filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_15697
#!/usr/bin/env python import sys sys.path.append('../') from logparser import LogMine input_dir = '../logs/HDFS/' # The input directory of log file output_dir = 'LogMine_result/' # The output directory of parsing results log_file = 'HDFS_2k.log' # The input log file name log_format = '<Date> <Time> <Pid> <Level> <Component>: <Content>' # HDFS log format levels = 2 # The levels of hierarchy of patterns max_dist = 0.001 # The maximum distance between any log message in a cluster and the cluster representative k = 1 # The message distance weight (default: 1) regex = [] # Regular expression list for optional preprocessing (default: []) parser = LogMine.LogParser(input_dir, output_dir, log_format, rex=regex, levels=levels, max_dist=max_dist, k=k) parser.parse(log_file)
the-stack_0_15698
import tensorflow as tf import numpy as np import models import matplotlib.pyplot as plt # Number of bootstrap heads HEADS_N = 10 x_data = np.linspace(0,10,100) y_data = np.sin(x_data) + np.random.normal(0, .2, x_data.shape) x_data = x_data.reshape(-1, 1) y_data = y_data.reshape(-1, 1) # bootstrap mask - generate one for every element in x_data. Shape: (batch, heads_n) x_data_mask = np.random.binomial(n=1, p=.1, size=(x_data.shape[0], HEADS_N)) print('Bootstrap mask:', x_data_mask) tf.reset_default_graph() # build graph boot_dnn = models.build_bootstrapped_dnn(shape_x=list(x_data.shape[1:]), shape_y=list(y_data.shape[1:]), heads_n=HEADS_N) print(boot_dnn) # start session sess = tf.InteractiveSession() # init variables sess.run(tf.global_variables_initializer()) # train losses = [] for _ in range(1000): feed_dict = {boot_dnn.X_pl: x_data, boot_dnn.y_pl: y_data, boot_dnn.bootstrap_mask_pl: x_data_mask} _, loss = sess.run([boot_dnn.optimize, boot_dnn.loss], feed_dict) losses.append(loss) # predict x_test = np.linspace(-3, 13, 300).reshape(-1, 1) feed_dict = {boot_dnn.X_pl: x_test} heads, heads_mean, heads_var = sess.run([boot_dnn.heads, boot_dnn.heads_mean, boot_dnn.heads_var], feed_dict) # flatten data from shape (batch,x_dim=1) to 1D in order plot heads_mean = heads_mean.reshape(-1) heads_var = heads_var.reshape(-1) # note: heads is shape (heads, batch, x_dim) print(heads.shape) # plot fig,axes = plt.subplots(nrows=2, figsize=(8,8)) axes[0].plot(losses) axes[0].set_xlabel('epoch') axes[0].set_ylabel('loss') axes[1].fill_between(x_test.reshape(-1), heads_mean+heads_var, heads_mean-heads_var, color='r', alpha=.2, label="prediction var (epis)") axes[1].fill_between(x_test.reshape(-1), heads_mean+heads_var*2, heads_mean-heads_var*2, color='r', alpha=.2) axes[1].plot(x_test, heads_mean, '-', color='r', lw=1, label='prediction mean') axes[1].set_ylim((2, -2)) for head in heads: axes[1].plot(x_test, head, color='r', lw=1, alpha=.2) axes[1].scatter(x_data, y_data, color='b', s=1, label='training data') plt.legend() plt.savefig('bootstrap.png', bbox_inches='tight') plt.show()
the-stack_0_15699
import logging import os from typing import Dict, List, Optional from airflow.operators.bash import BashOperator from airflow.models import DAG, DagRun from sciencebeam_airflow.utils.container import escape_helm_set_value from sciencebeam_airflow.utils.airflow import add_dag_macros from sciencebeam_airflow.utils.container_operators import ( ContainerRunOperator, HelmDeployOperator, HelmDeleteOperator ) from sciencebeam_airflow.dags.dag_ids import ScienceBeamDagIds from sciencebeam_airflow.dags.utils import ( get_default_args, create_validate_config_operation, create_trigger_next_task_dag_operator, get_sciencebeam_image ) LOGGER = logging.getLogger(__name__) class ConfigProps: SCIENCEBEAM_RELEASE_NAME = 'sciencebeam_release_name' MODEL = 'model' NAMESPACE = 'namespace' SOURCE_DATA_PATH = 'source_data_path' SOURCE_FILE_LIST = 'source_file_list' OUTPUT_DATA_PATH = 'output_data_path' OUTPUT_FILE_LIST = 'output_file_list' OUTPUT_SUFFIX = 'output_suffix' RESUME = 'resume' LIMIT = 'limit' REQUIRED_PROPS = { ConfigProps.SCIENCEBEAM_RELEASE_NAME, ConfigProps.NAMESPACE, ConfigProps.LIMIT } DEFAULT_ARGS = get_default_args() DEFAULT_WORKER_COUNT = 10 DEFAULT_REPLICA_COUNT = 0 # don't set replica by default DEPLOY_SCIENCEBEAM_ARGS_TEMPLATE = ( ''' --timeout 600s \ --set "fullnameOverride={{ dag_run.conf.sciencebeam_release_name }}-sb" \ {% for key, value in get_sciencebeam_deploy_args(dag_run.conf).items() %} \ --set "{{ key }}={{ escape_helm_set_value(value) }}" \ {% endfor %} ''' ) SCIENCEBEAM_CONVERT_TEMPLATE = ( ''' python -m sciencebeam.pipeline_runners.local_pipeline_runner \ --data-path "{{ get_source_conf(dag_run.conf).data_path }}" \ --source-file-list "{{ get_source_conf(dag_run.conf).file_list }}" \ --source-file-column "{{ get_source_conf(dag_run.conf).file_column }}" \ --output-path "{{ get_output_conf(dag_run.conf).data_path }}" \ --output-suffix "{{ get_output_conf(dag_run.conf).output_suffix }}" \ --pipeline=api \ --api-url=http://{{ dag_run.conf.sciencebeam_release_name }}-sb:8075/api/convert \ {% if dag_run.conf.resume | default(false) %} \ --resume \ {% endif %} \ --limit "{{ get_limit(dag_run.conf) }}" \ --num-workers "{{ get_worker_count(dag_run.conf) }}" ''' ) SCIENCEBEAM_GET_OUTPUT_FILE_LIST_TEMPLATE = ( ''' python -m sciencebeam_utils.tools.get_output_files \ --source-base-path "{{ get_source_conf(dag_run.conf).data_path }}" \ --source-file-list "{{ get_source_conf(dag_run.conf).file_list }}" \ --source-file-column "{{ get_source_conf(dag_run.conf).file_column }}" \ --output-file-list "{{ get_output_conf(dag_run.conf).absolute_file_list }}" \ --output-file-suffix "{{ get_output_conf(dag_run.conf).output_suffix }}" \ --output-base-path "{{ get_output_conf(dag_run.conf).data_path }}" \ --use-relative-path \ --limit "{{ get_limit(dag_run.conf) }}" \ --check ''' ) DEFAULT_CONVERT_CONTAINER_REQUESTS = 'cpu=500m,memory=2048Mi' def parse_image_name_tag(image): return image.split(':') def get_model_sciencebeam_image(model: dict) -> dict: return get_sciencebeam_image(model) def get_model_sciencebeam_deploy_args(model: dict) -> dict: if 'chart_args' in model: return model['chart_args'] sciencebeam_image_repo, sciencebeam_image_tag = parse_image_name_tag( get_model_sciencebeam_image(model) ) grobid_image_repo, grobid_image_tag = parse_image_name_tag( model['grobid_image'] ) return { 'image.repository': sciencebeam_image_repo, 'image.tag': sciencebeam_image_tag, 'sciencebeam.args': model.get('sciencebeam_args', ''), 'grobid.enabled': 'true', 'grobid.image.repository': grobid_image_repo, 'grobid.image.tag': grobid_image_tag, 'grobid.warmup.enabled': 'true', 'grobid.crossref.enabled': model.get('grobid_crossref_enabled', 'false') } def get_sciencebeam_child_chart_names_for_helm_args(helm_args: Dict[str, str]) -> List[str]: return [ key.split('.')[0] for key, value in helm_args.items() if key.endswith('.enabled') and len(key.split('.')) == 2 and value == 'true' ] class ScienceBeamConvertMacros: def get_model(self, conf: dict) -> dict: return conf['model'] def get_source_conf(self, conf: dict) -> dict: return { 'file_column': 'source_url', 'data_path': conf['source_data_path'], 'file_list': conf['source_file_list'], 'absolute_file_list': os.path.join(conf['source_data_path'], conf['source_file_list']) } def get_output_conf(self, conf: dict) -> dict: return { 'output_suffix': conf['output_suffix'], 'data_path': conf['output_data_path'], 'file_list': conf['output_file_list'], 'absolute_file_list': os.path.join(conf['output_data_path'], conf['output_file_list']) } def get_limit(self, conf: dict) -> str: return conf['limit'] def get_convert_config(self, conf: dict) -> dict: return conf.get('config', {}).get('convert', {}) def get_sciencebeam_convert_container_kwargs(self, conf: dict) -> dict: return self.get_convert_config(conf).get('container', {}) def get_worker_count(self, conf: dict) -> str: return int(self.get_convert_config(conf).get('worker_count', DEFAULT_WORKER_COUNT)) def get_replica_count(self, conf: dict) -> str: return int(self.get_convert_config(conf).get('replica_count', DEFAULT_REPLICA_COUNT)) def get_base_sciencebeam_deploy_args(self, conf: dict) -> dict: return get_model_sciencebeam_deploy_args(self.get_model(conf)) def get_sciencebeam_deploy_args(self, conf: dict) -> dict: LOGGER.debug('conf: %s', conf) helm_args = self.get_base_sciencebeam_deploy_args(conf) replica_count = self.get_replica_count(conf) if replica_count: child_chart_names = list(get_sciencebeam_child_chart_names_for_helm_args(helm_args)) helm_args['replicaCount'] = replica_count for child_chart_name in child_chart_names: helm_args['%s.replicaCount' % child_chart_name] = replica_count return helm_args def escape_helm_set_value(self, helm_value: str) -> str: return escape_helm_set_value(helm_value) def get_sciencebeam_child_chart_names( self, dag_run: DagRun, **_) -> List[str]: conf: dict = dag_run.conf helm_args = self.get_base_sciencebeam_deploy_args(conf) return get_sciencebeam_child_chart_names_for_helm_args(helm_args) def get_sciencebeam_image(self, conf: dict) -> str: return get_sciencebeam_image(conf) def is_config_valid(self, conf: dict) -> bool: return ( self.get_model(conf) and self.get_source_conf(conf) and self.get_output_conf(conf) and self.get_limit(conf) and self.get_worker_count(conf) and True ) def add_sciencebeam_convert_dag_macros( dag: DAG, macros: Optional[ScienceBeamConvertMacros] = None ) -> ScienceBeamConvertMacros: if macros is None: macros = ScienceBeamConvertMacros() add_dag_macros(dag, macros) return macros def create_deploy_sciencebeam_op( dag: DAG, macros: ScienceBeamConvertMacros = None, task_id='deploy_sciencebeam'): if macros is None: macros = ScienceBeamConvertMacros() add_sciencebeam_convert_dag_macros(dag, macros) return HelmDeployOperator( dag=dag, task_id=task_id, namespace='{{ dag_run.conf.namespace }}', release_name='{{ dag_run.conf.sciencebeam_release_name }}', chart_name='$HELM_CHARTS_DIR/sciencebeam', get_child_chart_names=macros.get_sciencebeam_child_chart_names, preemptible=True, helm_args=DEPLOY_SCIENCEBEAM_ARGS_TEMPLATE ) def create_delete_sciencebeam_op(dag, task_id='delete_sciencebeam'): return HelmDeleteOperator( dag=dag, task_id=task_id, namespace='{{ dag_run.conf.namespace }}', release_name='{{ dag_run.conf.sciencebeam_release_name }}', keep_history=False, trigger_rule='all_done' ) def create_sciencebeam_convert_op( dag, macros: ScienceBeamConvertMacros = None, task_id='sciencebeam_convert') -> BashOperator: _macros = add_sciencebeam_convert_dag_macros(dag, macros) return ContainerRunOperator( dag=dag, task_id=task_id, namespace='{{ dag_run.conf.namespace }}', image='{{ get_sciencebeam_image(dag_run.conf) }}', name='{{ generate_run_name(dag_run.conf.sciencebeam_release_name, "convert") }}', preemptible=True, requests=DEFAULT_CONVERT_CONTAINER_REQUESTS, container_overrides_fn=_macros.get_sciencebeam_convert_container_kwargs, command=SCIENCEBEAM_CONVERT_TEMPLATE ) def create_get_output_file_list_op( dag, macros: ScienceBeamConvertMacros = None, task_id='get_output_file_list'): add_sciencebeam_convert_dag_macros(dag, macros) return ContainerRunOperator( dag=dag, task_id=task_id, namespace='{{ dag_run.conf.namespace }}', image='{{ get_sciencebeam_image(dag_run.conf) }}', name='{{ generate_run_name(dag_run.conf.sciencebeam_release_name, "get-output-list") }}', preemptible=True, requests='cpu=100m,memory=256Mi', command=SCIENCEBEAM_GET_OUTPUT_FILE_LIST_TEMPLATE, ) def create_dag( dag_id: str = ScienceBeamDagIds.SCIENCEBEAM_CONVERT, default_args: dict = None, schedule_interval=None, macros: ScienceBeamConvertMacros = None, trigger_next: bool = True): if default_args is None: default_args = DEFAULT_ARGS if macros is None: macros = ScienceBeamConvertMacros() dag = DAG(dag_id=dag_id, default_args=default_args, schedule_interval=schedule_interval) convert_results = ( create_validate_config_operation( dag=dag, required_props=REQUIRED_PROPS, is_config_valid=macros.is_config_valid ) >> create_deploy_sciencebeam_op(dag=dag, macros=macros) >> create_sciencebeam_convert_op(dag=dag, macros=macros) ) _ = convert_results >> create_delete_sciencebeam_op(dag=dag) get_output_file_list_results = ( convert_results >> create_get_output_file_list_op(dag=dag, macros=macros) ) if trigger_next: _ = get_output_file_list_results >> create_trigger_next_task_dag_operator(dag=dag) return dag MAIN_DAG = create_dag()
the-stack_0_15700
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import json import os import subprocess from typing import Optional from airflow import settings from airflow.exceptions import AirflowException from airflow.models import Connection # Please keep these variables in alphabetical order. from tests.test_utils import AIRFLOW_MAIN_FOLDER from tests.test_utils.logging_command_executor import CommandExecutor GCP_AI_KEY = 'gcp_ai.json' GCP_AUTOML_KEY = 'gcp_automl.json' GCP_BIGQUERY_KEY = 'gcp_bigquery.json' GCP_BIGTABLE_KEY = 'gcp_bigtable.json' GCP_CLOUD_BUILD_KEY = 'gcp_cloud_build.json' GCP_CLOUDSQL_KEY = 'gcp_cloudsql.json' GCP_COMPUTE_KEY = 'gcp_compute.json' GCP_COMPUTE_SSH_KEY = 'gcp_compute_ssh.json' GCP_DATACATALOG_KEY = 'gcp_datacatalog.json' GCP_DATAFLOW_KEY = 'gcp_dataflow.json' GCP_DATAFUSION_KEY = 'gcp_datafusion.json' GCP_DATAPROC_KEY = 'gcp_dataproc.json' GCP_DATASTORE_KEY = 'gcp_datastore.json' GCP_DLP_KEY = 'gcp_dlp.json' GCP_FUNCTION_KEY = 'gcp_function.json' GCP_GCS_KEY = 'gcp_gcs.json' GCP_GCS_TRANSFER_KEY = 'gcp_gcs_transfer.json' GCP_GKE_KEY = "gcp_gke.json" GCP_KMS_KEY = "gcp_kms.json" GCP_LIFE_SCIENCES_KEY = 'gcp_life_sciences.json' GCP_MEMORYSTORE = 'gcp_memorystore.json' GCP_PUBSUB_KEY = "gcp_pubsub.json" GCP_SECRET_MANAGER_KEY = 'gcp_secret_manager.json' GCP_SPANNER_KEY = 'gcp_spanner.json' GCP_STACKDRIVER = 'gcp_stackdriver.json' GCP_TASKS_KEY = 'gcp_tasks.json' GCP_WORKFLOWS_KEY = "gcp_workflows.json" GMP_KEY = 'gmp.json' G_FIREBASE_KEY = 'g_firebase.json' GCP_AWS_KEY = 'gcp_aws.json' KEYPATH_EXTRA = 'extra__google_cloud_platform__key_path' KEYFILE_DICT_EXTRA = 'extra__google_cloud_platform__keyfile_dict' SCOPE_EXTRA = 'extra__google_cloud_platform__scope' PROJECT_EXTRA = 'extra__google_cloud_platform__project' class GcpAuthenticator(CommandExecutor): """ Initialises the authenticator. :param gcp_key: name of the key to use for authentication (see GCP_*_KEY values) :param project_extra: optional extra project parameter passed to google cloud connection """ original_account = None # type: Optional[str] def __init__(self, gcp_key: str, project_extra: Optional[str] = None): super().__init__() self.gcp_key = gcp_key self.project_extra = project_extra self.project_id = self.get_project_id() self.full_key_path = None self._set_key_path() @staticmethod def get_project_id(): return os.environ.get('GCP_PROJECT_ID') def set_key_path_in_airflow_connection(self): """ Set key path in 'google_cloud_default' connection to point to the full key path :return: None """ session = settings.Session() try: conn = session.query(Connection).filter(Connection.conn_id == 'google_cloud_default')[0] extras = conn.extra_dejson extras[KEYPATH_EXTRA] = self.full_key_path if extras.get(KEYFILE_DICT_EXTRA): del extras[KEYFILE_DICT_EXTRA] extras[SCOPE_EXTRA] = 'https://www.googleapis.com/auth/cloud-platform' extras[PROJECT_EXTRA] = self.project_extra if self.project_extra else self.project_id conn.extra = json.dumps(extras) session.commit() except BaseException as ex: self.log.error('Airflow DB Session error: %s', str(ex)) session.rollback() raise finally: session.close() def set_dictionary_in_airflow_connection(self): """ Set dictionary in 'google_cloud_default' connection to contain content of the json service account file. :return: None """ session = settings.Session() try: conn = session.query(Connection).filter(Connection.conn_id == 'google_cloud_default')[0] extras = conn.extra_dejson with open(self.full_key_path) as path_file: content = json.load(path_file) extras[KEYFILE_DICT_EXTRA] = json.dumps(content) if extras.get(KEYPATH_EXTRA): del extras[KEYPATH_EXTRA] extras[SCOPE_EXTRA] = 'https://www.googleapis.com/auth/cloud-platform' extras[PROJECT_EXTRA] = self.project_extra conn.extra = json.dumps(extras) session.commit() except BaseException as ex: self.log.error('Airflow DB Session error: %s', str(ex)) session.rollback() raise finally: session.close() def _set_key_path(self): """ Sets full key path - if GCP_CONFIG_DIR points to absolute directory, it tries to find the key in this directory. Otherwise it assumes that Airflow is running from the directory where configuration is checked out next to airflow directory in config directory it tries to find the key folder in the workspace's config directory. :param : name of the key file to find. """ if "GCP_CONFIG_DIR" in os.environ: gcp_config_dir = os.environ["GCP_CONFIG_DIR"] else: gcp_config_dir = os.path.join(AIRFLOW_MAIN_FOLDER, os.pardir, "config") if not os.path.isdir(gcp_config_dir): self.log.info("The %s is not a directory", gcp_config_dir) key_dir = os.path.join(gcp_config_dir, "keys") if not os.path.isdir(key_dir): self.log.error("The %s is not a directory", key_dir) return key_path = os.path.join(key_dir, self.gcp_key) if not os.path.isfile(key_path): self.log.error("The %s file is missing", key_path) self.full_key_path = key_path def _validate_key_set(self): if self.full_key_path is None: raise AirflowException("The gcp_key is not set!") if not os.path.isfile(self.full_key_path): raise AirflowException( f"The key {self.gcp_key} could not be found. Please copy it to the {self.full_key_path} path." ) def gcp_authenticate(self): """ Authenticate with service account specified via key name. """ self._validate_key_set() self.log.info("Setting the Google Cloud key to %s", self.full_key_path) # Checking if we can authenticate using service account credentials provided self.execute_cmd( [ 'gcloud', 'auth', 'activate-service-account', f'--key-file={self.full_key_path}', f'--project={self.project_id}', ] ) self.set_key_path_in_airflow_connection() def gcp_revoke_authentication(self): """ Change default authentication to none - which is not existing one. """ self._validate_key_set() self.log.info("Revoking authentication - setting it to none") self.execute_cmd(['gcloud', 'config', 'get-value', 'account', f'--project={self.project_id}']) self.execute_cmd(['gcloud', 'config', 'set', 'account', 'none', f'--project={self.project_id}']) def gcp_store_authentication(self): """ Store authentication as it was originally so it can be restored and revoke authentication. """ self._validate_key_set() if not GcpAuthenticator.original_account: GcpAuthenticator.original_account = self.check_output( ['gcloud', 'config', 'get-value', 'account', f'--project={self.project_id}'] ).decode('utf-8') self.log.info("Storing account: to restore it later %s", GcpAuthenticator.original_account) def gcp_restore_authentication(self): """ Restore authentication to the original one. """ self._validate_key_set() if GcpAuthenticator.original_account: self.log.info("Restoring original account stored: %s", GcpAuthenticator.original_account) subprocess.call( [ 'gcloud', 'config', 'set', 'account', GcpAuthenticator.original_account, f'--project={self.project_id}', ] ) else: self.log.info("Not restoring the original Google Cloud account: it is not set")
the-stack_0_15701
# This file is part of Indico. # Copyright (C) 2002 - 2021 CERN # # Indico is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see the # LICENSE file for more details. from indico.modules.events.tracks.controllers import (RHCreateTrack, RHCreateTrackGroup, RHDeleteTrack, RHDeleteTrackGroup, RHDisplayTracks, RHEditProgram, RHEditTrack, RHEditTrackGroup, RHManageTracks, RHSortTracks, RHTracksPDF) from indico.web.flask.util import make_compat_redirect_func from indico.web.flask.wrappers import IndicoBlueprint _bp = IndicoBlueprint('tracks', __name__, template_folder='templates', virtual_template_folder='events/tracks', url_prefix='/event/<int:event_id>') _bp.add_url_rule('/manage/tracks/', 'manage', RHManageTracks) _bp.add_url_rule('/manage/tracks/program', 'edit_program', RHEditProgram, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/create', 'create_track', RHCreateTrack, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/sort', 'sort_tracks', RHSortTracks, methods=('POST',)) _bp.add_url_rule('/manage/tracks/<int:track_id>', 'edit_track', RHEditTrack, methods=('GET', 'POST')) _bp.add_url_rule('/manage/tracks/<int:track_id>', 'delete_track', RHDeleteTrack, methods=('DELETE',)) _bp.add_url_rule('/manage/track-groups/create', 'create_track_group', RHCreateTrackGroup, methods=('GET', 'POST')) _bp.add_url_rule('/manage/track-groups/<int:track_group_id>', 'edit_track_group', RHEditTrackGroup, methods=('GET', 'POST')) _bp.add_url_rule('/manage/track-groups/<int:track_group_id>', 'delete_track_group', RHDeleteTrackGroup, methods=('DELETE',)) _bp.add_url_rule('/program', 'program', RHDisplayTracks) _bp.add_url_rule('/program.pdf', 'program_pdf', RHTracksPDF) _compat_bp = IndicoBlueprint('compat_tracks', __name__, url_prefix='/event/<int:event_id>') _compat_bp.add_url_rule('/manage/program/tracks/<int:track_id>/contributions/', 'track_contribs', make_compat_redirect_func('contributions', 'contribution_list', view_args_conv={'track_id': None}))
the-stack_0_15702
import os import sys import subprocess import random class Plopper: def __init__(self,sourcefile,outputdir): # Initilizing global variables self.sourcefile = sourcefile self.outputdir = outputdir+"/tmp_files" if not os.path.exists(self.outputdir): os.makedirs(self.outputdir) #Creating a dictionary using parameter label and value def createDict(self, x, params): dictVal = {} for p, v in zip(params, x): dictVal[p] = v return(dictVal) #Replace the Markers in the source file with the corresponding Pragma values def plotValues(self, dictVal, inputfile, outputfile): with open(inputfile, "r") as f1: buf = f1.readlines() with open(outputfile, "w") as f2: for line in buf: modify_line = line for key, value in dictVal.items(): if key in modify_line: if value != 'None': #For empty string options modify_line = modify_line.replace('#'+key, str(value)) if modify_line != line: f2.write(modify_line) else: #To avoid writing the Marker f2.write(line) # Function to find the execution time of the interim file, and return the execution time as cost to the search module def findRuntime(self, x, params): interimfile = "" #exetime = float('inf') #exetime = sys.maxsize exetime = 1 counter = random.randint(1, 10001) # To reduce collision increasing the sampling intervals interimfile = self.outputdir+"/"+str(counter)+".c" # Generate intermediate file dictVal = self.createDict(x, params) self.plotValues(dictVal, self.sourcefile, interimfile) #compile and find the execution time tmpbinary = interimfile[:-2] kernel_idx = self.sourcefile.rfind('/') kernel_dir = self.sourcefile[:kernel_idx] cmd1 = "clang -fno-caret-diagnostics " +interimfile +" " + kernel_dir + "/Materials.c " \ + kernel_dir + "/XSutils.c " + " -I" + kernel_dir + \ " -std=c99 -fopenmp -DOPENMP -fno-unroll-loops -O3 -mllvm -polly -mllvm -polly-process-unprofitable -mllvm -polly-use-llvm-names -ffast-math -march=native -L/Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib -o "+tmpbinary cmd2 = kernel_dir + "/exe.pl " + tmpbinary #Find the compilation status using subprocess compilation_status = subprocess.run(cmd1, shell=True, stderr=subprocess.PIPE) #Find the execution time only when the compilation return code is zero, else return infinity if compilation_status.returncode == 0 : #and len(compilation_status.stderr) == 0: #Second condition is to check for warnings execution_status = subprocess.run(cmd2, shell=True, stdout=subprocess.PIPE) exetime = float(execution_status.stdout.decode('utf-8')) if exetime == 0: exetime = 1 else: print(compilation_status.stderr) print("compile failed") return exetime #return execution time as cost
the-stack_0_15703
import commands import os import sys class EnvFileReader: def read_file(self, filename, env_var = os.environ): file_lines = open(filename,'r').readlines() line_num = 1 for line in file_lines: # get rid of comments line = line.split("#")[0] # strip whitespace from ends line = line.strip() # check if empty line if line == "": line_num += 1 continue # check for = if line.find("=") == -1: raise "Missing '=' on line %i of file %s" % (line_num,filename) # split into var = val pairs (var,val) = line.split("=",1) # remove whitespace from vars and values var = var.strip() val = val.strip() # search for variables in val done = False while True: var_start_index = val.find("$(") if var_start_index == -1: break var_end_index = val.find(")") if var_end_index == -1: raise "Variable parse error on line %i of file %s" % (line_num,filename) # extract variable value sub_var = val[var_start_index+2:var_end_index] # look for variable in environment, if there rebuild val if os.environ.has_key(sub_var): val = val[0:var_start_index] + os.environ[sub_var] + val[var_end_index+1:] elif env_var.has_key(sub_var): val = val[0:var_start_index] + env_var[sub_var] + val[var_end_index+1:] else: raise "Variable %s not found in environment" % sub_var # print "%s = %s" % (var, val) env_var[var] = val line_num += 1 if __name__ == '__main__' : reader = EnvFileReader() reader.read_file(sys.argv[1]) # for env in os.environ: # print "%s = %s" % (env,os.environ[env])
the-stack_0_15704
"""Utilities for with-statement contexts. See PEP 343.""" import abc import sys import _collections_abc from collections import deque from functools import wraps from types import MethodType __all__ = ["asynccontextmanager", "contextmanager", "closing", "nullcontext", "AbstractContextManager", "AbstractAsyncContextManager", "AsyncExitStack", "ContextDecorator", "ExitStack", "redirect_stdout", "redirect_stderr", "suppress"] class AbstractContextManager(abc.ABC): """An abstract base class for context managers.""" def __enter__(self): """Return `self` upon entering the runtime context.""" return self @abc.abstractmethod def __exit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None @classmethod def __subclasshook__(cls, C): if cls is AbstractContextManager: return _collections_abc._check_methods(C, "__enter__", "__exit__") return NotImplemented class AbstractAsyncContextManager(abc.ABC): """An abstract base class for asynchronous context managers.""" async def __aenter__(self): """Return `self` upon entering the runtime context.""" return self @abc.abstractmethod async def __aexit__(self, exc_type, exc_value, traceback): """Raise any exception triggered within the runtime context.""" return None @classmethod def __subclasshook__(cls, C): if cls is AbstractAsyncContextManager: return _collections_abc._check_methods(C, "__aenter__", "__aexit__") return NotImplemented class ContextDecorator(object): "A base class or mixin that enables context managers to work as decorators." def _recreate_cm(self): """Return a recreated instance of self. Allows an otherwise one-shot context manager like _GeneratorContextManager to support use as a decorator via implicit recreation. This is a private interface just for _GeneratorContextManager. See issue #11647 for details. """ return self def __call__(self, func): @wraps(func) def inner(*args, **kwds): with self._recreate_cm(): return func(*args, **kwds) return inner class _GeneratorContextManagerBase: """Shared functionality for @contextmanager and @asynccontextmanager.""" def __init__(self, func, args, kwds): self.gen = func(*args, **kwds) self.func, self.args, self.kwds = func, args, kwds # Issue 19330: ensure context manager instances have good docstrings doc = getattr(func, "__doc__", None) if doc is None: doc = type(self).__doc__ self.__doc__ = doc # Unfortunately, this still doesn't provide good help output when # inspecting the created context manager instances, since pydoc # currently bypasses the instance docstring and shows the docstring # for the class instead. # See http://bugs.python.org/issue19404 for more details. class _GeneratorContextManager(_GeneratorContextManagerBase, AbstractContextManager, ContextDecorator): """Helper for @contextmanager decorator.""" def _recreate_cm(self): # _GCM instances are one-shot context managers, so the # CM must be recreated each time a decorated function is # called return self.__class__(self.func, self.args, self.kwds) def __enter__(self): # do not keep args and kwds alive unnecessarily # they are only needed for recreation, which is not possible anymore del self.args, self.kwds, self.func try: return next(self.gen) except StopIteration: raise RuntimeError("generator didn't yield") from None def __exit__(self, type, value, traceback): if type is None: try: next(self.gen) except StopIteration: return False else: raise RuntimeError("generator didn't stop") else: if value is None: # Need to force instantiation so we can reliably # tell if we get the same exception back value = type() try: self.gen.throw(type, value, traceback) except StopIteration as exc: # Suppress StopIteration *unless* it's the same exception that # was passed to throw(). This prevents a StopIteration # raised inside the "with" statement from being suppressed. return exc is not value except RuntimeError as exc: # Don't re-raise the passed in exception. (issue27122) if exc is value: return False # Likewise, avoid suppressing if a StopIteration exception # was passed to throw() and later wrapped into a RuntimeError # (see PEP 479). if type is StopIteration and exc.__cause__ is value: return False raise except: # only re-raise if it's *not* the exception that was # passed to throw(), because __exit__() must not raise # an exception unless __exit__() itself failed. But throw() # has to raise the exception to signal propagation, so this # fixes the impedance mismatch between the throw() protocol # and the __exit__() protocol. # # This cannot use 'except BaseException as exc' (as in the # async implementation) to maintain compatibility with # Python 2, where old-style class exceptions are not caught # by 'except BaseException'. if sys.exc_info()[1] is value: return False raise raise RuntimeError("generator didn't stop after throw()") class _AsyncGeneratorContextManager(_GeneratorContextManagerBase, AbstractAsyncContextManager): """Helper for @asynccontextmanager.""" async def __aenter__(self): try: return await self.gen.__anext__() except StopAsyncIteration: raise RuntimeError("generator didn't yield") from None async def __aexit__(self, typ, value, traceback): if typ is None: try: await self.gen.__anext__() except StopAsyncIteration: return else: raise RuntimeError("generator didn't stop") else: if value is None: value = typ() # See _GeneratorContextManager.__exit__ for comments on subtleties # in this implementation try: await self.gen.athrow(typ, value, traceback) raise RuntimeError("generator didn't stop after throw()") except StopAsyncIteration as exc: return exc is not value except RuntimeError as exc: if exc is value: return False # Avoid suppressing if a StopIteration exception # was passed to throw() and later wrapped into a RuntimeError # (see PEP 479 for sync generators; async generators also # have this behavior). But do this only if the exception wrapped # by the RuntimeError is actully Stop(Async)Iteration (see # issue29692). if isinstance(value, (StopIteration, StopAsyncIteration)): if exc.__cause__ is value: return False raise except BaseException as exc: if exc is not value: raise def contextmanager(func): """@contextmanager decorator. Typical usage: @contextmanager def some_generator(<arguments>): <setup> try: yield <value> finally: <cleanup> This makes this: with some_generator(<arguments>) as <variable>: <body> equivalent to this: <setup> try: <variable> = <value> <body> finally: <cleanup> """ @wraps(func) def helper(*args, **kwds): return _GeneratorContextManager(func, args, kwds) return helper def asynccontextmanager(func): """@asynccontextmanager decorator. Typical usage: @asynccontextmanager async def some_async_generator(<arguments>): <setup> try: yield <value> finally: <cleanup> This makes this: async with some_async_generator(<arguments>) as <variable>: <body> equivalent to this: <setup> try: <variable> = <value> <body> finally: <cleanup> """ @wraps(func) def helper(*args, **kwds): return _AsyncGeneratorContextManager(func, args, kwds) return helper class closing(AbstractContextManager): """Context to automatically close something at the end of a block. Code like this: with closing(<module>.open(<arguments>)) as f: <block> is equivalent to this: f = <module>.open(<arguments>) try: <block> finally: f.close() """ def __init__(self, thing): self.thing = thing def __enter__(self): return self.thing def __exit__(self, *exc_info): self.thing.close() class _RedirectStream(AbstractContextManager): _stream = None def __init__(self, new_target): self._new_target = new_target # We use a list of old targets to make this CM re-entrant self._old_targets = [] def __enter__(self): self._old_targets.append(getattr(sys, self._stream)) setattr(sys, self._stream, self._new_target) return self._new_target def __exit__(self, exctype, excinst, exctb): setattr(sys, self._stream, self._old_targets.pop()) class redirect_stdout(_RedirectStream): """Context manager for temporarily redirecting stdout to another file. # How to send help() to stderr with redirect_stdout(sys.stderr): help(dir) # How to write help() to a file with open('help.txt', 'w') as f: with redirect_stdout(f): help(pow) """ _stream = "stdout" class redirect_stderr(_RedirectStream): """Context manager for temporarily redirecting stderr to another file.""" _stream = "stderr" class suppress(AbstractContextManager): """Context manager to suppress specified exceptions After the exception is suppressed, execution proceeds with the next statement following the with statement. with suppress(FileNotFoundError): os.remove(somefile) # Execution still resumes here if the file was already removed """ def __init__(self, *exceptions): self._exceptions = exceptions def __enter__(self): pass def __exit__(self, exctype, excinst, exctb): # Unlike isinstance and issubclass, CPython exception handling # currently only looks at the concrete type hierarchy (ignoring # the instance and subclass checking hooks). While Guido considers # that a bug rather than a feature, it's a fairly hard one to fix # due to various internal implementation details. suppress provides # the simpler issubclass based semantics, rather than trying to # exactly reproduce the limitations of the CPython interpreter. # # See http://bugs.python.org/issue12029 for more details return exctype is not None and issubclass(exctype, self._exceptions) class _BaseExitStack: """A base class for ExitStack and AsyncExitStack.""" @staticmethod def _create_exit_wrapper(cm, cm_exit): return MethodType(cm_exit, cm) @staticmethod def _create_cb_wrapper(callback, *args, **kwds): def _exit_wrapper(exc_type, exc, tb): callback(*args, **kwds) return _exit_wrapper def __init__(self): self._exit_callbacks = deque() def pop_all(self): """Preserve the context stack by transferring it to a new instance.""" new_stack = type(self)() new_stack._exit_callbacks = self._exit_callbacks self._exit_callbacks = deque() return new_stack def push(self, exit): """Registers a callback with the standard __exit__ method signature. Can suppress exceptions the same way __exit__ method can. Also accepts any object with an __exit__ method (registering a call to the method instead of the object itself). """ # We use an unbound method rather than a bound method to follow # the standard lookup behaviour for special methods. _cb_type = type(exit) try: exit_method = _cb_type.__exit__ except AttributeError: # Not a context manager, so assume it's a callable. self._push_exit_callback(exit) else: self._push_cm_exit(exit, exit_method) return exit # Allow use as a decorator. def enter_context(self, cm): """Enters the supplied context manager. If successful, also pushes its __exit__ method as a callback and returns the result of the __enter__ method. """ # We look up the special methods on the type to match the with # statement. _cm_type = type(cm) _exit = _cm_type.__exit__ result = _cm_type.__enter__(cm) self._push_cm_exit(cm, _exit) return result def callback(self, callback, *args, **kwds): """Registers an arbitrary callback and arguments. Cannot suppress exceptions. """ _exit_wrapper = self._create_cb_wrapper(callback, *args, **kwds) # We changed the signature, so using @wraps is not appropriate, but # setting __wrapped__ may still help with introspection. _exit_wrapper.__wrapped__ = callback self._push_exit_callback(_exit_wrapper) return callback # Allow use as a decorator def _push_cm_exit(self, cm, cm_exit): """Helper to correctly register callbacks to __exit__ methods.""" _exit_wrapper = self._create_exit_wrapper(cm, cm_exit) self._push_exit_callback(_exit_wrapper, True) def _push_exit_callback(self, callback, is_sync=True): self._exit_callbacks.append((is_sync, callback)) # Inspired by discussions on http://bugs.python.org/issue13585 class ExitStack(_BaseExitStack, AbstractContextManager): """Context manager for dynamic management of a stack of exit callbacks. For example: with ExitStack() as stack: files = [stack.enter_context(open(fname)) for fname in filenames] # All opened files will automatically be closed at the end of # the with statement, even if attempts to open files later # in the list raise an exception. """ def __enter__(self): return self def __exit__(self, *exc_details): received_exc = exc_details[0] is not None # We manipulate the exception state so it behaves as though # we were actually nesting multiple with statements frame_exc = sys.exc_info()[1] def _fix_exception_context(new_exc, old_exc): # Context may not be correct, so find the end of the chain while 1: exc_context = new_exc.__context__ if exc_context is old_exc: # Context is already set correctly (see issue 20317) return if exc_context is None or exc_context is frame_exc: break new_exc = exc_context # Change the end of the chain to point to the exception # we expect it to reference new_exc.__context__ = old_exc # Callbacks are invoked in LIFO order to match the behaviour of # nested context managers suppressed_exc = False pending_raise = False while self._exit_callbacks: is_sync, cb = self._exit_callbacks.pop() assert is_sync try: if cb(*exc_details): suppressed_exc = True pending_raise = False exc_details = (None, None, None) except: new_exc_details = sys.exc_info() # simulate the stack of exceptions by setting the context _fix_exception_context(new_exc_details[1], exc_details[1]) pending_raise = True exc_details = new_exc_details if pending_raise: try: # bare "raise exc_details[1]" replaces our carefully # set-up context fixed_ctx = exc_details[1].__context__ raise exc_details[1] except BaseException: exc_details[1].__context__ = fixed_ctx raise return received_exc and suppressed_exc def close(self): """Immediately unwind the context stack.""" self.__exit__(None, None, None) # Inspired by discussions on https://bugs.python.org/issue29302 class AsyncExitStack(_BaseExitStack, AbstractAsyncContextManager): """Async context manager for dynamic management of a stack of exit callbacks. For example: async with AsyncExitStack() as stack: connections = [await stack.enter_async_context(get_connection()) for i in range(5)] # All opened connections will automatically be released at the # end of the async with statement, even if attempts to open a # connection later in the list raise an exception. """ @staticmethod def _create_async_exit_wrapper(cm, cm_exit): return MethodType(cm_exit, cm) @staticmethod def _create_async_cb_wrapper(callback, *args, **kwds): async def _exit_wrapper(exc_type, exc, tb): await callback(*args, **kwds) return _exit_wrapper async def enter_async_context(self, cm): """Enters the supplied async context manager. If successful, also pushes its __aexit__ method as a callback and returns the result of the __aenter__ method. """ _cm_type = type(cm) _exit = _cm_type.__aexit__ result = await _cm_type.__aenter__(cm) self._push_async_cm_exit(cm, _exit) return result def push_async_exit(self, exit): """Registers a coroutine function with the standard __aexit__ method signature. Can suppress exceptions the same way __aexit__ method can. Also accepts any object with an __aexit__ method (registering a call to the method instead of the object itself). """ _cb_type = type(exit) try: exit_method = _cb_type.__aexit__ except AttributeError: # Not an async context manager, so assume it's a coroutine function self._push_exit_callback(exit, False) else: self._push_async_cm_exit(exit, exit_method) return exit # Allow use as a decorator def push_async_callback(self, callback, *args, **kwds): """Registers an arbitrary coroutine function and arguments. Cannot suppress exceptions. """ _exit_wrapper = self._create_async_cb_wrapper(callback, *args, **kwds) # We changed the signature, so using @wraps is not appropriate, but # setting __wrapped__ may still help with introspection. _exit_wrapper.__wrapped__ = callback self._push_exit_callback(_exit_wrapper, False) return callback # Allow use as a decorator async def aclose(self): """Immediately unwind the context stack.""" await self.__aexit__(None, None, None) def _push_async_cm_exit(self, cm, cm_exit): """Helper to correctly register coroutine function to __aexit__ method.""" _exit_wrapper = self._create_async_exit_wrapper(cm, cm_exit) self._push_exit_callback(_exit_wrapper, False) async def __aenter__(self): return self async def __aexit__(self, *exc_details): received_exc = exc_details[0] is not None # We manipulate the exception state so it behaves as though # we were actually nesting multiple with statements frame_exc = sys.exc_info()[1] def _fix_exception_context(new_exc, old_exc): # Context may not be correct, so find the end of the chain while 1: exc_context = new_exc.__context__ if exc_context is old_exc: # Context is already set correctly (see issue 20317) return if exc_context is None or exc_context is frame_exc: break new_exc = exc_context # Change the end of the chain to point to the exception # we expect it to reference new_exc.__context__ = old_exc # Callbacks are invoked in LIFO order to match the behaviour of # nested context managers suppressed_exc = False pending_raise = False while self._exit_callbacks: is_sync, cb = self._exit_callbacks.pop() try: if is_sync: cb_suppress = cb(*exc_details) else: cb_suppress = await cb(*exc_details) if cb_suppress: suppressed_exc = True pending_raise = False exc_details = (None, None, None) except: new_exc_details = sys.exc_info() # simulate the stack of exceptions by setting the context _fix_exception_context(new_exc_details[1], exc_details[1]) pending_raise = True exc_details = new_exc_details if pending_raise: try: # bare "raise exc_details[1]" replaces our carefully # set-up context fixed_ctx = exc_details[1].__context__ raise exc_details[1] except BaseException: exc_details[1].__context__ = fixed_ctx raise return received_exc and suppressed_exc class nullcontext(AbstractContextManager): """Context manager that does no additional processing. Used as a stand-in for a normal context manager, when a particular block of code is only sometimes used with a normal context manager: cm = optional_cm if condition else nullcontext() with cm: # Perform operation, using optional_cm if condition is True """ def __init__(self, enter_result=None): self.enter_result = enter_result def __enter__(self): return self.enter_result def __exit__(self, *excinfo): pass
the-stack_0_15705
from tkinter import * root=Tk() root.title("CAR RENTAL RECEIPT") root.geometry('700x800') #Labels g1=Label(root, text="CAR RENTAL RECEIPT", font="Calibri 18 bold") l1=Label(root, text="Date: ") e1=Entry(root,width=30, borderwidth=2) l2=Label(root, text="Receipt #: ") e2=Entry(root,width=30, borderwidth=2) l3=Label(root, text="Rental Company Info", font="Calibri 12 bold") l3_1=Label(root, text="Company: ") e3_1=Entry(root,width=30, borderwidth=2) l3_2=Label(root, text="Representative: ") e3_2=Entry(root,width=30, borderwidth=2) l3_3=Label(root, text="Location: ") e3_3=Entry(root,width=30, borderwidth=2) l3_4=Label(root, text="City/State/ZIP: ") e3_4=Entry(root,width=30, borderwidth=2) l3_5=Label(root, text="Phone: ") e3_5=Entry(root,width=30, borderwidth=2) l4=Label(root, text="Lessee Info", font="Calibri 12 bold") l4_1=Label(root, text="License: ") e4_1=Entry(root,width=30, borderwidth=2) l4_2=Label(root, text="Representative: ") e4_2=Entry(root,width=30, borderwidth=2) l4_3=Label(root, text="Address: ") e4_3=Entry(root,width=30, borderwidth=2) l4_4=Label(root, text="City/State/ZIP: ") e4_4=Entry(root,width=30, borderwidth=2) l4_5=Label(root, text="Phone: ") e4_5=Entry(root,width=30, borderwidth=2) g2=Label(root, text="Vehicle Information", font="Calibri 18 bold") l5_1=Label(root, text="VIN: ") e5_1=Entry(root,width=30, borderwidth=2) l5_2=Label(root, text="Make: ") e5_2=Entry(root,width=30, borderwidth=2) l5_3=Label(root, text="Year: ") e5_3=Entry(root,width=30, borderwidth=2) l5_4=Label(root, text="Color: ") e5_4=Entry(root,width=30, borderwidth=2) l6_1=Label(root, text="Registration: ") e6_1=Entry(root,width=30, borderwidth=2) l6_2=Label(root, text="Model: ") e6_2=Entry(root,width=30, borderwidth=2) l6_3=Label(root, text="Mileage: ") e6_3=Entry(root,width=30, borderwidth=2) h1=Label(root, text="VIN", font="Calibri 12 bold") h1_1=Entry(root,width=14, borderwidth=2) h1_2=Entry(root,width=14, borderwidth=2) h1_3=Entry(root,width=14, borderwidth=2) h2=Label(root, text="Cost/Day", font="Calibri 12 bold") h2_1=Entry(root,width=12, borderwidth=2) h2_2=Entry(root,width=12, borderwidth=2) h2_3=Entry(root,width=12, borderwidth=2) h3=Label(root, text="# of Days", font="Calibri 12 bold") h3_1=Entry(root,width=19, borderwidth=2) h3_2=Entry(root,width=19, borderwidth=2) h3_3=Entry(root,width=19, borderwidth=2) h4=Label(root, text="Additional Costs", font="Calibri 12 bold") h4_1=Entry(root,width=18, borderwidth=2) h4_2=Entry(root,width=18, borderwidth=2) h4_3=Entry(root,width=18, borderwidth=2) h4l1=Label(root, text="Subtotal: ") h4l2=Label(root, text="Tax (%): ") h4l3=Label(root, text="Total: ") h4l4=Label(root, text="Amount paid: ") h4e1=Entry(root,width=8, borderwidth=2) h4e2=Entry(root,width=9, borderwidth=2) h4e3=Entry(root,width=10, borderwidth=2) h4e4=Entry(root,width=4, borderwidth=2) h5=Label(root, text="Line Total", font="Calibri 12 bold") h5_1=Entry(root,width=16, borderwidth=2) h5_2=Entry(root,width=16, borderwidth=2) h5_3=Entry(root,width=16, borderwidth=2) h5_4=Entry(root,width=16, borderwidth=2) h5_5=Entry(root,width=16, borderwidth=2) h5_6=Entry(root,width=16, borderwidth=2) h5_7=Entry(root,width=16, borderwidth=2) xl1=Label(root, text="Payment Method: ") ck1=Checkbutton(root, text='Cash. ', onvalue=1, offvalue=0) ck2=Checkbutton(root, text='Check No.: ', onvalue=1, offvalue=0) ent1=Entry(root,width=31, borderwidth=2) ck3=Checkbutton(root, text='Credit No.: ', onvalue=1, offvalue=0) ent3=Entry(root,width=41, borderwidth=2) ck4=Checkbutton(root, text='Other.: ', onvalue=1, offvalue=0) ent4=Entry(root,width=44, borderwidth=2) lasl1=Label(root, text="Authorized Signature: ", font="Calibri 10 bold") lasl2=Label(root, text="Representative Name: ", font="Calibri 10") lase1=Entry(root,width=22, borderwidth=2) lase2=Entry(root,width=20, borderwidth=2) #Positioning l1.place(x=10, y=45) e1.place(x=50, y=45) l2.place(x=10, y=75) e2.place(x=73, y=75) l3.place(x=10, y=110) l3_1.place(x=10, y=150) l3_2.place(x=10, y=180) l3_3.place(x=10, y=210) l3_4.place(x=10, y=240) l3_5.place(x=10, y=270) e3_1.place(x=110, y=150) e3_2.place(x=110, y=180) e3_3.place(x=110, y=210) e3_4.place(x=110, y=240) e3_5.place(x=110, y=270) l4.place(x=320, y=110) l4_1.place(x=320, y=150) l4_2.place(x=320, y=180) l4_3.place(x=320, y=210) l4_4.place(x=320, y=240) l4_5.place(x=320, y=270) e4_1.place(x=420, y=150) e4_2.place(x=420, y=180) e4_3.place(x=420, y=210) e4_4.place(x=420, y=240) e4_5.place(x=420, y=270) g1.place(x=240, y=0) g2.place(x=240, y=300) l5_1.place(x=10, y=360) l5_2.place(x=10, y=390) l5_3.place(x=10, y=420) l5_4.place(x=10, y=450) e5_1.place(x=60, y=360) e5_2.place(x=60, y=390) e5_3.place(x=60, y=420) e5_4.place(x=60, y=450) l6_1.place(x=320, y=360) l6_2.place(x=320, y=390) l6_3.place(x=320, y=420) e6_1.place(x=420, y=360) e6_2.place(x=420, y=390) e6_3.place(x=420, y=420) h1.place(x=70, y=490) h2.place(x=160, y=490) h3.place(x=290, y=490) h4.place(x=400, y=490) h5.place(x=560, y=490) h1_1.place(x=40, y=520) h1_2.place(x=40, y=545) h1_3.place(x=40, y=570) h2_1.place(x=150, y=520) h2_2.place(x=150, y=545) h2_3.place(x=150, y=570) h3_1.place(x=260, y=520) h3_2.place(x=260, y=545) h3_3.place(x=260, y=570) h4_1.place(x=400, y=520) h4_2.place(x=400, y=545) h4_3.place(x=400, y=570) h4l1.place(x=400, y=595) h4l2.place(x=400, y=620) h4l3.place(x=400, y=645) h4l4.place(x=400, y=670) h4e1.place(x=460, y=595) h4e2.place(x=454, y=620) h4e3.place(x=447, y=645) h4e4.place(x=483, y=670) h5_1.place(x=540, y=520) h5_2.place(x=540, y=545) h5_3.place(x=540, y=570) h5_4.place(x=540, y=595) h5_5.place(x=540, y=620) h5_6.place(x=540, y=645) h5_7.place(x=540, y=670) xl1.place(x=40, y=595) ck1.place(x=40, y=620) ck2.place(x=100, y=620) ck3.place(x=40, y=645) ck4.place(x=40, y=670) ent1.place(x=188, y=623) ent3.place(x=128, y=649) ent4.place(x=110, y=675) lasl1.place(x=380, y=710) lasl2.place(x=390, y=735) lase1.place(x=505, y=710) lase2.place(x=518, y=735) root.mainloop()
the-stack_0_15706
# Copyright (c) 2016 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # # See the License for the specific language governing permissions and # limitations under the License. """ test_devstack ------------- Throw errors if we do not actually detect the services we're supposed to. """ import os from testscenarios import load_tests_apply_scenarios as load_tests # noqa from openstack.tests.functional.cloud import base class TestDevstack(base.BaseFunctionalTestCase): scenarios = [ ('designate', dict(env='DESIGNATE', service='dns')), ('heat', dict(env='HEAT', service='orchestration')), ('magnum', dict(env='MAGNUM', service='container-infra')), ('neutron', dict(env='NEUTRON', service='network')), ('octavia', dict(env='OCTAVIA', service='load-balancer')), ('swift', dict(env='SWIFT', service='object-store')), ] def test_has_service(self): if os.environ.get( 'OPENSTACKSDK_HAS_{env}'.format(env=self.env), '0') == '1': self.assertTrue(self.user_cloud.has_service(self.service)) class TestKeystoneVersion(base.BaseFunctionalTestCase): def test_keystone_version(self): use_keystone_v2 = os.environ.get('OPENSTACKSDK_USE_KEYSTONE_V2', False) if use_keystone_v2 and use_keystone_v2 != '0': self.assertEqual('2.0', self.identity_version) else: self.assertEqual('3', self.identity_version)
the-stack_0_15709
# -*- coding: utf-8 -*- from distutils.core import setup from setuptools import find_packages with open('.meta/packages') as reqs: install_requires = reqs.read().split('\n') setup( name='rpihelper', version='0.0.3', author='Nikita Grishko', author_email='[email protected]', url='https://github.com/Gr1N/rpihelper', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=install_requires, classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', ], scripts=[ 'bin/rqscheduletasks', ], )
the-stack_0_15710
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages # Always prefer setuptools over distutils from codecs import open # To use a consistent encoding from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the relevant file with open(path.join(here, 'DESCRIPTION.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='pyxmlescpos', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/development.html#single-sourcing-the-version version='0.1.0', description='Print XML-defined Receipts on ESC/POS Receipt Printers', long_description=long_description, # The project's main homepage. url='https://github.com/fvdsn/py-xml-escpos', download_url = 'https://github.com/fvdsn/py-xml-escpos/tarball/0.1.0', # Author details author='Frédéric van der Essen & Manuel F Martinez', author_email='[email protected]', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Printing', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], # What does your project relate to? keywords='printing receipt xml escpos', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests*']), # List run-time dependencies here. These will be installed by pip when your # project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/technical.html#install-requires-vs-requirements-files install_requires=['pyusb', 'qrcode'], # List additional groups of dependencies here (e.g. development dependencies). # You can install these using the following syntax, for example: # $ pip install -e .[dev,test] # extras_require = { # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, # If there are data files included in your packages that need to be # installed, specify them here. If using Python 2.6 or less, then these # have to be included in MANIFEST.in as well. # package_data={ # 'sample': ['package_data.dat'], # }, # Although 'package_data' is the preferred approach, in some case you may # need to place data files outside of your packages. # see http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. # entry_points={ # 'console_scripts': [ # 'sample=sample:main', # ], # }, )
the-stack_0_15711
# coding: utf-8 # ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- """ FILE: sample_get_operations_async.py DESCRIPTION: This sample demonstrates how to list/get all document model operations (succeeded, in-progress, failed) associated with the Form Recognizer resource. Kinds of operations returned are "documentModelBuild", "documentModelCompose", and "documentModelCopyTo". Note that operation information only persists for 24 hours. If the operation was successful, the document model can be accessed using get_model or list_models APIs. USAGE: python sample_get_operations_async.py Set the environment variables with your own values before running the sample: 1) AZURE_FORM_RECOGNIZER_ENDPOINT - the endpoint to your Cognitive Services resource. 2) AZURE_FORM_RECOGNIZER_KEY - your Form Recognizer API key """ import os import asyncio async def sample_get_operations_async(): # [START list_operations_async] from azure.core.credentials import AzureKeyCredential from azure.ai.formrecognizer.aio import DocumentModelAdministrationClient endpoint = os.environ["AZURE_FORM_RECOGNIZER_ENDPOINT"] key = os.environ["AZURE_FORM_RECOGNIZER_KEY"] document_model_admin_client = DocumentModelAdministrationClient(endpoint=endpoint, credential=AzureKeyCredential(key)) async with document_model_admin_client: operations = document_model_admin_client.list_operations() print("The following document model operations exist under my resource:") async for operation in operations: print("\nOperation ID: {}".format(operation.operation_id)) print("Operation kind: {}".format(operation.kind)) print("Operation status: {}".format(operation.status)) print("Operation percent completed: {}".format(operation.percent_completed)) print("Operation created on: {}".format(operation.created_on)) print("Operation last updated on: {}".format(operation.last_updated_on)) print("Resource location of successful operation: {}".format(operation.resource_location)) # [END list_operations_async] # [START get_operation_async] # Get an operation by ID try: first_operation = await operations.__anext__() print("\nGetting operation info by ID: {}".format(first_operation.operation_id)) operation_info = await document_model_admin_client.get_operation(first_operation.operation_id) if operation_info.status == "succeeded": print("My {} operation is completed.".format(operation_info.kind)) result = operation_info.result print("Model ID: {}".format(result.model_id)) elif operation_info.status == "failed": print("My {} operation failed.".format(operation_info.kind)) error = operation_info.error print("{}: {}".format(error.code, error.message)) else: print("My operation status is {}".format(operation_info.status)) except StopAsyncIteration: print("No operations found.") # [END get_operation_async] async def main(): await sample_get_operations_async() if __name__ == '__main__': asyncio.run(main())
the-stack_0_15714
import numpy as np from torch import nn import torch from encoder.params_model import * from encoder.params_data import * from encoder.data_objects.iemocap_dataset import emo_categories class EmoEncoder(nn.Module): def __init__(self, device): super().__init__() self.device = device self.lstm = nn.LSTM(input_size=mel_n_channels, hidden_size=model_hidden_size, num_layers=model_num_layers, batch_first=True).to(device) self.linear = nn.Linear(in_features=model_hidden_size, out_features=model_embedding_size).to(device) self.relu = torch.nn.ReLU().to(device) self.linear_cls = nn.Linear(in_features=model_embedding_size, out_features=len(emo_categories)).to(device) def forward(self, utterances, hidden_init=None): """ Computes the embeddings of a batch of utterance spectrograms. :param utterances: batch of mel-scale filterbanks of same duration as a tensor of shape (batch_size, n_frames, n_channels) :param hidden_init: initial hidden state of the LSTM as a tensor of shape (num_layers, batch_size, hidden_size). Will default to a tensor of zeros if None. :return: the embeddings as a tensor of shape (batch_size, embedding_size) """ # Pass the input through the LSTM layers and retrieve all outputs, the final hidden state # and the final cell state. out, (hidden, cell) = self.lstm(utterances, hidden_init) # We take only the hidden state of the last layer embeds_raw = self.relu(self.linear(hidden[-1])) # L2-normalize it embeds = embeds_raw / (torch.norm(embeds_raw, dim=1, keepdim=True) + 1e-5) pred = self.linear_cls(embeds) return embeds, pred class StackedBiLSTMEmoEncoder(nn.Module): def __init__(self, device): super(StackedBiLSTMEmoEncoder, self).__init__() self.device = device self.lstm1 = nn.LSTM(input_size=mel_n_channels, hidden_size=512, bidirectional=True, batch_first=True).to(device) self.lstm2 = nn.LSTM(input_size=1024, hidden_size=256, bidirectional=True, batch_first=True).to(device) self.linear = nn.Linear(in_features=512, out_features=512).to(device) self.tanh = nn.Tanh().to(device) self.linear_cls = nn.Linear(in_features=512, out_features=len(emo_categories)).to(device) def forward(self, utterances, hidden_init=None): o, _ = self.lstm1(utterances, hidden_init) o, (h, c) = self.lstm2(o) # Take the hidden state of last layers and concatenate the two directions h = torch.transpose(h[-2:], 0, 1) h = h.reshape([h.shape[0], -1]) embeds = self.tanh(self.linear(h)) pred = self.linear_cls(embeds) return embeds, pred
the-stack_0_15716
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import torch from torch.nn import functional as F from fcos_core.layers import smooth_l1_loss from fcos_core.modeling.box_coder import BoxCoder from fcos_core.modeling.matcher import Matcher from fcos_core.structures.boxlist_ops import boxlist_iou from fcos_core.modeling.balanced_positive_negative_sampler import ( BalancedPositiveNegativeSampler ) from fcos_core.modeling.utils import cat class FastRCNNLossComputation(torch.nn.Module): """ Computes the loss for Faster R-CNN. Also supports FPN """ def __init__( self, proposal_matcher, fg_bg_sampler, box_coder, cls_agnostic_bbox_reg=False, classification_loss_type='CE', num_classes=81, attribute_on=False, boundingbox_loss_type='SL1', cfg=None, ): """ Arguments: proposal_matcher (Matcher) fg_bg_sampler (BalancedPositiveNegativeSampler) box_coder (BoxCoder) """ super().__init__() self.proposal_matcher = proposal_matcher self.fg_bg_sampler = fg_bg_sampler self.box_coder = box_coder self.cls_agnostic_bbox_reg = cls_agnostic_bbox_reg self.attribute_on = attribute_on self.classification_loss_type = classification_loss_type if self.classification_loss_type == 'CE': self._classifier_loss = F.cross_entropy elif self.classification_loss_type == 'BCE': from qd.qd_pytorch import BCEWithLogitsNegLoss self._classifier_loss = BCEWithLogitsNegLoss() elif self.classification_loss_type.startswith('IBCE'): param = map(float, self.classification_loss_type[4:].split('_')) from qd.qd_pytorch import IBCEWithLogitsNegLoss self._classifier_loss = IBCEWithLogitsNegLoss(*param) elif self.classification_loss_type == 'MCEB': from qd.qd_pytorch import MCEBLoss self._classifier_loss = MCEBLoss() elif self.classification_loss_type == 'tree': tree_file = cfg.MODEL.ROI_BOX_HEAD.TREE_0_BKG from mtorch.softmaxtree_loss import SoftmaxTreeWithLoss self._classifier_loss = SoftmaxTreeWithLoss( tree_file, ignore_label=-1, # this is dummy value since this will not happend loss_weight=1, valid_normalization=True, ) self.copied_fields = ["labels"] if self.attribute_on: self.copied_fields.append("attributes") assert boundingbox_loss_type == 'SL1' def create_all_bkg_labels(self, num, device): if self.classification_loss_type in ['CE', 'tree']: return torch.zeros(num, dtype=torch.float32, device=device) elif self.classification_loss_type in ['BCE'] or \ self.classification_loss_type.startswith('IBCE'): return torch.zeros((num, self.num_classes), dtype=torch.float32, device=device) else: raise NotImplementedError(self.classification_loss_type) def match_targets_to_proposals(self, proposal, target): match_quality_matrix = boxlist_iou(target, proposal) matched_idxs = self.proposal_matcher(match_quality_matrix) # Fast RCNN only need "labels" field for selecting the targets target = target.copy_with_fields(self.copied_fields) # get the targets corresponding GT for each proposal # NB: need to clamp the indices because we can have a single # GT in the image, and matched_idxs can be -2, which goes # out of bounds if len(target) == 0: dummy_bbox = torch.zeros((len(matched_idxs), 4), dtype=torch.float32, device=matched_idxs.device) from maskrcnn_benchmark.structures.bounding_box import BoxList matched_targets = BoxList(dummy_bbox, target.size, target.mode) matched_targets.add_field('labels', self.create_all_bkg_labels( len(matched_idxs), matched_idxs.device)) matched_targets.add_field('tightness', torch.zeros(len(matched_idxs), device=matched_idxs.device)) matched_targets.add_field( 'attributes', torch.zeros((len(matched_idxs), 1), device=matched_idxs.device)) else: matched_targets = target[matched_idxs.clamp(min=0)] matched_targets.add_field("matched_idxs", matched_idxs) return matched_targets def prepare_targets(self, proposals, targets): labels = [] regression_targets = [] attributes = [] for proposals_per_image, targets_per_image in zip(proposals, targets): matched_targets = self.match_targets_to_proposals( proposals_per_image, targets_per_image ) matched_idxs = matched_targets.get_field("matched_idxs") labels_per_image = matched_targets.get_field("labels") labels_per_image = labels_per_image.to(dtype=torch.int64) # Label background (below the low threshold) bg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD labels_per_image[bg_inds] = 0 # Label ignore proposals (between low and high thresholds) ignore_inds = matched_idxs == Matcher.BETWEEN_THRESHOLDS labels_per_image[ignore_inds] = -1 # -1 is ignored by sampler # compute regression targets regression_targets_per_image = self.box_coder.encode( matched_targets.bbox, proposals_per_image.bbox ) labels.append(labels_per_image) regression_targets.append(regression_targets_per_image) if self.attribute_on: attributes_per_image = matched_targets.get_field("attributes") attributes_per_image = attributes_per_image.to(dtype=torch.int64) if len(targets_per_image) > 0: # Label background (below the low threshold) # attribute 0 is ignored in the loss attributes_per_image[bg_inds,:] = 0 # Label ignore proposals (between low and high thresholds) attributes_per_image[ignore_inds,:] = 0 # return attributes attributes.append(attributes_per_image) else: attributes.append([]) #return labels, regression_targets result = { 'labels': labels, 'regression_targets': regression_targets, } if self.attribute_on: result['attributes'] = attributes return result def subsample(self, proposals, targets): """ This method performs the positive/negative sampling, and return the sampled proposals. Note: this function keeps a state. Arguments: proposals (list[BoxList]) targets (list[BoxList]) """ prepare_result = self.prepare_targets(proposals, targets) labels = prepare_result['labels'] regression_targets = prepare_result['regression_targets'] sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) proposals = list(proposals) # add corresponding label and regression_targets information to the bounding boxes for i, (labels_per_image, regression_targets_per_image, proposals_per_image) in enumerate(zip( labels, regression_targets, proposals )): proposals_per_image.add_field("labels", labels_per_image) proposals_per_image.add_field( "regression_targets", regression_targets_per_image ) if self.attribute_on: # add attributes labels attributes_per_image = prepare_result['attributes'][i] proposals_per_image.add_field( "attributes", attributes_per_image ) # distributed sampled proposals, that were obtained on all feature maps # concatenated via the fg_bg_sampler, into individual feature map levels for img_idx, (pos_inds_img, neg_inds_img) in enumerate( zip(sampled_pos_inds, sampled_neg_inds) ): img_sampled_inds = torch.nonzero(pos_inds_img | neg_inds_img, as_tuple=False).squeeze(1) proposals_per_image = proposals[img_idx][img_sampled_inds] proposals[img_idx] = proposals_per_image self._proposals = proposals return proposals def forward(self, class_logits, box_regression): """ Computes the loss for Faster R-CNN. This requires that the subsample method has been called beforehand. Arguments: class_logits (list[Tensor]) box_regression (list[Tensor]) Returns: classification_loss (Tensor) box_loss (Tensor) """ class_logits = cat(class_logits, dim=0) box_regression = cat(box_regression, dim=0) device = class_logits.device if not hasattr(self, "_proposals"): raise RuntimeError("subsample needs to be called before") proposals = self._proposals labels = cat([proposal.get_field("labels") for proposal in proposals], dim=0) regression_targets = cat( [proposal.get_field("regression_targets") for proposal in proposals], dim=0 ) classification_loss = self._classifier_loss(class_logits, labels) # get indices that correspond to the regression targets for # the corresponding ground truth labels, to be used with # advanced indexing sampled_pos_inds_subset = torch.nonzero(labels > 0, as_tuple=False).squeeze(1) labels_pos = labels[sampled_pos_inds_subset] if self.cls_agnostic_bbox_reg: map_inds = torch.tensor([4, 5, 6, 7], device=device) else: map_inds = 4 * labels_pos[:, None] + torch.tensor( [0, 1, 2, 3], device=device) box_loss = smooth_l1_loss( box_regression[sampled_pos_inds_subset[:, None], map_inds], regression_targets[sampled_pos_inds_subset], size_average=False, beta=1, ) box_loss = box_loss / labels.numel() return classification_loss, box_loss def make_roi_box_loss_evaluator(cfg): matcher = Matcher( cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD, cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD, allow_low_quality_matches=False, ) bbox_reg_weights = cfg.MODEL.ROI_HEADS.BBOX_REG_WEIGHTS box_coder = BoxCoder(weights=bbox_reg_weights) attribute_on = cfg.MODEL.ATTRIBUTE_ON fg_bg_sampler = BalancedPositiveNegativeSampler( cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE, cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION ) cls_agnostic_bbox_reg = cfg.MODEL.CLS_AGNOSTIC_BBOX_REG classification_loss_type = cfg.MODEL.ROI_BOX_HEAD.CLASSIFICATION_LOSS num_classes = cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES cfg = cfg loss_evaluator = FastRCNNLossComputation( matcher, fg_bg_sampler, box_coder, cls_agnostic_bbox_reg, classification_loss_type, num_classes, attribute_on=attribute_on, boundingbox_loss_type=cfg.MODEL.ROI_BOX_HEAD.BOUNDINGBOX_LOSS_TYPE, cfg=cfg, ) return loss_evaluator
the-stack_0_15717
import unittest import sys try: import aula1_resp as aula1 except ImportError: print('Erro: o arquivo aula1.py não foi encontrado') sys.exit(1) MAX_PRIMES = 10000 def primes_sieve(limit): limitn = limit+1 not_prime = [False] * limitn primes = [] for i in range(2, limitn): if not_prime[i]: continue for f in range(i*2, limitn, i): not_prime[f] = True primes.append(i) return primes def fibonacci(n): a, b = 0, 1 for i in range(n): a, b = b, a+b return a def factorial(n): for i in range(2, n): n *= i return n class TesteAula1(unittest.TestCase): @unittest.skipIf('is_prime' not in vars(aula1), 'Função "is_prime" não foi encontrada') def test_is_prime(self): primes = primes_sieve(MAX_PRIMES) for i in range(1, MAX_PRIMES): if aula1.is_prime(i): self.assertIn(i, primes) else: self.assertNotIn(i, primes) @unittest.skipIf('fibonacci' not in vars(aula1), 'Função "fibonacci" não foi encontrada') def test_fibonacci(self): for i in range(0, 30): self.assertEqual(fibonacci(i), aula1.fibonacci(i)) @unittest.skipIf('factorial' not in vars(aula1), 'Função "factorial" não foi encontrada') def test_factorial(self): for i in range(1, 70): self.assertEqual(factorial(i), aula1.factorial(i)) if __name__ == '__main__': unittest.main(verbosity=2)
the-stack_0_15718
# encoding: utf-8 from __future__ import unicode_literals, absolute_import import os import sys import locale from itertools import chain from six import iterkeys, iteritems from six.moves.configparser import ConfigParser from .autocomplete import SIMPLE as default_completion, ALL_MODES class Struct(object): """Simple class for instantiating objects we can add arbitrary attributes to and use for various arbitrary things.""" def getpreferredencoding(): """Get the user's preferred encoding.""" return locale.getpreferredencoding() or sys.getdefaultencoding() def can_encode(c): try: c.encode(getpreferredencoding()) return True except UnicodeEncodeError: return False def supports_box_chars(): """Check if the encoding supports Unicode box characters.""" return all(map(can_encode, "│─└┘┌┐")) def get_config_home(): """Returns the base directory for bpython's configuration files.""" xdg_config_home = os.environ.get("XDG_CONFIG_HOME", "~/.config") return os.path.join(xdg_config_home, "bpython") def default_config_path(): """Returns bpython's default configuration file path.""" return os.path.join(get_config_home(), "config") def fill_config_with_default_values(config, default_values): for section in iterkeys(default_values): if not config.has_section(section): config.add_section(section) for (opt, val) in iteritems(default_values[section]): if not config.has_option(section, opt): config.set(section, opt, "%s" % (val,)) def loadini(struct, configfile): """Loads .ini configuration file and stores its values in struct""" config_path = os.path.expanduser(configfile) config = ConfigParser() defaults = { "general": { "arg_spec": True, "auto_display_list": True, "autocomplete_mode": default_completion, "color_scheme": "default", "complete_magic_methods": True, "dedent_after": 1, "default_autoreload": False, "editor": os.environ.get("VISUAL", os.environ.get("EDITOR", "vi")), "flush_output": True, "highlight_show_source": True, "hist_duplicates": True, "hist_file": "~/.pythonhist", "hist_length": 1000, "paste_time": 0.02, "pastebin_confirm": True, "pastebin_expiry": "1week", "pastebin_helper": "", "pastebin_url": "https://bpaste.net", "save_append_py": False, "single_undo_time": 1.0, "syntax": True, "tab_length": 4, "unicode_box": True, }, "keyboard": { "backspace": "C-h", "beginning_of_line": "C-a", "clear_line": "C-u", "clear_screen": "C-l", "clear_word": "C-w", "copy_clipboard": "F10", "cut_to_buffer": "C-k", "delete": "C-d", "down_one_line": "C-n", "edit_config": "F3", "edit_current_block": "C-x", "end_of_line": "C-e", "exit": "", "external_editor": "F7", "help": "F1", "incremental_search": "M-s", "last_output": "F9", "left": "C-b", "pastebin": "F8", "redo": "C-g", "reimport": "F6", "reverse_incremental_search": "M-r", "right": "C-f", "save": "C-s", "search": "C-o", "show_source": "F2", "suspend": "C-z", "toggle_file_watch": "F5", "transpose_chars": "C-t", "undo": "C-r", "up_one_line": "C-p", "yank_from_buffer": "C-y", }, "cli": {"suggestion_width": 0.8, "trim_prompts": False,}, "curtsies": {"list_above": False, "right_arrow_completion": True,}, } default_keys_to_commands = dict( (value, key) for (key, value) in iteritems(defaults["keyboard"]) ) fill_config_with_default_values(config, defaults) try: if not config.read(config_path): # No config file. If the user has it in the old place then complain if os.path.isfile(os.path.expanduser("~/.bpython.ini")): sys.stderr.write( "Error: It seems that you have a config file at " "~/.bpython.ini. Please move your config file to " "%s\n" % default_config_path() ) sys.exit(1) except UnicodeDecodeError as e: sys.stderr.write( "Error: Unable to parse config file at '{}' due to an " "encoding issue. Please make sure to fix the encoding " "of the file or remove it and then try again.\n".format(config_path) ) sys.exit(1) def get_key_no_doublebind(command): default_commands_to_keys = defaults["keyboard"] requested_key = config.get("keyboard", command) try: default_command = default_keys_to_commands[requested_key] if default_commands_to_keys[default_command] == config.get( "keyboard", default_command ): setattr(struct, "%s_key" % default_command, "") except KeyError: pass return requested_key struct.config_path = config_path struct.dedent_after = config.getint("general", "dedent_after") struct.tab_length = config.getint("general", "tab_length") struct.auto_display_list = config.getboolean("general", "auto_display_list") struct.syntax = config.getboolean("general", "syntax") struct.arg_spec = config.getboolean("general", "arg_spec") struct.paste_time = config.getfloat("general", "paste_time") struct.single_undo_time = config.getfloat("general", "single_undo_time") struct.highlight_show_source = config.getboolean( "general", "highlight_show_source" ) struct.hist_file = config.get("general", "hist_file") struct.editor = config.get("general", "editor") struct.hist_length = config.getint("general", "hist_length") struct.hist_duplicates = config.getboolean("general", "hist_duplicates") struct.flush_output = config.getboolean("general", "flush_output") struct.default_autoreload = config.getboolean( "general", "default_autoreload" ) struct.pastebin_key = get_key_no_doublebind("pastebin") struct.copy_clipboard_key = get_key_no_doublebind("copy_clipboard") struct.save_key = get_key_no_doublebind("save") struct.search_key = get_key_no_doublebind("search") struct.show_source_key = get_key_no_doublebind("show_source") struct.suspend_key = get_key_no_doublebind("suspend") struct.toggle_file_watch_key = get_key_no_doublebind("toggle_file_watch") struct.undo_key = get_key_no_doublebind("undo") struct.redo_key = get_key_no_doublebind("redo") struct.reimport_key = get_key_no_doublebind("reimport") struct.reverse_incremental_search_key = get_key_no_doublebind( "reverse_incremental_search" ) struct.incremental_search_key = get_key_no_doublebind("incremental_search") struct.up_one_line_key = get_key_no_doublebind("up_one_line") struct.down_one_line_key = get_key_no_doublebind("down_one_line") struct.cut_to_buffer_key = get_key_no_doublebind("cut_to_buffer") struct.yank_from_buffer_key = get_key_no_doublebind("yank_from_buffer") struct.clear_word_key = get_key_no_doublebind("clear_word") struct.backspace_key = get_key_no_doublebind("backspace") struct.clear_line_key = get_key_no_doublebind("clear_line") struct.clear_screen_key = get_key_no_doublebind("clear_screen") struct.delete_key = get_key_no_doublebind("delete") struct.left_key = get_key_no_doublebind("left") struct.right_key = get_key_no_doublebind("right") struct.end_of_line_key = get_key_no_doublebind("end_of_line") struct.beginning_of_line_key = get_key_no_doublebind("beginning_of_line") struct.transpose_chars_key = get_key_no_doublebind("transpose_chars") struct.exit_key = get_key_no_doublebind("exit") struct.last_output_key = get_key_no_doublebind("last_output") struct.edit_config_key = get_key_no_doublebind("edit_config") struct.edit_current_block_key = get_key_no_doublebind("edit_current_block") struct.external_editor_key = get_key_no_doublebind("external_editor") struct.help_key = get_key_no_doublebind("help") struct.pastebin_confirm = config.getboolean("general", "pastebin_confirm") struct.pastebin_url = config.get("general", "pastebin_url") struct.pastebin_expiry = config.get("general", "pastebin_expiry") struct.pastebin_helper = config.get("general", "pastebin_helper") struct.cli_suggestion_width = config.getfloat("cli", "suggestion_width") struct.cli_trim_prompts = config.getboolean("cli", "trim_prompts") struct.complete_magic_methods = config.getboolean( "general", "complete_magic_methods" ) struct.autocomplete_mode = config.get("general", "autocomplete_mode") struct.save_append_py = config.getboolean("general", "save_append_py") struct.curtsies_list_above = config.getboolean("curtsies", "list_above") struct.curtsies_right_arrow_completion = config.getboolean( "curtsies", "right_arrow_completion" ) color_scheme_name = config.get("general", "color_scheme") default_colors = { "keyword": "y", "name": "c", "comment": "b", "string": "m", "error": "r", "number": "G", "operator": "Y", "punctuation": "y", "token": "C", "background": "d", "output": "w", "main": "c", "paren": "R", "prompt": "c", "prompt_more": "g", "right_arrow_suggestion": "K", } if color_scheme_name == "default": struct.color_scheme = default_colors else: struct.color_scheme = dict() theme_filename = color_scheme_name + ".theme" path = os.path.expanduser( os.path.join(get_config_home(), theme_filename) ) try: load_theme(struct, path, struct.color_scheme, default_colors) except EnvironmentError: sys.stderr.write( "Could not load theme '%s'.\n" % (color_scheme_name,) ) sys.exit(1) # expand path of history file struct.hist_file = os.path.expanduser(struct.hist_file) # verify completion mode if struct.autocomplete_mode not in ALL_MODES: struct.autocomplete_mode = default_completion # set box drawing characters if config.getboolean("general", "unicode_box") and supports_box_chars(): struct.left_border = "│" struct.right_border = "│" struct.top_border = "─" struct.bottom_border = "─" struct.left_bottom_corner = "└" struct.right_bottom_corner = "┘" struct.left_top_corner = "┌" struct.right_top_corner = "┐" else: struct.left_border = "|" struct.right_border = "|" struct.top_border = "-" struct.bottom_border = "-" struct.left_bottom_corner = "+" struct.right_bottom_corner = "+" struct.left_top_corner = "+" struct.right_top_corner = "+" def load_theme(struct, path, colors, default_colors): theme = ConfigParser() with open(path, "r") as f: theme.readfp(f) for k, v in chain(theme.items("syntax"), theme.items("interface")): if theme.has_option("syntax", k): colors[k] = theme.get("syntax", k) else: colors[k] = theme.get("interface", k) # Check against default theme to see if all values are defined for k, v in iteritems(default_colors): if k not in colors: colors[k] = v
the-stack_0_15719
#!/usr/bin/env python # This will try to import setuptools. If not here, it will reach for the embedded # ez_setup (or the ez_setup package). If none, it fails with a message import sys from codecs import open try: from setuptools import find_packages, setup from setuptools.command.test import test as TestCommand except ImportError: try: import ez_setup ez_setup.use_setuptools() except ImportError: raise ImportError('MoviePy could not be installed, probably because' ' neither setuptools nor ez_setup are installed on this computer.' '\nInstall ez_setup ([sudo] pip install ez_setup) and try again.') class PyTest(TestCommand): """Handle test execution from setup.""" user_options = [('pytest-args=', 'a', "Arguments to pass into pytest")] def initialize_options(self): """Initialize the PyTest options.""" TestCommand.initialize_options(self) self.pytest_args = "" def finalize_options(self): """Finalize the PyTest options.""" TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): """Run the PyTest testing suite.""" try: import pytest except ImportError: raise ImportError('Running tests requires additional dependencies.' '\nPlease run (pip install moviepy[test])') errno = pytest.main(self.pytest_args.split(" ")) sys.exit(errno) cmdclass = {'test': PyTest} # Define custom commands. if 'build_docs' in sys.argv: try: from sphinx.setup_command import BuildDoc except ImportError: raise ImportError('Running the documenation builds has additional' ' dependencies. Please run (pip install moviepy[docs])') cmdclass['build_docs'] = BuildDoc __version__ = None # Explicitly set version to quieten static code checkers. exec(open('moviepy/version.py').read()) # loads __version__ # Define the requirements for specific execution needs. requires = [ 'decorator>=4.0.2,<5.0', "imageio>=2.5,<3.0; python_version>='3.4'", "imageio>=2.0,<2.5; python_version<'3.4'", "imageio_ffmpeg>=0.2.0; python_version>='3.4'", 'tqdm>=4.11.2,<5.0', 'numpy', 'requests>=2.8.1,<3.0', 'proglog<=1.0.0' ] optional_reqs = [ "opencv-python>=3.0,<4.0; python_version!='2.7'", "scikit-image>=0.13.0,<1.0; python_version>='3.4'", "scikit-learn; python_version>='3.4'", "scipy>=0.19.0,<1.0; python_version!='3.3'", "matplotlib>=2.0.0,<3.0; python_version>='3.4'", "youtube_dl" ] doc_reqs = [ "pygame>=1.9.3,<2.0; python_version!='3.3'", 'numpydoc>=0.6.0,<1.0', 'sphinx_rtd_theme>=0.1.10b0,<1.0', 'Sphinx>=1.5.2,<2.0', ] test_reqs = [ 'coverage<5.0', 'coveralls>=1.1,<2.0', 'pytest-cov>=2.5.1,<3.0', 'pytest>=3.0.0,<4.0', 'requests>=2.8.1,<3.0' ] extra_reqs = { "optional": optional_reqs, "doc": doc_reqs, "test": test_reqs } # Load the README. with open('README.rst', 'r', 'utf-8') as f: readme = f.read() setup( name='moviepy', version=__version__, author='Zulko 2017', description='Video editing with Python', long_description=readme, url='https://zulko.github.io/moviepy/', license='MIT License', classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Multimedia', 'Topic :: Multimedia :: Sound/Audio', 'Topic :: Multimedia :: Sound/Audio :: Analysis', 'Topic :: Multimedia :: Video', 'Topic :: Multimedia :: Video :: Capture', 'Topic :: Multimedia :: Video :: Conversion', ], keywords='video editing audio compositing ffmpeg', packages=find_packages(exclude=['docs', 'tests']), cmdclass=cmdclass, command_options={ 'build_docs': { 'build_dir': ('setup.py', './docs/build'), 'config_dir': ('setup.py', './docs'), 'version': ('setup.py', __version__.rsplit('.', 2)[0]), 'release': ('setup.py', __version__)}}, tests_require=test_reqs, install_requires=requires, extras_require=extra_reqs, )
the-stack_0_15720
import os import random from collections import namedtuple import numpy as np import torch import torch.utils.data as data from PIL import Image import h5py from lilanet.datasets.transforms import Compose, RandomHorizontalFlip, Normalize class DENSE(data.Dataset): """`DENSE LiDAR`_ Dataset. Args: root (string): Root directory of the ``lidar_2d`` and ``ImageSet`` folder. split (string, optional): Select the split to use, ``train``, ``val`` or ``all`` transform (callable, optional): A function/transform that takes in distance, reflectivity and target tensors and returns a transformed version. """ #TODO: Bu class kismina bir bak Class = namedtuple('Class', ['name', 'id', 'color']) classes = [ Class('unknown', 0, (0, 0, 0)), Class('car', 1, (0, 0, 142)), Class('pedestrian', 2, (220, 20, 60)), Class('cyclist', 3, (119, 11, 32)), ] def __init__(self, root, split='train', transform=None): self.root = os.path.expanduser(root) self.lidar_path = os.path.join(self.root, 'lidar_2d') self.split = os.path.join(self.root, '{}_01'.format(split)) self.transform = transform self.lidar = [] if split not in ['train', 'val', 'all']: raise ValueError('Invalid split! Use split="train", split="val" or split="all"') self.lidar = [os.path.join(r,file) for r,d,f in os.walk(self.split) for file in f] def __getitem__(self, index): with h5py.File(self.lidar[index], "r", driver='core') as hdf5: # for channel in self.channels: distance_1 = hdf5.get('distance_m_1')[()] reflectivity_1 = hdf5.get('intensity_1')[()] label_1 = hdf5.get('labels_1')[()] #Label transformation is necessary to have contiguous labeling label_dict= {0:0, 100:1, 101:2, 102:3} label_1 = np.vectorize(label_dict.get)(label_1) distance = torch.as_tensor(distance_1.astype(np.float32, copy=False)).contiguous() reflectivity = torch.as_tensor(reflectivity_1.astype(np.float32, copy=False)).contiguous() label = torch.as_tensor(label_1.astype(np.float32, copy=False)).contiguous() # distance = torch.as_tensor(distance_1.astype(np.float32, copy=False)) # reflectivity = torch.as_tensor(reflectivity_1.astype(np.float32, copy=False)) # label = torch.as_tensor(label_1.astype(np.float32, copy=False)) # print("label: '{}'".format(label)) if self.transform: distance, reflectivity, label = self.transform(distance, reflectivity, label) return distance, reflectivity, label def __len__(self): return len(self.lidar) @staticmethod def num_classes(): return len(DENSE.classes) @staticmethod def mean(): return [0.21, 12.12] @staticmethod def std(): return [0.16, 12.32] @staticmethod def class_weights(): return torch.tensor([1 / 15.0, 1.0, 10.0, 10.0]) @staticmethod def get_colormap(): cmap = torch.zeros([256, 3], dtype=torch.uint8) for cls in DENSE.classes: cmap[cls.id, :] = torch.tensor(cls.color, dtype=torch.uint8) return cmap if __name__ == '__main__': import matplotlib.pyplot as plt joint_transforms = Compose([ RandomHorizontalFlip(), Normalize(mean=DENSE.mean(), std=DENSE.std()) ]) def _normalize(x): return (x - x.min()) / (x.max() - x.min()) def visualize_seg(label_map, one_hot=False): if one_hot: label_map = np.argmax(label_map, axis=-1) out = np.zeros((label_map.shape[0], label_map.shape[1], 3)) for l in range(1, DENSE.num_classes()): mask = label_map == l out[mask, 0] = np.array(DENSE.classes[l].color[1]) out[mask, 1] = np.array(DENSE.classes[l].color[0]) out[mask, 2] = np.array(DENSE.classes[l].color[2]) return out dataset = DENSE('../../data/DENSE', transform=joint_transforms) distance, reflectivity, label = random.choice(dataset) print('Distance size: ', distance.size()) print('Reflectivity size: ', reflectivity.size()) print('Label size: ', label.size()) distance_map = Image.fromarray((255 * _normalize(distance.numpy())).astype(np.uint8)) reflectivity_map = Image.fromarray((255 * _normalize(reflectivity.numpy())).astype(np.uint8)) label_map = Image.fromarray((255 * visualize_seg(label.numpy())).astype(np.uint8)) blend_map = Image.blend(distance_map.convert('RGBA'), label_map.convert('RGBA'), alpha=0.4) plt.figure(figsize=(10, 5)) plt.subplot(221) plt.title("Distance") plt.imshow(distance_map) plt.subplot(222) plt.title("Reflectivity") plt.imshow(reflectivity_map) plt.subplot(223) plt.title("Label") plt.imshow(label_map) plt.subplot(224) plt.title("Result") plt.imshow(blend_map) plt.show()
the-stack_0_15726
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.commands import CliCommandType # pylint: disable=line-too-long, too-many-locals, too-many-statements def load_command_table(self, _): from ._client_factory import ( cf_alert_rules, cf_metrics, cf_metric_def, cf_alert_rule_incidents, cf_log_profiles, cf_autoscale, cf_diagnostics, cf_activity_log, cf_action_groups, cf_activity_log_alerts, cf_event_categories) from ._exception_handler import monitor_exception_handler, missing_resource_handler from .transformers import (action_group_list_table) action_group_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.action_groups_operations#ActionGroupsOperations.{}', client_factory=cf_action_groups) action_group_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.action_groups#{}', client_factory=cf_action_groups) activity_log_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.activity_log#{}', client_factory=cf_activity_log) activity_log_alerts_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.activity_log_alerts_operations#ActivityLogAlertsOperations.{}', client_factory=cf_activity_log_alerts) activity_log_alerts_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.activity_log_alerts#{}', client_factory=cf_activity_log_alerts) alert_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.alert_rules_operations#AlertRulesOperations.{}', client_factory=cf_alert_rules) alert_rule_incidents_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.alert_rule_incidents_operations#AlertRuleIncidentsOperations.{}', client_factory=cf_alert_rule_incidents) autoscale_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.autoscale_settings_operations#AutoscaleSettingsOperations.{}', client_factory=cf_autoscale) autoscale_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.autoscale_settings#{}', client_factory=cf_autoscale) diagnostics_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.diagnostic_settings_operations#DiagnosticSettingsOperations.{}', client_factory=cf_diagnostics) diagnostics_categories_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.diagnostic_settings_category_operations#DiagnosticSettingsCategoryOperations.{}', client_factory=cf_diagnostics) diagnostics_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.diagnostics_settings#{}', client_factory=cf_diagnostics) log_profiles_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.log_profiles_operations#LogProfilesOperations.{}', client_factory=cf_log_profiles) metric_operations_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.metrics_operations#MetricsOperations.{}', client_factory=cf_metrics) alert_custom = CliCommandType( operations_tmpl='azure.cli.command_modules.monitor.operations.metric_alert#{}', client_factory=cf_alert_rules) metric_definitions_sdk = CliCommandType( operations_tmpl='azure.mgmt.monitor.operations.metric_definitions_operations#MetricDefinitionsOperations.{}', client_factory=cf_metric_def) with self.command_group('monitor action-group', action_group_sdk, custom_command_type=action_group_custom) as g: g.command('show', 'get', table_transformer=action_group_list_table) g.command('create', 'create_or_update', table_transformer=action_group_list_table) g.command('delete', 'delete') g.command('enable-receiver', 'enable_receiver', table_transformer=action_group_list_table, exception_handler=monitor_exception_handler) g.custom_command('list', 'list_action_groups', table_transformer=action_group_list_table) g.generic_update_command('update', custom_func_name='update_action_groups', setter_arg_name='action_group', table_transformer=action_group_list_table, exception_handler=monitor_exception_handler) with self.command_group('monitor activity-log', activity_log_custom) as g: g.command('list', 'list_activity_log') g.command('list-categories', 'list', operations_tmpl='azure.mgmt.monitor.operations.event_categories_operations#EventCategoriesOperations.{}', client_factory=cf_event_categories) with self.command_group('monitor activity-log alert', activity_log_alerts_sdk, custom_command_type=activity_log_alerts_custom) as g: g.custom_command('list', 'list_activity_logs_alert') g.custom_command('create', 'create', exception_handler=monitor_exception_handler) g.command('show', 'get', exception_handler=missing_resource_handler) g.command('delete', 'delete', exception_handler=missing_resource_handler) g.generic_update_command('update', custom_func_name='update', setter_arg_name='activity_log_alert', exception_handler=monitor_exception_handler) g.custom_command('action-group add', 'add_action_group', exception_handler=monitor_exception_handler) g.custom_command('action-group remove', 'remove_action_group', exception_handler=monitor_exception_handler) g.custom_command('scope add', 'add_scope', exception_handler=monitor_exception_handler) g.custom_command('scope remove', 'remove_scope', exception_handler=monitor_exception_handler) with self.command_group('monitor alert', alert_sdk, custom_command_type=alert_custom) as g: g.custom_command('create', 'create_metric_rule') g.command('delete', 'delete') g.command('show', 'get') g.command('list', 'list_by_resource_group') g.command('show-incident', 'get', command_type=alert_rule_incidents_sdk) g.command('list-incidents', 'list_by_alert_rule', command_type=alert_rule_incidents_sdk) g.generic_update_command('update', custom_func_name='update_metric_rule', exception_handler=monitor_exception_handler) with self.command_group('monitor autoscale-settings', autoscale_sdk, custom_command_type=autoscale_custom) as g: g.command('create', 'create_or_update') g.command('delete', 'delete') g.command('show', 'get') g.command('list', 'list_by_resource_group') g.custom_command('get-parameters-template', 'scaffold_autoscale_settings_parameters') g.generic_update_command('update', exception_handler=monitor_exception_handler) with self.command_group('monitor diagnostic-settings', diagnostics_sdk, custom_command_type=diagnostics_custom) as g: from .validators import validate_diagnostic_settings g.custom_command('create', 'create_diagnostics_settings', validator=validate_diagnostic_settings) g.command('show', 'get') g.command('list', 'list') g.command('delete', 'delete') g.generic_update_command('update', exception_handler=monitor_exception_handler) with self.command_group('monitor diagnostic-settings categories', diagnostics_categories_sdk) as g: g.command('show', 'get') g.command('list', 'list') with self.command_group('monitor log-profiles', log_profiles_sdk) as g: g.command('create', 'create_or_update') g.command('delete', 'delete') g.command('show', 'get') g.command('list', 'list') g.generic_update_command('update', exception_handler=monitor_exception_handler) with self.command_group('monitor metrics') as g: from .transformers import metrics_table, metrics_definitions_table g.command('list', 'list', command_type=metric_operations_sdk, table_transformer=metrics_table) g.command('list-definitions', 'list', command_type=metric_definitions_sdk, table_transformer=metrics_definitions_table)
the-stack_0_15727
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for nlp.nhnet.decoder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from official.nlp.modeling import layers from official.nlp.nhnet import configs from official.nlp.nhnet import decoder from official.nlp.nhnet import utils def _create_cache(batch_size, init_decode_length, num_heads, head_size): return { "key": tf.zeros([batch_size, init_decode_length, num_heads, head_size], dtype=tf.float32), "value": tf.zeros([batch_size, init_decode_length, num_heads, head_size], dtype=tf.float32) } class DecoderTest(tf.test.TestCase): def setUp(self): super(DecoderTest, self).setUp() self._config = utils.get_test_params() def test_transformer_decoder(self): decoder_block = decoder.TransformerDecoder( num_hidden_layers=self._config.num_hidden_layers, hidden_size=self._config.hidden_size, num_attention_heads=self._config.num_attention_heads, intermediate_size=self._config.intermediate_size, intermediate_activation=self._config.hidden_act, hidden_dropout_prob=self._config.hidden_dropout_prob, attention_probs_dropout_prob=self._config.attention_probs_dropout_prob, initializer_range=self._config.initializer_range) decoder_block.build(None) self.assertEqual(len(decoder_block.layers), self._config.num_hidden_layers) def test_decoder_block_with_cache(self): decoder_block = decoder.TransformerDecoderBlock( hidden_size=self._config.hidden_size, num_attention_heads=self._config.num_attention_heads, intermediate_size=self._config.intermediate_size, intermediate_activation=self._config.hidden_act, hidden_dropout_prob=self._config.hidden_dropout_prob, attention_probs_dropout_prob=self._config.attention_probs_dropout_prob, initializer_range=self._config.initializer_range) # Forward path. dummy_tensor = tf.zeros([2, 4, self._config.hidden_size], dtype=tf.float32) dummy_mask = tf.zeros([2, 4, 4], dtype=tf.float32) inputs = [dummy_tensor, dummy_tensor, dummy_mask, dummy_mask] cache = _create_cache( 2, 0, self._config.num_attention_heads, self._config.hidden_size // self._config.num_attention_heads) output, cache = decoder_block(inputs, cache) self.assertEqual(output.shape, (2, 4, self._config.hidden_size)) self.assertEqual(cache["value"].shape, (2, 4, 2, 8)) def test_bert_decoder(self): seq_length = 10 encoder_input_ids = tf.keras.layers.Input( shape=(seq_length,), name="encoder_input_ids", dtype=tf.int32) target_ids = tf.keras.layers.Input( shape=(seq_length,), name="target_ids", dtype=tf.int32) encoder_outputs = tf.keras.layers.Input( shape=(seq_length, self._config.hidden_size), name="all_encoder_outputs", dtype=tf.float32) embedding_lookup = layers.OnDeviceEmbedding( vocab_size=self._config.vocab_size, embedding_width=self._config.hidden_size, initializer=tf.keras.initializers.TruncatedNormal( stddev=self._config.initializer_range), name="word_embeddings") cross_attention_bias = decoder.AttentionBias(bias_type="single_cross")( encoder_input_ids) self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")( target_ids) inputs = dict( attention_bias=cross_attention_bias, self_attention_bias=self_attention_bias, target_ids=target_ids, all_encoder_outputs=encoder_outputs) decoder_layer = decoder.Decoder(self._config, embedding_lookup) outputs = decoder_layer(inputs) model_inputs = dict( encoder_input_ids=encoder_input_ids, target_ids=target_ids, all_encoder_outputs=encoder_outputs) model = tf.keras.Model(inputs=model_inputs, outputs=outputs, name="test") self.assertLen(decoder_layer.trainable_weights, 30) # Forward path. fake_inputs = { "encoder_input_ids": np.zeros((2, 10), dtype=np.int32), "target_ids": np.zeros((2, 10), dtype=np.int32), "all_encoder_outputs": np.zeros((2, 10, 16), dtype=np.float32), } output_tensor = model(fake_inputs) self.assertEqual(output_tensor.shape, (2, 10, 16)) def test_multi_doc_decoder(self): self._config = utils.get_test_params(cls=configs.NHNetConfig) seq_length = 10 num_docs = 5 encoder_input_ids = tf.keras.layers.Input( shape=(num_docs, seq_length), name="encoder_input_ids", dtype=tf.int32) target_ids = tf.keras.layers.Input( shape=(seq_length,), name="target_ids", dtype=tf.int32) encoder_outputs = tf.keras.layers.Input( shape=(num_docs, seq_length, self._config.hidden_size), name="all_encoder_outputs", dtype=tf.float32) embedding_lookup = layers.OnDeviceEmbedding( vocab_size=self._config.vocab_size, embedding_width=self._config.hidden_size, initializer=tf.keras.initializers.TruncatedNormal( stddev=self._config.initializer_range), name="word_embeddings") doc_attention_probs = tf.keras.layers.Input( shape=(self._config.num_decoder_attn_heads, seq_length, num_docs), name="doc_attention_probs", dtype=tf.float32) cross_attention_bias = decoder.AttentionBias(bias_type="multi_cross")( encoder_input_ids) self_attention_bias = decoder.AttentionBias(bias_type="decoder_self")( target_ids) inputs = dict( attention_bias=cross_attention_bias, self_attention_bias=self_attention_bias, target_ids=target_ids, all_encoder_outputs=encoder_outputs, doc_attention_probs=doc_attention_probs) decoder_layer = decoder.Decoder(self._config, embedding_lookup) outputs = decoder_layer(inputs) model_inputs = dict( encoder_input_ids=encoder_input_ids, target_ids=target_ids, all_encoder_outputs=encoder_outputs, doc_attention_probs=doc_attention_probs) model = tf.keras.Model(inputs=model_inputs, outputs=outputs, name="test") self.assertLen(decoder_layer.trainable_weights, 30) # Forward path. fake_inputs = { "encoder_input_ids": np.zeros((2, num_docs, seq_length), dtype=np.int32), "target_ids": np.zeros((2, seq_length), dtype=np.int32), "all_encoder_outputs": np.zeros((2, num_docs, seq_length, 16), dtype=np.float32), "doc_attention_probs": np.zeros( (2, self._config.num_decoder_attn_heads, seq_length, num_docs), dtype=np.float32) } output_tensor = model(fake_inputs) self.assertEqual(output_tensor.shape, (2, seq_length, 16)) if __name__ == "__main__": tf.test.main()
the-stack_0_15728
import numpy as np import cv2 from os.path import * import math # trs, let's assume width is always wider than height def video_to_npy(infile, outfile=None, width=None, height=None, squarecrop=None, fps=None, mode='rgb', maxlength=None, use_cache=False): global vcache if use_cache and outfile is not None and 'vcache' in globals(): if outfile in vcache: return vcache[outfile] else: vcache = dict() # has this video already been saved before? if outfile and isfile(outfile): frames = np.load(outfile) if use_cache: vcache[outfile] = frames # just return this preloaded video return frames print('reading fresh video from %s' % infile) vidcap = cv2.VideoCapture(infile) success, image = vidcap.read() frames = [] count = 0 if not success: raise ValueError('Could not read the video file!') while success: frames.append( image[...,::-1] if mode == 'rgb' else image ) count += 1 success,image = vidcap.read() if fps: span = int(vidcap.get(cv2.CAP_PROP_FPS) / fps) frames = frames[0::span] if width or height: width = width if width else int(height / frames[0].shape[0] * frames[0].shape[1]) height = height if height else int(width / frames[0].shape[1] * frames[0].shape[0]) frames = [ cv2.resize(frame, (width, height)) for frame in frames ] if squarecrop: tl = int((width/2)-(height/2)) # note that x,y is the wrong way around i.e. it's # F x Y x X x C frames = [ frame[ 0:height, tl:(tl+height)] for frame in frames ] # trs-renamed this from "cropat" as it's a more intuative name if maxlength: frames = frames[0:maxlength*fps] frames = np.array(frames) if outfile: np.save(outfile, frames) return frames def resize_video(video, video_size=(100,100)): """ Resize video content """ width, height = video_size width = width if width else int(height / video[0].shape[0] * video[0].shape[1]) height = height if height else int(width / video[0].shape[1] * video[0].shape[0]) video = np.array([ cv2.resize(frame, (width, height)) for frame in video ]) return video def dense_optical_flow(frame1, frame2): f1 = cv2.cvtColor(frame1,cv2.COLOR_BGR2GRAY) f2 = cv2.cvtColor(frame2,cv2.COLOR_BGR2GRAY) return cv2.calcOpticalFlowFarneback(f1, f2, None, 0.5, 3, 15, 3, 5, 1.2, 0) def flow_to_hsv(frame1, flow): hsvImg = np.zeros_like(frame1) mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1]) hsvImg[..., 0] = 0.5 * ang * 180 / np.pi hsvImg[..., 1] = 255 hsvImg[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) return cv2.cvtColor(hsvImg, cv2.COLOR_HSV2BGR) def naive_stabilization(f): vec = np.average(f,axis=(0,1)) mask = f==0 f = f-vec f[mask]=0 return f def flow_to_polar(f): return cv2.cartToPolar(f[..., 0], f[..., 1])
the-stack_0_15729
#!/usr/bin/env python # Fit proper motion and parallax using ra/dec/mjd data # Most of this code was taken from here: # https://github.com/ctheissen/WISE_Parallaxes/blob/master/WISE_Parallax.py import numpy as np from astropy.table import Table, vstack, join import matplotlib.pyplot as plt from astropy import units as u from scipy.optimize import curve_fit, minimize from astropy.time import Time import astropy.coordinates as coords from dlnpyutils import utils as dln, coords as dcoords # Set some constants d2a = 3600. d2ma = 3600000. d2y = 1/365.25 def astrometryfunc(x, Delta1, Delta2, PMra, PMdec, pi): """ Compute proper motion and parallax model for a set of ra/dec/mjd values.""" # x: input list of central RA and DEC positions and array of MJDs # Delta1: initial dRA position # Delta2: initial dDEC position # PMra: proper motion in RA (arcsec/yr) # PMdec: proper motion in DEC (arcsec/yr) # pi: parallax (arcsec) ra0, dec0, mjds = x n = len(mjds) years = (mjds - mjds[0])*d2y ras = np.zeros(n,np.float64)+ra0 decs = np.zeros(n,np.float64)+dec0 bary = coords.get_body_barycentric('earth', Time(mjds, format='mjd')) # Parallax factors Fac1 = (bary.x * np.sin(ras*np.pi/180.) - bary.y * np.cos(ras*np.pi/180.) ) Fac2 = bary.x * np.cos(ras*np.pi/180.) * np.sin(decs*np.pi/180.) + \ bary.y * np.sin(ras*np.pi/180.) * np.sin(decs*np.pi/180.) - \ bary.z * np.cos(decs*np.pi/180.) RAsend = Delta1 + PMra * years + pi * Fac1.value DECsend = Delta2 + PMdec * years + pi * Fac2.value return np.concatenate( [RAsend, DECsend]).flatten() def fit(cat): """ Fit proper motion and parallax to ra/dec/mjd data in a table.""" mjd = cat['mjd'] ra = cat['ra'] raerr = cat['raerr'] dec = cat['dec'] decerr = cat['decerr'] # Compute relative positions cenra = np.mean(ra) cendec = np.mean(dec) lon,lat = dcoords.rotsphcen(ra,dec,cenra,cendec,gnomic=True) lon *= d2a lat *= d2a # Fit proper motion and parallax pars, cov = curve_fit(astrometryfunc, [ra, dec, mjd] , np.concatenate( [lon,lat] ).flatten(), sigma=np.concatenate( [ raerr, decerr ] ).flatten() ) return pars,cov def plotfit(cat,pars,cov,savefig=None): """ Plot a figure of the data and the proper motion/parallax fit.""" plt.rcParams.update({'font.size': 12}) # Compute relative positions cenra = np.mean(cat['ra']) cendec = np.mean(cat['dec']) lon,lat = dcoords.rotsphcen(cat['ra'],cat['dec'],cenra,cendec,gnomic=True) lon *= d2a lat *= d2a # Array of MJDs for model curve mjd = np.linspace(np.min(cat['mjd']),np.max(cat['mjd']),100) out = astrometryfunc([cenra,cendec,mjd],pars[0],pars[1],pars[2],pars[3],pars[4]) ll = out[0:100] bb = out[100:] # Plot the model and data plt.plot(ll,bb) plt.errorbar(lon,lat,xerr=cat['raerr'],yerr=cat['decerr'],fmt='o',color='black', markersize=5,ecolor='lightgray',elinewidth=2,linestyle='none',capsize=0) plt.xlabel('dRA (arcsec)') plt.ylabel('dDEC (arcsec)') xr = dln.minmax(np.concatenate((lon,ll))) xr = [xr[0]-0.05*dln.valrange(xr),xr[1]+0.05*dln.valrange(xr)] yr = dln.minmax(np.concatenate((lat,bb))) yr = [yr[0]-0.05*dln.valrange(yr),yr[1]+0.05*dln.valrange(yr)] plt.xlim(xr) plt.ylim(yr) perr = np.sqrt(np.diag(cov)) plt.annotate(r'$\mu_\alpha$ = %5.3f $\pm$ %5.3f mas/yr' % (pars[2]*1e3,perr[2]*1e3) + '\n' + r'$\mu_\delta$ = %5.3f $\pm$ %5.3f mas/yr' % (pars[3]*1e3,perr[3]*1e3) + '\n' + r'$\pi$ = %5.3f $\pm$ %5.3f mas' % (pars[4]*1e3,perr[4]*1e3), xy=(xr[0]+0.05*dln.valrange(xr),yr[1]-0.20*dln.valrange(yr)),ha='left') if savefig is not None: plt.savefig(savefig)
the-stack_0_15730
# Time: O(n) # Space: O(1) class ListNode(object): def __init__(self, x): self.val = x self.next = None def __str__(self): if self: return "{}".format(self.val) else: return None class Solution(object): # @param head, a ListNode # @return a list node def detectCycle(self, head): fast, slow = head, head while fast and fast.next: fast, slow = fast.next.next, slow.next if fast is slow: fast = head while fast is not slow: fast, slow = fast.next, slow.next return fast return None
the-stack_0_15731
from sqlbag import S from schemainspect import get_inspector CREATE = """ DROP SCHEMA IF EXISTS it CASCADE; CREATE SCHEMA it; CREATE FUNCTION it.key_func(jsonb) RETURNS int AS $$ SELECT jsonb_array_length($1); $$ LANGUAGE SQL IMMUTABLE; CREATE FUNCTION it.part_func(jsonb) RETURNS boolean AS $$ SELECT jsonb_typeof($1) = 'array'; $$ LANGUAGE SQL IMMUTABLE; CREATE TABLE it.foo(a bigserial, b jsonb); CREATE UNIQUE INDEX fun_partial_index ON it.foo (it.key_func(b)) WHERE it.part_func(b); CREATE INDEX brin_index ON it.foo USING BRIN (a); """ def test_indexes(db): with S(db) as s: s.execute(CREATE) i1 = get_inspector(s, schema="it") # Recreate schema. # Functions oids will be changed s.execute(CREATE) i2 = get_inspector(s, schema="it") assert i1.indexes == i2.indexes CREATE_CONST = """ create table t(id uuid primary key, x bigint); """ def test_constraints(db): with S(db) as s: s.execute(CREATE_CONST) i = get_inspector(s) constraints_keys = list(i.constraints.keys()) assert constraints_keys == ['"public"."t"."t_pkey"'] indexes_keys = list(i.indexes.keys()) assert indexes_keys == ['"public"."t_pkey"']
the-stack_0_15733
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mining RPCs - getmininginfo - getblocktemplate proposal mode - submitblock""" import copy from binascii import b2a_hex from decimal import Decimal from test_framework.blocktools import create_coinbase from test_framework.mininode import CBlock from test_framework.test_framework import PALLY1TestFramework from test_framework.util import assert_equal, assert_raises_rpc_error def b2x(b): return b2a_hex(b).decode('ascii') def assert_template(node, block, expect, rehash=True): if rehash: block.hashMerkleRoot = block.calc_merkle_root() rsp = node.getblocktemplate({'data': b2x(block.serialize()), 'mode': 'proposal'}) assert_equal(rsp, expect) class MiningTest(PALLY1TestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = False def run_test(self): node = self.nodes[0] self.log.info('getmininginfo') mining_info = node.getmininginfo() assert_equal(mining_info['blocks'], 200) assert_equal(mining_info['chain'], 'regtest') assert_equal(mining_info['currentblocktx'], 0) assert_equal(mining_info['currentblockweight'], 0) assert_equal(mining_info['difficulty'], Decimal('4.656542373906925E-10')) assert_equal(mining_info['networkhashps'], Decimal('0.003333333333333334')) assert_equal(mining_info['pooledtx'], 0) # Mine a block to leave initial block download node.generate(1) tmpl = node.getblocktemplate() self.log.info("getblocktemplate: Test capability advertised") assert 'proposal' in tmpl['capabilities'] assert 'coinbasetxn' not in tmpl coinbase_tx = create_coinbase(height=int(tmpl["height"]) + 1) # sequence numbers must not be max for nLockTime to have effect coinbase_tx.vin[0].nSequence = 2 ** 32 - 2 coinbase_tx.rehash() block = CBlock() block.nVersion = tmpl["version"] block.hashPrevBlock = int(tmpl["previousblockhash"], 16) block.nTime = tmpl["curtime"] block.nBits = int(tmpl["bits"], 16) block.nNonce = 0 block.vtx = [coinbase_tx] self.log.info("getblocktemplate: Test valid block") assert_template(node, block, None) self.log.info("submitblock: Test block decode failure") assert_raises_rpc_error(-22, "Block decode failed", node.submitblock, b2x(block.serialize()[:-15])) self.log.info("getblocktemplate: Test bad input hash for coinbase transaction") bad_block = copy.deepcopy(block) bad_block.vtx[0].vin[0].prevout.hash += 1 bad_block.vtx[0].rehash() assert_template(node, bad_block, 'bad-cb-missing') self.log.info("submitblock: Test invalid coinbase transaction") assert_raises_rpc_error(-22, "Block does not start with a coinbase", node.submitblock, b2x(bad_block.serialize())) self.log.info("getblocktemplate: Test truncated final transaction") assert_raises_rpc_error(-22, "Block decode failed", node.getblocktemplate, {'data': b2x(block.serialize()[:-1]), 'mode': 'proposal'}) self.log.info("getblocktemplate: Test duplicate transaction") bad_block = copy.deepcopy(block) bad_block.vtx.append(bad_block.vtx[0]) assert_template(node, bad_block, 'bad-txns-duplicate') self.log.info("getblocktemplate: Test invalid transaction") bad_block = copy.deepcopy(block) bad_tx = copy.deepcopy(bad_block.vtx[0]) bad_tx.vin[0].prevout.hash = 255 bad_tx.rehash() bad_block.vtx.append(bad_tx) assert_template(node, bad_block, 'bad-txns-inputs-missingorspent') self.log.info("getblocktemplate: Test nonfinal transaction") bad_block = copy.deepcopy(block) bad_block.vtx[0].nLockTime = 2 ** 32 - 1 bad_block.vtx[0].rehash() assert_template(node, bad_block, 'bad-txns-nonfinal') self.log.info("getblocktemplate: Test bad tx count") # The tx count is immediately after the block header TX_COUNT_OFFSET = 80 bad_block_sn = bytearray(block.serialize()) assert_equal(bad_block_sn[TX_COUNT_OFFSET], 1) bad_block_sn[TX_COUNT_OFFSET] += 1 assert_raises_rpc_error(-22, "Block decode failed", node.getblocktemplate, {'data': b2x(bad_block_sn), 'mode': 'proposal'}) self.log.info("getblocktemplate: Test bad bits") bad_block = copy.deepcopy(block) bad_block.nBits = 469762303 # impossible in the real world assert_template(node, bad_block, 'bad-diffbits') self.log.info("getblocktemplate: Test bad merkle root") bad_block = copy.deepcopy(block) bad_block.hashMerkleRoot += 1 assert_template(node, bad_block, 'bad-txnmrklroot', False) self.log.info("getblocktemplate: Test bad timestamps") bad_block = copy.deepcopy(block) bad_block.nTime = 2 ** 31 - 1 assert_template(node, bad_block, 'time-too-new') bad_block.nTime = 0 assert_template(node, bad_block, 'time-too-old') self.log.info("getblocktemplate: Test not best block") bad_block = copy.deepcopy(block) bad_block.hashPrevBlock = 123 assert_template(node, bad_block, 'inconclusive-not-best-prevblk') if __name__ == '__main__': MiningTest().main()
the-stack_0_15736
from netatmobeat import BaseTest import os class Test(BaseTest): def test_base(self): """ Basic test with exiting Netatmobeat normally """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*" ) netatmobeat_proc = self.start_beat() self.wait_until(lambda: self.log_contains("netatmobeat is running")) exit_code = netatmobeat_proc.kill_and_wait() assert exit_code == 0
the-stack_0_15737
#!/usr/bin/env python3 from dataclasses import dataclass, field from typing import List, Type from ml.rl.models.actor import GaussianFullyConnectedActor from ml.rl.models.base import ModelBase from ml.rl.net_builder.continuous_actor_net_builder import ContinuousActorNetBuilder from ml.rl.parameters import NormalizationData, param_hash from ml.rl.preprocessing.identify_types import CONTINUOUS_ACTION from ml.rl.preprocessing.normalization import get_num_output_features @dataclass(frozen=True) class GaussianFullyConnectedConfig: __hash__ = param_hash sizes: List[int] = field(default_factory=lambda: [128, 64]) activations: List[str] = field(default_factory=lambda: ["relu", "relu"]) use_batch_norm: bool = False use_layer_norm: bool = False class GaussianFullyConnected(ContinuousActorNetBuilder): def __init__(self, config: GaussianFullyConnectedConfig): super().__init__() assert len(config.sizes) == len(config.activations), ( f"Must have the same numbers of sizes and activations; got: " f"{config.sizes}, {config.activations}" ) self.config = config @classmethod def config_type(cls) -> Type: return GaussianFullyConnectedConfig @property def default_action_preprocessing(self) -> str: return CONTINUOUS_ACTION def build_actor( self, state_normalization_data: NormalizationData, action_normalization_data: NormalizationData, ) -> ModelBase: state_dim = get_num_output_features( state_normalization_data.dense_normalization_parameters ) action_dim = get_num_output_features( action_normalization_data.dense_normalization_parameters ) return GaussianFullyConnectedActor( state_dim=state_dim, action_dim=action_dim, sizes=self.config.sizes, activations=self.config.activations, use_batch_norm=self.config.use_batch_norm, use_layer_norm=self.config.use_layer_norm, )
the-stack_0_15740
""" power_meter_hardware.py "__" """ __author__ = "Prakash Manandhar, and Sophie Yang" __copyright__ = "Copyright 2021, Hydration Team" __credits__ = ["Prakash Manandhar, and Sophie Yang"] __license__ = "Internal" __version__ = "1.0.0" __maintainer__ = "Sophie Yang" __email__ = "[email protected]" __status__ = "Production" from time import sleep # this lets us have a time delay import time from abc import ABC, abstractmethod # https://docs.python.org/3/library/abc.html import numpy import threading import configparser config = configparser.ConfigParser() config.read('config.ini') from pymodbus.client.sync import ModbusSerialClient from pymodbus.payload import BinaryPayloadDecoder class AbstractPowerMeter(ABC): @abstractmethod # returns a timestamped power reading def get_active_power_W(self): pass @abstractmethod def get_current_mA(self): pass class MockPowerMeterSensor(AbstractPowerMeter): def get_active_power_W(self): return [time.time(), -2000.0] def get_current_mA(self): return [time.time(), -999.0] class PowerMeterThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.stopped = True self.sensor_readings = { "time_s": 0.0, "active_power_W": 0.0, "current_mA": 0.0, } self.client = ModbusSerialClient(port=config.get('PowerMeter', 'port'), method='rtu', baudrate=config.getint('PowerMeter', 'baudrate')) def run(self): self.stopped = False address = config.getint("PowerMeter", "address") count = config.getint("PowerMeter", "count") sampling_time = config.getfloat("PowerMeter", "SamplingTime") while not self.stopped: loop_start = time.time() result = self.client.read_holding_registers(address, count, unit=1) decoder = BinaryPayloadDecoder.fromRegisters(result.registers, wordorder = '>', byteorder = '>') current_mA = decoder.decode_32bit_float() power_W = decoder.decode_32bit_float() self.sensor_readings["time_s"] = loop_start self.sensor_readings["active_power_W"] = power_W self.sensor_readings["current_mA"] = current_mA loop_end = time.time() delta_time = loop_end - loop_start if (delta_time < sampling_time): time.sleep(sampling_time - delta_time) def stop(self): self.stopped = True class FileWriterThread(threading.Thread): def __init__(self, power_meter_thread): threading.Thread.__init__(self) self.power_meter_thread = power_meter_thread self.stopped = True def run(self): self.stopped = False time_start_s = time.time() fp = open(f"power_meter_{time_start_s}.csv", "w") keys = self.power_meter_thread.sensor_readings.keys() for k in keys: fp.write(f"{k},") fp.write("\n") sampling_time = config.getfloat("PowerMeter", "SamplingTime") while not self.stopped: #read sensor continuously loop_start = time.time() for k in keys: fp.write(f"{self.power_meter_thread.sensor_readings[k]},") fp.write("\n") loop_start_int = (int(loop_start))%10 if loop_start_int == 0: print(f"[t (s), Power (W)] = {self.power_meter_thread.sensor_readings['time_s']}, "\ f"{self.power_meter_thread.sensor_readings['active_power_W']}") loop_end = time.time() delta_time = loop_end - loop_start if (delta_time < sampling_time): time.sleep(sampling_time - delta_time) fp.close() def stop(self): self.stopped = True class PowerMeter(AbstractPowerMeter): def __init__(self): self.power_meter_thread = PowerMeterThread() self.file_writer_thread = FileWriterThread(self.power_meter_thread) self.power_meter_thread.start() self.file_writer_thread.start() def get_active_power_W(self): return [self.power_meter_thread.sensor_readings["time_s"], self.power_meter_thread.sensor_readings["active_power_W"]] def get_current_mA(self): return [self.power_meter_thread.sensor_readings["time_s"], self.power_meter_thread.sensor_readings["current_mA"]]
the-stack_0_15745
from django.core.exceptions import ValidationError from django.core.validators import RegexValidator, URLValidator from django.utils.encoding import force_text from django.utils.safestring import mark_safe from django.utils.translation import gettext from cms.utils.page import get_all_pages_from_path from cms.utils.urlutils import admin_reverse, relative_url_regex def validate_relative_url(value): RegexValidator(regex=relative_url_regex)(value) def validate_url(value): try: # Validate relative urls first validate_relative_url(value) except ValidationError: # Fallback to absolute urls URLValidator()(value) def validate_url_uniqueness(site, path, language, exclude_page=None): """ Checks for conflicting urls """ if '/' in path: validate_url(path) path = path.strip('/') pages = get_all_pages_from_path(site, path, language) pages = pages.select_related('publisher_public') if exclude_page: pages = pages.exclude(pk=exclude_page.pk) if exclude_page.publisher_public_id: pages = pages.exclude(pk=exclude_page.publisher_public_id) try: conflict_page = pages[0] except IndexError: return True if conflict_page.publisher_is_draft: page_id = conflict_page.pk else: # rare case where draft points to one url # and live points to another which conflicts. # Use the draft ID because public page is not editable. page_id = conflict_page.publisher_public_id if conflict_page.is_page_type: change_url = admin_reverse('cms_pagetype_change', args=[page_id]) else: change_url = admin_reverse('cms_page_change', args=[page_id]) conflict_url = '<a href="%(change_url)s" target="_blank">%(page_title)s</a>' % { 'change_url': change_url, 'page_title': force_text(conflict_page), } if exclude_page: message = gettext('Page %(conflict_page)s has the same url \'%(url)s\' as current page "%(instance)s".') else: message = gettext('Page %(conflict_page)s has the same url \'%(url)s\' as current page.') message = message % {'conflict_page': conflict_url, 'url': path, 'instance': exclude_page} raise ValidationError(mark_safe(message))
the-stack_0_15746
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Any, Callable, Dict, List, Optional, Tuple import numpy as np import torch from ax.models.base import Model from ax.models.model_utils import tunable_feature_indices from ax.models.random.base import RandomModel from ax.models.types import TConfig from ax.utils.common.docutils import copy_doc from ax.utils.common.typeutils import not_none from torch.quasirandom import SobolEngine class SobolGenerator(RandomModel): """This class specifies the generation algorithm for a Sobol generator. As Sobol does not make use of a model, it does not implement the fit or predict methods. Attributes: deduplicate: If true, a single instantiation of the generator will not return the same point twice. init_position: The initial state of the Sobol generator. Starts at 0 by default. scramble: If True, permutes the parameter values among the elements of the Sobol sequence. Default is True. seed: An optional seed value for scrambling. """ engine: Optional[SobolEngine] = None def __init__( self, seed: Optional[int] = None, deduplicate: bool = False, init_position: int = 0, scramble: bool = True, generated_points: Optional[np.ndarray] = None, fallback_to_sample_polytope: bool = False, ) -> None: super().__init__( deduplicate=deduplicate, seed=seed, generated_points=generated_points ) self.init_position = init_position self.scramble = scramble # Initialize engine on gen. self._engine = None self.fallback_to_sample_polytope = fallback_to_sample_polytope def init_engine(self, n_tunable_features: int) -> SobolEngine: """Initialize singleton SobolEngine, only on gen. Args: n_tunable_features: The number of features which can be searched over. Returns: SobolEngine, which can generate Sobol points. """ if not self._engine: self._engine = SobolEngine( dimension=n_tunable_features, scramble=self.scramble, seed=self.seed ).fast_forward(self.init_position) return self._engine @property def engine(self) -> Optional[SobolEngine]: """Return a singleton SobolEngine.""" return self._engine def gen( self, n: int, bounds: List[Tuple[float, float]], linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, fixed_features: Optional[Dict[int, float]] = None, model_gen_options: Optional[TConfig] = None, rounding_func: Optional[Callable[[np.ndarray], np.ndarray]] = None, ) -> Tuple[np.ndarray, np.ndarray]: """Generate new candidates. Args: n: Number of candidates to generate. bounds: A list of (lower, upper) tuples for each column of X. linear_constraints: A tuple of (A, b). For k linear constraints on d-dimensional x, A is (k x d) and b is (k x 1) such that A x <= b. fixed_features: A map {feature_index: value} for features that should be fixed to a particular value during generation. rounding_func: A function that rounds an optimization result appropriately (e.g., according to `round-trip` transformations) but *unused here*. Returns: 2-element tuple containing - (n x d) array of generated points. - Uniform weights, an n-array of ones for each point. """ tf_indices = tunable_feature_indices( bounds=bounds, fixed_features=fixed_features ) if len(tf_indices) > 0: self.init_engine(len(tf_indices)) points, weights = super().gen( n=n, bounds=bounds, linear_constraints=linear_constraints, fixed_features=fixed_features, model_gen_options=model_gen_options, rounding_func=rounding_func, ) if self.engine: self.init_position = not_none(self.engine).num_generated return (points, weights) @copy_doc(Model._get_state) def _get_state(self) -> Dict[str, Any]: state = super()._get_state() state.update({"init_position": self.init_position}) return state @copy_doc(RandomModel._gen_unconstrained) def _gen_unconstrained( self, n: int, d: int, tunable_feature_indices: np.ndarray, fixed_features: Optional[Dict[int, float]] = None, ) -> np.ndarray: if len(tunable_feature_indices) == 0: # Search space is entirely fixed, should return the only avail. point. fixed_features = fixed_features or {} # pyre-fixme[7]: Expected `ndarray` but got `Tuple[typing.Any, typing.Any]`. return ( np.tile(np.array([list(not_none(fixed_features).values())]), (n, 1)), np.ones(n), ) return super()._gen_unconstrained( n=n, d=d, tunable_feature_indices=tunable_feature_indices, fixed_features=fixed_features, ) def _gen_samples(self, n: int, tunable_d: int) -> np.ndarray: """Generate n samples. tunable_d is ignored; as it is specified at engine initialization. Args: bounds: A list of d (lower, upper) tuples for each column of X. fixed_feature_indices: Indices of features which are fixed at a particular value. """ if self.engine is None: raise ValueError( # pragma: no cover "Sobol Engine must be initialized before candidate generation." ) return not_none(self.engine).draw(n, dtype=torch.double).numpy()
the-stack_0_15750
# Copyright (c) 2015 Nicolas JOUANIN # # See the file license.txt for copying permission. """ hbmqtt_pub - MQTT 3.1.1 publisher Usage: hbmqtt_pub --version hbmqtt_pub (-h | --help) hbmqtt_pub --url BROKER_URL -t TOPIC (-f FILE | -l | -m MESSAGE | -n | -s) [-c CONFIG_FILE] [-i CLIENT_ID] [-q | --qos QOS] [-d] [-k KEEP_ALIVE] [--clean-session] [--ca-file CAFILE] [--ca-path CAPATH] [--ca-data CADATA] [ --will-topic WILL_TOPIC [--will-message WILL_MESSAGE] [--will-qos WILL_QOS] [--will-retain] ] [--extra-headers HEADER] [-r] Options: -h --help Show this screen. --version Show version. --url BROKER_URL Broker connection URL (musr conform to MQTT URI scheme (see https://github.com/mqtt/mqtt.github.io/wiki/URI-Scheme>) -c CONFIG_FILE Broker configuration file (YAML format) -i CLIENT_ID Id to use as client ID. -q | --qos QOS Quality of service to use for the message, from 0, 1 and 2. Defaults to 0. -r Set retain flag on connect -t TOPIC Message topic -m MESSAGE Message data to send -f FILE Read file by line and publish message for each line -s Read from stdin and publish message for each line -k KEEP_ALIVE Keep alive timeout in second --clean-session Clean session on connect (defaults to False) --ca-file CAFILE] CA file --ca-path CAPATH] CA Path --ca-data CADATA CA data --will-topic WILL_TOPIC --will-message WILL_MESSAGE --will-qos WILL_QOS --will-retain --extra-headers EXTRA_HEADERS JSON object with key-value pairs of additional headers for websocket connections -d Enable debug messages """ import sys import logging import asyncio import os import json import hbmqtt from hbmqtt.client import MQTTClient, ConnectException from docopt import docopt from hbmqtt.utils import read_yaml_config logger = logging.getLogger(__name__) def _gen_client_id(): import os import socket pid = os.getpid() hostname = socket.gethostname() return "hbmqtt_pub/%d-%s" % (pid, hostname) def _get_qos(arguments): try: return int(arguments["--qos"][0]) except: return None def _get_extra_headers(arguments): try: return json.loads(arguments["--extra-headers"]) except: return {} def _get_message(arguments): if arguments["-n"]: yield b"" if arguments["-m"]: yield arguments["-m"].encode(encoding="utf-8") if arguments["-f"]: try: with open(arguments["-f"], "r") as f: for line in f: yield line.encode(encoding="utf-8") except: logger.error("Failed to read file '%s'" % arguments["-f"]) if arguments["-l"]: import sys for line in sys.stdin: if line: yield line.encode(encoding="utf-8") if arguments["-s"]: import sys message = bytearray() for line in sys.stdin: message.extend(line.encode(encoding="utf-8")) yield message async def do_pub(client, arguments): running_tasks = [] try: logger.info("%s Connecting to broker" % client.client_id) await client.connect( uri=arguments["--url"], cleansession=arguments["--clean-session"], cafile=arguments["--ca-file"], capath=arguments["--ca-path"], cadata=arguments["--ca-data"], extra_headers=_get_extra_headers(arguments), ) qos = _get_qos(arguments) topic = arguments["-t"] retain = arguments["-r"] for message in _get_message(arguments): logger.info("%s Publishing to '%s'" % (client.client_id, topic)) task = asyncio.ensure_future(client.publish(topic, message, qos, retain)) running_tasks.append(task) if running_tasks: await asyncio.wait(running_tasks) await client.disconnect() logger.info("%s Disconnected from broker" % client.client_id) except KeyboardInterrupt: await client.disconnect() logger.info("%s Disconnected from broker" % client.client_id) except ConnectException as ce: logger.fatal("connection to '%s' failed: %r" % (arguments["--url"], ce)) except asyncio.CancelledError: logger.fatal("Publish canceled due to previous error") def main(*args, **kwargs): if sys.version_info[:2] < (3, 6): logger.fatal("Error: Python 3.6+ is required") sys.exit(-1) arguments = docopt(__doc__, version=hbmqtt.__version__) # print(arguments) formatter = "[%(asctime)s] :: %(levelname)s - %(message)s" if arguments["-d"]: level = logging.DEBUG else: level = logging.INFO logging.basicConfig(level=level, format=formatter) if arguments["-c"]: config = read_yaml_config(arguments["-c"]) else: config = read_yaml_config( os.path.join( os.path.dirname(os.path.realpath(__file__)), "default_client.yaml" ) ) logger.debug("Using default configuration") loop = asyncio.get_event_loop() client_id = arguments.get("-i", None) if not client_id: client_id = _gen_client_id() if arguments["-k"]: config["keep_alive"] = int(arguments["-k"]) if ( arguments["--will-topic"] and arguments["--will-message"] and arguments["--will-qos"] ): config["will"] = dict() config["will"]["topic"] = arguments["--will-topic"] config["will"]["message"] = arguments["--will-message"].encode("utf-8") config["will"]["qos"] = int(arguments["--will-qos"]) config["will"]["retain"] = arguments["--will-retain"] client = MQTTClient(client_id=client_id, config=config, loop=loop) loop.run_until_complete(do_pub(client, arguments)) loop.close() if __name__ == "__main__": main()
the-stack_0_15751
# Caeser Encryption import sys if (__name__ == "__main__"): def readFile (path): file = open(path, "r") lineList = [] for line in file: lineList.append(line) #print(lineList) return lineList def encrypt (lines,x): encrypted = [] for line in lines: for idx in range(0,len(line)-1): num = ord(line[idx])+x while(num < 0): num += 256 while(num > 255): num -= 256 char = chr(num) encrypted.append(char) encrypted.append("\n") return encrypted def writeFile(path, encrypted): file = open(path, "w") for char in encrypted: file.write(char) #print(char) file.close if(len(sys.argv) < 4): print("INPUT ERROR") print("try:\npython caesar.py \"number\" \"path\" \"-e\\-d\"") else: num = int(sys.argv[1]) path = sys.argv[2] crypt = sys.argv[3] lines = readFile(path) if(crypt == "-d"): num = num * (-1) encrypted = encrypt(lines, num) elif(crypt == "-e"): encrypted = encrypt(lines, num) writeFile(path, encrypted)
the-stack_0_15756
''' @Author: hua @Date: 2019-12-03 14:44:23 @description: @LastEditors: hua @LastEditTime: 2019-12-03 15:18:00 ''' from app.Models.Admin import Admin from sqlalchemy import event import time @event.listens_for(Admin, "before_insert") def admin_before_insert(mapper, connection, target): target.add_time = int(time.time()) target.update_time = int(time.time()) @event.listens_for(Admin, "before_update") def admin_before_update(mapper, connection, target): target.update_time = int(time.time())
the-stack_0_15757
#!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from coredb.query_managers.manager import BaseQueryManager from polyaxon.pql.builder import BoolCondition, SearchCondition, ValueCondition from polyaxon.pql.parser import parse_search_operation, parse_value_operation class ArtifactQueryManager(BaseQueryManager): NAME = "artifact" FIELDS_ORDERING = ("name", "kind", "path", "is_input") FIELDS_USE_UUID = {"run"} FIELDS_PROXY = { "id": "name", "name": "artifact__name", "kind": "artifact__kind", "path": "artifact__path", "state": "artifact__state", } CHECK_ALIVE = False PARSERS_BY_FIELD = { # Name "name": parse_search_operation, # Kind "kind": parse_value_operation, # Path "path": parse_value_operation, # State "state": parse_value_operation, # Is input "is_input": parse_value_operation, # Run "run": parse_value_operation, } CONDITIONS_BY_FIELD = { # Name "name": SearchCondition, # Kind "kind": ValueCondition, # Path "path": ValueCondition, # State "state": ValueCondition, # Is input "is_input": BoolCondition, # Run "run": ValueCondition, }
the-stack_0_15763
import dsd, os path = 'ADItotal\\' lista = os.listdir(path) dsd.limpar_arquivo('ADItotal(sem_andamentos).txt') dsd.limpar_arquivo('ADItotal(andamentos).txt') dsd.limpar_arquivo('excluidos.txt') partes_total = [] dados_csv = [] andamentos_csv = [] lista_excluidos = [] dsd.limpar_arquivo('ADItotalpartes.txt') dsd.write_csv_header('ADItotalpartes.txt', 'nome, tipo, processo') contador=0 excluidos = 0 for item in lista[0:]: gravar_processo = True contador = contador +1 nome_arquivo = path+item processo = item.replace('.txt','') # carrega dados do arquivo html = 'NA' html = dsd.carregar_arquivo(nome_arquivo) html = html.replace(',',';') html = html.replace('\n','') html = html.replace(' ',' ') # extrai as partes partes_string = dsd.extrair(html,'partes>>>>', '<div id="partes-resumidas">') partes = dsd.extrair_partes(partes_string) lista_das_partes = [] lista_das_partes = dsd.listar_partes(partes_string, item.replace('.txt','')) for y in lista_das_partes: dsd.write_csv_line('ADItotalpartes.txt', y) # extrai os andamentos andamentos = dsd.extrair(html,'andamentos>>>>', 'pauta>>>>') andamentos = dsd.extrair_andamentos(andamentos) #extrai os elementos do código fonte codigofonte =dsd.extrair(html,'fonte>>>>', 'partes>>>>') eletronico_fisico =dsd.extrair(codigofonte,'bg-primary">','</span>') sigilo =dsd.extrair(codigofonte,'bg-success">','</span>') nome_processo =dsd.extrair(codigofonte,'-processo" value="','">') numerounico = dsd.extrair(codigofonte,'-rotulo">','</div>') numerounico = dsd.extrair(numerounico,': ', '') relator = dsd.extrair(codigofonte,'Relator:','</div>') relator = relator.strip(' ') relator = relator.replace('MIN. ','') relator = dsd.remover_acentos(relator) redator_acordao = dsd.extrair(codigofonte,'>Redator do acórdão:','</div>') redator_acordao = dsd.remover_acentos(redator_acordao) redator_acordao = redator_acordao.replace('MIN. ','') redator_acordao = redator_acordao.strip(' ') redator_acordao = redator_acordao.replace ('MINISTRO ','') relator_ultimo_incidente = dsd.extrair(codigofonte, 'Relator do último incidente:' ,'</div>') relator_ultimo_incidente = relator_ultimo_incidente.replace ('MIN. ','') relator_ultimo_incidente = relator_ultimo_incidente.replace ('MINISTRO ','') relator_ultimo_incidente = relator_ultimo_incidente.strip(' ') relator_ultimo_incidente = dsd.remover_acentos(relator_ultimo_incidente) ultimoincidente = dsd.extrair(relator_ultimo_incidente,"(",'') relator_ultimo_incidente = dsd.extrair(relator_ultimo_incidente,'','(') ultimoincidente = ultimoincidente.replace(')','') ultimoincidente = ultimoincidente.strip(' ') #extrai os elementos da aba informações informacoes = dsd.extrair(html,'informacoes>>>>', '>>>>') assuntos = dsd.extrair(informacoes, '<ul style="list-style:none;">', '</ul>') assuntos = dsd.limpar(assuntos) assuntos = dsd.extrair(assuntos,'<li>','') assuntos = assuntos.replace('</li>','') assuntos = dsd.limpar(assuntos) protocolo_data = dsd.extrair(informacoes, '<div class="col-md-5 processo-detalhes-bold m-l-0">', '</div>') protocolo_data = protocolo_data.strip(' ') orgaodeorigem = dsd.extrair(informacoes, '''Órgão de Origem: </div> <div class="col-md-5 processo-detalhes">''', '</div>') numerodeorigem = dsd.extrair(informacoes, '''Número de Origem: </div> <div class="col-md-5 processo-detalhes">''', '</div>') origem = dsd.extrair(informacoes, '''Origem: </div> <div class="col-md-5 processo-detalhes">''', '</div>') procedencia = dsd.extrair(informacoes, '''<span id="descricao-procedencia">''', '</span>') procedencia = procedencia.replace(' ','') procedencia = dsd.extrair(procedencia, '', ' -') cc = 'NA' # extrai campos CC if 'ADI' in nome_processo or 'ADPF' in nome_processo or 'ADC' in nome_processo or 'ADO' in nome_processo: cc = dsd.extrair(html, 'cc>>>','') # extrai campo incidente incidentecc = dsd.extrair (cc, 'verProcessoAndamento.asp?incidente=', '">') # extrai campos classe + liminar + numero cln = 'NA' cln = dsd.extrair(cc, '<div><h3><strong>', '</strong>') dsd.limpar_cln(cln) cln = cln.upper() # extrai numero numerocc = 'NA' numerocc = dsd.extrair (cln, ' - ', '') numerocc = dsd.limpar_numero(numerocc) # extrai liminar e classe if 'LIMINAR' in cln: liminarcc = 'sim' classecc = dsd.extrair(cln, '', ' (MED') else: liminarcc = 'não' classecc = dsd.extrair(cln, '', ' - ') dsd.limpar_classe(classecc) classecc.upper() classecc = classecc.replace('ACAO DIRETA DE INCONSTITUCIONALIDADE','ADI') classecc = classecc.replace('AÇÃO DIRETA DE INCONSTITUCIONALIDADE','ADI') classecc = classecc.replace('ARGUIÇÃO DE DESCUMPRIMENTO DE PRECEITO FUNDAMENTAL','ADPF') # definição de campo: origem origemcc = 'NA' origemcc = dsd.extrair(cc,'Origem:</td><td><strong>','</strong>') procedencia = procedencia.replace('***', dsd.limpa_estado(origemcc).replace('/', '')) ## definição de campo: entrada entradacc = dsd.extrair(cc,'Entrada no STF:</td><td><strong>','</strong>') entradacc = dsd.substituir_data(entradacc) ## definição de campo: relator relatorcc = dsd.extrair(cc,'Relator:</td><td><strong>','</strong>') relatorcc = relatorcc.replace('MINISTRO ','') relatorcc = relatorcc.replace('MINISTRA ','') relatorcc = dsd.remover_acentos(relatorcc) ## definição de campo: distribuição distribuicaocc = dsd.extrair(cc,'Distribuído:</td><td><strong>','</strong>') distribuicaocc = dsd.substituir_data(distribuicaocc) distribuicaocc = distribuicaocc.replace('-','/') ## definição de campo: requerente requerentecc = dsd.extrair(cc,'Requerente: <strong>','</strong>') requerentecc = requerentecc.replace(' ',' ') requerentecc = requerentecc.replace(' ;',';') requerentecc = requerentecc.replace('; ',';') requerentecc = requerentecc.replace('( CF','(CF') if '(CF' in requerentecc: requerentesplit = requerentecc.split('(CF') requerentecc = requerentesplit[0] requerentecc = requerentecc.strip() requerentetipo = requerentesplit[1] requerentetipo = dsd.extrair(requerentetipo, ';','') requerentetipo = requerentetipo.replace(')','') requerentetipocc = requerentetipo.replace('0','') requerentetipocc = requerentetipocc.replace(' 2','') else: requerentesplit = 'NA' requerentetipocc = 'NA' ## definição de campo: requerido requeridocc = dsd.extrair(cc, 'Requerido :<strong>', '</strong>') ## definição de campo: dispositivo questionado dispositivoquestionadocc = dsd.extrair(cc, 'Dispositivo Legal Questionado</b></strong><br /><pre>', '</pre>') dispositivoquestionadocc = dsd.limpar(dispositivoquestionadocc) ## definição de campo: resultado da liminar resultadoliminarcc = dsd.extrair(cc, 'Resultado da Liminar</b></strong><br /><br />', '<br />') ### filtro resultado liminar # filtros resultadoliminarcc = resultadoliminarcc.replace('Aguardadno','Aguardadno') resultadoliminarcc = resultadoliminarcc.replace('Decisão Monocrática - "Ad referendum"','Deferida') resultadoliminarcc = resultadoliminarcc.replace('Monicrática','Monocrática') resultadoliminarcc = resultadoliminarcc.replace('Monoacrática','Monocrática') resultadoliminarcc = resultadoliminarcc.replace('Monocrático','Monocrática') resultadoliminarcc = resultadoliminarcc.replace('Decisão Monocrática Deferida -','Deferida') resultadoliminarcc = resultadoliminarcc.replace('"','') resultadoliminarcc = resultadoliminarcc.replace('Decisão Monocrática - ','') resultadoliminarcc = resultadoliminarcc.replace('liminar deferida','Deferida') resultadoliminarcc = resultadoliminarcc.upper() resultadoliminarcc = resultadoliminarcc.replace('PREJUDICADO','PREJUDICADA') resultadoliminarcc = resultadoliminarcc.replace('PROCEDENTE','DEFERIDA') resultadoliminarcc = resultadoliminarcc.replace('AD REFERENDUM','') resultadoliminarcc = resultadoliminarcc.replace('PROCEDENTE','DEFERIDA') ## definição de campo: resultado final resultadofinalcc = dsd.extrair(cc, 'Resultado Final</b></strong><br /><br />', '<br />') ## definição de campo: decisão monocrática final if 'Decisão Monocrática Final</b></strong><br /><pre>' in cc: decisaomonofinal = dsd.extrair(cc, 'Decisão Monocrática Final</b></strong><br /><pre>', '</pre>') decisaomonofinalcc = dsd.limpar(decisaomonofinal) else: decisaomonofinalcc = 'NA' ## definição de campo: fundamento if 'Fundamentação Constitucional</b></strong><br /><pre>' in cc: fundamentocc = dsd.extrair(cc, 'Fundamentação Constitucional</b></strong><br /><pre>', '</pre>') fundamentocc = dsd.limpar(fundamentocc) else: fundamentocc = 'NA' ## definição de campo: indexação if 'Indexação</b></strong><br /><pre>' in cc: indexacaocc = dsd.extrair(cc, 'Indexação</b></strong><br /><pre>', '</pre>') indexacaocc = dsd.limpar(indexacaocc) else: indexacaocc = 'NA' else: gravar_processo = False # criação da variável dados extraídos, com uma lista de dados dados = [processo, incidentecc, requerentecc, requerentetipocc, requeridocc, len(lista_das_partes), lista_das_partes ,len(andamentos), andamentos[:9], eletronico_fisico, sigilo, numerounico, relatorcc, relator, redator_acordao, ultimoincidente, relator_ultimo_incidente, assuntos, procedencia, protocolo_data, distribuicaocc, orgaodeorigem, numerodeorigem, origem, liminarcc, dispositivoquestionadocc, resultadoliminarcc, resultadofinalcc, decisaomonofinalcc, fundamentocc, indexacaocc] #inserir aqui o conteúdo da lista acima, trocando [] por '' campos = '''processo, incidentecc, requerentecc, requerentetipocc, requeridocc, len(partes),partes,len(andamentos), andamentos[:9], eletronico_fisico, sigilo, numerounico, relatorcc, relator, redator_acordao, ultimoincidente, relator_ultimo_incidente, assuntos, procedencia, protocolo_data, distribuicaocc, orgaodeorigem, numerodeorigem, origem, liminarcc, dispositivoquestionadocc, resultadoliminarcc, resultadofinalcc, decisaomonofinalcc, fundamentocc, indexacaocc''' campos = campos.replace('\n','') campos = campos.replace(' ','') dados2 = [processo, len(andamentos), len(str(andamentos)), andamentos] campos2 = 'processo, len(andamentos), len(str(andamentos)), andamentos' dsd.write_csv_header('ADItotal(sem_andamentos).txt',campos) dsd.write_csv_header('excluidos.txt','processos excluídos') dsd.write_csv_header('ADItotal(andamentos).txt',campos2) # grava de 500 em 500 if andamentos == []: andamentos = ['SEM ANDAMENTOS CADASTRADOS'] if (gravar_processo == False or nome_processo == 'NA' or len(lista_das_partes) == 0 or 'IMPOSSIBILIDADE DE PROCESSAMENTO' in andamentos[0] or 'REAUTUADO' in andamentos[0] or 'CANCELAMENTO DE AUTUACAO' in andamentos[0]): lista_excluidos.append(processo) excluidos = excluidos + 1 else: dados_csv.append(dados) andamentos_csv.append(dados2) print(nome_processo) dsd.write_csv_lines('ADItotal(sem_andamentos).txt',dados_csv) dsd.write_csv_lines('ADItotal(andamentos).txt',andamentos_csv) dsd.write_csv_lines('excluidos.txt',lista_excluidos) print ('Gravados arquivos ADItotal(sem_andamentos).txt e ADItotal(andamentos).txt') print (f'Excluídos {excluidos} processos')
the-stack_0_15764
import pytest from Cryptodome.PublicKey import RSA from django.urls import reverse from oidc_provider.models import RESPONSE_TYPE_CHOICES, RSAKey, UserConsent from oidc_apis.factories import ApiFactory, ApiScopeFactory from users.factories import OIDCClientFactory, UserFactory from users.views import TunnistamoOidcAuthorizeView @pytest.mark.parametrize('with_trailing_slash', (True, False)) @pytest.mark.django_db def test_tunnistamo_authorize_view_is_used(client, with_trailing_slash): response = client.get('/openid/authorize{}'.format('/' if with_trailing_slash else '')) assert response.resolver_match.func.__name__ == TunnistamoOidcAuthorizeView.as_view().__name__ @pytest.mark.parametrize('ui_locales, expected_text', ( (None, 'Sähköposti'), ('', 'Sähköposti'), ('bogus', 'Sähköposti'), ('en', 'Email'), ('fi en', 'Sähköposti'), ('bogus en fi', 'Email'), )) @pytest.mark.django_db def test_tunnistamo_authorize_view_language(client, ui_locales, expected_text): oidc_client = OIDCClientFactory(require_consent=True) user = UserFactory() client.force_login(user) url = reverse('authorize') data = { 'client_id': oidc_client.client_id, 'redirect_uri': oidc_client.redirect_uris[0], 'response_type': 'code', 'scope': 'email', } if ui_locales is not None: data['ui_locales'] = ui_locales response = client.get(url, data) assert expected_text in response.content.decode('utf-8') @pytest.mark.django_db def test_api_scopes_are_shown_in_and_returned_from_consent_screen(client): oidc_client = OIDCClientFactory(require_consent=True) user = UserFactory() client.force_login(user) api = ApiFactory(required_scopes=['github_username']) api_scope = ApiScopeFactory(api=api) response = client.get(reverse('authorize'), { 'client_id': oidc_client.client_id, 'redirect_uri': oidc_client.redirect_uris[0], 'scope': api_scope.identifier, 'response_type': 'code', }) assert response.status_code == 200 content = response.content.decode('utf-8') expected_scope = '{} github_username'.format(api_scope.identifier) assert '<input name="scope" type="hidden" value="{}" />'.format(expected_scope) in content assert api_scope.name in content assert api_scope.description in content @pytest.mark.parametrize('api_scope_in_request', (False, True)) @pytest.mark.django_db def test_api_scopes_are_added_to_user_consent_after_authorization(client, api_scope_in_request): oidc_client = OIDCClientFactory(require_consent=True) user = UserFactory() client.force_login(user) api = ApiFactory(required_scopes=['github_username']) api_scope = ApiScopeFactory(api=api) response = client.post(reverse('authorize'), { 'client_id': oidc_client.client_id, 'redirect_uri': oidc_client.redirect_uris[0], 'scope': '{} github_username'.format(api_scope.identifier) if api_scope_in_request else api_scope.identifier, 'response_type': 'code', 'allow': True, }) assert response.status_code == 302 user_consent = UserConsent.objects.get(user=user, client=oidc_client) assert 'github_username' in user_consent.scope @pytest.mark.parametrize('create_client', (False, True)) @pytest.mark.django_db def test_original_client_id_is_saved_to_the_session( client, loginmethod_factory, oidcclient_factory, create_client, ): """Test that the original client id is saved to the session This is an implementation detail test, but we don't have a better way to test this right now. Proper testing would need end-to-end tests with e.g. Selenium.""" oidc_client = None if create_client: oidc_client = oidcclient_factory( client_id="test_client", redirect_uris=['https://tunnistamo.test/redirect_uri'], response_types=["id_token"] ) url = reverse('authorize') data = { 'client_id': 'test_client', 'response_type': 'id_token', 'redirect_uri': 'https://tunnistamo.test/redirect_uri', 'scope': 'openid', 'response_mode': 'form_post', 'nonce': 'abcdefg' } client.get(url, data) if oidc_client: session_client_id = client.session.get("oidc_authorize_original_client_id") assert session_client_id == oidc_client.client_id else: assert "oidc_authorize_original_client_id" not in client.session @pytest.mark.django_db @pytest.mark.parametrize('with_pkce', (True, False)) @pytest.mark.parametrize('response_type', [key for key, val in RESPONSE_TYPE_CHOICES]) def test_public_clients_ability_to_skip_consent( client, user, oidcclient_factory, with_pkce, response_type, ): key = RSA.generate(1024) rsakey = RSAKey(key=key.exportKey('PEM').decode('utf8')) rsakey.save() oidc_client = oidcclient_factory( client_type='public', require_consent=False, response_types=[key for key, val in RESPONSE_TYPE_CHOICES], redirect_uris=['https://example.com/callback'], ) client.force_login(user) url = reverse('authorize') data = { 'client_id': oidc_client.client_id, 'redirect_uri': oidc_client.redirect_uris[0], 'scope': 'openid profile', 'response_type': response_type, 'nonce': 'testnonce', } if with_pkce: data.update({ # The code challenge value doesn't matter as only its existence is checked # in the authorize endpoint. The value would be verified in the token endpoint. 'code_challenge': 'abcdefg', 'code_challenge_method': 'S256' }) response = client.get(url, data) # Consent skip should happen when using implicit flow, or code flow with pkce. should_redirect_to_client_map = { ('code', True): True, ('code', False): False, ('id_token', True): True, ('id_token', False): True, ('id_token token', True): True, ('id_token token', False): True, ('code token', True): True, ('code token', False): False, ('code id_token', True): True, ('code id_token', False): False, ('code id_token token', True): True, ('code id_token token', False): False, } if should_redirect_to_client_map[(response_type, with_pkce)]: assert response.status_code == 302 assert response['Location'].startswith(oidc_client.redirect_uris[0]) assert 'error' not in response['Location'] else: assert response.status_code == 200 assert 'name="allow" type="submit"' in response.content.decode('utf-8')
the-stack_0_15766
import numpy as np from pyscf import gto, scf from kspies import wy mol = gto.M(atom = 'N 0 0 0 ; N 1.1 0 0', basis = 'cc-pVDZ') mf = scf.RHF(mol).run() dm_tar = mf.make_rdm1() PBS = gto.expand_etbs([(0, 13, 2**-4 , 2), (1, 3 , 2**-2 , 2)]) mw = wy.RWY(mol, dm_tar, pbas=PBS) #Note that for this designed-to-be ill-conditioned problem, #Hessian-based optimization algorithms are problematic. mw.method = 'bfgs' mw.tol = 2e-7 mw.run() mw.info() Ws_fin = mw.Ws etas = [ 2.**(-a) for a in np.linspace(5., 27., 45) ] v = np.zeros(len(etas)) W = np.zeros(len(etas)) for i, eta in enumerate(etas): mw.reg=eta mw.run() v[i] = mw.Dvb() W[i] = mw.Ws mw.info() import matplotlib.pyplot as plt fig,ax = plt.subplots(2) ax[0].scatter(np.log10(Ws_fin-W), np.log10(v)) ax[1].scatter(np.log10(etas), v*etas/(Ws_fin-W)) plt.tight_layout() #plt.savefig('L_curves.pdf', format='pdf') #plt.savefig('L_curves.eps', format='eps') plt.show()
the-stack_0_15768
#!/usr/bin/env python # Construct a command that will create a texture, appending console # output to the file "out.txt". def omaketx_command (infile, outfile, extraargs="", options="", output_cmd="-otex", showinfo=True, showinfo_extra="", silent=False, concat=True) : command = (oiio_app("oiiotool") + " " + make_relpath(infile,tmpdir) + " " + extraargs + " " + output_cmd + options + " " + make_relpath(outfile,tmpdir) ) if not silent : command += " >> out.txt" if concat: command += " ;\n" if showinfo: command += info_command (outfile, extraargs=showinfo_extra, safematch=1) return command # location of oiio-images directory oiio_images = OIIO_TESTSUITE_IMAGEDIR # Just for simplicity, make a checkerboard with a solid alpha command += oiiotool (" --pattern checker 128x128 4 --ch R,G,B,=1.0" + " -d uint8 -o " + make_relpath("checker.tif") ) # Basic test - recreate the grid texture command += omaketx_command (oiio_images + "/grid.tif", "grid.tx") # Test --resize (to power of 2) with the grid, which is 1000x1000 command += omaketx_command (oiio_images + "/grid.tif", "grid-resize.tx", options=":resize=1") # Test -d to set output data type command += omaketx_command ("checker.tif", "checker-uint16.tx", "-d uint16") # Test --ch to restrict the number of channels command += omaketx_command ("checker.tif", "checker-1chan.tx", "--ch 0") # Test --tiles to set a non-default tile size command += omaketx_command ("checker.tif", "checker-16x32tile.tx", "--tile 16 32") # Test --separate and --compression command += omaketx_command ("checker.tif", "checker-seplzw.tx", "--planarconfig separate --compression lzw") # Test --wrap command += omaketx_command ("checker.tif", "checker-clamp.tx", options=":wrap=clamp") # Test --swrap and --twrap command += omaketx_command ("checker.tif", "checker-permir.tx", options=":swrap=periodic:twrap=mirror") # Test --nomipmap command += omaketx_command ("checker.tif", "checker-nomip.tx", options=":nomipmap=1") # Test setting matrices command += omaketx_command ("checker.tif", "checker-camera.tx", "--attrib:type=matrix worldtocamera 1,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1 " + "--attrib:type=matrix worldtoscreen 3,0,0,0,0,3,0,0,0,0,3,0,1,2,3,1") # Test --opaque-detect (should drop the alpha channel) command += omaketx_command ("checker.tif", "checker-opaque.tx", options=":opaque_detect=1") # Test --monochrome-detect (first create a monochrome image) command += oiiotool (" --pattern constant:color=.25,.25,.25 256x256 3 " + " -d uint8 -o " + make_relpath("gray.tif")) command += omaketx_command ("gray.tif", "gray-mono.tx", options=":monochrome_detect=1") # Test --monochrome-detect on something that is NOT monochrome command += oiiotool (" --pattern constant:color=.25,.2,.15 256x256 3 " + " -d uint8 -o " + make_relpath("pink.tif")) command += omaketx_command ("pink.tif", "pink-mono.tx", options=":monochrome_detect=1") # Test --prman : should save 'separate' planarconfig, and funny 64x32 tiles # since we are specifying 16 bits, and it should save as 'int16' even though # we asked for unsigned. command += omaketx_command ("checker.tif", "checker-prman.tx", "-d uint16", options=":prman=1") # Test --fixnan : take advantage of the bad.exr images in # testsuite/oiiotool-fixnan. (Use --nomipmap to cut down on stats output) # FIXME: would also like to test --checknan, but the problem with that is # that is actually FAILS if there's a nan. command += omaketx_command (OIIO_TESTSUITE_ROOT+"/oiiotool-fixnan/src/bad.exr", "nan.exr", "--fixnan box3", options=":nomipmap=1", showinfo=True, showinfo_extra="--stats") # Test that when outputting half textures, we clamp large float values # rather than inadvertetly turning into Inf in the process of output to # half. command += oiiotool (" --pattern constant:color=1.0e6,1.0e6,1.0e6 2x2 3 -d float -o million.tif") command += omaketx_command ("million.tif", "bigval.exr", "-d half", showinfo_extra="--stats") # Test --format to force exr even though it can't be deduced from the name. command += omaketx_command ("checker.tif", "checker-exr.pdq", options=":fileformatname=exr") # Test that the oiio:SHA-1 hash is stable, and that that changing filter and # using -hicomp result in different images and different hashes. command += omaketx_command (oiio_images + "/grid.tif", "grid-lanczos3.tx", options = ":filter=lanczos3", showinfo=False) command += omaketx_command (oiio_images + "/grid.tif", "grid-lanczos3-hicomp.tx", options = ":filter=lanczos3:highlightcomp=1", showinfo=False) command += info_command ("grid.tx", extraargs="--metamatch oiio:SHA-1") command += info_command ("grid-lanczos3.tx", extraargs="--metamatch oiio:SHA-1") command += info_command ("grid-lanczos3-hicomp.tx", extraargs="--metamatch oiio:SHA-1") # Test that we cleanly replace any existing SHA-1 hash and ConstantColor # hint in the ImageDescription of the input file. command += oiiotool (" --pattern constant:color=1,0,0 64x64 3 " + " --caption \"foo SHA-1=1234abcd ConstantColor=[0.0,0,-0.0] bar\"" + " -d uint8 -o " + make_relpath("small.tif") ) command += info_command ("small.tif", safematch=1); command += omaketx_command ("small.tif", "small.tx", options=":oiio=1:constant_color_detect=1") # Regression test -- at one point, we had a bug where we were botching # the poles of OpenEXR env maps, adding energy. Check it by creating an # all-white image, turning it into an env map, and calculating its # statistics (should be 1.0 everywhere). command += oiiotool (" --pattern constant:color=1,1,1 4x2 3 " + " -d half -o " + make_relpath("white.exr")) command += omaketx_command ("white.exr", "whiteenv.exr", output_cmd="-oenv", showinfo=False) command += oiiotool ("--stats -a whiteenv.exr") command += oiiotool (" --pattern noise 64x64 1" + " -d half -o " + make_relpath("bump.exr")) command += omaketx_command ("bump.exr", "bumpslope.exr", extraargs="-d half", output_cmd="-obump", showinfo=False) command += oiiotool ("--stats -a bumpslope.exr") outputs = [ "out.txt" ] # To do: --filter --checknan --fullpixels # --prman-metadata --ignore-unassoc # --mipimage # --envlatl TIFF, --envlatl EXR # --colorconvert --unpremult -u --fovcot
the-stack_0_15769
# Always prefer setuptools over distutils from setuptools import setup # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, "README.md"), encoding="utf-8") as f: long_description = f.read() setup( name="implicit_lambda", # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version="0.4.0", description="Implicit lambdas with placeholder notation and code generation", # Fix windows newlines. long_description=long_description.replace("\r\n", "\n"), # The project's main homepage. url="https://github.com/blackhc/implicit_lambda", # Author details author="Andreas @blackhc Kirsch", author_email="[email protected]", # Choose your license license="MIT", # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable "Development Status :: 3 - Alpha", # Indicate who your project is intended for "Intended Audience :: Developers", "Intended Audience :: Science/Research", "Topic :: Software Development :: Libraries :: Python Modules", # Pick your license as you wish (should match "license" above) "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.7", ], # What does your project relate to? keywords="tools lambda placeholder", # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=["implicit_lambda", "implicit_lambda.details", "implicit_lambda.tests"], package_dir={"": "src"}, # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=[], # List additional groups of dependencies here (e.g. development # dependencies). You can install these using the following syntax, # for example: # $ pip install -e .[dev,test] extras_require={ "dev": ["check-manifest"], "test": ["coverage", "codecov", "pytest", "pytest-benchmark", "pytest-cov", "hypothesis"], }, setup_requires=["pytest-runner"], )
the-stack_0_15770
from cereal import car from common.numpy_fast import mean from selfdrive.config import Conversions as CV from opendbc.can.can_define import CANDefine from opendbc.can.parser import CANParser from selfdrive.car.interfaces import CarStateBase from selfdrive.car.gm.values import DBC, CAR, AccState, CanBus, \ CruiseButtons, STEER_THRESHOLD class CarState(CarStateBase): def __init__(self, CP): super().__init__(CP) can_define = CANDefine(DBC[CP.carFingerprint]['pt']) self.shifter_values = can_define.dv["ECMPRDNL"]["PRNDL"] def update(self, pt_cp): ret = car.CarState.new_message() self.prev_cruise_buttons = self.cruise_buttons self.cruise_buttons = pt_cp.vl["ASCMSteeringButton"]['ACCButtons'] ret.wheelSpeeds.fl = pt_cp.vl["EBCMWheelSpdFront"]['FLWheelSpd'] * CV.KPH_TO_MS ret.wheelSpeeds.fr = pt_cp.vl["EBCMWheelSpdFront"]['FRWheelSpd'] * CV.KPH_TO_MS ret.wheelSpeeds.rl = pt_cp.vl["EBCMWheelSpdRear"]['RLWheelSpd'] * CV.KPH_TO_MS ret.wheelSpeeds.rr = pt_cp.vl["EBCMWheelSpdRear"]['RRWheelSpd'] * CV.KPH_TO_MS ret.vEgoRaw = mean([ret.wheelSpeeds.fl, ret.wheelSpeeds.fr, ret.wheelSpeeds.rl, ret.wheelSpeeds.rr]) ret.vEgo, ret.aEgo = self.update_speed_kf(ret.vEgoRaw) ret.standstill = ret.vEgoRaw < 0.01 ret.steeringAngle = pt_cp.vl["PSCMSteeringAngle"]['SteeringWheelAngle'] ret.gearShifter = self.parse_gear_shifter(self.shifter_values.get(pt_cp.vl["ECMPRDNL"]['PRNDL'], None)) ret.brake = pt_cp.vl["EBCMBrakePedalPosition"]['BrakePedalPosition'] / 0xd0 # Brake pedal's potentiometer returns near-zero reading even when pedal is not pressed. if ret.brake < 10/0xd0: ret.brake = 0. ret.gas = pt_cp.vl["AcceleratorPedal"]['AcceleratorPedal'] / 254. ret.gasPressed = ret.gas > 1e-5 ret.steeringTorque = pt_cp.vl["PSCMStatus"]['LKADriverAppldTrq'] ret.steeringPressed = abs(ret.steeringTorque) > STEER_THRESHOLD # 1 - open, 0 - closed ret.doorOpen = (pt_cp.vl["BCMDoorBeltStatus"]['FrontLeftDoor'] == 1 or pt_cp.vl["BCMDoorBeltStatus"]['FrontRightDoor'] == 1 or pt_cp.vl["BCMDoorBeltStatus"]['RearLeftDoor'] == 1 or pt_cp.vl["BCMDoorBeltStatus"]['RearRightDoor'] == 1) # 1 - latched ret.seatbeltUnlatched = pt_cp.vl["BCMDoorBeltStatus"]['LeftSeatBelt'] == 0 ret.leftBlinker = pt_cp.vl["BCMTurnSignals"]['TurnSignals'] == 1 ret.rightBlinker = pt_cp.vl["BCMTurnSignals"]['TurnSignals'] == 2 self.park_brake = pt_cp.vl["EPBStatus"]['EPBClosed'] ret.cruiseState.available = bool(pt_cp.vl["ECMEngineStatus"]['CruiseMainOn']) ret.espDisabled = pt_cp.vl["ESPStatus"]['TractionControlOn'] != 1 self.pcm_acc_status = pt_cp.vl["AcceleratorPedal2"]['CruiseState'] ret.brakePressed = ret.brake > 1e-5 # Regen braking is braking if self.car_fingerprint == CAR.VOLT: ret.brakePressed = ret.brakePressed or bool(pt_cp.vl["EBCMRegenPaddle"]['RegenPaddle']) ret.cruiseState.enabled = self.pcm_acc_status != AccState.OFF # ret.cruiseState.standstill = self.pcm_acc_status == AccState.STANDSTILL ret.cruiseState.standstill = False # Never be in standstill (for auto-resume to work) # 0 - inactive, 1 - active, 2 - temporary limited, 3 - failed self.lkas_status = pt_cp.vl["PSCMStatus"]['LKATorqueDeliveredStatus'] ret.steerWarning = self.lkas_status not in [0, 1] return ret @staticmethod def get_can_parser(CP): # this function generates lists for signal, messages and initial values signals = [ # sig_name, sig_address, default ("BrakePedalPosition", "EBCMBrakePedalPosition", 0), ("FrontLeftDoor", "BCMDoorBeltStatus", 0), ("FrontRightDoor", "BCMDoorBeltStatus", 0), ("RearLeftDoor", "BCMDoorBeltStatus", 0), ("RearRightDoor", "BCMDoorBeltStatus", 0), ("LeftSeatBelt", "BCMDoorBeltStatus", 0), ("RightSeatBelt", "BCMDoorBeltStatus", 0), ("TurnSignals", "BCMTurnSignals", 0), ("AcceleratorPedal", "AcceleratorPedal", 0), ("CruiseState", "AcceleratorPedal2", 0), ("ACCButtons", "ASCMSteeringButton", CruiseButtons.UNPRESS), ("SteeringWheelAngle", "PSCMSteeringAngle", 0), ("FLWheelSpd", "EBCMWheelSpdFront", 0), ("FRWheelSpd", "EBCMWheelSpdFront", 0), ("RLWheelSpd", "EBCMWheelSpdRear", 0), ("RRWheelSpd", "EBCMWheelSpdRear", 0), ("PRNDL", "ECMPRDNL", 0), ("LKADriverAppldTrq", "PSCMStatus", 0), ("LKATorqueDeliveredStatus", "PSCMStatus", 0), ("TractionControlOn", "ESPStatus", 0), ("EPBClosed", "EPBStatus", 0), ("CruiseMainOn", "ECMEngineStatus", 0), ] if CP.carFingerprint == CAR.VOLT: signals += [ ("RegenPaddle", "EBCMRegenPaddle", 0), ] return CANParser(DBC[CP.carFingerprint]['pt'], signals, [], CanBus.POWERTRAIN)
the-stack_0_15771
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2020, John McNamara, [email protected] # from ..excel_comparison_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('chart_axis19.xlsx') def test_create_file(self): """Test the creation of a simple XlsxWriter file.""" workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() chart = workbook.add_chart({'type': 'column'}) chart.axis_ids = [43813504, 45705472] data = [ [1, 2, 3, 4, 5], [2, 4, 6, 8, 10], [3, 6, 9, 12, 15], ] worksheet.write_column('A1', data[0]) worksheet.write_column('B1', data[1]) worksheet.write_column('C1', data[2]) chart.add_series({'values': '=Sheet1!$A$1:$A$5'}) chart.add_series({'values': '=Sheet1!$B$1:$B$5'}) chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) chart.set_x_axis({'label_position': 'high'}) chart.set_y_axis({'label_position': 'low'}) worksheet.insert_chart('E9', chart) workbook.close() self.assertExcelEqual()
the-stack_0_15772
import os import unittest from shutil import rmtree import numpy as np class TestSkeletonIo(unittest.TestCase): shape = 128 n_nodes = 100 tmp_folder = './tmp' def setUp(self): os.makedirs(self.tmp_folder, exist_ok=True) def tearDown(self): try: rmtree(self.tmp_folder) except OSError: pass def _get_skel(self): coords = np.random.randint(0, self.shape, size=(self.n_nodes, 3)) edges = np.random.randint(0, self.n_nodes, size=(self.n_nodes, 2)) return coords, edges def test_swc(self): from elf.skeleton.io import read_swc, write_swc n_skels = 5 for skel_id in range(n_skels): path = os.path.join(self.tmp_folder, f'{skel_id}.swc') coords, edges = self._get_skel() write_swc(path, coords, edges) _, coords_read, parents_read, = read_swc(path) self.assertTrue(np.array_equal(coords, coords_read)) self.assertEqual(len(parents_read), len(coords_read)) # checking for edges is a bit more complicated ... # self.assertTrue(np.array_equal(edges, edges_read)) def test_nml(self): from elf.skeleton.io import read_nml, write_nml if __name__ == '__main__': unittest.main()
the-stack_0_15773
from exception_wrappers.libraries.playhouse.apsw_ext import * def migrate(migrator, database): # Account migrator.add_column('account', 'deleted', BooleanField(default=False)) # # Schema specification (for migration verification) # SPEC = { 'account': { 'id': 'INTEGER PRIMARY KEY NOT NULL', 'name': 'VARCHAR(255)', 'thumb': 'TEXT', 'deleted': 'SMALLINT NOT NULL', 'refreshed_at': 'DATETIME' }, }
the-stack_0_15774
import numpy as np from gym.spaces import Box from metaworld.envs.asset_path_utils import full_v1_path_for from metaworld.envs.mujoco.sawyer_xyz.sawyer_xyz_env import SawyerXYZEnv, _assert_task_is_set class SawyerBasketballEnv(SawyerXYZEnv): def __init__(self): liftThresh = 0.3 goal_low = (-0.1, 0.85, 0.15) goal_high = (0.1, 0.9+1e-7, 0.15) hand_low = (-0.5, 0.40, 0.05) hand_high = (0.5, 1, 0.5) obj_low = (-0.1, 0.6, 0.03) obj_high = (0.1, 0.7, 0.03) super().__init__( self.model_name, hand_low=hand_low, hand_high=hand_high, ) self.init_config = { 'obj_init_angle': .3, 'obj_init_pos': np.array([0, 0.6, 0.03], dtype=np.float32), 'hand_init_pos': np.array((0, 0.6, 0.2), dtype=np.float32), } self.goal = np.array([0, 0.9, 0.15]) self.obj_init_pos = self.init_config['obj_init_pos'] self.obj_init_angle = self.init_config['obj_init_angle'] self.hand_init_pos = self.init_config['hand_init_pos'] self.liftThresh = liftThresh self._random_reset_space = Box( np.hstack((obj_low, goal_low)), np.hstack((obj_high, goal_high)), ) self.goal_space = Box( np.array(goal_low) + np.array([0, -0.05001, 0.1000]), np.array(goal_high) + np.array([0, -0.05000, 0.1001]) ) @property def model_name(self): return full_v1_path_for('sawyer_xyz/sawyer_basketball.xml') @_assert_task_is_set def step(self, action): ob = super().step(action) reward, reachDist, pickRew, placingDist = self.compute_reward(action, ob) self.curr_path_length += 1 info = { 'reachDist': reachDist, 'goalDist': placingDist, 'epRew': reward, 'pickRew': pickRew, 'success': float(placingDist <= 0.08) } return ob, reward, False, info def _get_pos_objects(self): return self.data.get_geom_xpos('objGeom') def reset_model(self): self._reset_hand() basket_pos = self.goal.copy() self.sim.model.body_pos[self.model.body_name2id('basket_goal')] = basket_pos self._target_pos = self.data.site_xpos[self.model.site_name2id('goal')] self.objHeight = self.data.get_geom_xpos('objGeom')[2] self.heightTarget = self.objHeight + self.liftThresh if self.random_init: goal_pos = self._get_state_rand_vec() basket_pos = goal_pos[3:] while np.linalg.norm(goal_pos[:2] - basket_pos[:2]) < 0.15: goal_pos = self._get_state_rand_vec() basket_pos = goal_pos[3:] self.obj_init_pos = np.concatenate((goal_pos[:2], [self.obj_init_pos[-1]])) self.sim.model.body_pos[self.model.body_name2id('basket_goal')] = basket_pos self._target_pos = basket_pos + np.array([0, -0.05, 0.1]) self._set_obj_xyz(self.obj_init_pos) self.maxPlacingDist = np.linalg.norm(np.array([self.obj_init_pos[0], self.obj_init_pos[1], self.heightTarget]) - np.array(self._target_pos)) + self.heightTarget return self._get_obs() def _reset_hand(self): super()._reset_hand(10) rightFinger, leftFinger = self._get_site_pos('rightEndEffector'), self._get_site_pos('leftEndEffector') self.init_fingerCOM = (rightFinger + leftFinger)/2 self.pickCompleted = False def compute_reward(self, actions, obs): objPos = obs[3:6] rightFinger, leftFinger = self._get_site_pos('rightEndEffector'), self._get_site_pos('leftEndEffector') fingerCOM = (rightFinger + leftFinger)/2 heightTarget = self.heightTarget goal = self._target_pos reachDist = np.linalg.norm(objPos - fingerCOM) placingDist = np.linalg.norm(objPos - goal) assert np.all(goal == self._get_site_pos('goal')) def reachReward(): reachRew = -reachDist reachDistxy = np.linalg.norm(objPos[:-1] - fingerCOM[:-1]) zRew = np.linalg.norm(fingerCOM[-1] - self.init_fingerCOM[-1]) if reachDistxy < 0.05: reachRew = -reachDist else: reachRew = -reachDistxy - 2*zRew #incentive to close fingers when reachDist is small if reachDist < 0.05: reachRew = -reachDist + max(actions[-1],0)/50 return reachRew , reachDist def pickCompletionCriteria(): tolerance = 0.01 if objPos[2] >= (heightTarget - tolerance): return True else: return False if pickCompletionCriteria(): self.pickCompleted = True def objDropped(): return (objPos[2] < (self.objHeight + 0.005)) and (placingDist >0.02) and (reachDist > 0.02) def orig_pickReward(): hScale = 100 if self.pickCompleted and not(objDropped()): return hScale*heightTarget elif (reachDist < 0.1) and (objPos[2]> (self.objHeight + 0.005)) : return hScale* min(heightTarget, objPos[2]) else: return 0 def placeReward(): c1 = 1000 ; c2 = 0.01 ; c3 = 0.001 cond = self.pickCompleted and (reachDist < 0.1) and not(objDropped()) if cond: placeRew = 1000*(self.maxPlacingDist - placingDist) + c1*(np.exp(-(placingDist**2)/c2) + np.exp(-(placingDist**2)/c3)) placeRew = max(placeRew,0) return [placeRew , placingDist] else: return [0 , placingDist] reachRew, reachDist = reachReward() pickRew = orig_pickReward() placeRew , placingDist = placeReward() assert ((placeRew >=0) and (pickRew>=0)) reward = reachRew + pickRew + placeRew return [reward, reachDist, pickRew, placingDist]
the-stack_0_15776
from pgshovel.interfaces.replication_pb2 import ( State, StreamState, ) from pgshovel.replication.validation.bootstrap import validate_bootstrap_state from pgshovel.replication.validation.consumers import validate_consumer_state from pgshovel.replication.validation.transactions import validate_transaction_state class MultipleStateValidator(object): def __init__(self, message, validators): self.message = message self.validators = validators def __call__(self, state, *args, **kwargs): states = {} for name, validator in self.validators.items(): if state is not None and state.HasField(name): value = getattr(state, name) else: value = None result = validator(value, *args, **kwargs) if result is not None: states[name] = result return self.message(**states) validate_state = MultipleStateValidator(State, { 'bootstrap_state': validate_bootstrap_state, 'stream_state': MultipleStateValidator(StreamState, { 'consumer_state': validate_consumer_state, 'transaction_state': validate_transaction_state, }) }) #: The expected types of event for a stream of transactions when there is no #: existing ``TransactionState``. TRANSACTION_START_EVENT_TYPES = validate_state.validators['stream_state'].validators['transaction_state'].receivers[None].keys() # noqa
the-stack_0_15777
"""This module provides file I/O for Quake BSP2 map files. Example: bsp_file = bsp.Bsp.open('ad_sepulcher.bsp') """ import struct from .bsp29 import Bsp as Bsp29 __all__ = ['is_bspfile', 'Bsp'] IDENTITY = b'BSP2' def _check_bspfile(fp): fp.seek(0) data = fp.read(struct.calcsize('<4s')) identity = struct.unpack('<4s', data)[0] fp.seek(0) return identity == IDENTITY def is_bspfile(filename): """Quickly see if a file is a bsp file by checking the magic number. The filename argument may be a file for file-like object. Args: filename: File to check as string or file-like object. Returns: True if given file's magic number is correct. """ try: if hasattr(filename, 'read'): return _check_bspfile(fp=filename) else: with open(filename, 'rb') as fp: return _check_bspfile(fp) except Exception: return False class Node(Bsp29.factory.Node): format = '<i8i2I' size = struct.calcsize(format) class Face(Bsp29.factory.Face): format = '<2ii2i4Bi' size = struct.calcsize(format) class ClipNode(Bsp29.factory.ClipNode): format = '<i2i' size = struct.calcsize(format) class Leaf(Bsp29.factory.Leaf): format = '<2i6i2I4B' size = struct.calcsize(format) class Edge(Bsp29.factory.Edge): format = '<2I' size = struct.calcsize(format) class Bsp(Bsp29): """Class for working with Bsp files Example: Basic usage:: from vgio.quake.bsp.bsp29a import Bsp b = Bsp.open('ad_sepulcher.bsp') Attributes: version: Version of the map file. Vanilla Quake is 29. entities: A string containing the entity definitions. planes: A sequence of Planes used by the bsp tree data structure. miptextures: A sequence of Miptextures. vertexes: A sequence of Vertexes. visibilities: A sequence of ints representing visibility data. nodes: A sequence of Nodes used by the bsp tree data structure. texture_infos: A sequence of TextureInfo objects. faces: A sequence of Faces. lighting: A sequence of ints representing lighting data. clip_nodes: A sequence of ClipNodes used by the bsp tree data structure. leafs: A sequence of Leafs used by the bsp tree data structure. mark_surfaces: A sequence of ints representing lists of consecutive faces used by the Node objects. edges: A sequence of Edges. surf_edges: A sequence of ints representing list of consecutive edges used by the Face objects. models: A sequence of Models. Note: The first model is the entire level. fp: The file-like object to read data from. mode: The file mode for the file-like object. """ class factory(Bsp29.factory): Node = Node Face = Face ClipNode = ClipNode Leaf = Leaf Edge = Edge
the-stack_0_15778
import os import setuptools dir_repo = os.path.abspath(os.path.dirname(__file__)) # read the contents of REQUIREMENTS file with open(os.path.join(dir_repo, "requirements.txt"), "r") as f: requirements = f.read().splitlines() # read the contents of README file with open(os.path.join(dir_repo, "README.md"), encoding="utf-8") as f: readme = f.read() setuptools.setup( name="neuralprophet", version="0.2.5", description="A simple yet customizable forecaster", author="Oskar Triebe", author_email='[email protected]', url="https://github.com/ourownstory/neural_prophet", license="MIT", packages=setuptools.find_packages(), python_requires=">=3.7", install_requires=requirements, extras_require={ "dev": ["livelossplot>=0.5.3", "black"], "live": ["livelossplot>=0.5.3"], }, # setup_requires=[""], scripts=["scripts/neuralprophet_dev_setup"], long_description=readme, long_description_content_type="text/markdown", include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], )
the-stack_0_15780
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # -------------------------------------------------------------------------- from . import _utils, _io, _logger from ._graph_execution_manager import GraphExecutionManager, _RunStateInfo from ._execution_agent import InferenceAgent from .debug_options import DebugOptions from ._fallback import ORTModuleFallbackException, _FallbackPolicy, _FallbackManager from onnxruntime.capi import _pybind_state as C import onnx import torch import warnings class InferenceManager(GraphExecutionManager): """Concrete instance of GraphExecutionManager that is able to manage the inference model InferenceManager is resposible for building and running the forward graph of the inference model """ def __init__(self, model, debug_options: DebugOptions, fallback_manager: _FallbackManager): super().__init__(model, debug_options, fallback_manager) self._export_mode = torch.onnx.TrainingMode.EVAL @staticmethod def execution_session_run_forward(execution_session, onnx_model, device, *inputs): """Runs the forward graph on execution_session with given model inputs and device""" # Assert that the input and model device match _utils._check_same_device(device, "Input argument to forward", *inputs) # TODO: Try to reuse the output buffers as some of the output tensors are same sizes, # especially the backward graph outputs. # REVIEW(codemzs): Consolidate Training Agent with InferenceAgent on C++ side to not # have the need for passing IOBinding. io_binding = execution_session.io_binding() run_options = C.RunOptions() # Use IO binding _utils._create_iobinding(io_binding, inputs, onnx_model, device) # Run and return module outputs. ort_output = execution_session.run_forward(io_binding, run_options) forward_outputs, run_id = ort_output.ortvalues, ort_output.run_id user_outputs = tuple(_utils._ortvalue_to_torch_tensor( forward_output._ortvalue) for forward_output in forward_outputs) state = None # Assert that the outputs and model device match _utils._check_same_device( device, "Output argument from forward", *user_outputs) output_info = [(output.shape, output.device, output.dtype) for output in user_outputs] run_info = _RunStateInfo(state, output_info) # Return user outputs and forward run information return user_outputs, run_info def forward(self, *inputs, **kwargs): '''Forward pass of the inference model ONNX model is exported the first time this method is executed. Next, we build an optimized inference graph with module_graph_builder. Finally, we instantiate the ONNX Runtime InferenceSession through the InferenceAgent. ''' # Fallback to PyTorch due to failures *external* to forward(), # typically from initialization if self._fallback_manager.is_pending(): return self._fallback_manager.fallback(self._original_module, self._debug_options.logging.log_level, *inputs, **kwargs) try: # Exporting module to ONNX for the first time build_graph = self._export_model(*inputs, **kwargs) if build_graph: # If model was exported, then initialize the graph builder self._initialize_graph_builder(training=False) # Build the inference graph if build_graph: self._build_graph() module_device = _utils.get_device_from_module( self._original_module) # The inference session should be created every time # the graph was built or if the device changed between calls to forward create_execution_session = build_graph or self._device != module_device if self._device != module_device: self._device = module_device if create_execution_session: # Create execution session creates the inference_session self._create_execution_agent() user_outputs, _ = InferenceManager.execution_session_run_forward(self._execution_agent, self._onnx_models.optimized_model, self._device, *_io._combine_input_buffers_initializers( self._graph_initializers, self._graph_info.user_input_names, self._input_info, self._flattened_module.named_buffers(), inputs, kwargs, self._device)) return _io.unflatten_user_output(self._module_output_schema, user_outputs) except ORTModuleFallbackException as e: # Exceptions subject to fallback are handled here self._fallback_manager.handle_exception(exception=e, log_level=self._debug_options.logging.log_level) except Exception as e: # Catch-all FALLBACK_FORCE_TORCH_FORWARD fallback is handled here self._fallback_manager.handle_exception(exception=e, log_level=self._debug_options.logging.log_level, override_policy=_FallbackPolicy.FALLBACK_FORCE_TORCH_FORWARD) # Fallback to PyTorch due to failures *during* forward(), # (e.g. export, model/input post-processing, forward, output processing, etc) if self._fallback_manager.is_pending(): return self._fallback_manager.fallback(self._original_module, self._debug_options.logging.log_level, *inputs, **kwargs) def _build_graph(self): """Build an optimized inference graph using the module_graph_builder""" super()._build_graph() if self._debug_options.save_onnx_models.save: self._onnx_models.save_optimized_model(self._debug_options.save_onnx_models.path, self._debug_options.save_onnx_models.name_prefix, self._export_mode) def _create_execution_agent(self): """Creates an InferenceAgent that can run forward graph on an inference model""" session_options, providers, provider_options = self._get_session_config() self._execution_agent = InferenceAgent(self._onnx_models.optimized_model.SerializeToString(), session_options, providers, provider_options)
the-stack_0_15782
# Copyright (C) 2011-2020 Airbus, [email protected] import sys, os import logging log = logging.getLogger("plasmasm") try: # Check amoco dependency on OrderedDict from collections import OrderedDict del OrderedDict except ImportError: log.error('amoco backend needs python 2.7, with OrderedDict') raise ImportError('amoco backend needs python 2.7, with OrderedDict') try: # Check amoco dependency on pyparsing import pyparsing del pyparsing except ImportError: log.error('amoco backend needs that pyparsing is installed') raise ImportError('amoco backend needs that pyparsing is installed') # If amoco is not installed system-wide, it is recommended to install it # in the parent directory of plasmasm. basedir = os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) if basedir == '': basedir = '.' sys.path.append(basedir+'/amoco') sys.path.append(basedir+'/crysp') sys.path.append(basedir+'/grandalf') import amoco from amoco.logger import Log Log.progress = lambda count, total=0, pfx='': None try: from amoco.arch.core import type_data_processing, type_control_flow, type_other, type_cpu_state, type_undefined except ImportError: log.error("PATH %s", sys.path) e = 'amoco backend not well installed: %s' % sys.exc_info()[1] log.error(e) raise ImportError(e) from amoco.cas.mapper import mapper from amoco.arch.x86 import env from amoco.arch.x86 import cpu_x86 as cpu_amoco try: # Newer amoco from amoco.arch.x86.cpu_x86 import instruction_x86 as instruction except ImportError: # Older amoco from amoco.arch.core import instruction env.internals['keep_order'] = True cpu_addrsize = 32 from amoco.arch.x86.formats import default_mnemo_name, default_eqn_parser, \ mnemo_string_rep, \ IA32_Binutils_ATT, IA32_Binutils_Intel, IA32_MacOSX_ATT #NON_REGRESSION_FOUND = True # Define this variable to avoid raising errors # Encapsulation of internals class API_AMOCO(object): # API to access opname or prefix def opname(self): return default_mnemo_name(self.amoco)[-1][1] opname = property(opname) def prefix(self): if self.amoco.misc.get('pfx') is None: return [] pfx = [] if self.amoco.misc['pfx'][0] is not None: pfx.append({ 'lock': 0xf0, 'repne': 0xf2, 'rep': 0xf3, }[self.amoco.misc['pfx'][0]]) if self.amoco.misc['pfx'][1] is not None: assert 'segreg' == self.amoco.misc['pfx'][1] pfx.append({ env.es: 0x26, env.cs: 0x2e, env.ss: 0x36, env.ds: 0x3e, env.fs: 0x64, env.gs: 0x65, }[self.amoco.misc['segreg']]) if self.amoco.misc['pfx'][2] is not None: pfx.append({ 'opdsz': 0x66, }[self.amoco.misc['pfx'][2]]) if self.amoco.misc['pfx'][3] is not None: pfx.append({ 'adrsz': 0x67, }[self.amoco.misc['pfx'][3]]) return pfx prefix = property(prefix) # # API to access the arguments def api_nb_arg(self): ''' How many arguments for this instruction ''' return len(self.amoco.operands) def api_arg_txt(self, pos, asm_format=None): ''' Text representation of argument 'pos' ''' if asm_format == 'att_syntax': from amoco.arch.x86.formats import att_opers return list(reversed(att_opers(self.amoco)))[pos*2][1] else: from amoco.arch.x86.formats import intel_opers res = intel_opers(self.amoco)[pos*2][1] if res.startswith('DWORD PTR '): res = res[10:] return res def api_get_cst(self, pos): ''' If the argument 'pos' is numeric, then get its value as an 'int' ''' arg = self.amoco.operands[pos] if arg._is_cst: return int(int(arg)) return None def api_get_imm(self, pos): ''' If the argument 'pos' contains an immediate value / displacement then get its value as an 'int' ''' arg = self.amoco.operands[pos] if arg._is_cst: return int(int(arg)) elif arg._is_mem and arg.a.base._is_cst: return int(int(arg.a.base)) elif arg._is_mem and not hasattr(arg.a.disp, '_is_cst'): return int(int(arg.a.disp)) elif arg._is_eqn and arg.op.symbol == '+' and arg.r._is_cst: return arg.r.value elif arg._is_eqn and arg.op.symbol == '-' and arg.r._is_cst: return (-arg.r).value return None def api_get_symbol(self, pos): ''' Gets the argument 'pos' in the form of a symbol if it is a label ''' arg = self.amoco.operands[pos] if arg._is_lab: return arg.ref return None def api_get_label(self, pos): ''' Gets a label if present in the argument 'pos'. Gets two labels if it is a label difference. ''' arg = self.amoco.operands[pos] if arg._is_mem and not hasattr(arg.a.disp, '_is_lab'): label, label_dif, cste = default_eqn_parser(arg.a.base) return label, label_dif elif arg._is_mem: label, label_dif, cste = default_eqn_parser(arg.a.disp) return label, label_dif else: label, label_dif, cste = default_eqn_parser(arg) return label, label_dif def api_is_address(self, pos): ''' True if the argument 'pos' is an address ''' arg = self.amoco.operands[pos] return arg is not None and arg._is_mem def api_is_arg_size(self, pos, size): ''' True if the argument 'pos' is a size-bit argument ''' arg = self.amoco.operands[pos] if arg.size != size: return False return True def api_is_reg_size(self, pos, size=None): ''' True if the argument 'pos' is a size-bit register ''' arg = self.amoco.operands[pos] if expr.get_reg(arg) is None: return False if size is not None and arg.size != size: return False return True def api_is_reg_in_arg(self, pos, reg): ''' True if the argument 'pos' contains a reference to a given register ''' arg = self.amoco.operands[pos] log.debug("(DEBUG:api_is_reg_in_arg) %s %s", arg, reg) return str(reg) in str(arg) def api_same_base_reg(self, pos, instr): ''' Checks that arguments at position 'pos' in 'self' and 'instr' have the same base register (they may have different disp) ''' arg = expr.get_reg(self.amoco.operands[pos].a.base) return arg is not None and arg == expr.get_reg(instr.amoco.operands[pos].a.base) def api_set_imm_label(self, pos, value, label=None, label_dif=None): ''' If the argument 'pos' contains an immediate value / displacement then substract 'value' and add the symbol 'label'. If the argument is an absolute address, then 'label' should be at address 'value'; if it is a relative address, then 'label' should be at 'value' bytes of the current instruction. 'label_dif' is used for Mach-O binaries to represent LOC_DIF relocations. If 'label' is None, we only change the immediate. If 'label' is False, we remove the label. ''' arg = self.amoco.operands[pos] sym = 0 if label is False: # Delete label assert arg._is_mem if arg.a.base._is_lab: _, _, cste = default_eqn_parser(arg.a.base) arg.a.base = expressions.cst(cste, size=cpu_addrsize) elif not hasattr(arg.a.disp, '_is_lab'): _, _, cste = default_eqn_parser(arg.a.base) arg.a.base = expressions.cst(cste, size=cpu_addrsize) elif arg.a.disp._is_lab: arg.a.disp = 0 elif arg.a.disp._is_eqn: _, _, cste = default_eqn_parser(arg.a.disp) arg.a.disp = cste else: NEVER elif label is not None: sym = expressions.lab(label, size=cpu_addrsize) if label_dif is not None: sym -= expressions.lab(label_dif, size=cpu_addrsize) if arg._is_cst: self.amoco.operands[pos] -= value self.amoco.operands[pos] += sym elif arg._is_mem and arg.a.base._is_cst: arg.a.base -= value arg.a.base += sym elif arg._is_mem and (arg.a.base._is_reg or arg.a.base._is_eqn): arg.a.disp -= value arg.a.disp += sym if hasattr(arg.a.disp, '_is_cst') and arg.a.disp._is_cst: arg.a.disp = arg.a.disp.value else: NEVER def reg_from_name(reg): if reg == 'eflag': reg = 'eflags' return env.__dict__[reg] reg_from_name = staticmethod(reg_from_name) def api_add_reg(self, pos, reg, last=False): arg = self.amoco.operands[pos] reg = self.reg_from_name(reg) assert arg._is_mem if arg.a.base._is_cst: arg.a.disp += arg.a.base.value arg.a.base = reg elif arg.a.base._is_lab: arg.a.disp += arg.a.base arg.a.base = reg elif arg.a.base._is_eqn \ and not (arg.a.base.l._is_reg and not arg.a.base.l._is_lab) \ and not (arg.a.base.r._is_reg and not arg.a.base.r._is_lab): # No register in arg.a.base => becomes a displacement arg.a.disp += arg.a.base arg.a.base = reg elif arg.a.base._is_reg or arg.a.base._is_eqn: # Replace 'reg+reg' with '2*reg' if arg.a.base._is_eqn and arg.a.base.op.symbol == '+' \ and arg.a.base.l is arg.a.base.r: arg.a.base = expressions.op('*', arg.a.base.l, expressions.cst(2,size=arg.a.base.l.size)) # Force the order of operands if last: # reg is last arg.a.base = expressions.op('+', arg.a.base, reg) else: # reg is first arg.a.base = expressions.op('+', reg, arg.a.base) if env.internals.get('keep_order'): arg.a.base.prop |= 16 else: NEVER def api_replace_reg(self, src, dst): ''' In all arguments, replace register 'src' with 'dst'. ''' src = self.reg_from_name(src) dst = self.reg_from_name(dst) for pos, arg in enumerate(self.amoco.operands): if arg._is_cst: pass elif arg._is_eqn: pass elif arg._is_reg: if arg is src: self.amoco.operands[pos] = dst elif arg._is_mem and arg.a.base._is_reg: if arg.a.base is src: arg.a.base = dst elif arg._is_mem and arg.a.base._is_eqn and \ arg.a.base.op.symbol == '*' and \ arg.a.base.l._is_reg: if arg.a.base.l is src: arg.a.base.l = dst elif arg._is_mem and arg.a.base._is_eqn and \ arg.a.base.op.symbol == '+' and \ arg.a.base.l._is_reg and \ arg.a.base.r._is_reg: if arg.a.base.l is src: arg.a.base.l = dst if arg.a.base.r is src: arg.a.base.r = dst elif arg._is_mem and arg.a.base._is_eqn and \ arg.a.base.op.symbol == '+' and \ arg.a.base.l._is_reg and \ arg.a.base.r._is_eqn and \ arg.a.base.r.op.symbol == '*' and \ arg.a.base.r.l._is_reg: if arg.a.base.l is src: arg.a.base.l = dst if arg.a.base.r.l is src: arg.a.base.r.l = dst else: log.error("ARG=%s", arg) NEVER class StubNone(object): ''' When amoco fails to disassemble the data ''' def __str__(self, asm_format=None): return "NoneASM" def __init__(self, offset, bytes): self.length = len(bytes) self.bytes = bytes mnemonic = 'NoneASM' type = None operands = [] misc = {} def __call__(self, m): # Calling a mapper pass def clang_bug_test(self): if self.amoco.mnemonic == 'TEST' \ and self.symbols.meta.get('compiler') == 'clang' \ and self.symbols.meta.get('os_minversion', (0,0,0))[1] < 14 \ and self.api_is_address(0) \ and self.api_is_reg_size(1) \ : # Clang-LLVM on MacOSX sometimes use Intel argument order # it is the case for # Apple LLVM version 6.0 (clang-600.0.54) # Apple LLVM version 7.0.2 (clang-700.1.81) # Apple LLVM version 9.0.0 (clang-900.0.39.2) # not for # Apple clang version 11.0.0 (clang-1100.0.33.17) instr = self.amoco.__class__(b"") instr.mnemonic = self.amoco.mnemonic instr.operands = list(reversed(self.amoco.operands)) instr.spec = self.amoco.spec return instr else: return self.amoco def att_bug_fsub_fdiv(instr): if not instr.mnemonic[:4] in [ 'FSUB', 'FDIV' ]: return for _ in instr.operands: if _._is_mem: return # https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=372528 # The binutils mix fsubp/fdivp with fsubrp/fdivrp if instr.mnemonic[4:] == 'P': instr.mnemonic = instr.mnemonic[:4] + 'RP' elif instr.mnemonic[4:] == 'RP': instr.mnemonic = instr.mnemonic[:4] + 'P' elif len(instr.operands) == 2 and str(instr.operands[0]) != 'st0': if instr.mnemonic[4:] == '': instr.mnemonic = instr.mnemonic + 'R' elif instr.mnemonic[4:] == 'R': instr.mnemonic = instr.mnemonic[:4] spec_table = {} for spec in amoco.arch.x86.spec_ia32.ISPECS \ + amoco.arch.x86.spec_fpu.ISPECS \ + amoco.arch.x86.spec_sse.ISPECS: mnemo = spec.iattr.get('mnemonic', None) if not mnemo in spec_table: spec_table[mnemo] = [spec] elif not spec in spec_table[mnemo]: spec_table[mnemo].append(spec) del spec def set_spec(i, spec_table): log.debug("%s %s", i.mnemonic, [_.size for _ in reversed(i.operands)]) spec_collision = { 'CBW': 'CWDE', 'CWD': 'CDQ', 'IRET': 'IRETD', 'CDQE': 'CWDE', 'CQO': 'CDQ', 'LFENCE': 'XRSTOR', 'MFENCE': 'XSAVEOPT', 'SFENCE': 'CLFLUSH', 'PEXTRQ': 'PEXTRD', 'PINSRQ': 'PINSRD', 'CMPXCHG16B': 'CMPXCHG8B', } if i.mnemonic in spec_collision: spec_list = spec_table[spec_collision[i.mnemonic]] elif i.mnemonic[:-1].lower() in mnemo_string_rep: spec_list = spec_table[i.mnemonic[:-1]+'D'] else: spec_list = spec_table[i.mnemonic] if len(spec_list) > 1: log.debug("Many possible spec for %s", i.mnemonic) for spec in spec_list: log.debug("... %s", spec.hook) log.debug(" misc: %s", i.misc) ispec_idx = 0 if i.mnemonic in ('CALL','JMP'): if i.operands[0]._is_mem: ispec_idx = 0 elif i.operands[0]._is_reg and not i.operands[0]._is_lab: ispec_idx = 0 else: ispec_idx = 1 if i.mnemonic.lower()[:-1] in mnemo_string_rep: if not len(i.operands): ispec_idx = -1 i.spec = spec_list[ispec_idx] if 'type' in i.spec.iattr: i.type = i.spec.iattr['type'] else: i.type = type_data_processing import re def replace_names_with_symbols(symbols, args): for e in args: for _ in expressions.symbols_of(e): if _._is_lab: symbol = _.ref r = re.match(r'(\d+)([bf])', symbol) if r: symbol, direction = r.groups() idx = symbols.meta['local_labels'][symbol] if direction == 'f': idx += 1 symbol = '.L%s\02%d'%(symbol,idx) _.ref = symbols.find_symbol(name = symbol) from plasmasm.symbols import Line from plasmasm.compilers import \ switch_detection_x86_update, \ switch_detection_gcc463m32opt, \ switch_detection_gcc346m32opt, \ gcc_label_for_inlined_memcpy from amoco.arch.x86.parsers import att_syntax class Instruction(Line, API_AMOCO): __slots__ = ('section', 'offset', 'bytelen', 'amoco') CPU = 'I386' def from_txt(self, txt): ''' text input, in assembly format ''' log.debug("> %s", txt) if txt.startswith('rep; ret'): txt = 'rep ret' instr = att_syntax.instr.parseString(txt, True)[0] att_bug_fsub_fdiv(instr) set_spec(instr, spec_table) replace_names_with_symbols(self.symbols, instr.operands) self.amoco = instr return self def from_bin(self, in_str, section): ''' binary input, in assembly format ''' self.section = section self.offset = in_str.offset from plasmasm.parse_bin import endofsection_address end_of_section = endofsection_address(self.symbols, section) end_of_instr = in_str.offset+cpu_amoco.disassemble.maxlen if end_of_instr > end_of_section: end_of_instr = end_of_section instr = cpu_amoco.disassemble(in_str[self.offset:end_of_instr]) if instr is None: instr = StubNone(self.offset, in_str[self.offset:self.offset+1]) self.bytelen = instr.length in_str.offset = self.offset + self.bytelen self.amoco = instr return self def pack(self): ''' binary representation ''' return self.amoco.bytes # Only if unchanged def txt(self, asm_format=None): ''' text output, to be used by an assembler ''' if asm_format is not None: asm_format_orig = self.asm_format self.set_asm_format(asm_format) if self.asm_format == 'raw' and str(self.amoco) == 'nop ': txt = 'nop [%r]' % self.amoco.bytes elif self.asm_format == 'raw': txt = '%s [%s]' % (self.amoco, self.amoco.spec.hook.__name__) else: txt = str(clang_bug_test(self)) if asm_format is not None: self.set_asm_format(asm_format_orig) return txt def labels(self): ''' labels that are referenced in the line ''' res = set() for arg in self.amoco.operands: if arg._is_lab: res.add(arg) if arg._is_eqn and arg.l._is_lab: res.add(arg.l) if arg._is_eqn and arg.r._is_lab: res.add(arg.r) if arg._is_mem and hasattr(arg.a.disp, '_is_lab') and arg.a.disp._is_lab: res.add(arg.a.disp) if arg._is_mem and arg.a.base._is_lab: res.add(arg.a.base) if arg._is_mem and arg.a.base._is_eqn and arg.a.base.l._is_lab: res.add(arg.a.base.l) if arg._is_mem and arg.a.base._is_eqn and arg.a.base.r._is_lab: res.add(arg.a.base.r) return set([_.ref for _ in res if hasattr(_.ref, 'name')]) def set_asm_format(self, asm_format): if asm_format is None or asm_format.startswith('att_syntax'): if asm_format == 'att_syntax clang': instruction.set_formatter(IA32_MacOSX_ATT) else: instruction.set_formatter(IA32_Binutils_ATT) # AT&T syntax is buggy, and depends on whether it is used by # binutils or clang, cf. att_bug_fsub_fdiv elif asm_format.startswith('intel_syntax'): instruction.set_formatter(IA32_Binutils_Intel) # Intel syntax is ambiguous, e.g. call eax # when there is a global variable eax self.asm_format = asm_format set_asm_format = classmethod(set_asm_format) asm_format = None def _create_reloc(self, a): ''' needed to be able to pack an instruction ''' TODO def _extract_symbols(self, a): # Parsing the argument 'a', find if there is a relocation # to be made, extract the symbols # Output: relocation type (None/False/True), label(s) TODO def list_relocs(self): ''' needed to create a relocatable ELF ''' TODO # Methods for binary parser def create_label_imm(self): ''' Replace immediate values that may be labels ''' from plasmasm.parse_bin import label_for_address if switch_detection_x86_update(self): return address = switch_detection_gcc463m32opt(self) if address is not None: section = self.symbols.get_sectionname(address) label = self.symbols.find_symbol(section = section, address = address) log.debug("... TABLE(imm) %r", label) self.api_set_imm_label(1, address, label) return for idx in range(self.api_nb_arg()): value = self.api_get_imm(idx) label = label_for_address(self.symbols, value) if label is not None: assert label.address == value self.api_set_imm_label(idx, value, label) gcc_label_for_inlined_memcpy(self) def create_label_rel(self): ''' Replace relative addresses for call/jmp/jcc ''' if self.opname == 'call' or self.opname.startswith('j'): idx = 0 value = self.api_get_cst(idx) else: return if value is None: return props = { 'address': (self.offset+self.bytelen+value)%(1<<cpu_addrsize), 'section': self.section } label_imm = self.symbols.find_symbol(**props) if label_imm is None: NON_REGRESSION_FOUND return if label_imm.is_symbol() and self.bytelen < 5: # If the argument is not 4 bytes long, create a new label # and keep the same stack; if we don't do this, then instead # of generating a relative jump, the assembler will generate # a jump with relocation; it is the same semantics, but breaks # non-regression tests asking that the generated .o is the same # as the original one # Non-regression: jcmarker.o from libjpeg-6b / gcc 4.6.3 old_stack = label_imm.stack props['name'] = self.symbols.new_name(**props) label_imm = self.symbols.find_symbol(**props) label_imm.stack = old_stack self.api_set_imm_label(idx, value, label_imm) def apply_reloc(self, pos, reloc): ''' 'reloc' is a relocation at offset 'pos' This function modifies the argument impacted by the relocation ''' # Step 1: find which arg is impacted pos -= self.offset b, = struct.unpack("B", self.amoco.bytes[pos:pos+1]) b = struct.pack("B", (1+b)%256) o = cpu_amoco.disassemble(self.amoco.bytes) patched = self.amoco.bytes[:pos] + b + self.amoco.bytes[pos+1:] p = cpu_amoco.disassemble(patched) if o is None or p is None or o.mnemonic != p.mnemonic: log.error("Relocation changes instruction! %s => %s", o, p) log.error(" at offset %r with reloc %r", pos, reloc) log.error(" for '%s' at %s, address=%s", self, self.section, self.offset) return # To find if an argument has changed, we compute the difference # and test if it is non-zero argpos = None for idx, (oa, na) in enumerate(zip(o.operands, p.operands)): try: d = na - oa except ValueError: log.error("Invalid relocation effect") log.error(" incompatible sizes %s %s", na, oa) log.error(" reloc %r for '%s'", reloc, self) return if d._is_cst and int(d) == 0: # Not changed continue if argpos is not None: log.error("Relocation touches many arguments") log.error(" reloc %r for '%s'", reloc, self) return argpos = idx if argpos is None: log.error("Relocation touches no argument") log.error(" reloc %r for '%s'", reloc, self) log.error("ARGPOS %s", argpos) return # Step 2: modify the argument by using the reloc data address = switch_detection_gcc463m32opt(self) if address is None: address = switch_detection_gcc346m32opt(self) if self.amoco.operands[argpos]._is_cst: offset = int(self.amoco.operands[argpos]) if offset >= (1<<(cpu_addrsize-1)): offset -= 1<<cpu_addrsize # Signed self.amoco.operands[argpos] -= offset elif self.amoco.operands[argpos]._is_mem: base = self.amoco.operands[argpos].a.base if base._is_cst: offset = int(base) self.amoco.operands[argpos].a.base -= offset else: if base._is_eqn and base.op.symbol == '+': pass # We may want to extract the constant from an operation # (reg+imm), but normally it is stored as (base+disp) offset = self.amoco.operands[argpos].a.disp self.amoco.operands[argpos].a.disp -= offset else: log.error("Arg of type %s", self.amoco.operands[argpos].__class__) return if address is None: from plasmasm.get_symbols import analyze_reloc label, label_dif, offset, size = analyze_reloc(self, reloc, offset, pos, self.bytelen) else: # Special case: offset to a switch table r_type, data = reloc # Some coherency checks from elfesteem import elf, pe if r_type == ('ELF', elf.EM_386, elf.R_386_32): assert data['section'] == '.rodata' elif r_type == ('COFF', pe.IMAGE_FILE_MACHINE_I386, pe.IMAGE_REL_I386_DIR32): assert data['section'] == '.rdata' else: log.error("Unknown reloc type: %s", reloc) log.error("for: %s", self) return label = self.symbols.find_symbol( section=data['section'], address=address) label_dif = None offset -= address size = cpu_addrsize log.debug("... TABLE(rel) %r", label) self.dst = [[label]] ext_label = expressions.lab(label, size=size) if label_dif is not None: ext_label -= expressions.lab(label_dif, size=size) if offset != 0: ext_label = ext_label + offset if self.amoco.operands[argpos]._is_cst: self.amoco.operands[argpos] += ext_label elif self.amoco.operands[argpos]._is_mem and self.amoco.operands[argpos].a.base._is_cst: self.amoco.operands[argpos].a.base += ext_label elif self.amoco.operands[argpos]._is_mem: self.amoco.operands[argpos].a.disp += ext_label else: NEVER #if self.amoco.operands[argpos]._is_lab and \ # self.opname in [ 'call', 'jmp' ]: # self.amoco.misc['dst'] = label class InstructionCFG(Instruction): __slots__ = ('flow', 'dst') def _set_flow(self): if self.opname == 'call': self.flow = 'sub' elif self.opname == 'ret': self.flow = 'ret' elif self.opname == 'retn': self.flow = 'ret' elif self.opname == 'ud2': self.flow = 'ret' elif self.opname == 'jmp': self.flow = 'jmp' elif self.opname.startswith('j'): self.flow = 'jcc' elif self.opname == 'loop': TODO elif self.opname == 'iret': TODO elif self.opname == 'int': TODO else: self.flow = None def _set_dst(self): if hasattr(self, 'dst'): # Already set by switch detection return if self.flow is None: self.dst = [] elif self.flow == 'ret': self.dst = [None] elif self.flow in [ 'sub', 'jmp', 'jcc' ]: self.dst = [ self.api_get_symbol(0) ] else: raise ValueError("Flow %s unknown"%self.flow) if self.flow == 'sub' and len(self.dst) == 1 \ and hasattr(self, 'offset') \ and getattr(self.dst[0], 'address', None) == self.offset+self.bytelen: # Detection of clang or gcc 3.x computation of GOT offset # "call Ln" and "Ln: pop reg" and "add GOT" self.flow = 'PIC' def evaluate_lines(self, lines, in_str): return evaluate_lines(self, lines, in_str) def get_touched(e, indirect=False): # If indirect==True, registers read to determine addresses in e # If indirect==False, other registers read/written when e is read/written t = set() if e._is_def == 0: # top # some flags may have undetermined values, e.g. for sar edx, 31 # some semantics are not implemented, e.g. shld edi, ebx, cl pass elif e._is_slc: t.update(get_touched(e.x, indirect)) elif e._is_cmp: for s in e.parts: t.update(get_touched(e.parts[s], indirect)) elif e._is_cst: pass elif e._is_lab: pass elif e._is_reg: if not indirect: t.update([e]) elif e._is_mem: t.update(get_touched(e.a, indirect)) elif e._is_ptr: if not indirect: t.update(['MEM']) else: t.update(get_touched(e.base, False)) elif e._is_tst: t.update(get_touched(e.tst, False)) t.update(get_touched(e.l, indirect)) t.update(get_touched(e.r, indirect)) elif e._is_eqn: if e.l is not None: t.update(get_touched(e.l, indirect)) if e.r is not None: t.update(get_touched(e.r, indirect)) else: raise ValueError("in get_touched %s %s"%(type(e),e)) return t def get_rw(m): r = set() w = set() for dst, src in m: w.update(get_touched(dst, False)) r.update(get_touched(src, False)) r.update(get_touched(dst, True)) r.update(get_touched(src, True)) return r, w def is_mmx(line, env): if line.opname.startswith('cvt'): return True for reg in env.mmregs + env.xmmregs: # Loop, and use 'is', because for arg in line.amoco.operands: # membership test with 'in' uses if arg is reg: return True # '==' which is redefined and buggy return False def add_semantics_missing(line, r, w, env, get_touched): # Some bugs of amoco emulation; we modify r and w reg_flags = list(get_touched(env.cf))[0] # eflags/rflags in 32/64-bit mode # flags are not read, for these instructions if line.opname in ('cmp', 'test', 'inc', 'dec', 'add', 'sub', 'mul', 'imul', 'neg', 'and', 'or', 'bsf', 'bsr', 'aaa', 'aad', 'aam', 'aas', 'daa', 'das', 'bt'): r.remove(reg_flags) if line.opname in ('rol', 'ror'): r.discard(reg_flags) # No semantics for div in amoco if line.opname in ('div', 'idiv'): r.update(get_touched(env.eax)) w.update(get_touched(env.eax)) arg = line.amoco.operands[0] if not (arg._is_slc and arg.size == 8): # not 8-bit r.update(get_touched(env.edx)) w.update(get_touched(env.edx)) r.update(get_touched(arg, False)) r.update(get_touched(arg, True)) # Incomplete semantics if line.opname == 'bt': for arg in line.amoco.operands: r.update(get_touched(arg, False)) r.update(get_touched(arg, True)) if line.opname in ('shld', 'shrd') and line.amoco.operands[2]._is_slc: dst = line.amoco.operands[0] src = line.amoco.operands[1] w.update(get_touched(dst, False)) r.update(get_touched(dst, False)) r.update(get_touched(src, False)) r.update(get_touched(dst, True)) r.update(get_touched(src, True)) r.update(get_touched(env.ecx)) if line.opname in ('ldmxcsr', 'stmxcsr', 'xsave', 'xrstor', 'xsaveopt', 'clflush', 'lfence', 'mfence', 'sfence'): # reads or writes registers that are not in amoco's model, # e.g. Processor Extended States pass # No semantics for fpu operations in amoco if line.opname.startswith('f'): fpu_s = env.fpu_status fpu_c = env.fpu_control # NB: we don't include in the following table the modification of C1 # when there is a FPU stack overflow, because it depends on the value # of other status flags fpu_table = { # stack, read, written (2,'fcomi'): (0, (env.st(0),1), (reg_flags,)), (1,'fcomi'): (0, (env.st(0),0), (reg_flags,)), (2,'fcomip'): (1, (env.st(0),1), (reg_flags,)), (1,'fcomip'): (1, (env.st(0),0), (reg_flags,)), (2,'fucomi'): (0, (env.st(0),1), (reg_flags,)), (1,'fucomi'): (0, (env.st(0),0), (reg_flags,)), (2,'fucomip'): (1, (env.st(0),1), (reg_flags,)), (1,'fucomip'): (1, (env.st(0),0), (reg_flags,)), (1,'fcom'): (0, (env.st(0),0), (fpu_s,)), (1,'fcomp'): (0, (env.st(0),0), (fpu_s,)), (0,'fcompp'): (2, (env.st(0),env.st(1)), (fpu_s,)), (1,'fucom'): (0, (env.st(0),0), (fpu_s,)), (1,'fucomp'): (1, (env.st(0),0), (fpu_s,)), (0,'fucompp'): (2, (env.st(0),env.st(1)), (fpu_s,)), (0,'fldz'): (0, (fpu_c,), (env.st(0),)), (0,'fld1'): (0, (fpu_c,), (env.st(0),)), (0,'fldl2t'): (0, (fpu_c,), (env.st(0),)), (0,'fldl2e'): (0, (fpu_c,), (env.st(0),)), (0,'fldpi'): (0, (fpu_c,), (env.st(0),)), (0,'fldlg2'): (0, (fpu_c,), (env.st(0),)), (0,'fldln2'): (0, (fpu_c,), (env.st(0),)), (0,'fxam'): (0, (env.st(0),), (fpu_s,)), (0,'fabs'): (0, (env.st(0),), (env.st(0),)), (0,'frndint'): (0, (env.st(0),fpu_c), (env.st(0),)), (0,'fsqrt'): (0, (env.st(0),), (env.st(0),)), (0,'fchs'): (0, (env.st(0),), (env.st(0),)), (0,'fptan'): (-1, (env.st(0),), (env.st(0),)), (0,'fpatan'): (1, (env.st(0),), (env.st(0),)), (0,'fprem'): (0, (env.st(0),env.st(1)), (env.st(0),fpu_s)), (0,'fprem1'): (0, (env.st(0),env.st(1)), (env.st(0),fpu_s)), (1,'fld'): (-1, (0,), (env.st(0),)), (1,'fild'): (-1, (0,), (env.st(0),)), (1,'fst'): (0, (env.st(0),fpu_c), (fpu_s,0)), (1,'fstp'): (1, (env.st(0),fpu_c), (fpu_s,0)), (1,'fist'): (0, (env.st(0),fpu_c), (fpu_s,0)), (1,'fistp'): (1, (env.st(0),fpu_c), (fpu_s,0)), (1,'fisttp'): (1, (env.st(0),fpu_c), (fpu_s,0)), (1,'fxch'): (0, (env.st(0),0), (env.st(0),0)), (1,'fiadd'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fisub'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fisubr'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fimul'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fidiv'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fidivr'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fadd'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fsub'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fsubr'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fmul'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fdiv'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (1,'fdivr'): (0, (env.st(0),0), (fpu_s,env.st(0),)), (2,'fadd'): (0, (0,1), (fpu_s,0,)), (2,'fsub'): (0, (0,1), (fpu_s,0,)), (2,'fsubr'): (0, (0,1), (fpu_s,0,)), (2,'fmul'): (0, (0,1), (fpu_s,0,)), (2,'fdiv'): (0, (0,1), (fpu_s,0,)), (2,'fdivr'): (0, (0,1), (fpu_s,0,)), (2,'faddp'): (1, (0,1), (fpu_s,0,)), (2,'fsubp'): (1, (0,1), (fpu_s,0,)), (2,'fsubrp'): (1, (0,1), (fpu_s,0,)), (2,'fmulp'): (1, (0,1), (fpu_s,0,)), (2,'fdivp'): (1, (0,1), (fpu_s,0,)), (2,'fdivrp'): (1, (0,1), (fpu_s,0,)), (1,'fbstp'): (0, (env.st(0),fpu_c), (0,)), (1,'fldcw'): (0, (0,), (fpu_c,)), (1,'fnstcw'): (0, (fpu_c,), (0,)), (1,'fnstsw'): (0, (fpu_s,), (0,)), (0,'fsave'): (0, (fpu_c,fpu_s), ()), (0,'fnsave'): (0, (fpu_c,fpu_s), ()), (1,'fstenv'): (0, (fpu_c,fpu_s), (0,)), (1,'fnstenv'): (0, (fpu_c,fpu_s), (0,)), (0,'finit'): (0, (), (fpu_c,fpu_s)), (0,'frstor'): (0, (), (fpu_c,fpu_s)), (0,'fnclex'): (0, (), (fpu_s,)), (1,'fxsave'): (0, (fpu_s,), ()), (1,'fxrstor'): (0, (), (fpu_s,)), } try: key = (len(line.amoco.operands), line.opname) stack_pop, reg_r, reg_w = fpu_table[key] except KeyError: if line.opname.startswith('fcmov'): stack_pop, reg_r, reg_w = 0, (reg_flags,1), (fpu_s,env.st(0),) else: stack_pop, reg_r, reg_w = 0, (), () log.error("fpu_table: %r missing",key) if stack_pop == -1: # push on FPU stack r.update([env.st(_) for _ in range(7)]) w.update([env.st(1+_) for _ in range(7)]) elif stack_pop == 1: # pop on FPU stack # bug for faddp %st(7) and similar: because of stack_pop # the register %st(6) is written instead of %st(7) r.update([env.st(1+_) for _ in range(7)]) w.update([env.st(_) for _ in range(7)]) elif stack_pop == 2: # pop twice on FPU stack r.update([env.st(2+_) for _ in range(6)]) w.update([env.st(_) for _ in range(6)]) for reg in reg_r: if isinstance(reg, int): r.update(get_touched(line.amoco.operands[reg],False)) r.update(get_touched(line.amoco.operands[reg],True)) else: r.add(reg) for reg in reg_w: if isinstance(reg, int): w.update(get_touched(line.amoco.operands[reg],False)) r.update(get_touched(line.amoco.operands[reg],True)) else: w.add(reg) # No semantics for MMX/SSE operations in amoco if is_mmx(line, env): dst = line.amoco.operands[0] src = line.amoco.operands[1] w.update(get_touched(dst, False)) r.update(get_touched(dst, False)) # Not for all MMX operations r.update(get_touched(src, False)) r.update(get_touched(dst, True)) r.update(get_touched(src, True)) if line.opname.startswith('ucomi'): w.add(reg_flags) elif 0xF2 in line.prefix or (0xF3 in line.prefix and line.opname != 'ret'): # True rep/repz/repnz r.update(get_touched(env.ecx)) w.update(get_touched(env.ecx)) class InstructionRW(InstructionCFG): __slots__ = ('rw',) def _set_rw(self): m = mapper() self.amoco(m) r, w = get_rw(m) add_semantics_missing(self, r, w, env, get_touched) self.rw = r, w def reg_name(r): return str(r) reg_name = staticmethod(reg_name) class InstructionDEAD(InstructionRW): __slots__ = ('pic', 'stack', 'dead', 'immutable') from amoco.cas import expressions def evaluate_lines(instr, lines, in_str): # Run the emulation of the basic bloc machine = mapper() def print_machine(machine): return sorted(str(machine).split("\n")) for line in lines: # eip is the next instruction: basic bloc may have been merged, # but conditional jumps are not taken machine[env.eip] = env.cst(line.offset,cpu_addrsize) try: line.amoco(machine) except NotImplementedError: return (('Not implemented', line, print_machine(machine)), [None]) except NameError: return (('Cannot be emulated (name)', line, print_machine(machine)), [None]) except amoco.arch.core.InstructionError: return (('Cannot be emulated', line, print_machine(machine)), [None]) except TypeError: return (('Not callable', line, print_machine(machine)), [None]) if line.opname == 'call': # amoco emulation pushes eip+i.length # we prefer to push the label of the next basic bloc label = instr.symbols.find_symbol( section=line.section, address=line.offset+line.amoco.length) machine[env.mem(env.esp,cpu_addrsize)] = expressions.lab(label, size=cpu_addrsize) retval = machine[env.eip] msg, val = evaluate(retval, machine, instr.symbols.find_symbols, instr, in_str) if val is None: return ((str(retval.__class__), retval, print_machine(machine)), [None]) elif val == [None]: return ((msg, retval, print_machine(machine)), [None]) else: return (msg, val) # Interface for expressions class expr(object): def get_cst(e): NON_REGRESSION_FOUND if e is not None and e._is_cst: return int(e) get_cst = staticmethod(get_cst) def get_lab(e): if e is not None and e._is_lab: return e.ref get_lab = staticmethod(get_lab) def get_lab_imm(e): if e is not None and e._is_cst: return None, int(e) if e is not None and e._is_lab: return e.ref, 0 if e is not None and e._is_eqn and e.op.symbol == '+' \ and e.l._is_lab \ and e.r._is_cst: return e.l.ref, int(e.r) return None, None get_lab_imm = staticmethod(get_lab_imm) def get_reg(e): if e is not None and e._is_reg and not e._is_lab: return e.ref get_reg = staticmethod(get_reg) def get_mem(e): if e is None: return None if not e._is_mem: return None return e.a.base+e.a.disp get_mem = staticmethod(get_mem) def get_eqn(e): NON_REGRESSION_FOUND if e is not None and e._is_eqn: return True get_eqn = staticmethod(get_eqn) def get_tst(e): if e is not None and e._is_tst: return e.l, e.r get_tst = staticmethod(get_tst) def evaluate(address, machine, find, instr, in_str): # Generates a list of labels, each label being a possible value # for the expression 'address' log.debug("EVALUATE %s\n\t%s", address.__class__.__name__, address) address = remove_got(address, instr.symbols) v = expr.get_reg(address) if v is not None: return 'REG', [ None ] v = expr.get_lab(address) if v is not None: return 'ID', [ v ] v = expr.get_mem(address) if v is not None: # Lookup at some address return evaluate_mem(v, machine, find, instr, in_str) v = test_clang_switch_array(address) if v is not None: L1, L2 = v L1 = expr.get_lab(L1) if not hasattr(L1, 'lines'): # Switch table needs to be parsed later # Switch table already detected by pattern matching in compilers.py NON_REGRESSION_FOUND log.debug("Parse switch table later %r", L1) pic_base, ptr_size, tbl_size = L1.switch_table assert ptr_size == 4 assert L2 == "-%s"%pic_base return 'SWITCH', 'TABLE' msg = 'ARRAY' lines = [ _.value[0] for _ in L1.lines ] table = [] for s in lines: if not hasattr(s, 'name'): s = False elif not s.name.endswith(L2): msg = 'INCOHERENT' continue else: s = find(name = s.name[:-len(L2)])[0] if not s in table: table.append(s) if not hasattr(L1, 'size'): # Switch table not complete if not None in table: table.append(None) return msg, table v = expr.get_tst(address) if v is not None: msg_l, res_l = evaluate(v[0], machine, find, instr, in_str) msg_r, res_r = evaluate(v[1], machine, find, instr, in_str) if res_l is None or res_r is None: return None, None return "%s+%s"%(msg_l,msg_r), res_l+res_r log.debug("Need better analysis of %s:%s", address.__class__.__name__, address) return None, None def evaluate_mem(address, machine, find, instr, in_str): log.debug("EVALUATE_MEM %s\n\t%s", address.__class__.__name__, address) v = expr.get_reg(address) if v is not None: return 'MEM_REG', [ None ] table, offset = expr.get_lab_imm(address) if offset is not None: msg, val = deref_table(table, offset, instr, in_str) if val is not None: return msg, val v = expr.get_mem(address) if v is not None: return 'MEM_MEM', [ None ] return array_detection(address, machine, find, instr, in_str) def array_detection(input, machine, find, instr, in_str): log.debug("ARRAY_DETECT %s\n\t%s", input.__class__.__name__, input) dst_lst = [] # Is it an element of an array? # Find the multiplication, replace it by 'index_in_array' index_var = env.ext('index_in_array',size=cpu_addrsize) item_len = 0 if input.op.symbol == '+' and input.l._is_eqn: if input.l.op.symbol == '+' and input.l.l._is_eqn and \ input.l.l.op.symbol == '*' and input.l.l.r._is_cst: item_len = int(input.l.l.r) input.l.l = index_var elif input.l.op.symbol == '+' and input.l.r._is_eqn and \ input.l.r.op.symbol == '*' and input.l.r.r._is_cst: item_len = int(input.l.r.r) input.l.r = index_var elif input.l.op.symbol == '*' and input.l.r._is_cst: item_len = int(input.l.r) input.l = index_var elif input.l.op.symbol == '<<': item_len = 1 << int(input.l.r) input.l = index_var elif input.op.symbol == '+' and input.r._is_eqn: if input.r.op.symbol == '*' and input.r.r._is_cst: item_len = int(input.r.r) if input.r.l._is_ptr and input.r.l.disp == 0 and \ input.r.l.base._is_eqn and input.r.l.base.op.symbol == '+' and \ input.r.l.base.r._is_eqn and input.r.l.base.r.op.symbol == '*' \ and input.r.l.base.r.r._is_cst \ and input.r.l.base.l == input.r.l.base.r.l: item_len *= 1 + int(input.r.l.base.r.r) input.r = index_var elif input.r.op.symbol == '<<': NON_REGRESSION_FOUND item_len = 1 << int(input.r.r) input.r = index_var if item_len == 0: msg = 'MEM_EXP - NOT AN ARRAY' return msg, [None] log.debug(" ARRAY of %d-byte items", item_len) # Usually 4-byte items # Can be 8-byte items e.g. for ceval.o from python2.4.5 / gcc 4.6.3 # Can be 12-byte items e.g. for deflate.o from zlib 1.2.8 / gcc 4.6.3 invalid_indexes = 0 index_in_array = -item_len while invalid_indexes < 4: index_in_array += item_len m2 = mapper() m2[index_var] = env.cst(index_in_array, size=cpu_addrsize) address_in_array = input.eval(m2) log.debug(" x[%d] at %s:%s", index_in_array//item_len, address_in_array.__class__.__name__, address_in_array) msg, val = 'NOT FOUND', None table, offset = expr.get_lab_imm(address_in_array) if val is None and offset is not None: msg, val = deref_table(table, offset, instr, in_str) if val is None: mapper.assume_no_aliasing = True offset = machine.M(env.mem(address_in_array)) mapper.assume_no_aliasing = False offset = remove_got(offset, instr.symbols) v = expr.get_lab(offset) if v: msg, val = 'MEM', [ v ] table, offset = expr.get_lab_imm(expr.get_mem(offset)) if offset is not None: msg, val = deref_table(table, offset, instr, in_str) if val == 'TABLE': return msg, val if val in (None, [None]): log.debug(" ----> %s", msg) invalid_indexes += 1 continue for label in val: if label.name.endswith('@GOTOFF'): # to make this work also with executables, we will need to # change our API and get the offset value that will have to # be substracted; removing @GOTOFF is not enough! label = find(name = label.name[:-7])[0] log.debug(" => %s", label) if not label in dst_lst: dst_lst.append(label) if dst_lst == []: return 'MEM_EXP', [None] return 'ARRAY', dst_lst def deref_table(table, offset, instr, in_str): pool = instr.symbols log.debug("DEREF %s at %s", table, offset) if table is None: return deref_address(offset, pool, in_str) if getattr(table, 'section', None) in ['.got.plt', '.got', '.idata']: assert offset == 0 return 'GOT_PLT', [ table ] if not hasattr(table, 'lines'): # 'table' has not been parsed; will be later return 'MEM_TABLE %s not parsed (offset %d)' % (table, offset), 'TABLE' if offset < table.bytelen: # Offset in a table sz = 0 for line in table.lines: if sz == offset: break sz += line.bytelen else: line = None if getattr(line, 'type', None) == 'long' and \ hasattr(line.value[0], 'name'): label = line.value[0] if label.name.startswith('_GLOBAL_OFFSET_TABLE_+[.-'): label = label.reference return 'MEM_ID', [ label ] else: return 'MEM_TABLE %s[%d]=%s' % (table, offset, line), [ None ] if not hasattr(table, 'address'): # Non-regression: gp.o from pari-2.5.5 / gcc 4.6.3 NON_REGRESSION_FOUND return 'MEM_LAB_IMM %r offset=%s' % (table, offset), [ None ] return deref_address(table.address + offset, pool, in_str) import struct def deref_address(offset, pool, in_str): log.debug("DEREF_ADDRESS %#x", offset) if offset == 0: # Non-regression: cjpeg.o from libjpeg-6b / gcc 3.2.3 # relocated value NON_REGRESSION_FOUND return 'NULL', [ None ] # Read from file (mapped in memory) # Should not happen, the data sections should have been parsed and # labels should have been created # However, compilers sometimes generate (idx*4)+(label-4) rather than # ((idx-1)*4)+label, and therefore 'label' is hidden section = pool.get_sectionname(offset) if section in [".data"]: address = struct.unpack("I", in_str[offset:offset+4])[0] a_section = pool.get_sectionname(address) if a_section in [".text", ".plt"]: label_list = pool.find_symbols(address = address) if len(label_list): return 'MEM_VAL', label_list if section in [".got"]: label = pool.find_symbols(address = offset) if label == []: NON_REGRESSION_FOUND return 'MEM_LAB_IMM %r address=%s' % (table, offset), [ None ] if label[0].name.startswith('.rel.dyn.'): label = pool.find_symbol(name = label[0].name[9:]) else: label = label[0] NON_REGRESSION_FOUND return 'MEM_INT GOT', [ label ] if section in [".idata"]: NON_REGRESSION_FOUND label = pool.find_symbol(address = offset) if label.name.startswith('msvcrt.dll'): return 'MSVCRT', [ label ] return 'MEM_INT', [ label ] return 'NOT IN TABLE [%s:%#x]' % (section, offset), None def remove_got(address, pool): if '@GOT' in str(address): # When the expression contains @GOT or @GOTOFF, one should cancel # the PIC offset # This trick works only for relocatable objects :-( v = remove_pic_offset(address, pool) if v is not None: log.debug("REMOVE GOT => %s", v) return v return address def remove_pic_offset(e, pool): log.debug("DETECT PIC FROM %s:%s", e.__class__.__name__, e) if e._is_tst: label_l = remove_pic_offset(e.l, pool) label_r = remove_pic_offset(e.r, pool) if label_l is None or label_r is None: return None return env.tst(e.tst, label_l, label_r) # M32[M32[M32[PIC_OFFSET+toto@GOT]]+cte] # => M32[M32[toto]+cte] if e._is_mem \ and e.a.base._is_mem \ and e.a.base.a.disp == 0 \ and e.a.base.a.base._is_mem: label = remove_pic_offset(e.a.base.a.base, pool) if label is None: return None return env.mem(env.mem(label), disp=e.a.disp) # M32[M32[PIC_OFFSET+toto@GOT]+cte] # => M32[toto+cte] if e._is_mem and e.a.base._is_mem: label = remove_pic_offset(e.a.base, pool) if label is None: return None return env.mem(label, disp=e.a.disp) # M32[M32[PIC_OFFSET+toto@GOT]+formula] # => M32[toto+formula] if e._is_mem \ and e.a.base._is_eqn \ and e.a.base.op.symbol == '+' \ and e.a.base.l._is_mem: label = remove_pic_offset(e.a.base.l, pool) if label is None: return return env.mem(label+e.a.base.r, disp=e.a.disp) if e._is_mem and not hasattr(e.a.disp, '_is_lab'): log.debug("BASE %s; DISP %s; TODO", e.a.base, e.a.disp) return None # M32[PIC_OFFSET+toto@GOT] # => toto if e._is_mem \ and e.a.disp._is_lab \ and e.a.disp.ref.name.endswith('@GOT'): label_name = e.a.disp.ref.name[:-4] pic_data = e.a.base if not check_pic_data(pic_data): NON_REGRESSION_FOUND log.debug("PIC OFFSET [%s] LABEL %s", pic_data, label_name) return None return env.lab(pool.find_symbol(name = label_name), size=cpu_addrsize) # M32[PIC_OFFSET+toto@GOTOFF] # => M32[toto] if e._is_mem \ and e.a.disp._is_lab \ and e.a.disp.ref.name.endswith('@GOTOFF'): label = remove_pic_offset(e.a, pool) if label is None: return # Not sound: usually is a reference to somewhere in a data section # that may change at runtime return env.mem(label) # (M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET) if e._is_ptr \ and e.disp == 0: return remove_pic_offset(e.base, pool) # (PIC_OFFSET+toto@GOTOFF) # => toto if e._is_ptr \ and e.disp._is_lab \ and e.disp.ref.name.endswith('@GOTOFF'): label_name = e.disp.ref.name[:-7] pic_data = e.base if not check_pic_data(pic_data): log.debug("PIC OFFSET [%s] LABEL %s", pic_data, label_name) return None return env.lab(pool.find_symbol(name = label_name), size=cpu_addrsize) # (PIC_OFFSET+M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]) # (M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET) # (-M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET) # => M32[toto+INDEX_IN_TABLE] # @GOTOFF will be removed later from the deref value # to make this work also with executables, we will need to change # our API and return the offset that will have to be substracted if e._is_eqn and e.op.symbol == '+': base, index, pic_data, pic_data_dup = extract_base_index(e) if base is None: log.error("Unknown base %s", e) return None if pic_data != pic_data_dup: log.error("Inconsistent PIC %s != %s", pic_data, pic_data_dup) return None label_name = base.disp.ref.name[:-7] if not check_pic_data(pic_data): log.error("PIC OFFSET [%s] LABEL %s", pic_data, label_name) # Don't abort, for now, improvement of pic_tracking needed label = env.lab(pool.find_symbol(name = label_name), size=cpu_addrsize) return env.mem(index, disp=label) def extract_base_index(e): # M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET # e.l.a.base.l e.l.a.base.r e.l.a.disp + e.r if (e.l._is_mem and e.l.a.disp._is_lab and e.l.a.base._is_eqn and e.l.a.base.op.symbol == '+'): return e.l.a, e.l.a.base.l, e.l.a.base.r, e.r # PIC_OFFSET+M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF] # e.l + e.r.a.base.l e.r.a.base.r e.r.a.disp if (e.r._is_mem and e.r.a.disp._is_lab and e.r.a.base._is_eqn and e.r.a.base.op.symbol == '+'): return e.r.a, e.r.a.base.l, e.r.a.base.r, e.l # (-M32[(INDEX_IN_TABLE+PIC_OFFSET)+toto@GOTOFF]+PIC_OFFSET) if (e.l._is_eqn and e.l.op.symbol == '-' and e.l.l is None and e.l.r._is_mem and e.l.r.a.disp._is_lab and e.l.r.a.base._is_eqn and e.l.r.a.base.op.symbol == '+' ): return e.l.r.a, e.l.r.a.base.l, e.l.r.a.base.r, e.r return None, None, None, None def check_pic_data(pic): pic = str(pic) if pic == '(@_GLOBAL_OFFSET_TABLE_+M32(esp))': # gcc 4.x PIC # The backtracking went back to the start of the function, where # the PIC offset is computed as @_GLOBAL_OFFSET_TABLE_+M32(esp) # after a call to __i686.get_pc_thunk.?x return True if pic == '(@_GLOBAL_OFFSET_TABLE_+ebx)': # gcc 4.x PIC # The backtracking went after returning from __i686.get_pc_thunk.bx return True if pic == 'ebx': # gcc 4.x PIC # The backtracking went not far but ebx may contain the PIC offset # This is a risky hypothesis, yet it seems to work return True if pic == 'ecx': # gcc 4.x PIC # The backtracking went not far but ecx may contain the PIC offset # This is a risky hypothesis, yet it seems to work return True return False def test_clang_switch_array(address): # Expression of the form M32[L1-L2+r2+(r1*4)]+r2 # L1 is the label of the table # r1 is the index in the table (register, sometimes shifted) # r2 stores the address of label L2 (register, immediate, ...) if not address._is_eqn: return None if not address.op.symbol == '+': return None if address.l._is_mem and getattr(address.l.a.disp, '_is_eqn', False): mem_expr, r2 = address.l, address.r elif address.r._is_mem and getattr(address.r.a.disp, '_is_eqn', False): r2, mem_expr = address.l, address.r else: return None if mem_expr.a.base._is_eqn and mem_expr.a.base.op.symbol == '+' and \ mem_expr.a.base.r == r2: r1_4 = mem_expr.a.base.l elif mem_expr.a.base._is_eqn and mem_expr.a.base.op.symbol == '+' and \ mem_expr.a.base.l == r2: r1_4 = mem_expr.a.base.r else: return None if not r1_4._is_eqn or not r1_4.r._is_cst or r1_4.r != 4: return None if mem_expr.a.disp._is_eqn and mem_expr.a.disp.op.symbol == '+' and \ mem_expr.a.disp.r._is_lab and mem_expr.a.disp.l._is_eqn and \ mem_expr.a.disp.l.op.symbol == '-' and \ mem_expr.a.disp.l.l is None and mem_expr.a.disp.l.r._is_lab: L1 = mem_expr.a.disp.r L2 = '-%s' % mem_expr.a.disp.l.r.ref else: return None # Now that everything has been verified, we scan the array log.debug("CLANG SWITCH %s%s %s %s", L1, L2, r1_4, r2) return L1, L2
the-stack_0_15785
# coding: utf-8 import copy import numpy as np from flearn.common.distiller import DFDistiller, KDLoss from .strategy import ParentStrategy from .utils import convert_to_tensor class DF(ParentStrategy): """ Ensemble distillation for robust model fusion in federated learning [1] Lin T, Kong L, Stich S U, et al. Ensemble distillation for robust model fusion in federated learning[J]. arXiv preprint arXiv:2006.07242, 2020. """ def __init__(self, model_base, strategy): super().__init__(strategy) self.model_base = model_base def server_post_processing(self, ensemble_params_lst, ensemble_params, **kwargs): w_glob = convert_to_tensor(ensemble_params["w_glob"]) agg_weight_lst, w_local_lst = self.server_pre_processing(ensemble_params_lst) teacher_lst = [] for w_local in w_local_lst: self.model_base.load_state_dict(convert_to_tensor(w_local)) teacher_lst.append(copy.deepcopy(self.model_base)) self.model_base.load_state_dict(w_glob) student = copy.deepcopy(self.model_base) kd_loader, device = kwargs.pop("kd_loader"), kwargs.pop("device") temperature = kwargs.pop("T") distiller = DFDistiller( kd_loader, device, kd_loss=KDLoss(temperature), ) molecular = np.sum(agg_weight_lst) weight_lst = [w / molecular for w in agg_weight_lst] # agg_weight_lst:应该依照每个模型在验证集上的性能来进行分配 ensemble_params["w_glob"] = distiller.multi( teacher_lst, student, kwargs.pop("method"), weight_lst=weight_lst, **kwargs ) return ensemble_params def server(self, ensemble_params_lst, round_, **kwargs): """ kwargs: dict { "lr": 学习率, "T": 蒸馏超参,温度 "epoch": 蒸馏训练轮数 "method": 多个教师蒸馏一个学习的方法,avg_logits, avg_losses "kd_loader": 蒸馏数据集,仅需输入,无需标签 } """ ensemble_params = super().server(ensemble_params_lst, round_) return self.server_post_processing( ensemble_params_lst, ensemble_params, **kwargs )
the-stack_0_15787
import webloader from bs4 import BeautifulSoup as soup def get_company_credentials(url): html = webloader.load(url) return html_to_list(html) def html_to_list(html): page_soup = soup(html, "html.parser") table = page_soup.find("div", {"class": "govspeak"}).table.findAll("tr") table_list = [] for row in table: cells = row.findAll("td") table_row = [] for cell in cells: table_row.append(cell.contents[0]) table_list.append(table_row) return table_list[1:-1]
the-stack_0_15794
# # Copyright (c) 2006-2019, RT-Thread Development Team # # SPDX-License-Identifier: Apache-2.0 # # Change Logs: # Date Author Notes # 2019-03-21 Bernard the first version # 2019-04-15 armink fix project update error # import os import sys import glob from utils import * from utils import _make_path_relative from utils import xml_indent import xml.etree.ElementTree as etree from xml.etree.ElementTree import SubElement from building import * MODULE_VER_NUM = 5 source_pattern = ['*.c', '*.cpp', '*.cxx', '*.s', '*.S', '*.asm'] def OSPath(path): import platform if type(path) == type('str'): if platform.system() == 'Windows': return path.replace('/', '\\') else: return path.replace('\\', '/') else: if platform.system() == 'Windows': return [item.replace('/', '\\') for item in path] else: return [item.replace('\\', '/') for item in path] # collect the build source code path and parent path def CollectPaths(paths): all_paths = [] def ParentPaths(path): ret = os.path.dirname(path) if ret == path or ret == '': return [] return [ret] + ParentPaths(ret) for path in paths: # path = os.path.abspath(path) path = path.replace('\\', '/') all_paths = all_paths + [path] + ParentPaths(path) all_paths = list(set(all_paths)) return sorted(all_paths) ''' Collect all of files under paths ''' def CollectFiles(paths, pattern): files = [] for path in paths: if type(pattern) == type(''): files = files + glob.glob(path + '/' + pattern) else: for item in pattern: # print('--> %s' % (path + '/' + item)) files = files + glob.glob(path + '/' + item) return sorted(files) def CollectAllFilesinPath(path, pattern): files = [] for item in pattern: files += glob.glob(path + '/' + item) list = os.listdir(path) if len(list): for item in list: if item.startswith('.'): continue if item == 'bsp': continue if os.path.isdir(os.path.join(path, item)): files = files + CollectAllFilesinPath(os.path.join(path, item), pattern) return files ''' Exclude files from infiles ''' def ExcludeFiles(infiles, files): in_files = set([OSPath(file) for file in infiles]) exl_files = set([OSPath(file) for file in files]) exl_files = in_files - exl_files return exl_files # caluclate the exclude path for project def ExcludePaths(rootpath, paths): ret = [] files = os.listdir(OSPath(rootpath)) for file in files: if file.startswith('.'): continue fullname = os.path.join(OSPath(rootpath), file) if os.path.isdir(fullname): # print(fullname) if not fullname in paths: ret = ret + [fullname] else: ret = ret + ExcludePaths(fullname, paths) return ret rtt_path_prefix = '"${workspace_loc://${ProjName}//' def ConverToRttEclipsePathFormat(path): return rtt_path_prefix + path + '}"' def IsRttEclipsePathFormat(path): if path.startswith(rtt_path_prefix): return True else: return False # all libs added by scons should be ends with five whitespace as a flag rtt_lib_flag = 5 * " " def ConverToRttEclipseLibFormat(lib): return str(lib) + str(rtt_lib_flag) def IsRttEclipseLibFormat(path): if path.endswith(rtt_lib_flag): return True else: return False def IsCppProject(): return GetDepend('RT_USING_CPLUSPLUS') def HandleToolOption(tools, env, project, reset): is_cpp_prj = IsCppProject() BSP_ROOT = os.path.abspath(env['BSP_ROOT']) CPPDEFINES = project['CPPDEFINES'] paths = [ConverToRttEclipsePathFormat(RelativeProjectPath(env, os.path.normpath(i)).replace('\\', '/')) for i in project['CPPPATH']] compile_include_paths_options = [] compile_include_files_options = [] compile_defs_options = [] linker_scriptfile_option = None linker_script_option = None linker_nostart_option = None linker_libs_option = None linker_paths_option = None linker_newlib_nano_option = None for tool in tools: if tool.get('id').find('compile') != 1: options = tool.findall('option') # find all compile options for option in options: if option.get('id').find('compiler.include.paths') != -1 or option.get('id').find( 'compiler.option.includepaths') != -1: compile_include_paths_options += [option] elif option.get('id').find('compiler.include.files') != -1 or option.get('id').find( 'compiler.option.includefiles') != -1: compile_include_files_options += [option] elif option.get('id').find('compiler.defs') != -1 or option.get('id').find( 'compiler.option.definedsymbols') != -1: compile_defs_options += [option] if tool.get('id').find('linker') != -1: options = tool.findall('option') # find all linker options for option in options: # the project type and option type must equal if is_cpp_prj != (option.get('id').find('cpp.linker') != -1): continue if option.get('id').find('linker.scriptfile') != -1: linker_scriptfile_option = option elif option.get('id').find('linker.option.script') != -1: linker_script_option = option elif option.get('id').find('linker.nostart') != -1: linker_nostart_option = option elif option.get('id').find('linker.libs') != -1: linker_libs_option = option elif option.get('id').find('linker.paths') != -1 and env.has_key('LIBPATH'): linker_paths_option = option elif option.get('id').find('linker.usenewlibnano') != -1: linker_newlib_nano_option = option # change the inclue path for option in compile_include_paths_options: # find all of paths in this project include_paths = option.findall('listOptionValue') for item in include_paths: if reset is True or IsRttEclipsePathFormat(item.get('value')): # clean old configuration option.remove(item) # print('c.compiler.include.paths') paths = sorted(paths) for item in paths: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': item}) # change the inclue files (default) or definitions for option in compile_include_files_options: # add '_REENT_SMALL' to CPPDEFINES when --specs=nano.specs has select if linker_newlib_nano_option is not None and linker_newlib_nano_option.get( 'value') == 'true' and '_REENT_SMALL' not in CPPDEFINES: CPPDEFINES += ['_REENT_SMALL'] file_header = ''' #ifndef RTCONFIG_PREINC_H__ #define RTCONFIG_PREINC_H__ /* Automatically generated file; DO NOT EDIT. */ /* RT-Thread pre-include file */ ''' file_tail = '\n#endif /*RTCONFIG_PREINC_H__*/\n' rtt_pre_inc_item = '"${workspace_loc:/${ProjName}/rtconfig_preinc.h}"' # save the CPPDEFINES in to rtconfig_preinc.h with open('rtconfig_preinc.h', mode='w+') as f: f.write(file_header) for cppdef in CPPDEFINES: f.write("#define " + cppdef.replace('=', ' ') + '\n') f.write(file_tail) # change the c.compiler.include.files files = option.findall('listOptionValue') find_ok = False for item in files: if item.get('value') == rtt_pre_inc_item: find_ok = True break if find_ok is False: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': rtt_pre_inc_item}) if len(compile_include_files_options) == 0: for option in compile_defs_options: defs = option.findall('listOptionValue') project_defs = [] for item in defs: if reset is True: # clean all old configuration option.remove(item) else: project_defs += [item.get('value')] if len(project_defs) > 0: cproject_defs = set(CPPDEFINES) - set(project_defs) else: cproject_defs = CPPDEFINES # print('c.compiler.defs') cproject_defs = sorted(cproject_defs) for item in cproject_defs: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': item}) # update linker script config if linker_scriptfile_option is not None: option = linker_scriptfile_option linker_script = 'link.lds' items = env['LINKFLAGS'].split(' ') if '-T' in items: linker_script = items[items.index('-T') + 1] linker_script = ConverToRttEclipsePathFormat(linker_script) listOptionValue = option.find('listOptionValue') if listOptionValue != None: listOptionValue.set('value', linker_script) else: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': linker_script}) # scriptfile in stm32cubeIDE if linker_script_option is not None: option = linker_script_option items = env['LINKFLAGS'].split(' ') if '-T' in items: linker_script = ConverToRttEclipsePathFormat(items[items.index('-T') + 1]).strip('"') option.set('value', linker_script) # update nostartfiles config if linker_nostart_option is not None: option = linker_nostart_option if env['LINKFLAGS'].find('-nostartfiles') != -1: option.set('value', 'true') else: option.set('value', 'false') # update libs if linker_libs_option is not None: option = linker_libs_option # remove old libs for item in option.findall('listOptionValue'): if IsRttEclipseLibFormat(item.get("value")): option.remove(item) # add new libs if env.has_key('LIBS'): for lib in env['LIBS']: formatedLib = ConverToRttEclipseLibFormat(lib) SubElement(option, 'listOptionValue', { 'builtIn': 'false', 'value': formatedLib}) # update lib paths if linker_paths_option is not None: option = linker_paths_option # remove old lib paths for item in option.findall('listOptionValue'): if IsRttEclipsePathFormat(item.get('value')): # clean old configuration option.remove(item) # add new old lib paths for path in env['LIBPATH']: SubElement(option, 'listOptionValue', {'builtIn': 'false', 'value': ConverToRttEclipsePathFormat( RelativeProjectPath(env, path).replace('\\', '/'))}) return def UpdateProjectStructure(env, prj_name): bsp_root = env['BSP_ROOT'] rtt_root = env['RTT_ROOT'] project = etree.parse('.project') root = project.getroot() if rtt_root.startswith(bsp_root): linkedResources = root.find('linkedResources') if linkedResources == None: linkedResources = SubElement(root, 'linkedResources') links = linkedResources.findall('link') # delete all RT-Thread folder links for link in links: if link.find('name').text.startswith('rt-thread'): linkedResources.remove(link) if prj_name: name = root.find('name') if name == None: name = SubElement(root, 'name') name.text = prj_name out = open('.project', 'w') out.write('<?xml version="1.0" encoding="UTF-8"?>\n') xml_indent(root) out.write(etree.tostring(root, encoding='utf-8')) out.close() return def GenExcluding(env, project): rtt_root = os.path.abspath(env['RTT_ROOT']) bsp_root = os.path.abspath(env['BSP_ROOT']) coll_dirs = CollectPaths(project['DIRS']) all_paths_temp = [OSPath(path) for path in coll_dirs] all_paths = [] # add used path for path in all_paths_temp: if path.startswith(rtt_root) or path.startswith(bsp_root): all_paths.append(path) if bsp_root.startswith(rtt_root): # bsp folder is in the RT-Thread root folder, such as the RT-Thread source code on GitHub exclude_paths = ExcludePaths(rtt_root, all_paths) elif rtt_root.startswith(bsp_root): # RT-Thread root folder is in the bsp folder, such as project folder which generate by 'scons --dist' cmd check_path = [] exclude_paths = [] # analyze the primary folder which relative to BSP_ROOT and in all_paths for path in all_paths: if path.startswith(bsp_root): folders = RelativeProjectPath(env, path).split('\\') if folders[0] != '.' and '\\' + folders[0] not in check_path: check_path += ['\\' + folders[0]] # exclue the folder which has managed by scons for path in check_path: exclude_paths += ExcludePaths(bsp_root + path, all_paths) else: exclude_paths = ExcludePaths(rtt_root, all_paths) exclude_paths += ExcludePaths(bsp_root, all_paths) paths = exclude_paths exclude_paths = [] # remove the folder which not has source code by source_pattern for path in paths: # add bsp and libcpu folder and not collect source files (too more files) if path.endswith('rt-thread\\bsp') or path.endswith('rt-thread\\libcpu'): exclude_paths += [path] continue set = CollectAllFilesinPath(path, source_pattern) if len(set): exclude_paths += [path] exclude_paths = [RelativeProjectPath(env, path).replace('\\', '/') for path in exclude_paths] all_files = CollectFiles(all_paths, source_pattern) src_files = project['FILES'] exclude_files = ExcludeFiles(all_files, src_files) exclude_files = [RelativeProjectPath(env, file).replace('\\', '/') for file in exclude_files] env['ExPaths'] = exclude_paths env['ExFiles'] = exclude_files return exclude_paths + exclude_files def RelativeProjectPath(env, path): project_root = os.path.abspath(env['BSP_ROOT']) rtt_root = os.path.abspath(env['RTT_ROOT']) if path.startswith(project_root): return _make_path_relative(project_root, path) if path.startswith(rtt_root): return 'rt-thread/' + _make_path_relative(rtt_root, path) # TODO add others folder print('ERROR: the ' + path + ' not support') return path def HandleExcludingOption(entry, sourceEntries, excluding): old_excluding = [] if entry != None: old_excluding = entry.get('excluding').split('|') sourceEntries.remove(entry) value = '' for item in old_excluding: if item.startswith('//'): old_excluding.remove(item) else: if value == '': value = item else: value += '|' + item for item in excluding: # add special excluding path prefix for RT-Thread item = '//' + item if value == '': value = item else: value += '|' + item SubElement(sourceEntries, 'entry', {'excluding': value, 'flags': 'VALUE_WORKSPACE_PATH|RESOLVED', 'kind': 'sourcePath', 'name': ""}) def UpdateCproject(env, project, excluding, reset, prj_name): excluding = sorted(excluding) cproject = etree.parse('.cproject') root = cproject.getroot() cconfigurations = root.findall('storageModule/cconfiguration') for cconfiguration in cconfigurations: tools = cconfiguration.findall('storageModule/configuration/folderInfo/toolChain/tool') HandleToolOption(tools, env, project, reset) sourceEntries = cconfiguration.find('storageModule/configuration/sourceEntries') entry = sourceEntries.find('entry') HandleExcludingOption(entry, sourceEntries, excluding) # update refreshScope if prj_name: prj_name = '/' + prj_name configurations = root.findall('storageModule/configuration') for configuration in configurations: resource = configuration.find('resource') configuration.remove(resource) SubElement(configuration, 'resource', {'resourceType': "PROJECT", 'workspacePath': prj_name}) # write back to .cproject out = open('.cproject', 'w') out.write('<?xml version="1.0" encoding="UTF-8" standalone="no"?>\n') out.write('<?fileVersion 4.0.0?>') xml_indent(root) out.write(etree.tostring(root, encoding='utf-8')) out.close() def TargetEclipse(env, reset=False, prj_name=None): global source_pattern print('Update eclipse setting...') if not os.path.exists('.cproject'): print('no eclipse CDT project found!') return project = ProjectInfo(env) # update the project file structure info on '.project' file UpdateProjectStructure(env, prj_name) # generate the exclude paths and files excluding = GenExcluding(env, project) # update the project configuration on '.cproject' file UpdateCproject(env, project, excluding, reset, prj_name) print('done!') return
the-stack_0_15795
""" API operations allowing clients to determine datatype supported by Galaxy. """ from galaxy.web import _future_expose_api_anonymous_and_sessionless as expose_api_anonymous_and_sessionless from galaxy import exceptions from galaxy.web.base.controller import BaseAPIController from galaxy.util import asbool from galaxy.datatypes.data import Data import logging log = logging.getLogger( __name__ ) class DatatypesController( BaseAPIController ): @expose_api_anonymous_and_sessionless def index( self, trans, **kwd ): """ GET /api/datatypes Return an object containing upload datatypes. """ datatypes_registry = self._datatypes_registry extension_only = asbool( kwd.get( 'extension_only', True ) ) upload_only = asbool( kwd.get( 'upload_only', True ) ) try: if extension_only: if upload_only: return datatypes_registry.upload_file_formats else: return [ ext for ext in datatypes_registry.datatypes_by_extension ] else: rval = [] for elem in datatypes_registry.datatype_elems: if not asbool(elem.get('display_in_upload')) and upload_only: continue keys = ['extension', 'description', 'description_url'] dictionary = {} for key in keys: dictionary[key] = elem.get(key) extension = elem.get('extension') if extension in datatypes_registry.datatypes_by_extension: composite_files = datatypes_registry.datatypes_by_extension[ extension ].composite_files if composite_files: dictionary['composite_files'] = [_.dict() for _ in composite_files.itervalues()] rval.append(dictionary) return rval except Exception as exception: log.error( 'could not get datatypes: %s', str( exception ), exc_info=True ) if not isinstance( exception, exceptions.MessageException ): raise exceptions.InternalServerError( str( exception ) ) else: raise @expose_api_anonymous_and_sessionless def mapping( self, trans, **kwd ): ''' GET /api/datatypes/mapping Return a dictionary of class to class mappings. ''' try: ext_to_class_name = dict() classes = [] for k, v in self._datatypes_registry.datatypes_by_extension.iteritems(): c = v.__class__ ext_to_class_name[k] = c.__module__ + "." + c.__name__ classes.append( c ) class_to_classes = dict() def visit_bases( types, cls ): for base in cls.__bases__: if issubclass( base, Data ): types.add( base.__module__ + "." + base.__name__ ) visit_bases( types, base ) for c in classes: n = c.__module__ + "." + c.__name__ types = set( [ n ] ) visit_bases( types, c ) class_to_classes[ n ] = dict( ( t, True ) for t in types ) return dict( ext_to_class_name=ext_to_class_name, class_to_classes=class_to_classes ) except Exception as exception: log.error( 'could not get datatype mapping: %s', str( exception ), exc_info=True ) if not isinstance( exception, exceptions.MessageException ): raise exceptions.InternalServerError( str( exception ) ) else: raise @expose_api_anonymous_and_sessionless def sniffers( self, trans, **kwd ): ''' GET /api/datatypes/sniffers Return a list of sniffers. ''' try: rval = [] for sniffer_elem in self._datatypes_registry.sniffer_elems: datatype = sniffer_elem.get( 'type' ) if datatype is not None: rval.append( datatype ) return rval except Exception as exception: log.error( 'could not get datatypes: %s', str( exception ), exc_info=True ) if not isinstance( exception, exceptions.MessageException ): raise exceptions.InternalServerError( str( exception ) ) else: raise @expose_api_anonymous_and_sessionless def converters( self, trans, **kwd ): converters = [] for (source_type, targets) in self._datatypes_registry.datatype_converters.iteritems(): for target_type in targets: converters.append( { 'source': source_type, 'target': target_type, 'tool_id': targets[ target_type ].id, } ) return converters @expose_api_anonymous_and_sessionless def edam_formats( self, trans, **kwds ): return self._datatypes_registry.edam_formats @property def _datatypes_registry( self ): return self.app.datatypes_registry
the-stack_0_15797
"""Webroot plugin.""" import argparse import collections import json import logging from typing import DefaultDict from typing import Dict from typing import List from typing import Set from acme import challenges from certbot import crypto_util from certbot import errors from certbot import interfaces from certbot._internal import cli from certbot.achallenges import KeyAuthorizationAnnotatedChallenge as AnnotatedChallenge from certbot.compat import filesystem from certbot.compat import os from certbot.display import ops from certbot.display import util as display_util from certbot.plugins import common from certbot.plugins import util from certbot.util import safe_open logger = logging.getLogger(__name__) _WEB_CONFIG_CONTENT = """\ <?xml version="1.0" encoding="UTF-8" ?> <!--Generated by Certbot--> <configuration> <system.webServer> <staticContent> <mimeMap fileExtension="." mimeType="text/plain" /> </staticContent> </system.webServer> </configuration> """ # This list references the hashes of all versions of the web.config files that Certbot could # have generated during an HTTP-01 challenge. If you modify _WEB_CONFIG_CONTENT, you MUST add # the new hash in this list. _WEB_CONFIG_SHA256SUMS = ["20c5ca1bd58fa8ad5f07a2f1be8b7cbb707c20fcb607a8fc8db9393952846a97"] class Authenticator(common.Plugin, interfaces.Authenticator): """Webroot Authenticator.""" description = "Place files in webroot directory" MORE_INFO = """\ Authenticator plugin that performs http-01 challenge by saving necessary validation resources to appropriate paths on the file system. It expects that there is some other HTTP server configured to serve all files under specified web root ({0}).""" def more_info(self): # pylint: disable=missing-function-docstring return self.MORE_INFO.format(self.conf("path")) @classmethod def add_parser_arguments(cls, add): add("path", "-w", default=[], action=_WebrootPathAction, help="public_html / webroot path. This can be specified multiple " "times to handle different domains; each domain will have " "the webroot path that preceded it. For instance: `-w " "/var/www/example -d example.com -d www.example.com -w " "/var/www/thing -d thing.net -d m.thing.net` (default: Ask)") add("map", default={}, action=_WebrootMapAction, help="JSON dictionary mapping domains to webroot paths; this " "implies -d for each entry. You may need to escape this from " "your shell. E.g.: --webroot-map " '\'{"eg1.is,m.eg1.is":"/www/eg1/", "eg2.is":"/www/eg2"}\' ' "This option is merged with, but takes precedence over, -w / " "-d entries. At present, if you put webroot-map in a config " "file, it needs to be on a single line, like: webroot-map = " '{"example.com":"/var/www"}.') def auth_hint(self, failed_achalls): # pragma: no cover return ("The Certificate Authority failed to download the temporary challenge files " "created by Certbot. Ensure that the listed domains serve their content from " "the provided --webroot-path/-w and that files created there can be downloaded " "from the internet.") def get_chall_pref(self, domain): # pragma: no cover # pylint: disable=unused-argument,missing-function-docstring return [challenges.HTTP01] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.full_roots: Dict[str, str] = {} self.performed: DefaultDict[str, Set[AnnotatedChallenge]] = collections.defaultdict(set) # stack of dirs successfully created by this authenticator self._created_dirs: List[str] = [] def prepare(self): # pylint: disable=missing-function-docstring pass def perform(self, achalls): # pylint: disable=missing-function-docstring self._set_webroots(achalls) self._create_challenge_dirs() return [self._perform_single(achall) for achall in achalls] def _set_webroots(self, achalls): if self.conf("path"): webroot_path = self.conf("path")[-1] logger.info("Using the webroot path %s for all unmatched domains.", webroot_path) for achall in achalls: self.conf("map").setdefault(achall.domain, webroot_path) else: known_webroots = list(set(self.conf("map").values())) for achall in achalls: if achall.domain not in self.conf("map"): new_webroot = self._prompt_for_webroot(achall.domain, known_webroots) # Put the most recently input # webroot first for easy selection try: known_webroots.remove(new_webroot) except ValueError: pass known_webroots.insert(0, new_webroot) self.conf("map")[achall.domain] = new_webroot def _prompt_for_webroot(self, domain, known_webroots): webroot = None while webroot is None: if known_webroots: # Only show the menu if we have options for it webroot = self._prompt_with_webroot_list(domain, known_webroots) if webroot is None: webroot = self._prompt_for_new_webroot(domain) else: # Allow prompt to raise PluginError instead of looping forever webroot = self._prompt_for_new_webroot(domain, True) return webroot def _prompt_with_webroot_list(self, domain, known_webroots): path_flag = "--" + self.option_name("path") while True: code, index = display_util.menu( "Select the webroot for {0}:".format(domain), ["Enter a new webroot"] + known_webroots, cli_flag=path_flag, force_interactive=True) if code == display_util.CANCEL: raise errors.PluginError( "Every requested domain must have a " "webroot when using the webroot plugin.") return None if index == 0 else known_webroots[index - 1] # code == display_util.OK def _prompt_for_new_webroot(self, domain, allowraise=False): code, webroot = ops.validated_directory( _validate_webroot, "Input the webroot for {0}:".format(domain), force_interactive=True) if code == display_util.CANCEL: if not allowraise: return None raise errors.PluginError( "Every requested domain must have a " "webroot when using the webroot plugin.") return _validate_webroot(webroot) # code == display_util.OK def _create_challenge_dirs(self): path_map = self.conf("map") if not path_map: raise errors.PluginError( "Missing parts of webroot configuration; please set either " "--webroot-path and --domains, or --webroot-map. Run with " " --help webroot for examples.") for name, path in path_map.items(): self.full_roots[name] = os.path.join(path, os.path.normcase( challenges.HTTP01.URI_ROOT_PATH)) logger.debug("Creating root challenges validation dir at %s", self.full_roots[name]) # Change the permissions to be writable (GH #1389) # Umask is used instead of chmod to ensure the client can also # run as non-root (GH #1795) old_umask = filesystem.umask(0o022) try: # We ignore the last prefix in the next iteration, # as it does not correspond to a folder path ('/' or 'C:') for prefix in sorted(util.get_prefixes(self.full_roots[name])[:-1], key=len): if os.path.isdir(prefix): # Don't try to create directory if it already exists, as some filesystems # won't reliably raise EEXIST or EISDIR if directory exists. continue try: # Set owner as parent directory if possible, apply mode for Linux/Windows. # For Linux, this is coupled with the "umask" call above because # os.mkdir's "mode" parameter may not always work: # https://docs.python.org/3/library/os.html#os.mkdir filesystem.mkdir(prefix, 0o755) self._created_dirs.append(prefix) try: filesystem.copy_ownership_and_apply_mode( path, prefix, 0o755, copy_user=True, copy_group=True) except (OSError, AttributeError) as exception: logger.warning("Unable to change owner and uid of webroot directory") logger.debug("Error was: %s", exception) except OSError as exception: raise errors.PluginError( "Couldn't create root for {0} http-01 " "challenge responses: {1}".format(name, exception)) finally: filesystem.umask(old_umask) # On Windows, generate a local web.config file that allows IIS to serve expose # challenge files despite the fact they do not have a file extension. if not filesystem.POSIX_MODE: web_config_path = os.path.join(self.full_roots[name], "web.config") if os.path.exists(web_config_path): logger.info("A web.config file has not been created in " "%s because another one already exists.", self.full_roots[name]) continue logger.info("Creating a web.config file in %s to allow IIS " "to serve challenge files.", self.full_roots[name]) with safe_open(web_config_path, mode="w", chmod=0o644) as web_config: web_config.write(_WEB_CONFIG_CONTENT) def _get_validation_path(self, root_path, achall): return os.path.join(root_path, achall.chall.encode("token")) def _perform_single(self, achall): response, validation = achall.response_and_validation() root_path = self.full_roots[achall.domain] validation_path = self._get_validation_path(root_path, achall) logger.debug("Attempting to save validation to %s", validation_path) # Change permissions to be world-readable, owner-writable (GH #1795) old_umask = filesystem.umask(0o022) try: with safe_open(validation_path, mode="wb", chmod=0o644) as validation_file: validation_file.write(validation.encode()) finally: filesystem.umask(old_umask) self.performed[root_path].add(achall) return response def cleanup(self, achalls): # pylint: disable=missing-function-docstring for achall in achalls: root_path = self.full_roots.get(achall.domain, None) if root_path is not None: validation_path = self._get_validation_path(root_path, achall) logger.debug("Removing %s", validation_path) os.remove(validation_path) self.performed[root_path].remove(achall) if not filesystem.POSIX_MODE: web_config_path = os.path.join(root_path, "web.config") if os.path.exists(web_config_path): sha256sum = crypto_util.sha256sum(web_config_path) if sha256sum in _WEB_CONFIG_SHA256SUMS: logger.info("Cleaning web.config file generated by Certbot in %s.", root_path) os.remove(web_config_path) else: logger.info("Not cleaning up the web.config file in %s " "because it is not generated by Certbot.", root_path) not_removed: List[str] = [] while self._created_dirs: path = self._created_dirs.pop() try: os.rmdir(path) except OSError as exc: not_removed.insert(0, path) logger.info("Challenge directory %s was not empty, didn't remove", path) logger.debug("Error was: %s", exc) self._created_dirs = not_removed logger.debug("All challenges cleaned up") class _WebrootMapAction(argparse.Action): """Action class for parsing webroot_map.""" def __call__(self, parser, namespace, webroot_map, option_string=None): for domains, webroot_path in json.loads(webroot_map).items(): webroot_path = _validate_webroot(webroot_path) namespace.webroot_map.update( (d, webroot_path) for d in cli.add_domains(namespace, domains)) class _WebrootPathAction(argparse.Action): """Action class for parsing webroot_path.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._domain_before_webroot = False def __call__(self, parser, namespace, webroot_path, option_string=None): if self._domain_before_webroot: raise errors.PluginError( "If you specify multiple webroot paths, " "one of them must precede all domain flags") if namespace.webroot_path: # Apply previous webroot to all matched # domains before setting the new webroot path prev_webroot = namespace.webroot_path[-1] for domain in namespace.domains: namespace.webroot_map.setdefault(domain, prev_webroot) elif namespace.domains: self._domain_before_webroot = True namespace.webroot_path.append(_validate_webroot(webroot_path)) def _validate_webroot(webroot_path): """Validates and returns the absolute path of webroot_path. :param str webroot_path: path to the webroot directory :returns: absolute path of webroot_path :rtype: str """ if not os.path.isdir(webroot_path): raise errors.PluginError(webroot_path + " does not exist or is not a directory") return os.path.abspath(webroot_path)
the-stack_0_15801
log_level = 'INFO' load_from = None resume_from = None dist_params = dict(backend='nccl') workflow = [('train', 1)] checkpoint_config = dict(interval=50) evaluation = dict(interval=50, metric='mAP', key_indicator='AP') optimizer = dict( type='Adam', lr=0.0015, ) optimizer_config = dict(grad_clip=None) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=500, warmup_ratio=0.001, step=[200, 260]) total_epochs = 300 log_config = dict( interval=50, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook') ]) channel_cfg = dict( dataset_joints=17, dataset_channel=[ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], ], inference_channel=[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ]) data_cfg = dict( image_size=512, base_size=256, base_sigma=2, heatmap_size=[128], num_joints=channel_cfg['dataset_joints'], dataset_channel=channel_cfg['dataset_channel'], inference_channel=channel_cfg['inference_channel'], num_scales=1, scale_aware_sigma=False, ) # model settings model = dict( type='BottomUp', pretrained='mmcls://mobilenet_v2', backbone=dict(type='MobileNetV2', widen_factor=1., out_indices=(7, )), keypoint_head=dict( type='BottomUpSimpleHead', in_channels=1280, num_joints=17, tag_per_joint=True, with_ae_loss=[True]), train_cfg=dict( num_joints=channel_cfg['dataset_joints'], img_size=data_cfg['image_size']), test_cfg=dict( num_joints=channel_cfg['dataset_joints'], max_num_people=30, scale_factor=[1], with_heatmaps=[True], with_ae=[True], project2image=True, nms_kernel=5, nms_padding=2, tag_per_joint=True, detection_threshold=0.1, tag_threshold=1, use_detection_val=True, ignore_too_much=False, adjust=True, refine=True, flip_test=True), loss_pose=dict( type='MultiLossFactory', num_joints=17, num_stages=1, ae_loss_type='exp', with_ae_loss=[True], push_loss_factor=[0.001], pull_loss_factor=[0.001], with_heatmaps_loss=[True], heatmaps_loss_factor=[1.0], ), ) train_pipeline = [ dict(type='LoadImageFromFile'), dict( type='BottomUpRandomAffine', rot_factor=30, scale_factor=[0.75, 1.5], scale_type='short', trans_factor=40), dict(type='BottomUpRandomFlip', flip_prob=0.5), dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), dict( type='BottomUpGenerateTarget', sigma=2, max_num_people=30, ), dict( type='Collect', keys=['img', 'joints', 'targets', 'masks'], meta_keys=[]), ] val_pipeline = [ dict(type='LoadImageFromFile'), dict(type='BottomUpGetImgSize', test_scale_factor=[1]), dict( type='BottomUpResizeAlign', transforms=[ dict(type='ToTensor'), dict( type='NormalizeTensor', mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), dict( type='Collect', keys=['img'], meta_keys=[ 'image_file', 'aug_data', 'test_scale_factor', 'base_size', 'center', 'scale', 'flip_index' ]), ] test_pipeline = val_pipeline data_root = 'data/coco' data = dict( samples_per_gpu=24, workers_per_gpu=1, train=dict( type='BottomUpCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', img_prefix=f'{data_root}/train2017/', data_cfg=data_cfg, pipeline=train_pipeline), val=dict( type='BottomUpCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline), test=dict( type='BottomUpCocoDataset', ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', img_prefix=f'{data_root}/val2017/', data_cfg=data_cfg, pipeline=val_pipeline), )
the-stack_0_15803
#!/usr/bin/env python # coding: utf-8 # In[7]: #!/usr/bin/env python # coding: utf-8 # In[1]: """ This script will check for the zip codes format and whether it begins with a 68 for the City of Omaha """ import xml.etree.cElementTree as ET from collections import defaultdict import re import pprint osmfile = 'omaha_nebraska' zip_type_re = re.compile(r'\d{5}$') #5 digit zip code, no dashes def audit_ziptype(zip_types, zipcode): if zipcode[0:2]!= 68: zip_types[zipcode[0:2]].add(zipcode) def is_zipcode(elem): return (elem.attrib['k'] == "addr:postcode") def audit_zip(osmfile): osm_file = open (osmfile, "r") zip_types = defaultdict(set) for event, elem in ET.iterparse(osmfile, events=("start",)): if elem.tag == "node" or elem.tag == "way": for tag in elem.iter("tag"): if is_zipcode(tag): audit_ziptype(zip_types,tag.attrib['v']) osm_file.close() return zip_types zip_print = audit_zip(osmfile) def test(): pprint.pprint(dict(zip_print)) if __name__ == '__main__': test() def update_zipcode(zipcode): """ This function updates the zip codes by replacing the wrong zip codes with fixed ones''' """ if re.findall(r'(^\d{5})-\d{4}$', zipcode): valid_zipcode = re.findall(r'(^\d{5})-\d{4}$',zipcode)[0] return valid_zipcode else: return zipcode def test_zip(): for zips, ways in zip_print.items(): for name in ways: better_name = update_zipcode(name) print (name, "=>", better_name) if __name__ == '__main__': test_zip() # In[ ]:
the-stack_0_15806
import logging import examples.basic.main as basic import sim.docker as docker from sim.core import Environment from sim.faas import FunctionDefinition, FunctionSimulator, FunctionReplica, FunctionRequest from sim.faassim import Simulation logger = logging.getLogger(__name__) def main(): logging.basicConfig(level=logging.INFO) # prepare simulation with topology and benchmark from basic example sim = Simulation(basic.example_topology(), basic.ExampleBenchmark()) # override the SimulatorFactory factory sim.create_simulator_factory = CustomSimulatorFactory # run the simulation sim.run() class CustomSimulatorFactory: def __init__(self) -> None: super().__init__() def create(self, env: Environment, fn: FunctionDefinition) -> FunctionSimulator: return MyFunctionSimulator() class MyFunctionSimulator(FunctionSimulator): def deploy(self, env: Environment, replica: FunctionReplica): # simulate a docker pull command for deploying the function (also done by sim.faassim.DockerDeploySimMixin) yield from docker.pull(env, replica.function.image, replica.node.ether_node) def startup(self, env: Environment, replica: FunctionReplica): logger.info('[simtime=%.2f] starting up function replica for function %s', env.now, replica.function.name) # you could create a very fine-grained setup routines here yield env.timeout(10) # simulate docker startup def setup(self, env: Environment, replica: FunctionReplica): # no setup routine yield env.timeout(0) def invoke(self, env: Environment, replica: FunctionReplica, request: FunctionRequest): # you would probably either create one simulator per function, or use a generalized simulator, this is just # to demonstrate how the simulators are used to encapsulate simulator behavior. logger.info('[simtime=%.2f] invoking function %s on node %s', env.now, request, replica.node.name) if replica.function.name == 'python-pi': if replica.node.name.startswith('rpi3'): # those are nodes we created in basic.example_topology() yield env.timeout(20) # invoking this function takes 20 seconds on a raspberry pi else: yield env.timeout(2) # invoking this function takes 2 seconds on all other nodes in the cluster elif replica.function.name == 'resnet50-inference': yield env.timeout(0.5) # invoking this function takes 500 ms else: yield env.timeout(0) def teardown(self, env: Environment, replica: FunctionReplica): yield env.timeout(0) if __name__ == '__main__': main()
the-stack_0_15807
from .. utils import TranspileTestCase, BuiltinFunctionTestCase class BinTests(TranspileTestCase): def test_int_but_no_index(self): self.assertCodeExecution(""" class IntLike: def __init__(self, val): self.val = val def __int__(self): return self.val x = IntLike(5) print(bin(x)) """, run_in_function=False) class BuiltinBinFunctionTests(BuiltinFunctionTestCase, TranspileTestCase): functions = ["bin"] not_implemented = [ 'test_int', ]
the-stack_0_15808
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F from fairseq import utils from fairseq.criterions import LegacyFairseqCriterion, register_criterion from fairseq.data import encoders @register_criterion("wsc") class WSCCriterion(LegacyFairseqCriterion): def __init__(self, args, task): super().__init__(args, task) if self.args.save_predictions is not None: self.prediction_h = open(self.args.save_predictions, "w") else: self.prediction_h = None self.bpe = encoders.build_bpe(args) self.tokenizer = encoders.build_tokenizer(args) def __del__(self): if self.prediction_h is not None: self.prediction_h.close() @staticmethod def add_args(parser): """Add criterion-specific arguments to the parser.""" parser.add_argument("--wsc-margin-alpha", type=float, metavar="A", default=1.0) parser.add_argument("--wsc-margin-beta", type=float, metavar="B", default=0.0) parser.add_argument( "--wsc-cross-entropy", action="store_true", help="use cross entropy formulation instead of margin loss", ) parser.add_argument( "--save-predictions", metavar="FILE", help="file to save predictions to" ) def get_masked_input(self, tokens, mask): masked_tokens = tokens.clone() masked_tokens[mask] = self.task.mask return masked_tokens def get_lprobs(self, model, tokens, mask): logits, _ = model(src_tokens=self.get_masked_input(tokens, mask)) lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float) scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1) mask = mask.type_as(scores) scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1) return scores def get_loss(self, query_lprobs, cand_lprobs): if self.args.wsc_cross_entropy: return F.cross_entropy( torch.cat([query_lprobs, cand_lprobs]).unsqueeze(0), query_lprobs.new([0]).long(), ) else: return ( -query_lprobs + self.args.wsc_margin_alpha * (cand_lprobs - query_lprobs + self.args.wsc_margin_beta).clamp(min=0) ).sum() def forward(self, model, sample, reduce=True): # compute loss and accuracy loss, nloss = 0.0, 0 ncorrect, nqueries = 0, 0 for i, label in enumerate(sample["labels"]): query_lprobs = self.get_lprobs( model, sample["query_tokens"][i].unsqueeze(0), sample["query_masks"][i].unsqueeze(0), ) cand_lprobs = self.get_lprobs( model, sample["candidate_tokens"][i], sample["candidate_masks"][i], ) pred = (query_lprobs >= cand_lprobs).all().item() if label is not None: label = 1 if label else 0 ncorrect += 1 if pred == label else 0 nqueries += 1 if label: # only compute a loss for positive instances nloss += 1 loss += self.get_loss(query_lprobs, cand_lprobs) id = sample["id"][i].item() if self.prediction_h is not None: print("{}\t{}\t{}".format(id, pred, label), file=self.prediction_h) if nloss == 0: loss = torch.tensor(0.0, requires_grad=True) sample_size = nqueries if nqueries > 0 else 1 logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "ncorrect": ncorrect, "nqueries": nqueries, } return loss, sample_size, logging_output @staticmethod def aggregate_logging_outputs(logging_outputs): """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) nsentences = sum(log.get("nsentences", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) agg_output = { "loss": loss_sum / sample_size / math.log(2), "ntokens": ntokens, "nsentences": nsentences, "sample_size": sample_size, } ncorrect = sum(log.get("ncorrect", 0) for log in logging_outputs) nqueries = sum(log.get("nqueries", 0) for log in logging_outputs) if nqueries > 0: agg_output["accuracy"] = ncorrect / float(nqueries) return agg_output @register_criterion("winogrande") class WinograndeCriterion(WSCCriterion): def forward(self, model, sample, reduce=True): # compute loss and accuracy query_lprobs = self.get_lprobs( model, sample["query_tokens"], sample["query_masks"], ) cand_lprobs = self.get_lprobs( model, sample["candidate_tokens"], sample["candidate_masks"], ) pred = query_lprobs >= cand_lprobs loss = self.get_loss(query_lprobs, cand_lprobs) sample_size = sample["query_tokens"].size(0) ncorrect = pred.sum().item() logging_output = { "loss": utils.item(loss.data) if reduce else loss.data, "ntokens": sample["ntokens"], "nsentences": sample["nsentences"], "sample_size": sample_size, "ncorrect": ncorrect, "nqueries": sample_size, } return loss, sample_size, logging_output
the-stack_0_15810
# -*- coding: utf-8 -*- """ author: 左想 date: 2018-01-11 """ import cv2 import random import numpy as np from math import fabs, sin, cos, radians from PIL import Image, ImageDraw, ImageEnhance def img_rotation(file_path, output, degree, is_full): """ 对图片进行旋转,并另存为旋转后的图片; :param file_path: String 图片路径; :param output: String 输出旋转后的图片路径; :param degree: String 旋转角度; :param is_full: Bool 是否保留整张图片进行旋转。 True则在旋转时会将尺寸进行扩大以保留完整的图片; False则在旋转时保留原始图片的尺寸进行旋转; :return: """ im = cv2.imread(file_path, 1) height, width = im.shape[:2] matRotation = cv2.getRotationMatrix2D((width / 2, height / 2), degree, 1) if is_full: height_new = int(width * fabs(sin(radians(degree))) + height * fabs(cos(radians(degree)))) width_new = int(height * fabs(sin(radians(degree))) + width * fabs(cos(radians(degree)))) matRotation[0, 2] += (width_new - width) / 2 # 重点在这步,目前不懂为什么加这步 matRotation[1, 2] += (height_new - height) / 2 # 重点在这步 imgRotation = cv2.warpAffine(im, matRotation, (width_new, height_new), borderMode=cv2.BORDER_REPLICATE) else: imgRotation = cv2.warpAffine(im, matRotation, (width, height), borderMode=cv2.BORDER_REPLICATE) return imgRotation def randomColor(image): """ 对图像进行颜色抖动 :param image: PIL的图像image :return: 有颜色色差的图像image """ random_factor = np.random.randint(0, 21) / 10. # 随机因子 color_image = ImageEnhance.Color(image).enhance(random_factor) # 调整图像的饱和度 random_factor = np.random.randint(3, 15) / 10. # 随机因子 brightness_image = ImageEnhance.Brightness(color_image).enhance(random_factor) # 调整图像的亮度 random_factor = np.random.randint(10, 15) / 10. # 随机因1子 contrast_image = ImageEnhance.Contrast(brightness_image).enhance(random_factor) # 调整图像对比度 random_factor = np.random.randint(0, 21) / 10. # 随机因子 return ImageEnhance.Sharpness(contrast_image).enhance(random_factor) # 调整图像锐度 def randomGaussian(image, mean=0.5, sigma=0.3): """ 对图像进行高斯噪声处理 :param image: :return: """ def gaussianNoisy(im, mean=0.5, sigma=0.3): """ 对图像做高斯噪音处理 :param im: 单通道图像 :param mean: 偏移量 :param sigma: 标准差 :return: """ for _i in range(len(im)): im[_i] += random.gauss(mean, sigma) return im # 将图像转化成数组 img = np.asarray(image) img.flags.writeable = True # 将数组改为读写模式 width, height = img.shape[:2] img_r = gaussianNoisy(img[:, :, 0].flatten(), mean, sigma) img_g = gaussianNoisy(img[:, :, 1].flatten(), mean, sigma) img_b = gaussianNoisy(img[:, :, 2].flatten(), mean, sigma) img[:, :, 0] = img_r.reshape([width, height]) img[:, :, 1] = img_g.reshape([width, height]) img[:, :, 2] = img_b.reshape([width, height]) return Image.fromarray(np.uint8(img)) def translate_coord(left_top, length, width, theta, center=None): """ 根据旋转前矩形坐标以及旋转弧度来计算将矩形旋转弧度之后的顶点坐标 :param left_top: 左下角顶点坐标 :param length: 矩形长度 :param width: 矩形宽度 :param theta: 旋转弧度 :return: 返回四个顶点坐标 """ # 获取左下角顶点坐标 left_down = [left_top[0], left_top[1] + width] # 获取右上角顶点坐标 right_top = [left_top[0] + length, left_top[1]] # 获取右下角顶点坐标 right_down = [left_top[0] + length, left_top[1] + width] # 计算中心点坐标 if center is None: center = [(left_top[0] + right_down[0]) / 2, (left_top[1] + right_down[1]) / 2] # 计算四个顶点旋转后的坐标 right_down_rotation = calculate_rotation_coord(right_down, center, theta) right_top_rotation = calculate_rotation_coord(right_top, center, theta) left_down_rotation = calculate_rotation_coord(left_down, center, theta) left_top_rotation = calculate_rotation_coord(left_top, center, theta) return left_top_rotation, left_down_rotation, right_top_rotation, right_down_rotation def calculate_rotation_coord(point, center, theta): """ 计算一个点以另一个点为中心,旋转theta弧度后的坐标 :param point: 旋转前点的坐标 :param center: 旋转中心坐标 :param theta: 旋转弧度 :return: 返回旋转后点的坐标 """ # 计算旋转之后点的坐标 right_rotation_x = (point[0] - center[0]) * cos(theta) - \ (point[1] - center[1]) * sin(theta) + center[0] right_rotation_y = (point[0] - center[0]) * sin(theta) + \ (point[1] - center[1]) * cos(theta) + center[1] return [int(right_rotation_x), int(right_rotation_y)] def draw_box(img, img_save, left_top, left_down, right_top, right_down): """ 根据矩形的四个点的坐标,在图片中画框 :param img: 图片路径 :param img_save: 图片保存路径 :param left_top: 左上顶点坐标 :param left_down: 左下顶点坐标 :param right_top: 右上顶点坐标 :param right_down: 右下顶点坐标 :return: None """ # 打开图片 im = Image.open(img) draw = ImageDraw.Draw(im) # 分别画四条直线,即框出box的位置了 draw.line((left_top[0], left_top[1], left_down[0], left_down[1])) draw.line((left_top[0], left_top[1], right_top[0], right_top[1])) draw.line((right_top[0], right_top[1], right_down[0], right_down[1])) draw.line((left_down[0], left_down[1], right_down[0], right_down[1])) im.save(img_save) def get_color_box(img, height_im, width_im, move_pix=10): """ 给定一个box的长宽以及移动的像素值,从图片的左上角开始移动, 每次通过统计区域中像素颜色h的方差,找出图片h方差最小的区域也就是颜色相近的区域 :param img: 样本图片 :param height_im: 选取区域的长度 :param width_im: 选取区域的宽度 :param move_pix: 移动的像素值大小 :return: 返回图片颜色相近区域的起始位置,该区域颜色的反色rgb值 """ im = cv2.imread(img) # 将rgb值转化为hsv值 hsv_im = cv2.cvtColor(im, cv2.COLOR_BGR2HSV) # rgb矩阵 rgb_array = np.array(im) # hsv矩阵 hsv_array = np.array(hsv_im) height, width, chanel = hsv_array.shape # 计算box需要移动的次数 width_times = int((width - width_im) / move_pix + 1) height_times = int((height - height_im) / move_pix + 1) # 定义统计方差的list var_result = np.ndarray([height_times, width_times], dtype=np.float32) # 开始移动box for i in range(height_times): for j in range(width_times): # 计算box的起始位置 begin_height = i * move_pix end_height = begin_height + height_im + 1 begin_width = j * move_pix end_width = begin_width + width_im + 1 # 获取到box对应的hsv数组 hsv_box = hsv_array[begin_height:end_height, begin_width:end_width, :] # 计算box内的hsv中h的方差 box_color_count = statistic_color(hsv_box) var_result[i, j] = box_color_count # 找出方差最小的box所在的行和列 min_row, min_col = np.where(var_result == np.min(var_result)) # 随机从符合的位置中选取一个 rand_number = random.randint(0, len(min_row)-1) # 计算box对应的起始位置 height_location_begin = min_row[rand_number] * move_pix height_location_end = height_location_begin + height_im width_location_begin = min_col[rand_number] * move_pix width_location_end = width_location_begin + width_im # 获取到box对应的rgb数组 rgb_box = rgb_array[height_location_begin:height_location_end, width_location_begin:width_location_end, :] # 获取box的里的反色 diff_max_rgb = get_diff_color(rgb_box) return [[height_location_begin, height_location_end], [width_location_begin, width_location_end]], diff_max_rgb def statistic_color(color_array): """ 主要是获取box内的hsv值中h的方差 :param color_array: box对应的矩阵 :return: 返回box的hsv值中h的方差 """ h_value = color_array[:, :, 0] s_value = color_array[:, :, 1] variance = np.var(h_value) + np.var(s_value) return variance def get_diff_color(color_array): """ 主要是获取当前box的rgb值的均值,再求均值的反色 :param color_array: 当前box的rgb矩阵 :return: 当前box的反色的rgb值 """ r_mean = np.mean(color_array[:, :, 0]) g_mean = np.mean(color_array[:, :, 1]) b_mean = np.mean(color_array[:, :, 2]) return (int(255-r_mean), int(255-g_mean), int(255-b_mean)) def save_image_use_cv2(image, path): cv2.imwrite(path, image) def save_image_use_pil(image, path): image.save(path)
the-stack_0_15811
import numpy as np import pytest from docarray import DocumentArray from docarray.array.qdrant import DocumentArrayQdrant from docarray.array.sqlite import DocumentArraySqlite from docarray.array.annlite import DocumentArrayAnnlite, AnnliteConfig from docarray.array.storage.qdrant import QdrantConfig from docarray.array.storage.weaviate import WeaviateConfig from docarray.array.weaviate import DocumentArrayWeaviate from docarray.array.elastic import DocumentArrayElastic, ElasticConfig @pytest.mark.parametrize( 'cls', [ DocumentArray, DocumentArraySqlite, DocumentArrayAnnlite, DocumentArrayWeaviate, DocumentArrayQdrant, DocumentArrayElastic, ], ) @pytest.mark.parametrize( 'content_attr', ['texts', 'embeddings', 'tensors', 'blobs', 'contents'] ) def test_content_empty_getter_return_none(cls, content_attr, start_storage): if cls in [ DocumentArrayAnnlite, DocumentArrayWeaviate, DocumentArrayQdrant, DocumentArrayElastic, ]: da = cls(config={'n_dim': 3}) else: da = cls() assert getattr(da, content_attr) is None @pytest.mark.parametrize( 'cls', [ DocumentArray, DocumentArraySqlite, DocumentArrayAnnlite, DocumentArrayWeaviate, DocumentArrayQdrant, DocumentArrayElastic, ], ) @pytest.mark.parametrize( 'content_attr', [ ('texts', ''), ('embeddings', np.array([])), ('tensors', np.array([])), ('blobs', []), ('contents', []), ], ) def test_content_empty_setter(cls, content_attr, start_storage): if cls in [ DocumentArrayAnnlite, DocumentArrayWeaviate, DocumentArrayQdrant, DocumentArrayElastic, ]: da = cls(config={'n_dim': 3}) else: da = cls() setattr(da, content_attr[0], content_attr[1]) assert getattr(da, content_attr[0]) is None @pytest.mark.parametrize( 'cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), ], ) @pytest.mark.parametrize( 'content_attr', [ ('texts', ['s'] * 10), ('tensors', np.random.random([10, 2])), ('blobs', [b's'] * 10), ], ) def test_content_getter_setter(cls, content_attr, config, start_storage): if config: da = cls.empty(10, config=config) else: da = cls.empty(10) setattr(da, content_attr[0], content_attr[1]) np.testing.assert_equal(da.contents, content_attr[1]) da.contents = content_attr[1] np.testing.assert_equal(da.contents, content_attr[1]) np.testing.assert_equal(getattr(da, content_attr[0]), content_attr[1]) da.contents = None assert da.contents is None @pytest.mark.parametrize('da_len', [0, 1, 2]) @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=128)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=128)), (DocumentArrayQdrant, QdrantConfig(n_dim=128)), (DocumentArrayElastic, ElasticConfig(n_dim=128)), ], ) def test_content_empty(da_len, da_cls, config, start_storage): if config: da = da_cls.empty(da_len, config=config) else: da = da_cls.empty(da_len) assert not da.contents assert not da.tensors if da_len == 0: assert not da.texts assert not da.blobs else: assert da.texts == [''] * da_len assert da.blobs == [b''] * da_len da.texts = ['hello'] * da_len if da_len == 0: assert not da.contents else: assert da.contents == ['hello'] * da_len assert da.texts == ['hello'] * da_len assert not da.tensors assert da.blobs == [b''] * da_len @pytest.mark.parametrize('da_len', [0, 1, 2]) @pytest.mark.parametrize( 'da_cls,config', [ (DocumentArray, None), (DocumentArraySqlite, None), (DocumentArrayAnnlite, AnnliteConfig(n_dim=5)), (DocumentArrayWeaviate, WeaviateConfig(n_dim=5)), (DocumentArrayQdrant, QdrantConfig(n_dim=5)), (DocumentArrayElastic, ElasticConfig(n_dim=5)), ], ) def test_embeddings_setter(da_len, da_cls, config, start_storage): if config: da = da_cls.empty(da_len, config=config) else: da = da_cls.empty(da_len) da.embeddings = np.random.rand(da_len, 5) for doc in da: assert doc.embedding.shape == (5,)
the-stack_0_15813
# -*- coding: utf-8 -*- # # Copyright (C) 2004-2020 Edgewall Software # Copyright (C) 2004 Francois Harvey <[email protected]> # Copyright (C) 2005 Matthew Good <[email protected]> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at https://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at https://trac.edgewall.org/log/. # # Author: Francois Harvey <[email protected]> # Matthew Good <[email protected]> import os.path from trac.config import ConfigurationError, Option, ParsingError, \ PathOption, UnicodeConfigParser from trac.core import Component, TracError, implements from trac.perm import IPermissionPolicy from trac.util import pathjoin, to_list from trac.util.text import exception_to_unicode from trac.versioncontrol.api import RepositoryManager def parent_iter(path): while 1: yield path if path == '/': return path = path[:-1] yield path idx = path.rfind('/') path = path[:idx + 1] def parse(authz_file, modules): """Parse a Subversion authorization file. Return a dict of modules, each containing a dict of paths, each containing a dict mapping users to permissions. Only modules contained in `modules` are retained. """ parser = UnicodeConfigParser(ignorecase_option=False) parser.read(authz_file) groups = {} aliases = {} sections = {} for section in parser.sections(): if section == 'groups': for name, value in parser.items(section): groups.setdefault(name, set()).update(to_list(value)) elif section == 'aliases': for name, value in parser.items(section): aliases[name] = value.strip() else: for name, value in parser.items(section): parts = section.split(':', 1) module, path = parts[0] if len(parts) > 1 else '', parts[-1] if module in modules: sections.setdefault((module, path), []) \ .append((name, value)) def resolve(subject, done): if subject.startswith('@'): done.add(subject) for members in groups[subject[1:]] - done: for each in resolve(members, done): yield each elif subject.startswith('&'): yield aliases[subject[1:]] else: yield subject authz = {} for (module, path), items in sections.iteritems(): section = authz.setdefault(module, {}).setdefault(path, {}) for subject, perms in items: readable = 'r' in perms # Ordering isn't significant; any entry could grant permission section.update((user, readable) for user in resolve(subject, set()) if not section.get(user)) return authz class AuthzSourcePolicy(Component): """Permission policy for `source:` and `changeset:` resources using a Subversion authz file. `FILE_VIEW` and `BROWSER_VIEW` permissions are granted as specified in the authz file. `CHANGESET_VIEW` permission is granted for changesets where `FILE_VIEW` is granted on at least one modified file, as well as for empty changesets. """ implements(IPermissionPolicy) authz_file = PathOption('svn', 'authz_file', '', """The path to the Subversion [%(svnbook)s authorization (authz) file]. To enable authz permission checking, the `AuthzSourcePolicy` permission policy must be added to `[trac] permission_policies`. Non-absolute paths are relative to the Environment `conf` directory. """, doc_args={'svnbook': 'http://svnbook.red-bean.com/en/1.7/' 'svn.serverconfig.pathbasedauthz.html'}) authz_module_name = Option('svn', 'authz_module_name', '', """The module prefix used in the `authz_file` for the default repository. If left empty, the global section is used. """) _handled_perms = frozenset([(None, 'BROWSER_VIEW'), (None, 'CHANGESET_VIEW'), (None, 'FILE_VIEW'), (None, 'LOG_VIEW'), ('source', 'BROWSER_VIEW'), ('source', 'FILE_VIEW'), ('source', 'LOG_VIEW'), ('changeset', 'CHANGESET_VIEW')]) def __init__(self): self._mtime = 0 self._authz = {} self._users = set() # IPermissionPolicy methods def check_permission(self, action, username, resource, perm): realm = resource.realm if resource else None if (realm, action) in self._handled_perms: authz, users = self._get_authz_info() if authz is None: return False if username == 'anonymous': usernames = '$anonymous', '*' else: usernames = username, '$authenticated', '*' if resource is None: return True if users & set(usernames) else None rm = RepositoryManager(self.env) try: repos = rm.get_repository(resource.parent.id) except TracError: return True # Allow error to be displayed in the repo index if repos is None: return True modules = [resource.parent.id or self.authz_module_name] if modules[0]: modules.append('') def check_path_0(spath): sections = [authz.get(module, {}).get(spath) for module in modules] sections = [section for section in sections if section] denied = False for user in usernames: for section in sections: if user in section: if section[user]: return True denied = True # Don't check section without module name # because the section with module name defines # the user's permissions. break if denied: # All users has no readable permission. return False def check_path(path): path = '/' + pathjoin(repos.scope, path) if path != '/': path += '/' # Allow access to parent directories of allowed resources for spath in set(sum((list(authz.get(module, {})) for module in modules), [])): if spath.startswith(path): result = check_path_0(spath) if result is True: return True # Walk from resource up parent directories for spath in parent_iter(path): result = check_path_0(spath) if result is not None: return result if realm == 'source': return check_path(resource.id) elif realm == 'changeset': changes = list(repos.get_changeset(resource.id).get_changes()) if not changes or any(check_path(change[0]) for change in changes): return True def _get_authz_info(self): if not self.authz_file: self.log.error("The [svn] authz_file configuration option in " "trac.ini is empty or not defined") raise ConfigurationError() try: mtime = os.path.getmtime(self.authz_file) except OSError as e: self.log.error("Error accessing svn authz permission policy " "file: %s", exception_to_unicode(e)) raise ConfigurationError() if mtime != self._mtime: self._mtime = mtime rm = RepositoryManager(self.env) modules = set(repos.reponame for repos in rm.get_real_repositories()) if '' in modules and self.authz_module_name: modules.add(self.authz_module_name) modules.add('') self.log.info("Parsing authz file: %s", self.authz_file) try: self._authz = parse(self.authz_file, modules) except ParsingError as e: self.log.error("Error parsing svn authz permission policy " "file: %s", exception_to_unicode(e)) raise ConfigurationError() else: self._users = {user for paths in self._authz.itervalues() for path in paths.itervalues() for user, result in path.iteritems() if result} return self._authz, self._users
the-stack_0_15814
# -*- coding: utf-8 -*- """ pygments.lexers.sas ~~~~~~~~~~~~~~~~~~~ Lexer for SAS. :copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ import re from pygments.lexer import RegexLexer, include, words from pygments.token import Comment, Keyword, Name, Number, String, Text, \ Other, Generic __all__ = ['SASLexer'] class SASLexer(RegexLexer): """ For `SAS <http://www.sas.com/>`_ files. .. versionadded:: 2.2 """ # Syntax from syntax/sas.vim by James Kidd <[email protected]> name = 'SAS' aliases = ['sas'] filenames = ['*.SAS', '*.sas'] mimetypes = ['text/x-sas', 'text/sas', 'application/x-sas'] flags = re.IGNORECASE | re.MULTILINE builtins_macros = ( "bquote", "nrbquote", "cmpres", "qcmpres", "compstor", "datatyp", "display", "do", "else", "end", "eval", "global", "goto", "if", "index", "input", "keydef", "label", "left", "length", "let", "local", "lowcase", "macro", "mend", "nrquote", "nrstr", "put", "qleft", "qlowcase", "qscan", "qsubstr", "qsysfunc", "qtrim", "quote", "qupcase", "scan", "str", "substr", "superq", "syscall", "sysevalf", "sysexec", "sysfunc", "sysget", "syslput", "sysprod", "sysrc", "sysrput", "then", "to", "trim", "unquote", "until", "upcase", "verify", "while", "window" ) builtins_conditionals = ( "do", "if", "then", "else", "end", "until", "while" ) builtins_statements = ( "abort", "array", "attrib", "by", "call", "cards", "cards4", "catname", "continue", "datalines", "datalines4", "delete", "delim", "delimiter", "display", "dm", "drop", "endsas", "error", "file", "filename", "footnote", "format", "goto", "in", "infile", "informat", "input", "keep", "label", "leave", "length", "libname", "link", "list", "lostcard", "merge", "missing", "modify", "options", "output", "out", "page", "put", "redirect", "remove", "rename", "replace", "retain", "return", "select", "set", "skip", "startsas", "stop", "title", "update", "waitsas", "where", "window", "x", "systask" ) builtins_sql = ( "add", "and", "alter", "as", "cascade", "check", "create", "delete", "describe", "distinct", "drop", "foreign", "from", "group", "having", "index", "insert", "into", "in", "key", "like", "message", "modify", "msgtype", "not", "null", "on", "or", "order", "primary", "references", "reset", "restrict", "select", "set", "table", "unique", "update", "validate", "view", "where" ) builtins_functions = ( "abs", "addr", "airy", "arcos", "arsin", "atan", "attrc", "attrn", "band", "betainv", "blshift", "bnot", "bor", "brshift", "bxor", "byte", "cdf", "ceil", "cexist", "cinv", "close", "cnonct", "collate", "compbl", "compound", "compress", "cos", "cosh", "css", "curobs", "cv", "daccdb", "daccdbsl", "daccsl", "daccsyd", "dacctab", "dairy", "date", "datejul", "datepart", "datetime", "day", "dclose", "depdb", "depdbsl", "depsl", "depsyd", "deptab", "dequote", "dhms", "dif", "digamma", "dim", "dinfo", "dnum", "dopen", "doptname", "doptnum", "dread", "dropnote", "dsname", "erf", "erfc", "exist", "exp", "fappend", "fclose", "fcol", "fdelete", "fetch", "fetchobs", "fexist", "fget", "fileexist", "filename", "fileref", "finfo", "finv", "fipname", "fipnamel", "fipstate", "floor", "fnonct", "fnote", "fopen", "foptname", "foptnum", "fpoint", "fpos", "fput", "fread", "frewind", "frlen", "fsep", "fuzz", "fwrite", "gaminv", "gamma", "getoption", "getvarc", "getvarn", "hbound", "hms", "hosthelp", "hour", "ibessel", "index", "indexc", "indexw", "input", "inputc", "inputn", "int", "intck", "intnx", "intrr", "irr", "jbessel", "juldate", "kurtosis", "lag", "lbound", "left", "length", "lgamma", "libname", "libref", "log", "log10", "log2", "logpdf", "logpmf", "logsdf", "lowcase", "max", "mdy", "mean", "min", "minute", "mod", "month", "mopen", "mort", "n", "netpv", "nmiss", "normal", "note", "npv", "open", "ordinal", "pathname", "pdf", "peek", "peekc", "pmf", "point", "poisson", "poke", "probbeta", "probbnml", "probchi", "probf", "probgam", "probhypr", "probit", "probnegb", "probnorm", "probt", "put", "putc", "putn", "qtr", "quote", "ranbin", "rancau", "ranexp", "rangam", "range", "rank", "rannor", "ranpoi", "rantbl", "rantri", "ranuni", "repeat", "resolve", "reverse", "rewind", "right", "round", "saving", "scan", "sdf", "second", "sign", "sin", "sinh", "skewness", "soundex", "spedis", "sqrt", "std", "stderr", "stfips", "stname", "stnamel", "substr", "sum", "symget", "sysget", "sysmsg", "sysprod", "sysrc", "system", "tan", "tanh", "time", "timepart", "tinv", "tnonct", "today", "translate", "tranwrd", "trigamma", "trim", "trimn", "trunc", "uniform", "upcase", "uss", "var", "varfmt", "varinfmt", "varlabel", "varlen", "varname", "varnum", "varray", "varrayx", "vartype", "verify", "vformat", "vformatd", "vformatdx", "vformatn", "vformatnx", "vformatw", "vformatwx", "vformatx", "vinarray", "vinarrayx", "vinformat", "vinformatd", "vinformatdx", "vinformatn", "vinformatnx", "vinformatw", "vinformatwx", "vinformatx", "vlabel", "vlabelx", "vlength", "vlengthx", "vname", "vnamex", "vtype", "vtypex", "weekday", "year", "yyq", "zipfips", "zipname", "zipnamel", "zipstate" ) tokens = { 'root': [ include('comments'), include('proc-data'), include('cards-datalines'), include('logs'), include('general'), (r'.', Text), ], # SAS is multi-line regardless, but * is ended by ; 'comments': [ (r'^\s*\*.*?;', Comment), (r'/\*.*?\*/', Comment), (r'^\s*\*(.|\n)*?;', Comment.Multiline), (r'/[*](.|\n)*?[*]/', Comment.Multiline), ], # Special highlight for proc, data, quit, run 'proc-data': [ (r'(^|;)\s*(proc \w+|data|run|quit)[\s;]', Keyword.Reserved), ], # Special highlight cards and datalines 'cards-datalines': [ (r'^\s*(datalines|cards)\s*;\s*$', Keyword, 'data'), ], 'data': [ (r'(.|\n)*^\s*;\s*$', Other, '#pop'), ], # Special highlight for put NOTE|ERROR|WARNING (order matters) 'logs': [ (r'\n?^\s*%?put ', Keyword, 'log-messages'), ], 'log-messages': [ (r'NOTE(:|-).*', Generic, '#pop'), (r'WARNING(:|-).*', Generic.Emph, '#pop'), (r'ERROR(:|-).*', Generic.Error, '#pop'), include('general'), ], 'general': [ include('keywords'), include('vars-strings'), include('special'), include('numbers'), ], # Keywords, statements, functions, macros 'keywords': [ (words(builtins_statements, prefix = r'\b', suffix = r'\b'), Keyword), (words(builtins_sql, prefix = r'\b', suffix = r'\b'), Keyword), (words(builtins_conditionals, prefix = r'\b', suffix = r'\b'), Keyword), (words(builtins_macros, prefix = r'%', suffix = r'\b'), Name.Builtin), (words(builtins_functions, prefix = r'\b', suffix = r'\('), Name.Builtin), ], # Strings and user-defined variables and macros (order matters) 'vars-strings': [ (r'&[a-z_]\w{0,31}\.?', Name.Variable), (r'%[a-z_]\w{0,31}', Name.Function), (r'\'', String, 'string_squote'), (r'"', String, 'string_dquote'), ], 'string_squote': [ ('\'', String, '#pop'), (r'\\\\|\\"|\\\n', String.Escape), # AFAIK, macro variables are not evaluated in single quotes # (r'&', Name.Variable, 'validvar'), (r'[^$\'\\]+', String), (r'[$\'\\]', String), ], 'string_dquote': [ (r'"', String, '#pop'), (r'\\\\|\\"|\\\n', String.Escape), (r'&', Name.Variable, 'validvar'), (r'[^$&"\\]+', String), (r'[$"\\]', String), ], 'validvar': [ (r'[a-z_]\w{0,31}\.?', Name.Variable, '#pop'), ], # SAS numbers and special variables 'numbers': [ (r'\b[+-]?([0-9]+(\.[0-9]+)?|\.[0-9]+|\.)(E[+-]?[0-9]+)?i?\b', Number), ], 'special': [ (r'(null|missing|_all_|_automatic_|_character_|_n_|' r'_infile_|_name_|_null_|_numeric_|_user_|_webout_)', Keyword.Constant), ], # 'operators': [ # (r'(-|=|<=|>=|<|>|<>|&|!=|' # r'\||\*|\+|\^|/|!|~|~=)', Operator) # ], }
the-stack_0_15815
#!/usr/bin/env python """ """ # ============================================================================== # --General imports ------------------------------------------------------------ # ============================================================================== from time import sleep import math import numpy as np import sys import copy sys.path.append('./HiddenMarkovModel') from HiddenMarkovModel.HMM_MODEL import * # ============================================================================== # -- ROS imports --------------------------------------------------------------- # ============================================================================== import rospy import os sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) from perception.msg import Object from perception.msg import ObjectsList from perception.msg import WaypointsList from perception.msg import Waypoint from perception.msg import TrajectoriesList from perception.srv import DrivingPaths, DrivingPathsRequest, DrivingPathsResponse from prediction.msg import VehiclesCollisionEvent from prediction.msg import VehiclesCollisionEventList from prediction.msg import PedestrianCollisionEvent from prediction.msg import PedestrianCollisionEventList sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) # ============================================================================== # -- Implementation ------------------------------------------------------------ # ============================================================================== MAX_SEQ_LENGTH_MEMORY = 5 MAX_STATE_SEQ_LENGTH_MEMORY = 1 GLOBAL_DRAW = True state_i = 0 class VehicleState: def __init__(self, vehicle, angle): self.vehicle = [vehicle] self.angles = [angle] self.vehicle_id = vehicle.object_id self.trajectories = [] self.possible_trajectory_id = [] self.state = [] self.observations_seq = [] def v_pop(self, index=0): if len(self.vehicle) > MAX_SEQ_LENGTH_MEMORY: self.angles.pop(index) self.vehicle.pop(index) def s_pop(self, index=0): if len(self.state) > MAX_STATE_SEQ_LENGTH_MEMORY: self.state.pop(index) def ob_pop(self, index=0): if len(self.observations_seq) > MAX_STATE_SEQ_LENGTH_MEMORY: self.observations_seq.pop(index) class MotionPrediction: def __init__(self): self.vehicles_state_list = [] self.vehicles_id = [] self.trajectories_length = 40.0 self.HMM_MODEL = HMM_MODEL() self.vehicles_collision_events_info = [] self.pedestrians_collision_events_info = [] # --- ROS --- rospy.init_node('Prediction_node', anonymous=True) self.ego_vehicle = Object() self.vehicles_list = [] self.pedestrians_list = [] self.traffic_signs_loc = [] self.ego_trajectory = [] self.subscriber_ego_vehicle = rospy.Subscriber("ego_vehicle_msg", Object, self.callback_ego_vehicle, queue_size=1) self.subscriber_ego_trajectory = rospy.Subscriber("ego_trajectory_msg", WaypointsList, self.callback_ego_trajectory, queue_size=1) self.subscriber_vehicles_list = rospy.Subscriber('vehicles_list_msg', ObjectsList, self.callback_vehicles_list, queue_size=1) self.subscriber_pedestrians_list = rospy.Subscriber('pedestrians_list_msg', ObjectsList, self.callback_pedestrians_list, queue_size=1) self.subscriber_signs_location = rospy.Subscriber("signs_location_msg", WaypointsList, self.callback_signs_location, queue_size=1) self.pub_vehicles_collision_info = rospy.Publisher('vehicles_collision_info_msg', VehiclesCollisionEventList, queue_size=1) self.pub_pedestrians_collision_info = rospy.Publisher('pedestrians_collision_info_msg', PedestrianCollisionEventList, queue_size=1) # Draw trajectories if GLOBAL_DRAW: self.pub_prototype_trajectories_draw = rospy.Publisher('prototype_trajectories_draw_msg', TrajectoriesList, queue_size=1) self.pub_collision_points_draw = rospy.Publisher('collision_points_draw_msg', WaypointsList, queue_size=1) def track_vehicles_and_save_states(self, vehicles, angles): # For vehicles found for vehicle in vehicles: if vehicle.object_id in self.vehicles_id: index = self.vehicles_id.index(vehicle.object_id) veh_state = self.vehicles_state_list[index] veh_state.vehicle.append(vehicle) veh_state.angles.append(angles[vehicles.index(vehicle)]) veh_state.v_pop(0) else: self.vehicles_state_list.append(VehicleState(vehicle, angles[vehicles.index(vehicle)])) self.vehicles_id.append(vehicle.object_id) # Remove vehicles from list which don't exist any more if not vehicles: self.vehicles_state_list = [] self.vehicles_id = [] existed_vehicles_id = [veh.object_id for veh in vehicles] #print(existed_vehicles_id) if len(existed_vehicles_id) != 0: self.vehicles_state_list = [self.vehicles_state_list[i] for i in range(len(self.vehicles_state_list)) if self.vehicles_id[i] in existed_vehicles_id] self.vehicles_id = [v_id for v_id in self.vehicles_id if v_id in existed_vehicles_id] def get_objects_around_vehicle(self, obj_type="vehicle", min_radius=50.0): ego_vehicle = copy.deepcopy(self.ego_vehicle) if obj_type == "vehicle": to_angle = 120.0 - ego_vehicle.speed * 3.6 if ego_vehicle.speed * 3.6 < 30.0 else 90.0 else: to_angle = 80.0 - ego_vehicle.speed * 3.6 if ego_vehicle.speed * 3.6 < 30.0 else 40.0 from_angle = - to_angle t_stop = 3.0 radius = min_radius + ego_vehicle.speed * t_stop objects, angles = self.objects_in_angle_range_and_in_radius(obj_type, from_angle, to_angle, radius) return objects, angles def objects_in_angle_range_and_in_radius(self, object_type, from_angle=-90.0, to_angle=90.0, radius=20.0): """ Method to find all the objects of a type like vehicles, pedestrians,etc between two angles (from_angle -> to_angle) in relation to vehicle coordinate system :param ego_vehicle: The self driving vehicle :param object_type: The object type, vehicles, pedestrians, traffic signs etc. :param from_angle: Start angle in relation to vehicle coordinate system in degrees in the interval [-180, 180) :param to_angle: The final angle in relation to vehicle coordinate system in degrees in the interval [-180, 180) :param radius: The max radius in which the object need to be """ ego_vehicle = copy.deepcopy(self.ego_vehicle) if object_type == "vehicle": objects_list = copy.deepcopy(self.vehicles_list) elif object_type == "pedestrian": objects_list = copy.deepcopy(self.pedestrians_list) else: return [], [] if len(objects_list) == 0: return [], [] target_objects = [] angle_list = [] for an_object in objects_list: x = an_object.x - ego_vehicle.x y = an_object.y - ego_vehicle.y theta = math.degrees(math.atan2(y, x)) % 360.0 theta = theta - ego_vehicle.yaw theta = theta % 360.0 theta = theta - 360.0 if theta > 180.0 else theta rel_dist = math.hypot(an_object.y - ego_vehicle.y, an_object.x - ego_vehicle.x) if from_angle <= theta <= to_angle and rel_dist < radius: target_objects.append(an_object) # theta = theta + 360 if theta < 0 else theta angle_list.append(theta) return [object_i for object_i in target_objects] if len(target_objects) != 0 else [], angle_list def get_prototype_trajectories_and_vehicles(self): draw_points_flag = True percentage_renew = 0.5 vehicles, angles = self.get_objects_around_vehicle(obj_type="vehicle") self.track_vehicles_and_save_states(vehicles, angles) veh_trajectories = self.client_driving_paths(vehicles) if vehicles: for v_i, vehicle in enumerate(vehicles): index = self.vehicles_id.index(vehicle.object_id) if len(self.vehicles_state_list[index].trajectories) == 0: self.vehicles_state_list[index].trajectories = veh_trajectories[v_i] else: w_e = self.vehicles_state_list[index].trajectories[0][-1] w_b = self.vehicles_state_list[index].trajectories[0][0] dist = math.hypot(vehicle.x - w_e.x, vehicle.y - w_e.y) dist_reverse = math.hypot(vehicle.x - w_b.x, vehicle.y - w_b.y) if dist < percentage_renew*self.trajectories_length or \ dist_reverse > (percentage_renew/4)*self.trajectories_length or \ len(self.vehicles_state_list[index].trajectories) == 1: self.vehicles_state_list[index].trajectories = veh_trajectories[v_i] if GLOBAL_DRAW: self.publish_prototype_trajectories_draw() return [state.vehicle[-1] for state in self.vehicles_state_list], [state.trajectories for state in self.vehicles_state_list] def calculate_trajectories_probability(self): """ For each vehicle saved in data base we calculate the most possible trajectory from the prototypes trajectories to follow. For each vehicle track we take all the past instances of the vehicle and we calculate the minimum distance of each from each trajectory and sum them. Finally the trajectory with the lowest sum is chosen. The most possible trajectory and the position of the vehicle on it is saved in "possible_trajectory_id" """ e_threshold = 0.1 min_probability = 0.3 max_probability = 0.6 trajectories_list = [] probabilities = [] for track in self.vehicles_state_list: x_y = [[vehicle_inst.x, vehicle_inst.y] for vehicle_inst in track.vehicle] min_sums = [] index = [] yaw_cos = [] for trajectory in track.trajectories: dist_min_list = [] idx = 0 for i in range(len(x_y)): min_dist = float("inf") for w in trajectory: dist = math.hypot(w.x - x_y[i][0], w.y - x_y[i][1]) if min_dist > dist: min_dist = dist if i == len(x_y)-1: idx = trajectory.index(w) dist_min_list.append(min_dist) yaw_cos.append(sum([math.cos(math.radians(tr.yaw)) for tr in trajectory[idx:]])/len(trajectory[idx:])) index.append(idx) min_sums.append(sum(dist_min_list)) k1 = abs(math.cos(math.radians(track.vehicle[-1].yaw))) max_yaw = [1-abs(k1 - abs(c_yaw)) for c_yaw in yaw_cos] max_sums = [1-m_s/(max(min_sums)+0.0000001) for m_s in min_sums] max_value = [(max_sums[i]+max_yaw[i]**2) for i in range(len(max_sums))] probability = [m_v/(sum(max_value)+0.000001) for m_v in max_value] max_of_all = max(probability) track.possible_trajectory_id = [] for i in range(len(probability)): if abs(max_of_all-probability[i]) < e_threshold or \ probability[probability.index(max_of_all)] < min_probability or\ probability[i] > max_probability: track.possible_trajectory_id.append([i, index[i]]) if len(track.possible_trajectory_id) == 0: i = probability.index(max_of_all) track.possible_trajectory_id.append([i, index[i]]) trajectories = [] for i in range(len(track.trajectories)): pos_tr = [p_t[0] for p_t in track.possible_trajectory_id] if i in pos_tr: trajectories.append(track.trajectories[i][track.possible_trajectory_id[pos_tr.index(i)][1]:]) track.trajectories = trajectories probabilities.append(probability) trajectories_list.append(trajectories) return trajectories_list, probabilities def get_trajectories_with_stop_constraints(self): min_dist = 3.0 vehicles = [track.vehicle[-1] for track in self.vehicles_state_list] trajectories = [track.trajectories for track in self.vehicles_state_list] traffic_signs_loc = copy.deepcopy(self.traffic_signs_loc) traject_with_constr = [] for signs_loc in traffic_signs_loc: for v_t in trajectories: for trajectory in v_t: for t_loc in trajectory: dist = math.hypot(signs_loc.x - t_loc.x, signs_loc.y - t_loc.y) if dist < min_dist: vehicle = vehicles[trajectories.index(v_t)] v_dist = math.hypot(signs_loc.x - vehicle.x, signs_loc.y - vehicle.y) traject_with_constr.append([trajectories.index(v_t), v_t.index(trajectory), v_dist]) break return traject_with_constr def predict_vehicle_speed(self, traject_with_constr): ego_vehicle = copy.deepcopy(self.ego_vehicle) vehicles_speed = [] speed_probabilities = [] tick_time = 1.0 a_stop = 6.0 a_deceleration = 4.0 a_acceleration = 3.0 global state_i for v_i in range(len(self.vehicles_state_list)): vehicle = self.vehicles_state_list[v_i].vehicle[-1] traf_info_const = [const_info for const_info in traject_with_constr if v_i == const_info[0]] if len(traf_info_const) != 0: observation = self.HMM_MODEL.get_observation(vehicle, traf_info_const, ego_vehicle) #print(observation) self.vehicles_state_list[v_i].observations_seq.append(observation) self.vehicles_state_list[v_i].ob_pop(0) #print(self.vehicles_state_list[v_i].observations_seq) ln_prob, num_seq, curr_state = self.HMM_MODEL.predict_state(vehicle.speed, self.vehicles_state_list[v_i].observations_seq) probability = math.exp(ln_prob) states = [STATE_VECTOR[i] for i in num_seq] #print(states) next_state = states[-1] state_i = OBSERVATION_VECTOR.index(observation) else: probability = 1 next_state = STATE_VECTOR[2] # Steady state curr_state = next_state if next_state == STATE_VECTOR[2]: # Steady state predicted_speed = vehicle.speed elif next_state == STATE_VECTOR[0]: # Stop predicted_speed = vehicle.speed - tick_time*a_stop predicted_speed = 0.0 if predicted_speed < 0.0 else predicted_speed elif next_state == STATE_VECTOR[3]: # Accelerate predicted_speed = vehicle.speed + tick_time * a_acceleration*probability else: # Deceleration predicted_speed = vehicle.speed - tick_time * a_deceleration*probability predicted_speed = 0.0 if predicted_speed < 0.0 else predicted_speed speed_probabilities.append(probability) vehicles_speed.append(predicted_speed) #print(STATE_VECTOR.index(next_state), state_i, round(predicted_speed, 2), round(vehicle.speed, 2), round(probability, 2), STATE_VECTOR.index(curr_state)) return vehicles_speed, speed_probabilities def predict_vehicles_collision(self): ego_vehicle = copy.deepcopy(self.ego_vehicle) draw_points_flag = True ego_vehicle_trajectory = copy.deepcopy(self.ego_trajectory) if len(ego_vehicle_trajectory) == 0: return True vehicles, all_vehicles_paths = self.get_prototype_trajectories_and_vehicles() possible_trajectories, trajectories_probabilities = self.calculate_trajectories_probability() traject_with_constr = self.get_trajectories_with_stop_constraints() predicted_vehicles_speed, speed_probabilities = self.predict_vehicle_speed(traject_with_constr) # angles = [angles[i] for i in range(len(vehicles)) if vehicles[i] in c_vehicles] min_collision_dist = 2.0 t = [0.0] ego_vehicle_speed = ego_vehicle.speed + 0.00000001 dist = 0.0 for i_d in range(len(ego_vehicle_trajectory)-1): dist += math.hypot(ego_vehicle_trajectory[i_d + 1].y - ego_vehicle_trajectory[i_d].y, ego_vehicle_trajectory[i_d + 1].x - ego_vehicle_trajectory[i_d].x) t.append(dist/ego_vehicle_speed if ego_vehicle_speed > 0.0 else 100000.0) t_v = [] for trajectories in possible_trajectories: t_tr = [] other_vehicles_speed = predicted_vehicles_speed[possible_trajectories.index(trajectories)] + 0.001 for trajectory in trajectories: t_t = [0.0] dist = 0.0 for i_d in range(len(trajectory) - 1): dist += math.hypot(trajectory[i_d + 1].y - trajectory[i_d].y, trajectory[i_d + 1].x - trajectory[i_d].x) t_t.append(dist / other_vehicles_speed if other_vehicles_speed > 0.0 else 100000.0) t_tr.append(t_t) t_v.append(t_tr) collision_vehicles = [] for t_tr in t_v: # t_windows = min_collision_dist/vehicles[t_v.index(t_tr)].speed + 0.001 for t_t in t_tr: break_flag = False for time_i in t_t: bigger_than = False for time_j in t: if time_j >= time_i: bigger_than = True w1 = possible_trajectories[t_v.index(t_tr)][t_tr.index(t_t)][t_t.index(time_i)] w2 = ego_vehicle_trajectory[t.index(time_j)] dist = math.hypot(w2.y - w1.y, w2.x - w1.x) if dist < min_collision_dist: break_flag = True collision_time = time_i collision_vehicles.append([t_v.index(t_tr), t_tr.index(t_t), collision_time, w1]) break if not bigger_than and time_i != 0.0: for time_j in t: w1 = possible_trajectories[t_v.index(t_tr)][t_tr.index(t_t)][t_t.index(time_i)] w2 = ego_vehicle_trajectory[t.index(time_j)] dist = math.hypot(w2.y - w1.y, w2.x - w1.x) if dist < min_collision_dist: break_flag = True collision_time = time_i if math.hypot(w2.y - ego_vehicle_trajectory[0].y, w2.x - ego_vehicle_trajectory[0].x) > \ math.hypot(w2.y - possible_trajectories[t_v.index(t_tr)][t_tr.index(t_t)][0].y, w2.x - possible_trajectories[t_v.index(t_tr)][t_tr.index(t_t)][0].x): collision_time = time_j collision_vehicles.append([t_v.index(t_tr), t_tr.index(t_t), collision_time, w1]) break if break_flag: break collision_events_info = [] for collision in collision_vehicles: vehicle = self.vehicles_state_list[collision[0]].vehicle[-1] trajectory_probability = trajectories_probabilities[collision[0]][collision[1]] speed_probability = speed_probabilities[collision[0]] collision_time = collision[2] collision_point = collision[3] predict_probability = trajectory_probability*speed_probability collision_events_info.append([vehicle, collision_point, collision_time, predict_probability]) self.vehicles_collision_events_info = collision_events_info self.publish_vehicles_collision_events() if GLOBAL_DRAW and len(vehicles) != 0 and len(collision_vehicles) != 0: self.publish_collision_points_draw([collision[-1] for collision in collision_vehicles]) def predict_pedestrians_collision(self): ego_vehicle = copy.deepcopy(self.ego_vehicle) radius_sum = 2.0 pedestrians, angles = self.get_objects_around_vehicle(obj_type="pedestrian", min_radius=12) t_col = [] dist_col = [] for pedestrian in pedestrians: t = 100000.0 min_dist = 10000.0 relative_speed_x = pedestrian.vel_x - ego_vehicle.vel_x - math.cos(math.radians(ego_vehicle.yaw))*0.1 relative_speed_y = pedestrian.vel_y - ego_vehicle.vel_y - math.sin(math.radians(ego_vehicle.yaw))*0.1 relative_distance_x = pedestrian.x - ego_vehicle.x relative_distance_y = pedestrian.y - ego_vehicle.y a = relative_speed_x**2 + relative_speed_y**2 + 0.000001 b = 2*(relative_speed_x*relative_distance_x + relative_speed_y*relative_distance_y) c = relative_distance_x**2 + relative_distance_y**2 - radius_sum**2 discriminant = b**2 - 4*a*c if discriminant > 0.0: # Collision happens t0 = (-b - math.sqrt(discriminant)) / (2.0 * a) t1 = (-b + math.sqrt(discriminant)) / (2.0 * a) t = min([t0, t1]) if min([t0, t1]) >= 0.0 else max([t0, t1]) min_dist = 0.0 else: t = -b/(2*a) min_dist = a * (t ** 2) + t * b + c t, min_dist = (100000.0, 10000.0) if t < 0.0 else (t, min_dist) # No collision if t < 0 t_col.append(t) dist_col.append(min_dist) if t_col: collision_event = [pedestrians[dist_col.index(min(dist_col))], angles[dist_col.index(min(dist_col))], t_col[dist_col.index(min(dist_col))], min(dist_col)] else: collision_event = [] self.pedestrians_collision_events_info = [collision_event] self.publish_pedestrians_collision_events() if GLOBAL_DRAW and len(collision_event) != 0 and collision_event[-1] < 2.0: pedestrian_object = collision_event[0] dist_ped = math.hypot(pedestrian_object.x-ego_vehicle.x, pedestrian_object.y-ego_vehicle.y) angle = math.radians(collision_event[1]) dist_ped = dist_ped*math.cos(angle) waypoint = Waypoint() theta = math.radians(ego_vehicle.yaw) waypoint.x = ego_vehicle.x + dist_ped * math.cos(theta) waypoint.y = ego_vehicle.y + dist_ped * math.sin(theta) self.publish_collision_points_draw([waypoint]) # -------- ROS functions --------- def callback_ego_vehicle(self, ros_data): self.ego_vehicle = ros_data def callback_vehicles_list(self, ros_data): self.vehicles_list = ros_data.objects_list def callback_pedestrians_list(self, ros_data): self.pedestrians_list = ros_data.objects_list def callback_signs_location(self, ros_data): self.traffic_signs_loc = ros_data.waypoints_list def callback_ego_trajectory(self, ros_data): self.ego_trajectory = ros_data.waypoints_list def client_driving_paths(self, vehicles): rospy.wait_for_service('driving_paths_srv') rospy.wait_for_service('driving_paths_srv') x_list = [vehicle.x for vehicle in vehicles] y_list = [vehicle.y for vehicle in vehicles] try: driving_paths = rospy.ServiceProxy('driving_paths_srv', DrivingPaths) resp1 = driving_paths(x_list, y_list, self.trajectories_length) veh_trajectories = [] for vehicle in resp1.driving_paths: trajectories = [trajectory.waypoints_list for trajectory in vehicle.trajectories_list] veh_trajectories.append(trajectories) #rospy.loginfo(veh_trajectories) return veh_trajectories except rospy.ServiceException as e: print("Service call failed: %s" % e) def publish_vehicles_collision_events(self): pub = self.pub_vehicles_collision_info collision_event_list = [] for collision_event in self.vehicles_collision_events_info: ros_vehicle_collision_event = VehiclesCollisionEvent() ros_vehicle_collision_event.object = collision_event[0] ros_vehicle_collision_event.collision_point = collision_event[1] ros_vehicle_collision_event.collision_time = collision_event[2] ros_vehicle_collision_event.prediction_probability = collision_event[3] collision_event_list.append(ros_vehicle_collision_event) ros_collision_event_list = VehiclesCollisionEventList() ros_collision_event_list.collision_event_list = collision_event_list #rospy.loginfo(ros_collision_event_list) pub.publish(ros_collision_event_list) def publish_pedestrians_collision_events(self): pub = self.pub_pedestrians_collision_info collision_event_list = [] if self.pedestrians_collision_events_info[0]: for collision_event in self.pedestrians_collision_events_info: ros_collision_event = PedestrianCollisionEvent() ros_collision_event.object = collision_event[0] ros_collision_event.angle = collision_event[1] ros_collision_event.collision_time = collision_event[2] ros_collision_event.collision_distance = collision_event[3] collision_event_list.append(ros_collision_event) ros_collision_event_list = PedestrianCollisionEventList() ros_collision_event_list.collision_event_list = collision_event_list # rospy.loginfo(ros_collision_event) pub.publish(ros_collision_event_list) def publish_prototype_trajectories_draw(self): pub = self.pub_prototype_trajectories_draw trajectories_list = [] for prototype_trajectories in [veh.trajectories for veh in self.vehicles_state_list]: for trajectory in prototype_trajectories: ros_trajectory = WaypointsList() ros_trajectory.waypoints_list = trajectory trajectories_list.append(ros_trajectory) prototype_trajectories = TrajectoriesList() prototype_trajectories.trajectories_list = trajectories_list #rospy.loginfo(prototype_trajectories) pub.publish(prototype_trajectories) def publish_collision_points_draw(self, collision_points): pub = self.pub_collision_points_draw ros_points_list = WaypointsList() ros_points_list.waypoints_list = collision_points #rospy.loginfo(prototype_trajectories) pub.publish(ros_points_list) def main(): motion_prediction = MotionPrediction() try: while not rospy.is_shutdown(): motion_prediction.predict_vehicles_collision() motion_prediction.predict_pedestrians_collision() except rospy.ROSInterruptException: print("Local path planner node failed") pass if __name__ == '__main__': main()
the-stack_0_15816
"""Data types for agent-based learning.""" import collections import enum import akro import numpy as np from garage.np import concat_tensor_dict_list, slice_nested_dict # pylint: disable=too-many-lines class EpisodeBatch( collections.namedtuple('EpisodeBatch', [ 'env_spec', 'observations', 'last_observations', 'actions', 'rewards', 'env_infos', 'agent_infos', 'step_types', 'lengths', ])): # pylint: disable=missing-return-doc, missing-return-type-doc, missing-param-doc, missing-type-doc # noqa: E501 r"""A tuple representing a batch of whole episodes. Data type for on-policy algorithms. A :class:`~EpisodeBatch` represents a batch of whole episodes, produced when one or more agents interacts with one or more environments. +-----------------------+-------------------------------------------------+ | Symbol | Description | +=======================+=================================================+ | :math:`N` | Episode batch dimension | +-----------------------+-------------------------------------------------+ | :math:`[T]` | Variable-length time dimension of each | | | episode | +-----------------------+-------------------------------------------------+ | :math:`S^*` | Single-step shape of a time-series tensor | +-----------------------+-------------------------------------------------+ | :math:`N \bullet [T]` | A dimension computed by flattening a | | | variable-length time dimension :math:`[T]` into | | | a single batch dimension with length | | | :math:`sum_{i \in N} [T]_i` | +-----------------------+-------------------------------------------------+ Attributes: env_spec (EnvSpec): Specification for the environment from which this data was sampled. observations (numpy.ndarray): A numpy array of shape :math:`(N \bullet [T], O^*)` containing the (possibly multi-dimensional) observations for all time steps in this batch. These must conform to :obj:`EnvStep.observation_space`. last_observations (numpy.ndarray): A numpy array of shape :math:`(N, O^*)` containing the last observation of each episode. This is necessary since there are one more observations than actions every episode. actions (numpy.ndarray): A numpy array of shape :math:`(N \bullet [T], A^*)` containing the (possibly multi-dimensional) actions for all time steps in this batch. These must conform to :obj:`EnvStep.action_space`. rewards (numpy.ndarray): A numpy array of shape :math:`(N \bullet [T])` containing the rewards for all time steps in this batch. env_infos (dict): A dict of numpy arrays arbitrary environment state information. Each value of this dict should be a numpy array of shape :math:`(N \bullet [T])` or :math:`(N \bullet [T], S^*)`. agent_infos (numpy.ndarray): A dict of numpy arrays arbitrary agent state information. Each value of this dict should be a numpy array of shape :math:`(N \bullet [T])` or :math:`(N \bullet [T], S^*)`. For example, this may contain the hidden states from an RNN policy. step_types (numpy.ndarray): A numpy array of `StepType with shape :math:`(N,)` containing the time step types for all transitions in this batch. lengths (numpy.ndarray): An integer numpy array of shape :math:`(N,)` containing the length of each episode in this batch. This may be used to reconstruct the individual episodes. Raises: ValueError: If any of the above attributes do not conform to their prescribed types and shapes. """ __slots__ = () def __new__(cls, env_spec, observations, last_observations, actions, rewards, env_infos, agent_infos, step_types, lengths): # noqa: D102 # pylint: disable=too-many-branches first_observation = observations[0] first_action = actions[0] inferred_batch_size = lengths.sum() # lengths if len(lengths.shape) != 1: raise ValueError( 'Lengths tensor must be a tensor of shape (N,), but got a ' 'tensor of shape {} instead'.format(lengths.shape)) if not (lengths.dtype.kind == 'u' or lengths.dtype.kind == 'i'): raise ValueError( 'Lengths tensor must have an integer dtype, but got dtype {} ' 'instead.'.format(lengths.dtype)) # observations if not env_spec.observation_space.contains(first_observation): # Discrete actions can be either in the space normally, or one-hot # encoded. if isinstance(env_spec.observation_space, (akro.Box, akro.Discrete, akro.Dict)): if env_spec.observation_space.flat_dim != np.prod( first_observation.shape): raise ValueError('observations should have the same ' 'dimensionality as the observation_space ' '({}), but got data with shape {} ' 'instead'.format( env_spec.observation_space.flat_dim, first_observation.shape)) else: raise ValueError( 'observations must conform to observation_space {}, but ' 'got data with shape {} instead.'.format( env_spec.observation_space, first_observation)) if observations.shape[0] != inferred_batch_size: raise ValueError( 'Expected batch dimension of observations to be length {}, ' 'but got length {} instead.'.format(inferred_batch_size, observations.shape[0])) # observations if not env_spec.observation_space.contains(last_observations[0]): # Discrete actions can be either in the space normally, or one-hot # encoded. if isinstance(env_spec.observation_space, (akro.Box, akro.Discrete, akro.Dict)): if env_spec.observation_space.flat_dim != np.prod( last_observations[0].shape): raise ValueError('last_observations should have the same ' 'dimensionality as the observation_space ' '({}), but got data with shape {} ' 'instead'.format( env_spec.observation_space.flat_dim, last_observations[0].shape)) else: raise ValueError( 'last_observations must conform to observation_space {}, ' 'but got data with shape {} instead.'.format( env_spec.observation_space, last_observations[0])) if last_observations.shape[0] != len(lengths): raise ValueError( 'Expected batch dimension of last_observations to be length ' '{}, but got length {} instead.'.format( len(lengths), last_observations.shape[0])) # actions if not env_spec.action_space.contains(first_action): # Discrete actions can be either in the space normally, or one-hot # encoded. if isinstance(env_spec.action_space, (akro.Box, akro.Discrete, akro.Dict)): if env_spec.action_space.flat_dim != np.prod( first_action.shape): raise ValueError('actions should have the same ' 'dimensionality as the action_space ' '({}), but got data with shape {} ' 'instead'.format( env_spec.action_space.flat_dim, first_action.shape)) else: raise ValueError( 'actions must conform to action_space {}, but got data ' 'with shape {} instead.'.format(env_spec.action_space, first_action)) if actions.shape[0] != inferred_batch_size: raise ValueError( 'Expected batch dimension of actions to be length {}, but got ' 'length {} instead.'.format(inferred_batch_size, actions.shape[0])) # rewards if rewards.shape != (inferred_batch_size, ): raise ValueError( 'Rewards tensor must have shape {}, but got shape {} ' 'instead.'.format(inferred_batch_size, rewards.shape)) # env_infos for key, val in env_infos.items(): if not isinstance(val, (dict, np.ndarray)): raise ValueError( 'Each entry in env_infos must be a numpy array or ' 'dictionary, but got key {} with value type {} instead.'. format(key, type(val))) if (isinstance(val, np.ndarray) and val.shape[0] != inferred_batch_size): raise ValueError( 'Each entry in env_infos must have a batch dimension of ' 'length {}, but got key {} with batch size {} instead.'. format(inferred_batch_size, key, val.shape[0])) # agent_infos for key, val in agent_infos.items(): if not isinstance(val, (dict, np.ndarray)): raise ValueError( 'Each entry in agent_infos must be a numpy array or ' 'dictionary, but got key {} with value type {} instead.' 'instead'.format(key, type(val))) if (isinstance(val, np.ndarray) and val.shape[0] != inferred_batch_size): raise ValueError( 'Each entry in agent_infos must have a batch dimension of ' 'length {}, but got key {} with batch size {} instead.'. format(inferred_batch_size, key, val.shape[0])) # step_types if step_types.shape != (inferred_batch_size, ): raise ValueError( 'step_types tensor must have shape {}, but got shape {} ' 'instead.'.format(inferred_batch_size, step_types.shape)) if step_types.dtype != StepType: raise ValueError( 'step_types tensor must be dtype `StepType`, but got tensor ' 'of dtype {} instead.'.format(step_types.dtype)) return super().__new__(EpisodeBatch, env_spec, observations, last_observations, actions, rewards, env_infos, agent_infos, step_types, lengths) @classmethod def concatenate(cls, *batches): """Create a EpisodeBatch by concatenating EpisodeBatches. Args: batches (list[EpisodeBatch]): Batches to concatenate. Returns: EpisodeBatch: The concatenation of the batches. """ if __debug__: for b in batches: assert (set(b.env_infos.keys()) == set( batches[0].env_infos.keys())) assert (set(b.agent_infos.keys()) == set( batches[0].agent_infos.keys())) env_infos = { k: np.concatenate([b.env_infos[k] for b in batches]) for k in batches[0].env_infos.keys() } agent_infos = { k: np.concatenate([b.agent_infos[k] for b in batches]) for k in batches[0].agent_infos.keys() } return cls( env_spec=batches[0].env_spec, observations=np.concatenate( [batch.observations for batch in batches]), last_observations=np.concatenate( [batch.last_observations for batch in batches]), actions=np.concatenate([batch.actions for batch in batches]), rewards=np.concatenate([batch.rewards for batch in batches]), env_infos=env_infos, agent_infos=agent_infos, step_types=np.concatenate([batch.step_types for batch in batches]), lengths=np.concatenate([batch.lengths for batch in batches])) def split(self): """Split an EpisodeBatch into a list of EpisodeBatches. The opposite of concatenate. Returns: list[EpisodeBatch]: A list of EpisodeBatches, with one episode per batch. """ episodes = [] start = 0 for i, length in enumerate(self.lengths): stop = start + length eps = EpisodeBatch( env_spec=self.env_spec, observations=self.observations[start:stop], last_observations=np.asarray([self.last_observations[i]]), actions=self.actions[start:stop], rewards=self.rewards[start:stop], env_infos=slice_nested_dict(self.env_infos, start, stop), agent_infos=slice_nested_dict(self.agent_infos, start, stop), step_types=self.step_types[start:stop], lengths=np.asarray([length])) episodes.append(eps) start = stop return episodes def to_list(self): """Convert the batch into a list of dictionaries. Returns: list[dict[str, np.ndarray or dict[str, np.ndarray]]]: Keys: * observations (np.ndarray): Non-flattened array of observations. Has shape (T, S^*) (the unflattened state space of the current environment). observations[i] was used by the agent to choose actions[i]. * next_observations (np.ndarray): Non-flattened array of observations. Has shape (T, S^*). next_observations[i] was observed by the agent after taking actions[i]. * actions (np.ndarray): Non-flattened array of actions. Should have shape (T, S^*) (the unflattened action space of the current environment). * rewards (np.ndarray): Array of rewards of shape (T,) (1D array of length timesteps). * agent_infos (dict[str, np.ndarray]): Dictionary of stacked, non-flattened `agent_info` arrays. * env_infos (dict[str, np.ndarray]): Dictionary of stacked, non-flattened `env_info` arrays. * step_types (numpy.ndarray): A numpy array of `StepType with shape (T,) containing the time step types for all transitions in this batch. """ start = 0 episodes = [] for i, length in enumerate(self.lengths): stop = start + length episodes.append({ 'observations': self.observations[start:stop], 'next_observations': np.concatenate((self.observations[1 + start:stop], [self.last_observations[i]])), 'actions': self.actions[start:stop], 'rewards': self.rewards[start:stop], 'env_infos': {k: v[start:stop] for (k, v) in self.env_infos.items()}, 'agent_infos': {k: v[start:stop] for (k, v) in self.agent_infos.items()}, 'step_types': self.step_types[start:stop] }) start = stop return episodes @classmethod def from_list(cls, env_spec, paths): """Create a EpisodeBatch from a list of episodes. Args: env_spec (EnvSpec): Specification for the environment from which this data was sampled. paths (list[dict[str, np.ndarray or dict[str, np.ndarray]]]): Keys: * observations (np.ndarray): Non-flattened array of observations. Typically has shape (T, S^*) (the unflattened state space of the current environment). observations[i] was used by the agent to choose actions[i]. observations may instead have shape (T + 1, S^*). * next_observations (np.ndarray): Non-flattened array of observations. Has shape (T, S^*). next_observations[i] was observed by the agent after taking actions[i]. Optional. Note that to ensure all information from the environment was preserved, observations[i] should have shape (T + 1, S^*), or this key should be set. However, this method is lenient and will "duplicate" the last observation if the original last observation has been lost. * actions (np.ndarray): Non-flattened array of actions. Should have shape (T, S^*) (the unflattened action space of the current environment). * rewards (np.ndarray): Array of rewards of shape (T,) (1D array of length timesteps). * agent_infos (dict[str, np.ndarray]): Dictionary of stacked, non-flattened `agent_info` arrays. * env_infos (dict[str, np.ndarray]): Dictionary of stacked, non-flattened `env_info` arrays. * step_types (numpy.ndarray): A numpy array of `StepType with shape (T,) containing the time step types for all transitions in this batch. """ lengths = np.asarray([len(p['rewards']) for p in paths]) if all( len(path['observations']) == length + 1 for (path, length) in zip(paths, lengths)): last_observations = np.asarray( [p['observations'][-1] for p in paths]) observations = np.concatenate( [p['observations'][:-1] for p in paths]) else: # The number of observations and timesteps must match. observations = np.concatenate([p['observations'] for p in paths]) if paths[0].get('next_observations') is not None: last_observations = np.asarray( [p['next_observations'][-1] for p in paths]) else: last_observations = np.asarray( [p['observations'][-1] for p in paths]) stacked_paths = concat_tensor_dict_list(paths) # Temporary solution. This logic is not needed if algorithms process # step_types instead of dones directly. if 'dones' in stacked_paths and 'step_types' not in stacked_paths: step_types = np.array([ StepType.TERMINAL if done else StepType.MID for done in stacked_paths['dones'] ], dtype=StepType) stacked_paths['step_types'] = step_types del stacked_paths['dones'] return cls(env_spec=env_spec, observations=observations, last_observations=last_observations, actions=stacked_paths['actions'], rewards=stacked_paths['rewards'], env_infos=stacked_paths['env_infos'], agent_infos=stacked_paths['agent_infos'], step_types=stacked_paths['step_types'], lengths=lengths) @property def next_observations(self): """Get the observations seen after actions are performed. Usually, in an :class:`~EpisodeBatch`, next_observations don't need to be stored explicitly, since the next observation is already stored in the batch. Returns: np.ndarray: The "next_observations". """ return np.concatenate( tuple([ np.concatenate((eps.observations[1:], eps.last_observations)) for eps in self.split() ])) class StepType(enum.IntEnum): """Defines the status of a :class:`~TimeStep` within a sequence. Note that the last :class:`~TimeStep` in a sequence can either be :attribute:`StepType.TERMINAL` or :attribute:`StepType.TIMEOUT`. Suppose max_episode_length = 5: * A success sequence terminated at step 4 will look like: FIRST, MID, MID, TERMINAL * A success sequence terminated at step 5 will look like: FIRST, MID, MID, MID, TERMINAL * An unsuccessful sequence truncated by time limit will look like: FIRST, MID, MID, MID, TIMEOUT """ # Denotes the first :class:`~TimeStep` in a sequence. FIRST = 0 # Denotes any :class:`~TimeStep` in the middle of a sequence (i.e. not the # first or last one). MID = 1 # Denotes the last :class:`~TimeStep` in a sequence that terminates # successfully. TERMINAL = 2 # Denotes the last :class:`~TimeStep` in a sequence truncated by time # limit. TIMEOUT = 3 @classmethod def get_step_type(cls, step_cnt, max_episode_length, done): """Determines the step type based on step cnt and done signal. Args: step_cnt (int): current step cnt of the environment. max_episode_length (int): maximum episode length. done (bool): the done signal returned by Environment. Returns: StepType: the step type. Raises: ValueError: if step_cnt is < 1. In this case a environment's `reset()` is likely not called yet and the step_cnt is None. """ if max_episode_length is not None and step_cnt >= max_episode_length: return StepType.TIMEOUT elif done: return StepType.TERMINAL elif step_cnt == 1: return StepType.FIRST elif step_cnt < 1: raise ValueError('Expect step_cnt to be >= 1, but got {} ' 'instead. Did you forget to call `reset(' ')`?'.format(step_cnt)) else: return StepType.MID class TimeStep( collections.namedtuple('TimeStep', [ 'env_spec', 'observation', 'action', 'reward', 'next_observation', 'env_info', 'agent_info', 'step_type' ])): # pylint: disable=missing-return-doc, missing-return-type-doc, missing-param-doc, missing-type-doc # noqa: E501 r"""A tuple representing a single TimeStep. A :class:`~TimeStep` represents a single sample when an agent interacts with an environment. It describes as SARS (State–action–reward–state) tuple that characterizes the evolution of a MDP. Attributes: env_spec (EnvSpec): Specification for the environment from which this data was sampled. observation (numpy.ndarray): A numpy array of shape :math:`(O^*)` containing the observation for the this time step in the environment. These must conform to :obj:`EnvStep.observation_space`. The observation before applying the action. `None` if `step_type` is `StepType.FIRST`, i.e. at the start of a sequence. action (numpy.ndarray): A numpy array of shape :math:`(A^*)` containing the action for the this time step. These must conform to :obj:`EnvStep.action_space`. `None` if `step_type` is `StepType.FIRST`, i.e. at the start of a sequence. reward (float): A float representing the reward for taking the action given the observation, at the this time step. `None` if `step_type` is `StepType.FIRST`, i.e. at the start of a sequence. next_observation (numpy.ndarray): A numpy array of shape :math:`(O^*)` containing the observation for the this time step in the environment. These must conform to :obj:`EnvStep.observation_space`. The observation after applying the action. env_info (dict): A dict arbitrary environment state information. agent_info (dict): A dict of arbitrary agent state information. For example, this may contain the hidden states from an RNN policy. step_type (StepType): a :class:`~StepType` enum value. Can be one of :attribute:`~StepType.FIRST`, :attribute:`~StepType.MID`, :attribute:`~StepType.TERMINAL`, or :attribute:`~StepType.TIMEOUT`. """ @property def first(self): """bool: Whether this step is the first of its episode.""" return self.step_type is StepType.FIRST @property def mid(self): """bool: Whether this step is in the middle of its episode.""" return self.step_type is StepType.MID @property def terminal(self): """bool: Whether this step records a termination condition.""" return self.step_type is StepType.TERMINAL @property def timeout(self): """bool: Whether this step records a timeout condition.""" return self.step_type is StepType.TIMEOUT @property def last(self): """bool: Whether this step is the last of its episode.""" return self.step_type is StepType.TERMINAL or self.step_type \ is StepType.TIMEOUT @classmethod def from_env_step(cls, env_step, last_observation, agent_info): """Create a TimeStep from a EnvStep. Args: env_step (EnvStep): the env step returned by the environment. last_observation (numpy.ndarray): A numpy array of shape :math:`(O^*)` containing the observation for the this time step in the environment. These must conform to :obj:`EnvStep.observation_space`. The observation before applying the action. agent_info (dict): A dict of arbitrary agent state information. Returns: TimeStep: The TimeStep with all information of EnvStep plus the agent info. """ return cls(env_spec=env_step.env_spec, observation=last_observation, action=env_step.action, reward=env_step.reward, next_observation=env_step.observation, env_info=env_step.env_info, agent_info=agent_info, step_type=env_step.step_type) class InOutSpec: """Describes the input and output spaces of a primitive or module. Args: input_space (akro.Space): Input space of a module. output_space (akro.Space): Output space of a module. """ def __init__(self, input_space, output_space): self._input_space = input_space self._output_space = output_space @property def input_space(self): """Get input space of the module. Returns: akro.Space: Input space of the module. """ return self._input_space @property def output_space(self): """Get output space of the module. Returns: akro.Space: Output space of the module. """ return self._output_space class TimeStepBatch( collections.namedtuple('TimeStepBatch', [ 'env_spec', 'observations', 'actions', 'rewards', 'next_observations', 'env_infos', 'agent_infos', 'step_types' ])): # pylint: disable=missing-param-doc, missing-type-doc """A tuple representing a batch of TimeSteps. Data type for off-policy algorithms, imitation learning and batch-RL. Attributes: env_spec (EnvSpec): Specification for the environment from which this data was sampled. observations (numpy.ndarray): Non-flattened array of observations. Typically has shape (batch_size, S^*) (the unflattened state space of the current environment). actions (numpy.ndarray): Non-flattened array of actions. Should have shape (batch_size, S^*) (the unflattened action space of the current environment). rewards (numpy.ndarray): Array of rewards of shape (batch_size, 1). next_observation (numpy.ndarray): Non-flattened array of next observations. Has shape (batch_size, S^*). next_observations[i] was observed by the agent after taking actions[i]. env_infos (dict): A dict arbitrary environment state information. agent_infos (dict): A dict of arbitrary agent state information. For example, this may contain the hidden states from an RNN policy. step_types (numpy.ndarray): A numpy array of `StepType with shape ( batch_size,) containing the time step types for all transitions in this batch. Raises: ValueError: If any of the above attributes do not conform to their prescribed types and shapes. """ __slots__ = () def __new__(cls, env_spec, observations, actions, rewards, next_observations, env_infos, agent_infos, step_types): # noqa: D102 # pylint: disable=missing-return-doc, missing-return-type-doc, # pylint: disable=too-many-branches inferred_batch_size = len(rewards) if inferred_batch_size < 1: raise ValueError( 'Expected batch dimension of rewards to be greater than 1, ' 'but got length {} instead.'.format(inferred_batch_size)) first_observation = observations[0] first_action = actions[0] # observation if not env_spec.observation_space.contains(first_observation): if isinstance(env_spec.observation_space, (akro.Box, akro.Discrete, akro.Dict)): if env_spec.observation_space.flat_dim != np.prod( first_observation.shape): raise ValueError('observations should have the same ' 'dimensionality as the observation_space ' '({}), but got data with shape {} ' 'instead'.format( env_spec.observation_space.flat_dim, first_observation.shape)) else: raise ValueError( 'observations must conform to observation_space {}, ' 'but got data with shape {} instead.'.format( env_spec.observation_space, first_observation.shape)) if observations.shape[0] != inferred_batch_size: raise ValueError( 'Expected batch dimension of observations to be length {}, ' 'but got length {} instead.'.format(inferred_batch_size, observations.shape[0])) # next_observation if not env_spec.observation_space.contains(next_observations[0]): if isinstance(env_spec.observation_space, (akro.Box, akro.Discrete, akro.Dict)): if env_spec.observation_space.flat_dim != np.prod( next_observations[0].shape): raise ValueError('next_observations should have the same ' 'dimensionality as the observation_space ' '({}), but got data with shape {} ' 'instead'.format( env_spec.observation_space.flat_dim, next_observations[0].shape)) else: raise ValueError( 'next_observations must conform to observation_space {}, ' 'but got data with shape {} instead.'.format( env_spec.observation_space, next_observations[0].shape[0])) if next_observations.shape[0] != inferred_batch_size: raise ValueError( 'Expected batch dimension of next_observations to be length {' '}, but got length {} instead.'.format( inferred_batch_size, next_observations[0].shape[0])) # action if not env_spec.action_space.contains(first_action): if isinstance(env_spec.action_space, (akro.Box, akro.Discrete, akro.Dict)): if env_spec.action_space.flat_dim != np.prod( first_action.shape): raise ValueError('actions should have the same ' 'dimensionality as the action_space ' '({}), but got data with shape {} ' 'instead'.format( env_spec.action_space.flat_dim, first_action.shape)) else: raise ValueError('actions must conform to action_space {}, ' 'but got data with shape {} instead.'.format( env_spec.action_space, first_action.shape)) if actions.shape[0] != inferred_batch_size: raise ValueError( 'Expected batch dimension of actions to be length {}, but got ' 'length {} instead.'.format(inferred_batch_size, actions.shape[0])) # rewards if rewards.shape != (inferred_batch_size, 1): raise ValueError( 'Rewards tensor must have shape {}, but got shape {} ' 'instead.'.format((inferred_batch_size, 1), rewards.shape)) # step_types if step_types.shape[0] != inferred_batch_size: raise ValueError( 'Expected batch dimension of step_types to be length {}, ' 'but got ' 'length {} instead.'.format(inferred_batch_size, rewards.shape[0])) for step_type in step_types: if not isinstance(step_type, StepType): raise ValueError( 'Each entry in step_types must be a StepType, but got' ' value type {} instead.'.format(type(step_type))) # env_infos for key, val in env_infos.items(): if not isinstance(val, (dict, np.ndarray)): raise ValueError( 'Each entry in env_infos must be a numpy array or ' 'dictionary, but got key {} with value type {} ' 'instead.'.format(key, type(val))) if (isinstance(val, np.ndarray) and val.shape[0] != inferred_batch_size): raise ValueError( 'Each entry in env_infos must have a batch dimension ' 'of ' 'length {}, but got key {} with batch size {} instead.'. format(inferred_batch_size, key, val.shape[0])) # agent_infos for key, val in agent_infos.items(): if not isinstance(val, (dict, np.ndarray)): raise ValueError( 'Each entry in agent_infos must be a numpy array or ' 'dictionary, but got key {} with value type {} instead.' 'instead'.format(key, type(val))) if (isinstance(val, np.ndarray) and val.shape[0] != inferred_batch_size): raise ValueError( 'Each entry in agent_infos must have a batch ' 'dimension of ' 'length {}, but got key {} with batch size {} instead.'. format(inferred_batch_size, key, val.shape[0])) return super().__new__(TimeStepBatch, env_spec, observations, actions, rewards, next_observations, env_infos, agent_infos, step_types) @classmethod def concatenate(cls, *batches): """Concatenate two or more :class:`TimeStepBatch`s. Args: batches (list[TimeStepBatch]): Batches to concatenate. Returns: TimeStepBatch: The concatenation of the batches. Raises: ValueError: If no TimeStepBatches are provided. """ if len(batches) < 1: raise ValueError('Please provide at least one TimeStepBatch to ' 'concatenate') env_infos = { k: np.concatenate([b.env_infos[k] for b in batches]) for k in batches[0].env_infos.keys() } agent_infos = { k: np.concatenate([b.agent_infos[k] for b in batches]) for k in batches[0].agent_infos.keys() } return cls( env_spec=batches[0].env_spec, observations=np.concatenate( [batch.observations for batch in batches]), actions=np.concatenate([batch.actions for batch in batches]), rewards=np.concatenate([batch.rewards for batch in batches]), next_observations=np.concatenate( [batch.next_observations for batch in batches]), env_infos=env_infos, agent_infos=agent_infos, step_types=np.concatenate([batch.step_types for batch in batches])) def split(self): """Split a :class:`~TimeStepBatch` into a list of :class:`~TimeStepBatch`s. The opposite of concatenate. Returns: list[TimeStepBatch]: A list of :class:`TimeStepBatch`s, with one :class:`~TimeStep` per :class:`~TimeStepBatch`. """ time_steps = [] for i in range(len(self.rewards)): time_step = TimeStepBatch( env_spec=self.env_spec, observations=np.asarray([self.observations[i]]), actions=np.asarray([self.actions[i]]), rewards=np.asarray([self.rewards[i]]), next_observations=np.asarray([self.next_observations[i]]), env_infos={ k: np.asarray([v[i]]) for (k, v) in self.env_infos.items() }, agent_infos={ k: np.asarray([v[i]]) for (k, v) in self.agent_infos.items() }, step_types=np.asarray([self.step_types[i]], dtype=StepType)) time_steps.append(time_step) return time_steps def to_time_step_list(self): """Convert the batch into a list of dictionaries. Breaks the :class:`~TimeStepBatch` into a list of single time step sample dictionaries. len(rewards) (or the number of discrete time step) dictionaries are returned Returns: list[dict[str, np.ndarray or dict[str, np.ndarray]]]: Keys: observations (numpy.ndarray): Non-flattened array of observations. Typically has shape (batch_size, S^*) (the unflattened state space of the current environment). actions (numpy.ndarray): Non-flattened array of actions. Should have shape (batch_size, S^*) (the unflattened action space of the current environment). rewards (numpy.ndarray): Array of rewards of shape ( batch_size,) (1D array of length batch_size). next_observation (numpy.ndarray): Non-flattened array of next observations. Has shape (batch_size, S^*). next_observations[i] was observed by the agent after taking actions[i]. env_infos (dict): A dict arbitrary environment state information. agent_infos (dict): A dict of arbitrary agent state information. For example, this may contain the hidden states from an RNN policy. step_types (numpy.ndarray): A numpy array of `StepType with shape (batch_size,) containing the time step types for all transitions in this batch. """ samples = [] for i in range(len(self.rewards)): samples.append({ 'observations': np.asarray([self.observations[i]]), 'actions': np.asarray([self.actions[i]]), 'rewards': np.asarray([self.rewards[i]]), 'next_observations': np.asarray([self.next_observations[i]]), 'env_infos': {k: np.asarray([v[i]]) for (k, v) in self.env_infos.items()}, 'agent_infos': {k: np.asarray([v[i]]) for (k, v) in self.agent_infos.items()}, 'step_types': np.asarray([self.step_types[i]]), }) return samples @property def terminals(self): """Get an array of boolean indicating ternianal information. Returns: numpy.ndarray: An array of boolean of shape (batch_size, 1) indicating whether the `StepType is `TERMINAL """ return np.array([[s == StepType.TERMINAL] for s in self.step_types]) @classmethod def from_time_step_list(cls, env_spec, ts_samples): """Create a :class:`~TimeStepBatch` from a list of time step dictionaries. Args: env_spec (EnvSpec): Specification for the environment from which this data was sampled. ts_samples (list[dict[str, np.ndarray or dict[str, np.ndarray]]]): keys: * observations (numpy.ndarray): Non-flattened array of observations. Typically has shape (batch_size, S^*) (the unflattened state space of the current environment). * actions (numpy.ndarray): Non-flattened array of actions. Should have shape (batch_size, S^*) (the unflattened action space of the current environment). * rewards (numpy.ndarray): Array of rewards of shape ( batch_size,) (1D array of length batch_size). * next_observation (numpy.ndarray): Non-flattened array of next observations. Has shape (batch_size, S^*). next_observations[i] was observed by the agent after taking actions[i]. * env_infos (dict): A dict arbitrary environment state information. * agent_infos (dict): A dict of arbitrary agent state information. For example, this may contain the hidden states from an RNN policy. * step_types (numpy.ndarray): A numpy array of `StepType with shape (batch_size,) containing the time step types for all transitions in this batch. Returns: TimeStepBatch: The concatenation of samples. Raises: ValueError: If no dicts are provided. """ if len(ts_samples) < 1: raise ValueError('Please provide at least one dict') ts_batches = [ TimeStepBatch(env_spec=env_spec, observations=sample['observations'], actions=sample['actions'], rewards=sample['rewards'], next_observations=sample['next_observations'], env_infos=sample['env_infos'], agent_infos=sample['agent_infos'], step_types=sample['step_types']) for sample in ts_samples ] return TimeStepBatch.concatenate(*ts_batches) @classmethod def from_episode_batch(cls, batch): """Construct a :class:`~TimeStepBatch` from an :class:`~EpisodeBatch`. Args: batch (EpisodeBatch): Episode batch to convert. Returns: TimeStepBatch: The converted batch. """ next_observations = np.concatenate( tuple([ np.concatenate((eps.observations[1:], eps.last_observations)) for eps in batch.split() ])) return cls(env_spec=batch.env_spec, observations=batch.observations, actions=batch.actions, rewards=batch.rewards.reshape(-1, 1), next_observations=next_observations, env_infos=batch.env_infos, agent_infos=batch.agent_infos, step_types=batch.step_types)
the-stack_0_15817
#!/usr/local/bin/python3 import argparse import random class GenerationConfig: count = 0 maximum = 0 minimum = 0 def __init__(self, count = 100, maximum = 100, minimum = 0): if count <= 0: raise Exception("Count must be positive!") if minimum >= maximum: raise Exception("Maximum must be greater than minimum!") self.count = count self.maximum = maximum self.minimum = minimum def generate(self): result = [] for i in range(self.count): result.append(random.randint(self.minimum, self.maximum)) return result def process_args(): parser = argparse.ArgumentParser() parser.add_argument("--count", help="number of items to generate", default = 100, required = False) parser.add_argument("--max", help="maximum value of generated items", default = 100, required = False) parser.add_argument("--min", help="maximum value of generated items", default = 0, required = False) args = parser.parse_args() return GenerationConfig(int(args.count), int(args.max), int(args.min)) def generate(generationConfig): return generationConfig.generate() def main(): generationConfig = process_args() data = generate(generationConfig) for item in data: print(item) if __name__ == '__main__': main()
the-stack_0_15818
"""Utility functions for tensor operations """ import numpy as np from six.moves import xrange def _check_1d_vector(vector): """Check 1D vector shape Check 1D vector shape. array with shape [n, 1] or [n, ] are accepted. Will return a 1 dimension vector. Parameters ---------- vector : array (n,) or (n, 1) rank one vector Returns ------- vector : array, (n,) """ v_shape = vector.shape if len(v_shape) == 1: return vector elif len(v_shape) == 2 and v_shape[1] == 1: return vector.reshape(v_shape[0],) else: raise ValueError("Vector is not 1-d array: shape %s" % str(v_shape)) def _check_square_matrix(matrix): """Check 2D matrix shape Check 1D vector shape. array with shape [n, 1] or [n, ] are accepted. Will return a 1 dimension vector. Parameters ---------- matrix : (n, n) rank one vector Returns ------- matrix : array, (n, n) """ m_shape = matrix.shape if len(m_shape) == 2: if m_shape[0] != m_shape[1]: raise ValueError("matrix is not square: shape %s" % str(m_shape)) return matrix else: raise ValueError("matrix is not 2-d array: shape %s" % str(m_shape)) def rank_1_tensor_3d(a, b, c): """Generate a 3-D tensor from 3 1-D vectors Generate a 3D tensor from 3 rank one vectors `a`, `b`, and `c`. The returned 3-D tensor is in unfolded format. Parameters ---------- a : array, shape (n,) first rank one vector b : array, shape (n,) second rank one vector c : array, shape (n,) thrid rank one vector Returns ------- tensor: array, (n, n * n) 3D tensor in unfolded format. element (i, j, k) will map to (i, (n * k) + j) """ a = _check_1d_vector(a) b = _check_1d_vector(b) c = _check_1d_vector(c) dim = a.shape[0] # check dimension if (dim != b.shape[0]) or (dim != c.shape[0]): raise ValueError("Vector dimension mismatch: (%d, %d, %d)" % (dim, b.shape[0], c.shape[0])) outter = b[:, np.newaxis] * c[:, np.newaxis].T tensor = a[:, np.newaxis] * outter.ravel(order='F')[np.newaxis, :] return tensor def tensor_3d_from_vector_matrix(a, b): """Generate 3-D tensor from 1-D vector and 2-D matrix Generate a 3D tensor from a 1-D vector `a` and 2-D matrix `b`. The returned 3-D tensor is in unfolded format. Parameters ---------- a : array, shape (m,) 1-D vector b : 2-D array, shape (n, p) 2-D matrix Returns ------- tensor: array, (m, n * p) 3D tensor in unfolded format. """ a = _check_1d_vector(a) tensor = a[:, np.newaxis] * b.ravel(order='F')[np.newaxis, :] return tensor def tensor_3d_from_matrix_vector(b, a): """Generate 3-D tensor from 2-D matrix and 1-D vector This function is similar to `tensor_3d_from_vector_matrix` function. The only difference is the first argument is 2-D matrix and the second element is 1-D vector. Parameters ---------- b : array, shape (m, n) 2-D matrix a : array, shape (p,) vector Returns ------- tensor : array, shape (m, n * p) 3D tensor in unfolded format. """ len_a = a.shape[0] n_col = b.shape[1] tensor = np.tile(b, len_a) for i in xrange(len_a): col_from = n_col * i col_to = n_col * (i+1) tensor[:, col_from:col_to] *= a[i] return tensor def tensor_3d_permute(tensor, tensor_shape, a, b, c): """Permute the mode of a 3-D tensor This is a slow implementation to generate 3-D tensor permutations. Parameters ---------- tensor : 2D array, shape (n, m * k) 3D tensor in unfolded format tensor_shape : int triple Shape of the tensor. Since tensor is in unfolded format. We need it's real format to calculate permutation. a : int, {1, 2, 3} new first index } b : int, {1, 2, 3} new second index c : int, {1, 2, 3} new thrid order index Return ------ permuted_tensor: 2D array Permuted tensor, element (i_1, i_2, i_3) in the permuted tensor will be element (i_a, i_b, i_c) in the original tensor """ # TODO: check parameter a_idx = a - 1 b_idx = b - 1 c_idx = c - 1 # TODO: move this part to cython loop n_col = tensor_shape[1] dim1 = tensor_shape[a_idx] dim2 = tensor_shape[b_idx] dim3 = tensor_shape[c_idx] permuted_tensor = np.empty((dim1, dim2 * dim3)) old_idx = np.zeros(3).astype('int32') for i in xrange(dim1): for j in xrange(dim2): for k in xrange(dim3): old_idx[a_idx] = i old_idx[b_idx] = j old_idx[c_idx] = k old_val = tensor[old_idx[0], (n_col * old_idx[2]) + old_idx[1]] # new index permuted_tensor[i, (dim2 * k) + j] = old_val return permuted_tensor def khatri_rao_prod(a, b): """Khatri-Rao product Generate Khatri-Rao product from 2 2-D matrix. Parameters ---------- a : 2D array, shape (n, k) first matrix b : 2D array, shape (m, k) second matrix Returns ------- matrix : 2D array, shape (n * m, k) Khatri-Rao product of `a` and `b` """ a_row, a_col = a.shape b_row, b_col = b.shape # check column size if a_col != b_col: raise ValueError("column dimension mismatch: %d != %d" % a_col, b_col) matrix = np.empty((a_row * b_row, a_col)) for i in xrange(a_col): matrix[:, i] = np.kron(a[:, i], b[:, i]) return matrix def tensor_3d_prod(tensor, a, b, c): """Calculate product of 3D tensor with matrix on each dimension TODO: move it to test Parameters ---------- tensor : 3D array, shape (n1, n2, n3) a : array, (n1, m) b : array, (n2, n) c : array, (n3, p) Returns ------- t_abc : array, (m, n, p) tensor(a, b, c) """ n1, n2, n3 = tensor.shape n1_, m = a.shape n2_, n = b.shape n3_, p = c.shape # (n1, n2, p) t_c = np.dot(tensor, c) t_bc = np.empty((n1, n, p)) for i in xrange(n1): # (n, p) = (n, n2) * (n2, p) t_bc[i, :, :] = np.dot(b.T, t_c[i, :, :]) t_abc = np.empty((m, n, p)) for i in xrange(p): t_abc[:, :, i] = np.dot(a.T, t_bc[:, :, i]) return t_abc
the-stack_0_15821
""" Analysis code for IGMSurvey objects """ from __future__ import print_function, absolute_import, division, unicode_literals import numpy as np import glob import json import pdb from astropy.table import Table from linetools import utils as ltu def calc_slgrid_atan(surveys, Agrid, Bgrid, Cgrid, C2grid): """ Calculate the sightline grid for a Atan l(z) fit Breaking this off for bootstrap speed-up Parameters ---------- surveys : list of DLASurvey objects Agrid Bgrid Cgrid C2grid Returns ------- slgrid : ndarray Sightline term in likelihood function """ # Integrating over the sightlines slgrid = np.zeros_like(Agrid) # Int(atan[x-a]) = (a-x) atan(a-x) - 0.5 * ln(a**2 - 2ax + x**2 + 1) for isurvey in surveys: slines = isurvey.sightlines gds = slines['Z_START'] < slines['Z_END'] zstart = slines['Z_START'][gds] zend = slines['Z_END'][gds] # Integrate constant term AAgrid = Agrid * np.sum(zend-zstart) slgrid += AAgrid # Integrate second term for iz in zend: CCgrid = (Cgrid-iz) * np.arctan(Cgrid-iz) - 0.5 * np.log( C2grid - 2*Cgrid*iz + iz**2 + 1) slgrid += Bgrid * CCgrid if np.min(CCgrid) < -0.1: pdb.set_trace() for iz in zstart: CCgrid = (Cgrid-iz) * np.arctan(Cgrid-iz) - 0.5 * np.log( C2grid - 2*Cgrid*iz + iz**2 + 1) slgrid -= Bgrid * CCgrid # Return return slgrid def fit_atan_dla_lz(surveys, nstep=20, bootstrap=True, nboot=10, nproc=2, fit_out=None, boot_out=None, verbose=True): """ Fit a A + B * atan(z-C) l(z) model to AbsSys data Writes bootstrap analysis to hard-drive Code used in Prochaska & Neeleman 2017 for DLAs Parameters ---------- surveys : list of IGMSurvey objects If None, a default list is loaded nstep : int, optional Steps in each dimension of the grid bootstrap : bool, optional Perform bootstrap analysis nboot : int, optional Number of bootstrap iterations nproc : int, optional Number of processors to use fit_out : str, optional Output filename for best fit (JSON) boot_out : str, optional Output filename for bootstrap analysis verbose : bool, optional Returns ------- dfits : dict Best fit parameters boot_tbl : Table Returned if bootstrap=True else return None """ # Name and date # Init if boot_out is None: boot_out = './lz_boot.fits.gz' if fit_out is None: fit_out = './lz_fit.json' # Synthesize all_z = np.concatenate([isurvey.zabs for isurvey in surveys]) ndla = len(all_z) # Model : l(z) = A + B * atan(C-z) Aparm = np.linspace(0.05, 0.5, num=nstep).astype(np.float32) Bparm = np.linspace(0.05, 0.5, num=nstep).astype(np.float32) Cparm = np.linspace(1., 6., num=nstep).astype(np.float32) # Generate grids (float32) Agrid, Bgrid, Cgrid = np.meshgrid(Aparm, Bparm, Cparm, copy=False) C2grid = Cgrid**2 # Sightline grid if verbose: print("Sightline calculation...") slgrid = calc_slgrid_atan(surveys, Agrid, Bgrid, Cgrid, C2grid) if bootstrap: if verbose: print("Bootstrapping!") sv_fits = [] rN = np.random.poisson(ndla, size=nboot) # Boot me z_list = [] for kk,irN in enumerate(rN): # Draw nPoisson rval = (np.random.uniform(size=irN)*ndla).astype(int) # Draw from all_z draw_z = all_z[rval] z_list.append(draw_z) # Run if nproc == 1: for draw_z in z_list: if verbose: print("Working on iteration: {:d} of {:d}".format(kk, nboot)) dfits, _, _ = Ln_lz_atan(Agrid, Bgrid, Cgrid, slgrid, draw_z, write=False) # Save sv_fits.append(dfits.copy()) else: import multiprocessing pool = multiprocessing.Pool(nproc) # initialize thread pool N threads inp_list = [] for ii in range(nboot): inp_list.append( dict(A=Agrid, B=Bgrid, C=Cgrid, sl=slgrid, z=z_list[ii])) if verbose: print("Mapping...") sv_fits = pool.map(map_Ln_atan, inp_list) # Write boot_tbl = Table() for key in ['A', 'B', 'C']: boot_tbl[key] = [ifits['lz']['atan'][key] for ifits in sv_fits] boot_tbl.write(boot_out, overwrite=True) if verbose: print("Wrote {:s}".format(boot_out)) else: boot_tbl = None # Best dfits, _, _ = Ln_lz_atan(Agrid, Bgrid, Cgrid, slgrid, all_z, write=True) # Finish return dfits, boot_tbl def Ln_lz_atan(Agrid, Bgrid, Cgrid, slgrid, all_z, write=True, verbose=True): """ Likelihood function for arctan model Parameters ---------- Agrid Bgrid Cgrid slgrid all_z write Returns ------- dfits : dict Contains best fit model dlagrid : ndarray for debugging lngrid : ndarray """ # z0 estimate from 21cm surveys lz_z0 = dict(value=np.mean([0.026, 0.045]), sig=0.01) # Init dlagrid = np.zeros_like(Agrid) # Generate Likelihood for DLAs np.seterr(invalid='ignore') for z in all_z: dlagrid += np.log(Agrid + Bgrid * np.arctan(z-Cgrid)) bad = np.isnan(dlagrid) dlagrid[bad] = -1e9 # Likelihood lngrid = dlagrid - slgrid # z=0 model_z0 = Agrid + Bgrid * np.arctan(0.-Cgrid) lnP = -1 * (model_z0-lz_z0['value'])**2 / 2 / (lz_z0['sig']**2) lngrid += lnP # Best indices = np.where(lngrid == np.max(lngrid)) best = Agrid[indices][0], Bgrid[indices][0], Cgrid[indices][0] if verbose: print('Best fit: A={}, B={}, C={}'.format(best[0], best[1], best[2])) # Load dfits = {} # Write dfits['lz'] = {} dfits['lz']['atan'] = dict(A=Agrid[indices][0], B=Bgrid[indices][0], C=Cgrid[indices][0], form='A + B*atan(z-C)') # Return return dfits, dlagrid, lngrid def map_Ln_atan(map_dict): """ For multiprocessing the bootstrap Parameters ---------- map_dict Returns ------- """ dfits, _, _ = Ln_lz_atan(map_dict['A'], map_dict['B'], map_dict['C'], map_dict['sl'], map_dict['z'], write=False, verbose=False) return dfits def fit_fN_dblpow(NHI, a3_mnx, a4_mnx, Nd_mnx, nstep=100, Nmin=10**(20.3), Nmax=1e99, verbose=True): """ Fit a double power-law to an input NHI distribution Only does the shape Done in float32 to preserve memory Code from Prochaska & Neeleman (2017) [and also PHW05] Parameters ---------- NHI : ndarray log10 NHI values a3_mnx : tuple min/max of lower NHI power-law a4_mnx : tuple min/max of upper NHI power-law Nd_mnx : tuple min/max of break column in log10 nstep : int, optional Nmin : float, optional Minimum NHI in the analysis [usually DLA criterion] Nmax : float, optional Maximum NHI in the analysis Returns ------- dfits : dict Contains the fit best : tuple Best fit values in grid for Nd, a3, a4 Ndgrid a3grid a4grid lik """ # Generate 1D arrays a3stp = np.linspace(a3_mnx[0], a3_mnx[1], nstep).astype(np.float32) a4stp = np.linspace(a4_mnx[0], a4_mnx[1], nstep).astype(np.float32) Ndstp = np.linspace(Nd_mnx[0], Nd_mnx[1], nstep).astype(np.float32) # Generate grids (float32) a3grid, a4grid, Ndgrid = np.meshgrid(a3stp, a4stp, Ndstp, copy=False) # Linear Ns10 = 10.**Ndgrid # Calculate denominator denom = Ns10 * ((1. - (Nmin / Ns10)**(a3grid + 1.)) / (1. + a3grid) + ( (Nmax / Ns10)**(a4grid + 1) - 1.) / (a4grid + 1.)) num = np.zeros_like(Ns10) # Numerator # Loop on DLAs for iNHI10 in 10.**NHI: # Upper end high = iNHI10 > Ns10 if np.sum(high) > 0: num[high] += a4grid[high] * np.log(iNHI10 / Ns10[high]) # Low end if np.sum(~high) > 0: num[~high] += a3grid[~high] * np.log(iNHI10 / Ns10[~high]) # Liklihood (Beware of Signs!) lik = num - NHI.size * np.log(denom) mxL = np.max(lik) indices = np.where(lik == mxL) best = Ndgrid[indices][0], a3grid[indices][0], a4grid[indices][0] if verbose: print('Best fit: Nd={}, a3={}, a4={}'.format(best[0], best[1], best[2])) # Load dfits = {} # Write dfits['fN'] = {} dfits['fN']['dpow'] = dict(Nd=Ndgrid[indices][0], a3=a3grid[indices][0], a4=a4grid[indices][0], form='(N/Nd)**aa with aa=a3 if N<Nd else aa=a4') # KS Test ks_test = False if ks_test: ns10 = 10**best[0] dblpow_k = 1. / (ns10 * (1. - (Nmin / Ns10)**(best[1] + 1)) / (1. + best[1]) + ( (Nmax / Ns10)**(best[2] + 1) - 1.) / (best[2] + 1)) dblpow_b1 = best[1] dblpow_b2 = best[2] dblpow_nd = ns10 dblpow_nmin = Nmin noise = 0.02 dNHI = 10**(NHI + noise * np.random.uniform(size=NHI.size)) #ksone, darr, 'x_maxdblpow_kscumf', d, ksprob return dfits, best, Ndgrid, a3grid, a4grid, lik
the-stack_0_15822
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging from typing import Any, Optional from flask import g, request, Response from flask_appbuilder.api import expose, permission_name, protect, rison, safe from flask_appbuilder.hooks import before_request from flask_appbuilder.models.sqla.interface import SQLAInterface from flask_babel import ngettext from marshmallow import ValidationError from superset import is_feature_enabled from superset.charts.filters import ChartFilter from superset.constants import MODEL_API_RW_METHOD_PERMISSION_MAP, RouteMethod from superset.dashboards.filters import DashboardAccessFilter from superset.databases.filters import DatabaseFilter from superset.models.reports import ReportSchedule from superset.reports.commands.bulk_delete import BulkDeleteReportScheduleCommand from superset.reports.commands.create import CreateReportScheduleCommand from superset.reports.commands.delete import DeleteReportScheduleCommand from superset.reports.commands.exceptions import ( ReportScheduleBulkDeleteFailedError, ReportScheduleCreateFailedError, ReportScheduleDeleteFailedError, ReportScheduleForbiddenError, ReportScheduleInvalidError, ReportScheduleNotFoundError, ReportScheduleUpdateFailedError, ) from superset.reports.commands.update import UpdateReportScheduleCommand from superset.reports.filters import ReportScheduleAllTextFilter from superset.reports.schemas import ( get_delete_ids_schema, openapi_spec_methods_override, ReportSchedulePostSchema, ReportSchedulePutSchema, ) from superset.views.base_api import ( BaseSupersetModelRestApi, RelatedFieldFilter, statsd_metrics, ) from superset.views.filters import FilterRelatedOwners logger = logging.getLogger(__name__) class ReportScheduleRestApi(BaseSupersetModelRestApi): datamodel = SQLAInterface(ReportSchedule) @before_request def ensure_alert_reports_enabled(self) -> Optional[Response]: if not is_feature_enabled("ALERT_REPORTS"): return self.response_404() return None include_route_methods = RouteMethod.REST_MODEL_VIEW_CRUD_SET | { RouteMethod.RELATED, "bulk_delete", # not using RouteMethod since locally defined } class_permission_name = "ReportSchedule" method_permission_name = MODEL_API_RW_METHOD_PERMISSION_MAP resource_name = "report" allow_browser_login = True show_columns = [ "id", "active", "chart.id", "chart.slice_name", "chart.viz_type", "context_markdown", "creation_method", "crontab", "dashboard.dashboard_title", "dashboard.id", "database.database_name", "database.id", "description", "grace_period", "last_eval_dttm", "last_state", "last_value", "last_value_row_json", "log_retention", "name", "owners.first_name", "owners.id", "owners.last_name", "recipients.id", "recipients.recipient_config_json", "recipients.type", "report_format", "sql", "timezone", "type", "validator_config_json", "validator_type", "working_timeout", ] show_select_columns = show_columns + [ "chart.datasource_id", "chart.datasource_type", ] list_columns = [ "active", "changed_by.first_name", "changed_by.last_name", "changed_on", "changed_on_delta_humanized", "created_by.first_name", "created_by.last_name", "created_on", "creation_method", "crontab", "crontab_humanized", "description", "id", "last_eval_dttm", "last_state", "name", "owners.first_name", "owners.id", "owners.last_name", "recipients.id", "recipients.type", "timezone", "type", ] add_columns = [ "active", "chart", "context_markdown", "creation_method", "crontab", "dashboard", "database", "description", "grace_period", "log_retention", "name", "owners", "recipients", "report_format", "sql", "timezone", "type", "validator_config_json", "validator_type", "working_timeout", ] edit_columns = add_columns add_model_schema = ReportSchedulePostSchema() edit_model_schema = ReportSchedulePutSchema() order_columns = [ "active", "description", "created_by.first_name", "changed_by.first_name", "changed_on", "changed_on_delta_humanized", "created_on", "crontab", "last_eval_dttm", "name", "type", "crontab_humanized", ] search_columns = [ "name", "active", "created_by", "type", "last_state", "creation_method", "dashboard_id", "chart_id", ] search_filters = {"name": [ReportScheduleAllTextFilter]} allowed_rel_fields = {"owners", "chart", "dashboard", "database", "created_by"} filter_rel_fields = { "chart": [["id", ChartFilter, lambda: []]], "dashboard": [["id", DashboardAccessFilter, lambda: []]], "database": [["id", DatabaseFilter, lambda: []]], } text_field_rel_fields = { "dashboard": "dashboard_title", "chart": "slice_name", "database": "database_name", } related_field_filters = { "dashboard": "dashboard_title", "chart": "slice_name", "database": "database_name", "owners": RelatedFieldFilter("first_name", FilterRelatedOwners), } apispec_parameter_schemas = { "get_delete_ids_schema": get_delete_ids_schema, } openapi_spec_tag = "Report Schedules" openapi_spec_methods = openapi_spec_methods_override @expose("/<int:pk>", methods=["DELETE"]) @protect() @safe @statsd_metrics @permission_name("delete") def delete(self, pk: int) -> Response: """Delete a Report Schedule --- delete: description: >- Delete a Report Schedule parameters: - in: path schema: type: integer name: pk description: The report schedule pk responses: 200: description: Item deleted content: application/json: schema: type: object properties: message: type: string 403: $ref: '#/components/responses/403' 404: $ref: '#/components/responses/404' 422: $ref: '#/components/responses/422' 500: $ref: '#/components/responses/500' """ try: DeleteReportScheduleCommand(g.user, pk).run() return self.response(200, message="OK") except ReportScheduleNotFoundError: return self.response_404() except ReportScheduleForbiddenError: return self.response_403() except ReportScheduleDeleteFailedError as ex: logger.error( "Error deleting report schedule %s: %s", self.__class__.__name__, str(ex), exc_info=True, ) return self.response_422(message=str(ex)) @expose("/", methods=["POST"]) @protect() @statsd_metrics @permission_name("post") def post(self) -> Response: """Creates a new Report Schedule --- post: description: >- Create a new Report Schedule requestBody: description: Report Schedule schema required: true content: application/json: schema: $ref: '#/components/schemas/{{self.__class__.__name__}}.post' responses: 201: description: Report schedule added content: application/json: schema: type: object properties: id: type: number result: $ref: '#/components/schemas/{{self.__class__.__name__}}.post' 400: $ref: '#/components/responses/400' 401: $ref: '#/components/responses/401' 404: $ref: '#/components/responses/404' 500: $ref: '#/components/responses/500' """ if not request.is_json: return self.response_400(message="Request is not JSON") try: item = self.add_model_schema.load(request.json) # This validates custom Schema with custom validations except ValidationError as error: return self.response_400(message=error.messages) try: new_model = CreateReportScheduleCommand(g.user, item).run() return self.response(201, id=new_model.id, result=item) except ReportScheduleNotFoundError as ex: return self.response_400(message=str(ex)) except ReportScheduleInvalidError as ex: return self.response_422(message=ex.normalized_messages()) except ReportScheduleCreateFailedError as ex: logger.error( "Error creating report schedule %s: %s", self.__class__.__name__, str(ex), exc_info=True, ) return self.response_422(message=str(ex)) @expose("/<int:pk>", methods=["PUT"]) @protect() @safe @statsd_metrics @permission_name("put") def put(self, pk: int) -> Response: """Updates an Report Schedule --- put: description: >- Updates a Report Schedule parameters: - in: path schema: type: integer name: pk description: The Report Schedule pk requestBody: description: Report Schedule schema required: true content: application/json: schema: $ref: '#/components/schemas/{{self.__class__.__name__}}.put' responses: 200: description: Report Schedule changed content: application/json: schema: type: object properties: id: type: number result: $ref: '#/components/schemas/{{self.__class__.__name__}}.put' 400: $ref: '#/components/responses/400' 401: $ref: '#/components/responses/401' 403: $ref: '#/components/responses/403' 404: $ref: '#/components/responses/404' 500: $ref: '#/components/responses/500' """ if not request.is_json: return self.response_400(message="Request is not JSON") try: item = self.edit_model_schema.load(request.json) # This validates custom Schema with custom validations except ValidationError as error: return self.response_400(message=error.messages) try: new_model = UpdateReportScheduleCommand(g.user, pk, item).run() return self.response(200, id=new_model.id, result=item) except ReportScheduleNotFoundError: return self.response_404() except ReportScheduleInvalidError as ex: return self.response_422(message=ex.normalized_messages()) except ReportScheduleForbiddenError: return self.response_403() except ReportScheduleUpdateFailedError as ex: logger.error( "Error updating report %s: %s", self.__class__.__name__, str(ex), exc_info=True, ) return self.response_422(message=str(ex)) @expose("/", methods=["DELETE"]) @protect() @safe @statsd_metrics @rison(get_delete_ids_schema) def bulk_delete(self, **kwargs: Any) -> Response: """Delete bulk Report Schedule layers --- delete: description: >- Deletes multiple report schedules in a bulk operation. parameters: - in: query name: q content: application/json: schema: $ref: '#/components/schemas/get_delete_ids_schema' responses: 200: description: Report Schedule bulk delete content: application/json: schema: type: object properties: message: type: string 401: $ref: '#/components/responses/401' 403: $ref: '#/components/responses/403' 404: $ref: '#/components/responses/404' 422: $ref: '#/components/responses/422' 500: $ref: '#/components/responses/500' """ item_ids = kwargs["rison"] try: BulkDeleteReportScheduleCommand(g.user, item_ids).run() return self.response( 200, message=ngettext( "Deleted %(num)d report schedule", "Deleted %(num)d report schedules", num=len(item_ids), ), ) except ReportScheduleNotFoundError: return self.response_404() except ReportScheduleForbiddenError: return self.response_403() except ReportScheduleBulkDeleteFailedError as ex: return self.response_422(message=str(ex))
the-stack_0_15824
import copy from membase.helper.cluster_helper import ClusterOperationHelper from couchbase_helper.documentgenerator import BlobGenerator from .xdcrnewbasetests import XDCRNewBaseTest from .xdcrnewbasetests import NodeHelper from .xdcrnewbasetests import Utility, BUCKET_NAME, OPS from remote.remote_util import RemoteMachineShellConnection from lib.memcached.helper.data_helper import MemcachedClientHelper from membase.api.rest_client import RestConnection # Assumption that at least 2 nodes on every cluster class bidirectional(XDCRNewBaseTest): def setUp(self): super(bidirectional, self).setUp() self.src_cluster = self.get_cb_cluster_by_name('C1') self.src_master = self.src_cluster.get_master_node() self.dest_cluster = self.get_cb_cluster_by_name('C2') self.dest_master = self.dest_cluster.get_master_node() def tearDown(self): super(bidirectional, self).tearDown() def __perform_ops_joint_sets(self): # Merging the keys as keys are actually replicated. temp_expires = self._expires self._expires = 0 # Assigning it to 0, so that merge_buckets don't wait for expiration here. self.merge_all_buckets() tasks = [] kv_gen_src = self.src_cluster.get_kv_gen()[OPS.CREATE] gen_update = BlobGenerator(kv_gen_src.name, kv_gen_src.seed, kv_gen_src.value_size, start=0, end=int(kv_gen_src.end * (float)(self._perc_upd) / 100)) gen_delete = BlobGenerator(kv_gen_src.name, kv_gen_src.seed, kv_gen_src.value_size, start=int((kv_gen_src.end) * (float)(100 - self._perc_del) / 100), end=kv_gen_src.end) if "C1" in self._upd_clusters: tasks += self.src_cluster.async_load_all_buckets_from_generator(gen_update, OPS.UPDATE, self._expires) if "C2" in self._upd_clusters: tasks += self.dest_cluster.async_load_all_buckets_from_generator(gen_update, OPS.UPDATE, self._expires) if "C1" in self._del_clusters: tasks += self.src_cluster.async_load_all_buckets_from_generator(gen_delete, OPS.DELETE, 0) if "C2" in self._del_clusters: tasks += self.dest_cluster.async_load_all_buckets_from_generator(gen_delete, OPS.DELETE, 0) for task in tasks: task.result() self._expires = temp_expires if (self._wait_for_expiration and self._expires) and ("C1" in self._upd_clusters or "C2" in self._upd_clusters): self.sleep(self._expires) self.sleep(self._wait_timeout) """Bidirectional replication between two clusters(currently), create-updates-deletes on DISJOINT sets on same bucket.""" def load_with_ops(self): self.setup_xdcr_and_load() self.perform_update_delete() self.verify_results() """Bidirectional replication between two clusters(currently), create-updates-deletes on DISJOINT sets on same bucket. Here running incremental load on both cluster1 and cluster2 as specified by the user/conf file""" def load_with_async_ops(self): self.setup_xdcr_and_load() self.async_perform_update_delete() self.verify_results() """Testing Bidirectional load( Loading at source/destination). Failover node at Source/Destination while Create/Update/Delete are performed in parallel based on doc-ops specified by the user. Verifying whether XDCR replication is successful on subsequent destination clusters. """ def load_with_async_ops_and_joint_sets(self): self.setup_xdcr_and_load() self.async_perform_update_delete() self.verify_results() def load_with_async_ops_with_warmup(self): self.setup_xdcr_and_load() warmupnodes = [] if "C1" in self._warmup: warmupnodes.append(self.src_cluster.warmup_node()) if "C2" in self._warmup: warmupnodes.append(self.dest_cluster.warmup_node()) self.sleep(self._wait_timeout) NodeHelper.wait_warmup_completed(warmupnodes) self.async_perform_update_delete() self.sleep(self._wait_timeout // 2) self.verify_results() def load_with_async_ops_with_warmup_master(self): self.setup_xdcr_and_load() warmupnodes = [] if "C1" in self._warmup: warmupnodes.append(self.src_cluster.warmup_node(master=True)) if "C2" in self._warmup: warmupnodes.append(self.dest_cluster.warmup_node(master=True)) self.sleep(self._wait_timeout) NodeHelper.wait_warmup_completed(warmupnodes) self.async_perform_update_delete() self.sleep(self._wait_timeout // 2) self.verify_results() def load_with_async_ops_and_joint_sets_with_warmup(self): bucket_type = self._input.param("bucket_type", "membase") if bucket_type == "ephemeral": "Test case does not apply for Ephemeral buckets" return self.setup_xdcr_and_load() warmupnodes = [] if "C1" in self._warmup: warmupnodes.append(self.src_cluster.warmup_node()) if "C2" in self._warmup: warmupnodes.append(self.dest_cluster.warmup_node()) self.sleep(self._wait_timeout) self.async_perform_update_delete() self.sleep(self._wait_timeout // 2) NodeHelper.wait_warmup_completed(warmupnodes) self.verify_results() def load_with_async_ops_and_joint_sets_with_warmup_master(self): self.setup_xdcr_and_load() warmupnodes = [] if "C1" in self._warmup: warmupnodes.append(self.src_cluster.warmup_node(master=True)) if "C2" in self._warmup: warmupnodes.append(self.dest_cluster.warmup_node(master=True)) self.sleep(self._wait_timeout) self.async_perform_update_delete() self.sleep(self._wait_timeout // 2) NodeHelper.wait_warmup_completed(warmupnodes) self.verify_results() def load_with_failover(self): self.setup_xdcr_and_load() if "C1" in self._failover: self.src_cluster.failover_and_rebalance_nodes() if "C2" in self._failover: self.dest_cluster.failover_and_rebalance_nodes() self.sleep(self._wait_timeout // 6) self.perform_update_delete() self.sleep(300) self.verify_results() def load_with_failover_then_add_back(self): self.setup_xdcr_and_load() if "C1" in self._failover: self.src_cluster.failover_and_rebalance_nodes(rebalance=False) self.src_cluster.add_back_node() if "C2" in self._failover: self.dest_cluster.failover_and_rebalance_nodes(rebalance=False) self.dest_cluster.add_back_node() self.perform_update_delete() self.verify_results() def load_with_failover_master(self): self.setup_xdcr_and_load() if "C1" in self._failover: self.src_cluster.failover_and_rebalance_master() if "C2" in self._failover: self.dest_cluster.failover_and_rebalance_master() self.sleep(self._wait_timeout // 6) self.perform_update_delete() self.verify_results() """Replication with compaction ddocs and view queries on both clusters. This test begins by loading a given number of items on both clusters. It creates _num_views as development/production view with default map view funcs(_is_dev_ddoc = True by default) on both clusters. Then we disabled compaction for ddoc on src cluster. While we don't reach expected fragmentation for ddoc on src cluster we update docs and perform view queries for all views. Then we start compaction when fragmentation was reached fragmentation_value. When compaction was completed we perform a full verification: wait for the disk queues to drain and then verify that there has been no data loss on both clusters.""" def replication_with_ddoc_compaction(self): bucket_type = self._input.param("bucket_type", "membase") if bucket_type == "ephemeral": self.log.info("Test case does not apply to ephemeral") return self.setup_xdcr() self.src_cluster.load_all_buckets(self._num_items) self.dest_cluster.load_all_buckets(self._num_items) num_views = self._input.param("num_views", 5) is_dev_ddoc = self._input.param("is_dev_ddoc", True) fragmentation_value = self._input.param("fragmentation_value", 80) for bucket in self.src_cluster.get_buckets(): views = Utility.make_default_views(bucket.name, num_views, is_dev_ddoc) ddoc_name = "ddoc1" prefix = ("", "dev_")[is_dev_ddoc] query = {"full_set": "true", "stale": "false"} tasks = self.src_cluster.async_create_views(ddoc_name, views, BUCKET_NAME.DEFAULT) tasks += self.dest_cluster.async_create_views(ddoc_name, views, BUCKET_NAME.DEFAULT) for task in tasks: task.result(self._poll_timeout) self.src_cluster.disable_compaction() fragmentation_monitor = self.src_cluster.async_monitor_view_fragmentation(prefix + ddoc_name, fragmentation_value, BUCKET_NAME.DEFAULT) # generate load until fragmentation reached while fragmentation_monitor.state != "FINISHED": # update docs to create fragmentation self.src_cluster.update_delete_data(OPS.UPDATE) for view in views: # run queries to create indexes self.src_cluster.query_view(prefix + ddoc_name, view.name, query) self.dest_cluster.query_view(prefix + ddoc_name, view.name, query) fragmentation_monitor.result() compaction_task = self.src_cluster.async_compact_view(prefix + ddoc_name, 'default') self.assertTrue(compaction_task.result()) self.verify_results() def replication_with_view_queries_and_ops(self): bucket_type = self._input.param("bucket_type", "membase") if bucket_type == "ephemeral": self.log.info("Test case does not apply to ephemeral") return tasks = [] try: self.setup_xdcr() self.src_cluster.load_all_buckets(self._num_items) self.dest_cluster.load_all_buckets(self._num_items) num_views = self._input.param("num_views", 5) is_dev_ddoc = self._input.param("is_dev_ddoc", True) for bucket in self.src_cluster.get_buckets(): views = Utility.make_default_views(bucket.name, num_views, is_dev_ddoc) ddoc_name = "ddoc1" prefix = ("", "dev_")[is_dev_ddoc] query = {"full_set": "true", "stale": "false", "connection_timeout": 60000} tasks = self.src_cluster.async_create_views(ddoc_name, views, BUCKET_NAME.DEFAULT) tasks += self.dest_cluster.async_create_views(ddoc_name, views, BUCKET_NAME.DEFAULT) for task in tasks: task.result(self._poll_timeout) tasks = [] # Setting up doc-ops at source nodes if "C1" in self._upd_clusters: tasks.extend(self.src_cluster.async_update_delete(OPS.UPDATE, self._perc_upd, self._expires)) if "C1" in self._del_clusters: tasks.extend(self.src_cluster.async_update_delete(OPS.DELETE, self._perc_del)) if "C2" in self._upd_clusters: tasks.extend(self.dest_cluster.async_update_delete(OPS.UPDATE, self._perc_upd, self._expires)) if "C2" in self._del_clusters: tasks.extend(self.dest_cluster.async_update_delete(OPS.DELETE, self._perc_del)) self.sleep(5) while True: for view in views: self.src_cluster.query_view(prefix + ddoc_name, view.name, query) self.dest_cluster.query_view(prefix + ddoc_name, view.name, query) if {task.state for task in tasks} != {"FINISHED"}: continue else: if self._wait_for_expiration: if "C1" in self._upd_clusters or "C2" in self._upd_clusters: self.sleep(self._expires) break self.merge_all_buckets() self.src_cluster.verify_items_count() self.dest_cluster.verify_items_count() tasks = [] src_buckets = self.src_cluster.get_buckets() dest_buckets = self.dest_cluster.get_buckets() for view in views: tasks.append(self.src_cluster.async_query_view(prefix + ddoc_name, view.name, query, src_buckets[0].kvs[1].__len__())) tasks.append(self.src_cluster.async_query_view(prefix + ddoc_name, view.name, query, dest_buckets[0].kvs[1].__len__())) for task in tasks: task.result(self._poll_timeout) self.verify_results() finally: # For timeout error, all tasks to be cancelled # Before proceeding to next test for task in tasks: task.cancel() """Replication with disabled/enabled ddoc compaction on both clusters. This test begins by loading a given number of items on both clusters. Then we disabled or enabled compaction on both clusters( set via params). Then we mutate and delete data on clusters 3 times. After deletion we recreate deleted items. When data was changed 3 times we perform a full verification: wait for the disk queues to drain and then verify that there has been no data loss on both clusters.""" def replication_with_disabled_ddoc_compaction(self): self.setup_xdcr() self.src_cluster.load_all_buckets(self._num_items) self.dest_cluster.load_all_buckets(self._num_items) if "C1" in self._disable_compaction: self.src_cluster.disable_compaction() if "C2" in self._disable_compaction: self.dest_cluster.disable_compaction() # perform doc's ops 3 times to increase rev number for _ in range(3): self.async_perform_update_delete() # wait till deletes have been sent to recreate self.sleep(60) # restore(re-creating) deleted items if 'C1' in self._del_clusters: c1_kv_gen = self.src_cluster.get_kv_gen() c1_gen_delete = copy.deepcopy(c1_kv_gen[OPS.DELETE]) if self._expires: # if expiration set, recreate those keys before # trying to update c1_gen_update = copy.deepcopy(c1_kv_gen[OPS.UPDATE]) self.src_cluster.load_all_buckets_from_generator(kv_gen=c1_gen_update) self.src_cluster.load_all_buckets_from_generator(kv_gen=c1_gen_delete) if 'C2' in self._del_clusters: c2_kv_gen = self.dest_cluster.get_kv_gen() c2_gen_delete = copy.deepcopy(c2_kv_gen[OPS.DELETE]) if self._expires: c2_gen_update = copy.deepcopy(c2_kv_gen[OPS.UPDATE]) self.dest_cluster.load_all_buckets_from_generator(kv_gen=c2_gen_update) self.dest_cluster.load_all_buckets_from_generator(kv_gen=c2_gen_delete) # wait till we recreate deleted keys before we can delete/update self.sleep(300) self.verify_results() def replication_while_rebooting_a_non_master_src_dest_node(self): bucket_type = self._input.param("bucket_type", "membase") if bucket_type == "ephemeral": self.log.info("Test case does not apply to ephemeral") return self.setup_xdcr_and_load() self.async_perform_update_delete() self.sleep(self._wait_timeout) reboot_node_dest = self.dest_cluster.reboot_one_node(self) NodeHelper.wait_node_restarted(reboot_node_dest, self, wait_time=self._wait_timeout * 4, wait_if_warmup=True) reboot_node_src = self.src_cluster.reboot_one_node(self) NodeHelper.wait_node_restarted(reboot_node_src, self, wait_time=self._wait_timeout * 4, wait_if_warmup=True) self.sleep(120) ClusterOperationHelper.wait_for_ns_servers_or_assert([reboot_node_dest], self, wait_if_warmup=True) ClusterOperationHelper.wait_for_ns_servers_or_assert([reboot_node_src], self, wait_if_warmup=True) self.verify_results() def test_disk_full(self): self.setup_xdcr_and_load() self.verify_results() self.sleep(self._wait_timeout) zip_file = "%s.zip" % (self._input.param("file_name", "collectInfo")) try: for node in [self.src_master, self.dest_master]: self.shell = RemoteMachineShellConnection(node) self.shell.execute_cbcollect_info(zip_file) if self.shell.extract_remote_info().type.lower() != "windows": command = "unzip %s" % (zip_file) output, error = self.shell.execute_command(command) self.shell.log_command_output(output, error) if len(error) > 0: raise Exception("unable to unzip the files. Check unzip command output for help") cmd = 'grep -R "Approaching full disk warning." cbcollect_info*/' output, _ = self.shell.execute_command(cmd) else: cmd = "curl -0 http://{1}:{2}@{0}:8091/diag 2>/dev/null | grep 'Approaching full disk warning.'".format( self.src_master.ip, self.src_master.rest_username, self.src_master.rest_password) output, _ = self.shell.execute_command(cmd) self.assertNotEqual(len(output), 0, "Full disk warning not generated as expected in %s" % node.ip) self.log.info("Full disk warning generated as expected in %s" % node.ip) self.shell.delete_files(zip_file) self.shell.delete_files("cbcollect_info*") except Exception as e: self.log.info(e) def test_rollback(self): bucket = self.src_cluster.get_buckets()[0] src_nodes = self.src_cluster.get_nodes() dest_nodes = self.dest_cluster.get_nodes() nodes = src_nodes + dest_nodes # Stop Persistence on Node A & Node B for node in nodes: mem_client = MemcachedClientHelper.direct_client(node, bucket) mem_client.stop_persistence() goxdcr_log = NodeHelper.get_goxdcr_log_dir(self._input.servers[0])\ + '/goxdcr.log*' self.setup_xdcr() self.src_cluster.pause_all_replications() self.dest_cluster.pause_all_replications() gen = BlobGenerator("C1-", "C1-", self._value_size, end=self._num_items) self.src_cluster.load_all_buckets_from_generator(gen) gen = BlobGenerator("C2-", "C2-", self._value_size, end=self._num_items) self.dest_cluster.load_all_buckets_from_generator(gen) self.src_cluster.resume_all_replications() self.dest_cluster.resume_all_replications() # Perform mutations on the bucket self.async_perform_update_delete() rest1 = RestConnection(self.src_cluster.get_master_node()) rest2 = RestConnection(self.dest_cluster.get_master_node()) # Fetch count of docs in src and dest cluster _count1 = rest1.fetch_bucket_stats(bucket=bucket.name)["op"]["samples"]["curr_items"][-1] _count2 = rest2.fetch_bucket_stats(bucket=bucket.name)["op"]["samples"]["curr_items"][-1] self.log.info("Before rollback src cluster count = {0} dest cluster count = {1}".format(_count1, _count2)) # Kill memcached on Node A so that Node B becomes master shell = RemoteMachineShellConnection(self.src_cluster.get_master_node()) shell.kill_memcached() shell = RemoteMachineShellConnection(self.dest_cluster.get_master_node()) shell.kill_memcached() # Start persistence on Node B mem_client = MemcachedClientHelper.direct_client(src_nodes[1], bucket) mem_client.start_persistence() mem_client = MemcachedClientHelper.direct_client(dest_nodes[1], bucket) mem_client.start_persistence() # Failover Node B failover_task = self.src_cluster.async_failover() failover_task.result() failover_task = self.dest_cluster.async_failover() failover_task.result() # Wait for Failover & rollback to complete self.sleep(60) # Fetch count of docs in src and dest cluster _count1 = rest1.fetch_bucket_stats(bucket=bucket.name)["op"]["samples"]["curr_items"][-1] _count2 = rest2.fetch_bucket_stats(bucket=bucket.name)["op"]["samples"]["curr_items"][-1] self.log.info("After rollback src cluster count = {0} dest cluster count = {1}".format(_count1, _count2)) self.assertTrue(self.src_cluster.wait_for_outbound_mutations(), "Mutations in source cluster not replicated to target after rollback") self.assertTrue(self.dest_cluster.wait_for_outbound_mutations(), "Mutations in target cluster not replicated to source after rollback") _, count = NodeHelper.check_goxdcr_log( src_nodes[0], "Received rollback from DCP stream", goxdcr_log) self.assertGreater(count, 0, "rollback did not happen as expected") self.log.info("rollback happened as expected") _, count = NodeHelper.check_goxdcr_log( dest_nodes[0], "Received rollback from DCP stream", goxdcr_log) self.assertGreater(count, 0, "rollback did not happen as expected") self.log.info("rollback happened as expected") def test_scramsha(self): """ Creates a new bi-xdcr replication with scram-sha Make sure to pass use-scramsha=True from command line """ self.setup_xdcr() self.sleep(60, "wait before checking logs") for node in [self.src_cluster.get_master_node()]+[self.dest_cluster.get_master_node()]: _, count = NodeHelper.check_goxdcr_log(node, "HttpAuthMech=ScramSha for remote cluster reference remoteCluster", timeout=60) if count <= 0: self.fail("Node {0} does not use SCRAM-SHA authentication".format(node.ip)) else: self.log.info("SCRAM-SHA auth successful on node {0}".format(node.ip)) self.verify_results() def test_update_to_scramsha_auth(self): """ Start with ordinary replication, then switch to use scram_sha_auth Search for success log stmtsS """ _, old_count = NodeHelper.check_goxdcr_log(self.src_cluster.get_master_node(), "HttpAuthMech=ScramSha for remote cluster reference remoteCluster", timeout=60) self.setup_xdcr() # modify remote cluster ref to use scramsha for remote_cluster in self.src_cluster.get_remote_clusters()+self.dest_cluster.get_remote_clusters(): remote_cluster.use_scram_sha_auth() self.sleep(60, "wait before checking the logs for using scram-sha") for node in [self.src_cluster.get_master_node()]+[self.dest_cluster.get_master_node()]: _, count = NodeHelper.check_goxdcr_log(node, "HttpAuthMech=ScramSha for remote cluster reference remoteCluster", timeout=60) if count <= old_count: self.fail("Node {0} does not use SCRAM-SHA authentication".format(node.ip)) else: self.log.info("SCRAM-SHA auth successful on node {0}".format(node.ip)) self.verify_results()
the-stack_0_15825
# -*- coding: utf-8 -*- """ Provides the service module for systemd .. versionadded:: 0.10.0 .. important:: If you feel that Salt should be using this module to manage services on a minion, and it is using a different module (or gives an error similar to *'service.start' is not available*), see :ref:`here <module-provider-override>`. .. important:: This is an implementation of virtual 'service' module. As such, you must call it under the name 'service' and NOT 'systemd'. You can see that also in the examples below. """ # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import errno import fnmatch import glob import logging import os import re import shlex # Import Salt libs import salt.utils.files import salt.utils.itertools import salt.utils.path import salt.utils.stringutils import salt.utils.systemd from salt.exceptions import CommandExecutionError # Import 3rd-party libs from salt.ext import six log = logging.getLogger(__name__) __func_alias__ = { "reload_": "reload", "unmask_": "unmask", } SYSTEM_CONFIG_PATHS = ("/lib/systemd/system", "/usr/lib/systemd/system") LOCAL_CONFIG_PATH = "/etc/systemd/system" INITSCRIPT_PATH = "/etc/init.d" VALID_UNIT_TYPES = ( "service", "socket", "device", "mount", "automount", "swap", "target", "path", "timer", ) # Define the module's virtual name __virtualname__ = "service" # Disable check for string substitution # pylint: disable=E1321 def __virtual__(): """ Only work on systems that have been booted with systemd """ if __grains__.get("kernel") == "Linux" and salt.utils.systemd.booted(__context__): return __virtualname__ return ( False, "The systemd execution module failed to load: only available on Linux " "systems which have been booted with systemd.", ) def _root(path, root): """ Relocate an absolute path to a new root directory. """ if root: return os.path.join(root, os.path.relpath(path, os.path.sep)) else: return path def _canonical_unit_name(name): """ Build a canonical unit name treating unit names without one of the valid suffixes as a service. """ if not isinstance(name, six.string_types): name = six.text_type(name) if any(name.endswith(suffix) for suffix in VALID_UNIT_TYPES): return name return "%s.service" % name def _check_available(name): """ Returns boolean telling whether or not the named service is available """ _status = _systemctl_status(name) sd_version = salt.utils.systemd.version(__context__) if sd_version is not None and sd_version >= 231: # systemd 231 changed the output of "systemctl status" for unknown # services, and also made it return an exit status of 4. If we are on # a new enough version, check the retcode, otherwise fall back to # parsing the "systemctl status" output. # See: https://github.com/systemd/systemd/pull/3385 # Also: https://github.com/systemd/systemd/commit/3dced37 return 0 <= _status["retcode"] < 4 out = _status["stdout"].lower() if "could not be found" in out: # Catch cases where the systemd version is < 231 but the return code # and output changes have been backported (e.g. RHEL 7.3). return False for line in salt.utils.itertools.split(out, "\n"): match = re.match(r"\s+loaded:\s+(\S+)", line) if match: ret = match.group(1) != "not-found" break else: raise CommandExecutionError("Failed to get information on unit '%s'" % name) return ret def _check_for_unit_changes(name): """ Check for modified/updated unit files, and run a daemon-reload if any are found. """ contextkey = "systemd._check_for_unit_changes.{0}".format(name) if contextkey not in __context__: if _untracked_custom_unit_found(name) or _unit_file_changed(name): systemctl_reload() # Set context key to avoid repeating this check __context__[contextkey] = True def _check_unmask(name, unmask, unmask_runtime, root=None): """ Common code for conditionally removing masks before making changes to a service's state. """ if unmask: unmask_(name, runtime=False, root=root) if unmask_runtime: unmask_(name, runtime=True, root=root) def _clear_context(): """ Remove context """ # Using list() here because modifying a dictionary during iteration will # raise a RuntimeError. for key in list(__context__): try: if key.startswith("systemd._systemctl_status."): __context__.pop(key) except AttributeError: continue def _default_runlevel(): """ Try to figure out the default runlevel. It is kept in /etc/init/rc-sysinit.conf, but can be overridden with entries in /etc/inittab, or via the kernel command-line at boot """ # Try to get the "main" default. If this fails, throw up our # hands and just guess "2", because things are horribly broken try: with salt.utils.files.fopen("/etc/init/rc-sysinit.conf") as fp_: for line in fp_: line = salt.utils.stringutils.to_unicode(line) if line.startswith("env DEFAULT_RUNLEVEL"): runlevel = line.split("=")[-1].strip() except Exception: # pylint: disable=broad-except return "2" # Look for an optional "legacy" override in /etc/inittab try: with salt.utils.files.fopen("/etc/inittab") as fp_: for line in fp_: line = salt.utils.stringutils.to_unicode(line) if not line.startswith("#") and "initdefault" in line: runlevel = line.split(":")[1] except Exception: # pylint: disable=broad-except pass # The default runlevel can also be set via the kernel command-line. try: valid_strings = set( ("0", "1", "2", "3", "4", "5", "6", "s", "S", "-s", "single") ) with salt.utils.files.fopen("/proc/cmdline") as fp_: for line in fp_: line = salt.utils.stringutils.to_unicode(line) for arg in line.strip().split(): if arg in valid_strings: runlevel = arg break except Exception: # pylint: disable=broad-except pass return runlevel def _get_systemd_services(root): """ Use os.listdir() to get all the unit files """ ret = set() for path in SYSTEM_CONFIG_PATHS + (LOCAL_CONFIG_PATH,): # Make sure user has access to the path, and if the path is a # link it's likely that another entry in SYSTEM_CONFIG_PATHS # or LOCAL_CONFIG_PATH points to it, so we can ignore it. path = _root(path, root) if os.access(path, os.R_OK) and not os.path.islink(path): for fullname in os.listdir(path): try: unit_name, unit_type = fullname.rsplit(".", 1) except ValueError: continue if unit_type in VALID_UNIT_TYPES: ret.add(unit_name if unit_type == "service" else fullname) return ret def _get_sysv_services(root, systemd_services=None): """ Use os.listdir() and os.access() to get all the initscripts """ initscript_path = _root(INITSCRIPT_PATH, root) try: sysv_services = os.listdir(initscript_path) except OSError as exc: if exc.errno == errno.ENOENT: pass elif exc.errno == errno.EACCES: log.error( "Unable to check sysvinit scripts, permission denied to %s", initscript_path, ) else: log.error( "Error %d encountered trying to check sysvinit scripts: %s", exc.errno, exc.strerror, ) return [] if systemd_services is None: systemd_services = _get_systemd_services(root) ret = [] for sysv_service in sysv_services: if os.access(os.path.join(initscript_path, sysv_service), os.X_OK): if sysv_service in systemd_services: log.debug( "sysvinit script '%s' found, but systemd unit " "'%s.service' already exists", sysv_service, sysv_service, ) continue ret.append(sysv_service) return ret def _get_service_exec(): """ Returns the path to the sysv service manager (either update-rc.d or chkconfig) """ contextkey = "systemd._get_service_exec" if contextkey not in __context__: executables = ("update-rc.d", "chkconfig") for executable in executables: service_exec = salt.utils.path.which(executable) if service_exec is not None: break else: raise CommandExecutionError( "Unable to find sysv service manager (tried {0})".format( ", ".join(executables) ) ) __context__[contextkey] = service_exec return __context__[contextkey] def _runlevel(): """ Return the current runlevel """ contextkey = "systemd._runlevel" if contextkey in __context__: return __context__[contextkey] out = __salt__["cmd.run"]("runlevel", python_shell=False, ignore_retcode=True) try: ret = out.split()[1] except IndexError: # The runlevel is unknown, return the default ret = _default_runlevel() __context__[contextkey] = ret return ret def _strip_scope(msg): """ Strip unnecessary message about running the command with --scope from stderr so that we can raise an exception with the remaining stderr text. """ ret = [] for line in msg.splitlines(): if not line.endswith(".scope"): ret.append(line) return "\n".join(ret).strip() def _systemctl_cmd(action, name=None, systemd_scope=False, no_block=False, root=None): """ Build a systemctl command line. Treat unit names without one of the valid suffixes as a service. """ ret = [] if ( systemd_scope and salt.utils.systemd.has_scope(__context__) and __salt__["config.get"]("systemd.scope", True) ): ret.extend(["systemd-run", "--scope"]) ret.append("systemctl") if no_block: ret.append("--no-block") if root: ret.extend(["--root", root]) if isinstance(action, six.string_types): action = shlex.split(action) ret.extend(action) if name is not None: ret.append(_canonical_unit_name(name)) if "status" in ret: ret.extend(["-n", "0"]) return ret def _systemctl_status(name): """ Helper function which leverages __context__ to keep from running 'systemctl status' more than once. """ contextkey = "systemd._systemctl_status.%s" % name if contextkey in __context__: return __context__[contextkey] __context__[contextkey] = __salt__["cmd.run_all"]( _systemctl_cmd("status", name), python_shell=False, redirect_stderr=True, ignore_retcode=True, ) return __context__[contextkey] def _sysv_enabled(name, root): """ A System-V style service is assumed disabled if the "startup" symlink (starts with "S") to its script is found in /etc/init.d in the current runlevel. """ # Find exact match (disambiguate matches like "S01anacron" for cron) rc = _root("/etc/rc{}.d/S*{}".format(_runlevel(), name), root) for match in glob.glob(rc): if re.match(r"S\d{,2}%s" % name, os.path.basename(match)): return True return False def _untracked_custom_unit_found(name, root=None): """ If the passed service name is not available, but a unit file exist in /etc/systemd/system, return True. Otherwise, return False. """ system = _root("/etc/systemd/system", root) unit_path = os.path.join(system, _canonical_unit_name(name)) return os.access(unit_path, os.R_OK) and not _check_available(name) def _unit_file_changed(name): """ Returns True if systemctl reports that the unit file has changed, otherwise returns False. """ status = _systemctl_status(name)["stdout"].lower() return "'systemctl daemon-reload'" in status def systemctl_reload(): """ .. versionadded:: 0.15.0 Reloads systemctl, an action needed whenever unit files are updated. CLI Example: .. code-block:: bash salt '*' service.systemctl_reload """ out = __salt__["cmd.run_all"]( _systemctl_cmd("--system daemon-reload"), python_shell=False, redirect_stderr=True, ) if out["retcode"] != 0: raise CommandExecutionError( "Problem performing systemctl daemon-reload: %s" % out["stdout"] ) _clear_context() return True def get_running(): """ Return a list of all running services, so far as systemd is concerned CLI Example: .. code-block:: bash salt '*' service.get_running """ ret = set() # Get running systemd units out = __salt__["cmd.run"]( _systemctl_cmd("--full --no-legend --no-pager"), python_shell=False, ignore_retcode=True, ) for line in salt.utils.itertools.split(out, "\n"): try: comps = line.strip().split() fullname = comps[0] if len(comps) > 3: active_state = comps[3] except ValueError as exc: log.error(exc) continue else: if active_state != "running": continue try: unit_name, unit_type = fullname.rsplit(".", 1) except ValueError: continue if unit_type in VALID_UNIT_TYPES: ret.add(unit_name if unit_type == "service" else fullname) return sorted(ret) def get_enabled(root=None): """ Return a list of all enabled services root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.get_enabled """ ret = set() # Get enabled systemd units. Can't use --state=enabled here because it's # not present until systemd 216. out = __salt__["cmd.run"]( _systemctl_cmd("--full --no-legend --no-pager list-unit-files", root=root), python_shell=False, ignore_retcode=True, ) for line in salt.utils.itertools.split(out, "\n"): try: fullname, unit_state = line.strip().split(None, 1) except ValueError: continue else: if unit_state != "enabled": continue try: unit_name, unit_type = fullname.rsplit(".", 1) except ValueError: continue if unit_type in VALID_UNIT_TYPES: ret.add(unit_name if unit_type == "service" else fullname) # Add in any sysvinit services that are enabled ret.update(set([x for x in _get_sysv_services(root) if _sysv_enabled(x, root)])) return sorted(ret) def get_disabled(root=None): """ Return a list of all disabled services root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.get_disabled """ ret = set() # Get disabled systemd units. Can't use --state=disabled here because it's # not present until systemd 216. out = __salt__["cmd.run"]( _systemctl_cmd("--full --no-legend --no-pager list-unit-files", root=root), python_shell=False, ignore_retcode=True, ) for line in salt.utils.itertools.split(out, "\n"): try: fullname, unit_state = line.strip().split(None, 1) except ValueError: continue else: if unit_state != "disabled": continue try: unit_name, unit_type = fullname.rsplit(".", 1) except ValueError: continue if unit_type in VALID_UNIT_TYPES: ret.add(unit_name if unit_type == "service" else fullname) # Add in any sysvinit services that are disabled ret.update(set([x for x in _get_sysv_services(root) if not _sysv_enabled(x, root)])) return sorted(ret) def get_static(root=None): """ .. versionadded:: 2015.8.5 Return a list of all static services root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.get_static """ ret = set() # Get static systemd units. Can't use --state=static here because it's # not present until systemd 216. out = __salt__["cmd.run"]( _systemctl_cmd("--full --no-legend --no-pager list-unit-files", root=root), python_shell=False, ignore_retcode=True, ) for line in salt.utils.itertools.split(out, "\n"): try: fullname, unit_state = line.strip().split(None, 1) except ValueError: continue else: if unit_state != "static": continue try: unit_name, unit_type = fullname.rsplit(".", 1) except ValueError: continue if unit_type in VALID_UNIT_TYPES: ret.add(unit_name if unit_type == "service" else fullname) # sysvinit services cannot be static return sorted(ret) def get_all(root=None): """ Return a list of all available services root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.get_all """ ret = _get_systemd_services(root) ret.update(set(_get_sysv_services(root, systemd_services=ret))) return sorted(ret) def available(name): """ .. versionadded:: 0.10.4 Check that the given service is available taking into account template units. CLI Example: .. code-block:: bash salt '*' service.available sshd """ _check_for_unit_changes(name) return _check_available(name) def missing(name): """ .. versionadded:: 2014.1.0 The inverse of :py:func:`service.available <salt.modules.systemd.available>`. Returns ``True`` if the specified service is not available, otherwise returns ``False``. CLI Example: .. code-block:: bash salt '*' service.missing sshd """ return not available(name) def unmask_(name, runtime=False, root=None): """ .. versionadded:: 2015.5.0 .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html Unmask the specified service with systemd runtime : False Set to ``True`` to unmask this service only until the next reboot .. versionadded:: 2017.7.0 In previous versions, this function would remove whichever mask was identified by running ``systemctl is-enabled`` on the service. However, since it is possible to both have both indefinite and runtime masks on a service simultaneously, this function now removes a runtime mask only when this argument is set to ``True``, and otherwise removes an indefinite mask. root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.unmask foo salt '*' service.unmask foo runtime=True """ _check_for_unit_changes(name) if not masked(name, runtime, root=root): log.debug("Service '%s' is not %smasked", name, "runtime-" if runtime else "") return True cmd = "unmask --runtime" if runtime else "unmask" out = __salt__["cmd.run_all"]( _systemctl_cmd(cmd, name, systemd_scope=True, root=root), python_shell=False, redirect_stderr=True, ) if out["retcode"] != 0: raise CommandExecutionError("Failed to unmask service '%s'" % name) return True def mask(name, runtime=False, root=None): """ .. versionadded:: 2015.5.0 .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html Mask the specified service with systemd runtime : False Set to ``True`` to mask this service only until the next reboot .. versionadded:: 2015.8.5 root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.mask foo salt '*' service.mask foo runtime=True """ _check_for_unit_changes(name) cmd = "mask --runtime" if runtime else "mask" out = __salt__["cmd.run_all"]( _systemctl_cmd(cmd, name, systemd_scope=True, root=root), python_shell=False, redirect_stderr=True, ) if out["retcode"] != 0: raise CommandExecutionError( "Failed to mask service '%s'" % name, info=out["stdout"] ) return True def masked(name, runtime=False, root=None): """ .. versionadded:: 2015.8.0 .. versionchanged:: 2015.8.5 The return data for this function has changed. If the service is masked, the return value will now be the output of the ``systemctl is-enabled`` command (so that a persistent mask can be distinguished from a runtime mask). If the service is not masked, then ``False`` will be returned. .. versionchanged:: 2017.7.0 This function now returns a boolean telling the user whether a mask specified by the new ``runtime`` argument is set. If ``runtime`` is ``False``, this function will return ``True`` if an indefinite mask is set for the named service (otherwise ``False`` will be returned). If ``runtime`` is ``False``, this function will return ``True`` if a runtime mask is set, otherwise ``False``. Check whether or not a service is masked runtime : False Set to ``True`` to check for a runtime mask .. versionadded:: 2017.7.0 In previous versions, this function would simply return the output of ``systemctl is-enabled`` when the service was found to be masked. However, since it is possible to both have both indefinite and runtime masks on a service simultaneously, this function now only checks for runtime masks if this argument is set to ``True``. Otherwise, it will check for an indefinite mask. root Enable/disable/mask unit files in the specified root directory CLI Examples: .. code-block:: bash salt '*' service.masked foo salt '*' service.masked foo runtime=True """ _check_for_unit_changes(name) root_dir = _root("/run" if runtime else "/etc", root) link_path = os.path.join(root_dir, "systemd", "system", _canonical_unit_name(name)) try: return os.readlink(link_path) == "/dev/null" except OSError as exc: if exc.errno == errno.ENOENT: log.trace( "Path %s does not exist. This is normal if service '%s' is " "not masked or does not exist.", link_path, name, ) elif exc.errno == errno.EINVAL: log.error( "Failed to check mask status for service %s. Path %s is a " "file, not a symlink. This could be caused by changes in " "systemd and is probably a bug in Salt. Please report this " "to the developers.", name, link_path, ) return False def start(name, no_block=False, unmask=False, unmask_runtime=False): """ .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html Start the specified service with systemd no_block : False Set to ``True`` to start the service using ``--no-block``. .. versionadded:: 2017.7.0 unmask : False Set to ``True`` to remove an indefinite mask before attempting to start the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before starting. This behavior is no longer the default. unmask_runtime : False Set to ``True`` to remove a runtime mask before attempting to start the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before starting. This behavior is no longer the default. CLI Example: .. code-block:: bash salt '*' service.start <service name> """ _check_for_unit_changes(name) _check_unmask(name, unmask, unmask_runtime) ret = __salt__["cmd.run_all"]( _systemctl_cmd("start", name, systemd_scope=True, no_block=no_block), python_shell=False, ) if ret["retcode"] != 0: # Instead of returning a bool, raise an exception so that we can # include the error message in the return data. This helps give more # information to the user in instances where the service is masked. raise CommandExecutionError(_strip_scope(ret["stderr"])) return True def stop(name, no_block=False): """ .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html Stop the specified service with systemd no_block : False Set to ``True`` to start the service using ``--no-block``. .. versionadded:: 2017.7.0 CLI Example: .. code-block:: bash salt '*' service.stop <service name> """ _check_for_unit_changes(name) # Using cmd.run_all instead of cmd.retcode here to make unit tests easier return ( __salt__["cmd.run_all"]( _systemctl_cmd("stop", name, systemd_scope=True, no_block=no_block), python_shell=False, )["retcode"] == 0 ) def restart(name, no_block=False, unmask=False, unmask_runtime=False): """ .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html Restart the specified service with systemd no_block : False Set to ``True`` to start the service using ``--no-block``. .. versionadded:: 2017.7.0 unmask : False Set to ``True`` to remove an indefinite mask before attempting to restart the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before restarting. This behavior is no longer the default. unmask_runtime : False Set to ``True`` to remove a runtime mask before attempting to restart the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before restarting. This behavior is no longer the default. CLI Example: .. code-block:: bash salt '*' service.restart <service name> """ _check_for_unit_changes(name) _check_unmask(name, unmask, unmask_runtime) ret = __salt__["cmd.run_all"]( _systemctl_cmd("restart", name, systemd_scope=True, no_block=no_block), python_shell=False, ) if ret["retcode"] != 0: # Instead of returning a bool, raise an exception so that we can # include the error message in the return data. This helps give more # information to the user in instances where the service is masked. raise CommandExecutionError(_strip_scope(ret["stderr"])) return True def reload_(name, no_block=False, unmask=False, unmask_runtime=False): """ .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html Reload the specified service with systemd no_block : False Set to ``True`` to reload the service using ``--no-block``. .. versionadded:: 2017.7.0 unmask : False Set to ``True`` to remove an indefinite mask before attempting to reload the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before reloading. This behavior is no longer the default. unmask_runtime : False Set to ``True`` to remove a runtime mask before attempting to reload the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before reloading. This behavior is no longer the default. CLI Example: .. code-block:: bash salt '*' service.reload <service name> """ _check_for_unit_changes(name) _check_unmask(name, unmask, unmask_runtime) ret = __salt__["cmd.run_all"]( _systemctl_cmd("reload", name, systemd_scope=True, no_block=no_block), python_shell=False, ) if ret["retcode"] != 0: # Instead of returning a bool, raise an exception so that we can # include the error message in the return data. This helps give more # information to the user in instances where the service is masked. raise CommandExecutionError(_strip_scope(ret["stderr"])) return True def force_reload(name, no_block=True, unmask=False, unmask_runtime=False): """ .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html .. versionadded:: 0.12.0 Force-reload the specified service with systemd no_block : False Set to ``True`` to start the service using ``--no-block``. .. versionadded:: 2017.7.0 unmask : False Set to ``True`` to remove an indefinite mask before attempting to force-reload the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before force-reloading. This behavior is no longer the default. unmask_runtime : False Set to ``True`` to remove a runtime mask before attempting to force-reload the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before force-reloading. This behavior is no longer the default. CLI Example: .. code-block:: bash salt '*' service.force_reload <service name> """ _check_for_unit_changes(name) _check_unmask(name, unmask, unmask_runtime) ret = __salt__["cmd.run_all"]( _systemctl_cmd("force-reload", name, systemd_scope=True, no_block=no_block), python_shell=False, ) if ret["retcode"] != 0: # Instead of returning a bool, raise an exception so that we can # include the error message in the return data. This helps give more # information to the user in instances where the service is masked. raise CommandExecutionError(_strip_scope(ret["stderr"])) return True # The unused sig argument is required to maintain consistency with the API # established by Salt's service management states. def status(name, sig=None): # pylint: disable=unused-argument """ Return the status for a service via systemd. If the name contains globbing, a dict mapping service name to True/False values is returned. .. versionchanged:: 2018.3.0 The service name can now be a glob (e.g. ``salt*``) Args: name (str): The name of the service to check sig (str): Not implemented Returns: bool: True if running, False otherwise dict: Maps service name to True if running, False otherwise CLI Example: .. code-block:: bash salt '*' service.status <service name> [service signature] """ contains_globbing = bool(re.search(r"\*|\?|\[.+\]", name)) if contains_globbing: services = fnmatch.filter(get_all(), name) else: services = [name] results = {} for service in services: _check_for_unit_changes(service) results[service] = ( __salt__["cmd.retcode"]( _systemctl_cmd("is-active", service), python_shell=False, ignore_retcode=True, ) == 0 ) if contains_globbing: return results return results[name] # **kwargs is required to maintain consistency with the API established by # Salt's service management states. def enable( name, no_block=False, unmask=False, unmask_runtime=False, root=None, **kwargs ): # pylint: disable=unused-argument """ .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html Enable the named service to start when the system boots no_block : False Set to ``True`` to start the service using ``--no-block``. .. versionadded:: 2017.7.0 unmask : False Set to ``True`` to remove an indefinite mask before attempting to enable the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before enabling. This behavior is no longer the default. unmask_runtime : False Set to ``True`` to remove a runtime mask before attempting to enable the service. .. versionadded:: 2017.7.0 In previous releases, Salt would simply unmask a service before enabling. This behavior is no longer the default. root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.enable <service name> """ _check_for_unit_changes(name) _check_unmask(name, unmask, unmask_runtime, root) if name in _get_sysv_services(root): cmd = [] if salt.utils.systemd.has_scope(__context__) and __salt__["config.get"]( "systemd.scope", True ): cmd.extend(["systemd-run", "--scope"]) service_exec = _get_service_exec() if service_exec.endswith("/update-rc.d"): cmd.extend([service_exec, "-f", name, "defaults", "99"]) elif service_exec.endswith("/chkconfig"): cmd.extend([service_exec, name, "on"]) return ( __salt__["cmd.retcode"](cmd, python_shell=False, ignore_retcode=True) == 0 ) ret = __salt__["cmd.run_all"]( _systemctl_cmd( "enable", name, systemd_scope=True, no_block=no_block, root=root ), python_shell=False, ignore_retcode=True, ) if ret["retcode"] != 0: # Instead of returning a bool, raise an exception so that we can # include the error message in the return data. This helps give more # information to the user in instances where the service is masked. raise CommandExecutionError(_strip_scope(ret["stderr"])) return True # The unused kwargs argument is required to maintain consistency with the API # established by Salt's service management states. def disable( name, no_block=False, root=None, **kwargs ): # pylint: disable=unused-argument """ .. versionchanged:: 2015.8.12,2016.3.3,2016.11.0 On minions running systemd>=205, `systemd-run(1)`_ is now used to isolate commands run by this function from the ``salt-minion`` daemon's control group. This is done to avoid a race condition in cases where the ``salt-minion`` service is restarted while a service is being modified. If desired, usage of `systemd-run(1)`_ can be suppressed by setting a :mod:`config option <salt.modules.config.get>` called ``systemd.scope``, with a value of ``False`` (no quotes). .. _`systemd-run(1)`: https://www.freedesktop.org/software/systemd/man/systemd-run.html Disable the named service to not start when the system boots no_block : False Set to ``True`` to start the service using ``--no-block``. .. versionadded:: 2017.7.0 root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.disable <service name> """ _check_for_unit_changes(name) if name in _get_sysv_services(root): cmd = [] if salt.utils.systemd.has_scope(__context__) and __salt__["config.get"]( "systemd.scope", True ): cmd.extend(["systemd-run", "--scope"]) service_exec = _get_service_exec() if service_exec.endswith("/update-rc.d"): cmd.extend([service_exec, "-f", name, "remove"]) elif service_exec.endswith("/chkconfig"): cmd.extend([service_exec, name, "off"]) return ( __salt__["cmd.retcode"](cmd, python_shell=False, ignore_retcode=True) == 0 ) # Using cmd.run_all instead of cmd.retcode here to make unit tests easier return ( __salt__["cmd.run_all"]( _systemctl_cmd( "disable", name, systemd_scope=True, no_block=no_block, root=root ), python_shell=False, ignore_retcode=True, )["retcode"] == 0 ) # The unused kwargs argument is required to maintain consistency with the API # established by Salt's service management states. def enabled(name, root=None, **kwargs): # pylint: disable=unused-argument """ Return if the named service is enabled to start on boot root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.enabled <service name> """ # Try 'systemctl is-enabled' first, then look for a symlink created by # systemctl (older systemd releases did not support using is-enabled to # check templated services), and lastly check for a sysvinit service. if ( __salt__["cmd.retcode"]( _systemctl_cmd("is-enabled", name, root=root), python_shell=False, ignore_retcode=True, ) == 0 ): return True elif "@" in name: # On older systemd releases, templated services could not be checked # with ``systemctl is-enabled``. As a fallback, look for the symlinks # created by systemctl when enabling templated services. local_config_path = _root(LOCAL_CONFIG_PATH, "/") cmd = [ "find", local_config_path, "-name", name, "-type", "l", "-print", "-quit", ] # If the find command returns any matches, there will be output and the # string will be non-empty. if bool(__salt__["cmd.run"](cmd, python_shell=False)): return True elif name in _get_sysv_services(root): return _sysv_enabled(name, root) return False def disabled(name, root=None): """ Return if the named service is disabled from starting on boot root Enable/disable/mask unit files in the specified root directory CLI Example: .. code-block:: bash salt '*' service.disabled <service name> """ return not enabled(name, root=root) def show(name, root=None): """ .. versionadded:: 2014.7.0 Show properties of one or more units/jobs or the manager root Enable/disable/mask unit files in the specified root directory CLI Example: salt '*' service.show <service name> """ ret = {} out = __salt__["cmd.run"]( _systemctl_cmd("show", name, root=root), python_shell=False ) for line in salt.utils.itertools.split(out, "\n"): comps = line.split("=") name = comps[0] value = "=".join(comps[1:]) if value.startswith("{"): value = value.replace("{", "").replace("}", "") ret[name] = {} for item in value.split(" ; "): comps = item.split("=") ret[name][comps[0].strip()] = comps[1].strip() elif name in ("Before", "After", "Wants"): ret[name] = value.split() else: ret[name] = value return ret def execs(root=None): """ .. versionadded:: 2014.7.0 Return a list of all files specified as ``ExecStart`` for all services. root Enable/disable/mask unit files in the specified root directory CLI Example: salt '*' service.execs """ ret = {} for service in get_all(root=root): data = show(service, root=root) if "ExecStart" not in data: continue ret[service] = data["ExecStart"]["path"] return ret def firstboot( locale=None, locale_message=None, keymap=None, timezone=None, hostname=None, machine_id=None, root=None, ): """ .. versionadded:: TBD Call systemd-firstboot to configure basic settings of the system locale Set primary locale (LANG=) locale_message Set message locale (LC_MESSAGES=) keymap Set keymap timezone Set timezone hostname Set host name machine_id Set machine ID root Operate on an alternative filesystem root CLI Example: salt '*' service.firstboot keymap=jp locale=en_US.UTF-8 """ cmd = ["systemd-firstboot"] parameters = [ ("locale", locale), ("locale-message", locale_message), ("keymap", keymap), ("timezone", timezone), ("hostname", hostname), ("machine-ID", machine_id), ("root", root), ] for parameter, value in parameters: if value: cmd.extend(["--{}".format(parameter), str(value)]) out = __salt__["cmd.run_all"](cmd) if out["retcode"] != 0: raise CommandExecutionError("systemd-firstboot error: {}".format(out["stderr"])) return True
the-stack_0_15829
from __future__ import unicode_literals import hashlib import itertools import json import re from ..compat import compat_HTTPError, compat_str from ..utils import (ExtractorError, float_or_none, get_element_by_attribute, int_or_none, lowercase_escape, std_headers, try_get, url_or_none) from .common import InfoExtractor class InstagramIE(InfoExtractor): _VALID_URL = ( r"(?P<url>https?://(?:www\.)?instagram\.com/(?:p|tv|reel)/(?P<id>[^/?#&]+))" ) _TESTS = [ { "url": "https://instagram.com/p/aye83DjauH/?foo=bar#abc", "md5": "0d2da106a9d2631273e192b372806516", "info_dict": { "id": "aye83DjauH", "ext": "mp4", "title": "Video by naomipq", "description": "md5:1f17f0ab29bd6fe2bfad705f58de3cb8", "thumbnail": r"re:^https?://.*\.jpg", "duration": 0, "timestamp": 1371748545, "upload_date": "20130620", "uploader_id": "naomipq", "uploader": "B E A U T Y F O R A S H E S", "like_count": int, "comment_count": int, "comments": list, }, }, { # missing description "url": "https://www.instagram.com/p/BA-pQFBG8HZ/?taken-by=britneyspears", "info_dict": { "id": "BA-pQFBG8HZ", "ext": "mp4", "title": "Video by britneyspears", "thumbnail": r"re:^https?://.*\.jpg", "duration": 0, "timestamp": 1453760977, "upload_date": "20160125", "uploader_id": "britneyspears", "uploader": "Britney Spears", "like_count": int, "comment_count": int, "comments": list, }, "params": { "skip_download": True, }, }, { # multi video post "url": "https://www.instagram.com/p/BQ0eAlwhDrw/", "playlist": [ { "info_dict": { "id": "BQ0dSaohpPW", "ext": "mp4", "title": "Video 1", }, }, { "info_dict": { "id": "BQ0dTpOhuHT", "ext": "mp4", "title": "Video 2", }, }, { "info_dict": { "id": "BQ0dT7RBFeF", "ext": "mp4", "title": "Video 3", }, }, ], "info_dict": { "id": "BQ0eAlwhDrw", "title": "Post by instagram", "description": "md5:0f9203fc6a2ce4d228da5754bcf54957", }, }, { # IGTV "url": "https://www.instagram.com/tv/BkfuX9UB-eK/", "info_dict": { "id": "BkfuX9UB-eK", "ext": "mp4", "title": "Fingerboarding Tricks with @cass.fb", "thumbnail": r"re:^https?://.*\.jpg", "duration": 53.83, "timestamp": 1530032919, "upload_date": "20180626", "uploader_id": "instagram", "uploader": "Instagram", "like_count": int, "comment_count": int, "comments": list, "description": "Meet Cass Hirst (@cass.fb), a fingerboarding pro who can perform tiny ollies and kickflips while blindfolded.", }, }, { "url": "https://instagram.com/p/-Cmh1cukG2/", "only_matching": True, }, { "url": "http://instagram.com/p/9o6LshA7zy/embed/", "only_matching": True, }, { "url": "https://www.instagram.com/tv/aye83DjauH/", "only_matching": True, }, { "url": "https://www.instagram.com/reel/CDUMkliABpa/", "only_matching": True, }, ] @staticmethod def _extract_embed_url(webpage): mobj = re.search( r'<iframe[^>]+src=(["\'])(?P<url>(?:https?:)?//(?:www\.)?instagram\.com/p/[^/]+/embed.*?)\1', webpage, ) if mobj: return mobj.group("url") blockquote_el = get_element_by_attribute("class", "instagram-media", webpage) if blockquote_el is None: return mobj = re.search(r'<a[^>]+href=([\'"])(?P<link>[^\'"]+)\1', blockquote_el) if mobj: return mobj.group("link") def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group("id") url = mobj.group("url") webpage = self._download_webpage(url, video_id) ( media, video_url, description, thumbnail, timestamp, uploader, uploader_id, like_count, comment_count, comments, height, width, ) = [None] * 12 shared_data = self._parse_json( self._search_regex( r"window\._sharedData\s*=\s*({.+?});", webpage, "shared data", default="{}", ), video_id, fatal=False, ) if shared_data: media = try_get( shared_data, ( lambda x: x["entry_data"]["PostPage"][0]["graphql"][ "shortcode_media" ], lambda x: x["entry_data"]["PostPage"][0]["media"], ), dict, ) # _sharedData.entry_data.PostPage is empty when authenticated (see # https://github.com/nextdl/nextdl/pull/22880) if not media: additional_data = self._parse_json( self._search_regex( r"window\.__additionalDataLoaded\s*\(\s*[^,]+,\s*({.+?})\s*\)\s*;", webpage, "additional data", default="{}", ), video_id, fatal=False, ) if additional_data: media = try_get( additional_data, lambda x: x["graphql"]["shortcode_media"], dict ) if media: video_url = media.get("video_url") height = int_or_none(media.get("dimensions", {}).get("height")) width = int_or_none(media.get("dimensions", {}).get("width")) description = try_get( media, lambda x: x["edge_media_to_caption"]["edges"][0]["node"]["text"], compat_str, ) or media.get("caption") title = media.get("title") thumbnail = media.get("display_src") or media.get("display_url") duration = float_or_none(media.get("video_duration")) timestamp = int_or_none( media.get("taken_at_timestamp") or media.get("date") ) uploader = media.get("owner", {}).get("full_name") uploader_id = media.get("owner", {}).get("username") def get_count(keys, kind): if not isinstance(keys, (list, tuple)): keys = [keys] for key in keys: count = int_or_none( try_get( media, ( lambda x: x["edge_media_%s" % key]["count"], lambda x: x["%ss" % kind]["count"], ), ) ) if count is not None: return count like_count = get_count("preview_like", "like") comment_count = get_count( ("preview_comment", "to_comment", "to_parent_comment"), "comment" ) comments = [ { "author": comment.get("user", {}).get("username"), "author_id": comment.get("user", {}).get("id"), "id": comment.get("id"), "text": comment.get("text"), "timestamp": int_or_none(comment.get("created_at")), } for comment in media.get("comments", {}).get("nodes", []) if comment.get("text") ] if not video_url: edges = ( try_get( media, lambda x: x["edge_sidecar_to_children"]["edges"], list ) or [] ) if edges: entries = [] for edge_num, edge in enumerate(edges, start=1): node = try_get(edge, lambda x: x["node"], dict) if not node: continue node_video_url = url_or_none(node.get("video_url")) if not node_video_url: continue entries.append( { "id": node.get("shortcode") or node["id"], "title": node.get("title") or "Video %d" % edge_num, "url": node_video_url, "thumbnail": node.get("display_url"), "duration": float_or_none(node.get("video_duration")), "width": int_or_none( try_get(node, lambda x: x["dimensions"]["width"]) ), "height": int_or_none( try_get(node, lambda x: x["dimensions"]["height"]) ), "view_count": int_or_none(node.get("video_view_count")), } ) return self.playlist_result( entries, video_id, "Post by %s" % uploader_id if uploader_id else None, description, ) if not video_url: video_url = self._og_search_video_url(webpage, secure=False) formats = [ { "url": video_url, "width": width, "height": height, } ] if not uploader_id: uploader_id = self._search_regex( r'"owner"\s*:\s*{\s*"username"\s*:\s*"(.+?)"', webpage, "uploader id", fatal=False, ) if not description: description = self._search_regex( r'"caption"\s*:\s*"(.+?)"', webpage, "description", default=None ) if description is not None: description = lowercase_escape(description) if not thumbnail: thumbnail = self._og_search_thumbnail(webpage) return { "id": video_id, "formats": formats, "ext": "mp4", "title": title or "Video by %s" % uploader_id, "description": description, "duration": duration, "thumbnail": thumbnail, "timestamp": timestamp, "uploader_id": uploader_id, "uploader": uploader, "like_count": like_count, "comment_count": comment_count, "comments": comments, } class InstagramPlaylistIE(InfoExtractor): # A superclass for handling any kind of query based on GraphQL which # results in a playlist. _gis_tmpl = None # used to cache GIS request type def _parse_graphql(self, webpage, item_id): # Reads a webpage and returns its GraphQL data. return self._parse_json( self._search_regex( r"sharedData\s*=\s*({.+?})\s*;\s*[<\n]", webpage, "data" ), item_id, ) def _extract_graphql(self, data, url): # Parses GraphQL queries containing videos and generates a playlist. def get_count(suffix): return int_or_none( try_get(node, lambda x: x["edge_media_" + suffix]["count"]) ) uploader_id = self._match_id(url) csrf_token = data["config"]["csrf_token"] rhx_gis = data.get("rhx_gis") or "3c7ca9dcefcf966d11dacf1f151335e8" cursor = "" for page_num in itertools.count(1): variables = { "first": 12, "after": cursor, } variables.update(self._query_vars_for(data)) variables = json.dumps(variables) if self._gis_tmpl: gis_tmpls = [self._gis_tmpl] else: gis_tmpls = [ "%s" % rhx_gis, "", "%s:%s" % (rhx_gis, csrf_token), "%s:%s:%s" % (rhx_gis, csrf_token, std_headers["User-Agent"]), ] # try all of the ways to generate a GIS query, and not only use the # first one that works, but cache it for future requests for gis_tmpl in gis_tmpls: try: json_data = self._download_json( "https://www.instagram.com/graphql/query/", uploader_id, "Downloading JSON page %d" % page_num, headers={ "X-Requested-With": "XMLHttpRequest", "X-Instagram-GIS": hashlib.md5( ("%s:%s" % (gis_tmpl, variables)).encode("utf-8") ).hexdigest(), }, query={ "query_hash": self._QUERY_HASH, "variables": variables, }, ) media = self._parse_timeline_from(json_data) self._gis_tmpl = gis_tmpl break except ExtractorError as e: # if it's an error caused by a bad query, and there are # more GIS templates to try, ignore it and keep trying if isinstance(e.cause, compat_HTTPError) and e.cause.code == 403: if gis_tmpl != gis_tmpls[-1]: continue raise edges = media.get("edges") if not edges or not isinstance(edges, list): break for edge in edges: node = edge.get("node") if not node or not isinstance(node, dict): continue if ( node.get("__typename") != "GraphVideo" and node.get("is_video") is not True ): continue video_id = node.get("shortcode") if not video_id: continue info = self.url_result( "https://instagram.com/p/%s/" % video_id, ie=InstagramIE.ie_key(), video_id=video_id, ) description = try_get( node, lambda x: x["edge_media_to_caption"]["edges"][0]["node"]["text"], compat_str, ) thumbnail = node.get("thumbnail_src") or node.get("display_src") timestamp = int_or_none(node.get("taken_at_timestamp")) comment_count = get_count("to_comment") like_count = get_count("preview_like") view_count = int_or_none(node.get("video_view_count")) info.update( { "description": description, "thumbnail": thumbnail, "timestamp": timestamp, "comment_count": comment_count, "like_count": like_count, "view_count": view_count, } ) yield info page_info = media.get("page_info") if not page_info or not isinstance(page_info, dict): break has_next_page = page_info.get("has_next_page") if not has_next_page: break cursor = page_info.get("end_cursor") if not cursor or not isinstance(cursor, compat_str): break def _real_extract(self, url): user_or_tag = self._match_id(url) webpage = self._download_webpage(url, user_or_tag) data = self._parse_graphql(webpage, user_or_tag) self._set_cookie("instagram.com", "ig_pr", "1") return self.playlist_result( self._extract_graphql(data, url), user_or_tag, user_or_tag ) class InstagramUserIE(InstagramPlaylistIE): _VALID_URL = r"https?://(?:www\.)?instagram\.com/(?P<id>[^/]{2,})/?(?:$|[?#])" IE_DESC = "Instagram user profile" IE_NAME = "instagram:user" _TEST = { "url": "https://instagram.com/porsche", "info_dict": { "id": "porsche", "title": "porsche", }, "playlist_count": 5, "params": { "extract_flat": True, "skip_download": True, "playlistend": 5, }, } _QUERY_HASH = ("42323d64886122307be10013ad2dcc44",) @staticmethod def _parse_timeline_from(data): # extracts the media timeline data from a GraphQL result return data["data"]["user"]["edge_owner_to_timeline_media"] @staticmethod def _query_vars_for(data): # returns a dictionary of variables to add to the timeline query based # on the GraphQL of the original page return {"id": data["entry_data"]["ProfilePage"][0]["graphql"]["user"]["id"]} class InstagramTagIE(InstagramPlaylistIE): _VALID_URL = r"https?://(?:www\.)?instagram\.com/explore/tags/(?P<id>[^/]+)" IE_DESC = "Instagram hashtag search" IE_NAME = "instagram:tag" _TEST = { "url": "https://instagram.com/explore/tags/lolcats", "info_dict": { "id": "lolcats", "title": "lolcats", }, "playlist_count": 50, "params": { "extract_flat": True, "skip_download": True, "playlistend": 50, }, } _QUERY_HASH = ("f92f56d47dc7a55b606908374b43a314",) @staticmethod def _parse_timeline_from(data): # extracts the media timeline data from a GraphQL result return data["data"]["hashtag"]["edge_hashtag_to_media"] @staticmethod def _query_vars_for(data): # returns a dictionary of variables to add to the timeline query based # on the GraphQL of the original page return { "tag_name": data["entry_data"]["TagPage"][0]["graphql"]["hashtag"]["name"] }
the-stack_0_15830
import time import inspect from functools import update_wrapper from fixate.core.common import mode_builder, unit_scale from fixate.core.exceptions import ParameterError, InstrumentError from fixate.drivers.funcgen.helper import FuncGen MODES = { ":SINusoid": { " [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}, ":CH2": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}}, }, ":SQUare": { " [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}, ":CH2": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}}, }, ":RAMP": { " [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}, ":CH2": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}}, }, ":PULSE": { " [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}, ":CH2": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}}, }, ":NOISe DEFault": {",[{amplitude}]": {",[{offset}]": {}}}, ":DC DEFault,DEFault": {",[{offset}]": {}}, ":USER": {" [{frequency}]": {",[{amplitude}]": {",[{offset}]": {}}}}, } ADV_MODES = {":SQUare:" "DCYCle"} # ----------------------------------------------------------------------------------------------------------------------- class RigolDG1022(FuncGen): REGEX_ID = "RIGOL TECHNOLOGIES,DG1022" INSTR_TYPE = "VISA" retrys_on_timeout = 3 _verify = True def __init__(self, instrument): """ The self._ values indicate the user values as entered if valid. The self.__ values are the sanitised values used internally in the system to parse between functions Limitations: The function generator switches internal relays at certain thresholds. Try to avoid these ranges in design if the function generator is loaded with a relatively low impedance Table of ranges on the same relay arrangement Min mVpp Max mVpp 4 60 60.1 199.9 200 599.9 600 2000 2001 6000 6001 20000 :param instrument: :return: """ super().__init__(instrument) self.instrument.query_delay = 0.2 self.instrument.timeout = 1000 # Rigol Restrictions self.__restr_bandwidth = {"min": unit_scale("4uHz"), "max": unit_scale("20MHz")} self.__restr_phase = {"min": -180, "max": 180} self.__restr_amplitude = { "min": unit_scale("4mVpp"), "max": unit_scale("20Vpp"), } self._amplitude = None self._store = {"ch1_duty": "50", "ch2_duty": "50"} self.api = [ # WAVEFORM SELECTION: # Channel 1: ( "channel1.waveform.sin", self.store_and_write, ("FUNC SIN", {"ch1_waveform_handler": None}), # base_str ), # handler ( "channel1.waveform.square", self.store_and_write, ( "FUNC SQU\r\nFUNC:SQU:DCYC {self._store[ch1_duty]}", {"ch1_waveform_handler": "channel1.waveform.square"}, ), ), ( "channel1.waveform.ramp", self.store_and_write, ("FUNC RAMP", {"ch1_waveform_handler": None}), ), ( "channel1.waveform.pulse", self.store_and_write, ( "FUNC PULS\r\nPULS:DCYC {self._store[ch1_duty]}", {"ch1_waveform_handler": "channel1.waveform.pulse"}, ), ), ( "channel1.waveform.arb", self.store_and_write, ("FUNC USER", {"ch1_waveform_handler": None}), ), ( "channel1.waveform.triangle", self.store_and_write, ("FUNC TRI", {"ch1_waveform_handler": None}), ), ( "channel1.waveform.noise", self.store_and_write, ("FUNC NOIS", {"ch1_waveform_handler": None}), ), ( "channel1.waveform.dc", self.store_and_write, ("FUNC DC", {"ch1_waveform_handler": None}), ), # Channel 2: ( "channel2.waveform.sin", self.store_and_write, ("FUNC:CH2 SIN", {"ch2_waveform_handler": None}), # base_str ), # handler ( "channel2.waveform.square", self.store_and_write, ( "FUNC:CH2 SQU\r\nFUNC:SQU:DCYC:CH2 {self._store[ch2_duty]}", {"ch2_waveform_handler": "channel2.waveform.square"}, ), ), ( "channel2.waveform.ramp", self.store_and_write, ("FUNC:CH2 RAMP", {"ch2_waveform_handler": None}), ), ( "channel2.waveform.pulse", self.store_and_write, ( "FUNC:CH2 PULS\r\nPULS:DCYC {self._store[ch2_duty]}", {"ch2_waveform_handler": "channel2.waveform.pulse"}, ), ), ( "channel2.waveform.arb", self.store_and_write, ("FUNC:CH2 USER", {"ch2_waveform_handler": None}), ), ( "channel2.waveform.triangle", self.store_and_write, ("FUNC:CH2 TRI", {"ch2_waveform_handler": None}), ), ( "channel2.waveform.noise", self.store_and_write, ("FUNC:CH2 NOIS", {"ch2_waveform_handler": None}), ), ( "channel2.waveform.dc", self.store_and_write, ("FUNC:CH2 DC", {"ch2_waveform_handler": None}), ), # CHANNEL CONFIGURATION: # Channel 1: ("channel1.vrms", self.write, "VOLT:UNIT VRMS\r\nVOLT {value}"), ("channel1.vpp", self.write, "VOLT:UNIT VPP\r\nVOLT {value}"), ("channel1.dbm", self.write, "VOLT:UNIT DBM\r\nVOLT {value}"), ("channel1.offset", self.write, "VOLT:OFFS {value}"), ("channel1.phase", self.write, "PHAS {value}"), ( "channel1.duty", self.store_and_execute, ({"ch1_duty": "{value}"}, "ch1_waveform_handler"), ), ("channel1.frequency", self.write, "FREQ {value}"), # Channel 2: ("channel2.vrms", self.write, "VOLT:UNIT:CH2 VRMS\r\nVOLT {value}"), ("channel2.vpp", self.write, "VOLT:UNIT:CH2 VPP\r\nVOLT {value}"), ("channel2.dbm", self.write, "VOLT:UNIT:CH2 DBM\r\nVOLT {value}"), ("channel2.offset", self.write, "VOLT:OFFS:CH2 {value}"), ("channel2.phase", self.write, "PHAS:CH2 {value}"), ("channel2.duty", self.store, {"ch2_duty": "{value}"}), ("channel2.frequency", self.write, "FREQ:CH2 {value}"), # CHANNEL ACTIVATION: ( "channel1._call", self.write, "OUTP {value}", ), # True won't work here needs to be ON or 1, OFF or 0 ( "channel2._call", self.write, "OUTP:CH2 {value}", ), # True won't work here needs to be ON or 1, OFF or 0 # SYNC CONFIGURATION: ("sync.polarity.normal", self.write, ""), ("sync.mode.normal", self.write, ""), ("sync.mode.source", self.write, ""), ("sync._call", self.write, "OUTP {value}"), # TRIGGER CONFIGURATION: ("trigger.immediate", self.write, "TRIG:SOUR IMM"), ("trigger.external._call", self.write, "TRIG:SOUR EXT"), ("trigger.external.rising", self.write, "TRIG:SOUR EXT\r\n TRIG1:SLOP POS"), ( "trigger.external.falling", self.write, "TRIG:SOUR EXT\r\n TRIG1:SLOP NEG", ), ("trigger.manual", self.write, "TRIG:SOUR BUS"), ("trigger.delay", self.write, "TRIG:DEL {seconds}"), ("trigger.out.off", self.write, "OUTP:TRIG OFF"), ("trigger.out._call", self.write, "OUTP:TRIG {output}"), ("trigger.out.rising", self.write, "OUTP:TRIG:SLOP POS"), ("trigger.out.falling", self.write, "OUTP:TRIG:SLOP NEG"), # Modulate # Channel 1: ( "channel1.modulate.am._call", self.store, {"ch1_modulate_state": "AM", "ch1_modulate_setting": "FREQ"}, ), ( "channel1.modulate.fm._call", self.store, {"ch1_modulate_state": "FM", "ch1_modulate_setting": "FREQ"}, ), ( "channel1.modulate.pm._call", self.store, {"ch1_modulate_state": "PM", "ch1_modulate_setting": "FREQ"}, ), ( "channel1.modulate.fsk._call", self.store, {"ch1_modulate_state": "FSK", "ch1_modulate_setting": "RATE"}, ), ( "channel1.modulate.bpsk._call", self.store, {"ch1_modulate_state": "BPSK", "ch1_modulate_setting": "RATE"}, ), ( "channel1.modulate.sum._call", self.store, {"ch1_modulate_state": "SUM", "ch1_modulate_setting": "RATE"}, ), # MODULATE SOURCES: ( "channel1.modulate.source.internal._call", self.store_and_write, ( "{self._store[ch1_modulate_state]}:SOUR INT", {"ch1_modulate_source": "INT"}, ), ), ( "channel1.modulate.source.external", self.store_and_write, ( "{self._store[ch1_modulate_state]}:SOUR EXT", {"ch1_modulate_source": "EXT"}, ), ), # MODULATE ACTIVATION: # Channel 1: ( "channel1.modulate._call", self.write, "{self._store[ch1_modulate_state]}:STAT {value}\r\n{self._store[ch1_modulate_state]}:SOUR" "{self._store[ch1_modulate_source]}", ), # MODULATE OPTIONS: # Channel 1: ("channel1.modulate.am.depth", self.write, "AM:DEPT {value}"), ("channel1.modulate.fm.freq_dev", self.write, "FM:DEV {value}"), ("channel1.modulate.pm.phase_dev", self.write, "PM:DEV{value}"), ("channel1.modulate.fsk.hop_freq", self.write, "FSK:FREQ {value}"), ("channel1.modulate.fsk.rate", self.write, "FSK:INT:RATE {value}"), # MODULATE SHAPES: # Channel 1: ( "channel1.modulate.source.internal.shape.sin", self.write, "{self._store[ch1_modulate_state]}:INT:FUNC SIN", ), ( "channel1.modulate.source.internal.shape.square", self.write, "{self._store[ch1_modulate_state]}:INT:FUNC SQU", ), ( "channel1.modulate.source.internal.shape.triangle", self.write, "{self._store[ch1_modulate_state]}:INT:FUNC TRI", ), ( "channel1.modulate.source.internal.shape.up_ramp", self.write, "{self._store[ch1_modulate_state]}:INT:FUNC RAMP", ), ( "channel1.modulate.source.internal.shape.down_ramp", self.write, "{self._store[ch1_modulate_state]}:INT:FUNC NRAMP", ), ( "channel1.modulate.source.internal.shape.noise", self.write, "{self._store[ch1_modulate_state]}:INT:FUNC NOIS", ), # BURST # Channel 1: ("channel1.burst.gated._call", self.write, "BURS:MODE GAT"), ("channel1.burst._call", self.write, "BURS:STAT {value}"), ("channel1.burst.ncycle._call", self.write, "BURS:MODE TRIG"), ("channel1.burst.ncycle.cycles._call", self.write, "BURS:NCYC {cycles}"), ("channel1.burst.ncycle.cycles.infinite", self.write, "BURS:NCYC INF"), ( "channel1.burst.ncycle.burst_period", self.write, "BURS:INT:PER {seconds}", ), ("channel1.burst.gated.positive", self.write, "BURS:GATE:POL NORM"), ("channel1.burst.gated.negative", self.write, "BURS:GATE:POL INV"), ("channel1.burst.phase", self.write, "BURS:PHAS {degrees}"), # Modulate Frequency ( "channel1.modulate.source.internal.frequency", self.write, "{self._store[ch1_modulate_state]}:INT:{self._store[ch1_modulate_setting]} {value}", ), # LOAD: # channel1: ("channel1.load._call", self.write, "OUTP:LOAD {ohms}"), ("channel1.load.infinite", self.write, "OUTP:LOAD INF"), # channel2: ("channel2.load._call", self.write, "OUTP:LOAD:CH2 {ohms}"), ("channel2.load.infinite", self.write, "OUTP:LOAD:CH2 INF"), ] # ----------------------------------------------------------------------------------------------------------------------- self.init_api() def sync_output(self, sync): """ :param sync: True or False :return: None """ if sync: self._write(["OUTPut:SYNC ON"]) else: self._write(["OUTPut:SYNC OFF"]) def trigger_output(self, trigger, rising=False, falling=False): """ :param sync: True or False :return: None """ if rising and falling: raise ValueError("Cannot trigger on both rising and falling edges") if trigger: if rising: self._write(["OUTPut:TRIGger:SLOPe POSitive"]) if falling: self._write(["OUTPut:TRIGger:SLOPe NEGative"]) self._write(["OUTPut:TRIGger ON"]) else: self._write(["OUTPut:TRIGger OFF"]) @property def verify_values(self): return self._verify @verify_values.setter def verify_values(self, val): if val not in [True, False]: raise ValueError("Invalid value. Use True or False") self._verify = val @property def amplitude_ch1(self): return self.instrument.query_ascii_values("VOLTAGE?")[0] @property def amplitude_ch2(self): return self.instrument.query_ascii_values("VOLTAGE:CH2?")[0] @amplitude_ch1.setter def amplitude_ch1(self, val): self._write("VOLTAGE {}".format(val)) @amplitude_ch2.setter def amplitude_ch2(self, val): self._write("VOLTAGE:CH2 {}".format(val)) @property def output_ch1(self): resp = self.instrument.query("OUTP?") if "OFF" in resp: return False elif "ON" in resp: return True @output_ch1.setter def output_ch1(self, val): if val not in [True, False]: raise ParameterError( "Unknown output {} value for CH1\r\nPlease select True or False".format( val ) ) if val: self._write("OUTP ON") else: self._write("OUTP OFF") @property def output_ch2(self): resp = self.instrument.query("OUTP:CH2?") if "OFF" in resp: return False elif "ON" in resp: return True @output_ch2.setter def output_ch2(self, val): if val not in [True, False]: raise ParameterError( "Unknown output {} value for CH2\nPlease select True or False".format( val ) ) if val: self._write("OUTP:CH2 ON") else: self._write("OUTP:CH2 OFF") @FuncGen.output_sync.setter def output_sync(self, val): time.sleep(0.5) if val not in [True, False]: raise ParameterError( "Unknown output {} value for SYNC\nPlease select True or False".format( val ) ) self._output_sync = val if self._output_sync: self._write("OUTP:SYNC ON") else: self._write("OUTP:SYNC OFF") def local(self): """ Gives local control back to the instrument Remote control is activated on any other commands set to the device :return: """ time.sleep(0.5) self._write("SYSTem:LOCal") def reset(self): """ Be aware that the funcgen can have a short period where it sets to 5Vpp 1kHz with the output on for a short period. This could cause issues. Ensure that setup is in a safe state to receive such a signal. :return: """ # Due to the 5Vpp 1kHz signal. Explicit call to turn output off first self.output_ch1 = False self.output_ch2 = False self._write("*RST") def function( self, waveform, channel=1, duty_cycle=None, symmetry=None, phase=None, **kwargs ): """ if parameters empty then uses previous set mode The mode and mode parameters are used in mode_build to search recursively through the MODES dictionary to build the visa string necessary for the equipment to interpret the commands. usage function('sin') parsed to visa: 'APPLy:SINusoid' function('square', channel=2, amplit=5, offset=2.5, freq='1kHz') parsed to visa: 'APPLy:SQUare:CH2 1000, 5, 2.5' corresponds to a square wave at 1kHz, where the min of the wave is at 0 and the max at 5V for more advanced functions that cannot be explained through waveform, amplitude, offset and frequency: use adv_function. """ if int(channel) in range(1, 3): channel = "CH{}".format(channel) else: raise ValueError( "Invalid channel {} use a number between 1-2".format(channel) ) mode = (waveform, channel) # self.reset() if duty_cycle is not None: if waveform.upper() not in "PULSE": if channel == "CH1": self._write( ["FUNCtion:{}:DCYCle {}".format(waveform.upper(), duty_cycle)] ) else: self._write( [ "FUNCtion:{}:DCYCle:{} {}".format( waveform.upper(), channel, duty_cycle ) ] ) else: if channel == "CH1": self._write(["PULSe:DCYC {}".format(duty_cycle)]) else: self._write(["PULSe:DCYC:{} {}".format(channel, duty_cycle)]) if symmetry is not None: if channel == "CH1": self._write(["FUNCtion:RAMP:SYMMetry {}".format(symmetry)]) else: self._write(["FUNCtion:RAMP:SYMMetry:{} {}".format(channel, symmetry)]) if phase is not None: if channel == "CH1": self._write(["PHASe {}".format(phase)]) else: self._write(["PHASe:CH2 {}".format(phase)]) self._write(["APPLy{}".format(mode_builder(MODES, {}, *mode, **kwargs))]) def am(self, frequency, depth, source=None, waveform="SIN"): self._write( [ "AM:SOURce INT", "AM:INT:FREQuency {frequency}".format(frequency=frequency), "AM:DEPTh {depth}".format(depth=depth), "AM:INT:FUNC {waveform}".format(waveform=waveform), "AM:STATe ON", ] ) def disable_am(self): self._write(["AM:STATe OFF"]) def enable_am(self): self._write(["AM:STATe ON"]) def adv_function(self, *mode, **mode_params): """ Exposes the advanced functionality of the function generator. Currently not implemented :param mode: :param mode_params: :return: """ raise NotImplementedError def _write(self, data): """ The DG1022 cannot respond to visa commands as quickly as some other devices A 100ms delay was found to be reliable for most commands with the exception of the *IDN? identification command. An extra 100ms should be allowed for explicit calls to *IDN? Note: The 6000 number for the sleep is derived from trial and error. The write calls don't seem to block at the rate they write. By allowing 166uS delay for each byte of data then the Funcgen doesn't choke on the next call. A flat 100ms is added to allow processing time. This is especially important for commands that write large amounts of data such as user arbitrary forms. """ if data: if isinstance(data, str): data = data.split("\r\n") for itm in data: self.instrument.write(itm) time.sleep(0.1 + len(itm) / 6000) else: raise ParameterError("Missing data in instrument write") self._is_error() def _check_errors(self): resp = self.instrument.query("SYST:ERR?") code, msg = resp.strip("\n").split(",") code = int(code) msg = msg.strip('"') return code, msg def _is_error(self, silent=False): errors = [] while True: code, msg = self._check_errors() if code != 0: errors.append((code, msg)) else: break if errors: if silent: return errors else: raise InstrumentError( "Error(s) Returned from FuncGen\n" + "\n".join( [ "Code: {}\nMessage:{}".format(code, msg) for code, msg in errors ] ) ) def write(self, base_str, *args, **kwargs): formatted_string = self._format_string(base_str, **kwargs) self._write(formatted_string) def _format_string(self, base_str, **kwargs): kwargs["self"] = self prev_string = base_str cur_string = "" while True: cur_string = prev_string.format(**kwargs) if cur_string == prev_string: break prev_string = cur_string return cur_string def store(self, store_dict, *args, **kwargs): """ Store a dictionary of values in TestClass :param kwargs: Dictionary containing the parameters to store :return: """ new_dict = store_dict.copy() for k, v in store_dict.items(): # I want the same function from write to set up the string before putting it in new_dict try: new_dict[k] = v.format(**kwargs) except: pass self._store.update(new_dict) def store_and_execute(self, params, *args, **kwargs): store_dict, handler_id = params self.store(store_dict, *args, **kwargs) handler_string = self._store[handler_id] if handler_string is not None: *parents, func = handler_string.split(".") parent_obj = self for parent in parents: parent_obj = getattr(parent_obj, parent) handler = getattr(parent_obj, func) handler() def store_and_write(self, params, *args, **kwargs): base_str, store_dict = params self.store(store_dict) self.write(base_str, *args, **kwargs) def init_api(self): for func_str, handler, base_str in self.api: *parents, func = func_str.split(".") parent_obj = self try: for parent in parents: parent_obj = getattr(parent_obj, parent) func_obc = getattr(parent_obj, func) except AttributeError: # print("FAILED ON:", func_str) raise setattr(parent_obj, func, self.prepare_string(func_obc, handler, base_str)) def prepare_string(self, func, handler, base_str, *args, **kwargs): def temp_func(*nargs, **nkwargs): """ Only formats using **nkwargs New Temp :param nargs: :param nkwargs: :return: """ sig = inspect.signature(func) keys = [itm[0] for itm in sig.parameters.items()] # Hard coding for RIGOL. BOOLS should be converted to "ON", "OFF" for index, param in enumerate(nargs): nkwargs[keys[index]] = param for k, v in nkwargs.items(): if sig.parameters[k].annotation == bool: if v: nkwargs[k] = "ON" else: nkwargs[k] = "OFF" return handler(base_str, **nkwargs) return update_wrapper(temp_func, func) # ------------------------------------------------------------------------------------------ def get_identity(self): """ Query ID character string of instrument, including a field separated by 4 “,”, manufactory, model, serial number and the edition number that consists of numbers and separated by “.” . :return: RIGOL TECHNOLOGIES,DG1022,DG1000000002,00.01.00.04.00 """ return self.instrument.query("*IDN?").strip()
the-stack_0_15832
from __future__ import unicode_literals import os import re import sys import types from django.conf import settings from django.core.urlresolvers import Resolver404, resolve from django.http import ( HttpRequest, HttpResponse, HttpResponseNotFound, build_request_repr, ) from django.template import Context, Engine, TemplateDoesNotExist from django.template.defaultfilters import force_escape, pprint from django.utils import lru_cache, six, timezone from django.utils.datastructures import MultiValueDict from django.utils.encoding import force_bytes, smart_text from django.utils.module_loading import import_string from django.utils.translation import ugettext as _ # Minimal Django templates engine to render the error templates # regardless of the project's TEMPLATES setting. DEBUG_ENGINE = Engine(debug=True) HIDDEN_SETTINGS = re.compile('API|TOKEN|KEY|SECRET|PASS|SIGNATURE') CLEANSED_SUBSTITUTE = '********************' def linebreak_iter(template_source): yield 0 p = template_source.find('\n') while p >= 0: yield p + 1 p = template_source.find('\n', p + 1) yield len(template_source) + 1 class CallableSettingWrapper(object): """ Object to wrap callable appearing in settings * Not to call in the debug page (#21345). * Not to break the debug page if the callable forbidding to set attributes (#23070). """ def __init__(self, callable_setting): self._wrapped = callable_setting def __repr__(self): return repr(self._wrapped) def cleanse_setting(key, value): """Cleanse an individual setting key/value of sensitive content. If the value is a dictionary, recursively cleanse the keys in that dictionary. """ try: if HIDDEN_SETTINGS.search(key): cleansed = CLEANSED_SUBSTITUTE else: if isinstance(value, dict): cleansed = {k: cleanse_setting(k, v) for k, v in value.items()} else: cleansed = value except TypeError: # If the key isn't regex-able, just return as-is. cleansed = value if callable(cleansed): # For fixing #21345 and #23070 cleansed = CallableSettingWrapper(cleansed) return cleansed def get_safe_settings(): "Returns a dictionary of the settings module, with sensitive settings blurred out." settings_dict = {} for k in dir(settings): if k.isupper(): settings_dict[k] = cleanse_setting(k, getattr(settings, k)) return settings_dict def technical_500_response(request, exc_type, exc_value, tb, status_code=500): """ Create a technical server error response. The last three arguments are the values returned from sys.exc_info() and friends. """ reporter = ExceptionReporter(request, exc_type, exc_value, tb) if request.is_ajax(): text = reporter.get_traceback_text() return HttpResponse(text, status=status_code, content_type='text/plain') else: html = reporter.get_traceback_html() return HttpResponse(html, status=status_code, content_type='text/html') @lru_cache.lru_cache() def get_default_exception_reporter_filter(): # Instantiate the default filter for the first time and cache it. return import_string(settings.DEFAULT_EXCEPTION_REPORTER_FILTER)() def get_exception_reporter_filter(request): default_filter = get_default_exception_reporter_filter() return getattr(request, 'exception_reporter_filter', default_filter) class ExceptionReporterFilter(object): """ Base for all exception reporter filter classes. All overridable hooks contain lenient default behaviors. """ def get_request_repr(self, request): if request is None: return repr(None) else: return build_request_repr(request, POST_override=self.get_post_parameters(request)) def get_post_parameters(self, request): if request is None: return {} else: return request.POST def get_traceback_frame_variables(self, request, tb_frame): return list(six.iteritems(tb_frame.f_locals)) class SafeExceptionReporterFilter(ExceptionReporterFilter): """ Use annotations made by the sensitive_post_parameters and sensitive_variables decorators to filter out sensitive information. """ def is_active(self, request): """ This filter is to add safety in production environments (i.e. DEBUG is False). If DEBUG is True then your site is not safe anyway. This hook is provided as a convenience to easily activate or deactivate the filter on a per request basis. """ return settings.DEBUG is False def get_cleansed_multivaluedict(self, request, multivaluedict): """ Replaces the keys in a MultiValueDict marked as sensitive with stars. This mitigates leaking sensitive POST parameters if something like request.POST['nonexistent_key'] throws an exception (#21098). """ sensitive_post_parameters = getattr(request, 'sensitive_post_parameters', []) if self.is_active(request) and sensitive_post_parameters: multivaluedict = multivaluedict.copy() for param in sensitive_post_parameters: if param in multivaluedict: multivaluedict[param] = CLEANSED_SUBSTITUTE return multivaluedict def get_post_parameters(self, request): """ Replaces the values of POST parameters marked as sensitive with stars (*********). """ if request is None: return {} else: sensitive_post_parameters = getattr(request, 'sensitive_post_parameters', []) if self.is_active(request) and sensitive_post_parameters: cleansed = request.POST.copy() if sensitive_post_parameters == '__ALL__': # Cleanse all parameters. for k, v in cleansed.items(): cleansed[k] = CLEANSED_SUBSTITUTE return cleansed else: # Cleanse only the specified parameters. for param in sensitive_post_parameters: if param in cleansed: cleansed[param] = CLEANSED_SUBSTITUTE return cleansed else: return request.POST def cleanse_special_types(self, request, value): try: # If value is lazy or a complex object of another kind, this check # might raise an exception. isinstance checks that lazy HttpRequests # or MultiValueDicts will have a return value. is_request = isinstance(value, HttpRequest) except Exception as e: return '{!r} while evaluating {!r}'.format(e, value) if is_request: # Cleanse the request's POST parameters. value = self.get_request_repr(value) elif isinstance(value, MultiValueDict): # Cleanse MultiValueDicts (request.POST is the one we usually care about) value = self.get_cleansed_multivaluedict(request, value) return value def get_traceback_frame_variables(self, request, tb_frame): """ Replaces the values of variables marked as sensitive with stars (*********). """ # Loop through the frame's callers to see if the sensitive_variables # decorator was used. current_frame = tb_frame.f_back sensitive_variables = None while current_frame is not None: if (current_frame.f_code.co_name == 'sensitive_variables_wrapper' and 'sensitive_variables_wrapper' in current_frame.f_locals): # The sensitive_variables decorator was used, so we take note # of the sensitive variables' names. wrapper = current_frame.f_locals['sensitive_variables_wrapper'] sensitive_variables = getattr(wrapper, 'sensitive_variables', None) break current_frame = current_frame.f_back cleansed = {} if self.is_active(request) and sensitive_variables: if sensitive_variables == '__ALL__': # Cleanse all variables for name, value in tb_frame.f_locals.items(): cleansed[name] = CLEANSED_SUBSTITUTE else: # Cleanse specified variables for name, value in tb_frame.f_locals.items(): if name in sensitive_variables: value = CLEANSED_SUBSTITUTE else: value = self.cleanse_special_types(request, value) cleansed[name] = value else: # Potentially cleanse the request and any MultiValueDicts if they # are one of the frame variables. for name, value in tb_frame.f_locals.items(): cleansed[name] = self.cleanse_special_types(request, value) if (tb_frame.f_code.co_name == 'sensitive_variables_wrapper' and 'sensitive_variables_wrapper' in tb_frame.f_locals): # For good measure, obfuscate the decorated function's arguments in # the sensitive_variables decorator's frame, in case the variables # associated with those arguments were meant to be obfuscated from # the decorated function's frame. cleansed['func_args'] = CLEANSED_SUBSTITUTE cleansed['func_kwargs'] = CLEANSED_SUBSTITUTE return cleansed.items() class ExceptionReporter(object): """ A class to organize and coordinate reporting on exceptions. """ def __init__(self, request, exc_type, exc_value, tb, is_email=False): self.request = request self.filter = get_exception_reporter_filter(self.request) self.exc_type = exc_type self.exc_value = exc_value self.tb = tb self.is_email = is_email self.template_info = getattr(self.exc_value, 'template_debug', None) self.template_does_not_exist = False self.loader_debug_info = None # Handle deprecated string exceptions if isinstance(self.exc_type, six.string_types): self.exc_value = Exception('Deprecated String Exception: %r' % self.exc_type) self.exc_type = type(self.exc_value) def format_path_status(self, path): if not os.path.exists(path): return "File does not exist" return "File exists" def get_traceback_data(self): """Return a dictionary containing traceback information.""" try: default_template_engine = Engine.get_default() except Exception: # Since the debug view must never crash, catch all exceptions. # If Django can't find a default template engine, get_default() # raises ImproperlyConfigured. If some template engines fail to # load, any exception may be raised. default_template_engine = None # TODO: add support for multiple template engines (#24120). # TemplateDoesNotExist should carry all the information. # Replaying the search process isn't a good design. if self.exc_type and issubclass(self.exc_type, TemplateDoesNotExist): if default_template_engine is None: template_loaders = [] else: self.template_does_not_exist = True self.loader_debug_info = [] # If Django fails in get_template_loaders, provide an empty list # for the following loop to not fail. try: template_loaders = default_template_engine.template_loaders except Exception: template_loaders = [] for loader in template_loaders: try: source_list_func = loader.get_template_sources # NOTE: This assumes exc_value is the name of the template that # the loader attempted to load. template_list = [{ 'name': t, 'status': self.format_path_status(t), } for t in source_list_func(str(self.exc_value))] except AttributeError: template_list = [] loader_name = loader.__module__ + '.' + loader.__class__.__name__ self.loader_debug_info.append({ 'loader': loader_name, 'templates': template_list, }) frames = self.get_traceback_frames() for i, frame in enumerate(frames): if 'vars' in frame: frame_vars = [] for k, v in frame['vars']: v = pprint(v) # The force_escape filter assume unicode, make sure that works if isinstance(v, six.binary_type): v = v.decode('utf-8', 'replace') # don't choke on non-utf-8 input # Trim large blobs of data if len(v) > 4096: v = '%s... <trimmed %d bytes string>' % (v[0:4096], len(v)) frame_vars.append((k, force_escape(v))) frame['vars'] = frame_vars frames[i] = frame unicode_hint = '' if self.exc_type and issubclass(self.exc_type, UnicodeError): start = getattr(self.exc_value, 'start', None) end = getattr(self.exc_value, 'end', None) if start is not None and end is not None: unicode_str = self.exc_value.args[1] unicode_hint = smart_text( unicode_str[max(start - 5, 0):min(end + 5, len(unicode_str))], 'ascii', errors='replace' ) from django import get_version c = { 'is_email': self.is_email, 'unicode_hint': unicode_hint, 'frames': frames, 'request': self.request, 'filtered_POST': self.filter.get_post_parameters(self.request), 'settings': get_safe_settings(), 'sys_executable': sys.executable, 'sys_version_info': '%d.%d.%d' % sys.version_info[0:3], 'server_time': timezone.now(), 'django_version_info': get_version(), 'sys_path': sys.path, 'template_info': self.template_info, 'template_does_not_exist': self.template_does_not_exist, 'loader_debug_info': self.loader_debug_info, } # Check whether exception info is available if self.exc_type: c['exception_type'] = self.exc_type.__name__ if self.exc_value: c['exception_value'] = smart_text(self.exc_value, errors='replace') if frames: c['lastframe'] = frames[-1] return c def get_traceback_html(self): "Return HTML version of debug 500 HTTP error page." t = DEBUG_ENGINE.from_string(TECHNICAL_500_TEMPLATE) c = Context(self.get_traceback_data(), use_l10n=False) return t.render(c) def get_traceback_text(self): "Return plain text version of debug 500 HTTP error page." t = DEBUG_ENGINE.from_string(TECHNICAL_500_TEXT_TEMPLATE) c = Context(self.get_traceback_data(), autoescape=False, use_l10n=False) return t.render(c) def _get_lines_from_file(self, filename, lineno, context_lines, loader=None, module_name=None): """ Returns context_lines before and after lineno from file. Returns (pre_context_lineno, pre_context, context_line, post_context). """ source = None if loader is not None and hasattr(loader, "get_source"): try: source = loader.get_source(module_name) except ImportError: pass if source is not None: source = source.splitlines() if source is None: try: with open(filename, 'rb') as fp: source = fp.read().splitlines() except (OSError, IOError): pass if source is None: return None, [], None, [] # If we just read the source from a file, or if the loader did not # apply tokenize.detect_encoding to decode the source into a Unicode # string, then we should do that ourselves. if isinstance(source[0], six.binary_type): encoding = 'ascii' for line in source[:2]: # File coding may be specified. Match pattern from PEP-263 # (http://www.python.org/dev/peps/pep-0263/) match = re.search(br'coding[:=]\s*([-\w.]+)', line) if match: encoding = match.group(1).decode('ascii') break source = [six.text_type(sline, encoding, 'replace') for sline in source] lower_bound = max(0, lineno - context_lines) upper_bound = lineno + context_lines pre_context = source[lower_bound:lineno] context_line = source[lineno] post_context = source[lineno + 1:upper_bound] return lower_bound, pre_context, context_line, post_context def get_traceback_frames(self): def explicit_or_implicit_cause(exc_value): explicit = getattr(exc_value, '__cause__', None) implicit = getattr(exc_value, '__context__', None) return explicit or implicit # Get the exception and all its causes exceptions = [] exc_value = self.exc_value while exc_value: exceptions.append(exc_value) exc_value = explicit_or_implicit_cause(exc_value) frames = [] # No exceptions were supplied to ExceptionReporter if not exceptions: return frames # In case there's just one exception (always in Python 2, # sometimes in Python 3), take the traceback from self.tb (Python 2 # doesn't have a __traceback__ attribute on Exception) exc_value = exceptions.pop() tb = self.tb if not exceptions else exc_value.__traceback__ while tb is not None: # Support for __traceback_hide__ which is used by a few libraries # to hide internal frames. if tb.tb_frame.f_locals.get('__traceback_hide__'): tb = tb.tb_next continue filename = tb.tb_frame.f_code.co_filename function = tb.tb_frame.f_code.co_name lineno = tb.tb_lineno - 1 loader = tb.tb_frame.f_globals.get('__loader__') module_name = tb.tb_frame.f_globals.get('__name__') or '' pre_context_lineno, pre_context, context_line, post_context = self._get_lines_from_file( filename, lineno, 7, loader, module_name, ) if pre_context_lineno is not None: frames.append({ 'exc_cause': explicit_or_implicit_cause(exc_value), 'exc_cause_explicit': getattr(exc_value, '__cause__', True), 'tb': tb, 'type': 'django' if module_name.startswith('django.') else 'user', 'filename': filename, 'function': function, 'lineno': lineno + 1, 'vars': self.filter.get_traceback_frame_variables(self.request, tb.tb_frame), 'id': id(tb), 'pre_context': pre_context, 'context_line': context_line, 'post_context': post_context, 'pre_context_lineno': pre_context_lineno + 1, }) # If the traceback for current exception is consumed, try the # other exception. if not tb.tb_next and exceptions: exc_value = exceptions.pop() tb = exc_value.__traceback__ else: tb = tb.tb_next return frames def format_exception(self): """ Return the same data as from traceback.format_exception. """ import traceback frames = self.get_traceback_frames() tb = [(f['filename'], f['lineno'], f['function'], f['context_line']) for f in frames] list = ['Traceback (most recent call last):\n'] list += traceback.format_list(tb) list += traceback.format_exception_only(self.exc_type, self.exc_value) return list def technical_404_response(request, exception): "Create a technical 404 error response. The exception should be the Http404." try: error_url = exception.args[0]['path'] except (IndexError, TypeError, KeyError): error_url = request.path_info[1:] # Trim leading slash try: tried = exception.args[0]['tried'] except (IndexError, TypeError, KeyError): tried = [] else: if (not tried # empty URLconf or (request.path == '/' and len(tried) == 1 # default URLconf and len(tried[0]) == 1 and getattr(tried[0][0], 'app_name', '') == getattr(tried[0][0], 'namespace', '') == 'admin')): return default_urlconf(request) urlconf = getattr(request, 'urlconf', settings.ROOT_URLCONF) if isinstance(urlconf, types.ModuleType): urlconf = urlconf.__name__ caller = '' try: resolver_match = resolve(request.path) except Resolver404: pass else: obj = resolver_match.func if hasattr(obj, '__name__'): caller = obj.__name__ elif hasattr(obj, '__class__') and hasattr(obj.__class__, '__name__'): caller = obj.__class__.__name__ if hasattr(obj, '__module__'): module = obj.__module__ caller = '%s.%s' % (module, caller) t = DEBUG_ENGINE.from_string(TECHNICAL_404_TEMPLATE) c = Context({ 'urlconf': urlconf, 'root_urlconf': settings.ROOT_URLCONF, 'request_path': error_url, 'urlpatterns': tried, 'reason': force_bytes(exception, errors='replace'), 'request': request, 'settings': get_safe_settings(), 'raising_view_name': caller, }) return HttpResponseNotFound(t.render(c), content_type='text/html') def default_urlconf(request): "Create an empty URLconf 404 error response." t = DEBUG_ENGINE.from_string(DEFAULT_URLCONF_TEMPLATE) c = Context({ "title": _("Welcome to Django"), "heading": _("It worked!"), "subheading": _("Congratulations on your first Django-powered page."), "instructions": _("Of course, you haven't actually done any work yet. " "Next, start your first app by running <code>python manage.py startapp [app_label]</code>."), "explanation": _("You're seeing this message because you have <code>DEBUG = True</code> in your " "Django settings file and you haven't configured any URLs. Get to work!"), }) return HttpResponse(t.render(c), content_type='text/html') # # Templates are embedded in the file so that we know the error handler will # always work even if the template loader is broken. # TECHNICAL_500_TEMPLATE = (""" <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="robots" content="NONE,NOARCHIVE"> <title>{% if exception_type %}{{ exception_type }}{% else %}Report{% endif %}""" """{% if request %} at {{ request.path_info|escape }}{% endif %}</title> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; } h2 { margin-bottom:.8em; } h2 span { font-size:80%; color:#666; font-weight:normal; } h3 { margin:1em 0 .5em 0; } h4 { margin:0 0 .5em 0; font-weight: normal; } code, pre { font-size: 100%; white-space: pre-wrap; } table { border:1px solid #ccc; border-collapse: collapse; width:100%; background:white; } tbody td, tbody th { vertical-align:top; padding:2px 3px; } thead th { padding:1px 6px 1px 3px; background:#fefefe; text-align:left; font-weight:normal; font-size:11px; border:1px solid #ddd; } tbody th { width:12em; text-align:right; color:#666; padding-right:.5em; } table.vars { margin:5px 0 2px 40px; } table.vars td, table.req td { font-family:monospace; } table td.code { width:100%; } table td.code pre { overflow:hidden; } table.source th { color:#666; } table.source td { font-family:monospace; white-space:pre; border-bottom:1px solid #eee; } ul.traceback { list-style-type:none; color: #222; } ul.traceback li.frame { padding-bottom:1em; color:#666; } ul.traceback li.user { background-color:#e0e0e0; color:#000 } div.context { padding:10px 0; overflow:hidden; } div.context ol { padding-left:30px; margin:0 10px; list-style-position: inside; } div.context ol li { font-family:monospace; white-space:pre; color:#777; cursor:pointer; } div.context ol li pre { display:inline; } div.context ol.context-line li { color:#505050; background-color:#dfdfdf; } div.context ol.context-line li span { position:absolute; right:32px; } .user div.context ol.context-line li { background-color:#bbb; color:#000; } .user div.context ol li { color:#666; } div.commands { margin-left: 40px; } div.commands a { color:#555; text-decoration:none; } .user div.commands a { color: black; } #summary { background: #ffc; } #summary h2 { font-weight: normal; color: #666; } #explanation { background:#eee; } #template, #template-not-exist { background:#f6f6f6; } #template-not-exist ul { margin: 0 0 0 20px; } #unicode-hint { background:#eee; } #traceback { background:#eee; } #requestinfo { background:#f6f6f6; padding-left:120px; } #summary table { border:none; background:transparent; } #requestinfo h2, #requestinfo h3 { position:relative; margin-left:-100px; } #requestinfo h3 { margin-bottom:-1em; } .error { background: #ffc; } .specific { color:#cc3300; font-weight:bold; } h2 span.commands { font-size:.7em;} span.commands a:link {color:#5E5694;} pre.exception_value { font-family: sans-serif; color: #666; font-size: 1.5em; margin: 10px 0 10px 0; } </style> {% if not is_email %} <script type="text/javascript"> //<!-- function getElementsByClassName(oElm, strTagName, strClassName){ // Written by Jonathan Snook, http://www.snook.ca/jon; Add-ons by Robert Nyman, http://www.robertnyman.com var arrElements = (strTagName == "*" && document.all)? document.all : oElm.getElementsByTagName(strTagName); var arrReturnElements = new Array(); strClassName = strClassName.replace(/\-/g, "\\-"); var oRegExp = new RegExp("(^|\\s)" + strClassName + "(\\s|$)"); var oElement; for(var i=0; i<arrElements.length; i++){ oElement = arrElements[i]; if(oRegExp.test(oElement.className)){ arrReturnElements.push(oElement); } } return (arrReturnElements) } function hideAll(elems) { for (var e = 0; e < elems.length; e++) { elems[e].style.display = 'none'; } } window.onload = function() { hideAll(getElementsByClassName(document, 'table', 'vars')); hideAll(getElementsByClassName(document, 'ol', 'pre-context')); hideAll(getElementsByClassName(document, 'ol', 'post-context')); hideAll(getElementsByClassName(document, 'div', 'pastebin')); } function toggle() { for (var i = 0; i < arguments.length; i++) { var e = document.getElementById(arguments[i]); if (e) { e.style.display = e.style.display == 'none' ? 'block': 'none'; } } return false; } function varToggle(link, id) { toggle('v' + id); var s = link.getElementsByTagName('span')[0]; var uarr = String.fromCharCode(0x25b6); var darr = String.fromCharCode(0x25bc); s.innerHTML = s.innerHTML == uarr ? darr : uarr; return false; } function switchPastebinFriendly(link) { s1 = "Switch to copy-and-paste view"; s2 = "Switch back to interactive view"; link.innerHTML = link.innerHTML == s1 ? s2: s1; toggle('browserTraceback', 'pastebinTraceback'); return false; } //--> </script> {% endif %} </head> <body> <div id="summary"> <h1>{% if exception_type %}{{ exception_type }}{% else %}Report{% endif %}""" """{% if request %} at {{ request.path_info|escape }}{% endif %}</h1> <pre class="exception_value">""" """{% if exception_value %}{{ exception_value|force_escape }}{% else %}No exception message supplied{% endif %}""" """</pre> <table class="meta"> {% if request %} <tr> <th>Request Method:</th> <td>{{ request.META.REQUEST_METHOD }}</td> </tr> <tr> <th>Request URL:</th> <td>{{ request.build_absolute_uri|escape }}</td> </tr> {% endif %} <tr> <th>Django Version:</th> <td>{{ django_version_info }}</td> </tr> {% if exception_type %} <tr> <th>Exception Type:</th> <td>{{ exception_type }}</td> </tr> {% endif %} {% if exception_type and exception_value %} <tr> <th>Exception Value:</th> <td><pre>{{ exception_value|force_escape }}</pre></td> </tr> {% endif %} {% if lastframe %} <tr> <th>Exception Location:</th> <td>{{ lastframe.filename|escape }} in {{ lastframe.function|escape }}, line {{ lastframe.lineno }}</td> </tr> {% endif %} <tr> <th>Python Executable:</th> <td>{{ sys_executable|escape }}</td> </tr> <tr> <th>Python Version:</th> <td>{{ sys_version_info }}</td> </tr> <tr> <th>Python Path:</th> <td><pre>{{ sys_path|pprint }}</pre></td> </tr> <tr> <th>Server time:</th> <td>{{server_time|date:"r"}}</td> </tr> </table> </div> {% if unicode_hint %} <div id="unicode-hint"> <h2>Unicode error hint</h2> <p>The string that could not be encoded/decoded was: <strong>{{ unicode_hint|force_escape }}</strong></p> </div> {% endif %} {% if template_does_not_exist %} <div id="template-not-exist"> <h2>Template-loader postmortem</h2> {% if loader_debug_info %} <p>Django tried loading these templates, in this order:</p> <ul> {% for loader in loader_debug_info %} <li>Using loader <code>{{ loader.loader }}</code>: <ul> {% for t in loader.templates %}<li><code>{{ t.name }}</code> ({{ t.status }})</li>{% endfor %} </ul> </li> {% endfor %} </ul> {% else %} <p>Django couldn't find any templates because your <code>'loaders'</code> option is empty!</p> {% endif %} </div> {% endif %} {% if template_info %} <div id="template"> <h2>Error during template rendering</h2> <p>In template <code>{{ template_info.name }}</code>, error at line <strong>{{ template_info.line }}</strong></p> <h3>{{ template_info.message }}</h3> <table class="source{% if template_info.top %} cut-top{% endif %} {% ifnotequal template_info.bottom template_info.total %} cut-bottom{% endifnotequal %}"> {% for source_line in template_info.source_lines %} {% ifequal source_line.0 template_info.line %} <tr class="error"><th>{{ source_line.0 }}</th> <td> {{ template_info.before }} <span class="specific">{{ template_info.during }}</span> {{ template_info.after }} </td> </tr> {% else %} <tr><th>{{ source_line.0 }}</th> <td>{{ source_line.1 }}</td></tr> {% endifequal %} {% endfor %} </table> </div> {% endif %} {% if frames %} <div id="traceback"> <h2>Traceback <span class="commands">{% if not is_email %}<a href="#" onclick="return switchPastebinFriendly(this);"> Switch to copy-and-paste view</a></span>{% endif %} </h2> {% autoescape off %} <div id="browserTraceback"> <ul class="traceback"> {% for frame in frames %} {% ifchanged frame.exc_cause %}{% if frame.exc_cause %} <li><h3> {% if frame.exc_cause_explicit %} The above exception ({{ frame.exc_cause }}) was the direct cause of the following exception: {% else %} During handling of the above exception ({{ frame.exc_cause }}), another exception occurred: {% endif %} </h3></li> {% endif %}{% endifchanged %} <li class="frame {{ frame.type }}"> <code>{{ frame.filename|escape }}</code> in <code>{{ frame.function|escape }}</code> {% if frame.context_line %} <div class="context" id="c{{ frame.id }}"> {% if frame.pre_context and not is_email %} <ol start="{{ frame.pre_context_lineno }}" class="pre-context" id="pre{{ frame.id }}"> {% for line in frame.pre_context %} <li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ line|escape }}</pre></li> {% endfor %} </ol> {% endif %} <ol start="{{ frame.lineno }}" class="context-line"> <li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre> {{ frame.context_line|escape }}</pre>{% if not is_email %} <span>...</span>{% endif %}</li></ol> {% if frame.post_context and not is_email %} <ol start='{{ frame.lineno|add:"1" }}' class="post-context" id="post{{ frame.id }}"> {% for line in frame.post_context %} <li onclick="toggle('pre{{ frame.id }}', 'post{{ frame.id }}')"><pre>{{ line|escape }}</pre></li> {% endfor %} </ol> {% endif %} </div> {% endif %} {% if frame.vars %} <div class="commands"> {% if is_email %} <h2>Local Vars</h2> {% else %} <a href="#" onclick="return varToggle(this, '{{ frame.id }}')"><span>&#x25b6;</span> Local vars</a> {% endif %} </div> <table class="vars" id="v{{ frame.id }}"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in frame.vars|dictsort:"0" %} <tr> <td>{{ var.0|force_escape }}</td> <td class="code"><pre>{{ var.1 }}</pre></td> </tr> {% endfor %} </tbody> </table> {% endif %} </li> {% endfor %} </ul> </div> {% endautoescape %} <form action="http://dpaste.com/" name="pasteform" id="pasteform" method="post"> {% if not is_email %} <div id="pastebinTraceback" class="pastebin"> <input type="hidden" name="language" value="PythonConsole"> <input type="hidden" name="title" value="{{ exception_type|escape }}{% if request %} at {{ request.path_info|escape }}{% endif %}"> <input type="hidden" name="source" value="Django Dpaste Agent"> <input type="hidden" name="poster" value="Django"> <textarea name="content" id="traceback_area" cols="140" rows="25"> Environment: {% if request %} Request Method: {{ request.META.REQUEST_METHOD }} Request URL: {{ request.build_absolute_uri|escape }} {% endif %} Django Version: {{ django_version_info }} Python Version: {{ sys_version_info }} Installed Applications: {{ settings.INSTALLED_APPS|pprint }} Installed Middleware: {{ settings.MIDDLEWARE_CLASSES|pprint }} {% if template_does_not_exist %}Template Loader Error: {% if loader_debug_info %}Django tried loading these templates, in this order: {% for loader in loader_debug_info %}Using loader {{ loader.loader }}: {% for t in loader.templates %}{{ t.name }} ({{ t.status }}) {% endfor %}{% endfor %} {% else %}Django couldn't find any templates because your 'loaders' option is empty! {% endif %} {% endif %}{% if template_info %} Template error: In template {{ template_info.name }}, error at line {{ template_info.line }} {{ template_info.message }}{% for source_line in template_info.source_lines %} {% ifequal source_line.0 template_info.line %} {{ source_line.0 }} : {{ template_info.before }} {{ template_info.during }} {{ template_info.after }} {% else %} {{ source_line.0 }} : {{ source_line.1 }} {% endifequal %}{% endfor %}{% endif %} Traceback: {% for frame in frames %}File "{{ frame.filename|escape }}" in {{ frame.function|escape }} {% if frame.context_line %} {{ frame.lineno }}. {{ frame.context_line|escape }}{% endif %} {% endfor %} Exception Type: {{ exception_type|escape }}{% if request %} at {{ request.path_info|escape }}{% endif %} Exception Value: {{ exception_value|force_escape }} </textarea> <br><br> <input type="submit" value="Share this traceback on a public Web site"> </div> </form> </div> {% endif %} {% endif %} <div id="requestinfo"> <h2>Request information</h2> {% if request %} <h3 id="get-info">GET</h3> {% if request.GET %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.GET.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No GET data</p> {% endif %} <h3 id="post-info">POST</h3> {% if filtered_POST %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in filtered_POST.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No POST data</p> {% endif %} <h3 id="files-info">FILES</h3> {% if request.FILES %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.FILES.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No FILES data</p> {% endif %} <h3 id="cookie-info">COOKIES</h3> {% if request.COOKIES %} <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.COOKIES.items %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>No cookie data</p> {% endif %} <h3 id="meta-info">META</h3> <table class="req"> <thead> <tr> <th>Variable</th> <th>Value</th> </tr> </thead> <tbody> {% for var in request.META.items|dictsort:"0" %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> {% else %} <p>Request data not supplied</p> {% endif %} <h3 id="settings-info">Settings</h3> <h4>Using settings module <code>{{ settings.SETTINGS_MODULE }}</code></h4> <table class="req"> <thead> <tr> <th>Setting</th> <th>Value</th> </tr> </thead> <tbody> {% for var in settings.items|dictsort:"0" %} <tr> <td>{{ var.0 }}</td> <td class="code"><pre>{{ var.1|pprint }}</pre></td> </tr> {% endfor %} </tbody> </table> </div> {% if not is_email %} <div id="explanation"> <p> You're seeing this error because you have <code>DEBUG = True</code> in your Django settings file. Change that to <code>False</code>, and Django will display a standard page generated by the handler for this status code. </p> </div> {% endif %} </body> </html> """) TECHNICAL_500_TEXT_TEMPLATE = """{% firstof exception_type 'Report' %}{% if request %} at {{ request.path_info }}{% endif %} {% firstof exception_value 'No exception message supplied' %} {% if request %} Request Method: {{ request.META.REQUEST_METHOD }} Request URL: {{ request.build_absolute_uri }}{% endif %} Django Version: {{ django_version_info }} Python Executable: {{ sys_executable }} Python Version: {{ sys_version_info }} Python Path: {{ sys_path }} Server time: {{server_time|date:"r"}} Installed Applications: {{ settings.INSTALLED_APPS|pprint }} Installed Middleware: {{ settings.MIDDLEWARE_CLASSES|pprint }} {% if template_does_not_exist %}Template loader Error: {% if loader_debug_info %}Django tried loading these templates, in this order: {% for loader in loader_debug_info %}Using loader {{ loader.loader }}: {% for t in loader.templates %}{{ t.name }} ({{ t.status }}) {% endfor %}{% endfor %} {% else %}Django couldn't find any templates because your 'loaders' option is empty! {% endif %} {% endif %}{% if template_info %} Template error: In template {{ template_info.name }}, error at line {{ template_info.line }} {{ template_info.message }}{% for source_line in template_info.source_lines %} {% ifequal source_line.0 template_info.line %} {{ source_line.0 }} : {{ template_info.before }} {{ template_info.during }} {{ template_info.after }} {% else %} {{ source_line.0 }} : {{ source_line.1 }} {% endifequal %}{% endfor %}{% endif %}{% if frames %} Traceback: {% for frame in frames %} {% ifchanged frame.exc_cause %} {% if frame.exc_cause %} {% if frame.exc_cause_explicit %} The above exception ({{ frame.exc_cause }}) was the direct cause of the following exception: {% else %} During handling of the above exception ({{ frame.exc_cause }}), another exception occurred: {% endif %} {% endif %} {% endifchanged %} File "{{ frame.filename }}" in {{ frame.function }} {% if frame.context_line %} {{ frame.lineno }}. {{ frame.context_line }}{% endif %} {% endfor %} {% if exception_type %}Exception Type: {{ exception_type }}{% if request %} at {{ request.path_info }}{% endif %} {% if exception_value %}Exception Value: {{ exception_value }}{% endif %}{% endif %}{% endif %} {% if request %}Request information: GET:{% for k, v in request.GET.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No GET data{% endfor %} POST:{% for k, v in filtered_POST.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No POST data{% endfor %} FILES:{% for k, v in request.FILES.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No FILES data{% endfor %} COOKIES:{% for k, v in request.COOKIES.items %} {{ k }} = {{ v|stringformat:"r" }}{% empty %} No cookie data{% endfor %} META:{% for k, v in request.META.items|dictsort:"0" %} {{ k }} = {{ v|stringformat:"r" }}{% endfor %} {% else %}Request data not supplied {% endif %} Settings: Using settings module {{ settings.SETTINGS_MODULE }}{% for k, v in settings.items|dictsort:"0" %} {{ k }} = {{ v|stringformat:"r" }}{% endfor %} You're seeing this error because you have DEBUG = True in your Django settings file. Change that to False, and Django will display a standard page generated by the handler for this status code. """ TECHNICAL_404_TEMPLATE = """ <!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <title>Page not found at {{ request.path_info|escape }}</title> <meta name="robots" content="NONE,NOARCHIVE"> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; background:#eee; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; margin-bottom:.4em; } h1 span { font-size:60%; color:#666; font-weight:normal; } table { border:none; border-collapse: collapse; width:100%; } td, th { vertical-align:top; padding:2px 3px; } th { width:12em; text-align:right; color:#666; padding-right:.5em; } #info { background:#f6f6f6; } #info ol { margin: 0.5em 4em; } #info ol li { font-family: monospace; } #summary { background: #ffc; } #explanation { background:#eee; border-bottom: 0px none; } </style> </head> <body> <div id="summary"> <h1>Page not found <span>(404)</span></h1> <table class="meta"> <tr> <th>Request Method:</th> <td>{{ request.META.REQUEST_METHOD }}</td> </tr> <tr> <th>Request URL:</th> <td>{{ request.build_absolute_uri|escape }}</td> </tr> {% if raising_view_name %} <tr> <th>Raised by:</th> <td>{{ raising_view_name }}</td> </tr> {% endif %} </table> </div> <div id="info"> {% if urlpatterns %} <p> Using the URLconf defined in <code>{{ urlconf }}</code>, Django tried these URL patterns, in this order: </p> <ol> {% for pattern in urlpatterns %} <li> {% for pat in pattern %} {{ pat.regex.pattern }} {% if forloop.last and pat.name %}[name='{{ pat.name }}']{% endif %} {% endfor %} </li> {% endfor %} </ol> <p>The current URL, <code>{{ request_path|escape }}</code>, didn't match any of these.</p> {% else %} <p>{{ reason }}</p> {% endif %} </div> <div id="explanation"> <p> You're seeing this error because you have <code>DEBUG = True</code> in your Django settings file. Change that to <code>False</code>, and Django will display a standard 404 page. </p> </div> </body> </html> """ DEFAULT_URLCONF_TEMPLATE = """ <!DOCTYPE html> <html lang="en"><head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <meta name="robots" content="NONE,NOARCHIVE"><title>{{ title }}</title> <style type="text/css"> html * { padding:0; margin:0; } body * { padding:10px 20px; } body * * { padding:0; } body { font:small sans-serif; } body>div { border-bottom:1px solid #ddd; } h1 { font-weight:normal; } h2 { margin-bottom:.8em; } h2 span { font-size:80%; color:#666; font-weight:normal; } h3 { margin:1em 0 .5em 0; } h4 { margin:0 0 .5em 0; font-weight: normal; } table { border:1px solid #ccc; border-collapse: collapse; width:100%; background:white; } tbody td, tbody th { vertical-align:top; padding:2px 3px; } thead th { padding:1px 6px 1px 3px; background:#fefefe; text-align:left; font-weight:normal; font-size:11px; border:1px solid #ddd; } tbody th { width:12em; text-align:right; color:#666; padding-right:.5em; } #summary { background: #e0ebff; } #summary h2 { font-weight: normal; color: #666; } #explanation { background:#eee; } #instructions { background:#f6f6f6; } #summary table { border:none; background:transparent; } </style> </head> <body> <div id="summary"> <h1>{{ heading }}</h1> <h2>{{ subheading }}</h2> </div> <div id="instructions"> <p> {{ instructions|safe }} </p> </div> <div id="explanation"> <p> {{ explanation|safe }} </p> </div> </body></html> """
the-stack_0_15835
EPSILON = 1e-5 DICT_ALIASES_CORE = { 'node': 'NODE', 'displacement': 'DISPLACEMENT', 'disp': 'DISPLACEMENT', 'nodal_stress': 'NodalSTRESS', 'nodal_strain': 'NodalSTRAIN', 'nodal_mises': 'NodalMISES', 't_init': 'INITIAL_TEMPERATURE', 't_cnt': 'CNT_TEMPERATURE', 'reac': 'REACTION_FORCE', 'elemental_stress': 'ElementalSTRESS', 'elemental_strain': 'ElementalSTRAIN', 'elemental_mises': 'ElementalMISES', 'modulus': 'Young_modulus', 'poisson_ratio': 'Poisson_ratio', 'density': 'density', 'lte': 'linear_thermal_expansion_coefficient', 'lte_full': 'linear_thermal_expansion_coefficient_full', 'specific_heat': 'specific_heat', 'thermal_conductivity': 'thermal_conductivity', 'orient': 'ORIENTATION', 'boundary': 'boundary', 'cload': 'cload', 'fixtemp': 'fixtemp', 'istrain1': 'GaussSTRAIN1', 'istrain2': 'GaussSTRAIN2', 'istrain3': 'GaussSTRAIN3', 'istrain4': 'GaussSTRAIN4', 'istrain5': 'GaussSTRAIN5', 'istrain6': 'GaussSTRAIN6', 'istrain7': 'GaussSTRAIN7', 'istrain8': 'GaussSTRAIN8', 'vf': 'VF', 'pressure_start_shrinkage': 'pressure_start_shrinkage', 'specific_volume_start_shrinkage': 'specific_volume_start_shrinkage', 'average_temperature_start_shrinkage': 'average_temperature_start_shrinkage', 'time_start_shrinkage': 'time_start_shrinkage', 'shrinkage': 'shrinkage', 'gradient_temperature_mold': 'gradient_temperature_mold', 'shrinkage_mold': 'shrinkage_mold', 'pressure': 'pressure', 'specific_volume': 'specific_volume', 'average_temperature': 'average_temperature', 'max_temperature': 'max_temperature', 'thickness_flow_layer': 'thickness_flow_layer', 'viscosity': 'viscosity', 'shear_velocity': 'shear_velocity', 'shear_stress': 'shear_stress', 'flow_velocity': 'flow_velocity', 'fiber_orientation_tensor': 'fiber_orientation_tensor', 'fiber_orientation_vector': 'fiber_orientation_vector', 'fiber_velocity': 'fiber_velocity', 'skin_fiber_orientation_vector': 'skin_fiber_orientation_vector', 'inflow_gate': 'inflow_gate', 'flow_length': 'flow_length', 'flow_length_by_thickness': 'flow_length_by_thickness', 'temperature_difference': 'temperature_difference', 'flow_front_time': 'flow_front_time', 'normal': 'normal', 'area': 'area', } DICT_ALIASES = dict(DICT_ALIASES_CORE) DICT_ALIASES.update({ v: v for v in DICT_ALIASES_CORE.values()}) DICT_INVERSE_ALIASES = {v: k for k, v in DICT_ALIASES_CORE.items()} DICT_INVERSE_ALIASES.update({ v: v for v in DICT_INVERSE_ALIASES.values()}) LIST_NODAL = [ 'node', 'displacement', 'disp', 'nodal_mises', 'nodal_stress', 'nodal_strain', 'reac', 't_cnt', 't_init', 'pressure_start_shrinkage', 'specific_volume_start_shrinkage', 'average_temperature_start_shrinkage', 'time_start_shrinkage', 'shrinkage', 'gradient_temperature_mold', 'shrinkage_mold', 'pressure', 'specific_volume', 'average_temperature', 'max_temperature', 'thickness_flow_layer', 'temperature_difference', 'flow_front_time', ] LIST_ELEMENTAL = [ 'density', 'elemental_mises', 'elemental_strain', 'elemental_stress', 'istrain1', 'istrain2', 'istrain3', 'istrain4', 'istrain5', 'istrain6', 'istrain7', 'istrain8', 'lte', 'lte_full', 'modulus', 'orient', 'poisson_ratio', 'vf', 'viscosity', 'shear_velocity', 'shear_stress', 'flow_velocity', 'fiber_orientation_tensor', 'fiber_orientation_vector', 'fiber_velocity', 'skin_fiber_orientation_vector', ] LIST_CONSTRAINTS = [ 'boundary', 'cload', 'fixtemp', ] LIST_MATERIALS = [ 'modulus', 'poisson_ratio', 'density', 'lte', 'lte_full', 'specific_heat', 'thermal_conductivity', 'linear_thermal_expansion_coefficient', 'linear_thermal_expansion_coefficient_full', ] LINE_ELEMENT_NAMES = [ 'line', 'line2', ] SHELL_ELEMENT_NAMES = [ 'tri', 'tri2', 'quad', 'quad2', ] SOLID_ELEMENT_NAMES = [ 'line', 'line2', 'tet', 'tet2', 'pyr', 'pyr2', 'prism', 'prism2', 'hex', 'hex2', ] DICT_FEMIO_ELEMENT_TO_MESHIO_ELEMENT = { 'pt': 'vertex', 'line': 'line', 'line2': 'line3', 'tri': 'triangle', 'tri2': 'triangle6', 'quad': 'quad', 'quad2': 'quad8', 'tet': 'tetra', 'tet2': 'tetra10', 'pyr': 'pyramid', 'pyr2': 'pyramid13', 'prism': 'wedge', 'prism2': 'wedge15', 'hex': 'hexahedron', 'hex2': 'hexahedron27', 'hexprism': 'hexa_prism', } DICT_MESHIO_ELEMENT_TO_FEMIO_ELEMENT = { v: k for k, v in DICT_FEMIO_ELEMENT_TO_MESHIO_ELEMENT.items()} DICT_EXT = { 'fistr': '', 'obj': 'obj', 'stl': 'stl', 'ucd': 'inp', 'vtk': 'vtk', }
the-stack_0_15836
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2015, Perceivon Hosting Inc. # Copyright 2021, Vladimir Botka <[email protected]> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY [COPYRIGHT HOLDER] AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL [COPYRIGHT HOLDER] OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = r''' --- module: iocage short_description: FreeBSD iocage jail handling description: - The M(iocage) module allows several iocage commands to be executed through ansible. - document use-cases here options: state: description: - I(state) of the desired result. type: str choices: [basejail, thickjail, template, present, cloned, started, stopped, restarted, fetched, exec, pkg, exists, absent, set, facts] default: facts name: description: - I(name) of the jail (former uuid). type: str pkglist: description: - Path to a JSON file containing packages to install. Only applicable when creating a jail. type: path properties: description: - I(properties) of the jail. type: dict args: description: - Additional arguments. type: dict user: description: - I(user) who runs the command I(cmd). type: str default: root cmd: description: - Execute the command I(cmd) inside the specified jail I(name). type: str clone_from: description: - Clone the jail I(clone_from) to I(name). Use I(properties) to configure the clone. type: str release: description: - Specify which RELEASE to fetch, update, or create a jail. type: str update: description: - Update the fetch to the latest patch level. type: bool default: False components: description: - Uses a local file directory for the root directory instead of HTTP to downloads and/or updates releases. type: list elements: path aliases: [files, component] requirements: - lang/python >= 3.6 - sysutils/iocage notes: - Supports C(check_mode). - The module always creates facts B(iocage_releases), B(iocage_templates), and B(iocage_jails) - There is no mandatory option. - Returns B(module_args) when debugging is set B(ANSIBLE_DEBUG=true) seealso: - name: iocage - A FreeBSD Jail Manager description: iocage 1.2 documentation link: https://iocage.readthedocs.io/en/latest/ - name: iocage -- jail manager using ZFS and VNET description: FreeBSD System Manager's Manual link: https://www.freebsd.org/cgi/man.cgi?query=iocage author: - Johannes Meixner (@xmj) - dgeo (@dgeo) - Berend de Boer (@berenddeboer) - Dr Josef Karthauser (@Infiniverse) - Kevin P. Fleming (@kpfleming) - Ross Williams (@overhacked) - david8001 (@david8001) - luto (@luto) - Keve Müller (@kevemueller) - Mårten Lindblad (@martenlindblad) - Vladimir Botka (@vbotka) ''' EXAMPLES = r''' - name: Create all iocage_* ansible_facts iocage: - name: Display lists of bases, names of templates, and names of jails debug: msg: |- {{ iocage_releases }} {{ iocage_templates.keys()|list }} {{ iocage_jails.keys()|list }} - name: Create jail without cloning iocage: name: foo state: present pkglist: /path/to/pkglist.json properties: ip4_addr: 'lo1|10.1.0.5' boot: true allow_sysvipc: true defaultrouter: '10.1.0.1' - name: Create template iocage: name: tplfoo state: template pkglist: /path/to/pkglist.json properties: ip4_addr: 'lo1|10.1.0.5' boot: true allow_sysvipc: true defaultrouter: '10.1.0.1' - name: Create a cloned jail. Creates basejail if needed. iocage: name: foo state: present clone_from: tplfoo pkglist: /path/to/pkglist.json properties: ip4_addr: 'lo1|10.1.0.5' boot: true allow_sysvipc: true defaultrouter: '10.1.0.1' - name: Start existing jail iocage: name: foo state: started - name: Stop existing jail iocage: name: foo state: stopped - name: Restart existing jail iocage: name: foo state: restarted - name: Execute command in running jail iocage: name: foo state: exec cmd: service sshd start - name: Destroy jail iocage: name: foo state: absent ''' RETURN = r''' ansible_facts: description: Facts to add to ansible_facts. returned: always type: dict contains: iocage_releases: description: List of all bases. returned: always type: list elements: str sample: ['13.0-RELEASE'] iocage_templates: description: Dictionary of all templates. returned: always type: dict sample: {} iocage_jails: description: Dictionary of all jails. returned: always type: dict sample: {} module_args: description: Information on how the module was invoked. returned: debug type: dict ''' import json import re from ansible.module_utils.basic import AnsibleModule from ansible.module_utils._text import to_bytes def _command_fail(module, label, cmd, rc, stdout, stderr): module.fail_json(msg=f"{label}\ncmd: '{cmd}' return: {rc}\nstdout: '{stdout}'\nstderr: '{stderr}'") def _get_iocage_facts(module, iocage_path, argument="all", name=None): opt = dict(jails="list -hl", templates="list -hlt", releases="list -hr", init="list -h") if argument == "all": # _init = _get_iocage_facts(module, iocage_path, "init") _jails = _get_iocage_facts(module, iocage_path, "jails") _templates = _get_iocage_facts(module, iocage_path, "templates") _releases = _get_iocage_facts(module, iocage_path, "releases") return dict(iocage_jails=_jails, iocage_templates=_templates, iocage_releases=_releases) elif argument in opt: cmd = f"{iocage_path} {opt[argument]}" else: module.fail_json(msg=f"_get_iocage_facts({argument}): argument not understood") rc, state, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if rc != 0 and argument != "init": _command_fail(module, "_get_iocage_facts()", cmd, rc, state, err) elif argument == "init": return {} if argument == 'releases': _releases = [] for line in state.split('\n'): if re.match(r'\s*\d', line): _releases.append(line.strip()) return _releases _jails = {} try: for line in state.split('\n'): if line == "": continue _jid = line.split('\t')[0] if _jid == '---': # non-iocage jails: skip all break elif re.match(r'(\d+|-)', _jid): _fragments = line.split('\t') if len(_fragments) == 10: (_jid, _name, _boot, _state, _type, _release, _ip4, _ip6, _template, _basejail) = _fragments else: (_jid, _name, _boot, _state, _type, _release, _ip4, _ip6, _template) = _fragments if _name != "": _properties = _jail_get_properties(module, iocage_path, _name) _jails[_name] = {"jid": _jid, "name": _name, "state": _state, "properties": _properties} else: module.fail_json(msg=f"_get_iocage_facts():\nUnreadable stdout line from cmd '{cmd}': '{line}'") except ValueError: module.fail_json(msg=f"unable to parse {state}") if name is not None: if name in _jails: return _jails[name] else: return {} return _jails def _jail_started(module, iocage_path, name): cmd = f"{iocage_path} list -h" rc, state, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if rc != 0: _command_fail(module, f"jail_started({name})", cmd, rc, state, err) st = None for line in state.split('\n'): u = line.split('\t')[1] if u == name: s = line.split('\t')[2] if s == 'up': st = True break elif s == 'down': st = False break else: module.fail_json(msg=f"Jail {name} unknown state: {line}") return st def jail_exists(module, iocage_path, argument=None, assume_absent=False): cmd = f"{iocage_path} get host_hostuuid {argument}" rc, name, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: name = "" # local variable '_msg' is assigned to but never used [F841] # _msg = "" if name != "" and assume_absent: module.fail_json(msg=f"Jail {argument} exists.") return name.strip() def jail_start(module, iocage_path, name): cmd = f"{iocage_path} start {name}" rc = 1 out = "" _msg = "" _changed = True if not module.check_mode: rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"Jail {name} could not be started.", cmd, rc, out, err) _msg = f"Jail {name} was started.\n{out}" else: _msg = f"Jail {name} would have been started." return _changed, _msg def _props_to_str(props): argstr = "" # local variable 'minargs' is assigned to but never used [F841] # minargs = "" for _prop in props: _val = props[_prop] if _val == '-' or _val == '' or not _val: continue if _val in ['yes', 'on', True]: argstr += f"{_prop}=1 " elif _val in ['no', 'off', False]: argstr += f"{_prop}=0 " elif _val in ['-', 'none']: argstr += f"{_prop}={_val} " else: argstr += f"{_prop}={str(_val)} " return argstr def release_fetch(module, iocage_path, update=False, release="NO-RELEASE", components=None, args=""): if not module.check_mode: if update: args += " -U" if components is not None: for _component in components: if _component != "": args += f" -F {_component}" cmd = f"{iocage_path} fetch -r {release} {args}" rc = 1 rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"Release {release} could not be fetched.", cmd, rc, out, err) _changed = True if update: _msg = f"Release {release} was successfully updated." else: _msg = f"Release {release} was successfully fetched." else: _changed = True _msg = f"Release {release} would have been fetched." return release, _changed, _msg def jail_restart(module, iocage_path, name): cmd = f"{iocage_path} restart {name}" rc = 1 out = "" _msg = "" _changed = True if not module.check_mode: rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"Jail {name} could not be restarted.", cmd, rc, out, err) _msg = f"Jail {name} was restarted.\n{rc}" else: _msg = f"Jail {name} would have been restarted." return _changed, _msg def jail_stop(module, iocage_path, name): cmd = f"{iocage_path} stop {name}" _changed = False rc = 1 out = "" _msg = "" if not module.check_mode: rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"Jail {name} could not be stopped.", cmd, rc, out, err) _msg = f"Jail {name} was stopped.\n" else: _msg = f"Jail {name} would have been stopped" return _changed, _msg def jail_exec(module, iocage_path, name, user="root", _cmd='/usr/bin/true'): rc = 1 out = "" err = "" _msg = "" _changed = True if not module.check_mode: cmd = f"{iocage_path} exec -u {user} {name} -- {_cmd}" rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"Command '{_cmd}' could not be executed in jail '{name}'.", cmd, rc, out, err) _msg = (f"Command '{cmd}' was executed in jail '{name}'.\nrc: {rc}\nstdout:\n{out}\nstderr:\n{err}") else: _msg = f"Command '{_cmd}' would have been executed in jail '{name}'." return _changed, _msg, out, err def jail_pkg(module, iocage_path, name, _cmd='info'): rc = 1 out = "" err = "" _msg = "" _changed = True if not module.check_mode: cmd = f"{iocage_path} pkg {name} {_cmd}" rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"pkg '{_cmd}' could not be executed in jail '{name}'.", cmd, rc, out, err) _msg = (f"pkg '{_cmd}' was executed in jail '{name}'.\nstdout:\n{out}\nstderr:\n{err}") else: _msg = f"pkg '{_cmd}' would have been executed in jail '{name}'." return _changed, _msg, out, err def _jail_get_properties(module, iocage_path, name): rc = 1 out = "" if name is not None and name != "": properties = {} cmd = f"{iocage_path} get all {name}" rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if rc == 0: _properties = [line.strip() for line in out.strip().split('\n')] for p in _properties: for _property in [p.split(':', 1)]: if len(_property) == 2: properties[_property[0]] = _property[1] else: module.fail_json(msg=f"error parsing property {p} from {str(properties)}") else: _command_fail(module, f"_jail_get_properties({name})", cmd, rc, out, err) elif module.check_mode and name == "CHECK_MODE_FAKE_UUID": properties = {"CHECK_NEW_JAIL": True} else: module.fail_json(msg=f"jail {name} not found.") return properties def jail_set(module, iocage_path, name, properties=None): if properties is None: properties = {} rc = 1 out = "" _msg = "" _changed = False cmd = "" _existing_props = _jail_get_properties(module, iocage_path, name) _props_to_be_changed = {} for _property in properties: if _property not in _existing_props: continue if _existing_props[_property] == '-' and not properties[_property]: continue if _property == "template": continue propval = None _val = properties[_property] _oval = _existing_props[_property] if _val in [0, 'no', 'off', False]: propval = 0 elif _val in [1, 'yes', 'on', True]: propval = 1 elif isinstance(_oval, str): if _val == '': propval = 'none' else: propval = f'{_val}' else: module.fail_json(msg="Unable to set attribute {0} to {1} for jail {2}" .format(_property, str(_val).replace("'", "'\\''"), name)) if 'CHECK_NEW_JAIL' in _existing_props or \ (_property in _existing_props.keys() and str(_existing_props[_property]) != str(propval)) and \ propval is not None: _props_to_be_changed[_property] = propval if len(_props_to_be_changed) > 0: need_restart = False for p in _props_to_be_changed.keys(): if p in ['ip4_addr', 'ip6_addr', 'template', 'interfaces', 'vnet', 'host_hostname']: need_restart = _jail_started(module, iocage_path, name) cmd = f"{iocage_path} set {_props_to_str(_props_to_be_changed)} {name}" if not module.check_mode: if need_restart: jail_stop(module, iocage_path, name) rc, out, err = module.run_command(cmd) if need_restart: jail_start(module, iocage_path, name) if not rc == 0 or (rc == 1 and "is already a jail!" in err): _command_fail(module, f"Attributes could not be set on jail '{name}'.", cmd, rc, out, err) _msg = f"properties {str(_props_to_be_changed.keys())} were set on jail '{name}' with cmd={cmd}." else: _msg = f"properties {str(_props_to_be_changed.keys())} would have been changed for jail {name} with command {cmd}" _msg += str(_props_to_be_changed) _changed = True else: _changed = False _msg = f"properties {properties.keys()} already set for jail {name}" return _changed, _msg def jail_create(module, iocage_path, name=None, properties=None, clone_from_name=None, clone_from_template=None, release=None, basejail=False, thickjail=False, pkglist=None): if properties is None: properties = {} rc = 1 out = "" _msg = "" if clone_from_name is None and clone_from_template is None: if basejail: cmd = f"{iocage_path} create -b -n {name} -r {release}" elif thickjail: cmd = f"{iocage_path} create -T -n {name} -r {release} {_props_to_str(properties)}" else: cmd = f"{iocage_path} create -n {name} -r {release} {_props_to_str(properties)}" if pkglist: cmd += " --pkglist=" + pkglist elif clone_from_name: cmd = f"{iocage_path} clone {clone_from_name} -n {name} {_props_to_str(properties)}" elif clone_from_template: cmd = f"{iocage_path} create -t {clone_from_template} -n {name} {_props_to_str(properties)}" if not module.check_mode: rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"Jail '{name}' could not be created.", cmd, rc, out, err) _msg += f"Jail '{name}' was created with properties {str(properties)}.\n\n{cmd}" name = jail_exists(module, iocage_path, name) if not name: module.fail_json(msg=f"Jail '{name}' not created ???\ncmd: {cmd}\nstdout:\n{out}\nstderr:\n{err}") else: _msg += f"Jail {name} would be created with command:\n{cmd}\n" name = f"CHECK_MODE_FAKE_UUID_FOR_{name}" return name, True, _msg def jail_update(module, iocage_path, name): rc = 1 out = "" _msg = "" _changed = False cmd = f"{iocage_path} update {name}" if not module.check_mode: rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"Jail '{name}' not updated.", cmd, rc, out, err) if "No updates needed" in out: _changed = False elif "updating to" in out: nv = re.search(r' ([^ ]*):$', filter((lambda x: 'updating to' in x), out.split('\n'))[0]).group(1) _msg = f"jail {name} updated to {nv}" _changed = True else: _msg = "Unable to check for updates in check_mode" return _changed, _msg def jail_destroy(module, iocage_path, name): rc = 1 out = "" _msg = "" _changed = True if not module.check_mode: cmd = f"{iocage_path} destroy -f {name}" rc, out, err = module.run_command(to_bytes(cmd, errors='surrogate_or_strict'), errors='surrogate_or_strict') if not rc == 0: _command_fail(module, f"Jail '{name}' could not be destroyed.", cmd, rc, out, err) _msg = f"Jail '{name}' was destroyed." jail_exists(module, iocage_path, name, True) else: _msg = f"Jail {name} would have been destroyed." return name, _changed, _msg def run_module(): module_args = dict( state=dict(type='str', default="facts", choices=["basejail", "thickjail", "template", "present", "cloned", "started", "stopped", "restarted", "fetched", "exec", "pkg", "exists", "absent", "set", "facts"],), name=dict(type='str'), pkglist=dict(type='path'), properties=dict(type='dict'), args=dict(type='dict'), user=dict(type='str', default="root"), cmd=dict(type='str'), clone_from=dict(type='str'), release=dict(type='str'), update=dict(type='bool', default=False,), components=dict(type='list', elements='path', aliases=["files", "component"],),) module = AnsibleModule(argument_spec=module_args, supports_check_mode=True) iocage_path = module.get_bin_path('iocage', True) if not iocage_path: module.fail_json(msg='Utility iocage not found!') p = module.params name = p["name"] properties = p["properties"] cmd = p["cmd"] args = p["args"] clone_from = p["clone_from"] user = p["user"] release = p["release"] update = p["update"] components = p["components"] pkglist = p["pkglist"] msgs = [] changed = False out = "" err = "" facts = _get_iocage_facts(module, iocage_path, "all") jails = {} for u in facts["iocage_jails"]: jails[u] = facts["iocage_jails"][u] for u in facts["iocage_templates"]: jails[u] = facts["iocage_templates"][u] if p["state"] == "facts": result = dict(changed=changed, msg=", ".join(msgs), ansible_facts=facts, stdout=out, stderr=err, ) if module._debug: result['module_args'] = f"{(json.dumps(module.params, indent=4))}" module.exit_json(**result) # Input validation # states that need name of jail if name is None and p["state"] in ["started", "stopped", "restarted", "exists", "set", "exec", "pkg", "absent"]: module.fail_json(msg=f"name needed for state {p['state']}") # states that need release defined if p["state"] in ["basejail", "thickjail", "template", "fetched", "present"] or p["update"]: if release is None or release == "": # if name and not (upgrade): # _jail_props = _jail_get_properties(module, iocage_path, name) # release = _jail_props["release"] # else: rc, out, err = module.run_command("uname -r") if rc != 0: module.fail_json(msg="Unable to run uname -r ???") matches = re.match(r'(\d+\.\d+)\-(RELEASE|RC\d+).*', out.strip()) if matches is not None: release = matches.group(1) + "-RELEASE" else: module.fail_json(msg=f"Release not recognised: {out}") # need existing jail if p["state"] in ["started", "stopped", "restarted", "set", "exec", "pkg", "exists"]: if name not in jails: module.fail_json(msg=f"Jail '{name}' doesn't exist") # states that need running jail if p["state"] in ["exec", "pkg"] and jails[name]["state"] != "up": module.fail_json(msg=f"Jail '{name}' not running") if p["state"] == "started": if jails[name]["state"] != "up": changed, _msg = jail_start(module, iocage_path, name) msgs.append(_msg) jails[name] = _get_iocage_facts(module, iocage_path, "jails", name) if jails[name]["state"] != "up" and not module.check_mode: module.fail_json(msg=f"Starting jail {name} failed with {_msg}") else: msgs.append(f"Jail {name} already started") elif p["state"] == "stopped": if jails[name]["state"] == "up": changed, _msg = jail_stop(module, iocage_path, name) msgs.append(_msg) if not module.check_mode: jails[name] = _get_iocage_facts(module, iocage_path, "jails", name) if jails[name]["state"] != "down": module.fail_json(msg=f"Stopping jail {name} failed with {_msg}") else: msgs.append(f"Jail {name} already stopped") elif p["state"] == "restarted": changed, _msg = jail_restart(module, iocage_path, name) jails[name] = _get_iocage_facts(module, iocage_path, "jails", name) if jails[name]["state"] != "up": module.fail_json(msg=f"Restarting jail {name} failed with {_msg}") msgs.append(_msg) elif p["state"] == "exec": changed, _msg, out, err = jail_exec(module, iocage_path, name, user, cmd) msgs.append(_msg) elif p["state"] == "pkg": changed, _msg, out, err = jail_pkg(module, iocage_path, name, cmd) msgs.append(_msg) elif p["state"] == "exists": msgs.append(f"Jail {name} exists") elif p["state"] == "fetched": if update or release not in facts["iocage_releases"]: rel, changed, _msg = release_fetch(module, iocage_path, update, release, components, args) msgs.append(_msg) facts["iocage_releases"] = _get_iocage_facts(module, iocage_path, "releases") if release not in facts["iocage_releases"] or update: module.fail_json(msg=f"Fetching release {release} failed with {_msg}") else: msgs.append(f"Release {release} already fetched") elif p["state"] == "set": changed, _msg = jail_set(module, iocage_path, name, properties) msgs.append(_msg) jails[name] = _get_iocage_facts(module, iocage_path, "jails", name) elif p["state"] in ["present", "cloned", "template", "basejail", "thickjail"]: do_basejail = False do_thickjail = False clone_from_name = None clone_from_template = None # local variable 'jail_exists' is assigned to but never used [F841] # jail_exists = False if p["state"] != "cloned" and release not in facts["iocage_releases"]: release, _release_changed, _release_msg = release_fetch(module, iocage_path, update, release, components, args) if _release_changed: facts["iocage_releases"] = _get_iocage_facts(module, iocage_path, "releases") msgs.append(_release_msg) if p["state"] == "template": if properties is None: properties = {} properties["template"] = "true" properties["boot"] = "false" if name in facts["iocage_templates"]: # local variable 'jail_exists' is assigned to but never used [F841] # jail_exists = True pass elif p["state"] == "basejail": properties = {} do_basejail = True elif p["state"] == "thickjail": do_thickjail = True elif clone_from: if clone_from in facts["iocage_jails"]: clone_from_name = clone_from elif clone_from in facts["iocage_templates"]: clone_from_template = clone_from else: if module.check_mode: # todo: use facts to check if basejail would have been created before msgs.append(f"Jail {name} would have been cloned from (nonexisting) jail or template {clone_from}") else: module.fail_json(msg=f"unable to create jail {name}\nbasejail {clone_from} doesn't exist") if name not in facts["iocage_templates"] and name not in facts["iocage_jails"]: name, changed, _msg = jail_create(module, iocage_path, name, properties, clone_from_name, clone_from_template, release, do_basejail, do_thickjail, pkglist) msgs.append(_msg) else: changed, _msg = jail_set(module, iocage_path, name, properties) msgs.append("%s already exists" % (name)) if changed: msgs.append(_msg) if p["update"]: if release not in facts["iocage_releases"]: release, _release_changed, _release_msg = release_fetch(module, iocage_path, update, release, components, args) if _release_changed: _msg += _release_msg facts["iocage_releases"] = _get_iocage_facts(module, iocage_path, "releases") release, changed, _msg = jail_update(module, iocage_path, name, release) msgs.append(_msg) # # re-set properties (iocage missing them on creation - iocage-sh bug) # if len(p["properties"]) > 0: # changed, _msg = jail_set(module, iocage_path, name, properties) # if changed: # msgs.append(_msg) if changed: if p["state"] == "template": facts["iocage_templates"][name] = _get_iocage_facts(module, iocage_path, "templates", name) else: facts["iocage_jails"][name] = _get_iocage_facts(module, iocage_path, "jails", name) elif p["state"] == "absent": if name in jails: if jails[name]['state'] == "up": changed, _msg = jail_stop(module, iocage_path, name) msgs.append(_msg) name, changed, _msg = jail_destroy(module, iocage_path, name) msgs.append(_msg) del(jails[name]) else: _msg = f"Jail {name} is already absent." msgs.append(_msg) if name in facts["iocage_jails"]: del(facts["iocage_jails"][name]) _msg = f"Jail {name} removed from iocage_jails." msgs.append(_msg) if name in facts["iocage_templates"]: del(facts["iocage_templates"][name]) _msg = f"Jail {name} removed from iocage_templates." msgs.append(_msg) result = dict(changed=changed, msg=", ".join(msgs), ansible_facts=facts, stdout=out, stderr=err, ) if module._debug: result['module_args'] = f"{(json.dumps(module.params, indent=4))}" module.exit_json(**result) def main(): run_module() if __name__ == '__main__': main()
the-stack_0_15837
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .tracked_resource import TrackedResource class ApplicationResourceDescription(TrackedResource): """This type describes an application resource. Variables are only populated by the server, and will be ignored when sending a request. :ivar id: Fully qualified identifier for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{resourceType}/{resourceName} :vartype id: str :ivar name: The name of the resource :vartype name: str :ivar type: The type of the resource. Ex- Microsoft.Compute/virtualMachines or Microsoft.Storage/storageAccounts. :vartype type: str :param location: The geo-location where the resource lives :type location: str :param tags: Resource tags. :type tags: dict[str, str] :ivar provisioning_state: State of the resource. :vartype provisioning_state: str :param description: User readable description of the application. :type description: str :param debug_params: Internal use. :type debug_params: str :param services: describes the services in the application. :type services: list[~azure.mgmt.servicefabricmesh.models.ServiceResourceDescription] :ivar health_state: Describes the health state of an application resource. Possible values include: 'Invalid', 'Ok', 'Warning', 'Error', 'Unknown' :vartype health_state: str or ~azure.mgmt.servicefabricmesh.models.HealthState :ivar unhealthy_evaluation: When the application's health state is not 'Ok', this additional details from service fabric Health Manager for the user to know why the application is marked unhealthy. :vartype unhealthy_evaluation: str :ivar status: Status of the application resource. Possible values include: 'Invalid', 'Ready', 'Upgrading', 'Creating', 'Deleting', 'Failed' :vartype status: str or ~azure.mgmt.servicefabricmesh.models.ApplicationResourceStatus :ivar status_details: Gives additional information about the current status of the application deployment. :vartype status_details: str :ivar service_names: Names of the services in the application. :vartype service_names: list[str] :param diagnostics: Describes the diagnostics definition and usage for an application resource. :type diagnostics: ~azure.mgmt.servicefabricmesh.models.DiagnosticsDescription """ _validation = { 'id': {'readonly': True}, 'name': {'readonly': True}, 'type': {'readonly': True}, 'provisioning_state': {'readonly': True}, 'health_state': {'readonly': True}, 'unhealthy_evaluation': {'readonly': True}, 'status': {'readonly': True}, 'status_details': {'readonly': True}, 'service_names': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'location': {'key': 'location', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'provisioning_state': {'key': 'properties.provisioningState', 'type': 'str'}, 'description': {'key': 'properties.description', 'type': 'str'}, 'debug_params': {'key': 'properties.debugParams', 'type': 'str'}, 'services': {'key': 'properties.services', 'type': '[ServiceResourceDescription]'}, 'health_state': {'key': 'properties.healthState', 'type': 'str'}, 'unhealthy_evaluation': {'key': 'properties.unhealthyEvaluation', 'type': 'str'}, 'status': {'key': 'properties.status', 'type': 'str'}, 'status_details': {'key': 'properties.statusDetails', 'type': 'str'}, 'service_names': {'key': 'properties.serviceNames', 'type': '[str]'}, 'diagnostics': {'key': 'properties.diagnostics', 'type': 'DiagnosticsDescription'}, } def __init__(self, location=None, tags=None, description=None, debug_params=None, services=None, diagnostics=None): super(ApplicationResourceDescription, self).__init__(location=location, tags=tags) self.provisioning_state = None self.description = description self.debug_params = debug_params self.services = services self.health_state = None self.unhealthy_evaluation = None self.status = None self.status_details = None self.service_names = None self.diagnostics = diagnostics
the-stack_0_15838
import numpy as np import scipy.stats as stats from sira.modelling.structural import Base from sira.modelling.structural import Element as _Element from sira.modelling.structural import Info class Algorithm: @staticmethod def factory(response_params): function_name = response_params["function_name"] funcname_nocase = str(function_name).casefold() if funcname_nocase in [ "stepfunc", "step_func", "stepfunction", "step_function"]: return StepFunc(**response_params) elif funcname_nocase in [ "lognormal", "lognormalcdf", "lognormal_cdf"]: return LogNormalCDF(**response_params) elif funcname_nocase in [ "normal", "normalcdf", "normal_cdf"]: return NormalCDF(**response_params) elif funcname_nocase in [ "rayleigh", "rayleighcdf", "rayleigh_cdf"]: return RayleighCDF(**response_params) elif funcname_nocase in [ "ConstantFunction".lower(), "constant_function"]: return ConstantFunction(**response_params) elif funcname_nocase in [ "Level0Response".lower(), "Level0Recovery".lower()]: return Level0Response(**response_params) elif funcname_nocase in [ "PiecewiseFunction".lower(), "piecewise_function"]: return PiecewiseFunction(**response_params) raise ValueError("No response model matches {}".format(function_name)) class Level0Response(Base): """ Standard response for no damage. """ mode = 1 damage_ratio = 0.0 functionality = 1.0 beta = 0.0 median = 1.0 lower_limit = _Element( 'float', 'lower limit of function if part of piecewise function', None, [lambda x: float(x) > 0.]) upper_limit = _Element( 'float', 'upper limit of function if part of piecewise function', None, [lambda x: float(x) > 0.]) def __call__(self, hazard_level): return 0.0 class RayleighCDF(Base): """ The Rayliegh CDF response model for components. """ scale = _Element( 'float', 'Scale parameter for Rayleigh CDF.', _Element.NO_DEFAULT, validators=[lambda x: float(x) > 0.]) loc = _Element( 'float', 'Location parameter for Rayleigh CDF.', default=0, validators=[lambda x: float(x) >= 0.]) def __call__(self, x): """ SciPy implementation of Rayleigh CDF: loc = shift parameter scale = scaling parameter """ return stats.rayleigh.cdf(x, loc=self.loc, scale=self.scale) class LogNormalCDF(Base): """ The lognormal CDF response model for components. """ median = _Element('float', 'Median of the log normal CDF.', _Element.NO_DEFAULT, [lambda x: float(x) > 0.]) beta = _Element('float', 'Log standard deviation of the log normal CDF', _Element.NO_DEFAULT, [lambda x: float(x) > 0.]) location = _Element('float', 'Location parameter of the log normal CDF', 0.0, [lambda x: float(x) > 0.]) lower_limit = _Element( 'float', 'lower limit of function if part of piecewise function', None, [lambda x: float(x) > 0.]) upper_limit = _Element( 'float', 'upper limit of function if part of piecewise function', None, [lambda x: float(x) > 0.]) def __call__(self, data_point): """ SciPy implementation of LogNormal CDF: scipy.stats.lognorm.cdf(x, s, loc=0, scale=1) where, s = sigma # or beta or standard deviation (shape parameter) scale = exp(mean) = median loc is used to shift the distribution and commonly not used """ return stats.lognorm.cdf( data_point, self.beta, loc=self.location, scale=self.median) class NormalCDF(Base): """ The normal CDF response model for components """ # ----------------------------------------------- mean = _Element( 'float', 'Mean of the normal or Gaussian CDF', _Element.NO_DEFAULT, [lambda x: float(x) >= 0.]) stddev = _Element( 'float', 'Standard deviation of the normal CDF', _Element.NO_DEFAULT, [lambda x: float(x) > 0.]) # ----------------------------------------------- lower_limit = _Element( 'float', 'lower limit of function if part of piecewise function', -np.inf, [lambda x: float(x) > 0.]) upper_limit = _Element( 'float', 'upper limit of function if part of piecewise function', np.inf, [lambda x: float(x) > 0.]) # ----------------------------------------------- def __call__(self, data_point, inverse=False): """ SciPy implementation of Normal CDF: scipy.stats.norm.cdf(x, loc=0, scale=1) where, loc = Mean scale = Standard Deviation i.e. square root of Variance """ if not inverse: return stats.norm.cdf(data_point, loc=self.mean, scale=self.stddev) elif inverse: return stats.norm.ppf(data_point, loc=self.mean, scale=self.stddev) class ConstantFunction(Base): """ A function for defining a constant amplitude for a given range """ amplitude = _Element( 'float', 'Constant amplitude of function', _Element.NO_DEFAULT, [lambda x: float(x) >= 0.]) lower_limit = _Element( 'float', 'lower limit of function if part of piecewise function', None, [lambda x: float(x) >= 0.]) upper_limit = _Element( 'float', 'upper limit of function if part of piecewise function', None, [lambda x: float(x) >= 0]) def __call__(self, hazard_intensity): return self.amplitude class StepFunc(Base): """ A response model that does not have a cumulative distribution function, rather a series of steps for damage. """ xys = _Element( 'XYPairs', 'A list of X, Y pairs.', list, [lambda xy: [(float(x), float(y)) for x, y in xy]]) lower_limit = _Element( 'float', 'lower limit of function if part of piecewise function', None, [lambda x: float(x) > 0.]) upper_limit = _Element( 'float', 'upper limit of function if part of piecewise function', None, [lambda x: float(x) > 0.]) def __call__(self, hazard_intensity): """ Note that intervals are closed on the right. """ for x, y in self.xys: # noqa: E1133 if hazard_intensity < x: return y raise ValueError('value is greater than all xs!') class XYPairs(object): """ A list of float values that implement a step function. """ description = Info("The (x, f(x)) pairs defining a step function.") def __init__(self, pairs): """ Create the tuple list containing the float values. :param pairs: An iterable container of tuples containing floats """ self.pairs = pairs def __iter__(self): """ Return the XYPairs :return: iterator over the XYPairs """ return iter(self.pairs) class PiecewiseFunction(object): """ This class builds a piecwise function defined by algorithm constructor data of a specified format. This data is part of the defined attributes of a system Component. Each dict in the list contains: - the parameters required to construct an algorithm, and - the conditions where that algorithm will be applicable """ piecewise_function_constructor = None def __init__(self, **kwargs): """ input: a list of dicts. Dict name must be 'piecewise_function_constructor' """ for k, v in kwargs.items(): setattr(self, k, v) self.functions = [] self.validranges = [] for param_dict in self.piecewise_function_constructor: # noqa: E1133 lo = self.check_limit(param_dict['lower_limit'], which_lim='lower') hi = self.check_limit(param_dict['upper_limit'], which_lim='upper') self.functions.append(Algorithm.factory(param_dict)) self.validranges.append((lo, hi)) def check_limit(self, val, which_lim): if which_lim == 'lower': inf, infstr = -np.inf, ['-np.inf', '-inf'] else: inf, infstr = np.inf, ['np.inf', '+np.inf', 'inf', '+inf'] if (val is None) or str(val) in ['', 'NA', *infstr]: val = inf else: try: val = float(val) except ValueError: print(f"Invalid value passed for {which_lim} limit of function.") exit(1) return val def condfunc(self, x, func_lims): return (x >= func_lims[0]) & (x < func_lims[1]) def pwfunc(self, x): x = np.asarray(x) y = np.zeros(x.shape) for i, func in enumerate(self.functions): func_lims = self.validranges[i] y += self.condfunc(x, func_lims) * func(x) # noqa: W0123 return y def __call__(self, hazard_intensity): """ input: hazard intensity value output: probability of a response (linked to a damage state) """ vectorized_pwf = np.vectorize(self.pwfunc) return vectorized_pwf(hazard_intensity)
the-stack_0_15839
# Copyright (c) 2014 Intel Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # # The contents of this file are mainly copied from cm_api sources, # released by Cloudera. Codes not used by Sahara CDH plugin are removed. # You can find the original codes at # # https://github.com/cloudera/cm_api/tree/master/python/src/cm_api # # To satisfy the pep8 and python3 tests, we did some changes to the codes. # We also change some importings to use Sahara inherited classes. import copy import datetime import time from oslo_serialization import jsonutils as json from oslo_utils import reflection import six from sahara.plugins import context from sahara_plugin_cdh.i18n import _ from sahara_plugin_cdh.plugins.cdh import exceptions as ex class Attr(object): """Base Attribute Encapsulates information about an attribute in the JSON encoding of the object. It identifies properties of the attribute such as whether it's read-only, its type, etc. """ DATE_FMT = "%Y-%m-%dT%H:%M:%S.%fZ" def __init__(self, atype=None, rw=True, is_api_list=False): self._atype = atype self._is_api_list = is_api_list self.rw = rw def to_json(self, value, preserve_ro): """Returns the JSON encoding of the given attribute value If the value has a 'to_json_dict' object, that method is called. Otherwise, the following values are returned for each input type: - datetime.datetime: string with the API representation of a date. - dictionary: if 'atype' is ApiConfig, a list of ApiConfig objects. - python list: python list (or ApiList) with JSON encoding of items - the raw value otherwise """ if hasattr(value, 'to_json_dict'): return value.to_json_dict(preserve_ro) elif isinstance(value, dict) and self._atype == ApiConfig: return config_to_api_list(value) elif isinstance(value, datetime.datetime): return value.strftime(self.DATE_FMT) elif isinstance(value, list) or isinstance(value, tuple): if self._is_api_list: return ApiList(value).to_json_dict() else: return [self.to_json(x, preserve_ro) for x in value] else: return value def from_json(self, resource_root, data): """Parses the given JSON value into an appropriate python object This means: - a datetime.datetime if 'atype' is datetime.datetime - a converted config dictionary or config list if 'atype' is ApiConfig - if the attr is an API list, an ApiList with instances of 'atype' - an instance of 'atype' if it has a 'from_json_dict' method - a python list with decoded versions of the member objects if the input is a python list. - the raw value otherwise """ if data is None: return None if self._atype == datetime.datetime: return datetime.datetime.strptime(data, self.DATE_FMT) elif self._atype == ApiConfig: # ApiConfig is special. We want a python dictionary for summary # views, but an ApiList for full views. Try to detect each case # from the JSON data. if not data['items']: return {} first = data['items'][0] return json_to_config(data, len(first) == 2) elif self._is_api_list: return ApiList.from_json_dict(data, resource_root, self._atype) elif isinstance(data, list): return [self.from_json(resource_root, x) for x in data] elif hasattr(self._atype, 'from_json_dict'): return self._atype.from_json_dict(data, resource_root) else: return data class ROAttr(Attr): """Subclass that just defines the attribute as read-only.""" def __init__(self, atype=None, is_api_list=False): Attr.__init__(self, atype=atype, rw=False, is_api_list=is_api_list) def check_api_version(resource_root, min_version): """Check API version Checks if the resource_root's API version it at least the given minimum version. """ if resource_root.version < min_version: raise ex.CMApiVersionError( _("API version %(minv)s is required but %(acv)s is in use.") % {'minv': min_version, 'acv': resource_root.version}) def call(method, path, ret_type, ret_is_list=False, data=None, params=None, api_version=1): """Call a resource method Generic function for calling a resource method and automatically dealing with serialization of parameters and deserialization of return values. :param method: method to call (must be bound to a resource; e.g., "resource_root.get"). :param path: the full path of the API method to call. :param ret_type: return type of the call. :param ret_is_list: whether the return type is an ApiList. :param data: Optional data to send as payload to the call. :param params: Optional query parameters for the call. :param api_version: minimum API version for the call. """ check_api_version(method.__self__, api_version) if data is not None: data = json.dumps(Attr(is_api_list=True).to_json(data, False)) ret = method(path, data=data, params=params) else: ret = method(path, params=params) if ret_type is None: return elif ret_is_list: return ApiList.from_json_dict(ret, method.__self__, ret_type) elif isinstance(ret, list): return [ret_type.from_json_dict(x, method.__self__) for x in ret] else: return ret_type.from_json_dict(ret, method.__self__) class BaseApiObject(object): """The BaseApiObject helps with (de)serialization from/to JSON The derived class has two ways of defining custom attributes: - Overwriting the '_ATTRIBUTES' field with the attribute dictionary - Override the _get_attributes() method, in case static initialization of the above field is not possible. It's recommended that the _get_attributes() implementation do caching to avoid computing the dictionary on every invocation. The derived class's constructor must call the base class's init() static method. All constructor arguments (aside from self and resource_root) must be keywords arguments with default values (typically None), or from_json_dict() will not work. """ _ATTRIBUTES = {} _WHITELIST = ('_resource_root', '_attributes') @classmethod def _get_attributes(cls): """Get an attribute dictionary Returns a map of property names to attr instances (or None for default attribute behavior) describing the properties of the object. By default, this method will return the class's _ATTRIBUTES field. Classes can override this method to do custom initialization of the attributes when needed. """ return cls._ATTRIBUTES @staticmethod def init(obj, resource_root, attrs=None): """Wraper of real constructor Wraper around the real constructor to avoid issues with the 'self' argument. Call like this, from a subclass's constructor: - BaseApiObject.init(self, locals()) """ # This works around http://bugs.python.org/issue2646 # We use unicode strings as keys in kwargs. str_attrs = {} if attrs: for k, v in six.iteritems(attrs): if k not in ('self', 'resource_root'): str_attrs[k] = v BaseApiObject.__init__(obj, resource_root, **str_attrs) def __init__(self, resource_root, **attrs): """Init method Initializes internal state and sets all known writable properties of the object to None. Then initializes the properties given in the provided attributes dictionary. :param resource_root: API resource object. :param attrs: optional dictionary of attributes to set. This should only contain r/w attributes. """ self._resource_root = resource_root for name, attr in six.iteritems(self._get_attributes()): object.__setattr__(self, name, None) if attrs: self._set_attrs(attrs, from_json=False) def _set_attrs(self, attrs, allow_ro=False, from_json=True): """Set attributes from dictionary Sets all the attributes in the dictionary. Optionally, allows setting read-only attributes (e.g. when deserializing from JSON) and skipping JSON deserialization of values. """ for k, v in six.iteritems(attrs): attr = self._check_attr(k, allow_ro) if attr and from_json: v = attr.from_json(self._get_resource_root(), v) object.__setattr__(self, k, v) def __setattr__(self, name, val): if name not in BaseApiObject._WHITELIST: self._check_attr(name, False) object.__setattr__(self, name, val) def _check_attr(self, name, allow_ro): cls_name = reflection.get_class_name(self, fully_qualified=False) if name not in self._get_attributes(): raise ex.CMApiAttributeError( _('Invalid property %(attname)s for class %(classname)s.') % {'attname': name, 'classname': cls_name}) attr = self._get_attributes()[name] if not allow_ro and attr and not attr.rw: raise ex.CMApiAttributeError( _('Attribute %(attname)s of class %(classname)s ' 'is read only.') % {'attname': name, 'classname': cls_name}) return attr def _get_resource_root(self): return self._resource_root def _update(self, api_obj): """Copy state from api_obj to this object.""" if not isinstance(self, api_obj.__class__): raise ex.CMApiValueError( _("Class %(class1)s does not derive from %(class2)s; " "cannot update attributes.") % {'class1': self.__class__, 'class2': api_obj.__class__}) for name in self._get_attributes().keys(): try: val = getattr(api_obj, name) setattr(self, name, val) except AttributeError: pass def to_json_dict(self, preserve_ro=False): dic = {} for name, attr in six.iteritems(self._get_attributes()): if not preserve_ro and attr and not attr.rw: continue try: value = getattr(self, name) if value is not None: if attr: dic[name] = attr.to_json(value, preserve_ro) else: dic[name] = value except AttributeError: pass return dic def __str__(self): """Give a printable format of an attribute Default implementation of __str__. Uses the type name and the first attribute retrieved from the attribute map to create the string. """ cls_name = reflection.get_class_name(self, fully_qualified=False) name = list(self._get_attributes().keys())[0] value = getattr(self, name, None) return "<%s>: %s = %s" % (cls_name, name, value) @classmethod def from_json_dict(cls, dic, resource_root): obj = cls(resource_root) obj._set_attrs(dic, allow_ro=True) return obj class BaseApiResource(BaseApiObject): """Base ApiResource A specialization of BaseApiObject that provides some utility methods for resources. This class allows easier serialization / deserialization of parameters and return values. """ def _api_version(self): """Get API version Returns the minimum API version for this resource. Defaults to 1. """ return 1 def _path(self): """Get resource path Returns the path to the resource. e.g., for a service 'foo' in cluster 'bar', this should return '/clusters/bar/services/foo'. """ raise NotImplementedError def _require_min_api_version(self, version): """Check minimum version requirement Raise an exception if the version of the api is less than the given version. :param version: The minimum required version. """ actual_version = self._get_resource_root().version version = max(version, self._api_version()) if actual_version < version: raise ex.CMApiVersionError( _("API version %(minv)s is required but %(acv)s is in use.") % {'minv': version, 'acv': actual_version}) def _cmd(self, command, data=None, params=None, api_version=1): """Invoke a command on the resource Invokes a command on the resource. Commands are expected to be under the "commands/" sub-resource. """ return self._post("commands/" + command, ApiCommand, data=data, params=params, api_version=api_version) def _get_config(self, rel_path, view, api_version=1): """Get resource configurations Retrieves an ApiConfig list from the given relative path. """ self._require_min_api_version(api_version) params = dict(view=view) if view else None resp = self._get_resource_root().get(self._path() + '/' + rel_path, params=params) return json_to_config(resp, view == 'full') def _update_config(self, rel_path, config, api_version=1): self._require_min_api_version(api_version) resp = self._get_resource_root().put(self._path() + '/' + rel_path, data=config_to_json(config)) return json_to_config(resp, False) def _delete(self, rel_path, ret_type, ret_is_list=False, params=None, api_version=1): return self._call('delete', rel_path, ret_type, ret_is_list, None, params, api_version) def _get(self, rel_path, ret_type, ret_is_list=False, params=None, api_version=1): return self._call('get', rel_path, ret_type, ret_is_list, None, params, api_version) def _post(self, rel_path, ret_type, ret_is_list=False, data=None, params=None, api_version=1): return self._call('post', rel_path, ret_type, ret_is_list, data, params, api_version) def _put(self, rel_path, ret_type, ret_is_list=False, data=None, params=None, api_version=1): return self._call('put', rel_path, ret_type, ret_is_list, data, params, api_version) def _call(self, method, rel_path, ret_type, ret_is_list=False, data=None, params=None, api_version=1): path = self._path() if rel_path: path += '/' + rel_path return call(getattr(self._get_resource_root(), method), path, ret_type, ret_is_list, data, params, api_version) class ApiList(BaseApiObject): """A list of some api object""" LIST_KEY = "items" def __init__(self, objects, resource_root=None, **attrs): BaseApiObject.__init__(self, resource_root, **attrs) # Bypass checks in BaseApiObject.__setattr__ object.__setattr__(self, 'objects', objects) def __str__(self): return ("<ApiList>(%d): [%s]" % (len(self.objects), ", ".join([str(item) for item in self.objects]))) def to_json_dict(self, preserve_ro=False): ret = BaseApiObject.to_json_dict(self, preserve_ro) attr = Attr() ret[ApiList.LIST_KEY] = [attr.to_json(x, preserve_ro) for x in self.objects] return ret def __len__(self): return self.objects.__len__() def __iter__(self): return self.objects.__iter__() def __getitem__(self, i): return self.objects.__getitem__(i) def __getslice__(self, i, j): return self.objects.__getslice__(i, j) @classmethod def from_json_dict(cls, dic, resource_root, member_cls=None): if not member_cls: member_cls = cls._MEMBER_CLASS attr = Attr(atype=member_cls) items = [] if ApiList.LIST_KEY in dic: items = [attr.from_json(resource_root, x) for x in dic[ApiList.LIST_KEY]] ret = cls(items) # If the class declares custom attributes, populate them based on the # input dict. The check avoids extra overhead for the common case, # where we just have a plain list. _set_attrs() also does not # understand the "items" attribute, so it can't be in the input data. if cls._ATTRIBUTES: if ApiList.LIST_KEY in dic: dic = copy.copy(dic) del dic[ApiList.LIST_KEY] ret._set_attrs(dic, allow_ro=True) return ret class ApiHostRef(BaseApiObject): _ATTRIBUTES = { 'hostId': None, } def __init__(self, resource_root, hostId=None): BaseApiObject.init(self, resource_root, locals()) def __str__(self): return "<ApiHostRef>: %s" % (self.hostId) class ApiServiceRef(BaseApiObject): _ATTRIBUTES = { 'clusterName': None, 'serviceName': None, 'peerName': None, } def __init__(self, resource_root, serviceName=None, clusterName=None, peerName=None): BaseApiObject.init(self, resource_root, locals()) class ApiClusterRef(BaseApiObject): _ATTRIBUTES = { 'clusterName': None, } def __init__(self, resource_root, clusterName=None): BaseApiObject.init(self, resource_root, locals()) class ApiRoleRef(BaseApiObject): _ATTRIBUTES = { 'clusterName': None, 'serviceName': None, 'roleName': None, } def __init__(self, resource_root, serviceName=None, roleName=None, clusterName=None): BaseApiObject.init(self, resource_root, locals()) class ApiRoleConfigGroupRef(BaseApiObject): _ATTRIBUTES = { 'roleConfigGroupName': None, } def __init__(self, resource_root, roleConfigGroupName=None): BaseApiObject.init(self, resource_root, locals()) class ApiCommand(BaseApiObject): SYNCHRONOUS_COMMAND_ID = -1 @classmethod def _get_attributes(cls): if not ('_ATTRIBUTES' in cls.__dict__): cls._ATTRIBUTES = { 'id': ROAttr(), 'name': ROAttr(), 'startTime': ROAttr(datetime.datetime), 'endTime': ROAttr(datetime.datetime), 'active': ROAttr(), 'success': ROAttr(), 'resultMessage': ROAttr(), 'clusterRef': ROAttr(ApiClusterRef), 'serviceRef': ROAttr(ApiServiceRef), 'roleRef': ROAttr(ApiRoleRef), 'hostRef': ROAttr(ApiHostRef), 'children': ROAttr(ApiCommand, is_api_list=True), 'parent': ROAttr(ApiCommand), 'resultDataUrl': ROAttr(), 'canRetry': ROAttr(), } return cls._ATTRIBUTES def __str__(self): return ("<ApiCommand>: '%s' (id: %s; active: %s; success: %s)" % (self.name, self.id, self.active, self.success)) def _path(self): return '/commands/%d' % self.id def fetch(self): """Retrieve updated data about the command from the server :return: A new ApiCommand object. """ if self.id == ApiCommand.SYNCHRONOUS_COMMAND_ID: return self resp = self._get_resource_root().get(self._path()) return ApiCommand.from_json_dict(resp, self._get_resource_root()) def wait(self, timeout=None): """Wait for command to finish :param timeout: (Optional) Max amount of time (in seconds) to wait. Wait forever by default. :return: The final ApiCommand object, containing the last known state. The command may still be running in case of timeout. """ if self.id == ApiCommand.SYNCHRONOUS_COMMAND_ID: return self SLEEP_SEC = 5 if timeout is None: deadline = None else: deadline = time.time() + timeout while True: cmd = self.fetch() if not cmd.active: return cmd if deadline is not None: now = time.time() if deadline < now: return cmd else: context.sleep(min(SLEEP_SEC, deadline - now)) else: context.sleep(SLEEP_SEC) def abort(self): """Abort a running command :return: A new ApiCommand object with the updated information. """ if self.id == ApiCommand.SYNCHRONOUS_COMMAND_ID: return self path = self._path() + '/abort' resp = self._get_resource_root().post(path) return ApiCommand.from_json_dict(resp, self._get_resource_root()) class ApiBulkCommandList(ApiList): _ATTRIBUTES = { 'errors': ROAttr(), } _MEMBER_CLASS = ApiCommand # # Configuration helpers. # class ApiConfig(BaseApiObject): _ATTRIBUTES = { 'name': None, 'value': None, 'required': ROAttr(), 'default': ROAttr(), 'displayName': ROAttr(), 'description': ROAttr(), 'relatedName': ROAttr(), 'validationState': ROAttr(), 'validationMessage': ROAttr(), } def __init__(self, resource_root, name=None, value=None): BaseApiObject.init(self, resource_root, locals()) def __str__(self): return "<ApiConfig>: %s = %s" % (self.name, self.value) def config_to_api_list(dic): """Convert a python dictionary into an ApiConfig list Converts a python dictionary into a list containing the proper ApiConfig encoding for configuration data. :param dic: Key-value pairs to convert. :return: JSON dictionary of an ApiConfig list (*not* an ApiList). """ config = [] for k, v in six.iteritems(dic): config.append({'name': k, 'value': v}) return {ApiList.LIST_KEY: config} def config_to_json(dic): """Converts a python dictionary into a JSON payload The payload matches the expected "apiConfig list" type used to update configuration parameters using the API. :param dic: Key-value pairs to convert. :return: String with the JSON-encoded data. """ return json.dumps(config_to_api_list(dic)) def json_to_config(dic, full=False): """Converts a JSON-decoded config dictionary to a python dictionary When materializing the full view, the values in the dictionary will be instances of ApiConfig, instead of strings. :param dic: JSON-decoded config dictionary. :param full: Whether to materialize the full view of the config data. :return: Python dictionary with config data. """ config = {} for entry in dic['items']: k = entry['name'] if full: config[k] = ApiConfig.from_json_dict(entry, None) else: config[k] = entry.get('value') return config
the-stack_0_15840
import re import textwrap from ast import literal_eval from inspect import cleandoc from weakref import WeakKeyDictionary from parso.python import tree from parso.cache import parser_cache from parso import split_lines _EXECUTE_NODES = {'funcdef', 'classdef', 'import_from', 'import_name', 'test', 'or_test', 'and_test', 'not_test', 'comparison', 'expr', 'xor_expr', 'and_expr', 'shift_expr', 'arith_expr', 'atom_expr', 'term', 'factor', 'power', 'atom'} _FLOW_KEYWORDS = ( 'try', 'except', 'finally', 'else', 'if', 'elif', 'with', 'for', 'while' ) def get_executable_nodes(node, last_added=False): """ For static analysis. """ result = [] typ = node.type if typ == 'name': next_leaf = node.get_next_leaf() if last_added is False and node.parent.type != 'param' and next_leaf != '=': result.append(node) elif typ == 'expr_stmt': # I think inferring the statement (and possibly returned arrays), # should be enough for static analysis. result.append(node) for child in node.children: result += get_executable_nodes(child, last_added=True) elif typ == 'decorator': # decorator if node.children[-2] == ')': node = node.children[-3] if node != '(': result += get_executable_nodes(node) else: try: children = node.children except AttributeError: pass else: if node.type in _EXECUTE_NODES and not last_added: result.append(node) for child in children: result += get_executable_nodes(child, last_added) return result def get_sync_comp_fors(comp_for): yield comp_for last = comp_for.children[-1] while True: if last.type == 'comp_for': yield last.children[1] # Ignore the async. elif last.type == 'sync_comp_for': yield last elif not last.type == 'comp_if': break last = last.children[-1] def for_stmt_defines_one_name(for_stmt): """ Returns True if only one name is returned: ``for x in y``. Returns False if the for loop is more complicated: ``for x, z in y``. :returns: bool """ return for_stmt.children[1].type == 'name' def get_flow_branch_keyword(flow_node, node): start_pos = node.start_pos if not (flow_node.start_pos < start_pos <= flow_node.end_pos): raise ValueError('The node is not part of the flow.') keyword = None for i, child in enumerate(flow_node.children): if start_pos < child.start_pos: return keyword first_leaf = child.get_first_leaf() if first_leaf in _FLOW_KEYWORDS: keyword = first_leaf return None def clean_scope_docstring(scope_node): """ Returns a cleaned version of the docstring token. """ node = scope_node.get_doc_node() if node is not None: # TODO We have to check next leaves until there are no new # leaves anymore that might be part of the docstring. A # docstring can also look like this: ``'foo' 'bar' # Returns a literal cleaned version of the ``Token``. return cleandoc(safe_literal_eval(node.value)) return '' def find_statement_documentation(tree_node): if tree_node.type == 'expr_stmt': tree_node = tree_node.parent # simple_stmt maybe_string = tree_node.get_next_sibling() if maybe_string is not None: if maybe_string.type == 'simple_stmt': maybe_string = maybe_string.children[0] if maybe_string.type == 'string': return cleandoc(safe_literal_eval(maybe_string.value)) return '' def safe_literal_eval(value): first_two = value[:2].lower() if first_two[0] == 'f' or first_two in ('fr', 'rf'): # literal_eval is not able to resovle f literals. We have to do that # manually, but that's right now not implemented. return '' return literal_eval(value) def get_signature(funcdef, width=72, call_string=None, omit_first_param=False, omit_return_annotation=False): """ Generate a string signature of a function. :param width: Fold lines if a line is longer than this value. :type width: int :arg func_name: Override function name when given. :type func_name: str :rtype: str """ # Lambdas have no name. if call_string is None: if funcdef.type == 'lambdef': call_string = '<lambda>' else: call_string = funcdef.name.value params = funcdef.get_params() if omit_first_param: params = params[1:] p = '(' + ''.join(param.get_code() for param in params).strip() + ')' # TODO this is pretty bad, we should probably just normalize. p = re.sub(r'\s+', ' ', p) if funcdef.annotation and not omit_return_annotation: rtype = " ->" + funcdef.annotation.get_code() else: rtype = "" code = call_string + p + rtype return '\n'.join(textwrap.wrap(code, width)) def move(node, line_offset): """ Move the `Node` start_pos. """ try: children = node.children except AttributeError: node.line += line_offset else: for c in children: move(c, line_offset) def get_following_comment_same_line(node): """ returns (as string) any comment that appears on the same line, after the node, including the # """ try: if node.type == 'for_stmt': whitespace = node.children[5].get_first_leaf().prefix elif node.type == 'with_stmt': whitespace = node.children[3].get_first_leaf().prefix elif node.type == 'funcdef': # actually on the next line whitespace = node.children[4].get_first_leaf().get_next_leaf().prefix else: whitespace = node.get_last_leaf().get_next_leaf().prefix except AttributeError: return None except ValueError: # TODO in some particular cases, the tree doesn't seem to be linked # correctly return None if "#" not in whitespace: return None comment = whitespace[whitespace.index("#"):] if "\r" in comment: comment = comment[:comment.index("\r")] if "\n" in comment: comment = comment[:comment.index("\n")] return comment def is_scope(node): t = node.type if t == 'comp_for': # Starting with Python 3.8, async is outside of the statement. return node.children[1].type != 'sync_comp_for' return t in ('file_input', 'classdef', 'funcdef', 'lambdef', 'sync_comp_for') def _get_parent_scope_cache(func): cache = WeakKeyDictionary() def wrapper(used_names, node, include_flows=False): try: for_module = cache[used_names] except KeyError: for_module = cache[used_names] = {} try: return for_module[node] except KeyError: result = for_module[node] = func(node, include_flows) return result return wrapper def get_parent_scope(node, include_flows=False): """ Returns the underlying scope. """ scope = node.parent if scope is None: return None # It's a module already. while True: if is_scope(scope): if scope.type in ('classdef', 'funcdef', 'lambdef'): index = scope.children.index(':') if scope.children[index].start_pos >= node.start_pos: if node.parent.type == 'param' and node.parent.name == node: pass elif node.parent.type == 'tfpdef' and node.parent.children[0] == node: pass else: scope = scope.parent continue return scope elif include_flows and isinstance(scope, tree.Flow): # The cursor might be on `if foo`, so the parent scope will not be # the if, but the parent of the if. if not (scope.type == 'if_stmt' and any(n.start_pos <= node.start_pos < n.end_pos for n in scope.get_test_nodes())): return scope scope = scope.parent get_cached_parent_scope = _get_parent_scope_cache(get_parent_scope) def get_cached_code_lines(grammar, path): """ Basically access the cached code lines in parso. This is not the nicest way to do this, but we avoid splitting all the lines again. """ return parser_cache[grammar._hashed][path].lines def cut_value_at_position(leaf, position): """ Cuts of the value of the leaf at position """ lines = split_lines(leaf.value, keepends=True)[:position[0] - leaf.line + 1] column = position[1] if leaf.line == position[0]: column -= leaf.column if not lines: return '' lines[-1] = lines[-1][:column] return ''.join(lines) def expr_is_dotted(node): """ Checks if a path looks like `name` or `name.foo.bar` and not `name()`. """ if node.type == 'atom': if len(node.children) == 3 and node.children[0] == '(': return expr_is_dotted(node.children[1]) return False if node.type == 'atom_expr': children = node.children if children[0] == 'await': return False if not expr_is_dotted(children[0]): return False # Check trailers return all(c.children[0] == '.' for c in children[1:]) return node.type == 'name' def _function_is_x_method(*method_names): def wrapper(function_node): """ This is a heuristic. It will not hold ALL the times, but it will be correct pretty much for anyone that doesn't try to beat it. staticmethod/classmethod are builtins and unless overwritten, this will be correct. """ for decorator in function_node.get_decorators(): dotted_name = decorator.children[1] if dotted_name.get_code() in method_names: return True return False return wrapper function_is_staticmethod = _function_is_x_method('staticmethod') function_is_classmethod = _function_is_x_method('classmethod') function_is_property = _function_is_x_method('property', 'cached_property')
the-stack_0_15845
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2021, Phillipe Smith <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: rundeck_job_run short_description: Run a Rundeck job description: - This module runs a Rundeck job specified by ID. author: "Phillipe Smith (@phsmith)" version_added: 3.8.0 options: job_id: type: str description: - The job unique ID. required: true job_options: type: dict description: - The job options for the steps. - Numeric values must be quoted. filter_nodes: type: str description: - Filter the nodes where the jobs must run. - See U(https://docs.rundeck.com/docs/manual/11-node-filters.html#node-filter-syntax). run_at_time: type: str description: - Schedule the job execution to run at specific date and time. - ISO-8601 date and time format like C(2021-10-05T15:45:00-03:00). loglevel: type: str description: - Log level configuration. choices: [debug, verbose, info, warn, error] default: info wait_execution: type: bool description: - Wait until the job finished the execution. default: true wait_execution_delay: type: int description: - Delay, in seconds, between job execution status check requests. default: 5 wait_execution_timeout: type: int description: - Job execution wait timeout in seconds. - If the timeout is reached, the job will be aborted. - Keep in mind that there is a sleep based on I(wait_execution_delay) after each job status check. default: 120 abort_on_timeout: type: bool description: - Send a job abort request if exceeded the I(wait_execution_timeout) specified. default: false extends_documentation_fragment: - community.general.rundeck - url ''' EXAMPLES = ''' - name: Run a Rundeck job community.general.rundeck_job_run: url: "https://rundeck.example.org" api_version: 39 api_token: "mytoken" job_id: "xxxxxxxxxxxxxxxxx" register: rundeck_job_run - name: Show execution info ansible.builtin.debug: var: rundeck_job_run.execution_info - name: Run a Rundeck job with options community.general.rundeck_job_run: url: "https://rundeck.example.org" api_version: 39 api_token: "mytoken" job_id: "xxxxxxxxxxxxxxxxx" job_options: option_1: "value_1" option_2: "value_3" option_3: "value_3" register: rundeck_job_run - name: Run a Rundeck job with timeout, delay between status check and abort on timeout community.general.rundeck_job_run: url: "https://rundeck.example.org" api_version: 39 api_token: "mytoken" job_id: "xxxxxxxxxxxxxxxxx" wait_execution_timeout: 30 wait_execution_delay: 10 abort_on_timeout: true register: rundeck_job_run - name: Schedule a Rundeck job community.general.rundeck_job_run: url: "https://rundeck.example.org" api_version: 39 api_token: "mytoken" job_id: "xxxxxxxxxxxxxxxxx" run_at_time: "2021-10-05T15:45:00-03:00" register: rundeck_job_schedule - name: Fire-and-forget a Rundeck job community.general.rundeck_job_run: url: "https://rundeck.example.org" api_version: 39 api_token: "mytoken" job_id: "xxxxxxxxxxxxxxxxx" wait_execution: false register: rundeck_job_run ''' RETURN = ''' execution_info: description: Rundeck job execution metadata. returned: always type: dict sample: { "msg": "Job execution succeeded!", "execution_info": { "id": 1, "href": "https://rundeck.example.org/api/39/execution/1", "permalink": "https://rundeck.example.org/project/myproject/execution/show/1", "status": "succeeded", "project": "myproject", "executionType": "user", "user": "admin", "date-started": { "unixtime": 1633449020784, "date": "2021-10-05T15:50:20Z" }, "date-ended": { "unixtime": 1633449026358, "date": "2021-10-05T15:50:26Z" }, "job": { "id": "697af0c4-72d3-4c15-86a3-b5bfe3c6cb6a", "averageDuration": 4917, "name": "Test", "group": "", "project": "myproject", "description": "", "options": { "exit_code": "0" }, "href": "https://rundeck.example.org/api/39/job/697af0c4-72d3-4c15-86a3-b5bfe3c6cb6a", "permalink": "https://rundeck.example.org/project/myproject/job/show/697af0c4-72d3-4c15-86a3-b5bfe3c6cb6a" }, "description": "sleep 5 && echo 'Test!' && exit ${option.exit_code}", "argstring": "-exit_code 0", "serverUUID": "5b9a1438-fa3a-457e-b254-8f3d70338068", "successfulNodes": [ "localhost" ], "output": "Test!" } } ''' # Modules import import json from datetime import datetime, timedelta from time import sleep from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.common.text.converters import to_native from ansible.module_utils.six.moves.urllib.parse import quote from ansible_collections.community.general.plugins.module_utils.rundeck import ( api_argument_spec, api_request ) class RundeckJobRun(object): def __init__(self, module): self.module = module self.url = self.module.params["url"] self.api_version = self.module.params["api_version"] self.job_id = self.module.params["job_id"] self.job_options = self.module.params["job_options"] or {} self.filter_nodes = self.module.params["filter_nodes"] or "" self.run_at_time = self.module.params["run_at_time"] or "" self.loglevel = self.module.params["loglevel"].upper() self.wait_execution = self.module.params['wait_execution'] self.wait_execution_delay = self.module.params['wait_execution_delay'] self.wait_execution_timeout = self.module.params['wait_execution_timeout'] self.abort_on_timeout = self.module.params['abort_on_timeout'] for k, v in self.job_options.items(): if not isinstance(v, str): self.module.exit_json( msg="Job option '%s' value must be a string" % k, execution_info={} ) def job_status_check(self, execution_id): response = dict() timeout = False due = datetime.now() + timedelta(seconds=self.wait_execution_timeout) while not timeout: endpoint = "execution/%d" % execution_id response = api_request(module=self.module, endpoint=endpoint)[0] output = api_request(module=self.module, endpoint="execution/%d/output" % execution_id) log_output = "\n".join([x["log"] for x in output[0]["entries"]]) response.update({"output": log_output}) if response["status"] == "aborted": break elif response["status"] == "scheduled": self.module.exit_json(msg="Job scheduled to run at %s" % self.run_at_time, execution_info=response, changed=True) elif response["status"] == "failed": self.module.fail_json(msg="Job execution failed", execution_info=response) elif response["status"] == "succeeded": self.module.exit_json(msg="Job execution succeeded!", execution_info=response) if datetime.now() >= due: timeout = True break # Wait for 5s before continue sleep(self.wait_execution_delay) response.update({"timed_out": timeout}) return response def job_run(self): response, info = api_request( module=self.module, endpoint="job/%s/run" % quote(self.job_id), method="POST", data={ "loglevel": self.loglevel, "options": self.job_options, "runAtTime": self.run_at_time, "filter": self.filter_nodes } ) if info["status"] != 200: self.module.fail_json(msg=info["msg"]) if not self.wait_execution: self.module.exit_json(msg="Job run send successfully!", execution_info=response) job_status = self.job_status_check(response["id"]) if job_status["timed_out"]: if self.abort_on_timeout: api_request( module=self.module, endpoint="execution/%s/abort" % response['id'], method="GET" ) abort_status = self.job_status_check(response["id"]) self.module.fail_json(msg="Job execution aborted due the timeout specified", execution_info=abort_status) self.module.fail_json(msg="Job execution timed out", execution_info=job_status) def main(): argument_spec = api_argument_spec() argument_spec.update(dict( job_id=dict(required=True, type="str"), job_options=dict(type="dict"), filter_nodes=dict(type="str"), run_at_time=dict(type="str"), wait_execution=dict(type="bool", default=True), wait_execution_delay=dict(type="int", default=5), wait_execution_timeout=dict(type="int", default=120), abort_on_timeout=dict(type="bool", default=False), loglevel=dict( type="str", choices=["debug", "verbose", "info", "warn", "error"], default="info" ) )) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=False ) if module.params["api_version"] < 14: module.fail_json(msg="API version should be at least 14") rundeck = RundeckJobRun(module) rundeck.job_run() if __name__ == "__main__": main()
the-stack_0_15846
# Copyright (C) 2019 Project AGI # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model base class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc from sklearn.model_selection import learning_curve class Model: """ The base class for building a classifcation models and running inference on them. """ __metaclass__ = abc.ABCMeta def __init__(self, hparams, batch_size=None, num_classes=None, summary_dir=None, verbose=False): """ Initializes the model parameters. Args: hparams: The hyperparameters for the model as tf.contrib.training.HParams. batch_size: An integer, the number of samples in a batch. num_classes: An integer, the number of classes. summary_dir: The output directory for the results. verbose: A boolean to enable verbose logging. """ self._model = None self._hparams = hparams self._verbose = verbose self._batch_size = batch_size self._num_classes = num_classes self._summary_dir = summary_dir @abc.abstractstaticmethod def default_hparams(): """Builds an HParam object with default hyperparameters.""" raise NotImplementedError('Not implemented') @abc.abstractmethod def train(self, features, labels, seed=None): """ Setup the model with specified hyperparameters and train the model. Args: features: A numpy n-dimensional array containing the features in the shape of samples x features. labels: A numpy array containing the label for each sample. seed: An integer used to specify the randomness seed. """ raise NotImplementedError('Not implemented') @abc.abstractmethod def evaluate(self, features, labels): """ Evaluates the trained model using the specified features and labels. Args: features: A numpy n-dimensional array containing the features in the shape of samples x features. labels: A numpy array containing the label for each sample. Returns: accuracy: The accuracy score of the model. predictions: The labels predicted by the model for each sample. """ raise NotImplementedError('Not implemented') def learning_curve(self, features, labels): """Simple wrapper around sklearn's learning curve module""" return learning_curve(self._model, features, labels)
the-stack_0_15847
"""train finetune""" # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import os from mindspore import context from mindspore.context import ParallelMode import mindspore.dataset as ds from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.communication.management import init, get_rank, get_group_size from mindspore.common import set_seed from src.args import args from src.data.imagenet import ImgData from src.data.srdata import SRData from src.data.div2k import DIV2K from src.data.bicubic import bicubic from src.ipt_model import IPT from src.utils import Trainer def train_net(distribute, imagenet): """Train net with finetune""" set_seed(1) device_id = int(os.getenv('DEVICE_ID', '0')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False, device_id=device_id) if imagenet == 1: train_dataset = ImgData(args) elif not args.derain: train_dataset = DIV2K(args, name=args.data_train, train=True, benchmark=False) train_dataset.set_scale(args.task_id) else: train_dataset = SRData(args, name=args.data_train, train=True, benchmark=False) train_dataset.set_scale(args.task_id) if distribute: init() rank_id = get_rank() rank_size = get_group_size() parallel_mode = ParallelMode.DATA_PARALLEL context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=rank_size, gradients_mean=True) print('Rank {}, group_size {}'.format(rank_id, rank_size)) if imagenet == 1: train_de_dataset = ds.GeneratorDataset(train_dataset, ["HR", "Rain", "LRx2", "LRx3", "LRx4", "scales", "filename"], num_shards=rank_size, shard_id=rank_id, shuffle=True) else: train_de_dataset = ds.GeneratorDataset(train_dataset, ["LR", "HR", "idx", "filename"], num_shards=rank_size, shard_id=rank_id, shuffle=True) else: if imagenet == 1: train_de_dataset = ds.GeneratorDataset(train_dataset, ["HR", "Rain", "LRx2", "LRx3", "LRx4", "scales", "filename"], shuffle=True) else: train_de_dataset = ds.GeneratorDataset(train_dataset, ["LR", "HR", "idx", "filename"], shuffle=True) if args.imagenet == 1: resize_fuc = bicubic() train_de_dataset = train_de_dataset.batch( args.batch_size, input_columns=["HR", "Rain", "LRx2", "LRx3", "LRx4", "scales", "filename"], output_columns=["LR", "HR", "idx", "filename"], drop_remainder=True, per_batch_map=resize_fuc.forward) else: train_de_dataset = train_de_dataset.batch(args.batch_size, drop_remainder=True) train_loader = train_de_dataset.create_dict_iterator(output_numpy=True) net_m = IPT(args) print("Init net weights successfully") if args.pth_path: param_dict = load_checkpoint(args.pth_path) load_param_into_net(net_m, param_dict) print("Load net weight successfully") train_func = Trainer(args, train_loader, net_m) for epoch in range(0, args.epochs): train_func.update_learning_rate(epoch) train_func.train() if __name__ == "__main__": train_net(distribute=args.distribute, imagenet=args.imagenet)
the-stack_0_15848
# coding: utf-8 from __future__ import absolute_import from bitmovin_api_sdk.common import BaseApi, BitmovinApiLoggerBase from bitmovin_api_sdk.common.poscheck import poscheck_except from bitmovin_api_sdk.models.audio_volume_filter import AudioVolumeFilter from bitmovin_api_sdk.models.bitmovin_response import BitmovinResponse from bitmovin_api_sdk.models.response_envelope import ResponseEnvelope from bitmovin_api_sdk.models.response_error import ResponseError from bitmovin_api_sdk.encoding.filters.audio_volume.customdata.customdata_api import CustomdataApi from bitmovin_api_sdk.encoding.filters.audio_volume.audio_volume_filter_list_query_params import AudioVolumeFilterListQueryParams class AudioVolumeApi(BaseApi): @poscheck_except(2) def __init__(self, api_key, tenant_org_id=None, base_url=None, logger=None): # type: (str, str, str, BitmovinApiLoggerBase) -> None super(AudioVolumeApi, self).__init__( api_key=api_key, tenant_org_id=tenant_org_id, base_url=base_url, logger=logger ) self.customdata = CustomdataApi( api_key=api_key, tenant_org_id=tenant_org_id, base_url=base_url, logger=logger ) def create(self, audio_volume_filter, **kwargs): # type: (AudioVolumeFilter, dict) -> AudioVolumeFilter """Create Audio Volume Filter :param audio_volume_filter: The Audio Volume Filter to be created :type audio_volume_filter: AudioVolumeFilter, required :return: Audio volume details :rtype: AudioVolumeFilter """ return self.api_client.post( '/encoding/filters/audio-volume', audio_volume_filter, type=AudioVolumeFilter, **kwargs ) def delete(self, filter_id, **kwargs): # type: (string_types, dict) -> BitmovinResponse """Delete Audio Volume Filter :param filter_id: Id of the Audio volume configuration. :type filter_id: string_types, required :return: Id of the Audio volume. :rtype: BitmovinResponse """ return self.api_client.delete( '/encoding/filters/audio-volume/{filter_id}', path_params={'filter_id': filter_id}, type=BitmovinResponse, **kwargs ) def get(self, filter_id, **kwargs): # type: (string_types, dict) -> AudioVolumeFilter """Audio Volume Filter Details :param filter_id: Id of the audio volume configuration. :type filter_id: string_types, required :return: Audio volume details :rtype: AudioVolumeFilter """ return self.api_client.get( '/encoding/filters/audio-volume/{filter_id}', path_params={'filter_id': filter_id}, type=AudioVolumeFilter, **kwargs ) def list(self, query_params=None, **kwargs): # type: (AudioVolumeFilterListQueryParams, dict) -> AudioVolumeFilter """List Audio Volume Filters :param query_params: Query parameters :type query_params: AudioVolumeFilterListQueryParams :return: List of Audio volume ids :rtype: AudioVolumeFilter """ return self.api_client.get( '/encoding/filters/audio-volume', query_params=query_params, pagination_response=True, type=AudioVolumeFilter, **kwargs )
the-stack_0_15849
# -*- coding: utf-8 -*- """ DWX_ZMQ_Execution.py -- @author: Darwinex Labs (www.darwinex.com) Copyright (c) 2019 onwards, Darwinex. All rights reserved. Licensed under the BSD 3-Clause License, you may not use this file except in compliance with the License. You may obtain a copy of the License at: https://opensource.org/licenses/BSD-3-Clause """ from pandas import to_datetime from time import sleep class DWX_ZMQ_Execution(): def __init__(self, _zmq): self._zmq = _zmq ########################################################################## def _execute_(self, _exec_dict, _verbose=False, _delay=0.1, _wbreak=10): _check = '' # Reset thread data output self._zmq._set_response_(None) # OPEN TRADE if _exec_dict['_action'] == 'OPEN': _check = '_action' self._zmq._DWX_MTX_NEW_TRADE_(_order=_exec_dict) # CLOSE TRADE elif _exec_dict['_action'] == 'CLOSE': _check = '_response_value' self._zmq._DWX_MTX_CLOSE_TRADE_BY_TICKET_(_exec_dict['_ticket']) if _verbose: print('\n[{}] {} -> MetaTrader'.format(_exec_dict['_comment'], str(_exec_dict))) # While loop start time reference _ws = to_datetime('now') # While data not received, sleep until timeout while self._zmq._valid_response_('zmq') == False: sleep(_delay) if (to_datetime('now') - _ws).total_seconds() > (_delay * _wbreak): break # If data received, return DataFrame if self._zmq._valid_response_('zmq'): if _check in self._zmq._get_response_().keys(): return self._zmq._get_response_() # Default return None ##########################################################################
the-stack_0_15851
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import unicodedata import os import logging from .file_utils import cached_path logger = logging.getLogger(__name__) PRETRAINED_VOCAB_ARCHIVE_MAP = { 'bert-base-uncased': "/media/disk2/jennybae/bert-base-uncased-vocab.txt", 'bert-base-cased': "/media/disk2/jennybae/bert-base-cased-vocab.txt", 'bert-large-uncased': "/media/disk2/jennybae/bert-large-uncased-vocab.txt", # 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt", # 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt", # 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-vocab.txt", 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt", 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-vocab.txt", 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-vocab.txt", 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-vocab.txt", } PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, } VOCAB_NAME = 'vocab.txt' def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() index = 0 with open(vocab_file, "r", encoding="utf-8") as reader: while True: token = reader.readline() if not token: break token = token.strip() vocab[token] = index index += 1 return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a peice of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class BertTokenizer(object): """Runs end-to-end tokenization: punctuation splitting + wordpiece""" def __init__(self, vocab_file, do_lower_case=True, max_len=None): if not os.path.isfile(vocab_file): raise ValueError( "Can't find a vocabulary file at path '{}'. To load the vocabulary from a Google pretrained " "model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`".format(vocab_file)) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict( [(ids, tok) for tok, ids in self.vocab.items()]) self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) self.max_len = max_len if max_len is not None else int(1e12) def tokenize(self, text): split_tokens = [] for token in self.basic_tokenizer.tokenize(text): for sub_token in self.wordpiece_tokenizer.tokenize(token): split_tokens.append(sub_token) return split_tokens def convert_tokens_to_ids(self, tokens): """Converts a sequence of tokens into ids using the vocab.""" ids = [] for token in tokens: ids.append(self.vocab[token]) if len(ids) > self.max_len: raise ValueError( "Token indices sequence length is longer than the specified maximum " " sequence length for this BERT model ({} > {}). Running this" " sequence through BERT will result in indexing errors".format(len(ids), self.max_len) ) return ids def convert_ids_to_tokens(self, ids): """Converts a sequence of ids in wordpiece tokens using the vocab.""" tokens = [] for i in ids: tokens.append(self.ids_to_tokens[i]) return tokens @classmethod def from_pretrained(cls, pretrained_model_name, cache_dir=None, *inputs, **kwargs): """ Instantiate a PreTrainedBertModel from a pre-trained model file. Download and cache the pre-trained model file if needed. """ if pretrained_model_name in PRETRAINED_VOCAB_ARCHIVE_MAP: vocab_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name] else: vocab_file = pretrained_model_name if os.path.isdir(vocab_file): vocab_file = os.path.join(vocab_file, VOCAB_NAME) # redirect to the cache, if necessary try: resolved_vocab_file = cached_path(vocab_file, cache_dir=cache_dir) except FileNotFoundError: logger.error( "Model name '{}' was not found in model name list ({}). " "We assumed '{}' was a path or url but couldn't find any file " "associated to this path or url.".format( pretrained_model_name, ', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), vocab_file)) return None if resolved_vocab_file == vocab_file: logger.info("loading vocabulary file {}".format(vocab_file)) else: logger.info("loading vocabulary file {} from cache at {}".format( vocab_file, resolved_vocab_file)) if pretrained_model_name in PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP: # if we're using a pretrained model, ensure the tokenizer wont index sequences longer # than the number of positional embeddings max_len = PRETRAINED_VOCAB_POSITIONAL_EMBEDDINGS_SIZE_MAP[pretrained_model_name] kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len) # Instantiate tokenizer. tokenizer = cls(resolved_vocab_file, *inputs, **kwargs) return tokenizer class BasicTokenizer(object): """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" def __init__(self, do_lower_case=True): """Constructs a BasicTokenizer. Args: do_lower_case: Whether to lower case the input. """ self.do_lower_case = do_lower_case def tokenize(self, text): """Tokenizes a piece of text.""" text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). text = self._tokenize_chinese_chars(text) orig_tokens = whitespace_tokenize(text) split_tokens = [] for token in orig_tokens: if self.do_lower_case: token = token.lower() token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text): """Splits punctuation on a piece of text.""" chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ((cp >= 0x4E00 and cp <= 0x9FFF) or # (cp >= 0x3400 and cp <= 0x4DBF) or # (cp >= 0x20000 and cp <= 0x2A6DF) or # (cp >= 0x2A700 and cp <= 0x2B73F) or # (cp >= 0x2B740 and cp <= 0x2B81F) or # (cp >= 0x2B820 and cp <= 0x2CEAF) or (cp >= 0xF900 and cp <= 0xFAFF) or # (cp >= 0x2F800 and cp <= 0x2FA1F)): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xfffd or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example: input = "unaffable" output = ["un", "##aff", "##able"] Args: text: A single token or whitespace separated tokens. This should have already been passed through `BasicTokenizer`. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically contorl characters but we treat them # as whitespace since they are generally considered as such. if char == " " or char == "\t" or char == "\n" or char == "\r": return True cat = unicodedata.category(char) if cat == "Zs": return True return False def _is_control(char): """Checks whether `chars` is a control character.""" # These are technically control characters but we count them as whitespace # characters. if char == "\t" or char == "\n" or char == "\r": return False cat = unicodedata.category(char) if cat.startswith("C"): return True return False def _is_punctuation(char): """Checks whether `chars` is a punctuation character.""" cp = ord(char) # We treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways, for # consistency. if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False
the-stack_0_15852
import os, tempfile, subprocess from string import Template from PuzzleLib import Config from PuzzleLib.Compiler.JIT import getCacheDir, computeHash, FileLock from PuzzleLib.Cuda.SourceModule import SourceModule, ElementwiseKernel, ElementHalf2Kernel, ReductionKernel from PuzzleLib.Cuda.SourceModule import eltwiseTest, reductionTest from PuzzleLib.Hip import Driver as HipDriver hipWarpBit, hipBlockBit = 6, 8 hipWarpSize, hipBlockSize = 1 << hipWarpBit, 1 << hipBlockBit class HipSourceModule(SourceModule): Driver = HipDriver runtimeHeader = """ #include <hip/hip_runtime.h> #define __shfl_xor_sync(mask, value, laneMask, ...) __shfl_xor(value, laneMask, __VA_ARGS__) #define __shfl_up_sync(mask, value, delta, ...) __shfl_up(value, delta, __VA_ARGS__) """ def __init__(self, source, options=None, includes=None, externC=False, verbose=True, debug=False, recompile=False, name=None): super().__init__(source, options, includes, externC, verbose, debug, name) self.recompile = recompile self.includes = [] if self.includes is None else self.includes def build(self): source = self.source.replace("cuda_fp16.h", "hip/hip_fp16.h") source = ("%sextern \"C\"\n{\n%s\n}\n" if self.externC else "%s%s") % (self.runtimeHeader, source) cachedir = getCacheDir(os.path.join(Config.libname, Config.Backend.hip.name)) with FileLock(cachedir): try: codename = self.tryBuild(source, cachedir) except subprocess.CalledProcessError as e: log = e.output.decode() text = log if self.debug else "%s\nSource:\n%s" % ( log, "\n".join("%-4s %s" % (i + 1, line) for i, line in enumerate(source.splitlines(keepends=False))) ) raise self.Driver.RtcError(text) with open(codename, mode="rb") as f: hsaco = f.read() self.cumod = self.Driver.Module(hsaco) def tryBuild(self, source, cachedir): options, includes = self.options, self.includes hashsum = computeHash(source, *options, *includes) codepath = os.path.join(cachedir, hashsum) name, srcext = "module" if self.name is None else self.name, ".hip.cpp" codename = os.path.join(codepath, "%s.code" % name) sourcename = os.path.join(codepath, "%s%s" % (name, srcext)) if not os.path.exists(codename) or self.recompile: os.makedirs(codepath, exist_ok=True) args = ["hipcc", "--genco"] + options + ["-o", codename] stderr = subprocess.STDOUT if self.verbose else subprocess.DEVNULL Config.getLogger().debug("No cache found for HIP extension '%s', performing compilation ...", name) if not self.debug: f = tempfile.NamedTemporaryFile(mode="w", encoding="utf-8", suffix=srcext, delete=False) try: with f: f.write(source) subprocess.check_output(args + [f.name], stderr=stderr) finally: os.remove(f.name) else: with open(sourcename, mode="w", encoding="utf-8") as f: f.write(source) subprocess.check_output(args + [sourcename], stderr=stderr) else: Config.getLogger().debug("Found cached compilation for HIP extension '%s', skipping compilation ...", name) return codename @classmethod def getDefaultOptions(cls): deviceIdx = cls.Driver.Device.getCurrent() return ["--targets gfx%s" % cls.Driver.Device(deviceIdx).getArch()] class HipEltwiseKernel(ElementwiseKernel): Driver = HipDriver SourceModule = HipSourceModule warpBit, warpSize = hipWarpBit, hipWarpSize blockBit, blockSize = hipBlockBit, hipBlockSize class HipEltHalf2Kernel(ElementHalf2Kernel): Driver = HipDriver SourceModule = HipSourceModule warpBit, warpSize = hipWarpBit, hipWarpSize blockBit, blockSize = hipBlockBit, hipBlockSize class HipReductionKernel(ReductionKernel): Driver = HipDriver SourceModule = HipSourceModule warpBit, warpSize = hipWarpBit, hipWarpSize blockBit, blockSize = hipBlockBit, hipBlockSize reduceTmpl = Template(""" #undef READ_AND_MAP #undef REDUCE #define READ_AND_MAP(i) ($mapExpr) #define REDUCE(a, b) ($reduceExpr) extern "C" __global__ void $name($arguments, $T *partials, int size) { __shared__ $T sdata[$warpSize]; int tid = threadIdx.x; int gid = tid + blockIdx.x * $NT; $T acc = $neutral; for (int i = gid; i < size; i += $NT * gridDim.x) acc = REDUCE(acc, READ_AND_MAP(i)); for (int mask = $warpSize / 2; mask > 0; mask /= 2) { $T upval = __shfl_xor(acc, mask, $warpSize); acc = REDUCE(acc, upval); } if (tid % $warpSize == 0) sdata[tid / $warpSize] = acc; __syncthreads(); int nwarps = $NT / $warpSize; if (tid < $warpSize) { acc = (tid < nwarps) ? sdata[tid] : $neutral; for (int mask = $warpSize / 2; mask > 0; mask /= 2) { $T upval = __shfl_xor(acc, mask, $warpSize); acc = REDUCE(acc, upval); } } if (tid == 0) partials[blockIdx.x] = acc; } """) def unittest(): from PuzzleLib.Hip import Backend for deviceIdx in range(Backend.getDeviceCount()): bnd = Backend.getBackend(deviceIdx) eltwiseTest(bnd) reductionTest(bnd) if __name__ == "__main__": unittest()
the-stack_0_15853
# Written by Hannah Horng ([email protected]) import pandas as pd import neuroCombat as nC from sklearn.preprocessing import LabelEncoder import matplotlib.pyplot as plt from scipy.stats import ranksums, ttest_ind, ttest_rel, ks_2samp import os def NestedComBat(dat, covars, batch_list, categorical_cols=None, continuous_cols=None, drop=False, write_p=False, plotting=False, filepath=''): """ Completes sequential nested ComBat harmonization on an input DataFrame. Order is determined by number of features with statistically significant differences in distribution (KS test) due to a particular batch effect. Arguments --------- data : DataFrame of original data with shape (features, samples) covars : DataFrame with shape (samples, covariates) corresponding to original data. All variables should be label- encoded (i.e. strings converted to integer designations) batch_list : list of strings indicating batch effect column names within covars (i.e. ['Manufacturer', 'CE'...]) categorical_cols : string or list of strings of categorical variables to adjust for continuous_cols : string or list of strings of continuous variables to adjust for drop : Boolean, if True -- features with significant differences in distribution due to the batch effect being harmonized are dropped with each iteration (corresponds to NestedD) write_p : Boolean, if True -- KS test p-values will be written as a CSV into the directory created from filepath plotting : Boolean, if True -- kernel density plots will be written as image files into the directory created from filepath filepath : root directory path for saving KS test p-values and kernel density plots created during harmonization Returns ------- new_dat : DataFrame with shape (features, samples) that has been sequentially harmonized with Nested ComBat """ p_dict = {} count_dict = {} f_dict = {} print('ROUND 1:') for a in range(len(batch_list)): batch_col = batch_list[a] print('Harmonizing by ' + batch_col + '...') filepath2 = filepath + 'Round 1/' + batch_col + '/' if not os.path.exists(filepath2): os.makedirs(filepath2) # RUN COMBAT print('ComBat with Raw Data...') output = nC.neuroCombat(dat, covars, batch_col, continuous_cols=continuous_cols, categorical_cols=categorical_cols)['data'] output_df = pd.DataFrame.from_records(output.T) output_df.columns = dat.T.columns f_dict[batch_col] = output_df if plotting: combat_histograms(dat.T, output_df, covars, covars, batch_col, filepath2) if write_p: p_values = combat_kstest(dat.T, output_df, covars, covars, batch_col, write=True, filepath=filepath2) else: p_values = combat_kstest(dat.T, output_df, covars, covars, batch_col) p_values.index = output_df.columns p_dict[batch_col] = p_values['ComBat'] count_dict[batch_col] = len(p_values[p_values['ComBat'] < .05]) drop_feature = [key for key, value in count_dict.items() if value == min(count_dict.values())][0] # Iteration batch_list2 = batch_list.copy() batch_list2.remove(drop_feature) new_data_df = f_dict[drop_feature] new_pvalues = p_dict[drop_feature] new_dat = new_data_df.T if drop: new_dat = new_data_df.T[new_pvalues > .05] # Dropping every iteration c = 1 while len(batch_list2) > 0: print('ROUND ' + str(c+1) + ':') p_dict = {} count_dict = {} f_dict = {} c = c+1 for b in range(len(batch_list2)): batch_col = batch_list2[b] print('Harmonizing by ' + batch_col + '...') filepath2 = filepath+'Round '+str(c) + '/' + batch_col+'/' if not os.path.exists(filepath2): os.makedirs(filepath2) # RUN COMBAT # print('ComBat with Raw Data...') output = nC.neuroCombat(new_dat, covars, batch_col, continuous_cols=continuous_cols, categorical_cols=categorical_cols)['data'] output_df = pd.DataFrame.from_records(output.T) output_df.columns = new_dat.T.columns f_dict[batch_col] = output_df if plotting: combat_histograms(new_dat.T, output_df, covars, covars, batch_col, filepath2) if write_p: p_values = combat_kstest(new_dat.T, output_df, covars, covars, batch_col, write=True, filepath=filepath2) else: p_values = combat_kstest(new_dat.T, output_df, covars, covars, batch_col) p_values.index = output_df.columns p_dict[batch_col] = p_values['ComBat'] count_dict[batch_col] = len(p_values[p_values['ComBat'] < .05]) drop_feature = [key for key, value in count_dict.items() if value == min(count_dict.values())][0] new_data_df = f_dict[drop_feature] new_pvalues = p_dict[drop_feature] if drop: new_dat = new_data_df.T[new_pvalues > .05] # Iteration + Dropping else: new_dat = new_data_df.T batch_list2.remove(drop_feature) output_df = pd.DataFrame.from_records(new_dat.T) output_df.columns = new_dat.T.columns return output_df def combat_kstest(data, output, covars1, covars2, batch_col, filepath='', write=False): """ Calculating KS test for differences in distribution due to batch effect before and after harmonization *Note that this is differs from the version in GMMComBat only by file destination naming Arguments --------- data : DataFrame of original data with shape (samples, features) output: DataFrame of harmonized data with shape (samples, features) covars1 : DataFrame with shape (samples, covariates) corresponding to original data covars2 : DataFrame with shape (samples, covariates) corresponding to harmonized data batch_col : string indicating batch/imaging parameter name in covars filepath : write destination for ks p-value DataFrame if write is True write: Boolean, set to True to save ks p-value DataFrame Returns ------- p_df : DataFrame with two colums corresponding to KS test p-value testing for significant differences in distribution attributable to the batch effect specified by batch_col """ data_keys = data.keys() batch_var1 = covars1[batch_col] batch_var2 = covars2[batch_col] data_0 = data[batch_var1 == 0] data_1 = data[batch_var1 == 1] output_0 = output[batch_var2 == 0] output_1 = output[batch_var2 == 1] # KS Test (more generalized differences in distribution) p_before = [] p_after = [] for m in range(0, data.shape[1]): p_value1 = ks_2samp(data_0.iloc[:, m], data_1.iloc[:, m]) p_value2 = ks_2samp(output_0.iloc[:, m], output_1.iloc[:, m]) p_before.append(p_value1.pvalue) p_after.append(p_value2.pvalue) p_df = pd.DataFrame({'Raw': p_before, 'ComBat': p_after}) if write: p_df = pd.DataFrame({'Raw': p_before, 'ComBat': p_after}) p_df.index = data_keys p_df.to_csv(filepath + '_' + batch_col + '_feature_ks_values.csv') return p_df def combat_histograms(data, output, covars1, covars2, batch_col, filepath): """ Plots kernel density plots separated by batch effect groups and before vs. after ComBat harmonization Arguments --------- data : DataFrame of original data with shape (samples, features) output: DataFrame of harmonized data with shape (samples, features) covars1 : DataFrame with shape (samples, covariates) corresponding to original data covars2 : DataFrame with shape (samples, covariates) corresponding to harmonized data batch_col : string indicating batch/imaging parameter name in covars filepath : write destination for kernel density plots """ print('Plotting histograms...') data_keys = data.keys() batch_var1 = covars1[batch_col] batch_var2 = covars2[batch_col] data_0 = data[batch_var1 == 0] data_1 = data[batch_var1 == 1] output_0 = output[batch_var2 == 0] output_1 = output[batch_var2 == 1] for k in range(0, data.shape[1]): plt.figure() data_0.iloc[:, k].plot.kde() data_1.iloc[:, k].plot.kde() output_0.iloc[:, k].plot.kde() output_1.iloc[:, k].plot.kde() plt.xlabel(data_keys[k]) leg = ["0", "1", "0_ComBat", "1_ComBat"] plt.legend(leg, loc='upper right') plt.rcParams.update({'font.size': 12}) filename = filepath + batch_col + '_' + 'histogram_' + data_keys[k] + ".png" plt.savefig(filename, bbox_inches='tight') plt.close() def feature_kstest_histograms(dat, covars, batch_list, filepath): """ Plots kernel density plots and computes KS test p-values separated by batch effect groups for a dataset (intended to assess differences in distribution to all batch effects in batch_list following harmonization with NestedComBat *Note that this is differs from the version in GMMComBat only by file destination naming Arguments --------- data : DataFrame of original data with shape (samples, features) output: DataFrame of harmonized data with shape (samples, features) covars : DataFrame with shape (samples, covariates) corresponding to original data. All variables should be label- encoded (i.e. strings converted to integer designations) batch_list : list of strings indicating batch effect column names within covars (i.e. ['Manufacturer', 'CE'...]) filepath : write destination for kernel density plots """ print('Plotting final feature histograms...') p_df = pd.DataFrame() for batch_col in batch_list: p = [] split_col = covars[batch_col] filepath2 = filepath + 'feature_histograms/' + batch_col + '/' if not os.path.exists(filepath2): os.makedirs(filepath2) for feature in dat: plt.figure() dat[feature][split_col == 0].plot.kde() dat[feature][split_col == 1].plot.kde() plt.xlabel(feature) filename = filepath2 + feature + '.png' plt.savefig(filename, bbox_inches='tight') plt.close() p_value = ks_2samp(dat[feature][split_col == 0], dat[feature][split_col == 1]) p.append(p_value.pvalue) p_df[batch_col] = p p_df.index = dat.keys() p_df.to_csv(filepath + 'final_nested_ks_values.csv')
the-stack_0_15854
import subprocess import re # ************************************************ # remove_custom_emoji # 絵文字IDは読み上げない # ************************************************ def remove_custom_emoji(text): #pattern = r'<:[a-zA-Z0-9_]+:[0-9]+>' # カスタム絵文字のパターン pattern = r'<:' # カスタム絵文字のパターン text = re.sub(pattern,'',text) # 置換処理 pattern = r':[0-9]+>' # カスタム絵文字のパターン return re.sub(pattern,'',text) # 置換処理 # ************************************************ # exclude_url # URLなら省略 # ************************************************ def exclude_url(text): pattern = "https?://[\w/:%#\$&\?\(\)~\.=\+\-]+" return re.sub(pattern,'URL',text) # 置換処理 # ************************************************ # remove_picture # 画像ファイルなら読み上げない # ************************************************ def remove_picture(text): pattern = r'.*(\.jpg|\.jpeg|\.gif|\.png|\.bmp)' return re.sub(pattern,'画像',text) # 置換処理 # ************************************************ # remove_command # コマンドは読み上げない # ************************************************ def remove_command(text): pattern = r'^\!.*' return re.sub(pattern,'',text) # 置換処理 # ************************************************ # remove_log # 参加ログは読み上げない # ************************************************ def remove_log(text): pattern = r'(\【VC参加ログ\】.*)' return re.sub(pattern,'',text) # 置換処理 # ************************************************ # user_custam # ユーザ登録した文字を読み替える # ************************************************ def user_custam(text): f = open('user_dictionary.txt', 'r') line = f.readline() while line: pattern = line.strip().split(',') if pattern[0] in text: text = text.replace(pattern[0], pattern[1]) print('置換後のtext:'+text) break else: line = f.readline() f.close() return text # ************************************************ # creat_WAV # message.contentをテキストファイルと音声ファイルに書き込む # 引数:inputText # 書き込みファイル:input.txt、output.wav # ************************************************ def creat_WAV(text): text = remove_custom_emoji(text) # 絵文字IDは読み上げない text = exclude_url(text) # URLなら省略 open_jtalk = ['jtalk/bin/open_jtalk'] mech = ['-x', 'jtalk/dic'] htsvoice = ['-m', 'jtalk/mei/mei_normal.htsvoice'] speed = ['-r', '1.0'] outwav = ['-ow', 'output.wav'] cmd = open_jtalk + mech + htsvoice + speed + outwav c = subprocess.Popen(' '.join(cmd), stdin=subprocess.PIPE, shell=True) c.stdin.write(text.encode()) c.stdin.close() c.wait() if __name__ == '__main__': creat_WAV('hello world')
the-stack_0_15855
''' The Pool.map and Pool.apply will lock the main program until all a process is finished, which is quite useful if we want to obtain resuls in a particular order for certain applications. In contrast, the async variants will submit all processes at once and retrieve the results as soon as they are finished. One more difference is that we need to use the get method after the apply_async() call in order to obtain the return values of the finished processes. ''' from multiprocessing import Pool, current_process, cpu_count def f(x): return x * 2 def start_process(): print('Starting', current_process().name) if __name__ == '__main__': inputs = list(range(10)) print('Input :', inputs) builtin_outputs = list(map(f, inputs)) print('Built-in:', builtin_outputs) #number of threads to use pool_size = cpu_count() print("Number of processes:", pool_size) pool = Pool(processes=pool_size, initializer=start_process) #using pool.map() pool_outputs = pool.map(f, inputs) #using pool.apply() #pool_outputs = [pool.apply(f, args=(x,)) for x in inputs] #using pool.apply_async() #pool_outputs = [pool.apply_async(f, args=(x,)) for x in inputs] #need to use p.get() #pool_outputs = [p.get() for p in pool_outputs] pool.close() # no more tasks pool.join() # wrap up current tasks print('Pool:', pool_outputs)
the-stack_0_15857
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class dad(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-common-def - based on the path /ipv6/ipv6-global-cmds/nd-global/dad. Each member element of the container is represented as a class variable - with a specific YANG type. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__global_dad_time',) _yang_name = 'dad' _rest_name = 'dad' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__global_dad_time = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..5']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="global-dad-time", rest_name="time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'retransmit time interval for Neighbor solicitations, sent as part of duplicate address detection', u'alt-name': u'time'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-nd-ra', defining_module='brocade-ipv6-nd-ra', yang_type='common-def:time-interval-sec', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'ipv6', u'ipv6-global-cmds', u'nd-global', u'dad'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'ipv6', u'nd', u'dad'] def _get_global_dad_time(self): """ Getter method for global_dad_time, mapped from YANG variable /ipv6/ipv6_global_cmds/nd_global/dad/global_dad_time (common-def:time-interval-sec) """ return self.__global_dad_time def _set_global_dad_time(self, v, load=False): """ Setter method for global_dad_time, mapped from YANG variable /ipv6/ipv6_global_cmds/nd_global/dad/global_dad_time (common-def:time-interval-sec) If this variable is read-only (config: false) in the source YANG file, then _set_global_dad_time is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_global_dad_time() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..5']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="global-dad-time", rest_name="time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'retransmit time interval for Neighbor solicitations, sent as part of duplicate address detection', u'alt-name': u'time'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-nd-ra', defining_module='brocade-ipv6-nd-ra', yang_type='common-def:time-interval-sec', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """global_dad_time must be of a type compatible with common-def:time-interval-sec""", 'defined-type': "common-def:time-interval-sec", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..5']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="global-dad-time", rest_name="time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'retransmit time interval for Neighbor solicitations, sent as part of duplicate address detection', u'alt-name': u'time'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-nd-ra', defining_module='brocade-ipv6-nd-ra', yang_type='common-def:time-interval-sec', is_config=True)""", }) self.__global_dad_time = t if hasattr(self, '_set'): self._set() def _unset_global_dad_time(self): self.__global_dad_time = YANGDynClass(base=RestrictedClassType(base_type=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), restriction_dict={'range': [u'1..5']}), default=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32)(1), is_leaf=True, yang_name="global-dad-time", rest_name="time", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'cli-full-command': None, u'info': u'retransmit time interval for Neighbor solicitations, sent as part of duplicate address detection', u'alt-name': u'time'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-nd-ra', defining_module='brocade-ipv6-nd-ra', yang_type='common-def:time-interval-sec', is_config=True) global_dad_time = __builtin__.property(_get_global_dad_time, _set_global_dad_time) _pyangbind_elements = {'global_dad_time': global_dad_time, }
the-stack_0_15861
import numpy as np import cv2 as cv ''' Based on GeeksForGeeks article with an opticalFLow demonstration ''' def opticalFlow(img1_path,img2_path,blur=False,maxValue=True): ''' Optical flow between two images inputs: two consecutive images, blur: Boolean - adds blurring to the image for filtering out small particles maxValue: Boolean - crates vector by means of the maximum value within the pellet bounding box. Average vector otherwise. ''' framet1 = cv.imread(img1_path) framet2 = cv.imread(img2_path) if(blur): framet1 = cv.GaussianBlur(framet1, (3, 31), 0) framet2 = cv.GaussianBlur(framet2, (3, 31), 0) grayt1 = cv.cvtColor(framet1, cv.COLOR_BGR2GRAY) grayt2 = cv.cvtColor(framet2, cv.COLOR_BGR2GRAY) flow = cv.calcOpticalFlowFarneback(grayt1, grayt2, None, 0.5, 3, 15, 3, 5, 1.2, 0) magnitude, angle = cv.cartToPolar(flow[..., 0], flow[..., 1]) mask = np.zeros_like(framet1) mask[..., 1] = 255 # Sets image hue according to the optical flow # direction mask[..., 0] = angle * 180 / np.pi / 2 # Sets image value according to the optical flow # magnitude (normalized) mask[..., 2] = cv.normalize(magnitude, None, 0, 255, cv.NORM_MINMAX) # Converts HSV to RGB (BGR) color representation rgb = cv.cvtColor(mask, cv.COLOR_HSV2BGR) x0 = 973 x1 = 1021 y0 = 300 y1 = 350 drawBbox(framet1,x0,x1,y0,y1) if(maxValue): d = (np.max(flow[973:1021,300:350][0][:,0],axis=0),np.max(flow[973:1021,300:350][0][:,1],axis=0)) else: d = np.average(flow[973:1021,300:350][0],axis=0) centerPoint = ((1000,325)) endPoint = (int(centerPoint[0]+d[0]),int(centerPoint[1]+d[1])) framet1 = framet1+rgb cv.arrowedLine(framet1,centerPoint,endPoint,(0,0,255) ,2) displayImage(framet1) return flow def displayImage(frame,description="input, press 0 to exit"): cv.imshow(description, frame) cv.waitKey(0) def drawBbox(frame,bbox, color = 100, linewidth=3): cv.line(frame, (bbox.x0,bbox.y0), (bbox.x0,bbox.y1), color, linewidth) cv.line(frame, (bbox.x0,bbox.y1), (bbox.x1,bbox.y1), color, linewidth) cv.line(frame, (bbox.x1,bbox.y0), (bbox.x1,bbox.y1), color, linewidth) cv.line(frame, (bbox.x0,bbox.y0), (bbox.x1,bbox.y0), color, linewidth) return frame def drawVectfromBbox(frame,startPoint,endPoint): cv.arrowedLine(frame,startPoint,endPoint,(0,0,255) ,2) return frame def euclidianDistance(p1,p2): return np.sqrt((int(p1[0])-int(p2[0]))**2+(int(p1[1])-int(p2[1]))**2) #opticalFlow('img0371.jpg','img0372.jpg', blur = False)
the-stack_0_15864
"""Utilities for processing test outputs.""" import pathlib import re import subprocess from pathlib import Path from typing import Iterator, Tuple def split_string( string: str, sub_length: int = 40, copy: bool = False ) -> Tuple[str, ...]: """Split a string into subsections less than or equal to new length. Args: string (str): The long string to split up. sub_length (int): The maximum length of the subsections. Defaults to 56. copy (bool): Copy output to clipboard. Returns: Tuple[str]: The string split into sections. """ string_length = len(string) split = tuple( string[begin : begin + sub_length] for begin in range(0, string_length, sub_length) ) if copy is True: string = str(split) copy_string(string) return split def copy_string(string: str) -> None: """Copies the string to clipboard. Uses pbcopy, so for now only works with macOS. """ subprocess.run("/usr/bin/pbcopy", text=True, input=string) # noqa: S603 def write_output(string: str, test_name: str, replace_links: bool = True) -> None: """Write the output to the expected output's file.""" if replace_links: tempfile_link_pattern = re.compile( r"(?P<prefix>file://)" r"(?P<core_tempfile_link>[\w\s/\\]*)" r"(?P<suffix>\d+\.\w+)" ) string = tempfile_link_pattern.sub( lambda match: f"{match.group('prefix')}" "{{ tempfile_path }}" f"{match.group('suffix')}", string=string, ) output_directory = pathlib.Path(__file__).parent.parent / pathlib.Path( "unit", "expected_outputs" ) expected_output_file = output_directory / pathlib.Path(test_name).with_suffix( ".txt" ) expected_output_file.write_text(string) def _get_all_expected_output_paths() -> Iterator[Path]: """Get the paths of all the expected output files.""" file_dir = pathlib.Path(__file__).parent expected_outputs = ( file_dir.parent / pathlib.Path("unit", "expected_outputs") ).glob("**/*.txt") yield from expected_outputs def replace_expected_section(old: str, new: str) -> None: """Replace all occurrences of a section in the expected output.""" expected_output_paths = _get_all_expected_output_paths() for expected_output_path in expected_output_paths: old_text = expected_output_path.read_text() new_text = old_text.replace(old, new) expected_output_path.write_text(new_text)
the-stack_0_15866
# coding: utf-8 from __future__ import unicode_literals import re from .common import InfoExtractor from ..utils import int_or_none class TumblrIE(InfoExtractor): _VALID_URL = r'https?://(?P<blog_name>[^/?#&]+)\.tumblr\.com/(?:post|video)/(?P<id>[0-9]+)(?:$|[/?#])' _TESTS = [{ 'url': 'http://tatianamaslanydaily.tumblr.com/post/54196191430/orphan-black-dvd-extra-behind-the-scenes', 'md5': '479bb068e5b16462f5176a6828829767', 'info_dict': { 'id': '54196191430', 'ext': 'mp4', 'title': 'tatiana maslany news, Orphan Black || DVD extra - behind the scenes ↳...', 'description': 'md5:37db8211e40b50c7c44e95da14f630b7', 'thumbnail': r're:http://.*\.jpg', } }, { 'url': 'http://5sostrum.tumblr.com/post/90208453769/yall-forgetting-the-greatest-keek-of-them-all', 'md5': 'bf348ef8c0ef84fbf1cbd6fa6e000359', 'info_dict': { 'id': '90208453769', 'ext': 'mp4', 'title': '5SOS STRUM ;]', 'description': 'md5:dba62ac8639482759c8eb10ce474586a', 'thumbnail': r're:http://.*\.jpg', } }, { 'url': 'http://hdvideotest.tumblr.com/post/130323439814/test-description-for-my-hd-video', 'md5': '7ae503065ad150122dc3089f8cf1546c', 'info_dict': { 'id': '130323439814', 'ext': 'mp4', 'title': 'HD Video Testing \u2014 Test description for my HD video', 'description': 'md5:97cc3ab5fcd27ee4af6356701541319c', 'thumbnail': r're:http://.*\.jpg', }, 'params': { 'format': 'hd', }, }, { 'url': 'http://naked-yogi.tumblr.com/post/118312946248/naked-smoking-stretching', 'md5': 'de07e5211d60d4f3a2c3df757ea9f6ab', 'info_dict': { 'id': 'Wmur', 'ext': 'mp4', 'title': 'naked smoking & stretching', 'upload_date': '20150506', 'timestamp': 1430931613, 'age_limit': 18, 'uploader_id': '1638622', 'uploader': 'naked-yogi', }, 'add_ie': ['Vidme'], }, { 'url': 'http://camdamage.tumblr.com/post/98846056295/', 'md5': 'a9e0c8371ea1ca306d6554e3fecf50b6', 'info_dict': { 'id': '105463834', 'ext': 'mp4', 'title': 'Cam Damage-HD 720p', 'uploader': 'John Moyer', 'uploader_id': 'user32021558', }, 'add_ie': ['Vimeo'], }, { 'url': 'http://sutiblr.tumblr.com/post/139638707273', 'md5': '2dd184b3669e049ba40563a7d423f95c', 'info_dict': { 'id': 'ir7qBEIKqvq', 'ext': 'mp4', 'title': 'Vine by sutiblr', 'alt_title': 'Vine by sutiblr', 'uploader': 'sutiblr', 'uploader_id': '1198993975374495744', 'upload_date': '20160220', 'like_count': int, 'comment_count': int, 'repost_count': int, }, 'add_ie': ['Vine'], }, { 'url': 'http://vitasidorkina.tumblr.com/post/134652425014/joskriver-victoriassecret-invisibility-or', 'md5': '01c12ceb82cbf6b2fe0703aa56b3ad72', 'info_dict': { 'id': '-7LnUPGlSo', 'ext': 'mp4', 'title': 'Video by victoriassecret', 'description': 'Invisibility or flight…which superpower would YOU choose? #VSFashionShow #ThisOrThat', 'uploader_id': 'victoriassecret', 'thumbnail': r're:^https?://.*\.jpg' }, 'add_ie': ['Instagram'], }] def _real_extract(self, url): m_url = re.match(self._VALID_URL, url) video_id = m_url.group('id') blog = m_url.group('blog_name') url = 'http://%s.tumblr.com/post/%s/' % (blog, video_id) webpage, urlh = self._download_webpage_handle(url, video_id) iframe_url = self._search_regex( r'src=\'(https?://www\.tumblr\.com/video/[^\']+)\'', webpage, 'iframe url', default=None) if iframe_url is None: return self.url_result(urlh.geturl(), 'Generic') iframe = self._download_webpage(iframe_url, video_id, 'Downloading iframe page') duration = None sources = [] sd_url = self._search_regex( r'<source[^>]+src=(["\'])(?P<url>.+?)\1', iframe, 'sd video url', default=None, group='url') if sd_url: sources.append((sd_url, 'sd')) options = self._parse_json( self._search_regex( r'data-crt-options=(["\'])(?P<options>.+?)\1', iframe, 'hd video url', default='', group='options'), video_id, fatal=False) if options: duration = int_or_none(options.get('duration')) hd_url = options.get('hdUrl') if hd_url: sources.append((hd_url, 'hd')) formats = [{ 'url': video_url, 'ext': 'mp4', 'format_id': format_id, 'height': int_or_none(self._search_regex( r'/(\d{3,4})$', video_url, 'height', default=None)), 'quality': quality, } for quality, (video_url, format_id) in enumerate(sources)] self._sort_formats(formats) # The only place where you can get a title, it's not complete, # but searching in other places doesn't work for all videos video_title = self._html_search_regex( r'(?s)<title>(?P<title>.*?)(?: \| Tumblr)?</title>', webpage, 'title') return { 'id': video_id, 'title': video_title, 'description': self._og_search_description(webpage, default=None), 'thumbnail': self._og_search_thumbnail(webpage, default=None), 'duration': duration, 'formats': formats, }
the-stack_0_15867
import re import threading from typing import Any from antlr4 import CommonTokenStream, InputStream, ParserRuleContext from antlr4.error.ErrorListener import ErrorListener from .errors import GrammarParseError # Import from visitor in order to check the presence of generated grammar files # files in a single place. from .grammar_visitor import ( # type: ignore OmegaConfGrammarLexer, OmegaConfGrammarParser, ) # Used to cache grammar objects to avoid re-creating them on each call to `parse()`. # We use a per-thread cache to make it thread-safe. _grammar_cache = threading.local() # Build regex pattern to efficiently identify typical interpolations. # See test `test_match_simple_interpolation_pattern` for examples. _config_key = r"[$\w]+" # foo, $0, $bar, $foo_$bar123$ _key_maybe_brackets = f"{_config_key}|\\[{_config_key}\\]" # foo, [foo], [$bar] _node_access = f"\\.{_key_maybe_brackets}" # .foo, [foo], [$bar] _node_path = f"(\\.)*({_key_maybe_brackets})({_node_access})*" # [foo].bar, .foo[bar] _node_inter = f"\\${{\\s*{_node_path}\\s*}}" # node interpolation ${foo.bar} _id = "[a-zA-Z_]\\w*" # foo, foo_bar, abc123 _resolver_name = f"({_id}(\\.{_id})*)?" # foo, ns.bar3, ns_1.ns_2.b0z _arg = "[a-zA-Z_0-9/\\-\\+.$%*@?|]+" # string representing a resolver argument _args = f"{_arg}(\\s*,\\s*{_arg})*" # list of resolver arguments _resolver_inter = f"\\${{\\s*{_resolver_name}\\s*:\\s*{_args}?\\s*}}" # ${foo:bar} _inter = f"({_node_inter}|{_resolver_inter})" # any kind of interpolation _outer = "([^$]|\\$(?!{))+" # any character except $ (unless not followed by {) SIMPLE_INTERPOLATION_PATTERN = re.compile( f"({_outer})?({_inter}({_outer})?)+$", flags=re.ASCII ) # NOTE: SIMPLE_INTERPOLATION_PATTERN must not generate false positive matches: # it must not accept anything that isn't a valid interpolation (per the # interpolation grammar defined in `omegaconf/grammar/*.g4`). class OmegaConfErrorListener(ErrorListener): # type: ignore def syntaxError( self, recognizer: Any, offending_symbol: Any, line: Any, column: Any, msg: Any, e: Any, ) -> None: raise GrammarParseError(str(e) if msg is None else msg) from e def reportAmbiguity( self, recognizer: Any, dfa: Any, startIndex: Any, stopIndex: Any, exact: Any, ambigAlts: Any, configs: Any, ) -> None: raise GrammarParseError("ANTLR error: Ambiguity") # pragma: no cover def reportAttemptingFullContext( self, recognizer: Any, dfa: Any, startIndex: Any, stopIndex: Any, conflictingAlts: Any, configs: Any, ) -> None: # Note: for now we raise an error to be safe. However this is mostly a # performance warning, so in the future this may be relaxed if we need # to change the grammar in such a way that this warning cannot be # avoided (another option would be to switch to SLL parsing mode). raise GrammarParseError( "ANTLR error: Attempting Full Context" ) # pragma: no cover def reportContextSensitivity( self, recognizer: Any, dfa: Any, startIndex: Any, stopIndex: Any, prediction: Any, configs: Any, ) -> None: raise GrammarParseError("ANTLR error: ContextSensitivity") # pragma: no cover def parse( value: str, parser_rule: str = "configValue", lexer_mode: str = "DEFAULT_MODE" ) -> ParserRuleContext: """ Parse interpolated string `value` (and return the parse tree). """ l_mode = getattr(OmegaConfGrammarLexer, lexer_mode) istream = InputStream(value) cached = getattr(_grammar_cache, "data", None) if cached is None: error_listener = OmegaConfErrorListener() lexer = OmegaConfGrammarLexer(istream) lexer.removeErrorListeners() lexer.addErrorListener(error_listener) lexer.mode(l_mode) token_stream = CommonTokenStream(lexer) parser = OmegaConfGrammarParser(token_stream) parser.removeErrorListeners() parser.addErrorListener(error_listener) # The two lines below could be enabled in the future if we decide to switch # to SLL prediction mode. Warning though, it has not been fully tested yet! # from antlr4 import PredictionMode # parser._interp.predictionMode = PredictionMode.SLL # Note that although the input stream `istream` is implicitly cached within # the lexer, it will be replaced by a new input next time the lexer is re-used. _grammar_cache.data = lexer, token_stream, parser else: lexer, token_stream, parser = cached # Replace the old input stream with the new one. lexer.inputStream = istream # Initialize the lexer / token stream / parser to process the new input. lexer.mode(l_mode) token_stream.setTokenSource(lexer) parser.reset() try: return getattr(parser, parser_rule)() except Exception as exc: if type(exc) is Exception and str(exc) == "Empty Stack": # This exception is raised by antlr when trying to pop a mode while # no mode has been pushed. We convert it into an `GrammarParseError` # to facilitate exception handling from the caller. raise GrammarParseError("Empty Stack") else: raise
the-stack_0_15868
# Copyright (C) 2018-2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import pytest # test.BACKEND_NAME is a configuration variable determining which # nGraph backend tests will use. It's set during pytest configuration time. # See `pytest_configure` hook in `conftest.py` for more details. BACKEND_NAME = None # test.MODEL_ZOO_DIR is a configuration variable providing the path # to the ZOO of ONNX models to test. It's set during pytest configuration time. # See `pytest_configure` hook in `conftest.py` for more # details. MODEL_ZOO_DIR = None # test.MODEL_ZOO_XFAIL is a configuration variable which enable xfails for model zoo. MODEL_ZOO_XFAIL = False def xfail_test(reason="Mark the test as expected to fail", strict=True): return pytest.mark.xfail(reason=reason, strict=strict) skip_segfault = pytest.mark.skip(reason="Segmentation fault error") xfail_issue_33488 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "MaxUnpool") xfail_issue_33512 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "Einsum") xfail_issue_33535 = xfail_test(reason="nGraph does not support the following ONNX operations:" "DynamicQuantizeLinear") xfail_issue_33538 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "Scan") skip_issue_38084 = pytest.mark.skip(reason="Aborted (core dumped) Assertion " "`(layer->get_output_partial_shape(i).is_static())' failed.") xfail_issue_33589 = xfail_test(reason="nGraph does not support the following ONNX operations:" "IsNaN and isInf") xfail_issue_33595 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "Unique") xfail_issue_33596 = xfail_test(reason="RuntimeError: nGraph does not support different sequence operations:" "ConcatFromSequence, SequenceConstruct, SequenceAt, SplitToSequence," "SequenceEmpty, SequenceInsert, SequenceErase, SequenceLength ") xfail_issue_33606 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "Det") xfail_issue_33651 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "TfIdfVectorizer") xfail_issue_33581 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "GatherElements") xfail_issue_33633 = xfail_test(reason="MaxPool: dilations unsupported") xfail_issue_35911 = xfail_test(reason="Assertion error: Pad model mismatch error") xfail_issue_35912 = xfail_test(reason="RuntimeError: Error of validate layer: B with type: " "Pad. Cannot parse parameter pads_end from IR for layer B. " "Value -1,0 cannot be casted to int.") xfail_issue_35923 = xfail_test(reason="RuntimeError: PReLU without weights is not supported") xfail_issue_35925 = xfail_test(reason="Assertion error - reduction ops results mismatch") xfail_issue_35927 = xfail_test(reason="RuntimeError: B has zero dimension that is not allowable") xfail_issue_36480 = xfail_test(reason="RuntimeError: [NOT_FOUND] Unsupported property dummy_option " "by CPU plugin") xfail_issue_36485 = xfail_test(reason="RuntimeError: Check 'm_group >= 1' failed at " "/openvino/ngraph/core/src/op/shuffle_channels.cpp:77:") xfail_issue_36486 = xfail_test(reason="RuntimeError: HardSigmoid operation should be converted " "to HardSigmoid_IE") xfail_issue_36487 = xfail_test(reason="Assertion error - mvn operator computation mismatch") xfail_issue_38084 = xfail_test(reason="RuntimeError: AssertionFailed: layer->get_output_partial_shape(i)" "is_static() nGraph <value> operation with name: <value> cannot be" "converted to <value> layer with name: <value> because output" "with index 0 contains dynamic shapes: {<value>}. Try to use " "CNNNetwork::reshape() method in order to specialize shapes " "before the conversion.") xfail_issue_38091 = xfail_test(reason="AssertionError: Mismatched elements") xfail_issue_38699 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "ai.onnx.preview.training.Gradient") xfail_issue_38701 = xfail_test(reason="RuntimeError: unsupported element type: STRING") xfail_issue_38706 = xfail_test(reason="RuntimeError: output_3.0 has zero dimension which is not allowed") xfail_issue_38708 = xfail_test(reason="RuntimeError: While validating ONNX node '<Node(Slice): y>': " "Axes input must be constant") xfail_issue_38710 = xfail_test(reason="RuntimeError: roi has zero dimension which is not allowed") xfail_issue_38713 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "ai.onnx.preview.training.Momentum") xfail_issue_43742 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "If") xfail_issue_45457 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v5::Loop" "Not constant termination condition body output is not supported") xfail_issue_38722 = xfail_test(reason="RuntimeError: While validating ONNX nodes MatMulInteger" "and QLinearMatMul" "Input0 scale and input0 zero point shape must be same and 1") xfail_issue_38723 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "QLinearConv") xfail_issue_38724 = xfail_test(reason="RuntimeError: While validating ONNX node '<Node(Resize): Y>':" "tf_crop_and_resize - this type of coordinate transformation mode" "is not supported. Choose one of the following modes:" "tf_half_pixel_for_nn, asymmetric, align_corners, pytorch_half_pixel," "half_pixel") xfail_issue_38725 = xfail_test(reason="RuntimeError: While validating ONNX node '<Node(Loop):" "value info has no element type specified") xfail_issue_38726 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "LessOrEqual") xfail_issue_38732 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "ConvInteger") xfail_issue_38734 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "ai.onnx.preview.training.Adam") xfail_issue_38735 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "ai.onnx.preview.training.Adagrad") xfail_issue_48052 = xfail_test(reason="Dropout op is not supported in traning mode") xfail_issue_45180 = xfail_test(reason="RuntimeError: Unsupported dynamic op: ReduceSum") xfail_issue_44839 = xfail_test(reason="Huge computation missmatch") xfail_issue_44848 = xfail_test(reason="E Unsupported dynamic op: Range") xfail_issue_44851 = xfail_test(reason="E Unsupported dynamic op: Broadcast") xfail_issue_44854 = xfail_test(reason="E Unsupported dynamic op: VariadicSplit") xfail_issue_44858 = xfail_test(reason="E Unsupported dynamic op: Unsqueeze") xfail_issue_44956 = xfail_test(reason="E Unsupported dynamic op: Loop") xfail_issue_44957 = xfail_test(reason="E Unsupported dynamic op: NonZero") xfail_issue_44958 = xfail_test(reason="E Unsupported dynamic op: Interpolate") xfail_issue_44965 = xfail_test(reason="E RuntimeError: value info has no element") xfail_issue_44968 = xfail_test(reason="E Unsupported dynamic op: Squeeze") xfail_issue_44970 = xfail_test(reason="Assertion error") xfail_issue_44976 = xfail_test(reason="E RuntimeError: Quantize layer with name:" "FakeQuantize_xxx has non const input on 1 port") xfail_issue_46762 = xfail_test(reason="Incorrect result of Minimum op if uint data type is used") xfail_issue_46765 = xfail_test(reason="select_last_index attribute is not supported by ArgMin and ArgMax") xfail_issue_47323 = xfail_test(reason="RuntimeError: The plugin does not support FP64") xfail_issue_47337 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v1::OneHot") xfail_issue_33593 = xfail_test(reason="Current implementation of MaxPool doesn't support indices output") # Model MSFT issues: xfail_issue_37957 = xfail_test(reason="RuntimeError: nGraph does not support the following ONNX operations:" "com.microsoft.CropAndResize, com.microsoft.GatherND," "com.microsoft.Pad, com.microsoft.Range") xfail_issue_39669 = xfail_test(reason="AssertionError: This model has no test data") xfail_issue_40686 = xfail_test(reason="NANs as results") xfail_issue_36534 = xfail_test(reason="RuntimeError: node input index is out of range") xfail_issue_36536 = xfail_test(reason="RuntimeError: can't protect") xfail_issue_36538 = xfail_test(reason="RuntimeError: Check 'PartialShape::broadcast_merge_into( pshape, " "node->get_input_partial_shape(i), autob)' failed at " "/openvino/ngraph/src/ngraph/op/util/elementwise_args.cpp:48:") xfail_issue_39656 = xfail_test(reason="RuntimeError: Reshape reshaped has dynamic second input!") xfail_issue_39658 = xfail_test(reason="RuntimeError: Tile operation has a form that is not supported." " z should be converted to TileIE operation.") xfail_issue_39659 = xfail_test(reason="RuntimeError: Broadcast operation has a form that is not supported." " y should be converted to Tile operation.") xfail_issue_45344 = xfail_test(reason="Unsupported dynamic ops: v3::NonMaxSuppressionIE3") xfail_issue_39662 = xfail_test(reason="RuntimeError: 'ScatterElementsUpdate' layer with name 'y' have " "indices value that points to non-existing output tensor element") xfail_issue_37973 = xfail_test(reason="TF Inception V2 - AssertionError: zoo models results mismatch") xfail_issue_47430 = xfail_test(reason="FCN ResNet models - AssertionError: zoo models results mismatch") xfail_issue_47495 = xfail_test(reason="BertSquad-10 from MSFT - AssertionError: zoo models results mismatch") xfail_issue_49207 = xfail_test(reason="Function references undeclared parameters") xfail_issue_48145 = xfail_test(reason="BertSquad-8 - AssertionError: Items are not equal: ACTUAL: 4 " "DESIRED: 3") xfail_issue_48190 = xfail_test(reason="RobertaBase-11 - AssertionError: Items are not equal: " "ACTUAL: dtype('float64') DESIRED: dtype('float32')") xfail_issue_49750 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v4::Interpolate") xfail_issue_49752 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v1::Pad") xfail_issue_49753 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v1::StridedSlice") xfail_issue_49754 = xfail_test(reason="RuntimeError: Unsupported dynamic ops: v1::TopKIE") xfail_issue_52463 = xfail_test(reason="test_operator_add_size1_singleton_broadcast_cpu - " "Not equal to tolerance") xfail_issue_49391 = xfail_test(reason="Roll is not implemented in CPU plugin.")
the-stack_0_15869
######################################################################### ## This file is part of the alpha-beta-CROWN verifier ## ## ## ## Copyright (C) 2021, Huan Zhang <[email protected]> ## ## Kaidi Xu <[email protected]> ## ## Shiqi Wang <[email protected]> ## ## Zhouxing Shi <[email protected]> ## ## Yihan Wang <[email protected]> ## ## ## ## This program is licenced under the BSD 3-Clause License, ## ## contained in the LICENCE file in this directory. ## ## ## ######################################################################### """alpha-beta-CROWN verifier interface to handle robustness verification.""" import os import re import socket import random import time import gc from utils import get_test_acc, load_model, load_verification_dataset import numpy as np import pandas as pd import torch import arguments from auto_LiRPA import BoundedModule, BoundedTensor from auto_LiRPA.perturbations import PerturbationLpNorm from bab_verification_general import mip, incomplete_verifier, bab from attack_pgd import pgd_attack from utils import Normalization, get_pgd_acc def config_args(): # Add arguments specific for this front-end. h = ["general"] arguments.Config.add_argument("--mode", type=str, default="verified-acc", choices=["verified-acc", "runnerup", "clean-acc", "crown-only-verified-acc", "alpha-crown-only-verified-acc", "ibp-only-verified-acc", "attack-only", "specify-target"], help='Verify against all labels ("verified-acc" mode), or just the runnerup labels ("runnerup" mode), or using a specified label in dataset ("speicify-target" mode, only used for oval20). Mode can also be set as "crown-only-verified-acc" or "alpha-crown-only-verified-acc", which quickly computes the verified accuracy over the entire dataset via CROWN or alpha-CROWN.', hierarchy=h + ["mode"]) arguments.Config.add_argument('--complete_verifier', choices=["bab", "mip", "bab-refine", "skip"], default="bab", help='Complete verification verifier. "bab": branch and bound with beta-CROWN; "mip": mixed integer programming (MIP) formulation; "bab-refine": branch and bound with intermediate layer bounds computed by MIP.', hierarchy=h + ["complete_verifier"]) arguments.Config.add_argument('--no_incomplete', action='store_false', dest='incomplete', help='Enable/Disable initial alpha-CROWN incomplete verification (this can save GPU memory when disabled).', hierarchy=h + ["enable_incomplete_verification"]) arguments.Config.add_argument("--crown", action='store_true', help='Compute CROWN verified accuracy before verification (not used).', hierarchy=h + ["get_crown_verified_acc"]) h = ["model"] arguments.Config.add_argument("--model", type=str, default="please_specify_model_name", help='Name of model. Model must be defined in the load_verification_dataset() function in utils.py.', hierarchy=h + ["name"]) h = ["data"] arguments.Config.add_argument("--dataset", type=str, default="CIFAR", choices=["MNIST", "CIFAR", "CIFAR_SDP_FULL", "CIFAR_RESNET", "CIFAR_SAMPLE", "MNIST_SAMPLE", "CIFAR_ERAN", "MNIST_ERAN", "MNIST_ERAN_UN", "MNIST_SDP", "MNIST_MADRY_UN", "CIFAR_SDP", "CIFAR_UN"], help='Dataset name. Dataset must be defined in utils.py.', hierarchy=h + ["dataset"]) arguments.Config.add_argument("--filter_path", type=str, default=None, help='A filter in pkl format contains examples that will be skipped (not used).', hierarchy=h + ["data_filter_path"]) arguments.Config.add_argument("--data_idx_file", type=str, default=None, help='A text file with a list of example IDs to run.', hierarchy=h + ["data_idx_file"]) h = ["attack"] arguments.Config.add_argument("--mip_attack", action='store_true', help='Use MIP (Gurobi) based attack if PGD cannot find a successful adversarial example.', hierarchy=h + ["enable_mip_attack"]) arguments.Config.add_argument('--pgd_steps', type=int, default=100, help="Steps of PGD attack.", hierarchy=h + ["pgd_steps"]) arguments.Config.add_argument('--pgd_restarts', type=int, default=30, help="Number of random PGD restarts.", hierarchy= h + ["pgd_restarts"]) arguments.Config.add_argument('--no_pgd_early_stop', action='store_false', dest='pgd_early_stop', help="Early stop PGD when an adversarial example is found.", hierarchy=h + ["pgd_early_stop"]) arguments.Config.add_argument('--pgd_lr_decay', type=float, default=0.99, help='Learning rate decay factor used in PGD attack.', hierarchy= h + ["pgd_lr_decay"]) arguments.Config.add_argument('--pgd_alpha', type=str, default="auto", help='Step size of PGD attack. Default (auto) is epsilon/4.', hierarchy=h + ["pgd_alpha"]) h = ["debug"] arguments.Config.add_argument("--lp_test", type=str, default=None, choices=["MIP", "LP", "LP_intermediate_refine", "MIP_intermediate_refine", None], help='Debugging option, do not use.', hierarchy=h + ['lp_test']) arguments.Config.parse_config() def get_statistics(model, image, true_label, eps, data_min, data_max, batch_size, method="CROWN"): """For quickly checking clean accuracy and CROWN verified accuracy.""" assert method == "CROWN" or method == "alpha-CROWN" or method == "IBP" # Clearn accuracy predicted = model(image) n_correct = (predicted.argmax(dim=1) == true_label).sum().item() print(f'{n_correct} examples are correct, image range ({image.min()}, {image.max()})') # CROWN verified accuracy verified = 0 N = image.size(0) num_outputs = arguments.Config["data"]["num_outputs"] norm = np.inf assert norm == arguments.Config["specification"]["norm"] # TODO: make this function support more norms. model = BoundedModule(model, torch.empty_like(image[:batch_size]), device=arguments.Config["general"]["device"]) if method == 'alpha-CROWN': # Set alpha-CROWN optimization parameters. lr_alpha = arguments.Config["solver"]["alpha-crown"]["lr_alpha"] iteration = arguments.Config["solver"]["alpha-crown"]["iteration"] share_slopes = arguments.Config["solver"]["alpha-crown"]["share_slopes"] optimizer = arguments.Config["solver"]["beta-crown"]["optimizer"] lr_decay = arguments.Config["solver"]["beta-crown"]["lr_decay"] model.set_bound_opts({'optimize_bound_args': {'ob_iteration': iteration, 'ob_beta': False, 'ob_alpha': True, 'ob_alpha_share_slopes': share_slopes, 'ob_optimizer': optimizer, 'ob_lr': lr_alpha, 'ob_lr_decay': lr_decay}}) batch_idx = 0 all_start_time = time.time() while batch_idx * batch_size < N: start_time = time.time() start_idx, end_idx = batch_idx*batch_size, min(batch_idx*batch_size+batch_size, N) data, labels = image[start_idx:end_idx], torch.tensor(true_label[start_idx:end_idx]) if arguments.Config["specification"]["type"] == "lp": # Linf norm only so far. data_ub = torch.min(data + eps, data_max) data_lb = torch.max(data - eps, data_min) else: # Per-example, per-element lower and upper bounds. data_ub = data_max[start_idx:end_idx] data_lb = data_min[start_idx:end_idx] data, data_lb, data_ub, labels = data.cuda(), data_lb.cuda(), data_ub.cuda(), labels.cuda() ptb = PerturbationLpNorm(norm=norm, eps=None, x_L=data_lb, x_U=data_ub) data = BoundedTensor(data, ptb) # labels = torch.argmax(pred, dim=1).cpu().detach().numpy() c = torch.eye(num_outputs).type_as(data)[labels].unsqueeze(1) - torch.eye(num_outputs).type_as(data).unsqueeze(0) I = (~(labels.data.unsqueeze(1) == torch.arange(num_outputs).type_as(labels.data).unsqueeze(0))) c = (c[I].view(data.size(0), num_outputs - 1, num_outputs)).cuda() if method == "CROWN" or method == "IBP": with torch.no_grad(): lb, ub = model.compute_bounds(x=(data,), method=method, C=c, bound_upper=False) else: # alpha-CROWN requires gradient. lb, ub = model.compute_bounds(x=(data,), method="CROWN-optimized", C=c, bound_upper=False) verified += (lb.min(1)[0]>=0).sum().item() # Print some bounds for the first batch for debugging. duration = time.time() - start_time if batch_idx == 0: print("Bounds for first a few examples:") print(lb[:10].detach().cpu().numpy()) print(f"batch: {batch_idx}, verified acc: {(lb.min(1)[0]>=0).sum().item()} / {data.size(0)}, time {duration}") del lb, ub batch_idx += 1 full_duration = time.time() - all_start_time print(f"{method} verified acc: {verified/N * 100}%, {verified} verified, time {full_duration}") def main(): print(f'Experiments at {time.ctime()} on {socket.gethostname()}') torch.manual_seed(arguments.Config["general"]["seed"]) random.seed(arguments.Config["general"]["seed"]) np.random.seed(arguments.Config["general"]["seed"]) if arguments.Config["general"]["device"] != 'cpu': torch.cuda.manual_seed_all(arguments.Config["general"]["seed"]) # Always disable TF32 (precision is too low for verification). torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cudnn.allow_tf32 = False if arguments.Config["general"]["deterministic"]: os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" torch.use_deterministic_algorithms(True) if arguments.Config["general"]["double_fp"]: torch.set_default_dtype(torch.float64) if arguments.Config["attack"]["pgd_order"] != "skip": if arguments.Config["specification"]["type"] == "lp" and arguments.Config["specification"]["norm"] != np.inf: print('Only Linf-norm attack is supported, the pgd_order will be changed to skip') arguments.Config["attack"]["pgd_order"] = "skip" model_ori = load_model(weights_loaded=True) if arguments.Config["specification"]["epsilon"] is not None: perturb_epsilon = torch.tensor(arguments.Config["specification"]["epsilon"], dtype=torch.get_default_dtype()) else: print('No epsilon defined!') perturb_epsilon = None X, labels, runnerup, data_max, data_min, perturb_epsilon, target_label = load_verification_dataset(perturb_epsilon) if arguments.Config["general"]["mode"] == "clean-acc": print("Testing clean accuracy.") get_test_acc(model_ori, X=X, labels=labels, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"]) return if "MNIST" in arguments.Config["data"]["dataset"]: attack_dataset = "MNIST" elif "CIFAR" in arguments.Config["data"]["dataset"]: attack_dataset = "CIFAR" else: attack_dataset = "UNKNOWN" if arguments.Config["specification"]["type"] == 'lp': if perturb_epsilon is None: raise ValueError("Perturbation epsilon is not set by data loader. Do you mean to use the 'bound' type specification? Try adding --spec_type bound") if arguments.Config["specification"]["epsilon"] is not None: print(f"epsilon after preprocessing: {perturb_epsilon}, data_max = {data_max}, data_min = {data_min}") if data_max.size(0) != 1 or data_min.size(0) != 1: raise ValueError("For 'lp' type specification, you need rabsolute (global) lower and upper bounds, not per example bounds.") elif arguments.Config["specification"]["type"] == 'bound': print(f'Loaded datasets with per-element lower and upper bounds: max = {data_max.max().item()}, min = {data_min.min().item()}') if data_max.size(0) != X.size(0) or data_min.size(0) != X.size(0): raise ValueError("For 'bound' type specification, you need per example lower and upper bounds.") if perturb_epsilon is None: perturb_epsilon = (data_max - data_min).mean() / 2. print(f'eps set to {perturb_epsilon}. This will not be used for certification, but will be used to determine PGD step size.') if arguments.Config["data"]["data_idx_file"] is not None: # Go over a list of data indices. with open(arguments.Config["data"]["data_idx_file"]) as f: bnb_ids = re.split(r'[;|,|\n|\s]+', f.read().strip()) bnb_ids = [int(b_id) for b_id in bnb_ids] print(f'Example indices (total {len(bnb_ids)}): {bnb_ids}') else: # By default, we go over all data. bnb_ids = list(range(X.shape[0])) bnb_ids = bnb_ids[arguments.Config["data"]["start"]: arguments.Config["data"]["end"]] print('Task length:', len(bnb_ids)) save_path = 'Verified_ret_[{}]_start={}_end={}_iter={}_b={}_timeout={}_branching={}-{}-{}_lra-init={}_lra={}_lrb={}_PGD={}.npy'. \ format(arguments.Config['model']['name'], arguments.Config["data"]["start"], arguments.Config["data"]["end"], arguments.Config["solver"]["beta-crown"]["iteration"], arguments.Config["solver"]["beta-crown"]["batch_size"], arguments.Config["bab"]["timeout"], arguments.Config["bab"]["branching"]["method"], arguments.Config["bab"]["branching"]["reduceop"], arguments.Config["bab"]["branching"]["candidates"], arguments.Config["solver"]["alpha-crown"]["lr_alpha"], arguments.Config["solver"]["beta-crown"]["lr_alpha"], arguments.Config["solver"]["beta-crown"]["lr_beta"], arguments.Config["attack"]["pgd_order"]) print(f'saving results to {save_path}') if arguments.Config["general"]["mode"] == "crown-only-verified-acc": get_statistics(model_ori, X, labels, perturb_epsilon, data_min, data_max, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"]) return if arguments.Config["general"]["mode"] == "alpha-crown-only-verified-acc": get_statistics(model_ori, X, labels, perturb_epsilon, data_min, data_max, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"], method="alpha-CROWN") return if arguments.Config["general"]["mode"] == "ibp-only-verified-acc": get_statistics(model_ori, X, labels, perturb_epsilon, data_min, data_max, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"], method="IBP") return if arguments.Config["general"]["mode"] == "attack-only": get_pgd_acc(model_ori, X, labels, perturb_epsilon, data_min, data_max, batch_size=arguments.Config["solver"]["beta-crown"]["batch_size"]) ret, lb_record, attack_success = [], [], [] mip_unsafe, mip_safe, mip_unknown = [], [], [] verified_acc = len(bnb_ids) verified_failed = [] verified_success_list = [] example_time = [] skipped_examples = [] nat_acc = len(bnb_ids) orig_timeout = arguments.Config["bab"]["timeout"] model_ori, all_data_max, all_data_min = model_ori.to(arguments.Config["general"]["device"]), data_max.to(arguments.Config["general"]["device"]), data_min.to(arguments.Config["general"]["device"]) if isinstance(perturb_epsilon, torch.Tensor): perturb_eps = perturb_epsilon.to(arguments.Config["general"]["device"]) for new_idx, imag_idx in enumerate(bnb_ids): arguments.Config["bab"]["timeout"] = orig_timeout print('\n %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% idx:', new_idx, 'img ID:', imag_idx, '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%') torch.cuda.empty_cache() gc.collect() x, y = X[imag_idx], int(labels[imag_idx].item()) x = x.unsqueeze(0).to(dtype=torch.get_default_dtype(), device=arguments.Config["general"]["device"]) if arguments.Config["specification"]["type"] == 'bound': data_min = all_data_min[imag_idx].unsqueeze(0) data_max = all_data_max[imag_idx].unsqueeze(0) else: data_min = all_data_min data_max = all_data_max # first check the model is correct at the input logit_pred = model_ori(x)[0] if logit_pred.size(0) > 1: # Multi-class. y_pred = torch.max(logit_pred, 0)[1].item() else: # Binary classifier: logit_pred > 0 => label 1, otherwise label 0. y_pred = int(logit_pred.item() > 0) if type(perturb_epsilon) is list: # Each image has different epsilon (e.g., OVAL 20). perturb_eps = perturb_epsilon[imag_idx].to(arguments.Config["general"]["device"]) print(f'predicted label {y_pred}, correct label {y}, image norm {x.abs().sum().item()}, logits {logit_pred}') if y_pred != y: print(f'Result: image {imag_idx} prediction is incorrect, skipped.') skipped_examples.append(imag_idx) verified_acc -= 1 nat_acc -= 1 # attack_success.append(imag_idx) continue # else: # # enable here to check clean acc # continue verified_success = False verified_status = "unknown" attack_margin = None attack_images = None example_start_time = time.time() if arguments.Config["attack"]["pgd_order"] == "before": start_attack = time.time() attack_args = {'dataset': attack_dataset, 'model': model_ori, 'x': x, 'max_eps': perturb_eps, 'data_min': data_min, 'data_max': data_max, 'y': y} attack_ret, attack_images, attack_margin = pgd_attack(**attack_args) ret.append([imag_idx, 0, 0, time.time()-start_attack, new_idx, -3, np.inf, np.inf]) if attack_ret: # Attack success. verified_status = "unsafe-pgd" verified_acc -= 1 attack_success.append(imag_idx) print(f"Result: image {imag_idx} attack success!") example_time.append(time.time() - example_start_time) print(f'Wall time: {example_time[-1]}') continue # continue # uncomment for checking pgd attacking results init_global_lb = saved_bounds = saved_slopes = None # Incomplete verification is enabled by default. The intermediate lower and upper bounds will be reused in bab and mip. if not verified_success and (arguments.Config["general"]["enable_incomplete_verification"] or arguments.Config["general"]["complete_verifier"] == "bab-refine"): start_incomplete = time.time() data = x if arguments.Config["specification"]["type"] == 'lp': # Lp norm. if arguments.Config["specification"]["norm"] == np.inf: if data_max is None: data_ub = data + perturb_eps # perturb_eps is already normalized. data_lb = data - perturb_eps else: data_ub = torch.min(data + perturb_eps, data_max) data_lb = torch.max(data - perturb_eps, data_min) else: data_ub = data_lb = data elif arguments.Config["specification"]["type"] == 'bound': # Given lower and upper bounds *per example per pixel*. data_lb = data_min data_ub = data_max else: raise ValueError(f'Unexpected specification type {arguments.Config["specification"]["type"]}') verified_status, init_global_lb, saved_bounds, saved_slopes = incomplete_verifier(model_ori, x, y, data_ub=data_ub, data_lb=data_lb, eps=perturb_eps) verified_success = verified_status != "unknown" if not verified_success: lower_bounds, upper_bounds = saved_bounds[1], saved_bounds[2] arguments.Config["bab"]["timeout"] -= (time.time()-start_incomplete) ret.append([imag_idx, 0, 0, time.time()-start_incomplete, new_idx, -1, np.inf, np.inf]) if verified_success: print(f"Result: image {imag_idx} verification success (with incomplete verifier)!") verified_success_list.append(imag_idx) example_time.append(time.time() - example_start_time) print(f'Wall time: {example_time[-1]}') continue if arguments.Config["attack"]["pgd_order"] == "after": start_attack = time.time() attack_args = {'dataset': attack_dataset, 'model': model_ori, 'x': x, 'max_eps': perturb_eps, 'data_min': data_min, 'data_max': data_max, 'y': y} attack_ret, attack_images, attack_margin = pgd_attack(**attack_args) ret.append([imag_idx, 0, 0, time.time()-start_attack, new_idx, -3, np.inf, np.inf]) if attack_ret: # Attack success. verified_status = "unsafe-pgd" verified_acc -= 1 attack_success.append(imag_idx) print(f"Result: image {imag_idx} attack success!") example_time.append(time.time() - example_start_time) print(f'Wall time: {example_time[-1]}') continue elif arguments.Config["attack"]["enable_mip_attack"]: c = torch.eye(arguments.Config["data"]["num_outputs"]).type_as(data)[[y]].unsqueeze(1) - torch.eye(arguments.Config["data"]["num_outputs"]).type_as(data).unsqueeze(0) lirpa_model, lower_bounds, upper_bounds, masks = saved_bounds[:4] lirpa_model.build_mip_model(lower_bounds, upper_bounds, arguments.Config["bab"]["timeout"], arguments.Config["solver"]["mip"]["parallel_solvers"], arguments.Config["solver"]["mip"]["solver_threads"]) total_unstable = 0 for layer_i, m in enumerate(masks): unstable = int(m.sum().item()) total_unstable += unstable print(f'layer {layer_i} has {unstable} unstable neurons') print(f'Total {total_unstable} unstable neurons.') attack_ret = False labels_to_verify = attack_margin.argsort().squeeze().tolist() print('Sorted order for labels to attack:', labels_to_verify) for target in labels_to_verify: if target != y: if init_global_lb[0][target].item() > 0: print(f'Label {target} is already verified.') continue attack_image_target = target if target < y else target - 1 adv_pool = AdvExamplePool(lirpa_model.net, masks, C=c[:, target:target+1]) # Add adversarial image for the specific target only. adv_pool.add_adv_images(attack_images[:, :, attack_image_target].view((-1, *attack_images.shape[-3:]))) neuron_idx, coeff = adv_pool.get_activation_pattern_from_pool() # The initial starting point and activation pattern has a batch dimension because there can be multiple initializations. selected_advs = adv_pool.adv_pool best_adv = torch.stack([adv.x for adv in selected_advs], dim=0) best_adv_pattern = [torch.stack([adv.activation_pattern[layer_i] for adv in selected_advs], dim=0) for layer_i in range(adv_pool.nlayers)] print(f'Best adv example in pool: {adv_pool.adv_pool[0].obj}, worse {adv_pool.adv_pool[-1].obj}') print(f'Target label {target} has {len(coeff)} out of {total_unstable} unstable neurons fixed.') attack_ret, solver_results = lirpa_model.update_mip_model_fix_relu([neuron_idx], [coeff], target, arguments.Config["solver"]["mip"]["parallel_solvers"], arguments.Config["solver"]["mip"]["solver_threads"], async_mip=False, best_adv=[best_adv], adv_activation_pattern=[best_adv_pattern]) with torch.no_grad(): pred = lirpa_model.net(solver_results[0][3].to(lirpa_model.net.device)).squeeze(0) attack_margin = pred[y] - pred print(f"attack margin: {attack_margin}, for label {target}: {pred[y] - pred[target]}") if attack_ret: break if attack_ret: # Attack success. verified_status = "unsafe-mip_attack" verified_acc -= 1 attack_success.append(imag_idx) print(f"Result: image {imag_idx} attack success!") example_time.append(time.time() - example_start_time) print(f'Wall time: {example_time[-1]}') continue if arguments.Config["general"]["mode"] == "verified-acc": if arguments.Config["attack"]["pgd_order"] != "skip": # .reshape(-1) to handle the case where there is only 1 element. labels_to_verify = attack_margin.argsort().squeeze().reshape(-1).tolist() print('Sorted order for labels to attack:', labels_to_verify) elif arguments.Config["general"]["enable_incomplete_verification"]: # We have initial incomplete bounds. labels_to_verify = init_global_lb.argsort().squeeze(0).tolist() else: labels_to_verify = list(range(arguments.Config["data"]["num_outputs"])) elif arguments.Config["general"]["mode"] == "runnerup": labels_to_verify = [logit_pred.argsort(descending=True)[1]] elif arguments.Config["general"]["mode"] == "specify-target": labels_to_verify = [target_label[imag_idx]] else: raise ValueError("unknown verification mode") # MIP or MIP refined bounds. if not verified_success and (arguments.Config["general"]["complete_verifier"] == "mip" or arguments.Config["general"]["complete_verifier"] == "bab-refine"): start_refine = time.time() verified_status, init_global_lb, lower_bounds, upper_bounds = mip(saved_bounds=saved_bounds, y=y, labels_to_verify=labels_to_verify) verified_success = verified_status != "unknown-mip" if verified_status == "unknown-mip": verified_acc -= 1 mip_unknown.append(imag_idx) elif verified_status == "unsafe-mip": verified_acc -= 1 mip_unsafe.append(imag_idx) elif verified_status == "safe-mip" or verified_status == "safe-incomplete-refine": mip_safe.append(imag_idx) arguments.Config["bab"]["timeout"] -= (time.time()-start_refine) ret.append([imag_idx, 0, 0, time.time()-start_refine, new_idx, -2, np.inf, np.inf]) print("time threshold left for bab:", arguments.Config["bab"]["timeout"]) if verified_success: if verified_status == "safe-mip": print(f"Result: image {imag_idx} verification success (with mip)!") verified_success_list.append(imag_idx) elif verified_status == "safe-incomplete-refine": print(f"Result: image {imag_idx} verification success (with mip refine)!") verified_success_list.append(imag_idx) elif verified_status == "unsafe-mip": print(f"Result: image {imag_idx} attack success (with mip)!") attack_success.append(imag_idx) else: print(f"Warning: verified status {verified_status} not supported!") exit() example_time.append(time.time() - example_start_time) print(f'Wall time: {example_time[-1]}') continue elif arguments.Config["general"]["complete_verifier"] == 'skip': print(f"Result: image {imag_idx} verification failure (complete verifier skipped as requested).") verified_acc -= 1 verified_failed.append(imag_idx) example_time.append(time.time() - example_start_time) print(f'Wall time: {example_time[-1]}') continue elif verified_status == "unknown-mip": print(f"Result: image {imag_idx} verification failure (with mip).") example_time.append(time.time() - example_start_time) print(f'Wall time: {example_time[-1]}') continue pidx_all_verified = True bab_attack_success = False for pidx in labels_to_verify: if isinstance(pidx, torch.Tensor): pidx = pidx.item() print('##### [{}:{}] Tested against {} ######'.format(new_idx, imag_idx, pidx)) if pidx == y: print("groundtruth label, skip!") ret.append([imag_idx, 0, 0, 0, new_idx, pidx, np.inf, np.inf]) continue torch.cuda.empty_cache() gc.collect() start_inner = time.time() # attack_images shape: (1, batch, restarts, num_outputs-1, c, h, w) # select target label attack_images according to pidx. New shape (restarts, c, h, w). targeted_attack_images = None if attack_images is not None: targeted_attack_images = attack_images[0, :, pidx if pidx < y else pidx - 1] attack_args.update({'target': pidx, 'only_target_attack': True}) attack_args.update({'data_max': torch.min(x + perturb_eps, data_max)}) attack_args.update({'data_min': torch.max(x - perturb_eps, data_min)}) arguments.attack_args = attack_args else: arguments.attack_args = None try: if arguments.Config["general"]["enable_incomplete_verification"]: # Reuse results from incomplete results, or from refined MIPs. # skip the prop that already verified rlb, rub = list(lower_bounds), list(upper_bounds) rlb[-1] = rlb[-1][0, pidx] rub[-1] = rub[-1][0, pidx] # print(init_global_lb[0].min().item(), init_global_lb[0].min().item() - arguments.Config["bab"]["decision_thresh"] <= -100.) if init_global_lb[0].min().item() - arguments.Config["bab"]["decision_thresh"] <= -100.: print(f"Initial alpha-CROWN with poor bound {init_global_lb[0].min().item()}. We will run not branch and bound.") l, u, nodes, glb_record = rlb[-1].item(), float('inf'), 0, [] elif init_global_lb[0, pidx] >= arguments.Config["bab"]["decision_thresh"]: print(f"Initial alpha-CROWN verified for label {pidx} with bound {init_global_lb[0, pidx]}") l, u, nodes, glb_record = rlb[-1].item(), float('inf'), 0, [] else: if arguments.Config["bab"]["timeout"] < 0: print(f"Image {imag_idx} verification failure (running out of time budget).") l, u, nodes, glb_record = rlb[-1].item(), float('inf'), 0, [] else: # feed initialed bounds to save time l, u, nodes, glb_record = bab(model_ori, x, pidx, y=y, eps=perturb_eps, data_ub=data_max, data_lb=data_min, lower_bounds=lower_bounds, upper_bounds=upper_bounds, reference_slopes=saved_slopes, attack_images=targeted_attack_images) else: assert arguments.Config["general"]["complete_verifier"] == "bab" # for MIP and BaB-Refine. # Main function to run verification l, u, nodes, glb_record = bab(model_ori, x, pidx, y=y, eps=perturb_eps, data_ub=data_max, data_lb=data_min, attack_images=targeted_attack_images) time_cost = time.time() - start_inner print('Image {} label {} verification end, final lower bound {}, upper bound {}, time: {}'.format(imag_idx, pidx, l, u, time_cost)) ret.append([imag_idx, l, nodes, time_cost, new_idx, pidx, u, attack_margin[pidx] if attack_margin is not None else np.inf]) arguments.Config["bab"]["timeout"] -= time_cost lb_record.append([glb_record]) print(imag_idx, l) np.save(save_path, np.array(ret)) # np.save('lb_record_' + save_path, np.array(lb_record)) if u < arguments.Config["bab"]["decision_thresh"]: verified_status = "unsafe-bab" pidx_all_verified = False bab_attack_success = True break elif l < arguments.Config["bab"]["decision_thresh"]: pidx_all_verified = False # break to run next sample save time if any label is not verified. break except KeyboardInterrupt: print('time:', imag_idx, time.time()-start_inner, "\n",) print(ret) pidx_all_verified = False break example_time.append(time.time() - example_start_time) if not pidx_all_verified: verified_acc -= 1 if bab_attack_success: attack_success.append(imag_idx) print(f'Result: image {imag_idx} attack success (with branch and bound)!') else: verified_failed.append(imag_idx) print(f'Result: image {imag_idx} verification failure (with branch and bound).') else: verified_success_list.append(imag_idx) print(f'Result: image {imag_idx} verification success (with branch and bound)!') # Make sure ALL tensors used in this loop are deleted here. del init_global_lb, saved_bounds, saved_slopes print(f'Wall time: {example_time[-1]}') # some results analysis np.set_printoptions(suppress=True) ret = np.array(ret) print(f'\nnumber of correctly classified examples: {nat_acc}') print(f'incorrectly classified idx (total {len(skipped_examples)}):', skipped_examples) print(f'attack success idx (total {len(attack_success)}):', attack_success) if len(attack_success) > 0: print('attack_success rate:', len(attack_success)/len(bnb_ids)) np.save('Attack-success_{}_{}_start{}_end{}.npy'. format(arguments.Config['model']['name'], arguments.Config["data"]["dataset"], arguments.Config["data"]["start"], arguments.Config["data"]["end"]), np.array(attack_success)) print(f'verification success idx (total {len(verified_success_list)}):', verified_success_list) print(f'verification failure idx (total {len(verified_failed)}):', verified_failed) if arguments.Config["general"]["complete_verifier"] == "mip": print("##### Complete MIP solver summary #####") print(f"mip verified safe idx: {mip_safe}") print(f"mip unsafe idx: {mip_unsafe}") print(f"mip unknown idx: {mip_unknown}") print(f"mip verified safe rate {len(mip_safe)/len(bnb_ids)}, " f"unsafe rate {len(mip_unsafe)/len(bnb_ids)}, " f"unknown rate {len(mip_unknown)/len(bnb_ids)}, " f"total {len(bnb_ids)}") print("final verified acc: {}%[{}]".format(verified_acc/len(bnb_ids)*100., len(bnb_ids))) np.save('Verified-acc_{}_{}_start{}_end{}_{}_branching_{}.npy'. format(arguments.Config['model']['name'], arguments.Config["data"]["dataset"], arguments.Config["data"]["start"], arguments.Config["data"]["end"], verified_acc, arguments.Config["bab"]["branching"]["method"]), np.array(verified_failed)) total_verification = len(verified_success_list) + len(verified_failed) print(f"verifier is called on {total_verification} examples.") print("total verified:", verified_acc) if ret.size > 0: # print("mean time [total:{}]: {}".format(len(bnb_ids), ret[:, 3].sum()/float(len(bnb_ids)))) print("mean time [cnt:{}] (excluding attack success): {}".format(total_verification, ret[:, 3][ret[:, 5] != -3].sum()/float(total_verification if total_verification != 0 else "nan"))) if len(attack_success) > 0: print("mean time [cnt:{}] (including attack success): {}".format(total_verification + len(attack_success), ret[:, 3].sum() / float(total_verification + len(attack_success)))) if __name__ == "__main__": config_args() main()
the-stack_0_15870
# Lint as: python2, python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An experimental new unified TPU executor.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo import compat as tf from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import base_model from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import checkpointer from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import cluster_factory from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import ml_perf_log as mlp_log from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import multitask_model from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import py_utils from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.lingvo.core import task_scheduler from REDACTED.tensorflow_models.mlperf.models.rough.transformer_lingvo.google.trainer import base_runner from REDACTED.tensorflow.python.tpu import device_assignment as device_assignment_lib # pylint: disable=g-direct-tensorflow-import tf.flags.DEFINE_bool( 'cluster_placer_in_executor', False, 'If True, cluster.GetPlacer() is used in Executor. ' + 'When running on TPU model weights can be distributed ' + 'across TPU hosts, for outrageously large models this ' + 'enables sharded checkpointing and reduces host memory ' + 'requirements, see _LeastLoadedPlacer in cluster.py.') tf.flags.DEFINE_bool( 'disable_meta_optimizer_in_executor', False, 'Disabling the grappler meta_optimizer improves start-up time.') FLAGS = tf.flags.FLAGS def GetExecutorParams(model_name, cluster_params, model_registry): """Get the params needed to instantiate the Executor. Args: model_name: A model name regsitered in the ModelRegistry. cluster_params: A cluster hyperparams object. model_registry: A ModelRegistry object. Returns: A tuple (dict, Params): - ps_params_dict: High-level task name -> ProgramScheduleParams - train_cfg: A SingleTaskModelParams or MultiTaskModelParams. """ ps_params_dict = {} with cluster_factory.Cluster(cluster_params): ps_cfg = model_registry.GetProgramSchedule(model_name) train_cfg = model_registry.GetParams(model_name, 'Train') train_cfg.cluster = cluster_params if issubclass(train_cfg.cls, base_model.MultiTaskModel): multi_task_train_cfg = train_cfg # Create SingleTaskModelParams from a MultiTaskModelParams. for k, _ in multi_task_train_cfg.task_params.IterParams(): single_task_params = base_model.SingleTaskModel.Params() single_task_params.cluster = multi_task_train_cfg.cluster single_task_params.input = multi_task_train_cfg.input.Get(k) single_task_params.task = multi_task_train_cfg.task_params.Get(k) single_task_params.train = single_task_params.task.train if k not in ps_cfg.program_schedule_dict: tf.logging.fatal( 'Could not find %s in ps_cfg.program_schedule_dict: %s', k, ps_cfg) program_schedule_params = ps_cfg.program_schedule_dict[k] program_schedule_params.task_dict = {'Train': single_task_params} for eval_dataset_name in program_schedule_params.dataset_names: multi_task_eval_cfg = model_registry.GetParams( model_name, eval_dataset_name) eval_task_params = base_model.SingleTaskModel.Params() eval_task_params.cluster = single_task_params.cluster eval_task_params.input = multi_task_eval_cfg.input.Get(k) eval_task_params.task = multi_task_eval_cfg.task_params.Get(k) program_schedule_params.task_dict[ eval_dataset_name] = eval_task_params ps_params_dict[k] = program_schedule_params else: program_schedule_params = ps_cfg program_schedule_params.task_dict = {'Train': train_cfg} for eval_dataset_name in program_schedule_params.dataset_names: task_eval_params = model_registry.GetParams(model_name, eval_dataset_name) task_eval_params.cluster = train_cfg.cluster program_schedule_params.task_dict[eval_dataset_name] = task_eval_params ps_params_dict[''] = program_schedule_params return ps_params_dict, train_cfg class ExecutorTpu(base_runner.BaseRunner): """An experimental runner that does arbitrary multi-program execution on TPU. Overview of operation: - During construction, all programs construct their sub-graphs, in a sense creating a mega-graph. - A sequence of programs is then executed in-whole associated with that task. eg: [train x 1000 steps, checkpoint, eval 4 steps, decode 2 steps] - In this manner, programs and higher-level tasks cooperatively time-slice share the TPU. """ def __init__(self, train_cfg, ps_params_dict, model_task_name, logdir, tf_master, **kwargs): """Construct an ExecutorTpu BaseRunner. Args: train_cfg: SingleTaskModelParams or MultiTaskModelParams ps_params_dict: A dict of top-level task name -> ProgramSchedule params, if train_cfg is a SingleTaskModelParams, we expect only one entry. model_task_name: An override for multi-task models, currently unused. logdir: String path to the log directory to output to. tf_master: String path to the master job, e.g. 'local'. **kwargs: keyword args to pass through to BaseRunner. """ super(ExecutorTpu, self).__init__(train_cfg, model_task_name, logdir, tf_master, **kwargs) self._cluster_def = self._cluster.worker_cluster_def # There is a single Executor task assert self._cluster.num_replicas == 1 data_parallelism = self._cluster.num_splits_per_client assert data_parallelism num_devices_per_split = self._cluster.num_devices_per_split tf.logging.info('data_parallelism: %d, num_devices_per_split: %d', data_parallelism, num_devices_per_split) self.task_scheduler = None self._checkpoint_dir = os.path.join(logdir, 'train') self._variable_renaming_rules = [] self._ml_perf = None # If this is a multi-task model, grab the params for the TaskScheduler. if issubclass(train_cfg.cls, base_model.SingleTaskModel): tf.logging.info('single_task_model') assert len(ps_params_dict) == 1 self._model_task_name = list(ps_params_dict.keys())[0] self._single_task_mode = True elif issubclass(train_cfg.cls, base_model.MultiTaskModel): tf.logging.info('multi_task_model') if issubclass(train_cfg.cls, multitask_model.RegExSharedVariableModel): self._variable_renaming_rules = train_cfg.variable_renaming_rules if train_cfg.task_schedule is None: task_schedule_params = task_scheduler.ConstantScheduler.Params() task_schedule_params.task_probs = sorted( list(train_cfg.task_probs.IterParams())) else: task_schedule_params = train_cfg.task_schedule self.task_scheduler = task_schedule_params.Instantiate() self._single_task_mode = False else: tf.logging.fatal( 'Model %s is not a sub-class of SingleTaskModel or MultiTaskModel', train_cfg.cls) tf.logging.info('train_cfg.cls: %s', train_cfg.cls) self._WriteToLog(train_cfg.ToText(), self._checkpoint_dir, 'params.txt') self._program_schedule_dict = {} self._programs = [] for task_string, program_schedule_params in ps_params_dict.items(): program_schedule_params.logdir = logdir program_schedule_params.num_splits_per_client = data_parallelism program_schedule_params.task_name = task_string ps = program_schedule_params.Instantiate() self._program_schedule_dict[task_string] = ps tf.logging.info('program_schedule_params: %s', program_schedule_params.ToText()) self._programs += ps.Programs() if program_schedule_params.ml_perf.benchmark_name is not None: self._ml_perf = program_schedule_params.ml_perf tf.logging.info('num_programs: %d', len(self._programs)) if self._ml_perf is not None: self._ml_perf_log = True mlp_log.mlperf_print(key='benchmark', value=self._ml_perf.benchmark_name) else: self._ml_perf_log = False # BaseRunner legacy self.enqueue_ops = None @py_utils.RetryOnTransientTfError() def _WaitTillInit(): """Wait until the model is ready.""" try: with self._graph.as_default(), self._GetSession( cluster_def=self._cluster_def, disable_meta_optimizer=FLAGS.disable_meta_optimizer_in_executor ) as sess: topology = sess.run( tf.tpu.initialize_system(embedding_config=None, job=None)) device_assignment = device_assignment_lib.device_assignment( topology, computation_shape=py_utils.ComputationShape( num_devices_per_split), num_replicas=data_parallelism) py_utils.SetTpuDeviceAssignment(device_assignment) tf.logging.info('device_assignment.core_assignment: %s', str(device_assignment.core_assignment)) tf.logging.info( 'device_assignment.topology.device_coordinates: %s', str(device_assignment.topology.device_coordinates)) except py_utils.transient_tf_errors as e: tf.logging.info('TPU initialization failed: %s', e) raise if self._ml_perf_log: mlp_log.mlperf_print(key='cache_clear', value=True) mlp_log.mlperf_print(key='init_start', value=None) _WaitTillInit() with self._graph.as_default(), tf.container(self._container_id): tf.logging.info('self._cluster.job_spec.name: %s', self._cluster.job_spec.name) with self._cluster, tf.device( self._cluster.job_spec.name if not FLAGS.cluster_placer_in_executor else self._cluster.GetPlacer()): with py_utils.VariableRenameScope(self._variable_renaming_rules): _ = py_utils.GetOrCreateGlobalStepVar() for program in self._programs: program.BuildTpuSubgraph() for program in self._programs: program.SetStatusMessageFn(self._SetStatusMessage) program.CreateCheckpointer() self._initialize_tables = tf.tables_initializer() self._initialize_local_vars = tf.local_variables_initializer() self.save_only_checkpointer = checkpointer.Checkpointer( self._checkpoint_dir, model=None, train_params=train_cfg.train, save_only=True) def Start(self): # Run training. self._RunLoop('executor_tpu', self._Loop) def _Loop(self): with tf.container(self._container_id), self._GetSession( cluster_def=self._cluster_def, disable_meta_optimizer=FLAGS.disable_meta_optimizer_in_executor ) as sess: # Initialize the variables first, if needed. for program in self._programs: program.RestoreIfNeeded(sess) program.Compile(sess) sess.run(self._initialize_tables) sess.run(self._initialize_local_vars) while True: global_step = sess.run(py_utils.GetGlobalStep()) if self._ShouldStop(sess, global_step): tf.logging.info('Training finished.') if not self._ml_perf_log: self.save_only_checkpointer.Save(sess, global_step) return # If a task is explicitly selected, only run the programs associated # with that task. if self._single_task_mode or self._model_task_name: tf.logging.info('Single task mode: %s', self._model_task_name) program_schedule = self._program_schedule_dict[self._model_task_name] else: # Otherwise, sample a task. model_task = self.task_scheduler.Sample(global_step) tf.logging.info('Sampled %s', model_task) program_schedule = self._program_schedule_dict[model_task] done = program_schedule.Run(sess) if done: tf.logging.info('Program schedule told us to stop.') return # TODO(blee): More complex saving rules. Currently, we assume # we save after every task's program schedule execution. # # global_step local variable above is a result of sess.run, not a # tf variable, so when we do save_only_checkpointer.Save(...) here # py_utils.GetGlobalStep() is ahead of it by # (train_executions_per_eval * train_steps_per_loop) # steps ahead already, due to program_schedule.Run(sess). # if not self._ml_perf_log: self.save_only_checkpointer.Save(sess, py_utils.GetGlobalStep())
the-stack_0_15871
import types import sys import os import io from pathlib import Path from urllib.parse import urlparse import logging import asyncio import tarfile from io import BytesIO import mimetypes import functools import ssl import click from girder_client import GirderClient from flask import Flask, send_from_directory, jsonify import aiohttp from async_lru import alru_cache import tenacity class AsyncGirderClient(object): def __init__(self, session, api_url): self._ratelimit_semaphore = asyncio.Semaphore(5) self._api_url = api_url.rstrip('/') self._folder_create_semaphore = asyncio.Semaphore() self._item_create_semaphore = asyncio.Semaphore() self._session = session async def authenticate(self, api_key): params = {'key': api_key} async with self._session.post('%s/api_key/token' % (self._api_url), params=params) as r: r.raise_for_status() auth = await r.json() self._headers = { 'Girder-Token': auth['authToken']['token'] } @tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError), wait=tenacity.wait_exponential(max=10), stop=tenacity.stop_after_attempt(10)) async def post(self, path, headers=None, params=None, raise_for_status=True, **kwargs): if params is not None: params = {k:str(v) for (k,v) in params.items()} if headers is None: headers = self._headers else: headers.update(self._headers) async with self._ratelimit_semaphore: async with self._session.post('%s/%s' % (self._api_url, path), headers=headers, params=params, **kwargs) as r: if raise_for_status: r.raise_for_status() return await r.json() @tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError), wait=tenacity.wait_exponential(max=10), stop=tenacity.stop_after_attempt(10)) async def put(self, path, headers=None, params=None, raise_for_status=True, **kwargs): if params is not None: params = {k:str(v) for (k,v) in params.items()} if headers is None: headers = self._headers else: headers.update(self._headers) async with self._ratelimit_semaphore: async with self._session.put('%s/%s' % (self._api_url, path), headers=headers, params=params, **kwargs) as r: if raise_for_status: r.raise_for_status() return await r.json() @tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError), wait=tenacity.wait_exponential(max=10), stop=tenacity.stop_after_attempt(10)) async def get(self, path, raise_for_status=True, params=None, status=False, **kwargs): if params is not None: params = {k:str(v) for (k,v) in params.items()} async with self._ratelimit_semaphore: async with self._session.get('%s/%s' % (self._api_url, path), headers=self._headers, params=params, **kwargs) as r: if raise_for_status and not status: r.raise_for_status() if status: return (r.status, await r.json()) else: return await r.json() @alru_cache(maxsize=1000) async def create_folder(self, parent_id, parent_type, name): params = { 'parentId': parent_id, 'parentType': parent_type, 'name': name, 'description': '', 'reuseExisting': True } # We need this sempahore to prevent two folders with the same name be # create, this opertion in not atomic in Girder. async with self._folder_create_semaphore: return await self.post('folder', params=params) async def list_item(self, folder, name): params = { 'parentId': folder['_id'], 'name': name } return await self.get('item', params=params) @alru_cache(maxsize=1000) async def create_item(self, folder_id, name): params = { 'folderId': folder_id, 'name': name, 'description': '', 'reuseExisting': True } # We need this sempahore to prevent two items with the same name be # create, this opertion in not atomic in Girder. async with self._item_create_semaphore: return await self.post('item', params=params) async def upload_file(self, item, file_name, bits, size): mime_type, _ = mimetypes.guess_type(file_name) params = { 'parentType': 'item', 'parentId': item['_id'], 'name': file_name, 'size': size, 'mimeType': mime_type } headers = { 'Content-Length': str(size) } headers.update(self._headers) upload = await self.post('file', params=params, headers=headers, data=bits) return upload async def set_metadata(self, resource_type, _id, meta, semaphore=None): # The metadata put operation is not atomic! if semaphore is not None: await semaphore.acquire() try: return await self.put('%s/%s/metadata' % (resource_type, _id), json=meta) finally: if semaphore is not None: semaphore.release() async def get_metadata(self, resource_type, _id): resource = await self.get('%s/%s' % (resource_type, _id)) return resource.get('meta') @alru_cache(maxsize=1000) async def resource_path(self, _id, resource_type): params = { 'type': resource_type } return await self.get('resource/%s/path' % _id, params=params) async def lookup_resource(self, path): params = { 'path': path, 'test': True } (status, json_body) = await self.get('resource/lookup', params=params, status=True) if status == 400: return None else: return json_body async def file_exist(self, item, name): item_path = await self.resource_path(item['_id'], 'item') return await self.lookup_resource('%s/%s' % (item_path, name)) is not None async def ensure_folders(gc, parent, folders): for folder_name in folders: parent = await gc.create_folder(parent['_id'], 'folder', folder_name) return parent async def upload_image(gc, folder, shot_name, run_name, variable, timestep, bits, size, check_exists=False): log = logging.getLogger('adash') image_path = Path(variable['image_name']) image_folders = [shot_name, run_name, variable['group_name']] parent_folder = await ensure_folders(gc, folder, image_folders) name = None for k in ['name', 'variable_name']: name = variable.get(k) if name is not None: break if name is None: raise Exception('Unable to extract variable name.') variable_item = await gc.create_item(parent_folder['_id'], name) image_name = '%s%s' % (str(timestep).zfill(4), image_path.suffix) create = True if check_exists: create = not await gc.file_exist(variable_item, image_name) if create: log.info('Uploading "%s/%s/%s".' % ('/'.join([str(i) for i in image_folders]), name, image_name)) await gc.upload_file(variable_item, image_name, bits, size) @tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError), wait=tenacity.wait_exponential(max=10), stop=tenacity.stop_after_attempt(10)) async def fetch_variables(session, upload_site_url, shot_name, run_name, timestep): async with session.get('%s/shots/%s/%s/%d/variables.json' % (upload_site_url, shot_name, run_name, timestep)) as r: if r.status == 404: return None r.raise_for_status() return await r.json() @tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError), wait=tenacity.wait_exponential(max=10), stop=tenacity.stop_after_attempt(10)) async def fetch_images_archive(session, upload_site_url, shot_name, run_name, timestep): async with session.get('%s/shots/%s/%s/%d/images.tar.gz' % (upload_site_url, shot_name, run_name, timestep)) as r: if r.status == 404: return None r.raise_for_status() return await r.read() async def fetch_images(session, gc, folder, upload_site_url, shot_name, run_name, timestep, metadata_semaphore, check_exists=False): log = logging.getLogger('adash') log.info('Fetching variables.json for timestep: "%d".' % timestep) # Fetch variables.json variables = await fetch_variables(session, upload_site_url, shot_name, run_name, timestep) if variables is None: log.warning('Unable to fetch variables.json. Timestep "%d" is missing.' % timestep) else: log.info('Fetching images.tar.gz for timestep: "%d".' % timestep) buffer = BytesIO(await fetch_images_archive(session, upload_site_url, shot_name, run_name, timestep)) tasks = [] with tarfile.open(fileobj=buffer) as tgz: for v in variables: info = None k = '%s/%s' % (v['group_name'], v['image_name']) try: info = tgz.getmember(k) except KeyError: pass if info is None: raise Exception('Unable to extract image: "%s"' % k) br = tgz.extractfile(info) bits = br.read() tasks.append( asyncio.create_task( upload_image(gc, folder, shot_name, run_name, v, timestep, bits, info.size, check_exists) ) ) # Gather, so we fetch all images for this timestep before moving on to the # next one! await asyncio.gather(*tasks) # Set the current timestep metadata = { 'currentTimestep': timestep } run_folder = await ensure_folders(gc, folder, [shot_name, run_name]) await gc.set_metadata('folder', run_folder['_id'], metadata, metadata_semaphore) # scheduler used to schedule fetch_images request inorder, so we fetch the images # in timestep order. async def fetch_images_scheduler(queue): log = logging.getLogger('adash') while True: try: fetch = await queue.get() log.info(fetch) await fetch queue.task_done() except asyncio.CancelledError: raise except: log.exception('Exception occured fetching images.') @tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError), wait=tenacity.wait_exponential(max=10), stop=tenacity.stop_after_attempt(10)) async def fetch_run_time(session, upload_site_url, shot_name, run_name): run_path = 'shots/%s/%s/time.json' % (shot_name, run_name) async with session.get('%s/%s' % (upload_site_url, run_path), raise_for_status=False) as r: if r.status == 404: return None return await r.json() async def watch_run(session, gc, folder, upload_site_url, shot_name, run_name, username, machine, run_poll_interval): log = logging.getLogger('adash') log.info('Starting to watch run "%s" shot "%s".' % (run_name, shot_name)) fetch_images_queue = asyncio.Queue() metadata_semaphore = asyncio.Semaphore() scheduler = asyncio.create_task( fetch_images_scheduler(fetch_images_queue) ) last_timestep = None metadata = { 'username': username, 'machine': machine } run_folder = await ensure_folders(gc, folder, [shot_name, run_name]) await gc.set_metadata('folder', run_folder['_id'], metadata, metadata_semaphore) while True: # Check to see what the last successfully processed timestep was metadata = await gc.get_metadata('folder', run_folder['_id']) if last_timestep is None: last_timestep = metadata.get('currentTimestep') if last_timestep is not None: log.info('Last timestep processed: "%d"' % last_timestep) else: log.info('No previous timestep have been processed.') last_timestep = 0 # Now see where the simulation upload has got to run_path = 'shots/%s/%s/time.json' % (shot_name, run_name) time = await fetch_run_time(session, upload_site_url, shot_name, run_name) # Wait for time.json to appear if time is None: log.warn('Unable to fetch "%s", waiting for 1 sec.' % run_path) await asyncio.sleep(1) continue new_timestep = time['current'] complete = time.get('complete', False) # Are we done. The run is marked as complete and we have ingested all the # timesteps. if complete and last_timestep == new_timestep: log.info('Run "%s" is complete.' % run_name) await fetch_images_queue.join() scheduler.cancel() break # Did we miss any timesteps? delta = new_timestep - last_timestep # We have missed to timesteps so need to catch up! if delta > 1: # First schedule a fetch of the next timesetp checking if the files # exists ( this is the one that could be partially processed. fetch_images_queue.put_nowait( fetch_images(session, gc, folder, upload_site_url, shot_name, run_name, last_timestep+1, metadata_semaphore, check_exists=True) ) # Then process the rest normally for t in range(last_timestep+2, new_timestep+1): fetch_images_queue.put_nowait( fetch_images(session, gc, folder, upload_site_url, shot_name, run_name, t, metadata_semaphore) ) # We successfully processed the last timestep so just schedule the processing # of the next. elif delta == 1: fetch_images_queue.put_nowait( fetch_images(session, gc, folder, upload_site_url, shot_name, run_name, new_timestep, metadata_semaphore, # If we processing the first timestep we need to check # the existence of the files, as the fetching of this # timestep may have failed before. last_timestep == 0) ) last_timestep = new_timestep await asyncio.sleep(run_poll_interval) @tenacity.retry(retry=tenacity.retry_if_exception_type(aiohttp.client_exceptions.ServerConnectionError), wait=tenacity.wait_exponential(max=10), stop=tenacity.stop_after_attempt(10)) async def fetch_shot_index(session, upload_site_url): async with session.get('%s/shots/index.json' % upload_site_url) as r: if r.status == 404: return None else: r.raise_for_status() return await r.json() async def watch_shots_index(session, gc, folder, upload_site_url, api_url, api_key, shot_poll_interval, run_poll_internval): log = logging.getLogger('adash') runs = set() shot_metadata_semaphore = asyncio.Semaphore() # Get users and machines metadata = await gc.get_metadata('folder', folder['_id']) users = set(metadata.get('users', [])) if metadata is not None else set() machines = set(metadata.get('machines', [])) if metadata is not None else set() while True: log.info('Fetching /shots/index.json') index = await fetch_shot_index(session, upload_site_url) if index is None: # Just wait for index.json to appear log.warn('Unable to fetch "shots/index.json", waiting for 1 sec.') await asyncio.sleep(1) continue for shot in index: username = shot['username'] users.add(username) machine = shot['machine_name'] machines.add(machine) # TODO Update the meta data shot_name = shot['shot_name'] run_name = shot['run_name'] run_key = '%s/%s' % ( shot_name, run_name) if run_key not in runs: asyncio.create_task( watch_run(session, gc, folder, upload_site_url, shot_name, run_name, username, machine, run_poll_internval) ) runs.add(run_key) metadata = { 'machines': list(machines), 'users': list(users) } await gc.set_metadata('folder', folder['_id'], metadata, shot_metadata_semaphore) await asyncio.sleep(shot_poll_interval) async def watch(folder_id, upload_site_url, api_url, api_key, shot_poll_interval, run_poll_internval): def ignore_aiohttp_ssl_eror(loop, aiohttpversion='3.5.4'): """Ignore aiohttp #3535 issue with SSL data after close There appears to be an issue on Python 3.7 and aiohttp SSL that throws a ssl.SSLError fatal error (ssl.SSLError: [SSL: KRB5_S_INIT] application data after close notify (_ssl.c:2609)) after we are already done with the connection. See GitHub issue aio-libs/aiohttp#3535 Given a loop, this sets up a exception handler that ignores this specific exception, but passes everything else on to the previous exception handler this one replaces. If the current aiohttp version is not exactly equal to aiohttpversion nothing is done, assuming that the next version will have this bug fixed. This can be disabled by setting this parameter to None """ if aiohttpversion is not None and aiohttp.__version__ != aiohttpversion: return orig_handler = loop.get_exception_handler() def ignore_ssl_error(loop, context): if context.get('message') == 'SSL error in data received': # validate we have the right exception, transport and protocol exception = context.get('exception') protocol = context.get('protocol') if ( isinstance(exception, ssl.SSLError) and exception.reason == 'KRB5_S_INIT' and isinstance(protocol, asyncio.sslproto.SSLProtocol) and isinstance(protocol._app_protocol, aiohttp.client_proto.ResponseHandler) ): if loop.get_debug(): asyncio.log.logger.debug('Ignoring aiohttp SSL KRB5_S_INIT error') return if orig_handler is not None: orig_handler(loop, context) else: loop.default_exception_handler(context) loop.set_exception_handler(ignore_ssl_error) ignore_aiohttp_ssl_eror(asyncio.get_running_loop()) async with aiohttp.ClientSession(connector=aiohttp.TCPConnector(verify_ssl=False)) as session: gc = AsyncGirderClient(session, api_url) await gc.authenticate(api_key) folder = { '_id': folder_id } await watch_shots_index(session, gc, folder, upload_site_url, api_url, api_key, shot_poll_interval, run_poll_internval) @click.command('watch', help='Watch upload site and ingest data into Girder') @click.option('-f', '--folder-id', help='the folder to ingest into. [default: GIRDER_FOLDER_IR env. variable]', envvar='GIRDER_FOLDER_ID') @click.option('-r', '--upload-site_url', help='the URL to the upload site to watch. [default: UPLOAD_SITE_URL env. variable]', envvar='UPLOAD_SITE_URL',) @click.option('-u', '--api-url', default='http://localhost:8080/api/v1', help='RESTful API URL ' '(e.g https://girder.example.com/api/v1). [default: GIRDER_API_URL env. variable]', envvar='GIRDER_API_URL') @click.option('-k', '--api-key', envvar='GIRDER_API_KEY', help='[default: GIRDER_API_KEY env. variable]') @click.option('-i', '--shot-poll-interval', default=30, type=int, help='shot poll interval (sec)') @click.option('-v', '--run-poll-interval', default=30, type=int, help='run poll interval (sec)') def main(folder_id, upload_site_url, api_url, api_key, shot_poll_interval, run_poll_interval): #gc = GC(api_url=api_url, api_key=api_key) if upload_site_url[-1] == '/': upload_site_url = upload_site_url[:-1] log = logging.getLogger('adash') log.info('Watching: %s' % upload_site_url) asyncio.run( watch(folder_id, upload_site_url, api_url, api_key, shot_poll_interval, run_poll_interval) )