class TestVplexStorDriver(TestCase): RestHandler.login = mock.Mock(return_value=None) def test_parse_alert(self): trap = VplexStorageDriver(**ACCESS_INFO).parse_alert(context, TRAP_INFO) trap_result['occur_time'] = trap['occur_time'] self.assertDictEqual(trap, trap_result) @mock.patch.object(RestHandler, 'get_cluster_resp') @mock.patch.object(RestHandler, 'get_virtual_volume_resp') @mock.patch.object(RestHandler, 'get_virtual_volume_by_name_resp') def test_list_volumes(self, mock_name, mock_volume, mock_cluster): mock_cluster.return_value = GET_ALL_CLUSTER mock_volume.return_value = GET_ALL_LUNS mock_name.return_value = GET_LUN volume = VplexStorageDriver(**ACCESS_INFO).list_volumes(context) self.assertDictEqual(volume[0], volume_result[0]) @mock.patch.object(RestHandler, 'get_cluster_resp') @mock.patch.object(RestHandler, 'get_devcie_resp') @mock.patch.object(RestHandler, 'get_device_by_name_resp') def test_list_storage_pools(self, mock_name, mock_device, mock_cluster): mock_cluster.return_value = GET_ALL_CLUSTER mock_device.return_value = GET_ALL_POOLS mock_name.return_value = GET_POOL pool = VplexStorageDriver(**ACCESS_INFO).list_storage_pools(context) self.assertDictEqual(pool[0], pool_result[0]) def test_get_storage(self): RestHandler.get_rest_info = mock.Mock( side_effect=[GET_HEALH_CHECK, GET_ALL_CLUSTER, GET_CLUSTER, GET_ALL_STORAGE_VOLUME_SUMMARY, GET_ALL_POOLS_SUMMARY, GET_ALL_LUNS_SUMMARY]) storage = VplexStorageDriver(**ACCESS_INFO).get_storage(context) self.assertDictEqual(storage, storage_result) def test_list_alerts(self): with self.assertRaises(Exception) as exc: VplexStorageDriver(**ACCESS_INFO).list_alerts(context) self.assertEqual('list_alerts is not supported in model VPLEX', str(exc.exception))
the-stack_0_11072
import ConfigParser import logging import os import re from galaxy import util from galaxy import web from galaxy.web.form_builder import build_select_field from galaxy.webapps.tool_shed.model import directory_hash_id from tool_shed.dependencies.repository import relation_builder from tool_shed.util import common_util from tool_shed.util import hg_util from tool_shed.util import shed_util_common as suc log = logging.getLogger( __name__ ) VALID_REPOSITORYNAME_RE = re.compile( "^[a-z0-9\_]+$" ) def build_allow_push_select_field( trans, current_push_list, selected_value='none' ): options = [] for user in trans.sa_session.query( trans.model.User ): if user.username not in current_push_list: options.append( user ) return build_select_field( trans, objs=options, label_attr='username', select_field_name='allow_push', selected_value=selected_value, refresh_on_change=False, multiple=True ) def change_repository_name_in_hgrc_file( hgrc_file, new_name ): config = ConfigParser.ConfigParser() config.read( hgrc_file ) config.read( hgrc_file ) config.set( 'web', 'name', new_name ) new_file = open( hgrc_file, 'wb' ) config.write( new_file ) new_file.close() def check_or_update_tool_shed_status_for_installed_repository( app, repository ): updated = False tool_shed_status_dict = suc.get_tool_shed_status_for_installed_repository( app, repository ) if tool_shed_status_dict: ok = True if tool_shed_status_dict != repository.tool_shed_status: repository.tool_shed_status = tool_shed_status_dict app.install_model.context.add( repository ) app.install_model.context.flush() updated = True else: ok = False return ok, updated def create_repo_info_dict( app, repository_clone_url, changeset_revision, ctx_rev, repository_owner, repository_name=None, repository=None, repository_metadata=None, tool_dependencies=None, repository_dependencies=None ): """ Return a dictionary that includes all of the information needed to install a repository into a local Galaxy instance. The dictionary will also contain the recursive list of repository dependencies defined for the repository, as well as the defined tool dependencies. This method is called from Galaxy under four scenarios: 1. During the tool shed repository installation process via the tool shed's get_repository_information() method. In this case both the received repository and repository_metadata will be objects, but tool_dependencies and repository_dependencies will be None. 2. When getting updates for an installed repository where the updates include newly defined repository dependency definitions. This scenario is similar to 1. above. The tool shed's get_repository_information() method is the caller, and both the received repository and repository_metadata will be objects, but tool_dependencies and repository_dependencies will be None. 3. When a tool shed repository that was uninstalled from a Galaxy instance is being reinstalled with no updates available. In this case, both repository and repository_metadata will be None, but tool_dependencies and repository_dependencies will be objects previously retrieved from the tool shed if the repository includes definitions for them. 4. When a tool shed repository that was uninstalled from a Galaxy instance is being reinstalled with updates available. In this case, this method is reached via the tool shed's get_updated_repository_information() method, and both repository and repository_metadata will be objects but tool_dependencies and repository_dependencies will be None. """ repo_info_dict = {} repository = suc.get_repository_by_name_and_owner( app, repository_name, repository_owner ) if app.name == 'tool_shed': # We're in the tool shed. repository_metadata = suc.get_repository_metadata_by_changeset_revision( app, app.security.encode_id( repository.id ), changeset_revision ) if repository_metadata: metadata = repository_metadata.metadata if metadata: tool_shed_url = str( web.url_for( '/', qualified=True ) ).rstrip( '/' ) rb = relation_builder.RelationBuilder( app, repository, repository_metadata, tool_shed_url ) # Get a dictionary of all repositories upon which the contents of the received repository depends. repository_dependencies = rb.get_repository_dependencies_for_changeset_revision() tool_dependencies = metadata.get( 'tool_dependencies', {} ) if tool_dependencies: new_tool_dependencies = {} for dependency_key, requirements_dict in tool_dependencies.items(): if dependency_key in [ 'set_environment' ]: new_set_environment_dict_list = [] for set_environment_dict in requirements_dict: set_environment_dict[ 'repository_name' ] = repository_name set_environment_dict[ 'repository_owner' ] = repository_owner set_environment_dict[ 'changeset_revision' ] = changeset_revision new_set_environment_dict_list.append( set_environment_dict ) new_tool_dependencies[ dependency_key ] = new_set_environment_dict_list else: requirements_dict[ 'repository_name' ] = repository_name requirements_dict[ 'repository_owner' ] = repository_owner requirements_dict[ 'changeset_revision' ] = changeset_revision new_tool_dependencies[ dependency_key ] = requirements_dict tool_dependencies = new_tool_dependencies # Cast unicode to string, with the exception of description, since it is free text and can contain special characters. repo_info_dict[ str( repository.name ) ] = ( repository.description, str( repository_clone_url ), str( changeset_revision ), str( ctx_rev ), str( repository_owner ), repository_dependencies, tool_dependencies ) return repo_info_dict def create_repository( app, name, type, description, long_description, user_id, category_ids=[] ): sa_session = app.model.context.current # Add the repository record to the database. repository = app.model.Repository( name=name, type=type, description=description, long_description=long_description, user_id=user_id ) # Flush to get the id. sa_session.add( repository ) sa_session.flush() # Create an admin role for the repository. repository_admin_role = create_repository_admin_role( app, repository ) # Determine the repository's repo_path on disk. dir = os.path.join( app.config.file_path, *directory_hash_id( repository.id ) ) # Create directory if it does not exist. if not os.path.exists( dir ): os.makedirs( dir ) # Define repo name inside hashed directory. repository_path = os.path.join( dir, "repo_%d" % repository.id ) # Create local repository directory. if not os.path.exists( repository_path ): os.makedirs( repository_path ) # Create the local repository. repo = hg_util.get_repo_for_repository( app, repository=None, repo_path=repository_path, create=True ) # Add an entry in the hgweb.config file for the local repository. lhs = "repos/%s/%s" % ( repository.user.username, repository.name ) app.hgweb_config_manager.add_entry( lhs, repository_path ) # Create a .hg/hgrc file for the local repository. hg_util.create_hgrc_file( app, repository ) flush_needed = False if category_ids: # Create category associations for category_id in category_ids: category = sa_session.query( app.model.Category ) \ .get( app.security.decode_id( category_id ) ) rca = app.model.RepositoryCategoryAssociation( repository, category ) sa_session.add( rca ) flush_needed = True if flush_needed: sa_session.flush() # Update the repository registry. app.repository_registry.add_entry( repository ) message = "Repository <b>%s</b> has been created." % str( repository.name ) return repository, message def create_repository_admin_role( app, repository ): """ Create a new role with name-spaced name based on the repository name and its owner's public user name. This will ensure that the tole name is unique. """ sa_session = app.model.context.current name = get_repository_admin_role_name( str( repository.name ), str( repository.user.username ) ) description = 'A user or group member with this role can administer this repository.' role = app.model.Role( name=name, description=description, type=app.model.Role.types.SYSTEM ) sa_session.add( role ) sa_session.flush() # Associate the role with the repository owner. ura = app.model.UserRoleAssociation( repository.user, role ) # Associate the role with the repository. rra = app.model.RepositoryRoleAssociation( repository, role ) sa_session.add( rra ) sa_session.flush() return role def get_installed_tool_shed_repository( app, id ): """Get a tool shed repository record from the Galaxy database defined by the id.""" return app.install_model.context.query( app.install_model.ToolShedRepository ) \ .get( app.security.decode_id( id ) ) def get_repo_info_dict( app, user, repository_id, changeset_revision ): repository = suc.get_repository_in_tool_shed( app, repository_id ) repo = hg_util.get_repo_for_repository( app, repository=repository, repo_path=None, create=False ) repository_clone_url = common_util.generate_clone_url_for_repository_in_tool_shed( user, repository ) repository_metadata = suc.get_repository_metadata_by_changeset_revision( app, repository_id, changeset_revision ) if not repository_metadata: # The received changeset_revision is no longer installable, so get the next changeset_revision # in the repository's changelog. This generally occurs only with repositories of type # repository_suite_definition or tool_dependency_definition. next_downloadable_changeset_revision = \ suc.get_next_downloadable_changeset_revision( repository, repo, changeset_revision ) if next_downloadable_changeset_revision: repository_metadata = suc.get_repository_metadata_by_changeset_revision( app, repository_id, next_downloadable_changeset_revision ) if repository_metadata: # For now, we'll always assume that we'll get repository_metadata, but if we discover our assumption # is not valid we'll have to enhance the callers to handle repository_metadata values of None in the # returned repo_info_dict. metadata = repository_metadata.metadata if 'tools' in metadata: includes_tools = True else: includes_tools = False includes_tools_for_display_in_tool_panel = repository_metadata.includes_tools_for_display_in_tool_panel repository_dependencies_dict = metadata.get( 'repository_dependencies', {} ) repository_dependencies = repository_dependencies_dict.get( 'repository_dependencies', [] ) has_repository_dependencies, has_repository_dependencies_only_if_compiling_contained_td = \ suc.get_repository_dependency_types( repository_dependencies ) if 'tool_dependencies' in metadata: includes_tool_dependencies = True else: includes_tool_dependencies = False else: # Here's where we may have to handle enhancements to the callers. See above comment. includes_tools = False has_repository_dependencies = False has_repository_dependencies_only_if_compiling_contained_td = False includes_tool_dependencies = False includes_tools_for_display_in_tool_panel = False ctx = hg_util.get_changectx_for_changeset( repo, changeset_revision ) repo_info_dict = create_repo_info_dict( app=app, repository_clone_url=repository_clone_url, changeset_revision=changeset_revision, ctx_rev=str( ctx.rev() ), repository_owner=repository.user.username, repository_name=repository.name, repository=repository, repository_metadata=repository_metadata, tool_dependencies=None, repository_dependencies=None ) return repo_info_dict, includes_tools, includes_tool_dependencies, includes_tools_for_display_in_tool_panel, \ has_repository_dependencies, has_repository_dependencies_only_if_compiling_contained_td def get_repository_admin_role_name( repository_name, repository_owner ): return '%s_%s_admin' % ( str( repository_name ), str( repository_owner ) ) def get_role_by_id( app, role_id ): """Get a Role from the database by id.""" sa_session = app.model.context.current return sa_session.query( app.model.Role ).get( app.security.decode_id( role_id ) ) def handle_role_associations( app, role, repository, **kwd ): sa_session = app.model.context.current message = kwd.get( 'message', '' ) status = kwd.get( 'status', 'done' ) repository_owner = repository.user if kwd.get( 'manage_role_associations_button', False ): in_users_list = util.listify( kwd.get( 'in_users', [] ) ) in_users = [ sa_session.query( app.model.User ).get( x ) for x in in_users_list ] # Make sure the repository owner is always associated with the repostory's admin role. owner_associated = False for user in in_users: if user.id == repository_owner.id: owner_associated = True break if not owner_associated: in_users.append( repository_owner ) message += "The repository owner must always be associated with the repository's administrator role. " status = 'error' in_groups_list = util.listify( kwd.get( 'in_groups', [] ) ) in_groups = [ sa_session.query( app.model.Group ).get( x ) for x in in_groups_list ] in_repositories = [ repository ] app.security_agent.set_entity_role_associations( roles=[ role ], users=in_users, groups=in_groups, repositories=in_repositories ) sa_session.refresh( role ) message += "Role <b>%s</b> has been associated with %d users, %d groups and %d repositories. " % \ ( str( role.name ), len( in_users ), len( in_groups ), len( in_repositories ) ) in_users = [] out_users = [] in_groups = [] out_groups = [] for user in sa_session.query( app.model.User ) \ .filter( app.model.User.table.c.deleted==False ) \ .order_by( app.model.User.table.c.email ): if user in [ x.user for x in role.users ]: in_users.append( ( user.id, user.email ) ) else: out_users.append( ( user.id, user.email ) ) for group in sa_session.query( app.model.Group ) \ .filter( app.model.Group.table.c.deleted==False ) \ .order_by( app.model.Group.table.c.name ): if group in [ x.group for x in role.groups ]: in_groups.append( ( group.id, group.name ) ) else: out_groups.append( ( group.id, group.name ) ) associations_dict = dict( in_users=in_users, out_users=out_users, in_groups=in_groups, out_groups=out_groups, message=message, status=status ) return associations_dict def validate_repository_name( app, name, user ): # Repository names must be unique for each user, must be at least four characters # in length and must contain only lower-case letters, numbers, and the '_' character. if name in [ 'None', None, '' ]: return 'Enter the required repository name.' if name in [ 'repos' ]: return "The term <b>%s</b> is a reserved word in the tool shed, so it cannot be used as a repository name." % name check_existing = suc.get_repository_by_name_and_owner( app, name, user.username ) if check_existing is not None: if check_existing.deleted: return 'You have a deleted repository named <b>%s</b>, so choose a different name.' % name else: return "You already have a repository named <b>%s</b>, so choose a different name." % name if len( name ) < 4: return "Repository names must be at least 4 characters in length." if len( name ) > 80: return "Repository names cannot be more than 80 characters in length." if not( VALID_REPOSITORYNAME_RE.match( name ) ): return "Repository names must contain only lower-case letters, numbers and underscore <b>_</b>." return ''
the-stack_0_11073
import unittest import os import sys import os.path as path import numpy as np import scipy # Path to where the bindings live sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "src"))) if os.name == 'nt': # if Windows # handle default location where VS puts binary sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "build", "Debug"))) else: # normal / unix case sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "build"))) import potpourri3d as pp3d asset_path = os.path.abspath(os.path.dirname(__file__)) def generate_verts(n_pts=999): np.random.seed(777) return np.random.rand(n_pts, 3) def generate_faces(n_pts=999): # n_pts should be a multiple of 3 for indexing to work out np.random.seed(777) rand_faces = np.random.randint(0, n_pts, size=(2*n_pts,3)) coverage_faces = np.arange(n_pts).reshape(-1, 3) faces = np.vstack((rand_faces, coverage_faces)) return faces def is_symmetric(A, eps=1e-6): resid = A - A.T return np.all(np.abs(resid.data) < eps) def is_nonnegative(A, eps=1e-6): return np.all(A.data > -eps) class TestCore(unittest.TestCase): def test_write_read_mesh(self): for ext in ['obj']: V = generate_verts() F = generate_faces() fname = "test." + ext # write pp3d.write_mesh(V,F,fname) Vnew, Fnew = pp3d.read_mesh(fname) self.assertLess(np.amax(np.abs(V-Vnew)), 1e-6) self.assertTrue((F==Fnew).all()) def test_write_read_point_cloud(self): for ext in ['obj', 'ply']: V = generate_verts() fname = "test_cloud." + ext # write pp3d.write_point_cloud(V, fname) Vnew = pp3d.read_point_cloud(fname) self.assertLess(np.amax(np.abs(V-Vnew)), 1e-6) # self.assertTrue(is_nonnegative(off_L)) # positive edge weights # self.assertGreater(L.sum(), -1e-5) # self.assertEqual(M.sum(), M.diagonal().sum()) def test_mesh_heat_distance(self): V = generate_verts() F = generate_faces() # Test stateful version solver = pp3d.MeshHeatMethodDistanceSolver(V,F) dist = solver.compute_distance(7) self.assertEqual(dist.shape[0], V.shape[0]) dist = solver.compute_distance_multisource([1,2,3]) self.assertEqual(dist.shape[0], V.shape[0]) # = Test one-off versions dist = pp3d.compute_distance(V,F,7) self.assertEqual(dist.shape[0], V.shape[0]) dist = pp3d.compute_distance_multisource(V,F,[1,3,4]) self.assertEqual(dist.shape[0], V.shape[0]) def test_mesh_vector_heat(self): V, F = pp3d.read_mesh(os.path.join(asset_path, "bunny_small.ply")) solver = pp3d.MeshVectorHeatSolver(V,F) # Scalar extension ext = solver.extend_scalar([1, 22], [0., 6.]) self.assertEqual(ext.shape[0], V.shape[0]) self.assertGreaterEqual(np.amin(ext), 0.) # Get frames basisX, basisY, basisN = solver.get_tangent_frames() self.assertEqual(basisX.shape[0], V.shape[0]) self.assertEqual(basisY.shape[0], V.shape[0]) self.assertEqual(basisN.shape[0], V.shape[0]) # TODO could check orthogonal # Vector heat (transport vector) ext = solver.transport_tangent_vector(1, [6., 6.]) self.assertEqual(ext.shape[0], V.shape[0]) self.assertEqual(ext.shape[1], 2) ext = solver.transport_tangent_vectors([1, 22], [[6., 6.], [3., 4.]]) self.assertEqual(ext.shape[0], V.shape[0]) self.assertEqual(ext.shape[1], 2) # Vector heat (log map) logmap = solver.compute_log_map(1) self.assertEqual(logmap.shape[0], V.shape[0]) self.assertEqual(logmap.shape[1], 2) def test_mesh_cotan_laplace(self): V, F = pp3d.read_mesh(os.path.join(asset_path, "bunny_small.ply")) L = pp3d.cotan_laplacian(V,F) self.assertEqual(L.shape[0],V.shape[0]) self.assertEqual(L.shape[1],V.shape[0]) self.assertLess(np.abs(np.sum(L)), 1e-6) def test_mesh_areas(self): V, F = pp3d.read_mesh(os.path.join(asset_path, "bunny_small.ply")) face_area = pp3d.face_areas(V,F) self.assertEqual(face_area.shape[0],F.shape[0]) self.assertTrue(np.all(face_area >= 0)) vert_area = pp3d.vertex_areas(V,F) self.assertLess(np.abs(np.sum(face_area) - np.sum(vert_area)), 1e-6) def test_mesh_flip_geodesic(self): V, F = pp3d.read_mesh(os.path.join(asset_path, "bunny_small.ply")) # Test stateful version path_solver = pp3d.EdgeFlipGeodesicSolver(V,F) # Do a first path path_pts = path_solver.find_geodesic_path(v_start=14, v_end=22) self.assertEqual(len(path_pts.shape), 2) self.assertEqual(path_pts.shape[1], 3) # Do some more for i in range(5): path_pts = path_solver.find_geodesic_path(v_start=14, v_end=22+i) self.assertEqual(len(path_pts.shape), 2) self.assertEqual(path_pts.shape[1], 3) # Initialize with a compound path path_pts = path_solver.find_geodesic_path_poly([1173, 148, 870, 898]) self.assertEqual(len(path_pts.shape), 2) self.assertEqual(path_pts.shape[1], 3) # Do a loop loop_pts = path_solver.find_geodesic_loop([1173, 148, 870, 898]) self.assertEqual(len(loop_pts.shape), 2) self.assertEqual(loop_pts.shape[1], 3) # Do another loop # this one contracts to a point loop_pts = path_solver.find_geodesic_loop([307, 757, 190]) self.assertEqual(len(loop_pts.shape), 2) self.assertEqual(loop_pts.shape[1], 3) def test_point_cloud_distance(self): P = generate_verts() solver = pp3d.PointCloudHeatSolver(P) dist = solver.compute_distance(7) self.assertEqual(dist.shape[0], P.shape[0]) dist = solver.compute_distance_multisource([1,2,3]) self.assertEqual(dist.shape[0], P.shape[0]) def test_point_cloud_vector_heat(self): P = generate_verts() solver = pp3d.PointCloudHeatSolver(P) # Scalar extension ext = solver.extend_scalar([1, 22], [0., 6.]) self.assertEqual(ext.shape[0], P.shape[0]) self.assertGreaterEqual(np.amin(ext), 0.) # Get frames basisX, basisY, basisN = solver.get_tangent_frames() self.assertEqual(basisX.shape[0], P.shape[0]) self.assertEqual(basisY.shape[0], P.shape[0]) self.assertEqual(basisN.shape[0], P.shape[0]) # TODO could check orthogonal # Vector heat (transport vector) ext = solver.transport_tangent_vector(1, [6., 6.]) self.assertEqual(ext.shape[0], P.shape[0]) self.assertEqual(ext.shape[1], 2) ext = solver.transport_tangent_vectors([1, 22], [[6., 6.], [3., 4.]]) self.assertEqual(ext.shape[0], P.shape[0]) self.assertEqual(ext.shape[1], 2) # Vector heat (log map) logmap = solver.compute_log_map(1) self.assertEqual(logmap.shape[0], P.shape[0]) self.assertEqual(logmap.shape[1], 2) if __name__ == '__main__': unittest.main()
the-stack_0_11074
#!/usr/bin/env python3 import io import os import requests # Imports the Google Cloud client library from google.cloud import speech from google.cloud.speech import enums from google.cloud.speech import types # Gazebo # prefix = "http://10.16.103.133:8080/" prefix = "http://10.16.104.100:8080/" # prefix = "http://turtle1.athenian.org:8080/" def move_robot(direction): try: return requests.get(prefix + direction) except BaseException as e: print(e) def main(): # Instantiates a client client = speech.SpeechClient() while (True): input("Hit return to give command") # os.system("say 'speak'") os.system("rec --rate 16k --channels=1 test.flac trim 0 1.5") # The name of the audio file to transcribe file_name = os.path.join(os.path.dirname(__file__) + '/test.flac') # Loads the audio into memory with io.open(file_name, 'rb') as audio_file: content = audio_file.read() audio = types.RecognitionAudio(content=content) config = types.RecognitionConfig( encoding=enums.RecognitionConfig.AudioEncoding.FLAC, sample_rate_hertz=16000, language_code='en-US') # Detects speech in the audio file response = client.recognize(config, audio) for result in response.results: translation = result.alternatives[0].transcript print('Transcript: {}'.format(translation)) print('Confidence: {}'.format(result.alternatives[0].confidence)) if ("left" in translation): print("Send left command") resp = move_robot('left') elif ("right" in translation): print("Send right command") resp = move_robot('right') elif ("forward" in translation): print("Send forward command") resp = move_robot('forward') elif ("back" in translation): print("Send backward command") resp = move_robot('backward') elif ("stop" in translation): print("Send stop command") resp = move_robot('stop') if __name__ == "__main__": main()
the-stack_0_11075
# -*- coding: utf-8 -*- """ Created on Mon Dec 21 21:38:29 2020 @author: oxenb """ import numpy as np import matplotlib.pyplot as plt import pandas as pd from mne_features.feature_extraction import FeatureExtractor from sklearn.pipeline import Pipeline from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import ShuffleSplit, cross_val_score from sklearn.multiclass import OneVsRestClassifier from sklearn.ensemble import GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.model_selection import (GridSearchCV, cross_val_score, StratifiedKFold) from mne import Epochs, pick_types, events_from_annotations import mne from mne.decoding import (SlidingEstimator, GeneralizingEstimator, Scaler, cross_val_multiscore, LinearModel, get_coef, Vectorizer, CSP) DATA_PATH = "data/" EXP_NAME = DATA_PATH+"Or_3_raw.fif" ## file name to run the anaylsis on features = ['app_entropy', 'decorr_time', 'higuchi_fd', 'hjorth_complexity', 'hjorth_complexity_spect', 'hjorth_mobility', 'hjorth_mobility_spect', 'hurst_exp', 'katz_fd', 'kurtosis', 'line_length', 'mean', 'ptp_amp', 'samp_entropy', 'skewness', 'spect_edge_freq', 'spect_entropy', 'spect_slope', 'std', 'svd_entropy', 'svd_fisher_info', 'teager_kaiser_energy', 'variance', 'wavelet_coef_energy', 'zero_crossings', 'max_cross_corr', 'nonlin_interdep', 'phase_lock_val', 'spect_corr', 'time_corr'] selected_features = ["std","mean","kurtosis","skewness"] # can be cgahnged to any feature def preprocess(): tmin, tmax = -1., 0.8 #: need to check the best raw = mne.io.read_raw_fif(EXP_NAME, preload=True) raw.filter(5., 40., fir_design='firwin', skip_by_annotation='edge') events = mne.find_events(raw, 'STI') picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') event_id = {'Left': 1, 'right': 2,'none': 3} epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=None, preload=True) epochs.pick_types(eeg=True, exclude='bads') # remove stim and EOG return epochs,raw def train_mne_feature(data,labels,raw): pipe = Pipeline([('fe', FeatureExtractor(sfreq = raw.info['sfreq'], selected_funcs = selected_features)), ('scaler', StandardScaler()), ('clf', GradientBoostingClassifier())]) y = labels # params_grid = {'fe__app_entropy__emb': np.arange(2, 5)} #: can addd gradinet boost hyperparametrs params_grid = {} #: can addd gradinet boost hyperparametrs gs = GridSearchCV(estimator=pipe, param_grid=params_grid, cv=StratifiedKFold(n_splits=5, random_state=42), n_jobs=1, return_train_score=True) gs.fit(data, y) scores = pd.DataFrame(gs.cv_results_) print(scores[['params', 'mean_test_score', 'mean_train_score']]) # Best parameters obtained with GridSearchCV: print(gs.best_params_) #: run the best model maybe need to create test seprate dataset # gs_best = gs.best_estimator_ # new_scores = cross_val_score(gs_best, data, y, cv=skf) # print('Cross-validation accuracy score (with optimized parameters) = %1.3f ' # '(+/- %1.5f)' % (np.mean(new_scores), np.std(new_scores))) return pipe def main(): epochs,raw = preprocess() labels = epochs.events[:, -1] # get MEG and EEG data epochs_data_train = epochs.get_data() pipe = train_mne_feature(epochs_data_train,labels,raw) transformed_data = pipe["fe"].fit_transform(epochs_data_train) #: transformed_data is matrix dim by the featuhers X events return pipe,epochs_data_train if __name__ == '__main__': pipe,epochs_data_train = main() ''' ['app_entropy', 'decorr_time', 'energy_freq_bands', 'higuchi_fd', 'hjorth_complexity', 'hjorth_complexity_spect', 'hjorth_mobility' 'hjorth_mobility_spect', 'hurst_exp', 'katz_fd', 'kurtosis', 'line_length', 'mean', 'pow_freq_bands', 'ptp_amp', 'samp_entropy', 'skewness', 'spect_edge_freq', 'spect_entropy', 'spect_slope', 'std', 'svd_entropy', 'svd_fisher_info', 'teager_kaiser_energy', 'variance', 'wavelet_coef_energy', 'zero_crossings', 'max_cross_corr', 'nonlin_interdep', 'phase_lock_val', 'spect_corr', 'time_corr'] '''
the-stack_0_11078
''' Uses [[https://github.com/fabianonline/telegram_backup#readme][telegram_backup]] database for messages data ''' from pathlib import Path from typing import Optional, Union, TypeVar from urllib.parse import unquote # TODO mm, make it easier to rememember to use... from ..common import PathIsh, Visit, get_logger, Loc, extract_urls, from_epoch, Results, echain # TODO potentially, belongs to my. package # TODO kython? T = TypeVar('T') def unwrap(res: Union[T, Exception]) -> T: if isinstance(res, Exception): raise res else: return res # TODO move to common? def dataset_readonly(db: Path): import dataset # type: ignore # see https://github.com/pudo/dataset/issues/136#issuecomment-128693122 import sqlite3 creator = lambda: sqlite3.connect(f'file:{db}?immutable=1', uri=True) return dataset.connect('sqlite:///' , engine_kwargs={'creator': creator}) def index(database: PathIsh) -> Results: logger = get_logger() path = Path(database) assert path.is_file(), path # TODO context manager? db = dataset_readonly(path) # TODO could check is_file inside def make_query(text_query: str): return f""" WITH entities AS ( SELECT 'dialog' as type, id, coalesce(username, id) as handle, coalesce(first_name || " " || last_name, username, id) as display_name FROM users UNION SELECT 'group' as type, id, id as handle , coalesce(name, id) as display_name FROM chats ) SELECT src.display_name AS chatname , src.handle AS chat , snd.display_name AS sender , M.time AS time , {text_query} AS text , M.id AS mid FROM messages AS M /* chat types are 'dialog' (1-1), 'group' and 'supergroup' */ /* this is abit hacky way to handle all groups in one go */ LEFT JOIN entities AS src ON M.source_id = src.id AND src.type = (CASE M.source_type WHEN 'supergroup' THEN 'group' ELSE M.source_type END) LEFT JOIN entities AS snd ON M.sender_id = snd.id AND snd.type = 'dialog' WHERE M.message_type NOT IN ('service_message', 'empty_message') /* used to do this, but doesn't really give much of a speedup */ /* AND (M.has_media == 1 OR (text LIKE '%http%')) */ ORDER BY time; """.strip() # TODO yield error if chatname or chat or smth else is null? for row in db.query(make_query('M.text')): try: yield from _handle_row(row) except Exception as ex: yield echain(RuntimeError(f'While handling {row}'), ex) # , None, sys.exc_info()[2] # TODO hmm. traceback isn't preserved; wonder if that's because it's too heavy to attach to every single exception object.. # old (also 'stable') version doesn't have 'json' column yet... if 'json' in db['messages'].columns: for row in db.query(make_query("json_extract(json, '$.media.webpage.description')")): try: yield from _handle_row(row) except Exception as ex: yield echain(RuntimeError(f'While handling {row}'), ex) def _handle_row(row) -> Results: text = row['text'] if text is None: return urls = extract_urls(text) if len(urls) == 0: return dt = from_epoch(row['time']) mid: str = unwrap(row['mid']) # TODO perhaps we could be defensive with null sender/chat etc and still emit the Visit sender: str = unwrap(row['sender']) chatname: str = unwrap(row['chatname']) chat: str = unwrap(row['chat']) in_context = f'https://t.me/{chat}/{mid}' for u in urls: # https://www.reddit.com/r/Telegram/comments/6ufwi3/link_to_a_specific_message_in_a_channel_possible/ # hmm, only seems to work on mobile app, but better than nothing... yield Visit( url=unquote(u), dt=dt, context=f"{sender}: {text}", locator=Loc.make( title=f"chat with {chatname}", href=in_context, ), )
the-stack_0_11079
""" Policy rules class """ from typing import Union, List, Dict from marshmallow import Schema, fields, post_load from .conditions.attribute.base import validate_path from .conditions.schema import ConditionSchema from ..context import EvaluationContext class Rules(object): """ Policy rules """ def __init__( self, subject: Union[List, Dict], resource: Union[List, Dict], action: Union[List, Dict], context: Union[List, Dict] ): self.subject = subject self.resource = resource self.action = action self.context = context def is_satisfied(self, ctx: EvaluationContext): """ Check if request satisfies all conditions :param ctx: policy evaluation context :return: True if satisfied else False """ return self._is_satisfied("subject", self.subject, ctx) and \ self._is_satisfied("resource", self.resource, ctx) and \ self._is_satisfied("action", self.action, ctx) and \ self._is_satisfied("context", self.context, ctx) def _is_satisfied(self, ace_name: str, ace_conditions, ctx: EvaluationContext): """ Check if the access control element satisfies request :param ace_name: access control element name :param ace_conditions: access control element conditions :param ctx: policy evaluation context :return: True if satisfied else False """ if isinstance(ace_conditions, list): return self._implicit_or(ace_name, ace_conditions, ctx) if isinstance(ace_conditions, dict): return self._implicit_and(ace_name, ace_conditions, ctx) # If ace is not in correct format, return False. This condition is just for best # practice and will never happen return False # pragma: no cover def _implicit_or(self, ace_name: str, ace_conditions: list, ctx: EvaluationContext): for _ace_conditions in ace_conditions: # If even one of the conditions is satisfied, return True if self._implicit_and(ace_name, _ace_conditions, ctx): return True # If no conditions are satisfied, return False return False @staticmethod def _implicit_and(ace_name: str, ace_conditions: dict, ctx: EvaluationContext): for attribute_path, condition in ace_conditions.items(): ctx.ace = ace_name ctx.attribute_path = attribute_path # If even one of the conditions is not satisfied, return False if not condition.is_satisfied(ctx): return False # If all conditions are satisfied, return True return True class RuleField(fields.Field): """ Marshmallow field class for rules """ _implicit_and_field = fields.Dict( keys=fields.String(validate=validate_path), values=fields.Nested(ConditionSchema) ) _implicit_or_field = fields.List( fields.Dict( keys=fields.String(validate=validate_path), values=fields.Nested(ConditionSchema) ) ) def _serialize(self, value, attr, obj, **kwargs): if isinstance(value, list): return self._implicit_or_field._serialize(value, attr, obj, **kwargs) # pylint: disable=protected-access return self._implicit_and_field._serialize(value, attr, obj, **kwargs) # pylint: disable=protected-access def _deserialize(self, value, attr, data, **kwargs): if isinstance(value, list): return self._implicit_or_field.deserialize(value, attr, data, **kwargs) # pylint: disable=protected-access return self._implicit_and_field.deserialize(value, attr, data, **kwargs) # pylint: disable=protected-access class RulesSchema(Schema): """ JSON schema for rules """ subject = RuleField(default={}, missing={}) resource = RuleField(default={}, missing={}) action = RuleField(default={}, missing={}) context = RuleField(default={}, missing={}) @post_load def post_load(self, data, **_): # pylint: disable=missing-docstring,no-self-use return Rules(**data)
the-stack_0_11080
"""coBib parser test class.""" import pytest from cobib.config import config from .. import get_resource class ParserTest: """The base class for coBib's parser test classes.""" EXAMPLE_BIBTEX_FILE = get_resource("example_entry.bib") """Path to the example BibTeX file.""" EXAMPLE_YAML_FILE = get_resource("example_entry.yaml") """Path to the example YAML file (matching the BibTeX file).""" EXAMPLE_ENTRY_DICT = { "ENTRYTYPE": "article", "author": "Yudong Cao and Jonathan Romero and Jonathan P. Olson and Matthias Degroote and " + "Peter D. Johnson and M{\\'a}ria Kieferov{\\'a} and Ian D. Kivlichan and Tim Menke and " + "Borja Peropadre and Nicolas P. D. Sawaya and Sukin Sim and Libor Veis and Al{\\'a}n " + "Aspuru-Guzik", "doi": "10.1021/acs.chemrev.8b00803", "journal": "Chemical Reviews", "month": "aug", "number": 19, "pages": "10856--10915", "publisher": "American Chemical Society ({ACS})", "title": "Quantum Chemistry in the Age of Quantum Computing", "url": ["https://doi.org/10.1021%2Facs.chemrev.8b00803"], "volume": 119, "year": 2019, } """The matching dictionary to the example files also included here.""" @pytest.fixture(autouse=True) def setup(self) -> None: # pylint: disable=no-self-use """Setup.""" config.defaults()
the-stack_0_11081
""" Module contains tools for collecting data from various remote sources """ import warnings import tempfile import datetime as dt import time from collections import defaultdict import numpy as np from pandas.compat import( StringIO, bytes_to_str, range, lmap, zip ) import pandas.compat as compat from pandas import Panel, DataFrame, Series, read_csv, concat, to_datetime, DatetimeIndex, DateOffset from pandas.core.common import is_list_like, PandasError from pandas.io.common import urlopen, ZipFile, urlencode from pandas.tseries.offsets import MonthEnd from pandas.util.testing import _network_error_classes from pandas.io.html import read_html warnings.warn("\n" "The pandas.io.data module is moved to a separate package " "(pandas-datareader) and will be removed from pandas in a " "future version.\nAfter installing the pandas-datareader package " "(https://github.com/pydata/pandas-datareader), you can change " "the import ``from pandas.io import data, wb`` to " "``from pandas_datareader import data, wb``.", FutureWarning) class SymbolWarning(UserWarning): pass class RemoteDataError(PandasError, IOError): pass def DataReader(name, data_source=None, start=None, end=None, retry_count=3, pause=0.001): """ Imports data from a number of online sources. Currently supports Yahoo! Finance, Google Finance, St. Louis FED (FRED) and Kenneth French's data library. Parameters ---------- name : str or list of strs the name of the dataset. Some data sources (yahoo, google, fred) will accept a list of names. data_source: str the data source ("yahoo", "google", "fred", or "ff") start : {datetime, None} left boundary for range (defaults to 1/1/2010) end : {datetime, None} right boundary for range (defaults to today) Examples ---------- # Data from Yahoo! Finance gs = DataReader("GS", "yahoo") # Data from Google Finance aapl = DataReader("AAPL", "google") # Data from FRED vix = DataReader("VIXCLS", "fred") # Data from Fama/French ff = DataReader("F-F_Research_Data_Factors", "famafrench") ff = DataReader("F-F_Research_Data_Factors_weekly", "famafrench") ff = DataReader("6_Portfolios_2x3", "famafrench") ff = DataReader("F-F_ST_Reversal_Factor", "famafrench") """ start, end = _sanitize_dates(start, end) if data_source == "yahoo": return get_data_yahoo(symbols=name, start=start, end=end, adjust_price=False, chunksize=25, retry_count=retry_count, pause=pause) elif data_source == "google": return get_data_google(symbols=name, start=start, end=end, adjust_price=False, chunksize=25, retry_count=retry_count, pause=pause) elif data_source == "fred": return get_data_fred(name, start, end) elif data_source == "famafrench": return get_data_famafrench(name) def _sanitize_dates(start, end): from pandas.core.datetools import to_datetime start = to_datetime(start) end = to_datetime(end) if start is None: start = dt.datetime(2010, 1, 1) if end is None: end = dt.datetime.today() return start, end def _in_chunks(seq, size): """ Return sequence in 'chunks' of size defined by size """ return (seq[pos:pos + size] for pos in range(0, len(seq), size)) _yahoo_codes = {'symbol': 's', 'last': 'l1', 'change_pct': 'p2', 'PE': 'r', 'time': 't1', 'short_ratio': 's7'} _YAHOO_QUOTE_URL = 'http://finance.yahoo.com/d/quotes.csv?' def get_quote_yahoo(symbols): """ Get current yahoo quote Returns a DataFrame """ if isinstance(symbols, compat.string_types): sym_list = symbols else: sym_list = '+'.join(symbols) # for codes see: http://www.gummy-stuff.org/Yahoo-data.htm request = ''.join(compat.itervalues(_yahoo_codes)) # code request string header = list(_yahoo_codes.keys()) data = defaultdict(list) url_str = _YAHOO_QUOTE_URL + 's=%s&f=%s' % (sym_list, request) with urlopen(url_str) as url: lines = url.readlines() for line in lines: fields = line.decode('utf-8').strip().split(',') for i, field in enumerate(fields): if field[-2:] == '%"': v = float(field.strip('"%')) elif field[0] == '"': v = field.strip('"') else: try: v = float(field) except ValueError: v = field data[header[i]].append(v) idx = data.pop('symbol') return DataFrame(data, index=idx) def get_quote_google(symbols): raise NotImplementedError("Google Finance doesn't have this functionality") def _retry_read_url(url, retry_count, pause, name): for _ in range(retry_count): time.sleep(pause) # kludge to close the socket ASAP try: with urlopen(url) as resp: lines = resp.read() except _network_error_classes: pass else: rs = read_csv(StringIO(bytes_to_str(lines)), index_col=0, parse_dates=True, na_values='-')[::-1] # Yahoo! Finance sometimes does this awesome thing where they # return 2 rows for the most recent business day if len(rs) > 2 and rs.index[-1] == rs.index[-2]: # pragma: no cover rs = rs[:-1] #Get rid of unicode characters in index name. try: rs.index.name = rs.index.name.decode('unicode_escape').encode('ascii', 'ignore') except AttributeError: #Python 3 string has no decode method. rs.index.name = rs.index.name.encode('ascii', 'ignore').decode() return rs raise IOError("after %d tries, %s did not " "return a 200 for url %r" % (retry_count, name, url)) _HISTORICAL_YAHOO_URL = 'http://ichart.finance.yahoo.com/table.csv?' def _get_hist_yahoo(sym, start, end, interval, retry_count, pause): """ Get historical data for the given name from yahoo. Date format is datetime Returns a DataFrame. """ start, end = _sanitize_dates(start, end) url = (_HISTORICAL_YAHOO_URL + 's=%s' % sym + '&a=%s' % (start.month - 1) + '&b=%s' % start.day + '&c=%s' % start.year + '&d=%s' % (end.month - 1) + '&e=%s' % end.day + '&f=%s' % end.year + '&g=%s' % interval + '&ignore=.csv') return _retry_read_url(url, retry_count, pause, 'Yahoo!') _HISTORICAL_GOOGLE_URL = 'http://www.google.com/finance/historical?' def _get_hist_google(sym, start, end, interval, retry_count, pause): """ Get historical data for the given name from google. Date format is datetime Returns a DataFrame. """ start, end = _sanitize_dates(start, end) # www.google.com/finance/historical?q=GOOG&startdate=Jun+9%2C+2011&enddate=Jun+8%2C+2013&output=csv url = "%s%s" % (_HISTORICAL_GOOGLE_URL, urlencode({"q": sym, "startdate": start.strftime('%b %d, ' '%Y'), "enddate": end.strftime('%b %d, %Y'), "output": "csv"})) return _retry_read_url(url, retry_count, pause, 'Google') def _adjust_prices(hist_data, price_list=None): """ Return modifed DataFrame or Panel with adjusted prices based on 'Adj Close' price. Adds 'Adj_Ratio' column. """ if price_list is None: price_list = 'Open', 'High', 'Low', 'Close' adj_ratio = hist_data['Adj Close'] / hist_data['Close'] data = hist_data.copy() for item in price_list: data[item] = hist_data[item] * adj_ratio data['Adj_Ratio'] = adj_ratio del data['Adj Close'] return data def _calc_return_index(price_df): """ Return a returns index from a input price df or series. Initial value (typically NaN) is set to 1. """ df = price_df.pct_change().add(1).cumprod() mask = df.ix[1].notnull() & df.ix[0].isnull() df.ix[0][mask] = 1 # Check for first stock listings after starting date of index in ret_index # If True, find first_valid_index and set previous entry to 1. if (~mask).any(): for sym in mask.index[~mask]: tstamp = df[sym].first_valid_index() t_idx = df.index.get_loc(tstamp) - 1 df[sym].ix[t_idx] = 1 return df _YAHOO_COMPONENTS_URL = 'http://download.finance.yahoo.com/d/quotes.csv?' def get_components_yahoo(idx_sym): """ Returns DataFrame containing list of component information for index represented in idx_sym from yahoo. Includes component symbol (ticker), exchange, and name. Parameters ---------- idx_sym : str Stock index symbol Examples: '^DJI' (Dow Jones Industrial Average) '^NYA' (NYSE Composite) '^IXIC' (NASDAQ Composite) See: http://finance.yahoo.com/indices for other index symbols Returns ------- idx_df : DataFrame """ stats = 'snx' # URL of form: # http://download.finance.yahoo.com/d/quotes.csv?s=@%5EIXIC&f=snxl1d1t1c1ohgv url = _YAHOO_COMPONENTS_URL + 's={0}&f={1}&e=.csv&h={2}' idx_mod = idx_sym.replace('^', '@%5E') url_str = url.format(idx_mod, stats, 1) idx_df = DataFrame() mask = [True] comp_idx = 1 # LOOP across component index structure, # break when no new components are found while True in mask: url_str = url.format(idx_mod, stats, comp_idx) with urlopen(url_str) as resp: raw = resp.read() lines = raw.decode('utf-8').strip().strip('"').split('"\r\n"') lines = [line.strip().split('","') for line in lines] temp_df = DataFrame(lines, columns=['ticker', 'name', 'exchange']) temp_df = temp_df.drop_duplicates() temp_df = temp_df.set_index('ticker') mask = ~temp_df.index.isin(idx_df.index) comp_idx = comp_idx + 50 idx_df = idx_df.append(temp_df[mask]) return idx_df def _dl_mult_symbols(symbols, start, end, interval, chunksize, retry_count, pause, method): stocks = {} failed = [] passed = [] for sym_group in _in_chunks(symbols, chunksize): for sym in sym_group: try: stocks[sym] = method(sym, start, end, interval, retry_count, pause) passed.append(sym) except IOError: warnings.warn('Failed to read symbol: {0!r}, replacing with ' 'NaN.'.format(sym), SymbolWarning) failed.append(sym) if len(passed) == 0: raise RemoteDataError("No data fetched using " "{0!r}".format(method.__name__)) try: if len(stocks) > 0 and len(failed) > 0 and len(passed) > 0: df_na = stocks[passed[0]].copy() df_na[:] = np.nan for sym in failed: stocks[sym] = df_na return Panel(stocks).swapaxes('items', 'minor') except AttributeError: # cannot construct a panel with just 1D nans indicating no data raise RemoteDataError("No data fetched using " "{0!r}".format(method.__name__)) _source_functions = {'google': _get_hist_google, 'yahoo': _get_hist_yahoo} def _get_data_from(symbols, start, end, interval, retry_count, pause, adjust_price, ret_index, chunksize, source): src_fn = _source_functions[source] # If a single symbol, (e.g., 'GOOG') if isinstance(symbols, (compat.string_types, int)): hist_data = src_fn(symbols, start, end, interval, retry_count, pause) # Or multiple symbols, (e.g., ['GOOG', 'AAPL', 'MSFT']) elif isinstance(symbols, DataFrame): hist_data = _dl_mult_symbols(symbols.index, start, end, interval, chunksize, retry_count, pause, src_fn) else: hist_data = _dl_mult_symbols(symbols, start, end, interval, chunksize, retry_count, pause, src_fn) if source.lower() == 'yahoo': if ret_index: hist_data['Ret_Index'] = _calc_return_index(hist_data['Adj Close']) if adjust_price: hist_data = _adjust_prices(hist_data) return hist_data def get_data_yahoo(symbols=None, start=None, end=None, retry_count=3, pause=0.001, adjust_price=False, ret_index=False, chunksize=25, interval='d'): """ Returns DataFrame/Panel of historical stock prices from symbols, over date range, start to end. To avoid being penalized by Yahoo! Finance servers, pauses between downloading 'chunks' of symbols can be specified. Parameters ---------- symbols : string, array-like object (list, tuple, Series), or DataFrame Single stock symbol (ticker), array-like object of symbols or DataFrame with index containing stock symbols. start : string, (defaults to '1/1/2010') Starting date, timestamp. Parses many different kind of date representations (e.g., 'JAN-01-2010', '1/1/10', 'Jan, 1, 1980') end : string, (defaults to today) Ending date, timestamp. Same format as starting date. retry_count : int, default 3 Number of times to retry query request. pause : int, default 0 Time, in seconds, to pause between consecutive queries of chunks. If single value given for symbol, represents the pause between retries. adjust_price : bool, default False If True, adjusts all prices in hist_data ('Open', 'High', 'Low', 'Close') based on 'Adj Close' price. Adds 'Adj_Ratio' column and drops 'Adj Close'. ret_index : bool, default False If True, includes a simple return index 'Ret_Index' in hist_data. chunksize : int, default 25 Number of symbols to download consecutively before intiating pause. interval : string, default 'd' Time interval code, valid values are 'd' for daily, 'w' for weekly, 'm' for monthly and 'v' for dividend. Returns ------- hist_data : DataFrame (str) or Panel (array-like object, DataFrame) """ if interval not in ['d', 'w', 'm', 'v']: raise ValueError("Invalid interval: valid values are 'd', 'w', 'm' and 'v'") return _get_data_from(symbols, start, end, interval, retry_count, pause, adjust_price, ret_index, chunksize, 'yahoo') def get_data_google(symbols=None, start=None, end=None, retry_count=3, pause=0.001, adjust_price=False, ret_index=False, chunksize=25): """ Returns DataFrame/Panel of historical stock prices from symbols, over date range, start to end. To avoid being penalized by Google Finance servers, pauses between downloading 'chunks' of symbols can be specified. Parameters ---------- symbols : string, array-like object (list, tuple, Series), or DataFrame Single stock symbol (ticker), array-like object of symbols or DataFrame with index containing stock symbols. start : string, (defaults to '1/1/2010') Starting date, timestamp. Parses many different kind of date representations (e.g., 'JAN-01-2010', '1/1/10', 'Jan, 1, 1980') end : string, (defaults to today) Ending date, timestamp. Same format as starting date. retry_count : int, default 3 Number of times to retry query request. pause : int, default 0 Time, in seconds, to pause between consecutive queries of chunks. If single value given for symbol, represents the pause between retries. chunksize : int, default 25 Number of symbols to download consecutively before intiating pause. Returns ------- hist_data : DataFrame (str) or Panel (array-like object, DataFrame) """ return _get_data_from(symbols, start, end, None, retry_count, pause, adjust_price, ret_index, chunksize, 'google') _FRED_URL = "http://research.stlouisfed.org/fred2/series/" def get_data_fred(name, start=dt.datetime(2010, 1, 1), end=dt.datetime.today()): """ Get data for the given name from the St. Louis FED (FRED). Date format is datetime Returns a DataFrame. If multiple names are passed for "series" then the index of the DataFrame is the outer join of the indicies of each series. """ start, end = _sanitize_dates(start, end) if not is_list_like(name): names = [name] else: names = name urls = [_FRED_URL + '%s' % n + '/downloaddata/%s' % n + '.csv' for n in names] def fetch_data(url, name): with urlopen(url) as resp: data = read_csv(resp, index_col=0, parse_dates=True, header=None, skiprows=1, names=["DATE", name], na_values='.') try: return data.truncate(start, end) except KeyError: if data.ix[3].name[7:12] == 'Error': raise IOError("Failed to get the data. Check that {0!r} is " "a valid FRED series.".format(name)) raise df = concat([fetch_data(url, n) for url, n in zip(urls, names)], axis=1, join='outer') return df _FAMAFRENCH_URL = 'http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp' def get_data_famafrench(name): # path of zip files zip_file_path = '{0}/{1}_TXT.zip'.format(_FAMAFRENCH_URL, name) with urlopen(zip_file_path) as url: raw = url.read() with tempfile.TemporaryFile() as tmpf: tmpf.write(raw) with ZipFile(tmpf, 'r') as zf: data = zf.open(zf.namelist()[0]).readlines() line_lengths = np.array(lmap(len, data)) file_edges = np.where(line_lengths == 2)[0] datasets = {} edges = zip(file_edges + 1, file_edges[1:]) for i, (left_edge, right_edge) in enumerate(edges): dataset = [d.split() for d in data[left_edge:right_edge]] if len(dataset) > 10: ncol_raw = np.array(lmap(len, dataset)) ncol = np.median(ncol_raw) header_index = np.where(ncol_raw == ncol - 1)[0][-1] header = dataset[header_index] ds_header = dataset[header_index + 1:] # to ensure the header is unique header = ['{0} {1}'.format(j, hj) for j, hj in enumerate(header, start=1)] index = np.array([d[0] for d in ds_header], dtype=int) dataset = np.array([d[1:] for d in ds_header], dtype=float) datasets[i] = DataFrame(dataset, index, columns=header) return datasets # Items needed for options class CUR_MONTH = dt.datetime.now().month CUR_YEAR = dt.datetime.now().year CUR_DAY = dt.datetime.now().day def _two_char(s): return '{0:0>2}'.format(s) class Options(object): """ ***Experimental*** This class fetches call/put data for a given stock/expiry month. It is instantiated with a string representing the ticker symbol. The class has the following methods: get_options_data:(month, year, expiry) get_call_data:(month, year, expiry) get_put_data: (month, year, expiry) get_near_stock_price(opt_frame, above_below) get_all_data(call, put) get_forward_data(months, call, put) (deprecated) Examples -------- # Instantiate object with ticker >>> aapl = Options('aapl', 'yahoo') # Fetch next expiry call data >>> calls = aapl.get_call_data() # Can now access aapl.calls instance variable >>> aapl.calls # Fetch next expiry put data >>> puts = aapl.get_put_data() # Can now access aapl.puts instance variable >>> aapl.puts # cut down the call data to be 3 below and 3 above the stock price. >>> cut_calls = aapl.get_near_stock_price(call=True, above_below=3) # Fetch call and put data with expiry from now to 8 months out >>> forward_data = aapl.get_forward_data(8, call=True, put=True) # Fetch all call and put data >>> all_data = aapl.get_all_data() """ _TABLE_LOC = {'calls': 1, 'puts': 2} _OPTIONS_BASE_URL = 'http://finance.yahoo.com/q/op?s={sym}' _FINANCE_BASE_URL = 'http://finance.yahoo.com' def __init__(self, symbol, data_source=None): """ Instantiates options_data with a ticker saved as symbol """ self.symbol = symbol.upper() if data_source is None: warnings.warn("Options(symbol) is deprecated, use Options(symbol," " data_source) instead", FutureWarning, stacklevel=2) data_source = "yahoo" if data_source != "yahoo": raise NotImplementedError("currently only yahoo supported") def get_options_data(self, month=None, year=None, expiry=None): """ ***Experimental*** Gets call/put data for the stock with the expiration data in the given month and year Parameters ---------- month : number, int, optional(default=None) The month the options expire. This should be either 1 or 2 digits. year : number, int, optional(default=None) The year the options expire. This should be a 4 digit int. expiry : date-like or convertible or list-like object, optional (default=None) The date (or dates) when options expire (defaults to current month) Returns ------- pandas.DataFrame A DataFrame with requested options data. Index: Strike: Option strike, int Expiry: Option expiry, Timestamp Type: Call or Put, string Symbol: Option symbol as reported on Yahoo, string Columns: Last: Last option price, float Chg: Change from prior day, float Bid: Bid price, float Ask: Ask price, float Vol: Volume traded, int64 Open_Int: Open interest, int64 IsNonstandard: True if the the deliverable is not 100 shares, otherwise false Underlying: Ticker of the underlying security, string Underlying_Price: Price of the underlying security, float64 Quote_Time: Time of the quote, Timestamp Notes ----- Note: Format of returned data frame is dependent on Yahoo and may change. When called, this function will add instance variables named calls and puts. See the following example: >>> aapl = Options('aapl', 'yahoo') # Create object >>> aapl.calls # will give an AttributeError >>> aapl.get_options() # Get data and set ivars >>> aapl.calls # Doesn't throw AttributeError Also note that aapl.calls and appl.puts will always be the calls and puts for the next expiry. If the user calls this method with a different expiry, the ivar will be named callsYYMMDD or putsYYMMDD, where YY, MM and DD are, respectively, two digit representations of the year, month and day for the expiry of the options. """ return concat([f(month, year, expiry) for f in (self.get_put_data, self.get_call_data)]).sortlevel() def _get_option_frames_from_yahoo(self, expiry): url = self._yahoo_url_from_expiry(expiry) option_frames = self._option_frames_from_url(url) frame_name = '_frames' + self._expiry_to_string(expiry) setattr(self, frame_name, option_frames) return option_frames @staticmethod def _expiry_to_string(expiry): m1 = _two_char(expiry.month) d1 = _two_char(expiry.day) return str(expiry.year)[-2:] + m1 + d1 def _yahoo_url_from_expiry(self, expiry): try: expiry_links = self._expiry_links except AttributeError: _, expiry_links = self._get_expiry_dates_and_links() return self._FINANCE_BASE_URL + expiry_links[expiry] def _option_frames_from_url(self, url): frames = read_html(url) nframes = len(frames) frames_req = max(self._TABLE_LOC.values()) if nframes < frames_req: raise RemoteDataError("%s options tables found (%s expected)" % (nframes, frames_req)) if not hasattr(self, 'underlying_price'): try: self.underlying_price, self.quote_time = self._underlying_price_and_time_from_url(url) except IndexError: self.underlying_price, self.quote_time = np.nan, np.nan calls = frames[self._TABLE_LOC['calls']] puts = frames[self._TABLE_LOC['puts']] calls = self._process_data(calls, 'call') puts = self._process_data(puts, 'put') return {'calls': calls, 'puts': puts} def _underlying_price_and_time_from_url(self, url): root = self._parse_url(url) underlying_price = self._underlying_price_from_root(root) quote_time = self._quote_time_from_root(root) return underlying_price, quote_time @staticmethod def _underlying_price_from_root(root): underlying_price = root.xpath('.//*[@class="time_rtq_ticker Fz-30 Fw-b"]')[0]\ .getchildren()[0].text underlying_price = underlying_price.replace(',', '') #GH11 try: underlying_price = float(underlying_price) except ValueError: underlying_price = np.nan return underlying_price @staticmethod def _quote_time_from_root(root): #Gets the time of the quote, note this is actually the time of the underlying price. try: quote_time_text = root.xpath('.//*[@class="time_rtq Fz-m"]')[0].getchildren()[1].getchildren()[0].text ##TODO: Enable timezone matching when strptime can match EST with %Z quote_time_text = quote_time_text.split(' ')[0] quote_time = dt.datetime.strptime(quote_time_text, "%I:%M%p") quote_time = quote_time.replace(year=CUR_YEAR, month=CUR_MONTH, day=CUR_DAY) except ValueError: quote_time = np.nan return quote_time def _get_option_data(self, expiry, name): frame_name = '_frames' + self._expiry_to_string(expiry) try: frames = getattr(self, frame_name) except AttributeError: frames = self._get_option_frames_from_yahoo(expiry) option_data = frames[name] if expiry != self.expiry_dates[0]: name += self._expiry_to_string(expiry) setattr(self, name, option_data) return option_data def get_call_data(self, month=None, year=None, expiry=None): """ ***Experimental*** Gets call/put data for the stock with the expiration data in the given month and year Parameters ---------- month : number, int, optional(default=None) The month the options expire. This should be either 1 or 2 digits. year : number, int, optional(default=None) The year the options expire. This should be a 4 digit int. expiry : date-like or convertible or list-like object, optional (default=None) The date (or dates) when options expire (defaults to current month) Returns ------- call_data: pandas.DataFrame A DataFrame with requested options data. Index: Strike: Option strike, int Expiry: Option expiry, Timestamp Type: Call or Put, string Symbol: Option symbol as reported on Yahoo, string Columns: Last: Last option price, float Chg: Change from prior day, float Bid: Bid price, float Ask: Ask price, float Vol: Volume traded, int64 Open_Int: Open interest, int64 IsNonstandard: True if the the deliverable is not 100 shares, otherwise false Underlying: Ticker of the underlying security, string Underlying_Price: Price of the underlying security, float64 Quote_Time: Time of the quote, Timestamp Notes ----- Note: Format of returned data frame is dependent on Yahoo and may change. When called, this function will add instance variables named calls and puts. See the following example: >>> aapl = Options('aapl', 'yahoo') # Create object >>> aapl.calls # will give an AttributeError >>> aapl.get_call_data() # Get data and set ivars >>> aapl.calls # Doesn't throw AttributeError Also note that aapl.calls will always be the calls for the next expiry. If the user calls this method with a different month or year, the ivar will be named callsYYMMDD where YY, MM and DD are, respectively, two digit representations of the year, month and day for the expiry of the options. """ expiry = self._try_parse_dates(year, month, expiry) return self._get_data_in_date_range(expiry, call=True, put=False) def get_put_data(self, month=None, year=None, expiry=None): """ ***Experimental*** Gets put data for the stock with the expiration data in the given month and year Parameters ---------- month : number, int, optional(default=None) The month the options expire. This should be either 1 or 2 digits. year : number, int, optional(default=None) The year the options expire. This should be a 4 digit int. expiry : date-like or convertible or list-like object, optional (default=None) The date (or dates) when options expire (defaults to current month) Returns ------- put_data: pandas.DataFrame A DataFrame with requested options data. Index: Strike: Option strike, int Expiry: Option expiry, Timestamp Type: Call or Put, string Symbol: Option symbol as reported on Yahoo, string Columns: Last: Last option price, float Chg: Change from prior day, float Bid: Bid price, float Ask: Ask price, float Vol: Volume traded, int64 Open_Int: Open interest, int64 IsNonstandard: True if the the deliverable is not 100 shares, otherwise false Underlying: Ticker of the underlying security, string Underlying_Price: Price of the underlying security, float64 Quote_Time: Time of the quote, Timestamp Notes ----- Note: Format of returned data frame is dependent on Yahoo and may change. When called, this function will add instance variables named puts. See the following example: >>> aapl = Options('aapl') # Create object >>> aapl.puts # will give an AttributeError >>> aapl.get_put_data() # Get data and set ivars >>> aapl.puts # Doesn't throw AttributeError return self.__setattr__(self, str(str(x) + str(y))) Also note that aapl.puts will always be the puts for the next expiry. If the user calls this method with a different month or year, the ivar will be named putsYYMMDD where YY, MM and DD are, respectively, two digit representations of the year, month and day for the expiry of the options. """ expiry = self._try_parse_dates(year, month, expiry) return self._get_data_in_date_range(expiry, put=True, call=False) def get_near_stock_price(self, above_below=2, call=True, put=False, month=None, year=None, expiry=None): """ ***Experimental*** Returns a data frame of options that are near the current stock price. Parameters ---------- above_below : number, int, optional (default=2) The number of strike prices above and below the stock price that should be taken call : bool Tells the function whether or not it should be using calls put : bool Tells the function weather or not it should be using puts month : number, int, optional(default=None) The month the options expire. This should be either 1 or 2 digits. year : number, int, optional(default=None) The year the options expire. This should be a 4 digit int. expiry : date-like or convertible or list-like object, optional (default=None) The date (or dates) when options expire (defaults to current month) Returns ------- chopped: DataFrame The resultant DataFrame chopped down to be 2 * above_below + 1 rows desired. If there isn't data as far out as the user has asked for then Note: Format of returned data frame is dependent on Yahoo and may change. """ expiry = self._try_parse_dates(year, month, expiry) data = self._get_data_in_date_range(expiry, call=call, put=put) return self.chop_data(data, above_below, self.underlying_price) def chop_data(self, df, above_below=2, underlying_price=None): """Returns a data frame only options that are near the current stock price.""" if not underlying_price: try: underlying_price = self.underlying_price except AttributeError: underlying_price = np.nan max_strike = max(df.index.get_level_values('Strike')) min_strike = min(df.index.get_level_values('Strike')) if not np.isnan(underlying_price) and min_strike < underlying_price < max_strike: start_index = np.where(df.index.get_level_values('Strike') > underlying_price)[0][0] get_range = slice(start_index - above_below, start_index + above_below + 1) df = df[get_range].dropna(how='all') return df def _try_parse_dates(self, year, month, expiry): """ Validates dates provided by user. Ensures the user either provided both a month and a year or an expiry. Parameters ---------- year : int Calendar year month : int Calendar month expiry : date-like or convertible, (preferred) Expiry date Returns ------- list of expiry dates (datetime.date) """ #Checks if the user gave one of the month or the year but not both and did not provide an expiry: if (month is not None and year is None) or (month is None and year is not None) and expiry is None: msg = "You must specify either (`year` and `month`) or `expiry` " \ "or none of these options for the next expiry." raise ValueError(msg) if expiry is not None: if hasattr(expiry, '__iter__'): expiry = [self._validate_expiry(exp) for exp in expiry] else: expiry = [self._validate_expiry(expiry)] if len(expiry) == 0: raise ValueError('No expiries available for given input.') elif year is None and month is None: #No arguments passed, provide next expiry year = CUR_YEAR month = CUR_MONTH expiry = dt.date(year, month, 1) expiry = [self._validate_expiry(expiry)] else: #Year and month passed, provide all expiries in that month expiry = [expiry for expiry in self.expiry_dates if expiry.year == year and expiry.month == month] if len(expiry) == 0: raise ValueError('No expiries available in %s-%s' % (year, month)) return expiry def _validate_expiry(self, expiry): """Ensures that an expiry date has data available on Yahoo If the expiry date does not have options that expire on that day, return next expiry""" expiry_dates = self.expiry_dates expiry = to_datetime(expiry) if hasattr(expiry, 'date'): expiry = expiry.date() if expiry in expiry_dates: return expiry else: index = DatetimeIndex(expiry_dates).order() return index[index.date >= expiry][0].date() def get_forward_data(self, months, call=True, put=False, near=False, above_below=2): """ ***Experimental*** Gets either call, put, or both data for months starting in the current month and going out in the future a specified amount of time. Parameters ---------- months : number, int How many months to go out in the collection of the data. This is inclusive. call : bool, optional (default=True) Whether or not to collect data for call options put : bool, optional (default=False) Whether or not to collect data for put options. near : bool, optional (default=False) Whether this function should get only the data near the current stock price. Uses Options.get_near_stock_price above_below : number, int, optional (default=2) The number of strike prices above and below the stock price that should be taken if the near option is set to True Returns ------- pandas.DataFrame A DataFrame with requested options data. Index: Strike: Option strike, int Expiry: Option expiry, Timestamp Type: Call or Put, string Symbol: Option symbol as reported on Yahoo, string Columns: Last: Last option price, float Chg: Change from prior day, float Bid: Bid price, float Ask: Ask price, float Vol: Volume traded, int64 Open_Int: Open interest, int64 IsNonstandard: True if the the deliverable is not 100 shares, otherwise false Underlying: Ticker of the underlying security, string Underlying_Price: Price of the underlying security, float64 Quote_Time: Time of the quote, Timestamp Note: Format of returned data frame is dependent on Yahoo and may change. """ warnings.warn("get_forward_data() is deprecated", FutureWarning, stacklevel=2) end_date = dt.date.today() + MonthEnd(months) dates = (date for date in self.expiry_dates if date <= end_date.date()) data = self._get_data_in_date_range(dates, call=call, put=put) if near: data = self.chop_data(data, above_below=above_below) return data def get_all_data(self, call=True, put=True): """ ***Experimental*** Gets either call, put, or both data for all available months starting in the current month. Parameters ---------- call : bool, optional (default=True) Whether or not to collect data for call options put : bool, optional (default=True) Whether or not to collect data for put options. Returns ------- pandas.DataFrame A DataFrame with requested options data. Index: Strike: Option strike, int Expiry: Option expiry, Timestamp Type: Call or Put, string Symbol: Option symbol as reported on Yahoo, string Columns: Last: Last option price, float Chg: Change from prior day, float Bid: Bid price, float Ask: Ask price, float Vol: Volume traded, int64 Open_Int: Open interest, int64 IsNonstandard: True if the the deliverable is not 100 shares, otherwise false Underlying: Ticker of the underlying security, string Underlying_Price: Price of the underlying security, float64 Quote_Time: Time of the quote, Timestamp Note: Format of returned data frame is dependent on Yahoo and may change. """ try: expiry_dates = self.expiry_dates except AttributeError: expiry_dates, _ = self._get_expiry_dates_and_links() return self._get_data_in_date_range(dates=expiry_dates, call=call, put=put) def _get_data_in_date_range(self, dates, call=True, put=True): to_ret = Series({'calls': call, 'puts': put}) to_ret = to_ret[to_ret].index data = [] for name in to_ret: for expiry_date in dates: nam = name + self._expiry_to_string(expiry_date) try: # Try to access on the instance frame = getattr(self, nam) except AttributeError: frame = self._get_option_data(expiry=expiry_date, name=name) data.append(frame) return concat(data).sortlevel() @property def expiry_dates(self): """ Returns a list of available expiry dates """ try: expiry_dates = self._expiry_dates except AttributeError: expiry_dates, _ = self._get_expiry_dates_and_links() return expiry_dates def _get_expiry_dates_and_links(self): """ Gets available expiry dates. Returns ------- Tuple of: List of datetime.date objects Dict of datetime.date objects as keys and corresponding links """ url = self._OPTIONS_BASE_URL.format(sym=self.symbol) root = self._parse_url(url) try: links = root.xpath('//*[@id="options_menu"]/form/select/option') except IndexError: raise RemoteDataError('Expiry dates not available') expiry_dates = [dt.datetime.strptime(element.text, "%B %d, %Y").date() for element in links] links = [element.attrib['data-selectbox-link'] for element in links] if len(expiry_dates) == 0: raise RemoteDataError('Data not available') expiry_links = dict(zip(expiry_dates, links)) self._expiry_links = expiry_links self._expiry_dates = expiry_dates return expiry_dates, expiry_links def _parse_url(self, url): """ Downloads and parses a URL, returns xml root. """ try: from lxml.html import parse except ImportError: raise ImportError("Please install lxml if you want to use the " "{0!r} class".format(self.__class__.__name__)) try: doc = parse(url) except _network_error_classes: raise RemoteDataError("Unable to parse URL " "{0!r}".format(url)) else: root = doc.getroot() if root is None: raise RemoteDataError("Parsed URL {0!r} has no root" "element".format(url)) return root def _process_data(self, frame, type): """ Adds columns for Expiry, IsNonstandard (ie: deliverable is not 100 shares) and Tag (the tag indicating what is actually deliverable, None if standard). """ frame.columns = ['Strike', 'Symbol', 'Last', 'Bid', 'Ask', 'Chg', 'PctChg', 'Vol', 'Open_Int', 'IV'] frame["Rootexp"] = frame.Symbol.str[0:-9] frame["Root"] = frame.Rootexp.str[0:-6] frame["Expiry"] = to_datetime(frame.Rootexp.str[-6:]) #Removes dashes in equity ticker to map to option ticker. #Ex: BRK-B to BRKB140517C00100000 frame["IsNonstandard"] = frame['Root'] != self.symbol.replace('-', '') del frame["Rootexp"] frame["Underlying"] = self.symbol try: frame['Underlying_Price'] = self.underlying_price frame["Quote_Time"] = self.quote_time except AttributeError: frame['Underlying_Price'] = np.nan frame["Quote_Time"] = np.nan frame.rename(columns={'Open Int': 'Open_Int'}, inplace=True) frame['Type'] = type frame.set_index(['Strike', 'Expiry', 'Type', 'Symbol'], inplace=True) return frame
the-stack_0_11084
# -*- coding: utf-8 -*- # @createTime : 2019/10/22 20:59 # @author : Huanglg # @fileName: BOM.py # @email: [email protected] import time from mesService.lib.OracleLib.OracleDBUtil import Oracle def print_run_time(func): def wrapper(*args, **kw): local_time = time.time() func(*args, **kw) print('current Function [%s] run time is %.2f' % (func.__name__ ,time.time() - local_time)) return wrapper @print_run_time def test_oracle(): oracle = Oracle() product_sql = """select id productid, tt.medium productdesc from product p left join TEXT_TRANSLATION tt on p.textid = tt.textid and tt.LANGUAGEID = 2052""" products = oracle.query(product_sql) print(products) product_component_sql = """select PC.COMPONENTID,TT.MEDIUM,PC.PRODUCTID PRODUCTID,C.PRODUCTID CPRODUCTID from PRODUCT_COMPONENT PC left join COMPONENT C on C.ID = PC.COMPONENTID left join PRODUCT P on P.ID = C.PRODUCTID left join TEXT_TRANSLATION TT on TT.TEXTID = P.TEXTID and TT.LANGUAGEID = 2052 where PC.PRODUCTID={productid}""" for product in products: productid = product['productid'] sql = product_component_sql.format(productid=productid) product_component = oracle.query(sql) print(product_component) if __name__ == '__main__': test_oracle()
the-stack_0_11085
# coding=utf-8 from distutils.util import convert_path import os from fnmatch import fnmatchcase from setuptools import setup, find_packages from pip.req import parse_requirements import uuid import sys AUTHOR = 'Nekmo' EMAIL = '[email protected]' PLUGIN_NAME = 'userscommands' DESCRIPTION = '' WEBSITE = 'http://nekmo.com' DOWNLOAD_URL = '' STATUS_LEVEL = 1 # 1:Planning 2:Pre-Alpha 3:Alpha 4:Beta 5:Production/Stable 6:Mature 7:Inactive CLASSIFIERS = [ 'License :: OSI Approved :: MIT License', # 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)', # 'License :: OSI Approved :: BSD License', ] ROOT_INCLUDE = ['requirements.txt', 'VERSION', 'LICENSE.txt'] SETUP_REQUIRES = ['pip'] ############################################################################## # find_package_data is an Ian Bicking creation. # Provided as an attribute, so you can append to these instead # of replicating them: standard_exclude = ('*.py', '*.pyc', '*~', '.*', '*.bak', '*.swp*') standard_exclude_directories = ('.*', 'CVS', '_darcs', './build', './dist', 'EGG-INFO', '*.egg-info') def find_package_data(where='.', package='', exclude=standard_exclude, exclude_directories=standard_exclude_directories, only_in_packages=True, show_ignored=False): """ Return a dictionary suitable for use in ``package_data`` in a distutils ``setup.py`` file. The dictionary looks like:: {'package': [files]} Where ``files`` is a list of all the files in that package that don't match anything in ``exclude``. If ``only_in_packages`` is true, then top-level directories that are not packages won't be included (but directories under packages will). Directories matching any pattern in ``exclude_directories`` will be ignored; by default directories with leading ``.``, ``CVS``, and ``_darcs`` will be ignored. If ``show_ignored`` is true, then all the files that aren't included in package data are shown on stderr (for debugging purposes). Note patterns use wildcards, or can be exact paths (including leading ``./``), and all searching is case-insensitive. This function is by Ian Bicking. """ out = {} stack = [(convert_path(where), '', package, only_in_packages)] while stack: where, prefix, package, only_in_packages = stack.pop(0) for name in os.listdir(where): fn = os.path.join(where, name) if os.path.isdir(fn): bad_name = False for pattern in exclude_directories: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True if show_ignored: print >> sys.stderr, ( "Directory %s ignored by pattern %s" % (fn, pattern)) break if bad_name: continue if os.path.isfile(os.path.join(fn, '__init__.py')): if not package: new_package = name else: new_package = package + '.' + name stack.append((fn, '', new_package, False)) else: stack.append( (fn, prefix + name + '/', package, only_in_packages) ) elif package or not only_in_packages: # is a file bad_name = False for pattern in exclude: if (fnmatchcase(name, pattern) or fn.lower() == pattern.lower()): bad_name = True if show_ignored: print >> sys.stderr, ( "File %s ignored by pattern %s" % (fn, pattern)) break if bad_name: continue out.setdefault(package, []).append(prefix+name) return out ############################################################################## __dir__ = os.path.abspath(os.path.dirname(__file__)) def get_url(dep): if hasattr(dep, 'url'): return dep.url if dep.link is None: return return dep.link.url VERSION = open('VERSION').read().replace('\n', '') # Please, change VERSION file requirements = parse_requirements('requirements.txt', session=uuid.uuid1()) # Please, change requirements.txt file INSTALL_REQUIRES = [str(ir.req) for ir in requirements if not get_url(ir)] try: LONG_DESCRIPTION = open('README', 'rt').read() # Please, change README file except IOError: LONG_DESCRIPTION = '' if not DESCRIPTION: DESCRIPTION = '%s, a plugin for NekBot, a modular and multiprotocol bot written in Python.' % PLUGIN_NAME STATUS_NAME = ['Planning', 'Pre-Alpha', 'Alpha', 'Beta', 'Production/Stable', 'Mature', 'Inactive'][STATUS_LEVEL - 1] packages = find_packages(__dir__) # Prevent include symbolic links for package_name in tuple(packages): path = os.path.join(__dir__, package_name.replace('.', '/')) if not os.path.exists(path): continue if not os.path.islink(path): continue packages.remove(package_name) setup( name='nekbot.plugins.%s' % PLUGIN_NAME, namespace_packages=['nekbot.plugins'], version=VERSION, description=DESCRIPTION, long_description=LONG_DESCRIPTION, author=AUTHOR, author_email=EMAIL, url=WEBSITE, download_url=DOWNLOAD_URL, classifiers=CLASSIFIERS.extend([ 'Development Status :: %i - %s' % (STATUS_LEVEL, STATUS_NAME), 'Intended Audience :: Developers', 'Environment :: Console', 'Topic :: Communications :: Chat', 'Topic :: Communications :: Chat :: Internet Relay Chat', 'Topic :: Communications :: Conferencing', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', ]), platforms=['linux'], scripts=[ # 'scripts/myscript.sh' ], provides=['nekbot.plugins.%s' % PLUGIN_NAME], install_requires=INSTALL_REQUIRES, setup_requires=SETUP_REQUIRES, packages=['nekbot', 'nekbot.plugins', 'nekbot.plugins.%s' % PLUGIN_NAME], include_package_data=True, keywords=['nekbot', 'bot', PLUGIN_NAME, 'plugins', 'chat'], entry_points={ }, zip_safe=False, )
the-stack_0_11090
#Author: Thy H. Nguyen import turtle wn = turtle.Screen() wn.bgcolor("#E0FFFF") mom = turtle.Turtle() mom.color("#0000CD") mom.shape("circle") thy = int(input()) i=1 while i < thy: mom.right(10) mom.forward(100) mom.stamp() mom.backward(thy) mom.dot() i +=1 wn.exitonclick()
the-stack_0_11091
from __future__ import unicode_literals import re CHUNK_RANGE_RE = re.compile( r'^@@ -(?P<orig_start>\d+)(,(?P<orig_len>\d+))? ' r'\+(?P<new_start>\d+)(,(?P<new_len>\d+))? @@', re.M) def filter_interdiff_opcodes(opcodes, filediff_data, interfilediff_data): """Filters the opcodes for an interdiff to remove unnecessary lines. An interdiff may contain lines of code that have changed as the result of updates to the tree between the time that the first and second diff were created. This leads to some annoyances when reviewing. This function will filter the opcodes to remove as much of this as possible. It will only output non-"equal" opcodes if it falls into the ranges of lines dictated in the uploaded diff files. """ def _find_range_info(diff): lines = diff.splitlines() process_changes = False ranges = [] chunk_start = None chunk_len = 0 lines_of_context = 0 # Look through the chunks of the diff, trying to find the amount # of context shown at the beginning of each chunk. Though this # will usually be 3 lines, it may be fewer or more, depending # on file length and diff generation settings. for line in lines: if process_changes: if line.startswith((b'-', b'+')): # We've found the first change in the chunk. We now # know how many lines of context we have. # # We reduce the indexes by 1 because the chunk ranges # in diffs start at 1, and we want a 0-based index. start = chunk_start - 1 + lines_of_context ranges.append((start, start + chunk_len)) process_changes = False continue else: lines_of_context += 1 # This was not a change within a chunk, or we weren't processing, # so check to see if this is a chunk header instead. m = CHUNK_RANGE_RE.match(line) if m: # It is a chunk header. Reset the state for the next range, # and pull the line number and length from the header. chunk_start = int(m.group('new_start')) chunk_len = int(m.group('new_len') or '1') process_changes = True lines_of_context = 0 return ranges def _is_range_valid(line_range, tag, i1, i2): return (line_range is not None and i1 >= line_range[0] and (tag == 'delete' or i1 != i2)) orig_ranges = _find_range_info(filediff_data) new_ranges = _find_range_info(interfilediff_data) orig_range_i = 0 new_range_i = 0 if orig_ranges: orig_range = orig_ranges[orig_range_i] else: orig_range = None if new_ranges: new_range = new_ranges[new_range_i] else: new_range = None if not orig_range and not new_range: # There's nothing in here, or it's not a unified diff. Just yield # what we get. for tag, i1, i2, j1, j2 in opcodes: yield tag, i1, i2, j1, j2 return for tag, i1, i2, j1, j2 in opcodes: while orig_range and i1 > orig_range[1]: # We've left the range of the current chunk to consider in the # original diff. Move on to the next one. orig_range_i += 1 if orig_range_i < len(orig_ranges): orig_range = orig_ranges[orig_range_i] else: orig_range = None while new_range and j1 > new_range[1]: # We've left the range of the current chunk to consider in the # new diff. Move on to the next one. new_range_i += 1 if new_range_i < len(new_ranges): new_range = new_ranges[new_range_i] else: new_range = None # See if the chunk we're looking at is in the range of the chunk in # one of the uploaded diffs. If so, allow it through. orig_starts_valid = _is_range_valid(orig_range, tag, i1, i2) new_starts_valid = _is_range_valid(new_range, tag, j1, j2) valid_chunk = orig_starts_valid or new_starts_valid if valid_chunk: # This chunk is valid. It may only be a portion of the real # chunk, though. We'll need to split it up into a known valid # segment first, and yield that. if orig_range: cap_i2 = orig_range[1] + 1 else: cap_i2 = i2 if new_range: cap_j2 = new_range[1] + 1 else: cap_j2 = j2 if orig_starts_valid: valid_i2 = min(i2, cap_i2) else: valid_i2 = i2 if new_starts_valid: valid_j2 = min(j2, cap_j2) else: valid_j2 = j2 if tag in ('equal', 'replace'): # We need to take care to not let the replace lines have # differing ranges for the orig and modified files. We want the # replace to take up the full bounds of the two sides, but # capped to the valid chunk range. # # For this, we need to pick a consistent value for the length # of the range. We know at least one side will be within # bounds, since we have a valid chunk and at least one is # capped to be <= the end of the range. # # If one side is out of bounds of the range, the other range # will win. If both are in bounds, the largest wins. i_diff = valid_i2 - i1 j_diff = valid_j2 - j1 if valid_i2 > cap_i2: # Sanity-check that valid_j2 is in bounds. We don't need # to check this in the following conditionals, though, # since that's covered by the conditionals themselves. assert valid_j2 <= cap_j2 max_cap = j_diff elif valid_j2 > cap_j2: max_cap = i_diff else: max_cap = max(i_diff, j_diff) # Set each valid range to be the same length. valid_i2 = i1 + max_cap valid_j2 = j1 + max_cap # Update the caps, so that we'll process whatever we've # chopped off. cap_i2 = valid_i2 cap_j2 = valid_j2 yield tag, i1, valid_i2, j1, valid_j2 if valid_i2 == i2 and valid_j2 == j2: continue # There were more parts of this range remaining. We know they're # all invalid, so let's update i1 and j1 to point to the start # of those invalid ranges, and mark them. if orig_range is not None and i2 + 1 > cap_i2: i1 = cap_i2 if new_range is not None and j2 + 1 > cap_j2: j1 = cap_j2 valid_chunk = False if not valid_chunk: # Turn this into an "filtered-equal" chunk. The left-hand and # right-hand side of the diffs will look different, which may be # noticeable, but it will still help the user pay attention to # what's actually changed that they care about. # # These will get turned back into "equal" chunks in the # post-processing step. yield 'filtered-equal', i1, i2, j1, j2 def post_process_filtered_equals(opcodes): """Post-processes filtered-equal and equal chunks from interdiffs. Any filtered-out "filtered-equal" chunks will get turned back into "equal" chunks and merged into any prior equal chunks. Likewise, simple "equal" chunks will also get merged. "equal" chunks that have any indentation information will remain their own chunks, with nothing merged in. """ cur_chunk = None for tag, i1, i2, j1, j2, meta in opcodes: if ((tag == 'equal' and not meta.get('indentation_changes')) or tag == 'filtered-equal'): # We either have a plain equal chunk without any indentation # changes, or a filtered-equal chunk. In these cases, we can # safely merge the chunks together and transform them into # an "equal" chunk. if cur_chunk: i1 = cur_chunk[1] j1 = cur_chunk[3] meta = cur_chunk[5] cur_chunk = ('equal', i1, i2, j1, j2, meta) else: # This is some sort of changed chunk (insert, delete, replace, # or equal with indentation changes). Yield the previous chunk # we were working with, if any, and then yield the current chunk. if cur_chunk: yield cur_chunk cur_chunk = None yield tag, i1, i2, j1, j2, meta if cur_chunk: yield cur_chunk
the-stack_0_11092
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # author: bigfoolliu """ Pyro4客户端,此处调用远程对象 """ import Pyro4 def main(): uri = input("What is the Pyro uri of the greeting object?(help: 输入server启动时对应的uri) ").strip() name = input("What is your name? ").strip() print(f'uri:{uri}, name:{name}') server = Pyro4.Proxy(uri) # 获取server print(server.welcomeMessage(name)) if __name__ == '__main__': main()
the-stack_0_11093
import torch import torch.nn as nn import neat.activations as a from torch import autograd class FeedForwardNet(nn.Module): def __init__(self, genome, config): super(FeedForwardNet, self).__init__() self.genome = genome self.units = self.build_units() self.lin_modules = nn.ModuleList() self.config = config self.activation = a.Activations().get(config.ACTIVATION) for unit in self.units: self.lin_modules.append(unit.linear) def forward(self, x): outputs = dict() input_units = [u for u in self.units if u.ref_node.type == 'input'] output_units = [u for u in self.units if u.ref_node.type == 'output'] bias_units = [u for u in self.units if u.ref_node.type == 'bias'] stacked_units = self.genome.order_units(self.units) # Set input values for u in input_units: outputs[u.ref_node.id] = x[0][u.ref_node.id] # Set bias value for u in bias_units: outputs[u.ref_node.id] = torch.ones((1, 1)).to(device)[0][0] # Compute through directed topology while len(stacked_units) > 0: current_unit = stacked_units.pop() if current_unit.ref_node.type != 'input' and current_unit.ref_node.type != 'bias': # Build input vector to current node inputs_ids = self.genome.get_inputs_ids(current_unit.ref_node.id) in_vec = autograd.Variable(torch.zeros((1, len(inputs_ids)), device=device, requires_grad=True)) for i, input_id in enumerate(inputs_ids): in_vec[0][i] = outputs[input_id] # Compute output of current node linear_module = self.lin_modules[self.units.index(current_unit)] if linear_module is not None: # TODO: Can this be avoided? scaled = self.config.SCALE_ACTIVATION * linear_module(in_vec) out = self.activation(scaled) else: out = torch.zeros((1, 1)) # Add to outputs dictionary outputs[current_unit.ref_node.id] = out # Build output vector output = autograd.Variable(torch.zeros((1, len(output_units)), device=device, requires_grad=True)) for i, u in enumerate(output_units): output[0][i] = outputs[u.ref_node.id] return output def build_units(self): units = [] for n in self.genome.node_genes: in_genes = self.genome.get_connections_in(n.id) num_in = len(in_genes) weights = [g.weight for g in in_genes] new_unit = Unit(n, num_in) new_unit.set_weights(weights) units.append(new_unit) return units class Unit: def __init__(self, ref_node, num_in_features): self.ref_node = ref_node self.linear = self.build_linear(num_in_features) def set_weights(self, weights): if self.ref_node.type != 'input' and self.ref_node.type != 'bias': weights = torch.cat(weights).unsqueeze(0) for p in self.linear.parameters(): p.data = weights def build_linear(self, num_in_features): if self.ref_node.type == 'input' or self.ref_node.type == 'bias': return None return nn.Linear(num_in_features, 1, False) def __str__(self): return 'Reference Node: ' + str(self.ref_node) + '\n' # TODO: Multiple GPU support get from config device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
the-stack_0_11094
''' This script helps creating and managing experiments. Possible commands: - launch: launch an experiment loading its specification from a CSV file - view: list the experiments which are still running - stop: stop all the runners of the experiment ''' import pandas as pd import argparse, os, sys, re from multiprocessing import Pool from screenutils import Screen, list_screens from datetime import datetime class Screener(object): def command_sender(self, zipped_pair): screen, command = zipped_pair screen.send_commands(command) def run(self, commands, name='s'): n_screens = len(commands) screens = [Screen(name+'_%d' % (i+1), True) for i in range(n_screens)] p = Pool(n_screens) p.map(self.command_sender, zip(screens, commands)) parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--command', help='Command to execute.', type=str, default='launch', choices=['launch', 'view', 'stop']) # Experiment selection parser.add_argument('--name', help='Name of the experiment', type=str, default=None) parser.add_argument('--dir', help='Directory from which to load the experiment (to launch).', type=str, default=None) # Env parser.add_argument('--condaenv', help='Conda environment to activate.', type=str, default=None) parser.add_argument('--pythonv', help='Python version to use', type=str, default='python3') parser.add_argument('--pythonpath', help='Pythonpath to use for script.', type=str, default=None) parser.add_argument('--cuda_devices', help='CUDA visible devices.', type=str, default='') # Sacred parser.add_argument('--sacred', action='store_true', default=False, help='Enable sacred.') parser.add_argument('--sacred_dir', help='Dir used by sacred to log.', type=str, default=None) parser.add_argument('--sacred_slack', help='Config file for slack.', type=str, default=None) parser.add_argument('--dirty', action='store_true', default=False, help='Enable sacred dirty running.') args = parser.parse_args() if args.command == 'launch': assert args.name is not None, "Provide an experiment name." assert args.dir is not None, "Provide a directory to load the experiment." # Load experiment experiment_path = args.dir + '/' + args.name + '.csv' experiment = pd.read_csv(experiment_path) # Start build base command cmd_base = '' # Set env variables cmd_base += 'export CUDA_VISIBLE_DEVICES=' + args.cuda_devices + ' && ' cmd_base += 'export EXPERIMENT_NAME=' + args.name + ' && ' if args.sacred_dir and args.sacred: cmd_base += 'export SACRED_RUNS_DIRECTORY=' + args.sacred_dir + ' && ' if args.sacred_slack and args.sacred: cmd_base += 'export SACRED_SLACK_CONFIG=' + args.sacred_slack + ' && ' if args.pythonpath: cmd_base += "export PYTHONPATH='PYTHONPATH:" + args.pythonpath + "' && " if args.condaenv: cmd_base += 'source activate ' + args.condaenv + ' && ' # Parse the CSV param_cols = list(experiment) param_cols.remove('script') # Build the commands cmd_base += args.pythonv + ' ' cmds = [] for index, row in experiment.iterrows(): # Get the script, check if we need to use sacred (just append _sacred to script name) script = row['script'] if args.sacred: script += '_sacred' script = 'baselines/' + script + '.py ' _c = cmd_base + script # Check if dirty and if to use with if args.sacred and not args.dirty: _c += '-e ' if args.sacred and len(param_cols) > 0: _c += 'with ' # Add experiment_name to params if args.sacred: _c += 'experiment_name=' + args.name + ' ' else: _c += '--experiment_name=' + args.name + ' ' # Params for p in param_cols: if args.sacred: _c += str(p).strip() + '=' + str(row[p]).strip() + ' ' else: _c += '--' + str(p).strip() + '=' + str(row[p]).strip() + ' ' # Add the exit command to terminate the experiment _c += '&& exit' cmds.append(_c) scr = Screener() scr.run(cmds, name=args.name) elif args.command == 'view': from baselines.common.sacred_utils import load_runs, filter_runs from baselines.common import colorize assert args.name is not None, "Provide an experiment name." assert args.dir is not None, "Provide a directory for experiment." rule = re.compile(args.name + '_*') # Get all screens all_active_screens = 0 for s in list_screens(): if rule.match(s.name): all_active_screens += 1 # Load runs to get active ones runs = load_runs(args.dir) running_runs = filter_runs({'run.status': 'RUNNING'}, runs) print(colorize("==========================================", color='red')) max_eta, max_duration = None, None for key in running_runs.keys(): run = running_runs[key] print(colorize('Run:', color='blue'), "{0} ({1})".format(key, run['config']['env'])) print("\t" + colorize("Steps:", color='blue') + "{0}/{1}".format(len(run['metrics']['EpRewMean']['steps'])+1, run['config']['max_iters']) + "\t\t" + colorize("Reward:", color='blue') + "{0}".format(run['metrics']['EpRewMean']['values'][-1]) + "\t\t" + colorize("Seed:", color='blue') + "{0}".format(run['config']['seed']) + "\t\t" + colorize("Delta:", color='blue') + "{0}".format(run['config']['delta'])) completion = (len(run['metrics']['EpRewMean']['steps'])+1) / run['config']['max_iters'] start_time = datetime.strptime(run['run']['start_time'], '%Y-%m-%dT%H:%M:%S.%f') duration = datetime.utcnow() - start_time eta = duration * (1 - completion) / completion max_eta = max(eta, max_eta) if max_eta is not None else eta max_duration = max(duration, max_duration) if max_duration is not None else duration if len(running_runs.keys()) == 0: print(colorize("Done.", color='red')) else: t = max_eta.total_seconds() d = max_duration.total_seconds() print(colorize("==========================================", color='red')) print(colorize("Active screens: {0}".format(all_active_screens), color='red')) print(colorize("Active runs: {0}".format(len(running_runs.keys())), color='red')) print(colorize("Elapsed time: {0} hours, {1} minutes, {2} seconds".format(int(d // 3600), int((d%3600)//60), int(d%3600)%60), color='red')) print(colorize("ETA: {0} hours, {1} minutes, {2} seconds".format(int(t // 3600), int((t%3600)//60), int(t%3600)%60), color='red')) print(colorize("==========================================", color='red')) elif args.command == 'stop': assert args.name is not None, "Provide an experiment name." rule = re.compile(args.name + '_*') # Get all screens for s in list_screens(): if rule.match(s.name): print("Stopping", s.name) s.kill() else: raise Exception('Unrecognized command.')
the-stack_0_11095
#!/usr/bin/env python3 # FreeRTOS Common IO V0.1.2 # Copyright (C) 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # http://aws.amazon.com/freertos # http://www.FreeRTOS.org import serial from time import sleep import csv import os, sys import argparse import threading import socket import re scriptdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(scriptdir) if parentdir not in sys.path: print("Script Dir: %s" % scriptdir) print("Parent Dir: %s" % parentdir) sys.path.append(parentdir) from test_iot_test_template import test_template class TestI2cMasterAssisted(test_template): """ Test class for i2c master tests. """ def __init__(self, serial, ip, login, pwd, csv_handler): self._func_list = [self.test_IotI2CWriteSyncAssisted, self.test_IotI2CWriteAsyncAssisted, self.test_IotI2CReadSyncAssisted, self.test_IotI2CReadAsyncAssisted ] self._serial = serial self._ip = ip self._login = login self._pwd = pwd self._cr = csv_handler shell_script = "%s/test_iot_runonPI_i2c_master.sh" % scriptdir port = 50007 def i2c_write_test(self, cmd): """ Test body of write test. :param cmd: iot test cmd :return: """ t_shell = threading.Thread(target=self.run_shell_script, args=(" ".join([self.shell_script, self._ip, self._login, self._pwd, '-s']),)) t_shell.start() socket.setdefaulttimeout(10) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) time_out = 10 # Wait until connection with the process on rpi is established. while s.connect_ex((self._ip, self.port)) != 0 and time_out > 0: time_out -= 1 sleep(1) if time_out == 0: print("Socket connection cannot be established") s.close() return "Fail" self._serial.reset_input_buffer() self._serial.write('\r\n'.encode('utf-8')) self._serial.write(cmd.encode('utf-8')) self._serial.write('\r\n'.encode('utf-8')) res = self._serial.read_until(terminator=serial.to_bytes([ord(c) for c in 'Ignored '])).decode('utf-8') w_bytes = [] for x in re.sub(r'\r', '', res).split('\n'): if x.find('IGNORE') != -1: w_bytes = [s for s in x.split(',') if len(s) == 2] break # Retrieve bytes read by rpi. s.sendall(b's') try: r_bytes = s.recv(1024) except: print("No data received from rpi.\n", repr(res)) s.close() return 'Fail' r_bytes = ["{:02X}".format(b) for b in r_bytes] # End process on the rpi. s.sendall(b'E') t_shell.join() s.close() # Compare read and write bytes. if self.compare_host_dut_result(r_bytes, w_bytes) == -1: print(repr(res)) return "Fail" return 'Pass' def test_IotI2CWriteSyncAssisted(self): return self.i2c_write_test("iot_tests test 11 1") def test_IotI2CWriteAsyncAssisted(self): return self.i2c_write_test("iot_tests test 11 2") def i2c_read_test(self, cmd): """ Test body for read test. The i2c slave callback function in the rpi library is only called after i2c stop. The register address cannot be read by rpi before restart so the data to send can only be loaded to rpi fifo after stop. As a result, the first read from host is always the data loaded from last request or some random value if fifo is never loaded before. The solution with the current rpi library is to read rpi twice. Compare the second dut read data with the first rpi send data. :param cmd: iot test cmd :return: """ w_bytes, r_bytes = ([] for i in range(2)) t_shell = threading.Thread(target=self.run_shell_script, args=(" ".join([self.shell_script, self._ip, self._login, self._pwd, '-s']),)) t_shell.start() socket.setdefaulttimeout(10) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) time_out = 10 # Wait until connection with the process on rpi is established. while s.connect_ex((self._ip, self.port)) != 0 and time_out > 0: time_out -= 1 sleep(1) if time_out == 0: print("Socket connection cannot be established") s.close() return "Fail" for i in range(2): self._serial.reset_input_buffer() self._serial.write('\r\n'.encode('utf-8')) self._serial.write(cmd.encode('utf-8')) self._serial.write('\r\n'.encode('utf-8')) res = self._serial.read_until(terminator=serial.to_bytes([ord(c) for c in 'Ignored '])).decode('utf-8') for x in re.sub(r'\r', '', res).split('\n'): if x.find('IGNORE') != -1: r_bytes.append([s for s in x.split(',') if len(s) == 2]) break # Retrieve bytes sent by rpi s.sendall(b's') try: data = s.recv(1024) except: print("No data from pi") s.close() return 'Fail' w_bytes.append(["{:02X}".format(b) for b in data]) # Exit if failed to read bytes from DUT. if len(r_bytes) != i + 1: print("No data read by DUT.\n", repr(res)) break # End process on the rpi. s.sendall(b'E') t_shell.join() s.close() if len(r_bytes) != 2 or len(w_bytes) != 2: print("Write and read different number of bytes.\npi:", w_bytes, "\ndut:", r_bytes) return 'Fail' # Compare read and write bytes. if self.compare_host_dut_result(w_bytes[0], r_bytes[1]) == -1: print(repr(res)) return "Fail" return 'Pass' def test_IotI2CReadSyncAssisted(self): return self.i2c_read_test("iot_tests test 11 3") def test_IotI2CReadAsyncAssisted(self): return self.i2c_read_test("iot_tests test 11 4") # unit test if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-i', '--ip', nargs=1, default=[''], help='ip address of rpi') parser.add_argument('-l', '--login_name', nargs=1, default=[''], help='login name of rpi') parser.add_argument('-s', '--password', nargs=1, default=[''], help='password of rpi') parser.add_argument('-p', '--port', nargs=1, default=[''], help='serial port of connected platform') args = parser.parse_args() try: serial_port = serial.Serial(port=args.port[0], timeout=5) except Exception as e: print(e) exit() rpi_ip = args.ip[0] rpi_login = args.login_name[0] rpi_pwd = args.password[0] with open(scriptdir + 'test_result.csv', 'w', newline='') as csvfile: field_name = ['test name', 'test result'] writer = csv.DictWriter(csvfile, fieldnames=field_name) writer.writeheader() t_handler = TestI2cMasterAssisted(serial_port, rpi_ip, rpi_login, rpi_pwd, writer) t_handler.auto_run() serial_port.close()
the-stack_0_11100
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ AutoAnchor utils """ import random import numpy as np import torch import yaml from tqdm import tqdm from utils.general import LOGGER, colorstr, emojis PREFIX = colorstr('AutoAnchor: ') def check_anchor_order(m): # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer da = a[-1] - a[0] # delta a ds = m.stride[-1] - m.stride[0] # delta s if da and (da.sign() != ds.sign()): # same order LOGGER.info(f'{PREFIX}Reversing anchor order') m.anchors[:] = m.anchors.flip(0) def check_anchors(dataset, model, thr=4.0, imgsz=640): # Check anchor fit to data, recompute if necessary m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh def metric(k): # compute metric r = wh[:, None] / k[None] x = torch.min(r, 1 / r).min(2)[0] # ratio metric best = x.max(1)[0] # best_x aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold bpr = (best > 1 / thr).float().mean() # best possible recall return bpr, aat stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides anchors = m.anchors.clone() * stride # current anchors bpr, aat = metric(anchors.cpu().view(-1, 2)) s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). ' if bpr > 0.98: # threshold to recompute LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅')) else: LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')) na = m.anchors.numel() // 2 # number of anchors try: anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) except Exception as e: LOGGER.info(f'{PREFIX}ERROR: {e}') new_bpr = metric(anchors)[0] if new_bpr > bpr: # replace anchors anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) m.anchors[:] = anchors.clone().view_as(m.anchors) check_anchor_order(m) # must be in pixel-space (not grid-space) m.anchors /= stride s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)' else: s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)' LOGGER.info(emojis(s)) def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): """ Creates kmeans-evolved anchors from training dataset Arguments: dataset: path to data.yaml, or a loaded dataset n: number of anchors img_size: image size used for training thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 gen: generations to evolve anchors using genetic algorithm verbose: print all results Return: k: kmeans evolved anchors Usage: from utils.autoanchor import *; _ = kmean_anchors() """ from scipy.cluster.vq import kmeans npr = np.random thr = 1 / thr def metric(k, wh): # compute metrics r = wh[:, None] / k[None] x = torch.min(r, 1 / r).min(2)[0] # ratio metric # x = wh_iou(wh, torch.tensor(k)) # iou metric return x, x.max(1)[0] # x, best_x def anchor_fitness(k): # mutation fitness _, best = metric(torch.tensor(k, dtype=torch.float32), wh) return (best * (best > thr).float()).mean() # fitness def print_results(k, verbose=True): k = k[np.argsort(k.prod(1))] # sort small to large x, best = metric(k, wh0) bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \ f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \ f'past_thr={x[x > thr].mean():.3f}-mean: ' for x in k: s += '%i,%i, ' % (round(x[0]), round(x[1])) if verbose: LOGGER.info(s[:-2]) return k if isinstance(dataset, str): # *.yaml file with open(dataset, errors='ignore') as f: data_dict = yaml.safe_load(f) # model dict from utils.dataloaders import LoadImagesAndLabels dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) # Get label wh shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh # Filter i = (wh0 < 3.0).any(1).sum() if i: LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found: {i} of {len(wh0)} labels are < 3 pixels in size') wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 # Kmeans init try: LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...') assert n <= len(wh) # apply overdetermined constraint s = wh.std(0) # sigmas for whitening k = kmeans(wh / s, n, iter=30)[0] * s # points assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar except Exception: LOGGER.warning(f'{PREFIX}WARNING: switching strategies from kmeans to random init') k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0)) k = print_results(k, verbose=False) # Plot # k, d = [None] * 20, [None] * 20 # for i in tqdm(range(1, 21)): # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) # ax = ax.ravel() # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh # ax[0].hist(wh[wh[:, 0]<100, 0],400) # ax[1].hist(wh[wh[:, 1]<100, 1],400) # fig.savefig('wh.png', dpi=200) # Evolve f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma pbar = tqdm(range(gen), bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar for _ in pbar: v = np.ones(sh) while (v == 1).all(): # mutate until a change occurs (prevent duplicates) v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) kg = (k.copy() * v).clip(min=2.0) fg = anchor_fitness(kg) if fg > f: f, k = fg, kg.copy() pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' if verbose: print_results(k, verbose) return print_results(k)
the-stack_0_11101
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dnf from artifact_registry._vendor.google.auth import compute_engine, default from artifact_registry._vendor.google.auth.exceptions import DefaultCredentialsError, RefreshError from artifact_registry._vendor.google.auth.transport import requests from artifact_registry._vendor.google.oauth2 import service_account class ArtifactRegistry(dnf.Plugin): """DNF Plugin for authenticated access to Google Artifact Registry.""" name = 'artifact-registry' cloud_platform_scope = 'https://www.googleapis.com/auth/cloud-platform' def __init__(self, base, cli): super(ArtifactRegistry, self).__init__(base, cli) self.base = base self.credentials = self._get_creds() def config(self): for repo in self.base.repos.iter_enabled(): opts = dict(repo.cfg.items(repo.id)) if 'pkg.dev' in opts.get('baseurl', ''): self._add_headers(repo) def _get_creds(self): config = self.read_config(self.base.conf) if config.has_section('main'): if config.has_option('main', 'service_account_json'): service_account_json = config.get('main', 'service_account_json') return service_account.Credentials.from_service_account_file( service_account_json, scopes=[self.cloud_platform_scope]) if config.has_option('main', 'service_account_email'): service_account_email = config.get('main', 'service_account_email') return compute_engine.Credentials(service_account_email) try: creds, _ = default() except DefaultCredentialsError: return None return creds def _add_headers(self, repo): token = self._get_token() if token: headers = repo.get_http_headers() new_headers = ('Authorization: Bearer %s' % token,) + headers repo.set_http_headers(new_headers) def _get_token(self): if not self.credentials: return None if not self.credentials.valid: try: self.credentials.refresh(requests.Request()) except RefreshError: return None return self.credentials.token
the-stack_0_11102
import hashlib import json import pickle import uuid from imp import find_module from importlib import import_module from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from django.db import OperationalError from django.db.models import Manager, Model from larvik.logging import get_module_logger CONSUMERS = {} ISDISCOVER = False def setDiscover(mode): global ISDISCOVER ISDISCOVER = mode NODES = {} logger = get_module_logger(__file__) def createUniqeNodeName(channel=None): """This function generate 10 character long hash""" hash = hashlib.sha1() salt = channel if channel is not None else str(uuid.uuid4()) hash.update(salt.encode('utf-8')) return hash.hexdigest() class NodeType(object): inputs = [] outputs = [] name = None path = None settings = {} type = None def saveConsumers(CONSUMERLIST): pickle.dump(CONSUMERLIST, "consumers") class register_consumer(object): def __init__(self, channel, model: Model= None): """ If there are decorator arguments, the function to be decorated is not passed to the constructor! """ self.channel = channel self.model = model def getModelForPuts(self, puts): return json.dumps([input.lower() if isinstance(input,str) else input.__name__.lower() for input in puts]) if puts is not None else json.dumps([]) def __call__(self, cls: NodeType): self.name = cls.name if cls.name is not None else cls.channel self.path = cls.path if cls.path is not None else cls.name self.type = cls.type if cls.type is not None else "consumer" self.inputmodel = self.getModelForPuts(cls.inputs) self.outputmodel = self.getModelForPuts(cls.outputs) self.settings = json.dumps(cls.settings) if cls.settings is not None else json.dumps({}) """ If there are decorator arguments, __call__() is only called once, as part of the decoration process! You can only give it a single argument, which is the function object. """ if self.channel in NODES: raise Exception(f"The node {self.node} does already exist. Check for Duplicates") if self.channel in CONSUMERS: raise Exception(f"The node {self.node} does already exist. Check for Duplicates") if self.model is not None and ISDISCOVER: from flow.models import Node logger.info(f"{self.name} checking {self.model.__name__} - Checking") manager: Manager = self.model.objects try: try: object = manager.get(channel=self.channel) object.name = self.name object.channel = self.channel object.save() except ObjectDoesNotExist as e: logger.info(f"{self.name} did not yet exist on {self.model.__name__} - Creating") object = manager.create(name=self.name, channel=self.channel, settings=self.settings) try: node = Node.objects.get(hash=createUniqeNodeName(self.channel)) node.name = self.name node.path = self.path node.variety = self.type node.inputmodel = self.inputmodel node.outputmodel = self.outputmodel node.defaultsettings = self.settings node.channel = self.channel node.entityid = object.id node.save() except ObjectDoesNotExist as e: node = Node.objects.create(hash=createUniqeNodeName(self.channel), entityid=object.id, name=self.name, path=self.path, variety=self.type, channel=self.channel, inputmodel=self.inputmodel, outputmodel=self.outputmodel, defaultsettings=self.settings) logger.info(f"{self.name} did not yet exist on {self.channel} - Creating") # TODO: When everything was mirated consumers should be called here CONSUMERS[self.name] = cls except OperationalError as e: logger.error(f'Consumer cannot be installed, migrate first: {e}') CONSUMERS[self.channel] = cls NODES[self.channel] = cls return cls class register_node(object): def __init__(self, node): """ If there are decorator arguments, the function to be decorated is not passed to the constructor! """ self.node = node def getModelForPuts(self, puts): return json.dumps([input.lower() if isinstance(input,str) else input.__name__.lower() for input in puts]) if puts is not None else json.dumps([]) def __call__(self, cls: NodeType): from flow.models import Node """ If there are decorator arguments, __call__() is only called once, as part of the decoration process! You can only give it a single argument, which is the function object. """ if self.node in NODES: raise Exception(f"The node {self.node} does already exist. Check for Duplicates") if ISDISCOVER is False: NODES[self.node] = cls return cls try: try: node = Node.objects.get(hash=createUniqeNodeName(self.node)) node.name = cls.name node.path = cls.path node.variety = cls.type node.inputmodel = self.getModelForPuts(cls.inputs) node.outputmodel = self.getModelForPuts(cls.outputs) node.defaultsettings = json.dumps(cls.settings) node.channel = "None" node.entityid = None node.save() logger.info(f"Updating {cls.__name__} as {self.node} on {self.node}") except ObjectDoesNotExist as e: node = Node.objects.create(hash=createUniqeNodeName(self.node), entityid=None, name=cls.name, path=cls.path, variety=cls.type, channel="None", inputmodel=self.getModelForPuts(cls.inputs), outputmodel=self.getModelForPuts(cls.outputs), defaultsettings=json.dumps(cls.settings)) logger.info(f"Installing {cls.__name__} as {self.node} on {self.node}") # TODO: When everything was mirated consumers should be called here CONSUMERS[self.name] = cls except OperationalError as e: logger.error(f'Consumer cannot be installed, migrate first: {e}') NODES[self.node] = cls return cls def autodiscover(): for app in settings.INSTALLED_APPS: # For each app, we need to look for an consumers.py inside that app's # package. We can't use os.path here -- recall that modules may be # imported different ways (think zip files) -- so we need to get # the app's __path__ and look for admin.py on that path. # Step 1: find out the app's __path__ Import errors here will (and # should) bubble up, but a missing __path__ (which is legal, but weird) # fails silently -- apps that do weird things with __path__ might # need to roll their own admin registration. try: app_path = import_module(app).__path__ except AttributeError: continue # Step 2: use imp.find_module to find the app's consumers.py. For some # reason imp.find_module raises ImportError if the app can't be found # but doesn't actually try to import the module. So skip this app if # its admin.py doesn't exist try: find_module('consumers', app_path) except ImportError: continue # Step 3: import the app's admin file. If this has errors we want them # to bubble up. import_module("%s.consumers" % app) # autodiscover was successful, reset loading flag. for app in settings.INSTALLED_APPS: # For each app, we need to look for an consumers.py inside that app's # package. We can't use os.path here -- recall that modules may be # imported different ways (think zip files) -- so we need to get # the app's __path__ and look for admin.py on that path. # Step 1: find out the app's __path__ Import errors here will (and # should) bubble up, but a missing __path__ (which is legal, but weird) # fails silently -- apps that do weird things with __path__ might # need to roll their own admin registration. try: app_path = import_module(app).__path__ except AttributeError: continue # Step 2: use imp.find_module to find the app's consumers.py. For some # reason imp.find_module raises ImportError if the app can't be found # but doesn't actually try to import the module. So skip this app if # its admin.py doesn't exist try: find_module('nodes', app_path) except ImportError: continue # Step 3: import the app's admin file. If this has errors we want them # to bubble up. import_module("%s.nodes" % app) # autodiscover was successful, reset loading flag. return CONSUMERS
the-stack_0_11103
#!/usr/bin/env python3.6 """MISP feed worker pulling down feeds in misp_feeds.txt and adding data to the platform""" import argparse import hashlib import json import os import sys import traceback from logging import error, info from typing import Dict, Generator, Optional, Text import caep import requests import act import act.api.helpers from act.workers.libs import misp, worker try: import urlparse except ModuleNotFoundError: # Python3 import urllib.parse as urlparse # type: ignore def parseargs() -> argparse.ArgumentParser: """ Parse arguments """ parser = worker.parseargs('Get MISP feeds from MISP sharing directories') parser.add_argument('--manifest-dir', default=caep.get_cache_dir('misp_manifest'), help='The directory to store latest manifests') return parser def verify_manifest_dir(manifest_dir: Text) -> None: """Verify that the directory structure exists and that there is always a feed file (Even empty)""" # Manifest is at default location - create directory if it does not exists if manifest_dir == caep.get_cache_dir('misp_manifest'): caep.get_cache_dir('misp_manifest', create=True) # If there is specified a manifest directory in the .ini file we # verify that it exists (or fail hard). If no such directory # is defined, we default to using $XDG_CACHE_DIR and create a new # 'misp_maifest' directory there. if not os.path.isdir(manifest_dir): print("Could not open manifest directory:", manifest_dir) sys.exit(1) # Check that the misp_feeds.txt file actually exists. If not 'touch' # the file to make sure there is at least some default config present. feed_file = os.path.join(manifest_dir, 'misp_feeds.txt') if not os.path.isfile(feed_file): with open(feed_file, 'w') as feed_h: feed_h.write("https://www.circl.lu/doc/misp/feed-osint/") def handle_event_file(feed_url: Text, uuid: Text, proxy_string: Optional[Text] = None, cert_file: Optional[Text] = None) -> misp.Event: """Download, parse and store single event file""" info("Handling {0} from {1}".format(uuid, feed_url)) proxies: Optional[Dict[Text, Text]] = None if proxy_string: proxies = { 'http': proxy_string, 'https': proxy_string } url = urlparse.urljoin(feed_url, "{0}.json".format(uuid)) req = requests.get(url, proxies=proxies, verify=cert_file) return misp.Event(loads=req.text) def handle_feed(manifest_dir: Text, feed_url: Text, proxy_string: Optional[Text] = None, cert_file: Optional[Text] = None) -> Generator[misp.Event, None, None]: """Get the manifest file, check if an event file is downloaded before (cache) and dispatch event handling of separate files""" proxies: Optional[Dict[Text, Text]] = None if proxy_string: proxies = { 'http': proxy_string, 'https': proxy_string } manifest_url = urlparse.urljoin(feed_url, "manifest.json") req = requests.get(manifest_url, proxies=proxies, verify=cert_file) manifest = json.loads(req.text) feed_sha1 = hashlib.sha1(feed_url.encode("utf-8")).hexdigest() old_manifest = {} if manifest_dir != "NODIR": try: with open(os.path.join(manifest_dir, feed_sha1)) as infile: old_manifest = json.load(infile) except IOError: pass for uuid in manifest: if uuid not in old_manifest: yield handle_event_file(feed_url, uuid, proxy_string, cert_file) if manifest_dir != "NODIR": with open(os.path.join(manifest_dir, feed_sha1), "wb") as outfile: outfile.write(json.dumps(manifest).encode("utf-8")) def main() -> None: """program entry point""" # Look for default ini file in "/etc/actworkers.ini" and ~/config/actworkers/actworkers.ini # (or replace .config with $XDG_CONFIG_DIR if set) args = worker.handle_args(parseargs()) manifest_dir = args.manifest_dir actapi = worker.init_act(args) verify_manifest_dir(manifest_dir) misp_feeds_file = os.path.join(manifest_dir, "misp_feeds.txt") with open(misp_feeds_file) as f: for line in f: feed_data = handle_feed(manifest_dir, line.strip(), args.proxy_string, args.cert_file) for event in feed_data: n = 0 e = 0 act.api.helpers.handle_fact( actapi.fact("name", event.info) .source("report", str(event.uuid)), output_format=args.output_format) n += 1 try: act.api.helpers.handle_fact( actapi.fact("externalLink") .source("uri", "{0}/{1}.json".format(line.strip(), event.uuid)) .destination("report", str(event.uuid)), output_format=args.output_format) n += 1 except act.api.base.ResponseError as err: e += 1 error("misp_feeds, main unable to add fact to platform, error calling actapi: %s" % err, exc_info=True) for attribute in event.attributes: if not attribute.act_type: continue try: act.api.helpers.handle_fact( actapi.fact("mentions") .source("report", str(event.uuid)) .destination(attribute.act_type, attribute.value), output_format=args.output_format) n += 1 except act.api.base.ResponseError as err: e += 1 error("misp_feeds: main unable to add attribute fact to platform, error calling actapi: %s" % err, exc_info=True) info("{0} facts. {1} errors.".format(n, e)) def main_log_error() -> None: "Call main() and log all exceptions as errors" try: main() except Exception: error("Unhandled exception: {}".format(traceback.format_exc())) raise if __name__ == '__main__': main_log_error()
the-stack_0_11104
import argparse from collections import Counter import numpy as np from mpd import load def main(): parser = argparse.ArgumentParser() parser.add_argument('jsonfile') args = parser.parse_args() playlists = load(args.jsonfile) print("N =", len(playlists)) lens = [len(p['tracks']) for p in playlists] print("Playlist track count:", Counter(lens)) has_playlist = ['name' in p for p in playlists] print("Has playlist name:", Counter(has_playlist)) nameless_lens = [len(p['tracks']) for p in playlists if 'name' not in p] print("Playlist track count among nameless:", Counter(nameless_lens)) named_lens = [len(p['tracks']) for p in playlists if 'name' in p] print("Playlist track count among nameless:", Counter(named_lens)) try: holdouts = np.array([p['num_holdouts'] for p in playlists]) print("Holdouts: {:.2f} {:.2f}".format(holdouts.mean(), holdouts.std())) except KeyError: print("[warn] Num holdouts property missing") if __name__ == '__main__': main()
the-stack_0_11105
from typing import Tuple import numpy as np import torch from .bandits import DataBasedBandit class WheelBandit(DataBasedBandit): """The wheel contextual bandit from the Riquelme et al 2018 paper. Source: https://github.com/tensorflow/models/tree/archive/research/deep_contextual_bandits Citation: Riquelme, Tucker, Snoek. Deep Bayesian bandits showdown: An empirical comparison of Bayesian deep networks for Thompson sampling. InProceedings ofthe 6th International Conference on Learning Representations, 2018. Args: device (str): Device to use for tensor operations. "cpu" for cpu or "cuda" for cuda. Defaults to "cpu". Attributes: n_actions (int): Number of actions available. context_dim (int): The length of context vector. len (int): The number of examples (context, reward pairs) in the dataset. device (torch.device): Device to use for tensor operations. """ def __init__(self, delta=0.5, n_samples=2000, **kwargs): super(WheelBandit, self).__init__(kwargs.get("device", "cpu")) self.delta = delta self.n_actions = 5 self.context_dim = 2 self.len = n_samples self.mu = [1.2, 1.0, 50.0] self.sigma = 0.01 self._sign_opt_action = { (1.0, 1.0): 1, (1.0, -1.0): 2, (-1.0, 1.0): 3, (-1.0, -1.0): 4, } self._generate_contexts() self._generate_rewards() def _generate_rewards(self): r_all = np.random.normal(self.mu[1], self.sigma, size=(self.len, self.n_actions)) r_all[:,0] += self.mu[0] - self.mu[1] for t in range(self.len): if np.linalg.norm(self._context[t]) > self.delta: signs = np.sign(self._context[t]) opt_act = self._sign_opt_action[(signs[0], signs[1])] r_all[t, opt_act] += self.mu[2] - self.mu[1] self.rewards = r_all self.max_rewards = np.max(self.rewards, axis=1) def reset(self) -> torch.Tensor: """Reset bandit by shuffling indices and get new context. Returns: torch.Tensor: Current context selected by bandit. """ self._reset() self._generate_contexts() self._generate_rewards() return self._get_context() def _compute_reward(self, action: int) -> Tuple[int, int]: """Compute the reward for a given action. Args: action (int): The action to compute reward for. Returns: Tuple[int, int]: Computed reward. """ r = self.rewards[self.idx, action] max_r = self.max_rewards[self.idx] return r, max_r def _generate_contexts(self) -> None: """Returns 2-dim samples falling in the unit circle. """ theta = np.random.uniform(0.0, 2.0 * np.pi, (self.len)) r = np.sqrt(np.random.uniform(size=self.len)) # sqrt is in the original code of Riquelme et al self._context = np.stack([r * np.cos(theta), r * np.sin(theta)], axis=1) def _get_context(self) -> torch.Tensor: """Get the vector for current selected context. Returns: torch.Tensor: Current context vector. """ return torch.tensor( self._context[self.idx], device=self.device, dtype=torch.float, )
the-stack_0_11107
import math import operator as op from functools import reduce def memoize(f): """memoization decorator for a function taking one or more arguments""" class memodict(dict): def __getitem__(self, *key): return dict.__getitem__(self, key) def __missing__(self, key): ret = self[key] = f(*key) return ret return memodict().__getitem__ @memoize def catalan_recursive(n): if n == 0: return 1 return (2 * (2 * n - 1) * catalan_recursive(n - 1)) // (n + 1) @memoize def euler_recursive(n, k): if (k == 0) or (n - 1 == k): return 1 return (n - k) * euler_recursive(n - 1, k - 1) + (k + 1) * euler_recursive(n - 1, k) @memoize def stirling_1_recursive(n, k): if (n == k == 0): return 1 if (n == 0) or (k == 0): return 0 return stirling_1_recursive(n - 1, k - 1) + (n - 1) * stirling_1_recursive(n - 1, k) @memoize def stirling_2_recursive(n, k): if (k == 1) or (n == k): return 1 return stirling_2_recursive(n - 1, k - 1) + k * stirling_2_recursive(n - 1, k) nCr = lambda n, r: reduce(op.mul, range(n - r + 1, n + 1), 1) // math.factorial(r) multinomial = lambda k: math.factorial(sum(k)) // reduce(op.mul, (math.factorial(i) for i in k)) derangements = lambda n: int(math.factorial(n) / math.e + 0.5) bell = lambda n: sum(stirling_2_recursive(k, n) for k in range(n + 1)) catalan = lambda n: nCr(2 * n, n) // (n + 1) euler = lambda n, k: sum((1 - 2 * (j & 1)) * nCr(n + 1, j) * ((k + 1 - j)**n) for j in range(k + 1)) stirling_2 = lambda n, k: sum(((-1)**(k - j)) * nCr(k, j) * (j**n) for j in range(k + 1)) // math.factorial(k)
the-stack_0_11108
"""Simple version of MBIE-EB Paper:An analysis of model-based Interval Estimation for Markov Decision Processes (Strehl and Littman, 2008) Link: https://doi.org/10.1016/j.jcss.2007.08.009 """ import numpy as np from rlpy.representations import Enumerable from .agent import Agent from ._vi_impl import compute_q_values __author__ = "Yuji Kanagawa" class MBIE_EB(Agent): """ Simplified version of MBIE-EB algorithm, which executes VI only when the episode ends. """ def __init__( self, *args, beta=0.1, seed=1, spread_prior=False, show_reward=False, vi_threshold=1e-6, ): """ :param beta: β parameter in MBIB-EB :param mu0: Prior mean rewards. :param tau0: Precision of prior mean rewards. :param tau: Precision of reward noise. :param spread_prior: Use alpha0/n_states as alpha0 """ super().__init__(*args, seed=seed) if not isinstance(self.representation, Enumerable): raise ValueError("PSRL works only with a tabular representation.") n_states = self.representation.features_num n_actions = self.representation.domain.num_actions self.beta = beta self.sa_count = np.zeros((n_states, n_actions)) self.r_sum = np.zeros((n_states, n_actions)) self.sas_count = np.zeros((n_states, n_actions, n_states)) self.n_states = n_states self.n_actions = n_actions self.ep_cap = self.representation.domain.episode_cap self.update_steps = 0 self.show_reward = show_reward self.vi_threshold = vi_threshold def _update_prior(self, s, a, reward, terminal, ns): s_id = self.representation.state_id(s) self.sa_count[s_id, a] += 1 self.r_sum[s_id, a] += reward if not terminal: ns_id = self.representation.state_id(ns) self.sas_count[s_id, a, ns_id] += 1 def _sample_mdp(self, show_reward=False): r_sample = np.zeros_like(self.sa_count) p_sample = np.zeros_like(self.sas_count) for s in range(self.n_states): for a in range(self.n_actions): n = self.sa_count[s, a] if n == 0: continue r = self.r_sum[s, a] / n r_sample[s, a] = r + self.beta / np.sqrt(n) p_sample[s, a] = self.sas_count[s, a] / n if show_reward and hasattr(self.representation.domain, "show_reward"): self.representation.domain.show_reward(r_sample.mean(axis=-1)) return r_sample, p_sample def _solve_sampled_mdp(self): r, p = self._sample_mdp(show_reward=self.show_reward) q_value, _ = compute_q_values( r, p, self.ep_cap, self.discount_factor, self.vi_threshold ) self.representation.weight_vec = q_value.T.flatten() self.update_steps += 1 def learn(self, s, p_actions, a, r, ns, np_actions, na, terminal): self._update_prior(s, a, r, terminal, ns) if terminal is False: return self._solve_sampled_mdp()
the-stack_0_11110
"""Module for building the autocompletion indices.""" from __future__ import print_function import os import json from six import BytesIO from docutils.core import publish_string from botocore.docs.bcdoc import textwriter import awscli.clidriver from awscli.argprocess import ParamShorthandDocGen from awsshell import determine_doc_index_filename from awsshell.utils import remove_html from awsshell import docs SHORTHAND_DOC = ParamShorthandDocGen() def new_index(): return {'arguments': [], 'argument_metadata': {}, 'commands': [], 'children': {}} def index_command(index_dict, help_command): arg_table = help_command.arg_table for arg in arg_table: arg_obj = arg_table[arg] metadata = { 'required': arg_obj.required, 'type_name': arg_obj.cli_type_name, 'minidoc': '', 'example': '', # The name used in the API call/botocore, # typically CamelCased. 'api_name': getattr(arg_obj, '_serialized_name', '') } if arg_obj.documentation: metadata['minidoc'] = remove_html( arg_obj.documentation.split('\n')[0]) if SHORTHAND_DOC.supports_shorthand(arg_obj.argument_model): example = SHORTHAND_DOC.generate_shorthand_example( arg, arg_obj.argument_model) metadata['example'] = example index_dict['arguments'].append('--%s' % arg) index_dict['argument_metadata']['--%s' % arg] = metadata for cmd in help_command.command_table: index_dict['commands'].append(cmd) # Each sub command will trigger a recurse. child = new_index() index_dict['children'][cmd] = child sub_command = help_command.command_table[cmd] sub_help_command = sub_command.create_help_command() index_command(child, sub_help_command) def write_index(output_filename=None): driver = awscli.clidriver.create_clidriver() help_command = driver.create_help_command() index = {'aws': new_index()} current = index['aws'] index_command(current, help_command) result = json.dumps(index) if not os.path.isdir(os.path.dirname(output_filename)): os.makedirs(os.path.dirname(output_filename)) with open(output_filename, 'w') as f: f.write(result) def write_doc_index(output_filename=None, db=None, help_command=None): if output_filename is None: output_filename = determine_doc_index_filename() user_provided_db = True if db is None: user_provided_db = False db = docs.load_doc_db(output_filename) if help_command is None: driver = awscli.clidriver.create_clidriver() help_command = driver.create_help_command() should_close = not user_provided_db do_write_doc_index(db, help_command, close_db_on_finish=should_close) def do_write_doc_index(db, help_command, close_db_on_finish): try: _index_docs(db, help_command) db['__complete__'] = 'true' finally: if close_db_on_finish: # If the user provided their own db object, # they are responsible for closing it. # If we created our own db object, we own # closing the db. db.close() def _index_docs(db, help_command): for command_name in help_command.command_table: command = help_command.command_table[command_name] sub_help_command = command.create_help_command() text_docs = render_docs_for_cmd(sub_help_command) dotted_name = '.'.join(['aws'] + command.lineage_names) db[dotted_name] = text_docs _index_docs(db, sub_help_command) def render_docs_for_cmd(help_command): renderer = FileRenderer() help_command.renderer = renderer help_command(None, None) # The report_level override is so that we don't print anything # to stdout/stderr on rendering issues. original_cli_help = renderer.contents.decode('utf-8') text_content = convert_rst_to_basic_text(original_cli_help) index = text_content.find('DESCRIPTION') if index > 0: text_content = text_content[index + len('DESCRIPTION'):] return text_content def convert_rst_to_basic_text(contents): """Converts restructured text to basic text output. This function removes most of the decorations added in restructured text. This function is used to generate documentation we can show to users in a cross platform manner. Basic indentation and list formatting are kept, but many RST features are removed (such as section underlines). """ # The report_level override is so that we don't print anything # to stdout/stderr on rendering issues. converted = publish_string( contents, writer=BasicTextWriter(), settings_overrides={'report_level': 5}) return converted.decode('utf-8') class FileRenderer(object): def __init__(self): self._io = BytesIO() def render(self, contents): self._io.write(contents) @property def contents(self): return self._io.getvalue() class BasicTextWriter(textwriter.TextWriter): def translate(self): visitor = BasicTextTranslator(self.document) self.document.walkabout(visitor) self.output = visitor.body class BasicTextTranslator(textwriter.TextTranslator): def depart_title(self, node): # Make the section titles upper cased, similar to # the man page output. text = ''.join(x[1] for x in self.states.pop() if x[0] == -1) self.stateindent.pop() self.states[-1].append((0, ['', text.upper(), ''])) # The botocore TextWriter has additional formatting # for literals, for the aws-shell docs we don't want any # special processing so these nodes are noops. def visit_literal(self, node): pass def depart_literal(self, node): pass
the-stack_0_11111
import json import redis from collections import defaultdict class RedisDB: """Backend using Redis. Parameters to open the database can be passed with the url format:: redis://[:password]@localhost:6379/0 """ def __init__(self, name): self.name = name self._dbm = redis.from_url(name) self._db = defaultdict(dict) self.dirty = set() def dump(self): """save/close DBM file""" for task_id in self.dirty: self._dbm[task_id] = json.dumps(self._db[task_id]) self.dirty = set() sync = dump def set(self, task_id, dependency, value): """Store value in the DB.""" self._db[task_id][dependency] = value self.dirty.add(task_id) def get(self, task_id, dependency): """Get value stored in the DB.""" # optimization, just try to get it without checking it exists if task_id in self._db: return self._db[task_id].get(dependency, None) else: try: task_data = self._dbm[task_id] except KeyError: return self._db[task_id] = json.loads(task_data.decode('utf-8')) return self._db[task_id].get(dependency, None) def in_(self, task_id): """@return bool if task_id is in DB""" return task_id in self._dbm or task_id in self.dirty def remove(self, task_id): """remove saved dependecies from DB for taskId""" if task_id in self._db: del self._db[task_id] if task_id in self._dbm: del self._dbm[task_id] if task_id in self.dirty: self.dirty.remove(task_id) def remove_all(self): """remove saved dependecies from DB for all tasks""" self._db = defaultdict(dict) self._dbm.flushdb() self.dirty = set()
the-stack_0_11113
"""Play Routes rules Bazel rules for running the [Play routes file compiler](https://github.com/playframework/playframework/tree/master/framework/src/routes-compiler/src/main/scala/play/routes/compiler) on Play routes files """ gendir_base_path = "play/routes" play_imports = [ "controllers.Assets.Asset", ] # TODO: update this canonical_external_repo_name = "XXX_name_goes_here" def _sanitize_string_for_usage(s): res_array = [] for i in range(len(s)): c = s[i] if c.isalnum() or c == ".": res_array.append(c) else: res_array.append("_") return "".join(res_array) def _format_import_args(imports): return ["--routesImport={}".format(i) for i in imports] def _impl(ctx): gendir = ctx.actions.declare_directory( gendir_base_path + "/" + _sanitize_string_for_usage(ctx.attr.name) ) paths = [f.path for f in ctx.files.srcs] args = [gendir.path] + [",".join(paths)] if ctx.attr.include_play_imports: args = args + _format_import_args(play_imports) args = args + _format_import_args(ctx.attr.routes_imports) if ctx.attr.generate_reverse_router: args = args + ["--generateReverseRouter"] if ctx.attr.namespace_reverse_router: args = args + ["--namespaceReverserRouter"] if ctx.attr.routes_generator: args = args + ["--routesGenerator={}".format(ctx.attr.routes_generator)] ctx.actions.run( inputs = ctx.files.srcs, outputs = [gendir], arguments = args, progress_message = "Compiling play routes", executable = ctx.executable._play_routes_compiler, ) # TODO: something more portable ctx.actions.run_shell( inputs = [gendir], outputs = [ctx.outputs.srcjar], arguments = [ctx.executable._zipper.path, gendir.path, gendir.short_path, ctx.outputs.srcjar.path], command = """$1 c $4 META-INF/= $(find -L $2 -type f | while read v; do echo ${v#"${2%$3}"}=$v; done)""", progress_message = "Bundling compiled play routes into srcjar", tools = [ctx.executable._zipper], ) play_routes = rule( implementation = _impl, doc = "Compiles Play routes files templates to Scala sources files.", attrs = { "srcs": attr.label_list( doc = "Play routes files", allow_files = True, mandatory = True ), "routes_imports": attr.string_list( doc = "Additional imports to import to the Play routes", ), "routes_generator": attr.string( doc = "The full class of the routes generator, e.g., `play.routes.compiler.InjectedRoutesGenerator`", default = "" ), "generate_reverse_router": attr.bool( doc = "Whether the reverse router should be generated. Setting to false may reduce compile times if it's not needed.", default = False ), "namespace_reverse_router": attr.bool( doc = "Whether the reverse router should be namespaced. Useful if you have many routers that use the same actions.", default = False ), "include_play_imports": attr.bool( doc = "If true, include the imports the Play project includes by default.", default = False ), "_play_routes_compiler": attr.label( executable = True, cfg = "host", allow_files = True, default = Label("@"+canonical_external_repo_name+"//:compiler"), ), "_zipper": attr.label(cfg = "host", default = "@bazel_tools//tools/zip:zipper", executable = True), }, outputs = { "srcjar": "play_routes_%{name}.srcjar", } ) # This is the implementation of the repository rule. It downloads the # play-routes compiler as a deploy JAR from the releases page. # # See https://docs.bazel.build/versions/master/skylark/lib/globals.html#repository_rule def _play_app_repository_rule_implementation(repository_ctx): """Implementation for play_app_repository_rule""" base_url = "https://github.com/lucidsoftware/rules_play_routes/releases/download" compiler_url = "{}/{}/play-routes-compiler_deploy.jar".format( base_url, repository_ctx.attr.version, ) repository_ctx.report_progress("Downloading compiler from {}".format(compiler_url)) download_info = repository_ctx.download( compiler_url, output = "play-routes-compiler_deploy.jar", sha256 = repository_ctx.attr.sha256, ) repository_ctx.report_progress("Successfully downloaded compiler from {}, sha256={}".format( compiler_url, download_info.sha256, )) # Write a build file that turns the deployment JAR into a Java binary that # we can run. build_file_content = """java_import( name = "deployjar", jars = [":play-routes-compiler_deploy.jar"], ) java_binary( name = "compiler", main_class = "rulesplayroutes.routes.CommandLinePlayRoutesCompiler", visibility = ["//visibility:public"], runtime_deps = [":deployjar"], ) """ repository_ctx.file("BUILD", content = build_file_content, executable = False) # Declares the repository rule. _play_app_repository_rule = repository_rule( implementation = _play_app_repository_rule_implementation, local = True, attrs = { "version": attr.string(mandatory = True), "sha256": attr.string(mandatory = True), }, doc = "play_repositories loads the Play Framework rules into a WORKSPACE" ) # Default release versions specified to play_repositories. _default_compiler_version = "GITHUB RELEASE NAME HERE" _default_compiler_jar_sha = "JAR SHA HERE" # play_repositories is a repository rule that introduces a new external # repository into the WORKSPACE that invokes this rule. This activates the # Play rules and is the main entrypoint for consumers of these rules. This is # required in the WORKSPACE that will depend on the rules. # # The rules depend on a small number of compiled binaries which are available # on the Github releases page for this repository. The argument to this # function, tools_version_and_shas, is a tuple specifying the # # 1. Name of a release (e.g. "v0.0.2") # 2. SHA256 of the play-routes-compiler_deploy.jar from that release. # # A default is provided. def play_repositories(tools_version_and_shas = (_default_compiler_version, _default_compiler_jar_sha)): (compiler_vers, jar_shas) = tools_version_and_shas _play_app_repository_rule( name = canonical_external_repo_name, version = compiler_vers, sha256 = jar_shas, )
the-stack_0_11116
import typing as t from typing import TYPE_CHECKING from starlette.requests import Request from multipart.multipart import parse_options_header from starlette.responses import Response from .base import IOType from .base import IODescriptor from ...exceptions import InvalidArgument from ...exceptions import BentoMLException from ..utils.formparser import populate_multipart_requests from ..utils.formparser import concat_to_multipart_responses if TYPE_CHECKING: from .file import File from .json import JSON from .text import Text from .image import Image from .numpy import NumpyNdarray from .pandas import PandasSeries from .pandas import PandasDataFrame MultipartIO = t.Dict[str, IOType] class Multipart(IODescriptor[MultipartIO]): """ :code:`Multipart` defines API specification for the inputs/outputs of a Service, where inputs/outputs of a Service can receive/send a *multipart* request/responses as specified in your API function signature. Sample implementation of a sklearn service: .. code-block:: python # sklearn_svc.py import bentoml from bentoml.io import NumpyNdarray, Multipart, JSON import bentoml.sklearn runner = bentoml.sklearn.load_runner("sklearn_model_clf") svc = bentoml.Service("iris-classifier", runners=[runner]) input_spec = Multipart(arr=NumpyNdarray(), annotations=JSON()) output_spec = Multipart(output=NumpyNdarray(), result=JSON()) @svc.api(input=input_spec, output=output_spec) def predict(arr, annotations): res = runner.run(arr) return {"output":res, "result":annotations} Users then can then serve this service with :code:`bentoml serve`: .. code-block:: bash % bentoml serve ./sklearn_svc.py:svc --reload (Press CTRL+C to quit) [INFO] Starting BentoML API server in development mode with auto-reload enabled [INFO] Serving BentoML Service "iris-classifier" defined in "sklearn_svc.py" [INFO] API Server running on http://0.0.0.0:3000 Users can then send requests to the newly started services with any client: .. tabs:: .. code-tab:: python import requests from requests_toolbelt.multipart.encoder import MultipartEncoder m = MultipartEncoder( fields={'field0': 'value', 'field1': 'value', 'field2': ('filename', open('test.json', 'rb'), 'application/json')} ) requests.post('http://0.0.0.0:3000/predict', data=m, headers={'Content-Type': m.content_type}) .. code-tab:: bash % curl -X POST -H "Content-Type: multipart/form-data" -F [email protected] -F arr='[5,4,3,2]' http://0.0.0.0:3000/predict --b1d72c201a064ecd92a17a412eb9208e Content-Disposition: form-data; name="output" content-length: 1 content-type: application/json 1 --b1d72c201a064ecd92a17a412eb9208e Content-Disposition: form-data; name="result" content-length: 13 content-type: application/json {"foo":"bar"} --b1d72c201a064ecd92a17a412eb9208e-- Args: inputs (:code:`Dict[str, IODescriptor]`): Dictionary consisting keys as inputs definition for a Multipart request/response, values as IODescriptor supported by BentoML. Currently, Multipart supports Image, NumpyNdarray, PandasDataFrame, PandasSeries, Text, and File. Make sure to match the input params in an API function to the keys defined under :code:`Multipart`: .. code-block:: bash +----------------------------------------------------------------+ | | | +--------------------------------------------------------+ | | | | | | | Multipart(arr=NumpyNdarray(), annotations=JSON() | | | | | | | +----------------+-----------------------+---------------+ | | | | | | | | | | | | | | +----+ +---------+ | | | | | | +---------------v--------v---------+ | | | def predict(arr, annotations): | | | +----------------------------------+ | | | +----------------------------------------------------------------+ Returns: :obj:`~bentoml._internal.io_descriptors.IODescriptor`: IO Descriptor that Multipart request/response. """ def __init__( self, **inputs: t.Union[ "Image", "JSON", "Text", "NumpyNdarray", "PandasDataFrame", "PandasSeries", "File", ], ): for descriptor in inputs.values(): if isinstance(descriptor, Multipart): # pragma: no cover raise InvalidArgument( "Multipart IO can not contain nested Multipart item" ) self._inputs: t.Dict[ str, t.Union[ "Image", "JSON", "Text", "NumpyNdarray", "PandasDataFrame", "PandasSeries", "File", ], ] = inputs def openapi_schema_type(self) -> t.Dict[str, t.Any]: return { "type": "object", "properties": { k: io.openapi_schema_type() for k, io in self._inputs.items() }, } def openapi_request_schema(self) -> t.Dict[str, t.Any]: """Returns OpenAPI schema for incoming requests""" return {"multipart/form-data": {"schema": self.openapi_schema_type()}} def openapi_responses_schema(self) -> t.Dict[str, t.Any]: """Returns OpenAPI schema for outcoming responses""" return {"multipart/form-data": {"schema": self.openapi_schema_type()}} async def from_http_request(self, request: Request) -> MultipartIO: ctype, _ = parse_options_header(request.headers["content-type"]) if ctype != b"multipart/form-data": raise BentoMLException( f"{self.__class__.__name__} only accepts `multipart/form-data` as Content-Type header, got {ctype} instead." ) res: MultipartIO = dict() reqs = await populate_multipart_requests(request) for k, i in self._inputs.items(): req = reqs[k] v = await i.from_http_request(req) res[k] = v return res async def to_http_response(self, obj: MultipartIO) -> Response: res_mapping: t.Dict[str, Response] = {} for k, io_ in self._inputs.items(): data = obj[k] # TODO(aarnphm): fix with stubs res_mapping[k] = await io_.to_http_response(data) # type: ignore[reportGeneralTypeIssue] return await concat_to_multipart_responses(res_mapping)
the-stack_0_11117
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for L{twisted.internet.protocol}. """ from __future__ import division, absolute_import from zope.interface.verify import verifyObject from zope.interface import implementer from twisted.python.failure import Failure from twisted.internet.interfaces import ( IProtocol, ILoggingContext, IProtocolFactory, IConsumer) from twisted.internet.defer import CancelledError from twisted.internet.protocol import ( Protocol, ClientCreator, Factory, ProtocolToConsumerAdapter, ConsumerToProtocolAdapter) from twisted.trial.unittest import TestCase from twisted.test.proto_helpers import MemoryReactorClock, StringTransport from twisted.logger import LogLevel, globalLogPublisher class ClientCreatorTests(TestCase): """ Tests for L{twisted.internet.protocol.ClientCreator}. """ def _basicConnectTest(self, check): """ Helper for implementing a test to verify that one of the I{connect} methods of L{ClientCreator} passes the right arguments to the right reactor method. @param check: A function which will be invoked with a reactor and a L{ClientCreator} instance and which should call one of the L{ClientCreator}'s I{connect} methods and assert that all of its arguments except for the factory are passed on as expected to the reactor. The factory should be returned. """ class SomeProtocol(Protocol): pass reactor = MemoryReactorClock() cc = ClientCreator(reactor, SomeProtocol) factory = check(reactor, cc) protocol = factory.buildProtocol(None) self.assertIsInstance(protocol, SomeProtocol) def test_connectTCP(self): """ L{ClientCreator.connectTCP} calls C{reactor.connectTCP} with the host and port information passed to it, and with a factory which will construct the protocol passed to L{ClientCreator.__init__}. """ def check(reactor, cc): cc.connectTCP('example.com', 1234, 4321, ('1.2.3.4', 9876)) host, port, factory, timeout, bindAddress = reactor.tcpClients.pop() self.assertEqual(host, 'example.com') self.assertEqual(port, 1234) self.assertEqual(timeout, 4321) self.assertEqual(bindAddress, ('1.2.3.4', 9876)) return factory self._basicConnectTest(check) def test_connectUNIX(self): """ L{ClientCreator.connectUNIX} calls C{reactor.connectUNIX} with the filename passed to it, and with a factory which will construct the protocol passed to L{ClientCreator.__init__}. """ def check(reactor, cc): cc.connectUNIX('/foo/bar', 123, True) address, factory, timeout, checkPID = reactor.unixClients.pop() self.assertEqual(address, '/foo/bar') self.assertEqual(timeout, 123) self.assertEqual(checkPID, True) return factory self._basicConnectTest(check) def test_connectSSL(self): """ L{ClientCreator.connectSSL} calls C{reactor.connectSSL} with the host, port, and context factory passed to it, and with a factory which will construct the protocol passed to L{ClientCreator.__init__}. """ def check(reactor, cc): expectedContextFactory = object() cc.connectSSL('example.com', 1234, expectedContextFactory, 4321, ('4.3.2.1', 5678)) host, port, factory, contextFactory, timeout, bindAddress = reactor.sslClients.pop() self.assertEqual(host, 'example.com') self.assertEqual(port, 1234) self.assertIs(contextFactory, expectedContextFactory) self.assertEqual(timeout, 4321) self.assertEqual(bindAddress, ('4.3.2.1', 5678)) return factory self._basicConnectTest(check) def _cancelConnectTest(self, connect): """ Helper for implementing a test to verify that cancellation of the L{Deferred} returned by one of L{ClientCreator}'s I{connect} methods is implemented to cancel the underlying connector. @param connect: A function which will be invoked with a L{ClientCreator} instance as an argument and which should call one its I{connect} methods and return the result. @return: A L{Deferred} which fires when the test is complete or fails if there is a problem. """ reactor = MemoryReactorClock() cc = ClientCreator(reactor, Protocol) d = connect(cc) connector = reactor.connectors.pop() self.assertFalse(connector._disconnected) d.cancel() self.assertTrue(connector._disconnected) return self.assertFailure(d, CancelledError) def test_cancelConnectTCP(self): """ The L{Deferred} returned by L{ClientCreator.connectTCP} can be cancelled to abort the connection attempt before it completes. """ def connect(cc): return cc.connectTCP('example.com', 1234) return self._cancelConnectTest(connect) def test_cancelConnectUNIX(self): """ The L{Deferred} returned by L{ClientCreator.connectTCP} can be cancelled to abort the connection attempt before it completes. """ def connect(cc): return cc.connectUNIX('/foo/bar') return self._cancelConnectTest(connect) def test_cancelConnectSSL(self): """ The L{Deferred} returned by L{ClientCreator.connectTCP} can be cancelled to abort the connection attempt before it completes. """ def connect(cc): return cc.connectSSL('example.com', 1234, object()) return self._cancelConnectTest(connect) def _cancelConnectTimeoutTest(self, connect): """ Like L{_cancelConnectTest}, but for the case where the L{Deferred} is cancelled after the connection is set up but before it is fired with the resulting protocol instance. """ reactor = MemoryReactorClock() cc = ClientCreator(reactor, Protocol) d = connect(reactor, cc) connector = reactor.connectors.pop() # Sanity check - there is an outstanding delayed call to fire the # Deferred. self.assertEqual(len(reactor.getDelayedCalls()), 1) # Cancel the Deferred, disconnecting the transport just set up and # cancelling the delayed call. d.cancel() self.assertEqual(reactor.getDelayedCalls(), []) # A real connector implementation is responsible for disconnecting the # transport as well. For our purposes, just check that someone told the # connector to disconnect. self.assertTrue(connector._disconnected) return self.assertFailure(d, CancelledError) def test_cancelConnectTCPTimeout(self): """ L{ClientCreator.connectTCP} inserts a very short delayed call between the time the connection is established and the time the L{Deferred} returned from one of its connect methods actually fires. If the L{Deferred} is cancelled in this interval, the established connection is closed, the timeout is cancelled, and the L{Deferred} fails with L{CancelledError}. """ def connect(reactor, cc): d = cc.connectTCP('example.com', 1234) host, port, factory, timeout, bindAddress = reactor.tcpClients.pop() protocol = factory.buildProtocol(None) transport = StringTransport() protocol.makeConnection(transport) return d return self._cancelConnectTimeoutTest(connect) def test_cancelConnectUNIXTimeout(self): """ L{ClientCreator.connectUNIX} inserts a very short delayed call between the time the connection is established and the time the L{Deferred} returned from one of its connect methods actually fires. If the L{Deferred} is cancelled in this interval, the established connection is closed, the timeout is cancelled, and the L{Deferred} fails with L{CancelledError}. """ def connect(reactor, cc): d = cc.connectUNIX('/foo/bar') address, factory, timeout, bindAddress = reactor.unixClients.pop() protocol = factory.buildProtocol(None) transport = StringTransport() protocol.makeConnection(transport) return d return self._cancelConnectTimeoutTest(connect) def test_cancelConnectSSLTimeout(self): """ L{ClientCreator.connectSSL} inserts a very short delayed call between the time the connection is established and the time the L{Deferred} returned from one of its connect methods actually fires. If the L{Deferred} is cancelled in this interval, the established connection is closed, the timeout is cancelled, and the L{Deferred} fails with L{CancelledError}. """ def connect(reactor, cc): d = cc.connectSSL('example.com', 1234, object()) host, port, factory, contextFactory, timeout, bindADdress = reactor.sslClients.pop() protocol = factory.buildProtocol(None) transport = StringTransport() protocol.makeConnection(transport) return d return self._cancelConnectTimeoutTest(connect) def _cancelConnectFailedTimeoutTest(self, connect): """ Like L{_cancelConnectTest}, but for the case where the L{Deferred} is cancelled after the connection attempt has failed but before it is fired with the resulting failure. """ reactor = MemoryReactorClock() cc = ClientCreator(reactor, Protocol) d, factory = connect(reactor, cc) connector = reactor.connectors.pop() factory.clientConnectionFailed( connector, Failure(Exception("Simulated failure"))) # Sanity check - there is an outstanding delayed call to fire the # Deferred. self.assertEqual(len(reactor.getDelayedCalls()), 1) # Cancel the Deferred, cancelling the delayed call. d.cancel() self.assertEqual(reactor.getDelayedCalls(), []) return self.assertFailure(d, CancelledError) def test_cancelConnectTCPFailedTimeout(self): """ Similar to L{test_cancelConnectTCPTimeout}, but for the case where the connection attempt fails. """ def connect(reactor, cc): d = cc.connectTCP('example.com', 1234) host, port, factory, timeout, bindAddress = reactor.tcpClients.pop() return d, factory return self._cancelConnectFailedTimeoutTest(connect) def test_cancelConnectUNIXFailedTimeout(self): """ Similar to L{test_cancelConnectUNIXTimeout}, but for the case where the connection attempt fails. """ def connect(reactor, cc): d = cc.connectUNIX('/foo/bar') address, factory, timeout, bindAddress = reactor.unixClients.pop() return d, factory return self._cancelConnectFailedTimeoutTest(connect) def test_cancelConnectSSLFailedTimeout(self): """ Similar to L{test_cancelConnectSSLTimeout}, but for the case where the connection attempt fails. """ def connect(reactor, cc): d = cc.connectSSL('example.com', 1234, object()) host, port, factory, contextFactory, timeout, bindADdress = reactor.sslClients.pop() return d, factory return self._cancelConnectFailedTimeoutTest(connect) class ProtocolTests(TestCase): """ Tests for L{twisted.internet.protocol.Protocol}. """ def test_interfaces(self): """ L{Protocol} instances provide L{IProtocol} and L{ILoggingContext}. """ proto = Protocol() self.assertTrue(verifyObject(IProtocol, proto)) self.assertTrue(verifyObject(ILoggingContext, proto)) def test_logPrefix(self): """ L{Protocol.logPrefix} returns the protocol class's name. """ class SomeThing(Protocol): pass self.assertEqual("SomeThing", SomeThing().logPrefix()) def test_makeConnection(self): """ L{Protocol.makeConnection} sets the given transport on itself, and then calls C{connectionMade}. """ result = [] class SomeProtocol(Protocol): def connectionMade(self): result.append(self.transport) transport = object() protocol = SomeProtocol() protocol.makeConnection(transport) self.assertEqual(result, [transport]) class FactoryTests(TestCase): """ Tests for L{protocol.Factory}. """ def test_interfaces(self): """ L{Factory} instances provide both L{IProtocolFactory} and L{ILoggingContext}. """ factory = Factory() self.assertTrue(verifyObject(IProtocolFactory, factory)) self.assertTrue(verifyObject(ILoggingContext, factory)) def test_logPrefix(self): """ L{Factory.logPrefix} returns the name of the factory class. """ class SomeKindOfFactory(Factory): pass self.assertEqual("SomeKindOfFactory", SomeKindOfFactory().logPrefix()) def test_defaultBuildProtocol(self): """ L{Factory.buildProtocol} by default constructs a protocol by calling its C{protocol} attribute, and attaches the factory to the result. """ class SomeProtocol(Protocol): pass f = Factory() f.protocol = SomeProtocol protocol = f.buildProtocol(None) self.assertIsInstance(protocol, SomeProtocol) self.assertIs(protocol.factory, f) def test_forProtocol(self): """ L{Factory.forProtocol} constructs a Factory, passing along any additional arguments, and sets its C{protocol} attribute to the given Protocol subclass. """ class ArgTakingFactory(Factory): def __init__(self, *args, **kwargs): self.args, self.kwargs = args, kwargs factory = ArgTakingFactory.forProtocol(Protocol, 1, 2, foo=12) self.assertEqual(factory.protocol, Protocol) self.assertEqual(factory.args, (1, 2)) self.assertEqual(factory.kwargs, {"foo": 12}) def test_doStartLoggingStatement(self): """ L{Factory.doStart} logs that it is starting a factory, followed by the L{repr} of the L{Factory} instance that is being started. """ events = [] globalLogPublisher.addObserver(events.append) self.addCleanup( lambda: globalLogPublisher.removeObserver(events.append)) f = Factory() f.doStart() self.assertIs(events[0]['factory'], f) self.assertEqual(events[0]['log_level'], LogLevel.info) self.assertEqual(events[0]['log_format'], 'Starting factory {factory!r}') def test_doStopLoggingStatement(self): """ L{Factory.doStop} logs that it is stopping a factory, followed by the L{repr} of the L{Factory} instance that is being stopped. """ events = [] globalLogPublisher.addObserver(events.append) self.addCleanup( lambda: globalLogPublisher.removeObserver(events.append)) class MyFactory(Factory): numPorts = 1 f = MyFactory() f.doStop() self.assertIs(events[0]['factory'], f) self.assertEqual(events[0]['log_level'], LogLevel.info) self.assertEqual(events[0]['log_format'], 'Stopping factory {factory!r}') class AdapterTests(TestCase): """ Tests for L{ProtocolToConsumerAdapter} and L{ConsumerToProtocolAdapter}. """ def test_protocolToConsumer(self): """ L{IProtocol} providers can be adapted to L{IConsumer} providers using L{ProtocolToConsumerAdapter}. """ result = [] p = Protocol() p.dataReceived = result.append consumer = IConsumer(p) consumer.write(b"hello") self.assertEqual(result, [b"hello"]) self.assertIsInstance(consumer, ProtocolToConsumerAdapter) def test_consumerToProtocol(self): """ L{IConsumer} providers can be adapted to L{IProtocol} providers using L{ProtocolToConsumerAdapter}. """ result = [] @implementer(IConsumer) class Consumer(object): def write(self, d): result.append(d) c = Consumer() protocol = IProtocol(c) protocol.dataReceived(b"hello") self.assertEqual(result, [b"hello"]) self.assertIsInstance(protocol, ConsumerToProtocolAdapter)
the-stack_0_11118
import asyncio import re import requests import spotipy from aiohttp import ClientSession from nextcord import User from emoji import demojize from googleapiclient.discovery import build from spotipy.oauth2 import SpotifyClientCredentials from src.bot.__tokens__ import __tokens__ from src.music.song import Song youtube = build('youtube', 'v3', developerKey=__tokens__['google']) sp = spotipy.Spotify(client_credentials_manager=SpotifyClientCredentials( __tokens__['spotify_client'], __tokens__['spotify'])) async def get_songs(requester: User, query: str) -> list[Song]: # Youtube if query.find('youtube') != -1: # Playlist if query.find('list=') != -1: playlist_id = query[query.find('list=')+5:] if playlist_id.find('&') != -1: playlist_id = playlist_id[:playlist_id.find('&')] return await get_youtube_playlist(requester, playlist_id) # # Video if query.find('watch?v=') != -1: video_id = query[query.find('watch?v=')+8:] if video_id.find('&') != -1: video_id = video_id[:video_id.find('&')] return await get_youtube_video(requester, [video_id]) # Spotify if query.find('spotify') != -1: # Playlist if query.find('playlist/') != -1: return await get_spotify_playlist(requester, query[query.find('playlist/') + 9:]) # Video return await getSpotifyTrack(requester, query[query.find('track/')+6:]) # Youtube Search return await search_youtube_video(requester, query) async def get_youtube_playlist(requester: User, playlist_id: str) -> list[Song]: playlist = [] response = {'nextPageToken': None} # Go through each playlist page and extract all videos in it while True: video_ids = [] if 'nextPageToken' not in response.keys(): break request = youtube.playlistItems().list( part='contentDetails, snippet', maxResults=50, pageToken=response['nextPageToken'], playlistId=playlist_id ) response = request.execute() if response['items']: for video in response['items'][:-1]: if video['snippet']['thumbnails']: video_ids.append(video['contentDetails']['videoId']) playlist += await get_youtube_video(requester, video_ids) return playlist async def get_youtube_video(requester: User, video_ids: list) -> list[Song]: videos = [] if video_ids: id_string = ''.join(video_id + ',' for video_id in video_ids[:-1]) id_string += video_ids[-1] request = youtube.videos().list( part='snippet,contentDetails', id=id_string ) response = request.execute() for video in response['items']: videos.append(Song(requester, video)) return videos async def search_youtube_video(requester: User, query: str, max_results: int = 1) -> list[Song]: url = demojize(f'https://www.youtube.com/results?search_query={query.replace(" ", "+")}&sp=EgIQAQ%253D%253D') response = requests.get(url) return await get_youtube_video(requester, re.findall(r'watch\?v=(\S{11})', response.text)[:max_results]) async def fetch(url: str, session) -> str: async with session.get(demojize(url)) as response: html_body = await response.read() ids = re.findall(r'watch\?v=(\S{11})', html_body.decode()) if ids and len(ids): return ids[0] else: return "" async def youtube_multi_search(queries: list[str]) -> list[str]: async with ClientSession() as session: tasks = [] for query in queries: url = f'https://www.youtube.com/results?search_query={query.replace(" ", "+")}&sp=EgIQAQ%253D%253D' tasks.append( asyncio.create_task( fetch(url, session) ) ) pages = await asyncio.gather(*tasks) return list(filter(None, pages)) async def get_spotify_playlist(requester: User, playlist_id: str) -> list[Song]: songs = [] results = sp.playlist(playlist_id) tracks = results['tracks'] items = [await get_track_query(track_meta) for track_meta in tracks['items']] while tracks['next']: tracks = sp.next(tracks) items.extend([await get_track_query(track_meta) for track_meta in tracks['items']]) ids = await youtube_multi_search(items) for x in range(0, len(ids), 50): songs.extend(await get_youtube_video(requester, ids[x:x+50])) return songs async def get_track_query(track_meta): return f'{track_meta["track"]["name"]} {track_meta["track"]["album"]["artists"][0]["name"]}' async def getSpotifyTrack(requester: User, track_id: str) -> list[Song]: meta = sp.track(track_id) track_name = f'{meta["name"]} {meta["album"]["artists"][0]["name"]}' return await search_youtube_video(requester, track_name)
the-stack_0_11120
#Façaumalgoritmoquerecebaovalordosaláriomínimoeovalordosaláriodeumfuncionário, #calculeemostreaquantidadedesaláriosmínimosqueganhaessefuncionário. salarioMin=float(input("Informe o valor do salário mín:")) salarioFun=float(input("Informe o valor do salário do funcionário:")) qtdSalMin= salarioFun/salarioMin if(qtdSalMin < 1): print("O funcionário ganha menos que um salário mínimo!") else: print("O funcionário recebe {0:.2f}".format(round(qtdSalMin,2))," salários mínimos." )
the-stack_0_11124
# Copyright 2013 IBM Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import re import time import urllib from tempest_lib import exceptions as lib_exc from tempest.common import service_client from tempest import exceptions class OrchestrationClient(service_client.ServiceClient): def list_stacks(self, params=None): """Lists all stacks for a user.""" uri = 'stacks' if params: uri += '?%s' % urllib.urlencode(params) resp, body = self.get(uri) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBodyList(resp, body['stacks']) def create_stack(self, name, disable_rollback=True, parameters=None, timeout_mins=60, template=None, template_url=None, environment=None, files=None): if parameters is None: parameters = {} headers, body = self._prepare_update_create( name, disable_rollback, parameters, timeout_mins, template, template_url, environment, files) uri = 'stacks' resp, body = self.post(uri, headers=headers, body=body) self.expected_success(201, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def update_stack(self, stack_identifier, name, disable_rollback=True, parameters=None, timeout_mins=60, template=None, template_url=None, environment=None, files=None): if parameters is None: parameters = {} headers, body = self._prepare_update_create( name, disable_rollback, parameters, timeout_mins, template, template_url, environment) uri = "stacks/%s" % stack_identifier resp, body = self.put(uri, headers=headers, body=body) self.expected_success(202, resp.status) return service_client.ResponseBody(resp, body) def _prepare_update_create(self, name, disable_rollback=True, parameters=None, timeout_mins=60, template=None, template_url=None, environment=None, files=None): if parameters is None: parameters = {} post_body = { "stack_name": name, "disable_rollback": disable_rollback, "parameters": parameters, "timeout_mins": timeout_mins, "template": "HeatTemplateFormatVersion: '2012-12-12'\n", "environment": environment, "files": files } if template: post_body['template'] = template if template_url: post_body['template_url'] = template_url body = json.dumps(post_body) # Password must be provided on stack create so that heat # can perform future operations on behalf of the user headers = self.get_headers() headers['X-Auth-Key'] = self.password headers['X-Auth-User'] = self.user return headers, body def get_stack(self, stack_identifier): """Returns the details of a single stack.""" url = "stacks/%s" % stack_identifier resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body['stack']) def suspend_stack(self, stack_identifier): """Suspend a stack.""" url = 'stacks/%s/actions' % stack_identifier body = {'suspend': None} resp, body = self.post(url, json.dumps(body)) self.expected_success(200, resp.status) return service_client.ResponseBody(resp) def resume_stack(self, stack_identifier): """Resume a stack.""" url = 'stacks/%s/actions' % stack_identifier body = {'resume': None} resp, body = self.post(url, json.dumps(body)) self.expected_success(200, resp.status) return service_client.ResponseBody(resp) def list_resources(self, stack_identifier): """Returns the details of a single resource.""" url = "stacks/%s/resources" % stack_identifier resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBodyList(resp, body['resources']) def get_resource(self, stack_identifier, resource_name): """Returns the details of a single resource.""" url = "stacks/%s/resources/%s" % (stack_identifier, resource_name) resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body['resource']) def delete_stack(self, stack_identifier): """Deletes the specified Stack.""" resp, _ = self.delete("stacks/%s" % str(stack_identifier)) self.expected_success(204, resp.status) return service_client.ResponseBody(resp) def wait_for_resource_status(self, stack_identifier, resource_name, status, failure_pattern='^.*_FAILED$'): """Waits for a Resource to reach a given status.""" start = int(time.time()) fail_regexp = re.compile(failure_pattern) while True: try: body = self.get_resource( stack_identifier, resource_name) except lib_exc.NotFound: # ignore this, as the resource may not have # been created yet pass else: resource_name = body['resource_name'] resource_status = body['resource_status'] if resource_status == status: return if fail_regexp.search(resource_status): raise exceptions.StackResourceBuildErrorException( resource_name=resource_name, stack_identifier=stack_identifier, resource_status=resource_status, resource_status_reason=body['resource_status_reason']) if int(time.time()) - start >= self.build_timeout: message = ('Resource %s failed to reach %s status ' '(current %s) within the required time (%s s).' % (resource_name, status, resource_status, self.build_timeout)) raise exceptions.TimeoutException(message) time.sleep(self.build_interval) def wait_for_stack_status(self, stack_identifier, status, failure_pattern='^.*_FAILED$'): """Waits for a Stack to reach a given status.""" start = int(time.time()) fail_regexp = re.compile(failure_pattern) while True: try: body = self.get_stack(stack_identifier) except lib_exc.NotFound: if status == 'DELETE_COMPLETE': return stack_name = body['stack_name'] stack_status = body['stack_status'] if stack_status == status: return body if fail_regexp.search(stack_status): raise exceptions.StackBuildErrorException( stack_identifier=stack_identifier, stack_status=stack_status, stack_status_reason=body['stack_status_reason']) if int(time.time()) - start >= self.build_timeout: message = ('Stack %s failed to reach %s status (current: %s) ' 'within the required time (%s s).' % (stack_name, status, stack_status, self.build_timeout)) raise exceptions.TimeoutException(message) time.sleep(self.build_interval) def show_resource_metadata(self, stack_identifier, resource_name): """Returns the resource's metadata.""" url = ('stacks/{stack_identifier}/resources/{resource_name}' '/metadata'.format(**locals())) resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body['metadata']) def list_events(self, stack_identifier): """Returns list of all events for a stack.""" url = 'stacks/{stack_identifier}/events'.format(**locals()) resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBodyList(resp, body['events']) def list_resource_events(self, stack_identifier, resource_name): """Returns list of all events for a resource from stack.""" url = ('stacks/{stack_identifier}/resources/{resource_name}' '/events'.format(**locals())) resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBodyList(resp, body['events']) def show_event(self, stack_identifier, resource_name, event_id): """Returns the details of a single stack's event.""" url = ('stacks/{stack_identifier}/resources/{resource_name}/events' '/{event_id}'.format(**locals())) resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body['event']) def show_template(self, stack_identifier): """Returns the template for the stack.""" url = ('stacks/{stack_identifier}/template'.format(**locals())) resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def _validate_template(self, post_body): """Returns the validation request result.""" post_body = json.dumps(post_body) resp, body = self.post('validate', post_body) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def validate_template(self, template, parameters=None): """Returns the validation result for a template with parameters.""" if parameters is None: parameters = {} post_body = { 'template': template, 'parameters': parameters, } return self._validate_template(post_body) def validate_template_url(self, template_url, parameters=None): """Returns the validation result for a template with parameters.""" if parameters is None: parameters = {} post_body = { 'template_url': template_url, 'parameters': parameters, } return self._validate_template(post_body) def list_resource_types(self): """List resource types.""" resp, body = self.get('resource_types') self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBodyList(resp, body['resource_types']) def get_resource_type(self, resource_type_name): """Return the schema of a resource type.""" url = 'resource_types/%s' % resource_type_name resp, body = self.get(url) self.expected_success(200, resp.status) return service_client.ResponseBody(resp, json.loads(body)) def get_resource_type_template(self, resource_type_name): """Return the template of a resource type.""" url = 'resource_types/%s/template' % resource_type_name resp, body = self.get(url) self.expected_success(200, resp.status) return service_client.ResponseBody(resp, json.loads(body)) def create_software_config(self, name=None, config=None, group=None, inputs=None, outputs=None, options=None): headers, body = self._prep_software_config_create( name, config, group, inputs, outputs, options) url = 'software_configs' resp, body = self.post(url, headers=headers, body=body) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def get_software_config(self, conf_id): """Returns a software configuration resource.""" url = 'software_configs/%s' % str(conf_id) resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def delete_software_config(self, conf_id): """Deletes a specific software configuration.""" url = 'software_configs/%s' % str(conf_id) resp, _ = self.delete(url) self.expected_success(204, resp.status) return service_client.ResponseBody(resp) def create_software_deploy(self, server_id=None, config_id=None, action=None, status=None, input_values=None, output_values=None, status_reason=None, signal_transport=None): """Creates or updates a software deployment.""" headers, body = self._prep_software_deploy_update( None, server_id, config_id, action, status, input_values, output_values, status_reason, signal_transport) url = 'software_deployments' resp, body = self.post(url, headers=headers, body=body) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def update_software_deploy(self, deploy_id=None, server_id=None, config_id=None, action=None, status=None, input_values=None, output_values=None, status_reason=None, signal_transport=None): """Creates or updates a software deployment.""" headers, body = self._prep_software_deploy_update( deploy_id, server_id, config_id, action, status, input_values, output_values, status_reason, signal_transport) url = 'software_deployments/%s' % str(deploy_id) resp, body = self.put(url, headers=headers, body=body) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def get_software_deploy_list(self): """Returns a list of all deployments.""" url = 'software_deployments' resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def get_software_deploy(self, deploy_id): """Returns a specific software deployment.""" url = 'software_deployments/%s' % str(deploy_id) resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def get_software_deploy_meta(self, server_id): """Return a config metadata for a specific server.""" url = 'software_deployments/metadata/%s' % server_id resp, body = self.get(url) self.expected_success(200, resp.status) body = json.loads(body) return service_client.ResponseBody(resp, body) def delete_software_deploy(self, deploy_id): """Deletes a specific software deployment.""" url = 'software_deployments/%s' % str(deploy_id) resp, _ = self.delete(url) self.expected_success(204, resp.status) return service_client.ResponseBody(resp) def _prep_software_config_create(self, name=None, conf=None, group=None, inputs=None, outputs=None, options=None): """Prepares a software configuration body.""" post_body = {} if name is not None: post_body["name"] = name if conf is not None: post_body["config"] = conf if group is not None: post_body["group"] = group if inputs is not None: post_body["inputs"] = inputs if outputs is not None: post_body["outputs"] = outputs if options is not None: post_body["options"] = options body = json.dumps(post_body) headers = self.get_headers() return headers, body def _prep_software_deploy_update(self, deploy_id=None, server_id=None, config_id=None, action=None, status=None, input_values=None, output_values=None, status_reason=None, signal_transport=None): """Prepares a deployment create or update (if an id was given).""" post_body = {} if deploy_id is not None: post_body["id"] = deploy_id if server_id is not None: post_body["server_id"] = server_id if config_id is not None: post_body["config_id"] = config_id if action is not None: post_body["action"] = action if status is not None: post_body["status"] = status if input_values is not None: post_body["input_values"] = input_values if output_values is not None: post_body["output_values"] = output_values if status_reason is not None: post_body["status_reason"] = status_reason if signal_transport is not None: post_body["signal_transport"] = signal_transport body = json.dumps(post_body) headers = self.get_headers() return headers, body
the-stack_0_11125
import plistlib from scripts.artifact_report import ArtifactHtmlReport from scripts.ilapfuncs import logfunc, tsv, is_platform_windows def get_wifi(files_found, report_folder, seeker): data_list = [] file_found = str(files_found[0]) with open(file_found, "rb") as fp: pl = plistlib.load(fp) if 'List of known networks' in pl.keys(): for dic in pl['List of known networks']: ssid = dic['SSID_STR'] bssid = "" if 'BSSID' in dic.keys(): bssid = dic['BSSID'] netusage = "" if 'networkUsage' in dic.keys(): netusage = str(dic['networkUsage']) countrycode = "" if '80211D_IE' in dic.keys(): for key2, val2 in dic['80211D_IE'].items(): if key2 == 'IE_KEY_80211D_COUNTRY_CODE': countrycode = val2 devname = "" mfr = "" serialnum = "" modelname = "" if 'WPS_PROB_RESP_IE' in dic.keys(): for key3, val3 in dic['WPS_PROB_RESP_IE'].items(): if key3 == 'IE_KEY_WPS_DEV_NAME': devname = val3 if key3 == 'IE_KEY_WPS_MANUFACTURER': mfr = val3 if key3 == 'IE_KEY_WPS_SERIAL_NUM': serialnum = val3 if key3 == 'IE_KEY_WPS_MODEL_NAME': modelname = val3 lastjoined = "" if 'lastJoined' in dic.keys(): lastjoined = str(dic['lastJoined']) lastautojoined = "" if 'lastAutoJoined' in dic.keys(): lastautojoined = str(dic['lastAutoJoined']) enabled = "" if 'enabled' in dic.keys(): enabled = str(dic['enabled']) data_list.append((ssid, bssid, netusage, countrycode, devname, mfr, serialnum, modelname, lastjoined, lastautojoined, enabled)) if len(data_list) > 0: report = ArtifactHtmlReport('Wifi') report.start_artifact_report(report_folder, 'Wifi') report.add_script() data_headers = ('SSID','BSSID', 'Network usage', 'Country code', 'Device name', 'Manufacturer', 'Serial number', 'Model name', 'Last joined', 'Last autojoined', 'Enabled') report.write_artifact_data_table(data_headers, data_list, file_found) report.end_artifact_report() tsvname = 'Wifi' tsv(report_folder, data_headers, data_list, tsvname) else: logfunc('No Networks data')
the-stack_0_11126
#!/usr/bin/env python # -*- coding: utf8 -*- """ The MetadataWizard(pymdwizard) software was developed by the U.S. Geological Survey Fort Collins Science Center. See: https://github.com/usgs/fort-pymdwizard for current project source code See: https://usgs.github.io/fort-pymdwizard/ for current user documentation See: https://github.com/usgs/fort-pymdwizard/tree/master/examples for examples of use in other scripts License: Creative Commons Attribution 4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/ PURPOSE ------------------------------------------------------------------------------ Module contains a variety of miscellaneous functions SCRIPT DEPENDENCIES ------------------------------------------------------------------------------ This script is part of the pymdwizard package and is not intented to be used independently. All pymdwizard package requirements are needed. See imports section for external packages used in this script as well as inter-package dependencies U.S. GEOLOGICAL SURVEY DISCLAIMER ------------------------------------------------------------------------------ This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use. Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Geological Survey. Although this information product, for the most part, is in the public domain, it also contains copyrighted material as noted in the text. Permission to reproduce copyrighted items for other than personal use must be secured from the copyright owner. ------------------------------------------------------------------------------ """ import sys import os import traceback import pkg_resources import re try: from urllib.parse import urlparse except: from urlparse import urlparse from pathlib import Path from datetime import datetime, timedelta import pandas as pd from PyQt5.QtWidgets import QLineEdit from PyQt5.QtWidgets import QTextBrowser from PyQt5.QtWidgets import QPlainTextEdit from PyQt5.QtWidgets import QApplication from PyQt5.QtWidgets import QComboBox from PyQt5.QtCore import Qt from PyQt5.QtGui import QIcon from PyQt5.QtCore import QSettings def set_text(widget, text): """ set the text of a widget regardless of it's base type Parameters ---------- widget : QtGui:QWidget This widget is a QlineEdit or QPlainText edit text : str The text that will be inserted Returns ------- None """ if isinstance(widget, QLineEdit): widget.setText(text) widget.setCursorPosition(0) if isinstance(widget, QPlainTextEdit): widget.setPlainText(text) if isinstance(widget, QTextBrowser): widget.setText(text) if isinstance(widget, QComboBox): index = widget.findText(text, Qt.MatchFixedString) if index >= 0: widget.setCurrentIndex(index) else: widget.setEditText(text) def launch_widget(Widget, title="", **kwargs): """ run a widget within it's own application Parameters ---------- widget : QWidget title : str The title to use for the application Returns ------- None """ try: app = QApplication([]) app.title = title widget = Widget(**kwargs) print('blah') widget.setWindowTitle(title) widget.show() sys.exit(app.exec_()) # return widget except: e = sys.exc_info()[0] print('problem encountered', e) print(traceback.format_exc()) # def get_resource_path(fname): # """ # # Parameters # ---------- # fname : str # filename that you would like to find # # Returns # ------- # the full file path to the resource specified # """ # # if getattr(sys, 'frozen') and hasattr(sys, '_MEIPASS'): # # return pkg_resources.resource_filename('guanoeditor', # 'DATA/{}'.format(fname)) # else: # return pkg_resources.resource_filename('guanoeditor', # 'resources/{}'.format(fname)) def set_window_icon(widget, remove_help=True): """ Add our default ducky icon to a widget Parameters ---------- widget : PyQt widget remove_help : Bool Whether to show the help question mark icon. Returns ------- None """ icon = QIcon(get_resource_path('icons/Ducky.ico')) widget.setWindowIcon(icon) if remove_help: widget.setWindowFlags(Qt.Window | Qt.CustomizeWindowHint | Qt.WindowTitleHint | Qt.WindowCloseButtonHint | Qt.WindowStaysOnTopHint) def get_setting(which, default=None): """ return a pymdwizard application setting Parameters ---------- which: str name of setting to return Returns ------- setting in native format, string, integer, etc """ settings = QSettings('USGS', 'guanoeditor') if default is None: return settings.value(which) else: return settings.value(which, default) def resource_path(relative_path): if hasattr(sys, '_MEIPASS'): relative_path = relative_path.split('/')[-1] return os.path.join(sys._MEIPASS, f"DATA/{relative_path}") else: return os.path.join(os.path.abspath('.'), relative_path) def read_namespace(fname): namespace_df = pd.read_csv(fname) namespace_df = namespace_df[['tag', 'description', 'required', 'data_type', 'picklist']] # namespace_df = namespace_df[namespace_df.tag.str.startswith('NABat|')] namespace_df.picklist = namespace_df.picklist.fillna('') namespace_dict = namespace_df.to_dict('records') for thing in namespace_dict: if thing['picklist']: thing['picklist'] = thing['picklist'].split('|') return namespace_dict def clean_name(fname): if isinstance(fname, Path): fname = str(fname) f = Path(fname) name = f.stem extension = f.suffix # Step 1: remove anything in square brackets name = re.sub("\[.*\]", '', name) # Step 2: replace any non word characters with underscores name = re.sub("\W", '_', name) # Step 3: replace multiple underscores with a single name = re.sub("_+", '_', name) # Step 4: replace underscore separated single digits name = re.sub("_[0-9]_", '_', name) # Step 5: remove non digit characters at the begining of the file name = re.sub("^\D+", '', name) # Step 6: remove trailing _000, _001, _005, _0001 etc. name = re.sub("_[0-9]{3,4}$", '', name) return name + extension
the-stack_0_11128
"""Requirements specific to SQLAlchemy's own unit tests. """ import sys from sqlalchemy import exc from sqlalchemy.sql import text from sqlalchemy.testing import exclusions from sqlalchemy.testing.exclusions import against from sqlalchemy.testing.exclusions import fails_if from sqlalchemy.testing.exclusions import fails_on from sqlalchemy.testing.exclusions import fails_on_everything_except from sqlalchemy.testing.exclusions import LambdaPredicate from sqlalchemy.testing.exclusions import NotPredicate from sqlalchemy.testing.exclusions import only_if from sqlalchemy.testing.exclusions import only_on from sqlalchemy.testing.exclusions import skip_if from sqlalchemy.testing.exclusions import SpecPredicate from sqlalchemy.testing.exclusions import succeeds_if from sqlalchemy.testing.requirements import SuiteRequirements def no_support(db, reason): return SpecPredicate(db, description=reason) def exclude(db, op, spec, description=None): return SpecPredicate(db, op, spec, description=description) class DefaultRequirements(SuiteRequirements): @property def deferrable_or_no_constraints(self): """Target database must support deferrable constraints.""" return skip_if( [ no_support("firebird", "not supported by database"), no_support("mysql", "not supported by database"), no_support("mariadb", "not supported by database"), no_support("mssql", "not supported by database"), ] ) @property def check_constraints(self): """Target database must support check constraints.""" return exclusions.open() @property def enforces_check_constraints(self): """Target database must also enforce check constraints.""" return self.check_constraints + fails_on( self._mysql_check_constraints_dont_exist, "check constraints don't enforce on MySQL, MariaDB<10.2", ) @property def named_constraints(self): """target database must support names for constraints.""" return exclusions.open() @property def implicitly_named_constraints(self): """target database must apply names to unnamed constraints.""" return skip_if([no_support("sqlite", "not supported by database")]) @property def foreign_keys(self): """Target database must support foreign keys.""" return skip_if(no_support("sqlite", "not supported by database")) @property def table_ddl_if_exists(self): """target platform supports IF NOT EXISTS / IF EXISTS for tables.""" return only_on(["postgresql", "mysql", "mariadb", "sqlite"]) @property def index_ddl_if_exists(self): """target platform supports IF NOT EXISTS / IF EXISTS for indexes.""" # mariadb but not mysql, tested up to mysql 8 return only_on(["postgresql", "mariadb", "sqlite"]) @property def on_update_cascade(self): """target database must support ON UPDATE..CASCADE behavior in foreign keys.""" return skip_if( ["sqlite", "oracle"], "target backend %(doesnt_support)s ON UPDATE CASCADE", ) @property def non_updating_cascade(self): """target database must *not* support ON UPDATE..CASCADE behavior in foreign keys.""" return fails_on_everything_except("sqlite", "oracle") + skip_if( "mssql" ) @property def recursive_fk_cascade(self): """target database must support ON DELETE CASCADE on a self-referential foreign key""" return skip_if(["mssql"]) @property def deferrable_fks(self): """target database must support deferrable fks""" return only_on(["oracle", "postgresql"]) @property def foreign_key_constraint_option_reflection_ondelete(self): return only_on(["postgresql", "mysql", "mariadb", "sqlite", "oracle"]) @property def fk_constraint_option_reflection_ondelete_restrict(self): return only_on(["postgresql", "sqlite", self._mysql_80]) @property def fk_constraint_option_reflection_ondelete_noaction(self): return only_on(["postgresql", "mysql", "mariadb", "sqlite"]) @property def foreign_key_constraint_option_reflection_onupdate(self): return only_on(["postgresql", "mysql", "mariadb", "sqlite"]) @property def fk_constraint_option_reflection_onupdate_restrict(self): return only_on(["postgresql", "sqlite", self._mysql_80]) @property def comment_reflection(self): return only_on(["postgresql", "mysql", "mariadb", "oracle"]) @property def unbounded_varchar(self): """Target database must support VARCHAR with no length""" return skip_if( ["firebird", "oracle", "mysql", "mariadb"], "not supported by database", ) @property def boolean_col_expressions(self): """Target database must support boolean expressions as columns""" return skip_if( [ no_support("firebird", "not supported by database"), no_support("oracle", "not supported by database"), no_support("mssql", "not supported by database"), no_support("sybase", "not supported by database"), ] ) @property def non_native_boolean_unconstrained(self): """target database is not native boolean and allows arbitrary integers in it's "bool" column""" return skip_if( [ LambdaPredicate( lambda config: against(config, "mssql"), "SQL Server drivers / odbc seem to change " "their mind on this", ), LambdaPredicate( lambda config: config.db.dialect.supports_native_boolean, "native boolean dialect", ), ] ) @property def standalone_binds(self): """target database/driver supports bound parameters as column expressions without being in the context of a typed column. """ return skip_if(["firebird", "mssql+mxodbc"], "not supported by driver") @property def qmark_paramstyle(self): return only_on( [ "firebird", "sqlite", "+pyodbc", "+mxodbc", "mysql+oursql", "mariadb+oursql", ] ) @property def named_paramstyle(self): return only_on(["sqlite", "oracle+cx_oracle"]) @property def format_paramstyle(self): return only_on( [ "mysql+mysqldb", "mysql+pymysql", "mysql+cymysql", "mysql+mysqlconnector", "mariadb+mysqldb", "mariadb+pymysql", "mariadb+cymysql", "mariadb+mysqlconnector", "postgresql+pg8000", ] ) @property def pyformat_paramstyle(self): return only_on( [ "postgresql+psycopg2", "postgresql+psycopg2cffi", "postgresql+pypostgresql", "postgresql+pygresql", "mysql+mysqlconnector", "mysql+pymysql", "mysql+cymysql", "mariadb+mysqlconnector", "mariadb+pymysql", "mariadb+cymysql", "mssql+pymssql", ] ) @property def no_quoting_special_bind_names(self): """Target database will quote bound parameter names, doesn't support EXPANDING""" return skip_if(["oracle"]) @property def temporary_tables(self): """target database supports temporary tables""" return skip_if(["firebird", self._sqlite_file_db], "not supported (?)") @property def temp_table_reflection(self): return self.temporary_tables @property def temp_table_reflect_indexes(self): return skip_if( ["mssql", "firebird", self._sqlite_file_db], "not supported (?)" ) @property def reflectable_autoincrement(self): """Target database must support tables that can automatically generate PKs assuming they were reflected. this is essentially all the DBs in "identity" plus PostgreSQL, which has SERIAL support. FB and Oracle (and sybase?) require the Sequence to be explicitly added, including if the table was reflected. """ return skip_if( ["firebird", "oracle", "sybase"], "not supported by database" ) @property def insert_from_select(self): return skip_if(["firebird"], "crashes for unknown reason") @property def fetch_rows_post_commit(self): return skip_if(["firebird"], "not supported") @property def non_broken_binary(self): """target DBAPI must work fully with binary values""" # see https://github.com/pymssql/pymssql/issues/504 return skip_if(["mssql+pymssql"]) @property def binary_comparisons(self): """target database/driver can allow BLOB/BINARY fields to be compared against a bound parameter value. """ return skip_if(["oracle", "mssql"], "not supported by database/driver") @property def binary_literals(self): """target backend supports simple binary literals, e.g. an expression like:: SELECT CAST('foo' AS BINARY) Where ``BINARY`` is the type emitted from :class:`.LargeBinary`, e.g. it could be ``BLOB`` or similar. Basically fails on Oracle. """ # adding mssql here since it doesn't support comparisons either, # have observed generally bad behavior with binary / mssql. return skip_if(["oracle", "mssql"], "not supported by database/driver") @property def tuple_in(self): def _sqlite_tuple_in(config): return against( config, "sqlite" ) and config.db.dialect.dbapi.sqlite_version_info >= (3, 15, 0) return only_on( ["mysql", "mariadb", "postgresql", _sqlite_tuple_in, "oracle"] ) @property def tuple_in_w_empty(self): return self.tuple_in + skip_if(["oracle"]) @property def independent_cursors(self): """Target must support simultaneous, independent database cursors on a single connection.""" return skip_if(["mssql", "mysql", "mariadb"], "no driver support") @property def independent_connections(self): """ Target must support simultaneous, independent database connections. """ # This is also true of some configurations of UnixODBC and probably # win32 ODBC as well. return skip_if( [ no_support( "sqlite", "independent connections disabled " "when :memory: connections are used", ), exclude( "mssql", "<", (9, 0, 0), "SQL Server 2005+ is required for " "independent connections", ), ] ) @property def memory_process_intensive(self): """Driver is able to handle the memory tests which run in a subprocess and iterate through hundreds of connections """ return skip_if( [ no_support("oracle", "Oracle XE usually can't handle these"), no_support("mssql+pyodbc", "MS ODBC drivers struggle"), self._running_on_windows(), ] ) @property def updateable_autoincrement_pks(self): """Target must support UPDATE on autoincrement/integer primary key.""" return skip_if( ["mssql", "sybase"], "IDENTITY columns can't be updated" ) @property def isolation_level(self): return only_on( ("postgresql", "sqlite", "mysql", "mariadb", "mssql", "oracle"), "DBAPI has no isolation level support", ) + fails_on( "postgresql+pypostgresql", "pypostgresql bombs on multiple isolation level calls", ) def get_isolation_levels(self, config): levels = set(config.db.dialect._isolation_lookup) if against(config, "sqlite"): default = "SERIALIZABLE" levels.add("AUTOCOMMIT") elif against(config, "postgresql"): default = "READ COMMITTED" levels.add("AUTOCOMMIT") elif against(config, "mysql"): default = "REPEATABLE READ" levels.add("AUTOCOMMIT") elif against(config, "mariadb"): default = "REPEATABLE READ" levels.add("AUTOCOMMIT") elif against(config, "mssql"): default = "READ COMMITTED" levels.add("AUTOCOMMIT") elif against(config, "oracle"): default = "READ COMMITTED" levels.add("AUTOCOMMIT") else: raise NotImplementedError() return {"default": default, "supported": levels} @property def autocommit(self): """target dialect supports 'AUTOCOMMIT' as an isolation_level""" return self.isolation_level + only_if( lambda config: "AUTOCOMMIT" in self.get_isolation_levels(config)["supported"] ) @property def row_triggers(self): """Target must support standard statement-running EACH ROW triggers.""" return skip_if( [ # no access to same table no_support("mysql", "requires SUPER priv"), no_support("mariadb", "requires SUPER priv"), exclude("mysql", "<", (5, 0, 10), "not supported by database"), ] ) @property def sequences_as_server_defaults(self): """Target database must support SEQUENCE as a server side default.""" return only_on( "postgresql", "doesn't support sequences as a server side default." ) @property def sql_expressions_inserted_as_primary_key(self): return only_if([self.returning, self.sqlite]) @property def computed_columns_on_update_returning(self): return self.computed_columns + skip_if("oracle") @property def correlated_outer_joins(self): """Target must support an outer join to a subquery which correlates to the parent.""" return skip_if( "oracle", 'Raises "ORA-01799: a column may not be ' 'outer-joined to a subquery"', ) @property def update_from(self): """Target must support UPDATE..FROM syntax""" return only_on( ["postgresql", "mssql", "mysql", "mariadb"], "Backend does not support UPDATE..FROM", ) @property def delete_from(self): """Target must support DELETE FROM..FROM or DELETE..USING syntax""" return only_on( ["postgresql", "mssql", "mysql", "mariadb", "sybase"], "Backend does not support DELETE..FROM", ) @property def update_where_target_in_subquery(self): """Target must support UPDATE (or DELETE) where the same table is present in a subquery in the WHERE clause. This is an ANSI-standard syntax that apparently MySQL can't handle, such as:: UPDATE documents SET flag=1 WHERE documents.title IN (SELECT max(documents.title) AS title FROM documents GROUP BY documents.user_id ) """ return fails_if( self._mysql_not_mariadb_103, 'MySQL error 1093 "Cant specify target table ' 'for update in FROM clause", resolved by MariaDB 10.3', ) @property def savepoints(self): """Target database must support savepoints.""" return skip_if( ["sqlite", "sybase", ("mysql", "<", (5, 0, 3))], "savepoints not supported", ) @property def savepoints_w_release(self): return self.savepoints + skip_if( ["oracle", "mssql"], "database doesn't support release of savepoint", ) @property def schemas(self): """Target database must support external schemas, and have one named 'test_schema'.""" return skip_if(["firebird"], "no schema support") @property def cross_schema_fk_reflection(self): """target system must support reflection of inter-schema foreign keys""" return only_on(["postgresql", "mysql", "mariadb", "mssql"]) @property def implicit_default_schema(self): """target system has a strong concept of 'default' schema that can be referred to implicitly. basically, PostgreSQL. """ return only_on(["postgresql"]) @property def default_schema_name_switch(self): return only_on(["postgresql", "oracle"]) @property def unique_constraint_reflection(self): return fails_on_everything_except( "postgresql", "mysql", "mariadb", "sqlite", "oracle" ) @property def unique_constraint_reflection_no_index_overlap(self): return ( self.unique_constraint_reflection + skip_if("mysql") + skip_if("mariadb") + skip_if("oracle") ) @property def check_constraint_reflection(self): return fails_on_everything_except( "postgresql", "sqlite", "oracle", self._mysql_and_check_constraints_exist, ) @property def indexes_with_expressions(self): return only_on(["postgresql", "sqlite>=3.9.0"]) @property def temp_table_names(self): """target dialect supports listing of temporary table names""" return only_on(["sqlite", "oracle"]) + skip_if(self._sqlite_file_db) @property def temporary_views(self): """target database supports temporary views""" return only_on(["sqlite", "postgresql"]) + skip_if( self._sqlite_file_db ) @property def update_nowait(self): """Target database must support SELECT...FOR UPDATE NOWAIT""" return skip_if( ["firebird", "mssql", "mysql", "mariadb", "sqlite", "sybase"], "no FOR UPDATE NOWAIT support", ) @property def subqueries(self): """Target database must support subqueries.""" return exclusions.open() @property def ctes(self): """Target database supports CTEs""" return only_on( [ lambda config: against(config, "mysql") and ( ( config.db.dialect._is_mariadb and config.db.dialect._mariadb_normalized_version_info >= (10, 2) ) or ( not config.db.dialect._is_mariadb and config.db.dialect.server_version_info >= (8,) ) ), "mariadb>10.2", "postgresql", "mssql", "oracle", "sqlite>=3.8.3", ] ) @property def ctes_with_update_delete(self): """target database supports CTES that ride on top of a normal UPDATE or DELETE statement which refers to the CTE in a correlated subquery. """ return only_on( [ "postgresql", "mssql", # "oracle" - oracle can do this but SQLAlchemy doesn't support # their syntax yet ] ) @property def ctes_on_dml(self): """target database supports CTES which consist of INSERT, UPDATE or DELETE *within* the CTE, e.g. WITH x AS (UPDATE....)""" return only_if(["postgresql"]) @property def mod_operator_as_percent_sign(self): """target database must use a plain percent '%' as the 'modulus' operator.""" return only_if( ["mysql", "mariadb", "sqlite", "postgresql+psycopg2", "mssql"] ) @property def intersect(self): """Target database must support INTERSECT or equivalent.""" return fails_if( ["firebird", self._mysql_not_mariadb_103, "sybase"], "no support for INTERSECT", ) @property def except_(self): """Target database must support EXCEPT or equivalent (i.e. MINUS).""" return fails_if( ["firebird", self._mysql_not_mariadb_103, "sybase"], "no support for EXCEPT", ) @property def order_by_col_from_union(self): """target database supports ordering by a column from a SELECT inside of a UNION E.g. (SELECT id, ...) UNION (SELECT id, ...) ORDER BY id Fails on SQL Server """ return fails_if("mssql") @property def parens_in_union_contained_select_w_limit_offset(self): """Target database must support parenthesized SELECT in UNION when LIMIT/OFFSET is specifically present. E.g. (SELECT ... LIMIT ..) UNION (SELECT .. OFFSET ..) This is known to fail on SQLite. """ return fails_if("sqlite") @property def parens_in_union_contained_select_wo_limit_offset(self): """Target database must support parenthesized SELECT in UNION when OFFSET/LIMIT is specifically not present. E.g. (SELECT ...) UNION (SELECT ..) This is known to fail on SQLite. It also fails on Oracle because without LIMIT/OFFSET, there is currently no step that creates an additional subquery. """ return fails_if(["sqlite", "oracle"]) @property def offset(self): """Target database must support some method of adding OFFSET or equivalent to a result set.""" return fails_if(["sybase"], "no support for OFFSET or equivalent") @property def sql_expression_limit_offset(self): return ( fails_if( ["mysql", "mariadb"], "Target backend can't accommodate full expressions in " "OFFSET or LIMIT", ) + self.offset ) @property def window_functions(self): return only_if( ["postgresql>=8.4", "mssql", "oracle", "sqlite>=3.25.0"], "Backend does not support window functions", ) @property def two_phase_transactions(self): """Target database must support two-phase transactions.""" def pg_prepared_transaction(config): if not against(config, "postgresql"): return True with config.db.connect() as conn: try: num = conn.scalar( text( "select cast(setting AS integer) from pg_settings " "where name = 'max_prepared_transactions'" ) ) except exc.OperationalError: return False else: return num > 0 return skip_if( [ no_support("firebird", "no SA implementation"), no_support("mssql", "two-phase xact not supported by drivers"), no_support( "oracle", "two-phase xact not implemented in SQLA/oracle" ), no_support( "sqlite", "two-phase xact not supported by database" ), no_support( "sybase", "two-phase xact not supported by drivers/SQLA" ), # in Ia3cbbf56d4882fcc7980f90519412f1711fae74d # we are evaluating which modern MySQL / MariaDB versions # can handle two-phase testing without too many problems # no_support( # "mysql", # "recent MySQL communiity editions have too many issues " # "(late 2016), disabling for now", # ), NotPredicate( LambdaPredicate( pg_prepared_transaction, "max_prepared_transactions not available or zero", ) ), ] ) @property def two_phase_recovery(self): return self.two_phase_transactions + ( skip_if( ["mysql", "mariadb"], "still can't get recover to work w/ MariaDB / MySQL", ) ) @property def views(self): """Target database must support VIEWs.""" return skip_if("drizzle", "no VIEW support") @property def empty_strings_varchar(self): """ target database can persist/return an empty string with a varchar. """ return fails_if( ["oracle"], "oracle converts empty strings to a blank space" ) @property def empty_strings_text(self): """target database can persist/return an empty string with an unbounded text.""" return fails_if( ["oracle"], "oracle converts empty strings to a blank space" ) @property def expressions_against_unbounded_text(self): """target database supports use of an unbounded textual field in a WHERE clause.""" return fails_if( ["oracle"], "ORA-00932: inconsistent datatypes: expected - got CLOB", ) @property def unicode_data(self): """target drive must support unicode data stored in columns.""" return skip_if([no_support("sybase", "no unicode driver support")]) @property def unicode_connections(self): """ Target driver must support some encoding of Unicode across the wire. """ return exclusions.open() @property def unicode_ddl(self): """Target driver must support some degree of non-ascii symbol names.""" return skip_if( [ no_support("oracle", "FIXME: no support in database?"), no_support("sybase", "FIXME: guessing, needs confirmation"), no_support("mssql+pymssql", "no FreeTDS support"), ] ) @property def symbol_names_w_double_quote(self): """Target driver can create tables with a name like 'some " table'""" return skip_if( [no_support("oracle", "ORA-03001: unimplemented feature")] ) @property def emulated_lastrowid(self): """ "target dialect retrieves cursor.lastrowid or an equivalent after an insert() construct executes. """ return fails_on_everything_except( "mysql", "mariadb", "sqlite+pysqlite", "sqlite+pysqlcipher", "sybase", "mssql", ) @property def emulated_lastrowid_even_with_sequences(self): """ "target dialect retrieves cursor.lastrowid or an equivalent after an insert() construct executes, even if the table has a Sequence on it. """ return fails_on_everything_except( "mysql", "mariadb", "sqlite+pysqlite", "sqlite+pysqlcipher", "sybase", ) @property def implements_get_lastrowid(self): return skip_if([no_support("sybase", "not supported by database")]) @property def dbapi_lastrowid(self): """ "target backend includes a 'lastrowid' accessor on the DBAPI cursor object. """ return skip_if( "mssql+pymssql", "crashes on pymssql" ) + fails_on_everything_except( "mysql", "mariadb", "sqlite+pysqlite", "sqlite+pysqlcipher", "mssql", ) @property def nullsordering(self): """Target backends that support nulls ordering.""" return fails_on_everything_except( "postgresql", "oracle", "firebird", "sqlite >= 3.30.0" ) @property def reflects_pk_names(self): """Target driver reflects the name of primary key constraints.""" return fails_on_everything_except( "postgresql", "oracle", "mssql", "sybase", "sqlite" ) @property def nested_aggregates(self): """target database can select an aggregate from a subquery that's also using an aggregate""" return skip_if(["mssql", "sqlite"]) @property def array_type(self): return only_on( [ lambda config: against(config, "postgresql") and not against(config, "+pg8000") ] ) @property def json_type(self): return only_on( [ lambda config: against(config, "mysql") and ( ( not config.db.dialect._is_mariadb and against(config, "mysql >= 5.7") ) or ( config.db.dialect._mariadb_normalized_version_info >= (10, 2, 7) ) ), "mariadb>=10.2.7", "postgresql >= 9.3", self._sqlite_json, "mssql", ] ) @property def json_index_supplementary_unicode_element(self): # for sqlite see https://bugs.python.org/issue38749 return skip_if( [ lambda config: against(config, "mysql") and config.db.dialect._is_mariadb, "mariadb", "sqlite", ] ) @property def legacy_unconditional_json_extract(self): """Backend has a JSON_EXTRACT or similar function that returns a valid JSON string in all cases. Used to test a legacy feature and is not needed. """ return self.json_type + only_on( ["postgresql", "mysql", "mariadb", "sqlite"] ) def _sqlite_file_db(self, config): return against(config, "sqlite") and config.db.dialect._is_url_file_db( config.db.url ) def _sqlite_memory_db(self, config): return against( config, "sqlite" ) and not config.db.dialect._is_url_file_db(config.db.url) def _sqlite_json(self, config): if not against(config, "sqlite >= 3.9"): return False else: with config.db.connect() as conn: try: return ( conn.exec_driver_sql( """select json_extract('{"foo": "bar"}', """ """'$."foo"')""" ).scalar() == "bar" ) except exc.DBAPIError: return False @property def reflects_json_type(self): return only_on( [ lambda config: against(config, "mysql >= 5.7") and not config.db.dialect._is_mariadb, "postgresql >= 9.3", "sqlite >= 3.9", ] ) @property def json_array_indexes(self): return self.json_type @property def datetime_literals(self): """target dialect supports rendering of a date, time, or datetime as a literal string, e.g. via the TypeEngine.literal_processor() method. """ return fails_on_everything_except("sqlite") @property def datetime(self): """target dialect supports representation of Python datetime.datetime() objects.""" return exclusions.open() @property def datetime_microseconds(self): """target dialect supports representation of Python datetime.datetime() with microsecond objects.""" return skip_if( ["mssql", "mysql", "mariadb", "firebird", "oracle", "sybase"] ) @property def timestamp_microseconds(self): """target dialect supports representation of Python datetime.datetime() with microsecond objects but only if TIMESTAMP is used.""" return only_on(["oracle"]) @property def datetime_historic(self): """target dialect supports representation of Python datetime.datetime() objects with historic (pre 1900) values.""" return succeeds_if(["sqlite", "postgresql", "firebird"]) @property def date(self): """target dialect supports representation of Python datetime.date() objects.""" return exclusions.open() @property def date_coerces_from_datetime(self): """target dialect accepts a datetime object as the target of a date column.""" # does not work as of pyodbc 4.0.22 return fails_on("mysql+mysqlconnector") + skip_if("mssql+pyodbc") @property def date_historic(self): """target dialect supports representation of Python datetime.datetime() objects with historic (pre 1900) values.""" return succeeds_if(["sqlite", "postgresql", "firebird"]) @property def time(self): """target dialect supports representation of Python datetime.time() objects.""" return skip_if(["oracle"]) @property def time_microseconds(self): """target dialect supports representation of Python datetime.time() with microsecond objects.""" return skip_if( ["mssql", "mysql", "mariadb", "firebird", "oracle", "sybase"] ) @property def precision_numerics_general(self): """target backend has general support for moderately high-precision numerics.""" return exclusions.open() @property def precision_numerics_enotation_small(self): """target backend supports Decimal() objects using E notation to represent very small values.""" # NOTE: this exclusion isn't used in current tests. return exclusions.open() @property def precision_numerics_enotation_large(self): """target backend supports Decimal() objects using E notation to represent very large values.""" return fails_if( [ ( "sybase+pyodbc", None, None, "Don't know how do get these values through " "FreeTDS + Sybase", ), ("firebird", None, None, "Precision must be from 1 to 18"), ] ) @property def precision_numerics_many_significant_digits(self): """target backend supports values with many digits on both sides, such as 319438950232418390.273596, 87673.594069654243 """ def broken_cx_oracle(config): return ( against(config, "oracle+cx_oracle") and config.db.dialect.cx_oracle_ver <= (6, 0, 2) and config.db.dialect.cx_oracle_ver > (6,) ) return fails_if( [ ("sqlite", None, None, "TODO"), ("firebird", None, None, "Precision must be from 1 to 18"), ("sybase+pysybase", None, None, "TODO"), ] ) @property def cast_precision_numerics_many_significant_digits(self): """same as precision_numerics_many_significant_digits but within the context of a CAST statement (hello MySQL) """ return self.precision_numerics_many_significant_digits + fails_if( "mysql" ) @property def precision_numerics_retains_significant_digits(self): """A precision numeric type will return empty significant digits, i.e. a value such as 10.000 will come back in Decimal form with the .000 maintained.""" return fails_if( [ ("oracle", None, None, "driver doesn't do this automatically"), ( "firebird", None, None, "database and/or driver truncates decimal places.", ), ] ) @property def precision_generic_float_type(self): """target backend will return native floating point numbers with at least seven decimal places when using the generic Float type.""" return fails_if( [ ( "mysql", None, None, "mysql FLOAT type only returns 4 decimals", ), ( "mariadb", None, None, "mysql FLOAT type only returns 4 decimals", ), ( "firebird", None, None, "firebird FLOAT type isn't high precision", ), ] ) @property def floats_to_four_decimals(self): return fails_if( [ ("mysql+oursql", None, None, "Floating point error"), ("mariadb+oursql", None, None, "Floating point error"), ( "firebird", None, None, "Firebird still has FP inaccuracy even " "with only four decimal places", ), ] ) @property def implicit_decimal_binds(self): """target backend will return a selected Decimal as a Decimal, not a string. e.g.:: expr = decimal.Decimal("15.7563") value = e.scalar( select(literal(expr)) ) assert value == expr See :ticket:`4036` """ return exclusions.open() @property def fetch_null_from_numeric(self): return skip_if(("mssql+pyodbc", None, None, "crashes due to bug #351")) @property def duplicate_key_raises_integrity_error(self): return exclusions.open() def _has_pg_extension(self, name): def check(config): if not against(config, "postgresql"): return False count = ( config.db.connect(close_with_result=True) .exec_driver_sql( "SELECT count(*) FROM pg_extension " "WHERE extname='%s'" % name ) .scalar() ) return bool(count) return only_if(check, "needs %s extension" % name) @property def hstore(self): return self._has_pg_extension("hstore") @property def btree_gist(self): return self._has_pg_extension("btree_gist") @property def range_types(self): def check_range_types(config): if not against( config, ["postgresql+psycopg2", "postgresql+psycopg2cffi"] ): return False try: config.db.connect(close_with_result=True).exec_driver_sql( "select '[1,2)'::int4range;" ).scalar() return True except Exception: return False return only_if(check_range_types) @property def async_dialect(self): """dialect makes use of await_() to invoke operations on the DBAPI.""" return only_on( LambdaPredicate( lambda config: config.db.dialect.is_async, "Async dialect required", ) ) @property def oracle_test_dblink(self): return skip_if( lambda config: not config.file_config.has_option( "sqla_testing", "oracle_db_link" ), "oracle_db_link option not specified in config", ) @property def postgresql_test_dblink(self): return skip_if( lambda config: not config.file_config.has_option( "sqla_testing", "postgres_test_db_link" ), "postgres_test_db_link option not specified in config", ) @property def postgresql_jsonb(self): return only_on("postgresql >= 9.4") + skip_if( lambda config: config.db.dialect.driver == "pg8000" and config.db.dialect._dbapi_version <= (1, 10, 1) ) @property def psycopg2_native_hstore(self): return self.psycopg2_compatibility @property def psycopg2_compatibility(self): return only_on(["postgresql+psycopg2", "postgresql+psycopg2cffi"]) @property def psycopg2_or_pg8000_compatibility(self): return only_on( [ "postgresql+psycopg2", "postgresql+psycopg2cffi", "postgresql+pg8000", ] ) @property def percent_schema_names(self): return skip_if( ["mysql+aiomysql", "mariadb+aiomysql"], "see pr https://github.com/aio-libs/aiomysql/pull/545", ) @property def order_by_label_with_expression(self): return fails_if( [ ( "firebird", None, None, "kinterbasdb doesn't send full type information", ), ("postgresql", None, None, "only simple labels allowed"), ("sybase", None, None, "only simple labels allowed"), ("mssql", None, None, "only simple labels allowed"), ] ) def get_order_by_collation(self, config): lookup = { # will raise without quoting "postgresql": "POSIX", # note MySQL databases need to be created w/ utf8mb4 charset # for the test suite "mysql": "utf8mb4_bin", "mariadb": "utf8mb4_bin", "sqlite": "NOCASE", # will raise *with* quoting "mssql": "Latin1_General_CI_AS", } try: return lookup[config.db.name] except KeyError: raise NotImplementedError() @property def skip_mysql_on_windows(self): """Catchall for a large variety of MySQL on Windows failures""" return skip_if( self._has_mysql_on_windows, "Not supported on MySQL + Windows" ) @property def mssql_freetds(self): return only_on(["mssql+pymssql"]) @property def legacy_engine(self): return exclusions.skip_if(lambda config: config.db._is_future) @property def ad_hoc_engines(self): return ( exclusions.skip_if( ["oracle"], "works, but Oracle just gets tired with " "this much connection activity", ) + skip_if(self._sqlite_file_db) ) @property def no_mssql_freetds(self): return self.mssql_freetds.not_() @property def pyodbc_fast_executemany(self): def has_fastexecutemany(config): if not against(config, "mssql+pyodbc"): return False if config.db.dialect._dbapi_version() < (4, 0, 19): return False with config.db.connect() as conn: drivername = conn.connection.connection.getinfo( config.db.dialect.dbapi.SQL_DRIVER_NAME ) # on linux this is something like 'libmsodbcsql-13.1.so.9.2'. # on Windows this is something like 'msodbcsql17.dll'. return "msodbc" in drivername return only_if( has_fastexecutemany, "only on pyodbc > 4.0.19 w/ msodbc driver" ) @property def python_fixed_issue_8743(self): return exclusions.skip_if( lambda: sys.version_info < (2, 7, 8), "Python issue 8743 fixed in Python 2.7.8", ) @property def granular_timezone(self): """the datetime.timezone class, or SQLAlchemy's port, supports seconds and microseconds. SQLAlchemy ported the Python 3.7 version for Python 2, so it passes on that. For Python 3.6 and earlier, it is not supported. """ return exclusions.skip_if( lambda: sys.version_info >= (3,) and sys.version_info < (3, 7) ) @property def selectone(self): """target driver must support the literal statement 'select 1'""" return skip_if( ["oracle", "firebird"], "non-standard SELECT scalar syntax" ) @property def mysql_for_update(self): return skip_if( "mysql+mysqlconnector", "lock-sensitive operations crash on mysqlconnector", ) @property def mysql_fsp(self): return only_if(["mysql >= 5.6.4", "mariadb"]) @property def mysql_fully_case_sensitive(self): return only_if(self._has_mysql_fully_case_sensitive) @property def mysql_zero_date(self): def check(config): if not against(config, "mysql"): return False row = ( config.db.connect(close_with_result=True) .exec_driver_sql("show variables like 'sql_mode'") .first() ) return not row or "NO_ZERO_DATE" not in row[1] return only_if(check) @property def mysql_non_strict(self): def check(config): if not against(config, "mysql"): return False row = ( config.db.connect(close_with_result=True) .exec_driver_sql("show variables like 'sql_mode'") .first() ) return not row or "STRICT_TRANS_TABLES" not in row[1] return only_if(check) @property def mysql_ngram_fulltext(self): def check(config): return ( against(config, "mysql") and not config.db.dialect._is_mariadb and config.db.dialect.server_version_info >= (5, 7) ) return only_if(check) def _mysql_80(self, config): return ( against(config, "mysql") and config.db.dialect._is_mysql and config.db.dialect.server_version_info >= (8,) ) def _mariadb_102(self, config): return ( against(config, "mysql") and config.db.dialect._is_mariadb and config.db.dialect._mariadb_normalized_version_info > (10, 2) ) def _mysql_and_check_constraints_exist(self, config): # 1. we have mysql / mariadb and # 2. it enforces check constraints if exclusions.against(config, ["mysql", "mariadb"]): if config.db.dialect._is_mariadb: norm_version_info = ( config.db.dialect._mariadb_normalized_version_info ) return norm_version_info >= (10, 2) else: norm_version_info = config.db.dialect.server_version_info return norm_version_info >= (8, 0, 16) else: return False def _mysql_check_constraints_exist(self, config): # 1. we dont have mysql / mariadb or # 2. we have mysql / mariadb that enforces check constraints return not exclusions.against( config, ["mysql", "mariadb"] ) or self._mysql_and_check_constraints_exist(config) def _mysql_check_constraints_dont_exist(self, config): # 1. we have mysql / mariadb and # 2. they dont enforce check constraints return not self._mysql_check_constraints_exist(config) def _mysql_not_mariadb_102(self, config): return (against(config, ["mysql", "mariadb"])) and ( not config.db.dialect._is_mariadb or config.db.dialect._mariadb_normalized_version_info < (10, 2) ) def _mysql_not_mariadb_103(self, config): return (against(config, ["mysql", "mariadb"])) and ( not config.db.dialect._is_mariadb or config.db.dialect._mariadb_normalized_version_info < (10, 3) ) def _mysql_not_mariadb_104(self, config): return (against(config, ["mysql", "mariadb"])) and ( not config.db.dialect._is_mariadb or config.db.dialect._mariadb_normalized_version_info < (10, 4) ) def _has_mysql_on_windows(self, config): return ( against(config, ["mysql", "mariadb"]) ) and config.db.dialect._detect_casing(config.db) == 1 def _has_mysql_fully_case_sensitive(self, config): return ( against(config, "mysql") and config.db.dialect._detect_casing(config.db) == 0 ) @property def postgresql_utf8_server_encoding(self): def go(config): if not against(config, "postgresql"): return False with config.db.connect() as conn: enc = conn.exec_driver_sql("show server_encoding").scalar() return enc.lower() == "utf8" return only_if(go) @property def cxoracle6_or_greater(self): return only_if( lambda config: against(config, "oracle+cx_oracle") and config.db.dialect.cx_oracle_ver >= (6,) ) @property def oracle5x(self): return only_if( lambda config: against(config, "oracle+cx_oracle") and config.db.dialect.cx_oracle_ver < (6,) ) @property def computed_columns(self): return skip_if(["postgresql < 12", "sqlite < 3.31", "mysql < 5.7"]) @property def python_profiling_backend(self): return only_on([self._sqlite_memory_db]) @property def computed_columns_stored(self): return self.computed_columns + skip_if(["oracle", "firebird"]) @property def computed_columns_virtual(self): return self.computed_columns + skip_if(["postgresql", "firebird"]) @property def computed_columns_default_persisted(self): return self.computed_columns + only_if("postgresql") @property def computed_columns_reflect_persisted(self): return self.computed_columns + skip_if("oracle") @property def regexp_match(self): return only_on(["postgresql", "mysql", "mariadb", "oracle", "sqlite"]) @property def regexp_replace(self): return only_on(["postgresql", "mysql>=8", "mariadb", "oracle"]) @property def supports_distinct_on(self): """If a backend supports the DISTINCT ON in a select""" return only_if(["postgresql"]) @property def supports_for_update_of(self): return only_if(lambda config: config.db.dialect.supports_for_update_of) @property def sequences_in_other_clauses(self): """sequences allowed in WHERE, GROUP BY, HAVING, etc.""" return skip_if(["mssql", "oracle"]) @property def supports_lastrowid_for_expressions(self): """cursor.lastrowid works if an explicit SQL expression was used.""" return only_on(["sqlite", "mysql", "mariadb"]) @property def supports_sequence_for_autoincrement_column(self): """for mssql, autoincrement means IDENTITY, not sequence""" return skip_if("mssql") @property def identity_columns(self): return only_if(["postgresql >= 10", "oracle >= 12", "mssql"]) @property def identity_columns_standard(self): return self.identity_columns + skip_if("mssql") @property def index_reflects_included_columns(self): return only_on(["postgresql >= 11", "mssql"]) # mssql>= 11 -> >= MS_2012_VERSION @property def fetch_first(self): return only_on(["postgresql", "mssql >= 11", "oracle >= 12"]) @property def fetch_percent(self): return only_on(["mssql >= 11", "oracle >= 12"]) @property def fetch_ties(self): return only_on(["postgresql >= 13", "mssql >= 11", "oracle >= 12"]) @property def fetch_no_order_by(self): return only_on(["postgresql", "oracle >= 12"]) @property def fetch_offset_with_options(self): return skip_if("mssql")
the-stack_0_11129
#!/usr/bin/env python3 from PIL import Image from struct import pack def pre(p): p = list(p) p[0] = p[0]*p[3]//255 p[1] = p[1]*p[3]//255 p[2] = p[2]*p[3]//255 return p def write(i, o, X, Y): for y in range(Y): for x in range(X): p = pre(i.getpixel((x, y))) o.write(pack('4B', p[2], p[1], p[0], p[3])) i = Image.open('images/fish.png') with open('fish.bin', 'wb') as o: write(i, o, 100, 59) i = Image.open('images/window.png') with open('window.bin', 'wb') as o: write(i, o, 320, 200)
the-stack_0_11131
#!/usr/bin/python3 -OO # Copyright 2007-2019 The SABnzbd-Team <[email protected]> # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. """ sabnzbd.newsunpack """ import os import sys import re import subprocess import logging import time import binascii import shutil import functools from subprocess import Popen import sabnzbd from sabnzbd.encoding import platform_btou import sabnzbd.utils.rarfile as rarfile from sabnzbd.misc import format_time_string, find_on_path, int_conv, \ get_all_passwords, calc_age, cmp, caller_name from sabnzbd.filesystem import make_script_path, real_path, globber, globber_full, \ renamer, clip_path, long_path, remove_file, recursive_listdir, setname_from_path from sabnzbd.sorting import SeriesSorter import sabnzbd.cfg as cfg from sabnzbd.constants import Status if sabnzbd.WIN32: try: import win32api import win32con import win32process # Define scheduling priorities WIN_SCHED_PRIOS = {1: win32process.IDLE_PRIORITY_CLASS, 2: win32process.BELOW_NORMAL_PRIORITY_CLASS, 3: win32process.NORMAL_PRIORITY_CLASS, 4: win32process.ABOVE_NORMAL_PRIORITY_CLASS,} except ImportError: pass else: # Define dummy WindowsError for non-Windows class WindowsError(Exception): def __init__(self, value): self.parameter = value def __str__(self): return repr(self.parameter) # Regex globals RAR_RE = re.compile(r'\.(?P<ext>part\d*\.rar|rar|r\d\d|s\d\d|t\d\d|u\d\d|v\d\d|\d\d\d?\d)$', re.I) RAR_RE_V3 = re.compile(r'\.(?P<ext>part\d*)$', re.I) LOADING_RE = re.compile(r'^Loading "(.+)"') TARGET_RE = re.compile(r'^(?:File|Target): "(.+)" -') EXTRACTFROM_RE = re.compile(r'^Extracting\sfrom\s(.+)') EXTRACTED_RE = re.compile(r'^(Extracting|Creating|...)\s+(.*?)\s+OK\s*$') SPLITFILE_RE = re.compile(r'\.(\d\d\d?\d$)', re.I) ZIP_RE = re.compile(r'\.(zip$)', re.I) SEVENZIP_RE = re.compile(r'\.7z$', re.I) SEVENMULTI_RE = re.compile(r'\.7z\.\d+$', re.I) TS_RE = re.compile(r'\.(\d+)\.(ts$)', re.I) PAR2_COMMAND = None MULTIPAR_COMMAND = None RAR_COMMAND = None NICE_COMMAND = None ZIP_COMMAND = None SEVEN_COMMAND = None IONICE_COMMAND = None RAR_PROBLEM = False PAR2_MT = True RAR_VERSION = 0 def find_programs(curdir): """ Find external programs """ def check(path, program): p = os.path.abspath(os.path.join(path, program)) if os.access(p, os.X_OK): return p else: return None if sabnzbd.DARWIN: sabnzbd.newsunpack.PAR2_COMMAND = check(curdir, 'osx/par2/par2-sl64') sabnzbd.newsunpack.RAR_COMMAND = check(curdir, 'osx/unrar/unrar') sabnzbd.newsunpack.SEVEN_COMMAND = check(curdir, 'osx/7zip/7za') if sabnzbd.WIN32: if sabnzbd.WIN64: # 64 bit versions sabnzbd.newsunpack.MULTIPAR_COMMAND = check(curdir, 'win/par2/multipar/par2j64.exe') sabnzbd.newsunpack.RAR_COMMAND = check(curdir, 'win/unrar/x64/UnRAR.exe') else: # 32 bit versions sabnzbd.newsunpack.MULTIPAR_COMMAND = check(curdir, 'win/par2/multipar/par2j.exe') sabnzbd.newsunpack.RAR_COMMAND = check(curdir, 'win/unrar/UnRAR.exe') sabnzbd.newsunpack.PAR2_COMMAND = check(curdir, 'win/par2/par2.exe') sabnzbd.newsunpack.SEVEN_COMMAND = check(curdir, 'win/7zip/7za.exe') else: if not sabnzbd.newsunpack.PAR2_COMMAND: sabnzbd.newsunpack.PAR2_COMMAND = find_on_path('par2') if not sabnzbd.newsunpack.RAR_COMMAND: sabnzbd.newsunpack.RAR_COMMAND = find_on_path(('unrar', 'rar', 'unrar3', 'rar3',)) sabnzbd.newsunpack.NICE_COMMAND = find_on_path('nice') sabnzbd.newsunpack.IONICE_COMMAND = find_on_path('ionice') if not sabnzbd.newsunpack.ZIP_COMMAND: sabnzbd.newsunpack.ZIP_COMMAND = find_on_path('unzip') if not sabnzbd.newsunpack.SEVEN_COMMAND: sabnzbd.newsunpack.SEVEN_COMMAND = find_on_path('7za') if not sabnzbd.newsunpack.SEVEN_COMMAND: sabnzbd.newsunpack.SEVEN_COMMAND = find_on_path('7z') if not (sabnzbd.WIN32 or sabnzbd.DARWIN): # Run check on rar version version, original = unrar_check(sabnzbd.newsunpack.RAR_COMMAND) sabnzbd.newsunpack.RAR_PROBLEM = not original or version < sabnzbd.constants.REC_RAR_VERSION sabnzbd.newsunpack.RAR_VERSION = version # Run check on par2-multicore sabnzbd.newsunpack.PAR2_MT = par2_mt_check(sabnzbd.newsunpack.PAR2_COMMAND) ENV_NZO_FIELDS = ['bytes', 'bytes_downloaded', 'bytes_tried', 'cat', 'duplicate', 'encrypted', 'fail_msg', 'filename', 'final_name', 'group', 'nzo_id', 'oversized', 'password', 'pp', 'priority', 'repair', 'script', 'status', 'unpack', 'unwanted_ext', 'url'] def external_processing(extern_proc, nzo, complete_dir, nicename, status): """ Run a user postproc script, return console output and exit value """ failure_url = nzo.nzo_info.get('failure', '') # Items can be bool or null, causing POpen to fail command = [str(extern_proc), str(complete_dir), str(nzo.filename), str(nicename), '', str(nzo.cat), str(nzo.group), str(status), str(failure_url)] # Add path to original NZB nzb_paths = globber_full(nzo.workpath, '*.gz') # Fields not in the NZO directly extra_env_fields = {'failure_url': failure_url, 'complete_dir': complete_dir, 'pp_status': status, 'download_time': nzo.nzo_info.get('download_time', ''), 'avg_bps': int(nzo.avg_bps_total / nzo.avg_bps_freq) if nzo.avg_bps_freq else 0, 'age': calc_age(nzo.avg_date), 'orig_nzb_gz': clip_path(nzb_paths[0]) if nzb_paths else ''} try: stup, need_shell, command, creationflags = build_command(command) env = create_env(nzo, extra_env_fields) logging.info('Running external script %s(%s, %s, %s, %s, %s, %s, %s, %s)', extern_proc, complete_dir, nzo.filename, nicename, '', nzo.cat, nzo.group, status, failure_url) p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, env=env, creationflags=creationflags) # Follow the output, so we can abort it proc = p.stdout if p.stdin: p.stdin.close() lines = [] while 1: line = platform_btou(proc.readline()) if not line: break line = line.strip() lines.append(line) # Show current line in history nzo.set_action_line(T('Running script'), line) # Check if we should still continue if not nzo.pp_active: p.kill() lines.append(T('PostProcessing was aborted (%s)') % T('Script')) # Print at least what we got output = '\n'.join(lines) return output, 1 except: logging.debug("Failed script %s, Traceback: ", extern_proc, exc_info=True) return "Cannot run script %s\r\n" % extern_proc, -1 output = '\n'.join(lines) ret = p.wait() return output, ret def external_script(script, p1, p2, p3=None, p4=None): """ Run a user script with two parameters, return console output and exit value """ command = [script, p1, p2, p3, p4] try: stup, need_shell, command, creationflags = build_command(command) env = create_env() logging.info('Running user script %s(%s, %s)', script, p1, p2) p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, env=env, creationflags=creationflags) except: logging.debug("Failed script %s, Traceback: ", script, exc_info=True) return "Cannot run script %s\r\n" % script, -1 output = platform_btou(p.stdout.read()) ret = p.wait() return output, ret def unpack_magic(nzo, workdir, workdir_complete, dele, one_folder, joinables, zips, rars, sevens, ts, depth=0): """ Do a recursive unpack from all archives in 'workdir' to 'workdir_complete' """ if depth > 5: logging.warning(T('Unpack nesting too deep [%s]'), nzo.final_name) return False, [] depth += 1 if depth == 1: # First time, ignore anything in workdir_complete xjoinables, xzips, xrars, xsevens, xts = build_filelists(workdir) else: xjoinables, xzips, xrars, xsevens, xts = build_filelists(workdir, workdir_complete, check_both=dele) force_rerun = False newfiles = [] error = None new_joins = new_ts = None if cfg.enable_filejoin(): new_joins = [jn for jn in xjoinables if jn not in joinables] if new_joins: logging.info('Filejoin starting on %s', workdir) error, newf = file_join(nzo, workdir, workdir_complete, dele, new_joins) if newf: newfiles.extend(newf) logging.info('Filejoin finished on %s', workdir) if cfg.enable_unrar(): new_rars = [rar for rar in xrars if rar not in rars] if new_rars: logging.info('Unrar starting on %s', workdir) error, newf = rar_unpack(nzo, workdir, workdir_complete, dele, one_folder, new_rars) if newf: newfiles.extend(newf) logging.info('Unrar finished on %s', workdir) if cfg.enable_7zip(): new_sevens = [seven for seven in xsevens if seven not in sevens] if new_sevens: logging.info('7za starting on %s', workdir) error, newf = unseven(nzo, workdir, workdir_complete, dele, one_folder, new_sevens) if newf: newfiles.extend(newf) logging.info('7za finished on %s', workdir) if cfg.enable_unzip(): new_zips = [zip for zip in xzips if zip not in zips] if new_zips: logging.info('Unzip starting on %s', workdir) if SEVEN_COMMAND: error, newf = unseven(nzo, workdir, workdir_complete, dele, one_folder, new_zips) else: error, newf = unzip(nzo, workdir, workdir_complete, dele, one_folder, new_zips) if newf: newfiles.extend(newf) logging.info('Unzip finished on %s', workdir) if cfg.enable_tsjoin(): new_ts = [_ts for _ts in xts if _ts not in ts] if new_ts: logging.info('TS Joining starting on %s', workdir) error, newf = file_join(nzo, workdir, workdir_complete, dele, new_ts) if newf: newfiles.extend(newf) logging.info('TS Joining finished on %s', workdir) # Refresh history and set output nzo.set_action_line() # Only re-run if something was unpacked and it was success rerun = error in (False, 0) # During a Retry we might miss files that failed during recursive unpack if nzo.reuse and depth == 1 and any(build_filelists(workdir, workdir_complete)): rerun = True # We can't recursive unpack on long paths on Windows # See: https://github.com/sabnzbd/sabnzbd/pull/771 if sabnzbd.WIN32 and len(workdir_complete) > 256: rerun = False # Double-check that we didn't miss any files in workdir # But only if dele=True, otherwise of course there will be files left if rerun and dele and depth == 1 and any(build_filelists(workdir)): force_rerun = True # Clear lists to force re-scan of files xjoinables, xzips, xrars, xsevens, xts = ([], [], [], [], []) if rerun and (cfg.enable_recursive() or new_ts or new_joins or force_rerun): z, y = unpack_magic(nzo, workdir, workdir_complete, dele, one_folder, xjoinables, xzips, xrars, xsevens, xts, depth) if z: error = z if y: newfiles.extend(y) return error, newfiles ############################################################################## # Filejoin Functions ############################################################################## def match_ts(file): """ Return True if file is a joinable TS file """ match = TS_RE.search(file) if not match: return False, '', 0 num = int(match.group(1)) try: set = file[:match.start()] set += '.ts' except: set = '' return match, set, num def clean_up_joinables(names): """ Remove joinable files and their .1 backups """ for name in names: if os.path.exists(name): try: remove_file(name) except: pass name1 = name + ".1" if os.path.exists(name1): try: remove_file(name1) except: pass def get_seq_number(name): """ Return sequence number if name as an int """ head, tail = os.path.splitext(name) if tail == '.ts': match, set, num = match_ts(name) else: num = tail[1:] if num.isdigit(): return int(num) else: return 0 def file_join(nzo, workdir, workdir_complete, delete, joinables): """ Join and joinable files in 'workdir' to 'workdir_complete' and when successful, delete originals """ newfiles = [] bufsize = 24 * 1024 * 1024 # Create matching sets from the list of files joinable_sets = {} joinable_set = None for joinable in joinables: head, tail = os.path.splitext(joinable) if tail == '.ts': head = match_ts(joinable)[1] if head not in joinable_sets: joinable_sets[head] = [] joinable_sets[head].append(joinable) logging.debug("joinable_sets: %s", joinable_sets) try: # Handle each set for joinable_set in joinable_sets: current = joinable_sets[joinable_set] joinable_sets[joinable_set].sort() # If par2 already did the work, just remove the files if os.path.exists(joinable_set): logging.debug("file_join(): Skipping %s, (probably) joined by par2", joinable_set) if delete: clean_up_joinables(current) # done, go to next set continue # Only join when there is more than one file size = len(current) if size < 2: continue # Prepare joined file filename = joinable_set if workdir_complete: filename = filename.replace(workdir, workdir_complete) logging.debug("file_join(): Assembling %s", filename) joined_file = open(filename, 'ab') # Join the segments n = get_seq_number(current[0]) seq_error = n > 1 for joinable in current: if get_seq_number(joinable) != n: seq_error = True perc = (100.0 / size) * n logging.debug("Processing %s", joinable) nzo.set_action_line(T('Joining'), '%.0f%%' % perc) f = open(joinable, 'rb') shutil.copyfileobj(f, joined_file, bufsize) f.close() if delete: remove_file(joinable) n += 1 # Remove any remaining .1 files clean_up_joinables(current) # Finish up joined_file.flush() joined_file.close() newfiles.append(filename) setname = setname_from_path(joinable_set) if seq_error: msg = T('Incomplete sequence of joinable files') nzo.fail_msg = T('File join of %s failed') % setname nzo.set_unpack_info('Filejoin', T('[%s] Error "%s" while joining files') % (setname, msg)) logging.error(T('Error "%s" while running file_join on %s'), msg, nzo.final_name) return True, [] else: msg = T('[%s] Joined %s files') % (joinable_set, size) nzo.set_unpack_info('Filejoin', msg, setname) except: msg = sys.exc_info()[1] nzo.fail_msg = T('File join of %s failed') % msg nzo.set_unpack_info('Filejoin', T('[%s] Error "%s" while joining files') % (setname_from_path(joinable_set), msg)) logging.error(T('Error "%s" while running file_join on %s'), msg, nzo.final_name) return True, [] return False, newfiles ############################################################################## # (Un)Rar Functions ############################################################################## def rar_unpack(nzo, workdir, workdir_complete, delete, one_folder, rars): """ Unpack multiple sets 'rars' of RAR files from 'workdir' to 'workdir_complete. When 'delete' is set, originals will be deleted. When 'one_folder' is set, all files will be in a single folder """ newfiles = extracted_files = [] rar_sets = {} for rar in rars: rar_set = setname_from_path(rar) if RAR_RE_V3.search(rar_set): # Remove the ".partXX" part rar_set = os.path.splitext(rar_set)[0] if rar_set not in rar_sets: rar_sets[rar_set] = [] rar_sets[rar_set].append(rar) logging.debug('Rar_sets: %s', rar_sets) for rar_set in rar_sets: # Run the RAR extractor rar_sets[rar_set].sort(key=functools.cmp_to_key(rar_sort)) rarpath = rar_sets[rar_set][0] if workdir_complete and rarpath.startswith(workdir): extraction_path = workdir_complete else: extraction_path = os.path.split(rarpath)[0] # Is the direct-unpacker still running? We wait for it if nzo.direct_unpacker: wait_count = 0 last_stats = nzo.direct_unpacker.get_formatted_stats() while nzo.direct_unpacker.is_alive(): logging.debug('DirectUnpacker still alive for %s: %s', nzo.final_name, last_stats) # Bump the file-lock in case it's stuck with nzo.direct_unpacker.next_file_lock: nzo.direct_unpacker.next_file_lock.notify() time.sleep(2) # Did something change? Might be stuck if last_stats == nzo.direct_unpacker.get_formatted_stats(): wait_count += 1 if wait_count > 60: # We abort after 2 minutes of no changes nzo.direct_unpacker.abort() else: wait_count = 0 last_stats = nzo.direct_unpacker.get_formatted_stats() # Did we already direct-unpack it? Not when recursive-unpacking if nzo.direct_unpacker and rar_set in nzo.direct_unpacker.success_sets: logging.info("Set %s completed by DirectUnpack", rar_set) fail = False success = True rars, newfiles = nzo.direct_unpacker.success_sets.pop(rar_set) else: logging.info("Extracting rarfile %s (belonging to %s) to %s", rarpath, rar_set, extraction_path) try: fail, newfiles, rars = rar_extract(rarpath, len(rar_sets[rar_set]), one_folder, nzo, rar_set, extraction_path) # Was it aborted? if not nzo.pp_active: fail = True break success = not fail except: success = False fail = True msg = sys.exc_info()[1] nzo.fail_msg = T('Unpacking failed, %s') % msg setname = nzo.final_name nzo.set_unpack_info('Unpack', T('[%s] Error "%s" while unpacking RAR files') % (setname, msg)) logging.error(T('Error "%s" while running rar_unpack on %s'), msg, setname) logging.debug("Traceback: ", exc_info=True) if success: logging.debug('rar_unpack(): Rars: %s', rars) logging.debug('rar_unpack(): Newfiles: %s', newfiles) extracted_files.extend(newfiles) # Do not fail if this was a recursive unpack if fail and rarpath.startswith(workdir_complete): # Do not delete the files, leave it to user! logging.info('Ignoring failure to do recursive unpack of %s', rarpath) fail = 0 success = True newfiles = [] # Do not fail if this was maybe just some duplicate fileset # Multipar and par2tbb will detect and log them, par2cmdline will not if fail and rar_set.endswith(('.1', '.2')): # Just in case, we leave the raw files logging.info('Ignoring failure of unpack for possible duplicate file %s', rarpath) fail = 0 success = True newfiles = [] # Delete the old files if we have to if success and delete and newfiles: for rar in rars: try: remove_file(rar) except OSError: if os.path.exists(rar): logging.warning(T('Deleting %s failed!'), rar) brokenrar = '%s.1' % rar if os.path.exists(brokenrar): logging.info("Deleting %s", brokenrar) try: remove_file(brokenrar) except OSError: if os.path.exists(brokenrar): logging.warning(T('Deleting %s failed!'), brokenrar) return fail, extracted_files def rar_extract(rarfile_path, numrars, one_folder, nzo, setname, extraction_path): """ Unpack single rar set 'rarfile' to 'extraction_path', with password tries Return fail==0(ok)/fail==1(error)/fail==2(wrong password), new_files, rars """ fail = 0 new_files = None rars = [] passwords = get_all_passwords(nzo) for password in passwords: if password: logging.debug('Trying unrar with password "%s"', password) msg = T('Trying unrar with password "%s"') % password nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) fail, new_files, rars = rar_extract_core(rarfile_path, numrars, one_folder, nzo, setname, extraction_path, password) if fail != 2: break if fail == 2: logging.error('%s (%s)', T('Unpacking failed, archive requires a password'), os.path.split(rarfile_path)[1]) return fail, new_files, rars def rar_extract_core(rarfile_path, numrars, one_folder, nzo, setname, extraction_path, password): """ Unpack single rar set 'rarfile_path' to 'extraction_path' Return fail==0(ok)/fail==1(error)/fail==2(wrong password)/fail==3(crc-error), new_files, rars """ start = time.time() logging.debug("rar_extract(): Extractionpath: %s", extraction_path) if password: password_command = '-p%s' % password else: password_command = '-p-' ############################################################################ if one_folder or cfg.flat_unpack(): action = 'e' else: action = 'x' if cfg.overwrite_files(): overwrite = '-o+' # Enable overwrite rename = '-o+' # Dummy else: overwrite = '-o-' # Disable overwrite rename = '-or' # Auto renaming if sabnzbd.WIN32: # For Unrar to support long-path, we need to cricumvent Python's list2cmdline # See: https://github.com/sabnzbd/sabnzbd/issues/1043 command = ['%s' % RAR_COMMAND, action, '-idp', overwrite, rename, '-ai', password_command, '%s' % clip_path(rarfile_path), '%s\\' % long_path(extraction_path)] elif RAR_PROBLEM: # Use only oldest options (specifically no "-or") command = ['%s' % RAR_COMMAND, action, '-idp', overwrite, password_command, '%s' % rarfile_path, '%s/' % extraction_path] else: # Don't use "-ai" (not needed for non-Windows) command = ['%s' % RAR_COMMAND, action, '-idp', overwrite, rename, password_command, '%s' % rarfile_path, '%s/' % extraction_path] if cfg.ignore_unrar_dates(): command.insert(3, '-tsm-') stup, need_shell, command, creationflags = build_command(command, flatten_command=True) # Get list of all the volumes part of this set logging.debug("Analyzing rar file ... %s found", rarfile.is_rarfile(rarfile_path)) logging.debug("Running unrar %s", command) p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, creationflags=creationflags) proc = p.stdout if p.stdin: p.stdin.close() nzo.set_action_line(T('Unpacking'), '00/%02d' % numrars) # Loop over the output from rar! curr = 0 extracted = [] rarfiles = [] fail = 0 inrecovery = False lines = [] while 1: line = platform_btou(proc.readline()) if not line: break # Check if we should still continue if not nzo.pp_active: p.kill() msg = T('PostProcessing was aborted (%s)') % T('Unpack') nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) nzo.status = Status.FAILED return fail, (), () line = line.strip() lines.append(line) if line.startswith('Extracting from'): filename = (re.search(EXTRACTFROM_RE, line).group(1)) if filename not in rarfiles: rarfiles.append(filename) curr += 1 nzo.set_action_line(T('Unpacking'), '%02d/%02d' % (curr, numrars)) elif line.find('recovery volumes found') > -1: inrecovery = True # and thus start ignoring "Cannot find volume" for a while logging.debug("unrar recovery start: %s" % line) elif line.startswith('Reconstruct'): # end of reconstruction: 'Reconstructing... 100%' or 'Reconstructing... ' (both success), or 'Reconstruction impossible' inrecovery = False logging.debug("unrar recovery result: %s" % line) elif line.startswith('Cannot find volume') and not inrecovery: filename = os.path.basename(line[19:]) msg = T('Unpacking failed, unable to find %s') % filename nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) logging.warning(T('ERROR: unable to find "%s"'), filename) fail = 1 elif line.endswith('- CRC failed'): msg = T('Unpacking failed, CRC error') nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) logging.warning(T('ERROR: CRC failed in "%s"'), setname) fail = 2 # Older unrar versions report a wrong password as a CRC error elif line.startswith('File too large'): msg = T('Unpacking failed, file too large for filesystem (FAT?)') nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) # ERROR: File too large for file system (bigfile-5000MB) logging.error(T('ERROR: File too large for filesystem (%s)'), setname) fail = 1 elif line.startswith('Write error'): msg = T('Unpacking failed, write error or disk is full?') nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) logging.error(T('ERROR: write error (%s)'), line[11:]) fail = 1 elif line.startswith('Cannot create'): line2 = platform_btou(proc.readline()) if 'must not exceed 260' in line2: msg = '%s: %s' % (T('Unpacking failed, path is too long'), line[13:]) nzo.fail_msg = msg logging.error(T('ERROR: path too long (%s)'), line[13:]) else: msg = '%s: %s' % (T('Unpacking failed, write error or disk is full?'), line[13:]) nzo.fail_msg = msg logging.error(T('ERROR: write error (%s)'), line[13:]) nzo.set_unpack_info('Unpack', msg, setname) fail = 1 # Kill the process (can stay in endless loop on Windows Server) p.kill() elif line.startswith('ERROR: '): msg = T('ERROR: %s' % line[7:]) nzo.fail_msg = msg logging.warning(msg) nzo.set_unpack_info('Unpack', msg, setname) fail = 1 elif 'The specified password is incorrect' in line or 'Incorrect password' in line or \ ('ncrypted file' in line and (('CRC failed' in line) or ('Checksum error' in line))): # unrar 3.x: "Encrypted file: CRC failed in oLKQfrcNVivzdzSG22a2xo7t001.part1.rar (password incorrect ?)" # unrar 4.x: "CRC failed in the encrypted file oLKQfrcNVivzdzSG22a2xo7t001.part1.rar. Corrupt file or wrong password." # unrar 5.x: "Checksum error in the encrypted file oLKQfrcNVivzdzSG22a2xo7t001.part1.rar. Corrupt file or wrong password." # unrar 5.01: "The specified password is incorrect." # unrar 5.80: "Incorrect password for oLKQfrcNVivzdzSG22a2xo7t001.part1.rar" msg = T('Unpacking failed, archive requires a password') nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) fail = 2 elif 'is not RAR archive' in line: # Unrecognizable RAR file msg = T('Unusable RAR file') nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) fail = 3 elif 'checksum error' in line or 'Unexpected end of archive' in line: # Corrupt archive or passworded, we can't know # packed data checksum error in volume FILE msg = T('Corrupt RAR file') nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname) fail = 3 else: m = re.search(EXTRACTED_RE, line) if m: # In case of flat-unpack, UnRar still prints the whole path (?!) unpacked_file = m.group(2) if cfg.flat_unpack(): unpacked_file = os.path.basename(unpacked_file) extracted.append(real_path(extraction_path, unpacked_file)) if fail: if proc: proc.close() p.wait() logging.debug('UNRAR output %s', '\n'.join(lines)) return fail, (), () if proc: proc.close() p.wait() # Which files did we use to extract this? rarfiles = rar_volumelist(rarfile_path, password, rarfiles) logging.debug('UNRAR output %s', '\n'.join(lines)) nzo.fail_msg = '' msg = T('Unpacked %s files/folders in %s') % (str(len(extracted)), format_time_string(time.time() - start)) nzo.set_unpack_info('Unpack', msg, setname) logging.info('%s', msg) return 0, extracted, rarfiles ############################################################################## # (Un)Zip Functions ############################################################################## def unzip(nzo, workdir, workdir_complete, delete, one_folder, zips): """ Unpack multiple sets 'zips' of ZIP files from 'workdir' to 'workdir_complete. When 'delete' is ste, originals will be deleted. """ try: i = 0 unzip_failed = False tms = time.time() # For file-bookkeeping orig_dir_content = recursive_listdir(workdir_complete) for _zip in zips: logging.info("Starting extract on zipfile: %s ", _zip) nzo.set_action_line(T('Unpacking'), '%s' % setname_from_path(_zip)) if workdir_complete and _zip.startswith(workdir): extraction_path = workdir_complete else: extraction_path = os.path.split(_zip)[0] if ZIP_Extract(_zip, extraction_path, one_folder): unzip_failed = True else: i += 1 msg = T('%s files in %s') % (str(i), format_time_string(time.time() - tms)) nzo.set_unpack_info('Unpack', msg) # What's new? new_files = list(set(orig_dir_content + recursive_listdir(workdir_complete))) # Delete the old files if we have to if delete and not unzip_failed: i = 0 for _zip in zips: try: remove_file(_zip) i += 1 except OSError: logging.warning(T('Deleting %s failed!'), _zip) brokenzip = '%s.1' % _zip if os.path.exists(brokenzip): try: remove_file(brokenzip) i += 1 except OSError: logging.warning(T('Deleting %s failed!'), brokenzip) return unzip_failed, new_files except: msg = sys.exc_info()[1] nzo.fail_msg = T('Unpacking failed, %s') % msg logging.error(T('Error "%s" while running unzip() on %s'), msg, nzo.final_name) return True, [] def ZIP_Extract(zipfile, extraction_path, one_folder): """ Unzip single zip set 'zipfile' to 'extraction_path' """ command = ['%s' % ZIP_COMMAND, '-o', '-Pnone', '%s' % clip_path(zipfile), '-d%s' % extraction_path] if one_folder or cfg.flat_unpack(): command.insert(3, '-j') # Unpack without folders stup, need_shell, command, creationflags = build_command(command) logging.debug('Starting unzip: %s', command) p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, creationflags=creationflags) output = platform_btou(p.stdout.read()) logging.debug('unzip output: \n%s', output) ret = p.wait() return ret ############################################################################## # 7Zip Functions ############################################################################## def unseven(nzo, workdir, workdir_complete, delete, one_folder, sevens): """ Unpack multiple sets '7z' of 7Zip files from 'workdir' to 'workdir_complete. When 'delete' is set, originals will be deleted. """ i = 0 unseven_failed = False new_files = [] tms = time.time() # Find multi-volume sets, because 7zip will not provide actual set members sets = {} for seven in sevens: name, ext = os.path.splitext(seven) ext = ext.strip('.') if not ext.isdigit(): name = seven ext = None if name not in sets: sets[name] = [] if ext: sets[name].append(ext) # Unpack each set for seven in sets: extensions = sets[seven] logging.info("Starting extract on 7zip set/file: %s ", seven) nzo.set_action_line(T('Unpacking'), '%s' % setname_from_path(seven)) if workdir_complete and seven.startswith(workdir): extraction_path = workdir_complete else: extraction_path = os.path.split(seven)[0] res, new_files_set, msg = seven_extract(nzo, seven, extensions, extraction_path, one_folder, delete) if res: unseven_failed = True nzo.set_unpack_info('Unpack', msg, setname_from_path(seven)) else: i += 1 new_files.extend(new_files_set) if not unseven_failed: msg = T('%s files in %s') % (str(i), format_time_string(time.time() - tms)) nzo.set_unpack_info('Unpack', msg) return unseven_failed, new_files def seven_extract(nzo, sevenset, extensions, extraction_path, one_folder, delete): """ Unpack single set 'sevenset' to 'extraction_path', with password tries Return fail==0(ok)/fail==1(error)/fail==2(wrong password), new_files, sevens """ # Before we start, make sure the 7z binary SEVEN_COMMAND is defined if not SEVEN_COMMAND: msg = T('No 7za binary found, cannot unpack "%s"') % os.path.basename(sevenset) logging.error(msg) return 1, [], msg fail = 0 passwords = get_all_passwords(nzo) for password in passwords: if password: msg = T('Trying 7zip with password "%s"') % password logging.debug(msg) nzo.fail_msg = msg nzo.set_unpack_info('Unpack', msg, setname_from_path(sevenset)) fail, new_files, msg = seven_extract_core(sevenset, extensions, extraction_path, one_folder, delete, password) if fail != 2: break nzo.fail_msg = '' if fail == 2: msg = '%s (%s)' % (T('Unpacking failed, archive requires a password'), os.path.basename(sevenset)) if fail > 0: nzo.fail_msg = msg nzo.status = Status.FAILED logging.error(msg) return fail, new_files, msg def seven_extract_core(sevenset, extensions, extraction_path, one_folder, delete, password): """ Unpack single 7Z set 'sevenset' to 'extraction_path' Return fail==0(ok)/fail==1(error)/fail==2(wrong password), new_files, message """ if one_folder: method = 'e' # Unpack without folders else: method = 'x' # Unpack with folders if sabnzbd.WIN32 or sabnzbd.DARWIN: case = '-ssc-' # Case insensitive else: case = '-ssc' # Case sensitive if cfg.overwrite_files(): overwrite = '-aoa' else: overwrite = '-aou' if password: password = '-p%s' % password else: password = '-p' if len(extensions) > 0: name = '%s.001' % sevenset parm = '-tsplit' else: name = sevenset parm = '-tzip' if sevenset.lower().endswith('.zip') else '-t7z' if not os.path.exists(name): return 1, [], T('7ZIP set "%s" is incomplete, cannot unpack') % setname_from_path(sevenset) # For file-bookkeeping orig_dir_content = recursive_listdir(extraction_path) command = [SEVEN_COMMAND, method, '-y', overwrite, parm, case, password, '-o%s' % extraction_path, name] stup, need_shell, command, creationflags = build_command(command) logging.debug('Starting 7za: %s', command) p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, creationflags=creationflags) output = platform_btou(p.stdout.read()) logging.debug('7za output: %s', output) ret = p.wait() # Return-code for CRC and Password is the same if ret == 2 and 'ERROR: CRC Failed' in output: # We can output a more general error ret = 1 msg = T('ERROR: CRC failed in "%s"') % setname_from_path(sevenset) else: # Default message msg = T('Could not unpack %s') % setname_from_path(sevenset) # What's new? new_files = list(set(orig_dir_content + recursive_listdir(extraction_path))) if ret == 0 and delete: if extensions: for ext in extensions: path = '%s.%s' % (sevenset, ext) try: remove_file(path) except: logging.warning(T('Deleting %s failed!'), path) else: try: remove_file(sevenset) except: logging.warning(T('Deleting %s failed!'), sevenset) # Always return an error message, even when return code is 0 return ret, new_files, msg ############################################################################## # PAR2 Functions ############################################################################## def par2_repair(parfile_nzf, nzo, workdir, setname, single): """ Try to repair a set, return readd or correctness """ # Check if file exists, otherwise see if another is done parfile_path = os.path.join(workdir, parfile_nzf.filename) if not os.path.exists(parfile_path) and nzo.extrapars[setname]: for new_par in nzo.extrapars[setname]: test_parfile = os.path.join(workdir, new_par.filename) if os.path.exists(test_parfile): parfile_nzf = new_par break else: # No file was found, we assume this set already finished return False, True parfile = os.path.join(workdir, parfile_nzf.filename) old_dir_content = os.listdir(workdir) used_joinables = () joinables = () used_for_repair = () result = readd = False # Need to copy now, gets pop-ed during repair setpars = nzo.extrapars[setname][:] # Start QuickCheck nzo.status = Status.QUICK_CHECK nzo.set_action_line(T('Repair'), T('Quick Checking')) qc_result = QuickCheck(setname, nzo) if qc_result: logging.info("Quick-check for %s is OK, skipping repair", setname) nzo.set_unpack_info('Repair', T('[%s] Quick Check OK') % setname) result = True if not result and cfg.enable_all_par(): # Download all par2 files that haven't been downloaded yet readd = False for extrapar in nzo.extrapars[setname][:]: # Make sure we only get new par2 files if extrapar not in nzo.finished_files and extrapar not in nzo.files: nzo.add_parfile(extrapar) readd = True if readd: return readd, result if not result: nzo.status = Status.REPAIRING result = False readd = False try: nzo.set_action_line(T('Repair'), T('Starting Repair')) logging.info('Scanning "%s"', parfile) joinables, zips, rars, sevens, ts = build_filelists(workdir, check_rar=False) # Multipar or not? if sabnzbd.WIN32 and cfg.multipar(): finished, readd, datafiles, used_joinables, used_for_repair = MultiPar_Verify(parfile, nzo, setname, joinables, single=single) else: finished, readd, datafiles, used_joinables, used_for_repair = PAR_Verify(parfile, nzo, setname, joinables, single=single) if finished: result = True logging.info('Par verify finished ok on %s!', parfile) # Remove this set so we don't try to check it again nzo.remove_parset(parfile_nzf.setname) else: logging.info('Par verify failed on %s!', parfile) if not readd: # Failed to repair -> remove this set nzo.remove_parset(parfile_nzf.setname) return readd, False except: msg = sys.exc_info()[1] nzo.fail_msg = T('Repairing failed, %s') % msg logging.error(T('Error %s while running par2_repair on set %s'), msg, setname) logging.info("Traceback: ", exc_info=True) return readd, result try: if cfg.enable_par_cleanup(): deletables = [] new_dir_content = os.listdir(workdir) # Remove extra files created during repair and par2 base files for path in new_dir_content: if os.path.splitext(path)[1] == '.1' and path not in old_dir_content: deletables.append(os.path.join(workdir, path)) deletables.append(os.path.join(workdir, setname + '.par2')) deletables.append(os.path.join(workdir, setname + '.PAR2')) deletables.append(parfile) # Add output of par2-repair to remove deletables.extend(used_joinables) deletables.extend([os.path.join(workdir, f) for f in used_for_repair]) # Delete pars of the set deletables.extend([os.path.join(workdir, nzf.filename) for nzf in setpars]) for filepath in deletables: if filepath in joinables: joinables.remove(filepath) if os.path.exists(filepath): try: remove_file(filepath) except OSError: logging.warning(T('Deleting %s failed!'), filepath) except: msg = sys.exc_info()[1] nzo.fail_msg = T('Repairing failed, %s') % msg logging.error(T('Error "%s" while running par2_repair on set %s'), msg, setname, exc_info=True) return readd, result _RE_BLOCK_FOUND = re.compile(r'File: "([^"]+)" - found \d+ of \d+ data blocks from "([^"]+)"') _RE_IS_MATCH_FOR = re.compile(r'File: "([^"]+)" - is a match for "([^"]+)"') _RE_LOADING_PAR2 = re.compile(r'Loading "([^"]+)"\.') _RE_LOADED_PAR2 = re.compile(r'Loaded (\d+) new packets') def PAR_Verify(parfile, nzo, setname, joinables, single=False): """ Run par2 on par-set """ used_joinables = [] used_for_repair = [] # set the current nzo status to "Verifying...". Used in History nzo.status = Status.VERIFYING start = time.time() options = cfg.par_option().strip() command = [str(PAR2_COMMAND), 'r', options, parfile] # Append the wildcard for this set parfolder = os.path.split(parfile)[0] if single or len(globber(parfolder, setname + '*')) < 2: # Support bizarre naming conventions wildcard = '*' else: # Normal case, everything is named after set wildcard = setname + '*' if sabnzbd.WIN32 or sabnzbd.DARWIN: command.append(os.path.join(parfolder, wildcard)) else: # For Unix systems, remove folders, due to bug in some par2cmdline versions flist = [item for item in globber_full(parfolder, wildcard) if os.path.isfile(item)] command.extend(flist) # We need to check for the bad par2cmdline that skips blocks # Or the one that complains about basepath # Only if we're not doing multicore if not sabnzbd.WIN32 and not sabnzbd.DARWIN: par2text = run_simple([command[0], '-h']) if 'No data skipping' in par2text: logging.info('Detected par2cmdline version that skips blocks, adding -N parameter') command.insert(2, '-N') if 'Set the basepath' in par2text: logging.info('Detected par2cmdline version that needs basepath, adding -B<path> parameter') command.insert(2, '-B') command.insert(3, parfolder) stup, need_shell, command, creationflags = build_command(command) # par2multicore wants to see \\.\ paths on Windows # See: https://github.com/sabnzbd/sabnzbd/pull/771 if sabnzbd.WIN32: command = [clip_path(x) if x.startswith('\\\\?\\') else x for x in command] # Run the external command logging.info('Starting par2: %s', command) lines = [] try: p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, creationflags=creationflags) proc = p.stdout if p.stdin: p.stdin.close() # Set up our variables datafiles = [] renames = {} reconstructed = [] linebuf = '' finished = 0 readd = False verifynum = 1 verifytotal = 0 verified = 0 in_verify_repaired = False # Loop over the output, whee while 1: char = platform_btou(proc.read(1)) if not char: break # Line not complete yet if char not in ('\n', '\r'): linebuf += char continue line = linebuf.strip() linebuf = '' # Check if we should still continue if not nzo.pp_active: p.kill() msg = T('PostProcessing was aborted (%s)') % T('Repair') nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED readd = False break # Skip empty lines if line == '': continue if 'Repairing:' not in line: lines.append(line) if line.startswith(('Invalid option specified', 'Invalid thread option', 'Cannot specify recovery file count')): msg = T('[%s] PAR2 received incorrect options, check your Config->Switches settings') % setname nzo.set_unpack_info('Repair', msg) nzo.status = Status.FAILED logging.error(msg) elif line.startswith('All files are correct'): msg = T('[%s] Verified in %s, all files correct') % (setname, format_time_string(time.time() - start)) nzo.set_unpack_info('Repair', msg) logging.info('Verified in %s, all files correct', format_time_string(time.time() - start)) finished = 1 elif line.startswith('Repair is required'): msg = T('[%s] Verified in %s, repair is required') % (setname, format_time_string(time.time() - start)) nzo.set_unpack_info('Repair', msg) logging.info('Verified in %s, repair is required', format_time_string(time.time() - start)) start = time.time() verified = 1 # Reset to use them again for verification of repair verifytotal = 0 verifynum = 0 elif line.startswith('Main packet not found') or 'The recovery file does not exist' in line: # Initialparfile probably didn't decode properly or bad user parameters # We will try to get another par2 file, but 99% of time it's user parameters msg = T('Invalid par2 files or invalid PAR2 parameters, cannot verify or repair') logging.info(msg) logging.info("Extra pars = %s", nzo.extrapars[setname]) # Look for the smallest par2file block_table = {} for nzf in nzo.extrapars[setname]: if not nzf.completed: block_table[nzf.blocks] = nzf if block_table: nzf = block_table[min(block_table.keys())] logging.info("Found new par2file %s", nzf.filename) # Move from extrapar list to files to be downloaded # and remove it from the extrapars list nzo.add_parfile(nzf) readd = True else: nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED elif line.startswith('You need'): # We need more blocks, but are they available? chunks = line.split() needed_blocks = int(chunks[2]) # Check if we have enough blocks added_blocks = nzo.get_extra_blocks(setname, needed_blocks) if added_blocks: msg = T('Fetching %s blocks...') % str(added_blocks) nzo.set_action_line(T('Fetching'), msg) readd = True else: # Failed msg = T('Repair failed, not enough repair blocks (%s short)') % str(needed_blocks) nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED elif line.startswith('Repair is possible'): start = time.time() nzo.set_action_line(T('Repairing'), '%2d%%' % 0) elif line.startswith('Repairing:'): chunks = line.split() per = float(chunks[-1][:-1]) nzo.set_action_line(T('Repairing'), '%2d%%' % per) nzo.status = Status.REPAIRING elif line.startswith('Repair complete'): msg = T('[%s] Repaired in %s') % (setname, format_time_string(time.time() - start)) nzo.set_unpack_info('Repair', msg) logging.info('Repaired in %s', format_time_string(time.time() - start)) finished = 1 elif verified and line.endswith(('are missing.', 'exist but are damaged.')): # Files that will later be verified after repair chunks = line.split() verifytotal += int(chunks[0]) elif line.startswith('Verifying repaired files'): in_verify_repaired = True nzo.set_action_line(T('Verifying repair'), '%02d/%02d' % (verifynum, verifytotal)) elif in_verify_repaired and line.startswith('Target'): verifynum += 1 if verifynum <= verifytotal: nzo.set_action_line(T('Verifying repair'), '%02d/%02d' % (verifynum, verifytotal)) elif line.startswith('File:') and line.find('data blocks from') > 0: m = _RE_BLOCK_FOUND.search(line) if m: workdir = os.path.split(parfile)[0] old_name = m.group(1) new_name = m.group(2) if joinables: # Find out if a joinable file has been used for joining for jn in joinables: if line.find(os.path.split(jn)[1]) > 0: used_joinables.append(jn) break # Special case of joined RAR files, the "of" and "from" must both be RAR files # This prevents the joined rars files from being seen as an extra rar-set if '.rar' in old_name.lower() and '.rar' in new_name.lower(): used_joinables.append(os.path.join(workdir, old_name)) else: logging.debug('PAR2 will reconstruct "%s" from "%s"', new_name, old_name) reconstructed.append(os.path.join(workdir, old_name)) elif 'Could not write' in line and 'at offset 0:' in line: # If there are joinables, this error will only happen in case of 100% complete files # We can just skip the retry, because par2cmdline will fail in those cases # becauses it refuses to scan the ".001" file if joinables: finished = 1 used_joinables = [] elif ' cannot be renamed to ' in line: msg = line.strip() nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED elif 'There is not enough space on the disk' in line: # Oops, disk is full! msg = T('Repairing failed, %s') % T('Disk full') nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED # File: "oldname.rar" - is a match for "newname.rar". elif 'is a match for' in line: m = _RE_IS_MATCH_FOR.search(line) if m: old_name = m.group(1) new_name = m.group(2) logging.debug('PAR2 will rename "%s" to "%s"', old_name, new_name) renames[new_name] = old_name # Show progress if verifytotal == 0 or verifynum < verifytotal: verifynum += 1 nzo.set_action_line(T('Verifying'), '%02d/%02d' % (verifynum, verifytotal)) elif 'Scanning extra files' in line: # Obfuscated post most likely, so reset counter to show progress verifynum = 1 elif 'No details available for recoverable file' in line: msg = line.strip() nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED elif line.startswith('Repair Failed.'): # Unknown repair problem msg = T('Repairing failed, %s') % line nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED finished = 0 elif not verified: if line.startswith('Verifying source files'): nzo.set_action_line(T('Verifying'), '01/%02d' % verifytotal) nzo.status = Status.VERIFYING elif line.startswith('Scanning:'): pass # Target files m = TARGET_RE.match(line) if m: nzo.status = Status.VERIFYING verifynum += 1 if verifytotal == 0 or verifynum < verifytotal: nzo.set_action_line(T('Verifying'), '%02d/%02d' % (verifynum, verifytotal)) else: nzo.set_action_line(T('Checking extra files'), '%02d' % verifynum) # Remove redundant extra files that are just duplicates of original ones if 'duplicate data blocks' in line: used_for_repair.append(m.group(1)) else: datafiles.append(m.group(1)) continue # Verify done m = re.match(r'There are (\d+) recoverable files', line) if m: verifytotal = int(m.group(1)) p.wait() except WindowsError as err: raise WindowsError(err) # Also log what is shown to user in history if nzo.fail_msg: logging.info(nzo.fail_msg) logging.debug('PAR2 output was\n%s', '\n'.join(lines)) # If successful, add renamed files to the collection if finished and renames: nzo.renamed_file(renames) # If successful and files were reconstructed, remove incomplete original files if finished and reconstructed: # Use 'used_joinables' as a vehicle to get rid of the files used_joinables.extend(reconstructed) return finished, readd, datafiles, used_joinables, used_for_repair _RE_FILENAME = re.compile(r'"([^"]+)"') def MultiPar_Verify(parfile, nzo, setname, joinables, single=False): """ Run par2 on par-set """ parfolder = os.path.split(parfile)[0] used_joinables = [] used_for_repair = [] # set the current nzo status to "Verifying...". Used in History nzo.status = Status.VERIFYING start = time.time() # Caching of verification implemented by adding: # But not really required due to prospective-par2 command = [str(MULTIPAR_COMMAND), 'r', '-vs2', '-vd%s' % parfolder, parfile] # Check if there are maybe par2cmdline/par2tbb commands supplied if '-t' in cfg.par_option() or '-p' in cfg.par_option(): logging.info('Removing old par2cmdline/par2tbb options for MultiPar') cfg.par_option.set('') # Only add user-options if supplied options = cfg.par_option().strip() if options: # We wrongly instructed users to use /x parameter style instead of -x options = options.replace('/', '-', 1) command.insert(2, options) # Append the wildcard for this set if single or len(globber(parfolder, setname + '*')) < 2: # Support bizarre naming conventions wildcard = '*' else: # Normal case, everything is named after set wildcard = setname + '*' command.append(os.path.join(parfolder, wildcard)) stup, need_shell, command, creationflags = build_command(command) logging.info('Starting MultiPar: %s', command) lines = [] p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, creationflags=creationflags) proc = p.stdout if p.stdin: p.stdin.close() # Set up our variables datafiles = [] renames = {} reconstructed = [] linebuf = '' finished = 0 readd = False verifynum = 0 verifytotal = 0 in_check = False in_verify = False in_repair = False in_verify_repaired = False misnamed_files = False old_name = None # Loop over the output, whee while 1: char = platform_btou(proc.read(1)) if not char: break # Line not complete yet if char not in ('\n', '\r'): linebuf += char continue line = linebuf.strip() linebuf = '' # Check if we should still continue if not nzo.pp_active: p.kill() msg = T('PostProcessing was aborted (%s)') % T('Repair') nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED readd = False break # Skip empty lines if line == '': continue # Save it all lines.append(line) # ----------------- Startup if line.startswith('invalid option'): # Option error msg = T('[%s] PAR2 received incorrect options, check your Config->Switches settings') % setname nzo.set_unpack_info('Repair', msg) nzo.status = Status.FAILED logging.error(msg) elif line.startswith('valid file is not found'): # Initialparfile probably didn't decode properly, or bad user parameters # We will try to get another par2 file, but 99% of time it's user parameters msg = T('Invalid par2 files or invalid PAR2 parameters, cannot verify or repair') logging.info(msg) logging.info("Extra pars = %s", nzo.extrapars[setname]) # Look for the smallest par2file block_table = {} for nzf in nzo.extrapars[setname]: if not nzf.completed: block_table[nzf.blocks] = nzf if block_table: nzf = block_table[min(block_table.keys())] logging.info("Found new par2file %s", nzf.filename) # Move from extrapar list to files to be downloaded # and remove it from the extrapars list nzo.add_parfile(nzf) readd = True else: nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED elif line.startswith('There is not enough space on the disk'): msg = T('Repairing failed, %s') % T('Disk full') nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED # ----------------- Start check/verify stage elif line.startswith('Recovery Set ID'): # Remove files were MultiPar stores verification result when repaired succesfull recovery_id = line.split()[-1] used_for_repair.append('2_%s.bin' % recovery_id) used_for_repair.append('2_%s.ini' % recovery_id) elif line.startswith('Input File total count'): # How many files will it try to find? verifytotal = int(line.split()[-1]) # ----------------- Misnamed-detection stage # Misnamed files elif line.startswith('Searching misnamed file'): # We are in the misnamed files block misnamed_files = True verifynum = 0 elif misnamed_files and 'Found' in line: # First it reports the current filename m = _RE_FILENAME.search(line) if m: verifynum += 1 nzo.set_action_line(T('Checking'), '%02d/%02d' % (verifynum, verifytotal)) old_name = m.group(1) elif misnamed_files and 'Misnamed' in line: # Then it finds the actual m = _RE_FILENAME.search(line) if m and old_name: new_name = m.group(1) logging.debug('MultiPar will rename "%s" to "%s"', old_name, new_name) renames[new_name] = old_name # New name is also part of data! datafiles.append(new_name) reconstructed.append(old_name) # ----------------- Checking stage # Checking input files elif line.startswith('Complete file count'): in_check = False verifynum = 0 old_name = None elif line.startswith('Verifying Input File'): in_check = True nzo.status = Status.VERIFYING elif in_check: m = _RE_FILENAME.search(line) if m: # Only increase counter if it was really the detection line if line.startswith('= ') or '%' not in line: verifynum += 1 nzo.set_action_line(T('Checking'), '%02d/%02d' % (verifynum, verifytotal)) old_name = m.group(1) # ----------------- Verify stage # Which files need extra verification? elif line.startswith('Damaged file count'): verifytotal = int(line.split()[-1]) elif line.startswith('Missing file count'): verifytotal += int(line.split()[-1]) # Actual verification elif line.startswith('Input File Slice found'): # End of verification AND end of misnamed file search in_verify = False misnamed_files = False old_name = None elif line.startswith('Finding available slice'): # The actual scanning of the files in_verify = True nzo.set_action_line(T('Verifying'), T('Checking')) elif in_verify: m = _RE_FILENAME.search(line) if m: # It prints the filename couple of times, so we save it to check # 'datafiles' will not contain all data-files in par-set, only the # ones that got scanned, but it's ouput is never used! nzo.status = Status.VERIFYING if line.split()[1] in ('Damaged', 'Found'): verifynum += 1 datafiles.append(m.group(1)) # Set old_name in case it was misnamed and found (not when we are joining) old_name = None if line.split()[1] == 'Found' and not joinables: old_name = m.group(1) # Sometimes we don't know the total (filejoin) if verifytotal <= 1: nzo.set_action_line(T('Verifying'), '%02d' % verifynum) else: nzo.set_action_line(T('Verifying'), '%02d/%02d' % (verifynum, verifytotal)) elif old_name and old_name != m.group(1): # Hey we found another misnamed one! new_name = m.group(1) logging.debug('MultiPar will rename "%s" to "%s"', old_name, new_name) renames[new_name] = old_name # Put it back with it's new name! datafiles.pop() datafiles.append(new_name) # Need to remove the old file after repair (Multipar keeps it) used_for_repair.append(old_name) # Need to reset it to avoid collision old_name = None else: # It's scanning extra files that don't belong to the set # For damaged files it reports the filename twice, so only then start verifynum += 1 if verifynum / 2 > verifytotal: nzo.set_action_line(T('Checking extra files'), '%02d' % verifynum) if joinables: # Find out if a joinable file has been used for joining for jn in joinables: if line.find(os.path.split(jn)[1]) > 0: used_joinables.append(jn) datafiles.append(m.group(1)) break elif line.startswith('Need'): # We need more blocks, but are they available? chunks = line.split() needed_blocks = int(chunks[1]) # Check if we have enough blocks added_blocks = nzo.get_extra_blocks(setname, needed_blocks) if added_blocks: msg = T('Fetching %s blocks...') % str(added_blocks) nzo.set_action_line(T('Fetching'), msg) readd = True else: # Failed msg = T('Repair failed, not enough repair blocks (%s short)') % str(needed_blocks) nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED # MultiPar can say 'PAR File(s) Incomplete' also when it needs more blocks # But the Need-more-blocks message is always last, so force failure finished = 0 # Result of verification elif line.startswith('All Files Complete') or line.endswith('PAR File(s) Incomplete'): # Completed without damage! # 'PAR File(s) Incomplete' is reported for success # but when there are very similar filenames in the folder msg = T('[%s] Verified in %s, all files correct') % (setname, format_time_string(time.time() - start)) nzo.set_unpack_info('Repair', msg) logging.info('Verified in %s, all files correct', format_time_string(time.time() - start)) finished = 1 elif line.startswith(('Ready to repair', 'Ready to rejoin')): # Ready to repair! # Or we are re-joining a split file when there's no damage but takes time msg = T('[%s] Verified in %s, repair is required') % (setname, format_time_string(time.time() - start)) nzo.set_unpack_info('Repair', msg) logging.info('Verified in %s, repair is required', format_time_string(time.time() - start)) start = time.time() # Set message for user in case of joining if line.startswith('Ready to rejoin'): nzo.set_action_line(T('Joining'), '%2d' % len(used_joinables)) else: # If we are repairing a joinable set, it won't actually # do the joining. So we can't remove those files! used_joinables = [] # ----------------- Repair stage elif 'Recovering slice' in line: # Before this it will calculate matrix, here is where it starts start = time.time() in_repair = True nzo.set_action_line(T('Repairing'), '%2d%%' % 0) elif in_repair and line.startswith('Verifying repair'): in_repair = False in_verify_repaired = True # How many will be checked? verifytotal = int(line.split()[-1]) verifynum = 0 elif in_repair: try: # Line with percentage of repair (nothing else) per = float(line[:-1]) nzo.set_action_line(T('Repairing'), '%2d%%' % per) nzo.status = Status.REPAIRING except: # Checksum error if 'checksum' in line: # Failed due to checksum error of multipar msg = T('Repairing failed, %s') % line nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED else: # Not sure, log error logging.info("Traceback: ", exc_info=True) elif line.startswith('Repaired successfully'): msg = T('[%s] Repaired in %s') % (setname, format_time_string(time.time() - start)) nzo.set_unpack_info('Repair', msg) logging.info('Repaired in %s', format_time_string(time.time() - start)) finished = 1 elif in_verify_repaired and line.startswith('Repaired :'): # Track verification of repaired files (can sometimes take a while) verifynum += 1 nzo.set_action_line(T('Verifying repair'), '%02d/%02d' % (verifynum, verifytotal)) elif line.startswith('Failed to repair'): # Unknown repair problem msg = T('Repairing failed, %s') % line nzo.fail_msg = msg nzo.set_unpack_info('Repair', msg, setname) nzo.status = Status.FAILED finished = 0 p.wait() # Also log what is shown to user in history if nzo.fail_msg: logging.info(nzo.fail_msg) logging.debug('MultiPar output was\n%s', '\n'.join(lines)) # Add renamed files to the collection # MultiPar always(!!) renames automatically whatever it can in the 'Searching misnamed file:'-section # Even if the repair did not complete fully it will rename those! # But the ones in 'Finding available slices'-section will only be renamed after succesfull repair if renames: # If succes, we also remove the possibly previously renamed ones if finished: reconstructed.extend(list(renames.values())) # Adding to the collection nzo.renamed_file(renames) # Remove renamed original files workdir = os.path.split(parfile)[0] used_joinables.extend([os.path.join(workdir, name) for name in reconstructed]) return finished, readd, datafiles, used_joinables, used_for_repair def create_env(nzo=None, extra_env_fields={}): """ Modify the environment for pp-scripts with extra information OSX: Return copy of environment without PYTHONPATH and PYTHONHOME other: return None """ env = os.environ.copy() # Are we adding things? if nzo: # Add basic info for field in ENV_NZO_FIELDS: try: field_value = getattr(nzo, field) # Special filters for Python types if field_value is None: env['SAB_' + field.upper()] = '' elif isinstance(field_value, bool): env['SAB_' + field.upper()] = str(field_value*1) else: env['SAB_' + field.upper()] = str(field_value) except: # Catch key errors pass # Always supply basic info extra_env_fields.update({'program_dir': sabnzbd.DIR_PROG, 'par2_command': sabnzbd.newsunpack.PAR2_COMMAND, 'multipar_command': sabnzbd.newsunpack.MULTIPAR_COMMAND, 'rar_command': sabnzbd.newsunpack.RAR_COMMAND, 'zip_command': sabnzbd.newsunpack.ZIP_COMMAND, '7zip_command': sabnzbd.newsunpack.SEVEN_COMMAND, 'version': sabnzbd.__version__}) # Add extra fields for field in extra_env_fields: try: if extra_env_fields[field] is not None: env['SAB_' + field.upper()] = str(extra_env_fields[field]) else: env['SAB_' + field.upper()] = '' except: # Catch key errors pass if sabnzbd.DARWIN: if 'PYTHONPATH' in env: del env['PYTHONPATH'] if 'PYTHONHOME' in env: del env['PYTHONHOME'] elif not nzo: # No modification return None return env def userxbit(filename): # Returns boolean if the x-bit for user is set on the given file # This is a workaround: os.access(filename, os.X_OK) does not work on certain mounted file systems # Does not work on Windows, but it is not called on Windows # rwx rwx rwx # 876 543 210 # we want bit 6 from the right, counting from 0 userxbit = 1<<6 # bit 6 rwxbits = os.stat(filename)[0] # the first element of os.stat() is "mode" # do logical AND, check if it is not 0: xbitset = (rwxbits & userxbit) > 0 return xbitset def build_command(command, flatten_command=False): """ Prepare list from running an external program On Windows we need to run our own list2cmdline for Unrar """ # command[0] should be set, and thus not None if not command[0]: logging.error(T('[%s] The command in build_command is undefined.'), caller_name()) raise IOError if not sabnzbd.WIN32: if command[0].endswith('.py'): with open(command[0], 'r') as script_file: if not userxbit(command[0]): # Inform user that Python scripts need x-bit and then stop logging.error(T('Python script "%s" does not have execute (+x) permission set'), command[0]) raise IOError elif script_file.read(2) != '#!': # No shebang (#!) defined, add default python command.insert(0, 'python') if IONICE_COMMAND and cfg.ionice().strip(): lst = cfg.ionice().split() lst.reverse() for arg in lst: command.insert(0, arg) command.insert(0, IONICE_COMMAND) if NICE_COMMAND and cfg.nice().strip(): lst = cfg.nice().split() lst.reverse() for arg in lst: command.insert(0, arg) command.insert(0, NICE_COMMAND) need_shell = False stup = None creationflags = 0 else: # For Windows we always need to add python interpreter if command[0].endswith('.py'): command.insert(0, 'python') need_shell = os.path.splitext(command[0])[1].lower() not in ('.exe', '.com') stup = subprocess.STARTUPINFO() stup.dwFlags = win32process.STARTF_USESHOWWINDOW stup.wShowWindow = win32con.SW_HIDE creationflags = WIN_SCHED_PRIOS[cfg.win_process_prio()] if need_shell or flatten_command: command = list2cmdline(command) return stup, need_shell, command, creationflags def rar_volumelist(rarfile_path, password, known_volumes): """ Extract volumes that are part of this rarset and merge them with existing list, removing duplicates """ # UnRar is required to read some RAR files # RarFile can fail in special cases try: rarfile.UNRAR_TOOL = RAR_COMMAND zf = rarfile.RarFile(rarfile_path) # setpassword can fail due to bugs in RarFile if password: try: zf.setpassword(password) except: pass zf_volumes = zf.volumelist() except: zf_volumes = [] # Remove duplicates known_volumes_base = [os.path.basename(vol) for vol in known_volumes] for zf_volume in zf_volumes: if os.path.basename(zf_volume) not in known_volumes_base: # Long-path notation just to be sure known_volumes.append(long_path(zf_volume)) return known_volumes # Sort the various RAR filename formats properly :\ def rar_sort(a, b): """ Define sort method for rar file names """ aext = a.split('.')[-1] bext = b.split('.')[-1] if aext == 'rar' and bext == 'rar': return cmp(a, b) elif aext == 'rar': return -1 elif bext == 'rar': return 1 else: return cmp(a, b) def build_filelists(workdir, workdir_complete=None, check_both=False, check_rar=True): """ Build filelists, if workdir_complete has files, ignore workdir. Optionally scan both directories. Optionally test content to establish RAR-ness """ sevens, joinables, zips, rars, ts, filelist = ([], [], [], [], [], []) if workdir_complete: filelist.extend(recursive_listdir(workdir_complete)) if workdir and (not filelist or check_both): filelist.extend(recursive_listdir(workdir)) for file in filelist: # Extra check for rar (takes CPU/disk) file_is_rar = False if check_rar: file_is_rar = rarfile.is_rarfile(file) # Run through all the checks if SEVENZIP_RE.search(file) or SEVENMULTI_RE.search(file): # 7zip sevens.append(file) elif SPLITFILE_RE.search(file) and not file_is_rar: # Joinables, optional with RAR check joinables.append(file) elif ZIP_RE.search(file): # ZIP files zips.append(file) elif RAR_RE.search(file): # RAR files rars.append(file) elif TS_RE.search(file): # TS split files ts.append(file) logging.debug("build_filelists(): joinables: %s", joinables) logging.debug("build_filelists(): zips: %s", zips) logging.debug("build_filelists(): rars: %s", rars) logging.debug("build_filelists(): 7zips: %s", sevens) logging.debug("build_filelists(): ts: %s", ts) return joinables, zips, rars, sevens, ts def QuickCheck(set, nzo): """ Check all on-the-fly md5sums of a set """ md5pack = nzo.md5packs.get(set) if md5pack is None: return False # We use bitwise assigment (&=) so False always wins in case of failure # This way the renames always get saved! result = True nzf_list = nzo.finished_files renames = {} # Files to ignore ignore_ext = cfg.quick_check_ext_ignore() for file in md5pack: found = False file_to_ignore = os.path.splitext(file)[1].lower().replace('.', '') in ignore_ext for nzf in nzf_list: # Do a simple filename based check if file == nzf.filename: found = True if (nzf.md5sum is not None) and nzf.md5sum == md5pack[file]: logging.debug('Quick-check of file %s OK', file) result &= True elif file_to_ignore: # We don't care about these files logging.debug('Quick-check ignoring file %s', file) result &= True else: logging.info('Quick-check of file %s failed!', file) result = False break # Now lets do obfuscation check if nzf.md5sum == md5pack[file]: try: logging.debug('Quick-check will rename %s to %s', nzf.filename, file) renamer(os.path.join(nzo.downpath, nzf.filename), os.path.join(nzo.downpath, file)) renames[file] = nzf.filename nzf.filename = file result &= True found = True break except IOError: # Renamed failed for some reason, probably already done break if not found: if file_to_ignore: # We don't care about these files logging.debug('Quick-check ignoring missing file %s', file) continue logging.info('Cannot Quick-check missing file %s!', file) result = False # Save renames if renames: nzo.renamed_file(renames) return result def unrar_check(rar): """ Return version number of unrar, where "5.01" returns 501 Also return whether an original version is found (version, original) """ version = 0 original = '' if rar: try: version = run_simple(rar) except: return version, original original = "Alexander Roshal" in version m = re.search(r"RAR\s(\d+)\.(\d+)", version) if m: version = int(m.group(1)) * 100 + int(m.group(2)) else: version = 0 return version, original def par2_mt_check(par2_path): """ Detect if we have multicore par2 variants """ try: par2_version = run_simple([par2_path, '-h']) # Look for a threads option if '-t<' in par2_version: return True except: pass return False def sfv_check(sfv_path): """ Verify files using SFV file, input: full path of sfv, file are assumed to be relative to sfv returns: List of failing files or [] when all is OK """ failed = [] try: fp = open(sfv_path, 'r') except: logging.info('Cannot open SFV file %s', sfv_path) failed.append(sfv_path) return failed root = os.path.split(sfv_path)[0] for line in fp: line = line.strip('\n\r ') if line and line[0] != ';': x = line.rfind(' ') if x > 0: filename = line[:x].strip() checksum = line[x:].strip() path = os.path.join(root, filename) if os.path.exists(path): if crc_check(path, checksum): logging.debug('File %s passed SFV check', path) else: logging.info('File %s did not pass SFV check', path) failed.append(filename) else: logging.info('File %s missing in SFV check', path) failed.append(filename) fp.close() return failed def crc_check(path, target_crc): """ Return True if file matches CRC """ try: fp = open(path, 'rb') except: return False crc = 0 while 1: data = fp.read(4096) if not data: break crc = binascii.crc32(data, crc) fp.close() crc = '%08x' % (crc & 0xffffffff,) return crc.lower() == target_crc.lower() def analyse_show(name): """ Do a quick SeasonSort check and return basic facts """ job = SeriesSorter(None, name, None, None) job.match(force=True) if job.is_match(): job.get_values() info = job.show_info show_name = info.get('show_name', '').replace('.', ' ').replace('_', ' ') show_name = show_name.replace(' ', ' ') return show_name, \ info.get('season_num', ''), \ info.get('episode_num', ''), \ info.get('ep_name', '') def pre_queue(nzo, pp, cat): """ Run pre-queue script (if any) and process results. pp and cat are supplied seperate since they can change. """ def fix(p): # If added via API, some items can still be "None" (as a string) if not p or str(p).lower() == 'none': return '' return str(p) values = [1, nzo.final_name_pw_clean, pp, cat, nzo.script, nzo.priority, None] script_path = make_script_path(cfg.pre_script()) if script_path: # Basic command-line parameters command = [script_path, nzo.final_name_pw_clean, pp, cat, nzo.script, nzo.priority, str(nzo.bytes), ' '.join(nzo.groups)] command.extend(analyse_show(nzo.final_name_pw_clean)) command = [fix(arg) for arg in command] # Fields not in the NZO directly extra_env_fields = {'groups': ' '.join(nzo.groups), 'show_name': command[8], 'show_season': command[9], 'show_episode': command[10], 'show_episode_name': command[11]} try: stup, need_shell, command, creationflags = build_command(command) env = create_env(nzo, extra_env_fields) logging.info('Running pre-queue script %s', command) p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, env=env, creationflags=creationflags) except: logging.debug("Failed script %s, Traceback: ", script_path, exc_info=True) return values output = platform_btou(p.stdout.read()) ret = p.wait() logging.info('Pre-queue script returns %s and output=\n%s', ret, output) if ret == 0: n = 0 for line in output.split('\n'): line = line.strip('\r\n \'"') if n < len(values) and line: values[n] = line n += 1 accept = int_conv(values[0]) if accept < 1: logging.info('Pre-Q refuses %s', nzo.final_name_pw_clean) elif accept == 2: logging.info('Pre-Q accepts&fails %s', nzo.final_name_pw_clean) else: logging.info('Pre-Q accepts %s', nzo.final_name_pw_clean) return values def list2cmdline(lst): """ convert list to a cmd.exe-compatible command string """ nlst = [] for arg in lst: if not arg: nlst.append('""') else: nlst.append('"%s"' % arg) return ' '.join(nlst) def is_sevenfile(path): """ Return True if path has proper extension and 7Zip is installed """ return SEVEN_COMMAND and os.path.splitext(path)[1].lower() == '.7z' class SevenZip: """ Minimal emulation of ZipFile class for 7Zip """ def __init__(self, path): self.path = path def namelist(self): """ Return list of names in 7Zip """ names = [] # Future extension: use '-sccUTF-8' to get names in UTF8 encoding command = [SEVEN_COMMAND, 'l', '-p', '-y', '-slt', self.path] stup, need_shell, command, creationflags = build_command(command) p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=stup, creationflags=creationflags) output = platform_btou(p.stdout.read()) _ = p.wait() re_path = re.compile('^Path = (.+)') for line in output.split('\n'): m = re_path.search(line) if m: names.append(m.group(1).strip('\r')) if names: # Remove name of archive itself del names[0] return names def read(self, name): """ Read named file from 7Zip and return data """ command = [SEVEN_COMMAND, 'e', '-p', '-y', '-so', self.path, name] stup, need_shell, command, creationflags = build_command(command) # Ignore diagnostic output, otherwise it will be appended to content if sabnzbd.WIN32: stderr = open('nul', 'w') else: stderr = open('/dev/null', 'w') p = Popen(command, shell=need_shell, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=stderr, startupinfo=stup, creationflags=creationflags) output = platform_btou(p.stdout.read()) _ = p.wait() stderr.close() return output def close(self): """ Close file """ pass def run_simple(cmd): """ Run simple external command and return output """ p = Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) txt = platform_btou(p.stdout.read()) p.wait() return txt
the-stack_0_11132
# -*- coding: utf-8 -*- """ Created on Fri Apr 22 02:51:53 2016 @author: utkarsh """ # FREQEST - Estimate fingerprint ridge frequency within image block # # Function to estimate the fingerprint ridge frequency within a small block # of a fingerprint image. This function is used by RIDGEFREQ # # Usage: # freqim = freqest(im, orientim, windsze, minWaveLength, maxWaveLength) # # Arguments: # im - Image block to be processed. # orientim - Ridge orientation image of image block. # windsze - Window length used to identify peaks. This should be # an odd integer, say 3 or 5. # minWaveLength, maxWaveLength - Minimum and maximum ridge # wavelengths, in pixels, considered acceptable. # # Returns: # freqim - An image block the same size as im with all values # set to the estimated ridge spatial frequency. If a # ridge frequency cannot be found, or cannot be found # within the limits set by min and max Wavlength # freqim is set to zeros. # # Suggested parameters for a 500dpi fingerprint image # freqim = freqest(im,orientim, 5, 5, 15); # # See also: RIDGEFREQ, RIDGEORIENT, RIDGESEGMENT # REFERENCES # Peter Kovesi # School of Computer Science & Software Engineering # The University of Western Australia # pk at csse uwa edu au # http://www.csse.uwa.edu.au/~pk import numpy as np import math import scipy.ndimage # import cv2 def frequest(im, orientim, windsze, minWaveLength, maxWaveLength): rows, cols = np.shape(im) # Find mean orientation within the block. This is done by averaging the # sines and cosines of the doubled angles before reconstructing the # angle again. This avoids wraparound problems at the origin. cosorient = np.mean(np.cos(2 * orientim)) sinorient = np.mean(np.sin(2 * orientim)) orient = math.atan2(sinorient, cosorient) / 2 # Rotate the image block so that the ridges are vertical # ROT_mat = cv2.getRotationMatrix2D((cols/2,rows/2),orient/np.pi*180 + 90,1) # rotim = cv2.warpAffine(im,ROT_mat,(cols,rows)) rotim = scipy.ndimage.rotate(im, orient / np.pi * 180 + 90, axes=(1, 0), reshape=False, order=3, mode='nearest') # Now crop the image so that the rotated image does not contain any # invalid regions. This prevents the projection down the columns # from being mucked up. cropsze = int(np.fix(rows / np.sqrt(2))) offset = int(np.fix((rows - cropsze) / 2)) rotim = rotim[offset:offset + cropsze][:, offset:offset + cropsze] # Sum down the columns to get a projection of the grey values down # the ridges. proj = np.sum(rotim, axis=0) dilation = scipy.ndimage.grey_dilation(proj, windsze, structure=np.ones(windsze)) temp = np.abs(dilation - proj) peak_thresh = 2 maxpts = (temp < peak_thresh) & (proj > np.mean(proj)) maxind = np.where(maxpts) rows_maxind, cols_maxind = np.shape(maxind) # Determine the spatial frequency of the ridges by divinding the # distance between the 1st and last peaks by the (No of peaks-1). If no # peaks are detected, or the wavelength is outside the allowed bounds, # the frequency image is set to 0 if cols_maxind < 2: freqim = np.zeros(im.shape) else: NoOfPeaks = cols_maxind waveLength = (maxind[0][cols_maxind - 1] - maxind[0][0]) / (NoOfPeaks - 1) if minWaveLength <= waveLength <= maxWaveLength: freqim = 1 / np.double(waveLength) * np.ones(im.shape) else: freqim = np.zeros(im.shape) return freqim
the-stack_0_11133
from automata_tools.Automata import Automata from typing import Dict, List, Union, Callable import numpy as np class WFA: dfa: Automata def __init__(self, dfa: Automata, word2index: Dict[str, int], dfa_to_tensor: Callable) -> None: self.dfa = dfa self.dfaDict = self.dfa.to_dict() wfaTensor, wfaState2idx, wildcardMatrix, language = dfa_to_tensor( self.dfaDict, word2index) self.word2index = word2index self.wfaTensor = wfaTensor + wildcardMatrix # word sparse transition matrix and wildcard all 1 transition matrix self.wfaState2idx = wfaState2idx self.language = language self.tokenizer = lambda inputText: self.dfa.tokenizer(inputText) def setTokenizer(self, tokenizerFunction: Callable[[str], List[str]]): self.tokenizer = tokenizerFunction def getStateLength(self) -> int: return len(self.dfaDict['states']) def getFinalStateIndex(self) -> List[int]: return [self.wfaState2idx[i] for i in self.dfaDict['finalStates']] def getStartStateIndex(self) -> int: return self.wfaState2idx[self.dfaDict['startstate']] def execute(self, inputWords: Union[str, np.array]) -> bool: if isinstance(inputWords, str): inputWordTensor = np.array( list( map(lambda word: self.word2index[word], self.tokenizer(inputWords)))) else: inputWordTensor = inputWords stateTensor = np.zeros((self.getStateLength(), 1)) stateTensor[self.getStartStateIndex( )] = 1 # set initial state's probability to 1 # every word have a size SxS transition matrix, where S = self.getStateLength() for inputIndex in range(len(inputWordTensor)): inputWordIndex = inputWordTensor[inputIndex] transitionMatrixOfCurrentInputWord = self.wfaTensor[int( inputWordIndex)].transpose() stateTensor = np.dot(transitionMatrixOfCurrentInputWord, stateTensor) for index in self.getFinalStateIndex(): if int(stateTensor[index]) >= 1: return True return False
the-stack_0_11137
from setuptools import setup with open('README.md', 'r') as fp: long_desc = fp.read() setup( name='HTTPserver-mock', version='2', author='Tom YU Choe', author_email='[email protected]', description='a simple http-server mockup to test web crawler.', long_description=long_desc, url='https://github.com/YUChoe/HTTPserver-mock', long_description_content_type="text/markdown", py_modules=['HTTPserver_mock'], package_dir={'': 'src'}, license='MIT', classifiers=[ "Development Status :: 4 - Beta", "Intended Audience :: System Administrators", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.6", "License :: OSI Approved :: MIT License", "Operating System :: POSIX :: Linux", ], install_requires=[], )
the-stack_0_11139
from __future__ import annotations import ipaddress import json import logging import struct import sys import time import tkinter import zlib from dataclasses import astuple from pathlib import Path from tkinter import messagebox, ttk from typing import Optional, Tuple import dns import dns.resolver from idlelib.tooltip import Hovertip from twisted.internet import reactor, task, tksupport from modules.Client import ClientInstance from modules.Common import (CarInfo, Credidentials, DataQueue, NetData, NetworkQueue, PitStop) from modules.DriverInputs import DriverInputs from modules.Server import ServerInstance from modules.Strategy import StrategyUI from modules.Telemetry import Telemetry, TelemetryRT, TelemetryUI from modules.TyreGraph import PrevLapsGraph, TyreGraph from modules.TyreSets import TyreSets, TyresSetData from modules.Users import UserUI logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(asctime)s.%(msecs)03d | %(name)s | %(message)s", datefmt="%H:%M:%S") _VERSION_ = "1.5.9" class ConnectionPage(ttk.Frame): def __init__(self, app: App, root): ttk.Frame.__init__(self, master=root) self.main_app = app self.connection_path = "./Config/connection.json" self.is_connected = None self.connection_msg = "" self.credis = None self.is_connected_loop = task.LoopingCall(self.check_connection) self.credidentials = None key_check = ("saved_ip", "tcp_port", "udp_port", "username", "driverID") logging.info(f"Loading {self.connection_path}") if Path(self.connection_path).is_file(): fp = open(self.connection_path, "r") try: self.credidentials = json.load(fp) if (type(self.credidentials) is not dict or tuple(self.credidentials.keys()) != key_check): logging.info(f"Invalid connection.json file") self.credidentials = None except json.JSONDecodeError as msg: self.credidentials = None logging.info(f"JSON Error: {msg}") fp.close() else: logging.info(f"{self.connection_path} not found") self.credidentials = None self.as_server = False self.f_connection_info = tkinter.Frame( self, bd=2, relief=tkinter.RIDGE) self.f_connection_info.grid() self.l_ip = tkinter.Label(self.f_connection_info, text="Address", anchor=tkinter.E, width=10) self.l_ip.grid(row=0, column=0, padx=5, pady=2) Hovertip(self.l_ip, "Address of the server host ip or domain", 10) self.l_tcp_port = tkinter.Label(self.f_connection_info, text="TCP port", anchor=tkinter.E, width=10) self.l_tcp_port.grid(row=1, column=0, padx=5, pady=2) Hovertip(self.l_ip, "TCP port of the host server (1024 - 10 000)," " can be the same UDP", 10) self.l_udp_port = tkinter.Label(self.f_connection_info, text="UDP port", anchor=tkinter.E, width=10) self.l_udp_port.grid(row=2, column=0, padx=5, pady=2) Hovertip(self.l_ip, "UDP port of the host server (1024 - 10 000)," " can be the same as TCP", 10) self.l_username = tkinter.Label(self.f_connection_info, text="Username", anchor=tkinter.E, width=10) self.l_username.grid(row=3, column=0, padx=5, pady=2) Hovertip(self.l_username, "Your name in ACC", 10) self.l_driverID = tkinter.Label(self.f_connection_info, text="Driver ID", anchor=tkinter.E, width=10) self.l_driverID.grid(row=4, column=0, padx=5, pady=2) Hovertip(self.l_driverID, "Driver ID for driver swap " "(Driver 1, 2, 3, 4, etc), not your SteamID", 10) if self.credidentials is None: self.cb_ip = ttk.Combobox(self.f_connection_info, width=30, values=[]) else: self.cb_ip = ttk.Combobox(self.f_connection_info, width=30, values=self.credidentials["saved_ip"]) self.cb_ip.grid(row=0, column=1, padx=5, pady=2) self.e_tcp_port = tkinter.Entry(self.f_connection_info, width=30) self.e_tcp_port.grid(row=1, column=1, padx=5, pady=2) self.e_udp_port = tkinter.Entry(self.f_connection_info, width=30) self.e_udp_port.grid(row=2, column=1, padx=5, pady=2) self.e_username = tkinter.Entry(self.f_connection_info, width=30) self.e_username.grid(row=3, column=1, padx=5, pady=2) Hovertip(self.e_username, "Your name in ACC", 10) self.e_driverID = tkinter.Entry(self.f_connection_info, width=30) self.e_driverID.grid(row=4, column=1, padx=5, pady=2) Hovertip(self.e_driverID, "Driver ID for driver swap " "(Driver 1, 2, 3, 4, etc), not your SteamID", 10) self.b_connect = tkinter.Button(self, text="Connect", command=self.connect) self.b_connect.grid(row=1, padx=10, pady=5) if self.credidentials is not None: self.e_tcp_port.insert(tkinter.END, self.credidentials["tcp_port"]) self.e_udp_port.insert(tkinter.END, self.credidentials["udp_port"]) self.e_username.insert(tkinter.END, self.credidentials["username"]) self.e_driverID.insert(tkinter.END, self.credidentials["driverID"]) else: self.e_tcp_port.insert(tkinter.END, "4269") self.e_udp_port.insert(tkinter.END, "4270") logging.info("Displaying connection window") def set_as_server(self) -> None: self.cb_ip.set("127.0.0.1") self.cb_ip["state"] = "disabled" self.as_server = True def set_as_client(self) -> None: self.cb_ip.set("") self.cb_ip["state"] = "normal" self.as_server = False def connect(self) -> None: logging.info("Connect button pressed") self.b_connect.config(state="disabled") error_message = "" ip = None try: ip = ipaddress.ip_address(self.cb_ip.get()).compressed except ValueError: logging.info("Querrying dns server...") try: results = dns.resolver.resolve(self.cb_ip.get()) for result in results: logging.info(f"Found ip: {result.address}") logging.info(f"Picking first dns answer: {results[0].address}") ip = results[0].address except dns.resolver.NXDOMAIN: error_message += "Invalide IP address or Domain name\n" except dns.resolver.NoAnswer: error_message += ("DNS didn't replied to the request" f" for {self.cb_ip.get()}") except dns.resolver.NoNameservers: error_message += "No DNS server available" except dns.resolver.YXDOMAIN: error_message += ("The query name is too long after " "DNAME substitution") if self.e_tcp_port.get().isnumeric(): self.e_tcp_port.config(background="White") else: self.e_tcp_port.config(background="Red") error_message += "Invalide TCP port\n" if self.e_udp_port.get().isnumeric(): self.e_udp_port.config(background="White") else: self.e_udp_port.config(background="Red") error_message += "Invalide UDP port\n" if self.e_username.get() != "": self.e_username.config(background="White") else: self.e_username.config(background="Red") error_message += "Invalide username\n" driverID = self.e_driverID.get() if driverID != "" and driverID.isnumeric() and 0 < int(driverID) <= 5: self.e_driverID.config(background="White") else: self.e_driverID.config(background="Red") if (driverID.isnumeric() and 1 > int(driverID) > 5): error_message += ("Are you sure you are the driver N° " f"{driverID} in your team ?") else: error_message += "Invalide driver ID\n" if error_message == "": logging.info("No error in the credidentials") self.credits = Credidentials( ip=ip, tcp_port=int(self.e_tcp_port.get()), udp_port=int(self.e_udp_port.get()), username=self.e_username.get(), driverID=int(self.e_driverID.get()) ) if self.as_server: self.main_app.as_server(self.credits) else: self.main_app.connect_to_server(self.credits) self.is_connected_loop.start(0.1) logging.info("Waiting for connection confirmation") else: logging.info(f"Error: {error_message}") messagebox.showerror("Error", error_message) self.b_connect.config(state="normal") def check_connection(self) -> None: if self.is_connected is None: return if self.is_connected: logging.info("Connected") self.save_credidentials(self.credits) else: logging.info("Connection failed") messagebox.showerror("Error", self.connection_msg) self.b_connect.config(state="normal") self.is_connected = None self.is_connected_loop.stop() def connected(self, succes: bool, error: str) -> None: self.is_connected = succes self.connection_msg = error def save_credidentials(self, credits: Credidentials) -> None: logging.info("Saving credidentials") if self.credidentials is None: saved_ip = [self.cb_ip.get()] elif credits.ip not in self.credidentials["saved_ip"]: saved_ip = [self.cb_ip.get(), *self.credidentials["saved_ip"]] if len(saved_ip) > 5: self.credidentials["saved_ip"].pop() else: saved_ip = self.credidentials["saved_ip"] with open(self.connection_path, "w") as fp: connection = { "saved_ip": saved_ip, "tcp_port": credits.tcp_port, "udp_port": credits.udp_port, "username": credits.username, "driverID": credits.driverID, } json.dump(connection, fp, indent=4) class App(tkinter.Tk): def __init__(self) -> None: tkinter.Tk.__init__(self) tksupport.install(self) self.geometry("830x580+0+0") try: with open("./Config/gui.json", "r") as fp: self.gui_config = json.load(fp) except FileNotFoundError: print("APP: './Config/gui.json' not found.") return self.font = (self.gui_config["font"], self.gui_config["font_size"]) app_style = ttk.Style(self) app_style.configure('.', font=self.font, background=self.gui_config["background_colour"], foreground=self.gui_config["foreground_colour"]) app_style.configure('TNotebook.Tab', foreground="#000000") app_style.configure('TButton', foreground="#000000") app_style.configure('TCombobox', foreground="#000000") app_style.configure("ActiveDriver.TLabel", background=self.gui_config["active_driver_colour"]) app_style.configure("Users.TFrame", background="#000000") app_style.configure("TelemetryGrid.TFrame", background="#000000") app_style.configure("PressureInfo.TFrame", background="#000000") app_style.configure("TEntry", foreground="#000000") self.title(f"PyAccEngineer {_VERSION_}") self.config(bg="Grey") self.protocol("WM_DELETE_WINDOW", self.on_close) # Networking self.is_connected = False self.client: Optional[ClientInstance] = None self.server: Optional[ServerInstance] = None self.net_queue = DataQueue([], []) self.menu_bar = tkinter.Menu(self) self.menu_bar.add_command(label="Connect", command=self.show_connection_page, font=self.font) self.menu_bar.add_command(label="As Server", command=lambda: self.show_connection_page( True), font=self.font) self.menu_bar.add_command(label="Disconnect", command=self.disconnect, state="disabled", font=self.font) self.config(menu=self.menu_bar) self.main_canvas = tkinter.Canvas(self) self.main_frame = ttk.Frame(self) self.hsb = ttk.Scrollbar(self) self.vsb = ttk.Scrollbar(self) self.main_canvas.config(xscrollcommand=self.hsb.set, yscrollcommand=self.vsb.set, highlightthickness=0) self.hsb.config(orient=tkinter.HORIZONTAL, command=self.main_canvas.xview) self.vsb.config(orient=tkinter.VERTICAL, command=self.main_canvas.yview) self.hsb.pack(fill=tkinter.X, side=tkinter.BOTTOM, expand=tkinter.FALSE) self.vsb.pack(fill=tkinter.Y, side=tkinter.RIGHT, expand=tkinter.FALSE) self.main_canvas.pack(fill=tkinter.BOTH, side=tkinter.LEFT, expand=tkinter.TRUE) self.main_canvas.create_window(0, 0, window=self.main_frame, anchor=tkinter.NW) self.user_ui = UserUI(self.main_frame) self.user_ui.grid(row=1, column=0) self.tab_control = ttk.Notebook(self.main_frame) self.tab_control.grid(row=0, column=0, pady=3) self.f_connection_ui = ttk.Frame(self.tab_control) self.f_connection_ui.pack(fill=tkinter.BOTH, expand=1) self.connection_page = ConnectionPage(self, self.f_connection_ui) self.connection_page.place(anchor=tkinter.CENTER, in_=self.f_connection_ui, relx=.5, rely=.5) # Center StrategyUI in the notebook frame f_strategy_ui = ttk.Frame(self.tab_control) f_strategy_ui.pack(fill=tkinter.BOTH, expand=1) self.strategy_ui = StrategyUI(f_strategy_ui, self.gui_config) self.strategy_ui.place(anchor=tkinter.CENTER, in_=f_strategy_ui, relx=.5, rely=.5) self.telemetry_ui = TelemetryUI(self.tab_control) self.telemetry_ui.pack(fill=tkinter.BOTH, side=tkinter.LEFT, expand=tkinter.TRUE) self.driver_inputs = DriverInputs(self.tab_control) self.driver_inputs.pack(fill=tkinter.BOTH, side=tkinter.LEFT, expand=tkinter.TRUE) self.tyre_graph = TyreGraph(self.tab_control, self.gui_config) self.tyre_graph.pack(fill=tkinter.BOTH, expand=1) self.prev_lap_graph = PrevLapsGraph(self.tab_control, self.gui_config) self.prev_lap_graph.pack(fill=tkinter.BOTH, expand=1) self.tyre_sets = TyreSets(self.tab_control, self.gui_config) self.tyre_sets.pack(fill=tkinter.BOTH, expand=1) self.tab_control.add(self.f_connection_ui, text="Connection") self.tab_control.add(f_strategy_ui, text="Strategy") self.tab_control.add(self.telemetry_ui, text="Telemetry") self.tab_control.add(self.driver_inputs, text="Driver Inputs") self.tab_control.add(self.tyre_graph, text="Pressures") self.tab_control.add(self.prev_lap_graph, text="Previous Laps") self.tab_control.add(self.tyre_sets, text="Tyre sets") self.tab_control.hide(0) self.last_time = time.time() self.rt_last_time = time.time() self.rt_min_delta = self.gui_config["driver_input_speed"] self.min_delta = 0.5 self.last_telemetry = time.time() self.telemetry_timeout = 2 logging.info("Main UI created.") self.client_loopCall = task.LoopingCall(self.client_loop) self.client_loopCall.start(0.01) self.eval('tk::PlaceWindow . center') self.updateScrollRegion() def updateScrollRegion(self): self.main_canvas.update_idletasks() self.main_canvas.config(scrollregion=self.main_frame.bbox()) def client_loop(self) -> None: selected_tab_name = self.tab_control.tab(self.tab_control.select(), "text") if selected_tab_name == "Driver Inputs": if not self.driver_inputs.is_animating: self.driver_inputs.start_animation() else: if self.driver_inputs.is_animating: self.driver_inputs.stop_animation() if selected_tab_name == "Pressures": if not self.tyre_graph.is_animating: self.tyre_graph.start_animation() else: if self.tyre_graph.is_animating: self.tyre_graph.stop_animation() for element in self.net_queue.q_out: if element.data_type == NetworkQueue.ConnectionReply: logging.info("Received Connection reply for server") succes = bool(element.data[0]) msg_lenght = element.data[1] msg = element.data[2:2 + msg_lenght] self.connection_page.connected(succes, msg) self.mb_connected(succes) self.is_connected = succes if not succes: self.client.close() elif element.data_type == NetworkQueue.ServerData: server_data = CarInfo.from_bytes(element.data) is_first_update = self.strategy_ui.server_data is None self.strategy_ui.server_data = server_data if is_first_update: self.strategy_ui.update_values() elif element.data_type == NetworkQueue.Strategy: logging.info("Received: Strategy") self.strategy_ui.b_set_strat.config(state="disabled") asm_data = self.strategy_ui.asm.read_shared_memory() pit_stop = PitStop.from_bytes(element.data) self.strategy_ui.save_strategy(pit_stop) if asm_data is not None: self.strategy_ui.apply_strategy(pit_stop) elif element.data_type == NetworkQueue.StategyHistory: self.strategy_ui.clear_strategy_history() strategy_count = element.data[0] byte_index = 1 for _ in range(strategy_count): strat = PitStop.from_bytes(element.data[byte_index:]) self.strategy_ui.save_strategy(strat) byte_index += PitStop.byte_size elif element.data_type == NetworkQueue.StrategyDone: logging.info("Received: Strategy Done") self.strategy_ui.b_set_strat.config(state="normal") self.strategy_ui.update_values() elif element.data_type == NetworkQueue.Telemetry: telemetry, err = Telemetry.from_bytes(element.data) if (telemetry is None): messagebox.showerror("Unexpected error", err) self.on_close() return self.telemetry_ui.update_values(telemetry) self.tyre_graph.update_data(telemetry) self.strategy_ui.updade_telemetry_data(telemetry) self.driver_inputs.update_lap(telemetry.lap) if not self.strategy_ui.is_driver_active: self.strategy_ui.is_driver_active = True self.user_ui.set_active(telemetry.driver) self.last_telemetry = time.time() elif element.data_type == NetworkQueue.TelemetryRT: telemetry = TelemetryRT.from_bytes(element.data) self.driver_inputs.update_values(telemetry) elif element.data_type == NetworkQueue.UpdateUsers: logging.info("Received user update") user_update = element.data nb_users = user_update[0] self.user_ui.reset() self.strategy_ui.reset_drivers() index = 1 for _ in range(nb_users): lenght = user_update[index] index += 1 name = user_update[index:index+lenght].decode("utf-8") index += lenght driverID = user_update[index] index += 1 self.user_ui.add_user(name, driverID) self.strategy_ui.add_driver(name, driverID) elif element.data_type == NetworkQueue.TyreSets: data = zlib.decompress(element.data) tyres_data = [] nb_of_set = data[0] byte_index = 1 for _ in range(nb_of_set): tyre_info = TyresSetData.from_bytes( data[byte_index:byte_index+TyresSetData.byte_size]) tyres_data.append(tyre_info) byte_index += TyresSetData.byte_size self.tyre_sets.update_tyre_set_data(tyres_data) self.net_queue.q_out.clear() if not self.is_connected: return if not self.strategy_ui.is_connected: self.strategy_ui.is_connected = True if self.telemetry_ui.driver_swap or self.user_ui.active_user is None: if self.telemetry_ui.current_driver is not None: self.user_ui.set_active(self.telemetry_ui.current_driver) self.telemetry_ui.driver_swap = False self.strategy_ui.set_driver(self.telemetry_ui.current_driver) rt_delta_time = time.time() - self.rt_last_time delta_time = time.time() - self.last_time if (self.strategy_ui.is_driver_active and time.time() > self.last_telemetry + self.telemetry_timeout): logging.info("Telemetry timeout, not received " f"telemetry for {self.telemetry_timeout}s") self.strategy_ui.is_driver_active = False self.user_ui.remove_active() self.telemetry_ui.current_driver = None asm_data = self.strategy_ui.asm.read_shared_memory() if asm_data is not None: if self.rt_min_delta < rt_delta_time: self.rt_last_time = time.time() telemetry_rt = TelemetryRT( asm_data.Physics.gas, asm_data.Physics.brake, asm_data.Physics.steer_angle, asm_data.Physics.gear, asm_data.Physics.speed_kmh ) self.net_queue.q_in.append(NetData(NetworkQueue.TelemetryRT, telemetry_rt.to_bytes())) if self.min_delta < delta_time: self.last_time = time.time() infos = CarInfo( *astuple(asm_data.Graphics.mfd_tyre_pressure), asm_data.Graphics.mfd_fuel_to_add, asm_data.Static.max_fuel, asm_data.Graphics.mfd_tyre_set) self.net_queue.q_in.append(NetData(NetworkQueue.CarInfoData, infos.to_bytes())) # Telemetry name = asm_data.Static.player_name.split("\x00")[0] surname = asm_data.Static.player_surname.split("\x00")[0] driver = f"{name} {surname}" telemetry_data = Telemetry( driver, asm_data.Graphics.completed_lap, asm_data.Physics.fuel, asm_data.Graphics.fuel_per_lap, asm_data.Graphics.fuel_estimated_laps, asm_data.Physics.pad_life, asm_data.Physics.disc_life, asm_data.Graphics.current_time, asm_data.Graphics.best_time, asm_data.Graphics.last_time, asm_data.Graphics.is_in_pit, asm_data.Graphics.is_in_pit_lane, asm_data.Graphics.session_type, asm_data.Graphics.driver_stint_time_left, asm_data.Physics.wheel_pressure, asm_data.Physics.tyre_core_temp, asm_data.Physics.brake_temp, asm_data.Graphics.rain_tyres, asm_data.Graphics.session_time_left, asm_data.Graphics.track_grip_status, asm_data.Physics.front_brake_compound, asm_data.Physics.rear_brake_compound, asm_data.Physics.car_damage, asm_data.Graphics.rain_intensity, asm_data.Physics.suspension_damage, asm_data.Graphics.current_sector_index, asm_data.Graphics.last_sector_time, asm_data.Graphics.is_valid_lap, asm_data.Physics.air_temp, asm_data.Physics.road_temp, asm_data.Graphics.wind_speed, asm_data.Graphics.driver_stint_total_time_left, asm_data.Graphics.current_tyre_set, ) self.net_queue.q_in.append(NetData(NetworkQueue.Telemetry, telemetry_data.to_bytes())) if self.strategy_ui.strategy is not None: logging.info("Sending strategy") strategy = self.strategy_ui.strategy self.strategy_ui.strategy = None self.net_queue.q_in.append(NetData(NetworkQueue.StrategySet, strategy.to_bytes())) if self.strategy_ui.strategy_ok: logging.info("Send strategy Done") self.net_queue.q_in.append(NetData(NetworkQueue.StrategyDone)) self.strategy_ui.strategy_ok = False if self.tyre_sets.updated: data = b"" data += struct.pack("!B", len(self.tyre_sets.tyres_data)) for tyre_set in self.tyre_sets.tyres_data: data += tyre_set.to_bytes() data_compressed = zlib.compress(data) print(f"{len(data)} vs {len(data_compressed)}") self.net_queue.q_in.append(NetData(NetworkQueue.TyreSets, data_compressed)) self.tyre_sets.updated = False logging.info("Sending tyre set data") def show_connection_page(self, as_server: bool = False) -> None: logging.info("Show connection page") self.tab_control.add(self.f_connection_ui, text="Connection") self.tab_control.select(0) if as_server: self.connection_page.set_as_server() else: self.connection_page.set_as_client() def connect_to_server(self, credits: Credidentials) -> None: logging.info("Creating a ClientInstance connecting" f" to {credits.ip}:{credits.tcp_port}") self.client = ClientInstance(credits, self.net_queue) def as_server(self, credis: Credidentials) -> Tuple[bool, str]: logging.info("Creating a ServerInstance") self.server = ServerInstance(credis.tcp_port, credis.udp_port) self.connect_to_server(credis) def mb_connected(self, state: bool) -> None: if state: self.menu_bar.entryconfig("Disconnect", state="active") self.menu_bar.entryconfig("Connect", state="disabled") self.menu_bar.entryconfig("As Server", state="disabled") self.tab_control.hide(0) else: self.menu_bar.entryconfig("Disconnect", state="disabled") self.menu_bar.entryconfig("Connect", state="active") self.menu_bar.entryconfig("As Server", state="active") def disconnect(self) -> None: logging.info("Disconnecting") self.stop_networking() self.mb_connected(False) self.strategy_ui.reset() self.user_ui.reset() self.tyre_graph.reset() def stop_networking(self) -> None: if self.is_connected: self.client.close() self.is_connected = False logging.info("Client stopped.") if self.server is not None: self.server.close() self.server = None logging.info("Server stopped.") def on_close(self) -> None: logging.info("Closing the app") self.strategy_ui.close() self.tyre_graph.close() self.prev_lap_graph.close() self.tyre_sets.close() self.disconnect() self.client_loopCall.stop() tksupport.uninstall() reactor.stop() self.destroy() logging.info("App closed") def create_gui() -> None: App() def main(): reactor.callLater(0, create_gui) reactor.run() if __name__ == "__main__": main()
the-stack_0_11140
from gremlin_python.driver import client, serializer import sys, traceback _gremlin_cleanup_graph = "g.V().drop()" _gremlin_insert_vertices = [ "g.addV('person').property('id', 'thomas').property('firstName', 'Thomas').property('age', 44)", "g.addV('person').property('id', 'mary').property('firstName', 'Mary').property('lastName', 'Andersen').property('age', 39)", "g.addV('person').property('id', 'ben').property('firstName', 'Ben').property('lastName', 'Miller')", "g.addV('person').property('id', 'robin').property('firstName', 'Robin').property('lastName', 'Wakefield')" ] _gremlin_insert_edges = [ "g.V('thomas').addE('knows').to(g.V('mary'))", "g.V('thomas').addE('knows').to(g.V('ben'))", "g.V('ben').addE('knows').to(g.V('robin'))" ] _gremlin_update_vertices = [ "g.V('thomas').property('age', 44)" ] _gremlin_count_vertices = "g.V().count()" _gremlin_traversals = { "Get all persons older than 40" : "g.V().hasLabel('person').has('age', gt(40)).values('firstName', 'age')", "Get all persons and their first name" : "g.V().hasLabel('person').values('firstName')", "Get all persons sorted by first name" : "g.V().hasLabel('person').order().by('firstName', incr).values('firstName')", "Get all persons that Thomas knows" : "g.V('thomas').out('knows').hasLabel('person').values('firstName')", "People known by those who Thomas knows" : "g.V('thomas').out('knows').hasLabel('person').out('knows').hasLabel('person').values('firstName')", "Get the path from Thomas to Robin" : "g.V('thomas').repeat(out()).until(has('id', 'robin')).path().by('firstName')" } _gremlin_drop_operations = { "Drop Edge - Thomas no longer knows Mary" : "g.V('thomas').outE('knows').where(inV().has('id', 'mary')).drop()", "Drop Vertex - Drop Thomas" : "g.V('thomas').drop()" } def cleanup_graph(client): print("\tRunning this Gremlin query:\n\t{0}".format(_gremlin_cleanup_graph)) callback = client.submitAsync(_gremlin_cleanup_graph) if callback.result() is not None: print("\tCleaned up the graph!") print("\n") def insert_vertices(client): for query in _gremlin_insert_vertices: print("\tRunning this Gremlin query:\n\t{0}\n".format(query)) callback = client.submitAsync(query) if callback.result() is not None: print("\tInserted this vertex:\n\t{0}\n".format(callback.result().one())) else: print("Something went wrong with this query: {0}".format(query)) print("\n") def insert_edges(client): for query in _gremlin_insert_edges: print("\tRunning this Gremlin query:\n\t{0}\n".format(query)) callback = client.submitAsync(query) if callback.result() is not None: print("\tInserted this edge:\n\t{0}\n".format(callback.result().one())) else: print("Something went wrong with this query:\n\t{0}".format(query)) print("\n") def update_vertices(client): for query in _gremlin_update_vertices: print("\tRunning this Gremlin query:\n\t{0}\n".format(query)) callback = client.submitAsync(query) if callback.result() is not None: print("\tUpdated this vertex:\n\t{0}\n".format(callback.result().one())) else: print("Something went wrong with this query:\n\t{0}".format(query)) print("\n") def count_vertices(client): print("\tRunning this Gremlin query:\n\t{0}".format(_gremlin_count_vertices)) callback = client.submitAsync(_gremlin_count_vertices) if callback.result() is not None: print("\tCount of vertices: {0}".format(callback.result().one())) else: print("Something went wrong with this query: {0}".format(_gremlin_count_vertices)) print("\n") def execute_traversals(client): for key in _gremlin_traversals: print("\t{0}:".format(key)) print("\tRunning this Gremlin query:\n\t{0}\n".format(_gremlin_traversals[key])) callback = client.submitAsync(_gremlin_traversals[key]) for result in callback.result(): print("\t{0}".format(str(result))) print("\n") def execute_drop_operations(client): for key in _gremlin_drop_operations: print("\t{0}:".format(key)) print("\tRunning this Gremlin query:\n\t{0}".format(_gremlin_drop_operations[key])) callback = client.submitAsync(_gremlin_drop_operations[key]) for result in callback.result(): print(result) print("\n") try: client = client.Client('https://localhost:8901','g', username="/dbs/Employee/colls/Employee", password="C2y6yDjf5/R+ob0N8A7Cgv30VRDJIWEHLM+4QDU5DE2nQ9nDuVTqobD4b8mGGyPMbIZnqyMsEcaGQy67XIw/Jw==", message_serializer=serializer.GraphSONSerializersV2d0() ) print("Welcome to Azure Cosmos DB + Gremlin on Python!") # Drop the entire Graph input("We're about to drop whatever graph is on the server. Press any key to continue...") cleanup_graph(client) # Insert all vertices input("Let's insert some vertices into the graph. Press any key to continue...") insert_vertices(client) # Create edges between vertices input("Now, let's add some edges between the vertices. Press any key to continue...") insert_edges(client) # Update a couple of vertices input("Ah, sorry. I made a mistake. Let's change the ages of these two vertices. Press any key to continue...") update_vertices(client) # Count all vertices input("Okay. Let's count how many vertices we have. Press any key to continue...") count_vertices(client) # Execute traversals and get results input("Cool! Let's run some traversals on our graph. Press any key to continue...") execute_traversals(client) # Drop a few vertices and edges input("So, life happens and now we will make some changes to the graph. Press any key to continue...") execute_drop_operations(client) # Count all vertices again input("How many vertices do we have left? Press any key to continue...") count_vertices(client) except Exception as e: print('There was an exception: {0}'.format(e)) traceback.print_exc(file=sys.stdout) sys.exit(1) print("\nAnd that's all! Sample complete") input("Press Enter to continue...")
the-stack_0_11141
import pandas as pd from finvizfinance.util import webScrap, numberCovert, NUMBER_COL, util_dict BASE_URL = 'https://finviz.com/screener.ashx?v={screener}{filter}&ft=4&o={order}&r={row}' FILTER_DICT = util_dict['filter'] def set_filters(filters_dict): """Set filters. Args: filters_dict(dict): dictionary of filters Returns: url_filter(str): filter string for url """ filters = [] for key, value in filters_dict.items(): if key not in FILTER_DICT: filter_keys = list(FILTER_DICT.keys()) raise ValueError("Invalid filter '{}'. Possible filter: {}".format(key, filter_keys)) if value not in FILTER_DICT[key]['option']: filter_options = list(FILTER_DICT[key]['option'].keys()) raise ValueError("Invalid filter option '{}'. Possible filter options: {}".format(value, filter_options)) prefix = FILTER_DICT[key]['prefix'] urlcode = FILTER_DICT[key]['option'][value] if urlcode != '': filters.append('{}_{}'.format(prefix, urlcode)) url_filter = '' if len(filters) != 0: url_filter = '&f=' + ','.join(filters) return url_filter def screener_helper(rows, num_col_index, table_header): """Get screener table helper function. Returns: df(pandas.DataFrame): screener information table """ rows = rows[1:] df = pd.DataFrame([], columns=table_header) for index, row in enumerate(rows): cols = row.findAll('td')[1:] info_dict = {} for i, col in enumerate(cols): # check if the col is number if i not in num_col_index: info_dict[table_header[i]] = col.text else: info_dict[table_header[i]] = numberCovert(col.text) df = df.append(info_dict, ignore_index=True) return df def get_screener(screener, filters=None, order='ticker', page=1, ascend=True): '''get_screener Get screener from finviz website Args: screener(str): screener type filters(list): filters order(str): order of the dataframe. page(int): page number ''' if screener == 'overview': screener_code = '111' elif screener == 'financial': screener_code = '161' elif screener == 'ownership': screener_code = '131' elif screener == 'performance': screener_code = '141' elif screener == 'technical': screener_code = '171' elif screener == 'valuation': screener_code = '121' # get url url_filter = '' if filters: url_filter = set_filters(filters) url_order = order if not ascend: url_order = '-' + order url_row = (page - 1) * 20 + 1 url = BASE_URL.format(screener=screener_code, filter=url_filter, order=url_order, row=url_row) # scrap website soup = webScrap(url) page = len(soup.findAll('table')[17].findAll('option')) if page == 0: print('No information found.') return None, 0 table = soup.findAll('table')[18] rows = table.findAll('tr') table_header = [i.text for i in rows[0].findAll('td')][1:] num_col_index = [table_header.index(i) for i in table_header if i in NUMBER_COL] df = screener_helper(rows, num_col_index, table_header) return df, page if __name__ == '__main__': filters_dict = {'Exchange':'AMEX','Sector':'Basic Materials'} df, page = get_screener('Overview', filters=filters_dict, order='company', page=3, ascend=False) print(df) print(page)
the-stack_0_11145
# pylint: disable=I0011,W0613,W0201,W0212,E1101,E1103 import os from collections import Counter import pytest import numpy as np from numpy.testing import assert_allclose, assert_equal from glue.config import colormaps from glue.core.message import SubsetUpdateMessage from glue.core import HubListener, Data from glue.core.roi import XRangeROI, RectangularROI, CircularROI from glue.core.subset import RoiSubsetState, AndState from glue import core from glue.core.component_id import ComponentID from glue.utils.qt import combo_as_string, process_events from glue.viewers.matplotlib.qt.tests.test_data_viewer import BaseTestMatplotlibDataViewer from glue.core.state import GlueUnSerializer from glue.app.qt.layer_tree_widget import LayerTreeWidget from glue.app.qt import GlueApplication from ..data_viewer import ScatterViewer DATA = os.path.join(os.path.dirname(__file__), 'data') class TestScatterCommon(BaseTestMatplotlibDataViewer): def init_data(self): return Data(label='d1', x=[3.4, 2.3, -1.1, 0.3], y=['a', 'b', 'c', 'a']) viewer_cls = ScatterViewer class TestScatterViewer(object): def setup_method(self, method): self.data = Data(label='d1', x=[3.4, 2.3, -1.1, 0.3], y=[3.2, 3.3, 3.4, 3.5], z=['a', 'b', 'c', 'a']) self.data_2d = Data(label='d2', a=[[1, 2], [3, 4]], b=[[5, 6], [7, 8]], x=[[3, 5], [5.4, 1]], y=[[1.2, 4], [7, 8]]) self.app = GlueApplication() self.session = self.app.session self.hub = self.session.hub self.data_collection = self.session.data_collection self.data_collection.append(self.data) self.data_collection.append(self.data_2d) self.viewer = self.app.new_data_viewer(ScatterViewer) def teardown_method(self, method): self.viewer.close() self.viewer = None self.app.close() self.app = None def test_basic(self): viewer_state = self.viewer.state # Check defaults when we add data self.viewer.add_data(self.data) assert combo_as_string(self.viewer.options_widget().ui.combosel_x_att) == 'Main components:x:y:z:Coordinate components:Pixel Axis 0 [x]' assert combo_as_string(self.viewer.options_widget().ui.combosel_y_att) == 'Main components:x:y:z:Coordinate components:Pixel Axis 0 [x]' assert viewer_state.x_att is self.data.id['x'] assert_allclose(viewer_state.x_min, -1.1 - 0.18) assert_allclose(viewer_state.x_max, 3.4 + 0.18) assert viewer_state.y_att is self.data.id['y'] assert_allclose(viewer_state.y_min, 3.2 - 0.012) assert_allclose(viewer_state.y_max, 3.5 + 0.012) assert not viewer_state.x_log assert not viewer_state.y_log assert len(viewer_state.layers) == 1 # Change to categorical component and check new values viewer_state.y_att = self.data.id['z'] assert viewer_state.x_att is self.data.id['x'] assert_allclose(viewer_state.x_min, -1.1 - 0.18) assert_allclose(viewer_state.x_max, 3.4 + 0.18) assert viewer_state.y_att is self.data.id['z'] assert_allclose(viewer_state.y_min, -0.5 - 0.12) assert_allclose(viewer_state.y_max, 2.5 + 0.12) assert not viewer_state.x_log assert not viewer_state.y_log def test_flip(self): viewer_state = self.viewer.state self.viewer.add_data(self.data) assert_allclose(viewer_state.x_min, -1.1 - 0.18) assert_allclose(viewer_state.x_max, 3.4 + 0.18) self.viewer.options_widget().button_flip_x.click() assert_allclose(viewer_state.x_max, -1.1 - 0.18) assert_allclose(viewer_state.x_min, 3.4 + 0.18) assert_allclose(viewer_state.y_min, 3.2 - 0.012) assert_allclose(viewer_state.y_max, 3.5 + 0.012) self.viewer.options_widget().button_flip_y.click() assert_allclose(viewer_state.y_max, 3.2 - 0.012) assert_allclose(viewer_state.y_min, 3.5 + 0.012) def test_remove_data(self): self.viewer.add_data(self.data) assert combo_as_string(self.viewer.options_widget().ui.combosel_x_att) == 'Main components:x:y:z:Coordinate components:Pixel Axis 0 [x]' assert combo_as_string(self.viewer.options_widget().ui.combosel_y_att) == 'Main components:x:y:z:Coordinate components:Pixel Axis 0 [x]' self.data_collection.remove(self.data) assert combo_as_string(self.viewer.options_widget().ui.combosel_x_att) == '' assert combo_as_string(self.viewer.options_widget().ui.combosel_y_att) == '' def test_update_component_updates_title(self): self.viewer.add_data(self.data) assert self.viewer.windowTitle() == '2D Scatter' self.viewer.state.x_att = self.data.id['y'] assert self.viewer.windowTitle() == '2D Scatter' def test_combo_updates_with_component_add(self): self.viewer.add_data(self.data) self.data.add_component([3, 4, 1, 2], 'a') assert self.viewer.state.x_att is self.data.id['x'] assert self.viewer.state.y_att is self.data.id['y'] assert combo_as_string(self.viewer.options_widget().ui.combosel_x_att) == 'Main components:x:y:z:a:Coordinate components:Pixel Axis 0 [x]' assert combo_as_string(self.viewer.options_widget().ui.combosel_y_att) == 'Main components:x:y:z:a:Coordinate components:Pixel Axis 0 [x]' def test_nonnumeric_first_component(self): # regression test for #208. Shouldn't complain if # first component is non-numerical data = core.Data() data.add_component(['a', 'b', 'c'], label='c1') data.add_component([1, 2, 3], label='c2') self.data_collection.append(data) self.viewer.add_data(data) def test_apply_roi(self): self.viewer.add_data(self.data) roi = RectangularROI(0, 3, 3.25, 3.45) assert len(self.viewer.layers) == 1 self.viewer.apply_roi(roi) assert len(self.viewer.layers) == 2 assert len(self.data.subsets) == 1 assert_allclose(self.data.subsets[0].to_mask(), [0, 1, 0, 0]) state = self.data.subsets[0].subset_state assert isinstance(state, RoiSubsetState) def test_apply_roi_categorical(self): viewer_state = self.viewer.state self.viewer.add_data(self.data) viewer_state.y_att = self.data.id['z'] roi = RectangularROI(0, 3, -0.4, 0.3) assert len(self.viewer.layers) == 1 self.viewer.apply_roi(roi) assert len(self.viewer.layers) == 2 assert len(self.data.subsets) == 1 assert_allclose(self.data.subsets[0].to_mask(), [0, 0, 0, 1]) state = self.data.subsets[0].subset_state assert isinstance(state, AndState) def test_apply_roi_empty(self): # Make sure that doing an ROI selection on an empty viewer doesn't # produce error messsages roi = XRangeROI(-0.2, 0.1) self.viewer.apply_roi(roi) def test_axes_labels(self): viewer_state = self.viewer.state self.viewer.add_data(self.data) assert self.viewer.axes.get_xlabel() == 'x' assert self.viewer.axes.get_ylabel() == 'y' viewer_state.x_log = True assert self.viewer.axes.get_xlabel() == 'Log x' assert self.viewer.axes.get_ylabel() == 'y' viewer_state.x_att = self.data.id['y'] assert self.viewer.axes.get_xlabel() == 'y' assert self.viewer.axes.get_ylabel() == 'y' viewer_state.y_log = True assert self.viewer.axes.get_xlabel() == 'y' assert self.viewer.axes.get_ylabel() == 'Log y' def test_component_replaced(self): # regression test for 508 - if a component ID is replaced, we should # make sure that the component ID is selected if the old component ID # was selected self.viewer.add_data(self.data) self.viewer.state.x_att = self.data.id['x'] test = ComponentID('test') self.data.update_id(self.viewer.state.x_att, test) assert self.viewer.state.x_att is test assert combo_as_string(self.viewer.options_widget().ui.combosel_x_att) == 'Main components:test:y:z:Coordinate components:Pixel Axis 0 [x]' def test_nan_component(self): # regression test for case when all values are NaN in a component data = core.Data() data.add_component([np.nan, np.nan, np.nan], label='c1') self.data_collection.append(data) self.viewer.add_data(data) def test_density_map(self): kwargs = dict(range=[(-5, 5), (-5, 5)], bins=(2, 2)) self.viewer.add_data(self.data) self.viewer.state.layers[0].points_mode = 'auto' assert self.viewer.layers[0].state.compute_density_map(**kwargs).sum() == 0 self.viewer.state.layers[0].points_mode = 'density' assert self.viewer.layers[0].state.compute_density_map(**kwargs).sum() == 4 self.viewer.state.layers[0].points_mode = 'markers' assert self.viewer.layers[0].state.compute_density_map(**kwargs).sum() == 0 def test_density_map_color(self): # Regression test to make sure things don't crash when changing # back to markers if the color mode is cmap self.viewer.add_data(self.data) self.viewer.state.layers[0].points_mode = 'density' self.viewer.state.layers[0].cmap_mode = 'Linear' self.viewer.state.layers[0].size_mode = 'Linear' self.viewer.state.layers[0].points_mode = 'markers' self.viewer.state.layers[0].points_mode = 'density' @pytest.mark.parametrize('protocol', [0, 1]) def test_session_back_compat(self, protocol): filename = os.path.join(DATA, 'scatter_v{0}.glu'.format(protocol)) with open(filename, 'r') as f: session = f.read() state = GlueUnSerializer.loads(session) ga = state.object('__main__') dc = ga.session.data_collection assert len(dc) == 1 assert dc[0].label == 'basic' viewer1 = ga.viewers[0][0] assert len(viewer1.state.layers) == 3 assert viewer1.state.x_att is dc[0].id['a'] assert viewer1.state.y_att is dc[0].id['b'] assert_allclose(viewer1.state.x_min, -1.04) assert_allclose(viewer1.state.x_max, 1.04) assert_allclose(viewer1.state.y_min, 1.98) assert_allclose(viewer1.state.y_max, 3.02) assert not viewer1.state.x_log assert not viewer1.state.y_log assert viewer1.state.layers[0].visible assert viewer1.state.layers[1].visible assert viewer1.state.layers[2].visible viewer2 = ga.viewers[0][1] assert len(viewer2.state.layers) == 3 assert viewer2.state.x_att is dc[0].id['a'] assert viewer2.state.y_att is dc[0].id['c'] assert_allclose(viewer2.state.x_min, 9.5e-6) assert_allclose(viewer2.state.x_max, 1.05) assert_allclose(viewer2.state.y_min, 0.38) assert_allclose(viewer2.state.y_max, 5.25) assert viewer2.state.x_log assert viewer2.state.y_log assert viewer2.state.layers[0].visible assert not viewer2.state.layers[1].visible assert viewer2.state.layers[2].visible viewer3 = ga.viewers[0][2] assert len(viewer3.state.layers) == 3 assert viewer3.state.x_att is dc[0].id['b'] assert viewer3.state.y_att is dc[0].id['a'] assert_allclose(viewer3.state.x_min, 0) assert_allclose(viewer3.state.x_max, 5) assert_allclose(viewer3.state.y_min, -5) assert_allclose(viewer3.state.y_max, 5) assert not viewer3.state.x_log assert not viewer3.state.y_log assert viewer3.state.layers[0].visible assert viewer3.state.layers[1].visible assert not viewer3.state.layers[2].visible ga.close() def test_session_line_back_compat(self): # Backward-compatibility for v0.11 files in which the line and scatter # plots were defined as separate styles. filename = os.path.join(DATA, 'scatter_and_line_v1.glu') with open(filename, 'r') as f: session = f.read() state = GlueUnSerializer.loads(session) ga = state.object('__main__') dc = ga.session.data_collection assert len(dc) == 1 assert dc[0].label == 'table' viewer1 = ga.viewers[0][0] assert len(viewer1.state.layers) == 1 assert viewer1.state.x_att is dc[0].id['a'] assert viewer1.state.y_att is dc[0].id['b'] assert viewer1.state.layers[0].markers_visible assert not viewer1.state.layers[0].line_visible viewer1 = ga.viewers[0][1] assert len(viewer1.state.layers) == 1 assert viewer1.state.x_att is dc[0].id['a'] assert viewer1.state.y_att is dc[0].id['b'] assert not viewer1.state.layers[0].markers_visible assert viewer1.state.layers[0].line_visible ga.close() def test_save_svg(self, tmpdir): # Regression test for a bug in AxesCache that caused SVG saving to # fail (because renderer.buffer_rgba did not exist) self.viewer.add_data(self.data) filename = tmpdir.join('test.svg').strpath self.viewer.axes.figure.savefig(filename) def test_2d(self): viewer_state = self.viewer.state self.viewer.add_data(self.data_2d) assert viewer_state.x_att is self.data_2d.id['a'] assert_allclose(viewer_state.x_min, 1 - 0.12) assert_allclose(viewer_state.x_max, 4 + 0.12) assert viewer_state.y_att is self.data_2d.id['b'] assert_allclose(viewer_state.y_min, 5 - 0.12) assert_allclose(viewer_state.y_max, 8 + 0.12) assert self.viewer.layers[0].plot_artist.get_xdata().shape == (4,) def test_apply_roi_single(self): # Regression test for a bug that caused mode.update to be called # multiple times and resulted in all other viewers receiving many # messages regarding subset updates (this occurred when multiple) # datasets were present. layer_tree = LayerTreeWidget(session=self.session) layer_tree.set_checkable(False) layer_tree.setup(self.data_collection) layer_tree.bind_selection_to_edit_subset() class Client(HubListener): def __init__(self, *args, **kwargs): super(Client, self).__init__(*args, **kwargs) self.count = Counter() def ping(self, message): self.count[message.sender] += 1 def register_to_hub(self, hub): hub.subscribe(self, SubsetUpdateMessage, handler=self.ping) d1 = Data(a=[1, 2, 3], label='d3') d2 = Data(b=[1, 2, 3], label='d4') d3 = Data(c=[1, 2, 3], label='d5') d4 = Data(d=[1, 2, 3], label='d6') self.data_collection.append(d1) self.data_collection.append(d2) self.data_collection.append(d3) self.data_collection.append(d4) client = Client() client.register_to_hub(self.hub) self.viewer.add_data(d1) self.viewer.add_data(d3) roi = XRangeROI(2.5, 3.5) self.viewer.apply_roi(roi) for subset in client.count: assert client.count[subset] == 1 @pytest.mark.parametrize('ndim', [1, 2]) def test_all_options(self, ndim): # This test makes sure that all the code for the different scatter modes # gets run, though does not check the result. viewer_state = self.viewer.state if ndim == 1: data = self.data elif ndim == 2: data = self.data_2d self.viewer.add_data(data) layer_state = viewer_state.layers[0] layer_state.style = 'Scatter' layer_state.size_mode = 'Linear' layer_state.size_att = data.id['y'] layer_state.size_vmin = 1.2 layer_state.size_vmax = 4. layer_state.size_scaling = 2 layer_state.cmap_mode = 'Linear' layer_state.cmap_att = data.id['x'] layer_state.cmap_vmin = -1 layer_state.cmap_vmax = 2. layer_state.cmap = colormaps.members[3][1] # Check inverting works layer_state.cmap_vmin = 3. layer_state.size_mode = 'Fixed' layer_state.xerr_visible = True layer_state.xerr_att = data.id['x'] layer_state.yerr_visible = True layer_state.yerr_att = data.id['y'] layer_state.style = 'Line' layer_state.linewidth = 3 layer_state.linestyle = 'dashed' def test_session_categorical(self, tmpdir): def visible_xaxis_labels(ax): # Due to a bug in Matplotlib the labels returned outside the field # of view may be incorrect: https://github.com/matplotlib/matplotlib/issues/9397 pos = ax.xaxis.get_ticklocs() labels = [tick.get_text() for tick in ax.xaxis.get_ticklabels()] xmin, xmax = ax.get_xlim() return [labels[i] for i in range(len(pos)) if pos[i] >= xmin and pos[i] <= xmax] # Regression test for a bug that caused a restored scatter viewer # with a categorical component to not show the categorical labels # as tick labels. filename = tmpdir.join('test_session_categorical.glu').strpath self.viewer.add_data(self.data) self.viewer.state.x_att = self.data.id['z'] process_events() assert visible_xaxis_labels(self.viewer.axes) == ['a', 'b', 'c'] self.session.application.save_session(filename) with open(filename, 'r') as f: session = f.read() state = GlueUnSerializer.loads(session) ga = state.object('__main__') dc = ga.session.data_collection viewer = ga.viewers[0][0] assert viewer.state.x_att is dc[0].id['z'] assert visible_xaxis_labels(self.viewer.axes) == ['a', 'b', 'c'] ga.close() def test_enable_disable_components_combo(self): # Regression test for a bug that caused an error when turning off pixel # components from combo boxes. self.viewer.add_data(self.data) self.data['a'] = self.data.id['x'] + 5 self.viewer.state.x_att_helper.pixel_coord = True self.viewer.state.x_att = self.data.pixel_component_ids[0] self.viewer.state.x_att_helper.pixel_coord = False def test_datetime64_support(self, tmpdir): self.data.add_component(np.array([100, 200, 300, 400], dtype='M8[D]'), 't1') self.data.add_component(np.array([200, 300, 400, 500], dtype='M8[D]'), 't2') self.viewer.add_data(self.data) self.viewer.state.x_att = self.data.id['t1'] self.viewer.state.y_att = self.data.id['y'] # Matplotlib deals with dates by converting them to the number of days # since 01-01-0001, so we can check that the limits are correctly # converted (and not 100 to 400) assert self.viewer.axes.get_xlim() == (719251.0, 719575.0) assert self.viewer.axes.get_ylim() == (3.2 - 0.012, 3.5 + 0.012) # Apply an ROI selection in plotting coordinates roi = RectangularROI(xmin=719313, xmax=719513, ymin=3, ymax=4) self.viewer.apply_roi(roi) # Check that the two middle elements are selected assert_equal(self.data.subsets[0].to_mask(), [0, 1, 1, 0]) # Now do the same with the y axis self.viewer.state.y_att = self.data.id['t2'] assert self.viewer.axes.get_xlim() == (719251.0, 719575.0) assert self.viewer.axes.get_ylim() == (719351.0, 719675.0) # Apply an ROI selection in plotting coordinates edit = self.session.edit_subset_mode edit.edit_subset = [] roi = CircularROI(xc=719463, yc=719563, radius=200) self.viewer.apply_roi(roi) assert_equal(self.data.subsets[1].to_mask(), [0, 1, 1, 1]) # Make sure that the Qt labels look ok self.viewer.state.y_att = self.data.id['y'] options = self.viewer.options_widget().ui assert options.valuetext_x_min.text() == '1970-03-30' assert options.valuetext_x_max.text() == '1971-02-17' assert options.valuetext_y_min.text() == '3.188' assert options.valuetext_y_max.text() == '3.512' # Make sure that we can set the xmin/xmax to a string date assert_equal(self.viewer.state.x_min, np.datetime64('1970-03-30', 'D')) options.valuetext_x_min.setText('1970-04-14') options.valuetext_x_min.editingFinished.emit() assert self.viewer.axes.get_xlim() == (719266.0, 719575.0) assert_equal(self.viewer.state.x_min, np.datetime64('1970-04-14', 'D')) # Make sure that everything works fine after saving/reloading filename = tmpdir.join('test_datetime64.glu').strpath self.session.application.save_session(filename) with open(filename, 'r') as f: session = f.read() state = GlueUnSerializer.loads(session) ga = state.object('__main__') viewer = ga.viewers[0][0] options = viewer.options_widget().ui assert_equal(self.viewer.state.x_min, np.datetime64('1970-04-14', 'D')) assert options.valuetext_x_min.text() == '1970-04-14' assert options.valuetext_x_max.text() == '1971-02-17' assert options.valuetext_y_min.text() == '3.188' assert options.valuetext_y_max.text() == '3.512' ga.close() def test_datetime64_disabled(self, capsys): # Make sure that datetime components aren't options for the vector and # error markers. data = Data(label='test') data.add_component(np.array([100, 200, 300, 400], dtype='M8[D]'), 't1') data.add_component(np.array([200, 300, 400, 500], dtype='M8[D]'), 't2') data.add_component(np.array([200., 300., 400., 500.]), 'x') data.add_component(np.array([200., 300., 400., 500.]), 'y') self.data_collection.append(data) self.viewer.add_data(data) self.viewer.state.x_att = data.id['x'] self.viewer.state.y_att = data.id['y'] self.viewer.state.layers[0].cmap_mode = 'Linear' self.viewer.state.layers[0].cmap_att = data.id['x'] self.viewer.state.layers[0].size_mode = 'Linear' self.viewer.state.layers[0].size_att = data.id['y'] self.viewer.state.layers[0].vector_visible = True self.viewer.state.layers[0].xerr_visible = True self.viewer.state.layers[0].yerr_visible = True process_events() self.viewer.state.x_att = data.id['t1'] self.viewer.state.y_att = data.id['t2'] process_events() # We use capsys here because the # error is otherwise only apparent in stderr. out, err = capsys.readouterr() assert out.strip() == "" assert err.strip() == "" def test_density_map_incompatible_subset(self, capsys): # Regression test for a bug that caused the scatter viewer to crash # if subset for density map was incompatible. data2 = Data(label='d1', x=[3.4, 2.3, -1.1, 0.3], y=[3.2, 3.3, 3.4, 3.5], z=['a', 'b', 'c', 'a']) self.data_collection.append(data2) self.viewer.add_data(self.data) self.viewer.add_data(data2) self.data_collection.new_subset_group('test', self.data.id['x'] > 1) for layer in self.viewer.state.layers: layer.density_map = True self.viewer.figure.canvas.draw() process_events() assert self.viewer.layers[0].enabled assert not self.viewer.layers[1].enabled assert self.viewer.layers[2].enabled assert not self.viewer.layers[3].enabled def test_density_map_line_error_vector(self, capsys): # Make sure that we don't allow/show lines/errors/vectors # if in density map mode. self.viewer.add_data(self.data) self.viewer.state.layers[0].line_visible = True self.viewer.state.layers[0].xerr_visible = True self.viewer.state.layers[0].yerr_visible = True self.viewer.state.layers[0].vector_visible = True # Setting density_map to True resets the visibility of # lines/errors/vectors. self.viewer.state.layers[0].density_map = True assert not self.viewer.state.layers[0].line_visible assert not self.viewer.state.layers[0].xerr_visible assert not self.viewer.state.layers[0].yerr_visible assert not self.viewer.state.layers[0].vector_visible
the-stack_0_11147
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Autologging documentation build configuration file, created by # sphinx-quickstart on Wed Mar 27 21:07:11 2013. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if (on_rtd): html_theme = 'default' else: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('../..')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = 'Autologging' copyright = '2013, 2015, 2016, 2018, 2019 Matthew Zipay' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = "1.3" # The full version, including alpha/beta/rc tags. release = "1.3.2" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. add_function_parentheses = False # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. #html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. html_use_opensearch = 'http://ninthtest.info/python-autologging/' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Autologgingdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Autologging.tex', 'Autologging Documentation', 'Matthew Zipay', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'autologging', 'Autologging Documentation', ['Matthew Zipay'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Autologging', 'Autologging Documentation', 'Matthew Zipay', 'Autologging', 'Eliminate boilerplate logging and tracing code.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'http://docs.python.org/3': None} autodoc_member_order = 'bysource' autodoc_default_flags = ['show-inheritance', 'members']
the-stack_0_11148
from re import L from .TypingData import TypingData from .TypingNet import TypingNet, TypingTrain import torch as th import dgl class TypingUtility: def __init__(self): self.fn = None self.data = None self.net = None self.prob = th.nn.Softmax(dim=0) def Predict(self, fn): residue = self.DLText2Residue(fn) return residue, self.PredictResidue(residue) def PredictResidue(self, residue): with th.no_grad(): y = self.net(residue) types = [self.data.atomic_types[residue[0].ndata[self.data.features_str][i][0].item()][th.argmax(y0).item()] for i, y0 in enumerate(y)] probs = [self.prob(y0) for y0 in y] return types, probs def DLText2Residue(self, fn): with open(fn, "r") as fd: lines = fd.readlines() atom_numbers = [int(word) for word in lines[0].split()] edge_lines = [int(word) for word in lines[1].split()] edges1 = [] edges2 = [] for i in range(0, len(edge_lines), 2): edges1.append(edge_lines[i]) edges2.append(edge_lines[i+1]) edges1.append(edge_lines[i+1]) edges2.append(edge_lines[i]) graph = dgl.graph((th.tensor(edges1), th.tensor(edges2))) graph.ndata[self.data.features_str] = th.tensor(atom_numbers).unsqueeze(1) return (graph, {element:[idx for idx,value in enumerate(graph.ndata[self.data.features_str][:, 0].tolist()) if value == element] for element in set(graph.ndata[self.data.features_str][:, 0].tolist())}, fn.upper()) def Calibrate(self): type_stats = {key:[[0,0] for _ in range(len(value))] for key,value in self.data.atomic_types.items()} for residue in self.data.residues: y = self.net(residue) for element, type, prob in zip(residue[0].ndata[self.data.features_str][:, 0].tolist(), residue[0].ndata[self.data.atomic_type_str].squeeze(1).tolist(), y): type_stats[element][type][0] += 1 predict_type = th.argmax(prob).item() if predict_type != type: type_stats[element][type][1] += 1 if self.data.atomic_types[element][type] == "CG321": print("In %8s: should be %8s, but is %s" % (residue[2], self.data.atomic_types[element][type], self.data.atomic_types[element][predict_type])) return type_stats def ExportParams(self, fn): with open(fn, "w") as fd: maxK = -1 num_layers = len(self.net.tclayers[1].gcnlayers) layer_str = "" for i in range(num_layers-1): layer_str += "layer%d, " % (i) layer_str += "layer%d" % (num_layers-1) fd.write("Layer %s;\n" % (layer_str)) for element, net in self.net.tclayers.items(): params = net.export() param_str = "" for i, param in enumerate(params): b = param[0] K = param[1] maxK = max(K, maxK) Ws = param[2] dim0 = Ws[0].shape[0] dim1 = Ws[0].shape[1] param_str += "layer%d = {{" % (i) param_str += ("MatrixXd::Zero(%d, %d), " % (dim0, dim1))*(K+1) param_str += "}, RowVectorXd::Zero(%d)};\n" % (dim1) # Write down parameters. for k in range(K+1): param_str += "layer%d.Ws[%d] << " % (i, k) for x in range(dim0-1): for y in range(dim1): param_str += "%15.8f, " % (Ws[k][x][y]) param_str += "\n" for y in range(dim1-1): param_str += "%15.8f, " % (Ws[k][dim0-1][y]) param_str += "%15.8f;\n" % (Ws[k][dim0-1][dim1-1]) param_str += "layer%d.b << " % (i) for y in range(dim1-1): param_str += "%15.8f, " % (b[y]) param_str += "%15.8f;\n" % (b[dim1-1]) param_str += "Nets[%d] = {%s};" % (element, layer_str) fd.write("%s\n" % (param_str)) fd.write("MaxK = %d;" % (maxK)) def Build(self, fn, params_fn = None, type = "CHARMM", training_ratio = 1., learning_rate = 1E-3, max_epochs = 1000000, output_freq = 100, device = th.device("cpu")): print(" -- Build Atom Typing Predictor --") # Build typing model. self.fn = fn self.data = TypingData() typing_type_fun = {"CHARMM":self.data.ParseFromCHARMM} typing_type_fun[type.upper()](self.fn, device) print("Definitions from: %s" % (self.fn)) num_atomic_types = len(self.data.atomic_types) print(" Atomic types: %d" % (sum(len(value) for value in self.data.atomic_types.values()))) for key, value in self.data.atomic_types.items(): print(" %-2s: %-3d" % ([k for k, v in self.data.periodic_table.items() if v == key][0], len(value)), value) print(" Residue names: %d" % (len(self.data.residues))) # Build net. print("Net parameters: %s" % ("To be trained" if params_fn is None else params_fn)) num_features = self.data.num_features features_str = self.data.features_str atomic_type_str = self.data.atomic_type_str save_fn_prefix = self.fn[:self.fn.rfind(".")] self.net = TypingNet(num_features, self.data.atomic_types, features_str) if params_fn is not None: # Only load parameters, not architecture. self.net.load(params_fn) if max_epochs > 0: TypingTrain(self.net, self.data.residues, training_ratio, learning_rate, max_epochs, output_freq, save_fn_prefix, atomic_type_str, device) self.net.eval() print(" -- Building Atom Typing Predictor Accomplished --")
the-stack_0_11149
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc import typing import pkg_resources from google import auth from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.ads.googleads.v6.resources.types import search_term_view from google.ads.googleads.v6.services.types import search_term_view_service try: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo( gapic_version=pkg_resources.get_distribution("google-ads",).version, ) except pkg_resources.DistributionNotFound: DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo() class SearchTermViewServiceTransport(metaclass=abc.ABCMeta): """Abstract transport class for SearchTermViewService.""" AUTH_SCOPES = ("https://www.googleapis.com/auth/adwords",) def __init__( self, *, host: str = "googleads.googleapis.com", credentials: credentials.Credentials = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. """ # Save the hostname. Default to port 443 (HTTPS) if none is specified. if ":" not in host: host += ":443" self._host = host # If no credentials are provided, then determine the appropriate # defaults. if credentials is None: credentials, _ = auth.default(scopes=self.AUTH_SCOPES) # Save the credentials. self._credentials = credentials # Lifted into its own function so it can be stubbed out during tests. self._prep_wrapped_messages(client_info) def _prep_wrapped_messages(self, client_info): # Precomputed wrapped methods self._wrapped_methods = { self.get_search_term_view: gapic_v1.method.wrap_method( self.get_search_term_view, default_timeout=None, client_info=client_info, ), } @property def get_search_term_view( self, ) -> typing.Callable[ [search_term_view_service.GetSearchTermViewRequest], search_term_view.SearchTermView, ]: raise NotImplementedError __all__ = ("SearchTermViewServiceTransport",)
the-stack_0_11150
import argparse import codecs import csv import datetime import errno import importlib import json import logging import os import shutil import subprocess import sys import traceback from functools import singledispatch from pathlib import Path from typing import ( Any, Iterable, List, Tuple, Union, cast, ) from types import ModuleType from urllib.error import URLError import publicsuffix import requests import strict_rfc3339 MANDATORY_SCANNER_PROPERTIES = ( "headers", "to_rows" ) # global in-memory cache suffix_list = None # Time Conveniences # # Now, in UTC, in seconds (with decimal microseconds). def local_now() -> float: return datetime.datetime.now().timestamp() def format_datetime(obj) -> Union[str, None]: if isinstance(obj, datetime.date): return obj.isoformat() elif isinstance(obj, str): return obj else: return None # Cut off floating point errors, always output duration down to # microseconds. def just_microseconds(duration: float) -> str: if duration is None: return None return "%.6f" % duration # RFC 3339 timestamp for a given UTC time. # seconds can be a float, down to microseconds. # A given time needs to be passed in *as* UTC already. def utc_timestamp(seconds: Union[float, int]) -> Union[str, None]: if not seconds: return None return strict_rfc3339.timestamp_to_rfc3339_utcoffset(seconds) # /Time Conveniences # # Filesystem Conveniences # # mkdir -p in python, from: # https://stackoverflow.com/questions/600268/mkdir-p-functionality-in-python def mkdir_p(path: str) -> None: try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST: pass else: raise def read(source): with open(source) as f: contents = f.read() return contents def write(content: Union[bytes, str], destination: str, binary: bool=False) -> None: mkdir_p(os.path.dirname(destination)) if binary: binary_content = cast(bytes, content) # mypy wrangling with open(destination, "bw") as fb: fb.write(binary_content) else: string_content = cast(str, content) # mypy wrangling with open(destination, "w", encoding="utf-8") as fs: fs.write(string_content) # /Filesystem Conveniences # # Error Conveniences # def format_last_exception(): exc_type, exc_value, exc_traceback = sys.exc_info() return "\n".join(traceback.format_exception(exc_type, exc_value, exc_traceback)) # Error Conveniences # # Command Line Conveniences # def scan(command: List[str], env: dict=None, allowed_return_codes: list=[]) -> Union[str, None]: try: response = subprocess.check_output( command, stderr=subprocess.STDOUT, shell=False, env=env ) return str(response, encoding='UTF-8') except subprocess.CalledProcessError as exc: if exc.returncode in allowed_return_codes: return str(exc.stdout, encoding='UTF-8') else: logging.warning("Error running %s." % (str(command))) logging.warning("Error running %s." % (str(exc.output))) logging.warning(format_last_exception()) return None # test if a command exists, don't print output def try_command(command): try: subprocess.check_call(["which", command], shell=False, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) return True except subprocess.CalledProcessError: logging.warning(format_last_exception()) logging.warning("No command found: %s" % (str(command))) return False # /Command Line Conveniences # # JSON Conveniences # # Format datetimes, sort keys, pretty-print. def json_for(object: object) -> str: return json.dumps(object, sort_keys=True, indent=2, default=format_datetime) # Mirror image of json_for. def from_json(string): return json.loads(string) # /JSON Conveniences # # Logging Conveniences # def configure_logging(options: Union[dict, None]=None) -> None: options = {} if not options else options if options.get('debug', False): log_level = "debug" else: log_level = options.get("log", "warn") if log_level not in ["debug", "info", "warn", "error"]: print("Invalid log level (specify: debug, info, warn, error).") sys.exit(1) logging.basicConfig(format='%(message)s', level=log_level.upper()) # /Logging Conveniences # # CSV Handling # # Sort a CSV by domain name, "in-place" (by making a temporary copy). # This loads the whole thing into memory: it's not a great solution for # super-large lists of domains. def sort_csv(input_filename): logging.warning("Sorting %s..." % input_filename) input_file = open(input_filename, encoding='utf-8', newline='') tmp_filename = "%s.tmp" % input_filename tmp_file = open(tmp_filename, 'w', newline='') tmp_writer = csv.writer(tmp_file) # store list of domains, to sort at the end domains = [] # index rows by domain rows = {} header = None for row in csv.reader(input_file): # keep the header around if (row[0].lower() == "domain"): header = row continue # index domain for later reference domain = row[0] domains.append(domain) rows[domain] = row # straight alphabet sort domains.sort() # write out to a new file tmp_writer.writerow(header) for domain in domains: tmp_writer.writerow(rows[domain]) # close the file handles input_file.close() tmp_file.close() # replace the original shutil.move(tmp_filename, input_filename) def write_rows(rows, domain, base_domain, scanner, csv_writer, meta={}): # If we didn't get any info, we'll still output information about why the scan failed. if rows is None: empty_row = [None] * len(scanner.headers) rows = [empty_row] # Always output Domain and Base Domain. standard_prefix = [ domain, base_domain, ] # If requested, add local and Lambda scan data. meta_fields = [] if bool(meta): meta_fields.append(" ".join(meta.get('errors', []))) meta_fields.append(utc_timestamp(meta.get("start_time"))) meta_fields.append(utc_timestamp(meta.get("end_time"))) meta_fields.append(just_microseconds(meta.get("duration"))) if meta.get("lambda") is not None: meta_fields.append(meta['lambda'].get('request_id')) meta_fields.append(meta['lambda'].get('log_group_name')) meta_fields.append(meta['lambda'].get('log_stream_name')) meta_fields.append(utc_timestamp(meta['lambda'].get('start_time'))) meta_fields.append(utc_timestamp(meta['lambda'].get('end_time'))) meta_fields.append(meta['lambda'].get('memory_limit')) meta_fields.append(just_microseconds(meta['lambda'].get('measured_duration'))) # Write out prefix, scan data, and meta scan data. for row in rows: csv_writer.writerow(standard_prefix + row + meta_fields) # CSV Handling # # Cache Handling # def cache_single(filename, cache_dir="./cache"): return os.path.join(cache_dir, filename) # Predictable cache path for a domain and operation. def cache_path(domain, operation, ext="json", cache_dir="./cache"): return os.path.join(cache_dir, operation, ("%s.%s" % (domain, ext))) # Used to quickly get cached data for a domain. def data_for(domain, operation, cache_dir="./cache"): path = cache_path(domain, operation, cache_dir=cache_dir) if os.path.exists(path): raw = read(path) data = json.loads(raw) if isinstance(data, dict) and (data.get('invalid', False)): return None else: return data else: return {} # marker for a cached invalid response def invalid(data=None): if data is None: data = {} data['invalid'] = True return json_for(data) # Return base domain for a subdomain, factoring in the Public Suffix List. def base_domain_for(subdomain, cache_dir="./cache"): global suffix_list """ For "x.y.domain.gov", return "domain.gov". If suffix_list is None, the caches have not been initialized, so do that. """ if suffix_list is None: suffix_list, discard = load_suffix_list(cache_dir=cache_dir) if suffix_list is None: logging.warning("Error downloading the PSL.") exit(1) return suffix_list.get_public_suffix(subdomain) # Returns an instantiated PublicSuffixList object, and the # list of lines read from the file. def load_suffix_list(cache_dir="./cache"): cached_psl = cache_single("public-suffix-list.txt", cache_dir=cache_dir) if os.path.exists(cached_psl): logging.debug("Using cached Public Suffix List...") with codecs.open(cached_psl, encoding='utf-8') as psl_file: suffixes = publicsuffix.PublicSuffixList(psl_file) content = psl_file.readlines() else: # File does not exist, download current list and cache it at given location. logging.debug("Downloading the Public Suffix List...") try: cache_file = publicsuffix.fetch() except URLError as err: logging.warning("Unable to download the Public Suffix List...") logging.debug("{}".format(err)) return None, None content = cache_file.readlines() suffixes = publicsuffix.PublicSuffixList(content) # Cache for later. write(''.join(content), cached_psl) return suffixes, content # /Cache Handling # # Argument Parsing # class ArgumentParser(argparse.ArgumentParser): """ This lets us test for errors from argparse by overriding the error method. See https://stackoverflow.com/questions/5943249 """ def _get_action_from_name(self, name): """Given a name, get the Action instance registered with this parser. If only it were made available in the ArgumentError object. It is passed as its first arg... """ container = self._actions if name is None: return None for action in container: if '/'.join(action.option_strings) == name: return action elif action.metavar == name: return action elif action.dest == name: return action def error(self, message): exc = sys.exc_info()[1] if exc: exc.argument = self._get_action_from_name(exc.argument_name) raise exc super(ArgumentParser, self).error(message) def build_scan_options_parser() -> ArgumentParser: """ Builds the argparse parser object. Remember that it changes '-' to '_' in the options name. """ parser = ArgumentParser(prefix_chars="--") parser.add_argument("domains", help="".join([ "Either a comma-separated list of domains or the url of a CSV ", "file/path to a local CSV file containing the domains to be ", "domains to be scanned. The CSV's header row will be ignored ", "if the first cell starts with \"Domain\" (case-insensitive).", ])) parser.add_argument("--cache", action="store_true", help="".join([ "Use previously cached scan data to avoid scans hitting the network ", "where possible.", ])) parser.add_argument("--debug", action="store_true", help="Print out more stuff. Useful with '--serial'") parser.add_argument("--lambda", action="store_true", help="".join([ "Run certain scanners inside Amazon Lambda instead of locally.", ])) parser.add_argument("--lambda-profile", nargs=1, help="".join([ "When running Lambda-related commands, use a specified AWS named ", "profile. Credentials/config for this named profile should already ", "be configured separately in the execution environment.", ])) parser.add_argument("--lambda-retries", type=int, help="".join([ "The maximum number of times to retry a Lambda job that fails. ", "If not specified then the value 0 is used." ])) parser.add_argument("--meta", action="store_true", help="".join([ "Append some additional columns to each row with information about ", "the scan itself. This includes start/end times and durations, as ", "well as any encountered errors. When also using '--lambda', ", "additional, Lambda-specific information will be appended.", ])) parser.add_argument("--scan", nargs=1, required=True, help="Comma-separated list of scanners (required).") parser.add_argument("--sort", action="store_true", help="".join([ "Sort result CSVs by domain name, alphabetically. (Note: this causes ", "the entire dataset to be read into memory.)", ])) parser.add_argument("--serial", action="store_true", help="".join([ "Disable parallelization, force each task to be done simultaneously. ", "Helpful for testing and debugging.", ])) parser.add_argument("--suffix", nargs=1, help="".join([ "Add a suffix to all input domains. For example, a --suffix of ", "'virginia.gov' will add '.virginia.gov' to the end of all ", "input domains." ])) parser.add_argument("--output", nargs=1, default=["./"], help="".join([ "Where to output the 'cache/' and 'results/' directories. ", "Defaults to './'.", ])) parser.add_argument("--workers", nargs=1, help="Limit parallel threads per-scanner to a number.") # TODO: Should workers have a default value? parser.add_argument("--no-fast-cache", action="store_true", help="".join([ "Do not use fast caching even if a scanner supports it. This option ", "will cause domain-scan to use less memory, but some (possibly ", "expensive) network activity or other operations may be repeated." ])) # TODO: Move the scanner-specific argument parsing to each scanner's code. # a11y: parser.add_argument("--a11y-config", help="a11y: Location of pa11y config file (used with a11y scanner.") parser.add_argument("--a11y-redirects", help="a11y: Location of YAML file with redirects to inform the a11y scanner.") # pshtt: parser.add_argument("--ca_file", help="ca_file: Location of PEM file of trust store to verify certs with.") parser.add_argument("--pt_int_ca_file", help="pt_int_ca_file: Location of PEM file of public trust store with any needed intermediate certificates to verify certs with.") parser.add_argument("--cache-third-parties", help="cache-third-parties: Location ot store third party cache files.") parser.add_argument("--user_agent", help="user_agent: User agent string to use in scan request header.") parser.add_argument("--adfs-hsts", action="store_true", help="adfs-hsts: Specifically scan /adfs/ls/ for an HSTS header even without a redirect to it.") # sslyze: parser.add_argument("--sslyze-serial", help="sslyze: If set, will use a synchronous (single-threaded in-process) scanner. Defaults to true.") parser.add_argument("--sslyze-certs", help="sslyze: If set, will use the CertificateInfoScanner and return certificate info. Defaults to true.") parser.add_argument("--sslyze-reneg", help="sslyze: If set, will use the SessionRenegotiationScanner and return session renegotiation info. Defaults to true.") # trustymail: parser.add_argument("--starttls", action='store_true', help="".join([ "trustymail: Only check mx records and STARTTLS support. ", "(Implies --mx.)" ])) parser.add_argument("--timeout", help="".join([ "trustymail: The DNS lookup timeout in seconds. (Default is 5.)" ])) parser.add_argument("--smtp-timeout", help="".join([ "trustymail: The SMTP connection timeout in seconds. (Default is 5.)" ])) parser.add_argument("--smtp-localhost", help="".join([ "trustymail: The hostname to use when connecting to SMTP ", "servers. (Default is the FQDN of the host from ", "which trustymail is being run.)" ])) parser.add_argument("--smtp-ports", help="".join([ "trustymail: A comma-delimited list of ports at which to look ", "for SMTP servers. (Default is '25,465,587'.)" ])) parser.add_argument("--dns", help="".join([ "trustymail: A comma-delimited list of DNS servers to query ", "against. For example, if you want to use ", "Google's DNS then you would use the ", "value --dns-hostnames='8.8.8.8,8.8.4.4'. By ", "default the DNS configuration of the host OS ", "(/etc/resolv.conf) is used. Note that ", "the host's DNS configuration is not used at all ", "if this option is used." ])) parser.add_argument("--no-smtp-cache", help="".join([ "trustymail: Do not cache SMTP results during the run. This", "may results in slower scans due to testing the ", "same mail servers multiple times." ])) parser.add_argument("--mx", action='store_true', help="".join([ "trustymail: Only check MX records" ])) parser.add_argument("--spf", action='store_true', help="".join([ "trustymail: Only check SPF records" ])) parser.add_argument("--dmarc", action='store_true', help="".join([ "trustymail: Only check DMARC records" ])) return parser def options() -> Tuple[dict, list]: """ Parse options for the ``scan`` command. Impure Reads from sys.argv. """ parser = build_scan_options_parser() parsed, unknown = parser.parse_known_args() opts = {k: v for k, v in vars(parsed).items() if v is not None} if opts.get("lambda_profile") and not opts.get("lambda"): raise argparse.ArgumentTypeError( "Can't set lambda profile unless lambda flag is set.") # We know we want one value, but the ``nargs`` flag means we get a list. should_be_singles = ( "lambda_profile", "output", "scan", "suffix", "workers", ) opts = make_values_single(opts, should_be_singles) # Derive some options not set directly at CLI: opts["_"] = { "cache_dir": os.path.join(opts.get("output", "./"), "cache"), "report_dir": opts.get("output", "./"), "results_dir": os.path.join(opts.get("output", "./"), "results"), } return (opts, unknown) def make_values_single(dct: dict, should_be_singles: Iterable[str]) -> dict: for key in (k for k in should_be_singles if k in dct): dct[key] = dct[key][0] return dct def handle_scanner_arguments(scans: List[ModuleType], opts: dict, unknown: List[str]): for scan in scans: if hasattr(scan, "handle_scanner_args"): scan_opts, unknown = scan.handle_scanner_args(unknown, opts) # type: ignore opts.update(scan_opts) return (opts, unknown) # /Argument Parsing # def build_scanner_list(names: List[str], mod: str="scanners") -> List[ModuleType]: """ Given a list of names, load modules corresponding to those names from the scanners directory. Also verify that they have the required properties. """ scans = [] for name in names: try: scan = importlib.import_module( "%s.%s" % (mod, name)) verify_scanner_properties(scan) except ImportError: exc_type, exc_value, exc_traceback = sys.exc_info() errmsg = "\n".join([ "[%s] Scanner not found, or had an error during loading." % name, "\tERROR: %s" % exc_type, "\t%s" % exc_value, ]) logging.error(errmsg) raise ImportError(errmsg) scans.append(scan) return scans def verify_scanner_properties(scanner: ModuleType) -> None: name = scanner.__name__ for prop in MANDATORY_SCANNER_PROPERTIES: if not hasattr(scanner, prop): raise ImportError("%s lacks required %s property" % (name, prop)) # If the scan has a canonical command, make sure it exists. # mypy doesn't handle optional properties well, it seems. if hasattr(scan, "command") and scan.command and (not try_command(scan.command)): # type: ignore errmsg = "[%s] Command not found: %s" % (name, scan.command) # type: ignore logging.error(errmsg) raise ImportError(errmsg) def begin_csv_writing(scanner: ModuleType, options: dict, base_hdrs: Tuple[List[str], List[str], List[str]]) -> dict: """ Determine the CSV output file path for the scanner, open the file at that path, instantiate a CSV writer for it, determine whether or not to use lambda, determine what the headers are, write the headers to the CSV. Return a dict containing the above. """ PREFIX_HEADERS, LOCAL_HEADERS, LAMBDA_HEADERS = base_hdrs name = scanner.__name__.split(".")[-1] # e.g. 'pshtt' results_dir = options["_"]["results_dir"] meta = options.get("meta") lambda_mode = options.get("lambda") use_lambda = lambda_mode and \ hasattr(scanner, "lambda_support") and \ scanner.lambda_support # type: ignore # it's an optional variable. # Write the header row, factoring in Lambda detail if needed. headers = PREFIX_HEADERS + scanner.headers # type: ignore # optional again # Local scan timing/errors. if meta: headers += LOCAL_HEADERS # Lambda scan timing/errors. (At this step, only partial fields.) if meta and use_lambda: headers += LAMBDA_HEADERS scanner_csv_path = Path(results_dir, "%s.csv" % name).resolve() scanner_file = scanner_csv_path.open('w', newline='') scanner_writer = csv.writer(scanner_file) print("Opening csv file for scanner {}: {}".format(name, scanner_csv_path)) scanner_writer.writerow(headers) return { 'name': name, 'file': scanner_file, 'filename': str(scanner_csv_path), 'writer': scanner_writer, 'headers': headers, 'use_lambda': use_lambda, } def determine_scan_workers(scanner: ModuleType, options: dict, w_default: int, w_max: int) -> int: """ Given a number of inputs, determines the right number of workers to set when running scans. """ if options.get("serial"): workers = 1 elif hasattr(scanner, "workers"): workers = scanner.workers # type: ignore # The subclass objects set this sometimes. else: # mypy has trouble with this, presumably because we're using a dict workers = int(options.get("workers", w_default)) # type: ignore # Enforce a local worker maximum as a safety valve. return min(workers, w_max) # Yield domain names from a single string, or a CSV of them. @singledispatch def domains_from(arg: Any, domain_suffix=None) -> Iterable[str]: raise TypeError("'%s' is not a recognized source for domains." % arg) @domains_from.register(str) def _df_str(arg: str, domain_suffix: Union[str, None]=None) -> Iterable[str]: # TODO: how do we handle domain_suffix here? if domain_suffix is not None: errmsg = "Passing in domains at CLI not compatible with --suffix." raise argparse.ArgumentError(errmsg) for x in arg.split(","): yield x @domains_from.register(Path) def _df_path(arg: Path, domain_suffix: Union[str, None]=None) -> Iterable[str]: if arg.suffix == ".csv": with arg.open(encoding='utf-8', newline='') as csvfile: for row in csv.reader(csvfile): if (not row) or (not row[0]) or (row[0].lower() == "domain") or (row[0].lower() == "domain name"): continue domain = row[0].lower() if domain_suffix: sep = "." if domain_suffix.startswith("."): sep = "" yield "%s%s%s" % (domain, sep, domain_suffix) else: yield domain else: # Note: the path referred to below will be the path to the local cached # download and not to the original URL. It shouldn't be possible to get # here with that being a problem, but noting it anyway. msg = "\n".join([ "Domains should be specified as a comma-separated list ", "or as the URL or path to a .csv file. ", "%s does not appear to be any of those." % arg ]) raise TypeError(msg) def handle_domains_argument(domains: str, cache_dir: Path) -> Union[Path, str]: # `domains` can be either a path or a domain name. # It can also be a URL, and if it is we want to download it now, # and then adjust the value to be the path of the cached download. # Note that the cache_dir is basically guaranteed to exist by the time # we reach this point in the execution path. if domains.startswith("http:") or domains.startswith("https:"): domains_path = Path(cache_dir, "domains.csv") try: response = requests.get(domains) write(response.text, str(domains_path)) except requests.exceptions.RequestException as err: msg = "\n".join([ "Domains URL not downloaded successfully; RequestException", str(err), ]) logging.error(msg) raise IOError(msg) return domains_path elif domains.endswith(".csv"): # Assume file is either absolute or relative from current dir. try: domains_path = Path(os.path.curdir, domains).resolve() if not domains_path.exists(): raise FileNotFoundError return domains_path except FileNotFoundError as err: msg = "\n".join([ "Domains CSV file not found.", "(Curdir: %s CSV file: %s)" % (os.path.curdir, domains), str(err), ]) logging.error(msg) raise FileNotFoundError(msg) return domains
the-stack_0_11152
""" Tests for the bootstrap.py (formerly bootstrap_controller.py) file. """ import unittest from collections import OrderedDict import numpy as np import numpy.testing as npt import pandas as pd from scipy.sparse import csr_matrix, eye import pylogit.bootstrap as bc import pylogit.asym_logit as asym import pylogit.mixed_logit_calcs as mlc import pylogit.mixed_logit as mixed_logit import pylogit.nested_logit as nested_logit from pylogit.conditional_logit import MNL try: # Python 3.x does not natively support xrange from past.builtins import xrange except ImportError: pass class BootstrapTests(unittest.TestCase): def setUp(self): # The set up being used is one where there are two choice situations, # The first having three alternatives, and the second having only two # alternatives. There is one generic variable. Two alternative # specific constants and all three shape parameters are used. # Create the betas to be used during the tests self.fake_betas = np.array([-0.6]) # Create the fake outside intercepts to be used during the tests self.fake_intercepts = np.array([1, 0.5]) # Create names for the intercept parameters self.fake_intercept_names = ["ASC 1", "ASC 2"] # Record the position of the intercept that is not being estimated self.fake_intercept_ref_pos = 2 # Create the shape parameters to be used during the tests. Note that # these are the reparameterized shape parameters, thus they will be # exponentiated in the fit_mle process and various calculations. self.fake_shapes = np.array([-1, 1]) # Create names for the intercept parameters self.fake_shape_names = ["Shape 1", "Shape 2"] # Record the position of the shape parameter that is being constrained self.fake_shape_ref_pos = 2 # Calculate the 'natural' shape parameters self.natural_shapes = asym._convert_eta_to_c(self.fake_shapes, self.fake_shape_ref_pos) # Create an array of all model parameters self.fake_all_params = np.concatenate((self.fake_shapes, self.fake_intercepts, self.fake_betas)) # The mapping between rows and alternatives is given below. self.fake_rows_to_alts = csr_matrix(np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0], [0, 0, 1]])) # Get the mappping between rows and observations self.fake_rows_to_obs = csr_matrix(np.array([[1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1]])) # Create the fake design matrix with columns denoting X # The intercepts are not included because they are kept outside the # index in the scobit model. self.fake_design = np.array([[1], [2], [3], [1.5], [3.5], [0.78], [0.23], [1.04], [2.52], [1.49], [0.85], [1.37], [1.17], [2.03], [1.62], [1.94]]) # Create the index array for this set of choice situations self.fake_index = self.fake_design.dot(self.fake_betas) # Create the needed dataframe for the Asymmetric Logit constructor self.fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6], "alt_id": [1, 2, 3, 1, 3, 1, 2, 3, 2, 3, 1, 2, 3, 1, 2, 3], "choice": [0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1], "x": self.fake_design[:, 0], "intercept": np.ones(self.fake_design.shape[0])}) # Record the various column names self.alt_id_col = "alt_id" self.obs_id_col = "obs_id" self.choice_col = "choice" # Create the index specification and name dictionaryfor the model self.fake_specification = OrderedDict() self.fake_names = OrderedDict() self.fake_specification["x"] = [[1, 2, 3]] self.fake_names["x"] = ["x (generic coefficient)"] # Bundle args and kwargs used to construct the Asymmetric Logit model. self.constructor_args = [self.fake_df, self.alt_id_col, self.obs_id_col, self.choice_col, self.fake_specification] # Create a variable for the kwargs being passed to the constructor self.constructor_kwargs = {"intercept_ref_pos": self.fake_intercept_ref_pos, "shape_ref_pos": self.fake_shape_ref_pos, "names": self.fake_names, "intercept_names": self.fake_intercept_names, "shape_names": self.fake_shape_names} # Initialize a basic Asymmetric Logit model whose coefficients will be # estimated. self.asym_model_obj = asym.MNAL(*self.constructor_args, **self.constructor_kwargs) self.asym_model_obj.coefs = pd.Series(self.fake_betas) self.asym_model_obj.intercepts =\ pd.Series(self.fake_intercepts, index=self.fake_intercept_names) self.asym_model_obj.shapes =\ pd.Series(self.fake_shapes, index=self.fake_shape_names) self.asym_model_obj.params =\ pd.Series(np.concatenate([self.fake_shapes, self.fake_intercepts, self.fake_betas]), index=self.fake_shape_names + self.fake_intercept_names + self.fake_names["x"]) self.asym_model_obj.nests = None ##### # Initialize a basic MNL model ##### # Create the MNL specification and name dictionaries. self.mnl_spec, self.mnl_names = OrderedDict(), OrderedDict() self.mnl_spec["intercept"] = [1, 2] self.mnl_names["intercept"] = self.fake_intercept_names self.mnl_spec.update(self.fake_specification) self.mnl_names.update(self.fake_names) mnl_construct_args = self.constructor_args[:-1] + [self.mnl_spec] mnl_kwargs = {"names": self.mnl_names} self.mnl_model_obj = MNL(*mnl_construct_args, **mnl_kwargs) return None def test_get_param_names(self): # Alias the function being tested. func = bc.get_param_names # Get the function results func_results = func(self.asym_model_obj) # Get the expected results expected_results = self.asym_model_obj.params.index.tolist() # Test the function results self.assertIsInstance(func_results, list) self.assertEqual(func_results, expected_results) # Set the nest names and re-test the function. self.asym_model_obj.nest_names = ["No Nest"] expected_results_2 = self.asym_model_obj.nest_names + expected_results func_results_2 = func(self.asym_model_obj) self.assertIsInstance(func_results_2, list) self.assertEqual(func_results_2, expected_results_2) return None def test_get_param_list_for_prediction(self): # Determine the number of replicates num_replicates = 10 # Create a fake model object with the needed attributes class FakeModel(object): def __init__(self): self.nest_names = ['one', 'oneA'] self.shape_names = ['two', 'twoA', 'twoB'] self.intercept_names = ['three'] self.ind_var_names =\ ['four', 'fourA', 'fourB', 'fourC', 'fourD'] fake_model_obj = FakeModel() # Create a fake set of bootstrap replicates fake_replicates =\ (np.array([1, 1, 2, 2, 2, 3, 4, 4, 4, 4, 4])[None, :] * np.ones(num_replicates)[:, None]) # Create the expected result expected_param_list = [4 * np.ones((5, num_replicates)), 3 * np.ones((1, num_replicates)), 2 * np.ones((3, num_replicates)), np.ones((2, num_replicates))] # Alias the function being tested func = bc.get_param_list_for_prediction # Calculate the function result func_result = func(fake_model_obj, fake_replicates) # Perform the desired tests with a full set of parameters self.assertIsInstance(func_result, list) self.assertEqual(len(func_result), 4) for pos, func_array in enumerate(func_result): expected_array = expected_param_list[pos] self.assertIsInstance(func_array, np.ndarray) self.assertEqual(func_array.shape, expected_array.shape) npt.assert_allclose(func_array, expected_array) # Perform the desired tests with just index coefficients for attr in ['intercept_names', 'shape_names', 'nest_names']: setattr(fake_model_obj, attr, None) func_result_2 = func(fake_model_obj, fake_replicates[:, -5:]) expected_result_2 =\ [4 * np.ones((5, num_replicates)), None, None, None] self.assertIsInstance(func_result_2, list) for pos in xrange(1, 4): self.assertIsNone(func_result_2[pos]) self.assertIsInstance(func_result_2[0], np.ndarray) self.assertEqual(func_result_2[0].shape, expected_result_2[0].shape) npt.assert_allclose(func_result_2[0], expected_result_2[0]) return None def test_ensure_replicates_kwarg_validity(self): # Create the 'good' and 'bad' arguments for testing good_args = ['bootstrap', 'jackknife'] bad_args = ['bad', 2, None] # Alias the function being tested func = bc.ensure_replicates_kwarg_validity # Note the expected error messsage expected_error_msg =\ "`replicates` MUST be either 'bootstrap' or 'jackknife'." # Perform the desired tests for good_arg in good_args: self.assertIsNone(func(good_arg)) for bad_arg in bad_args: self.assertRaisesRegexp(ValueError, expected_error_msg, func, bad_arg) return None def test_boot_initialization(self): # Create the bootstrap object boot_obj =\ bc.Boot(self.asym_model_obj, self.asym_model_obj.params.values) # Test the bootstrap object. self.assertIsInstance(boot_obj, bc.Boot) self.assertEqual(id(boot_obj.model_obj), id(self.asym_model_obj)) self.assertEqual(self.asym_model_obj.params.index.tolist(), boot_obj.mle_params.index.tolist()) expected_attrs =\ ["bootstrap_replicates", "jackknife_replicates", "percentile_interval", "bca_interval", "abc_interval", "all_intervals", "jackknife_log_likehoods", "bootstrap_log_likelihoods"] for current_attr in expected_attrs: self.assertTrue(hasattr(boot_obj, current_attr)) self.assertIsNone(getattr(boot_obj, current_attr)) return None def test_generate_bootstrap_replicates(self): # Create the bootstrap object. boot_obj =\ bc.Boot(self.asym_model_obj, self.asym_model_obj.params.values) # Determine the number of bootstrap samples that we wish to take num_samples = 3 # Create the necessary keyword arguments. mnl_init_vals =\ np.zeros(len(self.fake_intercept_names) + sum([len(x) for x in self.fake_names.values()])) mnl_kwargs = {"ridge": 0.01, "maxiter": 1200, "method": "bfgs"} bootstrap_kwargs = {"mnl_obj": self.mnl_model_obj, "mnl_init_vals": mnl_init_vals, "mnl_fit_kwargs": mnl_kwargs, "constrained_pos": [0], "boot_seed": 1988} # Alias the needed function func = boot_obj.generate_bootstrap_replicates # Get the function results func_results =\ func(num_samples, mnl_obj=self.mnl_model_obj, mnl_init_vals=mnl_init_vals, mnl_fit_kwargs=mnl_kwargs, constrained_pos=[0], boot_seed=1988) # Perform the requisite tests self.assertIsNone(func_results) self.assertIsInstance(boot_obj.bootstrap_replicates, pd.DataFrame) self.assertEqual(boot_obj.bootstrap_replicates.ndim, 2) expected_shape = (num_samples, self.asym_model_obj.params.size) self.assertEqual(boot_obj.bootstrap_replicates.shape, expected_shape) self.assertEqual(boot_obj.bootstrap_replicates .iloc[:, 0].unique().size, 1) self.assertEqual(boot_obj.bootstrap_replicates .iloc[:, 0].unique()[0], 0) self.assertTrue(boot_obj.bootstrap_replicates .iloc[:, 1].unique().size > 1) return None def test_generate_jackknife_replicates(self): # Create the bootstrap object. boot_obj =\ bc.Boot(self.asym_model_obj, self.asym_model_obj.params.values) # Create the necessary keyword arguments. mnl_init_vals =\ np.zeros(len(self.fake_intercept_names) + sum([len(x) for x in self.fake_names.values()])) mnl_kwargs = {"ridge": 0.01, "maxiter": 1200, "method": "bfgs"} bootstrap_kwargs = {"mnl_obj": self.mnl_model_obj, "mnl_init_vals": mnl_init_vals, "mnl_fit_kwargs": mnl_kwargs, "constrained_pos": [0], "boot_seed": 1988} # Alias the needed function func = boot_obj.generate_jackknife_replicates # Get the function results func_results =\ func(mnl_obj=self.mnl_model_obj, mnl_init_vals=mnl_init_vals, mnl_fit_kwargs=mnl_kwargs, constrained_pos=[0]) # Perform the requisite tests self.assertIsNone(func_results) self.assertIsInstance(boot_obj.jackknife_replicates, pd.DataFrame) self.assertEqual(boot_obj.jackknife_replicates.ndim, 2) expected_shape =\ (self.fake_rows_to_obs.shape[1], self.asym_model_obj.params.size) self.assertEqual(boot_obj.jackknife_replicates.shape, expected_shape) self.assertEqual(boot_obj.jackknife_replicates .iloc[:, 0].unique().size, 1) self.assertEqual(boot_obj.jackknife_replicates .iloc[:, 0].unique()[0], 0) self.assertTrue(boot_obj.jackknife_replicates .iloc[:, 1].unique().size > 1) return None class IntervalTests(unittest.TestCase): """ References ---------- Efron, Bradley, and Robert J. Tibshirani. An Introduction to the Bootstrap. CRC press, 1994. Chapter 14. Notes ----- The data and tests used in the `IntervalTests` test suite come from the Efron & Tibshirani reference cited above. """ def setUp(self): # Store the spatial test data from Efron and Tibshirani (1994) self.test_data =\ np.array([48, 36, 20, 29, 42, 42, 20, 42, 22, 41, 45, 14, 6, 0, 33, 28, 34, 4, 32, 24, 47, 41, 24, 26, 30, 41]) # Note how many test data observations there are. self.num_test_obs = self.test_data.size # Store the MLE estimate self.test_theta_hat = self.calc_theta(self.test_data) # Create a pandas series of the data. Allows for easy case deletion. self.raw_series = pd.Series(self.test_data) # Create the array of jackknife replicates self.jackknife_replicates =\ np.empty((self.num_test_obs, 1), dtype=float) for obs in xrange(self.num_test_obs): current_data = self.raw_series[self.raw_series.index != obs].values self.jackknife_replicates[obs] = self.calc_theta(current_data)[0] # Create the bootstrap replicates num_test_reps = 5000 test_indices = np.arange(self.num_test_obs) boot_indx_shape = (num_test_reps, self.num_test_obs) np.random.seed(8292017) boot_indices =\ np.random.choice(test_indices, replace=True, size=self.num_test_obs*num_test_reps) self.bootstrap_replicates =\ np.fromiter((self.calc_theta(self.test_data[x])[0] for x in boot_indices.reshape(boot_indx_shape)), dtype=float)[:, None] self.rows_to_obs = eye(self.test_data.size, format='csr', dtype=int) # Create a fake model object and a fake model class that will implement the # T(P) function through it's fit_mle method. test_data = self.test_data fake_rows_to_obs = self.rows_to_obs calc_theta = self.calc_theta class FakeModel(object): def __init__(self): # Create needed attributes to successfully mock an MNDC_Model #instance in this test self.data = pd.Series([pos for pos, x in enumerate(test_data)]) self.obs_id_col = np.arange(self.data.size, dtype=int) needed_names = ['ind_var_names', 'intercept_names', 'shape_names', 'nest_names'] for name in needed_names: setattr(self, name, None) self.ind_var_names = ['variance'] # Create a get_mappings_for_fit function that will allow for # successful mocking in this test def get_mappings_for_fit(self): return {"rows_to_obs": fake_rows_to_obs} # Use the T(P) function from the spatial test data example. def fit_mle(self, init_vals, weights=None, **kwargs): return {'x': calc_theta(test_data, weights=weights)} self.fake_model_obj = FakeModel() # Create the bootstrap object self.boot =\ bc.Boot(self.fake_model_obj, pd.Series(self.test_theta_hat, index=["variance"])) self.boot.bootstrap_replicates =\ pd.DataFrame(self.bootstrap_replicates, columns=['variance']) self.boot.jackknife_replicates =\ pd.DataFrame(self.jackknife_replicates, columns=['variance']) # Store the confidence percentage that will be used for the test self.conf_percentage = 90 return None # Create the function to calculate the objective function. def calc_theta(self, array, weights=None): if weights is None: result = ((array - array.mean())**2).sum() / float(array.size) else: a_mean = weights.dot(array) differences = (array - a_mean) squared_diffs = differences**2 result = weights.dot(squared_diffs) return np.array([result]) def test_calc_percentile_interval(self): # Alias the function being tested func = self.boot.calc_percentile_interval # Perform the first test self.assertIsNone(self.boot.percentile_interval) # Calculate the function result func(self.conf_percentage) # Note the expected result is from Table 14.2 on page 183 of # Efron & Tibshirani (1994) expected_result = np.array([100.8, 233.9]) expected_columns = ['5%', '95%'] # Perform the remaining tests self.assertIsInstance(self.boot.percentile_interval, pd.DataFrame) self.assertEqual(expected_columns, self.boot.percentile_interval.columns.tolist()) self.assertIn("variance", self.boot.percentile_interval.index) self.assertEqual(self.boot.percentile_interval.shape, (1, 2)) npt.assert_allclose(self.boot.percentile_interval.iloc[0, :], expected_result, rtol=0.02) # Set the percentile interval back to none. self.boot.percentile_interval = None self.assertIsNone(self.boot.percentile_interval) return None def test_calc_bca_interval(self): # Alias the function being tested func = self.boot.calc_bca_interval # Perform the first test self.assertIsNone(self.boot.bca_interval) # Calculate the function result func(self.conf_percentage) # Note the expected result is from Table 14.2 on page 183 of # Efron & Tibshirani (1994) expected_result = np.array([115.8, 259.6]) expected_columns = ['5%', '95%'] # Perform the remaining tests self.assertIsInstance(self.boot.bca_interval, pd.DataFrame) self.assertEqual(expected_columns, self.boot.bca_interval.columns.tolist()) self.assertIn("variance", self.boot.bca_interval.index) self.assertEqual(self.boot.bca_interval.shape, (1, 2)) npt.assert_allclose(self.boot.bca_interval.iloc[0, :], expected_result, rtol=0.01) # Set the percentile interval back to none. self.boot.bca_interval = None self.assertIsNone(self.boot.bca_interval) return None def test_calc_abc_interval(self): # Alias the function being tested func = self.boot.calc_abc_interval # Perform the first test self.assertIsNone(self.boot.abc_interval) # Calculate the function result func(self.conf_percentage, self.test_theta_hat, epsilon=0.001) # Note the expected result, from Table 14.2 on page 183 of # Efron & Tibshirani (1994) expected_result = np.array([116.7, 260.9]) expected_columns = ['5%', '95%'] # Perform the remaining tests self.assertIsInstance(self.boot.abc_interval, pd.DataFrame) self.assertEqual(expected_columns, self.boot.abc_interval.columns.tolist()) self.assertIn("variance", self.boot.abc_interval.index) self.assertEqual(self.boot.abc_interval.shape, (1, 2)) npt.assert_allclose(self.boot.abc_interval.iloc[0, :], expected_result, rtol=0.01) # Set the percentile interval back to none. self.boot.abc_interval = None self.assertIsNone(self.boot.abc_interval) return None def test_calc_conf_intervals_except_all(self): kwargs = {"init_vals": self.test_theta_hat, "epsilon": 0.001} # Alias the function being tested func = self.boot.calc_conf_intervals # Create the list of attributes to be tested tested_attrs = ['percentile_interval', 'bca_interval', 'abc_interval'] interval_types = ['pi', 'bca', 'abc'] # Note the expected result, from Table 14.2 on page 183 of # Efron & Tibshirani (1994) expected_result =\ np.array([[100.8, 233.9], [115.8, 259.6], [116.7, 260.9]]) expected_columns = ['5%', '95%'] # Perform the desired tests for pos, i_type in enumerate(interval_types): desired_attr = getattr(self.boot, tested_attrs[pos]) self.assertIsNone(desired_attr) # Calculate the function result kwargs['interval_type'] = i_type func(self.conf_percentage, **kwargs) # Perform the remaining tests desired_attr = getattr(self.boot, tested_attrs[pos]) self.assertIsInstance(desired_attr, pd.DataFrame) self.assertEqual(expected_columns, desired_attr.columns.tolist()) self.assertIn("variance", desired_attr.index) self.assertEqual(desired_attr.shape, (1, 2)) npt.assert_allclose(desired_attr.iloc[0, :], expected_result[pos], rtol=0.02) # Perform clean-up activities after the test setattr(self.boot, tested_attrs[pos], None) return None def test_calc_conf_intervals_all(self): kwargs = {"interval_type": 'all', "init_vals": self.test_theta_hat, "epsilon": 0.001} # Alias the function being tested func = self.boot.calc_conf_intervals # Create the list of attributes to be tested tested_attrs = ['percentile_interval', 'bca_interval', 'abc_interval'] # Note the expected result, from Table 14.2 on page 183 of # Efron & Tibshirani (1994) expected_result =\ np.array([[100.8, 233.9], [115.8, 259.6], [116.7, 260.9]]) # Note the expected MultiIndex columns expected_columns_all = [("percentile_interval", "5%"), ("percentile_interval", "95%"), ("BCa_interval", "5%"), ("BCa_interval", "95%"), ("ABC_interval", "5%"), ("ABC_interval", "95%")] expected_columns_single = ["5%", "95%"] # Perform the expected tests before running the function for attr in tested_attrs: self.assertIsNone(getattr(self.boot, attr)) # Calculate the function results func(self.conf_percentage, **kwargs) # Perform the remaining tests for pos, attr in enumerate(tested_attrs): desired_attr = getattr(self.boot, attr) self.assertEqual(expected_columns_single, desired_attr.columns.tolist()) self.assertIn("variance", desired_attr.index) self.assertEqual(desired_attr.shape, (1, 2)) npt.assert_allclose(desired_attr.iloc[0, :], expected_result[pos], rtol=0.02) # Test the 'all_intervals' attribute. self.assertIsInstance(self.boot.all_intervals, pd.DataFrame) self.assertEqual(expected_columns_all, self.boot.all_intervals.columns.tolist()) self.assertIn("variance", self.boot.all_intervals.index) self.assertEqual(self.boot.all_intervals.shape, (1, 6)) npt.assert_allclose(self.boot.all_intervals.values, expected_result.reshape((1, 6)), rtol=0.02) # Set the various intervals back to None. for attr in tested_attrs + ['all_intervals']: setattr(self.boot, attr, None) self.assertIsNone(getattr(self.boot, attr)) return None def test_interval_type_error_in_calc_conf_intervals(self): # Alias the function being tested func = self.boot.calc_conf_intervals # Create kwargs for the function to be tested kwargs = {"interval_type": 'bad_type', "init_vals": self.test_theta_hat, "epsilon": 0.001} # Note the expected error message. expected_error_msg =\ "interval_type MUST be in `\['pi', 'bca', 'abc', 'all'\]`" # Ensure that the appropriate errors are raised. self.assertRaisesRegexp(ValueError, expected_error_msg, func, self.conf_percentage, **kwargs) return None class AnalysisTests(unittest.TestCase): def make_mnl_model(self): # The set up being used is one where there are two choice situations, # The first having three alternatives, and the second having only two # alternatives. There is one generic variable. Two alternative # specific constants and all three shape parameters are used. # Create the betas to be used during the tests fake_betas = np.array([-0.6]) # Create the fake design matrix with columns denoting X # The intercepts are not included because they are kept outside the # index in the scobit model. fake_design = np.array([[1], [2], [3], [1.5], [3.5]]) # Create the index array for this set of choice situations fake_index = fake_design.dot(fake_betas) # Create the needed dataframe for the model constructor fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2], "alt_id": [1, 2, 3, 1, 3], "choice": [0, 1, 0, 0, 1], "x": fake_design[:, 0]}) # Record the various column names alt_id_col = "alt_id" obs_id_col = "obs_id" choice_col = "choice" # Create the index specification and name dictionaryfor the model mnl_spec = OrderedDict() mnl_names = OrderedDict() mnl_spec["x"] = [[1, 2, 3]] mnl_names["x"] = ["x (generic coefficient)"] # Bundle args and kwargs used to construct the Asymmetric Logit model. mnl_args = [fake_df, alt_id_col, obs_id_col, choice_col, mnl_spec] # Create a variable for the kwargs being passed to the constructor mnl_kwargs = {"names": mnl_names} # Initialize a basic choice model. mnl_obj = MNL(*mnl_args, **mnl_kwargs) # Create the desired model attributes for the clog log model mnl_obj.coefs = pd.Series(fake_betas, index=mnl_names["x"]) mnl_obj.intercepts = None mnl_obj.shapes = None mnl_obj.nests = None mnl_obj.params = mnl_obj.coefs.copy() return mnl_obj def make_asym_model(self): # The set up being used is one where there are two choice situations, # The first having three alternatives, and the second having only two # alternatives. There is one generic variable. Two alternative # specific constants and all three shape parameters are used. # Create the betas to be used during the tests fake_betas = np.array([-0.6]) # Create the fake outside intercepts to be used during the tests fake_intercepts = np.array([1, 0.5]) # Create names for the intercept parameters fake_intercept_names = ["ASC 1", "ASC 2"] # Record the position of the intercept that is not being estimated fake_intercept_ref_pos = 2 # Create the shape parameters to be used during the tests. Note that # these are the reparameterized shape parameters, thus they will be # exponentiated in the fit_mle process and various calculations. fake_shapes = np.array([-1, 1]) # Create names for the intercept parameters fake_shape_names = ["Shape 1", "Shape 2"] # Record the position of the shape parameter that is being constrained fake_shape_ref_pos = 2 # Calculate the 'natural' shape parameters natural_shapes = asym._convert_eta_to_c(fake_shapes, fake_shape_ref_pos) # Create an array of all model parameters fake_all_params = np.concatenate((fake_shapes, fake_intercepts, fake_betas)) # The mapping between rows and alternatives is given below. fake_rows_to_alts = csr_matrix(np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 0, 0], [0, 0, 1]])) # Get the mappping between rows and observations fake_rows_to_obs = csr_matrix(np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1]])) # Create the fake design matrix with columns denoting X # The intercepts are not included because they are kept outside the # index in the scobit model. fake_design = np.array([[1], [2], [3], [1.5], [3.5]]) # Create the index array for this set of choice situations fake_index = fake_design.dot(fake_betas) # Create the needed dataframe for the Asymmetric Logit constructor fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2], "alt_id": [1, 2, 3, 1, 3], "choice": [0, 1, 0, 0, 1], "x": fake_design[:, 0], "intercept": [1 for i in range(5)]}) # Record the various column names alt_id_col = "alt_id" obs_id_col = "obs_id" choice_col = "choice" # Create the index specification and name dictionaryfor the model fake_specification = OrderedDict() fake_names = OrderedDict() fake_specification["x"] = [[1, 2, 3]] fake_names["x"] = ["x (generic coefficient)"] # Bundle args and kwargs used to construct the Asymmetric Logit model. constructor_args = [fake_df, alt_id_col, obs_id_col, choice_col, fake_specification] # Create a variable for the kwargs being passed to the constructor constructor_kwargs = {"intercept_ref_pos": fake_intercept_ref_pos, "shape_ref_pos": fake_shape_ref_pos, "names": fake_names, "intercept_names": fake_intercept_names, "shape_names": fake_shape_names} # Initialize a basic Asymmetric Logit model whose coefficients will be # estimated. model_obj = asym.MNAL(*constructor_args, **constructor_kwargs) # Get the fitted probabilities for this model and dataset # Note this relies on the calc_probabilities function being functional. # args = [fake_betas, # fake_design, # fake_df[alt_id_col].values, # fake_rows_to_obs, # fake_rows_to_alts, # model_obj.utility_transform] # kwargs = {"intercept_params": fake_intercepts, # "shape_params": fake_shapes, # "return_long_probs": True} # model_obj.prob_array =\ # choice_calcs.calc_probabilities(*args, **kwargs) model_obj.coefs = pd.Series(fake_betas, index=fake_names["x"]) model_obj.intercepts =\ pd.Series(fake_intercepts, index=fake_intercept_names) model_obj.shapes = pd.Series(fake_shapes, index=fake_shape_names) model_obj.nests = None model_obj.params =\ pd.concat([model_obj.shapes, model_obj.intercepts, model_obj.coefs], axis=0, ignore_index=False) return model_obj def make_mixed_model(self): # Fake random draws where Row 1 is for observation 1 and row 2 is # for observation 2. Column 1 is for draw 1 and column 2 is for draw 2 fake_draws = mlc.get_normal_draws(2, 2, 1, seed=1)[0] # Create the betas to be used during the tests fake_betas = np.array([0.3, -0.6, 0.2]) fake_std = 1 fake_betas_ext = np.concatenate((fake_betas, np.array([fake_std])), axis=0) # Create the fake design matrix with columns denoting ASC_1, ASC_2, X fake_design = np.array([[1, 0, 1], [0, 1, 2], [0, 0, 3], [1, 0, 1.5], [0, 1, 2.5], [0, 0, 3.5], [1, 0, 0.5], [0, 1, 1.0], [0, 0, 1.5]]) # Record what positions in the design matrix are being mixed over mixing_pos = [2] # Create the arrays that specify the choice situation, individual id # and alternative ids situation_ids = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3]) individual_ids = np.array([1, 1, 1, 1, 1, 1, 2, 2, 2]) alternative_ids = np.array([1, 2, 3, 1, 2, 3, 1, 2, 3]) # Create a fake array of choices choice_array = np.array([0, 1, 0, 0, 0, 1, 1, 0, 0]) # Create the 'rows_to_mixers' sparse array for this dataset # Denote the rows that correspond to observation 1 and observation 2 obs_1_rows = np.ones(fake_design.shape[0]) # Make sure the rows for observation 2 are given a zero in obs_1_rows obs_1_rows[-3:] = 0 obs_2_rows = 1 - obs_1_rows # Create the row_to_mixers scipy.sparse matrix fake_rows_to_mixers = csr_matrix(obs_1_rows[:, None] == np.array([1, 0])[None, :]) # Create the rows_to_obs scipy.sparse matrix fake_rows_to_obs = csr_matrix(situation_ids[:, None] == np.arange(1, 4)[None, :]) # Create the rows_to_alts scipy.sparse matrix fake_rows_to_alts = csr_matrix(alternative_ids[:, None] == np.arange(1, 4)[None, :]) # Create the design matrix that we should see for draw 1 and draw 2 arrays_to_join = (fake_design.copy(), fake_design.copy()[:, -1][:, None]) fake_design_draw_1 = np.concatenate(arrays_to_join, axis=1) fake_design_draw_2 = fake_design_draw_1.copy() # Multiply the 'random' coefficient draws by the corresponding variable fake_design_draw_1[:, -1] *= (obs_1_rows * fake_draws[0, 0] + obs_2_rows * fake_draws[1, 0]) fake_design_draw_2[:, -1] *= (obs_1_rows * fake_draws[0, 1] + obs_2_rows * fake_draws[1, 1]) extended_design_draw_1 = fake_design_draw_1[:, None, :] extended_design_draw_2 = fake_design_draw_2[:, None, :] fake_design_3d = np.concatenate((extended_design_draw_1, extended_design_draw_2), axis=1) # Create the fake systematic utility values sys_utilities_draw_1 = fake_design_draw_1.dot(fake_betas_ext) sys_utilities_draw_2 = fake_design_draw_2.dot(fake_betas_ext) ##### # Calculate the probabilities of each alternatve in each choice # situation ##### long_exp_draw_1 = np.exp(sys_utilities_draw_1) long_exp_draw_2 = np.exp(sys_utilities_draw_2) ind_exp_sums_draw_1 = fake_rows_to_obs.T.dot(long_exp_draw_1) ind_exp_sums_draw_2 = fake_rows_to_obs.T.dot(long_exp_draw_2) long_exp_sum_draw_1 = fake_rows_to_obs.dot(ind_exp_sums_draw_1) long_exp_sum_draw_2 = fake_rows_to_obs.dot(ind_exp_sums_draw_2) long_probs_draw_1 = long_exp_draw_1 / long_exp_sum_draw_1 long_probs_draw_2 = long_exp_draw_2 / long_exp_sum_draw_2 prob_array = np.concatenate((long_probs_draw_1[:, None], long_probs_draw_2[:, None]), axis=1) ########### # Create a mixed logit object for later use. ########## # Create a fake old long format dataframe for mixed logit model object alt_id_column = "alt_id" situation_id_column = "situation_id" obs_id_column = "observation_id" choice_column = "choice" data = {"x": fake_design[:, 2], alt_id_column: alternative_ids, situation_id_column: situation_ids, obs_id_column: individual_ids, choice_column: choice_array} fake_old_df = pd.DataFrame(data) fake_old_df["intercept"] = 1 # Create a fake specification fake_spec = OrderedDict() fake_names = OrderedDict() fake_spec["intercept"] = [1, 2] fake_names["intercept"] = ["ASC 1", "ASC 2"] fake_spec["x"] = [[1, 2, 3]] fake_names["x"] = ["beta_x"] # Specify the mixing variable fake_mixing_vars = ["beta_x"] # Create a fake version of a mixed logit model object args = [fake_old_df, alt_id_column, situation_id_column, choice_column, fake_spec] kwargs = {"names": fake_names, "mixing_id_col": obs_id_column, "mixing_vars": fake_mixing_vars} mixl_obj = mixed_logit.MixedLogit(*args, **kwargs) # Set all the necessary attributes for prediction: # design_3d, coefs, intercepts, shapes, nests, mixing_pos mixl_obj.design_3d = fake_design_3d mixl_obj.ind_var_names += ["Sigma X"] mixl_obj.coefs =\ pd.Series(fake_betas_ext, index=mixl_obj.ind_var_names) mixl_obj.intercepts = None mixl_obj.shapes = None mixl_obj.nests = None mixl_obj.params = mixl_obj.coefs.copy() return mixl_obj def make_nested_model(self): # Create the betas to be used during the tests fake_betas = np.array([0.3, -0.6, 0.2]) # Create the fake nest coefficients to be used during the tests # Note that these are the 'natural' nest coefficients, i.e. the # inverse of the scale parameters for each nest. They should be bigger # than or equal to 1. natural_nest_coefs = np.array([1 - 1e-16, 0.5]) # Create an array of all model parameters fake_all_params = np.concatenate((natural_nest_coefs, fake_betas)) # The set up being used is one where there are two choice situations, # The first having three alternatives, and the second having only two. # The nest memberships of these alternatives are given below. fake_rows_to_nests = csr_matrix(np.array([[1, 0], [1, 0], [0, 1], [1, 0], [0, 1]])) # Create a sparse matrix that maps the rows of the design matrix to the # observatins fake_rows_to_obs = csr_matrix(np.array([[1, 0], [1, 0], [1, 0], [0, 1], [0, 1]])) # Create the fake design matrix with columns denoting ASC_1, ASC_2, X fake_design = np.array([[1, 0, 1], [0, 1, 2], [0, 0, 3], [1, 0, 1.5], [0, 0, 3.5]]) # Create fake versions of the needed arguments for the MNL constructor fake_df = pd.DataFrame({"obs_id": [1, 1, 1, 2, 2], "alt_id": [1, 2, 3, 1, 3], "choice": [0, 1, 0, 0, 1], "x": range(5), "intercept": [1 for i in range(5)]}) # Record the various column names alt_id_col = "alt_id" obs_id_col = "obs_id" choice_col = "choice" # Store the choice array choice_array = fake_df[choice_col].values # Create a sparse matrix that maps the chosen rows of the design # matrix to the observatins fake_chosen_rows_to_obs = csr_matrix(np.array([[0, 0], [1, 0], [0, 0], [0, 0], [0, 1]])) # Create the index specification and name dictionaryfor the model fake_specification = OrderedDict() fake_specification["intercept"] = [1, 2] fake_specification["x"] = [[1, 2, 3]] fake_names = OrderedDict() fake_names["intercept"] = ["ASC 1", "ASC 2"] fake_names["x"] = ["x (generic coefficient)"] # Create the nesting specification fake_nest_spec = OrderedDict() fake_nest_spec["Nest 1"] = [1, 2] fake_nest_spec["Nest 2"] = [3] # Create a nested logit object args = [fake_df, alt_id_col, obs_id_col, choice_col, fake_specification] kwargs = {"names": fake_names, "nest_spec": fake_nest_spec} model_obj = nested_logit.NestedLogit(*args, **kwargs) model_obj.coefs = pd.Series(fake_betas, index=model_obj.ind_var_names) model_obj.intercepts = None model_obj.shapes = None def logit(x): return np.log(x / (1 - x)) model_obj.nests =\ pd.Series(logit(natural_nest_coefs), index=fake_nest_spec.keys()) model_obj.params =\ pd.concat([model_obj.nests, model_obj.coefs], axis=0, ignore_index=False) # Store a ridge parameter # ridge = 0.5 # Gather the arguments needed for the calc_nested_probs function # args = [natural_nest_coefs, # fake_betas, # model_obj.design, # fake_rows_to_obs, # fake_rows_to_nests] # kwargs = {"return_type": "long_probs"} # model_obj.prob_array = nlc.calc_nested_probs(*args, **kwargs) return model_obj def setUp(self): """ Create the real model objects. """ self.mnl_model = self.make_mnl_model() self.asym_model = self.make_asym_model() self.mixed_model = self.make_mixed_model() self.nested_model = self.make_nested_model() return None def test_calc_log_likes_for_replicates(self): # Create the keyword arguments needed for the test. kwargs = {'num_draws': 10, 'seed': 932017} # Note the objects that are to be tested model_objects = [self.mnl_model, self.asym_model, self.mixed_model, self.nested_model] # Iterate over the Asym, MNL, Mixed, and Nested models. for model_obj in model_objects: # Create the bootstrap object based on the model object. boot = bc.Boot(model_obj, model_obj.params.values) # Create the bootstrap and jackknife replicate attributes. replicates =\ pd.DataFrame(np.concatenate([model_obj.params.values[None, :], model_obj.params.values[None, :]], axis=0)) boot.bootstrap_replicates = replicates boot.jackknife_replicates = replicates # Alias the function being tested. func = boot.calc_log_likes_for_replicates for replicate_type in ['bootstrap', 'jackknife']: # Calculate function results using each bootstrap object kwargs["replicates"] = replicate_type func_result = func(**kwargs) # Ensure function results have the expected properties self.assertIsInstance(func_result, np.ndarray) self.assertEqual(func_result.ndim, 1) self.assertEqual(func_result.shape, (replicates.shape[0],)) return None def test_calc_gradient_norm_for_replicates(self): # Create the bootstrap object based on the MNL model. base_array = self.mnl_model.params.values base_array_2d = base_array[None, :] boot = bc.Boot(self.mnl_model, base_array) # Create the bootstrap and jackknife replicate attributes. replicates = pd.DataFrame(np.concatenate((base_array_2d, base_array_2d + 1, base_array_2d - 1), axis=0)) boot.bootstrap_replicates = replicates boot.jackknife_replicates = replicates # Alias the function being tested. func = boot.calc_gradient_norm_for_replicates # Perform the desired tests. for replicate_type in ['bootstrap', 'jackknife']: func_result = func(replicates=replicate_type) self.assertIsInstance(func_result, np.ndarray) self.assertEqual(func_result.shape, (replicates.shape[0],)) self.assertTrue(np.unique(func_result).size == func_result.size) return None
the-stack_0_11153
__author__ = "Nitin Kumar, Rick Sherman" __credits__ = "Jeremy Schulman" import unittest from nose.plugins.attrib import attr from jnpr.junos.jxml import NAME, INSERT, remove_namespaces @attr('unit') class Test_JXML(unittest.TestCase): def test_name(self): op = NAME('test') self.assertEqual(op['name'], 'test') def test_insert(self): op = INSERT('test') self.assertEqual(op['insert'], 'test') def test_remove_namespaces(self): xmldata = \ """<xsl:stylesheet xmlns:xsl="http://xml.juniper.net/junos"> <xsl:template> <xsl:attribute name="{myname}"> </xsl:attribute> </xsl:template> </xsl:stylesheet>""" import xml.etree.ElementTree as ET root = ET.fromstring(xmldata) test = remove_namespaces(root) for elem in test.getiterator(): i = elem.tag.find('}') if i > 0: i = i + 1 self.assertTrue(i <= 0)
the-stack_0_11154
# -*- coding: utf-8 -*- import asyncio import collections import functools import json import time from typing import List, Optional from threading import Thread from vk_api import VkApi from vk_api.bot_longpoll import VkBotEventType, VkBotLongPoll from vk_api.execute import VkFunction from vk_api.upload import VkUpload from vk_api.utils import get_random_id API_VERSION = '5.130' vk_execute = VkFunction( args=('methods',), clean_args=('methods',), code=''' %(methods)s; return 1; ''') def threaded(fn): def wrapper(*args, **kwargs): Thread(target=fn, args=args, kwargs=kwargs, daemon=True).start() return wrapper class VKMessage: __slots__ = ('id', 'peer_id', 'user_id', 'text', 'payload', 'reply') def __init__(self, raw: dict, vk: 'VK') -> None: self.id = raw['id'] self.peer_id = raw['peer_id'] self.user_id = raw['from_id'] self.text = raw['text'] self.payload = json.loads(raw['payload']) if 'payload' in raw else None self.reply = functools.partial(vk.send, self.peer_id) class VK: __slots__ = ('vk', 'logger', 'event_queue', 'msg_queue', 'user_cache', 'group_id') def __init__(self, token: str, logger) -> None: self.vk = VkApi(token=token, api_version=API_VERSION) self.logger = logger self.event_queue = collections.deque() self.msg_queue = [] self.user_cache = {} self.group_id = self.method('groups.getById')[0]['id'] self.init_group_settings() def method(self, method: str, args: dict = None) -> dict: return self.vk.method(method, args) def send(self, peer_id: int, message: str, keyboard=None, attach=None, sticker=None, disable_mentions=True) -> None: if 4000 < len(message) < 100000 and (not attach) and (not sticker): for message_part in [message[j:j + 4000] for j in range(0, len(message), 4000)]: self.msg_queue.append({'peer_id': peer_id, 'message': message_part, 'random_id': get_random_id(), 'disable_mentions': disable_mentions, 'keyboard': keyboard}) else: self.msg_queue.append({'peer_id': peer_id, 'message': message, 'random_id': get_random_id(), 'disable_mentions': disable_mentions, 'keyboard': keyboard, 'attachment': attach, 'sticker_id': sticker}) def send_multiple(self, peer_ids: List[int], message: str, keyboard=None, disable_mentions=True) -> None: self.msg_queue.append({'peer_ids': peer_ids, 'message': message, 'random_id': get_random_id(), 'disable_mentions': disable_mentions, 'keyboard': keyboard}) def get_user_link(self, target_id: int, name_case: str = 'nom') -> str: if target_id not in self.user_cache and target_id != 0: if target_id < 0: self.user_cache[target_id] = self.method('groups.getById', {'group_id': -target_id})[0] else: self.user_cache[target_id] = self.method('users.get', {'user_ids': target_id, 'name_case': name_case})[0] if target_id < 0: return ''.join(['[id', str(target_id), '|', self.user_cache[target_id]['first_name'], ']']) elif target_id == 0: return '@id0' else: self.user_cache[target_id] = self.method('users.get', {'user_ids': target_id, 'name_case': name_case})[0] return f"[id{target_id}|{self.user_cache[target_id]['first_name']}]" def get_user_links(self, target_ids: List[int]) -> dict: cached = True for i in target_ids: if i not in self.user_cache: cached = False break if not cached: for i in self.method('users.get', {'user_ids': ','.join(list(map(str, target_ids)))}): self.user_cache[i['id']] = i return {i: f"[id{i}|{self.user_cache[i]['first_name']}]" for i in target_ids} def get_target_id(self, s: str) -> Optional[int]: r = s.replace('https://', '').replace('vk.com/', '').replace('@id', '').replace('@', '').replace('[', '').replace(']', '') if '|' in r: r = r.split('|')[0] if not r.isdecimal(): r = self.method('utils.resolveScreenName', {'screen_name': r.replace('-', 'club')}) if not r: return if r['type'] == 'user': r = r['object_id'] elif r['type'] == 'group': r = -r['object_id'] return int(r) def is_chat_member(self, peer_id: int, user_id: int) -> bool: members = self.method('messages.getConversationMembers', {'peer_id': peer_id})['items'] for i in members: if i['member_id'] == user_id: return True def is_chat_admin(self, peer_id: int, user_id: int, check_if_owner: bool = False) -> bool: members = self.method('messages.getConversationMembers', {'peer_id': peer_id})['items'] for i in members: if i['member_id'] == user_id and 'is_admin' in i and i['is_admin'] and ((not check_if_owner) or ('is_owner' in i and i['is_owner'])): return True def get_chat_owner(self, peer_id: int) -> Optional[int]: members = self.method('messages.getConversationMembers', {'peer_id': peer_id})['items'] for i in members: if 'is_owner' in i and i['is_owner']: return i['member_id'] def get_upload(self) -> VkUpload: return VkUpload(self.vk) def init_group_settings(self) -> None: self.method('groups.setSettings', { 'group_id': self.group_id, 'messages': 1, 'bots_capabilities': 1, 'bots_start_button': 1, 'bots_add_to_chat': 1, }) self.method('groups.setLongPollSettings', { 'group_id': self.group_id, 'enabled': 1, 'api_version': API_VERSION, 'message_new': 1, }) async def messages_sender(self) -> None: while True: queue = self.msg_queue[:25] if queue: self.msg_queue = self.msg_queue[25:] try: vk_execute(self.vk, ''.join(('API.messages.send(' + json.dumps(i, ensure_ascii=False, separators=(',', ':')) + ');') for i in queue)) except Exception as ex: self.logger.warning('Произошла ошибка при отправке сообщений', exc_info=ex) await asyncio.sleep(0.05) @threaded def event_handler(self) -> None: convs = self.method('messages.getConversations', {'count': 200, 'filter': 'unanswered'})['items'] for i in convs: self.event_queue.append(VKMessage(i['last_message'], self)) lp = VkBotLongPoll(self.vk, self.group_id) while True: try: for event in lp.check(): if event.type == VkBotEventType.MESSAGE_NEW: self.event_queue.append(VKMessage(event.raw['object']['message'], self)) else: self.event_queue.append(event) except Exception as ex: self.logger.warning('Произошла ошибка в LongPoll', exc_info=ex) time.sleep(3)
the-stack_0_11156
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input import tensorflow as tf from tensorflow.keras import layers, regularizers def rpn(feature_map, anchors_per_location=9): shared = layers.Conv2D(512, (3, 3), padding='same', activation='relu', name='rpn_conv_shared')(feature_map) # Anchor class (foreground, background) # [batch, height, width, anchors_per_location * 2] x = layers.Conv2D(2 * anchors_per_location, (1, 1), padding='valid', activation='linear', name='rpn_class_raw')(shared) # Reshape to [batch, anchors, 2] x = layers.Reshape((-1, 2))(x) rpn_class = layers.Activation('softmax', name='rpn_class_probs')(x) # Bounding box refinement # [batch, height, width, anchors_per_location * (x, y, log(w), log(h))] x = layers.Conv2D(4 * anchors_per_location, (1, 1), padding='valid', activation='linear', name='rpn_bbox_pred')(shared) # Reshape to [batch, anchors, 4] rpn_bbox = layers.Reshape((-1, 4))(x) return rpn_class, rpn_bbox def get_anchors(): anchors=[] scales=(8,16,32) ratios=(0.5,1,2) # for def build_model(): inputs = layers.Input(shape=(None, None, 3)) # default shape is 224*224*3 x = preprocess_input(inputs) backbone = VGG16(weights='imagenet', include_top=False) feature_map = backbone(x) rpn_class, rpn_bbox = rpn(feature_map) anchors=get_anchors()
the-stack_0_11160
import unittest from bbscript.stdlib import cmd_var, cmd_doc from bbscript.errors import InvalidOperation class TestVariables(unittest.TestCase): def test_var_get(self): doc = {"docname": "testdoc"} ctx = {"$test_var": "test value", "$doc": doc} self.assertEqual(cmd_var(ctx, "test_var"), "test value") self.assertEqual(cmd_var(ctx, "doc"), doc) self.assertEqual(cmd_var(ctx, "doc", "docname"), doc.get("docname")) def test_doc(self): doc = {"field1": "value1", "field2": True, "field3": 123} meta = { "fields": { "field1": { "type": "string" }, "field2": { "type": "boolean" }, "field3": { "type": "int" } } } ctx = { "$doc": doc } self.assertEqual(cmd_doc(ctx, "doc", meta), doc)
the-stack_0_11161
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Classes for different algorithms of reduction and broadcasting.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import enum import six from tensorflow.python.client import device_lib from tensorflow.python.distribute import cross_device_utils from tensorflow.python.distribute import device_util from tensorflow.python.distribute import reduce_util from tensorflow.python.distribute import values as value_lib from tensorflow.python.eager import context from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util.tf_export import tf_export from tensorflow.tools.docs import doc_controls def check_destinations(destinations): """Checks whether `destinations` is not empty. Args: destinations: a `DistributedValues`, variable, or string object. Returns: Boolean which is True if `destinations` is not empty. """ # Calling bool() on a ResourceVariable is not allowed. if isinstance(destinations, resource_variable_ops.ResourceVariable): return bool(destinations.device) return bool(destinations) def validate_destinations(destinations): if not isinstance(destinations, (value_lib.DistributedValues, resource_variable_ops.ResourceVariable, value_lib.AggregatingVariable, six.string_types, value_lib.TPUMirroredVariable, # LogicalDeviceSpec is only used internally, e.g. as a # broadcast destination, never supplied by a user. value_lib.LogicalDeviceSpec)): raise ValueError("destinations must be one of a `DistributedValues` object," " a tf.Variable object, or a device string.") if not check_destinations(destinations): raise ValueError("destinations can not be empty") def reduce_non_distributed_value(reduce_op, device_map, value, destinations): """Reduce a non-DistributedValue `value` to `destinations`.""" if isinstance(value, value_lib.DistributedValues): raise ValueError("You are passing a `DistributedValue` to " "`reduce_non_distributed_value`, which is not allowed.") # If the same value is present on all replicas then the PerReplica value will # be a single value. We also handle the case when `value` is a single value # and equal to 0. if value == 0: return 0 # If there is only a single value and the reduce op is MEAN, # that value should be on all destinations. if reduce_op == reduce_util.ReduceOp.MEAN: return value validate_destinations(destinations) # We do not support a reduce op of SUM if the value is the same across # all replicas. We call this as part of assign functions for MirroredVariables # and summing up identical values across replicas is not clearly defined. if device_map.num_replicas_in_graph != 1: raise ValueError("A non-DistributedValues value %s cannot be reduced with " "the given reduce op %s." % (value, reduce_op)) return simple_broadcast(value, destinations) def _make_tensor_into_per_replica(input_tensor): """Converts a single tensor into a PerReplica object.""" if isinstance(input_tensor, (tuple, list)): raise ValueError("Cannot convert `input_tensor` to a `PerReplica` object, " "got %r but expected a object that is not a tuple or list." % (input_tensor,)) if isinstance(input_tensor, value_lib.PerReplica): return input_tensor try: device = input_tensor.device except AttributeError: raise ValueError("Cannot convert `input_tensor` to a `PerReplica` object " "because it doesn't have device set.") device_map = value_lib.SingleDeviceMap(device) return value_lib.PerReplica(device_map, (input_tensor,)) def _normalize_value_destination_pairs(value_destination_pairs): """Converts each tensor into a PerReplica object in the input list.""" result = [] value_destination_pairs = list(value_destination_pairs) if not isinstance(value_destination_pairs, (list, tuple)): raise ValueError("`value_destination_pairs` should be a list or tuple") for pair in value_destination_pairs: if not isinstance(pair, tuple): raise ValueError( "Each element of `value_destination_pairs` should be a tuple.") if len(pair) != 2: raise ValueError("Each element of `value_destination_pairs` should be a " "tuple of size 2.") per_replica = _make_tensor_into_per_replica(pair[0]) result.append((per_replica, pair[1])) return result def _validate_value_destination_pairs(value_destination_pairs): # TODO(yuefengz): raise exceptions instead of returning False. # pylint: disable=g-missing-docstring if not value_destination_pairs: return False if not isinstance(value_destination_pairs, (list, tuple)): return False if not all(isinstance(pair, tuple) for pair in value_destination_pairs): return False if not all(isinstance(v[0], value_lib.PerReplica) for v in value_destination_pairs): return False return True # TODO(yuefengz): consider calling this function in the caller of # CrossDeviceOps. def get_devices_from(destinations): if isinstance(destinations, value_lib.DistributedValues): return destinations.devices elif isinstance(destinations, value_lib.LogicalDeviceSpec): return destinations.device_map.logical_to_actual_devices( destinations.logical_device) elif isinstance(destinations, six.string_types): return (device_util.resolve(destinations),) return (destinations.device,) def get_device_map_from(destinations): if isinstance(destinations, (value_lib.DistributedValues, value_lib.LogicalDeviceSpec)): return destinations.device_map, destinations.logical_device if isinstance(destinations, six.string_types): device = device_util.resolve(destinations) else: device = destinations.device return value_lib.SingleDeviceMap(device), 0 def _devices_match(left, right): return set(get_devices_from(left)) == set(get_devices_from(right)) def _all_devices_match(value_destination_pairs): if not all(_devices_match(v, d) for v, d in value_destination_pairs): return False if not all(_devices_match(v, value_destination_pairs[0][0]) for v, _ in value_destination_pairs[1:]): return False return True def simple_broadcast(value, destinations, always_mirrored=False): """Broadcast `value` to `destinations` using simple copies.""" device_map, logical_device = get_device_map_from(destinations) devices = device_map.logical_to_actual_devices(logical_device) if len(devices) == 1 and not always_mirrored: return cross_device_utils.copy_tensor_or_indexed_slices_to_device( value, devices[0]) else: value_updates = [] for d in devices: value_updates.append( cross_device_utils.copy_tensor_or_indexed_slices_to_device( value, d)) return value_lib.Mirrored(device_map, value_updates, logical_device) def _simple_reduce(per_replica_value, reduce_to_device, accumulation_fn, reduce_op): # pylint: disable=g-missing-docstring all_values = per_replica_value.values if not all_values: raise ValueError("`per_replica_value` must be non-empty") count = len(all_values) with ops.device(reduce_to_device): with context.device_policy(context.DEVICE_PLACEMENT_SILENT): reduced = cross_device_utils.aggregate_tensors_or_indexed_slices( all_values, accumulation_fn) if reduce_op == reduce_util.ReduceOp.MEAN: reduced = cross_device_utils.divide_by_n_tensors_or_indexed_slices( reduced, count) elif reduce_op != reduce_util.ReduceOp.SUM: raise ValueError("`reduce_op` must be Reduce.SUM or Reduce.MEAN.") return reduced @tf_export("distribute.CrossDeviceOps") class CrossDeviceOps(object): """Base class for cross-device reduction and broadcasting algorithms.""" def __init__(self): pass def reduce(self, reduce_op, per_replica_value, destinations): """Reduce `per_replica_value` to `destinations`. It runs the reduction operation defined by `reduce_op` and put the result on `destinations`. Args: reduce_op: Indicates how per_replica_value will be reduced. Accepted values are `tf.distribute.ReduceOp.SUM`, `tf.distribute.ReduceOp.MEAN`. per_replica_value: a PerReplica object or a tensor with device set. destinations: the reduction destinations. Returns: a Mirrored object. Raises: ValueError: if per_replica_value can't be converted to a PerReplica object. """ if not isinstance(per_replica_value, value_lib.PerReplica): per_replica_value = _make_tensor_into_per_replica(per_replica_value) validate_destinations(destinations) return self.reduce_implementation(reduce_op, per_replica_value, destinations) def batch_reduce(self, reduce_op, value_destination_pairs): """Reduce PerReplica objects in a batch. Reduce each first element in `value_destination_pairs` to each second element which indicates the destinations. Args: reduce_op: Indicates how per_replica_value will be reduced. Accepted values are `tf.distribute.ReduceOp.SUM`, `tf.distribute.ReduceOp.MEAN`. value_destination_pairs: a list or a tuple of tuples of PerReplica objects (or tensors with device set if there is one device) and destinations. Returns: a list of Mirrored objects. Raises: ValueError: if `value_destination_pairs` is not a list or a tuple of tuples of PerReplica objects and destinations """ # TODO(yuefengz): if destinations are different, split into several # `_batch_reduce` invocations. if not _validate_value_destination_pairs(value_destination_pairs): # If the first element of each pair is a tensor, we try to turn it into a # PerReplica object. value_destination_pairs = _normalize_value_destination_pairs( value_destination_pairs) for _, d in value_destination_pairs: validate_destinations(d) return self.batch_reduce_implementation(reduce_op, value_destination_pairs) def broadcast(self, tensor, destinations): """Broadcast the `tensor` to destinations. Args: tensor: the tensor to broadcast. destinations: the broadcast destinations. Returns: a Mirrored object. """ validate_destinations(destinations) return self.broadcast_implementation(tensor, destinations) @doc_controls.for_subclass_implementers def reduce_implementation(self, reduce_op, per_replica_value, destinations): """The implementation of reduce of `per_replica_value` to `destinations`. It runs the reduction operation defined by `reduce_op` and put the result on `destinations`. Args: reduce_op: Indicates how per_replica_value will be reduced. Accepted values are `tf.distribute.ReduceOp.SUM`, `tf.distribute.ReduceOp.MEAN`. per_replica_value: a PerReplica object or a tensor with device set. destinations: the reduction destinations. Returns: a Mirrored object. Raises: ValueError: if per_replica_value can't be converted to a PerReplica object. """ raise NotImplementedError( "_reduce method must be implemented in descendants.") @doc_controls.for_subclass_implementers def batch_reduce_implementation(self, reduce_op, value_destination_pairs): """Implementation of reduce PerReplica objects in a batch. Reduce each first element in `value_destination_pairs` to each second element which indicates the destinations. Args: reduce_op: Indicates how per_replica_value will be reduced. Accepted values are `tf.distribute.ReduceOp.SUM`, `tf.distribute.ReduceOp.MEAN`. value_destination_pairs: a list or a tuple of tuples of PerReplica objects (or tensors with device set if there is one device) and destinations. Returns: a list of Mirrored objects. Raises: ValueError: if `value_destination_pairs` is not a list or a tuple of tuples of PerReplica objects and destinations """ raise NotImplementedError( "_batch_reduce method must be implemented in descendants.") @doc_controls.for_subclass_implementers def broadcast_implementation(self, tensor, destinations): """Implementation of broadcast the `tensor` to destinations. Args: tensor: the tensor to broadcast. destinations: the broadcast destinations. Returns: a Mirrored object. """ return simple_broadcast(tensor, destinations, always_mirrored=True) @tf_export("distribute.ReductionToOneDevice") class ReductionToOneDevice(CrossDeviceOps): """Always do reduction to one device first and then do broadcasting. Batch reduction is done by reduction on each element one by one. """ def __init__(self, reduce_to_device=None, accumulation_fn=None): """Constructor. Args: reduce_to_device: the intermediate device to reduce to. If None, reduce to the first device in `destinations` of the reduce() method. accumulation_fn: a function that does accumulation. If None, then `tf.math.add_n` is used. """ self.reduce_to_device = reduce_to_device self.accumulation_fn = accumulation_fn or math_ops.add_n super(ReductionToOneDevice, self).__init__() def reduce_implementation(self, reduce_op, per_replica_value, destinations): if check_destinations(destinations): devices = get_devices_from(destinations) else: devices = get_devices_from(per_replica_value) reduce_to_device = self.reduce_to_device or devices[0] logging.log_first_n( logging.INFO, "Reduce to %s then broadcast to %r." % (reduce_to_device, devices), 10) reduced = _simple_reduce(per_replica_value, reduce_to_device, self.accumulation_fn, reduce_op) return self.broadcast(reduced, destinations) def batch_reduce_implementation(self, reduce_op, value_destination_pairs): return [ self.reduce_implementation(reduce_op, t, destinations=v) for t, v in value_destination_pairs ] def _group_value_by_device(per_replica_values): """Group values into sublists by their devices. This grouping is needed to call the all-reduce library because it expects a list of the following form: [[(grad0_gpu0, v0_gpu0), (grad1_gpu0, v1_gpu0), (grad2_gpu0, v2_gpu0) ...], [(grad0_gpu1, v0_gpu1), (grad1_gpu1, v1_gpu1), (grad2_gpu1, v2_gpu1) ...], [(grad0_gpu2, v0_gpu2), (grad1_gpu0, v1_gpu2), (grad2_gpu0, v2_gpu2) ...], ... ] Args: per_replica_values: a list of PerReplica obejcts. Returns: a list of lists, each sublist has components for its corresponding device of PerReplica objects, paired with a None. """ destinations = per_replica_values[0].devices grouped = [[] for _ in range(len(destinations))] for per_replica_value in per_replica_values: # pylint: disable=protected-access for i, v in enumerate(per_replica_value.values): assert per_replica_value.devices == destinations grouped[i].append((v, None)) return grouped def _ungroup_and_make_mirrored(grouped_reduced, destinations, reduce_op, num_between_graph_workers=1): """Ungroup results from all-reduce and make Mirrored objects. Each all-reduce result will be divided by the number of destinations before Mirrored objects are created if reduce_op is "mean". Args: grouped_reduced: a list of lists, each sublist has components for each device, paired with a None. It is the result from cross_device_utils.aggregate_gradients_using*. destinations: a value to colocate the result with. reduce_op: Indicates how values will be aggregated. Accepted values are `tf.distribute.ReduceOp.SUM`, `tf.distribute.ReduceOp.MEAN`. num_between_graph_workers: number of workers in the between-graph replication. Returns: a list of Mirrored objects. """ device_map, logical_device = get_device_map_from(destinations) num_replicas = device_map.num_replicas_in_graph * num_between_graph_workers index = [[] for _ in range(len(grouped_reduced[0]))] for per_replica_reduced in grouped_reduced: for i, (v, _) in enumerate(per_replica_reduced): if reduce_op == reduce_util.ReduceOp.MEAN: index[i].append(v / num_replicas) else: index[i].append(v) return [value_lib.Mirrored(device_map, v, logical_device) for v in index] class _ConcatAndSplitPacker(object): """Concatenate and split tensors for reduction.""" def __init__(self, num_packs=1): """Initialize the _ConcatAndSplitPacker object. Args: num_packs: specifies the number of split packs that will be formed. Raises: ValueError: if num_packs is not greater than 0. """ if num_packs <= 0: raise ValueError("num_packs must be greater than zero.") self.num_packs = num_packs def pack(self, grouped_grads_and_vars): """Pack tensors.""" self.grouped_grads_and_vars = grouped_grads_and_vars self.all_device_shapes = [] self.all_device_sizes = [] device_grad_packs = [] for device_grads_and_vars in grouped_grads_and_vars: with ops.colocate_with(device_grads_and_vars[0][0]): # Flatten all the grads. flat_grads = [ array_ops.reshape(g, [-1]) for g, _ in device_grads_and_vars ] # Remember the original shape of all the grads. device_shapes = [array_ops.shape(g) for g, _ in device_grads_and_vars] # Remember the original sizes of all the grads. device_sizes = [array_ops.size(g) for g, _ in device_grads_and_vars] # Concat all the flat grads into a big flat tensor. concat_grads = array_ops.concat(flat_grads, 0) # Split the big tensor into num_splits packs. In cases where the # total size is not divisible num_splits, the last pack gets # more elements. # TODO(zhengxq): it is also possible to optimize away all the concat # as well. num_splits = self.num_packs # The array_ops.size function will sometimes remove static shapes. So if # all gradient shapes are defined, we use another method to get the # total size. # TODO(yuefengz): move this logic to array_ops.size. if all(g.shape.is_fully_defined() for g, _ in device_grads_and_vars): total_grad_size = sum( [g.shape.num_elements() for g, _ in device_grads_and_vars]) else: total_grad_size = array_ops.size(concat_grads) split_size = total_grad_size // num_splits split_size_last = total_grad_size - split_size * (num_splits - 1) split_sizes = [split_size] * (num_splits - 1) + [split_size_last] grad_packs = array_ops.split(concat_grads, split_sizes) # Ready to aggregate the repacked gradients, with fake variables. # TODO(zhengxq): It is hacky to have to use fake variables. # We should remove the need for variables in # aggregate_gradients_using*. device_grad_packs.append(zip(grad_packs, [None] * num_splits)) self.all_device_shapes.append(device_shapes) self.all_device_sizes.append(device_sizes) return device_grad_packs def unpack(self, summed_device_grad_packs): """Reverse the pack.""" aggregated_device_grads = [] for (summed_device_grad_packs, device_grads_and_vars, device_shapes, device_sizes) in zip( summed_device_grad_packs, self.grouped_grads_and_vars, self.all_device_shapes, self.all_device_sizes): # pylint: enable=line-too-long # Reverse the packing operations in the previous steps. Form the # summed gradients back into their original shapes. with ops.colocate_with(summed_device_grad_packs[0][0]): # Form a list of the summed grad packs. device_grad_packs = [g for g, _ in summed_device_grad_packs] # Concat them back into a big flat tensor. device_grads_concat = array_ops.concat(device_grad_packs, 0) # Split the tensors back into their original sizes. grads_with_sizes = array_ops.split(device_grads_concat, device_sizes) # Reshape the tensors back into their original shapes. grads_with_shapes = [ array_ops.reshape(grad, shape) for shape, grad in zip(device_shapes, grads_with_sizes) ] # Form the list with the original list of variables. summed_device_grads = [ (g, v) for g, (_, v) in zip(grads_with_shapes, device_grads_and_vars) ] aggregated_device_grads.append(summed_device_grads) return aggregated_device_grads class _AggregateSmallTensorPacker(object): """Concatenate small gradient tensors together for reduction.""" def __init__(self, agg_small_grads_max_bytes=1048576, agg_small_grads_max_group=16): """Initialize the _AggregateSmallTensorPacker object. Args: agg_small_grads_max_bytes: largest tensor eligible for aggregation, in number of bytes. agg_small_grads_max_group: largest permitted aggregation of small tensors. Raises: ValueError: if `agg_small_grads_max_bytes` or `agg_small_grads_max_group` is not greater than 0. """ if agg_small_grads_max_bytes <= 0 or agg_small_grads_max_group <= 0: raise ValueError("agg_small_grads_max_bytes and agg_small_grads_max_group" " should both be greater than zero.") self.agg_small_grads_max_bytes = agg_small_grads_max_bytes self.agg_small_grads_max_group = agg_small_grads_max_group def pack(self, grouped_grads_and_vars): """Aggregate small tensors.""" if (self.agg_small_grads_max_bytes > 0 and self.agg_small_grads_max_group > 0): device_grads, self.packing = cross_device_utils.pack_small_tensors( grouped_grads_and_vars, max_bytes=self.agg_small_grads_max_bytes, max_group=self.agg_small_grads_max_group) return device_grads def unpack(self, summed_device_grad_packs): """Reverse the aggregation process.""" return cross_device_utils.unpack_small_tensors(summed_device_grad_packs, self.packing) def _pack_tensors(device_grads, num_packs=0, agg_small_grads_max_bytes=0, agg_small_grads_max_group=0): """Pack tensors if specified.""" if num_packs > 0: tensor_packer = _ConcatAndSplitPacker(num_packs) device_grad_packs = tensor_packer.pack(device_grads) elif agg_small_grads_max_bytes > 0 and agg_small_grads_max_group > 0: tensor_packer = _AggregateSmallTensorPacker(agg_small_grads_max_bytes, agg_small_grads_max_group) device_grad_packs = tensor_packer.pack(device_grads) else: tensor_packer = None device_grad_packs = device_grads return device_grad_packs, tensor_packer def _unpack_tensors(reduced, tensor_packer=None): """Unpack tensors if they are packed before all-reduce.""" if tensor_packer: return tensor_packer.unpack(reduced) return reduced class AllReduceCrossDeviceOps(CrossDeviceOps): """Reduction using all-reduce.""" def __init__(self, all_reduce_alg="nccl", num_packs=1, agg_small_grads_max_bytes=0, agg_small_grads_max_group=10): """All-reduce implementation of CrossDeviceOps. Before performing all-reduce, tensors will be repacked or aggregated for more efficient cross-device transportation: 1) If `num_packs` is non-zero, pack values into `num_packs` splits. 2) Otherwise, if `agg_small_grads_max_bytes` > 0 and `agg_small_grads_max_group` > 0, aggregate values smaller than `agg_small_grads_max_bytes` into groups with at most `agg_small_grads_max_group` values. 3) Otherwise, no repacking or grouping will happen. Args: all_reduce_alg: the all-reduce algorithm to use, currently only "nccl" or "hierarchical_copy" are supported. num_packs: see above. agg_small_grads_max_bytes: see above. agg_small_grads_max_group: see above. """ self._all_reduce_alg = all_reduce_alg self._num_packs = num_packs self._agg_small_grads_max_bytes = agg_small_grads_max_bytes self._agg_small_grads_max_group = agg_small_grads_max_group self._simple_cross_replica_ops = ReductionToOneDevice() super(AllReduceCrossDeviceOps, self).__init__() def reduce_implementation(self, reduce_op, per_replica_value, destinations): if _devices_match(per_replica_value, destinations): return self._batch_all_reduce(reduce_op, [per_replica_value])[0] else: return self._simple_cross_replica_ops.reduce(reduce_op, per_replica_value, destinations) def batch_reduce_implementation(self, reduce_op, value_destination_pairs): all_devices_match = _all_devices_match(value_destination_pairs) contains_indexed_slices = cross_device_utils.contains_indexed_slices( value_destination_pairs) if (all_devices_match and not context.executing_eagerly() and not contains_indexed_slices): return self._batch_all_reduce(reduce_op, [v[0] for v in value_destination_pairs]) else: if not all_devices_match: logging.log_first_n(logging.WARN, "Efficient batch_reduce is not supported if " "destinations are different.", 10) return [ self.reduce_implementation(reduce_op, t, destinations=v) for t, v in value_destination_pairs ] def _batch_all_reduce(self, reduce_op, per_replica_values): """All-reduce algorithm in a batch.""" dense_values, dense_indices, sparse_values, sparse_indices = ( cross_device_utils.split_by_sparsity(per_replica_values)) if dense_values: dense_results = self._do_batch_all_reduce(reduce_op, dense_values) else: dense_results = [] if sparse_values: sparse_results = self._do_batch_all_reduce_sparse(reduce_op, sparse_values) else: sparse_results = [] return cross_device_utils.stitch_values(((dense_results, dense_indices), (sparse_results, sparse_indices))) def _do_batch_all_reduce(self, reduce_op, dense_values): """Run batch all-reduces.""" logging.log_first_n( logging.INFO, "batch_all_reduce: %d all-reduces with algorithm = %s," "num_packs = %d, agg_small_grads_max_bytes = %d and " "agg_small_grads_max_group = %d" % (len(dense_values), self._all_reduce_alg, self._num_packs, self._agg_small_grads_max_bytes, self._agg_small_grads_max_group), 10) destinations = dense_values[0].devices grouped = _group_value_by_device(dense_values) device_grad_packs, tensor_packer = _pack_tensors( grouped, self._num_packs, self._agg_small_grads_max_bytes, self._agg_small_grads_max_group) # The actual aggregation of the repacked gradients. Note that they are # sharded among different aggregation trees. So it is important to strike # the balance on num_splits. if self._all_reduce_alg == "nccl": # TODO(yuefengz): merge this into the all-reduce library. reduced = cross_device_utils.aggregate_gradients_using_nccl( device_grad_packs) else: # TODO(yuefengz): check that gpu ids in `destinations` are in ascending # order. reduced = ( cross_device_utils.aggregate_gradients_using_hierarchical_copy( destinations, device_grad_packs)) reduced = _unpack_tensors(reduced, tensor_packer) return _ungroup_and_make_mirrored(reduced, dense_values[0], reduce_op) def _do_batch_all_reduce_sparse(self, reduce_op, sparse_values): """Run batch all-reduce for sparse values.""" logging.log_first_n( logging.WARN, "Efficient allreduce is not supported for %d IndexedSlices" % len(sparse_values), 10) # Use `sparse_values` as destinations to do all-reduces. It is effectively # an allgather under the hood but not an efficient one. return self._simple_cross_replica_ops.batch_reduce( reduce_op, zip(sparse_values, sparse_values)) # For compatibility with code using the old name of `AllReduceCrossDeviceOps`. AllReduceCrossTowerOps = AllReduceCrossDeviceOps AllReduceSpecTuple = collections.namedtuple("AllReduceSpecTuple", "alg shards limit") @tf_export("distribute.NcclAllReduce") class NcclAllReduce(AllReduceCrossDeviceOps): """Reduction using NCCL all-reduce.""" def __init__(self, num_packs=1): """NCCL all-reduce implementation of CrossDeviceOps. Before performing all-reduce, tensors will be repacked or aggregated for more efficient cross-device transportation. Args: num_packs: values will be packed in this many splits. `num_packs` should be greater than 0. """ assert num_packs > 0, ( "NCLL all-reduce requires num_packs > 0, but {} is specified".format( num_packs)) super(NcclAllReduce, self).__init__( all_reduce_alg="nccl", num_packs=num_packs) @tf_export("distribute.HierarchicalCopyAllReduce") class HierarchicalCopyAllReduce(AllReduceCrossDeviceOps): """Reduction using hierarchical copy all-reduce. This is a good reduction for configurations like Nvidia DGX-1. """ def __init__(self, num_packs=1): """Hierarchical copy all-reduce implementation of CrossDeviceOps. Before performing all-reduce, tensors will be repacked or aggregated for more efficient cross-device transportation. Args: num_packs: values will be packed in this many splits. `num_packs` should be greater than 0. """ super(HierarchicalCopyAllReduce, self).__init__( all_reduce_alg="hierarchical_copy", num_packs=num_packs) class MultiWorkerAllReduce(AllReduceCrossDeviceOps): """All-reduce algorithms for distributed TensorFlow.""" def __init__(self, worker_devices, num_gpus_per_worker, all_reduce_spec=("pscpu/pscpu", 2, -1), num_packs=0, agg_small_grads_max_bytes=0, agg_small_grads_max_group=10): """Initialize the all-reduce algorithm. Args: worker_devices: a list of device strings for workers participating in all-reduce. num_gpus_per_worker: number of GPU devices per worker. all_reduce_spec: a tuple or a named tuple or a list of tuples specifying the all-reduce algorithm. 1. The first element of a tuple is the name of the all-reduce algorithm. Valid algorithm names are: "nccl", "nccl/xring", "nccl/rechd", "nccl/pscpu", "xring", "pscpu", "psgpu", "pscpu/pscpu". Algorithms with a "/" are hierarchical, so two all-reduces are executed, the first one aggregates tensors within a worker and the second aggregates across workers. 2. The second element of a tuple is the number of shards when doing all-reduce. Let's say its values is M, each tensor after packing will be split into M shards and then M parallel all-reduces would be performed before finally they are concatenated backed into a complete tensor. 3. The third element is the maximum size of tensors that will be applicable for the algorithm specified by the first element. For example, if all_reduce_spec=[("nccl", 2, 1024), ("pscpu/pscpu", 2, -1)], tensors with size not larger than 1024 bytes will be applied a 2-shard "nccl" all-reduce and other tensors will be applied a 2-shard "pscpu/pscpu" algorithm. The third elements should be in increasing order across tuples and end with -1 which indicates infinity. num_packs: see AllReduceCrossDeviceOps. agg_small_grads_max_bytes: see AllReduceCrossDeviceOps. agg_small_grads_max_group: see AllReduceCrossDeviceOps. """ self._worker_devices = worker_devices self._num_gpus_per_worker = num_gpus_per_worker super(MultiWorkerAllReduce, self).__init__( num_packs=num_packs, agg_small_grads_max_bytes=agg_small_grads_max_bytes, agg_small_grads_max_group=agg_small_grads_max_group) def validate_and_complete_spec(spec): """Validate and complete the all-reduce spec.""" # TODO(yuefengz): support namedtuple. if not isinstance(spec, tuple): raise ValueError( "A tuple is expected for all-reduce spec: %r" % all_reduce_spec) if not spec or len(spec) > 3: raise ValueError( "Too many elements in the all-reduce spec tuple: %r" % spec) if len(spec) == 1: return AllReduceSpecTuple(spec[0], 1, -1) elif len(spec) == 2: return AllReduceSpecTuple(spec[0], spec[1], -1) else: return AllReduceSpecTuple(*spec) self._all_reduce_spec = [] if isinstance(all_reduce_spec, six.string_types): self._all_reduce_spec.append(AllReduceSpecTuple(all_reduce_spec, 1, -1)) elif isinstance(all_reduce_spec, tuple): self._all_reduce_spec.append(validate_and_complete_spec(all_reduce_spec)) elif isinstance(all_reduce_spec, list): self._all_reduce_spec = [ validate_and_complete_spec(spec) for spec in all_reduce_spec ] def _batch_all_reduce(self, reduce_op, per_replica_values): """All-reduce algorithm in a batch.""" logging.log_first_n( logging.INFO, "Distributed batch_all_reduce: %d all-reduces with " "allreduce_spec = %r, num_packs = %d, agg_small_grads_max_bytes = %d, " "and agg_small_grads_max_group = %d" % (len(per_replica_values), self._all_reduce_spec, self._num_packs, self._agg_small_grads_max_bytes, self._agg_small_grads_max_group), 10) device_grads = _group_value_by_device(per_replica_values) # The all-reduce library requires fully defined shapes. # TODO(yuefengz): when tensor sharding is not needed, static shapes are not # required as well. for device_grad in device_grads: for grad, _ in device_grad: if not grad.shape.is_fully_defined(): raise ValueError("Shape is unknown for node %r" % grad) remaining_grads = device_grads aggregated_grads = [] for spec_tuple in self._all_reduce_spec: if spec_tuple.limit < 0: this_grads = remaining_grads remaining_grads = [] else: (this_grads, remaining_grads) = cross_device_utils.split_grads_by_size( spec_tuple.limit, remaining_grads) if this_grads: device_grad_packs, tensor_packer = _pack_tensors( this_grads, self._num_packs, self._agg_small_grads_max_bytes, self._agg_small_grads_max_group) range_agg_grads = cross_device_utils.sum_gradients_all_reduce( self._worker_devices, device_grad_packs, len(self._worker_devices), spec_tuple.alg, spec_tuple.shards, range(self._num_gpus_per_worker)) range_agg_grads = _unpack_tensors(range_agg_grads, tensor_packer) if not aggregated_grads: aggregated_grads = range_agg_grads else: assert len(aggregated_grads) == len(range_agg_grads) for i in range(len(aggregated_grads)): aggregated_grads[i] += range_agg_grads[i] assert not remaining_grads return _ungroup_and_make_mirrored(aggregated_grads, per_replica_values[0], reduce_op) @tf_export("distribute.experimental.CollectiveCommunication") class CollectiveCommunication(enum.Enum): """Communication choices for CollectiveOps. * `AUTO`: Default to runtime's automatic choices. * `RING`: TensorFlow's ring algorithms for all-reduce and all-gather. * `NCCL`: Use ncclAllReduce for all-reduce, and ring algorithms for all-gather. TODO(ayushd): add ncclAllGather implementation. """ AUTO = "AUTO" RING = "RING" NCCL = "NCCL" # TODO(yuefengz): support in-graph collective all-reduce. class CollectiveAllReduce(CrossDeviceOps): """All-reduce cross device ops using collective ops. In the between-graph replicated training, it will still do all-reduces across all workers and then put results on the right destinations. """ def __init__(self, num_workers=1, num_gpus_per_worker=0, all_reduce_merge_scope=32, collective_keys=None): """Initializes the object. Args: num_workers: number of workers in the between-graph replicated training. num_gpus_per_worker: number of GPUs per worker. all_reduce_merge_scope: size of groups into which to partition consecutive gradients grouped under a common 'allreduce' name scope. This is useful for some optimization of collective ops. collective_keys: an optional CollectiveKey object. """ self._num_workers = num_workers self._num_gpus_per_worker = num_gpus_per_worker self._all_reduce_merge_scope = all_reduce_merge_scope self._collective_keys = (collective_keys or cross_device_utils.CollectiveKeys()) super(CollectiveAllReduce, self).__init__() def reduce_implementation(self, reduce_op, per_replica_value, destinations): all_reduced = self._batch_all_reduce(reduce_op, [per_replica_value])[0] device_map, logical_device = get_device_map_from(destinations) if (all_reduced.device_map is device_map and all_reduced.logical_device == logical_device): return all_reduced devices = device_map.logical_to_actual_devices(logical_device) index = [] for d in devices: if d in all_reduced.devices: index.append(all_reduced.get(d)) else: # TODO(josh11b): Once we add support for model parallelism, get the # copy from the corresponding replica instead of the primary. with ops.control_dependencies(all_reduced.values), ops.device(d): index.append(array_ops.identity(all_reduced.primary)) return value_lib.Mirrored(device_map, index, logical_device) def batch_reduce_implementation(self, reduce_op, value_destination_pairs): all_devices_match = _all_devices_match(value_destination_pairs) if all_devices_match: return self._batch_all_reduce(reduce_op, [v[0] for v in value_destination_pairs]) else: if not all_devices_match: logging.log_first_n( logging.WARN, "Efficient batch_reduce is not supported if " "destinations are different.", 10) return [ self.reduce_implementation(reduce_op, t, destinations=v) for t, v in value_destination_pairs ] def _make_gradient_chunks(self, per_replica_values, all_reduce_merge_scope): """Make `per_replica_values` into chunks.""" grouped_by_device = _group_value_by_device(per_replica_values) grouped_by_var = list(zip(*grouped_by_device)) # grouped_by_var is grouped by variables and takes the following format: # [((grad0_gpu0, v0_gpu0), (grad0_gpu1, v0_gpu1), (grad0_gpu2, v0_gpu2) ..), # ((grad1_gpu0, v1_gpu0), (grad1_gpu1, v1_gpu1), (grad1_gpu0, v1_gpu2) ..), # ((grad2_gpu0, v2_gpu0), (grad2_gpu1, v2_gpu1), (grad2_gpu0, v2_gpu2) ..), # ... # ] chunked_gv = [ grouped_by_var[x:x + all_reduce_merge_scope] for x in range(0, len(grouped_by_var), all_reduce_merge_scope) ] return chunked_gv def _batch_all_reduce(self, reduce_op, per_replica_values): """All reduce algorithm in a batch.""" logging.log_first_n( logging.INFO, "Collective batch_all_reduce: %d all-reduces, " "num_workers = %d" % (len(per_replica_values), self._num_workers), 10) dense_values, dense_indices, sparse_values, sparse_indices = ( cross_device_utils.split_by_sparsity(per_replica_values)) if dense_values: dense_results = self._do_batch_all_reduce_dense(reduce_op, dense_values) else: dense_results = [] if sparse_values: sparse_results = self._do_batch_all_reduce_sparse(reduce_op, sparse_values) else: sparse_results = [] return cross_device_utils.stitch_values(((dense_results, dense_indices), (sparse_results, sparse_indices))) def _do_batch_all_reduce_dense(self, reduce_op, per_replica_values): """All-reduce across all workers in a batch.""" logging.log_first_n( logging.INFO, "Collective batch_all_reduce: %d all-reduces, " "num_workers = %d" % (len(per_replica_values), self._num_workers), 10) chunked_gv = self._make_gradient_chunks(per_replica_values, self._all_reduce_merge_scope) reduced_gv_list = [] for chunk in chunked_gv: with ops.name_scope("allreduce"): for grad_and_vars in chunk: # Gradients for the same variable but from different devices. scaled_grads = [g for g, _ in grad_and_vars] collective_reduced = cross_device_utils.build_collective_reduce( scaled_grads, self._num_workers, self._collective_keys, "Add", "Id") result = [] for (_, v), g in zip(grad_and_vars, collective_reduced): result.append([g, v]) reduced_gv_list.append(result) new_device_grads = [list(x) for x in zip(*reduced_gv_list)] return _ungroup_and_make_mirrored( new_device_grads, per_replica_values[0], reduce_op, num_between_graph_workers=self._num_workers) def _do_batch_all_reduce_sparse(self, reduce_op, per_replica_values): """All-reduce IndexedSlices across all workers in a batch.""" logging.log_first_n( logging.INFO, "Collective batch_all_reduce for IndexedSlices: " "%d all-reduces, num_workers = %d" % (len(per_replica_values), self._num_workers), 10) chunked_gv = self._make_gradient_chunks(per_replica_values, self._all_reduce_merge_scope) reduced_gv_list = [] for chunk in chunked_gv: with ops.name_scope("allreduce"): for grad_and_vars in chunk: # Gradients for the same variable but from different devices. scaled_grads = [g for g, _ in grad_and_vars] values = [g.values for g in scaled_grads] indices = [g.indices for g in scaled_grads] assert len(values) == len(indices) # Build two separate allgathers, one for values, the other one for # indices. gathered_values = cross_device_utils.build_collective_gather( values, self._num_workers, self._collective_keys) gathered_indices = cross_device_utils.build_collective_gather( indices, self._num_workers, self._collective_keys) assert len(gathered_values) == len(gathered_indices) collective_reduced = [] for i in range(len(values)): reduced = ops.IndexedSlices( gathered_values[i], gathered_indices[i], dense_shape=scaled_grads[i].dense_shape) collective_reduced.append(reduced) result = [] for (_, v), g in zip(grad_and_vars, collective_reduced): result.append([g, v]) reduced_gv_list.append(result) new_device_grads = [list(x) for x in zip(*reduced_gv_list)] return _ungroup_and_make_mirrored( new_device_grads, per_replica_values[0], reduce_op, num_between_graph_workers=self._num_workers) _dgx1_links = [[1, 2, 3, 4], [0, 2, 3, 5], [0, 1, 3, 6], [0, 1, 2, 7], [0, 5, 6, 7], [1, 4, 6, 7], [2, 4, 5, 7], [3, 4, 5, 6]] def _has_dgx1_like_links(gpu_links): if not gpu_links: return False # TODO(yuefengz): figure out the right topology for hierarchical copy if # number of gpus are less than 8. if len(gpu_links) < 8: return False for i, (gpu_link, dgx1_link) in enumerate(zip(gpu_links, _dgx1_links)): if (set(gpu_link) != set(dgx1_link) and set(gpu_link) != set(dgx1_link + [i])): return False return True def _choose_all_reduce_algorithm(device_links): if _has_dgx1_like_links(device_links): return HierarchicalCopyAllReduce(num_packs=len(device_links)) else: return NcclAllReduce(num_packs=1) def choose_the_best(devices, session_config=None): """Find the best subclass of CrossDeviceOps given a session config. Args: devices: a list of devices passed to `tf.distribute.Strategy`. session_config: a `tf.ConfigProto` or `None`. If `None`, it will make decision based on all local devices. Returns: A subclass of `CrossDeviceOps`. """ requested_devices = set([device_util.canonicalize(d) for d in devices]) machine_devices = device_lib.list_local_devices(session_config=session_config) using_devices = [] for d in machine_devices: if device_util.canonicalize(d.name) in requested_devices: using_devices.append(d) else: logging.info( "Device is available but not used by distribute strategy: %s", d.name) if len(using_devices) != len(requested_devices): logging.warning("Not all devices in `tf.distribute.Strategy` are visible " "to TensorFlow.") return ReductionToOneDevice() if any(d.device_type.lower() != "gpu" for d in using_devices): logging.warning("Not all devices in `tf.distribute.Strategy` are visible " "to TensorFlow.") return ReductionToOneDevice() device_links = [[] for _ in range(len(using_devices))] for i, device in enumerate(using_devices): for link in device.locality.links.link: device_links[i].append(link.device_id) return _choose_all_reduce_algorithm(device_links)
the-stack_0_11162
import numpy as np from .base_actuator import Actuator from spike_swarm_sim.register import actuator_registry @actuator_registry(name='wheel_actuator') class WheelActuator(Actuator): """ Robot wheel actuator using a differential drive system. """ def __init__(self, *args, robot_radius=0.11, dt=1., min_thresh=0.0, **kwargs): super(WheelActuator, self).__init__(*args, **kwargs) self.robot_radius = robot_radius self.dt = dt self.delta_pos = np.zeros(2) self.delta_theta = 0 self.min_thresh = min_thresh def step(self, v_motors ): if isinstance(v_motors, list): v_motors = np.array(v_motors) current_pos = self.actuator_owner.position current_theta = self.actuator_owner.orientation v_motors[np.abs(v_motors) < self.min_thresh] = 0.0 delta_t = self.dt R = .5 * self.robot_radius * v_motors.sum() / (v_motors[0] - v_motors[1] + 1e-3) w = (v_motors[0] - v_motors[1] + 1e-3) / (self.robot_radius * .5) icc = current_pos + R * np.array([-np.sin(current_theta), np.cos(current_theta)]) transf_mat = lambda x: np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]]) self.delta_pos = transf_mat(w * delta_t).dot(current_pos - icc) + icc - current_pos self.delta_theta = w * delta_t new_pos = self.actuator_owner.position + self.delta_pos.astype(float) print(self.actuator_owner.position, new_pos) self.actuator_owner.position = new_pos self.actuator_owner.orientation = self.actuator_owner.orientation + self.delta_theta self.actuator_owner.orientation = self.actuator_owner.orientation % (2 * np.pi) self.delta_pos = np.zeros(2) self.delta_theta = 0.0
the-stack_0_11164
""" #Trains a ResNet on the CIFAR10 dataset. """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.resnet import ResNet50, ResNet101, ResNet152 from keras import models, layers, optimizers from datetime import datetime import tensorflow as tf import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal parser = argparse.ArgumentParser(description='Tensorflow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num # Training parameters batch_size = 256 args_lr = 0.001 args_model = 'resnet50' epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/checkpoint_max_pwr/' + job_name + '*' total_epochs = 4 starting_epoch = 0 # first step is to update the PID pid_dict = {} with open('pid_lock.json', 'r') as fp: pid_dict = json.load(fp) pid_dict[job_name] = os.getpid() json_file = json.dumps(pid_dict) with open('pid_lock.json', 'w') as fp: fp.write(json_file) os.rename('pid_lock.json', 'pid.json') if args.resume: save_file = glob.glob(save_files)[0] # epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0]) starting_epoch = int(save_file.split('/')[4].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True n = 3 # Model name, depth and version model_type = args.tc #'P100_resnet50_he_256_1' # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if args.resume: print('resume from checkpoint') model = keras.models.load_model(save_file) else: print('train from start') model = models.Sequential() if '50' in args_model: base_model = ResNet50(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '101' in args_model: base_model = ResNet101(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '152' in args_model: base_model = ResNet152(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) #base_model.summary() #pdb.set_trace() #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) model.add(base_model) model.add(layers.Flatten()) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(128, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(64, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) model.add(layers.Dense(10, activation='softmax'))#, kernel_initializer='he_uniform')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) #model.summary() print(model_type) #pdb.set_trace() current_epoch = 0 ################### connects interrupt signal to the process ##################### def terminateProcess(signalNumber, frame): # first record the wasted epoch time global epoch_begin_time if epoch_begin_time == 0: epoch_waste_time = 0 else: epoch_waste_time = int(time.time() - epoch_begin_time) epoch_waste_dict = {} with open('epoch_waste.json', 'r') as fp: epoch_waste_dict = json.load(fp) epoch_waste_dict[job_name] += epoch_waste_time json_file3 = json.dumps(epoch_waste_dict) with open('epoch_waste.json', 'w') as fp: fp.write(json_file3) print('checkpointing the model triggered by kill -15 signal') # delete whatever checkpoint that already exists for f in glob.glob(save_files): os.remove(f) model.save('/scratch/li.baol/checkpoint_max_pwr/' + job_name + '_' + str(current_epoch) + '.h5') print ('(SIGTERM) terminating the process') checkpoint_dict = {} with open('checkpoint.json', 'r') as fp: checkpoint_dict = json.load(fp) checkpoint_dict[job_name] = 1 json_file3 = json.dumps(checkpoint_dict) with open('checkpoint.json', 'w') as fp: fp.write(json_file3) sys.exit() signal.signal(signal.SIGTERM, terminateProcess) ################################################################################# logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch') class PrintEpoch(keras.callbacks.Callback): def on_epoch_begin(self, epoch, logs=None): global current_epoch #remaining_epochs = epochs - epoch current_epoch = epoch print('current epoch ' + str(current_epoch)) global epoch_begin_time epoch_begin_time = time.time() my_callback = PrintEpoch() callbacks = [tensorboard_callback, my_callback] #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback] # Run training # send signal to indicate checkpoint is qualified message = job_name + ' ckpt_qual' send_signal.send(args.node, 10002, message) model.fit(x_train, y_train, batch_size=batch_size, epochs=round(total_epochs/2), validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, initial_epoch=starting_epoch, verbose=1 ) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # send signal to indicate job has finished message = job_name + ' finish' send_signal.send(args.node, 10002, message)
the-stack_0_11165
import socket server = socket.socket() server.bind(('127.0.0.1', 5000)) server.listen(5) while True: client, (client_host, client_port) = server.accept() client.recv(4096) response_type = 'HTTP/1.1 200 OK\n' headers = 'Content-Type: text/html\n\n' with open('task_3/index.html', 'r') as f: body = f.read() response = response_type + headers + body client.send(response.encode('utf-8')) client.close()
the-stack_0_11167
from operator import itemgetter from nltk.corpus import wordnet from nltk.stem import WordNetLemmatizer from nltk.stem.lancaster import LancasterStemmer from players.codemaster import Codemaster class AICodemaster(Codemaster): def __init__(self, brown_ic=None, glove_vecs=None, word_vectors=None): super().__init__() self.brown_ic = brown_ic self.glove_vecs = glove_vecs self.word_vectors = word_vectors self.wordnet_lemmatizer = WordNetLemmatizer() self.lancaster_stemmer = LancasterStemmer() self.cm_wordlist = [] with open('players/cm_wordlist.txt') as infile: for line in infile: self.cm_wordlist.append(line.rstrip()) self.syns = [] for word in self.cm_wordlist: for synset_in_cmwordlist in wordnet.synsets(word): self.syns.append(synset_in_cmwordlist) def set_game_state(self, words, maps): self.words = words self.maps = maps def get_clue(self): lin_results = [] count = 0 red_words = [] bad_words = [] for i in range(25): if self.words[i][0] == '*': continue elif self.maps[i] == "Assassin" or self.maps[i] == "Blue" or self.maps[i] == "Civilian": bad_words.append(self.words[i].lower()) else: red_words.append(self.words[i].lower()) print("RED:\t", red_words) for red_word in red_words: for synset_in_cmwordlist in self.syns: lin_clue = 0 for red_synset in wordnet.synsets(red_word): try: # only if the two compared words have the same part of speech lin_score = synset_in_cmwordlist.lin_similarity(red_synset, self.brown_ic) except : continue if lin_score: if not self.arr_not_in_word(synset_in_cmwordlist.lemma_names()[0], red_words + bad_words): continue lin_results.append((lin_score, synset_in_cmwordlist)) if lin_score > lin_clue: lin_clue = lin_score lin_results = list(reversed(sorted(lin_results, key=itemgetter(0)))) return [lin_results[0][1].lemma_names()[0], 1] def arr_not_in_word(self, word, arr): if word in arr: return False lemm = self.wordnet_lemmatizer.lemmatize(word) lancas = self.lancaster_stemmer.stem(word) for i in arr: if i == lemm or i == lancas: return False if i.find(word) != -1: return False if word.find(i) != -1: return False return True
the-stack_0_11168
# Imports for flask and sql from flask import Flask, render_template, url_for, request, redirect, flash from flask_sqlalchemy import SQLAlchemy from sqlalchemy import func # Imports for plots import plotly.express as px import pandas as pd import numpy as np import json import plotly # Other imports from datetime import datetime, date import re # Create flask app object and hooking up database app = Flask(__name__) app.config.from_pyfile('config.cfg') db = SQLAlchemy(app) # This class is responsible for a table 'ledger' in database # In this table are stored information about user operations class Ledger(db.Model): id = db.Column(db.Integer, primary_key=True) amount = db.Column(db.Float(precision=2)) # The amount of the operation date = db.Column(db.Date) # The date of the operation description = db.Column(db.String(200)) # The description of the operation category = db.Column(db.String(50)) # The category of the operation - 'Deposit' for each deposit, and custom for others def get_current_date(): """ Function return current date as datetime. :return: datetime in format YYYY-MM-DD """ today = date.today() today = today.strftime("%Y-%m-%d") return today def get_balance(): """ Function return current user balance. :return: string looks like float with two decimal places """ if len(Ledger.query.all()) == 0: # This part is responsible for return 0 with two decimal places return '0.00' else: # Statement below: # - get column amount from ledger # - sums this column # - return only number(without parentheses) # - return number rounded to two decimal places return "{:.2f}".format(db.session.query(func.sum(Ledger.amount)).all()[0][0]) @app.route('/') def home(): # Home view displayed when user enter to the website db.create_all() # Create table in database based on Ledger class return render_template('home.html', # Render 'home.html' template nav_active='home', # This param is responsible for activation right overlap in menu balance=get_balance()) # Menu keeps showing users balance @app.route('/add_deposit', methods=['GET', 'POST']) def add_deposit(): # This page allows add deposit to ledger # When method is GET, render template with form if request.method == 'GET': return render_template('add_deposit.html', # Render template 'add_deposit.html' nav_active='add', # Highlighted tab in menu balance=get_balance(), # Menu keeps showing users balance today=get_current_date()) # Current date is set in form in input date # If method is POST, get values from form and save it in table else: # Default value of dollars - when user doesn't type value dollars = 0 # If value is typed in form, get it and save to 'dollars' var if 'ad-amount-dollars' in request.form: dollars = request.form['ad-amount-dollars'] # Defaul value of cents - when user doesn't type value cents = 0 # If value is typed in form, get it and save to 'cents' var if 'ad-amount-cents' in request.form: cents = request.form['ad-amount-cents'] # Check if value from form is not empty if cents == '': # If value is empty, set value = 0 cents = 0 # If value is <10 we have to save eg. 03 insted of 3 # So we have to save cents to string with 0 before char if int(cents) < 10: cents = '0' + str(cents) # Get date from form and save it as datetime to 'date' var if 'ad-date' in request.form: date = request.form['ad-date'] date = datetime.strptime(date, '%Y-%m-%d') # Default description - get from form and save to 'desc' var desc = '' if 'ad-description' in request.form: desc = request.form['ad-description'] # Concat dollars and cents into amount # And change amount to float dtype amount = str(dollars) + "." + str(cents) amount = float(amount) # Create object Ledger with data from form added_row = Ledger(amount=amount, description=desc, date=date, category='Deposit') # This category is default for each deposit # Add row above to database db.session.add(added_row) db.session.commit() # Display flash about adding a row flash("Row has been added") # Redirect to display ledger return redirect(url_for('ledger')) @app.route('/add_withdrawal', methods=['GET', 'POST']) def add_withdrawal(): # This page allows to add withdrawal to ledger # When method is GET, render template with form if request.method == 'GET': return render_template('add_withdrawal.html', # Render template 'add_withdrawal.html' nav_active='add', # Highlighted tab in menu balance=get_balance(), # Menu keeps showing users balance today=get_current_date()) # Current date is set in form in input date # If method is POST, get values from form and save it in table else: # Default value of dollars - when user doesn't type value dollars = 0 # If value is typed in form, get it and save to 'dollars' var if 'aw-amount-dollars' in request.form: dollars = request.form['aw-amount-dollars'] # Defaul value of cents - when user doesn't type value cents = 0 # If value is typed in form, get it and save to 'cents' var if 'aw-amount-cents' in request.form: cents = request.form['aw-amount-cents'] # Check if value from form is not empty if cents == '': # If value is empty, set value = 0 cents = 0 # If value is <10 we have to save eg. 03 insted of 3 # So we have to save cents to string with 0 before char if int(cents) < 10: cents = '0' + str(cents) # Get date from form and save it as datetime to 'date' var if 'aw-date' in request.form: date = request.form['aw-date'] date = datetime.strptime(date, '%Y-%m-%d') # Default description desc = '' # If description is in form, get from form and save to 'desc' var if 'aw-description' in request.form: desc = request.form['aw-description'] # Default category category = 'Unsigned' # If category is in form, get from form and save to 'category' var if 'aw-category' in request.form: category = request.form['aw-category'] # Concat dollars and cents into amount # And change amount to float dtype amount = '-' + str(dollars) + "." + str(cents) amount = float(amount) # Create object Ledger with data from form added_row = Ledger(amount=amount, description=desc, date=date, category=category) # Add row above to database db.session.add(added_row) db.session.commit() # Display flash about adding a row flash("Row has been added") # Redirect to display ledger return redirect(url_for('ledger')) @app.route('/ledger', methods=['GET', 'POST']) def ledger(): # When method GET this page display ledger if request.method == 'GET': # Get all rows from table ordered by date and save it to 'full_ledger' # In 'ledger.html' is counted post-transactional balance after each of operations ordered by date full_ledger = Ledger.query.order_by(Ledger.date).all() # Get length ledger - if it is empty, in 'ledger.html' an appropriate text will be displayed ledger_len = len(full_ledger) return render_template('ledger.html', # Render template 'ledger.html' nav_active='ledger', # Highlighted tab in menu full_ledger=full_ledger, # Full ledger to display ledger_len=ledger_len, # Ledger len to check if ledger not empty balance=get_balance()) # Menu keeps showing users balance # When ledger is called with method POST, it will deleted row else: # Button 'delete' in row in ledger call modal # Inside modal there is form with id row to delete # Get value(id row) from this form if 'id_row_to_del' in request.form: id_row_to_del = request.form['id_row_to_del'] # Choose row from database, where id == id from form row_to_del = Ledger.query.filter(Ledger.id == id_row_to_del).first() # Delete row and save changes in database db.session.delete(row_to_del) db.session.commit() # Display flash with information about delete row flash('Row has been deleted') # Redirect to itselft, but with method GET return redirect(url_for('ledger')) @app.route('/edit_row/<int:id_row_to_edit>', methods=['GET', 'POST']) def edit_row(id_row_to_edit): # This page allows to edit deposit and withdrawal if request.method == 'GET': # With method GET, get row from table in database, where id == id sent in URL # Next - load this row into 'row' variable # This row will be used to display values from this row in inputs of form in rendered page row = Ledger.query.filter(Ledger.id == id_row_to_edit).first() # If amount in row is < 0, render edit withdrawal, else - edit deposit if row.amount > 0: return render_template('edit_deposit_row.html', # Render template 'edit_deposit_row.html' nav_active='ledger', # Highlighted tab in menu row=row, # Inputs have values from this row balance=get_balance()) # Menu keeps showing users balance else: return render_template('edit_withdrawal_row.html', # Render template 'edit_withdrawal_row.html' nav_active='ledger', # Highlighted tab in menu row=row, # Inputs have values from this row balance=get_balance()) # Menu keeps showing users balance # With method POST, values are getting from form and save in table in database else: # Default value of dollars - when user delete previous value and send form with empty field dollars = 0 # If value is typed in form, get it and save to 'dollars' var if 'edit-dollars' in request.form: dollars = request.form['edit-dollars'] # Default value of cents cents = 0 # If value is typed in form, get it and save to 'cents' var if 'edit-cents' in request.form: cents = request.form['edit-cents'] # Check if value from form is not empty if cents == '': # If value is empty, set value = 0 cents = 0 # If value is <10 we have to save eg. 03 insted of 3 # So we have to save cents to string with 0 before char if int(cents) < 10: cents = '0' + str(cents) # Get value from date input if 'edit-date' in request.form: date = request.form['edit-date'] date = datetime.strptime(date, '%Y-%m-%d') # Default description desc = '' # If description is in form, get from form and save to 'desc' var if 'edit-description' in request.form: desc = request.form['edit-description'] # If 'edit-category' is in form, that means the form is for withdrawal # Else - form is about deposit if 'edit-category' in request.form: # If withdrawal - save category and add '-' before value of amount category = request.form['edit-category'] amount = '-' + str(dollars) + "." + str(cents) else: # If deposit - save 'Deposit' category and amount without '-' category = 'Deposit' amount = str(dollars) + "." + str(cents) # Change amount into float amount = float(amount) # When we have information from form, we can change them in database # Get value from table in database, where id row == id to edit(from URL) row = Ledger.query.filter(Ledger.id == id_row_to_edit).first() # Save information from form into variables from row row.amount = amount row.description = desc row.date = date row.category = category # Save changes in database db.session.commit() # Print information about edition flash("Row has been edited") # Redirect to ledger return redirect(url_for('ledger')) @app.route('/analysis') def analysis(): # This page display analysis and visualisations based on rows from ledger # Get full ledger ordered by date full_ledger = Ledger.query.order_by(Ledger.date).all() # Save ledger into dataframe(to analysis) ledger_df = pd.DataFrame({ # Simply values from these rows 'date': [x.date for x in full_ledger], 'amount': [x.amount for x in full_ledger], 'category': [x.category for x in full_ledger] }) # Add new column into data frame about post transaction balance # This column will be visualise ledger_df['balance'] = np.cumsum(ledger_df['amount']) # First, we get number of rows in dataframe # If there is not enough rows, plot not display or display ugly # So we will display information insted of plot len_line = ledger_df.shape[0] # Create line plot for balance fig_line = px.line(ledger_df, # Data from main ledger dataframe x='date', # Date as X axis y='balance') # Balance as Y axis # We introduce some cosmetic changes to plot fig_line.update_layout(xaxis_title='Date', # X axis title yaxis_title='Balance', # Y axis title title='Balance of your ledger') # Plot title # We have to encode plot into json to send it to view plot_json_line = json.dumps(fig_line, cls=plotly.utils.PlotlyJSONEncoder) # To create pie plot of withdrawals by category we have to rebuild dataframe # First - get only rows with category other than deposit ledger_df_pie = ledger_df[ledger_df['category'] != 'Deposit'] # Next step is save amount from withdrawal(default negative values) as absolute values ledger_df_pie['amount'] = ledger_df_pie['amount'].abs() # As with line plot - we need some rows to display plot len_pie = ledger_df_pie.shape[0] # Now we can create pie plot fig_pie = px.pie(ledger_df_pie, values='amount', names='category', title='Expenses by category') # Now we can encode this plot into json plot_json_pie = json.dumps(fig_pie, cls=plotly.utils.PlotlyJSONEncoder) # When we have everything, we can render template return render_template( 'analysis.html', nav_active='analysis', # Highlighted tab in menu balance=get_balance(), # Menu keeps showing users balance len_line=len_line, # Length of full ledger(to line plot) plot_json_line=plot_json_line, # Line plot len_pie=len_pie, # Length of dataframe with withdrawals plot_json_pie=plot_json_pie, # Pie plot ) @app.route('/about') def about(): # This page show information about project return render_template('about.html', nav_active='about', # Highlighted tab in menu balance=get_balance()) # Menu keeps showing users balance if __name__ == '__main__': app.run()
the-stack_0_11170
from collections.abc import Mapping, Iterable from ctypes import c_int, c_int32, c_double, c_char_p, POINTER from weakref import WeakValueDictionary import numpy as np from numpy.ctypeslib import as_array from openmc.exceptions import AllocationError, InvalidIDError from . import _dll from .core import _FortranObjectWithID from .error import _error_handler from .material import Material __all__ = ['Cell', 'cells'] # Cell functions _dll.openmc_extend_cells.argtypes = [c_int32, POINTER(c_int32), POINTER(c_int32)] _dll.openmc_extend_cells.restype = c_int _dll.openmc_extend_cells.errcheck = _error_handler _dll.openmc_cell_get_id.argtypes = [c_int32, POINTER(c_int32)] _dll.openmc_cell_get_id.restype = c_int _dll.openmc_cell_get_id.errcheck = _error_handler _dll.openmc_cell_get_fill.argtypes = [ c_int32, POINTER(c_int), POINTER(POINTER(c_int32)), POINTER(c_int32)] _dll.openmc_cell_get_fill.restype = c_int _dll.openmc_cell_get_fill.errcheck = _error_handler _dll.openmc_cell_set_fill.argtypes = [ c_int32, c_int, c_int32, POINTER(c_int32)] _dll.openmc_cell_set_fill.restype = c_int _dll.openmc_cell_set_fill.errcheck = _error_handler _dll.openmc_cell_set_id.argtypes = [c_int32, c_int32] _dll.openmc_cell_set_id.restype = c_int _dll.openmc_cell_set_id.errcheck = _error_handler _dll.openmc_cell_set_temperature.argtypes = [ c_int32, c_double, POINTER(c_int32)] _dll.openmc_cell_set_temperature.restype = c_int _dll.openmc_cell_set_temperature.errcheck = _error_handler _dll.openmc_get_cell_index.argtypes = [c_int32, POINTER(c_int32)] _dll.openmc_get_cell_index.restype = c_int _dll.openmc_get_cell_index.errcheck = _error_handler class Cell(_FortranObjectWithID): """Cell stored internally. This class exposes a cell that is stored internally in the OpenMC library. To obtain a view of a cell with a given ID, use the :data:`openmc.capi.cells` mapping. Parameters ---------- index : int Index in the `cells` array. Attributes ---------- id : int ID of the cell """ __instances = WeakValueDictionary() def __new__(cls, uid=None, new=True, index=None): mapping = cells if index is None: if new: # Determine ID to assign if uid is None: uid = max(mapping, default=0) + 1 else: if uid in mapping: raise AllocationError('A cell with ID={} has already ' 'been allocated.'.format(uid)) index = c_int32() _dll.openmc_extend_cells(1, index, None) index = index.value else: index = mapping[uid]._index if index not in cls.__instances: instance = super().__new__(cls) instance._index = index if uid is not None: instance.id = uid cls.__instances[index] = instance return cls.__instances[index] @property def id(self): cell_id = c_int32() _dll.openmc_cell_get_id(self._index, cell_id) return cell_id.value @id.setter def id(self, cell_id): _dll.openmc_cell_set_id(self._index, cell_id) @property def fill(self): fill_type = c_int() indices = POINTER(c_int32)() n = c_int32() _dll.openmc_cell_get_fill(self._index, fill_type, indices, n) if fill_type.value == 1: if n.value > 1: #TODO: off-by-one return [Material(index=i+1 if i >= 0 else i) for i in indices[:n.value]] else: #TODO: off-by-one index = indices[0] + 1 if indices[0] >= 0 else indices[0] return Material(index=index) else: raise NotImplementedError @fill.setter def fill(self, fill): if isinstance(fill, Iterable): n = len(fill) indices = (c_int32*n)(*(m._index if m is not None else -1 for m in fill)) _dll.openmc_cell_set_fill(self._index, 1, n, indices) elif isinstance(fill, Material): indices = (c_int32*1)(fill._index) _dll.openmc_cell_set_fill(self._index, 1, 1, indices) elif fill is None: indices = (c_int32*1)(-1) _dll.openmc_cell_set_fill(self._index, 1, 1, indices) def set_temperature(self, T, instance=None): """Set the temperature of a cell Parameters ---------- T : float Temperature in K instance : int or None Which instance of the cell """ _dll.openmc_cell_set_temperature(self._index, T, c_int32(instance)) class _CellMapping(Mapping): def __getitem__(self, key): index = c_int32() try: _dll.openmc_get_cell_index(key, index) except (AllocationError, InvalidIDError) as e: # __contains__ expects a KeyError to work correctly raise KeyError(str(e)) return Cell(index=index.value) def __iter__(self): for i in range(len(self)): yield Cell(index=i + 1).id def __len__(self): return c_int32.in_dll(_dll, 'n_cells').value def __repr__(self): return repr(dict(self)) cells = _CellMapping()
the-stack_0_11171
from django.contrib import admin from recipes.models import Ingredient, IngredientUnitMeasure, \ IngredientFamily, IngredientPhoto, \ RecipeType, RecipeDifficulty @admin.register(IngredientUnitMeasure) class IngredientUnitMeasureAdmin(admin.ModelAdmin): list_display = ['name', 'label'] actions_on_bottom = True @admin.register(IngredientFamily) class IngredientFamilyAdmin(admin.ModelAdmin): list_display = ['name'] actions_on_bottom = True @admin.register(RecipeType) class RecipeTypeAdmin(admin.ModelAdmin): list_display = ['label'] actions_on_bottom = True @admin.register(RecipeDifficulty) class RecipeDifficultyAdmin(admin.ModelAdmin): list_display = ['label', 'level'] ordering = ['level'] actions_on_bottom = True @admin.register(Ingredient) class IngredientAdmin(admin.ModelAdmin): list_display = ['name', 'family'] # custom tabular inline for many to many relationship class IngredientUnitMeasureInline(admin.TabularInline): model = Ingredient.unit_measure.through extra = 1 class IngredientPhotoInline(admin.StackedInline): model = IngredientPhoto inlines = [ IngredientUnitMeasureInline, IngredientPhotoInline ] # exclude unit_measure because it will be used into inlines exclude = ('unit_measure',)
the-stack_0_11174
# -*- coding: utf-8 -*- from model.group import Group import random import string import os.path import jsonpickle import getopt import sys try: opts, args = getopt.getopt(sys.argv[1:], "n:f:", ["number of groups", "file"]) except getopt.GetoptError as err: getopt.usage() sys.exit(2) n = 5 f = "data/groups.json" for o, a in opts: if o == "-n": n = int(a) elif o == "-f": f = a def random_string(prefix, maxlen): symbols = string.ascii_letters+string.digits + string.punctuation + " "*10 return prefix + "".join((random.choice(symbols) for i in range(random.randrange(maxlen)))) testdata = [Group(name="", header="", footer="")] + [ Group(name=random_string("name", 10), header=random_string("header", 20), footer=random_string("footer", 20)) for i in range(n) ] file = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", f) with open(file, "w") as out: jsonpickle.set_encoder_options("json", indent = 2) out.write(jsonpickle.encode(testdata))
the-stack_0_11175
# This code is part of Qiskit. # # (C) Copyright IBM 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ The SUCCD Ansatz. """ from typing import List, Optional, Tuple import itertools import logging from qiskit.circuit import QuantumCircuit from qiskit_nature import QiskitNatureError from qiskit_nature.converters.second_quantization import QubitConverter from .ucc import UCC from .utils.fermionic_excitation_generator import generate_fermionic_excitations logger = logging.getLogger(__name__) # TODO: figure out how to implement `succ_full`: a variant of this class, which does include also # the symmetrically mirrored double excitations, but assigns the same circuit parameter to them. class SUCCD(UCC): """The SUCCD Ansatz. The SUCCD Ansatz (by default) only contains double excitations. Furthermore, it only considers the set of excitations which is symmetrically invariant with respect to spin-flips of both particles. For more information see also [1]. Note, that this Ansatz can only work for singlet-spin systems. Therefore, the number of alpha and beta electrons must be equal. This is a convenience subclass of the UCC Ansatz. For more information refer to :class:`UCC`. References: [1] https://arxiv.org/abs/1911.10864 """ def __init__( self, qubit_converter: Optional[QubitConverter] = None, num_particles: Optional[Tuple[int, int]] = None, num_spin_orbitals: Optional[int] = None, reps: int = 1, initial_state: Optional[QuantumCircuit] = None, include_singles: Tuple[bool, bool] = (False, False), ): """ Args: qubit_converter: the QubitConverter instance which takes care of mapping a :class:`~.SecondQuantizedOp` to a :class:`PauliSumOp` as well as performing all configured symmetry reductions on it. num_particles: the tuple of the number of alpha- and beta-spin particles. num_spin_orbitals: the number of spin orbitals. reps: The number of times to repeat the evolved operators. initial_state: A `QuantumCircuit` object to prepend to the circuit. include_singles: enables the inclusion of single excitations per spin species. Raises: QiskitNatureError: if the number of alpha and beta electrons is not equal. """ self._validate_num_particles(num_particles) self._include_singles = include_singles super().__init__( qubit_converter=qubit_converter, num_particles=num_particles, num_spin_orbitals=num_spin_orbitals, excitations=self.generate_excitations, alpha_spin=True, beta_spin=True, max_spin_excitation=None, reps=reps, initial_state=initial_state, ) @property def include_singles(self) -> Tuple[bool, bool]: """Whether to include single excitations.""" return self._include_singles @include_singles.setter def include_singles(self, include_singles: Tuple[bool, bool]) -> None: """Sets whether to include single excitations.""" self._include_singles = include_singles def generate_excitations( self, num_spin_orbitals: int, num_particles: Tuple[int, int] ) -> List[Tuple[Tuple[int, ...], Tuple[int, ...]]]: """Generates the excitations for the SUCCD Ansatz. Args: num_spin_orbitals: the number of spin orbitals. num_particles: the number of alpha and beta electrons. Note, these must be identical for this class. Raises: QiskitNatureError: if the number of alpha and beta electrons is not equal. Returns: The list of excitations encoded as tuples of tuples. Each tuple in the list is a pair of tuples. The first tuple contains the occupied spin orbital indices whereas the second one contains the indices of the unoccupied spin orbitals. """ self._validate_num_particles(num_particles) excitations: List[Tuple[Tuple[int, ...], Tuple[int, ...]]] = [] excitations.extend( generate_fermionic_excitations( 1, num_spin_orbitals, num_particles, alpha_spin=self.include_singles[0], beta_spin=self.include_singles[1], ) ) num_electrons = num_particles[0] beta_index_shift = num_spin_orbitals // 2 # generate alpha-spin orbital indices for occupied and unoccupied ones alpha_occ = list(range(num_electrons)) alpha_unocc = list(range(num_electrons, beta_index_shift)) # the Cartesian product of these lists gives all possible single alpha-spin excitations alpha_excitations = list(itertools.product(alpha_occ, alpha_unocc)) logger.debug("Generated list of single alpha excitations: %s", alpha_excitations) # Find all possible double excitations constructed from the list of single excitations. # Note, that we use `combinations_with_replacement` here, in order to also get those double # excitations which excite from the same occupied level twice. We will need those in the # following post-processing step. pool = itertools.combinations_with_replacement(alpha_excitations, 2) for exc in pool: # find the two excitations (Note: SUCCD only works for double excitations!) alpha_exc, second_exc = exc[0], exc[1] # shift the second excitation into the beta-spin orbital index range beta_exc = ( second_exc[0] + beta_index_shift, second_exc[1] + beta_index_shift, ) # add the excitation tuple occ: Tuple[int, ...] unocc: Tuple[int, ...] occ, unocc = zip(alpha_exc, beta_exc) exc_tuple = (occ, unocc) excitations.append(exc_tuple) logger.debug("Added the excitation: %s", exc_tuple) return excitations def _validate_num_particles(self, num_particles): try: assert num_particles[0] == num_particles[1] except AssertionError as exc: raise QiskitNatureError( "The SUCCD Ansatz only works for singlet-spin systems. However, you specified " "differing numbers of alpha and beta electrons:", str(num_particles), ) from exc
the-stack_0_11177
# -*- coding: utf-8 -*- # This scaffolding model makes your app work on Google App Engine too # File is released under public domain and you can use without limitations if request.global_settings.web2py_version < "2.14.1": raise HTTP(500, "Requires web2py 2.13.3 or newer") # if SSL/HTTPS is properly configured and you want all HTTP requests to # be redirected to HTTPS, uncomment the line below: # request.requires_https() # app configuration made easy. Look inside private/appconfig.ini from gluon.contrib.appconfig import AppConfig # once in production, remove reload=True to gain full speed myconf = AppConfig(reload=True) if not request.env.web2py_runtime_gae: # if NOT running on Google App Engine use SQLite or other DB db = DAL(myconf.get('db.uri'), pool_size=myconf.get('db.pool_size'), migrate_enabled=myconf.get('db.migrate'), check_reserved=['all']) # I like to keep the session in the db. session.connect(request, response, db=db) else: # connect to Google BigTable (optional 'google:datastore://namespace') db = DAL('google:datastore+ndb') # store sessions and tickets there session.connect(request, response, db=db) # # or store session in Memcache, Redis, etc. # from gluon.contrib.memdb import MEMDB # from google.appengine.api.memcache import Client # session.connect(request, response, db = MEMDB(Client())) # by default give a view/generic.extension to all actions from localhost # none otherwise. a pattern can be 'controller/function.extension' response.generic_patterns = ['*'] if request.is_local else [] # choose a style for forms response.formstyle = myconf.get('forms.formstyle') # or 'bootstrap3_stacked' or 'bootstrap2' or other response.form_label_separator = myconf.get('forms.separator') or '' # (optional) optimize handling of static files # response.optimize_css = 'concat,minify,inline' # response.optimize_js = 'concat,minify,inline' # (optional) static assets folder versioning # response.static_version = '0.0.0' # Here is sample code if you need for # - email capabilities # - authentication (registration, login, logout, ... ) # - authorization (role based authorization) # - services (xml, csv, json, xmlrpc, jsonrpc, amf, rss) # - old style crud actions # (more options discussed in gluon/tools.py) from gluon.tools import Auth, Service, PluginManager # host names must be a list of allowed host names (glob syntax allowed) auth = Auth(db, host_names=myconf.get('host.names')) service = Service() plugins = PluginManager() # create all tables needed by auth if not custom tables auth.define_tables(username=False, signature=False) # configure email mail = auth.settings.mailer mail.settings.server = 'logging' if request.is_local else myconf.get('smtp.server') mail.settings.sender = myconf.get('smtp.sender') mail.settings.login = myconf.get('smtp.login') mail.settings.tls = myconf.get('smtp.tls') or False mail.settings.ssl = myconf.get('smtp.ssl') or False # configure auth policy auth.settings.registration_requires_verification = False auth.settings.registration_requires_approval = False auth.settings.reset_password_requires_verification = True # More API examples for controllers: # # >>> db.mytable.insert(myfield='value') # >>> rows = db(db.mytable.myfield == 'value').select(db.mytable.ALL) # >>> for row in rows: print row.id, row.myfield ###################### # Logging import logging, sys FORMAT = "%(asctime)s %(levelname)s %(process)s %(thread)s %(funcName)s():%(lineno)d %(message)s" logging.basicConfig(stream=sys.stderr) logger = logging.getLogger(request.application) logger.setLevel(logging.INFO) # Let's log the request. logger.info("====> Request: %r %r" % (request.env.request_method, request.env.path_info))
the-stack_0_11181
# -*- coding: utf-8 -*- # ------------------------------------------------------------------------------ # # Copyright 2018-2019 Fetch.AI Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------------ """This package contains a scaffold of a handler.""" from typing import Optional, cast from aea.protocols.base import Message from aea.skills.base import Handler from packages.fetchai.protocols.register.message import RegisterMessage from packages.fetchai.protocols.signing.message import SigningMessage from packages.fetchai.skills.registration_aw1.dialogues import ( RegisterDialogue, RegisterDialogues, SigningDialogue, SigningDialogues, ) from packages.fetchai.skills.registration_aw1.strategy import Strategy class AW1RegistrationHandler(Handler): """This class handles register messages.""" SUPPORTED_PROTOCOL = RegisterMessage.protocol_id def setup(self) -> None: """ Implement the setup. :return: None """ def handle(self, message: Message) -> None: """ Implement the reaction to an envelope. :param message: the message :return: None """ register_msg = cast(RegisterMessage, message) # recover dialogue register_dialogues = cast(RegisterDialogues, self.context.register_dialogues) register_dialogue = cast( Optional[RegisterDialogue], register_dialogues.update(register_msg) ) if register_dialogue is None: self._handle_unidentified_dialogue(register_msg) return # handle message if register_msg.performative is RegisterMessage.Performative.SUCCESS: self._handle_success(register_msg, register_dialogue) elif register_msg.performative is RegisterMessage.Performative.ERROR: self._handle_error(register_msg, register_dialogue) else: self._handle_invalid(register_msg, register_dialogue) def teardown(self) -> None: """ Implement the handler teardown. :return: None """ def _handle_unidentified_dialogue(self, register_msg: RegisterMessage) -> None: """ Handle an unidentified dialogue. :param msg: the message """ self.context.logger.info( f"received invalid register_msg message={register_msg}, unidentified dialogue." ) def _handle_success( self, register_msg: RegisterMessage, register_dialogue: RegisterDialogue ) -> None: """ Handle an register message. :param register_msg: the register message :param register_dialogue: the dialogue :return: None """ self.context.logger.debug( f"received register_msg success message={register_msg} in dialogue={register_dialogue}." ) self.context.logger.info( f"received register message success, info={register_msg.info}. Stop me now!" ) strategy = cast(Strategy, self.context.strategy) strategy.is_registered = True strategy.is_registration_pending = False strategy.is_ready_to_register = False def _handle_error( self, register_msg: RegisterMessage, register_dialogue: RegisterDialogue ) -> None: """ Handle an register message. :param register_msg: the register message :param register_dialogue: the dialogue :return: None """ self.context.logger.debug( f"received register_msg error message={register_msg} in dialogue={register_dialogue}." ) self.context.logger.info( f"received register message error, error_msg={register_msg.error_msg}. Stop me now!" ) strategy = cast(Strategy, self.context.strategy) strategy.is_registration_pending = False strategy.is_ready_to_register = False def _handle_invalid( self, register_msg: RegisterMessage, register_dialogue: RegisterDialogue ) -> None: """ Handle an register message. :param register_msg: the register message :param register_dialogue: the dialogue :return: None """ self.context.logger.warning( f"cannot handle register_msg message of performative={register_msg.performative} in dialogue={register_dialogue}." ) class SigningHandler(Handler): """Implement the transaction handler.""" SUPPORTED_PROTOCOL = SigningMessage.protocol_id def setup(self) -> None: """Implement the setup for the handler.""" def handle(self, message: Message) -> None: """ Implement the reaction to a message. :param message: the message :return: None """ signing_msg = cast(SigningMessage, message) # recover dialogue signing_dialogues = cast(SigningDialogues, self.context.signing_dialogues) signing_dialogue = cast( Optional[SigningDialogue], signing_dialogues.update(signing_msg) ) if signing_dialogue is None: self._handle_unidentified_dialogue(signing_msg) return # handle message if signing_msg.performative is SigningMessage.Performative.SIGNED_MESSAGE: self._handle_signed_message(signing_msg, signing_dialogue) elif signing_msg.performative is SigningMessage.Performative.ERROR: self._handle_error(signing_msg, signing_dialogue) else: self._handle_invalid(signing_msg, signing_dialogue) def teardown(self) -> None: """ Implement the handler teardown. :return: None """ def _handle_unidentified_dialogue(self, signing_msg: SigningMessage) -> None: """ Handle an unidentified dialogue. :param msg: the message """ self.context.logger.info( f"received invalid signing message={signing_msg}, unidentified dialogue." ) def _handle_signed_message( self, signing_msg: SigningMessage, signing_dialogue: SigningDialogue ) -> None: """ Handle a signed message. :param signing_msg: the signing message :param signing_dialogue: the dialogue :return: None """ self.context.logger.debug( f"received signing message from decision maker, message={signing_msg} in dialogue={signing_dialogue}" ) self.context.logger.info( f"received signing message from decision maker, signature={signing_msg.signed_message.body} stored!" ) strategy = cast(Strategy, self.context.strategy) strategy.signature_of_ethereum_address = signing_msg.signed_message.body strategy.is_ready_to_register = True def _handle_error( self, signing_msg: SigningMessage, signing_dialogue: SigningDialogue ) -> None: """ Handle an oef search message. :param signing_msg: the signing message :param signing_dialogue: the dialogue :return: None """ self.context.logger.info( f"transaction signing was not successful. Error_code={signing_msg.error_code} in dialogue={signing_dialogue}" ) def _handle_invalid( self, signing_msg: SigningMessage, signing_dialogue: SigningDialogue ) -> None: """ Handle an oef search message. :param signing_msg: the signing message :param signing_dialogue: the dialogue :return: None """ self.context.logger.warning( f"cannot handle signing message of performative={signing_msg.performative} in dialogue={signing_dialogue}." )
the-stack_0_11182
from rest_framework.views import APIView from mysystem.models import Users from apps.oauth.models import OAuthWXUser from utils.jsonResponse import SuccessResponse,ErrorResponse from rest_framework_simplejwt.serializers import TokenObtainPairSerializer from rest_framework_simplejwt.views import TokenObtainPairView from utils.common import get_parameter_dic,REGEX_MOBILE from config import WX_XCX_APPID,WX_XCX_APPSECRET,WX_GZH_APPID,WX_GZH_APPSECRET,WX_GZPT_APPSECRET,WX_GZPT_APPID import requests import base64 import json from Crypto.Cipher import AES from django.utils.translation import gettext_lazy as _ from rest_framework_simplejwt.authentication import JWTAuthentication from rest_framework.permissions import IsAuthenticated import re import uuid from django.db import transaction from django.db.models import F from django.core.cache import cache import logging from django_redis import get_redis_connection logger = logging.getLogger(__name__) # Create your views here. # ================================================= # # ************** 微信小程序登录 view ************** # # ================================================= # class XCXLoginSerializer(TokenObtainPairSerializer): """ 登录的序列化器: 重写djangorestframework-simplejwt的序列化器 """ @classmethod def get_token(cls, user): refresh = super(XCXLoginSerializer,cls).get_token(user) data = {} data['openid'] = user.oauthwxuser.xcx_openid data['userId'] = user.id data['refresh'] = str(refresh) data['access'] = str(refresh.access_token) return data ''' WeChat Crypt ''' class WeChatCrypt: def __init__(self, appId, sessionKey): self.appId = appId self.sessionKey = sessionKey def decrypt(self, encryptedData, iv): # base64 decode sessionKey = base64.b64decode(self.sessionKey) encryptedData = base64.b64decode(encryptedData) iv = base64.b64decode(iv) cipher = AES.new(sessionKey, AES.MODE_CBC, iv) decrypted = json.loads(self._unpad(cipher.decrypt(encryptedData))) if decrypted['watermark']['appid'] != self.appId: raise Exception('Invalid Buffer') return decrypted def _unpad(self, s): return s[:-ord(s[len(s)-1:])] #获取微信用户的openid等用户信息 def get_wechat_login_code_url(jscode): api_url = 'https://api.weixin.qq.com/sns/jscode2session?appid={0}&secret={1}&js_code={2}&grant_type=authorization_code' get_url = api_url.format(WX_XCX_APPID,WX_XCX_APPSECRET,jscode) r = requests.get(get_url) return r #微信小程序登录接口 class WeChatXCXLoginAPIView(APIView): """ post: 微信小程序登录接口 微信小程序code获取openid """ permission_classes = [] authentication_classes = [] @transaction.atomic # 开启事务,当方法执行完成以后,自动提交事务 def post(self, request): jscode = get_parameter_dic(request)['code'] inviter = get_parameter_dic(request).get('inviter')#为推广者的userid if not jscode: return ErrorResponse(msg="code不能为空") resp = get_wechat_login_code_url(jscode) openid = None session_key = None unionid = None if resp.status_code != 200: return ErrorResponse(msg="服务器到微信网络连接失败,请重试") # json_data = {'errcode':0,'openid':'111','session_key':'test'} json_data =json.loads(resp.content) if 'errcode' in json_data:#如果获取失败返回失败信息 return ErrorResponse(msg=json_data['errmsg']) openid = json_data['openid'] session_key = json_data['session_key'] if "unionid" in json_data: unionid = json_data['unionid'] # 判断用户是否存在 try: wxuser = Users.objects.get(username=openid) wxuser.oauthwxuser.session_key = session_key # 小写oauthwxuser 表示关联的外键 wxuser.oauthwxuser.xcx_openid = openid wxuser.oauthwxuser.unionId = unionid wxuser.oauthwxuser.save() resdata = XCXLoginSerializer.get_token(wxuser) return SuccessResponse(data=resdata, msg="success") except Exception as e: with transaction.atomic(): savepoint = transaction.savepoint() user = Users() user.username = openid user.password = uuid.uuid4() # 先随机生成一个密码,防止别人获取openid直接被登录情况 user.identity = [0] # 用户身份0表示普通用户 user.save() OAuthWXUser.objects.create(user=user,session_key=session_key,xcx_openid=openid,unionid=unionid) # if inviter: # 如果存在邀请码 # integral = FenXiaoManage.objects.filter(type=1, status=True).values_list('content', flat=True).first() # if integral: # 如果推广积分活动还存在 # Users.objects.filter(id=inviter).update(integral=F('integral') + int(integral)) # InviteRecord.objects.create(inv_user_id=inviter, invitee_user=user, get_integral=integral) # IntegralRecord.objects.create(user_id=inviter,type=4,income=1,integral=integral) # 清除保存点 transaction.savepoint_commit(savepoint) resdata = XCXLoginSerializer.get_token(user) return SuccessResponse(data=resdata, msg="success") def filter_emoji(desstr, restr=''): # 过滤表情 try: res = re.compile(u'[\U00010000-\U0010ffff]') except re.error: res = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]') return res.sub(restr, desstr) #微信小程序手机号授权登录接口 class WeChatXCXMobileLoginAPIView(APIView): """ post: 微信小程序手机号授权登录接口 微信小程序code获取openid,并解密前端传的手机号encryptedData加密数据 """ permission_classes = [] authentication_classes = [] def post(self, request): inviter = get_parameter_dic(request).get('inviter')#邀请码#为推广者的userid jscode = get_parameter_dic(request)['code'] iv = get_parameter_dic(request)['iv'] encryptedData = get_parameter_dic(request)['encryptedData'] nickname = get_parameter_dic(request)['nickname'] avatar_url = get_parameter_dic(request)['avatar_url'] gender = get_parameter_dic(request)['gender'] nickname = filter_emoji(nickname, '') if jscode is None: return ErrorResponse(msg="code不能为空") if iv is None: return ErrorResponse(msg="iv不能为空") if encryptedData is None: return ErrorResponse(msg="encryptedData不能为空") if avatar_url is None: return ErrorResponse(msg="avatar_url不能为空") resp = get_wechat_login_code_url(jscode) openid = None session_key = None unionid = "" if resp.status_code != 200: return ErrorResponse(msg="服务器到微信网络连接失败,请重试") # json_data = {'errcode':0,'openid':'111','session_key':'test'} json_data =json.loads(resp.content) if 'errcode' in json_data:#如果获取失败返回失败信息 return ErrorResponse(msg=json_data['errmsg']) openid = json_data['openid'] session_key = json_data['session_key'] if "unionid" in json_data: unionid = json_data['unionid'] wxdc = WeChatCrypt(WX_XCX_APPID, session_key) pResult = wxdc.decrypt(encryptedData, iv) #判断用户是否存在 try: wxuser = Users.objects.get(username = openid) if not wxuser.is_active: return ErrorResponse(msg="该用户已禁用,请联系管理员") wxuser.oauthwxuser.session_key = session_key#小写oauthwxuser 表示关联的外键 wxuser.oauthwxuser.xcx_openid = openid wxuser.oauthwxuser.unionId = unionid wxuser.oauthwxuser.avatarUrl=avatar_url wxuser.oauthwxuser.sex = gender wxuser.oauthwxuser.mobilePhoneNumber = pResult['phoneNumber'] wxuser.oauthwxuser.nick = nickname wxuser.oauthwxuser.save() wxuser.nickname = nickname wxuser.avatar = avatar_url wxuser.gender = gender wxuser.save() resdata = XCXLoginSerializer.get_token(wxuser) return SuccessResponse(data=resdata,msg="success") except Exception as e:#新用户 with transaction.atomic(): try: savepoint = transaction.savepoint() user = Users() user.username = openid user.password = uuid.uuid4() #先随机生成一个密码,防止别人获取openid直接被登录情况 user.identity=[0]#用户身份0表示普通用户 user.nickname = nickname user.name = nickname user.avatar = avatar_url user.mobile = pResult['phoneNumber'] user.save() OAuthWXUser.objects.create(user=user,session_key=session_key,xcx_openid=openid,avatarUrl=avatar_url,sex=gender,mobilePhoneNumber=pResult['phoneNumber'],nick=nickname) # if inviter:#如果存在邀请码 # integral = FenXiaoManage.objects.filter(type=1,status=True).values_list('content',flat=True).first() # if integral:#如果推广积分活动还存在 # Users.objects.filter(id=inviter).update(integral=F('integral')+int(integral)) # InviteRecord.objects.create(inv_user_id=inviter,invitee_user=user,get_integral=integral) # IntegralRecord.objects.create(user_id=inviter, type=4, income=1, integral=integral) except Exception as e: transaction.savepoint_rollback(savepoint) return ErrorResponse(msg=str(e)) # 清除保存点 transaction.savepoint_commit(savepoint) resdata = XCXLoginSerializer.get_token(user) return SuccessResponse(data=resdata, msg="success") #微信小程序更新(获取)用户信息wx.getUserInfo,用户解密获取的用户信息 class XCXWeChatUserInfoUpdateAPIView(APIView): """ post: 微信小程序更新用户信息 """ permission_classes = [IsAuthenticated] authentication_classes = [JWTAuthentication] def post(self, request): encryptedData = get_parameter_dic(request)['encryptedData'] iv = get_parameter_dic(request)['iv'] if not encryptedData: return ErrorResponse(msg="encryptedData不能为空") if not iv: return ErrorResponse(msg="iv不能为空") wechat_user = OAuthWXUser.objects.filter(user=request.user).first() if not wechat_user: return ErrorResponse(msg="无此用户") pc = WeChatCrypt(WX_XCX_APPID, wechat_user.session_key) user = pc.decrypt(encryptedData, iv) wechat_user.nick = user['nickName'] wechat_user.sex = user['gender'] wechat_user.city = user['city'] wechat_user.avatarUrl = user['avatarUrl'] wechat_user.save() myuser = request.user myuser.nickname = user['nickName'] myuser.avatar = user['avatarUrl'] return SuccessResponse(data=user,msg="success") # ================================================= # # ************** 微信小程序生成推广小程序码view ************** # # ================================================= # #获取小程序的access_token """ 正常返回,access_token 的有效期目前为 2 个小时,重复获取将导致上次获取的 access_token 失效 {"access_token":"ACCESS_TOKEN","expires_in":7200} 错误返回 {"errcode":40013,"errmsg":"invalid appid"} """ def get_wechat_xcx_access_token_url(): api_url = "https://api.weixin.qq.com/cgi-bin/token?grant_type=client_credential&appid={0}&secret={1}" get_url = api_url.format(WX_XCX_APPID,WX_XCX_APPSECRET) r = requests.get(get_url) return r #这个url生成二维码是无限个,返回的二维码是buffer类型(正式版小程序才能生成,体验版不行) """ 正常返回 { "errcode": 0, "errmsg": "ok", "contentType": "image/jpeg", "buffer": Buffer } """ def get_wechat_qrcode_url(access_token,scene,page,width=430,auto_color=True,is_hyaline=False): if not page: page = "pages/index/index" api_url = 'https://api.weixin.qq.com/wxa/getwxacodeunlimit?access_token={0}' get_url = api_url.format(access_token) headers = {"Content-type":"application/json"} data = dict(scene=scene,page=page,width=width,auto_color=auto_color,is_hyaline=is_hyaline) r = requests.post(url=get_url,data=json.dumps(data),headers=headers) return r class GetXCXShareQrcodeView(APIView): """ post: 微信小程序获取推广二维码 scene 分享用户的userid page 要跳转的页面 """ permission_classes = [IsAuthenticated] authentication_classes = [JWTAuthentication] def post(self,request): scene = get_parameter_dic(request)['scene']#分享用户的userid page = get_parameter_dic(request)['page'] if scene is None or page is None: return ErrorResponse("提交参数不能为空") restoken = get_wechat_xcx_access_token_url() if restoken.status_code != 200: return ErrorResponse(msg="服务器到微信网络连接失败,请重试1") json_data = json.loads(restoken.content) if 'errcode' in json_data and json_data['errcode'] !=0: # 如果获取失败返回失败信息 return ErrorResponse(msg=json_data['errmsg']) access_token = json_data['access_token'] res = get_wechat_qrcode_url(access_token,scene,page) if res.status_code != 200: return ErrorResponse(msg="服务器到微信网络连接失败,请重试2") json_data2 = json.loads(res.content) return SuccessResponse(data=json_data2,msg="success") # ================================================= # # ************** 微信小程序发送服务通知消息 view ************** # # ================================================= # """ 1、form_id提交表单的id(支付时用) 2、data 提交的请求体 push_data={ "keyword1":{ "value":obj.order_sn }, "keyword2":{ "value":obj.time }, } """ def send_wx_xcx_message(access_token,openid,template_id,form_id,push_data): api_url = "https://api.weixin.qq.com/cgi-bin/message/subscribe/send?access_token={0}" get_url = api_url.format(access_token) payload={ "touser": openid, #这里为用户的openid "template_id": template_id, #模板id "form_id": form_id, #表单id或者prepay_id "data": push_data } r = requests.post(get_url,json=payload) return r def send_wx_xcx_message_cache(openid,template_id,form_id,push_data): access_token = cache.get('xcx_access_token') if access_token:#有缓存 res = send_wx_xcx_message(access_token,openid,template_id,form_id,push_data) json_data = json.loads(res.content) if 'errcode' in json_data: # 如果获取失败返回失败信息 if json_data['errcode'] == 40001: restoken = get_wechat_xcx_access_token_url() json_data1 = json.loads(restoken.content) access_token1 = json_data1['access_token'] res1 = send_wx_xcx_message(access_token1, openid, template_id, form_id, push_data) json_data2 = json.loads(res1.content) if 'errcode' in json_data2 and json_data2['errcode'] !=0: logger.error("微信小程序发送消息服务错误,用户openid:%s,template_id:%s,form_id:%s,data:%s,微信返回错误信息:%s"%(openid,template_id,form_id,push_data,json_data2)) return False cache.set('xcx_access_token', access_token,7000) return True else:#无缓存 restoken = get_wechat_xcx_access_token_url() json_data1 = json.loads(restoken.content) access_token1 = json_data1['access_token'] res1 = send_wx_xcx_message(access_token1, openid, template_id, form_id, push_data) json_data2 = json.loads(res1.content) if 'errcode' in json_data2 and json_data2['errcode'] !=0: logger.error("微信小程序发送消息服务错误,用户openid:%s,template_id:%s,form_id:%s,data:%s,微信返回错误信息:%s" % ( openid, template_id, form_id, push_data, json_data2)) return False cache.set('xcx_access_token', access_token,7000) return True # ================================================= # # ************** 微信公众号app授权登录 view ************** # # ================================================= # #通过 code 换取 access_token 和 openid,code为前端获取后传过来得 """ 正确返回 { "access_token": "ACCESS_TOKEN", 有效期2小时 "expires_in": 7200, "refresh_token": "REFRESH_TOKEN",有效期30天 "openid": "OPENID", "scope": "SCOPE", "unionid": "o6_bmasdasdsad6_2sgVt7hMZOPfL" } 错误返回 { "errcode": 40029, "errmsg": "invalid code" } """ def get_wechat_access_token_url(code): api_url = "https://api.weixin.qq.com/sns/oauth2/access_token?appid={0}&secret={1}&code={2}&grant_type=authorization_code" get_url = api_url.format(WX_GZPT_APPID,WX_GZPT_APPSECRET,code) r = requests.get(get_url) return r #获取微信用户公开个人信息 """ 正确返回 { "openid": "OPENID", "nickname": "NICKNAME", "sex": 1, "province": "PROVINCE", "city": "CITY", "country": "COUNTRY", "headimgurl": "https://thirdwx.qlogo.cn/mmopen/g3MonUZtNHkdmzicIlibx6iaFqAc56vxLSUfpb6n5WKSYVY0ChQKkiaJSgQ1dZuTOgvLLrhJbERQQ4eMsv84eavHiaiceqxibJxCfHe/0", "privilege": ["PRIVILEGE1", "PRIVILEGE2"], "unionid": " o6_bmasdasdsad6_2sgVt7hMZOPfL" } 错误返回 { "errcode": 40003, "errmsg": "invalid openid" } """ def getWxUserInfo(access_token,openid): api_url = "https://api.weixin.qq.com/sns/userinfo?access_token={0}&openid={1}" get_url = api_url.format(access_token,openid) r = requests.get(get_url) return r #检验授权凭证access_token 是否有效 """ 有效返回 { "errcode": 0, "errmsg": "ok" } """ def is_access_token_valid(access_token, openid): api_url = "https://api.weixin.qq.com/sns/auth?access_token={0}&openid={1}" get_url = api_url.format(access_token, openid) r = requests.get(get_url) return r #通过refresh_token刷新过期的access_token """ 有效返回 { "access_token": "ACCESS_TOKEN", "expires_in": 7200, "refresh_token": "REFRESH_TOKEN", "openid": "OPENID", "scope": "SCOPE" } 错误返回 { "errcode": 40030, "errmsg": "invalid refresh_token" } """ def refresh_access_token(refresh_token): api_url = "https://api.weixin.qq.com/sns/oauth2/refresh_token?appid={0}&grant_type=refresh_token&refresh_token={1}" get_url = api_url.format(WX_GZPT_APPID,refresh_token) r = requests.get(get_url) return r #微信公众号app登录接口 class WeChatGZHLoginAPIView(APIView): """ post: 微信公众号登录接口 微信公众号code获取openid和access_token """ permission_classes = [] authentication_classes = [] def post(self, request): jscode = get_parameter_dic(request)['code'] if not jscode: return ErrorResponse(msg="code不能为空") resp = get_wechat_access_token_url(jscode) openid = "" unionid = "" access_token = "" refresh_token = "" scope = None if resp.status_code != 200: return ErrorResponse(msg="服务器到微信网络连接失败,请重试") json_data =json.loads(resp.content) if 'errcode' in json_data and json_data['errcode'] !=0:#如果获取失败返回失败信息 logger.error("微信app登录服务错误,用户提交code:%s,微信返回错误信息:%s" % (jscode, json_data)) return ErrorResponse(msg=json_data['errmsg']) openid = json_data['openid'] access_token = json_data['access_token'] refresh_token = json_data['refresh_token'] scope = json_data['scope'] if "unionid" in json_data: unionid = json_data['unionid'] #判断用户是否存在(根据openID判断用户是否是第一次登陆) user = Users.objects.filter(is_active=True,oauthwxuser__gzh_openid=openid).first() if not user:#如果不存在则提示绑定用户关系 return ErrorResponse(code=301,data={'openid':openid,'is_bind':False},msg="无此用户,请先绑定") #返回token resdata = XCXLoginSerializer.get_token(user) return SuccessResponse(data=resdata,msg="success") class WeChatGZHBindAPIView(APIView): """ 绑定微信用户 post: 绑定微信用户 微信公众号openid、mobile(绑定手机号)、code(验证码) """ permission_classes = [] authentication_classes = [] def post(self,request): openid = get_parameter_dic(request)['openid'] mobile = get_parameter_dic(request)['mobile'] code = get_parameter_dic(request)['code'] # 验证手机号是否合法 if not re.match(REGEX_MOBILE, mobile): return ErrorResponse(msg="请输入正确手机号") # 判断短信验证码是否正确 redis_conn = get_redis_connection('verify_codes') send_flag = redis_conn.get('sms_%s' % mobile) # send_flag的值为bytes,需要转换成str ,send_flag.decode() if not send_flag: # 如果取不到标记,则说明验证码过期 return ErrorResponse(msg="短信验证码已过期") else: if str(send_flag.decode()) != str(code): return ErrorResponse(msg="验证码错误") user = Users.objects.filter(is_active=True,username=mobile+"app",identity__contains="1",oauthwxuser__isnull=True).first() if not user:#如果不存在 return ErrorResponse(msg="无法绑定,无此用户或已绑定") OAuthWXUser.objects.create(user=user,gzh_openid=openid) resdata = XCXLoginSerializer.get_token(user) return SuccessResponse(data=resdata,msg="success")
the-stack_0_11183
#!/usr/bin/env python # coding: utf-8 import json import pandas as pd from pandas.api.types import is_numeric_dtype import numpy as np from scipy.stats import ks_2samp #import matplotlib.pyplot as plt import plotly.graph_objs as go import plotly.figure_factory as ff from evidently.model.widget import BaseWidgetInfo, AlertStats, AdditionalGraphInfo from evidently.widgets.widget import Widget red = "#ed0400" grey = "#4d4d4d" class NumTargetCorrWidget(Widget): def __init__(self, title: str): super().__init__() self.title = title def get_info(self) -> BaseWidgetInfo: #if self.wi: return self.wi #raise ValueError("No prediction data provided") def calculate(self, reference_data: pd.DataFrame, production_data: pd.DataFrame, column_mapping): if column_mapping: date_column = column_mapping.get('datetime') id_column = column_mapping.get('id') target_column = column_mapping.get('target') prediction_column = column_mapping.get('prediction') num_feature_names = column_mapping.get('numerical_features') if num_feature_names is None: num_feature_names = [] else: num_feature_names = [name for name in num_feature_names if is_numeric_dtype(reference_data[name])] cat_feature_names = column_mapping.get('categorical_features') if cat_feature_names is None: cat_feature_names = [] else: cat_feature_names = [name for name in cat_feature_names if is_numeric_dtype(reference_data[name])] else: date_column = 'datetime' if 'datetime' in reference_data.columns else None id_column = None target_column = 'target' if 'target' in reference_data.columns else None prediction_column = 'prediction' if 'prediction' in reference_data.columns else None utility_columns = [date_column, id_column, target_column, prediction_column] num_feature_names = list(set(reference_data.select_dtypes([np.number]).columns) - set(utility_columns)) cat_feature_names = list(set(reference_data.select_dtypes([np.object]).columns) - set(utility_columns)) if target_column is not None: #calculate corr ref_target_corr = reference_data[num_feature_names + [target_column]].corr()[target_column] prod_target_corr = production_data[num_feature_names + [target_column]].corr()[target_column] #plot output correlations target_corr = go.Figure() target_corr.add_trace(go.Bar(y = ref_target_corr, x = ref_target_corr.index, marker_color = grey, name = 'Reference')) target_corr.add_trace(go.Bar(y = prod_target_corr, x = ref_target_corr.index, marker_color = red, name = 'Production')) target_corr.update_layout(xaxis_title = "Features", yaxis_title = "Correlation", yaxis = dict( range=(-1, 1), showticklabels=True )) target_corr_json = json.loads(target_corr.to_json()) self.wi = BaseWidgetInfo( title=self.title, type="big_graph", details="", alertStats=AlertStats(), alerts=[], alertsPosition="row", insights=[], size=1, params={ "data": target_corr_json['data'], "layout": target_corr_json['layout'] }, additionalGraphs=[], ) else: self.wi = None
the-stack_0_11184
# -*- coding: utf-8 -*- # @Time : 20-6-4 下午4:19 # @Author : zhuying # @Company : Minivision # @File : transform.py # @Software : PyCharm from __future__ import division import math import random from PIL import Image try: import accimage except ImportError: accimage = None import numpy as np import numbers import types from anti_spoof.src.data_io import functional as F __all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "RandomHorizontalFlip", "Lambda", "RandomResizedCrop", "ColorJitter", "RandomRotation"] class Compose(object): """Composes several transforms together. Args: transforms (list of ``Transform`` objects): list of transforms to compose. Example: >>> transforms.Compose([ >>> transforms.CenterCrop(10), >>> transforms.ToTensor(), >>> ]) """ def __init__(self, transforms): self.transforms = transforms def __call__(self, img): for t in self.transforms: img = t(img) return img class ToTensor(object): """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]. """ def __call__(self, pic): """ Args: pic (PIL Image or numpy.ndarray): Image to be converted to tensor. Returns: Tensor: Converted image. """ return F.to_tensor(pic) class Lambda(object): """Apply a user-defined lambda as a transform. Args: lambd (function): Lambda/function to be used for transform. """ def __init__(self, lambd): assert isinstance(lambd, types.LambdaType) self.lambd = lambd def __call__(self, img): return self.lambd(img) class ToPILImage(object): """Convert a tensor or an ndarray to PIL Image. Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape H x W x C to a PIL Image while preserving the value range. Args: mode (`PIL.Image mode`_): color space and pixel depth of input data (optional). If ``mode`` is ``None`` (default) there are some assumptions made about the input data: 1. If the input has 3 channels, the ``mode`` is assumed to be ``RGB``. 2. If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``. 3. If the input has 1 channel, the ``mode`` is determined by the data type (i,e, ``int``, ``float``, ``short``). .. _PIL.Image mode: http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#modes """ def __init__(self, mode=None): self.mode = mode def __call__(self, pic): """ Args: pic (Tensor or numpy.ndarray): Image to be converted to PIL Image. Returns: PIL Image: Image converted to PIL Image. """ return F.to_pil_image(pic, self.mode) class Normalize(object): """Normalize an tensor image with mean and standard deviation. Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform will normalize each channel of the input ``torch.*Tensor`` i.e. ``input[channel] = (input[channel] - mean[channel]) / std[channel]`` Args: mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. """ def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized Tensor image. """ return F.normalize(tensor, self.mean, self.std) class RandomHorizontalFlip(object): """Horizontally flip the given PIL Image randomly with a probability of 0.5.""" def __call__(self, img): """ Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Randomly flipped image. """ if random.random() < 0.5: return F.hflip(img) return img class RandomResizedCrop(object): """Crop the given PIL Image to random size and aspect ratio. A crop of random size (default: of 0.08 to 1.0) of the original size and a random aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop is finally resized to given size. This is popularly used to train the Inception networks. Args: size: expected output size of each edge scale: range of size of the origin size cropped ratio: range of aspect ratio of the origin aspect ratio cropped interpolation: Default: PIL.Image.BILINEAR """ def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR): if isinstance(size, tuple): self.size = size else: self.size = (size, size) self.interpolation = interpolation self.scale = scale self.ratio = ratio @staticmethod def get_params(img, scale, ratio): """Get parameters for ``crop`` for a random sized crop. Args: img (PIL Image): Image to be cropped. scale (tuple): range of size of the origin size cropped ratio (tuple): range of aspect ratio of the origin aspect ratio cropped Returns: tuple: params (i, j, h, w) to be passed to ``crop`` for a random sized crop. """ for attempt in range(10): area = img.size[0] * img.size[1] target_area = random.uniform(*scale) * area aspect_ratio = random.uniform(*ratio) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img.size[0] and h <= img.size[1]: i = random.randint(0, img.size[1] - h) j = random.randint(0, img.size[0] - w) return i, j, h, w # Fallback w = min(img.size[0], img.size[1]) i = (img.size[1] - w) // 2 j = (img.size[0] - w) // 2 return i, j, w, w def __call__(self, img): """ Args: img (PIL Image): Image to be flipped. Returns: PIL Image: Randomly cropped and resize image. """ i, j, h, w = self.get_params(img, self.scale, self.ratio) return F.resized_crop(img, i, j, h, w, self.size, self.interpolation) class ColorJitter(object): """Randomly change the brightness, contrast and saturation of an image. Args: brightness (float): How much to jitter brightness. brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. contrast (float): How much to jitter contrast. contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. saturation (float): How much to jitter saturation. saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. hue(float): How much to jitter hue. hue_factor is chosen uniformly from [-hue, hue]. Should be >=0 and <= 0.5. """ def __init__(self, brightness=0, contrast=0, saturation=0, hue=0): self.brightness = brightness self.contrast = contrast self.saturation = saturation self.hue = hue @staticmethod def get_params(brightness, contrast, saturation, hue): """Get a randomized transform to be applied on image. Arguments are same as that of __init__. Returns: Transform which randomly adjusts brightness, contrast and saturation in a random order. """ transforms = [] if brightness > 0: brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness) transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor))) if contrast > 0: contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast) transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor))) if saturation > 0: saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation) transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor))) if hue > 0: hue_factor = np.random.uniform(-hue, hue) transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor))) np.random.shuffle(transforms) transform = Compose(transforms) return transform def __call__(self, img): """ Args: img (PIL Image): Input image. Returns: PIL Image: Color jittered image. """ transform = self.get_params(self.brightness, self.contrast, self.saturation, self.hue) return transform(img) class RandomRotation(object): """Rotate the image by angle. Args: degrees (sequence or float or int): Range of degrees to select from. If degrees is a number instead of sequence like (min, max), the range of degrees will be (-degrees, +degrees). resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional): An optional resampling filter. See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST. expand (bool, optional): Optional expansion flag. If true, expands the output to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple, optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. """ def __init__(self, degrees, resample=False, expand=False, center=None): if isinstance(degrees, numbers.Number): if degrees < 0: raise ValueError("If degrees is a single number, it must be positive.") self.degrees = (-degrees, degrees) else: if len(degrees) != 2: raise ValueError("If degrees is a sequence, it must be of len 2.") self.degrees = degrees self.resample = resample self.expand = expand self.center = center @staticmethod def get_params(degrees): """Get parameters for ``rotate`` for a random rotation. Returns: sequence: params to be passed to ``rotate`` for random rotation. """ angle = np.random.uniform(degrees[0], degrees[1]) return angle def __call__(self, img): """ img (PIL Image): Image to be rotated. Returns: PIL Image: Rotated image. """ angle = self.get_params(self.degrees) return F.rotate(img, angle, self.resample, self.expand, self.center)
the-stack_0_11186
## Advent of Code 2019: Intcode Computer v2 ## https://adventofcode.com/2019 ## Jesse Williams | github.com/vblank182 # **Compatible with Day 5, Part 1** # Changelog: # - Added IN and OUT instructions # - Added support for parameter modes #~# Opcodes #~# ADD, MUL, IN, OUT = 1, 2, 3, 4 END = 99 #~# Parameter Modes #~# POS = 0 IMM = 1 # Numbers of expected parameters for each opcode num_params = {1:3, 2:3, 3:1, 4:1, 99:0} def loadProgram(inputFile): ''' Loads a program file in "0,1,2,3,..." format and returns a list of integers. ''' with open(inputFile) as f: initialTapeStrs = f.read()[:-1].split(',') initialTape = [int(i) for i in initialTapeStrs] return initialTape def runProgram(initialTape, input, debugLevel=0): # Make a copy of the initial tape. workTape = initialTape.copy() running = True output = [] ptr = 0 while running: # Determine the current opcode and parameter modes opcode = int( str(workTape[ptr])[-2:] ) # get the opcode from the last 2 digits of the current position param_modes = [0]*num_params[opcode] for i in range(num_params[opcode]): try: # Set param mode to digit found (scanning right-to-left from opcode) param_modes[i] = int( str(workTape[ptr])[-3-i] ) except IndexError: # Default to param mode 0 if no digit is found param_modes[i] = 0 #:: [1] Addition ::# if opcode == ADD: param = [0]*num_params[opcode] # initialize list of parameters # Param 1 (left addend) if param_modes[0] == POS: param[0] = workTape[workTape[ptr+1]] # position mode elif param_modes[0] == IMM: param[0] = workTape[ptr+1] # immediate mode # Param 2 (right addend) if param_modes[1] == POS: param[1] = workTape[workTape[ptr+2]] # position mode elif param_modes[1] == IMM: param[1] = workTape[ptr+2] # immediate mode # Param 3 (sum) if param_modes[2] == POS: workTape[workTape[ptr+3]] = param[0] + param[1] # set output (position mode) elif param_modes[2] == IMM: raise InvalidParameterMode(opcode, 3, param_modes[2], "Immediate mode not supported for output.") break ptr += num_params[opcode] + 1 # advance instruction pointer #:: [2] Multiplication ::# elif opcode == MUL: param = [0]*num_params[opcode] # initialize list of parameters # Param 1 (left multiplicand) if param_modes[0] == POS: param[0] = workTape[workTape[ptr+1]] # position mode elif param_modes[0] == IMM: param[0] = workTape[ptr+1] # immediate mode # Param 2 (right multiplicand) if param_modes[1] == POS: param[1] = workTape[workTape[ptr+2]] # position mode elif param_modes[1] == IMM: param[1] = workTape[ptr+2] # immediate mode # Param 3 (product) if param_modes[2] == POS: workTape[workTape[ptr+3]] = param[0] * param[1] # set output (position mode) elif param_modes[2] == IMM: raise InvalidParameterMode(opcode, 3, param_modes[2], "Immediate mode not supported for output.") break ptr += num_params[opcode] + 1 # advance instruction pointer #:: [3] Input ::# elif opcode == IN: # Param 1 (position) if param_modes[0] == POS: workTape[workTape[ptr+1]] = input # store input at position in parameter (position mode) elif param_modes[0] == IMM: raise InvalidParameterMode(opcode, 1, param_modes[0], "Immediate mode not supported for this instruction.") break ptr += num_params[opcode] + 1 # advance instruction pointer #:: [4] Output ::# elif opcode == OUT: # Param 1 (position) if param_modes[0] == POS: output.append(workTape[workTape[ptr+1]]) # write output (position mode) elif param_modes[0] == IMM: output.append(workTape[ptr+1]) # write output (immediate mode) ptr += num_params[opcode] + 1 # advance instruction pointer #:: [99] End of Program ::# elif opcode == END: # Program finished running = False else: raise UnknownOpcode(opcode, ptr, workTape, debugLevel) return False return output # output ## Exception Classes ## class InvalidParameterMode(Exception): '''Exception raised for an invalid parameter mode.''' def __init__(self, opcode, position, param_mode, message): print("[Error] Invalid parameter mode '{}' for parameter {} of opcode {}.\n".format(param_mode, position, opcode)) if message != "": print(message) class UnknownOpcode(Exception): '''Exception raised for an unknown opcode.''' def __init__(self, opcode, ptr, workTape, debugLevel): if debugLevel == 1: print("[Error] Unknown opcode '{}' at location {}. Following instructions: ".format(opcode, ptr, workTape[ptr:ptr+9])) elif debugLevel == 2: print("[Error] Unknown opcode '{}' at location {}.".format(opcode, ptr)) print("Current tape state:\n") print(workTape) else: # debug level 0 print("[Error] Unknown opcode '{}' at location {}.".format(opcode, ptr))
the-stack_0_11187
from collections import Counter def read_signals(): file_name = "Data/day8.txt" file = open(file_name, "r") signals = [] digits = [] for line in file: line = line.strip("\n").split(" | ") signals.append(line[0].split()) digits.append(line[1].split()) return signals, digits def sort_connections(signals, digits): output = [] for signal, numbers in zip(signals, digits): connections = {"a": 0, "b": 0, "c": 0, "d": 0, "e": 0, "f": 0, "g": 0} letters = {i: set(connections.keys()) for i in range(2,8)} for segments in signal: letters[len(segments)] = letters[len(segments)].intersection(set(segments)) connections["a"] = list(letters[3] - letters[2])[0] connections["f"] = list(letters[6].intersection(letters[2]))[0] connections["c"] = list(letters[2] - {connections["f"]})[0] connections["d"] = list(letters[4].intersection(letters[5]))[0] connections["b"] = list(letters[4].intersection(letters[6]) - {connections["f"]})[0] connections["g"] = list(letters[5].intersection(letters[6]) - {connections["a"]})[0] connections["e"] = list(set(connections.keys()) - {connections["a"]} - {connections["b"]} - {connections["c"]} - {connections["d"]} - {connections["f"]} - {connections["g"]})[0] connections = {v: k for k, v in connections.items()} for number in numbers: number = set(connections[letter] for letter in number) if number == {"c", "f"}: output.append(1) elif number == {"a", "c", "f"}: output.append(7) elif number == {"b", "d", "c", "f"}: output.append(4) elif number == {"a", "c", "d", "e", "g"}: output.append(2) elif number == {"a", "c", "d", "f", "g"}: output.append(3) elif number == {"a", "b", "d", "f", "g"}: output.append(5) elif number == {"a", "b", "c", "e", "f", "g"}: output.append(0) elif number == {"a", "b", "d", "e", "f", "g"}: output.append(6) elif number == {"a", "b", "c", "d", "f", "g"}: output.append(9) elif number == {"a", "b", "c", "d", "e", "f", "g"}: output.append(8) count = Counter(output) print(f"Part one: {count[1] + count[4] + count[7] + count[8]}") total = sum(output[i] * 10**(3 - (i%4)) for i in range(len(output))) print(f"Part two: {total}") if __name__ == "__main__": signals, digits = read_signals() sort_connections(signals, digits)
the-stack_0_11188
from flask import Flask from flask_s3_viewer import FlaskS3Viewer from flask_s3_viewer.aws.ref import Region import logging logging.basicConfig( level=logging.INFO, format='%(levelname)s: %(asctime)s: %(message)s' ) app = Flask(__name__) # For test, disable template caching app.config['SEND_FILE_MAX_AGE_DEFAULT'] = 1 app.config['TEMPLATES_AUTO_RELOAD'] = True # FlaskS3Viewer Init FS3V_NAMESPACE = 'flask-s3-viewer' s3viewer = FlaskS3Viewer( app, # Flask app namespace=FS3V_NAMESPACE, # namespace be unique template_namespace='mdl', object_hostname='http://flask-s3-viewer.com', # file's hostname config={ # Bucket configs and else 'profile_name': 'test', 'access_key': None, 'secret_key': None, 'region_name': Region.SEOUL.value, 'endpoint_url': None, 'bucket_name': 'hwjeongtest', 'cache_dir': '/tmp/flask_s3_viewer', 'use_cache': True, 'ttl': 86400, } ) # Init another one s3viewer.add_new_one( object_hostname='http://namespace2.com', namespace='np2', # namespace be unique upload_type='presign', config={ 'profile_name': 'test', 'region_name': Region.SEOUL.value, 'bucket_name': 'hwjeongtest' } ) # You can see registerd configs # print(s3viewer.FLASK_S3_VIEWER_BUCKET_CONFIGS) # You can use boto3's session and client if you want # print(FlaskS3Viewer.get_boto_client(FS3V_NAMESPACE)) # print(FlaskS3Viewer.get_boto_session(FS3V_NAMESPACE)) # Apply FlaskS3Viewer blueprint s3viewer.register() @app.route('/index') def index (): return 'Your app index page' # Usage: python example.py test (run debug mode) if __name__ == '__main__': app.run(debug=True, port=3000)
the-stack_0_11189
# -*- coding: utf-8 -*- from ldap.dn import explode_dn from node.behaviors import Adopt from node.behaviors import Alias from node.behaviors import Attributes from node.behaviors import DefaultInit from node.behaviors import NodeChildValidate from node.behaviors import Nodespaces from node.behaviors import Nodify from node.behaviors import OdictStorage from node.behaviors import Storage from node.behaviors.alias import DictAliaser from node.ext.ldap._node import LDAPNode from node.ext.ldap.base import ensure_text from node.ext.ldap.interfaces import ILDAPGroupsConfig as IGroupsConfig from node.ext.ldap.interfaces import ILDAPUsersConfig as IUsersConfig from node.ext.ldap.scope import BASE from node.ext.ldap.scope import ONELEVEL from node.ext.ldap.ugm.defaults import creation_defaults from node.ext.ldap.ugm.samba import sambaLMPassword from node.ext.ldap.ugm.samba import sambaNTPassword from node.ext.ugm import Group as UgmGroup from node.ext.ugm import Groups as UgmGroups from node.ext.ugm import Ugm as UgmBase from node.ext.ugm import User as UgmUser from node.ext.ugm import Users as UgmUsers from node.locking import locktree from node.utils import debug from plumber import Behavior from plumber import default from plumber import finalize from plumber import override from plumber import plumb from plumber import plumbing from zope.interface import implementer import ldap import logging import six import time logger = logging.getLogger('node.ext.ldap') # group member format FORMAT_DN = 0 FORMAT_UID = 1 # mapping from object-class to properties MEMBER_LOOKUP_BY_CLASS = { 'groupOfNames': { 'format': FORMAT_DN, 'attribute': 'member', }, 'groupOfUniqueNames': { 'format': FORMAT_DN, 'attribute': 'uniqueMember', }, 'posixGroup': { 'format': FORMAT_UID, 'attribute': 'memberUid', }, 'group': { 'format': FORMAT_DN, 'attribute': 'member', }, } # expiration unit EXPIRATION_DAYS = 0 EXPIRATION_SECONDS = 1 class AccountExpired(object): def __nonzero__(self): return False __bool__ = __nonzero__ def __repr__(self): return 'ACCOUNT_EXPIRED' __str__ = __repr__ ACCOUNT_EXPIRED = AccountExpired() class PrincipalsConfig(object): def __init__( self, baseDN='', attrmap={}, scope=ONELEVEL, queryFilter='', objectClasses=[], defaults={}, strict=True, memberOfSupport=False, recursiveGroups=False, memberOfExternalGroupDNs=[], expiresAttr=None, expiresUnit=EXPIRATION_DAYS ): self.baseDN = baseDN self.attrmap = attrmap self.scope = scope self.queryFilter = queryFilter self.objectClasses = objectClasses self.defaults = defaults self.strict = strict self.memberOfSupport = memberOfSupport self.recursiveGroups = recursiveGroups self.memberOfExternalGroupDNs = memberOfExternalGroupDNs # XXX: currently expiresAttr only gets considered for user # authentication group and role expiration is not implemented yet. self.expiresAttr = expiresAttr self.expiresUnit = expiresUnit # XXX: member_relation # self.member_relation = member_relation @implementer(IUsersConfig) class UsersConfig(PrincipalsConfig): """Define how users look and where they are. """ @implementer(IGroupsConfig) class GroupsConfig(PrincipalsConfig): """Define how groups look and where they are. """ class RolesConfig(PrincipalsConfig): """Define how roles are mapping in LDAP. Basically a role mapping works like a group mapping, but the id attribute is considered as the role name, and the members set have this role granted. """ @plumbing( Alias, NodeChildValidate, Adopt, Nodify, Storage, ) class PrincipalAliasedAttributes(object): allow_non_node_children = True def __init__(self, context, aliaser=None): """ :param context: The node whose children to alias :param aliaser: The aliaser to be used """ self.__name__ = context.name self.__parent__ = None self.context = context self.aliaser = aliaser @property def storage(self): return self.context @property def changed(self): return self.context.changed def __repr__(self): return "Aliased " + self.context.__repr__() class AliasedPrincipal(Behavior): @override def __init__(self, context, attraliaser): self.context = context self.attraliaser = attraliaser @default def principal_attributes_factory(self, name=None, parent=None): aliased_attrs = PrincipalAliasedAttributes( self.context.attrs, self.attraliaser ) return aliased_attrs attributes_factory = finalize(principal_attributes_factory) @default @locktree def __call__(self): # add object classes from creation defaults. if missing. # happens if object classes are added after principals were already # created with another set of default object classes or if editing # existing principals from a database not created with this # API/configuration. ocs = self.context.attrs['objectClass'] ocs = [ocs] if isinstance(ocs, six.text_type) else ocs ocsc = len(ocs) for oc in self.parent.context.child_defaults['objectClass']: if oc not in ocs: ocs.append(oc) # reset object classes only if changed to avoid unnecessary write # operations to LDAP backend if ocsc != len(ocs): self.context.attrs['objectClass'] = ocs # finally persist self.context() class LDAPPrincipal(AliasedPrincipal): @default def add_role(self, role): self.parent.parent.add_role(role, self) @default def remove_role(self, role): self.parent.parent.remove_role(role, self) @default @property def roles(self): return self.parent.parent.roles(self) @default @property def changed(self): return self.context.changed @default @property def member_of_attr(self): """memberOf is in openldap realized as overlay and in Active Directory also computed. In case of openldap this attribute is not delivered in LDAP response unless explicitly queried. Thus a separate property is used to query memberOf information explicit. """ entry = self.context.ldap_session.search( scope=BASE, baseDN=self.context.DN, force_reload=self.context._reload, attrlist=['memberOf'] ) return entry[0][1].get('memberOf', list()) class LDAPUser(LDAPPrincipal, UgmUser): @default @property def groups(self): groups = self.parent.parent.groups return [groups[uid] for uid in self.group_ids if uid in groups] @default @property def group_ids(self): groups = self.parent.parent.groups if self.parent.parent.ucfg.memberOfSupport: group_dns = [groups.context.DN] group_dns += self.parent.parent.ucfg.memberOfExternalGroupDNs res = list() for dn in self.member_of_attr: dn = ensure_text(dn) matching_group_dns = { gdn for gdn in group_dns if dn.endswith(gdn) } if not matching_group_dns: # Skip DN outside groups base DN continue try: res.append(groups.idbydn(dn)) except KeyError: # happens if DN is returned which does not fit the groups # base DN. pass else: member_format = groups._member_format attribute = groups._member_attribute # Support LDAP_MATCHING_RULE_IN_CHAIN (recursive/nested groups) # See https://msdn.microsoft.com/en-us/library/aa746475(v=vs.85).aspx if self.parent.parent.ucfg.recursiveGroups: attribute += ':1.2.840.113556.1.4.1941:' if member_format == FORMAT_DN: criteria = {attribute: self.context.DN} elif member_format == FORMAT_UID: criteria = {attribute: self.context.attrs['uid']} attrlist = [groups._key_attr] # if roles configuration points to child of groups container, and # group configuration has search scope SUBTREE, and groups are # specified by the same criteria as roles, the search returns the # role id's as well. # XXX: such edge cases should be resolved at UGM init time matches_generator = groups.context.batched_search( criteria=criteria, attrlist=attrlist ) res = [att[groups._key_attr][0] for _, att in matches_generator] return res @default @property def expired(self): if not self.parent.expiresAttr: return False expires = self.context.attrs.get(self.parent.expiresAttr) return calculate_expired(self.parent.expiresUnit, expires) @plumbing( LDAPUser, Nodespaces, Attributes, Nodify, ) class User(object): pass class LDAPGroupMapping(Behavior): @override def __getitem__(self, key): key = ensure_text(key) if key not in self: raise KeyError(key) return self.related_principals(key)[key] @override @locktree def __delitem__(self, key): key = ensure_text(key) if key not in self: raise KeyError(key) if self._member_format == FORMAT_DN: val = self.related_principals(key)[key].context.DN elif self._member_format == FORMAT_UID: val = key # self.context.attrs[self._member_attribute].remove won't work here # issue in LDAPNodeAttributes, does not recognize changed this way. members = self.context.attrs[self._member_attribute] members.remove(val) self.context.attrs[self._member_attribute] = members # XXX: call here immediately? self.context() @override def __iter__(self): return iter(self.member_ids) @override def __contains__(self, key): key = ensure_text(key) for uid in self: if uid == key: return True return False @default @locktree def add(self, key): key = ensure_text(key) if key not in self.member_ids: val = self.translate_key(key) # self.context.attrs[self._member_attribute].append won't work here # issue in LDAPNodeAttributes, does not recognize changed this way. old = self.context.attrs.get(self._member_attribute, list()) self.context.attrs[self._member_attribute] = old + [val] # XXX: call here immediately? # self.context() @default @property def member_ids(self): ugm = self.parent.parent if ugm: # XXX: roles with memberOf use rcfg! gcfg = ugm.gcfg if gcfg and gcfg.memberOfSupport: users = ugm.users criteria = {'memberOf': self.context.DN} attrlist = [users._key_attr] matches_generator = users.context.batched_search( criteria=criteria, attrlist=attrlist ) return [ att[users._key_attr][0] for _, att in matches_generator ] ret = list() members = self.context.attrs.get(self._member_attribute, list()) for member in members: if member in ['nobody', 'cn=nobody']: continue ret.append(member) ret = self.translate_ids(ret) keys = self.existing_member_ids ret = [uid for uid in ret if uid in keys] return ret @default @property def _member_format(self): return self.parent._member_format @default @property def _member_attribute(self): return self.parent._member_attribute class LDAPGroup(LDAPGroupMapping, LDAPPrincipal, UgmGroup): @default def related_principals(self, key=None): return self.parent.parent.users @default @property def users(self): return [self.parent.parent.users[uid] for uid in self.member_ids] @default @property def existing_member_ids(self): return self.related_principals().keys() @default def translate_ids(self, members): if self._member_format != FORMAT_DN: return members principals = self.related_principals() translated = list() for dn in members: try: translated.append(principals.idbydn(dn)) except KeyError: # inexistent DN pass return translated @default def translate_key(self, key): ret = None if self._member_format == FORMAT_DN: principals = self.related_principals() # make sure principal is loaded principal = principals[key] ret = principal.context.DN elif self._member_format == FORMAT_UID: ret = key return ret @plumbing( LDAPGroup, NodeChildValidate, Nodespaces, Attributes, Nodify, ) class Group(object): pass class LDAPPrincipals(OdictStorage): principal_attrmap = default(None) principal_attraliaser = default(None) @override def __init__(self, props, cfg): context = LDAPNode(name=cfg.baseDN, props=props) context.search_filter = cfg.queryFilter context.search_scope = int(cfg.scope) context.child_defaults = dict() context.child_defaults['objectClass'] = cfg.objectClasses context.child_defaults.update(cfg.defaults) for oc in cfg.objectClasses: for key, val in creation_defaults.get(oc, dict()).items(): if key not in context.child_defaults: context.child_defaults[key] = val # if cfg.member_relation: # context.search_relation = cfg.member_relation self._rdn_attr = cfg.attrmap['rdn'] self._key_attr = cfg.attrmap['id'] if self._key_attr not in cfg.attrmap: cfg.attrmap[self._key_attr] = self._key_attr self._login_attr = cfg.attrmap['id'] if cfg.attrmap.get('login'): self._login_attr = cfg.attrmap['login'] self.expiresAttr = getattr(cfg, 'expiresAttr', None) self.expiresUnit = getattr(cfg, 'expiresUnit', None) self.principal_attrmap = cfg.attrmap self.principal_attraliaser = DictAliaser(cfg.attrmap, cfg.strict) self.context = context @default def idbydn(self, dn, strict=False): """Return a principal's id for a given dn. Raise KeyError if not enlisted. """ # XXX: rename to id_by_dn # XXX: what was strict good for? remove # if strict: # raise KeyError(dn) try: search = self.context.ldap_session.search res = search(baseDN=dn)[0] return ensure_text(res[1][self._key_attr][0]) except ldap.NO_SUCH_OBJECT: raise KeyError(dn) @override @property def ids(self): return list(self.__iter__()) @default @locktree def __delitem__(self, key): principal = self[key] context = principal.context del context.parent[context.name] del self.storage[key] @default @locktree def __getitem__(self, key): key = ensure_text(key) try: return self.storage[key] except KeyError: criteria = {self._key_attr: key} attrlist = ['rdn', self._key_attr] res = self.context.search(criteria=criteria, attrlist=attrlist) if not res: raise KeyError(key) if len(res) > 1: # pragma: no cover msg = u'More than one principal with id "{0}" found.' logger.warning(msg.format(key)) prdn = res[0][1]['rdn'] if prdn in self.context._deleted_children: raise KeyError(key) dn = res[0][0] path = explode_dn(dn)[:len(self.context.DN.split(',')) * -1] context = self.context for rdn in reversed(path): context = context[rdn] principal = self.principal_factory( context, attraliaser=self.principal_attraliaser ) principal.__name__ = key principal.__parent__ = self self.storage[key] = principal return principal @default @locktree def __iter__(self): attrlist = ['rdn', self._key_attr] for principal in self.context.batched_search(attrlist=attrlist): prdn = principal[1]['rdn'] if prdn in self.context._deleted_children: continue yield ensure_text(principal[1][self._key_attr][0]) for principal in self.context._added_children: yield self.context[principal].attrs[self._key_attr] @default @locktree def __setitem__(self, name, value): if not isinstance(value, self.principal_factory): raise ValueError(u"Given value not instance of '{0}'".format( self.principal_factory.__name__ )) # XXX: check if there is valid user context exists = False try: self[name] exists = True except KeyError: pass if exists: raise KeyError( u"Principal with id '{0}' already exists.".format(name) ) value.__name__ = name value.__parent__ = self self.storage[name] = value @default @property def changed(self): return self.context.changed @default @locktree def invalidate(self, key=None): """Invalidate LDAPPrincipals. """ if key is None: self.context.invalidate() self.storage.clear() return try: principal = self.storage[key] principal.context.parent.invalidate(principal.context.name) del self.storage[key] except KeyError: pass @default @locktree def __call__(self): self.context() @default def _alias_dict(self, dct): ret = dict() for key, val in six.iteritems(self.principal_attraliaser): for k, v in six.iteritems(dct): if val == k: ret[key] = v return ret @default def _unalias_list(self, lst): unalias = self.principal_attraliaser.unalias return [unalias(x) for x in lst] @default def _unalias_dict(self, dct): if dct is None: return None unalias = self.principal_attraliaser.unalias unaliased_dct = dict( [(unalias(key), val) for key, val in six.iteritems(dct)]) return unaliased_dct @default def raw_search(self, criteria=None, attrlist=None, exact_match=False, or_search=False, or_keys=None, or_values=None, page_size=None, cookie=None): search_attrlist = [self._key_attr] if attrlist is not None and self._key_attr not in attrlist: search_attrlist += attrlist try: results = self.context.search( criteria=self._unalias_dict(criteria), attrlist=self._unalias_list(search_attrlist), exact_match=exact_match, or_search=or_search, or_keys=or_keys, or_values=or_values, page_size=page_size, cookie=cookie ) except ldap.NO_SUCH_OBJECT: # pragma: no cover logger.debug("LDAPPrincipals.raw_search: ldap.NO_SUCH_OBJECT") return [] if isinstance(results, tuple): results, cookie = results if attrlist is not None: _results = list() for _, att in results: try: principal_id = att[self._key_attr][0] except (KeyError, IndexError): continue aliased = self._alias_dict(att) for key in list(aliased.keys()): if key not in attrlist: del aliased[key] _results.append((principal_id, aliased)) results = _results else: results = [att[self._key_attr][0] for _, att in results] if cookie is not None: return results, cookie return results @default def search(self, criteria=None, attrlist=None, exact_match=False, or_search=False): result = [] cookie = '' while True: chunk, cookie = self.raw_search( criteria=criteria, attrlist=attrlist, exact_match=exact_match, or_search=or_search, page_size=self.context.ldap_session._props.page_size, cookie=cookie ) result += chunk if not cookie: break return result @default @locktree def create(self, pid, **kw): # XXX: mechanism for defining a target container if scope is SUBTREE # create principal with LDAPNode as context context = LDAPNode() principal = self.principal_factory( context, attraliaser=self.principal_attraliaser ) # ensure id on attributes kw['id'] = pid # avoid overwriting key attribute if given in kw if self._key_attr in kw: del kw[self._key_attr] # set additional attributes on principal for k, v in kw.items(): principal.attrs[k] = v # set principal to self self[pid] = principal # if setting principal has been successful, hook up principal context # to ldap tree rdn = u'{0}={1}'.format( self._rdn_attr, principal.context.attrs[self._rdn_attr] ) self.context[rdn] = context # return newly created principal return self[pid] def calculate_expired(expiresUnit, expires): """Return bool whether expired. """ if expires and expires not in ['99999', '-1']: # check expiration timestamp expires = int(expires) # XXX: maybe configurable? # shadow account specific # if self.expiresAttr == 'shadowExpire': # expires += int(user.attrs.get('shadowInactive', '0')) days = time.time() if expiresUnit == EXPIRATION_DAYS: # numer of days since epoch days /= 86400 if days >= expires: return True return False class LDAPUsers(LDAPPrincipals, UgmUsers): principal_factory = default(User) @override @locktree def __delitem__(self, key): user = self[key] try: groups = user.groups except AttributeError: groups = list() for group in groups: del group[user.name] parent = self.parent if parent and parent.rcfg is not None: for role in user.roles: user.remove_role(role) context = user.context del context.parent[context.name] del self.storage[key] @default def id_for_login(self, login): criteria = {self._login_attr: login} attrlist = [self._key_attr] res = self.context.search(criteria=criteria, attrlist=attrlist) if not res: return ensure_text(login) if len(res) > 1: # pragma: no cover msg = u'More than one principal with login "{0}" found.' logger.warning(msg.format(login)) return ensure_text(res[0][1][self._key_attr][0]) @default @debug def authenticate(self, login=None, pw=None, id=None): if id is not None: # bbb. deprecated usage login = id user_id = self.id_for_login(login) criteria = {self._key_attr: user_id} attrlist = ['dn'] if self.expiresAttr: attrlist.append(self.expiresAttr) try: res = self.context.search(criteria=criteria, attrlist=attrlist) except ldap.NO_SUCH_OBJECT: # pragma: no cover return False if not res: return False if len(res) > 1: # pragma: no cover msg = u'More than one principal with login "{0}" found.' logger.warning(msg.format(user_id)) if self.expiresAttr: expires = res[0][1].get(self.expiresAttr) expires = expires and expires[0] or None try: expired = calculate_expired(self.expiresUnit, expires) except ValueError: # unknown expires field data msg = ( u"Accound expiration flag for user '{0}' " u"contains unknown data" ) logger.error(msg.format(id)) return False if expired: return ACCOUNT_EXPIRED user_dn = res[0][1]['dn'] session = self.context.ldap_session authenticated = session.authenticate(user_dn, pw) return authenticated and user_id or False @default @debug def passwd(self, id, oldpw, newpw): user_id = self.id_for_login(id) criteria = {self._key_attr: user_id} attrlist = ['dn'] if self.expiresAttr: attrlist.append(self.expiresAttr) res = self.context.search(criteria=criteria, attrlist=attrlist) if not res: raise KeyError(id) if len(res) > 1: # pragma: no cover msg = u'More than one principal with login "{0}" found.' logger.warning(msg.format(user_id)) user_dn = res[0][1]['dn'] self.context.ldap_session.passwd(user_dn, oldpw, newpw) object_classes = self.context.child_defaults['objectClass'] user_node = self[user_id].context user_node.attrs.load() if 'sambaSamAccount' in object_classes: user_node.attrs['sambaNTPassword'] = sambaNTPassword(newpw) user_node.attrs['sambaLMPassword'] = sambaLMPassword(newpw) user_node() @plumbing( LDAPUsers, NodeChildValidate, Nodespaces, Adopt, Attributes, Nodify, ) class Users(object): pass def member_format(object_classes): for object_class in MEMBER_LOOKUP_BY_CLASS: if object_class in object_classes: return MEMBER_LOOKUP_BY_CLASS[object_class]['format'] raise Exception( u"Can not lookup member format for object-classes: {0}".format( object_classes, ) ) def member_attribute(object_classes): for object_class in MEMBER_LOOKUP_BY_CLASS: if object_class in object_classes: return MEMBER_LOOKUP_BY_CLASS[object_class]['attribute'] raise Exception( u"Can not lookup member attribute for object-classes: {0}".format( object_classes, ) ) class LDAPGroupsMapping(LDAPPrincipals, UgmGroups): @default @property def _member_format(self): return member_format(self.context.child_defaults['objectClass']) @default @property def _member_attribute(self): return member_attribute(self.context.child_defaults['objectClass']) @plumb def __init__(_next, self, props, cfg): mem_attr = member_attribute(cfg.objectClasses) cfg.attrmap[mem_attr] = mem_attr _next(self, props, cfg) @plumb def __setitem__(_next, self, key, value): # XXX: kick this, dummy member should be created by default value # callback if self._member_attribute not in value.attrs: value.attrs[self._member_attribute] = [] if self._member_format is FORMAT_UID: value.attrs[self._member_attribute].insert(0, 'nobody') else: value.attrs[self._member_attribute].insert(0, 'cn=nobody') _next(self, key, value) class LDAPGroups(LDAPGroupsMapping): principal_factory = default(Group) @override @locktree def __delitem__(self, key): key = ensure_text(key) group = self[key] parent = self.parent if parent and parent.rcfg is not None: for role in group.roles: group.remove_role(role) context = group.context del context.parent[context.name] del self.storage[key] @plumbing( LDAPGroups, NodeChildValidate, Nodespaces, Adopt, Attributes, Nodify, ) class Groups(object): pass class LDAPRole(LDAPGroupMapping, AliasedPrincipal): @default def related_principals(self, key): ugm = self.parent.parent if key.startswith('group:'): return ugm.groups return ugm.users @default @property def existing_member_ids(self): ugm = self.parent.parent users = ugm.users groups = ugm.groups ret = [key for key in users] for key in groups: ret.append('group:{}'.format(key)) return ret @default def translate_ids(self, members): if self._member_format == FORMAT_DN: ugm = self.parent.parent users = ugm.users groups = ugm.groups user_members = list() for dn in members: try: user_members.append(users.idbydn(dn, True)) except KeyError: pass group_members = list() for dn in members: try: group_members.append('group:{}'.format(groups.idbydn(dn, True))) except KeyError: pass members = user_members + group_members return members @default def translate_key(self, key): ret = None if self._member_format == FORMAT_DN: if key.startswith('group:'): key = key[6:] principals = self.parent.parent.groups else: principals = self.parent.parent.users # make sure principal is loaded principal = principals[key] ret = principal.context.DN elif self._member_format == FORMAT_UID: ret = key return ret @override @locktree def __getitem__(self, key): key = ensure_text(key) if key not in self: raise KeyError(key) principals = self.related_principals(key) if key.startswith('group:'): key = key[6:] return principals[key] @override @locktree def __delitem__(self, key): key = ensure_text(key) if key not in self: raise KeyError(key) principals = self.related_principals(key) if self._member_format == FORMAT_DN: real_key = key if key.startswith('group:'): real_key = key[6:] val = principals[real_key].context.DN elif self._member_format == FORMAT_UID: val = key # self.context.attrs[self._member_attribute].remove won't work here # issue in LDAPNodeAttributes, does not recognize changed this way. members = self.context.attrs[self._member_attribute] members.remove(val) self.context.attrs[self._member_attribute] = members # XXX: call here immediately? self.context() @plumbing( LDAPRole, NodeChildValidate, Nodespaces, Attributes, Nodify, ) class Role(object): pass class LDAPRoles(LDAPGroupsMapping): principal_factory = default(Role) @plumbing( LDAPRoles, NodeChildValidate, Nodespaces, Adopt, Attributes, Nodify, ) class Roles(object): pass class LDAPUgm(UgmBase): @override def __init__(self, name=None, parent=None, props=None, ucfg=None, gcfg=None, rcfg=None): """ :param name: Node name. :param parent: Node parent. :param props: LDAPProps instance. :param ucfg: UsersConfig instance. :param gcfg: GroupsConfig instance. :param rcfg: RolesConfig instance. """ self.__name__ = name self.__parent__ = parent self.props = props self.ucfg = ucfg self.gcfg = gcfg self.rcfg = rcfg @override @locktree def __getitem__(self, key): if key not in self.storage: if key == 'users': self['users'] = Users(self.props, self.ucfg) elif key == 'groups': self['groups'] = Groups(self.props, self.gcfg) return self.storage[key] @override @locktree def __setitem__(self, key, value): self._chk_key(key) self.storage[key] = value @override def __delitem__(self, key): raise NotImplementedError(u"Operation forbidden on this node.") @override def __iter__(self): for key in ['users', 'groups']: yield key @override @locktree def __call__(self): self.users() self.groups() roles_storage = self.roles_storage if roles_storage is not None: roles_storage() @default @property def users(self): return self['users'] @default @property def groups(self): return self['groups'] @default @property def roles_storage(self): return self._roles @default @locktree def roles(self, principal): uid = self._principal_id(principal) roles = self._roles ret = list() if roles is None: # XXX: logging return ret for role in roles.values(): if uid in role.member_ids: ret.append(role.name) return ret # XXX: Below is the logic for querying roles from LDAP via query. Integrate # to use this logic whenever roles are queried and the roles node is # unchanged. # attribute = roles._member_attribute # format = roles._member_format # if format == FORMAT_DN: # criteria = { attribute: principal.context.DN } # elif format == FORMAT_UID: # # XXX: this is hacky. we really need member relations!!! # if isinstance(principal, Group): # attrkey = principal.parent.context._rdn_attr # value = 'group:%s' % principal.context.attrs[attrkey] # else: # value = principal.context.attrs['uid'] # criteria = { attribute: value } # return roles.context.search(criteria=criteria) @default @locktree def add_role(self, rolename, principal): uid = self._principal_id(principal) roles = self._roles if roles is None: raise ValueError(u"Role support not configured properly") role = roles.get(rolename) if role is None: role = roles.create(rolename) if uid in role.member_ids: raise ValueError(u"Principal already has role '{}'".format(rolename)) role.add(uid) @default @locktree def remove_role(self, rolename, principal): uid = self._principal_id(principal) roles = self._roles if roles is None: raise ValueError(u"Role support not configured properly") role = roles.get(rolename) if role is None: raise ValueError(u"Role not exists '{}'".format(rolename)) if uid not in role.member_ids: raise ValueError(u"Principal does not has role '{}'".format(rolename)) del role[uid] if not role.member_ids: parent = role.parent del parent[rolename] @default @property def _roles(self): if 'roles' not in self.storage: try: roles = Roles(self.props, self.rcfg) except Exception: # XXX: logging return None roles.__name__ = 'roles' roles.__parent__ = self self.storage['roles'] = roles return self.storage['roles'] @default def _principal_id(self, principal): uid = principal.name if isinstance(principal, Group): uid = 'group:{}'.format(uid) return uid @default def _chk_key(self, key): if key not in ['users', 'groups']: raise KeyError(key) @plumbing( LDAPUgm, NodeChildValidate, Nodespaces, Adopt, Attributes, DefaultInit, Nodify, OdictStorage, ) class Ugm(object): def invalidate(self, key=None): if key is None: self.storage.clear() return del self.storage[key]
the-stack_0_11192
import pytest from diot import Diot from pyppl import Proc from pyppl.job import Job from pyppl.utils import fs from pyppl.logger import logger, LEVEL_GROUPS from pyppl_echo import expand_numbers, fileflush, echo_jobs_converter, echo_types_converter, flush, logger_init, job_poll @pytest.fixture def fd_fileflush(tmp_path): tmpfile = tmp_path / 'fileflush.txt' tmpfile.write_text('') with open(tmpfile, 'r') as fd_read, open(tmpfile, 'a') as fd_append: yield fd_read, fd_append @pytest.fixture(params = range(5)) def fixt_fileflush(request, fd_fileflush): fd_read, fd_append = fd_fileflush if request.param == 0: return Diot(filed = fd_read, residue = '', expt_lines = [], expt_residue = '') if request.param == 1: fd_append.write('abcde') fd_append.flush() return Diot(filed = fd_read, residue = '', expt_lines = [], expt_residue = 'abcde') if request.param == 2: fd_append.write('ccc\ne1') fd_append.flush() return Diot(filed = fd_read, residue = 'abcde', expt_lines = ['abcdeccc\n'], expt_residue = 'e1') if request.param == 3: fd_append.write('ccc') fd_append.flush() return Diot(filed = fd_read, residue = '', end = True, expt_lines = ['ccc\n'], expt_residue = '') if request.param == 4: return Diot(filed = fd_read, residue = 'end', end = True, expt_lines = ['end\n'], expt_residue = '') @pytest.fixture def job0(tmp_path): job = Job(0, Proc( workdir = tmp_path/'pJob', dirsig = True, config = Diot(echo_jobs=0, types='stderr') )) # pretend it's running job.proc.runtime_config = {'dirsig': True} fs.mkdir(job.dir) (job.dir / 'job.script').write_text('') return job @pytest.mark.parametrize('numbers,expt',[ ('1,2,3,4', [1,2,3,4]), ('1-4', [1,2,3,4]), ('1-4,7,8-10', [1,2,3,4,7,8,9,10]), ]) def test_expand_numbers(numbers, expt): assert expand_numbers(numbers) == expt def test_fileflush(fixt_fileflush): lines, residue = fileflush( fixt_fileflush.filed, fixt_fileflush.residue, fixt_fileflush.get('end', False)) assert lines == fixt_fileflush.expt_lines assert residue == fixt_fileflush.expt_residue @pytest.mark.parametrize('jobs,expected', [ ([], []), ([0,1], [0,1]), (0, [0]), ('0,1', [0,1]), ]) def test_echo_jobs_converter(jobs, expected): assert echo_jobs_converter(jobs) == expected @pytest.mark.parametrize('types,expected', [ ('', {'stderr': None, 'stdout': None}), ('stderr', {'stderr': None}), ({'all': '^log'}, {'stderr': '^log', 'stdout': '^log'}), ]) def test_echo_types_converter(types, expected): assert echo_types_converter(types) == expected def test_flush(job0, caplog): job0.proc.config.echo_jobs = [1] flush(job0) assert '' == caplog.text assert job0.config.echo_lastout == '' assert job0.config.echo_lasterr == '' job0.proc.config.echo_jobs = [0] job0.proc.config.echo_types = { 'stdout': '', 'stderr': r'^[^&].+$'} (job0.dir / 'job.stdout').write_text('out: line1\nout: line2') (job0.dir / 'job.stderr').write_text('err: line1\nerr: line2') caplog.clear() flush(job0) assert 'out: line1' in caplog.text assert 'err: line1' in caplog.text assert 'line2' not in caplog.text assert job0.config.echo_lastout == 'out: line2' assert job0.config.echo_lasterr == 'err: line2' (job0.dir / 'job.stderr').write_text( 'err: line1\nerr: line23\n& ignored\npyppl.logger.abc\npyppl.logger.msg: hello world!') caplog.clear() job_poll(job0, status = 'done') #flush(job0, end = True) assert 'err: line23' in caplog.text assert '_MSG' in caplog.text assert '_ABC' in caplog.text assert 'hello world' in caplog.text assert 'ignored' not in caplog.text assert job0.config.echo_lastout == '' assert job0.config.echo_lasterr == '' def test_hook(): logger_init(logger) assert 'STDOUT' in LEVEL_GROUPS['INFO'] assert 'STDERR' in LEVEL_GROUPS['INFO']
the-stack_0_11193
#!/usr/bin/python # ----------------------------------------------------------------------------- # # Copyright 2013-2019 lispers.net - Dino Farinacci <[email protected]> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ----------------------------------------------------------------------------- # # ltr.py - LISP EID Traceroute Client - Trace the encap/decap paths # # Usage: python ltr.py [-s <source-eid>] <destination-EID | DNS-name> # # -s: Optional source EID. # <destination-EID>: required parameter [<iid>] in front is optional # # This application is run on an xTR. Typically a ITR or RTR, where the # encapsulator adds to the ltr message with the RLOC the ITR is encapsulating # to. Then the decapsulator will decapsulate and swap the source and # destination addresses to return the packet to the source-EID (running the # client program). If the ETR is not the EID, then the packet will be re- # encapsulated in which more data is added to the ltr message. # # ltr messages run in UDP on port 2434 (4342 backwards) and are returned # to the client program. # # The LISP-Trace message takes the following path: # # (1) ltr sends LISP-TRACE packet from its EID to the EID of the ETR on # port 2434. It builds a type=9 packet with a nonce and an empty JSON field. # # (2) ITR will look up destination EID as part of forwarding logic and add # RLOC information to LISP-Trace message. The message is encapsulated to # the ETR. # # (3) The ETR (or RTR) will decap packet. It will add information to the LISP- # packet. If it is the destination EID, it will send the LISP-Trace packet # using itself as the source and the original source as the destination. # # (4) The local ITR will encapsulate the packet and add RLOC information to # the LISP-Trace packet. It encapsulates the return packet to the ETR. # # (5) The ETR decapsulates the packet and sends it to the ltr client so the # accumulated JSON data can be displayed for the user. # # This functionality works on a chain of encapsulating tunnels to give the # user what RLOCs are used and the arrival time of the packet. It allows an # ltr client to not only determine path and latency of the network, but if # the encapsulation paths are symmetric or asymmetric. # # If there an error along the path, the node detecting the error will return # the LISP-Trace packet to the RLOC of the originating ITR. # # The JSON format of an LISP-Trace packet is an array of dictionary arrays. # The array will typically have 2 elements, one from ltr source to destination # EID and one for the return path. Each dictionary array is keyed with "seid", # "deid", and "paths". The array "paths" is the node data that is appended # at each encapsulation hop. Note example below: # # [ # { "se" : "[<iid>]<orig-eid>", "de" : "[<iid>]<dest-eid>", "paths" : a # [ # { "n" : "ITR", "sr" : "<source-rloc>", "dr" : "<dest_rloc>", # "ets" : "<ts>", "hn" : "<hn>", "rtts" : [...], "hops" : [...] }, # { "n" : "RTR", "sr" : "<source-rloc>", "dr" : "<dest_rloc>", # "dts" : "<ts>", "hn" : "<hn>" }, # { "n" : "RTR", "sr" : "<source-rloc>", "dr" : "<dest_rloc>", # "ets" : "<ts>", "hn" : "<hn>", "rtts" : [...], "hops" : [...] }, # { "n" : "ETR", "sr" : "<source-rloc>", "dr" : "<dest_rloc>", # "ets" : "<ts>", "hn" : "<hn>" }, ... # ] }, # # { "se" : "[<iid>]<dest-eid>", "de" : "[<iid>]<orig-eid>", "paths" : # [ # { "n" : "ITR", "sr" : "<source-rloc>", "dr" : "<dest_rloc>", # "ets" : "<ts>", "hn" : "<hn>", "rtts" : [...], "hops" : [...] }, # { "n" : "RTR", "sr" : "<source-rloc>", "dr" : "<dest_rloc>", # "dts" : "<ts>", "hn" : "<hn>" }, # { "n" : "RTR", "sr" : "<source-rloc>", "dr" : "<dest_rloc>", # "ets" : "<ts>", "hn" : "<hn>", "rtts" : [...], "hops" : [...] }, # { "n" : "ETR", "sr" : "<source-rloc>", "dr" : "<dest_rloc>", # "ets" : "<ts>", "hn" : "<hn>" }, ... # ] } # ] # # Environment variable LISP_LTR_PORT is used to determine if the connection to # the LISP API is done with a particular port. And if the port has a minus # sign in front of it, it will use http rather https to connect to the # lispers.net API. Environment variables LISP_LTR_USER and LISP_LTR_PW are # used when lispers.net API is running with a password on username root. # #------------------------------------------------------------------------------ from __future__ import print_function from future import standard_library standard_library . install_aliases ( ) from builtins import hex import sys import struct import random import socket import json import time import os import binascii from subprocess import getoutput if 64 - 64: i11iIiiIii if 65 - 65: O0 / iIii1I11I1II1 % OoooooooOO - i1IIi if 73 - 73: II111iiii if 22 - 22: I1IiiI * Oo0Ooo / OoO0O00 . OoOoOO00 . o0oOOo0O0Ooo / I1ii11iIi11i if 48 - 48: oO0o / OOooOOo / I11i / Ii1I if 48 - 48: iII111i % IiII + I1Ii111 / ooOoO0o * Ii1I if 46 - 46: ooOoO0o * I11i - OoooooooOO II1iII1i = "https" oO0oIIII = 8080 if 59 - 59: i1IIi * i1IIi % OOooOOo + II111iiii II = os . getenv ( "LISP_LTR_PORT" ) if ( II != None ) : if ( II [ 0 ] == "-" ) : II1iII1i = "http" II = II [ 1 : : ] if 100 - 100: i1IIi . I1Ii111 / IiII * OoooooooOO + I11i * oO0o if ( II . isdigit ( ) == False ) : print ( "Invalid value for env variable LISP_LTR_PORT" ) exit ( 1 ) if 99 - 99: iII111i . OOooOOo / iIii1I11I1II1 * iIii1I11I1II1 oO0oIIII = int ( II ) if 11 - 11: oO0o / i1IIi % II111iiii - OoOoOO00 OOo = os . getenv ( "LISP_LTR_USER" ) Ii1IIii11 = os . getenv ( "LISP_LTR_PW" ) if ( OOo == None ) : OOo = "root" if ( Ii1IIii11 == None ) : Ii1IIii11 = "" if 55 - 55: iIii1I11I1II1 - I1IiiI . Ii1I * IiII * i1IIi / iIii1I11I1II1 OOo000 = 2434 if 82 - 82: I11i . I1Ii111 / IiII % II111iiii % iIii1I11I1II1 % IiII if 86 - 86: OoOoOO00 % I1IiiI if 80 - 80: OoooooooOO . I1IiiI if 87 - 87: oO0o / ooOoO0o + I1Ii111 - ooOoO0o . ooOoO0o / II111iiii if 11 - 11: I1IiiI % o0oOOo0O0Ooo - Oo0Ooo if 58 - 58: i11iIiiIii % I1Ii111 if 54 - 54: OOooOOo % O0 + I1IiiI - iII111i / I11i if 31 - 31: OoO0O00 + II111iiii if 13 - 13: OOooOOo * oO0o * I1IiiI if 55 - 55: II111iiii if 43 - 43: OoOoOO00 - i1IIi + I1Ii111 + Ii1I if 17 - 17: o0oOOo0O0Ooo if 64 - 64: Ii1I % i1IIi % OoooooooOO if 3 - 3: iII111i + O0 if 42 - 42: OOooOOo / i1IIi + i11iIiiIii - Ii1I if 78 - 78: OoO0O00 if 18 - 18: O0 - iII111i / iII111i + ooOoO0o % ooOoO0o - IiII if 62 - 62: iII111i - IiII - OoOoOO00 % i1IIi / oO0o if 77 - 77: II111iiii - II111iiii . I1IiiI / o0oOOo0O0Ooo if 14 - 14: I11i % O0 if 41 - 41: i1IIi + I1Ii111 + OOooOOo - IiII def oO ( rloc , port ) : OO0OOooOoO0Oo = socket . htonl ( 0x90000000 + port ) iiIIiIiIi = struct . pack ( "I" , OO0OOooOoO0Oo ) if 38 - 38: Ii1I / Oo0Ooo OooO0 = rloc . split ( "." ) II11iiii1Ii = int ( OooO0 [ 0 ] ) << 24 II11iiii1Ii += int ( OooO0 [ 1 ] ) << 16 II11iiii1Ii += int ( OooO0 [ 2 ] ) << 8 II11iiii1Ii += int ( OooO0 [ 3 ] ) iiIIiIiIi += struct . pack ( "I" , socket . htonl ( II11iiii1Ii ) ) if 70 - 70: oO0o / iIii1I11I1II1 % ooOoO0o % i11iIiiIii . I1IiiI O0o0Oo = random . randint ( 0 , ( 2 ** 64 ) - 1 ) iiIIiIiIi += struct . pack ( "Q" , O0o0Oo ) return ( O0o0Oo , iiIIiIiIi ) if 78 - 78: iIii1I11I1II1 - Ii1I * OoO0O00 + o0oOOo0O0Ooo + iII111i + iII111i if 11 - 11: iII111i - OoO0O00 % ooOoO0o % iII111i / OoOoOO00 - OoO0O00 if 74 - 74: iII111i * O0 if 89 - 89: oO0o + Oo0Ooo if 3 - 3: i1IIi / I1IiiI % I11i * i11iIiiIii / O0 * I11i if 49 - 49: oO0o % Ii1I + i1IIi . I1IiiI % I1ii11iIi11i if 48 - 48: I11i + I11i / II111iiii / iIii1I11I1II1 def i1iiI11I ( nonce , packet ) : if ( len ( packet ) < 12 ) : return ( False ) if 29 - 29: OoooooooOO iI = "II" I1i1I1II = struct . calcsize ( iI ) OO0OOooOoO0Oo , i1 = struct . unpack ( iI , packet [ : I1i1I1II ] ) packet = packet [ I1i1I1II : : ] if ( socket . ntohl ( OO0OOooOoO0Oo ) != 0x90000000 ) : print ( "Invalid LISP-Trace message" ) return ( { } ) if 48 - 48: O0 + O0 - I1ii11iIi11i . ooOoO0o / iIii1I11I1II1 if 77 - 77: i1IIi % OoOoOO00 - IiII + ooOoO0o iI = "Q" I1i1I1II = struct . calcsize ( iI ) I11iiIiii = struct . unpack ( iI , packet [ : I1i1I1II ] ) [ 0 ] packet = packet [ I1i1I1II : : ] if 1 - 1: II111iiii - I11i / I11i if 46 - 46: Ii1I * OOooOOo - OoO0O00 * oO0o - I1Ii111 if 83 - 83: OoooooooOO if 31 - 31: II111iiii - OOooOOo . I1Ii111 % OoOoOO00 - O0 if ( I11iiIiii != nonce ) : print ( "Invalid nonce, sent {}, received {}" . format ( nonce , I11iiIiii ) ) return ( { } ) if 4 - 4: II111iiii / ooOoO0o . iII111i if 58 - 58: OOooOOo * i11iIiiIii / OoOoOO00 % I1Ii111 - I1ii11iIi11i / oO0o if ( len ( packet ) == 0 ) : print ( "No JSON data in payload" ) return ( { } ) if 50 - 50: I1IiiI if 34 - 34: I1IiiI * II111iiii % iII111i * OoOoOO00 - I1IiiI if 33 - 33: o0oOOo0O0Ooo + OOooOOo * OoO0O00 - Oo0Ooo / oO0o % Ii1I if 21 - 21: OoO0O00 * iIii1I11I1II1 % oO0o * i1IIi if 16 - 16: O0 - I1Ii111 * iIii1I11I1II1 + iII111i try : Ii11iII1 = json . loads ( packet ) except : print ( "Invalid JSON data: '{}'" . format ( packet ) ) return ( { } ) if 51 - 51: II111iiii * OoO0O00 % o0oOOo0O0Ooo * II111iiii % I1ii11iIi11i / ooOoO0o return ( Ii11iII1 ) if 49 - 49: o0oOOo0O0Ooo if 35 - 35: OoOoOO00 - OoooooooOO / I1ii11iIi11i % i1IIi if 78 - 78: I11i if 71 - 71: OOooOOo + ooOoO0o % i11iIiiIii + I1ii11iIi11i - IiII if 88 - 88: OoOoOO00 - OoO0O00 % OOooOOo if 16 - 16: I1IiiI * oO0o % IiII if 86 - 86: I1IiiI + Ii1I % i11iIiiIii * oO0o . ooOoO0o * I11i def i1I11i1iI ( jd ) : for I1ii1Ii1 in jd : iii11 = I1ii1Ii1 [ "se" ] if ( jd . index ( I1ii1Ii1 ) == 0 ) else oOOOOo0 ( I1ii1Ii1 [ "se" ] ) iiII1i1 = oOOOOo0 ( I1ii1Ii1 [ "de" ] ) if ( jd . index ( I1ii1Ii1 ) == 0 ) else I1ii1Ii1 [ "de" ] if 66 - 66: OOooOOo - I11i print ( "Path from {} to {}:" . format ( iii11 , iiII1i1 ) ) for I1i1III in I1ii1Ii1 [ "paths" ] : if ( "ets" in I1i1III ) : OO0O0OoOO0 = I1i1III [ "ets" ] iiiI1I11i1 = "encap" if 49 - 49: I1IiiI % ooOoO0o . ooOoO0o . I11i * ooOoO0o if ( "dts" in I1i1III ) : OO0O0OoOO0 = I1i1III [ "dts" ] iiiI1I11i1 = "decap" if 97 - 97: Ii1I + o0oOOo0O0Ooo . OOooOOo + I1ii11iIi11i % iII111i oo0O = I1i1III [ "hn" ] o0 = I1i1III [ "dr" ] if ( o0 . find ( "?" ) != - 1 ) : o0 = oo0oOo ( o0 ) if 89 - 89: OoOoOO00 print ( " {} {}: {} -> {}, ts {}, node {}" . format ( I1i1III [ "n" ] , iiiI1I11i1 , I1i1III [ "sr" ] , o0 , OO0O0OoOO0 , OO0oOoOO0oOO0 ( oo0O ) ) ) if 86 - 86: OOooOOo if 55 - 55: Oo0Ooo + iIii1I11I1II1 / OoOoOO00 * oO0o - i11iIiiIii - Ii1I if ( "rtts" in I1i1III and "hops" in I1i1III and "lats" in I1i1III ) : ii1ii1ii = json . dumps ( I1i1III [ "rtts" ] ) ii1ii1ii = ii1ii1ii . replace ( "-1" , "?" ) oooooOoo0ooo = json . dumps ( I1i1III [ "hops" ] ) oooooOoo0ooo = oooooOoo0ooo . replace ( "u" , "" ) oooooOoo0ooo = oooooOoo0ooo . replace ( "'" , "" ) oooooOoo0ooo = oooooOoo0ooo . replace ( '"' , "" ) I1I1IiI1 = json . dumps ( I1i1III [ "lats" ] ) I1I1IiI1 = I1I1IiI1 . replace ( "u" , "" ) I1I1IiI1 = I1I1IiI1 . replace ( "'" , "" ) I1I1IiI1 = I1I1IiI1 . replace ( '"' , "" ) print ( " " , end = ' ' ) print ( "recent-rtts {}, recent-hops {}" . format ( ii1ii1ii , oooooOoo0ooo ) ) print ( " recent-latencies {}" . format ( I1I1IiI1 ) ) if 5 - 5: o0oOOo0O0Ooo * ooOoO0o + OoOoOO00 . OOooOOo + OoOoOO00 if 91 - 91: O0 print ( "" ) if 61 - 61: II111iiii if 64 - 64: ooOoO0o / OoOoOO00 - O0 - I11i if 86 - 86: I11i % OoOoOO00 / I1IiiI / OoOoOO00 if 42 - 42: OoO0O00 if 67 - 67: I1Ii111 . iII111i . O0 if 10 - 10: I1ii11iIi11i % I1ii11iIi11i - iIii1I11I1II1 / OOooOOo + Ii1I if 87 - 87: oO0o * I1ii11iIi11i + OOooOOo / iIii1I11I1II1 / iII111i if 37 - 37: iII111i - ooOoO0o * oO0o % i11iIiiIii - I1Ii111 def o0oO ( eid ) : IIiIi1iI = True if 35 - 35: Ii1I % O0 - O0 if 16 - 16: II111iiii % OoOoOO00 - II111iiii + Ii1I if 12 - 12: OOooOOo / OOooOOo + i11iIiiIii if 40 - 40: I1IiiI . iIii1I11I1II1 / I1IiiI / i11iIiiIii if 75 - 75: I11i + o0oOOo0O0Ooo O0i1II1Iiii1I11 = eid . find ( "]" ) if ( O0i1II1Iiii1I11 == - 1 ) : IIII = "0" else : IIiIi1iI = False IIII = eid [ 1 : O0i1II1Iiii1I11 ] eid = eid [ O0i1II1Iiii1I11 + 1 : : ] if 32 - 32: OoooooooOO / iIii1I11I1II1 - o0oOOo0O0Ooo if 91 - 91: iII111i % i1IIi % iIii1I11I1II1 if 20 - 20: OOooOOo % Ii1I / Ii1I + Ii1I if 45 - 45: oO0o - IiII - OoooooooOO - OoO0O00 . II111iiii / O0 if 51 - 51: O0 + iII111i if ( eid . find ( ":" ) == - 1 ) : try : eid = socket . gethostbyname ( eid ) except : pass if 8 - 8: oO0o * OoOoOO00 - Ii1I - OoO0O00 * OOooOOo % I1IiiI return ( IIII , eid , IIiIi1iI ) if 48 - 48: O0 if 11 - 11: I11i + OoooooooOO - OoO0O00 / o0oOOo0O0Ooo + Oo0Ooo . II111iiii if 41 - 41: Ii1I - O0 - O0 if 68 - 68: OOooOOo % I1Ii111 if 88 - 88: iIii1I11I1II1 - ooOoO0o + OOooOOo if 40 - 40: I1IiiI * Ii1I + OOooOOo % iII111i if 74 - 74: oO0o - Oo0Ooo + OoooooooOO + I1Ii111 / OoOoOO00 def i1I1iI1iIi111i ( eid , eid_prefix , ml ) : iiIi1IIi1I = 2 ** ml - 1 if 84 - 84: ooOoO0o * II111iiii + Oo0Ooo O0ooO0Oo00o = eid . split ( "." ) if ( len ( O0ooO0Oo00o ) == 1 ) : O0ooO0Oo00o = eid . split ( ":" ) if ( len ( O0ooO0Oo00o ) == 1 ) : return ( False ) if 77 - 77: iIii1I11I1II1 * OoO0O00 if ( len ( O0ooO0Oo00o ) == 4 ) : iiIi1IIi1I = iiIi1IIi1I << ( 32 - ml ) eid = int ( O0ooO0Oo00o [ 0 ] ) << 24 | int ( O0ooO0Oo00o [ 1 ] ) << 16 | int ( O0ooO0Oo00o [ 2 ] ) << 8 | int ( O0ooO0Oo00o [ 3 ] ) O0ooO0Oo00o = eid & iiIi1IIi1I eid = "{}.{}.{}.{}" . format ( ( O0ooO0Oo00o >> 24 ) & 0xff , ( O0ooO0Oo00o >> 16 ) & 0xff , ( O0ooO0Oo00o >> 8 ) & 0xff , O0ooO0Oo00o & 0xff ) else : iiIi1IIi1I = iiIi1IIi1I << ( 128 - ml ) eid = socket . inet_pton ( socket . AF_INET6 , eid ) eid = int ( binascii . hexlify ( eid ) , 16 ) O0ooO0Oo00o = eid & iiIi1IIi1I eid = binascii . unhexlify ( hex ( O0ooO0Oo00o ) [ 2 : - 1 ] ) eid = socket . inet_ntop ( socket . AF_INET6 , eid ) if 95 - 95: I1IiiI + i11iIiiIii return ( eid == eid_prefix ) if 6 - 6: ooOoO0o / i11iIiiIii + iII111i * oO0o if 80 - 80: II111iiii if 83 - 83: I11i . i11iIiiIii + II111iiii . o0oOOo0O0Ooo * I11i if 53 - 53: II111iiii if 31 - 31: OoO0O00 if 80 - 80: I1Ii111 . i11iIiiIii - o0oOOo0O0Ooo if 25 - 25: OoO0O00 if 62 - 62: OOooOOo + O0 if 98 - 98: o0oOOo0O0Ooo if 51 - 51: Oo0Ooo - oO0o + II111iiii * Ii1I . I11i + oO0o def OoO0o ( match_iid , match_eid , user , pw , http , port , v4v6 ) : oO0o0Ooooo = ( "curl --silent --insecure -u {}:{} {}://localhost:{}/lisp/" + "api/data/database-mapping" ) . format ( user , pw , http , port ) if 94 - 94: o0oOOo0O0Ooo * Ii1I / Oo0Ooo / Ii1I oO0 = getoutput ( oO0o0Ooooo ) if 75 - 75: ooOoO0o + OoOoOO00 + o0oOOo0O0Ooo * I11i % oO0o . iII111i try : oOI1Ii1I1 = json . loads ( oO0 ) except : return ( None , None , None , None ) if 28 - 28: O0 * Oo0Ooo - OOooOOo % iIii1I11I1II1 * Ii1I - i11iIiiIii if 7 - 7: Oo0Ooo + oO0o - I1Ii111 % Ii1I + I1ii11iIi11i for ooo0OOOoo in oOI1Ii1I1 : if ( ( "eid-prefix" in ooo0OOOoo ) == False ) : continue I1Ii1 = ooo0OOOoo [ "eid-prefix" ] if 46 - 46: O0 + iII111i % I1IiiI / o0oOOo0O0Ooo . IiII * I11i if 93 - 93: o0oOOo0O0Ooo % i1IIi . Ii1I . i11iIiiIii if 56 - 56: I1ii11iIi11i % O0 - I1IiiI if 100 - 100: Ii1I - O0 % oO0o * OOooOOo + I1IiiI if 88 - 88: OoooooooOO - OoO0O00 * O0 * OoooooooOO . OoooooooOO if ( I1Ii1 . count ( "'" ) == 2 ) : continue if ( I1Ii1 . count ( "." ) != 3 and I1Ii1 . find ( ":" ) == - 1 ) : continue if 33 - 33: I1Ii111 + iII111i * oO0o / iIii1I11I1II1 - I1IiiI I1Ii1 , O0oO = I1Ii1 . split ( "/" ) IIII , I1Ii1 , IIiIi1iI = o0oO ( I1Ii1 ) if ( v4v6 and I1Ii1 . find ( "." ) == - 1 ) : continue if ( v4v6 == False and I1Ii1 . find ( ":" ) == - 1 ) : continue if 73 - 73: I1ii11iIi11i * i11iIiiIii % oO0o . I1ii11iIi11i i1 = ooo0OOOoo [ "rlocs" ] [ 0 ] [ "rloc" ] OOOOo0 = "translated-rloc" in ooo0OOOoo [ "rlocs" ] [ 0 ] if 49 - 49: II111iiii % O0 . OoOoOO00 + oO0o / I1IiiI if ( match_iid == None ) : return ( IIII , I1Ii1 , i1 , OOOOo0 ) if 72 - 72: ooOoO0o * Oo0Ooo . I1IiiI - II111iiii + i1IIi iIi1ii = i1I1iI1iIi111i ( match_eid , I1Ii1 , int ( O0oO ) ) if ( match_iid == IIII and iIi1ii ) : return ( None , None , i1 , OOOOo0 ) if 58 - 58: OoOoOO00 % o0oOOo0O0Ooo if 50 - 50: I1Ii111 . o0oOOo0O0Ooo return ( None , None , None , None ) if 97 - 97: O0 + OoOoOO00 if 89 - 89: o0oOOo0O0Ooo + OoO0O00 * I11i * Ii1I if 37 - 37: OoooooooOO - O0 - o0oOOo0O0Ooo if 77 - 77: OOooOOo * iIii1I11I1II1 if 98 - 98: I1IiiI % Ii1I * OoooooooOO if 51 - 51: iIii1I11I1II1 . OoOoOO00 / oO0o + o0oOOo0O0Ooo if 33 - 33: ooOoO0o . II111iiii % iII111i + o0oOOo0O0Ooo def oO00O000oO0 ( user , pw , http , port ) : oO0o0Ooooo = ( "curl --silent --insecure -u {}:{} {}://localhost:{}/lisp/" + "api/data/map-cache" ) . format ( user , pw , http , port ) if 79 - 79: I11i - OoooooooOO - oO0o - iIii1I11I1II1 * OOooOOo oO0 = getoutput ( oO0o0Ooooo ) if 4 - 4: i11iIiiIii . OoooooooOO / OoO0O00 % I1Ii111 % I11i * O0 try : oOI1Ii1I1 = json . loads ( oO0 ) except : return ( [ ] ) if 14 - 14: OOooOOo / o0oOOo0O0Ooo if 32 - 32: I1IiiI * Oo0Ooo O0OooOo0o = [ ] for ooo0OOOoo in oOI1Ii1I1 : if ( "group-prefix" in ooo0OOOoo ) : continue if ( ( "eid-prefix" in ooo0OOOoo ) == False ) : continue if ( ooo0OOOoo [ "eid-prefix" ] != "0.0.0.0/0" ) : continue if 29 - 29: I1IiiI % I1IiiI for i1 in ooo0OOOoo [ "rloc-set" ] : if ( ( "rloc-name" in i1 ) == False ) : continue if ( i1 [ "rloc-name" ] != "RTR" ) : continue if ( ( "address" in i1 ) == False ) : continue O0OooOo0o . append ( i1 [ "address" ] ) if 94 - 94: iIii1I11I1II1 / Oo0Ooo % iII111i * iII111i * II111iiii if 29 - 29: OoO0O00 + OoOoOO00 / o0oOOo0O0Ooo / OOooOOo * iIii1I11I1II1 return ( O0OooOo0o ) if 62 - 62: OOooOOo / oO0o - OoO0O00 . I11i if 11 - 11: I1ii11iIi11i . OoO0O00 * IiII * OoooooooOO + ooOoO0o if 33 - 33: O0 * o0oOOo0O0Ooo - I1Ii111 % I1Ii111 if 18 - 18: I1Ii111 / Oo0Ooo * I1Ii111 + I1Ii111 * i11iIiiIii * I1ii11iIi11i if 11 - 11: ooOoO0o / OoOoOO00 - IiII * OoooooooOO + OoooooooOO . OoOoOO00 if 26 - 26: Ii1I % I1ii11iIi11i if 76 - 76: IiII * iII111i def oOOOOo0 ( string ) : return ( "\033[1m" + string + "\033[0m" ) if 52 - 52: OOooOOo if 19 - 19: I1IiiI if 25 - 25: Ii1I / ooOoO0o if 31 - 31: OOooOOo . O0 % I1IiiI . o0oOOo0O0Ooo + IiII if 71 - 71: I1Ii111 . II111iiii if 62 - 62: OoooooooOO . I11i if 61 - 61: OoOoOO00 - OOooOOo - i1IIi def OO0oOoOO0oOO0 ( string ) : return ( "\033[94m" + oOOOOo0 ( string ) + "\033[0m" ) if 25 - 25: O0 * I11i + I1ii11iIi11i . o0oOOo0O0Ooo . o0oOOo0O0Ooo if 58 - 58: I1IiiI if 53 - 53: i1IIi if 59 - 59: o0oOOo0O0Ooo if 81 - 81: OoOoOO00 - OoOoOO00 . iII111i if 73 - 73: I11i % i11iIiiIii - I1IiiI if 7 - 7: O0 * i11iIiiIii * Ii1I + ooOoO0o % OoO0O00 - ooOoO0o def oo0oOo ( string ) : return ( "\033[91m" + oOOOOo0 ( string ) + "\033[0m" ) if 39 - 39: Oo0Ooo * OOooOOo % OOooOOo - OoooooooOO + o0oOOo0O0Ooo - I11i if 23 - 23: i11iIiiIii if 30 - 30: o0oOOo0O0Ooo - i1IIi % II111iiii + I11i * iIii1I11I1II1 if 81 - 81: IiII % i1IIi . iIii1I11I1II1 if 4 - 4: i11iIiiIii % OoO0O00 % i1IIi / IiII if 6 - 6: iII111i / I1IiiI % OOooOOo - I1IiiI if 31 - 31: OOooOOo if 23 - 23: I1Ii111 . IiII def OO0000o ( deid , v4v6 ) : if ( v4v6 ) : i1I1i1 = int ( deid . split ( "." ) [ 0 ] ) if ( i1I1i1 < 224 or i1I1i1 >= 240 ) : return else : if ( deid [ 0 : 2 ] . lower ( ) != "ff" ) : return if 81 - 81: ooOoO0o - iIii1I11I1II1 - i1IIi / I1Ii111 - O0 * I11i print ( "Multicast EID not supported" ) exit ( 1 ) if 20 - 20: oO0o % IiII if 19 - 19: I1ii11iIi11i % IiII + ooOoO0o / I1Ii111 . ooOoO0o if 12 - 12: i1IIi + i1IIi - I1ii11iIi11i * Oo0Ooo % Oo0Ooo - II111iiii if 52 - 52: ooOoO0o . iII111i + I1Ii111 if 38 - 38: i1IIi - II111iiii . I1Ii111 if 58 - 58: I1IiiI . iII111i + OoOoOO00 if 66 - 66: iII111i / oO0o * OoooooooOO + OoooooooOO % I11i if ( "-s" in sys . argv ) : IIii1111 = len ( sys . argv ) != 4 else : IIii1111 = len ( sys . argv ) != 2 if 42 - 42: I11i / o0oOOo0O0Ooo . oO0o + oO0o % OoOoOO00 + i11iIiiIii if ( IIii1111 ) : print ( "Usage: python ltr.py [-s <source-eid>] <destination-EID | DNS-name>" ) exit ( 1 ) if 56 - 56: o0oOOo0O0Ooo if 28 - 28: iII111i . iII111i % iIii1I11I1II1 * iIii1I11I1II1 . o0oOOo0O0Ooo / iII111i iII1i1 , O0oOOoooOO0O , IIiIi1iI = o0oO ( sys . argv [ - 1 ] ) if ( iII1i1 == None ) : print ( "<destinaton-eid> parse error" ) exit ( 1 ) if 86 - 86: o0oOOo0O0Ooo i1Iii11Ii1i1 = O0oOOoooOO0O . find ( ":" ) == - 1 if 59 - 59: Oo0Ooo % OoooooooOO . iII111i / IiII + I1IiiI if 76 - 76: ooOoO0o if 73 - 73: O0 * iII111i + Ii1I + ooOoO0o if 40 - 40: II111iiii . OoOoOO00 * I1Ii111 + OOooOOo + OOooOOo if 9 - 9: I11i % OoooooooOO . oO0o % I11i OO0000o ( O0oOOoooOO0O , i1Iii11Ii1i1 ) if 32 - 32: i11iIiiIii if 31 - 31: iIii1I11I1II1 / OoO0O00 / I1ii11iIi11i if 41 - 41: Oo0Ooo if 10 - 10: Oo0Ooo / Oo0Ooo / I1Ii111 . I1Ii111 if ( "-s" in sys . argv ) : O0i1II1Iiii1I11 = sys . argv . index ( "-s" ) + 1 OOoo , iIIiiiI , IIiIi1iI = o0oO ( sys . argv [ O0i1II1Iiii1I11 ] ) if ( OOoo == None ) : print ( "-s <source-eid> parse error" ) exit ( 1 ) if 60 - 60: I1IiiI . I1Ii111 if ( IIiIi1iI ) : OOoo = None IiI111ii1ii , O0OOo , i1 , OOOOo0 = OoO0o ( OOoo , iIIiiiI , OOo , Ii1IIii11 , II1iII1i , oO0oIIII , i1Iii11Ii1i1 ) if ( i1 == None ) : print ( "[{}]{} not a local EID, maybe lispers.net API pw/port wrong" . format ( OOoo , iIIiiiI ) ) if 38 - 38: iIii1I11I1II1 + I1ii11iIi11i - OOooOOo - ooOoO0o - OoOoOO00 exit ( 1 ) if 71 - 71: OOooOOo / Ii1I % OoO0O00 else : OOoo , iIIiiiI , i1 , OOOOo0 = OoO0o ( None , None , OOo , Ii1IIii11 , II1iII1i , oO0oIIII , i1Iii11Ii1i1 ) if ( OOoo == None ) : print ( "Could not find local EID, maybe lispers.net API pw/port wrong?" ) exit ( 1 ) if 50 - 50: OOooOOo / Ii1I % ooOoO0o . OoOoOO00 if 41 - 41: OOooOOo * Ii1I - IiII + o0oOOo0O0Ooo if 64 - 64: Ii1I if 66 - 66: i11iIiiIii - OOooOOo * Oo0Ooo if 76 - 76: i11iIiiIii + o0oOOo0O0Ooo / I1ii11iIi11i - OoO0O00 - Ii1I + I1ii11iIi11i if 51 - 51: iIii1I11I1II1 . ooOoO0o + iIii1I11I1II1 iII1i1 = OOoo if iII1i1 == "0" else iII1i1 if ( iII1i1 != OOoo ) : print ( "Instance-IDs must be the same for source and destination EIDs" ) exit ( 1 ) if 95 - 95: I1IiiI if 46 - 46: OoOoOO00 + OoO0O00 if 70 - 70: iII111i / iIii1I11I1II1 if 85 - 85: OoooooooOO % i1IIi * OoooooooOO / I1ii11iIi11i if 96 - 96: OoooooooOO + oO0o iiII1i11i = socket . socket ( socket . AF_INET6 , socket . SOCK_DGRAM ) iiII1i11i . bind ( ( "0::0" , 0 ) ) iiII1i11i . settimeout ( 3 ) II = iiII1i11i . getsockname ( ) [ 1 ] if 11 - 11: I1IiiI / II111iiii + o0oOOo0O0Ooo * I1ii11iIi11i - I1ii11iIi11i - I1IiiI if 85 - 85: I11i % oO0o / iIii1I11I1II1 . iIii1I11I1II1 if 31 - 31: o0oOOo0O0Ooo % OoO0O00 if 14 - 14: oO0o / oO0o % ooOoO0o O0o0Oo , iiIIiIiIi = oO ( i1 , II ) if 56 - 56: I1IiiI . O0 + Oo0Ooo if 1 - 1: iII111i if 97 - 97: OOooOOo + iII111i + O0 + i11iIiiIii if 77 - 77: o0oOOo0O0Ooo / OoooooooOO if ( OOOOo0 ) : O0OooOo0o = oO00O000oO0 ( OOo , Ii1IIii11 , II1iII1i , oO0oIIII ) for IIii11I1i1I in O0OooOo0o : print ( "Send NAT-traversal LISP-Trace to RTR {} ..." . format ( IIii11I1i1I ) ) iiII1i11i . sendto ( iiIIiIiIi , ( "::ffff:" + IIii11I1i1I , OOo000 ) ) if 99 - 99: iII111i if 76 - 76: OoO0O00 * I1IiiI if 82 - 82: Ii1I * iII111i / I1ii11iIi11i print ( "Send round-trip LISP-Trace between EIDs [{}]{} and [{}]{} ..." . format ( OOoo , iIIiiiI , iII1i1 , O0oOOoooOO0O ) ) if 36 - 36: OoooooooOO - i1IIi . O0 / II111iiii + o0oOOo0O0Ooo if 33 - 33: II111iiii / ooOoO0o * O0 % Ii1I * I1Ii111 O0o = O0oOOoooOO0O if ( O0oOOoooOO0O . find ( ":" ) != - 1 ) else "::ffff:" + O0oOOoooOO0O OO0O0OoOO0 = time . time ( ) if 72 - 72: OOooOOo % I1ii11iIi11i + OoO0O00 / oO0o + IiII if 10 - 10: I1Ii111 / ooOoO0o + i11iIiiIii / Ii1I if 74 - 74: OOooOOo + O0 + i1IIi - i1IIi + II111iiii if 83 - 83: I1ii11iIi11i - I1IiiI + OOooOOo try : iiII1i11i . sendto ( iiIIiIiIi , ( O0o , OOo000 ) ) except socket . error as O0ooO0Oo00o : print ( "sock.sendto() failed: {}" . format ( O0ooO0Oo00o ) ) exit ( 1 ) if 5 - 5: Ii1I if 46 - 46: IiII if 45 - 45: ooOoO0o if 21 - 21: oO0o . I1Ii111 . OOooOOo / Oo0Ooo / I1Ii111 if 17 - 17: OOooOOo / OOooOOo / I11i try : iiIIiIiIi , ii1 = iiII1i11i . recvfrom ( 9000 ) ii1 = ii1 [ 0 ] . replace ( "::ffff:" , "" ) except socket . timeout : exit ( 1 ) except socket . error as O0ooO0Oo00o : print ( "sock.recvfrom() failed, error: {}" . format ( O0ooO0Oo00o ) ) exit ( 1 ) if 1 - 1: ooOoO0o % iIii1I11I1II1 + Oo0Ooo . iIii1I11I1II1 % I1IiiI if 89 - 89: Ii1I ooOoOO0OoO00o = round ( time . time ( ) - OO0O0OoOO0 , 3 ) if 11 - 11: Oo0Ooo - I1IiiI * II111iiii . I1ii11iIi11i . oO0o print ( "Received reply from {}, rtt {} secs" . format ( ii1 , ooOoOO0OoO00o ) ) print ( "" ) Ii11iII1 = i1iiI11I ( O0o0Oo , iiIIiIiIi ) if ( Ii11iII1 == { } ) : exit ( 1 ) if 61 - 61: iII111i % I1IiiI - o0oOOo0O0Ooo - II111iiii % O0 if 90 - 90: iIii1I11I1II1 + I1ii11iIi11i + ooOoO0o - I1Ii111 * IiII . I1ii11iIi11i if 37 - 37: ooOoO0o % i11iIiiIii % II111iiii . O0 . Ii1I if 51 - 51: OoO0O00 - O0 % oO0o - II111iiii i1I11i1iI ( Ii11iII1 ) if 31 - 31: iII111i / Oo0Ooo - iII111i - OOooOOo iiII1i11i . close ( ) exit ( 0 ) if 7 - 7: iII111i % O0 . OoOoOO00 + I1IiiI - I11i if 75 - 75: I11i # dd678faae9ac167bc83abf78e5cb2f3f0688d3a3
the-stack_0_11194
def lantern_fish(filename, days): # Data structure that will contain occurrences of fish occurrences = [0, 0, 0, 0, 0, 0, 0, 0, 0] # Retrieval of data from the input file with open(filename, 'r', encoding='utf-8') as values: for value in values: fish_list = value.split(",") # Data entry into the data structure of occurrences of fish for fish in fish_list: occurrences[int(fish)] += 1 # Solution algorithm for day in range(1, days+1): tmp = occurrences[0] for i in range(0, len(occurrences)-1): occurrences[i] = occurrences[i+1] occurrences[8] = tmp occurrences[6] += tmp # Returns the number of fish return sum(occurrences)
the-stack_0_11198
# Copyright (c) Facebook, Inc. and its affiliates. import logging import torch import tqdm from multimodelity.common.sample import Sample from multimodelity.datasets.multimodelity_dataset import multimodelityDataset from multimodelity.utils.distributed import is_master logger = logging.getLogger(__name__) class VQA2Dataset(multimodelityDataset): def __init__(self, config, dataset_type, imdb_file_index, *args, **kwargs): if "name" in kwargs: name = kwargs["name"] elif "dataset_name" in kwargs: name = kwargs["dataset_name"] else: name = "vqa2" super().__init__(name, config, dataset_type, index=imdb_file_index) self._should_fast_read = self.config.get("fast_read", False) self.use_ocr = self.config.use_ocr self.use_ocr_info = self.config.use_ocr_info def init_processors(self): super().init_processors() if not self._use_features: self.image_db.transform = self.image_processor def try_fast_read(self): # Don't fast read in case of test set. if self._dataset_type == "test": return if hasattr(self, "_should_fast_read") and self._should_fast_read is True: logger.info( f"Starting to fast read {self.dataset_name} {self.dataset_type} " + "dataset" ) self.cache = {} for idx in tqdm.tqdm( range(len(self.annotation_db)), miniters=100, disable=not is_master() ): self.cache[idx] = self.load_item(idx) def __getitem__(self, idx): if self._should_fast_read is True and self._dataset_type != "test": return self.cache[idx] else: return self.load_item(idx) def load_item(self, idx): sample_info = self.annotation_db[idx] current_sample = Sample() if "question_tokens" in sample_info: text_processor_argument = { "tokens": sample_info["question_tokens"], "text": sample_info["question_str"], } else: text_processor_argument = {"text": sample_info["question"]} processed_question = self.text_processor(text_processor_argument) current_sample.text = processed_question["text"] if "input_ids" in processed_question: current_sample.update(processed_question) current_sample.question_id = torch.tensor( sample_info["question_id"], dtype=torch.int ) if isinstance(sample_info["image_id"], int): current_sample.image_id = torch.tensor( sample_info["image_id"], dtype=torch.int ) else: current_sample.image_id = sample_info["image_id"] if "question_tokens" in sample_info: current_sample.text_len = torch.tensor( len(sample_info["question_tokens"]), dtype=torch.int ) if self._use_features: features = self.features_db[idx] if hasattr(self, "transformer_bbox_processor"): features["image_info_0"] = self.transformer_bbox_processor( features["image_info_0"] ) current_sample.update(features) else: image_path = sample_info["image_name"] + ".jpg" current_sample.image = self.image_db.from_path(image_path)["images"][0] # Add details for OCR like OCR bbox, vectors, tokens here current_sample = self.add_ocr_details(sample_info, current_sample) # Depending on whether we are using soft copy this can add # dynamic answer space current_sample = self.add_answer_info(sample_info, current_sample) return current_sample def add_ocr_details(self, sample_info, sample): if self.use_ocr: # Preprocess OCR tokens ocr_tokens = [ self.ocr_token_processor({"text": token})["text"] for token in sample_info["ocr_tokens"] ] # Get embeddings for tokens context = self.context_processor({"tokens": ocr_tokens}) sample.context = context["text"] sample.context_tokens = context["tokens"] sample.context_feature_0 = context["text"] sample.context_info_0 = Sample() sample.context_info_0.max_features = context["length"] order_vectors = torch.eye(len(sample.context_tokens)) order_vectors[context["length"] :] = 0 sample.order_vectors = order_vectors if self.use_ocr_info and "ocr_info" in sample_info: sample.ocr_bbox = self.bbox_processor({"info": sample_info["ocr_info"]})[ "bbox" ] return sample def add_answer_info(self, sample_info, sample): if "answers" in sample_info: answers = sample_info["answers"] answer_processor_arg = {"answers": answers} if self.use_ocr: answer_processor_arg["tokens"] = sample_info["ocr_tokens"] processed_soft_copy_answers = self.answer_processor(answer_processor_arg) # sample.answers = processed_soft_copy_answers["answers"] sample.targets = processed_soft_copy_answers["answers_scores"] return sample def idx_to_answer(self, idx): return self.answer_processor.convert_idx_to_answer(idx) def format_for_prediction(self, report): answers = report.scores.argmax(dim=1) predictions = [] answer_space_size = self.answer_processor.get_true_vocab_size() for idx, question_id in enumerate(report.question_id): answer_id = answers[idx].item() if answer_id >= answer_space_size: answer_id -= answer_space_size answer = report.context_tokens[idx][answer_id] if answer == self.context_processor.PAD_TOKEN: answer = "unanswerable" else: answer = self.answer_processor.idx2word(answer_id) # actual_answer = report.answers[idx] predictions.append( { "question_id": question_id.item(), "answer": answer, # "actual_answers": actual_answer, # "question_tokens": report.question_tokens[idx], # "image_id": report.image_id[idx].item() } ) return predictions
the-stack_0_11202
import sys, os, argparse, random parser = argparse.ArgumentParser() required = parser.add_argument_group('required arguments') ## user inputs required required.add_argument('-l', '--len', help='length of random sequences', dest='length') required.add_argument('-n', '--num', help='number of random sequences', dest='number') args = parser.parse_args() k=int(args.number) l=int(args.length) dna = ["A","G","C","T"] database=[] while len(database)<k: randseq="" for i in range(0,l): randseq+=random.choice(dna) if randseq not in database: database.append(randseq) print(database)