ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a4f5bb27d7a2500eaf47581ae6016cf259b635e
# -*- coding: utf-8 -*- # # Electrum - lightweight Bitcoin client # Copyright (C) 2011 thomasv@gitorious # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import hashlib import base64 import hmac import os import json import ecdsa import pyaes from .util import bfh, bh2u, to_string from . import version from .util import print_error, InvalidPassword, assert_bytes, to_bytes, inv_dict from . import segwit_addr def read_json_dict(filename): path = os.path.join(os.path.dirname(__file__), filename) try: with open(path, 'r') as f: r = json.loads(f.read()) except: r = {} return r # Version numbers for BIP32 extended keys # standard: xprv, xpub # segwit in p2sh: yprv, ypub # native segwit: zprv, zpub XPRV_HEADERS = { 'standard': 0x0488ade4, 'p2wpkh-p2sh': 0x049d7878, 'p2wsh-p2sh': 0x295b005, 'p2wpkh': 0x4b2430c, 'p2wsh': 0x2aa7a99 } XPUB_HEADERS = { 'standard': 0x0488b21e, 'p2wpkh-p2sh': 0x049d7cb2, 'p2wsh-p2sh': 0x295b43f, 'p2wpkh': 0x4b24746, 'p2wsh': 0x2aa7ed3 } class NetworkConstants: @classmethod def set_mainnet(cls): cls.TESTNET = False cls.WIF_PREFIX = 0x80 cls.ADDRTYPE_P2PKH = 0 cls.ADDRTYPE_P2SH = 5 cls.SEGWIT_HRP = "bc" cls.HEADERS_URL = "https://headers.electrum.org/blockchain_headers" cls.GENESIS = "000000000019d6689c085ae165831e934ff763ae46a2a6c172b3f1b60a8ce26f" cls.DEFAULT_PORTS = {'t': '50001', 's': '50002'} cls.DEFAULT_SERVERS = read_json_dict('servers.json') @classmethod def set_testnet(cls): cls.TESTNET = True cls.WIF_PREFIX = 0xef cls.ADDRTYPE_P2PKH = 111 cls.ADDRTYPE_P2SH = 196 cls.SEGWIT_HRP = "tb" cls.HEADERS_URL = "https://headers.electrum.org/testnet_headers" cls.GENESIS = "000000000933ea01ad0ee984209779baaec3ced90fa3f408719526f8d77f4943" cls.DEFAULT_PORTS = {'t':'51001', 's':'51002'} cls.DEFAULT_SERVERS = read_json_dict('servers_testnet.json') NetworkConstants.set_mainnet() ################################## transactions FEE_STEP = 10000 MAX_FEE_RATE = 300000 FEE_TARGETS = [25, 10, 5, 2] COINBASE_MATURITY = 100 COIN = 100000000 # supported types of transction outputs TYPE_ADDRESS = 0 TYPE_PUBKEY = 1 TYPE_SCRIPT = 2 # AES encryption try: from Cryptodome.Cipher import AES except: AES = None class InvalidPadding(Exception): pass def append_PKCS7_padding(data): assert_bytes(data) padlen = 16 - (len(data) % 16) return data + bytes([padlen]) * padlen def strip_PKCS7_padding(data): assert_bytes(data) if len(data) % 16 != 0 or len(data) == 0: raise InvalidPadding("invalid length") padlen = data[-1] if padlen > 16: raise InvalidPadding("invalid padding byte (large)") for i in data[-padlen:]: if i != padlen: raise InvalidPadding("invalid padding byte (inconsistent)") return data[0:-padlen] def aes_encrypt_with_iv(key, iv, data): assert_bytes(key, iv, data) data = append_PKCS7_padding(data) if AES: e = AES.new(key, AES.MODE_CBC, iv).encrypt(data) else: aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv) aes = pyaes.Encrypter(aes_cbc, padding=pyaes.PADDING_NONE) e = aes.feed(data) + aes.feed() # empty aes.feed() flushes buffer return e def aes_decrypt_with_iv(key, iv, data): assert_bytes(key, iv, data) if AES: cipher = AES.new(key, AES.MODE_CBC, iv) data = cipher.decrypt(data) else: aes_cbc = pyaes.AESModeOfOperationCBC(key, iv=iv) aes = pyaes.Decrypter(aes_cbc, padding=pyaes.PADDING_NONE) data = aes.feed(data) + aes.feed() # empty aes.feed() flushes buffer try: return strip_PKCS7_padding(data) except InvalidPadding: raise InvalidPassword() def EncodeAES(secret, s): assert_bytes(s) iv = bytes(os.urandom(16)) ct = aes_encrypt_with_iv(secret, iv, s) e = iv + ct return base64.b64encode(e) def DecodeAES(secret, e): e = bytes(base64.b64decode(e)) iv, e = e[:16], e[16:] s = aes_decrypt_with_iv(secret, iv, e) return s def pw_encode(s, password): if password: secret = Hash(password) return EncodeAES(secret, to_bytes(s, "utf8")).decode('utf8') else: return s def pw_decode(s, password): if password is not None: secret = Hash(password) try: d = to_string(DecodeAES(secret, s), "utf8") except Exception: raise InvalidPassword() return d else: return s def rev_hex(s): return bh2u(bfh(s)[::-1]) def int_to_hex(i, length=1): assert isinstance(i, int) s = hex(i)[2:].rstrip('L') s = "0"*(2*length - len(s)) + s return rev_hex(s) def var_int(i): # https://en.bitcoin.it/wiki/Protocol_specification#Variable_length_integer if i<0xfd: return int_to_hex(i) elif i<=0xffff: return "fd"+int_to_hex(i,2) elif i<=0xffffffff: return "fe"+int_to_hex(i,4) else: return "ff"+int_to_hex(i,8) def op_push(i): if i<0x4c: return int_to_hex(i) elif i<0xff: return '4c' + int_to_hex(i) elif i<0xffff: return '4d' + int_to_hex(i,2) else: return '4e' + int_to_hex(i,4) def push_script(x): return op_push(len(x)//2) + x def sha256(x): x = to_bytes(x, 'utf8') return bytes(hashlib.sha256(x).digest()) def Hash(x): x = to_bytes(x, 'utf8') out = bytes(sha256(sha256(x))) return out hash_encode = lambda x: bh2u(x[::-1]) hash_decode = lambda x: bfh(x)[::-1] hmac_sha_512 = lambda x, y: hmac.new(x, y, hashlib.sha512).digest() def is_new_seed(x, prefix=version.SEED_PREFIX): from . import mnemonic x = mnemonic.normalize_text(x) s = bh2u(hmac_sha_512(b"Seed version", x.encode('utf8'))) return s.startswith(prefix) def is_old_seed(seed): from . import old_mnemonic, mnemonic seed = mnemonic.normalize_text(seed) words = seed.split() try: # checks here are deliberately left weak for legacy reasons, see #3149 old_mnemonic.mn_decode(words) uses_electrum_words = True except Exception: uses_electrum_words = False try: seed = bfh(seed) is_hex = (len(seed) == 16 or len(seed) == 32) except Exception: is_hex = False return is_hex or (uses_electrum_words and (len(words) == 12 or len(words) == 24)) def seed_type(x): if is_old_seed(x): return 'old' elif is_new_seed(x): return 'standard' elif is_new_seed(x, version.SEED_PREFIX_SW): return 'segwit' elif is_new_seed(x, version.SEED_PREFIX_2FA): return '2fa' return '' is_seed = lambda x: bool(seed_type(x)) # pywallet openssl private key implementation def i2o_ECPublicKey(pubkey, compressed=False): # public keys are 65 bytes long (520 bits) # 0x04 + 32-byte X-coordinate + 32-byte Y-coordinate # 0x00 = point at infinity, 0x02 and 0x03 = compressed, 0x04 = uncompressed # compressed keys: <sign> <x> where <sign> is 0x02 if y is even and 0x03 if y is odd if compressed: if pubkey.point.y() & 1: key = '03' + '%064x' % pubkey.point.x() else: key = '02' + '%064x' % pubkey.point.x() else: key = '04' + \ '%064x' % pubkey.point.x() + \ '%064x' % pubkey.point.y() return bfh(key) # end pywallet openssl private key implementation ############ functions from pywallet ##################### def hash_160(public_key): try: md = hashlib.new('ripemd160') md.update(sha256(public_key)) return md.digest() except BaseException: from . import ripemd md = ripemd.new(sha256(public_key)) return md.digest() def hash160_to_b58_address(h160, addrtype, witness_program_version=1): s = bytes([addrtype]) s += h160 return base_encode(s+Hash(s)[0:4], base=58) def b58_address_to_hash160(addr): addr = to_bytes(addr, 'ascii') _bytes = base_decode(addr, 25, base=58) return _bytes[0], _bytes[1:21] def hash160_to_p2pkh(h160): return hash160_to_b58_address(h160, NetworkConstants.ADDRTYPE_P2PKH) def hash160_to_p2sh(h160): return hash160_to_b58_address(h160, NetworkConstants.ADDRTYPE_P2SH) def public_key_to_p2pkh(public_key): return hash160_to_p2pkh(hash_160(public_key)) def hash_to_segwit_addr(h): return segwit_addr.encode(NetworkConstants.SEGWIT_HRP, 0, h) def public_key_to_p2wpkh(public_key): return hash_to_segwit_addr(hash_160(public_key)) def script_to_p2wsh(script): return hash_to_segwit_addr(sha256(bfh(script))) def p2wpkh_nested_script(pubkey): pkh = bh2u(hash_160(bfh(pubkey))) return '00' + push_script(pkh) def p2wsh_nested_script(witness_script): wsh = bh2u(sha256(bfh(witness_script))) return '00' + push_script(wsh) def pubkey_to_address(txin_type, pubkey): if txin_type == 'p2pkh': return public_key_to_p2pkh(bfh(pubkey)) elif txin_type == 'p2wpkh': return hash_to_segwit_addr(hash_160(bfh(pubkey))) elif txin_type == 'p2wpkh-p2sh': scriptSig = p2wpkh_nested_script(pubkey) return hash160_to_p2sh(hash_160(bfh(scriptSig))) else: raise NotImplementedError(txin_type) def redeem_script_to_address(txin_type, redeem_script): if txin_type == 'p2sh': return hash160_to_p2sh(hash_160(bfh(redeem_script))) elif txin_type == 'p2wsh': return script_to_p2wsh(redeem_script) elif txin_type == 'p2wsh-p2sh': scriptSig = p2wsh_nested_script(redeem_script) return hash160_to_p2sh(hash_160(bfh(scriptSig))) else: raise NotImplementedError(txin_type) def script_to_address(script): from .transaction import get_address_from_output_script t, addr = get_address_from_output_script(bfh(script)) assert t == TYPE_ADDRESS return addr def address_to_script(addr): witver, witprog = segwit_addr.decode(NetworkConstants.SEGWIT_HRP, addr) if witprog is not None: assert (0 <= witver <= 16) OP_n = witver + 0x50 if witver > 0 else 0 script = bh2u(bytes([OP_n])) script += push_script(bh2u(bytes(witprog))) return script addrtype, hash_160 = b58_address_to_hash160(addr) if addrtype == NetworkConstants.ADDRTYPE_P2PKH: script = '76a9' # op_dup, op_hash_160 script += push_script(bh2u(hash_160)) script += '88ac' # op_equalverify, op_checksig elif addrtype == NetworkConstants.ADDRTYPE_P2SH: script = 'a9' # op_hash_160 script += push_script(bh2u(hash_160)) script += '87' # op_equal else: raise BaseException('unknown address type') return script def address_to_scripthash(addr): script = address_to_script(addr) return script_to_scripthash(script) def script_to_scripthash(script): h = sha256(bytes.fromhex(script))[0:32] return bh2u(bytes(reversed(h))) def public_key_to_p2pk_script(pubkey): script = push_script(pubkey) script += 'ac' # op_checksig return script __b58chars = b'123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' assert len(__b58chars) == 58 __b43chars = b'0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ$*+-./:' assert len(__b43chars) == 43 def base_encode(v, base): """ encode v, which is a string of bytes, to base58.""" assert_bytes(v) assert base in (58, 43) chars = __b58chars if base == 43: chars = __b43chars long_value = 0 for (i, c) in enumerate(v[::-1]): long_value += (256**i) * c result = bytearray() while long_value >= base: div, mod = divmod(long_value, base) result.append(chars[mod]) long_value = div result.append(chars[long_value]) # Bitcoin does a little leading-zero-compression: # leading 0-bytes in the input become leading-1s nPad = 0 for c in v: if c == 0x00: nPad += 1 else: break result.extend([chars[0]] * nPad) result.reverse() return result.decode('ascii') def base_decode(v, length, base): """ decode v into a string of len bytes.""" # assert_bytes(v) v = to_bytes(v, 'ascii') assert base in (58, 43) chars = __b58chars if base == 43: chars = __b43chars long_value = 0 for (i, c) in enumerate(v[::-1]): long_value += chars.find(bytes([c])) * (base**i) result = bytearray() while long_value >= 256: div, mod = divmod(long_value, 256) result.append(mod) long_value = div result.append(long_value) nPad = 0 for c in v: if c == chars[0]: nPad += 1 else: break result.extend(b'\x00' * nPad) if length is not None and len(result) != length: return None result.reverse() return bytes(result) def EncodeBase58Check(vchIn): hash = Hash(vchIn) return base_encode(vchIn + hash[0:4], base=58) def DecodeBase58Check(psz): vchRet = base_decode(psz, None, base=58) key = vchRet[0:-4] csum = vchRet[-4:] hash = Hash(key) cs32 = hash[0:4] if cs32 != csum: return None else: return key # extended key export format for segwit SCRIPT_TYPES = { 'p2pkh':0, 'p2wpkh':1, 'p2wpkh-p2sh':2, 'p2sh':5, 'p2wsh':6, 'p2wsh-p2sh':7 } def serialize_privkey(secret, compressed, txin_type): prefix = bytes([(SCRIPT_TYPES[txin_type]+NetworkConstants.WIF_PREFIX)&255]) suffix = b'\01' if compressed else b'' vchIn = prefix + secret + suffix return EncodeBase58Check(vchIn) def deserialize_privkey(key): # whether the pubkey is compressed should be visible from the keystore vch = DecodeBase58Check(key) if is_minikey(key): return 'p2pkh', minikey_to_private_key(key), True elif vch: txin_type = inv_dict(SCRIPT_TYPES)[vch[0] - NetworkConstants.WIF_PREFIX] assert len(vch) in [33, 34] compressed = len(vch) == 34 return txin_type, vch[1:33], compressed else: raise BaseException("cannot deserialize", key) def regenerate_key(pk): assert len(pk) == 32 return EC_KEY(pk) def GetPubKey(pubkey, compressed=False): return i2o_ECPublicKey(pubkey, compressed) def GetSecret(pkey): return bfh('%064x' % pkey.secret) def is_compressed(sec): return deserialize_privkey(sec)[2] def public_key_from_private_key(pk, compressed): pkey = regenerate_key(pk) public_key = GetPubKey(pkey.pubkey, compressed) return bh2u(public_key) def address_from_private_key(sec): txin_type, privkey, compressed = deserialize_privkey(sec) public_key = public_key_from_private_key(privkey, compressed) return pubkey_to_address(txin_type, public_key) def is_segwit_address(addr): try: witver, witprog = segwit_addr.decode(NetworkConstants.SEGWIT_HRP, addr) except Exception as e: return False return witprog is not None def is_b58_address(addr): try: addrtype, h = b58_address_to_hash160(addr) except Exception as e: return False if addrtype not in [NetworkConstants.ADDRTYPE_P2PKH, NetworkConstants.ADDRTYPE_P2SH]: return False return addr == hash160_to_b58_address(h, addrtype) def is_address(addr): return is_segwit_address(addr) or is_b58_address(addr) def is_private_key(key): try: k = deserialize_privkey(key) return k is not False except: return False ########### end pywallet functions ####################### def is_minikey(text): # Minikeys are typically 22 or 30 characters, but this routine # permits any length of 20 or more provided the minikey is valid. # A valid minikey must begin with an 'S', be in base58, and when # suffixed with '?' have its SHA256 hash begin with a zero byte. # They are widely used in Casascius physical bitcoins. return (len(text) >= 20 and text[0] == 'S' and all(ord(c) in __b58chars for c in text) and sha256(text + '?')[0] == 0x00) def minikey_to_private_key(text): return sha256(text) from ecdsa.ecdsa import curve_secp256k1, generator_secp256k1 from ecdsa.curves import SECP256k1 from ecdsa.ellipticcurve import Point from ecdsa.util import string_to_number, number_to_string def msg_magic(message): length = bfh(var_int(len(message))) return b"\x18Bitcoin Signed Message:\n" + length + message def verify_message(address, sig, message): assert_bytes(sig, message) try: h = Hash(msg_magic(message)) public_key, compressed = pubkey_from_signature(sig, h) # check public key using the address pubkey = point_to_ser(public_key.pubkey.point, compressed) for txin_type in ['p2pkh','p2wpkh','p2wpkh-p2sh']: addr = pubkey_to_address(txin_type, bh2u(pubkey)) if address == addr: break else: raise Exception("Bad signature") # check message public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) return True except Exception as e: print_error("Verification error: {0}".format(e)) return False def encrypt_message(message, pubkey): return EC_KEY.encrypt_message(message, bfh(pubkey)) def chunks(l, n): return [l[i:i+n] for i in range(0, len(l), n)] def ECC_YfromX(x,curved=curve_secp256k1, odd=True): _p = curved.p() _a = curved.a() _b = curved.b() for offset in range(128): Mx = x + offset My2 = pow(Mx, 3, _p) + _a * pow(Mx, 2, _p) + _b % _p My = pow(My2, (_p+1)//4, _p ) if curved.contains_point(Mx,My): if odd == bool(My&1): return [My,offset] return [_p-My,offset] raise Exception('ECC_YfromX: No Y found') def negative_point(P): return Point( P.curve(), P.x(), -P.y(), P.order() ) def point_to_ser(P, comp=True ): if comp: return bfh( ('%02x'%(2+(P.y()&1)))+('%064x'%P.x()) ) return bfh( '04'+('%064x'%P.x())+('%064x'%P.y()) ) def ser_to_point(Aser): curve = curve_secp256k1 generator = generator_secp256k1 _r = generator.order() assert Aser[0] in [0x02, 0x03, 0x04] if Aser[0] == 0x04: return Point( curve, string_to_number(Aser[1:33]), string_to_number(Aser[33:]), _r ) Mx = string_to_number(Aser[1:]) return Point( curve, Mx, ECC_YfromX(Mx, curve, Aser[0] == 0x03)[0], _r ) class MyVerifyingKey(ecdsa.VerifyingKey): @classmethod def from_signature(klass, sig, recid, h, curve): """ See http://www.secg.org/download/aid-780/sec1-v2.pdf, chapter 4.1.6 """ from ecdsa import util, numbertheory from . import msqr curveFp = curve.curve G = curve.generator order = G.order() # extract r,s from signature r, s = util.sigdecode_string(sig, order) # 1.1 x = r + (recid//2) * order # 1.3 alpha = ( x * x * x + curveFp.a() * x + curveFp.b() ) % curveFp.p() beta = msqr.modular_sqrt(alpha, curveFp.p()) y = beta if (beta - recid) % 2 == 0 else curveFp.p() - beta # 1.4 the constructor checks that nR is at infinity R = Point(curveFp, x, y, order) # 1.5 compute e from message: e = string_to_number(h) minus_e = -e % order # 1.6 compute Q = r^-1 (sR - eG) inv_r = numbertheory.inverse_mod(r,order) Q = inv_r * ( s * R + minus_e * G ) return klass.from_public_point( Q, curve ) def pubkey_from_signature(sig, h): if len(sig) != 65: raise Exception("Wrong encoding") nV = sig[0] if nV < 27 or nV >= 35: raise Exception("Bad encoding") if nV >= 31: compressed = True nV -= 4 else: compressed = False recid = nV - 27 return MyVerifyingKey.from_signature(sig[1:], recid, h, curve = SECP256k1), compressed class MySigningKey(ecdsa.SigningKey): """Enforce low S values in signatures""" def sign_number(self, number, entropy=None, k=None): curve = SECP256k1 G = curve.generator order = G.order() r, s = ecdsa.SigningKey.sign_number(self, number, entropy, k) if s > order//2: s = order - s return r, s class EC_KEY(object): def __init__( self, k ): secret = string_to_number(k) self.pubkey = ecdsa.ecdsa.Public_key( generator_secp256k1, generator_secp256k1 * secret ) self.privkey = ecdsa.ecdsa.Private_key( self.pubkey, secret ) self.secret = secret def get_public_key(self, compressed=True): return bh2u(point_to_ser(self.pubkey.point, compressed)) def sign(self, msg_hash): private_key = MySigningKey.from_secret_exponent(self.secret, curve = SECP256k1) public_key = private_key.get_verifying_key() signature = private_key.sign_digest_deterministic(msg_hash, hashfunc=hashlib.sha256, sigencode = ecdsa.util.sigencode_string) assert public_key.verify_digest(signature, msg_hash, sigdecode = ecdsa.util.sigdecode_string) return signature def sign_message(self, message, is_compressed): message = to_bytes(message, 'utf8') signature = self.sign(Hash(msg_magic(message))) for i in range(4): sig = bytes([27 + i + (4 if is_compressed else 0)]) + signature try: self.verify_message(sig, message) return sig except Exception as e: continue else: raise Exception("error: cannot sign message") def verify_message(self, sig, message): assert_bytes(message) h = Hash(msg_magic(message)) public_key, compressed = pubkey_from_signature(sig, h) # check public key if point_to_ser(public_key.pubkey.point, compressed) != point_to_ser(self.pubkey.point, compressed): raise Exception("Bad signature") # check message public_key.verify_digest(sig[1:], h, sigdecode = ecdsa.util.sigdecode_string) # ECIES encryption/decryption methods; AES-128-CBC with PKCS7 is used as the cipher; hmac-sha256 is used as the mac @classmethod def encrypt_message(self, message, pubkey): assert_bytes(message) pk = ser_to_point(pubkey) if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, pk.x(), pk.y()): raise Exception('invalid pubkey') ephemeral_exponent = number_to_string(ecdsa.util.randrange(pow(2,256)), generator_secp256k1.order()) ephemeral = EC_KEY(ephemeral_exponent) ecdh_key = point_to_ser(pk * ephemeral.privkey.secret_multiplier) key = hashlib.sha512(ecdh_key).digest() iv, key_e, key_m = key[0:16], key[16:32], key[32:] ciphertext = aes_encrypt_with_iv(key_e, iv, message) ephemeral_pubkey = bfh(ephemeral.get_public_key(compressed=True)) encrypted = b'BIE1' + ephemeral_pubkey + ciphertext mac = hmac.new(key_m, encrypted, hashlib.sha256).digest() return base64.b64encode(encrypted + mac) def decrypt_message(self, encrypted): encrypted = base64.b64decode(encrypted) if len(encrypted) < 85: raise Exception('invalid ciphertext: length') magic = encrypted[:4] ephemeral_pubkey = encrypted[4:37] ciphertext = encrypted[37:-32] mac = encrypted[-32:] if magic != b'BIE1': raise Exception('invalid ciphertext: invalid magic bytes') try: ephemeral_pubkey = ser_to_point(ephemeral_pubkey) except AssertionError as e: raise Exception('invalid ciphertext: invalid ephemeral pubkey') if not ecdsa.ecdsa.point_is_valid(generator_secp256k1, ephemeral_pubkey.x(), ephemeral_pubkey.y()): raise Exception('invalid ciphertext: invalid ephemeral pubkey') ecdh_key = point_to_ser(ephemeral_pubkey * self.privkey.secret_multiplier) key = hashlib.sha512(ecdh_key).digest() iv, key_e, key_m = key[0:16], key[16:32], key[32:] if mac != hmac.new(key_m, encrypted[:-32], hashlib.sha256).digest(): raise InvalidPassword() return aes_decrypt_with_iv(key_e, iv, ciphertext) ###################################### BIP32 ############################## random_seed = lambda n: "%032x"%ecdsa.util.randrange( pow(2,n) ) BIP32_PRIME = 0x80000000 def get_pubkeys_from_secret(secret): # public key private_key = ecdsa.SigningKey.from_string( secret, curve = SECP256k1 ) public_key = private_key.get_verifying_key() K = public_key.to_string() K_compressed = GetPubKey(public_key.pubkey,True) return K, K_compressed # Child private key derivation function (from master private key) # k = master private key (32 bytes) # c = master chain code (extra entropy for key derivation) (32 bytes) # n = the index of the key we want to derive. (only 32 bits will be used) # If n is negative (i.e. the 32nd bit is set), the resulting private key's # corresponding public key can NOT be determined without the master private key. # However, if n is positive, the resulting private key's corresponding # public key can be determined without the master private key. def CKD_priv(k, c, n): is_prime = n & BIP32_PRIME return _CKD_priv(k, c, bfh(rev_hex(int_to_hex(n,4))), is_prime) def _CKD_priv(k, c, s, is_prime): order = generator_secp256k1.order() keypair = EC_KEY(k) cK = GetPubKey(keypair.pubkey,True) data = bytes([0]) + k + s if is_prime else cK + s I = hmac.new(c, data, hashlib.sha512).digest() k_n = number_to_string( (string_to_number(I[0:32]) + string_to_number(k)) % order , order ) c_n = I[32:] return k_n, c_n # Child public key derivation function (from public key only) # K = master public key # c = master chain code # n = index of key we want to derive # This function allows us to find the nth public key, as long as n is # non-negative. If n is negative, we need the master private key to find it. def CKD_pub(cK, c, n): if n & BIP32_PRIME: raise return _CKD_pub(cK, c, bfh(rev_hex(int_to_hex(n,4)))) # helper function, callable with arbitrary string def _CKD_pub(cK, c, s): order = generator_secp256k1.order() I = hmac.new(c, cK + s, hashlib.sha512).digest() curve = SECP256k1 pubkey_point = string_to_number(I[0:32])*curve.generator + ser_to_point(cK) public_key = ecdsa.VerifyingKey.from_public_point( pubkey_point, curve = SECP256k1 ) c_n = I[32:] cK_n = GetPubKey(public_key.pubkey,True) return cK_n, c_n def xprv_header(xtype): return bfh("%08x" % XPRV_HEADERS[xtype]) def xpub_header(xtype): return bfh("%08x" % XPUB_HEADERS[xtype]) def serialize_xprv(xtype, c, k, depth=0, fingerprint=b'\x00'*4, child_number=b'\x00'*4): xprv = xprv_header(xtype) + bytes([depth]) + fingerprint + child_number + c + bytes([0]) + k return EncodeBase58Check(xprv) def serialize_xpub(xtype, c, cK, depth=0, fingerprint=b'\x00'*4, child_number=b'\x00'*4): xpub = xpub_header(xtype) + bytes([depth]) + fingerprint + child_number + c + cK return EncodeBase58Check(xpub) def deserialize_xkey(xkey, prv): xkey = DecodeBase58Check(xkey) if len(xkey) != 78: raise BaseException('Invalid length') depth = xkey[4] fingerprint = xkey[5:9] child_number = xkey[9:13] c = xkey[13:13+32] header = int('0x' + bh2u(xkey[0:4]), 16) headers = XPRV_HEADERS if prv else XPUB_HEADERS if header not in headers.values(): raise BaseException('Invalid xpub format', hex(header)) xtype = list(headers.keys())[list(headers.values()).index(header)] n = 33 if prv else 32 K_or_k = xkey[13+n:] return xtype, depth, fingerprint, child_number, c, K_or_k def deserialize_xpub(xkey): return deserialize_xkey(xkey, False) def deserialize_xprv(xkey): return deserialize_xkey(xkey, True) def xpub_type(x): return deserialize_xpub(x)[0] def is_xpub(text): try: deserialize_xpub(text) return True except: return False def is_xprv(text): try: deserialize_xprv(text) return True except: return False def xpub_from_xprv(xprv): xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) K, cK = get_pubkeys_from_secret(k) return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) def bip32_root(seed, xtype): I = hmac.new(b"Bitcoin seed", seed, hashlib.sha512).digest() master_k = I[0:32] master_c = I[32:] K, cK = get_pubkeys_from_secret(master_k) xprv = serialize_xprv(xtype, master_c, master_k) xpub = serialize_xpub(xtype, master_c, cK) return xprv, xpub def xpub_from_pubkey(xtype, cK): assert cK[0] in [0x02, 0x03] return serialize_xpub(xtype, b'\x00'*32, cK) def bip32_derivation(s): assert s.startswith('m/') s = s[2:] for n in s.split('/'): if n == '': continue i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) yield i def is_bip32_derivation(x): try: [ i for i in bip32_derivation(x)] return True except : return False def bip32_private_derivation(xprv, branch, sequence): assert sequence.startswith(branch) if branch == sequence: return xprv, xpub_from_xprv(xprv) xtype, depth, fingerprint, child_number, c, k = deserialize_xprv(xprv) sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue i = int(n[:-1]) + BIP32_PRIME if n[-1] == "'" else int(n) parent_k = k k, c = CKD_priv(k, c, i) depth += 1 _, parent_cK = get_pubkeys_from_secret(parent_k) fingerprint = hash_160(parent_cK)[0:4] child_number = bfh("%08X"%i) K, cK = get_pubkeys_from_secret(k) xpub = serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) xprv = serialize_xprv(xtype, c, k, depth, fingerprint, child_number) return xprv, xpub def bip32_public_derivation(xpub, branch, sequence): xtype, depth, fingerprint, child_number, c, cK = deserialize_xpub(xpub) assert sequence.startswith(branch) sequence = sequence[len(branch):] for n in sequence.split('/'): if n == '': continue i = int(n) parent_cK = cK cK, c = CKD_pub(cK, c, i) depth += 1 fingerprint = hash_160(parent_cK)[0:4] child_number = bfh("%08X"%i) return serialize_xpub(xtype, c, cK, depth, fingerprint, child_number) def bip32_private_key(sequence, k, chain): for i in sequence: k, chain = CKD_priv(k, chain, i) return k
py
1a4f5c9c706d1ca32e36e1d94056ca336a610aa6
# Copyright 2017 Yahoo Inc. # Licensed under the terms of the Apache 2.0 license. # Please see LICENSE file in the project root for terms. """This module extends the TensorFlowOnSpark API to support Spark ML Pipelines. It provides a TFEstimator class to fit a TFModel using TensorFlow. The TFEstimator will actually spawn a TensorFlowOnSpark cluster to conduct distributed training, but due to architectural limitations, the TFModel will only run single-node TensorFlow instances when inferencing on the executors. The executors will run in parallel, but the TensorFlow model must fit in the memory of each executor. There is also an option to provide a separate "export" function, which allows users to export a different graph for inferencing vs. training. This is useful when the training graph uses InputMode.TENSORFLOW with queue_runners, but the inferencing graph needs placeholders. And this is especially useful for exporting saved_models for TensorFlow Serving. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from pyspark.context import SparkContext from pyspark.ml.param.shared import Param, Params, TypeConverters from pyspark.ml.pipeline import Estimator, Model from pyspark.sql import Row, SparkSession import tensorflow as tf from tensorflow.contrib.saved_model.python.saved_model import reader, signature_def_utils from tensorflow.python.saved_model import loader from . import TFCluster, gpu_info, dfutil import argparse import copy import logging import os import subprocess import sys ##### TensorFlowOnSpark Params class TFTypeConverters(object): """Custom DataFrame TypeConverter for dictionary types (since this is not provided by Spark core).""" @staticmethod def toDict(value): if type(value) == dict: return value else: raise TypeError("Could not convert %s to OrderedDict" % value) class HasBatchSize(Params): batch_size = Param(Params._dummy(), "batch_size", "Number of records per batch", typeConverter=TypeConverters.toInt) def __init__(self): super(HasBatchSize, self).__init__() def setBatchSize(self, value): return self._set(batch_size=value) def getBatchSize(self): return self.getOrDefault(self.batch_size) class HasClusterSize(Params): cluster_size = Param(Params._dummy(), "cluster_size", "Number of nodes in the cluster", typeConverter=TypeConverters.toInt) def __init__(self): super(HasClusterSize, self).__init__() def setClusterSize(self, value): return self._set(cluster_size=value) def getClusterSize(self): return self.getOrDefault(self.cluster_size) class HasEpochs(Params): epochs = Param(Params._dummy(), "epochs", "Number of epochs to train", typeConverter=TypeConverters.toInt) def __init__(self): super(HasEpochs, self).__init__() def setEpochs(self, value): return self._set(epochs=value) def getEpochs(self): return self.getOrDefault(self.epochs) class HasInputMapping(Params): input_mapping = Param(Params._dummy(), "input_mapping", "Mapping of input DataFrame column to input tensor", typeConverter=TFTypeConverters.toDict) def __init__(self): super(HasInputMapping, self).__init__() def setInputMapping(self, value): return self._set(input_mapping=value) def getInputMapping(self): return self.getOrDefault(self.input_mapping) class HasInputMode(Params): input_mode = Param(Params._dummy(), "input_mode", "Input data feeding mode (0=TENSORFLOW, 1=SPARK)", typeConverter=TypeConverters.toInt) def __init__(self): super(HasInputMode, self).__init__() def setInputMode(self, value): return self._set(input_mode=value) def getInputMode(self): return self.getOrDefault(self.input_mode) class HasModelDir(Params): model_dir = Param(Params._dummy(), "model_dir", "Path to save/load model checkpoints", typeConverter=TypeConverters.toString) def __init__(self): super(HasModelDir, self).__init__() def setModelDir(self, value): return self._set(model_dir=value) def getModelDir(self): return self.getOrDefault(self.model_dir) class HasNumPS(Params): num_ps = Param(Params._dummy(), "num_ps", "Number of PS nodes in cluster", typeConverter=TypeConverters.toInt) driver_ps_nodes = Param(Params._dummy(), "driver_ps_nodes", "Run PS nodes on driver locally", typeConverter=TypeConverters.toBoolean) def __init__(self): super(HasNumPS, self).__init__() def setNumPS(self, value): return self._set(num_ps=value) def getNumPS(self): return self.getOrDefault(self.num_ps) def setDriverPSNodes(self, value): return self._set(driver_ps_nodes=value) def getDriverPSNodes(self): return self.getOrDefault(self.driver_ps_nodes) class HasOutputMapping(Params): output_mapping = Param(Params._dummy(), "output_mapping", "Mapping of output tensor to output DataFrame column", typeConverter=TFTypeConverters.toDict) def __init__(self): super(HasOutputMapping, self).__init__() def setOutputMapping(self, value): return self._set(output_mapping=value) def getOutputMapping(self): return self.getOrDefault(self.output_mapping) class HasProtocol(Params): protocol = Param(Params._dummy(), "protocol", "Network protocol for Tensorflow (grpc|rdma)", typeConverter=TypeConverters.toString) def __init__(self): super(HasProtocol, self).__init__() def setProtocol(self, value): return self._set(protocol=value) def getProtocol(self): return self.getOrDefault(self.protocol) class HasReaders(Params): readers = Param(Params._dummy(), "readers", "number of reader/enqueue threads", typeConverter=TypeConverters.toInt) def __init__(self): super(HasReaders, self).__init__() def setReaders(self, value): return self._set(readers=value) def getReaders(self): return self.getOrDefault(self.readers) class HasSteps(Params): steps = Param(Params._dummy(), "steps", "Maximum number of steps to train", typeConverter=TypeConverters.toInt) def __init__(self): super(HasSteps, self).__init__() def setSteps(self, value): return self._set(steps=value) def getSteps(self): return self.getOrDefault(self.steps) class HasTensorboard(Params): tensorboard = Param(Params._dummy(), "tensorboard", "Launch tensorboard process", typeConverter=TypeConverters.toBoolean) def __init__(self): super(HasTensorboard, self).__init__() def setTensorboard(self, value): return self._set(tensorboard=value) def getTensorboard(self): return self.getOrDefault(self.tensorboard) class HasTFRecordDir(Params): tfrecord_dir = Param(Params._dummy(), "tfrecord_dir", "Path to temporarily export a DataFrame as TFRecords (for InputMode.TENSORFLOW apps)", typeConverter=TypeConverters.toString) def __init__(self): super(HasTFRecordDir, self).__init__() def setTFRecordDir(self, value): return self._set(tfrecord_dir=value) def getTFRecordDir(self): return self.getOrDefault(self.tfrecord_dir) ##### SavedModelBuilder Params class HasExportDir(Params): export_dir = Param(Params._dummy(), "export_dir", "Directory to export saved_model", typeConverter=TypeConverters.toString) def __init__(self): super(HasExportDir, self).__init__() def setExportDir(self, value): return self._set(export_dir=value) def getExportDir(self): return self.getOrDefault(self.export_dir) class HasSignatureDefKey(Params): signature_def_key = Param(Params._dummy(), "signature_def_key", "Identifier for a specific saved_model signature", typeConverter=TypeConverters.toString) def __init__(self): super(HasSignatureDefKey, self).__init__() self._setDefault(signature_def_key=None) def setSignatureDefKey(self, value): return self._set(signature_def_key=value) def getSignatureDefKey(self): return self.getOrDefault(self.signature_def_key) class HasTagSet(Params): tag_set = Param(Params._dummy(), "tag_set", "Comma-delimited list of tags identifying a saved_model metagraph", typeConverter=TypeConverters.toString) def __init__(self): super(HasTagSet, self).__init__() def setTagSet(self, value): return self._set(tag_set=value) def getTagSet(self): return self.getOrDefault(self.tag_set) class Namespace(object): """ Utility class to convert dictionaries to Namespace-like objects. Based on https://docs.python.org/dev/library/types.html#types.SimpleNamespace """ argv = None def __init__(self, d): if isinstance(d, list): self.argv = d elif isinstance(d, dict): self.__dict__.update(d) elif isinstance(d, argparse.Namespace): self.__dict__.update(vars(d)) elif isinstance(d, Namespace): self.__dict__.update(d.__dict__) else: raise Exception("Unsupported Namespace args: {}".format(d)) def __iter__(self): if self.argv: for item in self.argv: yield item else: for key in self.__dict__.keys(): yield key def __repr__(self): if self.argv: return "{}".format(self.argv) else: keys = sorted(self.__dict__) items = ("{}={!r}".format(k, self.__dict__[k]) for k in keys) return "{}({})".format(type(self).__name__, ", ".join(items)) def __eq__(self, other): if self.argv: return self.argv == other else: return self.__dict__ == other.__dict__ class TFParams(Params): """Mix-in class to store namespace-style args and merge w/ SparkML-style params.""" args = None def merge_args_params(self): local_args = copy.copy(self.args) # make a local copy of args args_dict = vars(local_args) # get dictionary view for p in self.params: args_dict[p.name] = self.getOrDefault(p.name) # update with params return local_args class TFEstimator(Estimator, TFParams, HasInputMapping, HasClusterSize, HasNumPS, HasInputMode, HasProtocol, HasTensorboard, HasModelDir, HasExportDir, HasTFRecordDir, HasBatchSize, HasEpochs, HasReaders, HasSteps): """Spark ML Estimator which launches a TensorFlowOnSpark cluster for distributed training. The columns of the DataFrame passed to the ``fit()`` method will be mapped to TensorFlow tensors according to the ``setInputMapping()`` method. If an ``export_fn`` was provided to the constructor, it will be run on a single executor immediately after the distributed training has completed. This allows users to export a TensorFlow saved_model with a different execution graph for inferencing, e.g. replacing an input graph of TFReaders and QueueRunners with Placeholders. For InputMode.TENSORFLOW, the input DataFrame will be exported as TFRecords to a temporary location specified by the ``tfrecord_dir``. The TensorFlow application will then be expected to read directly from this location during training. However, if the input DataFrame was produced by the ``dfutil.loadTFRecords()`` method, i.e. originated from TFRecords on disk, then the `tfrecord_dir` will be set to the original source location of the TFRecords with the additional export step. Args: :train_fn: TensorFlow "main" function for training. :tf_args: Arguments specific to the TensorFlow "main" function. :export_fn: TensorFlow function for exporting a saved_model. """ train_fn = None export_fn = None def __init__(self, train_fn, tf_args, export_fn=None): super(TFEstimator, self).__init__() self.train_fn = train_fn self.export_fn = export_fn self.args = Namespace(tf_args) self._setDefault(input_mapping={}, cluster_size=1, num_ps=0, driver_ps_nodes=False, input_mode=TFCluster.InputMode.SPARK, protocol='grpc', tensorboard=False, model_dir=None, export_dir=None, tfrecord_dir=None, batch_size=100, epochs=1, readers=1, steps=1000) def _fit(self, dataset): """Trains a TensorFlow model and returns a TFModel instance with the same args/params pointing to a checkpoint or saved_model on disk. Args: :dataset: A Spark DataFrame with columns that will be mapped to TensorFlow tensors. Returns: A TFModel representing the trained model, backed on disk by a TensorFlow checkpoint or saved_model. """ sc = SparkContext.getOrCreate() logging.info("===== 1. train args: {0}".format(self.args)) logging.info("===== 2. train params: {0}".format(self._paramMap)) local_args = self.merge_args_params() logging.info("===== 3. train args + params: {0}".format(local_args)) if local_args.input_mode == TFCluster.InputMode.TENSORFLOW: if dfutil.isLoadedDF(dataset): # if just a DataFrame loaded from tfrecords, just point to original source path logging.info("Loaded DataFrame of TFRecord.") local_args.tfrecord_dir = dfutil.loadedDF[dataset] else: # otherwise, save as tfrecords and point to save path assert local_args.tfrecord_dir, "Please specify --tfrecord_dir to export DataFrame to TFRecord." if self.getInputMapping(): # if input mapping provided, filter only required columns before exporting dataset = dataset.select(self.getInputMapping().keys()) logging.info("Exporting DataFrame {} as TFRecord to: {}".format(dataset.dtypes, local_args.tfrecord_dir)) dfutil.saveAsTFRecords(dataset, local_args.tfrecord_dir) logging.info("Done saving") tf_args = self.args.argv if self.args.argv else local_args cluster = TFCluster.run(sc, self.train_fn, tf_args, local_args.cluster_size, local_args.num_ps, local_args.tensorboard, local_args.input_mode, driver_ps_nodes=local_args.driver_ps_nodes) if local_args.input_mode == TFCluster.InputMode.SPARK: # feed data, using a deterministic order for input columns (lexicographic by key) input_cols = sorted(self.getInputMapping().keys()) cluster.train(dataset.select(input_cols).rdd, local_args.epochs) cluster.shutdown() # Run export function, if provided if self.export_fn: assert local_args.export_dir, "Export function requires --export_dir to be set" logging.info("Exporting saved_model (via export_fn) to: {}".format(local_args.export_dir)) def _export(iterator, fn, args): single_node_env(args) fn(args) # Run on a single exeucutor sc.parallelize([1], 1).foreachPartition(lambda it: _export(it, self.export_fn, tf_args)) return self._copyValues(TFModel(self.args)) class TFModel(Model, TFParams, HasInputMapping, HasOutputMapping, HasBatchSize, HasModelDir, HasExportDir, HasSignatureDefKey, HasTagSet): """Spark ML Model backed by a TensorFlow model checkpoint/saved_model on disk. During ``transform()``, each executor will run an independent, single-node instance of TensorFlow in parallel, so the model must fit in memory. The model/session will be loaded/initialized just once for each Spark Python worker, and the session will be cached for subsequent tasks/partitions to avoid re-loading the model for each partition. Args: :tf_args: Dictionary of arguments specific to TensorFlow "main" function. """ def __init__(self, tf_args): super(TFModel, self).__init__() self.args = Namespace(tf_args) self._setDefault(input_mapping={}, output_mapping={}, batch_size=100, model_dir=None, export_dir=None, signature_def_key=None, tag_set=None) def _transform(self, dataset): """Transforms the input DataFrame by applying the _run_model() mapPartitions function. Args: :dataset: A Spark DataFrame for TensorFlow inferencing. """ spark = SparkSession.builder.getOrCreate() # set a deterministic order for input/output columns (lexicographic by key) input_cols = [ col for col, tensor in sorted(self.getInputMapping().items()) ] # input col => input tensor output_cols = [ col for tensor, col in sorted(self.getOutputMapping().items()) ] # output tensor => output col # run single-node inferencing on each executor logging.info("input_cols: {}".format(input_cols)) logging.info("output_cols: {}".format(output_cols)) # merge args + params logging.info("===== 1. inference args: {0}".format(self.args)) logging.info("===== 2. inference params: {0}".format(self._paramMap)) local_args = self.merge_args_params() logging.info("===== 3. inference args + params: {0}".format(local_args)) tf_args = self.args.argv if self.args.argv else local_args rdd_out = dataset.select(input_cols).rdd.mapPartitions(lambda it: _run_model(it, local_args, tf_args)) # convert to a DataFrame-friendly format rows_out = rdd_out.map(lambda x: Row(*x)) return spark.createDataFrame(rows_out, output_cols) # global to each python worker process on the executors global_sess = None # tf.Session cache global_args = None # args provided to the _run_model() method. Any change will invalidate the global_sess cache. def _run_model(iterator, args, tf_args): """mapPartitions function to run single-node inferencing from a checkpoint/saved_model, using the model's input/output mappings. Args: :iterator: input RDD partition iterator. :args: arguments for TFModel, in argparse format :tf_args: arguments for TensorFlow inferencing code, in argparse or ARGV format. Returns: An iterator of result data. """ single_node_env(tf_args) logging.info("===== input_mapping: {}".format(args.input_mapping)) logging.info("===== output_mapping: {}".format(args.output_mapping)) input_tensor_names = [ tensor for col,tensor in sorted(args.input_mapping.items()) ] output_tensor_names = [ tensor for tensor,col in sorted(args.output_mapping.items()) ] # if using a signature_def_key, get input/output tensor info from the requested signature if args.signature_def_key: assert args.export_dir, "Inferencing with signature_def_key requires --export_dir argument" logging.info("===== loading meta_graph_def for tag_set ({0}) from saved_model: {1}".format(args.tag_set, args.export_dir)) meta_graph_def = get_meta_graph_def(args.export_dir, args.tag_set) signature = signature_def_utils.get_signature_def_by_key(meta_graph_def, args.signature_def_key) logging.debug("signature: {}".format(signature)) inputs_tensor_info = signature.inputs logging.debug("inputs_tensor_info: {0}".format(inputs_tensor_info)) outputs_tensor_info = signature.outputs logging.debug("outputs_tensor_info: {0}".format(outputs_tensor_info)) result = [] global global_sess, global_args if global_sess and global_args == args: # if graph/session already loaded/started (and using same args), just reuse it sess = global_sess else: # otherwise, create new session and load graph from disk tf.reset_default_graph() sess = tf.Session(graph=tf.get_default_graph()) if args.export_dir: assert args.tag_set, "Inferencing from a saved_model requires --tag_set" # load graph from a saved_model logging.info("===== restoring from saved_model: {}".format(args.export_dir)) loader.load(sess, args.tag_set.split(','), args.export_dir) elif args.model_dir: # load graph from a checkpoint ckpt = tf.train.latest_checkpoint(args.model_dir) assert ckpt, "Invalid model checkpoint path: {}".format(args.model_dir) logging.info("===== restoring from checkpoint: {}".format(ckpt + ".meta")) saver = tf.train.import_meta_graph(ckpt + ".meta", clear_devices=True) saver.restore(sess, ckpt) else: raise Exception("Inferencing requires either --model_dir or --export_dir argument") global_sess = sess global_args = args # get list of input/output tensors (by name) if args.signature_def_key: input_tensors = [inputs_tensor_info[t].name for t in input_tensor_names] output_tensors = [outputs_tensor_info[output_tensor_names[0]].name] else: input_tensors = [t + ':0' for t in input_tensor_names] output_tensors = [t + ':0' for t in output_tensor_names] logging.info("input_tensors: {0}".format(input_tensors)) logging.info("output_tensors: {0}".format(output_tensors)) # feed data in batches and return output tensors for tensors in yield_batch(iterator, args.batch_size, len(input_tensor_names)): inputs_feed_dict = {} for i in range(len(input_tensors)): inputs_feed_dict[input_tensors[i]] = tensors[i] outputs = sess.run(output_tensors, feed_dict=inputs_feed_dict) lengths = [ len(output) for output in outputs ] input_size = len(tensors[0]) assert all([ l == input_size for l in lengths ]), "Output array sizes {} must match input size: {}".format(lengths, input_size) python_outputs = [ output.tolist() for output in outputs ] # convert from numpy to standard python types result.extend(zip(*python_outputs)) # convert to an array of tuples of "output columns" return result def single_node_env(args): """Sets up environment for a single-node TF session. Args: :args: command line arguments as either argparse args or argv list """ if isinstance(args, list): sys.argv = args elif args.argv: sys.argv = args.argv # ensure expanded CLASSPATH w/o glob characters (required for Spark 2.1 + JNI) if 'HADOOP_PREFIX' in os.environ and 'TFOS_CLASSPATH_UPDATED' not in os.environ: classpath = os.environ['CLASSPATH'] hadoop_path = os.path.join(os.environ['HADOOP_PREFIX'], 'bin', 'hadoop') hadoop_classpath = subprocess.check_output([hadoop_path, 'classpath', '--glob']).decode() logging.debug("CLASSPATH: {0}".format(hadoop_classpath)) os.environ['CLASSPATH'] = classpath + os.pathsep + hadoop_classpath os.environ['TFOS_CLASSPATH_UPDATED'] = '1' # reserve GPU, if requested if tf.test.is_built_with_cuda(): # GPU num_gpus = args.num_gpus if 'num_gpus' in args else 1 gpus_to_use = gpu_info.get_gpus(num_gpus) logging.info("Using gpu(s): {0}".format(gpus_to_use)) os.environ['CUDA_VISIBLE_DEVICES'] = gpus_to_use # Note: if there is a GPU conflict (CUDA_ERROR_INVALID_DEVICE), the entire task will fail and retry. else: # CPU logging.info("Using CPU") os.environ['CUDA_VISIBLE_DEVICES'] = '' def get_meta_graph_def(saved_model_dir, tag_set): """Utility function to read a meta_graph_def from disk. From `saved_model_cli.py <https://github.com/tensorflow/tensorflow/blob/8e0e8d41a3a8f2d4a6100c2ea1dc9d6c6c4ad382/tensorflow/python/tools/saved_model_cli.py#L186>`_ Args: :saved_model_dir: path to saved_model. :tag_set: list of string tags identifying the TensorFlow graph within the saved_model. Returns: A TensorFlow meta_graph_def, or raises an Exception otherwise. """ saved_model = reader.read_saved_model(saved_model_dir) set_of_tags = set(tag_set.split(',')) for meta_graph_def in saved_model.meta_graphs: if set(meta_graph_def.meta_info_def.tags) == set_of_tags: return meta_graph_def raise RuntimeError("MetaGraphDef associated with tag-set {0} could not be found in SavedModel".format(tag_set)) def yield_batch(iterable, batch_size, num_tensors=1): """Generator that yields batches of a DataFrame iterator. Args: :iterable: Spark partition iterator. :batch_size: number of items to retrieve per invocation. :num_tensors: number of tensors (columns) expected in each item. Returns: An array of ``num_tensors`` arrays, each of length `batch_size` """ tensors = [ [] for i in range(num_tensors) ] for item in iterable: if item is None: break for i in range(num_tensors): tmp = str(item[i]) if type(item[i]) is bytearray else item[i] tensors[i].append(tmp) if len(tensors[0]) >= batch_size: yield tensors tensors = [ [] for i in range(num_tensors) ] if len(tensors[0]) > 0: yield tensors
py
1a4f5ca4b86a5a24b38d7ff276e8294b9db0f571
#!/usr/bin/python3 import time import json import sys import random from neopixel import * from dynamic_pattern_list_builder import * # LED strip configuration: LED_COUNT = 24 # Number of LED pixels. LED_PIN = 18 # GPIO pin connected to the pixels (18 uses PWM!). #LED_PIN = 10 # GPIO pin connected to the pixels (10 uses SPI /dev/spidev0.0). LED_FREQ_HZ = 800000 # LED signal frequency in hertz (usually 800khz) LED_DMA = 10 # DMA channel to use for generating signal (try 10) LED_BRIGHTNESS = 255 # Set to 0 for darkest and 255 for brightest LED_INVERT = False # True to invert the signal (when using NPN transistor level shift) LED_CHANNEL = 0 # set to '1' for GPIOs 13, 19, 41, 45 or 53 pulse_on = Color(255, 255, 255) pulse_off = Color(0, 0, 0) heartbeat_pulse = 3 heartbeat_gap = 0.07 # gap between beats # Dictionary containing object positions patterns = { 'elevation' : [1, 2, 3], 'distance' : [10, 15, 20, 25], 'direction' : [[0, 45, 90, 135, 180, 225, 270, 315],[315, 270, 225, 180, 135, 90, 45, 0],[0, 45, 90, 135, 180, 225, 270, 315]], 'pin_out' : [[0,1,2,3,4,5,6,7],[8,9,10,11,12,13,14,15],[16,17,18,19,20,21,22,23]] } # global list declarations and class initialization dynamicPattern = Dynamic_pattern_list_builder() # class initialization pat = dynamicPattern.pattern_builder() # dynamic_pattern declaration randNumList = [] # list of random numbers visitedPattern = [] # list of visited patterns dList = [] # list of keys # create list of dictionary keys for i in pat: dList.append(i) # json handler to read in dictionary of dynamic patterns #f = open('dynamic_pattern_list.json', 'r') #fin = json.load(f) #f.close() #for i in fin: # print(fin['dynamic patterns']) # creates the heartbeat pulse # handles 10, 15, 20 feet heartbeat patterns # if 25 feet, creates sonar pulse def heart_beat(strip, elevation, distance, direction): pix = patterns.get('pin_out')[elevation-1][direction/45] beat = 0 if (distance == 10): beat = 0.300 elif (distance == 15): beat = 0.650 elif (distance == 20): beat = 1.000 elif (distance == 25): beat = 1.00 heart_gap = 0.5 # sonar pulse for 25 feet for i in range(heartbeat_pulse): strip.setPixelColor(pix,pulse_on) strip.show() time.sleep(heart_gap) strip.setPixelColor(pix,pulse_off) strip.show() time.sleep(beat) # Heartbeat pattern for 10 through 20 feet for x in range(heartbeat_pulse): strip.setPixelColor(pix,pulse_on) strip.show() time.sleep(heartbeat_gap) strip.setPixelColor(pix,pulse_off) strip.show() time.sleep(heartbeat_gap) strip.setPixelColor(pix,pulse_on) strip.show() time.sleep(heartbeat_gap) strip.setPixelColor(pix,pulse_off) strip.show() time.sleep(beat) # handler for dynamic patterns # calls dynamic_pattern_list_builder.py # randomly selects a dynamic pattern and calls all the beats to simulate that pattern def dynamic_pattern_handler(strip): while (len(randNumList) < 23): rNum = random.randint(0, 22) while (rNum not in randNumList): randNumList.append(rNum) dBeat = dList[rNum] visitedPattern.append(dBeat) for dPat in visitedPattern: print(dPat) for beat in pat.get(dPat): elevation = beat[0] distance = beat[1] direction = beat[2] print ('elevation: ' + str(elevation) + ' ' + 'distance: ' + str(distance) + ' ' + 'direction: ' + str(direction)) heart_beat(strip, elevation, distance, direction) if __name__ == '__main__': # Create NeoPixel object with appropriate configuration. strip = Adafruit_NeoPixel(LED_COUNT, LED_PIN, LED_FREQ_HZ, LED_DMA, LED_INVERT, LED_BRIGHTNESS, LED_CHANNEL) # Initialize the library (must be called once before other functions). strip.begin() print ('Press Ctrl-C to quit.') try: dynamic_pattern_handler(strip) except KeyboardInterrupt: colorWipe(strip, Color(0,0,0), 10) print("Goodbye World")
py
1a4f5d442aafc47133fed6002c94fbe731c31acc
# # Copyright (c) 2021 Cisco Systems, Inc and its affiliates # All rights reserved # from msxswagger import DocumentationConfig, Security, Sso from config import Config from helpers.consul_helper import ConsulHelper class SwaggerHelper(object): def __init__(self, config: Config, consul_helper: ConsulHelper): self._config = config self._consul_helper = consul_helper def get_documentation_config(self): sso_url = self._consul_helper.get_string( key=f"{self._config.config_prefix}/defaultapplication/swagger.security.sso.baseUrl", default=self._config.swagger.ssourl) client_id = self._consul_helper.get_string( key=f"{self._config.config_prefix}/helloworldservice/public.security.clientId", default=self._config.swagger.clientid) return DocumentationConfig( root_path='/helloworld', security=Security( enabled=self._config.swagger.secure, sso=Sso(base_url=sso_url, client_id=client_id))) def get_swagger_resource(self): return self._config.swagger.swaggerjsonpath
py
1a4f5d592536783bffb870bef14f828e219e10bb
def main(): import sys import signal import argparse import json from edman import DB from scripts.action import Action # Ctrl-Cを押下された時の対策 signal.signal(signal.SIGINT, lambda sig, frame: sys.exit('\n')) # コマンドライン引数処理 parser = argparse.ArgumentParser(description='ドキュメントの項目を修正するスクリプト') # parser.add_argument('-c', '--collection', help='collection name.') parser.add_argument('objectid', help='objectid str.') parser.add_argument('amend_file', type=open, help='JSON file.') parser.add_argument('structure', help='Select ref or emb.') parser.add_argument('-i', '--inifile', help='DB connect file path.') # 引数を付けなかった場合はヘルプを表示して終了する if len(sys.argv) == 1: parser.parse_args(["-h"]) sys.exit(0) args = parser.parse_args() # 構造はrefかembのどちらか if not (args.structure == 'ref' or args.structure == 'emb'): parser.error("structure requires 'ref' or 'emb'.") try: # iniファイル読み込み con = Action.reading_config_file(args.inifile) # ファイル読み込み try: amend_data = json.load(args.amend_file) except json.JSONDecodeError: sys.exit(f'File is not json format.') except IOError: sys.exit('file read error.') # DB接続 db = DB(con) # 対象oidの所属コレクションを自動的に取得 ※動作が遅い場合は使用しないこと collection = db.find_collection_from_objectid(args.objectid) # アップデート処理 if db.update(collection, args.objectid, amend_data, args.structure): print('アップデート成功') else: print('アップデート失敗') except Exception as e: tb = sys.exc_info()[2] sys.stderr.write(f'{type(e).__name__}: {e.with_traceback(tb)}\n') sys.exit(1) if __name__ == "__main__": main()
py
1a4f5d70a8577a0a9705df21ce4d77fd3aae1605
# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ The context of mindspore, used to configure the current execution environment, includes the execution mode, execution backend and other feature switches. """ import json import os import time import threading from collections import namedtuple from types import FunctionType from mindspore import log as logger from mindspore._c_expression import MSContext, ms_ctx_param from mindspore._checkparam import args_type_check, Validator from mindspore.parallel._auto_parallel_context import _set_auto_parallel_context, _get_auto_parallel_context, \ _reset_auto_parallel_context from mindspore.parallel._ps_context import _set_ps_context, _get_ps_context, _reset_ps_context from .default_config import __device_target__, __package_name__ __all__ = ['GRAPH_MODE', 'PYNATIVE_MODE', 'set_context', 'get_context', 'set_auto_parallel_context', 'get_auto_parallel_context', 'reset_auto_parallel_context', 'ParallelMode', 'set_ps_context', 'get_ps_context', 'reset_ps_context'] GRAPH_MODE = 0 PYNATIVE_MODE = 1 _DEVICE_APP_MEMORY_SIZE = 31 # The max memory size of graph plus variable. _re_pattern = r'[1-9][0-9]*(\.)?[0-9]*GB|0\.[0-9]*GB' _k_context = None def _make_directory(path): """Make directory.""" real_path = None if path is None or not isinstance(path, str) or path.strip() == "": raise ValueError(f"Input path `{path}` is invalid type") # convert the relative paths path = os.path.realpath(path) logger.debug("The absolute path is %r", path) # check whether the path is already existed and has written permissions if os.path.exists(path): real_path = path else: # All exceptions need to be caught because create directory maybe have some limit(permissions) logger.debug("The directory(%s) doesn't exist, will create it", path) try: os.makedirs(path) real_path = path except PermissionError as e: logger.error(f"No write permission on the directory `{path}, error = {e}") raise ValueError(f"No write permission on the directory `{path}`.") return real_path def _get_print_file_name(file_name): """Add timestamp suffix to file name. Rename the file name: file_name + "." + time(seconds).""" time_second = str(int(time.time())) file_name = file_name + "." + time_second if os.path.exists(file_name): ValueError("This file {} already exists.".format(file_name)) return file_name class _ThreadLocalInfo(threading.local): """ Thread local Info used for store thread local attributes. """ def __init__(self): super(_ThreadLocalInfo, self).__init__() self._reserve_class_name_in_scope = True @property def reserve_class_name_in_scope(self): """Gets whether to save the network class name in the scope.""" return self._reserve_class_name_in_scope @reserve_class_name_in_scope.setter def reserve_class_name_in_scope(self, reserve_class_name_in_scope): """Sets whether to save the network class name in the scope.""" if not isinstance(reserve_class_name_in_scope, bool): raise ValueError( "Set reserve_class_name_in_scope value must be bool!") self._reserve_class_name_in_scope = reserve_class_name_in_scope _ContextRecord = namedtuple( "_ContextRecord", ["is_pynative_mode", "switch_context_fn"]) class _ContextSwitchInfo(threading.local): """ Record of context switch information. Args: is_pynative (bool): Whether to adopt the PyNative mode. """ def __init__(self, is_pynative): super(_ContextSwitchInfo, self).__init__() self.context_stack = [] if is_pynative: self.push(True, None) def push(self, is_pynative, switch_context_fn): """ Push a context switch record onto the stack. Args: is_pynative (bool): Whether context switch to PyNative mode. switch_context_fn (Function): A callable that executes the context switch. """ if isinstance(switch_context_fn, FunctionType): switch_context_fn() self.context_stack.append( _ContextRecord(is_pynative, switch_context_fn)) def pop(self): self.context_stack.pop() class _Context: """ _Context is the environment in which operations are executed Note: Create a context through instantiating Context object is not recommended. should use context() to get the context since Context is singleton. """ _instance = None _instance_lock = threading.Lock() def __init__(self): self._thread_local_info = _ThreadLocalInfo() self._context_switches = _ContextSwitchInfo(True) self._context_handle = MSContext.get_instance() def __new__(cls, *args, **kwargs): if cls._instance is None: cls._instance_lock.acquire() cls._instance = object.__new__(cls) cls._instance_lock.release() return cls._instance def __getattribute__(self, attr): value = object.__getattribute__(self, attr) if attr == "_context_handle" and value is None: raise ValueError("Context handle is none in context!!!") return value def get_param(self, param): return self._context_handle.get_param(param) def set_param(self, param, value): self._context_handle.set_param(param, value) def set_mode(self, mode): """ Switch between Graph mode and PyNative mode. Args: mode (int): GRAPH_MODE or PYNATIVE_MODE. """ if mode == PYNATIVE_MODE: if self.enable_debug_runtime: self.set_backend_policy("vm") self._context_switches.push(True, None) elif mode == GRAPH_MODE: if self.enable_debug_runtime: self.set_backend_policy("ge") self._context_switches.push(False, None) else: raise ValueError(f'The execution mode {mode} is invalid!') self.set_param(ms_ctx_param.mode, mode) def set_backend_policy(self, policy): success = self._context_handle.set_backend_policy(policy) if not success: raise RuntimeError("Backend policy must be one of ge, vm, ms.") def set_save_graphs_path(self, save_graphs_path): self.set_param(ms_ctx_param.save_graphs_path, _make_directory(save_graphs_path)) def set_device_target(self, target): valid_targets = ["CPU", "GPU", "Ascend", "Davinci"] if not target in valid_targets: raise ValueError(f"Target device name {target} is invalid! It must be one of {valid_targets}") if target == "Davinci": target = "Ascend" self.set_param(ms_ctx_param.device_target, target) if self.enable_debug_runtime and target == "CPU": self.set_backend_policy("vm") def set_auto_tune_mode(self, tune_mode): candidate = ["NO_TUNE", "RL", "GA", "RL,GA", "GA,RL"] if tune_mode in candidate: self.set_param(ms_ctx_param.tune_mode, tune_mode) else: raise ValueError(f"Tune mode must be in ['NO_TUNE', 'RL', 'GA', 'RL,GA', 'GA,RL'], but got {tune_mode}") def set_device_id(self, device_id): if device_id < 0 or device_id > 4095: raise ValueError(f"Device id must be in [0, 4095], but got {device_id}") self.set_param(ms_ctx_param.device_id, device_id) def set_max_call_depth(self, max_call_depth): if max_call_depth <= 0: raise ValueError(f"Max call depth must be greater than 0, but got {max_call_depth}") self.set_param(ms_ctx_param.max_call_depth, max_call_depth) def set_profiling_options(self, option): if not isinstance(option, str): raise TypeError("The parameter option must be str.") self.set_param(ms_ctx_param.profiling_options, option) def set_variable_memory_max_size(self, variable_memory_max_size): """set values of variable_memory_max_size and graph_memory_max_size""" if not Validator.check_str_by_regular(variable_memory_max_size, _re_pattern): raise ValueError("Context param variable_memory_max_size should be in correct format! Such as \"5GB\"") if int(variable_memory_max_size[:-2]) > _DEVICE_APP_MEMORY_SIZE: raise ValueError("Context param variable_memory_max_size should be not greater than 31GB.") variable_memory_max_size_ = variable_memory_max_size[:-2] + " * 1024 * 1024 * 1024" graph_memory_max_size = _DEVICE_APP_MEMORY_SIZE - int(variable_memory_max_size[:-2]) graph_memory_max_size_ = str(graph_memory_max_size) + " * 1024 * 1024 * 1024" self.set_param(ms_ctx_param.variable_memory_max_size, variable_memory_max_size_) # pylint: disable=protected-access self.set_param(ms_ctx_param._graph_memory_max_size, graph_memory_max_size_) def set_max_device_memory(self, max_device_memory): if not Validator.check_str_by_regular(max_device_memory, _re_pattern): raise ValueError("Context param max_device_memory should be in correct format! Such as \"3.5GB\"") max_device_memory_value = float(max_device_memory[:-2]) if max_device_memory_value == 0: raise ValueError("Context param max_device_memory should be in correct format! Such as \"3.5GB\"") self.set_param(ms_ctx_param.max_device_memory, max_device_memory_value) def set_print_file_path(self, file_path): """Add timestamp suffix to file name. Sets print file path.""" print_file_path = os.path.realpath(file_path) if os.path.isdir(print_file_path): raise IOError("Print_file_path should be file path, but got {}.".format(file_path)) if os.path.exists(print_file_path): _path, _file_name = os.path.split(print_file_path) path = _make_directory(_path) file_name = _get_print_file_name(_file_name) full_file_name = os.path.join(path, file_name) else: full_file_name = print_file_path self.set_param(ms_ctx_param.print_file_path, full_file_name) def set_env_config_path(self, env_config_path): """Check and set env_config_path.""" if not self._context_handle.enable_dump_ir(): raise ValueError("The 'env_config_path' is not supported, please enable ENABLE_DUMP_IR " "with '-D on' and recompile source.") env_config_path = os.path.realpath(env_config_path) if not os.path.isfile(env_config_path): raise ValueError("The %r set by 'env_config_path' should be an existing json file." % env_config_path) try: with open(env_config_path, 'r') as f: json.load(f) except (TypeError, ValueError) as exo: raise ValueError("The %r set by 'env_config_path' should be a json file. " "Detail: %s." % (env_config_path, str(exo))) self.set_param(ms_ctx_param.env_config_path, env_config_path) setters = { 'mode': set_mode, 'save_graphs_path': set_save_graphs_path, 'device_target': set_device_target, 'device_id': set_device_id, 'auto_tune_mode': set_auto_tune_mode, 'max_call_depth': set_max_call_depth, 'profiling_options': set_profiling_options, 'variable_memory_max_size': set_variable_memory_max_size, 'max_device_memory': set_max_device_memory, 'print_file_path': set_print_file_path, 'env_config_path': set_env_config_path } @property def reserve_class_name_in_scope(self): """Gets whether to save the network class name in the scope.""" return self._thread_local_info.reserve_class_name_in_scope @reserve_class_name_in_scope.setter def reserve_class_name_in_scope(self, reserve_class_name_in_scope): """Sets whether to save the network class name in the scope.""" self._thread_local_info.reserve_class_name_in_scope = reserve_class_name_in_scope @property def enable_ge(self): return self._context_handle.get_backend_policy() == 'ge' @property def enable_debug_runtime(self): return self._thread_local_info.debug_runtime @enable_debug_runtime.setter def enable_debug_runtime(self, enable): thread_info = self._thread_local_info thread_info.debug_runtime = enable def _context(): """ Get the global _context, if context is not created, create a new one. Returns: _Context, the global context in PyNative mode. """ global _k_context if _k_context is None: default_backend = 'debug' try: from mindspore import default_config default_backend = default_config.__backend__ except ImportError: logger.error("import default config fail") _k_context = _Context() _k_context.enable_debug_runtime = False if default_backend == 'debug': _k_context.enable_debug_runtime = True default_backend = 'vm' _k_context.set_backend_policy(default_backend) return _k_context @args_type_check(device_num=int, global_rank=int, gradients_mean=bool, gradient_fp32_sync=bool, parallel_mode=str, auto_parallel_search_mode=str, parameter_broadcast=bool, strategy_ckpt_load_file=str, strategy_ckpt_save_file=str, full_batch=bool, enable_parallel_optimizer=bool, all_reduce_fusion_config=list, pipeline_stages=int) def set_auto_parallel_context(**kwargs): r""" Set auto parallel context, which is valid only for Ascend and GPU target. Auto parallel context should be configured before the initialization of your network. Note: Attribute name is required for setting attributes. If a program has tasks with different parallel modes, then before setting new parallel mode for the next task, interface mindspore.context.reset_auto_parallel_context() needs to be called to reset the configuration. Setting or changing parallel modes must be called before any creating Initializer, otherwise, RuntimeError may be raised when compiling the network. Some configurations are parallel mode specific, see the below table for details: =========================== =========================== Common AUTO_PARALLEL =========================== =========================== device_num gradient_fp32_sync global_rank loss_repeated_mean gradients_mean auto_parallel_search_mode parallel_mode strategy_ckpt_load_file all_reduce_fusion_config strategy_ckpt_save_file enable_parallel_optimizer full_batch \ pipeline_stages =========================== =========================== Args: device_num (int): Available device number, the value must be in [1, 4096]. Default: 1. global_rank (int): Global rank id, the value must be in [0, 4095]. Default: 0. gradients_mean (bool): Whether to perform mean operator after allreduce of gradients. "stand_alone" do not support gradients_mean. Default: False. gradient_fp32_sync (bool): Run allreduce of gradients in fp32. "stand_alone", "data_parallel" and "hybrid_parallel" do not support gradient_fp32_sync. Default: True. parallel_mode (str): There are five kinds of parallel modes, "stand_alone", "data_parallel", "hybrid_parallel", "semi_auto_parallel" and "auto_parallel". Default: "stand_alone". - stand_alone: Only one processor is working. - data_parallel: Distributes the data across different processors. - hybrid_parallel: Achieves data parallelism and model parallelism manually. - semi_auto_parallel: Achieves data parallelism and model parallelism by setting parallel strategies. - auto_parallel: Achieving parallelism automatically. auto_parallel_search_mode (str): There are two kinds of shard strategy search modes, "recursive_programming" and "dynamic_programming". Default: "dynamic_programming". - recursive_programming: Recursive programming search mode. - dynamic_programming: Dynamic programming search mode. parameter_broadcast (bool): Whether to broadcast parameters before training. Before training, in order to have the same network initialization parameter values for all devices, broadcast the parameters on device 0 to other devices. Parameter broadcasting in different parallel modes is different, data_parallel mode, all parameters are broadcast except for the parameter whose attribute layerwise_parallel is True. Hybrid_parallel, semi_auto_parallel and auto_parallel mode, the segmented parameters do not participate in broadcasting. Default: False. strategy_ckpt_load_file (str): The path to load parallel strategy checkpoint. Default: '' strategy_ckpt_save_file (str): The path to save parallel strategy checkpoint. Default: '' full_batch (bool): If you load whole batch datasets in auto_parallel mode, this parameter should be set with True. Default: False. enable_parallel_optimizer (bool): This is a developing feature, which shards the weight update computation for data parallel training in the benefit of time and memory saving. Currently, auto and semi auto parallel mode support all optimizers in both Ascend and GPU. Data parallel mode only supports `Lamb` and `AdamWeightDecay` in Ascend . Default: False. all_reduce_fusion_config (list): Set allreduce fusion strategy by parameters indices. Only support ReduceOp.SUM and HCCL_WORLD_GROUP/NCCL_WORLD_GROUP. No Default, if it is not set, the fusion is closed. pipeline_stages (int): Set the stage information for pipeline parallel. This indicates how the devices are distributed alone the pipeline. The total devices will be divided into 'pipeline_stags' stages. This currently could only be used when parallel mode semi_auto_parallel is enabled. Default: 1. Raises: ValueError: If input key is not attribute in auto parallel context. Examples: >>> context.set_auto_parallel_context(device_num=8) >>> context.set_auto_parallel_context(global_rank=0) >>> context.set_auto_parallel_context(gradients_mean=True) >>> context.set_auto_parallel_context(gradient_fp32_sync=False) >>> context.set_auto_parallel_context(parallel_mode="auto_parallel") >>> context.set_auto_parallel_context(auto_parallel_search_mode="dynamic_programming") >>> context.set_auto_parallel_context(parameter_broadcast=False) >>> context.set_auto_parallel_context(strategy_ckpt_load_file="./strategy_stage1.ckpt") >>> context.set_auto_parallel_context(strategy_ckpt_save_file="./strategy_stage1.ckpt") >>> context.set_auto_parallel_context(full_batch=True) >>> context.set_auto_parallel_context(enable_parallel_optimizer=False) >>> context.set_auto_parallel_context(all_reduce_fusion_config=[8, 160]) >>> context.set_auto_parallel_context(pipeline_stages=2) """ _set_auto_parallel_context(**kwargs) def get_auto_parallel_context(attr_key): """ Gets auto parallel context attribute value according to the key. Args: attr_key (str): The key of the attribute. Returns: Returns attribute value according to the key. Raises: ValueError: If input key is not attribute in auto parallel context. """ return _get_auto_parallel_context(attr_key) def reset_auto_parallel_context(): """ Reset auto parallel context attributes to the default values: - device_num: 1. - global_rank: 0. - gradients_mean: False. - gradient_fp32_sync: True. - parallel_mode: 'stand_alone'. - auto_parallel_search_mode: 'dynamic_programming'. - parameter_broadcast: False. - strategy_ckpt_load_file: ''. - strategy_ckpt_save_file: ''. - full_batch: False. - enable_parallel_optimizer: False. - pipeline_stages: 1. """ _reset_auto_parallel_context() def _check_target_specific_cfgs(device, arg_key): """Checking whether a config is suitable for a specified device""" device_cfgs = { 'enable_auto_mixed_precision': ['Ascend'], 'enable_dump': ['Ascend'], 'save_dump_path': ['Ascend'], 'enable_graph_kernel': ['Ascend', 'GPU'], 'enable_reduce_precision': ['Ascend'], 'enable_profiling': ['Ascend'], 'profiling_options': ['Ascend'], 'print_file_path': ['Ascend'], 'variable_memory_max_size': ['Ascend'], 'auto_tune_mode': ['Ascend'], 'max_device_memory': ['GPU'] } # configs not in map device_cfgs are supposed to be suitable for all devices if not arg_key in device_cfgs: return True supported_devices = device_cfgs[arg_key] if device in supported_devices: return True logger.warning(f"Config '{arg_key}' only supports devices in {supported_devices}, current device is '{device}'" ", ignore it.") return False @args_type_check(mode=int, precompile_only=bool, device_target=str, device_id=int, save_graphs=bool, save_graphs_path=str, enable_dump=bool, auto_tune_mode=str, save_dump_path=str, enable_reduce_precision=bool, variable_memory_max_size=str, enable_profiling=bool, profiling_options=str, enable_auto_mixed_precision=bool, enable_graph_kernel=bool, check_bprop=bool, max_device_memory=str, print_file_path=str, enable_sparse=bool, max_call_depth=int, env_config_path=str) def set_context(**kwargs): """ Sets context for running environment. Context should be configured before running your program. If there is no configuration, the "Ascend" device target will be used by default. GRAPH_MODE or PYNATIVE_MODE can be set by `mode` attribute and both modes support all backends, default mode is PYNATIVE_MODE. When the `save_graphs` attribute is set to True, attribute of `save_graphs_path` is used to set the intermediate compilation graph storage path. By default, the graphs are saved in the current directory. For other configurations and arguments, please refer to the corresponding module description, the configuration is optional and can be enabled when needed. Note: Attribute name is required for setting attributes. The mode is not recommended to be changed after net was initialized because the implementations of some operations are different in graph mode and pynative mode. Default: PYNATIVE_MODE. Some configurations are device specific, see the below table for details: =========================== =========================== ================= Common(CPU/GPU/Ascend) Ascend GPU =========================== =========================== ================= check_bprop print_file_path max_device_memory device_id enable_dump enable_graph_kernel device_target save_dump_path enable_sparse enable_graph_kernel max_call_depth enable_reduce_precision mode enable_profiling reserve_class_name_in_scope profiling_options save_graphs variable_memory_max_size save_graphs_path auto_tune_mode env_config_path grad_for_scalar =========================== =========================== ================= Args: mode (int): Running in GRAPH_MODE(0) or PYNATIVE_MODE(1). Default: PYNATIVE_MODE(1). device_target (str): The target device to run, support "Ascend", "GPU", and "CPU". Default: "Ascend". device_id (int): ID of the target device, the value must be in [0, device_num_per_host-1], while device_num_per_host should be no more than 4096. Default: 0. save_graphs (bool): Whether to save graphs. Default: False. save_graphs_path (str): Path to save graphs. Default: ".". If the program is executed in the parallel mode, `save_graphs_path` should consist of the path and the current device id, to ensure that writing file conflicts won't happen when the different processes try to create the files in the same directory. For example, the `device_id` can be generated by `device_id = os.getenv("DEVICE_ID")` and the `save_graphs_path` can be set by `context.set_context(save_graphs_path="path/to/ir/files"+device_id)`. enable_graph_kernel (bool): Whether to enable composition of basic primitives. These primitives would be compiled into a fused kernel automatically. Default: False. reserve_class_name_in_scope (bool) : Whether to save the network class name in the scope. Default: True. enable_reduce_precision (bool): Whether to enable precision reduction. Default: True. enable_dump (bool): Whether to enable dump. Default: False. save_dump_path (str): When the program is executed on Ascend, operators can dump data in this path. The root dump path is configured in /home/HwHiAiUser/ide_daemon/ide_daemon.cfg. So the real dump path is "{configured root dump path}/{`save_dump_path`}". Default: ".". variable_memory_max_size (str): Set the maximum size of the variable memory max size. Default: "0GB". enable_profiling (bool): Whether to open profiling. Default: False. profiling_options (str): Set profiling collection options, operators can profiling data here. The values of profiling collection options are as follows, supporting the collection of multiple data. - output: the saving the path of the profiling collection result file. The directory spectified by this parameter needs to be created in advance on the training environment (container or host side) and ensure that the running user configured during installation has read and write permissions.It supports the configuration of absolute or relative paths(relative to the current path when executing the command line). The absolute path configuration starts with '/', for example:/home/data/output. The relative path configuration directly starts with the directory name,for example:output. - training_trace: collect iterative trajectory data, that is, the training task and software information of the AI software stack, to achieve performance analysis of the training task, focusing on data enhancement, forward and backward calculation, gradient aggregation update and other related data. The value is on/off. - task_trace: collect task trajectory data, that is, the hardware information of the HWTS/AICore of the Ascend 910 processor, and analyze the information of beginning and ending of the task. The value is on/off. - aicpu: collect profiling data enhanced by aicpu data. The value is on/off. - fp_point: specify the start position of the forward operator of the training network iteration trajectory, which is used to record the start timestamp of the forward calculation.The configuration value is the name of the first operator specified in the forward direction. when the value is empty,the system will automatically obtain the forward operator name. - bp_point: specify the end position of the iteration trajectory reversal operator of the training network, record the end timestamp of the backward calculation. The configuration value is the name of the operator after the specified reverse. when the value is empty,the system will automatically obtain the backward operator name. - aic_metrics: the values are as follows: ArithmeticUtilization: percentage statistics of various calculation indicators. PipeUtilization: the time-consuming ratio of calculation unit and handling unit,this item is the default value. Memory: percentage of external memory read and write instructions. MemoryL0: percentage of internal memory read and write instructions. ResourceConflictRatio: proportion of pipline queue instructions. The profiling_options is like '{"output":'/home/data/output','training_trace':'on'}' check_bprop (bool): Whether to check bprop. Default: False. max_device_memory (str): Sets the maximum memory available for devices. Currently, it is only supported on GPU. The format is "xxGB". Default: "1024GB". print_file_path (str): The path of saving print data. If this parameter is set, print data is saved to a file by default, and turns off printing to the screen. If the file already exists, add a timestamp suffix to the file. Default: ''. enable_sparse (bool): Whether to enable sparsity feature. Default: False. max_call_depth (int): Specify the maximum depth of function call. Default: 1000. env_config_path (str): Config path for DFX. auto_tune_mode (str): The mode of auto tune when op building, get the best tiling performance, default: NO_TUNE. The value must be in ['RL', 'GA', 'RL,GA']. RL: rl_tune; GA: ga_tune; RL,GA: rl_tune/ga_tune(Automatic selection). - rl_tune: Reinforecement Learning tune. - ga_tune: Genetic Algorithm tune. grad_for_scalar (bool): Whether to get gradient for scalar. Default: False. Raises: ValueError: If input key is not an attribute in context. Examples: >>> context.set_context(mode=context.GRAPH_MODE) >>> context.set_context(mode=context.PYNATIVE_MODE) >>> context.set_context(device_target="Ascend") >>> context.set_context(device_id=0) >>> context.set_context(save_graphs=True, save_graphs_path="./model.ms") >>> context.set_context(enable_reduce_precision=True) >>> context.set_context(enable_dump=True, save_dump_path=".") >>> context.set_context(reserve_class_name_in_scope=True) >>> context.set_context(variable_memory_max_size="6GB") >>> context.set_context(mode=context.GRAPH_MODE, ... device_target="Ascend",device_id=0, save_graphs=True, ... save_graphs_path="/mindspore") >>> context.set_context(enable_profiling=True, ... profiling_options='{"output":"/home/data/output","training_trace":"on"}') >>> context.set_context(max_device_memory="3.5GB") >>> context.set_context(print_file_path="print.pb") >>> context.set_context(max_call_depth=80) >>> context.set_context(env_config_path="./env_config.json") """ ctx = _context() # set device target first if 'device_target' in kwargs: ctx.set_device_target(kwargs['device_target']) device = ctx.get_param(ms_ctx_param.device_target) if not device.lower() in __device_target__: raise ValueError(f"Error, package type {__package_name__} support device type {__device_target__}, " f"but got device target {device}") device = ctx.get_param(ms_ctx_param.device_target) for key, value in kwargs.items(): if not _check_target_specific_cfgs(device, key): continue if hasattr(ctx, key): setattr(ctx, key, value) continue if key in ctx.setters: ctx.setters[key](ctx, value) continue # enum variables beginning with '_' are for internal use if key in ms_ctx_param.__members__ and key[0] != '_': ctx.set_param(ms_ctx_param.__members__[key], value) continue raise ValueError("Set context keyword %s is not recognized!" % key) def get_context(attr_key): """ Gets context attribute value according to the input key. Args: attr_key (str): The key of the attribute. Returns: Object, The value of given attribute key. Raises: ValueError: If input key is not an attribute in context. """ ctx = _context() device = ctx.get_param(ms_ctx_param.device_target) _ = _check_target_specific_cfgs(device, attr_key) if hasattr(ctx, attr_key): return getattr(ctx, attr_key) # enum variables beginning with '_' are for internal use if attr_key in ms_ctx_param.__members__ and attr_key[0] != '_': return ctx.get_param(ms_ctx_param.__members__[attr_key]) raise ValueError("Get context keyword %s is not recognized!" % attr_key) class ParallelMode: """ Parallel mode options. There are five kinds of parallel modes, "STAND_ALONE", "DATA_PARALLEL", "HYBRID_PARALLEL", "SEMI_AUTO_PARALLEL" and "AUTO_PARALLEL". Default: "STAND_ALONE". - STAND_ALONE: Only one processor is working. - DATA_PARALLEL: Distributes the data across different processors. - HYBRID_PARALLEL: Achieves data parallelism and model parallelism manually. - SEMI_AUTO_PARALLEL: Achieves data parallelism and model parallelism by setting parallel strategies. - AUTO_PARALLEL: Achieves parallelism automatically. MODE_LIST: The list of all supported parallel modes. """ STAND_ALONE = "stand_alone" DATA_PARALLEL = "data_parallel" HYBRID_PARALLEL = "hybrid_parallel" SEMI_AUTO_PARALLEL = "semi_auto_parallel" AUTO_PARALLEL = "auto_parallel" MODE_LIST = [STAND_ALONE, DATA_PARALLEL, HYBRID_PARALLEL, SEMI_AUTO_PARALLEL, AUTO_PARALLEL] @args_type_check(enable_ps=bool) def set_ps_context(**kwargs): """ Set parameter server training mode context. Note: Some other environment variables should also be set for parameter server training mode. These environment variables are listed below: MS_SERVER_NUM # Server number MS_WORKER_NUM # Worker number MS_SCHED_HOST # Scheduler IP address MS_SCHED_PORT # Scheduler port MS_ROLE # The role of this process: MS_SCHED #represents the scheduler, MS_WORKER #represents the worker, MS_PSERVER #represents the Server Args: enable_ps (bool): Whether to enable parameter server training mode. Only after enable_ps is set True, the environment variables will be effective. Default: False. Raises: ValueError: If input key is not the attribute in parameter server training mode context. Examples: >>> context.set_ps_context(enable_ps=True) """ _set_ps_context(**kwargs) def get_ps_context(attr_key): """ Get parameter server training mode context attribute value according to the key. Args: attr_key (str): The key of the attribute. Returns: Returns attribute value according to the key. Raises: ValueError: If input key is not attribute in auto parallel context. """ return _get_ps_context(attr_key) def reset_ps_context(): """ Reset parameter server training mode context attributes to the default values: - enable_ps: False. """ _reset_ps_context()
py
1a4f5f493a2c097db92b06ec5eb0ab3ade07811e
from dataclasses import dataclass from space_game.domain_names import ObjectId from space_game.events.Event import Event @dataclass class ObjectDeletedEvent(Event): object_id: ObjectId
py
1a4f5ffb999b7eb97786f15904bd815368af862d
import torchvision.transforms as transforms import torch from PIL import Image, ImageOps import random import utils.utils2.transforms as local_transforms """ As mentioned in http://pytorch.org/docs/master/torchvision/models.html All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using ean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. NOTE: transforms.ToTensor() transforms the incoming data to range of [0, 1]. It also converts [H x W x C] to [C x H x W], which is expected by PyTorch models. """ # For now we will use PyTorch model zoo models pytorch_zoo_normaliser = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # inception_normaliser = transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) class MyRandomCrop(object): def __init__(self, size): """ This is a variant of torchvision's RandomCrop. This one pads image only if the image is smaller than the intended size. Image will be padded to the right and bottom. :param size: tuple (width, height) """ self.size = size def __call__(self, img): width, height = img.size target_width, target_height = self.size pad_width = 0 pad_height = 0 do_padding = False if width < target_width: pad_width = target_width - width do_padding = True if height < target_height: pad_height = target_height - height do_padding = True # pad = (0, 0, pad_width, pad_height) if do_padding: img = ImageOps.expand(img, border=pad, fill=0) width, height = img.size if width == target_width and height == target_height: return img x1 = random.randint(0, width - target_width) y1 = random.randint(0, height - target_height) return img.crop((x1, y1, x1 + target_width, y1 + target_height)) def get_transformer_crop(crop_img_size, # 224 or more expected by PyTorch model zoo scale_img_size, normaliser = pytorch_zoo_normaliser, do_augment=False): if do_augment: # This is a augmented transformation, return transforms.Compose([transforms.Scale(scale_img_size), MyRandomCrop((crop_img_size, crop_img_size)), transforms.RandomHorizontalFlip(), local_transforms.ColorJitter(0.4, 0.4, 0.4, 0), # TODO - Add more transformations transforms.ToTensor(), normaliser]) else: # This is a vanilla transformation return transforms.Compose([transforms.Scale(scale_img_size), MyRandomCrop((crop_img_size, crop_img_size)), transforms.ToTensor(), normaliser]) def get_transformer(img_size, # 224 or more expected by PyTorch model zoo normaliser = pytorch_zoo_normaliser, do_augment=False): if do_augment: # This is a augmented transformation, return transforms.Compose([transforms.Scale((img_size, img_size)), transforms.RandomHorizontalFlip(), local_transforms.ColorJitter(0.4, 0.4, 0.4, 0), transforms.ToTensor(), normaliser]) else: # This is a vanilla transformation return transforms.Compose([transforms.Scale((img_size, img_size)), transforms.ToTensor(), normaliser]) def get_test_valid_transformer_crop(crop_img_size, scale_img_size, normaliser=pytorch_zoo_normaliser): """Transformation for Validation and Test set""" # TODO, implement TTA # NOTE: With the below logic, one might want to do multiple inference on the same # image, because there is some randomness, we do not know how big the image is return transforms.Compose([transforms.Resize(scale_img_size), MyRandomCrop((crop_img_size, crop_img_size)), transforms.ToTensor(), normaliser]) def get_test_valid_transformer(img_size, normaliser=pytorch_zoo_normaliser): """Transformation for Validation and Test set""" # TODO, implement TTA # NOTE: With the below logic, one might want to do multiple inference on the same # image, because there is some randomness, we do not know how big the image is return transforms.Compose([transforms.Resize((img_size, img_size)), transforms.ToTensor(), normaliser])
py
1a4f61be74eb492e5dd53a057b59e57888585bab
import unittest import endurox as e import exutils as u class TestTpencrypt(unittest.TestCase): # Test data encryption def test_tpencrypt_ok(self): w = u.NdrxStopwatch() while w.get_delta_sec() < u.test_duratation(): # binary data: buf=e.tpencrypt(b'\x00\x01\xff') self.assertNotEqual(buf, b'\x00\x01\xff') buf_org=e.tpdecrypt(buf) self.assertEqual(buf_org, b'\x00\x01\xff') # string based: buf=e.tpencrypt("HELLO WORLD") self.assertNotEqual(buf, "HELLO WORLD") buf_org=e.tpdecrypt(buf) self.assertEqual(buf_org, "HELLO WORLD") if __name__ == '__main__': unittest.main()
py
1a4f61df6c6bb31263db7736d58be7e032f0a3b6
# coding: utf-8 # Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. from __future__ import absolute_import import sys import unittest import datadog_api_client.v1 try: from datadog_api_client.v1.model import widget_sort except ImportError: widget_sort = sys.modules[ 'datadog_api_client.v1.model.widget_sort'] from datadog_api_client.v1.model.widget_field_sort import WidgetFieldSort class TestWidgetFieldSort(unittest.TestCase): """WidgetFieldSort unit test stubs""" def setUp(self): pass def tearDown(self): pass def testWidgetFieldSort(self): """Test WidgetFieldSort""" # FIXME: construct object with mandatory attributes with example values # model = WidgetFieldSort() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
1a4f634abe7fae1fa03fdf0ca0ebfea8a298ec3d
import time, datetime class Sensor(): def __init__(self, bme680): self.sensor = bme680.BME680(); def initialise(self,bme680): self.sensor.set_humidity_oversample(bme680.OS_2X) self.sensor.set_pressure_oversample(bme680.OS_4X) self.sensor.set_temperature_oversample(bme680.OS_8X) self.sensor.set_filter(bme680.FILTER_SIZE_3) self.sensor.set_gas_status(bme680.ENABLE_GAS_MEAS) self.sensor.set_gas_heater_temperature(320) self.sensor.set_gas_heater_duration(150) self.sensor.select_gas_heater_profile(0) def getGasSensorBaseline(self): start_time = time.time() curr_time = time.time() # takes 5 minutes to complete burn_in_time = 300 burn_in_data = [] print("Collecting gas resistance burn-in data for 5 mins\n") while curr_time - start_time < burn_in_time: curr_time = time.time() if self.sensor.get_sensor_data() and self.sensor.data.heat_stable: gas = self.sensor.data.gas_resistance burn_in_data.append(gas) print("Gas: {0} Ohms".format(gas)) time.sleep(1) gas_baseline = sum(burn_in_data[-50:]) / 50.0 #print("Gas baseline: {0} Ohms, humidity baseline: {1:.2f} %RH\n".format(gas_baseline, hum_baseline)) return gas_baseline; def getAirQualityScore(self, gas_baseline): gas = self.sensor.data.gas_resistance gas_offset = gas_baseline - gas # Set the humidity baseline to 40%, an optimal indoor humidity. hum_baseline = 40.0 # This sets the balance between humidity and gas reading in the # calculation of air_quality_score (25:75, humidity:gas) hum_weighting = 0.25 hum = self.sensor.data.humidity hum_offset = hum - hum_baseline # Calculate hum_score as the distance from the hum_baseline. if hum_offset > 0: hum_score = (100 - hum_baseline - hum_offset) / (100 - hum_baseline) * (hum_weighting * 100) else: hum_score = (hum_baseline + hum_offset) / hum_baseline * (hum_weighting * 100) # Calculate gas_score as the distance from the gas_baseline. if gas_offset > 0: gas_score = (gas / gas_baseline) * (100 - (hum_weighting * 100)) else: gas_score = 100 - (hum_weighting * 100) # Calculate air_quality_score air_quality_score = hum_score + gas_score return air_quality_score; def getData(self, gas_baseline): data_dict = {}; output = ''; if self.sensor.get_sensor_data() and self.sensor.data.heat_stable: data_dict['timestamp'] = datetime.datetime.now().replace(microsecond=0).isoformat(); data_dict['temperature'] = self.sensor.data.temperature; data_dict['pressure'] = self.sensor.data.pressure; data_dict['humidity'] = self.sensor.data.humidity; data_dict['airq'] = self.getAirQualityScore(gas_baseline); else: data_dict['timestamp'] = datetime.datetime.now().replace(microsecond=0).isoformat(); data_dict['temperature'] = 0; data_dict['pressure'] = 0; data_dict['humidity'] = 0; data_dict['airq'] = 0; return data_dict;
py
1a4f635cb82f9242f8e43535c8ee03e58db81582
# Generated by Django 2.2.7 on 2019-12-20 20:19 import datetime from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('complaints', '0003_auto_20191221_0102'), ] operations = [ migrations.AlterField( model_name='complaint', name='date', field=models.DateTimeField(default=datetime.datetime(2019, 12, 21, 1, 49, 40, 3999)), ), migrations.AlterField( model_name='complaint', name='status', field=models.BooleanField(default=True), ), ]
py
1a4f6484b4de730fdaacf485c96d934951154836
import numpy as np import pyqtgraph as pg from scipy import signal from acconeer_utils.clients.reg.client import RegClient from acconeer_utils.clients.json.client import JSONClient from acconeer_utils.clients import configs from acconeer_utils import example_utils from acconeer_utils.pg_process import PGProcess, PGProccessDiedException def main(): args = example_utils.ExampleArgumentParser(num_sens=1).parse_args() example_utils.config_logging(args) if args.socket_addr: client = JSONClient(args.socket_addr) else: port = args.serial_port or example_utils.autodetect_serial_port() client = RegClient(port) config = get_base_config() config.sensor = args.sensors client.setup_session(config) pg_updater = PGUpdater(config) pg_process = PGProcess(pg_updater) pg_process.start() client.start_streaming() interrupt_handler = example_utils.ExampleInterruptHandler() print("Press Ctrl-C to end session") processor = PresenceDetectionProcessor(config) while not interrupt_handler.got_signal: info, sweep = client.get_next() plot_data = processor.process(sweep) if plot_data is not None: try: pg_process.put_data(plot_data) except PGProccessDiedException: break print("Disconnecting...") pg_process.close() client.disconnect() def get_base_config(): config = configs.IQServiceConfig() config.range_interval = [0.4, 0.8] config.sweep_rate = 60 config.gain = 0.6 return config class PresenceDetectionProcessor: def __init__(self, config): self.config = config # Settings n_dft = 15 # Data length for frequency estimation [s] | 20 t_freq_est = 0.5 # Time between frequency estimations [s] | 2 tau_iq = 0.04 # Time constant low-pass filter on IQ-data [s] | 0.04 self.f_s = self.config.sweep_rate # Time constant low-pass filter on IQ-data [s] | 150 self.D = 124 # Spatial or Range down sampling factor | 124 self.f_low = 0.1 # Lowest frequency of interest [Hz] | 0.1 self.f_high = 1.0 # Highest frequency of interest [Hz] | 1 self.M = int(self.f_s / 10) # Time down sampling for DFT | 40 f_s/M ~ 10 Hz self.lambda_p = 40 # Threshold: spectral peak to noise ratio [1] | 50 self.lamda_05 = 6 # Threshold: ratio fundamental and half harmonic self.interpolate = True # Interpolation between DFT points self.delta_f = 1 / n_dft self.dft_f_vec = np.arange(self.f_low, self.f_high, self.delta_f) self.dft_points = np.size(self.dft_f_vec) # Butterworth bandpass filter f_n = self.f_s / 2 v_low = self.f_low / f_n v_high = self.f_high / f_n self.b, self.a = signal.butter(4, [v_low, v_high], btype="bandpass") # Exponential lowpass filter self.alpha_iq = np.exp(-2 / (self.f_s * tau_iq)) self.alpha_phi = np.exp(-2 * self.f_low / self.f_s) # Parameter init self.sweeps_in_block = int(np.ceil(n_dft * self.f_s)) self.new_sweeps_per_results = int(np.ceil(t_freq_est * self.f_s)) self.phi_vec = np.zeros((self.sweeps_in_block, 1)) self.f_est_vec = np.zeros(1) self.f_dft_est_vec = np.zeros(1) self.snr_vec = 0 self.sweep_index = 0 def process(self, sweep): if self.sweep_index == 0: delay_points = int(np.ceil(np.size(sweep) / self.D)) self.data_s_d_mat = np.zeros((self.sweeps_in_block, delay_points), dtype="complex") self.data_s_d_mat[self.sweep_index, :] = self.downsample(sweep, self.D) out_data = None elif self.sweep_index < self.sweeps_in_block: self.data_s_d_mat[self.sweep_index, :] = self.iq_lp_filter_time( self.data_s_d_mat[self.sweep_index - 1, :], self.downsample(sweep, self.D) ) temp_phi = self.unwrap_phase( self.phi_vec[self.sweep_index - 1], self.data_s_d_mat[self.sweep_index, :], self.data_s_d_mat[self.sweep_index - 1, :] ) self.phi_vec[self.sweep_index] = self.unwrap_phase( self.phi_vec[self.sweep_index - 1], self.data_s_d_mat[self.sweep_index, :], self.data_s_d_mat[self.sweep_index - 1, :] ) phi_filt = signal.lfilter(self.b, self.a, self.phi_vec, axis=0) out_data = { "phi_raw": self.phi_vec, "phi_filt": phi_filt, "power_spectrum": np.zeros(self.dft_points), "x_dft": np.linspace(self.f_low, self.f_high, self.dft_points), "f_dft_est_hist": self.f_dft_est_vec, "f_est_hist": self.f_est_vec, "f_dft_est": 0, "f_est": 0, "f_low": self.f_low, "f_high": self.f_high, "snr": 0, "lambda_p": self.lambda_p, "dist_range": self.config.range_interval, "init_progress": round(100 * self.sweep_index / self.sweeps_in_block), } else: # Lowpass filter IQ data downsampled in distance points self.data_s_d_mat = np.roll(self.data_s_d_mat, -1, axis=0) self.data_s_d_mat[-1, :] = self.iq_lp_filter_time( self.data_s_d_mat[-1, :], self.downsample(sweep, self.D) ) # Phase unwrapping of IQ data temp_phi = self.unwrap_phase( self.phi_vec[-1], self.data_s_d_mat[-1, :], self.data_s_d_mat[-2, :] ) self.phi_vec = np.roll(self.phi_vec, -1, axis=0) self.phi_vec[-1] = temp_phi if np.mod(self.sweep_index, self.new_sweeps_per_results - 1) == 0: # Bandpass filter unwrapped data phi_filt_vec = signal.lfilter(self.b, self.a, self.phi_vec, axis=0) P, dft_est, _ = self.dft(self.downsample(phi_filt_vec, self.M)) f_breath_est, _, snr, _ = self.breath_freq_est(P) self.f_est_vec = np.append(self.f_est_vec, f_breath_est) self.f_dft_est_vec = np.append(self.f_dft_est_vec, dft_est) self.snr_vec = np.append(self.snr_vec, snr) out_data = { "phi_raw": self.phi_vec, "phi_filt": phi_filt_vec, "power_spectrum": P, "x_dft": np.linspace(self.f_low, self.f_high, self.dft_points), "f_dft_est_hist": self.f_dft_est_vec, "f_est_hist": self.f_est_vec, "f_dft_est": dft_est, "f_est": f_breath_est, "f_low": self.f_low, "f_high": self.f_high, "snr": snr, "lambda_p": self.lambda_p, "dist_range": self.config.range_interval, "init_progress": None, } else: out_data = None self.sweep_index += 1 return out_data def downsample(self, data, n): return data[::n] def iq_lp_filter_time(self, state, new_data): return self.alpha_iq * state + (1 - self.alpha_iq) * new_data def unwrap_phase(self, phase_lp, data_1, data_2): return phase_lp * self.alpha_phi + np.angle(np.mean(data_2 * np.conjugate(data_1))) def dft(self, data): data = np.squeeze(data) n_vec = np.arange(data.size) * self.M dft = np.exp((2j * np.pi / self.f_s) * np.outer(self.dft_f_vec, n_vec)) P = np.square(np.abs(np.matmul(dft, data))) idx_f = np.argmax(P) dft_est = self.dft_f_vec[idx_f] return P, dft_est, P[idx_f] def noise_est(self, P): return np.mean(np.sort(P)[:(self.dft_points//2)-1]) def half_peak_frequency(self, P, f_est): idx_half = int(f_est / (2 * self.delta_f)) if idx_half < self.f_low: return 0 else: return (1 / self.delta_f) * ( (self.dft_f_vec[idx_half+1] - f_est / 2) * P[idx_half] + (f_est/2 - self.dft_f_vec[idx_half]) * P[idx_half + 1] ) def breath_freq_est(self, P): f_idx = np.argmax(P) P_peak = P[f_idx] if self.interpolate: f_est, P_peak = self.freq_quad_interpolation(P) else: f_est = self.dft_f_vec[f_idx] P_half = self.half_peak_frequency(P, f_est) if (P_peak < self.lamda_05 * P_half): f_est = f_est / 2 P_peak = P_half if self.f_low < f_est < self.f_high and P_peak > self.lambda_p*self.noise_est(P): f_est_valid = True else: f_est_valid = False f_est = 0 snr = P_peak / self.noise_est(P) return f_est, P_peak, snr, f_est_valid def freq_quad_interpolation(self, P): f_idx = np.argmax(P) if 0 < f_idx < P.size and P.size > 3: f_est = self.dft_f_vec[f_idx] \ + self.delta_f / 2 * ( (np.log(P[f_idx+1])-np.log(P[f_idx-1])) / (2*np.log(P[f_idx]) - np.log(P[f_idx+1]) - np.log(P[f_idx-1])) ) P_peak = P[f_idx] + np.exp( 1/8 * np.square(np.log(P[f_idx+1]) - np.log(P[f_idx-1])) / (2*np.log(P[f_idx]) - np.log(P[f_idx+1]) - np.log(P[f_idx-1])) ) if not (self.f_low < f_est < self.f_high): f_est = 0 else: f_est = 0 P_peak = 0 return f_est, P_peak class PGUpdater: def __init__(self, config): self.config = config def setup(self, win): win.resize(800, 600) win.setWindowTitle("Acconeer sleep breathing estimation example") phi_title = "Breathing motion (detection range: {} m to {} m)" \ .format(*self.config.range_interval) self.phi_plot = win.addPlot(title=phi_title) self.phi_plot.showGrid(x=True, y=True) self.phi_plot.setLabel("left", "Amplitude") self.phi_plot.setLabel("bottom", "Samples") self.phi_plot.addLegend() self.filt_phi_curve = self.phi_plot.plot( pen=example_utils.pg_pen_cycler(0), name="Filtered", ) self.raw_phi_curve = self.phi_plot.plot( pen=example_utils.pg_pen_cycler(1), name="Raw", ) win.nextRow() self.spect_plot = win.addPlot(title="Power spectrum") self.spect_plot.showGrid(x=True, y=True) self.spect_plot.setLabel("left", "Power") self.spect_plot.setLabel("bottom", "Frequency (Hz)") self.spect_curve = self.spect_plot.plot(pen=example_utils.pg_pen_cycler(1)) self.spect_smax = example_utils.SmoothMax(self.config.sweep_rate / 15) self.spect_dft_inf_line = pg.InfiniteLine(pen=example_utils.pg_pen_cycler(1, "--")) self.spect_plot.addItem(self.spect_dft_inf_line) self.spect_est_inf_line = pg.InfiniteLine(pen=example_utils.pg_pen_cycler(0, "--")) self.spect_plot.addItem(self.spect_est_inf_line) self.spect_plot.setXRange(0, 1) self.spect_plot.setYRange(0, 1) self.spect_text_item = pg.TextItem("Initiating...", anchor=(0.5, 0.5), color="k") self.spect_text_item.setPos(0.5, 0.5) self.spect_plot.addItem(self.spect_text_item) win.nextRow() self.fest_plot = win.addPlot(title="Breathing estimation history") self.fest_plot.showGrid(x=True, y=True) self.fest_plot.setLabel("left", "Frequency (Hz)") self.fest_plot.setLabel("bottom", "Samples") self.fest_plot.addLegend() self.fest_curve = self.fest_plot.plot( pen=example_utils.pg_pen_cycler(0), name="Breathing est.", ) self.fest_dft_curve = self.fest_plot.plot( pen=example_utils.pg_pen_cycler(1), name="DFT est.", ) self.fest_plot.setXRange(0, 1) self.fest_plot.setYRange(0, 1.2) self.fest_text_item = pg.TextItem(anchor=(0, 0), color="k") self.fest_text_item.setPos(0, 1.2) self.fest_plot.addItem(self.fest_text_item) def update(self, data): self.filt_phi_curve.setData(np.squeeze(data["phi_filt"])) self.raw_phi_curve.setData(np.squeeze(data["phi_raw"])) if data["init_progress"] is not None: self.spect_text_item.setText("Initiating: {} %".format(data["init_progress"])) else: snr = data["snr"] if snr == 0: s = "SNR: N/A | {:.0f} dB".format(10*np.log10(data["lambda_p"])) else: fmt = "SNR: {:.0f} | {:.0f} dB" s = fmt.format(10*np.log10(snr), 10*np.log10(data["lambda_p"])) self.spect_text_item.setText(s) self.spect_text_item.setAnchor((0, 1)) self.spect_text_item.setPos(0, 0) f_est = data["f_est"] if f_est > 0: s = "Latest frequency estimate: {:.2f} Hz | {:.0f} BPM".format(f_est, f_est*60) self.fest_text_item.setText(s) self.fest_plot.enableAutoRange(x=True) self.spect_curve.setData(data["x_dft"], data["power_spectrum"]) self.spect_dft_inf_line.setValue(data["f_dft_est"]) self.spect_est_inf_line.setValue(data["f_est"]) self.spect_plot.setYRange(0, self.spect_smax.update(np.amax(data["power_spectrum"]))) self.fest_curve.setData(np.squeeze(data["f_est_hist"])) self.fest_dft_curve.setData(np.squeeze(data["f_dft_est_hist"])) if __name__ == "__main__": main()
py
1a4f64a55c4b723893963c37621ec5467eb7c517
# -*- coding: utf-8 -*- # Generated by Django 1.11.17 on 2020-06-10 03:05 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('reviews', '0002_remove_project_language'), ] operations = [ migrations.CreateModel( name='Rating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('design', models.IntegerField(blank=True, choices=[(1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10')], default=0)), ('usability', models.IntegerField(blank=True, choices=[(1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10')])), ('content', models.IntegerField(blank=True, choices=[(1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10')])), ('score', models.FloatField(blank=True, default=0)), ('design_average', models.FloatField(blank=True, default=0)), ('usability_average', models.FloatField(blank=True, default=0)), ('content_average', models.FloatField(blank=True, default=0)), ('project', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='ratings', to='reviews.Project')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, related_name='rater', to=settings.AUTH_USER_MODEL)), ], ), ]
gyp
1a4f65334ec781232d1feddf396aa307beafd5f2
{ 'targets': [ { 'target_name': 'csound-api', 'include_dirs': [ '<!(node --eval "require(\'nan\')")' ], 'sources': [ 'src/csound-api.cc' ], 'conditions': [ ['OS == "mac"', { # When creating an Xcode project, this lets Xcode find headers. 'include_dirs': [ '/usr/local/include' ], 'libraries': [ '/usr/local/lib/libcsnd6.6.0.dylib' ], # This is needed so Boost can find the <atomic> header. 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-stdlib=libc++' ], 'MACOSX_DEPLOYMENT_TARGET': '10.7' } }], ['OS == "linux"', { 'libraries': [ '-lcsound64' ] }], ['OS == "win"', { 'defines': [ # This is needed due to the issue described at # https://connect.microsoft.com/VisualStudio/feedback/details/1892487 '_ENABLE_ATOMIC_ALIGNMENT_FIX', # Prevent min and max macros from being defined in windows.h. 'NOMINMAX' ], 'msvs_settings': { 'VCCLCompilerTool': { 'ExceptionHandling': 1 # /EHsc } } }] ] } ] }
py
1a4f65998d960bc5290f56aada647f83b3d7d2e2
"""Authors: Cody Baker and Ben Dichter.""" from pathlib import Path from datetime import datetime from typing import Optional import spikeextractors as se from pynwb import NWBHDF5IO from nwb_conversion_tools import NWBConverter, CEDRecordingInterface from nwb_conversion_tools.utils.spike_interface import write_recording from .cedstimulusinterface import CEDStimulusInterface def quick_write( ced_file_path: str, session_description: str, session_start: str, save_path: str, sorting: Optional[se.SortingExtractor] = None, recording_lfp: Optional[se.RecordingExtractor] = None, overwrite: bool = False, ): """Automatically extracts required session info from ced_file_path and writes NWBFile in spikeextractors.""" ced_file_path = Path(ced_file_path) session_id = ced_file_path.stem nwbfile_kwargs = dict( session_description=session_description, session_start_time=session_start.astimezone(), session_id=session_id, ) if sorting is not None: se.NwbSortingExtractor.write_sorting( sorting=sorting, save_path=save_path, overwrite=overwrite, skip_properties=["mda_max_channel"], skip_features=["waveforms"], **nwbfile_kwargs ) if recording_lfp is not None: write_recording(recording=recording_lfp, save_path=save_path, write_as="lfp") class CEDNWBConverter(NWBConverter): data_interface_classes = dict( CEDRecording=CEDRecordingInterface, CEDStimulus=CEDStimulusInterface ) def __init__(self, source_data): channel_info = self.data_interface_classes[ "CEDRecording" ].RX.get_all_channels_info(source_data["CEDRecording"]["file_path"]) rhd_channels = [] stim_channels = [] for ch, info in channel_info.items(): if "Rhd" in info["title"]: rhd_channels.append(ch) if info["title"] in ["CED_Mech", "MechTTL", "Laser"]: stim_channels.append(ch) source_data["CEDRecording"].update(smrx_channel_ids=rhd_channels) source_data["CEDStimulus"].update(smrx_channel_ids=stim_channels) super().__init__(source_data) def get_metadata(self): metadata = super().get_metadata() smrx_file_path = Path( self.data_interface_objects["CEDRecording"].source_data["file_path"] ) session_id = smrx_file_path.stem metadata["NWBFile"].update( institution="EMBL - Heidelberg", lab="Mease", session_id=session_id ) return metadata
py
1a4f66488995ef0445f036da62ae4b6b704cdda2
import numpy as np import math import torch.nn as nn from .utils import unetConv2, unetUp, conv2DBatchNormRelu, conv2DBatchNorm import torch import torch.nn.functional as F from models.layers.grid_attention_layer import GridAttentionBlock2D_TORR as AttentionBlock2D from models.networks_other import init_weights class sononet_grid_attention(nn.Module): def __init__(self, feature_scale=4, n_classes=21, in_channels=3, is_batchnorm=True, n_convs=None, nonlocal_mode='concatenation', aggregation_mode='concat'): super(sononet_grid_attention, self).__init__() self.in_channels = in_channels self.is_batchnorm = is_batchnorm self.feature_scale = feature_scale self.n_classes= n_classes self.aggregation_mode = aggregation_mode self.deep_supervised = True if n_convs is None: n_convs = [3, 3, 3, 2, 2] filters = [64, 128, 256, 512] filters = [int(x / self.feature_scale) for x in filters] #################### # Feature Extraction self.conv1 = unetConv2(self.in_channels, filters[0], self.is_batchnorm, n=n_convs[0]) self.maxpool1 = nn.MaxPool2d(kernel_size=2) self.conv2 = unetConv2(filters[0], filters[1], self.is_batchnorm, n=n_convs[1]) self.maxpool2 = nn.MaxPool2d(kernel_size=2) self.conv3 = unetConv2(filters[1], filters[2], self.is_batchnorm, n=n_convs[2]) self.maxpool3 = nn.MaxPool2d(kernel_size=2) self.conv4 = unetConv2(filters[2], filters[3], self.is_batchnorm, n=n_convs[3]) self.maxpool4 = nn.MaxPool2d(kernel_size=2) self.conv5 = unetConv2(filters[3], filters[3], self.is_batchnorm, n=n_convs[4]) ################ # Attention Maps self.compatibility_score1 = AttentionBlock2D(in_channels=filters[2], gating_channels=filters[3], inter_channels=filters[3], sub_sample_factor=(1,1), mode=nonlocal_mode, use_W=False, use_phi=True, use_theta=True, use_psi=True, nonlinearity1='relu') self.compatibility_score2 = AttentionBlock2D(in_channels=filters[3], gating_channels=filters[3], inter_channels=filters[3], sub_sample_factor=(1,1), mode=nonlocal_mode, use_W=False, use_phi=True, use_theta=True, use_psi=True, nonlinearity1='relu') ######################### # Aggreagation Strategies self.attention_filter_sizes = [filters[2], filters[3]] if aggregation_mode == 'concat': self.classifier = nn.Linear(filters[2]+filters[3]+filters[3], n_classes) self.aggregate = self.aggreagation_concat else: self.classifier1 = nn.Linear(filters[2], n_classes) self.classifier2 = nn.Linear(filters[3], n_classes) self.classifier3 = nn.Linear(filters[3], n_classes) self.classifiers = [self.classifier1, self.classifier2, self.classifier3] if aggregation_mode == 'mean': self.aggregate = self.aggregation_sep elif aggregation_mode == 'deep_sup': self.classifier = nn.Linear(filters[2] + filters[3] + filters[3], n_classes) self.aggregate = self.aggregation_ds elif aggregation_mode == 'ft': self.classifier = nn.Linear(n_classes*3, n_classes) self.aggregate = self.aggregation_ft else: raise NotImplementedError #################### # initialise weights for m in self.modules(): if isinstance(m, nn.Conv2d): init_weights(m, init_type='kaiming') elif isinstance(m, nn.BatchNorm2d): init_weights(m, init_type='kaiming') def aggregation_sep(self, *attended_maps): return [ clf(att) for clf, att in zip(self.classifiers, attended_maps) ] def aggregation_ft(self, *attended_maps): preds = self.aggregation_sep(*attended_maps) return self.classifier(torch.cat(preds, dim=1)) def aggregation_ds(self, *attended_maps): preds_sep = self.aggregation_sep(*attended_maps) pred = self.aggregation_concat(*attended_maps) return [pred] + preds_sep def aggregation_concat(self, *attended_maps): return self.classifier(torch.cat(attended_maps, dim=1)) def forward(self, inputs): # Feature Extraction conv1 = self.conv1(inputs) maxpool1 = self.maxpool1(conv1) conv2 = self.conv2(maxpool1) maxpool2 = self.maxpool2(conv2) conv3 = self.conv3(maxpool2) maxpool3 = self.maxpool3(conv3) conv4 = self.conv4(maxpool3) maxpool4 = self.maxpool4(conv4) conv5 = self.conv5(maxpool4) batch_size = inputs.shape[0] pooled = F.adaptive_avg_pool2d(conv5, (1, 1)).view(batch_size, -1) # Attention Mechanism g_conv1, att1 = self.compatibility_score1(conv3, conv5) g_conv2, att2 = self.compatibility_score2(conv4, conv5) # flatten to get single feature vector fsizes = self.attention_filter_sizes g1 = torch.sum(g_conv1.view(batch_size, fsizes[0], -1), dim=-1) g2 = torch.sum(g_conv2.view(batch_size, fsizes[1], -1), dim=-1) return self.aggregate(g1, g2, pooled) @staticmethod def apply_argmax_softmax(pred): log_p = F.softmax(pred, dim=1) return log_p
py
1a4f6653ee15b618482dbd09c5c2b99c5bcc89a9
""" Unit tests for the Driver base class.""" from __future__ import print_function import unittest import numpy as np from openmdao.api import Problem, IndepVarComp, Group, ExplicitComponent from openmdao.devtools.testutil import assert_rel_error from openmdao.test_suite.components.sellar import SellarDerivatives from openmdao.test_suite.components.simple_comps import DoubleArrayComp, NonSquareArrayComp class TestDriver(unittest.TestCase): def test_basic_get(self): prob = Problem() prob.model = model = SellarDerivatives() model.add_design_var('z') model.add_objective('obj') model.add_constraint('con1', lower=0) prob.set_solver_print(level=0) prob.setup(check=False) prob.run_driver() designvars = prob.driver.get_design_var_values() self.assertEqual(designvars['pz.z'][0], 5.0 ) designvars = prob.driver.get_objective_values() self.assertEqual(designvars['obj_cmp.obj'], prob['obj'] ) designvars = prob.driver.get_constraint_values() self.assertEqual(designvars['con_cmp1.con1'], prob['con1'] ) def test_scaled_design_vars(self): prob = Problem() prob.model = model = SellarDerivatives() model.add_design_var('z', ref=5.0, ref0=3.0) model.add_objective('obj') model.add_constraint('con1', lower=0) prob.set_solver_print(level=0) prob.setup(check=False) dv = prob.driver.get_design_var_values() self.assertEqual(dv['pz.z'][0], 1.0) self.assertEqual(dv['pz.z'][1], -0.5) prob.driver.set_design_var('pz.z', np.array((2.0, -2.0))) self.assertEqual(prob['z'][0], 7.0) self.assertEqual(prob['z'][1], -1.0) def test_scaled_constraints(self): prob = Problem() prob.model = model = SellarDerivatives() model.add_design_var('z') model.add_objective('obj') model.add_constraint('con1', lower=0, ref=2.0, ref0=3.0) prob.set_solver_print(level=0) prob.setup(check=False) prob.run_model() cv = prob.driver.get_constraint_values()['con_cmp1.con1'][0] base = prob['con1'] self.assertEqual((base-3.0)/(2.0-3.0), cv) def test_scaled_objectves(self): prob = Problem() prob.model = model = SellarDerivatives() model.add_design_var('z') model.add_objective('obj', ref=2.0, ref0=3.0) model.add_constraint('con1', lower=0) prob.set_solver_print(level=0) prob.setup(check=False) prob.run_model() cv = prob.driver.get_objective_values()['obj_cmp.obj'][0] base = prob['obj'] self.assertEqual((base-3.0)/(2.0-3.0), cv) def test_scaled_derivs(self): prob = Problem() prob.model = model = SellarDerivatives() model.add_design_var('z', ref=2.0, ref0=0.0) model.add_objective('obj', ref=1.0, ref0=0.0) model.add_constraint('con1', lower=0, ref=2.0, ref0=0.0) prob.set_solver_print(level=0) prob.setup(check=False) prob.run_model() base = prob.compute_total_derivs(of=['obj', 'con1'], wrt=['z']) derivs = prob.driver._compute_total_derivs(of=['obj_cmp.obj', 'con_cmp1.con1'], wrt=['pz.z'], return_format='dict') assert_rel_error(self, base[('con1', 'z')][0], derivs['con_cmp1.con1']['pz.z'][0], 1e-5) assert_rel_error(self, base[('obj', 'z')][0]*2.0, derivs['obj_cmp.obj']['pz.z'][0], 1e-5) def test_vector_scaled_derivs(self): prob = Problem() prob.model = model = Group() model.add_subsystem('px', IndepVarComp(name="x", val=np.ones((2, )))) comp = model.add_subsystem('comp', DoubleArrayComp()) model.connect('px.x', 'comp.x1') model.add_design_var('px.x', ref=np.array([2.0, 3.0]), ref0=np.array([0.5, 1.5])) model.add_objective('comp.y1', ref=np.array([[7.0, 11.0]]), ref0=np.array([5.2, 6.3])) model.add_constraint('comp.y2', lower=0.0, upper=1.0, ref=np.array([[2.0, 4.0]]), ref0=np.array([1.2, 2.3])) prob.setup(check=False) prob.run_driver() derivs = prob.driver._compute_total_derivs(of=['comp.y1'], wrt=['px.x'], return_format='dict') oscale = np.array([1.0/(7.0-5.2), 1.0/(11.0-6.3)]) iscale = np.array([2.0-0.5, 3.0-1.5]) J = comp.JJ[0:2, 0:2] # doing this manually so that I don't inadvertantly make an error in the vector math in both the code and test. J[0, 0] *= oscale[0]*iscale[0] J[0, 1] *= oscale[0]*iscale[1] J[1, 0] *= oscale[1]*iscale[0] J[1, 1] *= oscale[1]*iscale[1] assert_rel_error(self, J, derivs['comp.y1']['px.x'], 1.0e-3) obj = prob.driver.get_objective_values() obj_base = np.array([ (prob['comp.y1'][0]-5.2)/(7.0-5.2), (prob['comp.y1'][1]-6.3)/(11.0-6.3) ]) assert_rel_error(self, obj['comp.y1'], obj_base, 1.0e-3) con = prob.driver.get_constraint_values() con_base = np.array([ (prob['comp.y2'][0]-1.2)/(2.0-1.2), (prob['comp.y2'][1]-2.3)/(4.0-2.3) ]) assert_rel_error(self, con['comp.y2'], con_base, 1.0e-3) def test_vector_scaled_derivs_diff_sizes(self): prob = Problem() prob.model = model = Group() model.add_subsystem('px', IndepVarComp(name="x", val=np.ones((2, )))) comp = model.add_subsystem('comp', NonSquareArrayComp()) model.connect('px.x', 'comp.x1') model.add_design_var('px.x', ref=np.array([2.0, 3.0]), ref0=np.array([0.5, 1.5])) model.add_objective('comp.y1', ref=np.array([[7.0, 11.0, 2.0]]), ref0=np.array([5.2, 6.3, 1.2])) model.add_constraint('comp.y2', lower=0.0, upper=1.0, ref=np.array([[2.0]]), ref0=np.array([1.2])) prob.setup(check=False) prob.run_driver() derivs = prob.driver._compute_total_derivs(of=['comp.y1'], wrt=['px.x'], return_format='dict') oscale = np.array([1.0/(7.0-5.2), 1.0/(11.0-6.3), 1.0/(2.0-1.2)]) iscale = np.array([2.0-0.5, 3.0-1.5]) J = comp.JJ[0:3, 0:2] # doing this manually so that I don't inadvertantly make an error in the vector math in both the code and test. J[0, 0] *= oscale[0]*iscale[0] J[0, 1] *= oscale[0]*iscale[1] J[1, 0] *= oscale[1]*iscale[0] J[1, 1] *= oscale[1]*iscale[1] J[2, 0] *= oscale[2]*iscale[0] J[2, 1] *= oscale[2]*iscale[1] assert_rel_error(self, J, derivs['comp.y1']['px.x'], 1.0e-3) obj = prob.driver.get_objective_values() obj_base = np.array([ (prob['comp.y1'][0]-5.2)/(7.0-5.2), (prob['comp.y1'][1]-6.3)/(11.0-6.3), (prob['comp.y1'][2]-1.2)/(2.0-1.2) ]) assert_rel_error(self, obj['comp.y1'], obj_base, 1.0e-3) con = prob.driver.get_constraint_values() con_base = np.array([ (prob['comp.y2'][0]-1.2)/(2.0-1.2)]) assert_rel_error(self, con['comp.y2'], con_base, 1.0e-3) if __name__ == "__main__": unittest.main()
py
1a4f666300684f7f1b769d235e02ea26513a0c7a
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import subprocess import sys from setuptools import setup, find_packages, Extension from setuptools import Extension, find_packages, setup if sys.version_info < (3, 6): sys.exit("Sorry, Python >= 3.6 is required for fairseq.") def write_version_py(): with open(os.path.join("fairseq", "version.txt")) as f: version = f.read().strip() # append latest commit hash to version string try: sha = ( subprocess.check_output(["git", "rev-parse", "HEAD"]) .decode("ascii") .strip() ) version += "+" + sha[:7] except Exception: pass # write version info to fairseq/version.py with open(os.path.join("fairseq", "version.py"), "w") as f: f.write('__version__ = "{}"\n'.format(version)) return version version = write_version_py() with open("README.md") as f: readme = f.read() if sys.platform == "darwin": extra_compile_args = ["-stdlib=libc++", "-O3"] else: extra_compile_args = ["-std=c++11", "-O3"] class NumpyExtension(Extension): """Source: https://stackoverflow.com/a/54128391""" def __init__(self, *args, **kwargs): self.__include_dirs = [] super().__init__(*args, **kwargs) @property def include_dirs(self): import numpy return self.__include_dirs + [numpy.get_include()] @include_dirs.setter def include_dirs(self, dirs): self.__include_dirs = dirs extensions = [ Extension( "fairseq.libbleu", sources=[ "fairseq/clib/libbleu/libbleu.cpp", "fairseq/clib/libbleu/module.cpp", ], extra_compile_args=extra_compile_args, ), NumpyExtension( "fairseq.data.data_utils_fast", sources=["fairseq/data/data_utils_fast.pyx"], language="c++", extra_compile_args=extra_compile_args, ), NumpyExtension( "fairseq.data.token_block_utils_fast", sources=["fairseq/data/token_block_utils_fast.pyx"], language="c++", extra_compile_args=extra_compile_args, ), ] cmdclass = {} try: # torch is not available when generating docs from torch.utils import cpp_extension extensions.extend( [ cpp_extension.CppExtension( "fairseq.libbase", sources=[ "fairseq/clib/libbase/balanced_assignment.cpp", ], ) ] ) extensions.extend( [ cpp_extension.CppExtension( "fairseq.libnat", sources=[ "fairseq/clib/libnat/edit_dist.cpp", ], ) ] ) if "CUDA_HOME" in os.environ: extensions.extend( [ cpp_extension.CppExtension( "fairseq.libnat_cuda", sources=[ "fairseq/clib/libnat_cuda/edit_dist.cu", "fairseq/clib/libnat_cuda/binding.cpp", ], ), cpp_extension.CppExtension( "fairseq.ngram_repeat_block_cuda", sources=[ "fairseq/clib/cuda/ngram_repeat_block_cuda.cpp", "fairseq/clib/cuda/ngram_repeat_block_cuda_kernel.cu", ], ), ] ) cmdclass["build_ext"] = cpp_extension.BuildExtension except ImportError: pass if "READTHEDOCS" in os.environ: # don't build extensions when generating docs extensions = [] if "build_ext" in cmdclass: del cmdclass["build_ext"] # use CPU build of PyTorch dependency_links = [ "https://download.pytorch.org/whl/cpu/torch-1.7.0%2Bcpu-cp36-cp36m-linux_x86_64.whl" ] else: dependency_links = [] if "clean" in sys.argv[1:]: # Source: https://bit.ly/2NLVsgE print("deleting Cython files...") import subprocess subprocess.run( ["rm -f fairseq/*.so fairseq/**/*.so fairseq/*.pyd fairseq/**/*.pyd"], shell=True, ) extra_packages = [] if os.path.exists(os.path.join("fairseq", "model_parallel", "megatron", "mpu")): extra_packages.append("fairseq.model_parallel.megatron.mpu") def do_setup(package_data): setup( name="fairseq", version=version, description="Facebook AI Research Sequence-to-Sequence Toolkit", url="https://github.com/pytorch/fairseq", classifiers=[ "Intended Audience :: Science/Research", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], long_description=readme, long_description_content_type="text/markdown", setup_requires=[ "cython", 'numpy<1.20.0; python_version<"3.7"', 'numpy; python_version>="3.7"', "setuptools>=18.0", ], install_requires=[ "cffi", "cython", 'dataclasses; python_version<"3.7"', "hydra-core<1.1", "omegaconf<2.1", 'numpy<1.20.0; python_version<"3.7"', 'numpy; python_version>="3.7"', "regex", "sacrebleu>=1.4.12", "torch", "tqdm", ], dependency_links=dependency_links, packages=find_packages( exclude=[ "examples", "examples.*", "scripts", "scripts.*", "tests", "tests.*", ] ) + extra_packages, package_data=package_data, ext_modules=extensions, test_suite="tests", entry_points={ "console_scripts": [ "fairseq-eval-lm = fairseq_cli.eval_lm:cli_main", "fairseq-generate = fairseq_cli.generate:cli_main", "fairseq-hydra-train = fairseq_cli.hydra_train:cli_main", "fairseq-interactive = fairseq_cli.interactive:cli_main", "fairseq-preprocess = fairseq_cli.preprocess:cli_main", "fairseq-score = fairseq_cli.score:cli_main", "fairseq-train = fairseq_cli.train:cli_main", "fairseq-validate = fairseq_cli.validate:cli_main", ], }, cmdclass=cmdclass, zip_safe=False, ) def get_files(path, relative_to="fairseq"): all_files = [] for root, _dirs, files in os.walk(path, followlinks=True): root = os.path.relpath(root, relative_to) for file in files: if file.endswith(".pyc"): continue all_files.append(os.path.join(root, file)) return all_files if __name__ == "__main__": try: # symlink examples into fairseq package so package_data accepts them fairseq_examples = os.path.join("fairseq", "examples") if "build_ext" not in sys.argv[1:] and not os.path.exists(fairseq_examples): os.symlink(os.path.join("..", "examples"), fairseq_examples) package_data = { "fairseq": ( get_files(fairseq_examples) + get_files(os.path.join("fairseq", "config")) ) } do_setup(package_data) finally: if "build_ext" not in sys.argv[1:] and os.path.islink(fairseq_examples): os.unlink(fairseq_examples)
py
1a4f67558140a4623f4bf36b372f9501e05ea75e
# Copyright (c) 2019 Ultimaker B.V. # Uranium is released under the terms of the LGPLv3 or higher. import ast import builtins # To check against functions that are built-in in Python. import math # Imported here so it can be used easily by the setting functions. import uuid # Imported here so it can be used easily by the setting functions. import base64 # Imported here so it can be used easily by the setting functions. import hashlib # Imported here so it can be used easily by the setting functions. from types import CodeType from typing import Any, Callable, Dict, FrozenSet, NamedTuple, Optional, Set, TYPE_CHECKING from UM.Settings.Interfaces import ContainerInterface from UM.Settings.PropertyEvaluationContext import PropertyEvaluationContext from UM.Logger import Logger if TYPE_CHECKING: from typing import FrozenSet class IllegalMethodError(Exception): pass def _debug_value(value: Any) -> Any: Logger.log("d", "Setting Function: %s", value) return value # # This class is used to evaluate Python codes (or you can call them formulas) for a setting's property. If a setting's # property is a static type, e.g., a string, an int, a float, etc., its value will just be interpreted as it is, but # when it's a Python code (formula), the value needs to be evaluated via this class. # class SettingFunction: ## Constructor. # # \param code The Python code this function should evaluate. def __init__(self, expression: str) -> None: super().__init__() self._code = expression # Keys of all settings that are referenced to in this function. self._used_keys = frozenset() # type: FrozenSet[str] self._used_values = frozenset() # type: FrozenSet[str] self._compiled = None # type: Optional[CodeType] #Actually an Optional['code'] object, but Python doesn't properly expose this 'code' object via any library. self._valid = False # type: bool try: tree = ast.parse(self._code, "eval") result = _SettingExpressionVisitor().visit(tree) self._used_keys = frozenset(result.keys) self._used_values = frozenset(result.values) self._compiled = compile(self._code, repr(self), "eval") self._valid = True except (SyntaxError, TypeError) as e: Logger.log("e", "Parse error in function ({1}) for setting: {0}".format(str(e), self._code)) except IllegalMethodError as e: Logger.log("e", "Use of illegal method {0} in function ({1}) for setting".format(str(e), self._code)) except Exception as e: Logger.log("e", "Exception in function ({0}) for setting: {1}".format(str(e), self._code)) ## Call the actual function to calculate the value. # # \param value_provider The container from which to get setting values in # the formula. def __call__(self, value_provider: ContainerInterface, context: Optional[PropertyEvaluationContext] = None) -> Any: if not value_provider: return None if not self._valid: return None locals = {} # type: Dict[str, Any] # if there is a context, evaluate the values from the perspective of the original caller if context is not None: value_provider = context.rootStack() for name in self._used_values: value = value_provider.getProperty(name, "value", context) if value is None: continue locals[name] = value g = {} # type: Dict[str, Any] g.update(globals()) g.update(self.__operators) # override operators if there is any in the context if context is not None: g.update(context.context.get("override_operators", {})) try: if self._compiled: return eval(self._compiled, g, locals) Logger.log("e", "An error ocurred evaluating the function {0}.".format(self)) return 0 except Exception as e: Logger.logException("d", "An exception occurred in inherit function {0}: {1}".format(self, str(e))) return 0 # Settings may be used in calculations and they need a value def __eq__(self, other: object) -> bool: if not isinstance(other, SettingFunction): return False return self._code == other._code def __hash__(self) -> int: return hash(self._code) ## Returns whether the function is ready to be executed. # # \return True if the function is valid, or False if it's not. def isValid(self) -> bool: return self._valid ## Retrieve a set of the keys (strings) of all the settings used in this function. # # \return A set of the keys (strings) of all the settings used in this functions. def getUsedSettingKeys(self) -> FrozenSet[str]: return self._used_keys def __str__(self) -> str: return "={0}".format(self._code) def __repr__(self) -> str: return "<UM.Settings.SettingFunction (0x{0:x}) ={1} >".format(id(self), self._code) ## To support Pickle # # Pickle does not support the compiled code, so instead remove it from the state. # We can re-compile it later on anyway. def __getstate__(self) -> Dict[str, Any]: state = self.__dict__.copy() del state["_compiled"] return state def __setstate__(self, state: Dict[str, Any]) -> None: self.__dict__.update(state) self._compiled = compile(self._code, repr(self), "eval") ## Expose a custom function to the code executed by SettingFunction # # \param name What identifier to use in the executed code. # \param operator A callable that implements the actual logic to execute. @classmethod def registerOperator(cls, name: str, operator: Callable) -> None: cls.__operators[name] = operator _SettingExpressionVisitor._knownNames.add(name) __operators = { "debug": _debug_value } _VisitResult = NamedTuple("_VisitResult", [("values", Set[str]), ("keys", Set[str])]) # Helper class used to analyze a parsed function. # # It walks a Python AST generated from a Python expression. It will analyze the AST and # produce two sets, one set of "used keys" and one set of "used values". "used keys" are # setting keys (strings) that are used by the expression, whereas "used values" are # actual variable references that are needed for the function to be executed. class _SettingExpressionVisitor(ast.NodeVisitor): def __init__(self) -> None: super().__init__() self.values = set() # type: Set[str] self.keys = set() # type: Set[str] def visit(self, node: ast.AST) -> _VisitResult: super().visit(node) return _VisitResult(values = self.values, keys = self.keys) def visit_Name(self, node: ast.Name) -> None: # [CodeStyle: ast.NodeVisitor requires this function name] if node.id in self._blacklist: raise IllegalMethodError(node.id) if node.id not in self._knownNames and node.id not in dir(builtins): self.values.add(node.id) self.keys.add(node.id) ## This one is used before Python 3.8 to visit string types. # # visit_Str will be marked as deprecated from Python 3.8 and onwards. def visit_Str(self, node: ast.AST) -> None: if node.s not in self._knownNames and node.s not in dir(builtins): # type: ignore #AST uses getattr stuff, so ignore type of node.s. self.keys.add(node.s) # type: ignore ## This one is used on Python 3.8+ to visit string types. def visit_Constant(self, node: ast.AST) -> None: if isinstance(node.value, str) and node.value not in self._knownNames and node.value not in dir(builtins): # type: ignore #AST uses getattr stuff, so ignore type of node.value. self.keys.add(node.value) # type: ignore _knownNames = { "math", "max", "min", "debug", "sum", "len", "uuid", "hashlib", "base64" } # type: Set[str] _blacklist = { "sys", "os", "import", "__import__", "eval", "exec", "subprocess", } # type: Set[str]
py
1a4f6803e8d7b5dfbaad1ee0560b6b90bcc0b9fa
import json import unittest from linkml.generators.jsonschemagen import JsonSchemaGenerator from tests.utils.test_environment import TestEnvironmentTestCase from tests.test_issues.environment import env # reported in https://github.com/linkml/linkml/issues/726 schema_str = """ id: http://example.org name: issue-726 imports: - https://w3id.org/linkml/types prefixes: x: http://example.org/ default_prefix: x default_range: string description: test classes: C: tree_root: true slots: - s1 - s2 - s3 - s4 slot_usage: s1: equals_string: foo s3: equals_number: 32 D: slots: - s1 - s2 - s3 - s4 slots: s1: description: test slot that can be overridden with specific values s2: equals_string: bar s3: description: test override for equals_number range: integer s4: equals_number: 7 range: integer """ class Issue726ConstCase(TestEnvironmentTestCase): env = env def test_jsonschema(self): gen = JsonSchemaGenerator(schema_str) output = gen.serialize() print(output) js = json.loads(output) top_props = js['properties'] s1C = top_props['s1'] s2C = top_props['s2'] s3C = top_props['s3'] s4C = top_props['s4'] D = js['$defs']['D']['properties'] s1D = D['s1'] s2D = D['s2'] s3D = D['s3'] s4D = D['s4'] self.assertEqual(s1C['const'], 'foo') self.assertEqual(s2C['const'], 'bar') self.assertNotIn('const', s1D) self.assertEqual(s2D['const'], 'bar') self.assertEqual(s3C['const'], 32) self.assertEqual(s4C['const'], 7) self.assertNotIn('const', s3D) self.assertEqual(s4D['const'], 7) if __name__ == '__main__': unittest.main()
py
1a4f680c1ef960986cafaf88e236707846c2536f
from app import app app.run(host=app.config.get('APP_HOST', '127.0.0.1'), port=app.config.get('APP_PORT', 5000), debug=app.config.get('APP_DEBUG', False))
py
1a4f689d86a93807a72a469c3dcfbb71ff1821ab
from pathlib import Path import os import face_recognition import numpy as np import pickle DIRECTORY_SAVE = 'biometric_systems/faces' def get_features_from_face(frame: np.ndarray, face_locations: list[list]) -> list[float]: return face_recognition.face_encodings(frame, known_face_locations=face_locations, model='large')[0] class Faces: def __init__(self, username: str): self.username = username self.__create_dir_if_not_exist() self.__create_user_file_if_not_exist() self.pre_defined_faces: list[list[float]] = [] self.__load_faces() def add(self, new_face_features: list[float]): self.pre_defined_faces.append(new_face_features) def verify_user(self, face_cmp: list[float]) -> bool: return face_recognition.compare_faces(self.pre_defined_faces, face_cmp, tolerance=0.4) def save_faces(self): with open(f"{DIRECTORY_SAVE}/{self.username}", 'wb') as file: pickle.dump(self.pre_defined_faces, file) def __load_faces(self): try: with open(f"{DIRECTORY_SAVE}/{self.username}", 'rb') as file: self.pre_defined_faces = pickle.load(file) except EOFError: print('error') pass def __create_user_file_if_not_exist(self): file = Path(f"{DIRECTORY_SAVE}/{self.username}") file.touch(exist_ok=True) @staticmethod def __create_dir_if_not_exist(): os.makedirs(f"{DIRECTORY_SAVE}/", exist_ok=True)
py
1a4f693150a2266d7dc7417286b55fede97076f9
# -*- coding: utf-8 -*- # --------------------------------------------------------------------- # Vendor: Force10 # OS: SFTOS # --------------------------------------------------------------------- # Copyright (C) 2007-2013 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- # NOC modules from noc.core.profile.base import BaseProfile class Profile(BaseProfile): name = "Force10.SFTOS" pattern_more = r"^--More-- or \(q\)uit" pattern_unprivileged_prompt = r"^(?P<host>\S+?)>" pattern_prompt = r"^(?P<host>\S+?)#" pattern_syntax_error = r"% Invalid input detected at " pattern_operation_error = r"% Error: " command_disable_pager = "terminal length 0" command_super = "enable" command_enter_config = "configure" command_leave_config = "exit" command_save_config = "write memory" command_submit = "\r" convert_interface_name = BaseProfile.convert_interface_name_cisco
py
1a4f69abc283c86e6555153fd2f3ade259613f1a
import subprocess import sys from gather_targets import gather_targets targets = gather_targets(sys.argv[1:]) success = 0 failed_targets = list() for target in targets: print(f"\n\n~~~~~~~~~~~~~~~~~~ {target} ~~~~~~~~~~~~~~~~~~\n\n") success += subprocess.call(['dbt','clean', '--profiles-dir','.']) success += subprocess.call(['dbt','deps', '--profiles-dir','.']) ## this gnarly mess handles dbt's compile behavior, which is to compile everything including the excluded models. success += subprocess.call(['dbt','run' , '--profiles-dir','.', '--target', target, '--exclude', f'tag:exclude_{target}', '--vars', '{"xdb_allow_unsupported_macros":true}']) success += subprocess.call(['dbt','test', '--profiles-dir','.', '--target', target, '--exclude', f'tag:exclude_{target}', f'tag:exclude_{target}_tests', '--vars', '{"xdb_allow_unsupported_macros":true}']) print("\n\nTest unsupported macros throw compilation error...") ## test that excluded models throw a compilation error exceptions_text = subprocess.Popen(['dbt','run', '--profiles-dir','.', '--target', target, '--models', f'tag:exclude_{target}'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, _ = exceptions_text.communicate() passed = bool(sum([val in out for val in (b'Compilation Error', b'WARNING: Nothing to do',)])) print("\033[0;32mAnticipated error(s) correctly thrown, exceptions pass.\033[0m" if passed else "\033[0;31mExpected error not thrown!\033[0m") success += int(not passed) if success != 0: failed_targets.append(target) print(f"\n\033[0;32m All builds and tests successful! Tested against {','.join(targets)}.\033[0m\n" if success == 0 else f"\n\033[0;31m Builds and/or tests failed :(. Tested against {','.join(failed_targets)}\033[0m\n") sys.exit(success)
py
1a4f6ae2e8a7fac81ebda1e8a5f8bae3ae763cea
cancerlist = ["PANCANCER"] input_file1 = [] output_file1 = [] threshold = 0.2 probe_count = 485577 for i in range(0, len(cancerlist)) : input_file1.append(open(str(threshold) + ".Cutoff.FC.Pvalue." + cancerlist[i] + ".txt", 'r')) output_file1.append(open(str(threshold) + ".MeaningfulCpGsitesByPvalue0.05.Without.Extreme." + cancerlist[i] + ".txt", 'w')) input_file1[i].readline() for j in range(0, probe_count) : line1 = input_file1[i].readline().split() site_id = line1.pop(0) if(line1[0] == "NoSamples" or len(line1) == 1) : continue if(float(line1[2]) > 0.05) : continue printline = site_id for k in range(0, len(line1)) : printline += "\t" + line1[k] printline += "\n" output_file1[i].write(printline) if(j % 10000 == 0) : print(cancerlist[i] + " %d completed." % j)
py
1a4f6b40350f8bf4541914cc64b4c9ce24fb24d4
from rest_framework.viewsets import ModelViewSet from super_moite_moite.models import Categorie, Tache, PointTache, TrackTache from super_moite_moite.serializers import LogementSerializer, CategorieSerializer, TacheSerializer, \ PointTacheSerializer, TrackTacheSerializer, TrackTacheSerializerSansProfil class LogementView(ModelViewSet): serializer_class = LogementSerializer def get_queryset(self): return self.request.user.profil.logements.all() class CategorieView(ModelViewSet): serializer_class = CategorieSerializer def get_queryset(self): return Categorie.objects.filter(logement__habitants=self.request.user.profil) class TacheView(ModelViewSet): serializer_class = TacheSerializer def get_queryset(self): return Tache.objects.filter(categorie__logement__habitants=self.request.user.profil) class PointTacheView(ModelViewSet): serializer_class = PointTacheSerializer def get_queryset(self): return PointTache.objects.filter(tache__categorie__logement__habitants=self.request.user.profil) class TrackTacheView(ModelViewSet): serializer_class = TrackTacheSerializer def get_queryset(self): return TrackTache.objects.filter(tache__categorie__logement__habitants=self.request.user.profil) def get_serializer_class(self): if self.action == 'update' or self.action == 'partial_update': return super().get_serializer_class() return TrackTacheSerializerSansProfil def perform_create(self, serializer): serializer.save(profil=self.request.user.profil)
py
1a4f6bb4b2e035a311133a0d00750966372723be
#!/usr/bin/python import argparse import os import subprocess class UnsafeName(Exception): pass class UnsafeInstallDirectory(Exception): pass class UnsafeCmd(Exception): pass TEMPLATE = """ ### BEGIN INIT INFO # Provides: GPIO Polling with web reporting # Required-Start: $remote_fs $syslog # Required-Stop: $remote_fs $syslog # Default-Start: 2 3 4 5 # Default-Stop: 0 1 6 # Short-Description: GPIO Polling # Description: GPIO Polling with reporting to house-monitor ### END INIT INFO #! /bin/bash # /etc/init.d/PROJECT_NAME # This init script created by: # https://github.com/DonGar/github-service-wrapper.git DAEMON_PATH="PROJECT_PATH" DAEMON="PROJECT_CMD" NAME="PROJECT_NAME" DESC="My daemon description" PIDFILE=/var/run/$NAME.pid SCRIPTNAME=/etc/init.d/$NAME case "$1" in start) printf "%-50s" "Starting $NAME..." cd $DAEMON_PATH git pull nohup ./$DAEMON > /dev/null 2>&1 & PID=$! if [ -z $PID ]; then printf "%s\n" "Fail" else echo $PID > $PIDFILE printf "%s\n" "Ok" fi ;; status) printf "%-50s" "Checking $NAME..." if [ -f $PIDFILE ]; then PID=`cat $PIDFILE` if [ -z "`ps axf | grep ${PID} | grep -v grep`" ]; then printf "%s\n" "Process dead but pidfile exists" else echo "Running" fi else printf "%s\n" "Service not running" fi ;; stop) printf "%-50s" "Stopping $NAME" PID=`cat $PIDFILE` cd $DAEMON_PATH if [ -f $PIDFILE ]; then kill -HUP $PID printf "%s\n" "Ok" rm -f $PIDFILE else printf "%s\n" "pidfile not found" fi ;; restart) $0 stop $0 start ;; *) echo "Usage: $0 {status|start|stop|restart}" exit 1 esac """ def parse_args(): parser = argparse.ArgumentParser( description='Install new init script for github project.') parser.add_argument('--name', help='Service name.') parser.add_argument('--path', help='Where the git repo is created (Default: /usr/local/<project>.') parser.add_argument('url', help='URL to clone the git repo from.') parser.add_argument('cmd', help='Command to run as the service.') parser.add_argument('cmd_args', nargs=argparse.REMAINDER) args = parser.parse_args() # Discover the default name if there isn't an explicit one. if args.name is None: # 'https://github.com/DonGar/github-service-wrapper.git' > # 'github-service-wrapper.git' -> # ('github-service-wrapper', '.git') -> # 'github-service-wrapper' args.name = os.path.splitext(os.path.basename(args.url))[0] if args.path is None: args.path = os.path.join('/usr/local', args.name) # Turn the install path into an absolute path. args.path = os.path.abspath(args.path) args.cmd = [args.cmd] + args.cmd_args return args def sanity_check(init_script_name, name, path): # name should be a simple name with no path elements. if os.path.dirname(name) != '': raise UnsafeName('Name should be simple: %s' % name) # If the init script already exists, ensure we created it previously. if os.path.exists(init_script_name): with open(init_script_name, 'r') as init_script: contents = init_script.read() # If doesn't contain this string, we didn't creat it. if contents.find('github-service-wrapper') == -1: raise UnsafeName('Trying to replace existing %s.' % init_script_name) def clone_repo(url, path): # If the git clone target dir exists, or is empty, do a clone. if not os.path.exists(path) or not os.listdir(path): subprocess.check_call(['git', 'clone', url, path]) return # If the dir eixsts and is not a git repo, don't use it. It's dangerous. if not os.path.exists(os.path.join(path, '.git')): raise UnsafeInstallDirectory('Install dir is not empty: %s' % path) # If the dir exists, and is a git repo, see if it points to our URL. old_url = subprocess.check_output(['git', 'config', 'remote.origin.url'], cwd=path) old_url = old_url.strip() if url != old_url: raise UnsafeInstallDirectory('Install dir contains a checkout from: %s' % old_url) subprocess.check_call(['git', 'pull'], cwd=path) def install_init_d(init_script_name, name, path, cmd): # Create the init script by filling in values in TEMPLATE. template = TEMPLATE template = template.replace('PROJECT_NAME', name) template = template.replace('PROJECT_PATH', path) template = template.replace('PROJECT_CMD', ' '.join(cmd)) # Write out the template. with open(init_script_name, 'w+') as init_script: init_script.write(template) # Make it executable. os.chmod(init_script_name, 0755) def sanity_check_cmd(path, cmd): cmd_name = os.path.join(path, cmd[0]) if not os.path.isfile(cmd_name) or not os.access(cmd_name, os.X_OK): raise UnsafeCmd('Command not present in checkout: "%s"' % cmd_name) def main(): args = parse_args() init_script_name = os.path.join('/etc/init.d/', args.name) print 'Setting up: %s' % args.name print ' Cloning from: %s' % args.url print ' Into: %s' % args.path print ' Script: %s' % init_script_name print ' Daemon: %s' % ' '.join(args.cmd) # Sanity check args sanity_check(init_script_name, args.name, args.path) # Setup the new repo. clone_repo(args.url, args.path) # Verify that the command exists in the repo. sanity_check_cmd(args.path, args.cmd) # Setup the init script, and set it to run. install_init_d(init_script_name, args.name, args.path, args.cmd) subprocess.check_call(['update-rc.d', args.name, 'defaults']) if __name__ == "__main__": main()
py
1a4f6cef54d45c48a093792e61900d725aa08d9b
import pytest import time import json from swsscommon import swsscommon CFG_VLAN_SUB_INTF_TABLE_NAME = "VLAN_SUB_INTERFACE" CFG_PORT_TABLE_NAME = "PORT" STATE_PORT_TABLE_NAME = "PORT_TABLE" STATE_INTERFACE_TABLE_NAME = "INTERFACE_TABLE" APP_INTF_TABLE_NAME = "INTF_TABLE" ASIC_RIF_TABLE = "ASIC_STATE:SAI_OBJECT_TYPE_ROUTER_INTERFACE" ASIC_ROUTE_ENTRY_TABLE = "ASIC_STATE:SAI_OBJECT_TYPE_ROUTE_ENTRY" ADMIN_STATUS = "admin_status" class TestSubPortIntf(object): PHYSICAL_PORT_UNDER_TEST = "Ethernet64" SUB_PORT_INTERFACE_UNDER_TEST = "Ethernet64.10" IPV4_ADDR_UNDER_TEST = "10.0.0.33/31" IPV4_TOME_UNDER_TEST = "10.0.0.33/32" IPV4_SUBNET_UNDER_TEST = "10.0.0.32/31" IPV6_ADDR_UNDER_TEST = "fc00::41/126" IPV6_TOME_UNDER_TEST = "fc00::41/128" IPV6_SUBNET_UNDER_TEST = "fc00::40/126" def connect_dbs(self, dvs): self.config_db = swsscommon.DBConnector(swsscommon.CONFIG_DB, dvs.redis_sock, 0) self.state_db = swsscommon.DBConnector(swsscommon.STATE_DB, dvs.redis_sock, 0) self.appl_db = swsscommon.DBConnector(swsscommon.APPL_DB, dvs.redis_sock, 0) self.asic_db = swsscommon.DBConnector(swsscommon.ASIC_DB, dvs.redis_sock, 0) def set_parent_port_admin_status(self, port_name, status): fvs = swsscommon.FieldValuePairs([(ADMIN_STATUS, status)]) tbl = swsscommon.Table(self.config_db, CFG_PORT_TABLE_NAME) tbl.set(port_name, fvs) time.sleep(1) def create_sub_port_intf_profile(self, sub_port_intf_name): fvs = swsscommon.FieldValuePairs([(ADMIN_STATUS, "up")]) tbl = swsscommon.Table(self.config_db, CFG_VLAN_SUB_INTF_TABLE_NAME) tbl.set(sub_port_intf_name, fvs) time.sleep(1) def add_sub_port_intf_ip_addr(self, sub_port_intf_name, ip_addr): fvs = swsscommon.FieldValuePairs([("NULL", "NULL")]) tbl = swsscommon.Table(self.config_db, CFG_VLAN_SUB_INTF_TABLE_NAME) tbl.set(sub_port_intf_name + "|" + ip_addr, fvs) time.sleep(2) def set_sub_port_intf_admin_status(self, sub_port_intf_name, status): fvs = swsscommon.FieldValuePairs([(ADMIN_STATUS, status)]) tbl = swsscommon.Table(self.config_db, CFG_VLAN_SUB_INTF_TABLE_NAME) tbl.set(sub_port_intf_name, fvs) time.sleep(1) def remove_sub_port_intf_profile(self, sub_port_intf_name): tbl = swsscommon.Table(self.config_db, CFG_VLAN_SUB_INTF_TABLE_NAME) tbl._del(sub_port_intf_name) time.sleep(1) def remove_sub_port_intf_ip_addr(self, sub_port_intf_name, ip_addr): tbl = swsscommon.Table(self.config_db, CFG_VLAN_SUB_INTF_TABLE_NAME) tbl._del(sub_port_intf_name + "|" + ip_addr) time.sleep(1) def get_oids(self, table): tbl = swsscommon.Table(self.asic_db, table) return set(tbl.getKeys()) def get_newly_created_oid(self, table, old_oids): new_oids = self.get_oids(table) oid = list(new_oids - old_oids) assert len(oid) == 1, "Wrong # of newly created oids: %d, expected #: 1." % (len(oid)) return oid[0] def check_sub_port_intf_key_existence(self, db, table_name, key): tbl = swsscommon.Table(db, table_name) keys = tbl.getKeys() assert key in keys, "Key %s not exist" % (key) def check_sub_port_intf_fvs(self, db, table_name, key, fv_dict): tbl = swsscommon.Table(db, table_name) keys = tbl.getKeys() assert key in keys (status, fvs) = tbl.get(key) assert status == True assert len(fvs) >= len(fv_dict) for field, value in fvs: if field in fv_dict: assert fv_dict[field] == value, \ "Wrong value for field %s: %s, expected value: %s" % (field, value, fv_dict[field]) def check_sub_port_intf_route_entries(self): ipv4_ip2me_found = False ipv4_subnet_found = False ipv6_ip2me_found = False ipv6_subnet_found = False tbl = swsscommon.Table(self.asic_db, ASIC_ROUTE_ENTRY_TABLE) raw_route_entries = tbl.getKeys() for raw_route_entry in raw_route_entries: route_entry = json.loads(raw_route_entry) if route_entry["dest"] == self.IPV4_TOME_UNDER_TEST: ipv4_ip2me_found = True elif route_entry["dest"] == self.IPV4_SUBNET_UNDER_TEST: ipv4_subnet_found = True elif route_entry["dest"] == self.IPV6_TOME_UNDER_TEST: ipv6_ip2me_found = True elif route_entry["dest"] == self.IPV6_SUBNET_UNDER_TEST: ipv6_subnet_found = True assert ipv4_ip2me_found and ipv4_subnet_found and ipv6_ip2me_found and ipv6_subnet_found def check_sub_port_intf_key_removal(self, db, table_name, key): tbl = swsscommon.Table(db, table_name) keys = tbl.getKeys() assert key not in keys, "Key %s not removed" % (key) def check_sub_port_intf_route_entries_removal(self, removed_route_entries): tbl = swsscommon.Table(self.asic_db, ASIC_ROUTE_ENTRY_TABLE) raw_route_entries = tbl.getKeys() for raw_route_entry in raw_route_entries: route_entry = json.loads(raw_route_entry) assert route_entry["dest"] not in removed_route_entries def test_sub_port_intf_creation(self, dvs): self.connect_dbs(dvs) old_rif_oids = self.get_oids(ASIC_RIF_TABLE) self.set_parent_port_admin_status(self.PHYSICAL_PORT_UNDER_TEST, "up") self.create_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) # Verify that sub port interface state ok is pushed to STATE_DB by Intfmgrd fv_dict = { "state": "ok", } self.check_sub_port_intf_fvs(self.state_db, STATE_PORT_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST, fv_dict) # Verify that sub port interface configuration is synced to APPL_DB INTF_TABLE by Intfmgrd fv_dict = { ADMIN_STATUS: "up", } self.check_sub_port_intf_fvs(self.appl_db, APP_INTF_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST, fv_dict) # Verify that a sub port router interface entry is created in ASIC_DB fv_dict = { "SAI_ROUTER_INTERFACE_ATTR_TYPE": "SAI_ROUTER_INTERFACE_TYPE_SUB_PORT", "SAI_ROUTER_INTERFACE_ATTR_OUTER_VLAN_ID": "10", "SAI_ROUTER_INTERFACE_ATTR_ADMIN_V4_STATE": "true", "SAI_ROUTER_INTERFACE_ATTR_ADMIN_V6_STATE": "true", "SAI_ROUTER_INTERFACE_ATTR_MTU": "9100", } rif_oid = self.get_newly_created_oid(ASIC_RIF_TABLE, old_rif_oids) self.check_sub_port_intf_fvs(self.asic_db, ASIC_RIF_TABLE, rif_oid, fv_dict) # Remove a sub port interface self.remove_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) def test_sub_port_intf_add_ip_addrs(self, dvs): self.connect_dbs(dvs) old_rif_oids = self.get_oids(ASIC_RIF_TABLE) self.set_parent_port_admin_status(self.PHYSICAL_PORT_UNDER_TEST, "up") self.create_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) self.add_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV4_ADDR_UNDER_TEST) self.add_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV6_ADDR_UNDER_TEST) rif_oid = self.get_newly_created_oid(ASIC_RIF_TABLE, old_rif_oids) # Verify that ip address state ok is pushed to STATE_DB INTERFACE_TABLE by Intfmgrd fv_dict = { "state": "ok", } self.check_sub_port_intf_fvs(self.state_db, STATE_INTERFACE_TABLE_NAME, \ self.SUB_PORT_INTERFACE_UNDER_TEST + "|" + self.IPV4_ADDR_UNDER_TEST, fv_dict) self.check_sub_port_intf_fvs(self.state_db, STATE_INTERFACE_TABLE_NAME, \ self.SUB_PORT_INTERFACE_UNDER_TEST + "|" + self.IPV6_ADDR_UNDER_TEST, fv_dict) # Verify that ip address configuration is synced to APPL_DB INTF_TABLE by Intfmgrd fv_dict = { "scope": "global", "family": "IPv4", } self.check_sub_port_intf_fvs(self.appl_db, APP_INTF_TABLE_NAME, \ self.SUB_PORT_INTERFACE_UNDER_TEST + ":" + self.IPV4_ADDR_UNDER_TEST, fv_dict) fv_dict["family"] = "IPv6" self.check_sub_port_intf_fvs(self.appl_db, APP_INTF_TABLE_NAME, \ self.SUB_PORT_INTERFACE_UNDER_TEST + ":" + self.IPV6_ADDR_UNDER_TEST, fv_dict) # Verify that an IPv4 ip2me route entry is created in ASIC_DB # Verify that an IPv4 subnet route entry is created in ASIC_DB # Verify that an IPv6 ip2me route entry is created in ASIC_DB # Verify that an IPv6 subnet route entry is created in ASIC_DB self.check_sub_port_intf_route_entries() # Remove IP addresses self.remove_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV4_ADDR_UNDER_TEST) self.remove_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV6_ADDR_UNDER_TEST) # Remove a sub port interface self.remove_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) def test_sub_port_intf_admin_status_change(self, dvs): self.connect_dbs(dvs) old_rif_oids = self.get_oids(ASIC_RIF_TABLE) self.set_parent_port_admin_status(self.PHYSICAL_PORT_UNDER_TEST, "up") self.create_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) self.add_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV4_ADDR_UNDER_TEST) self.add_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV6_ADDR_UNDER_TEST) fv_dict = { ADMIN_STATUS: "up", } self.check_sub_port_intf_fvs(self.appl_db, APP_INTF_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST, fv_dict) fv_dict = { "SAI_ROUTER_INTERFACE_ATTR_ADMIN_V4_STATE": "true", "SAI_ROUTER_INTERFACE_ATTR_ADMIN_V6_STATE": "true", "SAI_ROUTER_INTERFACE_ATTR_MTU": "9100", } rif_oid = self.get_newly_created_oid(ASIC_RIF_TABLE, old_rif_oids) self.check_sub_port_intf_fvs(self.asic_db, ASIC_RIF_TABLE, rif_oid, fv_dict) # Change sub port interface admin status to down self.set_sub_port_intf_admin_status(self.SUB_PORT_INTERFACE_UNDER_TEST, "down") # Verify that sub port interface admin status change is synced to APPL_DB INTF_TABLE by Intfmgrd fv_dict = { ADMIN_STATUS: "down", } self.check_sub_port_intf_fvs(self.appl_db, APP_INTF_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST, fv_dict) # Verify that sub port router interface entry in ASIC_DB has the updated admin status fv_dict = { "SAI_ROUTER_INTERFACE_ATTR_ADMIN_V4_STATE": "false", "SAI_ROUTER_INTERFACE_ATTR_ADMIN_V6_STATE": "false", "SAI_ROUTER_INTERFACE_ATTR_MTU": "9100", } rif_oid = self.get_newly_created_oid(ASIC_RIF_TABLE, old_rif_oids) self.check_sub_port_intf_fvs(self.asic_db, ASIC_RIF_TABLE, rif_oid, fv_dict) # Change sub port interface admin status to up self.set_sub_port_intf_admin_status(self.SUB_PORT_INTERFACE_UNDER_TEST, "up") # Verify that sub port interface admin status change is synced to APPL_DB INTF_TABLE by Intfmgrd fv_dict = { ADMIN_STATUS: "up", } self.check_sub_port_intf_fvs(self.appl_db, APP_INTF_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST, fv_dict) # Verify that sub port router interface entry in ASIC_DB has the updated admin status fv_dict = { "SAI_ROUTER_INTERFACE_ATTR_ADMIN_V4_STATE": "true", "SAI_ROUTER_INTERFACE_ATTR_ADMIN_V6_STATE": "true", "SAI_ROUTER_INTERFACE_ATTR_MTU": "9100", } rif_oid = self.get_newly_created_oid(ASIC_RIF_TABLE, old_rif_oids) self.check_sub_port_intf_fvs(self.asic_db, ASIC_RIF_TABLE, rif_oid, fv_dict) # Remove IP addresses self.remove_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV4_ADDR_UNDER_TEST) self.remove_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV6_ADDR_UNDER_TEST) # Remove a sub port interface self.remove_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) def test_sub_port_intf_remove_ip_addrs(self, dvs): self.connect_dbs(dvs) old_rif_oids = self.get_oids(ASIC_RIF_TABLE) self.set_parent_port_admin_status(self.PHYSICAL_PORT_UNDER_TEST, "up") self.create_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) self.add_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV4_ADDR_UNDER_TEST) self.add_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV6_ADDR_UNDER_TEST) rif_oid = self.get_newly_created_oid(ASIC_RIF_TABLE, old_rif_oids) # Remove IPv4 address self.remove_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV4_ADDR_UNDER_TEST) # Verify that IPv4 address state ok is removed from STATE_DB INTERFACE_TABLE by Intfmgrd self.check_sub_port_intf_key_removal(self.state_db, STATE_INTERFACE_TABLE_NAME, \ self.SUB_PORT_INTERFACE_UNDER_TEST + "|" + self.IPV4_ADDR_UNDER_TEST) # Verify that IPv4 address configuration is removed from APPL_DB INTF_TABLE by Intfmgrd self.check_sub_port_intf_key_removal(self.appl_db, APP_INTF_TABLE_NAME, \ self.SUB_PORT_INTERFACE_UNDER_TEST + ":" + self.IPV4_ADDR_UNDER_TEST) # Verify that IPv4 subnet route entry is removed from ASIC_DB # Verify that IPv4 ip2me route entry is removed from ASIC_DB removed_route_entries = set([self.IPV4_TOME_UNDER_TEST, self.IPV4_SUBNET_UNDER_TEST]) self.check_sub_port_intf_route_entries_removal(removed_route_entries) # Remove IPv6 address self.remove_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV6_ADDR_UNDER_TEST) # Verify that IPv6 address state ok is removed from STATE_DB INTERFACE_TABLE by Intfmgrd self.check_sub_port_intf_key_removal(self.state_db, STATE_INTERFACE_TABLE_NAME, \ self.SUB_PORT_INTERFACE_UNDER_TEST + "|" + self.IPV6_ADDR_UNDER_TEST) # Verify that IPv6 address configuration is removed from APPL_DB INTF_TABLE by Intfmgrd self.check_sub_port_intf_key_removal(self.appl_db, APP_INTF_TABLE_NAME, \ self.SUB_PORT_INTERFACE_UNDER_TEST + ":" + self.IPV6_ADDR_UNDER_TEST) # Verify that IPv6 subnet route entry is removed from ASIC_DB # Verify that IPv6 ip2me route entry is removed from ASIC_DB removed_route_entries.update([self.IPV6_TOME_UNDER_TEST, self.IPV6_SUBNET_UNDER_TEST]) self.check_sub_port_intf_route_entries_removal(removed_route_entries) # Verify that sub port router interface entry still exists in ASIC_DB self.check_sub_port_intf_key_existence(self.asic_db, ASIC_RIF_TABLE, rif_oid) # Remove a sub port interface self.remove_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) def test_sub_port_intf_removal(self, dvs): self.connect_dbs(dvs) old_rif_oids = self.get_oids(ASIC_RIF_TABLE) self.set_parent_port_admin_status(self.PHYSICAL_PORT_UNDER_TEST, "up") self.create_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) self.add_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV4_ADDR_UNDER_TEST) self.add_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV6_ADDR_UNDER_TEST) rif_oid = self.get_newly_created_oid(ASIC_RIF_TABLE, old_rif_oids) fv_dict = { "state": "ok", } self.check_sub_port_intf_fvs(self.state_db, STATE_PORT_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST, fv_dict) fv_dict = { ADMIN_STATUS: "up", } self.check_sub_port_intf_fvs(self.appl_db, APP_INTF_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST, fv_dict) # Remove IP addresses self.remove_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV4_ADDR_UNDER_TEST) self.remove_sub_port_intf_ip_addr(self.SUB_PORT_INTERFACE_UNDER_TEST, self.IPV6_ADDR_UNDER_TEST) # Remove a sub port interface self.remove_sub_port_intf_profile(self.SUB_PORT_INTERFACE_UNDER_TEST) # Verify that sub port interface state ok is removed from STATE_DB by Intfmgrd self.check_sub_port_intf_key_removal(self.state_db, STATE_PORT_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST) # Verify that sub port interface configuration is removed from APPL_DB INTF_TABLE by Intfmgrd self.check_sub_port_intf_key_removal(self.appl_db, APP_INTF_TABLE_NAME, self.SUB_PORT_INTERFACE_UNDER_TEST) # Verify that sub port router interface entry is removed from ASIC_DB self.check_sub_port_intf_key_removal(self.asic_db, ASIC_RIF_TABLE, rif_oid)
py
1a4f6cfef24d7f05106c26bb141dbc3bac554763
# -*- coding: utf-8 -*- """These are the exceptions thrown by Ferenda. Any of the python built-in exceptions may be thrown as well, but exceptions in used third-party libraries should be wrapped in one of these.""" from __future__ import (absolute_import, division, print_function, unicode_literals) from builtins import * class FerendaException(Exception): """Base class for anything that can go wrong in ferenda.""" class DownloadError(FerendaException): """Raised when a download fails in a non-recoverable way.""" class DownloadFileNotFoundError(DownloadError): """Raised when we had indication that a particular document should exist (we have a basefile for it) but on closer examination, it turns that it doesn't exist after all. This is used when we can't raise a requests.exceptions.HTTPError 404 error for some reason.""" pass class ParseError(FerendaException): """Raised when :py:meth:`~ferenda.DocumentRepository.parse` fails in any way. """ class FSMStateError(ParseError): """Raised whenever the current state and the current symbol in a :py:class:`~ferenda.FSMParser` configuration does not have a defined transition. """ class DocumentRemovedError(FerendaException): """Raised whenever a particular document has been found to be removed -- this can happen either during :py:meth:`~ferenda.DocumentRepository.download` or :py:meth:`~ferenda.DocumentRepository.parse` (which may be the case if there exists a physical document, but whose contents are essentially a placeholder saying that the document has been removed). You can set the attribute ``dummyfile`` on this exception when raising it, preferably to the parsed_path that would be created, if not this exception had occurred.. If present, ``ferenda-build.py`` (or rather :meth:`ferenda.manager.run`) will use this to create a dummy file at the indicated path. This prevents endless re-parsing of expired documents. """ def __init__(self, value="", dummyfile=None): super(DocumentRemovedError, self).__init__(value) self.dummyfile = dummyfile class DocumentSkippedError(DocumentRemovedError): """Raised if the document should not be processed (even though it may exist) since it's not interesting.""" class DocumentRenamedError(FerendaException): def __init__(self, value, returnvalue, oldbasefile, newbasefile): super(DocumentRenamedError, self).__init__(value) self.returnvalue = returnvalue self.oldbasefile = oldbasefile self.newbasefile = newbasefile class PatchError(ParseError): """Raised if a patch cannot be applied by :py:meth:`~ferenda.DocumentRepository.patch_if_needed`.""" class NoDownloadedFileError(ParseError): """Raised on an attempt to parse a basefile for which there doesn't exist a downloaded file.""" class InvalidTree(ParseError): """Raised when the parsed XHTML tree fails internal validation.""" class AttachmentNameError(ValueError): """Raised whenever an invalid attachment name is used with any method of :py:class:`~ferenda.DocumentStore`.""" class AttachmentPolicyError(ValueError): """Raised on any attempt to store an attachment using :py:class:`~ferenda.DocumentStore` when ``storage_policy`` is not set to ``dir``. """ class ArchivingPolicyError(ValueError): """Raised when calling archive_path with :py:meth:`~ferenda.DocumentStore.archiving_policy` not set to ``zip``.""" class DocumentNotFound(FerendaException): """Raised whenever an attempt to remove all traces of a particular basefile failed since there were no traces of any such basefile.""" class ArchivingError(FerendaException): """Raised whenever an attempt to archive a document version using :py:meth:`~ferenda.DocumentStore.archive` fails (for example, because the archive version already exists). """ class ValidationError(FerendaException): """Raised whenever a created document doesn't validate using the appropriate schema.""" class TransformError(FerendaException): """Raised whenever a XSLT transformation fails for any reason.""" class ExternalCommandError(FerendaException): """Raised whenever any invocation of an external commmand fails for any reason.""" class ExternalCommandNotFound(FerendaException): """Raised whenever any invocation of an external commmand fails """ class ConfigurationError(FerendaException): """Raised when a configuration file cannot be found in it's expected location or when it cannot be used due to corruption, file permissions or other reasons""" class TriplestoreError(FerendaException): """Raised whenever communications with the triple store fails, for whatever reason.""" class SparqlError(TriplestoreError): """Raised whenever a SPARQL query fails. The Exception should contain whatever error message that the Triple store returned, so the exact formatting may be dependent on which store is used. """ class IndexingError(FerendaException): """Raised whenever an attempt to put text into the fulltext index fails.""" class SearchingError(FerendaException): """Raised whenever an attempt to do a full-text search fails.""" class SchemaConflictError(FerendaException): """Raised whenever a fulltext index is opened with repo arguments that result in a different schema than what's currently in use. Workaround this by removing the fulltext index and recreating. """ class SchemaMappingError(FerendaException): """Raised whenever a given field in a schema cannot be mapped to or from the underlying native field object in an actual fulltextindex store. """ class MaxDownloadsReached(FerendaException): """Raised whenever a recursive download operation has reached a globally set maximum number of requests. """ pass class ResourceNotFound(FerendaException): """Raised when :py:class:`~ferenda.ResourceLoader` method is called with the name of a non-existing resource. """ pass class PDFFileIsEmpty(FerendaException): """Raised when :py:class:`~ferenda.pdfreader.StreamingPDFReader.convert` tries to parse the textual content of a PDF, but finds that it has no text information (maybe because it only contains scanned images). """ class PDFDecodeError(FerendaException): """Raised when a BaseTextDecoder or subclass encounters a problem decoding a non-standard encoding""" class RequestHandlerError(FerendaException): """Raised when :py:class:`~ferenda.RequestHandler` attempts to handle an incoming request that it thinks it can support, but fails."""
py
1a4f6d04b3328ebb491660fb7bb38843aeb5be30
# Generated by Django 3.1.5 on 2021-01-09 05:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('auctions', '0003_listing_interestedusers'), ] operations = [ migrations.AlterField( model_name='bid', name='amount', field=models.DecimalField(decimal_places=2, max_digits=19), ), migrations.AlterField( model_name='listing', name='startingBid', field=models.DecimalField(decimal_places=2, max_digits=19), ), ]
py
1a4f6d8eae8699f972bada89572a8f1267ba502e
import json import requests import sys import time from argparse import ArgumentParser from collections import deque from os.path import isfile from tabber import Tabber def _argparse(): arg_parse = ArgumentParser(description="Crawl last.fm for finnish users, given a seed person or a reference to a " "file containing one seed name per line. Either a seed name or a seed file " "is required") arg_parse.add_argument("api-key", type=str, help="last.fm api key to use for crawling.") arg_parse.add_argument("-n", "--name", type=str, default=None, help="Seed name for crawling names") arg_parse.add_argument("-i", "--input", type=str, default=None, help="Seed file for crawling. One name per line.") arg_parse.add_argument("-o", "--output", type=str, default="fi_names.txt", help="Output file for the names. One name per line.") return arg_parse class User: def __init__(self, api_key, user_name=None, password=None): self.api_key = api_key self.user_name = user_name self.password = password class Connection: def __init__(self, user, base_url): self.user = user self.base_url = base_url self.base_time = time.time() def get(self, payload): payload["api_key"] = self.user.api_key payload["format"] = "json" if self.base_time + 1 > time.time(): time.sleep(1) self.base_time = time.time() r = requests.get(self.base_url, params=payload) sys.stderr.write("{}: Retrieved {}\n".format(r.status_code, r.url)) sys.stderr.flush() if r.status_code == 200: return json.loads(r.text) return None def get_user_info(conn : Connection, user_name): return conn.get({"method": "user.getinfo", "user": user_name}) def get_user_friends(conn : Connection, user_name): fp = conn.get({"method": "user.getfriends", "user": user_name}) if not fp: return None pc = int(fp["friends"]["@attr"]["totalPages"]) fl = fp["friends"]["user"] if pc < 2: return fl for i in range(2, pc + 1): fp = conn.get({"method": "user.getfriends", "user": user_name, "page": str(i)}) if fp: fl.extend(fp["friends"]["user"]) return fl def main(conn, entry_points): fil = len(entry_points) nfil = 0 people = 0 with Tabber("retrieved lists", "finns", "other") as tabb, open("fi_names.txt", 'w') as out_file: out_file.write("".join(["{}\n".format(n) for n in entry_points])) found = entry_points uq = deque() uq.extend(entry_points) while len(uq) > 0 and fil < 100000: un = uq.popleft() fl = get_user_friends(conn, un) people += 1 if not fl: continue for fr in fl: if "country" in fr and fr["country"] == "Finland" and "name" in fr and fr["name"] not in found: out_file.write("{}\n".format(fr["name"])) fil += 1 uq.append(fr["name"]) found.add(fr["name"]) elif "name" in fr and fr["name"] not in found: found.add(fr["name"]) nfil += 1 tabb(people, fil, nfil) print("Found {} people with country == Finland".format(fil)) print("Found {} people where not country == Finland".format(nfil)) def read_names(seed_file): with open(seed_file) as in_file: return {e[:-1] for e in in_file.readlines()} if __name__ == "__main__": args = _argparse().parse_args() assert args.name or args.input, "either seed file or seed string needs to be supplied" seed = [args.name] if args.input and isfile(args.input): seed = read_names(args.input) main(Connection(User(sys.argv[1]), "http://ws.audioscrobbler.com/2.0/"), seed)
py
1a4f6dae64e77cc8d48bf7444d02243ce537acfb
############################################################################### # # # MeerKAT 1-Million star target list: # # download_large_query.py # # # # Written by Logan A. Pearce (2018) # # # ############################################################################### # # This script queries the Gaia archive in batches of 3M results (the query limit # without special authorization) for all Gaia targets meeting the data quality filters # and returns the results as .csv files. Depending on the Gaia server speed, it takes # around 12 hours to complete as written. # # Requires: # python packages numpy, astroquery # # Input: # none # # Output: # .csv files containing the results of the queries in 3M row batches ordered # by parallax value descending # # Useage: # download_large_query.py import numpy as np from astroquery.gaia import Gaia import time start = time.time() # Initial max parallax value: para_i = 800 # this is set to 800 because it is larger than the parallax for Proxima Centauri, but smaller than parallaxes # for the solar system objects in the catalog. # Max interations: If we get a max of 3M results per query, and we eventually want 32M, # count_max should be 11 to get 33M (the last one will be truncated) count_max = 11 count = 0 while count<count_max: start2 = time.time() print 'Performing query ',count+1 querystring = "SELECT source_id, ref_epoch, ra, ra_error, dec, dec_error, parallax, parallax_error, parallax_over_error, parallax_error/parallax AS frac_para_error, pmra, pmra_error, pmdec, pmdec_error, astrometric_n_obs_al, astrometric_chi2_al, astrometric_excess_noise, astrometric_excess_noise_sig, visibility_periods_used, phot_g_n_obs, phot_g_mean_flux, phot_g_mean_flux_error, phot_g_mean_flux_over_error, phot_g_mean_mag,phot_bp_mean_mag,phot_rp_mean_mag, bp_rp,bp_G,G_rp, radial_velocity,radial_velocity_error, l,b,ecl_lat,ecl_lon,priam_flags, teff_val,teff_percentile_lower,teff_percentile_upper, a_g_val, a_g_percentile_lower,a_g_percentile_upper, radius_val,radius_percentile_upper,radius_percentile_lower, lum_val,lum_percentile_upper,lum_percentile_lower \ FROM gaiadr2.gaia_source \ WHERE parallax < "+str(para_i)+" \ AND parallax_over_error > 20 \ AND phot_g_mean_flux_over_error>50 \ AND phot_rp_mean_flux_over_error>20 \ AND phot_bp_mean_flux_over_error>20 \ AND phot_bp_rp_excess_factor < 1.3+0.06*power(phot_bp_mean_mag-phot_rp_mean_mag,2) \ AND phot_bp_rp_excess_factor > 1.0+0.015*power(phot_bp_mean_mag-phot_rp_mean_mag,2) \ AND visibility_periods_used>=8 AND astrometric_chi2_al/(astrometric_n_good_obs_al-5)<1.44*greatest(1,exp(-0.4*(phot_g_mean_mag-19.5)))\ ORDER BY parallax DESC" job = Gaia.launch_job_async(query=querystring,\ verbose=False, dump_to_file=True, output_format='csv') c=job.get_results() para_i = np.min(c['parallax']) count=count+1 end2 = time.time() print 'Took ',(end2 - start2)/60./60.,' hours' print '' print job #jobid = raw_input('Enter Job ID') #j = Gaia.remove_jobs(str(jobid)) print 'Done.' end = time.time() print 'Took ',(end - start)/60./60.,' hours'
py
1a4f6eaaae6037660bf229c0b6ba84efc86638bb
#! /usr/bin/env python # Author: Abhilash Raj # # This is the primary deployment script for the docker-mailman repo. It does # deployment for stable and rolling releases both. It should be *always* invoked # and it will make the deployment decision based on the environment variables # that it sees. # # There are two kinds of deploymnets primarily: # 1. Rolling tags, which are built from each commit. These are typically run # in CI every day as well. These always update the "rolling" tag in the # docker registry. # 2. Stable tags, which are built from git tags with "va.b.c" tags. We don't # do the tag verification because for now, Circle CI does this for us. We # will tag and release a stable version whenever the right ENV var is set. # # Publishing: # We are typically publishing all the images to three repositories: # 1. Docker Hub: This is now rate-limited and might cause issues for people # pulling too frequently. # 2. Quay: This is an old registry that we started publishing too, so let's # continue publishing here too. # 3. Github Registry: This is the newest one in the mix and supports free # uploads and downloads (without very strict rate limits like Dockerhub.) import os import subprocess #: Default user, which owns the repositories. USER = 'maxking' TAG_VAR = 'CIRCLE_TAG' BRANCH_VAR = 'CIRCLE_BRANCH' PRIMARY_BRANCH = 'master' def tag(original, final): """Tag the source image with final tag.""" try: print('Tagging {0} to {1}'.format(original, final)) subprocess.run( ['docker', 'tag', original, final], check=True, ) except subprocess.CalledProcessError: print('Failed to tag {0}'.format(original)) def login(url): """Login to the registry.""" if 'quay' in url.lower(): password = os.environ['QUAY_PASSWORD'] elif 'docker' in url.lower(): password = os.environ['DOCKER_PASSWORD'] elif 'ghcr' in url.lower(): password = os.environ['GITHUB_PASSWORD'] else: print('Password not found for {0}'.format(url)) return None print('Logging in to {0}'.format(url)) subprocess.run( ['docker', 'login', '-u', USER, '-p', password, url], check=True ) print('Logged in to {0}'.format(url)) def push(image): """Push all the images.""" print('Pushing {}'.format(image)) subprocess.run(['docker', 'push', image], check=True) def tag_and_push(image_names, url, img_tag): """Given the URL to repository, tag and push the images.""" # Tag recently built images. source, final = image_names tag(source, final) # Finall, push all the images. push(final) def main(): """Primary entrypoint to this script.""" if os.environ.get(TAG_VAR) not in (None, ''): img_tag = os.environ.get(TAG_VAR) elif os.environ.get(BRANCH_VAR) == PRIMARY_BRANCH: img_tag = 'rolling' else: print(f'Not running on master branch or Git tag so not publishing...') exit(0) for url in ('quay.io', 'docker.io', 'ghcr.io'): core = ('maxking/mailman-core:rolling', '{0}/maxking/mailman-core:{1}'.format(url, img_tag)) web = ('maxking/mailman-web:rolling', '{0}/maxking/mailman-web:{1}'.format(url, img_tag)) postorius = ('maxking/postorius:rolling', '{0}/maxking/postorius:{1}'.format(url, img_tag)) try: login(url) except subprocess.CalledProcessError: print('Failed to login to {}'.format(url)) continue tag_and_push(core, url, img_tag) tag_and_push(web, url, img_tag) tag_and_push(postorius, url, img_tag) if __name__ == '__main__': main()
py
1a4f6ebe5b8856426cfd140b6f3f7139cb07f23b
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import print_function import json import os import tempfile import tarfile import sys from astropy.extern import six from astropy.io import fits from astropy import log import astropy.units import astropy.io.votable as votable from ..query import BaseQuery from ..utils import commons from ..utils import async_to_sync from . import conf from ..exceptions import TableParseError from .. import version from astropy.coordinates.name_resolve import sesame_database @async_to_sync class ESASkyClass(BaseQuery): URLbase = conf.urlBase TIMEOUT = conf.timeout DEFAULT_ROW_LIMIT = conf.row_limit __FITS_STRING = ".fits" __FTZ_STRING = ".FTZ" __TAR_STRING = ".tar" __ALL_STRING = "all" __CATALOGS_STRING = "catalogs" __OBSERVATIONS_STRING = "observations" __MISSION_STRING = "mission" __TAP_TABLE_STRING = "tapTable" __TAP_NAME_STRING = "tapName" __LABEL_STRING = "label" __METADATA_STRING = "metadata" __PRODUCT_URL_STRING = "product_url" __SOURCE_LIMIT_STRING = "sourceLimit" __POLYGON_NAME_STRING = "polygonNameTapColumn" __POLYGON_RA_STRING = "polygonRaTapColumn" __POLYGON_DEC_STRING = "polygonDecTapColumn" __POS_TAP_STRING = "posTapColumn" __ORDER_BY_STRING = "orderBy" __IS_SURVEY_MISSION_STRING = "isSurveyMission" __ZERO_ARCMIN_STRING = "0 arcmin" __MIN_RADIUS_CATALOG_STRING = "5 arcsec" __HERSCHEL_STRING = 'herschel' __HST_STRING = 'hst' __INTEGRAL_STRING = 'integral' __HERSCHEL_FILTERS = { 'psw': '250', 'pmw': '350', 'plw': '500', 'mapb_blue': '70', 'mapb_green': '100', 'mapr_': '160'} _MAPS_DOWNLOAD_DIR = "Maps" _isTest = "" def list_maps(self): """ Get a list of the mission names of the available observations in ESASky """ return self._json_object_field_to_list( self._get_observation_json(), self.__MISSION_STRING) def list_catalogs(self): """ Get a list of the mission names of the available catalogs in ESASky """ return self._json_object_field_to_list( self._get_catalogs_json(), self.__MISSION_STRING) def query_object_maps(self, position, missions=__ALL_STRING, get_query_payload=False, cache=True): """ This method queries a chosen object or coordinate for all available maps which have observation data on the chosen position. It returns a TableList with all the found maps metadata for the chosen missions and object. Parameters ---------- position : str or `astropy.coordinates` object Can either be a string of the location, eg 'M51', or the coordinates of the object. missions : string or list, optional Can be either a specific mission or a list of missions (all mission names are found in list_missions()) or 'all' to search in all missions. Defaults to 'all'. get_query_payload : bool, optional When set to True the method returns the HTTP request parameters. Defaults to False. cache : bool, optional When set to True the method will use a cache located at .astropy/astroquery/cache. Defaults to True. Returns ------- table_list : `~astroquery.utils.TableList` Each mission returns a `~astropy.table.Table` with the metadata and observations available for the chosen missions and object. It is structured in a TableList like this: TableList with 8 tables: '0:HERSCHEL' with 8 column(s) and 25 row(s) '1:HST' with 8 column(s) and 735 row(s) Examples -------- query_object_maps("m101", "all") query_object_maps("265.05, 69.0", "Herschel") query_object_maps("265.05, 69.0", ["Herschel", "HST"]) """ return self.query_region_maps(position=position, radius=self.__ZERO_ARCMIN_STRING, missions=missions, get_query_payload=get_query_payload, cache=cache) def query_object_catalogs(self, position, catalogs=__ALL_STRING, row_limit=DEFAULT_ROW_LIMIT, get_query_payload=False, cache=True): """ This method queries a chosen object or coordinate for all available catalogs and returns a TableList with all the found catalogs metadata for the chosen missions and object. To account for errors in telescope position, the method will look for any sources within a radius of 5 arcsec of the chosen position. Parameters ---------- position : str or `astropy.coordinates` object Can either be a string of the location, eg 'M51', or the coordinates of the object. catalogs : string or list, optional Can be either a specific catalog or a list of catalogs (all catalog names are found in list_catalogs()) or 'all' to search in all catalogs. Defaults to 'all'. row_limit : int, optional Determines how many rows that will be fetched from the database for each mission. Can be -1 to select maximum (currently 100 000). Defaults to 10000. get_query_payload : bool, optional When set to True the method returns the HTTP request parameters. Defaults to False. cache : bool, optional When set to True the method will use a cache located at .astropy/astroquery/cache. Defaults to True. Returns ------- table_list : `~astroquery.utils.TableList` Each mission returns a `~astropy.table.Table` with the metadata of the catalogs available for the chosen mission and object. It is structured in a TableList like this: TableList with 8 tables: '0:Gaia DR1 TGA' with 8 column(s) and 25 row(s) '1:HSC' with 8 column(s) and 75 row(s) Examples -------- query_object_catalogs("m101", "all") query_object_catalogs("265.05, 69.0", "Gaia DR1 TGA") query_object_catalogs("265.05, 69.0", ["Gaia DR1 TGA", "HSC"]) """ return self.query_region_catalogs(position=position, radius=self.__ZERO_ARCMIN_STRING, catalogs=catalogs, row_limit=row_limit, get_query_payload=get_query_payload, cache=cache) def query_region_maps(self, position, radius, missions=__ALL_STRING, get_query_payload=False, cache=True): """ This method queries a chosen region for all available maps and returns a TableList with all the found maps metadata for the chosen missions and region. Parameters ---------- position : str or `astropy.coordinates` object Can either be a string of the location, eg 'M51', or the coordinates of the object. radius : str or `~astropy.units.Quantity` The radius of a region. missions : string or list, optional Can be either a specific mission or a list of missions (all mission names are found in list_missions()) or 'all' to search in all missions. Defaults to 'all'. get_query_payload : bool, optional When set to True the method returns the HTTP request parameters. Defaults to False. cache : bool, optional When set to True the method will use a cache located at .astropy/astroquery/cache. Defaults to True. Returns ------- table_list : `~astroquery.utils.TableList` Each mission returns a `~astropy.table.Table` with the metadata and observations available for the chosen missions and region. It is structured in a TableList like this: TableList with 8 tables: '0:HERSCHEL' with 8 column(s) and 25 row(s) '1:HST' with 8 column(s) and 735 row(s) Examples -------- query_region_maps("m101", "14'", "all") import astropy.units as u query_region_maps("265.05, 69.0", 14*u.arcmin, "Herschel") query_region_maps("265.05, 69.0", ["Herschel", "HST"]) """ sanitized_position = self._sanitize_input_position(position) sanitized_radius = self._sanitize_input_radius(radius) sanitized_missions = self._sanitize_input_mission(missions) query_result = {} sesame_database.set('simbad') coordinates = commons.parse_coordinates(sanitized_position) self._store_query_result_maps(query_result, sanitized_missions, coordinates, sanitized_radius, get_query_payload, cache) if (get_query_payload): return query_result return commons.TableList(query_result) def query_region_catalogs(self, position, radius, catalogs=__ALL_STRING, row_limit=DEFAULT_ROW_LIMIT, get_query_payload=False, cache=True): """ This method queries a chosen region for all available catalogs and returns a TableList with all the found catalogs metadata for the chosen missions and region. Parameters ---------- position : str or `astropy.coordinates` object Can either be a string of the location, eg 'M51', or the coordinates of the object. radius : str or `~astropy.units.Quantity` The radius of a region. catalogs : string or list, optional Can be either a specific catalog or a list of catalogs (all catalog names are found in list_catalogs()) or 'all' to search in all catalogs. Defaults to 'all'. row_limit : int, optional Determines how many rows that will be fetched from the database for each mission. Can be -1 to select maximum (currently 100 000). Defaults to 10000. get_query_payload : bool, optional When set to True the method returns the HTTP request parameters. Defaults to False. cache : bool, optional When set to True the method will use a cache located at .astropy/astroquery/cache. Defaults to True. Returns ------- table_list : `~astroquery.utils.TableList` Each mission returns a `~astropy.table.Table` with the metadata of the catalogs available for the chosen mission and region. It is structured in a TableList like this: TableList with 8 tables: '0:Gaia DR1 TGA' with 8 column(s) and 25 row(s) '1:HSC' with 8 column(s) and 75 row(s) Examples -------- query_region_catalogs("m101", "14'", "all") import astropy.units as u query_region_catalogs("265.05, 69.0", 14*u.arcmin, "Gaia DR1 TGA") query_region_catalogs("265.05, 69.0", 14*u.arcmin, ["Gaia DR1 TGA", "HSC"]) """ sanitized_position = self._sanitize_input_position(position) sanitized_radius = self._sanitize_input_radius(radius) sanitized_catalogs = self._sanitize_input_catalogs(catalogs) sanitized_row_limit = self._sanitize_input_row_limit(row_limit) sesame_database.set('simbad') coordinates = commons.parse_coordinates(sanitized_position) query_result = {} self._store_query_result_catalogs(query_result, sanitized_catalogs, coordinates, sanitized_radius, sanitized_row_limit, get_query_payload, cache) if (get_query_payload): return query_result return commons.TableList(query_result) def get_maps(self, query_table_list, missions=__ALL_STRING, download_dir=_MAPS_DOWNLOAD_DIR, cache=True): """ This method takes the dictionary of missions and metadata as returned by query_region_maps and downloads all maps to the selected folder. The method returns a dictionary which is divided by mission. All mission except Herschel returns a list of HDULists. For Herschel each item in the list is a dictionary where the used filter is the key and the HDUList is the value. Parameters ---------- query_table_list : `~astroquery.utils.TableList` A TableList with all the missions wanted and their respective metadata. Usually the return value of query_region_maps. missions : string or list, optional Can be either a specific mission or a list of missions (all mission names are found in list_missions()) or 'all' to search in all missions. Defaults to 'all'. download_dir : string, optional The folder where all downloaded maps should be stored. Defaults to a folder called 'Maps' in the current working directory. cache : bool, optional When set to True the method will use a cache located at .astropy/astroquery/cache. Defaults to True. Returns ------- maps : `dict` All mission except Herschel returns a list of HDULists. For Herschel each item in the list is a dictionary where the used filter is the key and the HDUList is the value. It is structured in a dictionary like this: dict: { 'HERSCHEL': [{'70': [HDUList], '160': [HDUList]}, {'70': [HDUList], '160': [HDUList]}, ...], 'HST':[[HDUList], [HDUList], [HDUList], [HDUList], [HDUList], ...], 'XMM-EPIC' : [[HDUList], [HDUList], [HDUList], [HDUList], ...] ... } Examples -------- get_maps(query_region_catalogs("m101", "14'", "all")) """ sanitized_query_table_list = self._sanitize_input_table_list(query_table_list) sanitized_missions = self._sanitize_input_mission(missions) maps = dict() for query_mission in sanitized_query_table_list.keys(): for mission in sanitized_missions: # INTEGRAL does not have a product url yet. if (query_mission.lower() == self.__INTEGRAL_STRING): print("INTEGRAL does not yet support downloading of " "fits files") break if (query_mission.lower() == mission.lower()): maps[query_mission] = ( self._get_maps_for_mission( sanitized_query_table_list[query_mission], query_mission, download_dir, cache)) break if (len(sanitized_query_table_list) > 0): log.info("Maps available at %s" % os.path.abspath(download_dir)) else: print("No maps found") return maps def get_images(self, position, radius=__ZERO_ARCMIN_STRING, missions=__ALL_STRING, download_dir=_MAPS_DOWNLOAD_DIR, cache=True): """ This method gets the fits files available for the selected position and mission and downloads all maps to the the selected folder. The method returns a dictionary which is divided by mission. All mission except Herschel returns a list of HDULists. For Herschel each item in the list is a dictionary where the used filter is the key and the HDUList is the value. Parameters ---------- position : str or `astropy.coordinates` object Can either be a string of the location, eg 'M51', or the coordinates of the object. radius : str or `~astropy.units.Quantity`, optional The radius of a region. Defaults to 0. missions : string or list, optional Can be either a specific mission or a list of missions (all mission names are found in list_missions()) or 'all' to search in all missions. Defaults to 'all'. download_dir : string, optional The folder where all downloaded maps should be stored. Defaults to a folder called 'Maps' in the current working directory. cache : bool, optional When set to True the method will use a cache located at .astropy/astroquery/cache. Defaults to True. Returns ------- maps : `dict` All mission except Herschel returns a list of HDULists. For Herschel each item in the list is a dictionary where the used filter is the key and the HDUList is the value. It is structured in a dictionary like this: dict: { 'HERSCHEL': [{'70': [HDUList], '160': [HDUList]}, {'70': [HDUList], '160': [HDUList]}, ...], 'HST':[[HDUList], [HDUList], [HDUList], [HDUList], [HDUList], ...], 'XMM-EPIC' : [[HDUList], [HDUList], [HDUList], [HDUList], ...] ... } Examples -------- get_images("m101", "14'", "all") """ sanitized_position = self._sanitize_input_position(position) sanitized_radius = self._sanitize_input_radius(radius) sanitized_missions = self._sanitize_input_mission(missions) maps = dict() map_query_result = self.query_region_maps(sanitized_position, sanitized_radius, sanitized_missions, get_query_payload=False, cache=cache) for query_mission in map_query_result.keys(): # INTEGRAL does not have a product url yet. if (query_mission.lower() == self.__INTEGRAL_STRING): print("INTEGRAL does not yet support downloading of " "fits files") continue maps[query_mission] = ( self._get_maps_for_mission( map_query_result[query_mission], query_mission, download_dir, cache)) print("Maps available at %s" % os.path.abspath(download_dir)) return maps def _sanitize_input_position(self, position): if (isinstance(position, str) or isinstance(position, commons.CoordClasses)): return position else: raise ValueError("Position must be either a string or " "astropy.coordinates") def _sanitize_input_radius(self, radius): if (isinstance(radius, str) or isinstance(radius, astropy.units.Quantity)): return radius else: raise ValueError("Radius must be either a string or " "astropy.units.Quantity") def _sanitize_input_mission(self, missions): if (isinstance(missions, list)): return missions if (isinstance(missions, str)): if (missions.lower() == self.__ALL_STRING): return self.list_maps() else: return [missions] raise ValueError("Mission must be either a string or a list of " "missions") def _sanitize_input_catalogs(self, catalogs): if (isinstance(catalogs, list)): return catalogs if (isinstance(catalogs, str)): if (catalogs.lower() == self.__ALL_STRING): return self.list_catalogs() else: return [catalogs] raise ValueError("Catalog must be either a string or a list of " "catalogs") def _sanitize_input_table_list(self, table_list): if (isinstance(table_list, commons.TableList)): return table_list raise ValueError("Query_table_list must be an astropy.utils.TableList") def _sanitize_input_row_limit(self, row_limit): if (isinstance(row_limit, int)): return row_limit raise ValueError("Row_limit must be an integer") def _get_maps_for_mission(self, maps_table, mission, download_dir, cache): maps = [] if (len(maps_table[self.__PRODUCT_URL_STRING]) > 0): mission_directory = self._create_mission_directory(mission, download_dir) print("Starting download of %s data. (%d files)" % (mission, len(maps_table[self.__PRODUCT_URL_STRING]))) for index in range(len(maps_table)): product_url = maps_table[self.__PRODUCT_URL_STRING][index].decode('utf-8') if(mission.lower() == self.__HERSCHEL_STRING): observation_id = maps_table["observation_id"][index].decode('utf-8') else: observation_id = (maps_table[self._get_tap_observation_id(mission)][index] .decode('utf-8')) print("Downloading Observation ID: %s from %s" % (observation_id, product_url), end=" ") sys.stdout.flush() directory_path = mission_directory + "/" if (mission.lower() == self.__HERSCHEL_STRING): maps.append(self._get_herschel_map( product_url, directory_path, cache)) else: response = self._request( 'GET', product_url, cache=cache, headers=self._get_header()) file_name = "" if (product_url.endswith(self.__FITS_STRING)): file_name = (directory_path + self._extract_file_name_from_url(product_url)) else: file_name = (directory_path + self._extract_file_name_from_response_header(response.headers)) fits_data = response.content with open(file_name, 'wb') as fits_file: fits_file.write(fits_data) fits_file.close() maps.append(fits.open(file_name)) print("[Done]") print("Downloading of %s data complete." % mission) return maps def _get_herschel_map(self, product_url, directory_path, cache): observation = dict() tar_file = tempfile.NamedTemporaryFile(delete=False) response = self._request( 'GET', product_url, cache=cache, headers=self._get_header()) tar_file.write(response.content) tar_file.close() with tarfile.open(tar_file.name, 'r') as tar: i = 0 for member in tar.getmembers(): member_name = member.name.lower() if ('hspire' in member_name or 'hpacs' in member_name): herschel_filter = self._get_herschel_filter_name(member_name) tar.extract(member, directory_path) observation[herschel_filter] = fits.open( directory_path + member.name) i += 1 os.remove(tar_file.name) return observation def _get_herschel_filter_name(self, member_name): for herschel_filter in self.__HERSCHEL_FILTERS.keys(): if herschel_filter in member_name: return self.__HERSCHEL_FILTERS[herschel_filter] def _remove_extra_herschel_directory(self, file_and_directory_name, directory_path): full_directory_path = os.path.abspath(directory_path) file_name = file_and_directory_name[file_and_directory_name.index("/") + 1:] os.renames(os.path.join(full_directory_path, file_and_directory_name), os.path.join(full_directory_path, file_name)) return file_name def _create_mission_directory(self, mission, download_dir): if (download_dir == self._MAPS_DOWNLOAD_DIR): mission_directory = self._MAPS_DOWNLOAD_DIR + "/" + mission else: mission_directory = (download_dir + "/" + self._MAPS_DOWNLOAD_DIR + "/" + mission) if not os.path.exists(mission_directory): os.makedirs(mission_directory) return mission_directory def _extract_file_name_from_response_header(self, headers): content_disposition = headers.get('Content-Disposition') filename_string = "filename=" start_index = (content_disposition.index(filename_string) + len(filename_string)) if (content_disposition[start_index] == '\"'): start_index += 1 if (self.__FITS_STRING in content_disposition[start_index:]): end_index = ( content_disposition.index(self.__FITS_STRING, start_index + 1) + len(self.__FITS_STRING)) return content_disposition[start_index: end_index] elif (self.__FTZ_STRING in content_disposition[start_index:]): end_index = ( content_disposition.index(self.__FTZ_STRING, start_index + 1) + len(self.__FTZ_STRING)) return content_disposition[start_index: end_index] elif (self.__TAR_STRING in content_disposition[start_index:]): end_index = ( content_disposition.index(self.__TAR_STRING, start_index + 1) + len(self.__TAR_STRING)) return content_disposition[start_index: end_index] else: raise ValueError("Could not find file name in header. " "Content disposition: %s." % content_disposition) def _extract_file_name_from_url(self, product_url): start_index = product_url.rindex("/") + 1 return product_url[start_index:] def _query_region_maps(self, coordinates, radius, observation_name, get_query_payload, cache): observation_tap_name = ( self._find_observation_tap_table_name(observation_name)) query = ( self._build_observation_query(coordinates, radius, self._find_observation_parameters(observation_tap_name))) request_payload = self._create_request_payload(query) if (get_query_payload): return request_payload return self._get_and_parse_from_tap(request_payload, cache) def _query_region_catalog(self, coordinates, radius, catalog_name, row_limit, get_query_payload, cache): catalog_tap_name = self._find_catalog_tap_table_name(catalog_name) query = self._build_catalog_query(coordinates, radius, row_limit, self._find_catalog_parameters(catalog_tap_name)) request_payload = self._create_request_payload(query) if (get_query_payload): return request_payload return self._get_and_parse_from_tap(request_payload, cache) def _build_observation_query(self, coordinates, radius, json): raHours, dec = commons.coord_to_radec(coordinates) ra = raHours * 15.0 # Converts to degrees radiusDeg = commons.radius_to_unit(radius, unit='deg') select_query = "SELECT DISTINCT " metadata = json[self.__METADATA_STRING] metadata_tap_names = ", ".join(["%s" % entry[self.__TAP_NAME_STRING] for entry in metadata]) from_query = " FROM %s" % json[self.__TAP_TABLE_STRING] if (radiusDeg != 0 or json[self.__IS_SURVEY_MISSION_STRING]): if (json[self.__IS_SURVEY_MISSION_STRING]): where_query = (" WHERE 1=CONTAINS(pos, CIRCLE('ICRS', %f, %f, %f));" % (ra, dec, radiusDeg)) else: where_query = (" WHERE 1=INTERSECTS(CIRCLE('ICRS', %f, %f, %f), fov);" % (ra, dec, radiusDeg)) else: where_query = (" WHERE 1=CONTAINS(POINT('ICRS', %f, %f), fov);" % (ra, dec)) query = "".join([ select_query, metadata_tap_names, from_query, where_query]) return query def _build_catalog_query(self, coordinates, radius, row_limit, json): raHours, dec = commons.coord_to_radec(coordinates) ra = raHours * 15.0 # Converts to degrees radiusDeg = commons.radius_to_unit(radius, unit='deg') select_query = "SELECT " if(row_limit > 0): select_query = "".join([select_query, "TOP %s " % row_limit]) elif(not row_limit == -1): raise ValueError("Invalid value of row_limit") metadata = json[self.__METADATA_STRING] metadata_tap_names = ", ".join(["%s" % entry[self.__TAP_NAME_STRING] for entry in metadata]) from_query = " FROM %s" % json[self.__TAP_TABLE_STRING] if (radiusDeg == 0): where_query = (" WHERE 1=CONTAINS(POINT('ICRS', ra, dec), CIRCLE('ICRS', %f, %f, %f))" % (ra, dec, commons.radius_to_unit( self.__MIN_RADIUS_CATALOG_STRING, unit='deg'))) else: where_query = (" WHERE 1=CONTAINS(POINT('ICRS', ra, dec), CIRCLE('ICRS', %f, %f, %f))" % (ra, dec, radiusDeg)) order_by_query = " ORDER BY %s;" % json[self.__ORDER_BY_STRING] query = "".join([select_query, metadata_tap_names, from_query, where_query, order_by_query]) return query def _store_query_result_maps(self, query_result, missions, coordinates, radius, get_query_payload, cache): for mission in missions: mission_table = self._query_region_maps(coordinates, radius, mission, get_query_payload, cache) if (len(mission_table) > 0): query_result[mission.upper()] = mission_table def _store_query_result_catalogs(self, query_result, catalogs, coordinates, radius, row_limit, get_query_payload, cache): for catalog in catalogs: catalog_table = self._query_region_catalog(coordinates, radius, catalog, row_limit, get_query_payload, cache) if (len(catalog_table) > 0): query_result[catalog.upper()] = catalog_table def _find_observation_parameters(self, mission_name): return self._find_mission_parameters_in_json(mission_name, self._get_observation_json()) def _find_catalog_parameters(self, catalog_name): return self._find_mission_parameters_in_json(catalog_name, self._get_catalogs_json()) def _find_mission_parameters_in_json(self, mission_tap_name, json): for mission in json: if (mission[self.__TAP_TABLE_STRING] == mission_tap_name): return mission raise ValueError("Input tap name %s not available." % mission_tap_name) def _find_observation_tap_table_name(self, mission_name): return self._find_mission_tap_table_name( self._fetch_and_parse_json(self.__OBSERVATIONS_STRING), mission_name) def _find_catalog_tap_table_name(self, mission_name): return self._find_mission_tap_table_name( self._fetch_and_parse_json(self.__CATALOGS_STRING), mission_name) def _find_mission_tap_table_name(self, json, mission_name): for index in range(len(json)): if (json[index][self.__MISSION_STRING].lower() == mission_name.lower()): return json[index][self.__TAP_TABLE_STRING] raise ValueError("Input %s not available." % mission_name) return None def _get_observation_json(self): return self._fetch_and_parse_json(self.__OBSERVATIONS_STRING) def _get_catalogs_json(self): return self._fetch_and_parse_json(self.__CATALOGS_STRING) def _fetch_and_parse_json(self, object_name): url = self.URLbase + "/" + object_name response = self._request( 'GET', url, cache=False, headers=self._get_header()) string_response = response.content.decode('utf-8') json_response = json.loads(string_response) return json_response["descriptors"] def _json_object_field_to_list(self, json, field_name): response_list = [] for index in range(len(json)): response_list.append(json[index][field_name]) return response_list def _get_json_data_for_mission(self, json, mission): for index in range(len(json)): if(json[index][self.__MISSION_STRING].lower() == mission.lower()): return json[index] def _get_tap_observation_id(self, mission): return self._get_json_data_for_mission(self._get_observation_json(), mission)["tapObservationId"] def _create_request_payload(self, query): return {'REQUEST': 'doQuery', 'LANG': 'ADQL', 'FORMAT': 'VOTABLE', 'QUERY': query} def _get_and_parse_from_tap(self, request_payload, cache): response = self._send_get_request("/tap/sync", request_payload, cache) return self._parse_xml_table(response) def _send_get_request(self, url_extension, request_payload, cache): url = self.URLbase + url_extension return self._request('GET', url, params=request_payload, timeout=self.TIMEOUT, cache=cache, headers=self._get_header()) def _parse_xml_table(self, response): # try to parse the result into an astropy.Table, else # return the raw result with an informative error message. try: tf = six.BytesIO(response.content) vo_table = votable.parse(tf, pedantic=False) first_table = vo_table.get_first_table() table = first_table.to_table(use_names_over_ids=True) return table except Exception as ex: self.response = response self.table_parse_error = ex raise TableParseError( "Failed to parse ESASky VOTABLE result! The raw response can be " "found in self.response, and the error in " "self.table_parse_error.") def _get_header(self): user_agent = 'astropy:astroquery.esasky.{vers} {isTest}'.format( vers=version.version, isTest=self._isTest) return {'User-Agent': user_agent} ESASky = ESASkyClass()
py
1a4f6f368c5a7cdeb720eac84c14a0fb9796763e
from django.contrib import admin from django.urls import path, include from django.contrib.staticfiles.urls import staticfiles_urlpatterns urlpatterns = [ path('admin/', admin.site.urls), path('api/', include('task.apis.urls')), # for apis path('', include('task.forms.urls')), # for forms forms path('auth/', include('rest_auth.urls')), # for login path('accounts/', include('django.contrib.auth.urls')) ] urlpatterns += staticfiles_urlpatterns()
py
1a4f71bb3a8b2d6132229f95b5733ea903965d27
import sys import struct import collections from . import filter_nan from .ins401_field_parser import decode_value from ...framework.utils.print import print_yellow from ...framework.context import APP_CONTEXT # input packet error_decode_packet = 0 def _format_string(data_buffer): parsed = bytearray(data_buffer) if data_buffer and len( data_buffer) > 0 else None formatted = '' if parsed is not None: try: if sys.version_info < (3, 0): formatted = str(struct.pack( '{0}B'.format(len(parsed)), *parsed)) else: formatted = str(struct.pack( '{0}B'.format(len(parsed)), *parsed), 'utf-8') except UnicodeDecodeError: APP_CONTEXT.get_logger().logger.error('Parse data as string failed') formatted = '' return formatted def string_parser(payload, user_configuration): error = False data = '' data_str = _format_string(payload) if data_str and (data_str.find('INS401') > -1) \ and (data_str.find('RTK_INS App') > -1) \ and (data_str.find('Bootloader') > -1): data = data_str else: error = True return data, error def get_all_parameters_parser(payload, user_configuration): ''' gA parser ''' error = False data = [] data_len = 0 for parameter in user_configuration: param_id = parameter['paramId'] param_type = parameter['type'] name = parameter['name'] if param_type == 'uint8' or param_type == 'int8': value = decode_value( param_type, payload[data_len:data_len + 1]) data_len = data_len + 1 elif param_type == 'uint16' or param_type == 'int16': value = decode_value( param_type, payload[data_len:data_len + 2]) data_len = data_len + 2 elif param_type == 'uint32' or param_type == 'int32' or param_type == 'float': value = decode_value( param_type, payload[data_len:data_len + 4]) data_len = data_len + 4 elif param_type == 'uint64' or param_type == 'int64' or param_type == 'double': value = decode_value( param_type, payload[data_len:data_len + 8]) data_len = data_len + 8 elif param_type == 'ip4': value = decode_value( param_type, payload[data_len:data_len + 4]) data_len = data_len + 4 elif param_type == 'ip6': value = decode_value( param_type, payload[data_len:data_len + 6]) data_len = data_len + 6 elif 'char' in param_type: ctype_n = param_type.replace('char', '') ctype_l = int(ctype_n) value = decode_value( param_type, payload[data_len:data_len + ctype_l]) data_len = data_len + ctype_l else: print( "no [{0}] when unpack_input_packet".format(param_type)) value = False data.append( {"paramId": param_id, "name": name, "value": value}) return data, error def get_parameters_by_block_parser(payload, user_configuration): ''' gB parser ''' data = [] error = False start_param_id = payload[0] end_param_id = payload[1] data_len = 2 for i in range(start_param_id, end_param_id+1, 1): exist_param_conf = next((param_conf for param_conf in user_configuration if param_conf['paramId'] == i), None) if exist_param_conf: param_type = exist_param_conf['type'] if param_type == 'uint8' or param_type == 'int8': value = decode_value( param_type, payload[data_len:data_len + 1]) data_len = data_len + 1 elif param_type == 'uint16' or param_type == 'int16': value = decode_value( param_type, payload[data_len:data_len + 2]) data_len = data_len + 2 elif param_type == 'uint32' or param_type == 'int32' or param_type == 'float': value = decode_value( param_type, payload[data_len:data_len + 4], exist_param_conf) data_len = data_len + 4 elif param_type == 'uint64' or param_type == 'int64' or param_type == 'double': value = decode_value( param_type, payload[data_len:data_len + 8]) data_len = data_len + 8 elif param_type == 'ip4': value = decode_value( param_type, payload[data_len:data_len + 4]) data_len = data_len + 4 elif param_type == 'ip6': value = decode_value( param_type, payload[data_len:data_len + 6]) data_len = data_len + 6 elif 'char' in param_type: ctype_n = param_type.replace('char', '') ctype_l = int(ctype_n) value = decode_value( param_type, payload[data_len:data_len + ctype_l]) data_len = data_len + ctype_l else: print( "no [{0}] when unpack_input_packet".format(param_type)) value = False data.append({ "paramId": i, "name": exist_param_conf['name'], "value": value }) return data, error def get_parameter_parser(payload, user_configuration): ''' gP Parser ''' data = None error = False param_id = decode_value('uint32', payload[0:4]) if param_id is not False: param = filter(lambda item: item['paramId'] == param_id, user_configuration) try: first_item = next(iter(param), None) param_value = decode_value( first_item['type'], payload[4:12], first_item) data = {"paramId": param_id, "name": first_item['name'], "value": param_value} except StopIteration: error = True except Exception: error = True else: error = True return data, error def update_parameter_parser(payload, user_configuration): ''' uP parser ''' error = False data = decode_value('int32', payload[0:4]) if data != 0: error = True return data, error def update_parameters_parser(payload, user_configuration): ''' uB parser ''' error = False data = decode_value('uint32', payload[0:4]) if data: error = True return data, error def common_input_parser(payload, user_configuration): ''' General input packet parser ''' print('common_input_parser:', payload) return payload, False def read_eeprom_parser(payload, user_configuration=None): return payload[3:], False # output packet def common_continuous_parser(payload, configuration): ''' Unpack output packet ''' if configuration is None: return data = None is_list = 0 length = 0 pack_fmt = '<' for value in configuration['payload']: if value['type'] == 'float': pack_fmt += 'f' length += 4 elif value['type'] == 'uint32': pack_fmt += 'I' length += 4 elif value['type'] == 'int32': pack_fmt += 'i' length += 4 elif value['type'] == 'int16': pack_fmt += 'h' length += 2 elif value['type'] == 'uint16': pack_fmt += 'H' length += 2 elif value['type'] == 'double': pack_fmt += 'd' length += 8 elif value['type'] == 'int64': pack_fmt += 'q' length += 8 elif value['type'] == 'uint64': pack_fmt += 'Q' length += 8 elif value['type'] == 'char': pack_fmt += 'c' length += 1 elif value['type'] == 'uchar': pack_fmt += 'B' length += 1 elif value['type'] == 'uint8': pack_fmt += 'B' length += 1 len_fmt = '{0}B'.format(length) has_list = configuration.__contains__('isList') if has_list: is_list = configuration['isList'] if is_list == 1: packet_num = len(payload) // length data = [] for i in range(packet_num): payload_c = payload[i*length:(i+1)*length] try: pack_item = struct.pack(len_fmt, *payload_c) item = struct.unpack(pack_fmt, pack_item) out = [(value['name'], item[idx]) for idx, value in enumerate(configuration['payload'])] item = collections.OrderedDict(out) data.append(item) except Exception as ex: # pylint: disable=broad-except print( "error happened when decode the payload, pls restart driver: {0}" .format(ex)) else: try: pack_item = struct.pack(len_fmt, *payload) data = struct.unpack(pack_fmt, pack_item) out = [( value['name'], filter_nan(data[idx]) ) for idx, value in enumerate(configuration['payload'])] data = collections.OrderedDict(out) except Exception as ex: # pylint: disable=broad-except global error_decode_packet error_decode_packet = error_decode_packet + 1 if error_decode_packet == 100 or error_decode_packet == 400 or error_decode_packet == 700: print_yellow( "warning: your firmware may not suitable for this driver, pls update firmware or driver") if error_decode_packet % 300 == 0: APP_CONTEXT.get_logger().logger.warning( "error happened when decode the payload of packets, pls restart driver: {0}" .format(ex)) return data def other_output_parser(payload): return payload # packet handler def match_command_handler(packet_type): ''' Find the handler for specified packet ''' parser_dict = { b'\x01\xcc': string_parser, b'\x02\xcc': get_parameter_parser, b'\x03\xcc': update_parameter_parser, b'\x04\xcc': update_parameter_parser, b'\x01\x0b': common_input_parser, b'\x02\x0b': common_input_parser } return parser_dict.get(packet_type)
py
1a4f72247d7c42f1d41bd9b8dc005620efdef184
import datetime import json import os from dotenv import load_dotenv from Santander.SantanderScrapper import SantanderScrapper load_dotenv(verbose=True) from Clear.ClearScrapper import ClearScrapper from GuiaBolso.GuiaBolsoScrapper import GuiaBolsoScrapper from Rico.RicoScrapper import RicoScrapper from SmarttBot.SmarttBotScrapper import SmarttBotScrapper def save_output(provider, data): date = datetime.datetime.today().strftime('%Y-%m-%d') time = datetime.datetime.today().strftime('%X') dir = 'output/' + date + '/' if not os.path.exists(dir): os.makedirs(dir) f = open(dir + provider + '.json', 'w') data['date'] = date data['time'] = time data['label'] = provider f.write(json.dumps(data)) f.close() def scrap_rico(): if os.getenv("RICO_USR"): rico_scrapper = RicoScrapper(os.getenv("RICO_USR"), os.getenv("RICO_PWD")) res = rico_scrapper.init() save_output('rico', res) def scrap_clear(): if os.getenv("CLEAR_CPF"): clear_scrapper = ClearScrapper(os.getenv("CLEAR_CPF"), os.getenv("CLEAR_PWD"), os.getenv("CLEAR_BIRTHDATE")) res = clear_scrapper.init() save_output('clear', res) def scrap_smartt_bot(): if os.getenv("SMARTT_BOT_USR"): smartt_bot_scrapper = SmarttBotScrapper(os.getenv("SMARTT_BOT_USR"), os.getenv("SMARTT_BOT_PWD")) res = smartt_bot_scrapper.init() save_output('smartt_bot', res) def scrap_guiabolso(): if os.getenv("GUIABOLSO_USR"): guiabolso_scrapper = GuiaBolsoScrapper(os.getenv("GUIABOLSO_USR"), os.getenv("GUIABOLSO_PWD")) res = guiabolso_scrapper.init() save_output('guiabolso', res) def scrap_santander(): guiabolso_scrapper = SantanderScrapper(os.getenv("SANTANDER_CPF"), os.getenv("SANTANDER_PWD"), os.getenv("SANTANDER_LAST_DIGITS")) res = guiabolso_scrapper.init() def scrap_all(): scrap_guiabolso() scrap_clear() scrap_rico() scrap_smartt_bot() # scrap_smartt_bot() # scrap_clear() # scrap_guiabolso() scrap_all() # scrap_rico() # scrap_santander()
py
1a4f72ce6aafcc2f5cd87db3744a0abb1e32d82e
import string from spacy.lang.pl import STOP_WORDS as stop_words try: import morfeusz2 morph = morfeusz2.Morfeusz() except ImportError: print('Warning: Morfeusz couldn\'t be imported') morph = None letters = string.ascii_letters + 'ąćęłńóśźż' class Word: def __init__(self, text): self.text = text self.lemma = self.lemma() self.is_stop = self.is_stop() @classmethod def from_text(cls, text): if len(text) == 0: return None return cls(text) @classmethod def generator(cls, text): separators = string.whitespace while len(text) > 0: positions = {separator: text.find(separator) for separator in separators} positions = {separator: positions[separator] for separator in separators if positions[separator] > -1} position_extractor = lambda separator: positions[separator] next_separator = min(positions, key=position_extractor) if len(positions) > 0 else None if next_separator is None: result = cls.from_text(text) if result is not None: yield result return result = cls.from_text(text[:positions[next_separator] + 1]) if result is not None: yield result text = text[positions[next_separator] + 1:] def lemma(self): if self.text.find(string.digits) > -1: return '#NUMERIC' main_text = ''.join(char for char in self.text if char in letters) if morph is None: return main_text morph_analysis = morph.analyse(main_text) if len(morph_analysis) == 0: return main_text return morph_analysis[0][2][1].split(':')[0] def is_stop(self): return self.text in stop_words or self.lemma in stop_words def __str__(self): return self.text
py
1a4f730e4f81e8cd2e7f9dea4dde324b38ea7a6b
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "".split(';') if "" != "" else [] PROJECT_CATKIN_DEPENDS = "".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "".split(';') if "" != "" else [] PROJECT_NAME = "mission_pkg" PROJECT_SPACE_DIR = "/home/master/Documents/Guerledan/ROSonPi/glider_dir/install" PROJECT_VERSION = "0.0.0"
py
1a4f731503f8e5e36ac9975194cc35d35a5c996e
from __future__ import unicode_literals from mayan.apps.common.tests import BaseTestCase from mayan.apps.documents.tests import DocumentTestMixin, TEST_HYBRID_DOCUMENT from ..parsers import PopplerParser from .literals import TEST_DOCUMENT_CONTENT class ParserTestCase(DocumentTestMixin, BaseTestCase): test_document_filename = TEST_HYBRID_DOCUMENT def test_poppler_parser(self): parser = PopplerParser() parser.process_document_version(self.test_document.latest_version) self.assertTrue( TEST_DOCUMENT_CONTENT in self.test_document.pages.first().content.content )
py
1a4f73d6475e5ea984cf6824a657149d5977d2e7
""" Streaming Parallel Data Processing =================================================================== Neuraxle steps for streaming data in parallel in the pipeline .. Copyright 2019, Neuraxio Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import warnings from abc import abstractmethod from multiprocessing import Queue from multiprocessing.context import Process from threading import Thread from typing import Tuple, List, Union, Iterable, Any from neuraxle.base import NamedTupleList, ExecutionContext, BaseStep, MetaStep, BaseSaver, _FittableStep, \ BaseTransformer, NonFittableMixin from neuraxle.data_container import DataContainer, ListDataContainer, AbsentValuesNullObject from neuraxle.pipeline import Pipeline, MiniBatchSequentialPipeline, Joiner from neuraxle.steps.numpy import NumpyConcatenateOuterBatch class ObservableQueueMixin: """ A class to represent a step that can put items in a queue. It can also notify other queues that have subscribed to him using subscribe. .. seealso:: :class:`BaseStep`, :class:`QueuedPipelineTask`, :class:`QueueWorker`, :class:`BaseQueuedPipeline`, :class:`ParallelQueuedPipeline`, :class:`SequentialQueuedPipeline` """ def __init__(self, queue): self.queue = queue self.observers = [] self._add_observable_queue_step_saver() def teardown(self): self.queue = None return self def _add_observable_queue_step_saver(self): if not hasattr(self, 'savers'): warnings.warn( 'Please initialize Mixins in the good order. ObservableQueueMixin should be initialized after ' 'Appending the ObservableQueueStepSaver to the savers. Saving might fail.' ) self.savers = [ObservableQueueStepSaver()] else: self.savers.append(ObservableQueueStepSaver()) def subscribe(self, observer_queue_worker: 'ObservableQueueMixin') -> 'ObservableQueueMixin': """ Subscribe a queue worker. The subscribed queue workers get notified when :func:`~neuraxle.distributed.streaming.ObservableQueueMixin.notify` is called. """ self.observers.append(observer_queue_worker.queue) return self def get(self) -> 'QueuedPipelineTask': """ Get last item in queue. """ return self.queue.get() def put(self, value: DataContainer): """ Put a queued pipeline task in queue. """ self.queue.put(QueuedPipelineTask(step_name=self.name, data_container=value.copy())) def notify(self, value): """ Notify all subscribed queue workers """ for observer in self.observers: observer.put(value) class QueuedPipelineTask(object): """ Data object to contain the tasks processed by the queued pipeline. .. seealso:: :class:`QueueWorker`, :class:`BaseQueuedPipeline`, :class:`ParallelQueuedPipeline`, :class:`SequentialQueuedPipeline` """ def __init__(self, data_container, step_name=None): self.step_name = step_name self.data_container = data_container class ObservableQueueStepSaver(BaseSaver): """ Saver for observable queue steps. .. seealso:: :class:`QueueWorker`, :class:`neuraxle.base.BaseSaver`, :class:`BaseQueuedPipeline`, :class:`ParallelQueuedPipeline`, :class:`SequentialQueuedPipeline` """ def save_step(self, step: BaseTransformer, context: 'ExecutionContext') -> BaseTransformer: step.queue = None step.observers = [] return step def can_load(self, step: BaseTransformer, context: 'ExecutionContext') -> bool: return True def load_step(self, step: 'BaseTransformer', context: 'ExecutionContext') -> 'BaseTransformer': step.queue = Queue() return step class QueueWorker(ObservableQueueMixin, MetaStep): """ Start multiple Process or Thread that process items from the queue of batches to process. It is both an observable, and observer. It notifies the results of the wrapped step handle transform method. It receives the next data container to process. .. seealso:: :class:`Observer`, :class:`Observable`, :class:`MetaStepMixin`, :class:`BaseStep` """ def __init__( self, wrapped: BaseTransformer, max_queue_size: int, n_workers: int, use_threading: bool, additional_worker_arguments=None, use_savers=False ): if not additional_worker_arguments: additional_worker_arguments = [[] for _ in range(n_workers)] MetaStep.__init__(self, wrapped) ObservableQueueMixin.__init__(self, Queue(maxsize=max_queue_size)) self.use_threading: bool = use_threading self.workers: List[Process] = [] self.n_workers: int = n_workers self.observers: List[Queue] = [] self.additional_worker_arguments = additional_worker_arguments self.use_savers = use_savers def start(self, context: ExecutionContext): """ Start multiple processes or threads with the worker function as a target. :param context: execution context :type context: ExecutionContext :return: """ target_function = worker_function if self.use_savers: self.save(context, full_dump=True) target_function = worker_function self.workers = [] for _, worker_arguments in zip(range(self.n_workers), self.additional_worker_arguments): if self.use_threading: p = Thread(target=target_function, args=(self, context, self.use_savers, worker_arguments)) else: p = Process(target=target_function, args=(self, context, self.use_savers, worker_arguments)) p.daemon = True p.start() self.workers.append(p) def teardown(self): """ Stop all processes on teardown. :return: teardowned self """ self.stop() return self def stop(self): """ Stop all of the workers. :return: """ if not self.use_threading: [w.terminate() for w in self.workers] self.workers = [] self.observers = [] def worker_function(queue_worker: QueueWorker, context: ExecutionContext, use_savers: bool, additional_worker_arguments): """ Worker function that transforms the items inside the queue of items to process. :param queue_worker: step to transform :param context: execution context :param use_savers: use savers :param additional_worker_arguments: any additional arguments that need to be passed to the workers :return: """ step = queue_worker.get_step() if use_savers: saved_queue_worker: QueueWorker = context.load(queue_worker.get_name()) step = saved_queue_worker.get_step() additional_worker_arguments = tuple( additional_worker_arguments[i: i + 2] for i in range(0, len(additional_worker_arguments), 2) ) for argument_name, argument_value in additional_worker_arguments: step.__dict__.update({argument_name: argument_value}) while True: try: task: QueuedPipelineTask = queue_worker.get() summary_id = task.data_container.summary_id data_container = step.handle_transform(task.data_container, context) data_container = data_container.set_summary_id(summary_id) queue_worker.notify(QueuedPipelineTask(step_name=queue_worker.name, data_container=data_container)) except Exception as err: queue_worker.notify(QueuedPipelineTask(step_name=queue_worker.name, data_container=err)) QueuedPipelineStepsTuple = Union[ BaseTransformer, # step Tuple[int, BaseTransformer], # (n_workers, step) Tuple[str, BaseTransformer], # (step_name, step) Tuple[str, int, BaseTransformer], # (step_name, n_workers, step) Tuple[str, int, int, BaseTransformer], # (step_name, n_workers, max_queue_size, step) Tuple[str, int, List[Tuple], BaseTransformer], # (step_name, n_workers, additional_worker_arguments, step) Tuple[str, int, List[Tuple], BaseTransformer] # (step_name, n_workers, additional_worker_arguments, step) ] class BaseQueuedPipeline(MiniBatchSequentialPipeline): """ Sub class of :class:`Pipeline`. Transform data in many pipeline steps at once in parallel in the pipeline using multiprocessing Queues. Example usage : .. code-block:: python # step name, step p = QueuedPipeline([ ('step_a', Identity()), ('step_b', Identity()), ], n_workers=1, batch_size=10, max_queue_size=10) # step name, number of workers, step p = QueuedPipeline([ ('step_a', 1, Identity()), ('step_b', 1, Identity()), ], batch_size=10, max_queue_size=10) # step name, number of workers, and max size p = QueuedPipeline([ ('step_a', 1, 10, Identity()), ('step_b', 1, 10, Identity()), ], batch_size=10) # step name, number of workers for each step, and additional argument for each worker p = QueuedPipeline([ ('step_a', 1, [('host', 'host1'), ('host', 'host2')], 10, Identity()) ], batch_size=10) # step name, number of workers for each step, additional argument for each worker, and max size p = QueuedPipeline([ ('step_a', 1, [('host', 'host1'), ('host', 'host2')], 10, Identity()) ], batch_size=10) :param steps: pipeline steps :param batch_size: number of elements to combine into a single batch :param n_workers_per_step: number of workers to spawn per step :param max_queue_size: max number of elements inside the processing queue :param data_joiner: transformer step to join streamed batches together at the end of the pipeline :param use_threading: (Optional.) use threading for parallel processing. multiprocessing.context.Process is used by default. :param use_savers: use savers to serialize steps for parallel processing. :param include_incomplete_batch: (Optional.) A bool representing whether the last batch should be dropped in the case it has fewer than `batch_size` elements; the default behavior is not to drop the smaller batch. :param default_value_data_inputs: expected_outputs default fill value for padding and values outside iteration range, or :class:`~neuraxle.data_container.DataContainer.AbsentValuesNullObject` to trim absent values from the batch :param default_value_expected_outputs: expected_outputs default fill value for padding and values outside iteration range, or :class:`~neuraxle.data_container.DataContainer.AbsentValuesNullObject` to trim absent values from the batch :param cache_folder: cache_folder if its at the root of the pipeline .. seealso:: :class:`QueueWorker`, :class:`QueueJoiner`, :class:`CustomPipelineMixin`, :class:`Pipeline` """ def __init__( self, steps: List[QueuedPipelineStepsTuple], batch_size: int, n_workers_per_step: int = None, max_queue_size: int = None, data_joiner = None, use_threading: bool = False, use_savers: bool = False, include_incomplete_batch: bool = False, default_value_data_inputs: Union[Any, AbsentValuesNullObject] = None, default_value_expected_outputs: Union[Any, AbsentValuesNullObject] = None, cache_folder: str = None, ): if data_joiner is None: data_joiner = NumpyConcatenateOuterBatch() self.data_joiner = data_joiner self.max_queue_size = max_queue_size self.batch_size = batch_size self.n_workers_per_step = n_workers_per_step self.use_threading = use_threading self.use_savers = use_savers self.batch_size: int = batch_size self.include_incomplete_batch: bool = include_incomplete_batch self.default_value_data_inputs: Union[Any, AbsentValuesNullObject] = default_value_data_inputs self.default_value_expected_outputs: Union[Any, AbsentValuesNullObject] = default_value_expected_outputs MiniBatchSequentialPipeline.__init__( self, steps=self._initialize_steps_as_tuple(steps), cache_folder=cache_folder, batch_size=batch_size, include_incomplete_batch=include_incomplete_batch, default_value_data_inputs=default_value_data_inputs, default_value_expected_outputs=default_value_expected_outputs ) self._refresh_steps() def _initialize_steps_as_tuple(self, steps): """ Wrap each step by a :class:`QueueWorker` to allow data to flow in many pipeline steps at once in parallel. :param steps: (name, n_workers, step) :type steps: NameNWorkerStepTupleList :return: steps as tuple :rtype: NamedTupleList """ steps_as_tuple: NamedTupleList = [] for step in steps: queue_worker = self._create_queue_worker(step) steps_as_tuple.append((queue_worker.name, queue_worker)) steps_as_tuple.append(('queue_joiner', QueueJoiner(batch_size=self.batch_size))) return steps_as_tuple def _create_queue_worker(self, step: QueuedPipelineStepsTuple): name, n_workers, additional_worker_arguments, max_queue_size, actual_step = self._get_step_params(step) return QueueWorker( actual_step, n_workers=n_workers, use_threading=self.use_threading, max_queue_size=max_queue_size, additional_worker_arguments=additional_worker_arguments, use_savers=self.use_savers ).set_name('QueueWorker{}'.format(name)) def _get_step_params(self, step): """ Return all params necessary to create the QueuedPipeline for the given step. :param step: tuple :type step: QueuedPipelineStepsTupleList :return: return name, n_workers, max_queue_size, actual_step :rtype: tuple(str, int, int, BaseStep) """ if isinstance(step, BaseTransformer): actual_step = step name = step.name max_queue_size = self.max_queue_size n_workers = self.n_workers_per_step additional_arguments = [] elif len(step) == 2: if isinstance(step[0], str): name, actual_step = step n_workers = self.n_workers_per_step else: n_workers, actual_step = step name = actual_step.name max_queue_size = self.max_queue_size additional_arguments = [] elif len(step) == 3: name, n_workers, actual_step = step max_queue_size = self.max_queue_size additional_arguments = [] elif len(step) == 4: if isinstance(step[2], Iterable): name, n_workers, additional_arguments, actual_step = step max_queue_size = self.max_queue_size else: name, n_workers, max_queue_size, actual_step = step additional_arguments = [] elif len(step) == 5: name, n_workers, additional_arguments, max_queue_size, actual_step = step else: raise Exception('Invalid Queued Pipeline Steps Shape.') return name, n_workers, additional_arguments, max_queue_size, actual_step def _will_process(self, data_container: DataContainer, context: ExecutionContext) -> ( DataContainer, ExecutionContext): """ Setup streaming pipeline before any handler methods. :param data_container: data container :param context: execution context :return: """ self.setup(context=context) return data_container, context def setup(self, context: ExecutionContext = None) -> 'BaseTransformer': """ Connect the queued workers together so that the data can correctly flow through the pipeline. :param context: execution context :return: step :rtype: BaseStep """ if not self.is_initialized: self.connect_queued_pipeline() super().setup(context=context) return self def fit_transform_data_container(self, data_container: DataContainer, context: ExecutionContext) -> ( 'Pipeline', DataContainer): """ Fit transform sequentially if any step is fittable. Otherwise transform in parallel. :param data_container: data container :type data_container: DataContainer :param context: execution context :type context: ExecutionContext :return: """ all_steps_are_not_fittable = True for _, step in self[:-1]: if isinstance(step.get_step(), _FittableStep) and not isinstance(step.get_step(), NonFittableMixin): all_steps_are_not_fittable = False if all_steps_are_not_fittable: data_container = self.transform_data_container(data_container, context) data_container = self._did_transform(data_container, context) return self, data_container self.is_invalidated = True return super().fit_transform_data_container(data_container, context) def transform_data_container(self, data_container: DataContainer, context: ExecutionContext) -> DataContainer: """ Transform data container :param data_container: data container to transform. :type data_container: DataContainer :param context: execution context :type context: ExecutionContext :return: data container """ data_container_batches = data_container.minibatches( batch_size=self.batch_size, include_incomplete_batch=self.include_incomplete_batch, default_value_data_inputs=self.default_value_data_inputs, default_value_expected_outputs=self.default_value_expected_outputs ) n_batches = self.get_n_batches(data_container) self[-1].set_n_batches(n_batches) for name, step in self[:-1]: step.start(context) batch_index = 0 for data_container_batch in data_container_batches: self.send_batch_to_queued_pipeline(batch_index=batch_index, data_container=data_container_batch) batch_index += 1 data_container = self[-1].join(original_data_container=data_container) return data_container def _did_transform(self, data_container: DataContainer, context: ExecutionContext) -> DataContainer: """ Stop all of the workers after transform. Also, join the data using self.data_joiner. :param data_container: data container :type data_container: DataContainer :param context: execution context :type context: ExecutionContext :return: data container :rtype: DataContainer """ for name, step in self[:-1]: step.stop() return self.data_joiner.handle_transform(data_container, context) @abstractmethod def get_n_batches(self, data_container) -> int: """ Get the total number of batches that the queue joiner is supposed to receive. :param data_container: data container to transform :type data_container: DataContainer :return: """ raise NotImplementedError() @abstractmethod def connect_queued_pipeline(self): """ Connect all the queued workers together so that the data can flow through each step. :return: """ raise NotImplementedError() @abstractmethod def send_batch_to_queued_pipeline(self, batch_index: int, data_container: DataContainer): """ Send batches to queued pipeline. It is blocking if there is no more space available in the multiprocessing queues. Workers might return batches in a different order, but the queue joiner will reorder them at the end. The queue joiner will use the summary ids to reorder all of the received batches. :param batch_index: batch index :param data_container: data container batch :return: """ raise NotImplementedError() class SequentialQueuedPipeline(BaseQueuedPipeline): """ Using :class:`QueueWorker`, run all steps sequentially even if they are in separate processes or threads. .. seealso:: :func:`~neuraxle.data_container.DataContainer.minibatches`, :class:`~neuraxle.data_container.DataContainer.AbsentValuesNullObject`, :class:`QueueWorker`, :class:`BaseQueuedPipeline`, :class:`ParallelQueuedPipeline`, :class:`QueueJoiner`, :class:`Observer`, :class:`Observable` """ def get_n_batches(self, data_container) -> int: """ Get the number of batches to process. :param data_container: data container to transform :return: number of batches """ return data_container.get_n_batches( batch_size=self.batch_size, include_incomplete_batch=self.include_incomplete_batch ) def connect_queued_pipeline(self): """ Sequentially connect of the queued workers. :return: """ for i, (name, step) in enumerate(self[1:]): self[i].subscribe(step) def send_batch_to_queued_pipeline(self, batch_index: int, data_container: DataContainer): """ Send batches to process to the first queued worker. :param batch_index: batch index :param data_container: data container batch :return: """ data_container = data_container.set_summary_id(data_container.hash_summary()) self[-1].summary_ids.append(data_container.summary_id) self[0].put(data_container) class ParallelQueuedFeatureUnion(BaseQueuedPipeline): """ Using :class:`QueueWorker`, run all steps in parallel using QueueWorkers. .. seealso:: :class:`QueueWorker`, :class:`BaseQueuedPipeline`, :class:`SequentialQueuedPipeline`, :class:`QueueJoiner`, :class:`Observer`, :class:`Observable` """ def get_n_batches(self, data_container): """ Get the number of batches to process by the queue joiner. :return: """ return data_container.get_n_batches(self.batch_size) * (len(self) - 1) def connect_queued_pipeline(self): """ Connect the queue joiner to all of the queued workers to process data in parallel. :return: """ for name, step in self[:-1]: step.subscribe(self[-1]) def send_batch_to_queued_pipeline(self, batch_index: int, data_container: DataContainer): """ Send batches to process to all of the queued workers. :param batch_index: batch index :param data_container: data container batch :return: """ for name, step in self[:-1]: data_container = data_container.set_summary_id(data_container.hash_summary()) self[-1].summary_ids.append(data_container.summary_id) step.put(data_container) class QueueJoiner(ObservableQueueMixin, Joiner): """ Observe the results of the queue worker of type :class:`QueueWorker`. Synchronize all of the workers together. .. seealso:: :class:`QueuedPipeline`, :class:`Observer`, :class:`ListDataContainer`, :class:`DataContainer` """ def __init__(self, batch_size, n_batches=None): self.n_batches_left_to_do = n_batches self.summary_ids = [] self.result = {} Joiner.__init__(self, batch_size=batch_size) ObservableQueueMixin.__init__(self, Queue()) def teardown(self) -> 'BaseTransformer': """ Properly clean queue, summary ids, and results during teardown. :return: teardowned self """ ObservableQueueMixin.teardown(self) Joiner.teardown(self) self.summary_ids = [] self.result = {} return self def set_n_batches(self, n_batches): self.n_batches_left_to_do = n_batches def join(self, original_data_container: DataContainer) -> DataContainer: """ Return the accumulated results received by the on next method of this observer. :return: transformed data container :rtype: DataContainer """ while self.n_batches_left_to_do > 0: task: QueuedPipelineTask = self.queue.get() self.n_batches_left_to_do -= 1 step_name = task.step_name if step_name not in self.result: if not isinstance(task.data_container, DataContainer): summary_id = None else: summary_id = task.data_container.summary_id self.result[step_name] = ListDataContainer( current_ids=[], data_inputs=[], expected_outputs=[], summary_id=summary_id ) self.result[step_name].append_data_container_in_data_inputs(task.data_container) data_containers = self._join_all_step_results() self.result = {} return original_data_container.set_data_inputs(data_containers) def _join_all_step_results(self): """ Concatenate all resulting data containers together. :return: """ results = [] for step_name, data_containers in self.result.items(): self._raise_exception_throwned_by_workers_if_needed(data_containers) step_results = self._join_step_results(data_containers) results.append(step_results) return results def _raise_exception_throwned_by_workers_if_needed(self, data_containers): for dc in data_containers.data_inputs: if isinstance(dc, Exception): # an exception has been throwned by the worker so reraise it here! exception = dc raise exception def _join_step_results(self, data_containers): # reorder results by summary id data_containers.data_inputs.sort(key=lambda dc: self.summary_ids.index(dc.summary_id)) step_results = ListDataContainer.empty() for data_container in data_containers.data_inputs: data_container = data_container.set_summary_id(data_containers.data_inputs[-1].summary_id) step_results.concat(data_container) return step_results
py
1a4f7407b679a970e9237a756604ea5bd9a33420
"""This module contains simple helper functions """ from __future__ import print_function import torch import numpy as np from PIL import Image import os def tensor2im(input_image, index, imtype=np.uint8): """"Converts a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array index (int) -- #-th image of a batch is going to be displayed imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor[index].cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0))) * 255. # post-processing: tranpose and scaling # image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def diagnose_network(net, name='network'): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def save_image(image_numpy, image_path, aspect_ratio=1.0): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) h, w, _ = image_numpy.shape if aspect_ratio > 1.0: image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC) if aspect_ratio < 1.0: image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path) class EMA(): def __init__(self, beta): super().__init__() self.beta = beta def update_average(self, old, new): if old is None: return new return old * self.beta + (1 - self.beta) * new
py
1a4f7436ffd3c19378005080371c3c4b4f00840d
#!/usr/bin/env python import gzip, sys, threading import crawle class SaveURLHandler(crawle.Handler): """This handler simply saves all pages. into a gziped file. Any reponses with status other than 200 is placed back on the queue. This example also demonstrates the importance of synchronization as multiple threads can attempt to write to the file conncurrently. """ def __init__(self, output): self.output = gzip.open(output,'ab') self.lock = threading.Lock() self.exit = False def process(self, req_res, queue): if not req_res.response_status: print req_res.error return if req_res.response_status != 200: print "%d - putting %s back on queue" % (req_res.response_status, req_res.response_url) queue.put(req_res.response_url) else: self.lock.acquire() if self.exit: self.lock.release() return self.output.write(req_res.response_body) self.output.write("===*===\n") self.lock.release() def stop(self): self.exit = True self.output.close() if __name__ == '__main__': crawle.run_crawle(sys.argv, handler=SaveURLHandler('output.gz'))
py
1a4f74919b3ca3d608826dbd9ef87239304d1440
import numpy as np import torch import torch.nn.functional as F from matplotlib import pyplot as plt from skimage import morphology from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve from sklearn.metrics import precision_recall_curve def get_roc_plot_and_threshold(predictions, gt_list): # calculate image-level ROC AUC score # img_scores = scores.reshape(scores.shape[0], -1).max(axis=1) predictions = np.asarray(predictions) gt_list = np.asarray(gt_list) fpr, tpr, thresholds = roc_curve(gt_list, predictions) img_roc_auc = roc_auc_score(gt_list, predictions) fig, ax = plt.subplots(1, 1) fig_img_rocauc = ax fig_img_rocauc.plot(fpr, tpr, label="ROC Curve (area = {:.2f})".format(img_roc_auc)) ax.set_xlabel("FPR") ax.set_ylabel("TPR") ax.set_title('Receiver operating characteristic') ax.legend(loc="lower right") precision, recall, thresholds = precision_recall_curve(gt_list, predictions) a = 2 * precision * recall b = precision + recall f1 = np.divide(a, b, out=np.zeros_like(a), where=b != 0) best_threshold = thresholds[np.argmax(f1)] return (fig, ax), best_threshold def _embedding_concat(x, y): B, C1, H1, W1 = x.size() _, C2, H2, W2 = y.size() s = int(H1 / H2) x = F.unfold(x, kernel_size=s, dilation=1, stride=s) x = x.view(B, C1, -1, H2, W2) z = torch.zeros(B, C1 + C2, x.size(2), H2, W2) for i in range(x.size(2)): z[:, :, i, :, :] = torch.cat((x[:, :, i, :, :], y), 1) z = z.view(B, -1, H2 * W2) z = F.fold(z, kernel_size=s, output_size=(H1, W1), stride=s) return z def get_embedding(features_1, features_2, features_3, embedding_ids, device): embedding = features_1 embedding = _embedding_concat(embedding, features_2).to(device) embedding = _embedding_concat(embedding, features_3).to(device) # Select a random amount of embeddings embedding = torch.index_select(embedding, dim=1, index=embedding_ids) return embedding def create_mask(img_score: np.ndarray, threshold): idx_above_threshold = img_score > threshold idx_below_threshold = img_score <= threshold mask = img_score mask[idx_above_threshold] = 1 mask[idx_below_threshold] = 0 kernel = morphology.disk(4) mask = morphology.opening(mask, kernel) # mask *= 255 return mask
py
1a4f74d96cfdfc0fa163c35d03d026cb11d55b6a
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_parser_tensor_assign """ import pytest import numpy as np import mindspore as ms from mindspore import context from mindspore.nn import ReLU from mindspore.nn import Cell from mindspore.common.tensor import Tensor from mindspore.ops import operations as P def setup_module(): context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_parser_tensor_assign_slice(): class Net(Cell): def __init__(self, U): super(Net, self).__init__() self.relu = ReLU() self.U = U def construct(self, x): x = self.relu(x) x[..., :2] = U return x input_np_x = np.random.rand(4, 4, 4) input_me_x = Tensor(input_np_x, ms.float32) U = 1.0 net = Net(U) out_me = net(input_me_x) input_np_x[..., :2] = U assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01) def test_parser_tensor_assign_slice_002(): class Net(Cell): def __init__(self, U): super(Net, self).__init__() self.relu = ReLU() self.U = U def construct(self, x): x = self.relu(x) x[::, :, :1] = self.U return x input_np_x = np.random.rand(4, 4, 4) input_me_x = Tensor(input_np_x, ms.float32) U = 1.0 net = Net(U) out_me = net(input_me_x) input_np_x[::, :, :1] = U assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_parser_tensor_assign_bool(): class Net(Cell): def __init__(self, U): super(Net, self).__init__() self.relu = ReLU() self.U = U def construct(self, x, tensorB): x = self.relu(x) x[tensorB] = self.U return x input_np_x = np.random.rand(4, 4, 4) input_me_x = Tensor(input_np_x, ms.float32) numpy_B = np.random.randn(4, 4, 4) > 0 tensor_B = Tensor(numpy_B) U = np.array([1]) net = Net(Tensor(U)) out_me = net(input_me_x, tensor_B) input_np_x[numpy_B] = U assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01) def test_parser_tensor_assign_bool_002(): class Net(Cell): def __init__(self, U): super(Net, self).__init__() self.relu = ReLU() self.U = U self.fill = P.Fill() def construct(self, x, tensorB): x = self.relu(x) x[tensorB] = self.U return x input_np_x = np.random.rand(2, 2, 2) input_me_x = Tensor(input_np_x, ms.float32) numpy_B = np.random.randn(2, 2, 2) > 0 tensor_B = Tensor(numpy_B) U = 1 net = Net(U) out_me = net(input_me_x, tensor_B) input_np_x[numpy_B] = U assert np.allclose(out_me.asnumpy(), input_np_x, rtol=0.01, atol=0.01)
py
1a4f75e8029c85529564cf02bfaf31bd62fc8e58
""" CEASIOMpy: Conceptual Aircraft Design Software Developed by CFS ENGINEERING, 1015 Lausanne, Switzerland Module containing the utilitary functions for the workflowcreator and optimization modules Python version: >=3.6 | Author: Aidan Jungo | Creation: 2020-02-25 | Last modifiction: 2020-04-24 TODO: * ... """ #============================================================================== # IMPORTS #============================================================================== import os import subprocess import shutil import ceasiompy.utils.moduleinterfaces as mi from ceasiompy.SettingsGUI.settingsgui import create_settings_gui from ceasiompy.utils.ceasiomlogger import get_logger log = get_logger(__file__.split('.')[0]) import ceasiompy.__init__ LIB_DIR = os.path.dirname(ceasiompy.__init__.__file__) MODULE_DIR = os.path.dirname(os.path.abspath(__file__)) MODULE_NAME = os.path.basename(os.getcwd()) SU2_XPATH = '/cpacs/toolspecific/CEASIOMpy/aerodynamics/su2' #============================================================================== # FUNCTIONS #============================================================================== def copy_module_to_module(module_from, io_from, module_to, io_to): """ Transfer CPACS file from one module to another. Function 'copy_module_to_module' copy the CPACS file form ToolInput or ToolOutput of 'module_from' to ToolInput or ToolOutput of 'module_to' Args: module_from (str): Name of the module the CPACS file is copy from io_from (str): "in" or "out", for ToolInput or ToolOutput module_to (str): Name of the module where the CPACS file will be copy io_to (str): "in" or "out", for ToolInput or ToolOutput """ in_list = ['in','In','IN','iN','input','Input','INPUT','ToolInput','toolinput'] if io_from in in_list: file_copy_from = mi.get_toolinput_file_path(module_from) else: # 'out' or anything else ('out' by default) file_copy_from = mi.get_tooloutput_file_path(module_from) log.info('Copy CPACS from:'+ file_copy_from) if io_to in in_list: file_copy_to = mi.get_toolinput_file_path(module_to) else: # 'out' or anything else ('out' by default) file_copy_to = mi.get_tooloutput_file_path(module_to) log.info('Copy CPACS to:'+ file_copy_to) shutil.copy(file_copy_from,file_copy_to) def run_subworkflow(module_to_run,cpacs_path_in='',cpacs_path_out=''): """Function to run a list of module in order. Function 'run_subworkflow' will exectute in order all the module contained in 'module_to_run' list. Every time the resuts of one module (generaly CPACS file) will be copied as input for the next module. Args: module_to_run (list): List of mododule to run (in order) cpacs_path_in (str): Path of the CPACS file use, if not already in the ToolInput folder of the first submodule cpacs_path_out (str): Path of the output CPACS file use, if not already in the ToolInput folder of the first submodule """ if not module_to_run: log.info('No module to run') return 0 # Check non existing module submodule_list = mi.get_submodule_list() for module in module_to_run: if module not in submodule_list: raise ValueError('No module named "' + module + '"!') # Copy the cpacs file in the first module if cpacs_path_in: shutil.copy(cpacs_path_in,mi.get_toolinput_file_path(module_to_run[0])) log.info('The following modules will be executed: ' + str(module_to_run)) for m, module in enumerate(module_to_run): log.info('\n') log.info('######################################################################################') log.info('Run module: ' + module) log.info('######################################################################################\n') # Go to the module directory module_path = os.path.join(LIB_DIR,module) print('\n Going to ',module_path,'\n') os.chdir(module_path) # Copy CPACS file from previous module to this one if m > 0: copy_module_to_module(module_to_run[m-1],'out',module,'in') if module == 'SettingsGUI': cpacs_path = mi.get_toolinput_file_path(module) cpacs_out_path = mi.get_tooloutput_file_path(module) create_settings_gui(cpacs_path,cpacs_out_path,module_to_run[m:]) else: # Find the python file to run for file in os.listdir(module_path): if file.endswith('.py'): if not file.startswith('__'): main_python = file # Run the module error = subprocess.call(['python',main_python]) if error: raise ValueError('An error ocured in the module '+ module) # Copy the cpacs file in the first module if cpacs_path_out: shutil.copy(mi.get_tooloutput_file_path(module_to_run[-1]),cpacs_path_out)
py
1a4f76edfb7e37e5b8ee9664268ffd3efeee64f7
from __future__ import unicode_literals import datetime import decimal from collections import defaultdict from django.contrib.auth import get_permission_codename from django.core.exceptions import FieldDoesNotExist from django.core.urlresolvers import NoReverseMatch, reverse from django.db import models from django.db.models.constants import LOOKUP_SEP from django.db.models.deletion import Collector from django.db.models.sql.constants import QUERY_TERMS from django.forms.forms import pretty_name from django.utils import formats, six, timezone from django.utils.encoding import force_str, force_text, smart_text from django.utils.html import format_html from django.utils.text import capfirst from django.utils.translation import ungettext def lookup_needs_distinct(opts, lookup_path): """ Returns True if 'distinct()' should be used to query the given lookup path. """ lookup_fields = lookup_path.split('__') # Remove the last item of the lookup path if it is a query term if lookup_fields[-1] in QUERY_TERMS: lookup_fields = lookup_fields[:-1] # Now go through the fields (following all relations) and look for an m2m for field_name in lookup_fields: field = opts.get_field(field_name) if hasattr(field, 'get_path_info'): # This field is a relation, update opts to follow the relation path_info = field.get_path_info() opts = path_info[-1].to_opts if any(path.m2m for path in path_info): # This field is a m2m relation so we know we need to call distinct return True return False def prepare_lookup_value(key, value): """ Returns a lookup value prepared to be used in queryset filtering. """ # if key ends with __in, split parameter into separate values if key.endswith('__in'): value = value.split(',') # if key ends with __isnull, special case '' and the string literals 'false' and '0' if key.endswith('__isnull'): if value.lower() in ('', 'false', '0'): value = False else: value = True return value def quote(s): """ Ensure that primary key values do not confuse the admin URLs by escaping any '/', '_' and ':' and similarly problematic characters. Similar to urllib.quote, except that the quoting is slightly different so that it doesn't get automatically unquoted by the Web browser. """ if not isinstance(s, six.string_types): return s res = list(s) for i in range(len(res)): c = res[i] if c in """:/_#?;@&=+$,"[]<>%\\""": res[i] = '_%02X' % ord(c) return ''.join(res) def unquote(s): """ Undo the effects of quote(). Based heavily on urllib.unquote(). """ mychr = chr myatoi = int list = s.split('_') res = [list[0]] myappend = res.append del list[0] for item in list: if item[1:2]: try: myappend(mychr(myatoi(item[:2], 16)) + item[2:]) except ValueError: myappend('_' + item) else: myappend('_' + item) return "".join(res) def flatten(fields): """Returns a list which is a single level of flattening of the original list.""" flat = [] for field in fields: if isinstance(field, (list, tuple)): flat.extend(field) else: flat.append(field) return flat def flatten_fieldsets(fieldsets): """Returns a list of field names from an admin fieldsets structure.""" field_names = [] for name, opts in fieldsets: field_names.extend( flatten(opts['fields']) ) return field_names def get_deleted_objects(objs, opts, user, admin_site, using): """ Find all objects related to ``objs`` that should also be deleted. ``objs`` must be a homogeneous iterable of objects (e.g. a QuerySet). Returns a nested list of strings suitable for display in the template with the ``unordered_list`` filter. """ collector = NestedObjects(using=using) collector.collect(objs) perms_needed = set() def format_callback(obj): has_admin = obj.__class__ in admin_site._registry opts = obj._meta no_edit_link = '%s: %s' % (capfirst(opts.verbose_name), force_text(obj)) if has_admin: try: admin_url = reverse('%s:%s_%s_change' % (admin_site.name, opts.app_label, opts.model_name), None, (quote(obj._get_pk_val()),)) except NoReverseMatch: # Change url doesn't exist -- don't display link to edit return no_edit_link p = '%s.%s' % (opts.app_label, get_permission_codename('delete', opts)) if not user.has_perm(p): perms_needed.add(opts.verbose_name) # Display a link to the admin page. return format_html('{}: <a href="{}">{}</a>', capfirst(opts.verbose_name), admin_url, obj) else: # Don't display link to edit, because it either has no # admin or is edited inline. return no_edit_link to_delete = collector.nested(format_callback) protected = [format_callback(obj) for obj in collector.protected] return to_delete, collector.model_count, perms_needed, protected class NestedObjects(Collector): def __init__(self, *args, **kwargs): super(NestedObjects, self).__init__(*args, **kwargs) self.edges = {} # {from_instance: [to_instances]} self.protected = set() self.model_count = defaultdict(int) def add_edge(self, source, target): self.edges.setdefault(source, []).append(target) def collect(self, objs, source=None, source_attr=None, **kwargs): for obj in objs: if source_attr and not source_attr.endswith('+'): related_name = source_attr % { 'class': source._meta.model_name, 'app_label': source._meta.app_label, } self.add_edge(getattr(obj, related_name), obj) else: self.add_edge(None, obj) self.model_count[obj._meta.verbose_name_plural] += 1 try: return super(NestedObjects, self).collect(objs, source_attr=source_attr, **kwargs) except models.ProtectedError as e: self.protected.update(e.protected_objects) def related_objects(self, related, objs): qs = super(NestedObjects, self).related_objects(related, objs) return qs.select_related(related.field.name) def _nested(self, obj, seen, format_callback): if obj in seen: return [] seen.add(obj) children = [] for child in self.edges.get(obj, ()): children.extend(self._nested(child, seen, format_callback)) if format_callback: ret = [format_callback(obj)] else: ret = [obj] if children: ret.append(children) return ret def nested(self, format_callback=None): """ Return the graph as a nested list. """ seen = set() roots = [] for root in self.edges.get(None, ()): roots.extend(self._nested(root, seen, format_callback)) return roots def can_fast_delete(self, *args, **kwargs): """ We always want to load the objects into memory so that we can display them to the user in confirm page. """ return False def model_format_dict(obj): """ Return a `dict` with keys 'verbose_name' and 'verbose_name_plural', typically for use with string formatting. `obj` may be a `Model` instance, `Model` subclass, or `QuerySet` instance. """ if isinstance(obj, (models.Model, models.base.ModelBase)): opts = obj._meta elif isinstance(obj, models.query.QuerySet): opts = obj.model._meta else: opts = obj return { 'verbose_name': force_text(opts.verbose_name), 'verbose_name_plural': force_text(opts.verbose_name_plural) } def model_ngettext(obj, n=None): """ Return the appropriate `verbose_name` or `verbose_name_plural` value for `obj` depending on the count `n`. `obj` may be a `Model` instance, `Model` subclass, or `QuerySet` instance. If `obj` is a `QuerySet` instance, `n` is optional and the length of the `QuerySet` is used. """ if isinstance(obj, models.query.QuerySet): if n is None: n = obj.count() obj = obj.model d = model_format_dict(obj) singular, plural = d["verbose_name"], d["verbose_name_plural"] return ungettext(singular, plural, n or 0) def lookup_field(name, obj, model_admin=None): opts = obj._meta try: f = _get_non_gfk_field(opts, name) except FieldDoesNotExist: # For non-field values, the value is either a method, property or # returned via a callable. if callable(name): attr = name value = attr(obj) elif (model_admin is not None and hasattr(model_admin, name) and not name == '__str__' and not name == '__unicode__'): attr = getattr(model_admin, name) value = attr(obj) else: attr = getattr(obj, name) if callable(attr): value = attr() else: value = attr f = None else: attr = None value = getattr(obj, name) return f, attr, value def _get_non_gfk_field(opts, name): """ For historical reasons, the admin app relies on GenericForeignKeys as being "not found" by get_field(). This could likely be cleaned up. """ field = opts.get_field(name) if field.is_relation and field.many_to_one and not field.related_model: raise FieldDoesNotExist() return field def label_for_field(name, model, model_admin=None, return_attr=False): """ Returns a sensible label for a field name. The name can be a callable, property (but not created with @property decorator) or the name of an object's attribute, as well as a genuine fields. If return_attr is True, the resolved attribute (which could be a callable) is also returned. This will be None if (and only if) the name refers to a field. """ attr = None try: field = _get_non_gfk_field(model._meta, name) try: label = field.verbose_name except AttributeError: # field is likely a ForeignObjectRel label = field.related_model._meta.verbose_name except FieldDoesNotExist: if name == "__unicode__": label = force_text(model._meta.verbose_name) attr = six.text_type elif name == "__str__": label = force_str(model._meta.verbose_name) attr = bytes else: if callable(name): attr = name elif model_admin is not None and hasattr(model_admin, name): attr = getattr(model_admin, name) elif hasattr(model, name): attr = getattr(model, name) else: message = "Unable to lookup '%s' on %s" % (name, model._meta.object_name) if model_admin: message += " or %s" % (model_admin.__class__.__name__,) raise AttributeError(message) if hasattr(attr, "short_description"): label = attr.short_description elif (isinstance(attr, property) and hasattr(attr, "fget") and hasattr(attr.fget, "short_description")): label = attr.fget.short_description elif callable(attr): if attr.__name__ == "<lambda>": label = "--" else: label = pretty_name(attr.__name__) else: label = pretty_name(name) if return_attr: return (label, attr) else: return label def help_text_for_field(name, model): help_text = "" try: field = _get_non_gfk_field(model._meta, name) except FieldDoesNotExist: pass else: if hasattr(field, 'help_text'): help_text = field.help_text return smart_text(help_text) def display_for_field(value, field): from django.contrib.admin.templatetags.admin_list import _boolean_icon from django.contrib.admin.views.main import EMPTY_CHANGELIST_VALUE if field.flatchoices: return dict(field.flatchoices).get(value, EMPTY_CHANGELIST_VALUE) # NullBooleanField needs special-case null-handling, so it comes # before the general null test. elif isinstance(field, models.BooleanField) or isinstance(field, models.NullBooleanField): return _boolean_icon(value) elif value is None: return EMPTY_CHANGELIST_VALUE elif isinstance(field, models.DateTimeField): return formats.localize(timezone.template_localtime(value)) elif isinstance(field, (models.DateField, models.TimeField)): return formats.localize(value) elif isinstance(field, models.DecimalField): return formats.number_format(value, field.decimal_places) elif isinstance(field, (models.IntegerField, models.FloatField)): return formats.number_format(value) elif isinstance(field, models.FileField) and value: return format_html('<a href="{}">{}</a>', value.url, value) else: return smart_text(value) def display_for_value(value, boolean=False): from django.contrib.admin.templatetags.admin_list import _boolean_icon from django.contrib.admin.views.main import EMPTY_CHANGELIST_VALUE if boolean: return _boolean_icon(value) elif value is None: return EMPTY_CHANGELIST_VALUE elif isinstance(value, datetime.datetime): return formats.localize(timezone.template_localtime(value)) elif isinstance(value, (datetime.date, datetime.time)): return formats.localize(value) elif isinstance(value, six.integer_types + (decimal.Decimal, float)): return formats.number_format(value) else: return smart_text(value) class NotRelationField(Exception): pass def get_model_from_relation(field): if hasattr(field, 'get_path_info'): return field.get_path_info()[-1].to_opts.model else: raise NotRelationField def reverse_field_path(model, path): """ Create a reversed field path. E.g. Given (Order, "user__groups"), return (Group, "user__order"). Final field must be a related model, not a data field. """ reversed_path = [] parent = model pieces = path.split(LOOKUP_SEP) for piece in pieces: field = parent._meta.get_field(piece) # skip trailing data field if extant: if len(reversed_path) == len(pieces) - 1: # final iteration try: get_model_from_relation(field) except NotRelationField: break # Field should point to another model if field.is_relation and not (field.auto_created and not field.concrete): related_name = field.related_query_name() parent = field.remote_field.model else: related_name = field.field.name parent = field.related_model reversed_path.insert(0, related_name) return (parent, LOOKUP_SEP.join(reversed_path)) def get_fields_from_path(model, path): """ Return list of Fields given path relative to model. e.g. (ModelX, "user__groups__name") -> [ <django.db.models.fields.related.ForeignKey object at 0x...>, <django.db.models.fields.related.ManyToManyField object at 0x...>, <django.db.models.fields.CharField object at 0x...>, ] """ pieces = path.split(LOOKUP_SEP) fields = [] for piece in pieces: if fields: parent = get_model_from_relation(fields[-1]) else: parent = model fields.append(parent._meta.get_field(piece)) return fields def remove_trailing_data_field(fields): """ Discard trailing non-relation field if extant. """ try: get_model_from_relation(fields[-1]) except NotRelationField: fields = fields[:-1] return fields
py
1a4f77134b6f737b1b2e740a69633cb575937853
import datetime import minerl import namesgenerator from sacred import Experiment import basalt_utils.wrappers as wrapper_utils from minerl.herobraine.wrappers.video_recording_wrapper import VideoRecordingWrapper from basalt_utils.sb3_compat.policies import SpaceFlatteningActorCriticPolicy from basalt_utils.sb3_compat.cnns import MAGICALCNN from basalt_utils.wrappers import SaveObsAndActions from basalt_utils.callbacks import BatchEndIntermediateRolloutEvaluator, MultiCallback, BCModelSaver from stable_baselines3.common.policies import ActorCriticCnnPolicy from stable_baselines3.common.vec_env import DummyVecEnv import collections from imitation.algorithms.bc import BC import imitation.data.rollout as il_rollout import logging import torch as th from basalt_utils import utils import os import imitation.util.logger as imitation_logger from sacred.observers import FileStorageObserver from stable_baselines3.common.utils import get_device from time import time bc_baseline = Experiment("basalt_bc_baseline") WRAPPERS = [# Maps from a string version of enum (found in the dataset) to an int version (expected for spaces.Discrete) (wrapper_utils.EnumStrToIntWrapper, dict()), # Transforms continuous camera action into discrete up/down/no-change buckets on both pitch and yaw (wrapper_utils.CameraDiscretizationWrapper, dict()), # Flattens a Dict action space into a Box, but retains memory of how to expand back out (wrapper_utils.ActionFlatteningWrapper, dict()), # Pull out only the POV observation from the observation space; transpose axes for SB3 compatibility (utils.ExtractPOVAndTranspose, dict())] #, def make_unique_timestamp() -> str: """Make a timestamp along with a random word descriptor: e.g. 2021-06-06_1236_boring_wozniac""" ISO_TIMESTAMP = "%Y%m%d_%H%M" timestamp = datetime.datetime.now().strftime(ISO_TIMESTAMP) return f"{timestamp}_{namesgenerator.get_random_name()}" @bc_baseline.config def default_config(): task_name = "MineRLBasaltFindCave-v0" train_batches = None train_epochs = None log_interval = 1 # TODO fix this data_root = os.getenv('MINERL_DATA_ROOT') # SpaceFlatteningActorCriticPolicy is a policy that supports a flattened Dict action space by # maintaining multiple sub-distributions and merging their results policy_class = SpaceFlatteningActorCriticPolicy wrappers = WRAPPERS save_dir_base = "results/" save_dir = None policy_filename = 'trained_policy.pt' use_rollout_callback = False rollout_callback_batch_interval = 1000 policy_save_interval = 1000 callback_rollouts = 5 save_videos = True mode = 'train' test_policy_path = 'train/trained_policy.pt' test_n_rollouts = 5 # Note that `batch_size` needs to be less than the number of trajectories available for the task you're training on batch_size = 32 n_traj = None buffer_size = 15000 lr = 1e-4 _ = locals() del _ @bc_baseline.config def default_save_dir(save_dir_base, save_dir, task_name): """ Calculates a save directory by combining the base `save_dir` ("results" by default) with the task name and a timestamp that contains both the time and a random name """ if save_dir is None: save_dir = os.path.join(save_dir_base, task_name, make_unique_timestamp()) _ = locals() del _ @bc_baseline.named_config def normal_policy_class(): """ This is a sacred named_config, which means that when `normal_policy_class` is added as a parameter to a call of this experiment, the policy class will be set to ActorCriticCnnPolicy "Normal" here is just used to mean the default CNN policy from Stable Baselines, rather than the one explicitly designed to deal with multimodal action spaces (SpaceFlatteningActorCriticPolicy) """ policy_class = ActorCriticCnnPolicy _ = locals() del _ @bc_baseline.main def main(mode): if mode == 'train': train_bc() if mode == 'test': test_bc() @bc_baseline.capture def test_bc(task_name, data_root, wrappers, test_policy_path, test_n_rollouts, save_dir): os.makedirs(save_dir, exist_ok=True) # Add a wrapper to the environment that records video and saves it in the # the `save_dir` we have constructed for this run. wrappers = [(VideoRecordingWrapper, {'video_directory': os.path.join(save_dir, 'videos')}), (SaveObsAndActions, {'save_dir': os.path.join(save_dir, 'obs_and_actions')})] + wrappers data_pipeline, wrapped_env = utils.get_data_pipeline_and_env(task_name, data_root, wrappers, dummy=False) vec_env = DummyVecEnv([lambda: wrapped_env]) policy = th.load(test_policy_path, map_location=th.device(get_device('auto'))) trajectories = il_rollout.generate_trajectories(policy, vec_env, il_rollout.min_episodes(test_n_rollouts)) stats = il_rollout.rollout_stats(trajectories) stats = collections.OrderedDict([(key, stats[key]) for key in sorted(stats)]) # print it out kv_message = '\n'.join(f" {key}={value}" for key, value in stats.items()) logging.info(f"Evaluation stats on '{task_name}': {kv_message}") @bc_baseline.capture def train_bc(task_name, batch_size, data_root, wrappers, train_epochs, n_traj, lr, policy_class, train_batches, log_interval, save_dir, policy_filename, use_rollout_callback, rollout_callback_batch_interval, callback_rollouts, save_videos, buffer_size, policy_save_interval): # This code is designed to let you either train for a fixed number of batches, or for a fixed number of epochs assert train_epochs is None or train_batches is None, \ "Only one of train_batches or train_epochs should be set" assert not (train_batches is None and train_epochs is None), \ "You cannot have both train_batches and train_epochs set to None" # If you've set the `save_videos` flag, add a VideoRecordingWrapper with a directory set # to the current `save_dir` to the environment wrappers if save_videos: wrappers = [(VideoRecordingWrapper, {'video_directory': os.path.join(save_dir, 'videos')}), (SaveObsAndActions, {'save_dir': os.path.join(save_dir, 'obs_and_actions')})] + wrappers # This `get_data_pipeline_and_env` utility is designed to be shared across multiple baselines # It takes in a task name, data root, and set of wrappers and returns # (1) An env object with the same environment spaces as you'd getting from making the env associated # with this task and wrapping it in `wrappers`. Depending on the parameter passed into `dummy`, this is # either the real wrapped environment, or a dummy environment that displays the same spaces, # but without having to actually start up Minecraft # (2) A MineRL DataPipeline that can be used to construct a batch_iter used by BC, and also as a handle to clean # up that iterator after training. data_pipeline, wrapped_env = utils.get_data_pipeline_and_env(task_name, data_root, wrappers, dummy=not use_rollout_callback) # This utility creates a data iterator that is basically a light wrapper around the baseline MineRL data iterator # that additionally: # (1) Applies all observation and action transformations specified by the wrappers in `wrappers`, and # (2) Calls `np.squeeze` recursively on all the nested dict spaces to remove the sequence dimension, since we're # just doing single-frame BC here data_iter = utils.create_data_iterator(wrapped_env, data_pipeline=data_pipeline, batch_size=batch_size, num_epochs=train_epochs, num_batches=train_batches, buffer_size=buffer_size) if policy_class == SpaceFlatteningActorCriticPolicy: policy = policy_class(observation_space=wrapped_env.observation_space, action_space=wrapped_env.action_space, env=wrapped_env, lr_schedule=lambda _: 1e-4, features_extractor_class=MAGICALCNN) else: policy = policy_class(observation_space=wrapped_env.observation_space, action_space=wrapped_env.action_space, lr_schedule=lambda _: 1e-4, features_extractor_class=MAGICALCNN) os.makedirs(save_dir, exist_ok=True) imitation_logger.configure(save_dir, ["stdout", "tensorboard"]) callbacks = [BCModelSaver(policy=policy, save_dir=os.path.join(save_dir, 'policy_checkpoints'), save_interval_batches=policy_save_interval)] if use_rollout_callback: callbacks.append(BatchEndIntermediateRolloutEvaluator(policy=policy, env=wrapped_env, save_dir=os.path.join(save_dir, 'policy_rollouts'), evaluate_interval_batches=rollout_callback_batch_interval, n_rollouts=callback_rollouts)) callback_op = MultiCallback(callbacks) bc_trainer = BC( observation_space=wrapped_env.observation_space, action_space=wrapped_env.action_space, policy_class= lambda **kwargs: policy, policy_kwargs=None, expert_data=data_iter, device='auto', optimizer_cls=th.optim.Adam, optimizer_kwargs=dict(lr=lr), ent_weight=1e-3, l2_weight=1e-5) bc_trainer.train(n_epochs=train_epochs, n_batches=train_batches, log_interval=log_interval, on_batch_end=callback_op) bc_trainer.save_policy(policy_path=os.path.join(save_dir, policy_filename)) bc_baseline.add_artifact(os.path.join(save_dir, policy_filename)) bc_baseline.log_scalar(f'run_location={save_dir}', 1) print("Training complete; cleaning up data pipeline!") data_iter.close() if __name__ == "__main__": bc_baseline.observers.append(FileStorageObserver("sacred_results")) bc_baseline.run_commandline()
py
1a4f777c48677c165c49e6b30c81bf325d4e9581
import asyncio import typing import warnings from ..utils.logger import logger from .auto_reload import _auto_reload CallableAwaitable = typing.Union[typing.Callable, typing.Awaitable] class TaskManager: def __init__( self, loop: asyncio.AbstractEventLoop = None, *, on_shutdown: typing.Callable = None, on_startup: typing.Callable = None, auto_reload: bool = False, auto_reload_dir: str = ".", asyncio_debug_mode: bool = False, ): self.tasks: typing.List[typing.Callable] = [] self.loop: asyncio.AbstractEventLoop = loop or asyncio.get_event_loop() self.on_shutdown: CallableAwaitable = on_shutdown self.on_startup: CallableAwaitable = on_startup self.auto_reload: bool = auto_reload self.auto_reload_dir: str = auto_reload_dir self.loop.set_debug(asyncio_debug_mode) def run( self, **abandoned, ): if len(abandoned): warnings.warn("Pass options through __init__") for option in abandoned: setattr(self, option, abandoned[option]) if len(self.tasks) < 1: raise RuntimeError("Count of tasks - 0. Add tasks.") try: if self.on_startup is not None: self.loop.run_until_complete(self.on_startup()) if self.auto_reload: self.loop.create_task(_auto_reload(self.auto_reload_dir)) [self.loop.create_task(task) for task in self.tasks] self.loop.run_forever() except KeyboardInterrupt: logger.info("Keyboard Interrupt") self.close() finally: if self.on_shutdown is not None: self.loop.run_until_complete(self.on_shutdown()) if not self.loop.is_running(): self.close() def close(self): self.loop.close() def add_task(self, task: typing.Union[typing.Coroutine, typing.Callable]): if asyncio.iscoroutinefunction(task): self.tasks.append(task()) elif asyncio.iscoroutine(task): self.tasks.append(task) else: raise RuntimeError("Unexpected task. Tasks may be only coroutine functions") def run_task(self, task: typing.Union[typing.Coroutine, typing.Callable]): if asyncio.iscoroutinefunction(task): self.loop.create_task(task()) elif asyncio.iscoroutine(task): self.loop.create_task(task) else: raise RuntimeError("Unexpected task. Tasks may be only coroutine functions")
py
1a4f78274a2e080495a65521157d52636236e0cf
from torch import nn from pytorch_widedeep.wdtypes import * # noqa: F403 from pytorch_widedeep.models.tab_mlp import MLP from pytorch_widedeep.models.transformers._encoders import SaintEncoder from pytorch_widedeep.models.transformers._embeddings_layers import ( CatAndContEmbeddings, ) class SAINT(nn.Module): r"""Defines a ``SAINT`` model (`arXiv:2106.01342 <https://arxiv.org/abs/2106.01342>`_) that can be used as the ``deeptabular`` component of a Wide & Deep model. Parameters ---------- column_idx: Dict Dict containing the index of the columns that will be passed through the model. Required to slice the tensors. e.g. {'education': 0, 'relationship': 1, 'workclass': 2, ...} embed_input: List List of Tuples with the column name and number of unique values e.g. [('education', 11), ...] embed_dropout: float, default = 0.1 Dropout to be applied to the embeddings matrix full_embed_dropout: bool, default = False Boolean indicating if an entire embedding (i.e. the representation of one column) will be dropped in the batch. See: :obj:`pytorch_widedeep.models.transformers._layers.FullEmbeddingDropout`. If ``full_embed_dropout = True``, ``embed_dropout`` is ignored. shared_embed: bool, default = False The idea behind ``shared_embed`` is described in the Appendix A in the `TabTransformer paper <https://arxiv.org/abs/2012.06678>`_: `'The goal of having column embedding is to enable the model to distinguish the classes in one column from those in the other columns'`. In other words, the idea is to let the model learn which column is embedded at the time. add_shared_embed: bool, default = False The two embedding sharing strategies are: 1) add the shared embeddings to the column embeddings or 2) to replace the first ``frac_shared_embed`` with the shared embeddings. See :obj:`pytorch_widedeep.models.transformers._layers.SharedEmbeddings` frac_shared_embed: float, default = 0.25 The fraction of embeddings that will be shared (if ``add_shared_embed = False``) by all the different categories for one particular column. continuous_cols: List, Optional, default = None List with the name of the numeric (aka continuous) columns embed_continuous_activation: str, default = None String indicating the activation function to be applied to the continuous embeddings, if any. ``tanh``, ``relu``, ``leaky_relu`` and ``gelu`` are supported. cont_norm_layer: str, default = None, Type of normalization layer applied to the continuous features before they are embedded. Options are: ``layernorm``, ``batchnorm`` or ``None``. input_dim: int, default = 32 The so-called *dimension of the model*. In general is the number of embeddings used to encode the categorical and/or continuous columns n_heads: int, default = 8 Number of attention heads per Transformer block use_bias: bool, default = False Boolean indicating whether or not to use bias in the Q, K, and V projection layers n_blocks: int, default = 2 Number of SAINT-Transformer blocks. 1 in the paper. attn_dropout: float, default = 0.2 Dropout that will be applied to the Multi-Head Attention column and row layers ff_dropout: float, default = 0.1 Dropout that will be applied to the FeedForward network transformer_activation: str, default = "gelu" Transformer Encoder activation function. ``tanh``, ``relu``, ``leaky_relu``, ``gelu``, ``geglu`` and ``reglu`` are supported mlp_hidden_dims: List, Optional, default = None MLP hidden dimensions. If not provided it will default to ``[l, 4*l, 2*l]`` where ``l`` is the MLP input dimension mlp_activation: str, default = "relu" MLP activation function. ``tanh``, ``relu``, ``leaky_relu`` and ``gelu`` are supported mlp_dropout: float, default = 0.1 Dropout that will be applied to the final MLP mlp_batchnorm: bool, default = False Boolean indicating whether or not to apply batch normalization to the dense layers mlp_batchnorm_last: bool, default = False Boolean indicating whether or not to apply batch normalization to the last of the dense layers mlp_linear_first: bool, default = False Boolean indicating whether the order of the operations in the dense layer. If ``True: [LIN -> ACT -> BN -> DP]``. If ``False: [BN -> DP -> LIN -> ACT]`` Attributes ---------- cat_and_cont_embed: ``nn.Module`` This is the module that processes the categorical and continuous columns transformer_blks: ``nn.Sequential`` Sequence of SAINT-Transformer blocks transformer_mlp: ``nn.Module`` MLP component in the model output_dim: int The output dimension of the model. This is a required attribute neccesary to build the WideDeep class Example -------- >>> import torch >>> from pytorch_widedeep.models import SAINT >>> X_tab = torch.cat((torch.empty(5, 4).random_(4), torch.rand(5, 1)), axis=1) >>> colnames = ['a', 'b', 'c', 'd', 'e'] >>> embed_input = [(u,i) for u,i in zip(colnames[:4], [4]*4)] >>> continuous_cols = ['e'] >>> column_idx = {k:v for v,k in enumerate(colnames)} >>> model = SAINT(column_idx=column_idx, embed_input=embed_input, continuous_cols=continuous_cols) >>> out = model(X_tab) """ def __init__( self, column_idx: Dict[str, int], embed_input: Optional[List[Tuple[str, int]]] = None, embed_dropout: float = 0.1, full_embed_dropout: bool = False, shared_embed: bool = False, add_shared_embed: bool = False, frac_shared_embed: float = 0.25, continuous_cols: Optional[List[str]] = None, embed_continuous_activation: str = None, cont_norm_layer: str = None, input_dim: int = 32, use_bias: bool = False, n_heads: int = 8, n_blocks: int = 2, attn_dropout: float = 0.1, ff_dropout: float = 0.2, transformer_activation: str = "gelu", mlp_hidden_dims: Optional[List[int]] = None, mlp_activation: str = "relu", mlp_dropout: float = 0.1, mlp_batchnorm: bool = False, mlp_batchnorm_last: bool = False, mlp_linear_first: bool = True, ): super(SAINT, self).__init__() self.column_idx = column_idx self.embed_input = embed_input self.embed_dropout = embed_dropout self.full_embed_dropout = full_embed_dropout self.shared_embed = shared_embed self.add_shared_embed = add_shared_embed self.frac_shared_embed = frac_shared_embed self.continuous_cols = continuous_cols self.embed_continuous_activation = embed_continuous_activation self.cont_norm_layer = cont_norm_layer self.input_dim = input_dim self.use_bias = use_bias self.n_heads = n_heads self.n_blocks = n_blocks self.attn_dropout = attn_dropout self.ff_dropout = ff_dropout self.transformer_activation = transformer_activation self.mlp_hidden_dims = mlp_hidden_dims self.mlp_activation = mlp_activation self.mlp_batchnorm = mlp_batchnorm self.mlp_batchnorm_last = mlp_batchnorm_last self.mlp_linear_first = mlp_linear_first self.with_cls_token = "cls_token" in column_idx self.n_cat = len(embed_input) if embed_input is not None else 0 self.n_cont = len(continuous_cols) if continuous_cols is not None else 0 self.n_feats = self.n_cat + self.n_cont self.cat_and_cont_embed = CatAndContEmbeddings( input_dim, column_idx, embed_input, embed_dropout, full_embed_dropout, shared_embed, add_shared_embed, frac_shared_embed, False, # use_embed_bias continuous_cols, True, # embed_continuous, embed_continuous_activation, True, # use_cont_bias cont_norm_layer, ) self.transformer_blks = nn.Sequential() for i in range(n_blocks): self.transformer_blks.add_module( "saint_block" + str(i), SaintEncoder( input_dim, n_heads, use_bias, attn_dropout, ff_dropout, transformer_activation, self.n_feats, ), ) attn_output_dim = ( self.input_dim if self.with_cls_token else self.n_feats * self.input_dim ) if not mlp_hidden_dims: mlp_hidden_dims = [ attn_output_dim, attn_output_dim * 4, attn_output_dim * 2, ] else: assert mlp_hidden_dims[0] == attn_output_dim, ( f"The input dim of the MLP must be {attn_output_dim}. " f"Got {mlp_hidden_dims[0]} instead" ) self.transformer_mlp = MLP( mlp_hidden_dims, mlp_activation, mlp_dropout, mlp_batchnorm, mlp_batchnorm_last, mlp_linear_first, ) # the output_dim attribute will be used as input_dim when "merging" the models self.output_dim = mlp_hidden_dims[-1] def forward(self, X: Tensor) -> Tensor: x_cat, x_cont = self.cat_and_cont_embed(X) if x_cat is not None: x = x_cat if x_cont is not None: x = torch.cat([x, x_cont], 1) if x_cat is not None else x_cont x = self.transformer_blks(x) if self.with_cls_token: x = x[:, 0, :] else: x = x.flatten(1) return self.transformer_mlp(x) @property def attention_weights(self) -> List: r"""List with the attention weights. Each element of the list is a tuple where the first and the second elements are the column and row attention weights respectively The shape of the attention weights is: - column attention: :math:`(N, H, F, F)` - row attention: :math:`(1, H, N, N)` where *N* is the batch size, *H* is the number of heads and *F* is the number of features/columns in the dataset """ attention_weights = [] for blk in self.transformer_blks: attention_weights.append( (blk.col_attn.attn_weights, blk.row_attn.attn_weights) ) return attention_weights
py
1a4f79482b350654e66edb871327a97e0f8dbf7e
# coding: utf-8 from __future__ import print_function, unicode_literals try: import queue except ImportError: import Queue as queue
py
1a4f79b94f7c4676b40205b026d3876b4065b244
# Automatically generated by pb2py # fmt: off SupplyChange_Increase = 1 SupplyChange_Decrease = 2
py
1a4f7a07cd7d40e03bb449594d892784a57ee768
# -*- coding: utf-8 -*- # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'Sphinx-Themes template' copyright = '2018, sphinx-themes.org' author = 'sphinx-themes.org' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '2.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.todo', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = None # If you want to have a consistent, platform independent look # sphinxemoji_style = 'twemoji' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = { "external_links": [ ("Github", "https://github.com/romnnn/sphinx_press_theme") ] } # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # The default `html_sidebars` of Press theme: ['util/searchbox.html', 'util/sidetoc.html'] # # html_sidebars = {'**': ['util/sidetoc.html']} html_logo = 'https://mirrors.creativecommons.org/presskit/icons/heart.black.png' #---sphinx-themes----- html_theme = 'press'
py
1a4f7c78d575a151c20c428b3ca0a311ecb5782b
import math from fastapi import FastAPI, Request from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates app = FastAPI() app.mount("/assets", StaticFiles(directory="assets"), name="assets") templates = Jinja2Templates(directory="templates") @app.get("/{id}") def e_to_the_x(id: str): intValue = int(id) return { "e to the power of x" : math.exp(intValue)} @app.get("/html/{id}", response_class=HTMLResponse) async def index(request: Request, id:str): intValue = int(id) message = "e to the power of x: " + str(math.exp(intValue)) return templates.TemplateResponse("index.html", {"request": request, "message" : message})
py
1a4f7c966422077901602a280ca587bc2b5a21e2
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=4 # total number=15 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np class Opty(cirq.PointOptimizer): def optimization_at( self, circuit: 'cirq.Circuit', index: int, op: 'cirq.Operation' ) -> Optional[cirq.PointOptimizationSummary]: if (isinstance(op, cirq.ops.GateOperation) and isinstance(op.gate, cirq.CZPowGate)): return cirq.PointOptimizationSummary( clear_span=1, clear_qubits=op.qubits, new_operations=[ cirq.CZ(*op.qubits), cirq.X.on_each(*op.qubits), cirq.X.on_each(*op.qubits), ] ) #thatsNoCode def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[1])) # number=2 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.H.on(input_qubit[2])) # number=3 c.append(cirq.H.on(input_qubit[3])) # number=4 c.append(cirq.H.on(input_qubit[0])) # number=12 c.append(cirq.CZ.on(input_qubit[3],input_qubit[0])) # number=13 c.append(cirq.H.on(input_qubit[0])) # number=14 c.append(cirq.CNOT.on(input_qubit[3],input_qubit[0])) # number=6 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[0])) # number=8 c.append(cirq.CNOT.on(input_qubit[2],input_qubit[0])) # number=9 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=10 c.append(cirq.SWAP.on(input_qubit[1],input_qubit[0])) # number=11 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2820 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq_pragma215.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
py
1a4f7cad55b0616b9f8182b025debb710edcb542
# coding: utf-8 """ Onshape REST API The Onshape REST API consumed by all clients. # noqa: E501 The version of the OpenAPI document: 1.113 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 import sys # noqa: F401 import six # noqa: F401 import nulltype # noqa: F401 from onshape_client.oas.model_utils import ( # noqa: F401 ModelComposed, ModelNormal, ModelSimple, date, datetime, file_type, int, none_type, str, validate_get_composed_info, ) try: from onshape_client.oas.models import bt_explosion2754_all_of except ImportError: bt_explosion2754_all_of = sys.modules[ "onshape_client.oas.models.bt_explosion2754_all_of" ] try: from onshape_client.oas.models import bt_explosion_step_feature3008 except ImportError: bt_explosion_step_feature3008 = sys.modules[ "onshape_client.oas.models.bt_explosion_step_feature3008" ] try: from onshape_client.oas.models import bt_microversion_id_and_configuration2338 except ImportError: bt_microversion_id_and_configuration2338 = sys.modules[ "onshape_client.oas.models.bt_microversion_id_and_configuration2338" ] try: from onshape_client.oas.models import btm_assembly_feature887 except ImportError: btm_assembly_feature887 = sys.modules[ "onshape_client.oas.models.btm_assembly_feature887" ] try: from onshape_client.oas.models import btm_feature134 except ImportError: btm_feature134 = sys.modules["onshape_client.oas.models.btm_feature134"] try: from onshape_client.oas.models import btm_individual_query_with_occurrence_base904 except ImportError: btm_individual_query_with_occurrence_base904 = sys.modules[ "onshape_client.oas.models.btm_individual_query_with_occurrence_base904" ] try: from onshape_client.oas.models import btm_parameter1 except ImportError: btm_parameter1 = sys.modules["onshape_client.oas.models.btm_parameter1"] class BTExplosion2754(ModelComposed): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = {} validations = {} additional_properties_type = None @staticmethod def openapi_types(): """ This must be a class method so a model may have properties that are of type self, this ensures that we don't create a cyclic import Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { "bt_type": (str,), # noqa: E501 "explode_steps": ( [bt_explosion_step_feature3008.BTExplosionStepFeature3008], ), # noqa: E501 "starting_position_id": ( bt_microversion_id_and_configuration2338.BTMicroversionIdAndConfiguration2338, ), # noqa: E501 "feature_id": (str,), # noqa: E501 "feature_type": (str,), # noqa: E501 "import_microversion": (str,), # noqa: E501 "name": (str,), # noqa: E501 "namespace": (str,), # noqa: E501 "node_id": (str,), # noqa: E501 "parameters": ([btm_parameter1.BTMParameter1],), # noqa: E501 "return_after_subfeatures": (bool,), # noqa: E501 "sub_features": ([btm_feature134.BTMFeature134],), # noqa: E501 "suppressed": (bool,), # noqa: E501 "auxiliary_assembly_feature": (bool,), # noqa: E501 "feature_list_field_index": (int,), # noqa: E501 "occurrence_queries_from_all_configurations": ( [ btm_individual_query_with_occurrence_base904.BTMIndividualQueryWithOccurrenceBase904 ], ), # noqa: E501 "version": (int,), # noqa: E501 } @staticmethod def discriminator(): return None attribute_map = { "bt_type": "btType", # noqa: E501 "explode_steps": "explodeSteps", # noqa: E501 "starting_position_id": "startingPositionId", # noqa: E501 "feature_id": "featureId", # noqa: E501 "feature_type": "featureType", # noqa: E501 "import_microversion": "importMicroversion", # noqa: E501 "name": "name", # noqa: E501 "namespace": "namespace", # noqa: E501 "node_id": "nodeId", # noqa: E501 "parameters": "parameters", # noqa: E501 "return_after_subfeatures": "returnAfterSubfeatures", # noqa: E501 "sub_features": "subFeatures", # noqa: E501 "suppressed": "suppressed", # noqa: E501 "auxiliary_assembly_feature": "auxiliaryAssemblyFeature", # noqa: E501 "feature_list_field_index": "featureListFieldIndex", # noqa: E501 "occurrence_queries_from_all_configurations": "occurrenceQueriesFromAllConfigurations", # noqa: E501 "version": "version", # noqa: E501 } required_properties = set( [ "_data_store", "_check_type", "_from_server", "_path_to_item", "_configuration", "_composed_instances", "_var_name_to_model_instances", "_additional_properties_model_instances", ] ) def __init__( self, _check_type=True, _from_server=False, _path_to_item=(), _configuration=None, **kwargs ): # noqa: E501 """bt_explosion2754.BTExplosion2754 - a model defined in OpenAPI Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _from_server (bool): True if the data is from the server False if the data is from the client (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. bt_type (str): [optional] # noqa: E501 explode_steps ([bt_explosion_step_feature3008.BTExplosionStepFeature3008]): [optional] # noqa: E501 starting_position_id (bt_microversion_id_and_configuration2338.BTMicroversionIdAndConfiguration2338): [optional] # noqa: E501 feature_id (str): [optional] # noqa: E501 feature_type (str): [optional] # noqa: E501 import_microversion (str): [optional] # noqa: E501 name (str): [optional] # noqa: E501 namespace (str): [optional] # noqa: E501 node_id (str): [optional] # noqa: E501 parameters ([btm_parameter1.BTMParameter1]): [optional] # noqa: E501 return_after_subfeatures (bool): [optional] # noqa: E501 sub_features ([btm_feature134.BTMFeature134]): [optional] # noqa: E501 suppressed (bool): [optional] # noqa: E501 auxiliary_assembly_feature (bool): [optional] # noqa: E501 feature_list_field_index (int): [optional] # noqa: E501 occurrence_queries_from_all_configurations ([btm_individual_query_with_occurrence_base904.BTMIndividualQueryWithOccurrenceBase904]): [optional] # noqa: E501 version (int): [optional] # noqa: E501 """ self._data_store = {} self._check_type = _check_type self._from_server = _from_server self._path_to_item = _path_to_item self._configuration = _configuration constant_args = { "_check_type": _check_type, "_path_to_item": _path_to_item, "_from_server": _from_server, "_configuration": _configuration, } required_args = {} # remove args whose value is Null because they are unset required_arg_names = list(required_args.keys()) for required_arg_name in required_arg_names: if required_args[required_arg_name] is nulltype.Null: del required_args[required_arg_name] model_args = {} model_args.update(required_args) model_args.update(kwargs) composed_info = validate_get_composed_info(constant_args, model_args, self) self._composed_instances = composed_info[0] self._var_name_to_model_instances = composed_info[1] self._additional_properties_model_instances = composed_info[2] unused_args = composed_info[3] for var_name, var_value in required_args.items(): setattr(self, var_name, var_value) for var_name, var_value in six.iteritems(kwargs): if ( var_name in unused_args and self._configuration is not None and self._configuration.discard_unknown_keys and not self._additional_properties_model_instances ): # discard variable. continue setattr(self, var_name, var_value) @staticmethod def _composed_schemas(): # we need this here to make our import statements work # we must store _composed_schemas in here so the code is only run # when we invoke this method. If we kept this at the class # level we would get an error beause the class level # code would be run when this module is imported, and these composed # classes don't exist yet because their module has not finished # loading return { "anyOf": [], "allOf": [ bt_explosion2754_all_of.BTExplosion2754AllOf, btm_assembly_feature887.BTMAssemblyFeature887, ], "oneOf": [], }
py
1a4f7d207efa250726c6539bd72d67f0b697e20c
import re from collections import Counter def unique_words_counter(file_path): with open(file_path, "r", encoding="utf-8") as file: all_words = re.findall(r"[0-9a-zA-Z-']+", file.read()) all_words = [word.upper() for word in all_words] print("Total Words: ", len(all_words)) words_counter = Counter() for word in all_words: words_counter[word] += 1 print("\nTop 20 words:") for word in words_counter.most_common(20): value, count = word print(value, " : ", count) if __name__ == "__main__": unique_words_counter("data/shakespeare.txt")
py
1a4f7e7909c7a2c75caffb851df06c3405ded1b5
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 from typing import ( Iterator, List, Optional, Union, ) from amundsen_rds.models import RDSModel from amundsen_rds.models.table import TableFollower as RDSTableFollower from amundsen_rds.models.user import User as RDSUser from databuilder.models.graph_node import GraphNode from databuilder.models.graph_relationship import GraphRelationship from databuilder.models.graph_serializable import GraphSerializable from databuilder.models.follower_constants import FOLLOWER_OF_OBJECT_RELATION_TYPE, FOLLOWER_RELATION_TYPE from databuilder.models.table_metadata import TableMetadata from databuilder.models.table_serializable import TableSerializable from databuilder.models.user import User class Follower(GraphSerializable, TableSerializable): LABELS_PERMITTED_TO_HAVE_FOLLOWER = ['Table', 'Dashboard'] def __init__( self, start_label: str, start_key: str, follower_emails: Union[List, str], ) -> None: if start_label not in Follower.LABELS_PERMITTED_TO_HAVE_FOLLOWER: raise Exception(f'followers for {start_label} are not supported') self.start_label = start_label self.start_key = start_key if isinstance(follower_emails, str): follower_emails = follower_emails.split(',') self.follower_emails = [ email.strip().lower() for email in follower_emails ] self._node_iter = self._create_node_iterator() self._relation_iter = self._create_relation_iterator() self._record_iter = self._create_record_iterator() def __repr__(self) -> str: return f'follower({self.start_label!r}, {self.start_key!r}, {self.follower_emails!r})' def create_next_node(self) -> Optional[GraphNode]: try: return next(self._node_iter) except StopIteration: return None def create_next_relation(self) -> Optional[GraphRelationship]: try: return next(self._relation_iter) except StopIteration: return None def create_next_record(self) -> Union[RDSModel, None]: try: return next(self._record_iter) except StopIteration: return None def _create_node_iterator(self) -> Iterator[GraphNode]: for email in self.follower_emails: if email: yield GraphNode(key=User.get_user_model_key(email=email), label=User.USER_NODE_LABEL, attributes={ User.USER_NODE_EMAIL: email, }) def _create_relation_iterator(self) -> Iterator[GraphRelationship]: for email in self.follower_emails: if email: yield GraphRelationship( start_label=self.start_label, start_key=self.start_key, end_label=User.USER_NODE_LABEL, end_key=User.get_user_model_key(email=email), type=FOLLOWER_RELATION_TYPE, reverse_type=FOLLOWER_OF_OBJECT_RELATION_TYPE, attributes={}) def _create_record_iterator(self) -> Iterator[RDSModel]: for email in self.follower_emails: if email: user_record = RDSUser(rk=User.get_user_model_key(email=email), email=email) yield user_record if self.start_label == TableMetadata.TABLE_NODE_LABEL: yield RDSTableFollower( table_rk=self.start_key, user_rk=User.get_user_model_key(email=email), ) else: raise Exception( f'{self.start_label}<>follower relationship is not table serializable' )
py
1a4f7f139f62a29117b372bd7c14f20761be4989
#!/usr/bin/env python # coding=utf-8 import asyncio import aiohttp from .config import HEADERS, REQUEST_TIMEOUT, REQUEST_DELAY async def _get_page(url, sleep): """ 获取并返回网页内容 """ async with aiohttp.ClientSession() as session: try: await asyncio.sleep(sleep) async with session.get( url, headers=HEADERS, timeout=REQUEST_TIMEOUT ) as resp: return await resp.text() except: return "" def requests(url, sleep=REQUEST_DELAY): """ 请求方法,用于获取网页内容 :param url: 请求链接 :param sleep: 延迟时间(秒) """ loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) html = loop.run_until_complete(asyncio.gather(_get_page(url, sleep))) loop.close() if html: return "".join(html)
py
1a4f7f2c26636c142682b64fff446bec3bbdb675
""" Organisation voicemail settings """ from typing import Optional from ..api_child import ApiChild from ..base import ApiModel __all__ = ['OrganisationVoicemailSettings', 'OrganisationVoicemailSettingsAPI'] class OrganisationVoicemailSettings(ApiModel): """ voicemail settings for and organization. """ #: When enabled, you can set the deletion conditions for expired messages. message_expiry_enabled: bool #: Number of days after which messages expire. number_of_days_for_message_expiry: int #: When enabled, all read and unread voicemail messages will be deleted based on the time frame you set. When #: disabled, all unread voicemail messages will be kept. strict_deletion_enabled: Optional[bool] #: When enabled, people in the organization can configure the email forwarding of voicemails. voice_message_forwarding_enabled: Optional[bool] @staticmethod def default() -> 'OrganisationVoicemailSettings': return OrganisationVoicemailSettings(message_expiry_enabled=False, number_of_days_for_message_expiry=15, strict_deletion_enabled=False, voice_message_forwarding_enabled=False) class OrganisationVoicemailSettingsAPI(ApiChild, base='telephony/config/voicemail/settings'): """ API for Organisation voicemail settings """ def read(self, *, org_id: str = None) -> OrganisationVoicemailSettings: """ Get Voicemail Settings Retrieve the organization's voicemail settings. Organizational voicemail settings determines what voicemail features a person can configure and automatic message expiration. Retrieving organization's voicemail settings requires a full, user or read-only administrator auth token with a scope of spark-admin:telephony_config_read. :param org_id: Retrieve voicemail settings for this organization. :type org_id: str :return: VM settings :rtype: OrganisationVoicemailSettings """ params = org_id and {'orgId': org_id} or None url = self.ep() return OrganisationVoicemailSettings.parse_obj(self.get(url, params=params)) def update(self, *, settings: OrganisationVoicemailSettings, org_id: str = None): """ Update the organization's voicemail settings. Organizational voicemail settings determines what voicemail features a person can configure and automatic message expiration. Updating organization's voicemail settings requires a full administrator auth token with a scope of spark-admin:telephony_config_write. :param settings: new settings :type settings: OrganisationVoicemailSettings :param org_id: Update voicemail settings for this organization. :type org_id: str """ params = org_id and {'orgId': org_id} or None url = self.ep() data = settings.json() self.put(url, data=data, params=params)
py
1a4f7fb2536bc8773bdece08659be3ab42528392
from setuptools import setup, find_packages setup( name="flexible-data-parser", description="A configurable semi-structured data parser", long_description=open("readme.md").read(), url="https://github.com/glitchassassin/flexible-data-parser", author="Jon Winsley", author_email="[email protected]", license="MIT", version="v1.0", classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Healthcare Industry", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent" ], keywords="data parse", packages=find_packages() )
py
1a4f7fcd2c758a6f7cd2513b55c58946236e6602
# Copyright 2016 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. from concurrent import futures from collections import namedtuple import copy import logging import sys import threading from s3transfer.compat import MAXINT from s3transfer.compat import six from s3transfer.exceptions import CancelledError, TransferNotDoneError from s3transfer.utils import FunctionContainer from s3transfer.utils import TaskSemaphore logger = logging.getLogger(__name__) class TransferFuture(object): def __init__(self, meta=None, coordinator=None): """The future associated to a submitted transfer request :type meta: TransferMeta :param meta: The metadata associated to the request. This object is visible to the requester. :type coordinator: TransferCoordinator :param coordinator: The coordinator associated to the request. This object is not visible to the requester. """ self._meta = meta if meta is None: self._meta = TransferMeta() self._coordinator = coordinator if coordinator is None: self._coordinator = TransferCoordinator() @property def meta(self): """The metadata associated to the TransferFuture""" return self._meta def done(self): """Determines if a TransferFuture has completed :returns: True if completed. False, otherwise. """ return self._coordinator.done() def result(self): """Waits until TransferFuture is done and returns the result If the TransferFuture succeeded, it will return the result. If the TransferFuture failed, it will raise the exception associated to the failure. """ try: # Usually the result() method blocks until the transfer is done, # however if a KeyboardInterrupt is raised we want want to exit # out of this and propogate the exception. return self._coordinator.result() except KeyboardInterrupt as e: self.cancel() raise e def cancel(self): """Cancels the request associated with the TransferFuture""" self._coordinator.cancel() def set_exception(self, exception): """Sets the exception on the future.""" if not self.done(): raise TransferNotDoneError( 'set_exception can only be called once the transfer is ' 'complete.') self._coordinator.set_exception(exception, override=True) class TransferMeta(object): """Holds metadata about the TransferFuture""" def __init__(self, call_args=None, transfer_id=None): self._call_args = call_args self._transfer_id = transfer_id self._size = None self._user_context = {} @property def call_args(self): """The call args used in the transfer request""" return self._call_args @property def transfer_id(self): """The unique id of the transfer""" return self._transfer_id @property def size(self): """The size of the transfer request if known""" return self._size @property def user_context(self): """A dictionary that requesters can store data in""" return self._user_context def provide_transfer_size(self, size): """A method to provide the size of a transfer request By providing this value, the TransferManager will not try to call HeadObject or use the use OS to determine the size of the transfer. """ self._size = size class TransferCoordinator(object): """A helper class for managing TransferFuture""" def __init__(self, transfer_id=None): self.transfer_id = transfer_id self._status = 'not-started' self._result = None self._exception = None self._associated_futures = set() self._failure_cleanups = [] self._done_callbacks = [] self._done_event = threading.Event() self._lock = threading.Lock() self._associated_futures_lock = threading.Lock() self._done_callbacks_lock = threading.Lock() self._failure_cleanups_lock = threading.Lock() def __repr__(self): return '%s(transfer_id=%s)' % ( self.__class__.__name__, self.transfer_id) @property def exception(self): return self._exception @property def associated_futures(self): """The list of futures associated to the inprogress TransferFuture Once the transfer finishes this list becomes empty as the transfer is considered done and there should be no running futures left. """ with self._associated_futures_lock: # We return a copy of the list because we do not want to # processing the returned list while another thread is adding # more futures to the actual list. return copy.copy(self._associated_futures) @property def failure_cleanups(self): """The list of callbacks to call when the TransferFuture fails""" return self._failure_cleanups @property def status(self): """The status of the TransferFuture The currently supported states are: * not-started - Has yet to start. If in this state, a transfer can be canceled immediately and nothing will happen. * queued - SubmissionTask is about to submit tasks * running - Is inprogress. In-progress as of now means that the SubmissionTask that runs the transfer is being executed. So there is no guarantee any transfer requests had been made to S3 if this state is reached. * cancelled - Was cancelled * failed - An exception other than CancelledError was thrown * success - No exceptions were thrown and is done. """ return self._status def set_result(self, result): """Set a result for the TransferFuture Implies that the TransferFuture succeeded. This will always set a result because it is invoked on the final task where there is only ever one final task and it is ran at the very end of a transfer process. So if a result is being set for this final task, the transfer succeeded even if something came a long and canceled the transfer on the final task. """ with self._lock: self._exception = None self._result = result self._status = 'success' def set_exception(self, exception, override=False): """Set an exception for the TransferFuture Implies the TransferFuture failed. :param exception: The exception that cause the transfer to fail. :param override: If True, override any existing state. """ with self._lock: if not self.done() or override: self._exception = exception self._status = 'failed' def result(self): """Waits until TransferFuture is done and returns the result If the TransferFuture succeeded, it will return the result. If the TransferFuture failed, it will raise the exception associated to the failure. """ # Doing a wait() with no timeout cannot be interrupted in python2 but # can be interrupted in python3 so we just wait with the largest # possible value integer value, which is on the scale of billions of # years... self._done_event.wait(MAXINT) # Once done waiting, raise an exception if present or return the # final result. if self._exception: raise self._exception return self._result def cancel(self, msg='', exc_type=CancelledError): """Cancels the TransferFuture :param msg: The message to attach to the cancellation :param exc_type: The type of exception to set for the cancellation """ with self._lock: if not self.done(): should_announce_done = False logger.debug('%s cancel(%s) called', self, msg) self._exception = exc_type(msg) if self._status == 'not-started': should_announce_done = True self._status = 'cancelled' if should_announce_done: self.announce_done() def set_status_to_queued(self): """Sets the TransferFutrue's status to running""" self._transition_to_non_done_state('queued') def set_status_to_running(self): """Sets the TransferFuture's status to running""" self._transition_to_non_done_state('running') def _transition_to_non_done_state(self, desired_state): with self._lock: if self.done(): raise RuntimeError( 'Unable to transition from done state %s to non-done ' 'state %s.' % (self.status, desired_state)) self._status = desired_state def submit(self, executor, task, tag=None): """Submits a task to a provided executor :type executor: s3transfer.futures.BoundedExecutor :param executor: The executor to submit the callable to :type task: s3transfer.tasks.Task :param task: The task to submit to the executor :type tag: s3transfer.futures.TaskTag :param tag: A tag to associate to the submitted task :rtype: concurrent.futures.Future :returns: A future representing the submitted task """ logger.debug( "Submitting task %s to executor %s for transfer request: %s." % ( task, executor, self.transfer_id) ) future = executor.submit(task, tag=tag) # Add this created future to the list of associated future just # in case it is needed during cleanups. self.add_associated_future(future) future.add_done_callback( FunctionContainer(self.remove_associated_future, future)) return future def done(self): """Determines if a TransferFuture has completed :returns: False if status is equal to 'failed', 'cancelled', or 'success'. True, otherwise """ return self.status in ['failed', 'cancelled', 'success'] def add_associated_future(self, future): """Adds a future to be associated with the TransferFuture""" with self._associated_futures_lock: self._associated_futures.add(future) def remove_associated_future(self, future): """Removes a future's association to the TransferFuture""" with self._associated_futures_lock: self._associated_futures.remove(future) def add_done_callback(self, function, *args, **kwargs): """Add a done callback to be invoked when transfer is done""" with self._done_callbacks_lock: self._done_callbacks.append( FunctionContainer(function, *args, **kwargs) ) def add_failure_cleanup(self, function, *args, **kwargs): """Adds a callback to call upon failure""" with self._failure_cleanups_lock: self._failure_cleanups.append( FunctionContainer(function, *args, **kwargs)) def announce_done(self): """Announce that future is done running and run associated callbacks This will run any failure cleanups if the transfer failed if not they have not been run, allows the result() to be unblocked, and will run any done callbacks associated to the TransferFuture if they have not already been ran. """ if self.status != 'success': self._run_failure_cleanups() self._done_event.set() self._run_done_callbacks() def _run_done_callbacks(self): # Run the callbacks and remove the callbacks from the internal # list so they do not get ran again if done is announced more than # once. with self._done_callbacks_lock: self._run_callbacks(self._done_callbacks) self._done_callbacks = [] def _run_failure_cleanups(self): # Run the cleanup callbacks and remove the callbacks from the internal # list so they do not get ran again if done is announced more than # once. with self._failure_cleanups_lock: self._run_callbacks(self.failure_cleanups) self._failure_cleanups = [] def _run_callbacks(self, callbacks): for callback in callbacks: self._run_callback(callback) def _run_callback(self, callback): try: callback() # We do not want a callback interrupting the process, especially # in the failure cleanups. So log and catch, the excpetion. except Exception: logger.debug("Exception raised in %s." % callback, exc_info=True) class BoundedExecutor(object): EXECUTOR_CLS = futures.ThreadPoolExecutor def __init__(self, max_size, max_num_threads, tag_semaphores=None, executor_cls=None): """An executor implentation that has a maximum queued up tasks The executor will block if the number of tasks that have been submitted and is currently working on is past its maximum. :params max_size: The maximum number of inflight futures. An inflight future means that the task is either queued up or is currently being executed. A size of None or 0 means that the executor will have no bound in terms of the number of inflight futures. :params max_num_threads: The maximum number of threads the executor uses. :type tag_semaphores: dict :params tag_semaphores: A dictionary where the key is the name of the tag and the value is the semaphore to use when limiting the number of tasks the executor is processing at a time. :type executor_cls: BaseExecutor :param underlying_executor_cls: The executor class that get bounded by this executor. If None is provided, the concurrent.futures.ThreadPoolExecutor class is used. """ self._max_num_threads = max_num_threads if executor_cls is None: executor_cls = self.EXECUTOR_CLS self._executor = executor_cls(max_workers=self._max_num_threads) self._semaphore = TaskSemaphore(max_size) self._tag_semaphores = tag_semaphores def submit(self, task, tag=None, block=True): """Submit a task to complete :type task: s3transfer.tasks.Task :param task: The task to run __call__ on :type tag: s3transfer.futures.TaskTag :param tag: An optional tag to associate to the task. This is used to override which semaphore to use. :type block: boolean :param block: True if to wait till it is possible to submit a task. False, if not to wait and raise an error if not able to submit a task. :returns: The future assocaited to the submitted task """ semaphore = self._semaphore # If a tag was provided, use the semaphore associated to that # tag. if tag: semaphore = self._tag_semaphores[tag] # Call acquire on the semaphore. acquire_token = semaphore.acquire(task.transfer_id, block) # Create a callback to invoke when task is done in order to call # release on the semaphore. release_callback = FunctionContainer( semaphore.release, task.transfer_id, acquire_token) # Submit the task to the underlying executor. future = ExecutorFuture(self._executor.submit(task)) # Add the Semaphore.release() callback to the future such that # it is invoked once the future completes. future.add_done_callback(release_callback) return future def shutdown(self, wait=True): self._executor.shutdown(wait) class ExecutorFuture(object): def __init__(self, future): """A future returned from the executor Currently, it is just a wrapper around a concurrent.futures.Future. However, this can eventually grow to implement the needed functionality of concurrent.futures.Future if we move off of the library and not affect the rest of the codebase. :type future: concurrent.futures.Future :param future: The underlying future """ self._future = future def result(self): return self._future.result() def add_done_callback(self, fn): """Adds a callback to be completed once future is done :parm fn: A callable that takes no arguments. Note that is different than concurrent.futures.Future.add_done_callback that requires a single argument for the future. """ # The done callback for concurrent.futures.Future will always pass a # the future in as the only argument. So we need to create the # proper signature wrapper that will invoke the callback provided. def done_callback(future_passed_to_callback): return fn() self._future.add_done_callback(done_callback) def done(self): return self._future.done() class BaseExecutor(object): """Base Executor class implementation needed to work with s3transfer""" def __init__(self, max_workers=None): pass def submit(self, fn, *args, **kwargs): raise NotImplementedError('submit()') def shutdown(self, wait=True): raise NotImplementedError('shutdown()') class NonThreadedExecutor(BaseExecutor): """A drop-in replacement non-threaded version of ThreadPoolExecutor""" def submit(self, fn, *args, **kwargs): future = NonThreadedExecutorFuture() try: result = fn(*args, **kwargs) future.set_result(result) except Exception: e, tb = sys.exc_info()[1:] logger.debug( 'Setting exception for %s to %s with traceback %s', future, e, tb ) future.set_exception_info(e, tb) return future def shutdown(self, wait=True): pass class NonThreadedExecutorFuture(object): """The Future returned from NonThreadedExecutor Note that this future is **not** thread-safe as it is being used from the context of a non-threaded environment. """ def __init__(self): self._result = None self._exception = None self._traceback = None self._done = False self._done_callbacks = [] def set_result(self, result): self._result = result self._set_done() def set_exception_info(self, exception, traceback): self._exception = exception self._traceback = traceback self._set_done() def result(self, timeout=None): if self._exception: six.reraise( type(self._exception), self._exception, self._traceback) return self._result def _set_done(self): self._done = True for done_callback in self._done_callbacks: self._invoke_done_callback(done_callback) self._done_callbacks = [] def _invoke_done_callback(self, done_callback): return done_callback(self) def done(self): return self._done def add_done_callback(self, fn): if self._done: self._invoke_done_callback(fn) else: self._done_callbacks.append(fn) TaskTag = namedtuple('TaskTag', ['name']) IN_MEMORY_UPLOAD_TAG = TaskTag('in_memory_upload') IN_MEMORY_DOWNLOAD_TAG = TaskTag('in_memory_download')
py
1a4f80d04d432e4868493ce2df28ca7ccda0d084
from .starshaped_sample import Starshaped_Sample from .hybrid_sampling import Hybrid_Sampling
py
1a4f81061a75db8ac18bba2be452cb33eb364dc8
from a10sdk.common.A10BaseClass import A10BaseClass class SslCert(A10BaseClass): """Class Description:: SSL Cert File(enter bulk when import an archive file). Class ssl-cert supports CRUD Operations and inherits from `common/A10BaseClass`. This class is the `"PARENT"` class for this module.` :param pfx_password: {"description": "The password for certificate file (pfx type only)", "format": "string", "minLength": 1, "optional": true, "maxLength": 128, "type": "string"} :param csr_generate: {"default": 0, "optional": true, "type": "number", "description": "Generate CSR file", "format": "flag"} :param remote_file: {"optional": true, "type": "string", "description": "profile name for remote url", "format": "url"} :param use_mgmt_port: {"default": 0, "optional": true, "type": "number", "description": "Use management port as source port", "format": "flag"} :param period: {"description": "Specify the period in second", "format": "number", "type": "number", "maximum": 31536000, "minimum": 60, "optional": true} :param certificate_type: {"optional": true, "enum": ["pem", "der", "pfx", "p7b"], "type": "string", "description": "'pem': pem; 'der': der; 'pfx': pfx; 'p7b': p7b; ", "format": "enum"} :param ssl_cert: {"description": "SSL Cert File(enter bulk when import an archive file)", "format": "string", "minLength": 1, "optional": false, "maxLength": 255, "type": "string"} :param uuid: {"description": "uuid of the object", "format": "string", "minLength": 1, "modify-not-allowed": 1, "optional": true, "maxLength": 64, "type": "string"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` URL for this object:: `https://<Hostname|Ip address>//axapi/v3/import-periodic/ssl-cert/{ssl_cert}`. """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.required = [ "ssl_cert"] self.b_key = "ssl-cert" self.a10_url="/axapi/v3/import-periodic/ssl-cert/{ssl_cert}" self.DeviceProxy = "" self.pfx_password = "" self.csr_generate = "" self.remote_file = "" self.use_mgmt_port = "" self.period = "" self.certificate_type = "" self.ssl_cert = "" self.uuid = "" for keys, value in kwargs.items(): setattr(self,keys, value)
py
1a4f81c22d00c17c0b76b75b032d3664b456ca80
# -*- coding: utf-8 -*- __title__ = 'stimson-web-scraper' __author__ = 'Lucas Ou-Yang' __license__ = 'MIT' __copyright__ = 'Copyright 2014, Lucas Ou-Yang' __maintainer__ = "The Stimson Center" __maintainer_email = "[email protected]" VIDEOS_TAGS = ['iframe', 'embed', 'object', 'video'] VIDEO_PROVIDERS = ['youtube', 'youtu.be', 'twitch', 'vimeo', 'dailymotion', 'kewego'] class Video(object): """Video object """ def __init__(self): # type of embed # embed, object, iframe self.embed_type = None # video provider name self.provider = None # width self.width = None # height self.height = None # embed code self.embed_code = None # src self.src = None class VideoExtractor(object): """Extracts a list of video from Article top node """ def __init__(self, config, top_node): self.config = config self.parser = self.config.get_parser() self.top_node = top_node self.candidates = [] self.movies = [] def get_embed_code(self, node): return "".join([ line.strip() for line in self.parser.node_to_string(node).splitlines()]) def get_embed_type(self, node): return self.parser.get_tag(node) def get_width(self, node): return self.parser.get_attribute(node, 'width') def get_height(self, node): return self.parser.get_attribute(node, 'height') def get_src(self, node): return self.parser.get_attribute(node, 'src') # noinspection PyMethodMayBeStatic def get_provider(self, src): if src: for provider in VIDEO_PROVIDERS: if provider in src: return provider return None def get_video(self, node): """Create a video object from a video embed """ video = Video() video.embed_code = self.get_embed_code(node) video.embed_type = self.get_embed_type(node) video.width = self.get_width(node) video.height = self.get_height(node) video.src = self.get_src(node) video.provider = self.get_provider(video.src) return video def get_iframe_tag(self, node): return self.get_video(node) # noinspection PyUnusedLocal,PyMethodMayBeStatic def get_video_tag(self, node): """Extract html video tags """ return Video() def get_embed_tag(self, node): # embed node may have an object node as parent # in this case we want to retrieve the object node # instead of the embed parent = self.parser.get_parent(node) if parent is not None: parent_tag = self.parser.get_tag(parent) if parent_tag == 'object': return self.get_object_tag(node) return self.get_video(node) def get_object_tag(self, node): # test if object tag has en embed child # in this case we want to remove the embed from # the candidate list to avoid parsing it twice child_embed_tag = self.parser.get_elements_by_tag(node, 'embed') if child_embed_tag and child_embed_tag[0] in self.candidates: self.candidates.remove(child_embed_tag[0]) # get the object source # if we don't have a src node don't coninue src_node = self.parser.get_elements_by_tag( node, tag="param", attr="name", value="movie") if not src_node: return None src = self.parser.get_attribute(src_node[0], "value") # check provider provider = self.get_provider(src) if not provider: return None video = self.get_video(node) video.provider = provider video.src = src return video def get_videos(self): self.candidates = self.parser.get_elements_by_tags( self.top_node, VIDEOS_TAGS) # loop all candidates # and check if src attribute belongs to a video provider for candidate in self.candidates: tag = self.parser.get_tag(candidate) attr = "get_%s_tag" % tag if hasattr(self, attr): movie = getattr(self, attr)(candidate) if movie is not None and movie.provider is not None: self.movies.append(movie) return list(self.movies) # append movies list to article # self.article.movies = list(self.movies)
py
1a4f821ffac9d93ea79dd165c9f8942ae2c1f5f2
from setuptools import setup, find_packages from os import path __version__ = "0.3.15" here = path.abspath(path.dirname(__file__)) with open(path.join(here, "README.md"), encoding="utf-8") as f: long_description = f.read() with open(path.join(here, "requirements.txt"), encoding="utf-8") as f: dependencies = [line for line in f if line] setup( name="office365", version=__version__, description="A wrapper around O365 offering subclasses with additional utility methods.", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/matthewgdv/office", license="MIT", classifiers=[ "Development Status :: 3 - Alpha", "Intended Audience :: Developers", "Programming Language :: Python :: 3.8", ], packages=find_packages(exclude=["tests*"]), install_requires=dependencies, setup_requires=['setuptools_scm'], include_package_data=True, author="Matt GdV", author_email="[email protected]" )
py
1a4f837768d2ed1be06d056097165375f11dcd1f
# File: S (Python 2.4) from SCColorScheme import SCColorScheme from otp.otpbase import OTPLocalizer class SCSettings: def __init__(self, eventPrefix, whisperMode = 0, colorScheme = None, submenuOverlap = OTPLocalizer.SCOsubmenuOverlap, topLevelOverlap = None): self.eventPrefix = eventPrefix self.whisperMode = whisperMode if colorScheme is None: colorScheme = SCColorScheme() self.colorScheme = colorScheme self.submenuOverlap = submenuOverlap self.topLevelOverlap = topLevelOverlap
py
1a4f8395f38c30bdb68791a6213e01433e530705
from typing import Optional from src.models.channel import Channel from .exceptions import ChannelExistedException, ChannelNotExistException class ChannelController: @staticmethod def get_all_channels(): return Channel.get_all_channels() @staticmethod def create_channel(channel: Channel): if ChannelController.is_channel_existed(channel.id): raise ChannelExistedException(channel.id) channel.save() @staticmethod def get_channel(id: str) -> Optional[Channel]: return Channel.get_channel_by_id(id) @staticmethod def delete_channel(id: str): if not ChannelController.is_channel_existed(id): raise ChannelNotExistException(id) Channel.delete_by_id(id) @staticmethod def is_channel_existed(channel_id) -> bool: return Channel.get_channel_by_id(channel_id) is not None
py
1a4f84e2c0fd2f38b17053ff48939b68c496c2fe
import numpy as np import pytest import pandas as pd from pandas.core.internals import BlockManager, SingleBlockManager from pandas.core.internals.blocks import Block, NonConsolidatableMixIn class CustomBlock(NonConsolidatableMixIn, Block): _holder = np.ndarray def formatting_values(self): return np.array(["Val: {}".format(i) for i in self.values]) def concat_same_type(self, to_concat, placement=None): """ Always concatenate disregarding self.ndim as the values are always 1D in this custom Block """ values = np.concatenate([blk.values for blk in to_concat]) return self.make_block_same_class( values, placement=placement or slice(0, len(values), 1) ) @pytest.fixture def df(): df1 = pd.DataFrame({"a": [1, 2, 3]}) blocks = df1._data.blocks values = np.arange(3, dtype="int64") custom_block = CustomBlock(values, placement=slice(1, 2)) blocks = blocks + (custom_block,) block_manager = BlockManager(blocks, [pd.Index(["a", "b"]), df1.index]) return pd.DataFrame(block_manager) def test_custom_repr(): values = np.arange(3, dtype="int64") # series block = CustomBlock(values, placement=slice(0, 3)) s = pd.Series(SingleBlockManager(block, pd.RangeIndex(3))) assert repr(s) == "0 Val: 0\n1 Val: 1\n2 Val: 2\ndtype: int64" # dataframe block = CustomBlock(values, placement=slice(0, 1)) blk_mgr = BlockManager([block], [["col"], range(3)]) df = pd.DataFrame(blk_mgr) assert repr(df) == " col\n0 Val: 0\n1 Val: 1\n2 Val: 2" def test_concat_series(): # GH17728 values = np.arange(3, dtype="int64") block = CustomBlock(values, placement=slice(0, 3)) s = pd.Series(block, pd.RangeIndex(3), fastpath=True) res = pd.concat([s, s]) assert isinstance(res._data.blocks[0], CustomBlock) def test_concat_dataframe(df): # GH17728 res = pd.concat([df, df]) assert isinstance(res._data.blocks[1], CustomBlock) def test_concat_axis1(df): # GH17954 df2 = pd.DataFrame({"c": [0.1, 0.2, 0.3]}) res = pd.concat([df, df2], axis=1) assert isinstance(res._data.blocks[1], CustomBlock)
py
1a4f86364b78e063b9cc072fd4d614897e9aea0e
from django.urls import path from graphene_django.views import GraphQLView from quiz.schema import schema urlpatterns = [ # Only a single URL to acces GraphQL path("quiz", GraphQLView.as_view(graphiql=True, schema=schema)), ]
py
1a4f866b1210384e2eaff165e5ad4581c1309e7b
# Generated by Django 2.2.6 on 2019-10-14 14:45 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('slug', models.CharField(max_length=255)), ('description', models.TextField()), ], ), migrations.CreateModel( name='Tag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ], ), migrations.CreateModel( name='Essay', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('parsing_date', models.DateTimeField(auto_created=True)), ('name', models.CharField(max_length=255)), ('slug', models.CharField(max_length=255)), ('description', models.TextField()), ('published', models.DateField()), ('essay_source', models.URLField(max_length=255)), ('cat', models.ManyToManyField(to='catalog.Category')), ('tag', models.ManyToManyField(to='catalog.Tag')), ], ), ]
py
1a4f86b7f32e3b07a7e5b5fd0b929302db924b5c
from typing import Optional import pytest from odmantic.field import Field from odmantic.model import EmbeddedModel, Model from odmantic.reference import Reference def test_field_defined_as_primary_key_and_custom_name(): with pytest.raises( ValueError, match="cannot specify a primary field with a custom key_name" ): Field(primary_field=True, key_name="not _id") def test_field_defined_as_primary_key_default_name(): f = Field(primary_field=True) assert f.key_name == "_id" def test_field_define_key_as__id_without_setting_as_primary(): with pytest.raises( ValueError, match="cannot specify key_name='_id' without defining the field as primary", ): Field(key_name="_id") def test_pos_key_name(): class M(Model): field: int = Field(key_name="alternate_name") assert +M.field == "alternate_name" assert ++M.field == "$alternate_name" def test_unknown_attr_embedded_model(): class E(EmbeddedModel): ... class M(Model): field: E with pytest.raises(AttributeError, match="attribute unknown_attr not found in E"): M.field.unknown_attr # type: ignore @pytest.mark.parametrize("operator_name", ("lt", "lte", "gt", "gte", "match")) def test_reference_field_operator_not_allowed(operator_name: str): class E(Model): ... class M(Model): field: E = Reference() with pytest.raises( AttributeError, match=f"operator {operator_name} not allowed for ODMReference fields", ): getattr(M.field, operator_name) def test_field_required_in_doc_without_default(): class M(Model): field: str assert M.__odm_fields__["field"].is_required_in_doc() def test_field_required_in_doc_with_default(): class M(Model): field: str = Field("hi") assert not M.__odm_fields__["field"].is_required_in_doc() def test_field_required_in_doc_implicit_optional_default(): class M(Model): field: Optional[str] assert not M.__odm_fields__["field"].is_required_in_doc() def test_field_required_in_doc_default_factory_disabled(): class M(Model): field: str = Field(default_factory=lambda: "hi") assert M.__odm_fields__["field"].is_required_in_doc() def test_field_required_in_doc_default_factory_enabled(): class M(Model): field: str = Field(default_factory=lambda: "hi") class Config: parse_doc_with_default_factories = True assert not M.__odm_fields__["field"].is_required_in_doc()
py
1a4f86d2281df2996b23e23c0c6f372145ab96a1
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the RPC HTTP basics.""" from test_framework.test_framework import MonicoinTestFramework from test_framework.util import assert_equal, str_to_b64str import http.client import urllib.parse class HTTPBasicsTest (MonicoinTestFramework): def set_test_params(self): self.num_nodes = 3 self.supports_cli = False def setup_network(self): self.setup_nodes() def run_test(self): ################################################# # lowlevel check for http persistent connection # ################################################# url = urllib.parse.urlparse(self.nodes[0].url) authpair = url.username + ':' + url.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 assert conn.sock is not None #according to http/1.1 connection must still be open! #send 2nd request without closing connection conn.request('POST', '/', '{"method": "getchaintips"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 #must also response with a correct json-rpc message assert conn.sock is not None #according to http/1.1 connection must still be open! conn.close() #same should be if we add keep-alive because this should be the std. behaviour headers = {"Authorization": "Basic " + str_to_b64str(authpair), "Connection": "keep-alive"} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 assert conn.sock is not None #according to http/1.1 connection must still be open! #send 2nd request without closing connection conn.request('POST', '/', '{"method": "getchaintips"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 #must also response with a correct json-rpc message assert conn.sock is not None #according to http/1.1 connection must still be open! conn.close() #now do the same with "Connection: close" headers = {"Authorization": "Basic " + str_to_b64str(authpair), "Connection":"close"} conn = http.client.HTTPConnection(url.hostname, url.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 assert conn.sock is None #now the connection must be closed after the response #node1 (2nd node) is running with disabled keep-alive option urlNode1 = urllib.parse.urlparse(self.nodes[1].url) authpair = urlNode1.username + ':' + urlNode1.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(urlNode1.hostname, urlNode1.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 #node2 (third node) is running with standard keep-alive parameters which means keep-alive is on urlNode2 = urllib.parse.urlparse(self.nodes[2].url) authpair = urlNode2.username + ':' + urlNode2.password headers = {"Authorization": "Basic " + str_to_b64str(authpair)} conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('POST', '/', '{"method": "getbestblockhash"}', headers) out1 = conn.getresponse().read() assert b'"error":null' in out1 assert conn.sock is not None #connection must be closed because monicoind should use keep-alive by default # Check excessive request size conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('GET', '/' + ('x'*1000), '', headers) out1 = conn.getresponse() assert_equal(out1.status, http.client.NOT_FOUND) conn = http.client.HTTPConnection(urlNode2.hostname, urlNode2.port) conn.connect() conn.request('GET', '/' + ('x'*10000), '', headers) out1 = conn.getresponse() assert_equal(out1.status, http.client.BAD_REQUEST) if __name__ == '__main__': HTTPBasicsTest ().main ()
py
1a4f87cd50f22cdf06f6a9c5a423e4708f123c58
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Dict, List, Mapping, Optional, Tuple, Union from .. import _utilities, _tables __all__ = ['VpnGatewayRoutePropagation'] class VpnGatewayRoutePropagation(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, route_table_id: Optional[pulumi.Input[str]] = None, vpn_gateway_id: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ Requests automatic route propagation between a VPN gateway and a route table. > **Note:** This resource should not be used with a route table that has the `propagating_vgws` argument set. If that argument is set, any route propagation not explicitly listed in its value will be removed. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.ec2.VpnGatewayRoutePropagation("example", vpn_gateway_id=aws_vpn_gateway["example"]["id"], route_table_id=aws_route_table["example"]["id"]) ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] route_table_id: The id of the `ec2.RouteTable` to propagate routes into. :param pulumi.Input[str] vpn_gateway_id: The id of the `ec2.VpnGateway` to propagate routes from. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if route_table_id is None: raise TypeError("Missing required property 'route_table_id'") __props__['route_table_id'] = route_table_id if vpn_gateway_id is None: raise TypeError("Missing required property 'vpn_gateway_id'") __props__['vpn_gateway_id'] = vpn_gateway_id super(VpnGatewayRoutePropagation, __self__).__init__( 'aws:ec2/vpnGatewayRoutePropagation:VpnGatewayRoutePropagation', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, route_table_id: Optional[pulumi.Input[str]] = None, vpn_gateway_id: Optional[pulumi.Input[str]] = None) -> 'VpnGatewayRoutePropagation': """ Get an existing VpnGatewayRoutePropagation resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] route_table_id: The id of the `ec2.RouteTable` to propagate routes into. :param pulumi.Input[str] vpn_gateway_id: The id of the `ec2.VpnGateway` to propagate routes from. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["route_table_id"] = route_table_id __props__["vpn_gateway_id"] = vpn_gateway_id return VpnGatewayRoutePropagation(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="routeTableId") def route_table_id(self) -> pulumi.Output[str]: """ The id of the `ec2.RouteTable` to propagate routes into. """ return pulumi.get(self, "route_table_id") @property @pulumi.getter(name="vpnGatewayId") def vpn_gateway_id(self) -> pulumi.Output[str]: """ The id of the `ec2.VpnGateway` to propagate routes from. """ return pulumi.get(self, "vpn_gateway_id") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
1a4f883ca98a7f2f1862a06d45381e22308e1614
"""Views for observations of categories.""" from django.core.exceptions import PermissionDenied from django.views.decorators.gzip import gzip_page from rest_framework import status from rest_framework.response import Response from rest_framework.views import APIView from geokey.core.decorators import handle_exceptions_for_ajax from geokey.users.models import User from geokey.projects.models import Project from geokey.core.exceptions import InputError from ..renderers.geojson import GeoJsonRenderer from ..parsers.geojson import GeoJsonParser from .base import SingleAllContribution from ..serializers import ContributionSerializer class GZipView(object): def dispatch(self, request, *args, **kwargs): if not hasattr(self, 'META'): setattr(self, 'META', {}) if request.META.get('HTTP_ACCEPT_ENCODING'): self.META['HTTP_ACCEPT_ENCODING'] = request.META['HTTP_ACCEPT_ENCODING'] return super(GZipView, self).dispatch(request, *args, **kwargs) class GeoJsonView(APIView): renderer_classes = (GeoJsonRenderer,) parser_classes = (GeoJsonParser,) class ProjectObservations(GZipView, GeoJsonView): """ Public API endpoint to add new contributions to a project /api/projects/:project_id/contributions """ @handle_exceptions_for_ajax def post(self, request, project_id): """ Adds a new contribution to a project Parameters ---------- request : rest_framework.request.Request Represents the request project_id : int identifies the project in the data base Returns ------- rest_framework.response.Respone Contains the serialised contribution """ user = request.user if user.is_anonymous(): user = User.objects.get(display_name='AnonymousUser') data = request.data project = Project.objects.as_contributor(request.user, project_id) if (not data.get('meta').get('status') == 'draft' and project.can_moderate(user)): data['meta']['status'] = 'active' serializer = ContributionSerializer( data=data, context={'user': user, 'project': project} ) if serializer.is_valid(raise_exception=True): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) @gzip_page @handle_exceptions_for_ajax def get(self, request, project_id): """ Handle GET request. Return a list of all contributions of the project accessible to the user. Parameters ---------- request : rest_framework.request.Request Represents the request. project_id : int Identifies the project in the database. Returns ------- rest_framework.response.Respone Contains the serialized contributions. """ project = Project.objects.get_single(request.user, project_id) try: contributions = project.get_all_contributions( request.user, search=request.GET.get('search'), subset=request.GET.get('subset'), bbox=request.GET.get('bbox') ).select_related('location', 'creator', 'updator', 'category') except InputError as e: return Response(e, status=status.HTTP_406_NOT_ACCEPTABLE) serializer = ContributionSerializer( contributions, many=True, context={ 'user': request.user, 'project': project, 'search': request.GET.get('search'), 'bbox': request.GET.get('bbox') } ) return Response(serializer.data, status=status.HTTP_200_OK) # ############################################################################ # # SINGLE CONTRIBUTION # # ############################################################################ class SingleContributionAPIView(GeoJsonView): """ Abstract APIView for handling requests to single observations """ def get_and_respond(self, request, observation): """ Returns a single contributions Parameters ---------- request : rest_framework.request.Request Represents the request observation : geokey.contributions.models.Observation Observation to be returned Returns ------- rest_framework.response.Respone Contains the serialised observation """ serializer = ContributionSerializer( observation, context={'user': request.user, 'project': observation.project} ) return Response(serializer.data, status=status.HTTP_200_OK) def update_and_respond(self, request, observation): """ Updates and returns a single contributions Parameters ---------- request : rest_framework.request.Request Represents the request observation : geokey.contributions.models.Observation Observation to be returned Returns ------- rest_framework.response.Respone Contains the updated serialised observation """ data = request.data user = request.user if user.is_anonymous(): user = User.objects.get(display_name='AnonymousUser') new_status = None if data.get('meta') is not None: new_status = data.get('meta').get('status') user_can_moderate = observation.project.can_moderate(user) user_is_owner = (observation.creator == user) under_review = observation.comments.filter( review_status='open').exists() if (new_status is not None and new_status != observation.status): if not ( (new_status == 'pending' and (user_is_owner or user_can_moderate)) or (new_status == 'active' and observation.status == 'draft' and user_is_owner) or (new_status == 'active' and observation.status == 'pending' and user_can_moderate)): raise PermissionDenied('You are not allowed to update the ' 'status of the contribution from "%s" ' 'to "%s"' % ( observation.status, new_status )) elif not (user_is_owner or user_can_moderate): raise PermissionDenied('You are not allowed to update the' 'contribution') if new_status == 'active' and under_review: data['meta']['status'] = 'review' if ((new_status == 'active' and observation.status == 'draft') and not user_can_moderate): default_status = observation.category.default_status data['meta']['status'] = default_status serializer = ContributionSerializer( observation, data=data, context={'user': user, 'project': observation.project} ) if serializer.is_valid(raise_exception=True): serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) def delete_and_respond(self, request, observation): """ Deletes a single observation Parameters ---------- request : rest_framework.request.Request Represents the request observation : geokey.contributions.models.Observation Observation to be deleted Returns ------- rest_framework.response.Respone Empty response indicating successful delete """ if (observation.creator == request.user or observation.project.can_moderate(request.user)): observation.delete() return Response(status=status.HTTP_204_NO_CONTENT) raise PermissionDenied('You are not allowed to delete this' 'contribution') class SingleAllContributionAPIView( SingleAllContribution, SingleContributionAPIView): """ Public API endpoint for updating a single observation in a project /api/projects/:project_id/observations/:observation_id """ @handle_exceptions_for_ajax def get(self, request, project_id, observation_id): """ Returns a single contribution Parameters ---------- request : rest_framework.request.Request Represents the request project_id : int identifies the project in the data base observation_id : int identifies the observation in the data base Returns ------- rest_framework.response.Respone Contains the serialised observation """ contribution = self.get_contribution( request.user, project_id, observation_id ) return self.get_and_respond(request, contribution) @handle_exceptions_for_ajax def patch(self, request, project_id, observation_id): """ Updates and returns a single contribution Parameters ---------- request : rest_framework.request.Request Represents the request project_id : int identifies the project in the data base observation_id : int identifies the observation in the data base Returns ------- rest_framework.response.Respone Contains the updated serialised observation """ contribution = self.get_contribution( request.user, project_id, observation_id ) return self.update_and_respond(request, contribution) @handle_exceptions_for_ajax def delete(self, request, project_id, observation_id): """ Deletes a single contribution Parameters ---------- request : rest_framework.request.Request Represents the request project_id : int identifies the project in the data base observation_id : int identifies the observation in the data base Returns ------- rest_framework.response.Respone Empty response indicating successful delete """ contribution = self.get_contribution( request.user, project_id, observation_id ) return self.delete_and_respond(request, contribution)
py
1a4f887023fad437132a74dbbf9ffcd935622b83
#!/usr/local/bin/python from os import system from sys import argv cl = argv[1] liste = open('/usr/local/share/operator/editor').read() if "sudo" in argv[1:]: print("Can't use sudo with operator") elif ">" in argv[1:]: print("Can't use > with operator") elif cl in liste: print(("Can't use %s with operator!" % argv[1])) else: cmd = '' for line in argv[1:]: cmd += line + " " system(cmd)
py
1a4f88c2822747ab931b60f2082d193506dd24ad
class TypeLibFuncFlags(Enum, IComparable, IFormattable, IConvertible): """ Describes the original settings of the FUNCFLAGS in the COM type library from where this method was imported. enum (flags) TypeLibFuncFlags,values: FBindable (4),FDefaultBind (32),FDefaultCollelem (256),FDisplayBind (16),FHidden (64),FImmediateBind (4096),FNonBrowsable (1024),FReplaceable (2048),FRequestEdit (8),FRestricted (1),FSource (2),FUiDefault (512),FUsesGetLastError (128) """ def __eq__(self, *args): """ x.__eq__(y) <==> x==yx.__eq__(y) <==> x==yx.__eq__(y) <==> x==y """ pass def __format__(self, *args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __ge__(self, *args): pass def __gt__(self, *args): pass def __init__(self, *args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass def __le__(self, *args): pass def __lt__(self, *args): pass def __ne__(self, *args): pass def __reduce_ex__(self, *args): pass def __str__(self, *args): pass FBindable = None FDefaultBind = None FDefaultCollelem = None FDisplayBind = None FHidden = None FImmediateBind = None FNonBrowsable = None FReplaceable = None FRequestEdit = None FRestricted = None FSource = None FUiDefault = None FUsesGetLastError = None value__ = None
py
1a4f89c511018443bfd366ba7278f3b194664184
import unittest import unittest.mock import re from g1.asyncs import agents from g1.asyncs import kernels from g1.asyncs.bases import locks from g1.asyncs.bases import queues from g1.asyncs.bases import tasks from g1.asyncs.bases import timers class SuperviseAgentsTest(unittest.TestCase): def setUp(self): super().setUp() self.main_task = None self.agent_queue = tasks.CompletionQueue() self.graceful_exit = locks.Event() self.signal_queue = queues.Queue() mock = unittest.mock.patch(agents.__name__ + '.signals').start() mock.SignalSource().__enter__().get = self.signal_queue.get self._assert_logs = self.assertLogs(agents.__name__, level='DEBUG') self.cm = self._assert_logs.__enter__() def tearDown(self): unittest.mock.patch.stopall() self._assert_logs.__exit__(None, None, None) super().tearDown() def assert_state(self, closed, queue_size, graceful_exit, log_patterns): self.assertEqual(self.agent_queue.is_closed(), closed) self.assertEqual(len(self.agent_queue), queue_size) self.assertEqual(self.graceful_exit.is_set(), graceful_exit) message = 'expect patterns %r in %r' % (log_patterns, self.cm.output) if len(self.cm.output) != len(log_patterns): self.fail(message) for log_line, log_pattern in zip(self.cm.output, log_patterns): if not re.search(log_pattern, log_line): self.fail(message) def run_supervisor(self): self.main_task = tasks.spawn( agents.supervise_agents(self.agent_queue, self.graceful_exit, 5) ) kernels.run(timeout=0.01) @kernels.with_kernel def test_graceful_exit_by_user(self): self.graceful_exit.set() self.run_supervisor() self.assert_state(True, 0, True, [r'graceful exit: requested by user']) self.assertIsNone(self.main_task.get_result_nonblocking()) self.assertFalse(tasks.get_all_tasks()) @kernels.with_kernel def test_signal(self): self.signal_queue.put_nonblocking(1) self.run_supervisor() self.assert_state(True, 0, True, [r'graceful exit: receive signal: 1']) self.assertIsNone(self.main_task.get_result_nonblocking()) self.assertFalse(tasks.get_all_tasks()) @kernels.with_kernel def test_repeated_signals(self): sleep_task = self.agent_queue.spawn(timers.sleep(99)) self.assert_state(False, 1, False, []) self.signal_queue.put_nonblocking(1) with self.assertRaises(kernels.KernelTimeout): self.run_supervisor() self.assert_state(True, 1, True, [r'graceful exit: receive signal: 1']) self.signal_queue.put_nonblocking(2) kernels.run(timeout=1) self.assert_state(True, 0, True, [r'graceful exit: receive signal: 1']) with self.assertRaisesRegex( agents.SupervisorError, r'receive signal during graceful exit: 2', ): self.main_task.get_result_nonblocking() with self.assertRaises(tasks.Cancelled): sleep_task.get_result_nonblocking() self.assertFalse(tasks.get_all_tasks()) @kernels.with_kernel def test_agent_exit(self): noop_task = self.agent_queue.spawn(noop) self.assert_state(False, 1, False, []) self.run_supervisor() self.assert_state( True, 0, True, [r'no op', r'graceful exit: agent exit: '] ) self.assertIsNone(noop_task.get_result_nonblocking()) self.assertFalse(tasks.get_all_tasks()) @kernels.with_kernel def test_agent_error(self): raises_task = self.agent_queue.spawn(raises(ValueError('some error'))) self.assert_state(False, 1, False, []) self.run_supervisor() self.assert_state(True, 0, False, []) with self.assertRaisesRegex( agents.SupervisorError, r'agent err out: ', ): self.main_task.get_result_nonblocking() with self.assertRaisesRegex(ValueError, r'some error'): raises_task.get_result_nonblocking() self.assertFalse(tasks.get_all_tasks()) # Make self._assert_logs.__exit__ happy. agents.LOG.debug('dummy') @kernels.with_kernel def test_grace_period_exceeded(self): self.graceful_exit.set() sleep_task = self.agent_queue.spawn(timers.sleep(99)) self.assert_state(False, 1, True, []) self.main_task = tasks.spawn( agents.supervise_agents(self.agent_queue, self.graceful_exit, 0) ) kernels.run(timeout=0.01) self.assert_state(True, 0, True, [r'graceful exit: requested by user']) with self.assertRaisesRegex( agents.SupervisorError, r'grace period exceeded', ): self.main_task.get_result_nonblocking() with self.assertRaises(tasks.Cancelled): sleep_task.get_result_nonblocking() self.assertFalse(tasks.get_all_tasks()) async def noop(): agents.LOG.debug('no op') async def raises(exc): raise exc if __name__ == '__main__': unittest.main()
py
1a4f8a8be83188a11a84cf2c602108cfd1b934f5
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.21 (https://github.com/python-versioneer/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys from typing import Callable, Dict def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "" cfg.parentdir_prefix = "" cfg.versionfile_source = "prefect_email/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY: Dict[str, str] = {} HANDLERS: Dict[str, Dict[str, Callable]] = {} def register_vcs_handler(vcs, method): # decorator """Create decorator to mark a method as the handler of a VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) process = None for command in commands: try: dispcmd = str([command] + args) # remember shell=False, so use git.cmd on windows, not just git process = subprocess.Popen( [command] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None), ) break except OSError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = process.communicate()[0].strip().decode() if process.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, process.returncode return stdout, process.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for _ in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return { "version": dirname[len(parentdir_prefix) :], "full-revisionid": None, "dirty": False, "error": None, "date": None, } rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print( "Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix) ) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: with open(versionfile_abs, "r") as fobj: for line in fobj: if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) except OSError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if "refnames" not in keywords: raise NotThisMethod("Short version file found") date = keywords.get("date") if date is not None: # Use only the last line. Previous lines may contain GPG signature # information. date = date.splitlines()[-1] # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = {r.strip() for r in refnames.strip("()").split(",")} # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = {r[len(TAG) :] for r in refs if r.startswith(TAG)} if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = {r for r in refs if re.search(r"\d", r)} if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix) :] # Filter out refs that exactly match prefix or that don't start # with a number once the prefix is stripped (mostly a concern # when prefix is '') if not re.match(r"\d", r): continue if verbose: print("picking %s" % r) return { "version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date, } # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return { "version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None, } @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, runner=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] TAG_PREFIX_REGEX = "*" if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] TAG_PREFIX_REGEX = r"\*" _, rc = runner(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = runner( GITS, [ "describe", "--tags", "--dirty", "--always", "--long", "--match", "%s%s" % (tag_prefix, TAG_PREFIX_REGEX), ], cwd=root, ) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = runner(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None branch_name, rc = runner(GITS, ["rev-parse", "--abbrev-ref", "HEAD"], cwd=root) # --abbrev-ref was added in git-1.6.3 if rc != 0 or branch_name is None: raise NotThisMethod("'git rev-parse --abbrev-ref' returned error") branch_name = branch_name.strip() if branch_name == "HEAD": # If we aren't exactly on a branch, pick a branch which represents # the current commit. If all else fails, we are on a branchless # commit. branches, rc = runner(GITS, ["branch", "--contains"], cwd=root) # --contains was added in git-1.5.4 if rc != 0 or branches is None: raise NotThisMethod("'git branch --contains' returned error") branches = branches.split("\n") # Remove the first line if we're running detached if "(" in branches[0]: branches.pop(0) # Strip off the leading "* " from the list of branches. branches = [branch[2:] for branch in branches] if "master" in branches: branch_name = "master" elif not branches: branch_name = None else: # Pick the first branch that is returned. Good or bad. branch_name = branches[0] pieces["branch"] = branch_name # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[: git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r"^(.+)-(\d+)-g([0-9a-f]+)$", git_describe) if not mo: # unparsable. Maybe git-describe is misbehaving? pieces["error"] = "unable to parse git-describe output: '%s'" % describe_out return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = "tag '%s' doesn't start with prefix '%s'" % ( full_tag, tag_prefix, ) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix) :] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = runner(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = runner(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() # Use only the last line. Previous lines may contain GPG signature # information. date = date.splitlines()[-1] pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_branch(pieces): """TAG[[.dev0]+DISTANCE.gHEX[.dirty]] . The ".dev0" means not master branch. Note that .dev0 sorts backwards (a feature branch will appear "older" than the master branch). Exceptions: 1: no tags. 0[.dev0]+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0" if pieces["branch"] != "master": rendered += ".dev0" rendered += "+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def pep440_split_post(ver): """Split pep440 version string at the post-release segment. Returns the release segments before the post-release and the post-release version number (or -1 if no post-release segment is present). """ vc = str.split(ver, ".post") return vc[0], int(vc[1] or 0) if len(vc) == 2 else None def render_pep440_pre(pieces): """TAG[.postN.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post0.devDISTANCE """ if pieces["closest-tag"]: if pieces["distance"]: # update the post release segment tag_version, post_version = pep440_split_post(pieces["closest-tag"]) rendered = tag_version if post_version is not None: rendered += ".post%d.dev%d" % (post_version + 1, pieces["distance"]) else: rendered += ".post0.dev%d" % (pieces["distance"]) else: # no commits, use the tag as the version rendered = pieces["closest-tag"] else: # exception #1 rendered = "0.post0.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_post_branch(pieces): """TAG[.postDISTANCE[.dev0]+gHEX[.dirty]] . The ".dev0" means not master branch. Exceptions: 1: no tags. 0.postDISTANCE[.dev0]+gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["branch"] != "master": rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["branch"] != "master": rendered += ".dev0" rendered += "+g%s" % pieces["short"] if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return { "version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None, } if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-branch": rendered = render_pep440_branch(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-post-branch": rendered = render_pep440_post_branch(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return { "version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date"), } def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for _ in cfg.versionfile_source.split("/"): root = os.path.dirname(root) except NameError: return { "version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None, } try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return { "version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None, }
py
1a4f8af6d1907eead43ec30e445e923e6e4a3fd7
#coding=utf-8 from facebook.modules.profile.user.models import TestUser from facebook.graph import GraphAPIError from django.utils import simplejson class TestUsers(object): def __init__(self, graph): self.graph = graph # Friend requests need user access token def update_access_token(self, access_token): self.graph.access_token = access_token def generate_new_test_user(self, installed=True, permissions=[]): response = self.graph.request('%s/accounts/test-users' % self.graph.app_id, None, {'installed': installed, 'permissions': ', '.join(permissions) }) user = TestUser() user.save_from_facebook(response, app_id=self.graph.app_id) return user def get_test_users(self, login_url_required=False): """ users is a dict array with the fields access_token, login_url and id. """ response = self.graph.request('%s/accounts/test-users' % self.graph.app_id, {'access_token': self.graph.access_token })['data'] users=[] for item in response: # Facebook sometimes does not deliver a login-url. Ignore those users. try: testuser, created = TestUser.objects.get_or_create(id=item['id'], defaults={'id': item['id'], 'login_url': item['login_url'], 'belongs_to': self.graph.app_id, '_graph': simplejson.dumps(item) }) if created: testuser.save_from_facebook(item, app_id=self.graph.app_id) else: testuser.login_url = item['login_url'] testuser._graph = simplejson.dumps(item) testuser.save() users.append(testuser) except KeyError: pass # cleanup db users_ids=[int(i['id']) for i in response] testusers = TestUser.objects.select_related(depth=1).filter(belongs_to=self.graph.app_id) for user in testusers: if user.id not in users_ids: user.delete() elif not user._name and user.access_token: self.graph.access_token = user.access_token response = user.get_from_facebook(graph=self.graph, save=True) return testusers def friend_request(self, user1, user2): graph = self.graph graph.access_token = user1.access_token return graph.request('%s/friends/%s' % (user1.id, user2.id), None, {}) def make_friends_with(self, user1, user2): response = [] self.update_access_token(user1.access_token) try: response.append(self.friend_request(user1, user2)) except GraphAPIError as error: #No access token if the user is not authorized. response.append(error) self.update_access_token(user2.access_token) try: response.append(self.friend_request(user2, user1)) except GraphAPIError as error: response.append(error) return response def unfriend(self, user1, user2): pass
py
1a4f8b521328036322ea78c88c72b5d686a708f6
''' Created by auto_sdk on 2020.01.14 ''' from dingtalk.api.base import RestApi class OapiIndustryPackGetRequest(RestApi): def __init__(self,url=None): RestApi.__init__(self,url) def getHttpMethod(self): return 'POST' def getapiname(self): return 'dingtalk.oapi.industry.pack.get'
py
1a4f8bef75f2d07dc707f7d846a6333472fb9090
import unittest from intcode import Intcode class Hull: def __init__(self, intc, initial = 0): self.computer = Intcode(intc, initial) self.computer.max_outputs = 2 self.computer.robot = self self.x = 0 self.y = 0 self.dir = 'up' # down right left self.map = {} # dvojice (x, y): barva pocatek je v 0, 0 self.computer.process() def interpret(self, outputs): color, direction = outputs self.paint(color) self.turn_and_move(direction) return self.getcolor() def paint(self, color): self.map[(self.x, self.y)] = color def turn_and_move(self, direction): ''' direction the robot should turn: 0 means it should turn left 90 degrees, and 1 means it should turn right 90 degrees. ''' if self.dir == 'up': self.dir = 'left' if direction == 0 else 'right' elif self.dir == 'down': self.dir = 'right' if direction == 0 else 'left' elif self.dir == 'left': self.dir = 'down' if direction == 0 else 'up' elif self.dir == 'right': self.dir = 'up' if direction == 0 else 'down' if self.dir == 'up': self.y -=1 elif self.dir == 'down': self.y +=1 elif self.dir == 'right': self.x +=1 elif self.dir == 'left': self.x -=1 def getcolor(self): try: return self.map[(self.x, self.y)] except KeyError: return 0 def showmap(self): l = [str() for _ in range(6)] for k, v in sorted(self.map.items()): x, y = k l[y] += '.' if v == 0 else '#' return '\n'.join(l) if __name__ == '__main__': input_data = [3,8,1005,8,318,1106,0,11,0,0,0,104,1,104,0,3,8,102,-1,8,10,1001,10,1,10,4,10,1008,8,1,10,4,10,101,0,8,29,1,107,12,10,2,1003,8,10,3,8,102,-1,8,10,1001,10,1,10,4,10,1008,8,0,10,4,10,1002,8,1,59,1,108,18,10,2,6,7,10,2,1006,3,10,3,8,1002,8,-1,10,1001,10,1,10,4,10,1008,8,1,10,4,10,1002,8,1,93,1,1102,11,10,3,8,102,-1,8,10,1001,10,1,10,4,10,108,1,8,10,4,10,101,0,8,118,2,1102,10,10,3,8,102,-1,8,10,101,1,10,10,4,10,1008,8,0,10,4,10,101,0,8,145,1006,0,17,1006,0,67,3,8,1002,8,-1,10,101,1,10,10,4,10,1008,8,0,10,4,10,101,0,8,173,2,1109,4,10,1006,0,20,3,8,102,-1,8,10,1001,10,1,10,4,10,108,0,8,10,4,10,102,1,8,201,3,8,1002,8,-1,10,1001,10,1,10,4,10,1008,8,0,10,4,10,1002,8,1,224,1006,0,6,1,1008,17,10,2,101,5,10,3,8,1002,8,-1,10,1001,10,1,10,4,10,108,1,8,10,4,10,1001,8,0,256,2,1107,7,10,1,2,4,10,2,2,12,10,1006,0,82,3,8,1002,8,-1,10,1001,10,1,10,4,10,1008,8,1,10,4,10,1002,8,1,294,2,1107,2,10,101,1,9,9,1007,9,988,10,1005,10,15,99,109,640,104,0,104,1,21102,1,837548352256,1,21102,335,1,0,1105,1,439,21102,1,47677543180,1,21102,346,1,0,1106,0,439,3,10,104,0,104,1,3,10,104,0,104,0,3,10,104,0,104,1,3,10,104,0,104,1,3,10,104,0,104,0,3,10,104,0,104,1,21102,1,235190374592,1,21101,393,0,0,1105,1,439,21102,3451060455,1,1,21102,404,1,0,1105,1,439,3,10,104,0,104,0,3,10,104,0,104,0,21102,837896909668,1,1,21102,1,427,0,1105,1,439,21102,1,709580555020,1,21102,438,1,0,1105,1,439,99,109,2,21201,-1,0,1,21102,1,40,2,21102,1,470,3,21102,460,1,0,1106,0,503,109,-2,2105,1,0,0,1,0,0,1,109,2,3,10,204,-1,1001,465,466,481,4,0,1001,465,1,465,108,4,465,10,1006,10,497,1101,0,0,465,109,-2,2105,1,0,0,109,4,1201,-1,0,502,1207,-3,0,10,1006,10,520,21101,0,0,-3,21202,-3,1,1,22101,0,-2,2,21101,1,0,3,21101,0,539,0,1106,0,544,109,-4,2105,1,0,109,5,1207,-3,1,10,1006,10,567,2207,-4,-2,10,1006,10,567,21202,-4,1,-4,1105,1,635,22101,0,-4,1,21201,-3,-1,2,21202,-2,2,3,21101,0,586,0,1105,1,544,22102,1,1,-4,21102,1,1,-1,2207,-4,-2,10,1006,10,605,21102,1,0,-1,22202,-2,-1,-2,2107,0,-3,10,1006,10,627,21202,-1,1,1,21101,627,0,0,105,1,502,21202,-2,-1,-2,22201,-4,-2,-4,109,-5,2105,1,0] robot = Hull(input_data) #print(robot.computer.count_inputs) #print(robot.computer.outputlist) #print(robot.map) print(len(robot.map.keys())) robot = Hull(input_data, initial = 1) print(robot.showmap())
py
1a4f8bfd09d033ec64bc5dbc7c59391aa2346961
# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. import logging import numpy as np import time import weakref from typing import Dict, List, Optional import torch from torch.nn.parallel import DataParallel, DistributedDataParallel import detectron2.utils.comm as comm from detectron2.utils.events import EventStorage, get_event_storage from detectron2.utils.logger import _log_api_usage __all__ = ["HookBase", "TrainerBase", "SimpleTrainer", "AMPTrainer"] class HookBase: """ Base class for hooks that can be registered with :class:`TrainerBase`. Each hook can implement 4 methods. The way they are called is demonstrated in the following snippet: :: hook.before_train() for iter in range(start_iter, max_iter): hook.before_step() trainer.run_step() hook.after_step() iter += 1 hook.after_train() Notes: 1. In the hook method, users can access ``self.trainer`` to access more properties about the context (e.g., model, current iteration, or config if using :class:`DefaultTrainer`). 2. A hook that does something in :meth:`before_step` can often be implemented equivalently in :meth:`after_step`. If the hook takes non-trivial time, it is strongly recommended to implement the hook in :meth:`after_step` instead of :meth:`before_step`. The convention is that :meth:`before_step` should only take negligible time. Following this convention will allow hooks that do care about the difference between :meth:`before_step` and :meth:`after_step` (e.g., timer) to function properly. """ trainer: "TrainerBase" = None """ A weak reference to the trainer object. Set by the trainer when the hook is registered. """ def before_train(self): """ Called before the first iteration. """ pass def after_train(self): """ Called after the last iteration. """ pass def before_step(self): """ Called before each iteration. """ pass def after_step(self): """ Called after each iteration. """ pass def state_dict(self): """ Hooks are stateless by default, but can be made checkpointable by implementing `state_dict` and `load_state_dict`. """ return {} class TrainerBase: """ Base class for iterative trainer with hooks. The only assumption we made here is: the training runs in a loop. A subclass can implement what the loop is. We made no assumptions about the existence of dataloader, optimizer, model, etc. Attributes: iter(int): the current iteration. start_iter(int): The iteration to start with. By convention the minimum possible value is 0. max_iter(int): The iteration to end training. storage(EventStorage): An EventStorage that's opened during the course of training. """ def __init__(self) -> None: self._hooks: List[HookBase] = [] self.iter: int = 0 self.start_iter: int = 0 self.max_iter: int self.storage: EventStorage _log_api_usage("trainer." + self.__class__.__name__) def register_hooks(self, hooks: List[Optional[HookBase]]) -> None: """ Register hooks to the trainer. The hooks are executed in the order they are registered. Args: hooks (list[Optional[HookBase]]): list of hooks """ hooks = [h for h in hooks if h is not None] for h in hooks: assert isinstance(h, HookBase) # To avoid circular reference, hooks and trainer cannot own each other. # This normally does not matter, but will cause memory leak if the # involved objects contain __del__: # See http://engineering.hearsaysocial.com/2013/06/16/circular-references-in-python/ h.trainer = weakref.proxy(self) self._hooks.extend(hooks) def train(self, start_iter: int, max_iter: int): """ Args: start_iter, max_iter (int): See docs above """ logger = logging.getLogger(__name__) logger.info("Starting training from iteration {}".format(start_iter)) self.iter = self.start_iter = start_iter self.max_iter = max_iter with EventStorage(start_iter) as self.storage: try: self.before_train() for self.iter in range(start_iter, max_iter): self.before_step() self.run_step() self.after_step() # self.iter == max_iter can be used by `after_train` to # tell whether the training successfully finished or failed # due to exceptions. self.iter += 1 except Exception: logger.exception("Exception during training:") raise finally: self.after_train() def before_train(self): for h in self._hooks: h.before_train() def after_train(self): self.storage.iter = self.iter for h in self._hooks: h.after_train() def before_step(self): # Maintain the invariant that storage.iter == trainer.iter # for the entire execution of each step self.storage.iter = self.iter for h in self._hooks: h.before_step() def after_step(self): for h in self._hooks: h.after_step() def run_step(self): raise NotImplementedError def state_dict(self): ret = {"iteration": self.iter} hooks_state = {} for h in self._hooks: sd = h.state_dict() if sd: name = type(h).__qualname__ if name in hooks_state: # TODO handle repetitive stateful hooks continue hooks_state[name] = sd if hooks_state: ret["hooks"] = hooks_state return ret def load_state_dict(self, state_dict): logger = logging.getLogger(__name__) self.iter = state_dict["iteration"] for key, value in state_dict.get("hooks", {}).items(): for h in self._hooks: try: name = type(h).__qualname__ except AttributeError: continue if name == key: h.load_state_dict(value) break else: logger.warning(f"Cannot find the hook '{key}', its state_dict is ignored.") class SimpleTrainer(TrainerBase): """ A simple trainer for the most common type of task: single-cost single-optimizer single-data-source iterative optimization, optionally using data-parallelism. It assumes that every step, you: 1. Compute the loss with a data from the data_loader. 2. Compute the gradients with the above loss. 3. Update the model with the optimizer. All other tasks during training (checkpointing, logging, evaluation, LR schedule) are maintained by hooks, which can be registered by :meth:`TrainerBase.register_hooks`. If you want to do anything fancier than this, either subclass TrainerBase and implement your own `run_step`, or write your own training loop. """ def __init__(self, model, data_loader, optimizer): """ Args: model: a torch Module. Takes a data from data_loader and returns a dict of losses. data_loader: an iterable. Contains data to be used to call model. optimizer: a torch optimizer. """ super().__init__() """ We set the model to training mode in the trainer. However it's valid to train a model that's in eval mode. If you want your model (or a submodule of it) to behave like evaluation during training, you can overwrite its train() method. """ model.train() self.model = model self.data_loader = data_loader self._data_loader_iter = iter(data_loader) self.optimizer = optimizer def run_step(self): """ Implement the standard training logic described above. """ assert self.model.training, "[SimpleTrainer] model was changed to eval mode!" start = time.perf_counter() """ If you want to do something with the data, you can wrap the dataloader. """ data = next(self._data_loader_iter) data_time = time.perf_counter() - start """ If you want to do something with the losses, you can wrap the model. """ loss_dict = self.model(data) if isinstance(loss_dict, torch.Tensor): losses = loss_dict loss_dict = {"total_loss": loss_dict} else: losses = sum(loss_dict.values()) """ If you need to accumulate gradients or do something similar, you can wrap the optimizer with your custom `zero_grad()` method. """ self.optimizer.zero_grad() losses.backward() self._write_metrics(loss_dict, data_time) """ If you need gradient clipping/scaling or other processing, you can wrap the optimizer with your custom `step()` method. But it is suboptimal as explained in https://arxiv.org/abs/2006.15704 Sec 3.2.4 """ self.optimizer.step() def _write_metrics( self, loss_dict: Dict[str, torch.Tensor], data_time: float, prefix: str = "", ): """ Args: loss_dict (dict): dict of scalar losses data_time (float): time taken by the dataloader iteration """ metrics_dict = {k: v.detach().cpu().item() for k, v in loss_dict.items()} metrics_dict["data_time"] = data_time # Gather metrics among all workers for logging # This assumes we do DDP-style training, which is currently the only # supported method in detectron2. all_metrics_dict = comm.gather(metrics_dict) if comm.is_main_process(): storage = get_event_storage() # data_time among workers can have high variance. The actual latency # caused by data_time is the maximum among workers. data_time = np.max([x.pop("data_time") for x in all_metrics_dict]) storage.put_scalar("data_time", data_time) # average the rest metrics metrics_dict = { k: np.mean([x[k] for x in all_metrics_dict]) for k in all_metrics_dict[0].keys() } total_losses_reduced = sum(metrics_dict.values()) if not np.isfinite(total_losses_reduced): raise FloatingPointError( f"Loss became infinite or NaN at iteration={self.iter}!\n" f"loss_dict = {metrics_dict}" ) storage.put_scalar("{}total_loss".format(prefix), total_losses_reduced) if len(metrics_dict) > 1: storage.put_scalars(**metrics_dict) def state_dict(self): ret = super().state_dict() ret["optimizer"] = self.optimizer.state_dict() return ret def load_state_dict(self, state_dict): super().load_state_dict(state_dict) self.optimizer.load_state_dict(state_dict["optimizer"]) class AMPTrainer(SimpleTrainer): """ Like :class:`SimpleTrainer`, but uses PyTorch's native automatic mixed precision in the training loop. """ def __init__(self, model, data_loader, optimizer, grad_scaler=None): """ Args: model, data_loader, optimizer: same as in :class:`SimpleTrainer`. grad_scaler: torch GradScaler to automatically scale gradients. """ unsupported = "AMPTrainer does not support single-process multi-device training!" if isinstance(model, DistributedDataParallel): assert not (model.device_ids and len(model.device_ids) > 1), unsupported assert not isinstance(model, DataParallel), unsupported super().__init__(model, data_loader, optimizer) if grad_scaler is None: from torch.cuda.amp import GradScaler grad_scaler = GradScaler() self.grad_scaler = grad_scaler def run_step(self): """ Implement the AMP training logic. """ assert self.model.training, "[AMPTrainer] model was changed to eval mode!" assert torch.cuda.is_available(), "[AMPTrainer] CUDA is required for AMP training!" from torch.cuda.amp import autocast start = time.perf_counter() data = next(self._data_loader_iter) data_time = time.perf_counter() - start with autocast(): loss_dict = self.model(data) if isinstance(loss_dict, torch.Tensor): losses = loss_dict loss_dict = {"total_loss": loss_dict} else: losses = sum(loss_dict.values()) self.optimizer.zero_grad() self.grad_scaler.scale(losses).backward() self._write_metrics(loss_dict, data_time) self.grad_scaler.step(self.optimizer) self.grad_scaler.update() def state_dict(self): ret = super().state_dict() ret["grad_scaler"] = self.grad_scaler.state_dict() return ret def load_state_dict(self, state_dict): super().load_state_dict(state_dict) self.grad_scaler.load_state_dict(state_dict["grad_scaler"])
py
1a4f8c7cc3e46821d4851ac8ea8b89921eaf6357
#!/usr/bin/env python # Valid arguments setValueArgs = {"-ld" : "LD", "-ldflags" : "LDFLAGS", "-optldflags" : "OPTLDFLAGS", "-impfilename" : "IMPFILENAME", "-expflag" : "EXPFLAG", "-maxlinelength" : "maxlinelength", "-verbose" : "chatty", "-directory" : "CHDIR" } validArgs = setValueArgs.keys() # Little function to generate a usage statement. def printUsage(): print "Usage: generateImportFile <target lib base name>" # Helper to execute the given command string in the host OS. def execCommand(command, chatty): if chatty: print command import os os.system(command) # Default values for the important vars LD = "xlC_r" LDFLAGS = "-G -qmkshrobj" OPTLDFLAGS = "" EXPFLAG = "-qexpfile" maxlinelength = 4095 OBJS = "" chatty = None import sys nargs = len(sys.argv) if nargs < 2: printUsage() exit(1) # Get the name of the lib target. LIBTARGET = sys.argv[1] if LIBTARGET[-3:] != ".so": LIBTARGET += ".so" # The default name for the export and import files we'll be generating. EXPFILENAME = LIBTARGET[:-3] + ".exp" IMPFILENAME = LIBTARGET[:-3] + ".imp" CHDIR = "." # Parse optional arguments for iarg in xrange(2, nargs): arg = sys.argv[iarg] # Is this a -thingy=thingyValue argument? if arg[0] == "-": assert arg.count("=") == 1 argKey, argValue = arg.split("=") if argKey not in validArgs: printUsage() exit(1) exec("%s = '%s'" % (setValueArgs[argKey], argValue)) print "Setting " + setValueArgs[argKey] + " to " + argValue # Is this an object file/lib that needs to be linked in? elif arg[-2:] == ".o" or arg[-2:] == ".a" or arg[-3:] == ".so": OBJS += arg + " " else: printUsage() exit() import os os.chdir(CHDIR) # Generate the export file by creating the shared obj library, which we then # promptly delete. command = LD + " " + LDFLAGS + " " + OPTLDFLAGS + " " + \ EXPFLAG + "=" + EXPFILENAME + " " + \ OBJS + " -o " + LIBTARGET execCommand(command, chatty) execCommand("rm -f " + LIBTARGET, chatty) # Create the import file, and put the required tag as the first line indicating # the name of the archive which is exporting these symbols. impfile = open(IMPFILENAME, 'w') impfile.write("#!" + LIBTARGET + "\n") # Attach the list of symbols being exported to the import file. expfile = open(EXPFILENAME, 'r') symbol = expfile.readline() while symbol: if len(symbol) <= maxlinelength: if symbol[-1] != '\n': symbol += '\n' impfile.write(symbol) else: print 'skipping', str(len(symbol)) + '-character symbol:',str(symbol) symbol = expfile.readline() impfile.close() expfile.close() #command = "cat " + EXPFILENAME + " >> " + IMPFILENAME #execCommand(command, chatty) # Remove the export file. execCommand("rm -f " + EXPFILENAME, chatty)
py
1a4f8ca35666697928a6be0b3ddb291125a8a512
import asyncio from ...exceptions import NodeJSNotRunning from ...exceptions import NoMtProtoClientSet from ...exceptions import NotInGroupCallError from ...scaffold import Scaffold from ...types import NotInGroupCall from ...types.session import Session class ResumeStream(Scaffold): async def resume_stream( self, chat_id: int, ): """Resume the paused stream This method allow to resume the paused streaming file Parameters: chat_id (``int``): Unique identifier (int) of the target chat. Raises: NoMtProtoClientSet: In case you try to call this method without any MtProto client NodeJSNotRunning: In case you try to call this method without do :meth:`~pytgcalls.PyTgCalls.start` before NotInGroupCallError: In case you try to leave a non-joined group call Returns: ``bool``: On success, true is returned if was resumed Example: .. code-block:: python :emphasize-lines: 10-12 from pytgcalls import Client from pytgcalls import idle ... app = PyTgCalls(client) app.start() ... # Call API methods app.resume_stream( -1001185324811, ) idle() """ if self._app is not None: if self._wait_until_run is not None: solver_id = Session.generate_session_id(24) async def internal_sender(): if not self._wait_until_run.done(): await self._wait_until_run await self._binding.send({ 'action': 'resume', 'chat_id': chat_id, 'solver_id': solver_id, }) active_call = self._call_holder.get_active_call(chat_id) asyncio.ensure_future(internal_sender()) result = await self._wait_result.wait_future_update( solver_id, ) if isinstance(result, NotInGroupCall): raise NotInGroupCallError() return active_call.status == 'paused' else: raise NodeJSNotRunning() else: raise NoMtProtoClientSet()
py
1a4f8d423f3a743758cc9bfadd4d2cfcf32b546d
import functools import operator import os import os.path import sys import numpy as np # Bamboo utilities current_file = os.path.realpath(__file__) print("Current file:",current_file, __file__) current_dir = os.path.dirname(current_file) sys.path.insert(0, os.path.join(os.path.dirname(current_dir), 'common_python')) import tools # ============================================== # Objects for Python data reader # ============================================== # Note: The Python data reader imports this file as a module and calls # the functions below to ingest data. # Data np.random.seed(201910244) _num_samples = 128 _sample_size = 64 _sample_dims = (2,2,8) _sample_size = functools.reduce(operator.mul, _sample_dims) _samples = np.random.normal(size=(_num_samples,_sample_size)).astype(np.float32) # Sample access functions def get_sample(index): return _samples[index,:] def num_samples(): return _num_samples def sample_dims(): return (_sample_size,) # ============================================== # Setup LBANN experiment # ============================================== def setup_experiment(lbann): """Construct LBANN experiment. Args: lbann (module): Module for LBANN Python frontend """ mini_batch_size = num_samples() // 2 trainer = lbann.Trainer(mini_batch_size) model = construct_model(lbann) data_reader = construct_data_reader(lbann) optimizer = lbann.NoOptimizer() return trainer, model, data_reader, optimizer def construct_model(lbann): """Construct LBANN model. Args: lbann (module): Module for LBANN Python frontend """ # Input data # Note: Sum with a weights layer so that gradient checking will # verify that error signals are correct. x_weights = lbann.Weights(optimizer=lbann.SGD(), initializer=lbann.ConstantInitializer(value=0.0), name='input_weights') x = lbann.Sum(lbann.Reshape(lbann.Input(data_field='samples'), dims=tools.str_list(_sample_dims)), lbann.WeightsLayer(weights=x_weights, dims=tools.str_list(_sample_dims))) x_lbann = x # Objects for LBANN model obj = [] metrics = [] callbacks = [] # ------------------------------------------ # Data-parallel layout # ------------------------------------------ # LBANN implementation x = x_lbann y = lbann.Identity(x, data_layout='data_parallel') slice_points = (0, 4, 8) x_slice = lbann.Slice(x, axis=2, slice_points=tools.str_list(slice_points),parallel_strategy = {'sub_branch_tag':0,'enable_subgraph':True}) branch1 = lbann.Identity(x_slice, data_layout='data_parallel',parallel_strategy = {'sub_branch_tag':1,'enable_subgraph':True}) branch2 = lbann.Identity(x_slice, data_layout='data_parallel',parallel_strategy = {'sub_branch_tag':2,'enable_subgraph':True}) branch1 = lbann.L2Norm2(branch1) branch2 = lbann.L2Norm2(branch2) sum_branch = lbann.Sum([branch1,branch2],parallel_strategy = {'sub_branch_tag':0,'enable_subgraph':True}) z = lbann.Identity(sum_branch) obj.append(z) metrics.append(lbann.Metric(z, name='data-parallel layout')) # NumPy implementation vals = [] for i in range(num_samples()): x = get_sample(i).reshape(_sample_dims).astype(np.float64) y = [] cross_sum = 0 for j in range(len(slice_points)-1): x_slice = x[:,:,slice_points[j]:slice_points[j+1]] x_l2 = tools.numpy_l2norm2(x_slice) if(j==0): cross_sum = x_l2 else: cross_sum += x_l2 z = cross_sum vals.append(z) val = np.mean(vals) tol = 8 * val * np.finfo(np.float32).eps callbacks.append(lbann.CallbackCheckMetric( metric=metrics[-1].name, lower_bound=val-tol, upper_bound=val+tol, error_on_failure=True, execution_modes='test')) # ------------------------------------------ # Gradient checking # ------------------------------------------ callbacks.append(lbann.CallbackCheckGradients(error_on_failure=True)) # ------------------------------------------ # Construct model # ------------------------------------------ num_epochs = 0 return lbann.Model(num_epochs,subgraph_communication=lbann.SubgraphCommunication.COLL_OPT, layers=lbann.traverse_layer_graph(x_lbann), objective_function=obj, metrics=metrics, callbacks=callbacks) def construct_data_reader(lbann): """Construct Protobuf message for Python data reader. The Python data reader will import the current Python file to access the sample access functions. Args: lbann (module): Module for LBANN Python frontend """ # Note: The training data reader should be removed when # https://github.com/LLNL/lbann/issues/1098 is resolved. message = lbann.reader_pb2.DataReader() message.reader.extend([ tools.create_python_data_reader( lbann, current_file, 'get_sample', 'num_samples', 'sample_dims', 'train' ) ]) message.reader.extend([ tools.create_python_data_reader( lbann, current_file, 'get_sample', 'num_samples', 'sample_dims', 'test' ) ]) return message # ============================================== # Setup PyTest # ============================================== # Create test functions that can interact with PyTest for _test_func in tools.create_tests(setup_experiment, __file__): globals()[_test_func.__name__] = _test_func
py
1a4f8e0bfa9c25bd65e196679007efd1b52ad005
# 开发阶段环境配置文件 """ Django settings for meiduo_mall project. Generated by 'django-admin startproject' using Django 1.11.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os, sys # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, os.path.join(BASE_DIR, 'apps')) # 追加apps也为项目导包路径 # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '#lx2s*0y_37hs9zlz!7ji)a9b@o$j8gcbi%jcts_3nny*a%gu7' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition # 注册应用 INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'users.apps.UsersConfig', # 用户模块应用 ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'meiduo_mall.urls' # 配置模板项 TEMPLATES = [ { 'BACKEND': 'django.template.backends.jinja2.Jinja2', # jinja2模板引擎 'DIRS': [os.path.join(BASE_DIR, 'templates')], # 加载模板路径 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], # 补充Jinja2模板引擎环境 'environment': 'meiduo_mall.utils.jinja2_env.jinja2_environment', }, }, ] WSGI_APPLICATION = 'meiduo_mall.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases # 配置mysql数据库项 DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', # 数据库引擎 'HOST': '127.0.0.1', # 数据库主机 'PORT': 3306, # 数据库端口 'USER': 'yy', # 数据库用户名 'PASSWORD': '123456', # 数据库用户密码 'NAME': 'meiduo_mall' # 数据库名字 }, } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ # 静态文件访问的路由前缀 STATIC_URL = '/static/' # 配置静态文件加载路径 STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static')] # redis数据库配置 CACHES = { "default": { # 默认 "BACKEND": "django_redis.cache.RedisCache", "LOCATION": "redis://127.0.0.1:6379/0", "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", } }, "session": { # session "BACKEND": "django_redis.cache.RedisCache", "LOCATION": "redis://127.0.0.1:6379/1", "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", } }, "verify_code": { # 图形验证码 "BACKEND": "django_redis.cache.RedisCache", "LOCATION": "redis://127.0.0.1:6379/2", "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient", } }, } # session配置 SESSION_ENGINE = "django.contrib.sessions.backends.cache" # 缓存 SESSION_CACHE_ALIAS = "session" # 缓存到redis的一号数据库 # 配置日志输出器 LOGGING = { 'version': 1, # 版本 'disable_existing_loggers': False, # 是否禁用已经存在的日志器 'formatters': { # 日志信息显示的格式 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(lineno)d %(message)s' }, 'simple': { 'format': '%(levelname)s %(module)s %(lineno)d %(message)s' }, }, 'filters': { # 对日志进行过滤 'require_debug_true': { # django在debug模式下才输出日志 '()': 'django.utils.log.RequireDebugTrue', }, }, 'handlers': { # 日志处理方法 'console': { # 向终端中输出日志 'level': 'INFO', 'filters': ['require_debug_true'], 'class': 'logging.StreamHandler', 'formatter': 'simple' }, 'file': { # 向文件中输出日志 'level': 'INFO', 'class': 'logging.handlers.RotatingFileHandler', 'filename': os.path.join(os.path.dirname(BASE_DIR), 'logs/meiduo.log'), # 日志文件的位置 'maxBytes': 300 * 1024 * 1024, 'backupCount': 10, 'formatter': 'verbose' }, }, 'loggers': { # 日志器 'django': { # 定义了一个名为django的日志器 'handlers': ['console', 'file'], # 可以同时向终端与文件中输出日志 'propagate': True, # 是否继续传递日志信息 'level': 'INFO', # 日志器接收的最低日志级别 }, } } # 修改Django认证系统中的用户模型 AUTH_USER_MODEL = 'users.User'
py
1a4f8f5ceeb40ea924aafa0e58ee9cabb6416e47
# ****************************************************************************** # Copyright 2017-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** from __future__ import division from builtins import object import ngraph as ng class Rectlin(object): """ Rectified Linear Unit (ReLu) activation function, :math:`f(x) = \max(x, 0)`. Can optionally set a slope which will make this a Leaky ReLu. """ def __init__(self, slope=0, **kwargs): """ Class constructor. Arguments: slope (float, optional): Slope for negative domain. Defaults to 0. """ self.slope = slope def __call__(self, x): """ Returns the Rectified Linear activation Arguments: x (Tensor or optree): Input value Returns: Tensor or optree: output activation """ return ng.maximum(x, 0) + self.slope * ng.minimum(0, x) class Rectlinclip(object): """ Clipped ReLu activation function Computes the function :math:`f(x) = min(max(0, x),cutoff)` """ def __init__(self, slope=0, cutoff=20.0, name=None): self.cutoff = cutoff self.slope = slope def __call__(self, x): """ Returns the Clipped Rectified Linear activation Arguments: x (Tensor or optree): Input value Returns: Tensor or optree: output activation """ return ng.minimum(ng.maximum(x, 0) + self.slope * ng.minimum(x, 0), self.cutoff) class Identity(object): """Identity activation function, :math:`f(x) = x`""" def __call__(self, x): """ Returns the input as output. Arguments: x (Tensor or optree): input value Returns: Tensor or optree: identical to input """ return x class Explin(object): """ Exponential Linear activation function, :math:`f(x) = \max(x, 0) + \\alpha (e^{\min(x, 0)}-1)` From: Clevert, Unterthiner and Hochreiter, ICLR 2016. """ def __init__(self, alpha=1.0): """ Class constructor. Arguments: alpha (float): weight of exponential factor for negative values (default: 1.0). name (string, optional): Name (default: None) """ self.alpha = alpha def __call__(self, x): """ Returns the Exponential Linear activation Arguments: x (Tensor or optree): input value Returns: Tensor or optree: output activation """ return ng.maximum(x, 0) + self.alpha * (ng.exp(ng.minimum(x, 0)) - 1) class Normalizer(object): """Normalize inputs by a fixed divisor.""" def __init__(self, divisor=128.): """ Class constructor. Arguments: divisor (float, optional): Normalization factor (default: 128) name (string, optional): Name (default: None) """ self.divisor = divisor def __call__(self, x): """ Returns the normalized value. Arguments: x (Tensor or optree): Input value Returns: Tensor or optree: Output :math:`x / N` """ return x / self.divisor class Softmax(object): """SoftMax activation function. Ensures that the activation output sums to 1.""" def __call__(self, x): """ Returns the Softmax value. Arguments: x (Tensor or optree): Input value Returns: Tensor or optree: Output activation """ return ng.softmax(x) class Tanh(object): """Hyperbolic tangent activation function, :math:`f(x) = \\tanh(x)`.""" def __call__(self, x): """ Returns the hyperbolic tangent. Arguments: x (Tensor or optree): Input value Returns: Tensor or optree: Output activation """ return ng.tanh(x) class Logistic(object): """ Logistic sigmoid activation function, :math:`f(x) = 1 / (1 + \exp(-x))` Squashes the input from range :math:`[-\infty,+\infty]` to :math:`[0, 1]` """ def __call__(self, x): """ Returns the sigmoidal activation. Arguments: x (Tensor or optree): Input value Returns: Tensor or optree: Output activation """ return ng.sigmoid(x)
py
1a4f8f9eb2c6c0d214e04412d4777cbf2ef03c94
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ ------------------------------------------------- File Name:kerasexa Description: Keras 案例 https://keras.io/getting-started/sequential-model-guide/ Email : [email protected] Date:2018/1/1 """ import keras import numpy as np from keras.layers import Dense, Dropout from keras.models import Sequential from keras.optimizers import SGD # Generate dummy data x_train = np.random.random((1000, 20)) y_train = keras.utils.to_categorical(np.random.randint(10, size=(1000, 1)), num_classes=10) x_test = np.random.random((100, 20)) y_test = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) model = Sequential() # Dense(64) is a fully-connected layer with 64 hidden units. # in the first layer, you must specify the expected input data shape: # here, 20-dimensional vectors. model.add(Dense(64, activation='relu', input_dim=20)) model.add(Dropout(0.5)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) model.fit(x_train, y_train, epochs=200, batch_size=128) score = model.evaluate(x_test, y_test, batch_size=128) print(score)
py
1a4f90304d2d0481ad79a455e4a29ea99c786de9
# # Documentation Django sur les formulaires : # https://docs.djangoproject.com/fr/2.0/topics/db/models/ # from django import forms from django.contrib.auth.forms import AuthenticationForm from django.contrib.auth.models import User from core.models import Comment, ContactMessage class ContactForm(forms.ModelForm): """ Formulaire pour la page de contact """ class Meta: model = ContactMessage fields = ["first_name", "last_name", "email", "subject", "message"] widgets = { "first_name": forms.TextInput(attrs={"class": "form-control", "placeholder": "Prénom"}), "last_name": forms.TextInput(attrs={"class": "form-control", "placeholder": "Nom"}), "email": forms.EmailInput(attrs={"class": "form-control", "placeholder": "[email protected]", "value": ""}), "subject": forms.TextInput(attrs={"class": "form-control", "placeholder": "Sujet"}), "message": forms.Textarea( attrs={"class": "form-control", "placeholder": "Entrez votre commentaire ici...", "rows": 3}) } class LoginForm(AuthenticationForm): """ Formulaire pour la page de connexion """ username = forms.CharField( widget=forms.TextInput(attrs={"class": "form-control", "placeholder": "Nom d'utilisateur"}), max_length=30, label="Nom d'utilisateur") password = forms.CharField( widget=forms.PasswordInput(attrs={"class": "form-control", "placeholder": "Mot de passe"}), label="Mot de passe") remember_me = forms.BooleanField(widget=forms.CheckboxInput(attrs={"class": "custom-control-input"}), label="Se souvenir de moi", required=False) class RegisterForm(forms.ModelForm): """ Formulaire pour la page d'inscription """ class Meta: model = User fields = ["username", "email", "password"] widgets = { "username": forms.TextInput(attrs={"class": "form-control", "placeholder": "Nom d'utilisateur"}), "email": forms.EmailInput(attrs={"class": "form-control", "placeholder": "[email protected]"}), "password": forms.PasswordInput(attrs={"class": "form-control", "placeholder": "Mot de passe"}) } email_confirm = forms.EmailField( widget=forms.EmailInput(attrs={"class": "form-control", "placeholder": "[email protected]"}), max_length=100, label="Confirmer l'adresse e-mail") password_confirm = forms.CharField( widget=forms.PasswordInput(attrs={"class": "form-control", "placeholder": "Mot de passe"}), label="Confirmer le mot de passe") terms = forms.BooleanField(widget=forms.CheckboxInput(attrs={"class": "custom-control-input"})) def clean_email_confirm(self): """ Fonction pour vérifier que le contenu du champ de l'adresse email et du champ de confirmation sont valides et cohérents Retourne une erreur si le contenu du champ "email" et du champ "email_confirm" n'ont pas la même valeur """ email = self.cleaned_data.get("email") email_confirm = self.cleaned_data.get("email_confirm") if email and email_confirm and email_confirm != email: self.add_error( "email_confirm", "L'email ne correspond pas" ) return email_confirm def clean_password_confirm(self): """ Fonction pour vérifier que le contenu du champ du mot de passe et du champ de confirmation sont valides et cohérents Retourne une erreur si le contenu du champ "password" et du champ "password_confirm" n'ont pas la même valeur """ password = self.cleaned_data.get("password") password_confirm = self.cleaned_data.get("password_confirm") if password and password_confirm and password_confirm != password: self.add_error( "password_confirm", "Le mot de passe ne correspond pas" ) return password_confirm def save(self, commit=True): """ Surcharge de la méthode "save" Récupère l'objet User à l'aide de la méthode "save" sans envoyer les données, défini le mot de passe de l'utilisateur, sauvegarde les données et retourne l'objet User L'utilisation de la méthode "set_password" pour définir le mot de passe d'un objet User est obligatoire : en effet, le mot de passe est hashé pour ne pas qu'il ai une valeur visible dans la base de données, voir documentation sur le hashage des mots de passes : https://docs.djangoproject.com/fr/2.0/topics/auth/passwords/ Documentation Django sur la méthode "save" : https://docs.djangoproject.com/fr/2.0/topics/forms/modelforms/#the-save-method """ user = super(RegisterForm, self).save(commit=False) user.set_password(self.cleaned_data["password"]) if commit: user.save() return user class CommentForm(forms.ModelForm): """ Formulaire pour l'entrée de commentaires """ class Meta: model = Comment fields = ["content", ] widgets = { "content": forms.Textarea( attrs={"class": "form-control", "placeholder": "Entrez votre commentaire ici...", "rows": 3}) } class SettingsForm(forms.ModelForm): """ Formulaire pour la page des paramètres utilisateurs """ class Meta: model = User fields = ["username", "first_name", "last_name", "email", "password"] labels = { "email": "Nouvelle adresse e-mail", "password": "Nouveau mot de passe" } widgets = { "first_name": forms.TextInput(attrs={"class": "form-control", "placeholder": "Prénom"}), "last_name": forms.TextInput(attrs={"class": "form-control", "placeholder": "Nom"}), "email": forms.EmailInput(attrs={"class": "form-control", "placeholder": "[email protected]", "value": ""}), "password": forms.PasswordInput(attrs={"class": "form-control", "placeholder": "Mot de passe"}) } username = forms.CharField(disabled=True) email_confirm = forms.EmailField( widget=forms.EmailInput(attrs={"class": "form-control", "placeholder": "[email protected]"}), max_length=100, label="Confirmer la nouvelle adresse e-mail", required=False) password_confirm = forms.CharField( widget=forms.PasswordInput(attrs={"class": "form-control", "placeholder": "Mot de passe"}), label="Confirmer le nouveau mot de passe", required=False) password_save = forms.CharField( widget=forms.PasswordInput(attrs={"class": "form-control", "placeholder": "Mot de passe"}), label="Mot de passe actuel") def __init__(self, *args, **kwargs): super(SettingsForm, self).__init__(*args, **kwargs) self.fields["password"].required = False def clean_email_confirm(self): """ Fonction pour vérifier que le contenu du champ de l'adresse email et du champ de confirmation sont valides et cohérents si le champ de l'adresse email est défini Retourne une erreur si le contenu du champ "email" et du champ "email_confirm" n'ont pas la même valeur """ email = self.cleaned_data.get("email") email_confirm = self.cleaned_data.get("email_confirm") if email and email_confirm != email: self.add_error( "email_confirm", "L'email ne correspond pas" ) return email_confirm def clean_password_confirm(self): """ Fonction pour vérifier que le contenu du champ du mot de passe et du champ de confirmation sont valides et cohérents si le champ du mot de passe est défini Retourne une erreur si le contenu du champ "password" et du champ "password_confirm" n'ont pas la même valeur """ password = self.cleaned_data.get("password") password_confirm = self.cleaned_data.get("password_confirm") if password and password_confirm != password: self.add_error( "password_confirm", "Le mot de passe ne correspond pas" ) return password_confirm def clean_password_save(self): """ Fonction pour vérifier que le contenu du champ du mot de passe et le mot de passe actuel de l'utilisateur sont valides et cohérents Retourne une erreur si le contenu du champ "password_save" et du mot de passe actuel de l'utilisateur n'ont pas la même valeur """ if not self.instance.check_password(self.cleaned_data["password_save"]): self.add_error( "password_save", "Le mot de passe ne correspond pas au mot de passe actuel" ) def save(self, commit=True): """ Surcharge de la méthode "save" Récupère l'objet User à l'aide de la méthode "save" sans envoyer les données, puis : - Défini la propriété "first_name" de l'objet User si le champ "first_name" est défini - Défini la propriété "last_name" de l'objet User si le champ "last_name" est défini - Défini la propriété "email" de l'objet User si le champ "email" est défini - Défini le mot de passe de l'objet User si le champ "password" est défini - Puis, sauvegarde les données et retourne l'objet User """ user = super(SettingsForm, self).save(commit=False) if self.cleaned_data["first_name"]: user.save(update_fields=["first_name"]) if self.cleaned_data["last_name"]: user.save(update_fields=["last_name"]) if self.cleaned_data["email"]: user.save(update_fields=["email"]) if self.cleaned_data["password"]: user.set_password(self.cleaned_data["password"]) user.save(update_fields=["password"]) return user
py
1a4f90b5439fc08c3fb0cb484eaa9385630b8495
# -*- coding: utf-8 -*- from setuptools import setup, find_packages import json with open('ocrd-tool.json', 'r') as f: version = json.load(f)['version'] setup( name='ocrd-anybaseocr', version=version, author="DFKI", author_email="[email protected], [email protected]", url="https://github.com/OCR-D/ocrd_anybaseocr", license='Apache License 2.0', long_description=open('README.md').read(), long_description_content_type='text/markdown', install_requires=open('requirements.txt').read().split('\n'), packages=find_packages(exclude=["work_dir", "src"]), package_data={ '': ['*.json'] }, entry_points={ 'console_scripts': [ 'ocrd-anybaseocr-binarize = ocrd_anybaseocr.cli.ocrd_anybaseocr_binarize:cli', 'ocrd-anybaseocr-deskew = ocrd_anybaseocr.cli.ocrd_anybaseocr_deskew:cli', 'ocrd-anybaseocr-crop = ocrd_anybaseocr.cli.ocrd_anybaseocr_cropping:cli', 'ocrd-anybaseocr-dewarp = ocrd_anybaseocr.cli.ocrd_anybaseocr_dewarp:cli', 'ocrd-anybaseocr-tiseg = ocrd_anybaseocr.cli.ocrd_anybaseocr_tiseg:cli', 'ocrd-anybaseocr-textline = ocrd_anybaseocr.cli.ocrd_anybaseocr_textline:cli', 'ocrd-anybaseocr-layout-analysis = ocrd_anybaseocr.cli.ocrd_anybaseocr_layout_analysis:cli', 'ocrd-anybaseocr-block-segmentation = ocrd_anybaseocr.cli.ocrd_anybaseocr_block_segmentation:cli' ] }, )
py
1a4f90bf285eb3425f843a03e75d0f5b9ee8f9a3
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'noted.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
py
1a4f90d64bace12535bf0e3cdbefe7e98dd12eb9
from __future__ import print_function import os import torch from torch.utils.ffi import create_extension sources = ['src/roi_pooling.cpp'] headers = ['src/roi_pooling.h'] defines = [] with_cuda = False if torch.cuda.is_available(): print('Including CUDA code.') sources += ['src/roi_pooling_cuda.cpp'] headers += ['src/roi_pooling_cuda.h'] defines += [('WITH_CUDA', None)] with_cuda = True this_file = os.path.dirname(os.path.realpath(__file__)) print(this_file) extra_objects = ['src/roi_pooling.cu.o'] extra_objects = [os.path.join(this_file, fname) for fname in extra_objects] ffi = create_extension( '_ext.roi_pooling', headers=headers, sources=sources, define_macros=defines, relative_to=__file__, with_cuda=with_cuda, extra_objects=extra_objects, libraries=["ATen", '_C', 'cudart'] ) if __name__ == '__main__': ffi.build()
py
1a4f9158f764c26445c111dbcbe27e3dcd750d2d
import os import torch import torch.nn.functional as F import torch.distributed as dist from torch.autograd import Variable import numpy as np # https://github.com/ikostrikov/pytorch-ddpg-naf/blob/master/ddpg.py#L11 def soft_update(target, source, tau): """ Perform DDPG soft update (move target params toward source based on weight factor tau) Inputs: target (torch.nn.Module): Net to copy parameters to source (torch.nn.Module): Net whose parameters to copy tau (float, 0 < x < 1): Weight factor for update """ for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(target_param.data * (1.0 - tau) + param.data * tau) # https://github.com/ikostrikov/pytorch-ddpg-naf/blob/master/ddpg.py#L15 def hard_update(target, source): """ Copy network parameters from source to target Inputs: target (torch.nn.Module): Net to copy parameters to source (torch.nn.Module): Net whose parameters to copy """ for target_param, param in zip(target.parameters(), source.parameters()): target_param.data.copy_(param.data) # https://github.com/seba-1511/dist_tuto.pth/blob/gh-pages/train_dist.py def average_gradients(model): """ Gradient averaging. """ size = float(dist.get_world_size()) for param in model.parameters(): dist.all_reduce(param.grad.data, op=dist.reduce_op.SUM, group=0) param.grad.data /= size # https://github.com/seba-1511/dist_tuto.pth/blob/gh-pages/train_dist.py def init_processes(rank, size, fn, backend='gloo'): """ Initialize the distributed environment. """ os.environ['MASTER_ADDR'] = '127.0.0.1' os.environ['MASTER_PORT'] = '29500' dist.init_process_group(backend, rank=rank, world_size=size) fn(rank, size) def onehot_from_logits(logits, eps=0.0): """ Given batch of logits, return one-hot sample using epsilon greedy strategy (based on given epsilon) """ # get best (according to current policy) actions in one-hot form argmax_acs = (logits == logits.max(1, keepdim=True)[0]).float() if eps == 0.0: return argmax_acs # get random actions in one-hot form rand_acs = Variable(torch.eye(logits.shape[1])[[np.random.choice( range(logits.shape[1]), size=logits.shape[0])]], requires_grad=False) # chooses between best and random actions using epsilon greedy return torch.stack([argmax_acs[i] if r > eps else rand_acs[i] for i, r in enumerate(torch.rand(logits.shape[0]))]) # modified for PyTorch from https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb def sample_gumbel(shape, eps=1e-20, tens_type=torch.FloatTensor): """Sample from Gumbel(0, 1)""" U = Variable(tens_type(*shape).uniform_(), requires_grad=False) return -torch.log(-torch.log(U + eps) + eps) # modified for PyTorch from https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb def gumbel_softmax_sample(logits, temperature): """ Draw a sample from the Gumbel-Softmax distribution""" gumbSamp = sample_gumbel(logits.shape, tens_type=type(logits.data)) if logits.is_cuda: gumbSamp = gumbSamp.cuda() y = logits + gumbSamp return F.softmax(y / temperature, dim=-1) # modified for PyTorch from https://github.com/ericjang/gumbel-softmax/blob/master/Categorical%20VAE.ipynb def gumbel_softmax(logits, temperature=1.0, hard=False): """Sample from the Gumbel-Softmax distribution and optionally discretize. Args: logits: [batch_size, n_class] unnormalized log-probs temperature: non-negative scalar hard: if True, take argmax, but differentiate w.r.t. soft sample y Returns: [batch_size, n_class] sample from the Gumbel-Softmax distribution. If hard=True, then the returned sample will be one-hot, otherwise it will be a probabilitiy distribution that sums to 1 across classes """ y = gumbel_softmax_sample(logits, temperature) if hard: y_hard = onehot_from_logits(y) y = (y_hard - y).detach() + y return y
py
1a4f916b1caa1d5626b014450e576f1ec71b6e56
""" Django settings for test2 project. Generated by 'django-admin startproject' using Django 1.8.2. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.8/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '!8y&(a9+ub0%hta57meh%9-&y5yzl^h7*o*n!joh*0(+$(z^gh' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', ) ROOT_URLCONF = 'test2.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'test2.wsgi.application' # Database # https://docs.djangoproject.com/en/1.8/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'test2', 'USER': 'root', 'PASSWORD': 'mysql', 'HOST': '192.168.1.106', 'PORT': '3306', } } # Internationalization # https://docs.djangoproject.com/en/1.8/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.8/howto/static-files/ STATIC_URL = '/static/'
py
1a4f91cef8fd73e2b0d105d6e712202d3759b0ca
# -*- coding: utf-8 -*- from __future__ import unicode_literals def csp_protected_view(view, info): """ A view deriver which adds Content-Security-Policy headers to responses. By default, a global policy is applied to every view. Individual views can opt out of CSP altogether by specifying a view option ``csp_insecure_optout=True``. This is not recommended. """ if not info.registry.settings.get("csp.enabled", False): return view # Views can set ``csp_insecure_optout=True`` in their view options to # disable CSP for the view. if info.options.get("csp_insecure_optout"): return view policy = info.registry.settings.get("csp", {}) clauses = [ " ".join([directive] + values) for directive, values in sorted(policy.items()) ] header_value = "; ".join(clauses) if info.registry.settings.get("csp.report_only", False): header_name = "Content-Security-Policy-Report-Only" else: header_name = "Content-Security-Policy" def wrapper_view(context, request): resp = view(context, request) resp.headers[header_name] = header_value return resp return wrapper_view csp_protected_view.options = ("csp_insecure_optout",) def includeme(config): config.add_view_deriver(csp_protected_view)
py
1a4f92bb231bdc20b61f3ef44fc4d8bdb48be303
from fastapi import APIRouter router = APIRouter() @router.get("/") def touch(): return {"status": "ok"}
py
1a4f93965a566bd98f889f2affbee7ba6bd82353
""" This file contains the fundamental BrickBreaker game logic. """ import pygame from pygame.locals import * from GameElements import Paddle, Ball, Brick, Special, SpecialText, \ SpecialType, to_drop_special, choose_random_special, BOUNCE_OFF_VECTORS from Player import Player from LevelGenerator import LevelGenerator from GameElements import Movement from enum import Enum from DatabaseInteract import DatabaseInteract from GameState import GameState from Constants import DISPLAY_WIDTH, DISPLAY_HEIGHT, WHITE, BLUE from UIElement import TextElement from pygame.sprite import RenderUpdates from HighscorePage import highscore import os DEFAULT_CLOCK_SPEED = 60 CLOCK_SPEED_CHANGE_FACTOR = 1.5 class RectSide(Enum): """ Enum indicating different sides of a rectangle """ TOP = 0 BOTTOM = 1 LEFT = 3 RIGHT = 3 class CollisionType(Enum): """ Enum indication the possible brick collision types """ HORIZONTAL = 0 VERTICAL = 1 class Brickbreaker: def __init__(self): """ description: - Create a new instance of the Brickbreaker class. - Initialize all attributes. """ self.clock_speed = DEFAULT_CLOCK_SPEED self.screen = pygame.display.set_mode((DISPLAY_WIDTH, DISPLAY_HEIGHT)) self.bricks = [] self.number_unbreakable_bricks = 0 self.paddle = Paddle() self.ball = Ball() self.present_specials = [] self.active_special = None self.spcl_text = None pygame.font.init() self.font = pygame.font.SysFont("Arial", 25) self.player = Player(current_level=1) def start_game(self): """ description: - Create new level. - Position the paddle to the middle of the screen. - Call method to choose starting angle. :return: nothing """ self.create_blocks() self.paddle.reset_position() self.reset_ball() def reset_ball(self): """ description: - Center the ball over paddle and give the player the opportunity to choose inital angle. - Loop: - Switch angles using custom set left and right keys. Selected angles is displayed. - Shoot ball using custom set key. :return: nothing """ if not (self.active_special is None): self.remove_special() dbi = DatabaseInteract() sets = dbi.get_settings() key_left = int(sets[2]) key_right = int(sets[4]) key_shoot = int(sets[9]) self.ball.center_over_paddle(self.paddle.get_center()) vector_indicator_start = (self.ball.form.centerx, self.ball.form.centery - 5) current_index = int(len(BOUNCE_OFF_VECTORS)/2) - 1 clock = pygame.time.Clock() vector_selected = False while not vector_selected: clock.tick(60) self.draw_all() self.draw_start_text() currently_selected_vector = BOUNCE_OFF_VECTORS[current_index] events = pygame.event.get() for event in events: if event.type == QUIT: os._exit(1) if event.type == pygame.KEYDOWN: if event.key == key_left: if current_index > 0: current_index -= 1 elif event.key == key_right: if current_index < len(BOUNCE_OFF_VECTORS) - 1: current_index += 1 elif event.key == key_shoot: self.ball.vector = currently_selected_vector vector_selected = True break elif event.key == pygame.K_ESCAPE: return GameState.TITLE vector_indicator_end = (vector_indicator_start[0] + 10 * currently_selected_vector[0], vector_indicator_start[1] + 10 * currently_selected_vector[1]) pygame.draw.line(self.screen, WHITE, vector_indicator_start, vector_indicator_end, 3) pygame.display.flip() def create_blocks(self): """ description: - Create the bricks for the player's current level using the LevelGenerator-Class. :return: nothing """ self.bricks, self.number_unbreakable_bricks = LevelGenerator().create_level(self.player.current_level) def check_ball_collisions(self): """ description: - Checks all possible collisions that can occur for the ball. - Bounce off at left, right and top edge. - Bounce off from paddle using paddle.hitzones' vectors. - Check for brick collision and delegate handling. - Check if player dropped the ball. - if decremented to 0 --> game over --> save score --> restart :return: """ # collision left or right edge if self.ball.form.x <= 0 or self.ball.form.x >= DISPLAY_WIDTH: self.ball.collide_vertical() if self.ball.form.x <= 0: self.ball.form.x = 1 else: self.ball.form.x = DISPLAY_WIDTH - 1 # collision top edge if self.ball.form.y <= 0: self.ball.form.y = 1 self.ball.collide_horizontal() # collission paddle for paddle_part in self.paddle.hitzones: if paddle_part[0].colliderect(self.ball.form): self.ball.vector = paddle_part[1] break # brick collisions collision_bricks = [] for brick in self.bricks: if brick.rect.colliderect(self.ball.form): collision_bricks.append(brick) if len(collision_bricks) > 0: self.handle_brick_collisions(collision_bricks) # collision bottom edge --> lost if self.ball.form.y > DISPLAY_HEIGHT: self.player.lives -= 1 if self.player.lives == 0: highscore(self.screen, self.player.score) self.player.set_lives() self.player.score = 0 self.player.current_level = 1 self.start_game() else: self.reset_ball() def check_previously_horizontally_outside(self, brick_rect, horizontal_movement): """ description: - Check whether the ball did not horizontally overlap with the currently brick hit in the previous frame. - Aligned edges do not count as overlap. :param brick_rect: pygame.Rect-Object representing the hit brick's position. :param horizontal_movement: Movement-Enum value indicating left or right movement :return: true if no overlap, false otherwise """ ball_pos_previous = self.ball.get_previous_position() ball_rect_previous = pygame.Rect(ball_pos_previous[0], ball_pos_previous[1], self.ball.form.width, self.ball.form.height) if horizontal_movement == Movement.RIGHT: return ball_rect_previous.right <= brick_rect.left else: return ball_rect_previous.left >= brick_rect.right def check_previously_vertically_outside(self, brick_rect, vertical_movement): """ description: - Check whether the ball did not vertically overlap with the currently brick hit in the previous frame. - Aligned edges do not count as overlap. :param brick_rect: pygame.Rect-Object representing the hit brick's position. :param vertical_movement: Movement-Enum value indicating up or down movement :return: true if no overlap, false otherwise """ ball_pos_previous = self.ball.get_previous_position() ball_rect_previous = pygame.Rect(ball_pos_previous[0], ball_pos_previous[1], self.ball.form.width, self.ball.form.height) if vertical_movement == Movement.DOWN: return ball_rect_previous.bottom <= brick_rect.top else: return ball_rect_previous.top >= brick_rect.bottom def handle_brick_collisions(self, collision_bricks): """ description: - Handle the brick-collision based on the number of bricks hit. - If only one brick was hit: Call function to perform brick collision with determined collision type - More than one (basically working with the first 2, edge-case of more than 2 ignored due to unlikelihood and complexity): - Determine expected collision type based on the relative position of the 2 bricks. - Determine calculated collision type for 2 bricks. - Perform brick collision with the brick matching the expected collision type. - If none matches: chose one (irrelevant for user experience) to perform the brick collision with using expected collision type. :param collision_bricks: list of Brick-objects hit by the ball :return: nothing """ if len(collision_bricks) == 1: self.perform_brick_collision(collision_bricks[0], self.determine_collision_type(collision_bricks[0])) else: if collision_bricks[0].rect.x == collision_bricks[1].rect.x: # above each other collision_required = CollisionType.VERTICAL else: # next to each other collision_required = CollisionType.HORIZONTAL brick1_collision = self.determine_collision_type(collision_bricks[0]) brick2_collision = self.determine_collision_type(collision_bricks[1]) if brick1_collision == collision_required: self.perform_brick_collision(collision_bricks[0], brick1_collision) elif brick2_collision == collision_required: self.perform_brick_collision(collision_bricks[1], brick2_collision) else: self.perform_brick_collision(collision_bricks[0], collision_required) def determine_collision_type(self, brick_hit): """ description: - Determine the collision type based on the movement and overlap in the previous frame. :param brick_hit: Brick-object determine the theoretical collision type for. :return: CollisionType-enum value """ horizontal_movement = self.ball.get_horizontal_movement() vertical_movement = self.ball.get_vertical_movement() previously_horizontally_outside = self.check_previously_horizontally_outside(brick_hit.rect, horizontal_movement) previously_vertically_outside = self.check_previously_vertically_outside(brick_hit.rect, vertical_movement) # neither horizontal nor vertical overlap in the previous frame # --> compare ratio of horizontal and vertical overlap in the current frame if previously_horizontally_outside and previously_vertically_outside: horizontal_delta = (self.ball.form.right - brick_hit.rect.left) if horizontal_movement == Movement.RIGHT \ else (brick_hit.rect.right - self.ball.form.left) vertical_delta = (self.ball.form.bottom - brick_hit.rect.top) if vertical_movement == Movement.DOWN \ else (brick_hit.rect.bottom - self.ball.form.top) if horizontal_delta > vertical_delta: return CollisionType.HORIZONTAL else: return CollisionType.VERTICAL # horizontal overlap but no vertical overlap in the previous frame --> vertical collision elif previously_horizontally_outside and not previously_vertically_outside: return CollisionType.VERTICAL # no horizontal overlap but vertical overlap in the previous frame --> horizontal collision elif not previously_horizontally_outside and previously_vertically_outside: return CollisionType.HORIZONTAL # horizontal overlap and vertical overlap in the previous frame # --> irrelevant here because collision would have already happended and been handled in the previous frame. def perform_brick_collision(self, brick_hit, collision_type): """ description: - Call function to change ball's movement direction based on the collision_type. - Call Brick's get_hit() function. - Destroy brick, increase score if brick was destroyed and create a special with a certain probability. :param brick_hit: Brick-object to perform the collision with :param collision_type: CollisionType-Enum :return: nothing """ if collision_type == CollisionType.HORIZONTAL: self.ball.collide_horizontal() else: self.ball.collide_vertical() if brick_hit.get_hit(): self.bricks.remove(brick_hit) self.player.score += 1 if to_drop_special(): spcl = choose_random_special() txt = spcl.get_german_name() self.spcl_text = SpecialText(txt, self.clock_speed) self.present_specials.append(Special(brick_hit.rect.topleft, spcl)) def check_special_collisions(self): """ description: - Check if any specials, i.e. special.rect, currently present on the screen is caught with the paddle. - To be caught the special has to be completely within the paddle's horizontal width and the paddle's height. - Remove active special if new special is caught. - Activate special on self or paddle based on its type. - Remove the special from the currently present specials and set self.active special. - If special is off screen, remove it. :return: nothing """ if len(self.present_specials) > 0: for special in self.present_specials: if (self.paddle.get_top_edge() < special.rect.bottom <= self.paddle.get_bottom_edge()) \ and self.paddle.get_left_edge() <= special.rect.left \ and self.paddle.get_right_edge() >= special.rect.right: if not (self.active_special is None): self.remove_special() if special.is_paddle_special(): self.paddle.activate_special(special) else: self.activate_special(special) self.present_specials.remove(special) self.active_special = special self.active_special.activate(self.clock_speed) elif special.rect.top > DISPLAY_HEIGHT: self.present_specials.remove(special) def activate_special(self, special): """ description: - Activate a caught non-paddle special. - Either add a bonus life or adjust clock speed based on special.type :param special: the caught special :return: nothing """ if special.special_type == SpecialType.BONUS_LIFE: self.player.lives += 1 elif special.special_type == SpecialType.FASTER: self.clock_speed = DEFAULT_CLOCK_SPEED * CLOCK_SPEED_CHANGE_FACTOR elif special.special_type == SpecialType.SLOWER: self.clock_speed = DEFAULT_CLOCK_SPEED / CLOCK_SPEED_CHANGE_FACTOR def remove_special(self): """ description: - Remove the currently active special and negate its effect. - If is_paddle_special: remove special from pedal - else: reset self.clock_speed :return: nothing """ if self.active_special.is_paddle_special(): self.paddle.remove_special() else: self.clock_speed = DEFAULT_CLOCK_SPEED self.active_special = None def draw_all(self): """ description: - Called every tick - draws screen with every element :return: """ self.screen.fill(BLUE) for brick in self.bricks: brick.show_brick(self.screen) for paddle_part in self.paddle.hitzones: pygame.draw.rect(self.screen, WHITE, paddle_part[0]) for triangle in self.paddle.triangle_views: pygame.draw.polygon(self.screen, WHITE, triangle) for special in self.present_specials: special.fall() special.show_special(self.screen) self.player.draw_lives(self.screen) pygame.draw.rect(self.screen, WHITE, self.ball.form) self.screen.blit(self.font.render(str(self.player.score), -1, WHITE), (400, 550)) self.draw_spcl_txt() def draw_spcl_txt(self): """ description: - Write the type of the special that just dropped to the top of the screen. :return: nothing """ if self.spcl_text is not None: info = TextElement( center_position=(590, 10), font_size=16, bg_rgb=BLUE, text_rgb=WHITE, text=f"Spezial: {self.spcl_text.text} aufgetaucht", ) elems = RenderUpdates(info) elems.draw(self.screen) if self.spcl_text.tick(): self.spcl_text = None def level_completed(self): """ description: - Called when the player completes a level. - If level 10 was completed: show Highscore Page - Else: increase level, add bonus life :return: """ if self.player.current_level == 10: highscore(self.screen, self.player.score) return GameState.TITLE else: self.player.current_level += 1 self.player.lives += 1 self.start_game() def pause_elems(self): """ description: - Creates the Text object when being in pause mode :return: elements to be drawn during pause mode """ dbi = DatabaseInteract() sets = dbi.get_settings() heading = TextElement( center_position=(400, 400), font_size=18, bg_rgb=BLUE, text_rgb=WHITE, text=f"Spiel Pausiert, zum Fortsetzen '{sets[5]}' drücken, zum Beenden 'ESC' drücken ", ) elems = RenderUpdates(heading) return elems def draw_start_text(self): """ description: - Creates and draws the Text object when being in pause mode :return: nothing """ dbi = DatabaseInteract() sets = dbi.get_settings() key_left = sets[1] key_right = sets[3] key_shoot = sets[8] heading1 = TextElement( center_position=(400, 400), font_size=18, bg_rgb=BLUE, text_rgb=WHITE, text=f"Startwinkel mit '{key_left}' und '{key_right}' auswählen", ) heading2 = TextElement( center_position=(400, 450), font_size=18, bg_rgb=BLUE, text_rgb=WHITE, text=f"Mit '{key_shoot}' Ball abschiessen, zum Beenden 'ESC' drücken ", ) elems = RenderUpdates(heading1,heading2) elems.draw(self.screen) def main(self): """ description: - Contains game logic. - Process game events by calling corresponding functions. - Update the UI. - Check whether level was completed. :return: nothing """ clock = pygame.time.Clock() self.start_game() dbi = DatabaseInteract() sets = dbi.get_settings() key_left = sets[2] key_right = sets[4] pause_key = sets[6] while True: clock.tick(self.clock_speed) for event in pygame.event.get(): if event.type == QUIT: os._exit(1) if event.type == pygame.KEYDOWN: if event.key == int(pause_key): elems = self.pause_elems() game_paused = True while game_paused: elems.draw(self.screen) events = pygame.event.get() for event in events: if event.type == QUIT: os._exit(1) if event.type == pygame.KEYDOWN: if event.key == int(pause_key): game_paused = False break elif event.key == pygame.K_ESCAPE: return GameState.TITLE pygame.display.update() keys = pygame.key.get_pressed() if keys[int(key_left)]: self.paddle.move(-1) if keys[int(key_right)]: self.paddle.move(1) if keys[pygame.K_ESCAPE]: return GameState.TITLE # update ball self.ball.move() self.check_ball_collisions() # update specials if not (self.active_special is None): if self.active_special.tick(): self.remove_special() self.check_special_collisions() # Update screen self.draw_all() pygame.display.flip() if len(self.bricks) == self.number_unbreakable_bricks: if self.level_completed() == GameState.TITLE: return GameState.TITLE
py
1a4f93d7d2b2c0ecf26ced5c1661412d10717425
import asyncio import typing as t from contextlib import asynccontextmanager from nbclient import NotebookClient from nbformat import NotebookNode from nbclient.exceptions import CellExecutionComplete, DeadKernelError, CellControlSignal from nbclient.util import run_hook from appyter.ext.asyncio.event_loop import get_event_loop from appyter.ext.asyncio.helpers import ensure_async class NotebookClientIOPubHook(NotebookClient): ''' A notebook client with the ability to hook into iopub updates ''' def __init__(self, *args, iopub_hook=None, **kwargs): super().__init__(*args, **kwargs) self.iopub_hook = iopub_hook async def _async_poll_output_msg( self, parent_msg_id, cell, cell_index ): assert self.kc is not None complete = False while not complete: msg = await ensure_async(self.kc.iopub_channel.get_msg(timeout=None)) if msg['parent_header'].get('msg_id') == parent_msg_id: try: # Will raise CellExecutionComplete when completed self.process_message(msg, cell, cell_index) except CellExecutionComplete: complete = True finally: if self.iopub_hook is not None: await self.iopub_hook(cell, cell_index) def _kc_execute(self, *args, **kwargs): return self.kc.execute(*args, **kwargs) async def async_execute_cell( self, cell: NotebookNode, cell_index: int, execution_count: t.Optional[int] = None, store_history: bool = True) -> NotebookNode: """ Executes a single code cell. To execute all cells see :meth:`execute`. Parameters ---------- cell : nbformat.NotebookNode The cell which is currently being processed. cell_index : int The position of the cell within the notebook object. execution_count : int The execution count to be assigned to the cell (default: Use kernel response) store_history : bool Determines if history should be stored in the kernel (default: False). Specific to ipython kernels, which can store command histories. Returns ------- output : dict The execution output payload (or None for no output). Raises ------ CellExecutionError If execution failed and should raise an exception, this will be raised with defaults about the failure. Returns ------- cell : NotebookNode The cell which was just processed. """ assert self.kc is not None if cell.cell_type != 'code' or not cell.source.strip(): self.log.debug("Skipping non-executing cell %s", cell_index) return cell if self.record_timing and 'execution' not in cell['metadata']: cell['metadata']['execution'] = {} self.log.debug("Executing cell:\n%s", cell.source) parent_msg_id = await ensure_async(self._kc_execute)( cell.source, store_history=store_history, stop_on_error=not self.allow_errors ) # We launched a code cell to execute self.code_cells_executed += 1 exec_timeout = self._get_timeout(cell) cell.outputs = [] self.clear_before_next_output = False task_poll_kernel_alive = asyncio.ensure_future( self._async_poll_kernel_alive() ) task_poll_output_msg = asyncio.ensure_future( self._async_poll_output_msg(parent_msg_id, cell, cell_index) ) self.task_poll_for_reply = asyncio.ensure_future( self._async_poll_for_reply( parent_msg_id, cell, exec_timeout, task_poll_output_msg, task_poll_kernel_alive ) ) try: exec_reply = await self.task_poll_for_reply except asyncio.CancelledError: # can only be cancelled by task_poll_kernel_alive when the kernel is dead task_poll_output_msg.cancel() raise DeadKernelError("Kernel died") except Exception as e: # Best effort to cancel request if it hasn't been resolved try: # Check if the task_poll_output is doing the raising for us if not isinstance(e, CellControlSignal): task_poll_output_msg.cancel() finally: raise if execution_count: cell['execution_count'] = execution_count await self._check_raise_for_error(cell, cell_index, exec_reply) self.nb['cells'][cell_index] = cell return cell @asynccontextmanager async def async_setup_kernel(self, **kwargs) -> t.AsyncGenerator: """ Context manager for setting up the kernel to execute a notebook. This assigns the Kernel Manager (``self.km``) if missing and Kernel Client(``self.kc``). When control returns from the yield it stops the client's zmq channels, and shuts down the kernel. """ # by default, cleanup the kernel client if we own the kernel manager # and keep it alive if we don't cleanup_kc = kwargs.pop('cleanup_kc', self.owns_km) if self.km is None: self.km = self.create_kernel_manager() loop = get_event_loop() if not self.km.has_kernel: await self.async_start_new_kernel(**kwargs) await self.async_start_new_kernel_client() try: yield except RuntimeError as e: await run_hook(self.on_notebook_error, notebook=self.nb) raise e finally: if cleanup_kc: await self._async_cleanup_kernel() await run_hook(self.on_notebook_complete, notebook=self.nb)