filename
stringlengths
13
19
text
stringlengths
134
1.04M
the-stack_0_15872
from collections import OrderedDict import six from django.http import Http404 from django.utils.encoding import force_text from rest_framework import status from rest_framework import exceptions, status from rest_framework.compat import set_rollback from rest_framework.exceptions import PermissionDenied from rest_framework.response import Response from django.utils.translation import ugettext_lazy as _ class APIError(Exception): status_code = status.HTTP_500_INTERNAL_SERVER_ERROR default_detail = _('A server error occurred.') default_error_slug = 'internal_error' def __init__(self, detail=None, error_slug=None): if detail is not None: self.detail = force_text(detail) self.error_slug = force_text(error_slug) else: self.detail = force_text(self.default_detail) self.error_slug = force_text(self.default_error_slug) def __str__(self): return self.detail def custom_exception_handler(exc, context): """ Returns the response that should be used for any given exception. By default we handle the REST framework `APIException`, and also Django's built-in `Http404` and `PermissionDenied` exceptions. Any unhandled exceptions may return `None`, which will cause a 500 error to be raised. """ if isinstance(exc, exceptions.APIException): headers = {} if getattr(exc, 'auth_header', None): headers['WWW-Authenticate'] = exc.auth_header if getattr(exc, 'wait', None): headers['Retry-After'] = '%d' % exc.wait if isinstance(exc.detail, (list, dict)): # Concatenate all field and non_field errors for message: message = '' for key in exc.detail: try: if isinstance(exc.detail[key], str): message += exc.detail[key] + ' ' else: for error in exc.detail[key]: # Don't include duplicates in universal error message if error not in message: message += error + ' ' except TypeError: if key == 'non_field_errors': message = exc.detail[key][0] else: message = _('Invalid request.') if message.endswith(' '): message = message[:-1] # remove last space data = OrderedDict([('status', 'error'), ('message', message), ('data', exc.detail)]) else: data = OrderedDict([('status', 'error'), ('message', exc.detail)]) set_rollback() return Response(data, status=exc.status_code, headers=headers) elif isinstance(exc, Http404): msg = _('Not found.') data = {'status': 'error', 'message': six.text_type(msg)} set_rollback() return Response(data, status=status.HTTP_404_NOT_FOUND) elif isinstance(exc, PermissionDenied): msg = _('Permission denied.') data = {'status': 'error', 'message': six.text_type(msg)} set_rollback() return Response(data, status=status.HTTP_403_FORBIDDEN) # Note: Unhandled exceptions will raise a 500 error. return None
the-stack_0_15873
import torch import sys import csv import nestedtensor import utils import torchvision from torch.nn import functional as F import random class DETRNestedTensor(object): def __init__(self, tensors, mask): self.tensors = tensors self.mask = mask def to(self, *args, **kwargs): cast_tensor = self.tensors.to(*args, **kwargs) cast_mask = self.mask.to( *args, **kwargs) if self.mask is not None else None return type(self)(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask @classmethod def from_tensor_list(cls, tensor_list): # TODO make this more general if tensor_list[0].ndim == 3: # TODO make it support different-sized images max_size = tuple(max(s) for s in zip(*[img.shape for img in tensor_list])) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = (len(tensor_list),) + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], :img.shape[2]] = False else: raise ValueError('not supported') return cls(tensor, mask) # Performance tanks hard for lots of small Tensors as expected DEVICE = torch.device('cuda') NDIM = 256 NHEAD = 8 MODEL = torch.nn.MultiheadAttention(NDIM, NHEAD).to(DEVICE).eval() def run_benchmark(bsz, mean_i, mean_j, var, writer): RAND_INTS = [(int(random.gauss(mean_j, var)), int( random.gauss(mean_i, var))) for _ in range(bsz)] src_ = nestedtensor.nested_tensor( [torch.randn(NDIM * i * j).float().reshape(NDIM, i, j) for (i, j) in RAND_INTS], device=DEVICE, dtype=torch.float) src = [] for i, s in enumerate(src_): src.append(i*len(s) + s) detr_nt_src = DETRNestedTensor.from_tensor_list(src) sparsity = int(detr_nt_src.decompose()[1].float().mean().item() * 10) / 10 def gen_t_loop_mha(src): detr_nt_src = DETRNestedTensor.from_tensor_list(src) src, mask = detr_nt_src.decompose() src = src.flatten(2).permute(2, 0, 1).contiguous() mask = mask.flatten(1).contiguous() def te(): MODEL(src, src, src, key_padding_mask=mask, need_weights=False) return te def gen_nt_mha(src): src = nestedtensor.nested_tensor([t.flatten(1).permute( 1, 0) for t in src], device=DEVICE, dtype=torch.float) def nt(): MODEL(src, src, src, need_weights=False) return nt result_t = {**utils.benchmark_fn(gen_t_loop_mha(src), 5.0, cuda=True), "bsz": bsz, "sparsity": sparsity, "var": var, "mean_i": mean_i, "mean_j": mean_j} result_t["numel"] = sum([x.numel() for x in src_]) result_t["numel_div_avg_us"] = result_t["numel"] / result_t["avg_us"] result_t["avg_ns_div_numel"] = result_t["avg_us"] / \ result_t["numel"] * 1000 writer.writerow(result_t) result_nt = {**utils.benchmark_fn(gen_nt_mha(src), 5.0, cuda=True), "bsz": bsz, "sparsity": 0.0, "var": var, "mean_i": mean_i, "mean_j": mean_j} result_nt["numel"] = sum([x.numel() for x in src_]) result_nt["numel_div_avg_us"] = result_nt["numel"] / result_nt["avg_us"] result_nt["avg_ns_div_numel"] = result_nt["avg_us"] / \ result_nt["numel"] * 1000 writer.writerow(result_nt) if __name__ == "__main__": random.seed(1011) torch.manual_seed(1011) writer = csv.DictWriter(sys.stdout, fieldnames=[ "name", "avg_us", "std_us", "runs", "bsz", "sparsity", "var", "mean_i", "mean_j", "numel", "numel_div_avg_us", "avg_ns_div_numel"]) writer.writeheader() for var in [float(i) / 10 for i in range(0, 100, 50)]: for batch_size in [2, 8, 16]: run_benchmark(batch_size, 30, 30, var, writer)
the-stack_0_15876
from src import Env, LoggerFactory as Logger LEYEND = ''' Leyend: R : Robot B : Baby C : Corral # : Obstacule * : Dirt - : Empty cell ''' def main(args, log): robot = 'Reagent' robotA = 'Practical' if args.practical: robot = 'Practical' robotA = 'Reagent' #//HACKME:Monkey patch current_agent #src.agent.current_agent.func = current_agent house = None while True: e = Env(args.rows, args.columns, args.dirtiness, args.obstacules, args.babies, args.time, args.bernoulli, robot) house = e.copy_house() log.info('The generated environment is:') print(e) print(LEYEND) print('If this environment ok to you? Insert REPEAT to re-generate, insert anything else to continue') s = input() if s != 'REPEAT': break mean, mess = e.simulate(args.interactive) if e.fired: log.info('The time is over, task failed for robot') log.info(f'The amount of dirt at the end of this simulation is: {mess}') if args.simulation: mean_first = mean print('\n') eA = Env(args.rows, args.columns, args.dirtiness, args.obstacules, args.babies, args.time, args.bernoulli, robotA) eA.house = house mean, mess = eA.simulate(args.interactive) if eA.fired: log.info('The time is over, task failed for robot') log.info(f'The amount of dirt at the end of this simulation is: {mess}') print('\n') print('*************************************************************') print('Final Results:', 'Results') print('\n') print(f'Task completed by {robot} agent: {e.succeded}') print(f'Task completed by {robotA} agent: {eA.succeded}') print('\n') print(f'{robot} agent fired: {e.fired}') print(f'{robotA} agent fired: {eA.fired}') print('\n') print(f'Percentage of dirt at the end of this simulation of the {robot} agent: {mean_first}') print(f'Percentage of dirt at the end of this simulation of the {robotA} agent: {mean}') print('\n') print(f'Final house env of {robotA} agent') print('\n') print(eA) print('\n') print(f'Final house env of {robot} agent') print('\n') print(e) print('*************************************************************') if __name__ == '__main__': import argparse import os parser = argparse.ArgumentParser(description='Kindergarden simulator') parser.add_argument('-r', '--rows', type=int, default=9, help='number of rows of the house') parser.add_argument('-c', '--columns', type=int, default=8, help='number of columns of the house') parser.add_argument('-d', '--dirtiness', type=int, default=30, help='percentage of dirty cells at the start of the simulation') parser.add_argument('-o', '--obstacules', type=int, default=20, help='percentage of obstacules at the start of the simulation') parser.add_argument('-b', '--babies', type=int, default=5, help='number of babies in the house') parser.add_argument('-t', '--time', type=int, default=5, help='number of turns between changes of the environment') parser.add_argument('-p', '--practical', type=bool, const=True, nargs='?', help='set if you want to simulate Practical agent. Reagent agent is default') parser.add_argument('-P', '--bernoulli', type=float, default=0.5, help='probability of a baby moving in an environment change (0 to 1)') parser.add_argument('-l', '--level', type=str, default='INFO', help='log level') parser.add_argument('-f', '--file', type=bool, const=True, nargs='?', help='set if you want log to a file') parser.add_argument('-i', '--interactive', type=bool, const=True, nargs='?', help='set if you want to see what happens in every turn') parser.add_argument('-s', '--simulation', type=bool, const=True, nargs='?', help='set if you want to simulate all the agents') args = parser.parse_args() if not os.path.exists('./logs'): os.mkdir('./logs/') log = Logger(name='Kindergarden', log=args.file) log.setLevel(args.level) main(args, log)
the-stack_0_15879
import os def ui2main(ui_name, file_name = 'main.py', model_name = '*_ui2py.py'): if model_name == '*_ui2py.py': model_name = ui_name.split('.')[0] + '_ui2py.py' if os.path.exists(ui_name): if os.path.exists(model_name): print('由ui直接转化为py格式的文件' + model_name + '已存在') else: print('开始转化ui文件至:' + model_name) # os.system('pyuic5 -o ' + model_name + ' ' + ui_name) os.system('python3 -m PyQt5.uic.pyuic -o ' + model_name + ' ' + ui_name) while True: if os.path.exists(model_name): break if os.path.exists(file_name): print('用于编写功能的py文件(运行此函数)' + file_name + '已存在') else: print('开始生成主函数文件至:' + file_name) model_text = open(model_name,encoding='utf8').read().split('\n') msg = {'model_class':'未识别出', 'button':[], 'action':[], 'combobox':[]} for line in model_text: if 'class ' in line: msg['model_class'] = line.split(' ')[1].split('(')[0] elif 'QtWidgets.QPushButton(' in line: button_name = line.split(' = ')[0] # .replace(' ','') msg['button'].append(button_name) elif '= QtWidgets.QAction(' in line: action_name = line.split(' = ')[0] msg['action'].append(action_name) elif 'QtWidgets.QComboBox(' in line: combobox_name = line.split(' = ')[0] msg['combobox'].append(combobox_name) buttonactive_test = '\n # 激活全部按钮、菜单选项、下拉列表用于测试,实际使用时注释掉\n' button_text = '\n # 事件连接函数\n' buttonfun_text = '\n\n # 按钮\n' for button in msg['button']: buttonactive_test += button + '.setEnabled(True)\n' button_text += button +'.clicked.connect(' + button.replace(' ','') + '_ClickFun)\n' buttonfun_text += ' def ' + button.replace(' ','').replace('self.', '') + '_ClickFun(self):\n print("你按了 " + ' + button.replace(' ','') + '.text() + " 这个按钮")\n\n' actionactive_test = '\n' action_text = '\n' actionfun_text = '\n # 菜单选项\n' for action in msg['action']: actionactive_test += action + '.setEnabled(True)\n' action_text += action + '.triggered.connect(' + action.replace(' ', '') + '_ClickFun)\n' actionfun_text += ' def ' + action.replace(' ', '').replace('self.', '') + '_ClickFun(self):\n print("你按了 " + ' + action.replace( ' ', '') + '.text() + " 这个菜单选项")\n\n' comboboxactive_test = '\n' combobox_text = '\n' comboboxfun_text = '\n # 下拉列表\n' for combobox in msg['combobox']: comboboxactive_test += combobox + '.setEnabled(True)\n' combobox_text += combobox + '.currentIndexChanged.connect(' + combobox.replace(' ', '') + '_ClickFun)\n' comboboxfun_text += ' def ' + combobox.replace(' ', '').replace('self.', '') + '_ClickFun(self):\n print("你将该下拉列表选项变成了 " + ' + combobox.replace( ' ', '') + '.currentText())\n\n' sum_test = buttonactive_test + actionactive_test + comboboxactive_test +\ button_text + action_text + combobox_text +\ buttonfun_text + actionfun_text + comboboxfun_text file_text = open(str(__file__).replace('__init__.py', 'model.txt'), encoding='utf8').read() file_text = file_text.replace('MyFunction', str(os.path.realpath(__file__)).replace('\\', '/').split('/')[-3]) file_text = file_text.replace('模板类', msg['model_class']) file_text = file_text.replace('模板', model_name.split('.')[0]) file_text = file_text.replace('此处是一堆连接', sum_test) open(file_name, 'w+', encoding='utf8').write(file_text) print('完成') else: print('文件' + ui_name + '不存在!程序退出') # if __name__ == '__main__': # CreateWritngFile('main.ui', 'test.py')
the-stack_0_15880
from collections import defaultdict all_ingredients = [] candidates = defaultdict(list) with open('in', 'r') as f: for line in f.readlines(): ingredients, allergens = line.split(' (') ingredients = ingredients.strip().split() allergens = allergens.replace('contains ', '').replace(')', '').strip().split(', ') all_ingredients += ingredients for allergen in allergens: candidates[allergen].append(set(ingredients)) are_allergens = set() for allergen in candidates.keys(): options = set(all_ingredients) for i in candidates[allergen]: options = options.intersection(i) for i in options: are_allergens.add(i) count = 0 for ingredient in all_ingredients: if ingredient not in are_allergens: count += 1 print(count)
the-stack_0_15881
#standard imports from typing import Tuple,Union #scientific imports import numpy as np from sympy.ntheory import factorint #project imports from data_handler.signal_features import get_time_step def calculate_flicker_amplitude(data:np.ndarray) -> float: """ Computes the flicker amplitude after Bastien et al. (2013) :param data: data consisting of the full lightcurve :return: flicker amplitude """ flicker_time = get_flicker_time(data) t_step = get_time_step(data) elements = data[0].shape box_size = np.round(flicker_time/t_step) bin_count = int(elements / box_size) points_left = elements - box_size * bin_count index_shift,cols = get_index_shift(points_left) mean_array, subtract_array_amplitude = get_flicker_arrays(data, elements, cols, index_shift, box_size, flicker_time) mean_amp = np.mean(mean_array) subtract_array_amplitude = np.unique(subtract_array_amplitude) flic_amplitude = 0 for i in range(0, len(subtract_array_amplitude)): flic_amplitude += (subtract_array_amplitude[i] - mean_amp) ** 2 denominator = float(len(subtract_array_amplitude)) amp_flic = np.sqrt(flic_amplitude / denominator) return amp_flic def flicker_amplitude_to_frequency(flicker_amplitude : float) -> float: """ Converts the flicker amplitude to the first filter frequency according to Kallinger et al. (2016) :param flicker_amplitude: Flicker amplitude calculated according to Bastien et. al (2013) :return: First filter frequency """ return 10 ** (5.187) / (flicker_amplitude ** (1.560)) def get_flicker_time(data : np.ndarray) -> float: """ Returns the flicker time. 2.5 hours for SC, 5 days for LC data :param data: data consisting of the full lightcurve :return: flicker time """ t_step = get_time_step(data) t_step *= 24*60 if t_step < 10: return 2.5/(60*24) #2.5 hours time for SC data else: return 5/24 #5 days for LC data def get_index_shift(points_left : int) -> Tuple[int,int]: """ Depending on how many points are left in the array from the binsize, this method will return the according index_shift for the data as well as the amount of cols whereover these have to be iterated :param points_left: Restpoints after binning :return: index_shift,cols """ index_shift = 0 cols = 1 if points_left > 1: factors=factorint(points_left, multiple=True) if len(factors) > 1: index_shift = factors[0]**factors[1] else: index_shift = factors[0] cols = int(points_left / index_shift + 1) elif points_left == 1: cols = 2 index_shift = 1 return index_shift,cols def get_flicker_arrays(data : np.ndarray, elements : Union[int,Tuple[int,]], cols : int, index_shift : int, box_size : int , filter_time :float) -> Tuple[float,np.ndarray]: """ This method, depending on the indexshift, boxsize and filtertime creates the appropiate arrays, for which the flicker amplitude is calculated. It calculates the mean of every box for the boxsize """ if isinstance(elements,tuple) and len(elements) > 1: raise ValueError("Elements is not allowed to be a tuple longer than 1!") else: elements = elements[0] bin_count = int(elements / box_size) points_left = elements - box_size * bin_count array_mean = np.zeros(cols) for k in range(0,cols): array_rebin = np.zeros(int(elements-points_left)) n_points_bin_array = np.zeros(int(elements-points_left)) i = k * index_shift for j in range(0,bin_count): mean_bin = 0.0 timetime_referenceeference = i count = 1 while i < (int(elements)-1) and (data[0][i] - data[0][timetime_referenceeference])/(3600*24) < filter_time: mean_bin +=data[1][i] if data[1][i] != 0: count +=1 i+=1 mean_bin += data[1][i] if data[1][i] != 0: count +=1 if count > 1: mean_bin /= count-1 array_rebin[timetime_referenceeference - k * index_shift:(i - 1) - k * index_shift] = mean_bin n_points_bin_array[timetime_referenceeference - k * index_shift:(i - 1) - k * index_shift] = count subtract_array_amplitude = data[1][k * index_shift:k * index_shift + len(array_rebin)] - array_rebin subtract_array_amplitude = subtract_array_amplitude[n_points_bin_array >= box_size / 2] array_mean[k] = np.mean(subtract_array_amplitude) return array_mean,subtract_array_amplitude
the-stack_0_15884
import requests import pprint import json import os from bs4 import BeautifulSoup if os.path.isfile('flipkart.json'): with open('flipkart.json','r')as file: file_data=json.load(file) print(file_data) else: link="https://www.flipkart.com/search?q=mi+all+mobile&sid=tyy%2C4io&as=on&as-show=on&otracker=AS_QueryStore_OrganicAutoSuggest_0_6&otracker1=AS_QueryStore_OrganicAutoSuggest_0_6&as-pos=0&as-type=RECENT&as-searchtext=mi%20all%20" req=requests.get(link) # print(req) page=req.text # print(page) soup=BeautifulSoup(page,'html.parser') # print(soup) main_div=soup.find_all('div',class_="_1UoZlX") # print(main_div) list_for_all_phones=[] list_for_rupess=[] list_for_rating=[] list_for_all_detail=[] dictionary={} dic_list=[] for i in main_div: # print(i) col=(i.find('div',class_='_1-2Iqu row')) # print(col) n=col.find('div',class_='_3wU53n') text=(n.text) list_for_all_phones.append(text) for k in list_for_all_phones: dictionary['mobile_name']=k price=col.find('div',class_='_1vC4OE _2rQ-NK') price_text=(price.text) list_for_rupess.append(price_text) for l in list_for_rupess: dictionary['price']=l rating=col.find('div',class_='hGSR34') rt=(rating.text) list_for_rating.append(rt) for m in list_for_rating: dictionary['rating']=m b=col.find('div',class_='_3ULzGw') c=b.find('ul') for j in c: sp=(j.text).split('\n') list_for_all_detail.append(sp) dictionary['ram']=list_for_all_detail[0] dictionary['Display']=list_for_all_detail[1] dictionary['camera']=list_for_all_detail[2] dictionary['battery']=list_for_all_detail[3] dictionary['processor']=list_for_all_detail[4] dictionary['warranty']=list_for_all_detail[5] # pprint.pprint(dictionary) dic_list.append(dictionary) # pprint.pprint(dic_list) with open('flipkart.json','w')as file: json.dump(dic_list,file) # print(list_for_all_phones) # print(list_for_rupess) # print(list_for_rating) # print(list_for_all_detail)
the-stack_0_15885
import glob import json import time import yaml import luigi from luigi.contrib.spark import PySparkTask from py4j.protocol import Py4JJavaError from pyspark import SparkContext from pyspark.sql import DataFrame, SparkSession from pyspark.sql.utils import IllegalArgumentException from pyspark.sql.functions import lit, input_file_name, regexp_extract from pyspark.sql.types import StructType, StructField, StringType from etl import logger from etl.constants import Constants from etl.jobs.util.cleaner import trim_all_str from etl.source_files_conf_reader import read_module from etl.workflow.config import PdcmConfig ROOT_FOLDER = "data/UPDOG" def build_schema_from_cols(columns): schema = [] for column in columns: schema.append(StructField(column, StringType(), True)) return StructType(schema) def select_rows_with_data(df: DataFrame, columns) -> DataFrame: if "Field" in df.columns: df = df.select(columns).where("nvl(field, '') not like '#%'") else: df = df.select(columns) return df def clean_column_names(df: DataFrame): columns = df.columns for column in columns: df = df.withColumnRenamed(column, trim_all_str(column)) return df def read_files(session, path_patterns, schema): start = time.time() df = session.read.option('sep', '\t').option('header', True).option('schema', schema).csv(path_patterns) df = clean_column_names(df) df = select_rows_with_data(df, schema.fieldNames()) datasource_pattern = "{0}\\/([a-zA-Z-]+)(\\/)".format(ROOT_FOLDER.replace("/", "\\/")) df = df.withColumn("_data_source", lit(input_file_name())) df = df.withColumn(Constants.DATA_SOURCE_COLUMN, regexp_extract("_data_source", datasource_pattern, 1)) df = df.drop("_data_source") end = time.time() logger.info( "Read from path {0} count: {1} in {2} seconds".format(path_patterns, df.count(), round(end - start, 4))) return df def read_json(session, json_content): df = session.read.option("multiline", True).json(session.sparkContext.parallelize([json_content])) return df class ReadByModuleAndPathPatterns(PySparkTask): raw_folder_name = luigi.Parameter() path_patterns = luigi.ListParameter() columns_to_read = luigi.ListParameter() data_dir_out = luigi.Parameter() def output(self): return PdcmConfig().get_target( "{0}/{1}/{2}".format(self.data_dir_out, Constants.RAW_DIRECTORY, self.raw_folder_name)) def app_options(self): return [ '|'.join([p for p in self.path_patterns]), ','.join(self.columns_to_read), self.output().path] def main(self, sc: SparkContext, *args): spark = SparkSession(sc) path_patterns = args[0].split('|') columns_to_read = args[1].split(',') output_path = args[2] schema = build_schema_from_cols(columns_to_read) if sc.master == "yarn": hadoop = sc._jvm.org.apache.hadoop fs = hadoop.fs.FileSystem current_fs = fs.get(sc._jsc.hadoopConfiguration()) path_patterns = [path for path in path_patterns if path != "" and current_fs.globStatus(hadoop.fs.Path(path))] try: df = read_files(spark, path_patterns, schema) except (Py4JJavaError, IllegalArgumentException, FileNotFoundError, IOError) as error: no_empty_patterns = list(filter(lambda x: x != '', path_patterns)) if "java.io.FileNotFoundException" in str(error) or len(no_empty_patterns) == 0 or error.__class__ in [FileNotFoundError, IOError]: empty_df = spark.createDataFrame(sc.emptyRDD(), schema) df = empty_df df = df.withColumn(Constants.DATA_SOURCE_COLUMN, lit("")) else: raise error df.write.mode("overwrite").parquet(output_path) def build_path_patterns(data_dir, providers, file_patterns): data_dir_root = "{0}/{1}".format(data_dir, ROOT_FOLDER) paths_patterns = [] for file_pattern in file_patterns: matching_providers = [] for provider in providers: current_file_pattern = str(file_pattern).replace("$provider", provider) if glob.glob("{0}/{1}/{2}".format(data_dir_root, provider, current_file_pattern)) or PdcmConfig().deploy_mode == "cluster": matching_providers.append(provider) if matching_providers: joined_providers_list = ','.join([p for p in matching_providers]) providers_pattern = "{" + joined_providers_list + "}" path_pattern = "{0}/{1}/{2}".format( data_dir_root, providers_pattern, file_pattern.replace("$provider", providers_pattern)) paths_patterns.append(path_pattern) return paths_patterns def build_path_pattern_by_provider(data_dir, provider, file_pattern): data_dir_root = "{0}/{1}".format(data_dir, ROOT_FOLDER) path_pattern = "{0}/{1}/{2}".format(data_dir_root, provider, file_pattern.replace("$provider", provider)) return path_pattern def get_tsv_extraction_task_by_module(data_dir, providers, data_dir_out, module_name): module = read_module(module_name) file_patterns = module["name_patterns"] columns = module["columns"] path_patterns = build_path_patterns(data_dir, list(providers), file_patterns) return ReadByModuleAndPathPatterns(module_name, path_patterns, columns, data_dir_out) def extract_provider_name(path: str): init_index = path.index(ROOT_FOLDER) + len(ROOT_FOLDER) + 1 next_slash = path.index("/", init_index) return path[init_index:next_slash] def get_json_by_yaml(yaml_content): yaml_as_json = yaml.safe_load(yaml_content) yaml_as_json = json.dumps(yaml_as_json) yaml_as_json = yaml_as_json.encode("unicode_escape").decode("utf-8") return yaml_as_json class ReadYamlsByModule(PySparkTask): raw_folder_name = luigi.Parameter() yaml_paths = luigi.ListParameter() columns_to_read = luigi.ListParameter() data_dir_out = luigi.Parameter() def output(self): return PdcmConfig().get_target( "{0}/{1}/{2}".format(self.data_dir_out, Constants.RAW_DIRECTORY, self.raw_folder_name)) def app_options(self): return [ ','.join(self.yaml_paths), ','.join(self.columns_to_read), PdcmConfig().deploy_mode, self.output().path] def main(self, sc, *args): spark = SparkSession(sc) yaml_file_paths = args[0].split(',') columns_to_read = args[1].split(',') deploy_mode = args[2] output_path = args[3] all_json_and_providers = [] if deploy_mode == "cluster": for yaml_file_path in yaml_file_paths: yaml_as_json = sc.wholeTextFiles(yaml_file_path).collect()[0][1] yaml_as_json = get_json_by_yaml(yaml_as_json) json_content_and_provider = (yaml_as_json, extract_provider_name(yaml_file_path)) all_json_and_providers.append(json_content_and_provider) else: for yaml_file_path in yaml_file_paths: with open(yaml_file_path, 'r') as stream: yaml_as_json = get_json_by_yaml(stream) json_content_and_provider = (yaml_as_json, extract_provider_name(yaml_file_path)) all_json_and_providers.append(json_content_and_provider) source_df = spark.createDataFrame(spark.sparkContext.emptyRDD(), build_schema_from_cols(columns_to_read)) source_df = source_df.withColumn(Constants.DATA_SOURCE_COLUMN, lit(None).astype(StringType())) for json_and_provider in all_json_and_providers: json_content = json_and_provider[0] provider = json_and_provider[1] df = read_json(spark, json_content) df = df.select(columns_to_read) df = df.withColumn(Constants.DATA_SOURCE_COLUMN, lit(provider)) source_df = source_df.union(df) source_df.write.mode("overwrite").parquet(output_path) def get_yaml_extraction_task_by_module(data_dir, providers, data_dir_out, module_name): module = read_module(module_name) file_patterns = module["name_patterns"] columns = module["columns"] # There should be only one yaml file by module file_path = str(file_patterns[0]) yaml_paths = [] for provider in providers: yaml_file_path = build_path_pattern_by_provider(data_dir, provider, file_path) yaml_paths.append(yaml_file_path) return ReadYamlsByModule(module_name, yaml_paths, columns, data_dir_out) if __name__ == "__main__": luigi.run()
the-stack_0_15886
#!/usr/bin/env python3 import sys import warnings import tcod import g import states.mainmenu def main() -> None: screen_width = 720 screen_height = 480 tileset = tcod.tileset.load_tilesheet( "data/cp437-14.png", 32, 8, tcod.tileset.CHARMAP_CP437 ) with tcod.context.new( width=screen_width, height=screen_height, tileset=tileset, title="libtcod tutorial revised", renderer=tcod.RENDERER_SDL2, vsync=True, ) as g.context: g.console = tcod.Console(*g.context.recommended_console_size()) states.mainmenu.MainMenu().loop() if __name__ == "__main__": if not sys.warnoptions: warnings.simplefilter("default") # Show all warnings once by default. main()
the-stack_0_15889
# This file is exec'd from settings.py, so it has access to and can # modify all the variables in settings.py. # If this file is changed in development, the development server will # have to be manually restarted because changes will not be noticed # immediately. DEBUG = False DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', # Django needs to make databases in the test mysql server 'NAME': 'travismep', 'USER': 'root', 'PASSWORD': '', 'HOST': '127.0.0.1', 'OPTIONS': { # In each case, we want strict mode on to catch truncation issues 'init_command': "SET sql_mode='STRICT_TRANS_TABLES'", # Load the socket info from .my.cnf in the travis user 'read_default_file': '~travis/.my.cnf' }, 'PORT': '', 'TEST': { # We also want the test databse to for utf8 and the general # collation to keep case sensitive unicode searches working # as we would expect on production 'CHARSET': 'utf8', 'COLLATION': 'utf8_general_ci', }, }, } SOLR_CONNECTIONS = { 'default': { 'URL': 'http://localhost:8983/solr/', 'COLLECTION': 's-and-co', 'CONFIGSET': 'sandco', 'TEST': { # aggressive commitWithin for test only 'COMMITWITHIN': 750, } } } # required by mezzanine for unit tests ALLOWED_HOSTS = ['*'] # secret key added as a travis build step
the-stack_0_15894
import sys import os import numpy as np import pandas as pd import copy # extract names, temperature, pressures and make folder # function for mech reading def readmechanism(input_type, cwd): ''' method to read the mechanism file depending on the input type ''' if input_type == 'MESS': # extract parameters P_LIST, T_LIST, species_names, species_names_bimol_frag2 = data_names_mess( os.path.join(cwd, 'inp')) # extract matrix of rate constants rates = MATRIX(os.path.join(cwd, 'inp'), P_LIST, T_LIST, species_names) mech_dict = dict(zip(['P_VECT_MESS', 'T_VECT_MESS', 'SPECIES', 'SPECIES_BIMOL', 'rates'], [ P_LIST, T_LIST, species_names, species_names_bimol_frag2, rates])) elif input_type == 'CKI': species_names, species_names_bimol_frag2 = data_names_CKI( os.path.join(cwd, 'inp')) mech_dict = dict(zip(['SPECIES', 'SPECIES_BIMOL'], [ species_names, species_names_bimol_frag2])) return mech_dict ########################### extract and process MESS type mechanism ##################### def data_names_mess(cwd): """ Extract from the input file me_ktp.inp useful data: - list of pressures - list of temperatures - list of species (names) """ species_names_unimol = np.array([], dtype='<U16') species_names_bimol = np.array([], dtype='<U16') species_names_unimol_frag2 = np.array([], dtype='<U16') species_names_bimol_frag2 = np.array([], dtype='<U16') look_for_species = 0 look_for_bimol_fragment = 0 bad_wellwrds = ['WellDepth', 'WellCutoff', 'WellExtension', 'WellReductionThreshold', 'WellPartitionMethod', 'WellProjectionThreshold'] with open(os.path.join(cwd, 'me_ktp.inp')) as myfile: for line in myfile: # do not read comments if line[0] == '!': line = '' # empty line elif len(line.split('!')) > 1: # remove commented part line = line.split('!')[0] # if you enter the model section: start looking for species if line.find('Model') != -1 and line.find('ModelEnergyLimit') == -1: look_for_species = 1 if line.find('PressureList') != -1: # verifica di non poter usare semplicemente line.split pressures = [x.strip() for x in line.split()] del pressures[0] # print(pressures) # print(len(pressures)) if line.find('TemperatureList') != -1: temperatures = [x.strip() for x in line.split()] del temperatures[0] if (line.find('Well') != -1 and all(line.find(bad) == -1 for bad in bad_wellwrds)) and look_for_species == 1: full_line = [x.strip() for x in line.split()] species_names_unimol = np.append( species_names_unimol, full_line[1]) species_names_unimol_frag2 = np.append( species_names_unimol_frag2, '') if (line.find('Bimolecular')) != -1 and look_for_species == 1: look_for_bimol_fragment = 1 full_line = [x.strip() for x in line.split()] species_names_bimol = np.append( species_names_bimol, full_line[1]) if (line.find('Fragment')) != -1 and look_for_bimol_fragment > 0: look_for_bimol_fragment += 1 if look_for_bimol_fragment == 3: full_line = [x.strip() for x in line.split()] species_names_bimol_frag2 = np.append( species_names_bimol_frag2, full_line[1]) look_for_bimol_fragment = 0 myfile.close() # write files P_LIST = np.unique(np.array(pressures, dtype=np.float32)) T_LIST = np.unique(np.array(temperatures, dtype=np.int16)) species_names = np.append(species_names_unimol, species_names_bimol) species_names_frag2 = np.append( species_names_unimol_frag2, species_names_bimol_frag2) # check that bimol fragments have different names if len(list(set(species_names_bimol_frag2))) != len(list(species_names_bimol_frag2)): print('*Warning: some bimol fragments share the same names. check that they are isomers') return P_LIST, T_LIST, species_names, species_names_frag2 def MATRIX(cwd, P_LIST, T_LIST, species_names): """ Extract from rate.out all the rate constants in the form of a list """ # pre-allocation matrix_list = [] capture_list = [] # define checks for temperature and pressure and read the file # len works on b check_P = len(T_LIST)*len(species_names)*len(P_LIST) # define current checks check_P_curr = 0 check_list = 0 with open(os.path.join(cwd, 'rate.out')) as myfile: for line in myfile: # find the 'Temperature-Species rate tables to extract the rates if line.find('Temperature-Species Rate Tables:') != -1: check_list = 1 if ((check_list == 1) and (check_P_curr < check_P)): # add the check on 'Pressure' in case the values of temperature and pressure are accidentally the same if any(line.find(T) != -1 for T in np.array(T_LIST, dtype=str)) and (line.find('Pressure') == -1): check_P_curr += 1 rates = [x.strip() for x in line.split()] # replace '***' values with 0 rates = [x.replace('***', '0') for x in rates] matrix_list.append(rates[1:-2]) # -2 excluded capture_list.append(float(rates[-1])) if line.find('Temperature-Pressure Rate Tables:') != -1: check_list = 0 # don't read the file anylonger myfile.close() matrix_float = np.array(matrix_list, dtype=np.float64) # remove negative values from the matrix n_T = len(T_LIST) n_P = len(P_LIST) warnings_neg = '' # generate list of warnings for negative values for ii, row in enumerate(matrix_float): mask_neg = np.where(row < 0) mask_toohigh = np.where(row > capture_list[ii]) row[mask_toohigh] = 0 for mask_neg_i in mask_neg[0]: row[mask_neg_i] = 0 R = int(ii/n_T/n_P) P = int((ii-R*n_T*n_P)/n_T) T = ii-R*n_T*n_P-P*n_T warnings_neg = warnings_neg + \ 'removed negative k_{R} at {T} K and {P} atm, be careful \n'.format( R=species_names[R], T=T_LIST[T], P=P_LIST[P]) np.savetxt('warnings_negval_messrates.txt', [warnings_neg], fmt='%s') return matrix_float def MATRIX_TP(T, P, T_LIST, P_LIST, species_names, matrix_float): """ Extract square matrix of k_ij at the selected temperature and pressure T,P are expected to be numbers, either floating or integers, to be compared with T,P in the lists """ # transform input types if not isinstance(T, int): try: T = int(T) except: print('input T not convertible to number') return None if not isinstance(P, float): try: P = float(P) except: print('input P not convertible to number') return None n_T = len(T_LIST) n_P = len(P_LIST) # preallocate the matrix n_species = len(species_names) mat_TP = np.zeros((n_species, n_species)) # reconstruct indices # set as option the exception case: if you put a value not present # index [0][0] to save just the index itself P_index = np.where((P == P_LIST))[0][0] T_index = np.where((T == T_LIST))[0][0] for ii in range(0, n_species): # identify the string to place in the row: ki->prods rates_row = matrix_float[ii*(n_P)*(n_T)+P_index*(n_T)+T_index, :] # use list comprehension: kij = rate from reactant i to product j col_indices = np.array([jj != ii for jj in range(0, n_species)]) mat_TP[ii, col_indices] = rates_row # this returns the matrix at a certain temperature and pressure return mat_TP def REAC_P(P, reac, P_LIST, T_LIST, species_names, matrix_float): """ Method: only needed for MESS input. it extracts from the matrix of rate constants the reactivity of the selected reactant at a certain pressure output: matrix [n_T*n_species-1]|P useful if: you need to check the reactivity of the reactant in the full range of temperature """ n_T = len(T_LIST) n_P = len(P_LIST) # select the reactant if not isinstance(reac, str): print('input is not a string. please insert "reac" as string') return None # if the input is not a string: show an error elif sum(np.array([reac == r_list for r_list in species_names])) == 0: print('selected reactant not found in the list of species. select another reactant') return None # if the reactant is not in the list: show an error else: try: float(P) except ValueError as e: print('P not convertible to number, error: ' + str(e)) return None # derive the reactivity matrix at all the different temperatures P_index = np.where((P == P_LIST))[0][0] reac_index = np.array( [reac == r_list for r_list in species_names], dtype=int) ii_reac = np.where(reac_index == 1)[0][0] # index of the reactant ii_in = ii_reac*(n_P)*(n_T)+P_index*(n_T) rates_reac = matrix_float[ii_in:ii_in+n_T, :] return rates_reac # extract and process CHEMKIN type mechanism ########################à def data_names_CKI(cwd): ''' extract species names of CKI input mechanism ''' # names of all the primary species species_names = np.array([], dtype='<U32') # names of the "second" reactant found in bimolecular reaction channels species_names_bimol = np.array([], dtype='<U32') # check in the file if you reading the part with all the reactions check_reactions = 0 with open(os.path.join(cwd, 'kin.CKI')) as myfile: for line in myfile: if line.find('REACTIONS') != -1: check_reactions += 1 # read the lines with the reaction rates; # only irreversible reactions are considered ('=>') # lines starting with a comment ('!') are not considered if check_reactions == 1 and line.find('=>') != -1 and line.strip()[0] != '!': line = line.split('!')[0] # remove the comments REACS = [x.strip() for x in line.split('=>')][0] REACS = [x.strip() for x in REACS.split('+')] rest_ofline = [x.strip() for x in line.split('=>')][1] # the arrhenius parameters will be the last three elements in the split # ARR_PAR = rest_ofline.split()[-3:] PRODS = ''.join(rest_ofline.split()[:-3]) PRODS = PRODS.split('+') reacting_species = [REACS, PRODS] # ALLOCATE THE SPECIES INTO THE ARRAYS # if species are not into the array of species: append them for x in reacting_species: # IF LEN IS 1 AND REACTION IS LIKE 2A=>PRODS OR REACS=>2B: RECOGNIZE SPECIES B # and add another product if x[0][0] == '2': x[0] = x[0][1:] x.append(x[0]) if len(x) == 1 and np.array([x[0] == SP for SP in species_names]).any() != True: species_names = np.append(species_names, x[0]) species_names_bimol = np.append( species_names_bimol, '') elif len(x) == 2: r1 = x[0] r2 = x[1] # check that the combination is not present flag = 0 for i in np.arange(0, len(species_names)): s1 = species_names[i] s2 = species_names_bimol[i] # set flag to 1 if you find the same set of species if (r1==s1 and r2==s2) or (r1==s2 and r2==s1): flag = 1 if flag == 0: species_names = np.append(species_names, r1) species_names_bimol = np.append(species_names_bimol, r2) if len(x) > 2: print( 'Wrong number of elements when reading the reaction: line ' + line) print('exiting now..') sys.exit() return species_names, species_names_bimol def copy_CKI_processed(oldpath, newpath, PRODSINKS, ISOM_EQUIL, REAC, PRODS): ''' IN THIS METHOD, THE MECHANISM IS COPIED TO NEWPATH FOLDER AFTER PREPROCESSING PRODSINKS = 1: THE PRODUCTS ARE SET AS IRREVERSIBLE SINKS, SO THE LINES ARE COMMENTED WITH ! ISOM_EQUIL = 1: ALL BIMOLECULAR REACTIONS ARE DELETED,SO THAT EQUILIBRIUM WITHIN SETS OF ISOMERS IS REACHED. => ALL BIMOLECULAR REACTIONS COMMENTED WITH ! ''' if os.path.isdir(newpath) == False: raise RuntimeError( 'The destination folder for the new mech does not exist ') else: with open(os.path.join(oldpath, 'kin.CKI'), mode='r') as mech_orig_file: mech_orig = mech_orig_file.readlines() newfile = copy.deepcopy(mech_orig) for idx, row in enumerate(newfile): if ISOM_EQUIL == 1 and row.find('=>') != -1 and row.strip()[0] != '!': # check first if you only want isomer equilibrium: so you delete all bimolecular reactions reactant = [x.strip() for x in row.split('=>')][0] reactant = [x.strip() for x in reactant.split('+')][0] product = [x.strip() for x in row.split('=>')][1] # only bimolecular products will be meaningful product = [x.strip() for x in product.split('+')][0] product = product.split()[0] # delete all the reactions involving species other than the reactants if np.array([reactant == REAC]).any() and np.array([product == REAC]).any(): delete = 'NO' else: delete = 'YES' elif PRODSINKS == 1 and row.find('=>') != -1 and row.strip()[0] != '!': # if there is no isom_equil, you did not delete all bimol. reactions: # so if you set product as sinks, then you have to delete those lines. # NB product sinks are incompatible with isom_equil # extract the first reactant of each row reactant = [x.strip() for x in row.split('=>')][0] reactant = [x.strip() for x in reactant.split('+')][0] # if the reactant of the line is in the list of products, comment the line if np.array([reactant == np.array(PRODS)]).any(): delete = 'YES' else: delete = 'NO' else: # any other case (read a reaction or an empty line with no need of deleting anything) delete = 'NO' # ON THE BASIS OF THE CONDITIONS ABOVE: DELETE THE REACTION OR NOT if delete == 'YES': # comment the line newfile[idx] = '!' + row # if duplicate reaction: comment also that # the "lower" notation is to trasfer all to lower cases so that you make the search independent of the font if newfile[idx+1].lower().find('DUPLICATE'.lower()) != -1 or newfile[idx+1].lower().find('DUP'.lower()) != -1: newfile[idx+1] = '!' + newfile[idx+1] # if PLOG: comment also all the lines below until you don't find PLOG anymore check_plog = 0 iline = 1 while check_plog == 0: if newfile[idx+iline].find('PLOG') != -1: newfile[idx+iline] = '!' + newfile[idx+iline] iline += 1 else: check_plog = 1 # check for duplicates if newfile[idx+iline].lower().find('DUPLICATE'.lower()) != -1 or newfile[idx+iline].lower().find('DUP'.lower()) != -1: newfile[idx+iline] = '!' + newfile[idx+iline] elif delete == 'NO': # copy the line as it is newfile[idx] = row # remove the file if it exists and write the new one if os.path.isfile(os.path.join(newpath, 'kin.txt')): os.remove(os.path.join(newpath, 'kin.txt')) with open(os.path.join(newpath, 'kin.txt'), mode='x') as inp: inp.writelines(newfile)
the-stack_0_15896
import random, math from agent import Agent from variables import * MAX_NEIGHBOR_FORCE = abs(math.log(FISH_SENSING_DISTANCE/FISH_DESIRED_DIST)) # Model attempt some sort of propagation wave. # Affected by propagation wave that pushes it farther away. # If a marked fish is in a certain PROP_DIST (meaning getting # attacked by Predator), then it experiences repulsive force. # Smaller repulsive farther from the marked fish it is. class PropagationFish(Agent): def __init__(self, sim, start_loc = None): random.seed() super().__init__(sim, start_loc) blue = random.randint(150, 255) green = random.randint(0, 100) red = random.randint(0, 100) missing = 400-blue-green-red red += missing//2 if red > 255: red = 255 green += missing//2 if green > 255: green = 255 self.nearby_predators = [] self.nearby_marked = [] self.marked = False self.color = (red, green, blue) def update(self): total_x_vec = 0.0 total_y_vec = 0.0 # Computing effect that nearby predators on fish. if len(self.nearby_predators) > 0: predators = self.nearby_predators for predator in predators: x_vec = 0.0 y_vec = 0.0 pred, dist = predator target = self.get_perceived_target_pos(pred.loc) x, y = self.get_vector_to_target(target) total_force = - PREDATOR_FISH_FORCE * pow((1.0)/dist, 4) total_x_vec += x * total_force total_y_vec += y * total_force # Compute effect of propagation wave and compute other effects normally. elif len(self.neighbors) > 0 or len(self.nearby_marked) > 0: marked = self.nearby_marked for fish in marked: x_vec = 0.0 y_vec = 0.0 a, dist = fish target = self.get_perceived_target_pos(a.loc) x, y = self.get_vector_to_target(target) total_force = -(1.0)*pow((1.0)/dist, 0.2) total_x_vec += x * total_force total_y_vec += y * total_force neighbors = self.neighbors if len(neighbors) > FISH_MAX_NEIGHBORS: neighbors = sorted(self.neighbors, key=lambda x: x[1]) neighbors = neighbors[:FISH_MAX_NEIGHBORS] for neighbor in neighbors: x_vec = 0 y_vec = 0 fish, dist = neighbor target = self.get_perceived_target_pos(fish.loc) x, y = self.get_vector_to_target(target) # Made the force between fishes stronger. Maybe change neighbor # force constant in variables.py? if dist > FISH_DESIRED_DIST: total_force = 10*FISH_NEIGHBOR_FORCE * math.log(dist/FISH_DESIRED_DIST)/MAX_NEIGHBOR_FORCE else: total_force = -pow(FISH_DESIRED_DIST-dist, 1.5) total_x_vec += x * total_force total_y_vec += y * total_force elif len(self.nearby_predators) == 0 and len(self.neighbors) == 0: # randomly adjust speed total_x_vec = (random.random() - 0.5) * 2 * FISH_ACCEL total_y_vec = (random.random() - 0.5) * 2 * FISH_ACCEL # normalize acceleration accel = abs(total_x_vec) + abs(total_y_vec) if accel > FISH_ACCEL: adj = FISH_ACCEL/accel total_x_vec *= adj total_y_vec *= adj self.x_speed += total_x_vec self.y_speed += total_y_vec # normalize speed speed = abs(self.x_speed) + abs(self.y_speed) if speed > FISH_SPEED: adj = FISH_SPEED/speed self.x_speed *= adj self.y_speed *= adj self.move()
the-stack_0_15897
# # (c) Copyright 2017-2018 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os def load_proxy(): # docker exposes all of these variables as build args # except for all_proxy proxy_keys = ('http_proxy', 'https_proxy', 'no_proxy', 'all_proxy', 'ftp_proxy') return {key: os.environ[key] for key in proxy_keys if key in os.environ} def split_image(image): """Get the tag from a full image name. 127.0.0.1:5000/image:latest => 127.0.0.1:5000/image, latest image:tag => image, tag """ parts = image.split('/', 1) if len(parts) == 1 or ( '.' not in parts[0] and ':' not in parts[0]): host, img = '', image else: host, img = parts if ':' in img: imagename, tag = img.rsplit(':', 1) else: imagename, tag = img, 'latest' if host: return host + "/" + imagename, tag return imagename, tag def all_blob_names(tree, parent=''): """This returns all blobs names from git tree object """ for t in tree.trees: for b in all_blob_names(t, os.path.join(parent, tree.name)): yield b for b in tree.blobs: yield os.path.join(parent, tree.name, b.name)
the-stack_0_15898
import subprocess import os import json from uuid import uuid4 from vo2mft.util import _solve_front_path, _twodof_solve_front_path, _twodof_body_fixed_solve_front_path def solve(env, eps=1e-8, ions=False, flags=None, twodof=False, twodof_body_indep=False): '''Return the solved final env corresponding to the given env, solved to accuracy given by eps. ''' solver_path = _solve_front_path() if twodof and twodof_body_indep: solver_path = _twodof_solve_front_path() elif twodof: solver_path = _twodof_body_fixed_solve_front_path() in_path, out_path = str(uuid4()), str(uuid4()) write_env_file(env, in_path) # Run solver. solver_call = None if twodof: solver_call = [solver_path, "--eps", str(eps)] if ions: solver_call.append("--ions") if flags != None: solver_call.extend(flags) solver_call.extend([in_path, out_path]) elif ions and not twodof: solver_call = [solver_path, "--eps", str(eps), "--ions"] if flags != None: solver_call.extend(flags) solver_call.extend([in_path, out_path]) subprocess.call(solver_call) # Read solver output, if it exists. final_env_path = out_path + "_fenv.json" final_env = None try: final_env = read_env_file(final_env_path) except FileNotFoundError: pass # Clean up solver input/output. try: os.remove(in_path) os.remove(final_env_path) except FileNotFoundError: pass return final_env def solve_set(envs, eps=1e-8, ions=False, flags=None, twodof=False, twodof_body_indep=False): '''Return a list of solved final envs corresponding to the given list of envs, solved to accuracy given by eps. The set of envs is solved serially (only one process is invoked). ''' final_envs = [] for i, initial_env in enumerate(envs): this_flags = None if flags != None: this_flags = flags[i] this_final_env = solve(initial_env, eps, ions, this_flags, twodof, twodof_body_indep) final_envs.append(this_final_env) return final_envs def write_env_file(env, env_path): env_str = json.dumps(env) with open(env_path, 'w') as fp: fp.write(env_str) def read_env_file(env_path): env = None with open(env_path, 'r') as fp: env_str = fp.read() env = json.loads(env_str) return env
the-stack_0_15899
import joblib import pytest import os import numpy as np import pandas as pd from sklearn.compose import ColumnTransformer from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder from mlserver.settings import ModelSettings, ModelParameters from mlserver.types import InferenceRequest from mlserver_sklearn import SKLearnModel TESTS_PATH = os.path.dirname(__file__) TESTDATA_PATH = os.path.join(TESTS_PATH, "testdata") def pytest_collection_modifyitems(items): """ Add pytest.mark.asyncio marker to every test. """ for item in items: item.add_marker("asyncio") @pytest.fixture def model_uri(tmp_path) -> str: n = 4 X = np.random.rand(n) y = np.random.rand(n) clf = DummyClassifier(strategy="prior") clf.fit(X, y) model_uri = os.path.join(tmp_path, "sklearn-model.joblib") joblib.dump(clf, model_uri) return model_uri @pytest.fixture def model_settings(model_uri: str) -> ModelSettings: return ModelSettings( name="sklearn-model", parameters=ModelParameters(uri=model_uri, version="v1.2.3"), ) @pytest.fixture async def model(model_settings: ModelSettings) -> SKLearnModel: model = SKLearnModel(model_settings) await model.load() return model @pytest.fixture def inference_request() -> InferenceRequest: payload_path = os.path.join(TESTDATA_PATH, "inference-request.json") return InferenceRequest.parse_file(payload_path) @pytest.fixture async def regression_model(tmp_path) -> SKLearnModel: # Build a quick DummyRegressor n = 4 X = np.random.rand(n) y = np.random.rand(n) clf = DummyRegressor() clf.fit(X, y) model_uri = os.path.join(tmp_path, "sklearn-regression-model.joblib") joblib.dump(clf, model_uri) settings = ModelSettings( name="sklearn-regression-model", parameters=ModelParameters(uri=model_uri, version="v1.2.3"), ) model = SKLearnModel(settings) await model.load() return model @pytest.fixture def pandas_model_uri(tmp_path) -> str: data: pd.DataFrame = pd.DataFrame( {"a": [1, 2, 3], "op": ["+", "+", "-"], "y": [11, 22, -33]} ) X: pd.DataFrame = data.drop("y", axis=1) y: pd.DataFrame = data["y"] numeric_features = ["a"] numeric_transformer = StandardScaler() categorical_features = ["op"] categorical_transformer = OneHotEncoder(handle_unknown="ignore") preprocessor = ColumnTransformer( transformers=[ ("num", numeric_transformer, numeric_features), ("cat", categorical_transformer, categorical_features), ] ) model = Pipeline( steps=[("preprocessor", preprocessor), ("regression", DummyRegressor())] ) model.fit(X, y) model_uri = os.path.join(tmp_path, "sklearn-pandas-model.joblib") joblib.dump(model, model_uri) return model_uri @pytest.fixture def pandas_model_settings(pandas_model_uri: str) -> ModelSettings: return ModelSettings( name="sklearn-pandas-model", parameters=ModelParameters(uri=pandas_model_uri, version="v1.2.3"), ) @pytest.fixture async def pandas_model(pandas_model_settings: ModelSettings) -> SKLearnModel: model = SKLearnModel(pandas_model_settings) await model.load() return model @pytest.fixture def pandas_inference_request() -> InferenceRequest: inference_request = { "parameters": {"content_type": "pd"}, "inputs": [ {"name": "a", "datatype": "INT32", "data": [10], "shape": [1]}, { "name": "op", "datatype": "BYTES", "data": ["-"], "shape": [1], "parameters": {"content_type": "str"}, }, ], } return InferenceRequest.parse_obj(inference_request)
the-stack_0_15900
"""Settings from flow_manager NApp.""" # Pooling frequency STATS_INTERVAL = 30 FLOWS_DICT_MAX_SIZE = 10000 # Time (in seconds) to wait retrieve box from storehouse BOX_RESTORE_TIMER = 0.1 ENABLE_CONSISTENCY_CHECK = True # List of flows ignored by the consistency check # To filter by a cookie or `table_id` use [value] # To filter by a cookie or `table_id` range [(value1, value2)] CONSISTENCY_COOKIE_IGNORED_RANGE = [] CONSISTENCY_TABLE_ID_IGNORED_RANGE = []
the-stack_0_15902
""" White space is used to control how whitespace is rendered. """ from ..defaults import BREAKPOINTS, UP, DOWN, FULL, ONLY from ...core import CssModule vals = [ ('n', 'normal'), ('nw', 'nowrap'), ('p', 'pre'), ] mdl = CssModule( 'White space', [UP], dynamic={'.ws': ['white-space']}, values=vals, docstring=__doc__ )
the-stack_0_15904
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- # ----------------------------------------------------------------------------- # # P A G E B O T # # Copyright (c) 2016+ Buro Petr van Blokland + Claudia Mens # www.pagebot.io # Licensed under MIT conditions # # Supporting DrawBot, www.drawbot.com # Supporting Flat, xxyxyz.org/flat # ----------------------------------------------------------------------------- # # variablecube2.py # from copy import copy from pagebot.elements.element import Element from pagebot.style import makeStyle from pagebot.toolbox.units import pointOffset from pagebot.toolbox.color import blackColor class VariableCube2(Element): """ >>> from pagebot.fonttoolbox.objects.font import findFont >>> from pagebot.document import Document >>> vfFont = findFont('RobotoDelta_v2-VF') >>> doc = Document(w=500, h=500, autoPages=1) >>> page = doc[1] >>> page.padding = 40 >>> vc = VariableCube2(vfFont, parent=page, x=40, y=40, w=page.pw) """ # Initialize the default behavior tags as different from Element. def __init__(self, font, point=None, parent=None, style=None, name=None, captionStyle=None, caption=None, location=None, dimensions=None, clipRect=None, mask=None, imo=None, **kwargs): Element.__init__(self, point=point, parent=parent, style=style, name=name, **kwargs) self.vfFont = font self.style = makeStyle(style, **kwargs) # Combine self.style from # Try to figure out the requested dimensions if the element display per axes. if dimensions is None: dimensions = dict(wght=5, wdth=5, opsz=5) self.dimensions = dimensions # Each element should check at this point if the minimum set of style values # are set and if their values are valid. assert self.w is not None and self.h is not None # Make sure that these are defined. # Make sure that this is a formatted string. Otherwise create it with the current style. # Note that in case there is potential clash in the double usage of fill and stroke. # FIXME: Review this: the 's' variable below is undefined. #self.glyphNames = s or 'e' self.glyphNames = 'e' # Store the external location, to allow other axis values to be set. if location is None: location = {} self.location = copy(location) def draw(self, view, origin): c = self.doc.context p = pointOffset(self.origin, origin) p = self._applyScale(view, p) px, py, _ = self._applyAlignment(p) # Ignore z-axis for now. fillColor = self.style.get('fill') if fillColor is not None: c.fill(fillColor) c.stroke((0.8, 0.8, 0.8), 0.5) c.rect(px, py, self.w, self.h) if len(self.dimensions) == 1: raise ValueError('Not supporting 1 axis now') if len(self.dimensions) > 2: raise ValueError('Not supporting >2 axis now') axisNames = sorted(self.dimensions.keys()) axisX = axisNames[0] sizeX = self.dimensions[axisX] axisY = axisNames[1] sizeY = self.dimensions[axisY] stepX = self.w / (sizeX+1) stepY = self.h / (sizeY+1) """Add more parametric layout behavior here.""" RANGE = 1000 for indexX in range(sizeX+1): for indexY in range(sizeY+1): ox = 30 oy = 25 ppx = ox + px + indexX * stepX ppy = oy + py + indexY * stepY self.location[axisX] = indexX * RANGE / sizeX self.location[axisY] = indexY * RANGE / sizeY glyphPathScale = self.fontSize/self.font.info.unitsPerEm c.drawGlyphPath(c, self.vfFont.ttFont, self.glyphNames[0], ppx, ppy, self.location, s=glyphPathScale, fillColor=(0, 0, 0)) bs = c.newString('%s %d\n%s %d' % (axisX, indexX * RANGE / sizeX, axisY, indexY * RANGE / sizeY), fontSize=6, fill=blackColor) w, h = bs.textSize() c.text(bs, ppx - stepX/4, ppy - 16) # Bit of hack, we need the width of the glyph here. bs = c.newString('Other axes: %s' % self.location, fontSize=6, fill=blackColor) w, h = bs.textSize() c.text(bs, px, py - 16) if __name__ == '__main__': import doctest import sys sys.exit(doctest.testmod()[0])
the-stack_0_15905
# -*- coding: utf-8 -*- from pydrake.multibody.parsing import ( Parser, PackageMap, LoadModelDirectives, ProcessModelDirectives, ModelInstanceInfo, AddFrame, GetScopedFrameByName, GetScopedFrameName, ) import os import unittest from pydrake.common import FindResourceOrThrow from pydrake.multibody.tree import ( ModelInstanceIndex, ) from pydrake.multibody.plant import ( MultibodyPlant, ) class TestParsing(unittest.TestCase): def test_package_map(self): dut = PackageMap() tmpdir = os.environ.get('TEST_TMPDIR') model = FindResourceOrThrow( "drake/examples/atlas/urdf/atlas_minimal_contact.urdf") # Simple coverage test for Add, Contains, size, GetPath, AddPackageXml. dut.Add(package_name="root", package_path=tmpdir) self.assertEqual(dut.size(), 1) self.assertTrue(dut.Contains(package_name="root")) self.assertEqual(dut.GetPath(package_name="root"), tmpdir) dut.AddPackageXml(filename=FindResourceOrThrow( "drake/multibody/parsing/test/box_package/package.xml")) # Simple coverage test for Drake paths. dut.PopulateUpstreamToDrake(model_file=model) self.assertGreater(dut.size(), 1) # Simple coverage test for folder and environment. dut.PopulateFromEnvironment(environment_variable='TEST_TMPDIR') dut.PopulateFromFolder(path=tmpdir) def test_parser_file(self): """Calls every combination of arguments for the Parser methods which use a file_name (not contents) and inspects their return type. """ sdf_file = FindResourceOrThrow( "drake/multibody/benchmarks/acrobot/acrobot.sdf") urdf_file = FindResourceOrThrow( "drake/multibody/benchmarks/acrobot/acrobot.urdf") for dut, file_name, model_name, result_dim in ( (Parser.AddModelFromFile, sdf_file, None, int), (Parser.AddModelFromFile, sdf_file, "", int), (Parser.AddModelFromFile, sdf_file, "a", int), (Parser.AddModelFromFile, urdf_file, None, int), (Parser.AddModelFromFile, urdf_file, "", int), (Parser.AddModelFromFile, urdf_file, "a", int), (Parser.AddAllModelsFromFile, sdf_file, None, list), (Parser.AddAllModelsFromFile, urdf_file, None, list), ): plant = MultibodyPlant(time_step=0.01) parser = Parser(plant=plant) if model_name is None: result = dut(parser, file_name=file_name) else: result = dut(parser, file_name=file_name, model_name=model_name) if result_dim is int: self.assertIsInstance(result, ModelInstanceIndex) else: assert result_dim is list self.assertIsInstance(result, list) self.assertIsInstance(result[0], ModelInstanceIndex) def test_parser_string(self): """Checks parsing from a string (not file_name).""" sdf_file = FindResourceOrThrow( "drake/multibody/benchmarks/acrobot/acrobot.sdf") with open(sdf_file, "r") as f: sdf_contents = f.read() plant = MultibodyPlant(time_step=0.01) parser = Parser(plant=plant) result = parser.AddModelFromString( file_contents=sdf_contents, file_type="sdf") self.assertIsInstance(result, ModelInstanceIndex) def test_model_directives(self): model_dir = os.path.dirname(FindResourceOrThrow( "drake/multibody/parsing/test/" "process_model_directives_test/package.xml")) plant = MultibodyPlant(time_step=0.01) parser = Parser(plant=plant) parser.package_map().PopulateFromFolder(model_dir) directives_file = model_dir + "/add_scoped_top.yaml" directives = LoadModelDirectives(directives_file) added_models = ProcessModelDirectives( directives=directives, plant=plant, parser=parser) # Check for an instance. model_names = [model.model_name for model in added_models] self.assertIn("extra_model", model_names) plant.GetModelInstanceByName("extra_model") # Test that other bound symbols exist. ModelInstanceInfo.model_name ModelInstanceInfo.model_path ModelInstanceInfo.parent_frame_name ModelInstanceInfo.child_frame_name ModelInstanceInfo.X_PC ModelInstanceInfo.model_instance AddFrame.name AddFrame.X_PF frame = GetScopedFrameByName(plant, "world") self.assertIsNotNone(GetScopedFrameName(plant, frame)) def test_model_directives_doc(self): """Check that the warning note in the docstring was added.""" self.assertIn("Note:\n", ProcessModelDirectives.__doc__)
the-stack_0_15906
import signal import socket import subprocess import time from eth_utils import ( to_text, ) import requests def wait_for_socket(ipc_path, timeout=60): start = time.time() while time.time() < start + timeout: try: sock = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) sock.connect(ipc_path) sock.settimeout(timeout) except (FileNotFoundError, socket.error): time.sleep(0.01) else: break def wait_for_http(endpoint_uri, timeout=60): start = time.time() while time.time() < start + timeout: try: requests.get(endpoint_uri) except requests.ConnectionError: time.sleep(0.01) else: break def get_process(command_list, terminates=False): proc = subprocess.Popen( command_list, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) if terminates: wait_for_popen(proc, 30) try: yield proc finally: kill_proc_gracefully(proc) output, errors = proc.communicate() print( "Parity Process Exited:\n" "stdout:{0}\n\n" "stderr:{1}\n\n".format( to_text(output), to_text(errors), ) ) def wait_for_popen(proc, timeout): start = time.time() while time.time() < start + timeout: if proc.poll() is None: time.sleep(0.01) else: break def kill_proc_gracefully(proc): if proc.poll() is None: proc.send_signal(signal.SIGINT) wait_for_popen(proc, 13) if proc.poll() is None: proc.terminate() wait_for_popen(proc, 5) if proc.poll() is None: proc.kill() wait_for_popen(proc, 2)
the-stack_0_15907
import math import statistics as stats import numpy as np from Modulos.Utils import Truncate def FuncionAcumuladaExponencial(x, valor_lambda): '''La función devuelve el valor de la función acumulada para la distribución exponencial valuada en X Parámetros: x: variable a valuar la función valor_lambda: valor del lambda calculado para la serie''' return 1-math.exp(-valor_lambda*x) def FuncionDensidadNormal(x, media, desviacion_estandar): '''La función devuelve el valor de la función de densidad para la distribución normal valuada en X Parámetros: x: variable a valuar la función media: media calculada para la serie desviacion_estandar: desviación estandar calculada para la serie''' return (math.exp(-0.5*((x-media)/desviacion_estandar)**2))/(desviacion_estandar*math.sqrt(2*math.pi)) def FuncionAcumuladaUniforme(a, b, x): '''La función devuelve el valor de la función acumulada para la distribución uniforme valuada en X Parámetros: x: variable a valuar la función a: extremo superior b: extremo inferior''' return (x-a)/(b-a) def ProbabilidadAcumuladaExponencial(desde, hasta, valor_lambda): '''La función devuelve el valor de la probabilidad acumulada para la distribución Exponencial Parámetros: desde: valor inicial del intervalo hasta: valor final del intervalo valor_lambda: valor del lambda calculado para la serie''' return FuncionAcumuladaExponencial(hasta, valor_lambda) - FuncionAcumuladaExponencial(desde, valor_lambda) def ProbabilidadAcumuladaUniforme(desde, hasta, a, b): '''La función devuelve el valor de la probabilidad acumulada para la distribución uniforme Parámetros: desde: valor inicial del intervalo hasta: valor final del intervalo a: extremo superior b: extremo inferior''' return FuncionAcumuladaUniforme(a, b, hasta) - FuncionAcumuladaUniforme(a, b, desde) def FrecuenciasEsperadas(tamaño_muestra, intervalos, tipoDistribucion, media, desviacion_estandar, a, b): '''La función calcula la frecuencia esperada para cada intervalo según el tipo de distribución elegida Parámetros: tamaño_muestra: entero que representa la cantidad de elementos de la serie intervalos: intervalos Dict<str, extremos> Diccionario que utiliza como clave la representacion del intervalo tipoDistribucion: entero que representa el tipo de distribución elegida como hipótesis nula (0=uniforme, 1=exponencial, 2=normal) media: media calculada para la serie desviacion_estandar: desviacion estandar calculada para la serie a: valor minimo de la serie b: valor maximo de la serie Return: lista con frecuencias esperadas''' frec_esp_arr = [] if tipoDistribucion == 1: valor_lambda = Truncate(1/media, 7) for i in intervalos: intervalo = intervalos[i] desde, hasta = intervalo[0], intervalo[1] if tipoDistribucion == 0: prob = ProbabilidadAcumuladaUniforme(desde, hasta, a, b) frec_esp = round(prob*tamaño_muestra) elif tipoDistribucion == 1: prob = ProbabilidadAcumuladaExponencial(desde, hasta, valor_lambda) frec_esp = Truncate(prob*tamaño_muestra, 4) elif tipoDistribucion == 2: marca_clase = (desde+hasta)/2 prob = FuncionDensidadNormal(marca_clase, media, desviacion_estandar) * (hasta-desde) frec_esp = Truncate(prob*tamaño_muestra, 4) frec_esp_arr.append(frec_esp) return frec_esp_arr def testFrecuenciasEsperadasExponencial(): arr = [0.10, 0.25, 1.53, 2.83, 3.50, 4.14, 5.65, 6.96, 7.19, 8.25,1.20, 5.24, 4.75, 3.96, 2.21, 3.15, 2.53, 1.16, 0.32, 0.90, 0.87, 1.34, 1.87, 2.91, 0.71, 1.69, 0.69, 0.55, 0.43, 0.26] intervalos = {'0 - 1': [0, 1], '1 - 2': [1, 2], '2 - 3': [2, 3], '3 - 4': [3, 4], '4 - 5': [4, 5], '5 - 6': [5, 6], '6 - 7': [6, 7], '7 - 8': [7, 8], '8 - 9': [8, 9], '9 - 10': [9, 10]} tipoDistribucion = 1 tamaño_muestra = 30 a, b = min(arr), max(arr) media = stats.mean(arr) print('Media:', media) desviacion_estandar = np.std(arr, ddof=1) frec_esp = FrecuenciasEsperadas(tamaño_muestra, intervalos, tipoDistribucion, media, desviacion_estandar, a, b) print(frec_esp) def testFrecuenciasEsperadasNormal(): arr = [1.56, 2.21, 3.15, 4.61, 4.18, 5.20, 6.94, 7.71, 5.15, 6.76, 7.28, 4.23, 3.21, 2.75, 4.69, 5.86, 6.25, 4.27, 4.91, 4.78, 2.46, 3.97, 5.71, 6.19, 4.20, 3.48, 5.83, 6.36, 5.90, 5.43] intervalos = {'0 - 1': [0, 1], '1 - 2': [1, 2], '2 - 3': [2, 3], '3 - 4': [3, 4], '4 - 5': [4, 5], '5 - 6': [5, 6], '6 - 7': [6, 7], '7 - 8': [7, 8], '8 - 9': [8, 9], '9 - 10': [9, 10]} media = stats.mean(arr) print('Media:', media) desviacion_estandar = np.std(arr, ddof=1) print('Desv estandar: ', desviacion_estandar) tipoDistribucion = 2 tamaño_muestra = 30 a, b = min(arr), max(arr) frec_esp = FrecuenciasEsperadas(tamaño_muestra, intervalos, tipoDistribucion, media, desviacion_estandar, a, b) print(frec_esp) def testFrecuenciasEsperadasUniforme(): arr = [0.15, 0.22, 0.41, 0.65, 0.84, 0.81, 0.62, 0.45, 0.32, 0.07, 0.11, 0.29, 0.58, 0.73, 0.93, 0.97, 0.79, 0.55, 0.35, 0.09, 0.99, 0.51, 0.35, 0.02, 0.19, 0.24, 0.98, 0.10, 0.31, 0.17] intervalos = {'0.0 - 0.2': [0.0, 0.2], '0.2 - 0.4': [0.2, 0.4], '0.4 - 0.6': [0.4, 0.6], '0.6 - 0.8': [0.6, 0.8], '0.8 - 1.0': [0.8, 1.0]} media = stats.mean(arr) desviacion_estandar = np.std(arr, ddof=1) tipoDistribucion = 0 tamaño_muestra = 30 a, b = min(arr), max(arr) print(a,b) frec_esp = FrecuenciasEsperadas(tamaño_muestra, intervalos, tipoDistribucion, media, desviacion_estandar, a, b) print(frec_esp)
the-stack_0_15909
# From the OpenCV library import imread function only. from cv2 import imread # Reading the image using imread() function image = imread("../0_assets/road.jpg") # Extracting RGB values. # Here we have randomly choose a pixel. # The [100, 100] represents pixel position in X and Y. # Keep note that you have to be in bounds with respect to image size. (B, G, R) = image[100, 100] # Display the pixel values print("R = {}, G = {}, B = {}".format(R, G, B)) # We can also specify color channel to extract on a pixel. # The color channel parameter is on the 3rd parameter of image. # ! Which I guess specifies B color of the pixel (???) B = image[100, 100, 0] print("B = {}".format(B))
the-stack_0_15910
import os import numpy as np from scipy import fftpack import matplotlib.pyplot as plt from astropy.io import fits from astropy.wcs import WCS from astropy.stats import SigmaClip from astropy.stats import gaussian_fwhm_to_sigma from astropy.convolution import Gaussian2DKernel from astropy.coordinates import SkyCoord from astropy.wcs.utils import skycoord_to_pixel from astropy.wcs.utils import proj_plane_pixel_scales from astropy import units as u from photutils import source_properties from photutils import detect_sources from photutils import Background2D, MedianBackground import huntsman_dust.util_plot as util_plot def image_load(image_path): """Returns image, header and wcs objects. Args: image_path(str, required): Image path to particular FITs. File Returns: image(array): This is the image data header(table): This is the header object wcs: World Coordinte System object """ hdulist = fits.open(image_path) image = hdulist[0].data header = hdulist[0].header wcs = WCS(header) return image, header, wcs def background_2D(image, sigma, iters, box_size, filter_size, plt_grid): """2D background estimation. This function creates a 2D background estimate by dividing the image into a grid, defined by box_size. Args: image(array, required): This is the image data sigma(float, required): Sigma level iters(int, required): Number of iterations box_size(int, required): Defines the box dimesions, in pixels filter_size(int, required): Defines the filter reach in pixels plt_grid(boolean): Overplot grid on image Returns: bkg(array): 2D background level bkgrms(array): RMS background """ sigma_clip = SigmaClip(sigma=sigma, iters=iters) mask = (image == 0) bkg_estimator = MedianBackground() bkg = Background2D(image, box_size=box_size, filter_size=filter_size, sigma_clip=sigma_clip, bkg_estimator=bkg_estimator, mask=mask, edge_method=u'pad') # print('Background Median: ' + str(bkg.background_median)) # print('Background RMS median: ' + str(bkg.background_rms_median)) if plt_grid is True: plt.imshow(bkg.background, origin='lower', cmap='Greys') bkg.plot_meshes(outlines=True, color='#1f77b4') bkgrms = bkg.background_rms return bkg, bkgrms def find_objects(image, threshold, FWHM, npixels): """Find sources in image by a segmentation process. This function detects sources a given sigma above a threshold, only if it has more that npixels that are interconnected. Args: image(array, required): This is the image data threshold(array, required): This is the threshold above which detection occurs FWHM(int, required): Full Width Half Maximum of 2D circular gaussian kernel used to filter the image prior to thresholding. Input is in terms of pixels. npixels(int, required): The minimum number of pixels to define a sources Returns: segm: The segmentation image """ sigma = FWHM * gaussian_fwhm_to_sigma kernel = Gaussian2DKernel(sigma, x_size=3, y_size=3) kernel.normalize() segm = detect_sources(image, threshold, npixels=npixels, filter_kernel=kernel) return segm def ds9_region(image_path, image, segm, wcs, ds9_region): """"Creates ds9 region file. This function creates a ds9 region file to display the sources detected by the segmentation function. This file is written to the same directory the fits files are in. Args: image_path(str, required): Image path to particular FITs. File image(array, required): This is the image data segm: The segmentation image wcs: World Coordinte System object ds9_region(boolean, opt): If true, creates region file """ if ds9_region is True: data_path = os.path.splitext(image_path) region_path = str(data_path[0]) + '_ds9region' scale = proj_plane_pixel_scales(wcs) image_scale = scale[0] reg = source_properties(image, segm, wcs=wcs) with open(region_path+'.reg', 'w') as f: f.write('# Region file format: DS9 version 7.6\n\n') f.write('global color=#ff7733\n') f.write('global width=2\n') f.write('fk5\n\n') for i in range(0, len(reg.id)): x = reg[i].sky_centroid_icrs.ra.to(u.deg) y = reg[i].sky_centroid_icrs.dec r = image_scale*reg[i].equivalent_radius f.write('circle('+str(x.value)+','+str(y.value)+',' + str(r.value)+')'+' # Source Number:' + str(reg[i].id)+'\n') def mask_galaxy(image, wcs, Ra, Dec, name, radius): """Masks galaxy at Ra, Dec within a radius given in arcminutes Creates a circular mask centered at a given Ra, Dec. The radius is given in arcmins. The wcs object is used to convert these inputs to pixel locations. A pixel scale is also determined. If the object name is suppled, SESAME is used to find object center. If no active internet connection is available, center location must be manually entered, in degrees. If no center coordinates are supplied, (0, 0) is the default center. Args: image(array, required): Image data wcs: World Coordinte System object name(str, optional): Name of galaxy or object Ra(str): Right Ascention Dec(str): Declination Radius(float, required): Radius to be masked, in arcminutes Returns: masked_img(array): Image which has been masked mask(boolean array): Mask of the given object""" # Radius must be given in arcminutes # Dimentions of the image dim = (image.shape) y, x = dim[0], dim[1] # Finds the center of an object by inputting its name into SESAME # This requires an active internet connection # a, b are the coordinates of the center given in pixels try: center = SkyCoord.from_name(name) except Exception: print("No active internet connection. Manually enter Ra, Dec.") Ra = Ra Dec = Dec center = SkyCoord(Ra, Dec, unit="deg") c_pix = skycoord_to_pixel(center, wcs) a, b = c_pix[0], c_pix[1] print(center) radius = radius*u.arcmin # Finds pixel scale using WSC object. The default units can be found by # unit = header['CUNIT1'], they are degrees by convention # degrees are converted to arcmins and radius in computed in pixels scale = proj_plane_pixel_scales(wcs) pix_scale = scale[0]*u.deg.to(u.arcmin) print('Image Scale: ' + str(pix_scale)+' arcmin/pix') rad_pix = (radius/pix_scale).value # Indexes each pixel and checks if its is >= radius from center Y, X = np.ogrid[:y, :x] dist_from_center = np.sqrt((X - a)**2 + (Y - b)**2) mask = dist_from_center <= rad_pix return mask def plt_fits(image, wcs, figure, title, cmap, norm): """Plots FITs images with axis given in Ra, Dec. Args: image(array): Image data wcs: World Coordinte System object figure(optional): Figure Number title(str, optional): Title of the figure cmap(str, optiona): Color map norm: Image normalizatuion """ util_plot.util_plot() fig = plt.figure(num=figure) ax = fig.add_subplot(1, 1, 1, projection=wcs) ax.imshow(image, origin='lower', cmap=cmap, norm=norm) ax.coords[0].set_axislabel('RA') ax.coords[1].set_axislabel('DEC') ax.set_title(title) def plt_image(image, figure, title, xlabel, ylabel, cmap, norm): """Plots FITs images with axis given in Ra, Dec. Args: image(array): Image data wcs: World Coordinte System object figure(optional): Figure Number title(str, optional): Title of the figure cmap(str, optiona): Color map norm: Image normalizatuion """ util_plot.util_plot() plt.figure(num=figure) plt.imshow(image, origin='lower', cmap=cmap, norm=norm) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) def fits_write(image, header, img_path, name=None): """Writes an 2D data array to a fits file. Writes a 2D array to a fits file in the same directory as the oringinal image. It appends the image header to this new fits file. Args: image(array): The image data to be written to a fits file header(hdu.header): The header information to be appended img_path(str): Path to source file name(str): Name of new fits file. Ex: mask.fits """ hdu = fits.PrimaryHDU() hdu.data = image.astype(float) hdu.header = header data_path, file = os.path.split(img_path) file_path = os.path.join(data_path, name + "."+'fits') hdu.writeto(file_path, overwrite=True) def azimuthalAverage(image, center=None): """ Calculate the azimuthally averaged radial profile. image - The 2D image center - The [x,y] pixel coordinates used as the center. The default is None, which then uses the center of the image (including fracitonal pixels). Contributed by Jessica R. Lu """ # Calculate the indices from the image y, x = np.indices(image.shape) if not center: center = np.array([(y.max()-y.min())/2.0, (x.max()-x.min())/2.0]) r = np.hypot(x - center[1], y - center[0]) # Get sorted radii ind = np.argsort(r.flat) r_sorted = r.flat[ind] i_sorted = image.flat[ind] # Get the integer part of the radii (bin size = 1) r_int = r_sorted.astype(int) # Find all pixels that fall within each radial bin. deltar = r_int[1:] - r_int[:-1] # Assumes all radii represented rind = np.where(deltar)[0] # location of changed radius nr = rind[1:] - rind[:-1] # number of radius bin # Cumulative sum to figure out sums for each radius bin csim = np.cumsum(i_sorted, dtype=float) tbin = csim[rind[1:]] - csim[rind[:-1]] radial_prof = tbin / nr return radial_prof def p_spec(image): """Performs 2D FFT on image and averages radially.""" image = image.astype(float) psd2D = np.abs(fftpack.fftshift(fftpack.fft2(image)))**2 psd1D = azimuthalAverage(psd2D) return psd1D
the-stack_0_15912
import typing from abc import ABC, abstractmethod from .utils import image as image_utils class CameraBase(ABC): @abstractmethod def read(self) -> typing.Tuple[bool, typing.Any]: ... @abstractmethod def release(self) -> None: ... class CvCamera(CameraBase): def __init__(self, width: int, cam_id=0): try: import cv2 except ModuleNotFoundError: raise ModuleNotFoundError( "OpenCV could not be found. Please see instructions on how to configure your system." ) self.__camera = cv2.VideoCapture(cam_id) self.__width = width def read(self): ok, frame = self.__camera.read() if not ok: return ok, None return ok, image_utils.resize(frame, self.__width) def release(self): self.__camera.release()
the-stack_0_15913
# SPDX-License-Identifier: Apache-2.0 # # The OpenSearch Contributors require contributions made to # this file be licensed under the Apache-2.0 license or a # compatible open source license. import unittest from unittest.mock import MagicMock, patch from git.git_repository import GitRepository from manifests_workflow.component_opensearch_dashboards_min import ComponentOpenSearchDashboardsMin from system.config_file import ConfigFile class TestComponentOpenSearchDashboardsMin(unittest.TestCase): @patch("subprocess.check_output") def test_branches(self, mock: MagicMock) -> None: mock.return_value = "\n".join(["main", "1.x", "1.21", "20.1", "something", "else"]).encode() self.assertEqual(ComponentOpenSearchDashboardsMin.branches(), ["main", "1.x", "1.21", "20.1"]) mock.assert_called_with( "git ls-remote https://github.com/opensearch-project/OpenSearch-Dashboards.git refs/heads/* | cut -f2 | cut -d/ -f3", shell=True, ) @patch("os.makedirs") @patch.object(GitRepository, "__checkout__") def test_checkout(self, *mocks: MagicMock) -> None: component = ComponentOpenSearchDashboardsMin.checkout("path") self.assertEqual(component.name, "OpenSearch-Dashboards") self.assertFalse(component.snapshot) @patch.object(ConfigFile, "from_file") def test_version(self, mock_config: MagicMock) -> None: mock_config.return_value = ConfigFile('{"version":"2.1"}') component = ComponentOpenSearchDashboardsMin(MagicMock(working_directory="path")) self.assertEqual(component.version, "2.1") @patch.object(ConfigFile, "from_file") def test_properties(self, mock_config: MagicMock) -> None: mock_config.return_value = ConfigFile('{"version":"2.1"}') component = ComponentOpenSearchDashboardsMin(MagicMock(working_directory="path")) self.assertEqual(component.properties.get_value("version"), "2.1") @patch.object(ConfigFile, "from_file") def test_to_dict(self, mock_config: MagicMock) -> None: mock_config.return_value = ConfigFile('{"version":"2.1"}') repo = MagicMock(ref="ref", url="repo") component = ComponentOpenSearchDashboardsMin(repo) self.assertEqual( component.to_dict(), {"name": "OpenSearch-Dashboards", "ref": "ref", "repository": "repo"}, )
the-stack_0_15914
from myClasses import * import openpyxl from openpyxl import load_workbook import mdToArray import os import shutil from openpyxl.styles import Font class ArrayToExcel: def __init__(self): self.book = None self.books=[] self.templateBookPath=None self.templateSheetName = None self.startRow = None self.startCol = None self.baseFont=None # self.templateWb=None return def reset(self): self.book=None self.books=[] def setBook(self, book: Book): self.book = book def addBook(self,book:Book): self.books.append(book) def readTemplate(self, path, templateSheetName: str, startRow: int, startCol: int): # self.wb = load_workbook(filename=path, keep_vba=True) self.templateBookPath=path self.templateSheetName = templateSheetName self.startCol = startCol self.startRow = startRow # cant't copy sheet from book A to book B. # self.templateWb=load_workbook(filename=self.templateBookPath, keep_vba=True,read_only=False) def generateBook(self,outputPath:str,font:str,size): outputDir=outputPath[0:outputPath.rfind("\\")] if not os.path.exists(outputPath): if not os.path.exists(outputDir): os.makedirs(outputDir) shutil.copy(self.templateBookPath, outputPath) # wb=load_workbook(filename=self.templateBookPath, keep_vba=True,read_only=False) wb=load_workbook(outputPath,keep_vba=True,read_only=False) for sheet in self.book.sheets: # type:Sheet print(sheet.sheetName) print(sheet.data) #delete before created sheet if sheet.sheetName in wb.sheetnames: std=wb.get_sheet_by_name(sheet.sheetName) wb.remove_sheet(std) ws=None if self.templateSheetName in wb.sheetnames: ws = wb.copy_worksheet( wb.get_sheet_by_name(self.templateSheetName)) else: ws=wb.create_sheet() ws.title = sheet.sheetName # rootFont=ws.cell(self.startRow+1, self.startCol+1).font # self.baseFont=Font(name=rootFont.name,sz=rootFont.sz) self.baseFont=Font(name=font,size=size) for r, row in enumerate(sheet.data): for c, column in enumerate(row): if column != "": self.__setVal(ws, r+1, c+1, column) std=wb.get_sheet_by_name('template') wb.remove_sheet(std) wb.save(outputPath) wb.close() return def generateBooks(self,outputPath:str,font:str,size): outputDir=outputPath[0:outputPath.rfind("\\")] if not os.path.exists(outputPath): if not os.path.exists(outputDir): os.makedirs(outputDir) shutil.copy(self.templateBookPath, outputPath) # wb=load_workbook(filename=self.templateBookPath, keep_vba=True,read_only=False) wb=load_workbook(outputPath,keep_vba=True,read_only=False) for book in self.books: for sheet in book.sheets: # type:Sheet print(sheet.sheetName) print(sheet.data) #delete before created sheet if sheet.sheetName in wb.sheetnames: std=wb.get_sheet_by_name(sheet.sheetName) wb.remove_sheet(std) ws=None if self.templateSheetName in wb.sheetnames: ws = wb.copy_worksheet( wb.get_sheet_by_name(self.templateSheetName)) else: ws=wb.create_sheet() ws.title = sheet.sheetName # rootFont=ws.cell(self.startRow+1, self.startCol+1).font # self.baseFont=Font(name=rootFont.name,sz=rootFont.sz) self.baseFont=Font(name=font,size=size) for r, row in enumerate(sheet.data): for c, column in enumerate(row): if column != "": self.__setVal(ws, r+1, c+1, column) wb.save(outputPath) wb.close() return def __setVal(self, ws: openpyxl.worksheet, row, col, val): cell=ws.cell(row=row+self.startRow, column=col+self.startCol) cell.font=self.baseFont cell.value=val return if __name__ == "__main__": # mte = mdToArray.MdToArray() # mte.read("mdDocs/sample.md") # mte.compile() import pickle # with open("book.pickle","wb")as f: # pickle.dump(mte.book, f) with open("book.pickle", "rb")as f: book = pickle.load(f) ate = ArrayToExcel() ate.setBook(book=book) ate.readTemplate("format.xlsm", "template", 3, 3) ate.generateBook()
the-stack_0_15916
import salabim as sim left = -1 right = +1 def sidename(side): return "l" if side == left else "r" def shortname(ship): s = "" for c in ship.name(): if c != ".": s = s + c return s def shipcolor(side): if side == left: return "blue" else: return "red" def ship_polygon(ship): return (ship.side * (ship.length - 2), 0, ship.side * 3, 0, ship.side * 2, 3, ship.side * (ship.length - 2), 3) def lock_water_rectangle(t): if lock.mode() == "Switch": y = sim.interpolate(t, lock.mode_time(), lock.scheduled_time(), ylevel[lock.side], ylevel[-lock.side]) else: y = ylevel[lock.side] return (xdoor[left], -waterdepth, xdoor[right], y) def lock_door_left_rectangle(t): if lock.mode() == "Switch" or lock.side == right: y = ylevel[right] + 2 else: y = ylevel[left] - waterdepth return (xdoor[left] - 1, -waterdepth, xdoor[left] + 1, y) def lock_door_right_rectangle(t): if lock.mode() == "Switch" or lock.side == left: y = ylevel[right] + 2 else: y = ylevel[right] - waterdepth return (xdoor[right] - 1, -waterdepth, xdoor[right] + 1, y) def animation_pre_tick(self, t): if lock.mode() == "Switch": y = sim.interpolate(t, lock.mode_time(), lock.scheduled_time(), ylevel[lock.side], ylevel[-lock.side]) else: y = ylevel[lock.side] lockqueue.animate(x=xdoor[-lock.side], y=y, direction="w" if lock.side == left else "e") def do_animation(): global ylevel, xdoor, waterdepth lockheight = 5 waterdepth = 2 ylevel = {left: 0, right: lockheight} xdoor = {left: -0.5 * locklength, right: 0.5 * locklength} xbound = {left: -1.2 * locklength, right: 1.2 * locklength} sim.Environment.animation_pre_tick = animation_pre_tick env.animation_parameters( x0=xbound[left], y0=-waterdepth, x1=xbound[right], modelname="Lock", speed=8, background_color="20%gray" ) for side in [left, right]: wait[side].animate(x=xdoor[side], y=10 + ylevel[side], direction="n") sim.Animate(rectangle0=(xbound[left], ylevel[left] - waterdepth, xdoor[left], ylevel[left]), fillcolor0="aqua") sim.Animate(rectangle0=(xdoor[right], ylevel[right] - waterdepth, xbound[right], ylevel[right]), fillcolor0="aqua") a = sim.Animate(rectangle0=(0, 0, 0, 0), fillcolor0="aqua") a.rectangle = lock_water_rectangle a = sim.Animate(rectangle0=(0, 0, 0, 0)) a.rectangle = lock_door_left_rectangle a = sim.Animate(rectangle0=(0, 0, 0, 0)) a.rectangle = lock_door_right_rectangle a = sim.Animate(text="", x0=10, y0=650, screen_coordinates=True, fontsize0=15, font="narrow", anchor="w") a.text = lambda t: "mean waiting left : {:5.1f} (n={})".format( wait[left].length_of_stay.mean(), wait[left].length_of_stay.number_of_entries() ) a = sim.Animate(text="", x0=10, y0=630, screen_coordinates=True, fontsize0=15, font="narrow", anchor="w") a.text = lambda t: "mean waiting right: {:5.1f} (n={})".format( wait[right].length_of_stay.mean(), wait[right].length_of_stay.number_of_entries() ) a = sim.Animate(text="xx=12.34", x0=10, y0=610, screen_coordinates=True, fontsize0=15, font="narrow", anchor="w") a.text = lambda t: " nr waiting left : {:3d}".format(wait[left].length()) a = sim.Animate(text="xx=12.34", x0=10, y0=590, screen_coordinates=True, fontsize0=15, font="narrow", anchor="w") a.text = lambda t: " nr waiting right: {:3d}".format(wait[right].length()) sim.AnimateSlider( x=520, y=0, width=100, height=20, vmin=16, vmax=60, resolution=4, v=iat, label="iat", action=set_iat, xy_anchor="nw", ) sim.AnimateSlider( x=660, y=0, width=100, height=20, vmin=10, vmax=60, resolution=5, v=meanlength, label="mean length", action=set_meanlength, xy_anchor="nw", ) def set_iat(val): global iat iat = float(val) def set_meanlength(val): global meanlength meanlength = float(val) class Shipgenerator(sim.Component): def process(self): while True: yield self.hold(sim.Exponential(iat).sample()) ship = Ship(name=sidename(self.side) + "ship.") ship.side = self.side ship.length = meanlength * sim.Uniform(2.0 / 3, 4.0 / 3).sample() if lock.mode() == "Idle": lock.activate() class Ship(sim.Component): def animation_objects(self, q): size_x = self.length size_y = 5 if self.side == left: anchor = "se" else: anchor = "sw" an1 = sim.Animate(polygon0=ship_polygon(self), fillcolor0=shipcolor(self.side), anchor=anchor, linewidth0=0) an2 = sim.Animate( text=shortname(self), textcolor0="white", anchor=anchor, fontsize0=2.4, offsetx0=self.side * 5, offsety0=0.7 ) return (size_x, size_y, an1, an2) def process(self): self.enter(wait[self.side]) if lock.ispassive(): lock.activate() yield self.request((lockmeters[self.side], self.length), key_in[self.side]) self.leave(wait[self.side]) self.enter(lockqueue) yield self.hold(intime) self.release(key_in[self.side]) yield self.request(key_out) self.leave(lockqueue) yield self.hold(outtime) self.release(key_out) class Lock(sim.Component): def process(self): yield self.request(key_in[left]) yield self.request(key_in[right]) yield self.request(key_out) while True: if len(key_in[self.side].requesters()) == 0: if len(key_in[-self.side].requesters()) == 0: yield self.passivate() self.release(key_in[self.side]) yield self.request((key_in[self.side], 1, 1000)) lockmeters[self.side].release() yield self.hold(switchtime, mode="Switch") self.side = -self.side self.release(key_out) yield self.request((key_out, 1, 1000), mode=None) env = sim.Environment() locklength = 60 switchtime = 10 intime = 2 outtime = 2 meanlength = 30 iat = 30 lockmeters = {} key_in = {} wait = {} lockqueue = sim.Queue("lockqueue") key_out = sim.Resource(name=" key_out") for side in (left, right): wait[side] = sim.Queue(name=sidename(side) + "Wait") lockmeters[side] = sim.Resource(capacity=locklength, name=sidename(side) + " lock meters", anonymous=True) key_in[side] = sim.Resource(name=sidename(side) + " key in") shipgenerator = Shipgenerator(name=sidename(side) + "Shipgenerator") shipgenerator.side = side lock = Lock(name="lock") lock.side = left do_animation() env.run()
the-stack_0_15917
#!/usr/bin/env python3 from math import exp, pi import os import random import torch import unittest import gpytorch from gpytorch.kernels import RBFKernel, ScaleKernel from gpytorch.likelihoods import GaussianLikelihood from gpytorch.means import ConstantMean from gpytorch.priors import SmoothedBoxPrior from gpytorch.distributions import MultivariateNormal from torch.utils.data import TensorDataset, DataLoader # Simple training data: let's try to learn a sine function, # but with KISS-GP let's use 100 training examples. def make_data(): train_x = torch.linspace(0, 1, 1000) train_y = torch.sin(train_x * (4 * pi)) + torch.randn(train_x.size()) * 0.2 test_x = torch.linspace(0.02, 1, 51) test_y = torch.sin(test_x * (4 * pi)) return train_x, train_y, test_x, test_y class GPRegressionModel(gpytorch.models.ApproximateGP): def __init__(self, grid_size=20, grid_bounds=[(-0.1, 1.1)]): variational_distribution = gpytorch.variational.CholeskyVariationalDistribution( num_inducing_points=int(pow(grid_size, len(grid_bounds))) ) variational_strategy = gpytorch.variational.GridInterpolationVariationalStrategy( self, grid_size=grid_size, grid_bounds=grid_bounds, variational_distribution=variational_distribution ) super(GPRegressionModel, self).__init__(variational_strategy) self.mean_module = ConstantMean(prior=SmoothedBoxPrior(-10, 10)) self.covar_module = ScaleKernel(RBFKernel(lengthscale_prior=SmoothedBoxPrior(exp(-3), exp(6), sigma=0.1))) def forward(self, x): mean_x = self.mean_module(x) covar_x = self.covar_module(x) return MultivariateNormal(mean_x, covar_x) class TestKISSGPVariationalRegression(unittest.TestCase): def setUp(self): if os.getenv("UNLOCK_SEED") is None or os.getenv("UNLOCK_SEED").lower() == "false": self.rng_state = torch.get_rng_state() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) random.seed(0) def tearDown(self): if hasattr(self, "rng_state"): torch.set_rng_state(self.rng_state) def test_kissgp_gp_mean_abs_error(self): train_x, train_y, test_x, test_y = make_data() train_dataset = TensorDataset(train_x, train_y) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=64) model = GPRegressionModel() likelihood = GaussianLikelihood() mll = gpytorch.mlls.VariationalELBO(likelihood, model, num_data=len(train_y)) # We use SGD here, rather than Adam # Emperically, we find that SGD is better for variational regression optimizer = torch.optim.Adam([{"params": model.parameters()}, {"params": likelihood.parameters()}], lr=0.01) # Our loss object # We're using the VariationalELBO object mll = gpytorch.mlls.VariationalELBO(likelihood, model, num_data=train_y.size(0)) # The training loop def train(n_epochs=15): # We use a Learning rate scheduler from PyTorch to lower the learning rate during optimization # We're going to drop the learning rate by 1/10 after 3/4 of training # This helps the model converge to a minimum scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[0.75 * n_epochs], gamma=0.1) for _ in range(n_epochs): scheduler.step() for x_batch, y_batch in train_loader: x_batch = x_batch.float() y_batch = y_batch.float() optimizer.zero_grad() output = model(x_batch) loss = -mll(output, y_batch) loss.backward() optimizer.step() train() for _, param in model.named_parameters(): self.assertTrue(param.grad is not None) self.assertGreater(param.grad.norm().item(), 0) for param in likelihood.parameters(): self.assertTrue(param.grad is not None) self.assertGreater(param.grad.norm().item(), 0) # Test the model model.eval() likelihood.eval() test_preds = likelihood(model(test_x)).mean mean_abs_error = torch.mean(torch.abs(test_y - test_preds)) self.assertLess(mean_abs_error.squeeze().item(), 0.1) if __name__ == "__main__": unittest.main()
the-stack_0_15918
class RandomKitchenSinks(): def __init__(self, gamma, n_components, random_state=None): """ Parameters: gamma: float Parameter of the rbf kernel to be approximated exp(-gamma * x^2) n_components: int Number of components (output dimensionality) used to approximate the kernel """ self.gamma = gamma self.n_components = n_components self.random_state = random_state def fit(self, X, Y=None): import sklearn.kernel_approximation self.n_components = int(self.n_components) self.gamma = float(self.gamma) self.preprocessor = sklearn.kernel_approximation.RBFSampler( self.gamma, self.n_components, self.random_state) self.preprocessor.fit(X) return self def transform(self, X): if self.preprocessor is None: raise NotImplementedError() return self.preprocessor.transform(X) def get_model(name, config, random_state): list_param = {"random_state": random_state} for k in config: if k.startswith("feature_preprocessor:kitchen_sinks:"): param_name = k.split(":")[2] list_param[param_name] = config[k] model = RandomKitchenSinks(**list_param) return (name, model)
the-stack_0_15922
from conans import ConanFile, CMake, tools import os class OpenEXRConan(ConanFile): name = "openexr" version = "2.4.0" description = "OpenEXR is a high dynamic-range (HDR) image file format developed by Industrial Light & " \ "Magic for use in computer imaging applications." topics = ("conan", "openexr", "hdr", "image", "picture") license = "BSD-3-Clause" homepage = "https://github.com/openexr/openexr" url = "https://github.com/conan-io/conan-center-index" settings = "os", "compiler", "build_type", "arch" options = {"shared": [True, False], "fPIC": [True, False]} default_options = {"shared": False, "fPIC": True} generators = "cmake", "cmake_find_package" exports_sources = "CMakeLists.txt" _source_subfolder = "source_subfolder" def config_options(self): if self.settings.os == "Windows": self.options.remove("fPIC") def requirements(self): self.requires("zlib/1.2.11") def source(self): tools.get(**self.conan_data["sources"][self.version]) os.rename("openexr-{}".format(self.version), self._source_subfolder) def _configure_cmake(self): cmake = CMake(self) cmake.definitions["PYILMBASE_ENABLE"] = False cmake.definitions["OPENEXR_VIEWERS_ENABLE"] = False cmake.definitions["OPENEXR_BUILD_BOTH_STATIC_SHARED"] = False cmake.definitions["OPENEXR_BUILD_UTILS"] = False cmake.definitions["BUILD_TESTING"] = False cmake.configure() return cmake def _patch_files(self): for lib in ("OpenEXR", "IlmBase"): if self.settings.os == "Windows": tools.replace_in_file(os.path.join(self._source_subfolder, lib, "config", "LibraryDefine.cmake"), "${CMAKE_COMMAND} -E chdir ${CMAKE_INSTALL_FULL_LIBDIR}", "${CMAKE_COMMAND} -E chdir ${CMAKE_INSTALL_FULL_BINDIR}") if self.settings.build_type == "Debug": tools.replace_in_file(os.path.join(self._source_subfolder, lib, "config", "LibraryDefine.cmake"), "set(verlibname ${CMAKE_SHARED_LIBRARY_PREFIX}${libname}${@LIB@_LIB_SUFFIX}${CMAKE_SHARED_LIBRARY_SUFFIX})".replace("@LIB@", lib.upper()), "set(verlibname ${CMAKE_SHARED_LIBRARY_PREFIX}${libname}${@LIB@_LIB_SUFFIX}_d${CMAKE_SHARED_LIBRARY_SUFFIX})".replace("@LIB@", lib.upper())) tools.replace_in_file(os.path.join(self._source_subfolder, lib, "config", "LibraryDefine.cmake"), "set(baselibname ${CMAKE_SHARED_LIBRARY_PREFIX}${libname}${CMAKE_SHARED_LIBRARY_SUFFIX})", "set(baselibname ${CMAKE_SHARED_LIBRARY_PREFIX}${libname}_d${CMAKE_SHARED_LIBRARY_SUFFIX})") def build(self): self._patch_files() cmake = self._configure_cmake() cmake.build() def package(self): self.copy("LICENSE.md", src=self._source_subfolder, dst="licenses") cmake = self._configure_cmake() cmake.install() tools.rmdir(os.path.join(self.package_folder, "share")) tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) tools.rmdir(os.path.join(self.package_folder, "lib", "cmake")) def package_info(self): self.cpp_info.names["cmake_find_package"] = "OpenEXR" self.cpp_info.names["cmake_find_package_multi"] = "OpenEXR" parsed_version = self.version.split(".") lib_suffix = "-{}_{}".format(parsed_version[0], parsed_version[1]) if self.settings.build_type == "Debug": lib_suffix += "_d" self.cpp_info.libs = ["IlmImf{}".format(lib_suffix), "IlmImfUtil{}".format(lib_suffix), "IlmThread{}".format(lib_suffix), "Iex{}".format(lib_suffix), "IexMath{}".format(lib_suffix), "Imath{}".format(lib_suffix), "Half{}".format(lib_suffix)] self.cpp_info.includedirs = [os.path.join("include", "OpenEXR"), "include"] if self.options.shared and self.settings.os == "Windows": self.cpp_info.defines.append("OPENEXR_DLL") if self.settings.os == "Linux": self.cpp_info.system_libs.append("pthread")
the-stack_0_15924
"""SCons.Tool.386asm Tool specification for the 386ASM assembler for the Phar Lap ETS embedded operating system. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" from SCons.Tool.PharLapCommon import addPharLapPaths import SCons.Util as_module = __import__('as', globals(), locals(), []) def generate(env): """Add Builders and construction variables for ar to an Environment.""" as_module.generate(env) env['AS'] = '386asm' env['ASFLAGS'] = SCons.Util.CLVar('') env['ASPPFLAGS'] = '$ASFLAGS' env['ASCOM'] = '$AS $ASFLAGS $SOURCES -o $TARGET' env['ASPPCOM'] = '$CC $ASPPFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS $SOURCES -o $TARGET' addPharLapPaths(env) def exists(env): return env.Detect('386asm')
the-stack_0_15925
import offline import gen import matplotlib.pyplot as plt import networkx as nx import sys def DrawDenseGraph(graph): """ BRIEF When the graph is dense, circular is the way to go """ nx_graph = NetworkXGraph(graph) nx.draw_circular(nx_graph) plt.show() complement = nx.complement(nx_graph) nx.draw_circular(complement) plt.show() print('{0:<10} = {1}'.format('e(G)' , nx_graph.size())) print('{0:<10} = {1}'.format('e(~G)', complement.size())) sys.stdout.flush() def DrawSparseGraph(graph): """ BRIEF Use spring for drawing a sparse graph """ nx_graph = NetworkXGraph(graph) nx.draw_spring(nx_graph) plt.show() def NetworkXGraph(graph): """ BRIEF We'll always use this code to create a NetworkX graph """ nx_graph = nx.Graph() for name in graph.nodes: nx_graph.add_node(name) for edge in graph.edges: nx_graph.add_edge(*edge) return nx_graph if __name__ == '__main__': """ BRIEF Main execution - draw the superfoods graph """ graph = offline.Graph(gen.Read(gen.SUPERFOOD_FILE)) graph.SetEdges(offline.Euclidean, .5) DrawDenseGraph(graph) graph.SetEdges(offline.Euclidean, .3) DrawSparseGraph(graph)
the-stack_0_15926
import json import uuid import logging import copy from installed_clients.DataFileUtilClient import DataFileUtil from installed_clients.KBaseReportClient import KBaseReport class ImportEscherMapUtil: @staticmethod def validate_eschermap_params(params, expected, opt_param=set()): """ Validates that required parameters are present. Warns if unexpected parameters appear """ expected = set(expected) opt_param = set(opt_param) pkeys = set(params) if expected - pkeys: raise ValueError("Required keys {} not in supplied parameters" .format(", ".join(expected - pkeys))) defined_param = expected | opt_param for param in params: if param not in defined_param: logging.warning("Unexpected parameter {} supplied".format(param)) def _save_escher_map(self, escher_data, workspace_id, escher_map_name): """ save KBaseFBA.EscherMap to workspace """ logging.info('start saving KBaseFBA.EscherMap') if not isinstance(workspace_id, int): logging.warning('Invalid workspace ID: {}'.format(workspace_id)) try: workspace_id = self.dfu.ws_name_to_id(workspace_id) except Exception: raise ValueError('Cannot convert {} to valid workspace id'.format(workspace_id)) info = self.dfu.save_objects({'id': workspace_id, 'objects': [{'type': 'KBaseFBA.EscherMap', 'data': escher_data, 'name': escher_map_name}]})[0] return "%s/%s/%s" % (info[6], info[0], info[4]) def _refactor_escher_data(self, escher_data): """ refactor escher data to better fit KBaseFBA.EscherMap object """ logging.info('start refactoring escher data') refactored_escher_data = copy.deepcopy(escher_data) if refactored_escher_data == escher_data: logging.warning('No changes in escher data') return refactored_escher_data def __init__(self, config): self.callback_url = config['SDK_CALLBACK_URL'] self.token = config['KB_AUTH_TOKEN'] self.dfu = DataFileUtil(self.callback_url) logging.basicConfig(format='%(created)s %(levelname)s: %(message)s', level=logging.INFO) def import_eschermap_from_staging(self, params): """ import_attribute_mapping_from_staging: import a JSON file as KBaseFBA.EscherMap required params: staging_file_subdir_path - subdirectory file path e.g. for file: /data/bulk/user_name/file_name staging_file_subdir_path is file_name for file: /data/bulk/user_name/subdir_1/subdir_2/file_name staging_file_subdir_path is subdir_1/subdir_2/file_name escher_map_name: output KBaseFBA.EscherMap object name workspace_id: workspace ID return: obj_ref: return object reference """ self.validate_eschermap_params(params, ['staging_file_subdir_path', 'escher_map_name', 'workspace_id']) download_staging_file_params = { 'staging_file_subdir_path': params.get('staging_file_subdir_path') } scratch_file_path = self.dfu.download_staging_file( download_staging_file_params).get('copy_file_path') try: with open(scratch_file_path) as f: escher_data = json.load(f) except Exception: raise ValueError('Failed to parse JSON file.') escher_data = self._refactor_escher_data(escher_data) obj_ref = self._save_escher_map(escher_data, params['workspace_id'], params['escher_map_name']) returnVal = {'obj_ref': obj_ref} return returnVal def generate_report(self, obj_ref, params): """ generate_report: generate summary report obj_ref: generated workspace object references. """ logging.info('start generating report') upload_message = 'Import Finished\n' get_objects_params = {'object_refs': [obj_ref], 'ignore_errors': False} object_data = self.dfu.get_objects(get_objects_params) upload_message += "Imported Escher Map Name: " upload_message += str(object_data.get('data')[0].get('info')[1]) + '\n' upload_message += 'Imported File: {}\n'.format(params['staging_file_subdir_path']) report_params = {'message': upload_message, 'objects_created': [{'ref': obj_ref, 'description': 'Imported Escher Map'}], 'workspace_id': params['workspace_id'], 'report_object_name': 'kb_upload_methods_report_' + str(uuid.uuid4())} kbase_report_client = KBaseReport(self.callback_url, token=self.token) output = kbase_report_client.create_extended_report(report_params) report_output = {'report_name': output['name'], 'report_ref': output['ref']} return report_output
the-stack_0_15928
from datetime import datetime, timedelta, timezone import unittest import paniot from . import mixin class IotApiTest(mixin.AioMixin, unittest.IsolatedAsyncioTestCase): async def test_01(self): resp = await self.api.device(pagelength=0) self.assertEqual(resp.status, 400) async def test_02(self): with self.assertRaises(paniot.ArgsError) as e: resp = await self.api.device_details() self.assertEqual(str(e.exception), 'deviceid or ip required') async def test_03(self): with self.assertRaises(paniot.ArgsError) as e: resp = await self.api.device_details( ip='x', deviceid='x') self.assertEqual(str(e.exception), 'deviceid and ip cannot be used at the same time') async def test_04(self): resp = await self.api.device_details(ip='x') self.assertEqual(resp.status, 404) async def test_05(self): resp = await self.api.device_details(deviceid='x') self.assertEqual(resp.status, 404) async def test_06(self): resp = await self.api.device(pagelength=1) self.assertEqual(resp.status, 200) x = await resp.json() self.assertEqual(x['total'], 1) self.assertEqual(len(x['devices']), 1) key = 'number_of_caution_alerts' self.assertNotIn(key, x['devices'][0], '%s key requires detail' % key) deviceid = x['devices'][0]['deviceid'] ip = x['devices'][0]['ip_address'] resp = await self.api.device_details(deviceid=deviceid) self.assertEqual(resp.status, 200) x = await resp.json() self.assertEqual(x['deviceid'], deviceid) resp = await self.api.device_details(ip=ip) self.assertEqual(resp.status, 200) x = await resp.json() self.assertEqual(x['devices'][0]['ip_address'], ip) async def test_07(self): resp = await self.api.device(detail=True) self.assertEqual(resp.status, 200) x = await resp.json() self.assertEqual(x['total'], len(x['devices'])) key = 'number_of_caution_alerts' self.assertIn(key, x['devices'][0], '%s key missing for detail' % key) async def test_08(self): d = datetime.now(tz=timezone.utc) + timedelta(seconds=10) stime = d.strftime('%Y-%m-%dT%H:%M:%SZ') resp = await self.api.device(stime=stime) self.assertEqual(resp.status, 200) x = await resp.json() t = await resp.text() msg = 'devices in future stime %s: ' % stime msg += t self.assertEqual(x['total'], 0, msg) self.assertEqual(len(x['devices']), 0, msg) async def test_09(self): total = 0 async for ok, x in self.api.devices_all(): self.assertTrue(ok) total += 1 if total > 1050: break
the-stack_0_15929
from __future__ import unicode_literals from utils import CanadianScraper, CanadianPerson as Person import re import os import subprocess from pupa.scrape import Organization from six.moves.urllib.request import urlopen COUNCIL_PAGE = 'http://www.community.gov.yk.ca/pdf/loc_govdir.pdf' class YukonMunicipalitiesPersonScraper(CanadianScraper): def scrape(self): response = urlopen(COUNCIL_PAGE).read() pdf = open('/tmp/yt.pdf', 'w') pdf.write(response) pdf.close() data = subprocess.check_output(['pdftotext', '-layout', '/tmp/yt.pdf', '-']) data = re.split(r'\n\s*\n', data) for municipality in data: if 'Councillors' not in municipality: continue lines = municipality.split('\n') if 'Page' in lines[0]: lines.pop(0) if not lines[0].strip(): lines.pop(0) col1end = re.search(r'\s{2,}(\w)', lines[0].strip()).end() col2end = re.search(r':\s{2,}(\w)', lines[0].strip()).end() if 'Council' in lines[1]: address = lines[2][:col1end - 1].strip() + ' ' + lines[3][:col1end - 1].strip() district = lines[0][:col1end - 1].strip() + ' ' + lines[1][:col1end - 1].strip() else: address = lines[1][:col1end - 1].strip() + ' ' + lines[2][:col1end - 1].strip() district = lines[0][:col1end - 1].strip() organization = Organization(name=district + ' Council', classification='legislature', jurisdiction_id=self.jurisdiction.jurisdiction_id) organization.add_source(COUNCIL_PAGE) yield organization phone = re.findall(r'(?<=Phone: )\(?(\d{3}[\)-] ?\d{3}-\d{4})', municipality)[0].replace(') ', '-') email = re.findall(r'(?<=E-mail:) (\S*)', municipality)[0] fax = None if 'Fax' in municipality: fax = re.findall(r'(?<=Fax: )\(?(\d{3}[\)-] ?\d{3}-\d{4})', municipality)[0].replace(') ', '-') website = None if 'Website' in municipality: website = re.findall(r'((http:\/\/|www.)(\S*))', municipality)[0][0] councillor_or_mayor = False for line in lines: if 'Mayor:' in line: councillor_or_mayor = True role = 'Mayor' continue if 'Councillors' in line: councillor_or_mayor = True role = 'Councillor' continue if councillor_or_mayor: councillor = line[col1end - 1:col2end - 1].strip() if not councillor: continue p = Person(primary_org='legislature', name=councillor, district=district) p.add_source(COUNCIL_PAGE) membership = p.add_membership(organization, role=role, district=district) membership.add_contact_detail('address', address, 'legislature') membership.add_contact_detail('voice', phone, 'legislature') membership.add_contact_detail('email', email) if fax: membership.add_contact_detail('fax', fax, 'legislature') if website: p.add_link(website) yield p os.system('rm /tmp/yt.pdf')
the-stack_0_15930
import tensorflow as tf tf.compat.v1.disable_v2_behavior() from src.datasets.newsgroups import NewsGroups from src.models.cnn1 import getCNN1 from src.models.predict import predict_mcdropout import tensorflow as tf def build(): # config RANDOM_STATE = 1 VOCAB_SIZE = 20000 MAX_SEQUENCE_LENGTH = 500 NUM_SPLITS = 5 # get data newsGroups = NewsGroups() X_train_set, y_train_set, X_test_set, y_test_set, X_val, y_val = newsGroups.getRankedDataSplits( vocab_size=VOCAB_SIZE, max_sequence_length=MAX_SEQUENCE_LENGTH, n_splits=NUM_SPLITS, test_size=4500, random_state=RANDOM_STATE ) # training models_n = [] for i in range(NUM_SPLITS): model = tf.keras.models.load_model(f'models/newsGroups/CNN1_BL_{i}') models_n.append(model) # predict dfs = [predict_mcdropout(models_n[i], X_val, y_val) for i in range(NUM_SPLITS)] #save df name = 'CNN1_MCD' i = 0 for df in dfs: df.to_pickle(f"pickle/newsGroups/{name}_{i}.pkl") i = i+1
the-stack_0_15931
import re from dndme.commands import Command from dndme.gametime import Date class AdjustDate(Command): keywords = ['date'] help_text = """{keyword} {divider} Summary: Query, set, or adjust the in-game date using the calendar specified at startup. Usage: {keyword} {keyword} <day> <month> [<year>] {keyword} [+|-]<days> Examples: {keyword} {keyword} 20 July {keyword} 20 July 1969 {keyword} +7 {keyword} -10 """ def get_suggestions(self, words): calendar = self.game.calendar if len(words) == 3: return [month['name'] for month in calendar.cal_data['months'].values()] def do_command(self, *args): calendar = self.game.calendar data = ' '.join(args) if not data: print(f"The date is {calendar}") return m_adjustment = re.match('([+-]\d+)', data) if m_adjustment: days = int(m_adjustment.groups()[0]) calendar.adjust_date(days) print(f"The date is now {calendar}") self.game.changed = True return m_set = re.match('(\d+) (\w+) *(\d*)', data) if m_set: day, month, year = m_set.groups() day = int(day) year = int(year) if year else calendar.date.year calendar.set_date(Date(day, month, year)) print(f"The date is now {calendar}") self.game.changed = True return print(f"Invalid date: {data}")
the-stack_0_15932
import copy from itertools import zip_longest from typing import Any, Callable, Dict, List, Optional from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.callbacks import Callback from pytorch_lightning.utilities import rank_zero_info class PrintTableMetricsCallback(Callback): """ Prints a table with the metrics in columns on every epoch end Example:: from pl_bolts.callbacks import PrintTableMetricsCallback callback = PrintTableMetricsCallback() Pass into trainer like so: .. code-block:: python trainer = pl.Trainer(callbacks=[callback]) trainer.fit(...) # ------------------------------ # at the end of every epoch it will print # ------------------------------ # loss│train_loss│val_loss│epoch # ────────────────────────────── # 2.2541470527648926│2.2541470527648926│2.2158432006835938│0 """ def __init__(self) -> None: self.metrics: List = [] def on_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None: metrics_dict = copy.copy(trainer.callback_metrics) self.metrics.append(metrics_dict) rank_zero_info(dicts_to_table(self.metrics)) def dicts_to_table( dicts: List[Dict], keys: Optional[List[str]] = None, pads: Optional[List[str]] = None, fcodes: Optional[List[str]] = None, convert_headers: Optional[Dict[str, Callable]] = None, header_names: Optional[List[str]] = None, skip_none_lines: bool = False, replace_values: Optional[Dict[str, Any]] = None ) -> str: """ Generate ascii table from dictionary Taken from (https://stackoverflow.com/questions/40056747/print-a-list-of-dictionaries-in-table-form) Args: dicts: input dictionary list; empty lists make keys OR header_names mandatory keys: order list of keys to generate columns for; no key/dict-key should suffix with '____' else adjust code-suffix pads: indicate padding direction and size, eg <10 to right pad alias left-align fcodes: formating codes for respective column type, eg .3f convert_headers: apply converters(dict) on column keys k, eg timestamps header_names: supply for custom column headers instead of keys skip_none_lines: skip line if contains None replace_values: specify per column keys k a map from seen value to new value; new value must comply with the columns fcode; CAUTION: modifies input (due speed) Example: >>> a = {'a': 1, 'b': 2} >>> b = {'a': 3, 'b': 4} >>> print(dicts_to_table([a, b])) a│b ─── 1│2 3│4 """ # optional arg prelude if keys is None: if len(dicts) > 0: keys = dicts[0].keys() # type: ignore[assignment] elif header_names is not None: keys = header_names else: raise ValueError('keys or header_names mandatory on empty input list') if pads is None: pads = [''] * len(keys) # type: ignore[arg-type] elif len(pads) != len(keys): # type: ignore[arg-type] raise ValueError(f'bad pad length {len(pads)}, expected: {len(keys)}') # type: ignore[arg-type] if fcodes is None: fcodes = [''] * len(keys) # type: ignore[arg-type] elif len(fcodes) != len(fcodes): raise ValueError(f'bad fcodes length {len(fcodes)}, expected: {len(keys)}') # type: ignore[arg-type] if convert_headers is None: convert_headers = {} if header_names is None: header_names = keys if replace_values is None: replace_values = {} # build header headline = '│'.join(f"{v:{pad}}" for v, pad in zip_longest(header_names, pads)) # type: ignore[arg-type] underline = '─' * len(headline) # suffix special keys to apply converters to later on marked_keys = [h + '____' if h in convert_headers else h for h in keys] # type: ignore[union-attr] marked_values = {} s = '│'.join(f"{{{h}:{pad}{fcode}}}" for h, pad, fcode in zip_longest(marked_keys, pads, fcodes)) lines = [headline, underline] for d in dicts: none_keys = [k for k, v in d.items() if v is None] if skip_none_lines and none_keys: continue elif replace_values: for k in d.keys(): if k in replace_values and d[k] in replace_values[k]: d[k] = replace_values[k][d[k]] if d[k] is None: raise ValueError(f"bad or no mapping for key '{k}' is None. Use skip or change replace mapping.") elif none_keys: raise ValueError(f'keys {none_keys} are None in {d}. Do skip or use replace mapping.') for h in convert_headers: if h in keys: # type: ignore[operator] converter = convert_headers[h] marked_values[h + '____'] = converter(d) line = s.format(**d, **marked_values) lines.append(line) return '\n'.join(lines)
the-stack_0_15934
# Prepares spreadsheet summarizing email schedulings. # # summarize_all_time() prepares two tabs: # "Summary All-Time" tab: Aggregates counts by day and by 'summary_all_time_group_by_fields', a comma-separated list of payload fields. For example, # 'event_state, event_url, event_title, event_type, event_start_timestamp_local' # # "Summary By Week" tab: Total scheduling count by week # # forecast() prepares one tab, all schedulings on date 'ds', one row per # recipient on date 'ds', up to 'limit' recipients. # # Other inputs: # 'mailing_name', e.g. 'event_invite' # 'output_sheet', e.g. 'https://docs.google.com/spreadsheets/d/1KcZIW6piCZ60GR68KTN_UJB5wpfIh8Idc2b2E-7enFs' import asyncio import datetime import pandas as pd class BsdTriggeredEmailForecast: FROM_SCHEDULINGS_JOIN_PAYLOADS = """ FROM "{schema}"."triggered_email_schedulings" JOIN "{schema}"."triggered_email_payloads_{mailing_name}" ON "triggered_email_payloads_{mailing_name}".ds = "triggered_email_schedulings".ds AND (("triggered_email_payloads_{mailing_name}".cons_id IS NULL AND "triggered_email_schedulings".cons_id IS NULL) OR "triggered_email_payloads_{mailing_name}".cons_id = "triggered_email_schedulings".cons_id) AND "triggered_email_payloads_{mailing_name}".email = "triggered_email_schedulings".email AND (("triggered_email_payloads_{mailing_name}".secondary_id IS NULL AND "triggered_email_schedulings".secondary_id IS NULL) OR "triggered_email_payloads_{mailing_name}".secondary_id = "triggered_email_schedulings".secondary_id) """ GET_SCHEDULINGS_SQL = """ SELECT "triggered_email_schedulings".email , {output_fields} FROM_AND_JOIN_GOES_HERE WHERE "triggered_email_schedulings".ds = '{ds}' AND "triggered_email_schedulings".mailing_name = '{mailing_name}' ORDER BY "triggered_email_schedulings".email , "triggered_email_schedulings".secondary_id , "triggered_email_schedulings".scheduled_at LIMIT {limit} ; """.replace( "FROM_AND_JOIN_GOES_HERE", FROM_SCHEDULINGS_JOIN_PAYLOADS ) GET_SUMMARY_ALL_TIME_SQL = """ SELECT "triggered_email_schedulings".ds , {summary_all_time_group_by_fields} , COUNT(*) AS cons_count FROM_AND_JOIN_GOES_HERE WHERE "triggered_email_schedulings".mailing_name = '{mailing_name}' GROUP BY "triggered_email_schedulings".ds, {summary_all_time_group_by_fields} ORDER BY 1 DESC, cons_count DESC ; """.replace( "FROM_AND_JOIN_GOES_HERE", FROM_SCHEDULINGS_JOIN_PAYLOADS ) GET_SUMMARY_BY_WEEK_SQL = """ SELECT DATE_TRUNC('w', "triggered_email_schedulings".ds) AS week_begin , COUNT(*) AS cons_count FROM_AND_JOIN_GOES_HERE WHERE "triggered_email_schedulings".mailing_name = '{mailing_name}' GROUP BY DATE_TRUNC('w', "triggered_email_schedulings".ds) ORDER BY 1 DESC ; """.replace( "FROM_AND_JOIN_GOES_HERE", FROM_SCHEDULINGS_JOIN_PAYLOADS ) TAB_NAME_SUMMARY_ALL_TIME = "Summary All-Time" TAB_NAME_SUMMARY_BY_WEEK = "Summary By Week" def __init__(self, civis, schema, caliban): self.civis = civis self.schema = schema self.caliban = caliban def forecast(self, ds, mailing_name, output_sheet, output_fields, tab_name, limit): schedulings = self.get_schedulings(ds, mailing_name, output_fields, limit) if schedulings.empty: return self.caliban.export_to_worksheets(output_sheet, tab_name, schedulings) def summarize_all_time( self, mailing_name, output_sheet, summary_all_time_group_by_fields ): if not summary_all_time_group_by_fields: return summary = self.get_summary_all_time( mailing_name, summary_all_time_group_by_fields ) self.caliban.export_to_worksheets( output_sheet, self.TAB_NAME_SUMMARY_ALL_TIME, summary ) summary_by_week = self.get_summary_by_week(mailing_name) self.caliban.export_to_worksheets( output_sheet, self.TAB_NAME_SUMMARY_BY_WEEK, summary_by_week ) def get_schedulings(self, ds, mailing_name, output_fields, limit): query = self.GET_SCHEDULINGS_SQL.format( ds=ds, mailing_name=mailing_name, schema=self.schema, output_fields=output_fields, limit=limit, ) print("get_schedulings query:") print(query) df = asyncio.run(self.civis.read_civis_sql(query)) print(f"Got {len(df)} schedulings for {mailing_name} on {ds}:") print(df) return df def get_summary_all_time(self, mailing_name, summary_all_time_group_by_fields): query = self.GET_SUMMARY_ALL_TIME_SQL.format( mailing_name=mailing_name, schema=self.schema, summary_all_time_group_by_fields=summary_all_time_group_by_fields, ) print("get_summary_all_time query:") print(query) df = asyncio.run(self.civis.read_civis_sql(query)) print(f"Got summary all-time for {mailing_name}:") print(df) return df def get_summary_by_week(self, mailing_name): query = self.GET_SUMMARY_BY_WEEK_SQL.format( mailing_name=mailing_name, schema=self.schema ) print("get_summary_by_week query:") print(query) df = asyncio.run(self.civis.read_civis_sql(query)) print(f"Got summary by week for {mailing_name}:") print(df) return df
the-stack_0_15935
""" Authors: Pratik Bhatu. Copyright: Copyright (c) 2021 Microsoft Research Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import argparse from argparse import RawTextHelpFormatter import os import os.path import sys import json from RandomForests.convert_pickle_to_graphviz import convert_pickle_to_graphviz from RandomForests.parse_graphviz_to_ezpc_input import parse_graphviz_to_ezpc_input from RandomForests.patch_ezpc_code_params import patch_ezpc_code_params def parse_args(): parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter) parser.add_argument( "--task", required=False, type=str, choices=["cla", "reg"], help="""Choose cla for classificatin. Choose reg for regression. """, ) parser.add_argument( "--no_features", required=False, type=int, help="Number of features in the dataset.", ) parser.add_argument( "--model_type", required=False, type=str, choices=["tree", "forest"], help="""Choose tree for decision tree. Choose forest for random forest. """, ) parser.add_argument( "--pickle", required=False, type=str, help="Path to the pickle file", ) parser.add_argument( "--scale", required=False, type=int, default=10, help="Scaling factor for float -> fixedpt.", ) parser.add_argument( "--bitlen", required=False, type=int, default=64, choices=[32, 64], help="Bit length to compile for.", ) parser.add_argument( "--role", required=True, type=str, choices=["server", "client"], default="server", help="Pickle file owner is server, data owner is client", ) parser.add_argument( "--config", required=False, type=str, help="Path to the client config file", ) args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() if args.role == "server": if args.pickle is None: print("Path to pickle file not specified. See --help for options") if args.model_type is None: print("Model type not specified. See --help for options") if args.no_features is None: print("Number of features not specified. See --help for options.") if args.task is None: print("Task is not specified. See --help for options.") if None in [args.pickle, args.model_type, args.no_features, args.task]: sys.exit() else: if args.config is None: print( "Path to the client config file not specified. See --help for options" ) sys.exit() # args.task, args.model_type, args.no_features, args.pickle, args.scale, args.bitlen, args.config if args.role == "server": if not os.path.isfile(args.pickle): sys.exit("Pickle file (" + args.pickle + ") specified does not exist") pickle_dir = os.path.dirname(os.path.abspath(args.pickle)) build_dir = os.path.join(pickle_dir, "ezpc_build_dir") os.system("rm -rf {build_dir}".format(build_dir=build_dir)) os.mkdir(build_dir) # Dumps tree0, tree1, ..treeN.txt no_of_estim = convert_pickle_to_graphviz( args.pickle, args.task, args.model_type, build_dir ) max_tree_depth = -1 for i in range(0, no_of_estim): tree_file_path = os.path.join(build_dir, "tree" + str(i) + ".txt") max_depth = parse_graphviz_to_ezpc_input( tree_file_path, args.task, args.scale ) max_tree_depth = max(max_tree_depth, max_depth) print("Parsed all trees in Random Forest") no_features = args.no_features scale = args.scale bitlen = args.bitlen client_json = { "no_of_trees": no_of_estim, "depth": max_tree_depth, "no_of_features": no_features, "scale": scale, "bitlen": bitlen, } json_path = os.path.join(build_dir, "client.json") with open(json_path, "w") as f: json.dump(client_json, f) else: if not os.path.isfile(args.config): sys.exit("Config file (" + args.config + ") specified does not exist") with open(args.config) as f: client_json = json.load(f) no_of_estim = client_json["no_of_trees"] max_tree_depth = client_json["depth"] no_features = client_json["no_of_features"] scale = client_json["scale"] bitlen = client_json["bitlen"] config_dir = os.path.dirname(os.path.abspath(args.config)) build_dir = os.path.join(config_dir, "ezpc_build_dir") os.system("rm -rf {build_dir}".format(build_dir=build_dir)) os.mkdir(build_dir) ezpc_file_name = "random_forest.ezpc" output_path = os.path.join(build_dir, ezpc_file_name) patch_ezpc_code_params(no_of_estim, max_tree_depth, no_features, scale, output_path) athos_dir = os.path.dirname(os.path.abspath(__file__)) ezpc_dir = os.path.join(athos_dir, "../EzPC/EzPC/") os.system('cp "{ezpc}" "{ezpc_dir}"'.format(ezpc=output_path, ezpc_dir=ezpc_dir)) os.chdir(ezpc_dir) ezpc_args = "" ezpc_args = "--bitlen {bl} --codegen {target} ".format(bl=bitlen, target="ABY") output_name = "random_forest0.cpp" os.system( 'eval `opam config env`; ./ezpc.sh "{}" '.format(ezpc_file_name) + ezpc_args ) os.system("./compile_aby.sh {}".format(output_name)) output_binary_path = os.path.join(build_dir, "random_forest") os.system( 'mv "{bin}" "{op_bin}"'.format(bin="random_forest0", op_bin=output_binary_path) ) print("\n\n") print("Compiled binary: " + output_binary_path) if args.role == "server": model_weights = "weight_sf_" + str(scale) + ".inp" weights_path = os.path.join(build_dir, model_weights) print("Model weights dumped in " + weights_path) print("Send client.json to the client machine. Path: ", json_path) print("\n\n")
the-stack_0_15936
""" Module containing all the utilities to compute and integrate the recipe water footprint into the recommender system. """ import pandas as pd from configuration import load_configuration class WaterFootprintUtils: """ Class that represent utilities for the water footprint reduction. This class provides a method for computing the user score based on his reviews and orders. It also provides a method for reducing the given recommendations for the user. """ def __init__(self): config = load_configuration() self.orders = pd.read_pickle(config["path_orders"]) self.recipes = pd.read_pickle(config["path_recipes"]) self.user_scores = pd.read_pickle(config["path_user_scores"]) self.classes = ["A", "B", "C", "D", "E"] def __get_recipe_class_to_recommend(self, user_score): """ Get the recipe categories to recommend based on the user score. The categories are lower or equal than the user score. :param user_score: the score of the user. :return: a list containing the categories of the recipe to recommend. """ return self.classes[:self.classes.index(user_score)+1] def __get_recipe_class(self, recipe_id): """ Get the category of the recipe from its id. :param recipe_id: the id of the recipe. :return: the category of the recipe if exists. """ category = self.recipes.query(f"id == {recipe_id}")["category"].tolist() return category[0] if category else None def __get_user_score(self, user_id): """ Get the score of the user based on his reviews. User orders are summed and weighted based on their categories. Then based on the result the user score is found. :param user_id: the id of the user. :return: the user score. """ score = self.user_scores.query(f"user_id == {user_id}")["score"].tolist() return score[0] if score else None def __get_recipe_category(self, recipe_id): """ Return the category of the recipe row from the dataframe based on the recipe id. :param recipe_id: the id of the recipe. :return: the category of the recipe at the provided id. """ recipe = self.recipes.query(f"id == {recipe_id}")["category"].tolist() return recipe[0] if recipe else "F" def get_recommendations_correct(self, recommendations, user_id, algo_type): """ Get the correct recipe recommendations from a list of recommendations ids based on the user score and the type of the algorithm. :param recommendations: a list containing all the recommended recipes. :param user_id: the id of the user. :param algo_type: the type of the algorithm (Content Based or Collaborative Filtering) :return: a list containing all the recipes filtered by water footprint. """ user_score = self.__get_user_score(user_id) class_to_rec = self.__get_recipe_class_to_recommend(user_score) return ( [ rec for rec in recommendations if self.recipes["category"][rec] in class_to_rec ] if algo_type == "cb" else [ recipe_id for recipe_id in recommendations # if self.recipes.query(f"id == {recipe_id}")["category"].tolist()[0] in class_to_rec if self.__get_recipe_category(recipe_id) in class_to_rec ] ) if __name__ == "__main__": wf = WaterFootprintUtils()
the-stack_0_15938
import time import json import logging import threading from queue import Queue from accounts import data_get_all, check_session, login from connections import get, post from utils import load_account, create_path, intervals logging.basicConfig( format='[%(asctime)s][%(levelname)s]: %(message)s', level=logging.DEBUG, datefmt='%d/%b/%Y:%H:%M:%S' ) # Logging logging.INFO only so it doesnt floaded with logging.DEBUG for logs in logging.Logger.manager.loggerDict: logging.getLogger(logs).setLevel(logging.INFO) class Stacher: def __init__(self, email, password, save_path=None, exclude=[]): self.email = email self.password = password self.path = save_path self.exclude = [] for gameworld in exclude: self.exclude.append(gameworld.lower()) self.account = self.check_account() self.start() def start(self): avatar_pool = {} while True: logging.info('check avatar.') lobby_details = data_get_all(self.account) avatars = [avatar for caches in lobby_details['cache'] if 'Collection:Avatar:' in caches['name'] for avatar in caches['data']['cache'] ] for avatar in avatars: if avatar['data']['consumersId'] not in avatar_pool: if avatar['data']['worldName'].lower() not in self.exclude: av = self.account.build_avatar( avatar['data']['worldName'], avatar['data']['consumersId'], self.get_ranking, self.path ) avatar_pool[avatar['data']['consumersId']] = av # starting avatar for gi in avatar_pool: try: avatar_pool[gi].start() except Exception as e: logging.debug(f'{e}') continue # sleeping interval = intervals(10) logging.info(f'Stacher sleeping:{interval//60}:{interval%60}') time.sleep(interval) def check_account(self): try: account = load_account() if self.test_login(account): account = login(self.email, self.password) logging.info(f'Welcome!!! {account.details["avatarName"]}') else: logging.info(f'Welcome back!! {account.details["avatarName"]}') except FileNotFoundError: account = login(self.email, self.password) logging.info(f'Welcome!!! {account.details["avatarName"]}') finally: return account @staticmethod def test_login(account): return 'error' in check_session(account, state='lobby') @staticmethod def stacher_thread(task, ranking_type, ranking_subtype, avatar, url): while True: start, end, results = task.get() if start is None: break try: data = { 'controller': 'ranking', 'action': 'getRanking', 'params': { 'start': start, 'end': end, 'rankingType': ranking_type, 'rankingSubtype': ranking_subtype }, 'session': avatar.session_gameworld } r = post(url+f'c=ranking&a=getRanking&t{(time.time()*1000):.0f}', headers=avatar.headers_gameworld, json=data, cookies=avatar.cookies_gameworld, timeout=60 ) results.extend(r.json()['response']['results']) except Exception as e: logging.debug(f'{e}') finally: task.task_done() @staticmethod def get_ranking(avatar, ranking_type, ranking_subtype, table_name): # get total player url = avatar.lobby_api data = { 'controller': 'cache', 'action': 'get', 'params': { 'names': [f'GameWorld:{avatar.gameworld_id}'] }, 'session': avatar.session_lobby } r = post(url, headers=avatar.headers_lobby, json=data, cookies=avatar.cookies_lobby, timeout=60 ) total_player = int(r.json()['cache'][0]['data']['playersRegistered']) # prepare thread url = avatar.gameworld_api start, end = 0, 9 results = [] threads = [] task = Queue() for _ in range(2): worker = threading.Thread(target=Stacher.stacher_thread, args=(task, ranking_type, ranking_subtype, avatar, url ) ) worker.start() threads.append(worker) # dispatch thread for _ in range((total_player//10)+1): task.put((start, end, results)) time.sleep(0.1) start, end = start+10, end+10 # threading done task.join() for _ in range(2): task.put((None, None, None)) for t in threads: t.join() # save results path = create_path(avatar.gameworld.lower(), avatar.gameworld_id, avatar.path ) try: cache = open(path, 'r') cache = json.load(cache) try: cache[table_name] except KeyError: cache[table_name] = {} except FileNotFoundError: cache = {} cache[table_name] = {} result = (line for line in results) data = ( { x['playerId']: { 'name': x['name'], 'data': [{ 'timestamp': time.time(), 'points': x['points'] }] } } for x in result ) for x in data: for pid in x: if pid in cache[table_name]: cache[table_name][pid]['data'].extend(x[pid]['data']) else: cache[table_name][pid] = x[pid] with open(path, 'w') as f: f.write(json.dumps(cache, indent=4)) logging.info(f'{table_name} on {avatar.gameworld} done.')
the-stack_0_15941
"""ANTLR3 exception hierarchy""" # begin[licence] # # [The "BSD licence"] # Copyright (c) 2005-2008 Terence Parr # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. The name of the author may not be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR # IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES # OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF # THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # end[licence] from constants import INVALID_TOKEN_TYPE class BacktrackingFailed(Exception): """@brief Raised to signal failed backtrack attempt""" pass class RecognitionException(Exception): """@brief The root of the ANTLR exception hierarchy. To avoid English-only error messages and to generally make things as flexible as possible, these exceptions are not created with strings, but rather the information necessary to generate an error. Then the various reporting methods in Parser and Lexer can be overridden to generate a localized error message. For example, MismatchedToken exceptions are built with the expected token type. So, don't expect getMessage() to return anything. Note that as of Java 1.4, you can access the stack trace, which means that you can compute the complete trace of rules from the start symbol. This gives you considerable context information with which to generate useful error messages. ANTLR generates code that throws exceptions upon recognition error and also generates code to catch these exceptions in each rule. If you want to quit upon first error, you can turn off the automatic error handling mechanism using rulecatch action, but you still need to override methods mismatch and recoverFromMismatchSet. In general, the recognition exceptions can track where in a grammar a problem occurred and/or what was the expected input. While the parser knows its state (such as current input symbol and line info) that state can change before the exception is reported so current token index is computed and stored at exception time. From this info, you can perhaps print an entire line of input not just a single token, for example. Better to just say the recognizer had a problem and then let the parser figure out a fancy report. """ def __init__(self, input=None): Exception.__init__(self) # What input stream did the error occur in? self.input = None # What is index of token/char were we looking at when the error # occurred? self.index = None # The current Token when an error occurred. Since not all streams # can retrieve the ith Token, we have to track the Token object. # For parsers. Even when it's a tree parser, token might be set. self.token = None # If this is a tree parser exception, node is set to the node with # the problem. self.node = None # The current char when an error occurred. For lexers. self.c = None # Track the line at which the error occurred in case this is # generated from a lexer. We need to track this since the # unexpected char doesn't carry the line info. self.line = None self.charPositionInLine = None # If you are parsing a tree node stream, you will encounter som # imaginary nodes w/o line/col info. We now search backwards looking # for most recent token with line/col info, but notify getErrorHeader() # that info is approximate. self.approximateLineInfo = False if input is not None: self.input = input self.index = input.index() # late import to avoid cyclic dependencies from .streams import TokenStream, CharStream from .tree import TreeNodeStream if isinstance(self.input, TokenStream): self.token = self.input.LT(1) self.line = self.token.line self.charPositionInLine = self.token.charPositionInLine if isinstance(self.input, TreeNodeStream): self.extractInformationFromTreeNodeStream(self.input) else: if isinstance(self.input, CharStream): self.c = self.input.LT(1) self.line = self.input.line self.charPositionInLine = self.input.charPositionInLine else: self.c = self.input.LA(1) def extractInformationFromTreeNodeStream(self, nodes): from antlr3.tree import Tree, CommonTree from antlr3.tokens import CommonToken self.node = nodes.LT(1) adaptor = nodes.adaptor payload = adaptor.getToken(self.node) if payload is not None: self.token = payload if payload.line <= 0: # imaginary node; no line/pos info; scan backwards i = -1 priorNode = nodes.LT(i) while priorNode is not None: priorPayload = adaptor.getToken(priorNode) if priorPayload is not None and priorPayload.line > 0: # we found the most recent real line / pos info self.line = priorPayload.line self.charPositionInLine = priorPayload.charPositionInLine self.approximateLineInfo = True break i -= 1 priorNode = nodes.LT(i) else: # node created from real token self.line = payload.line self.charPositionInLine = payload.charPositionInLine elif isinstance(self.node, Tree): self.line = self.node.line self.charPositionInLine = self.node.charPositionInLine if isinstance(self.node, CommonTree): self.token = self.node.token else: type = adaptor.getType(self.node) text = adaptor.getText(self.node) self.token = CommonToken(type=type, text=text) def getUnexpectedType(self): """Return the token type or char of the unexpected input element""" from antlr3.streams import TokenStream from antlr3.tree import TreeNodeStream if isinstance(self.input, TokenStream): return self.token.type elif isinstance(self.input, TreeNodeStream): adaptor = self.input.treeAdaptor return adaptor.getType(self.node) else: return self.c unexpectedType = property(getUnexpectedType) class MismatchedTokenException(RecognitionException): """@brief A mismatched char or Token or tree node.""" def __init__(self, expecting, input): RecognitionException.__init__(self, input) self.expecting = expecting def __str__(self): #return "MismatchedTokenException("+self.expecting+")" return "MismatchedTokenException(%r!=%r)" % ( self.getUnexpectedType(), self.expecting ) __repr__ = __str__ class UnwantedTokenException(MismatchedTokenException): """An extra token while parsing a TokenStream""" def getUnexpectedToken(self): return self.token def __str__(self): exp = ", expected %s" % self.expecting if self.expecting == INVALID_TOKEN_TYPE: exp = "" if self.token is None: return "UnwantedTokenException(found=%s%s)" % (None, exp) return "UnwantedTokenException(found=%s%s)" % (self.token.text, exp) __repr__ = __str__ class MissingTokenException(MismatchedTokenException): """ We were expecting a token but it's not found. The current token is actually what we wanted next. """ def __init__(self, expecting, input, inserted): MismatchedTokenException.__init__(self, expecting, input) self.inserted = inserted def getMissingType(self): return self.expecting def __str__(self): if self.inserted is not None and self.token is not None: return "MissingTokenException(inserted %r at %r)" % ( self.inserted, self.token.text) if self.token is not None: return "MissingTokenException(at %r)" % self.token.text return "MissingTokenException" __repr__ = __str__ class MismatchedRangeException(RecognitionException): """@brief The next token does not match a range of expected types.""" def __init__(self, a, b, input): RecognitionException.__init__(self, input) self.a = a self.b = b def __str__(self): return "MismatchedRangeException(%r not in [%r..%r])" % ( self.getUnexpectedType(), self.a, self.b ) __repr__ = __str__ class MismatchedSetException(RecognitionException): """@brief The next token does not match a set of expected types.""" def __init__(self, expecting, input): RecognitionException.__init__(self, input) self.expecting = expecting def __str__(self): return "MismatchedSetException(%r not in %r)" % ( self.getUnexpectedType(), self.expecting ) __repr__ = __str__ class MismatchedNotSetException(MismatchedSetException): """@brief Used for remote debugger deserialization""" def __str__(self): return "MismatchedNotSetException(%r!=%r)" % ( self.getUnexpectedType(), self.expecting ) __repr__ = __str__ class NoViableAltException(RecognitionException): """@brief Unable to decide which alternative to choose.""" def __init__( self, grammarDecisionDescription, decisionNumber, stateNumber, input ): RecognitionException.__init__(self, input) self.grammarDecisionDescription = grammarDecisionDescription self.decisionNumber = decisionNumber self.stateNumber = stateNumber def __str__(self): return "NoViableAltException(%r!=[%r])" % ( self.unexpectedType, self.grammarDecisionDescription ) __repr__ = __str__ class EarlyExitException(RecognitionException): """@brief The recognizer did not match anything for a (..)+ loop.""" def __init__(self, decisionNumber, input): RecognitionException.__init__(self, input) self.decisionNumber = decisionNumber class FailedPredicateException(RecognitionException): """@brief A semantic predicate failed during validation. Validation of predicates occurs when normally parsing the alternative just like matching a token. Disambiguating predicate evaluation occurs when we hoist a predicate into a prediction decision. """ def __init__(self, input, ruleName, predicateText): RecognitionException.__init__(self, input) self.ruleName = ruleName self.predicateText = predicateText def __str__(self): return "FailedPredicateException(" + self.ruleName + ",{" + self.predicateText + "}?)" __repr__ = __str__ class MismatchedTreeNodeException(RecognitionException): """@brief The next tree mode does not match the expected type.""" def __init__(self, expecting, input): RecognitionException.__init__(self, input) self.expecting = expecting def __str__(self): return "MismatchedTreeNodeException(%r!=%r)" % ( self.getUnexpectedType(), self.expecting ) __repr__ = __str__
the-stack_0_15942
import argparse import tskit if __name__ == "__main__": parser = argparse.ArgumentParser( description=( 'Quick hack: add an extra mutations column calculated by re-laying' ' mutations using parsimony. The modified' 'csv is output to stdout, so do e.g. `python add_RF.py file.csv > new.csv`' ) ) parser.add_argument("csv_file") parser.add_argument("-c", "--column_containing_paths", default=-1, help=( "The column in the CSV containing the paths (can be negative, for pos from " "end). The value in this column is the path to the .trees file" ) ) args = parser.parse_args() with open(args.csv_file, "rt") as f: new_fields = ["", ""] for line_num, line in enumerate(f): fields = line.strip().split(",") try: ts = tskit.load(fields[args.column_containing_paths]) tables = ts.dump_tables() tables.mutations.clear() parsimony_muts = 0 tree_iter = ts.trees() tree = next(tree_iter) anc_states = [] for v in ts.variants(): while v.site.position >= tree.interval.right: tree = next(tree_iter) anc_state, muts = tree.map_mutations(v.genotypes, v.alleles) anc_states.append(anc_state) for m in muts: tables.mutations.append( m.replace(parent=tskit.NULL, site=v.site.id)) parsimony_muts += len(muts) tables.compute_mutation_parents() tables.sites.packset_ancestral_state(anc_states) ts = tables.tree_sequence() new_fields[0] = str(parsimony_muts) new_fields[1] = str(ts.nbytes) except FileNotFoundError: new_fields = ["", ""] if line_num>0 else ["parsimony_muts", "parsimony_nbytes"] # Add elements before the c'th one for f in new_fields: fields.insert(args.column_containing_paths, f) print(",".join(fields))
the-stack_0_15944
"""Common verify functions for rsvp""" # Python import re import logging # Genie from genie.utils import Dq from genie.utils.timeout import Timeout from genie.metaparser.util.exceptions import SchemaEmptyParserError log = logging.getLogger(__name__) def verify_lsp_neighbor( device, ipv4_address, expected_status="Up", max_time=60, check_interval=10, lsp_state_flag=False ): """ Verify lsp state is up for neighbor Args: device ('obj'): device to use ipv4_address ('str'): IPv4 address to check neighbor node expected_status ('str'): Expected neighbor lsp status max_time ('int'): Maximum time to keep checking check_interval ('int'): How often to check lsp_state_flag ('bool'): Flag for verifying Lsp state Returns: True/False Raises: N/A """ # Parse IPv4 address ipv4_address = ipv4_address.split("/")[0] timeout = Timeout(max_time, check_interval) while timeout.iterate(): try: output = device.parse("show rsvp neighbor detail") except SchemaEmptyParserError: log.info('Parser is empty') timeout.sleep() continue # Example RSVP Neighbor Detail Dictionary # { # "rsvp-neighbor-information": { # "rsvp-neighbor-count": str, # "rsvp-neighbor": [ # { # "rsvp-neighbor-address": str, # "rsvp-neighbor-status": str, # ... # } # ] # } # } # Get RSVP neighbor list for neighbor in output.q.get_values("rsvp-neighbor"): if neighbor.get("rsvp-neighbor-address") == ipv4_address: # Case when user wants to check the Lsp status of neighbor if (lsp_state_flag and neighbor.get("rsvp-neighbor-status") == expected_status): return True break timeout.sleep() return False def verify_rsvp_neighbor(device, expected_ipaddress, max_time=30, check_interval=10): """ Verify there is a neighbor Args: device (`obj`): Device object expected_ipaddress (`str`): The IP address that is expected in the output max_time (`int`): Max time, default: 30 check_interval (`int`): Check interval, default: 10 Returns: result (`bool`): Verified result """ # {'rsvp-neighbor-information': # { 'rsvp-neighbor-count': '4', # 'rsvp-neighbor': [ # {'rsvp-neighbor-address': '59.128.3.252', # 'neighbor-idle': '39:15', # 'neighbor-up-count': '0', # 'neighbor-down-count': '0', # 'last-changed-time': '39:15', # 'hello-interval': '9', # 'hellos-sent': '262', # 'hellos-received': '0', # 'messages-received': '0'}, timeout = Timeout(max_time, check_interval) while timeout.iterate(): try: out = device.parse("show rsvp neighbor") except SchemaEmptyParserError: timeout.sleep() continue if expected_ipaddress in out.q.get_values("rsvp-neighbor-address"): return True timeout.sleep() return False def verify_rsvp_session_state(device, expected_state, session_name=None, session_type="Transit", max_time=60, check_interval=10): """ Verify RSVP session state Args: device (obj): device object expected_state (str): Expected state session_name (str, optional): Session name. Defaults to None. session_type (str): Session type. Defaults to "Transit" max_time (int, optional): Maximum timeout time. Defaults to 60. check_interval (int, optional): Check interval. Defaults to 10. """ #'rsvp-session-information': { # 'rsvp-session-data': [{ # 'session-type': 'Transit', # 'count': '30', # 'rsvp-session': [{ # 'destination-address': '10.49.194.125', # 'source-address': '10.49.194.127', # 'lsp-state': 'Up', # 'route-count': '0', # 'rsb-count': '1', # 'resv-style': 'FF', # 'label-in': '46', # 'label-out': '44', # 'name': 'test_lsp_01' # }, timeout = Timeout(max_time, check_interval) while timeout.iterate(): try: out = device.parse('show rsvp session') except SchemaEmptyParserError: timeout.sleep() continue for session in out.q.get_values('rsvp-session-data'): if session.get('session-type') == session_type: session_data = Dq(session).get_values('rsvp-session') for data in session_data: if session_name and session_name != data.get('name'): continue if data.get('lsp-state').lower() != expected_state.lower(): continue return True timeout.sleep() return False def verify_rsvp_session_state(device, expected_state, session_name=None, session_type="Transit", max_time=60, check_interval=10): """ Verify RSVP session state Args: device (obj): device object expected_state (str): Expected state session_name (str, optional): Session name. Defaults to None. session_type (str): Which session to look into. Defaults to "Transit" max_time (int, optional): Maximum timeout time. Defaults to 60. check_interval (int, optional): Check interval. Defaults to 10. """ timeout = Timeout(max_time, check_interval) while timeout.iterate(): try: out = device.parse('show rsvp session') except SchemaEmptyParserError: timeout.sleep() continue # Example dictionary # { # "rsvp-session-information": { # "rsvp-session-data": [{ # "session-type": str, # "rsvp-session": [{ # "lsp-state": str, # "name": str, # }], # }] # } # } for session in out.q.get_values('rsvp-session-data'): if session.get('session-type') == session_type: session_data = Dq(session).get_values('rsvp-session') for data in session_data: if session_name != data.get('name'): continue if data.get('lsp-state').lower() != expected_state.lower(): continue return True timeout.sleep() return False
the-stack_0_15946
# References: # https://developers.google.com/gmail/api/quickstart/python # https://developers.google.com/gmail/api/guides/sending # https://www.thepythoncode.com/article/use-gmail-api-in-python from __future__ import print_function import os.path from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request from google.oauth2.credentials import Credentials from email.mime.text import MIMEText import base64 # If modifying these scopes, delete the file token.json. SCOPES = ['https://www.googleapis.com/auth/gmail.send'] def create_message(sender, to, subject, message_test): message = MIMEText(message_test) message['to'] = to message['from'] = sender message['subject'] = subject return {'raw': base64.urlsafe_b64encode(message.as_bytes()).decode()} class Gmail(): def __init__(self): creds = None if os.path.exists('token.json'): creds = Credentials.from_authorized_user_file('token.json', SCOPES) if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.json', 'w') as token: token.write(creds.to_json()) self.service = build('gmail', 'v1', credentials=creds) def send_message(self, message): try: message = (self.service.users().messages().send(userId='me', body=message).execute()) print('Message Id: {}'.format(message['id'])) return message except Exception as e: print(e)
the-stack_0_15948
from scipy import signal import matplotlib.pyplot as plt import numpy as np import pyqtgraph import PyQt5.QtGui as qtg import matplotlib from matplotlib.figure import Figure from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg, FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar matplotlib.use('Qt5Agg') class MatplotlibWidget(qtg.QWidget): """ Implements a Matplotlib figure inside a QWidget. Use getFigure() and redraw() to interact with matplotlib. Example:: mw = MatplotlibWidget() subplot = mw.getFigure().add_subplot(111) subplot.plot(x,y) mw.draw() """ def __init__(self, size=(5.0, 4.0), dpi=100): qtg.QWidget.__init__(self) self.fig = Figure(size, dpi=dpi) self.canvas = FigureCanvas(self.fig) self.canvas.setParent(self) self.toolbar = NavigationToolbar(self.canvas, self) self.vbox = qtg.QVBoxLayout() self.vbox.addWidget(self.toolbar) self.vbox.addWidget(self.canvas) self.setLayout(self.vbox) def getFigure(self): return self.fig def draw(self): self.canvas.draw() # Create the data fs = 10e3 N = 1e5 amp = 2 * np.sqrt(2) noise_power = 0.01 * fs / 2 time = np.arange(N) / float(fs) mod = 500*np.cos(2*np.pi*0.25*time) carrier = amp * np.sin(2*np.pi*3e3*time + mod) noise = np.random.normal(scale=np.sqrt(noise_power), size=time.shape) noise *= np.exp(-time/5) x = carrier + noise f, t, Sxx = signal.spectrogram(x, fs) # Interpret image data as row-major instead of col-major pyqtgraph.setConfigOptions(imageAxisOrder='row-major') pyqtgraph.mkQApp() win = pyqtgraph.GraphicsLayoutWidget() # A plot area (ViewBox + axes) for displaying the image p1 = win.addPlot() # Item for displaying image data img = pyqtgraph.ImageItem() p1.addItem(img) # Add a histogram with which to control the gradient of the image hist = pyqtgraph.HistogramLUTItem() # Link the histogram to the image hist.setImageItem(img) # If you don't add the histogram to the window, it stays invisible, but I find it useful. win.addItem(hist) # Show the window win.show() # Fit the min and max levels of the histogram to the data available hist.setLevels(np.min(Sxx), np.max(Sxx)) # This gradient is roughly comparable to the gradient used by Matplotlib # You can adjust it and then save it using hist.gradient.saveState() hist.gradient.restoreState( {'mode': 'rgb', 'ticks': [(0.5, (0, 182, 188, 255)), (1.0, (246, 111, 0, 255)), (0.0, (75, 0, 113, 255))]}) # Sxx contains the amplitude for each pixel img.setImage(Sxx) # Scale the X and Y Axis to time and frequency (standard is pixels) img.scale(t[-1]/np.size(Sxx, axis=1), f[-1]/np.size(Sxx, axis=0)) # Limit panning/zooming to the spectrogram p1.setLimits(xMin=0, xMax=t[-1], yMin=0, yMax=f[-1]) # Add labels to the axis p1.setLabel('bottom', "Time", units='s') # If you include the units, Pyqtgraph automatically scales the axis and adjusts the SI prefix (in this case kHz) p1.setLabel('left', "Frequency", units='Hz') # Plotting with Matplotlib in comparison plt.pcolormesh(t, f, Sxx) plt.ylabel('Frequency [Hz]') plt.xlabel('Time [sec]') plt.colorbar() plt.show() pyqtgraph.Qt.QtGui.QApplication.instance().exec_()
the-stack_0_15949
from .dataset import DataSet, DataSetMode, RawDataSet from calamari_ocr.ocr.data_processing import DataPreprocessor from calamari_ocr.ocr.text_processing import TextProcessor from calamari_ocr.ocr.augmentation import DataAugmenter from typing import Generator, Tuple, List, Any import numpy as np import multiprocessing from collections import namedtuple import queue from calamari_ocr.utils.multiprocessing import tqdm_wrapper from abc import ABC, abstractmethod import logging from .queue_helper import MaxElementsQueuer from ..augmentation.dataaugmentationparams import DataAugmentationAmount, DataAugmentationAmountReference logger = logging.getLogger(__name__) class OrderedQueueTask: def __init__(self, input_queue, output_queue, context=multiprocessing.get_context()): self.input_queue = input_queue self.output_queue = output_queue self.context = context self.p = self.context.Process(daemon=True, target=self.run) def start(self): self.p.start() def stop(self): self.p.terminate() def join(self): self.p.join() def run(self) -> None: data = [] current_idx = 0 while True: while True: try: data.append(self.input_queue.get(timeout=0.1)) except queue.Empty: continue except KeyboardInterrupt: return break data.sort(key=lambda data: data[0]) while len(data) > 0 and data[0][0] <= current_idx: try: self.output_queue.put(data[0], timeout=0.1) self.output_queue.task_done() del data[0] current_idx += 1 except queue.Full: continue except KeyboardInterrupt: return DataProcessingTaskData = namedtuple("DataProcessingTaskData", [ "skip_invalid_gt", "data_aug_params", "text_processor", "data_processor", "data_augmenter", "generate_only_non_augmented", ]) class DataProcessingTask: def __init__(self, params, input_queue: multiprocessing.JoinableQueue, output_queue: multiprocessing.JoinableQueue, context=multiprocessing.get_context()): self.params = params self.input_queue = input_queue self.output_queue = output_queue self.p = context.Process(daemon=True, target=self.run) def start(self): self.p.start() def stop(self): self.p.terminate() def join(self): self.p.join() def run(self) -> None: while True: try: data = self.input_queue.get(timeout=0.1) except queue.Empty: continue except KeyboardInterrupt: # allow keyboard interrupt return out = self.apply_single(*data) if out: while True: try: self.output_queue.put(out, timeout=0.1) break except queue.Full: continue except KeyboardInterrupt: return self.output_queue.task_done() def apply_single(self, idx, sample_id, line, text): #if not dataset.is_sample_valid(sample, line, text): # if not skip_invalid_gt: # print("ERROR: invalid sample {}".format(sample)) # return None if self.params.data_processor and line is not None: line, params = self.params.data_processor.apply([line], 1, False)[0] else: params = None if self.params.text_processor and text is not None: text = self.params.text_processor.apply([text], 1, False)[0] # data augmentation if not self.params.data_aug_params.no_augs() \ and line is not None \ and not self.params.generate_only_non_augmented.value \ and self.params.data_augmenter \ and np.random.rand() <= self.params.data_aug_params.to_rel(): line, text = self.params.data_augmenter.augment_single(line, text) return idx, sample_id, line, text, params class InputDataset(ABC): def __init__(self, mode: DataSetMode, ): self.mode = mode self._generate_only_non_augmented = multiprocessing.Value('b', False) self.initialized = False def __enter__(self): if self.initialized: raise AssertionError("Input dataset already initialized.") logger.debug("InputDataset {} entered".format(self)) self.initialized = True return self def __exit__(self, exc_type, exc_val, exc_tb): self.initialized = False logger.debug("InputDataset {} exited".format(self)) def check_initialized(self): if not self.initialized: raise AssertionError("InputDataset is not initialised. Call 'with InputDataset() as input_dataset:'. " "After the scope is closed the threads will be closed, too, for cleaning up.") @abstractmethod def __len__(self): return 0 @abstractmethod def epoch_size(self): return len(self) @property def generate_only_non_augmented(self): return self._generate_only_non_augmented.value @generate_only_non_augmented.setter def generate_only_non_augmented(self, value): self._generate_only_non_augmented.value = value @abstractmethod def text_generator(self) -> Generator[str, None, None]: self.check_initialized() @abstractmethod def generator(self, epochs=1, text_only=False) -> Generator[Tuple[np.array, List[str], Any], None, None]: self.check_initialized() class RawInputDataset(InputDataset): def __init__(self, mode: DataSetMode, raw_datas, raw_texts, raw_params, ): super().__init__(mode) self.preloaded_datas, self.preloaded_texts, self.preloaded_params = raw_datas, raw_texts, raw_params def __len__(self): if self._generate_only_non_augmented.value: return len(self.preloaded_params) return len(self.preloaded_datas) def epoch_size(self): return len(self) def text_generator(self) -> Generator[str, None, None]: self.check_initialized() for text in self.preloaded_texts: yield text def generator(self, epochs=1, text_only=False) -> Generator[Tuple[np.array, List[str], Any], None, None]: self.check_initialized() for epoch in range(epochs): if self.mode == DataSetMode.TRAIN: # only train here, pred and eval are covered by else block # train mode wont generate parameters if self._generate_only_non_augmented.value: # preloaded datas are ordered: first original data, then data augmented, however, # preloaded params store the 'length' of the non augmented data # thus, only orignal data is yielded for data, text, params in zip(self.preloaded_datas, self.preloaded_texts, self.preloaded_params): yield data, text, None else: # yield all data, however no params for data, text in zip(self.preloaded_datas, self.preloaded_texts): yield data, text, None else: # all other modes generate everything we got, but does not support data augmentation for data, text, params in zip(self.preloaded_datas, self.preloaded_texts, self.preloaded_params): yield data, text, params class StreamingInputDataset(InputDataset): def __init__(self, dataset: DataSet, data_preprocessor: DataPreprocessor, text_preprocessor: TextProcessor, data_augmenter: DataAugmenter = None, data_augmentation_factor: float = 0, skip_invalid_gt=True, processes=4): super().__init__(dataset.mode) self.dataset = dataset self.data_processor = data_preprocessor self.text_processor = text_preprocessor self.skip_invalid_gt = skip_invalid_gt self.data_augmenter = data_augmenter self.data_augmentation_params = DataAugmentationAmount.from_factor(data_augmentation_factor) self.mp_context = multiprocessing.get_context('spawn') self.processes = max(1, processes) if data_augmenter and dataset.mode != DataSetMode.TRAIN and dataset.mode != DataSetMode.PRED_AND_EVAL: # no pred_and_eval bc it's augmentation raise Exception('Data augmentation is only supported for training, but got {} dataset instead'.format(dataset.mode)) if not self.data_augmentation_params.no_augs() and self.data_augmenter is None: raise Exception('Requested data augmentation, but no data augmented provided. Use e. g. SimpleDataAugmenter') self.data_input_queue = None self.unordered_output_queue = None self.data_processing_tasks = [] self.data_generator = None self.ordered_output_queue = None self.data_ordering = None def __enter__(self): super().__enter__() # create all tasks and queues self.max_queuer = MaxElementsQueuer(self.processes * 4, ctx=self.mp_context) self.data_input_queue = self.max_queuer.input_queue self.ordered_output_queue = self.max_queuer.output_queue self.unordered_output_queue = self.mp_context.JoinableQueue() self.data_processing_tasks = [ DataProcessingTask( DataProcessingTaskData( self.skip_invalid_gt, self.data_augmentation_params, self.text_processor, self.data_processor, self.data_augmenter, self._generate_only_non_augmented, ), self.data_input_queue, self.unordered_output_queue, ) for _ in range(self.processes) ] self.data_generator = self.dataset.create_generator(self.mp_context, self.data_input_queue) self.data_generator.start() self.data_ordering = OrderedQueueTask(self.unordered_output_queue, self.ordered_output_queue, self.mp_context) self.data_ordering.start() for p in self.data_processing_tasks: p.start() return self def __exit__(self, exc_type, exc_val, exc_tb): # stop all tasks self.data_generator.stop() for p in self.data_processing_tasks: p.stop() self.data_ordering.stop() self.data_input_queue = None self.unordered_output_queue = None self.data_processing_tasks = [] self.data_generator = None self.ordered_output_queue = None self.data_ordering = None super().__exit__(exc_type, exc_val, exc_tb) def __len__(self): return len(self.dataset.samples()) def epoch_size(self): if self._generate_only_non_augmented.value: return len(self) return self.data_augmentation_params.epoch_size(len(self)) def to_raw_input_dataset(self, processes=1, progress_bar=False, text_only=False) -> RawInputDataset: print("Preloading dataset type {} with size {}".format(self.dataset.mode, len(self))) prev = self._generate_only_non_augmented.value self._generate_only_non_augmented.value = True datas, texts, params = zip(*list(tqdm_wrapper(self.generator(epochs=1, text_only=text_only), desc="Preloading data", total=len(self.dataset), progress_bar=progress_bar))) preloaded_datas, preloaded_texts, preloaded_params = datas, texts, params self._generate_only_non_augmented.value = prev if not self.data_augmentation_params.no_augs() and (self.dataset.mode == DataSetMode.TRAIN or self.dataset.mode == DataSetMode.PRED_AND_EVAL): abs_n_augs = self.data_augmentation_params.to_abs() preloaded_datas, preloaded_texts \ = self.data_augmenter.augment_datas(list(datas), list(texts), n_augmentations=abs_n_augs, processes=processes, progress_bar=progress_bar) return RawInputDataset(self.mode, preloaded_datas, preloaded_texts, preloaded_params) def text_generator(self) -> Generator[str, None, None]: self.check_initialized() for _, text, _ in self.generator(epochs=1, text_only=True): if self.text_processor: text = self.text_processor.apply([text], 1, False)[0] yield text def generator(self, epochs=1, text_only=False) -> Generator[Tuple[np.array, List[str], Any], None, None]: self.check_initialized() self.data_generator.request(epochs, text_only) for epoch in range(epochs): for iter in range(len(self.dataset)): while True: try: global_id, id, line, text, params = self.ordered_output_queue.get(timeout=0.1) yield line, text, params except queue.Empty: # test data ordering thread was canceled if not self.data_ordering.p.is_alive() and self.ordered_output_queue.empty(): return continue except KeyboardInterrupt: return break
the-stack_0_15952
import os import time import argparse import math from numpy import finfo import pdb import torch from distributed import apply_gradient_allreduce import torch.distributed as dist from torch.utils.data.distributed import DistributedSampler from torch.utils.data import DataLoader from model import Tacotron2 from data_utils import TextMelLoader, TextMelCollate from loss_function import Tacotron2Loss from logger import Tacotron2Logger from hparams import create_hparams from text import text_to_sequence, sequence_to_text from tqdm import tqdm def reduce_tensor(tensor, n_gpus): rt = tensor.clone() dist.all_reduce(rt, op=dist.reduce_op.SUM) rt /= n_gpus return rt def init_distributed(hparams, n_gpus, rank, group_name): assert torch.cuda.is_available(), "Distributed mode requires CUDA." print("Initializing Distributed") # Set cuda device so everything is done on the right GPU. torch.cuda.set_device(rank % torch.cuda.device_count()) # Initialize distributed communication dist.init_process_group( backend=hparams.dist_backend, init_method=hparams.dist_url, world_size=n_gpus, rank=rank, group_name=group_name) print("Done initializing distributed") def prepare_dataloaders(hparams): # Get data, data loaders and collate function ready trainset = TextMelLoader(hparams.training_files, hparams) valset = TextMelLoader(hparams.validation_files, hparams) collate_fn = TextMelCollate(hparams.n_frames_per_step) if hparams.distributed_run: train_sampler = DistributedSampler(trainset) shuffle = False else: train_sampler = None shuffle = True train_loader = DataLoader(trainset, num_workers=1, shuffle=shuffle, sampler=train_sampler, batch_size=hparams.batch_size, pin_memory=False, drop_last=True, collate_fn=collate_fn) return train_loader, valset, collate_fn def prepare_directories_and_logger(output_directory, log_directory, rank): if rank == 0: if not os.path.isdir(output_directory): os.makedirs(output_directory) os.chmod(output_directory, 0o775) logger = Tacotron2Logger(os.path.join(output_directory, log_directory)) else: logger = None return logger def load_model(hparams): model = Tacotron2(hparams).cuda() if hparams.fp16_run: model.decoder.attention_layer.score_mask_value = finfo('float16').min if hparams.distributed_run: model = apply_gradient_allreduce(model) return model def warm_start_model(checkpoint_path, model, ignore_layers): assert os.path.isfile(checkpoint_path) print("Warm starting model from checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model_dict = checkpoint_dict['state_dict'] if len(ignore_layers) > 0: model_dict = {k: v for k, v in model_dict.items() if k not in ignore_layers} dummy_dict = model.state_dict() dummy_dict.update(model_dict) model_dict = dummy_dict model.load_state_dict(model_dict) return model def load_checkpoint(checkpoint_path, model, optimizer): assert os.path.isfile(checkpoint_path) print("Loading checkpoint '{}'".format(checkpoint_path)) checkpoint_dict = torch.load(checkpoint_path, map_location='cpu') model.load_state_dict(checkpoint_dict['state_dict']) optimizer.load_state_dict(checkpoint_dict['optimizer']) learning_rate = checkpoint_dict['learning_rate'] iteration = checkpoint_dict['iteration'] print("Loaded checkpoint '{}' from iteration {}" .format( checkpoint_path, iteration)) return model, optimizer, learning_rate, iteration def save_checkpoint(model, optimizer, learning_rate, iteration, filepath): print("Saving model and optimizer state at iteration {} to {}".format( iteration, filepath)) torch.save({'iteration': iteration, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'learning_rate': learning_rate}, filepath) def validate(model, criterion, valset, iteration, batch_size, n_gpus, collate_fn, logger, distributed_run, rank): """Handles all the validation scoring and printing""" model.eval() with torch.no_grad(): val_sampler = DistributedSampler(valset) if distributed_run else None val_loader = DataLoader(valset, sampler=val_sampler, num_workers=1, shuffle=False, batch_size=batch_size, pin_memory=False, collate_fn=collate_fn) val_loss = 0.0 for i, batch in enumerate(val_loader): x, y = model.parse_batch(batch) y_pred = model(x) loss = criterion(y_pred, y) if distributed_run: reduced_val_loss = reduce_tensor(loss.data, n_gpus).item() else: reduced_val_loss = loss.item() val_loss += reduced_val_loss val_loss = val_loss / (i + 1) model.train() if rank == 0: print("Validation loss {}: {:9f} ".format(iteration, val_loss)) logger.log_validation(val_loss, model, y, y_pred, iteration) def train(output_directory, log_directory, checkpoint_path, warm_start, n_gpus, rank, group_name, hparams): """Training and validation logging results to tensorboard and stdout Params ------ output_directory (string): directory to save checkpoints log_directory (string) directory to save tensorboard logs checkpoint_path(string): checkpoint path n_gpus (int): number of gpus rank (int): rank of current gpu hparams (object): comma separated list of "name=value" pairs. """ if hparams.distributed_run: init_distributed(hparams, n_gpus, rank, group_name) torch.manual_seed(hparams.seed) torch.cuda.manual_seed(hparams.seed) model = load_model(hparams) learning_rate = hparams.learning_rate optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=hparams.weight_decay) if hparams.fp16_run: from apex import amp model, optimizer = amp.initialize( model, optimizer, opt_level='O2') if hparams.distributed_run: model = apply_gradient_allreduce(model) criterion = Tacotron2Loss() logger = prepare_directories_and_logger( output_directory, log_directory, rank) train_loader, valset, collate_fn = prepare_dataloaders(hparams) # Load checkpoint if one exists iteration = 0 epoch_offset = 0 if checkpoint_path is not None: if warm_start: model = warm_start_model( checkpoint_path, model, hparams.ignore_layers) else: model, optimizer, _learning_rate, iteration = load_checkpoint( checkpoint_path, model, optimizer) if hparams.use_saved_learning_rate: learning_rate = _learning_rate iteration += 1 # next iteration is iteration + 1 epoch_offset = max(0, int(iteration / len(train_loader))) model.train() is_overflow = False # ================ MAIN TRAINNIG LOOP! =================== for epoch in range(epoch_offset, hparams.epochs): print("Epoch: {}".format(epoch), flush=True) for i, batch in enumerate(train_loader): start = time.perf_counter() for param_group in optimizer.param_groups: param_group['lr'] = learning_rate model.zero_grad() #itext_padded, iinput_lengths, imel_padded, igate_padded, ioutput_lengths = batch #pdb.set_trace() #print(sequence_to_text(itext_padded[0].tolist())) #print('.') x, y = model.parse_batch(batch) y_pred = model(x) loss = criterion(y_pred, y) if hparams.distributed_run: reduced_loss = reduce_tensor(loss.data, n_gpus).item() else: reduced_loss = loss.item() if hparams.fp16_run: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() if hparams.fp16_run: grad_norm = torch.nn.utils.clip_grad_norm_( amp.master_params(optimizer), hparams.grad_clip_thresh) is_overflow = math.isnan(grad_norm) else: grad_norm = torch.nn.utils.clip_grad_norm_( model.parameters(), hparams.grad_clip_thresh) optimizer.step() if not is_overflow and rank == 0: duration = time.perf_counter() - start print("Train loss {} {:.6f} Grad Norm {:.6f} {:.2f}s/it".format( iteration, reduced_loss, grad_norm, duration), flush=True) logger.log_training( reduced_loss, grad_norm, learning_rate, duration, iteration) if not is_overflow and (iteration % hparams.iters_per_checkpoint == 0): validate(model, criterion, valset, iteration, hparams.batch_size, n_gpus, collate_fn, logger, hparams.distributed_run, rank) if rank == 0: checkpoint_path = os.path.join( output_directory, "checkpoint_{}".format(iteration)) save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path) iteration += 1 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-o', '--output_directory', type=str, help='directory to save checkpoints') parser.add_argument('-l', '--log_directory', type=str, help='directory to save tensorboard logs') parser.add_argument('-c', '--checkpoint_path', type=str, default=None, required=False, help='checkpoint path') parser.add_argument('--warm_start', action='store_true', help='load model weights only, ignore specified layers') parser.add_argument('--n_gpus', type=int, default=1, required=False, help='number of gpus') parser.add_argument('--rank', type=int, default=0, required=False, help='rank of current gpu') parser.add_argument('--group_name', type=str, default='group_name', required=False, help='Distributed group name') parser.add_argument('--hparams', type=str, required=False, help='comma separated name=value pairs') args = parser.parse_args() hparams = create_hparams(args.hparams) torch.backends.cudnn.enabled = hparams.cudnn_enabled torch.backends.cudnn.benchmark = hparams.cudnn_benchmark print("FP16 Run:", hparams.fp16_run) print("Dynamic Loss Scaling:", hparams.dynamic_loss_scaling) print("Distributed Run:", hparams.distributed_run) print("cuDNN Enabled:", hparams.cudnn_enabled) print("cuDNN Benchmark:", hparams.cudnn_benchmark) train(args.output_directory, args.log_directory, args.checkpoint_path, args.warm_start, args.n_gpus, args.rank, args.group_name, hparams)
the-stack_0_15953
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida-core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### from __future__ import division from __future__ import print_function from __future__ import absolute_import import six from aiida.tools.dbimporters.baseclasses import (DbImporter, DbSearchResults, UpfEntry) class NnincDbImporter(DbImporter): """ Database importer for NNIN/C Pseudopotential Virtual Vault. """ def _str_clause(self, key, alias, values): """ Returns part of HTTP GET query for querying string fields. """ if not isinstance(values, six.string_types): raise ValueError("incorrect value for keyword '{}' -- only " 'strings and integers are accepted'.format(alias)) return '{}={}'.format(key, values) _keywords = {'xc_approximation': ['frmxcprox', _str_clause], 'xc_type': ['frmxctype', _str_clause], 'pseudopotential_class': ['frmspclass', _str_clause], 'element': ['element', None]} def __init__(self, **kwargs): self._query_url = 'http://nninc.cnf.cornell.edu/dd_search.php' self.setup_db(**kwargs) def query_get(self, **kwargs): """ Forms a HTTP GET query for querying the NNIN/C Pseudopotential Virtual Vault. :return: a string with HTTP GET statement. """ get_parts = [] for key in self._keywords.keys(): if key in kwargs.keys(): values = kwargs.pop(key) if self._keywords[key][1] is not None: get_parts.append( self._keywords[key][1](self, self._keywords[key][0], key, values)) if kwargs.keys(): raise NotImplementedError("search keyword(s) '" "', '".join(kwargs.keys()) + \ "' is(are) not implemented for NNIN/C") return self._query_url + '?' + '&'.join(get_parts) def query(self, **kwargs): """ Performs a query on the NNIN/C Pseudopotential Virtual Vault using ``keyword = value`` pairs, specified in ``kwargs``. :return: an instance of :py:class:`aiida.tools.dbimporters.plugins.nninc.NnincSearchResults`. """ from six.moves import urllib import re query = self.query_get(**kwargs) response = urllib.request.urlopen(query).read() results = re.findall("psp_files/([^']+)\.UPF", response) elements = kwargs.get('element', None) if elements and not isinstance(elements, list): elements = [elements] if elements: results_now = set() for psp in results: for element in elements: if psp.startswith('{}.'.format(element)): results_now = results_now | set([psp]) results = list(results_now) return NnincSearchResults([{'id': x} for x in results]) def setup_db(self, query_url=None, **kwargs): """ Changes the database connection details. """ if query_url: self._query_url = query_url if kwargs.keys(): raise NotImplementedError( \ "unknown database connection parameter(s): '" + \ "', '".join(kwargs.keys()) + \ "', available parameters: 'query_url'") def get_supported_keywords(self): """ Returns the list of all supported query keywords. :return: list of strings """ return self._keywords.keys() class NnincSearchResults(DbSearchResults): """ Results of the search, performed on NNIN/C Pseudopotential Virtual Vault. """ _base_url = 'http://nninc.cnf.cornell.edu/psp_files/' def __init__(self, results): super(NnincSearchResults, self).__init__(results) self._return_class = NnincEntry def __len__(self): return len(self._results) def _get_source_dict(self, result_dict): """ Returns a dictionary, which is passed as kwargs to the created DbEntry instance, describing the source of the entry. :param result_dict: dictionary, describing an entry in the results. """ return {'id': result_dict['id']} def _get_url(self, result_dict): """ Returns an URL of an entry CIF file. :param result_dict: dictionary, describing an entry in the results. """ return self._base_url + result_dict['id'] + '.UPF' class NnincEntry(UpfEntry): """ Represents an entry from NNIN/C Pseudopotential Virtual Vault. """ def __init__(self, uri, **kwargs): """ Creates an instance of :py:class:`aiida.tools.dbimporters.plugins.nninc.NnincEntry`, related to the supplied URI. """ super(NnincEntry, self).__init__(db_name='NNIN/C Pseudopotential Virtual Vault', db_uri='http://nninc.cnf.cornell.edu', uri=uri, **kwargs)
the-stack_0_15956
""" ------------------------------------------------------- helper a couple of helper functions ------------------------------------------------------- Author: Dallas Fraser ID: 110242560 Email: [email protected] Version: 2014-09-10 ------------------------------------------------------- """ import networkx as nx def make_co_cricket(): ''' make_co_cricket assembles a co-cricket Parameters: None Returns: g: the co-cricket (Graph) ''' g = make_diamond() g.add_node(4) return g def make_kite(): ''' make_kite assembles a kite (co-chair) Parameters: None Returns: kite: the kite (Graph) ''' kite = make_diamond() kite.add_node(4) kite.add_edge(2, 4) return kite def make_claw(): ''' make_claw assembles a claw Parameters: None Returns: claw: the claw (Graph) ''' claw = nx.Graph() for x in range(0, 4): # add four vertices claw.add_node(x) hub = 0 #0-vertex is the hub of claw for x in range(1, 4): claw.add_edge(hub, x) return claw def make_co_claw(): ''' make_co_claw assembles a co-claw Parameters: None Returns: co_claw: the co_claw (Graph) ''' return nx.complement(make_claw()) def make_cycle(n): ''' make_cycle assembles a cycle with n vertices Parameters: n: the number of vertices in cycle (int) Returns: cycle: the cycle (Graph) ''' cycle = nx.Graph() for vertex in range(0,n): # add all the vertices cycle.add_node(vertex) for vertex in range(0,n): # add all the edges cycle.add_edge(vertex, (vertex+1) % n) cycle.add_edge(vertex, (vertex-1) % n) return cycle def make_co_cycle(n): ''' a function the creates an complement of a cycle of size n Parameters: n: the size of the anti cycle Returns: co_cycle: a networkx graph (networkx) ''' return nx.complement(make_cycle(n)) def make_wheel(n): ''' make_wheel assembles a wheel with n vertices Parameters: n: the number of vertices in the wheel (int) Returns: wheel: the wheel (networkx) ''' wheel = make_cycle(n-1) wheel.add_node(n-1) for edge in range(0,n-1): wheel.add_edge(edge,n-1) return wheel def join(G, H): ''' join a function which (complete) joins one graph G to graph H Parameters: G: Graph with at least one vertice (Graph) H: Graph with at least one vertice (Graph) Returns: F: The join of G and H (Graph) ''' # add all of F = nx.Graph() F.add_nodes_from(G.nodes()) F.add_edges_from(G.edges()) shift = G.number_of_nodes() # add all nodes of H for vertex in H.nodes(): F.add_node(vertex) # add all of F edges for e1, e2 in H.edges(): F.add_edge(e1 + shift, e2 + shift) # join the two sets of nodes for v1 in G.nodes(): for v2 in H.nodes(): F.add_edge(v1,v2+shift) return F def make_diamond(): ''' make_diamond assembles a diamond Parameters: None Returns: diamond: the diamond graph (networkx) ''' diamond = nx.Graph() for x in range(0, 4): # add four vertices diamond.add_node(x) diamond.add_edge(0, 1) diamond.add_edge(0, 2) diamond.add_edge(0, 3) diamond.add_edge(1, 2) diamond.add_edge(1, 3) return diamond def make_co_diamond(): ''' make_co_diamond assembles a co-diamond Parameters: None Returns: co_diamond: the co-diamond graph (networkx) ''' return nx.complement(make_diamond()) def make_cok4(): ''' make_coK4 assembles a co-K4 Parameters: None Returns: g: the co-K4 graph (networkx) ''' g = nx.Graph() g.add_node(0) g.add_node(1) g.add_node(2) g.add_node(3) return g def text_to_networkx(lines): ''' text_to_networkx a function that takes the lines from a text file and puts into a format for networkx graph Parameters: lines: a list of lines from the text file (list) Returns: graph: a networkx graph ''' # try: graph = nx.Graph() index = 0 nodes = [] for line in lines: # add all the nodes entries = line.split(":") if len(entries) == 2: try: node = int(entries[0]) except: node = None if node is None: node = index graph.add_node(node) nodes.append(node) index += 1 index = 0 for line in lines: # add all the edges entries = line.split(":") if (len(entries) > 1): entries[1] = entries[1].replace(" ", "") edges = entries[1].split(",") for edge in edges: if edge != '': graph.add_edge(nodes[index], int(edge)) index += 1 return graph def networkx_to_text(G): ''' a function that converts a graph G to text Parameters: G: the graph (networkx) Returns: text: the graph text (string) ''' text = "" for node in G.nodes(): text += str(node) + ":" n = [] for neighbor in G.neighbors(node): n.append(str(neighbor)) text += ",".join(n) text += "\n" return text def make_clique(n): ''' makes a clique of size n Parameters: n: the size of the clique (int) Returns: clique: the graph (networkx) ''' clique = nx.Graph() for v in range(0, n): clique.add_node(v) end = len(clique.nodes()) for target in clique.nodes(): for source in range(target+1, end): clique.add_edge(target, source) return clique def make_2K2(): ''' a function which assembles a 2K2 Parameters: None Returns: g: 2K2 graph (network) ''' return nx.complement(make_cycle(4)) def make_co_twin_c5(): ''' a function to assemble a co-Twin-C5 Parameters: None Returns: g: the graph g (networkx) ''' g = make_cycle(5) g.add_node(5) g.add_edge(5, 0) g.add_edge(5, 2) g.add_edge(5, 1) return g def make_co_twin_house(): ''' a function to assemble a co-Twin-House Parameters: None Returns: g: the graph g (networkx) ''' g = make_diamond() g.add_node(4) g.add_node(5) g.add_edge(2, 4) g.add_edge(3, 5) return g def make_co_p2_p3(): ''' a function to assemble a co p2-p3 graph Parameters: None Returns: g: the graph g (networkx) ''' g = make_diamond() g.add_node(4) g.add_edge(2, 4) g.add_edge(3, 4) return g def make_co_A(): ''' a function to assemble a co-A graph Parameters: None Returns: g: the graph g (networkx) ''' g = nx.Graph() for i in range(0, 5): g.add_node(i) g.add_edge(0, 1) g.add_edge(0, 3) g.add_edge(0, 4) g.add_edge(1, 2) g.add_edge(1, 4) g.add_edge(1, 5) g.add_edge(2, 5) g.add_edge(3, 4) g.add_edge(4, 5) return g def make_co_R(): ''' a method to assemble a co-R graph Parameters: None Returns: g: the graph g (networkx) ''' g = make_diamond() g.add_node(4) g.add_node(5) g.add_edge(0, 4) g.add_edge(1, 4) g.add_edge(2, 4) g.add_edge(3, 5) return g def make_bridge(): ''' a method to assemble a bridge graph Parameters: None Returns: g: the graph g (networkx) ''' g = make_co_R() g.add_edge(0, 5) g.add_edge(1, 5) return g def forbidden_line_subgraphs(): ''' a method to assemble all 9 of the forbidden subgraphs of line graphs Parameters: None Returns: graphs: a list of graphs (networkx) ''' graphs = [] graphs.append(make_claw()) # claw graphs.append(make_wheel(6)) # W5 graphs.append(make_bridge()) # Bridge graphs.append(make_co_R()) # Co-R graphs.append(make_co_A()) # Co-A graphs.append(make_co_p2_p3()) graphs.append(make_co_twin_house()) graphs.append(make_co_twin_c5()) k5_e = make_clique(5) k5_e.remove_edge(3, 4) graphs.append(k5_e) return graphs import unittest import os class tester(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def testMakeClique(self): edges = [(0, 1), (0, 2), (1, 2)] nodes = [0, 1, 2] clique = make_clique(3) self.assertEqual(edges, clique.edges(), 'Make Clique: failed on edges') self.assertEqual(nodes, clique.nodes(), 'Make Clique: failed on nodes') edges = [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)] nodes = [0, 1, 2, 3] clique = make_clique(4) self.assertEqual(edges, clique.edges(), 'Make Clique: failed on edges') self.assertEqual(nodes, clique.nodes(), 'Make Clique: failed on nodes') def testMakeDiamond(self): g = make_diamond() edges = [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)] vertices = [0, 1, 2, 3] self.assertEqual(edges, g.edges(), "Make Diamond: failed on edges") self.assertEqual(vertices, g.nodes(), "Make Diamond: failed on vertices") def testMakeCoDiamond(self): g = make_co_diamond() edges = [(2, 3)] vertices = [0, 1, 2, 3] self.assertEqual(edges, g.edges(), "Make Co-Diamond: failed on edges") self.assertEqual(vertices, g.nodes(), "Make Co-Diamond: failed on vertices") def testMakeClaw(self): g = make_claw() edges = [(0, 1), (0, 2), (0, 3)] vertices =[0, 1, 2, 3] self.assertEqual(edges, g.edges(), "Make Claw: failed on edges") self.assertEqual(vertices, g.nodes(), "Make Claw: failed on vertices") def testMakeCoClaw(self): g = make_co_claw() edges = [(1, 2), (1, 3), (2, 3)] vertices =[0, 1, 2, 3] self.assertEqual(edges, g.edges(), "Make Co-Claw: failed on edges") self.assertEqual(vertices, g.nodes(), "Make Co-Claw: failed on vertices") def testMakeCycle(self): g = make_cycle(3) edges = [(0,1), (0,2), (1,2)] vertices = [0, 1, 2] self.assertEqual(edges, g.edges(), "Make Cycle: failed on edges") self.assertEqual(vertices, g.nodes(), "Make Cycle: failed on vertices") def testJoin(self): # wheel test g = make_cycle(5) h = nx.Graph() h.add_node(0) f = join(g, h) expect = nx.wheel_graph(6) # expect a wheel self.assertEqual(expect.nodes(), f.nodes(), " Join: nodes failed on wheel test") self.assertEqual(nx.is_isomorphic(f, expect), True, " Join: edges failed on wheel test") # join of two trianges = K6 g = nx.complete_graph(3) h = nx.complete_graph(3) f = join(g, h) expect = nx.complete_graph(6) self.assertEqual(expect.nodes(), f.nodes(), "Join: nodes failed for K6 test") self.assertEqual(nx.is_isomorphic(f, expect), True, " Join: edges failed on wheel K6 test") def testWheel(self): # w5 w = make_wheel(5) g = make_cycle(4) g.add_node(5) g.add_edge(0,4) g.add_edge(1,4) g.add_edge(2,4) g.add_edge(3,4) self.assertEqual(w.edges(), g.edges(), "Make wheel: Failed for W5 test") def testTextToNetworkx(self): directory = os.getcwd() while "inducer" in directory: directory = os.path.dirname(directory) claw = make_claw() c7 = make_cycle(7) co_claw = make_co_claw() tests = {'test1.txt': claw, 'test2.txt': c7, 'test3.txt': co_claw} for f, expect in tests.items(): filepath = os.path.join(directory, "tests", f) with open(filepath) as f: content = f.read() lines = content.replace("\r", "") lines = lines.split("\n") result = text_to_networkx(lines) self.assertEqual(expect.nodes() ,result.nodes() , "Text to Networkx Failed Nodes: %s" % f) self.assertEqual(expect.edges() ,result.edges() , "Text to Networkx Failed Nodes: %s" % f) def testNetworkxToText(self): g = make_claw() text = networkx_to_text(g) self.assertEqual("0:1,2,3\n1:0\n2:0\n3:0\n", text) g = make_diamond() text = networkx_to_text(g) self.assertEqual("0:1,2,3\n1:0,2,3\n2:0,1\n3:0,1\n", text) def testMakeCoK4(self): cok4 = make_cok4() self.assertEqual(cok4.nodes(), [0, 1, 2, 3]) self.assertEqual(cok4.edges(), []) def testMake2K2(self): g = make_2K2() expect = [0, 1, 2, 3] self.assertEqual(g.nodes(), expect) expect = [(0, 2), (1, 3)] self.assertEqual(g.edges(), expect) def testMakeCoTwinC5(self): result = make_co_twin_c5() self.assertEqual(len(result.nodes()), 6) expect = [(0, 1), (0, 4), (0, 5), (1, 2), (1, 5), (2, 3), (2, 5), (3, 4)] self.assertEqual(expect, result.edges()) def testMakeCoTwinHouse(self): result = make_co_twin_house() self.assertEqual(len(result.nodes()), 6) expect = [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 4), (3, 5)] self.assertEqual(expect, result.edges()) def testMakeCoP2P3(self): result = make_co_p2_p3() self.assertEqual(len(result.nodes()), 5) expect = [(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 4), (3, 4)] self.assertEqual(expect, result.edges()) def testMakeCoA(self): result = make_co_A() self.assertEqual(len(result.nodes()), 6) expect = [(0, 1), (0, 3), (0, 4), (1, 2), (1, 4), (1, 5), (2, 5), (3, 4), (4, 5)] self.assertEqual(result.edges(), expect) def testMakeCoR(self): result = make_co_R() self.assertEqual(len(result.nodes()), 6) expect = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 4), (3, 5)] self.assertEqual(result.edges(), expect) def testMakeBridge(self): result = make_bridge() self.assertEqual(len(result.nodes()), 6) expect = [(0, 1), (0, 2), (0, 3), (0, 4),(0, 5), (1, 2), (1, 3), (1, 4),(1, 5), (2, 4), (3, 5)] self.assertEqual(result.edges(), expect) def testForbiddenLineSubgraphs(self): result = forbidden_line_subgraphs() self.assertEqual(len(result), 9)
the-stack_0_15961
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012, Intel, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unit Tests for cinder.volume.rpcapi """ from oslo.config import cfg from cinder import context from cinder import db from cinder.openstack.common import jsonutils from cinder.openstack.common import rpc from cinder import test from cinder.volume import rpcapi as volume_rpcapi CONF = cfg.CONF class VolumeRpcAPITestCase(test.TestCase): def setUp(self): super(VolumeRpcAPITestCase, self).setUp() self.context = context.get_admin_context() vol = {} vol['host'] = 'fake_host' vol['availability_zone'] = CONF.storage_availability_zone vol['status'] = "available" vol['attach_status'] = "detached" vol['metadata'] = {"test_key": "test_val"} volume = db.volume_create(self.context, vol) snpshot = { 'volume_id': 'fake_id', 'status': "creating", 'progress': '0%', 'volume_size': 0, 'display_name': 'fake_name', 'display_description': 'fake_description'} snapshot = db.snapshot_create(self.context, snpshot) self.fake_volume = jsonutils.to_primitive(volume) self.fake_volume_metadata = volume["volume_metadata"] self.fake_snapshot = jsonutils.to_primitive(snapshot) def test_serialized_volume_has_id(self): self.assertIn('id', self.fake_volume) def _test_volume_api(self, method, rpc_method, **kwargs): ctxt = context.RequestContext('fake_user', 'fake_project') if 'rpcapi_class' in kwargs: rpcapi_class = kwargs['rpcapi_class'] del kwargs['rpcapi_class'] else: rpcapi_class = volume_rpcapi.VolumeAPI rpcapi = rpcapi_class() expected_retval = 'foo' if method == 'call' else None expected_version = kwargs.pop('version', rpcapi.BASE_RPC_API_VERSION) if 'request_spec' in kwargs: spec = jsonutils.to_primitive(kwargs['request_spec']) kwargs['request_spec'] = spec expected_msg = rpcapi.make_msg(method, **kwargs) if 'volume' in expected_msg['args']: volume = expected_msg['args']['volume'] del expected_msg['args']['volume'] expected_msg['args']['volume_id'] = volume['id'] if 'snapshot' in expected_msg['args']: snapshot = expected_msg['args']['snapshot'] del expected_msg['args']['snapshot'] expected_msg['args']['snapshot_id'] = snapshot['id'] if 'host' in expected_msg['args']: del expected_msg['args']['host'] if 'dest_host' in expected_msg['args']: dest_host = expected_msg['args']['dest_host'] dest_host_dict = {'host': dest_host.host, 'capabilities': dest_host.capabilities} del expected_msg['args']['dest_host'] expected_msg['args']['host'] = dest_host_dict if 'new_volume' in expected_msg['args']: volume = expected_msg['args']['new_volume'] del expected_msg['args']['new_volume'] expected_msg['args']['new_volume_id'] = volume['id'] expected_msg['version'] = expected_version if 'host' in kwargs: host = kwargs['host'] else: host = kwargs['volume']['host'] expected_topic = '%s:%s' % (CONF.volume_topic, host) self.fake_args = None self.fake_kwargs = None def _fake_rpc_method(*args, **kwargs): self.fake_args = args self.fake_kwargs = kwargs if expected_retval: return expected_retval self.stubs.Set(rpc, rpc_method, _fake_rpc_method) retval = getattr(rpcapi, method)(ctxt, **kwargs) self.assertEqual(retval, expected_retval) expected_args = [ctxt, expected_topic, expected_msg] for arg, expected_arg in zip(self.fake_args, expected_args): self.assertEqual(arg, expected_arg) def test_create_volume(self): self._test_volume_api('create_volume', rpc_method='cast', volume=self.fake_volume, host='fake_host1', request_spec='fake_request_spec', filter_properties='fake_properties', allow_reschedule=True, snapshot_id='fake_snapshot_id', image_id='fake_image_id', source_volid='fake_src_id', version='1.4') def test_create_volume_serialization(self): request_spec = {"metadata": self.fake_volume_metadata} self._test_volume_api('create_volume', rpc_method='cast', volume=self.fake_volume, host='fake_host1', request_spec=request_spec, filter_properties='fake_properties', allow_reschedule=True, snapshot_id='fake_snapshot_id', image_id='fake_image_id', source_volid='fake_src_id', version='1.4') def test_delete_volume(self): self._test_volume_api('delete_volume', rpc_method='cast', volume=self.fake_volume) def test_create_snapshot(self): self._test_volume_api('create_snapshot', rpc_method='cast', volume=self.fake_volume, snapshot=self.fake_snapshot) def test_delete_snapshot(self): self._test_volume_api('delete_snapshot', rpc_method='cast', snapshot=self.fake_snapshot, host='fake_host') def test_attach_volume_to_instance(self): self._test_volume_api('attach_volume', rpc_method='call', volume=self.fake_volume, instance_uuid='fake_uuid', host_name=None, mountpoint='fake_mountpoint', mode='ro', version='1.11') def test_attach_volume_to_host(self): self._test_volume_api('attach_volume', rpc_method='call', volume=self.fake_volume, instance_uuid=None, host_name='fake_host', mountpoint='fake_mountpoint', mode='rw', version='1.11') def test_detach_volume(self): self._test_volume_api('detach_volume', rpc_method='call', volume=self.fake_volume) def test_copy_volume_to_image(self): self._test_volume_api('copy_volume_to_image', rpc_method='cast', volume=self.fake_volume, image_meta={'id': 'fake_image_id', 'container_format': 'fake_type', 'disk_format': 'fake_type'}, version='1.3') def test_initialize_connection(self): self._test_volume_api('initialize_connection', rpc_method='call', volume=self.fake_volume, connector='fake_connector') def test_terminate_connection(self): self._test_volume_api('terminate_connection', rpc_method='call', volume=self.fake_volume, connector='fake_connector', force=False) def test_accept_transfer(self): self._test_volume_api('accept_transfer', rpc_method='cast', volume=self.fake_volume, new_user='e5565fd0-06c8-11e3-' '8ffd-0800200c9b77', new_project='e4465fd0-06c8-11e3' '-8ffd-0800200c9a66', version='1.9') def test_extend_volume(self): self._test_volume_api('extend_volume', rpc_method='cast', volume=self.fake_volume, new_size=1, version='1.6') def test_migrate_volume(self): class FakeHost(object): def __init__(self): self.host = 'host' self.capabilities = {} dest_host = FakeHost() self._test_volume_api('migrate_volume', rpc_method='cast', volume=self.fake_volume, dest_host=dest_host, force_host_copy=True, version='1.8') def test_migrate_volume_completion(self): self._test_volume_api('migrate_volume_completion', rpc_method='call', volume=self.fake_volume, new_volume=self.fake_volume, error=False, version='1.10')
the-stack_0_15967
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Dataset utils for the Learned Interpreters framework.""" import collections import dataclasses from typing import Any, Optional from absl import logging import jax import jax.numpy as jnp import six import tensorflow as tf import tensorflow_datasets as tfds import tree from ipagnn.datasets import datasets # pylint: disable=unused-import @dataclasses.dataclass class DatasetInfo: dataset: Any = None generator: Any = None environment: Any = None info: Optional[Any] = None # info_lib.LearnedInterpretersDatasetInfo set_task: Any = None # Callable[[TaskFn, int], Any] = None def _default_padding_value(dtype): """Gets the default value for the given dtype for padding. Args: dtype: A tensorflow dtype. Returns: A default (zero) value for the given type. """ if dtype == tf.string: return ' ' elif dtype == tf.int64: return tf.constant(0, dtype=tf.int64) elif dtype == tf.int32: return tf.constant(0, dtype=tf.int32) elif dtype == tf.float32: return tf.constant(0.0, dtype=tf.float32) elif dtype == tf.float64: return tf.constant(0.0, dtype=tf.float64) elif dtype == tf.bool: return tf.constant(False, dtype=tf.bool) else: raise ValueError('Unexpected type.', dtype) def verify_reasonable_dataset(dataset_name, info, config): """Verifies that the dataset configs are at least reasonable. For example, if the max_length is set too low such that every example would be filtered out, we catch that here. This lets us fail fast if we accidentally put in configs that will lead to all examples being filtered out, rather than silently succeeding but never making progress. Args: dataset_name: The name of the dataset being loaded. info: The dataset info object. config: The config for the model. """ if dataset_name.startswith('control_flow_programs'): # TODO(dbieber): Move this logic into the dataset definition. length = info.program_generator_config.length tokens_per_statement = info.program_encoder.tokens_per_statement assert ( not config.dataset.max_length or config.dataset.max_length >= tokens_per_statement * length) def cannot_set_task(**kwargs): """Use this as the set_task fn when no curriculum is permitted.""" del kwargs # Unused. raise ValueError('The task cannot be changed. This is probably because the ' 'data is being loaded from disk, rather than generated ' 'at training time.') def get_split(config): """Select the default split according to the config. Args: config: (ml_collections.ConfigDict) The experimental config. Returns: The TFDS split for the experimental setup indicated by the config. """ splits = { 'train': 'train[:70%]', 'valid': 'train[70%:90%]', 'test': 'train[90%:]', } if config.dataset.split == 'default': split_name = 'valid' if config.runner.mode.startswith('eval') else 'train' split = splits[split_name] elif config.dataset.split in splits: split = splits[config.dataset.split] else: raise ValueError('Unexpected split.') return split def get_dataset(data_dir, config, dataset_name=None): """The training dataset for the code model for fault localization. Args: data_dir: The data directory to use with tfds.load. config: The config for the model. dataset_name: If set, use this dataset name in place of the one from the config. Returns: train_dataset: The tf.data.Dataset with batched examples. info: The DatasetInfo object containing the feature connectors and other info about the dataset. """ dataset_name = dataset_name or config.dataset.name split = get_split(config) version = ( None if config.dataset.version == 'default' else config.dataset.version) # If in interact mode, use an interactive dataset. if config.runner.mode == 'interact': dbuilder = tfds.builder( dataset_name, data_dir=data_dir, version=version) unused_split_generators = dbuilder._split_generators(dl_manager=None) # pylint: disable=protected-access info = dbuilder.info info._builder.set_representation(config.dataset.representation) # pylint: disable=protected-access assert config.dataset.batch_size == 1 dataset = make_interactive_dataset(info, config) if config.dataset.batch: dataset = apply_batching(dataset, info, config) set_task = cannot_set_task return DatasetInfo( dataset=dataset, info=info, set_task=set_task ) # Load the dataset. if config.dataset.in_memory: dbuilder = tfds.builder( dataset_name, data_dir=data_dir, version=version) unused_split_generators = dbuilder._split_generators(dl_manager=None) # pylint: disable=protected-access dataset, set_task = dbuilder.as_in_memory_dataset(split='all') info = dbuilder.info else: name = dataset_name if version is not None: name = f'{name}:{version}' dataset, info = tfds.load( name=name, split=split, data_dir=data_dir, # batch_size=config.dataset.batch_size, with_info=True) set_task = cannot_set_task info._builder.set_representation(config.dataset.representation) # pylint: disable=protected-access verify_reasonable_dataset(dataset_name, info, config) dataset = dataset.repeat() dataset = apply_filtering(dataset, info, config) if config.dataset.batch: dataset = apply_batching(dataset, info, config) return DatasetInfo( dataset=dataset, info=info, set_task=set_task, ) def apply_filtering(dataset, info, config): del info # Unused. # TODO(dbieber): Reinstate filtering, but refactor it. # if config.dataset.max_length: # dataset = dataset.filter( # lambda x: x[info._builder.key('length')] <= config.dataset.max_length) # pylint: disable=protected-access if config.dataset.max_examples: dataset = dataset.take(config.dataset.max_examples) return dataset def apply_sharding(generator, stack_fn, shape_fn): """Shards a dataset with a device dimension. Args: generator: Yields pytrees of numpy arrays. stack_fn: Applied to each example before stacking. shape_fn: Applied to each example to determine which examples to group. Examples with the same shape are grouped. Returns: A new generator where each leaf now has a leading device axis. """ def generator_fn(): used_shapes = set() examples_by_shapes = collections.defaultdict(list) for example in generator: shapes = shape_fn(example) if shapes not in used_shapes and shapes not in examples_by_shapes: logging.info('New shape started: %s', shapes) examples_by_shapes[shapes].append(example) if len(examples_by_shapes[shapes]) == jax.local_device_count(): stacked_examples = tree.map_structure( lambda *x: jnp.stack(x, axis=0), *[stack_fn(example) for example in examples_by_shapes[shapes]] ) yield stacked_examples, examples_by_shapes[shapes] examples_by_shapes[shapes] = [] if shapes not in used_shapes: logging.info('New shape finished: %s', shapes) used_shapes.add(shapes) return generator_fn() def apply_batching(dataset, info, config): """Applies standard batching to the dataset.""" del info # Unused. padded_shapes = tree.map_structure( lambda items: [None] * len(items), tf.compat.v1.data.get_output_shapes(dataset)) padding_values = tree.map_structure( _default_padding_value, tf.compat.v1.data.get_output_types(dataset)) dataset = dataset.padded_batch( config.dataset.batch_size, padded_shapes, padding_values, drop_remainder=True) return dataset def dataset_from_generator(generator_fn, info, config): """Creates a dataset from a given generator fn.""" del config # Unused. dtype = info.features.dtype shape = info.features.shape dataset = tf.data.Dataset.from_generator(generator_fn, dtype, shape) return dataset def _example_from_string(code, info): example_dict = info._builder.generate_example_from_string(code) # pylint: disable=protected-access encoded_example = info.features.encode_example(example_dict) decoded_example = info.features.decode_example(encoded_example) return decoded_example def make_interactive_dataset(info, config): """Makes a dataset from interactively provided examples.""" logging.info('Generating dataset interactively. batch_size=%d', config.dataset.batch_size) def generator_fn(): while True: example_str = six.moves.input() if not example_str: break try: yield _example_from_string(example_str, info) except Exception as e: # pylint: disable=broad-except logging.info('Encountered error in _example_from_string: %s', e) return dataset_from_generator(generator_fn, info, config)
the-stack_0_15969
from django.shortcuts import render from django.core.paginator import Paginator from .models import Question from stack_overclone.error_views import page_not_found_view def index_view(request): query_set = Question.objects.get_new() page = paginate(query_set, request) data = { 'questions': page.object_list, 'page': page } return render(request, 'index.html', context=data) def hot_questions_view(request): query_set = Question.objects.get_top_rated() page = paginate(query_set, request) data = { 'questions': page.object_list, 'page': page } return render(request, 'hot_questions.html', context=data) def questions_by_tag_view(request, tag): query_set = Question.objects.get_by_tag(tag) if query_set.count() == 0: return page_not_found_view(request, 'No such tag') page = paginate(query_set, request) data = { 'tag': tag, 'questions': page.object_list, 'page': page } return render(request, 'questions_by_tag.html', context=data) def question_and_answers_view(request, question_id): try: question = Question.objects.get(id=question_id) except Exception: return page_not_found_view(request, 'No such question') query_set = question.get_answers() page = paginate(query_set, request) data = { 'question': question, 'answers': page.object_list, 'page': page } return render(request, 'question_and_answers.html', context=data) def ask_question_view(request): return render(request, 'ask_question.html') def paginate(query_set, request, per_page=20): paginator = Paginator(query_set, per_page) page_number = request.GET.get('page') page = paginator.get_page(page_number) return page from django import template register = template.Library() @register.filter(name='add') def add(value, arg): return int(value) + int(arg)
the-stack_0_15970
import random import math lower = int(input("Enter lower bound: - ")) upper = int (input("Enter higher bound: - ")) x = random.randint(lower, upper) allowedGuess = round(math.log(upper - lower + 1, 2)) print("\n\tYou only have ", allowedGuess, " chances to guess the integer!\n") guessCount = 0 while guessCount < allowedGuess: guessCount += 1 guess = int (input("Guess a number:- ")) if x == guess: if x == 1: print("Congratulations you guessed the number in 1 try") else: print("Congratulations you guessed the number in ", guessCount, " tries") break elif x > guess: print("You guessed too small!") elif x < guess: print("You guessed too high!") if guessCount >= allowedGuess: print("\nThe number is %d" % x) print("\tBetter luck next time!")
the-stack_0_15971
#!/usr/bin/python3 import getopt import os import sys import json usage = """USAGE: $ python3 save_codes.py https://atcoder.jp/contests/abc244/tasks/abc244_a bin/out/v220314.py Options: -h --help print this help and exit """ opt_list = {"help": "h"} json_path = "./bin/codes.json" def kill(s, status): if s != "": print("[\033[31m!\033[m]", s, file=sys.stderr) print(usage, end="", file=sys.stderr) sys.exit(status) try: opts, args = getopt.getopt(sys.argv[1:], "".join(opt_list.values()), list(opt_list.keys())) except getopt.GetoptError as e: kill(e, 2) for o, v in opts: for opt_long, opt_short in opt_list.items(): # Shorten if opt_long in o: o = "-" + opt_short break print(f"[\033[34m#\033[m] o: {o}, v: {v}", file=sys.stderr) if o == "-h": kill("", 0) if len(args) != 2: kill(f"len(args): {len(args)}", 2) url, src_path = args if not url: kill("url is empty", 2) if not src_path: kill("src_path is empty", 2) print("[\033[34m#\033[m] url:", url, file=sys.stderr) src_suffix = src_path.split(".")[-1] f = open(src_path, "r") lines = f.read().splitlines() while lines[-1] == "": lines.pop() if not os.path.isfile(json_path): # Create json file with open(json_path, "w") as f: json.dump({}, f) # Input with open(json_path, "r") as f: codes_json = json.load(f) # { # "https://atcoder.jp/contests/abc244/tasks/abc244_a": { # "bin/out/v220314.py": [ # "n = int(input())", # "s = input()", # "print(s[-1])", # ] # } # } # Add di = codes_json.get(url, {}) di[src_path] = lines codes_json[url] = di # Output # Options: ensure_ascii=False, indent=2, sort_keys=True with open(json_path, "w") as f: json.dump(codes_json, f, ensure_ascii=False, indent=2) print(f"[\033[32m+\033[m] {src_path} -> {json_path}", file=sys.stderr)
the-stack_0_15972
""" @brief test log(time=3s) """ import sys import os import unittest import warnings import pandas from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import get_temp_folder try: import src except ImportError: path = os.path.normpath( os.path.abspath( os.path.join( os.path.split(__file__)[0], "..", ".."))) if path not in sys.path: sys.path.append(path) import src from src.ensae_teaching_cs.data import google_trends, twitter_zip class TestDataWeb(unittest.TestCase): def test_google_trends_macron(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") temp = get_temp_folder(__file__, "temp_google_trends_macron") text = google_trends(local=True, filename=False) assert text is not None name = google_trends(local=True, filename=True) assert name.endswith("macron.csv") try: text2 = google_trends( local=False, cache_folder=temp, filename=False) except ConnectionResetError as e: warnings.warn("Cannot check remote marathon.txt.\n" + str(e)) return assert text2 is not None self.assertEqual(len(text), len(text2)) self.maxDiff = None self.assertEqual(text, text2) def test_twitter_zip(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") temp = get_temp_folder(__file__, "temp_twitter_zip") try: twitter_zip(local=True, filename=False, unzip=False, cache_folder=temp) assert False except ValueError: pass name = twitter_zip(local=True, filename=True, as_df=False, unzip=False) assert name.endswith("tweets_macron_sijetaispresident_201609.zip") try: text2 = twitter_zip( local=False, cache_folder=temp, filename=False, unzip=True, as_df=True) except ConnectionResetError as e: warnings.warn("Cannot check remote.\n" + str(e)) return assert isinstance(text2, pandas.DataFrame) fLOG(text2.columns) if __name__ == "__main__": unittest.main()
the-stack_0_15973
# -*- coding: utf-8 -*- """Test database functionality.""" import os import shutil import sqlite3 import tempfile import unittest from contextlib import closing from datetime import datetime from dateutil.tz import tzutc from mock import patch from sqlalchemy.exc import NoSuchTableError from sqlalchemy.types import ( INTEGER, TEXT, ) from pic2map.db import ( Database, LocationDB, transform_metadata_to_row, ) class DatabaseTest(unittest.TestCase): """Database wrapper test cases.""" def test_get_table_metadata(self): """Table metadata can be retrieved using index notation.""" with tempfile.NamedTemporaryFile() as db_file: with closing(sqlite3.connect(db_file.name)) as connection: with closing(connection.cursor()) as cursor: cursor.execute( 'CREATE TABLE messages (id INTEGER, message TEXT)') database = Database(db_file.name) table = database['messages'] schema = {column.name: type(column.type) for column in table.columns} self.assertDictEqual( schema, {'id': INTEGER, 'message': TEXT}) def test_get_unknown_table_metadata(self): """NoSuchTableError raised when table name is not found.""" with tempfile.NamedTemporaryFile() as db_file: with closing(sqlite3.connect(db_file.name)) as connection: with closing(connection.cursor()) as cursor: cursor.execute( 'CREATE TABLE messages (id INTEGER, message TEXT)') database = Database(db_file.name) with self.assertRaises(NoSuchTableError): database['unknown'] def test_type_error_on_wrong_table_name(self): """TypeError raised when table name is not a string.""" with tempfile.NamedTemporaryFile() as db_file: with closing(sqlite3.connect(db_file.name)) as connection: with closing(connection.cursor()) as cursor: cursor.execute( 'CREATE TABLE messages (id INTEGER, message TEXT)') database = Database(db_file.name) with self.assertRaises(TypeError): database[0] def test_context_manager(self): """Connection is opened/closed when used as a context manager.""" database = Database(':memory:') # Connection is None when database object is created self.assertIsNone(database.connection) with database: # Connection is not closed inside the context self.assertFalse(database.connection.closed) # Connection is closed outside the context self.assertTrue(database.connection.closed) class LocationDBTest(unittest.TestCase): """Location database tests.""" def setUp(self): """Create temporary directory.""" self.directory = tempfile.mkdtemp() self.base_directory_patcher = patch('pic2map.db.BaseDirectory') base_directory = self.base_directory_patcher.start() base_directory.save_data_path.return_value = self.directory def tearDown(self): """Remove temporary directory.""" self.base_directory_patcher.stop() shutil.rmtree(self.directory) def test_database_exists(self): """Database not create if exists.""" filename = os.path.join(self.directory, 'location.db') with closing(sqlite3.connect(filename)) as connection: with closing(connection.cursor()) as cursor: cursor.execute( 'CREATE TABLE location (column_1 TEXT, column_2 TEXT)') location_db = LocationDB() self.assertListEqual( location_db.location_table.columns.keys(), ['column_1', 'column_2'], ) def test_create_database(self): """Create database file.""" LocationDB() filename = os.path.join(self.directory, 'location.db') self.assertTrue(os.path.isfile(filename)) def test_insert(self): """Insert records in database.""" rows = [ { 'filename': 'a.jpg', 'latitude': 1.2, 'longitude': 2.1, 'datetime': datetime(2015, 1, 1, 12, 34, 56) }, { 'filename': 'b.jpg', 'latitude': 3.4, 'longitude': 4.3, 'datetime': datetime(2015, 1, 1, 12, 34, 56) }, ] with LocationDB() as location_db: location_db.insert(rows) filename = os.path.join(self.directory, 'location.db') with closing(sqlite3.connect(filename)) as connection: with closing(connection.cursor()) as cursor: result = cursor.execute('SELECT COUNT(*) FROM location') self.assertListEqual(result.fetchall(), [(2,)]) def test_select_all(self): """Select all rows from location table.""" filename = os.path.join(self.directory, 'location.db') with closing(sqlite3.connect(filename)) as connection: with closing(connection.cursor()) as cursor: cursor.execute( 'CREATE TABLE location (name TEXT)') cursor.execute( 'INSERT INTO location VALUES ("Hello world!")') connection.commit() with LocationDB() as location_db: result = location_db.select_all() rows = result.fetchall() self.assertEqual(len(rows), 1) row = rows[0] self.assertSequenceEqual(row, (u'Hello world!',)) def test_remove(self): """Delete rows for files under a given directory.""" file_count = 10 filename = os.path.join(self.directory, 'location.db') with closing(sqlite3.connect(filename)) as connection: with closing(connection.cursor()) as cursor: cursor.execute( 'CREATE TABLE location (filename TEXT)') for directory in ['a', 'b']: for index in range(file_count): cursor.execute( 'INSERT INTO location VALUES ("{}/{}.jpg")' .format(directory, index)) connection.commit() with LocationDB() as location_db: result = location_db.delete('a') self.assertEqual(result.rowcount, file_count) def test_count(self): """Count rows in database.""" file_count = 10 filename = os.path.join(self.directory, 'location.db') with closing(sqlite3.connect(filename)) as connection: with closing(connection.cursor()) as cursor: cursor.execute( 'CREATE TABLE location (filename TEXT)') for index in range(file_count): cursor.execute( 'INSERT INTO location VALUES ("{}.jpg")'.format(index)) connection.commit() with LocationDB() as location_db: result = location_db.count() self.assertEqual(result, file_count) class TransformMetadataToRowTest(unittest.TestCase): """EXIF metadata to database row transformation tests.""" def test_transform_metadata(self): """Transform metadata to row.""" metadata = { 'SourceFile': 'a.jpg', 'EXIF:GPSLatitude': 1.2, 'EXIF:GPSLatitudeRef': 'N', 'EXIF:GPSLongitude': 2.1, 'EXIF:GPSLongitudeRef': 'E', 'EXIF:GPSDateStamp': '2015:01:01', 'EXIF:GPSTimeStamp': '12:34:56', } expected_row = { 'filename': 'a.jpg', 'latitude': 1.2, 'longitude': 2.1, 'datetime': datetime(2015, 1, 1, 12, 34, 56, tzinfo=tzutc()), } row = transform_metadata_to_row(metadata) self.assertEqual(row, expected_row) def test_transform_metadata_negative(self): """Transform metadata with negative latitude/longitude to row.""" metadata = { 'SourceFile': 'a.jpg', 'EXIF:GPSLatitude': 1.2, 'EXIF:GPSLatitudeRef': 'S', 'EXIF:GPSLongitude': 2.1, 'EXIF:GPSLongitudeRef': 'W', 'EXIF:GPSDateStamp': '2015:01:01', 'EXIF:GPSTimeStamp': '12:34:56', } expected_row = { 'filename': 'a.jpg', 'latitude': -1.2, 'longitude': -2.1, 'datetime': datetime(2015, 1, 1, 12, 34, 56, tzinfo=tzutc()), } row = transform_metadata_to_row(metadata) self.assertEqual(row, expected_row) def test_transform_metadata_no_datetime(self): """Transform metadata to row.""" metadata = { 'SourceFile': 'a.jpg', 'EXIF:GPSLatitude': 1.2, 'EXIF:GPSLatitudeRef': 'N', 'EXIF:GPSLongitude': 2.1, 'EXIF:GPSLongitudeRef': 'E', } expected_row = { 'filename': 'a.jpg', 'latitude': 1.2, 'longitude': 2.1, 'datetime': None, } row = transform_metadata_to_row(metadata) self.assertEqual(row, expected_row)
the-stack_0_15974
import _plotly_utils.basevalidators class FillcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name='fillcolor', parent_name='scatterpolargl', **kwargs ): super(FillcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'calc'), role=kwargs.pop('role', 'style'), **kwargs )
the-stack_0_15976
# -*- coding: utf-8 -*- # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import os import sys import urllib.request import urllib.parse from flask import Flask, request, abort from linebot import ( LineBotApi, WebhookHandler ) from linebot.exceptions import ( InvalidSignatureError, LineBotApiError ) from linebot.models import ( CarouselColumn, CarouselTemplate, FollowEvent, LocationMessage, MessageEvent, TemplateSendMessage, TextMessage, TextSendMessage, UnfollowEvent, URITemplateAction ) # TODO: 位置情報を送るメニューボタンの配置 # TODO: Webサーバを利用して静的ファイルを相対参照 # get api_key, channel_secret and channel_access_token from environment variable GNAVI_API_KEY = os.getenv('GNAVI_API_KEY') CHANNEL_SECRET = os.getenv('LINE_CHANNEL_SECRET') CHANNEL_ACCESS_TOKEN = os.getenv('LINE_CHANNEL_ACCESS_TOKEN') BOT_SERVER_URL = os.getenv('BOT_SERVER_URL') os.environ['http_proxy'] = os.getenv('FIXIE_URL') os.environ['https_proxy'] = os.getenv('FIXIE_URL') if GNAVI_API_KEY is None: print('Specify GNAVI_API_KEY as environment variable.') sys.exit(1) if CHANNEL_SECRET is None: print('Specify LINE_CHANNEL_SECRET as environment variable.') sys.exit(1) if CHANNEL_ACCESS_TOKEN is None: print('Specify LINE_CHANNEL_ACCESS_TOKEN as environment variable.') sys.exit(1) if BOT_SERVER_URL is None: print('Specify BOT_SERVER_URL as environment variable.') sys.exit(1) if os.getenv('FIXIE_URL') is None: print('Specify FIXIE_URL as environment variable.') sys.exit(1) # instantiation # TODO: インスタンス生成はグローバルでなくファクトリメソッドに移したい # TODO: グローバルに参照可能な api_callerを作成するか, 個々に作成するかどちらが良いか確認 app = Flask(__name__) line_bot_api = LineBotApi(CHANNEL_ACCESS_TOKEN) handler = WebhookHandler(CHANNEL_SECRET) RESTSEARCH_URL = "https://api.gnavi.co.jp/RestSearchAPI/v3/" DEF_ERR_MESSAGE = """ 申し訳ありません、データを取得できませんでした。 少し時間を空けて、もう一度試してみてください。 """ NO_HIT_ERR_MESSAGE = "お近くにぐるなびに登録されている喫茶店はないようです" + chr(0x100017) LINK_TEXT = "ぐるなびで見る" FOLLOWED_RESPONSE = "フォローありがとうございます。位置情報を送っていただくことで、お近くの喫茶店をお伝えします" + chr(0x100059) def call_restsearch(latitude, longitude): query = { "keyid": GNAVI_API_KEY, "latitude": latitude, "longitude": longitude, # TODO: category_sを動的に生成 "category_s": "RSFST18008,RSFST18009,RSFST18010,RSFST18011,RSFST18012" # TODO: hit_per_pageや offsetの変更に対応 (e.g., 指定可能にする, 多すぎるときは普通にブラウザに飛ばす, など) # TODO: rangeをユーザーアクションによって選択可能にしたい # "range": search_range } params = urllib.parse.urlencode(query, safe=",") response = urllib.request.urlopen(RESTSEARCH_URL + "?" + params).read() result = json.loads(response) if "error" in result: if "message" in result: raise Exception("{}".format(result["message"])) else: raise Exception(DEF_ERR_MESSAGE) total_hit_count = result.get("total_hit_count", 0) if total_hit_count < 1: raise Exception(NO_HIT_ERR_MESSAGE) return result @app.route("/callback", methods=['POST']) def callback(): signature = request.headers['X-Line-Signature'] body = request.get_data(as_text=True) app.logger.info("Request body: " + body) # handle webhook body try: handler.handle(body, signature) except InvalidSignatureError: abort(400) except LineBotApiError as e: app.logger.exception(f'LineBotApiError: {e.status_code} {e.message}', e) raise e return 'OK' @handler.add(MessageEvent, message=TextMessage) def handle_text_message(event): line_bot_api.reply_message( event.reply_token, TextSendMessage(text=event.message.text) ) # TODO: ちゃんと例外処理 @handler.add(MessageEvent, message=LocationMessage) def handle_location_message(event): user_lat = event.message.latitude user_longit = event.message.longitude cafe_search_result = call_restsearch(user_lat, user_longit) print("cafe_search_result is: {}".format(cafe_search_result)) response_json_list = [] # process result for (count, rest) in enumerate(cafe_search_result.get("rest")): # TODO: holiday, opentimeで表示を絞りたい access = rest.get("access", {}) access_walk = "徒歩 {}分".format(access.get("walk", "")) holiday = "定休日: {}".format(rest.get("holiday", "")) image_url = rest.get("image_url", {}) image1 = image_url.get("shop_image1", "thumbnail_template.jpg") if image1 == "": image1 = BOT_SERVER_URL + "/static/thumbnail_template.jpg" name = rest.get("name", "") opentime = "営業時間: {}".format(rest.get("opentime", "")) # pr = rest.get("pr", "") # pr_short = pr.get("pr_short", "") url = rest.get("url", "") result_text = opentime + "\n" + holiday + "\n" + access_walk + "\n" if len(result_text) > 60: result_text = result_text[:56] + "..." result_dict = { "thumbnail_image_url": image1, "title": name, # "text": pr_short + "\n" + opentime + "\n" + holiday + "\n" # + access_walk + "\n", "text": result_text, "actions": { "label": "ぐるなびで見る", "uri": url } } response_json_list.append(result_dict) print("response_json_list is: {}".format(response_json_list)) columns = [ CarouselColumn( thumbnail_image_url=column["thumbnail_image_url"], title=column["title"], text=column["text"], actions=[ URITemplateAction( label=column["actions"]["label"], uri=column["actions"]["uri"], ) ] ) for column in response_json_list ] # TODO: GoogleMapへのリンク実装 messages = TemplateSendMessage( alt_text="喫茶店の情報をお伝えしました", template=CarouselTemplate(columns=columns), ) print("messages is: {}".format(messages)) line_bot_api.reply_message( event.reply_token, messages=messages ) @handler.add(FollowEvent) def handle_follow(event): line_bot_api.reply_message( event.reply_token, TextSendMessage(text=FOLLOWED_RESPONSE) ) @handler.add(UnfollowEvent) def handle_unfollow(): app.logger.info("Got Unfollow event") if __name__ == "__main__": # arg_parser = ArgumentParser( # usage='Usage: python ' + __file__ + ' [--port <port>] [--help]' # ) # arg_parser.add_argument('-p', '--port', type=int, default=8000, help='port') # arg_parser.add_argument('-d', '--debug', default=False, help='debug') # options = arg_parser.parse_args() # # app.run(debug=options.debug, port=options.port) port = int(os.getenv("PORT", 5000)) app.run(host="0.0.0.0", port=port)
the-stack_0_15977
from .droppedKey import DroppedKey from .items import * class Seashell(DroppedKey): # Thanks to patches, a seashell is just a dropped key as far as the randomizer is concerned. def configure(self, options): if not options.seashells: self.OPTIONS = [SEASHELL] class SeashellMansion(DroppedKey): MULTIWORLD = False
the-stack_0_15978
import os, time, json, sys #import from non-standard path module, do not remove. csfp = os.path.abspath(os.path.join(os.path.dirname(__file__), 'experiment_replication')) if csfp not in sys.path: sys.path.insert(0, csfp) import torch from multitasking_transformers.heads import SubwordClassificationHead from multitasking_transformers.multitaskers.util import get_model_path from transformers import BertConfig, BertForTokenClassification, BertModel from tokenizers import BertWordPieceTokenizer, Encoding from pprint import pprint from experiment_replication.raw_datasets.language import get_language text = """Admission Date: [**2109-7-21**] Discharge Date: [**2109-8-13**] Date of Birth: [**2053-6-5**] Sex: F Service: [**Doctor Last Name 1181**] MEDICINE HISTORY OF PRESENT ILLNESS: This is a 56-year-old white female with a history of right frontal craniotomy on [**2109-7-1**], for a dysembryoplastic angioneural epithelial lesion with features of an oligodendroglioma who was started on Dilantin postoperatively for seizure prophylaxis and was subsequently developed eye discharge and was seen by an optometrist who treated it with sulfate ophthalmic drops. The patient then developed oral sores and rash in the chest the night before admission which rapidly spread to the face, trunk, and upper extremities within the last 24 hours. The patient was unable to eat secondary to mouth pain. She had fevers, weakness, and diarrhea. There were no genital the morning of [**7-20**]. PAST MEDICAL HISTORY: 1. Hypercholesterolemia. 2. Benign right frontal cystic tumor status post right frontal craniotomy on [**2109-7-1**]. """ batch_size = 25 #Defines the maximum number of subwords per sequence during chunking. #Smaller values result in faster per instance computations, larger values are faster for longer chunks of text max_sequence_length = 512 def visualize(data_generator): from spacy import displacy from spacy.gold import biluo_tags_from_offsets from spacy.tokens import Span language = get_language() ner = language.create_pipe("ner") # language.add_pipe(ner, last=True) docs = [] print(data_generator) for text, annotation in data_generator: doc = language(text) for label in annotation['entity_labels']: ner.add_label(label) spans = [] for key in annotation['entities']: for start, stop, label in annotation['entities'][key]: span = doc.char_span(start, stop, label=label) if span is None: continue spans.append(span) doc.ents = spans docs.append(doc) displacy.serve(docs, style="ent") device='cpu' clinical_ner_tasks = ['i2b2_2010','n2c2_2018', 'i2b2_2012', 'i2b2_2014', 'quaero_2014'] model_path = get_model_path('mt_clinical_bert_8_tasks') tokenizer = BertWordPieceTokenizer(os.path.join(model_path, 'vocab.txt'), lowercase=True, add_special_tokens=False) #initialize finetuned stacked transformer bert = BertModel.from_pretrained(model_path) bert.eval() heads = {} #initialize pre-trained heads for task in clinical_ner_tasks: config = json.load(open(os.path.join(model_path, f"SubwordClassificationHead_{task}.json"), 'rb')) heads[task] = SubwordClassificationHead(task, labels=config['labels'], hidden_size=config['hidden_size'], hidden_dropout_prob=config['hidden_dropout_prob']) heads[task].from_pretrained(model_path) encoding = tokenizer.encode(text) def prepare_encoding(encoding: Encoding): """ Given a arbitrarily long text (>512 subwords), chunks it into the BERT context window. :param encoding: :return: """ def chunk_encoding(tensor : torch.Tensor): chunks = tensor.split(max_sequence_length) batch = torch.zeros(size=(len(chunks), max_sequence_length), dtype=torch.long) #we don't include special tokens during prediction (empirically, doesn't look like it hurts!) for index, chunk in enumerate(chunks): batch[index][0:len(chunk)] = torch.clone(chunk) # batch[index][0] = tokenizer.cls_token # batch[index][chunk.shape[0] + 1] = tokenizer.sep_token return batch, [len(chunk) for chunk in chunks] input_ids, num_tokens_in_instance = chunk_encoding(torch.tensor(encoding.ids, dtype=torch.long)) attention_mask, _ = chunk_encoding(torch.tensor(encoding.attention_mask, dtype=torch.long)) token_type_ids, _ = chunk_encoding(torch.tensor(encoding.type_ids, dtype=torch.long)) return (input_ids, attention_mask, token_type_ids),\ [encoding.offsets[i:i+max_sequence_length] for i in range(0, len(encoding.offsets) ,max_sequence_length)],\ num_tokens_in_instance (input_ids, attention_mask, token_type_ids), offsets, num_tokens_in_instance = prepare_encoding(encoding) token_representations = bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)[0] head_annotations = [] #Get head predictions for task, head in heads.items(): print(f"Predicting head: {head}") batch_subword_scores = head(token_representations)[0] batch_predicted_labels = batch_subword_scores.max(2)[1].tolist() # print(len(batch_predicted_labels)) spans = [] for idx, (predicted_labels, sequence_offsets) in enumerate(zip(batch_predicted_labels, offsets)): #print(predicted_labels) #merge multiple spans together into final annotation. predicted_labels = list(map(lambda x : x[2:] if '-' in x else x.replace('BERT_TOKEN', 'O'), [head.config['labels'][label_key] for label_key in predicted_labels])) sequence_offsets = sequence_offsets predicted_labels = predicted_labels # print(sequence_offsets) # print(predicted_labels) # print(f"Num tokens in instance: {num_tokens_in_instance[idx]}") i = 0 prev_label = 'O' #Group together tokens tagged with entities (post-processing heuristic) while i < num_tokens_in_instance[idx]: if predicted_labels[i] == 'O': i += 1 continue label_start = i while i+1 != num_tokens_in_instance[idx] and predicted_labels[i] == predicted_labels[i+1]: i+=1 label_end = i spans.append((sequence_offsets[label_start:label_end+1][0][0], sequence_offsets[label_start:label_end+1][-1][1], predicted_labels[i])) i+=1 # print(task) # print(spans) annotation = {'entities':{f"T{i}": [span] for i, span in enumerate(spans)}, 'entity_labels': list(map(lambda x : x[2:] if '-' in x else x, head.config['labels']))} head_annotations.append( tuple((str(encoding.original_str), annotation))) visualize(head_annotations)
the-stack_0_15980
# Copyright 2017 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from neutron_lib import constants as lib_const from neutron_lib import context from neutron_lib import rpc as n_rpc from neutron_lib.services.qos import constants as qos_consts from oslo_utils import uuidutils from neutron.agent.l3 import agent as l3_agent from neutron.agent.l3.extensions.qos import fip as fip_qos from neutron.agent.l3 import l3_agent_extension_api as l3_ext_api from neutron.agent.l3 import router_info as l3router from neutron.api.rpc.callbacks.consumer import registry from neutron.api.rpc.callbacks import resources from neutron.api.rpc.handlers import resources_rpc from neutron.objects.qos import policy from neutron.objects.qos import rule from neutron.tests import base from neutron.tests.unit.agent.l3 import test_agent _uuid = uuidutils.generate_uuid TEST_QOS_FIP = "3.3.3.3" TEST_FIP = "1.1.1.1" TEST_FIP2 = "2.2.2.2" HOSTNAME = 'myhost' class QosExtensionBaseTestCase(test_agent.BasicRouterOperationsFramework): def setUp(self): super(QosExtensionBaseTestCase, self).setUp() self.fip_qos_ext = fip_qos.FipQosAgentExtension() self.context = context.get_admin_context() self.connection = mock.Mock() self.policy = policy.QosPolicy(context=None, name='test1', id=_uuid()) self.ingress_rule = ( rule.QosBandwidthLimitRule(context=None, id=_uuid(), qos_policy_id=self.policy.id, max_kbps=1111, max_burst_kbps=2222, direction=lib_const.INGRESS_DIRECTION)) self.egress_rule = ( rule.QosBandwidthLimitRule(context=None, id=_uuid(), qos_policy_id=self.policy.id, max_kbps=3333, max_burst_kbps=4444, direction=lib_const.EGRESS_DIRECTION)) self.policy.rules = [self.ingress_rule, self.egress_rule] self.new_ingress_rule = ( rule.QosBandwidthLimitRule(context=None, id=_uuid(), qos_policy_id=self.policy.id, max_kbps=5555, max_burst_kbps=6666, direction=lib_const.INGRESS_DIRECTION)) self.ingress_rule_only_has_max_kbps = ( rule.QosBandwidthLimitRule(context=None, id=_uuid(), qos_policy_id=self.policy.id, max_kbps=5555, max_burst_kbps=0, direction=lib_const.INGRESS_DIRECTION)) self.policy2 = policy.QosPolicy(context=None, name='test2', id=_uuid()) self.policy2.rules = [self.ingress_rule] self.policy3 = policy.QosPolicy(context=None, name='test3', id=_uuid()) self.policy3.rules = [self.egress_rule] self.policy4 = policy.QosPolicy(context=None, name='test4', id=_uuid()) self.dscp = rule.QosDscpMarkingRule(context=None, id=_uuid(), qos_policy_id=self.policy4.id, dscp_mark=32) self.dscp.obj_reset_changes() self.policy4.rules = [self.dscp] self.qos_policies = {self.policy.id: self.policy, self.policy2.id: self.policy2, self.policy3.id: self.policy3, self.policy4.id: self.policy4} self.agent = l3_agent.L3NATAgent(HOSTNAME, self.conf) self.ex_gw_port = {'id': _uuid()} self.fip = {'id': _uuid(), 'floating_ip_address': TEST_QOS_FIP, 'fixed_ip_address': '192.168.0.1', 'floating_network_id': _uuid(), 'port_id': _uuid(), 'host': HOSTNAME, 'qos_policy_id': self.policy.id} self.router_id = _uuid() self.router = {'id': self.router_id, 'gw_port': self.ex_gw_port, 'ha': False, 'distributed': False, lib_const.FLOATINGIP_KEY: [self.fip]} self.router_info = l3router.RouterInfo(self.agent, self.router_id, self.router, **self.ri_kwargs) self.router_info.ex_gw_port = self.ex_gw_port self.agent.router_info[self.router_id] = self.router_info def _mock_get_router_info(router_id): return self.router_info self.get_router_info = mock.patch( 'neutron.agent.l3.l3_agent_extension_api.' 'L3AgentExtensionAPI.get_router_info').start() self.get_router_info.side_effect = _mock_get_router_info self.agent_api = l3_ext_api.L3AgentExtensionAPI(None, None) self.fip_qos_ext.consume_api(self.agent_api) class FipQosExtensionInitializeTestCase(QosExtensionBaseTestCase): @mock.patch.object(registry, 'register') @mock.patch.object(resources_rpc, 'ResourcesPushRpcCallback') def test_initialize_subscribed_to_rpc(self, rpc_mock, subscribe_mock): with mock.patch.object(n_rpc, 'Connection', return_value=self.connection) as create_connection: self.fip_qos_ext.initialize( self.connection, lib_const.L3_AGENT_MODE) create_connection.assert_has_calls([mock.call()]) self.connection.create_consumer.assert_has_calls( [mock.call( resources_rpc.resource_type_versioned_topic( resources.QOS_POLICY), [rpc_mock()], fanout=True)] ) subscribe_mock.assert_called_with(mock.ANY, resources.QOS_POLICY) class FipQosExtensionTestCase(QosExtensionBaseTestCase): def setUp(self): super(FipQosExtensionTestCase, self).setUp() self.fip_qos_ext.initialize( self.connection, lib_const.L3_AGENT_MODE) self._set_pull_mock() def _set_pull_mock(self): def _pull_mock(context, resource_type, resource_id): return self.qos_policies[resource_id] self.pull = mock.patch( 'neutron.api.rpc.handlers.resources_rpc.' 'ResourcesPullRpcApi.pull').start() self.pull.side_effect = _pull_mock def _test_new_fip_add(self, func): tc_wrapper = mock.Mock() with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): func(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 1111, 2222), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP, 3333, 4444)], any_order=True) def test_add_router(self): self._test_new_fip_add(self.fip_qos_ext.add_router) def test_update_router(self): self._test_new_fip_add(self.fip_qos_ext.update_router) def test_update_router_fip_policy_changed(self): tc_wrapper = mock.Mock() with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 1111, 2222), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP, 3333, 4444)], any_order=True) # the policy of floating IP has been changed to # which only has one egress rule self.fip[qos_consts.QOS_POLICY_ID] = self.policy3.id self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.clear_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP)]) def test_update_router_fip_policy_changed_to_none(self): tc_wrapper = mock.Mock() with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 1111, 2222), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP, 3333, 4444)], any_order=True) # floating IP remove the qos_policy bonding self.fip[qos_consts.QOS_POLICY_ID] = None self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.clear_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP)], any_order=True) def test__process_update_policy(self): tc_wrapper = mock.Mock() with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 1111, 2222), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP, 3333, 4444)], any_order=True) # the rules of floating IP policy has been changed self.fip_qos_ext._policy_rules_modified = mock.Mock( return_value=True) self.policy.rules = [self.new_ingress_rule, self.egress_rule] self.fip_qos_ext._process_update_policy(self.policy) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 5555, 6666)]) def _test_qos_policy_scenarios(self, fip_removed=True, qos_rules_removed=False): tc_wrapper = mock.Mock() with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 1111, 2222), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP, 3333, 4444)], any_order=True) if fip_removed: # floating IP dissociated, then it does not belong to # this router self.router[lib_const.FLOATINGIP_KEY] = [] if qos_rules_removed: self.policy.rules = [] self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.clear_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP)], any_order=True) def test_delete_router(self): tc_wrapper = mock.Mock() with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 1111, 2222), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP, 3333, 4444)], any_order=True) self.fip_qos_ext.delete_router(self.context, self.router) self.assertIsNone( self.fip_qos_ext.fip_qos_map.router_floating_ips.get( self.router_id)) self.assertIsNone( self.fip_qos_ext.fip_qos_map.ingress_ratelimits.get( TEST_QOS_FIP)) self.assertIsNone( self.fip_qos_ext.fip_qos_map.egress_ratelimits.get( TEST_QOS_FIP)) self.assertIsNone( self.fip_qos_ext.fip_qos_map.get_resource_policy( TEST_QOS_FIP)) def test_update_router_fip_removed(self): self._test_qos_policy_scenarios() def test_fip_qos_changed_to_none(self): self._test_qos_policy_scenarios(qos_rules_removed=True) def _test_only_one_direction_rule(self, func, policy, direction): tc_wrapper = mock.Mock() with mock.patch.object( self.fip_qos_ext.resource_rpc, 'pull', return_value=policy): with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): func(self.context, self.router) if direction == lib_const.INGRESS_DIRECTION: calls = [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 1111, 2222)] else: calls = [mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP, 3333, 4444)] tc_wrapper.set_ip_rate_limit.assert_has_calls(calls) def test_add_router_only_ingress(self): self._test_only_one_direction_rule(self.fip_qos_ext.add_router, self.policy2, lib_const.INGRESS_DIRECTION) def test_add_router_only_egress(self): self._test_only_one_direction_rule(self.fip_qos_ext.add_router, self.policy3, lib_const.EGRESS_DIRECTION) def test_update_router_only_ingress(self): self._test_only_one_direction_rule(self.fip_qos_ext.update_router, self.policy2, lib_const.INGRESS_DIRECTION) def test_update_router_only_egress(self): self._test_only_one_direction_rule(self.fip_qos_ext.update_router, self.policy3, lib_const.EGRESS_DIRECTION) def test_rule_only_has_max_kbps(self): tc_wrapper = mock.Mock() with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 1111, 2222), mock.call(lib_const.EGRESS_DIRECTION, TEST_QOS_FIP, 3333, 4444)], any_order=True) # policy ingress rule changed to only has one max_kbps value self.policy.rules = [self.ingress_rule_only_has_max_kbps, self.egress_rule] self.fip_qos_ext.update_router(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_has_calls( [mock.call(lib_const.INGRESS_DIRECTION, TEST_QOS_FIP, 5555, 0)]) def test_qos_policy_has_no_bandwidth_limit_rule(self): tc_wrapper = mock.Mock() with mock.patch.object(self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper): self.fip['qos_policy_id'] = self.policy4.id self.fip_qos_ext.add_router(self.context, self.router) tc_wrapper.set_ip_rate_limit.assert_not_called() def _test_process_ip_rates(self, with_cache): rates = {'egress': {'rate': 333, 'burst': 444}, 'ingress': {'rate': 111, 'burst': 222}} fip = '123.123.123.123' device = mock.Mock() tc_wrapper = mock.Mock() with mock.patch.object( self.fip_qos_ext, '_get_tc_wrapper', return_value=tc_wrapper) as get_tc_wrapper: with mock.patch.object( self.fip_qos_ext, 'process_ip_rate_limit') as process_ip: self.fip_qos_ext.process_ip_rates( fip, device, rates, with_cache=with_cache) if with_cache: self.assertEqual(2, process_ip.call_count) else: self.assertEqual(2, get_tc_wrapper.call_count) self.assertEqual( 2, tc_wrapper.set_ip_rate_limit.call_count) def test_process_ip_rates_with_cache(self): self._test_process_ip_rates(with_cache=True) def test_process_ip_rates_without_cache(self): self._test_process_ip_rates(with_cache=False) class RouterFipRateLimitMapsTestCase(base.BaseTestCase): def setUp(self): super(RouterFipRateLimitMapsTestCase, self).setUp() self.policy_map = fip_qos.RouterFipRateLimitMaps() def test_find_fip_router_id(self): router_id = _uuid() self.policy_map.router_floating_ips[router_id] = set([TEST_FIP, TEST_FIP2]) self.assertIsNone(self.policy_map.find_fip_router_id("8.8.8.8")) self.assertEqual(router_id, self.policy_map.find_fip_router_id(TEST_FIP)) def test_get_router_floating_ips(self): router_id = _uuid() test_ips = [TEST_FIP, TEST_FIP2] self.policy_map.router_floating_ips[router_id] = set([TEST_FIP, TEST_FIP2]) get_ips = self.policy_map.get_router_floating_ips(router_id) self.assertEqual(len(test_ips), len(get_ips)) def test_remove_fip_ratelimit_cache(self): fip = "1.1.1.1" self.policy_map.set_fip_ratelimit_cache( "ingress", fip, 100, 200) self.policy_map.set_fip_ratelimit_cache( "egress", fip, 100, 200) self.policy_map.remove_fip_ratelimit_cache("ingress", fip) self.assertIsNone(self.policy_map.ingress_ratelimits.get(fip)) self.policy_map.remove_fip_ratelimit_cache("egress", fip) self.assertIsNone(self.policy_map.egress_ratelimits.get(fip)) def test_set_fip_ratelimit_cache(self): fip = "1.1.1.1" self.policy_map.set_fip_ratelimit_cache( "ingress", fip, 100, 200) self.policy_map.set_fip_ratelimit_cache( "egress", fip, 300, 400) in_rate, in_burst = self.policy_map.get_fip_ratelimit_cache( "ingress", fip) self.assertEqual(100, in_rate) self.assertEqual(200, in_burst) e_rate, e_burst = self.policy_map.get_fip_ratelimit_cache( "egress", fip) self.assertEqual(300, e_rate) self.assertEqual(400, e_burst)
the-stack_0_15981
import math from itertools import combinations_with_replacement from operator import attrgetter from typing import Dict, List, Type from locust import User def weight_users(user_classes: List[Type[User]], user_count: int) -> Dict[str, int]: """ Compute the desired state of users using the weight of each user class. :param user_classes: the list of user class :param user_count: total number of users :return: the set of users to run """ assert user_count >= 0 if len(user_classes) == 0: return {} user_classes = sorted(user_classes, key=attrgetter("__name__")) user_classes_count = {user_class.__name__: 0 for user_class in user_classes} # If the number of users is less than the number of user classes, at most one user of each user class # is chosen. User classes with higher weight are chosen first. if user_count <= len(user_classes): user_classes_count.update( { user_class.__name__: 1 for user_class in sorted(user_classes, key=attrgetter("weight"), reverse=True)[:user_count] } ) return user_classes_count # If the number of users is greater than or equal to the number of user classes, at least one user of each # user class will be chosen. The greater number of users is, the better the actual distribution # of users will match the desired one (as dictated by the weight attributes). weights = list(map(attrgetter("weight"), user_classes)) relative_weights = [weight / sum(weights) for weight in weights] user_classes_count = { user_class.__name__: round(relative_weight * user_count) or 1 for user_class, relative_weight in zip(user_classes, relative_weights) } if sum(user_classes_count.values()) == user_count: return user_classes_count else: user_classes_count = _find_ideal_users_to_add_or_remove( user_classes, user_count - sum(user_classes_count.values()), user_classes_count ) assert sum(user_classes_count.values()) == user_count return user_classes_count def _find_ideal_users_to_add_or_remove( user_classes: List[Type[User]], user_count_to_add_or_remove: int, user_classes_count: Dict[str, int] ) -> Dict[str, int]: sign = -1 if user_count_to_add_or_remove < 0 else 1 user_count_to_add_or_remove = abs(user_count_to_add_or_remove) assert user_count_to_add_or_remove <= len(user_classes), user_count_to_add_or_remove # Formula for combination with replacement # (https://www.tutorialspoint.com/statistics/combination_with_replacement.htm) number_of_combinations = math.factorial(len(user_classes) + user_count_to_add_or_remove - 1) / ( math.factorial(user_count_to_add_or_remove) * math.factorial(len(user_classes) - 1) ) # If the number of combinations with replacement is above this threshold, we simply add/remove # users for the first "number_of_users_to_add_or_remove" users. Otherwise, computing the best # distribution is too expensive in terms of computation. max_number_of_combinations_threshold = 1000 if number_of_combinations <= max_number_of_combinations_threshold: user_classes_count_candidates: Dict[float, Dict[str, int]] = {} for user_classes_combination in combinations_with_replacement(user_classes, user_count_to_add_or_remove): # Copy in order to not mutate `user_classes_count` for the parent scope user_classes_count_candidate = user_classes_count.copy() for user_class in user_classes_combination: user_classes_count_candidate[user_class.__name__] += sign distance = distance_from_desired_distribution(user_classes, user_classes_count_candidate) if distance not in user_classes_count_candidates: user_classes_count_candidates[distance] = user_classes_count_candidate.copy() return user_classes_count_candidates[min(user_classes_count_candidates.keys())] else: # Copy in order to not mutate `user_classes_count` for the parent scope user_classes_count_candidate = user_classes_count.copy() for user_class in user_classes[:user_count_to_add_or_remove]: user_classes_count_candidate[user_class.__name__] += sign return user_classes_count_candidate def distance_from_desired_distribution(user_classes: List[Type[User]], user_classes_count: Dict[str, int]) -> float: actual_ratio_of_user_class = { user_class: user_class_count / sum(user_classes_count.values()) for user_class, user_class_count in user_classes_count.items() } expected_ratio_of_user_class = { user_class.__name__: user_class.weight / sum(map(attrgetter("weight"), user_classes)) for user_class in user_classes } differences = [ actual_ratio_of_user_class[user_class] - expected_ratio for user_class, expected_ratio in expected_ratio_of_user_class.items() ] return math.sqrt(math.fsum(map(lambda x: x ** 2, differences)))
the-stack_0_15982
import cv2 import numpy as np import os import re import argparse def list_files(path): pattern = re.compile(r'(-?\d+),(-?\d+).png') res = list() rg = list() #[xmin ymin xmax ymax] for (dirpath, dirnames, filenames) in os.walk(path): for filename in filenames: m = pattern.match(filename) if m is not None: x = int(m.group(1)) y = int(m.group(2)) p = os.path.join(dirpath, filename) res.append((x,y,p)) if len(rg) == 0: rg.append(x) rg.append(y) rg.append(x) rg.append(y) else: if rg[0] > x: rg[0] = x if rg[1] > y: rg[1] = y if rg[2] < x: rg[2] = x if rg[3] < y: rg[3] = y rg = (rg[0], rg[1], rg[2] + 1, rg[3] + 1) return (res, rg) def merge(res, rg): st = np.array((256, 256), dtype=np.int32) rg = np.array(rg, dtype=np.int32) sz = (rg[2:4] - rg[0:2]) * st img = np.zeros((sz[1], sz[0], 4), dtype=np.uint8) st = np.array((st[0], st[1], st[0], st[1]), dtype=np.int32) sz = np.array((rg[0], rg[1], rg[0], rg[1]), dtype=np.int32) for (x, z, path) in res: if x < rg[0] or z < rg[1] or x >= rg[2] or z >= rg[3]: continue tg = np.array((x, z, x + 1, z + 1), dtype=np.int32) tg = (tg - sz) * st part = cv2.imread(path, flags=cv2.IMREAD_UNCHANGED) if part is None: continue img[tg[1]:tg[3],tg[0]:tg[2],:] = part[:,:,:] return img if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('input_dir', type=str) parser.add_argument('-o', '--output_file', type=str) parser.add_argument('-r', '--range', type=str) # xmin,ymin;xmax,ymax args = parser.parse_args() (res, rg) = list_files(args.input_dir) if not (args.range == 'max'): sp = args.range.split(' ') p1 = sp[0:2] xmin = int(p1[0]) ymin = int(p1[1]) p2 = sp[2:4] xmax = int(p2[0]) + 1 ymax = int(p2[1]) + 1 rg = (xmin, ymin, xmax, ymax) h = merge(res, rg) cv2.imwrite(args.output_file, h) pass
the-stack_0_15983
""" <Program Name> download.py <Started> February 21, 2012. Based on previous version by Geremy Condra. <Author> Konstantin Andrianov Vladimir Diaz <[email protected]> <Copyright> See LICENSE for licensing information. <Purpose> Download metadata and target files and check their validity. The hash and length of a downloaded file has to match the hash and length supplied by the metadata of that file. The downloaded file is technically a file-like object that will automatically destroys itself once closed. Note that the file-like object, 'tuf.util.TempFile', is returned by the '_download_file()' function. """ # Help with Python 3 compatibility, where the print statement is a function, an # implicit relative import is invalid, and the '/' operator performs true # division. Example: print 'hello world' raises a 'SyntaxError' exception. from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import os import socket import logging import timeit import ssl import tuf import tuf.conf import tuf.hash import tuf.util import tuf.formats import tuf._vendor.six as six # 'ssl.match_hostname' was added in Python 3.2. The vendored version is needed # for Python 2.6 and 2.7. try: from ssl import match_hostname, CertificateError except ImportError: from tuf._vendor.ssl_match_hostname import match_hostname, CertificateError # See 'log.py' to learn how logging is handled in TUF. logger = logging.getLogger('tuf.download') def safe_download(url, required_length): """ <Purpose> Given the 'url' and 'required_length' of the desired file, open a connection to 'url', download it, and return the contents of the file. Also ensure the length of the downloaded file matches 'required_length' exactly. tuf.download.unsafe_download() may be called if an upper download limit is preferred. 'tuf.util.TempFile', the file-like object returned, is used instead of regular tempfile object because of additional functionality provided, such as handling compressed metadata and automatically closing files after moving to final destination. <Arguments> url: A URL string that represents the location of the file. required_length: An integer value representing the length of the file. This is an exact limit. <Side Effects> A 'tuf.util.TempFile' object is created on disk to store the contents of 'url'. <Exceptions> tuf.DownloadLengthMismatchError, if there was a mismatch of observed vs expected lengths while downloading the file. tuf.FormatError, if any of the arguments are improperly formatted. Any other unforeseen runtime exception. <Returns> A 'tuf.util.TempFile' file-like object that points to the contents of 'url'. """ return _download_file(url, required_length, STRICT_REQUIRED_LENGTH=True) def unsafe_download(url, required_length): """ <Purpose> Given the 'url' and 'required_length' of the desired file, open a connection to 'url', download it, and return the contents of the file. Also ensure the length of the downloaded file is up to 'required_length', and no larger. tuf.download.safe_download() may be called if an exact download limit is preferred. 'tuf.util.TempFile', the file-like object returned, is used instead of regular tempfile object because of additional functionality provided, such as handling compressed metadata and automatically closing files after moving to final destination. <Arguments> url: A URL string that represents the location of the file. required_length: An integer value representing the length of the file. This is an upper limit. <Side Effects> A 'tuf.util.TempFile' object is created on disk to store the contents of 'url'. <Exceptions> tuf.DownloadLengthMismatchError, if there was a mismatch of observed vs expected lengths while downloading the file. tuf.FormatError, if any of the arguments are improperly formatted. Any other unforeseen runtime exception. <Returns> A 'tuf.util.TempFile' file-like object that points to the contents of 'url'. """ return _download_file(url, required_length, STRICT_REQUIRED_LENGTH=False) def _download_file(url, required_length, STRICT_REQUIRED_LENGTH=True): """ <Purpose> Given the url, hashes and length of the desired file, this function opens a connection to 'url' and downloads the file while ensuring its length and hashes match 'required_hashes' and 'required_length'. tuf.util.TempFile is used instead of regular tempfile object because of additional functionality provided by 'tuf.util.TempFile'. <Arguments> url: A URL string that represents the location of the file. required_length: An integer value representing the length of the file. STRICT_REQUIRED_LENGTH: A Boolean indicator used to signal whether we should perform strict checking of required_length. True by default. We explicitly set this to False when we know that we want to turn this off for downloading the timestamp metadata, which has no signed required_length. <Side Effects> A 'tuf.util.TempFile' object is created on disk to store the contents of 'url'. <Exceptions> tuf.DownloadLengthMismatchError, if there was a mismatch of observed vs expected lengths while downloading the file. tuf.FormatError, if any of the arguments are improperly formatted. Any other unforeseen runtime exception. <Returns> A 'tuf.util.TempFile' file-like object that points to the contents of 'url'. """ # Do all of the arguments have the appropriate format? # Raise 'tuf.FormatError' if there is a mismatch. tuf.formats.URL_SCHEMA.check_match(url) tuf.formats.LENGTH_SCHEMA.check_match(required_length) # 'url.replace()' is for compatibility with Windows-based systems because # they might put back-slashes in place of forward-slashes. This converts it # to the common format. url = url.replace('\\', '/') logger.info('Downloading: '+str(url)) # This is the temporary file that we will return to contain the contents of # the downloaded file. temp_file = tuf.util.TempFile() try: # Open the connection to the remote file. connection = _open_connection(url) # We ask the server about how big it thinks this file should be. reported_length = _get_content_length(connection) # Then, we check whether the required length matches the reported length. _check_content_length(reported_length, required_length, STRICT_REQUIRED_LENGTH) # Download the contents of the URL, up to the required length, to a # temporary file, and get the total number of downloaded bytes. total_downloaded = _download_fixed_amount_of_data(connection, temp_file, required_length) # Does the total number of downloaded bytes match the required length? _check_downloaded_length(total_downloaded, required_length, STRICT_REQUIRED_LENGTH=STRICT_REQUIRED_LENGTH) except: # Close 'temp_file'. Any written data is lost. temp_file.close_temp_file() logger.exception('Could not download URL: '+str(url)) raise else: return temp_file def _download_fixed_amount_of_data(connection, temp_file, required_length): """ <Purpose> This is a helper function, where the download really happens. While-block reads data from connection a fixed chunk of data at a time, or less, until 'required_length' is reached. <Arguments> connection: The object that the _open_connection returns for communicating with the server about the contents of a URL. temp_file: A temporary file where the contents at the URL specified by the 'connection' object will be stored. required_length: The number of bytes that we must download for the file. This is almost always specified by the TUF metadata for the data file in question (except in the case of timestamp metadata, in which case we would fix a reasonable upper bound). <Side Effects> Data from the server will be written to 'temp_file'. <Exceptions> Runtime or network exceptions will be raised without question. <Returns> total_downloaded: The total number of bytes downloaded for the desired file. """ # Tolerate servers with a slow start by ignoring their delivery speed for # 'tuf.conf.SLOW_START_GRACE_PERIOD' seconds. Set 'seconds_spent_receiving' # to negative SLOW_START_GRACE_PERIOD seconds, and begin checking the average # download speed once it is positive. grace_period = -tuf.conf.SLOW_START_GRACE_PERIOD # Keep track of total bytes downloaded. number_of_bytes_received = 0 start_time = timeit.default_timer() try: while True: # We download a fixed chunk of data in every round. This is so that we # can defend against slow retrieval attacks. Furthermore, we do not wish # to download an extremely large file in one shot. data = b'' read_amount = min(tuf.conf.CHUNK_SIZE, required_length - number_of_bytes_received) #logger.debug('Reading next chunk...') try: data = connection.read(read_amount) # Python 3.2 returns 'IOError' if the remote file object has timed out. except (socket.error, IOError): pass number_of_bytes_received = number_of_bytes_received + len(data) # Data successfully read from the connection. Store it. temp_file.write(data) if number_of_bytes_received == required_length: break stop_time = timeit.default_timer() seconds_spent_receiving = stop_time - start_time if (seconds_spent_receiving + grace_period) < 0: #logger.debug('Ignoring average download speed for another: '+\ #str(-seconds_spent_receiving) + ' seconds') continue # Measure the average download speed. average_download_speed = number_of_bytes_received / seconds_spent_receiving # If the average download speed is below a certain threshold, we flag # this as a possible slow-retrieval attack. if average_download_speed < tuf.conf.MIN_AVERAGE_DOWNLOAD_SPEED: break else: logger.debug('Good average download speed: '+\ str(average_download_speed) + ' bytes per second') # We might have no more data to read. Check number of bytes downloaded. if not data: message = 'Downloaded '+str(number_of_bytes_received)+'/'+ \ str(required_length)+' bytes.' logger.debug(message) # Finally, we signal that the download is complete. break except: raise else: # This else block returns and skips closing the connection in the finally # block, so close the connection here. connection.close() return number_of_bytes_received finally: # Whatever happens, make sure that we always close the connection. connection.close() def _get_request(url): """ Wraps the URL to retrieve to protects against "creative" interpretation of the RFC: http://bugs.python.org/issue8732 https://github.com/pypa/pip/blob/d0fa66ecc03ab20b7411b35f7c7b423f31f77761/pip/download.py#L147 """ return six.moves.urllib.request.Request(url, headers={'Accept-encoding': 'identity'}) def _get_opener(scheme=None): """ Build a urllib2 opener based on whether the user now wants SSL. https://github.com/pypa/pip/blob/d0fa66ecc03ab20b7411b35f7c7b423f31f77761/pip/download.py#L178 """ if scheme == "https": assert os.path.isfile(tuf.conf.ssl_certificates) # If we are going over https, use an opener which will provide SSL # certificate verification. https_handler = VerifiedHTTPSHandler() opener = six.moves.urllib.request.build_opener(https_handler) # strip out HTTPHandler to prevent MITM spoof for handler in opener.handlers: if isinstance(handler, six.moves.urllib.request.HTTPHandler): opener.handlers.remove(handler) else: # Otherwise, use the default opener. opener = six.moves.urllib.request.build_opener() return opener def _open_connection(url): """ <Purpose> Helper function that opens a connection to the url. urllib2 supports http, ftp, and file. In python (2.6+) where the ssl module is available, urllib2 also supports https. TODO: Determine whether this follows http redirects and decide if we like that. For example, would we not want to allow redirection from ssl to non-ssl urls? <Arguments> url: URL string (e.g., 'http://...' or 'ftp://...' or 'file://...') <Exceptions> None. <Side Effects> Opens a connection to a remote server. <Returns> File-like object. """ # urllib2.Request produces a Request object that allows for a finer control # of the requesting process. Request object allows to add headers or data to # the HTTP request. For instance, request method add_header(key, val) can be # used to change/spoof 'User-Agent' from default Python-urllib/x.y to # 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)' this can be useful if # servers do not recognize connections that originates from # Python-urllib/x.y. parsed_url = six.moves.urllib.parse.urlparse(url) opener = _get_opener(scheme=parsed_url.scheme) request = _get_request(url) return opener.open(request, timeout = tuf.conf.SOCKET_TIMEOUT) def _get_content_length(connection): """ <Purpose> A helper function that gets the purported file length from server. <Arguments> connection: The object that the _open_connection function returns for communicating with the server about the contents of a URL. <Side Effects> No known side effects. <Exceptions> Runtime exceptions will be suppressed but logged. <Returns> reported_length: The total number of bytes reported by server. If the process fails, we return None; otherwise we would return a nonnegative integer. """ try: # What is the length of this document according to the HTTP spec? reported_length = connection.info().get('Content-Length') # Try casting it as a decimal number. reported_length = int(reported_length, 10) # Make sure that it is a nonnegative integer. assert reported_length > -1 except: message = \ 'Could not get content length about ' + str(connection) + ' from server.' logger.exception(message) reported_length = None finally: return reported_length def _check_content_length(reported_length, required_length, strict_length=True): """ <Purpose> A helper function that checks whether the length reported by server is equal to the length we expected. <Arguments> reported_length: The total number of bytes reported by the server. required_length: The total number of bytes obtained from (possibly default) metadata. strict_length: Boolean that indicates whether the required length of the file is an exact match, or an upper limit (e.g., downloading a Timestamp file). <Side Effects> No known side effects. <Exceptions> No known exceptions. <Returns> None. """ logger.debug('The server reported a length of '+repr(reported_length)+' bytes.') comparison_result = None try: if reported_length < required_length: comparison_result = 'less than' elif reported_length > required_length: comparison_result = 'greater than' else: comparison_result = 'equal to' except: logger.exception('Could not check reported and required lengths.') if strict_length: message = 'The reported length is '+comparison_result+' the required '+\ 'length of '+repr(required_length)+' bytes.' logger.debug(message) else: message = 'The reported length is '+comparison_result+' the upper limit '+\ 'of '+repr(required_length)+' bytes.' logger.debug(message) def _check_downloaded_length(total_downloaded, required_length, STRICT_REQUIRED_LENGTH=True): """ <Purpose> A helper function which checks whether the total number of downloaded bytes matches our expectation. <Arguments> total_downloaded: The total number of bytes supposedly downloaded for the file in question. required_length: The total number of bytes expected of the file as seen from its metadata. The Timestamp role is always downloaded without a known file length, and the Root role when the client cannot download any of the required top-level roles. In both cases, 'required_length' is actually an upper limit on the length of the downloaded file. STRICT_REQUIRED_LENGTH: A Boolean indicator used to signal whether we should perform strict checking of required_length. True by default. We explicitly set this to False when we know that we want to turn this off for downloading the timestamp metadata, which has no signed required_length. <Side Effects> None. <Exceptions> tuf.DownloadLengthMismatchError, if STRICT_REQUIRED_LENGTH is True and total_downloaded is not equal required_length. <Returns> None. """ if total_downloaded == required_length: logger.info('Downloaded '+str(total_downloaded)+' bytes out of the '+\ 'expected '+str(required_length)+ ' bytes.') else: difference_in_bytes = abs(total_downloaded - required_length) # What we downloaded is not equal to the required length, but did we ask # for strict checking of required length? if STRICT_REQUIRED_LENGTH: message = 'Downloaded '+str(total_downloaded)+' bytes, but expected '+\ str(required_length)+' bytes. There is a difference of '+\ str(difference_in_bytes)+' bytes.' # This must be due to a programming error, and must never happen! logger.error(message) raise tuf.DownloadLengthMismatchError(required_length, total_downloaded) else: message = 'Downloaded '+str(total_downloaded)+' bytes out of an upper '+\ 'limit of '+str(required_length)+' bytes.' # We specifically disabled strict checking of required length, but we # will log a warning anyway. This is useful when we wish to download the # Timestamp or Root metadata, for which we have no signed metadata; so, # we must guess a reasonable required_length for it. logger.info(message) class VerifiedHTTPSConnection(six.moves.http_client.HTTPSConnection): """ A connection that wraps connections with ssl certificate verification. https://github.com/pypa/pip/blob/d0fa66ecc03ab20b7411b35f7c7b423f31f77761/pip/download.py#L72 """ def connect(self): self.connection_kwargs = {} # for > py2.5 if hasattr(self, 'timeout'): self.connection_kwargs.update(timeout = self.timeout) # for >= py2.7 if hasattr(self, 'source_address'): self.connection_kwargs.update(source_address = self.source_address) sock = socket.create_connection((self.host, self.port), **self.connection_kwargs) # for >= py2.7 if getattr(self, '_tunnel_host', None): self.sock = sock self._tunnel() # set location of certificate authorities assert os.path.isfile( tuf.conf.ssl_certificates ) cert_path = tuf.conf.ssl_certificates # TODO: Disallow SSLv2. # http://docs.python.org/dev/library/ssl.html#protocol-versions # TODO: Select the right ciphers. # http://docs.python.org/dev/library/ssl.html#cipher-selection self.sock = ssl.wrap_socket(sock, self.key_file, self.cert_file, cert_reqs=ssl.CERT_REQUIRED, ca_certs=cert_path) match_hostname(self.sock.getpeercert(), self.host) class VerifiedHTTPSHandler(six.moves.urllib.request.HTTPSHandler): """ A HTTPSHandler that uses our own VerifiedHTTPSConnection. https://github.com/pypa/pip/blob/d0fa66ecc03ab20b7411b35f7c7b423f31f77761/pip/download.py#L109 """ def __init__(self, connection_class = VerifiedHTTPSConnection): self.specialized_conn_class = connection_class six.moves.urllib.request.HTTPSHandler.__init__(self) def https_open(self, req): return self.do_open(self.specialized_conn_class, req)
the-stack_0_15986
from cline import CommandLineArguments, Task from examples.example02.arguments import NumberArgs class SubtractTask(Task[NumberArgs]): @classmethod def make_args(cls, args: CommandLineArguments) -> NumberArgs: """ Makes and returns strongly-typed arguments for this task based on the parsed command line arguments `args`. Arguments: args: Parsed command line arguments Raises: CannotMakeArguments: If the given arguments are not relevant to this task Returns: Task arguments """ # Asserts that the "sub" flag is present and truthy. args.assert_true("sub") # If "a" or "b" aren't set or aren't integers then "get_integer" will # raise `CannotMakeArguments`: return NumberArgs( a=args.get_integer("a"), b=args.get_integer("b"), ) def invoke(self) -> int: """ Invokes the task. Reads arguments from `self.args`. Writes output to `self.out`. Returns the shell exit code. """ # Since the arguments are strongly-typed, we don't need to worry about # parsing integers and handing failures therein: result = self.args.a - self.args.b self.out.write(f"{result}\n") return 0
the-stack_0_15987
from __future__ import print_function, division from sympy.core import S, C from sympy.core.compatibility import u from sympy.core.exprtools import factor_terms from sympy.core.function import (Function, Derivative, ArgumentIndexError, AppliedUndef) from sympy.functions.elementary.miscellaneous import sqrt from sympy.functions.elementary.piecewise import Piecewise from sympy.core.expr import Expr from sympy.core import Add, Mul from sympy.core.relational import Eq from sympy.functions.elementary.exponential import exp from sympy.functions.elementary.trigonometric import atan2 ############################################################################### ######################### REAL and IMAGINARY PARTS ############################ ############################################################################### class re(Function): """Returns real part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. >>> from sympy import re, im, I, E >>> from sympy.abc import x, y >>> re(2*E) 2*E >>> re(2*I + 17) 17 >>> re(2*I) 0 >>> re(im(x) + x*I + 2) 2 See Also ======== im """ is_real = True unbranched = True # implicitely works on the projection to C @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg.is_real: return arg elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: return S.Zero elif arg.is_Function and arg.func is conjugate: return re(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_real: reverted.append(coeff) elif not term.has(S.ImaginaryUnit) and term.is_real: excluded.append(term) else: # Try to do some advanced expansion. If # impossible, don't try to do re(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[0]) else: included.append(term) if len(args) != len(included): a, b, c = map(lambda xs: Add(*xs), [included, reverted, excluded]) return cls(a) - im(b) + c def as_real_imag(self, deep=True, **hints): """ Returns the real number with a zero complex part. """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_real or self.args[0].is_real: return re(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * im(Derivative(self.args[0], x, evaluate=True)) def _eval_rewrite_as_im(self, arg): return self.args[0] - im(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic def _sage_(self): import sage.all as sage return sage.real_part(self.args[0]._sage_()) class im(Function): """ Returns imaginary part of expression. This function performs only elementary analysis and so it will fail to decompose properly more complicated expressions. If completely simplified result is needed then use Basic.as_real_imag() or perform complex expansion on instance of this function. Examples ======== >>> from sympy import re, im, E, I >>> from sympy.abc import x, y >>> im(2*E) 0 >>> re(2*I + 17) 17 >>> im(x*I) re(x) >>> im(re(x) + y) im(y) See Also ======== re """ is_real = True unbranched = True # implicitely works on the projection to C @classmethod def eval(cls, arg): if arg is S.NaN: return S.NaN elif arg.is_real: return S.Zero elif arg.is_imaginary or (S.ImaginaryUnit*arg).is_real: return -S.ImaginaryUnit * arg elif arg.is_Function and arg.func is conjugate: return -im(arg.args[0]) else: included, reverted, excluded = [], [], [] args = Add.make_args(arg) for term in args: coeff = term.as_coefficient(S.ImaginaryUnit) if coeff is not None: if not coeff.is_real: reverted.append(coeff) else: excluded.append(coeff) elif term.has(S.ImaginaryUnit) or not term.is_real: # Try to do some advanced expansion. If # impossible, don't try to do im(arg) again # (because this is what we are trying to do now). real_imag = term.as_real_imag(ignore=arg) if real_imag: excluded.append(real_imag[1]) else: included.append(term) if len(args) != len(included): a, b, c = map(lambda xs: Add(*xs), [included, reverted, excluded]) return cls(a) + re(b) + c def as_real_imag(self, deep=True, **hints): """ Return the imaginary part with a zero real part. Examples ======== >>> from sympy.functions import im >>> from sympy import I >>> im(2 + 3*I).as_real_imag() (3, 0) """ return (self, S.Zero) def _eval_derivative(self, x): if x.is_real or self.args[0].is_real: return im(Derivative(self.args[0], x, evaluate=True)) if x.is_imaginary or self.args[0].is_imaginary: return -S.ImaginaryUnit \ * re(Derivative(self.args[0], x, evaluate=True)) def _sage_(self): import sage.all as sage return sage.imag_part(self.args[0]._sage_()) def _eval_rewrite_as_re(self, arg): return self.args[0] - re(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic ############################################################################### ############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################ ############################################################################### class sign(Function): """ Returns the complex sign of an expression: If the expresssion is real the sign will be: * 1 if expression is positive * 0 if expression is equal to zero * -1 if expression is negative If the expresssion is imaginary the sign will be: * I if im(expression) is positive * -I if im(expression) is negative Otherwise an unevaluated expression will be returned. When evaluated, the result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``. Examples ======== >>> from sympy.functions import sign >>> from sympy.core.numbers import I >>> sign(-1) -1 >>> sign(0) 0 >>> sign(-3*I) -I >>> sign(1 + I) sign(1 + I) >>> _.evalf() 0.707106781186548 + 0.707106781186548*I See Also ======== Abs, conjugate """ is_finite = True is_complex = True def doit(self): if self.args[0].is_nonzero: return self.args[0] / Abs(self.args[0]) return self @classmethod def eval(cls, arg): # handle what we can if arg.is_Mul: c, args = arg.as_coeff_mul() unk = [] s = sign(c) for a in args: if a.is_negative: s = -s elif a.is_positive: pass else: ai = im(a) if a.is_imaginary and ai.is_comparable: # i.e. a = I*real s *= S.ImaginaryUnit if ai.is_negative: # can't use sign(ai) here since ai might not be # a Number s = -s else: unk.append(a) if c is S.One and len(unk) == len(args): return None return s * cls(arg._new_rawargs(*unk)) if arg is S.NaN: return S.NaN if arg.is_zero: # it may be an Expr that is zero return S.Zero if arg.is_positive: return S.One if arg.is_negative: return S.NegativeOne if arg.is_Function: if arg.func is sign: return arg if arg.is_imaginary: if arg.is_Pow and arg.exp is S.Half: # we catch this because non-trivial sqrt args are not expanded # e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1) return S.ImaginaryUnit arg2 = -S.ImaginaryUnit * arg if arg2.is_positive: return S.ImaginaryUnit if arg2.is_negative: return -S.ImaginaryUnit def _eval_Abs(self): if self.args[0].is_nonzero: return S.One def _eval_conjugate(self): return sign(conjugate(self.args[0])) def _eval_derivative(self, x): if self.args[0].is_real: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(self.args[0]) elif self.args[0].is_imaginary: from sympy.functions.special.delta_functions import DiracDelta return 2 * Derivative(self.args[0], x, evaluate=True) \ * DiracDelta(-S.ImaginaryUnit * self.args[0]) def _eval_is_nonnegative(self): if self.args[0].is_nonnegative: return True def _eval_is_nonpositive(self): if self.args[0].is_nonpositive: return True def _eval_is_imaginary(self): return self.args[0].is_imaginary def _eval_is_integer(self): return self.args[0].is_real def _eval_is_zero(self): return self.args[0].is_zero def _eval_power(self, other): if ( self.args[0].is_real and self.args[0].is_nonzero and other.is_integer and other.is_even ): return S.One def _sage_(self): import sage.all as sage return sage.sgn(self.args[0]._sage_()) def _eval_rewrite_as_Piecewise(self, arg): if arg.is_real: return Piecewise((1, arg > 0), (-1, arg < 0), (0, True)) def _eval_rewrite_as_Heaviside(self, arg): if arg.is_real: return C.Heaviside(arg)*2-1 def _eval_simplify(self, ratio, measure): return self.func(self.args[0].factor()) class Abs(Function): """ Return the absolute value of the argument. This is an extension of the built-in function abs() to accept symbolic values. If you pass a SymPy expression to the built-in abs(), it will pass it automatically to Abs(). Examples ======== >>> from sympy import Abs, Symbol, S >>> Abs(-1) 1 >>> x = Symbol('x', real=True) >>> Abs(-x) Abs(x) >>> Abs(x**2) x**2 >>> abs(-x) # The Python built-in Abs(x) Note that the Python built-in will return either an Expr or int depending on the argument:: >>> type(abs(-1)) <... 'int'> >>> type(abs(S.NegativeOne)) <class 'sympy.core.numbers.One'> Abs will always return a sympy object. See Also ======== sign, conjugate """ is_real = True is_negative = False unbranched = True def fdiff(self, argindex=1): """ Get the first derivative of the argument to Abs(). Examples ======== >>> from sympy.abc import x >>> from sympy.functions import Abs >>> Abs(-x).fdiff() sign(x) """ if argindex == 1: return sign(self.args[0]) else: raise ArgumentIndexError(self, argindex) @classmethod def eval(cls, arg): from sympy.simplify.simplify import signsimp if hasattr(arg, '_eval_Abs'): obj = arg._eval_Abs() if obj is not None: return obj if not isinstance(arg, Expr): raise TypeError("Bad argument type for Abs(): %s" % type(arg)) # handle what we can arg = signsimp(arg, evaluate=False) if arg.is_Mul: known = [] unk = [] for t in arg.args: tnew = cls(t) if tnew.func is cls: unk.append(tnew.args[0]) else: known.append(tnew) known = Mul(*known) unk = cls(Mul(*unk), evaluate=False) if unk else S.One return known*unk if arg is S.NaN: return S.NaN if arg.is_Pow: base, exponent = arg.as_base_exp() if base.is_real: if exponent.is_integer: if exponent.is_even: return arg if base is S.NegativeOne: return S.One if base.func is cls and exponent is S.NegativeOne: return arg return Abs(base)**exponent if base.is_positive == True: return base**re(exponent) return (-base)**re(exponent)*exp(-S.Pi*im(exponent)) if isinstance(arg, exp): return exp(re(arg.args[0])) if arg.is_zero: # it may be an Expr that is zero return S.Zero if arg.is_nonnegative: return arg if arg.is_nonpositive: return -arg if arg.is_imaginary: arg2 = -S.ImaginaryUnit * arg if arg2.is_nonnegative: return arg2 if arg.is_Add: if arg.has(S.Infinity, S.NegativeInfinity): if any(a.is_infinite for a in arg.as_real_imag()): return S.Infinity if arg.is_real is None and arg.is_imaginary is None: if all(a.is_real or a.is_imaginary or (S.ImaginaryUnit*a).is_real for a in arg.args): from sympy import expand_mul return sqrt(expand_mul(arg*arg.conjugate())) if arg.is_real is False and arg.is_imaginary is False: from sympy import expand_mul return sqrt(expand_mul(arg*arg.conjugate())) def _eval_is_integer(self): if self.args[0].is_real: return self.args[0].is_integer def _eval_is_nonzero(self): return self._args[0].is_nonzero def _eval_is_positive(self): return self.is_nonzero def _eval_is_rational(self): if self.args[0].is_real: return self.args[0].is_rational def _eval_is_even(self): if self.args[0].is_real: return self.args[0].is_even def _eval_is_odd(self): if self.args[0].is_real: return self.args[0].is_odd def _eval_is_algebraic(self): return self.args[0].is_algebraic def _eval_power(self, exponent): if self.args[0].is_real and exponent.is_integer: if exponent.is_even: return self.args[0]**exponent elif exponent is not S.NegativeOne and exponent.is_Integer: return self.args[0]**(exponent - 1)*self return def _eval_nseries(self, x, n, logx): direction = self.args[0].leadterm(x)[0] s = self.args[0]._eval_nseries(x, n=n, logx=logx) when = Eq(direction, 0) return Piecewise( ((s.subs(direction, 0)), when), (sign(direction)*s, True), ) def _sage_(self): import sage.all as sage return sage.abs_symbolic(self.args[0]._sage_()) def _eval_derivative(self, x): if self.args[0].is_real or self.args[0].is_imaginary: return Derivative(self.args[0], x, evaluate=True) \ * sign(conjugate(self.args[0])) return (re(self.args[0]) * Derivative(re(self.args[0]), x, evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]), x, evaluate=True)) / Abs(self.args[0]) def _eval_rewrite_as_Heaviside(self, arg): # Note this only holds for real arg (since Heaviside is not defined # for complex arguments). if arg.is_real: return arg*(C.Heaviside(arg) - C.Heaviside(-arg)) def _eval_rewrite_as_Piecewise(self, arg): if arg.is_real: return Piecewise((arg, arg >= 0), (-arg, True)) def _eval_rewrite_as_sign(self, arg): return arg/C.sign(arg) class arg(Function): """Returns the argument (in radians) of a complex number""" is_real = True is_finite = True @classmethod def eval(cls, arg): if not arg.is_Atom: c, arg_ = factor_terms(arg).as_coeff_Mul() if arg_.is_Mul: arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else sign(a) for a in arg_.args]) arg_ = sign(c)*arg_ else: arg_ = arg x, y = re(arg_), im(arg_) rv = atan2(y, x) if rv.is_number and not rv.atoms(AppliedUndef): return rv if arg_ != arg: return cls(arg_, evaluate=False) def _eval_derivative(self, t): x, y = re(self.args[0]), im(self.args[0]) return (x * Derivative(y, t, evaluate=True) - y * Derivative(x, t, evaluate=True)) / (x**2 + y**2) def _eval_rewrite_as_atan2(self, arg): x, y = re(self.args[0]), im(self.args[0]) return atan2(y, x) class conjugate(Function): """ Changes the sign of the imaginary part of a complex number. Examples ======== >>> from sympy import conjugate, I >>> conjugate(1 + I) 1 - I See Also ======== sign, Abs """ @classmethod def eval(cls, arg): obj = arg._eval_conjugate() if obj is not None: return obj def _eval_Abs(self): return Abs(self.args[0], evaluate=True) def _eval_adjoint(self): return transpose(self.args[0]) def _eval_conjugate(self): return self.args[0] def _eval_derivative(self, x): if x.is_real: return conjugate(Derivative(self.args[0], x, evaluate=True)) elif x.is_imaginary: return -conjugate(Derivative(self.args[0], x, evaluate=True)) def _eval_transpose(self): return adjoint(self.args[0]) def _eval_is_algebraic(self): return self.args[0].is_algebraic class transpose(Function): """ Linear map transposition. """ @classmethod def eval(cls, arg): obj = arg._eval_transpose() if obj is not None: return obj def _eval_adjoint(self): return conjugate(self.args[0]) def _eval_conjugate(self): return adjoint(self.args[0]) def _eval_transpose(self): return self.args[0] class adjoint(Function): """ Conjugate transpose or Hermite conjugation. """ @classmethod def eval(cls, arg): obj = arg._eval_adjoint() if obj is not None: return obj obj = arg._eval_transpose() if obj is not None: return conjugate(obj) def _eval_adjoint(self): return self.args[0] def _eval_conjugate(self): return transpose(self.args[0]) def _eval_transpose(self): return conjugate(self.args[0]) def _latex(self, printer, exp=None, *args): arg = printer._print(self.args[0]) tex = r'%s^{\dag}' % arg if exp: tex = r'\left(%s\right)^{%s}' % (tex, printer._print(exp)) return tex def _pretty(self, printer, *args): from sympy.printing.pretty.stringpict import prettyForm pform = printer._print(self.args[0], *args) if printer._use_unicode: pform = pform**prettyForm(u('\N{DAGGER}')) else: pform = pform**prettyForm('+') return pform ############################################################################### ############### HANDLING OF POLAR NUMBERS ##################################### ############################################################################### class polar_lift(Function): """ Lift argument to the Riemann surface of the logarithm, using the standard branch. >>> from sympy import Symbol, polar_lift, I >>> p = Symbol('p', polar=True) >>> x = Symbol('x') >>> polar_lift(4) 4*exp_polar(0) >>> polar_lift(-4) 4*exp_polar(I*pi) >>> polar_lift(-I) exp_polar(-I*pi/2) >>> polar_lift(I + 2) polar_lift(2 + I) >>> polar_lift(4*x) 4*polar_lift(x) >>> polar_lift(4*p) 4*p See Also ======== sympy.functions.elementary.exponential.exp_polar periodic_argument """ is_polar = True is_comparable = False # Cannot be evalf'd. @classmethod def eval(cls, arg): from sympy import exp_polar, pi, I, arg as argument if arg.is_number: ar = argument(arg) # In general we want to affirm that something is known, # e.g. `not ar.has(argument) and not ar.has(atan)` # but for now we will just be more restrictive and # see that it has evaluated to one of the known values. if ar in (0, pi/2, -pi/2, pi): return exp_polar(I*ar)*abs(arg) if arg.is_Mul: args = arg.args else: args = [arg] included = [] excluded = [] positive = [] for arg in args: if arg.is_polar: included += [arg] elif arg.is_positive: positive += [arg] else: excluded += [arg] if len(excluded) < len(args): if excluded: return Mul(*(included + positive))*polar_lift(Mul(*excluded)) elif included: return Mul(*(included + positive)) else: return Mul(*positive)*exp_polar(0) def _eval_evalf(self, prec): """ Careful! any evalf of polar numbers is flaky """ return self.args[0]._eval_evalf(prec) def _eval_Abs(self): return Abs(self.args[0], evaluate=True) class periodic_argument(Function): """ Represent the argument on a quotient of the Riemann surface of the logarithm. That is, given a period P, always return a value in (-P/2, P/2], by using exp(P*I) == 1. >>> from sympy import exp, exp_polar, periodic_argument, unbranched_argument >>> from sympy import I, pi >>> unbranched_argument(exp(5*I*pi)) pi >>> unbranched_argument(exp_polar(5*I*pi)) 5*pi >>> periodic_argument(exp_polar(5*I*pi), 2*pi) pi >>> periodic_argument(exp_polar(5*I*pi), 3*pi) -pi >>> periodic_argument(exp_polar(5*I*pi), pi) 0 See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm principal_branch """ @classmethod def _getunbranched(cls, ar): from sympy import exp_polar, log, polar_lift if ar.is_Mul: args = ar.args else: args = [ar] unbranched = 0 for a in args: if not a.is_polar: unbranched += arg(a) elif a.func is exp_polar: unbranched += a.exp.as_real_imag()[1] elif a.is_Pow: re, im = a.exp.as_real_imag() unbranched += re*unbranched_argument( a.base) + im*log(abs(a.base)) elif a.func is polar_lift: unbranched += arg(a.args[0]) else: return None return unbranched @classmethod def eval(cls, ar, period): # Our strategy is to evaluate the argument on the Riemann surface of the # logarithm, and then reduce. # NOTE evidently this means it is a rather bad idea to use this with # period != 2*pi and non-polar numbers. from sympy import ceiling, oo, atan2, atan, polar_lift, pi, Mul if not period.is_positive: return None if period == oo and isinstance(ar, principal_branch): return periodic_argument(*ar.args) if ar.func is polar_lift and period >= 2*pi: return periodic_argument(ar.args[0], period) if ar.is_Mul: newargs = [x for x in ar.args if not x.is_positive] if len(newargs) != len(ar.args): return periodic_argument(Mul(*newargs), period) unbranched = cls._getunbranched(ar) if unbranched is None: return None if unbranched.has(periodic_argument, atan2, arg, atan): return None if period == oo: return unbranched if period != oo: n = ceiling(unbranched/period - S(1)/2)*period if not n.has(ceiling): return unbranched - n def _eval_evalf(self, prec): from sympy import ceiling, oo z, period = self.args if period == oo: unbranched = periodic_argument._getunbranched(z) if unbranched is None: return self return unbranched._eval_evalf(prec) ub = periodic_argument(z, oo)._eval_evalf(prec) return (ub - ceiling(ub/period - S(1)/2)*period)._eval_evalf(prec) def unbranched_argument(arg): from sympy import oo return periodic_argument(arg, oo) class principal_branch(Function): """ Represent a polar number reduced to its principal branch on a quotient of the Riemann surface of the logarithm. This is a function of two arguments. The first argument is a polar number `z`, and the second one a positive real number of infinity, `p`. The result is "z mod exp_polar(I*p)". >>> from sympy import exp_polar, principal_branch, oo, I, pi >>> from sympy.abc import z >>> principal_branch(z, oo) z >>> principal_branch(exp_polar(2*pi*I)*3, 2*pi) 3*exp_polar(0) >>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi) 3*principal_branch(z, 2*pi) See Also ======== sympy.functions.elementary.exponential.exp_polar polar_lift : Lift argument to the Riemann surface of the logarithm periodic_argument """ is_polar = True is_comparable = False # cannot always be evalf'd @classmethod def eval(self, x, period): from sympy import oo, exp_polar, I, Mul, polar_lift, Symbol if isinstance(x, polar_lift): return principal_branch(x.args[0], period) if period == oo: return x ub = periodic_argument(x, oo) barg = periodic_argument(x, period) if ub != barg and not ub.has(periodic_argument) \ and not barg.has(periodic_argument): pl = polar_lift(x) def mr(expr): if not isinstance(expr, Symbol): return polar_lift(expr) return expr pl = pl.replace(polar_lift, mr) if not pl.has(polar_lift): res = exp_polar(I*(barg - ub))*pl if not res.is_polar and not res.has(exp_polar): res *= exp_polar(0) return res if not x.free_symbols: c, m = x, () else: c, m = x.as_coeff_mul(*x.free_symbols) others = [] for y in m: if y.is_positive: c *= y else: others += [y] m = tuple(others) arg = periodic_argument(c, period) if arg.has(periodic_argument): return None if arg.is_number and (unbranched_argument(c) != arg or (arg == 0 and m != () and c != 1)): if arg == 0: return abs(c)*principal_branch(Mul(*m), period) return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c) if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \ and m == (): return exp_polar(arg*I)*abs(c) def _eval_evalf(self, prec): from sympy import exp, pi, I z, period = self.args p = periodic_argument(z, period)._eval_evalf(prec) if abs(p) > pi or p == -pi: return self # Cannot evalf for this argument. return (abs(z)*exp(I*p))._eval_evalf(prec) # /cyclic/ from sympy.core import basic as _ _.abs_ = Abs del _
the-stack_0_15990
# qubit number=3 # total number=70 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename=(kernel + '-oracle.png')) return oracle def build_circuit(n: int, f: Callable[[str], str]) -> QuantumCircuit: # implement the Bernstein-Vazirani circuit zero = np.binary_repr(0, n) b = f(zero) # initial n + 1 bits input_qubit = QuantumRegister(n+1, "qc") classicals = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classicals) # inverse last one (can be omitted if using O_f^\pm) prog.x(input_qubit[n]) # circuit begin prog.h(input_qubit[1]) # number=1 prog.h(input_qubit[2]) # number=38 prog.cz(input_qubit[0],input_qubit[2]) # number=39 prog.h(input_qubit[2]) # number=40 prog.h(input_qubit[2]) # number=59 prog.cz(input_qubit[0],input_qubit[2]) # number=60 prog.h(input_qubit[2]) # number=61 prog.h(input_qubit[2]) # number=42 prog.cz(input_qubit[0],input_qubit[2]) # number=43 prog.h(input_qubit[2]) # number=44 prog.h(input_qubit[2]) # number=48 prog.cz(input_qubit[0],input_qubit[2]) # number=49 prog.h(input_qubit[2]) # number=50 prog.h(input_qubit[2]) # number=67 prog.cz(input_qubit[0],input_qubit[2]) # number=68 prog.h(input_qubit[2]) # number=69 prog.x(input_qubit[2]) # number=55 prog.cx(input_qubit[0],input_qubit[2]) # number=56 prog.h(input_qubit[2]) # number=64 prog.cz(input_qubit[0],input_qubit[2]) # number=65 prog.h(input_qubit[2]) # number=66 prog.cx(input_qubit[0],input_qubit[2]) # number=37 prog.h(input_qubit[2]) # number=51 prog.cz(input_qubit[0],input_qubit[2]) # number=52 prog.h(input_qubit[2]) # number=53 prog.h(input_qubit[2]) # number=25 prog.cz(input_qubit[0],input_qubit[2]) # number=26 prog.h(input_qubit[2]) # number=27 prog.h(input_qubit[1]) # number=7 prog.cz(input_qubit[2],input_qubit[1]) # number=8 prog.rx(0.17592918860102857,input_qubit[2]) # number=34 prog.rx(-0.3989822670059037,input_qubit[1]) # number=30 prog.h(input_qubit[1]) # number=9 prog.h(input_qubit[1]) # number=18 prog.rx(2.3310617489636263,input_qubit[2]) # number=58 prog.cz(input_qubit[2],input_qubit[1]) # number=19 prog.h(input_qubit[1]) # number=20 prog.x(input_qubit[1]) # number=62 prog.y(input_qubit[1]) # number=14 prog.h(input_qubit[1]) # number=22 prog.cz(input_qubit[2],input_qubit[1]) # number=23 prog.rx(-0.9173450548482197,input_qubit[1]) # number=57 prog.cx(input_qubit[2],input_qubit[1]) # number=63 prog.h(input_qubit[1]) # number=24 prog.z(input_qubit[2]) # number=3 prog.z(input_qubit[1]) # number=41 prog.x(input_qubit[1]) # number=17 prog.y(input_qubit[2]) # number=5 prog.x(input_qubit[2]) # number=21 # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[n]) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [input_qubit[n]]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure return prog def get_statevector(prog: QuantumCircuit) -> Any: state_backend = Aer.get_backend('statevector_simulator') statevec = execute(prog, state_backend).result() quantum_state = statevec.get_statevector() qubits = round(log2(len(quantum_state))) quantum_state = { "|" + np.binary_repr(i, qubits) + ">": quantum_state[i] for i in range(2 ** qubits) } return quantum_state def evaluate(backend_str: str, prog: QuantumCircuit, shots: int, b: str) -> Any: # Q: which backend should we use? # get state vector quantum_state = get_statevector(prog) # get simulate results # provider = IBMQ.load_account() # backend = provider.get_backend(backend_str) # qobj = compile(prog, backend, shots) # job = backend.run(qobj) # job.result() backend = Aer.get_backend(backend_str) # transpile/schedule -> assemble -> backend.run results = execute(prog, backend, shots=shots).result() counts = results.get_counts() a = Counter(counts).most_common(1)[0][0][::-1] return { "measurements": counts, # "state": statevec, "quantum_state": quantum_state, "a": a, "b": b } def bernstein_test_1(rep: str): """011 . x + 1""" a = "011" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_2(rep: str): """000 . x + 0""" a = "000" b = "0" return bitwise_xor(bitwise_dot(a, rep), b) def bernstein_test_3(rep: str): """111 . x + 1""" a = "111" b = "1" return bitwise_xor(bitwise_dot(a, rep), b) if __name__ == "__main__": n = 2 a = "11" b = "1" f = lambda rep: \ bitwise_xor(bitwise_dot(a, rep), b) prog = build_circuit(n, f) sample_shot =4000 writefile = open("../data/startQiskit_noisy350.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) backend = FakeYorktown() circuit1 = transpile(prog, FakeYorktown()) circuit1.h(qubit=2) circuit1.x(qubit=3) circuit1.measure_all() info = execute(circuit1,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
the-stack_0_15991
import torch from pytorch_lightning import LightningModule from torch import nn from inferface.config import NetworkLayerSizes, LossNames, FairFaceColumnKeys class AgeGenderRaceClassifier(LightningModule): def __init__(self, input_size: int = NetworkLayerSizes.INPUT.value, output_size_age: int = NetworkLayerSizes.AGE_9_OUTPUT.value, output_size_gender: int = NetworkLayerSizes.GENDER_2_OUTPUT.value, output_size_race: int = NetworkLayerSizes.RACE_7_OUTPUT.value, lr: float = 1e-3, dropout: float = 0.4 ): super().__init__() self.lr = lr self.dropout = dropout self.fc_age = nn.Sequential(nn.Linear(input_size, 256), nn.ReLU(), nn.Dropout(self.dropout), nn.Linear(256, 64), nn.ReLU(), nn.Dropout(self.dropout), nn.Linear(64, output_size_age), nn.LogSoftmax(dim=1)) self.fc_gender = nn.Sequential(nn.Linear(input_size, 256), nn.ReLU(), nn.Dropout(self.dropout), nn.Linear(256, 64), nn.ReLU(), nn.Dropout(self.dropout), nn.Linear(64, output_size_gender), nn.Sigmoid()) self.fc_race = nn.Sequential(nn.Linear(input_size, 256), nn.ReLU(), nn.Dropout(self.dropout), nn.Linear(256, 64), nn.ReLU(), nn.Dropout(self.dropout), nn.Linear(64, output_size_race), nn.LogSoftmax(dim=1)) self.criterion_binary = nn.BCELoss() self.criterion_multioutput = nn.CrossEntropyLoss() def forward(self, x): age = self.fc_age(x) gender = self.fc_gender(x) race = self.fc_race(x) return age, gender, race def _loop(self, batch, batch_idx, stage): image_path, embedding, age, gender, race = batch[FairFaceColumnKeys.KEY_FILE.value], \ batch[FairFaceColumnKeys.KEY_EMBEDDING.value], \ batch[FairFaceColumnKeys.KEY_AGE.value], \ batch[FairFaceColumnKeys.KEY_GENDER.value], \ batch[FairFaceColumnKeys.KEY_RACE.value] age_hat, gender_hat, race_hat = self(embedding) loss_age = self.criterion_multioutput(age_hat, age) self.log(f"{stage}_{LossNames.LOSS_AGE.value}", loss_age) loss_gender = self.criterion_binary(gender_hat, gender) self.log(f"{stage}_{LossNames.LOSS_GENDER.value}", loss_gender) loss_race = self.criterion_multioutput(race_hat, race) self.log(f"{stage}_{LossNames.LOSS_RACE.value}", loss_race) loss = loss_age + loss_gender + loss_race self.log(f"{stage}_{LossNames.LOSS_TOTAL.value}", loss) return loss def training_step(self, batch, batch_idx): stage = 'train' return self._loop(batch, batch_idx, stage) def validation_step(self, batch, batch_idx): stage = 'val' return self._loop(batch, batch_idx, stage) def test_step(self, batch, batch_idx): stage = 'test' return self._loop(batch, batch_idx, stage) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.lr) return optimizer
the-stack_0_15992
from django.shortcuts import render, redirect from urllib import request from http import cookiejar import urllib import json from django.shortcuts import HttpResponse from urllib import parse from bs4 import BeautifulSoup import pymysql.cursors import pymysql import numpy as np from main.fdu_cookie import FduCookie # import tesserocr # Create your views here. def index(req): login_url = 'https://gsas.fudan.edu.cn/sscjcx/index' code_url = 'https://gsas.fudan.edu.cn/captcha/imageCode' user_agent = r'Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' \ r'Chrome/27.0.1453.94 Safari/537.36' head = {'User-Agent': user_agent, 'Connection': 'keep-alive'} cookie = cookiejar.CookieJar() handler = request.HTTPCookieProcessor(cookie) opener = request.build_opener(handler) req_crawler = request.Request(url=login_url, headers=head) req_code = request.Request(url=code_url, headers=head) response = opener.open(req_crawler) for item in cookie: cookie_name = item.name cookie_value = item.value response_code = opener.open(req_code) code = response_code.read() with open('main/static/'+str(cookie_value)+'.png','wb') as code_img: code_img.write(code) response.close() response_code.close() return render(req, 'base.html', {'string': str(cookie_value)}) def cookie_homepage(req): return render(req, 'base_cookie.html') def test_post(req): if req.method == 'GET': return HttpResponse('get') else: req_data = json.loads(req.body) username = req_data['username'] password = req_data['password'] varycode = req_data['varycode'] cookie = req_data['crawcookie'] print('username', username) # print(type(username)) # print(username, password, varycode, cookie) # img_file = 'main/static/'+str(cookie)+'.png' # varycode = tesserocr.file_to_text(img_file) # varycode = str(varycode).strip().strip(b'\x00'.decode()) # print('varycode', varycode) user_agent = r'Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' \ r'Chrome/27.0.1453.94 Safari/537.36' head = {'User-Agent': user_agent, 'Connection': 'keep-alive'} head['Cookie'] = 'cn_com_southsoft_gms='+str(cookie) post_url = 'https://gsas.fudan.edu.cn/sscjcx/28198B369067E88DAB9FEFE85484DBF4' try: post_data = {} post_data['nd'] = '2021' post_data['username'] = username post_data['password'] = password post_data['validateCode'] = varycode # print(post_data) datepostdata = parse.urlencode(post_data).encode('utf-8') craw_req = request.Request(url=post_url, data=datepostdata, headers=head) craw_response = urllib.request.urlopen(craw_req) html = craw_response.read().decode('utf-8') soup = BeautifulSoup(html, "lxml") craw_response.close() result = soup.select("#errorInfo") if len(result)<1: # print('success') table = soup.table trs = table.find_all('tr') total_grade_tr = trs[-1] name_tr = trs[0] type_tr = trs[1] # 总成绩 total_grade = total_grade_tr.find_all('td')[-1].get_text() # 报考类型 st_type = type_tr.find_all('td')[-1].get_text() st_type = str(st_type).strip().strip(b'\x00'.decode()) # print(st_type) # 姓名 st_name = name_tr.find_all('td')[-1].get_text() st_name = str(st_name).strip().strip(b'\x00'.decode()) student_type = 0 # 专硕 if '085211' in st_type: student_type = 0 # 学硕 elif '081201' in st_type or '081202' in st_type or '081203' in st_type or '083900' in st_type: student_type = 1 else: student_type = 2 rep = {'status': 0, 'st_type': student_type, 'total_grade': total_grade, 'st_name': st_name} if student_type !=2: # 插入数据库 connect = pymysql.Connect( host='127.0.0.1', port=3306, user='root', passwd='', db='student', charset='utf8' ) cursor = connect.cursor() sql = "SELECT * FROM student WHERE number = %d;" cursor.execute(sql % int(username)) if cursor.rowcount > 0: pass else: sql = "INSERT INTO student(number, type, grade) VALUES (%s, %d, %d);" insert_data = (str(username), student_type, int(total_grade)) cursor.execute(sql % insert_data) connect.commit() if student_type == 0: sql = "SELECT grade FROM student WHERE type = 0 ORDER BY grade desc;" cursor.execute(sql) grade_list = [] for item in cursor.fetchall(): grade_list.append(int(item[0])) # print(grade_list) total_grade = int(total_grade) index = grade_list.index(total_grade) total = cursor.rowcount rep['rank'] = str(index+1) + '/' + str(total) elif student_type == 1: sql = "SELECT grade FROM student WHERE type = 1 ORDER BY grade desc;" cursor.execute(sql) grade_list = [] for item in cursor.fetchall(): grade_list.append(int(item[0])) # print(grade_list) total_grade = int(total_grade) index = grade_list.index(total_grade) total = cursor.rowcount rep['rank'] = str(index+1) + '/' + str(total) cursor.close() connect.close() return HttpResponse(json.dumps(rep, ensure_ascii=False), content_type="application/json, charset=utf-8") else: result = result[0].get_text() result = str(result).strip().strip(b'\x00'.decode()) print(result) rep = {'status': 1, 'data': result} return HttpResponse(json.dumps(rep, ensure_ascii=False), content_type="application/json, charset=utf-8") except urllib.error.URLError as e: print(e.reason) rep = {'status': 1, 'data': 'error'} return HttpResponse(json.dumps(rep, ensure_ascii=False), content_type="application/json, charset=utf-8") def cookie_crow(req): if req.method == 'GET': return HttpResponse('get') else: req_data = json.loads(req.body) cookie = req_data['crawcookie'] # print(cookie) try: fducookie = FduCookie(cookie) suffix = fducookie.get_suffix() # print('suffix', suffix) if suffix is not None: student_info = fducookie.get_score(suffix) # print('student info', student_info) username = student_info['uid'] st_name = student_info['st_name'] total_grade = student_info['score'] student_type = student_info['type'] rep = {'status': 0, 'st_type': student_type, 'total_grade': total_grade, 'st_name': st_name} # print(rep) if student_type !=2: # 插入数据库 connect = pymysql.Connect( host='127.0.0.1', port=3306, user='root', passwd='', db='student', charset='utf8' ) cursor = connect.cursor() sql = "SELECT * FROM student WHERE number = %d;" cursor.execute(sql % int(username)) if cursor.rowcount > 0: pass else: sql = "INSERT INTO student(number, type, grade) VALUES (%s, %d, %d);" insert_data = (str(username), student_type, int(total_grade)) cursor.execute(sql % insert_data) connect.commit() if student_type == 0: sql = "SELECT grade FROM student WHERE type = 0 ORDER BY grade desc;" cursor.execute(sql) grade_list = [] for item in cursor.fetchall(): grade_list.append(int(item[0])) # print(grade_list) total_grade = int(total_grade) index = grade_list.index(total_grade) total = cursor.rowcount rep['rank'] = str(index+1) + '/' + str(total) elif student_type == 1: sql = "SELECT grade FROM student WHERE type = 1 ORDER BY grade desc;" cursor.execute(sql) grade_list = [] for item in cursor.fetchall(): grade_list.append(int(item[0])) # print(grade_list) total_grade = int(total_grade) index = grade_list.index(total_grade) total = cursor.rowcount rep['rank'] = str(index+1) + '/' + str(total) cursor.close() connect.close() return HttpResponse(json.dumps(rep, ensure_ascii=False), content_type="application/json, charset=utf-8") else: rep = {'status': 1, 'data': "cookie is invalid"} return HttpResponse(json.dumps(rep, ensure_ascii=False), content_type="application/json, charset=utf-8") except urllib.error.URLError as e: print(e.reason) rep = {'status': 1, 'data': 'error'} return HttpResponse(json.dumps(rep, ensure_ascii=False), content_type="application/json, charset=utf-8") def rank(req): stu_type = int(req.GET.get('type')) # stu_type = int(req.GET.get('type')) # print('stu_type', stu_type) connect = pymysql.Connect( host='127.0.0.1', port=3306, user='root', passwd='zhangzhao1996', db='student', charset='utf8' ) cursor = connect.cursor() sql = '' if stu_type == 0: sql = "SELECT grade FROM student WHERE type = 0 ORDER BY grade desc;" elif stu_type == 1: sql = "SELECT grade FROM student WHERE type = 1 ORDER BY grade desc;" else: resp = HttpResponse() resp.status_code = 404 return resp cursor.execute(sql) grade_list = [] for item in cursor.fetchall(): grade_list.append(int(item[0])) # print(grade_list) cursor.close() connect.close() grade_set = np.unique(grade_list) rank_list = [] # for grade in grade_set[::-1]: # rank_list.append({'grade': str(grade), 'rank': str(grade_list.index(grade)+1)}) max_grade = 510 for i, grade in enumerate(grade_list): if max_grade > grade: max_grade = grade rank_list.append({'grade': str(grade), 'rank': str(i+1)}) return HttpResponse(json.dumps(rank_list, ensure_ascii=False), content_type="application/json, charset=utf-8") def ranking(req): return render(req, 'rank.html') def rankinglm(req): return render(req, 'ranklm.html') def verify_student(req): if req.method == 'GET': return HttpResponse('get') else: req_data = json.loads(req.body) uid = req_data['uid'] # print(uid) connect = pymysql.Connect( host='127.0.0.1', port=3306, user='root', passwd='', db='student', charset='utf8' ) cursor = connect.cursor() sql = "SELECT * FROM student WHERE number = %d;" cursor.execute(sql % int(uid)) if cursor.rowcount > 0: item = cursor.fetchone() # print(item) type = int(item[-2]) score = int(item[-1]) rep = {'status': 0, 'st_type': type, 'score': score} # print(rep) cursor.close() connect.close() return HttpResponse(json.dumps(rep, ensure_ascii=False), content_type="application/json, charset=utf-8") else: rep = {'status': 1} return HttpResponse(json.dumps(rep, ensure_ascii=False), content_type="application/json, charset=utf-8") def verify_homepage(req): return render(req, 'verify_student.html')
the-stack_0_15995
#!/usr/bin/env python import os import sys import django from django.conf import settings DIRNAME = os.path.dirname(__file__) if django.VERSION[1] < 4: # If the version is NOT django 4 or greater # then remove the TZ setting. settings.configure(DEBUG=True, DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', } }, INSTALLED_APPS=('django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.admin', 'downtime', 'eultheme',)) else: settings.configure(DEBUG=True, DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', } }, INSTALLED_APPS=('django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.admin', 'downtime', 'eultheme',), USE_TZ=True) try: # Django 1.7 needs this, but other versions dont. django.setup() except AttributeError: pass try: from django.test.simple import DjangoTestSuiteRunner test_runner = DjangoTestSuiteRunner(verbosity=1) except ImportError: from django.test.runner import DiscoverRunner test_runner = DiscoverRunner(verbosity=1) failures = test_runner.run_tests(['eultheme', ]) if failures: sys.exit(failures)
the-stack_0_15998
"""Utility functions for attitude dynamics.""" import numpy as np def cross_matrix(vector) -> np.ndarray: """The cross-product 'tilde' matrix of a 3x1 vector.""" return np.array( [ [0, -vector[2], vector[1]], [vector[2], 0, -vector[0]], [-vector[1], vector[0], 0] ] )
the-stack_0_16000
# -*- coding: utf-8 -*- import os import json from django.utils import timezone from nose.tools import * # noqa: F403 from api.citations.utils import render_citation from osf_tests.factories import UserFactory, PreprintFactory from tests.base import OsfTestCase from osf.models import OSFUser class Node: _id = '2nthu' csl = {'publisher': 'Open Science Framework', 'author': [{'given': u'Henrique', 'family': u'Harman'}], 'URL': 'localhost:5000/2nthu', 'issued': {'date-parts': [[2016, 12, 6]]}, 'title': u'The study of chocolate in its many forms', 'type': 'webpage', 'id': u'2nthu'} visible_contributors = '' class TestCiteprocpy(OsfTestCase): def setUp(self): super(TestCiteprocpy, self).setUp() self.user = UserFactory(fullname='Henrique Harman') def test_failing_citations(self): node = Node() node.visible_contributors = OSFUser.objects.filter(fullname='Henrique Harman') url_data_path = os.path.join(os.path.dirname(__file__), '../website/static/citeprocpy_test_data.json') with open(url_data_path) as url_test_data: data = json.load(url_test_data)['fails'] matches = [] for k, v in data.items(): try: citeprocpy = render_citation(node, k) except (TypeError, AttributeError): citeprocpy = '' if citeprocpy == v: matches.append(k) assert(len(matches) == 0) def test_passing_citations(self): node = Node() node.visible_contributors = OSFUser.objects.filter(fullname='Henrique Harman') url_data_path = os.path.join(os.path.dirname(__file__), '../website/static/citeprocpy_test_data.json') with open(url_data_path) as url_test_data: data = json.load(url_test_data)['passes'] not_matches = [] citation = [] for k, v in data.items(): try: citeprocpy = render_citation(node, k) except (TypeError, AttributeError): citeprocpy = '' if citeprocpy != v: not_matches.append(k) citation.append(citeprocpy) assert(len(not_matches) == 0) class TestCiteprocpyMLA(OsfTestCase): MLA_DATE_FORMAT = '%-d {month} %Y' # MLA month abreviations here # http://www.pomfret.ctschool.net/computer_classes/documents/mla-abbreviationsofmonths.pdf MLA_MONTH_MAP = { 1: 'Jan.', 2: 'Feb.', 3: 'Mar.', 4: 'Apr.', 5: 'May', 6: 'June', 7: 'July', 8: 'Aug.', 9: 'Sept.', 10: 'Oct.', 11: 'Nov.', 12: 'Dec.', } def setUp(self): super(TestCiteprocpyMLA, self).setUp() self.user = UserFactory(fullname='John Tordoff') self.second_contrib = UserFactory(fullname='Carson Wentz') self.third_contrib = UserFactory(fullname='Nick Foles') self.preprint = PreprintFactory(creator=self.user, title='My Preprint') date = timezone.now().date() self.formated_date = date.strftime(self.MLA_DATE_FORMAT).format(month=self.MLA_MONTH_MAP[date.month]) def test_render_citations_mla_one_author(self): citation = render_citation(self.preprint, 'modern-language-association') assert_equal(citation, u'Tordoff, John. “{}.” {}, {}. Web.'.format( self.preprint.title, self.preprint.provider.name, self.formated_date) ) # test_suffix self.user.suffix = 'Junior' self.user.save() citation = render_citation(self.preprint, 'modern-language-association') assert_equal(citation, u'Tordoff, John, Junior. “{}.” {}, {}. Web.'.format( self.preprint.title, self.preprint.provider.name, self.formated_date) ) # test_no_middle_names self.user.suffix = '' self.user.middle_names = '' self.user.save() citation = render_citation(self.preprint, 'modern-language-association') assert_equal(citation, u'Tordoff, John. “{}.” {}, {}. Web.'.format( self.preprint.title, self.preprint.provider.name, self.formated_date) ) def test_citation_no_repeated_periods(self): self.preprint.title = 'A Study of Coffee.' self.preprint.save() citation = render_citation(self.preprint, 'modern-language-association') assert_equal(citation, u'Tordoff, John. “{}” {}, {}. Web.'.format( self.preprint.title, self.preprint.provider.name, self.formated_date) ) def test_citation_osf_provider(self): self.preprint.title = 'A Study of Coffee.' self.preprint.save() self.preprint.provider.name = 'Open Science Framework' self.preprint.provider.save() citation = render_citation(self.preprint, 'modern-language-association') assert_equal(citation, u'Tordoff, John. “{}” {}, {}. Web.'.format( self.preprint.title, 'OSF Preprints', self.formated_date) ) def test_two_authors(self): self.preprint.add_contributor(self.second_contrib) self.preprint.save() citation = render_citation(self.preprint, 'modern-language-association') assert_equal(citation, u'Tordoff, John, and Carson Wentz. “{}.” {}, {}. Web.'.format( self.preprint.title, self.preprint.provider.name, self.formated_date) ) def test_three_authors(self): self.preprint.add_contributor(self.second_contrib) self.preprint.add_contributor(self.third_contrib) self.preprint.save() citation = render_citation(self.preprint, 'modern-language-association') assert_equal(citation, u'Tordoff, John, et al. “{}.” {}, {}. Web.'.format( self.preprint.title, self.preprint.provider.name, self.formated_date) ) # first name suffix self.user.suffix = 'Jr.' self.user.save() citation = render_citation(self.preprint, 'modern-language-association') assert_equal(citation, u'Tordoff, John, Jr., et al. “{}.” {}, {}. Web.'.format( self.preprint.title, self.preprint.provider.name, self.formated_date) )
the-stack_0_16002
#!/usr/bin/python3 # Tested with Python 3.8.6 #------------------------------------------------------------------------------ # find_bpl_hotspots.py #------------------------------------------------------------------------------ # Author: Isabel J. Rodriguez # 2021.01.23 #------------------------------------------------------------------------------ """ Scrape data from the Bklyn Reach website and generate a csv file containing relevant information from participating libraries in the BPL system. INPUTS ------ NONE Uses the existing Bklyn Reach url: https://www.bklynlibrary.org/reach/ OUTPUTS ------- Output file: "bpl_wifi.csv" Data included: LIBRARY ADDRESS WI-FI PROGRAM AVAILABILITY LIBRARY WEBSITE """ # Standard Python library imports import csv import sys import time # Companion scripts from write_to_csv import write_to_csv from exception_handler import exception_handler from soupify_webpage import parse_html # Geolocator from geopy.geocoders import Nominatim def pull_wifi_data(): # fetch html bpl_reach_url= 'https://www.bklynlibrary.org/reach/' webpage_soup = parse_html(bpl_reach_url) # parse html content containers = webpage_soup.findAll("div", {"class" : "panel-body"}) # containers[0] has all active participating libraries # containers[1] libraries listed as having a program 'coming soon' list_active = containers[0].ul.findAll("li") return list_active def geolocate_coordinates(street_address=None): if street_address is not None: try: geolocator = Nominatim(user_agent="bpl_wifi") location = geolocator.geocode(street_address) print(location.address) latitude = str(location.latitude) longitude = str(location.longitude) except AttributeError: latitude = 'NaN' longitude = 'NaN' return latitude, longitude def pull_address_data(url=None): """ Libraries with active extended wi-fi programs have their websites listed. Access websites and pull street address and zip code. If an street address intersection is given e.g., "16 Brighton First Rd. at Brighton Beach Ave." remove the intersection and return e.g., "16 Brighton First Rd." """ if url is not None: webpage_soup = parse_html(url) street_container = webpage_soup.findAll("div", {"class":"street-block"}) zip_container = webpage_soup.findAll("div", {"class":"addressfield-container-inline locality-block country-US"}) street_address = street_container[0].div.text zip_code = zip_container[0].findAll("span", {"class":"postal-code"})[0].text # clean address data split_address = street_address.split() stopwords = ['at', '(near', '(Near', '(at', '(@'] # remove street intersection for stopword in stopwords: if stopword in split_address: street_address = split_address[:split_address.index(stopword)] street_address = ' '.join(street_address) else: pass # addresses with street numbers spelled out decreases accuracy # replace with number (e.g., first --> 1st) # this is done on a case-by-case basis but could be generalized if 'First' in street_address: street_address = street_address.replace("First", "1st") else: pass if 'Fourth' in street_address: street_address = street_address.replace("Fourth", "4th") # grab geolocation data latitude, longitude = geolocate_coordinates(street_address=street_address + ', Brooklyn') return street_address, zip_code, latitude, longitude def store_data(list_active): """ Create a dictionary to store information for Brooklyn Public Libraries participating in the Bklyn Reach extended wi-fi program. """ # Bklyn Reach service details wifi_range = '300 feet' wifi_availability = '24/7' wifi_program = 'Bklyn Reach' city = 'Brooklyn' state = 'New York' # create a storage container for BPL data bp_libraries = {list_active[i].text: {'STREET ADDRESS' : '', 'CITY' : city, 'STATE' : state, 'ZIP CODE' : '', 'LATITUDE' : '', 'LONGITUDE' : '', 'WI-FI PROGRAM': wifi_program, 'AVAILABILITY': wifi_availability, 'WI-FI RANGE' : wifi_range, 'LIBRARY WEBSITE': '' } for i in range(len(list_active))} print("Compiling data...") for i in range (len(list_active)): nested_dict = bp_libraries[list_active[i].text] street_address, zip_code, latitude, longitude = pull_address_data(list_active[i].a["href"]) nested_dict['STREET ADDRESS'] = street_address nested_dict['ZIP CODE'] = zip_code nested_dict['LATITUDE'] = latitude nested_dict['LONGITUDE'] = longitude nested_dict['LIBRARY WEBSITE'] = list_active[i].a["href"] return bp_libraries def write_data_to_csv(bp_libraries, output_filename=None, output_folder=None): """ Pull data from storage dictionary into a list of lists, and write to csv. ARGUMENTS --------- bp_libraries : dict output_filename : str e.g., "bpl_wifi.csv" output_folder : str RETURNS ------- None """ output = [] # Order and sort data into output container for key, val in bp_libraries.items(): output.append([key, val['STREET ADDRESS'], val['CITY'], val['STATE'], val['ZIP CODE'], val['LATITUDE'], val['LONGITUDE'], val['WI-FI PROGRAM'], val['AVAILABILITY'], val['LIBRARY WEBSITE']]) output.sort(key=lambda header: header[0]) print("Compilation complete. Writing out to a csv file.") write_to_csv(output_filename=output_filename, output_folder=output_folder, output=output) @exception_handler def main(output_filename=None): """ Contains a pipeline that accepts an input csv file, and outputs processed and sorted data into an output csv file. ARGUMENTS --------- output_filename : str e.g., "wifi.csv" RETURNS ------- None """ list_active = pull_wifi_data() bp_libraries = store_data(list_active) write_data_to_csv(bp_libraries, output_filename=output_filename, output_folder=output_folder) if __name__ == "__main__": date = time.strftime("%m%d%Y") output_folder = "../output/" output_filename = "bpl_wifi_{}.csv".format(date) main(output_filename)
the-stack_0_16003
""" LC 621 You are given a list of tasks that need to be run, in any order, on a server. Each task will take one CPU interval to execute but once a task has finished, it has a cooling period during which it can’t be run again. If the cooling period for all tasks is ‘K’ intervals, find the minimum number of CPU intervals that the server needs to finish all tasks. If at any time the server can’t execute any task then it must stay idle. Example 1: Input: [a, a, a, b, c, c], K=2 Output: 7 Explanation: a -> c -> b -> a -> c -> idle -> a Example 2: Input: [a, b, a], K=3 Output: 5 Explanation: a -> b -> idle -> idle -> a """ from collections import deque from heapq import * def schedule_tasks(tasks, k): if len(tasks) <= 1: return len(tasks) if k == 0: return len(tasks) # count freqs = {} for task in tasks: if task in freqs: freqs[task] += 1 else: freqs[task] = 1 freqs = list(freqs.values()) max_f = max(freqs) n_max = freqs.count(max_f) # only consider the most frequent tasks # if gaps are needed, gaps happend for 1 of the most frequent tasks # the tail has n_max tasks # the front has max_f - 1 groups, k + 1 values in each return max(len(tasks), n_max + (k + 1) * (max_f - 1)) def main(): print("Minimum intervals needed to execute all tasks: " + str(schedule_tasks(['a', 'a', 'a', 'b', 'c', 'c'], 2))) print("Minimum intervals needed to execute all tasks: " + str(schedule_tasks(['a', 'b', 'a'], 3))) main() """ #letters is O(1) Time O(N) Space O(1) """
the-stack_0_16006
"""Fixtures for pywemo.""" import asyncio import contextlib from unittest.mock import create_autospec, patch import pytest import pywemo from homeassistant.components.wemo import CONF_DISCOVERY, CONF_STATIC from homeassistant.components.wemo.const import DOMAIN from homeassistant.helpers import entity_registry as er from homeassistant.setup import async_setup_component MOCK_HOST = "127.0.0.1" MOCK_PORT = 50000 MOCK_NAME = "WemoDeviceName" MOCK_SERIAL_NUMBER = "WemoSerialNumber" MOCK_FIRMWARE_VERSION = "WeMo_WW_2.00.XXXXX.PVT-OWRT" MOCK_INSIGHT_CURRENT_WATTS = 0.01 MOCK_INSIGHT_TODAY_KWH = 3.33 MOCK_INSIGHT_STATE_THRESHOLD_POWER = 8.0 @pytest.fixture(name="pywemo_model") def pywemo_model_fixture(): """Fixture containing a pywemo class name used by pywemo_device_fixture.""" return "LightSwitch" @pytest.fixture(name="pywemo_registry", autouse=True) async def async_pywemo_registry_fixture(): """Fixture for SubscriptionRegistry instances.""" registry = create_autospec(pywemo.SubscriptionRegistry, instance=True) registry.callbacks = {} registry.semaphore = asyncio.Semaphore(value=0) def on_func(device, type_filter, callback): registry.callbacks[device.name] = callback registry.semaphore.release() registry.on.side_effect = on_func registry.is_subscribed.return_value = False with patch("pywemo.SubscriptionRegistry", return_value=registry): yield registry @pytest.fixture(name="pywemo_discovery_responder", autouse=True) def pywemo_discovery_responder_fixture(): """Fixture for the DiscoveryResponder instance.""" with patch("pywemo.ssdp.DiscoveryResponder", autospec=True): yield @contextlib.contextmanager def create_pywemo_device(pywemo_registry, pywemo_model): """Create a WeMoDevice instance.""" cls = getattr(pywemo, pywemo_model) device = create_autospec(cls, instance=True) device.host = MOCK_HOST device.port = MOCK_PORT device.name = MOCK_NAME device.serialnumber = MOCK_SERIAL_NUMBER device.model_name = pywemo_model.replace("LongPress", "") device.udn = f"uuid:{device.model_name}-1_0-{device.serialnumber}" device.firmware_version = MOCK_FIRMWARE_VERSION device.get_state.return_value = 0 # Default to Off device.supports_long_press.return_value = cls.supports_long_press() if issubclass(cls, pywemo.Insight): device.standby_state = pywemo.StandbyState.OFF device.current_power_watts = MOCK_INSIGHT_CURRENT_WATTS device.today_kwh = MOCK_INSIGHT_TODAY_KWH device.threshold_power_watts = MOCK_INSIGHT_STATE_THRESHOLD_POWER device.on_for = 1234 device.today_on_time = 5678 device.total_on_time = 9012 if issubclass(cls, pywemo.Maker): device.has_sensor = 1 device.sensor_state = 1 device.switch_mode = 1 device.switch_state = 0 url = f"http://{MOCK_HOST}:{MOCK_PORT}/setup.xml" with patch("pywemo.setup_url_for_address", return_value=url), patch( "pywemo.discovery.device_from_description", return_value=device ): yield device @pytest.fixture(name="pywemo_device") def pywemo_device_fixture(pywemo_registry, pywemo_model): """Fixture for WeMoDevice instances.""" with create_pywemo_device(pywemo_registry, pywemo_model) as pywemo_device: yield pywemo_device @pytest.fixture(name="wemo_entity_suffix") def wemo_entity_suffix_fixture(): """Fixture to select a specific entity for wemo_entity.""" return "" async def async_create_wemo_entity(hass, pywemo_device, wemo_entity_suffix): """Create a hass entity for a wemo device.""" assert await async_setup_component( hass, DOMAIN, { DOMAIN: { CONF_DISCOVERY: False, CONF_STATIC: [f"{MOCK_HOST}:{MOCK_PORT}"], }, }, ) await hass.async_block_till_done() entity_registry = er.async_get(hass) for entry in entity_registry.entities.values(): if entry.entity_id.endswith(wemo_entity_suffix or pywemo_device.name.lower()): return entry return None @pytest.fixture(name="wemo_entity") async def async_wemo_entity_fixture(hass, pywemo_device, wemo_entity_suffix): """Fixture for a Wemo entity in hass.""" return await async_create_wemo_entity(hass, pywemo_device, wemo_entity_suffix)
the-stack_0_16012
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .certificate_item import CertificateItem class DeletedCertificateItem(CertificateItem): """The deleted certificate item containing metadata about the deleted certificate. Variables are only populated by the server, and will be ignored when sending a request. :param id: Certificate identifier. :type id: str :param attributes: The certificate management attributes. :type attributes: ~azure.keyvault.models.CertificateAttributes :param tags: Application specific metadata in the form of key-value pairs. :type tags: dict[str, str] :param x509_thumbprint: Thumbprint of the certificate. :type x509_thumbprint: bytes :param recovery_id: The url of the recovery object, used to identify and recover the deleted certificate. :type recovery_id: str :ivar scheduled_purge_date: The time when the certificate is scheduled to be purged, in UTC :vartype scheduled_purge_date: datetime :ivar deleted_date: The time when the certificate was deleted, in UTC :vartype deleted_date: datetime """ _validation = { 'scheduled_purge_date': {'readonly': True}, 'deleted_date': {'readonly': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'attributes': {'key': 'attributes', 'type': 'CertificateAttributes'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'x509_thumbprint': {'key': 'x5t', 'type': 'base64'}, 'recovery_id': {'key': 'recoveryId', 'type': 'str'}, 'scheduled_purge_date': {'key': 'scheduledPurgeDate', 'type': 'unix-time'}, 'deleted_date': {'key': 'deletedDate', 'type': 'unix-time'}, } def __init__(self, *, id: str=None, attributes=None, tags=None, x509_thumbprint: bytes=None, recovery_id: str=None, **kwargs) -> None: super(DeletedCertificateItem, self).__init__(id=id, attributes=attributes, tags=tags, x509_thumbprint=x509_thumbprint, **kwargs) self.recovery_id = recovery_id self.scheduled_purge_date = None self.deleted_date = None
the-stack_0_16013
from __init__ import * import sys sys.path.insert(0, ROOT) from fractions import Fraction from compiler import * from constructs import * def interpolate(G, U, l, pipe_data, name): z = pipe_data['z'] y = pipe_data['y'] x = pipe_data['x'] extent = pipe_data['extent'] interior = pipe_data['interior'] ghosts = pipe_data['ghosts'] inner_box = interior[l]['inner_box'] UU = Function(([z, y, x], [extent[l], extent[l], extent[l]]), Double, str(name)) zz = z/2 yy = y/2 xx = x/2 def z1(xx): return G(zz , yy+1, xx) + G(zz , yy , xx) def z2(xx): return G(zz+1, yy , xx) + G(zz , yy , xx) def z3(xx): return G(zz+1, yy+1, xx) + G(zz+1, yy, xx) \ + G(zz , yy+1, xx) + G(zz , yy, xx) expr_000 = G(zz, yy, xx) expr_001 = 0.500 * (G(zz, yy, xx) + G(zz, yy, xx+1)) expr_010 = 0.500 * z1(xx) expr_011 = 0.250 * (z1(xx) + z1(xx+1)) expr_100 = 0.500 * z2(xx) expr_101 = 0.250 * (z2(xx) + z2(xx+1)) expr_110 = 0.250 * z3(xx) expr_111 = 0.125 * (z3(xx) + z3(xx+1)) even_x = Condition(x%2, '==', 0) even_y = Condition(y%2, '==', 0) even_z = Condition(z%2, '==', 0) if U == None: correct = 0.0 else: correct = U(z, y, x) UU.defn = [ correct + \ Select(even_z, Select(even_y, Select(even_x, expr_000, expr_001), Select(even_x, expr_010, expr_011)), Select(even_y, Select(even_x, expr_100, expr_101), Select(even_x, expr_110, expr_111))) ] return UU
the-stack_0_16017
import sys if './' not in sys.path: sys.path.append('./') from screws.freeze.base import FrozenOnly from objects.CSCG._3d.forms.trace._2tr.discretize.vector.standard import _3dCSCG_2Trace_Discretize_StandardVector from objects.CSCG._3d.forms.trace._2tr.discretize.vector.boundary_wise import _3dCSCG_2Trace_Discretize_BoundaryWiseVector from objects.CSCG._3d.forms.trace._2tr.discretize.scalar.standard import _3dCSCG_2Trace_Discretize_StandardScalar from objects.CSCG._3d.forms.trace._2tr.discretize.scalar.boundary_wise import _3dCSCG_2Trace_Discretize_BoundaryWiseScalar class _3dCSCG_2Trace_Discretize(FrozenOnly): """""" def __init__(self, tf): self._tf_ = tf self._standard_vector_ = _3dCSCG_2Trace_Discretize_StandardVector(tf) self._boundary_wise_vector_ = _3dCSCG_2Trace_Discretize_BoundaryWiseVector(tf) self._standard_scalar_ = _3dCSCG_2Trace_Discretize_StandardScalar(tf) self._boundary_wise_scalar_ = _3dCSCG_2Trace_Discretize_BoundaryWiseScalar(tf) self._freeze_self_() def __call__(self, update_cochain=True, target='func', **kwargs): """ Do the discretization. :param bool update_cochain: Whether we update the cochain if the trace form. :param target: :param kwargs: Keywords arguments to be passed to particular discretization schemes. :return: The cochain corresponding to the particular discretization scheme. """ SELF = self._tf_ if target == 'func': if SELF.TW.func.body.__class__.__name__ == '_3dCSCG_ScalarField': if SELF.func.ftype == 'standard': return self._standard_scalar_( update_cochain=update_cochain, **kwargs) else: raise Exception(f'3dCSCG 2-trace can not (target func) discretize ' f'_3dCSCG_ScalarField of ftype {SELF.func.ftype}.') elif SELF.TW.func.body.__class__.__name__ == '_3dCSCG_VectorField': if SELF.func.ftype == 'standard': # we will discretize the norm component of the vector. return self._standard_vector_( update_cochain=update_cochain, **kwargs) else: raise Exception(f'3dCSCG 2-trace can not (target func) discretize ' f'_3dCSCG_VectorField of ftype {SELF.func.ftype}.') else: raise NotImplementedError(f'3dCSCG 2-trace can not (target func) ' f'discretize {SELF.TW.func.body.__class__}.') elif target == 'BC': # We target at the BC, so we do not update the cochain! if SELF.TW.BC.body.__class__.__name__ == '_3dCSCG_ScalarField': if SELF.BC.ftype == 'standard': return self._standard_scalar_( update_cochain=False, target='BC', **kwargs) elif SELF.BC.ftype == 'boundary-wise': return self._boundary_wise_scalar_( **kwargs) # must be False update_cochain and 'BC' target. else: raise Exception(f'3dCSCG 2-trace can not (target BC) discretize ' f'_3dCSCG_ScalarField of ftype {SELF.BC.ftype}.') elif SELF.TW.BC.body.__class__.__name__ == '_3dCSCG_VectorField': if SELF.BC.ftype == 'standard': # we will discretize the norm flux of the vector. return self._standard_vector_( update_cochain=False, target='BC', **kwargs) elif SELF.BC.ftype == 'boundary-wise': # we will discretize the norm flux of the vector. return self._boundary_wise_vector_( **kwargs) # must be False update_cochain and 'BC' target. else: raise Exception(f'3dCSCG 2-trace can not (target BC) discretize ' f'_3dCSCG_VectorField of ftype {SELF.BC.ftype}.') else: raise NotImplementedError(f'3dCSCG 2-trace can not (target BC) ' f'discretize {SELF.TW.BC.body.__class__}.') else: raise NotImplementedError(f"target={target} not implemented " f"for 3d CSCG 2-trace form discretization.") if __name__ == '__main__': # mpiexec -n 5 python _3dCSCG\forms\trace\_2_trace\discretize\main.py from objects.CSCG._3d.master import MeshGenerator, SpaceInvoker, FormCaller mesh = MeshGenerator('crazy', c=0.)([2,2,2]) space = SpaceInvoker('polynomials')([('Lobatto',5), ('Lobatto',5), ('Lobatto',5)]) FC = FormCaller(mesh, space)
the-stack_0_16024
#!/usr/bin/env python # -*- coding: utf-8 -*- # Siconos is a program dedicated to modeling, simulation and control # of non smooth dynamical systems. # # Copyright 2021 INRIA. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # ----------------------------------------------------------------------- # # DiodeBridge : sample of an electrical circuit involving : # - a linear dynamical system consisting of an LC oscillator (1 µF , 10 mH) # - a non smooth system (a 1000 Ohm resistor supplied through a 4 # diodes bridge) in parallel with the oscillator # # Expected behavior : # # The initial state (Vc = 10 V , IL = 0) of the oscillator provides # an initial energy. # The period is 2 Pi sqrt(LC) ~ 0,628 ms. # The non smooth system is a full wave rectifier : # each phase (positive and negative) of the oscillation allows current to flow # through the resistor in a constant direction, resulting in an energy loss : # the oscillation damps. # # State variables : # - the voltage across the capacitor (or inductor) # - the current through the inductor # # Since there is only one dynamical system, the interaction is defined by : # - complementarity laws between diodes current and # voltage. Depending on the diode position in the bridge, y stands # for the reverse voltage across the diode or for the diode # current (see figure in the template file) # - a linear time invariant relation between the state variables and # y and lambda (derived from Kirchhoff laws) # # ----------------------------------------------------------------------- t0 = 0.0 T = 5.0e-3 # Total simulation time h_step = 1.0e-6 # Time step Lvalue = 1e-2 # inductance Cvalue = 1e-6 # capacitance Rvalue = 1e3 # resistance Vinit = 10.0 # initial voltage Modeltitle = "DiodeBridge" withPlot = True if (withPlot): import matplotlib matplotlib.use('Agg') from matplotlib.pyplot import subplot, title, plot, grid, savefig from siconos.kernel import FirstOrderLinearDS, FirstOrderLinearTIR, \ ComplementarityConditionNSL, Interaction,\ NonSmoothDynamicalSystem, EulerMoreauOSI, TimeDiscretisation, LCP, \ TimeStepping # # dynamical system # init_state = [Vinit, 0] A = [[0, -1.0/Cvalue], [1.0/Lvalue, 0 ]] LSDiodeBridge = FirstOrderLinearDS(init_state, A) # # Interactions # C = [[0., 0.], [0, 0.], [-1., 0.], [1., 0.]] D = [[1./Rvalue, 1./Rvalue, -1., 0.], [1./Rvalue, 1./Rvalue, 0., -1.], [1., 0., 0., 0.], [0., 1., 0., 0.]] B = [[0., 0., -1./Cvalue, 1./Cvalue], [0., 0., 0., 0. ]] LTIRDiodeBridge = FirstOrderLinearTIR(C, B) LTIRDiodeBridge.setDPtr(D) nslaw = ComplementarityConditionNSL(4) InterDiodeBridge = Interaction(nslaw, LTIRDiodeBridge) # # Model # DiodeBridge = NonSmoothDynamicalSystem(t0, T) DiodeBridge.setTitle(Modeltitle) # add the dynamical system in the non smooth dynamical system DiodeBridge.insertDynamicalSystem(LSDiodeBridge) # link the interaction and the dynamical system DiodeBridge.link(InterDiodeBridge, LSDiodeBridge) # # Simulation # # (1) OneStepIntegrators theta = 0.5 gamma = 0.5 aOSI = EulerMoreauOSI(theta, gamma) aOSI.setUseGammaForRelation(True) # (2) Time discretisation aTiDisc = TimeDiscretisation(t0, h_step) # (3) Non smooth problem aLCP = LCP() # (4) Simulation setup with (1) (2) (3) aTS = TimeStepping(DiodeBridge, aTiDisc, aOSI, aLCP) # end of model definition # # computation # k = 0 h = aTS.timeStep() print("Timestep : ", h) # Number of time steps N = int((T - t0) / h) print("Number of steps : ", N) # Get the values to be plotted # ->saved in a matrix dataPlot from numpy import zeros dataPlot = zeros([N, 10]) x = LSDiodeBridge.x() print("Initial state : ", x) y = InterDiodeBridge.y(0) print("First y : ", y) lambda_ = InterDiodeBridge.lambda_(0) # For the initial time step: # time # inductor voltage dataPlot[k, 1] = x[0] # inductor current dataPlot[k, 2] = x[1] # diode R1 current dataPlot[k, 3] = y[0] # diode R1 voltage dataPlot[k, 4] = - lambda_[0] # diode F2 voltage dataPlot[k, 5] = - lambda_[1] # diode F1 current dataPlot[k, 6] = lambda_[2] k += 1 while (k < N): aTS.computeOneStep() #aLCP.display() dataPlot[k, 0] = aTS.nextTime() # inductor voltage dataPlot[k, 1] = x[0] # inductor current dataPlot[k, 2] = x[1] # diode R1 current dataPlot[k, 3] = y[0] # diode R1 voltage dataPlot[k, 4] = - lambda_[0] # diode F2 voltage dataPlot[k, 5] = - lambda_[1] # diode F1 current dataPlot[k, 6] = lambda_[2] k += 1 aTS.nextStep() # comparison with reference file from siconos.kernel import SimpleMatrix, getMatrix from numpy.linalg import norm ref = getMatrix(SimpleMatrix("DiodeBridge.ref")) error = norm(dataPlot[:,0:6] - ref[:,0:6]) print("error = " , error) #assert (error < 1e-09) withRef = True if (withPlot): # # plots # subplot(411) title('inductor voltage') plot(dataPlot[0:k - 1, 0], dataPlot[0:k - 1, 1]) if (withRef): plot(ref[0:k - 1, 0], ref[0:k - 1, 1]) grid() subplot(412) title('inductor current') plot(dataPlot[0:k - 1, 0], dataPlot[0:k - 1, 2]) if (withRef): plot(ref[0:k - 1, 0], ref[0:k - 1, 2]) grid() subplot(413) title('diode R1 (blue) and F2 (green) voltage') plot(dataPlot[0:k - 1, 0], -dataPlot[0:k - 1, 4]) plot(dataPlot[0:k - 1, 0], dataPlot[0:k - 1, 5]) if (withRef): plot(ref[0:k - 1, 0], -ref[0:k - 1, 4]) plot(ref[0:k - 1, 0], ref[0:k - 1, 5]) grid() subplot(414) title('resistor current') plot(dataPlot[0:k - 1, 0], dataPlot[0:k - 1, 3] + dataPlot[0:k - 1, 6] ) if (withRef): plot(dataPlot[0:k - 1, 0], ref[0:k - 1, 3] + ref[0:k - 1, 6] ) grid() savefig("diode_brige_tgs.png")
the-stack_0_16025
#!/usr/bin/env python # -*- coding: UTF-8 -*- ################################################################################ # # Copyright (c) 2019 Baidu.com, Inc. All Rights Reserved # ################################################################################ """ File: network.py """ import argparse import numpy as np import paddle.fluid as fluid import paddle.fluid.framework as framework from paddle.fluid.executor import Executor from source.utils.utils import str2bool from source.utils.utils import id_to_text from source.utils.utils import init_embedding from source.utils.utils import build_data_feed from source.utils.utils import load_id2str_dict from source.inputters.corpus import KnowledgeCorpus from source.models.knowledge_seq2seq import knowledge_seq2seq #配置解析CMD 参数 def model_config(): """ model config """ parser = argparse.ArgumentParser() # Data CMD参数组 data_arg = parser.add_argument_group("Data") data_arg.add_argument("--data_dir", type=str, default="./data/") data_arg.add_argument("--data_prefix", type=str, default="demo") data_arg.add_argument("--save_dir", type=str, default="./models/") data_arg.add_argument("--vocab_path", type=str, default="./data/vocab.txt") data_arg.add_argument("--embed_file", type=str, default="./data/sgns.weibo.300d.txt") # Network CMD参数组 net_arg = parser.add_argument_group("Network") #****词嵌入维度 net_arg.add_argument("--embed_size", type=int, default=300) net_arg.add_argument("--hidden_size", type=int, default=800) net_arg.add_argument("--bidirectional", type=str2bool, default=True) # 训练时由载入的vocab又重新更新了以下vocab_size net_arg.add_argument("--vocab_size", type=int, default=30004) #过滤知识三元组时的filter参数 单个实体名长度大于等于min_len 小于等于max_len net_arg.add_argument("--min_len", type=int, default=1) net_arg.add_argument("--max_len", type=int, default=500) net_arg.add_argument("--num_layers", type=int, default=1) net_arg.add_argument("--attn", type=str, default='dot', choices=['none', 'mlp', 'dot', 'general']) # Training / Testing CMD参数组 train_arg = parser.add_argument_group("Training") #TODO:run_train.sh 里分为stage0 stage1 train_arg.add_argument("--stage", type=int, default="0") train_arg.add_argument("--run_type", type=str, default="train") train_arg.add_argument("--init_model", type=str, default="") train_arg.add_argument("--init_opt_state", type=str, default="") train_arg.add_argument("--optimizer", type=str, default="Adam") train_arg.add_argument("--lr", type=float, default=0.0005) train_arg.add_argument("--grad_clip", type=float, default=5.0) train_arg.add_argument("--dropout", type=float, default=0.3) train_arg.add_argument("--num_epochs", type=int, default=13) #stage0 train x 个epoch,则stage1 默认从x+1个epoch开始,x不加指定默认为5. train_arg.add_argument("--pretrain_epoch", type=int, default=5) train_arg.add_argument("--use_bow", type=str2bool, default=True) train_arg.add_argument("--use_posterior", type=str2bool, default=False) # Geneation gen_arg = parser.add_argument_group("Generation") gen_arg.add_argument("--beam_size", type=int, default=10) gen_arg.add_argument("--max_dec_len", type=int, default=30) gen_arg.add_argument("--length_average", type=str2bool, default=True) gen_arg.add_argument("--output", type=str, default="./output/test.result") gen_arg.add_argument("--model_path", type=str, default="./models/best_model/") gen_arg.add_argument("--unk_id", type=int, default=1) gen_arg.add_argument("--bos_id", type=int, default=2) gen_arg.add_argument("--eos_id", type=int, default=3) # MISC misc_arg = parser.add_argument_group("Misc") misc_arg.add_argument("--use_gpu", type=str2bool, default=True) misc_arg.add_argument("--log_steps", type=int, default=300) misc_arg.add_argument("--valid_steps", type=int, default=1000) misc_arg.add_argument("--batch_size", type=int, default=1) config = parser.parse_args() return config def trace_fianl_result(final_score, final_ids, final_index, topk=1, EOS=3): """ trace fianl result """ col_size = final_score.shape[1] row_size = final_score.shape[0] found_eos_num = 0 i = row_size - 1 beam_size = col_size score = final_score[-1] row_array = [row_size - 1] * beam_size col_array = [e for e in range(col_size)] while i >= 0: for j in range(col_size - 1, -1, -1): if final_ids[i, j] == EOS: repalce_idx = beam_size - (found_eos_num % beam_size) - 1 score[repalce_idx] = final_score[i, j] found_eos_num += 1 row_array[repalce_idx] = i col_array[repalce_idx] = j i -= 1 topk_index = np.argsort(score,)[-topk:] trace_result = [] trace_score = [] for index in reversed(topk_index): start_i = row_array[index] start_j = col_array[index] ids = [] for k in range(start_i, -1, -1): ids.append(final_ids[k, start_j]) start_j = final_index[k, start_j] ids = ids[::-1] trace_result.append(ids) trace_score.append(score[index]) return trace_result, trace_score def load(): """ load model for predict """ config = model_config() config.vocab_size = len(open(config.vocab_path).readlines()) final_score, final_ids, final_index = knowledge_seq2seq(config) final_score.persistable = True final_ids.persistable = True final_index.persistable = True main_program = fluid.default_main_program() if config.use_gpu: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) fluid.io.load_params(executor=exe, dirname=config.model_path, main_program=main_program) processors = KnowledgeCorpus( data_dir=config.data_dir, data_prefix=config.data_prefix, vocab_path=config.vocab_path, min_len=config.min_len, max_len=config.max_len) # load dict id_dict_array = load_id2str_dict(config.vocab_path) model_handle = [exe, place, final_score, final_ids, final_index, processors, id_dict_array] return model_handle def predict(model_handle, text): """ predict for text by model_handle """ batch_size = 1 [exe, place, final_score, final_ids, final_index, processors, id_dict_array] = model_handle data_generator = processors.preprocessing_for_lines([text], batch_size=batch_size) results = [] for batch_id, data in enumerate(data_generator()): data_feed, sent_num = build_data_feed(data, place, batch_size=batch_size) out = exe.run(feed=data_feed, fetch_list=[final_score.name, final_ids.name, final_index.name]) batch_score = out[0] batch_ids = out[1] batch_pre_index = out[2] batch_score_arr = np.split(batch_score, batch_size, axis=1) batch_ids_arr = np.split(batch_ids, batch_size, axis=1) batch_pre_index_arr = np.split(batch_pre_index, batch_size, axis=1) index = 0 for (score, ids, pre_index) in zip(batch_score_arr, batch_ids_arr, batch_pre_index_arr): trace_ids, trace_score = trace_fianl_result(score, ids, pre_index, topk=1, EOS=3) results.append(id_to_text(trace_ids[0][:-1], id_dict_array)) index += 1 if index >= sent_num: break return results[0] #for stage0--train bow loss: init from random and embedding file(if no embedding file init embedding layer with random) #for stage1--train overal loss: load from stage0 pretrain/之前的保存 def init_model(config, param_name_list, place): """ init model """ stage = config.stage if stage == 0: for name in param_name_list: t = fluid.global_scope().find_var(name).get_tensor() init_scale = 0.05 np_t = np.asarray(t) if str(name) == 'embedding': np_para = init_embedding(config.embed_file, config.vocab_path, init_scale, np_t.shape) else: np_para = np.random.uniform(-init_scale, init_scale, np_t.shape).astype('float32') t.set(np_para.astype('float32'), place) else: model_init_file = config.init_model try: model_init = np.load(model_init_file) except: print("load init model failed", model_init_file) raise Exception("load init model failed") print("load init model") for name in param_name_list: t = fluid.global_scope().find_var(name).get_tensor() t.set(model_init[str(name)].astype('float32'), place) # load opt state opt_state_init_file = config.init_opt_state if opt_state_init_file != "": print("begin to load opt state") opt_state_data = np.load(opt_state_init_file) for k, v in opt_state_data.items(): t = fluid.global_scope().find_var(str(k)).get_tensor() t.set(v, place) print("set opt state finished") print("init model parameters finshed") def train_loop(config, train_generator, valid_generator, main_program, inference_program, model_handle, param_name_list, opt_var_name_list): """ model train loop """ stage = config.stage [exe, place, bow_loss, kl_loss, nll_loss, final_loss] = model_handle #总步数 total_step = 0 start_epoch = 0 if stage == 0 else config.pretrain_epoch end_epoch = config.pretrain_epoch if stage == 0 else config.num_epochs print("stage"+str(stage)+"--- start epoch/end epoch: ", start_epoch, end_epoch) best_score = float('inf') for epoch_idx in range(start_epoch, end_epoch): total_bow_loss = 0 total_kl_loss = 0 total_nll_loss = 0 total_final_loss = 0 sample_num = 0 for batch_id, data in enumerate(train_generator()): data_feed = build_data_feed(data, place, batch_size=config.batch_size, is_training=True, bow_max_len=config.max_len, pretrain_epoch=epoch_idx < config.pretrain_epoch) if data_feed is None: break out = exe.run(main_program, feed=data_feed, fetch_list=[bow_loss.name, kl_loss.name, nll_loss.name, final_loss.name]) total_step += 1 total_bow_loss += out[0] total_kl_loss += out[1] total_nll_loss += out[2] total_final_loss += out[3] sample_num += 1 if batch_id > 0 and batch_id % config.log_steps == 0: print("epoch %d step %d | " "bow loss %0.6f kl loss %0.6f nll loss %0.6f total loss %0.6f" % \ (epoch_idx, batch_id, total_bow_loss / sample_num, total_kl_loss / sample_num, \ total_nll_loss / sample_num, total_final_loss / sample_num)) total_bow_loss = 0 total_kl_loss = 0 total_nll_loss = 0 total_final_loss = 0 sample_num = 0 #在训练过程中,每config.valid_steps 个batch(步)进行一次valid,并储存一次最好模型 if batch_id > 0 and batch_id % config.valid_steps == 0: eval_bow_loss, eval_kl_loss, eval_nll_loss, eval_total_loss = \ vaild_loop(config, valid_generator, inference_program, model_handle) # save model if stage != 0: param_path = config.save_dir + "/" + str(total_step) fluid.io.save_params(executor=exe, dirname=param_path, main_program=main_program) if eval_nll_loss < best_score: # save to best best_model_path = config.save_dir + "/best_model" print("save to best", eval_nll_loss, best_model_path) fluid.io.save_params(executor=exe, dirname=best_model_path, main_program=main_program) best_score = eval_nll_loss eval_bow_loss, eval_kl_loss, eval_nll_loss, eval_total_loss = \ vaild_loop(config, valid_generator, inference_program, model_handle) if stage != 0: param_path = config.save_dir + "/" + str(total_step) fluid.io.save_params(executor=exe, dirname=param_path, main_program=main_program) if eval_nll_loss < best_score: best_model_path = config.save_dir + "/best_model" print("save to best", eval_nll_loss, best_model_path) fluid.io.save_params(executor=exe, dirname=best_model_path, main_program=main_program) best_score = eval_nll_loss if stage == 0: # save last model and opt_stat to npz for next stage init save_model_file = config.save_dir + "/model_stage_0" save_opt_state_file = config.save_dir + "/opt_state_stage_0" model_stage_0 = {} for name in param_name_list: t = np.asarray(fluid.global_scope().find_var(name).get_tensor()) model_stage_0[name] = t np.savez(save_model_file, **model_stage_0) opt_state_stage_0 = {} for name in opt_var_name_list: t_data = np.asarray(fluid.global_scope().find_var(name).get_tensor()) opt_state_stage_0[name] = t_data np.savez(save_opt_state_file, **opt_state_stage_0) def vaild_loop(config, valid_generator, inference_program, model_handle): """ model vaild loop """ [exe, place, bow_loss, kl_loss, nll_loss, final_loss] = model_handle valid_num = 0.0 total_valid_bow_loss = 0.0 total_valid_kl_loss = 0.0 total_valid_nll_loss = 0.0 total_valid_final_loss = 0.0 for batch_id, data in enumerate(valid_generator()): data_feed = build_data_feed(data, place, batch_size=config.batch_size, is_training=True, bow_max_len=config.max_len, pretrain_epoch=False) if data_feed is None: continue val_fetch_outs = \ exe.run(inference_program, feed=data_feed, fetch_list=[bow_loss.name, kl_loss.name, nll_loss.name, final_loss.name]) total_valid_bow_loss += val_fetch_outs[0] * config.batch_size total_valid_kl_loss += val_fetch_outs[1] * config.batch_size total_valid_nll_loss += val_fetch_outs[2] * config.batch_size total_valid_final_loss += val_fetch_outs[3] * config.batch_size valid_num += config.batch_size print("valid dataset: bow loss %0.6f kl loss %0.6f nll loss %0.6f total loss %0.6f" % \ (total_valid_bow_loss / valid_num, total_valid_kl_loss / valid_num, \ total_valid_nll_loss / valid_num, total_valid_final_loss / valid_num)) return [total_valid_bow_loss / valid_num, total_valid_kl_loss / valid_num, \ total_valid_nll_loss / valid_num, total_valid_final_loss / valid_num] def test(config): """ test """ batch_size = config.batch_size config.vocab_size = len(open(config.vocab_path).readlines()) final_score, final_ids, final_index = knowledge_seq2seq(config) final_score.persistable = True final_ids.persistable = True final_index.persistable = True main_program = fluid.default_main_program() if config.use_gpu: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() exe = Executor(place) exe.run(framework.default_startup_program()) fluid.io.load_params(executor=exe, dirname=config.model_path, main_program=main_program) print("laod params finsihed") # test data generator processors = KnowledgeCorpus( data_dir=config.data_dir, data_prefix=config.data_prefix, vocab_path=config.vocab_path, min_len=config.min_len, max_len=config.max_len) test_generator = processors.data_generator( batch_size=config.batch_size, phase="test", shuffle=False) # load dict id_dict_array = load_id2str_dict(config.vocab_path) out_file = config.output fout = open(out_file, 'w') for batch_id, data in enumerate(test_generator()): data_feed, sent_num = build_data_feed(data, place, batch_size=batch_size) if data_feed is None: break out = exe.run(feed=data_feed, fetch_list=[final_score.name, final_ids.name, final_index.name]) batch_score = out[0] batch_ids = out[1] batch_pre_index = out[2] batch_score_arr = np.split(batch_score, batch_size, axis=1) batch_ids_arr = np.split(batch_ids, batch_size, axis=1) batch_pre_index_arr = np.split(batch_pre_index, batch_size, axis=1) index = 0 for (score, ids, pre_index) in zip(batch_score_arr, batch_ids_arr, batch_pre_index_arr): trace_ids, trace_score = trace_fianl_result(score, ids, pre_index, topk=1, EOS=3) fout.write(id_to_text(trace_ids[0][:-1], id_dict_array)) fout.write('\n') index += 1 if index >= sent_num: break fout.close() def train(config): """ model training """ config.vocab_size = len(open(config.vocab_path).readlines()) #搭建网络:Bi-GRU Utterance encoder +Bi-GRU KG encoder +层级GRU decoder bow_loss, kl_loss, nll_loss, final_loss= knowledge_seq2seq(config) #持久性变量(Persistables)是一种在每次迭代结束后均不会被删除的变量 bow_loss.persistable = True kl_loss.persistable = True nll_loss.persistable = True final_loss.persistable = True #fluid.layers 接口中添加的op和variable会存储在 default main program 中 main_program = fluid.default_main_program() inference_program = fluid.default_main_program().clone(for_test=True) #给指定参数做梯度裁剪 fluid.clip.set_gradient_clip( clip=fluid.clip.GradientClipByGlobalNorm(clip_norm=config.grad_clip)) optimizer = fluid.optimizer.Adam(learning_rate=config.lr) if config.stage == 0: print("stage 0") optimizer.minimize(bow_loss) else: print("stage 1") optimizer.minimize(final_loss) #优化器的训练参数如lr opt_var_name_list = optimizer.get_opti_var_name_list() if config.use_gpu: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() exe = Executor(place) #初始化 default_startup_program函数可以获取默认/全局 startup Program (初始化启动程序)。 exe.run(framework.default_startup_program()) #block0 表示一段代码的最外层块 param_list = main_program.block(0).all_parameters() param_name_list = [p.name for p in param_list] #TODO:init包含 init_model(config, param_name_list, place) processors = KnowledgeCorpus( data_dir=config.data_dir, data_prefix=config.data_prefix, vocab_path=config.vocab_path, min_len=config.min_len, max_len=config.max_len) #train_generator为yeild 生成函数 #进行了如下操作: #读取stream record file #对读入的文本进行tokennize;根据max min len 进行过滤 #并根据词汇表把src\tgt\cue文本串(chatpath+knowledge+":"+history\ response\ KG cue)转为数字串 ##进行padding并返回padding后的串和每个串的原长 train_generator = processors.train_generator( batch_size=config.batch_size, phase="train", shuffle=True) valid_generator = processors.data_generator( batch_size=config.batch_size, phase="dev", shuffle=False) model_handle = [exe, place, bow_loss, kl_loss, nll_loss, final_loss] #在训练过程中,每config.valid_steps 个batch(步)进行一次valid,并储存一次最好模型 train_loop(config, train_generator, valid_generator, main_program, inference_program, model_handle, param_name_list, opt_var_name_list) if __name__ == "__main__": #配置解析CMD 参数 config = model_config() # 模式: train / test run_type = config.run_type if run_type == "train": train(config) elif run_type == "test": test(config)
the-stack_0_16027
from dataclasses import dataclass from output.models.ibm_data.instance_invalid.s3_4_2_4.s3_4_2_4ii06_xsd.s3_4_2_4ii06 import C1 __NAMESPACE__ = "http://xstest-tns/schema11_S3_4_2_4" @dataclass class Root(C1): class Meta: name = "root" namespace = "http://xstest-tns/schema11_S3_4_2_4"
the-stack_0_16028
#!/usr/bin/env python """ project creation and deletion check for v3 """ # We just want to see any exception that happens # don't want the script to die under any cicumstances # script must try to clean itself up # pylint: disable=broad-except # pylint: disable=invalid-name # pylint: disable=import-error import argparse import time import logging from openshift_tools.monitoring.ocutil import OCUtil from openshift_tools.monitoring.metric_sender import MetricSender logging.basicConfig( format='%(asctime)s - %(relativeCreated)6d - %(levelname)-8s - %(message)s', ) logger = logging.getLogger() logger.setLevel(logging.INFO) ocutil = OCUtil() commandDelay = 10 # seconds def runOCcmd(cmd, base_cmd='oc'): """ log commands through ocutil """ logger.info(base_cmd + " " + cmd) oc_time = time.time() oc_result = ocutil.run_user_cmd(cmd, base_cmd=base_cmd, ) logger.info("oc command took %s seconds", str(time.time() - oc_time)) return oc_result def parse_args(): """ parse the args from the cli """ logger.debug("parse_args()") parser = argparse.ArgumentParser(description='OpenShift project creation and deletion test') parser.add_argument('-v', '--verbose', action='store_true', default=None, help='Verbose?') parser.add_argument('--namespace', default="ops-project-operation-check", help='namespace (be careful of using existing namespaces)') return parser.parse_args() def send_metrics(status_code_create, status_code_delete): """ send data to MetricSender""" logger.debug("send_metrics()") ms_time = time.time() ms = MetricSender() logger.info("Send data to MetricSender") # 1 means create and delete the project failed ms.add_metric({'openshift.master.project.create': status_code_create}) ms.add_metric({'openshift.master.project.delete': status_code_delete}) ms.send_metrics() logger.info("Data sent to Zagg in %s seconds", str(time.time() - ms_time)) def check_project(config): """ check create and delete project """ logger.info('check_project()') logger.debug(config) project = None try: project = runOCcmd("get project {}".format(config.namespace)) logger.debug(project) except Exception: pass # don't want exception if project not found if project: project_exist = 1 # project exists else: project_exist = 0 # project doest not exists return project_exist def create_project(config): " create the project " try: runOCcmd("new-project {}".format(config.namespace), base_cmd='oc adm') time.sleep(commandDelay) except Exception: logger.exception('error creating new project') def delete_project(config): " delete the project " try: runOCcmd("delete project {}".format(config.namespace), base_cmd='oc') time.sleep(commandDelay) except Exception: logger.exception('error delete project') def main(): """ check the project operation status """ logger.debug("main()") args = parse_args() if args.verbose: logger.setLevel(logging.DEBUG) ocutil.namespace = args.namespace project_exists = check_project(args) # project does not exists. delete_project_code = 0 if project_exists == 0: logger.info("project does not exists, going to create it") create_project(args) create_project_code = check_project(args) if create_project_code == 0: # 0 means project creation failed, no project was created logger.info('project creation failed') else: # project creation succeed, then delete the project delete_project(args) delete_project_code = check_project(args) if delete_project_code == 1: # 1 means project deletion failed, the project still exists # give the deletion second chance. 10 more seconds to check the # teminating status project delete_project_code = check_project(args) if delete_project_code == 1: logger.info('project deletion failed in 20s') else: delete_project_code = 0 else: # the project already exists, so I think the project creation failed create_project_code = 0 #logger.info("{} {}".format(create_project_code, delete_project_code)) if create_project_code == 1 and delete_project_code == 0: logger.info('creation and deletion succeed, no data was sent to zagg') send_metrics(create_project_code, delete_project_code) if __name__ == "__main__": main()
the-stack_0_16029
#!/usr/bin/python import os import sys import numpy as np import biotite import biotite.structure as struc import biotite.database.rcsb as rcsb import biotite.structure.io.pdb as pdb import biotite.structure.io as strucio def Nano(angstrom): '''Convert angstrom to nanometer''' nano = angstrom / 10 return(nano) def DiameterA(TheFile): ''' Find the diameter of a protein's structure accuratly, requires lots of memory and crashes for big structures. Here we broadcast the array against itself, calculating all pairwise distances between points. This is a bad idea, because we have N*(N-1) = (1e6)**2 = 1 trillion pairs! This will raise a MemoryError for N=1 million, as it requires half a million gigabytes!! ''' # Get atom coordinates atom_array = strucio.load_structure(TheFile) # Remove all non-amino acids atoms atom_array = atom_array[struc.filter_amino_acids(atom_array)] # Coordinates as a NumPy array coord = atom_array.coord # Calculate all pairwise difference vectors diff = coord[:, np.newaxis, :] - coord[np.newaxis, :, :] # Calculate absolute of difference vectors -> square distances sq_dist = np.sum(diff*diff, axis=-1) # Get maximum distance maxdist = np.max(sq_dist) # Maximum distance is diameter diameter = np.sqrt(np.max(sq_dist)) return(round(diameter, 3)) def Diameter(TheFile): ''' Find the diameter of a protein's structure approximately, requires less memory thus good for big structures ''' # Get atom coordinates atom_array = strucio.load_structure(TheFile) # Remove all non-amino acids atoms atom_array = atom_array[struc.filter_amino_acids(atom_array)] # Coordinates as a NumPy array coord = atom_array.coord # Find geometric center center = np.mean(coord, axis=0) # Find largest distance from center -> diameter diameter = 2*np.sqrt(np.sum((coord - center)**2, axis=-1)).max() return(round(diameter, 3)) def main(): directory = sys.argv[1] filelist = os.listdir(directory) for File in filelist: try: diameter = DiameterA('{}/{}'.format(directory, File)) diameternano = round(Nano(diameter), 3) print('{} = {} A\t{} nm'.format(File, diameter, diameternano)) except: diameter = Diameter('{}/{}'.format(directory, File)) diameternano = round(Nano(diameter), 3) print('{} = {} A\t{} nm'.format(File, diameter, diameternano)) if __name__ == '__main__': main()
the-stack_0_16033
# encoding=utf-8 ## SOLVED 2013/12/23 ## -59231 # Euler discovered the remarkable quadratic formula: # n² + n + 41 # It turns out that the formula will produce 40 primes for the consecutive # values n = 0 to 39. However, when n = 40, 402 + 40 + 41 = 40(40 + 1) + 41 is # divisible by 41, and certainly when n = 41, 41² + 41 + 41 is clearly divisible # by 41. # The incredible formula n² − 79n + 1601 was discovered, which produces 80 # primes for the consecutive values n = 0 to 79. The product of the # coefficients, −79 and 1601, is −126479. # Considering quadratics of the form: # n² + an + b, where |a| < 1000 and |b| < 1000 # where |n| is the modulus/absolute value of n # e.g. |11| = 11 and |−4| = 4 # Find the product of the coefficients, a and b, for the quadratic expression # that produces the maximum number of primes for consecutive values of n, # starting with n = 0. import helpers.prime as prime def euler(): longest_sequence = 0 product = 0 for a in range(-1000, 1000): for b in range(-1000, 1000): length = sequence_length(a, b) if length > longest_sequence: longest_sequence = length product = a * b return product def sequence_length(a, b): def f(): return n ** 2 + a * n + b n = 0 while f() > 1 and prime.is_prime(f()): n += 1 return n
the-stack_0_16034
# In "and" operator if ONE is false the whole is false # in "or" operator if ONE is true the whole is true print("Welcome to the rollercoaster!") height = int(input("What is your height in cms? ")) bill = 0 if height >= 120: print("You can ride the rollercoaster") age = int(input("What is your age? ")) if age < 12: bill = 5 print("Child tickets are $5") elif age <= 18: bill = 7 print("Youth tickets are $7") elif age >= 45 and age <= 55: print("Everything is going to be ok. Have a free ride") else: bill = 14 print("Adult tickets are $14") wants_photo = input("Do you want a photo taken? Y or N.") if wants_photo == "Y": bill += 3 print(f"Your final bill is $ {bill}") else: print("Sorry, your pp isn't grown up to ride the rollercoaster")
the-stack_0_16035
#********************************************************************** # Copyright 2020 Advanced Micro Devices, Inc # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #******************************************************************** from dataclasses import dataclass from pathlib import Path import math import bpy from pxr import Sdf, UsdLux, Tf from ...utils.image import cache_image_file, cache_image_file_path from ...utils import BLENDER_DATA_DIR from ...utils import usd as usd_utils from ...utils import logging log = logging.Log('export.world') OBJ_PRIM_NAME = "World" LIGHT_PRIM_NAME = "World" @dataclass(init=False, eq=True) class ShadingData: type: str use_scene_lights: bool = True use_scene_world: bool = True has_world: bool = False studiolight: Path = None studiolight_rotate_z: float = 0.0 studiolight_background_alpha: float = 0.0 studiolight_intensity: float = 1.0 def __init__(self, context: bpy.types.Context, world: bpy.types.World): shading = context.area.spaces.active.shading self.type = shading.type if self.type == 'RENDERED': self.use_scene_lights = shading.use_scene_lights_render self.use_scene_world = shading.use_scene_world_render else: self.use_scene_lights = shading.use_scene_lights self.use_scene_world = shading.use_scene_world if self.use_scene_world: self.has_world = bool(world) else: if shading.selected_studio_light.path: self.studiolight = Path(shading.selected_studio_light.path) else: self.studiolight = BLENDER_DATA_DIR / "studiolights/world" / shading.studio_light self.studiolight_rotate_z = shading.studiolight_rotate_z self.studiolight_background_alpha = shading.studiolight_background_alpha self.studiolight_intensity = shading.studiolight_intensity @dataclass(init=False, eq=True, repr=True) class WorldData: """ Comparable dataclass which holds all environment settings """ color: tuple = (0.05, 0.05, 0.05) image: str = None intensity: float = 1.0 rotation: tuple = (0.0, 0.0, 0.0) transparency: float = 1.0 @property def clear_color(self): color = [c * self.intensity for c in self.color] color.append(self.transparency) return tuple(color) @staticmethod def init_from_world(world: bpy.types.World): """ Returns WorldData from bpy.types.World """ data = WorldData() if not world: return data if not world.use_nodes: data.color = tuple(world.color) return data output_node = next((node for node in world.node_tree.nodes if node.bl_idname == 'ShaderNodeOutputWorld' and node.is_active_output), None) if not output_node: return data from .nodes import ShaderNodeOutputWorld node_parser = ShaderNodeOutputWorld(world, output_node) node_item = node_parser.export() if not node_item: return data node_data = node_item.data if isinstance(node_data, float): data.color = (node_data, node_data, node_data) data.transparency = 1.0 return data if isinstance(node_data, tuple): data.color = node_data[:3] data.transparency = node_data[3] return data # node_data is dict here intensity = node_data.get('intensity', 1.0) if isinstance(intensity, tuple): intensity = intensity[0] data.intensity = intensity color = node_data.get('color') if color is None: image = node_data.get('image') if image: data.image = cache_image_file(image) elif isinstance(color, float): data.color = (color, color, color) data.transparency = color elif isinstance(color, tuple): data.color = color[:3] data.transparency = color[3] else: # dict image = color.get('image') if image: data.image = cache_image_file(image) rotation = node_data.get('rotation') if isinstance(rotation, tuple): data.rotation = rotation[:3] return data @staticmethod def init_from_shading(shading: ShadingData, world): if shading.use_scene_world: return WorldData.init_from_world(world) data = WorldData() data.intensity = shading.studiolight_intensity data.rotation = (0.0, 0.0, shading.studiolight_rotate_z) data.image = cache_image_file_path(shading.studiolight) return data @staticmethod def init_from_stage(stage): data = WorldData() light_prim = next((prim for prim in stage.TraverseAll() if prim.GetTypeName() == 'DomeLight'), None) if light_prim: data.color = light_prim.GetAttribute('inputs:color').Get() data.intensity = light_prim.GetAttribute('inputs:intensity').Get() data.transparency = light_prim.GetAttribute('inputs:transparency').Get() return data def sync(root_prim, world: bpy.types.World, shading: ShadingData = None): if shading: data = WorldData.init_from_shading(shading, world) else: data = WorldData.init_from_world(world) stage = root_prim.GetStage() obj_prim = stage.DefinePrim(root_prim.GetPath().AppendChild(OBJ_PRIM_NAME)) usd_light = UsdLux.DomeLight.Define(stage, obj_prim.GetPath().AppendChild(LIGHT_PRIM_NAME)) light_prim = usd_light.GetPrim() usd_light.OrientToStageUpAxis() if data.image: tex_attr = usd_light.CreateTextureFileAttr() tex_attr.ClearDefault() usd_utils.add_delegate_variants(obj_prim, { 'GL': lambda: tex_attr.Set(""), 'RPR': lambda: tex_attr.Set(str(data.image)) }) usd_light.CreateColorAttr(data.color) usd_light.CreateIntensityAttr(data.intensity) light_prim.CreateAttribute("inputs:transparency", Sdf.ValueTypeNames.Float).Set(data.transparency) # set correct Dome light rotation usd_light.AddRotateXOp().Set(180.0) usd_light.AddRotateYOp().Set(-90.0 + math.degrees(data.rotation[2])) def sync_update(root_prim, world: bpy.types.World, shading: ShadingData = None): stage = root_prim.GetStage() usd_light = UsdLux.DomeLight.Define( stage, root_prim.GetPath().AppendChild(OBJ_PRIM_NAME).AppendChild(LIGHT_PRIM_NAME)) # removing prev settings usd_light.CreateColorAttr().Clear() usd_light.CreateIntensityAttr().Clear() if usd_light.GetTextureFileAttr().Get() is not None: usd_light.GetTextureFileAttr().Block() usd_light.ClearXformOpOrder() sync(root_prim, world, shading) def get_clear_color(root_prim): light_prim = root_prim.GetChild(OBJ_PRIM_NAME).GetChild(LIGHT_PRIM_NAME) color = light_prim.GetAttribute('inputs:color').Get() intensity = light_prim.GetAttribute('inputs:intensity').Get() transparency = light_prim.GetAttribute('inputs:transparency').Get() clear_color = [c * intensity for c in color] clear_color.append(transparency) return tuple(clear_color)
the-stack_0_16040
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################################ # # RMG Website - A Django-powered website for Reaction Mechanism Generator # # Copyright (c) 2011 Prof. William H. Green ([email protected]) and the # RMG Team ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the 'Software'), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ################################################################################ import os.path import re from django.shortcuts import render_to_response from django.template import RequestContext from django.http import Http404, HttpResponseRedirect from django.core.urlresolvers import reverse from django.forms.models import BaseInlineFormSet, inlineformset_factory from rmgweb.rmg.models import * from rmgweb.rmg.forms import * from rmgpy.molecule.molecule import Molecule from rmgpy.molecule.group import Group from rmgpy.thermo import * from rmgpy.kinetics import * from rmgpy.data.base import Entry from rmgpy.data.thermo import ThermoDatabase from rmgpy.data.kinetics import * from rmgpy.data.rmg import RMGDatabase from rmgweb.main.tools import * from rmgweb.database.views import loadDatabase ################################################################################ def index(request): """ The RMG simulation homepage. """ return render_to_response('rmg.html', context_instance=RequestContext(request)) def convertChemkin(request): """ Allows user to upload chemkin and RMG dictionary files to generate a nice looking html output. """ chemkin = Chemkin() path = '' chemkin.deleteDir() if request.method == 'POST': chemkin.createDir() form = UploadChemkinForm(request.POST, request.FILES, instance=chemkin) if form.is_valid(): form.save() path = 'media/rmg/tools/output.html' # Generate the output HTML file chemkin.createOutput() # Go back to the network's main page return render_to_response('chemkinUpload.html', {'form': form, 'path':path}, context_instance=RequestContext(request)) # Otherwise create the form else: form = UploadChemkinForm(instance=chemkin) return render_to_response('chemkinUpload.html', {'form': form,'path':path}, context_instance=RequestContext(request)) def convertAdjlists(request): """ Allows user to upload a dictionary txt file and convert it back into old style adjacency lists in the form of a txt file. """ conversion = AdjlistConversion() path = '' conversion.deleteDir() if request.method == 'POST': conversion.createDir() form = UploadDictionaryForm(request.POST, request.FILES, instance=conversion) if form.is_valid(): form.save() path = 'media/rmg/tools/adjlistConversion/RMG_Dictionary.txt' # Generate the output HTML file conversion.createOutput() # Go back to the network's main page return render_to_response('dictionaryUpload.html', {'form': form, 'path':path}, context_instance=RequestContext(request)) # Otherwise create the form else: form = UploadDictionaryForm(instance=conversion) return render_to_response('dictionaryUpload.html', {'form': form,'path':path}, context_instance=RequestContext(request)) def compareModels(request): """ Allows user to compare 2 RMG models with their chemkin and species dictionaries and generate a pretty HTML diff file. """ diff = Diff() path = '' diff.deleteDir() if request.method == 'POST': diff.createDir() form = ModelCompareForm(request.POST, request.FILES, instance=diff) if form.is_valid(): form.save() path = 'media/rmg/tools/compare/diff.html' # Generate the output HTML file diff.createOutput() return render_to_response('modelCompare.html', {'form': form, 'path':path}, context_instance=RequestContext(request)) # Otherwise create the form else: form = ModelCompareForm(instance=diff) return render_to_response('modelCompare.html', {'form': form,'path':path}, context_instance=RequestContext(request)) def mergeModels(request): """ Merge 2 RMG models with their chemkin and species dictionaries. Produces a merged chemkin file and species dictionary. """ model = Diff() path = '' model.deleteDir() if request.method == 'POST': model.createDir() form = ModelCompareForm(request.POST, request.FILES, instance = model) if form.is_valid(): form.save() model.merge() path = 'media/rmg/tools/compare' #[os.path.join(model.path,'chem.inp'), os.path.join(model.path,'species_dictionary.txt'), os.path.join(model.path,'merging_log.txt')] return render_to_response('mergeModels.html', {'form': form, 'path':path}, context_instance=RequestContext(request)) else: form = ModelCompareForm(instance=model) return render_to_response('mergeModels.html', {'form': form,'path':path}, context_instance=RequestContext(request)) def generateFlux(request): """ Allows user to upload a set of RMG condition files and/or chemkin species concentraiton output to generate a flux diagram video. """ from generateFluxDiagram import createFluxDiagram flux = FluxDiagram() path = '' flux.deleteDir() if request.method == 'POST': flux.createDir() form = FluxDiagramForm(request.POST, request.FILES,instance=flux) if form.is_valid(): form.save() input = os.path.join(flux.path,'input.py') chemkin = os.path.join(flux.path,'chem.inp') dict = os.path.join(flux.path,'species_dictionary.txt') chemkinOutput = '' if 'ChemkinOutput' in request.FILES: chemkinOutput = os.path.join(flux.path,'chemkin_output.out') java = form.cleaned_data['Java'] settings = {} settings['maximumNodeCount'] = form.cleaned_data['MaxNodes'] settings['maximumEdgeCount'] = form.cleaned_data['MaxEdges'] settings['timeStep'] = form.cleaned_data['TimeStep'] settings['concentrationTolerance'] = form.cleaned_data['ConcentrationTolerance'] settings['speciesRateTolerance'] = form.cleaned_data['SpeciesRateTolerance'] createFluxDiagram(flux.path, input, chemkin, dict, java, settings, chemkinOutput) # Look at number of subdirectories to determine where the flux diagram videos are subdirs = [name for name in os.listdir(flux.path) if os.path.isdir(os.path.join(flux.path, name))] subdirs.remove('species') return render_to_response('fluxDiagram.html', {'form': form, 'path':subdirs}, context_instance=RequestContext(request)) else: form = FluxDiagramForm(instance=flux) return render_to_response('fluxDiagram.html', {'form': form,'path':path}, context_instance=RequestContext(request)) def runPopulateReactions(request): """ Allows user to upload chemkin and RMG dictionary files to generate a nice looking html output. """ populateReactions = PopulateReactions() outputPath = '' chemkinPath = '' populateReactions.deleteDir() if request.method == 'POST': populateReactions.createDir() form = PopulateReactionsForm(request.POST, request.FILES, instance=populateReactions) if form.is_valid(): form.save() outputPath = 'media/rmg/tools/populateReactions/output.html' chemkinPath = 'media/rmg/tools/populateReactions/chemkin/chem.inp' # Generate the output HTML file populateReactions.createOutput() # Go back to the network's main page return render_to_response('populateReactionsUpload.html', {'form': form, 'output': outputPath, 'chemkin': chemkinPath}, context_instance=RequestContext(request)) # Otherwise create the form else: form = PopulateReactionsForm(instance=populateReactions) return render_to_response('populateReactionsUpload.html', {'form': form, 'output': outputPath, 'chemkin': chemkinPath}, context_instance=RequestContext(request)) def input(request): ThermoLibraryFormset = inlineformset_factory(Input, ThermoLibrary, ThermoLibraryForm, BaseInlineFormSet, extra=1, can_delete=True) ReactionLibraryFormset = inlineformset_factory(Input, ReactionLibrary, ReactionLibraryForm, BaseInlineFormSet, extra=1, can_delete=True) ReactorSpeciesFormset = inlineformset_factory(Input, ReactorSpecies, ReactorSpeciesForm, BaseInlineFormSet, extra = 1, can_delete=True) ReactorFormset = inlineformset_factory(Input, Reactor, ReactorForm, BaseInlineFormSet, extra = 1, can_delete=True) Input.objects.all().delete() input = Input() input.deleteDir() uploadform = UploadInputForm(instance=input) form = InputForm(instance=input) thermolibformset = ThermoLibraryFormset(instance=input) reactionlibformset = ReactionLibraryFormset(instance=input) reactorspecformset = ReactorSpeciesFormset(instance=input) reactorformset = ReactorFormset(instance=input) upload_error = '' input_error = '' if request.method == 'POST': input.createDir() # Load an input file into the form by uploading it if "upload" in request.POST: uploadform = UploadInputForm(request.POST, request.FILES, instance=input) if uploadform.is_valid(): uploadform.save() initial_thermo_libraries, initial_reaction_libraries, initial_reactor_systems, initial_species, initial = input.loadForm(input.loadpath) # Make the formsets the lengths of the initial data if initial_thermo_libraries: ThermoLibraryFormset = inlineformset_factory(Input, ThermoLibrary, ThermoLibraryForm, BaseInlineFormSet, extra=len(initial_thermo_libraries), can_delete=True) if initial_reaction_libraries: ReactionLibraryFormset = inlineformset_factory(Input, ReactionLibrary, ReactionLibraryForm, BaseInlineFormSet, extra=len(initial_reaction_libraries), can_delete=True) ReactorSpeciesFormset = inlineformset_factory(Input, ReactorSpecies, ReactorSpeciesForm, BaseInlineFormSet, extra=len(initial_species), can_delete=True) ReactorFormset = inlineformset_factory(Input, Reactor, ReactorForm, BaseInlineFormSet, extra = len(initial_reactor_systems), can_delete=True) thermolibformset = ThermoLibraryFormset() reactionlibformset = ReactionLibraryFormset() reactorspecformset = ReactorSpeciesFormset() reactorformset = ReactorFormset() # Load the initial data into the forms form = InputForm(initial = initial) for subform, data in zip(thermolibformset.forms, initial_thermo_libraries): subform.initial = data for subform, data in zip(reactionlibformset.forms, initial_reaction_libraries): subform.initial = data for subform, data in zip(reactorspecformset.forms, initial_species): subform.initial = data for subform, data in zip(reactorformset.forms, initial_reactor_systems): subform.initial = data else: upload_error = 'Your input file was invalid. Please try again.' if "submit" in request.POST: uploadform = UploadInputForm(request.POST, instance=input) form = InputForm(request.POST, instance = input) thermolibformset = ThermoLibraryFormset(request.POST, instance=input) reactionlibformset = ReactionLibraryFormset(request.POST, instance=input) reactorspecformset = ReactorSpeciesFormset(request.POST, instance=input) reactorformset = ReactorFormset(request.POST, instance=input) if (form.is_valid() and thermolibformset.is_valid() and reactionlibformset.is_valid() and reactorspecformset.is_valid() and reactorformset.is_valid()): form.save() thermolibformset.save() reactionlibformset.save() reactorspecformset.save() reactorformset.save() posted = Input.objects.all()[0] input.saveForm(posted, form) path = 'media/rmg/tools/input/input.py' return render_to_response('inputResult.html', {'path': path}) else: # Will need more useful error messages later. input_error = 'Your form was invalid. Please edit the form and try again.' return render_to_response('input.html', {'uploadform': uploadform, 'form': form, 'thermolibformset':thermolibformset, 'reactionlibformset':reactionlibformset, 'reactorspecformset':reactorspecformset, 'reactorformset':reactorformset, 'upload_error': upload_error, 'input_error': input_error}, context_instance=RequestContext(request)) def plotKinetics(request): """ Allows user to upload chemkin files to generate a plot of reaction kinetics. """ from rmgpy.quantity import Quantity from rmgweb.database.forms import RateEvaluationForm if request.method == 'POST': chemkin = Chemkin() chemkin.createDir() form = UploadChemkinForm(request.POST, request.FILES, instance=chemkin) rateForm = RateEvaluationForm(request.POST) eval = [] if rateForm.is_valid(): temperature = Quantity(rateForm.cleaned_data['temperature'], str(rateForm.cleaned_data['temperature_units'])).value_si pressure = Quantity(rateForm.cleaned_data['pressure'], str(rateForm.cleaned_data['pressure_units'])).value_si eval = [temperature, pressure] kineticsDataList = chemkin.getKinetics() if form.is_valid(): form.save() kineticsDataList = chemkin.getKinetics() return render_to_response('plotKineticsData.html', {'kineticsDataList': kineticsDataList, 'plotWidth': 500, 'plotHeight': 400 + 15 * len(kineticsDataList), 'form': rateForm, 'eval':eval }, context_instance=RequestContext(request)) # Otherwise create the form else: chemkin = Chemkin() chemkin.deleteDir() form = UploadChemkinForm(instance=chemkin) return render_to_response('plotKinetics.html', {'form': form}, context_instance=RequestContext(request)) def javaKineticsLibrary(request): """ Allows user to upload chemkin files to generate a plot of reaction kinetics. """ from rmgpy.quantity import Quantity eval = False if request.method == 'POST': chemkin = Chemkin() chemkin.createDir() form = UploadChemkinForm(request.POST, request.FILES, instance=chemkin) if form.is_valid(): form.save() chemkin.createJavaKineticsLibrary() eval = True return render_to_response('javaKineticsLibrary.html', {'form': form, 'eval': eval }, context_instance=RequestContext(request)) # Otherwise create the form else: chemkin = Chemkin() chemkin.deleteDir() form = UploadChemkinForm(instance=chemkin) return render_to_response('javaKineticsLibrary.html', {'form': form}, context_instance=RequestContext(request)) def evaluateNASA(request): """ Creates webpage form form entering a chemkin format NASA Polynomial and quickly obtaining it's enthalpy and Cp values. """ from rmgpy.chemkin import readThermoEntry form = NASAForm() thermo = None thermoData = None if request.method == 'POST': posted = NASAForm(request.POST, error_class=DivErrorList) initial = request.POST.copy() if posted.is_valid(): NASA = posted.cleaned_data['NASA'] if NASA != '': species, thermo, formula = readThermoEntry(str(NASA)) try: thermoData = thermo.toThermoData() except: # if we cannot convert the thermo to thermo data, we will not be able to display the # H298, S298, and Cp values, but that's ok. pass form = NASAForm(initial, error_class=DivErrorList) return render_to_response('NASA.html', {'form': form, 'thermo':thermo, 'thermoData':thermoData}, context_instance=RequestContext(request))
the-stack_0_16042
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from distutils import util import os import re from typing import Dict, Optional, Sequence, Tuple, Type, Union from google.api_core import client_options as client_options_lib # type: ignore from google.api_core import exceptions # type: ignore from google.api_core import gapic_v1 # type: ignore from google.api_core import retry as retries # type: ignore from google.auth import credentials # type: ignore from google.auth.transport import mtls # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore from google.auth.exceptions import MutualTLSChannelError # type: ignore from google.oauth2 import service_account # type: ignore from google.ads.googleads.v6.resources.types import language_constant from google.ads.googleads.v6.services.types import language_constant_service from .transports.base import ( LanguageConstantServiceTransport, DEFAULT_CLIENT_INFO, ) from .transports.grpc import LanguageConstantServiceGrpcTransport class LanguageConstantServiceClientMeta(type): """Metaclass for the LanguageConstantService client. This provides class-level methods for building and retrieving support objects (e.g. transport) without polluting the client instance objects. """ _transport_registry = ( OrderedDict() ) # type: Dict[str, Type[LanguageConstantServiceTransport]] _transport_registry["grpc"] = LanguageConstantServiceGrpcTransport def get_transport_class( cls, label: str = None, ) -> Type[LanguageConstantServiceTransport]: """Return an appropriate transport class. Args: label: The name of the desired transport. If none is provided, then the first transport in the registry is used. Returns: The transport class to use. """ # If a specific transport is requested, return that one. if label: return cls._transport_registry[label] # No transport is requested; return the default (that is, the first one # in the dictionary). return next(iter(cls._transport_registry.values())) class LanguageConstantServiceClient( metaclass=LanguageConstantServiceClientMeta ): """Service to fetch language constants.""" @staticmethod def _get_default_mtls_endpoint(api_endpoint): """Convert api endpoint to mTLS endpoint. Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively. Args: api_endpoint (Optional[str]): the api endpoint to convert. Returns: str: converted mTLS api endpoint. """ if not api_endpoint: return api_endpoint mtls_endpoint_re = re.compile( r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?" ) m = mtls_endpoint_re.match(api_endpoint) name, mtls, sandbox, googledomain = m.groups() if mtls or not googledomain: return api_endpoint if sandbox: return api_endpoint.replace( "sandbox.googleapis.com", "mtls.sandbox.googleapis.com" ) return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com") DEFAULT_ENDPOINT = "googleads.googleapis.com" DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__( # type: ignore DEFAULT_ENDPOINT ) @classmethod def from_service_account_info(cls, info: dict, *args, **kwargs): """Creates an instance of this client using the provided credentials info. Args: info (dict): The service account private key info. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: LanguageConstantServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_info( info ) kwargs["credentials"] = credentials return cls(*args, **kwargs) @classmethod def from_service_account_file(cls, filename: str, *args, **kwargs): """Creates an instance of this client using the provided credentials file. Args: filename (str): The path to the service account private key json file. args: Additional arguments to pass to the constructor. kwargs: Additional arguments to pass to the constructor. Returns: LanguageConstantServiceClient: The constructed client. """ credentials = service_account.Credentials.from_service_account_file( filename ) kwargs["credentials"] = credentials return cls(*args, **kwargs) from_service_account_json = from_service_account_file @property def transport(self) -> LanguageConstantServiceTransport: """Return the transport used by the client instance. Returns: LanguageConstantServiceTransport: The transport used by the client instance. """ return self._transport @staticmethod def language_constant_path(criterion_id: str,) -> str: """Return a fully-qualified language_constant string.""" return "languageConstants/{criterion_id}".format( criterion_id=criterion_id, ) @staticmethod def parse_language_constant_path(path: str) -> Dict[str, str]: """Parse a language_constant path into its component segments.""" m = re.match(r"^languageConstants/(?P<criterion_id>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_billing_account_path(billing_account: str,) -> str: """Return a fully-qualified billing_account string.""" return "billingAccounts/{billing_account}".format( billing_account=billing_account, ) @staticmethod def parse_common_billing_account_path(path: str) -> Dict[str, str]: """Parse a billing_account path into its component segments.""" m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_folder_path(folder: str,) -> str: """Return a fully-qualified folder string.""" return "folders/{folder}".format(folder=folder,) @staticmethod def parse_common_folder_path(path: str) -> Dict[str, str]: """Parse a folder path into its component segments.""" m = re.match(r"^folders/(?P<folder>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_organization_path(organization: str,) -> str: """Return a fully-qualified organization string.""" return "organizations/{organization}".format(organization=organization,) @staticmethod def parse_common_organization_path(path: str) -> Dict[str, str]: """Parse a organization path into its component segments.""" m = re.match(r"^organizations/(?P<organization>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_project_path(project: str,) -> str: """Return a fully-qualified project string.""" return "projects/{project}".format(project=project,) @staticmethod def parse_common_project_path(path: str) -> Dict[str, str]: """Parse a project path into its component segments.""" m = re.match(r"^projects/(?P<project>.+?)$", path) return m.groupdict() if m else {} @staticmethod def common_location_path(project: str, location: str,) -> str: """Return a fully-qualified location string.""" return "projects/{project}/locations/{location}".format( project=project, location=location, ) @staticmethod def parse_common_location_path(path: str) -> Dict[str, str]: """Parse a location path into its component segments.""" m = re.match( r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path ) return m.groupdict() if m else {} def __init__( self, *, credentials: Optional[credentials.Credentials] = None, transport: Union[str, LanguageConstantServiceTransport, None] = None, client_options: Optional[client_options_lib.ClientOptions] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the language constant service client. Args: credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. transport (Union[str, ~.LanguageConstantServiceTransport]): The transport to use. If set to None, a transport is chosen automatically. client_options (google.api_core.client_options.ClientOptions): Custom options for the client. It won't take effect if a ``transport`` instance is provided. (1) The ``api_endpoint`` property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the ``api_endpoint`` property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the ``client_cert_source`` property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ if isinstance(client_options, dict): client_options = client_options_lib.from_dict(client_options) if client_options is None: client_options = client_options_lib.ClientOptions() # Create SSL credentials for mutual TLS if needed. use_client_cert = bool( util.strtobool( os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false") ) ) ssl_credentials = None is_mtls = False if use_client_cert: if client_options.client_cert_source: import grpc # type: ignore cert, key = client_options.client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) is_mtls = True else: creds = SslCredentials() is_mtls = creds.is_mtls ssl_credentials = creds.ssl_credentials if is_mtls else None # Figure out which api endpoint to use. if client_options.api_endpoint is not None: api_endpoint = client_options.api_endpoint else: use_mtls_env = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto") if use_mtls_env == "never": api_endpoint = self.DEFAULT_ENDPOINT elif use_mtls_env == "always": api_endpoint = self.DEFAULT_MTLS_ENDPOINT elif use_mtls_env == "auto": api_endpoint = ( self.DEFAULT_MTLS_ENDPOINT if is_mtls else self.DEFAULT_ENDPOINT ) else: raise MutualTLSChannelError( "Unsupported GOOGLE_API_USE_MTLS_ENDPOINT value. Accepted values: never, auto, always" ) # Save or instantiate the transport. # Ordinarily, we provide the transport, but allowing a custom transport # instance provides an extensibility point for unusual situations. if isinstance(transport, LanguageConstantServiceTransport): # transport is a LanguageConstantServiceTransport instance. if credentials: raise ValueError( "When providing a transport instance, " "provide its credentials directly." ) self._transport = transport elif isinstance(transport, str): Transport = type(self).get_transport_class(transport) self._transport = Transport( credentials=credentials, host=self.DEFAULT_ENDPOINT ) else: self._transport = LanguageConstantServiceGrpcTransport( credentials=credentials, host=api_endpoint, ssl_channel_credentials=ssl_credentials, client_info=client_info, ) def get_language_constant( self, request: language_constant_service.GetLanguageConstantRequest = None, *, resource_name: str = None, retry: retries.Retry = gapic_v1.method.DEFAULT, timeout: float = None, metadata: Sequence[Tuple[str, str]] = (), ) -> language_constant.LanguageConstant: r"""Returns the requested language constant. Args: request (:class:`google.ads.googleads.v6.services.types.GetLanguageConstantRequest`): The request object. Request message for [LanguageConstantService.GetLanguageConstant][google.ads.googleads.v6.services.LanguageConstantService.GetLanguageConstant]. resource_name (:class:`str`): Required. Resource name of the language constant to fetch. This corresponds to the ``resource_name`` field on the ``request`` instance; if ``request`` is provided, this should not be set. retry (google.api_core.retry.Retry): Designation of what errors, if any, should be retried. timeout (float): The timeout for this request. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata. Returns: google.ads.googleads.v6.resources.types.LanguageConstant: A language. """ # Create or coerce a protobuf request object. # Sanity check: If we got a request object, we should *not* have # gotten any keyword arguments that map to the request. if request is not None and any([resource_name]): raise ValueError( "If the `request` argument is set, then none of " "the individual field arguments should be set." ) # Minor optimization to avoid making a copy if the user passes # in a language_constant_service.GetLanguageConstantRequest. # There's no risk of modifying the input as we've already verified # there are no flattened fields. if not isinstance( request, language_constant_service.GetLanguageConstantRequest ): request = language_constant_service.GetLanguageConstantRequest( request ) # If we have keyword arguments corresponding to fields on the # request, apply these. if resource_name is not None: request.resource_name = resource_name # Wrap the RPC method; this adds retry and timeout information, # and friendly error handling. rpc = self._transport._wrapped_methods[ self._transport.get_language_constant ] # Certain fields should be provided within the metadata header; # add these here. metadata = tuple(metadata) + ( gapic_v1.routing_header.to_grpc_metadata( (("resource_name", request.resource_name),) ), ) # Send the request. response = rpc( request, retry=retry, timeout=timeout, metadata=metadata, ) # Done; return the response. return response __all__ = ("LanguageConstantServiceClient",)
the-stack_0_16043
import inspect import os import sys from collections import namedtuple from functools import lru_cache from dagster import check, seven from dagster.core.code_pointer import ( CodePointer, CustomPointer, FileCodePointer, ModuleCodePointer, get_python_file_from_target, ) from dagster.core.errors import DagsterInvalidSubsetError, DagsterInvariantViolationError from dagster.core.origin import PipelinePythonOrigin, RepositoryPythonOrigin, SchedulePythonOrigin from dagster.core.selector import parse_solid_selection from dagster.serdes import pack_value, unpack_value, whitelist_for_serdes from dagster.utils.backcompat import experimental from .pipeline_base import IPipeline def get_ephemeral_repository_name(pipeline_name): check.str_param(pipeline_name, "pipeline_name") return "__repository__{pipeline_name}".format(pipeline_name=pipeline_name) @whitelist_for_serdes class ReconstructableRepository( namedtuple("_ReconstructableRepository", "pointer container_image") ): def __new__( cls, pointer, container_image=None, ): return super(ReconstructableRepository, cls).__new__( cls, pointer=check.inst_param(pointer, "pointer", CodePointer), container_image=check.opt_str_param(container_image, "container_image"), ) @lru_cache(maxsize=1) def get_definition(self): return repository_def_from_pointer(self.pointer) def get_reconstructable_pipeline(self, name): return ReconstructablePipeline(self, name) def get_reconstructable_schedule(self, name): return ReconstructableSchedule(self, name) @classmethod def for_file(cls, file, fn_name, working_directory=None, container_image=None): if not working_directory: working_directory = os.getcwd() return cls(FileCodePointer(file, fn_name, working_directory), container_image) @classmethod def for_module(cls, module, fn_name, container_image=None): return cls(ModuleCodePointer(module, fn_name), container_image) def get_cli_args(self): return self.pointer.get_cli_args() def get_python_origin(self): return RepositoryPythonOrigin( executable_path=sys.executable, code_pointer=self.pointer, container_image=self.container_image, ) def get_python_origin_id(self): return self.get_python_origin().get_id() @whitelist_for_serdes class ReconstructablePipeline( namedtuple( "_ReconstructablePipeline", "repository pipeline_name solid_selection_str solids_to_execute", ), IPipeline, ): def __new__( cls, repository, pipeline_name, solid_selection_str=None, solids_to_execute=None, ): check.opt_set_param(solids_to_execute, "solids_to_execute", of_type=str) return super(ReconstructablePipeline, cls).__new__( cls, repository=check.inst_param(repository, "repository", ReconstructableRepository), pipeline_name=check.str_param(pipeline_name, "pipeline_name"), solid_selection_str=check.opt_str_param(solid_selection_str, "solid_selection_str"), solids_to_execute=solids_to_execute, ) @property def solid_selection(self): return seven.json.loads(self.solid_selection_str) if self.solid_selection_str else None @lru_cache(maxsize=1) def get_definition(self): from dagster.core.definitions.job import JobDefinition defn = self.repository.get_definition().get_pipeline(self.pipeline_name) if isinstance(defn, JobDefinition): return self.repository.get_definition().get_pipeline(self.pipeline_name) else: return ( self.repository.get_definition() .get_pipeline(self.pipeline_name) .get_pipeline_subset_def(self.solids_to_execute) ) def _resolve_solid_selection(self, solid_selection): # resolve a list of solid selection queries to a frozenset of qualified solid names # e.g. ['foo_solid+'] to {'foo_solid', 'bar_solid'} check.list_param(solid_selection, "solid_selection", of_type=str) solids_to_execute = parse_solid_selection(self.get_definition(), solid_selection) if len(solids_to_execute) == 0: raise DagsterInvalidSubsetError( "No qualified solids to execute found for solid_selection={requested}".format( requested=solid_selection ) ) return solids_to_execute def get_reconstructable_repository(self): return self.repository def _subset_for_execution(self, solids_to_execute, solid_selection=None): if solids_to_execute: pipe = ReconstructablePipeline( repository=self.repository, pipeline_name=self.pipeline_name, solid_selection_str=seven.json.dumps(solid_selection) if solid_selection else None, solids_to_execute=frozenset(solids_to_execute), ) else: pipe = ReconstructablePipeline( repository=self.repository, pipeline_name=self.pipeline_name, ) return pipe def subset_for_execution(self, solid_selection): # take a list of solid queries and resolve the queries to names of solids to execute check.opt_list_param(solid_selection, "solid_selection", of_type=str) solids_to_execute = ( self._resolve_solid_selection(solid_selection) if solid_selection else None ) return self._subset_for_execution(solids_to_execute, solid_selection) def subset_for_execution_from_existing_pipeline(self, solids_to_execute): # take a frozenset of resolved solid names from an existing pipeline # so there's no need to parse the selection check.opt_set_param(solids_to_execute, "solids_to_execute", of_type=str) return self._subset_for_execution(solids_to_execute) def describe(self): return '"{name}" in repository ({repo})'.format( repo=self.repository.pointer.describe, name=self.pipeline_name ) @staticmethod def for_file(python_file, fn_name): return bootstrap_standalone_recon_pipeline( FileCodePointer(python_file, fn_name, os.getcwd()) ) @staticmethod def for_module(module, fn_name): return bootstrap_standalone_recon_pipeline(ModuleCodePointer(module, fn_name)) def to_dict(self): return pack_value(self) @staticmethod def from_dict(val): check.dict_param(val, "val") inst = unpack_value(val) check.invariant( isinstance(inst, ReconstructablePipeline), "Deserialized object is not instance of ReconstructablePipeline, got {type}".format( type=type(inst) ), ) return inst def get_python_origin(self): return PipelinePythonOrigin(self.pipeline_name, self.repository.get_python_origin()) def get_python_origin_id(self): return self.get_python_origin().get_id() @whitelist_for_serdes class ReconstructableSchedule( namedtuple( "_ReconstructableSchedule", "repository schedule_name", ) ): def __new__( cls, repository, schedule_name, ): return super(ReconstructableSchedule, cls).__new__( cls, repository=check.inst_param(repository, "repository", ReconstructableRepository), schedule_name=check.str_param(schedule_name, "schedule_name"), ) def get_python_origin(self): return SchedulePythonOrigin(self.schedule_name, self.repository.get_python_origin()) def get_python_origin_id(self): return self.get_python_origin().get_id() @lru_cache(maxsize=1) def get_definition(self): return self.repository.get_definition().get_schedule_def(self.schedule_name) def reconstructable(target): """ Create a :py:class:`~dagster.core.definitions.reconstructable.ReconstructablePipeline` from a function that returns a :py:class:`~dagster.PipelineDefinition`, or a function decorated with :py:func:`@pipeline <dagster.pipeline>` When your pipeline must cross process boundaries, e.g., for execution on multiple nodes or in different systems (like ``dagstermill``), Dagster must know how to reconstruct the pipeline on the other side of the process boundary. This function implements a very conservative strategy for reconstructing pipelines, so that its behavior is easy to predict, but as a consequence it is not able to reconstruct certain kinds of pipelines, such as those defined by lambdas, in nested scopes (e.g., dynamically within a method call), or in interactive environments such as the Python REPL or Jupyter notebooks. If you need to reconstruct pipelines constructed in these ways, you should use :py:func:`~dagster.core.definitions.reconstructable.build_reconstructable_pipeline` instead, which allows you to specify your own strategy for reconstructing a pipeline. Examples: .. code-block:: python from dagster import PipelineDefinition, pipeline, reconstructable @pipeline def foo_pipeline(): ... reconstructable_foo_pipeline = reconstructable(foo_pipeline) def make_bar_pipeline(): return PipelineDefinition(...) reconstructable_bar_pipeline = reconstructable(bar_pipeline) """ from dagster.core.definitions import PipelineDefinition if not seven.is_function_or_decorator_instance_of(target, PipelineDefinition): raise DagsterInvariantViolationError( "Reconstructable target should be a function or definition produced " "by a decorated function, got {type}.".format(type=type(target)), ) if seven.is_lambda(target): raise DagsterInvariantViolationError( "Reconstructable target can not be a lambda. Use a function or " "decorated function defined at module scope instead, or use " "build_reconstructable_pipeline." ) if seven.qualname_differs(target): raise DagsterInvariantViolationError( 'Reconstructable target "{target.__name__}" has a different ' '__qualname__ "{target.__qualname__}" indicating it is not ' "defined at module scope. Use a function or decorated function " "defined at module scope instead, or use build_reconstructable_pipeline.".format( target=target ) ) try: if ( hasattr(target, "__module__") and hasattr(target, "__name__") and inspect.getmodule(target).__name__ != "__main__" ): return ReconstructablePipeline.for_module(target.__module__, target.__name__) except: # pylint: disable=bare-except pass python_file = get_python_file_from_target(target) if not python_file: raise DagsterInvariantViolationError( "reconstructable() can not reconstruct pipelines defined in interactive environments " "like <stdin>, IPython, or Jupyter notebooks. " "Use a pipeline defined in a module or file instead, or " "use build_reconstructable_pipeline." ) pointer = FileCodePointer( python_file=python_file, fn_name=target.__name__, working_directory=os.getcwd() ) return bootstrap_standalone_recon_pipeline(pointer) @experimental def build_reconstructable_pipeline( reconstructor_module_name, reconstructor_function_name, reconstructable_args=None, reconstructable_kwargs=None, ): """ Create a :py:class:`dagster.core.definitions.reconstructable.ReconstructablePipeline`. When your pipeline must cross process boundaries, e.g., for execution on multiple nodes or in different systems (like ``dagstermill``), Dagster must know how to reconstruct the pipeline on the other side of the process boundary. This function allows you to use the strategy of your choice for reconstructing pipelines, so that you can reconstruct certain kinds of pipelines that are not supported by :py:func:`~dagster.reconstructable`, such as those defined by lambdas, in nested scopes (e.g., dynamically within a method call), or in interactive environments such as the Python REPL or Jupyter notebooks. If you need to reconstruct pipelines constructed in these ways, use this function instead of :py:func:`~dagster.reconstructable`. Args: reconstructor_module_name (str): The name of the module containing the function to use to reconstruct the pipeline. reconstructor_function_name (str): The name of the function to use to reconstruct the pipeline. reconstructable_args (Tuple): Args to the function to use to reconstruct the pipeline. Values of the tuple must be JSON serializable. reconstructable_kwargs (Dict[str, Any]): Kwargs to the function to use to reconstruct the pipeline. Values of the dict must be JSON serializable. Examples: .. code-block:: python # module: mymodule from dagster import PipelineDefinition, pipeline, build_reconstructable_pipeline class PipelineFactory: def make_pipeline(*args, **kwargs): @pipeline def _pipeline(...): ... return _pipeline def reconstruct_pipeline(*args): factory = PipelineFactory() return factory.make_pipeline(*args) factory = PipelineFactory() foo_pipeline_args = (...,...) foo_pipeline_kwargs = {...:...} foo_pipeline = factory.make_pipeline(*foo_pipeline_args, **foo_pipeline_kwargs) reconstructable_foo_pipeline = build_reconstructable_pipeline( 'mymodule', 'reconstruct_pipeline', foo_pipeline_args, foo_pipeline_kwargs, ) """ check.str_param(reconstructor_module_name, "reconstructor_module_name") check.str_param(reconstructor_function_name, "reconstructor_function_name") reconstructable_args = list(check.opt_tuple_param(reconstructable_args, "reconstructable_args")) reconstructable_kwargs = list( ( [key, value] for key, value in check.opt_dict_param( reconstructable_kwargs, "reconstructable_kwargs", key_type=str ).items() ) ) reconstructor_pointer = ModuleCodePointer( reconstructor_module_name, reconstructor_function_name ) pointer = CustomPointer(reconstructor_pointer, reconstructable_args, reconstructable_kwargs) pipeline_def = pipeline_def_from_pointer(pointer) return ReconstructablePipeline( repository=ReconstructableRepository(pointer), # creates ephemeral repo pipeline_name=pipeline_def.name, ) def bootstrap_standalone_recon_pipeline(pointer): # So this actually straps the the pipeline for the sole # purpose of getting the pipeline name. If we changed ReconstructablePipeline # to get the pipeline on demand in order to get name, we could avoid this. pipeline_def = pipeline_def_from_pointer(pointer) return ReconstructablePipeline( repository=ReconstructableRepository(pointer), # creates ephemeral repo pipeline_name=pipeline_def.name, ) def _check_is_loadable(definition): from .pipeline import PipelineDefinition from .repository import RepositoryDefinition from .graph import GraphDefinition if not isinstance(definition, (PipelineDefinition, RepositoryDefinition, GraphDefinition)): raise DagsterInvariantViolationError( ( "Loadable attributes must be either a PipelineDefinition, GraphDefinition, or a " "RepositoryDefinition. Got {definition}." ).format(definition=repr(definition)) ) return definition def load_def_in_module(module_name, attribute): return def_from_pointer(CodePointer.from_module(module_name, attribute)) def load_def_in_package(package_name, attribute): return def_from_pointer(CodePointer.from_python_package(package_name, attribute)) def load_def_in_python_file(python_file, attribute, working_directory): return def_from_pointer(CodePointer.from_python_file(python_file, attribute, working_directory)) def def_from_pointer(pointer): target = pointer.load_target() from .pipeline import PipelineDefinition from .repository import RepositoryDefinition from .graph import GraphDefinition if isinstance( target, (PipelineDefinition, RepositoryDefinition, GraphDefinition) ) or not callable(target): return _check_is_loadable(target) # if its a function invoke it - otherwise we are pointing to a # artifact in module scope, likely decorator output if seven.get_args(target): raise DagsterInvariantViolationError( "Error invoking function at {target} with no arguments. " "Reconstructable target must be callable with no arguments".format( target=pointer.describe() ) ) return _check_is_loadable(target()) def pipeline_def_from_pointer(pointer): from .pipeline import PipelineDefinition target = def_from_pointer(pointer) if isinstance(target, PipelineDefinition): return target raise DagsterInvariantViolationError( "CodePointer ({str}) must resolve to a PipelineDefinition. " "Received a {type}".format(str=pointer.describe(), type=type(target)) ) def repository_def_from_target_def(target): from .pipeline import PipelineDefinition from .graph import GraphDefinition from .repository import CachingRepositoryData, RepositoryDefinition # special case - we can wrap a single pipeline in a repository if isinstance(target, (PipelineDefinition, GraphDefinition)): # consider including pipeline name in generated repo name return RepositoryDefinition( name=get_ephemeral_repository_name(target.name), repository_data=CachingRepositoryData.from_list([target]), ) elif isinstance(target, RepositoryDefinition): return target else: return None def repository_def_from_pointer(pointer): target = def_from_pointer(pointer) repo_def = repository_def_from_target_def(target) if not repo_def: raise DagsterInvariantViolationError( "CodePointer ({str}) must resolve to a " "RepositoryDefinition or a PipelineDefinition. " "Received a {type}".format(str=pointer.describe(), type=type(target)) ) return repo_def
the-stack_0_16044
# -*- coding: utf-8 -*- """ S3 Pivot Table Reports Method @copyright: 2011-2015 (c) Sahana Software Foundation @license: MIT @requires: U{B{I{Python 2.6}} <http://www.python.org>} Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import re import sys try: import json # try stdlib (Python 2.6) except ImportError: try: import simplejson as json # try external module except: import gluon.contrib.simplejson as json # fallback to pure-Python module from itertools import product from gluon import current from gluon.storage import Storage from gluon.html import * from gluon.languages import regex_translate from gluon.sqlhtml import OptionsWidget from gluon.validators import IS_IN_SET, IS_EMPTY_OR from s3query import FS from s3rest import S3Method from s3utils import s3_flatlist, s3_has_foreign_key, s3_unicode, S3MarkupStripper, s3_represent_value from s3xml import S3XMLFormat from s3validators import IS_NUMBER layer_pattern = re.compile("([a-zA-Z]+)\((.*)\)\Z") # Compact JSON encoding DEFAULT = lambda: None SEPARATORS = (",", ":") FACT = re.compile(r"([a-zA-Z]+)\(([a-zA-Z0-9_.$:\,~]+)\),*(.*)\Z") SELECTOR = re.compile(r"^[a-zA-Z0-9_.$:\~]+\Z") # ============================================================================= class S3Report(S3Method): """ RESTful method for pivot table reports """ # ------------------------------------------------------------------------- def apply_method(self, r, **attr): """ Page-render entry point for REST interface. @param r: the S3Request instance @param attr: controller attributes for the request """ if r.http == "GET": if r.representation == "geojson": output = self.geojson(r, **attr) else: output = self.report(r, **attr) else: r.error(405, current.ERROR.BAD_METHOD) return output # ------------------------------------------------------------------------- def report(self, r, **attr): """ Pivot table report page @param r: the S3Request instance @param attr: controller attributes for the request """ output = {} resource = self.resource get_config = resource.get_config show_filter_form = False if r.representation in ("html", "iframe"): filter_widgets = get_config("filter_widgets", None) if filter_widgets and not self.hide_filter: # Apply filter defaults (before rendering the data!) from s3filter import S3FilterForm show_filter_form = True S3FilterForm.apply_filter_defaults(r, resource) widget_id = "pivottable" # @todo: make configurable: maxrows = 20 maxcols = 20 # Extract the relevant GET vars report_vars = ("rows", "cols", "fact", "totals") get_vars = dict((k, v) for k, v in r.get_vars.iteritems() if k in report_vars) # Fall back to report options defaults report_options = get_config("report_options", {}) defaults = report_options.get("defaults", {}) if not any (k in get_vars for k in ("rows", "cols", "fact")): get_vars = defaults get_vars["chart"] = r.get_vars.get("chart", defaults.get("chart", None)) get_vars["table"] = r.get_vars.get("table", defaults.get("table", None)) # Generate the pivot table if get_vars: rows = get_vars.get("rows", None) cols = get_vars.get("cols", None) layer = get_vars.get("fact", "id") try: facts = S3PivotTableFact.parse(layer) except SyntaxError: current.log.error(sys.exc_info()[1]) facts = None if not facts or not any([rows, cols]): pivottable = None else: prefix = resource.prefix_selector get_vars["rows"] = prefix(rows) if rows else None get_vars["cols"] = prefix(cols) if cols else None get_vars["fact"] = ",".join("%s(%s)" % (fact.method, fact.selector) for fact in facts) pivottable = S3PivotTable(resource, rows, cols, facts) else: pivottable = None # Render as JSON-serializable dict if pivottable is not None: pivotdata = pivottable.json(maxrows=maxrows, maxcols=maxcols) else: pivotdata = None if r.representation in ("html", "iframe"): tablename = resource.tablename # Filter widgets if show_filter_form: advanced = False for widget in filter_widgets: if "hidden" in widget.opts and widget.opts.hidden: advanced = resource.get_config("report_advanced", True) break filter_formstyle = get_config("filter_formstyle", None) filter_form = S3FilterForm(filter_widgets, formstyle=filter_formstyle, advanced=advanced, submit=False, _class="filter-form", _id="%s-filter-form" % widget_id) fresource = current.s3db.resource(tablename) alias = resource.alias if r.component else None filter_widgets = filter_form.fields(fresource, r.get_vars, alias=alias) else: # Render as empty string to avoid the exception in the view filter_widgets = None # Generate the report form ajax_vars = Storage(r.get_vars) ajax_vars.update(get_vars) filter_url = r.url(method="", representation="", vars=ajax_vars.fromkeys((k for k in ajax_vars if k not in report_vars))) ajaxurl = attr.get("ajaxurl", r.url(method="report", representation="json", vars=ajax_vars)) output = S3ReportForm(resource).html(pivotdata, get_vars = get_vars, filter_widgets = filter_widgets, ajaxurl = ajaxurl, filter_url = filter_url, widget_id = widget_id) output["title"] = self.crud_string(tablename, "title_report") output["report_type"] = "pivottable" # Detect and store theme-specific inner layout self._view(r, "pivottable.html") # View current.response.view = self._view(r, "report.html") elif r.representation == "json": output = json.dumps(pivotdata, separators=SEPARATORS) else: r.error(415, current.ERROR.BAD_FORMAT) return output # ------------------------------------------------------------------------- def geojson(self, r, **attr): """ Render the pivot table data as a dict ready to be exported as GeoJSON for display on a Map. @param r: the S3Request instance @param attr: controller attributes for the request """ resource = self.resource response = current.response s3 = response.s3 # Set response headers response.headers["Content-Type"] = s3.content_type.get("geojson", "application/json") if not resource.count(): # No Data return json.dumps({}) # Extract the relevant GET vars get_vars = r.get_vars layer_id = r.get_vars.get("layer", None) level = get_vars.get("level", "L0") # Fall back to report options defaults get_config = resource.get_config report_options = get_config("report_options", {}) defaults = report_options.get("defaults", {}) # The rows dimension context = get_config("context") if context and "location" in context: # @ToDo: We can add sanity-checking using resource.parse_bbox_query() as a guide if-desired rows = "(location)$%s" % level else: # Fallback to location_id rows = "location_id$%s" % level # Fallback we can add if-required #rows = "site_id$location_id$%s" % level # Filter out null values resource.add_filter(FS(rows) != None) # Set XSLT stylesheet stylesheet = os.path.join(r.folder, r.XSLT_PATH, "geojson", "export.xsl") # Do we have any data at this level of aggregation? fallback_to_points = True # @ToDo: deployment_setting? output = None if fallback_to_points: if resource.count() == 0: # Show Points resource.clear_query() # Apply URL filters (especially BBOX) resource.build_query(filter=s3.filter, vars=get_vars) # Extract the Location Data xmlformat = S3XMLFormat(stylesheet) include, exclude = xmlformat.get_fields(resource.tablename) resource.load(fields=include, skip=exclude, start=0, limit=None, orderby=None, virtual=False, cacheable=True) gis = current.gis attr_fields = [] style = gis.get_style(layer_id=layer_id, aggregate=False) popup_format = style.popup_format if popup_format: if "T(" in popup_format: # i18n T = current.T items = regex_translate.findall(popup_format) for item in items: titem = str(T(item[1:-1])) popup_format = popup_format.replace("T(%s)" % item, titem) style.popup_format = popup_format # Extract the attr_fields parts = popup_format.split("{") # Skip the first part parts = parts[1:] for part in parts: attribute = part.split("}")[0] attr_fields.append(attribute) attr_fields = ",".join(attr_fields) location_data = gis.get_location_data(resource, attr_fields=attr_fields) # Export as GeoJSON current.xml.show_ids = True output = resource.export_xml(fields=include, mcomponents=None, references=[], stylesheet=stylesheet, as_json=True, location_data=location_data, map_data=dict(style=style), ) # Transformation error? if not output: r.error(400, "XSLT Transformation Error: %s " % current.xml.error) else: while resource.count() == 0: # Try a lower level of aggregation level = int(level[1:]) if level == 0: # Nothing we can display return json.dumps({}) resource.clear_query() # Apply URL filters (especially BBOX) resource.build_query(filter=s3.filter, vars=get_vars) level = "L%s" % (level - 1) if context and "location" in context: # @ToDo: We can add sanity-checking using resource.parse_bbox_query() as a guide if-desired rows = "(location)$%s" % level else: # Fallback to location_id rows = "location_id$%s" % level # Fallback we can add if-required #rows = "site_id$location_id$%s" % level resource.add_filter(FS(rows) != None) if not output: # Build the Pivot Table cols = None layer = get_vars.get("fact", defaults.get("fact", "count(id)")) facts = S3PivotTableFact.parse(layer)[:1] pivottable = S3PivotTable(resource, rows, cols, facts) # Extract the Location Data #attr_fields = [] style = current.gis.get_style(layer_id=layer_id, aggregate=True) popup_format = style.popup_format if popup_format: if"T(" in popup_format: # i18n T = current.T items = regex_translate.findall(popup_format) for item in items: titem = str(T(item[1:-1])) popup_format = popup_format.replace("T(%s)" % item, titem) style.popup_format = popup_format # Extract the attr_fields # No need as defaulted inside S3PivotTable.geojson() #parts = popup_format.split("{") ## Skip the first part #parts = parts[1:] #for part in parts: # attribute = part.split("}")[0] # attr_fields.append(attribute) #attr_fields = ",".join(attr_fields) ids, location_data = pivottable.geojson(fact=facts[0], level=level) # Export as GeoJSON current.xml.show_ids = True gresource = current.s3db.resource("gis_location", id=ids) output = gresource.export_xml(fields=[], mcomponents=None, references=[], stylesheet=stylesheet, as_json=True, location_data=location_data, # Tell the client that we are # displaying aggregated data and # the level it is aggregated at map_data=dict(level=int(level[1:]), style=style), ) # Transformation error? if not output: r.error(400, "XSLT Transformation Error: %s " % current.xml.error) return output # ------------------------------------------------------------------------- def widget(self, r, method=None, widget_id=None, visible=True, **attr): """ Pivot table report widget @param r: the S3Request @param method: the widget method @param widget_id: the widget ID @param visible: whether the widget is initially visible @param attr: controller attributes """ output = {} resource = self.resource get_config = resource.get_config # @todo: make configurable: maxrows = 20 maxcols = 20 # Extract the relevant GET vars report_vars = ("rows", "cols", "fact", "totals") get_vars = dict((k, v) for k, v in r.get_vars.iteritems() if k in report_vars) # Fall back to report options defaults report_options = get_config("report_options", {}) defaults = report_options.get("defaults", {}) if not any (k in get_vars for k in ("rows", "cols", "fact")): get_vars = defaults get_vars["chart"] = r.get_vars.get("chart", defaults.get("chart", None)) get_vars["table"] = r.get_vars.get("table", defaults.get("table", None)) # Generate the pivot table if get_vars: rows = get_vars.get("rows", None) cols = get_vars.get("cols", None) layer = get_vars.get("fact", "id") try: facts = S3PivotTableFact.parse(layer) except SyntaxError: current.log.error(sys.exc_info()[1]) facts = None if not facts or not any([rows, cols]): pivottable = None else: prefix = resource.prefix_selector get_vars["rows"] = prefix(rows) if rows else None get_vars["cols"] = prefix(cols) if cols else None get_vars["fact"] = ",".join("%s(%s)" % (fact.method, fact.selector) for fact in facts) if visible: pivottable = S3PivotTable(resource, rows, cols, facts) else: pivottable = None else: pivottable = None # Render as JSON-serializable dict if pivottable is not None: pivotdata = pivottable.json(maxrows=maxrows, maxcols=maxcols) else: pivotdata = None if r.representation in ("html", "iframe"): # Generate the report form ajax_vars = Storage(r.get_vars) ajax_vars.update(get_vars) filter_form = attr.get("filter_form", None) filter_tab = attr.get("filter_tab", None) filter_url = r.url(method="", representation="", vars=ajax_vars.fromkeys((k for k in ajax_vars if k not in report_vars)), ) ajaxurl = attr.get("ajaxurl", r.url(method="report", representation="json", vars=ajax_vars)) output = S3ReportForm(resource).html(pivotdata, get_vars = get_vars, filter_widgets = None, ajaxurl = ajaxurl, filter_url = filter_url, filter_form = filter_form, filter_tab = filter_tab, widget_id = widget_id) # Detect and store theme-specific inner layout view = self._view(r, "pivottable.html") # Render inner layout (outer page layout is set by S3Summary) output["title"] = None output = XML(current.response.render(view, output)) else: r.error(415, current.ERROR.BAD_FORMAT) return output # ============================================================================= class S3ReportForm(object): """ Helper class to render a report form """ def __init__(self, resource): self.resource = resource # ------------------------------------------------------------------------- def html(self, pivotdata, filter_widgets=None, get_vars=None, ajaxurl=None, filter_url=None, filter_form=None, filter_tab=None, widget_id=None): """ Render the form for the report @param get_vars: the GET vars if the request (as dict) @param widget_id: the HTML element base ID for the widgets """ T = current.T appname = current.request.application # Report options report_options = self.report_options(get_vars = get_vars, widget_id = widget_id) # Pivot data hidden = {"pivotdata": json.dumps(pivotdata, separators=SEPARATORS)} empty = T("No report specified.") hide = T("Hide Table") show = T("Show Table") throbber = "/%s/static/img/indicator.gif" % appname # Filter options if filter_widgets is not None: filter_options = self._fieldset(T("Filter Options"), filter_widgets, _id="%s-filters" % widget_id, _class="filter-form") else: filter_options = "" # Report form submit element resource = self.resource submit = resource.get_config("report_submit", True) if submit: _class = "pt-submit" if submit is True: label = T("Update Report") elif isinstance(submit, (list, tuple)): label = submit[0] _class = "%s %s" % (submit[1], _class) else: label = submit submit = TAG[""]( INPUT(_type="button", _value=label, _class=_class)) else: submit = "" # Form form = FORM(filter_options, report_options, submit, hidden = hidden, _class = "pt-form", _id = "%s-pt-form" % widget_id, ) # View variables output = {"form": form, "throbber": throbber, "hide": hide, "show": show, "empty": empty, "widget_id": widget_id, } # Script options settings = current.deployment_settings opts = { #"renderFilter": True, #"collapseFilter": False, #"renderOptions": True, "collapseOptions": settings.get_ui_hide_report_options(), "renderTable": True, "collapseTable": False, "showTotals": self.show_totals, "ajaxURL": ajaxurl, "renderChart": True, "collapseChart": True, "defaultChart": None, "exploreChart": True, "filterURL": filter_url, "filterTab": filter_tab, "filterForm": filter_form, "autoSubmit": settings.get_ui_report_auto_submit(), "thousandSeparator": settings.get_L10n_thousands_separator(), "thousandGrouping": settings.get_L10n_thousands_grouping(), "textAll": str(T("All")), } chart_opt = get_vars["chart"] if chart_opt is not None: if str(chart_opt).lower() in ("0", "off", "false"): opts["renderChart"] = False elif ":" in chart_opt: opts["collapseChart"] = False ctype, caxis = chart_opt.split(":", 1) opts["defaultChart"] = {"type": ctype, "axis": caxis} table_opt = get_vars["table"] if table_opt is not None: table_opt = str(table_opt).lower() if table_opt in ("0", "off", "false"): opts["renderTable"] = False elif table_opt == "collapse": opts["collapseTable"] = True # Scripts s3 = current.response.s3 scripts = s3.scripts if s3.debug: # @todo: support CDN script = "/%s/static/scripts/d3/d3.js" % appname if script not in scripts: scripts.append(script) script = "/%s/static/scripts/d3/nv.d3.js" % appname if script not in scripts: scripts.append(script) script = "/%s/static/scripts/S3/s3.ui.pivottable.js" % appname if script not in scripts: scripts.append(script) else: script = "/%s/static/scripts/S3/s3.pivotTables.min.js" % appname if script not in scripts: scripts.append(script) script = '''$('#%(widget_id)s').pivottable(%(opts)s)''' % \ dict(widget_id = widget_id, opts = json.dumps(opts, separators=SEPARATORS), ) s3.jquery_ready.append(script) return output # ------------------------------------------------------------------------- def report_options(self, get_vars=None, widget_id="pivottable"): """ Render the widgets for the report options form @param get_vars: the GET vars if the request (as dict) @param widget_id: the HTML element base ID for the widgets """ T = current.T SHOW_TOTALS = T("Show totals") FACT = T("Report of") ROWS = T("Grouped by") COLS = T("and") resource = self.resource get_config = resource.get_config options = get_config("report_options") # Specific formstyle? settings = current.deployment_settings formstyle = settings.get_ui_report_formstyle() # Fall back to inline-variant of current formstyle if formstyle is None: formstyle = settings.get_ui_inline_formstyle() # Helper for labels label = lambda s, **attr: LABEL("%s:" % s, **attr) formfields = [] # Layer selector layer_id = "%s-fact" % widget_id layer_widget = self.layer_options(options=options, get_vars=get_vars, widget_id=layer_id) formfields.append((layer_id + "-row", label(FACT, _for=layer_id), layer_widget, "", )) # Rows/Columns selectors axis_options = self.axis_options rows_id = "%s-rows" % widget_id cols_id = "%s-cols" % widget_id rows_options = axis_options("rows", options=options, get_vars=get_vars, widget_id=rows_id) cols_options = axis_options("cols", options=options, get_vars=get_vars, widget_id=cols_id) axis_widget = DIV(rows_options, label(COLS, _for=cols_id), cols_options, _class="pt-axis-options", ) formfields.append(("%s-axis-row" % widget_id, label(ROWS, _for=rows_id), axis_widget, "", )) # Show Totals switch show_totals = True if get_vars and "totals" in get_vars and \ str(get_vars["totals"]).lower() in ("0", "false", "off"): show_totals = False self.show_totals = show_totals show_totals_id = "%s-totals" % widget_id totals_widget = INPUT(_type="checkbox", _id=show_totals_id, _name="totals", _class="pt-totals", value=show_totals ) formfields.append(("%s-show-totals-row" % widget_id, label(SHOW_TOTALS, _for=show_totals_id), totals_widget, "", )) try: widgets = formstyle(FIELDSET(), formfields) except: # Old style (should be avoided) widgets = TAG[""]([formstyle(*formfield) for formfield in formfields]) # Render fieldset fieldset = self._fieldset(T("Report Options"), widgets, _id="%s-options" % widget_id) return fieldset # ------------------------------------------------------------------------- def axis_options(self, axis, options=None, get_vars=None, widget_id=None): """ Construct an OptionsWidget for rows or cols axis @param axis: "rows" or "cols" @param options: the report options @param get_vars: the GET vars if the request (as dict) @param widget_id: the HTML element ID for the widget """ resource = self.resource prefix = resource.prefix_selector # Get all selectors if options and axis in options: fields = options[axis] else: fields = resource.get_config("list_fields") if not fields: fields = [f.name for f in resource.readable_fields()] # Resolve the selectors pkey = str(resource._id) resolve_selector = resource.resolve_selector rfields = [] append = rfields.append for f in fields: if isinstance(f, (tuple, list)): label, selector = f[:2] else: label, selector = None, f rfield = resolve_selector(selector) if rfield.colname == pkey: continue if label: rfield.label = label append(rfield) # Get current value if get_vars and axis in get_vars: value = get_vars[axis] else: value = "" if value: value = prefix(value) # Dummy field opts = [(prefix(rfield.selector), rfield.label) for rfield in rfields] dummy_field = Storage(name=axis, requires=IS_IN_SET(opts)) # Construct widget return OptionsWidget.widget(dummy_field, value, _id=widget_id, _name=axis, _class="pt-%s" % axis) # ------------------------------------------------------------------------- def layer_options(self, options=None, get_vars=None, widget_id=None): """ Construct an OptionsWidget for the fact layer @param options: the report options @param get_vars: the GET vars if the request (as dict) @param widget_id: the HTML element ID for the widget """ resource = self.resource all_methods = S3PivotTableFact.METHODS # Get all layers layers = None methods = None if options: if "methods" in options: methods = options["methods"] if "fact" in options: layers = options["fact"] if not layers: layers = resource.get_config("list_fields") if not layers: layers = [f.name for f in resource.readable_fields()] if not methods: methods = all_methods # Resolve layer options T = current.T RECORDS = T("Records") mname = S3PivotTableFact._get_method_label def layer_label(rfield, method): """ Helper to construct a layer label """ mlabel = mname(method) flabel = rfield.label if rfield.label != "Id" else RECORDS # @ToDo: Exclude this string from admin/translate exports return T("%s (%s)") % (flabel, mlabel) prefix = resource.prefix_selector layer_opts = [] for option in layers: if isinstance(option, tuple): title, layer = option else: title, layer = None, option try: facts = S3PivotTableFact.parse(layer) except SyntaxError: continue if len(facts) > 1: # Multi-fact layer labels = [] expressions = [] for fact in facts: if not title: rfield = resource.resolve_selector(fact.selector) labels.append(fact.get_label(rfield, layers)) expressions.append("%s(%s)" % (fact.method, fact.selector)) if not title: title = " / ".join(labels) layer_opts.append((",".join(expressions), title)) continue else: fact = facts[0] label = fact.label or title if fact.default_method: s, m = fact.selector, None else: s, m = fact.selector, fact.method # Resolve the selector selector = prefix(s) rfield = resource.resolve_selector(selector) if not rfield.field and not rfield.virtual: continue if m is None and label: rfield.label = label if m is None: # Only field given -> auto-detect aggregation methods is_amount = None ftype = rfield.ftype if ftype == "integer": is_amount = True requires = rfield.requires if not isinstance(requires, (list, tuple)): requires = [requires] for r in requires: if isinstance(r, IS_IN_SET) or \ isinstance(r, IS_EMPTY_OR) and \ isinstance(r.other, IS_IN_SET): is_amount = False elif ftype == "double": is_amount = True elif ftype[:9] == "reference" or \ ftype[:5] == "list:" or \ ftype in ("id", "string", "text"): is_amount = False if ftype in ("datetime", "date", "time"): mopts = ["min", "max", "list"] elif is_amount is None: mopts = ["sum", "min", "max", "avg", "count", "list"] elif is_amount: mopts = ["sum", "min", "max", "avg"] else: mopts = ["count", "list"] for method in mopts: if method in methods: label = layer_label(rfield, method) layer_opts.append(("%s(%s)" % (method, selector), label)) else: # Explicit method specified if label is None: label = layer_label(rfield, m) layer_opts.append(("%s(%s)" % (m, selector), label)) # Get current value if get_vars and "fact" in get_vars: layer = get_vars["fact"] else: layer = "" if layer: match = layer_pattern.match(layer) if match is None: layer = "" else: selector, method = match.group(2), match.group(1) selector = prefix(selector) layer = "%s(%s)" % (method, selector) if len(layer_opts) == 1: # Field is read-only if there is only 1 option default = layer_opts[0] widget = TAG[""](default[1], INPUT(_type="hidden", _id=widget_id, _name=widget_id, _value=default[0], _class="pt-fact-single-option")) else: # Render Selector dummy_field = Storage(name="fact", requires=IS_IN_SET(layer_opts)) widget = OptionsWidget.widget(dummy_field, layer, _id=widget_id, _name="fact", _class="pt-fact") return widget # ------------------------------------------------------------------------- @staticmethod def _fieldset(title, widgets, **attr): """ Helper method to wrap widgets in a FIELDSET container with show/hide option @param title: the title for the field set @param widgets: the widgets @param attr: HTML attributes for the field set """ T = current.T SHOW = T("Show") HIDE = T("Hide") return FIELDSET(LEGEND(title, BUTTON(SHOW, _type="button", _class="toggle-text", ), BUTTON(HIDE, _type="button", _class="toggle-text", ) ), widgets, **attr) # ============================================================================= class S3PivotTableFact(object): """ Class representing a fact layer """ #: Supported aggregation methods METHODS = {"list": "List", "count": "Count", "min": "Minimum", "max": "Maximum", "sum": "Total", "avg": "Average", #"std": "Standard Deviation" } def __init__(self, method, selector, label=None, default_method=True): """ Constructor @param method: the aggregation method @param selector: the field selector @param label: the fact label @param default_method: using default method (used by parser) """ if method is None: method = "count" default_method = True if method not in self.METHODS: raise SyntaxError("Unsupported aggregation function: %s" % method) self.method = method self.selector = selector self._layer = None self.label = label self.resource = None self.rfield = None self.column = selector self.default_method = default_method # ------------------------------------------------------------------------- @property def layer(self): layer = self._layer if not layer: layer = self._layer = (self.selector, self.method) return layer # ------------------------------------------------------------------------- def compute(self, values, method=DEFAULT, totals=False): """ Aggregate a list of values. @param values: iterable of values """ if values is None: return None if method is DEFAULT: method = self.method if totals and method == "list": method = "count" if method is None or method == "list": return values if values else None values = [v for v in values if v != None] if method == "count": return len(values) elif method == "min": try: return min(values) except (TypeError, ValueError): return None elif method == "max": try: return max(values) except (TypeError, ValueError): return None elif method == "sum": try: return sum(values) except (TypeError, ValueError): return None elif method == "avg": try: if len(values): return sum(values) / float(len(values)) else: return 0.0 except (TypeError, ValueError): return None #elif method == "std": #import numpy #if not values: #return 0.0 #try: #return numpy.std(values) #except (TypeError, ValueError): #return None return None # ------------------------------------------------------------------------- def aggregate_totals(self, totals): """ Aggregate totals for this fact (hyper-aggregation) @param totals: iterable of totals """ if self.method in ("list", "count"): total = self.compute(totals, method="sum") else: total = self.compute(totals) return total # ------------------------------------------------------------------------- @classmethod def parse(cls, fact): """ Parse fact expression @param fact: the fact expression """ if isinstance(fact, tuple): label, fact = fact else: label = None if isinstance(fact, list): facts = [] for f in fact: facts.extend(cls.parse(f)) if not facts: raise SyntaxError("Invalid fact expression: %s" % fact) return facts # Parse the fact other = None default_method = False if not fact: method, parameters = "count", "id" else: match = FACT.match(fact) if match: method, parameters, other = match.groups() if other: other = cls.parse((label, other) if label else other) elif SELECTOR.match(fact): method, parameters, other = "count", fact, None default_method = True else: raise SyntaxError("Invalid fact expression: %s" % fact) # Validate method if method not in cls.METHODS: raise SyntaxError("Unsupported aggregation method: %s" % method) # Extract parameters parameters = parameters.split(",") selector = parameters[0] facts = [cls(method, selector, label=label, default_method=default_method, ), ] if other: facts.extend(other) return facts # ------------------------------------------------------------------------- @classmethod def _get_method_label(cls, code): """ Get a label for a method @param code: the method code @return: the label (lazyT), or None for unsupported methods """ methods = cls.METHODS if code is None: code = "list" if code in methods: return current.T(methods[code]) else: return None # ------------------------------------------------------------------------- @staticmethod def _get_field_label(rfield, fact_options=None): """ Get the label for a field @param rfield: the S3ResourceField @param fact_options: the corresponding subset of the report options ("fact", "rows" or "cols") """ label = None if not rfield: return resource = rfield.resource fields = list(fact_options) if fact_options else [] list_fields = resource.get_config("list_fields") if list_fields: fields.extend(list_fields) prefix = resource.prefix_selector # Search through the field labels in report options selector = prefix(rfield.selector) for f in fields: if type(f) is tuple and \ isinstance(f[1], basestring) and \ prefix(f[1]) == selector: label = f[0] break if not label and rfield: if rfield.ftype == "id": label = current.T("Records") else: label = rfield.label return label if label else "" # ------------------------------------------------------------------------- def get_label(self, rfield, fact_options=None): """ Get a label for this fact @param rfield: the S3ResourceField @param fact_options: the "fact" list of the report options """ label = self.label if label: # Already set return label if fact_options: # Lookup the label from the fact options prefix = rfield.resource.prefix_selector for fact_option in fact_options: facts = self.parse(fact_option) for fact in facts: if fact.method == self.method and \ prefix(fact.selector) == prefix(self.selector): label = fact.label break if label: break if not label: # Construct a label from the field label and the method name field_label = self._get_field_label(rfield, fact_options) method_label = self._get_method_label(self.method) label = "%s (%s)" % (field_label, method_label) self.label = label return label # ============================================================================= class S3PivotTable(object): """ Class representing a pivot table of a resource """ def __init__(self, resource, rows, cols, facts, strict=True): """ Constructor - extracts all unique records, generates a pivot table from them with the given dimensions and computes the aggregated values for each cell. @param resource: the S3Resource @param rows: field selector for the rows dimension @param cols: field selector for the columns dimension @param facts: list of S3PivotTableFacts to compute @param strict: filter out dimension values which don't match the resource filter """ # Initialize ---------------------------------------------------------- # if not rows and not cols: raise SyntaxError("No rows or columns specified for pivot table") self.resource = resource self.lfields = None self.dfields = None self.rfields = None self.rows = rows self.cols = cols self.facts = facts # API variables ------------------------------------------------------- # self.records = None """ All records in the pivot table as a Storage like: { <record_id>: <Row> } """ self.empty = False """ Empty-flag (True if no records could be found) """ self.numrows = None """ The number of rows in the pivot table """ self.numcols = None """ The number of columns in the pivot table """ self.cell = None """ Array of pivot table cells in [rows[columns]]-order, each cell is a Storage like: { records: <list_of_record_ids>, (<fact>, <method>): <aggregated_value>, ...per layer } """ self.row = None """ List of row headers, each header is a Storage like: { value: <dimension value>, records: <list_of_record_ids>, (<fact>, <method>): <total value>, ...per layer } """ self.col = None """ List of column headers, each header is a Storage like: { value: <dimension value>, records: <list_of_record_ids>, (<fact>, <method>): <total value>, ...per layer } """ self.totals = Storage() """ The grand total values for each layer, as a Storage like: { (<fact>, <method): <total value>, ...per layer } """ self.values = {} # Get the fields ------------------------------------------------------ # tablename = resource.tablename # The "report_fields" table setting defines which additional # fields shall be included in the report base layer. This is # useful to provide easy access to the record data behind a # pivot table cell. fields = current.s3db.get_config(tablename, "report_fields", []) self._get_fields(fields=fields) rows = self.rows cols = self.cols # Retrieve the records ------------------------------------------------ # data = resource.select(self.rfields.keys(), limit=None) drows = data["rows"] if drows: key = str(resource.table._id) records = Storage([(i[key], i) for i in drows]) # Generate the data frame ----------------------------------------- # gfields = self.gfields pkey_colname = gfields[self.pkey] rows_colname = gfields[rows] cols_colname = gfields[cols] if strict: rfields = self.rfields axes = (rfield for rfield in (rfields[rows], rfields[cols]) if rfield != None) axisfilter = resource.axisfilter(axes) else: axisfilter = None dataframe = [] extend = dataframe.extend #insert = dataframe.append expand = self._expand for _id in records: row = records[_id] item = {key: _id} if rows_colname: item[rows_colname] = row[rows_colname] if cols_colname: item[cols_colname] = row[cols_colname] extend(expand(item, axisfilter=axisfilter)) self.records = records # Group the records ----------------------------------------------- # matrix, rnames, cnames = self._pivot(dataframe, pkey_colname, rows_colname, cols_colname) # Initialize columns and rows ------------------------------------- # if cols: self.col = [Storage({"value": v}) for v in cnames] self.numcols = len(self.col) else: self.col = [Storage({"value": None})] self.numcols = 1 if rows: self.row = [Storage({"value": v}) for v in rnames] self.numrows = len(self.row) else: self.row = [Storage({"value": None})] self.numrows = 1 # Add the layers -------------------------------------------------- # add_layer = self._add_layer for fact in self.facts: add_layer(matrix, fact) else: # No items to report on ------------------------------------------- # self.empty = True # ------------------------------------------------------------------------- # API methods # ------------------------------------------------------------------------- def __len__(self): """ Total number of records in the report """ items = self.records if items is None: return 0 else: return len(self.records) # ------------------------------------------------------------------------- def geojson(self, fact=None, level="L0"): """ Render the pivot table data as a dict ready to be exported as GeoJSON for display on a Map. Called by S3Report.geojson() @param layer: the layer. e.g. ("id", "count") - we only support methods "count" & "sum" - @ToDo: Support density: 'per sqkm' and 'per population' @param level: the aggregation level (defaults to Country) """ if fact is None: fact = self.facts[0] layer = fact.layer # The rows dimension # @ToDo: We can add sanity-checking using resource.parse_bbox_query() if-desired context = self.resource.get_config("context") if context and "location" in context: rows_dim = "(location)$%s" % level else: # Fallback to location_id rows_dim = "location_id$%s" % level # Fallback we can add if-required #rows_dim = "site_id$location_id$%s" % level # The data attributes = {} geojsons = {} if self.empty: location_ids = [] else: numeric = lambda x: isinstance(x, (int, long, float)) row_repr = lambda v: s3_unicode(v) ids = {} irows = self.row rows = [] # Group and sort the rows is_numeric = None for i in xrange(self.numrows): irow = irows[i] total = irow[layer] if is_numeric is None: is_numeric = numeric(total) if not is_numeric: total = len(irow.records) header = Storage(value = irow.value, text = irow.text if "text" in irow else row_repr(irow.value)) rows.append((i, total, header)) self._sortdim(rows, self.rfields[rows_dim]) # Aggregate the grouped values db = current.db gtable = current.s3db.gis_location query = (gtable.level == level) & (gtable.deleted == False) for rindex, rtotal, rtitle in rows: rval = rtitle.value if rval: # @ToDo: Handle duplicate names ;) if rval in ids: _id = ids[rval] else: q = query & (gtable.name == rval) row = db(q).select(gtable.id, gtable.parent, limitby=(0, 1) ).first() try: _id = row.id # Cache ids[rval] = _id except: continue attribute = dict(name=s3_unicode(rval), value=rtotal) attributes[_id] = attribute location_ids = [ids[r] for r in ids] query = (gtable.id.belongs(location_ids)) geojsons = current.gis.get_locations(gtable, query, join=False, geojson=True) # Prepare for export via xml.gis_encode() and geojson/export.xsl location_data = {} geojsons = dict(gis_location = geojsons) location_data["geojsons"] = geojsons attributes = dict(gis_location = attributes) location_data["attributes"] = attributes return location_ids, location_data # ------------------------------------------------------------------------- def json(self, maxrows=None, maxcols=None): """ Render the pivot table data as JSON-serializable dict @param layer: the layer @param maxrows: maximum number of rows (None for all) @param maxcols: maximum number of columns (None for all) @param least: render the least n rows/columns rather than the top n (with maxrows/maxcols) { labels: { layer: rows: cols: total: }, method: <aggregation method>, cells: [rows[cols]], rows: [rows[index, value, label, total]], cols: [cols[index, value, label, total]], total: <grand total>, filter: [rows selector, cols selector] } """ rfields = self.rfields resource = self.resource T = current.T OTHER = "__other__" rows_dim = self.rows cols_dim = self.cols # The output data orows = [] rappend = orows.append ocols = [] cappend = ocols.append ocells = [] lookups = {} facts = self.facts if not self.empty: # Representation methods for row and column keys row_repr = self._represent_method(rows_dim) col_repr = self._represent_method(cols_dim) # Label for the "Others" row/columns others = s3_unicode(T("Others")) # Get the layers (fact.selector, fact.method), # => used as keys to access the pivot data layers = [fact.layer for fact in facts] least = facts[0].method == "min" # Group and sort the rows (grouping = determine "others") irows = self.row rows = [] rtail = (None, None) for i in xrange(self.numrows): irow = irows[i] totals = [irow[layer] for layer in layers] sort_total = totals[0] header = {"value": irow.value, "text": irow.text if "text" in irow else row_repr(irow.value), } rows.append((i, sort_total, totals, header)) if maxrows is not None: rtail = self._tail(rows, maxrows, least=least, facts=facts) self._sortdim(rows, rfields[rows_dim]) if rtail[1] is not None: values = [irows[i]["value"] for i in rtail[0]] rows.append((OTHER, rtail[1], rtail[2], {"value": values, "text":others}, )) # Group and sort the cols (grouping = determine "others") icols = self.col cols = [] ctail = (None, None) for i in xrange(self.numcols): icol = icols[i] totals = [icol[layer] for layer in layers] sort_total = totals[0] header = {"value": icol.value, "text": icol.text if "text" in icol else col_repr(icol.value), } cols.append((i, sort_total, totals, header)) if maxcols is not None: ctail = self._tail(cols, maxcols, least=least, facts=facts) self._sortdim(cols, rfields[cols_dim]) if ctail[1] is not None: values = [icols[i]["value"] for i in ctail[0]] cols.append((OTHER, ctail[1], ctail[2], {"value": values, "text": others}, )) rothers = rtail[0] or set() cothers = ctail[0] or set() # Group and sort the cells accordingly # @todo: break up into subfunctions icell = self.cell cells = {} for i in xrange(self.numrows): irow = icell[i] ridx = (i, OTHER) if rothers and i in rothers else (i,) for j in xrange(self.numcols): cell = irow[j] cidx = (j, OTHER) if cothers and j in cothers else (j,) cell_records = cell["records"] for layer_index, layer in enumerate(layers): # Get cell items for the layer # => items can be a single numeric value, or a list items = cell[layer] # Get cell value for the layer if isinstance(items, list): value = len(items) else: value = items for ri in ridx: if ri not in cells: orow = cells[ri] = {} else: orow = cells[ri] for ci in cidx: if ci not in orow: # Create a new output cell ocell = orow[ci] = {"values": [], "items": [], "records": [], } else: ocell = orow[ci] if layer_index == 0: # Extend the list of records ocell["records"].extend(cell_records) value_array = ocell["values"] items_array = ocell["items"] if len(value_array) <= layer_index: value_array.append(value) items_array.append(items) else: ovalue = value_array[layer_index] oitems = items_array[layer_index] if isinstance(ovalue, list): ovalue.append(value) oitems.append(items) else: value_array[layer_index] = [ovalue, value] items_array[layer_index] = [oitems, items] # Get field representation methods represents = self._represents(layers) # Aggregate the grouped values value_maps = {} add_columns = True # do this only once for rindex, rtotal, rtotals, rtitle in rows: orow = [] # Row value for filter construction rval = rtitle["value"] if rindex == OTHER and isinstance(rval, list): rval = ",".join(s3_unicode(v) for v in rval) elif rval is not None: rval = s3_unicode(rval) # The output row summary rappend((rindex, rindex in rothers, rtotals, rval, rtitle["text"], )) for cindex, ctotal, ctotals, ctitle in cols: # Get the corresponding cell cell = cells[rindex][cindex] value_array = cell["values"] items_array = cell["items"] # Initialize the output cell # @todo: deflate JSON keys ocell = {"items": [], "values": [], "keys": []} for layer_index, fact in enumerate(facts): selector, method = fact.layer if selector not in lookups: lookup = lookups[selector] = {} else: lookup = lookups[selector] if selector not in value_maps: value_map = value_maps[selector] = {} else: value_map = value_maps[selector] # Add the cell value value = value_array[layer_index] if type(value) is list: # "Others" cell with multiple totals value = fact.aggregate_totals(value) ocell["values"].append(value) has_fk, _repr = represents[selector] rfield = self.rfields[selector] items = items_array[layer_index] okeys = None # Build a lookup table for field values if counting if method in ("count", "list"): keys = [] for record_id in cell["records"]: record = self.records[record_id] try: fvalue = record[rfield.colname] except AttributeError: continue if fvalue is None: continue if type(fvalue) is not list: fvalue = [fvalue] for v in fvalue: if v is None: continue if has_fk: if v not in keys: keys.append(v) if v not in lookup: lookup[v] = _repr(v) else: if v not in value_map: next_id = len(value_map) value_map[v] = next_id keys.append(next_id) lookup[next_id] = _repr(v) else: prev_id = value_map[v] if prev_id not in keys: keys.append(prev_id) # Sort the keys by their representations keys.sort(key=lambda i: lookup[i]) if method == "list": items = [lookup[key] for key in keys if key in lookup] else: okeys = keys ocell["items"].append(items) ocell["keys"].append(okeys) orow.append(ocell) if add_columns: # Column value for filter construction cval = ctitle["value"] if cindex == OTHER and isinstance(cval, list): cval = ",".join(s3_unicode(v) for v in cval) elif cval is not None: cval = s3_unicode(cval) # The output column summary cappend((cindex, cindex in cothers, ctotals, cval, ctitle["text"], )) add_columns = False ocells.append(orow) # Lookup labels report_options = resource.get_config("report_options", {}) if report_options: fact_options = report_options.get("fact") else: fact_options = () # @todo: lookup report title before constructing from fact labels fact_data = [] fact_labels = [] for fact in facts: rfield = rfields[fact.selector] fact_label = str(fact.get_label(rfield, fact_options)) fact_data.append((fact.selector, fact.method, fact_label)) fact_labels.append(fact_label) get_label = S3PivotTableFact._get_field_label if rows_dim: rows_label = str(get_label(rfields[rows_dim], report_options.get("rows"))) else: rows_label = "" if cols_dim: cols_label = str(get_label(rfields[cols_dim], report_options.get("cols"))) else: cols_label = "" labels = {"total": str(T("Total")), "none": str(current.messages["NONE"]), "per": str(T("per")), "breakdown": str(T("Breakdown")), # @todo: use report title: "layer": " / ".join(fact_labels), "rows": rows_label, "cols": cols_label, } # Compile the output dict output = {"rows": orows, "cols": ocols, "facts": fact_data, "cells": ocells, "lookups": lookups, "total": self._totals(self.totals, [fact]), "nodata": None if not self.empty else str(T("No data available")), "labels": labels, } # Add axis selectors for filter-URL construction prefix = resource.prefix_selector output["filter"] = (prefix(rows_dim) if rows_dim else None, prefix(cols_dim) if cols_dim else None, ) return output # ------------------------------------------------------------------------- def _represents(self, layers): """ Get the representation functions per fact field @param layers: the list of layers, tuples (selector, method) """ rfields = self.rfields represents = {} values = self.values for selector, method in layers: if selector in represents: continue # Get the field rfield = rfields[selector] f = rfield.field # Utilize bulk-representation for field values if method in ("list", "count") and \ f is not None and \ hasattr(f.represent, "bulk"): all_values = values[(selector, method)] if all_values: f.represent.bulk(list(s3_flatlist(all_values))) # Get the representation method has_fk = f is not None and s3_has_foreign_key(f) if has_fk: represent = lambda v, f=f: s3_unicode(f.represent(v)) else: m = self._represent_method(selector) represent = lambda v, m=m: s3_unicode(m(v)) represents[selector] = (has_fk, represent) return represents # ------------------------------------------------------------------------- @staticmethod def _sortdim(items, rfield, index=3): """ Sort a dimension (sorts items in-place) @param items: the items as list of tuples (index, sort-total, totals, header) @param rfield: the dimension (S3ResourceField) @param index: alternative index of the value/text dict within each item """ if not rfield: return ftype = rfield.ftype sortby = "value" if ftype == "integer": requires = rfield.requires if isinstance(requires, (tuple, list)): requires = requires[0] if isinstance(requires, IS_EMPTY_OR): requires = requires.other if isinstance(requires, IS_IN_SET): sortby = "text" elif ftype[:9] == "reference": sortby = "text" items.sort(key=lambda item: item[index][sortby]) return # ------------------------------------------------------------------------- @classmethod def _tail(cls, items, length=10, least=False, facts=None): """ Find the top/least <length> items (by total) @param items: the items as list of tuples (index, sort-total, totals, header) @param length: the maximum number of items @param least: find least rather than top @param facts: the facts to aggregate the tail totals """ try: if len(items) > length: l = list(items) l.sort(lambda x, y: int(y[1]-x[1])) if least: l.reverse() keys = [item[0] for item in l[length-1:]] totals = [] for i, fact in enumerate(facts): subtotals = [item[2][i] for item in l[length-1:]] totals.append(fact.aggregate_totals(subtotals)) return (keys, totals[0], totals) except (TypeError, ValueError): pass return (None, None) # ------------------------------------------------------------------------- @staticmethod def _totals(values, facts, append=None): """ Get the totals of a row/column/report @param values: the values dictionary @param facts: the facts @param append: callback to collect the totals for JSON data (currently only collects the first layer) """ totals = [] number_represent = IS_NUMBER.represent for fact in facts: value = values[fact.layer] #if fact.method == "list": #value = value and len(value) or 0 if not len(totals) and append is not None: append(value) totals.append(s3_unicode(number_represent(value))) totals = " / ".join(totals) return totals # ------------------------------------------------------------------------- # Internal methods # ------------------------------------------------------------------------- @staticmethod def _pivot(items, pkey_colname, rows_colname, cols_colname): """ 2-dimensional pivoting of a list of unique items @param items: list of unique items as dicts @param pkey_colname: column name of the primary key @param rows_colname: column name of the row dimension @param cols_colname: column name of the column dimension @return: tuple of (cell matrix, row headers, column headers), where cell matrix is a 2-dimensional array [rows[columns]] and row headers and column headers each are lists (in the same order as the cell matrix) """ rvalues = Storage() cvalues = Storage() cells = Storage() # All unique rows values rindex = 0 cindex = 0 for item in items: rvalue = item[rows_colname] if rows_colname else None cvalue = item[cols_colname] if cols_colname else None if rvalue not in rvalues: r = rvalues[rvalue] = rindex rindex += 1 else: r = rvalues[rvalue] if cvalue not in cvalues: c = cvalues[cvalue] = cindex cindex += 1 else: c = cvalues[cvalue] if (r, c) not in cells: cells[(r, c)] = [item[pkey_colname]] else: cells[(r, c)].append(item[pkey_colname]) matrix = [] for r in xrange(len(rvalues)): row = [] for c in xrange(len(cvalues)): row.append(cells[(r, c)]) matrix.append(row) rnames = [None] * len(rvalues) for k, v in rvalues.items(): rnames[v] = k cnames = [None] * len(cvalues) for k, v in cvalues.items(): cnames[v] = k return matrix, rnames, cnames # ------------------------------------------------------------------------- def _add_layer(self, matrix, fact): """ Compute an aggregation layer, updates: - self.cell: the aggregated values per cell - self.row: the totals per row - self.col: the totals per column - self.totals: the overall totals per layer @param matrix: the cell matrix @param fact: the fact field @param method: the aggregation method """ rows = self.row cols = self.col records = self.records extract = self._extract resource = self.resource RECORDS = "records" VALUES = "values" table = resource.table pkey = table._id.name layer = fact.layer numcols = len(self.col) numrows = len(self.row) # Initialize cells if self.cell is None: self.cell = [[Storage() for i in xrange(numcols)] for j in xrange(numrows)] cells = self.cell all_values = [] for r in xrange(numrows): # Initialize row header row = rows[r] row[RECORDS] = [] row[VALUES] = [] row_records = row[RECORDS] row_values = row[VALUES] for c in xrange(numcols): # Initialize column header col = cols[c] if RECORDS not in col: col[RECORDS] = [] col_records = col[RECORDS] if VALUES not in col: col[VALUES] = [] col_values = col[VALUES] # Get the records cell = cells[r][c] if RECORDS in cell and cell[RECORDS] is not None: ids = cell[RECORDS] else: data = matrix[r][c] if data: remove = data.remove while None in data: remove(None) ids = data else: ids = [] cell[RECORDS] = ids row_records.extend(ids) col_records.extend(ids) # Get the values if fact.selector is None: fact.selector = pkey values = ids row_values = row_records col_values = row_records all_values = records.keys() else: values = [] append = values.append for i in ids: value = extract(records[i], fact.selector) if value is None: continue append(value) values = list(s3_flatlist(values)) if fact.method in ("list", "count"): values = list(set(values)) row_values.extend(values) col_values.extend(values) all_values.extend(values) # Aggregate values value = fact.compute(values) cell[layer] = value # Compute row total row[layer] = fact.compute(row_values, totals=True) del row[VALUES] # Compute column total for c in xrange(numcols): col = cols[c] col[layer] = fact.compute(col[VALUES], totals=True) del col[VALUES] # Compute overall total self.totals[layer] = fact.compute(all_values, totals=True) self.values[layer] = all_values return # ------------------------------------------------------------------------- def _get_fields(self, fields=None): """ Determine the fields needed to generate the report @param fields: fields to include in the report (all fields) """ resource = self.resource table = resource.table # Lambda to prefix all field selectors alias = resource.alias def prefix(s): if isinstance(s, (tuple, list)): return prefix(s[-1]) if "." not in s.split("$", 1)[0]: return "%s.%s" % (alias, s) elif s[:2] == "~.": return "%s.%s" % (alias, s[2:]) else: return s self.pkey = pkey = prefix(table._id.name) self.rows = rows = self.rows and prefix(self.rows) or None self.cols = cols = self.cols and prefix(self.cols) or None if not fields: fields = () # dfields (data-fields): fields to generate the layers dfields = [prefix(s) for s in fields] if rows and rows not in dfields: dfields.append(rows) if cols and cols not in dfields: dfields.append(cols) if pkey not in dfields: dfields.append(pkey) for fact in self.facts: selector = fact.selector = prefix(fact.selector) if selector not in dfields: dfields.append(selector) self.dfields = dfields # rfields (resource-fields): dfields resolved into a ResourceFields map rfields = resource.resolve_selectors(dfields)[0] rfields = Storage([(f.selector.replace("~", alias), f) for f in rfields]) self.rfields = rfields # gfields (grouping-fields): fields to group the records by self.gfields = {pkey: rfields[pkey].colname, rows: rfields[rows].colname if rows and rows in rfields else None, cols: rfields[cols].colname if cols and cols in rfields else None, } return # ------------------------------------------------------------------------- def _represent_method(self, field): """ Get the representation method for a field in the report @param field: the field selector """ rfields = self.rfields default = lambda value: None if field and field in rfields: rfield = rfields[field] if rfield.field: def repr_method(value): return s3_represent_value(rfield.field, value, strip_markup=True) elif rfield.virtual: stripper = S3MarkupStripper() def repr_method(val): if val is None: return "-" text = s3_unicode(val) if "<" in text: stripper.feed(text) return stripper.stripped() # = totally naked ;) else: return text else: repr_method = default else: repr_method = default return repr_method # ------------------------------------------------------------------------- def _extract(self, row, field): """ Extract a field value from a DAL row @param row: the row @param field: the fieldname (list_fields syntax) """ rfields = self.rfields if field not in rfields: raise KeyError("Invalid field name: %s" % field) rfield = rfields[field] try: return rfield.extract(row) except AttributeError: return None # ------------------------------------------------------------------------- def _expand(self, row, axisfilter=None): """ Expand a data frame row into a list of rows for list:type values @param row: the row @param field: the field to expand (None for all fields) @param axisfilter: dict of filtered field values by column names """ pairs = [] append = pairs.append for colname in self.gfields.values(): if not colname: continue value = row[colname] if type(value) is list: if not value: value = [None] if axisfilter and colname in axisfilter: p = [(colname, v) for v in value if v in axisfilter[colname]] if not p: raise RuntimeError("record does not match query") else: append(p) else: append([(colname, v) for v in value]) else: append([(colname, value)]) result = [dict(i) for i in product(*pairs)] return result # END =========================================================================
the-stack_0_16048
from eventsourcing.example.application import ( close_example_application, get_example_application, init_example_application, ) from eventsourcing.infrastructure.sqlalchemy.manager import SQLAlchemyRecordManager from eventsourcing.infrastructure.sqlalchemy.records import IntegerSequencedNoIDRecord from eventsourcing.tests.datastore_tests.test_sqlalchemy import ( SQLAlchemyDatastoreTestCase, ) class TestExampleApplicationSingleInstanceFunctions(SQLAlchemyDatastoreTestCase): def setUp(self): super(TestExampleApplicationSingleInstanceFunctions, self).setUp() # Setup the database. self.datastore.setup_connection() self.datastore.setup_tables() def tearDown(self): # Teardown single instance. close_example_application() # Teardown the database. self.datastore.drop_tables() self.datastore.close_connection() super(TestExampleApplicationSingleInstanceFunctions, self).tearDown() def test(self): self.datastore.setup_connection() self.datastore.setup_tables() record_manager = SQLAlchemyRecordManager( record_class=IntegerSequencedNoIDRecord, session=self.datastore.session ) # Can't get the single instance before it has been constructed. with self.assertRaises(AssertionError): get_example_application() # Construct single instance. init_example_application(entity_record_manager=record_manager) # Can't construct single instance twice. with self.assertRaises(AssertionError): init_example_application(entity_record_manager=record_manager) # Get the single instance. app1 = get_example_application() app2 = get_example_application() self.assertEqual(id(app1), id(app2)) # Close single instance. close_example_application() # Can't get the single instance before it has been constructed. with self.assertRaises(AssertionError): get_example_application() # Construct single instance. init_example_application(entity_record_manager=record_manager) # Can't construct single instance twice. with self.assertRaises(AssertionError): init_example_application(entity_record_manager=record_manager) # Get the single instance. app1 = get_example_application() app2 = get_example_application() self.assertEqual(id(app1), id(app2))
the-stack_0_16050
input_data = open("day9.input").read().split("\n") adj_m = [(0, 1), (1, 0), (0, -1), (-1, 0)] sol = 0 basins = [] for ix, line in enumerate(input_data): for iy, col in enumerate(line): adj = [] for a in adj_m: realx = ix+a[0] realy = iy+a[1] if realx >= 0 and realy >= 0 and realx < len(input_data) and realy < len(line): adj.append(int(input_data[realx][realy])) if int(col) < min(adj): sol += int(col) + 1 basins.append([(ix, iy)]) print(sol) for bx, basin in enumerate(basins): while True: check = [] for point in basins[bx]: for (x, y) in adj_m: realx = point[0]+x realy = point[1]+y if realx >= 0 and realy >= 0 and realx < len(input_data) and realy < len(line): if input_data[realx][realy] != "9": check.append((realx, realy)) check = list(filter(lambda x: x not in basins[bx], set(check))) if len(check) == 0: break basins[bx] += check basins.sort(key=lambda x: len(x), reverse=True) print("Aufgabe2") print(len(basins[0]) * len(basins[1]) * len(basins[2]))
the-stack_0_16052
import uos import network from flashbdev import bdev def wifi(): import ubinascii ap_if = network.WLAN(network.AP_IF) essid = b"MicroPython-%s" % ubinascii.hexlify(ap_if.config("mac")[-3:]) ap_if.config(essid=essid, authmode=network.AUTH_WPA_WPA2_PSK, password=b"micropythoN") def check_bootsec(): buf = bytearray(bdev.SEC_SIZE) bdev.readblocks(0, buf) empty = True for b in buf: if b != 0xff: empty = False break if empty: return True fs_corrupted() def fs_corrupted(): import time while 1: print("""\ The FAT filesystem starting at sector %d with size %d sectors appears to be corrupted. If you had important data there, you may want to make a flash snapshot to try to recover it. Otherwise, perform factory reprogramming of MicroPython firmware (completely erase flash, followed by firmware programming). """ % (bdev.START_SEC, bdev.blocks)) time.sleep(3) def setup(): check_bootsec() print("Performing initial setup") # wifi() uos.VfsFat.mkfs(bdev) vfs = uos.VfsFat(bdev) uos.mount(vfs, '/') with open("boot.py", "w") as f: f.write("""\ # This file is executed on every boot (including wake-boot from deepsleep) #import esp #esp.osdebug(None) import uos, machine uos.dupterm(machine.UART(0, 115200), 1) import gc #import webrepl #webrepl.start() gc.collect() import prometheus.pnetwork gc.collect() prometheus.pnetwork.init_network() gc.collect() """) return vfs
the-stack_0_16053
import os import json from COCO_Eval_Utils import coco_eval,coco_eval_specific from Utils import model_construction,init_optimizer,set_lr,clip_gradient,get_transform,get_sample_image_info,visualize_att,RewardCriterion,get_self_critical_reward import torch.nn as nn import torch from torch.nn.utils.rnn import pack_padded_sequence import tqdm import numpy as np from cider.pyciderevalcap.tokenizer.ptbtokenizer import PTBTokenizer from cider.pyciderevalcap.ciderD.ciderD import CiderD class Engine(object): def __init__(self,model_settings_json,dataset_name,caption_vocab,data_dir=None,device='cpu'): self.model,self.settings = model_construction(model_settings_json=model_settings_json,caption_vocab=caption_vocab,device=device) self.device = device self.data_dir = data_dir self.dataset_name = dataset_name self.caption_vocab = caption_vocab self.tag = 'Model_' + self.settings['model_type'] + '_Dataset_' + dataset_name self.model.to(self.device) def load_pretrained_model(self,scst_model=False): scst_not_found = False if scst_model: pretrained_scst_model_path = './CheckPoints/%s/' % self.tag + 'Captioner_scst_cp.pth' if os.path.exists(pretrained_scst_model_path): self.model.load_state_dict(torch.load(pretrained_scst_model_path)) print('load pretrained scst weights complete.') else: print('pretrained scst weights not found, try to load pretrained xe weights.') scst_not_found = True if not(scst_model) or scst_not_found: pretrained_model_path = './CheckPoints/%s/' % self.tag + 'Captioner_cp.pth' if os.path.exists(pretrained_model_path): self.model.load_state_dict(torch.load(pretrained_model_path)) print('load pretrained xe weights complete.') else:print('model checkpoint not found, training from scratch.') def load_score_record(self,scst=False): best_cider = 0.0 scst_score_record_path = './CheckPoints/%s/Captioner_scst_cp_score.json' % (self.tag) score_record_path = './CheckPoints/%s/Captioner_cp_score.json' % (self.tag) if scst and os.path.exists(scst_score_record_path): scst_score_record = json.load(open(scst_score_record_path, 'r')) best_cider = scst_score_record['cider'] if not scst and os.path.exists(score_record_path): score_record = json.load(open(score_record_path,'r')) best_cider = score_record['cider'] if best_cider != 0.0:print('best cider record: %.3f, model checkpoints below the score record will not be saved.' % best_cider) else: print('best cider record not found.') return best_cider def get_model_params(self): cnn_extractor_params = list(filter(lambda p: p.requires_grad, self.model.encoder.feature_extractor.parameters())) captioner_params = list(self.model.decoder.parameters()) return cnn_extractor_params,captioner_params #------------------------------XELoss training---------------------------------# def training(self, num_epochs, train_dataloader, eval_dataloader, eval_caption_path, optimizer_type, lr_opts, ss_opts, use_preset_settings, eval_beam_size=-1, load_pretrained_model=False, overwrite_guarantee=True, cnn_FT_start=False, tqdm_visible=True): os.makedirs('./CheckPoints/%s' % self.tag, exist_ok=True) if load_pretrained_model:self.load_pretrained_model(scst_model=False) else:print('training from scratch') if overwrite_guarantee:best_cider_record = self.load_score_record(scst=False) else:best_cider_record = 0.0 if hasattr(self.model,'cnn_fine_tune'): self.model.cnn_fine_tune(cnn_FT_start) cnn_extractor_params,captioner_params = self.get_model_params() #------------Load preset training settings if exists--------------# optim_type = optimizer_type lr = lr_opts['learning_rate'] cnn_FT_lr = lr_opts['cnn_FT_learning_rate'] if use_preset_settings: if self.settings.__contains__('optimizer'): optim_type = self.settings['optimizer'] print('training under preset optimizer_type:%s' % optim_type) if self.settings.__contains__('lr'): lr = self.settings['lr'] print('training under preset learning_rate:%.6f' % lr) if self.settings.__contains__('cnn_FT_lr'): cnn_FT_lr = self.settings['cnn_FT_lr'] print('training under preset cnn_FT_learning_rate:%.6f' % cnn_FT_lr) #-----------------------------------------------------------------# cnn_extractor_optimizer = init_optimizer(optimizer_type=optim_type,params=cnn_extractor_params,learning_rate=cnn_FT_lr) captioner_optimizer = init_optimizer(optimizer_type=optim_type,params=captioner_params,learning_rate=lr) criterion = nn.CrossEntropyLoss().to(self.device) cider_scores = [] best_cider = 0.0 best_epoch = 0 best_cider_woFT = 0.0 best_epoch_woFT = 0 for epoch in range(1, num_epochs + 1): print('----------------------Start training for Epoch %d, CNN_fine_tune:%s---------------------' % (epoch, cnn_FT_start)) if epoch > lr_opts['lr_dec_start_epoch'] and lr_opts['lr_dec_start_epoch'] >= 0: frac = (epoch - lr_opts['lr_dec_start_epoch']) // lr_opts['lr_dec_every'] decay_factor = lr_opts['lr_dec_rate'] ** frac current_lr = lr * decay_factor else: current_lr = lr if cnn_extractor_optimizer is not None:set_lr(cnn_extractor_optimizer,min(cnn_FT_lr,current_lr)) set_lr(captioner_optimizer, current_lr) # set the decayed rate if epoch > ss_opts['ss_start_epoch'] and ss_opts['ss_start_epoch'] >= 0: frac = (epoch - ss_opts['ss_start_epoch']) // ss_opts['ss_inc_every'] ss_prob = min(ss_opts['ss_inc_prob'] * frac, ss_opts['ss_max_prob']) self.model.ss_prob = ss_prob else:ss_prob = 0.0 print('| current_lr: %.6f cnn_FT_lr: %.6f current_scheduled_sampling_prob: %.2f |' % (current_lr,cnn_FT_lr,ss_prob)) print('------------------------------------------------------------------------------------------') self.training_epoch(dataloader=train_dataloader, optimizers=[cnn_extractor_optimizer,captioner_optimizer], criterion=criterion, tqdm_visible=tqdm_visible) print('--------------Start evaluating for Epoch %d-----------------' % epoch) results = self.eval_captions_json_generation( dataloader=eval_dataloader, eval_beam_size=eval_beam_size, tqdm_visible=tqdm_visible ) cider = coco_eval(results=results, eval_caption_path=eval_caption_path) cider_scores.append(cider) if cider > best_cider: if cider > best_cider_record: torch.save(self.model.state_dict(), './CheckPoints/%s/Captioner_cp.pth' % (self.tag)) score_record = {'cider':cider} json.dump(score_record,open('./CheckPoints/%s/Captioner_cp_score.json' % (self.tag),'w')) best_cider = cider best_epoch = epoch if len(cider_scores) >= 5: last_5 = cider_scores[-4:] last_5_max = max(last_5) last_5_min = min(last_5) if last_5_max != best_cider or abs(last_5_max - last_5_min) <= 0.01: if not hasattr(self.model,'cnn_fine_tune') or cnn_FT_start: print('No improvement with CIDEr in the last 5 epochs...Early stopping triggered.') break else: print('No improvement with CIDEr in the last 5 epochs...CNN fine-tune triggered.') best_cider_woFT = best_cider best_epoch_woFT = best_epoch cnn_FT_start = True self.model.cnn_fine_tune(flag=cnn_FT_start) self.load_pretrained_model(scst_model=False) print('load pretrained model from previous best epoch:%d' % best_epoch_woFT) cnn_extractor_params,_ = self.get_model_params() cnn_extractor_optimizer = init_optimizer(optimizer_type=optim_type,params=cnn_extractor_params,learning_rate=cnn_FT_lr) cider_scores = [] if hasattr(self.model,'cnn_fine_tune'): print('Model of best epoch #:%d with CIDEr score %.3f w/o cnn fine-tune' % (best_epoch_woFT,best_cider_woFT)) print('Model of best epoch #:%d with CIDEr score %.3f w/ cnn fine-tune' % (best_epoch,best_cider)) else: print('Model of best epoch #:%d with CIDEr score %.3f' % (best_epoch,best_cider)) def training_epoch(self, dataloader, optimizers, criterion, tqdm_visible=True): self.model.train() if tqdm_visible: monitor = tqdm.tqdm(dataloader, desc='Training Process') else: monitor = dataloader for batch_i, (_, imgs, captions, lengths) in enumerate(monitor): imgs = imgs.to(self.device) captions = captions.to(self.device) lengths = [cap_len - 1 for cap_len in lengths] targets = pack_padded_sequence(input=captions[:, 1:], lengths=lengths, batch_first=True) self.model.zero_grad() predictions = self.model(imgs, captions, lengths) loss = criterion(predictions[0], targets[0]) loss_npy = loss.cpu().detach().numpy() if tqdm_visible: monitor.set_postfix(Loss=np.round(loss_npy, decimals=4)) loss.backward() for optimizer in optimizers: if optimizer is not None: clip_gradient(optimizer, grad_clip=0.1) optimizer.step() #-------------------------------SCST training-----------------------------------------# def SCSTtraining(self, num_epochs, train_dataloader, eval_dataloader, eval_caption_path, optimizer_type, scst_lr, scst_cnn_FT_lr, use_preset_settings, eval_beam_size=-1, load_pretrained_scst_model=False, overwrite_guarantee=True, cnn_FT_start=True, tqdm_visible=True): print('SCST training needs the model pretrained.') self.load_pretrained_model(scst_model=load_pretrained_scst_model) if overwrite_guarantee:best_scst_cider_record = self.load_score_record(scst=True) else:best_scst_cider_record = 0.0 if hasattr(self.model,'cnn_fine_tune'): self.model.cnn_fine_tune(cnn_FT_start) cnn_extractor_params,captioner_params = self.get_model_params() #------------Load preset training settings if exists--------------# optim_type = optimizer_type lr = scst_lr cnn_FT_lr = scst_cnn_FT_lr if use_preset_settings: if self.settings.__contains__('optimizer'): optim_type = self.settings['optimizer'] print('training under preset optimizer_type:%s' % optim_type) if self.settings.__contains__('scst_lr'): lr = self.settings['scst_lr'] print('training under preset scst learning_rate:%.6f' % lr) if self.settings.__contains__('scst_cnn_FT_lr'): cnn_FT_lr = self.settings['scst_cnn_FT_lr'] print('training under preset scst cnn_FT_learning_rate:%.6f' % cnn_FT_lr) #-----------------------------------------------------------------# cnn_extractor_optimizer = init_optimizer(optimizer_type=optim_type,params=cnn_extractor_params,learning_rate=cnn_FT_lr) captioner_optimizer = init_optimizer(optimizer_type=optim_type,params=captioner_params,learning_rate=lr) criterion = RewardCriterion().to(self.device) best_cider = 0.0 best_epoch = 0 for epoch in range(1,num_epochs + 1): print('--------------Start training for Epoch %d, Training_Stage:SCST--------------' % (epoch)) print('| lr: %.6f cnn_FT_lr: %.6f |' % (lr, cnn_FT_lr)) print('---------------------------------------------------------------------------') self.SCST_training_epoch(dataloader=train_dataloader,optimizers=[cnn_extractor_optimizer,captioner_optimizer],criterion=criterion,tqdm_visible=tqdm_visible) print('--------------Start evaluating for Epoch %d-----------------' % epoch) results = self.eval_captions_json_generation(dataloader=eval_dataloader,eval_beam_size=eval_beam_size,tqdm_visible=tqdm_visible) cider = coco_eval(results=results,eval_caption_path=eval_caption_path) if cider > best_cider: if cider > best_scst_cider_record: #avoid score decreasing torch.save(self.model.state_dict(), './CheckPoints/%s/Captioner_scst_cp.pth' % (self.tag)) score_record = {'cider':cider} json.dump(score_record,open('./CheckPoints/%s/Captioner_scst_cp_score.json' % (self.tag),'w')) best_cider = cider best_epoch = epoch print('Model of best epoch #:%d with CIDEr score %.3f in stage:SCST' % (best_epoch,best_cider)) def SCST_training_epoch(self,dataloader,optimizers,criterion,tqdm_visible=True): self.model.train() if tqdm_visible:monitor = tqdm.tqdm(dataloader,desc='Training Process') else:monitor = dataloader for batch_i,(imgids,imgs,img_gts) in enumerate(monitor): imgs = imgs.to(self.device) self.model.zero_grad() self.model.eval() with torch.no_grad(): greedy_res = self.model.sampler(imgs,max_len=20) self.model.train() seq_gen,seqLogprobs = self.model.sampler_rl(imgs,max_len=20) #(bsize,max_len) rewards = get_self_critical_reward(gen_result=seq_gen,greedy_res=greedy_res,ground_truth=img_gts, img_ids=imgids,caption_vocab = self.caption_vocab,dataset_name=self.dataset_name) loss = criterion(seqLogprobs,seq_gen,rewards.to(self.device)) loss_npy = loss.cpu().detach().numpy() if tqdm_visible: monitor.set_postfix(Loss=np.round(loss_npy,decimals=4)) loss.backward() for optimizer in optimizers: if optimizer is not None: clip_gradient(optimizer,grad_clip=0.25) optimizer.step() def eval_captions_json_generation(self,dataloader,eval_beam_size=-1,tqdm_visible=True): self.model.eval() result = [] print('Generating captions json for evaluation. Beam Search: %s' % (eval_beam_size!=-1)) if tqdm_visible:monitor = tqdm.tqdm(dataloader, desc='Generating Process') else:monitor = dataloader for batch_i, (image_ids, images) in enumerate(monitor): images = images.to(self.device) with torch.no_grad(): if eval_beam_size!=-1: generated_captions = self.model.beam_search_sampler(images=images, beam_size=eval_beam_size) else: generated_captions = self.model.sampler(images=images, max_len=20) captions = generated_captions.cpu().detach().numpy() for image_idx in range(captions.shape[0]): sampled_ids = captions[image_idx] sampled_caption = [] for word_id in sampled_ids: word = self.caption_vocab.ix2word[word_id] if word == '<end>': break elif word != '<sta>': sampled_caption.append(word) sentence = ' '.join(sampled_caption) tmp = {'image_id': int(image_ids[image_idx]), 'caption': sentence} result.append(tmp) return result def eval(self,dataset,split,eval_scst,eval_dataloader,eval_caption_path,eval_beam_size=-1,output_statics=False,tqdm_visible=True): self.load_pretrained_model(scst_model=eval_scst) print('--------------Start evaluating for Dataset %s on %s split-----------------' % (dataset,split)) results = self.eval_captions_json_generation(dataloader=eval_dataloader, eval_beam_size=eval_beam_size,tqdm_visible=tqdm_visible) if output_statics:coco_eval_specific(results=results,eval_caption_path=eval_caption_path) else:coco_eval(results=results,eval_caption_path=eval_caption_path) def test(self,use_scst_model,img_root,img_filename,eval_beam_size=-1): self.load_pretrained_model(use_scst_model) self.model.eval() img_copy,gts = get_sample_image_info(img_root=img_root,img_filename=img_filename) img = get_transform()(img_copy).unsqueeze(0) img = img.to(self.device) caption,additional = self.model.eval_test_image(image=img,caption_vocab=self.caption_vocab,max_len=20,eval_beam_size=eval_beam_size) sentence = ' '.join(caption) print('Generated caption:') print(sentence) if len(gts)>0: img_id = list(gts.keys())[0] res = [{'image_id':img_id,'caption':sentence}] tokenizer = PTBTokenizer(_source='gts') _gts = tokenizer.tokenize(gts) tokenizer = PTBTokenizer(_source='res') _res = tokenizer.tokenize(res) ciderD_scorer = CiderD(df='COCO14-val') ciderD_score,_ = ciderD_scorer.compute_score(gts=_gts,res=_res) print('CIDEr-D :%.3f' % (ciderD_score)) self.show_additional_rlt(additional,img_copy,caption) def show_additional_rlt(self,additional,image,caption): pass
the-stack_0_16054
#!/usr/bin/env python3 # Copyright (c) 2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test wallet group functionality.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.messages import CTransaction, FromHex, ToHex from test_framework.util import ( assert_equal, ) from test_framework.estxconfig import COINBASE_MATURITY def assert_approx(v, vexp, vspan=0.00001): if v < vexp - vspan: raise AssertionError("%s < [%s..%s]" % (str(v), str(vexp - vspan), str(vexp + vspan))) if v > vexp + vspan: raise AssertionError("%s > [%s..%s]" % (str(v), str(vexp - vspan), str(vexp + vspan))) class WalletGroupTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [[], [], ['-avoidpartialspends']] self.rpc_timewait = 120 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Mine some coins self.nodes[0].generate(10+COINBASE_MATURITY) # Get some addresses from the two nodes addr1 = [self.nodes[1].getnewaddress() for i in range(3)] addr2 = [self.nodes[2].getnewaddress() for i in range(3)] addrs = addr1 + addr2 # Send 1 + 0.5 coin to each address [self.nodes[0].sendtoaddress(addr, 1.0) for addr in addrs] [self.nodes[0].sendtoaddress(addr, 0.5) for addr in addrs] self.nodes[0].generate(1) self.sync_all() # For each node, send 0.2 coins back to 0; # - node[1] should pick one 0.5 UTXO and leave the rest # - node[2] should pick one (1.0 + 0.5) UTXO group corresponding to a # given address, and leave the rest txid1 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) tx1 = self.nodes[1].getrawtransaction(txid1, True) # txid1 should have 1 input and 2 outputs assert_equal(1, len(tx1["vin"])) assert_equal(2, len(tx1["vout"])) # one output should be 0.2, the other should be ~0.3 v = [vout["value"] for vout in tx1["vout"]] v.sort() assert_approx(v[0], 0.2) assert_approx(v[1], 0.3, 0.01) txid2 = self.nodes[2].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) tx2 = self.nodes[2].getrawtransaction(txid2, True) # txid2 should have 2 inputs and 2 outputs assert_equal(2, len(tx2["vin"])) assert_equal(2, len(tx2["vout"])) # one output should be 0.2, the other should be ~1.3 v = [vout["value"] for vout in tx2["vout"]] v.sort() assert_approx(v[0], 0.2) assert_approx(v[1], 1.3, 0.01) # Empty out node2's wallet self.nodes[2].sendtoaddress(address=self.nodes[0].getnewaddress(), amount=self.nodes[2].getbalance(), subtractfeefromamount=True) self.sync_all() self.nodes[0].generate(1) # Fill node2's wallet with 10000 outputs corresponding to the same # scriptPubKey for i in range(5): raw_tx = self.nodes[0].createrawtransaction([{"txid":"0"*64, "vout":0}], [{addr2[0]: 0.05}]) tx = FromHex(CTransaction(), raw_tx) tx.vin = [] tx.vout = [tx.vout[0]] * 2000 funded_tx = self.nodes[0].fundrawtransaction(ToHex(tx)) signed_tx = self.nodes[0].signrawtransactionwithwallet(funded_tx['hex']) self.nodes[0].sendrawtransaction(signed_tx['hex']) self.nodes[0].generate(1) self.sync_all() # Check that we can create a transaction that only requires ~100 of our # utxos, without pulling in all outputs and creating a transaction that # is way too big. assert self.nodes[2].sendtoaddress(address=addr2[0], amount=5) if __name__ == '__main__': WalletGroupTest().main ()
the-stack_0_16055
# coding:utf-8 from django.conf import settings from django.test.signals import setting_changed try: from django.utils.module_loading import import_string except ImportError: from django.utils.module_loading import import_by_path as import_string from active_users.keys import AbstractActiveUserEntry PREFIX = 'ACTIVE_USERS' DEFAULTS = { 'KEY_EXPIRE': 20, 'KEY_CLASS': 'active_users.keys.ActiveUserEntry', 'EXCLUDE_URL_PATTERNS': [] } class ActiveUsersSettings(object): def __init__(self): for key, default in DEFAULTS.items(): value = getattr(settings, '{0}_{1}'.format(PREFIX, key), default) self.set_setting(key, value) assert issubclass(self.KEY_CLASS, AbstractActiveUserEntry) def set_setting(self, key, value): setattr( self, key, import_string(value) if key == 'KEY_CLASS' else value) active_users_settings = ActiveUsersSettings() def reload_settings(*args, **kwargs): if kwargs['setting'].startswith(PREFIX): key = kwargs['setting'].replace(PREFIX + '_', '') if key in DEFAULTS: active_users_settings.set_setting( key, kwargs['value'] or DEFAULTS[key]) setting_changed.connect(reload_settings)
the-stack_0_16057
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import subprocess from collections import namedtuple from datetime import datetime, timezone from threading import Thread from time import sleep import requests from flask import Flask, jsonify, request app = Flask(__name__) logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) Node = namedtuple('Node', ['endpoint', 'data']) # A simple manager which tracks all event subscriptions class Manager: def __init__(self): self._events = {} self._nr_sent_events = 0 def subscribe(self, id_, endpoint, event_name, data): data = data or {} logger.info(f'[subscribe] id: "{id_}", endpoint:"{endpoint}", ' f'name: "{event_name}", data: %s', data) if event_name not in self._events: self._events[event_name] = {} # Check whether the id is new if id_ in self._events[event_name]: return False self._events[event_name][id_] = Node(endpoint, data) def unsubscribe(self, id_, event_name): logger.info(f'[unsubscribe] id: "{id_}", name: "{event_name}"') if event_name not in self._events: return False # Check whether the id exists if id_ not in self._events[event_name]: return False del self._events[event_name][id_] def publish(self, event_name, data): logger.info(f'[publish] name: "{event_name}", data: %s', data) if event_name not in self._events: return False for node in self._events[event_name].values(): # filter for user (optional) if 'user' in node.data and 'user' in data: if node.data['user'] == data['user']: self._send_event(node, event_name, data) else: self._send_event(node, event_name, data) return True def _send_event(self, node, event_name, data): local_time = datetime.now(timezone.utc).astimezone() requests.post(node.endpoint, json={ 'eventType': event_name, 'type': 'com.microservices.python.template', 'specversion': '0.2', 'source': '/my-source', 'id': f'PYTHON-TEMPLATE-{self._nr_sent_events}', 'time': local_time.isoformat(), 'datacontenttype': 'application/json', 'data': data, }) self._nr_sent_events = self._nr_sent_events + 1 manager = Manager() @app.route('/events', methods=['POST']) def subscribe(): return jsonify({'sucess': manager.subscribe( id_=request.json['id'], endpoint=request.json['endpoint'], event_name=request.json['event'], data=request.json.get('data', {}), )}) @app.route('/events', methods=['DELETE']) def unsubscribe(): return jsonify({'sucess': manager.unsubscribe( id_=request.json['id'], event_name=request.json['event'], )}) @app.route('/publish', methods=['POST']) def publish(): data = request.json.get('data', {}) if 'user' in request.json: data['user'] = request.json['user'] return jsonify({'sucess': manager.publish( event_name=request.json['event'], data=data, )}) @app.route('/health', methods=['GET']) def health(): return 'OK' # Return errors as JSON objects def app_error(e): return jsonify({'message': str(e)}), 400 # Calls a callback every period with args def set_interval(period, callback, **args): def wrapper(): while True: sleep(period) callback(**args) Thread(target=wrapper).start() def heartbeat(user): manager.publish('heartbeat', { 'user': user, 'time': str(datetime.now()), }) if __name__ == '__main__': app.register_error_handler(Exception, app_error) set_interval(3, heartbeat, user='max') set_interval(5, heartbeat, user='moritz') app.run(host='0.0.0.0', port=8080)
the-stack_0_16059
from contextlib import suppress from datetime import datetime from typing import Optional from models_library.clusters import ClusterID from models_library.projects import ProjectID from models_library.projects_state import RunningState from models_library.users import UserID from pydantic import BaseModel, PositiveInt, validator from simcore_postgres_database.models.comp_pipeline import StateType from ...utils.db import DB_TO_RUNNING_STATE class CompRunsAtDB(BaseModel): run_id: PositiveInt project_uuid: ProjectID user_id: UserID cluster_id: Optional[ClusterID] iteration: PositiveInt result: RunningState created: datetime modified: datetime started: Optional[datetime] ended: Optional[datetime] @validator("result", pre=True) @classmethod def convert_result_from_state_type_enum_if_needed(cls, v): if isinstance(v, str): # try to convert to a StateType, if it fails the validations will continue # and pydantic will try to convert it to a RunninState later on with suppress(ValueError): v = StateType(v) if isinstance(v, StateType): return RunningState(DB_TO_RUNNING_STATE[StateType(v)]) return v class Config: orm_mode = True schema_extra = { "examples": [ # DB model { "run_id": 432, "project_uuid": "65fee9d2-e030-452c-a29c-45d288577ca5", "user_id": 132, "cluster_id": 0, "iteration": 42, "result": "NOT_STARTED", "created": "2021-03-01 13:07:34.19161", "modified": "2021-03-01 13:07:34.19161", }, { "run_id": 43243, "project_uuid": "65fee9d2-e030-452c-a29c-45d288577ca5", "user_id": 132, "cluster_id": 123, "iteration": 12, "result": "SUCCESS", "created": "2021-03-01 13:07:34.19161", "modified": "2021-03-01 13:07:34.19161", "started": "2021-03-01 8:07:34.19161", "ended": "2021-03-01 13:07:34.10", }, ] }