ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a4ed0db3cf2dda589475008254ecc5f2a723327
from __future__ import unicode_literals from django.apps import AppConfig class DjangoRestHipchatConfig(AppConfig): name = 'django_rest_hipchat'
py
1a4ed13b6233dec3e63ea6f86db16fc882a84ef6
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys # import django # sys.path.insert(0, os.path.abspath('..')) # os.environ.setdefault("DJANGO_SETTINGS_MODULE", "config.settings.local") # django.setup() # -- Project information ----------------------------------------------------- project = "tweetme" copyright = """2020, DEGNON Tobi""" author = "DEGNON Tobi" # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build", "Thumbs.db", ".DS_Store"] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help core. See the documentation for # a list of builtin themes. # html_theme = "alabaster" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ["_static"]
py
1a4ed1de9f0af44b8f43128aaec987710baebac5
import sys import warnings if not sys.warnoptions: warnings.simplefilter('ignore') import numpy as np from fuzzywuzzy import fuzz import json import tensorflow as tf from collections import Counter from ._utils._utils import load_graph, check_file from .num2word import to_cardinal from .texts._text_functions import ( normalizer_textcleaning, stemmer_str_idx, pad_sentence_batch, ) from .texts._tatabahasa import ( rules_normalizer, consonants, vowels, sounds, GO, PAD, EOS, UNK, ) from .spell import _return_possible, _edit_normalizer, _return_known from .topic_influencer import is_location from ._utils._paths import MALAY_TEXT, PATH_NORMALIZER, S3_PATH_NORMALIZER class _DEEP_NORMALIZER: def __init__(self, x, logits, sess, dicts): self._sess = sess self._x = x self._logits = logits self._dicts = dicts self._dicts['rev_dictionary_to'] = { int(k): v for k, v in self._dicts['rev_dictionary_to'].items() } def normalize(self, string): """ Normalize a string. Parameters ---------- string : str Returns ------- string: normalized string """ assert isinstance(string, str), 'input must be a string' token_strings = normalizer_textcleaning(string).split() idx = stemmer_str_idx(token_strings, self._dicts['dictionary_from']) predicted = self._sess.run( self._logits, feed_dict = {self._x: pad_sentence_batch(idx, PAD)[0]} ) results = [] for word in predicted: results.append( ''.join( [ self._dicts['rev_dictionary_to'][c] for c in word if c not in [GO, PAD, EOS, UNK] ] ) ) return ' '.join(results) class _SPELL_NORMALIZE: def __init__(self, corpus): self.corpus = Counter(corpus) def normalize(self, string, debug = True): """ Normalize a string Parameters ---------- string : str debug : bool, optional (default=True) If true, it will print character similarity distances. Returns ------- string: normalized string """ assert isinstance(string, str), 'input must be a string' result = [] for word in normalizer_textcleaning(string).split(): if word.istitle(): result.append(word) continue if word[0] == 'x' and len(word) > 1: result_string = 'tak ' word = word[1:] else: result_string = '' if word[-2:] == 'la': end_result_string = ' lah' word = word[:-2] elif word[-3:] == 'lah': end_result_string = ' lah' word = word[:-3] else: end_result_string = '' if word in sounds: result.append(result_string + sounds[word] + end_result_string) continue if word in rules_normalizer: result.append( result_string + rules_normalizer[word] + end_result_string ) continue if word in self.corpus: result.append(result_string + word + end_result_string) continue candidates = ( _return_known([word], self.corpus) or _return_known(_edit_normalizer(word), self.corpus) or _return_possible(word, self.corpus, _edit_normalizer) or [word] ) candidates = list(candidates) candidates = [ (candidate, is_location(candidate)) for candidate in list(candidates) ] if debug: print([(k, fuzz.ratio(string, k[0])) for k in candidates], '\n') strings = [fuzz.ratio(string, k[0]) for k in candidates] descending_sort = np.argsort(strings)[::-1] selected = None for index in descending_sort: if not candidates[index][1]: selected = candidates[index][0] break selected = ( candidates[descending_sort[0]][0] if not selected else selected ) result.append(result_string + selected + end_result_string) return ' '.join(result) class _FUZZY_NORMALIZE: def __init__(self, normalized, corpus): self.normalized = normalized self.corpus = corpus def normalize(self, string): """ Normalize a string. Parameters ---------- string : str Returns ------- string: normalized string """ assert isinstance(string, str), 'input must be a string' result = [] for word in normalizer_textcleaning(string).split(): if word.istitle(): result.append(word) continue if word[0] == 'x' and len(word) > 1: result_string = 'tak ' word = word[1:] else: result_string = '' if word[-2:] == 'la': end_result_string = ' lah' word = word[:-2] elif word[-3:] == 'lah': end_result_string = ' lah' word = word[:-3] else: end_result_string = '' if word in sounds: result.append(result_string + sounds[word] + end_result_string) continue if word in rules_normalizer: result.append( result_string + rules_normalizer[word] + end_result_string ) continue if word in self.corpus: result.append(result_string + word + end_result_string) continue results = [] for i in range(len(self.normalized)): results.append( np.mean([fuzz.ratio(word, k) for k in self.normalized[i]]) ) if len(np.where(np.array(results) > 70)[0]) < 1: result.append(result_string + word + end_result_string) continue result.append( result_string + self.corpus[np.argmax(results)] + end_result_string ) return ' '.join(result) def fuzzy(corpus): """ Train a fuzzy logic Normalizer Parameters ---------- corpus : list of strings. Prefer to feed with malaya.load_malay_dictionary() Returns ------- FUZZY_NORMALIZE: Trained malaya.normalizer._FUZZY_NORMALIZE class """ assert isinstance(corpus, list) and isinstance( corpus[0], str ), 'input must be list of strings' transform = [] for i in corpus: i = i.lower() result = [] result.append(i) result.append(''.join(char for char in i if char not in vowels)) if i[0] in consonants and i[-1] in consonants: result.append(i[0] + i[-1]) if i[-1] == 'a': result.append(i[:-1] + 'e') result.append(i + 'k') if i[1] in vowels and i[0] in consonants: result.append(i[0] + i[2:]) if i[-2] in vowels and i[-1] in consonants: result.append(i[:-2] + i[-1]) result.append(i[0] + i[-1]) if i[-2:] == 'ar': result.append(i[:-2] + 'o') if i[:2] == 'ha': result.append(i[1:]) transform.append(list(set(result))) return _FUZZY_NORMALIZE(transform, corpus) def spell(corpus): """ Train a Spelling Normalizer Parameters ---------- corpus : list of strings. Prefer to feed with malaya.load_malay_dictionary() Returns ------- SPELL_NORMALIZE: Trained malaya.normalizer._SPELL_NORMALIZE class """ assert isinstance(corpus, list) and isinstance( corpus[0], str ), 'input must be list of strings' return _SPELL_NORMALIZE(corpus) def basic(string): """ Use basic rules-based to normalize a string. Parameters ---------- string: str Returns ------- string: normalized string """ assert isinstance(string, str), 'input must be a string' result = [] for word in normalizer_textcleaning(string).split(): if word.istitle(): result.append(word) continue if word in sounds: result.append(sounds[word]) elif word[-1] == '2': result.append(word[:-1]) else: result.append(word) return ' '.join(result) def deep_model(): """ Load deep-learning model to normalize a string. This model totally more sucks than fuzzy based, Husein still need to read more. Returns ------- DEEP_NORMALIZER: malaya.normalizer._DEEP_NORMALIZER class """ check_file(PATH_NORMALIZER['deep'], S3_PATH_NORMALIZER['deep']) try: with open(PATH_NORMALIZER['deep']['setting'], 'r') as fopen: dic_normalizer = json.load(fopen) g = load_graph(PATH_NORMALIZER['deep']['model']) except: raise Exception( "model corrupted due to some reasons, please run malaya.clear_cache('normalizer') and try again" ) return _DEEP_NORMALIZER( g.get_tensor_by_name('import/Placeholder:0'), g.get_tensor_by_name('import/logits:0'), tf.InteractiveSession(graph = g), dic_normalizer, )
py
1a4ed26a600389e2f935507c614c690b2334b513
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright 2010 British Broadcasting Corporation and Kamaelia Contributors(1) # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://www.kamaelia.org/AUTHORS - please extend this file, # not this notice. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import Axon from Axon.AdaptiveCommsComponent import AdaptiveCommsComponent from Axon.Ipc import shutdownMicroprocess, producerFinished class undef(object): pass class DemuxRemuxTuple(AdaptiveCommsComponent): """\ # # FIXME: derived from the PAR component. # FIXME: This should really be a PAR component with a new policy. # FIXME: For the moment we'll leave it like this to see how this plays out. # PAR(inputpolicy=None, outputpolicy=None, *components) -> new PAR component Activates all the components contained inside in parallel (Hence the name - from Occam). Inputs to inboxes can be controlled by passing in a policy. The default policy is this:: messages to "control" are forwarded to all children if a control is a shutdownMicroprocess, shutdown when all children exit, exit. messages to "inbox" are forwarded to all components by default. See the module docs on writing a policy function. Outputs from all outboxes are sent to the graphline's corresponding outbox. At present supported outboxes replicated are: "outbox", and "signal". For more complex wiring/policies you probably ought to use a Graphline component. Keyword arguments: - policy -- policy function regarding input mapping. - components -- list of components to be activated. """ Inboxes = {"inbox":"", "control":""} Outboxes = {"outbox":"", "signal":"", "_co": "For passing data to subcomponents based on a policy (unusued at present)", "_cs": "For signaling to subcomponents shutdown", } policy = None def __init__(self, *components, **argv): """x.__init__(...) initializes x; see x.__class__.__doc__ for signature""" super(DemuxRemuxTuple,self).__init__(**argv) self.components = list(components) def main(self): """Main loop.""" link_to_component_control = {} noControlPassthru=True noSignalPassthru=True subcomponent_inboxes = {} subcomponent_controlboxes = {} i = 0 for c in self.components: subcomponent_inboxes[i] = self.addInbox("_subinbox_") subcomponent_controlboxes[i] = self.addInbox("_subcontrol_") self.link( (c, "outbox"), (self, subcomponent_inboxes[i]) ) self.link( (c, "signal"), (self, subcomponent_controlboxes[i])) i += 1 c.activate() self.addChildren(*self.components) yield 1 shutdown = False shutdownMessage = None box_values = dict( (x,undef) for x in subcomponent_inboxes) while not shutdown: # If all the children exit, then exit if self.childrenDone(): shutdown = True break # If we reach here there may be data in an inbox. # May, because a child terminating wakes us up as well. if self.policy == None: # Default policy: discard all messages sent to the main inbox for msg in self.Inbox("inbox"): i = 0 for c in self.components: L = self.link( (self, "_co"), (c, "inbox")) self.send( msg[i], "_co") self.unlink(thelinkage=L) i += 1 # Default policy, pass on all control messages to all sub components # Shutdown the PAR component if the message is a shutdownMicroprocess message for msg in self.Inbox("control"): for c in self.components: L = self.link( (self, "_cs"), (c, "control")) self.send( msg, "_cs") self.unlink(thelinkage=L) if isinstance(msg, shutdownMicroprocess) or (msg==shutdownMicroprocess): shutdown = True shutdownMessage = msg for boxkey in box_values: if box_values[boxkey] is undef: if self.dataReady(subcomponent_inboxes[boxkey]): message = self.recv(subcomponent_inboxes[boxkey]) box_values[boxkey] = message if len([x for x in box_values if box_values[x] is undef]) == 0: self.send( tuple([ box_values[x] for x in box_values ]), "outbox") box_values = dict( (x,undef) for x in subcomponent_inboxes) for component_name in subcomponent_controlboxes: if self.dataReady(subcomponent_controlboxes[component_name]): message = self.recv(subcomponent_controlboxes[component_name]) self.send(message, "signal") # If there's nothing to do, then sleep while not self.anyReady() and not shutdown and not self.childrenDone(): self.pause() yield 1 yield 1 for boxkey in box_values: if box_values[boxkey] is undef: if self.dataReady(subcomponent_inboxes[boxkey]): message = self.recv(subcomponent_inboxes[boxkey]) box_values[boxkey] = message if len([x for x in box_values if box_values[x] is undef]) == 0: self.send( tuple([ box_values[x] for x in box_values ]), "outbox") box_values = dict( (x,undef) for x in subcomponent_inboxes) if shutdownMessage: self.send(shutdownMessage, "signal") else: self.send(producerFinished(), "signal") for child in self.childComponents(): self.removeChild(child) # deregisters linkages for def childrenDone(self): """Unplugs any children that have terminated, and returns true if there are no running child components left (ie. their microproceses have finished) """ for child in self.childComponents(): if child._isStopped(): self.removeChild(child) # deregisters linkages for us return 0==len(self.childComponents()) if __name__ == "__main__": from Kamaelia.Chassis.Pipeline import Pipeline from Kamaelia.Util.DataSource import DataSource from Kamaelia.Util.Console import ConsoleEchoer from Kamaelia.Util.PureTransformer import PureTransformer Pipeline( DataSource([ (1,"one"), (2,"two"), (3,"three"), (4,"four"), (5,"five"), (6,"six"), ]), DemuxRemuxTuple( # Detuple PureTransformer(lambda x: x*x), # Process First item from tuple PureTransformer(lambda x: x+" "+x), # Process Second item from tuple ), # Retuple PureTransformer(lambda x: repr(x)+"\n"), ConsoleEchoer(), ).run()
py
1a4ed35bb7eab41085b23885a2410a3e81c9f86b
# -*- coding: utf-8 -*- # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Resource definitions for cloud platform apis.""" import enum BASE_URL = 'https://logging.googleapis.com/v2/' DOCS_URL = 'https://cloud.google.com/logging/docs/' class Collections(enum.Enum): """Collections for all supported apis.""" BILLINGACCOUNTS = ( 'billingAccounts', 'billingAccounts/{billingAccountsId}', {}, [u'billingAccountsId'], True ) BILLINGACCOUNTS_BUCKETS = ( 'billingAccounts.buckets', '{+name}', { '': 'billingAccounts/{billingAccountsId}/buckets/{bucketsId}', }, [u'name'], True ) BILLINGACCOUNTS_EXCLUSIONS = ( 'billingAccounts.exclusions', '{+name}', { '': 'billingAccounts/{billingAccountsId}/exclusions/{exclusionsId}', }, [u'name'], True ) BILLINGACCOUNTS_SINKS = ( 'billingAccounts.sinks', '{+sinkName}', { '': 'billingAccounts/{billingAccountsId}/sinks/{sinksId}', }, [u'sinkName'], True ) BUCKETS = ( 'buckets', '{+name}', { '': '{v2Id}/{v2Id1}/buckets/{bucketsId}', }, [u'name'], True ) EXCLUSIONS = ( 'exclusions', '{+name}', { '': '{v2Id}/{v2Id1}/exclusions/{exclusionsId}', }, [u'name'], True ) FOLDERS = ( 'folders', 'folders/{foldersId}', {}, [u'foldersId'], True ) FOLDERS_EXCLUSIONS = ( 'folders.exclusions', '{+name}', { '': 'folders/{foldersId}/exclusions/{exclusionsId}', }, [u'name'], True ) FOLDERS_LOCATIONS = ( 'folders.locations', 'folders/{foldersId}/locations/{locationsId}', {}, [u'foldersId', u'locationsId'], True ) FOLDERS_LOCATIONS_BUCKETS = ( 'folders.locations.buckets', '{+name}', { '': 'folders/{foldersId}/locations/{locationsId}/buckets/' '{bucketsId}', }, [u'name'], True ) FOLDERS_SINKS = ( 'folders.sinks', '{+sinkName}', { '': 'folders/{foldersId}/sinks/{sinksId}', }, [u'sinkName'], True ) ORGANIZATIONS = ( 'organizations', 'organizations/{organizationsId}', {}, [u'organizationsId'], True ) ORGANIZATIONS_EXCLUSIONS = ( 'organizations.exclusions', '{+name}', { '': 'organizations/{organizationsId}/exclusions/{exclusionsId}', }, [u'name'], True ) ORGANIZATIONS_LOCATIONS = ( 'organizations.locations', 'organizations/{organizationsId}/locations/{locationsId}', {}, [u'organizationsId', u'locationsId'], True ) ORGANIZATIONS_LOCATIONS_BUCKETS = ( 'organizations.locations.buckets', '{+name}', { '': 'organizations/{organizationsId}/locations/{locationsId}/' 'buckets/{bucketsId}', }, [u'name'], True ) ORGANIZATIONS_SINKS = ( 'organizations.sinks', '{+sinkName}', { '': 'organizations/{organizationsId}/sinks/{sinksId}', }, [u'sinkName'], True ) PROJECTS = ( 'projects', 'projects/{projectsId}', {}, [u'projectsId'], True ) PROJECTS_EXCLUSIONS = ( 'projects.exclusions', '{+name}', { '': 'projects/{projectsId}/exclusions/{exclusionsId}', }, [u'name'], True ) PROJECTS_LOCATIONS = ( 'projects.locations', 'projects/{projectsId}/locations/{locationsId}', {}, [u'projectsId', u'locationsId'], True ) PROJECTS_LOCATIONS_BUCKETS = ( 'projects.locations.buckets', '{+name}', { '': 'projects/{projectsId}/locations/{locationsId}/buckets/' '{bucketsId}', }, [u'name'], True ) PROJECTS_METRICS = ( 'projects.metrics', '{+metricName}', { '': 'projects/{projectsId}/metrics/{metricsId}', }, [u'metricName'], True ) PROJECTS_SINKS = ( 'projects.sinks', '{+sinkName}', { '': 'projects/{projectsId}/sinks/{sinksId}', }, [u'sinkName'], True ) SINKS = ( 'sinks', '{+sinkName}', { '': '{v2Id}/{v2Id1}/sinks/{sinksId}', }, [u'sinkName'], True ) def __init__(self, collection_name, path, flat_paths, params, enable_uri_parsing): self.collection_name = collection_name self.path = path self.flat_paths = flat_paths self.params = params self.enable_uri_parsing = enable_uri_parsing
py
1a4ed63d855ec2c8c71c57d4fef3d76d34e5e22b
# ======================================================================== # # Imports # # ======================================================================== import numpy as np # ======================================================================== # # Function definitions # # ======================================================================== # ======================================================================== def max_wave_speed(u): """Returns the maximum wave speed for advection""" return 1 # ======================================================================== def riemann_upwinding(ul, ur): """Returns the interface flux for the advection equation (simple upwinding)""" return ul # ======================================================================== def interior_flux(ug): """Returns the interior flux for the advection equation""" return ug # ======================================================================== def sensing(sensors, thresholds, solution): """A simple sensor which just calculates the difference between the left/right cell solutions for the advection equation. """ # left/right solution ul = solution.u[0, :-solution.N_F] ur = solution.u[0, solution.N_F:] # Calculate the sensor phi = np.fabs(ur - ul) PHI = 2 * phi / ((1 + phi) * (1 + phi)) # Find where the sensor exceeds the threshold value idx = np.array(np.where(PHI > thresholds[0])) sensors[idx] = 1 sensors[idx + 1] = 1
py
1a4ed729a48da3f98064a542254c4fb4a4f76dc4
#!/usr/bin/env python # -*- coding: utf-8 -*- '''Matching functions''' import numpy as np import numba from .exceptions import ParameterError from .utils import valid_intervals __all__ = ['match_intervals', 'match_events'] @numba.jit(nopython=True, cache=True) def __jaccard(int_a, int_b): # pragma: no cover '''Jaccard similarity between two intervals Parameters ---------- int_a, int_b : np.ndarrays, shape=(2,) Returns ------- Jaccard similarity between intervals ''' ends = [int_a[1], int_b[1]] if ends[1] < ends[0]: ends.reverse() starts = [int_a[0], int_b[0]] if starts[1] < starts[0]: starts.reverse() intersection = ends[0] - starts[1] if intersection < 0: intersection = 0. union = ends[1] - starts[0] if union > 0: return intersection / union return 0.0 @numba.jit(nopython=True, cache=True) def __match_interval_overlaps(query, intervals_to, candidates): # pragma: no cover '''Find the best Jaccard match from query to candidates''' best_score = -1 best_idx = -1 for idx in candidates: score = __jaccard(query, intervals_to[idx]) if score > best_score: best_score, best_idx = score, idx return best_idx @numba.jit(nopython=True, cache=True) def __match_intervals(intervals_from, intervals_to, strict=True): # pragma: no cover '''Numba-accelerated interval matching algorithm. ''' # sort index of the interval starts start_index = np.argsort(intervals_to[:, 0]) # sort index of the interval ends end_index = np.argsort(intervals_to[:, 1]) # and sorted values of starts start_sorted = intervals_to[start_index, 0] # and ends end_sorted = intervals_to[end_index, 1] search_ends = np.searchsorted(start_sorted, intervals_from[:, 1], side='right') search_starts = np.searchsorted(end_sorted, intervals_from[:, 0], side='left') output = np.empty(len(intervals_from), dtype=numba.uint32) for i in range(len(intervals_from)): query = intervals_from[i] # Find the intervals that start after our query ends after_query = search_ends[i] # And the intervals that end after our query begins before_query = search_starts[i] # Candidates for overlapping have to (end after we start) and (begin before we end) candidates = set(start_index[:after_query]) & set(end_index[before_query:]) # Proceed as before if len(candidates) > 0: output[i] = __match_interval_overlaps(query, intervals_to, candidates) elif strict: # Numba only lets us use compile-time constants in exception messages raise ParameterError else: # Find the closest interval # (start_index[after_query] - query[1]) is the distance to the next interval # (query[0] - end_index[before_query]) dist_before = np.inf dist_after = np.inf if search_starts[i] > 0: dist_before = query[0] - end_sorted[search_starts[i]-1] if search_ends[i] + 1 < len(intervals_to): dist_after = start_sorted[search_ends[i]+1] - query[1] if dist_before < dist_after: output[i] = end_index[search_starts[i]-1] else: output[i] = start_index[search_ends[i]+1] return output def match_intervals(intervals_from, intervals_to, strict=True): '''Match one set of time intervals to another. This can be useful for tasks such as mapping beat timings to segments. Each element `[a, b]` of `intervals_from` is matched to the element `[c, d]` of `intervals_to` which maximizes the Jaccard similarity between the intervals: `max(0, |min(b, d) - max(a, c)|) / |max(d, b) - min(a, c)|` In `strict=True` mode, if there is no interval with positive intersection with `[a,b]`, an exception is thrown. In `strict=False` mode, any interval `[a, b]` that has no intersection with any element of `intervals_to` is instead matched to the interval `[c, d]` which minimizes `min(|b - c|, |a - d|)` that is, the disjoint interval `[c, d]` with a boundary closest to `[a, b]`. .. note:: An element of `intervals_to` may be matched to multiple entries of `intervals_from`. Parameters ---------- intervals_from : np.ndarray [shape=(n, 2)] The time range for source intervals. The `i` th interval spans time `intervals_from[i, 0]` to `intervals_from[i, 1]`. `intervals_from[0, 0]` should be 0, `intervals_from[-1, 1]` should be the track duration. intervals_to : np.ndarray [shape=(m, 2)] Analogous to `intervals_from`. strict : bool If `True`, intervals can only match if they intersect. If `False`, disjoint intervals can match. Returns ------- interval_mapping : np.ndarray [shape=(n,)] For each interval in `intervals_from`, the corresponding interval in `intervals_to`. See Also -------- match_events Raises ------ ParameterError If either array of input intervals is not the correct shape If `strict=True` and some element of `intervals_from` is disjoint from every element of `intervals_to`. Examples -------- >>> ints_from = np.array([[3, 5], [1, 4], [4, 5]]) >>> ints_to = np.array([[0, 2], [1, 3], [4, 5], [6, 7]]) >>> librosa.util.match_intervals(ints_from, ints_to) array([2, 1, 2], dtype=uint32) >>> # [3, 5] => [4, 5] (ints_to[2]) >>> # [1, 4] => [1, 3] (ints_to[1]) >>> # [4, 5] => [4, 5] (ints_to[2]) The reverse matching of the above is not possible in `strict` mode because `[6, 7]` is disjoint from all intervals in `ints_from`. With `strict=False`, we get the following: >>> librosa.util.match_intervals(ints_to, ints_from, strict=False) array([1, 1, 2, 2], dtype=uint32) >>> # [0, 2] => [1, 4] (ints_from[1]) >>> # [1, 3] => [1, 4] (ints_from[1]) >>> # [4, 5] => [4, 5] (ints_from[2]) >>> # [6, 7] => [4, 5] (ints_from[2]) ''' if len(intervals_from) == 0 or len(intervals_to) == 0: raise ParameterError('Attempting to match empty interval list') # Verify that the input intervals has correct shape and size valid_intervals(intervals_from) valid_intervals(intervals_to) try: return __match_intervals(intervals_from, intervals_to, strict=strict) except ParameterError as exc: raise ParameterError('Unable to match intervals with strict={}'.format(strict)) from exc def match_events(events_from, events_to, left=True, right=True): '''Match one set of events to another. This is useful for tasks such as matching beats to the nearest detected onsets, or frame-aligned events to the nearest zero-crossing. .. note:: A target event may be matched to multiple source events. Examples -------- >>> # Sources are multiples of 7 >>> s_from = np.arange(0, 100, 7) >>> s_from array([ 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98]) >>> # Targets are multiples of 10 >>> s_to = np.arange(0, 100, 10) >>> s_to array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90]) >>> # Find the matching >>> idx = librosa.util.match_events(s_from, s_to) >>> idx array([0, 1, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 8, 9, 9]) >>> # Print each source value to its matching target >>> zip(s_from, s_to[idx]) [(0, 0), (7, 10), (14, 10), (21, 20), (28, 30), (35, 30), (42, 40), (49, 50), (56, 60), (63, 60), (70, 70), (77, 80), (84, 80), (91, 90), (98, 90)] Parameters ---------- events_from : ndarray [shape=(n,)] Array of events (eg, times, sample or frame indices) to match from. events_to : ndarray [shape=(m,)] Array of events (eg, times, sample or frame indices) to match against. left : bool right : bool If `False`, then matched events cannot be to the left (or right) of source events. Returns ------- event_mapping : np.ndarray [shape=(n,)] For each event in `events_from`, the corresponding event index in `events_to`. `event_mapping[i] == arg min |events_from[i] - events_to[:]|` See Also -------- match_intervals Raises ------ ParameterError If either array of input events is not the correct shape ''' if len(events_from) == 0 or len(events_to) == 0: raise ParameterError('Attempting to match empty event list') # If we can't match left or right, then only strict equivalence # counts as a match. if not (left or right) and not np.all(np.in1d(events_from, events_to)): raise ParameterError('Cannot match events with left=right=False ' 'and events_from is not contained ' 'in events_to') # If we can't match to the left, then there should be at least one # target event greater-equal to every source event if (not left) and max(events_to) < max(events_from): raise ParameterError('Cannot match events with left=False ' 'and max(events_to) < max(events_from)') # If we can't match to the right, then there should be at least one # target event less-equal to every source event if (not right) and min(events_to) > min(events_from): raise ParameterError('Cannot match events with right=False ' 'and min(events_to) > min(events_from)') # array of matched items output = np.empty_like(events_from, dtype=np.int) return __match_events_helper(output, events_from, events_to, left, right) @numba.jit(nopython=True, cache=True) def __match_events_helper(output, events_from, events_to, left=True, right=True): # pragma: no cover # mock dictionary for events from_idx = np.argsort(events_from) sorted_from = events_from[from_idx] to_idx = np.argsort(events_to) sorted_to = events_to[to_idx] # find the matching indices matching_indices = np.searchsorted(sorted_to, sorted_from) # iterate over indices in matching_indices for ind, middle_ind in enumerate(matching_indices): left_flag = False right_flag = False left_ind = -1 right_ind = len(matching_indices) left_diff = 0 right_diff = 0 mid_diff = 0 middle_ind = matching_indices[ind] sorted_from_num = sorted_from[ind] # Prevent oob from chosen index if middle_ind == len(sorted_to): middle_ind -= 1 # Permitted to look to the left if left and middle_ind > 0: left_ind = middle_ind - 1 left_flag = True # Permitted to look to right if right and middle_ind < len(sorted_to) - 1: right_ind = middle_ind + 1 right_flag = True mid_diff = abs(sorted_to[middle_ind] - sorted_from_num) if left and left_flag: left_diff = abs(sorted_to[left_ind] - sorted_from_num) if right and right_flag: right_diff = abs(sorted_to[right_ind] - sorted_from_num) if left_flag and (not right and (sorted_to[middle_ind] > sorted_from_num) or (not right_flag and left_diff < mid_diff) or (left_diff < right_diff and left_diff < mid_diff)): output[ind] = to_idx[left_ind] # Check if right should be chosen elif right_flag and (right_diff < mid_diff): output[ind] = to_idx[right_ind] # Selected index wins else: output[ind] = to_idx[middle_ind] # Undo sorting solutions = np.empty_like(output) solutions[from_idx] = output return solutions
py
1a4ed79045312329d9387b4dfb0873559da4e216
import sys if sys.version_info < (2, 7): # noqa import unittest2 as unittest else: import unittest from okonomiyaki.errors import OkonomiyakiError from okonomiyaki.platforms import EPDPlatform from okonomiyaki.versions import RuntimeVersion from ..setuptools_egg import SetuptoolsEggMetadata, parse_filename from .common import ( PIP_SETUPTOOLS_EGG, TRAITS_SETUPTOOLS_EGG, TRAITS_SETUPTOOLS_OSX_cp38_EGG, TRAITS_SETUPTOOLS_WIN_cp38_EGG, TRAITS_SETUPTOOLS_LINUX_cp38_EGG) class TestParseFilename(unittest.TestCase): def test_simple(self): # Given path = "nose-1.2.1-py2.6.egg" # When name, version, pyver, platform = parse_filename(path) # Then self.assertEqual(name, "nose") self.assertEqual(version, "1.2.1") self.assertEqual(pyver, "2.6") self.assertIsNone(platform) def test_simple_with_extension_osx(self): # Given path = "dc_analysis-1.0-py2.7-macosx-10.6-x86_64.egg" # When name, version, pyver, platform = parse_filename(path) # Then self.assertEqual(name, "dc_analysis") self.assertEqual(version, "1.0") self.assertEqual(pyver, "2.7") self.assertEqual(platform, "macosx-10.6-x86_64") def test_simple_with_extension(self): # Given path = "numpy-1.9.1-py2.6-win-amd64.egg" # When name, version, pyver, platform = parse_filename(path) # Then self.assertEqual(name, "numpy") self.assertEqual(version, "1.9.1") self.assertEqual(pyver, "2.6") self.assertEqual(platform, "win-amd64") def test_enthought_egg(self): # Given path = "nose-1.2.1-1.egg" # When/Then with self.assertRaises(OkonomiyakiError): parse_filename(path) class TestSetuptoolsEggMetadata(unittest.TestCase): def test_simple(self): # Given path = PIP_SETUPTOOLS_EGG # When metadata = SetuptoolsEggMetadata.from_egg(path) # Then self.assertEqual(metadata.name, "pip") self.assertEqual(metadata.version, "7.0.3") self.assertEqual(metadata.python_tag, "cp34") self.assertIsNone(metadata.abi_tag) self.assertIsNone(metadata.platform_tag) # When metadata = SetuptoolsEggMetadata.from_egg(path, abi_tag=None) # Then self.assertEqual(metadata.name, "pip") self.assertEqual(metadata.version, "7.0.3") self.assertEqual(metadata.python_tag, "cp34") self.assertIsNone(metadata.abi_tag) self.assertIsNone(metadata.platform_tag) # Given platform = EPDPlatform.from_epd_string("win-32") python_tag = "cp34" abi_tag = "cp34m" # When metadata = SetuptoolsEggMetadata.from_egg( path, platform, python_tag, abi_tag) # Then self.assertEqual(metadata.name, "pip") self.assertEqual(metadata.version, "7.0.3") self.assertEqual(metadata.python_tag, "cp34") self.assertEqual(metadata.abi_tag, "cp34m") self.assertEqual(metadata.platform_tag, "win32") def test_platform_specific(self): # Given path = TRAITS_SETUPTOOLS_EGG platform = EPDPlatform.from_epd_string("osx-64") # When metadata = SetuptoolsEggMetadata.from_egg(path, platform) # Then self.assertEqual(metadata.name, "traits") self.assertEqual(metadata.version, "4.6.0.dev235") self.assertEqual(metadata.python_tag, "cp27") self.assertEqual(metadata.abi_tag, "cp27m") self.assertEqual(metadata.platform_tag, "macosx_10_6_x86_64") # When/Then with self.assertRaises(OkonomiyakiError): SetuptoolsEggMetadata.from_egg(path) def test_macos_cp38_egg(self): # Given path = TRAITS_SETUPTOOLS_OSX_cp38_EGG python = RuntimeVersion.from_string('3.8.10') platform = EPDPlatform.from_epd_string("osx-64", python) # When metadata = SetuptoolsEggMetadata.from_egg(path, platform) # Then self.assertEqual(metadata.name, "traits") self.assertEqual(metadata.version, "6.3.0.dev1702") self.assertEqual(metadata.python_tag, "cp38") self.assertEqual(metadata.abi_tag, "cp38") self.assertEqual(metadata.platform_tag, "macosx_10_14_x86_64") # When/Then with self.assertRaises(OkonomiyakiError): SetuptoolsEggMetadata.from_egg(path) def test_linux_cp38_egg(self): # Given path = TRAITS_SETUPTOOLS_LINUX_cp38_EGG python = RuntimeVersion.from_string('3.8.10') platform = EPDPlatform.from_epd_string("rh7-64", python) # When metadata = SetuptoolsEggMetadata.from_egg(path, platform) # Then self.assertEqual(metadata.name, "traits") self.assertEqual(metadata.version, "6.3.0.dev1702") self.assertEqual(metadata.python_tag, "cp38") self.assertEqual(metadata.abi_tag, "cp38") self.assertEqual(metadata.platform_tag, "linux_x86_64") # When/Then with self.assertRaises(OkonomiyakiError): SetuptoolsEggMetadata.from_egg(path) def test_windows_cp38_egg(self): # Given path = TRAITS_SETUPTOOLS_WIN_cp38_EGG python = RuntimeVersion.from_string('3.8.10') platform = EPDPlatform.from_epd_string("win-64", python) # When metadata = SetuptoolsEggMetadata.from_egg(path, platform) # Then self.assertEqual(metadata.name, "traits") self.assertEqual(metadata.version, "6.3.0.dev1702") self.assertEqual(metadata.python_tag, "cp38") self.assertEqual(metadata.abi_tag, "cp38") self.assertEqual(metadata.platform_tag, "win_amd64") # When/Then with self.assertRaises(OkonomiyakiError): SetuptoolsEggMetadata.from_egg(path)
py
1a4ed79b379ac5fc511125dad6276a17c649c9b9
""" The multigrid module provides a framework for solving elliptic problems. A multigrid object is just a list of grids, from the finest mesh down (by factors of two) to a single interior zone (each grid has the same number of guardcells). The main multigrid class is setup to solve a constant-coefficient Helmholtz equation:: (alpha - beta L) phi = f where L is the Laplacian and alpha and beta are constants. If alpha = 0 and beta = -1, then this is the Poisson equation. We support Dirichlet or Neumann BCs, or a periodic domain. The general usage is as follows:: a = multigrid.CellCenterMG2d(nx, ny, verbose=1, alpha=alpha, beta=beta) this creates the multigrid object a, with a finest grid of nx by ny zones and the default boundary condition types. alpha and beta are the coefficients of the Helmholtz equation. Setting verbose = 1 causing debugging information to be output, so you can see the residual errors in each of the V-cycles. Initialization is done as:: a.init_zeros() this initializes the solution vector with zeros (this is not necessary if you just created the multigrid object, but it can be used to reset the solution between runs on the same object). Next:: a.init_RHS(zeros((nx, ny), numpy.float64)) this initializes the RHS on the finest grid to 0 (Laplace's equation). Any RHS can be set by passing through an array of (nx, ny) values here. Then to solve, you just do:: a.solve(rtol = 1.e-10) where rtol is the desired tolerance (residual norm / source norm) to access the final solution, use the get_solution method:: v = a.get_solution() For convenience, the grid information on the solution level is available as attributes to the class, a.ilo, a.ihi, a.jlo, a.jhi are the indices bounding the interior of the solution array (i.e. excluding the ghost cells). a.x and a.y are the coordinate arrays a.dx and a.dy are the grid spacings """ from __future__ import print_function import math import numpy as np import matplotlib.pyplot as plt import matplotlib import mesh.boundary as bnd import mesh.patch as patch from util import msg class CellCenterMG2d(object): """ The main multigrid class for cell-centered data. We require that nx = ny be a power of 2 and dx = dy, for simplicity """ def __init__(self, nx, ny, ng=1, xmin=0.0, xmax=1.0, ymin=0.0, ymax=1.0, xl_BC_type="dirichlet", xr_BC_type="dirichlet", yl_BC_type="dirichlet", yr_BC_type="dirichlet", xl_BC=None, xr_BC=None, yl_BC=None, yr_BC=None, alpha=0.0, beta=-1.0, nsmooth=10, nsmooth_bottom=50, verbose=0, aux_field=None, aux_bc=None, true_function=None, vis=0, vis_title=""): """ Create the CellCenterMG2d object. Note that this requires a grid to be a power of 2 in size and square. Parameters ---------- nx : int number of cells in x-direction ny : int number of cells in y-direction. xmin : float, optional minimum physical coordinate in x-direction xmax : float, optional maximum physical coordinate in x-direction ymin : float, optional minimum physical coordinate in y-direction ymax : float, optional maximum physical coordinate in y-direction xl_BC_type : {'neumann', 'dirichlet', 'periodic'}, optional boundary condition to enforce on lower x face xr_BC_type : {'neumann', 'dirichlet', 'periodic'}, optional boundary condition to enforce on upper x face yl_BC_type : {'neumann', 'dirichlet', 'periodic'}, optional boundary condition to enforce on lower y face yr_BC_type : {'neumann', 'dirichlet', 'periodic'}, optional boundary condition to enforce on upper y face xl_BC : function, optional function (of y) to call to get -x boundary values (homogeneous assumed otherwise) xr_BC : function, optional function (of y) to call to get +x boundary values (homogeneous assumed otherwise) yl_BC : function, optional function (of x) to call to get -y boundary values (homogeneous assumed otherwise) yr_BC : function, optional function (of x) to call to get +y boundary values (homogeneous assumed otherwise) alpha : float, optional coefficient in Helmholtz equation (alpha - beta L) phi = f beta : float, optional coefficient in Helmholtz equation (alpha - beta L) phi = f nsmooth : int, optional number of smoothing iterations to be done at each intermediate level in the V-cycle (up and down) nsmooth_bottom : int, optional number of smoothing iterations to be done during the bottom solve verbose : int, optional increase verbosity during the solve (for verbose=1) aux_field : list of str, optional extra fields to define and carry at each level. Useful for subclassing. aux_bc : list of BC objects, optional the boundary conditions corresponding to the aux fields true_function : function, optional a function (of x,y) that provides the exact solution to the elliptic problem we are solving. This is used only for visualization purposes vis : int, optional output a detailed visualization of every smoothing step all throughout the V-cycle (if vis=1) vis_title : string, optional a descriptive title to write on the visualization plots Returns ------- out: CellCenterMG2d object """ if nx != ny: raise ValueError("ERROR: multigrid currently requires nx = ny") self.nx = nx self.ny = ny self.ng = ng self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax if (xmax-xmin) != (ymax-ymin): raise ValueError("ERROR: multigrid currently requires a square domain") self.alpha = alpha self.beta = beta self.nsmooth = nsmooth self.nsmooth_bottom = nsmooth_bottom self.max_cycles = 100 self.verbose = verbose # for visualization purposes, we can set a function name that # provides the true solution to our elliptic problem. if true_function is not None: self.true_function = true_function # a small number used in computing the error, so we don't divide by 0 self.small = 1.e-16 # keep track of whether we've initialized the RHS self.initialized_rhs = 0 # assume that self.nx = 2^(nlevels-1) and that nx = ny # this defines nlevels such that we end exactly on a 2x2 grid self.nlevels = int(math.log(self.nx)/math.log(2.0)) # a multigrid object will be a list of grids self.grids = [] # create the grids. Here, self.grids[0] will be the coarsest # grid and self.grids[nlevel-1] will be the finest grid # we store the solution, v, the rhs, f. # create the boundary condition object bc = bnd.BC(xlb=xl_BC_type, xrb=xr_BC_type, ylb=yl_BC_type, yrb=yr_BC_type) nx_t = ny_t = 2 for i in range(self.nlevels): # create the grid my_grid = patch.Grid2d(nx_t, ny_t, ng=self.ng, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax) # add a CellCenterData2d object for this level to our list self.grids.append(patch.CellCenterData2d(my_grid, dtype=np.float64)) # create the phi BC object -- this only applies for the finest # level. On the coarser levels, phi represents the residual, # which has homogeneous BCs bc_p = bnd.BC(xlb=xl_BC_type, xrb=xr_BC_type, ylb=yl_BC_type, yrb=yr_BC_type, xl_func=xl_BC, xr_func=xr_BC, yl_func=yl_BC, yr_func=yr_BC, grid=my_grid) if i == self.nlevels-1: self.grids[i].register_var("v", bc_p) else: self.grids[i].register_var("v", bc) self.grids[i].register_var("f", bc) self.grids[i].register_var("r", bc) if aux_field is not None: for f, b in zip(aux_field, aux_bc): self.grids[i].register_var(f, b) self.grids[i].create() if self.verbose: print(self.grids[i]) nx_t = nx_t*2 ny_t = ny_t*2 # provide coordinate and indexing information for the solution mesh soln_grid = self.grids[self.nlevels-1].grid self.ilo = soln_grid.ilo self.ihi = soln_grid.ihi self.jlo = soln_grid.jlo self.jhi = soln_grid.jhi self.x = soln_grid.x self.dx = soln_grid.dx self.x2d = soln_grid.x2d self.y = soln_grid.y self.dy = soln_grid.dy # note, dy = dx is assumed self.y2d = soln_grid.y2d self.soln_grid = soln_grid # store the source norm self.source_norm = 0.0 # after solving, keep track of the number of cycles taken, the # relative error from the previous cycle, and the residual error # (normalized to the source norm) self.num_cycles = 0 self.residual_error = 1.e33 self.relative_error = 1.e33 # keep track of where we are in the V self.current_cycle = -1 self.current_level = -1 self.up_or_down = "" # for visualization -- what frame are we outputting? self.vis = vis self.vis_title = vis_title self.frame = 0 # these draw functions are for visualization purposes and are # not ordinarily used, except for plotting the progression of the # solution within the V def _draw_V(self): """ draw the V-cycle on our optional visualization """ xdown = np.linspace(0.0, 0.5, self.nlevels) xup = np.linspace(0.5, 1.0, self.nlevels) ydown = np.linspace(1.0, 0.0, self.nlevels) yup = np.linspace(0.0, 1.0, self.nlevels) plt.plot(xdown, ydown, lw=2, color="k") plt.plot(xup, yup, lw=2, color="k") plt.scatter(xdown, ydown, marker="o", color="k", s=40) plt.scatter(xup, yup, marker="o", color="k", s=40) if self.up_or_down == "down": plt.scatter(xdown[self.nlevels-self.current_level-1], ydown[self.nlevels-self.current_level-1], marker="o", color="r", zorder=100, s=38) else: plt.scatter(xup[self.current_level], yup[self.current_level], marker="o", color="r", zorder=100, s=38) plt.text(0.7, 0.1, "V-cycle %d" % (self.current_cycle)) plt.axis("off") def _draw_solution(self): """ plot the current solution on our optional visualization """ myg = self.grids[self.current_level].grid v = self.grids[self.current_level].get_var("v") cm = "viridis" plt.imshow(np.transpose(v[myg.ilo:myg.ihi+1, myg.jlo:myg.jhi+1]), interpolation="nearest", origin="lower", extent=[self.xmin, self.xmax, self.ymin, self.ymax], cmap=cm) #plt.xlabel("x") plt.ylabel("y") if self.current_level == self.nlevels-1: plt.title(r"solving $L\phi = f$") else: plt.title(r"solving $Le = r$") formatter = matplotlib.ticker.ScalarFormatter(useMathText=True) cb = plt.colorbar(format=formatter, shrink=0.5) cb.ax.yaxis.offsetText.set_fontsize("small") cl = plt.getp(cb.ax, 'ymajorticklabels') plt.setp(cl, fontsize="small") def _draw_main_solution(self): """ plot the solution at the finest level on our optional visualization """ myg = self.grids[self.nlevels-1].grid v = self.grids[self.nlevels-1].get_var("v") cm = "viridis" plt.imshow(np.transpose(v[myg.ilo:myg.ihi+1, myg.jlo:myg.jhi+1]), interpolation="nearest", origin="lower", extent=[self.xmin, self.xmax, self.ymin, self.ymax], cmap=cm) plt.xlabel("x") plt.ylabel("y") plt.title(r"current fine grid solution") formatter = matplotlib.ticker.ScalarFormatter(useMathText=True) cb = plt.colorbar(format=formatter, shrink=0.5) cb.ax.yaxis.offsetText.set_fontsize("small") cl = plt.getp(cb.ax, 'ymajorticklabels') plt.setp(cl, fontsize="small") def _draw_main_error(self): """ plot the error with respect to the true solution on our optional visualization """ myg = self.grids[self.nlevels-1].grid v = self.grids[self.nlevels-1].get_var("v") e = v - self.true_function(myg.x2d, myg.y2d) cmap = "viridis" plt.imshow(np.transpose(e[myg.ilo:myg.ihi+1, myg.jlo:myg.jhi+1]), interpolation="nearest", origin="lower", extent=[self.xmin, self.xmax, self.ymin, self.ymax], cmap=cmap) plt.xlabel("x") plt.ylabel("y") plt.title(r"current fine grid error") formatter = matplotlib.ticker.ScalarFormatter(useMathText=True) cb = plt.colorbar(format=formatter, shrink=0.5) cb.ax.yaxis.offsetText.set_fontsize("small") cl = plt.getp(cb.ax, 'ymajorticklabels') plt.setp(cl, fontsize="small") def grid_info(self, level, indent=0): """ Report simple grid information """ print("{}level: {}, grid: {} x {}".format( indent*" ", level, self.grids[level].grid.nx, self.grids[level].grid.ny)) def get_solution(self, grid=None): """ Return the solution after doing the MG solve If a grid object is passed in, then the solution is put on that grid -- not the passed in grid must have the same dx and dy Returns ------- out : ndarray """ v = self.grids[self.nlevels-1].get_var("v") if grid is None: return v.copy() else: myg = self.soln_grid assert grid.dx == myg.dx and grid.dy == myg.dy sol = grid.scratch_array() sol.v(buf=1)[:, :] = v.v(buf=1) return sol def get_solution_gradient(self, grid=None): """ Return the gradient of the solution after doing the MG solve. The x- and y-components are returned in separate arrays. If a grid object is passed in, then the gradient is computed on that grid. Note: the passed-in grid must have the same dx, dy Returns ------- out : ndarray, ndarray """ myg = self.soln_grid if grid is None: og = self.soln_grid else: og = grid assert og.dx == myg.dx and og.dy == myg.dy v = self.grids[self.nlevels-1].get_var("v") gx = og.scratch_array() gy = og.scratch_array() gx.v()[:, :] = 0.5*(v.ip(1) - v.ip(-1))/myg.dx gy.v()[:, :] = 0.5*(v.jp(1) - v.jp(-1))/myg.dy return gx, gy def get_solution_object(self): """ Return the full solution data object at the finest resolution after doing the MG solve Returns ------- out : CellCenterData2d object """ return self.grids[self.nlevels-1] def init_solution(self, data): """ Initialize the solution to the elliptic problem by passing in a value for all defined zones Parameters ---------- data : ndarray An array (of the same size as the finest MG level) with the values to initialize the solution to the elliptic problem. """ v = self.grids[self.nlevels-1].get_var("v") v[:, :] = data.copy() def init_zeros(self): """ Set the initial solution to zero """ v = self.grids[self.nlevels-1].get_var("v") v[:, :] = 0.0 def init_RHS(self, data): """ Initialize the right hand side, f, of the Helmholtz equation (alpha - beta L) phi = f Parameters ---------- data : ndarray An array (of the same size as the finest MG level) with the values to initialize the solution to the elliptic problem. """ f = self.grids[self.nlevels-1].get_var("f") f[:, :] = data.copy() # store the source norm self.source_norm = f.norm() if self.verbose: print("Source norm = ", self.source_norm) self.initialized_rhs = 1 def _compute_residual(self, level): """ compute the residual and store it in the r variable""" v = self.grids[level].get_var("v") f = self.grids[level].get_var("f") r = self.grids[level].get_var("r") myg = self.grids[level].grid # compute the residual # r = f - alpha phi + beta L phi r.v()[:, :] = f.v()[:, :] - self.alpha*v.v()[:, :] + \ self.beta*((v.ip(-1) + v.ip(1) - 2*v.v())/myg.dx**2 + (v.jp(-1) + v.jp(1) - 2*v.v())/myg.dy**2) def smooth(self, level, nsmooth): """ Use red-black Gauss-Seidel iterations to smooth the solution at a given level. This is used at each stage of the V-cycle (up and down) in the MG solution, but it can also be called directly to solve the elliptic problem (although it will take many more iterations). Parameters ---------- level : int The level in the MG hierarchy to smooth the solution nsmooth : int The number of r-b Gauss-Seidel smoothing iterations to perform """ v = self.grids[level].get_var("v") f = self.grids[level].get_var("f") myg = self.grids[level].grid self.grids[level].fill_BC("v") xcoeff = self.beta/myg.dx**2 ycoeff = self.beta/myg.dy**2 # do red-black G-S for i in range(nsmooth): # do the red black updating in four decoupled groups # # # | | | # --+-------+-------+-- # | | | # | 4 | 3 | # | | | # --+-------+-------+-- # | | | # jlo | 1 | 2 | # | | | # --+-------+-------+-- # | ilo | | # # groups 1 and 3 are done together, then we need to # fill ghost cells, and then groups 2 and 4 for n, (ix, iy) in enumerate([(0, 0), (1, 1), (1, 0), (0, 1)]): v.ip_jp(ix, iy, s=2)[:, :] = (f.ip_jp(ix, iy, s=2) + xcoeff*(v.ip_jp(1+ix, iy, s=2) + v.ip_jp(-1+ix, iy, s=2)) + ycoeff*(v.ip_jp(ix, 1+iy, s=2) + v.ip_jp(ix, -1+iy, s=2))) / \ (self.alpha + 2.0*xcoeff + 2.0*ycoeff) if n == 1 or n == 3: self.grids[level].fill_BC("v") if self.vis == 1: plt.clf() plt.subplot(221) self._draw_solution() plt.subplot(222) self._draw_V() plt.subplot(223) self._draw_main_solution() plt.subplot(224) self._draw_main_error() plt.suptitle(self.vis_title, fontsize=18) plt.pause(0.001) plt.draw() plt.savefig("mg_%4.4d.png" % (self.frame)) self.frame += 1 def solve(self, rtol=1.e-11): """ The main driver for the multigrid solution of the Helmholtz equation. This controls the V-cycles, smoothing at each step of the way and uses simple smoothing at the coarsest level to perform the bottom solve. Parameters ---------- rtol : float The relative tolerance (residual norm / source norm) to solve to. Note that if the source norm is 0 (e.g. the righthand side of our equation is 0), then we just use the norm of the residual. """ # start by making sure that we've initialized the RHS if not self.initialized_rhs: msg.fail("ERROR: RHS not initialized") if self.verbose: print("source norm = ", self.source_norm) old_phi = self.grids[self.nlevels-1].get_var("v").copy() residual_error = 1.e33 cycle = 1 # V-cycles until we achieve the L2 norm of the residual < rtol while residual_error > rtol and cycle <= self.max_cycles: self.current_cycle = cycle # zero out the solution on all but the finest grid for level in range(self.nlevels-1): self.grids[level].zero("v") if self.verbose: print("<<< beginning V-cycle (cycle {}) >>>\n".format(cycle)) # do V-cycles through the entire hierarchy level = self.nlevels-1 self.v_cycle(level) # compute the error with respect to the previous solution # this is for diagnostic purposes only -- it is not used to # determine convergence soln = self.grids[self.nlevels-1] diff = (soln.get_var("v") - old_phi)/(soln.get_var("v") + self.small) relative_error = soln.grid.norm(diff) old_phi = soln.get_var("v").copy() # compute the residual error, relative to the source norm self._compute_residual(self.nlevels-1) fp = self.grids[level] r = fp.get_var("r") if self.source_norm != 0.0: residual_error = r.norm()/self.source_norm else: residual_error = r.norm() if self.verbose: print("cycle {}: relative err = {}, residual err = {}\n".format( cycle, relative_error, residual_error)) cycle += 1 self.num_cycles = cycle-1 self.relative_error = relative_error self.residual_error = residual_error fp.fill_BC("v") def v_cycle(self, level): """ Perform a V-cycle for a single 2-level solve. This is applied recursively do V-cycle through the entire hierarchy. """ if level > 0: self.current_level = level self.up_or_down = "down" # pointers to the fine and coarse data fp = self.grids[level] cp = self.grids[level-1] if self.verbose: self._compute_residual(level) self.grid_info(level, indent=2) print(" before G-S, residual L2: {}".format(fp.get_var("r").norm())) # smooth on the current level self.smooth(level, self.nsmooth) # compute the residual self._compute_residual(level) if self.verbose: print(" after G-S, residual L2: {}\n".format(fp.get_var("r").norm())) # restrict the residual down to the RHS of the coarser level f_coarse = cp.get_var("f") f_coarse.v()[:, :] = fp.restrict("r").v() # solve the coarse problem self.v_cycle(level-1) # ascending part self.current_level = level self.up_or_down = "up" fp = self.grids[level] cp = self.grids[level-1] # prolong the error up from the coarse grid e = cp.prolong("v") # correct the solution on the current grid v = fp.get_var("v") v.v()[:, :] += e.v() fp.fill_BC("v") if self.verbose: self._compute_residual(level) self.grid_info(level, indent=2) print(" before G-S, residual L2: {}".format(fp.get_var("r").norm())) # smooth self.smooth(level, self.nsmooth) if self.verbose: self._compute_residual(level) print(" after G-S, residual L2: {}\n".format(fp.get_var("r").norm())) else: # bottom solve: solve the discrete coarse problem. We # could use any number of different matrix solvers here # (like CG), but since we are 2x2 by design at this point, # we will just smooth if self.verbose: print(" bottom solve:") self.current_level = level bp = self.grids[level] if self.verbose: self.grid_info(level, indent=2) print("") self.smooth(level, self.nsmooth_bottom) bp.fill_BC("v")
py
1a4ed9c8aabbb538b551075d31ee680d88543e08
#!/usr/bin/env python # encoding: utf-8 """ Run.py Created by Tomas Knapen on 2010-09-15. Copyright (c) 2010 Tomas Knapen. All rights reserved. """ import os, sys, datetime from subprocess import * #from volumesAndSurfaces import * from Tools.Sessions import * from Operators.BehaviorOperator import * class Run(object): def __init__(self, **kwargs ): #ID, condition, dataType, """ run takes an ID, condition, dataType, rawDataFilePath """ # integer that will tell the run what number it is in the session self.indexInSession = None self.behaviorFile = None self.eyeLinkFile = None self.trialList = [] for k,v in kwargs.items(): setattr(self, k, v) # here the object gets all the attributes listed in the arguments if not hasattr(self, 'condition'): self.condition = '' if hasattr(self, 'rawDataFilePath'): # datetime of this run is the creation time of the raw data file if os.path.isfile(self.rawDataFilePath) : self.dateTime = os.path.getctime(self.rawDataFilePath) else: print 'rawDataFilePath %s is not file.' % self.rawDataFilePath elif hasattr(self, 'behaviorFile'): # self.dateTime = os.path.getctime(self.behaviorFile) self.dateTime = datetime.date.today() elif hasattr(self, 'eyeFile'): self.dateTime = os.path.getctime(self.eyeFile) def addTrial(self, trial): """docstring for addTrial""" trial.indexInRun = trialList.len() self.trialList.append(trial)
py
1a4edae642e64a999cf0b57bcb9d020ba55f6942
__all__ = ['api_provider']
py
1a4edb056c0dd9361008a4f56de2045dbf75b3a8
#=============================================================================== # Copyright 2017-2019 Intel Corporation # All Rights Reserved. # # If this software was obtained under the Intel Simplified Software License, # the following terms apply: # # The source code, information and material ("Material") contained herein is # owned by Intel Corporation or its suppliers or licensors, and title to such # Material remains with Intel Corporation or its suppliers or licensors. The # Material contains proprietary information of Intel or its suppliers and # licensors. The Material is protected by worldwide copyright laws and treaty # provisions. No part of the Material may be used, copied, reproduced, # modified, published, uploaded, posted, transmitted, distributed or disclosed # in any way without Intel's prior express written permission. No license under # any patent, copyright or other intellectual property rights in the Material # is granted to or conferred upon you, either expressly, by implication, # inducement, estoppel or otherwise. Any license under such intellectual # property rights must be express and approved by Intel in writing. # # Unless otherwise agreed by Intel in writing, you may not remove or alter this # notice or any other notice embedded in Materials by Intel or Intel's # suppliers or licensors in any way. # # # If this software was obtained under the Apache License, Version 2.0 (the # "License"), the following terms apply: # # You may not use this file except in compliance with the License. You may # obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. #=============================================================================== # # Intel(R) Integrated Performance Primitives (Intel(R) IPP) Cryptography # import re import sys import os import hashlib Header = sys.argv[1] ## Intel(R) IPP Crypto dispatcher will be generated for fucntions in Header OutDir = sys.argv[2] ## Output folder for generated files cpulist = sys.argv[3] ## Actual CPU list: semicolon separated string cpulist = cpulist.split(';') headerID= False ## Header ID define to avoid multiple include like: #if !defined( __IPPCP_H__ ) from gen_disp_common import readNextFunction HDR= open( Header, 'r' ) h= HDR.readlines() HDR.close() ## keep filename only (incdir, Header)= os.path.split(Header) ## original header name to declare external functions as internal for dispatcher OrgH= Header isFunctionFound = True curLine = 0 FunName = "" FunArg = "" while (isFunctionFound == True): result = readNextFunction(h, curLine, headerID) curLine = result['curLine'] FunName = result['FunName'] FunArg = result['FunArg'] isFunctionFound = result['success'] if (isFunctionFound == True): ################################################## ## create dispatcher files: C file with inline asm ################################################## filename = "jmp_{}_{}".format(FunName, hashlib.sha512(FunName.encode('utf-8')).hexdigest()[:8]) DISP= open( os.sep.join([OutDir, filename + ".asm"]), 'w' ) for cpu in cpulist: DISP.write("EXTRN "+cpu+"_"+FunName+":PROC\n") DISP.write("EXTRN ippcpJumpIndexForMergedLibs:DWORD\n") DISP.write("EXTRN ippcpSafeInit:PROC\n\n") DISP.write("_DATA SEGMENT\n\n") DISP.write(" DQ in_"+FunName+"\n") DISP.write(FunName+"_arraddr") for cpu in cpulist: DISP.write(" DQ "+cpu+"_"+FunName+"\n") DISP.write(""" _DATA ENDS _TEXT SEGMENT in_{FunName} PROC PRIVATE call ippcpSafeInit ALIGN 16 {FunName} PROC PUBLIC movsxd rax, DWORD PTR ippcpJumpIndexForMergedLibs lea r10, {FunName}_arraddr jmp qword ptr [r10+rax*8] {FunName} ENDP in_{FunName} ENDP _TEXT ENDS END """.format(FunName=FunName)) DISP.close()
py
1a4edb646561f386ce950c81ba27f24781e0b631
"""Tests for certbot_dns_joker.dns_joker.""" import unittest try: import mock except ImportError: # pragma: no cover from unittest import mock # type: ignore from requests.exceptions import HTTPError import urllib.parse import requests import requests_mock from certbot.compat import os from certbot.errors import PluginError from certbot.plugins import dns_test_common from certbot.plugins.dns_test_common import DOMAIN from certbot.tests import util as test_util FAKE_USERNAME = 'fake_username' FAKE_PASSWORD = 'fake_password' MOCK_ENDPOINT = 'mock://endpoint' class AuthenticatorTest(test_util.TempDirTestCase, dns_test_common.BaseAuthenticatorTest): def setUp(self): super(AuthenticatorTest, self).setUp() from certbot_dns_joker.dns_joker import Authenticator path = os.path.join(self.tempdir, 'file.ini') dns_test_common.write({ # 'certbot_dns_joker:dns_joker_username': FAKE_USERNAME, # 'certbot_dns_joker:dns_joker_password': FAKE_PASSWORD, 'joker_username': FAKE_USERNAME, 'joker_password': FAKE_PASSWORD, }, path) self.config = mock.MagicMock(joker_credentials=path, joker_propagation_seconds=0) # don't wait during tests # self.auth = Authenticator(self.config, "certbot_dns_joker:dns_joker") self.auth = Authenticator(self.config, "joker") self.mock_client = mock.MagicMock() # _get_joker_client | pylint: disable=protected-access self.auth._get_joker_client = mock.MagicMock(return_value=self.mock_client) def test_perform(self): self.auth.perform([self.achall]) expected = [ mock.call.add_txt_record( DOMAIN, "_acme-challenge." + DOMAIN, mock.ANY ) ] self.assertEqual(expected, self.mock_client.mock_calls) def test_cleanup(self): # _attempt_cleanup | pylint: disable=protected-access self.auth._attempt_cleanup = True self.auth.cleanup([self.achall]) expected = [ mock.call.del_txt_record( DOMAIN, "_acme-challenge." + DOMAIN, mock.ANY ) ] self.assertEqual(expected, self.mock_client.mock_calls) class JokerClientTest(unittest.TestCase): record_name = "_acme-challenge." + DOMAIN record_content = "bar" record_ttl = 42 def setUp(self): from certbot_dns_joker.dns_joker import _JokerClient self.client = _JokerClient(FAKE_USERNAME, FAKE_PASSWORD, DOMAIN, self.record_ttl, endpoint=MOCK_ENDPOINT) self.adapter = requests_mock.Adapter() self.client.session.mount('mock://', self.adapter) def _register_response(self, response='good', subdomain=None, additional_matcher=None, **kwargs): def add_matcher(request): data = urllib.parse.parse_qs(request.text) add_result = True if additional_matcher is not None: add_result = additional_matcher(request) def submatch(label): if subdomain: print(f'checking label:{label} subdomain:{subdomain}') return len(label) > len(subdomain) and label[-len(subdomain)-1:] == '.' + subdomain else: return True # The error message is unhelpful (NoMockAddress) if this fails. return ( ("username" in data and data["username"] == [FAKE_USERNAME]) and ("password" in data and data["password"] == [FAKE_PASSWORD]) and ("zone" in data and data["zone"] == [DOMAIN]) and ("label" in data and submatch(data["label"][0])) and add_result ) self.adapter.register_uri( requests_mock.ANY, MOCK_ENDPOINT, text=response, status_code=200 if response == 'good' else 400, additional_matcher=add_matcher, **kwargs ) def test_add_txt_record(self): self._register_response() self.client.add_txt_record( DOMAIN, self.record_name, self.record_content ) def test_add_txt_record_fail_to_authenticate(self): self._register_response(response='badauth') with self.assertRaises(PluginError) as context: self.client.add_txt_record( DOMAIN, self.record_name, self.record_content ) def test_add_txt_record_fail_to_find_domain(self): self._register_response(response='nohost') with self.assertRaises(PluginError) as context: self.client.add_txt_record( DOMAIN, self.record_name, self.record_content ) def test_add_txt_record_subdomain(self): self._register_response(subdomain='sub') self.client.add_txt_record( 'sub.' + DOMAIN, 'challenge.sub.' + DOMAIN, self.record_content ) def test_del_txt_record(self): self._register_response() self.client.del_txt_record( DOMAIN, self.record_name, self.record_content ) if __name__ == "__main__": unittest.main() # pragma: no cover
py
1a4ede71baf968133b666ccc673058d011b2d2ff
# Ex046.2 """Make a program that shows on the screen a countdown to the fireworks burst, Going from 10 to 0 with a pause of 1 second between them""" from time import sleep import emoji for counting in range(10, 0 - 1, - 1): print(counting) sleep(1) print(emoji.emojize(":boom::boom::boom::boom::boom::boom:", use_aliases=True)) print('FIREWORKS!!!') print(emoji.emojize(":boom::boom::boom::boom::boom::boom:", use_aliases=True))
py
1a4edef99c70471e6812498ce687462a8bfbe0d9
""" Cisco Intersight Cisco Intersight is a management platform delivered as a service with embedded analytics for your Cisco and 3rd party IT infrastructure. This platform offers an intelligent level of management that enables IT organizations to analyze, simplify, and automate their environments in more advanced ways than the prior generations of tools. Cisco Intersight provides an integrated and intuitive management experience for resources in the traditional data center as well as at the edge. With flexible deployment options to address complex security needs, getting started with Intersight is quick and easy. Cisco Intersight has deep integration with Cisco UCS and HyperFlex systems allowing for remote deployment, configuration, and ongoing maintenance. The model-based deployment works for a single system in a remote location or hundreds of systems in a data center and enables rapid, standardized configuration and deployment. It also streamlines maintaining those systems whether you are working with small or very large configurations. The Intersight OpenAPI document defines the complete set of properties that are returned in the HTTP response. From that perspective, a client can expect that no additional properties are returned, unless these properties are explicitly defined in the OpenAPI document. However, when a client uses an older version of the Intersight OpenAPI document, the server may send additional properties because the software is more recent than the client. In that case, the client may receive properties that it does not know about. Some generated SDKs perform a strict validation of the HTTP response body against the OpenAPI document. # noqa: E501 The version of the OpenAPI document: 1.0.9-4950 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from intersight.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) def lazy_import(): from intersight.model.display_names import DisplayNames from intersight.model.mo_base_mo_relationship import MoBaseMoRelationship from intersight.model.mo_mo_ref import MoMoRef from intersight.model.mo_tag import MoTag from intersight.model.mo_version_context import MoVersionContext from intersight.model.organization_organization_relationship import OrganizationOrganizationRelationship from intersight.model.policy_abstract_config_profile_relationship import PolicyAbstractConfigProfileRelationship from intersight.model.storage_drive_group_relationship import StorageDriveGroupRelationship from intersight.model.storage_m2_virtual_drive_config import StorageM2VirtualDriveConfig from intersight.model.storage_r0_drive import StorageR0Drive from intersight.model.storage_storage_policy import StorageStoragePolicy globals()['DisplayNames'] = DisplayNames globals()['MoBaseMoRelationship'] = MoBaseMoRelationship globals()['MoMoRef'] = MoMoRef globals()['MoTag'] = MoTag globals()['MoVersionContext'] = MoVersionContext globals()['OrganizationOrganizationRelationship'] = OrganizationOrganizationRelationship globals()['PolicyAbstractConfigProfileRelationship'] = PolicyAbstractConfigProfileRelationship globals()['StorageDriveGroupRelationship'] = StorageDriveGroupRelationship globals()['StorageM2VirtualDriveConfig'] = StorageM2VirtualDriveConfig globals()['StorageR0Drive'] = StorageR0Drive globals()['StorageStoragePolicy'] = StorageStoragePolicy class StorageStoragePolicyRelationship(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('class_id',): { 'MO.MOREF': "mo.MoRef", }, ('unused_disks_state',): { 'NOCHANGE': "NoChange", 'UNCONFIGUREDGOOD': "UnconfiguredGood", 'JBOD': "Jbod", }, ('object_type',): { 'AAA.AUDITRECORD': "aaa.AuditRecord", 'AAA.RETENTIONCONFIG': "aaa.RetentionConfig", 'AAA.RETENTIONPOLICY': "aaa.RetentionPolicy", 'ACCESS.POLICY': "access.Policy", 'ADAPTER.CONFIGPOLICY': "adapter.ConfigPolicy", 'ADAPTER.EXTETHINTERFACE': "adapter.ExtEthInterface", 'ADAPTER.HOSTETHINTERFACE': "adapter.HostEthInterface", 'ADAPTER.HOSTFCINTERFACE': "adapter.HostFcInterface", 'ADAPTER.HOSTISCSIINTERFACE': "adapter.HostIscsiInterface", 'ADAPTER.UNIT': "adapter.Unit", 'ADAPTER.UNITEXPANDER': "adapter.UnitExpander", 'APPLIANCE.APPSTATUS': "appliance.AppStatus", 'APPLIANCE.AUTORMAPOLICY': "appliance.AutoRmaPolicy", 'APPLIANCE.BACKUP': "appliance.Backup", 'APPLIANCE.BACKUPPOLICY': "appliance.BackupPolicy", 'APPLIANCE.CERTIFICATESETTING': "appliance.CertificateSetting", 'APPLIANCE.DATAEXPORTPOLICY': "appliance.DataExportPolicy", 'APPLIANCE.DEVICECERTIFICATE': "appliance.DeviceCertificate", 'APPLIANCE.DEVICECLAIM': "appliance.DeviceClaim", 'APPLIANCE.DEVICEUPGRADEPOLICY': "appliance.DeviceUpgradePolicy", 'APPLIANCE.DIAGSETTING': "appliance.DiagSetting", 'APPLIANCE.EXTERNALSYSLOGSETTING': "appliance.ExternalSyslogSetting", 'APPLIANCE.FILEGATEWAY': "appliance.FileGateway", 'APPLIANCE.FILESYSTEMSTATUS': "appliance.FileSystemStatus", 'APPLIANCE.GROUPSTATUS': "appliance.GroupStatus", 'APPLIANCE.IMAGEBUNDLE': "appliance.ImageBundle", 'APPLIANCE.NODEINFO': "appliance.NodeInfo", 'APPLIANCE.NODESTATUS': "appliance.NodeStatus", 'APPLIANCE.RELEASENOTE': "appliance.ReleaseNote", 'APPLIANCE.REMOTEFILEIMPORT': "appliance.RemoteFileImport", 'APPLIANCE.RESTORE': "appliance.Restore", 'APPLIANCE.SETUPINFO': "appliance.SetupInfo", 'APPLIANCE.SYSTEMINFO': "appliance.SystemInfo", 'APPLIANCE.SYSTEMSTATUS': "appliance.SystemStatus", 'APPLIANCE.UPGRADE': "appliance.Upgrade", 'APPLIANCE.UPGRADEPOLICY': "appliance.UpgradePolicy", 'ASSET.CLUSTERMEMBER': "asset.ClusterMember", 'ASSET.DEPLOYMENT': "asset.Deployment", 'ASSET.DEPLOYMENTDEVICE': "asset.DeploymentDevice", 'ASSET.DEVICECLAIM': "asset.DeviceClaim", 'ASSET.DEVICECONFIGURATION': "asset.DeviceConfiguration", 'ASSET.DEVICECONNECTORMANAGER': "asset.DeviceConnectorManager", 'ASSET.DEVICECONTRACTINFORMATION': "asset.DeviceContractInformation", 'ASSET.DEVICECONTRACTNOTIFICATION': "asset.DeviceContractNotification", 'ASSET.DEVICEREGISTRATION': "asset.DeviceRegistration", 'ASSET.SUBSCRIPTION': "asset.Subscription", 'ASSET.SUBSCRIPTIONACCOUNT': "asset.SubscriptionAccount", 'ASSET.SUBSCRIPTIONDEVICECONTRACTINFORMATION': "asset.SubscriptionDeviceContractInformation", 'ASSET.TARGET': "asset.Target", 'BIOS.BOOTDEVICE': "bios.BootDevice", 'BIOS.BOOTMODE': "bios.BootMode", 'BIOS.POLICY': "bios.Policy", 'BIOS.SYSTEMBOOTORDER': "bios.SystemBootOrder", 'BIOS.TOKENSETTINGS': "bios.TokenSettings", 'BIOS.UNIT': "bios.Unit", 'BIOS.VFSELECTMEMORYRASCONFIGURATION': "bios.VfSelectMemoryRasConfiguration", 'BOOT.CDDDEVICE': "boot.CddDevice", 'BOOT.DEVICEBOOTMODE': "boot.DeviceBootMode", 'BOOT.DEVICEBOOTSECURITY': "boot.DeviceBootSecurity", 'BOOT.HDDDEVICE': "boot.HddDevice", 'BOOT.ISCSIDEVICE': "boot.IscsiDevice", 'BOOT.NVMEDEVICE': "boot.NvmeDevice", 'BOOT.PCHSTORAGEDEVICE': "boot.PchStorageDevice", 'BOOT.PRECISIONPOLICY': "boot.PrecisionPolicy", 'BOOT.PXEDEVICE': "boot.PxeDevice", 'BOOT.SANDEVICE': "boot.SanDevice", 'BOOT.SDDEVICE': "boot.SdDevice", 'BOOT.UEFISHELLDEVICE': "boot.UefiShellDevice", 'BOOT.USBDEVICE': "boot.UsbDevice", 'BOOT.VMEDIADEVICE': "boot.VmediaDevice", 'BULK.EXPORT': "bulk.Export", 'BULK.EXPORTEDITEM': "bulk.ExportedItem", 'BULK.MOCLONER': "bulk.MoCloner", 'BULK.MOMERGER': "bulk.MoMerger", 'BULK.REQUEST': "bulk.Request", 'BULK.SUBREQUESTOBJ': "bulk.SubRequestObj", 'CAPABILITY.ADAPTERUNITDESCRIPTOR': "capability.AdapterUnitDescriptor", 'CAPABILITY.CATALOG': "capability.Catalog", 'CAPABILITY.CHASSISDESCRIPTOR': "capability.ChassisDescriptor", 'CAPABILITY.CHASSISMANUFACTURINGDEF': "capability.ChassisManufacturingDef", 'CAPABILITY.CIMCFIRMWAREDESCRIPTOR': "capability.CimcFirmwareDescriptor", 'CAPABILITY.EQUIPMENTPHYSICALDEF': "capability.EquipmentPhysicalDef", 'CAPABILITY.EQUIPMENTSLOTARRAY': "capability.EquipmentSlotArray", 'CAPABILITY.FANMODULEDESCRIPTOR': "capability.FanModuleDescriptor", 'CAPABILITY.FANMODULEMANUFACTURINGDEF': "capability.FanModuleManufacturingDef", 'CAPABILITY.IOCARDCAPABILITYDEF': "capability.IoCardCapabilityDef", 'CAPABILITY.IOCARDDESCRIPTOR': "capability.IoCardDescriptor", 'CAPABILITY.IOCARDMANUFACTURINGDEF': "capability.IoCardManufacturingDef", 'CAPABILITY.PORTGROUPAGGREGATIONDEF': "capability.PortGroupAggregationDef", 'CAPABILITY.PSUDESCRIPTOR': "capability.PsuDescriptor", 'CAPABILITY.PSUMANUFACTURINGDEF': "capability.PsuManufacturingDef", 'CAPABILITY.SERVERMODELSCAPABILITYDEF': "capability.ServerModelsCapabilityDef", 'CAPABILITY.SERVERSCHEMADESCRIPTOR': "capability.ServerSchemaDescriptor", 'CAPABILITY.SIOCMODULECAPABILITYDEF': "capability.SiocModuleCapabilityDef", 'CAPABILITY.SIOCMODULEDESCRIPTOR': "capability.SiocModuleDescriptor", 'CAPABILITY.SIOCMODULEMANUFACTURINGDEF': "capability.SiocModuleManufacturingDef", 'CAPABILITY.SWITCHCAPABILITY': "capability.SwitchCapability", 'CAPABILITY.SWITCHDESCRIPTOR': "capability.SwitchDescriptor", 'CAPABILITY.SWITCHMANUFACTURINGDEF': "capability.SwitchManufacturingDef", 'CERTIFICATEMANAGEMENT.POLICY': "certificatemanagement.Policy", 'CHASSIS.CONFIGCHANGEDETAIL': "chassis.ConfigChangeDetail", 'CHASSIS.CONFIGIMPORT': "chassis.ConfigImport", 'CHASSIS.CONFIGRESULT': "chassis.ConfigResult", 'CHASSIS.CONFIGRESULTENTRY': "chassis.ConfigResultEntry", 'CHASSIS.IOMPROFILE': "chassis.IomProfile", 'CHASSIS.PROFILE': "chassis.Profile", 'CLOUD.AWSBILLINGUNIT': "cloud.AwsBillingUnit", 'CLOUD.AWSKEYPAIR': "cloud.AwsKeyPair", 'CLOUD.AWSNETWORKINTERFACE': "cloud.AwsNetworkInterface", 'CLOUD.AWSORGANIZATIONALUNIT': "cloud.AwsOrganizationalUnit", 'CLOUD.AWSSECURITYGROUP': "cloud.AwsSecurityGroup", 'CLOUD.AWSSUBNET': "cloud.AwsSubnet", 'CLOUD.AWSVIRTUALMACHINE': "cloud.AwsVirtualMachine", 'CLOUD.AWSVOLUME': "cloud.AwsVolume", 'CLOUD.AWSVPC': "cloud.AwsVpc", 'CLOUD.COLLECTINVENTORY': "cloud.CollectInventory", 'CLOUD.REGIONS': "cloud.Regions", 'CLOUD.SKUCONTAINERTYPE': "cloud.SkuContainerType", 'CLOUD.SKUDATABASETYPE': "cloud.SkuDatabaseType", 'CLOUD.SKUINSTANCETYPE': "cloud.SkuInstanceType", 'CLOUD.SKUNETWORKTYPE': "cloud.SkuNetworkType", 'CLOUD.SKUREGIONRATECARDS': "cloud.SkuRegionRateCards", 'CLOUD.SKUVOLUMETYPE': "cloud.SkuVolumeType", 'CLOUD.TFCAGENTPOOL': "cloud.TfcAgentpool", 'CLOUD.TFCORGANIZATION': "cloud.TfcOrganization", 'CLOUD.TFCWORKSPACE': "cloud.TfcWorkspace", 'COMM.HTTPPROXYPOLICY': "comm.HttpProxyPolicy", 'COMPUTE.BIOSPOSTPOLICY': "compute.BiosPostPolicy", 'COMPUTE.BLADE': "compute.Blade", 'COMPUTE.BLADEIDENTITY': "compute.BladeIdentity", 'COMPUTE.BOARD': "compute.Board", 'COMPUTE.MAPPING': "compute.Mapping", 'COMPUTE.PHYSICALSUMMARY': "compute.PhysicalSummary", 'COMPUTE.RACKUNIT': "compute.RackUnit", 'COMPUTE.RACKUNITIDENTITY': "compute.RackUnitIdentity", 'COMPUTE.SERVERPOWERPOLICY': "compute.ServerPowerPolicy", 'COMPUTE.SERVERSETTING': "compute.ServerSetting", 'COMPUTE.VMEDIA': "compute.Vmedia", 'COND.ALARM': "cond.Alarm", 'COND.ALARMAGGREGATION': "cond.AlarmAggregation", 'COND.HCLSTATUS': "cond.HclStatus", 'COND.HCLSTATUSDETAIL': "cond.HclStatusDetail", 'COND.HCLSTATUSJOB': "cond.HclStatusJob", 'CONNECTORPACK.CONNECTORPACKUPGRADE': "connectorpack.ConnectorPackUpgrade", 'CONNECTORPACK.UPGRADEIMPACT': "connectorpack.UpgradeImpact", 'CONVERGEDINFRA.HEALTHCHECKDEFINITION': "convergedinfra.HealthCheckDefinition", 'CONVERGEDINFRA.HEALTHCHECKEXECUTION': "convergedinfra.HealthCheckExecution", 'CONVERGEDINFRA.POD': "convergedinfra.Pod", 'CRD.CUSTOMRESOURCE': "crd.CustomResource", 'DEVICECONNECTOR.POLICY': "deviceconnector.Policy", 'EQUIPMENT.CHASSIS': "equipment.Chassis", 'EQUIPMENT.CHASSISIDENTITY': "equipment.ChassisIdentity", 'EQUIPMENT.CHASSISOPERATION': "equipment.ChassisOperation", 'EQUIPMENT.DEVICESUMMARY': "equipment.DeviceSummary", 'EQUIPMENT.EXPANDERMODULE': "equipment.ExpanderModule", 'EQUIPMENT.FAN': "equipment.Fan", 'EQUIPMENT.FANCONTROL': "equipment.FanControl", 'EQUIPMENT.FANMODULE': "equipment.FanModule", 'EQUIPMENT.FEX': "equipment.Fex", 'EQUIPMENT.FEXIDENTITY': "equipment.FexIdentity", 'EQUIPMENT.FEXOPERATION': "equipment.FexOperation", 'EQUIPMENT.FRU': "equipment.Fru", 'EQUIPMENT.IDENTITYSUMMARY': "equipment.IdentitySummary", 'EQUIPMENT.IOCARD': "equipment.IoCard", 'EQUIPMENT.IOCARDOPERATION': "equipment.IoCardOperation", 'EQUIPMENT.IOEXPANDER': "equipment.IoExpander", 'EQUIPMENT.LOCATORLED': "equipment.LocatorLed", 'EQUIPMENT.PSU': "equipment.Psu", 'EQUIPMENT.PSUCONTROL': "equipment.PsuControl", 'EQUIPMENT.RACKENCLOSURE': "equipment.RackEnclosure", 'EQUIPMENT.RACKENCLOSURESLOT': "equipment.RackEnclosureSlot", 'EQUIPMENT.SHAREDIOMODULE': "equipment.SharedIoModule", 'EQUIPMENT.SWITCHCARD': "equipment.SwitchCard", 'EQUIPMENT.SYSTEMIOCONTROLLER': "equipment.SystemIoController", 'EQUIPMENT.TPM': "equipment.Tpm", 'EQUIPMENT.TRANSCEIVER': "equipment.Transceiver", 'ETHER.HOSTPORT': "ether.HostPort", 'ETHER.NETWORKPORT': "ether.NetworkPort", 'ETHER.PHYSICALPORT': "ether.PhysicalPort", 'ETHER.PORTCHANNEL': "ether.PortChannel", 'EXTERNALSITE.AUTHORIZATION': "externalsite.Authorization", 'FABRIC.APPLIANCEPCROLE': "fabric.AppliancePcRole", 'FABRIC.APPLIANCEROLE': "fabric.ApplianceRole", 'FABRIC.CONFIGCHANGEDETAIL': "fabric.ConfigChangeDetail", 'FABRIC.CONFIGRESULT': "fabric.ConfigResult", 'FABRIC.CONFIGRESULTENTRY': "fabric.ConfigResultEntry", 'FABRIC.ELEMENTIDENTITY': "fabric.ElementIdentity", 'FABRIC.ESTIMATEIMPACT': "fabric.EstimateImpact", 'FABRIC.ETHNETWORKCONTROLPOLICY': "fabric.EthNetworkControlPolicy", 'FABRIC.ETHNETWORKGROUPPOLICY': "fabric.EthNetworkGroupPolicy", 'FABRIC.ETHNETWORKPOLICY': "fabric.EthNetworkPolicy", 'FABRIC.FCNETWORKPOLICY': "fabric.FcNetworkPolicy", 'FABRIC.FCSTORAGEROLE': "fabric.FcStorageRole", 'FABRIC.FCUPLINKPCROLE': "fabric.FcUplinkPcRole", 'FABRIC.FCUPLINKROLE': "fabric.FcUplinkRole", 'FABRIC.FCOEUPLINKPCROLE': "fabric.FcoeUplinkPcRole", 'FABRIC.FCOEUPLINKROLE': "fabric.FcoeUplinkRole", 'FABRIC.FLOWCONTROLPOLICY': "fabric.FlowControlPolicy", 'FABRIC.LINKAGGREGATIONPOLICY': "fabric.LinkAggregationPolicy", 'FABRIC.LINKCONTROLPOLICY': "fabric.LinkControlPolicy", 'FABRIC.MULTICASTPOLICY': "fabric.MulticastPolicy", 'FABRIC.PCMEMBER': "fabric.PcMember", 'FABRIC.PCOPERATION': "fabric.PcOperation", 'FABRIC.PORTMODE': "fabric.PortMode", 'FABRIC.PORTOPERATION': "fabric.PortOperation", 'FABRIC.PORTPOLICY': "fabric.PortPolicy", 'FABRIC.SERVERROLE': "fabric.ServerRole", 'FABRIC.SWITCHCLUSTERPROFILE': "fabric.SwitchClusterProfile", 'FABRIC.SWITCHCONTROLPOLICY': "fabric.SwitchControlPolicy", 'FABRIC.SWITCHPROFILE': "fabric.SwitchProfile", 'FABRIC.SYSTEMQOSPOLICY': "fabric.SystemQosPolicy", 'FABRIC.UPLINKPCROLE': "fabric.UplinkPcRole", 'FABRIC.UPLINKROLE': "fabric.UplinkRole", 'FABRIC.VLAN': "fabric.Vlan", 'FABRIC.VSAN': "fabric.Vsan", 'FAULT.INSTANCE': "fault.Instance", 'FC.PHYSICALPORT': "fc.PhysicalPort", 'FC.PORTCHANNEL': "fc.PortChannel", 'FCPOOL.FCBLOCK': "fcpool.FcBlock", 'FCPOOL.LEASE': "fcpool.Lease", 'FCPOOL.POOL': "fcpool.Pool", 'FCPOOL.POOLMEMBER': "fcpool.PoolMember", 'FCPOOL.UNIVERSE': "fcpool.Universe", 'FEEDBACK.FEEDBACKPOST': "feedback.FeedbackPost", 'FIRMWARE.BIOSDESCRIPTOR': "firmware.BiosDescriptor", 'FIRMWARE.BOARDCONTROLLERDESCRIPTOR': "firmware.BoardControllerDescriptor", 'FIRMWARE.CHASSISUPGRADE': "firmware.ChassisUpgrade", 'FIRMWARE.CIMCDESCRIPTOR': "firmware.CimcDescriptor", 'FIRMWARE.DIMMDESCRIPTOR': "firmware.DimmDescriptor", 'FIRMWARE.DISTRIBUTABLE': "firmware.Distributable", 'FIRMWARE.DISTRIBUTABLEMETA': "firmware.DistributableMeta", 'FIRMWARE.DRIVEDESCRIPTOR': "firmware.DriveDescriptor", 'FIRMWARE.DRIVERDISTRIBUTABLE': "firmware.DriverDistributable", 'FIRMWARE.EULA': "firmware.Eula", 'FIRMWARE.FIRMWARESUMMARY': "firmware.FirmwareSummary", 'FIRMWARE.GPUDESCRIPTOR': "firmware.GpuDescriptor", 'FIRMWARE.HBADESCRIPTOR': "firmware.HbaDescriptor", 'FIRMWARE.IOMDESCRIPTOR': "firmware.IomDescriptor", 'FIRMWARE.MSWITCHDESCRIPTOR': "firmware.MswitchDescriptor", 'FIRMWARE.NXOSDESCRIPTOR': "firmware.NxosDescriptor", 'FIRMWARE.PCIEDESCRIPTOR': "firmware.PcieDescriptor", 'FIRMWARE.PSUDESCRIPTOR': "firmware.PsuDescriptor", 'FIRMWARE.RUNNINGFIRMWARE': "firmware.RunningFirmware", 'FIRMWARE.SASEXPANDERDESCRIPTOR': "firmware.SasExpanderDescriptor", 'FIRMWARE.SERVERCONFIGURATIONUTILITYDISTRIBUTABLE': "firmware.ServerConfigurationUtilityDistributable", 'FIRMWARE.STORAGECONTROLLERDESCRIPTOR': "firmware.StorageControllerDescriptor", 'FIRMWARE.SWITCHUPGRADE': "firmware.SwitchUpgrade", 'FIRMWARE.UNSUPPORTEDVERSIONUPGRADE': "firmware.UnsupportedVersionUpgrade", 'FIRMWARE.UPGRADE': "firmware.Upgrade", 'FIRMWARE.UPGRADEIMPACT': "firmware.UpgradeImpact", 'FIRMWARE.UPGRADEIMPACTSTATUS': "firmware.UpgradeImpactStatus", 'FIRMWARE.UPGRADESTATUS': "firmware.UpgradeStatus", 'FORECAST.CATALOG': "forecast.Catalog", 'FORECAST.DEFINITION': "forecast.Definition", 'FORECAST.INSTANCE': "forecast.Instance", 'GRAPHICS.CARD': "graphics.Card", 'GRAPHICS.CONTROLLER': "graphics.Controller", 'HCL.COMPATIBILITYSTATUS': "hcl.CompatibilityStatus", 'HCL.DRIVERIMAGE': "hcl.DriverImage", 'HCL.EXEMPTEDCATALOG': "hcl.ExemptedCatalog", 'HCL.HYPERFLEXSOFTWARECOMPATIBILITYINFO': "hcl.HyperflexSoftwareCompatibilityInfo", 'HCL.OPERATINGSYSTEM': "hcl.OperatingSystem", 'HCL.OPERATINGSYSTEMVENDOR': "hcl.OperatingSystemVendor", 'HCL.SUPPORTEDDRIVERNAME': "hcl.SupportedDriverName", 'HYPERFLEX.ALARM': "hyperflex.Alarm", 'HYPERFLEX.APPCATALOG': "hyperflex.AppCatalog", 'HYPERFLEX.AUTOSUPPORTPOLICY': "hyperflex.AutoSupportPolicy", 'HYPERFLEX.BACKUPCLUSTER': "hyperflex.BackupCluster", 'HYPERFLEX.CAPABILITYINFO': "hyperflex.CapabilityInfo", 'HYPERFLEX.CLUSTER': "hyperflex.Cluster", 'HYPERFLEX.CLUSTERBACKUPPOLICY': "hyperflex.ClusterBackupPolicy", 'HYPERFLEX.CLUSTERBACKUPPOLICYDEPLOYMENT': "hyperflex.ClusterBackupPolicyDeployment", 'HYPERFLEX.CLUSTERBACKUPPOLICYINVENTORY': "hyperflex.ClusterBackupPolicyInventory", 'HYPERFLEX.CLUSTERHEALTHCHECKEXECUTIONSNAPSHOT': "hyperflex.ClusterHealthCheckExecutionSnapshot", 'HYPERFLEX.CLUSTERNETWORKPOLICY': "hyperflex.ClusterNetworkPolicy", 'HYPERFLEX.CLUSTERPROFILE': "hyperflex.ClusterProfile", 'HYPERFLEX.CLUSTERREPLICATIONNETWORKPOLICY': "hyperflex.ClusterReplicationNetworkPolicy", 'HYPERFLEX.CLUSTERREPLICATIONNETWORKPOLICYDEPLOYMENT': "hyperflex.ClusterReplicationNetworkPolicyDeployment", 'HYPERFLEX.CLUSTERSTORAGEPOLICY': "hyperflex.ClusterStoragePolicy", 'HYPERFLEX.CONFIGRESULT': "hyperflex.ConfigResult", 'HYPERFLEX.CONFIGRESULTENTRY': "hyperflex.ConfigResultEntry", 'HYPERFLEX.DATAPROTECTIONPEER': "hyperflex.DataProtectionPeer", 'HYPERFLEX.DATASTORESTATISTIC': "hyperflex.DatastoreStatistic", 'HYPERFLEX.DEVICEPACKAGEDOWNLOADSTATE': "hyperflex.DevicePackageDownloadState", 'HYPERFLEX.DRIVE': "hyperflex.Drive", 'HYPERFLEX.EXTFCSTORAGEPOLICY': "hyperflex.ExtFcStoragePolicy", 'HYPERFLEX.EXTISCSISTORAGEPOLICY': "hyperflex.ExtIscsiStoragePolicy", 'HYPERFLEX.FEATURELIMITEXTERNAL': "hyperflex.FeatureLimitExternal", 'HYPERFLEX.FEATURELIMITINTERNAL': "hyperflex.FeatureLimitInternal", 'HYPERFLEX.HEALTH': "hyperflex.Health", 'HYPERFLEX.HEALTHCHECKDEFINITION': "hyperflex.HealthCheckDefinition", 'HYPERFLEX.HEALTHCHECKEXECUTION': "hyperflex.HealthCheckExecution", 'HYPERFLEX.HEALTHCHECKEXECUTIONSNAPSHOT': "hyperflex.HealthCheckExecutionSnapshot", 'HYPERFLEX.HEALTHCHECKPACKAGECHECKSUM': "hyperflex.HealthCheckPackageChecksum", 'HYPERFLEX.HXDPVERSION': "hyperflex.HxdpVersion", 'HYPERFLEX.LICENSE': "hyperflex.License", 'HYPERFLEX.LOCALCREDENTIALPOLICY': "hyperflex.LocalCredentialPolicy", 'HYPERFLEX.NODE': "hyperflex.Node", 'HYPERFLEX.NODECONFIGPOLICY': "hyperflex.NodeConfigPolicy", 'HYPERFLEX.NODEPROFILE': "hyperflex.NodeProfile", 'HYPERFLEX.PROTECTEDCLUSTER': "hyperflex.ProtectedCluster", 'HYPERFLEX.PROXYSETTINGPOLICY': "hyperflex.ProxySettingPolicy", 'HYPERFLEX.SERVERFIRMWAREVERSION': "hyperflex.ServerFirmwareVersion", 'HYPERFLEX.SERVERFIRMWAREVERSIONENTRY': "hyperflex.ServerFirmwareVersionEntry", 'HYPERFLEX.SERVERMODEL': "hyperflex.ServerModel", 'HYPERFLEX.SERVICEAUTHTOKEN': "hyperflex.ServiceAuthToken", 'HYPERFLEX.SOFTWAREDISTRIBUTIONCOMPONENT': "hyperflex.SoftwareDistributionComponent", 'HYPERFLEX.SOFTWAREDISTRIBUTIONENTRY': "hyperflex.SoftwareDistributionEntry", 'HYPERFLEX.SOFTWAREDISTRIBUTIONVERSION': "hyperflex.SoftwareDistributionVersion", 'HYPERFLEX.SOFTWAREVERSIONPOLICY': "hyperflex.SoftwareVersionPolicy", 'HYPERFLEX.STORAGECONTAINER': "hyperflex.StorageContainer", 'HYPERFLEX.SYSCONFIGPOLICY': "hyperflex.SysConfigPolicy", 'HYPERFLEX.UCSMCONFIGPOLICY': "hyperflex.UcsmConfigPolicy", 'HYPERFLEX.VCENTERCONFIGPOLICY': "hyperflex.VcenterConfigPolicy", 'HYPERFLEX.VMBACKUPINFO': "hyperflex.VmBackupInfo", 'HYPERFLEX.VMIMPORTOPERATION': "hyperflex.VmImportOperation", 'HYPERFLEX.VMRESTOREOPERATION': "hyperflex.VmRestoreOperation", 'HYPERFLEX.VMSNAPSHOTINFO': "hyperflex.VmSnapshotInfo", 'HYPERFLEX.VOLUME': "hyperflex.Volume", 'HYPERFLEX.WITNESSCONFIGURATION': "hyperflex.WitnessConfiguration", 'IAAS.CONNECTORPACK': "iaas.ConnectorPack", 'IAAS.DEVICESTATUS': "iaas.DeviceStatus", 'IAAS.DIAGNOSTICMESSAGES': "iaas.DiagnosticMessages", 'IAAS.LICENSEINFO': "iaas.LicenseInfo", 'IAAS.MOSTRUNTASKS': "iaas.MostRunTasks", 'IAAS.SERVICEREQUEST': "iaas.ServiceRequest", 'IAAS.UCSDINFO': "iaas.UcsdInfo", 'IAAS.UCSDMANAGEDINFRA': "iaas.UcsdManagedInfra", 'IAAS.UCSDMESSAGES': "iaas.UcsdMessages", 'IAM.ACCOUNT': "iam.Account", 'IAM.ACCOUNTEXPERIENCE': "iam.AccountExperience", 'IAM.APIKEY': "iam.ApiKey", 'IAM.APPREGISTRATION': "iam.AppRegistration", 'IAM.BANNERMESSAGE': "iam.BannerMessage", 'IAM.CERTIFICATE': "iam.Certificate", 'IAM.CERTIFICATEREQUEST': "iam.CertificateRequest", 'IAM.DOMAINGROUP': "iam.DomainGroup", 'IAM.ENDPOINTPRIVILEGE': "iam.EndPointPrivilege", 'IAM.ENDPOINTROLE': "iam.EndPointRole", 'IAM.ENDPOINTUSER': "iam.EndPointUser", 'IAM.ENDPOINTUSERPOLICY': "iam.EndPointUserPolicy", 'IAM.ENDPOINTUSERROLE': "iam.EndPointUserRole", 'IAM.IDP': "iam.Idp", 'IAM.IDPREFERENCE': "iam.IdpReference", 'IAM.IPACCESSMANAGEMENT': "iam.IpAccessManagement", 'IAM.IPADDRESS': "iam.IpAddress", 'IAM.LDAPGROUP': "iam.LdapGroup", 'IAM.LDAPPOLICY': "iam.LdapPolicy", 'IAM.LDAPPROVIDER': "iam.LdapProvider", 'IAM.LOCALUSERPASSWORD': "iam.LocalUserPassword", 'IAM.LOCALUSERPASSWORDPOLICY': "iam.LocalUserPasswordPolicy", 'IAM.OAUTHTOKEN': "iam.OAuthToken", 'IAM.PERMISSION': "iam.Permission", 'IAM.PRIVATEKEYSPEC': "iam.PrivateKeySpec", 'IAM.PRIVILEGE': "iam.Privilege", 'IAM.PRIVILEGESET': "iam.PrivilegeSet", 'IAM.QUALIFIER': "iam.Qualifier", 'IAM.RESOURCELIMITS': "iam.ResourceLimits", 'IAM.RESOURCEPERMISSION': "iam.ResourcePermission", 'IAM.RESOURCEROLES': "iam.ResourceRoles", 'IAM.ROLE': "iam.Role", 'IAM.SECURITYHOLDER': "iam.SecurityHolder", 'IAM.SERVICEPROVIDER': "iam.ServiceProvider", 'IAM.SESSION': "iam.Session", 'IAM.SESSIONLIMITS': "iam.SessionLimits", 'IAM.SYSTEM': "iam.System", 'IAM.TRUSTPOINT': "iam.TrustPoint", 'IAM.USER': "iam.User", 'IAM.USERGROUP': "iam.UserGroup", 'IAM.USERPREFERENCE': "iam.UserPreference", 'INVENTORY.DEVICEINFO': "inventory.DeviceInfo", 'INVENTORY.DNMOBINDING': "inventory.DnMoBinding", 'INVENTORY.GENERICINVENTORY': "inventory.GenericInventory", 'INVENTORY.GENERICINVENTORYHOLDER': "inventory.GenericInventoryHolder", 'INVENTORY.REQUEST': "inventory.Request", 'IPMIOVERLAN.POLICY': "ipmioverlan.Policy", 'IPPOOL.BLOCKLEASE': "ippool.BlockLease", 'IPPOOL.IPLEASE': "ippool.IpLease", 'IPPOOL.POOL': "ippool.Pool", 'IPPOOL.POOLMEMBER': "ippool.PoolMember", 'IPPOOL.SHADOWBLOCK': "ippool.ShadowBlock", 'IPPOOL.SHADOWPOOL': "ippool.ShadowPool", 'IPPOOL.UNIVERSE': "ippool.Universe", 'IQNPOOL.BLOCK': "iqnpool.Block", 'IQNPOOL.LEASE': "iqnpool.Lease", 'IQNPOOL.POOL': "iqnpool.Pool", 'IQNPOOL.POOLMEMBER': "iqnpool.PoolMember", 'IQNPOOL.UNIVERSE': "iqnpool.Universe", 'IWOTENANT.TENANTSTATUS': "iwotenant.TenantStatus", 'KUBERNETES.ACICNIAPIC': "kubernetes.AciCniApic", 'KUBERNETES.ACICNIPROFILE': "kubernetes.AciCniProfile", 'KUBERNETES.ACICNITENANTCLUSTERALLOCATION': "kubernetes.AciCniTenantClusterAllocation", 'KUBERNETES.ADDONDEFINITION': "kubernetes.AddonDefinition", 'KUBERNETES.ADDONPOLICY': "kubernetes.AddonPolicy", 'KUBERNETES.ADDONREPOSITORY': "kubernetes.AddonRepository", 'KUBERNETES.BAREMETALNODEPROFILE': "kubernetes.BaremetalNodeProfile", 'KUBERNETES.CATALOG': "kubernetes.Catalog", 'KUBERNETES.CLUSTER': "kubernetes.Cluster", 'KUBERNETES.CLUSTERADDONPROFILE': "kubernetes.ClusterAddonProfile", 'KUBERNETES.CLUSTERPROFILE': "kubernetes.ClusterProfile", 'KUBERNETES.CONFIGRESULT': "kubernetes.ConfigResult", 'KUBERNETES.CONFIGRESULTENTRY': "kubernetes.ConfigResultEntry", 'KUBERNETES.CONTAINERRUNTIMEPOLICY': "kubernetes.ContainerRuntimePolicy", 'KUBERNETES.DAEMONSET': "kubernetes.DaemonSet", 'KUBERNETES.DEPLOYMENT': "kubernetes.Deployment", 'KUBERNETES.INGRESS': "kubernetes.Ingress", 'KUBERNETES.NETWORKPOLICY': "kubernetes.NetworkPolicy", 'KUBERNETES.NODE': "kubernetes.Node", 'KUBERNETES.NODEGROUPPROFILE': "kubernetes.NodeGroupProfile", 'KUBERNETES.POD': "kubernetes.Pod", 'KUBERNETES.SERVICE': "kubernetes.Service", 'KUBERNETES.STATEFULSET': "kubernetes.StatefulSet", 'KUBERNETES.SYSCONFIGPOLICY': "kubernetes.SysConfigPolicy", 'KUBERNETES.TRUSTEDREGISTRIESPOLICY': "kubernetes.TrustedRegistriesPolicy", 'KUBERNETES.VERSION': "kubernetes.Version", 'KUBERNETES.VERSIONPOLICY': "kubernetes.VersionPolicy", 'KUBERNETES.VIRTUALMACHINEINFRACONFIGPOLICY': "kubernetes.VirtualMachineInfraConfigPolicy", 'KUBERNETES.VIRTUALMACHINEINFRASTRUCTUREPROVIDER': "kubernetes.VirtualMachineInfrastructureProvider", 'KUBERNETES.VIRTUALMACHINEINSTANCETYPE': "kubernetes.VirtualMachineInstanceType", 'KUBERNETES.VIRTUALMACHINENODEPROFILE': "kubernetes.VirtualMachineNodeProfile", 'KVM.POLICY': "kvm.Policy", 'KVM.SESSION': "kvm.Session", 'KVM.TUNNEL': "kvm.Tunnel", 'LICENSE.ACCOUNTLICENSEDATA': "license.AccountLicenseData", 'LICENSE.CUSTOMEROP': "license.CustomerOp", 'LICENSE.IKSCUSTOMEROP': "license.IksCustomerOp", 'LICENSE.IKSLICENSECOUNT': "license.IksLicenseCount", 'LICENSE.IWOCUSTOMEROP': "license.IwoCustomerOp", 'LICENSE.IWOLICENSECOUNT': "license.IwoLicenseCount", 'LICENSE.LICENSEINFO': "license.LicenseInfo", 'LICENSE.LICENSERESERVATIONOP': "license.LicenseReservationOp", 'LICENSE.SMARTLICENSETOKEN': "license.SmartlicenseToken", 'LS.SERVICEPROFILE': "ls.ServiceProfile", 'MACPOOL.IDBLOCK': "macpool.IdBlock", 'MACPOOL.LEASE': "macpool.Lease", 'MACPOOL.POOL': "macpool.Pool", 'MACPOOL.POOLMEMBER': "macpool.PoolMember", 'MACPOOL.UNIVERSE': "macpool.Universe", 'MANAGEMENT.CONTROLLER': "management.Controller", 'MANAGEMENT.ENTITY': "management.Entity", 'MANAGEMENT.INTERFACE': "management.Interface", 'MEMORY.ARRAY': "memory.Array", 'MEMORY.PERSISTENTMEMORYCONFIGRESULT': "memory.PersistentMemoryConfigResult", 'MEMORY.PERSISTENTMEMORYCONFIGURATION': "memory.PersistentMemoryConfiguration", 'MEMORY.PERSISTENTMEMORYNAMESPACE': "memory.PersistentMemoryNamespace", 'MEMORY.PERSISTENTMEMORYNAMESPACECONFIGRESULT': "memory.PersistentMemoryNamespaceConfigResult", 'MEMORY.PERSISTENTMEMORYPOLICY': "memory.PersistentMemoryPolicy", 'MEMORY.PERSISTENTMEMORYREGION': "memory.PersistentMemoryRegion", 'MEMORY.PERSISTENTMEMORYUNIT': "memory.PersistentMemoryUnit", 'MEMORY.UNIT': "memory.Unit", 'META.DEFINITION': "meta.Definition", 'NETWORK.ELEMENT': "network.Element", 'NETWORK.ELEMENTSUMMARY': "network.ElementSummary", 'NETWORK.FCZONEINFO': "network.FcZoneInfo", 'NETWORK.VLANPORTINFO': "network.VlanPortInfo", 'NETWORKCONFIG.POLICY': "networkconfig.Policy", 'NIAAPI.APICCCOPOST': "niaapi.ApicCcoPost", 'NIAAPI.APICFIELDNOTICE': "niaapi.ApicFieldNotice", 'NIAAPI.APICHWEOL': "niaapi.ApicHweol", 'NIAAPI.APICLATESTMAINTAINEDRELEASE': "niaapi.ApicLatestMaintainedRelease", 'NIAAPI.APICRELEASERECOMMEND': "niaapi.ApicReleaseRecommend", 'NIAAPI.APICSWEOL': "niaapi.ApicSweol", 'NIAAPI.DCNMCCOPOST': "niaapi.DcnmCcoPost", 'NIAAPI.DCNMFIELDNOTICE': "niaapi.DcnmFieldNotice", 'NIAAPI.DCNMHWEOL': "niaapi.DcnmHweol", 'NIAAPI.DCNMLATESTMAINTAINEDRELEASE': "niaapi.DcnmLatestMaintainedRelease", 'NIAAPI.DCNMRELEASERECOMMEND': "niaapi.DcnmReleaseRecommend", 'NIAAPI.DCNMSWEOL': "niaapi.DcnmSweol", 'NIAAPI.FILEDOWNLOADER': "niaapi.FileDownloader", 'NIAAPI.NIAMETADATA': "niaapi.NiaMetadata", 'NIAAPI.NIBFILEDOWNLOADER': "niaapi.NibFileDownloader", 'NIAAPI.NIBMETADATA': "niaapi.NibMetadata", 'NIAAPI.VERSIONREGEX': "niaapi.VersionRegex", 'NIATELEMETRY.AAALDAPPROVIDERDETAILS': "niatelemetry.AaaLdapProviderDetails", 'NIATELEMETRY.AAARADIUSPROVIDERDETAILS': "niatelemetry.AaaRadiusProviderDetails", 'NIATELEMETRY.AAATACACSPROVIDERDETAILS': "niatelemetry.AaaTacacsProviderDetails", 'NIATELEMETRY.APICAPPPLUGINDETAILS': "niatelemetry.ApicAppPluginDetails", 'NIATELEMETRY.APICCOREFILEDETAILS': "niatelemetry.ApicCoreFileDetails", 'NIATELEMETRY.APICDBGEXPRSEXPORTDEST': "niatelemetry.ApicDbgexpRsExportDest", 'NIATELEMETRY.APICDBGEXPRSTSSCHEDULER': "niatelemetry.ApicDbgexpRsTsScheduler", 'NIATELEMETRY.APICFANDETAILS': "niatelemetry.ApicFanDetails", 'NIATELEMETRY.APICFEXDETAILS': "niatelemetry.ApicFexDetails", 'NIATELEMETRY.APICFLASHDETAILS': "niatelemetry.ApicFlashDetails", 'NIATELEMETRY.APICNTPAUTH': "niatelemetry.ApicNtpAuth", 'NIATELEMETRY.APICPSUDETAILS': "niatelemetry.ApicPsuDetails", 'NIATELEMETRY.APICREALMDETAILS': "niatelemetry.ApicRealmDetails", 'NIATELEMETRY.APICSNMPCLIENTGRPDETAILS': "niatelemetry.ApicSnmpClientGrpDetails", 'NIATELEMETRY.APICSNMPCOMMUNITYACCESSDETAILS': "niatelemetry.ApicSnmpCommunityAccessDetails", 'NIATELEMETRY.APICSNMPCOMMUNITYDETAILS': "niatelemetry.ApicSnmpCommunityDetails", 'NIATELEMETRY.APICSNMPTRAPDETAILS': "niatelemetry.ApicSnmpTrapDetails", 'NIATELEMETRY.APICSNMPTRAPFWDSERVERDETAILS': "niatelemetry.ApicSnmpTrapFwdServerDetails", 'NIATELEMETRY.APICSNMPVERSIONTHREEDETAILS': "niatelemetry.ApicSnmpVersionThreeDetails", 'NIATELEMETRY.APICSYSLOGGRP': "niatelemetry.ApicSysLogGrp", 'NIATELEMETRY.APICSYSLOGSRC': "niatelemetry.ApicSysLogSrc", 'NIATELEMETRY.APICTRANSCEIVERDETAILS': "niatelemetry.ApicTransceiverDetails", 'NIATELEMETRY.APICUIPAGECOUNTS': "niatelemetry.ApicUiPageCounts", 'NIATELEMETRY.APPDETAILS': "niatelemetry.AppDetails", 'NIATELEMETRY.COMMONPOLICIES': "niatelemetry.CommonPolicies", 'NIATELEMETRY.DCNMFANDETAILS': "niatelemetry.DcnmFanDetails", 'NIATELEMETRY.DCNMFEXDETAILS': "niatelemetry.DcnmFexDetails", 'NIATELEMETRY.DCNMMODULEDETAILS': "niatelemetry.DcnmModuleDetails", 'NIATELEMETRY.DCNMPSUDETAILS': "niatelemetry.DcnmPsuDetails", 'NIATELEMETRY.DCNMTRANSCEIVERDETAILS': "niatelemetry.DcnmTransceiverDetails", 'NIATELEMETRY.EPG': "niatelemetry.Epg", 'NIATELEMETRY.FABRICMODULEDETAILS': "niatelemetry.FabricModuleDetails", 'NIATELEMETRY.FABRICPODPROFILE': "niatelemetry.FabricPodProfile", 'NIATELEMETRY.FABRICPODSS': "niatelemetry.FabricPodSs", 'NIATELEMETRY.FAULT': "niatelemetry.Fault", 'NIATELEMETRY.HTTPSACLCONTRACTDETAILS': "niatelemetry.HttpsAclContractDetails", 'NIATELEMETRY.HTTPSACLCONTRACTFILTERMAP': "niatelemetry.HttpsAclContractFilterMap", 'NIATELEMETRY.HTTPSACLEPGCONTRACTMAP': "niatelemetry.HttpsAclEpgContractMap", 'NIATELEMETRY.HTTPSACLEPGDETAILS': "niatelemetry.HttpsAclEpgDetails", 'NIATELEMETRY.HTTPSACLFILTERDETAILS': "niatelemetry.HttpsAclFilterDetails", 'NIATELEMETRY.LC': "niatelemetry.Lc", 'NIATELEMETRY.MSOCONTRACTDETAILS': "niatelemetry.MsoContractDetails", 'NIATELEMETRY.MSOEPGDETAILS': "niatelemetry.MsoEpgDetails", 'NIATELEMETRY.MSOSCHEMADETAILS': "niatelemetry.MsoSchemaDetails", 'NIATELEMETRY.MSOSITEDETAILS': "niatelemetry.MsoSiteDetails", 'NIATELEMETRY.MSOTENANTDETAILS': "niatelemetry.MsoTenantDetails", 'NIATELEMETRY.NEXUSDASHBOARDCONTROLLERDETAILS': "niatelemetry.NexusDashboardControllerDetails", 'NIATELEMETRY.NEXUSDASHBOARDDETAILS': "niatelemetry.NexusDashboardDetails", 'NIATELEMETRY.NEXUSDASHBOARDMEMORYDETAILS': "niatelemetry.NexusDashboardMemoryDetails", 'NIATELEMETRY.NEXUSDASHBOARDS': "niatelemetry.NexusDashboards", 'NIATELEMETRY.NIAFEATUREUSAGE': "niatelemetry.NiaFeatureUsage", 'NIATELEMETRY.NIAINVENTORY': "niatelemetry.NiaInventory", 'NIATELEMETRY.NIAINVENTORYDCNM': "niatelemetry.NiaInventoryDcnm", 'NIATELEMETRY.NIAINVENTORYFABRIC': "niatelemetry.NiaInventoryFabric", 'NIATELEMETRY.NIALICENSESTATE': "niatelemetry.NiaLicenseState", 'NIATELEMETRY.PASSWORDSTRENGTHCHECK': "niatelemetry.PasswordStrengthCheck", 'NIATELEMETRY.PODCOMMPOLICIES': "niatelemetry.PodCommPolicies", 'NIATELEMETRY.PODSNMPPOLICIES': "niatelemetry.PodSnmpPolicies", 'NIATELEMETRY.PODTIMESERVERPOLICIES': "niatelemetry.PodTimeServerPolicies", 'NIATELEMETRY.SITEINVENTORY': "niatelemetry.SiteInventory", 'NIATELEMETRY.SNMPSRC': "niatelemetry.SnmpSrc", 'NIATELEMETRY.SSHVERSIONTWO': "niatelemetry.SshVersionTwo", 'NIATELEMETRY.SUPERVISORMODULEDETAILS': "niatelemetry.SupervisorModuleDetails", 'NIATELEMETRY.SYSLOGREMOTEDEST': "niatelemetry.SyslogRemoteDest", 'NIATELEMETRY.SYSLOGSYSMSG': "niatelemetry.SyslogSysMsg", 'NIATELEMETRY.SYSLOGSYSMSGFACFILTER': "niatelemetry.SyslogSysMsgFacFilter", 'NIATELEMETRY.SYSTEMCONTROLLERDETAILS': "niatelemetry.SystemControllerDetails", 'NIATELEMETRY.TENANT': "niatelemetry.Tenant", 'NOTIFICATION.ACCOUNTSUBSCRIPTION': "notification.AccountSubscription", 'NTP.POLICY': "ntp.Policy", 'OAUTH.ACCESSTOKEN': "oauth.AccessToken", 'OAUTH.AUTHORIZATION': "oauth.Authorization", 'OPRS.DEPLOYMENT': "oprs.Deployment", 'OPRS.SYNCTARGETLISTMESSAGE': "oprs.SyncTargetListMessage", 'ORGANIZATION.ORGANIZATION': "organization.Organization", 'OS.BULKINSTALLINFO': "os.BulkInstallInfo", 'OS.CATALOG': "os.Catalog", 'OS.CONFIGURATIONFILE': "os.ConfigurationFile", 'OS.DISTRIBUTION': "os.Distribution", 'OS.INSTALL': "os.Install", 'OS.OSSUPPORT': "os.OsSupport", 'OS.SUPPORTEDVERSION': "os.SupportedVersion", 'OS.TEMPLATEFILE': "os.TemplateFile", 'OS.VALIDINSTALLTARGET': "os.ValidInstallTarget", 'PCI.COPROCESSORCARD': "pci.CoprocessorCard", 'PCI.DEVICE': "pci.Device", 'PCI.LINK': "pci.Link", 'PCI.SWITCH': "pci.Switch", 'PORT.GROUP': "port.Group", 'PORT.MACBINDING': "port.MacBinding", 'PORT.SUBGROUP': "port.SubGroup", 'POWER.CONTROLSTATE': "power.ControlState", 'POWER.POLICY': "power.Policy", 'PROCESSOR.UNIT': "processor.Unit", 'RACK.UNITPERSONALITY': "rack.UnitPersonality", 'RECOMMENDATION.CAPACITYRUNWAY': "recommendation.CapacityRunway", 'RECOMMENDATION.PHYSICALITEM': "recommendation.PhysicalItem", 'RECOVERY.BACKUPCONFIGPOLICY': "recovery.BackupConfigPolicy", 'RECOVERY.BACKUPPROFILE': "recovery.BackupProfile", 'RECOVERY.CONFIGRESULT': "recovery.ConfigResult", 'RECOVERY.CONFIGRESULTENTRY': "recovery.ConfigResultEntry", 'RECOVERY.ONDEMANDBACKUP': "recovery.OnDemandBackup", 'RECOVERY.RESTORE': "recovery.Restore", 'RECOVERY.SCHEDULECONFIGPOLICY': "recovery.ScheduleConfigPolicy", 'RESOURCE.GROUP': "resource.Group", 'RESOURCE.GROUPMEMBER': "resource.GroupMember", 'RESOURCE.LICENSERESOURCECOUNT': "resource.LicenseResourceCount", 'RESOURCE.MEMBERSHIP': "resource.Membership", 'RESOURCE.MEMBERSHIPHOLDER': "resource.MembershipHolder", 'RESOURCE.RESERVATION': "resource.Reservation", 'RESOURCEPOOL.LEASE': "resourcepool.Lease", 'RESOURCEPOOL.LEASERESOURCE': "resourcepool.LeaseResource", 'RESOURCEPOOL.POOL': "resourcepool.Pool", 'RESOURCEPOOL.POOLMEMBER': "resourcepool.PoolMember", 'RESOURCEPOOL.UNIVERSE': "resourcepool.Universe", 'RPROXY.REVERSEPROXY': "rproxy.ReverseProxy", 'SDCARD.POLICY': "sdcard.Policy", 'SDWAN.PROFILE': "sdwan.Profile", 'SDWAN.ROUTERNODE': "sdwan.RouterNode", 'SDWAN.ROUTERPOLICY': "sdwan.RouterPolicy", 'SDWAN.VMANAGEACCOUNTPOLICY': "sdwan.VmanageAccountPolicy", 'SEARCH.SEARCHITEM': "search.SearchItem", 'SEARCH.TAGITEM': "search.TagItem", 'SECURITY.UNIT': "security.Unit", 'SERVER.CONFIGCHANGEDETAIL': "server.ConfigChangeDetail", 'SERVER.CONFIGIMPORT': "server.ConfigImport", 'SERVER.CONFIGRESULT': "server.ConfigResult", 'SERVER.CONFIGRESULTENTRY': "server.ConfigResultEntry", 'SERVER.PROFILE': "server.Profile", 'SERVER.PROFILETEMPLATE': "server.ProfileTemplate", 'SMTP.POLICY': "smtp.Policy", 'SNMP.POLICY': "snmp.Policy", 'SOFTWARE.APPLIANCEDISTRIBUTABLE': "software.ApplianceDistributable", 'SOFTWARE.DOWNLOADHISTORY': "software.DownloadHistory", 'SOFTWARE.HCLMETA': "software.HclMeta", 'SOFTWARE.HYPERFLEXBUNDLEDISTRIBUTABLE': "software.HyperflexBundleDistributable", 'SOFTWARE.HYPERFLEXDISTRIBUTABLE': "software.HyperflexDistributable", 'SOFTWARE.RELEASEMETA': "software.ReleaseMeta", 'SOFTWARE.SOLUTIONDISTRIBUTABLE': "software.SolutionDistributable", 'SOFTWARE.UCSDBUNDLEDISTRIBUTABLE': "software.UcsdBundleDistributable", 'SOFTWARE.UCSDDISTRIBUTABLE': "software.UcsdDistributable", 'SOFTWAREREPOSITORY.AUTHORIZATION': "softwarerepository.Authorization", 'SOFTWAREREPOSITORY.CACHEDIMAGE': "softwarerepository.CachedImage", 'SOFTWAREREPOSITORY.CATALOG': "softwarerepository.Catalog", 'SOFTWAREREPOSITORY.CATEGORYMAPPER': "softwarerepository.CategoryMapper", 'SOFTWAREREPOSITORY.CATEGORYMAPPERMODEL': "softwarerepository.CategoryMapperModel", 'SOFTWAREREPOSITORY.CATEGORYSUPPORTCONSTRAINT': "softwarerepository.CategorySupportConstraint", 'SOFTWAREREPOSITORY.DOWNLOADSPEC': "softwarerepository.DownloadSpec", 'SOFTWAREREPOSITORY.OPERATINGSYSTEMFILE': "softwarerepository.OperatingSystemFile", 'SOFTWAREREPOSITORY.RELEASE': "softwarerepository.Release", 'SOL.POLICY': "sol.Policy", 'SSH.POLICY': "ssh.Policy", 'STORAGE.CONTROLLER': "storage.Controller", 'STORAGE.DISKGROUP': "storage.DiskGroup", 'STORAGE.DISKSLOT': "storage.DiskSlot", 'STORAGE.DRIVEGROUP': "storage.DriveGroup", 'STORAGE.ENCLOSURE': "storage.Enclosure", 'STORAGE.ENCLOSUREDISK': "storage.EnclosureDisk", 'STORAGE.ENCLOSUREDISKSLOTEP': "storage.EnclosureDiskSlotEp", 'STORAGE.FLEXFLASHCONTROLLER': "storage.FlexFlashController", 'STORAGE.FLEXFLASHCONTROLLERPROPS': "storage.FlexFlashControllerProps", 'STORAGE.FLEXFLASHPHYSICALDRIVE': "storage.FlexFlashPhysicalDrive", 'STORAGE.FLEXFLASHVIRTUALDRIVE': "storage.FlexFlashVirtualDrive", 'STORAGE.FLEXUTILCONTROLLER': "storage.FlexUtilController", 'STORAGE.FLEXUTILPHYSICALDRIVE': "storage.FlexUtilPhysicalDrive", 'STORAGE.FLEXUTILVIRTUALDRIVE': "storage.FlexUtilVirtualDrive", 'STORAGE.HITACHIARRAY': "storage.HitachiArray", 'STORAGE.HITACHICONTROLLER': "storage.HitachiController", 'STORAGE.HITACHIDISK': "storage.HitachiDisk", 'STORAGE.HITACHIHOST': "storage.HitachiHost", 'STORAGE.HITACHIHOSTLUN': "storage.HitachiHostLun", 'STORAGE.HITACHIPARITYGROUP': "storage.HitachiParityGroup", 'STORAGE.HITACHIPOOL': "storage.HitachiPool", 'STORAGE.HITACHIPORT': "storage.HitachiPort", 'STORAGE.HITACHIVOLUME': "storage.HitachiVolume", 'STORAGE.HYPERFLEXSTORAGECONTAINER': "storage.HyperFlexStorageContainer", 'STORAGE.HYPERFLEXVOLUME': "storage.HyperFlexVolume", 'STORAGE.ITEM': "storage.Item", 'STORAGE.NETAPPAGGREGATE': "storage.NetAppAggregate", 'STORAGE.NETAPPBASEDISK': "storage.NetAppBaseDisk", 'STORAGE.NETAPPCLUSTER': "storage.NetAppCluster", 'STORAGE.NETAPPETHERNETPORT': "storage.NetAppEthernetPort", 'STORAGE.NETAPPEXPORTPOLICY': "storage.NetAppExportPolicy", 'STORAGE.NETAPPFCINTERFACE': "storage.NetAppFcInterface", 'STORAGE.NETAPPFCPORT': "storage.NetAppFcPort", 'STORAGE.NETAPPINITIATORGROUP': "storage.NetAppInitiatorGroup", 'STORAGE.NETAPPIPINTERFACE': "storage.NetAppIpInterface", 'STORAGE.NETAPPLICENSE': "storage.NetAppLicense", 'STORAGE.NETAPPLUN': "storage.NetAppLun", 'STORAGE.NETAPPLUNMAP': "storage.NetAppLunMap", 'STORAGE.NETAPPNODE': "storage.NetAppNode", 'STORAGE.NETAPPNTPSERVER': "storage.NetAppNtpServer", 'STORAGE.NETAPPSENSOR': "storage.NetAppSensor", 'STORAGE.NETAPPSTORAGEVM': "storage.NetAppStorageVm", 'STORAGE.NETAPPVOLUME': "storage.NetAppVolume", 'STORAGE.NETAPPVOLUMESNAPSHOT': "storage.NetAppVolumeSnapshot", 'STORAGE.PHYSICALDISK': "storage.PhysicalDisk", 'STORAGE.PHYSICALDISKEXTENSION': "storage.PhysicalDiskExtension", 'STORAGE.PHYSICALDISKUSAGE': "storage.PhysicalDiskUsage", 'STORAGE.PUREARRAY': "storage.PureArray", 'STORAGE.PURECONTROLLER': "storage.PureController", 'STORAGE.PUREDISK': "storage.PureDisk", 'STORAGE.PUREHOST': "storage.PureHost", 'STORAGE.PUREHOSTGROUP': "storage.PureHostGroup", 'STORAGE.PUREHOSTLUN': "storage.PureHostLun", 'STORAGE.PUREPORT': "storage.PurePort", 'STORAGE.PUREPROTECTIONGROUP': "storage.PureProtectionGroup", 'STORAGE.PUREPROTECTIONGROUPSNAPSHOT': "storage.PureProtectionGroupSnapshot", 'STORAGE.PUREREPLICATIONSCHEDULE': "storage.PureReplicationSchedule", 'STORAGE.PURESNAPSHOTSCHEDULE': "storage.PureSnapshotSchedule", 'STORAGE.PUREVOLUME': "storage.PureVolume", 'STORAGE.PUREVOLUMESNAPSHOT': "storage.PureVolumeSnapshot", 'STORAGE.SASEXPANDER': "storage.SasExpander", 'STORAGE.SASPORT': "storage.SasPort", 'STORAGE.SPAN': "storage.Span", 'STORAGE.STORAGEPOLICY': "storage.StoragePolicy", 'STORAGE.VDMEMBEREP': "storage.VdMemberEp", 'STORAGE.VIRTUALDRIVE': "storage.VirtualDrive", 'STORAGE.VIRTUALDRIVECONTAINER': "storage.VirtualDriveContainer", 'STORAGE.VIRTUALDRIVEEXTENSION': "storage.VirtualDriveExtension", 'STORAGE.VIRTUALDRIVEIDENTITY': "storage.VirtualDriveIdentity", 'SYSLOG.POLICY': "syslog.Policy", 'TAM.ADVISORYCOUNT': "tam.AdvisoryCount", 'TAM.ADVISORYDEFINITION': "tam.AdvisoryDefinition", 'TAM.ADVISORYINFO': "tam.AdvisoryInfo", 'TAM.ADVISORYINSTANCE': "tam.AdvisoryInstance", 'TAM.SECURITYADVISORY': "tam.SecurityAdvisory", 'TASK.HITACHISCOPEDINVENTORY': "task.HitachiScopedInventory", 'TASK.HYPERFLEXSCOPEDINVENTORY': "task.HyperflexScopedInventory", 'TASK.IWESCOPEDINVENTORY': "task.IweScopedInventory", 'TASK.NETAPPSCOPEDINVENTORY': "task.NetAppScopedInventory", 'TASK.PUBLICCLOUDSCOPEDINVENTORY': "task.PublicCloudScopedInventory", 'TASK.PURESCOPEDINVENTORY': "task.PureScopedInventory", 'TASK.SERVERSCOPEDINVENTORY': "task.ServerScopedInventory", 'TECHSUPPORTMANAGEMENT.COLLECTIONCONTROLPOLICY': "techsupportmanagement.CollectionControlPolicy", 'TECHSUPPORTMANAGEMENT.DOWNLOAD': "techsupportmanagement.Download", 'TECHSUPPORTMANAGEMENT.TECHSUPPORTBUNDLE': "techsupportmanagement.TechSupportBundle", 'TECHSUPPORTMANAGEMENT.TECHSUPPORTSTATUS': "techsupportmanagement.TechSupportStatus", 'TERMINAL.AUDITLOG': "terminal.AuditLog", 'TERRAFORM.EXECUTOR': "terraform.Executor", 'THERMAL.POLICY': "thermal.Policy", 'TOP.SYSTEM': "top.System", 'UCSD.BACKUPINFO': "ucsd.BackupInfo", 'UUIDPOOL.BLOCK': "uuidpool.Block", 'UUIDPOOL.POOL': "uuidpool.Pool", 'UUIDPOOL.POOLMEMBER': "uuidpool.PoolMember", 'UUIDPOOL.UNIVERSE': "uuidpool.Universe", 'UUIDPOOL.UUIDLEASE': "uuidpool.UuidLease", 'VIRTUALIZATION.CISCOHYPERVISORMANAGER': "virtualization.CiscoHypervisorManager", 'VIRTUALIZATION.ESXICONSOLE': "virtualization.EsxiConsole", 'VIRTUALIZATION.HOST': "virtualization.Host", 'VIRTUALIZATION.IWECLUSTER': "virtualization.IweCluster", 'VIRTUALIZATION.IWEDATACENTER': "virtualization.IweDatacenter", 'VIRTUALIZATION.IWEDVUPLINK': "virtualization.IweDvUplink", 'VIRTUALIZATION.IWEDVSWITCH': "virtualization.IweDvswitch", 'VIRTUALIZATION.IWEHOST': "virtualization.IweHost", 'VIRTUALIZATION.IWEHOSTINTERFACE': "virtualization.IweHostInterface", 'VIRTUALIZATION.IWEHOSTVSWITCH': "virtualization.IweHostVswitch", 'VIRTUALIZATION.IWENETWORK': "virtualization.IweNetwork", 'VIRTUALIZATION.IWEVIRTUALDISK': "virtualization.IweVirtualDisk", 'VIRTUALIZATION.IWEVIRTUALMACHINE': "virtualization.IweVirtualMachine", 'VIRTUALIZATION.IWEVIRTUALMACHINENETWORKINTERFACE': "virtualization.IweVirtualMachineNetworkInterface", 'VIRTUALIZATION.VIRTUALDISK': "virtualization.VirtualDisk", 'VIRTUALIZATION.VIRTUALMACHINE': "virtualization.VirtualMachine", 'VIRTUALIZATION.VIRTUALNETWORK': "virtualization.VirtualNetwork", 'VIRTUALIZATION.VMWARECLUSTER': "virtualization.VmwareCluster", 'VIRTUALIZATION.VMWAREDATACENTER': "virtualization.VmwareDatacenter", 'VIRTUALIZATION.VMWAREDATASTORE': "virtualization.VmwareDatastore", 'VIRTUALIZATION.VMWAREDATASTORECLUSTER': "virtualization.VmwareDatastoreCluster", 'VIRTUALIZATION.VMWAREDISTRIBUTEDNETWORK': "virtualization.VmwareDistributedNetwork", 'VIRTUALIZATION.VMWAREDISTRIBUTEDSWITCH': "virtualization.VmwareDistributedSwitch", 'VIRTUALIZATION.VMWAREFOLDER': "virtualization.VmwareFolder", 'VIRTUALIZATION.VMWAREHOST': "virtualization.VmwareHost", 'VIRTUALIZATION.VMWAREKERNELNETWORK': "virtualization.VmwareKernelNetwork", 'VIRTUALIZATION.VMWARENETWORK': "virtualization.VmwareNetwork", 'VIRTUALIZATION.VMWAREPHYSICALNETWORKINTERFACE': "virtualization.VmwarePhysicalNetworkInterface", 'VIRTUALIZATION.VMWAREUPLINKPORT': "virtualization.VmwareUplinkPort", 'VIRTUALIZATION.VMWAREVCENTER': "virtualization.VmwareVcenter", 'VIRTUALIZATION.VMWAREVIRTUALDISK': "virtualization.VmwareVirtualDisk", 'VIRTUALIZATION.VMWAREVIRTUALMACHINE': "virtualization.VmwareVirtualMachine", 'VIRTUALIZATION.VMWAREVIRTUALMACHINESNAPSHOT': "virtualization.VmwareVirtualMachineSnapshot", 'VIRTUALIZATION.VMWAREVIRTUALNETWORKINTERFACE': "virtualization.VmwareVirtualNetworkInterface", 'VIRTUALIZATION.VMWAREVIRTUALSWITCH': "virtualization.VmwareVirtualSwitch", 'VMEDIA.POLICY': "vmedia.Policy", 'VMRC.CONSOLE': "vmrc.Console", 'VNC.CONSOLE': "vnc.Console", 'VNIC.ETHADAPTERPOLICY': "vnic.EthAdapterPolicy", 'VNIC.ETHIF': "vnic.EthIf", 'VNIC.ETHNETWORKPOLICY': "vnic.EthNetworkPolicy", 'VNIC.ETHQOSPOLICY': "vnic.EthQosPolicy", 'VNIC.FCADAPTERPOLICY': "vnic.FcAdapterPolicy", 'VNIC.FCIF': "vnic.FcIf", 'VNIC.FCNETWORKPOLICY': "vnic.FcNetworkPolicy", 'VNIC.FCQOSPOLICY': "vnic.FcQosPolicy", 'VNIC.ISCSIADAPTERPOLICY': "vnic.IscsiAdapterPolicy", 'VNIC.ISCSIBOOTPOLICY': "vnic.IscsiBootPolicy", 'VNIC.ISCSISTATICTARGETPOLICY': "vnic.IscsiStaticTargetPolicy", 'VNIC.LANCONNECTIVITYPOLICY': "vnic.LanConnectivityPolicy", 'VNIC.LCPSTATUS': "vnic.LcpStatus", 'VNIC.SANCONNECTIVITYPOLICY': "vnic.SanConnectivityPolicy", 'VNIC.SCPSTATUS': "vnic.ScpStatus", 'VRF.VRF': "vrf.Vrf", 'WORKFLOW.ANSIBLEBATCHEXECUTOR': "workflow.AnsibleBatchExecutor", 'WORKFLOW.BATCHAPIEXECUTOR': "workflow.BatchApiExecutor", 'WORKFLOW.BUILDTASKMETA': "workflow.BuildTaskMeta", 'WORKFLOW.BUILDTASKMETAOWNER': "workflow.BuildTaskMetaOwner", 'WORKFLOW.CATALOG': "workflow.Catalog", 'WORKFLOW.CUSTOMDATATYPEDEFINITION': "workflow.CustomDataTypeDefinition", 'WORKFLOW.ERRORRESPONSEHANDLER': "workflow.ErrorResponseHandler", 'WORKFLOW.PENDINGDYNAMICWORKFLOWINFO': "workflow.PendingDynamicWorkflowInfo", 'WORKFLOW.ROLLBACKWORKFLOW': "workflow.RollbackWorkflow", 'WORKFLOW.SOLUTIONACTIONDEFINITION': "workflow.SolutionActionDefinition", 'WORKFLOW.SOLUTIONACTIONINSTANCE': "workflow.SolutionActionInstance", 'WORKFLOW.SOLUTIONDEFINITION': "workflow.SolutionDefinition", 'WORKFLOW.SOLUTIONINSTANCE': "workflow.SolutionInstance", 'WORKFLOW.SOLUTIONOUTPUT': "workflow.SolutionOutput", 'WORKFLOW.SSHBATCHEXECUTOR': "workflow.SshBatchExecutor", 'WORKFLOW.TASKDEBUGLOG': "workflow.TaskDebugLog", 'WORKFLOW.TASKDEFINITION': "workflow.TaskDefinition", 'WORKFLOW.TASKINFO': "workflow.TaskInfo", 'WORKFLOW.TASKMETADATA': "workflow.TaskMetadata", 'WORKFLOW.TASKNOTIFICATION': "workflow.TaskNotification", 'WORKFLOW.TEMPLATEEVALUATION': "workflow.TemplateEvaluation", 'WORKFLOW.TEMPLATEFUNCTIONMETA': "workflow.TemplateFunctionMeta", 'WORKFLOW.WORKFLOWDEFINITION': "workflow.WorkflowDefinition", 'WORKFLOW.WORKFLOWINFO': "workflow.WorkflowInfo", 'WORKFLOW.WORKFLOWMETA': "workflow.WorkflowMeta", 'WORKFLOW.WORKFLOWMETADATA': "workflow.WorkflowMetadata", 'WORKFLOW.WORKFLOWNOTIFICATION': "workflow.WorkflowNotification", }, } validations = { ('description',): { 'max_length': 1024, 'regex': { 'pattern': r'^$|^[a-zA-Z0-9]+[\x00-\xFF]*$', # noqa: E501 }, }, ('name',): { 'regex': { 'pattern': r'^[a-zA-Z0-9_.:-]{1,64}$', # noqa: E501 }, }, ('global_hot_spares',): { 'regex': { 'pattern': r'^$|^((\d+\-\d+)|(\d+))(,((\d+\-\d+)|(\d+)))*$', # noqa: E501 }, }, } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'class_id': (str,), # noqa: E501 'moid': (str,), # noqa: E501 'selector': (str,), # noqa: E501 'link': (str,), # noqa: E501 'account_moid': (str,), # noqa: E501 'create_time': (datetime,), # noqa: E501 'domain_group_moid': (str,), # noqa: E501 'mod_time': (datetime,), # noqa: E501 'owners': ([str], none_type,), # noqa: E501 'shared_scope': (str,), # noqa: E501 'tags': ([MoTag], none_type,), # noqa: E501 'version_context': (MoVersionContext,), # noqa: E501 'ancestors': ([MoBaseMoRelationship], none_type,), # noqa: E501 'parent': (MoBaseMoRelationship,), # noqa: E501 'permission_resources': ([MoBaseMoRelationship], none_type,), # noqa: E501 'display_names': (DisplayNames,), # noqa: E501 'description': (str,), # noqa: E501 'name': (str,), # noqa: E501 'global_hot_spares': (str,), # noqa: E501 'm2_virtual_drive': (StorageM2VirtualDriveConfig,), # noqa: E501 'raid0_drive': (StorageR0Drive,), # noqa: E501 'unused_disks_state': (str,), # noqa: E501 'use_jbod_for_vd_creation': (bool,), # noqa: E501 'drive_group': ([StorageDriveGroupRelationship], none_type,), # noqa: E501 'organization': (OrganizationOrganizationRelationship,), # noqa: E501 'profiles': ([PolicyAbstractConfigProfileRelationship], none_type,), # noqa: E501 'object_type': (str,), # noqa: E501 } @cached_property def discriminator(): lazy_import() val = { 'mo.MoRef': MoMoRef, 'storage.StoragePolicy': StorageStoragePolicy, } if not val: return None return {'class_id': val} attribute_map = { 'class_id': 'ClassId', # noqa: E501 'moid': 'Moid', # noqa: E501 'selector': 'Selector', # noqa: E501 'link': 'link', # noqa: E501 'account_moid': 'AccountMoid', # noqa: E501 'create_time': 'CreateTime', # noqa: E501 'domain_group_moid': 'DomainGroupMoid', # noqa: E501 'mod_time': 'ModTime', # noqa: E501 'owners': 'Owners', # noqa: E501 'shared_scope': 'SharedScope', # noqa: E501 'tags': 'Tags', # noqa: E501 'version_context': 'VersionContext', # noqa: E501 'ancestors': 'Ancestors', # noqa: E501 'parent': 'Parent', # noqa: E501 'permission_resources': 'PermissionResources', # noqa: E501 'display_names': 'DisplayNames', # noqa: E501 'description': 'Description', # noqa: E501 'name': 'Name', # noqa: E501 'global_hot_spares': 'GlobalHotSpares', # noqa: E501 'm2_virtual_drive': 'M2VirtualDrive', # noqa: E501 'raid0_drive': 'Raid0Drive', # noqa: E501 'unused_disks_state': 'UnusedDisksState', # noqa: E501 'use_jbod_for_vd_creation': 'UseJbodForVdCreation', # noqa: E501 'drive_group': 'DriveGroup', # noqa: E501 'organization': 'Organization', # noqa: E501 'profiles': 'Profiles', # noqa: E501 'object_type': 'ObjectType', # noqa: E501 } required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', '_composed_instances', '_var_name_to_model_instances', '_additional_properties_model_instances', ]) @convert_js_args_to_python_args def __init__(self, *args, **kwargs): # noqa: E501 """StorageStoragePolicyRelationship - a model defined in OpenAPI Args: Keyword Args: class_id (str): The fully-qualified name of the instantiated, concrete type. This property is used as a discriminator to identify the type of the payload when marshaling and unmarshaling data.. defaults to "mo.MoRef", must be one of ["mo.MoRef", ] # noqa: E501 _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) moid (str): The Moid of the referenced REST resource.. [optional] # noqa: E501 selector (str): An OData $filter expression which describes the REST resource to be referenced. This field may be set instead of 'moid' by clients. 1. If 'moid' is set this field is ignored. 1. If 'selector' is set and 'moid' is empty/absent from the request, Intersight determines the Moid of the resource matching the filter expression and populates it in the MoRef that is part of the object instance being inserted/updated to fulfill the REST request. An error is returned if the filter matches zero or more than one REST resource. An example filter string is: Serial eq '3AA8B7T11'.. [optional] # noqa: E501 link (str): A URL to an instance of the 'mo.MoRef' class.. [optional] # noqa: E501 account_moid (str): The Account ID for this managed object.. [optional] # noqa: E501 create_time (datetime): The time when this managed object was created.. [optional] # noqa: E501 domain_group_moid (str): The DomainGroup ID for this managed object.. [optional] # noqa: E501 mod_time (datetime): The time when this managed object was last modified.. [optional] # noqa: E501 owners ([str], none_type): [optional] # noqa: E501 shared_scope (str): Intersight provides pre-built workflows, tasks and policies to end users through global catalogs. Objects that are made available through global catalogs are said to have a 'shared' ownership. Shared objects are either made globally available to all end users or restricted to end users based on their license entitlement. Users can use this property to differentiate the scope (global or a specific license tier) to which a shared MO belongs.. [optional] # noqa: E501 tags ([MoTag], none_type): [optional] # noqa: E501 version_context (MoVersionContext): [optional] # noqa: E501 ancestors ([MoBaseMoRelationship], none_type): An array of relationships to moBaseMo resources.. [optional] # noqa: E501 parent (MoBaseMoRelationship): [optional] # noqa: E501 permission_resources ([MoBaseMoRelationship], none_type): An array of relationships to moBaseMo resources.. [optional] # noqa: E501 display_names (DisplayNames): [optional] # noqa: E501 description (str): Description of the policy.. [optional] # noqa: E501 name (str): Name of the concrete policy.. [optional] # noqa: E501 global_hot_spares (str): A collection of disks that is to be used as hot spares, globally, for all the RAID groups. Allowed value is a number range separated by a comma or a hyphen.. [optional] # noqa: E501 m2_virtual_drive (StorageM2VirtualDriveConfig): [optional] # noqa: E501 raid0_drive (StorageR0Drive): [optional] # noqa: E501 unused_disks_state (str): State to which disks, not used in this policy, are to be moved. NoChange will not change the drive state. * `NoChange` - Drive state will not be modified by Storage Policy. * `UnconfiguredGood` - Unconfigured good state -ready to be added in a RAID group. * `Jbod` - JBOD state where the disks start showing up to Host OS.. [optional] if omitted the server will use the default value of "NoChange" # noqa: E501 use_jbod_for_vd_creation (bool): Disks in JBOD State are used to create virtual drives.. [optional] # noqa: E501 drive_group ([StorageDriveGroupRelationship], none_type): An array of relationships to storageDriveGroup resources.. [optional] # noqa: E501 organization (OrganizationOrganizationRelationship): [optional] # noqa: E501 profiles ([PolicyAbstractConfigProfileRelationship], none_type): An array of relationships to policyAbstractConfigProfile resources.. [optional] # noqa: E501 object_type (str): The fully-qualified name of the remote type referred by this relationship.. [optional] # noqa: E501 """ class_id = kwargs.get('class_id', "mo.MoRef") _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) constant_args = { '_check_type': _check_type, '_path_to_item': _path_to_item, '_spec_property_naming': _spec_property_naming, '_configuration': _configuration, '_visited_composed_classes': self._visited_composed_classes, } required_args = { 'class_id': class_id, } model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info( constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in kwargs.items(): if var_name in unused_args and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ not self._additional_properties_model_instances: # discard variable. continue setattr(self, var_name, var_value) @cached_property def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading lazy_import() return { 'anyOf': [ ], 'allOf': [ ], 'oneOf': [ MoMoRef, StorageStoragePolicy, none_type, ], }
py
1a4edf28936c5123621e8d1a53f4a6f7022957e2
from stix2 import MemoryStore, Filter import json from itertools import chain def query_all(srcs, filters): """return the union of a query across multiple memorystores""" return list(chain.from_iterable( src.query(filters) for src in srcs )) def get_related(srcs, src_type, rel_type, target_type, reverse=False): """build relationship mappings params: srcs: memorystores for enterprise, mobile and pre-attack, in an array src_type: source type for the relationships, e.g "attack-pattern" rel_type: relationship type for the relationships, e.g "uses" target_type: target type for the relationship, e.g "intrusion-set" reverse: build reverse mapping of target to source """ relationships = query_all(srcs, [ Filter('type', '=', 'relationship'), Filter('relationship_type', '=', rel_type), Filter('revoked', '=', False) ]) # stix_id => [ ids of objects with relationships with stix_id ] id_to_related = {} # build the dict for relationship in relationships: if (src_type in relationship.source_ref and target_type in relationship.target_ref): if (relationship.source_ref in id_to_related and not reverse) or (relationship.target_ref in id_to_related and reverse): if not reverse: id_to_related[relationship.source_ref].append({ "relationship": relationship, "id": relationship.target_ref }) else: id_to_related[relationship.target_ref].append({ "relationship": relationship, "id": relationship.source_ref }) else: if not reverse: id_to_related[relationship.source_ref] = [{ "relationship": relationship, "id": relationship.target_ref }] else: id_to_related[relationship.target_ref] = [{ "relationship": relationship, "id": relationship.source_ref }] # all objects of target type if not reverse: targets = query_all(srcs, [ Filter('type', '=', target_type), Filter('revoked', '=', False) ]) else: targets = query_all(srcs, [ Filter('type', '=', src_type), Filter('revoked', '=', False) ]) id_to_target = {} # build the dict for target in targets: id_to_target[target.id] = target output = {} for stix_id in id_to_related: value = [] for related in id_to_related[stix_id]: if not related["id"] in id_to_target: continue # targetting a revoked object value.append({ "object": json.loads(id_to_target[related["id"]].serialize()), "relationship": json.loads(related["relationship"].serialize()) }) output[stix_id] = value return output # tool:group def tools_used_by_groups(srcs): """returns group_id => {tool, relationship} for each tool used by the group. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "tool") def groups_using_tool(srcs): """returns tool_id => {group, relationship} for each group using the tool. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "tool", reverse=True) # malware:group def malware_used_by_groups(srcs): """returns group_id => {malware, relationship} for each malware used by group. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "malware") def groups_using_malware(srcs): """returns malware_id => {group, relationship} for each group using the malware. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "malware", reverse=True) # technique:group def techniques_used_by_groups(srcs): """returns group_id => {technique, relationship} for each technique used by the group. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "attack-pattern") def groups_using_technique(srcs): """returns technique_id => {group, relationship} for each group using the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "intrusion-set", "uses", "attack-pattern", reverse=True) # technique:malware def techniques_used_by_malware(srcs): """return malware => {technique, relationship} for each technique used by the malware. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "malware", "uses", "attack-pattern") def malware_using_technique(srcs): """return technique_id => {malware, relationship} for each malware using the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "malware", "uses", "attack-pattern", reverse=True) # technique:tool def techniques_used_by_tools(srcs): """return tool_id => {technique, relationship} for each technique used by the tool. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "tool", "uses", "attack-pattern") def tools_using_technique(srcs): """return technique_id => {tool, relationship} for each tool using the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "tool", "uses", "attack-pattern", reverse=True) # technique:mitigation def mitigation_mitigates_techniques(srcs): """return mitigation_id => {technique, relationship} for each technique mitigated by the mitigation. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "course-of-action", "mitigates", "attack-pattern", reverse=False) def technique_mitigated_by_mitigation(srcs): """return technique_id => {mitigation, relationship} for each mitigation of the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "course-of-action", "mitigates", "attack-pattern", reverse=True) # technique:technique def technique_related_to_technique(srcs): """return technique_id => {technique, relationship} for each technique related to the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "attack-pattern", "related-to", "attack-pattern") # technique:subtechnique def subtechniques_of(srcs): """ return technique_id => {subtechnique, relationship} for each subtechnique of the technique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "attack-pattern", "subtechnique-of", "attack-pattern", reverse=True) def parent_technique_of(srcs): """ return subtechnique_id => {technique, relationship} describing the parent technique of the subtechnique. srcs should be an array of memorystores for enterprise, mobile and pre """ return get_related(srcs, "attack-pattern", "subtechnique-of", "attack-pattern") def load(url): """Load stix data from file""" src = MemoryStore() src.load_from_file(url) return src
py
1a4edf663056aa16540bd83f1b5d03ae38ddeb8c
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-07-24 11:20 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Image', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('image', models.ImageField(upload_to='')), ('image_name', models.CharField(max_length=30)), ('image_caption', models.CharField(blank=True, max_length=30)), ('comments', models.TextField(blank=True, max_length=50)), ('likes', models.IntegerField()), ], ), migrations.CreateModel( name='Profile', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('profile_photo', models.ImageField(upload_to='profile/')), ('bio', models.TextField(blank=True, max_length=50)), ('username', models.CharField(max_length=30)), ('user', models.ForeignKey(blank=True, on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='image', name='profile', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='instagram.Profile'), ), ]
py
1a4ee09e4a254f3cc6fcb06d5b060af299da164e
# resources/srx/addrbook_finder.py import netaddr #from .zone import Zone #from .addrbook import ZoneAddrBook class AddrBookFinderResults(object): """ Helper-class to hold the results of a :ZoneAddrFind.find(): invocation """ def __init__(self, ab, find, results): self._ab = ab self._find = find self._results = results self.sets = [] @property def lpm(self): """ The longest-prefix-matching address is the last one in the results list. This fact is a result of the :ZoneAddrFinder.find(): sorted call """ return self._results[-1][0] @property def items(self): """ Return a list of the matching address items and sets """ return self.addrs + self.sets @property def addrs(self): """ Return a list of the matching address items """ # return a list of names return [x[0] for x in self._results] @property def matching(self): """ Returns the string value of the original querried address presented to the find() method """ return self._find def __repr__(self): """ Provides the matching value and the zone name associated with this results """ return "%s(%s in %s)" % ( self.__class__.__name__, self._find, self._ab.name) class AddrBookFinder(object): # ------------------------------------------------------------------------- # CONSTRUCTOR # ------------------------------------------------------------------------- def __init__(self, addr_book): """ addr_book Either a ZoneAddrBook or SharedAddrBook instance """ self._ab = addr_book self._index = None def __repr__(self): return "AddrBookFinder(%s)" % self._ab.name def compile(self): """ Compile a list of netaddr objects against the catalog of address items """ # create a tuple of (addr-name, netaddr) for each of the items in the # address-book self._index = [(name, netaddr.IPNetwork(addr['ip_prefix'])) for name, addr in self._ab.addr.catalog.items()] def find(self, addr, sets=True): """ Given an ip or ip_prefix locate the matching address book address and address-set items. """ # if the caller hasn't explicity invoked :compile(): to create the # netaddr objects, then do that now. if self._index is None: self.compile() # convert the provided :addr: into a netaddr object and then # to a subnet match to find address entries. the matching # values will be sorted with longest prefix matching to be # last in the list ip = netaddr.IPNetwork(addr).ip # is ip in the subnet? in_net = lambda i: ip & i[1].netmask == i[1].network # used to sort by prefix-length by_pflen = lambda a, b: cmp(a[1].prefixlen, b[1].prefixlen) r = sorted( filter( in_net, self._index), cmp=by_pflen) # find/sort if r is None: return None # now that we have some matching entries, we should find which # address-set items uses the items results = AddrBookFinderResults(self._ab, addr, r) if sets is True: results.sets = self.find_sets(results) # return the results object return results def find_sets(self, r): """ Given a :AddrBookFinderResults: object, which contains the list of matching address items, locate the list of address-set objects that use those items """ catalog = self._ab.set.catalog in_addr = lambda i: i in v['addr_list'] sets = [k for k, v in catalog.items() if filter(in_addr, r.addrs)] in_set = lambda i: i in v['set_list'] subsets = [k for k, v in catalog.items() if filter(in_set, sets)] return sets + subsets
py
1a4ee0d905a10d6e03cb980ae0cf8547cfdc2406
# dataset settings dataset_type = "PascalContextDataset" data_root = "data/VOCdevkit/VOC2010/" img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True ) img_scale = (512, 512) crop_size = (512, 512) max_ratio = 8 train_pipeline = [ dict(type="LoadImageFromFile"), dict(type="LoadAnnotations"), dict(type="Resize", img_scale=img_scale, ratio_range=(0.5, 2.0)), dict(type="RandomCrop", crop_size=crop_size, cat_max_ratio=0.75), dict(type="RandomFlip", prob=0.5), dict(type="PhotoMetricDistortion"), dict(type="Normalize", **img_norm_cfg), dict(type="Pad", size=crop_size, pad_val=0, seg_pad_val=255), dict(type="DefaultFormatBundle"), dict(type="Collect", keys=["img", "gt_semantic_seg"]), ] val_pipeline = [ dict(type="LoadImageFromFile"), dict( type="MultiScaleFlipAug", img_scale=(512 * max_ratio, 512), flip=False, transforms=[ dict(type="Resize", keep_ratio=True), dict(type="RandomFlip"), dict(type="Normalize", **img_norm_cfg), dict(type="ImageToTensor", keys=["img"]), dict(type="Collect", keys=["img"]), ], ), ] test_pipeline = [ dict(type="LoadImageFromFile"), dict( type="MultiScaleFlipAug", img_scale=(512 * max_ratio, 512), flip=False, transforms=[ dict(type="Resize", keep_ratio=True), dict(type="RandomFlip"), dict(type="Normalize", **img_norm_cfg), dict(type="ImageToTensor", keys=["img"]), dict(type="Collect", keys=["img"]), ], ), ] data = dict( samples_per_gpu=4, workers_per_gpu=4, train=dict( type=dataset_type, data_root=data_root, img_dir="JPEGImages", ann_dir="SegmentationClassContext", split="ImageSets/SegmentationContext/train.txt", pipeline=train_pipeline, ), val=dict( type=dataset_type, data_root=data_root, img_dir="JPEGImages", ann_dir="SegmentationClassContext", split="ImageSets/SegmentationContext/val.txt", pipeline=val_pipeline, ), test=dict( type=dataset_type, data_root=data_root, img_dir="JPEGImages", ann_dir="SegmentationClassContext", split="ImageSets/SegmentationContext/val.txt", pipeline=test_pipeline, ), )
py
1a4ee0f701305ba18e9c737f4c236dadcf014a0c
# encoding: utf8 from __future__ import unicode_literals from django.db import models, migrations import autoslug.fields import cities_light.models class Migration(migrations.Migration): dependencies = [ ('cities_light', '0001_initial'), ] operations = [ migrations.CreateModel( name='City', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name_ascii', models.CharField(db_index=True, max_length=200, blank=True)), ('slug', autoslug.fields.AutoSlugField(editable=False)), ('geoname_id', models.IntegerField(unique=True, null=True, blank=True)), ('alternate_names', models.TextField(default='', null=True, blank=True)), ('name', models.CharField(max_length=200, db_index=True)), ('display_name', models.CharField(max_length=200)), ('search_names', cities_light.models.ToSearchTextField(default='', max_length=4000, db_index=True, blank=True)), ('latitude', models.DecimalField(null=True, max_digits=8, decimal_places=5, blank=True)), ('longitude', models.DecimalField(null=True, max_digits=8, decimal_places=5, blank=True)), ('region', models.ForeignKey(to_field='id', blank=True, to='cities_light.Region', null=True)), ('country', models.ForeignKey(to='cities_light.Country', to_field='id')), ('population', models.BigIntegerField(db_index=True, null=True, blank=True)), ('feature_code', models.CharField(db_index=True, max_length=10, null=True, blank=True)), ], options={ 'ordering': ['name'], 'unique_together': set([('region', 'name'), ('region', 'slug')]), 'abstract': False, 'verbose_name_plural': 'cities', }, bases=(models.Model,), ), ]
py
1a4ee15095fdb5f5e06528bf418ea03f0cdf0e0a
from django.shortcuts import render from .models import Story from home.views import cart_size, get_valid_user_data # Create your views here. def show_story(request): data = { 'cart_size' : cart_size(request), 'valid_user': get_valid_user_data(request), 'title': Story.objects.get(pk=1), 'section_1': Story.objects.get(pk=2), 'section_2': Story.objects.get(pk=3), 'section_3': Story.objects.get(pk=4), 'section_4': Story.objects.get(pk=5), 'section_5': Story.objects.get(pk=6), 'section_6': Story.objects.get(pk=7), } return render(request, "story.html", data)
py
1a4ee2293ae4e03d9166ccddd4779c6fe5a3470c
from flask import Flask,request, url_for, redirect, render_template import pickle import numpy as np app = Flask(__name__) test=pickle.load(open('test1.pkl','rb')) @app.route('/') def hello_world(): return render_template("t.html") @app.route('/predict',methods=['POST','GET']) def predict(): int_features=[int(x) for x in request.form.values()] final=[np.array(int_features)] print(int_features) print(final) prediction=test.predict(final) if prediction == 0: return render_template('t.html',pred="\t\t\t\t\tProbability of accident severity is : Minor") else: return render_template('t.html',pred="\t\t\t\t\tProbability of accident severity is : Major") @app.route('/Map') def map1(): return render_template("map.html") @app.route('/Graphs') def graph(): return render_template("graph.html") @app.route('/Map1') def map2(): return render_template("ur.html") @app.route('/Map2') def map3(): return render_template("bs.html") @app.route('/Map3') def map4(): return render_template("hm.html") @app.route('/Pie') def pie(): return render_template("pie.html") if __name__=="__main__": app.run()
py
1a4ee25fcd3f8a66d9e4a41df96bfdac2275a1aa
############################################################# ## ## ## Copyright (c) 2003-2017 by The University of Queensland ## ## Centre for Geoscience Computing ## ## http://earth.uq.edu.au/centre-geoscience-computing ## ## ## ## Primary Business: Brisbane, Queensland, Australia ## ## Licensed under the Open Software License version 3.0 ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## ## ############################################################# """ Defines the L{ImageFormat} class and functions for mapping a file name extension to an associated C{ImageFormat} object. """ import os import os.path class ImageFormat(object): """ Class representing an image format. """ def __init__(self, name): """ Constructor. @type name: str @param name: Name assigned to this image format. """ self.name = name def getName(self): """ Returns the name associated with this image format. @rtype: str """ return self.name def __str__(self): return self.getName() PNG = ImageFormat("PNG") PNM = ImageFormat("PNM") _nameFormatDict = dict() _nameFormatDict[str.upper(str(PNG))] = PNG _nameFormatDict[str.upper(str(PNM))] = PNM def _getDelimitedFormatNameString(): return ", ".join(map(str,list(_nameFormatDict.keys()))) def getFormatFromName(formatName, ext=None): """ Returns the C{{ImageFormat}} object which corresponds to a specified image-format name (string). @type formatName: str @param formatName: The name of an image format, one of: {0:s} @type ext: str @param ext: File name extension for error message string. """.format(_getDelimitedFormatNameString()) if str.upper(formatName) in _nameFormatDict: return _nameFormatDict[str.upper(formatName)] raise \ ValueError( ( "No image format found which matched extension '{0:s}';" + " valid image file formats are: {1:s}" ).format(ext, _getDelimitedFormatNameString()) ) def getFormatFromExtension(fileName): """ Returns the C{ImageFormat} object which corresponds to a specified file name. Uses the C{fileName} extension to try and deduce the corresponding C{ImageFormat} object. @type fileName: str @param fileName: A file name. @rtype: C{ImageFormat} @return: An C{ImageFormat} object corresponding to the specified file name (and corresponding file name extension). """ (base, ext) = os.path.splitext(fileName) if (len(ext) > 0): formatName = str.lstrip(ext, ".") else: raise ValueError( "Could not determine image format from file " + "name " + fileName + ", no extension." ) return getFormatFromName(formatName, ext)
py
1a4ee28baef5afe0460398e82cc5a4f7774f5e87
from InquirerPy.utils import color_print import sys, psutil, time, cursor, valclient, ctypes, traceback, os, subprocess from .utilities.killable_thread import Thread from .utilities.config.app_config import Config from .utilities.config.modify_config import Config_Editor from .utilities.processes import Processes from .utilities.rcs import Riot_Client_Services from .utilities.systray import Systray from .utilities.version_checker import Checker from .utilities.logging import Logger from .utilities.program_data import Program_Data from .localization.localization import Localizer from .presence.presence import Presence from .webserver import server # weird console window management stuff kernel32 = ctypes.WinDLL('kernel32') user32 = ctypes.WinDLL('user32') hWnd = kernel32.GetConsoleWindow() kernel32.SetConsoleMode(kernel32.GetStdHandle(-10), (0x4|0x80|0x20|0x2|0x10|0x1|0x00|0x100)) #disable inputs to console kernel32.SetConsoleMode(kernel32.GetStdHandle(-11), 7) #allow for ANSI sequences class Startup: def __init__(self): if not Processes.is_program_already_running(): cursor.hide() Logger.create_logger() Program_Data.update_file_location() self.config = Config.fetch_config() if "locale" in self.config.keys(): if self.config["locale"][0] == "": config = Localizer.prompt_locale(self.config) Config.modify_config(config) Systray.restart() self.installs = Program_Data.fetch_installs() Localizer.set_locale(self.config) self.config = Config.check_config() Localizer.config = self.config Logger.debug(self.config) self.client = None if Localizer.get_config_value("region",0) == "": # try to autodetect region on first launch self.check_region() ctypes.windll.kernel32.SetConsoleTitleW(f"valorant-rpc {Localizer.get_config_value('version')}") color_print([("Red", Localizer.get_localized_text("prints","startup","wait_for_rpc"))]) try: self.presence = Presence(self.config) Startup.clear_line() except Exception as e: traceback.print_exc() color_print([("Cyan",f"{Localizer.get_localized_text('prints','startup','discord_not_detected')} ({e})")]) if not Processes.are_processes_running(): color_print([("Red", Localizer.get_localized_text("prints","startup","starting_valorant"))]) self.start_game() os._exit(1) self.run() def run(self): self.presence.update_presence("startup") Checker.check_version(self.config) if not Processes.are_processes_running(): color_print([("Red", Localizer.get_localized_text("prints","startup","starting_valorant"))]) self.start_game() self.setup_client() self.systray = Systray(self.client,self.config) self.dispatch_systray() if self.client.fetch_presence() is None: self.wait_for_presence() self.check_run_cli() self.dispatch_presence() self.dispatch_webserver() color_print([("LimeGreen",f"{Localizer.get_localized_text('prints','startup','startup_successful')}\n")]) time.sleep(5) user32.ShowWindow(hWnd, 0) #hide window self.systray_thread.join() self.presence_thread.stop() def dispatch_webserver(self): server.client = self.client server.config = self.config self.webserver_thread = Thread(target=server.start,daemon=True) self.webserver_thread.start() def dispatch_presence(self): self.presence_thread = Thread(target=self.presence.main_loop,daemon=True) self.presence_thread.start() def dispatch_systray(self): self.systray_thread = Thread(target=self.systray.run) self.systray_thread.start() def setup_client(self): self.client = valclient.Client(region=Localizer.get_config_value("region",0)) self.client.activate() self.presence.client = self.client def wait_for_presence(self): presence_timeout = Localizer.get_config_value("startup","presence_timeout") presence_timer = 0 print() while self.client.fetch_presence() is None: Startup.clear_line() color_print([("Cyan", "["),("White",f"{presence_timer}"),("Cyan", f"] {Localizer.get_localized_text('prints','startup','waiting_for_presence')}")]) presence_timer += 1 if presence_timer >= presence_timeout: self.systray.exit() os._exit(1) time.sleep(1) Startup.clear_line() Startup.clear_line() def start_game(self): path = Riot_Client_Services.get_rcs_path() launch_timeout = Localizer.get_config_value("startup","game_launch_timeout") launch_timer = 0 psutil.subprocess.Popen([path, "--launch-product=valorant", "--launch-patchline=live"]) print() while not Processes.are_processes_running(): Startup.clear_line() color_print([("Cyan", "["),("White",f"{launch_timer}"),("Cyan", f"] {Localizer.get_localized_text('prints','startup','waiting_for_valorant')}")]) launch_timer += 1 if launch_timer >= launch_timeout: self.systray.exit() os._exit(1) time.sleep(1) Startup.clear_line() def check_run_cli(self): if Localizer.get_config_value("startup","auto_launch_skincli"): skincli_path = self.installs.get("valorant-skin-cli") if skincli_path is not None: subprocess.Popen(f"start {skincli_path}", shell=True) def check_region(self): color_print([("Red bold",Localizer.get_localized_text("prints","startup","autodetect_region"))]) client = valclient.Client(region="na") client.activate() sessions = client.riotclient_session_fetch_sessions() for _,session in sessions.items(): if session["productId"] == "valorant": launch_args = session["launchConfiguration"]["arguments"] for arg in launch_args: if "-ares-deployment" in arg: region = arg.replace("-ares-deployment=","") self.config[Localizer.get_config_key("region")][0] = region Config.modify_config(self.config) color_print([("LimeGreen",f"{Localizer.get_localized_text('prints','startup','autodetected_region')} {Localizer.get_config_value('region',0)}")]) time.sleep(5) Systray.restart() @staticmethod def clear_line(): sys.stdout.write("\033[F") # move cursor up one line sys.stdout.write("\r\033[K")
py
1a4ee2bdbbbe9c5c6b6c6dde9718ad62056554f7
# Copyright (C) Dnspython Contributors, see LICENSE for text of ISC license # Copyright (C) 2003-2007, 2009-2011 Nominum, Inc. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose with or without fee is hereby granted, # provided that the above copyright notice and this permission notice # appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND NOMINUM DISCLAIMS ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL NOMINUM BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. import struct import dns.exception import dns.immutable import dns.rdata _pows = tuple(10**i for i in range(0, 11)) # default values are in centimeters _default_size = 100.0 _default_hprec = 1000000.0 _default_vprec = 1000.0 # for use by from_wire() _MAX_LATITUDE = 0x80000000 + 90 * 3600000 _MIN_LATITUDE = 0x80000000 - 90 * 3600000 _MAX_LONGITUDE = 0x80000000 + 180 * 3600000 _MIN_LONGITUDE = 0x80000000 - 180 * 3600000 def _exponent_of(what, desc): if what == 0: return 0 exp = None for (i, pow) in enumerate(_pows): if what < pow: exp = i - 1 break if exp is None or exp < 0: raise dns.exception.SyntaxError("%s value out of bounds" % desc) return exp def _float_to_tuple(what): if what < 0: sign = -1 what *= -1 else: sign = 1 what = round(what * 3600000) # pylint: disable=round-builtin degrees = int(what // 3600000) what -= degrees * 3600000 minutes = int(what // 60000) what -= minutes * 60000 seconds = int(what // 1000) what -= int(seconds * 1000) what = int(what) return (degrees, minutes, seconds, what, sign) def _tuple_to_float(what): value = float(what[0]) value += float(what[1]) / 60.0 value += float(what[2]) / 3600.0 value += float(what[3]) / 3600000.0 return float(what[4]) * value def _encode_size(what, desc): what = int(what) exponent = _exponent_of(what, desc) & 0xF base = what // pow(10, exponent) & 0xF return base * 16 + exponent def _decode_size(what, desc): exponent = what & 0x0F if exponent > 9: raise dns.exception.FormError("bad %s exponent" % desc) base = (what & 0xF0) >> 4 if base > 9: raise dns.exception.FormError("bad %s base" % desc) return base * pow(10, exponent) def _check_coordinate_list(value, low, high): if value[0] < low or value[0] > high: raise ValueError(f'not in range [{low}, {high}]') if value[1] < 0 or value[1] > 59: raise ValueError('bad minutes value') if value[2] < 0 or value[2] > 59: raise ValueError('bad seconds value') if value[3] < 0 or value[3] > 999: raise ValueError('bad milliseconds value') if value[4] != 1 and value[4] != -1: raise ValueError('bad hemisphere value') @dns.immutable.immutable class LOC(dns.rdata.Rdata): """LOC record""" # see: RFC 1876 __slots__ = ['latitude', 'longitude', 'altitude', 'size', 'horizontal_precision', 'vertical_precision'] def __init__(self, rdclass, rdtype, latitude, longitude, altitude, size=_default_size, hprec=_default_hprec, vprec=_default_vprec): """Initialize a LOC record instance. The parameters I{latitude} and I{longitude} may be either a 4-tuple of integers specifying (degrees, minutes, seconds, milliseconds), or they may be floating point values specifying the number of degrees. The other parameters are floats. Size, horizontal precision, and vertical precision are specified in centimeters.""" super().__init__(rdclass, rdtype) if isinstance(latitude, int): latitude = float(latitude) if isinstance(latitude, float): latitude = _float_to_tuple(latitude) _check_coordinate_list(latitude, -90, 90) self.latitude = tuple(latitude) if isinstance(longitude, int): longitude = float(longitude) if isinstance(longitude, float): longitude = _float_to_tuple(longitude) _check_coordinate_list(longitude, -180, 180) self.longitude = tuple(longitude) self.altitude = float(altitude) self.size = float(size) self.horizontal_precision = float(hprec) self.vertical_precision = float(vprec) def to_text(self, origin=None, relativize=True, **kw): if self.latitude[4] > 0: lat_hemisphere = 'N' else: lat_hemisphere = 'S' if self.longitude[4] > 0: long_hemisphere = 'E' else: long_hemisphere = 'W' text = "%d %d %d.%03d %s %d %d %d.%03d %s %0.2fm" % ( self.latitude[0], self.latitude[1], self.latitude[2], self.latitude[3], lat_hemisphere, self.longitude[0], self.longitude[1], self.longitude[2], self.longitude[3], long_hemisphere, self.altitude / 100.0 ) # do not print default values if self.size != _default_size or \ self.horizontal_precision != _default_hprec or \ self.vertical_precision != _default_vprec: text += " {:0.2f}m {:0.2f}m {:0.2f}m".format( self.size / 100.0, self.horizontal_precision / 100.0, self.vertical_precision / 100.0 ) return text @classmethod def from_text(cls, rdclass, rdtype, tok, origin=None, relativize=True, relativize_to=None): latitude = [0, 0, 0, 0, 1] longitude = [0, 0, 0, 0, 1] size = _default_size hprec = _default_hprec vprec = _default_vprec latitude[0] = tok.get_int() t = tok.get_string() if t.isdigit(): latitude[1] = int(t) t = tok.get_string() if '.' in t: (seconds, milliseconds) = t.split('.') if not seconds.isdigit(): raise dns.exception.SyntaxError( 'bad latitude seconds value') latitude[2] = int(seconds) l = len(milliseconds) if l == 0 or l > 3 or not milliseconds.isdigit(): raise dns.exception.SyntaxError( 'bad latitude milliseconds value') if l == 1: m = 100 elif l == 2: m = 10 else: m = 1 latitude[3] = m * int(milliseconds) t = tok.get_string() elif t.isdigit(): latitude[2] = int(t) t = tok.get_string() if t == 'S': latitude[4] = -1 elif t != 'N': raise dns.exception.SyntaxError('bad latitude hemisphere value') longitude[0] = tok.get_int() t = tok.get_string() if t.isdigit(): longitude[1] = int(t) t = tok.get_string() if '.' in t: (seconds, milliseconds) = t.split('.') if not seconds.isdigit(): raise dns.exception.SyntaxError( 'bad longitude seconds value') longitude[2] = int(seconds) l = len(milliseconds) if l == 0 or l > 3 or not milliseconds.isdigit(): raise dns.exception.SyntaxError( 'bad longitude milliseconds value') if l == 1: m = 100 elif l == 2: m = 10 else: m = 1 longitude[3] = m * int(milliseconds) t = tok.get_string() elif t.isdigit(): longitude[2] = int(t) t = tok.get_string() if t == 'W': longitude[4] = -1 elif t != 'E': raise dns.exception.SyntaxError('bad longitude hemisphere value') t = tok.get_string() if t[-1] == 'm': t = t[0: -1] altitude = float(t) * 100.0 # m -> cm tokens = tok.get_remaining(max_tokens=3) if len(tokens) >= 1: value = tokens[0].unescape().value if value[-1] == 'm': value = value[0: -1] size = float(value) * 100.0 # m -> cm if len(tokens) >= 2: value = tokens[1].unescape().value if value[-1] == 'm': value = value[0: -1] hprec = float(value) * 100.0 # m -> cm if len(tokens) >= 3: value = tokens[2].unescape().value if value[-1] == 'm': value = value[0: -1] vprec = float(value) * 100.0 # m -> cm # Try encoding these now so we raise if they are bad _encode_size(size, "size") _encode_size(hprec, "horizontal precision") _encode_size(vprec, "vertical precision") return cls(rdclass, rdtype, latitude, longitude, altitude, size, hprec, vprec) def _to_wire(self, file, compress=None, origin=None, canonicalize=False): milliseconds = (self.latitude[0] * 3600000 + self.latitude[1] * 60000 + self.latitude[2] * 1000 + self.latitude[3]) * self.latitude[4] latitude = 0x80000000 + milliseconds milliseconds = (self.longitude[0] * 3600000 + self.longitude[1] * 60000 + self.longitude[2] * 1000 + self.longitude[3]) * self.longitude[4] longitude = 0x80000000 + milliseconds altitude = int(self.altitude) + 10000000 size = _encode_size(self.size, "size") hprec = _encode_size(self.horizontal_precision, "horizontal precision") vprec = _encode_size(self.vertical_precision, "vertical precision") wire = struct.pack("!BBBBIII", 0, size, hprec, vprec, latitude, longitude, altitude) file.write(wire) @classmethod def from_wire_parser(cls, rdclass, rdtype, parser, origin=None): (version, size, hprec, vprec, latitude, longitude, altitude) = \ parser.get_struct("!BBBBIII") if version != 0: raise dns.exception.FormError("LOC version not zero") if latitude < _MIN_LATITUDE or latitude > _MAX_LATITUDE: raise dns.exception.FormError("bad latitude") if latitude > 0x80000000: latitude = (latitude - 0x80000000) / 3600000 else: latitude = -1 * (0x80000000 - latitude) / 3600000 if longitude < _MIN_LONGITUDE or longitude > _MAX_LONGITUDE: raise dns.exception.FormError("bad longitude") if longitude > 0x80000000: longitude = (longitude - 0x80000000) / 3600000 else: longitude = -1 * (0x80000000 - longitude) / 3600000 altitude = float(altitude) - 10000000.0 size = _decode_size(size, "size") hprec = _decode_size(hprec, "horizontal precision") vprec = _decode_size(vprec, "vertical precision") return cls(rdclass, rdtype, latitude, longitude, altitude, size, hprec, vprec) @property def float_latitude(self): "latitude as a floating point value" return _tuple_to_float(self.latitude) @property def float_longitude(self): "longitude as a floating point value" return _tuple_to_float(self.longitude)
py
1a4ee54abafbf9efecd45766d5fd2dca856e2139
from backend.blockchain.block import Block from backend.wallet.transactions import Transaction from backend.wallet.wallet import Wallet from backend.config import MINING_REWARD_INPUT class Blockchain: def __init__(self): self.chain = [Block.genesis()] def add_block(self, data): self.chain.append(Block.mine_block(self.chain[-1], data)) def __repr__(self): return f'Blockchain: {self.chain}' def replace_chain(self, chain): if len(chain) <= len(self.chain): raise Exception('Cannot replace. The incoming chain must be longer') try: Blockchain.is_valid_chain(chain) except Exception as e: raise Exception(f'Cannot replace. The incoming chain is invalid: {e}') self.chain = chain def to_json(self): return list(map(lambda block: block.to_json(), self.chain)) @staticmethod def from_json(chain_json): blockchain = Blockchain() blockchain.chain = list( map(lambda block_json: Block.from_json(block_json), chain_json) ) return blockchain @staticmethod def is_valid_chain(chain): if chain[0] != Block.genesis(): raise Exception('The genesis block must be valid') for i in range(1, len(chain)): block = chain[i] last_block = chain[i-1] Block.is_valid_block(last_block, block) Blockchain.is_valid_transaction_chain(chain) @staticmethod def is_valid_transaction_chain(chain): transaction_ids = set() for i in range(len(chain)): block = chain[i] has_mining_reward = False for transaction_json in block.data: transaction = Transaction.from_json(transaction_json) if transaction.id in transaction_ids: raise Exception(f'Transaction {transaction.id} is not unique') transaction_ids.add(transaction.id) if transaction.input == MINING_REWARD_INPUT: if has_mining_reward: raise Exception( 'There can be only one mining reward per block. '\ f'Check block with hash: {block.hash}' ) has_mining_reward = True else: historic_blockchain = Blockchain() historic_blockchain.chain = chain[0:i] historic_balance = Wallet.calculate_balance( historic_blockchain, transaction.input['address'] ) if historic_balance != transaction.input['amount']: raise Exception(f'Transaction {transaction.id} has an invalid input amount') transaction.is_valid_transaction(transaction) def main(): blockchain = Blockchain() blockchain.add_block('one') blockchain.add_block('two') print(blockchain) print(f'blockchain.py ___name__: {__name__}') if __name__ == '__main__': main()
py
1a4ee5b77d68a621a69eea8b1a6064272fae7fbd
# coding: utf8 # !/usr/bin/env python import hunspell import pandas as pd from math import log import matplotlib.pyplot as plt import seaborn as sns import codecs import pickle import re import unicodedata from ast import literal_eval def getScriptPath(): return "/home/alexis/Documents/EPFL/MS3/Project/python" def getIdxOfWord(ws, w): """Return index of word in sentence""" try: wIdx = ws.index(w) except: wIdx = -1 return wIdx def stem(stemmer, word): """ Computes a possible stem for a given word :param word: string The word to be stemmed :return: string The last possible stem in list, or the word itself if no stem found """ wstem = stemmer.stem(word) if len(wstem) > 0: # and wstem[-1] not in stopwords return unicode(wstem[-1], 'utf8') else: return word def storeCount(array, key): """Increments value for key in store by one, or sets to 1 if key nonexistent.""" if key in array: array[key] += 1 else: array[key] = 1 def storeIncrement(store, key, incr): """ Increment value for key in store by given increment. :param incr: float """ if key in store: store[key] += incr else: store[key] = incr def idxForMaxKeyValPair(array): maxV = array[0][1] i = 0 maxVIdx = 0 for k, v in array: if v > maxV: maxV = v maxVIdx = i i += 1 return maxVIdx def keyForMaxValue(_dict): maxK = '' maxV = 0 for k, v in _dict.iteritems(): if v > maxV: maxV = v maxK = k return maxK def sortUsingList(tosort, reflist): """ Sorts tosort by order of reflist. Example: tosort: ['a', 'b', 'c'], reflist: [1, 3, 2] Return: ['a', 'c', 'b'] :param tosort: :param reflist: :return: """ return [x for (y, x) in sorted(zip(reflist, tosort))] def sortNTopByVal(tosort, top, descending=False): """ Sort dictionary by descending values and return top elements. Return list of tuples. """ return sorted([(k, v) for k, v in tosort.items()], key=lambda x: x[1], reverse=descending)[:top] def buildSentsByChar(chars, sents): """ NOT NEEDED ANY MORE Build map of chars to list of indices where characters occur in sents. """ char_sent_map = dict.fromkeys(chars, list()) for ix, sent in enumerate(sents): for char, ix_lst in char_sent_map.iteritems(): if char in sent['nostop']: ix_lst.append(ix) return char_sent_map def writeData(bookfile, char_list, wsent, sentences): """ Write data relevant to book to pickle files """ file_prefix = '../books-txt/predicted-data/' name_prefix = bookfile.split('/')[-1][:-4] # TODO get without .txt # write list to file, one element per line with codecs.open(file_prefix + name_prefix + '-chars.p', mode='wb') as f: pickle.dump(char_list, f) # write characters sentences dict to file in json format with codecs.open(file_prefix + name_prefix + '-charsents.p', mode='wb') as f: pickle.dump(wsent, f) # write sentences dict to file in json format with codecs.open(file_prefix + name_prefix + '-sents.p', mode='wb') as f: pickle.dump(sentences, f) def getSurroundings(array, idx, window=2): """ Return words +-2 from idx """ surroundings = [] if idx > 1: surroundings.append(array[idx - 2]) else: surroundings.append('---') if idx > 0: surroundings.append(array[idx - 1]) else: surroundings.append('---') if idx < len(array) - 1: surroundings.append(array[idx + 1]) else: surroundings.append('---') if idx < len(array) - 2: surroundings.append(array[idx + 2]) else: surroundings.append('---') return surroundings def getWindow(lst, index, window): """ :param lst: Some list :param index: index at senter of window :param window: window size -> +- window on each side Total size of 2*window+1 """ min_idx = index-window if index-window >= 0 else 0 max_idx = index+window if index+window < len(lst) else len(lst)-1 return range(min_idx, max_idx+1) def removeAccents(in_str): encoding = "utf-8" if(is_ascii(in_str)): in_str = in_str.decode(encoding) in_str = unicodedata.normalize('NFKD', in_str) in_str = in_str.encode('ASCII', 'ignore') return in_str def is_ascii(mystr): try: mystr.decode('ascii') return True except UnicodeDecodeError: return False def camelSplit(name): """ Returns the string split if written in Camel case """ return re.sub('(?!^)([A-Z][a-z]+)', r' \1', name).split() def objFromByte(r): try: return literal_eval(r.content.decode('utf-8')) except ValueError: return None
py
1a4ee5e445d720d82b5349f1982a641b0ea91a05
#!/usr/bin/env python3 # # This file is part of GreatFET from __future__ import print_function import ast import argparse from greatfet.utils import GreatFETArgumentParser, log_silent, log_verbose def int_auto_base(s): """ Allows the user to pass an integer argument on the command line e.g. in decimal, or in hex with 0x notation. Used with argparse like `type=int_auto_base`, since argparse's `type` argument accepts any function. """ # base=0 means autodetect the base from the prefix (if any). return int(s, base=0) def main(): # Set up a simple argument parser. parser = GreatFETArgumentParser(description="""Utility for chipcon debugging via GreatFET (See /firmware/common/swra.c for pin mappings)""", verbose_by_default=True) parser.add_argument('--chip-id', action='store_true', # Short options (one dash) should always be one letter help="Print the chip ID of the connected device.") parser.add_argument('-a', '--address', dest='address', metavar='<n>', type=int_auto_base, help="Starting address (default: 0)", default=0) parser.add_argument('-l', '--length', dest='length', metavar='<n>', type=int_auto_base, help="Length of data to read") parser.add_argument('-r', '--read', metavar='<filename>', type=argparse.FileType('wb'), help="Read data into file") parser.add_argument('--no-erase', dest='erase', default=True, action='store_false', help="Do not erase the flash before performing a write operation") parser.add_argument('--no-verify', dest='verify', action='store_false', default=True, help="Do not verify the flash after performing a write operation") parser.add_argument('-E', '--mass-erase', action='store_true', help="Erase the entire flash memory") parser.add_argument('-w', '--write', metavar='<filename>', type=argparse.FileType('rb'), help="Write data from file") args = parser.parse_args() log_function = log_verbose if args.verbose else log_silent device = parser.find_specified_device() chipcon = device.create_programmer('chipcon') chipcon.debug_init() if args.chip_id: chip_id(chipcon) if args.read: if not args.length: parser.error("argument -s/--length: expected one argument") read_flash(chipcon, args.read, args.address, args.length, log_function) if args.mass_erase: mass_erase_flash(chipcon, log_function) if args.write: program_flash(chipcon, args.write, args.address, args.erase, args.verify, log_function) def chip_id(programmer): print("Chip ID:", programmer.get_chip_id()) def read_flash(programmer, out_file, start_address, length, log_function): log_function("Reading {} bytes starting at address {:02x}...".format(length, start_address)) data = programmer.read_flash(start_address=start_address, length=length) out_file.write(data) def mass_erase_flash(programmer, log_function): log_function("Erasing entire flash...") programmer.mass_erase_flash() def program_flash(programmer, in_file, start_address, erase, verify, log_function): log_function("Writing data to flash...") image_array = in_file.read() programmer.program_flash(image_array, erase=erase, verify=verify, start=start_address) if __name__ == '__main__': main()
py
1a4ee5f33ac952a69269f886fd9349a367c49c4e
# Copyright 2019 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ros2cli.node.strategy import add_arguments from ros2cli.node.strategy import NodeStrategy from ros2component.api import container_node_name_completer from ros2component.api import find_container_node_names from ros2component.api import get_components_in_container from ros2component.api import get_components_in_containers from ros2component.verb import VerbExtension from ros2node.api import get_node_names class ListVerb(VerbExtension): """Output a list of running containers and components.""" def add_arguments(self, parser, cli_name): add_arguments(parser) argument = parser.add_argument( 'container_node_name', nargs='?', default=None, help='Name of the container node to list components from') argument.completer = container_node_name_completer parser.add_argument( '--containers-only', action='store_true', help='List found containers nodes only') def main(self, *, args): with NodeStrategy(args) as node: container_node_names = find_container_node_names( node=node, node_names=get_node_names(node=node) ) if args.container_node_name is not None: if args.container_node_name not in [n.full_name for n in container_node_names]: return "Unable to find container node '" + args.container_node_name + "'" if not args.containers_only: ok, outcome = get_components_in_container( node=node, remote_container_node_name=args.container_node_name ) if not ok: return f'{outcome} when listing components in {args.container_node_name}' if any(outcome): print(*[ f'{component.uid} {component.name}' for component in outcome ], sep='\n') else: results = get_components_in_containers(node=node, remote_containers_node_names=[ n.full_name for n in container_node_names ]) for container_node_name, (ok, outcome) in results.items(): print(container_node_name) if not args.containers_only: if not ok: print(f'{outcome} when listing components') continue if any(outcome): print(*[ f' {component.uid} {component.name}' for component in outcome ], sep='\n')
py
1a4ee64a0df471118e1fd37ef09181500b43edfd
![Callysto.ca Banner](https://github.com/callysto/curriculum-notebooks/blob/master/callysto-notebook-banner-top.jpg?raw=true) <a href="https://hub.callysto.ca/jupyter/hub/user-redirect/git-pull?repo=https%3A%2F%2Fgithub.com%2Fcallysto%2Fcurriculum-notebooks&branch=master&subPath=Mathematics/PythagoreanTheorem/pythagorean-theorem.ipynb&depth=1" target="_parent"><img src="https://raw.githubusercontent.com/callysto/curriculum-notebooks/master/open-in-callysto-button.svg?sanitize=true" width="123" height="24" alt="Open in Callysto"/></a> %%html <script> function code_toggle() { if (code_shown){ $('div.input').hide('500'); $('#toggleButton').val('Show Code') } else { $('div.input').show('500'); $('#toggleButton').val('Hide Code') } code_shown = !code_shown } $( document ).ready(function(){ code_shown=false; $('div.input').hide() }); </script> <form action="javascript:code_toggle()"><input type="submit" id="toggleButton" value="Show Code"></form> from IPython.display import Image from IPython.display import IFrame import ipywidgets as widgets import IPython # Pythagorean Theorem This notebook will cover the Pythagorean theorem, including its applications and a proof of the theorem. **Note:** You should have a solid understanding of square roots and squaring numbers before moving on to this notebook. This notebook assumes you know these concepts, though it also gives more practice of these concepts. ## Introduction Say you have 2 sides of a right angle triangle and are trying to figure out the third. How can we do this? Thankfully that's where the Pythagorean theorem comes in! <img style="float: right;" src="images/PythagoreanTriangle.png" width="50%" height="700"> ### Terminology **Hypotenuse:** the longest side of a triangle **legs:** the other two sides of a triangle that are not the hypotenuse ### What is this theorem? When you draw a right angle triangle with a square on each side like this diagram, there's a relationship between the areas of the squares. You should notice that the areas of the squares on the two legs added together are equal to the area of the largest square on the hypotenuse. In this example, the area of the red square is $9 \text{ cm}^2$, the area of the blue square is $16 \text{ cm}^2$, and the area of the yellow triangle is $25 \text{ cm}^2$. $$\text{Notice that } \color{red}{9 \text{ cm}^2} + \color{blue}{16 \text{ cm}^2} = \color{yellow}{25 \text{ cm}^2}$$ $$\text{But } \color{red}{3 \text{ cm}} + \color{blue}{4 \text{ cm}} ≠ \color{yellow}{5 \text{ cm}}$$ This relationship actually works for all right angle triangles! **The Pythagorean theorem is $a^2 + b^2 = c^2$ where $a$ and $b$ are the legs and $c$ is the hypotenuse. It does not matter which leg is $a$ or $b$**. **Fact:** The Pythagorean Theorem is named for the Greek mathematician, Pythagoras. *Pythagorean Triples are sets of three numbers that create a right angle triangle like this one so 3,4,5 is a Pythagorean triple* ## Example 1 <img style="float: left;" src="images/PythagoreanTriangle2.png" width="45%" height="auto"> ##### Question 1: What are the lengths of the legs of the triangle on the left? The side length of a square is the square root of its area. <br> The side length of the red square is $\sqrt{4 \text{ m}^2} = 2 \text{ m}$. <br> The side length of the blue square is $\sqrt{9 \text{ m}^2} = 3 \text{ m}$. <br> Therefore the lengths of the legs are $2 \text{ m}$ and $3 \text{ m}$. ##### Question 2: What is the area of the yellow square in the diagram to the left? Let's use the Pythagorean theorem. The area of the two smaller squares added together is equal to the area of the larger square. <br> The area of the red square is $ 4 \text{ m}^2$ and the area of the blue square is $ 9 \text{ m}^2$. <br> Now we add them together: $ 4 \text{ m}^2 + 9 \text{ m}^2 = 13 \text{ m}^2$. <br> The area of the yellow square is $ 13 \text{ m}^2$. ##### Question 3: What is the length of the hypotenuse of the triangle to the left? Now we know the area of the large yellow square is $ 13 \text{ m}^2$, so the side length of the square is $\sqrt{13} \text{ m}$. <br> The hypotenuse of the triangle has the same length as the length of the side of the yellow square. <br> Therefore the length of the hypotenuse is $\sqrt{13} \text{ m}$. ## Proof Not convinced that this relationship works for all right angle triangles? Look at the visual proof from mathisfun.com. %%html <iframe width="560" height="315" src="https://www.youtube.com/embed/_87RbSoELW8" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> ### Algebraic proof We will work through the proof of a² + b² = c² together. Lets look at the diagram below. <img style="float: center;" src="images/PythagoreanProof.png" width="30%" height="auto"> You can see the 4 identical right angle triangles within a square, and the sides of each triangle are labelled just like our first example. a = 3, b = 4, and c = 5. #### Area of the large square The area of the large square is its side length squared, which is $(3 + 4)^2 = 7^2 = 49.$ #### Area of the pieces The area of the smaller yellow square in the middle is $ 5^2 = 25.$ <br> The area of one blue triangle is $\frac{3 \times 4}{2}$ and since there's 4 of them, the area of all 4 triangles is $$\frac{4 \times (3 \times 4)}{2} = \frac{4 \times 12}{2} = \frac{48}{2} = 24.$$ <br> Now we add those together to get $ 25 + 24 = 49.$ #### Areas are equal You can see that $ 49 = 49. $ This is because the area of the large square takes up the exact same space as the ares of all 4 blue triangles and the yellow square. This doesn't just work for these numbers though, it works for any numbers that create right angle triangles! If you want to see the full proof without numbers, you can check it out at [mathisfun.com](https://www.mathsisfun.com/geometry/pythagorean-theorem-proof.html). ## Example 2 Let's go through an example of a question without the squares. What is the length of the hypotenuse of the triangle below? <img style="float: center;" src="images/PythagoreanTriangle4.png" width="40%" height="auto"> Recall the Pythagorean theorem: $a^2 + b^2 = c^2$. <br> Now let's put the values we know into the theorem. The length of the hypotenuse is the value of c. $$\begin{align*} (2 \text{ cm})^2 + (5 \text{ cm})^2 & = c^2 \\ 4 \text{ cm}^2 + 25 \text{ cm}^2 & = c^2 \\ 29 \text{ cm}^2 & = c^2 \\ \sqrt{29 \text { cm}^2} & = \sqrt{c^2} \\ \sqrt{29} \text{ cm} & = c \\ \end{align*}$$ Let's approximate the answer to one decimal place using a calculator. $\sqrt{29} \text{ cm} = 5.4 \text{ cm}$. <br> The length of the hypotenuse is $\sqrt{29} \text{ cm}$ or approximately $5.4 \text{ cm}$. ********** ## Practice #### Question 1 <img style="float: left;" src="images/PythagoreanTriangle5.png" width="300"> answer1 = widgets.RadioButtons(options=['9 m', '6 m','6.4 m','5.4 m'], value=None, description= 'Hypotenuse') def display1(): IPython.display.clear_output() print("What is the length of the hypotenuse of the triangle above?") print("Round to one decimal place when necessary.") IPython.display.display(answer1) def check1(a): display1() if answer1.value == '6.4 m': print("Correct! Great job! The theorem properly filled out looks like this: 16 m² + 25 m² = 41 m²") else: print("Sorry, that's not right, try again. Pythagorean Theorem is a² + b² = c².") display1() answer1.observe(check1, 'value') #### Question 2 Let's have a more practical problem for the Pythagorean theorem. Say you have a table that's shortest side is 3.10 m long. If the table is held on an angle, can it fit through this door frame below? Round to 2 decimal places. <img style="float: left;" src="images/PythagoreanTriangleDoor.png" width="200"> answer3 = widgets.RadioButtons(options=['2.00 m', '2.83 m','3.16 m','4.03 m'], value=None, description= 'Diagonal') def display3(): IPython.display.clear_output() print("What is the diagonal of the door?") print("Round to two decimal places when necessary.") IPython.display.display(answer3) def check3(a): display3() if answer3.value == '3.16 m': print("Correct! Great job!") else: print("Sorry, that's not right, try again. Pythagorean Theorem is a² + b² = c².") display3() answer3.observe(check3, 'value') answer2 = widgets.RadioButtons(options=['Yes, the table will fit.', 'No, the table will not fit'], value=None) def display2(): IPython.display.clear_output() print("Is the length of the table smaller than the diagonal of the door?") print("Round to two decimal places when necessary.") IPython.display.display(answer2) def check2(a): display2() if answer2.value == 'Yes, the table will fit.': print("That's right! The table will fit through the door on an angle.") else: print("Sorry, that's not right, the table will be able to fit in the door because 3.1 m is less than 3.16 m.") display2() answer2.observe(check2, 'value') What else would knowing how to find the hypotenuse be helpful for? ## Extend Your Knowledge We can use the Pythagorean theorem for more than just finding the length of the hypotenuse given the two legs. We can find the length of one leg given the other leg and the hypotenuse. ### Example Given this right angled triangle below, what is the missing side length? <img style="float: left;" src="images/PythagoreanTriangle6.png" width=200> Let's start by filling in the information we know into the pythagorean theorem. $$\begin{align*} a^2 + b^2 & = c^2 \\ a^2 + (\sqrt{20 \text{ units}})^2 & = (6 \text{ units})^2 \\ \end{align*}$$ Now let's solve this equation for the missing variable. In this example, we will solve for $a$. $$\begin{align*} a^2 + (\sqrt{20 \text{ units}})^2 & = (6 \text{ units})^2 \\ a^2 + 20 \text{ units}^2 & = 36 \text{ units}^2 \tag{apply the power of 2 to the bases} \\ a^2 + 20 \text{ units}^2 - 20 \text{ units}^2 & = 36 \text{ units}^2 - 20 \text{ units}^2 \tag{subtract 20 units² from both sides} \\ \sqrt{a^2} & = \sqrt{16 \text{ units}^2} \tag{square root both sides} \\ a & = 4 \text{ units} \end{align*}$$ ## Practice Now you try to calculate the length of the missing leg. <img style="float: left;" src="images/PythagoreanTriangle8.png" width="200"> answer4 = widgets.RadioButtons(options=['8 m', '9 m','8.3 m','7.8 m'], value=None, description= 'Side Length') def display4(): IPython.display.clear_output() print("What is the length of the leg labelled a above?") print("Round to one decimal place when necessary.") IPython.display.display(answer4) def check4(a): display4() if answer4.value == '8 m': print("Correct! If we divide each side length by 2, you might notice that this triangle is the same one \n as the very first triangle we looked at in this notebook!") else: print("Sorry, that's not right, try again. Pythagorean Theorem is a² + b² = c². We are looking for a.") display4() answer4.observe(check4, 'value') ## Checking Right angles We can check if a triangle is a right angle triangle by knowing if its sides fit the Pythagorean theorem. If they don't then it isn't a right angle triangle. Lets look at an acute and an obtuse triangle and compare their sides in the Pythagorean theorem. You know, just to make sure. Look at the three triangles below. One is a right angle triangle, one is an acute triangle, and one is an obtuse triangle. Fill in the table below by clicking on the box you want to fill (where it's written 'nan') and typing in your answer. The longest side is side c. <img style="float: left;" src="images/ThreeTriangles.png" width="600"> import pandas as pd import qgrid table = pd.DataFrame(index=pd.Series(['Right', 'Acute', 'Obtuse']), columns=pd.Series(['a²', 'b²','a² + b²', 'c²'])) table_widget = qgrid.QgridWidget(df =table, show_toolbar=False) table_widget answer5 = widgets.RadioButtons(options=['Yes','No'], value=None) def check5(a): IPython.display.clear_output() print("Does a² + b² = c² for all triangles?") IPython.display.display(answer5) if answer5.value == 'No': print("That's right! The Pythagorean theorem only works for right angle triangles.") else: print("Actually, the Pythagorean theorem only works for right angle triangles.") print("Now let's use this knowledge to check if triangles have a right angle or not!") print("Does a² + b² = c² for all triangles?") IPython.display.display(answer5) answer5.observe(check5, 'value') ## Example Let's go through an example together. Here is a triangle with all three sides labelled. Is this a right angle triangle? <img style="float: left;" src="images/angle2.png" width="300"> Remember, the longest side is side c. Let's fill in the Pythagorean theorem and see if the left side equals the right. <br> Since c is the largest side, a and b will be the legs. $$\begin{align*} \text{Let's start with the left side:} \\ a & = 7 \text{ m} \\ a^2 & = 49 \text{ m}^2 \\ b & = 10 \text{ m} \\ b^2& = 100 \text{ m}^2 \\ \text{Now let's add them together:} \\ a^2 + b^2 & = 49 \text{ m}^2 + 100 \text{ m}^2 \\ a^2 + b^2 & = 149 \text{ m}^2 \\ \end{align*}$$ **The left side equals 149 m²** <br> $$\begin{align*} \text{And now the right side:} \\ c & = 13 \text{ m} \\ c^2 & = 169 \text{ m}^2 \\ \end{align*}$$ **The right side equals 169 m²** <br> 149 m² does not equal 169 m² therefore this triangle is not a right angle triangle. ### Practice Now it's your turn to check if this triangle below is a right angle triangle. <img style="float: left;" src="images/angle1.png" width="200"> submit1 = widgets.Button(description='Submit', button_style='success') answer6 = widgets.Text(value=None, placeholder='Your answer here', description='Left side') def display6(): IPython.display.clear_output() print("What is a² + b²?") print("Type your answer below, and don't forget units! Eg: write 50 cm^2 or 50 units^2") IPython.display.display(answer6, submit1) submit1.on_click(check6) def check6(a): display6() if answer6.value == '169 units^2': print("That's right! Now let's move on to the right side.") else: if answer6.value == '169' or answer6.value == '169 units': print("Don't forget your units!") else: print("Sorry, that's not right, try again before moving on to the right side.") display6() submit2 = widgets.Button(description='Submit', button_style='success') answer7 = widgets.Text(value=None, placeholder='Your answer here', description='Right side') def display7(): IPython.display.clear_output() print("What is c²?") print("Type your answer below, and don't forget units! Eg: write 50 cm^2 or 50 units^2") IPython.display.display(answer7, submit2) submit2.on_click(check7) def check7(a): display7() if answer7.value == '169 units^2': print("That's correct! Great job!") elif answer7.value == '169' or answer7.value == '169 units': print("Don't forget your units!") else: print("Sorry, try again.") display7() answer8 = widgets.RadioButtons(options=['Yes','No'], value=None) def check8(a): IPython.display.clear_output() print("Is this triangle a right angle triangle?") IPython.display.display(answer8) if answer8.value == 'Yes': print("That's right! This is a right angle triangle") else: print("Actually, this triangle is a right angle triangle.") print("Is this triangle a right angle triangle?") IPython.display.display(answer8) answer8.observe(check8, 'value') ### Word question ![frame](https://images.freeimages.com/images/premium/large-thumbs/5963/59633908-comic-cartoon-picture-frame.jpg) Bailey has four pieces of wood. Two of them are 3 inches long. The other two are 5 inches long. <br> Bailey makes a rectangular picture frame using these pieces. Then the diagonal is measured to be 7 inches long. <br> answer9 = widgets.RadioButtons(options=['Yes','No'], value=None) def check9(a): IPython.display.clear_output() print("Does the picture frame have a right angle corner?") IPython.display.display(answer9) if answer9.value == 'No': print("That's right! The frame does not have a right angle corner.") else: print("Actually, the frame does not have a right angle corner.") print("Does the picture frame have a right angle corner?") IPython.display.display(answer9) answer9.observe(check9, 'value') ## What did we learn? Lets summarize what we have learned in this notebook: * The Pythagorean theorem states: a² + b² = c² * This theorem has been proven multiple ways * This theorem can be used for multiple purposes * Find the length of the hypotenuse * Find the length of a side * Confirm if there's a right angle * Lots of situations in life need the Pythagorean theorem This math concept will be used for many more years in school. Make sure to do lots of practice, even beyond this notebook so that you understand the Pythagorean theorem well. [![Callysto.ca License](https://github.com/callysto/curriculum-notebooks/blob/master/callysto-notebook-banner-bottom.jpg?raw=true)](https://github.com/callysto/curriculum-notebooks/blob/master/LICENSE.md)
py
1a4ee6be49c87e3e7c6db9128fda6255a22981b2
import torch import torch.nn as nn import torch.nn.functional as F class ContrastiveLoss(nn.Module): """ Contrastive loss function. Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf """ def __init__(self, margin: float = 2.0): super(ContrastiveLoss, self).__init__() self.margin = margin self.eps = 1e-9 def forward(self, output1: torch.Tensor, output2: torch.Tensor, label: torch.Tensor): euclidean_distance = F.pairwise_distance(output1, output2) losses = 0.5 * (label.float() * euclidean_distance + (1 + (-1 * label)).float() * F.relu(self.margin - (euclidean_distance + self.eps).sqrt()).pow(2)) loss_contrastive = torch.mean(losses) return loss_contrastive
py
1a4ee8282e66db47914dddb192389c9d553a1e69
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import unittest import jmespath from chart.tests.helm_template_generator import render_chart class ResourceQuotaTest(unittest.TestCase): def test_resource_quota_template(self): docs = render_chart( values={ "quotas": { "configmaps": "10", "persistentvolumeclaims": "4", "pods": "4", "replicationcontrollers": "20", "secrets": "10", "services": "10", } }, show_only=["templates/resourcequota.yaml"], ) assert "ResourceQuota" == jmespath.search("kind", docs[0]) assert "20" == jmespath.search("spec.hard.replicationcontrollers", docs[0]) def test_resource_quota_are_not_added_by_default(self): docs = render_chart( show_only=["templates/resourcequota.yaml"], ) assert docs == []
py
1a4ee9682dd3bc362426874ff7e4156b41bbf5db
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import OrderNotFound class acx(Exchange): def describe(self): return self.deep_extend(super(acx, self).describe(), { 'id': 'acx', 'name': 'ACX', 'countries': ['AU'], 'rateLimit': 1000, 'version': 'v2', 'has': { 'CORS': True, 'fetchTickers': True, 'fetchOHLCV': True, 'withdraw': True, 'fetchOrder': True, }, 'timeframes': { '1m': '1', '5m': '5', '15m': '15', '30m': '30', '1h': '60', '2h': '120', '4h': '240', '12h': '720', '1d': '1440', '3d': '4320', '1w': '10080', }, 'urls': { 'logo': 'https://user-images.githubusercontent.com/1294454/30247614-1fe61c74-9621-11e7-9e8c-f1a627afa279.jpg', 'extension': '.json', 'api': 'https://acx.io/api', 'www': 'https://acx.io', 'doc': 'https://acx.io/documents/api_v2', }, 'api': { 'public': { 'get': [ 'depth', # Get depth or specified market Both asks and bids are sorted from highest price to lowest. 'k_with_pending_trades', # Get K data with pending trades, which are the trades not included in K data yet, because there's delay between trade generated and processed by K data generator 'k', # Get OHLC(k line) of specific market 'markets', # Get all available markets 'order_book', # Get the order book of specified market 'order_book/{market}', 'tickers', # Get ticker of all markets 'tickers/{market}', # Get ticker of specific market 'timestamp', # Get server current time, in seconds since Unix epoch 'trades', # Get recent trades on market, each trade is included only once Trades are sorted in reverse creation order. 'trades/{market}', ], }, 'private': { 'get': [ 'members/me', # Get your profile and accounts info 'deposits', # Get your deposits history 'deposit', # Get details of specific deposit 'deposit_address', # Where to deposit The address field could be empty when a new address is generating(e.g. for bitcoin), you should try again later in that case. 'orders', # Get your orders, results is paginated 'order', # Get information of specified order 'trades/my', # Get your executed trades Trades are sorted in reverse creation order. 'withdraws', # Get your cryptocurrency withdraws 'withdraw', # Get your cryptocurrency withdraw ], 'post': [ 'orders', # Create a Sell/Buy order 'orders/multi', # Create multiple sell/buy orders 'orders/clear', # Cancel all my orders 'order/delete', # Cancel an order 'withdraw', # Create a withdraw ], }, }, 'fees': { 'trading': { 'tierBased': False, 'percentage': True, 'maker': 0.2 / 100, 'taker': 0.2 / 100, }, 'funding': { 'tierBased': False, 'percentage': True, 'withdraw': {}, # There is only 1% fee on withdrawals to your bank account. }, }, 'exceptions': { '2002': InsufficientFunds, '2003': OrderNotFound, }, }) async def fetch_markets(self, params={}): markets = await self.publicGetMarkets(params) result = [] for i in range(0, len(markets)): market = markets[i] id = market['id'] symbol = market['name'] baseId = self.safe_string(market, 'base_unit') quoteId = self.safe_string(market, 'quote_unit') if (baseId is None) or (quoteId is None): ids = symbol.split('/') baseId = ids[0].lower() quoteId = ids[1].lower() base = baseId.upper() quote = quoteId.upper() base = self.safe_currency_code(base) quote = self.safe_currency_code(quote) # todo: find out their undocumented precision and limits precision = { 'amount': 8, 'price': 8, } result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'precision': precision, 'info': market, }) return result async def fetch_balance(self, params={}): await self.load_markets() response = await self.privateGetMembersMe(params) balances = self.safe_value(response, 'accounts') result = {'info': balances} for i in range(0, len(balances)): balance = balances[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['free'] = self.safe_float(balance, 'balance') account['used'] = self.safe_float(balance, 'locked') result[code] = account return self.parse_balance(result) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], } if limit is not None: request['limit'] = limit # default = 300 orderbook = await self.publicGetDepth(self.extend(request, params)) timestamp = self.safe_timestamp(orderbook, 'timestamp') return self.parse_order_book(orderbook, timestamp) def parse_ticker(self, ticker, market=None): timestamp = self.safe_timestamp(ticker, 'at') ticker = ticker['ticker'] symbol = None if market: symbol = market['symbol'] last = self.safe_float(ticker, 'last') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_float(ticker, 'high'), 'low': self.safe_float(ticker, 'low'), 'bid': self.safe_float(ticker, 'buy'), 'bidVolume': None, 'ask': self.safe_float(ticker, 'sell'), 'askVolume': None, 'vwap': None, 'open': self.safe_float(ticker, 'open'), 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': None, 'baseVolume': self.safe_float(ticker, 'vol'), 'quoteVolume': None, 'info': ticker, } async def fetch_tickers(self, symbols=None, params={}): await self.load_markets() response = await self.publicGetTickers(params) ids = list(response.keys()) result = {} for i in range(0, len(ids)): id = ids[i] market = None symbol = id if id in self.markets_by_id: market = self.markets_by_id[id] symbol = market['symbol'] else: base = id[0:3] quote = id[3:6] base = base.upper() quote = quote.upper() base = self.safe_currency_code(base) quote = self.safe_currency_code(quote) symbol = base + '/' + quote result[symbol] = self.parse_ticker(response[id], market) return result async def fetch_ticker(self, symbol, params={}): await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], } response = await self.publicGetTickersMarket(self.extend(request, params)) return self.parse_ticker(response, market) def parse_trade(self, trade, market=None): timestamp = self.parse8601(self.safe_string(trade, 'created_at')) id = self.safe_string(trade, 'tid') symbol = None if market is not None: symbol = market['symbol'] return { 'info': trade, 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': None, 'side': None, 'order': None, 'takerOrMaker': None, 'price': self.safe_float(trade, 'price'), 'amount': self.safe_float(trade, 'volume'), 'cost': self.safe_float(trade, 'funds'), 'fee': None, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) request = { 'market': market['id'], } response = await self.publicGetTrades(self.extend(request, params)) return self.parse_trades(response, market, since, limit) def parse_ohlcv(self, ohlcv, market=None, timeframe='1m', since=None, limit=None): return [ ohlcv[0] * 1000, ohlcv[1], ohlcv[2], ohlcv[3], ohlcv[4], ohlcv[5], ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) if limit is None: limit = 500 # default is 30 request = { 'market': market['id'], 'period': self.timeframes[timeframe], 'limit': limit, } if since is not None: request['timestamp'] = int(since / 1000) response = await self.publicGetK(self.extend(request, params)) return self.parse_ohlcvs(response, market, timeframe, since, limit) def parse_order_status(self, status): statuses = { 'done': 'closed', 'wait': 'open', 'cancel': 'canceled', } return self.safe_string(statuses, status, status) def parse_order(self, order, market=None): symbol = None if market is not None: symbol = market['symbol'] else: marketId = self.safe_string(order, 'market') symbol = self.markets_by_id[marketId]['symbol'] timestamp = self.parse8601(self.safe_string(order, 'created_at')) status = self.parse_order_status(self.safe_string(order, 'state')) type = self.safe_string(order, 'type') side = self.safe_string(order, 'side') id = self.safe_string(order, 'id') return { 'id': id, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': self.safe_float(order, 'price'), 'amount': self.safe_float(order, 'volume'), 'filled': self.safe_float(order, 'executed_volume'), 'remaining': self.safe_float(order, 'remaining_volume'), 'trades': None, 'fee': None, 'info': order, } async def fetch_order(self, id, symbol=None, params={}): await self.load_markets() request = { 'id': int(id), } response = await self.privateGetOrder(self.extend(request, params)) return self.parse_order(response) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() request = { 'market': self.market_id(symbol), 'side': side, 'volume': str(amount), 'ord_type': type, } if type == 'limit': request['price'] = str(price) response = await self.privatePostOrders(self.extend(request, params)) marketId = self.safe_value(response, 'market') market = self.safe_value(self.markets_by_id, marketId) return self.parse_order(response, market) async def cancel_order(self, id, symbol=None, params={}): await self.load_markets() request = { 'id': id, } response = await self.privatePostOrderDelete(self.extend(request, params)) order = self.parse_order(response) status = order['status'] if status == 'closed' or status == 'canceled': raise OrderNotFound(self.id + ' ' + self.json(order)) return order async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) await self.load_markets() currency = self.currency(code) # they have XRP but no docs on memo/tag request = { 'currency': currency['id'], 'sum': amount, 'address': address, } response = await self.privatePostWithdraw(self.extend(request, params)) # withdrawal response is undocumented return { 'info': response, 'id': None, } def nonce(self): return self.milliseconds() def encode_params(self, params): if 'orders' in params: orders = params['orders'] query = self.urlencode(self.keysort(self.omit(params, 'orders'))) for i in range(0, len(orders)): order = orders[i] keys = list(order.keys()) for k in range(0, len(keys)): key = keys[k] value = order[key] query += '&orders%5B%5D%5B' + key + '%5D=' + str(value) return query return self.urlencode(self.keysort(params)) def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): request = '/api/' + self.version + '/' + self.implode_params(path, params) if 'extension' in self.urls: request += self.urls['extension'] query = self.omit(params, self.extract_params(path)) url = self.urls['api'] + request if api == 'public': if query: url += '?' + self.urlencode(query) else: self.check_required_credentials() nonce = str(self.nonce()) query = self.encode_params(self.extend({ 'access_key': self.apiKey, 'tonce': nonce, }, params)) auth = method + '|' + request + '|' + query signed = self.hmac(self.encode(auth), self.encode(self.secret)) suffix = query + '&signature=' + signed if method == 'GET': url += '?' + suffix else: body = suffix headers = {'Content-Type': 'application/x-www-form-urlencoded'} return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, code, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return if code == 400: error = self.safe_value(response, 'error') errorCode = self.safe_string(error, 'code') feedback = self.id + ' ' + self.json(response) exceptions = self.exceptions if errorCode in exceptions: raise exceptions[errorCode](feedback) # fallback to default error handler
py
1a4eea10c1445d818b821b60a94ed8576ff3605e
# -*- coding: utf-8 -*- # Copyright (C) 2012 Anaconda, Inc # SPDX-License-Identifier: BSD-3-Clause from __future__ import absolute_import, division, print_function, unicode_literals from collections import defaultdict from logging import DEBUG, getLogger from ._vendor.auxlib.decorators import memoize from ._vendor.toolz import concat, groupby from .base.constants import ChannelPriority, MAX_CHANNEL_PRIORITY from .base.context import context from .common.compat import iteritems, iterkeys, itervalues, odict, on_win, text_type from .common.io import time_recorder from .common.logic import Clauses, get_sat_solver_cls, minimal_unsatisfiable_subset from .common.toposort import toposort from .exceptions import InvalidSpec, ResolvePackageNotFound, UnsatisfiableError from .models.channel import Channel, MultiChannel from .models.enums import NoarchType from .models.match_spec import MatchSpec from .models.records import PackageRecord from .models.version import VersionOrder log = getLogger(__name__) stdoutlog = getLogger('conda.stdoutlog') # used in conda build Unsatisfiable = UnsatisfiableError ResolvePackageNotFound = ResolvePackageNotFound get_sat_solver_cls = memoize(get_sat_solver_cls) def dashlist(iterable, indent=2): return ''.join('\n' + ' ' * indent + '- ' + str(x) for x in iterable) class Resolve(object): def __init__(self, index, sort=False, processed=False, channels=()): self.index = index self.channels = channels self._channel_priorities_map = self._make_channel_priorities(channels) if channels else {} self._channel_priority = context.channel_priority self._solver_ignore_timestamps = context.solver_ignore_timestamps groups = groupby("name", itervalues(index)) trackers = defaultdict(list) for name in groups: unmanageable_precs = [prec for prec in groups[name] if prec.is_unmanageable] if unmanageable_precs: log.debug("restricting to unmanageable packages: %s", name) groups[name] = unmanageable_precs tf_precs = (prec for prec in groups[name] if prec.track_features) for prec in tf_precs: for feature_name in prec.track_features: trackers[feature_name].append(prec) self.groups = groups # Dict[package_name, List[PackageRecord]] self.trackers = trackers # Dict[track_feature, List[PackageRecord]] self._cached_find_matches = {} # Dict[MatchSpec, Set[PackageRecord]] self.ms_depends_ = {} # Dict[PackageRecord, List[MatchSpec]] self._reduced_index_cache = {} self._strict_channel_cache = {} if sort: for group in itervalues(groups): group.sort(key=self.version_key, reverse=True) def default_filter(self, features=None, filter=None): # TODO: fix this import; this is bad from .core.subdir_data import make_feature_record if filter is None: filter = {} else: filter.clear() filter.update({make_feature_record(fstr): False for fstr in iterkeys(self.trackers)}) if features: filter.update({make_feature_record(fstr): True for fstr in features}) return filter def valid(self, spec_or_prec, filter, optional=True): """Tests if a package, MatchSpec, or a list of both has satisfiable dependencies, assuming cyclic dependencies are always valid. Args: spec_or_prec: a package record, a MatchSpec, or an iterable of these. filter: a dictionary of (fkey,valid) pairs, used to consider a subset of dependencies, and to eliminate repeated searches. optional: if True (default), do not enforce optional specifications when considering validity. If False, enforce them. Returns: True if the full set of dependencies can be satisfied; False otherwise. If filter is supplied and update is True, it will be updated with the search results. """ def v_(spec): return v_ms_(spec) if isinstance(spec, MatchSpec) else v_fkey_(spec) def v_ms_(ms): return (optional and ms.optional or any(v_fkey_(fkey) for fkey in self.find_matches(ms))) def v_fkey_(prec): val = filter.get(prec) if val is None: filter[prec] = True try: depends = self.ms_depends(prec) except InvalidSpec as e: val = filter[prec] = False else: val = filter[prec] = all(v_ms_(ms) for ms in depends) return val result = v_(spec_or_prec) return result def valid2(self, spec_or_prec, filter_out, optional=True): def is_valid(_spec_or_prec): if isinstance(_spec_or_prec, MatchSpec): return is_valid_spec(_spec_or_prec) else: return is_valid_prec(_spec_or_prec) def is_valid_spec(_spec): return optional and _spec.optional or any( is_valid_prec(_prec) for _prec in self.find_matches(_spec) ) def is_valid_prec(prec): val = filter_out.get(prec) if val is None: filter_out[prec] = False try: has_valid_deps = all(is_valid_spec(ms) for ms in self.ms_depends(prec)) except InvalidSpec as e: val = filter_out[prec] = "invalid dep specs" else: val = filter_out[prec] = False if has_valid_deps else "invalid depends specs" return not val return is_valid(spec_or_prec) def invalid_chains(self, spec, filter, optional=True): """Constructs a set of 'dependency chains' for invalid specs. A dependency chain is a tuple of MatchSpec objects, starting with the requested spec, proceeding down the dependency tree, ending at a specification that cannot be satisfied. Uses self.valid_ as a filter, both to prevent chains and to allow other routines to prune the list of valid packages with additional criteria. Args: spec: a package key or MatchSpec filter: a dictionary of (prec, valid) pairs to be used when testing for package validity. optional: if True (default), do not enforce optional specifications when considering validity. If False, enforce them. Returns: A generator of tuples, empty if the MatchSpec is valid. """ def chains_(spec, names): if spec.name in names: return names.add(spec.name) if self.valid(spec, filter, optional): return precs = self.find_matches(spec) found = False for prec in precs: for m2 in self.ms_depends(prec): for x in chains_(m2, names): found = True yield (spec,) + x if not found: yield (spec,) return chains_(spec, set()) def invalid_chains2(self, spec, filter_out, optional=True): def chains_(spec, names): if spec.name in names: return names.add(spec.name) if self.valid2(spec, filter_out, optional): return precs = self.find_matches(spec) found = False for prec in precs: for m2 in self.ms_depends(prec): for x in chains_(m2, names): found = True yield (spec,) + x if not found: yield (spec,) return chains_(spec, set()) def verify_specs(self, specs): """Perform a quick verification that specs and dependencies are reasonable. Args: specs: An iterable of strings or MatchSpec objects to be tested. Returns: Nothing, but if there is a conflict, an error is thrown. Note that this does not attempt to resolve circular dependencies. """ non_tf_specs = [] bad_deps = [] feature_names = set() for ms in specs: _feature_names = ms.get_exact_value('track_features') if _feature_names: feature_names.update(_feature_names) else: non_tf_specs.append(ms) filter = self.default_filter(feature_names) for ms in non_tf_specs: bad_deps.extend(self.invalid_chains(ms, filter.copy())) if bad_deps: raise ResolvePackageNotFound(bad_deps) return non_tf_specs, feature_names def find_conflicts(self, specs): """Perform a deeper analysis on conflicting specifications, by attempting to find the common dependencies that might be the cause of conflicts. Args: specs: An iterable of strings or MatchSpec objects to be tested. It is assumed that the specs conflict. Returns: Nothing, because it always raises an UnsatisfiableError. Strategy: If we're here, we know that the specs conflict. This could be because: - One spec conflicts with another; e.g. ['numpy 1.5*', 'numpy >=1.6'] - One spec conflicts with a dependency of another; e.g. ['numpy 1.5*', 'scipy 0.12.0b1'] - Each spec depends on *the same package* but in a different way; e.g., ['A', 'B'] where A depends on numpy 1.5, and B on numpy 1.6. Technically, all three of these cases can be boiled down to the last one if we treat the spec itself as one of the "dependencies". There might be more complex reasons for a conflict, but this code only considers the ones above. The purpose of this code, then, is to identify packages (like numpy above) that all of the specs depend on *but in different ways*. We then identify the dependency chains that lead to those packages. """ sdeps = {} # For each spec, assemble a dictionary of dependencies, with package # name as key, and all of the matching packages as values. for ms in specs: rec = sdeps.setdefault(ms, {}) slist = [ms] while slist: ms2 = slist.pop() deps = rec.setdefault(ms2.name, set()) for fkey in self.find_matches(ms2): if fkey not in deps: deps.add(fkey) slist.extend(ms3 for ms3 in self.ms_depends(fkey) if ms3.name != ms.name) # Find the list of dependencies they have in common. And for each of # *those*, find the individual packages that they all share. Those need # to be removed as conflict candidates. commkeys = set.intersection(*(set(s.keys()) for s in sdeps.values())) commkeys = {k: set.intersection(*(v[k] for v in sdeps.values())) for k in commkeys} # and find the dependency chains that lead to them. bad_deps = [] for ms, sdep in iteritems(sdeps): filter = {} for mn, v in sdep.items(): if mn != ms.name and mn in commkeys: # Mark this package's "unique" dependencies as invalid for fkey in v - commkeys[mn]: filter[fkey] = False # Find the dependencies that lead to those invalid choices ndeps = set(self.invalid_chains(ms, filter, False)) # This may produce some additional invalid chains that we # don't care about. Select only those that terminate in our # predetermined set of "common" keys. ndeps = [nd for nd in ndeps if nd[-1].name in commkeys] if ndeps: bad_deps.extend(ndeps) else: # This means the package *itself* was the common conflict. bad_deps.append((ms,)) raise UnsatisfiableError(bad_deps) def _get_strict_channel(self, package_name): try: channel_name = self._strict_channel_cache[package_name] except KeyError: all_channel_names = set(prec.channel.name for prec in self.groups[package_name]) by_cp = {self._channel_priorities_map.get(cn, 1): cn for cn in all_channel_names} highest_priority = sorted(by_cp)[0] # highest priority is the lowest number channel_name = self._strict_channel_cache[package_name] = by_cp[highest_priority] return channel_name @time_recorder(module_name=__name__) def get_reduced_index(self, specs): # TODO: fix this import; this is bad from .core.subdir_data import make_feature_record strict_channel_priority = context.channel_priority == ChannelPriority.STRICT cache_key = strict_channel_priority, frozenset(specs) if cache_key in self._reduced_index_cache: return self._reduced_index_cache[cache_key] if log.isEnabledFor(DEBUG): log.debug('Retrieving packages for: %s', dashlist(sorted(text_type(s) for s in specs))) specs, features = self.verify_specs(specs) filter_out = {prec: False if val else "feature not enabled" for prec, val in iteritems(self.default_filter(features))} snames = set() top_level_spec = None cp_filter_applied = set() # values are package names def filter_group(_specs): # all _specs should be for the same package name name = next(iter(_specs)).name group = self.groups.get(name, ()) # implement strict channel priority if strict_channel_priority and name not in cp_filter_applied: sole_source_channel_name = self._get_strict_channel(name) for prec in group: if prec.channel.name != sole_source_channel_name: filter_out[prec] = "removed due to strict channel priority" cp_filter_applied.add(name) # Prune packages that don't match any of the patterns # or which have unsatisfiable dependencies nold = nnew = 0 for prec in group: if not filter_out.setdefault(prec, False): nold += 1 if not self.match_any(_specs, prec): filter_out[prec] = "incompatible with required spec %s" % top_level_spec continue unsatisfiable_dep_specs = tuple( ms for ms in self.ms_depends(prec) if not any(not filter_out.get(rec, False) for rec in self.find_matches(ms)) ) if unsatisfiable_dep_specs: filter_out[prec] = "unsatisfiable dependencies %s" % " ".join( str(s) for s in unsatisfiable_dep_specs ) continue filter_out[prec] = False nnew += 1 reduced = nnew < nold if reduced: log.debug('%s: pruned from %d -> %d' % (name, nold, nnew)) if any(ms.optional for ms in _specs): return reduced elif nnew == 0: # Indicates that a conflict was found; we can exit early return None # Perform the same filtering steps on any dependencies shared across # *all* packages in the group. Even if just one of the packages does # not have a particular dependency, it must be ignored in this pass. # Otherwise, we might do more filtering than we should---and it is # better to have extra packages here than missing ones. if reduced or name not in snames: snames.add(name) _dep_specs = groupby(lambda s: s.name, ( dep_spec for prec in group if not filter_out.get(prec, False) for dep_spec in self.ms_depends(prec) if not dep_spec.optional )) _dep_specs.pop("*", None) # discard track_features specs for deps in itervalues(_dep_specs): if len(deps) >= nnew: res = filter_group(set(deps)) if res: reduced = True elif res is None: # Indicates that a conflict was found; we can exit early return None return reduced # Iterate on pruning until no progress is made. We've implemented # what amounts to "double-elimination" here; packages get one additional # chance after their first "False" reduction. This catches more instances # where one package's filter affects another. But we don't have to be # perfect about this, so performance matters. for _ in range(2): snames.clear() slist = list(specs) reduced = False while slist: s = slist.pop() top_level_spec = s reduced = filter_group([s]) if reduced: slist.append(s) elif reduced is None: break if reduced is None: # This filter reset means that unsatisfiable indexes leak through. filter_out = {prec: False if val else "feature not enabled" for prec, val in iteritems(self.default_filter(features))} # TODO: raise unsatisfiable exception here # Messaging to users should be more descriptive. # 1. Are there no direct matches? # 2. Are there no matches for first-level dependencies? # 3. Have the first level dependencies been invalidated? break # Determine all valid packages in the dependency graph reduced_index2 = {prec: prec for prec in (make_feature_record(fstr) for fstr in features)} processed_specs = set() specs_queue = set(specs) while specs_queue: this_spec = specs_queue.pop() processed_specs.add(this_spec) add_these_precs2 = tuple( prec for prec in self.find_matches(this_spec) if prec not in reduced_index2 and self.valid2(prec, filter_out) ) if strict_channel_priority and add_these_precs2: strict_chanel_name = self._get_strict_channel(add_these_precs2[0].name) add_these_precs2 = tuple( prec for prec in add_these_precs2 if prec.channel.name == strict_chanel_name ) reduced_index2.update((prec, prec) for prec in add_these_precs2) # We do not pull packages into the reduced index due # to a track_features dependency. Remember, a feature # specifies a "soft" dependency: it must be in the # environment, but it is not _pulled_ in. The SAT # logic doesn't do a perfect job of capturing this # behavior, but keeping these packages out of the # reduced index helps. Of course, if _another_ # package pulls it in by dependency, that's fine. specs_queue.update( ms for prec in add_these_precs2 for ms in self.ms_depends(prec) if "track_features" not in ms and ms not in processed_specs ) self._reduced_index_cache[cache_key] = reduced_index2 return reduced_index2 def match_any(self, mss, prec): return any(ms.match(prec) for ms in mss) def find_matches(self, spec): # type: (MatchSpec) -> Set[PackageRecord] res = self._cached_find_matches.get(spec, None) if res is not None: return res spec_name = spec.get_exact_value('name') if spec_name: candidate_precs = self.groups.get(spec_name, ()) elif spec.get_exact_value('track_features'): feature_names = spec.get_exact_value('track_features') candidate_precs = concat( self.trackers.get(feature_name, ()) for feature_name in feature_names ) else: candidate_precs = itervalues(self.index) res = frozenset(p for p in candidate_precs if spec.match(p)) self._cached_find_matches[spec] = res return res def ms_depends(self, prec): # type: (PackageRecord) -> List[MatchSpec] deps = self.ms_depends_.get(prec) if deps is None: deps = [MatchSpec(d) for d in prec.combined_depends] deps.extend(MatchSpec(track_features=feat) for feat in prec.features) self.ms_depends_[prec] = deps return deps def version_key(self, prec, vtype=None): channel = prec.channel channel_priority = self._channel_priorities_map.get(channel.name, 1) # TODO: ask @mcg1969 why the default value is 1 here # NOQA valid = 1 if channel_priority < MAX_CHANNEL_PRIORITY else 0 version_comparator = VersionOrder(prec.get('version', '')) build_number = prec.get('build_number', 0) build_string = prec.get('build') ts = prec.get('timestamp', 0) if self._channel_priority != ChannelPriority.DISABLED: vkey = [valid, -channel_priority, version_comparator, build_number] else: vkey = [valid, version_comparator, -channel_priority, build_number] if self._solver_ignore_timestamps: vkey.append(build_string) else: vkey.extend((ts, build_string)) return vkey @staticmethod def _make_channel_priorities(channels): priorities_map = odict() for priority_counter, chn in enumerate(concat( (Channel(cc) for cc in c._channels) if isinstance(c, MultiChannel) else (c,) for c in (Channel(c) for c in channels) )): channel_name = chn.name if channel_name in priorities_map: continue priorities_map[channel_name] = min(priority_counter, MAX_CHANNEL_PRIORITY - 1) return priorities_map def get_pkgs(self, ms, emptyok=False): # pragma: no cover # legacy method for conda-build ms = MatchSpec(ms) precs = self.find_matches(ms) if not precs and not emptyok: raise ResolvePackageNotFound([(ms,)]) return sorted(precs, key=self.version_key) @staticmethod def to_sat_name(val): # val can be a PackageRecord or MatchSpec if isinstance(val, PackageRecord): return val.dist_str() elif isinstance(val, MatchSpec): return '@s@' + text_type(val) + ('?' if val.optional else '') else: raise NotImplementedError() @staticmethod def to_feature_metric_id(prec_dist_str, feat): return '@fm@%s@%s' % (prec_dist_str, feat) def push_MatchSpec(self, C, spec): spec = MatchSpec(spec) sat_name = self.to_sat_name(spec) m = C.from_name(sat_name) if m is not None: # the spec has already been pushed onto the clauses stack return sat_name simple = spec._is_single() nm = spec.get_exact_value('name') tf = frozenset(_tf for _tf in ( f.strip() for f in spec.get_exact_value('track_features') or () ) if _tf) if nm: tgroup = libs = self.groups.get(nm, []) elif tf: assert len(tf) == 1 k = next(iter(tf)) tgroup = libs = self.trackers.get(k, []) else: tgroup = libs = self.index.keys() simple = False if not simple: libs = [fkey for fkey in tgroup if spec.match(fkey)] if len(libs) == len(tgroup): if spec.optional: m = True elif not simple: ms2 = MatchSpec(track_features=tf) if tf else MatchSpec(nm) m = C.from_name(self.push_MatchSpec(C, ms2)) if m is None: sat_names = [self.to_sat_name(prec) for prec in libs] if spec.optional: ms2 = MatchSpec(track_features=tf) if tf else MatchSpec(nm) sat_names.append('!' + self.to_sat_name(ms2)) m = C.Any(sat_names) C.name_var(m, sat_name) return sat_name @time_recorder(module_name=__name__) def gen_clauses(self): C = Clauses(sat_solver_cls=get_sat_solver_cls(context.sat_solver)) for name, group in iteritems(self.groups): group = [self.to_sat_name(prec) for prec in group] # Create one variable for each package for sat_name in group: C.new_var(sat_name) # Create one variable for the group m = C.new_var(self.to_sat_name(MatchSpec(name))) # Exactly one of the package variables, OR # the negation of the group variable, is true C.Require(C.ExactlyOne, group + [C.Not(m)]) # If a package is installed, its dependencies must be as well for prec in itervalues(self.index): nkey = C.Not(self.to_sat_name(prec)) for ms in self.ms_depends(prec): C.Require(C.Or, nkey, self.push_MatchSpec(C, ms)) if log.isEnabledFor(DEBUG): log.debug("gen_clauses returning with clause count: %d", C.get_clause_count()) return C def generate_spec_constraints(self, C, specs): result = [(self.push_MatchSpec(C, ms),) for ms in specs] if log.isEnabledFor(DEBUG): log.debug( "generate_spec_constraints returning with clause count: %d", C.get_clause_count()) return result def generate_feature_count(self, C): result = {self.push_MatchSpec(C, MatchSpec(track_features=name)): 1 for name in iterkeys(self.trackers)} if log.isEnabledFor(DEBUG): log.debug( "generate_feature_count returning with clause count: %d", C.get_clause_count()) return result def generate_update_count(self, C, specs): return {'!'+ms.target: 1 for ms in specs if ms.target and C.from_name(ms.target)} def generate_feature_metric(self, C): eq = {} # a C.minimize() objective: Dict[varname, coeff] # Given a pair (prec, feature), assign a "1" score IF: # - The prec is installed # - The prec does NOT require the feature # - At least one package in the group DOES require the feature # - A package that tracks the feature is installed for name, group in iteritems(self.groups): prec_feats = {self.to_sat_name(prec): set(prec.features) for prec in group} active_feats = set.union(*prec_feats.values()).intersection(self.trackers) for feat in active_feats: clause_id_for_feature = self.push_MatchSpec(C, MatchSpec(track_features=feat)) for prec_sat_name, features in prec_feats.items(): if feat not in features: feature_metric_id = self.to_feature_metric_id(prec_sat_name, feat) C.name_var(C.And(prec_sat_name, clause_id_for_feature), feature_metric_id) eq[feature_metric_id] = 1 return eq def generate_removal_count(self, C, specs): return {'!'+self.push_MatchSpec(C, ms.name): 1 for ms in specs} def generate_install_count(self, C, specs): return {self.push_MatchSpec(C, ms.name): 1 for ms in specs if ms.optional} def generate_package_count(self, C, missing): return {self.push_MatchSpec(C, nm): 1 for nm in missing} def generate_version_metrics(self, C, specs, include0=False): # each of these are weights saying how well packages match the specs # format for each: a C.minimize() objective: Dict[varname, coeff] eqc = {} # channel eqv = {} # version eqb = {} # build number eqt = {} # timestamp sdict = {} # Dict[package_name, PackageRecord] for s in specs: s = MatchSpec(s) # needed for testing sdict.setdefault(s.name, []) # # TODO: this block is important! can't leave it commented out # rec = sdict.setdefault(s.name, []) # if s.target: # dist = Dist(s.target) # if dist in self.index: # if self.index[dist].get('priority', 0) < MAX_CHANNEL_PRIORITY: # rec.append(dist) for name, targets in iteritems(sdict): pkgs = [(self.version_key(p), p) for p in self.groups.get(name, [])] pkey = None # keep in mind that pkgs is already sorted according to version_key (a tuple, # so composite sort key). Later entries in the list are, by definition, # greater in some way, so simply comparing with != suffices. for version_key, prec in pkgs: if targets and any(prec == t for t in targets): continue if pkey is None: ic = iv = ib = it = 0 # valid package, channel priority elif pkey[0] != version_key[0] or pkey[1] != version_key[1]: ic += 1 iv = ib = it = 0 # version elif pkey[2] != version_key[2]: iv += 1 ib = it = 0 # build number elif pkey[3] != version_key[3]: ib += 1 it = 0 elif not self._solver_ignore_timestamps and pkey[4] != version_key[4]: it += 1 prec_sat_name = self.to_sat_name(prec) if ic or include0: eqc[prec_sat_name] = ic if iv or include0: eqv[prec_sat_name] = iv if ib or include0: eqb[prec_sat_name] = ib if it or include0: eqt[prec_sat_name] = it pkey = version_key return eqc, eqv, eqb, eqt def dependency_sort(self, must_have): # type: (Dict[package_name, PackageRecord]) -> List[PackageRecord] assert isinstance(must_have, dict) digraph = {} # Dict[package_name, Set[dependent_package_names]] for package_name, prec in iteritems(must_have): if prec in self.index: digraph[package_name] = set(ms.name for ms in self.ms_depends(prec)) # There are currently at least three special cases to be aware of. # 1. The `toposort()` function, called below, contains special case code to remove # any circular dependency between python and pip. # 2. conda/plan.py has special case code for menuinst # Always link/unlink menuinst first/last on windows in case a subsequent # package tries to import it to create/remove a shortcut # 3. On windows, python noarch packages need an implicit dependency on conda added, if # conda is in the list of packages for the environment. Python noarch packages # that have entry points use conda's own conda.exe python entry point binary. If conda # is going to be updated during an operation, the unlink / link order matters. # See issue #6057. if on_win and 'conda' in digraph: for package_name, dist in iteritems(must_have): record = self.index.get(prec) if hasattr(record, 'noarch') and record.noarch == NoarchType.python: digraph[package_name].add('conda') sorted_keys = toposort(digraph) must_have = must_have.copy() # Take all of the items in the sorted keys # Don't fail if the key does not exist result = [must_have.pop(key) for key in sorted_keys if key in must_have] # Take any key that were not sorted result.extend(must_have.values()) return result def environment_is_consistent(self, installed): log.debug('Checking if the current environment is consistent') if not installed: return None, [] sat_name_map = {} # Dict[sat_name, PackageRecord] specs = [] for prec in installed: sat_name_map[self.to_sat_name(prec)] = prec specs.append(MatchSpec('%s %s %s' % (prec.name, prec.version, prec.build))) r2 = Resolve({prec: prec for prec in installed}, True, True, channels=self.channels) C = r2.gen_clauses() constraints = r2.generate_spec_constraints(C, specs) solution = C.sat(constraints) return bool(solution) def get_conflicting_specs(self, specs): if not specs: return () reduced_index = self.get_reduced_index(specs) # Check if satisfiable def mysat(specs, add_if=False): constraints = r2.generate_spec_constraints(C, specs) return C.sat(constraints, add_if) r2 = Resolve(reduced_index, True, True, channels=self.channels) C = r2.gen_clauses() solution = mysat(specs, True) if solution: return () else: # This first result is just a single unsatisfiable core. There may be several. unsat_specs = list(minimal_unsatisfiable_subset(specs, sat=mysat)) satisfiable_specs = set(specs) - set(unsat_specs) # In this loop, we test each unsatisfiable spec individually against the satisfiable # specs to ensure there are no other unsatisfiable specs in the set. final_unsat_specs = set() while unsat_specs: this_spec = unsat_specs.pop(0) final_unsat_specs.add(this_spec) test_specs = satisfiable_specs | {this_spec} C = r2.gen_clauses() # TODO: wasteful call, but Clauses() needs refactored solution = mysat(test_specs, True) if not solution: these_unsat = minimal_unsatisfiable_subset(test_specs, sat=mysat) if len(these_unsat) > 1: unsat_specs.extend(these_unsat) satisfiable_specs -= set(unsat_specs) return tuple(final_unsat_specs) def bad_installed(self, installed, new_specs): log.debug('Checking if the current environment is consistent') if not installed: return None, [] sat_name_map = {} # Dict[sat_name, PackageRecord] specs = [] for prec in installed: sat_name_map[self.to_sat_name(prec)] = prec specs.append(MatchSpec('%s %s %s' % (prec.name, prec.version, prec.build))) new_index = {prec: prec for prec in itervalues(sat_name_map)} r2 = Resolve(new_index, True, True, channels=self.channels) C = r2.gen_clauses() constraints = r2.generate_spec_constraints(C, specs) solution = C.sat(constraints) limit = xtra = None if not solution or xtra: def get_(name, snames): if name not in snames: snames.add(name) for fn in self.groups.get(name, []): for ms in self.ms_depends(fn): get_(ms.name, snames) # New addition: find the largest set of installed packages that # are consistent with each other, and include those in the # list of packages to maintain consistency with snames = set() eq_optional_c = r2.generate_removal_count(C, specs) solution, _ = C.minimize(eq_optional_c, C.sat()) snames.update(sat_name_map[sat_name]['name'] for sat_name in (C.from_index(s) for s in solution) if sat_name and sat_name[0] != '!' and '@' not in sat_name) # Existing behavior: keep all specs and their dependencies for spec in new_specs: get_(MatchSpec(spec).name, snames) if len(snames) < len(sat_name_map): limit = snames xtra = [rec for sat_name, rec in iteritems(sat_name_map) if rec['name'] not in snames] log.debug('Limiting solver to the following packages: %s', ', '.join(limit)) if xtra: log.debug('Packages to be preserved: %s', xtra) return limit, xtra def restore_bad(self, pkgs, preserve): if preserve: sdict = {prec.name: prec for prec in pkgs} pkgs.extend(p for p in preserve if p.name not in sdict) def install_specs(self, specs, installed, update_deps=True): specs = list(map(MatchSpec, specs)) snames = {s.name for s in specs} log.debug('Checking satisfiability of current install') limit, preserve = self.bad_installed(installed, specs) for prec in installed: if prec not in self.index: continue name, version, build = prec.name, prec.version, prec.build schannel = prec.channel.canonical_name if name in snames or limit is not None and name not in limit: continue # If update_deps=True, set the target package in MatchSpec so that # the solver can minimize the version change. If update_deps=False, # fix the version and build so that no change is possible. if update_deps: # TODO: fix target here spec = MatchSpec(name=name, target=prec.dist_str()) else: spec = MatchSpec(name=name, version=version, build=build, channel=schannel) specs.append(spec) return specs, preserve def install(self, specs, installed=None, update_deps=True, returnall=False): specs, preserve = self.install_specs(specs, installed or [], update_deps) pkgs = self.solve(specs, returnall=returnall, _remove=False) self.restore_bad(pkgs, preserve) return pkgs def remove_specs(self, specs, installed): nspecs = [] # There's an imperfect thing happening here. "specs" nominally contains # a list of package names or track_feature values to be removed. But # because of add_defaults_to_specs it may also contain version contraints # like "python 2.7*", which are *not* asking for python to be removed. # We need to separate these two kinds of specs here. for s in map(MatchSpec, specs): # Since '@' is an illegal version number, this ensures that all of # these matches will never match an actual package. Combined with # optional=True, this has the effect of forcing their removal. if s._is_single(): nspecs.append(MatchSpec(s, version='@', optional=True)) else: nspecs.append(MatchSpec(s, optional=True)) snames = set(s.name for s in nspecs if s.name) limit, _ = self.bad_installed(installed, nspecs) preserve = [] for prec in installed: nm, ver = prec.name, prec.version if nm in snames: continue elif limit is not None: preserve.append(prec) else: # TODO: fix target here nspecs.append(MatchSpec(name=nm, version='>='+ver if ver else None, optional=True, target=prec.dist_str())) return nspecs, preserve def remove(self, specs, installed): specs, preserve = self.remove_specs(specs, installed) pkgs = self.solve(specs, _remove=True) self.restore_bad(pkgs, preserve) return pkgs @time_recorder(module_name=__name__) def solve(self, specs, returnall=False, _remove=False): # type: (List[str], bool) -> List[PackageRecord] if log.isEnabledFor(DEBUG): log.debug('Solving for: %s', dashlist(sorted(text_type(s) for s in specs))) # Find the compliant packages log.debug("Solve: Getting reduced index of compliant packages") len0 = len(specs) specs = tuple(map(MatchSpec, specs)) reduced_index = self.get_reduced_index(specs) if not reduced_index: return False if reduced_index is None else ([[]] if returnall else []) # Check if satisfiable log.debug("Solve: determining satisfiability") def mysat(specs, add_if=False): constraints = r2.generate_spec_constraints(C, specs) return C.sat(constraints, add_if) r2 = Resolve(reduced_index, True, True, channels=self.channels) C = r2.gen_clauses() solution = mysat(specs, True) if not solution: specs = minimal_unsatisfiable_subset(specs, sat=mysat) self.find_conflicts(specs) speco = [] # optional packages specr = [] # requested packages speca = [] # all other packages specm = set(r2.groups) # missing from specs for k, s in enumerate(specs): if s.name in specm: specm.remove(s.name) if not s.optional: (speca if s.target or k >= len0 else specr).append(s) elif any(r2.find_matches(s)): s = MatchSpec(s.name, optional=True, target=s.target) speco.append(s) speca.append(s) speca.extend(MatchSpec(s) for s in specm) # Removed packages: minimize count log.debug("Solve: minimize removed packages") if _remove: eq_optional_c = r2.generate_removal_count(C, speco) solution, obj7 = C.minimize(eq_optional_c, solution) log.debug('Package removal metric: %d', obj7) # Requested packages: maximize versions log.debug("Solve: maximize versions of requested packages") eq_req_c, eq_req_v, eq_req_b, eq_req_t = r2.generate_version_metrics(C, specr) solution, obj3a = C.minimize(eq_req_c, solution) solution, obj3 = C.minimize(eq_req_v, solution) log.debug('Initial package channel/version metric: %d/%d', obj3a, obj3) # Track features: minimize feature count log.debug("Solve: minimize track_feature count") eq_feature_count = r2.generate_feature_count(C) solution, obj1 = C.minimize(eq_feature_count, solution) log.debug('Track feature count: %d', obj1) # Featured packages: minimize number of featureless packages # installed when a featured alternative is feasible. # For example, package name foo exists with two built packages. One with # 'track_features: 'feat1', and one with 'track_features': 'feat2'. # The previous "Track features" minimization pass has chosen 'feat1' for the # environment, but not 'feat2'. In this case, the 'feat2' version of foo is # considered "featureless." if not context.featureless_minimization_disabled_feature_flag: log.debug("Solve: maximize number of packages that have necessary features") eq_feature_metric = r2.generate_feature_metric(C) solution, obj2 = C.minimize(eq_feature_metric, solution) log.debug('Package misfeature count: %d', obj2) # Requested packages: maximize builds log.debug("Solve: maximize build numbers of requested packages") solution, obj4 = C.minimize(eq_req_b, solution) log.debug('Initial package build metric: %d', obj4) # Optional installations: minimize count if not _remove: log.debug("Solve: minimize number of optional installations") eq_optional_install = r2.generate_install_count(C, speco) solution, obj49 = C.minimize(eq_optional_install, solution) log.debug('Optional package install metric: %d', obj49) # Dependencies: minimize the number of packages that need upgrading log.debug("Solve: minimize number of necessary upgrades") eq_u = r2.generate_update_count(C, speca) solution, obj50 = C.minimize(eq_u, solution) log.debug('Dependency update count: %d', obj50) # Remaining packages: maximize versions, then builds log.debug("Solve: maximize versions and builds of indirect dependencies") eq_c, eq_v, eq_b, eq_t = r2.generate_version_metrics(C, speca) solution, obj5a = C.minimize(eq_c, solution) solution, obj5 = C.minimize(eq_v, solution) solution, obj6 = C.minimize(eq_b, solution) log.debug('Additional package channel/version/build metrics: %d/%d/%d', obj5a, obj5, obj6) # Maximize timestamps log.debug("Solve: maximize timestamps") eq_t.update(eq_req_t) solution, obj6t = C.minimize(eq_t, solution) log.debug('Timestamp metric: %d', obj6t) # Prune unnecessary packages log.debug("Solve: prune unnecessary packages") eq_c = r2.generate_package_count(C, specm) solution, obj7 = C.minimize(eq_c, solution, trymax=True) log.debug('Weak dependency count: %d', obj7) def clean(sol): return [q for q in (C.from_index(s) for s in sol) if q and q[0] != '!' and '@' not in q] log.debug('Looking for alternate solutions') nsol = 1 psolutions = [] psolution = clean(solution) psolutions.append(psolution) while True: nclause = tuple(C.Not(C.from_name(q)) for q in psolution) solution = C.sat((nclause,), True) if solution is None: break nsol += 1 if nsol > 10: log.debug('Too many solutions; terminating') break psolution = clean(solution) psolutions.append(psolution) if nsol > 1: psols2 = list(map(set, psolutions)) common = set.intersection(*psols2) diffs = [sorted(set(sol) - common) for sol in psols2] if not context.json: stdoutlog.info( '\nWarning: %s possible package resolutions ' '(only showing differing packages):%s%s' % ('>10' if nsol > 10 else nsol, dashlist(', '.join(diff) for diff in diffs), '\n ... and others' if nsol > 10 else '')) # def stripfeat(sol): # return sol.split('[')[0] new_index = {self.to_sat_name(prec): prec for prec in itervalues(self.index)} if returnall: if len(psolutions) > 1: raise RuntimeError() # TODO: clean up this mess # return [sorted(Dist(stripfeat(dname)) for dname in psol) for psol in psolutions] # return [sorted((new_index[sat_name] for sat_name in psol), key=lambda x: x.name) # for psol in psolutions] # return sorted(Dist(stripfeat(dname)) for dname in psolutions[0]) return sorted((new_index[sat_name] for sat_name in psolutions[0]), key=lambda x: x.name)
py
1a4eea33a42ded6f1045718aa3a68932d6e2eb05
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Base class for RPC testing.""" from enum import Enum import logging import optparse import os import pdb import shutil import sys import tempfile import time from .authproxy import JSONRPCException from . import coverage from .test_node import TestNode from .util import ( MAX_NODES, PortSeed, assert_equal, check_json_precision, connect_nodes_bi, disconnect_nodes, get_datadir_path, initialize_datadir, p2p_port, set_node_times, sync_blocks, sync_mempools, ) class TestStatus(Enum): PASSED = 1 FAILED = 2 SKIPPED = 3 TEST_EXIT_PASSED = 0 TEST_EXIT_FAILED = 1 TEST_EXIT_SKIPPED = 77 class BitcoinTestFramework(): """Base class for a stomp test script. Individual stomp test scripts should subclass this class and override the set_test_params() and run_test() methods. Individual tests can also override the following methods to customize the test setup: - add_options() - setup_chain() - setup_network() - setup_nodes() The __init__() and main() methods should not be overridden. This class also contains various public and private helper methods.""" def __init__(self): """Sets test framework defaults. Do not override this method. Instead, override the set_test_params() method""" self.setup_clean_chain = False self.nodes = [] self.mocktime = 0 self.supports_cli = False self.set_test_params() assert hasattr(self, "num_nodes"), "Test must set self.num_nodes in set_test_params()" def main(self): """Main function. This should not be overridden by the subclass test scripts.""" parser = optparse.OptionParser(usage="%prog [options]") parser.add_option("--nocleanup", dest="nocleanup", default=False, action="store_true", help="Leave stompds and test.* datadir on exit or error") parser.add_option("--noshutdown", dest="noshutdown", default=False, action="store_true", help="Don't stop stompds after the test execution") parser.add_option("--srcdir", dest="srcdir", default=os.path.normpath(os.path.dirname(os.path.realpath(__file__))+"/../../../src"), help="Source directory containing stompd/stomp-cli (default: %default)") parser.add_option("--cachedir", dest="cachedir", default=os.path.normpath(os.path.dirname(os.path.realpath(__file__)) + "/../../cache"), help="Directory for caching pregenerated datadirs") parser.add_option("--tmpdir", dest="tmpdir", help="Root directory for datadirs") parser.add_option("-l", "--loglevel", dest="loglevel", default="INFO", help="log events at this level and higher to the console. Can be set to DEBUG, INFO, WARNING, ERROR or CRITICAL. Passing --loglevel DEBUG will output all logs to console. Note that logs at all levels are always written to the test_framework.log file in the temporary test directory.") parser.add_option("--tracerpc", dest="trace_rpc", default=False, action="store_true", help="Print out all RPC calls as they are made") parser.add_option("--portseed", dest="port_seed", default=os.getpid(), type='int', help="The seed to use for assigning port numbers (default: current process id)") parser.add_option("--coveragedir", dest="coveragedir", help="Write tested RPC commands into this directory") parser.add_option("--configfile", dest="configfile", help="Location of the test framework config file") parser.add_option("--pdbonfailure", dest="pdbonfailure", default=False, action="store_true", help="Attach a python debugger if test fails") parser.add_option("--usecli", dest="usecli", default=False, action="store_true", help="use bitcoin-cli instead of RPC for all commands") self.add_options(parser) (self.options, self.args) = parser.parse_args() PortSeed.n = self.options.port_seed os.environ['PATH'] = self.options.srcdir + ":" + self.options.srcdir + "/qt:" + os.environ['PATH'] check_json_precision() self.options.cachedir = os.path.abspath(self.options.cachedir) # Set up temp directory and start logging if self.options.tmpdir: self.options.tmpdir = os.path.abspath(self.options.tmpdir) os.makedirs(self.options.tmpdir, exist_ok=False) else: self.options.tmpdir = tempfile.mkdtemp(prefix="test") self._start_logging() success = TestStatus.FAILED try: if self.options.usecli and not self.supports_cli: raise SkipTest("--usecli specified but test does not support using CLI") self.setup_chain() self.setup_network() time.sleep(5) self.run_test() success = TestStatus.PASSED except JSONRPCException as e: self.log.exception("JSONRPC error") except SkipTest as e: self.log.warning("Test Skipped: %s" % e.message) success = TestStatus.SKIPPED except AssertionError as e: self.log.exception("Assertion failed") except KeyError as e: self.log.exception("Key error") except Exception as e: self.log.exception("Unexpected exception caught during testing") except KeyboardInterrupt as e: self.log.warning("Exiting after keyboard interrupt") if success == TestStatus.FAILED and self.options.pdbonfailure: print("Testcase failed. Attaching python debugger. Enter ? for help") pdb.set_trace() if not self.options.noshutdown: self.log.info("Stopping nodes") if self.nodes: self.stop_nodes() else: for node in self.nodes: node.cleanup_on_exit = False self.log.info("Note: stompds were not stopped and may still be running") if not self.options.nocleanup and not self.options.noshutdown and success != TestStatus.FAILED: self.log.info("Cleaning up") shutil.rmtree(self.options.tmpdir) else: self.log.warning("Not cleaning up dir %s" % self.options.tmpdir) if success == TestStatus.PASSED: self.log.info("Tests successful") exit_code = TEST_EXIT_PASSED elif success == TestStatus.SKIPPED: self.log.info("Test skipped") exit_code = TEST_EXIT_SKIPPED else: self.log.error("Test failed. Test logging available at %s/test_framework.log", self.options.tmpdir) self.log.error("Hint: Call {} '{}' to consolidate all logs".format(os.path.normpath(os.path.dirname(os.path.realpath(__file__)) + "/../combine_logs.py"), self.options.tmpdir)) exit_code = TEST_EXIT_FAILED logging.shutdown() sys.exit(exit_code) # Methods to override in subclass test scripts. def set_test_params(self): """Tests must this method to change default values for number of nodes, topology, etc""" raise NotImplementedError def add_options(self, parser): """Override this method to add command-line options to the test""" pass def setup_chain(self): """Override this method to customize blockchain setup""" self.log.info("Initializing test directory " + self.options.tmpdir) if self.setup_clean_chain: self._initialize_chain_clean() else: self._initialize_chain() def setup_network(self): """Override this method to customize test network topology""" self.setup_nodes() # Connect the nodes as a "chain". This allows us # to split the network between nodes 1 and 2 to get # two halves that can work on competing chains. for i in range(self.num_nodes - 1): connect_nodes_bi(self.nodes, i, i + 1) self.sync_all() def setup_nodes(self): """Override this method to customize test node setup""" extra_args = None if hasattr(self, "extra_args"): extra_args = self.extra_args self.add_nodes(self.num_nodes, extra_args) self.start_nodes() def run_test(self): """Tests must override this method to define test logic""" raise NotImplementedError # Public helper methods. These can be accessed by the subclass test scripts. def add_nodes(self, num_nodes, extra_args=None, rpchost=None, timewait=None, binary=None): """Instantiate TestNode objects""" if extra_args is None: extra_args = [[]] * num_nodes if binary is None: binary = [None] * num_nodes assert_equal(len(extra_args), num_nodes) assert_equal(len(binary), num_nodes) for i in range(num_nodes): self.nodes.append(TestNode(i, self.options.tmpdir, extra_args[i], rpchost, timewait=timewait, binary=binary[i], stderr=None, mocktime=self.mocktime, coverage_dir=self.options.coveragedir, use_cli=self.options.usecli)) def start_node(self, i, *args, **kwargs): """Start a stompd""" node = self.nodes[i] node.start(*args, **kwargs) node.wait_for_rpc_connection() time.sleep(10) if self.options.coveragedir is not None: coverage.write_all_rpc_commands(self.options.coveragedir, node.rpc) def start_nodes(self, extra_args=None, *args, **kwargs): """Start multiple stompds""" if extra_args is None: extra_args = [None] * self.num_nodes assert_equal(len(extra_args), self.num_nodes) try: for i, node in enumerate(self.nodes): node.start(extra_args[i], *args, **kwargs) for node in self.nodes: node.wait_for_rpc_connection() except: # If one node failed to start, stop the others self.stop_nodes() raise time.sleep(10) if self.options.coveragedir is not None: for node in self.nodes: coverage.write_all_rpc_commands(self.options.coveragedir, node.rpc) def stop_node(self, i): """Stop a stompd test node""" self.nodes[i].stop_node() self.nodes[i].wait_until_stopped() def stop_nodes(self): """Stop multiple stompd test nodes""" for node in self.nodes: # Issue RPC to stop nodes node.stop_node() for node in self.nodes: # Wait for nodes to stop time.sleep(5) node.wait_until_stopped() def restart_node(self, i, extra_args=None): """Stop and start a test node""" self.stop_node(i) self.start_node(i, extra_args) def assert_start_raises_init_error(self, i, extra_args=None, expected_msg=None, *args, **kwargs): with tempfile.SpooledTemporaryFile(max_size=2**16) as log_stderr: try: self.start_node(i, extra_args, stderr=log_stderr, *args, **kwargs) self.stop_node(i) except Exception as e: assert 'stompd exited' in str(e) # node must have shutdown self.nodes[i].running = False self.nodes[i].process = None if expected_msg is not None: log_stderr.seek(0) stderr = log_stderr.read().decode('utf-8') if expected_msg not in stderr: raise AssertionError("Expected error \"" + expected_msg + "\" not found in:\n" + stderr) else: if expected_msg is None: assert_msg = "stompd should have exited with an error" else: assert_msg = "stompd should have exited with expected error " + expected_msg raise AssertionError(assert_msg) def wait_for_node_exit(self, i, timeout): self.nodes[i].process.wait(timeout) def split_network(self): """ Split the network of four nodes into nodes 0/1 and 2/3. """ disconnect_nodes(self.nodes[1], 2) disconnect_nodes(self.nodes[2], 1) self.sync_all([self.nodes[:2], self.nodes[2:]]) def join_network(self): """ Join the (previously split) network halves together. """ connect_nodes_bi(self.nodes, 1, 2) self.sync_all() def sync_all(self, node_groups=None): if not node_groups: node_groups = [self.nodes] for group in node_groups: sync_blocks(group) sync_mempools(group) def enable_mocktime(self): """Enable mocktime for the script. mocktime may be needed for scripts that use the cached version of the blockchain. If the cached version of the blockchain is used without mocktime then the mempools will not sync due to IBD. For backwared compatibility of the python scripts with previous versions of the cache, this helper function sets mocktime to Jan 1, 2014 + (201 * 10 * 60)""" self.mocktime = 1454124732 + (201 * 10 * 60) def disable_mocktime(self): self.mocktime = 0 # Private helper methods. These should not be accessed by the subclass test scripts. def _start_logging(self): # Add logger and logging handlers self.log = logging.getLogger('TestFramework') self.log.setLevel(logging.DEBUG) # Create file handler to log all messages fh = logging.FileHandler(self.options.tmpdir + '/test_framework.log') fh.setLevel(logging.DEBUG) # Create console handler to log messages to stderr. By default this logs only error messages, but can be configured with --loglevel. ch = logging.StreamHandler(sys.stdout) # User can provide log level as a number or string (eg DEBUG). loglevel was caught as a string, so try to convert it to an int ll = int(self.options.loglevel) if self.options.loglevel.isdigit() else self.options.loglevel.upper() ch.setLevel(ll) # Format logs the same as stompd's debug.log with microprecision (so log files can be concatenated and sorted) formatter = logging.Formatter(fmt='%(asctime)s.%(msecs)03d000 %(name)s (%(levelname)s): %(message)s', datefmt='%Y-%m-%d %H:%M:%S') formatter.converter = time.gmtime fh.setFormatter(formatter) ch.setFormatter(formatter) # add the handlers to the logger self.log.addHandler(fh) self.log.addHandler(ch) if self.options.trace_rpc: rpc_logger = logging.getLogger("BitcoinRPC") rpc_logger.setLevel(logging.DEBUG) rpc_handler = logging.StreamHandler(sys.stdout) rpc_handler.setLevel(logging.DEBUG) rpc_logger.addHandler(rpc_handler) def _initialize_chain(self): """Initialize a pre-mined blockchain for use by the test. Create a cache of a 200-block-long chain (with wallet) for MAX_NODES Afterward, create num_nodes copies from the cache.""" assert self.num_nodes <= MAX_NODES create_cache = False for i in range(MAX_NODES): if not os.path.isdir(get_datadir_path(self.options.cachedir, i)): create_cache = True break if create_cache: self.log.debug("Creating data directories from cached datadir") # find and delete old cache directories if any exist for i in range(MAX_NODES): if os.path.isdir(get_datadir_path(self.options.cachedir, i)): shutil.rmtree(get_datadir_path(self.options.cachedir, i)) # Create cache directories, run bitcoinds: for i in range(MAX_NODES): datadir = initialize_datadir(self.options.cachedir, i) args = [os.getenv("BITCOIND", "stompd"), "-spendzeroconfchange=1", "-server", "-keypool=1", "-datadir=" + datadir, "-discover=0"] if i > 0: args.append("-connect=127.0.0.1:" + str(p2p_port(0))) self.nodes.append(TestNode(i, self.options.cachedir, extra_args=[], rpchost=None, timewait=None, binary=None, stderr=None, mocktime=self.mocktime, coverage_dir=None)) self.nodes[i].args = args self.start_node(i) # Wait for RPC connections to be ready for node in self.nodes: node.wait_for_rpc_connection() # Create a 200-block-long chain; each of the 4 first nodes # gets 25 mature blocks and 25 immature. # Note: To preserve compatibility with older versions of # initialize_chain, only 4 nodes will generate coins. # # blocks are created with timestamps 10 minutes apart # starting from 2010 minutes in the past self.enable_mocktime() block_time = self.mocktime - (201 * 60) for i in range(2): for peer in range(4): for j in range(25): set_node_times(self.nodes, block_time) self.nodes[peer].generate(1) block_time += 60 # Must sync before next peer starts generating blocks sync_blocks(self.nodes) # Shut them down, and clean up cache directories: self.stop_nodes() self.nodes = [] self.disable_mocktime() def cache_path(n, *paths): return os.path.join(get_datadir_path(self.options.cachedir, n), "regtest", *paths) for i in range(MAX_NODES): for entry in os.listdir(cache_path(i)): if entry not in ['wallet.dat', 'chainstate', 'blocks', 'sporks', 'zerocoin', 'backups']: os.remove(cache_path(i, entry)) for i in range(self.num_nodes): from_dir = get_datadir_path(self.options.cachedir, i) to_dir = get_datadir_path(self.options.tmpdir, i) shutil.copytree(from_dir, to_dir) initialize_datadir(self.options.tmpdir, i) # Overwrite port/rpcport in bitcoin.conf def _initialize_chain_clean(self): """Initialize empty blockchain for use by the test. Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization.""" for i in range(self.num_nodes): initialize_datadir(self.options.tmpdir, i) class ComparisonTestFramework(BitcoinTestFramework): """Test framework for doing p2p comparison testing Sets up some stompd binaries: - 1 binary: test binary - 2 binaries: 1 test binary, 1 ref binary - n>2 binaries: 1 test binary, n-1 ref binaries""" def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("BITCOIND", "stompd"), help="stompd binary to test") parser.add_option("--refbinary", dest="refbinary", default=os.getenv("BITCOIND", "stompd"), help="stompd binary to use for reference nodes (if any)") def setup_network(self): extra_args = [['-whitelist=127.0.0.1']] * self.num_nodes if hasattr(self, "extra_args"): extra_args = self.extra_args self.add_nodes(self.num_nodes, extra_args, binary=[self.options.testbinary] + [self.options.refbinary] * (self.num_nodes - 1)) self.start_nodes() class SkipTest(Exception): """This exception is raised to skip a test""" def __init__(self, message): self.message = message
py
1a4eebc47ff7aa5b63d0638ff8085f4fd4c45232
from __future__ import (absolute_import, division, print_function) from playbook.event import Event def test_event_instance(): event = Event() assert isinstance(event, Event) def test_event_headers(): event = Event(headers={'k1': 'v1', 'k2': 'v2'}) assert event.headers == {'k1': 'v1', 'k2': 'v2'} def test_event_payload(): event = Event(payload='value') assert event.payload == 'value' def test_event_headers_payload(): event = Event(headers={'k1': 'v1', 'k2': 'v2'}, payload='value') assert event.headers == {'k1': 'v1', 'k2': 'v2'} assert event.payload == 'value' def test_event_to_dict(): event = Event(headers={'k1': 'v1', 'k2': 'v2'}, payload='value') assert event.to_dict() == { 'headers': {'k1': 'v1', 'k2': 'v2'}, 'payload': 'value' }
py
1a4eebd7c276019734a77c8d0fb3b9d204932978
import numpy as np import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec def fft_wavenumbers(x, y, shape_dat, shape_pdat): """ Compute the wavenumbers. Parameters ---------- x : 1D array Coordinates along x direction. y : 1D array Coordinates along y direction. shape_dat : tuple Shape of the input data. shape_pdat : tuple Shape of the pad. Returns ------- u : array Wavenumber. v : TYPE Wavenumber. """ dx = (np.amax(x) - np.amin(x))/(shape_dat[0] - 1) dy = (np.amax(y) - np.amin(y))/(shape_dat[1] - 1) fx = 2*np.pi*np.fft.fftfreq(shape_pdat[0], dx) fy = 2*np.pi*np.fft.fftfreq(shape_pdat[1], dy) v,u=np.meshgrid(fy, fx) return (u,v) def fft_pad_data(data, mode='edge'): """ Perform the 2D discrete Fourier transform and extend the data with padding. Parameters ---------- data : 2D array Input data. mode : TYPE, optional The type of the pad, available on numpy.pad. The default is 'edge'. Returns ------- fpdat : 2D array The padded data. mask : boolean The mask to perform the unppading. """ n_points=int(2**(np.ceil(np.log(np.max(data.shape))/np.log(2)))) nx, ny = data.shape padx = int((n_points - nx)/2) pady = int((n_points - ny)/2) padded_data = np.pad(data, ((padx, padx), (pady, pady)),mode) mask = np.zeros_like(padded_data, dtype=bool) mask[padx:padx+data.shape[0], pady:pady+data.shape[1]] = True fpdat = np.fft.fft2(padded_data) return (fpdat,mask) def ifft_unpad_data(data_p, mask, shape_dat): ''' Unpad the extended data to fit the original data shape. Parameters ---------- data_p : 2D array Padded data. mask : boolean The mask that will be used to unpad the data. shape_dat : tuple Shape of the original data. Returns ------- data : array Unpadded data. ''' ifft_data = np.real(np.fft.ifft2(data_p)) data = ifft_data[mask] return np.reshape(data, shape_dat) def butter2d_lp(shape, f, n): """ Designs a lowpass 2D Butterworth filter. Modified from Peirce JW (2009) Generating stimuli for neuroscience using PsychoPy. Front. Neuroinform. 2:10. doi:10.3389/neuro.11.010.2008. Parameters ---------- shape : tuple Size of the filter. f : float Relative cutoff frequency of the filter. n : int Order of the filter, the higher n is the sharper the transition is. Returns ------- filt : 2D array Filter kernel centered. """ rows, cols = shape x = np.linspace(-0.5, 0.5, cols) y = np.linspace(-0.5, 0.5, rows) radius = np.sqrt((x**2)[np.newaxis] + (y**2)[:, np.newaxis]) filt = 1 / (1.0 + (radius / f)**(2*n)) return (filt) def plot_wav(decomp): """ Plot the data in DWT domain Parameters ---------- data : list Data in wavelet domain. Returns ------- None. """ plt.figure(figsize=(10,10)) gs = GridSpec(4, 4) ax = plt.subplot(gs[0, 0]) plt.imshow(decomp[0]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[1,0]) plt.imshow(decomp[1][0]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[0, 1]) plt.imshow(decomp[1][1]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[1, 1]) plt.imshow(decomp[1][2]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[2:,:2]) plt.imshow(decomp[2][0]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[:2,2:]) plt.imshow(decomp[2][1]) plt.xticks([]) plt.yticks([]) ax = plt.subplot(gs[2:,2:]) plt.imshow(decomp[2][2]) plt.xticks([]) plt.yticks([]) plt.tight_layout() return
py
1a4eed8c4e06753bc353deb25b842ef021867838
#!/usr/bin/env python2.7 # # Copyright (c) 2016, Daniel Bolgheroni. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import cmd import signal import shlex from time import sleep from pyfirmata import Arduino, serial from conf import Config class Sh(cmd.Cmd): prompt = 'rswtch> ' intro = 'type \'help\' to see available commands' def default(self, line): print(line + ": not found") def do_EOF(self, line): exit(0) # overwrite help, since commands are simple, do not need independent # help for each command def do_help(self, line): print("{0:<16} {1}".format("COMMAND", "DESCRIPTION")) print("{0:<16} {1}".format("annotate n \"c\"", "annotate c in channel n (use quotes)")) print("{0:<16} {1}".format("down n", "turn off the n channel")) print("{0:<16} {1}".format("help", "this help")) print("{0:<16} {1}".format("reset n", "turn the n channel off and on again after 2 seconds")) print("{0:<16} {1}".format("status", "display the status of all channels, including annotations")) print("{0:<16} {1}".format("toggle n", "turn the n channel off if its on, and vice-versa")) print("{0:<16} {1}".format("up n", "turn on the n channel")) ### commands # up def do_up(self, line): parser = shlex.shlex(line) c = parser.get_token() try: channels[c].up() except KeyError: print("no channel") # down def do_down(self, line): parser = shlex.shlex(line) c = parser.get_token() try: channels[c].down() except KeyError: print("no channel") # toggle def do_toggle(self, line): parser = shlex.shlex(line) c = parser.get_token() try: channels[c].toggle() except KeyError: print("no channel") # reset def do_reset(self, line): parser = shlex.shlex(line) c = parser.get_token() try: channels[c].reset() except KeyError: print("no channel") # status def do_status(self, line): status() def do_annotate(self, line): parser = shlex.shlex(line, posix=True) c = parser.get_token() try: channels[c].annotation = parser.get_token() except KeyError: print("no channel") # quit def do_quit(self, line): exit(0) # handle ^C @staticmethod def handle_sigint(signum, frame): exit(0) class Channel(): # the relay module uses inverted logic, so # 1 to bring pin down and 0 bring pin up def __init__(self, pin, boardname): self.__pin = pin self.boardname = boardname self.annotation = None # up by default self.__pin.write(0) def up(self): self.__pin.write(0) def down(self): self.__pin.write(1) def toggle(self): if self.__pin.read() == 0: self.__pin.write(1) else: self.__pin.write(0) def reset(self): self.__pin.write(1) sleep(2) self.__pin.write(0) @property def status(self): return 'up' if self.__pin.read() == 0 else 'down' def status(): print("{0:>2} {1:<6} {2:<20.20} {3:<40.40}" .format("CH", "STATUS", "BOARD", "ANNOTATION")) print("{0:>2} {1:<6} {2:<20.20} {3:<40.40}" .format("1", ch1.status, ch1.boardname, ch1.annotation)) print("{0:>2} {1:<6} {2:<20.20} {3:<40.40}" .format("2", ch2.status, ch2.boardname, ch2.annotation)) print("{0:>2} {1:<6} {2:<20.20} {3:<40.40}" .format("3", ch3.status, ch3.boardname, ch3.annotation)) print("{0:>2} {1:<6} {2:<20.20} {3:<40.40}" .format("4", ch4.status, ch4.boardname, ch4.annotation)) if __name__ == '__main__': opts = argparse.ArgumentParser() opts.add_argument("-v", action="store_true", help="shows board Firmata firmware version") opts.add_argument("-f", help="specify config file") opts.add_argument("dev", help="serial device") args = opts.parse_args() # init Firmata module try: board = Arduino(args.dev) except serial.serialutil.SerialException: print("could not open port {0}".format(args.dev)) exit(1) # try to get board firmata version # this fails most of the times if args.v: v = board.get_firmata_version() try: print("{0}.{1}".format(v[0], v[1])) exit(0) except (NameError, TypeError): print("could not get board firmata version") exit(1) # handle configuration file if args.f: config = Config(args.f) else: config = Config() # turn off board led led = board.get_pin('d:13:o') led.write(0) # configuring pins ch1 = Channel(board.get_pin('d:9:o'), config.get_boardname(1)) ch2 = Channel(board.get_pin('d:8:o'), config.get_boardname(2)) ch3 = Channel(board.get_pin('d:7:o'), config.get_boardname(3)) ch4 = Channel(board.get_pin('d:6:o'), config.get_boardname(4)) channels = {'1': ch1, '2': ch2, '3': ch3, '4': ch4} # start shell signal.signal(signal.SIGINT, Sh.handle_sigint) Sh().cmdloop()
py
1a4eedcad66d9dc4d0bb7974c22aa6ceb62f8e27
from django.contrib import admin from .models import ( EnsemblRegulatoryFeature, GeneInterval, TadSet, TadInterval, TadBoundaryInterval, VistaEnhancer, ) # Register your models here. admin.site.register(EnsemblRegulatoryFeature) admin.site.register(GeneInterval) admin.site.register(TadSet) admin.site.register(TadInterval) admin.site.register(TadBoundaryInterval) admin.site.register(VistaEnhancer)
py
1a4eef2f23daf8c01c2e172de77a6c5722803066
import os from strange_case.configurators import * from strange_case.tests import * def test_provides_decorator(): a = {'dont_change_me': 'not changed'} @provides('dont_change_me') def should_do_nothing(source_file, config): config['dont_change_me'] = 'changed' return config should_do_nothing(None, a) assert a['dont_change_me'] == 'not changed' @provides('change_me') def should_do_something(source_file, config): config['change_me'] = 'changed' return config should_do_something(None, a) assert a['change_me'] == 'changed' @will_test(file_types) def test_file_types_folder(config): source_file = get_test_file('a_folder') config = file_types(source_file, config) assert config['type'] == 'folder' @will_test(file_types) def test_file_types_root(config): source_file = config['site_path'] config = file_types(source_file, config) assert config['type'] == 'root' @will_test(file_types) def test_file_types_from_glob1(config): config.update({ 'file_types': [ ('text', ('*.txt',)), ('bin', ('*.bin',)), ], }) source_file = get_test_file('a_folder/a_file.txt') config = file_types(source_file, config) assert config['type'] == 'text' @will_test(file_types) def test_file_types_from_glob2(config): config.update({ 'file_types': [ ('text', ('*.txt',)), ('bin', ('*.bin',)), ], }) source_file = get_test_file('a_folder/a_file.bin') config = file_types(source_file, config) assert config['type'] == 'bin' @will_test() def test_file_types_from_default_type(config): source_file = get_test_file('a_folder/a_file.txt') config.update({ 'default_type': 'file', }) config = file_types(source_file, config) assert config['type'] == 'file' @will_test(file_types) def test_file_types_no_match(config): source_file = get_test_file('a_folder/a_file.txt') config.update({ 'default_type': None, 'file_types': ( ('page', ['*.j2']), ), }) assert None == file_types(source_file, config) @will_test(file_types, folder_config_file) def test_folder_config_file(config): source_file = get_test_file('a_folder') config.update({ 'config_file': 'config.yaml', }) config = file_types(source_file, config) config = folder_config_file(source_file, config) assert config['test'] == 'test' @will_test(file_types, folder_config_file) def test_folder_config_file_missing_config_file(config): source_file = get_test_file('a_folder') config.update({ 'config_file': 'HUH.yml', }) config = file_types(source_file, config) config = folder_config_file(source_file, config) assert not 'test' in config @will_test(file_types, folder_config_file, ignore) def test_folder_config_file_ignore(config): source_file = get_test_file('a_folder') config.update({ 'config_file': 'ignore_config.yaml', }) config = file_types(source_file, config) config == folder_config_file(source_file, config) assert None == ignore(source_file, config) @will_test(front_matter_config) def test_front_matter_config_success(config): source_file = get_test_file('a_folder/page.j2') config.update({ 'type': 'page', 'override': 'wrong', }) config = front_matter_config(source_file, config) assert config['front'] == 'matter' assert config['override'] == 'overridden' @will_test(front_matter_config) def test_front_matter_config_ticks(config): source_file = get_test_file('a_folder/page_ticks.j2') config.update({ 'type': 'page', 'modified': 1, }) config = front_matter_config(source_file, config) assert config['ticks'] == 2 assert config['modified'] == 2 @will_test(front_matter_config) def test_front_matter_config_ignore_doesnt_exist(config): source_file = get_test_file('a_folder/not_a_file.j2') config.update({ 'type': 'page', 'modified': 1, }) config = front_matter_config(source_file, config) assert config['modified'] == 1 @will_test(front_matter_config) def test_front_matter_config_bad1(config): source_file = get_test_file('a_folder/bad_page1.j2') config.update({ 'type': 'page', }) config = front_matter_config(source_file, config) assert not 'front' in config @will_test(front_matter_config) def test_front_matter_config_bad2(config): source_file = get_test_file('a_folder/bad_page2.j2') config.update({ 'type': 'page', }) config = front_matter_config(source_file, config) assert not 'front' in config @will_test(ignore) def test_ignore_true(config): source_file = get_test_file('a_folder/a_file.txt') config.update({ 'ignore': True, }) assert ignore(source_file, config) is None @will_test(ignore) def test_ignore_false(config): source_file = get_test_file('a_folder/a_file.txt') config.update({ 'ignore': False, }) assert ignore(source_file, config) == config @will_test(ignore) def test_ignore_true_pattern_match(config): source_file = get_test_file('a_folder/a_file.txt') config.update({ 'ignore': ('*.txt'), }) assert ignore(source_file, config) is None @will_test(ignore) def test_ignore_false_pattern_match(config): source_file = get_test_file('a_folder/a_file.txt') config.update({ 'ignore': ('*.bfg',), }) assert ignore(source_file, config) == config @will_test(file_types, folder_config_file) def test_merge_files_config(folder_config): source_file = get_test_file('a_folder') folder_config.update({ 'config_file': 'files_config.yaml' }) folder_config = file_types(source_file, folder_config) folder_config = folder_config_file(source_file, folder_config) def _folder_config(): config = {} config.update(folder_config) return config config = _folder_config() assert len(config['files'].keys()) == 3 config = _folder_config() source_file = get_test_file('a_folder/a_file.txt') config = merge_files_config(source_file, config) assert 'files' not in config assert config['is_a_file'] is True config = _folder_config() source_file = get_test_file('a_folder/bad_page1.j2') config = merge_files_config(source_file, config) assert 'files' not in config assert 'is_a_file' not in config config = _folder_config() source_file = get_test_file('a_folder/page.j2') config = merge_files_config(source_file, config) assert 'files' not in config assert config['is_a_file'] is False @will_test(setdefault_name) def test_setdefault_name_not_setup(config): source_file = get_test_file('a_folder/page.j2') config = setdefault_name(source_file, config) assert config['name'] == 'page' @will_test(setdefault_name) def test_setdefault_name_remove_extension(config): source_file = get_test_file('a_folder/page.j2') config.update({ 'rename_extensions': { '.j2': '.html', }, 'html_extension': '.html', }) config = setdefault_name(source_file, config) assert config['name'] == 'page' @will_test(setdefault_name) def test_setdefault_name_keep_extension(config): source_file = get_test_file('a_folder/a_file.txt') config.update({ 'rename_extensions': { '.j2': '.html', }, 'html_extension': '.html', }) config = setdefault_name(source_file, config) assert config['name'] == 'a_file_txt' @will_test(setdefault_target_name) def test_setdefault_target_name_dont_rename_extension(config): source_file = get_test_file('a_folder/a_file.txt') config.update({ 'rename_extensions': { '.j2': '.html', }, }) config = setdefault_target_name(source_file, config) assert config['target_name'] == 'a_file.txt' @will_test(skip_if_not_modified) def test_skip_if_not_modified_not_modified(config): source_file = get_test_file('a_folder/a_file.txt') mtime = os.stat(source_file).st_mtime config.update({ 'file_mtimes': {source_file: mtime} }) config = skip_if_not_modified(source_file, config) assert config['skip'] is True @will_test(skip_if_not_modified) def test_skip_if_not_modified_is_modified(config): source_file = get_test_file('a_folder/a_file.txt') mtime = os.stat(source_file).st_mtime config.update({ 'file_mtimes': {source_file: mtime - 1} }) config = skip_if_not_modified(source_file, config) assert config['skip'] is False @will_test(is_index, setdefault_target_name, setdefault_iterable) def test_setdefault_iterable_true(config): source_file = get_test_file('a_folder/page.j2') config.update({ 'rename_extensions': { '.j2': '.html', }, 'index.html': 'page.html' }) config = setdefault_target_name(source_file, config) config = is_index(source_file, config) assert config['target_name'] == config['index.html'] config = setdefault_iterable(source_file, config) assert config['iterable'] is False @will_test(is_index, setdefault_target_name, setdefault_iterable) def test_setdefault_iterable_false(config): source_file = get_test_file('a_folder/page.j2') config.update({ 'rename_extensions': { '.j2': '.html', }, 'index.html': 'index.html' }) config = setdefault_target_name(source_file, config) config = is_index(source_file, config) assert config['target_name'] != config['index.html'] config = setdefault_iterable(source_file, config) assert config['iterable'] is True @will_test(setdefault_iterable) def test_setdefault_iterable_override_true(config): source_file = get_test_file('a_folder/bad_page1.j2') config.update({ 'index.html': 'bad_page1.j2', 'iterable': True }) config = setdefault_iterable(source_file, config) assert config['iterable'] is True @will_test(setdefault_iterable) def test_setdefault_iterable_override_false(config): source_file = get_test_file('a_folder/page.j2') config.update({ 'index.html': 'page.j2', 'iterable': False }) config = setdefault_iterable(source_file, config) assert config['iterable'] is False @will_test(setdefault_name, setdefault_target_name, is_index, set_url) def test_set_url(config): source_file = get_test_file('a_folder/page.j2') config.update({ 'rename_extensions': { '.j2': '.html', }, }) config = setdefault_target_name(source_file, config) config = is_index(source_file, config) config = set_url(source_file, config) assert config['url'] == 'page.html' @will_test(setdefault_name, setdefault_target_name, is_index, set_url) def test_set_url_index(config): source_file = get_test_file('a_folder/index.j2') config.update({ 'rename_extensions': { '.j2': '.html', }, 'index.html': 'index.html' }) config = setdefault_name(source_file, config) config = setdefault_target_name(source_file, config) config = is_index(source_file, config) assert config['target_name'] == config['index.html'] config = set_url(source_file, config) assert config['url'] == '' @will_test(setdefault_name, setdefault_target_name, is_index, set_url) def test_set_url_cant_override(config): source_file = get_test_file('a_folder/bad_page1.j2') config.update({ 'url': 'bad_page1', }) config = setdefault_name(source_file, config) config = setdefault_target_name(source_file, config) config = is_index(source_file, config) config = set_url(source_file, config) assert config['url'] == 'bad_page1.html' @will_test(override) def test_override_preserves_local_config(config): source_file = get_test_file('a_folder/bad_page1.j2') config.update({ 'title': 'old title', 'override': { 'title': 'Overridden' } }) config = override(source_file, config) assert config['title'] == 'old title'
py
1a4ef01ee6b35a6b3ac294bd64ccdf8655266890
from hdmf.utils import docval, getargs from hdmf.container import Container CORE_NAMESPACE = 'test_core' class Foo(Container): @docval({'name': 'name', 'type': str, 'doc': 'the name of this Foo'}, {'name': 'my_data', 'type': ('array_data', 'data'), 'doc': 'some data'}, {'name': 'attr1', 'type': str, 'doc': 'an attribute'}, {'name': 'attr2', 'type': int, 'doc': 'another attribute'}, {'name': 'attr3', 'type': float, 'doc': 'a third attribute', 'default': 3.14}) def __init__(self, **kwargs): name, my_data, attr1, attr2, attr3 = getargs('name', 'my_data', 'attr1', 'attr2', 'attr3', kwargs) super(Foo, self).__init__(name=name) self.__data = my_data self.__attr1 = attr1 self.__attr2 = attr2 self.__attr3 = attr3 def __eq__(self, other): attrs = ('name', 'my_data', 'attr1', 'attr2', 'attr3') return all(getattr(self, a) == getattr(other, a) for a in attrs) def __str__(self): attrs = ('name', 'my_data', 'attr1', 'attr2', 'attr3') return '<' + ','.join('%s=%s' % (a, getattr(self, a)) for a in attrs) + '>' @property def my_data(self): return self.__data @property def attr1(self): return self.__attr1 @property def attr2(self): return self.__attr2 @property def attr3(self): return self.__attr3 def __hash__(self): return hash(self.name) class FooBucket(Container): @docval({'name': 'name', 'type': str, 'doc': 'the name of this bucket'}, {'name': 'foos', 'type': list, 'doc': 'the Foo objects in this bucket', 'default': list()}) def __init__(self, **kwargs): name, foos = getargs('name', 'foos', kwargs) super(FooBucket, self).__init__(name=name) self.__foos = foos for f in self.__foos: f.parent = self def __eq__(self, other): return self.name == other.name and set(self.foos) == set(other.foos) def __str__(self): foo_str = "[" + ",".join(str(f) for f in self.foos) + "]" return 'name=%s, foos=%s' % (self.name, foo_str) @property def foos(self): return self.__foos
py
1a4ef17fcc8fcd298f18f6a0229e28e37a809415
from pid import PID from lowpass import LowPassFilter from yaw_controller import YawController import rospy GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self, vehicle_mass, fuel_capacity, brake_deadband, decel_limit, accel_limit, wheel_radius, wheel_base, steer_ratio, max_lat_accel, max_steer_angle): self.yaw_controller = YawController(wheel_base, steer_ratio, 0.1, max_lat_accel, max_steer_angle) kp = 0.3 ki = 0.1 kd = 0.0 mn = 0. # minimum throttle value mx = 0.2 #max throttle self.throttle_controller = PID(kp, ki, kd, mn, mx) tau = 0.5 # 1/(2pi*tau) = cutoff frequency ts = 0.02 # sample time self.vel_lpf = LowPassFilter(tau, ts) self.vehicle_mass = vehicle_mass self.fuel_capacity = fuel_capacity self.brake_deadband = brake_deadband self.decel_limit = decel_limit self.accel_limit = accel_limit self.wheel_radius = wheel_radius self.last_time = rospy.get_time() def control(self, current_vel, dbw_enabled, linear_vel, angular_vel): if not dbw_enabled: self.throttle_controller.reset() return 0., 0., 0. current_vel = self.vel_lpf.filt(current_vel) # rospy.logwarn("Angular vel: {0}".format(angular_vel)) # rospy.logwarn("Current vel: {0}".format(current_vel)) # rospy.logwarn("Target vel: {0}".format(linear_vel)) steering = self.yaw_controller.get_steering(linear_vel, angular_vel, current_vel) # could add damping --> based on target_ang_vel - current_ang_vel vel_error = linear_vel - current_vel self.last_vel = current_vel current_time = rospy.get_time() sample_time = current_time - self.last_time self.last_time = current_time throttle = self.throttle_controller.step(vel_error, sample_time) brake = 0 if linear_vel == 0. and current_vel <0.1: throttle = 0 brake = 700 # N*m to hold car in place if stopped at light; acc ~ 1 m/s^2 elif linear_vel <.1 and vel_error < 0: throttle = 0 decel = max(vel_error, self.decel_limit) brake = abs(decel)*self.vehicle_mass*self.wheel_radius # Torque N*m return throttle, brake, steering
py
1a4ef1fd2913145127635b7aeb5c6c6950045eb0
import base64 import unittest import zlib from os.path import abspath, basename, dirname, join from robot.utils.asserts import assert_equal, assert_true from robot.utils.platform import PY2 from robot.result import Keyword, Message, TestCase, TestSuite from robot.result.executionerrors import ExecutionErrors from robot.model import Statistics from robot.reporting.jsmodelbuilders import * from robot.reporting.stringcache import StringIndex try: long except NameError: long = int CURDIR = dirname(abspath(__file__)) def decode_string(string): string = string if PY2 else string.encode('ASCII') return zlib.decompress(base64.b64decode(string)).decode('UTF-8') def remap(model, strings): if isinstance(model, StringIndex): if strings[model].startswith('*'): # Strip the asterisk from a raw string. return strings[model][1:] return decode_string(strings[model]) elif isinstance(model, (int, long, type(None))): return model elif isinstance(model, tuple): return tuple(remap(item, strings) for item in model) else: raise AssertionError("Item '%s' has invalid type '%s'" % (model, type(model))) class TestBuildTestSuite(unittest.TestCase): def test_default_suite(self): self._verify_suite(TestSuite()) def test_suite_with_values(self): suite = TestSuite('Name', 'Doc', {'m1': 'v1', 'M2': 'V2'}, None, 'Message', '20111204 19:00:00.000', '20111204 19:00:42.001') self._verify_suite(suite, 'Name', 'Doc', ('m1', '<p>v1</p>', 'M2', '<p>V2</p>'), message='Message', start=0, elapsed=42001) def test_relative_source(self): self._verify_suite(TestSuite(source='non-existing'), source='non-existing') source = join(CURDIR, 'test_jsmodelbuilders.py') self._verify_suite(TestSuite(source=source), source=source, relsource=basename(source)) def test_suite_html_formatting(self): self._verify_suite(TestSuite(name='*xxx*', doc='*bold* <&>', metadata={'*x*': '*b*', '<': '>'}), name='*xxx*', doc='<b>bold</b> &lt;&amp;&gt;', metadata=('*x*', '<p><b>b</b></p>', '&lt;', '<p>&gt;</p>')) def test_default_test(self): self._verify_test(TestCase()) def test_test_with_values(self): test = TestCase('Name', '*Doc*', ['t1', 't2'], '1 minute', 'PASS', 'Msg', '20111204 19:22:22.222', '20111204 19:22:22.333') test.setup.config(kwname='setup', type='setup') test.teardown.config(kwname='td', type='teardown') k1 = self._verify_keyword(test.setup, type=1, kwname='setup') k2 = self._verify_keyword(test.teardown, type=2, kwname='td') self._verify_test(test, 'Name', '<b>Doc</b>', ('t1', 't2'), '1 minute', 1, 'Msg', 0, 111, (k1, k2)) def test_name_escaping(self): kw = Keyword('quote:"', 'and *url* https://url.com', '*"Doc"*',) self._verify_keyword(kw, 0, 'quote:&quot;', 'and *url* https://url.com', '<b>"Doc"</b>') test = TestCase('quote:" and *url* https://url.com', '*"Doc"*',) self._verify_test(test, 'quote:&quot; and *url* https://url.com', '<b>"Doc"</b>') suite = TestSuite('quote:" and *url* https://url.com', '*"Doc"*',) self._verify_suite(suite, 'quote:&quot; and *url* https://url.com', '<b>"Doc"</b>') def test_default_keyword(self): self._verify_keyword(Keyword()) def test_keyword_with_values(self): kw = Keyword('KW Name', 'libname', 'http://doc', ('arg1', 'arg2'), ('${v1}', '${v2}'), ('tag1', 'tag2'), '1 second', 'setup', 'PASS', '20111204 19:42:42.000', '20111204 19:42:42.042') self._verify_keyword(kw, 1, 'KW Name', 'libname', '<a href="http://doc">http://doc</a>', 'arg1, arg2', '${v1}, ${v2}', 'tag1, tag2', '1 second', 1, 0, 42) def test_default_message(self): self._verify_message(Message()) self._verify_min_message_level('INFO') def test_message_with_values(self): msg = Message('Message', 'DEBUG', timestamp='20111204 22:04:03.210') self._verify_message(msg, 'Message', 1, 0) self._verify_min_message_level('DEBUG') def test_warning_linking(self): msg = Message('Message', 'WARN', timestamp='20111204 22:04:03.210', parent=TestCase().body.create_keyword()) self._verify_message(msg, 'Message', 3, 0) links = self.context._msg_links assert_equal(len(links), 1) key = (msg.message, msg.level, msg.timestamp) assert_equal(remap(links[key], self.context.strings), 't1-k1') def test_error_linking(self): msg = Message('ERROR Message', 'ERROR', timestamp='20150609 01:02:03.004', parent=TestCase().body.create_keyword().body.create_keyword()) self._verify_message(msg, 'ERROR Message', 4, 0) links = self.context._msg_links assert_equal(len(links), 1) key = (msg.message, msg.level, msg.timestamp) assert_equal(remap(links[key], self.context.strings), 't1-k1-k1') def test_message_with_html(self): self._verify_message(Message('<img>'), '&lt;img&gt;') self._verify_message(Message('<b></b>', html=True), '<b></b>') def test_nested_structure(self): suite = TestSuite() suite.setup.config(kwname='setup', type='setup') suite.teardown.config(kwname='td', type='teardown') K1 = self._verify_keyword(suite.setup, type=1, kwname='setup') K2 = self._verify_keyword(suite.teardown, type=2, kwname='td') suite.suites = [TestSuite()] suite.suites[0].tests = [TestCase(tags=['crit', 'xxx'])] t = self._verify_test(suite.suites[0].tests[0], tags=('crit', 'xxx')) suite.tests = [TestCase(), TestCase(status='PASS')] S1 = self._verify_suite(suite.suites[0], status=0, tests=(t,), stats=(1, 0, 1, 0)) suite.tests[0].body = [Keyword(type=Keyword.FOR_TYPE), Keyword()] suite.tests[0].body[0].body = [Keyword(type=Keyword.FOR_ITEM_TYPE), Message()] k = self._verify_keyword(suite.tests[0].body[0].body[0], type=4) m = self._verify_message(suite.tests[0].body[0].messages[0]) k1 = self._verify_keyword(suite.tests[0].body[0], type=3, body=(k, m)) suite.tests[0].body[1].body = [Message(), Message('msg', level='TRACE')] m1 = self._verify_message(suite.tests[0].body[1].messages[0]) m2 = self._verify_message(suite.tests[0].body[1].messages[1], 'msg', level=0) k2 = self._verify_keyword(suite.tests[0].body[1], body=(m1, m2)) T1 = self._verify_test(suite.tests[0], body=(k1, k2)) T2 = self._verify_test(suite.tests[1], status=1) self._verify_suite(suite, status=0, keywords=(K1, K2), suites=(S1,), tests=(T1, T2), stats=(3, 1, 2, 0)) self._verify_min_message_level('TRACE') def test_timestamps(self): suite = TestSuite(starttime='20111205 00:33:33.333') suite.setup.config(kwname='s1', starttime='20111205 00:33:33.334') suite.setup.body.create_message('Message', timestamp='20111205 00:33:33.343') suite.setup.body.create_message(level='DEBUG', timestamp='20111205 00:33:33.344') suite.tests.create(starttime='20111205 00:33:34.333') context = JsBuildingContext() model = SuiteBuilder(context).build(suite) self._verify_status(model[5], start=0) self._verify_status(model[-2][0][8], start=1) self._verify_mapped(model[-2][0][-1], context.strings, ((8, 10, 2, 'Message'), (8, 11, 1, ''))) self._verify_status(model[-3][0][4], start=1000) def test_if(self): test = TestSuite().tests.create() if_ = test.body.create_if(condition='$x > 0', branch_status='NOT RUN') else_if = if_.orelse.config(condition='$y > 0', branch_status='PASS') else_ = else_if.orelse.config() else_.body.create_keyword('z') exp_if = ( 5, '$x &gt; 0', '', '', '', '', '', '', (3, None, 0), () ) exp_else_if = ( 6, '$y &gt; 0', '', '', '', '', '', '', (1, None, 0), () ) exp_else = ( 7, '', '', '', '', '', '', '', (0, None, 0), ((0, 'z', '', '', '', '', '', '', (0, None, 0), ()),) ) self._verify_test(test, body=(exp_if, exp_else_if, exp_else)) def _verify_status(self, model, status=0, start=None, elapsed=0): assert_equal(model, (status, start, elapsed)) def _verify_suite(self, suite, name='', doc='', metadata=(), source='', relsource='', status=2, message='', start=None, elapsed=0, suites=(), tests=(), keywords=(), stats=(0, 0, 0, 0)): status = (status, start, elapsed, message) \ if message else (status, start, elapsed) doc = '<p>%s</p>' % doc if doc else '' return self._build_and_verify(SuiteBuilder, suite, name, source, relsource, doc, metadata, status, suites, tests, keywords, stats) def _get_status(self, *elements): return elements if elements[-1] else elements[:-1] def _verify_test(self, test, name='', doc='', tags=(), timeout='', status=0, message='', start=None, elapsed=0, body=()): status = (status, start, elapsed, message) \ if message else (status, start, elapsed) doc = '<p>%s</p>' % doc if doc else '' return self._build_and_verify(TestBuilder, test, name, timeout, doc, tags, status, body) def _verify_keyword(self, keyword, type=0, kwname='', libname='', doc='', args='', assign='', tags='', timeout='', status=0, start=None, elapsed=0, body=()): status = (status, start, elapsed) doc = '<p>%s</p>' % doc if doc else '' return self._build_and_verify(KeywordBuilder, keyword, type, kwname, libname, timeout, doc, args, assign, tags, status, body) def _verify_message(self, msg, message='', level=2, timestamp=None): return self._build_and_verify(MessageBuilder, msg, 8, timestamp, level, message) def _verify_min_message_level(self, expected): assert_equal(self.context.min_level, expected) def _build_and_verify(self, builder_class, item, *expected): self.context = JsBuildingContext(log_path=join(CURDIR, 'log.html')) model = builder_class(self.context).build(item) self._verify_mapped(model, self.context.strings, expected) return expected def _verify_mapped(self, model, strings, expected): mapped_model = tuple(remap(model, strings)) assert_equal(mapped_model, expected) class TestSplitting(unittest.TestCase): def test_test_keywords(self): suite = self._get_suite_with_tests() expected, _ = self._build_and_remap(suite) expected_split = [expected[-3][0][-1], expected[-3][1][-1]] expected[-3][0][-1], expected[-3][1][-1] = 1, 2 model, context = self._build_and_remap(suite, split_log=True) assert_equal(context.strings, ('*', '*suite', '*t1', '*t2')) assert_equal(model, expected) assert_equal([strings for _, strings in context.split_results], [('*', '*t1-k1', '*t1-k1-k1', '*t1-k2'), ('*', '*t2-k1')]) assert_equal([self._to_list(remap(*res)) for res in context.split_results], expected_split) def _get_suite_with_tests(self): suite = TestSuite(name='suite') suite.tests = [TestCase('t1'), TestCase('t2')] suite.tests[0].body = [Keyword('t1-k1'), Keyword('t1-k2')] suite.tests[0].body[0].body = [Keyword('t1-k1-k1')] suite.tests[1].body = [Keyword('t2-k1')] return suite def _build_and_remap(self, suite, split_log=False): context = JsBuildingContext(split_log=split_log) model = remap(SuiteBuilder(context).build(suite), context.strings) return self._to_list(model), context def _to_list(self, model): return list(self._to_list(item) if isinstance(item, tuple) else item for item in model) def test_suite_keywords(self): suite = self._get_suite_with_keywords() expected, _ = self._build_and_remap(suite) expected_split = [expected[-2][0][-1], expected[-2][1][-1]] expected[-2][0][-1], expected[-2][1][-1] = 1, 2 model, context = self._build_and_remap(suite, split_log=True) assert_equal(context.strings, ('*', '*root', '*k1', '*k2')) assert_equal(model, expected) assert_equal([strings for _, strings in context.split_results], [('*', '*k1-k2'), ('*',)]) assert_equal([self._to_list(remap(*res)) for res in context.split_results], expected_split) def _get_suite_with_keywords(self): suite = TestSuite(name='root') suite.setup.config(kwname='k1') suite.teardown.config(kwname='k2') suite.setup.body.create_keyword('k1-k2') return suite def test_nested_suite_and_test_keywords(self): suite = self._get_nested_suite_with_tests_and_keywords() expected, _ = self._build_and_remap(suite) expected_split = [expected[-4][0][-3][0][-1], expected[-4][0][-3][1][-1], expected[-4][1][-3][0][-1], expected[-4][1][-2][0][-1], expected[-2][0][-1], expected[-2][1][-1]] (expected[-4][0][-3][0][-1], expected[-4][0][-3][1][-1], expected[-4][1][-3][0][-1], expected[-4][1][-2][0][-1], expected[-2][0][-1], expected[-2][1][-1]) = 1, 2, 3, 4, 5, 6 model, context = self._build_and_remap(suite, split_log=True) assert_equal(model, expected) assert_equal([self._to_list(remap(*res)) for res in context.split_results], expected_split) def _get_nested_suite_with_tests_and_keywords(self): suite = self._get_suite_with_keywords() sub = TestSuite(name='suite2') suite.suites = [self._get_suite_with_tests(), sub] sub.setup.config(kwname='kw') sub.setup.body.create_keyword('skw').body.create_message('Message') sub.tests.create('test', doc='tdoc').body.create_keyword('koowee', doc='kdoc') return suite def test_message_linking(self): suite = self._get_suite_with_keywords() msg1 = suite.setup.body[0].body.create_message( 'Message 1', 'WARN', timestamp='20111204 22:04:03.210' ) msg2 = suite.tests.create().body.create_keyword().body.create_message( 'Message 2', 'ERROR', timestamp='20111204 22:04:04.210' ) context = JsBuildingContext(split_log=True) SuiteBuilder(context).build(suite) errors = ErrorsBuilder(context).build(ExecutionErrors([msg1, msg2])) assert_equal(remap(errors, context.strings), ((8, -1000, 3, 'Message 1', 's1-k1-k1'), (8, 0, 4, 'Message 2', 's1-t1-k1'))) assert_equal(remap(context.link(msg1), context.strings), 's1-k1-k1') assert_equal(remap(context.link(msg2), context.strings), 's1-t1-k1') assert_true('*s1-k1-k1' in context.strings) assert_true('*s1-t1-k1' in context.strings) for res in context.split_results: assert_true('*s1-k1-k1' not in res[1]) assert_true('*s1-t1-k1' not in res[1]) class TestPruneInput(unittest.TestCase): def setUp(self): self.suite = TestSuite() self.suite.setup.config(kwname='s') self.suite.teardown.config(kwname='t') s1 = self.suite.suites.create() s1.setup.config(kwname='s1') tc = s1.tests.create() tc.setup.config(kwname='tcs') tc.teardown.config(kwname='tct') tc.body = [Keyword(), Keyword(), Keyword()] tc.body[0].body = [Keyword(), Keyword(), Message(), Message(), Message()] tc.body[0].teardown.config(kwname='kt') s2 = self.suite.suites.create() t1 = s2.tests.create() t2 = s2.tests.create() t1.body = [Keyword()] t2.body = [Keyword(), Keyword()] def test_no_pruning(self): SuiteBuilder(JsBuildingContext(prune_input=False)).build(self.suite) assert_equal(self.suite.setup.kwname, 's') assert_equal(self.suite.teardown.kwname, 't') assert_equal(self.suite.suites[0].setup.kwname, 's1') assert_equal(self.suite.suites[0].teardown.kwname, None) assert_equal(self.suite.suites[0].tests[0].setup.kwname, 'tcs') assert_equal(self.suite.suites[0].tests[0].teardown.kwname, 'tct') assert_equal(len(self.suite.suites[0].tests[0].body), 3) assert_equal(len(self.suite.suites[0].tests[0].body[0].body), 5) assert_equal(len(self.suite.suites[0].tests[0].body[0].messages), 3) assert_equal(self.suite.suites[0].tests[0].body[0].teardown.kwname, 'kt') assert_equal(len(self.suite.suites[1].tests[0].body), 1) assert_equal(len(self.suite.suites[1].tests[1].body), 2) def test_prune_suites_from_suite(self): suite = self.suite assert_equal(len(suite.suites), 2) assert_equal(len(suite.tests), 0) SuiteBuilder(JsBuildingContext(prune_input=True)).build(suite) assert_equal(len(suite.suites), 0) assert_equal(len(suite.tests), 0) def test_prune_test_from_suite(self): suite = self.suite.suites[0] assert_equal(len(suite.suites), 0) assert_equal(len(suite.tests), 1) SuiteBuilder(JsBuildingContext(prune_input=True)).build(suite) assert_equal(len(suite.suites), 0) assert_equal(len(suite.tests), 0) def test_prune_test(self): test = self.suite.suites[0].tests[0] assert_equal(len(test.body), 3) TestBuilder(JsBuildingContext(prune_input=True)).build(test) assert_equal(len(test.body), 0) def test_prune_keyword(self): kw = self.suite.suites[0].tests[0].body[0] assert_equal(len(kw.body), 5) assert_equal(len(kw.messages), 3) KeywordBuilder(JsBuildingContext(prune_input=True)).build(kw) assert_equal(len(kw.body), 0) assert_equal(len(kw.messages), 0) def test_prune_errors(self): errors = ExecutionErrors([Message(), Message()]) ErrorsBuilder(JsBuildingContext(prune_input=False)).build(errors) assert_equal(len(errors), 2) ErrorsBuilder(JsBuildingContext(prune_input=True)).build(errors) assert_equal(len(errors), 0) class TestBuildStatistics(unittest.TestCase): def test_total_stats(self): all = self._build_statistics()[0][0] self._verify_stat(all, 2, 2, 1, 'All Tests', '00:00:33') def test_tag_stats(self): stats = self._build_statistics()[1] comb, t1, t2, t3 = self._build_statistics()[1] self._verify_stat(t2, 2, 0, 0, 't2', '00:00:22', doc='doc', links='t:url') self._verify_stat(comb, 2, 0, 0, 'name', '00:00:22', info='combined', combined='t1&amp;t2') self._verify_stat(t1, 2, 2, 0, 't1', '00:00:33') self._verify_stat(t3, 0, 1, 1, 't3', '00:00:01') def test_suite_stats(self): root, sub1, sub2 = self._build_statistics()[2] self._verify_stat(root, 2, 2, 1, 'root', '00:00:42', name='root', id='s1') self._verify_stat(sub1, 1, 1, 1, 'root.sub1', '00:00:10', name='sub1', id='s1-s1') self._verify_stat(sub2, 1, 1, 0, 'root.sub2', '00:00:30', name='sub2', id='s1-s2') def _build_statistics(self): return StatisticsBuilder().build(self._get_statistics()) def _get_statistics(self): return Statistics(self._get_suite(), suite_stat_level=2, tag_stat_combine=[('t1&t2', 'name')], tag_doc=[('t2', 'doc')], tag_stat_link=[('?2', 'url', '%1')]) def _get_suite(self): ts = lambda s, ms=0: '20120816 16:09:%02d.%03d' % (s, ms) suite = TestSuite(name='root', starttime=ts(0), endtime=ts(42)) sub1 = TestSuite(name='sub1', starttime=ts(0), endtime=ts(10)) sub2 = TestSuite(name='sub2') suite.suites = [sub1, sub2] sub1.tests = [ TestCase(tags=['t1', 't2'], status='PASS', starttime=ts(0), endtime=ts(1, 500)), TestCase(tags=['t1', 't3'], status='FAIL', starttime=ts(2), endtime=ts(3, 499)), TestCase(tags=['t3'], status='SKIP', starttime=ts(3, 560), endtime=ts(3, 560)) ] sub2.tests = [ TestCase(tags=['t1', 't2'], status='PASS', starttime=ts(10), endtime=ts(30)) ] sub2.suites.create(name='below suite stat level')\ .tests.create(tags=['t1'], status='FAIL', starttime=ts(30), endtime=ts(40)) return suite def _verify_stat(self, stat, pass_, fail, skip, label, elapsed, **attrs): attrs.update({'pass': pass_, 'fail': fail, 'skip': skip, 'label': label, 'elapsed': elapsed}) assert_equal(stat, attrs) class TestBuildErrors(unittest.TestCase): def setUp(self): msgs = [Message('Error', 'ERROR', timestamp='20111206 14:33:00.000'), Message('Warning', 'WARN', timestamp='20111206 14:33:00.042')] self.errors = ExecutionErrors(msgs) def test_errors(self): context = JsBuildingContext() model = ErrorsBuilder(context).build(self.errors) model = remap(model, context.strings) assert_equal(model, ((8, 0, 4, 'Error'), (8, 42, 3, 'Warning'))) def test_linking(self): self.errors.messages.create('Linkable', 'WARN', timestamp='20111206 14:33:00.001') context = JsBuildingContext() msg = TestSuite().tests.create().body.create_keyword().body.create_message( 'Linkable', 'WARN', timestamp='20111206 14:33:00.001' ) MessageBuilder(context).build(msg) model = ErrorsBuilder(context).build(self.errors) model = remap(model, context.strings) assert_equal(model, ((8, -1, 4, 'Error'), (8, 41, 3, 'Warning'), (8, 0, 3, 'Linkable', 's1-t1-k1'))) if __name__ == '__main__': unittest.main()
py
1a4ef23cbac9c347971854e8b21e9c01b4434a15
# Copyright (c) 2020 original authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an \"AS IS\" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from expertai.nlapi.v1 import constants from expertai.nlapi.v1.errors import ExpertAiRequestError, MissingParametersError from expertai.nlapi.v1.object_mapper import ObjectMapper from expertai.nlapi.v1.request import ExpertAiRequest from expertai.nlapi.v1.response import ExpertAiResponse from expertai.nlapi.v1.validate import ExpertAiValidation class ExpertAiClient: def __init__(self): self.response_class = ExpertAiResponse self._endpoint_path = "" def urlpath_keywords(self, endpoint_path): return re.findall(r"\{(\w+)\}", endpoint_path) def verify_request(self, endpoint_path, **kwargs): """ Verify that the user has set all the required parameters. Some of the endpoint url paths are parameterised, therefore the user has to provide some value when setting up the endpoint method """ required_params = self.urlpath_keywords(endpoint_path) if not required_params: return params = kwargs.get("params") or {} missing_params = set(required_params).difference(set(params.keys())) if required_params and missing_params: raise MissingParametersError( "Missing request parameters: {}".format( ",".join(*[missing_params]) ) ) ExpertAiValidation().check_parameters(params=params) def get_method_name_for_endpoint(self, endpoint_path): return dict(constants.URLS_AND_METHODS).get(endpoint_path) def create_request(self, endpoint_path, params=None, body=None): http_method_name = self.get_method_name_for_endpoint(endpoint_path) if params: self.verify_request(endpoint_path, params=params) endpoint_path = endpoint_path.format(**params) return ExpertAiRequest( endpoint_path=endpoint_path, http_method_name=http_method_name, body=body, ) def process_response(self, response): if not response.successful: raise ExpertAiRequestError( "Response status code: {}".format(response.status_code) ) elif response.bad_request: return ExpertAiRequestError( response.bad_request_message(response.json) ) return ObjectMapper().read_json(response.json) def full_analysis(self, params, body): request = self.create_request( endpoint_path=constants.FULL_ANALYSIS_PATH, params=params, body=body, ) response = self.response_class(response=request.send()) return self.process_response(response) def specific_resource_analysis(self, params, body): request = self.create_request( endpoint_path=constants.SPECIFIC_RESOURCE_ANALYSIS_PATH, params=params, body=body, ) response = self.response_class(response=request.send()) return self.process_response(response) def iptc_media_topics_classification(self, params, body): request = self.create_request( endpoint_path=constants.IPTC_MEDIA_TOPICS_CLASSIFICATION_PATH, params=params, body=body, ) response = self.response_class(response=request.send()) return self.process_response(response) def contexts(self): request = self.create_request(endpoint_path=constants.CONTEXTS_PATH) response = self.response_class(response=request.send()) return self.process_response(response) def contexts_standard(self): request = self.create_request( endpoint_path=constants.CONTEXTS_STANDARD_PATH ) response = self.response_class(response=request.send()) return self.process_response(response) def iptc_taxonomies_list(self): request = self.create_request( endpoint_path=constants.TAXONOMIES_LIST_PATH ) response = self.response_class(response=request.send()) return self.process_response(response) def iptc_taxonomies(self): request = self.create_request( endpoint_path=constants.IPTC_TAXONOMIES_PATH ) response = self.response_class(response=request.send()) return self.process_response(response)
py
1a4ef28909708b18a00d7a467213fca9e9e25d51
""" Renderer Module This module defines the PlotlyRenderer class and a single function, fig_to_plotly, which is intended to be the main way that user's will interact with the matplotlylib package. """ from __future__ import absolute_import import six import warnings import plotly.graph_objs as go from plotly.matplotlylib.mplexporter import Renderer from plotly.matplotlylib import mpltools # Warning format def warning_on_one_line(msg, category, filename, lineno, file=None, line=None): return "%s:%s: %s:\n\n%s\n\n" % (filename, lineno, category.__name__, msg) warnings.formatwarning = warning_on_one_line class PlotlyRenderer(Renderer): """A renderer class inheriting from base for rendering mpl plots in plotly. A renderer class to be used with an exporter for rendering matplotlib plots in Plotly. This module defines the PlotlyRenderer class which handles the creation of the JSON structures that get sent to plotly. All class attributes available are defined in __init__(). Basic Usage: # (mpl code) # fig = gcf() renderer = PlotlyRenderer(fig) exporter = Exporter(renderer) exporter.run(fig) # ... et voila """ def __init__(self): """Initialize PlotlyRenderer obj. PlotlyRenderer obj is called on by an Exporter object to draw matplotlib objects like figures, axes, text, etc. All class attributes are listed here in the __init__ method. """ self.plotly_fig = go.Figure() self.mpl_fig = None self.current_mpl_ax = None self.bar_containers = None self.current_bars = [] self.axis_ct = 0 self.x_is_mpl_date = False self.mpl_x_bounds = (0, 1) self.mpl_y_bounds = (0, 1) self.msg = "Initialized PlotlyRenderer\n" def open_figure(self, fig, props): """Creates a new figure by beginning to fill out layout dict. The 'autosize' key is set to false so that the figure will mirror sizes set by mpl. The 'hovermode' key controls what shows up when you mouse around a figure in plotly, it's set to show the 'closest' point. Positional agurments: fig -- a matplotlib.figure.Figure object. props.keys(): [ 'figwidth', 'figheight', 'dpi' ] """ self.msg += "Opening figure\n" self.mpl_fig = fig self.plotly_fig["layout"] = go.Layout( width=int(props["figwidth"] * props["dpi"]), height=int(props["figheight"] * props["dpi"]), autosize=False, hovermode="closest", ) self.mpl_x_bounds, self.mpl_y_bounds = mpltools.get_axes_bounds(fig) margin = go.layout.Margin( l=int(self.mpl_x_bounds[0] * self.plotly_fig["layout"]["width"]), r=int((1 - self.mpl_x_bounds[1]) * self.plotly_fig["layout"]["width"]), t=int((1 - self.mpl_y_bounds[1]) * self.plotly_fig["layout"]["height"]), b=int(self.mpl_y_bounds[0] * self.plotly_fig["layout"]["height"]), pad=0, ) self.plotly_fig["layout"]["margin"] = margin def close_figure(self, fig): """Closes figure by cleaning up data and layout dictionaries. The PlotlyRenderer's job is to create an appropriate set of data and layout dictionaries. When the figure is closed, some cleanup and repair is necessary. This method removes inappropriate dictionary entries, freeing up Plotly to use defaults and best judgements to complete the entries. This method is called by an Exporter object. Positional arguments: fig -- a matplotlib.figure.Figure object. """ self.plotly_fig["layout"]["showlegend"] = False self.msg += "Closing figure\n" def open_axes(self, ax, props): """Setup a new axes object (subplot in plotly). Plotly stores information about subplots in different 'xaxis' and 'yaxis' objects which are numbered. These are just dictionaries included in the layout dictionary. This function takes information from the Exporter, fills in appropriate dictionary entries, and updates the layout dictionary. PlotlyRenderer keeps track of the number of plots by incrementing the axis_ct attribute. Setting the proper plot domain in plotly is a bit tricky. Refer to the documentation for mpltools.convert_x_domain and mpltools.convert_y_domain. Positional arguments: ax -- an mpl axes object. This will become a subplot in plotly. props.keys() -- [ 'axesbg', (background color for axes obj) 'axesbgalpha', (alpha, or opacity for background) 'bounds', ((x0, y0, width, height) for axes) 'dynamic', (zoom/pan-able?) 'axes', (list: [xaxis, yaxis]) 'xscale', (log, linear, or date) 'yscale', 'xlim', (range limits for x) 'ylim', 'xdomain' (xdomain=xlim, unless it's a date) 'ydomain' ] """ self.msg += " Opening axes\n" self.current_mpl_ax = ax self.bar_containers = [ c for c in ax.containers # empty is OK if c.__class__.__name__ == "BarContainer" ] self.current_bars = [] self.axis_ct += 1 # set defaults in axes xaxis = go.layout.XAxis( anchor="y{0}".format(self.axis_ct), zeroline=False, ticks="inside" ) yaxis = go.layout.YAxis( anchor="x{0}".format(self.axis_ct), zeroline=False, ticks="inside" ) # update defaults with things set in mpl mpl_xaxis, mpl_yaxis = mpltools.prep_xy_axis( ax=ax, props=props, x_bounds=self.mpl_x_bounds, y_bounds=self.mpl_y_bounds ) xaxis.update(mpl_xaxis) yaxis.update(mpl_yaxis) bottom_spine = mpltools.get_spine_visible(ax, "bottom") top_spine = mpltools.get_spine_visible(ax, "top") left_spine = mpltools.get_spine_visible(ax, "left") right_spine = mpltools.get_spine_visible(ax, "right") xaxis["mirror"] = mpltools.get_axis_mirror(bottom_spine, top_spine) yaxis["mirror"] = mpltools.get_axis_mirror(left_spine, right_spine) xaxis["showline"] = bottom_spine yaxis["showline"] = top_spine # put axes in our figure self.plotly_fig["layout"]["xaxis{0}".format(self.axis_ct)] = xaxis self.plotly_fig["layout"]["yaxis{0}".format(self.axis_ct)] = yaxis # let all subsequent dates be handled properly if required if "type" in dir(xaxis) and xaxis["type"] == "date": self.x_is_mpl_date = True def close_axes(self, ax): """Close the axes object and clean up. Bars from bar charts are given to PlotlyRenderer one-by-one, thus they need to be taken care of at the close of each axes object. The self.current_bars variable should be empty unless a bar chart has been created. Positional arguments: ax -- an mpl axes object, not required at this time. """ self.draw_bars(self.current_bars) self.msg += " Closing axes\n" self.x_is_mpl_date = False def draw_bars(self, bars): # sort bars according to bar containers mpl_traces = [] for container in self.bar_containers: mpl_traces.append( [ bar_props for bar_props in self.current_bars if bar_props["mplobj"] in container ] ) for trace in mpl_traces: self.draw_bar(trace) def draw_bar(self, coll): """Draw a collection of similar patches as a bar chart. After bars are sorted, an appropriate data dictionary must be created to tell plotly about this data. Just like draw_line or draw_markers, draw_bar translates patch/path information into something plotly understands. Positional arguments: patch_coll -- a collection of patches to be drawn as a bar chart. """ tol = 1e-10 trace = [mpltools.make_bar(**bar_props) for bar_props in coll] widths = [bar_props["x1"] - bar_props["x0"] for bar_props in trace] heights = [bar_props["y1"] - bar_props["y0"] for bar_props in trace] vertical = abs(sum(widths[0] - widths[iii] for iii in range(len(widths)))) < tol horizontal = ( abs(sum(heights[0] - heights[iii] for iii in range(len(heights)))) < tol ) if vertical and horizontal: # Check for monotonic x. Can't both be true! x_zeros = [bar_props["x0"] for bar_props in trace] if all( (x_zeros[iii + 1] > x_zeros[iii] for iii in range(len(x_zeros[:-1]))) ): orientation = "v" else: orientation = "h" elif vertical: orientation = "v" else: orientation = "h" if orientation == "v": self.msg += " Attempting to draw a vertical bar chart\n" old_heights = [bar_props["y1"] for bar_props in trace] for bar in trace: bar["y0"], bar["y1"] = 0, bar["y1"] - bar["y0"] new_heights = [bar_props["y1"] for bar_props in trace] # check if we're stacked or not... for old, new in zip(old_heights, new_heights): if abs(old - new) > tol: self.plotly_fig["layout"]["barmode"] = "stack" self.plotly_fig["layout"]["hovermode"] = "x" x = [bar["x0"] + (bar["x1"] - bar["x0"]) / 2 for bar in trace] y = [bar["y1"] for bar in trace] bar_gap = mpltools.get_bar_gap( [bar["x0"] for bar in trace], [bar["x1"] for bar in trace] ) if self.x_is_mpl_date: x = [bar["x0"] for bar in trace] formatter = ( self.current_mpl_ax.get_xaxis() .get_major_formatter() .__class__.__name__ ) x = mpltools.mpl_dates_to_datestrings(x, formatter) else: self.msg += " Attempting to draw a horizontal bar chart\n" old_rights = [bar_props["x1"] for bar_props in trace] for bar in trace: bar["x0"], bar["x1"] = 0, bar["x1"] - bar["x0"] new_rights = [bar_props["x1"] for bar_props in trace] # check if we're stacked or not... for old, new in zip(old_rights, new_rights): if abs(old - new) > tol: self.plotly_fig["layout"]["barmode"] = "stack" self.plotly_fig["layout"]["hovermode"] = "y" x = [bar["x1"] for bar in trace] y = [bar["y0"] + (bar["y1"] - bar["y0"]) / 2 for bar in trace] bar_gap = mpltools.get_bar_gap( [bar["y0"] for bar in trace], [bar["y1"] for bar in trace] ) bar = go.Bar( orientation=orientation, x=x, y=y, xaxis="x{0}".format(self.axis_ct), yaxis="y{0}".format(self.axis_ct), opacity=trace[0]["alpha"], # TODO: get all alphas if array? marker=go.bar.Marker( color=trace[0]["facecolor"], # TODO: get all line=dict(width=trace[0]["edgewidth"]), ), ) # TODO ditto if len(bar["x"]) > 1: self.msg += " Heck yeah, I drew that bar chart\n" self.plotly_fig.add_trace(bar), if bar_gap is not None: self.plotly_fig["layout"]["bargap"] = bar_gap else: self.msg += " Bar chart not drawn\n" warnings.warn( "found box chart data with length <= 1, " "assuming data redundancy, not plotting." ) def draw_marked_line(self, **props): """Create a data dict for a line obj. This will draw 'lines', 'markers', or 'lines+markers'. props.keys() -- [ 'coordinates', ('data', 'axes', 'figure', or 'display') 'data', (a list of xy pairs) 'mplobj', (the matplotlib.lines.Line2D obj being rendered) 'label', (the name of the Line2D obj being rendered) 'linestyle', (linestyle dict, can be None, see below) 'markerstyle', (markerstyle dict, can be None, see below) ] props['linestyle'].keys() -- [ 'alpha', (opacity of Line2D obj) 'color', (color of the line if it exists, not the marker) 'linewidth', 'dasharray', (code for linestyle, see DASH_MAP in mpltools.py) 'zorder', (viewing precedence when stacked with other objects) ] props['markerstyle'].keys() -- [ 'alpha', (opacity of Line2D obj) 'marker', (the mpl marker symbol, see SYMBOL_MAP in mpltools.py) 'facecolor', (color of the marker face) 'edgecolor', (color of the marker edge) 'edgewidth', (width of marker edge) 'markerpath', (an SVG path for drawing the specified marker) 'zorder', (viewing precedence when stacked with other objects) ] """ self.msg += " Attempting to draw a line " line, marker = {}, {} if props["linestyle"] and props["markerstyle"]: self.msg += "... with both lines+markers\n" mode = "lines+markers" elif props["linestyle"]: self.msg += "... with just lines\n" mode = "lines" elif props["markerstyle"]: self.msg += "... with just markers\n" mode = "markers" if props["linestyle"]: color = mpltools.merge_color_and_opacity( props["linestyle"]["color"], props["linestyle"]["alpha"] ) # print(mpltools.convert_dash(props['linestyle']['dasharray'])) line = go.scatter.Line( color=color, width=props["linestyle"]["linewidth"], dash=mpltools.convert_dash(props["linestyle"]["dasharray"]), ) if props["markerstyle"]: marker = go.scatter.Marker( opacity=props["markerstyle"]["alpha"], color=props["markerstyle"]["facecolor"], symbol=mpltools.convert_symbol(props["markerstyle"]["marker"]), size=props["markerstyle"]["markersize"], line=dict( color=props["markerstyle"]["edgecolor"], width=props["markerstyle"]["edgewidth"], ), ) if props["coordinates"] == "data": marked_line = go.Scatter( mode=mode, name=( str(props["label"]) if isinstance(props["label"], six.string_types) else props["label"] ), x=[xy_pair[0] for xy_pair in props["data"]], y=[xy_pair[1] for xy_pair in props["data"]], xaxis="x{0}".format(self.axis_ct), yaxis="y{0}".format(self.axis_ct), line=line, marker=marker, ) if self.x_is_mpl_date: formatter = ( self.current_mpl_ax.get_xaxis() .get_major_formatter() .__class__.__name__ ) marked_line["x"] = mpltools.mpl_dates_to_datestrings( marked_line["x"], formatter ) self.plotly_fig.add_trace(marked_line), self.msg += " Heck yeah, I drew that line\n" else: self.msg += " Line didn't have 'data' coordinates, " "not drawing\n" warnings.warn( "Bummer! Plotly can currently only draw Line2D " "objects from matplotlib that are in 'data' " "coordinates!" ) def draw_image(self, **props): """Draw image. Not implemented yet! """ self.msg += " Attempting to draw image\n" self.msg += " Not drawing image\n" warnings.warn( "Aw. Snap! You're gonna have to hold off on " "the selfies for now. Plotly can't import " "images from matplotlib yet!" ) def draw_path_collection(self, **props): """Add a path collection to data list as a scatter plot. Current implementation defaults such collections as scatter plots. Matplotlib supports collections that have many of the same parameters in common like color, size, path, etc. However, they needn't all be the same. Plotly does not currently support such functionality and therefore, the style for the first object is taken and used to define the remaining paths in the collection. props.keys() -- [ 'paths', (structure: [vertices, path_code]) 'path_coordinates', ('data', 'axes', 'figure', or 'display') 'path_transforms', (mpl transform, including Affine2D matrix) 'offsets', (offset from axes, helpful if in 'data') 'offset_coordinates', ('data', 'axes', 'figure', or 'display') 'offset_order', 'styles', (style dict, see below) 'mplobj' (the collection obj being drawn) ] props['styles'].keys() -- [ 'linewidth', (one or more linewidths) 'facecolor', (one or more facecolors for path) 'edgecolor', (one or more edgecolors for path) 'alpha', (one or more opacites for path) 'zorder', (precedence when stacked) ] """ self.msg += " Attempting to draw a path collection\n" if props["offset_coordinates"] is "data": markerstyle = mpltools.get_markerstyle_from_collection(props) scatter_props = { "coordinates": "data", "data": props["offsets"], "label": None, "markerstyle": markerstyle, "linestyle": None, } self.msg += " Drawing path collection as markers\n" self.draw_marked_line(**scatter_props) else: self.msg += " Path collection not linked to 'data', " "not drawing\n" warnings.warn( "Dang! That path collection is out of this " "world. I totally don't know what to do with " "it yet! Plotly can only import path " "collections linked to 'data' coordinates" ) def draw_path(self, **props): """Draw path, currently only attempts to draw bar charts. This function attempts to sort a given path into a collection of horizontal or vertical bar charts. Most of the actual code takes place in functions from mpltools.py. props.keys() -- [ 'data', (a list of verticies for the path) 'coordinates', ('data', 'axes', 'figure', or 'display') 'pathcodes', (code for the path, structure: ['M', 'L', 'Z', etc.]) 'style', (style dict, see below) 'mplobj' (the mpl path object) ] props['style'].keys() -- [ 'alpha', (opacity of path obj) 'edgecolor', 'facecolor', 'edgewidth', 'dasharray', (style for path's enclosing line) 'zorder' (precedence of obj when stacked) ] """ self.msg += " Attempting to draw a path\n" is_bar = mpltools.is_bar(self.current_mpl_ax.containers, **props) if is_bar: self.current_bars += [props] else: self.msg += " This path isn't a bar, not drawing\n" warnings.warn( "I found a path object that I don't think is part " "of a bar chart. Ignoring." ) def draw_text(self, **props): """Create an annotation dict for a text obj. Currently, plotly uses either 'page' or 'data' to reference annotation locations. These refer to 'display' and 'data', respectively for the 'coordinates' key used in the Exporter. Appropriate measures are taken to transform text locations to reference one of these two options. props.keys() -- [ 'text', (actual content string, not the text obj) 'position', (an x, y pair, not an mpl Bbox) 'coordinates', ('data', 'axes', 'figure', 'display') 'text_type', ('title', 'xlabel', or 'ylabel') 'style', (style dict, see below) 'mplobj' (actual mpl text object) ] props['style'].keys() -- [ 'alpha', (opacity of text) 'fontsize', (size in points of text) 'color', (hex color) 'halign', (horizontal alignment, 'left', 'center', or 'right') 'valign', (vertical alignment, 'baseline', 'center', or 'top') 'rotation', 'zorder', (precedence of text when stacked with other objs) ] """ self.msg += " Attempting to draw an mpl text object\n" if not mpltools.check_corners(props["mplobj"], self.mpl_fig): warnings.warn( "Looks like the annotation(s) you are trying \n" "to draw lies/lay outside the given figure size.\n\n" "Therefore, the resulting Plotly figure may not be \n" "large enough to view the full text. To adjust \n" "the size of the figure, use the 'width' and \n" "'height' keys in the Layout object. Alternatively,\n" "use the Margin object to adjust the figure's margins." ) align = props["mplobj"]._multialignment if not align: align = props["style"]["halign"] # mpl default if "annotations" not in self.plotly_fig["layout"]: self.plotly_fig["layout"]["annotations"] = [] if props["text_type"] == "xlabel": self.msg += " Text object is an xlabel\n" self.draw_xlabel(**props) elif props["text_type"] == "ylabel": self.msg += " Text object is a ylabel\n" self.draw_ylabel(**props) elif props["text_type"] == "title": self.msg += " Text object is a title\n" self.draw_title(**props) else: # just a regular text annotation... self.msg += " Text object is a normal annotation\n" if props["coordinates"] is not "data": self.msg += ( " Text object isn't linked to 'data' " "coordinates\n" ) x_px, y_px = ( props["mplobj"].get_transform().transform(props["position"]) ) x, y = mpltools.display_to_paper(x_px, y_px, self.plotly_fig["layout"]) xref = "paper" yref = "paper" xanchor = props["style"]["halign"] # no difference here! yanchor = mpltools.convert_va(props["style"]["valign"]) else: self.msg += " Text object is linked to 'data' " "coordinates\n" x, y = props["position"] axis_ct = self.axis_ct xaxis = self.plotly_fig["layout"]["xaxis{0}".format(axis_ct)] yaxis = self.plotly_fig["layout"]["yaxis{0}".format(axis_ct)] if ( xaxis["range"][0] < x < xaxis["range"][1] and yaxis["range"][0] < y < yaxis["range"][1] ): xref = "x{0}".format(self.axis_ct) yref = "y{0}".format(self.axis_ct) else: self.msg += ( " Text object is outside " "plotting area, making 'paper' reference.\n" ) x_px, y_px = ( props["mplobj"].get_transform().transform(props["position"]) ) x, y = mpltools.display_to_paper( x_px, y_px, self.plotly_fig["layout"] ) xref = "paper" yref = "paper" xanchor = props["style"]["halign"] # no difference here! yanchor = mpltools.convert_va(props["style"]["valign"]) annotation = go.layout.Annotation( text=( str(props["text"]) if isinstance(props["text"], six.string_types) else props["text"] ), opacity=props["style"]["alpha"], x=x, y=y, xref=xref, yref=yref, align=align, xanchor=xanchor, yanchor=yanchor, showarrow=False, # change this later? font=go.layout.annotation.Font( color=props["style"]["color"], size=props["style"]["fontsize"] ), ) self.plotly_fig["layout"]["annotations"] += (annotation,) self.msg += " Heck, yeah I drew that annotation\n" def draw_title(self, **props): """Add a title to the current subplot in layout dictionary. If there exists more than a single plot in the figure, titles revert to 'page'-referenced annotations. props.keys() -- [ 'text', (actual content string, not the text obj) 'position', (an x, y pair, not an mpl Bbox) 'coordinates', ('data', 'axes', 'figure', 'display') 'text_type', ('title', 'xlabel', or 'ylabel') 'style', (style dict, see below) 'mplobj' (actual mpl text object) ] props['style'].keys() -- [ 'alpha', (opacity of text) 'fontsize', (size in points of text) 'color', (hex color) 'halign', (horizontal alignment, 'left', 'center', or 'right') 'valign', (vertical alignment, 'baseline', 'center', or 'top') 'rotation', 'zorder', (precedence of text when stacked with other objs) ] """ self.msg += " Attempting to draw a title\n" if len(self.mpl_fig.axes) > 1: self.msg += ( " More than one subplot, adding title as " "annotation\n" ) x_px, y_px = props["mplobj"].get_transform().transform(props["position"]) x, y = mpltools.display_to_paper(x_px, y_px, self.plotly_fig["layout"]) annotation = go.layout.Annotation( text=props["text"], font=go.layout.annotation.Font( color=props["style"]["color"], size=props["style"]["fontsize"] ), xref="paper", yref="paper", x=x, y=y, xanchor="center", yanchor="bottom", showarrow=False, # no arrow for a title! ) self.plotly_fig["layout"]["annotations"] += (annotation,) else: self.msg += ( " Only one subplot found, adding as a " "plotly title\n" ) self.plotly_fig["layout"]["title"] = props["text"] titlefont = dict( size=props["style"]["fontsize"], color=props["style"]["color"] ) self.plotly_fig["layout"]["titlefont"] = titlefont def draw_xlabel(self, **props): """Add an xaxis label to the current subplot in layout dictionary. props.keys() -- [ 'text', (actual content string, not the text obj) 'position', (an x, y pair, not an mpl Bbox) 'coordinates', ('data', 'axes', 'figure', 'display') 'text_type', ('title', 'xlabel', or 'ylabel') 'style', (style dict, see below) 'mplobj' (actual mpl text object) ] props['style'].keys() -- [ 'alpha', (opacity of text) 'fontsize', (size in points of text) 'color', (hex color) 'halign', (horizontal alignment, 'left', 'center', or 'right') 'valign', (vertical alignment, 'baseline', 'center', or 'top') 'rotation', 'zorder', (precedence of text when stacked with other objs) ] """ self.msg += " Adding xlabel\n" axis_key = "xaxis{0}".format(self.axis_ct) self.plotly_fig["layout"][axis_key]["title"] = str(props["text"]) titlefont = dict(size=props["style"]["fontsize"], color=props["style"]["color"]) self.plotly_fig["layout"][axis_key]["titlefont"] = titlefont def draw_ylabel(self, **props): """Add a yaxis label to the current subplot in layout dictionary. props.keys() -- [ 'text', (actual content string, not the text obj) 'position', (an x, y pair, not an mpl Bbox) 'coordinates', ('data', 'axes', 'figure', 'display') 'text_type', ('title', 'xlabel', or 'ylabel') 'style', (style dict, see below) 'mplobj' (actual mpl text object) ] props['style'].keys() -- [ 'alpha', (opacity of text) 'fontsize', (size in points of text) 'color', (hex color) 'halign', (horizontal alignment, 'left', 'center', or 'right') 'valign', (vertical alignment, 'baseline', 'center', or 'top') 'rotation', 'zorder', (precedence of text when stacked with other objs) ] """ self.msg += " Adding ylabel\n" axis_key = "yaxis{0}".format(self.axis_ct) self.plotly_fig["layout"][axis_key]["title"] = props["text"] titlefont = dict(size=props["style"]["fontsize"], color=props["style"]["color"]) self.plotly_fig["layout"][axis_key]["titlefont"] = titlefont def resize(self): """Revert figure layout to allow plotly to resize. By default, PlotlyRenderer tries its hardest to precisely mimic an mpl figure. However, plotly is pretty good with aesthetics. By running PlotlyRenderer.resize(), layout parameters are deleted. This lets plotly choose them instead of mpl. """ self.msg += "Resizing figure, deleting keys from layout\n" for key in ["width", "height", "autosize", "margin"]: try: del self.plotly_fig["layout"][key] except (KeyError, AttributeError): pass def strip_style(self): self.msg += "Stripping mpl style is no longer supported\n"
py
1a4ef32a26e23d945e2a7b0cc51a8cabe86c755f
from .avl_tree_st import * from .bst_st import * from .bst import * from .linear_probing_ht import * from .seperate_chaining_ht import * from .sequential_search_st import * from ._nodes import *
py
1a4ef35c706acb82c5c6b8c3a11ce6c999eb7248
#!/usr/bin/env python # -*- encoding:utf-8 -*- """ gh_lists.py MILESTONE Functions for Github API requests. """ from __future__ import print_function, division, absolute_import import os import re import sys import json import collections import argparse from urllib2 import urlopen Issue = collections.namedtuple('Issue', ('id', 'title', 'url')) def main(): p = argparse.ArgumentParser(usage=__doc__.lstrip()) p.add_argument('--project', default='holgern/pyedflib') p.add_argument('milestone') args = p.parse_args() getter = CachedGet('gh_cache.json') try: milestones = get_milestones(getter, args.project) if args.milestone not in milestones: msg = "Milestone {0} not available. Available milestones: {1}" msg = msg.format(args.milestone, u", ".join(sorted(milestones))) p.error(msg) issues = get_issues(getter, args.project, args.milestone) issues.sort() finally: getter.save() prs = [x for x in issues if u'/pull/' in x.url] issues = [x for x in issues if x not in prs] def print_list(title, items): print() print(title) print("-"*len(title)) print() for issue in items: msg = u"- `#{0} <{1}>`__: {2}" title = re.sub(u"\s+", u" ", issue.title.strip()) if len(title) > 60: remainder = re.sub(u"\s.*$", u"...", title[60:]) if len(remainder) > 20: remainder = title[:80] + u"..." else: title = title[:60] + remainder msg = msg.format(issue.id, issue.url, title) print(msg) print() msg = u"Issues closed for {0}".format(args.milestone) print_list(msg, issues) msg = u"Pull requests for {0}".format(args.milestone) print_list(msg, prs) return 0 def get_milestones(getter, project): url = "https://api.github.com/repos/{project}/milestones".format(project=project) raw_data, info = getter.get(url) data = json.loads(raw_data) milestones = {} for ms in data: milestones[ms[u'title']] = ms[u'number'] return milestones def get_issues(getter, project, milestone): milestones = get_milestones(getter, project) mid = milestones[milestone] url = "https://api.github.com/repos/{project}/issues?milestone={mid}&state=closed&sort=created&direction=asc" url = url.format(project=project, mid=mid) raw_datas = [] while True: raw_data, info = getter.get(url) raw_datas.append(raw_data) if 'link' not in info: break m = re.search('<(.*?)>; rel="next"', info['link']) if m: url = m.group(1) continue break issues = [] for raw_data in raw_datas: data = json.loads(raw_data) for issue_data in data: issues.append(Issue(issue_data[u'number'], issue_data[u'title'], issue_data[u'html_url'])) return issues class CachedGet(object): def __init__(self, filename): self.filename = filename if os.path.isfile(filename): print("[gh_lists] using {0} as cache (remove it if you want fresh data)".format(filename), file=sys.stderr) with open(filename, 'rb') as f: self.cache = json.load(f) else: self.cache = {} def get(self, url): url = unicode(url) if url not in self.cache: print("[gh_lists] get:", url, file=sys.stderr) req = urlopen(url) if req.getcode() != 200: raise RuntimeError() data = req.read() info = dict(req.info()) self.cache[url] = (data, info) req.close() else: print("[gh_lists] get (cached):", url, file=sys.stderr) return self.cache[url] def save(self): tmp = self.filename + ".new" with open(tmp, 'wb') as f: json.dump(self.cache, f) os.rename(tmp, self.filename) if __name__ == "__main__": sys.exit(main())
py
1a4ef52df0ce260ffb4b3cc5d1703144aeb17455
#!/usr/bin/env python MAX_JOBS = 3 SECOND = 1 MINUTE = 60 * SECOND HOUR = 60 * MINUTE DAY = 24 * HOUR MIN_DATE = -8640000000000000 MAX_DATE = 8640000000000000 def time(hour: int, minute: int = 0, seconds: int = 0): return hour * HOUR + minute * MINUTE + seconds * SECOND
wsgi
1a4ef629a7695d67c31e188c9891a6842d9afd1d
import sys sys.path.append('C:/xampp/htdocs/pythonTest') from app import app as application
py
1a4ef7ce607fd20e8019704ff26c2c4ea6c16dcf
import os import numpy as np import music21 import math # Parameter n_pitch: Pitch-Range reicht von 0 bis 127 MAX_PITCH = 128 # Parameter d_[duration]_[dots]: SIGN_DUR = "d" # Parameter v_[velocity]: Lautstärke der folgenden Noten, reicht von 4, 8, 12, ... bis 128 (in 4er-Schritten) SIGN_VELO = "v" MIN_VELO = 0 MAX_VELO = 128 # Parameter t_[tempo]: Tempo der folgenden Noten, reicht von 24, 28, 32, ... bis 160 (in 4er-Schritten) SIGN_TEMP0 = "t" MIN_TEMP0 = 24 MAX_TEMPO = 128 # Zeichen zur Markierung des Ende des Stücks (End Of File) SIGN_EOF = "\n" # neue Note SIGN_NOTE = "n" # Zeichen für die Wait-Zeit SIGN_WAIT = "w" # 3-punktierte Halbe und 3-punktierte 32-tel THREE_DOTTED_BREVE = 15 THREE_DOTTED_32ND = 0.21875 def load_midi(data_path, sample_freq=4, piano_range=(33, 93), transpo_range=10, stretching_range=10): text = "" vocab = set() if os.path.isfile(data_path): # gegebener Pfad ist eine einzelne Midi-Datei file_extension = os.path.splitext(data_path)[1] if file_extension == ".midi" or file_extension == ".mid": text = parse_midi(file_path=data_path, piano_range=piano_range, sample_freq=sample_freq, transpo_range=transpo_range, stretching_range=stretching_range) vocab = set(text.split(" ")) else: # Lade jede Datei einzeln for file in os.listdir(data_path): file_path = os.path.join(data_path, file) file_extension = os.path.splitext(file_path)[1] # Prüfen, ob der file_path kein weiterer Ordner ist und ob die Dateiendung passt (.mid oder .midi) if os.path.isfile(file_path) and (file_extension == ".midi" or file_extension == ".mid"): encoded_midi = parse_midi(file_path=file_path, piano_range=piano_range, sample_freq=sample_freq, transpo_range=transpo_range, stretching_range=stretching_range) if len(encoded_midi) > 0: words = set(encoded_midi.split(" ")) vocab = vocab | words text += encoded_midi + " " # letztes Leerzeichen wird entfernt text = text[:-1] return text, vocab def parse_midi(file_path: str, piano_range, sample_freq, transpo_range, stretching_range): midi_file_path = None print(f"> Parse MIDI-File: {file_path}") # Als Parameter kann auch eine Datei mit Pfad übergeben werden: midi_dir = os.path.dirname(file_path) midi_name = os.path.basename(file_path).split(".") [0] # Falls eine txt-Datei von dieser Midi-Datei bereits existiert, wird diese geladen midi_txt_name = os.path.join(midi_dir, midi_name + ".txt") if (os.path.isfile(midi_txt_name)): midi_file_path = open(midi_txt_name, "r") encoded_midi = midi_file_path.read() else: # Lade mit Music21 die Midi-Datei midi = music21.midi.MidiFile() midi.open(file_path) midi.read() midi.close() # Konvertierung der Midi-Datei in Liste mit Noten und Akkorden encoded_midi = midi_to_encoded(midifile=midi, piano_range=piano_range, sample_freq=sample_freq, transpo_range=transpo_range, stretching_range=stretching_range) if len(encoded_midi) > 0: # neue txt-Datei erzeugen midi_file_path = open(midi_txt_name, "w+") midi_file_path.write(encoded_midi) midi_file_path.flush() if midi_file_path: midi_file_path.close() return encoded_midi def midi_to_encoded(midifile, piano_range, sample_freq, transpo_range, stretching_range): try: stream = music21.midi.translate.midiFileToStream(midifile) except: return [] piano_roll = midi_to_piano_roll(midi_stream=stream, sample_freq=sample_freq, piano_range=piano_range, transpo_range=transpo_range, stretching_range=stretching_range) encoded = piano_roll_to_encoded(piano_roll) return " ".join(encoded) def piano_roll_to_encoded(piano_roll): # Konvertierung der piano_roll in eine Liste mit Strings, die die Noten darstellen sollen encoded = {} counter = 0 for version in piano_roll: # letztes Tempo, Geschwindigkeit und Dauer auf -1 setzen _tempo = -1 _velo = -1 _duration = -1.0 version_encoded = [] for i in range(len(version)): # die letzten Noten sind in der letzten Reihe gespeichert tempo = version[i, -1][0] # neues Tempo wird hinzugefügt if tempo != 0 and tempo != _tempo: version_encoded.append(SIGN_TEMP0 + "_" + str(int(tempo))) _tempo = tempo # Fahre mit dem aktuellen Time Step fort for next_step in range(len(version[i]) -1): duration = version[i, next_step][0] velo = int(version[i, next_step][1]) # neues Tempo if velo != 0 and velo != _velo: version_encoded.append(SIGN_VELO + "_" + str(velo)) _velo = velo # neue Duration if duration != 0 and duration != _duration: duration_tuple = music21.duration.durationTupleFromQuarterLength(duration) version_encoded.append(SIGN_DUR + "_" + duration_tuple.type + "_" + str(duration_tuple.dots)) _duration = duration # neue Note wird hinzugefügt if velo != 0 and duration != 0: version_encoded.append(SIGN_NOTE + "_" + str(next_step)) # Ende dieses Zeitabschnittes if (len(version_encoded) > 0) and version_encoded[-1][0] == SIGN_WAIT: # 'Warte'-Zeit wird um 1 erhöht version_encoded[-1] = "w_" + str(int(version_encoded[-1].split("_")[1]) + 1) else: version_encoded.append("w_1") # Ende des Stücks markieren version_encoded.append(SIGN_EOF) # Check, ob diese Version der MIDI-Datei nicht schon mal hinzugefügt wurde version_encoded_str = " ".join(version_encoded) if version_encoded_str not in encoded: encoded[version_encoded_str] = counter counter += 1 return encoded.keys() def write(encoded_midi, path): # Erzeugt eine Midi-Datei mit dem gegebenen Midi-Daten midi = encoded_to_midi(encoded_midi) midi.open(path, "wb") midi.write() midi.close() def encoded_to_midi(note_encoded, ts_duration=0.25): notes = [] velo = 100 duration = "16th" dots = 0 ts = 0 for note in note_encoded.split(" "): if len(note) == 0: continue elif note[0] == SIGN_WAIT: wait_counter = int(note.split("_")[1]) ts += wait_counter elif note[0] == SIGN_NOTE: pitch = int(note.split("_")[1]) note = music21.note.Note(pitch) note.duration = music21.duration.Duration(type=duration, dots=dots) note.offset = ts * ts_duration note.volume.velocity = velo notes.append(note) elif note[0] == SIGN_DUR: duration = note.split("_")[1] dots = int(note.split("_")[2]) elif note[0] == SIGN_VELO: velo = int(note.split("_")[1]) elif note[0] == SIGN_TEMP0: if note.split("_")[1] != "": tempo = int(note.split("_")[1]) if tempo > 0: mark = music21.tempo.MetronomeMark(number=tempo) mark.offset = ts * ts_duration notes.append(mark) piano = music21.instrument.fromString("Piano") notes.insert(0, piano) piano_stream = music21.stream.Stream(notes) main_stream = music21.stream.Stream([piano_stream]) midi_file = music21.midi.translate.streamToMidiFile(main_stream) return midi_file def midi_parse_notes(midi_stream, sample_freq): note_filter = music21.stream.filters.ClassFilter('Note') events = [] notes_list = midi_stream.recurse().addFilter(note_filter) for note in notes_list: pitch = note.pitch.midi dur = note.duration.quarterLength velo = note.volume.velocity # Abrunden offset = math.floor(note.offset * sample_freq) events.append((pitch, dur, velo, offset)) return events def midi_parse_chords(midi_stream, sample_freq): chord_filter = music21.stream.filters.ClassFilter('Chord') events = [] chords_list = midi_stream.recurse().addFilter(chord_filter) for chord in chords_list: pitches_in_chord = chord.pitches for p in pitches_in_chord: pitch = p.midi dur = chord.duration.quarterLength velo = chord.volume.velocity offset = math.floor(chord.offset * sample_freq) events.append((pitch, dur, velo, offset)) return events def midi_parse_metronome(midi_stream, sample_freq): metro_filter = music21.stream.filters.ClassFilter('MetronomeMark') events = [] metro_list = midi_stream.recurse().addFilter(metro_filter) for metro in metro_list: time = int(metro.number) offset = math.floor(metro.offset * sample_freq) events.append((time, offset)) return events def midi_to_notes(midi_stream, sample_freq, transpo_range): notes = [] notes += midi_parse_notes(midi_stream=midi_stream, sample_freq=sample_freq) notes += midi_parse_chords(midi_stream=midi_stream, sample_freq=sample_freq) # Transponieren aller Noten in die gewünschte Lage transposed_notes = transpose_notes(notes, transpo_range) return transposed_notes def transpose_notes(notes, transpo_range): transpos = [] first_key = -math.floor(transpo_range/2) last_key = math.ceil(transpo_range/2) for key in range(first_key, last_key): notes_in_key = [] for n in notes: pitch, dur, velo, offset = n new_pitch = pitch + key notes_in_key.append((new_pitch, dur, velo, offset)) transpos.append(notes_in_key) return transpos def midi_to_piano_roll(midi_stream, sample_freq, piano_range, transpo_range, stretching_range): # Anzahl time_steps im Piano-Roll berechnen time_steps = math.floor(midi_stream.duration.quarterLength * sample_freq) + 1 # Midi-Datei --> Liste mit (pitch, duration, velocity, offset) transpos = midi_to_notes(midi_stream=midi_stream, sample_freq=sample_freq, transpo_range=transpo_range) time_events = midi_parse_metronome(midi_stream=midi_stream, sample_freq=sample_freq) time_stretches = stretch_time(time_events=time_events, stretching_range=stretching_range) piano_roll_notes = notes_to_piano_roll(transpositions=transpos, time_stretches=time_stretches, time_steps=time_steps, piano_range=piano_range) return piano_roll_notes def notes_to_piano_roll(transpositions, time_stretches, time_steps, piano_range): performances = [] min_pitch, max_pitch = piano_range for t in range(len(transpositions)): for s in range(len(time_stretches)): # neue Piano-Roll mit berechneter Größe # Zusätzliche Dimension, um am Anfang die Lautstärke und Dauer zu beschreiben piano_roll = np.zeros((time_steps, MAX_PITCH + 1, 2)) for note in transpositions[t]: pitch, dur, velo, offset = note if dur == 0.0: continue pitch = clamp_pitch(pitch=pitch, max=max_pitch, min=min_pitch) piano_roll[offset, pitch][0] = clamp_duration(dur) piano_roll[offset, pitch][1] = discretize_value(val=velo, bins=32, range_=(MIN_VELO, MAX_VELO)) for time_events in time_stretches[s]: time, offset = time_events piano_roll[offset, -1][0] = discretize_value(val=time, bins=100, range_=(MIN_TEMP0, MAX_TEMPO)) performances.append(piano_roll) return performances def stretch_time(time_events, stretching_range): stretches = [] slower_time = -math.floor(stretching_range/2) faster_time = math.ceil(stretching_range/2) for stretch_time in range(slower_time, faster_time): time_events_in_stretch = [] for e in time_events: time, offset = e s_time = time + 0.05 * stretch_time * MAX_TEMPO time_events_in_stretch.append((s_time, offset)) stretches.append(time_events_in_stretch) return stretches def discretize_value(val, bins, range_): min_val, max_val = range_ val = int(max(min_val, val)) val = int(min(val, max_val)) bin_size = (max_val/bins) return math.floor(val/bin_size) * bin_size def clamp_pitch(pitch, max, min): while pitch < min: pitch += 12 while pitch >= max: pitch -= 12 return pitch def clamp_duration(dur, max=THREE_DOTTED_BREVE, min=THREE_DOTTED_32ND): # falls die gegebene Dauer (dur) höher als das Maximum (3-punktierte Halbe) ist if dur > max: dur = max # falls die Dauer kleiner als das Minimum (3-punktierte 32-tel) ist if dur < min: dur = min dur_tuple = music21.duration.durationTupleFromQuarterLength(dur) if dur_tuple.type == "inexpressible": duration_clos_type = music21.duration.quarterLengthToClosestType(dur)[0] dur = music21.duration.typeToDuration[duration_clos_type] return dur
py
1a4ef8080feeb40a931ddd3b62646150ab0f759a
from click.testing import CliRunner from facilyst.__main__ import cli def test_print_cli_cmd(): runner = CliRunner() result = runner.invoke(cli) assert result.exit_code == 0
py
1a4ef874ff38f85c1629a9a54cf5d3428f9aecc1
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from openerp.osv import fields, osv import time class account_voucher_line(osv.osv): def _supplier_invoice_number(self, cursor, user, ids, name, arg, context=None): res = {} cursor.execute("""SELECT vl.id, i.supplier_invoice_number FROM account_voucher_line vl inner join account_move_line ml on vl.move_line_id = ml.id left outer join account_invoice i on ml.move_id = i.move_id WHERE vl.id IN %s""",(tuple(ids),)) for line_id, supplier_invoice_number in cursor.fetchall(): res[line_id] = supplier_invoice_number return res _inherit = 'account.voucher.line' _columns = { 'supplier_invoice_number': fields.function(_supplier_invoice_number, string='Supplier Invoice Number', type='char'), } account_voucher_line() class account_voucher(osv.osv): _inherit = 'account.voucher' _columns = { 'date_cheque':fields.date('Cheque Date', readonly=True, select=True, states={'draft':[('readonly',False)]}), 'number_cheque':fields.char('Cheque No.', size=64), } _defaults = { 'date_cheque': lambda *a: time.strftime('%Y-%m-%d'), } account_voucher() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
py
1a4ef959cbd75da1e5895b39f9e0e440da77f5df
# -*- coding: utf-8 -*- """ meraki This file was automatically generated for meraki by APIMATIC v2.0 ( https://apimatic.io ). """ class CreateNetworkSmTargetGroupsModel(object): """Implementation of the 'createNetworkSmTargetGroups' model. TODO: type model description here. Attributes: name (string): The name of this target group scope (string): The scope and tag options of the target group. Comma separated values beginning with one of withAny, withAll, withoutAny, withoutAll, all, none, followed by tags """ # Create a mapping from Model property names to API property names _names = { "name":'name', "scope":'scope' } def __init__(self, name=None, scope=None, additional_properties = {}): """Constructor for the CreateNetworkSmTargetGroupsModel class""" # Initialize members of the class self.name = name self.scope = scope # Add additional model properties to the instance self.additional_properties = additional_properties @classmethod def from_dictionary(cls, dictionary): """Creates an instance of this model from a dictionary Args: dictionary (dictionary): A dictionary representation of the object as obtained from the deserialization of the server's response. The keys MUST match property names in the API description. Returns: object: An instance of this structure class. """ if dictionary is None: return None # Extract variables from the dictionary name = dictionary.get('name') scope = dictionary.get('scope') # Clean out expected properties from dictionary for key in cls._names.values(): if key in dictionary: del dictionary[key] # Return an object of this model return cls(name, scope, dictionary)
py
1a4ef9ddb749911de5f8676a98d22413676cb87e
#@+leo-ver=5-thin #@+node:tbrown.20091029123555.5319: * @file ../plugins/attrib_edit.py #@+<< docstring >> #@+node:tbrown.20091009210724.10972: ** << docstring >> r""" Edits user attributes in a Qt frame. This plugin creates a frame for editing attributes similar to:: Name: Fred Blogs Home: 555-555-5555 Work: 555-555-5556 ``attrib_edit`` is also intended to provide attribute editing for other plugins, see below. The editor panel appears in the Log pane in its own tab. If the free_layout system is active you can move it into its own pane (e.g. below the body text) by right clicking the pane dividers. The attributes can be stored in different ways, three modes are implemented currently: v.u mode These attributes are stored in the "unknownAttributes" (uA) data for each node, accessed via v.u. Field: Attributes are lines starting (no whitespace) with "AttributeName:" in the body text. @Child Attributes are the head strings of child nodes when the head string starts with '@AttributeName' where the first letter (second character) must be capitalized. The plugin defines the following commands, available either in the plugin's sub-menu in the Plugins menu, or as ``Alt-X attrib-edit-*``. attrib-edit-modes Select which attribute setting / getting modes to use. More than one mode can be used at the same time. You can also control which modes are active by listing them with the @data attrib_edit_active_modes setting. For example:: Field: @Child # v.u mode would cause only the "Field:" and "@Child" modes to be active be default. attrib-edit-manage Select which attributes, from all attributes seen so far in this outline, to include on the current node. attrib-edit-scan Scan the entire outline for attributes so ``attrib-edit-manage`` has the complete list. attrib-edit-create Create a new attribute on the current node. If Field: or \@Child modes are active, they simply remind you how to create an attribute in the log pane. If the "v.u mode" mode is active, you're prompted for a path for the attribute. For example:: addressbook First to store the attribute in v.u['addressbook']['_edit']['First'] As a convenience, entering a path like:: todo metadata created|creator|revised would create:: v.u.['todo']['metadata']['_edit']['created'] v.u.['todo']['metadata']['_edit']['creator'] v.u.['todo']['metadata']['_edit']['revised'] **Technical details** See the source for complete documentation for use with other plugins. Here are some points of interest: - In addition to ``v.u['addressbook']['_edit']['first']``, paths like ``v.u['addressbook']['_edit']['_int']['age']`` may be used to identify type, although currently there's no difference in the edit widget. - In the future the plugin may allow other plugins to register to provide attribute path information, instead of just scanning for ['_edit'] entries in v.u. - Currently there's no sorting of the attributes in "v.u mode", which is a problem for some applications. It's unclear where the desired order would be stored, without even more repetition in v.u. When other plugins can register to manipulate the attribute list each plugin could address this, with unordered presentation in the absence of the client plugin. """ #@-<< docstring >> # Written by TNB. from leo.core import leoGlobals as g from leo.core.leoQt import isQt6, QtConst, QtCore, QtWidgets from leo.core.leoQt import DialogCode, Orientation # # Fail fast, right after all imports. g.assertUi('qt') # May raise g.UiTypeException, caught by the plugins manager. #@+others #@+node:tbrown.20091009210724.10975: ** init def init(): """Return True if the plugin has loaded successfully.""" if g.app.gui.guiName() != "qt": print('attrib_edit.py plugin not loading because gui is not Qt') return False g.registerHandler('after-create-leo-frame', onCreate) g.plugin_signon(__name__) return True #@+node:tbrown.20091009210724.10976: ** onCreate def onCreate(tag, key): c = key.get('c') attrib_edit_Controller(c) #@+node:tbrown.20091103080354.1400: ** class AttributeGetter class AttributeGetter: implementations = [] typeMap = { '_int': int, '_float': float, '_bool': bool, } @classmethod def register(cls, subclass): cls.implementations.append(subclass) def __init__(self, c): self.c = c def name(self): return "ABSTRACT VIRTUAL BASE CLASS" def getAttribs(self, v): raise NotImplementedError def setAttrib(self, v, path, value): raise NotImplementedError def delAttrib(self, v, path): raise NotImplementedError def helpCreate(self): """either a string telling user how to add an attribute, or True if the Getter needs to help the user create an attribute""" return "ABSTRACT VIRTUAL BASE CLASS" def longDescrip(self, path): """give the long description of the attribute on path 'path'. ASSUMES: path determines name E.g. attribute named 'count' might be described as 'address.people.count' """ raise NotImplementedError #@+node:tbrown.20091103080354.1402: ** class AttributeGetterUA class AttributeGetterUA(AttributeGetter): #@+others #@+node:tbrown.20091103080354.1409: *3* recSearch def recSearch(self, d, path, ans): """recursive search of tree of dicts for values whose key path is like [*][*][*]['_edit'][*] or [*][*][*]['_edit']['_int'][*] Modifies list ans """ for k in d: if isinstance(d[k], dict): if k not in ('_edit', '_view'): self.recSearch(d[k], path + [k], ans) else: # k == '_edit' or '_view' for ek in d[k]: if ek in self.typeMap: # ek is '_int' or similar type_ = self.typeMap[ek] for ekt in d[k][ek]: ans.append((self, ekt, d[k][ek][ekt], tuple(path + ['_edit', ek, ekt]), type_, k != '_edit')) else: ans.append((self, ek, d[k][ek], tuple(path + ['_edit', ek]), str, k != '_edit')) #@+node:tbrown.20091103080354.1410: *3* getAttribs def getAttribs(self, v): """Return a list of tuples describing editable uAs. (class, name, value, path, type, readonly) e.g. (AttributeGetterUA, 'created', '2009-09-23', ('stickynotes','_edit','created'), str, False), (AttributeGetterUA, 'cars', 2, ('inventory','_edit','_int','cars'), int, False) Changes should be written back to v.uA['stickynotes']['_edit']['created'] and v.uA['inventory']['_edit']['_int']['cars'] respectively """ ans = [] d = v.u self.recSearch(d, [], ans) return ans #@+node:tbrown.20091103080354.1430: *3* setAttrib def setAttrib(self, v, path, value): """copy value into dict a on path, e.g. a['one']['more']['level'] = value """ a = v.u for i in path[:-1]: a = a.setdefault(i, {}) a[path[-1]] = value #@+node:tbrown.20091103080354.1438: *3* delAttrib def delAttrib(self, v, path): a = v.u for i in path[:-1]: try: a = a[i] except KeyError: return try: del a[path[-1]] except KeyError: pass #@+node:tbrown.20091103080354.1411: *3* name def name(self): return "v.u mode" #@+node:tbrown.20091103080354.1431: *3* helpCreate def helpCreate(self): """does the Getter need to help the user create an attribute?""" return True #@+node:tbrown.20091103080354.1432: *3* createAttrib def createAttrib(self, v, gui_parent=None): path, ok = QtWidgets.QInputDialog.getText(gui_parent, "Enter attribute path", "Enter path to attribute (space separated words)") ns = str(path).split() if not ok or not ns: g.es("Cancelled") return #FIXME type_ = {True: '_view', False: '_edit'}[readonly] type_ = '_edit' if '|' in ns[-1]: nslist = [ns[:-1] + [i.strip()] for i in ns[-1].split('|')] else: nslist = [ns] for ns in nslist: if type_ not in ns: ns.insert(-1, type_) self.setAttrib(v, ns, '') #FIXME self.attrPaths.add(tuple(ns)) #@+node:tbrown.20091103080354.1433: *3* longDescrip def longDescrip(self, path): return '.'.join([j for j in path if j not in ('_edit', '_view')]) #@-others AttributeGetter.register(AttributeGetterUA) #@+node:tbrown.20091103080354.1420: ** class AttributeGetterAt class AttributeGetterAt(AttributeGetter): #@+others #@+node:tbrown.20091103080354.1422: *3* getAttribs def getAttribs(self, v): """Return a list of tuples describing editable uAs. (class, name, value, path, type, readonly) e.g. (AttributeGetterUA, 'created', '2009-09-23', ('stickynotes','_edit','created'), str, False), (AttributeGetterUA, 'cars', 2, ('inventory','_edit','_int','cars'), int, False) Changes should be written back to v.uA['stickynotes']['_edit']['created'] and v.uA['inventory']['_edit']['_int']['cars'] respectively """ ans = [] for n in v.children: if n.h and n.h[0] == '@' and ('A' <= n.h[1] <= 'Z'): words = n.h[1:].split(None, 1) if not words: continue if len(words) == 1: words.append('') ans.append((self, words[0], words[1], words[0], str, False)) return ans #@+node:tbrown.20091103080354.6237: *3* setAttrib def setAttrib(self, v, path, value): for n in v.children: if n.h[0] == '@' and ('A' <= n.h[1] <= 'Z'): words = n.h[1:].split(None, 1) if len(words) == 1: words.append('') if words[0] == path: n.h = "@%s %s" % (path, value) break else: p = self.c.vnode2position(v) n = p.insertAsLastChild() n.h = "@%s %s" % (path, value) #@+node:tbrown.20091103080354.6244: *3* delAttrib def delAttrib(self, v, path): for n in v.children: if n.h[0] == '@' and ('A' <= n.h[1] <= 'Z'): words = n.h[1:].split(None, 1) if not words: continue if words[0] == path: p = self.c.vnode2position(n) p.doDelete() break #@+node:tbrown.20091103080354.1423: *3* name def name(self): return "@Child" #@+node:tbrown.20091103080354.1443: *3* helpCreate def helpCreate(self): return "Add a child named '@AttributeName'" #@+node:tbrown.20091103080354.1435: *3* longName def longDescrip(self, path): return path #@-others AttributeGetter.register(AttributeGetterAt) #@+node:tbrown.20091103080354.1427: ** class AttributeGetterColon class AttributeGetterColon(AttributeGetter): #@+others #@+node:tbrown.20091103080354.1428: *3* getAttribs def getAttribs(self, v): ans = [] parts = v.b.split('\n', 100) for i in parts[:99]: if not i or i[0].isspace(): continue words = i.split(None, 1) if words and words[0] and words[0][-1] == ':': if len(words) == 1: words.append('') ans.append((self, words[0][:-1], words[1], words[0][:-1], str, False)) return ans #@+node:tbrown.20091103080354.6246: *3* setAttrib def setAttrib(self, v, path, value): parts = v.b.split('\n', 100) for n, i in enumerate(parts[:99]): words = i.split(None, 1) if words and words[0] and words[0][-1] == ':' and words[0][:-1] == path: parts[n] = "%s: %s" % (path, value) v.b = '\n'.join(parts) break else: v.b = "%s: %s\n%s" % (path, value, v.b) #@+node:tbrown.20091103080354.6248: *3* delAttrib def delAttrib(self, v, path): parts = v.b.split('\n', 100) for n, i in enumerate(parts[:99]): words = i.split(None, 1) if words and words[0] and words[0][-1] == ':' and words[0][:-1] == path: del parts[n] v.b = '\n'.join(parts) break #@+node:tbrown.20091103080354.1429: *3* name def name(self): return "Field:" #@+node:tbrown.20091103080354.1441: *3* helpCreate def helpCreate(self): return "Add 'AttributeName:' to the text" #@+node:tbrown.20091103080354.1437: *3* longName def longDescrip(self, path): return path #@-others AttributeGetter.register(AttributeGetterColon) #@+node:tbrown.20091028131637.1353: ** class ListDialog class ListDialog(QtWidgets.QDialog): #@+others #@+node:tbrown.20091028131637.1354: *3* __init__ (attrib_edit.py) def __init__(self, parent, title, text, entries): self.entries = entries super().__init__(parent) vbox = QtWidgets.QVBoxLayout() sa = QtWidgets.QScrollArea() salo = QtWidgets.QVBoxLayout() frame = QtWidgets.QFrame() frame.setLayout(salo) self.buttons = [] for entry in entries: hbox = QtWidgets.QHBoxLayout() cb = QtWidgets.QCheckBox(entry[0]) self.buttons.append(cb) if entry[1]: cb.setChecked(True if isQt6 else QtConst.Checked) hbox.addWidget(cb) salo.addLayout(hbox) sa.setWidget(frame) vbox.addWidget(sa) hbox = QtWidgets.QHBoxLayout() ok = QtWidgets.QPushButton("Ok") cancel = QtWidgets.QPushButton("Cancel") ok.clicked.connect(self.writeBack) cancel.clicked.connect(self.reject) # QtCore.QObject.connect(ok, QtCore.SIGNAL('clicked(bool)'), self.writeBack) # QtCore.QObject.connect(cancel, QtCore.SIGNAL('clicked(bool)'), self.reject) hbox.addWidget(ok) hbox.addWidget(cancel) vbox.addLayout(hbox) self.setLayout(vbox) #@+node:tbrown.20091028131637.1359: *3* writeBack def writeBack(self, event=None): for n, i in enumerate(self.buttons): self.entries[n][1] = (i.isChecked()) self.accept() #@-others #@+node:tbrown.20091010211613.5257: ** class editWatcher class editWatcher: """class to supply widget for editing attribute and handle its textChanged signal""" def __init__(self, c, v, class_, name, value, path, type_): """v - node whose attribute we edit name - name of edited attribute value - initial value of edited attribute path - dictionary key path to attribute in v.u type_ - attribute type """ self.c = c self.v = v self.class_ = class_ self.name = name self.value = value self.path = path self.type_ = type_ self._widget = None def widget(self): """return widget for editing this attribute""" if not self._widget: self._widget = w = QtWidgets.QLineEdit(str(self.value)) w.textChanged.connect(self.updateValue) self._widget.focusOutEvent = self.lostFocus # see lostFocus() return self._widget def updateValue(self, newValue): """copy value from widget to v.u""" self.class_.setAttrib(self.v, self.path, self.type_(newValue)) self.v.setDirty() def lostFocus(self, event): """Can activate this in in widget(), but it stops tabbing through the attributes - unless we can check that none of our siblings has focus...""" sibs = self._widget.parent().findChildren(QtWidgets.QLineEdit) for i in sibs: if i.hasFocus(): break else: self.c.redraw() #X def setValue(a, path, value): #X """copy value into dict a on path, #X e.g. a['one']['more']['level'] = value #X """ #X for i in path[:-1]: #X a = a.setdefault(i, {}) #X a[path[-1]] = value #@+node:tbrown.20091009210724.10979: ** class attrib_edit_Controller class attrib_edit_Controller: """A per-commander class that manages attribute editing.""" #@+others #@+node:tbrown.20091009210724.10981: *3* __init__ & reloadSettings (attrib_edit_Controller) def __init__(self, c): self.c = c c.attribEditor = self self.pname = "_attrib_edit_frame" # used to tag out panel self.reloadSettings() self.attrPaths = set() # set of tuples (getter-class, path) self.handlers = [ ('select3', self.updateEditor), ] for i in self.handlers: g.registerHandler(i[0], i[1]) # 'body' or 'tab' mode # self.guiMode = c.config.getString('attrib-edit-placement') or 'tab' self.guiMode = 'tab' # body mode in not compatible with nested_splitter, causes hard crash if self.guiMode == 'body': self.holder = QtWidgets.QSplitter(Orientation.Vertical) self.holder.setMinimumWidth(300) parent = c.frame.top.leo_body_frame.parent() self.holder.addWidget(c.frame.top.leo_body_frame) parent.addWidget(self.holder) self.parent = self.holder elif self.guiMode == 'tab': self.parent = QtWidgets.QFrame() self.holder = QtWidgets.QHBoxLayout() self.parent.setLayout(self.holder) c.frame.log.createTab('Attribs', widget=self.parent) def reloadSettings(self): c = self.c c.registerReloadSettings(self) active = c.config.getData('attrib_edit_active_modes') or [] self.getsetters = [] for i in AttributeGetter.implementations: s = i(c) self.getsetters.append([s, (s.name() in active)]) if not active: self.getsetters[0][1] = True # turn on the first one #@+node:tbrown.20091009210724.10983: *3* __del__ def __del__(self): for i in self.handlers: g.unregisterHandler(i[0], i[1]) #@+node:tbrown.20091009210724.11210: *3* initForm def initForm(self): """set up self.form, the blank form layout before adding edit widgets""" self.editors = [] w = self.holder for i in w.parent().findChildren(QtCore.QObject): if i.objectName() == self.pname: i.hide() i.deleteLater() pnl = QtWidgets.QFrame() pnl.setObjectName(self.pname) self.form = QtWidgets.QFormLayout() self.form.setVerticalSpacing(0) pnl.setLayout(self.form) pnl.setAutoFillBackground(True) w.addWidget(pnl) #@+node:tbrown.20091009210724.11047: *3* updateEditor def updateEditor(self, tag, k): """update edit panel when new node selected""" if k['c'] != self.c: return # not our problem self.updateEditorInt() #@+node:tbrown.20091028100922.1493: *3* updateEditorInt def updateEditorInt(self): c = self.c self.initForm() for attr in self.getAttribs(): class_, name, value, path, type_, readonly = attr if readonly: self.form.addRow(QtWidgets.QLabel(name), QtWidgets.QLabel(str(value))) else: editor = editWatcher(c, c.currentPosition().v, class_, name, value, path, type_) self.editors.append(editor) self.form.addRow(QtWidgets.QLabel(name), editor.widget()) #@+node:tbrown.20091103080354.1405: *3* recSearch (not used) # def JUNKrecSearch(self, d, path, ans): # """recursive search of tree of dicts for values whose # key path is like [*][*][*]['_edit'][*] or # [*][*][*]['_edit']['_int'][*] # Modifies list ans # """ # for k in d: # if isinstance(d[k], dict): # if k not in ('_edit', '_view'): # self.recSearch(d[k], path+[k], ans) # else: # # k == '_edit' or '_view' # for ek in d[k]: # if ek in self.typeMap: # # ek is '_int' or similar # type_ = self.typeMap[ek] # for ekt in d[k][ek]: # ans.append((ekt, d[k][ek][ekt], tuple(path+['_edit',ek,ekt]), # type_, k != '_edit')) # else: # ans.append((ek, d[k][ek], tuple(path+['_edit',ek]), str, k != '_edit')) #@+node:tbrown.20091103080354.1406: *3* getAttribs def getAttribs(self, v=None): """Return a list of tuples describing editable uAs. (class, name, value, path, type, readonly) e.g. (class, 'created', '2009-09-23', ('stickynotes','_edit','created'), str, False), (class, 'cars', 2, ('inventory','_edit','_int','cars'), int, False) Changes should be written back to v.uA['stickynotes']['_edit']['created'] and v.uA['inventory']['_edit']['_int']['cars'] respectively """ ans = [] if not v: v = self.c.currentPosition().v for getter, isOn in self.getsetters: if not isOn: continue ans.extend(getter.getAttribs(v)) for ns in ans: self.attrPaths.add((ns[0], ns[1], ns[3])) # class, name, path return ans #@+node:tbrown.20091029101116.1413: *3* addAttrib def addAttrib(self, attrib): attrib[0].setAttrib(self.c.currentPosition().v, attrib[2], '') #@+node:tbrown.20091029101116.1414: *3* delAttrib def delAttrib(self, attrib): attrib[0].delAttrib(self.c.currentPosition().v, attrib[2]) #@+node:tbrown.20091029101116.1424: *3* scanAttribs def scanAttribs(self): """scan all of c for attrbutes""" for v in self.c.all_unique_nodes(): self.getAttribs(v) # updates internal list of attribs g.es("%d attributes found" % len(self.attrPaths)) #@+node:tbrown.20091011151836.14788: *3* createAttrib def createAttrib(self, event=None, readonly=False): ans = [] for getter, isOn in self.getsetters: if not isOn: continue if getter.helpCreate() is True: ans.append(getter) else: g.es("For '%s' attributes:\n %s" % (getter.name(), getter.helpCreate())) if len(ans) > 1: g.error('Eror: more than one attribute type (%s) active' % ', '.join([i.name() for i in ans])) elif ans: ans[0].createAttrib(self.c.currentPosition().v, gui_parent=self.parent) self.updateEditorInt() self.c.currentPosition().v.setDirty() self.c.redraw() #@+node:tbrown.20091028131637.1358: *3* manageAttrib def manageAttrib(self): attribs = [(i[0], i[1], i[3]) for i in self.getAttribs()] dat = [] for attr in self.attrPaths: txt = attr[0].longDescrip(attr[2]) active = attr in attribs dat.append([txt, active, attr]) if not dat: g.es('No attributes seen (yet)') return dat.sort(key=lambda x: x[0]) res = ListDialog(self.parent, "Enter attribute path", "Enter path to attribute (space separated words)", dat) res.exec_() if res.result() == DialogCode.Rejected: return # check for deletions for i in dat: if i[2] in attribs and not i[1]: res = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Question, "Really delete attributes?", "Really delete attributes?", QtWidgets.QMessageBox.Ok | QtWidgets.QMessageBox.Cancel, self.parent) if res.exec_() == QtWidgets.QMessageBox.Cancel: return break # apply changes for i in dat: if i[2] in attribs and not i[1]: self.delAttrib(i[2]) elif i[2] not in attribs and i[1]: self.addAttrib(i[2]) self.updateEditorInt() self.c.redraw() #@+node:tbrown.20091103080354.1415: *3* manageModes def manageModes(self): modes = [[i[0].name(), i[1]] for i in self.getsetters] res = ListDialog(self.parent, "Enter attribute path", "Enter path to attribute (space separated words)", modes) res.exec_() if res.result() == DialogCode.Rejected: return for n, i in enumerate(modes): self.getsetters[n][1] = i[1] self.updateEditorInt() #@-others #@+node:tbrown.20091029101116.1415: ** cmd_Modes (attrib_edit_Controller) @g.command('attrib-edit-modes') def cmd_Modes(event): c = event.get('c') c.attribEditor.manageModes() #@+node:tbrown.20091103080354.1413: ** cmd_Manage (attrib_edit_Controller) @g.command('attrib-edit-manage') def cmd_Manage(event): c = event.get('c') c.attribEditor.manageAttrib() #@+node:tbrown.20091029101116.1419: ** cmd_Create (attrib_edit_Controller) @g.command('attrib-edit-create') def cmd_Create(event): c = event.get('c') c.attribEditor.createAttrib() #@+node:tbrown.20091029101116.1421: ** cmd_CreateReadonly (attrib_edit_Controller) def Xcmd_CreateReadonly(c): c.attribEditor.createAttrib(readonly=True) #@+node:tbrown.20091029101116.1426: ** cmd_Scan (attrib_edit_Controller) @g.command('attrib-edit-scan') def cmd_Scan(event): c = event.get('c') c.attribEditor.scanAttribs() #@-others #@@language python #@@tabwidth -4 #@-leo
py
1a4efb7a5fc37dbd8b6d2e13bbabca7c817aa116
# -*- coding: utf-8 -*- """ Created on Sun Jun 24 15:08:07 2018 @author: joshu """ import math # Because you used the import you access methods by referencing the module print("ceil(4.4) = ", math.ceil(4.4)) print("floor(4.4) = ", math.floor(4.4)) print("fabs(-4.4) = ", math.fabs(-4.4)) # Factorial = 1 * 2 * 3 * 4 print("factorial(4) = ", math.factorial(4)) # Return remainder of division print("fmod(5,4) = ", math.fmod(5,4)) # Receive a float and return an int print("trunc(4.2) = ", math.trunc(4.2)) # Returns x^y print("pow(2,2) = ", math.pow(2,2)) # Return the square root print("sqrt(4) = ", math.sqrt(4)) # Special Values print("math.e = ", math.e) print("math.pi = ", math.pi) # Return e^x print("exp(4) = ", math.factorial(4)) # Return the natural log e * e * e ~= 20 so log(20) tells # you that e^3 ~= 20 print("log(20) = ", math.log(20)) # You can define the base and 10^3 = 1000 print("log(1000,10) = ", math.log(1000,10)) # You can also use base 10 like this print("log10(1000) = ", math.log10(1000)) # We have the following trif functions # sin, cos, tan, asin, acos, atan, atan2, asinh, acosh, # atanh, sinh, cosh, tanh # Convert radians to degrees and vice versa print("degrees(1.5708) = ", math.degrees(1.5708)) print("radians(90) = ", math.radians(90))
py
1a4efbee70ca3e5aee929f3363d4ac393b947a6e
""" pommesdispatch --------------- A bottom-up fundamental power market model for the German electricity sector """ __version__ = "0.1.0" __author__ = ( "Johannes Kochems, Yannick Werner, " "Johannes Giehl, Benjamin Grosse" ) __credits__ = ( "Sophie Westphal, Flora von Mikulicz-Radecki, Carla Spiller, " "Fabian Büllesbach, Timona Ghosh, Paul Verwiebe, " "Leticia Encinas Rosa, Joachim Müller-Kirchenbauer" )
py
1a4efd1a32e9606d09bed738aaf1dc2c56e6e5c4
#coding: utf-8 """ git branch [-r | -a] [--abbrev=n | --no-abbrev\n git branch [--set-upstream | --track | --no-track] [-l][-f] <branchname> <startpoint> git branch (-m | -M) [<oldbranch>] <newbranch> git branch (-d | -D) [-r] <branchname>… git branch --edit-description [<branchname>]""" import sys,os import dulwich from dulwich import porcelain from dulwich.walk import Walker from gittle import Gittle import argparse from git.gitutils import _get_repo, find_revision_sha, is_ancestor, merge_base, can_ff, any_one, count_commits_between, get_remote_tracking_branch, GitError def branch(args): repo=_get_repo() parser = argparse.ArgumentParser(prog='git branch' , description="List, create, or delete branches") #list list_grp=parser.add_mutually_exclusive_group(required= False) list_grp.add_argument('-r','--remotes',action='store_true',help='list or delete remotep tracking branches') list_grp.add_argument('-a','--all',action='store_true',help='list both remote and local branches') # move type commands move_type=parser.add_mutually_exclusive_group(required=False) move_type.add_argument('-m','--move', nargs='+', metavar=('[oldbranch]','newbranch'), help='move/rename oldbranch or HEAD') move_type.add_argument('-M',nargs='+',metavar=('[oldbranch]','newbranch'),help='move/rename even if branch already exists') # delete type commands delete_flags=parser.add_mutually_exclusive_group(required=False) delete_flags.add_argument('-d','--delete', nargs=1, metavar=('branchname'), help='delete branchname,TODO: branch must be fully merged with upstream ') delete_flags.add_argument('-D',nargs=1,metavar=('branchname'),help='Delete a branch irrespective of its merged status.') # misc flags parser.add_argument('-v','--verbose',action='count', help='When in list mode, show sha1 and commit subject line for each head, along with relationship to upstream branch (if any). If given twice, print the name of the upstream branch, as well (see also git remote show <remote>).') parser.add_argument('-f','--force',action='store_true', help='Reset <branchname> to <startpoint> if <branchname> exists already. Without -f git branch refuses to change an existing branch.') abbrevgrp=parser.add_mutually_exclusive_group() abbrevgrp.add_argument('--abbrev',action='store',nargs='?',help='set number of characters to display in sha',type=int,default=7) abbrevgrp.add_argument('--no-abbrev',action='store_const',help='do not abbreviate sha ',const=40,dest='abbrev') track_flags=parser.add_mutually_exclusive_group(required=False ) track_flags.add_argument('--set-upstream',action='store', nargs=2, metavar=('branchname','upstream') ,help='set branchname to track upstream') track_flags.add_argument('--no-track', nargs='+',metavar=('branchname','startpoint'),help='set existing branch to not track, or create new branch that doesnt track') # add_branch parser.add_argument('branchname',nargs='?') parser.add_argument('startpoint',nargs='?') parser.add_argument('--edit_description',action='store',nargs='?',metavar='branchname', const=repo.active_branch) result = parser.parse_args(args) # combine args edit_description=result.edit_description delete_branchname=result.delete or result.D move_branchname = result.move or result.M no_track=result.no_track add_branchname = (result.branchname, result.startpoint or repo.active_branch) set_upstream= result.set_upstream force = result.force or result.D or result.M mutual_exclusive_list=( delete_branchname, move_branchname, edit_description, result.branchname, set_upstream, no_track) list_flag=not any_one(mutual_exclusive_list) if not any_one((list_flag,)+ mutual_exclusive_list): raise GitError('too many options specified.\n'+parser.print_help()) if list_flag: branch_list(result) elif delete_branchname: delete_branch(delete_branchname[0], force , result.remotes, result.verbose) elif move_branchname: move_branch(move_branchname, force, result.verbose) elif add_branchname[0]: create_branch(add_branchname[0],add_branchname[1],force,False ) elif edit_description: edit_branch_description(edit_description) elif set_upstream: add_tracking(set_upstream[0], *( ['origin']+set_upstream[1].split('/'))[-2:]) print set_upstream[0], format_tracking_branch_desc(repo,set_upstream[0]) elif no_track: if len(no_track)==1: remove_tracking(no_track[0]) else: create_branch(no_track[0],no_track[1],force,True) #print result def format_tracking_branch_desc(repo,branchname): try: remote=get_remote_tracking_branch(repo,branchname) mysha=repo.branches[branchname] theirsha=repo.remote_branches[remote] ahead,behind=count_commits_between(repo,mysha, theirsha) return '+{}/-{} relative to {} ({})'.format(ahead,behind,remote,theirsha) except KeyError: return '' def edit_branch_description(branchname, description=None): description = description or raw_input('enter description:') config = _get_repo().repo.get_config() if not branchname in _get_repo().branches: GitError('{} is not an existing branch'.format(branchname)) config.set(('branch',branchname),'description',description) config.write_to_path() def branch_list(result): # TODO: tracking branches N=result.abbrev repo = _get_repo() if not result.remotes: for key,value in repo.branches.iteritems(): dispval=value[0:N] #todo, --abbrev=n commitmsg=(repo[value].message if result.verbose else '').strip() tracking=get_remote_tracking_branch(repo,key) trackmsg='' diffmsg=trackingsha='' if tracking: trackingsha=repo.remote_branches[tracking] ahead,behind= count_commits_between(repo,value,trackingsha) diffmsg='+{}/-{} compare to'.format(ahead,behind) if result.verbose else '' trackmsg='[{} {} {}]'.format(diffmsg,tracking,trackingsha[0:N]) print ('* ' if repo.active_branch == key else '') + key, dispval, trackmsg, commitmsg if result.remotes or result.all: for key, value in repo.remote_branches.iteritems(): dispval=value[0:N] #todo, --abbrev=n commitmsg=(repo[value].message if result.verbose else '').strip() print ('* ' if repo.active_branch == key else '') + key, dispval, commitmsg def delete_branch(delete_branchname,force=False,remote=None, verbose=0): '''delete a branch. if remote=True, then look in refs/remotes, otherwise check refs/heads for local, check if it has a remote tracking branch, and only allow delete if upstream has merged ''' print 'delete',delete_branchname,force,remote repo=_get_repo() if remote: qualified_branch=repo._format_ref_remote(delete_branchname) else: qualified_branch=repo._format_ref_branch(delete_branchname) if delete_branchname == repo.active_branch: GitError('Cannot delete active branch. ') remote_tracking_branch=get_remote_tracking_branch(repo,delete_branchname) if remote_tracking_branch and not force: #see if local is ahead of remote commits_ahead=count_commits_between(repo, repo.refs[qualified_branch], repo.remote_branches[remote_tracking_branch] )[0] if commits_ahead: raise GitError('{0} is ahead of {1} by {2} commits.\nuse git branch -D\n'.format(delete_branchname, remote_tracking_branch, commits_ahead)) print 'removing {} (was {})\n'.format(delete_branchname,repo.refs[qualified_branch]) del repo.repo.refs[qualified_branch] if not remote: remove_tracking(delete_branchname) #todo reflog def move_branch(movebranch,force,verbose): '''move oldbranch (or active_branch) to newbranch. update config if needed''' repo=_get_repo() oldbranch,newbranch=([repo.active_branch]+movebranch)[-2:] if oldbranch not in repo.branches: raise GitError('{} does not exist in branches'.format(oldbranch)) if newbranch in repo.branches and not force: raise GitError('{} already exists. use -M to force overwriting'.format(newbranch)) if newbranch != oldbranch: print 'Renaming {} ({}) to {}\n'.format(oldbranch,repo.branches[oldbranch],newbranch) repo.add_ref(repo._format_ref_branch(newbranch),repo._format_ref_branch(oldbranch)) del repo.repo.refs[repo._format_ref_branch(oldbranch)] #todo: reflog if oldbranch == repo.active_branch: repo.active_branch=newbranch def remove_tracking(branchname): '''remove branch entry from config''' # Get repo's config config = _get_repo().repo.get_config() try: del config[('branch', branchname)]['remote'] del config[('branch', branchname)]['merge'] if not config[('branch', branchname)]: del config[('branch', branchname)] except KeyError: pass # Write to disk config.write_to_path() def add_tracking(branchname, remote, remotebranch): # Get repo's config config = _get_repo().repo.get_config() # Add new entries for remote config.set(('branch', branchname), 'remote', remote) config.set(('branch', branchname), 'merge', 'refs/heads/'+remotebranch) # Write to disk config.write_to_path() def create_branch(new_branch, base_rev, force=False ,no_track=False ): """Try creating a new branch which tracks the given remote if such a branch does not exist then branch off a local branch """ repo=_get_repo() # Already exists if new_branch in repo.branches: if not force: raise GitError("branch %s already exists\n use --force to overwrite anyway" % new_branch) # fork with new sha new_ref = repo._format_ref_branch(new_branch) base_sha=find_revision_sha(repo,base_rev) repo.repo.refs[new_ref] = base_sha #handle tracking, only if this was a remote tracking,remote_branch =( ['origin']+base_rev.split('/'))[-2:] #branch-> origin/branch. remote/branch stays as is qualified_remote_branch=os.path.sep.join([tracking,remote_branch]) if qualified_remote_branch in repo.remote_branches and not base_rev in repo.branches: if not no_track: add_tracking(new_branch,tracking,remote_branch) else: remove_tracking(new_branch) #todo reflog return new_ref def test(): import os os.chdir('../..') def run(cmd): print 'branch ', cmd branch(cmd.split()) print '' #run('-d test') run('') run('-f test origin/master') run('') print 'delete test: should delete' run('-d test') print 'set to remote' run('test origin/master') run('-v') try: run('test dev') except GitError: pass else: print 'did not error!' run('-f test dev') run('-v') run('-m test test2') if __name__=='__main__': branch(sys.argv[1:])
py
1a4efd62b8fabb7d8074a58859fb780336076565
""" This file offers the methods to automatically retrieve the graph Listeria monocytogenes Scott. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def ListeriaMonocytogenesScott( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Listeria monocytogenes Scott graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.0 - homology.v11.5 - physical.links.v11.0 - physical.links.v11.5 - links.v11.0 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Listeria monocytogenes Scott graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="ListeriaMonocytogenesScott", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
bzl
1a4efda44231fbe3f6973d17ee854fa10e5412a4
# This file is automatically updated by emsdk/scripts/update_bazel_workspace.sh # DO NOT MODIFY EMSCRIPTEN_TAGS = { "3.1.9": struct( hash = "edabe25af34554d19c046078f853999b074259ca", sha_linux = "89fa75c981e47ad19942b8236d2604b2666dfd516a08626aaa1bfb0d657c87bf", sha_mac = "6c7f59dd84d1484f1dfa041d71cc79fc97db8d15834b6220e5868bd9bd373a24", sha_mac_arm64 = "13a258de0daaa3c09a53e21a67414cbf5fa5706f955767fe791a059ed5eb90bf", sha_win = "0857b03919b948558f9a57d15cf2b220852cc070359c386da0e6e4831c7ac5e0", ), "3.1.8": struct( hash = "8c9e0a76ebed2c5e88a718d43e8b62452def3771", sha_linux = "6b170777eb523e62972ad458e533b1853cd0c4e02f6f2cf4cd68e109499ccd9b", sha_mac = "ede01fe160c3b8443f53f94dbad530e0e7e8197a1b874c7bb9038b187279080c", sha_mac_arm64 = "9ecc8678f948875e7f64defeababc0320f98e103547f395c390c01d76e5a1d64", sha_win = "039d27d4ae43b50d0858dbc4dcf412f572351e98e1056d7fdcdf2aab1740557e", ), "3.1.7": struct( hash = "d0e637fe48197587d981f79e8114757731d0c2a9", sha_linux = "d941738a3c755d6d530bab66d38325515b9dbaa588d2db2b8a63b2a8a1961e52", sha_mac = "597aacdb25d422094427014d3a97e8b91ec80df2255a66e0986414bf71aaf37d", sha_mac_arm64 = "a0b2db0269c55e854d1007a59f95b8e5f14d32309e76f985ea9afe481b2bd6e6", sha_win = "cb44339db27b694862efb37539d41eaff7253c93c0882cf7d9aaf4afeaa82912", ), "3.1.6": struct( hash = "8791c3e936141cbc2dd72d76290ea9b2726d39f3", sha_linux = "f43dfe707dff18fa7a08dbfe2fa3f8d46afb65ccba9bbe554465d83d5d80e388", sha_mac = "13a01080ff042560b9a9b1b2c9fc5f8c154710bc41db8bbd907a9e53c286afd0", sha_mac_arm64 = "7ae97e85593b037c345b539e7f8b8952b82c001be982219060c83f0834bb6827", sha_win = "e7005c0a5439e532cb64f34ba90405792288a1ed8845cdafcedd3de5af6fd3f2", ), "3.1.5": struct( hash = "2dee36c7163f7394ab9341854ef5281501dd97d0", sha_linux = "6641703b7da1805aa5a8488d231ae7fedfe27f1a5a33e7d05a2ee5902ab84180", sha_mac = "9dba57f09702a7eed53f3f71cdd8a4ed1202ca5a5f4449249c2d98a285b26f75", sha_mac_arm64 = "0093b4d47c9eb9c8bab5b3048c68855255b5e5a8bfd78f4183424009489327e6", sha_win = "849edc42b494f670df4763dbc8ebbb5464ac28787482668c3f6e27588a77cb3a", ), "3.1.4": struct( hash = "39e60dda6945cfcd6487725bdb1361ae7975173f", sha_linux = "4a57c0d60eeb4e021de61c8497f0b595a0a9db0235f1640a528de752409f4fcf", sha_mac = "f28a9a4f42f67de1d5c4d8a288f29e5082bbf4fcb172e0c6e248695163372478", sha_mac_arm64 = "be35043edad7a7022f7b174e8efc90e2db54ba4fd71288760bea4db082835f56", sha_win = "d97ff247bdfc7e839610cbcd87d30a65018f964d183d5b852b6021d43c5d199a", ), "3.1.3": struct( hash = "2ddc66235392b37e5b33477fd86cbe01a14b8aa2", sha_linux = "8b840819eb88f9178c11bad25859ce448a0559e485823a863a6add21380636ca", sha_mac = "0cb3f9bfbcc744233eae9d20036155738409405eacf8a3d4f9beefc5919d809a", sha_mac_arm64 = "ee2772f380419df17d154e00388a16bcddc78c7af035c16a2ee534d6ecf099aa", sha_win = "c0549e1dbaa581ae66934c38beebd4250cd450cc2778e9a602cd9431bc81bc37", ), "3.1.2": struct( hash = "6626e25d6d866cf283147ca68d54ac9326fe399f", sha_linux = "4fb53364a2ba1de8978445aa26b2204bfd215b41da5d7df04f231040b197010a", sha_mac = "a8e347accb1ff402d96a128912ac8cda1731611c9f89095fee0ad39a6a18bbc3", sha_mac_arm64 = "4374f5c852d0403b0a3b0e9dc8a3856a340e9d82ecf0f20aa8b36c6179d31fc8", sha_win = "e96f6ab8252fefa42f461676311d4c4e2d96fdc2e876ece07d9d7a49ef31aef0", ), "3.1.1": struct( hash = "5ee64de9809592480da01372880ea11debd6c740", sha_linux = "ba94c5ecabacbedc89665a742c37c4c132c739aea46aa66fd744cb72b260c870", sha_mac = "8b5f8cec55af0e6816a08d8d1e8b873f96d0e0504fdd6e8deb2fc024957d1aa7", sha_win = "6cbe976aff6155cf1c48707f0520b5aa6a7770860e9b1964bfca3e5923ce7225", ), "3.1.0": struct( hash = "562e3a0af169e6dea5e6dbecac2255d67c2c8b94", sha_linux = "0714344e32e244e6d44d9ea75937633ab1338e417a232fb66d6dcd7d4b704e8c", sha_mac = "f6c1cad729ed799e1df09eacf5aa80cce9861d69ec6d9581c17e4ba8d9b064ce", sha_win = "756c41cbcab4ae6077cca30834d16151392b8c19ab186c13d42d7d05d6d727cc", ), "3.0.1": struct( hash = "91b7a67a486d2430e73423a38d950d8a550826ed", sha_linux = "25fd430268596229c4ac38e188d7c2b31f75c2ec8172b1351d763e37c830c6af", sha_mac = "52ec2204115b727cc4de38b5eeae147eead12b299b98e5a88653d12958cae4d4", sha_win = "0e072736b471c9a07cdf534ba4da46b3b6545b63c8a6cbb0ef7d544251e15092", ), "3.0.0": struct( hash = "7fbe748230f2ce99abbf975d9ad997699efb3153", sha_linux = "10646b64daea15354f14f89f7e79937f420b77f31bda7c4b174de2474835950f", sha_mac = "ebb17bc91c6a72ca06d17337d27aa1a2be4c9af4c68644c221712123f663b8ab", sha_win = "0d4f2ff5d88a8eef5ed769ee4ffc5d5574143911d2e0079325cdc5206c9e9bb1", ), "2.0.34": struct( hash = "d8fc1b92dbc0ce8d740a7adb937c5137ba4755e0", sha_linux = "a6304e3a52c172eb178c6f9817d74aa3ee411e97ef00bcae0884377799c49954", sha_mac = "975ae11000100362baf19d161fec04d82e1f7c9fb7d43c43864ddd65a47f1780", sha_win = "8167a44bb895a0fdc153836bed91bf387be57f2dc1b8f103bf70e68923b61d39", ), "2.0.33": struct( hash = "cef8850d57278271766fb2163eebcb07354018e7", sha_linux = "958a0f4b1533e877c1a5ed3c13cb8baabc80e791d45858c2c94ac62325ada953", sha_mac = "8ecb248653d44c3748e23c089cb9f0e3d4eee7cda13fdec27ec0113b896e34c4", sha_mac_arm64 = "1ec6f3d7afa5e10f3af996e26d9c3a66f02ae49e48e512a4b5d6b7165c61290f", sha_win = "6b6b2831f8b338488f787b4a8c34700277bf3988358dbb54426f017155603ac9", ), "2.0.32": struct( hash = "74646397e3c5010824ad60d1de86c6bcbe334dff", sha_linux = "236b3954e71d3bb30d347c655b9f47f2a091aa2e61046e1912c8da90152f4ca1", sha_mac = "6a03267574534948e3b041e5d3e31bd757751ef17912eb6e90b96a47da03afb6", sha_win = "2f8fbf0db097d67d0c364946faceec27c569c5c2d7b22068eef8db55645aba36", ), "2.0.31": struct( hash = "597724ca3f6cd6e84bea73f1f519a3953b5c273d", sha_linux = "ef70c7733aa0df41cb4c812f5a89bf6b2ed13ca8aa252872396c0be271156d9e", sha_mac = "77e57c3e98758488ef676f8f58a85faa0bd65a1d326a91771ad83d7cb0e373ca", sha_win = "541605b740afccd08a39f5ae815978f699f350d621a1b2dfba0763970b56aee4", ), "2.0.30": struct( hash = "c69458f1bbf3ef5b8da4e934de210659cc9bca04", sha_linux = "ee1c8270096a728966ae38af548047d1f64c18318e06ba75952e657136f02537", sha_mac = "574a5819308eba6c8be6a780e26dff415a0e7178d3f44162dd8dca87eb40d4a7", sha_win = "242d244f4f5f5af08e6e6ac9c143aebf1b7bb2a23fd2992350731e59acfee07c", ), "2.0.29": struct( hash = "c2369dc425725fff86ba90a9007a4603ddf7941b", sha_linux = "7df4a8f3e25820becadfa7f1fe0d78e764102ec3ee50c474ca1634ed90d48890", sha_mac = "d998521ba95882a27792f0113ea2c972fbb891c240649f4c994f0260c0e1a213", sha_win = "c64aa3f2af6503f6711b2322986a45784e00d7c7fe13ec3f5c4f740472d065a0", ), "2.0.28": struct( hash = "866055ea639d64dfedc625d28ec981e47ce37168", sha_linux = "7dca7704eb14e367bb67e9abc9eaf59e75f59b74e32422e04556de10897a9a86", sha_mac = "370f76493e3805e2538290b698a381f04b6d78a77771e48fc0099cf89dad985f", sha_win = "e913c50ea5f196d36971f7cf5b1cf9a9ca27ce0818aba56be3a66e31e95c0e5b", ), "2.0.27": struct( hash = "1ac46e3b84955231ab4a4f4cbe0c7ac28c86b8cc", sha_linux = "3e124e278de168cf22e03b93b2f14a65a86777e428cdaab7e5e1c2289eb41605", sha_mac = "388262b9e1042ef9a3a1945d5a23dcd634c8042a225e8fdf80bcc2c1cb7e05cc", sha_win = "762276a332432e717afb988310d21ae10e36facc1e05bfd77042a364fb43cc3c", ), "2.0.26": struct( hash = "823d37b15d1ab61bc9ac0665ceef6951d3703842", sha_linux = "996e16d368a99dd4dd12126acbcb8bea9a607b5257cc7b747c4afc2f036fd8cf", sha_mac = "8b2d7e84cc449531e88034beb31da89a0b61ccaeaa1584ffb6da7842c6348fdc", sha_win = "095e772764d7f8c0f8228bda4b8500ae43aac2303567da5cdc9f8623f70a5743", ), "2.0.25": struct( hash = "f6f001b08fbb67935379cf13d17fd9bfdbaff791", sha_linux = "06d8e2f3d4f4b35a57de9c15e62a559c941cfba1dd7ec02353d815904d912c3b", sha_mac = "6541bf3a648aae7df84de424ff392dd1513ab5450203c84f72a6a03e321a301b", sha_win = "267fbfa809ec0eb911c1962b1b9768675cb82228e694a5f9ef570232ee71db76", ), "2.0.24": struct( hash = "6ab7fc5622a67e6111d07c4ba61c8d3c8fc33ed2", sha_linux = "e5daa0e87f3afd2197e7975297cb0cd4c245edccb964ca5f1f32ee7d985bf440", sha_mac = "e4b7f2a7b71d6ac4610ee7b14743570e0dfba3668dc6b4f984cbe7a135888527", sha_win = "db2aad422a3ca2295be6101b0151eeee55dcea29ba1f31b4594c02ba46591cbe", ), "2.0.23": struct( hash = "77b065ace39e6ab21446e13f92897f956c80476a", sha_linux = "7713a9a5572d839aea9eaa84a7c4779d11c6c8818ee64a0f443b62081fae6d47", sha_mac = "b793087462d581e25c8c267fca9d30519619e3272480862a56cc316a32c7afab", sha_win = "b8885cbb41a39e4734861462e05ee58c7ff7562016a842bcee2603f229940e8b", ), "2.0.22": struct( hash = "6465a9acb820207acf7da44661a7de52d0a1ae3c", sha_linux = "c079781124e763c53c9fc73781fcee40296ce3314276836bc694f07bd331a859", sha_mac = "ab95574dfc685b0300e37bea36aba413045bbfa2ab06b93eceb881670489eec1", sha_win = "ba142e7e380596cba763e3a414de6511bcb86de48e4b48cf393b1ea449a24aaa", ), "2.0.21": struct( hash = "72f4ec97fbc7ec16c15ae68a75b0a257b2835160", sha_linux = "741264f33f96ba4b785ed0b133861ebdfefbaefab76ddcfe7bde6522829d6f70", sha_mac = "b07c0d65ee7e2799170c6f3b2aacebfe070c2e4975088bcd1b3a4140fecd8418", sha_win = "dc3cbf47aa4be52a92526f1790a013734ecbd407f7f36286ed0283c96355999a", ), "2.0.20": struct( hash = "e0c15cd14170f407a9eb27fcbad22931dc67feb7", sha_linux = "a196504fd1095836ca3961208338ff9e292be7729ea529bc19800aa7c966d34a", sha_mac = "6cdbf17ed61486b38ea79d3f31d74483e7388d1e7468518dccba3f24e0ddd4c4", sha_win = "4d22a32c219dbe18c55b635d014b9eaf7da60536171b7af37d9a8099fd33794b", ), "2.0.19": struct( hash = "9b9ff2dabfb4a7fbacbc004c0bead12a60f9d05c", sha_linux = "bd7c2a38ac88d219a1ab5003ddbf8fdc66a6ba55bc69f99077346edf2753b4ea", sha_mac = "6cc44029c9052855a55938eb6496b5659da4b1ce9cb34502b740af5993a94f93", sha_win = "a1fa8b1c387b9307f9b87c43dc83c0ff1bc04b9f29fbe4f39aff2dd946ca4b70", ), "2.0.18": struct( hash = "c2ac7520fad29a7937ed60ab6a95b08eb374c7ba", sha_linux = "e9f777de592f606b10104b2efe5179a7a8f44e3a9dffa1e3aaf73e05eb8893d7", sha_mac = "86b1dd62e424e3788bf132292a694a25ca9b0875d06f50d0f5d424593697452c", sha_win = "49ce07bda6be070251db44a08fcc05cae21ffdbd7522423a0c79bde635e87e28", ), "2.0.17": struct( hash = "f5c45e60392b82f603e3a8039c62db294fab02d2", sha_linux = "b40a4874057e4cace600f8ee9787dcbe236e3dc5b2fff5c2ecb0e867e426f99c", sha_mac = "081f61abf7d5ac0ec31aaffc5550013d4093ea4ea39520b7a32b7448d2a6ee70", sha_win = "45d06e597e6a1185a76200bd0481495e7298800a4805045d9cdbcce6311c91b2", ), "2.0.16": struct( hash = "80d9674f2fafa6b9346d735c42d5c52b8cc8aa8e", sha_linux = "e527638b224d9a30dc7e5fa4b9bd2eb2ab76ad306739ba8cacf5a5e333933a2a", sha_mac = "061020eb0e3ee0611dc5a0008ccc7778168a4f838d49ca41c0aad8c52c1a01c9", sha_win = "99364ed0388f928e0594f790662bf3a30c2894b0eff81797e1b64f62128561cb", ), "2.0.15": struct( hash = "89202930a98fe7f9ed59b574469a9471b0bda7dd", sha_linux = "7ff49fc63adf29970f6e7af1df445d7f554bdbbb2606db1cb5d3567ce69df1db", sha_mac = "e35cced1514ad0da40584f8dd6f76aabf847ce0fa82c6dc8dd9442fb74ed6d0d", sha_win = "31d5f8107c87833cea57edc57613bba4b36b16152772f744c5ad204594b4e666", ), "2.0.14": struct( hash = "fc5562126762ab26c4757147a3b4c24e85a7289e", sha_linux = "e466cd47ddd4bf0acd645412fdf08eda6d232484e48e5a2643e08062a7a4cf56", sha_mac = "1c554c08459b7025638ca4eddba0d35babe8c26b202a70a74e9442d577896211", sha_win = "428bc6094671937af96f26d803871fc5cd83d4d2b1c1df45fa6873a9bc5cac51", ), "2.0.13": struct( hash = "ce0e4a4d1cab395ee5082a60ebb4f3891a94b256", sha_linux = "8986ed886e111c661099c5147126b8a379a4040aab6a1f572fe01f0f9b99a343", sha_mac = "88c91332c8c76fed14ebf0edc9a08f586012f54f04ad61e5b1b6d02bf96bdeab", sha_win = "9fb3b945b7bd56e34d17ec04de4cce475f26c49d161aee9d9c0b8b1434591f88", ), }
py
1a4efdbe24aadb8b2ab65b93f2069c4510a44a49
import pandas as pd class Metric(): """ Create a dataframe from items, which is the data fetched by Perceval :param items: A list of dictionaries. Each element is a Perceval dictionary, obtained from a JSON file or from Perceval directly. """ def __init__(self, items): flat_items = self._flatten_data(items) self.raw_df = pd.DataFrame(flat_items) def _flatten_data(self, items): raise NotImplementedError
py
1a4efe6cd18d249bb564f8ac9003830ae53913c8
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Compute (upsampled) Nifti label image from bundle and centroid. Each voxel will have the label of its nearest centroid point. """ import argparse import logging import nibabel as nib import numpy as np from scilpy.io.streamlines import load_tractogram_with_reference from scilpy.io.utils import (add_overwrite_arg, add_reference_arg, assert_inputs_exist, assert_outputs_exist, add_verbose_arg) from scilpy.tractanalysis.streamlines_metrics import compute_tract_counts_map from scilpy.tractanalysis.distance_to_centroid import min_dist_to_centroid def _build_arg_parser(): p = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter) p.add_argument('in_bundle', help='Fiber bundle file.') p.add_argument('in_centroid', help='Centroid streamline corresponding to bundle.') p.add_argument('output_map', help='Nifti image with corresponding labels.') p.add_argument('--upsample', type=float, default=2, help='Upsample reference grid by this factor. ' '[%(default)s]') add_reference_arg(p) add_overwrite_arg(p) add_verbose_arg(p) return p def main(): parser = _build_arg_parser() args = parser.parse_args() assert_inputs_exist(parser, [args.in_bundle, args.in_centroid], optional=args.reference) assert_outputs_exist(parser, args, args.output_map) sft_bundle = load_tractogram_with_reference(parser, args, args.in_bundle) sft_centroid = load_tractogram_with_reference(parser, args, args.in_centroid) if not len(sft_bundle.streamlines): logging.error('Empty bundle file {}. ' 'Skipping'.format(args.in_bundle)) raise ValueError if not len(sft_centroid.streamlines): logging.error('Centroid file {} should contain one streamline. ' 'Skipping'.format(args.in_centroid)) raise ValueError sft_bundle.to_vox() bundle_streamlines_vox = sft_bundle.streamlines bundle_streamlines_vox._data *= args.upsample sft_centroid.to_vox() centroid_streamlines_vox = sft_centroid.streamlines centroid_streamlines_vox._data *= args.upsample upsampled_shape = [s * args.upsample for s in sft_bundle.dimensions] tdi_mask = compute_tract_counts_map(bundle_streamlines_vox, upsampled_shape) > 0 tdi_mask_nzr = np.nonzero(tdi_mask) tdi_mask_nzr_ind = np.transpose(tdi_mask_nzr) min_dist_ind, _ = min_dist_to_centroid(tdi_mask_nzr_ind, centroid_streamlines_vox[0]) # Save the (upscaled) labels mask labels_mask = np.zeros(tdi_mask.shape) labels_mask[tdi_mask_nzr] = min_dist_ind + 1 # 0 is background value rescaled_affine = sft_bundle.affine rescaled_affine[:3, :3] /= args.upsample labels_img = nib.Nifti1Image(labels_mask, rescaled_affine) upsampled_spacing = sft_bundle.voxel_sizes / args.upsample labels_img.header.set_zooms(upsampled_spacing) nib.save(labels_img, args.output_map) if __name__ == '__main__': main()
py
1a4efe9a3eb186b01ee0b46646d168d4c783fedf
""" Import as: import im.airflow.devops.dags.im_infra as imaddimin """ import os import airflow from airflow import DAG from airflow.operators.bash import BashOperator P1_AIRFLOW_WORKER_DB_LOADER_QUEUE = os.environ[ "P1_AIRFLOW_WORKER_DB_LOADER_QUEUE" ] STAGE = os.environ["STAGE"] SEND_EMAIL = STAGE not in ["LOCAL", "TEST"] default_args = { "owner": "airflow", "start_date": airflow.utils.dates.days_ago(1), "email": [], "email_on_failure": SEND_EMAIL, "email_on_retry": SEND_EMAIL, } dag = DAG( "IM_INFRA", default_args=default_args, schedule_interval=None, max_active_runs=1, ) # Create EDGAR DB schema. test = BashOperator( task_id="test", bash_command='bash -c "/app/im/devops/docker_build/entrypoints/entrypoint_worker.sh ' "im/app/transform/convert_s3_to_sql.py " "--provider kibot " "--symbol AAPL " "--frequency T " "--contract_type continuous " "--asset_class stocks " '--exchange NYSE"', dag=dag, queue=P1_AIRFLOW_WORKER_DB_LOADER_QUEUE, )
py
1a4efead71cfd6b690d3a27fa7d981fe8c022a16
import aspose.slides as slides #ExStart:ExtractEmbeddedFileDataFromOLEObject dataDir = "./examples/data/" outDir = "./examples/out/" with slides.Presentation(dataDir + "shapes_ole_objects.pptx") as pres: objectnum = 0 for slide in pres.slides: for shape in slide.shapes: if type(shape) is slides.OleObjectFrame: objectnum += 1 data = shape.embedded_data.embedded_file_data extension = shape.embedded_data.embedded_file_extension with open(outDir + "shapes_ole_objects{idx}_out{ex}".format(idx = str(objectnum), ex = extension), "wb") as fs: fs.write(data) #ExEnd:ExtractEmbeddedFileDataFromOLEObject
py
1a4efed412029b2687ffb076d45a0169ab71510c
from estring.emoji.emoji import dtbfn from estring.emoji.emoji import dtb from estring.emoji.emoji import d from estring.emoji.emoji import emoji from estring.emoji.emoji import _kl from estring.emoji.emoji import _vl import sys _dkl = _kl def tab_strict(dkl,kl,vl,cmd): tabs = [] for i in range(len(kl)): dk = dkl[i] k = kl[i] v = vl[i] if(cmd==dk): tabs.append((v,'value')) elif(dk.startswith(cmd)): tabs.append((k,'key')) else: pass return(tabs) def tab_loose(dkl,kl,vl,cmd): tabs = [] for i in range(len(kl)): dk = dkl[i] k = kl[i] v = vl[i] if(cmd==dk): tabs.append((v,'value')) elif(cmd in dk): tabs.append((k,'key')) else: pass return(tabs) def parr(tabs): for t in tabs: if(t[1]=='value'): print(t[0]) else: print("< "+t[0].strip(';')+" >") cmd = "" try: cmd = sys.argv[1] except: cmd = "" else: pass def loose(): tabs = tab_loose(_dkl,_kl,_vl,cmd) parr(tabs) def strict(): tabs = tab_strict(_dkl,_kl,_vl,cmd) parr(tabs)
py
1a4eff018f644849c4e108efa48e2c0be24ce3e6
# Copyright 2018, Kay Hayen, mailto:[email protected] # # Python test originally created or extracted from other peoples work. The # parts from me are licensed as below. It is at least Free Software where # it's copied from other people. In these cases, that will normally be # indicated. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from pybench import Test class TupleSlicing(Test): version = 2.0 operations = 3 * 25 * 10 * 7 rounds = 500 def test(self): r = range(25) t = tuple(range(100)) for i in xrange(self.rounds): for j in r: m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] m = t[50:] m = t[:25] m = t[50:55] m = t[:-1] m = t[1:] m = t[-10:] m = t[:10] def calibrate(self): r = range(25) t = tuple(range(100)) for i in xrange(self.rounds): for j in r: pass class SmallTuples(Test): version = 2.0 operations = 5*(1 + 3 + 6 + 2) rounds = 90000 def test(self): for i in xrange(self.rounds): t = (1,2,3,4,5,6) a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] l = list(t) t = tuple(l) t = (1,2,3,4,5,6) a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] l = list(t) t = tuple(l) t = (1,2,3,4,5,6) a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] l = list(t) t = tuple(l) t = (1,2,3,4,5,6) a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] l = list(t) t = tuple(l) t = (1,2,3,4,5,6) a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c,d,e,f = t a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] a,b,c = t[:3] l = list(t) t = tuple(l) def calibrate(self): for i in xrange(self.rounds): pass
py
1a4eff04868ffc3f74593eaa6cf993de2739a701
from rest_framework import serializers from estoque.models import Item class ItemSerializer(serializers.ModelSerializer): class Meta: model = Item fields = ['id', 'nome', 'quantidade', 'valor']
py
1a4f00572fe405355a70cd96b2099432f07487cb
from os import name from django.urls import path from . import views from django.conf import settings urlpatterns = [ path('',views.index, name='index'), path('counter', views.counter, name='counter') ]
py
1a4f021d73a31dce7f922cc517fdcbcb2257ee23
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf from tensorflow.contrib.layers.python import layers as tf_layers from rsa import * from cka import * import matplotlib.pyplot as plt # heiner activation maximization filters early layers # based on https://github.com/zonghua94/mnist/blob/master/mnist_cnn.py def compute_accuracy(v_x, v_y): global prediction y_pre = sess.run(prediction, feed_dict={x: v_x}) correct_prediction = tf.equal(tf.argmax(y_pre, 1), tf.argmax(v_y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) result = sess.run(accuracy, feed_dict={x: v_x, y: v_y}) return result def conv_block(inp, cweight, bweight, reuse, scope, activation=tf.nn.relu, max_pool_pad='VALID', residual=False): """ Perform, conv, batch norm, nonlinearity, and max pool """ stride, no_stride = [1,2,2,1], [1,1,1,1] conv_output = tf.nn.conv2d(inp, cweight, stride, 'SAME') + bweight normed = tf_layers.batch_norm(conv_output, activation_fn=activation, reuse=reuse, scope=scope) return normed def reshape_elems_of_list(layers, shape = (10000, -1)): reshaped_layers = [] for layer in layers: layer = np.reshape(layer, shape) reshaped_layers.append(layer) return reshaped_layers # load mnist data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) keep_prob = tf.placeholder(tf.float32) # reshape(data you want to reshape, [-1, reshape_height, reshape_weight, imagine layers]) image layers=1 when the imagine is in white and black, =3 when the imagine is RGB x_image = tf.reshape(x, [-1, 28, 28, 1]) weights = {} convolution = True if convolution: dtype = tf.float32 conv_initializer = tf.contrib.layers.xavier_initializer_conv2d(dtype=dtype) weights['conv1'] = tf.get_variable('conv1', [3, 3, 1, 64], initializer=conv_initializer, dtype=dtype) weights['b1'] = tf.Variable(tf.zeros([64])) weights['conv2'] = tf.get_variable('conv2', [3, 3, 64, 64], initializer=conv_initializer, dtype=dtype) weights['b2'] = tf.Variable(tf.zeros([64])) weights['conv3'] = tf.get_variable('conv3', [3, 3, 64, 64], initializer=conv_initializer, dtype=dtype) weights['b3'] = tf.Variable(tf.zeros([64])) weights['conv4'] = tf.get_variable('conv4', [3, 3, 64, 64], initializer=conv_initializer, dtype=dtype) weights['b4'] = tf.Variable(tf.zeros([64])) weights['w5'] = tf.Variable(tf.random_normal([64, 10]), name='w5') weights['b5'] = tf.Variable(tf.zeros([10]), name='b5') tvars = tf.trainable_variables() scope = "" hidden1 = conv_block(x_image, weights['conv1'], weights['b1'], False, scope + '0') hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], False, scope + '1') hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], False, scope + '2') hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], False, scope + '3') hidden4 = tf.reduce_mean(hidden4, [1, 2]) out = tf.matmul(hidden4, weights['w5']) + weights['b5'] prediction = tf.nn.softmax(out) tvars = tf.trainable_variables() layer_names = ["Pooling layer 1", "Pooling layer 2", "Pooling layer 3", "Pooling layer 4", "Logits/Head"] else: weights = {} dims = [200, 100, 50, 20] weights['w1'] = tf.Variable(tf.truncated_normal([784, dims[0]], stddev=0.01)) weights['b1'] = tf.Variable(tf.zeros(dims[0])) for i, dim in enumerate(dims): if i == len(dims) -1: break weights['w'+str(i+2)] = tf.Variable(tf.truncated_normal([dims[i], dims[i+1]], stddev=0.01)) weights['b'+str(i+2)] = tf.Variable(tf.zeros(dims[i+1])) weights['w5'] = tf.Variable(tf.random_normal([dims[-1], 10]), name='w5') weights['b5'] = tf.Variable(tf.zeros([10]), name='b5') x_image = tf.reshape(x_image, [-1, 784]) hidden1 = tf.nn.relu(tf_layers.batch_norm(tf.matmul(x_image, weights['w1']) + weights['b1'])) hidden2 = tf.nn.relu(tf_layers.batch_norm(tf.matmul(hidden1, weights['w2']) + weights['b2'])) hidden3 = tf.nn.relu(tf_layers.batch_norm(tf.matmul(hidden2, weights['w3']) + weights['b3'])) hidden4 = tf.nn.relu(tf_layers.batch_norm(tf.matmul(hidden3, weights['w4']) + weights['b4'])) out = tf.matmul(hidden4, weights['w5']) + weights['b5'] prediction = tf.nn.softmax(out) layer_names = [f"Hidden Layer {i+1} FC {dim}" for i, dim in enumerate(dims)] layer_names.append("Logits/Head") # calculate the loss cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(prediction), reduction_indices=[1])) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)#, var_list=g_vars) N = 100 test_images = mnist.test.images[:N] test_labels = mnist.test.labels[:N] for sim_measure in ["cka", "euclidean"]: # init session sess = tf.Session() sess.run(tf.global_variables_initializer()) start = sess.run([hidden1, hidden2, hidden3, hidden4, out], feed_dict={x: test_images, y: test_labels}) prev = start similarities = [] similarities_prev = [] steps = [] all_representations = [] labels = [] colors = [] for i in range(200): batch_x, batch_y = mnist.train.next_batch(100) sess.run(train_step, feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5}) if i % 5 == 0: steps.append(i) representations = sess.run([hidden1, hidden2, hidden3, hidden4, out], feed_dict={x: test_images, y: test_labels}) labels = labels + [f"{i} ({j+1})" for j in range(5)] colors = colors + list(range(5)) peter = representations[0].reshape((N,-1)) all_representations = all_representations + [r.reshape((N,-1)) for r in representations] if sim_measure == "cka": similarities_of_step = [kernel_CKA(np.reshape(s, (N, -1)), np.reshape(r, (N, -1))) for s, r in zip(start, representations)] similarities_of_step_prev = [kernel_CKA(np.reshape(s, (N, -1)), np.reshape(r, (N, -1))) for s, r in zip(prev, representations)] else: print(np.mean(start[0]), np.mean(representations[0])) similarities_of_step = [rsa(np.array([np.reshape(s, (N, -1)), np.reshape(r, (N, -1))]), sim_measure) for s, r in zip(start, representations)] similarities_of_step_prev = [rsa(np.array([np.reshape(s, (N, -1)), np.reshape(r, (N, -1))]), sim_measure) for s, r in zip(prev, representations)] similarities.append(similarities_of_step) similarities_prev.append(similarities_of_step_prev) prev = representations.copy() print(i, compute_accuracy(mnist.test.images, mnist.test.labels)) plot_rsa(all_representations, labels, colors) similarities = np.array(similarities).transpose() similarities_prev = np.array(similarities_prev).transpose() fig = plt.figure(figsize=(8, 2.5)) if sim_measure == "cka": plt.title(f"CKA similarity before and after training") plt.ylabel("Similarity") else: plt.title(f"RSA ({sim_measure}) dissimilarity before and after training") plt.ylabel("Dissimilarity") plt.xlabel("Number of training steps") #plt.yscale('symlog', linthreshy=0.015) plt.ylim(-0.05, 1.05) for i in range(len(similarities)): plt.plot(steps, similarities[i], label=layer_names[i]) #plt.plot(range(len(similarities_prev[i])), similarities_prev[i], label=layer_names[i]+" to prev") plt.legend(bbox_to_anchor=(1.04, 0.5), loc="center left", borderaxespad=0) plt.show()
py
1a4f02328abfcdf3b9338df1d99692421d39cb43
# Generated by Django 2.1.3 on 2018-11-23 05:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('staf', '0004_auto_20181103_0056'), ] operations = [ migrations.AlterField( model_name='unit', name='symbol', field=models.CharField(max_length=255), ), ]
py
1a4f03b7c2ff99660c2740898945614e2082254c
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.protobuf import duration_pb2 # type: ignore from google.protobuf import wrappers_pb2 # type: ignore __protobuf__ = proto.module( package="google.cloud.aiplatform.v1.schema.predict.prediction", manifest={"VideoActionRecognitionPredictionResult",}, ) class VideoActionRecognitionPredictionResult(proto.Message): r"""Prediction output format for Video Action Recognition. Attributes: id (str): The resource ID of the AnnotationSpec that had been identified. display_name (str): The display name of the AnnotationSpec that had been identified. time_segment_start (google.protobuf.duration_pb2.Duration): The beginning, inclusive, of the video's time segment in which the AnnotationSpec has been identified. Expressed as a number of seconds as measured from the start of the video, with fractions up to a microsecond precision, and with "s" appended at the end. time_segment_end (google.protobuf.duration_pb2.Duration): The end, exclusive, of the video's time segment in which the AnnotationSpec has been identified. Expressed as a number of seconds as measured from the start of the video, with fractions up to a microsecond precision, and with "s" appended at the end. confidence (google.protobuf.wrappers_pb2.FloatValue): The Model's confidence in correction of this prediction, higher value means higher confidence. """ id = proto.Field(proto.STRING, number=1,) display_name = proto.Field(proto.STRING, number=2,) time_segment_start = proto.Field( proto.MESSAGE, number=4, message=duration_pb2.Duration, ) time_segment_end = proto.Field( proto.MESSAGE, number=5, message=duration_pb2.Duration, ) confidence = proto.Field(proto.MESSAGE, number=6, message=wrappers_pb2.FloatValue,) __all__ = tuple(sorted(__protobuf__.manifest))
py
1a4f03eea2ab6afa95c4390b96dc06051614e307
""" mss.tutorials.tutorial_waypoints ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This python script generates an automatic demonstration of how to play with and use waypoints for activating/creating a flight track. This file is part of mss. :copyright: Copyright 2021 Hrithik Kumar Verma :copyright: Copyright 2021-2022 by the mss team, see AUTHORS. :license: APACHE-2.0, see LICENSE for details. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pyautogui as pag import multiprocessing import sys import datetime from sys import platform from pyscreeze import ImageNotFoundException from tutorials import screenrecorder as sr from mslib.msui import mss_pyui def initial_ops(): """ Executes the initial operations such as closing all opened windows and showing the desktop. """ pag.sleep(5) if platform == "linux" or platform == "linux2": pag.hotkey('winleft', 'd') print("\n INFO : Automation is running on Linux system..\n") elif platform == "darwin": pag.hotkey('option', 'command', 'm') print("\n INFO : Automation is running on Mac OS..\n") elif platform == "win32": pag.hotkey('win', 'd') print("\n INFO : Automation is running on Windows OS..\n") else: pag.alert(text="Sorry, no support on this platform!", title="Platform Exception", button='OK') def call_recorder(): """ Calls the screen recorder class to start the recording of the automation. """ sr.main() def call_mss(): """ Calls the main MSS GUI window since operations are to be performed on it only. """ mss_pyui.main() def automate_waypoints(): """ This is the main automating script of the MSS waypoints tutorial which will be recorded and saved to a file having dateframe nomenclature with a .mp4 extension(codec). """ # Giving time for loading of the MSS GUI. pag.sleep(15) # Maximizing the window try: if platform == 'linux' or platform == 'linux2': pag.hotkey('winleft', 'up') elif platform == 'darwin': pag.hotkey('ctrl', 'command', 'f') elif platform == 'win32': pag.hotkey('win', 'up') except Exception: print("\nException : Enable Shortcuts for your system or try again!") pag.sleep(2) pag.hotkey('ctrl', 'h') pag.sleep(5) # Adding waypoints try: x, y = pag.locateCenterOnScreen('pictures/add_waypoint.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\nException : Clickable button/option not found on the screen.") pag.move(-50, 150, duration=1) pag.click(interval=2) pag.sleep(1) pag.move(65, 65, duration=1) pag.click(interval=2) pag.sleep(1) pag.move(-150, 30, duration=1) x1, y1 = pag.position() pag.click(interval=2) pag.sleep(1) pag.move(200, 150, duration=1) pag.click(interval=2) x2, y2 = pag.position() pag.sleep(3) # Moving waypoints try: x, y = pag.locateCenterOnScreen('pictures/move_waypoint.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Move Waypoint button could not be located on the screen") pag.moveTo(x2, y2, duration=1) pag.click(interval=2) pag.dragRel(100, 150, duration=1) pag.moveTo(x1, y1, duration=1) pag.dragRel(35, -50, duration=1) x1, y1 = pag.position() # Deleting waypoints try: x, y = pag.locateCenterOnScreen('pictures/remove_waypoint.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Remove Waypoint button could not be located on the screen") pag.moveTo(x1, y1, duration=1) pag.click(duration=1) pag.press('left') pag.sleep(3) if platform == 'linux' or platform == 'linux2' or platform == 'win32': pag.press('enter', interval=1) elif platform == 'darwin': pag.press('return', interval=1) pag.sleep(2) # Changing map to Global try: if platform == 'linux' or platform == 'linux2' or platform == 'darwin': x, y = pag.locateCenterOnScreen('pictures/europe(cyl).PNG') pag.click(x, y, interval=2) elif platform == 'win32': x, y = pag.locateCenterOnScreen('pictures/europe(cyl)win.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Map change dropdown could not be located on the screen") pag.press('down', presses=2, interval=0.5) if platform == 'linux' or platform == 'linux2' or platform == 'win32': pag.press('enter', interval=1) elif platform == 'darwin': pag.press('return', interval=1) pag.sleep(5) # Zooming into the map try: x, y = pag.locateCenterOnScreen('pictures/zoom.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Zoom button could not be located on the screen") pag.move(150, 200, duration=1) pag.dragRel(400, 250, duration=2) pag.sleep(5) # Panning into the map try: x, y = pag.locateCenterOnScreen('pictures/pan.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Pan button could not be located on the screen") pag.moveRel(400, 400, duration=1) pag.dragRel(-100, -50, duration=2) pag.sleep(5) pag.move(-20, -25, duration=1) pag.dragRel(90, 50, duration=2) pag.sleep(5) # Switching to the previous appearance of the map try: x, y = pag.locateCenterOnScreen('pictures/previous.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Previous button could not be located on the screen") pag.sleep(5) # Switching to the next appearance of the map try: x, y = pag.locateCenterOnScreen('pictures/next.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Next button could not be located on the screen") pag.sleep(5) # Resetting the map to the original size try: x, y = pag.locateCenterOnScreen('pictures/home.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Home button could not be located on the screen") pag.sleep(5) # Saving the figure try: x, y = pag.locateCenterOnScreen('pictures/save.PNG') pag.click(x, y, interval=2) except ImageNotFoundException: print("\n Exception : Save button could not be located on the screen") current_time = datetime.datetime.now().strftime('%d-%m-%Y %H-%M-%S') fig_filename = f'Fig_{current_time}.PNG' pag.sleep(3) if platform == 'win32': pag.write(fig_filename, interval=0.25) pag.press('enter', interval=1) if platform == 'linux' or platform == 'linux2': pag.hotkey('altleft', 'tab') # if the save file system window is not in the forefront, use this statement. # This can happen sometimes. At that time, you just need to uncomment it. pag.write(fig_filename, interval=0.25) pag.press('enter', interval=1) elif platform == 'darwin': pag.write(fig_filename, interval=0.25) pag.press('return', interval=1) print("\nAutomation is over for this tutorial. Watch next tutorial for other functions.") # Close Everything! try: if platform == 'linux' or platform == 'linux2': for _ in range(2): pag.hotkey('altleft', 'f4') pag.sleep(3) pag.press('left') pag.sleep(3) pag.press('enter') pag.sleep(2) pag.keyDown('altleft') pag.press('tab') pag.press('left') pag.keyUp('altleft') pag.press('q') if platform == 'win32': for _ in range(2): pag.hotkey('alt', 'f4') pag.sleep(3) pag.press('left') pag.sleep(3) pag.press('enter') pag.sleep(2) pag.hotkey('alt', 'tab') pag.press('q') elif platform == 'darwin': for _ in range(2): pag.hotkey('command', 'w') pag.sleep(3) pag.press('left') pag.sleep(3) pag.press('return') pag.sleep(2) pag.hotkey('command', 'tab') pag.press('q') except Exception: print("Cannot automate : Enable Shortcuts for your system or try again") pag.press('q') def main(): """ This function runs the above functions as different processes at the same time and can be controlled from here. (This is the main process.) """ p1 = multiprocessing.Process(target=call_mss) p2 = multiprocessing.Process(target=automate_waypoints) p3 = multiprocessing.Process(target=call_recorder) print("\nINFO : Starting Automation.....\n") p3.start() pag.sleep(5) initial_ops() p1.start() p2.start() p2.join() p1.join() p3.join() print("\n\nINFO : Automation Completes Successfully!") sys.exit() if __name__ == '__main__': main()
py
1a4f048674d749cb459e4b4e61b63c7e584689f1
from workspace.pipelines import pipelines import workspace.util as util JOB_SPEC_PATH = "package.json" BUCKET_NAME = "gs://ivanmkc-test2/pipeline_staging" pipeline_root = "{}/pipeline_root".format(BUCKET_NAME) # TODO: Run in parallel for pipeline in [ # pipelines.tabular.bqml_custom_predict, pipelines.tabular.bq_automl, # pipelines.tabular.bq_custom, # pipelines.tabular.bqml_export_vertexai, ]: print(f"Running pipeline: {pipeline.name}") util.run_pipeline( project_id="python-docs-samples-tests", location="us-central1", pipeline_root=pipeline_root, pipeline=pipeline, )
py
1a4f05aec5570a36c3a9e352f25338862a01c2c1
from typing import List from matplotlib import pyplot as plt import numpy as np from scipy import stats from scipy.optimize import curve_fit def nice_string_output( names: List[str], values: List[str], extra_spacing: int = 0, ): max_values = len(max(values, key=len)) max_names = len(max(names, key=len)) string = "" for name, value in zip(names, values): string += "{0:s} {1:>{spacing}} \n".format( name, value, spacing=extra_spacing + max_values + max_names - len(name), ) return string[:-2] def plot_gaussian( data, ax: plt.Axes, nBins=100, textpos="l", legend=False, short_text=False ): # make sure our data is an ndarray if type(data) == list: data = np.array(data) ### FITTING WITH A GAUSSIAN def func_gauss(x, N, mu, sigma): return N * stats.norm.pdf(x, mu, sigma) counts, bin_edges = np.histogram(data, bins=nBins) bin_centers = (bin_edges[1:] + bin_edges[:-1]) / 2 s_counts = np.sqrt(counts) x = bin_centers[counts > 0] y = counts[counts > 0] sy = s_counts[counts > 0] popt_gauss, pcov_gauss = curve_fit( func_gauss, x, y, p0=[1, data.mean(), data.std()] ) y_func = func_gauss(x, *popt_gauss) pKS = stats.ks_2samp(y, y_func) pKS_g1, pKS_g2 = pKS[0], pKS[1] # print('LOOK! \n \n \n pKS is {} \n \n \n '.format(pKS_g2)) chi2_gauss = sum((y - y_func) ** 2 / sy ** 2) NDOF_gauss = nBins - 3 prob_gauss = stats.chi2.sf(chi2_gauss, NDOF_gauss) if short_text == True: namesl = [ "Gauss_N", "Gauss_Mu", "Gauss_Sigma", ] valuesl = [ "{:.3f} +/- {:.3f}".format(val, unc) for val, unc in zip(popt_gauss, np.diagonal(pcov_gauss)) ] del namesl[0] # remove gauss n del valuesl[0] else: namesl = [ "Gauss_N", "Gauss_Mu", "Gauss_Sigma", "KS stat", "KS_pval", "Chi2 / NDOF", "Prob", ] valuesl = ( [ "{:.3f} +/- {:.3f}".format(val, unc) for val, unc in zip(popt_gauss, np.diagonal(pcov_gauss)) ] + ["{:.3f}".format(pKS_g1)] + ["{:.3f}".format(pKS_g2)] + ["{:.3f} / {}".format(chi2_gauss, NDOF_gauss)] + ["{:.3f}".format(prob_gauss)] ) ax.errorbar(x, y, yerr=sy, xerr=0, fmt=".", elinewidth=1) ax.plot(x, y_func, "--", label="Gaussian") if textpos == "l": ax.text( 0.02, 0.98, nice_string_output(namesl, valuesl), family="monospace", transform=ax.transAxes, fontsize=10, verticalalignment="top", alpha=0.5, ) elif textpos == "r": ax.text( 0.6, 0.98, nice_string_output(namesl, valuesl), family="monospace", transform=ax.transAxes, fontsize=10, verticalalignment="top", alpha=0.5, ) if legend: ax.legend(loc="center left") return ax if __name__ == '__main__': samples = stats.expon.rvs(5.7, size=10000) # samples = stats.poisson.rvs(mu=2, size=10000) # samples = stats.cauchy.rvs(size=10000) sums = np.zeros(1000) for si in range(len(sums)): sums[si] = np.mean(np.random.choice(samples, size=10)) fig, ax = plt.subplots() plot_gaussian(sums, ax) plt.show()
py
1a4f068d063dc4c5af0b6fcf14ff47a223c45376
# -*- coding: utf-8 -*- import os import sys sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.todo', ] # TODO: Please Read! # Uncomment the below if you use native CircuitPython modules such as # digitalio, micropython and busio. List the modules you use. Without it, the # autodoc module docs will fail to generate with a warning. # autodoc_mock_imports = ["digitalio", "busio"] intersphinx_mapping = {'python': ('https://docs.python.org/3.4', None),'CircuitPython': ('https://circuitpython.readthedocs.io/en/latest/', None)} # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'nonblocking_timer Library' copyright = u'2017 Michael Schneider' author = u'Michael Schneider' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = u'1.0' # The full version, including alpha/beta/rc tags. release = u'1.0' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store', '.env', 'CODE_OF_CONDUCT.md'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = "any" # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # If this is True, todo emits a warning for each TODO entries. The default is False. todo_emit_warnings = True napoleon_numpy_docstring = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally try: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path(), '.'] except: html_theme = 'default' html_theme_path = ['.'] else: html_theme_path = ['.'] # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = '_static/favicon.ico' # Output file base name for HTML help builder. htmlhelp_basename = 'Nonblocking_timerLibrarydoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'nonblocking_timerLibrary.tex', u'nonblocking_timer Library Documentation', author, 'manual'), ] # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'nonblocking_timerlibrary', u'nonblocking_timer Library Documentation', [author], 1) ] # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'nonblocking_timerLibrary', u' nonblocking_timer Library Documentation', author, 'nonblocking_timerLibrary', 'One line description of project.', 'Miscellaneous'), ]
py
1a4f06ba382b045660a5cfa3f88c4a196f9ca85b
# coding: utf-8 # /*########################################################################## # # Copyright (c) 2016-2019 European Synchrotron Radiation Facility # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # ###########################################################################*/ """Basic tests for PlotWidget""" __authors__ = ["T. Vincent"] __license__ = "MIT" __date__ = "03/01/2019" import unittest import logging import numpy import sys from silx.utils.testutils import ParametricTestCase, parameterize from silx.gui.utils.testutils import SignalListener from silx.gui.utils.testutils import TestCaseQt from silx.test.utils import test_options from silx.gui import qt from silx.gui.plot import PlotWidget from silx.gui.plot.items.curve import CurveStyle from silx.gui.colors import Colormap from .utils import PlotWidgetTestCase SIZE = 1024 """Size of the test image""" DATA_2D = numpy.arange(SIZE ** 2).reshape(SIZE, SIZE) """Image data set""" logger = logging.getLogger(__name__) class TestSpecialBackend(PlotWidgetTestCase, ParametricTestCase): def __init__(self, methodName='runTest', backend=None): TestCaseQt.__init__(self, methodName=methodName) self.__backend = backend def _createPlot(self): return PlotWidget(backend=self.__backend) def testPlot(self): self.assertIsNotNone(self.plot) class TestPlotWidget(PlotWidgetTestCase, ParametricTestCase): """Basic tests for PlotWidget""" def testShow(self): """Most basic test""" pass def testSetTitleLabels(self): """Set title and axes labels""" title, xlabel, ylabel = 'the title', 'x label', 'y label' self.plot.setGraphTitle(title) self.plot.getXAxis().setLabel(xlabel) self.plot.getYAxis().setLabel(ylabel) self.qapp.processEvents() self.assertEqual(self.plot.getGraphTitle(), title) self.assertEqual(self.plot.getXAxis().getLabel(), xlabel) self.assertEqual(self.plot.getYAxis().getLabel(), ylabel) def _checkLimits(self, expectedXLim=None, expectedYLim=None, expectedRatio=None): """Assert that limits are as expected""" xlim = self.plot.getXAxis().getLimits() ylim = self.plot.getYAxis().getLimits() ratio = abs(xlim[1] - xlim[0]) / abs(ylim[1] - ylim[0]) if expectedXLim is not None: self.assertEqual(expectedXLim, xlim) if expectedYLim is not None: self.assertEqual(expectedYLim, ylim) if expectedRatio is not None: self.assertTrue( numpy.allclose(expectedRatio, ratio, atol=0.01)) def testChangeLimitsWithAspectRatio(self): self.plot.setKeepDataAspectRatio() self.qapp.processEvents() xlim = self.plot.getXAxis().getLimits() ylim = self.plot.getYAxis().getLimits() defaultRatio = abs(xlim[1] - xlim[0]) / abs(ylim[1] - ylim[0]) self.plot.getXAxis().setLimits(1., 10.) self._checkLimits(expectedXLim=(1., 10.), expectedRatio=defaultRatio) self.qapp.processEvents() self._checkLimits(expectedXLim=(1., 10.), expectedRatio=defaultRatio) self.plot.getYAxis().setLimits(1., 10.) self._checkLimits(expectedYLim=(1., 10.), expectedRatio=defaultRatio) self.qapp.processEvents() self._checkLimits(expectedYLim=(1., 10.), expectedRatio=defaultRatio) def testResizeWidget(self): """Test resizing the widget and receiving limitsChanged events""" self.plot.resize(200, 200) self.qapp.processEvents() self.qWait(100) xlim = self.plot.getXAxis().getLimits() ylim = self.plot.getYAxis().getLimits() listener = SignalListener() self.plot.getXAxis().sigLimitsChanged.connect(listener.partial('x')) self.plot.getYAxis().sigLimitsChanged.connect(listener.partial('y')) # Resize without aspect ratio self.plot.resize(200, 300) self.qapp.processEvents() self.qWait(100) self._checkLimits(expectedXLim=xlim, expectedYLim=ylim) self.assertEqual(listener.callCount(), 0) # Resize with aspect ratio self.plot.setKeepDataAspectRatio(True) self.qapp.processEvents() self.qWait(1000) listener.clear() # Clean-up received signal self.plot.resize(200, 200) self.qapp.processEvents() self.qWait(100) self.assertNotEqual(listener.callCount(), 0) def testAddRemoveItemSignals(self): """Test sigItemAdded and sigItemAboutToBeRemoved""" listener = SignalListener() self.plot.sigItemAdded.connect(listener.partial('add')) self.plot.sigItemAboutToBeRemoved.connect(listener.partial('remove')) self.plot.addCurve((1, 2, 3), (3, 2, 1), legend='curve') self.assertEqual(listener.callCount(), 1) curve = self.plot.getCurve('curve') self.plot.remove('curve') self.assertEqual(listener.callCount(), 2) self.assertEqual(listener.arguments(callIndex=0), ('add', curve)) self.assertEqual(listener.arguments(callIndex=1), ('remove', curve)) def testGetItems(self): """Test getItems method""" curve_x = 1, 2 self.plot.addCurve(curve_x, (3, 4)) image = (0, 1), (2, 3) self.plot.addImage(image) scatter_x = 10, 11 self.plot.addScatter(scatter_x, (12, 13), (0, 1)) marker_pos = 5, 5 self.plot.addMarker(*marker_pos) marker_x = 6 self.plot.addXMarker(marker_x) self.plot.addItem((0, 5), (2, 10), shape='rectangle') items = self.plot.getItems() self.assertEqual(len(items), 6) self.assertTrue(numpy.all(numpy.equal(items[0].getXData(), curve_x))) self.assertTrue(numpy.all(numpy.equal(items[1].getData(), image))) self.assertTrue(numpy.all(numpy.equal(items[2].getXData(), scatter_x))) self.assertTrue(numpy.all(numpy.equal(items[3].getPosition(), marker_pos))) self.assertTrue(numpy.all(numpy.equal(items[4].getPosition()[0], marker_x))) self.assertEqual(items[5].getType(), 'rectangle') def testBackGroundColors(self): self.plot.setVisible(True) self.qWaitForWindowExposed(self.plot) self.qapp.processEvents() # Custom the full background color = self.plot.getBackgroundColor() self.assertTrue(color.isValid()) self.assertEqual(color, qt.QColor(255, 255, 255)) self.plot.setBackgroundColor("red") color = self.plot.getBackgroundColor() self.assertTrue(color.isValid()) self.qapp.processEvents() # Custom the data background color = self.plot.getDataBackgroundColor() self.assertFalse(color.isValid()) self.plot.setDataBackgroundColor("red") color = self.plot.getDataBackgroundColor() self.assertTrue(color.isValid()) self.qapp.processEvents() # Back to default self.plot.setBackgroundColor('white') self.plot.setDataBackgroundColor(None) color = self.plot.getBackgroundColor() self.assertTrue(color.isValid()) self.assertEqual(color, qt.QColor(255, 255, 255)) color = self.plot.getDataBackgroundColor() self.assertFalse(color.isValid()) self.qapp.processEvents() class TestPlotImage(PlotWidgetTestCase, ParametricTestCase): """Basic tests for addImage""" def setUp(self): super(TestPlotImage, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') def testPlotColormapTemperature(self): self.plot.setGraphTitle('Temp. Linear') colormap = Colormap(name='temperature', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap) def testPlotColormapGray(self): self.plot.setKeepDataAspectRatio(False) self.plot.setGraphTitle('Gray Linear') colormap = Colormap(name='gray', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap) def testPlotColormapTemperatureLog(self): self.plot.setGraphTitle('Temp. Log') colormap = Colormap(name='temperature', normalization=Colormap.LOGARITHM, vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap) def testPlotRgbRgba(self): self.plot.setKeepDataAspectRatio(False) self.plot.setGraphTitle('RGB + RGBA') rgb = numpy.array( (((0, 0, 0), (128, 0, 0), (255, 0, 0)), ((0, 128, 0), (0, 128, 128), (0, 128, 256))), dtype=numpy.uint8) self.plot.addImage(rgb, legend="rgb", origin=(0, 0), scale=(10, 10), resetzoom=False) rgba = numpy.array( (((0, 0, 0, .5), (.5, 0, 0, 1), (1, 0, 0, .5)), ((0, .5, 0, 1), (0, .5, .5, 1), (0, 1, 1, .5))), dtype=numpy.float32) self.plot.addImage(rgba, legend="rgba", origin=(5, 5), scale=(10, 10), resetzoom=False) self.plot.resetZoom() def testPlotColormapCustom(self): self.plot.setKeepDataAspectRatio(False) self.plot.setGraphTitle('Custom colormap') colormap = Colormap(name=None, normalization=Colormap.LINEAR, vmin=None, vmax=None, colors=((0., 0., 0.), (1., 0., 0.), (0., 1., 0.), (0., 0., 1.))) self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap, resetzoom=False) colormap = Colormap(name=None, normalization=Colormap.LINEAR, vmin=None, vmax=None, colors=numpy.array( ((0, 0, 0, 0), (0, 0, 0, 128), (128, 128, 128, 128), (255, 255, 255, 255)), dtype=numpy.uint8)) self.plot.addImage(DATA_2D, legend="image 2", colormap=colormap, origin=(DATA_2D.shape[0], 0), resetzoom=False) self.plot.resetZoom() def testImageOriginScale(self): """Test of image with different origin and scale""" self.plot.setGraphTitle('origin and scale') tests = [ # (origin, scale) ((10, 20), (1, 1)), ((10, 20), (-1, -1)), ((-10, 20), (2, 1)), ((10, -20), (-1, -2)), (100, 2), (-100, (1, 1)), ((10, 20), 2), ] for origin, scale in tests: with self.subTest(origin=origin, scale=scale): self.plot.addImage(DATA_2D, origin=origin, scale=scale) try: ox, oy = origin except TypeError: ox, oy = origin, origin try: sx, sy = scale except TypeError: sx, sy = scale, scale xbounds = ox, ox + DATA_2D.shape[1] * sx ybounds = oy, oy + DATA_2D.shape[0] * sy # Check limits without aspect ratio xmin, xmax = self.plot.getXAxis().getLimits() ymin, ymax = self.plot.getYAxis().getLimits() self.assertEqual(xmin, min(xbounds)) self.assertEqual(xmax, max(xbounds)) self.assertEqual(ymin, min(ybounds)) self.assertEqual(ymax, max(ybounds)) # Check limits with aspect ratio self.plot.setKeepDataAspectRatio(True) xmin, xmax = self.plot.getXAxis().getLimits() ymin, ymax = self.plot.getYAxis().getLimits() self.assertTrue(round(xmin, 7) <= min(xbounds)) self.assertTrue(round(xmax, 7) >= max(xbounds)) self.assertTrue(round(ymin, 7) <= min(ybounds)) self.assertTrue(round(ymax, 7) >= max(ybounds)) self.plot.setKeepDataAspectRatio(False) # Reset aspect ratio self.plot.clear() self.plot.resetZoom() def testPlotColormapDictAPI(self): """Test that the addImage API using a colormap dictionary is still working""" self.plot.setGraphTitle('Temp. Log') colormap = { 'name': 'temperature', 'normalization': 'log', 'vmin': None, 'vmax': None } self.plot.addImage(DATA_2D, legend="image 1", colormap=colormap) def testPlotComplexImage(self): """Test that a complex image is displayed as its absolute value.""" data = numpy.linspace(1, 1j, 100).reshape(10, 10) self.plot.addImage(data, legend='complex') image = self.plot.getActiveImage() retrievedData = image.getData(copy=False) self.assertTrue( numpy.all(numpy.equal(retrievedData, numpy.absolute(data)))) def testPlotBooleanImage(self): """Test that a boolean image is displayed and converted to int8.""" data = numpy.zeros((10, 10), dtype=numpy.bool) data[::2, ::2] = True self.plot.addImage(data, legend='boolean') image = self.plot.getActiveImage() retrievedData = image.getData(copy=False) self.assertTrue(numpy.all(numpy.equal(retrievedData, data))) self.assertIs(retrievedData.dtype.type, numpy.int8) def testPlotAlphaImage(self): """Test with an alpha image layer""" data = numpy.random.random((10, 10)) alpha = numpy.linspace(0, 1, 100).reshape(10, 10) self.plot.addImage(data, legend='image') image = self.plot.getActiveImage() image.setData(data, alpha=alpha) self.qapp.processEvents() self.assertTrue(numpy.array_equal(alpha, image.getAlphaData())) class TestPlotCurve(PlotWidgetTestCase): """Basic tests for addCurve.""" # Test data sets xData = numpy.arange(1000) yData = -500 + 100 * numpy.sin(xData) xData2 = xData + 1000 yData2 = xData - 1000 + 200 * numpy.random.random(1000) def setUp(self): super(TestPlotCurve, self).setUp() self.plot.setGraphTitle('Curve') self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.setActiveCurveHandling(False) def testPlotCurveColorFloat(self): color = numpy.array(numpy.random.random(3 * 1000), dtype=numpy.float32).reshape(1000, 3) self.plot.addCurve(self.xData, self.yData, legend="curve 1", replace=False, resetzoom=False, color=color, linestyle="", symbol="s") self.plot.addCurve(self.xData2, self.yData2, legend="curve 2", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') self.plot.resetZoom() def testPlotCurveColorByte(self): color = numpy.array(255 * numpy.random.random(3 * 1000), dtype=numpy.uint8).reshape(1000, 3) self.plot.addCurve(self.xData, self.yData, legend="curve 1", replace=False, resetzoom=False, color=color, linestyle="", symbol="s") self.plot.addCurve(self.xData2, self.yData2, legend="curve 2", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') self.plot.resetZoom() def testPlotCurveColors(self): color = numpy.array(numpy.random.random(3 * 1000), dtype=numpy.float32).reshape(1000, 3) self.plot.addCurve(self.xData, self.yData, legend="curve 2", replace=False, resetzoom=False, color=color, linestyle="-", symbol='o') self.plot.resetZoom() # Test updating color array # From array to array newColors = numpy.ones((len(self.xData), 3), dtype=numpy.float32) self.plot.addCurve(self.xData, self.yData, legend="curve 2", replace=False, resetzoom=False, color=newColors, symbol='o') # Array to single color self.plot.addCurve(self.xData, self.yData, legend="curve 2", replace=False, resetzoom=False, color='green', symbol='o') # single color to array self.plot.addCurve(self.xData, self.yData, legend="curve 2", replace=False, resetzoom=False, color=color, symbol='o') class TestPlotScatter(PlotWidgetTestCase, ParametricTestCase): """Basic tests for addScatter""" def testScatter(self): x = numpy.arange(100) y = numpy.arange(100) value = numpy.arange(100) self.plot.addScatter(x, y, value) self.plot.resetZoom() def testScatterVisualization(self): self.plot.addScatter((0, 1, 2, 3), (2, 0, 2, 1), (0, 1, 2, 3)) self.plot.resetZoom() self.qapp.processEvents() scatter = self.plot.getItems()[0] for visualization in ('solid', 'points', scatter.Visualization.SOLID, scatter.Visualization.POINTS): with self.subTest(visualization=visualization): scatter.setVisualization(visualization) self.qapp.processEvents() class TestPlotMarker(PlotWidgetTestCase): """Basic tests for add*Marker""" def setUp(self): super(TestPlotMarker, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.getXAxis().setAutoScale(False) self.plot.getYAxis().setAutoScale(False) self.plot.setKeepDataAspectRatio(False) self.plot.setLimits(0., 100., -100., 100.) def testPlotMarkerX(self): self.plot.setGraphTitle('Markers X') markers = [ (10., 'blue', False, False), (20., 'red', False, False), (40., 'green', True, False), (60., 'gray', True, True), (80., 'black', False, True), ] for x, color, select, drag in markers: name = str(x) if select: name += " sel." if drag: name += " drag" self.plot.addXMarker(x, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerY(self): self.plot.setGraphTitle('Markers Y') markers = [ (-50., 'blue', False, False), (-30., 'red', False, False), (0., 'green', True, False), (10., 'gray', True, True), (80., 'black', False, True), ] for y, color, select, drag in markers: name = str(y) if select: name += " sel." if drag: name += " drag" self.plot.addYMarker(y, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerPt(self): self.plot.setGraphTitle('Markers Pt') markers = [ (10., -50., 'blue', False, False), (40., -30., 'red', False, False), (50., 0., 'green', True, False), (50., 20., 'gray', True, True), (70., 50., 'black', False, True), ] for x, y, color, select, drag in markers: name = "{0},{1}".format(x, y) if select: name += " sel." if drag: name += " drag" self.plot.addMarker(x, y, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerWithoutLegend(self): self.plot.setGraphTitle('Markers without legend') self.plot.getYAxis().setInverted(True) # Markers without legend self.plot.addMarker(10, 10) self.plot.addMarker(10, 20) self.plot.addMarker(40, 50, text='test', symbol=None) self.plot.addMarker(40, 50, text='test', symbol='+') self.plot.addXMarker(25) self.plot.addXMarker(35) self.plot.addXMarker(45, text='test') self.plot.addYMarker(55) self.plot.addYMarker(65) self.plot.addYMarker(75, text='test') self.plot.resetZoom() def testPlotMarkerYAxis(self): # Check only the API legend = self.plot.addMarker(10, 10) item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "left") legend = self.plot.addMarker(10, 10, yaxis="right") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "right") legend = self.plot.addMarker(10, 10, yaxis="left") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "left") legend = self.plot.addXMarker(10, yaxis="right") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "right") legend = self.plot.addXMarker(10, yaxis="left") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "left") legend = self.plot.addYMarker(10, yaxis="right") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "right") legend = self.plot.addYMarker(10, yaxis="left") item = self.plot._getMarker(legend) self.assertEqual(item.getYAxis(), "left") self.plot.resetZoom() # TestPlotItem ################################################################ class TestPlotItem(PlotWidgetTestCase): """Basic tests for addItem.""" # Polygon coordinates and color polygons = [ # legend, x coords, y coords, color ('triangle', numpy.array((10, 30, 50)), numpy.array((55, 70, 55)), 'red'), ('square', numpy.array((10, 10, 50, 50)), numpy.array((10, 50, 50, 10)), 'green'), ('star', numpy.array((60, 70, 80, 60, 80)), numpy.array((25, 50, 25, 40, 40)), 'blue'), ] # Rectangle coordinantes and color rectangles = [ # legend, x coords, y coords, color ('square 1', numpy.array((1., 10.)), numpy.array((1., 10.)), 'red'), ('square 2', numpy.array((10., 20.)), numpy.array((10., 20.)), 'green'), ('square 3', numpy.array((20., 30.)), numpy.array((20., 30.)), 'blue'), ('rect 1', numpy.array((1., 30.)), numpy.array((35., 40.)), 'black'), ('line h', numpy.array((1., 30.)), numpy.array((45., 45.)), 'darkRed'), ] def setUp(self): super(TestPlotItem, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.getXAxis().setAutoScale(False) self.plot.getYAxis().setAutoScale(False) self.plot.setKeepDataAspectRatio(False) self.plot.setLimits(0., 100., -100., 100.) def testPlotItemPolygonFill(self): self.plot.setGraphTitle('Item Fill') for legend, xList, yList, color in self.polygons: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="polygon", fill=True, color=color) self.plot.resetZoom() def testPlotItemPolygonNoFill(self): self.plot.setGraphTitle('Item No Fill') for legend, xList, yList, color in self.polygons: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="polygon", fill=False, color=color) self.plot.resetZoom() def testPlotItemRectangleFill(self): self.plot.setGraphTitle('Rectangle Fill') for legend, xList, yList, color in self.rectangles: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="rectangle", fill=True, color=color) self.plot.resetZoom() def testPlotItemRectangleNoFill(self): self.plot.setGraphTitle('Rectangle No Fill') for legend, xList, yList, color in self.rectangles: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="rectangle", fill=False, color=color) self.plot.resetZoom() class TestPlotActiveCurveImage(PlotWidgetTestCase): """Basic tests for active curve and image handling""" xData = numpy.arange(1000) yData = -500 + 100 * numpy.sin(xData) xData2 = xData + 1000 yData2 = xData - 1000 + 200 * numpy.random.random(1000) def tearDown(self): self.plot.setActiveCurveHandling(False) super(TestPlotActiveCurveImage, self).tearDown() def testActiveCurveAndLabels(self): # Active curve handling off, no label change self.plot.setActiveCurveHandling(False) self.plot.getXAxis().setLabel('XLabel') self.plot.getYAxis().setLabel('YLabel') self.plot.addCurve((1, 2), (1, 2)) self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') self.plot.addCurve((1, 2), (2, 3), xlabel='x1', ylabel='y1') self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') self.plot.clear() self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') # Active curve handling on, label changes self.plot.setActiveCurveHandling(True) self.plot.getXAxis().setLabel('XLabel') self.plot.getYAxis().setLabel('YLabel') # labels changed as active curve self.plot.addCurve((1, 2), (1, 2), legend='1', xlabel='x1', ylabel='y1') self.plot.setActiveCurve('1') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') # labels not changed as not active curve self.plot.addCurve((1, 2), (2, 3), legend='2') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') # labels changed self.plot.setActiveCurve('2') self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') self.plot.setActiveCurve('1') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') self.plot.clear() self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') def testPlotActiveCurveSelectionMode(self): self.plot.clear() self.plot.setActiveCurveHandling(True) legend = "curve 1" self.plot.addCurve(self.xData, self.yData, legend=legend, color="green") # active curve should be None self.assertEqual(self.plot.getActiveCurve(just_legend=True), None) # active curve should be None when None is set as active curve self.plot.setActiveCurve(legend) current = self.plot.getActiveCurve(just_legend=True) self.assertEqual(current, legend) self.plot.setActiveCurve(None) current = self.plot.getActiveCurve(just_legend=True) self.assertEqual(current, None) # testing it automatically toggles if there is only one self.plot.setActiveCurveSelectionMode("legacy") current = self.plot.getActiveCurve(just_legend=True) self.assertEqual(current, legend) # active curve should not change when None set as active curve self.assertEqual(self.plot.getActiveCurveSelectionMode(), "legacy") self.plot.setActiveCurve(None) current = self.plot.getActiveCurve(just_legend=True) self.assertEqual(current, legend) # situation where no curve is active self.plot.clear() self.plot.setActiveCurveHandling(True) self.assertEqual(self.plot.getActiveCurveSelectionMode(), "atmostone") self.plot.addCurve(self.xData, self.yData, legend=legend, color="green") self.assertEqual(self.plot.getActiveCurve(just_legend=True), None) self.plot.addCurve(self.xData2, self.yData2, legend="curve 2", color="red") self.assertEqual(self.plot.getActiveCurve(just_legend=True), None) self.plot.setActiveCurveSelectionMode("legacy") self.assertEqual(self.plot.getActiveCurve(just_legend=True), None) # the first curve added should be active self.plot.clear() self.plot.addCurve(self.xData, self.yData, legend=legend, color="green") self.assertEqual(self.plot.getActiveCurve(just_legend=True), legend) self.plot.addCurve(self.xData2, self.yData2, legend="curve 2", color="red") self.assertEqual(self.plot.getActiveCurve(just_legend=True), legend) def testActiveCurveStyle(self): """Test change of active curve style""" self.plot.setActiveCurveHandling(True) self.plot.setActiveCurveStyle(color='black') style = self.plot.getActiveCurveStyle() self.assertEqual(style.getColor(), (0., 0., 0., 1.)) self.assertIsNone(style.getLineStyle()) self.assertIsNone(style.getLineWidth()) self.assertIsNone(style.getSymbol()) self.assertIsNone(style.getSymbolSize()) self.plot.addCurve(x=self.xData, y=self.yData, legend="curve1") curve = self.plot.getCurve("curve1") curve.setColor('blue') curve.setLineStyle('-') curve.setLineWidth(1) curve.setSymbol('o') curve.setSymbolSize(5) # Check default current style defaultStyle = curve.getCurrentStyle() self.assertEqual(defaultStyle, CurveStyle(color='blue', linestyle='-', linewidth=1, symbol='o', symbolsize=5)) # Activate curve with highlight color=black self.plot.setActiveCurve("curve1") style = curve.getCurrentStyle() self.assertEqual(style.getColor(), (0., 0., 0., 1.)) self.assertEqual(style.getLineStyle(), '-') self.assertEqual(style.getLineWidth(), 1) self.assertEqual(style.getSymbol(), 'o') self.assertEqual(style.getSymbolSize(), 5) # Change highlight to linewidth=2 self.plot.setActiveCurveStyle(linewidth=2) style = curve.getCurrentStyle() self.assertEqual(style.getColor(), (0., 0., 1., 1.)) self.assertEqual(style.getLineStyle(), '-') self.assertEqual(style.getLineWidth(), 2) self.assertEqual(style.getSymbol(), 'o') self.assertEqual(style.getSymbolSize(), 5) self.plot.setActiveCurve(None) self.assertEqual(curve.getCurrentStyle(), defaultStyle) def testActiveImageAndLabels(self): # Active image handling always on, no API for toggling it self.plot.getXAxis().setLabel('XLabel') self.plot.getYAxis().setLabel('YLabel') # labels changed as active curve self.plot.addImage(numpy.arange(100).reshape(10, 10), legend='1', xlabel='x1', ylabel='y1') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') # labels not changed as not active curve self.plot.addImage(numpy.arange(100).reshape(10, 10), legend='2') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') # labels changed self.plot.setActiveImage('2') self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') self.plot.setActiveImage('1') self.assertEqual(self.plot.getXAxis().getLabel(), 'x1') self.assertEqual(self.plot.getYAxis().getLabel(), 'y1') self.plot.clear() self.assertEqual(self.plot.getXAxis().getLabel(), 'XLabel') self.assertEqual(self.plot.getYAxis().getLabel(), 'YLabel') ############################################################################## # Log ############################################################################## class TestPlotEmptyLog(PlotWidgetTestCase): """Basic tests for log plot""" def testEmptyPlotTitleLabelsLog(self): self.plot.setGraphTitle('Empty Log Log') self.plot.getXAxis().setLabel('X') self.plot.getYAxis().setLabel('Y') self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) self.plot.resetZoom() class TestPlotAxes(TestCaseQt, ParametricTestCase): # Test data xData = numpy.arange(1, 10) yData = xData ** 2 def __init__(self, methodName='runTest', backend=None): unittest.TestCase.__init__(self, methodName) self.__backend = backend def setUp(self): super(TestPlotAxes, self).setUp() self.plot = PlotWidget(backend=self.__backend) # It is not needed to display the plot # It saves a lot of time # self.plot.show() # self.qWaitForWindowExposed(self.plot) def tearDown(self): self.qapp.processEvents() self.plot.setAttribute(qt.Qt.WA_DeleteOnClose) self.plot.close() del self.plot super(TestPlotAxes, self).tearDown() def testDefaultAxes(self): axis = self.plot.getXAxis() self.assertEqual(axis.getScale(), axis.LINEAR) axis = self.plot.getYAxis() self.assertEqual(axis.getScale(), axis.LINEAR) axis = self.plot.getYAxis(axis="right") self.assertEqual(axis.getScale(), axis.LINEAR) def testOldPlotAxis_getterSetter(self): """Test silx API prior to silx 0.6""" x = self.plot.getXAxis() y = self.plot.getYAxis() p = self.plot tests = [ # setters (p.setGraphXLimits, (10, 20), x.getLimits, (10, 20)), (p.setGraphYLimits, (10, 20), y.getLimits, (10, 20)), (p.setGraphXLabel, "foox", x.getLabel, "foox"), (p.setGraphYLabel, "fooy", y.getLabel, "fooy"), (p.setYAxisInverted, True, y.isInverted, True), (p.setXAxisLogarithmic, True, x.getScale, x.LOGARITHMIC), (p.setYAxisLogarithmic, True, y.getScale, y.LOGARITHMIC), (p.setXAxisAutoScale, False, x.isAutoScale, False), (p.setYAxisAutoScale, False, y.isAutoScale, False), # getters (x.setLimits, (11, 20), p.getGraphXLimits, (11, 20)), (y.setLimits, (11, 20), p.getGraphYLimits, (11, 20)), (x.setLabel, "fooxx", p.getGraphXLabel, "fooxx"), (y.setLabel, "fooyy", p.getGraphYLabel, "fooyy"), (y.setInverted, False, p.isYAxisInverted, False), (x.setScale, x.LINEAR, p.isXAxisLogarithmic, False), (y.setScale, y.LINEAR, p.isYAxisLogarithmic, False), (x.setAutoScale, True, p.isXAxisAutoScale, True), (y.setAutoScale, True, p.isYAxisAutoScale, True), ] for testCase in tests: setter, value, getter, expected = testCase with self.subTest(): if setter is not None: if not isinstance(value, tuple): value = (value, ) setter(*value) if getter is not None: self.assertEqual(getter(), expected) def testOldPlotAxis_Logarithmic(self): """Test silx API prior to silx 0.6""" x = self.plot.getXAxis() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") self.assertEqual(x.getScale(), x.LINEAR) self.assertEqual(y.getScale(), x.LINEAR) self.assertEqual(yright.getScale(), x.LINEAR) self.plot.setXAxisLogarithmic(True) self.assertEqual(x.getScale(), x.LOGARITHMIC) self.assertEqual(y.getScale(), x.LINEAR) self.assertEqual(yright.getScale(), x.LINEAR) self.assertEqual(self.plot.isXAxisLogarithmic(), True) self.assertEqual(self.plot.isYAxisLogarithmic(), False) self.plot.setYAxisLogarithmic(True) self.assertEqual(x.getScale(), x.LOGARITHMIC) self.assertEqual(y.getScale(), x.LOGARITHMIC) self.assertEqual(yright.getScale(), x.LOGARITHMIC) self.assertEqual(self.plot.isXAxisLogarithmic(), True) self.assertEqual(self.plot.isYAxisLogarithmic(), True) yright.setScale(yright.LINEAR) self.assertEqual(x.getScale(), x.LOGARITHMIC) self.assertEqual(y.getScale(), x.LINEAR) self.assertEqual(yright.getScale(), x.LINEAR) self.assertEqual(self.plot.isXAxisLogarithmic(), True) self.assertEqual(self.plot.isYAxisLogarithmic(), False) def testOldPlotAxis_AutoScale(self): """Test silx API prior to silx 0.6""" x = self.plot.getXAxis() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") self.assertEqual(x.isAutoScale(), True) self.assertEqual(y.isAutoScale(), True) self.assertEqual(yright.isAutoScale(), True) self.plot.setXAxisAutoScale(False) self.assertEqual(x.isAutoScale(), False) self.assertEqual(y.isAutoScale(), True) self.assertEqual(yright.isAutoScale(), True) self.assertEqual(self.plot.isXAxisAutoScale(), False) self.assertEqual(self.plot.isYAxisAutoScale(), True) self.plot.setYAxisAutoScale(False) self.assertEqual(x.isAutoScale(), False) self.assertEqual(y.isAutoScale(), False) self.assertEqual(yright.isAutoScale(), False) self.assertEqual(self.plot.isXAxisAutoScale(), False) self.assertEqual(self.plot.isYAxisAutoScale(), False) yright.setAutoScale(True) self.assertEqual(x.isAutoScale(), False) self.assertEqual(y.isAutoScale(), True) self.assertEqual(yright.isAutoScale(), True) self.assertEqual(self.plot.isXAxisAutoScale(), False) self.assertEqual(self.plot.isYAxisAutoScale(), True) def testOldPlotAxis_Inverted(self): """Test silx API prior to silx 0.6""" x = self.plot.getXAxis() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") self.assertEqual(x.isInverted(), False) self.assertEqual(y.isInverted(), False) self.assertEqual(yright.isInverted(), False) self.plot.setYAxisInverted(True) self.assertEqual(x.isInverted(), False) self.assertEqual(y.isInverted(), True) self.assertEqual(yright.isInverted(), True) self.assertEqual(self.plot.isYAxisInverted(), True) yright.setInverted(False) self.assertEqual(x.isInverted(), False) self.assertEqual(y.isInverted(), False) self.assertEqual(yright.isInverted(), False) self.assertEqual(self.plot.isYAxisInverted(), False) def testLogXWithData(self): self.plot.setGraphTitle('Curve X: Log Y: Linear') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') axis = self.plot.getXAxis() axis.setScale(axis.LOGARITHMIC) self.assertEqual(axis.getScale(), axis.LOGARITHMIC) def testLogYWithData(self): self.plot.setGraphTitle('Curve X: Linear Y: Log') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') axis = self.plot.getYAxis() axis.setScale(axis.LOGARITHMIC) self.assertEqual(axis.getScale(), axis.LOGARITHMIC) axis = self.plot.getYAxis(axis="right") self.assertEqual(axis.getScale(), axis.LOGARITHMIC) def testLogYRightWithData(self): self.plot.setGraphTitle('Curve X: Linear Y: Log') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') axis = self.plot.getYAxis(axis="right") axis.setScale(axis.LOGARITHMIC) self.assertEqual(axis.getScale(), axis.LOGARITHMIC) axis = self.plot.getYAxis() self.assertEqual(axis.getScale(), axis.LOGARITHMIC) def testLimitsChanged_setLimits(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() self.plot.getXAxis().sigLimitsChanged.connect(listener.partial(axis="x")) self.plot.getYAxis().sigLimitsChanged.connect(listener.partial(axis="y")) self.plot.getYAxis(axis="right").sigLimitsChanged.connect(listener.partial(axis="y2")) self.plot.setLimits(0, 1, 0, 1, 0, 1) # at least one event per axis self.assertEqual(len(set(listener.karguments(argumentName="axis"))), 3) def testLimitsChanged_resetZoom(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() self.plot.getXAxis().sigLimitsChanged.connect(listener.partial(axis="x")) self.plot.getYAxis().sigLimitsChanged.connect(listener.partial(axis="y")) self.plot.getYAxis(axis="right").sigLimitsChanged.connect(listener.partial(axis="y2")) self.plot.resetZoom() # at least one event per axis self.assertEqual(len(set(listener.karguments(argumentName="axis"))), 3) def testLimitsChanged_setXLimit(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() axis = self.plot.getXAxis() axis.sigLimitsChanged.connect(listener) axis.setLimits(20, 30) # at least one event per axis self.assertEqual(listener.arguments(callIndex=-1), (20.0, 30.0)) self.assertEqual(axis.getLimits(), (20.0, 30.0)) def testLimitsChanged_setYLimit(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() axis = self.plot.getYAxis() axis.sigLimitsChanged.connect(listener) axis.setLimits(20, 30) # at least one event per axis self.assertEqual(listener.arguments(callIndex=-1), (20.0, 30.0)) self.assertEqual(axis.getLimits(), (20.0, 30.0)) def testLimitsChanged_setYRightLimit(self): self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=False, color='green', linestyle="-", symbol='o') listener = SignalListener() axis = self.plot.getYAxis(axis="right") axis.sigLimitsChanged.connect(listener) axis.setLimits(20, 30) # at least one event per axis self.assertEqual(listener.arguments(callIndex=-1), (20.0, 30.0)) self.assertEqual(axis.getLimits(), (20.0, 30.0)) def testScaleProxy(self): listener = SignalListener() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") y.sigScaleChanged.connect(listener.partial("left")) yright.sigScaleChanged.connect(listener.partial("right")) yright.setScale(yright.LOGARITHMIC) self.assertEqual(y.getScale(), y.LOGARITHMIC) events = listener.arguments() self.assertEqual(len(events), 2) self.assertIn(("left", y.LOGARITHMIC), events) self.assertIn(("right", y.LOGARITHMIC), events) def testAutoScaleProxy(self): listener = SignalListener() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") y.sigAutoScaleChanged.connect(listener.partial("left")) yright.sigAutoScaleChanged.connect(listener.partial("right")) yright.setAutoScale(False) self.assertEqual(y.isAutoScale(), False) events = listener.arguments() self.assertEqual(len(events), 2) self.assertIn(("left", False), events) self.assertIn(("right", False), events) def testInvertedProxy(self): listener = SignalListener() y = self.plot.getYAxis() yright = self.plot.getYAxis(axis="right") y.sigInvertedChanged.connect(listener.partial("left")) yright.sigInvertedChanged.connect(listener.partial("right")) yright.setInverted(True) self.assertEqual(y.isInverted(), True) events = listener.arguments() self.assertEqual(len(events), 2) self.assertIn(("left", True), events) self.assertIn(("right", True), events) def testAxesDisplayedFalse(self): """Test coverage on setAxesDisplayed(False)""" self.plot.setAxesDisplayed(False) def testAxesDisplayedTrue(self): """Test coverage on setAxesDisplayed(True)""" self.plot.setAxesDisplayed(True) class TestPlotCurveLog(PlotWidgetTestCase, ParametricTestCase): """Basic tests for addCurve with log scale axes""" # Test data xData = numpy.arange(1000) + 1 yData = xData ** 2 def _setLabels(self): self.plot.getXAxis().setLabel('X') self.plot.getYAxis().setLabel('X * X') def testPlotCurveLogX(self): self._setLabels() self.plot.getXAxis()._setLogarithmic(True) self.plot.setGraphTitle('Curve X: Log Y: Linear') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') def testPlotCurveLogY(self): self._setLabels() self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('Curve X: Linear Y: Log') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') def testPlotCurveLogXY(self): self._setLabels() self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('Curve X: Log Y: Log') self.plot.addCurve(self.xData, self.yData, legend="curve", replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') def testPlotCurveErrorLogXY(self): self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) # Every second error leads to negative number errors = numpy.ones_like(self.xData) errors[::2] = self.xData[::2] + 1 tests = [ # name, xerror, yerror ('xerror=3', 3, None), ('xerror=N array', errors, None), ('xerror=Nx1 array', errors.reshape(len(errors), 1), None), ('xerror=2xN array', numpy.array((errors, errors)), None), ('yerror=6', None, 6), ('yerror=N array', None, errors ** 2), ('yerror=Nx1 array', None, (errors ** 2).reshape(len(errors), 1)), ('yerror=2xN array', None, numpy.array((errors, errors)) ** 2), ] for name, xError, yError in tests: with self.subTest(name): self.plot.setGraphTitle(name) self.plot.addCurve(self.xData, self.yData, legend=name, xerror=xError, yerror=yError, replace=False, resetzoom=True, color='green', linestyle="-", symbol='o') self.qapp.processEvents() self.plot.clear() self.plot.resetZoom() self.qapp.processEvents() def testPlotCurveToggleLog(self): """Add a curve with negative data and toggle log axis""" arange = numpy.arange(1000) + 1 tests = [ # name, xData, yData ('x>0, some negative y', arange, arange - 500), ('x>0, y<0', arange, -arange), ('some negative x, y>0', arange - 500, arange), ('x<0, y>0', -arange, arange), ('some negative x and y', arange - 500, arange - 500), ('x<0, y<0', -arange, -arange), ] for name, xData, yData in tests: with self.subTest(name): self.plot.addCurve(xData, yData, resetzoom=True) self.qapp.processEvents() # no log axis xLim = self.plot.getXAxis().getLimits() self.assertEqual(xLim, (min(xData), max(xData))) yLim = self.plot.getYAxis().getLimits() self.assertEqual(yLim, (min(yData), max(yData))) # x axis log self.plot.getXAxis()._setLogarithmic(True) self.qapp.processEvents() xLim = self.plot.getXAxis().getLimits() yLim = self.plot.getYAxis().getLimits() positives = xData > 0 if numpy.any(positives): self.assertTrue(numpy.allclose( xLim, (min(xData[positives]), max(xData[positives])))) self.assertEqual( yLim, (min(yData[positives]), max(yData[positives]))) else: # No positive x in the curve self.assertEqual(xLim, (1., 100.)) self.assertEqual(yLim, (1., 100.)) # x axis and y axis log self.plot.getYAxis()._setLogarithmic(True) self.qapp.processEvents() xLim = self.plot.getXAxis().getLimits() yLim = self.plot.getYAxis().getLimits() positives = numpy.logical_and(xData > 0, yData > 0) if numpy.any(positives): self.assertTrue(numpy.allclose( xLim, (min(xData[positives]), max(xData[positives])))) self.assertTrue(numpy.allclose( yLim, (min(yData[positives]), max(yData[positives])))) else: # No positive x and y in the curve self.assertEqual(xLim, (1., 100.)) self.assertEqual(yLim, (1., 100.)) # y axis log self.plot.getXAxis()._setLogarithmic(False) self.qapp.processEvents() xLim = self.plot.getXAxis().getLimits() yLim = self.plot.getYAxis().getLimits() positives = yData > 0 if numpy.any(positives): self.assertEqual( xLim, (min(xData[positives]), max(xData[positives]))) self.assertTrue(numpy.allclose( yLim, (min(yData[positives]), max(yData[positives])))) else: # No positive y in the curve self.assertEqual(xLim, (1., 100.)) self.assertEqual(yLim, (1., 100.)) # no log axis self.plot.getYAxis()._setLogarithmic(False) self.qapp.processEvents() xLim = self.plot.getXAxis().getLimits() self.assertEqual(xLim, (min(xData), max(xData))) yLim = self.plot.getYAxis().getLimits() self.assertEqual(yLim, (min(yData), max(yData))) self.plot.clear() self.plot.resetZoom() self.qapp.processEvents() class TestPlotImageLog(PlotWidgetTestCase): """Basic tests for addImage with log scale axes.""" def setUp(self): super(TestPlotImageLog, self).setUp() self.plot.getXAxis().setLabel('Columns') self.plot.getYAxis().setLabel('Rows') def testPlotColormapGrayLogX(self): self.plot.getXAxis()._setLogarithmic(True) self.plot.setGraphTitle('CMap X: Log Y: Linear') colormap = Colormap(name='gray', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", origin=(1., 1.), scale=(1., 1.), resetzoom=False, colormap=colormap) self.plot.resetZoom() def testPlotColormapGrayLogY(self): self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('CMap X: Linear Y: Log') colormap = Colormap(name='gray', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", origin=(1., 1.), scale=(1., 1.), resetzoom=False, colormap=colormap) self.plot.resetZoom() def testPlotColormapGrayLogXY(self): self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('CMap X: Log Y: Log') colormap = Colormap(name='gray', normalization='linear', vmin=None, vmax=None) self.plot.addImage(DATA_2D, legend="image 1", origin=(1., 1.), scale=(1., 1.), resetzoom=False, colormap=colormap) self.plot.resetZoom() def testPlotRgbRgbaLogXY(self): self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) self.plot.setGraphTitle('RGB + RGBA X: Log Y: Log') rgb = numpy.array( (((0, 0, 0), (128, 0, 0), (255, 0, 0)), ((0, 128, 0), (0, 128, 128), (0, 128, 256))), dtype=numpy.uint8) self.plot.addImage(rgb, legend="rgb", origin=(1, 1), scale=(10, 10), resetzoom=False) rgba = numpy.array( (((0, 0, 0, .5), (.5, 0, 0, 1), (1, 0, 0, .5)), ((0, .5, 0, 1), (0, .5, .5, 1), (0, 1, 1, .5))), dtype=numpy.float32) self.plot.addImage(rgba, legend="rgba", origin=(5., 5.), scale=(10., 10.), resetzoom=False) self.plot.resetZoom() class TestPlotMarkerLog(PlotWidgetTestCase): """Basic tests for markers on log scales""" # Test marker parameters markers = [ # x, y, color, selectable, draggable (10., 10., 'blue', False, False), (20., 20., 'red', False, False), (40., 100., 'green', True, False), (40., 500., 'gray', True, True), (60., 800., 'black', False, True), ] def setUp(self): super(TestPlotMarkerLog, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.getXAxis().setAutoScale(False) self.plot.getYAxis().setAutoScale(False) self.plot.setKeepDataAspectRatio(False) self.plot.setLimits(1., 100., 1., 1000.) self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) def testPlotMarkerXLog(self): self.plot.setGraphTitle('Markers X, Log axes') for x, _, color, select, drag in self.markers: name = str(x) if select: name += " sel." if drag: name += " drag" self.plot.addXMarker(x, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerYLog(self): self.plot.setGraphTitle('Markers Y, Log axes') for _, y, color, select, drag in self.markers: name = str(y) if select: name += " sel." if drag: name += " drag" self.plot.addYMarker(y, name, name, color, select, drag) self.plot.resetZoom() def testPlotMarkerPtLog(self): self.plot.setGraphTitle('Markers Pt, Log axes') for x, y, color, select, drag in self.markers: name = "{0},{1}".format(x, y) if select: name += " sel." if drag: name += " drag" self.plot.addMarker(x, y, name, name, color, select, drag) self.plot.resetZoom() class TestPlotItemLog(PlotWidgetTestCase): """Basic tests for items with log scale axes""" # Polygon coordinates and color polygons = [ # legend, x coords, y coords, color ('triangle', numpy.array((10, 30, 50)), numpy.array((55, 70, 55)), 'red'), ('square', numpy.array((10, 10, 50, 50)), numpy.array((10, 50, 50, 10)), 'green'), ('star', numpy.array((60, 70, 80, 60, 80)), numpy.array((25, 50, 25, 40, 40)), 'blue'), ] # Rectangle coordinantes and color rectangles = [ # legend, x coords, y coords, color ('square 1', numpy.array((1., 10.)), numpy.array((1., 10.)), 'red'), ('square 2', numpy.array((10., 20.)), numpy.array((10., 20.)), 'green'), ('square 3', numpy.array((20., 30.)), numpy.array((20., 30.)), 'blue'), ('rect 1', numpy.array((1., 30.)), numpy.array((35., 40.)), 'black'), ('line h', numpy.array((1., 30.)), numpy.array((45., 45.)), 'darkRed'), ] def setUp(self): super(TestPlotItemLog, self).setUp() self.plot.getYAxis().setLabel('Rows') self.plot.getXAxis().setLabel('Columns') self.plot.getXAxis().setAutoScale(False) self.plot.getYAxis().setAutoScale(False) self.plot.setKeepDataAspectRatio(False) self.plot.setLimits(1., 100., 1., 100.) self.plot.getXAxis()._setLogarithmic(True) self.plot.getYAxis()._setLogarithmic(True) def testPlotItemPolygonLogFill(self): self.plot.setGraphTitle('Item Fill Log') for legend, xList, yList, color in self.polygons: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="polygon", fill=True, color=color) self.plot.resetZoom() def testPlotItemPolygonLogNoFill(self): self.plot.setGraphTitle('Item No Fill Log') for legend, xList, yList, color in self.polygons: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="polygon", fill=False, color=color) self.plot.resetZoom() def testPlotItemRectangleLogFill(self): self.plot.setGraphTitle('Rectangle Fill Log') for legend, xList, yList, color in self.rectangles: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="rectangle", fill=True, color=color) self.plot.resetZoom() def testPlotItemRectangleLogNoFill(self): self.plot.setGraphTitle('Rectangle No Fill Log') for legend, xList, yList, color in self.rectangles: self.plot.addItem(xList, yList, legend=legend, replace=False, shape="rectangle", fill=False, color=color) self.plot.resetZoom() def suite(): testClasses = (TestPlotWidget, TestPlotImage, TestPlotCurve, TestPlotScatter, TestPlotMarker, TestPlotItem, TestPlotAxes, TestPlotActiveCurveImage, TestPlotEmptyLog, TestPlotCurveLog, TestPlotImageLog, TestPlotMarkerLog, TestPlotItemLog) test_suite = unittest.TestSuite() # Tests with matplotlib for testClass in testClasses: test_suite.addTest(parameterize(testClass, backend=None)) test_suite.addTest(parameterize(TestSpecialBackend, backend=u"mpl")) if sys.version_info[0] == 2: test_suite.addTest(parameterize(TestSpecialBackend, backend=b"mpl")) if test_options.WITH_GL_TEST: # Tests with OpenGL backend for testClass in testClasses: test_suite.addTest(parameterize(testClass, backend='gl')) return test_suite if __name__ == '__main__': unittest.main(defaultTest='suite')
py
1a4f079259f3e66f00dd42d2e9e57d043f853cc3
class GalleryInfo: """Meta-data about a gallery.""" def __init__(self, meta_data: dict): self.meta_data = meta_data @property def title(self) -> str: if "title" in self.meta_data: return self.meta_data["title"]
py
1a4f0876e2404ab4eb5abae22c4c2ec27f4f0d12
# Copyright 2014-present MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools for specifying BSON codec options.""" import datetime from abc import abstractmethod from collections import namedtuple from bson.py3compat import ABC, abc, abstractproperty, string_type from bson.binary import (ALL_UUID_REPRESENTATIONS, PYTHON_LEGACY, UUID_REPRESENTATION_NAMES) _RAW_BSON_DOCUMENT_MARKER = 101 def _raw_document_class(document_class): """Determine if a document_class is a RawBSONDocument class.""" marker = getattr(document_class, '_type_marker', None) return marker == _RAW_BSON_DOCUMENT_MARKER class TypeEncoder(ABC): """Base class for defining type codec classes which describe how a custom type can be transformed to one of the types BSON understands. Codec classes must implement the ``python_type`` attribute, and the ``transform_python`` method to support encoding. """ @abstractproperty def python_type(self): """The Python type to be converted into something serializable.""" pass @abstractmethod def transform_python(self, value): """Convert the given Python object into something serializable.""" pass class TypeDecoder(ABC): """Base class for defining type codec classes which describe how a BSON type can be transformed to a custom type. Codec classes must implement the ``bson_type`` attribute, and the ``transform_bson`` method to support decoding. """ @abstractproperty def bson_type(self): """The BSON type to be converted into our own type.""" pass @abstractmethod def transform_bson(self, value): """Convert the given BSON value into our own type.""" pass class TypeCodec(TypeEncoder, TypeDecoder): """Base class for defining type codec classes which describe how a custom type can be transformed to/from one of the types BSON already understands, and can encode/decode. Codec classes must implement the ``python_type`` attribute, and the ``transform_python`` method to support encoding, as well as the ``bson_type`` attribute, and the ``transform_bson`` method to support decoding. """ pass class TypeRegistry(object): """Encapsulates type codecs used in encoding and / or decoding BSON, as well as the fallback encoder. Type registries cannot be modified after instantiation. ``TypeRegistry`` can be initialized with an iterable of type codecs, and a callable for the fallback encoder:: >>> from bson.codec_options import TypeRegistry >>> type_registry = TypeRegistry([Codec1, Codec2, Codec3, ...], ... fallback_encoder) :Parameters: - `type_codecs` (optional): iterable of type codec instances. If ``type_codecs`` contains multiple codecs that transform a single python or BSON type, the transformation specified by the type codec occurring last prevails. - `fallback_encoder` (optional): callable that accepts a single, unencodable python value and transforms it into a type that BSON can encode. """ def __init__(self, type_codecs=None, fallback_encoder=None): self.__type_codecs = list(type_codecs or []) self._fallback_encoder = fallback_encoder self._encoder_map = {} self._decoder_map = {} if self._fallback_encoder is not None: if not callable(fallback_encoder): raise TypeError("fallback_encoder %r is not a callable" % ( fallback_encoder)) for codec in self.__type_codecs: is_valid_codec = False if isinstance(codec, TypeEncoder): self._validate_type_encoder(codec) is_valid_codec = True self._encoder_map[codec.python_type] = codec.transform_python if isinstance(codec, TypeDecoder): is_valid_codec = True self._decoder_map[codec.bson_type] = codec.transform_bson if not is_valid_codec: raise TypeError( "Expected an instance of %s, %s, or %s, got %r instead" % ( TypeEncoder.__name__, TypeDecoder.__name__, TypeCodec.__name__, codec)) def _validate_type_encoder(self, codec): from bson import _BUILT_IN_TYPES for pytype in _BUILT_IN_TYPES: if issubclass(codec.python_type, pytype): err_msg = ("TypeEncoders cannot change how built-in types are " "encoded (encoder %s transforms type %s)" % (codec, pytype)) raise TypeError(err_msg) def __repr__(self): return ('%s(type_codecs=%r, fallback_encoder=%r)' % ( self.__class__.__name__, self.__type_codecs, self._fallback_encoder)) def __eq__(self, other): if not isinstance(other, type(self)): return NotImplemented return ((self._decoder_map == other._decoder_map) and (self._encoder_map == other._encoder_map) and (self._fallback_encoder == other._fallback_encoder)) _options_base = namedtuple( 'CodecOptions', ('document_class', 'tz_aware', 'uuid_representation', 'unicode_decode_error_handler', 'tzinfo', 'type_registry')) class CodecOptions(_options_base): """Encapsulates options used encoding and / or decoding BSON. The `document_class` option is used to define a custom type for use decoding BSON documents. Access to the underlying raw BSON bytes for a document is available using the :class:`~bson.raw_bson.RawBSONDocument` type:: >>> from bson.raw_bson import RawBSONDocument >>> from bson.codec_options import CodecOptions >>> codec_options = CodecOptions(document_class=RawBSONDocument) >>> coll = db.get_collection('test', codec_options=codec_options) >>> doc = coll.find_one() >>> doc.raw '\\x16\\x00\\x00\\x00\\x07_id\\x00[0\\x165\\x91\\x10\\xea\\x14\\xe8\\xc5\\x8b\\x93\\x00' The document class can be any type that inherits from :class:`~collections.MutableMapping`:: >>> class AttributeDict(dict): ... # A dict that supports attribute access. ... def __getattr__(self, key): ... return self[key] ... def __setattr__(self, key, value): ... self[key] = value ... >>> codec_options = CodecOptions(document_class=AttributeDict) >>> coll = db.get_collection('test', codec_options=codec_options) >>> doc = coll.find_one() >>> doc._id ObjectId('5b3016359110ea14e8c58b93') See :doc:`/examples/datetimes` for examples using the `tz_aware` and `tzinfo` options. See :class:`~bson.binary.UUIDLegacy` for examples using the `uuid_representation` option. :Parameters: - `document_class`: BSON documents returned in queries will be decoded to an instance of this class. Must be a subclass of :class:`~collections.MutableMapping`. Defaults to :class:`dict`. - `tz_aware`: If ``True``, BSON datetimes will be decoded to timezone aware instances of :class:`~datetime.datetime`. Otherwise they will be naive. Defaults to ``False``. - `uuid_representation`: The BSON representation to use when encoding and decoding instances of :class:`~uuid.UUID`. Defaults to :data:`~bson.binary.PYTHON_LEGACY`. - `unicode_decode_error_handler`: The error handler to apply when a Unicode-related error occurs during BSON decoding that would otherwise raise :exc:`UnicodeDecodeError`. Valid options include 'strict', 'replace', and 'ignore'. Defaults to 'strict'. - `tzinfo`: A :class:`~datetime.tzinfo` subclass that specifies the timezone to/from which :class:`~datetime.datetime` objects should be encoded/decoded. - `type_registry`: Instance of :class:`TypeRegistry` used to customize encoding and decoding behavior. .. warning:: Care must be taken when changing `unicode_decode_error_handler` from its default value ('strict'). The 'replace' and 'ignore' modes should not be used when documents retrieved from the server will be modified in the client application and stored back to the server. """ def __new__(cls, document_class=dict, tz_aware=False, uuid_representation=PYTHON_LEGACY, unicode_decode_error_handler="strict", tzinfo=None, type_registry=None): if not (issubclass(document_class, abc.MutableMapping) or _raw_document_class(document_class)): raise TypeError("document_class must be dict, bson.son.SON, " "bson.raw_bson.RawBSONDocument, or a " "sublass of collections.MutableMapping") if not isinstance(tz_aware, bool): raise TypeError("tz_aware must be True or False") if uuid_representation not in ALL_UUID_REPRESENTATIONS: raise ValueError("uuid_representation must be a value " "from bson.binary.ALL_UUID_REPRESENTATIONS") if not isinstance(unicode_decode_error_handler, (string_type, None)): raise ValueError("unicode_decode_error_handler must be a string " "or None") if tzinfo is not None: if not isinstance(tzinfo, datetime.tzinfo): raise TypeError( "tzinfo must be an instance of datetime.tzinfo") if not tz_aware: raise ValueError( "cannot specify tzinfo without also setting tz_aware=True") type_registry = type_registry or TypeRegistry() if not isinstance(type_registry, TypeRegistry): raise TypeError("type_registry must be an instance of TypeRegistry") return tuple.__new__( cls, (document_class, tz_aware, uuid_representation, unicode_decode_error_handler, tzinfo, type_registry)) def _arguments_repr(self): """Representation of the arguments used to create this object.""" document_class_repr = ( 'dict' if self.document_class is dict else repr(self.document_class)) uuid_rep_repr = UUID_REPRESENTATION_NAMES.get(self.uuid_representation, self.uuid_representation) return ('document_class=%s, tz_aware=%r, uuid_representation=%s, ' 'unicode_decode_error_handler=%r, tzinfo=%r, ' 'type_registry=%r' % (document_class_repr, self.tz_aware, uuid_rep_repr, self.unicode_decode_error_handler, self.tzinfo, self.type_registry)) def __repr__(self): return '%s(%s)' % (self.__class__.__name__, self._arguments_repr()) def with_options(self, **kwargs): """Make a copy of this CodecOptions, overriding some options:: >>> from bson.codec_options import DEFAULT_CODEC_OPTIONS >>> DEFAULT_CODEC_OPTIONS.tz_aware False >>> options = DEFAULT_CODEC_OPTIONS.with_options(tz_aware=True) >>> options.tz_aware True .. versionadded:: 3.5 """ return CodecOptions( kwargs.get('document_class', self.document_class), kwargs.get('tz_aware', self.tz_aware), kwargs.get('uuid_representation', self.uuid_representation), kwargs.get('unicode_decode_error_handler', self.unicode_decode_error_handler), kwargs.get('tzinfo', self.tzinfo), kwargs.get('type_registry', self.type_registry) ) DEFAULT_CODEC_OPTIONS = CodecOptions() def _parse_codec_options(options): """Parse BSON codec options.""" return CodecOptions( document_class=options.get( 'document_class', DEFAULT_CODEC_OPTIONS.document_class), tz_aware=options.get( 'tz_aware', DEFAULT_CODEC_OPTIONS.tz_aware), uuid_representation=options.get( 'uuidrepresentation', DEFAULT_CODEC_OPTIONS.uuid_representation), unicode_decode_error_handler=options.get( 'unicode_decode_error_handler', DEFAULT_CODEC_OPTIONS.unicode_decode_error_handler), tzinfo=options.get('tzinfo', DEFAULT_CODEC_OPTIONS.tzinfo), type_registry=options.get( 'type_registry', DEFAULT_CODEC_OPTIONS.type_registry))
py
1a4f09ade43da4170af6b60198e5864a4f6dd52f
# Generated by Django 3.0.4 on 2020-05-07 15:48 import autoslug.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('product', '0013_auto_20200507_1846'), ] operations = [ migrations.AlterField( model_name='product', name='slug', field=autoslug.fields.AutoSlugField(blank=True, editable=False, populate_from='q'), ), ]
py
1a4f09fb2d56c051dccbda200895b5ca87452e9d
from flask import url_for def test_ping(client): resp = client.get(url_for('main.ping')) assert resp.status_code == 200 resp = resp.json assert resp == { 'addition': {'msg': "it's alive!"}, 'description': {}, 'result': True, 'status': 200, }
py
1a4f0a3de5a0a6f87bdfe7c03f5deda0052f2907
#!/usr/bin/env python # -*- coding: utf-8 -*- # # ardour2fxp.py # """Convert one or more Ardour VST presets XML file to VST2 FXP preset files.""" import argparse import os import sys from base64 import b64decode from collections import namedtuple from os.path import exists, isdir, join from struct import calcsize, pack from xml.etree import ElementTree as ET FXP_HEADER_FMT = '>4si4s4i28s' FXP_PREAMBEL_SIZE = calcsize('>4si') FXP_HEADER_SIZE = calcsize(FXP_HEADER_FMT) FXP_FORMAT_VERSION = 1 CHUNK_MAGIC = b'CcnK' FX_MAGIC_PARAMS = b'FxCk' FX_MAGIC_CHUNK = b'FPCh' FX_DEFAULT_VERSION = 1 PRESET_BASE_FIELDS = ( 'plugin_id', 'plugin_version', 'hash', 'label', 'num_params', ) ChunkPreset = namedtuple('ChunkPreset', PRESET_BASE_FIELDS + ('chunk',)) Preset = namedtuple('Preset', PRESET_BASE_FIELDS + ('params',)) def label2fn(label): """Replace characters in label unsuitable for filenames with underscore.""" return label.strip().replace(' ', '_') def parse_ardourpresets(root): """Parse ardour VST presets XML document. Returns list of Preset or ChunkPreset instances. """ if root.tag != 'VSTPresets': raise ValueError("Root node must be 'VSTPresets'.") presets = [] for preset in root: if preset.tag not in ('Preset', 'ChunkPreset'): print("Invalid preset type: {}".format(preset.tag)) continue try: type, plugin_id, hash = preset.attrib['uri'].split(':', 2) plugin_id = int(plugin_id) version = preset.attrib.get('version') num_params = preset.attrib.get('numParams') label = preset.attrib['label'] if version is not None: version = int(version) if num_params is not None: num_params = int(num_params) if type != "VST": raise ValueError except (KeyError, ValueError): print("Invalid preset format: {}".format(preset.attrib)) continue if preset.tag == 'Preset': params = {int(param.attrib['index']): param.attrib['value'] for param in preset} params = [float(value) for _, value in sorted(params.items())] presets.append(Preset(plugin_id, version, hash, label, num_params, params)) elif preset.tag == 'ChunkPreset': presets.append(ChunkPreset(plugin_id, version, hash, label, num_params, b64decode(preset.text))) return presets def main(args=None): argparser = argparse.ArgumentParser() argparser.add_argument('-v', '--fx-version', type=int, help="VST plugin version number") argparser.add_argument('-f', '--force', action="store_true", help="Overwrite existing destination file(s)") argparser.add_argument('-o', '--output-dir', help="Ardour presets output directory") argparser.add_argument('infiles', nargs='*', metavar='XML', help="Ardour VST presets XML (input) file(s)") args = argparser.parse_args(args) output_dir = args.output_dir or os.getcwd() if not args.infiles: argparser.print_help() return 2 for infile in args.infiles: try: root_node = ET.parse(infile).getroot() presets = parse_ardourpresets(root_node) except Exception as exc: return "Error reading Ardour preset file '{}': {}".format( infile, exc) if not presets: return "No valid presets found in input file(s)." for preset in presets: plugin_id = pack('>I', preset.plugin_id).decode('ascii') dstdir = join(output_dir, plugin_id) if not isdir(dstdir): os.makedirs(dstdir) fxp_fn = join(dstdir, label2fn(preset.label)) + '.fxp' if exists(fxp_fn) and not args.force: print("FXP output file '{}' already exists. Skipping".format( fxp_fn)) continue with open(fxp_fn, 'wb') as fp: if args.fx_version is not None: fx_version = args.fx_version elif preset.plugin_version is not None: fx_version = preset.plugin_version else: fx_version = FX_DEFAULT_VERSION if isinstance(preset, Preset): if preset.num_params is None: num_params = len(preset.params) else: num_params = preset.num_params params_fmt = '>{:d}f'.format(num_params) size = (FXP_HEADER_SIZE - FXP_PREAMBEL_SIZE + calcsize(params_fmt)) fx_magic = FX_MAGIC_PARAMS elif isinstance(preset, ChunkPreset): if preset.num_params is None: num_params = int(len(preset.chunk) / 4) else: num_params = preset.num_params chunk_len = len(preset.chunk) chunk_size = pack('>i', chunk_len) size = (FXP_HEADER_SIZE - FXP_PREAMBEL_SIZE + len(chunk_size) + chunk_len) fx_magic = FX_MAGIC_CHUNK else: raise TypeError("Wrong preset type: {!r}".format(preset)) header = pack( FXP_HEADER_FMT, CHUNK_MAGIC, size, fx_magic, FXP_FORMAT_VERSION, preset.plugin_id, fx_version, num_params, preset.label.encode('latin1', errors='replace') ) fp.write(header) if isinstance(preset, Preset): data = pack(params_fmt, *preset.params) fp.write(data) elif isinstance(preset, ChunkPreset): fp.write(chunk_size) fp.write(preset.chunk) if __name__ == '__main__': sys.exit(main() or 0)
py
1a4f0ab1cb6b0b498d29c0fcb7875eefd0a6eef6
l = int(input()) count = 0 while l >= 2: l = l/2 count += 2 print(2**count)
py
1a4f0ac700f38c8788cf5b18a50ac9e3c1156e4d
try: import _thread except ModuleNotFoundError: _thread = None class Producer: """ Uses a list instead of a set to ensure correct ordering of subscriptions. Does not allow lambda functions to be used. :params name: name of producer :params validation: a function which will accept arguments passed into emit and check values / types raising a ValueError if incorrect type :params as_threads: option to run handlers as threads :raises NotImplementedError if micro-python version does not implement _thread and as_threads keyword set to True. """ def __init__(self, *args, name=None, validation=None, as_threads=False): if as_threads and not _thread: raise NotImplementedError( 'threading is not available in this distribution') self.__handlers = [] self.__name = name self.__validation = validation self.__as_threads = as_threads # private methods def _add_handler(self, handler_func): if handler_func in self.__handlers: raise ValueError('handler is already subscribed.') self.__handlers.append(handler_func) return self def _remove_handler(self, handler_func): if not handler_func in self.__handlers: raise ValueError('handler is not subscribed to producer') self.__handlers.remove(handler_func) return self # public methods def subscribe(self, handler_func): """ Subscribe a function as a callback to the producer. :params handler_func: a callback function that will be invoked when a value is sent to the emit method. Function cannot be a lambda. :raises ValueError if handler is a lambda or already subscribed. """ if handler_func.__name__ == '<lambda>': raise ValueError('handler cannot be a lambda function') return self._add_handler(handler_func) def unsubscribe(self, handler_func): """ Unsubscribe a callback from the producer. :raises ValueError if handler is not already subscribed. """ return self._remove_handler(handler_func) def emit(self, *args, **kwargs): """ Send arguments and keyword arguments to subscribed functions. Arguments are first passed through the validation function and then passed sequentially to each subscribed callback. If as_threads is set to True callbacks are started as separate threads. """ if self.__validation: self.__validation(*args, **kwargs) for handler in self.__handlers: if self.__as_threads and _thread: _thread.start_new_thread(handler, args, kwargs) else: handler(*args, **kwargs) # datamodel methods def __repr__(self): return "Producer(%s)" % self.__name def __len__(self): return len(self.__handlers) __call__ = emit __iadd__ = subscribe __isub__ = unsubscribe
py
1a4f0b201a9e8589a7ba4284f5026c1e21d45f19
# From https://github.com/taki0112/ResNet-Tensorflow. import tensorflow as tf import tensorflow.contrib as tf_contrib weight_init = tf_contrib.layers.variance_scaling_initializer() weight_regularizer = tf_contrib.layers.l2_regularizer(0.0001) def conv(x, channels, kernel=4, stride=2, padding='SAME', use_bias=True, scope='conv_0'): with tf.variable_scope(scope): x = tf.layers.conv2d(inputs=x, filters=channels, kernel_size=kernel, kernel_initializer=weight_init, kernel_regularizer=weight_regularizer, strides=stride, use_bias=use_bias, padding=padding) return x def fully_conneted(x, units, use_bias=True, scope='fully_0'): with tf.variable_scope(scope): x = flatten(x) x = tf.layers.dense(x, units=units, kernel_initializer=weight_init, kernel_regularizer=weight_regularizer, use_bias=use_bias) return x def resblock(x_init, channels, is_training=True, use_bias=True, downsample=False, scope='resblock'): with tf.variable_scope(scope): x = batch_norm(x_init, is_training, scope='batch_norm_0') x = relu(x) if downsample: x = conv(x, channels, kernel=3, stride=2, use_bias=use_bias, scope='conv_0') x_init = conv(x_init, channels, kernel=1, stride=2, use_bias=use_bias, scope='conv_init') else: x = conv(x, channels, kernel=3, stride=1, use_bias=use_bias, scope='conv_0') x = batch_norm(x, is_training, scope='batch_norm_1') x = relu(x) x = conv(x, channels, kernel=3, stride=1, use_bias=use_bias, scope='conv_1') return x + x_init def bottle_resblock(x_init, channels, is_training=True, use_bias=True, downsample=False, scope='bottle_resblock'): with tf.variable_scope(scope): x = batch_norm(x_init, is_training, scope='batch_norm_1x1_front') shortcut = relu(x) x = conv(shortcut, channels, kernel=1, stride=1, use_bias=use_bias, scope='conv_1x1_front') x = batch_norm(x, is_training, scope='batch_norm_3x3') x = relu(x) if downsample: x = conv(x, channels, kernel=3, stride=2, use_bias=use_bias, scope='conv_0') shortcut = conv(shortcut, channels*4, kernel=1, stride=2, use_bias=use_bias, scope='conv_init') else: x = conv(x, channels, kernel=3, stride=1, use_bias=use_bias, scope='conv_0') shortcut = conv(shortcut, channels * 4, kernel=1, stride=1, use_bias=use_bias, scope='conv_init') x = batch_norm(x, is_training, scope='batch_norm_1x1_back') x = relu(x) x = conv(x, channels*4, kernel=1, stride=1, use_bias=use_bias, scope='conv_1x1_back') return x + shortcut def get_residual_layer(res_n): x = [] if res_n == 18: x = [2, 2, 2, 2] if res_n == 34: x = [3, 4, 6, 3] if res_n == 50: x = [3, 4, 6, 3] if res_n == 101: x = [3, 4, 23, 3] if res_n == 152: x = [3, 8, 36, 3] return x def flatten(x): return tf.layers.flatten(x) def global_avg_pooling(x): gap = tf.reduce_mean(x, axis=[1, 2], keepdims=True) return gap def avg_pooling(x): return tf.layers.average_pooling2d(x, pool_size=2, strides=2, padding='SAME') def relu(x): return tf.nn.relu(x) def batch_norm(x, is_training=True, scope='batch_norm'): return tf_contrib.layers.batch_norm(x, decay=0.9, epsilon=1e-05, center=True, scale=True, updates_collections=None, is_training=is_training, scope=scope) def classification_loss(logit, label): loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2(labels=label, logits=logit)) prediction = tf.equal(tf.argmax(logit, -1), tf.argmax(label, -1)) accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32)) return loss, accuracy def classification_loss_weighted(logit, label): loss = tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits( targets=label, logits=logit, pos_weight=2)) # cost1 = tf.reduce_mean(tf.nn.weighted_cross_entropy_with_logits(targets=y, logits=pred,pos_weight=1)) prediction = tf.equal(tf.argmax(logit, -1), tf.argmax(label, -1)) accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32)) return loss, accuracy
py
1a4f0b2d07727f3ba621953308bca08b39a3469a
import copy import numpy import logging from six.moves import xrange import theano from theano import tensor, scalar, gof from theano.compile import optdb from theano.compile.ops import shape_i from theano.gof import (local_optimizer, EquilibriumDB, SequenceDB, Optimizer, toolbox) from theano.gof.optdb import LocalGroupDB from theano.scalar.basic import Scalar, Pow, Cast from theano.scan_module import scan_utils, scan_op, scan_opt from theano.tensor.nnet.conv import ConvOp from theano.tests.breakpoint import PdbBreakpoint from .type import GpuArrayType, GpuArrayConstant, get_context from .basic_ops import (as_gpuarray_variable, infer_context_name, host_from_gpu, GpuToGpu, HostFromGpu, GpuFromHost, GpuSplit, GpuContiguous, GpuAlloc, GpuAllocEmpty, GpuReshape, GpuEye, gpu_join, GpuJoin) from .blas import (gpu_dot22, GpuGemv, GpuGemm, GpuGer, gpugemm_no_inplace) from .conv import GpuConv from .nnet import (GpuCrossentropySoftmaxArgmax1HotWithBias, GpuCrossentropySoftmax1HotWithBiasDx, GpuSoftmaxWithBias, GpuSoftmax) from .elemwise import (GpuElemwise, GpuDimShuffle, GpuCAReduceCuda, GpuCAReduceCPY) from .subtensor import (GpuIncSubtensor, GpuSubtensor, GpuAdvancedSubtensor1, GpuAdvancedIncSubtensor1, GpuAdvancedIncSubtensor1_dev20) from .opt_util import alpha_merge, output_merge _logger = logging.getLogger("theano.sandbox.gpuarray.opt") gpu_optimizer = EquilibriumDB() gpu_cut_copies = EquilibriumDB() gpu_seqopt = SequenceDB() # Don't register this right now conv_groupopt = LocalGroupDB() conv_groupopt.__name__ = "gpua_conv_opts" gpu_seqopt.register('gpuarray_local_optimiziations', gpu_optimizer, 1, 'fast_compile', 'fast_run', 'inplace', 'gpuarray') gpu_seqopt.register('gpuarray_cut_transfers', gpu_cut_copies, 2, 'fast_compile', 'fast_run', 'gpuarray') # do not add 'fast_run' to these two as this would always enable gpuarray mode optdb.register('gpuarray_opt', gpu_seqopt, optdb.__position__.get('add_destroy_handler', 49.5) - 1, 'gpuarray') def register_opt(*tags, **kwargs): def f(local_opt): name = (kwargs and kwargs.pop('name')) or local_opt.__name__ gpu_optimizer.register(name, local_opt, 'fast_run', 'gpuarray', *tags) return local_opt return f register_opt('fast_compile')(theano.tensor.opt.local_track_shape_i) gpu_optimizer.register('local_remove_all_assert', theano.tensor.opt.local_remove_all_assert, 'unsafe') def safe_to_gpu(x, ctx_name): if isinstance(x.type, tensor.TensorType): return GpuFromHost(ctx_name)(x) else: return x def safe_to_cpu(x): if isinstance(x.type, GpuArrayType): return host_from_gpu(x) else: return x def op_lifter(OP, cuda_only=False): """ OP(..., host_from_gpu(), ...) -> host_from_gpu(GpuOP(...)) gpu_from_host(OP(inp0, ...)) -> GpuOP(inp0, ...) """ def f(maker): def local_opt(node): if type(node.op) in OP: # Either one of our inputs is on the gpu or # all of our clients are on the gpu replace = False # TODO: Maybe set context_name with infer_context_name()? context_name = None # We replace if any input is a host_from_gpu for i in node.inputs: if i.owner and i.owner.op == host_from_gpu: context_name = i.owner.inputs[0].type.context_name replace = True break if not replace: # We replace if *all* clients are on the GPU clients = [c for o in node.outputs for c in o.clients] replace = len(clients) != 0 for c, idx in clients: if (c == 'output' or not isinstance(c.op, GpuFromHost)): replace = False # TODO: check that the clients want the same context? if replace: # All clients are GpuFromHost and we have at least one context_name = clients[0][0].op.context_name # Check if we should replace if (not replace or (cuda_only and get_context(context_name).kind != 'cuda')): return False new_op = maker(node, context_name) # This is needed as sometimes new_op inherits from OP. if new_op and new_op != node.op: if isinstance(new_op, theano.Op): # tag the inputs with the context in case # the context was derived from the outputs def tag(i, ctx): i.tag.context_name = ctx return i inputs = [tag(i, context_name) for i in node.inputs] return [safe_to_cpu(o) for o in new_op(*inputs, return_list=True)] elif isinstance(new_op, (tuple, list)): return [safe_to_cpu(o) for o in new_op] else: # suppose it is a variable on the GPU return [host_from_gpu(new_op)] return False local_opt.__name__ = maker.__name__ return local_optimizer(OP)(local_opt) return f class InputToGpuOptimizer(Optimizer): """ Transfer the input to the gpu to start the rolling wave. """ def add_requirements(self, fgraph): fgraph.attach_feature(toolbox.ReplaceValidate()) def apply(self, fgraph): for input in fgraph.inputs: if isinstance(input.type, GpuArrayType): continue if (len(input.clients) == 1 and (input.clients[0][0] == 'output' or isinstance(input.clients[0][0].op, GpuFromHost))): continue ctx_name = getattr(input.tag, 'context_name', None) try: new_input = host_from_gpu(GpuFromHost(ctx_name)(input)) fgraph.replace_validate(input, new_input, "InputToGpuOptimizer") except TypeError: # This could fail if the inputs are not TensorTypes pass except ValueError: # If there is no context tag and no default context # then it stays on the CPU if not hasattr(input.tag, 'context_name'): raise pass gpu_seqopt.register('InputToGpuArrayOptimizer', InputToGpuOptimizer(), 0, 'fast_run', 'fast_compile', 'merge') @local_optimizer([GpuFromHost, GpuToGpu, host_from_gpu]) def local_cut_gpu_transfers(node): # gpu[ab] -> host -> gpub if (isinstance(node.op, GpuFromHost) and node.inputs[0].owner and node.inputs[0].owner.op == host_from_gpu): other = node.inputs[0].owner.inputs[0] if node.op.context_name == other.type.context_name: return [other] else: return [GpuToGpu(node.op.context_name)(other)] # ? -> gpua -> host elif (node.op == host_from_gpu and node.inputs[0].owner): n2 = node.inputs[0].owner # host -> if isinstance(n2.op, GpuFromHost): return [n2.inputs[0]] # gpub -> if isinstance(n2.op, GpuToGpu): return [host_from_gpu(n2.inputs[0])] # ? -> gpua -> gpub elif isinstance(node.op, GpuToGpu): # Transfer within same context if node.inputs[0].type.context_name == node.op.context_name: return [node.inputs[0]] if node.inputs[0].owner: n2 = node.inputs[0].owner # host -> if isinstance(n2.op, GpuFromHost): return [GpuFromHost(node.op.context_name)(n2.inputs[0])] # gpuc -> if isinstance(n2.op, GpuToGpu): if node.op.context_name == n2.inputs[0].type.context_name: return [n2.inputs[0]] else: return [node.op(n2.inputs[0])] gpu_cut_copies.register('cut_gpua_host_transfers', local_cut_gpu_transfers, 'fast_compile', 'fast_run', 'inplace', 'gpuarray') gpu_cut_copies.register('cut_gpua_constant_transfers', tensor.opt.constant_folding, 'fast_compile', 'fast_run', 'gpuarray') optdb['canonicalize'].register('local_cut_gpua_host_gpua', local_cut_gpu_transfers, 'fast_compile', 'fast_run', 'gpuarray') @register_opt('fast_compile') @local_optimizer([tensor.Alloc]) def local_gpuaalloc2(node): """ Join(axis, {Alloc or HostFromGPU}, ...) -> Join(axis, GpuAlloc, Alloc, ...) Moves an alloc that is an input to join to the gpu. """ try: get_context(None) except ValueError: # If there is no default context then we do not perform the move here. return if (isinstance(node.op, tensor.Alloc) and all(c != 'output' and c.op == tensor.join and all(i.owner and i.owner.op in [host_from_gpu, tensor.alloc] for i in c.inputs[1:]) for c, idx in node.outputs[0].clients)): return [host_from_gpu(GpuAlloc(None)(*node.inputs))] @register_opt('fast_compile') @op_lifter([tensor.Alloc]) def local_gpuaalloc(node, context_name): return GpuAlloc(context_name)(*node.inputs) @register_opt() @local_optimizer([GpuAlloc]) def local_gpualloc_memset_0(node): if isinstance(node.op, GpuAlloc) and not node.op.memset_0: inp = node.inputs[0] if (isinstance(inp, GpuArrayConstant) and inp.data.size == 1 and (numpy.asarray(inp.data) == 0).all()): new_op = GpuAlloc(node.op.context_name, memset_0=True) return [new_op(*node.inputs)] @register_opt() @local_optimizer([GpuContiguous]) def local_gpu_contiguous_gpu_contiguous(node): """ gpu_contiguous(gpu_contiguous(x)) -> gpu_contiguous(x) """ if isinstance(node.op, GpuContiguous): inp = node.inputs[0] if inp.owner and isinstance(inp.owner.op, GpuContiguous): return [inp] @register_opt('fast_compile') @op_lifter([tensor.Reshape]) def local_gpureshape(node, context_name): op = node.op name = op.name if name: name = 'Gpu' + name res = GpuReshape(op.ndim, op.name) return res @register_opt('fast_compile') @op_lifter([tensor.Rebroadcast]) def local_gpu_rebroadcast(node, context_name): if isinstance(node.inputs[0].owner.op, HostFromGpu): return node.op(node.inputs[0].owner.inputs[0]) @register_opt('fast_compile') @op_lifter([tensor.Flatten]) def local_gpuflatten(node, context_name): op = node.op shp = [] if op.outdim != 1: shp = [node.inputs[0].shape[i] for i in range(op.outdim - 1)] shp += [-1] res = GpuReshape(op.outdim, None) o = res(node.inputs[0], theano.tensor.as_tensor_variable(shp)) return o @register_opt('fast_compile') @op_lifter([tensor.Elemwise]) def local_gpu_elemwise(node, context_name): op = node.op scal_op = op.scalar_op name = op.name if name: name = 'Gpu' + name if len(node.outputs) > 1: return res = GpuElemwise(scal_op, name=name, inplace_pattern=copy.copy(op.inplace_pattern), nfunc_spec=op.nfunc_spec) # If the elemwise operation is a pow, casts might be required on the # inputs and or outputs because only the (float, float)->float and # (double, double)->double cases are implemented at the moment. if isinstance(op.scalar_op, Pow): # Only transfer the computation on the gpu if the output dtype is # floating point. Else, give up on the transfer to the gpu. out_dtype = node.outputs[0].dtype if out_dtype not in ['float16', 'float32', 'float64']: return # Transfer the inputs on the GPU and cast them to the right dtype. new_inputs = [] for inp in node.inputs: if inp.dtype != out_dtype: gpu_cast_op = GpuElemwise(Cast(Scalar(out_dtype))) new_inputs.append(gpu_cast_op(as_gpuarray_variable(inp))) else: new_inputs.append(as_gpuarray_variable(inp)) # Perform the exponent on the gpu and transfer the output back to the # cpu. gpu_output = res(*new_inputs) cpu_output = host_from_gpu(gpu_output) return [cpu_output] else: return res def max_inputs_to_GpuElemwise(node): ptr_size = 8 int_size = 4 # we take the limit from CUDA for now argument_limit = 232 ndim = node.inputs[0].type.ndim # number of elements and shape size_param_mandatory = (int_size * (ndim + 1)) + \ (ptr_size + int_size * ndim) * len(node.outputs) nb_bytes_avail = argument_limit - size_param_mandatory nb_bytes_per_input = ptr_size + ndim * int_size max_nb_inputs = nb_bytes_avail // nb_bytes_per_input return max_nb_inputs gpu_local_elemwise_fusion = tensor.opt.local_elemwise_fusion_op( GpuElemwise, max_inputs_to_GpuElemwise) optdb.register('gpua_elemwise_fusion', tensor.opt.FusionOptimizer(gpu_local_elemwise_fusion), 71.00, 'fast_run', 'fusion', 'local_elemwise_fusion', 'gpuarray') inplace_gpu_elemwise_opt = tensor.opt.inplace_elemwise_optimizer_op( GpuElemwise) optdb.register('gpua_inplace_opt', inplace_gpu_elemwise_opt, 75, 'inplace_elemwise_optimizer', 'fast_run', 'inplace', 'gpuarray') @register_opt('fast_compile') @op_lifter([tensor.DimShuffle]) def local_gpua_dimshuffle(node, context_name): return GpuDimShuffle(node.op.input_broadcastable, node.op.new_order) @register_opt('fast_compile') @op_lifter([tensor.SpecifyShape]) def local_gpua_specifyShape(node, context_name): if isinstance(node.inputs[0].type, GpuArrayType): return inp = [GpuFromHost(context_name)(node.inputs[0])] + node.inputs[1:] return tensor.specify_shape(*inp) @register_opt('fast_compile') @op_lifter([theano.compile.ops.Shape]) def local_gpua_shape(node, context_name): # op_lifter will call this opt too frequently as the output is # always on the CPU. if isinstance(node.inputs[0].type, GpuArrayType): return return [GpuFromHost(context_name)(node.inputs[0]).shape] def gpu_print_wrapper(op, cnda): op.old_op.global_fn(op.old_op, numpy.asarray(cnda)) @register_opt('fast_compile') @op_lifter([tensor.printing.Print]) def local_gpu_print_op(node, context_name): x, = node.inputs gpu_x, = x.owner.inputs new_op = node.op.__class__(global_fn=gpu_print_wrapper) new_op.old_op = node.op return new_op(gpu_x) @register_opt('fast_compile') @local_optimizer([PdbBreakpoint]) def local_gpu_pdbbreakpoint_op(node): if isinstance(node.op, PdbBreakpoint): old_inputs = node.inputs old_outputs = node.outputs new_inputs = node.inputs[:1] input_transfered = [] # Go through the monitored variables, only transfering on GPU those # for which the input comes from the GPU or the output will be # transfered on the GPU. nb_monitored_vars = len(node.outputs) for i in range(nb_monitored_vars): inp = old_inputs[i + 1] out = old_outputs[i] input_is_from_gpu = (inp.owner and isinstance(inp.owner.op, HostFromGpu)) output_goes_to_gpu = False for c in out.clients: if c == 'output': continue if isinstance(c[0].op, GpuFromHost): output_goes_to_gpu = True context_name = c[0].op.context_name break if input_is_from_gpu: # The op should be applied on the GPU version of the input new_inputs.append(inp.owner.inputs[0]) input_transfered.append(True) elif output_goes_to_gpu: # The input should be transfered to the gpu new_inputs.append(GpuFromHost(context_name)(inp)) input_transfered.append(True) else: # No transfer is required. new_inputs.append(inp) input_transfered.append(False) # Only continue the optimization if at least one input has been # transfered to the gpu if not any(input_transfered): return False # Apply the op on the new inputs new_op_outputs = node.op(*new_inputs, return_list=True) # Propagate the transfer to the gpu through the outputs that require # it new_outputs = [] for i in range(len(new_op_outputs)): if input_transfered[i]: new_outputs.append(host_from_gpu(new_op_outputs[i])) else: new_outputs.append(new_op_outputs[i]) return new_outputs return False @register_opt('fast_compile') @op_lifter([tensor.Join]) def local_gpua_join(node, context_name): return gpu_join @register_opt('fast_compile') @local_optimizer([GpuJoin]) def local_gpuajoin_1(node): # join of a single element if (isinstance(node.op, GpuJoin) and len(node.inputs) == 2): return [node.inputs[1]] @register_opt('fast_compile') @op_lifter([tensor.Split]) def local_gpua_split(node, context_name): return GpuSplit(node.op.len_splits) @register_opt('fast_compile') @op_lifter([tensor.Subtensor]) def local_gpua_subtensor(node, context_name): x = node.inputs[0] if (x.owner and isinstance(x.owner.op, HostFromGpu)): gpu_x = x.owner.inputs[0] if (gpu_x.owner and isinstance(gpu_x.owner.op, GpuFromHost) and # And it is a shared var or an input of the graph. not gpu_x.owner.inputs[0].owner): if len(x.clients) == 1: if any([n == 'output' or any([isinstance(v.type, GpuArrayType) for v in n.inputs + n.outputs]) for n, _ in node.outputs[0].clients]): return else: return [host_from_gpu(gpu_x.owner.op(node.outputs[0]))] return GpuSubtensor(node.op.idx_list) @register_opt('fast_compile') @op_lifter([tensor.IncSubtensor]) def local_gpua_incsubtensor(node, context_name): return GpuIncSubtensor(node.op.idx_list, node.op.inplace, node.op.set_instead_of_inc, node.op.destroyhandler_tolerate_aliased) @register_opt('fast_compile') @op_lifter([tensor.AdvancedSubtensor1]) def local_gpua_advanced_subtensor(node, context_name): return GpuAdvancedSubtensor1() @register_opt('fast_compile') @op_lifter([tensor.AdvancedIncSubtensor1]) def local_gpua_advanced_incsubtensor(node, context_name): # This is disabled on non-cuda contexts if get_context(context_name).kind != 'cuda': return None x, y, ilist = node.inputs # Gpu Ops needs both inputs to have the same dtype if (x.type.dtype != y.type.dtype): dtype = scalar.upcast(x.type.dtype, y.type.dtype) if x.type.dtype != dtype: x = tensor.cast(x, dtype) if y.type.dtype != dtype: y = tensor.cast(y, dtype) set_instead_of_inc = node.op.set_instead_of_inc active_device_no = theano.sandbox.cuda.active_device_number() device_properties = theano.sandbox.cuda.device_properties compute_capability = device_properties(active_device_no)['major'] if (compute_capability < 2 or x.ndim != 2 or y.ndim != 2): return [GpuAdvancedIncSubtensor1( set_instead_of_inc=set_instead_of_inc)(x, y, ilist)] else: return [GpuAdvancedIncSubtensor1_dev20( set_instead_of_inc=set_instead_of_inc)(x, y, ilist)] @register_opt('fast_compile') @op_lifter([tensor.CAReduce, tensor.Sum, tensor.elemwise.Prod]) def local_gpua_careduce(node, context_name): if isinstance(node.op.scalar_op, (scalar.Add, scalar.Mul, scalar.Maximum, scalar.Minimum)): ctx = get_context(context_name) if ctx.kind == 'opencl': op = GpuCAReduceCPY if node.op.scalar_op not in [scalar.add, scalar.mul]: # We don't support yet all reduction with cpy code. return elif ctx.kind == 'cuda': op = GpuCAReduceCuda else: return False x, = node.inputs greduce = op( node.op.scalar_op, axis=node.op.axis, dtype=getattr(node.op, 'dtype', None), acc_dtype=getattr(node.op, 'acc_dtype', None)) gvar = greduce(x) # We need to have the make node called, otherwise the mask can # be None if (op is GpuCAReduceCPY or gvar.owner.op.supports_c_code([GpuFromHost(context_name)(x)])): return greduce else: # Try to make a simpler pattern based on reshaping # The principle is that if two adjacent dimensions have # the same value in the reduce_mask, then we can reshape # to make them a single dimension, do the reduction, and # then reshape to get them back. if node.op.axis is None: reduce_mask = [1] * x.type.ndim else: reduce_mask = [0] * x.type.ndim for a in node.op.axis: assert reduce_mask[a] == 0 reduce_mask[a] = 1 shape_of = node.fgraph.shape_feature.shape_of x_shape = shape_of[x] new_in_shp = [x_shape[0]] new_mask = [reduce_mask[0]] for i in xrange(1, x.type.ndim): if reduce_mask[i] == reduce_mask[i - 1]: new_in_shp[-1] *= x_shape[i] else: new_mask.append(reduce_mask[i]) new_in_shp.append(x_shape[i]) new_axis = [] for idx, m in enumerate(new_mask): if m == 1: new_axis.append(idx) greduce = op( node.op.scalar_op, axis=new_axis, reduce_mask=new_mask, dtype=getattr(node.op, 'dtype', None), acc_dtype=getattr(node.op, 'acc_dtype', None)) reshaped_x = x.reshape(tensor.stack(new_in_shp)) gpu_reshaped_x = GpuFromHost(context_name)(reshaped_x) gvar = greduce(gpu_reshaped_x) # We need to have the make node called, otherwise the mask can # be None reshaped_gpu_inputs = [gpu_reshaped_x] if greduce.supports_c_code(reshaped_gpu_inputs): reduce_reshaped_x = host_from_gpu( greduce(gpu_reshaped_x)) if reduce_reshaped_x.ndim != node.outputs[0].ndim: unreshaped_reduce = reduce_reshaped_x.reshape( tensor.stack(shape_of[node.outputs[0]])) else: unreshaped_reduce = reduce_reshaped_x return [unreshaped_reduce] @register_opt('fast_compile') @op_lifter([tensor.blas.Gemv, tensor.blas_c.CGemv]) def local_gpua_gemv(node, context_name): return GpuGemv(inplace=node.op.inplace) @register_opt('fast_compile') @op_lifter([tensor.blas.Gemm]) def local_gpua_gemm(node, context_name): return GpuGemm(inplace=node.op.inplace) @register_opt('fast_compile') @op_lifter([tensor.basic.Dot]) def local_gpua_hgemm(node, context_name): from theano.sandbox.cuda import nvcc_compiler if nvcc_compiler.nvcc_version < '7.5': _logger.warning("Not performing dot of float16 on the GPU since " "cuda 7.5 is not available. Updating could speed up " "your code.") return A = node.inputs[0] B = node.inputs[1] if (A.ndim == 2 and B.ndim == 2 and A.dtype == 'float16' and B.dtype == 'float16'): fgraph = node.inputs[0].fgraph C = GpuAllocEmpty(dtype='float16', context_name=context_name)( shape_i(A, 0, fgraph), shape_i(B, 1, fgraph)) return gpugemm_no_inplace(C, 1.0, A, B, 0.0) @register_opt() @alpha_merge(GpuGemm, alpha_in=1, beta_in=4) def local_gpuagemm_alpha_merge(node, *inputs): return [gpugemm_no_inplace(*inputs)] @register_opt() @output_merge(GpuGemm, alpha_in=1, beta_in=4, out_in=0) def local_gpuagemm_output_merge(node, *inputs): return [gpugemm_no_inplace(*inputs)] @register_opt('fast_compile') @op_lifter([tensor.blas.Ger, tensor.blas_c.CGer, tensor.blas_scipy.ScipyGer]) def local_gpua_ger(node, context_name): return GpuGer(inplace=node.op.destructive) @register_opt('fast_compile') @op_lifter([tensor.blas.Dot22]) def local_gpua_dot22(node, context_name): return gpu_dot22 @register_opt('fast_compile') @op_lifter([tensor.basic.Eye]) def local_gpua_eye(node, context_name): return GpuEye(dtype=node.op.dtype, context_name=context_name) @register_opt('fast_compile') @op_lifter([tensor.nnet.CrossentropySoftmaxArgmax1HotWithBias], cuda_only=True) def local_gpua_crossentropysoftmaxargmax1hotwithbias(node, context_name): return GpuCrossentropySoftmaxArgmax1HotWithBias() @register_opt('fast_compile') @op_lifter([tensor.nnet.CrossentropySoftmax1HotWithBiasDx], cuda_only=True) def local_gpua_crossentropysoftmax1hotwithbiasdx(node, context_name): return GpuCrossentropySoftmax1HotWithBiasDx() @register_opt('fast_compile') @op_lifter([tensor.nnet.Softmax], cuda_only=True) def local_gpua_softmax(node, context_name): return GpuSoftmax() @register_opt('fast_compile') @op_lifter([tensor.nnet.SoftmaxWithBias], cuda_only=True) def local_gpua_softmaxwithbias(node, context_name): return GpuSoftmaxWithBias() @register_opt('fast_compile') @op_lifter([theano.tensor.opt.Assert]) def local_assert(node, context_name): if (node.inputs[0].owner and isinstance(node.inputs[0].owner.op, HostFromGpu)): return [host_from_gpu(node.op(node.inputs[0].owner.inputs[0], *node.inputs[1:]))] @register_opt('fast_compile') @op_lifter([ConvOp]) def local_gpu_conv(node, context_name): def GpuConvOp_from_ConvOp(op): logical_img_hw = None if op.kshp_logical is not None and op.kshp_logical != op.kshp: return None ret = GpuConv(border_mode=op.out_mode, subsample=(op.dx, op.dy), logical_img_hw=logical_img_hw, logical_kern_hw=op.kshp_logical, logical_kern_align_top=op.kshp_logical_top_aligned, kshp=op.kshp, version=op.version, direction_hint=op.direction_hint, verbose=op.verbose, imshp=op.imshp, nkern=op.nkern, bsize=op.bsize, fft_opt=op.fft_opt) if op.imshp_logical is not None: logical_img_hw = op.imshp_logical[1:3] if logical_img_hw != op.imshp[1:3]: rstride = int(numpy.ceil(op.imshp_logical[1] / float(op.imshp[1]))) cstride = int(numpy.ceil(op.imshp_logical[2] / float(op.imshp[2]))) def make_graph(img, kern): buf = tensor.alloc(numpy.asarray(0, dtype=img.dtype), img.shape[0], *op.imshp_logical) img = tensor.set_subtensor(buf[:, :, ::rstride, ::cstride], img) img = GpuFromHost(context_name)(img) return ret(img, kern) return make_graph return ret def values_eq_approx(a, b): """ This fct is needed to don't have DebugMode raise useless error due to ronding error. This happen as We reduce on the two last dimensions, so this can raise the absolute error if the number of element we reduce on is significant. """ assert a.ndim == 4 atol = None if a.shape[-1] * a.shape[-2] > 100: # For float32 the default atol is 1e-5 atol = 3e-5 return GpuArrayType.values_eq_approx(a, b, atol=atol) img, kern = node.inputs gpu_conv = GpuConvOp_from_ConvOp(node.op) if gpu_conv is None: return out = gpu_conv(GpuFromHost(context_name)(img), GpuFromHost(context_name)(kern)) assert isinstance(out.type, GpuArrayType) # Make sure to keep the broadcastable pattern of the original # convolution even if we might gain or lose some due to different # information at the node level. out = tensor.patternbroadcast(out, node.outputs[0].broadcastable) out.values_eq_approx = values_eq_approx return [out] # Register this here so that it goes after 'local_gpu_conv' register_opt()(conv_groupopt) @register_opt("low_memory") @local_optimizer([GpuCAReduceCuda]) def local_gpu_elemwise_careduce(node): """ Merge some GpuCAReduceCuda and GPUElemwise. """ if (isinstance(node.op, GpuCAReduceCuda) and node.op.pre_scalar_op is None and node.inputs[0].owner and isinstance(node.inputs[0].owner.op, GpuElemwise) and # The Op support all scalar with 1 inputs. We don't # automatically add more case, as some like trigonometic # operation with some reduction pattern will probably result # to slow down. isinstance(node.inputs[0].owner.op.scalar_op, scalar.basic.Sqr)): op = node.op inp = node.inputs[0].owner.inputs[0] return [GpuCAReduceCuda(scalar_op=op.scalar_op, reduce_mask=op.reduce_mask, pre_scalar_op=scalar.basic.sqr)(inp)] def tensor_to_gpu(x, context_name): if isinstance(x.type, tensor.TensorType): y = GpuArrayType(broadcastable=x.type.broadcastable, context_name=context_name, dtype=x.type.dtype)() if x.name: y.name = x.name + '[Gpua]' return y else: return x def gpu_safe_new(x, tag=''): """ Internal function that constructs a new variable from x with the same type, but with a different name (old name + tag). This function is used by gradient, or the R-op to construct new variables for the inputs of the inner graph such that there is no interference between the original graph and the newly constructed graph. """ if hasattr(x, 'name') and x.name is not None: nw_name = x.name + tag else: nw_name = None if isinstance(x, theano.Constant): return x.clone() nw_x = x.type() nw_x.name = nw_name return nw_x def gpu_reconstruct_graph(inputs, outputs, tag=None): """ Different interface to clone, that allows you to pass inputs. Compared to clone, this method always replaces the inputs with new variables of the same type, and returns those (in the same order as the original inputs). """ if tag is None: tag = '' nw_inputs = [gpu_safe_new(x, tag) for x in inputs] givens = {} for nw_x, x in zip(nw_inputs, inputs): givens[x] = nw_x nw_outputs = scan_utils.clone(outputs, replace=givens) return (nw_inputs, nw_outputs) @register_opt('scan', 'fast_compile') @op_lifter([scan_op.Scan]) def local_scan_to_gpua(node, context_name): info = copy.deepcopy(node.op.info) if info.get('gpua', False): return info['gpua'] = True nw_ins = [node.inputs[0]] e = (1 + node.op.n_seqs + node.op.n_mit_mot + node.op.n_mit_sot + node.op.n_sit_sot + node.op.n_shared_outs) nw_ins += [safe_to_gpu(x, context_name) for x in node.inputs[1:e]] b = e e = e + node.op.n_nit_sot nw_ins += node.inputs[b:e] nw_ins += [safe_to_gpu(x, context_name) for x in node.inputs[e:]] scan_ins = [tensor_to_gpu(x, context_name) for x in node.op.inputs] # The inner output corresponding to the looping condition should not be # moved to the gpu if node.op.info['as_while']: scan_outs = [safe_to_gpu(x, context_name) for x in node.op.outputs[:-1]] scan_outs += [node.op.outputs[-1]] else: scan_outs = [safe_to_gpu(x, context_name) for x in node.op.outputs] scan_outs = scan_utils.clone( scan_outs, replace=list(zip(node.op.inputs, (safe_to_cpu(x) for x in scan_ins)))) # We need to construct the hash here, because scan # __init__ does not know about the gpu and can not # handle graphs with inputs being on the gpu tmp_in, tmp_out = gpu_reconstruct_graph(scan_ins, scan_outs) local_fgraph = gof.FunctionGraph(tmp_in, tmp_out, clone=True) _cmodule_key = gof.CLinker().cmodule_key_(local_fgraph, []) info['gpu_hash'] = hash(_cmodule_key) def typebuild(dtype, broadcastable, context_name=context_name): return GpuArrayType(dtype=dtype, broadcastable=broadcastable, context_name=context_name) nw_op = scan_op.Scan(scan_ins, scan_outs, info, typeConstructor=typebuild).make_node(*nw_ins) return nw_op.outputs def _scan_type_infer(node): context_name = infer_context_name(*node.inputs) def typebuild(dtype, broadcastable, context_name=context_name): return GpuArrayType(dtype=dtype, broadcastable=broadcastable, context_name=context_name) return typebuild optdb.register('gpua_scanOp_make_inplace', scan_opt.ScanInplaceOptimizer(typeInfer=_scan_type_infer, gpua_flag=True), 75, 'gpuarray', 'fast_run', 'inplace', 'scan')
py
1a4f0b9a06494cd19d5a1bb41ad1c213c32b42c9
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import (absolute_import, division, print_function, unicode_literals) from .test_fof_groups import *
py
1a4f0bbce5fa3e0d1a8ca820cf13a531c3877567
#! env/bin/python3.6 # -*- coding: utf8 -*- """Инициализация пакета API версии 0."""
py
1a4f0c720375563f7b834611e03f6c3565112dda
import requests from lxml import html url = 'https://info.urfu.ru/ru/departures/kafedry/' # Получение исходного кода страницы response = requests.get(url) # Преобразование тела документа в дерево элементов parsed_body = html.fromstring(response.text) # Получение всех элементов класса 'course-box' course_boxes = parsed_body.find_class('course-box') # Создание пустого списка для последующего добавления кафедр departments = [] for box in course_boxes: # Получение содержания элемента с тегом <a> link = box.find('a') # Получение содержания элемента с тегом <p> text = link.find('p') # Добавление названия кафедры в заготовленный список departments.append(text.text_content())
py
1a4f0cda88a52630967e7e9677976b618e4aa8e6
# Test name = Settings # Script dir = R:\Stingray\Tests\Settings\09-activation\09-activation.py from time import sleep from device import handler, updateTestResult import RC import UART import DO import GRAB import MOD import os from DO import status def runTest(): status("active") TestName = "Settings" ScriptName = "09-activation" ScriptIndex = "9" Grabber = DO.grab_define() platform = DO.load_platform() Modulation = "DVBS" FEC = "3/4" SR = "27500000" Stream = "\\X_0000_00000_MUX_32000_EPG_Software_20130328a.ts" Frequency = 1476 Modulator = "1" COM = "COM7" settings = [ScriptName, ScriptIndex, Grabber, Modulation, FEC, SR, Stream, Frequency, Modulator, COM] DO.save_settings(settings) GRAB.start_capture() MOD.stop(Modulator) # macros searching_from_wizard_general_E501 = ["ok 1 3400", "ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200", "ok 1 15000", "ok 1 10000", "exit 2 3000"] searching_from_wizard_general_english_E501 = ["up 2 3400", "right 1 1000", "down 2 3400", "ok 1 3400", "ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200", "ok 1 15000", "ok 1 10000", "exit 2 3000"] searching_from_wizard_centre_E501 = ["ok 1 3400", "ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200", "down", "ok 1 15000", "ok 1 10000", "exit 2 3000"] searching_from_wizard_centre_english_E501 = ["up 3 3400", "right 1 1000", "down 3 3400", "ok 1 3400", "ok 1 3400", "ok 1 3400", "right", "ok 1 3400", "ok 1 22200", "ok 1 10000", "exit 2 3000"] searching_from_wizard_south_E501 = ["ok 1 3400", "ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200", "down", "down", "ok 1 15000", "ok 1 10000", "exit 2 3000"] searching_from_wizard_general_ALL = ["ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200", "ok 1 15000", "ok 1 10000", "exit 2 3000"] searching_from_wizard_general_english_ALL = ["up 2 3400", "right 1 1000", "down 2 3400", "ok 1 3400", "ok 1 3400", "right", "ok 1 3400", "ok 1 22200", "ok 1 15000", "ok 1 10000", "exit 2 3000"] searching_from_wizard_centre_ALL = ["ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200", "down", "ok 1 5000", "ok 1 10000", "exit 2 3000"] searching_from_wizard_centre_english_ALL = ["up 3 3400", "right 1 1000", "down 3 3400", "ok 1 3400", "ok 1 3400", "right", "ok 1 3400", "ok 1 22200", "down 1 1000", "ok 1 15000", "ok 1 10000", "exit 2 3000"] searching_from_wizard_south_ALL = ["ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200", "down", "down", "ok 1 15000", "ok 1 10000", "exit 2 3000"] load_regions_E501 = ["ok 1 3400", "ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200"] load_regions_english_E501 = ["up 2 2400", "right 1 1000", "down 2 2400", "ok 1 3400", "ok 1 3400", "ok 1 3400", "right", "ok 1 3400", "ok 1 22200"] load_regions_ALL = ["ok 1 3400", "ok 1 3400", "right 1 3400", "ok 1 3400", "ok 1 22200"] load_regions_english_ALL = ["up 2 2400", "right 1 1000", "down 2 2400", "ok 1 3400", "ok 1 3400", "right", "ok 1 3400", "ok 1 22200"] ############################ TestCase 1 ########################################## testcase = 1 status("active") MOD.play_stream(Modulation, FEC, SR, Stream, Frequency, Modulator) UART.default_settings() if platform in ["E501", "E502", "A230"]: RC.push(searching_from_wizard_general_E501) else: RC.push(searching_from_wizard_general_ALL) UART.start_app("settings") RC.push(["right 7 3000"]) GRAB.compare(testcase) ############################ TestCase 2 ########################################## testcase = 2 status("active") GRAB.compare(testcase) ############################ TestCase 3 ########################################## testcase = 3 status("active") GRAB.compare(testcase) ############################ TestCase 4 ########################################## testcase = 4 status("active") GRAB.compare(testcase) ############################ TestCase 5 ########################################## testcase = 5 status("active") GRAB.compare(testcase) ############################ TestCase 6 ########################################## testcase = 6 status("active") RC.push(["down 1 2000", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]) GRAB.compare(testcase) ############################ TestCase 7 ########################################## testcase = 7 status("active") RC.push(["left"]) GRAB.compare(testcase) ############################ TestCase 8 ########################################## testcase = 8 status("active") RC.push(["left 10 3000"]) RC.push(["2 4 2000", "1 16 2000"]) GRAB.compare(testcase) ############################ TestCase 9 ########################################## testcase = 9 status("active") GRAB.compare(testcase) ############################ TestCase 10 ########################################## testcase = 10 status("active") GRAB.compare(testcase) ############################ TestCase 11 ########################################## testcase = 11 status("active") RC.push(["1 4 2000", "2 4 2000", "3 4 2000", "4 4 2000", "5 4 2000"]) GRAB.compare(testcase) ############################ TestCase 12 ########################################## testcase = 12 status("active") RC.push(["1", "5", "1 18 2000"]) GRAB.compare(testcase) ############################ TestCase 13 ########################################## testcase = 13 status("active") GRAB.compare(testcase) ############################ TestCase 14 ########################################## testcase = 14 status("active") GRAB.compare(testcase) ############################ TestCase 15 ########################################## testcase = 15 status("active") GRAB.compare(testcase) ############################ TestCase 16 ########################################## testcase = 16 status("active") RC.push(["4", "3", "2", "1", "1 16 2000"]) GRAB.compare(testcase) ############################ TestCase 17 ########################################## testcase = 17 status("active") GRAB.compare(testcase) ############################ TestCase 18 ########################################## testcase = 18 status("active") RC.push(["exit 4 2000", "menu 1 3000", "ok 1 3000"]) GRAB.compare(testcase) ############################ TestCase 19 ########################################## testcase = 19 status("active") RC.push(["right 1 2000", "down 1 2000", "ok 1 5000"]) GRAB.compare(testcase) ################################################################################### status("active") MOD.stop(Modulator) GRAB.stop_capture()
py
1a4f0d6933702a5c11ed61853a6c3ca2d23e48d3
#!/usr/bin/env python import os import requests import json import datetime import shutil from bs4 import BeautifulSoup here = os.path.dirname(os.path.abspath(__file__)) hospital_id = os.path.basename(here) url ='https://www.huntsvillehospital.org/price-transparency' today = datetime.datetime.today().strftime('%Y-%m-%d') outdir = os.path.join(here, today) if not os.path.exists(outdir): os.mkdir(outdir) prefix = "https://www.huntsvillehospital.org" response = requests.get(url) soup = BeautifulSoup(response.text, 'lxml') # Each folder will have a list of records records = [] for entry in soup.find_all('a', href=True): download_url = prefix + entry['href'] if '.csv' in download_url: filename = os.path.basename(download_url.split('?')[0]) output_file = os.path.join(outdir, filename) os.system('wget -O "%s" "%s"' % (output_file, download_url)) record = { 'hospital_id': hospital_id, 'filename': filename, 'date': today, 'uri': filename, 'name': filename, 'url': download_url } records.append(record) # Keep json record of all files included records_file = os.path.join(outdir, 'records.json') with open(records_file, 'w') as filey: filey.write(json.dumps(records, indent=4)) # This folder is also latest. latest = os.path.join(here, 'latest') if os.path.exists(latest): shutil.rmtree(latest) shutil.copytree(outdir, latest)
py
1a4f0e290ceba2aa05eb2f1a4afe4e84409f2c42
"""Integration tests for :mod:`esmvalcore._recipe_checks`.""" from typing import Any, List from unittest import mock import pytest import esmvalcore._recipe_checks as check ERR_ALL = 'Looked for files matching%s' ERR_D = ('Looked for files in %s, but did not find any file pattern to match ' 'against') ERR_F = ('Looked for files matching %s, but did not find any existing input ' 'directory') ERR_RANGE = 'No input data available for years {} in files {}' VAR = { 'filename': 'a/c.nc', 'frequency': 'mon', 'short_name': 'tas', 'start_year': 2020, 'end_year': 2025, 'alias': 'alias', } FX_VAR = { 'filename': 'a/b.nc', 'frequency': 'fx', 'short_name': 'areacella', } FILES = [ 'a/b/c_20200101-20201231', 'a/b/c_20210101-20211231', 'a/b/c_20220101-20221231', 'a/b/c_20230101-20231231', 'a/b/c_20240101-20241231', 'a/b/c_20250101-20251231', ] DATA_AVAILABILITY_DATA = [ (FILES, dict(VAR), None), (FILES, dict(FX_VAR), None), (FILES[:-1], dict(VAR), ERR_RANGE.format('2025', FILES[:-1])), (FILES[:-2], dict(VAR), ERR_RANGE.format('2024, 2025', FILES[:-2])), ([FILES[1]] + [FILES[3]], dict(VAR), ERR_RANGE.format('2020, 2022, 2024, 2025', [FILES[1]] + [FILES[3]])), ] @pytest.mark.parametrize('input_files,var,error', DATA_AVAILABILITY_DATA) @mock.patch('esmvalcore._recipe_checks.logger', autospec=True) def test_data_availability_data(mock_logger, input_files, var, error): """Test check for data when data is present.""" saved_var = dict(var) if error is None: check.data_availability(input_files, var, None, None) mock_logger.error.assert_not_called() else: with pytest.raises(check.RecipeError) as rec_err: check.data_availability(input_files, var, None, None) assert str(rec_err.value) == error assert var == saved_var DATA_AVAILABILITY_NO_DATA: List[Any] = [ ([], [], None), ([], None, None), (None, [], None), (None, None, None), (['dir1'], [], (ERR_D, ['dir1'])), (['dir1', 'dir2'], [], (ERR_D, ['dir1', 'dir2'])), (['dir1'], None, (ERR_D, ['dir1'])), (['dir1', 'dir2'], None, (ERR_D, ['dir1', 'dir2'])), ([], ['a*.nc'], (ERR_F, ['a*.nc'])), ([], ['a*.nc', 'b*.nc'], (ERR_F, ['a*.nc', 'b*.nc'])), (None, ['a*.nc'], (ERR_F, ['a*.nc'])), (None, ['a*.nc', 'b*.nc'], (ERR_F, ['a*.nc', 'b*.nc'])), (['1'], ['a'], (ERR_ALL, ': 1/a')), (['1'], ['a', 'b'], (ERR_ALL, '\n1/a\n1/b')), (['1', '2'], ['a'], (ERR_ALL, '\n1/a\n2/a')), (['1', '2'], ['a', 'b'], (ERR_ALL, '\n1/a\n1/b\n2/a\n2/b')), ] @pytest.mark.parametrize('dirnames,filenames,error', DATA_AVAILABILITY_NO_DATA) @mock.patch('esmvalcore._recipe_checks.logger', autospec=True) def test_data_availability_no_data(mock_logger, dirnames, filenames, error): """Test check for data when no data is present.""" var = dict(VAR) var_no_filename = { 'frequency': 'mon', 'short_name': 'tas', 'start_year': 2020, 'end_year': 2025, 'alias': 'alias', } error_first = ('No input files found for variable %s', var_no_filename) error_last = ("Set 'log_level' to 'debug' to get more information", ) with pytest.raises(check.RecipeError) as rec_err: check.data_availability([], var, dirnames, filenames) assert str(rec_err.value) == 'Missing data for alias: tas' if error is None: assert mock_logger.error.call_count == 2 errors = [error_first, error_last] else: assert mock_logger.error.call_count == 3 errors = [error_first, error, error_last] calls = [mock.call(*e) for e in errors] assert mock_logger.error.call_args_list == calls assert var == VAR
py
1a4f0e36668d365caadd42ebe3fa4927b44ef61d
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """TensorFlow ops for directed graphs.""" import tensorflow as tf from syntaxnet.util import check def ArcPotentialsFromTokens(source_tokens, target_tokens, weights): r"""Returns arc potentials computed from token activations and weights. For each batch of source and target token activations, computes a scalar potential for each arc as the 3-way product between the activation vectors of the source and target of the arc and the |weights|. Specifically, arc[b,s,t] = \sum_{i,j} source_tokens[b,s,i] * weights[i,j] * target_tokens[b,t,j] Note that the token activations can be extended with bias terms to implement a "biaffine" model (Dozat and Manning, 2017). Args: source_tokens: [B,N,S] tensor of batched activations for the source token in each arc. target_tokens: [B,N,T] tensor of batched activations for the target token in each arc. weights: [S,T] matrix of weights. B,N may be statically-unknown, but S,T must be statically-known. The dtype of all arguments must be compatible. Returns: [B,N,N] tensor A of arc potentials where A_{b,s,t} is the potential of the arc from s to t in batch element b. The dtype of A is the same as that of the arguments. Note that the diagonal entries (i.e., where s==t) represent self-loops and may not be meaningful. """ # All arguments must have statically-known rank. check.Eq(source_tokens.get_shape().ndims, 3, 'source_tokens must be rank 3') check.Eq(target_tokens.get_shape().ndims, 3, 'target_tokens must be rank 3') check.Eq(weights.get_shape().ndims, 2, 'weights must be a matrix') # All activation dimensions must be statically-known. num_source_activations = weights.get_shape().as_list()[0] num_target_activations = weights.get_shape().as_list()[1] check.NotNone(num_source_activations, 'unknown source activation dimension') check.NotNone(num_target_activations, 'unknown target activation dimension') check.Eq(source_tokens.get_shape().as_list()[2], num_source_activations, 'dimension mismatch between weights and source_tokens') check.Eq(target_tokens.get_shape().as_list()[2], num_target_activations, 'dimension mismatch between weights and target_tokens') # All arguments must share the same type. check.Same([weights.dtype.base_dtype, source_tokens.dtype.base_dtype, target_tokens.dtype.base_dtype], 'dtype mismatch') source_tokens_shape = tf.shape(source_tokens) target_tokens_shape = tf.shape(target_tokens) batch_size = source_tokens_shape[0] num_tokens = source_tokens_shape[1] with tf.control_dependencies([ tf.assert_equal(batch_size, target_tokens_shape[0]), tf.assert_equal(num_tokens, target_tokens_shape[1])]): # Flatten out the batch dimension so we can use one big multiplication. targets_bnxt = tf.reshape(target_tokens, [-1, num_target_activations]) # Matrices are row-major, so we arrange for the RHS argument of each matmul # to have its transpose flag set. That way no copying is required to align # the rows of the LHS with the columns of the RHS. weights_targets_bnxs = tf.matmul(targets_bnxt, weights, transpose_b=True) # The next computation is over pairs of tokens within each batch element, so # restore the batch dimension. weights_targets_bxnxs = tf.reshape( weights_targets_bnxs, [batch_size, num_tokens, num_source_activations]) # Note that this multiplication is repeated across the batch dimension, # instead of being one big multiplication as in the first matmul. There # doesn't seem to be a way to arrange this as a single multiplication given # the pairwise nature of this computation. arcs_bxnxn = tf.matmul(source_tokens, weights_targets_bxnxs, transpose_b=True) return arcs_bxnxn def ArcSourcePotentialsFromTokens(tokens, weights): r"""Returns arc source potentials computed from tokens and weights. For each batch of token activations, computes a scalar potential for each arc as the product between the activations of the source token and the |weights|. Specifically, arc[b,s,:] = \sum_{i} weights[i] * tokens[b,s,i] Args: tokens: [B,N,S] tensor of batched activations for source tokens. weights: [S] vector of weights. B,N may be statically-unknown, but S must be statically-known. The dtype of all arguments must be compatible. Returns: [B,N,N] tensor A of arc potentials as defined above. The dtype of A is the same as that of the arguments. Note that the diagonal entries (i.e., where s==t) represent self-loops and may not be meaningful. """ # All arguments must have statically-known rank. check.Eq(tokens.get_shape().ndims, 3, 'tokens must be rank 3') check.Eq(weights.get_shape().ndims, 1, 'weights must be a vector') # All activation dimensions must be statically-known. num_source_activations = weights.get_shape().as_list()[0] check.NotNone(num_source_activations, 'unknown source activation dimension') check.Eq(tokens.get_shape().as_list()[2], num_source_activations, 'dimension mismatch between weights and tokens') # All arguments must share the same type. check.Same([weights.dtype.base_dtype, tokens.dtype.base_dtype], 'dtype mismatch') tokens_shape = tf.shape(tokens) batch_size = tokens_shape[0] num_tokens = tokens_shape[1] # Flatten out the batch dimension so we can use a couple big matmuls. tokens_bnxs = tf.reshape(tokens, [-1, num_source_activations]) weights_sx1 = tf.expand_dims(weights, 1) sources_bnx1 = tf.matmul(tokens_bnxs, weights_sx1) sources_bnxn = tf.tile(sources_bnx1, [1, num_tokens]) # Restore the batch dimension in the output. sources_bxnxn = tf.reshape(sources_bnxn, [batch_size, num_tokens, num_tokens]) return sources_bxnxn def RootPotentialsFromTokens(root, tokens, weights): r"""Returns root selection potentials computed from tokens and weights. For each batch of token activations, computes a scalar potential for each root selection as the 3-way product between the activations of the artificial root token, the token activations, and the |weights|. Specifically, roots[b,r] = \sum_{i,j} root[i] * weights[i,j] * tokens[b,r,j] Args: root: [S] vector of activations for the artificial root token. tokens: [B,N,T] tensor of batched activations for root tokens. weights: [S,T] matrix of weights. B,N may be statically-unknown, but S,T must be statically-known. The dtype of all arguments must be compatible. Returns: [B,N] matrix R of root-selection potentials as defined above. The dtype of R is the same as that of the arguments. """ # All arguments must have statically-known rank. check.Eq(root.get_shape().ndims, 1, 'root must be a vector') check.Eq(tokens.get_shape().ndims, 3, 'tokens must be rank 3') check.Eq(weights.get_shape().ndims, 2, 'weights must be a matrix') # All activation dimensions must be statically-known. num_source_activations = weights.get_shape().as_list()[0] num_target_activations = weights.get_shape().as_list()[1] check.NotNone(num_source_activations, 'unknown source activation dimension') check.NotNone(num_target_activations, 'unknown target activation dimension') check.Eq(root.get_shape().as_list()[0], num_source_activations, 'dimension mismatch between weights and root') check.Eq(tokens.get_shape().as_list()[2], num_target_activations, 'dimension mismatch between weights and tokens') # All arguments must share the same type. check.Same([weights.dtype.base_dtype, root.dtype.base_dtype, tokens.dtype.base_dtype], 'dtype mismatch') root_1xs = tf.expand_dims(root, 0) tokens_shape = tf.shape(tokens) batch_size = tokens_shape[0] num_tokens = tokens_shape[1] # Flatten out the batch dimension so we can use a couple big matmuls. tokens_bnxt = tf.reshape(tokens, [-1, num_target_activations]) weights_targets_bnxs = tf.matmul(tokens_bnxt, weights, transpose_b=True) roots_1xbn = tf.matmul(root_1xs, weights_targets_bnxs, transpose_b=True) # Restore the batch dimension in the output. roots_bxn = tf.reshape(roots_1xbn, [batch_size, num_tokens]) return roots_bxn def CombineArcAndRootPotentials(arcs, roots): """Combines arc and root potentials into a single set of potentials. Args: arcs: [B,N,N] tensor of batched arc potentials. roots: [B,N] matrix of batched root potentials. Returns: [B,N,N] tensor P of combined potentials where P_{b,s,t} = s == t ? roots[b,t] : arcs[b,s,t] """ # All arguments must have statically-known rank. check.Eq(arcs.get_shape().ndims, 3, 'arcs must be rank 3') check.Eq(roots.get_shape().ndims, 2, 'roots must be a matrix') # All arguments must share the same type. dtype = arcs.dtype.base_dtype check.Same([dtype, roots.dtype.base_dtype], 'dtype mismatch') roots_shape = tf.shape(roots) arcs_shape = tf.shape(arcs) batch_size = roots_shape[0] num_tokens = roots_shape[1] with tf.control_dependencies([ tf.assert_equal(batch_size, arcs_shape[0]), tf.assert_equal(num_tokens, arcs_shape[1]), tf.assert_equal(num_tokens, arcs_shape[2])]): return tf.matrix_set_diag(arcs, roots) def LabelPotentialsFromTokens(tokens, weights): r"""Computes label potentials from tokens and weights. For each batch of token activations, computes a scalar potential for each label as the product between the activations of the source token and the |weights|. Specifically, labels[b,t,l] = \sum_{i} weights[l,i] * tokens[b,t,i] Args: tokens: [B,N,T] tensor of batched token activations. weights: [L,T] matrix of weights. B,N may be dynamic, but L,T must be static. The dtype of all arguments must be compatible. Returns: [B,N,L] tensor of label potentials as defined above, with the same dtype as the arguments. """ check.Eq(tokens.get_shape().ndims, 3, 'tokens must be rank 3') check.Eq(weights.get_shape().ndims, 2, 'weights must be a matrix') num_labels = weights.get_shape().as_list()[0] num_activations = weights.get_shape().as_list()[1] check.NotNone(num_labels, 'unknown number of labels') check.NotNone(num_activations, 'unknown activation dimension') check.Eq(tokens.get_shape().as_list()[2], num_activations, 'activation mismatch between weights and tokens') tokens_shape = tf.shape(tokens) batch_size = tokens_shape[0] num_tokens = tokens_shape[1] check.Same([tokens.dtype.base_dtype, weights.dtype.base_dtype], 'dtype mismatch') # Flatten out the batch dimension so we can use one big matmul(). tokens_bnxt = tf.reshape(tokens, [-1, num_activations]) labels_bnxl = tf.matmul(tokens_bnxt, weights, transpose_b=True) # Restore the batch dimension in the output. labels_bxnxl = tf.reshape(labels_bnxl, [batch_size, num_tokens, num_labels]) return labels_bxnxl def LabelPotentialsFromTokenPairs(sources, targets, weights): r"""Computes label potentials from source and target tokens and weights. For each aligned pair of source and target token activations, computes a scalar potential for each label on the arc from the source to the target. Specifically, labels[b,t,l] = \sum_{i,j} sources[b,t,i] * weights[l,i,j] * targets[b,t,j] Args: sources: [B,N,S] tensor of batched source token activations. targets: [B,N,T] tensor of batched target token activations. weights: [L,S,T] tensor of weights. B,N may be dynamic, but L,S,T must be static. The dtype of all arguments must be compatible. Returns: [B,N,L] tensor of label potentials as defined above, with the same dtype as the arguments. """ check.Eq(sources.get_shape().ndims, 3, 'sources must be rank 3') check.Eq(targets.get_shape().ndims, 3, 'targets must be rank 3') check.Eq(weights.get_shape().ndims, 3, 'weights must be rank 3') num_labels = weights.get_shape().as_list()[0] num_source_activations = weights.get_shape().as_list()[1] num_target_activations = weights.get_shape().as_list()[2] check.NotNone(num_labels, 'unknown number of labels') check.NotNone(num_source_activations, 'unknown source activation dimension') check.NotNone(num_target_activations, 'unknown target activation dimension') check.Eq(sources.get_shape().as_list()[2], num_source_activations, 'activation mismatch between weights and source tokens') check.Eq(targets.get_shape().as_list()[2], num_target_activations, 'activation mismatch between weights and target tokens') check.Same([sources.dtype.base_dtype, targets.dtype.base_dtype, weights.dtype.base_dtype], 'dtype mismatch') sources_shape = tf.shape(sources) targets_shape = tf.shape(targets) batch_size = sources_shape[0] num_tokens = sources_shape[1] with tf.control_dependencies([tf.assert_equal(batch_size, targets_shape[0]), tf.assert_equal(num_tokens, targets_shape[1])]): # For each token, we must compute a vector-3tensor-vector product. There is # no op for this, but we can use reshape() and matmul() to compute it. # Reshape |weights| and |targets| so we can use a single matmul(). weights_lsxt = tf.reshape(weights, [num_labels * num_source_activations, num_target_activations]) targets_bnxt = tf.reshape(targets, [-1, num_target_activations]) weights_targets_bnxls = tf.matmul(targets_bnxt, weights_lsxt, transpose_b=True) # Restore all dimensions. weights_targets_bxnxlxs = tf.reshape( weights_targets_bnxls, [batch_size, num_tokens, num_labels, num_source_activations]) # Incorporate the source activations. In this case, we perform a batched # matmul() between the trailing [L,S] matrices of the current result and the # trailing [S] vectors of the tokens. sources_bxnx1xs = tf.expand_dims(sources, 2) labels_bxnxlx1 = tf.matmul(weights_targets_bxnxlxs, sources_bxnx1xs, transpose_b=True) labels_bxnxl = tf.squeeze(labels_bxnxlx1, [3]) return labels_bxnxl
py
1a4f0e8dbaddf18d2f8c8d213a6adccb2ba54480
"""main module """ import argparse import importlib.util import os import shutil import tempfile import threading import uuid import docker import yaml from . import preprocess def __import_configurator(path): conf_path = os.path.join(path, "configurator.py") spec = importlib.util.spec_from_file_location("configurator", conf_path) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module def __start_container(client, base_path, properties, build, nocache, network, alias=None, **container_opts): image_path = os.path.join(base_path, properties.pop("image")) cache = client.images.list(filters={'label':f"seed={image_path}"}) if (not build) and cache: print(" Using Cached Image") image = cache[0] else: print(" Building Image... ", end='', flush=True) image = client.images.build( path=image_path, nocache=nocache, rm=True, pull=True, labels={'seed':image_path} ) print("Done") configurator = __import_configurator(image_path) ret = configurator.configure(properties) if isinstance(ret, tuple): configurator_opts, teardown = ret else: configurator_opts, teardown = (ret, lambda: None) del configurator print(" Starting Container... ", end='', flush=True) container = client.containers.create( image=image.id, detach=True, init=True, **container_opts, **configurator_opts ) print("Done") network.connect( container, aliases=[alias] if alias is not None else None ) container.start() return (container, teardown) def __log_container(name, container): logs = container.logs( stdout=True, stderr=True, stream=True, follow=True ) for log in logs: print(f"{name}:", log.decode(), end='', flush=True) def __parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--wdir', default="", help="path to working directory") parser.add_argument('--config', default='config.yml', help="path to config file relative to working directory") parser.add_argument('--adapterdir', default='adapters', help="adapter search path relative to working directory") parser.add_argument('--applicationdir', default='applications', help="application search path relative to working directory") parser.add_argument('--bundledir', default='bundles', help="bundle search path relative to working directory") parser.add_argument('--controllerdir', default='controllers', help="controller search path relative to working directory") parser.add_argument('--build', action='store_true', help="rebuild adapter or controller images") parser.add_argument('--nocache', action='store_true', help="don't use build cache on adapter or controller rebuild") parser.add_argument('--verbose', '-v', action='count', default=0, help="print adapter (1st level) and controller (2nd level) log") args = parser.parse_args() args.wdir = os.path.join(os.getcwd(), args.wdir) return args def main(): """main function """ args = __parse_args() adapter, controllers, network, bundledir = None, None, None, None try: with open(os.path.join(args.wdir, args.config)) as config_f: config = yaml.load(config_f)["config"] run_id = str(uuid.uuid4()) print(f"Starting With Run Id \"{run_id}\"") #Set up directories bundledir = tempfile.TemporaryDirectory() resultdir = os.path.join("results", run_id) os.makedirs(resultdir) bundlepath = os.path.join( args.wdir, args.bundledir, config["bundle"]["name"], "bundle" ) preprocess.preprocess_bundle( bundlepath + ".xml", os.path.join(bundledir.name, "bundle.xml"), config["bundle"]['parameters'] ) shutil.copy( bundlepath + ".controller-bindings.yml", os.path.join(bundledir.name, "bundle.controller-bindings.yml") ) #Set up network and containers client = docker.from_env() network = client.networks.create(run_id) controllers = {} for name, properties in config["controllers"].items(): print(f"Starting Controller \"{name}\"") applications = { application: os.path.join( args.wdir, args.applicationdir, application) for application in properties['applications']} controllers[name] = __start_container( client, os.path.join(args.wdir, args.controllerdir), dict(properties, **{ "applications": applications, "bundledir": bundledir.name, "resultdir": os.path.join(os.getcwd(), resultdir) }), args.build, args.nocache, network, alias=name ) print("Done") print(f"Starting Adapter \"{config['adapter']['image']}\"") adapter = __start_container( client, os.path.join(args.wdir, args.adapterdir), dict(config["adapter"], **{ "bundledir": bundledir.name, "resultdir": os.path.join(os.getcwd(), resultdir), "controllers": config["controllers"] }), args.build, args.nocache, network, privileged=True ) print("Done") try: if args.verbose >= 2: for name, (container, _) in controllers.items(): arg = (name, container) threading.Thread(target=__log_container, args=arg).start() if args.verbose >= 1: __log_container("adapter", adapter[0]) import time time.sleep(10) adapter[0].wait() except KeyboardInterrupt: pass finally: print("Tearing Down") if adapter is not None: adapter[0].stop() adapter[0].remove() adapter[1]() if controllers is not None: for controller, teardown in controllers.values(): controller.stop() controller.remove() teardown() if network is not None: network.remove() if bundledir is not None: bundledir.cleanup() if __name__ == "__main__": main()
py
1a4f0eb6a7b1a9c8e3f786627373a4fcd0ecf438
from flask import render_template, redirect, url_for, flash, request from werkzeug.urls import url_parse from flask_login import login_user, logout_user, current_user from flask_babel import _ from app import db from app.auth import bp from app.auth.forms import LoginForm, RegistrationForm, ResetPasswordRequestForm, ResetPasswordForm from app.models import User from app.auth.email import send_password_reset_email @bp.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('main.index')) form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user is None or not user.check_password(form.password.data): flash(_('Invalid username or password')) return redirect(url_for('auth.login')) login_user(user, remember=form.remember_me.data) next_page = request.args.get('next') if not next_page or url_parse(next_page).netloc != '': next_page = url_for('main.index') return redirect(next_page) return render_template('auth/login.html', title=_('Sign In'), form=form) @bp.route('/logout') def logout(): logout_user() return redirect(url_for('main.index')) @bp.route('/register', methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('main.index')) form = RegistrationForm() if form.validate_on_submit(): user = User(username=form.username.data, email=form.email.data) user.set_password(form.password.data) db.session.add(user) db.session.commit() flash(_('Congratulations, you are now a registered user!')) return redirect(url_for('auth.login')) return render_template('auth/register.html', title=_('Register'), form=form) @bp.route('/reset_password_request', methods=['GET', 'POST']) def reset_password_request(): if current_user.is_authenticated: return redirect(url_for('main.index')) form = ResetPasswordRequestForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user: send_password_reset_email(user) flash( _('Check your email for the instructions to reset your password')) return redirect(url_for('auth.login')) return render_template('auth/reset_password_request.html', title=_('Reset Password'), form=form) @bp.route('/reset_password/<token>', methods=['GET', 'POST']) def reset_password(token): if current_user.is_authenticated: return redirect(url_for('main.index')) user = User.verify_reset_password_token(token) if not user: return redirect(url_for('main.index')) form = ResetPasswordForm() if form.validate_on_submit(): user.set_password(form.password.data) db.session.commit() flash(_('Your password has been reset.')) return redirect(url_for('auth.login')) return render_template('auth/reset_password.html', form=form)
py
1a4f0f80df2ccb25525473837c84ecd6c90841f7
# Authors: Alexandre Gramfort <[email protected]> # Matti Hamalainen <[email protected]> # Denis Engemann <[email protected]> # Teon Brooks <[email protected]> # # License: BSD (3-clause) from copy import deepcopy from itertools import count from math import sqrt import numpy as np from scipy import linalg from .tree import dir_tree_find from .tag import find_tag from .constants import FIFF from .pick import pick_types from .write import (write_int, write_float, write_string, write_name_list, write_float_matrix, end_block, start_block) from ..utils import logger, verbose, warn from ..externals.six import string_types class Projection(dict): """Projection vector. A basic class to proj a meaningful print for projection vectors. """ def __repr__(self): # noqa: D105 s = "%s" % self['desc'] s += ", active : %s" % self['active'] s += ", n_channels : %s" % self['data']['ncol'] return "<Projection | %s>" % s class ProjMixin(object): """Mixin class for Raw, Evoked, Epochs. Notes ----- This mixin adds a proj attribute as a property to data containers. It is True if at least one proj is present and all of them are active. The projs might not be applied yet if data are not preloaded. In this case it's the _projector attribute that does the job. If a private _data attribute is present then the projs applied to it are the ones marked as active. A proj parameter passed in constructor of raw or epochs calls apply_proj and hence after the .proj attribute is True. As soon as you've applied the projs it will stay active in the remaining pipeline. The suggested pipeline is proj=True in epochs (it's cheaper than for raw). When you use delayed SSP in Epochs, projs are applied when you call get_data() method. They are not applied to the evoked._data unless you call apply_proj(). The reason is that you want to reject with projs although it's not stored in proj mode. """ @property def proj(self): """Whether or not projections are active.""" return (len(self.info['projs']) > 0 and all(p['active'] for p in self.info['projs'])) @verbose def add_proj(self, projs, remove_existing=False, verbose=None): """Add SSP projection vectors. Parameters ---------- projs : list List with projection vectors. remove_existing : bool Remove the projection vectors currently in the file. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- self : instance of Raw | Epochs | Evoked The data container. """ if isinstance(projs, Projection): projs = [projs] if (not isinstance(projs, list) and not all(isinstance(p, Projection) for p in projs)): raise ValueError('Only projs can be added. You supplied ' 'something else.') # mark proj as inactive, as they have not been applied projs = deactivate_proj(projs, copy=True, verbose=self.verbose) if remove_existing: # we cannot remove the proj if they are active if any(p['active'] for p in self.info['projs']): raise ValueError('Cannot remove projectors that have ' 'already been applied') self.info['projs'] = projs else: self.info['projs'].extend(projs) # We don't want to add projectors that are activated again. self.info['projs'] = _uniquify_projs(self.info['projs'], check_active=False, sort=False) return self def apply_proj(self): """Apply the signal space projection (SSP) operators to the data. Notes ----- Once the projectors have been applied, they can no longer be removed. It is usually not recommended to apply the projectors at too early stages, as they are applied automatically later on (e.g. when computing inverse solutions). Hint: using the copy method individual projection vectors can be tested without affecting the original data. With evoked data, consider the following example:: projs_a = mne.read_proj('proj_a.fif') projs_b = mne.read_proj('proj_b.fif') # add the first, copy, apply and see ... evoked.add_proj(a).copy().apply_proj().plot() # add the second, copy, apply and see ... evoked.add_proj(b).copy().apply_proj().plot() # drop the first and see again evoked.copy().del_proj(0).apply_proj().plot() evoked.apply_proj() # finally keep both Returns ------- self : instance of Raw | Epochs | Evoked The instance. """ from ..epochs import BaseEpochs from ..evoked import Evoked from .base import BaseRaw if self.info['projs'] is None or len(self.info['projs']) == 0: logger.info('No projector specified for this dataset. ' 'Please consider the method self.add_proj.') return self # Exit delayed mode if you apply proj if isinstance(self, BaseEpochs) and self._do_delayed_proj: logger.info('Leaving delayed SSP mode.') self._do_delayed_proj = False if all(p['active'] for p in self.info['projs']): logger.info('Projections have already been applied. ' 'Setting proj attribute to True.') return self _projector, info = setup_proj(deepcopy(self.info), activate=True, verbose=self.verbose) # let's not raise a RuntimeError here, otherwise interactive plotting if _projector is None: # won't be fun. logger.info('The projections don\'t apply to these data.' ' Doing nothing.') return self self._projector, self.info = _projector, info if isinstance(self, (BaseRaw, Evoked)): if self.preload: self._data = np.dot(self._projector, self._data) else: # BaseEpochs if self.preload: for ii, e in enumerate(self._data): self._data[ii] = self._project_epoch(e) else: self.load_data() # will automatically apply logger.info('SSP projectors applied...') return self def del_proj(self, idx='all'): """Remove SSP projection vector. Note: The projection vector can only be removed if it is inactive (has not been applied to the data). Parameters ---------- idx : int | list of int | str Index of the projector to remove. Can also be "all" (default) to remove all projectors. Returns ------- self : instance of Raw | Epochs | Evoked """ if isinstance(idx, string_types) and idx == 'all': idx = list(range(len(self.info['projs']))) idx = np.atleast_1d(np.array(idx, int)).ravel() if any(self.info['projs'][ii]['active'] for ii in idx): raise ValueError('Cannot remove projectors that have already ' 'been applied') self.info['projs'] = [p for pi, p in enumerate(self.info['projs']) if pi not in idx] return self def plot_projs_topomap(self, ch_type=None, layout=None, axes=None): """Plot SSP vector. Parameters ---------- ch_type : 'mag' | 'grad' | 'planar1' | 'planar2' | 'eeg' | None | List The channel type to plot. For 'grad', the gradiometers are collec- ted in pairs and the RMS for each pair is plotted. If None (default), it will return all channel types present. If a list of ch_types is provided, it will return multiple figures. layout : None | Layout | List of Layouts Layout instance specifying sensor positions (does not need to be specified for Neuromag data). If possible, the correct layout file is inferred from the data; if no appropriate layout file was found, the layout is automatically generated from the sensor locations. Or a list of Layout if projections are from different sensor types. axes : instance of Axes | list | None The axes to plot to. If list, the list must be a list of Axes of the same length as the number of projectors. If instance of Axes, there must be only one projector. Defaults to None. Returns ------- fig : instance of matplotlib figure Figure distributing one image per channel across sensor topography. """ if self.info['projs'] is not None or len(self.info['projs']) != 0: from ..viz.topomap import plot_projs_topomap from ..channels.layout import find_layout if layout is None: layout = [] if ch_type is None: ch_type = [ch for ch in ['meg', 'eeg'] if ch in self] elif isinstance(ch_type, string_types): ch_type = [ch_type] for ch in ch_type: if ch in self: layout.append(find_layout(self.info, ch, exclude=[])) else: warn('Channel type %s is not found in info.' % ch) fig = plot_projs_topomap(self.info['projs'], layout, axes=axes) else: raise ValueError("Info is missing projs. Nothing to plot.") return fig def _proj_equal(a, b, check_active=True): """Test if two projectors are equal.""" equal = ((a['active'] == b['active'] or not check_active) and a['kind'] == b['kind'] and a['desc'] == b['desc'] and a['data']['col_names'] == b['data']['col_names'] and a['data']['row_names'] == b['data']['row_names'] and a['data']['ncol'] == b['data']['ncol'] and a['data']['nrow'] == b['data']['nrow'] and np.all(a['data']['data'] == b['data']['data'])) return equal @verbose def _read_proj(fid, node, verbose=None): """Read spatial projections from a FIF file. Parameters ---------- fid : file The file descriptor of the open file. node : tree node The node of the tree where to look. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- projs: dict The list of projections. """ projs = list() # Locate the projection data nodes = dir_tree_find(node, FIFF.FIFFB_PROJ) if len(nodes) == 0: return projs tag = find_tag(fid, nodes[0], FIFF.FIFF_NCHAN) if tag is not None: global_nchan = int(tag.data) items = dir_tree_find(nodes[0], FIFF.FIFFB_PROJ_ITEM) for item in items: # Find all desired tags in one item tag = find_tag(fid, item, FIFF.FIFF_NCHAN) if tag is not None: nchan = int(tag.data) else: nchan = global_nchan tag = find_tag(fid, item, FIFF.FIFF_DESCRIPTION) if tag is not None: desc = tag.data else: tag = find_tag(fid, item, FIFF.FIFF_NAME) if tag is not None: desc = tag.data else: raise ValueError('Projection item description missing') # XXX : is this useful ? # tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST) # if tag is not None: # namelist = tag.data # else: # raise ValueError('Projection item channel list missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_KIND) if tag is not None: kind = int(tag.data) else: raise ValueError('Projection item kind missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_NVEC) if tag is not None: nvec = int(tag.data) else: raise ValueError('Number of projection vectors not specified') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST) if tag is not None: names = tag.data.split(':') else: raise ValueError('Projection item channel list missing') tag = find_tag(fid, item, FIFF.FIFF_PROJ_ITEM_VECTORS) if tag is not None: data = tag.data else: raise ValueError('Projection item data missing') tag = find_tag(fid, item, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE) if tag is not None: active = bool(tag.data) else: active = False tag = find_tag(fid, item, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR) if tag is not None: explained_var = tag.data else: explained_var = None # handle the case when data is transposed for some reason if data.shape[0] == len(names) and data.shape[1] == nvec: data = data.T if data.shape[1] != len(names): raise ValueError('Number of channel names does not match the ' 'size of data matrix') # Use exactly the same fields in data as in a named matrix one = Projection(kind=kind, active=active, desc=desc, data=dict(nrow=nvec, ncol=nchan, row_names=None, col_names=names, data=data), explained_var=explained_var) projs.append(one) if len(projs) > 0: logger.info(' Read a total of %d projection items:' % len(projs)) for k in range(len(projs)): if projs[k]['active']: misc = 'active' else: misc = ' idle' logger.info(' %s (%d x %d) %s' % (projs[k]['desc'], projs[k]['data']['nrow'], projs[k]['data']['ncol'], misc)) return projs ############################################################################### # Write def _write_proj(fid, projs): """Write a projection operator to a file. Parameters ---------- fid : file The file descriptor of the open file. projs : dict The projection operator. """ if len(projs) == 0: return start_block(fid, FIFF.FIFFB_PROJ) for proj in projs: start_block(fid, FIFF.FIFFB_PROJ_ITEM) write_int(fid, FIFF.FIFF_NCHAN, proj['data']['ncol']) write_name_list(fid, FIFF.FIFF_PROJ_ITEM_CH_NAME_LIST, proj['data']['col_names']) write_string(fid, FIFF.FIFF_NAME, proj['desc']) write_int(fid, FIFF.FIFF_PROJ_ITEM_KIND, proj['kind']) if proj['kind'] == FIFF.FIFFV_PROJ_ITEM_FIELD: write_float(fid, FIFF.FIFF_PROJ_ITEM_TIME, 0.0) write_int(fid, FIFF.FIFF_PROJ_ITEM_NVEC, proj['data']['nrow']) write_int(fid, FIFF.FIFF_MNE_PROJ_ITEM_ACTIVE, proj['active']) write_float_matrix(fid, FIFF.FIFF_PROJ_ITEM_VECTORS, proj['data']['data']) if proj['explained_var'] is not None: write_float(fid, FIFF.FIFF_MNE_ICA_PCA_EXPLAINED_VAR, proj['explained_var']) end_block(fid, FIFF.FIFFB_PROJ_ITEM) end_block(fid, FIFF.FIFFB_PROJ) ############################################################################### # Utils def _check_projs(projs, copy=True): """Check that projs is a list of Projection.""" if not isinstance(projs, (list, tuple)): raise TypeError('projs must be a list or tuple, got %s' % (type(projs),)) for pi, p in enumerate(projs): if not isinstance(p, Projection): raise TypeError('All entries in projs list must be Projection ' 'instances, but projs[%d] is type %s' % (pi, type(p))) return deepcopy(projs) if copy else projs def make_projector(projs, ch_names, bads=(), include_active=True): """Create an SSP operator from SSP projection vectors. Parameters ---------- projs : list List of projection vectors. ch_names : list of str List of channels to include in the projection matrix. bads : list of str Some bad channels to exclude. If bad channels were marked in the raw file when projs were calculated using mne-python, they should not need to be included here as they will have been automatically omitted from the projectors. include_active : bool Also include projectors that are already active. Returns ------- proj : array of shape [n_channels, n_channels] The projection operator to apply to the data. nproj : int How many items in the projector. U : array The orthogonal basis of the projection vectors (optional). """ return _make_projector(projs, ch_names, bads, include_active) def _make_projector(projs, ch_names, bads=(), include_active=True, inplace=False): """Subselect projs based on ch_names and bads. Use inplace=True mode to modify ``projs`` inplace so that no warning will be raised next time projectors are constructed with the given inputs. If inplace=True, no meaningful data are returned. """ nchan = len(ch_names) if nchan == 0: raise ValueError('No channel names specified') default_return = (np.eye(nchan, nchan), 0, []) # Check trivial cases first if projs is None: return default_return nvec = 0 nproj = 0 for p in projs: if not p['active'] or include_active: nproj += 1 nvec += p['data']['nrow'] if nproj == 0: return default_return # Pick the appropriate entries vecs = np.zeros((nchan, nvec)) nvec = 0 nonzero = 0 for k, p in enumerate(projs): if not p['active'] or include_active: if (len(p['data']['col_names']) != len(np.unique(p['data']['col_names']))): raise ValueError('Channel name list in projection item %d' ' contains duplicate items' % k) # Get the two selection vectors to pick correct elements from # the projection vectors omitting bad channels sel = [] vecsel = [] for c, name in enumerate(ch_names): if name in p['data']['col_names'] and name not in bads: sel.append(c) vecsel.append(p['data']['col_names'].index(name)) # If there is something to pick, pickit nrow = p['data']['nrow'] this_vecs = vecs[:, nvec:nvec + nrow] if len(sel) > 0: this_vecs[sel] = p['data']['data'][:, vecsel].T # Rescale for better detection of small singular values for v in range(p['data']['nrow']): psize = sqrt(np.sum(this_vecs[:, v] * this_vecs[:, v])) if psize > 0: orig_n = p['data']['data'].any(axis=0).sum() # Average ref still works if channels are removed if len(vecsel) < 0.9 * orig_n and not inplace and \ (p['kind'] != FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF or len(vecsel) == 1): warn('Projection vector "%s" has magnitude %0.2f ' '(should be unity), applying projector with ' '%s/%s of the original channels available may ' 'be dangerous, consider recomputing and adding ' 'projection vectors for channels that are ' 'eventually used. If this is intentional, ' 'consider using info.normalize_proj()' % (p['desc'], psize, len(vecsel), orig_n)) this_vecs[:, v] /= psize nonzero += 1 # If doing "inplace" mode, "fix" the projectors to only operate # on this subset of channels. if inplace: p['data']['data'] = this_vecs[sel].T p['data']['col_names'] = [p['data']['col_names'][ii] for ii in vecsel] nvec += p['data']['nrow'] # Check whether all of the vectors are exactly zero if nonzero == 0 or inplace: return default_return # Reorthogonalize the vectors U, S, V = linalg.svd(vecs[:, :nvec], full_matrices=False) # Throw away the linearly dependent guys nproj = np.sum((S / S[0]) > 1e-2) U = U[:, :nproj] # Here is the celebrated result proj = np.eye(nchan, nchan) - np.dot(U, U.T) return proj, nproj, U def _normalize_proj(info): """Normalize proj after subselection to avoid warnings. This is really only useful for tests, and might not be needed eventually if we change or improve our handling of projectors with picks. """ # Here we do info.get b/c info can actually be a noise cov _make_projector(info['projs'], info.get('ch_names', info.get('names')), info['bads'], include_active=True, inplace=True) def make_projector_info(info, include_active=True): """Make an SSP operator using the measurement info. Calls make_projector on good channels. Parameters ---------- info : dict Measurement info. include_active : bool Also include projectors that are already active. Returns ------- proj : array of shape [n_channels, n_channels] The projection operator to apply to the data. nproj : int How many items in the projector. """ proj, nproj, _ = make_projector(info['projs'], info['ch_names'], info['bads'], include_active) return proj, nproj @verbose def activate_proj(projs, copy=True, verbose=None): """Set all projections to active. Useful before passing them to make_projector. Parameters ---------- projs : list The projectors. copy : bool Modify projs in place or operate on a copy. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- projs : list The projectors. """ if copy: projs = deepcopy(projs) # Activate the projection items for proj in projs: proj['active'] = True logger.info('%d projection items activated' % len(projs)) return projs @verbose def deactivate_proj(projs, copy=True, verbose=None): """Set all projections to inactive. Useful before saving raw data without projectors applied. Parameters ---------- projs : list The projectors. copy : bool Modify projs in place or operate on a copy. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- projs : list The projectors. """ if copy: projs = deepcopy(projs) # Deactivate the projection items for proj in projs: proj['active'] = False logger.info('%d projection items deactivated' % len(projs)) return projs @verbose def make_eeg_average_ref_proj(info, activate=True, verbose=None): """Create an EEG average reference SSP projection vector. Parameters ---------- info : dict Measurement info. activate : bool If True projections are activated. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- eeg_proj: instance of Projection The SSP/PCA projector. """ if info.get('custom_ref_applied', False): raise RuntimeError('A custom reference has been applied to the ' 'data earlier. Please use the ' 'mne.io.set_eeg_reference function to move from ' 'one EEG reference to another.') logger.info("Adding average EEG reference projection.") eeg_sel = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') ch_names = info['ch_names'] eeg_names = [ch_names[k] for k in eeg_sel] n_eeg = len(eeg_sel) if n_eeg == 0: raise ValueError('Cannot create EEG average reference projector ' '(no EEG data found)') vec = np.ones((1, n_eeg)) vec /= n_eeg explained_var = None eeg_proj_data = dict(col_names=eeg_names, row_names=None, data=vec, nrow=1, ncol=n_eeg) eeg_proj = Projection(active=activate, data=eeg_proj_data, desc='Average EEG reference', kind=FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF, explained_var=explained_var) return eeg_proj def _has_eeg_average_ref_proj(projs, check_active=False): """Determine if a list of projectors has an average EEG ref. Optionally, set check_active=True to additionally check if the CAR has already been applied. """ for proj in projs: if (proj['desc'] == 'Average EEG reference' or proj['kind'] == FIFF.FIFFV_MNE_PROJ_ITEM_EEG_AVREF): if not check_active or proj['active']: return True return False def _needs_eeg_average_ref_proj(info): """Determine if the EEG needs an averge EEG reference. This returns True if no custom reference has been applied and no average reference projection is present in the list of projections. """ eeg_sel = pick_types(info, meg=False, eeg=True, ref_meg=False, exclude='bads') return (len(eeg_sel) > 0 and not info['custom_ref_applied'] and not _has_eeg_average_ref_proj(info['projs'])) @verbose def setup_proj(info, add_eeg_ref=True, activate=True, verbose=None): """Set up projection for Raw and Epochs. Parameters ---------- info : dict The measurement info. add_eeg_ref : bool If True, an EEG average reference will be added (unless one already exists). activate : bool If True projections are activated. verbose : bool, str, int, or None If not None, override default verbose level (see :func:`mne.verbose` and :ref:`Logging documentation <tut_logging>` for more). Returns ------- projector : array of shape [n_channels, n_channels] The projection operator to apply to the data. info : dict The modified measurement info (Warning: info is modified inplace). """ # Add EEG ref reference proj if necessary if add_eeg_ref and _needs_eeg_average_ref_proj(info): eeg_proj = make_eeg_average_ref_proj(info, activate=activate) info['projs'].append(eeg_proj) # Create the projector projector, nproj = make_projector_info(info) if nproj == 0: if verbose: logger.info('The projection vectors do not apply to these ' 'channels') projector = None else: logger.info('Created an SSP operator (subspace dimension = %d)' % nproj) # The projection items have been activated if activate: info['projs'] = activate_proj(info['projs'], copy=False) return projector, info def _uniquify_projs(projs, check_active=True, sort=True): """Make unique projs.""" final_projs = [] for proj in projs: # flatten if not any(_proj_equal(p, proj, check_active) for p in final_projs): final_projs.append(proj) my_count = count(len(final_projs)) def sorter(x): """Sort in a nice way.""" digits = [s for s in x['desc'] if s.isdigit()] if digits: sort_idx = int(digits[-1]) else: sort_idx = next(my_count) return (sort_idx, x['desc']) return sorted(final_projs, key=sorter) if sort else final_projs
py
1a4f10237bde905b19abeb24233f314178eb40ad
from django.shortcuts import render, get_object_or_404, render_to_response from django.contrib.auth.decorators import login_required from django.http import HttpResponse from .models import Report, UploadedFile, Folder from .forms import ReportForm, FolderForm from django.template import RequestContext from web.models import UserGroup from django.contrib.auth.models import User from Crypto import Random from datetime import datetime # Create your views here. random_generator = Random.new().read def index(request): return render(request, 'createReport.html') def thanks(request): return render(request, 'form.html') def folders(request): reports = Report.objects.all() folders = Folder.objects.all() return render(request, 'reports/folders.html', {'folders': folders}) def viewReportsInFolders(request): folders = Folder.objects.all() reports = Report.objects.all() return render(request, 'reports/savedReports.html', {'folders': folders, 'reports': reports}) def create_folder(request): reports = Report.objects.all() username_id = request.user if request.method == 'POST': form = FolderForm(request.POST, request.FILES) selected = request.POST.getlist('selected_report[]') if form.is_valid(): folder_object = Folder.objects.create( name=form.cleaned_data['title'], owner=username_id ) for report_selected in selected: re = Report.objects.get(title=report_selected) folder_object.members.add(re) return HttpResponse("Folder has been updated") else: form = FolderForm() variables = RequestContext(request, { 'form': form, 'reports': reports }) return render_to_response( 'reports/folderz.html', variables, ) def edit_folder(request, id=None): try: folder=Folder.objects.get(id=id) form_class=FolderForm(user=request.user, instance=folder) if request.method == 'POST': form = FolderForm(request.POST, request.FILES, instance=folder) selected = request.POST.getlist('selected_report[]') if form.is_valid(): folder_object = Folder.objects.create( name=form.cleaned_data['title'], owner=username_id ) for report_selected in selected: re = Report.objects.get(title=report_selected) folder_object.members.add(re) return render(request, '/reports/doneEditingFolder.html', {'form_class': form_class}) except: return HttpResponse("You can't update this folder") def edit_with_delete(request, id=None): try: folder = Folder.objects.get(id=id) print(folder.owner) if folder.owner != request.user: text = "You do not have permission to change this folder" return HttpResponse(text) else: Folder.objects.filter(id=id).delete() print("deleted") return render(request, 'reports/redirect_to_change.html') except: text = "You are unable to change this folder" return HttpResponse(text) def folder(request): folder_name = request.POST.get('selected') print(folder_name) reports = Report.objects.all() print(reports) return render(request, 'reports/folder.html', {'folder_name': folder_name, 'reports': reports}) @login_required def delete_folder(request, id=None): try: folder = Folder.objects.get(id=id) if folder.owner != request.user: text = "You do not have permission to delete this folder" return HttpResponse(text) else: Folder.objects.filter(id=id).delete() return render(request, 'reports/deleteFolder.html') except: text = "You are unable to delete this folder" return HttpResponse(text) @login_required def add_report(request): form_class = ReportForm(user=request.user) # if this is a POST request process the form data if request.method == 'POST': # create a form instance and populate it with data from the request form = ReportForm(request.POST, request.FILES, user=request.user) # check whether it's valid: if form.is_valid(): report = form.save(commit=False) report.owner = User.objects.get(username=request.user.username) if form.cleaned_data['Share with:'] != 'all': report.group = UserGroup.objects.get( name=form.cleaned_data['Share with:']) files = request.FILES.getlist('file_field') report.save() for f in files: file = UploadedFile(report=report, owner=request.user) file.file_obj = f file.save() # redirect to a new URL: return render(request, 'reports/createReport.html', {'form': form_class}) else: text = form.errors return HttpResponse(text) return render(request, 'reports/createReport.html', {'form': form_class}) @login_required def edit_report(request, id=None): try: if id: report = Report.objects.get(pk=id) if report.owner != request.user: text = "You do not have permission to edit this report" return HttpResponse(text) else: report = Report() form_class = ReportForm(user=request.user, instance=report) if request.method == 'POST': form = ReportForm(request.POST, request.FILES, instance=report, user=request.user) if form.is_valid(): report = form.save(commit=False) report.owner = User.objects.get(username=request.user.username) if form.cleaned_data['Share with:'] != 'all': report.group = UserGroup.objects.get( name=form.cleaned_data['Share with:']) files = request.FILES.getlist('file_field') report.save() for curr in report.file_set.all(): curr.delete() for f in files: file = UploadedFile(report=report, owner=request.user) file.file_obj = f file.save() return render(request, 'reports/doneEditing.html', {'form': form_class}) else: text = form.errors return HttpResponse(text) except: text = "You are not able to edit this report" return HttpResponse(text) return render(request, 'reports/editReport.html', {'form': form_class, 'id': id}) @login_required def see_reports(request): initial_search = {} reports_list = Report.objects.all().filter(group=None) for group in UserGroup.objects.filter(members=request.user): reports_list = reports_list | group.report_set.all() # Filter based by min date if request.GET.get('sincesearch', False): date_in = request.GET['sincesearch'] initial_search['since'] = date_in date_since = datetime( *[int(v) for v in date_in.replace('T', '-').replace(':', '-').split('-')]) reports_list = reports_list.filter(timestamp__gte=date_since) # Filter based by max date if request.GET.get('beforesearch', False): date_in = request.GET['beforesearch'] initial_search['before'] = date_in date_since = datetime( *[int(v) for v in date_in.replace('T', '-').replace(':', '-').split('-')]) reports_list = reports_list.filter(timestamp__lte=date_since) # Filter based on creator if request.GET.get('ownersearch', False): owner = request.GET['ownersearch'] initial_search['owner'] = owner reports_list = reports_list.filter(owner__username__icontains=owner) # Filter based on title if request.GET.get('titlesearch', False): title = request.GET['titlesearch'] initial_search['title'] = title reports_list = reports_list.filter(title__icontains=title) # Filter based on descriptions if request.GET.get('descsearch', False): desc = request.GET['descsearch'] initial_search['desc'] = desc short_search = reports_list.filter(short_desc__icontains=desc) long_search = reports_list.filter(long_desc__icontains=desc) reports_list = short_search | long_search for report in reports_list: report.files = report.file_set.all() for file in report.files: file.file_obj.name = file.file_obj.name.split('/')[-1] return render(request, 'reports/see_reports.html', {'reports_list': reports_list, 'search_values': initial_search}) def add_reports(request, folder_name): print("hi") print(folder_name) reports = Report.objects.all() username_id = request.user print(request.method) if request.method == 'POST': print("hi2") form = FolderForm(request.POST) selected = request.POST.getlist('selectedReport[]') print(selected) if form.is_valid(): print("hi3") folder_object = Folder.objects.create(name=folder_name, owner=username_id) folder_object.save() for report_selected in selected: re = Report.objects.get(title=report_selected) folder_object.members.add(re) print(folder_object.members) else: form = FolderForm() folder_object = [] if folder_name is not None: folder_object = Folder.objects.get(name=folder_name) print(folder_object) print(folder_object.members) variables = RequestContext(request, {'form': form, 'reports': reports}) return render_to_response( 'reports/folder.html', variables, ) def viewFolders(request): context = {} context['folders_list'] = Folder.objects.all() return render(request, '/reports/folders', context) @login_required def see_my_reports(request): initial_search = {} my_reports_list = Report.objects.all().filter(owner=request.user).order_by('keyword') for group in UserGroup.objects.filter(members=request.user): my_reports_list = my_reports_list | group.report_set.all() # Filter based by min date if request.GET.get('sincesearch', False): date_in = request.GET['sincesearch'] initial_search['since'] = date_in date_since = datetime( *[int(v) for v in date_in.replace('T', '-').replace(':', '-').split('-')]) my_reports_list = my_reports_list.filter(timestamp__gte=date_since) # Filter based by max date if request.GET.get('beforesearch', False): date_in = request.GET['beforesearch'] initial_search['before'] = date_in date_since = datetime( *[int(v) for v in date_in.replace('T', '-').replace(':', '-').split('-')]) my_reports_list = my_reports_list.filter(timestamp__lte=date_since) # Filter based on creator if request.GET.get('ownersearch', False): owner = request.GET['ownersearch'] initial_search['owner'] = owner my_reports_list = my_reports_list.filter(owner__username__icontains=owner) # Filter based on title if request.GET.get('titlesearch', False): title = request.GET['titlesearch'] initial_search['title'] = title my_reports_list = my_reports_list.filter(title__icontains=title) # Filter based on descriptions if request.GET.get('descsearch', False): desc = request.GET['descsearch'] initial_search['desc'] = desc short_search = my_reports_list.filter(short_desc__icontains=desc) long_search = my_reports_list.filter(long_desc__icontains=desc) my_reports_list = short_search | long_search for report in my_reports_list: report.files = report.file_set.all() for file in report.files: file.file_obj.name = file.file_obj.name.split('/')[-1] return render(request, 'reports/see_my_reports.html', {'my_reports_list': my_reports_list, 'search_values': initial_search}) @login_required def delete_report(request, id=None): try: report = Report.objects.get(id=id) print(report.owner) if report.owner != request.user: text = "You do not have permission to delete this report" return HttpResponse(text) else: Report.objects.filter(id=id).delete() return render(request, 'reports/deleteReport.html') except: # text = "You are not able to delete this report" # return HttpResponse(text) return render(request, 'reports/deleteReport.html') @login_required def download_file(request, pk): file = get_object_or_404(UploadedFile, pk=pk) if file.report.group is not None: if file.report.group not in UserGroup.objects.filter(members=request.user): return HttpResponse(status=404) filename = file.file_obj.name.split('/')[-1] response = HttpResponse(file.file_obj, content_type='text/plain') response['Content-Disposition'] = 'attachment; filename=%s' % filename return response
py
1a4f1060c59cd5298b903a96416b7fd6700baa6f
from predictionserver.futureconventions.horizonconventions import HorizonConventions class HorizonHabits(HorizonConventions): def __init__(self,**kwargs): super().__init__(**kwargs)
py
1a4f10a6e0a5a628ee81a7a62d9d4d54c48114ed
# -*- encoding: utf-8 -*- from .parser import Parser from .safe_parser import SafeParser def parse(dictionary): return Parser(dictionary).query def build_parser(valid_filters, default_filter): return lambda dictionary: SafeParser( dictionary, valid_filters=valid_filters, default_filter=default_filter, ).query
py
1a4f10de121f27970653dccea4975730bc2f751c
import urllib3 import json from api.src.postgre import Postgres class DataCrawler: def getData(self): jsonOndeFoiRoubado = self.getJsonFromOndeFoiRoubado() jsonOndeTemTiro = self.getJsonFromOnteTemTiro() postgre = Postgres() postgre.open() postgre.insertOndeFoiRoubado(jsonOndeFoiRoubado) postgre.insertOndeTemTiro(jsonOndeTemTiro) postgre.close() def getJsonFromOndeFoiRoubado(self): http = urllib3.PoolManager() r = http.request('GET', 'http://www.ondefuiroubado.com.br/rio-de-janeiro/RJ'); htmlData = str(r.data.decode('utf-8')) idxStart = htmlData.find('OndeFuiRoubado.Views.CrimesIndexView.initialize') idxEnd = htmlData.find('OndeFuiRoubado.PoliceStations') htmlData = htmlData[idxStart:idxEnd] htmlData = htmlData.replace('OndeFuiRoubado.Views.CrimesIndexView.initialize(','') htmlData = htmlData.strip() htmlData = htmlData.replace(');\\n });\\n\\n document.addEventListener(\\\'onMainMapLoad\\\', function(data) {\\n','') htmlData = htmlData.strip() htmlData = htmlData.replace("document.addEventListener('onMainMapLoad', function(data) {",'') htmlData = htmlData.replace("\n","") htmlData = htmlData.replace("); });","") return json.loads(htmlData) def getJsonFromOnteTemTiro(self): http = urllib3.PoolManager() r = http.request('GET', 'https://www.googleapis.com/fusiontables/v1/query?sql=SELECT%20*%20FROM%201HaQhL95pS0XhFQcifZ6fzKifuCXVdFxl-caH0zDf&key=AIzaSyC1CNeSPJOm5mPzk3kTrXuHJgG5vJP9Tgo'); htmlData = str(r.data.decode('utf-8')) htmlData = htmlData.replace("\\n","#") return json.loads(htmlData)
py
1a4f11080c32af44227c01946573d4b2f2aa1b97
from website.app import start if __name__ == '__main__': start()
py
1a4f11d2024bf5be433547afa88f846277edf3cc
name = "API" from .modules import * class API: def __init__(self): self.get = Get() self.post = Post() self.put = Put() self.patch = Patch() self.delete = Delete()