ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a4fcf8b726f4b4b4f1eebeb6ccedbdfb0a60818
"""Generate surface water maps from Sentinel-1 RTC products Create a surface water extent map from a dual-pol Sentinel-1 RTC product and a HAND image. The HAND image must be pixel-aligned (same extent and size) to the RTC images. The water extent maps are created using an adaptive Expectation Maximization thresholding approach and refined using Fuzzy Logic. """ import argparse import logging import sys from pathlib import Path from typing import Optional, Tuple, Union import numpy as np import skfuzzy as fuzz from osgeo import gdal from skimage import measure from asf_tools.composite import get_epsg_code, write_cog from asf_tools.hand.prepare import prepare_hand_for_raster from asf_tools.raster import read_as_masked_array from asf_tools.threshold import expectation_maximization_threshold as em_threshold from asf_tools.tile import tile_array, untile_array log = logging.getLogger(__name__) def mean_of_subtiles(tiles: np.ndarray) -> np.ndarray: sub_tile_shape = (tiles.shape[1] // 2, tiles.shape[2] // 2) sub_tiles_mean = np.zeros((tiles.shape[0], 4)) for ii, tile in enumerate(tiles): sub_tiles = tile_array(tile.filled(0), tile_shape=sub_tile_shape) sub_tiles_mean[ii, :] = sub_tiles.mean(axis=(1, 2)) return sub_tiles_mean def select_hand_tiles(tiles: Union[np.ndarray, np.ma.MaskedArray], hand_threshold: float, hand_fraction: float) -> np.ndarray: if np.allclose(tiles, 0.0): raise ValueError(f'All pixels in scene have a HAND value of {0.0} (all water); ' f'scene is not a good candidate for water mapping.') tile_indexes = np.arange(tiles.shape[0]) tiles = np.ma.masked_greater_equal(tiles, hand_threshold) percent_valid_pixels = np.sum(~tiles.mask, axis=(1, 2)) / (tiles.shape[1] * tiles.shape[2]) return tile_indexes[percent_valid_pixels > hand_fraction] def select_backscatter_tiles(backscatter_tiles: np.ndarray, hand_candidates: np.ndarray) -> np.ndarray: tile_indexes = np.arange(backscatter_tiles.shape[0]) sub_tile_means = mean_of_subtiles(backscatter_tiles) sub_tile_means_std = sub_tile_means.std(axis=1) tile_medians = np.ma.median(backscatter_tiles, axis=(1, 2)) tile_variance = sub_tile_means_std / tile_medians # OK low_mean_threshold = np.ma.median(tile_medians[hand_candidates]) low_mean_candidates = tile_indexes[tile_medians < low_mean_threshold] potential_candidates = np.intersect1d(hand_candidates, low_mean_candidates) for variance_threshold in np.percentile(tile_variance, np.arange(5, 96)[::-1]): variance_candidates = tile_indexes[tile_variance > variance_threshold] selected = np.intersect1d(variance_candidates, potential_candidates) sort_index = np.argsort(sub_tile_means_std[selected])[::-1] if len(selected) >= 5: return selected[sort_index][:5] return np.array([]) def determine_em_threshold(tiles: np.ndarray, scaling: float) -> float: thresholds = [] for ii in range(tiles.shape[0]): test_tile = (np.around(tiles[ii, :, :] * scaling)).astype(int) thresholds.append(em_threshold(test_tile) / scaling) return np.median(np.sort(thresholds)[:4]) def calculate_slope_magnitude(array: np.ndarray, pixel_size) -> np.ndarray: dx, dy = np.gradient(array) magnitude = np.sqrt(dx**2, dy**2) / pixel_size slope = np.arctan(magnitude) / np.pi * 180. return slope def determine_membership_limits( array: np.ndarray, mask_percentile: float = 90., std_range: float = 3.0) -> Tuple[float, float]: array = np.ma.masked_values(array, 0.) array = np.ma.masked_greater(array, np.percentile(array, mask_percentile)) lower_limit = np.ma.median(array) upper_limit = lower_limit + std_range * array.std() + 5.0 return lower_limit, upper_limit def min_max_membership(array: np.ndarray, lower_limit: float, upper_limit: float, resolution: float) -> np.ndarray: possible_values = np.arange(array.min(), array.max(), resolution) activation = fuzz.zmf(possible_values, lower_limit, upper_limit) membership = fuzz.interp_membership(possible_values, activation, array) return membership def segment_area_membership(segments: np.ndarray, min_area: int = 3, max_area: int = 10) -> np.ndarray: segment_areas = np.bincount(segments.ravel()) possible_areas = np.arange(min_area, max_area + 1) activation = 1 - fuzz.zmf(possible_areas, min_area, max_area) segment_membership = np.zeros_like(segments) segments_above_threshold = np.squeeze((segment_areas > max_area).nonzero()) segments_above_threshold = np.delete(segments_above_threshold, (segments_above_threshold == 0).nonzero()) np.putmask(segment_membership, np.isin(segments, segments_above_threshold), 1) for area in possible_areas: mask = np.isin(segments, (segment_areas == area).nonzero()) np.putmask(segment_membership, mask, fuzz.interp_membership(possible_areas, activation, area)) return segment_membership def remove_small_segments(segments: np.ndarray, min_area: int = 3) -> np.ndarray: valid_segments = segments != 0 segment_areas = np.bincount(segments.ravel()) segments_below_threshold = (segment_areas < min_area).nonzero() np.putmask(valid_segments, np.isin(segments, segments_below_threshold), False) return valid_segments def fuzzy_refinement(initial_map: np.ndarray, gaussian_array: np.ndarray, hand_array: np.ndarray, pixel_size: float, gaussian_thresholds: Tuple[float, float], membership_threshold: float = 0.45) -> np.ndarray: water_map = np.ones_like(initial_map) water_segments = measure.label(initial_map, connectivity=2) water_segment_membership = segment_area_membership(water_segments) water_map &= ~np.isclose(water_segment_membership, 0.) gaussian_membership = min_max_membership(gaussian_array, gaussian_thresholds[0], gaussian_thresholds[1], 0.005) water_map &= ~np.isclose(gaussian_membership, 0.) hand_lower_limit, hand_upper_limit = determine_membership_limits(hand_array) hand_membership = min_max_membership(hand_array, hand_lower_limit, hand_upper_limit, 0.1) water_map &= ~np.isclose(hand_membership, 0.) hand_slopes = calculate_slope_magnitude(hand_array, pixel_size) slope_membership = min_max_membership(hand_slopes, 0., 15., 0.1) water_map &= ~np.isclose(slope_membership, 0.) water_map_weights = (gaussian_membership + hand_membership + slope_membership + water_segment_membership) / 4. water_map &= water_map_weights >= membership_threshold return water_map def make_water_map(out_raster: Union[str, Path], vv_raster: Union[str, Path], vh_raster: Union[str, Path], hand_raster: Optional[Union[str, Path]] = None, tile_shape: Tuple[int, int] = (100, 100), max_vv_threshold: float = -15.5, max_vh_threshold: float = -23.0, hand_threshold: float = 15., hand_fraction: float = 0.8, membership_threshold: float = 0.45): """Creates a surface water extent map from a Sentinel-1 RTC product Create a surface water extent map from a dual-pol Sentinel-1 RTC product and a HAND image. The HAND image must be pixel-aligned (same extent and size) to the RTC images. The water extent maps are created using an adaptive Expectation Maximization thresholding approach and refined with Fuzzy Logic. The input images are broken into a set of corresponding tiles with a shape of `tile_shape`, and a set of tiles are selected from the VH RTC image that contain water boundaries to determine an appropriate water threshold. Candidate tiles must meet these criteria: * `hand_fraction` of pixels within a tile must have HAND pixel values lower than `hand_threshold` * The median backscatter value for the tile must be lower than an average tiles' backscatter values * The tile must have a high variance -- high variance is considered initially to be a variance in the 95th percentile of the tile variances, but progressively relaxed to the 5th percentile if there not at least 5 candidate tiles. The 5 VH tiles with the highest variance are selected for thresholding and a water threshold value is determined using an Expectation Maximization approach. If there were not enough candidate tiles or the threshold is too high, `max_vh_threshold` and/or `max_vv_threshold` will be used instead. From the initial threshold-based water extent maps, Fuzzy Logic is used to remove spurious false detections and improve the water extent map quality. The fuzzy logic uses these indicators for the presence of water: * radar cross section in a pixel relative to the determined detection threshold * the height above nearest drainage (HAND) * the surface slope, which is derived from the HAND data * the size of the detected water feature For each indicator, a Z-shaped activation function is used to determine pixel membership. The membership maps are combined to form the final water extent map. Pixels classified as water pixels will: * have non-zero membership in all of the indicators, and * have an average membership above the `membership_threshold` value. Finally, the VV and VH water masks will be combined to include all water pixels from both masks, and the combined water map will be written to `out_raster`. Args: out_raster: Water map GeoTIFF to create vv_raster: Sentinel-1 RTC GeoTIFF, in power scale, with VV polarization vh_raster: Sentinel-1 RTC GeoTIFF, in power scale, with VH polarization hand_raster: Height Above Nearest Drainage (HAND) GeoTIFF aligned to the RTC rasters tile_shape: shape (height, width) in pixels to tile the image to max_vv_threshold: Maximum threshold value to use for `vv_raster` in decibels (db) max_vh_threshold: Maximum threshold value to use for `vh_raster` in decibels (db) hand_threshold: The maximum height above nearest drainage in meters to consider a pixel valid hand_fraction: The minimum fraction of valid HAND pixels required in a tile for thresholding membership_threshold: The average membership to the fuzzy indicators required for a water pixel """ if tile_shape[0] % 2 or tile_shape[1] % 2: raise ValueError(f'tile_shape {tile_shape} requires even values.') info = gdal.Info(str(vh_raster), format='json') out_transform = info['geoTransform'] out_epsg = get_epsg_code(info) if hand_raster is None: hand_raster = str(out_raster).replace('.tif', '_HAND.tif') log.info(f'Extracting HAND data to: {hand_raster}') prepare_hand_for_raster(hand_raster, vh_raster) log.info(f'Determining HAND memberships from {hand_raster}') hand_array = read_as_masked_array(hand_raster) hand_tiles = tile_array(hand_array, tile_shape=tile_shape, pad_value=np.nan) hand_candidates = select_hand_tiles(hand_tiles, hand_threshold, hand_fraction) log.debug(f'Selected HAND tile candidates {hand_candidates}') selected_tiles = None water_extent_maps = [] for max_db_threshold, raster, pol in ((max_vh_threshold, vh_raster, 'VH'), (max_vv_threshold, vv_raster, 'VV')): log.info(f'Creating initial {pol} water extent map from {raster}') array = read_as_masked_array(raster) tiles = tile_array(array, tile_shape=tile_shape, pad_value=0.) # Masking less than zero only necessary for old HyP3/GAMMA products which sometimes returned negative powers tiles = np.ma.masked_less_equal(tiles, 0.) if selected_tiles is None: selected_tiles = select_backscatter_tiles(tiles, hand_candidates) log.info(f'Selected tiles {selected_tiles} from {raster}') with np.testing.suppress_warnings() as sup: sup.filter(RuntimeWarning) # invalid value and divide by zero encountered in log10 tiles = np.log10(tiles) + 30. # linear power scale -> Gaussian scale optimized for thresholding max_gaussian_threshold = max_db_threshold / 10. + 30. # db -> Gaussian scale optimized for thresholding if selected_tiles.size: scaling = 256 / (np.mean(tiles) + 3 * np.std(tiles)) gaussian_threshold = determine_em_threshold(tiles[selected_tiles, :, :], scaling) threshold_db = 10. * (gaussian_threshold - 30.) log.info(f'Threshold determined to be {threshold_db} db') if gaussian_threshold > max_gaussian_threshold: log.warning(f'Threshold too high! Using maximum threshold {max_db_threshold} db') gaussian_threshold = max_gaussian_threshold else: log.warning(f'Tile selection did not converge! using default threshold {max_db_threshold} db') gaussian_threshold = max_gaussian_threshold gaussian_array = untile_array(tiles, array.shape) water_map = np.ma.masked_less_equal(gaussian_array, gaussian_threshold).mask water_map &= ~array.mask write_cog(str(out_raster).replace('.tif', f'_{pol}_initial.tif'), water_map, transform=out_transform, epsg_code=out_epsg, dtype=gdal.GDT_Byte, nodata_value=False) log.info(f'Refining initial {pol} water extent map using Fuzzy Logic') array = np.ma.masked_where(~water_map, array) gaussian_lower_limit = np.log10(np.ma.median(array)) + 30. water_map = fuzzy_refinement( water_map, gaussian_array, hand_array, pixel_size=out_transform[1], gaussian_thresholds=(gaussian_lower_limit, gaussian_threshold), membership_threshold=membership_threshold ) water_map &= ~array.mask write_cog(str(out_raster).replace('.tif', f'_{pol}_fuzzy.tif'), water_map, transform=out_transform, epsg_code=out_epsg, dtype=gdal.GDT_Byte, nodata_value=False) water_extent_maps.append(water_map) log.info('Combining Fuzzy VH and VV extent map') combined_water_map = np.logical_or(*water_extent_maps) combined_segments = measure.label(combined_water_map, connectivity=2) combined_water_map = remove_small_segments(combined_segments) write_cog(out_raster, combined_water_map, transform=out_transform, epsg_code=out_epsg, dtype=gdal.GDT_Byte, nodata_value=False) def main(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('out_raster', help='Water map GeoTIFF to create') # FIXME: Decibel RTCs would be real nice. parser.add_argument('vv_raster', help='Sentinel-1 RTC GeoTIFF raster, in power scale, with VV polarization') parser.add_argument('vh_raster', help='Sentinel-1 RTC GeoTIFF raster, in power scale, with VH polarization') parser.add_argument('--hand-raster', help='Height Above Nearest Drainage (HAND) GeoTIFF aligned to the RTC rasters. ' 'If not specified, HAND data will be extracted from a Copernicus GLO-30 DEM based HAND.') parser.add_argument('--tile-shape', type=int, nargs=2, default=(100, 100), help='shape (height, width) in pixels to tile the image to') parser.add_argument('--max-vv-threshold', type=float, default=-15.5, help='Maximum threshold value to use for `vv_raster` in decibels (db)') parser.add_argument('--max-vh-threshold', type=float, default=-23.0, help='Maximum threshold value to use for `vh_raster` in decibels (db)') parser.add_argument('--hand-threshold', type=float, default=15., help='The maximum height above nearest drainage in meters to consider a pixel valid') parser.add_argument('--hand-fraction', type=float, default=0.8, help='The minimum fraction of valid HAND pixels required in a tile for thresholding') parser.add_argument('--membership-threshold', type=float, default=0.45, help='The average membership to the fuzzy indicators required for a water pixel') parser.add_argument('-v', '--verbose', action='store_true', help='Turn on verbose logging') args = parser.parse_args() level = logging.DEBUG if args.verbose else logging.INFO logging.basicConfig(stream=sys.stdout, format='%(asctime)s - %(levelname)s - %(message)s', level=level) log.debug(' '.join(sys.argv)) make_water_map(args.out_raster, args.vv_raster, args.vh_raster, args.hand_raster, args.tile_shape, args.max_vv_threshold, args.max_vh_threshold, args.hand_threshold, args.hand_fraction, args.membership_threshold) log.info(f'Water map created successfully: {args.out_raster}')
py
1a4fcfb8f35ca165c09b8de361946a3241701390
from __future__ import absolute_import, division, print_function, \ unicode_literals __version__ = b'0.6.2'
py
1a4fcfd95554ff13c6ada7b304faad0fcb29bb37
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Contains functions used for creating pairs from labeled and unlabeled data (currently used only for the siamese network).""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import random import numpy as np from sklearn import metrics from sklearn.neighbors import NearestNeighbors def get_choices(arr, num_choices, valid_range, not_arr=None, replace=False): """Select n=num_choices choices from arr, with the following constraints. Args: arr: if arr is an integer, the pool of choices is interpreted as [0, arr] num_choices: number of choices valid_range: choice > valid_range[0] and choice < valid_range[1] not_arr: choice not in not_arr replace: if True, draw choices with replacement Returns: choices. """ if not_arr is None: not_arr = [] if isinstance(valid_range, int): valid_range = [0, valid_range] # make sure we have enough valid points in arr if isinstance(arr, tuple): if min(arr[1], valid_range[1]) - max(arr[0], valid_range[0]) < num_choices: raise ValueError('Not enough elements in arr are outside of valid_range!') n_arr = arr[1] arr0 = arr[0] arr = collections.defaultdict(lambda: -1) get_arr = lambda x: x replace = True else: greater_than = np.array(arr) > valid_range[0] less_than = np.array(arr) < valid_range[1] if np.sum(np.logical_and(greater_than, less_than)) < num_choices: raise ValueError('Not enough elements in arr are outside of valid_range!') # make a copy of arr, since we'll be editing the array n_arr = len(arr) arr0 = 0 arr = np.array(arr, copy=True) get_arr = lambda x: arr[x] not_arr_set = set(not_arr) def get_choice(): arr_idx = random.randint(arr0, n_arr - 1) while get_arr(arr_idx) in not_arr_set: arr_idx = random.randint(arr0, n_arr - 1) return arr_idx if isinstance(not_arr, int): not_arr = list(not_arr) choices = [] for _ in range(num_choices): arr_idx = get_choice() while get_arr(arr_idx) <= valid_range[0] or get_arr( arr_idx) >= valid_range[1]: arr_idx = get_choice() choices.append(int(get_arr(arr_idx))) if not replace: arr[arr_idx], arr[n_arr - 1] = arr[n_arr - 1], arr[arr_idx] n_arr -= 1 return choices def create_pairs_from_labeled_data(x, digit_indices, use_classes=None): """Positive and negative pair creation from labeled data. Alternates between positive and negative pairs. Args: x: labeled data digit_indices: nested array of depth 2 (in other words a jagged matrix), where row i contains the indices in x of all examples labeled with class i use_classes: in cases where we only want pairs from a subset of the classes, use_classes is a list of the classes to draw pairs from, else it is None Returns: pairs: positive and negative pairs labels: corresponding labels """ n_clusters = len(digit_indices) if use_classes is None: use_classes = list(range(n_clusters)) pairs = [] labels = [] n = min([len(digit_indices[d]) for d in range(n_clusters)]) - 1 for d in use_classes: for i in range(n): z1, z2 = digit_indices[d][i], digit_indices[d][i + 1] pairs += [[x[z1], x[z2]]] inc = random.randrange(1, n_clusters) dn = (d + inc) % n_clusters z1, z2 = digit_indices[d][i], digit_indices[dn][i] pairs += [[x[z1], x[z2]]] labels += [1, 0] pairs = np.array(pairs).reshape((len(pairs), 2) + x.shape[1:]) labels = np.array(labels) return pairs, labels def create_pairs_from_unlabeled_data(x1, x2=None, y=None, p=None, k=5, tot_pairs=None, pre_shuffled=False, verbose=None): """Generates positive and negative pairs for the siamese network from unlabeled data. Draws from the k nearest neighbors (where k is the provided parameter) of each point to form pairs. Number of neighbors to draw is determined by tot_pairs, if provided, or k if not provided. Args: x1: input data array x2: parallel data array (pairs will exactly shadow the indices of x1, but be drawn from x2) y: true labels (if available) purely for checking how good our pairs are p: permutation vector - in cases where the array is shuffled and we use a precomputed knn matrix (where knn is performed on unshuffled data), we keep track of the permutations with p, and apply the same permutation to the precomputed knn matrix k: the number of neighbors to use (the 'k' in knn) tot_pairs: total number of pairs to produce words, an approximation of KNN pre_shuffled: pre shuffled or not verbose: flag for extra debugging printouts Returns: pairs for x1, (pairs for x2 if x2 is provided), labels (inferred by knn), (labels_true, the absolute truth, if y is provided """ if x2 is not None and x1.shape != x2.shape: raise ValueError('x1 and x2 must be the same shape!') n = len(p) if p is not None else len(x1) pairs_per_pt = max(1, min(k, int( tot_pairs / (n * 2)))) if tot_pairs is not None else max(1, k) if p is not None and not pre_shuffled: x1 = x1[p[:n]] y = y[p[:n]] pairs = [] pairs2 = [] labels = [] true = [] verbose = True if verbose: print('computing k={} nearest neighbors...'.format(k)) if len(x1.shape) > 2: x1_flat = x1.reshape(x1.shape[0], np.prod(x1.shape[1:]))[:n] else: x1_flat = x1[:n] print('I am hereee', x1_flat.shape) nbrs = NearestNeighbors(n_neighbors=k + 1).fit(x1_flat) print('NearestNeighbors') _, idx = nbrs.kneighbors(x1_flat) print('NearestNeighbors2') # for each row, remove the element itself from its list of neighbors # (we don't care that each point is its own closest neighbor) new_idx = np.empty((idx.shape[0], idx.shape[1] - 1)) print('replace') assert (idx >= 0).all() print('I am hereee', idx.shape[0]) for i in range(idx.shape[0]): try: new_idx[i] = idx[i, idx[i] != i][:idx.shape[1] - 1] except Exception as e: print(idx[i, Ellipsis], new_idx.shape, idx.shape) raise e idx = new_idx.astype(np.int) k_max = min(idx.shape[1], k + 1) if verbose: print('creating pairs...') print('ks', n, k_max, k, pairs_per_pt) # pair generation loop (alternates between true and false pairs) consecutive_fails = 0 for i in range(n): # get_choices sometimes fails with precomputed results. if this happens # too often, we relax the constraint on k if consecutive_fails > 5: k_max = min(idx.shape[1], int(k_max * 2)) consecutive_fails = 0 if verbose and i % 10000 == 0: print('Iter: {}/{}'.format(i, n)) # pick points from neighbors of i for positive pairs try: choices = get_choices( idx[i, :k_max], pairs_per_pt, valid_range=[-1, np.inf], replace=False) consecutive_fails = 0 except ValueError: consecutive_fails += 1 continue assert i not in choices # form the pairs new_pos = [[x1[i], x1[c]] for c in choices] if x2 is not None: new_pos2 = [[x2[i], x2[c]] for c in choices] if y is not None: pos_labels = [[y[i] == y[c]] for c in choices] # pick points *not* in neighbors of i for negative pairs try: choices = get_choices((0, n), pairs_per_pt, valid_range=[-1, np.inf], not_arr=idx[i, :k_max], replace=False) consecutive_fails = 0 except ValueError: consecutive_fails += 1 continue # form negative pairs new_neg = [[x1[i], x1[c]] for c in choices] if x2 is not None: new_neg2 = [[x2[i], x2[c]] for c in choices] if y is not None: neg_labels = [[y[i] == y[c]] for c in choices] # add pairs to our list labels += [1] * len(new_pos) + [0] * len(new_neg) pairs += new_pos + new_neg if x2 is not None: pairs2 += new_pos2 + new_neg2 if y is not None: true += pos_labels + neg_labels # package return parameters for output ret = [np.array(pairs).reshape((len(pairs), 2) + x1.shape[1:])] if x2 is not None: ret.append(np.array(pairs2).reshape((len(pairs2), 2) + x2.shape[1:])) ret.append(np.array(labels)) if y is not None: true = np.array(true).astype(np.int).reshape(-1, 1) if verbose: # if true vectors are provided, we can take a peek to check # the validity of our kNN approximation print('confusion matrix for pairs and approximated labels:') print(metrics.confusion_matrix(true, labels) / true.shape[0]) print(metrics.confusion_matrix(true, labels)) ret.append(true) return ret
py
1a4fd195b1b0144c65d6c670b477df147b027416
#!/usr/bin/env python r"""Compute SSP/PCA projections for ECG artifacts. Examples -------- .. code-block:: console $ mne compute_proj_ecg -i sample_audvis_raw.fif -c "MEG 1531" \ --l-freq 1 --h-freq 100 \ --rej-grad 3000 --rej-mag 4000 --rej-eeg 100 """ # Authors : Alexandre Gramfort, Ph.D. # Martin Luessi, Ph.D. import os import sys import mne def run(): """Run command.""" from mne.commands.utils import get_optparser parser = get_optparser(__file__) parser.add_option("-i", "--in", dest="raw_in", help="Input raw FIF file", metavar="FILE") parser.add_option("--tmin", dest="tmin", type="float", help="Time before event in seconds", default=-0.2) parser.add_option("--tmax", dest="tmax", type="float", help="Time after event in seconds", default=0.4) parser.add_option("-g", "--n-grad", dest="n_grad", type="int", help="Number of SSP vectors for gradiometers", default=2) parser.add_option("-m", "--n-mag", dest="n_mag", type="int", help="Number of SSP vectors for magnetometers", default=2) parser.add_option("-e", "--n-eeg", dest="n_eeg", type="int", help="Number of SSP vectors for EEG", default=2) parser.add_option("--l-freq", dest="l_freq", type="float", help="Filter low cut-off frequency in Hz", default=1) parser.add_option("--h-freq", dest="h_freq", type="float", help="Filter high cut-off frequency in Hz", default=100) parser.add_option("--ecg-l-freq", dest="ecg_l_freq", type="float", help="Filter low cut-off frequency in Hz used " "for ECG event detection", default=5) parser.add_option("--ecg-h-freq", dest="ecg_h_freq", type="float", help="Filter high cut-off frequency in Hz used " "for ECG event detection", default=35) parser.add_option("-p", "--preload", dest="preload", help="Temporary file used during computation " "(to save memory)", default=True) parser.add_option("-a", "--average", dest="average", action="store_true", help="Compute SSP after averaging", default=False) # XXX: change to default=True in 0.17 parser.add_option("--proj", dest="proj", help="Use SSP projections from a fif file.", default=None) parser.add_option("--filtersize", dest="filter_length", type="int", help="Number of taps to use for filtering", default=2048) parser.add_option("-j", "--n-jobs", dest="n_jobs", type="int", help="Number of jobs to run in parallel", default=1) parser.add_option("-c", "--channel", dest="ch_name", help="Channel to use for ECG detection " "(Required if no ECG found)", default=None) parser.add_option("--rej-grad", dest="rej_grad", type="float", help="Gradiometers rejection parameter " "in fT/cm (peak to peak amplitude)", default=2000) parser.add_option("--rej-mag", dest="rej_mag", type="float", help="Magnetometers rejection parameter " "in fT (peak to peak amplitude)", default=3000) parser.add_option("--rej-eeg", dest="rej_eeg", type="float", help="EEG rejection parameter in uV " "(peak to peak amplitude)", default=50) parser.add_option("--rej-eog", dest="rej_eog", type="float", help="EOG rejection parameter in uV " "(peak to peak amplitude)", default=250) parser.add_option("--avg-ref", dest="avg_ref", action="store_true", help="Add EEG average reference proj", default=False) parser.add_option("--no-proj", dest="no_proj", action="store_true", help="Exclude the SSP projectors currently " "in the fiff file", default=False) parser.add_option("--bad", dest="bad_fname", help="Text file containing bad channels list " "(one per line)", default=None) parser.add_option("--event-id", dest="event_id", type="int", help="ID to use for events", default=999) parser.add_option("--event-raw", dest="raw_event_fname", help="raw file to use for event detection", default=None) parser.add_option("--tstart", dest="tstart", type="float", help="Start artifact detection after tstart seconds", default=0.) parser.add_option("--qrsthr", dest="qrs_threshold", type="string", help="QRS detection threshold. Between 0 and 1. Can " "also be 'auto' for automatic selection", default='auto') options, args = parser.parse_args() raw_in = options.raw_in if raw_in is None: parser.print_help() sys.exit(1) tmin = options.tmin tmax = options.tmax n_grad = options.n_grad n_mag = options.n_mag n_eeg = options.n_eeg l_freq = options.l_freq h_freq = options.h_freq ecg_l_freq = options.ecg_l_freq ecg_h_freq = options.ecg_h_freq average = options.average preload = options.preload filter_length = options.filter_length n_jobs = options.n_jobs ch_name = options.ch_name reject = dict(grad=1e-13 * float(options.rej_grad), mag=1e-15 * float(options.rej_mag), eeg=1e-6 * float(options.rej_eeg), eog=1e-6 * float(options.rej_eog)) avg_ref = options.avg_ref no_proj = options.no_proj bad_fname = options.bad_fname event_id = options.event_id proj_fname = options.proj raw_event_fname = options.raw_event_fname tstart = options.tstart qrs_threshold = options.qrs_threshold if qrs_threshold != 'auto': try: qrs_threshold = float(qrs_threshold) except ValueError: raise ValueError('qrsthr must be "auto" or a float') if bad_fname is not None: with open(bad_fname, 'r') as fid: bads = [w.rstrip() for w in fid.readlines()] print('Bad channels read : %s' % bads) else: bads = [] if raw_in.endswith('_raw.fif') or raw_in.endswith('-raw.fif'): prefix = raw_in[:-8] else: prefix = raw_in[:-4] ecg_event_fname = prefix + '_ecg-eve.fif' if average: ecg_proj_fname = prefix + '_ecg_avg-proj.fif' else: ecg_proj_fname = prefix + '_ecg-proj.fif' raw = mne.io.read_raw_fif(raw_in, preload=preload) if raw_event_fname is not None: raw_event = mne.io.read_raw_fif(raw_event_fname) else: raw_event = raw flat = None # XXX : not exposed to the user projs, events = mne.preprocessing.compute_proj_ecg( raw, raw_event, tmin, tmax, n_grad, n_mag, n_eeg, l_freq, h_freq, average, filter_length, n_jobs, ch_name, reject, flat, bads, avg_ref, no_proj, event_id, ecg_l_freq, ecg_h_freq, tstart, qrs_threshold, copy=False) raw.close() if raw_event_fname is not None: raw_event.close() if proj_fname is not None: print('Including SSP projections from : %s' % proj_fname) # append the ecg projs, so they are last in the list projs = mne.read_proj(proj_fname) + projs if isinstance(preload, str) and os.path.exists(preload): os.remove(preload) print("Writing ECG projections in %s" % ecg_proj_fname) mne.write_proj(ecg_proj_fname, projs) print("Writing ECG events in %s" % ecg_event_fname) mne.write_events(ecg_event_fname, events) mne.utils.run_command_if_main()
py
1a4fd1aae573147b3ec55f9f559569ad1a71b290
""" A agregação é um tipo de associação em que há pelo menos um objeto que, essencialmente, precisa de outro. """ class CarrinhoDeCompras(): def __init__(self): self.__produtos = [] def inserir_produto(self, produto): self.__produtos.append(produto) def soma_total(self): soma = 0 for item in self.__produtos: soma += item.preco return soma def mostra_itens(self): for item in self.__produtos: print(item.descricao) def __del__(self): print('Objeto CarrinhoDeCompras foi apagado') class Produto(): def __init__(self, descricao, preco): self.__descricao = descricao self.__preco = preco @property def descricao(self): return self.__descricao.upper().strip() @property def preco(self): x = str(self.__preco) return float(x.replace(',', '.').strip()) def __del__(self): print('Objeto produto foi apagado') # ↑ Método para ver quando o objeto deixa de ser usado # no caso da agregação, apagar o objeto que usa esse outro não apaga esse outro. carrinho_1 = CarrinhoDeCompras() p1 = Produto('moto de brinquedo', 10.35) p2 = Produto('boneca', '15,50') carrinho_1.inserir_produto(p2) carrinho_1.inserir_produto(p1) carrinho_1.inserir_produto(p2) print(carrinho_1.soma_total()) carrinho_1.mostra_itens() del carrinho_1 print(p1.descricao) # O objeto p1 ainda existe, mesmo depois de o carrinho ter sido apagado. print('#'*30) """ Nesse caso a classe CarrinhoDeCompras depende da Produto para qualquer atividade, embora a classe Produto não precisa em nada da outra. """
py
1a4fd291c5883efc39293b292efa2eae6baf0743
"""This module is to declare global objects.""" from datetime import datetime # Configuration Options global moesif_options moesif_options = {} # Debug Flag global DEBUG DEBUG = True # Patch Flag global MOESIF_PATCH MOESIF_PATCH = False # MoesifAPI Client global api_client api_client = None # App Config class global app_config app_config = None # App Config global config config = None # App Config sampling percentage global sampling_percentage sampling_percentage = 100 # App Config eTag global config_etag config_etag = None # App Config last updated time global last_updated_time last_updated_time = datetime.utcnow()
py
1a4fd2b0dc62ba873714c781851b1f8a6bb1430b
#!/usr/bin/env python3 # Copyright (c) 2017-2019 The Askalcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the RPC call related to the uptime command. Test corresponds to code in rpc/server.cpp. """ import time from test_framework.test_framework import AskalcoinTestFramework from test_framework.util import assert_raises_rpc_error class UptimeTest(AskalcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.setup_clean_chain = True def run_test(self): self._test_negative_time() self._test_uptime() def _test_negative_time(self): assert_raises_rpc_error(-8, "Mocktime can not be negative: -1.", self.nodes[0].setmocktime, -1) def _test_uptime(self): wait_time = 10 self.nodes[0].setmocktime(int(time.time() + wait_time)) assert self.nodes[0].uptime() >= wait_time if __name__ == '__main__': UptimeTest().main()
py
1a4fd325402a62e1ee673e02762c91745129fbbc
import glob import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.autograd as autograd import torch.optim as optim from torch.autograd import Variable import matplotlib.pyplot as plt import random from tqdm import tqdm import multiprocessing import os.path import csv import copy import joblib from torchvision import datasets import torchvision import seaborn as sns; sns.set(color_codes=True) sns.set_style("white") from pdb import set_trace as bp USE_CUDA = torch.cuda.is_available() def w(v): if USE_CUDA: return v.cuda() return v cache = joblib.Memory(location='_cache', verbose=0) from meta_module import * class OptimizerOneLayer(nn.Module): def __init__(self, preproc=False, hidden_sz=10, preproc_factor=10.0): super().__init__() self.hidden_sz = hidden_sz if preproc: self.recurs = nn.LSTMCell(2, hidden_sz) else: self.recurs = nn.LSTMCell(1, hidden_sz) self.output = nn.Linear(hidden_sz, 1) self.preproc = preproc self.preproc_factor = preproc_factor self.preproc_threshold = np.exp(-preproc_factor) def forward(self, inp, hidden, cell): if self.preproc: inp = inp.data inp2 = w(torch.zeros(inp.size()[0], 2)) keep_grads = (torch.abs(inp) >= self.preproc_threshold).squeeze() inp2[:, 0][keep_grads] = (torch.log(torch.abs(inp[keep_grads]) + 1e-8) / self.preproc_factor).squeeze() inp2[:, 1][keep_grads] = torch.sign(inp[keep_grads]).squeeze() inp2[:, 0][~keep_grads] = -1 inp2[:, 1][~keep_grads] = (float(np.exp(self.preproc_factor)) * inp[~keep_grads]).squeeze() inp = w(Variable(inp2)) hidden0, cell0 = self.recurs(inp, (hidden[0], cell[0])) #hidden1, cell1 = self.recurs2(hidden0, (hidden[1], cell[1])) return self.output(hidden0), (hidden0, ), (cell0, ) def detach_var(v): var = w(Variable(v.data, requires_grad=True)) var.retain_grad() return var import functools def rsetattr(obj, attr, val): pre, _, post = attr.rpartition('.') return setattr(rgetattr(obj, pre) if pre else obj, post, val) # using wonder's beautiful simplification: https://stackoverflow.com/questions/31174295/getattr-and-setattr-on-nested-objects/31174427?noredirect=1#comment86638618_31174427 def rgetattr(obj, attr, *args): def _getattr(obj, attr): return getattr(obj, attr, *args) return functools.reduce(_getattr, [obj] + attr.split('.')) def do_fit(opt_net, meta_opt, target_cls, target_to_opt, unroll, optim_it, n_epochs, out_mul, should_train=True): if should_train: opt_net.train() else: opt_net.eval() unroll = 1 target = target_cls(training=should_train) optimizee = w(target_to_opt()) n_params = 0 for name, p in optimizee.all_named_parameters(): n_params += int(np.prod(p.size())) hidden_states = [w(Variable(torch.zeros(n_params, opt_net.hidden_sz))) for _ in range(2)] cell_states = [w(Variable(torch.zeros(n_params, opt_net.hidden_sz))) for _ in range(2)] all_losses_ever = [] if should_train: meta_opt.zero_grad() all_losses = None for iteration in range(1, optim_it + 1): loss = optimizee(target) if all_losses is None: all_losses = loss else: all_losses += loss all_losses_ever.append(loss.data.cpu().numpy()) loss.backward(retain_graph=should_train) offset = 0 result_params = {} hidden_states2 = [w(Variable(torch.zeros(n_params, opt_net.hidden_sz))) for _ in range(2)] cell_states2 = [w(Variable(torch.zeros(n_params, opt_net.hidden_sz))) for _ in range(2)] for name, p in optimizee.all_named_parameters(): cur_sz = int(np.prod(p.size())) # We do this so the gradients are disconnected from the graph but we still get # gradients from the rest if p.grad is not None: gradients = detach_var(p.grad.view(cur_sz, 1)) updates, new_hidden, new_cell = opt_net( gradients, [h[offset:offset+cur_sz] for h in hidden_states], [c[offset:offset+cur_sz] for c in cell_states] ) for i in range(len(new_hidden)): hidden_states2[i][offset:offset+cur_sz] = new_hidden[i] cell_states2[i][offset:offset+cur_sz] = new_cell[i] result_params[name] = p + updates.view(*p.size()) * out_mul result_params[name].retain_grad() else: result_params[name] = p result_params[name].retain_grad() offset += cur_sz if iteration % unroll == 0: if should_train: meta_opt.zero_grad() all_losses.backward() meta_opt.step() all_losses = None optimizee = w(target_to_opt()) optimizee.load_state_dict(result_params) optimizee.zero_grad() hidden_states = [detach_var(v) for v in hidden_states2] cell_states = [detach_var(v) for v in cell_states2] else: for name, p in optimizee.all_named_parameters(): rsetattr(optimizee, name, result_params[name]) assert len(list(optimizee.all_named_parameters())) hidden_states = hidden_states2 cell_states = cell_states2 return all_losses_ever @cache.cache def fit_optimizer(target_cls, target_to_opt, preproc=False, unroll=20, optim_it=100, n_epochs=20, n_tests=100, lr=0.001, out_mul=1.0, test_target=None): opt_net = w(OptimizerOneLayer(preproc=preproc)) meta_opt = optim.Adam(opt_net.parameters(), lr=lr) best_net = None best_loss = 100000000000000000 for _ in tqdm(range(n_epochs)): ''' print("train") for _ in tqdm(range(20)): do_fit(opt_net, meta_opt, target_cls, target_to_opt, unroll, optim_it, n_epochs, out_mul, should_train=True) ''' if test_target is not None: loss = (np.mean([ np.sum(do_fit(opt_net, meta_opt, target_cls, test_target, unroll, optim_it, n_epochs, out_mul, should_train=False)) for _ in tqdm(range(1)) ])) else: loss = (np.mean([ np.sum(do_fit(opt_net, meta_opt, target_cls, target_to_opt, unroll, optim_it, n_epochs, out_mul, should_train=False)) for _ in tqdm(range(1)) ])) print(loss) if loss < best_loss: print(best_loss, loss) best_loss = loss best_net = copy.deepcopy(opt_net.state_dict()) return best_loss, best_net class CIFAR10Loss: def __init__(self, training=True): dataset = datasets.CIFAR10( './data/CIFAR10', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) ) indices = list(range(len(dataset))) np.random.RandomState(10).shuffle(indices) if training: indices = indices[:len(indices) // 2] else: indices = indices[len(indices) // 2:] self.loader = torch.utils.data.DataLoader( dataset, batch_size=128, sampler=torch.utils.data.sampler.SubsetRandomSampler(indices)) self.batches = [] self.cur_batch = 0 def sample(self): if self.cur_batch >= len(self.batches): self.batches = [] self.cur_batch = 0 for b in self.loader: self.batches.append(b) batch = self.batches[self.cur_batch] self.cur_batch += 1 return batch class CIFAR10Net(MetaModule): def __init__(self, layer_size=20, n_layers=1, **kwargs): super().__init__() inp_size = 3 * 32 * 32 self.layers = {} for i in range(n_layers): self.layers[f'mat_{i}'] = MetaLinear(inp_size, layer_size) inp_size = layer_size self.layers['final_mat'] = MetaLinear(inp_size, 10) self.layers = nn.ModuleDict(self.layers) self.activation = nn.Sigmoid() self.loss = nn.NLLLoss() def all_named_parameters(self): return [(k, v) for k, v in self.named_parameters()] def forward(self, loss): inp, out = loss.sample() inp = w(Variable(inp.view(inp.size()[0], 3*32*32))) out = w(Variable(out)) cur_layer = 0 while f'mat_{cur_layer}' in self.layers: inp = self.activation(self.layers[f'mat_{cur_layer}'](inp)) cur_layer += 1 inp = F.log_softmax(self.layers['final_mat'](inp), dim=1) l = self.loss(inp, out) return l from resnet_meta import resnet50 class CIFAR10ResNet(MetaModule): def __init__(self): super().__init__() self.net = resnet50() self.loss = nn.CrossEntropyLoss() def all_named_parameters(self): return [(k, v) for k, v in self.named_parameters()] def forward(self, loss): inp, out = loss.sample() inp = w(Variable(inp.view(inp.size()[0], 3, 32, 32))) out = w(Variable(out)) inp = self.net(inp) l = self.loss(inp, out) return l loss, CIFAR10_optimizer = fit_optimizer(CIFAR10Loss, CIFAR10Net, lr=0.01, n_epochs=50, n_tests=20, out_mul=0.1, preproc=True, test_target=CIFAR10ResNet) print(loss)
py
1a4fd38d19926e15d2aba3ca5fdda00de967f1b3
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * class AlipayAcquireQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._out_trade_no = None self._trade_no = None self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def out_trade_no(self): return self._out_trade_no @out_trade_no.setter def out_trade_no(self, value): self._out_trade_no = value @property def trade_no(self): return self._trade_no @trade_no.setter def trade_no(self, value): self._trade_no = value @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'alipay.acquire.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), use_decimal=True, ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.out_trade_no: if hasattr(self.out_trade_no, 'to_alipay_dict'): params['out_trade_no'] = json.dumps(obj=self.out_trade_no.to_alipay_dict(), use_decimal=True, ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['out_trade_no'] = self.out_trade_no if self.trade_no: if hasattr(self.trade_no, 'to_alipay_dict'): params['trade_no'] = json.dumps(obj=self.trade_no.to_alipay_dict(), use_decimal=True, ensure_ascii=False, sort_keys=True, separators=(',', ':')) else: params['trade_no'] = self.trade_no if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
py
1a4fd45c8bb05edba29f34189e73ed37c6588a62
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Eager execution workflow with RevNet train on CIFAR-10.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys from absl import flags import tensorflow as tf from tensorflow.contrib.eager.python.examples.revnet import cifar_input from tensorflow.contrib.eager.python.examples.revnet import config as config_ from tensorflow.contrib.eager.python.examples.revnet import revnet tfe = tf.contrib.eager def main(_): """Eager execution workflow with RevNet trained on CIFAR-10.""" tf.enable_eager_execution() config = get_config(config_name=FLAGS.config, dataset=FLAGS.dataset) ds_train, ds_train_one_shot, ds_validation, ds_test = get_datasets( data_dir=FLAGS.data_dir, config=config) model = revnet.RevNet(config=config) global_step = tf.train.get_or_create_global_step() # Ensure correct summary global_step.assign(1) learning_rate = tf.train.piecewise_constant( global_step, config.lr_decay_steps, config.lr_list) optimizer = tf.train.MomentumOptimizer( learning_rate, momentum=config.momentum) checkpointer = tf.train.Checkpoint( optimizer=optimizer, model=model, optimizer_step=global_step) if FLAGS.train_dir: summary_writer = tf.contrib.summary.create_file_writer(FLAGS.train_dir) if FLAGS.restore: latest_path = tf.train.latest_checkpoint(FLAGS.train_dir) checkpointer.restore(latest_path) print("Restored latest checkpoint at path:\"{}\" " "with global_step: {}".format(latest_path, global_step.numpy())) sys.stdout.flush() for x, y in ds_train: train_one_iter(model, x, y, optimizer, global_step=global_step) if global_step.numpy() % config.log_every == 0: it_test = ds_test.make_one_shot_iterator() acc_test, loss_test = evaluate(model, it_test) if FLAGS.validate: it_train = ds_train_one_shot.make_one_shot_iterator() it_validation = ds_validation.make_one_shot_iterator() acc_train, loss_train = evaluate(model, it_train) acc_validation, loss_validation = evaluate(model, it_validation) print("Iter {}, " "training set accuracy {:.4f}, loss {:.4f}; " "validation set accuracy {:.4f}, loss {:4.f}" "test accuracy {:.4f}, loss {:.4f}".format( global_step.numpy(), acc_train, loss_train, acc_validation, loss_validation, acc_test, loss_test)) else: print("Iter {}, test accuracy {:.4f}, loss {:.4f}".format( global_step.numpy(), acc_test, loss_test)) sys.stdout.flush() if FLAGS.train_dir: with summary_writer.as_default(): with tf.contrib.summary.always_record_summaries(): tf.contrib.summary.scalar("Training accuracy", acc_train) tf.contrib.summary.scalar("Test accuracy", acc_test) tf.contrib.summary.scalar("Training loss", loss_train) tf.contrib.summary.scalar("Test loss", loss_test) if FLAGS.validate: tf.contrib.summary.scalar("Validation accuracy", acc_validation) tf.contrib.summary.scalar("Validation loss", loss_validation) if global_step.numpy() % config.save_every == 0 and FLAGS.train_dir: saved_path = checkpointer.save( file_prefix=os.path.join(FLAGS.train_dir, "ckpt")) print("Saved checkpoint at path: \"{}\" " "with global_step: {}".format(saved_path, global_step.numpy())) sys.stdout.flush() def get_config(config_name="revnet-38", dataset="cifar-10"): """Return configuration.""" print("Config: {}".format(config_name)) sys.stdout.flush() config = { "revnet-38": config_.get_hparams_cifar_38(), "revnet-110": config_.get_hparams_cifar_110(), "revnet-164": config_.get_hparams_cifar_164(), }[config_name] if dataset == "cifar-10": config.add_hparam("n_classes", 10) config.add_hparam("dataset", "cifar-10") else: config.add_hparam("n_classes", 100) config.add_hparam("dataset", "cifar-100") return config def get_datasets(data_dir, config): """Return dataset.""" if data_dir is None: raise ValueError("No supplied data directory") if not os.path.exists(data_dir): raise ValueError("Data directory {} does not exist".format(data_dir)) if config.dataset not in ["cifar-10", "cifar-100"]: raise ValueError("Unknown dataset {}".format(config.dataset)) print("Training on {} dataset.".format(config.dataset)) sys.stdout.flush() data_dir = os.path.join(data_dir, config.dataset) if FLAGS.validate: # 40k Training set ds_train = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train", data_aug=True, batch_size=config.batch_size, epochs=config.epochs, shuffle=config.shuffle, data_format=config.data_format, dtype=config.dtype, prefetch=config.batch_size) # 10k Training set ds_validation = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="validation", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) else: # 50k Training set ds_train = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train_all", data_aug=True, batch_size=config.batch_size, epochs=config.epochs, shuffle=config.shuffle, data_format=config.data_format, dtype=config.dtype, prefetch=config.batch_size) ds_validation = None # Always compute loss and accuracy on whole test set ds_train_one_shot = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="train_all", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) ds_test = cifar_input.get_ds_from_tfrecords( data_dir=data_dir, split="test", data_aug=False, batch_size=config.eval_batch_size, epochs=1, shuffle=False, data_format=config.data_format, dtype=config.dtype, prefetch=config.eval_batch_size) return ds_train, ds_train_one_shot, ds_validation, ds_test def train_one_iter(model, inputs, labels, optimizer, global_step=None): """Train for one iteration.""" grads, vars_, logits, loss = model.compute_gradients( inputs, labels, training=True) optimizer.apply_gradients(zip(grads, vars_), global_step=global_step) return logits, loss def evaluate(model, iterator): """Compute accuracy with the given dataset iterator.""" mean_loss = tfe.metrics.Mean() accuracy = tfe.metrics.Accuracy() for x, y in iterator: logits, _ = model(x, training=False) loss = model.compute_loss(logits=logits, labels=y) accuracy( labels=tf.cast(y, tf.int64), predictions=tf.argmax(logits, axis=1, output_type=tf.int64)) mean_loss(loss) return accuracy.result().numpy(), mean_loss.result().numpy() if __name__ == "__main__": flags.DEFINE_string( "data_dir", default=None, help="Directory to load tfrecords") flags.DEFINE_string( "train_dir", default=None, help="[Optional] Directory to store the training information") flags.DEFINE_boolean( "restore", default=False, help="[Optional] Restore the latest checkpoint from `train_dir` if True") flags.DEFINE_boolean( "validate", default=False, help="[Optional] Use the validation set or not for hyperparameter search") flags.DEFINE_string( "dataset", default="cifar-10", help="[Optional] The dataset used; either `cifar-10` or `cifar-100`") flags.DEFINE_string( "config", default="revnet-38", help="[Optional] Architecture of network. " "Other options include `revnet-110` and `revnet-164`") FLAGS = flags.FLAGS tf.app.run(main)
py
1a4fd53b6608605ee28ad620e2452d49c94a0ef1
# write tests for transcribes from seqparser import ( transcribe, reverse_transcribe) def test_freebie_transcribe_1(): """ This one is a freebie DO NOT MODIFY THIS FUNCTION """ assert True def test_freebie_transcribe_2(): """ This too is a freebie DO NOT MODIFY THIS FUNCTION """ assert 1 != 2 def test_transcribe(): """ Write your unit test for the transcribe function here. """ assert transcribe("ACGT") == "UGCA" def test_reverse_transcribe(): """ Write your unit test for the reverse transcribe function here. """ assert reverse_transcribe("ACGT") == "ACGU"
py
1a4fd55776dc59abc72e90311afc08fac2a24579
from __future__ import annotations import asyncio import copy import functools import logging import re import typing from typing import Annotated, Awaitable, Callable, Coroutine, Optional, Tuple, Any, TYPE_CHECKING from naff.client.const import MISSING, logger_name from naff.client.errors import CommandOnCooldown, CommandCheckFailure, MaxConcurrencyReached from naff.client.mixins.serialization import DictSerializationMixin from naff.client.utils.attr_utils import define, field, docs from naff.client.utils.misc_utils import get_parameters, get_object_name, maybe_coroutine from naff.client.utils.serializer import no_export_meta from naff.models.naff.cooldowns import Cooldown, Buckets, MaxConcurrency from naff.models.naff.protocols import Converter if TYPE_CHECKING: from naff.models.naff.context import Context __all__ = ("BaseCommand", "check", "cooldown", "max_concurrency") log = logging.getLogger(logger_name) kwargs_reg = re.compile(r"^\*\*\w") args_reg = re.compile(r"^\*\w") @define() class BaseCommand(DictSerializationMixin): """ An object all commands inherit from. Outlines the basic structure of a command, and handles checks. Attributes: extension: The extension this command belongs to. enabled: Whether this command is enabled checks: Any checks that must be run before this command can be run callback: The coroutine to be called for this command error_callback: The coroutine to be called when an error occurs pre_run_callback: A coroutine to be called before this command is run **but** after the checks post_run_callback: A coroutine to be called after this command has run """ extension: Any = field(default=None, metadata=docs("The extension this command belongs to") | no_export_meta) enabled: bool = field(default=True, metadata=docs("Whether this can be run at all") | no_export_meta) checks: list = field( factory=list, metadata=docs("Any checks that must be *checked* before the command can run") | no_export_meta ) cooldown: Cooldown = field( default=MISSING, metadata=docs("An optional cooldown to apply to the command") | no_export_meta ) max_concurrency: MaxConcurrency = field( default=MISSING, metadata=docs("An optional maximum number of concurrent instances to apply to the command") | no_export_meta, ) callback: Callable[..., Coroutine] = field( default=None, metadata=docs("The coroutine to be called for this command") | no_export_meta ) error_callback: Callable[..., Coroutine] = field( default=None, metadata=no_export_meta | docs("The coroutine to be called when an error occurs") ) pre_run_callback: Callable[..., Coroutine] = field( default=None, metadata=no_export_meta | docs("The coroutine to be called before the command is executed, **but** after the checks"), ) post_run_callback: Callable[..., Coroutine] = field( default=None, metadata=no_export_meta | docs("The coroutine to be called after the command has executed") ) def __attrs_post_init__(self) -> None: if self.callback is not None: if hasattr(self.callback, "checks"): self.checks += self.callback.checks if hasattr(self.callback, "cooldown"): self.cooldown = self.callback.cooldown if hasattr(self.callback, "max_concurrency"): self.max_concurrency = self.callback.max_concurrency def __hash__(self) -> int: return id(self) async def __call__(self, context: "Context", *args, **kwargs) -> None: """ Calls this command. Args: context: The context of this command args: Any kwargs: Any """ # signals if a semaphore has been acquired, for exception handling # if present assume one will be acquired max_conc_acquired = self.max_concurrency is not MISSING try: if await self._can_run(context): if self.pre_run_callback is not None: await self.pre_run_callback(context, *args, **kwargs) if self.extension is not None and self.extension.extension_prerun: for prerun in self.extension.extension_prerun: await prerun(context, *args, **kwargs) await self.call_callback(self.callback, context) if self.post_run_callback is not None: await self.post_run_callback(context, *args, **kwargs) if self.extension is not None and self.extension.extension_postrun: for postrun in self.extension.extension_postrun: await postrun(context, *args, **kwargs) except Exception as e: # if a MaxConcurrencyReached-exception is raised a connection was never acquired max_conc_acquired = not isinstance(e, MaxConcurrencyReached) if self.error_callback: await self.error_callback(e, context, *args, **kwargs) elif self.extension and self.extension.extension_error: await self.extension.extension_error(context, *args, **kwargs) else: raise finally: if self.max_concurrency is not MISSING and max_conc_acquired: await self.max_concurrency.release(context) @staticmethod def _get_converter_function(anno: type[Converter] | Converter, name: str) -> Callable[[Context, str], Any]: num_params = len(get_parameters(anno.convert)) # if we have three parameters for the function, it's likely it has a self parameter # so we need to get rid of it by initing - typehinting hates this, btw! # the below line will error out if we aren't supposed to init it, so that works out try: actual_anno: Converter = anno() if num_params == 3 else anno # type: ignore except TypeError: raise ValueError( f"{get_object_name(anno)} for {name} is invalid: converters must have exactly 2 arguments." ) from None # we can only get to this point while having three params if we successfully inited if num_params == 3: num_params -= 1 if num_params != 2: raise ValueError( f"{get_object_name(anno)} for {name} is invalid: converters must have exactly 2 arguments." ) return actual_anno.convert async def try_convert(self, converter: Optional[Callable], context: "Context", value: Any) -> Any: if converter is None: return value return await maybe_coroutine(converter, context, value) def param_config(self, annotation: Any, name: str) -> Tuple[Callable, Optional[dict]]: # This thing is complicated. NAFF-annotations can either be annotated directly, or they can be annotated with Annotated[str, CMD_*] # This helper function handles both cases, and returns a tuple of the converter and its config (if any) if annotation is None: return None if typing.get_origin(annotation) is Annotated and (args := typing.get_args(annotation)): for ann in args: v = getattr(ann, name, None) if v is not None: return (ann, v) return (annotation, getattr(annotation, name, None)) async def call_callback(self, callback: Callable, context: "Context") -> None: callback = functools.partial(callback, context) # first param must be ctx parameters = get_parameters(callback) args = [] kwargs = {} if len(parameters) == 0: # if no params, user only wants context return await callback() c_args = copy.copy(context.args) for param in parameters.values(): if isinstance(param.annotation, Converter): # for any future dev looking at this: # this checks if the class here has a convert function # it does NOT check if the annotation is actually a subclass of Converter # this is an intended behavior for Protocols with the runtime_checkable decorator convert = functools.partial( self.try_convert, self._get_converter_function(param.annotation, param.name), context ) else: convert = functools.partial(self.try_convert, None, context) func, config = self.param_config(param.annotation, "_annotation_dat") if config: # if user has used an naff-annotation, run the annotation, and pass the result to the user local = {"context": context, "extension": self.extension, "param": param.name} ano_args = [local[c] for c in config["args"]] if param.kind != param.POSITIONAL_ONLY: kwargs[param.name] = func(*ano_args) else: args.append(func(*ano_args)) continue elif param.name in context.kwargs: # if parameter is in kwargs, user obviously wants it, pass it if param.kind != param.POSITIONAL_ONLY: kwargs[param.name] = await convert(context.kwargs[param.name]) else: args.append(await convert(context.kwargs[param.name])) if context.kwargs[param.name] in c_args: c_args.remove(context.kwargs[param.name]) elif param.default is not param.empty: kwargs[param.name] = param.default else: if not str(param).startswith("*"): if param.kind != param.KEYWORD_ONLY: try: args.append(await convert(c_args.pop(0))) except IndexError: raise ValueError( f"{context.invoke_target} expects {len([p for p in parameters.values() if p.default is p.empty]) + len(callback.args)}" f" arguments but received {len(context.args)} instead" ) from None else: raise ValueError(f"Unable to resolve argument: {param.name}") if any(kwargs_reg.match(str(param)) for param in parameters.values()): # if user has `**kwargs` pass all remaining kwargs kwargs = kwargs | {k: v for k, v in context.kwargs.items() if k not in kwargs} if any(args_reg.match(str(param)) for param in parameters.values()): # user has `*args` pass all remaining args args = args + [await convert(c) for c in c_args] return await callback(*args, **kwargs) async def _can_run(self, context: Context) -> bool: """ Determines if this command can be run. Args: context: The context of the command """ max_conc_acquired = False # signals if a semaphore has been acquired, for exception handling try: if not self.enabled: return False for _c in self.checks: if not await _c(context): raise CommandCheckFailure(self, _c, context) if self.extension and self.extension.extension_checks: for _c in self.extension.extension_checks: if not await _c(context): raise CommandCheckFailure(self, _c, context) if self.max_concurrency is not MISSING: if not await self.max_concurrency.acquire(context): raise MaxConcurrencyReached(self, self.max_concurrency) if self.cooldown is not MISSING: if not await self.cooldown.acquire_token(context): raise CommandOnCooldown(self, await self.cooldown.get_cooldown(context)) return True except Exception: if max_conc_acquired: await self.max_concurrency.release(context) raise def error(self, call: Callable[..., Coroutine]) -> Callable[..., Coroutine]: """A decorator to declare a coroutine as one that will be run upon an error.""" if not asyncio.iscoroutinefunction(call): raise TypeError("Error handler must be coroutine") self.error_callback = call return call def pre_run(self, call: Callable[..., Coroutine]) -> Callable[..., Coroutine]: """A decorator to declare a coroutine as one that will be run before the command.""" if not asyncio.iscoroutinefunction(call): raise TypeError("pre_run must be coroutine") self.pre_run_callback = call return call def post_run(self, call: Callable[..., Coroutine]) -> Callable[..., Coroutine]: """A decorator to declare a coroutine as one that will be run after the command has.""" if not asyncio.iscoroutinefunction(call): raise TypeError("post_run must be coroutine") self.post_run_callback = call return call def check(check: Callable[["Context"], Awaitable[bool]]) -> Callable[[Coroutine], Coroutine]: """ Add a check to a command. Args: check: A coroutine as a check for this command """ def wrapper(coro: Coroutine) -> Coroutine: if isinstance(coro, BaseCommand): coro.checks.append(check) return coro if not hasattr(coro, "checks"): coro.checks = [] coro.checks.append(check) return coro return wrapper def cooldown(bucket: Buckets, rate: int, interval: float) -> Callable[[Coroutine], Coroutine]: """ Add a cooldown to a command. Args: bucket: The bucket used to track cooldowns rate: How many commands may be ran per interval interval: How many seconds to wait for a cooldown """ def wrapper(coro: Coroutine) -> Coroutine: cooldown_obj = Cooldown(bucket, rate, interval) coro.cooldown = cooldown_obj return coro return wrapper def max_concurrency(bucket: Buckets, concurrent: int) -> Callable[[Coroutine], Coroutine]: """ Add a maximum number of concurrent instances to the command. Args: bucket: The bucket to enforce the maximum within concurrent: The maximum number of concurrent instances to allow """ def wrapper(coro: Coroutine) -> Coroutine: max_conc = MaxConcurrency(concurrent, bucket) coro.max_concurrency = max_conc return coro return wrapper
py
1a4fd5611fd146fdbb0935802b2044559f711b6d
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import datetime from oslo.config import cfg from nova import compute from nova.compute import flavors from nova import context from nova import db from nova.db.sqlalchemy import api as sqa_api from nova.db.sqlalchemy import models as sqa_models from nova import exception from nova.openstack.common import timeutils from nova import quota from nova import test import nova.tests.image.fake CONF = cfg.CONF CONF.import_opt('compute_driver', 'nova.virt.driver') class QuotaIntegrationTestCase(test.TestCase): def setUp(self): super(QuotaIntegrationTestCase, self).setUp() self.flags(compute_driver='nova.virt.fake.FakeDriver', quota_instances=2, quota_cores=4, quota_floating_ips=1, network_manager='nova.network.manager.FlatDHCPManager') # Apparently needed by the RPC tests... self.network = self.start_service('network') self.user_id = 'admin' self.project_id = 'admin' self.context = context.RequestContext(self.user_id, self.project_id, is_admin=True) nova.tests.image.fake.stub_out_image_service(self.stubs) def tearDown(self): super(QuotaIntegrationTestCase, self).tearDown() nova.tests.image.fake.FakeImageService_reset() def _create_instance(self, cores=2): """Create a test instance.""" inst = {} inst['image_id'] = 'cedef40a-ed67-4d10-800e-17455edce175' inst['reservation_id'] = 'r-fakeres' inst['user_id'] = self.user_id inst['project_id'] = self.project_id inst['instance_type_id'] = '3' # m1.large inst['vcpus'] = cores return db.instance_create(self.context, inst) def test_too_many_instances(self): instance_uuids = [] for i in range(CONF.quota_instances): instance = self._create_instance() instance_uuids.append(instance['uuid']) inst_type = flavors.get_flavor_by_name('m1.small') image_uuid = 'cedef40a-ed67-4d10-800e-17455edce175' self.assertRaises(exception.QuotaError, compute.API().create, self.context, min_count=1, max_count=1, instance_type=inst_type, image_href=image_uuid) for instance_uuid in instance_uuids: db.instance_destroy(self.context, instance_uuid) def test_too_many_cores(self): instance = self._create_instance(cores=4) inst_type = flavors.get_flavor_by_name('m1.small') image_uuid = 'cedef40a-ed67-4d10-800e-17455edce175' self.assertRaises(exception.QuotaError, compute.API().create, self.context, min_count=1, max_count=1, instance_type=inst_type, image_href=image_uuid) db.instance_destroy(self.context, instance['uuid']) def test_too_many_addresses(self): address = '192.168.0.100' db.floating_ip_create(context.get_admin_context(), {'address': address, 'project_id': self.project_id}) self.assertRaises(exception.QuotaError, self.network.allocate_floating_ip, self.context, self.project_id) db.floating_ip_destroy(context.get_admin_context(), address) def test_auto_assigned(self): address = '192.168.0.100' db.floating_ip_create(context.get_admin_context(), {'address': address, 'project_id': self.project_id}) # auto allocated addresses should not be counted self.assertRaises(exception.NoMoreFloatingIps, self.network.allocate_floating_ip, self.context, self.project_id, True) db.floating_ip_destroy(context.get_admin_context(), address) def test_too_many_metadata_items(self): metadata = {} for i in range(CONF.quota_metadata_items + 1): metadata['key%s' % i] = 'value%s' % i inst_type = flavors.get_flavor_by_name('m1.small') image_uuid = 'cedef40a-ed67-4d10-800e-17455edce175' self.assertRaises(exception.QuotaError, compute.API().create, self.context, min_count=1, max_count=1, instance_type=inst_type, image_href=image_uuid, metadata=metadata) def _create_with_injected_files(self, files): api = compute.API() inst_type = flavors.get_flavor_by_name('m1.small') image_uuid = 'cedef40a-ed67-4d10-800e-17455edce175' api.create(self.context, min_count=1, max_count=1, instance_type=inst_type, image_href=image_uuid, injected_files=files) def test_no_injected_files(self): api = compute.API() inst_type = flavors.get_flavor_by_name('m1.small') image_uuid = 'cedef40a-ed67-4d10-800e-17455edce175' api.create(self.context, instance_type=inst_type, image_href=image_uuid) def test_max_injected_files(self): files = [] for i in xrange(CONF.quota_injected_files): files.append(('/my/path%d' % i, 'config = test\n')) self._create_with_injected_files(files) # no QuotaError def test_too_many_injected_files(self): files = [] for i in xrange(CONF.quota_injected_files + 1): files.append(('/my/path%d' % i, 'my\ncontent%d\n' % i)) self.assertRaises(exception.QuotaError, self._create_with_injected_files, files) def test_max_injected_file_content_bytes(self): max = CONF.quota_injected_file_content_bytes content = ''.join(['a' for i in xrange(max)]) files = [('/test/path', content)] self._create_with_injected_files(files) # no QuotaError def test_too_many_injected_file_content_bytes(self): max = CONF.quota_injected_file_content_bytes content = ''.join(['a' for i in xrange(max + 1)]) files = [('/test/path', content)] self.assertRaises(exception.QuotaError, self._create_with_injected_files, files) def test_max_injected_file_path_bytes(self): max = CONF.quota_injected_file_path_bytes path = ''.join(['a' for i in xrange(max)]) files = [(path, 'config = quotatest')] self._create_with_injected_files(files) # no QuotaError def test_too_many_injected_file_path_bytes(self): max = CONF.quota_injected_file_path_bytes path = ''.join(['a' for i in xrange(max + 1)]) files = [(path, 'config = quotatest')] self.assertRaises(exception.QuotaError, self._create_with_injected_files, files) def test_reservation_expire(self): self.useFixture(test.TimeOverride()) def assertInstancesReserved(reserved): result = quota.QUOTAS.get_project_quotas(self.context, self.context.project_id) self.assertEqual(result['instances']['reserved'], reserved) quota.QUOTAS.reserve(self.context, expire=60, instances=2) assertInstancesReserved(2) timeutils.advance_time_seconds(80) quota.QUOTAS.expire(self.context) assertInstancesReserved(0) class FakeContext(object): def __init__(self, project_id, quota_class): self.is_admin = False self.user_id = 'fake_user' self.project_id = project_id self.quota_class = quota_class self.read_deleted = 'no' def elevated(self): elevated = self.__class__(self.project_id, self.quota_class) elevated.is_admin = True return elevated class FakeDriver(object): def __init__(self, by_project=None, by_user=None, by_class=None, reservations=None): self.called = [] self.by_project = by_project or {} self.by_user = by_user or {} self.by_class = by_class or {} self.reservations = reservations or [] def get_by_project_and_user(self, context, project_id, user_id, resource): self.called.append(('get_by_project_and_user', context, project_id, user_id, resource)) try: return self.by_user[user_id][resource] except KeyError: raise exception.ProjectUserQuotaNotFound(project_id=project_id, user_id=user_id) def get_by_project(self, context, project_id, resource): self.called.append(('get_by_project', context, project_id, resource)) try: return self.by_project[project_id][resource] except KeyError: raise exception.ProjectQuotaNotFound(project_id=project_id) def get_by_class(self, context, quota_class, resource): self.called.append(('get_by_class', context, quota_class, resource)) try: return self.by_class[quota_class][resource] except KeyError: raise exception.QuotaClassNotFound(class_name=quota_class) def get_defaults(self, context, resources): self.called.append(('get_defaults', context, resources)) return resources def get_class_quotas(self, context, resources, quota_class, defaults=True): self.called.append(('get_class_quotas', context, resources, quota_class, defaults)) return resources def get_user_quotas(self, context, resources, project_id, user_id, quota_class=None, defaults=True, usages=True): self.called.append(('get_user_quotas', context, resources, project_id, user_id, quota_class, defaults, usages)) return resources def get_project_quotas(self, context, resources, project_id, quota_class=None, defaults=True, usages=True, remains=False): self.called.append(('get_project_quotas', context, resources, project_id, quota_class, defaults, usages, remains)) return resources def limit_check(self, context, resources, values, project_id=None, user_id=None): self.called.append(('limit_check', context, resources, values, project_id, user_id)) def reserve(self, context, resources, deltas, expire=None, project_id=None, user_id=None): self.called.append(('reserve', context, resources, deltas, expire, project_id, user_id)) return self.reservations def commit(self, context, reservations, project_id=None, user_id=None): self.called.append(('commit', context, reservations, project_id, user_id)) def rollback(self, context, reservations, project_id=None, user_id=None): self.called.append(('rollback', context, reservations, project_id, user_id)) def usage_reset(self, context, resources): self.called.append(('usage_reset', context, resources)) def destroy_all_by_project_and_user(self, context, project_id, user_id): self.called.append(('destroy_all_by_project_and_user', context, project_id, user_id)) def destroy_all_by_project(self, context, project_id): self.called.append(('destroy_all_by_project', context, project_id)) def expire(self, context): self.called.append(('expire', context)) class BaseResourceTestCase(test.TestCase): def test_no_flag(self): resource = quota.BaseResource('test_resource') self.assertEqual(resource.name, 'test_resource') self.assertEqual(resource.flag, None) self.assertEqual(resource.default, -1) def test_with_flag(self): # We know this flag exists, so use it... self.flags(quota_instances=10) resource = quota.BaseResource('test_resource', 'quota_instances') self.assertEqual(resource.name, 'test_resource') self.assertEqual(resource.flag, 'quota_instances') self.assertEqual(resource.default, 10) def test_with_flag_no_quota(self): self.flags(quota_instances=-1) resource = quota.BaseResource('test_resource', 'quota_instances') self.assertEqual(resource.name, 'test_resource') self.assertEqual(resource.flag, 'quota_instances') self.assertEqual(resource.default, -1) def test_quota_no_project_no_class(self): self.flags(quota_instances=10) resource = quota.BaseResource('test_resource', 'quota_instances') driver = FakeDriver() context = FakeContext(None, None) quota_value = resource.quota(driver, context) self.assertEqual(quota_value, 10) def test_quota_with_project_no_class(self): self.flags(quota_instances=10) resource = quota.BaseResource('test_resource', 'quota_instances') driver = FakeDriver(by_project=dict( test_project=dict(test_resource=15), )) context = FakeContext('test_project', None) quota_value = resource.quota(driver, context) self.assertEqual(quota_value, 15) def test_quota_no_project_with_class(self): self.flags(quota_instances=10) resource = quota.BaseResource('test_resource', 'quota_instances') driver = FakeDriver(by_class=dict( test_class=dict(test_resource=20), )) context = FakeContext(None, 'test_class') quota_value = resource.quota(driver, context) self.assertEqual(quota_value, 20) def test_quota_with_project_with_class(self): self.flags(quota_instances=10) resource = quota.BaseResource('test_resource', 'quota_instances') driver = FakeDriver(by_project=dict( test_project=dict(test_resource=15), ), by_class=dict( test_class=dict(test_resource=20), )) context = FakeContext('test_project', 'test_class') quota_value = resource.quota(driver, context) self.assertEqual(quota_value, 15) def test_quota_override_project_with_class(self): self.flags(quota_instances=10) resource = quota.BaseResource('test_resource', 'quota_instances') driver = FakeDriver(by_project=dict( test_project=dict(test_resource=15), override_project=dict(test_resource=20), )) context = FakeContext('test_project', 'test_class') quota_value = resource.quota(driver, context, project_id='override_project') self.assertEqual(quota_value, 20) def test_quota_with_project_override_class(self): self.flags(quota_instances=10) resource = quota.BaseResource('test_resource', 'quota_instances') driver = FakeDriver(by_class=dict( test_class=dict(test_resource=15), override_class=dict(test_resource=20), )) context = FakeContext('test_project', 'test_class') quota_value = resource.quota(driver, context, quota_class='override_class') self.assertEqual(quota_value, 20) class QuotaEngineTestCase(test.TestCase): def test_init(self): quota_obj = quota.QuotaEngine() self.assertEqual(quota_obj._resources, {}) self.assertIsInstance(quota_obj._driver, quota.DbQuotaDriver) def test_init_override_string(self): quota_obj = quota.QuotaEngine( quota_driver_class='nova.tests.test_quota.FakeDriver') self.assertEqual(quota_obj._resources, {}) self.assertIsInstance(quota_obj._driver, FakeDriver) def test_init_override_obj(self): quota_obj = quota.QuotaEngine(quota_driver_class=FakeDriver) self.assertEqual(quota_obj._resources, {}) self.assertEqual(quota_obj._driver, FakeDriver) def test_register_resource(self): quota_obj = quota.QuotaEngine() resource = quota.AbsoluteResource('test_resource') quota_obj.register_resource(resource) self.assertEqual(quota_obj._resources, dict(test_resource=resource)) def test_register_resources(self): quota_obj = quota.QuotaEngine() resources = [ quota.AbsoluteResource('test_resource1'), quota.AbsoluteResource('test_resource2'), quota.AbsoluteResource('test_resource3'), ] quota_obj.register_resources(resources) self.assertEqual(quota_obj._resources, dict( test_resource1=resources[0], test_resource2=resources[1], test_resource3=resources[2], )) def test_get_by_project_and_user(self): context = FakeContext('test_project', 'test_class') driver = FakeDriver(by_user=dict( fake_user=dict(test_resource=42))) quota_obj = quota.QuotaEngine(quota_driver_class=driver) result = quota_obj.get_by_project_and_user(context, 'test_project', 'fake_user', 'test_resource') self.assertEqual(driver.called, [ ('get_by_project_and_user', context, 'test_project', 'fake_user', 'test_resource'), ]) self.assertEqual(result, 42) def test_get_by_project(self): context = FakeContext('test_project', 'test_class') driver = FakeDriver(by_project=dict( test_project=dict(test_resource=42))) quota_obj = quota.QuotaEngine(quota_driver_class=driver) result = quota_obj.get_by_project(context, 'test_project', 'test_resource') self.assertEqual(driver.called, [ ('get_by_project', context, 'test_project', 'test_resource'), ]) self.assertEqual(result, 42) def test_get_by_class(self): context = FakeContext('test_project', 'test_class') driver = FakeDriver(by_class=dict( test_class=dict(test_resource=42))) quota_obj = quota.QuotaEngine(quota_driver_class=driver) result = quota_obj.get_by_class(context, 'test_class', 'test_resource') self.assertEqual(driver.called, [ ('get_by_class', context, 'test_class', 'test_resource'), ]) self.assertEqual(result, 42) def _make_quota_obj(self, driver): quota_obj = quota.QuotaEngine(quota_driver_class=driver) resources = [ quota.AbsoluteResource('test_resource4'), quota.AbsoluteResource('test_resource3'), quota.AbsoluteResource('test_resource2'), quota.AbsoluteResource('test_resource1'), ] quota_obj.register_resources(resources) return quota_obj def test_get_defaults(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) result = quota_obj.get_defaults(context) self.assertEqual(driver.called, [ ('get_defaults', context, quota_obj._resources), ]) self.assertEqual(result, quota_obj._resources) def test_get_class_quotas(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) result1 = quota_obj.get_class_quotas(context, 'test_class') result2 = quota_obj.get_class_quotas(context, 'test_class', False) self.assertEqual(driver.called, [ ('get_class_quotas', context, quota_obj._resources, 'test_class', True), ('get_class_quotas', context, quota_obj._resources, 'test_class', False), ]) self.assertEqual(result1, quota_obj._resources) self.assertEqual(result2, quota_obj._resources) def test_get_user_quotas(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) result1 = quota_obj.get_user_quotas(context, 'test_project', 'fake_user') result2 = quota_obj.get_user_quotas(context, 'test_project', 'fake_user', quota_class='test_class', defaults=False, usages=False) self.assertEqual(driver.called, [ ('get_user_quotas', context, quota_obj._resources, 'test_project', 'fake_user', None, True, True), ('get_user_quotas', context, quota_obj._resources, 'test_project', 'fake_user', 'test_class', False, False), ]) self.assertEqual(result1, quota_obj._resources) self.assertEqual(result2, quota_obj._resources) def test_get_project_quotas(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) result1 = quota_obj.get_project_quotas(context, 'test_project') result2 = quota_obj.get_project_quotas(context, 'test_project', quota_class='test_class', defaults=False, usages=False) self.assertEqual(driver.called, [ ('get_project_quotas', context, quota_obj._resources, 'test_project', None, True, True, False), ('get_project_quotas', context, quota_obj._resources, 'test_project', 'test_class', False, False, False), ]) self.assertEqual(result1, quota_obj._resources) self.assertEqual(result2, quota_obj._resources) def test_count_no_resource(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) self.assertRaises(exception.QuotaResourceUnknown, quota_obj.count, context, 'test_resource5', True, foo='bar') def test_count_wrong_resource(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) self.assertRaises(exception.QuotaResourceUnknown, quota_obj.count, context, 'test_resource1', True, foo='bar') def test_count(self): def fake_count(context, *args, **kwargs): self.assertEqual(args, (True,)) self.assertEqual(kwargs, dict(foo='bar')) return 5 context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) quota_obj.register_resource(quota.CountableResource('test_resource5', fake_count)) result = quota_obj.count(context, 'test_resource5', True, foo='bar') self.assertEqual(result, 5) def test_limit_check(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) quota_obj.limit_check(context, test_resource1=4, test_resource2=3, test_resource3=2, test_resource4=1) self.assertEqual(driver.called, [ ('limit_check', context, quota_obj._resources, dict( test_resource1=4, test_resource2=3, test_resource3=2, test_resource4=1, ), None, None), ]) def test_reserve(self): context = FakeContext(None, None) driver = FakeDriver(reservations=[ 'resv-01', 'resv-02', 'resv-03', 'resv-04', ]) quota_obj = self._make_quota_obj(driver) result1 = quota_obj.reserve(context, test_resource1=4, test_resource2=3, test_resource3=2, test_resource4=1) result2 = quota_obj.reserve(context, expire=3600, test_resource1=1, test_resource2=2, test_resource3=3, test_resource4=4) result3 = quota_obj.reserve(context, project_id='fake_project', test_resource1=1, test_resource2=2, test_resource3=3, test_resource4=4) self.assertEqual(driver.called, [ ('reserve', context, quota_obj._resources, dict( test_resource1=4, test_resource2=3, test_resource3=2, test_resource4=1, ), None, None, None), ('reserve', context, quota_obj._resources, dict( test_resource1=1, test_resource2=2, test_resource3=3, test_resource4=4, ), 3600, None, None), ('reserve', context, quota_obj._resources, dict( test_resource1=1, test_resource2=2, test_resource3=3, test_resource4=4, ), None, 'fake_project', None), ]) self.assertEqual(result1, [ 'resv-01', 'resv-02', 'resv-03', 'resv-04', ]) self.assertEqual(result2, [ 'resv-01', 'resv-02', 'resv-03', 'resv-04', ]) self.assertEqual(result3, [ 'resv-01', 'resv-02', 'resv-03', 'resv-04', ]) def test_commit(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) quota_obj.commit(context, ['resv-01', 'resv-02', 'resv-03']) self.assertEqual(driver.called, [ ('commit', context, ['resv-01', 'resv-02', 'resv-03'], None, None), ]) def test_rollback(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) quota_obj.rollback(context, ['resv-01', 'resv-02', 'resv-03']) self.assertEqual(driver.called, [ ('rollback', context, ['resv-01', 'resv-02', 'resv-03'], None, None), ]) def test_usage_reset(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) quota_obj.usage_reset(context, ['res1', 'res2', 'res3']) self.assertEqual(driver.called, [ ('usage_reset', context, ['res1', 'res2', 'res3']), ]) def test_destroy_all_by_project_and_user(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) quota_obj.destroy_all_by_project_and_user(context, 'test_project', 'fake_user') self.assertEqual(driver.called, [ ('destroy_all_by_project_and_user', context, 'test_project', 'fake_user'), ]) def test_destroy_all_by_project(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) quota_obj.destroy_all_by_project(context, 'test_project') self.assertEqual(driver.called, [ ('destroy_all_by_project', context, 'test_project'), ]) def test_expire(self): context = FakeContext(None, None) driver = FakeDriver() quota_obj = self._make_quota_obj(driver) quota_obj.expire(context) self.assertEqual(driver.called, [ ('expire', context), ]) def test_resources(self): quota_obj = self._make_quota_obj(None) self.assertEqual(quota_obj.resources, ['test_resource1', 'test_resource2', 'test_resource3', 'test_resource4']) class DbQuotaDriverTestCase(test.TestCase): def setUp(self): super(DbQuotaDriverTestCase, self).setUp() self.flags(quota_instances=10, quota_cores=20, quota_ram=50 * 1024, quota_floating_ips=10, quota_fixed_ips=10, quota_metadata_items=128, quota_injected_files=5, quota_injected_file_content_bytes=10 * 1024, quota_injected_file_path_bytes=255, quota_security_groups=10, quota_security_group_rules=20, reservation_expire=86400, until_refresh=0, max_age=0, ) self.driver = quota.DbQuotaDriver() self.calls = [] self.useFixture(test.TimeOverride()) def test_get_defaults(self): # Use our pre-defined resources self._stub_quota_class_get_default() result = self.driver.get_defaults(None, quota.QUOTAS._resources) self.assertEqual(result, dict( instances=5, cores=20, ram=25 * 1024, floating_ips=10, fixed_ips=10, metadata_items=64, injected_files=5, injected_file_content_bytes=5 * 1024, injected_file_path_bytes=255, security_groups=10, security_group_rules=20, key_pairs=100, )) def _stub_quota_class_get_default(self): # Stub out quota_class_get_default def fake_qcgd(context): self.calls.append('quota_class_get_default') return dict( instances=5, ram=25 * 1024, metadata_items=64, injected_file_content_bytes=5 * 1024, ) self.stubs.Set(db, 'quota_class_get_default', fake_qcgd) def _stub_quota_class_get_all_by_name(self): # Stub out quota_class_get_all_by_name def fake_qcgabn(context, quota_class): self.calls.append('quota_class_get_all_by_name') self.assertEqual(quota_class, 'test_class') return dict( instances=5, ram=25 * 1024, metadata_items=64, injected_file_content_bytes=5 * 1024, ) self.stubs.Set(db, 'quota_class_get_all_by_name', fake_qcgabn) def test_get_class_quotas(self): self._stub_quota_class_get_all_by_name() result = self.driver.get_class_quotas(None, quota.QUOTAS._resources, 'test_class') self.assertEqual(self.calls, ['quota_class_get_all_by_name']) self.assertEqual(result, dict( instances=5, cores=20, ram=25 * 1024, floating_ips=10, fixed_ips=10, metadata_items=64, injected_files=5, injected_file_content_bytes=5 * 1024, injected_file_path_bytes=255, security_groups=10, security_group_rules=20, key_pairs=100, )) def test_get_class_quotas_no_defaults(self): self._stub_quota_class_get_all_by_name() result = self.driver.get_class_quotas(None, quota.QUOTAS._resources, 'test_class', False) self.assertEqual(self.calls, ['quota_class_get_all_by_name']) self.assertEqual(result, dict( instances=5, ram=25 * 1024, metadata_items=64, injected_file_content_bytes=5 * 1024, )) def _stub_get_by_project_and_user(self): def fake_qgabpau(context, project_id, user_id): self.calls.append('quota_get_all_by_project_and_user') self.assertEqual(project_id, 'test_project') self.assertEqual(user_id, 'fake_user') return dict( cores=10, injected_files=2, injected_file_path_bytes=127, ) def fake_qgabp(context, project_id): self.calls.append('quota_get_all_by_project') self.assertEqual(project_id, 'test_project') return { 'cores': 10, 'injected_files': 2, 'injected_file_path_bytes': 127, } def fake_qugabpau(context, project_id, user_id): self.calls.append('quota_usage_get_all_by_project_and_user') self.assertEqual(project_id, 'test_project') self.assertEqual(user_id, 'fake_user') return dict( instances=dict(in_use=2, reserved=2), cores=dict(in_use=4, reserved=4), ram=dict(in_use=10 * 1024, reserved=0), floating_ips=dict(in_use=2, reserved=0), metadata_items=dict(in_use=0, reserved=0), injected_files=dict(in_use=0, reserved=0), injected_file_content_bytes=dict(in_use=0, reserved=0), injected_file_path_bytes=dict(in_use=0, reserved=0), ) self.stubs.Set(db, 'quota_get_all_by_project_and_user', fake_qgabpau) self.stubs.Set(db, 'quota_get_all_by_project', fake_qgabp) self.stubs.Set(db, 'quota_usage_get_all_by_project_and_user', fake_qugabpau) self._stub_quota_class_get_all_by_name() def test_get_user_quotas(self): self.maxDiff = None self._stub_get_by_project_and_user() result = self.driver.get_user_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project', 'fake_user') self.assertEqual(self.calls, [ 'quota_get_all_by_project_and_user', 'quota_get_all_by_project', 'quota_usage_get_all_by_project_and_user', 'quota_class_get_all_by_name', ]) self.assertEqual(result, dict( instances=dict( limit=5, in_use=2, reserved=2, ), cores=dict( limit=10, in_use=4, reserved=4, ), ram=dict( limit=25 * 1024, in_use=10 * 1024, reserved=0, ), floating_ips=dict( limit=10, in_use=2, reserved=0, ), fixed_ips=dict( limit=10, in_use=0, reserved=0, ), metadata_items=dict( limit=64, in_use=0, reserved=0, ), injected_files=dict( limit=2, in_use=0, reserved=0, ), injected_file_content_bytes=dict( limit=5 * 1024, in_use=0, reserved=0, ), injected_file_path_bytes=dict( limit=127, in_use=0, reserved=0, ), security_groups=dict( limit=10, in_use=0, reserved=0, ), security_group_rules=dict( limit=20, in_use=0, reserved=0, ), key_pairs=dict( limit=100, in_use=0, reserved=0, ), )) def _stub_get_by_project(self): def fake_qgabp(context, project_id): self.calls.append('quota_get_all_by_project') self.assertEqual(project_id, 'test_project') return dict( cores=10, injected_files=2, injected_file_path_bytes=127, ) def fake_qugabp(context, project_id): self.calls.append('quota_usage_get_all_by_project') self.assertEqual(project_id, 'test_project') return dict( instances=dict(in_use=2, reserved=2), cores=dict(in_use=4, reserved=4), ram=dict(in_use=10 * 1024, reserved=0), floating_ips=dict(in_use=2, reserved=0), metadata_items=dict(in_use=0, reserved=0), injected_files=dict(in_use=0, reserved=0), injected_file_content_bytes=dict(in_use=0, reserved=0), injected_file_path_bytes=dict(in_use=0, reserved=0), ) self.stubs.Set(db, 'quota_get_all_by_project', fake_qgabp) self.stubs.Set(db, 'quota_usage_get_all_by_project', fake_qugabp) self._stub_quota_class_get_all_by_name() self._stub_quota_class_get_default() def test_get_project_quotas(self): self.maxDiff = None self._stub_get_by_project() result = self.driver.get_project_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project') self.assertEqual(self.calls, [ 'quota_get_all_by_project', 'quota_usage_get_all_by_project', 'quota_class_get_all_by_name', 'quota_class_get_default', ]) self.assertEqual(result, dict( instances=dict( limit=5, in_use=2, reserved=2, ), cores=dict( limit=10, in_use=4, reserved=4, ), ram=dict( limit=25 * 1024, in_use=10 * 1024, reserved=0, ), floating_ips=dict( limit=10, in_use=2, reserved=0, ), fixed_ips=dict( limit=10, in_use=0, reserved=0, ), metadata_items=dict( limit=64, in_use=0, reserved=0, ), injected_files=dict( limit=2, in_use=0, reserved=0, ), injected_file_content_bytes=dict( limit=5 * 1024, in_use=0, reserved=0, ), injected_file_path_bytes=dict( limit=127, in_use=0, reserved=0, ), security_groups=dict( limit=10, in_use=0, reserved=0, ), security_group_rules=dict( limit=20, in_use=0, reserved=0, ), key_pairs=dict( limit=100, in_use=0, reserved=0, ), )) def test_get_user_quotas_alt_context_no_class(self): self.maxDiff = None self._stub_get_by_project_and_user() result = self.driver.get_user_quotas( FakeContext('test_project', None), quota.QUOTAS._resources, 'test_project', 'fake_user') self.assertEqual(self.calls, [ 'quota_get_all_by_project_and_user', 'quota_get_all_by_project', 'quota_usage_get_all_by_project_and_user', ]) self.assertEqual(result, dict( instances=dict( limit=10, in_use=2, reserved=2, ), cores=dict( limit=10, in_use=4, reserved=4, ), ram=dict( limit=50 * 1024, in_use=10 * 1024, reserved=0, ), floating_ips=dict( limit=10, in_use=2, reserved=0, ), fixed_ips=dict( limit=10, in_use=0, reserved=0, ), metadata_items=dict( limit=128, in_use=0, reserved=0, ), injected_files=dict( limit=2, in_use=0, reserved=0, ), injected_file_content_bytes=dict( limit=10 * 1024, in_use=0, reserved=0, ), injected_file_path_bytes=dict( limit=127, in_use=0, reserved=0, ), security_groups=dict( limit=10, in_use=0, reserved=0, ), security_group_rules=dict( limit=20, in_use=0, reserved=0, ), key_pairs=dict( limit=100, in_use=0, reserved=0, ), )) def test_get_project_quotas_alt_context_no_class(self): self.maxDiff = None self._stub_get_by_project() result = self.driver.get_project_quotas( FakeContext('other_project', 'other_class'), quota.QUOTAS._resources, 'test_project') self.assertEqual(self.calls, [ 'quota_get_all_by_project', 'quota_usage_get_all_by_project', 'quota_class_get_default', ]) self.assertEqual(result, dict( instances=dict( limit=5, in_use=2, reserved=2, ), cores=dict( limit=10, in_use=4, reserved=4, ), ram=dict( limit=25 * 1024, in_use=10 * 1024, reserved=0, ), floating_ips=dict( limit=10, in_use=2, reserved=0, ), fixed_ips=dict( limit=10, in_use=0, reserved=0, ), metadata_items=dict( limit=64, in_use=0, reserved=0, ), injected_files=dict( limit=2, in_use=0, reserved=0, ), injected_file_content_bytes=dict( limit=5 * 1024, in_use=0, reserved=0, ), injected_file_path_bytes=dict( limit=127, in_use=0, reserved=0, ), security_groups=dict( limit=10, in_use=0, reserved=0, ), security_group_rules=dict( limit=20, in_use=0, reserved=0, ), key_pairs=dict( limit=100, in_use=0, reserved=0, ), )) def test_get_user_quotas_alt_context_with_class(self): self.maxDiff = None self._stub_get_by_project_and_user() result = self.driver.get_user_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project', 'fake_user', quota_class='test_class') self.assertEqual(self.calls, [ 'quota_get_all_by_project_and_user', 'quota_get_all_by_project', 'quota_usage_get_all_by_project_and_user', 'quota_class_get_all_by_name', ]) self.assertEqual(result, dict( instances=dict( limit=5, in_use=2, reserved=2, ), cores=dict( limit=10, in_use=4, reserved=4, ), ram=dict( limit=25 * 1024, in_use=10 * 1024, reserved=0, ), floating_ips=dict( limit=10, in_use=2, reserved=0, ), fixed_ips=dict( limit=10, in_use=0, reserved=0, ), metadata_items=dict( limit=64, in_use=0, reserved=0, ), injected_files=dict( limit=2, in_use=0, reserved=0, ), injected_file_content_bytes=dict( limit=5 * 1024, in_use=0, reserved=0, ), injected_file_path_bytes=dict( limit=127, in_use=0, reserved=0, ), security_groups=dict( limit=10, in_use=0, reserved=0, ), security_group_rules=dict( limit=20, in_use=0, reserved=0, ), key_pairs=dict( limit=100, in_use=0, reserved=0, ), )) def test_get_project_quotas_alt_context_with_class(self): self.maxDiff = None self._stub_get_by_project() result = self.driver.get_project_quotas( FakeContext('other_project', 'other_class'), quota.QUOTAS._resources, 'test_project', quota_class='test_class') self.assertEqual(self.calls, [ 'quota_get_all_by_project', 'quota_usage_get_all_by_project', 'quota_class_get_all_by_name', 'quota_class_get_default', ]) self.assertEqual(result, dict( instances=dict( limit=5, in_use=2, reserved=2, ), cores=dict( limit=10, in_use=4, reserved=4, ), ram=dict( limit=25 * 1024, in_use=10 * 1024, reserved=0, ), floating_ips=dict( limit=10, in_use=2, reserved=0, ), fixed_ips=dict( limit=10, in_use=0, reserved=0, ), metadata_items=dict( limit=64, in_use=0, reserved=0, ), injected_files=dict( limit=2, in_use=0, reserved=0, ), injected_file_content_bytes=dict( limit=5 * 1024, in_use=0, reserved=0, ), injected_file_path_bytes=dict( limit=127, in_use=0, reserved=0, ), security_groups=dict( limit=10, in_use=0, reserved=0, ), security_group_rules=dict( limit=20, in_use=0, reserved=0, ), key_pairs=dict( limit=100, in_use=0, reserved=0, ), )) def test_get_user_quotas_no_defaults(self): self._stub_get_by_project_and_user() result = self.driver.get_user_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project', 'fake_user', defaults=False) self.assertEqual(self.calls, [ 'quota_get_all_by_project_and_user', 'quota_get_all_by_project', 'quota_usage_get_all_by_project_and_user', 'quota_class_get_all_by_name', ]) self.assertEqual(result, dict( cores=dict( limit=10, in_use=4, reserved=4, ), injected_files=dict( limit=2, in_use=0, reserved=0, ), injected_file_path_bytes=dict( limit=127, in_use=0, reserved=0, ), )) def test_get_project_quotas_no_defaults(self): self._stub_get_by_project() result = self.driver.get_project_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project', defaults=False) self.assertEqual(self.calls, [ 'quota_get_all_by_project', 'quota_usage_get_all_by_project', 'quota_class_get_all_by_name', 'quota_class_get_default', ]) self.assertEqual(result, dict( cores=dict( limit=10, in_use=4, reserved=4, ), injected_files=dict( limit=2, in_use=0, reserved=0, ), injected_file_path_bytes=dict( limit=127, in_use=0, reserved=0, ), )) def test_get_user_quotas_no_usages(self): self._stub_get_by_project_and_user() result = self.driver.get_user_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project', 'fake_user', usages=False) self.assertEqual(self.calls, [ 'quota_get_all_by_project_and_user', 'quota_get_all_by_project', 'quota_class_get_all_by_name', ]) self.assertEqual(result, dict( instances=dict( limit=5, ), cores=dict( limit=10, ), ram=dict( limit=25 * 1024, ), floating_ips=dict( limit=10, ), fixed_ips=dict( limit=10, ), metadata_items=dict( limit=64, ), injected_files=dict( limit=2, ), injected_file_content_bytes=dict( limit=5 * 1024, ), injected_file_path_bytes=dict( limit=127, ), security_groups=dict( limit=10, ), security_group_rules=dict( limit=20, ), key_pairs=dict( limit=100, ), )) def test_get_project_quotas_no_usages(self): self._stub_get_by_project() result = self.driver.get_project_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project', usages=False) self.assertEqual(self.calls, [ 'quota_get_all_by_project', 'quota_class_get_all_by_name', 'quota_class_get_default', ]) self.assertEqual(result, dict( instances=dict( limit=5, ), cores=dict( limit=10, ), ram=dict( limit=25 * 1024, ), floating_ips=dict( limit=10, ), fixed_ips=dict( limit=10, ), metadata_items=dict( limit=64, ), injected_files=dict( limit=2, ), injected_file_content_bytes=dict( limit=5 * 1024, ), injected_file_path_bytes=dict( limit=127, ), security_groups=dict( limit=10, ), security_group_rules=dict( limit=20, ), key_pairs=dict( limit=100, ), )) def _stub_get_settable_quotas(self): def fake_get_project_quotas(context, resources, project_id, quota_class=None, defaults=True, usages=True, remains=False): self.calls.append('get_project_quotas') result = {} for k, v in resources.items(): if k == 'instances': remains = v.default - 5 in_use = 1 else: remains = v.default in_use = 0 result[k] = {'limit': v.default, 'in_use': in_use, 'reserved': 0, 'remains': remains} return result def fake_get_user_quotas(context, resources, project_id, user_id, quota_class=None, defaults=True, usages=True): self.calls.append('get_user_quotas') result = {} for k, v in resources.items(): if k == 'instances': in_use = 1 else: in_use = 0 result[k] = {'limit': v.default, 'in_use': in_use, 'reserved': 0} return result def fake_qgabpau(context, project_id, user_id): self.calls.append('quota_get_all_by_project_and_user') return {'instances': 2} self.stubs.Set(self.driver, 'get_project_quotas', fake_get_project_quotas) self.stubs.Set(self.driver, 'get_user_quotas', fake_get_user_quotas) self.stubs.Set(db, 'quota_get_all_by_project_and_user', fake_qgabpau) def test_get_settable_quotas_with_user(self): self._stub_get_settable_quotas() result = self.driver.get_settable_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project', user_id='test_user') self.assertEqual(self.calls, [ 'get_project_quotas', 'get_user_quotas', 'quota_get_all_by_project_and_user', ]) self.assertEqual(result, { 'instances': { 'minimum': 1, 'maximum': 7, }, 'cores': { 'minimum': 0, 'maximum': 20, }, 'ram': { 'minimum': 0, 'maximum': 50 * 1024, }, 'floating_ips': { 'minimum': 0, 'maximum': 10, }, 'fixed_ips': { 'minimum': 0, 'maximum': 10, }, 'metadata_items': { 'minimum': 0, 'maximum': 128, }, 'injected_files': { 'minimum': 0, 'maximum': 5, }, 'injected_file_content_bytes': { 'minimum': 0, 'maximum': 10 * 1024, }, 'injected_file_path_bytes': { 'minimum': 0, 'maximum': 255, }, 'security_groups': { 'minimum': 0, 'maximum': 10, }, 'security_group_rules': { 'minimum': 0, 'maximum': 20, }, 'key_pairs': { 'minimum': 0, 'maximum': 100, }, }) def test_get_settable_quotas_without_user(self): self._stub_get_settable_quotas() result = self.driver.get_settable_quotas( FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, 'test_project') self.assertEqual(self.calls, [ 'get_project_quotas', ]) self.assertEqual(result, { 'instances': { 'minimum': 5, 'maximum': -1, }, 'cores': { 'minimum': 0, 'maximum': -1, }, 'ram': { 'minimum': 0, 'maximum': -1, }, 'floating_ips': { 'minimum': 0, 'maximum': -1, }, 'fixed_ips': { 'minimum': 0, 'maximum': -1, }, 'metadata_items': { 'minimum': 0, 'maximum': -1, }, 'injected_files': { 'minimum': 0, 'maximum': -1, }, 'injected_file_content_bytes': { 'minimum': 0, 'maximum': -1, }, 'injected_file_path_bytes': { 'minimum': 0, 'maximum': -1, }, 'security_groups': { 'minimum': 0, 'maximum': -1, }, 'security_group_rules': { 'minimum': 0, 'maximum': -1, }, 'key_pairs': { 'minimum': 0, 'maximum': -1, }, }) def _stub_get_project_quotas(self): def fake_get_project_quotas(context, resources, project_id, quota_class=None, defaults=True, usages=True, remains=False): self.calls.append('get_project_quotas') return dict((k, dict(limit=v.default)) for k, v in resources.items()) self.stubs.Set(self.driver, 'get_project_quotas', fake_get_project_quotas) def test_get_quotas_has_sync_unknown(self): self._stub_get_project_quotas() self.assertRaises(exception.QuotaResourceUnknown, self.driver._get_quotas, None, quota.QUOTAS._resources, ['unknown'], True) self.assertEqual(self.calls, []) def test_get_quotas_no_sync_unknown(self): self._stub_get_project_quotas() self.assertRaises(exception.QuotaResourceUnknown, self.driver._get_quotas, None, quota.QUOTAS._resources, ['unknown'], False) self.assertEqual(self.calls, []) def test_get_quotas_has_sync_no_sync_resource(self): self._stub_get_project_quotas() self.assertRaises(exception.QuotaResourceUnknown, self.driver._get_quotas, None, quota.QUOTAS._resources, ['metadata_items'], True) self.assertEqual(self.calls, []) def test_get_quotas_no_sync_has_sync_resource(self): self._stub_get_project_quotas() self.assertRaises(exception.QuotaResourceUnknown, self.driver._get_quotas, None, quota.QUOTAS._resources, ['instances'], False) self.assertEqual(self.calls, []) def test_get_quotas_has_sync(self): self._stub_get_project_quotas() result = self.driver._get_quotas(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, ['instances', 'cores', 'ram', 'floating_ips', 'security_groups'], True) self.assertEqual(self.calls, ['get_project_quotas']) self.assertEqual(result, dict( instances=10, cores=20, ram=50 * 1024, floating_ips=10, security_groups=10, )) def test_get_quotas_no_sync(self): self._stub_get_project_quotas() result = self.driver._get_quotas(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, ['metadata_items', 'injected_files', 'injected_file_content_bytes', 'injected_file_path_bytes', 'security_group_rules'], False) self.assertEqual(self.calls, ['get_project_quotas']) self.assertEqual(result, dict( metadata_items=128, injected_files=5, injected_file_content_bytes=10 * 1024, injected_file_path_bytes=255, security_group_rules=20, )) def test_limit_check_under(self): self._stub_get_project_quotas() self.assertRaises(exception.InvalidQuotaValue, self.driver.limit_check, FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(metadata_items=-1)) def test_limit_check_over(self): self._stub_get_project_quotas() self.assertRaises(exception.OverQuota, self.driver.limit_check, FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(metadata_items=129)) def test_limit_check_unlimited(self): self.flags(quota_metadata_items=-1) self._stub_get_project_quotas() self.driver.limit_check(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(metadata_items=32767)) def test_limit_check(self): self._stub_get_project_quotas() self.driver.limit_check(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(metadata_items=128)) def _stub_quota_reserve(self): def fake_quota_reserve(context, resources, quotas, user_quotas, deltas, expire, until_refresh, max_age, project_id=None, user_id=None): self.calls.append(('quota_reserve', expire, until_refresh, max_age)) return ['resv-1', 'resv-2', 'resv-3'] self.stubs.Set(db, 'quota_reserve', fake_quota_reserve) def test_reserve_bad_expire(self): self._stub_get_project_quotas() self._stub_quota_reserve() self.assertRaises(exception.InvalidReservationExpiration, self.driver.reserve, FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(instances=2), expire='invalid') self.assertEqual(self.calls, []) def test_reserve_default_expire(self): self._stub_get_project_quotas() self._stub_quota_reserve() result = self.driver.reserve(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(instances=2)) expire = timeutils.utcnow() + datetime.timedelta(seconds=86400) self.assertEqual(self.calls, [ 'get_project_quotas', ('quota_reserve', expire, 0, 0), ]) self.assertEqual(result, ['resv-1', 'resv-2', 'resv-3']) def test_reserve_int_expire(self): self._stub_get_project_quotas() self._stub_quota_reserve() result = self.driver.reserve(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(instances=2), expire=3600) expire = timeutils.utcnow() + datetime.timedelta(seconds=3600) self.assertEqual(self.calls, [ 'get_project_quotas', ('quota_reserve', expire, 0, 0), ]) self.assertEqual(result, ['resv-1', 'resv-2', 'resv-3']) def test_reserve_timedelta_expire(self): self._stub_get_project_quotas() self._stub_quota_reserve() expire_delta = datetime.timedelta(seconds=60) result = self.driver.reserve(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(instances=2), expire=expire_delta) expire = timeutils.utcnow() + expire_delta self.assertEqual(self.calls, [ 'get_project_quotas', ('quota_reserve', expire, 0, 0), ]) self.assertEqual(result, ['resv-1', 'resv-2', 'resv-3']) def test_reserve_datetime_expire(self): self._stub_get_project_quotas() self._stub_quota_reserve() expire = timeutils.utcnow() + datetime.timedelta(seconds=120) result = self.driver.reserve(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(instances=2), expire=expire) self.assertEqual(self.calls, [ 'get_project_quotas', ('quota_reserve', expire, 0, 0), ]) self.assertEqual(result, ['resv-1', 'resv-2', 'resv-3']) def test_reserve_until_refresh(self): self._stub_get_project_quotas() self._stub_quota_reserve() self.flags(until_refresh=500) expire = timeutils.utcnow() + datetime.timedelta(seconds=120) result = self.driver.reserve(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(instances=2), expire=expire) self.assertEqual(self.calls, [ 'get_project_quotas', ('quota_reserve', expire, 500, 0), ]) self.assertEqual(result, ['resv-1', 'resv-2', 'resv-3']) def test_reserve_max_age(self): self._stub_get_project_quotas() self._stub_quota_reserve() self.flags(max_age=86400) expire = timeutils.utcnow() + datetime.timedelta(seconds=120) result = self.driver.reserve(FakeContext('test_project', 'test_class'), quota.QUOTAS._resources, dict(instances=2), expire=expire) self.assertEqual(self.calls, [ 'get_project_quotas', ('quota_reserve', expire, 0, 86400), ]) self.assertEqual(result, ['resv-1', 'resv-2', 'resv-3']) def test_usage_reset(self): calls = [] def fake_quota_usage_update(context, project_id, user_id, resource, **kwargs): calls.append(('quota_usage_update', context, project_id, user_id, resource, kwargs)) if resource == 'nonexist': raise exception.QuotaUsageNotFound(project_id=project_id) self.stubs.Set(db, 'quota_usage_update', fake_quota_usage_update) ctx = FakeContext('test_project', 'test_class') resources = ['res1', 'res2', 'nonexist', 'res4'] self.driver.usage_reset(ctx, resources) # Make sure we had some calls self.assertEqual(len(calls), len(resources)) # Extract the elevated context that was used and do some # sanity checks elevated = calls[0][1] self.assertEqual(elevated.project_id, ctx.project_id) self.assertEqual(elevated.quota_class, ctx.quota_class) self.assertEqual(elevated.is_admin, True) # Now check that all the expected calls were made exemplar = [('quota_usage_update', elevated, 'test_project', 'fake_user', res, dict(in_use=-1)) for res in resources] self.assertEqual(calls, exemplar) class FakeSession(object): def begin(self): return self def add(self, instance): pass def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_traceback): return False class FakeUsage(sqa_models.QuotaUsage): def save(self, *args, **kwargs): pass class QuotaReserveSqlAlchemyTestCase(test.TestCase): # nova.db.sqlalchemy.api.quota_reserve is so complex it needs its # own test case, and since it's a quota manipulator, this is the # best place to put it... def setUp(self): super(QuotaReserveSqlAlchemyTestCase, self).setUp() self.sync_called = set() self.quotas = dict( instances=5, cores=10, ram=10 * 1024, fixed_ips=5, ) self.deltas = dict( instances=2, cores=4, ram=2 * 1024, fixed_ips=2, ) def make_sync(res_name): def sync(context, project_id, user_id, session): self.sync_called.add(res_name) if res_name in self.usages: if self.usages[res_name].in_use < 0: return {res_name: 2} else: return {res_name: self.usages[res_name].in_use - 1} return {res_name: 0} return sync self.resources = {} for res_name in ('instances', 'cores', 'ram', 'fixed_ips'): method_name = '_sync_%s' % res_name sqa_api.QUOTA_SYNC_FUNCTIONS[method_name] = make_sync(res_name) res = quota.ReservableResource(res_name, '_sync_%s' % res_name) self.resources[res_name] = res self.expire = timeutils.utcnow() + datetime.timedelta(seconds=3600) self.usages = {} self.usages_created = {} self.reservations_created = {} self.usages_list = [ dict(resource='instances', project_id='test_project', user_id='fake_user', in_use=2, reserved=2, until_refresh=None), dict(resource='cores', project_id='test_project', user_id='fake_user', in_use=2, reserved=4, until_refresh=None), dict(resource='ram', project_id='test_project', user_id='fake_user', in_use=2, reserved=2 * 1024, until_refresh=None), dict(resource='fixed_ips', project_id='test_project', user_id=None, in_use=2, reserved=2, until_refresh=None), ] def fake_get_session(): return FakeSession() def fake_get_project_quota_usages(context, session, project_id): return self.usages.copy() def fake_get_user_quota_usages(context, session, project_id, user_id): return self.usages.copy() def fake_quota_usage_create(context, project_id, user_id, resource, in_use, reserved, until_refresh, session=None, save=True): quota_usage_ref = self._make_quota_usage( project_id, user_id, resource, in_use, reserved, until_refresh, timeutils.utcnow(), timeutils.utcnow()) self.usages_created[resource] = quota_usage_ref return quota_usage_ref def fake_reservation_create(context, uuid, usage_id, project_id, user_id, resource, delta, expire, session=None): reservation_ref = self._make_reservation( uuid, usage_id, project_id, user_id, resource, delta, expire, timeutils.utcnow(), timeutils.utcnow()) self.reservations_created[resource] = reservation_ref return reservation_ref self.stubs.Set(sqa_api, 'get_session', fake_get_session) self.stubs.Set(sqa_api, '_get_project_quota_usages', fake_get_project_quota_usages) self.stubs.Set(sqa_api, '_get_user_quota_usages', fake_get_user_quota_usages) self.stubs.Set(sqa_api, '_quota_usage_create', fake_quota_usage_create) self.stubs.Set(sqa_api, '_reservation_create', fake_reservation_create) self.useFixture(test.TimeOverride()) def _make_quota_usage(self, project_id, user_id, resource, in_use, reserved, until_refresh, created_at, updated_at): quota_usage_ref = FakeUsage() quota_usage_ref.id = len(self.usages) + len(self.usages_created) quota_usage_ref.project_id = project_id quota_usage_ref.user_id = user_id quota_usage_ref.resource = resource quota_usage_ref.in_use = in_use quota_usage_ref.reserved = reserved quota_usage_ref.until_refresh = until_refresh quota_usage_ref.created_at = created_at quota_usage_ref.updated_at = updated_at quota_usage_ref.deleted_at = None quota_usage_ref.deleted = False return quota_usage_ref def init_usage(self, project_id, user_id, resource, in_use, reserved=0, until_refresh=None, created_at=None, updated_at=None): if created_at is None: created_at = timeutils.utcnow() if updated_at is None: updated_at = timeutils.utcnow() if resource == 'fixed_ips': user_id = None quota_usage_ref = self._make_quota_usage(project_id, user_id, resource, in_use, reserved, until_refresh, created_at, updated_at) self.usages[resource] = quota_usage_ref def compare_usage(self, usage_dict, expected): for usage in expected: resource = usage['resource'] for key, value in usage.items(): actual = getattr(usage_dict[resource], key) self.assertEqual(actual, value, "%s != %s on usage for resource %s" % (actual, value, resource)) def _make_reservation(self, uuid, usage_id, project_id, user_id, resource, delta, expire, created_at, updated_at): reservation_ref = sqa_models.Reservation() reservation_ref.id = len(self.reservations_created) reservation_ref.uuid = uuid reservation_ref.usage_id = usage_id reservation_ref.project_id = project_id reservation_ref.user_id = user_id reservation_ref.resource = resource reservation_ref.delta = delta reservation_ref.expire = expire reservation_ref.created_at = created_at reservation_ref.updated_at = updated_at reservation_ref.deleted_at = None reservation_ref.deleted = False return reservation_ref def compare_reservation(self, reservations, expected): reservations = set(reservations) for resv in expected: resource = resv['resource'] resv_obj = self.reservations_created[resource] self.assertIn(resv_obj.uuid, reservations) reservations.discard(resv_obj.uuid) for key, value in resv.items(): actual = getattr(resv_obj, key) self.assertEqual(actual, value, "%s != %s on reservation for resource %s" % (actual, value, resource)) self.assertEqual(len(reservations), 0) def _update_reservations_list(self, usage_id_change=False, delta_change=False): reservations_list = [ dict(resource='instances', project_id='test_project', delta=2), dict(resource='cores', project_id='test_project', delta=4), dict(resource='ram', delta=2 * 1024), dict(resource='fixed_ips', project_id='test_project', delta=2), ] if usage_id_change: reservations_list[0]["usage_id"] = self.usages_created['instances'] reservations_list[1]["usage_id"] = self.usages_created['cores'] reservations_list[2]["usage_id"] = self.usages_created['ram'] reservations_list[3]["usage_id"] = self.usages_created['fixed_ips'] else: reservations_list[0]["usage_id"] = self.usages['instances'] reservations_list[1]["usage_id"] = self.usages['cores'] reservations_list[2]["usage_id"] = self.usages['ram'] reservations_list[3]["usage_id"] = self.usages['fixed_ips'] if delta_change: reservations_list[0]["delta"] = -2 reservations_list[1]["delta"] = -4 reservations_list[2]["delta"] = -2 * 1024 reservations_list[3]["delta"] = -2 return reservations_list def _init_usages(self, *in_use, **kwargs): for i, option in enumerate(('instances', 'cores', 'ram', 'fixed_ips')): self.init_usage('test_project', 'fake_user', option, in_use[i], **kwargs) return FakeContext('test_project', 'test_class') def test_quota_reserve_create_usages(self): context = FakeContext('test_project', 'test_class') result = sqa_api.quota_reserve(context, self.resources, self.quotas, self.quotas, self.deltas, self.expire, 0, 0) self.assertEqual(self.sync_called, set(['instances', 'cores', 'ram', 'fixed_ips'])) self.usages_list[0]["in_use"] = 0 self.usages_list[1]["in_use"] = 0 self.usages_list[2]["in_use"] = 0 self.usages_list[3]["in_use"] = 0 self.compare_usage(self.usages_created, self.usages_list) reservations_list = self._update_reservations_list(True) self.compare_reservation(result, reservations_list) def test_quota_reserve_negative_in_use(self): context = self._init_usages(-1, -1, -1, -1, until_refresh=1) result = sqa_api.quota_reserve(context, self.resources, self.quotas, self.quotas, self.deltas, self.expire, 5, 0) self.assertEqual(self.sync_called, set(['instances', 'cores', 'ram', 'fixed_ips'])) self.usages_list[0]["until_refresh"] = 5 self.usages_list[1]["until_refresh"] = 5 self.usages_list[2]["until_refresh"] = 5 self.usages_list[3]["until_refresh"] = 5 self.compare_usage(self.usages, self.usages_list) self.assertEqual(self.usages_created, {}) self.compare_reservation(result, self._update_reservations_list()) def test_quota_reserve_until_refresh(self): context = self._init_usages(3, 3, 3, 3, until_refresh=1) result = sqa_api.quota_reserve(context, self.resources, self.quotas, self.quotas, self.deltas, self.expire, 5, 0) self.assertEqual(self.sync_called, set(['instances', 'cores', 'ram', 'fixed_ips'])) self.usages_list[0]["until_refresh"] = 5 self.usages_list[1]["until_refresh"] = 5 self.usages_list[2]["until_refresh"] = 5 self.usages_list[3]["until_refresh"] = 5 self.compare_usage(self.usages, self.usages_list) self.assertEqual(self.usages_created, {}) self.compare_reservation(result, self._update_reservations_list()) def test_quota_reserve_max_age(self): max_age = 3600 record_created = (timeutils.utcnow() - datetime.timedelta(seconds=max_age)) context = self._init_usages(3, 3, 3, 3, created_at=record_created, updated_at=record_created) result = sqa_api.quota_reserve(context, self.resources, self.quotas, self.quotas, self.deltas, self.expire, 0, max_age) self.assertEqual(self.sync_called, set(['instances', 'cores', 'ram', 'fixed_ips'])) self.compare_usage(self.usages, self.usages_list) self.assertEqual(self.usages_created, {}) self.compare_reservation(result, self._update_reservations_list()) def test_quota_reserve_no_refresh(self): context = self._init_usages(3, 3, 3, 3) result = sqa_api.quota_reserve(context, self.resources, self.quotas, self.quotas, self.deltas, self.expire, 0, 0) self.assertEqual(self.sync_called, set([])) self.usages_list[0]["in_use"] = 3 self.usages_list[1]["in_use"] = 3 self.usages_list[2]["in_use"] = 3 self.usages_list[3]["in_use"] = 3 self.compare_usage(self.usages, self.usages_list) self.assertEqual(self.usages_created, {}) self.compare_reservation(result, self._update_reservations_list()) def test_quota_reserve_unders(self): context = self._init_usages(1, 3, 1 * 1024, 1) self.deltas["instances"] = -2 self.deltas["cores"] = -4 self.deltas["ram"] = -2 * 1024 self.deltas["fixed_ips"] = -2 result = sqa_api.quota_reserve(context, self.resources, self.quotas, self.quotas, self.deltas, self.expire, 0, 0) self.assertEqual(self.sync_called, set([])) self.usages_list[0]["in_use"] = 1 self.usages_list[0]["reserved"] = 0 self.usages_list[1]["in_use"] = 3 self.usages_list[1]["reserved"] = 0 self.usages_list[2]["in_use"] = 1 * 1024 self.usages_list[2]["reserved"] = 0 self.usages_list[3]["in_use"] = 1 self.usages_list[3]["reserved"] = 0 self.compare_usage(self.usages, self.usages_list) self.assertEqual(self.usages_created, {}) reservations_list = self._update_reservations_list(False, True) self.compare_reservation(result, reservations_list) def test_quota_reserve_overs(self): context = self._init_usages(4, 8, 10 * 1024, 4) self.assertRaises(exception.OverQuota, sqa_api.quota_reserve, context, self.resources, self.quotas, self.quotas, self.deltas, self.expire, 0, 0) self.assertEqual(self.sync_called, set([])) self.usages_list[0]["in_use"] = 4 self.usages_list[0]["reserved"] = 0 self.usages_list[1]["in_use"] = 8 self.usages_list[1]["reserved"] = 0 self.usages_list[2]["in_use"] = 10 * 1024 self.usages_list[2]["reserved"] = 0 self.usages_list[3]["in_use"] = 4 self.usages_list[3]["reserved"] = 0 self.compare_usage(self.usages, self.usages_list) self.assertEqual(self.usages_created, {}) self.assertEqual(self.reservations_created, {}) def test_quota_reserve_reduction(self): context = self._init_usages(10, 20, 20 * 1024, 10) self.deltas["instances"] = -2 self.deltas["cores"] = -4 self.deltas["ram"] = -2 * 1024 self.deltas["fixed_ips"] = -2 result = sqa_api.quota_reserve(context, self.resources, self.quotas, self.quotas, self.deltas, self.expire, 0, 0) self.assertEqual(self.sync_called, set([])) self.usages_list[0]["in_use"] = 10 self.usages_list[0]["reserved"] = 0 self.usages_list[1]["in_use"] = 20 self.usages_list[1]["reserved"] = 0 self.usages_list[2]["in_use"] = 20 * 1024 self.usages_list[2]["reserved"] = 0 self.usages_list[3]["in_use"] = 10 self.usages_list[3]["reserved"] = 0 self.compare_usage(self.usages, self.usages_list) self.assertEqual(self.usages_created, {}) reservations_list = self._update_reservations_list(False, True) self.compare_reservation(result, reservations_list) class NoopQuotaDriverTestCase(test.TestCase): def setUp(self): super(NoopQuotaDriverTestCase, self).setUp() self.flags(quota_instances=10, quota_cores=20, quota_ram=50 * 1024, quota_floating_ips=10, quota_metadata_items=128, quota_injected_files=5, quota_injected_file_content_bytes=10 * 1024, quota_injected_file_path_bytes=255, quota_security_groups=10, quota_security_group_rules=20, reservation_expire=86400, until_refresh=0, max_age=0, ) self.expected_quotas = dict([(r, -1) for r in quota.QUOTAS._resources]) self.driver = quota.NoopQuotaDriver() def test_get_defaults(self): # Use our pre-defined resources result = self.driver.get_defaults(None, quota.QUOTAS._resources) self.assertEqual(self.expected_quotas, result) def test_get_class_quotas(self): result = self.driver.get_class_quotas(None, quota.QUOTAS._resources, 'test_class') self.assertEqual(self.expected_quotas, result) def test_get_class_quotas_no_defaults(self): result = self.driver.get_class_quotas(None, quota.QUOTAS._resources, 'test_class', False) self.assertEqual(self.expected_quotas, result) def test_get_project_quotas(self): result = self.driver.get_project_quotas(None, quota.QUOTAS._resources, 'test_project') self.assertEqual(self.expected_quotas, result) def test_get_user_quotas(self): result = self.driver.get_user_quotas(None, quota.QUOTAS._resources, 'test_project', 'fake_user') self.assertEqual(self.expected_quotas, result) def test_get_project_quotas_no_defaults(self): result = self.driver.get_project_quotas(None, quota.QUOTAS._resources, 'test_project', defaults=False) self.assertEqual(self.expected_quotas, result) def test_get_user_quotas_no_defaults(self): result = self.driver.get_user_quotas(None, quota.QUOTAS._resources, 'test_project', 'fake_user', defaults=False) self.assertEqual(self.expected_quotas, result) def test_get_project_quotas_no_usages(self): result = self.driver.get_project_quotas(None, quota.QUOTAS._resources, 'test_project', usages=False) self.assertEqual(self.expected_quotas, result) def test_get_user_quotas_no_usages(self): result = self.driver.get_user_quotas(None, quota.QUOTAS._resources, 'test_project', 'fake_user', usages=False) self.assertEqual(self.expected_quotas, result)
py
1a4fd582b7e339a2e1a377417875d5fab0183f00
#!/usr/bin/env python3 import compilation import config import execution import getopt import models import processing import sqlalchemy import sys import templates from utils import status, status_message from termcolor import cprint from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from orm_classes import ThroughputSample, \ BatchSizeModelAccuracySample, \ ThroughputHeatmapSample, \ DOPModelAccuracySample, \ ThroughputWithHandImplementations, \ Base import os clear = lambda: os.system('clear') def update_progress(progress): print('\r[{0}] {1}%'.format('#'*int((progress/10)), progress)) def main(argv): # Setup code for SQLAlchemy engine = create_engine('sqlite:///rt.db') Base.metadata.bin = engine db_session_factory = sessionmaker(bind=engine) session = db_session_factory() opts, args = getopt.getopt(argv, 'ht:', ['type=']) if opts[0][0] == '-h': print('main.py -t <experiment_type>') print('Experiment types: throughput, batch_size_model_accuracy, worker_model_accuracy, heatmap, hand_implementation') elif opts[0][0] in ('-t', '--type'): if opts[0][1] == 'throughput': throughput_experiments(session) elif opts[0][1] == 'batch_size_model_accuracy': batch_size_model_accuracy_experiments(session) elif opts[0][1] == 'worker_model_accuracy': worker_model_accuracy_experiments(session) elif opts[0][1] == 'heatmap': print('Starting heatmap experiments...') heatmap_experiments(session) elif opts[0][1] == 'hand_implementation': print('Starting experiments with hand implementations...') throughput_with_hand_implementations(session) else: print('Could not recognise the experiment type.') print('Done.') def heatmap_experiments(session): exp_config = config.read_config()['max_throughput_heatmap'] app_name = exp_config['application_name'] deadline = exp_config['relative_deadline'] max_workers = exp_config['max_workers'] samples = exp_config['samples'] data_types = exp_config['data_types'] for data_type in data_types: for input_i in range(len(exp_config['input_array_size'])): input_array_size = exp_config['input_array_size'][input_i] worker_wcet = exp_config['worker_wcet'][input_i] # Iterate over the batch sizes for dop in range(1, max_workers + 1, 1): # Iterate over the batch sizes non_viable_parameters = session.query(ThroughputHeatmapSample) \ .filter( sqlalchemy.or_( ThroughputHeatmapSample.missed_deadline == 1, ThroughputHeatmapSample.compiled == 0, ThroughputHeatmapSample.run_time_error == 1 )) \ .filter(ThroughputHeatmapSample.sample_application_name == app_name) \ .filter(ThroughputHeatmapSample.input_size == input_array_size) \ .filter(ThroughputHeatmapSample.relative_deadline == deadline) \ .filter(ThroughputHeatmapSample.worker_wcet == worker_wcet) \ .filter(ThroughputHeatmapSample.dop == dop) \ .filter(ThroughputHeatmapSample.data_type == data_type) \ .count() found_non_viable_batch_size = non_viable_parameters >= samples batch_size = 0 while not found_non_viable_batch_size: batch_size += 1 # Check if the current data point already exists '''query_result = session.query(ThroughputHeatmapSample.sample).get( (app_name, input_array_size, deadline, worker_wcet, batch_size, dop))''' sample_count = session.query(ThroughputHeatmapSample) \ .filter(ThroughputHeatmapSample.sample_application_name == app_name) \ .filter(ThroughputHeatmapSample.input_size == input_array_size) \ .filter(ThroughputHeatmapSample.relative_deadline == deadline) \ .filter(ThroughputHeatmapSample.worker_wcet == worker_wcet) \ .filter(ThroughputHeatmapSample.dop == dop) \ .filter(ThroughputHeatmapSample.batch_size == batch_size) \ .filter(ThroughputHeatmapSample.data_type == data_type) \ .count() print('Sample count: ' + str(sample_count)) print('Max. samples: ' + str(samples)) print('Collect more samples: ' + str(sample_count < samples)) print('Dop: ' + str(dop)) print('Batch size: ' + str(batch_size)) print('Data type: ' + str(data_type)) # input('Press...') while sample_count < samples: succeeded = True compiled = True run_time_error = False missed_deadline = False measured_min_period = -1 # Measure the max. throughput succeeded &= status('Creating source file from template...', templates.create_app_for_throughput_experiments( app_name, 300, # Period input_array_size, deadline, worker_wcet, dop, (False if batch_size == 1 else True), # True == batching is on batch_size, dop == 1, data_type )) succeeded &= status('Compiling...', compilation.compile_farm()) if not succeeded: cprint('Measure max. throughput | Could not compile the application. DOP: {} Batch size {}'\ .format(dop, batch_size), 'red') compiled = False else: execution_status, out = execution.execute_farm() succeeded &= status('Executing...', execution_status) if not succeeded: cprint('Measure max. throughput | Could not run the application. DOP: {} Batch size {}' \ .format(dop, batch_size), 'red') run_time_error = True else: internal_param, output = processing.parse_output_to_dict(out.decode('utf-8')) measured_min_period = processing.compute_interarrival_time(output, batch_size, dop) # check if batch size and measured period are viable succeeded &= status('Creating source file from template...', templates.create_app_for_throughput_heatmap_experiments( app_name, measured_min_period, # period input_array_size, deadline, dop, worker_wcet, batch_size, dop == 1, data_type )) # Check if the current batch size is viable succeeded &= status('Compiling...', compilation.compile_farm()) if not succeeded: cprint('Check if the current batch size is viable | Could not compile the application. DOP: {} Batch size {}'\ .format(dop, batch_size), 'red') compiled = False else: execution_status, out = execution.execute_farm() succeeded &= status('Executing...', execution_status) if not succeeded: cprint('Check if the current batch size is viable | Could not run the application. DOP: {} Batch size {}' \ .format(dop, batch_size), 'red') run_time_error = True else: internal_param, output = processing.parse_output_to_dict(out.decode('utf-8')) missed_deadline = processing.check_if_deadline_has_been_missed(output, deadline) if missed_deadline: cprint('Check if the current batch size is viable | Jobs miss their deadline. DOP: {} Batch size {}' \ .format(dop, batch_size), 'red') succeeded = False # save result sample = ThroughputHeatmapSample( sample_application_name=app_name, input_size =input_array_size, relative_deadline =deadline, worker_wcet =worker_wcet, batch_size =batch_size, dop =dop, min_period =measured_min_period, sample =sample_count + 1, data_type =data_type, compiled =compiled, missed_deadline =missed_deadline, run_time_error =run_time_error ) session.add(sample) session.commit() sample_count += 1 found_non_viable_batch_size |= not succeeded def run_worker_model_accuracy_experiment(sample_application, period, input_array_size, relative_deadline, worker_wcet, subtract_from_dop): succeeded = True # Compute batch size and worker count computed_batch_size, computed_dop = models.compute_optimal_dop_and_batch_size(worker_wcet, period, relative_deadline) status_message('DEBUG | batch_size: {}, dop: {}'.format(computed_batch_size, computed_dop)) # Generate source code from template succeeded &= status('Creating source files from templates...', templates.create_app_for_worker_model_accuracy_experiments( sample_application, period, input_array_size, relative_deadline, worker_wcet, computed_batch_size, computed_dop, subtract_from_dop )) # Compile if succeeded: succeeded &= status('Compiling...', compilation.compile_farm()) # Run the experiment if succeeded: execution_status, out = execution.execute_farm() succeeded &= status('Executing...', execution_status) # Process the output matched_throughput = False if succeeded: internal_param, output = processing.parse_output_to_dict(out.decode('utf-8')) # Add 10ns to the period account for the accuracy of the board's timers matched_throughput = (processing.compute_interarrival_time( output, internal_param['batch_size'], internal_param['dop']) <= period + 10) print('Measured min. period: {}'.format(processing.compute_interarrival_time( output, internal_param['batch_size'], internal_param['dop']))) return succeeded, matched_throughput, internal_param['batch_size'], internal_param['dop'] def worker_model_accuracy_experiments(session): benchmarks = config.read_config()['dop_model_accuracy'] for app in benchmarks.keys(): bench_config = benchmarks[app] relative_deadline_list = bench_config['relative_deadline'] input_array_size_list = bench_config['input_array_size'] worker_wcet_list = bench_config['worker_wcet'] period_start_list = bench_config['period_start'] period_end_list = bench_config['period_end'] period_steps_list = bench_config['period_steps'] samples = bench_config['samples'] for i in range(len(input_array_size_list)): relative_deadline = relative_deadline_list[i] input_array_size = input_array_size_list[i] worker_wcet = worker_wcet_list[i] period_start = period_start_list[i] period_end = period_end_list[i] period_steps = period_steps_list[i] # Iterate over all periods for period in range(period_start, period_end + period_steps, period_steps): # Find the optimum and test predictions for is_oracle in [False, True]: sample_count = session.query(DOPModelAccuracySample) \ .filter(DOPModelAccuracySample.sample_application_name == app) \ .filter(DOPModelAccuracySample.input_size == input_array_size) \ .filter(DOPModelAccuracySample.relative_deadline == relative_deadline) \ .filter(DOPModelAccuracySample.worker_wcet == worker_wcet) \ .filter(DOPModelAccuracySample.period == period) \ .filter(DOPModelAccuracySample.is_oracle == is_oracle) \ .count() print('Is oracle: {}'.format(is_oracle)) print('Sample count: {}'.format(sample_count)) while sample_count < samples: if is_oracle: print('Finding the minimum DOP...') matched_throughput = True subtract_from_dop = 0 while matched_throughput: print('Subtract from DOP: ' + str(subtract_from_dop)) succeeded, matched_throughput, batch_size, dop = run_worker_model_accuracy_experiment( app, period, input_array_size, relative_deadline, worker_wcet, subtract_from_dop) print('Matched throughput: ' + str(matched_throughput)) if not succeeded: status_message('Oracle experiments failed!') exit(0) if matched_throughput and not dop == 1: subtract_from_dop += 1 elif matched_throughput and dop == 1: break elif not matched_throughput: if subtract_from_dop == 0: status_message('ERROR | The DOP predicted by our model is too low') exit(0) dop += 1 matched_throughput = True else: succeeded, matched_throughput, batch_size, dop = run_worker_model_accuracy_experiment( app, period, input_array_size, relative_deadline, worker_wcet, 0 # Subtract from DOP ) if succeeded: sample = DOPModelAccuracySample( sample_application_name=app, input_size =input_array_size, relative_deadline =relative_deadline, worker_wcet =worker_wcet, period =period, is_oracle =is_oracle, sample =sample_count + 1, batch_size =batch_size, dop =dop, success =succeeded, matched_throughput =matched_throughput ) session.add(sample) session.commit() sample_count += 1 else: status_message('Compilation or execution did not succeed. Exiting...') exit(0) def run_batch_size_accuracy_experiment(sample_application, period, input_array_size, relative_deadline, worker_wcet, add_to_batch_size=0): succeeded = True # Compute batch size and worker count computed_batch_size, computed_dop = models.compute_optimal_dop_and_batch_size(worker_wcet, period, relative_deadline) status_message('DEBUG | batch_size: {}, dop: {}'.format(computed_batch_size, computed_dop)) # Generate source code from template succeeded &= status('Creating source files from templates...', templates.create_app_for_batch_size_accuracy_experiments( sample_application, period, input_array_size, relative_deadline, worker_wcet, computed_batch_size, computed_dop, add_to_batch_size=add_to_batch_size )) # Compile if succeeded: status_message(('DEBUG | period: {}, input_array_size: {}, relative_deadline: {},' + ' worker_wcet: {}, add_to_batch_size: {}') .format(period, input_array_size, relative_deadline, worker_wcet, add_to_batch_size)) succeeded &= status('Compiling...', compilation.compile_farm()) else: status_message("Could not create the sample application.") exit(0) # Run the experiment if succeeded: execution_status, out = execution.execute_farm() succeeded &= status('Executing...', execution_status) else: status_message("Could not compile the sample application.") exit(0) # Process the output missed_deadline = False if succeeded: internal_param, output = processing.parse_output_to_dict(out.decode('utf-8')) missed_deadline = processing.check_if_deadline_has_been_missed(output, relative_deadline) else: status_message("Could not run the sample application.") exit(0) return succeeded, missed_deadline, internal_param['batch_size'], internal_param['dop'] def batch_size_model_accuracy_experiments(session): benchmarks = config.read_config()['batch_size_model_accuracy'] for sample_application in benchmarks.keys(): bench_config = benchmarks[sample_application] relative_deadline_list = bench_config['relative_deadline'] input_array_size_list = bench_config['input_array_size'] worker_wcet_list = bench_config['worker_wcet'] period_start_list = bench_config['period_start'] period_end_list = bench_config['period_end'] period_steps_list = bench_config['period_steps'] samples = bench_config['samples'] for i in range(len(input_array_size_list)): relative_deadline = relative_deadline_list[i] input_array_size = input_array_size_list[i] worker_wcet = worker_wcet_list[i] period_start = period_start_list[i] period_end = period_end_list[i] period_steps = period_steps_list[i] # Iterate over all periods for period in range(period_start, period_end + period_steps, period_steps): # Find the optimum and test predictions for is_oracle in [False, True]: # Check if database entry for the current problem instance exists already sample_count = session.query(BatchSizeModelAccuracySample) \ .filter(BatchSizeModelAccuracySample.sample_application_name == sample_application) \ .filter(BatchSizeModelAccuracySample.input_size == input_array_size) \ .filter(BatchSizeModelAccuracySample.relative_deadline == relative_deadline) \ .filter(BatchSizeModelAccuracySample.worker_wcet == worker_wcet) \ .filter(BatchSizeModelAccuracySample.period == period) \ .filter(BatchSizeModelAccuracySample.is_oracle == is_oracle) \ .count() while sample_count < samples: add_to_batch_size = 0 if is_oracle: # Find the optimum missed_deadline = False # TODO: Refactor duplication add_to_batch_size = 0 while not missed_deadline: succeeded, missed_deadline, batch_size, _ = run_batch_size_accuracy_experiment( sample_application, period, input_array_size, relative_deadline, worker_wcet, add_to_batch_size=add_to_batch_size) if not succeeded: status_message('ERROR | Oracle experiments failed!') exit(0) if not missed_deadline: add_to_batch_size += 1 else: if add_to_batch_size == 0: status_message('ERROR | The batch size chosen by our model is too large.') exit(0) # This value will be stored in the DB # Subtract by 1 since the application fails to meet deadlines with the current # batch size status_message('DEBUG | Missed deadlines') batch_size -= 1 missed_deadline = False else: succeeded, missed_deadline, batch_size, _ = run_batch_size_accuracy_experiment( sample_application, period, input_array_size, relative_deadline, worker_wcet, add_to_batch_size) if missed_deadline: status_message('ERROR | The batch size chosen by our model is too large.') exit(0) # Save results if succeeded: sample = BatchSizeModelAccuracySample( sample_application_name=sample_application, input_size =input_array_size, relative_deadline =relative_deadline, worker_wcet =worker_wcet, period =period, is_oracle =is_oracle, sample =sample_count + 1, batch_size =batch_size, success =succeeded, deadline_missed =missed_deadline ) session.add(sample) session.commit() sample_count += 1 else: status_message('Compilation or execution did not succeed. Exiting...') def throughput_experiments(session): benchmarks = config.read_config()['throughput'] for benchmark in benchmarks.keys(): # Read config file bench_config = benchmarks[benchmark] wcets = bench_config['wcet'] input_sizes = bench_config['input_array_size'] rel_dead_start = bench_config['relative_deadline_start'] rel_dead_steps = bench_config['relative_deadline_steps'] rel_dead_stop = bench_config['relative_deadline_stop'] workers_start = bench_config['workers_start'] workers_steps = bench_config['workers_steps'] workers_stop = bench_config['workers_stop'] samples = bench_config['samples'] total_number_of_experiments = 2 * len(wcets) \ * len(range(workers_start, workers_stop + 1, workers_steps)) \ * len(range(rel_dead_start, rel_dead_stop + rel_dead_steps, rel_dead_steps)) experiment_count = 0 # The baseline does not use batching for with_batching in [True, False]: # Sweep over the parameter space # Parameter: input sizes + corresp. WCETs for wcet_index in range(len(wcets)): wcet = wcets[wcet_index] input_size = input_sizes[wcet_index] batch_sizes = bench_config['batch_sizes'][wcet_index] for batch_size in batch_sizes: if not with_batching: batch_size = 1 # Parameter: worker count for dop in range(workers_start, workers_stop + 1, workers_steps): # Parameter: relative deadline for rel_dead in range(rel_dead_start, rel_dead_stop + rel_dead_steps, rel_dead_steps): clear() update_progress(experiment_count / total_number_of_experiments) print('Experiment: {}, with batching: {}, WCET: {}, DOP: {}, D: {}, Batch size: {}'.format( benchmark, with_batching, wcet, dop, rel_dead, batch_size)) # Check if data for this current parameter set exists # and execute experiments if they do not exist sample_count = session.query(ThroughputSample) \ .filter(ThroughputSample.experiment_name == benchmark) \ .filter(ThroughputSample.input_size == input_size) \ .filter(ThroughputSample.relative_deadline == rel_dead) \ .filter(ThroughputSample.worker_wcet == wcet) \ .filter(ThroughputSample.with_batching == int(with_batching)) \ .filter(ThroughputSample.batch_size == batch_size) \ .count() while sample_count < samples: # Prepare experiments status_code = True status_code &= status('Creating source files from templates... ', templates.create_app_for_throughput_experiments( benchmark, 300, # period. This does not set the period with which new input data arrives in this case. # This is just a dummy values that is need to compute the size of the task # farm internal buffer. input_size, rel_dead, wcet, dop, with_batching, batch_size)) compilation_succeeded = False if status_code: status_code &= status('Compiling... ', compilation.compile_farm()) compilation_succeeded = status_code # Run experiment if status_code: execution_status, out = execution.execute_farm() status_code &= status('Executing... ', execution_status) print(out) # Prepare results if status_code: internal_param, output = processing.parse_output_to_dict(out.decode('utf-8')) period = processing.compute_interarrival_time(output, batch_size, dop) # Check if the application could successfully compiled and run status_message('Compilation and execution was successful') else: status_message('Compilation or execution did not succeed. Exiting...') break # Print the result to the console status_message('Found min. interarrival time: ' + str(period)) # Store the result in the database sample = ThroughputSample( experiment_name =benchmark, input_size =input_size, relative_deadline=rel_dead, worker_wcet =wcet, dop =dop, with_batching =int(with_batching), sample =sample_count + 1, success =int(compilation_succeeded)) sample.batch_size = batch_size sample.min_interarrival_time = period # Save result session.add(sample) session.commit() sample_count += 1 experiment_count += 1 def throughput_with_hand_implementations(session): benchmarks = config.read_config()['throughput_with_hand_implementations'] for benchmark_in_config in benchmarks.keys(): # Read config file bench_config = benchmarks[benchmark_in_config] wcets = bench_config['wcets'] input_sizes = bench_config['input_array_sizes'] rel_deadlines = bench_config['relative_deadlines'] samples = bench_config['samples'] total_number_of_experiments = 2 * \ len(input_sizes) * \ len(rel_deadlines) experiment_count = 1 for is_hand_implementation in [False, True]: if is_hand_implementation: benchmark = 'hand_implemented_' + benchmark_in_config else: benchmark = benchmark_in_config for input_size_index in range(len(input_sizes)): dop = 6 wcet = wcets[input_size_index] input_size = input_sizes[input_size_index] rel_dead = rel_deadlines[input_size_index] clear() update_progress((experiment_count / total_number_of_experiments) * 100) print('Experiment: {}, WCET: {}, DOP: {}, D: {}'.format( benchmark, wcet, dop, rel_dead )) sample_count = session.query(ThroughputWithHandImplementations) \ .filter(ThroughputWithHandImplementations.sample_application_name == benchmark_in_config) \ .filter(ThroughputWithHandImplementations.input_size == input_size) \ .filter(ThroughputWithHandImplementations.relative_deadline == rel_dead) \ .filter(ThroughputWithHandImplementations.worker_wcet == wcet) \ .filter(ThroughputWithHandImplementations.dop == dop) \ .filter(ThroughputWithHandImplementations.is_hand_implementation == is_hand_implementation) \ .count() while sample_count < samples: # Find max. batch size batch_size = 1 if not is_hand_implementation: while True: succeeded = True if is_hand_implementation: succeeded &= status('Creating source files from template...', templates.create_app_for_comparison_with_hand_implementations( benchmark, 250, # period input_size, batch_size, dop, 'batch_size_accuracy' )) else: succeeded &= status('Creating source files from template...', templates.create_app_for_batch_size_accuracy_experiments( benchmark, 250, # period input_size, rel_dead, wcet, batch_size, dop, 0 # subtract_from_dop )) if not succeeded: cprint('ERROR: Could not generate source file', 'red') exit(0) succeeded &= status('Compiling...', compilation.compile_farm()) if not succeeded: cprint('Check if the current batch size is viable | Could not compile the application', 'blue') break execution_status, out = execution.execute_farm() succeeded &= status('Executing...', execution_status) if not succeeded: cprint('Check if the current batch size is viable | Could not run the application', 'blue') break internal_param, output = processing.parse_output_to_dict(out.decode('utf-8')) missed_deadline = processing.check_if_deadline_has_been_missed(output, rel_dead) if missed_deadline: cprint('Check if the current batch size is viable | ' + 'Jobs miss their deadline. DOP: {} Batch size {}'.format(dop, batch_size), 'blue') break batch_size += 1 clear() update_progress((experiment_count / total_number_of_experiments) * 100) batch_size -= 1 else: instance = session.query(ThroughputWithHandImplementations) \ .filter(ThroughputWithHandImplementations.sample_application_name == benchmark_in_config) \ .filter(ThroughputWithHandImplementations.input_size == input_size) \ .filter(ThroughputWithHandImplementations.relative_deadline == rel_dead) \ .filter(ThroughputWithHandImplementations.worker_wcet == wcet) \ .filter(ThroughputWithHandImplementations.dop == dop) \ .filter(ThroughputWithHandImplementations.is_hand_implementation == 0) \ .first() batch_size = instance.batch_size print('Batch size in DB: {}'.format(batch_size)) if batch_size == 0: cprint('ERROR: Could not compile or run an application with batch size 1', 'red') exit(0) clear() update_progress((experiment_count / total_number_of_experiments) * 100) cprint('Finding maximum throughput with the found maximum batch size...', 'blue') # Measure max. throughput with the found batch size # Prepare experiments status_code = True if is_hand_implementation: status_code &= status('Creating source files from templates... ', templates.create_app_for_comparison_with_hand_implementations( benchmark, 250, # period input_size, batch_size, dop, 'throughput' )) else: status_code &= status('Create source file from templates...', templates.create_app_for_throughput_experiments( benchmark, 250, # period, input_size, rel_dead, wcet, dop, True, # with_batching batch_size )) if status_code: status_code &= status('Compiling... ', compilation.compile_farm()) else: cprint('ERROR: Could not generate source code for a sample application', 'red') exit(0) # Run experiment if status_code: execution_status, out = execution.execute_farm() status_code &= status('Executing... ', execution_status) print(out) else: cprint('ERROR: Could not compile a sample application', 'red') exit(0) # Prepare results if status_code: internal_param, output = processing.parse_output_to_dict(out.decode('utf-8')) period = processing.compute_interarrival_time(output, batch_size, dop) # Check if the application could successfully compiled and run status_message('Compilation and execution was successful') else: cprint('ERROR: Could not execute a sample application', 'red') exit(0) # Print the result to the console status_message('Found min. period: ' + str(period)) # Store the result in the database sample = ThroughputWithHandImplementations( sample_application_name=benchmark_in_config, input_size =input_size, relative_deadline =rel_dead, worker_wcet =wcet, dop =dop, is_hand_implementation =is_hand_implementation, sample_count =sample_count+1, batch_size =batch_size, min_period =period) # Save result session.add(sample) session.commit() sample_count += 1 experiment_count += 1 '''The below experiment likely does not make sense''' '''def throughput_loss_due_to_non_optimal_batch_size_experiments(session): experiments = session.query(BatchSizeModelAccuracySample).all() for experiment in experiments: app_name = experiment.sample_application_name input_size = experiment.input_size relative_deadline = experiment.relative_deadline worker_wcet = experiment.worker_wcet period = experiment.period is_oracle = experiment.is_oracle batch_size = experiment.batch_size print(experiments[0].sample_application_name)''' if __name__ == '__main__': main(sys.argv[1:])
py
1a4fd5af7255565ca4ef372034ffcdcc891bee8e
# Describing possession # Describing things by color # Describing kinship # Describing movement to/from # Describing locations # Greetings and farewells # Face-changing speech (Thanking, apologizing) # Asking questions about where, what, how, when, who, etc # Describing tastes # A set of words/skills/structures that are known # A set of words/skills/structures that are new # A set of words/skills/structures that are next in the 'skill tree' # Generate sentences/scenarios that use the known words, include some 'to study' words, and ignore as much as possible other new words.
py
1a4fd65f2c1062808ae6d66f4696978cda15c618
import logging from argparse import ArgumentParser from .server import Server logger = logging.getLogger(__name__) def parse_args(): parser = ArgumentParser(prog="contiflowpump_service", description="Start this SiLA 2 server") parser.add_argument("-a", "--ip-address", default="127.0.0.1", help="The IP address (default: '127.0.0.1')") parser.add_argument("-p", "--port", type=int, default=50052, help="The port (default: 50052)") parser.add_argument("--disable-discovery", action="store_true", help="Disable SiLA Server Discovery") log_level_group = parser.add_mutually_exclusive_group() log_level_group.add_argument("-q", "--quiet", action="store_true", help="Only log errors") log_level_group.add_argument("-v", "--verbose", action="store_true", help="Enable verbose logging") log_level_group.add_argument("-d", "--debug", action="store_true", help="Enable debug logging") return parser.parse_args() def start_server(args): server = Server() try: server.start_insecure(args.ip_address, args.port, enable_discovery=not args.disable_discovery) print(f"Server startup complete, running on {args.ip_address}:{args.port}. Press Enter to stop it") try: input() except KeyboardInterrupt: pass finally: server.stop() print("Stopped server") def setup_basic_logging(args): level = logging.WARNING if args.verbose: level = logging.INFO if args.debug: level = logging.DEBUG if args.quiet: level = logging.ERROR logging.basicConfig(level=level, format="%(asctime)s:%(levelname)s:%(name)s:%(message)s") if __name__ == "__main__": args = parse_args() setup_basic_logging(args) start_server(args)
py
1a4fd66e3fd1d711049c1bb520763b150576cd8e
""" def factorial(n): result=1 for num in range(1,n+1): result*=num return result print(factorial(7)//factorial(3)//factorial(4)) """ """ from random import randint def roll(n=2): total=0 for i in range(n): total+=randint(1,6) return total def add(a=0,b=0,c=0): return a+b+c print(roll()) print(roll(3)) """ """ def add(*num): result=1 for i in num: result+=i return result print(add()) print(add(1)) print(add(1,2,3,4)) """ import module1 as m1 import module2 as m2 import module3 as m3 m1.care() m2.hello() m3.bar() #////////def練習///////// """ def gcd(x,y): if x>y: x,y=y,x for factor in range(x,1,-1): if x%factor==0 and y%factor==0: return factor def lcm(x,y): return x*y//gcd(x,y) print(gcd(15,27)) print(lcm(15,27)) """
py
1a4fd75b4da7dab08304c2f2df0c500966ada81e
""" Django settings for apple_head_34247 project. Generated by 'django-admin startproject' using Django 2.2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os import io import environ import logging import google.auth from google.cloud import secretmanager from google.auth.exceptions import DefaultCredentialsError from google.api_core.exceptions import PermissionDenied from modules.manifest import get_modules # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) env_file = os.path.join(BASE_DIR, ".env") env = environ.Env() env.read_env(env_file) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = env.bool("DEBUG", default=False) try: # Pull secrets from Secret Manager _, project = google.auth.default() client = secretmanager.SecretManagerServiceClient() settings_name = os.environ.get("SETTINGS_NAME", "django_settings") name = client.secret_version_path(project, settings_name, "latest") payload = client.access_secret_version(name=name).payload.data.decode("UTF-8") env.read_env(io.StringIO(payload)) except (DefaultCredentialsError, PermissionDenied): pass # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str("SECRET_KEY") ALLOWED_HOSTS = env.list("HOST", default=["*"]) SITE_ID = 1 SECURE_PROXY_SSL_HEADER = ("HTTP_X_FORWARDED_PROTO", "https") SECURE_SSL_REDIRECT = env.bool("SECURE_REDIRECT", default=False) # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.sites' ] LOCAL_APPS = [ 'home', 'users.apps.UsersConfig', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'rest_auth', 'rest_auth.registration', 'bootstrap4', 'allauth', 'allauth.account', 'allauth.socialaccount', 'allauth.socialaccount.providers.google', 'django_extensions', 'drf_yasg', 'storages', ] MODULES_APPS = get_modules() INSTALLED_APPS += LOCAL_APPS + THIRD_PARTY_APPS + MODULES_APPS MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'apple_head_34247.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'web_build')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'apple_head_34247.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } if env.str("DATABASE_URL", default=None): DATABASES = { 'default': env.db() } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' MIDDLEWARE += ['whitenoise.middleware.WhiteNoiseMiddleware'] AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) STATIC_ROOT = os.path.join(BASE_DIR, "staticfiles") STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'), os.path.join(BASE_DIR, 'web_build/static')] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' # allauth / users ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_AUTHENTICATION_METHOD = 'email' ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_EMAIL_VERIFICATION = "optional" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_UNIQUE_EMAIL = True LOGIN_REDIRECT_URL = "users:redirect" ACCOUNT_ADAPTER = "users.adapters.AccountAdapter" SOCIALACCOUNT_ADAPTER = "users.adapters.SocialAccountAdapter" ACCOUNT_ALLOW_REGISTRATION = env.bool("ACCOUNT_ALLOW_REGISTRATION", True) SOCIALACCOUNT_ALLOW_REGISTRATION = env.bool("SOCIALACCOUNT_ALLOW_REGISTRATION", True) REST_AUTH_SERIALIZERS = { # Replace password reset serializer to fix 500 error "PASSWORD_RESET_SERIALIZER": "home.api.v1.serializers.PasswordSerializer", } REST_AUTH_REGISTER_SERIALIZERS = { # Use custom serializer that has no username and matches web signup "REGISTER_SERIALIZER": "home.api.v1.serializers.SignupSerializer", } # Custom user model AUTH_USER_MODEL = "users.User" EMAIL_HOST = env.str("EMAIL_HOST", "smtp.sendgrid.net") EMAIL_HOST_USER = env.str("SENDGRID_USERNAME", "") EMAIL_HOST_PASSWORD = env.str("SENDGRID_PASSWORD", "") EMAIL_PORT = 587 EMAIL_USE_TLS = True # AWS S3 config AWS_ACCESS_KEY_ID = env.str("AWS_ACCESS_KEY_ID", "") AWS_SECRET_ACCESS_KEY = env.str("AWS_SECRET_ACCESS_KEY", "") AWS_STORAGE_BUCKET_NAME = env.str("AWS_STORAGE_BUCKET_NAME", "") AWS_STORAGE_REGION = env.str("AWS_STORAGE_REGION", "") USE_S3 = ( AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY and AWS_STORAGE_BUCKET_NAME and AWS_STORAGE_REGION ) if USE_S3: AWS_S3_CUSTOM_DOMAIN = env.str("AWS_S3_CUSTOM_DOMAIN", "") AWS_S3_OBJECT_PARAMETERS = {"CacheControl": "max-age=86400"} AWS_DEFAULT_ACL = env.str("AWS_DEFAULT_ACL", "public-read") AWS_MEDIA_LOCATION = env.str("AWS_MEDIA_LOCATION", "media") AWS_AUTO_CREATE_BUCKET = env.bool("AWS_AUTO_CREATE_BUCKET", True) DEFAULT_FILE_STORAGE = env.str( "DEFAULT_FILE_STORAGE", "home.storage_backends.MediaStorage" ) MEDIA_URL = '/mediafiles/' MEDIA_ROOT = os.path.join(BASE_DIR, 'mediafiles') # Swagger settings for api docs SWAGGER_SETTINGS = { "DEFAULT_INFO": f"{ROOT_URLCONF}.api_info", } if DEBUG or not (EMAIL_HOST_USER and EMAIL_HOST_PASSWORD): # output email to console instead of sending if not DEBUG: logging.warning("You should setup `SENDGRID_USERNAME` and `SENDGRID_PASSWORD` env vars to send emails.") EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" # GCP config GS_BUCKET_NAME = env.str("GS_BUCKET_NAME", "") if GS_BUCKET_NAME: DEFAULT_FILE_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" STATICFILES_STORAGE = "storages.backends.gcloud.GoogleCloudStorage" GS_DEFAULT_ACL = "publicRead"
py
1a4fd79f4ec8e66de8aa0dbbfd6034ddde880b55
"""Tests for SDEC Plots.""" from tardis.base import run_tardis import pytest import pandas as pd import numpy as np import os from copy import deepcopy from tardis.visualization.tools.sdec_plot import SDECData, SDECPlotter import astropy.units as u from matplotlib.collections import PolyCollection from matplotlib.lines import Line2D import tables import re def make_valid_name(testid): """ Sanitize pytest IDs to make them valid HDF group names. Parameters ---------- testid : str ID to sanitize. Returns ------- testid : str Sanitized ID. """ testid = testid.replace("-", "_") testid = "_" + testid return testid @pytest.fixture(scope="module") def simulation_simple(config_verysimple, atomic_dataset): """ Instantiate SDEC plotter using a simple simulation model. Parameters ---------- config_verysimple : tardis.io.config_reader.Configuration Configuration object for a very simple simulation. atomic_dataset : str or tardis.atomic.AtomData Atomic data. Returns ------- sim: tardis.simulation.base.Simulation Simulation object. """ # Setup simulation configuration using config_verysimple and # override properties in such a way to make the simulation run faster config_verysimple.montecarlo.iterations = 3 config_verysimple.montecarlo.no_of_packets = 4000 config_verysimple.montecarlo.last_no_of_packets = -1 config_verysimple.spectrum.virtual.virtual_packet_logging = True config_verysimple.montecarlo.no_of_virtual_packets = 1 config_verysimple.spectrum.num = 2000 atomic_data = deepcopy(atomic_dataset) sim = run_tardis( config_verysimple, atom_data=atomic_data, show_convergence_plots=False, ) return sim @pytest.fixture(scope="module") def sdec_ref_data_path(tardis_ref_path): """ Return the path to the reference data for the SDEC plots. Parameters ---------- tardis_ref_path : str Path to the reference data directory. Returns ------- str Path to SDEC reference data. """ return os.path.abspath(os.path.join(tardis_ref_path, "sdec_ref.h5")) class TestSDECPlotter: """Test the SDECPlotter class.""" @pytest.fixture(scope="class", autouse=True) def create_hdf_file(self, request, sdec_ref_data_path): """ Create an HDF5 file object. Parameters ---------- request : _pytest.fixtures.SubRequest sdec_ref_data_path : str Path to the reference data for the SDEC plots. Yields ------- h5py._hl.files.File HDF5 file object. """ cls = type(self) if request.config.getoption("--generate-reference"): cls.hdf_file = tables.open_file(sdec_ref_data_path, "w") else: cls.hdf_file = tables.open_file(sdec_ref_data_path, "r") yield cls.hdf_file cls.hdf_file.close() @pytest.fixture(scope="class") def plotter(self, simulation_simple): """ Create a SDECPlotter object. Parameters ---------- simulation_simple : tardis.simulation.base.Simulation Simulation object. Returns ------- tardis.visualization.tools.sdec_plot.SDECPlotter """ return SDECPlotter.from_simulation(simulation_simple) @pytest.fixture(scope="class") def observed_spectrum(self): """ Return the observed spectrum. Returns ------- Tuple of two astropy.units.quantity.Quantity values. """ test_data = np.loadtxt( "tardis/visualization/tools/tests/data/observed_spectrum_test_data.dat" ) observed_spectrum_wavelength, observed_spectrum_flux = test_data.T observed_spectrum_wavelength = observed_spectrum_wavelength * u.AA observed_spectrum_flux = ( observed_spectrum_flux * u.erg / (u.s * u.cm ** 2 * u.AA) ) return observed_spectrum_wavelength, observed_spectrum_flux @pytest.mark.parametrize("species", [["Si II", "Ca II", "C", "Fe I-V"]]) def test_parse_species_list(self, request, plotter, species): """ Test _parse_species_list method. Parameters ---------- request : _pytest.fixtures.SubRequest plotter : tardis.visualization.tools.sdec_plot.SDECPlotter species : list """ plotter._parse_species_list(species) subgroup_name = make_valid_name(request.node.callspec.id) if request.config.getoption("--generate-reference"): group = self.hdf_file.create_group( self.hdf_file.root, name=subgroup_name, ) self.hdf_file.create_carray( group, name="_full_species_list", obj=plotter._full_species_list ) self.hdf_file.create_carray( group, name="_species_list", obj=plotter._species_list ) self.hdf_file.create_carray( group, name="_keep_colour", obj=plotter._keep_colour ) pytest.skip("Reference data was generated during this run.") else: group = self.hdf_file.get_node("/" + subgroup_name) # because plotter._full_species_list is an array of strings np.testing.assert_equal( np.asarray(plotter._full_species_list), self.hdf_file.get_node(group, "_full_species_list") .read() .astype(str), ) np.testing.assert_allclose( np.asarray(plotter._species_list), self.hdf_file.get_node(group, "_species_list"), ) np.testing.assert_allclose( np.asarray(plotter._keep_colour), self.hdf_file.get_node(group, "_keep_colour"), ) @pytest.mark.parametrize("packets_mode", ["virtual", "real"]) @pytest.mark.parametrize("packet_wvl_range", [[500, 9000] * u.AA]) @pytest.mark.parametrize("distance", [10 * u.Mpc, 50 * u.Mpc]) @pytest.mark.parametrize("nelements", [1, 3]) def test_calculate_plotting_data( self, request, plotter, packets_mode, packet_wvl_range, distance, nelements, ): """ Test _calculate_plotting_data method. Parameters ---------- request : _pytest.fixtures.SubRequest plotter : tardis.visualization.tools.sdec_plot.SDECPlotter packets_mode : str packet_wvl_range : astropy.units.quantity.Quantity distance : astropy.units.quantity.Quantity nelements : int """ plotter._calculate_plotting_data( packets_mode, packet_wvl_range, distance, nelements ) # each group is a different combination of arguments subgroup_name = make_valid_name(request.node.callspec.id) if request.config.getoption("--generate-reference"): group = self.hdf_file.create_group( self.hdf_file.root, name=subgroup_name, ) self.hdf_file.create_carray( group, name="plot_frequency_bins", obj=plotter.plot_frequency_bins.cgs.value, ) self.hdf_file.create_carray( group, name="plot_wavelength", obj=plotter.plot_wavelength.cgs.value, ) self.hdf_file.create_carray( group, name="plot_frequency", obj=plotter.plot_frequency.cgs.value, ) self.hdf_file.create_carray( group, name="packet_wvl_range_mask", obj=plotter.packet_wvl_range_mask, ) self.hdf_file.create_carray( group, name="emission_species", obj=plotter.emission_species ) self.hdf_file.create_carray( group, name="absorption_species", obj=plotter.absorption_species ) self.hdf_file.create_carray( group, name="modeled_spectrum_luminosity", obj=plotter.modeled_spectrum_luminosity.cgs.value, ) if isinstance(plotter.lum_to_flux, u.quantity.Quantity): self.hdf_file.create_array( group, name="lum_to_flux", obj=plotter.lum_to_flux.cgs.value ) else: self.hdf_file.create_array( group, name="lum_to_flux", obj=plotter.lum_to_flux ) self.hdf_file.create_carray( group, name="species", obj=plotter.species.astype(np.float64) ) plotter.absorption_luminosities_df.to_hdf( self.hdf_file.filename, key=f"{subgroup_name}/absorption_luminosities_df", ) plotter.emission_luminosities_df.to_hdf( self.hdf_file.filename, key=f"{subgroup_name}/emission_luminosities_df", ) plotter.total_luminosities_df.to_hdf( self.hdf_file.filename, key=f"{subgroup_name}/total_luminosities_df", ) pytest.skip("Reference data was generated during this run.") else: # use the subgroup id to iterate over the hdf file group = self.hdf_file.get_node("/" + subgroup_name) np.testing.assert_allclose( plotter.plot_frequency_bins.cgs.value, self.hdf_file.get_node(group, "plot_frequency_bins"), ) np.testing.assert_allclose( plotter.plot_wavelength.cgs.value, self.hdf_file.get_node(group, "plot_wavelength"), ) np.testing.assert_allclose( plotter.plot_frequency.cgs.value, self.hdf_file.get_node(group, "plot_frequency"), ) np.testing.assert_allclose( plotter.modeled_spectrum_luminosity.cgs.value, self.hdf_file.get_node(group, "modeled_spectrum_luminosity"), ) np.testing.assert_allclose( plotter.packet_wvl_range_mask, self.hdf_file.get_node(group, "packet_wvl_range_mask"), ) np.testing.assert_allclose( plotter.absorption_species, self.hdf_file.get_node(group, "absorption_species"), ) np.testing.assert_allclose( plotter.emission_species, self.hdf_file.get_node(group, "emission_species"), ) if isinstance(plotter.lum_to_flux, u.quantity.Quantity): assert ( plotter.lum_to_flux.cgs.value == self.hdf_file.get_node(group, "lum_to_flux"), ) else: assert plotter.lum_to_flux == self.hdf_file.get_node( group, "lum_to_flux" ) np.testing.assert_allclose( plotter.species.astype(np.float64), self.hdf_file.get_node(group, "species"), ) pd.testing.assert_frame_equal( plotter.absorption_luminosities_df, pd.read_hdf( self.hdf_file.filename, key=f"{subgroup_name}/absorption_luminosities_df", ), ) pd.testing.assert_frame_equal( plotter.emission_luminosities_df, pd.read_hdf( self.hdf_file.filename, key=f"{subgroup_name}/emission_luminosities_df", ), ) pd.testing.assert_frame_equal( plotter.total_luminosities_df, pd.read_hdf( self.hdf_file.filename, key=f"{subgroup_name}/total_luminosities_df", ), ) @pytest.mark.parametrize("packets_mode", ["virtual", "real"]) @pytest.mark.parametrize("packet_wvl_range", [[500, 9000] * u.AA, None]) @pytest.mark.parametrize("distance", [10 * u.Mpc, None]) @pytest.mark.parametrize("show_modeled_spectrum", [True, False]) @pytest.mark.parametrize("nelements", [1, None]) @pytest.mark.parametrize( "species_list", [["Si II", "Ca II", "C", "Fe I-V"], None] ) def test_generate_plot_mpl( self, request, plotter, packets_mode, packet_wvl_range, distance, show_modeled_spectrum, observed_spectrum, nelements, species_list, ): """ Test generate_plot_mpl method. Parameters ---------- request : _pytest.fixtures.SubRequest plotter : tardis.visualization.tools.sdec_plot.SDECPlotter packets_mode : str packet_wvl_range : astropy.units.quantity.Quantity distance : astropy.units.quantity.Quantity show_modeled_spectrum : bool observed_spectrum : tuple of two astropy.units.quantity.Quantity values nelements : int species_list : list of str """ subgroup_name = make_valid_name("mpl" + request.node.callspec.id) fig = plotter.generate_plot_mpl( packets_mode=packets_mode, packet_wvl_range=packet_wvl_range, distance=distance, show_modeled_spectrum=show_modeled_spectrum, observed_spectrum=observed_spectrum if distance else None, nelements=nelements, species_list=species_list, ) if request.config.getoption("--generate-reference"): group = self.hdf_file.create_group( self.hdf_file.root, name=subgroup_name, ) self.hdf_file.create_carray( group, name="_species_name", obj=plotter._species_name ) self.hdf_file.create_carray( group, name="_color_list", obj=plotter._color_list ) fig_subgroup = self.hdf_file.create_group( group, name="fig_data", ) for index, data in enumerate(fig.get_children()): trace_group = self.hdf_file.create_group( fig_subgroup, name="_" + str(index), ) if isinstance(data.get_label(), str): self.hdf_file.create_array( trace_group, name="label", obj=data.get_label().encode() ) # save artists which correspond to element contributions if isinstance(data, PolyCollection): for index, path in enumerate(data.get_paths()): self.hdf_file.create_carray( trace_group, name="path" + str(index), obj=path.vertices, ) # save line plots if isinstance(data, Line2D): self.hdf_file.create_carray( trace_group, name="data", obj=data.get_xydata(), ) self.hdf_file.create_carray( trace_group, name="path", obj=data.get_path().vertices ) pytest.skip("Reference data was generated during this run.") else: group = self.hdf_file.get_node("/" + subgroup_name) # test output of the _make_colorbar_labels function assert ( plotter._species_name == self.hdf_file.get_node(group, "_species_name") .read() .astype(str), ) # test output of the _make_colorbar_colors function np.testing.assert_allclose( np.asarray(np.asarray(plotter._color_list)), self.hdf_file.get_node(group, "_color_list"), ) fig_subgroup = self.hdf_file.get_node(group, "fig_data") for index, data in enumerate(fig.get_children()): trace_group = self.hdf_file.get_node( fig_subgroup, "_" + str(index) ) if isinstance(data.get_label(), str): assert ( data.get_label() == self.hdf_file.get_node(trace_group, "label") .read() .decode() ) # test element contributions if isinstance(data, PolyCollection): for index, path in enumerate(data.get_paths()): np.testing.assert_allclose( path.vertices, self.hdf_file.get_node( trace_group, "path" + str(index) ), ) # compare line plot data if isinstance(data, Line2D): np.testing.assert_allclose( data.get_xydata(), self.hdf_file.get_node(trace_group, "data"), ) np.testing.assert_allclose( data.get_path().vertices, self.hdf_file.get_node(trace_group, "path"), ) @pytest.mark.parametrize("packets_mode", ["virtual", "real"]) @pytest.mark.parametrize("packet_wvl_range", [[500, 9000] * u.AA, None]) @pytest.mark.parametrize("distance", [10 * u.Mpc, None]) @pytest.mark.parametrize("show_modeled_spectrum", [True, False]) @pytest.mark.parametrize("nelements", [1, None]) @pytest.mark.parametrize( "species_list", [["Si II", "Ca II", "C", "Fe I-V"], None] ) def test_generate_plot_ply( self, request, plotter, packets_mode, packet_wvl_range, distance, show_modeled_spectrum, observed_spectrum, nelements, species_list, ): """ Test generate_plot_mpl method. Parameters ---------- request : _pytest.fixtures.SubRequest plotter : tardis.visualization.tools.sdec_plot.SDECPlotter packets_mode : str packet_wvl_range : astropy.units.quantity.Quantity distance : astropy.units.quantity.Quantity show_modeled_spectrum : bool observed_spectrum : tuple of two astropy.units.quantity.Quantity values nelements : int species_list : list of str """ subgroup_name = make_valid_name("ply" + request.node.callspec.id) fig = plotter.generate_plot_ply( packets_mode=packets_mode, packet_wvl_range=packet_wvl_range, distance=distance, show_modeled_spectrum=show_modeled_spectrum, observed_spectrum=observed_spectrum if distance else None, nelements=nelements, species_list=species_list, ) if request.config.getoption("--generate-reference"): group = self.hdf_file.create_group( self.hdf_file.root, name=subgroup_name, ) self.hdf_file.create_carray( group, name="_species_name", obj=plotter._species_name ) self.hdf_file.create_carray( group, name="_color_list", obj=plotter._color_list ) fig_subgroup = self.hdf_file.create_group( group, name="fig_data", ) for index, data in enumerate(fig.data): trace_group = self.hdf_file.create_group( fig_subgroup, name="_" + str(index), ) if data.stackgroup: self.hdf_file.create_array( trace_group, name="stackgroup", obj=data.stackgroup.encode(), ) if data.name: self.hdf_file.create_array( trace_group, name="name", obj=data.name.encode(), ) self.hdf_file.create_carray( trace_group, name="x", obj=data.x, ) self.hdf_file.create_carray( trace_group, name="y", obj=data.y, ) pytest.skip("Reference data was generated during this run.") else: group = self.hdf_file.get_node("/", subgroup_name) # test output of the _make_colorbar_labels function assert ( plotter._species_name == self.hdf_file.get_node(group, "_species_name") .read() .astype(str), ) # test output of the _make_colorbar_colors function np.testing.assert_allclose( np.asarray(np.asarray(plotter._color_list)), self.hdf_file.get_node(group, "_color_list"), ) fig_subgroup = self.hdf_file.get_node(group, "fig_data") for index, data in enumerate(fig.data): trace_group = self.hdf_file.get_node( fig_subgroup, "_" + str(index) ) if data.stackgroup: assert ( data.stackgroup == self.hdf_file.get_node(trace_group, "stackgroup") .read() .decode() ) if data.name: assert ( data.name == self.hdf_file.get_node(trace_group, "name") .read() .decode() ) np.testing.assert_allclose( self.hdf_file.get_node(trace_group, "x"), data.x ) np.testing.assert_allclose( self.hdf_file.get_node(trace_group, "y"), data.y )
py
1a4fd860cf13dc8e282102ea1b0d9f8a1aac2c9a
import os import time import unittest from time import sleep import pytest import requests from jina import JINA_GLOBAL from jina.enums import FlowOptimizeLevel, SocketType from jina.flow import Flow from jina.main.checker import NetworkChecker from jina.main.parser import set_pea_parser, set_ping_parser from jina.main.parser import set_pod_parser from jina.peapods.pea import BasePea from jina.peapods.pod import BasePod from tests import JinaTestCase, random_docs cur_dir = os.path.dirname(os.path.abspath(__file__)) class FlowTestCase(JinaTestCase): def test_ping(self): a1 = set_pea_parser().parse_args([]) a2 = set_ping_parser().parse_args(['0.0.0.0', str(a1.port_ctrl), '--print-response']) a3 = set_ping_parser().parse_args(['0.0.0.1', str(a1.port_ctrl), '--timeout', '1000']) with self.assertRaises(SystemExit) as cm: with BasePea(a1): NetworkChecker(a2) self.assertEqual(cm.exception.code, 0) # test with bad addresss with self.assertRaises(SystemExit) as cm: with BasePea(a1): NetworkChecker(a3) self.assertEqual(cm.exception.code, 1) def test_flow_with_jump(self): f = (Flow().add(name='r1', uses='_forward') .add(name='r2', uses='_forward') .add(name='r3', uses='_forward', needs='r1') .add(name='r4', uses='_forward', needs='r2') .add(name='r5', uses='_forward', needs='r3') .add(name='r6', uses='_forward', needs='r4') .add(name='r8', uses='_forward', needs='r6') .add(name='r9', uses='_forward', needs='r5') .add(name='r10', uses='_merge', needs=['r9', 'r8'])) with f: f.dry_run() node = f._pod_nodes['gateway'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r1'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUB_BIND) node = f._pod_nodes['r2'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r3'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r4'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r5'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r6'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r8'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r9'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r10'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_BIND) for name, node in f._pod_nodes.items(): self.assertEqual(node.peas_args['peas'][0], node.head_args) self.assertEqual(node.peas_args['peas'][0], node.tail_args) f.save_config('tmp.yml') Flow.load_config('tmp.yml') with Flow.load_config('tmp.yml') as fl: fl.dry_run() self.add_tmpfile('tmp.yml') def test_simple_flow(self): bytes_gen = (b'aaa' for _ in range(10)) def bytes_fn(): for _ in range(100): yield b'aaa' f = (Flow() .add(uses='_forward')) with f: f.index(input_fn=bytes_gen) with f: f.index(input_fn=bytes_fn) with f: f.index(input_fn=bytes_fn) f.index(input_fn=bytes_fn) node = f._pod_nodes['gateway'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['pod0'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_BIND) for name, node in f._pod_nodes.items(): self.assertEqual(node.peas_args['peas'][0], node.head_args) self.assertEqual(node.peas_args['peas'][0], node.tail_args) def test_load_flow_from_yaml(self): with open(os.path.join(cur_dir, '../yaml/test-flow.yml')) as fp: a = Flow.load_config(fp) with open(os.path.join(cur_dir, '../yaml/swarm-out.yml'), 'w') as fp, a: a.to_swarm_yaml(fp) self.add_tmpfile(os.path.join(cur_dir, '../yaml/swarm-out.yml')) def test_flow_identical(self): with open(os.path.join(cur_dir, '../yaml/test-flow.yml')) as fp: a = Flow.load_config(fp) b = (Flow() .add(name='chunk_seg', parallel=3) .add(name='wqncode1', parallel=2) .add(name='encode2', parallel=2, needs='chunk_seg') .join(['wqncode1', 'encode2'])) a.save_config('test2.yml') c = Flow.load_config('test2.yml') self.assertEqual(a, b) self.assertEqual(a, c) self.add_tmpfile('test2.yml') with a as f: node = f._pod_nodes['gateway'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['chunk_seg'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.head_args.socket_out, SocketType.ROUTER_BIND) for arg in node.peas_args['peas']: self.assertEqual(arg.socket_in, SocketType.DEALER_CONNECT) self.assertEqual(arg.socket_out, SocketType.PUSH_CONNECT) self.assertEqual(node.tail_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUB_BIND) node = f._pod_nodes['wqncode1'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.head_args.socket_out, SocketType.ROUTER_BIND) for arg in node.peas_args['peas']: self.assertEqual(arg.socket_in, SocketType.DEALER_CONNECT) self.assertEqual(arg.socket_out, SocketType.PUSH_CONNECT) self.assertEqual(node.tail_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['encode2'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.head_args.socket_out, SocketType.ROUTER_BIND) for arg in node.peas_args['peas']: self.assertEqual(arg.socket_in, SocketType.DEALER_CONNECT) self.assertEqual(arg.socket_out, SocketType.PUSH_CONNECT) self.assertEqual(node.tail_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) def test_dryrun(self): f = (Flow() .add(name='dummyEncoder', uses=os.path.join(cur_dir, '../mwu-encoder/mwu_encoder.yml'))) with f: f.dry_run() def test_pod_status(self): args = set_pod_parser().parse_args(['--parallel', '3']) with BasePod(args) as p: self.assertEqual(len(p.status), p.num_peas) for v in p.status: self.assertIsNotNone(v) def test_flow_no_container(self): f = (Flow() .add(name='dummyEncoder', uses=os.path.join(cur_dir, '../mwu-encoder/mwu_encoder.yml'))) with f: f.index(input_fn=random_docs(10)) def test_flow_yaml_dump(self): f = Flow(logserver_config=os.path.join(cur_dir, '../yaml/test-server-config.yml'), optimize_level=FlowOptimizeLevel.IGNORE_GATEWAY, no_gateway=True) f.save_config('test1.yml') fl = Flow.load_config('test1.yml') self.assertEqual(f.args.logserver_config, fl.args.logserver_config) self.assertEqual(f.args.optimize_level, fl.args.optimize_level) self.add_tmpfile('test1.yml') def test_flow_log_server(self): f = Flow.load_config(os.path.join(cur_dir, '../yaml/test_log_server.yml')) with f: self.assertTrue(hasattr(JINA_GLOBAL.logserver, 'ready')) # Ready endpoint a = requests.get( JINA_GLOBAL.logserver.address + '/status/ready', timeout=5) self.assertEqual(a.status_code, 200) # YAML endpoint a = requests.get( JINA_GLOBAL.logserver.address + '/data/yaml', timeout=5) self.assertTrue(a.text.startswith('!Flow')) self.assertEqual(a.status_code, 200) # Pod endpoint a = requests.get( JINA_GLOBAL.logserver.address + '/data/api/pod', timeout=5) self.assertTrue('pod' in a.json()) self.assertEqual(a.status_code, 200) # Shutdown endpoint a = requests.get( JINA_GLOBAL.logserver.address + '/action/shutdown', timeout=5) self.assertEqual(a.status_code, 200) # Check ready endpoint after shutdown, check if server stopped with self.assertRaises(requests.exceptions.ConnectionError): a = requests.get( JINA_GLOBAL.logserver.address + '/status/ready', timeout=5) def test_shards(self): f = Flow().add(name='doc_pb', uses=os.path.join(cur_dir, '../yaml/test-docpb.yml'), parallel=3, separated_workspace=True) with f: f.index(input_fn=random_docs(1000), random_doc_id=False) with f: pass self.add_tmpfile('test-docshard-tmp') time.sleep(2) def test_py_client(self): f = (Flow().add(name='r1', uses='_forward') .add(name='r2', uses='_forward') .add(name='r3', uses='_forward', needs='r1') .add(name='r4', uses='_forward', needs='r2') .add(name='r5', uses='_forward', needs='r3') .add(name='r6', uses='_forward', needs='r4') .add(name='r8', uses='_forward', needs='r6') .add(name='r9', uses='_forward', needs='r5') .add(name='r10', uses='_merge', needs=['r9', 'r8'])) with f: f.dry_run() from jina.clients import py_client py_client(port_expose=f.port_expose, host=f.host).dry_run(as_request='index') with f: node = f._pod_nodes['gateway'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r1'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUB_BIND) node = f._pod_nodes['r2'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r3'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r4'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r5'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r6'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r8'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r9'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r10'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_BIND) for name, node in f._pod_nodes.items(): self.assertEqual(node.peas_args['peas'][0], node.head_args) self.assertEqual(node.peas_args['peas'][0], node.tail_args) def test_dry_run_with_two_pathways_diverging_at_gateway(self): f = (Flow().add(name='r2', uses='_forward') .add(name='r3', uses='_forward', needs='gateway') .join(['r2', 'r3'])) with f: node = f._pod_nodes['gateway'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUB_BIND) node = f._pod_nodes['r2'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r3'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) for name, node in f._pod_nodes.items(): self.assertEqual(node.peas_args['peas'][0], node.head_args) self.assertEqual(node.peas_args['peas'][0], node.tail_args) f.dry_run() def test_dry_run_with_two_pathways_diverging_at_non_gateway(self): f = (Flow().add(name='r1', uses='_forward') .add(name='r2', uses='_forward') .add(name='r3', uses='_forward', needs='r1') .join(['r2', 'r3'])) with f: node = f._pod_nodes['gateway'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r1'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUB_BIND) node = f._pod_nodes['r2'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r3'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) for name, node in f._pod_nodes.items(): self.assertEqual(node.peas_args['peas'][0], node.head_args) self.assertEqual(node.peas_args['peas'][0], node.tail_args) f.dry_run() @pytest.mark.skip('this leads to zmq address conflicts on github') def test_refactor_num_part(self): sleep(3) f = (Flow().add(name='r1', uses='_logforward', needs='gateway') .add(name='r2', uses='_logforward', needs='gateway') .join(['r1', 'r2'])) with f: node = f._pod_nodes['gateway'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r1'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUB_BIND) node = f._pod_nodes['r2'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) for name, node in f._pod_nodes.items(): self.assertEqual(node.peas_args['peas'][0], node.head_args) self.assertEqual(node.peas_args['peas'][0], node.tail_args) f.index_lines(lines=['abbcs', 'efgh']) def test_refactor_num_part_proxy(self): f = (Flow().add(name='r1', uses='_logforward') .add(name='r2', uses='_logforward', needs='r1') .add(name='r3', uses='_logforward', needs='r1') .join(['r2', 'r3'])) with f: node = f._pod_nodes['gateway'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r1'] self.assertEqual(node.head_args.socket_in, SocketType.PULL_BIND) self.assertEqual(node.tail_args.socket_out, SocketType.PUB_BIND) node = f._pod_nodes['r2'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) node = f._pod_nodes['r3'] self.assertEqual(node.head_args.socket_in, SocketType.SUB_CONNECT) self.assertEqual(node.tail_args.socket_out, SocketType.PUSH_CONNECT) for name, node in f._pod_nodes.items(): self.assertEqual(node.peas_args['peas'][0], node.head_args) self.assertEqual(node.peas_args['peas'][0], node.tail_args) f.index_lines(lines=['abbcs', 'efgh']) def test_refactor_num_part_proxy_2(self): f = (Flow().add(name='r1', uses='_logforward') .add(name='r2', uses='_logforward', needs='r1', parallel=2) .add(name='r3', uses='_logforward', needs='r1', parallel=3, polling='ALL') .join(['r2', 'r3'])) with f: f.index_lines(lines=['abbcs', 'efgh']) def test_refactor_num_part_2(self): f = (Flow() .add(name='r1', uses='_logforward', needs='gateway', parallel=3, polling='ALL')) with f: f.index_lines(lines=['abbcs', 'efgh']) f = (Flow() .add(name='r1', uses='_logforward', needs='gateway', parallel=3)) with f: f.index_lines(lines=['abbcs', 'efgh']) def test_index_text_files(self): def validate(req): for d in req.docs: self.assertNotEqual(d.text, '') f = (Flow(read_only=True).add(uses=os.path.join(cur_dir, '../yaml/datauriindex.yml'), timeout_ready=-1)) with f: f.index_files('*.py', output_fn=validate, callback_on_body=True) self.add_tmpfile('doc.gzip') def test_flow_with_publish_driver(self): f = (Flow() .add(name='r2', uses='!OneHotTextEncoder') .add(name='r3', uses='!OneHotTextEncoder', needs='gateway') .join(needs=['r2', 'r3'])) def validate(req): for d in req.docs: self.assertIsNotNone(d.embedding) with f: f.index_lines(lines=['text_1', 'text_2'], output_fn=validate, callback_on_body=True) if __name__ == '__main__': unittest.main()
py
1a4fd96f8312e0d7d686c4960ae8a027a759717a
#!/usr/bin/env python3 # Copyright (c) 2015-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import sys import os from random import SystemRandom import base64 import hmac def generate_salt(): # This uses os.urandom() underneath cryptogen = SystemRandom() # Create 16 byte hex salt salt_sequence = [cryptogen.randrange(256) for _ in range(16)] return ''.join([format(r, 'x') for r in salt_sequence]) def generate_password(): """Create 32 byte b64 password""" return base64.urlsafe_b64encode(os.urandom(32)).decode('utf-8') def password_to_hmac(salt, password): m = hmac.new(bytearray(salt, 'utf-8'), bytearray(password, 'utf-8'), 'SHA256') return m.hexdigest() def main(): if len(sys.argv) < 2: sys.stderr.write('Please include username (and an optional password, will generate one if not provided) as an argument.\n') sys.exit(0) username = sys.argv[1] salt = generate_salt() if len(sys.argv) > 2: password = sys.argv[2] else: password = generate_password() password_hmac = password_to_hmac(salt, password) print('String to be appended to bitcoinrush.conf:') print('rpcauth={0}:{1}${2}'.format(username, salt, password_hmac)) print('Your password:\n{0}'.format(password)) if __name__ == '__main__': main()
py
1a4fdac7a2f6d7698621f61573f115dbf6b18e4d
"""A training script of PPO on OpenAI Gym Mujoco environments. This script follows the settings of https://arxiv.org/abs/1709.06560 as much as possible. """ import argparse import functools import chainer from chainer import functions as F from chainer import links as L import gym import gym.spaces import numpy as np import chainerrl from chainerrl.agents import PPO from chainerrl import experiments from chainerrl import misc def main(): import logging parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use, set to -1 if no GPU.') parser.add_argument('--env', type=str, default='Hopper-v2', help='OpenAI Gym MuJoCo env to perform algorithm on.') parser.add_argument('--num-envs', type=int, default=1, help='Number of envs run in parallel.') parser.add_argument('--seed', type=int, default=0, help='Random seed [0, 2 ** 32)') parser.add_argument('--outdir', type=str, default='results', help='Directory path to save output files.' ' If it does not exist, it will be created.') parser.add_argument('--steps', type=int, default=2 * 10 ** 6, help='Total number of timesteps to train the agent.') parser.add_argument('--eval-interval', type=int, default=100000, help='Interval in timesteps between evaluations.') parser.add_argument('--eval-n-runs', type=int, default=100, help='Number of episodes run for each evaluation.') parser.add_argument('--render', action='store_true', help='Render env states in a GUI window.') parser.add_argument('--demo', action='store_true', help='Just run evaluation, not training.') parser.add_argument('--load-pretrained', action='store_true', default=False) parser.add_argument('--load', type=str, default='', help='Directory to load agent from.') parser.add_argument('--logger-level', type=int, default=logging.INFO, help='Level of the root logger.') parser.add_argument('--monitor', action='store_true', help='Wrap env with gym.wrappers.Monitor.') parser.add_argument('--log-interval', type=int, default=1000, help='Interval in timesteps between outputting log' ' messages during training') parser.add_argument('--update-interval', type=int, default=2048, help='Interval in timesteps between model updates.') parser.add_argument('--epochs', type=int, default=10, help='Number of epochs to update model for per PPO' ' iteration.') parser.add_argument('--batch-size', type=int, default=64, help='Minibatch size') args = parser.parse_args() logging.basicConfig(level=args.logger_level) # Set a random seed used in ChainerRL misc.set_random_seed(args.seed, gpus=(args.gpu,)) # Set different random seeds for different subprocesses. # If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3]. # If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7]. process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs assert process_seeds.max() < 2 ** 32 args.outdir = experiments.prepare_output_dir(args, args.outdir) def make_env(process_idx, test): env = gym.make(args.env) # Use different random seeds for train and test envs process_seed = int(process_seeds[process_idx]) env_seed = 2 ** 32 - 1 - process_seed if test else process_seed env.seed(env_seed) # Cast observations to float32 because our model uses float32 env = chainerrl.wrappers.CastObservationToFloat32(env) if args.monitor: env = chainerrl.wrappers.Monitor(env, args.outdir) if args.render: env = chainerrl.wrappers.Render(env) return env def make_batch_env(test): return chainerrl.envs.MultiprocessVectorEnv( [functools.partial(make_env, idx, test) for idx, env in enumerate(range(args.num_envs))]) # Only for getting timesteps, and obs-action spaces sample_env = gym.make(args.env) timestep_limit = sample_env.spec.max_episode_steps obs_space = sample_env.observation_space action_space = sample_env.action_space print('Observation space:', obs_space) print('Action space:', action_space) assert isinstance(action_space, gym.spaces.Box) # Normalize observations based on their empirical mean and variance obs_normalizer = chainerrl.links.EmpiricalNormalization( obs_space.low.size, clip_threshold=5) # While the original paper initialized weights by normal distribution, # we use orthogonal initialization as the latest openai/baselines does. winit = chainerrl.initializers.Orthogonal(1.) winit_last = chainerrl.initializers.Orthogonal(1e-2) action_size = action_space.low.size policy = chainer.Sequential( L.Linear(None, 64, initialW=winit), F.tanh, L.Linear(None, 64, initialW=winit), F.tanh, L.Linear(None, action_size, initialW=winit_last), chainerrl.policies.GaussianHeadWithStateIndependentCovariance( action_size=action_size, var_type='diagonal', var_func=lambda x: F.exp(2 * x), # Parameterize log std var_param_init=0, # log std = 0 => std = 1 ), ) vf = chainer.Sequential( L.Linear(None, 64, initialW=winit), F.tanh, L.Linear(None, 64, initialW=winit), F.tanh, L.Linear(None, 1, initialW=winit), ) # Combine a policy and a value function into a single model model = chainerrl.links.Branched(policy, vf) opt = chainer.optimizers.Adam(3e-4, eps=1e-5) opt.setup(model) agent = PPO( model, opt, obs_normalizer=obs_normalizer, gpu=args.gpu, update_interval=args.update_interval, minibatch_size=args.batch_size, epochs=args.epochs, clip_eps_vf=None, entropy_coef=0, standardize_advantages=True, gamma=0.995, lambd=0.97, ) if args.load or args.load_pretrained: # either load or load_pretrained must be false assert not args.load or not args.load_pretrained if args.load: agent.load(args.load) else: agent.load(misc.download_model( "PPO", args.env, model_type="final")[0]) if args.demo: env = make_batch_env(True) eval_stats = experiments.eval_performance( env=env, agent=agent, n_steps=None, n_episodes=args.eval_n_runs, max_episode_len=timestep_limit) print('n_runs: {} mean: {} median: {} stdev {}'.format( args.eval_n_runs, eval_stats['mean'], eval_stats['median'], eval_stats['stdev'])) else: experiments.train_agent_batch_with_evaluation( agent=agent, env=make_batch_env(False), eval_env=make_batch_env(True), outdir=args.outdir, steps=args.steps, eval_n_steps=None, eval_n_episodes=args.eval_n_runs, eval_interval=args.eval_interval, log_interval=args.log_interval, max_episode_len=timestep_limit, save_best_so_far_agent=False, ) if __name__ == '__main__': main()
py
1a4fdb1ee70a5773dab5d28901df6525414453d7
from string import punctuation, digits import numpy as np import random # Part I #pragma: coderesponse template def get_order(n_samples): try: with open(str(n_samples) + '.txt') as fp: line = fp.readline() return list(map(int, line.split(','))) except FileNotFoundError: random.seed(1) indices = list(range(n_samples)) random.shuffle(indices) return indices #pragma: coderesponse end #pragma: coderesponse template def hinge_loss_single(feature_vector, label, theta, theta_0): """ Finds the hinge loss on a single data point given specific classification parameters. Args: feature_vector - A numpy array describing the given data point. label - A real valued number, the correct classification of the data point. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A real number representing the hinge loss associated with the given data point and parameters. """ # Your code here # raise NotImplementedError agreement = label * (np.dot(theta, feature_vector) + theta_0) if agreement >= 1: h_loss = 0 else: h_loss = 1 - agreement return h_loss #pragma: coderesponse end #pragma: coderesponse template def hinge_loss_full(feature_matrix, labels, theta, theta_0): """ Finds the total hinge loss on a set of data given specific classification parameters. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A real number representing the hinge loss associated with the given dataset and parameters. This number should be the average hinge loss across all of the points in the feature matrix. """ # Your code here # raise NotImplementedError n = feature_matrix.shape[0] theta_vec = np.repeat(theta_0, n) # gives the nx1 agreement vector agreement = labels.T * (np.matmul(feature_matrix, theta) + theta_vec.T) h_loss = (1.0/n) * np.sum(1 - agreement[agreement < 1]) return h_loss #pragma: coderesponse end #pragma: coderesponse template def perceptron_single_step_update( feature_vector, label, current_theta, current_theta_0): """ Properly updates the classification parameter, theta and theta_0, on a single step of the perceptron algorithm. Args: feature_vector - A numpy array describing a single data point. label - The correct classification of the feature vector. current_theta - The current theta being used by the perceptron algorithm before this update. current_theta_0 - The current theta_0 being used by the perceptron algorithm before this update. Returns: A tuple where the first element is a numpy array with the value of theta after the current update has completed and the second element is a real valued number with the value of theta_0 after the current updated has completed. """ # Your code here test = label * (np.dot(current_theta, feature_vector) + current_theta_0) if test <= 10**-9: current_theta += label * feature_vector current_theta_0 += label return current_theta, current_theta_0 # raise NotImplementedError #pragma: coderesponse end #pragma: coderesponse template def perceptron(feature_matrix, labels, T): """ Runs the full perceptron algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. NOTE: Iterate the data matrix by the orders returned by get_order(feature_matrix.shape[0]) Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the perceptron algorithm should iterate through the feature matrix. Returns: A tuple where the first element is a numpy array with the value of theta, the linear classification parameter, after T iterations through the feature matrix and the second element is a real number with the value of theta_0, the offset classification parameter, after T iterations through the feature matrix. """ # Your code here n_cols = feature_matrix.shape[1] # initialize theta = np.zeros(n_cols) theta_0 = 0.0 for t in range(T): for i in get_order(feature_matrix.shape[0]): theta, theta_0 = perceptron_single_step_update(feature_matrix[i, :], labels[i], theta, theta_0) return theta, theta_0 # raise NotImplementedError #pragma: coderesponse end #pragma: coderesponse template def average_perceptron(feature_matrix, labels, T): """ Runs the average perceptron algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. NOTE: Iterate the data matrix by the orders returned by get_order(feature_matrix.shape[0]) Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the perceptron algorithm should iterate through the feature matrix. Returns: A tuple where the first element is a numpy array with the value of the average theta, the linear classification parameter, found after T iterations through the feature matrix and the second element is a real number with the value of the average theta_0, the offset classification parameter, found after T iterations through the feature matrix. Hint: It is difficult to keep a running average; however, it is simple to find a sum and divide. """ # Your code here # raise NotImplementedError iter_times = feature_matrix.shape[0] * T n_cols = feature_matrix.shape[1] # initialize theta = np.zeros(n_cols) theta_0 = 0.0 # track theta theta_sum = np.zeros(n_cols) theta_0_sum = 0.0 for t in range(T): for i in get_order(feature_matrix.shape[0]): theta, theta_0 = perceptron_single_step_update(feature_matrix[i, :], labels[i], theta, theta_0) theta_sum += theta theta_0_sum += theta_0 theta_final = theta_sum / iter_times theta_0_final = theta_0_sum / iter_times return theta_final, theta_0_final #pragma: coderesponse end #pragma: coderesponse template def pegasos_single_step_update( feature_vector, label, L, eta, current_theta, current_theta_0): """ Properly updates the classification parameter, theta and theta_0, on a single step of the Pegasos algorithm Args: feature_vector - A numpy array describing a single data point. label - The correct classification of the feature vector. L - The lamba value being used to update the parameters. eta - Learning rate to update parameters. current_theta - The current theta being used by the Pegasos algorithm before this update. current_theta_0 - The current theta_0 being used by the Pegasos algorithm before this update. Returns: A tuple where the first element is a numpy array with the value of theta after the current update has completed and the second element is a real valued number with the value of theta_0 after the current updated has completed. """ # Your code here # raise NotImplementedError if label * (np.dot(current_theta, feature_vector) + current_theta_0) <= 1: current_theta = (1 - eta * L) * current_theta + eta * label * feature_vector current_theta_0 = current_theta_0 + eta * label else: current_theta = (1 - eta * L) * current_theta current_theta_0 = current_theta_0 return current_theta, current_theta_0 #pragma: coderesponse end #pragma: coderesponse template def pegasos(feature_matrix, labels, T, L): """ Runs the Pegasos algorithm on a given set of data. Runs T iterations through the data set, there is no need to worry about stopping early. For each update, set learning rate = 1/sqrt(t), where t is a counter for the number of updates performed so far (between 1 and nT inclusive). NOTE: Please use the previously implemented functions when applicable. Do not copy paste code from previous parts. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. labels - A numpy array where the kth element of the array is the correct classification of the kth row of the feature matrix. T - An integer indicating how many times the algorithm should iterate through the feature matrix. L - The lamba value being used to update the Pegasos algorithm parameters. Returns: A tuple where the first element is a numpy array with the value of the theta, the linear classification parameter, found after T iterations through the feature matrix and the second element is a real number with the value of the theta_0, the offset classification parameter, found after T iterations through the feature matrix. """ # Your code here # raise NotImplementedError n_cols = feature_matrix.shape[1] # n_iters = n_rows * T theta = np.zeros(n_cols) theta_0 = 0.0 eta = 1.0 n_update = 0 for t in range(T): for i in get_order(feature_matrix.shape[0]): theta, theta_0 = pegasos_single_step_update(feature_matrix[i, :], labels[i], L, eta, theta, theta_0) n_update += 1 eta = 1.0 / np.sqrt(n_update + 1) return theta, theta_0 #pragma: coderesponse end # Part II #pragma: coderesponse template def classify(feature_matrix, theta, theta_0): """ A classification function that uses theta and theta_0 to classify a set of data points. Args: feature_matrix - A numpy matrix describing the given data. Each row represents a single data point. theta - A numpy array describing the linear classifier. theta - A numpy array describing the linear classifier. theta_0 - A real valued number representing the offset parameter. Returns: A numpy array of 1s and -1s where the kth element of the array is the predicted classification of the kth row of the feature matrix using the given theta and theta_0. If a prediction is GREATER THAN zero, it should be considered a positive classification. """ # Your code here # raise NotImplementedError y_hat = np.sign(np.matmul(feature_matrix, theta) + np.repeat(theta_0, feature_matrix.shape[0])) y_hat[y_hat == 0] = -1 return y_hat #pragma: coderesponse end #pragma: coderesponse template def classifier_accuracy( classifier, train_feature_matrix, val_feature_matrix, train_labels, val_labels, **kwargs): """ Trains a linear classifier using the perceptron algorithm with a given T value. The classifier is trained on the train data. The classifier's accuracy on the train and validation data is then returned. Args: classifier - A classifier function that takes arguments (feature matrix, labels, **kwargs) train_feature_matrix - A numpy matrix describing the training data. Each row represents a single data point. val_feature_matrix - A numpy matrix describing the training data. Each row represents a single data point. train_labels - A numpy array where the kth element of the array is the correct classification of the kth row of the training feature matrix. val_labels - A numpy array where the kth element of the array is the correct classification of the kth row of the validation feature matrix. **kwargs - Additional named arguments to pass to the classifier (e.g. T or L) Returns: A tuple in which the first element is the (scalar) accuracy of the trained classifier on the training data and the second element is the accuracy of the trained classifier on the validation data. """ # Your code here # raise NotImplementedError theta, theta_0 = classifier(train_feature_matrix, train_labels, **kwargs) y_hat_train = classify(train_feature_matrix, theta, theta_0) y_hat_val = classify(val_feature_matrix, theta, theta_0) accuracy_train = accuracy(y_hat_train, train_labels) accuracy_val = accuracy(y_hat_val, val_labels) return accuracy_train, accuracy_val #pragma: coderesponse end #pragma: coderesponse template def extract_words(input_string): """ Helper function for bag_of_words() Inputs a text string Returns a list of lowercase words in the string. Punctuation and digits are separated out into their own words. """ for c in punctuation + digits: input_string = input_string.replace(c, ' ' + c + ' ') return input_string.lower().split() #pragma: coderesponse end #pragma: coderesponse template def bag_of_words(texts): """ Inputs a list of string reviews Returns a dictionary of unique unigrams occurring over the input while removing stopwords Feel free to change this code as guided by Problem 9 """ # Your code here stopwords = np.loadtxt('stopwords.txt', dtype='str') dictionary = {} # maps word to unique for text in texts: word_list = extract_words(text) for word in word_list: if word not in dictionary and word not in stopwords: dictionary[word] = len(dictionary) return dictionary #pragma: coderesponse end #pragma: coderesponse template def extract_bow_feature_vectors(reviews, dictionary): """ Inputs a list of string reviews Inputs the dictionary of words as given by bag_of_words Returns the bag-of-words feature matrix representation of the data. The returned matrix is of shape (n, m), where n is the number of reviews and m the total number of entries in the dictionary. Feel free to change this code as guided by Problem 9 """ # Your code here num_reviews = len(reviews) feature_matrix = np.zeros([num_reviews, len(dictionary)]) for i, text in enumerate(reviews): word_list = extract_words(text) for word in word_list: if word in dictionary: feature_matrix[i, dictionary[word]] += 1 return feature_matrix #pragma: coderesponse end #pragma: coderesponse template def accuracy(preds, targets): """ Given length-N vectors containing predicted and target labels, returns the percentage and number of correct predictions. """ return (preds == targets).mean() #pragma: coderesponse end
py
1a4fdb65a27f1ec6fedf8d725afc8e9312117c39
# # The Python Imaging Library. # $Id$ # # IFUNC IM file handling for PIL # # history: # 1995-09-01 fl Created. # 1997-01-03 fl Save palette images # 1997-01-08 fl Added sequence support # 1997-01-23 fl Added P and RGB save support # 1997-05-31 fl Read floating point images # 1997-06-22 fl Save floating point images # 1997-08-27 fl Read and save 1-bit images # 1998-06-25 fl Added support for RGB+LUT images # 1998-07-02 fl Added support for YCC images # 1998-07-15 fl Renamed offset attribute to avoid name clash # 1998-12-29 fl Added I;16 support # 2001-02-17 fl Use 're' instead of 'regex' (Python 2.1) (0.7) # 2003-09-26 fl Added LA/PA support # # Copyright (c) 1997-2003 by Secret Labs AB. # Copyright (c) 1995-2001 by Fredrik Lundh. # # See the README file for information on usage and redistribution. # import re from . import Image, ImageFile, ImagePalette from ._binary import i8 __version__ = "0.7" # -------------------------------------------------------------------- # Standard tags COMMENT = "Comment" DATE = "Date" EQUIPMENT = "Digitalization equipment" FRAMES = "File size (no of images)" LUT = "Lut" NAME = "Name" SCALE = "Scale (x,y)" SIZE = "Image size (x*y)" MODE = "Image type" TAGS = {COMMENT: 0, DATE: 0, EQUIPMENT: 0, FRAMES: 0, LUT: 0, NAME: 0, SCALE: 0, SIZE: 0, MODE: 0} OPEN = { # ifunc93/p3cfunc formats "0 1 image": ("1", "1"), "L 1 image": ("1", "1"), "Greyscale image": ("L", "L"), "Grayscale image": ("L", "L"), "RGB image": ("RGB", "RGB;L"), "RLB image": ("RGB", "RLB"), "RYB image": ("RGB", "RLB"), "B1 image": ("1", "1"), "B2 image": ("P", "P;2"), "B4 image": ("P", "P;4"), "X 24 image": ("RGB", "RGB"), "L 32 S image": ("I", "I;32"), "L 32 F image": ("F", "F;32"), # old p3cfunc formats "RGB3 image": ("RGB", "RGB;T"), "RYB3 image": ("RGB", "RYB;T"), # extensions "LA image": ("LA", "LA;L"), "RGBA image": ("RGBA", "RGBA;L"), "RGBX image": ("RGBX", "RGBX;L"), "CMYK image": ("CMYK", "CMYK;L"), "YCC image": ("YCbCr", "YCbCr;L"), } # ifunc95 extensions for i in ["8", "8S", "16", "16S", "32", "32F"]: OPEN["L %s image" % i] = ("F", "F;%s" % i) OPEN["L*%s image" % i] = ("F", "F;%s" % i) for i in ["16", "16L", "16B"]: OPEN["L %s image" % i] = ("I;%s" % i, "I;%s" % i) OPEN["L*%s image" % i] = ("I;%s" % i, "I;%s" % i) for i in ["32S"]: OPEN["L %s image" % i] = ("I", "I;%s" % i) OPEN["L*%s image" % i] = ("I", "I;%s" % i) for i in range(2, 33): OPEN["L*%s image" % i] = ("F", "F;%s" % i) # -------------------------------------------------------------------- # Read IM directory split = re.compile(br"^([A-Za-z][^:]*):[ \t]*(.*)[ \t]*$") def number(s): try: return int(s) except ValueError: return float(s) ## # Image plugin for the IFUNC IM file format. class ImImageFile(ImageFile.ImageFile): format = "IM" format_description = "IFUNC Image Memory" _close_exclusive_fp_after_loading = False def _open(self): # Quick rejection: if there's not an LF among the first # 100 bytes, this is (probably) not a text header. if b"\n" not in self.fp.read(100): raise SyntaxError("not an IM file") self.fp.seek(0) n = 0 # Default values self.info[MODE] = "L" self.info[SIZE] = (512, 512) self.info[FRAMES] = 1 self.rawmode = "L" while True: s = self.fp.read(1) # Some versions of IFUNC uses \n\r instead of \r\n... if s == b"\r": continue if not s or s == b'\0' or s == b'\x1A': break # FIXME: this may read whole file if not a text file s = s + self.fp.readline() if len(s) > 100: raise SyntaxError("not an IM file") if s[-2:] == b'\r\n': s = s[:-2] elif s[-1:] == b'\n': s = s[:-1] try: m = split.match(s) except re.error: raise SyntaxError("not an IM file") if m: k, v = m.group(1, 2) # Don't know if this is the correct encoding, # but a decent guess (I guess) k = k.decode('latin-1', 'replace') v = v.decode('latin-1', 'replace') # Convert value as appropriate if k in [FRAMES, SCALE, SIZE]: v = v.replace("*", ",") v = tuple(map(number, v.split(","))) if len(v) == 1: v = v[0] elif k == MODE and v in OPEN: v, self.rawmode = OPEN[v] # Add to dictionary. Note that COMMENT tags are # combined into a list of strings. if k == COMMENT: if k in self.info: self.info[k].append(v) else: self.info[k] = [v] else: self.info[k] = v if k in TAGS: n += 1 else: raise SyntaxError("Syntax error in IM header: " + s.decode('ascii', 'replace')) if not n: raise SyntaxError("Not an IM file") # Basic attributes self._size = self.info[SIZE] self.mode = self.info[MODE] # Skip forward to start of image data while s and s[0:1] != b'\x1A': s = self.fp.read(1) if not s: raise SyntaxError("File truncated") if LUT in self.info: # convert lookup table to palette or lut attribute palette = self.fp.read(768) greyscale = 1 # greyscale palette linear = 1 # linear greyscale palette for i in range(256): if palette[i] == palette[i+256] == palette[i+512]: if i8(palette[i]) != i: linear = 0 else: greyscale = 0 if self.mode == "L" or self.mode == "LA": if greyscale: if not linear: self.lut = [i8(c) for c in palette[:256]] else: if self.mode == "L": self.mode = self.rawmode = "P" elif self.mode == "LA": self.mode = self.rawmode = "PA" self.palette = ImagePalette.raw("RGB;L", palette) elif self.mode == "RGB": if not greyscale or not linear: self.lut = [i8(c) for c in palette] self.frame = 0 self.__offset = offs = self.fp.tell() self.__fp = self.fp # FIXME: hack if self.rawmode[:2] == "F;": # ifunc95 formats try: # use bit decoder (if necessary) bits = int(self.rawmode[2:]) if bits not in [8, 16, 32]: self.tile = [("bit", (0, 0)+self.size, offs, (bits, 8, 3, 0, -1))] return except ValueError: pass if self.rawmode in ["RGB;T", "RYB;T"]: # Old LabEye/3PC files. Would be very surprised if anyone # ever stumbled upon such a file ;-) size = self.size[0] * self.size[1] self.tile = [("raw", (0, 0)+self.size, offs, ("G", 0, -1)), ("raw", (0, 0)+self.size, offs+size, ("R", 0, -1)), ("raw", (0, 0)+self.size, offs+2*size, ("B", 0, -1))] else: # LabEye/IFUNC files self.tile = [("raw", (0, 0)+self.size, offs, (self.rawmode, 0, -1))] @property def n_frames(self): return self.info[FRAMES] @property def is_animated(self): return self.info[FRAMES] > 1 def seek(self, frame): if not self._seek_check(frame): return self.frame = frame if self.mode == "1": bits = 1 else: bits = 8 * len(self.mode) size = ((self.size[0] * bits + 7) // 8) * self.size[1] offs = self.__offset + frame * size self.fp = self.__fp self.tile = [("raw", (0, 0)+self.size, offs, (self.rawmode, 0, -1))] def tell(self): return self.frame def _close__fp(self): try: self.__fp.close() except AttributeError: pass finally: self.__fp = None # # -------------------------------------------------------------------- # Save IM files SAVE = { # mode: (im type, raw mode) "1": ("0 1", "1"), "L": ("Greyscale", "L"), "LA": ("LA", "LA;L"), "P": ("Greyscale", "P"), "PA": ("LA", "PA;L"), "I": ("L 32S", "I;32S"), "I;16": ("L 16", "I;16"), "I;16L": ("L 16L", "I;16L"), "I;16B": ("L 16B", "I;16B"), "F": ("L 32F", "F;32F"), "RGB": ("RGB", "RGB;L"), "RGBA": ("RGBA", "RGBA;L"), "RGBX": ("RGBX", "RGBX;L"), "CMYK": ("CMYK", "CMYK;L"), "YCbCr": ("YCC", "YCbCr;L") } def _save(im, fp, filename): try: image_type, rawmode = SAVE[im.mode] except KeyError: raise ValueError("Cannot save %s images as IM" % im.mode) frames = im.encoderinfo.get("frames", 1) fp.write(("Image type: %s image\r\n" % image_type).encode('ascii')) if filename: fp.write(("Name: %s\r\n" % filename).encode('ascii')) fp.write(("Image size (x*y): %d*%d\r\n" % im.size).encode('ascii')) fp.write(("File size (no of images): %d\r\n" % frames).encode('ascii')) if im.mode == "P": fp.write(b"Lut: 1\r\n") fp.write(b"\000" * (511-fp.tell()) + b"\032") if im.mode == "P": fp.write(im.im.getpalette("RGB", "RGB;L")) # 768 bytes ImageFile._save(im, fp, [("raw", (0, 0)+im.size, 0, (rawmode, 0, -1))]) # # -------------------------------------------------------------------- # Registry Image.register_open(ImImageFile.format, ImImageFile) Image.register_save(ImImageFile.format, _save) Image.register_extension(ImImageFile.format, ".im")
py
1a4fdbb937939f6560aa63ca60a6fa96d1bcb140
# Generated by Django 3.1.2 on 2020-10-06 17:37 import django.db.models.deletion import django_countries.fields import django_inet.models from django.db import migrations, models import django_peeringdb.models.abstract class Migration(migrations.Migration): dependencies = [ ("django_peeringdb", "0011_ixlan_ixf_fields"), ] operations = [ migrations.AlterField( model_name="network", name="info_prefixes4", field=models.PositiveIntegerField( blank=True, help_text="Recommended maximum number of IPv4 routes/prefixes to be configured on peering sessions for this ASN", null=True, verbose_name="IPv4 Prefixes", ), ), migrations.AlterField( model_name="network", name="info_prefixes6", field=models.PositiveIntegerField( blank=True, help_text="Recommended maximum number of IPv6 routes/prefixes to be configured on peering sessions for this ASN", null=True, verbose_name="IPv6 Prefixes", ), ), migrations.AlterField( model_name="network", name="info_type", field=models.CharField( blank=True, choices=[ ("", "Not Disclosed"), ("Not Disclosed", "Not Disclosed"), ("NSP", "NSP"), ("Content", "Content"), ("Cable/DSL/ISP", "Cable/DSL/ISP"), ("Enterprise", "Enterprise"), ("Educational/Research", "Educational/Research"), ("Non-Profit", "Non-Profit"), ("Route Server", "Route Server"), ("Network Services", "Network Services"), ("Route Collector", "Route Collector"), ("Government", "Government"), ], default="Not Disclosed", max_length=60, verbose_name="Network Type", ), ), ]
py
1a4fdca7dd883bde551fae5c69b85a3103d27e8e
# Flask-TurnKey Version 0.0.1 # Models.py import datetime from app import db from peewee import * from flask_turboduck.auth import BaseUser # ----------------------------------------------------- # User Class class User(db.Model, BaseUser): username = CharField(unique=True) password = CharField() email = CharField() join_date = DateTimeField(default=datetime.datetime.now) active = BooleanField(default=True) admin = BooleanField(default=False) def __unicode__(self): return self.username
py
1a4fdd46eed4fdfad9ca9178ca3eb07e63ddb54d
from django.contrib import admin # from django.contrib.admin import ModelAdmin from leaflet.admin import LeafletGeoAdmin from .models import ( RainfallEvent, Pixel, Gauge ) # customize admin site info admin.site.site_header = '3RWW API' admin.site.site_title = '3RWW API' admin.site.index_title = '3RWW API' class RainfallEventAdmin(admin.ModelAdmin): list_filter = ('start_dt', 'end_dt') search_fields = ['start_dt', 'end_dt', 'report_label', 'event_label'] for i in [ [RainfallEvent, RainfallEventAdmin], [Pixel, LeafletGeoAdmin], [Gauge, LeafletGeoAdmin] ]: admin.site.register(*i)
bzl
1a4fdd63e591cc5fd0cfe299d1d4522a6d6ac93a
# Copyright 2019 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # LOCAL MODIFICATIONS: # this has two PRs patched in: # https://github.com/bazelbuild/bazel-skylib/pull/323 # https://github.com/bazelbuild/bazel-skylib/pull/324 """Implementation of copy_file macro and underlying rules. These rules copy a file or directory to another location using Bash (on Linux/macOS) or cmd.exe (on Windows). `_copy_xfile` marks the resulting file executable, `_copy_file` does not. """ # Hints for Bazel spawn strategy _execution_requirements = { # Copying files is entirely IO-bound and there is no point doing this work remotely. # Also, remote-execution does not allow source directory inputs, see # https://github.com/bazelbuild/bazel/commit/c64421bc35214f0414e4f4226cc953e8c55fa0d2 # So we must not attempt to execute remotely in that case. "no-remote-exec": "1", } def _hash_file(file): return str(hash(file.path)) # buildifier: disable=function-docstring def copy_cmd(ctx, src, dst): # Most Windows binaries built with MSVC use a certain argument quoting # scheme. Bazel uses that scheme too to quote arguments. However, # cmd.exe uses different semantics, so Bazel's quoting is wrong here. # To fix that we write the command to a .bat file so no command line # quoting or escaping is required. # Put a hash of the file name into the name of the generated batch file to # make it unique within the package, so that users can define multiple copy_file's. bat = ctx.actions.declare_file("%s-%s-cmd.bat" % (ctx.label.name, _hash_file(src))) # Flags are documented at # https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/copy # https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/robocopy # NB: robocopy return non-zero exit codes on success so we must exit 0 after calling it if dst.is_directory: cmd_tmpl = "@robocopy \"{src}\" \"{dst}\" /E >NUL & @exit 0" mnemonic = "CopyDirectory" progress_message = "Copying directory %s" % src.path else: cmd_tmpl = "@copy /Y \"{src}\" \"{dst}\" >NUL" mnemonic = "CopyFile" progress_message = "Copying file %s" % src.path ctx.actions.write( output = bat, # Do not use lib/shell.bzl's shell.quote() method, because that uses # Bash quoting syntax, which is different from cmd.exe's syntax. content = cmd_tmpl.format( src = src.path.replace("/", "\\"), dst = dst.path.replace("/", "\\"), ), is_executable = True, ) ctx.actions.run( inputs = [src], tools = [bat], outputs = [dst], executable = "cmd.exe", arguments = ["/C", bat.path.replace("/", "\\")], mnemonic = mnemonic, progress_message = progress_message, use_default_shell_env = True, execution_requirements = _execution_requirements, ) # buildifier: disable=function-docstring def copy_bash(ctx, src, dst): if dst.is_directory: cmd_tmpl = "rm -rf \"$2\" && cp -rf \"$1/\" \"$2\"" mnemonic = "CopyDirectory" progress_message = "Copying directory %s" % src.path else: cmd_tmpl = "cp -f \"$1\" \"$2\"" mnemonic = "CopyFile" progress_message = "Copying file %s" % src.path ctx.actions.run_shell( tools = [src], outputs = [dst], command = cmd_tmpl, arguments = [src.path, dst.path], mnemonic = mnemonic, progress_message = progress_message, use_default_shell_env = True, execution_requirements = _execution_requirements, ) def _copy_file_impl(ctx): # When creating a directory, declare that to Bazel so downstream rules # see it as a TreeArtifact and handle correctly, e.g. for remote execution if getattr(ctx.attr, "is_directory", False): output = ctx.actions.declare_directory(ctx.attr.out) else: output = ctx.outputs.out if ctx.attr.allow_symlink: if output.is_directory: fail("Cannot use both is_directory and allow_symlink") ctx.actions.symlink( output = output, target_file = ctx.file.src, is_executable = ctx.attr.is_executable, ) elif ctx.attr.is_windows: copy_cmd(ctx, ctx.file.src, output) else: copy_bash(ctx, ctx.file.src, output) files = depset(direct = [output]) runfiles = ctx.runfiles(files = [output]) if ctx.attr.is_executable: return [DefaultInfo(files = files, runfiles = runfiles, executable = output)] else: return [DefaultInfo(files = files, runfiles = runfiles)] _ATTRS = { "src": attr.label(mandatory = True, allow_single_file = True), "is_windows": attr.bool(mandatory = True), "is_executable": attr.bool(mandatory = True), "allow_symlink": attr.bool(mandatory = True), } _copy_directory = rule( implementation = _copy_file_impl, provides = [DefaultInfo], attrs = dict(_ATTRS, **{ "is_directory": attr.bool(default = True), # Cannot declare out as an output here, because there's no API for declaring # TreeArtifact outputs. "out": attr.string(mandatory = True), }), ) _copy_file = rule( implementation = _copy_file_impl, provides = [DefaultInfo], attrs = dict(_ATTRS, **{ "out": attr.output(mandatory = True), }), ) _copy_xfile = rule( implementation = _copy_file_impl, executable = True, provides = [DefaultInfo], attrs = dict(_ATTRS, **{ "out": attr.output(mandatory = True), }), ) def copy_file(name, src, out, is_directory = False, is_executable = False, allow_symlink = False, **kwargs): """Copies a file or directory to another location. `native.genrule()` is sometimes used to copy files (often wishing to rename them). The 'copy_file' rule does this with a simpler interface than genrule. This rule uses a Bash command on Linux/macOS/non-Windows, and a cmd.exe command on Windows (no Bash is required). If using this rule with source directories, it is recommended that you use the `--host_jvm_args=-DBAZEL_TRACK_SOURCE_DIRECTORIES=1` startup option so that changes to files within source directories are detected. See https://github.com/bazelbuild/bazel/commit/c64421bc35214f0414e4f4226cc953e8c55fa0d2 for more context. Args: name: Name of the rule. src: A Label. The file or directory to make a copy of. (Can also be the label of a rule that generates a file or directory.) out: Path of the output file, relative to this package. is_directory: treat the source file as a directory Workaround for https://github.com/bazelbuild/bazel/issues/12954 is_executable: A boolean. Whether to make the output file executable. When True, the rule's output can be executed using `bazel run` and can be in the srcs of binary and test rules that require executable sources. WARNING: If `allow_symlink` is True, `src` must also be executable. allow_symlink: A boolean. Whether to allow symlinking instead of copying. When False, the output is always a hard copy. When True, the output *can* be a symlink, but there is no guarantee that a symlink is created (i.e., at the time of writing, we don't create symlinks on Windows). Set this to True if you need fast copying and your tools can handle symlinks (which most UNIX tools can). **kwargs: further keyword arguments, e.g. `visibility` """ copy_file_impl = _copy_file if is_executable: copy_file_impl = _copy_xfile elif is_directory: copy_file_impl = _copy_directory copy_file_impl( name = name, src = src, out = out, is_windows = select({ "@bazel_tools//src/conditions:host_windows": True, "//conditions:default": False, }), is_executable = is_executable, allow_symlink = allow_symlink, **kwargs )
py
1a4fdd85e2a6fc97bc23a031013edf5c4a04e50d
# qubit number=4 # total number=43 import cirq import qiskit from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2 import numpy as np import networkx as nx def bitwise_xor(s: str, t: str) -> str: length = len(s) res = [] for i in range(length): res.append(str(int(s[i]) ^ int(t[i]))) return ''.join(res[::-1]) def bitwise_dot(s: str, t: str) -> str: length = len(s) res = 0 for i in range(length): res += int(s[i]) * int(t[i]) return str(res % 2) def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f # NOTE: use multi_control_toffoli_gate ('noancilla' mode) # https://qiskit.org/documentation/_modules/qiskit/aqua/circuits/gates/multi_control_toffoli_gate.html # https://quantumcomputing.stackexchange.com/questions/3943/how-do-you-implement-the-toffoli-gate-using-only-single-qubit-and-cnot-gates # https://quantumcomputing.stackexchange.com/questions/2177/how-can-i-implement-an-n-bit-toffoli-gate controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.cx(input_qubit[0],input_qubit[3]) # number=13 prog.h(input_qubit[3]) # number=23 prog.cz(input_qubit[0],input_qubit[3]) # number=24 prog.y(input_qubit[1]) # number=37 prog.h(input_qubit[3]) # number=25 prog.x(input_qubit[3]) # number=18 prog.cx(input_qubit[0],input_qubit[3]) # number=19 prog.cx(input_qubit[0],input_qubit[3]) # number=15 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 prog.y(input_qubit[3]) # number=12 prog.h(input_qubit[0]) # number=5 oracle = build_oracle(n-1, f) prog.append(oracle.to_gate(),[input_qubit[i] for i in range(n-1)]+[input_qubit[n-1]]) prog.h(input_qubit[1]) # number=6 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=32 prog.h(input_qubit[0]) # number=40 prog.cz(input_qubit[3],input_qubit[0]) # number=41 prog.h(input_qubit[0]) # number=42 prog.cx(input_qubit[3],input_qubit[0]) # number=26 prog.z(input_qubit[3]) # number=27 prog.h(input_qubit[0]) # number=29 prog.cz(input_qubit[3],input_qubit[0]) # number=30 prog.h(input_qubit[0]) # number=31 prog.h(input_qubit[0]) # number=33 prog.cz(input_qubit[3],input_qubit[0]) # number=34 prog.h(input_qubit[0]) # number=35 prog.h(input_qubit[2]) # number=36 prog.h(input_qubit[3]) # number=8 prog.h(input_qubit[0]) # number=9 prog.y(input_qubit[2]) # number=10 prog.y(input_qubit[2]) # number=11 prog.y(input_qubit[2]) # number=38 prog.y(input_qubit[2]) # number=39 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': a = "111" b = "0" f = lambda rep: bitwise_xor(bitwise_dot(a, rep), b) prog = make_circuit(4,f) backend = BasicAer.get_backend('qasm_simulator') sample_shot =8000 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit3069.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.__len__(),file=writefile) print(circuit1,file=writefile) writefile.close()
py
1a4fde60691653e319dc75459b985f1fbb56679e
from django.contrib.auth.models import User from rest_framework import serializers from lists.models import Todo, TodoList class UserSerializer(serializers.ModelSerializer): todolists = serializers.PrimaryKeyRelatedField( many=True, queryset=TodoList.objects.all() ) class Meta: model = User fields = ("id", "username", "last_login", "date_joined", "todolists") class TodoListSerializer(serializers.ModelSerializer): creator = serializers.ReadOnlyField(source="creator.username") class Meta: model = TodoList fields = ("id", "title", "created_at", "creator", "todos") class TodoSerializer(serializers.ModelSerializer): creator = serializers.ReadOnlyField(source="creator.username") class Meta: model = Todo fields = ( "id", "todolist", "description", "created_at", "creator", "is_finished", "finished_at", )
py
1a4fde7ab994377669bd6b6582c6703860828e23
# ------------------------------------------------------------------------ # BEAUTY DETR # Copyright (c) 2022 Ayush Jain & Nikolaos Gkanatsios # Licensed under CC-BY-NC [see LICENSE for details] # All Rights Reserved # ------------------------------------------------------------------------ # Parts adapted from Group-Free # Copyright (c) 2021 Ze Liu. All Rights Reserved. # Licensed under the MIT License. # ------------------------------------------------------------------------ """Main script for language modulation.""" import os import numpy as np import torch import torch.distributed as dist from main_utils import parse_option, BaseTrainTester from data.model_util_scannet import ScannetDatasetConfig from src.joint_det_dataset import Joint3DDataset from src.grounding_evaluator import GroundingEvaluator from models import BeaUTyDETR from models import APCalculator, parse_predictions, parse_groundtruths import ipdb st = ipdb.set_trace class TrainTester(BaseTrainTester): """Train/test a language grounder.""" def __init__(self, args): """Initialize.""" super().__init__(args) @staticmethod def get_datasets(args): """Initialize datasets.""" dataset_dict = {} # dict to use multiple datasets for dset in args.dataset: dataset_dict[dset] = 1 if args.joint_det: dataset_dict['scannet'] = 10 print('Loading datasets:', sorted(list(dataset_dict.keys()))) train_dataset = Joint3DDataset( dataset_dict=dataset_dict, test_dataset=args.test_dataset, split='train' if not args.debug else 'val', use_color=args.use_color, use_height=args.use_height, overfit=args.debug, data_path=args.data_root, detect_intermediate=args.detect_intermediate, use_multiview=args.use_multiview, butd=args.butd, butd_gt=args.butd_gt, butd_cls=args.butd_cls, augment_det=args.augment_det ) test_dataset = Joint3DDataset( dataset_dict=dataset_dict, test_dataset=args.test_dataset, split='val' if not args.eval_train else 'train', use_color=args.use_color, use_height=args.use_height, overfit=args.debug, data_path=args.data_root, detect_intermediate=args.detect_intermediate, use_multiview=args.use_multiview, butd=args.butd, butd_gt=args.butd_gt, butd_cls=args.butd_cls ) return train_dataset, test_dataset @staticmethod def get_model(args): """Initialize the model.""" num_input_channel = int(args.use_color) * 3 if args.use_height: num_input_channel += 1 if args.use_multiview: num_input_channel += 128 if args.use_soft_token_loss: num_class = 256 else: num_class = 19 model = BeaUTyDETR( num_class=num_class, num_obj_class=485, input_feature_dim=num_input_channel, num_queries=args.num_target, num_decoder_layers=args.num_decoder_layers, self_position_embedding=args.self_position_embedding, contrastive_align_loss=args.use_contrastive_align, butd=args.butd or args.butd_gt or args.butd_cls, pointnet_ckpt=args.pp_checkpoint, self_attend=args.self_attend ) return model @staticmethod def _get_inputs(batch_data): return { 'point_clouds': batch_data['point_clouds'].float(), 'text': batch_data['utterances'], "det_boxes": batch_data['all_detected_boxes'], "det_bbox_label_mask": batch_data['all_detected_bbox_label_mask'], "det_class_ids": batch_data['all_detected_class_ids'] } @torch.no_grad() def evaluate_one_epoch(self, epoch, test_loader, model, criterion, set_criterion, args): """ Eval grounding after a single epoch. Some of the args: model: a nn.Module that returns end_points (dict) criterion: a function that returns (loss, end_points) """ if args.test_dataset == 'scannet': return self.evaluate_one_epoch_det( epoch, test_loader, model, criterion, set_criterion, args ) stat_dict = {} model.eval() # set model to eval mode (for bn and dp) if args.num_decoder_layers > 0: prefixes = ['last_', 'proposal_'] prefixes = ['last_'] prefixes.append('proposal_') else: prefixes = ['proposal_'] # only proposal prefixes += [f'{i}head_' for i in range(args.num_decoder_layers - 1)] evaluator = GroundingEvaluator( only_root=True, thresholds=[0.25, 0.5], topks=[1, 5, 10], prefixes=prefixes, filter_non_gt_boxes=args.butd_cls ) # Main eval branch for batch_idx, batch_data in enumerate(test_loader): stat_dict, end_points = self._main_eval_branch( batch_idx, batch_data, test_loader, model, stat_dict, criterion, set_criterion, args ) if evaluator is not None: for prefix in prefixes: evaluator.evaluate(end_points, prefix) evaluator.synchronize_between_processes() if dist.get_rank() == 0: if evaluator is not None: evaluator.print_stats() return None @torch.no_grad() def evaluate_one_epoch_det(self, epoch, test_loader, model, criterion, set_criterion, args): """ Eval grounding after a single epoch. Some of the args: model: a nn.Module that returns end_points (dict) criterion: a function that returns (loss, end_points) """ dataset_config = ScannetDatasetConfig(18) # Used for AP calculation CONFIG_DICT = { 'remove_empty_box': False, 'use_3d_nms': True, 'nms_iou': 0.25, 'use_old_type_nms': False, 'cls_nms': True, 'per_class_proposal': True, 'conf_thresh': 0.0, 'dataset_config': dataset_config, 'hungarian_loss': True } stat_dict = {} model.eval() # set model to eval mode (for bn and dp) if set_criterion is not None: set_criterion.eval() if args.num_decoder_layers > 0: prefixes = ['last_', 'proposal_'] prefixes += [ f'{i}head_' for i in range(args.num_decoder_layers - 1) ] else: prefixes = ['proposal_'] # only proposal prefixes = ['last_'] ap_calculator_list = [ APCalculator(iou_thresh, dataset_config.class2type) for iou_thresh in args.ap_iou_thresholds ] mAPs = [ [iou_thresh, {k: 0 for k in prefixes}] for iou_thresh in args.ap_iou_thresholds ] batch_pred_map_cls_dict = {k: [] for k in prefixes} batch_gt_map_cls_dict = {k: [] for k in prefixes} # Main eval branch wordidx = np.array([ 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 17, 18, 18 ]) tokenidx = np.array([ 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 31, 32, 34, 36, 38, 39, 41, 42, 44, 45 ]) for batch_idx, batch_data in enumerate(test_loader): stat_dict, end_points = self._main_eval_branch( batch_idx, batch_data, test_loader, model, stat_dict, criterion, set_criterion, args ) # contrast proj_tokens = end_points['proj_tokens'] # (B, tokens, 64) proj_queries = end_points['last_proj_queries'] # (B, Q, 64) sem_scores = torch.matmul(proj_queries, proj_tokens.transpose(-1, -2)) sem_scores_ = sem_scores / 0.07 # (B, Q, tokens) sem_scores = torch.zeros(sem_scores_.size(0), sem_scores_.size(1), 256) sem_scores = sem_scores.to(sem_scores_.device) sem_scores[:, :sem_scores_.size(1), :sem_scores_.size(2)] = sem_scores_ end_points['last_sem_cls_scores'] = sem_scores # end contrast sem_cls = torch.zeros_like(end_points['last_sem_cls_scores'])[..., :19] for w, t in zip(wordidx, tokenidx): sem_cls[..., w] += end_points['last_sem_cls_scores'][..., t] end_points['last_sem_cls_scores'] = sem_cls # Parse predictions # for prefix in prefixes: prefix = 'last_' batch_pred_map_cls = parse_predictions( end_points, CONFIG_DICT, prefix, size_cls_agnostic=True) batch_gt_map_cls = parse_groundtruths( end_points, CONFIG_DICT, size_cls_agnostic=True) batch_pred_map_cls_dict[prefix].append(batch_pred_map_cls) batch_gt_map_cls_dict[prefix].append(batch_gt_map_cls) mAP = 0.0 # for prefix in prefixes: prefix = 'last_' for (batch_pred_map_cls, batch_gt_map_cls) in zip( batch_pred_map_cls_dict[prefix], batch_gt_map_cls_dict[prefix]): for ap_calculator in ap_calculator_list: ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls) # Evaluate average precision for i, ap_calculator in enumerate(ap_calculator_list): metrics_dict = ap_calculator.compute_metrics() self.logger.info( '=====================>' f'{prefix} IOU THRESH: {args.ap_iou_thresholds[i]}' '<=====================' ) for key in metrics_dict: self.logger.info(f'{key} {metrics_dict[key]}') if prefix == 'last_' and ap_calculator.ap_iou_thresh > 0.3: mAP = metrics_dict['mAP'] mAPs[i][1][prefix] = metrics_dict['mAP'] ap_calculator.reset() for mAP in mAPs: self.logger.info( f'IoU[{mAP[0]}]:\t' + ''.join([ f'{key}: {mAP[1][key]:.4f} \t' for key in sorted(mAP[1].keys()) ]) ) return None if __name__ == '__main__': os.environ["TOKENIZERS_PARALLELISM"] = "false" opt = parse_option() torch.cuda.set_device(opt.local_rank) torch.distributed.init_process_group(backend='nccl', init_method='env://') torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True train_tester = TrainTester(opt) ckpt_path = train_tester.main(opt)
py
1a4fdf334ef046277888761918e9f8e2eabd5774
print('Hello Chennai');
py
1a4fe0750f9975e744ba4ef3c9da744dd16a2ca1
from ast import literal_eval from django.db import models from django.conf import settings from django.utils.functional import cached_property __all__ = ['BaseMetadata'] class MetadataManager(models.Manager): '''Manager that optimize the queries by selecting the foreign objects''' def get_queryset(self): queryset = super().get_queryset() queryset = queryset.select_related('data_location').prefetch_related('tags') return queryset class BaseMetadata(models.Model): '''Abstract base model for the Metadata models''' oid = models.TextField('Observation ID', help_text = 'Unique identification string for the observation metadata, usually in the form YYYYMMDDHHMMSS; cannot be modified once it is set', unique=True, db_index=True) fits_header = models.TextField(null=True, blank=True) data_location = models.ForeignKey('dataset.DataLocation', related_name='%(app_label)s_%(class)s', null=True, blank=True, on_delete=models.SET_NULL) tags = models.ManyToManyField('metadata.Tag', related_name='%(app_label)s_%(class)s', blank=True) date_beg = models.DateTimeField('DATE-BEG', help_text='Start time of the observation [UTC]', blank=True, null=True, db_index=True) date_end = models.DateTimeField('DATE-END', help_text='End time of the observation [UTC]', blank=True, null=True, db_index=True) wavemin = models.FloatField('WAVEMIN', help_text='Min value of the observation spectral range [nm]', blank=True, null=True, db_index=True) wavemax = models.FloatField('WAVEMAX', help_text='Max value of the observation spectral range [nm]', blank=True, null=True, db_index=True) objects = MetadataManager() class Meta: abstract = True ordering = ['date_beg'] def __str__(self): return self.oid @cached_property def tags_names(self): return self.tags.values_list('name', flat=True)
py
1a4fe15a6ffc6c6be994ca8dd9511478f7b27c9a
from gym.spaces import Space from typing import Union from ray.rllib.utils.framework import check_framework, try_import_tf, \ TensorType from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.utils.annotations import DeveloperAPI tf = try_import_tf() @DeveloperAPI class Exploration: """Implements an exploration strategy for Policies. An Exploration takes model outputs, a distribution, and a timestep from the agent and computes an action to apply to the environment using an implemented exploration schema. """ def __init__(self, action_space: Space, num_workers: int, worker_index: int, framework: str = "tf"): """ Args: action_space (Space): The action space in which to explore. num_workers (int): The overall number of workers used. worker_index (int): The index of the worker using this class. framework (str): One of "tf" or "torch". """ self.action_space = action_space self.num_workers = num_workers self.worker_index = worker_index self.framework = check_framework(framework) @DeveloperAPI def before_compute_actions(self, *, timestep=None, explore=None, tf_sess=None, **kwargs): """Hook for preparations before policy.compute_actions() is called. Args: timestep (Optional[TensorType]): An optional timestep tensor. explore (Optional[TensorType]): An optional explore boolean flag. tf_sess (Optional[tf.Session]): The tf-session object to use. **kwargs: Forward compatibility kwargs. """ pass @DeveloperAPI def get_exploration_action(self, distribution_inputs: TensorType, action_dist_class: type, model: ModelV2, timestep: Union[int, TensorType], explore: bool = True): """Returns a (possibly) exploratory action and its log-likelihood. Given the Model's logits outputs and action distribution, returns an exploratory action. Args: distribution_inputs (TensorType): The output coming from the model, ready for parameterizing a distribution (e.g. q-values or PG-logits). action_dist_class (class): The action distribution class to use. model (ModelV2): The Model object. timestep (int|TensorType): The current sampling time step. It can be a tensor for TF graph mode, otherwise an integer. explore (bool): True: "Normal" exploration behavior. False: Suppress all exploratory behavior and return a deterministic action. Returns: Tuple: - The chosen exploration action or a tf-op to fetch the exploration action from the graph. - The log-likelihood of the exploration action. """ pass @DeveloperAPI def on_episode_start(self, policy, *, environment=None, episode=None, tf_sess=None): """Handles necessary exploration logic at the beginning of an episode. Args: policy (Policy): The Policy object that holds this Exploration. environment (BaseEnv): The environment object we are acting in. episode (int): The number of the episode that is starting. tf_sess (Optional[tf.Session]): In case of tf, the session object. """ pass @DeveloperAPI def on_episode_end(self, policy, *, environment=None, episode=None, tf_sess=None): """Handles necessary exploration logic at the end of an episode. Args: policy (Policy): The Policy object that holds this Exploration. environment (BaseEnv): The environment object we are acting in. episode (int): The number of the episode that is starting. tf_sess (Optional[tf.Session]): In case of tf, the session object. """ pass @DeveloperAPI def postprocess_trajectory(self, policy, sample_batch, tf_sess=None): """Handles post-processing of done episode trajectories. Changes the given batch in place. This callback is invoked by the sampler after policy.postprocess_trajectory() is called. Args: policy (Policy): The owning policy object. sample_batch (SampleBatch): The SampleBatch object to post-process. tf_sess (Optional[tf.Session]): An optional tf.Session object. """ return sample_batch @DeveloperAPI def get_info(self): """Returns a description of the current exploration state. This is not necessarily the state itself (and cannot be used in set_state!), but rather useful (e.g. debugging) information. Returns: dict: A description of the Exploration (not necessarily its state). This may include tf.ops as values in graph mode. """ return {}
py
1a4fe1aee27dfdafb18aca44e7430bdfcea42b91
from torchsummary import summary from models.ResNetBlocks import * from models.ResNetSE34L import * def MainModel(nOut=256, **kwargs): # Number of filters num_filters = [32, 64, 128, 256] model = ResNetSE(SEBasicBlock, [3, 4, 6, 3], num_filters, nOut, **kwargs) return model
py
1a4fe1af2268f2a05d07af8c7b8ba489887dfa53
import abc from typing import Dict from typing import Optional from typing import Tuple from typing import Type from typing import Union from winter.core import ComponentMethod from .throws import get_throws NotHandled = object() class ExceptionHandler(abc.ABC): @abc.abstractmethod def handle(self, exception: Exception, **kwargs): # pragma: no cover pass class ExceptionHandlersRegistry: HandlersMap = Dict[Type[Exception], ExceptionHandler] def __init__(self): self._handlers: ExceptionHandlersRegistry.HandlersMap = {} self._auto_handle_exceptions = set() super().__init__() @property def auto_handle_exception_classes(self) -> Tuple[Type[Exception], ...]: return tuple(self._auto_handle_exceptions) def add_handler( self, exception_cls: Type[Exception], handler_cls: Type[ExceptionHandler], *, auto_handle: bool = False, ): assert exception_cls not in self._handlers self._handlers[exception_cls] = handler_cls() if auto_handle: self._auto_handle_exceptions.add(exception_cls) def get_handler( self, exception: Union[Type[Exception], Exception], ) -> Optional[ExceptionHandler]: exception_type = type(exception) if isinstance(exception, Exception) else exception for exception_cls, handler in self._handlers.items(): if issubclass(exception_type, exception_cls): return handler return None class MethodExceptionsManager: def __init__(self, method: ComponentMethod): super().__init__() self._method = method self._handlers_by_exception = get_throws(self._method) @property def declared_exception_classes(self) -> Tuple[Type[Exception], ...]: return tuple(self._handlers_by_exception.keys()) @property def exception_classes(self) -> Tuple[Type[Exception], ...]: return self.declared_exception_classes + exception_handlers_registry.auto_handle_exception_classes def get_handler(self, exception: Union[Type[Exception], Exception]) -> Optional[ExceptionHandler]: exception_type = type(exception) if isinstance(exception, Exception) else exception for exception_cls, handler in self._handlers_by_exception.items(): if handler is not None and issubclass(exception_type, exception_cls): return handler return exception_handlers_registry.get_handler(exception) exception_handlers_registry = ExceptionHandlersRegistry()
py
1a4fe20ddf52626443fc7327b15b165252425e05
# -*- coding: utf-8 -*- # # TracPro documentation build configuration file, created by # sphinx-quickstart on Mon Nov 2 13:52:53 2015. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import datetime import sys import os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: source_suffix = '.rst' # The encoding of source files. # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'TracPro' copyright = u'%s, UNICEF' % datetime.datetime.now().year author = u'UNICEF' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. release = "1.9.1-dev" # The short X.Y version. version = "1.9" # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all # documents. # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. # html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # html_extra_path = [] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # html_additional_pages = {} # If false, no module index is generated. # html_domain_indices = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr' # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # Now only 'ja' uses this config value # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'TracProdoc' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # 'preamble': '', # Latex figure (float) alignment # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'TracPro.tex', u'TracPro Documentation', u'UNICEF', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # If true, show page references after internal links. # latex_show_pagerefs = False # If true, show URL addresses after external links. # latex_show_urls = False # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'tracpro', u'TracPro Documentation', [author], 1) ] # If true, show URL addresses after external links. # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'TracPro', u'TracPro Documentation', author, 'TracPro', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # texinfo_appendices = [] # If false, no module index is generated. # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # texinfo_no_detailmenu = False
py
1a4fe21afa577fa2e6a1f82528f45acdd977d6b7
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except jin compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import six import warnings from multiprocessing import Process # noqa: F401 from multiprocessing import Manager # noqa: F401 import time import sys from paddle import compat as cpt # deprecated module import from paddle.fluid import core from paddle.fluid.framework import _set_expected_place from paddle.fluid.dygraph import parallel_helper from paddle.fluid.dygraph.parallel import ParallelEnv from paddle.distributed.fleet.base.private_helper_function import wait_server_ready # noqa: F401 __all__ = [] ParallelStrategy = core.ParallelStrategy # NOTE(chenweihang): Maintain a global parallel env to avoid # initializing ParallelEnv every time and improve performance _global_parallel_env = None def _get_global_parallel_env(): global _global_parallel_env if _global_parallel_env is None: _global_parallel_env = ParallelEnv() return _global_parallel_env def _start_kv_server(port, http_server_d, size): from paddle.distributed.fleet.utils.http_server import KVServer http_server = KVServer(int(port), size=size) http_server.start() wait_seconds = 3 while http_server_d.get("running", False) or not http_server.should_stop(): time.sleep(wait_seconds) http_server.stop() def init_parallel_env(): """ Initialize parallel training environment in dynamic graph mode. .. note:: Now initialize both `NCCL` and `GLOO` contexts for communication. Returns: None Examples: .. code-block:: python import paddle import paddle.nn as nn import paddle.optimizer as opt import paddle.distributed as dist class LinearNet(nn.Layer): def __init__(self): super(LinearNet, self).__init__() self._linear1 = nn.Linear(10, 10) self._linear2 = nn.Linear(10, 1) def forward(self, x): return self._linear2(self._linear1(x)) def train(): # 1. initialize parallel environment dist.init_parallel_env() # 2. create data parallel layer & optimizer layer = LinearNet() dp_layer = paddle.DataParallel(layer) loss_fn = nn.MSELoss() adam = opt.Adam( learning_rate=0.001, parameters=dp_layer.parameters()) # 3. run layer inputs = paddle.randn([10, 10], 'float32') outputs = dp_layer(inputs) labels = paddle.randn([10, 1], 'float32') loss = loss_fn(outputs, labels) loss.backward() adam.step() adam.clear_grad() if __name__ == '__main__': dist.spawn(train) """ # 0. get env & check world size global _global_parallel_env # when call init_parallel_env, need update `_global_parallel_env` _global_parallel_env = ParallelEnv() parallel_env = _global_parallel_env # if not parallel, `init_parallel_env` do nothing if parallel_env.world_size < 2: warnings.warn( "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything." ) return # 1. gpu xpu check, must be gpu or xpu if not core.is_compiled_with_cuda() and not core.is_compiled_with_xpu(): raise NotImplementedError( "Cannot initialize parallel environment in CPU-only version, now only " "supports initializing the GPU and XPU parallel environment. Please recompile " "or reinstall paddle with GPU or XPU support.") # 2. check env def _check_var_exists(var_name): var = os.environ.get(var_name, None) if var is None: raise ValueError("paddle.distributed initialize error, " "environment variable %s is needed, but not set." % var_name) if core.is_compiled_with_cuda(): _check_var_exists("FLAGS_selected_gpus") elif core.is_compiled_with_xpu(): _check_var_exists('FLAGS_selected_xpus') _check_var_exists("PADDLE_TRAINER_ID") _check_var_exists("PADDLE_CURRENT_ENDPOINT") _check_var_exists("PADDLE_TRAINERS_NUM") _check_var_exists("PADDLE_TRAINER_ENDPOINTS") # 3: init gloo context (step 1: httpsever start) init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0")) if init_gloo: ep_rank_0 = parallel_env.trainer_endpoints[0].split(":") manager = Manager() # glboal dict to store status http_server_d = manager.dict() http_server_d["running"] = False if parallel_env.rank == 0: # The scope for worker used by http server is '_worker' size = {'_worker': parallel_env.world_size} http_server = Process( target=_start_kv_server, args=(int(ep_rank_0[1]), http_server_d, size)) http_server.daemon = True http_server_d["running"] = True http_server.start() # 4. init NCCL ParallelStrategy strategy = ParallelStrategy() if parallel_helper._is_parallel_ctx_initialized(): warnings.warn("The parallel environment has been initialized.") strategy.nranks = parallel_env.world_size strategy.local_rank = parallel_env.rank strategy.trainer_endpoints = parallel_env.trainer_endpoints strategy.current_endpoint = parallel_env.current_endpoint strategy.nrings = parallel_env.nrings # NOTE(chenweihang): [ why config global place here? ] # the dygraph mode will be set to default mode, # users will not call `dygraph.guard` or `enable_dygraph` # directly, if they want to switch default place, # they need to call a function to change default place, # here just set correctly place to users if core.is_compiled_with_cuda(): place = core.CUDAPlace(parallel_env.device_id) elif core.is_compiled_with_xpu(): place = core.XPUPlace(parallel_env.device_id) _set_expected_place(place) # init nccl or bkcl context if core.is_compiled_with_cuda(): parallel_helper._set_parallel_ctx( core.NCCLParallelContext(strategy, place)) elif core.is_compiled_with_xpu(): parallel_helper._set_parallel_ctx( core.BKCLParallelContext(strategy, place)) other_endpoints = strategy.trainer_endpoints[:] other_endpoints.remove(strategy.current_endpoint) if strategy.local_rank == 0: wait_server_ready(other_endpoints) parallel_helper._init_parallel_ctx() # 5: init gloo context (step 2: gloo init) # dividing init_gloo into two part beacause nccl and gloo # are separately looking for free ports which sometimes # leads to port-conflict. if init_gloo: wait_server_ready([parallel_env.trainer_endpoints[0]]) gloo_strategy = core.GlooParallelStrategy() gloo_strategy.rank = parallel_env.rank gloo_strategy.rank_num = parallel_env.world_size gloo_strategy.ip_address = ep_rank_0[0] gloo_strategy.ip_port = int(ep_rank_0[1]) default_init_timeout_seconds = 3600 default_run_timeout_seconds = 9999999 gloo_strategy.init_seconds = default_init_timeout_seconds gloo_strategy.run_seconds = default_run_timeout_seconds gloo = core.GlooParallelContext(gloo_strategy) gloo.init() if parallel_env.rank == 0: http_server_d["running"] = False http_server.join() def get_rank(): """ Returns the rank of current trainer. Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0. Returns: (int) The rank of current trainer. Examples: .. code-block:: python import paddle import paddle.distributed as dist # execute this command in terminal: export PADDLE_TRAINER_ID=0 print("The rank is %d" % dist.get_rank()) # The rank is 0 """ return _get_global_parallel_env().rank def get_world_size(): """ Returns the number of trainers (number of processes participating in current job). Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1. Returns: (int) The number of trainers. Examples: .. code-block:: python import paddle import paddle.distributed as dist # execute this command in terminal: export PADDLE_TRAINERS_NUM=4 print("The world_size is %d" % dist.get_world_size()) # The world_size is 4 """ return _get_global_parallel_env().world_size
py
1a4fe2a0148f19c33f75d4eb7d079aded15b4a71
from .converters import BetterMemberConverter, BetterUserconverter, guildinfo
py
1a4fe2dc50f33ec0bcfb96e873a2c4b6a4f1d816
from pip._internal.cli.base_command import Command from pip._internal.cli.status_codes import SUCCESS from pip._internal.exceptions import CommandError class HelpCommand(Command): """Show help for commands""" name = 'help' usage = """ %prog <command>""" summary = 'Show help for commands.' ignore_require_venv = True def run(self, options, args): from pip._internal.commands import commands_dict, get_similar_commands try: # 'pip help' with no args is handled by pip.__init__.parseopt() cmd_name = args[0] # the command we need help for except IndexError: return SUCCESS if cmd_name not in commands_dict: guess = get_similar_commands(cmd_name) msg = ['unknown command "%s"' % cmd_name] if guess: msg.append('maybe you meant "%s"' % guess) raise CommandError(' - '.join(msg)) command = commands_dict[cmd_name]() command.parser.print_help() return SUCCESS
py
1a4fe40aa6eef969719ab20b34d1e9156144719c
#!/usr/bin/env python # # Created on Nov 14, 2017 # @author: [email protected], [email protected] # # AVISDK based Script to get the status and configuration information of the Virtual Services # # Requires AVISDK ("pip install avisdk") and PrettyTable ("pip install PrettyTable") # Usage:- python avi_virtual_service_info.py -c <Controller-IP> -u <user-name> -p <password> # Note:- This script works for Avi Controler version 17.1.1 onwards import json import argparse from avi.sdk.avi_api import ApiSession from requests.packages import urllib3 from prettytable import PrettyTable from prettytable import ALL as ALL urllib3.disable_warnings() def get_vs_list(api, api_version): vs_list = [] rsp = api.get('virtualservice', api_version=api_version) for vs in rsp.json()['results']: vs_list.append(vs['uuid']) return vs_list def get_vs_oper_info(api, api_version, vs_list): oper_dict = {} for vs in vs_list: rsp = api.get('virtualservice-inventory/%s' % vs, api_version=api_version) vs_data = rsp.json() req_vs_data = { "state": vs_data['runtime']['oper_status']['state'], "name": vs_data['config']['name'], "uuid": vs_data['config']['uuid'] } i = 1 for vips in vs_data['config']['vip']: req_vs_data["vip_"+str(i)] = vips i = i+1 j = 1 for dns in vs_data['config']['dns_info']: req_vs_data["dns_"+str(j)] = dns j = j+1 if vs_data['runtime']['oper_status']['state'] in oper_dict.keys(): oper_dict[vs_data['runtime']['oper_status']['state']].append(req_vs_data) else: oper_dict[vs_data['runtime']['oper_status']['state']] = [] oper_dict[vs_data['runtime']['oper_status']['state']].append(req_vs_data) return oper_dict def main(): #Getting Required Args parser = argparse.ArgumentParser(description="AVISDK based Script to get the status and configuration"+ " information of the Virtual Services") parser.add_argument("-u", "--username", required=True, help="Login username") parser.add_argument("-p", "--password", required=True, help="Login password") parser.add_argument("-c", "--controller", required=True, help="Controller IP address") parser.add_argument("-t", "--tenant", required=False, help="Tenant Name") parser.add_argument("-a", "--api_version", required=False, help="Tenant Name") args = parser.parse_args() user = args.username host = args.controller password = args.password if args.tenant: tenant=args.tenant else: tenant="*" if args.api_version: api_version=args.api_version else: api_version="17.1.1" #Getting API session for the intended Controller. api = ApiSession.get_session(host, user, password, tenant=tenant, api_version=api_version) #Getting the list of VirtualService(s). vs_list = get_vs_list(api, api_version) #Getting VS information oper_dict = get_vs_oper_info(api, api_version, vs_list) #print "Final Oper Dict:" + str(oper_dict) for state, vs in oper_dict.iteritems(): print("VS in State:%s [%s]" % (state, len(vs))) table = PrettyTable(hrules=ALL) table.field_names = ["VS Name","VIP_ID", "VIP_Address", "DNS_INFO"] for vss in vs: vips = list() dns_info = list() vip_count = 0 dns_count = 0 if 'vip_1' in vss.keys(): vips = [value for key, value in vss.iteritems() if 'vip' in key.lower()] vip_count = len(vips) if 'dns_1' in vss.keys(): dns_info = [value for key, value in vss.iteritems() if 'dns' in key.lower()] dns_count = len(dns_info) vs_name = vss['name'] vip_ids = '' vips_list = '' dns_list = '' for vip in vips: vip_ids += vip['vip_id'] + "\n" vips_list += vip['ip_address']['addr'] if vip.get('floating_ip', None): vips_list += '- ' + vip['floating_ip']['addr'] vips_list+='\n' for dns in dns_info: dns_list += dns['fqdn'] + "\n" table.add_row([vs_name, vip_ids[:-1], vips_list[:-1], dns_list[:-1]]) print table print "\n" if __name__ == "__main__": main()
py
1a4fe471a4a281c15b1b3ecb8b3e5460adf83cf7
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT Test case ID : C14861501 Test Case Title : Verify PxMesh is auto-assigned when Collider component is added after Rendering Mesh component """ # fmt: off class Tests(): create_entity = ("Created test entity", "Failed to create test entity") mesh_added = ("Added Mesh component", "Failed to add Mesh component") physx_collider_added = ("Added PhysX Collider component", "Failed to add PhysX Collider component") assign_mesh_asset = ("Assigned Mesh asset to Mesh component", "Failed to assign mesh asset to Mesh component") automatic_shape_change = ("Shape was changed automatically", "Shape failed to change automatically") # fmt: on def C14861501_PhysXCollider_RenderMeshAutoAssigned(): """ Summary: Create entity with Mesh component and assign a render mesh to the Mesh component. Add Physics Collider component and Verify that the physics mesh asset is auto-assigned. Expected Behavior: The physics asset in PhysX Collider component is auto-assigned Test Steps: 1) Load the empty level 2) Create an entity 3) Add Mesh component 4) Assign a render mesh asset to Mesh component (the fbx mesh having both Static mesh and PhysX collision Mesh) 5) Add PhysX Collider component 6) The physics asset in PhysX Collider component is auto-assigned. Note: - This test file must be called from the Open 3D Engine Editor command terminal - Any passed and failed tests are written to the Editor.log file. Parsing the file or running a log_monitor are required to observe the test results. :return: None """ # Builtins import os # Helper Files import ImportPathHelper as imports imports.init() from editor_python_test_tools.editor_entity_utils import EditorEntity as Entity from editor_python_test_tools.utils import Report from editor_python_test_tools.utils import TestHelper as helper from asset_utils import Asset # Asset paths STATIC_MESH = os.path.join("assets", "c14861501_physxcollider_rendermeshautoassigned", "spherebot", "r0-b_body.azmodel") PHYSX_MESH = os.path.join( "assets", "c14861501_physxcollider_rendermeshautoassigned", "spherebot", "r0-b_body.pxmesh" ) helper.init_idle() # 1) Load the empty level helper.open_level("Physics", "Base") # 2) Create an entity test_entity = Entity.create_editor_entity("test_entity") Report.result(Tests.create_entity, test_entity.id.IsValid()) # 3) Add Mesh component mesh_component = test_entity.add_component("Mesh") Report.result(Tests.mesh_added, test_entity.has_component("Mesh")) # 4) Assign a render mesh asset to Mesh component (the fbx mesh having both Static mesh and PhysX collision Mesh) mesh_asset = Asset.find_asset_by_path(STATIC_MESH) mesh_component.set_component_property_value("Controller|Configuration|Mesh Asset", mesh_asset.id) mesh_asset.id = mesh_component.get_component_property_value("Controller|Configuration|Mesh Asset") Report.result(Tests.assign_mesh_asset, mesh_asset.get_path() == STATIC_MESH.replace(os.sep, "/")) # 5) Add PhysX Collider component test_component = test_entity.add_component("PhysX Collider") Report.result(Tests.physx_collider_added, test_entity.has_component("PhysX Collider")) # 6) The physics asset in PhysX Collider component is auto-assigned. asset_id = test_component.get_component_property_value("Shape Configuration|Asset|PhysX Mesh") test_asset = Asset(asset_id) Report.result(Tests.automatic_shape_change, test_asset.get_path() == PHYSX_MESH.replace(os.sep, "/")) if __name__ == "__main__": import ImportPathHelper as imports imports.init() from editor_python_test_tools.utils import Report Report.start_test(C14861501_PhysXCollider_RenderMeshAutoAssigned)
py
1a4fe516558989cb517067c45aa1b059c81fbbc3
import numpy as np class VineyardAnalysis(): def __init__(self): self.name = "Vineyard Suitability Analysis Function" self.description = "This function computes vineyard suitability given elevation, slope, aspect, and soil-type rasters." def getParameterInfo(self): return [ { 'name': 'elevation', 'dataType': 'raster', 'value': None, 'required': True, 'displayName': 'Elevation Raster', 'description': "The primary single-band raster where pixel values represent elevation in meters." }, { 'name': 'slope', 'dataType': 'raster', 'value': None, 'required': True, 'displayName': 'Slope Raster', 'description': "A single-band raster where pixel values represent slope." }, { 'name': 'aspect', 'dataType': 'raster', 'value': None, 'required': True, 'displayName': 'Aspect Raster', 'description': "A single-band raster where pixel values represent aspect." }, { 'name': 'soiltype', 'dataType': 'raster', 'value': None, 'required': False, 'displayName': 'Soil Type Raster', 'description': "A single-band thematic raster where pixel values represent soil type." }, ] def getConfiguration(self, **scalars): return { 'inheritProperties': 2 | 4 | 8, # inherit all but the pixel type from the input raster 'invalidateProperties': 2 | 4 | 8, # reset any statistics and histogram that might be held by the parent dataset (because this function modifies pixel values). 'inputMask': True # We need the input raster mask in .updatePixels(). } def updateRasterInfo(self, **kwargs): kwargs['output_info']['bandCount'] = 1 kwargs['output_info']['pixelType'] = 'u1' kwargs['output_info']['statistics'] = ({'minimum': 0, 'maximum': 3}, ) kwargs['output_info']['noData'] = np.array([0], 'u1') return kwargs def updatePixels(self, tlc, shape, props, **pixelBlocks): elev = np.array(pixelBlocks['elevation_pixels'], 'f4') slope = np.array(pixelBlocks['slope_pixels'], 'f4') aspect = np.array(pixelBlocks['aspect_pixels'], 'f4') #soil = np.array(pixelBlocks['soiltype_pixels'], 'i8') E = (elev > 30).astype('u1') & (elev < 400).astype('u1') S = (slope > 5).astype('u1') & (slope < 60).astype('u1') A = (aspect > 0).astype('u1') & (aspect < 200).astype('u1') pixelBlocks['output_pixels'] = (E + S + A).astype(props['pixelType']) return pixelBlocks def updateKeyMetadata(self, names, bandIndex, **keyMetadata): if bandIndex == -1: keyMetadata['datatype'] = 'Scientific' keyMetadata['variable'] = 'VineyardSuitability' elif bandIndex == 0: keyMetadata['wavelengthmin'] = None # reset inapplicable band-specific key metadata keyMetadata['wavelengthmax'] = None keyMetadata['bandname'] = 'VineyardSuitability' return keyMetadata
py
1a4fe5aeb5596723a8b4b41a2500a43fbd637a89
# -*- coding: utf-8 -*- """ Created on Tue Feb 19 16:54:54 2019 @author: similarities """ import matplotlib.pyplot as plt import numpy as np import os class FwhmImageProcessing: def __init__(self, filename, lambda_fundamental, maximum_harmonic, harmonic_number): self.filename = filename self.filedescription = self.filename[31:42] + '_' + self.filename[-6:-4] self.y_min = 0 self.y_max = 2048 self.x_min = 150 self.x_max = 1300 self.picture = np.empty([]) self.harmonic_selected = harmonic_number self.x_backsubstracted = np.empty([2048, 2048]) self.lambda_fundamental = lambda_fundamental self.line_out = np.zeros([self.y_max, 1]) self.line_out_x = np.arange(self.x_min, self.x_max) self.calibration_to_msr = 17.5 / 2048 self.full_divergence = 17.5 self.normalization_factor_mrad = np.zeros([20, 1]) self.border_up, self.border_down = self.energy_range() self.maximum_harmonic = maximum_harmonic self.result_array = np.zeros([self.maximum_harmonic, 5]) def open_file(self): self.picture = plt.imread(self.filename) return self.picture def background_y(self): back_mean = np.mean(self.picture[:, 1600:1700], axis=1) for x in range(0, self.y_max): self.x_backsubstracted[::, x] = self.picture[::, x] - back_mean[x] self.background_x() plt.figure(1) # plt.ylim(100, 1000) plt.imshow(self.x_backsubstracted) plt.vlines(self.x_min, 0, 2048) plt.vlines(self.x_max, 0, 2048) return self.x_backsubstracted def background_x(self): back_mean = np.mean(self.picture[1880:1948, :], axis=0) for x in range(0, 2048): self.x_backsubstracted[x, ::] = self.picture[x, ::] - back_mean[x] return self.x_backsubstracted def energy_range(self): print(self.harmonic_selected, ':') previous_harmonic = self.lambda_fundamental / (self.harmonic_selected - 0.3) next_harmonic = self.lambda_fundamental / (self.harmonic_selected + 0.3) self.border_up = np.int(self.nm_in_px(previous_harmonic)) self.border_down = np.int(self.nm_in_px(next_harmonic)) print(self.border_up, self.border_down, "ROI in px") self.pixel_range = np.int(self.border_down - self.border_up) print(self.pixel_range, 'ROI in pixel range') self.plot_roi_on_image() return self.border_up, self.border_down def nm_in_px(self, px_in): return int(4.71439193e-01 * px_in ** 2 - 1.06651902e+02 * px_in + 4.29603367e+03) def plot_roi_on_image(self): plt.figure(1) plt.hlines(self.border_up, xmin=0, xmax=2048, color="w", linewidth=0.1) plt.hlines(self.border_down, xmin=0, xmax=2048, color="g", linewidth=0.1) def sum_over_pixel_range_y(self): self.line_out = self.x_backsubstracted[self.border_up: self.border_down, ::] self.line_out = np.sum(self.line_out, axis=0) self.line_out = self.line_out[self.x_min:self.x_max] return self.line_out def correction_background(self, value): self.line_out[::] = self.line_out[::] - value return self.line_out def integrated_signal_in_lineout(self): integrated = np.sum(self.line_out[::]) return integrated def plot_x_y(self, x, y, name, plot_number, axis_x_name, axis_y_name): plt.figure(plot_number) plt.plot(x, y, label=name) plt.xlabel(str(axis_x_name)) plt.ylabel(str(axis_y_name)) plt.legend() def calibrate_px_to_msr(self, array_x): array_x[::] = array_x[::] * self.calibration_to_msr return array_x def prepare_for_stepfunction(self): self.sum_over_pixel_range_y() maximum = np.amax(self.line_out[::]) minimum = np.amin(self.line_out[::]) if minimum < 0: self.correction_background(minimum) maximum = np.amax(self.line_out[::]) minimum = np.amin(self.line_out[::]) half_max = (maximum - minimum) / 2 # self.plot_x_y(self.line_out_x, self.line_out, 'linout_corrected', 2, 'px', 'counts') self.plot_x_y(self.line_out_x, self.line_out, str(self.harmonic_selected), 2, 'px', 'counts') return half_max def step_function_for_fwhm(self): half_max = self.prepare_for_stepfunction() # width of step function is FWHM d = np.sign(half_max - self.line_out[::]) - 1 self.line_out_x = self.calibrate_px_to_msr(self.line_out_x) self.plot_x_y(self.line_out_x, d, 'stepfunction', 3, 'mrad', 'value') self.line_out_x = np.arange(self.x_min, self.x_max) result_FWHM = 1. * self.calibration_to_msr * (np.amax(np.nonzero(d)) - np.amin(np.nonzero(d))) return result_FWHM def px_in_nm(self, px_number): return 1.24679344e-06 * px_number ** 2 - 1.65566701e-02 * px_number + 5.22598053e+01 def delta_energy(self): delta = self.px_in_nm(self.border_up) - self.px_in_nm(self.border_down) energy_nm = (self.lambda_fundamental / self.harmonic_selected) delta_vs_energy = delta / energy_nm return energy_nm, delta_vs_energy def batch_over_N(self): for x in range(self.harmonic_selected, self.maximum_harmonic): self.result_array[x, 0] = x self.harmonic_selected = x self.energy_range() self.result_array[x, 1] = self.step_function_for_fwhm() self.result_array[x, 2] = np.sum(self.line_out[::]) self.result_array[x, 4], self.result_array[x, 3] = self.delta_energy() # clean for empty entries self.result_array = np.delete(self.result_array, np.where(~self.result_array.any(axis=1))[0], axis=0) self.plot_scatter(self.result_array[::, 0], self.result_array[::, 1], self.filedescription, 'harmonic number N', 'divergence in mrad', 5) self.save_data() return self.result_array def plot_scatter(self, x, y, name, axis_name_x, axis_name_y, plot_number): plt.figure(plot_number) plt.scatter(x, y, label=name) plt.xlabel(axis_name_x) plt.ylabel(axis_name_y) #plt.legend() def prepare_header(self): self.integrated_signal_in_lineout() self.delta_energy() # insert header line and change index header_names = (['harmonic_number', 'mrad', 'integrated_counts_in_delta_E', 'harmonic_in_nm', 'delta_E/E']) parameter_info = ( ['fundamental_nm:', str(self.lambda_fundamental), 'pixel_range:', str(self.border_down-self.border_up), 'xxxx']) return np.vstack((header_names, self.result_array, parameter_info)) def save_data(self): result = self.prepare_header() plt.figure(1) plt.savefig(self.filedescription + "_raw_roi_" + ".png", bbox_inches="tight", dpi=1000) plt.figure(2) plt.savefig(self.filedescription + "_integrated_lineout" + ".png", bbox_inches="tight", dpi=1000) plt.figure(5) plt.savefig(self.filedescription + "_div_mrad_FWHM" + ".png", bbox_inches="tight", dpi=1000) print('saved data') np.savetxt(self.filedescription + ".txt", result, delimiter=' ', header='string', comments='', fmt='%s') def get_file_list(path_picture): tif_files = [] counter = 0 for file in os.listdir(path_picture): print(file) try: if file.endswith(".tif"): tif_files.append(str(file)) counter = counter + 1 else: print("only other files found") except Exception as e: raise e print("no files found here") return tif_files def process_files(my_files, path): for x in range(63, 64): file = path +'/'+ my_files[x] Processing_Picture = FwhmImageProcessing(file, 805 , 30, 17) Processing_Picture.open_file() Processing_Picture.background_y() Processing_Picture.batch_over_N() Processing_Picture.save_data() plt.close(1) plt.close(2) plt.close(5) my_files = get_file_list('rotated_20190123') process_files(my_files, 'rotated_20190123')
py
1a4fe5c53f9979beff00d8428cf1e4e405d0fe6a
# Hidden Markov Model ## Definition Let $X_{n}$ and $Y_{n}$ be discrete-time stochastic process and $n \ge 1$. The pair $(X_{n}, Y_{n})$ is a hidden markov model if: * $X_{n}$ is a markov process whose behavior is not directly observable("hidden") * $P(Y_{n} = y_{n}|X_{1}=x_{1},...,X_{n}=x_{n}) = P(Y_{n}=y_{n}|X_{n}=x_{n})$ for every $n \ge 1$ The states of the process $X_{n}$ is called the hidden states, and $P(Y_{n}=y_{n}|X_{n}=x_{n})$ is called emission probability. ## compute probability given model target: compute $P(O|\lambda)$ for any $O$ given $\lambda$. ### direct approach $$P(O|\lambda) = \sum_{I}P(O,I|\lambda) =\sum_{I}P(O|I,\lambda)P(I|\lambda)$$ $I$ take on $N^{T}$ sums, computation complexity is $O(TN^{T})$, this does not work. ### forward probability of $\{o_{1},...,o_{T}\}$ only depends on $\{o_{1},...,o_{T - 1}\}$ and $s_{t}$.
py
1a4fe63577e2a449c6344e23eac618f84d1d92f2
""" Author: Soubhik Sanyal Copyright (c) 2019, Soubhik Sanyal All rights reserved. Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights on this computer program. You can only use this computer program if you have closed a license agreement with MPG or you get the right to use the computer program from someone who is authorized to grant you that right. Any use of the computer program without a valid license is prohibited and liable to prosecution. Copyright 2019 Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute for Intelligent Systems and the Max Planck Institute for Biological Cybernetics. All rights reserved. More information about RingNet is available at https://ringnet.is.tue.mpg.de. based on github.com/akanazawa/hmr """ # Sets default args # Note all data format is NHWC because slim resnet wants NHWC. import sys from absl import flags PRETRAINED_MODEL = './model.pkl' flags.DEFINE_string('img_path', '/training_set/NoW_Dataset/final_release_version/iphone_pictures/FaMoS_180424_033335_TA/selfie/IMG_0092.jpg', 'Image to run') flags.DEFINE_string('out_folder', './output', 'The output path to store images') flags.DEFINE_boolean('save_obj_file', True, 'If true the output meshes will be saved') flags.DEFINE_boolean('save_flame_parameters', True, 'If true the camera and flame parameters will be saved') flags.DEFINE_boolean('neutralize_expression', True, 'If true the camera and flame parameters will be saved') flags.DEFINE_boolean('save_texture', True, 'If true the texture map will be stored') flags.DEFINE_string('flame_model_path', './flame_model/generic_model.pkl', 'path to the neutral FLAME model') flags.DEFINE_string('flame_texture_data_path', './flame_model/texture_data_512.npy', 'path to the FLAME texture data') flags.DEFINE_string('load_path', PRETRAINED_MODEL, 'path to trained model') flags.DEFINE_integer('batch_size', 1, 'Fixed to 1 for inference') # Don't change if testing: flags.DEFINE_integer('img_size', 224, 'Input image size to the network after preprocessing') flags.DEFINE_string('data_format', 'NHWC', 'Data format') # Flame parameters: flags.DEFINE_integer('pose_params', 6, 'number of flame pose parameters') flags.DEFINE_integer('shape_params', 100, 'number of flame shape parameters') flags.DEFINE_integer('expression_params', 50, 'number of flame expression parameters') def get_config(): config = flags.FLAGS config(sys.argv) return config
py
1a4fe66f2b90e433d06dbe33418331739e5be86c
# This file helps to compute a version number in source trees obtained from # git-archive tarball (such as those provided by githubs download-from-tag # feature). Distribution tarballs (built by setup.py sdist) and build # directories (produced by setup.py build) will contain a much shorter file # that just contains the computed version number. # This file is released into the public domain. Generated by # versioneer-0.18 (https://github.com/warner/python-versioneer) """Git implementation of _version.py.""" import errno import os import re import subprocess import sys def get_keywords(): """Get the keywords needed to look up the version information.""" # these strings will be replaced by git during git-archive. # setup.py/versioneer.py will grep for the variable names, so they must # each be defined on a line of their own. _version.py will just call # get_keywords(). git_refnames = "$Format:%d$" git_full = "$Format:%H$" git_date = "$Format:%ci$" keywords = {"refnames": git_refnames, "full": git_full, "date": git_date} return keywords class VersioneerConfig: """Container for Versioneer configuration parameters.""" def get_config(): """Create, populate and return the VersioneerConfig() object.""" # these strings are filled in when 'setup.py versioneer' creates # _version.py cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" cfg.tag_prefix = "" cfg.parentdir_prefix = "None" cfg.versionfile_source = "resp2/_version.py" cfg.verbose = False return cfg class NotThisMethod(Exception): """Exception raised if a method is not valid for the current scenario.""" LONG_VERSION_PY = {} HANDLERS = {} def register_vcs_handler(vcs, method): # decorator """Decorator to mark a method as the handler for a particular VCS.""" def decorate(f): """Store f in HANDLERS[vcs][method].""" if vcs not in HANDLERS: HANDLERS[vcs] = {} HANDLERS[vcs][method] = f return f return decorate def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False, env=None): """Call the given command(s).""" assert isinstance(commands, list) p = None for c in commands: try: dispcmd = str([c] + args) # remember shell=False, so use git.cmd on windows, not just git p = subprocess.Popen([c] + args, cwd=cwd, env=env, stdout=subprocess.PIPE, stderr=(subprocess.PIPE if hide_stderr else None)) break except EnvironmentError: e = sys.exc_info()[1] if e.errno == errno.ENOENT: continue if verbose: print("unable to run %s" % dispcmd) print(e) return None, None else: if verbose: print("unable to find command, tried %s" % (commands,)) return None, None stdout = p.communicate()[0].strip() if sys.version_info[0] >= 3: stdout = stdout.decode() if p.returncode != 0: if verbose: print("unable to run %s (error)" % dispcmd) print("stdout was %s" % stdout) return None, p.returncode return stdout, p.returncode def versions_from_parentdir(parentdir_prefix, root, verbose): """Try to determine the version from the parent directory name. Source tarballs conventionally unpack into a directory that includes both the project name and a version string. We will also support searching up two directory levels for an appropriately named parent directory """ rootdirs = [] for i in range(3): dirname = os.path.basename(root) if dirname.startswith(parentdir_prefix): return {"version": dirname[len(parentdir_prefix):], "full-revisionid": None, "dirty": False, "error": None, "date": None} else: rootdirs.append(root) root = os.path.dirname(root) # up a level if verbose: print("Tried directories %s but none started with prefix %s" % (str(rootdirs), parentdir_prefix)) raise NotThisMethod("rootdir doesn't start with parentdir_prefix") @register_vcs_handler("git", "get_keywords") def git_get_keywords(versionfile_abs): """Extract version information from the given file.""" # the code embedded in _version.py can just fetch the value of these # keywords. When used from setup.py, we don't want to import _version.py, # so we do it with a regexp instead. This function is not used from # _version.py. keywords = {} try: f = open(versionfile_abs, "r") for line in f.readlines(): if line.strip().startswith("git_refnames ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["refnames"] = mo.group(1) if line.strip().startswith("git_full ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["full"] = mo.group(1) if line.strip().startswith("git_date ="): mo = re.search(r'=\s*"(.*)"', line) if mo: keywords["date"] = mo.group(1) f.close() except EnvironmentError: pass return keywords @register_vcs_handler("git", "keywords") def git_versions_from_keywords(keywords, tag_prefix, verbose): """Get version information from git keywords.""" if not keywords: raise NotThisMethod("no keywords at all, weird") date = keywords.get("date") if date is not None: # git-2.2.0 added "%cI", which expands to an ISO-8601 -compliant # datestamp. However we prefer "%ci" (which expands to an "ISO-8601 # -like" string, which we must then edit to make compliant), because # it's been around since git-1.5.3, and it's too difficult to # discover which version we're using, or to work around using an # older one. date = date.strip().replace(" ", "T", 1).replace(" ", "", 1) refnames = keywords["refnames"].strip() if refnames.startswith("$Format"): if verbose: print("keywords are unexpanded, not using") raise NotThisMethod("unexpanded keywords, not a git-archive tarball") refs = set([r.strip() for r in refnames.strip("()").split(",")]) # starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of # just "foo-1.0". If we see a "tag: " prefix, prefer those. TAG = "tag: " tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)]) if not tags: # Either we're using git < 1.8.3, or there really are no tags. We use # a heuristic: assume all version tags have a digit. The old git %d # expansion behaves like git log --decorate=short and strips out the # refs/heads/ and refs/tags/ prefixes that would let us distinguish # between branches and tags. By ignoring refnames without digits, we # filter out many common branch names like "release" and # "stabilization", as well as "HEAD" and "master". tags = set([r for r in refs if re.search(r'\d', r)]) if verbose: print("discarding '%s', no digits" % ",".join(refs - tags)) if verbose: print("likely tags: %s" % ",".join(sorted(tags))) for ref in sorted(tags): # sorting will prefer e.g. "2.0" over "2.0rc1" if ref.startswith(tag_prefix): r = ref[len(tag_prefix):] if verbose: print("picking %s" % r) return {"version": r, "full-revisionid": keywords["full"].strip(), "dirty": False, "error": None, "date": date} # no suitable tags, so version is "0+unknown", but full hex is still there if verbose: print("no suitable tags, using unknown + full revision id") return {"version": "0+unknown", "full-revisionid": keywords["full"].strip(), "dirty": False, "error": "no suitable tags", "date": None} @register_vcs_handler("git", "pieces_from_vcs") def git_pieces_from_vcs(tag_prefix, root, verbose, run_command=run_command): """Get version from 'git describe' in the root of the source tree. This only gets called if the git-archive 'subst' keywords were *not* expanded, and _version.py hasn't already been rewritten with a short version string, meaning we're inside a checked out source tree. """ GITS = ["git"] if sys.platform == "win32": GITS = ["git.cmd", "git.exe"] out, rc = run_command(GITS, ["rev-parse", "--git-dir"], cwd=root, hide_stderr=True) if rc != 0: if verbose: print("Directory %s not under git control" % root) raise NotThisMethod("'git rev-parse --git-dir' returned error") # if there is a tag matching tag_prefix, this yields TAG-NUM-gHEX[-dirty] # if there isn't one, this yields HEX[-dirty] (no NUM) describe_out, rc = run_command(GITS, ["describe", "--tags", "--dirty", "--always", "--long", "--match", "%s*" % tag_prefix], cwd=root) # --long was added in git-1.5.5 if describe_out is None: raise NotThisMethod("'git describe' failed") describe_out = describe_out.strip() full_out, rc = run_command(GITS, ["rev-parse", "HEAD"], cwd=root) if full_out is None: raise NotThisMethod("'git rev-parse' failed") full_out = full_out.strip() pieces = {} pieces["long"] = full_out pieces["short"] = full_out[:7] # maybe improved later pieces["error"] = None # parse describe_out. It will be like TAG-NUM-gHEX[-dirty] or HEX[-dirty] # TAG might have hyphens. git_describe = describe_out # look for -dirty suffix dirty = git_describe.endswith("-dirty") pieces["dirty"] = dirty if dirty: git_describe = git_describe[:git_describe.rindex("-dirty")] # now we have TAG-NUM-gHEX or HEX if "-" in git_describe: # TAG-NUM-gHEX mo = re.search(r'^(.+)-(\d+)-g([0-9a-f]+)$', git_describe) if not mo: # unparseable. Maybe git-describe is misbehaving? pieces["error"] = ("unable to parse git-describe output: '%s'" % describe_out) return pieces # tag full_tag = mo.group(1) if not full_tag.startswith(tag_prefix): if verbose: fmt = "tag '%s' doesn't start with prefix '%s'" print(fmt % (full_tag, tag_prefix)) pieces["error"] = ("tag '%s' doesn't start with prefix '%s'" % (full_tag, tag_prefix)) return pieces pieces["closest-tag"] = full_tag[len(tag_prefix):] # distance: number of commits since tag pieces["distance"] = int(mo.group(2)) # commit: short hex revision ID pieces["short"] = mo.group(3) else: # HEX: no tags pieces["closest-tag"] = None count_out, rc = run_command(GITS, ["rev-list", "HEAD", "--count"], cwd=root) pieces["distance"] = int(count_out) # total number of commits # commit date: see ISO-8601 comment in git_versions_from_keywords() date = run_command(GITS, ["show", "-s", "--format=%ci", "HEAD"], cwd=root)[0].strip() pieces["date"] = date.strip().replace(" ", "T", 1).replace(" ", "", 1) return pieces def plus_or_dot(pieces): """Return a + if we don't already have one, else return a .""" if "+" in pieces.get("closest-tag", ""): return "." return "+" def render_pep440(pieces): """Build up version string, with post-release "local version identifier". Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty Exceptions: 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += plus_or_dot(pieces) rendered += "%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" else: # exception #1 rendered = "0+untagged.%d.g%s" % (pieces["distance"], pieces["short"]) if pieces["dirty"]: rendered += ".dirty" return rendered def render_pep440_pre(pieces): """TAG[.post.devDISTANCE] -- No -dirty. Exceptions: 1: no tags. 0.post.devDISTANCE """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += ".post.dev%d" % pieces["distance"] else: # exception #1 rendered = "0.post.dev%d" % pieces["distance"] return rendered def render_pep440_post(pieces): """TAG[.postDISTANCE[.dev0]+gHEX] . The ".dev0" means dirty. Note that .dev0 sorts backwards (a dirty tree will appear "older" than the corresponding clean one), but you shouldn't be releasing software with -dirty anyways. Exceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += plus_or_dot(pieces) rendered += "g%s" % pieces["short"] else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" rendered += "+g%s" % pieces["short"] return rendered def render_pep440_old(pieces): """TAG[.postDISTANCE[.dev0]] . The ".dev0" means dirty. Eexceptions: 1: no tags. 0.postDISTANCE[.dev0] """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"] or pieces["dirty"]: rendered += ".post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" else: # exception #1 rendered = "0.post%d" % pieces["distance"] if pieces["dirty"]: rendered += ".dev0" return rendered def render_git_describe(pieces): """TAG[-DISTANCE-gHEX][-dirty]. Like 'git describe --tags --dirty --always'. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] if pieces["distance"]: rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render_git_describe_long(pieces): """TAG-DISTANCE-gHEX[-dirty]. Like 'git describe --tags --dirty --always -long'. The distance/hash is unconditional. Exceptions: 1: no tags. HEX[-dirty] (note: no 'g' prefix) """ if pieces["closest-tag"]: rendered = pieces["closest-tag"] rendered += "-%d-g%s" % (pieces["distance"], pieces["short"]) else: # exception #1 rendered = pieces["short"] if pieces["dirty"]: rendered += "-dirty" return rendered def render(pieces, style): """Render the given version pieces into the requested style.""" if pieces["error"]: return {"version": "unknown", "full-revisionid": pieces.get("long"), "dirty": None, "error": pieces["error"], "date": None} if not style or style == "default": style = "pep440" # the default if style == "pep440": rendered = render_pep440(pieces) elif style == "pep440-pre": rendered = render_pep440_pre(pieces) elif style == "pep440-post": rendered = render_pep440_post(pieces) elif style == "pep440-old": rendered = render_pep440_old(pieces) elif style == "git-describe": rendered = render_git_describe(pieces) elif style == "git-describe-long": rendered = render_git_describe_long(pieces) else: raise ValueError("unknown style '%s'" % style) return {"version": rendered, "full-revisionid": pieces["long"], "dirty": pieces["dirty"], "error": None, "date": pieces.get("date")} def get_versions(): """Get version information or return default if unable to do so.""" # I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have # __file__, we can work backwards from there to the root. Some # py2exe/bbfreeze/non-CPython implementations don't do __file__, in which # case we can only use expanded keywords. cfg = get_config() verbose = cfg.verbose try: return git_versions_from_keywords(get_keywords(), cfg.tag_prefix, verbose) except NotThisMethod: pass try: root = os.path.realpath(__file__) # versionfile_source is the relative path from the top of the source # tree (where the .git directory might live) to this file. Invert # this to find the root from __file__. for i in cfg.versionfile_source.split('/'): root = os.path.dirname(root) except NameError: return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to find root of source tree", "date": None} try: pieces = git_pieces_from_vcs(cfg.tag_prefix, root, verbose) return render(pieces, cfg.style) except NotThisMethod: pass try: if cfg.parentdir_prefix: return versions_from_parentdir(cfg.parentdir_prefix, root, verbose) except NotThisMethod: pass return {"version": "0+unknown", "full-revisionid": None, "dirty": None, "error": "unable to compute version", "date": None}
py
1a4fe6b058a69a30b8164e4efa31b7206aeca3c0
_base_ = './fovea_r50_fpn_4x4_2x_coco.py' model = dict( backbone=dict( depth=101, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101')))
py
1a4fe6eb166e2ba5e55755b60b89433756635414
from lyrebird.mock import context from flask import Response, stream_with_context import json class MockHandler: """ 根据当前设置数据组的匹配条件,查找对应的mock数据。 如果没有找到匹配的数据则交由下一个处理器处理。 """ def handle(self, handler_context): data = context.application.data_manager.router.get_mock_data(handler_context.flow) if data: handler_context.response = self.data2response(data) def data2response(self, data): resp_info = json.loads(data.response.content) code = resp_info['code'] headers = resp_info['headers'] headers['lyrebird'] = 'mock' resp_data = data.response_data.content if resp_data: if type(resp_data) == str: data_len = len(resp_data.encode()) else: data_len = len(resp_data) headers['Content-Length'] = data_len def gen(): yield resp_data return Response(stream_with_context(gen()), status=code, headers=headers)
py
1a4fe803ac2bd605870b0a296e09a86e750b1d8b
from flask import Blueprint from flask_admin.base import MenuLink from flask_admin.consts import ICON_TYPE_IMAGE from ddui.dash_app import app as dash_view from airflow.plugins_manager import AirflowPlugin ml_repo_website = MenuLink( category='DataDriver', name='Git repository', url='https://gitlab.octo.com/dd/ddui.git', icon_type=ICON_TYPE_IMAGE, icon_value='brian/git.png' ) ml_doc = MenuLink( category='DataDriver', name='DataDriver API documentation', url='http://datadriver-doc-ddapi.s3-website-eu-west-1.amazonaws.com/', icon_type=ICON_TYPE_IMAGE, icon_value='brian/sigle.png' ) ml_version = MenuLink( category='DataDriver', name='Version', url='/dash/version', icon_type=ICON_TYPE_IMAGE, icon_value='brian/sigle.png' ) brian_bp = Blueprint( "brian_web", __name__, template_folder='templates', static_folder='static/brian', static_url_path='/static/brian', ) class DataDriverUIPlugin(AirflowPlugin): name = 'DataDriver UI Plugin' operators = [] hooks = [] executors = [] macros = [] admin_views = [dash_view] flask_blueprints = [brian_bp] menu_links = [ml_doc, ml_repo_website, ml_version]
py
1a4fe821d20b90a8097486cfcd7d9fa82d10b84f
""" Django settings for exmp project. Generated by 'django-admin startproject' using Django 1.11.20. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'do0g!j0=1#e7e!9a!iljox&7an)-#^=9oloond(a#59!0=018j' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'exmp.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'exmp.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
py
1a4fe89b650efccff8779b2e55c169667609a929
from threading import Thread, Event from queue import Queue import time import numpy as np import traceback # This code originally used Process not Thread. # Process is much slower to start (Process.start() is ~100 ms, Thread.start() is a few ms) # The process-safe versions of Queue and Event are also significantly slower. # On the other hand, CPU-bound Python threads can't run in parallel ("global interpreter lock"). # The overall problem is not CPU-bound - we should always be limited by tProc execution. # In the worst case where the tProc is running fast, we should actually be waiting for IO a lot (due to the DMA). # So we think it's safe to use threads. # However, this is a complicated problem and we may ultimately need to mess around with sys.setswitchinterval() or go back to Process. # To use Process instead of Thread, use the following import and change WORKERTYPE. #from multiprocessing import Process, Queue, Event class DataStreamer(): """ Uses a separate thread to read data from the average buffers. The class methods define the readout loop and initialization of the worker thread. The QickSoc methods start_readout() and poll_data() are the external interface to the streamer. We don't lock the QickSoc or the IPs. The user is responsible for not disrupting a readout in progress. :param soc: The QickSoc object. :type soc: QickSoc """ #WORKERTYPE = Process WORKERTYPE = Thread def __init__(self, soc): self.soc = soc self.start_worker() def start_worker(self): # Initialize flags and queues. # Passes run commands from the main thread to the worker thread. self.job_queue = Queue() # Passes data from the worker thread to the main thread. self.data_queue = Queue() # Passes exceptions from the worker thread to the main thread. self.error_queue = Queue() # The main thread can use this flag to tell the worker thread to stop. # The main thread clears the flag when starting readout. self.stop_flag = Event() # The worker thread uses this to tell the main thread when it's done. # The main thread clears the flag when starting readout. self.done_flag = Event() self.done_flag.set() # Process object for the streaming readout. # daemon=True means the readout thread will be killed if the parent is killed self.readout_worker = self.WORKERTYPE(target=self._run_readout, daemon=True) self.readout_worker.start() def stop_readout(self): """ Signal the readout loop to break. """ self.stop_flag.set() def readout_running(self): """ Test if the readout loop is running. :return: readout thread status :rtype: bool """ return not self.done_flag.is_set() def data_available(self): """ Test if data is available in the queue. :return: data queue status :rtype: bool """ return not self.data_queue.empty() def _run_readout(self): """ Worker thread for the streaming readout :param total_count: Number of data points expected :type addr: int :param counter_addr: Data memory address for the loop counter :type counter_addr: int :param ch_list: List of readout channels :type addr: list :param reads_per_count: Number of data points to expect per counter increment :type reads_per_count: int """ while True: try: # wait for a job total_count, counter_addr, ch_list, reads_per_count = self.job_queue.get(block=True) #print("streamer loop: start", total_count) count = 0 last_count = 0 # how many measurements to transfer at a time stride = int(0.1 * self.soc.get_avg_max_length(0)) # bigger stride is more efficient, but the transfer size must never exceed AVG_MAX_LENGTH, so the stride should be set with some safety margin # make sure count variable is reset to 0 before starting processor self.soc.tproc.single_write(addr=counter_addr, data=0) stats = [] t_start = time.time() # if the tproc is configured for internal start, this will start the program # for external start, the program will not start until a start pulse is received self.soc.tproc.start() # Keep streaming data until you get all of it while last_count < total_count: if self.stop_flag.is_set(): print("streamer loop: got stop flag") break count = self.soc.tproc.single_read( addr=counter_addr)*reads_per_count # wait until either you've gotten a full stride of measurements or you've finished (so you don't go crazy trying to download every measurement) if count >= min(last_count+stride, total_count): addr = last_count % self.soc.get_avg_max_length(0) length = count-last_count if length >= self.soc.get_avg_max_length(0): raise RuntimeError("Overflowed the averages buffer (%d unread samples >= buffer size %d)." % (length, self.soc.get_avg_max_length(0)) + "\nYou need to slow down the tProc by increasing relax_delay." + "\nIf the TQDM progress bar is enabled, disabling it may help.") # transfers must be of even length; trim the length (instead of padding it) # don't trim if this is the last read of the run if count < last_count: length -= length % 2 # buffer for each channel d_buf = np.zeros((len(ch_list), 2, length)) # for each adc channel get the single shot data and add it to the buffer for iCh, ch in enumerate(ch_list): data = self.soc.get_accumulated( ch=ch, address=addr, length=length) d_buf[iCh] = data last_count += length stats = (time.time()-t_start, count, addr, length) self.data_queue.put((length, (d_buf, stats))) #if last_count==total_count: print("streamer loop: normal completion") except Exception as e: print("streamer loop: got exception") traceback.print_exc() # pass the exception to the main thread self.error_queue.put(e) # put dummy data in the data queue, to trigger a poll_data read self.data_queue.put((0, (None, None))) finally: # we should set the done flag regardless of whether we completed readout, used the stop flag, or errored out self.done_flag.set()
py
1a4fe8c8a43f94f762fb9fbb76c6c9961c701643
from django import template register = template.Library() @register.filter def getcount(item, choice): """returns the number of times choice has been selected for item""" return item.userchoices.filter(choice=choice).count() @register.filter def getuniqueitems(userchoices): """return a list of unique items given a bunch of userchoices""" items = [] for userchoice in userchoices: if userchoice.item not in items: items.append(userchoice.item) return items @register.filter def getzerochoiceitems(items, choice): """return a list of unique items where the given choice has been chosen zero times""" returnitems = [] for item in items: if item.userchoices.filter(choice=choice).count()==0: if item not in returnitems: returnitems.append(item) return returnitems
py
1a4fe923b6b54b4c495d28b3c3fc82486a8d23c8
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class WorkRequestLogEntryCollection(object): """ Results of a workRequestLog search. Contains both workRequestLog items and other information, such as metadata. """ def __init__(self, **kwargs): """ Initializes a new WorkRequestLogEntryCollection object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param items: The value to assign to the items property of this WorkRequestLogEntryCollection. :type items: list[oci.service_catalog.models.WorkRequestLogEntry] """ self.swagger_types = { 'items': 'list[WorkRequestLogEntry]' } self.attribute_map = { 'items': 'items' } self._items = None @property def items(self): """ **[Required]** Gets the items of this WorkRequestLogEntryCollection. List of workRequestLogEntries. :return: The items of this WorkRequestLogEntryCollection. :rtype: list[oci.service_catalog.models.WorkRequestLogEntry] """ return self._items @items.setter def items(self, items): """ Sets the items of this WorkRequestLogEntryCollection. List of workRequestLogEntries. :param items: The items of this WorkRequestLogEntryCollection. :type: list[oci.service_catalog.models.WorkRequestLogEntry] """ self._items = items def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
bzl
1a4fe9d3b89a9f322c750afd6f84b5d6e4ef901d
# Copyright 2018 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Partial implementations for resource processing. Resources are procesed according to type, by a series of methods that deal with the specifics for each resource type. Each of this methods returns a struct, which always have a `files` field containing resource tuples as described in processor.bzl. Optionally, the structs can also have an `infoplists` field containing a list of plists that should be merged into the root Info.plist. """ load( "@build_bazel_rules_apple//apple/bundling:file_actions.bzl", "file_actions", ) load( "@build_bazel_rules_apple//apple/internal/partials/support:resources_support.bzl", "resources_support", ) load( "@build_bazel_rules_apple//apple/internal:intermediates.bzl", "intermediates", ) load( "@build_bazel_rules_apple//apple/internal:outputs.bzl", "outputs", ) load( "@build_bazel_rules_apple//apple/internal:processor.bzl", "processor", ) load( "@build_bazel_rules_apple//apple/internal:resource_actions.bzl", "resource_actions", ) load( "@build_bazel_rules_apple//apple/internal:resources.bzl", "NewAppleResourceInfo", "resources", ) load( "@build_bazel_rules_apple//apple:providers.bzl", "AppleBundleInfo", ) load( "@bazel_skylib//lib:new_sets.bzl", "sets", ) load( "@bazel_skylib//lib:partial.bzl", "partial", ) def _merge_root_infoplists(ctx, infoplists, out_infoplist, **kwargs): """Registers the root Info.plist generation action. Args: ctx: The target's rule context. infoplists: List of plists that should be merged into the root Info.plist. out_infoplist: Reference to the output Info plist. **kwargs: Extra parameters forwarded into the merge_root_infoplists action. Returns: A list of tuples as described in processor.bzl with the Info.plist file reference and the PkgInfo file if required. """ # TODO(b/73349137): Remove this symlink. It's only used so that the file has the proper name # when bundled. plist_symlink = intermediates.file( ctx.actions, ctx.label.name, "Info.plist", ) files = [plist_symlink] file_actions.symlink(ctx, out_infoplist, plist_symlink) out_pkginfo = None if ctx.attr._needs_pkginfo: out_pkginfo = intermediates.file( ctx.actions, ctx.label.name, "PkgInfo", ) files.append(out_pkginfo) resource_actions.merge_root_infoplists( ctx, infoplists, out_infoplist, out_pkginfo, **kwargs ) return [(processor.location.content, None, depset(direct = files))] def _deduplicate(resources_provider, avoid_provider, field): """Deduplicates and returns resources between 2 providers for a given field. Deduplication happens by comparing the target path of a file and the files themselves. If there are 2 resources with the same target path but different contents, the files will not be deduplicated. This approach is naïve in the sense that it deduplicates resources too aggressively. We also need to compare the target that references the resources so that they are not deduplicated if they are referenced within multiple binary-containing bundles. Args: resources_provider: The provider with the resources to be bundled. avoid_provider: The provider with the resources to avoid bundling. field: The field to deduplicate resources on. Returns: A list of tuples with the resources present in avoid_providers removed from resources_providers. """ # Build a dictionary with the file paths under each key for the avoided resources. avoid_dict = {} if avoid_provider and hasattr(avoid_provider, field): for parent_dir, swift_module, files in getattr(avoid_provider, field): key = "%s_%s" % (parent_dir or "root", swift_module or "root") avoid_dict[key] = {x.short_path: None for x in files.to_list()} # Get the resources to keep, compare them to the avoid_dict under the same # key, and remove the duplicated file references. Then recreate the original # tuple with only the remaining files, if any. deduped_tuples = [] for parent_dir, swift_module, files in getattr(resources_provider, field): key = "%s_%s" % (parent_dir or "root", swift_module or "root") # Dictionary used as a set to mark files as processed by short_path to deduplicate generated # files that may appear more than once if multiple architectures are being built. multi_architecture_deduplication_set = {} deduped_files = depset([]) for to_bundle_file in files.to_list(): short_path = to_bundle_file.short_path if short_path in multi_architecture_deduplication_set: continue multi_architecture_deduplication_set[short_path] = None if key in avoid_dict and short_path in avoid_dict[key]: # If the resource file is present in the provider of resources to avoid, we compare # the owners of the resource through the owners dictionaries of the providers. If # there are owners present in resources_provider which are not present in # avoid_provider, it means that there is at least one target that declares usage of # the resource which is not accounted for in avoid_provider. If this is the case, we # add the resource to be bundled in the bundle represented by resource_provider. deduped_owners = [ o for o in resources_provider.owners[short_path] if o not in avoid_provider.owners[short_path] ] if deduped_owners: deduped_files = depset( direct = [to_bundle_file], transitive = [deduped_files], ) else: deduped_files = depset(direct = [to_bundle_file], transitive = [deduped_files]) if deduped_files: deduped_tuples.append((parent_dir, swift_module, deduped_files)) return deduped_tuples def _locales_requested(ctx): """Determines which locales to include when resource actions. If the user has specified "apple.locales_to_include" we use those. Otherwise we don't filter. 'Base' is included by default to any given list of locales to include. Args: ctx: The rule context. Returns: A set of locales to include or None if all should be included. """ requested_locales = ctx.var.get("apple.locales_to_include") if requested_locales != None: return sets.make(["Base"] + [x.strip() for x in requested_locales.split(",")]) else: return None def _locale_for_path(resource_path): """Returns the detected locale for the given resource path.""" if not resource_path: return None loc = resource_path.find(".lproj") if loc == -1: return None # If there was more after '.lproj', then it has to be a directory, otherwise # it was part of some other extension. if (loc + 6) > len(resource_path) and resource_path[loc + 6] != "/": return None locale_start = resource_path.rfind("/", end = loc) if locale_start < 0: return resource_path[0:loc] return resource_path[locale_start + 1:loc] def _validate_processed_locales(locales_requested, locales_included, locales_dropped): """Prints a warning if locales were dropped and none of the requested ones were included.""" if sets.length(locales_dropped): # Display a warning if a locale was dropped and there are unfulfilled locale requests; it # could mean that the user made a mistake in defining the locales they want to keep. if not sets.is_equal(locales_requested, locales_included): unused_locales = sets.difference(locales_requested, locales_included) print("Warning: Did not have resources that matched " + sets.str(unused_locales) + " in locale filter. Please verify apple.locales_to_include is defined" + " properly.") def _resources_partial_impl( ctx, bundle_id, bundle_verification_targets, plist_attrs, targets_to_avoid, top_level_attrs, version_keys_required): """Implementation for the resource processing partial.""" providers = [] if hasattr(ctx.attr, "deps"): providers.extend([ x[NewAppleResourceInfo] for x in ctx.attr.deps if NewAppleResourceInfo in x ]) # TODO(kaipi): Bucket top_level_attrs directly instead of collecting and # splitting. files = resources.collect(ctx.attr, res_attrs = top_level_attrs) if files: providers.append(resources.bucketize(files, owner = str(ctx.label))) if plist_attrs: plists = resources.collect(ctx.attr, res_attrs = plist_attrs) plist_provider = resources.bucketize_typed( plists, owner = str(ctx.label), bucket_type = "infoplists", ) providers.append(plist_provider) avoid_providers = [ x[NewAppleResourceInfo] for x in targets_to_avoid if NewAppleResourceInfo in x ] avoid_provider = None if avoid_providers: # Call merge_providers with validate_all_resources_owned set, to ensure that all the # resources from dependency bundles have an owner. avoid_provider = resources.merge_providers( avoid_providers, validate_all_resources_owned = True, ) final_provider = resources.merge_providers(providers, default_owner = str(ctx.label)) # Map of resource provider fields to a tuple that contains the method to use to process those # resources and a boolean indicating whether the Swift module is required for that processing. provider_field_to_action = { "asset_catalogs": (resources_support.asset_catalogs, False), "datamodels": (resources_support.datamodels, True), "infoplists": (resources_support.infoplists, False), "plists": (resources_support.plists_and_strings, False), "pngs": (resources_support.pngs, False), # TODO(b/113252360): Remove this once we can correctly process Fileset files. "resource_zips": (resources_support.resource_zips, False), "storyboards": (resources_support.storyboards, True), "strings": (resources_support.plists_and_strings, False), "texture_atlases": (resources_support.texture_atlases, False), "unprocessed": (resources_support.noop, False), "xibs": (resources_support.xibs, True), } # List containing all the files that the processor will bundle in their # configured location. bundle_files = [] fields = resources.populated_resource_fields(final_provider) infoplists = [] locales_requested = _locales_requested(ctx) locales_included = sets.make(["Base"]) locales_dropped = sets.make() for field in fields: processing_func, requires_swift_module = provider_field_to_action[field] deduplicated = _deduplicate(final_provider, avoid_provider, field) for parent_dir, swift_module, files in deduplicated: if locales_requested: locale = _locale_for_path(parent_dir) if sets.contains(locales_requested, locale): sets.insert(locales_included, locale) elif locale != None: sets.insert(locales_dropped, locale) continue processing_args = { "ctx": ctx, "parent_dir": parent_dir, "files": files, } # Only pass the Swift module name if the type of resource to process # requires it. if requires_swift_module: processing_args["swift_module"] = swift_module result = processing_func(**processing_args) bundle_files.extend(result.files) if hasattr(result, "infoplists"): infoplists.extend(result.infoplists) if locales_requested: _validate_processed_locales(locales_requested, locales_included, locales_dropped) if bundle_id: # If no bundle ID was given, do not process the root Info.plist and do not validate embedded # bundles. bundle_verification_infoplists = [ b.target[AppleBundleInfo].infoplist for b in bundle_verification_targets ] bundle_verification_required_values = [ ( b.target[AppleBundleInfo].infoplist, [[b.parent_bundle_id_reference, bundle_id]], ) for b in bundle_verification_targets if hasattr(b, "parent_bundle_id_reference") ] out_infoplist = outputs.infoplist(ctx) bundle_files.extend( _merge_root_infoplists( ctx, infoplists, out_infoplist, bundle_id = bundle_id, child_plists = bundle_verification_infoplists, child_required_values = bundle_verification_required_values, version_keys_required = version_keys_required, ), ) return struct(bundle_files = bundle_files, providers = [final_provider]) def resources_partial( bundle_id = None, bundle_verification_targets = [], plist_attrs = [], targets_to_avoid = [], top_level_attrs = [], version_keys_required = True): """Constructor for the resources processing partial. This partial collects and propagates all resources that should be bundled in the target being processed. Args: bundle_id: Optional bundle ID to use when processing resources. If no bundle ID is given, the bundle will not contain a root Info.plist and no embedded bundle verification will occur. bundle_verification_targets: List of structs that reference embedable targets that need to be validated. The structs must have a `target` field with the target containing an Info.plist file that will be validated. The structs may also have a `parent_bundle_id_reference` field that contains the plist path, in list form, to the plist entry that must contain this target's bundle ID. plist_attrs: List of attributes that should be processed as Info plists that should be merged and processed. targets_to_avoid: List of targets containing resources that should be deduplicated from the target being processed. top_level_attrs: List of attributes containing resources that need to be processed from the target being processed. version_keys_required: Whether to validate that the Info.plist version keys are correctly configured. Returns: A partial that returns the bundle location of the resources and the resources provider. """ return partial.make( _resources_partial_impl, bundle_id = bundle_id, bundle_verification_targets = bundle_verification_targets, plist_attrs = plist_attrs, targets_to_avoid = targets_to_avoid, top_level_attrs = top_level_attrs, version_keys_required = version_keys_required, )
py
1a4fea24f5934520e6722daf78eb80972586da07
# -*- coding: utf-8 -*- # # Copyright (c) 2015, Alcatel-Lucent Inc, 2017 Nokia # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from .fetchers import NUMetadatasFetcher from .fetchers import NUNetconfSessionsFetcher from .fetchers import NUGlobalMetadatasFetcher from bambou import NURESTObject class NUNetconfManager(NURESTObject): """ Represents a NetconfManager in the VSD Notes: Identifies Netconf Manager communicating with VSD, This can only be created by netconfmgr user """ __rest_name__ = "netconfmanager" __resource_name__ = "netconfmanagers" ## Constants CONST_STATUS_CONNECTED = "CONNECTED" CONST_ENTITY_SCOPE_GLOBAL = "GLOBAL" CONST_STATUS_JMS_DISCONNECTED = "JMS_DISCONNECTED" CONST_ENTITY_SCOPE_ENTERPRISE = "ENTERPRISE" CONST_STATUS_DISCONNECTED = "DISCONNECTED" CONST_STATUS_INIT = "INIT" def __init__(self, **kwargs): """ Initializes a NetconfManager instance Notes: You can specify all parameters while calling this methods. A special argument named `data` will enable you to load the object from a Python dictionary Examples: >>> netconfmanager = NUNetconfManager(id=u'xxxx-xxx-xxx-xxx', name=u'NetconfManager') >>> netconfmanager = NUNetconfManager(data=my_dict) """ super(NUNetconfManager, self).__init__() # Read/Write Attributes self._name = None self._last_updated_by = None self._release = None self._entity_scope = None self._assoc_entity_type = None self._status = None self._external_id = None self.expose_attribute(local_name="name", remote_name="name", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="last_updated_by", remote_name="lastUpdatedBy", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="release", remote_name="release", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="entity_scope", remote_name="entityScope", attribute_type=str, is_required=False, is_unique=False, choices=[u'ENTERPRISE', u'GLOBAL']) self.expose_attribute(local_name="assoc_entity_type", remote_name="assocEntityType", attribute_type=str, is_required=False, is_unique=False) self.expose_attribute(local_name="status", remote_name="status", attribute_type=str, is_required=False, is_unique=False, choices=[u'CONNECTED', u'DISCONNECTED', u'INIT', u'JMS_DISCONNECTED']) self.expose_attribute(local_name="external_id", remote_name="externalID", attribute_type=str, is_required=False, is_unique=True) # Fetchers self.metadatas = NUMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self.netconf_sessions = NUNetconfSessionsFetcher.fetcher_with_object(parent_object=self, relationship="child") self.global_metadatas = NUGlobalMetadatasFetcher.fetcher_with_object(parent_object=self, relationship="child") self._compute_args(**kwargs) # Properties @property def name(self): """ Get name value. Notes: A unique name of the Netconf Manager entity. """ return self._name @name.setter def name(self, value): """ Set name value. Notes: A unique name of the Netconf Manager entity. """ self._name = value @property def last_updated_by(self): """ Get last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ return self._last_updated_by @last_updated_by.setter def last_updated_by(self, value): """ Set last_updated_by value. Notes: ID of the user who last updated the object. This attribute is named `lastUpdatedBy` in VSD API. """ self._last_updated_by = value @property def release(self): """ Get release value. Notes: Netconf Manager RPM release version """ return self._release @release.setter def release(self, value): """ Set release value. Notes: Netconf Manager RPM release version """ self._release = value @property def entity_scope(self): """ Get entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ return self._entity_scope @entity_scope.setter def entity_scope(self, value): """ Set entity_scope value. Notes: Specify if scope of entity is Data center or Enterprise level This attribute is named `entityScope` in VSD API. """ self._entity_scope = value @property def assoc_entity_type(self): """ Get assoc_entity_type value. Notes: Type of parent entity This attribute is named `assocEntityType` in VSD API. """ return self._assoc_entity_type @assoc_entity_type.setter def assoc_entity_type(self, value): """ Set assoc_entity_type value. Notes: Type of parent entity This attribute is named `assocEntityType` in VSD API. """ self._assoc_entity_type = value @property def status(self): """ Get status value. Notes: VSD connection status with this Netconf Manager """ return self._status @status.setter def status(self, value): """ Set status value. Notes: VSD connection status with this Netconf Manager """ self._status = value @property def external_id(self): """ Get external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ return self._external_id @external_id.setter def external_id(self, value): """ Set external_id value. Notes: External object ID. Used for integration with third party systems This attribute is named `externalID` in VSD API. """ self._external_id = value
py
1a4feb621dc03c1f87ea8bb51ea17d89f6f0638e
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .resnet import ResnetGenerator from .unet import UnetGenerator from .rrdb_net import RRDBNet from .makeup import GeneratorPSGANAttention from .deep_conv import DeepConvGenerator, ConditionalDeepConvGenerator from .resnet_ugatit import ResnetUGATITGenerator from .dcgenerator import DCGenerator from .generater_animegan import AnimeGenerator, AnimeGeneratorLite from .wav2lip import Wav2Lip from .lesrcnn import LESRCNNGenerator from .resnet_ugatit_p2c import ResnetUGATITP2CGenerator from .generator_styleganv2 import StyleGANv2Generator from .generator_pixel2style2pixel import Pixel2Style2Pixel from .drn import DRNGenerator from .generator_starganv2 import StarGANv2Generator, StarGANv2Style, StarGANv2Mapping, FAN from .edvr import EDVRNet from .generator_firstorder import FirstOrderGenerator from .generater_lapstyle import DecoderNet, Encoder, RevisionNet from .basicvsr import BasicVSRNet from .mpr import MPRNet from .iconvsr import IconVSR from .gpen import GPEN from .pan import PAN from .basicvsr_plus_plus import BasicVSRPlusPlus
py
1a4feb73abc7f4158e5e243ba704da09b246756c
import numpy as np import pandas as pd from abc import abstractmethod from gym.spaces import Space, Box from typing import Dict from trades import Trade, TradeType from exchanges import InstrumentExchange from slippage import RandomSlippageModel class SimulatedExchange(InstrumentExchange): """An instrument exchange, in which the price history is based off the supplied data frame and trade execution is largely decided by the designated slippage model. If the `data_frame` parameter is not supplied upon initialization, it must be set before the exchange can be used within a trading environment. """ def __init__(self, data_frame: pd.DataFrame = None, **kwargs): super().__init__(base_instrument=kwargs.get('base_instrument', 'USD'), dtype=kwargs.get('dtype', np.float16)) if data_frame is not None: self._data_frame = data_frame.astype(self._dtype) self._commission_percent = kwargs.get('commission_percent', 0.3) self._base_precision = kwargs.get('base_precision', 2) self._instrument_precision = kwargs.get('instrument_precision', 8) self._initial_balance = kwargs.get('initial_balance', 1E4) self._min_order_amount = kwargs.get('min_order_amount', 1E-3) self._min_trade_price = kwargs.get('min_trade_price', 1E-6) self._max_trade_price = kwargs.get('max_trade_price', 1E6) self._min_trade_amount = kwargs.get('min_trade_amount', 1E-3) self._max_trade_amount = kwargs.get('max_trade_amount', 1E6) max_allowed_slippage_percent = kwargs.get('max_allowed_slippage_percent', 1.0) SlippageModelClass = kwargs.get('slippage_model', RandomSlippageModel) self._slippage_model = SlippageModelClass(max_allowed_slippage_percent) @property def data_frame(self) -> pd.DataFrame: """The underlying data model backing the price and volume simulation.""" return self._data_frame @data_frame.setter def data_frame(self, data_frame: pd.DataFrame): self._data_frame = data_frame @property def initial_balance(self) -> float: return self._initial_balance @property def balance(self) -> float: return self._balance @property def portfolio(self) -> Dict[str, float]: return self._portfolio @property def trades(self) -> pd.DataFrame: return self._trades @property def performance(self) -> pd.DataFrame: return self._performance @property def observation_space(self) -> Space: low = np.array([self._min_trade_price, ] * 4 + [self._min_trade_amount, ]) high = np.array([self._max_trade_price, ] * 4 + [self._max_trade_amount, ]) return Box(low=low, high=high, dtype=self._dtype) @property def has_next_observation(self) -> bool: return self._current_step < len(self._data_frame) - 1 def next_observation(self) -> pd.DataFrame: obs = self._data_frame.iloc[self._current_step] self._current_step += 1 return obs def current_price(self, symbol: str) -> float: if len(self._data_frame) is 0: self.next_observation() return float(self._data_frame['close'].values[self._current_step]) def _is_valid_trade(self, trade: Trade) -> bool: if trade.trade_type is TradeType.MARKET_BUY or trade.trade_type is TradeType.LIMIT_BUY: return trade.amount >= self._min_order_amount and self._balance >= trade.amount * trade.price elif trade.trade_type is TradeType.MARKET_SELL or trade.trade_type is TradeType.LIMIT_SELL: return trade.amount >= self._min_order_amount and self._portfolio.get(trade.symbol, 0) >= trade.amount return True def _update_account(self, trade: Trade): if trade.amount > 0: self._trades = self._trades.append({ 'step': self._current_step, 'symbol': trade.symbol, 'type': trade.trade_type, 'amount': trade.amount, 'price': trade.price }, ignore_index=True) if trade.is_buy: self._balance -= trade.amount * trade.price self._portfolio[trade.symbol] = self._portfolio.get(trade.symbol, 0) + trade.amount elif trade.is_sell: self._balance += trade.amount * trade.price self._portfolio[trade.symbol] = self._portfolio.get(trade.symbol, 0) - trade.amount self._portfolio[self._base_instrument] = self._balance self._performance.append({ 'balance': self.balance, 'net_worth': self.net_worth, }, ignore_index=True) def execute_trade(self, trade: Trade) -> Trade: current_price = self.current_price(symbol=trade.symbol) commission = self._commission_percent / 100 filled_trade = trade.copy() if filled_trade.is_hold or not self._is_valid_trade(filled_trade): filled_trade.amount = 0 elif filled_trade.is_buy: price_adjustment = price_adjustment = (1 + commission) filled_trade.price = round(current_price * price_adjustment, self._base_precision) filled_trade.amount = round( (filled_trade.price * filled_trade.amount) / filled_trade.price, self._instrument_precision) elif filled_trade.is_sell: price_adjustment = (1 - commission) filled_trade.price = round(current_price * price_adjustment, self._base_precision) filled_trade.amount = round(filled_trade.amount, self._instrument_precision) filled_trade = self._slippage_model.fill_order(filled_trade, current_price) self._update_account(filled_trade) return filled_trade def reset(self): self._balance = self._initial_balance self._portfolio = {self._base_instrument: self._balance} self._trades = pd.DataFrame([], columns=['step', 'symbol', 'type', 'amount', 'price']) self._performance = pd.DataFrame([], columns=['balance', 'net_worth']) self._current_step = 0
py
1a4febab217f4cc213b6da85d7e35068a04fa89c
#!/usr/bin/env python3 from omxplayer.player import OMXPlayer from pathlib import Path from time import sleep import logging logging.basicConfig(level=logging.INFO) import socket import pdb noCommMode = False if not noCommMode: HOST = '' PORT = 55555 sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.bind((HOST,PORT)) sock.listen(1) conn,addr = sock.accept() vidPath = "raspi.avi" player_log = logging.getLogger("Player 1") player = OMXPlayer(vidPath, dbus_name='org.mpris.MediaPlayer2.omxplayer1') player.playEvent += lambda _: player_log.info("Play") player.pauseEvent += lambda _: player_log.info("Pause") player.stopEvent += lambda _: player_log.info("Stop") player.set_aspect_mode('stretch') player.set_video_pos(0, 0, 700, int(512*2.14)) sleep(10) if noCommMode: # for debugging player.set_position(120*60) # player.play() # sleep(1) # player.pause() sleep(20) player.set_position(130*60) # player.play() sleep(20) player.set_position(140*60) sleep(20) player.stop() else: while True: data = conn.recv(1024) print('received: '+str(data)) if data=='term': break if '_' in data: cmd = data.split('_')[0] arg = float(data.split('_')[1]) if cmd=='pause': player.set_position(arg) player.play() sleep(10) player.pause() elif cmd=='play': player.set_position(arg) conn.close() player.quit()
py
1a4fec271a9cd619579311d3fa8e37420073af34
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mxnet as mx import numpy as np import onnxruntime import pytest import shutil from mxnet import gluon from mxnet.test_utils import assert_almost_equal @pytest.mark.skip(reason='Gluon no long support v1.x models since https://github.com/apache/incubator-mxnet/pull/20262') def test_resnet50_v2(tmp_path): try: ctx = mx.cpu() model = gluon.model_zoo.vision.resnet50_v2(pretrained=True, ctx=ctx) BS = 1 inp = mx.random.uniform(0, 1, (1, 3, 224, 224)) model.hybridize(static_alloc=True) out = model(inp) prefix = "%s/resnet50" % tmp_path model.export(prefix) sym_file = "%s-symbol.json" % prefix params_file = "%s-0000.params" % prefix onnx_file = "%s.onnx" % prefix dynamic_input_shapes = [('batch', 3, 224, 224)] input_shapes = [(1, 3, 224, 224)] input_types = [np.float32] converted_model_path = mx.onnx.export_model(sym_file, params_file, input_shapes, input_types, onnx_file, dynamic=True, dynamic_input_shapes=dynamic_input_shapes) ses_opt = onnxruntime.SessionOptions() ses_opt.log_severity_level = 3 session = onnxruntime.InferenceSession(onnx_file, ses_opt) BS = 10 inp = mx.random.uniform(0, 1, (1, 3, 224, 224)) mx_out = model(inp) onnx_inputs = [inp] input_dict = dict((session.get_inputs()[i].name, onnx_inputs[i].asnumpy()) for i in range(len(onnx_inputs))) on_out = session.run(None, input_dict) assert_almost_equal(mx_out, on_out, rtol=0.001, atol=0.01) finally: shutil.rmtree(tmp_path)
py
1a4fecefc8bbd9c6263891ab0ae31d8945f356f6
#!/usr/bin/python import sys import panflute as pf from pangloss.config import merge_settings from pangloss.backend import formats def gloss(elem, doc): if isinstance(elem, pf.OrderedList): if elem.style == 'Example': if doc.format in formats: backend = doc.get_metadata(doc.format + 'Backend') if backend in formats[doc.format]: return formats[doc.format][backend](elem) else: return None def gloss_refs(elem, doc): if isinstance(elem, pf.Cite): text = elem.content[0].text if text[:4] == '@ex:': if doc.format == 'latex': ref = "\\ref{ex:" + text[4:] + "}" fmt = doc.get_metadata('exampleRefFormat') #pf.debug(fmt) if isinstance(fmt, list): ref = (fmt[0]).format(ref) else: ref = fmt.format(ref) return pf.RawInline(ref, format = 'latex') elif doc.format == 'html': # TODO pass def main(): doc = pf.load(input_stream=sys.stdin) merge_settings(doc) pf.dump(pf.run_filters([gloss, gloss_refs], doc=doc), output_stream=sys.stdout) if __name__ == '__main__': main()
py
1a4fee8afdedda408cc3fcba824bf014960fa71d
#!/usr/bin/python3 """Resets the datastore Deletes all sqlite files. This will not reset nifi but reset lhipa and cl model states """ __author__ = "Martin Eigenmann" __license__ = "unlicence" __version__ = "0.0.1" __email__ = "[email protected]" __status__ = "Prototpye" import json import sys import os import sqlite3 for f in os.listdir('/data'): if len(f.split('-')) == 1: db = sqlite3.connect(f'/data/{f}') cursor = db.cursor() cursor.execute('DROP TABLE IF EXISTS et') db.commit() cursor.close() db.close() os.remove(f'/data/{f}') print(json.dumps({ "reset": True }))
py
1a4fee935714629cbfdc5115857e45e07d9376f8
# Copyright (c) OpenMMLab. All rights reserved. import numpy as np import torch from torch import nn as nn from torch.nn import functional as F from mmseg.core import add_prefix from ..builder import (SEGMENTORS, build_backbone, build_head, build_loss, build_neck) from .base import Base3DSegmentor @SEGMENTORS.register_module() class EncoderDecoder3D(Base3DSegmentor): """3D Encoder Decoder segmentors. EncoderDecoder typically consists of backbone, decode_head, auxiliary_head. Note that auxiliary_head is only used for deep supervision during training, which could be thrown during inference. """ def __init__(self, backbone, decode_head, neck=None, auxiliary_head=None, loss_regularization=None, train_cfg=None, test_cfg=None, pretrained=None, init_cfg=None): super(EncoderDecoder3D, self).__init__(init_cfg=init_cfg) self.backbone = build_backbone(backbone) if neck is not None: self.neck = build_neck(neck) self._init_decode_head(decode_head) self._init_auxiliary_head(auxiliary_head) self._init_loss_regularization(loss_regularization) self.train_cfg = train_cfg self.test_cfg = test_cfg assert self.with_decode_head, \ '3D EncoderDecoder Segmentor should have a decode_head' def _init_decode_head(self, decode_head): """Initialize ``decode_head``""" self.decode_head = build_head(decode_head) self.num_classes = self.decode_head.num_classes def _init_auxiliary_head(self, auxiliary_head): """Initialize ``auxiliary_head``""" if auxiliary_head is not None: if isinstance(auxiliary_head, list): self.auxiliary_head = nn.ModuleList() for head_cfg in auxiliary_head: self.auxiliary_head.append(build_head(head_cfg)) else: self.auxiliary_head = build_head(auxiliary_head) def _init_loss_regularization(self, loss_regularization): """Initialize ``loss_regularization``""" if loss_regularization is not None: if isinstance(loss_regularization, list): self.loss_regularization = nn.ModuleList() for loss_cfg in loss_regularization: self.loss_regularization.append(build_loss(loss_cfg)) else: self.loss_regularization = build_loss(loss_regularization) def extract_feat(self, points): """Extract features from points.""" x = self.backbone(points) if self.with_neck: x = self.neck(x) return x def encode_decode(self, points, img_metas): """Encode points with backbone and decode into a semantic segmentation map of the same size as input. Args: points (torch.Tensor): Input points of shape [B, N, 3+C]. img_metas (list[dict]): Meta information of each sample. Returns: torch.Tensor: Segmentation logits of shape [B, num_classes, N]. """ x = self.extract_feat(points) out = self._decode_head_forward_test(x, img_metas) return out def _decode_head_forward_train(self, x, img_metas, pts_semantic_mask): """Run forward function and calculate loss for decode head in training.""" losses = dict() loss_decode = self.decode_head.forward_train(x, img_metas, pts_semantic_mask, self.train_cfg) losses.update(add_prefix(loss_decode, 'decode')) return losses def _decode_head_forward_test(self, x, img_metas): """Run forward function and calculate loss for decode head in inference.""" seg_logits = self.decode_head.forward_test(x, img_metas, self.test_cfg) return seg_logits def _auxiliary_head_forward_train(self, x, img_metas, pts_semantic_mask): """Run forward function and calculate loss for auxiliary head in training.""" losses = dict() if isinstance(self.auxiliary_head, nn.ModuleList): for idx, aux_head in enumerate(self.auxiliary_head): loss_aux = aux_head.forward_train(x, img_metas, pts_semantic_mask, self.train_cfg) losses.update(add_prefix(loss_aux, f'aux_{idx}')) else: loss_aux = self.auxiliary_head.forward_train( x, img_metas, pts_semantic_mask, self.train_cfg) losses.update(add_prefix(loss_aux, 'aux')) return losses def _loss_regularization_forward_train(self): """Calculate regularization loss for model weight in training.""" losses = dict() if isinstance(self.loss_regularization, nn.ModuleList): for idx, regularize_loss in enumerate(self.loss_regularization): loss_regularize = dict( loss_regularize=regularize_loss(self.modules())) losses.update(add_prefix(loss_regularize, f'regularize_{idx}')) else: loss_regularize = dict( loss_regularize=self.loss_regularization(self.modules())) losses.update(add_prefix(loss_regularize, 'regularize')) return losses def forward_dummy(self, points): """Dummy forward function.""" seg_logit = self.encode_decode(points, None) return seg_logit def forward_train(self, points, img_metas, pts_semantic_mask): """Forward function for training. Args: points (list[torch.Tensor]): List of points of shape [N, C]. img_metas (list): Image metas. pts_semantic_mask (list[torch.Tensor]): List of point-wise semantic labels of shape [N]. Returns: dict[str, Tensor]: Losses. """ points_cat = torch.stack(points) pts_semantic_mask_cat = torch.stack(pts_semantic_mask) # extract features using backbone x = self.extract_feat(points_cat) losses = dict() loss_decode = self._decode_head_forward_train(x, img_metas, pts_semantic_mask_cat) losses.update(loss_decode) if self.with_auxiliary_head: loss_aux = self._auxiliary_head_forward_train( x, img_metas, pts_semantic_mask_cat) losses.update(loss_aux) if self.with_regularization_loss: loss_regularize = self._loss_regularization_forward_train() losses.update(loss_regularize) return losses @staticmethod def _input_generation(coords, patch_center, coord_max, feats, use_normalized_coord=False): """Generating model input. Generate input by subtracting patch center and adding additional features. Currently support colors and normalized xyz as features. Args: coords (torch.Tensor): Sampled 3D point coordinate of shape [S, 3]. patch_center (torch.Tensor): Center coordinate of the patch. coord_max (torch.Tensor): Max coordinate of all 3D points. feats (torch.Tensor): Features of sampled points of shape [S, C]. use_normalized_coord (bool, optional): Whether to use normalized xyz as additional features. Defaults to False. Returns: torch.Tensor: The generated input data of shape [S, 3+C']. """ # subtract patch center, the z dimension is not centered centered_coords = coords.clone() centered_coords[:, 0] -= patch_center[0] centered_coords[:, 1] -= patch_center[1] # normalized coordinates as extra features if use_normalized_coord: normalized_coord = coords / coord_max feats = torch.cat([feats, normalized_coord], dim=1) points = torch.cat([centered_coords, feats], dim=1) return points def _sliding_patch_generation(self, points, num_points, block_size, sample_rate=0.5, use_normalized_coord=False, eps=1e-3): """Sampling points in a sliding window fashion. First sample patches to cover all the input points. Then sample points in each patch to batch points of a certain number. Args: points (torch.Tensor): Input points of shape [N, 3+C]. num_points (int): Number of points to be sampled in each patch. block_size (float, optional): Size of a patch to sample. sample_rate (float, optional): Stride used in sliding patch. Defaults to 0.5. use_normalized_coord (bool, optional): Whether to use normalized xyz as additional features. Defaults to False. eps (float, optional): A value added to patch boundary to guarantee points coverage. Defaults to 1e-3. Returns: np.ndarray | np.ndarray: - patch_points (torch.Tensor): Points of different patches of shape [K, N, 3+C]. - patch_idxs (torch.Tensor): Index of each point in `patch_points`, of shape [K, N]. """ device = points.device # we assume the first three dims are points' 3D coordinates # and the rest dims are their per-point features coords = points[:, :3] feats = points[:, 3:] coord_max = coords.max(0)[0] coord_min = coords.min(0)[0] stride = block_size * sample_rate num_grid_x = int( torch.ceil((coord_max[0] - coord_min[0] - block_size) / stride).item() + 1) num_grid_y = int( torch.ceil((coord_max[1] - coord_min[1] - block_size) / stride).item() + 1) patch_points, patch_idxs = [], [] for idx_y in range(num_grid_y): s_y = coord_min[1] + idx_y * stride e_y = torch.min(s_y + block_size, coord_max[1]) s_y = e_y - block_size for idx_x in range(num_grid_x): s_x = coord_min[0] + idx_x * stride e_x = torch.min(s_x + block_size, coord_max[0]) s_x = e_x - block_size # extract points within this patch cur_min = torch.tensor([s_x, s_y, coord_min[2]]).to(device) cur_max = torch.tensor([e_x, e_y, coord_max[2]]).to(device) cur_choice = ((coords >= cur_min - eps) & (coords <= cur_max + eps)).all(dim=1) if not cur_choice.any(): # no points in this patch continue # sample points in this patch to multiple batches cur_center = cur_min + block_size / 2.0 point_idxs = torch.nonzero(cur_choice, as_tuple=True)[0] num_batch = int(np.ceil(point_idxs.shape[0] / num_points)) point_size = int(num_batch * num_points) replace = point_size > 2 * point_idxs.shape[0] num_repeat = point_size - point_idxs.shape[0] if replace: # duplicate point_idxs_repeat = point_idxs[torch.randint( 0, point_idxs.shape[0], size=(num_repeat, )).to(device)] else: point_idxs_repeat = point_idxs[torch.randperm( point_idxs.shape[0])[:num_repeat]] choices = torch.cat([point_idxs, point_idxs_repeat], dim=0) choices = choices[torch.randperm(choices.shape[0])] # construct model input point_batches = self._input_generation( coords[choices], cur_center, coord_max, feats[choices], use_normalized_coord=use_normalized_coord) patch_points.append(point_batches) patch_idxs.append(choices) patch_points = torch.cat(patch_points, dim=0) patch_idxs = torch.cat(patch_idxs, dim=0) # make sure all points are sampled at least once assert torch.unique(patch_idxs).shape[0] == points.shape[0], \ 'some points are not sampled in sliding inference' return patch_points, patch_idxs def slide_inference(self, point, img_meta, rescale): """Inference by sliding-window with overlap. Args: point (torch.Tensor): Input points of shape [N, 3+C]. img_meta (dict): Meta information of input sample. rescale (bool): Whether transform to original number of points. Will be used for voxelization based segmentors. Returns: Tensor: The output segmentation map of shape [num_classes, N]. """ num_points = self.test_cfg.num_points block_size = self.test_cfg.block_size sample_rate = self.test_cfg.sample_rate use_normalized_coord = self.test_cfg.use_normalized_coord batch_size = self.test_cfg.batch_size * num_points # patch_points is of shape [K*N, 3+C], patch_idxs is of shape [K*N] patch_points, patch_idxs = self._sliding_patch_generation( point, num_points, block_size, sample_rate, use_normalized_coord) feats_dim = patch_points.shape[1] seg_logits = [] # save patch predictions for batch_idx in range(0, patch_points.shape[0], batch_size): batch_points = patch_points[batch_idx:batch_idx + batch_size] batch_points = batch_points.view(-1, num_points, feats_dim) # batch_seg_logit is of shape [B, num_classes, N] batch_seg_logit = self.encode_decode(batch_points, img_meta) batch_seg_logit = batch_seg_logit.transpose(1, 2).contiguous() seg_logits.append(batch_seg_logit.view(-1, self.num_classes)) # aggregate per-point logits by indexing sum and dividing count seg_logits = torch.cat(seg_logits, dim=0) # [K*N, num_classes] expand_patch_idxs = patch_idxs.unsqueeze(1).repeat(1, self.num_classes) preds = point.new_zeros((point.shape[0], self.num_classes)).\ scatter_add_(dim=0, index=expand_patch_idxs, src=seg_logits) count_mat = torch.bincount(patch_idxs) preds = preds / count_mat[:, None] # TODO: if rescale and voxelization segmentor return preds.transpose(0, 1) # to [num_classes, K*N] def whole_inference(self, points, img_metas, rescale): """Inference with full scene (one forward pass without sliding).""" seg_logit = self.encode_decode(points, img_metas) # TODO: if rescale and voxelization segmentor return seg_logit def inference(self, points, img_metas, rescale): """Inference with slide/whole style. Args: points (torch.Tensor): Input points of shape [B, N, 3+C]. img_metas (list[dict]): Meta information of each sample. rescale (bool): Whether transform to original number of points. Will be used for voxelization based segmentors. Returns: Tensor: The output segmentation map. """ assert self.test_cfg.mode in ['slide', 'whole'] if self.test_cfg.mode == 'slide': seg_logit = torch.stack([ self.slide_inference(point, img_meta, rescale) for point, img_meta in zip(points, img_metas) ], 0) else: seg_logit = self.whole_inference(points, img_metas, rescale) output = F.softmax(seg_logit, dim=1) return output def simple_test(self, points, img_metas, rescale=True): """Simple test with single scene. Args: points (list[torch.Tensor]): List of points of shape [N, 3+C]. img_metas (list[dict]): Meta information of each sample. rescale (bool): Whether transform to original number of points. Will be used for voxelization based segmentors. Defaults to True. Returns: list[dict]: The output prediction result with following keys: - semantic_mask (Tensor): Segmentation mask of shape [N]. """ # 3D segmentation requires per-point prediction, so it's impossible # to use down-sampling to get a batch of scenes with same num_points # therefore, we only support testing one scene every time seg_pred = [] for point, img_meta in zip(points, img_metas): seg_prob = self.inference(point.unsqueeze(0), [img_meta], rescale)[0] seg_map = seg_prob.argmax(0) # [N] # to cpu tensor for consistency with det3d seg_map = seg_map.cpu() seg_pred.append(seg_map) # warp in dict seg_pred = [dict(semantic_mask=seg_map) for seg_map in seg_pred] return seg_pred def aug_test(self, points, img_metas, rescale=True): """Test with augmentations. Args: points (list[torch.Tensor]): List of points of shape [B, N, 3+C]. img_metas (list[list[dict]]): Meta information of each sample. Outer list are different samples while inner is different augs. rescale (bool): Whether transform to original number of points. Will be used for voxelization based segmentors. Defaults to True. Returns: list[dict]: The output prediction result with following keys: - semantic_mask (Tensor): Segmentation mask of shape [N]. """ # in aug_test, one scene going through different augmentations could # have the same number of points and are stacked as a batch # to save memory, we get augmented seg logit inplace seg_pred = [] for point, img_meta in zip(points, img_metas): seg_prob = self.inference(point, img_meta, rescale) seg_prob = seg_prob.mean(0) # [num_classes, N] seg_map = seg_prob.argmax(0) # [N] # to cpu tensor for consistency with det3d seg_map = seg_map.cpu() seg_pred.append(seg_map) # warp in dict seg_pred = [dict(semantic_mask=seg_map) for seg_map in seg_pred] return seg_pred
py
1a4feec32eaa8211c23787af17ebfff4194f90df
# -*- coding: utf-8 -*- # # Copyright (C) 2006-2019 Edgewall Software # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at http://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at http://trac.edgewall.org/log/. import unittest from trac.mimeview.tests import api, patch, pygments, rst, txtl from trac.mimeview.tests.functional import functionalSuite def test_suite(): suite = unittest.TestSuite() suite.addTest(api.test_suite()) suite.addTest(patch.test_suite()) suite.addTest(pygments.test_suite()) suite.addTest(rst.test_suite()) suite.addTest(txtl.test_suite()) return suite if __name__ == '__main__': unittest.main(defaultTest='test_suite')
py
1a4fef8efdd5aaac9b9597aed51079955d11218e
_base_ = '../../_base_/schedules/schedule_2x.py' optimizer_config = dict( grad_clip=dict(_delete_=True, max_norm=10, norm_type=2)) cudnn_benchmark = True
py
1a4ff0c8457289b393bd5fea23d2a331864fdcb8
# encoding: utf-8 # For Facebook FACEBOOK_APP_SECRET = '' FACEBOOK_APP_ID = '' TWITTER_CONSUMER_KEY = '' TWITTER_CONSUMER_SECRET = '' MESSAGE_FORMAT = u'''Hi, %(message)s -- %(creator)s''' # set email sender address #default_email_sender = '' # set default address to send messages #default_email_to = '' COMMIT_SCRIPT=''
py
1a4ff108bad8e54a56da6e6aa090cf29c7422796
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2021 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # import logging import os import re import sys from copy import deepcopy from importlib.machinery import SourceFileLoader from datetime import datetime import pandas as pd from .procedure import Procedure, UnknownProcedure from .parameters import Parameter log = logging.getLogger(__name__) log.addHandler(logging.NullHandler()) def unique_filename(directory, prefix='DATA', suffix='', ext='csv', dated_folder=False, index=True, datetimeformat="%Y-%m-%d"): """ Returns a unique filename based on the directory and prefix """ now = datetime.now() directory = os.path.abspath(directory) if dated_folder: directory = os.path.join(directory, now.strftime('%Y-%m-%d')) if not os.path.exists(directory): os.makedirs(directory) if index: i = 1 basename = "%s%s" % (prefix, now.strftime(datetimeformat)) basepath = os.path.join(directory, basename) filename = "%s_%d%s.%s" % (basepath, i, suffix, ext) while os.path.exists(filename): i += 1 filename = "%s_%d%s.%s" % (basepath, i, suffix, ext) else: basename = "%s%s%s.%s" % (prefix, now.strftime(datetimeformat), suffix, ext) filename = os.path.join(directory, basename) return filename class CSVFormatter(logging.Formatter): """ Formatter of data results """ def __init__(self, columns, delimiter=','): """Creates a csv formatter for a given list of columns (=header). :param columns: list of column names. :type columns: list :param delimiter: delimiter between columns. :type delimiter: str """ super().__init__() self.columns = columns self.delimiter = delimiter def format(self, record): """Formats a record as csv. :param record: record to format. :type record: dict :return: a string """ return self.delimiter.join('{}'.format(record[x]) for x in self.columns) def format_header(self): return self.delimiter.join(self.columns) class Results(object): """ The Results class provides a convenient interface to reading and writing data in connection with a :class:`.Procedure` object. :cvar COMMENT: The character used to identify a comment (default: #) :cvar DELIMITER: The character used to delimit the data (default: ,) :cvar LINE_BREAK: The character used for line breaks (default \\n) :cvar CHUNK_SIZE: The length of the data chuck that is read :param procedure: Procedure object :param data_filename: The data filename where the data is or should be stored """ COMMENT = '#' DELIMITER = ',' LINE_BREAK = "\n" CHUNK_SIZE = 1000 def __init__(self, procedure, data_filename): if not isinstance(procedure, Procedure): raise ValueError("Results require a Procedure object") self.procedure = procedure self.procedure_class = procedure.__class__ self.parameters = procedure.parameter_objects() self._header_count = -1 self.formatter = CSVFormatter(columns=self.procedure.DATA_COLUMNS) if isinstance(data_filename, (list, tuple)): data_filenames, data_filename = data_filename, data_filename[0] else: data_filenames = [data_filename] self.data_filename = data_filename self.data_filenames = data_filenames if os.path.exists(data_filename): # Assume header is already written self.reload() self.procedure.status = Procedure.FINISHED # TODO: Correctly store and retrieve status else: for filename in self.data_filenames: with open(filename, 'w') as f: f.write(self.header()) f.write(self.labels()) self._data = None def __getstate__(self): # Get all information needed to reconstruct procedure self._parameters = self.procedure.parameter_values() self._class = self.procedure.__class__.__name__ module = sys.modules[self.procedure.__module__] self._package = module.__package__ self._module = module.__name__ self._file = module.__file__ state = self.__dict__.copy() del state['procedure'] del state['procedure_class'] return state def __setstate__(self, state): self.__dict__.update(state) # Restore the procedure module = SourceFileLoader(self._module, self._file).load_module() cls = getattr(module, self._class) self.procedure = cls() self.procedure.set_parameters(self._parameters) self.procedure.refresh_parameters() self.procedure_class = cls del self._parameters del self._class del self._package del self._module del self._file def header(self): """ Returns a text header to accompany a datafile so that the procedure can be reconstructed """ h = [] procedure = re.search("'(?P<name>[^']+)'", repr(self.procedure_class)).group("name") h.append("Procedure: <%s>" % procedure) h.append("Parameters:") for name, parameter in self.parameters.items(): h.append("\t%s: %s" % (parameter.name, str(parameter).encode("unicode_escape").decode("utf-8"))) h.append("Data:") self._header_count = len(h) h = [Results.COMMENT + l for l in h] # Comment each line return Results.LINE_BREAK.join(h) + Results.LINE_BREAK def labels(self): """ Returns the columns labels as a string to be written to the file """ return self.formatter.format_header() + Results.LINE_BREAK def format(self, data): """ Returns a formatted string containing the data to be written to a file """ return self.formatter.format(data) def parse(self, line): """ Returns a dictionary containing the data from the line """ data = {} items = line.split(Results.DELIMITER) for i, key in enumerate(self.procedure.DATA_COLUMNS): data[key] = items[i] return data @staticmethod def parse_header(header, procedure_class=None): """ Returns a Procedure object with the parameters as defined in the header text. """ if procedure_class is not None: procedure = procedure_class() else: procedure = None header = header.split(Results.LINE_BREAK) procedure_module = None parameters = {} for line in header: if line.startswith(Results.COMMENT): line = line[1:] # Uncomment else: raise ValueError("Parsing a header which contains " "uncommented sections") if line.startswith("Procedure"): regex = r"<(?:(?P<module>[^>]+)\.)?(?P<class>[^.>]+)>" search = re.search(regex, line) procedure_module = search.group("module") procedure_class = search.group("class") elif line.startswith("\t"): separator = ": " partitioned_line = line[1:].partition(separator) if partitioned_line[1] != separator: raise Exception("Error partitioning header line %s." % line) else: parameters[partitioned_line[0]] = partitioned_line[2] if procedure is None: if procedure_class is None: raise ValueError("Header does not contain the Procedure class") try: from importlib import import_module procedure_module = import_module(procedure_module) procedure_class = getattr(procedure_module, procedure_class) procedure = procedure_class() except ImportError: procedure = UnknownProcedure(parameters) log.warning("Unknown Procedure being used") except Exception as e: raise e # Fill the procedure with the parameters found for name, parameter in procedure.parameter_objects().items(): if parameter.name in parameters: value = parameters[parameter.name] setattr(procedure, name, value) else: raise Exception("Missing '%s' parameter when loading '%s' class" % ( parameter.name, procedure_class)) procedure.refresh_parameters() # Enforce update of meta data return procedure @staticmethod def load(data_filename, procedure_class=None): """ Returns a Results object with the associated Procedure object and data """ header = "" header_read = False header_count = 0 with open(data_filename, 'r') as f: while not header_read: line = f.readline() if line.startswith(Results.COMMENT): header += line.strip() + Results.LINE_BREAK header_count += 1 else: header_read = True procedure = Results.parse_header(header[:-1], procedure_class) results = Results(procedure, data_filename) results._header_count = header_count return results @property def data(self): # Need to update header count for correct referencing if self._header_count == -1: self._header_count = len( self.header()[-1].split(Results.LINE_BREAK)) if self._data is None or len(self._data) == 0: # Data has not been read try: self.reload() except Exception: # Empty dataframe self._data = pd.DataFrame(columns=self.procedure.DATA_COLUMNS) else: # Concatenate additional data, if any, to already loaded data skiprows = len(self._data) + self._header_count chunks = pd.read_csv( self.data_filename, comment=Results.COMMENT, header=0, names=self._data.columns, chunksize=Results.CHUNK_SIZE, skiprows=skiprows, iterator=True ) try: tmp_frame = pd.concat(chunks, ignore_index=True) # only append new data if there is any # if no new data, tmp_frame dtype is object, which override's # self._data's original dtype - this can cause problems plotting # (e.g. if trying to plot int data on a log axis) if len(tmp_frame) > 0: self._data = pd.concat([self._data, tmp_frame], ignore_index=True) except Exception: pass # All data is up to date return self._data def reload(self): """ Preforms a full reloading of the file data, neglecting any changes in the comments """ chunks = pd.read_csv( self.data_filename, comment=Results.COMMENT, chunksize=Results.CHUNK_SIZE, iterator=True ) try: self._data = pd.concat(chunks, ignore_index=True) except Exception: self._data = chunks.read() def __repr__(self): return "<{}(filename='{}',procedure={},shape={})>".format( self.__class__.__name__, self.data_filename, self.procedure.__class__.__name__, self.data.shape )
py
1a4ff2205d919e1242fe9275abad644cb28b78fd
######################################## # CS/CNS/EE 155 2018 # Problem Set 6 # # Author: Andrew Kang # Description: Set 6 HMM helper ######################################## import re import numpy as np import matplotlib.pyplot as plt from wordcloud import WordCloud from matplotlib import animation from matplotlib.animation import FuncAnimation #################### # WORDCLOUD FUNCTIONS #################### def mask(): # Parameters. r = 128 d = 2 * r + 1 # Get points in a circle. y, x = np.ogrid[-r:d-r, -r:d-r] circle = (x**2 + y**2 <= r**2) # Create mask. mask = 255 * np.ones((d, d), dtype=np.uint8) mask[circle] = 0 return mask def text_to_wordcloud(text, max_words=50, title='', show=True): plt.close('all') # Generate a wordcloud image. wordcloud = WordCloud(random_state=0, max_words=max_words, background_color='white', mask=mask()).generate(text) # Show the image. if show: plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.title(title, fontsize=24) plt.show() return wordcloud def states_to_wordclouds(hmm, obs_map, max_words=50, show=True): # Initialize. M = 100000 n_states = len(hmm.A) obs_map_r = obs_map_reverser(obs_map) wordclouds = [] # Generate a large emission. emission, states = hmm.generate_emission(M) # For each state, get a list of observations that have been emitted # from that state. obs_count = [] for i in range(n_states): obs_lst = np.array(emission)[np.where(np.array(states) == i)[0]] obs_count.append(obs_lst) # For each state, convert it into a wordcloud. for i in range(n_states): obs_lst = obs_count[i] sentence = [obs_map_r[j] for j in obs_lst] sentence_str = ' '.join(sentence) wordclouds.append(text_to_wordcloud(sentence_str, max_words=max_words, title='State %d' % i, show=show)) return wordclouds #################### # HMM FUNCTIONS #################### def parse_observations(text): # Convert text to dataset. lines = [line.split() for line in text.split('\n') if line.split()] obs_counter = 0 obs = [] obs_map = {} for line in lines: obs_elem = [] for word in line: word = re.sub(r'[^\w]', '', word).lower() if word not in obs_map: # Add unique words to the observations map. obs_map[word] = obs_counter obs_counter += 1 # Add the encoded word. obs_elem.append(obs_map[word]) # Add the encoded sequence. obs.append(obs_elem) return obs, obs_map def obs_map_reverser(obs_map): obs_map_r = {} for key in obs_map: obs_map_r[obs_map[key]] = key return obs_map_r def sample_sentence(hmm, obs_map, n_words=100): # Get reverse map. obs_map_r = obs_map_reverser(obs_map) # Sample and convert sentence. emission, states = hmm.generate_emission(n_words) sentence = [obs_map_r[i] for i in emission] return ' '.join(sentence).capitalize() + '...' #################### # HMM VISUALIZATION FUNCTIONS #################### def visualize_sparsities(hmm, O_max_cols=50, O_vmax=0.1): plt.close('all') plt.set_cmap('viridis') # Visualize sparsity of A. plt.imshow(hmm.A, vmax=1.0) plt.colorbar() plt.title('Sparsity of A matrix') plt.show() # Visualize parsity of O. plt.imshow(np.array(hmm.O)[:, :O_max_cols], vmax=O_vmax, aspect='auto') plt.colorbar() plt.title('Sparsity of O matrix') plt.show() #################### # HMM ANIMATION FUNCTIONS #################### def animate_emission(hmm, obs_map, M=8, height=12, width=12, delay=1): # Parameters. lim = 1200 text_x_offset = 40 text_y_offset = 80 x_offset = 580 y_offset = 520 R = 420 r = 100 arrow_size = 20 arrow_p1 = 0.03 arrow_p2 = 0.02 arrow_p3 = 0.06 # Initialize. n_states = len(hmm.A) obs_map_r = obs_map_reverser(obs_map) wordclouds = states_to_wordclouds(hmm, obs_map, max_words=20, show=False) # Initialize plot. fig, ax = plt.subplots() fig.set_figheight(height) fig.set_figwidth(width) ax.grid('off') plt.axis('off') ax.set_xlim([0, lim]) ax.set_ylim([0, lim]) # Plot each wordcloud. for i, wordcloud in enumerate(wordclouds): x = x_offset + int(R * np.cos(np.pi * 2 * i / n_states)) y = y_offset + int(R * np.sin(np.pi * 2 * i / n_states)) ax.imshow(wordcloud.to_array(), extent=(x - r, x + r, y - r, y + r), aspect='auto', zorder=-1) # Initialize text. text = ax.text(text_x_offset, lim - text_y_offset, '', fontsize=24) # Make the arrows. zorder_mult = n_states ** 2 * 100 arrows = [] for i in range(n_states): row = [] for j in range(n_states): # Arrow coordinates. x_i = x_offset + R * np.cos(np.pi * 2 * i / n_states) y_i = y_offset + R * np.sin(np.pi * 2 * i / n_states) x_j = x_offset + R * np.cos(np.pi * 2 * j / n_states) y_j = y_offset + R * np.sin(np.pi * 2 * j / n_states) dx = x_j - x_i dy = y_j - y_i d = np.sqrt(dx**2 + dy**2) if i != j: arrow = ax.arrow(x_i + (r/d + arrow_p1) * dx + arrow_p2 * dy, y_i + (r/d + arrow_p1) * dy + arrow_p2 * dx, (1 - 2 * r/d - arrow_p3) * dx, (1 - 2 * r/d - arrow_p3) * dy, color=(1 - hmm.A[i][j], ) * 3, head_width=arrow_size, head_length=arrow_size, zorder=int(hmm.A[i][j] * zorder_mult)) else: arrow = ax.arrow(x_i, y_i, 0, 0, color=(1 - hmm.A[i][j], ) * 3, head_width=arrow_size, head_length=arrow_size, zorder=int(hmm.A[i][j] * zorder_mult)) row.append(arrow) arrows.append(row) emission, states = hmm.generate_emission(M) def animate(i): if i >= delay: i -= delay if i == 0: arrows[states[0]][states[0]].set_color('red') elif i == 1: arrows[states[0]][states[0]].set_color((1 - hmm.A[states[0]][states[0]], ) * 3) arrows[states[i - 1]][states[i]].set_color('red') else: arrows[states[i - 2]][states[i - 1]].set_color((1 - hmm.A[states[i - 2]][states[i - 1]], ) * 3) arrows[states[i - 1]][states[i]].set_color('red') # Set text. text.set_text(' '.join([obs_map_r[e] for e in emission][:i+1]).capitalize()) return arrows + [text] # Animate! print('\nAnimating...') anim = FuncAnimation(fig, animate, frames=M+delay, interval=1000) return anim # honestly this function is so jank but who even fuckin cares # i don't even remember how or why i wrote this mess # no one's gonna read this # hey if you see this tho hmu on fb let's be friends
py
1a4ff2c0a7a498611734d36920e2aaf47c883551
import concurrent.futures import rasterio from rasterio._example import compute def main(infile, outfile, num_workers=4): with rasterio.Env(): with rasterio.open(infile) as src: profile = src.profile profile.update(blockxsize=128, blockysize=128, tiled=True) with rasterio.open(outfile, "w", **profile) as dst: windows = [window for ij, window in dst.block_windows()] data_gen = (src.get_data(window=window) for window in windows) with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor: for window, result in zip(windows, executor.map(compute, data_gen)): dst.write(result, window=window, ) in_path = 'test.tif' out_path = 'output.tif' if __name__ == '__main__': main(in_path, out_path)
py
1a4ff37ddcd8a52764a4eec25ad627ea134d9ac9
""" OpenAPI definition No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from gooddata_afm_client.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, OpenApiModel ) from gooddata_afm_client.exceptions import ApiAttributeError class DataColumnLocator(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'properties': ({str: (str,)},), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'properties': 'properties', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, properties, *args, **kwargs): # noqa: E501 """DataColumnLocator - a model defined in OpenAPI Args: properties ({str: (str,)}): Mapping from dimension items (either 'localIdentifier' from 'AttributeItem', or \"measureGroup\") to their respective values. This effectively specifies the path (location) of the data column used for sorting. Therefore values for all dimension items must be specified. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', True) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.properties = properties for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, properties, *args, **kwargs): # noqa: E501 """DataColumnLocator - a model defined in OpenAPI Args: properties ({str: (str,)}): Mapping from dimension items (either 'localIdentifier' from 'AttributeItem', or \"measureGroup\") to their respective values. This effectively specifies the path (location) of the data column used for sorting. Therefore values for all dimension items must be specified. Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: for arg in args: if isinstance(arg, dict): kwargs.update(arg) else: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.properties = properties for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
py
1a4ff380b4406d96d105ea5bcf73f55b337a1a85
# python3 # Copyright 2018 DeepMind Technologies Limited. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example running ValueDice on the OpenAI Gym.""" import functools from absl import flags import acme from acme import specs from acme.agents.jax import value_dice from absl import app import helpers import jax FLAGS = flags.FLAGS flags.DEFINE_integer('num_steps', 1000000, 'Number of env steps to run training for.') flags.DEFINE_integer('eval_every', 10000, 'How often to run evaluation') flags.DEFINE_string('env_name', 'MountainCarContinuous-v0', 'What environment to run') flags.DEFINE_string('dataset_name', 'd4rl_mujoco_halfcheetah/v0-medium', 'What dataset to use. ' 'See the TFDS catalog for possible values.') flags.DEFINE_integer('num_sgd_steps_per_step', 64, 'Number of SGD steps per learner step().') flags.DEFINE_integer('seed', 0, 'Random seed.') def main(_): # Create an environment, grab the spec, and use it to create networks. environment = helpers.make_environment(task=FLAGS.env_name) environment_spec = specs.make_environment_spec(environment) agent_networks = value_dice.make_networks(environment_spec) # Construct the agent. config = value_dice.ValueDiceConfig( num_sgd_steps_per_step=FLAGS.num_sgd_steps_per_step) agent = value_dice.ValueDice( environment_spec, agent_networks, config=config, make_demonstrations=functools.partial( helpers.make_demonstration_iterator, dataset_name=FLAGS.dataset_name), seed=FLAGS.seed) # Create the environment loop used for training. train_loop = acme.EnvironmentLoop(environment, agent, label='train_loop') # Create the evaluation actor and loop. eval_actor = agent.builder.make_actor( random_key=jax.random.PRNGKey(FLAGS.seed), policy_network=value_dice.apply_policy_and_sample( agent_networks, eval_mode=True), variable_source=agent) eval_env = helpers.make_environment(task=FLAGS.env_name) eval_loop = acme.EnvironmentLoop(eval_env, eval_actor, label='eval_loop') assert FLAGS.num_steps % FLAGS.eval_every == 0 for _ in range(FLAGS.num_steps // FLAGS.eval_every): eval_loop.run(num_episodes=5) train_loop.run(num_steps=FLAGS.eval_every) eval_loop.run(num_episodes=5) if __name__ == '__main__': app.run(main)
py
1a4ff38fa9a503358e47dab0452c2ada2e010b25
# !/usr/bin/env python # -*- coding: utf-8 -*- """ Tools ===== Utility classes for specific purpose, mainly for processing DCASE challenge submissions for publishing. DatasetPacker ^^^^^^^^^^^^^ *dcase_util.tools.DatasetPacker* DatasetPacker class can be used to create DCASE styled dataset packages where different data types delivered with separate packages. Large data packages are split into multiple smalled ones to ease downloading them over net. .. autosummary:: :toctree: generated/ DatasetPacker DatasetPacker.pack DatasetPacker.convert_markdown SubmissionChecker ^^^^^^^^^^^^^^^^^ *dcase_util.tools.SubmissionChecker* SubmissionChecker class can be used to check DCASE challenge submission meta yaml files. .. autosummary:: :toctree: generated/ SubmissionChecker SubmissionChecker.process BibtexProcessor ^^^^^^^^^^^^^^^ *dcase_util.tools.BibtexProcessor* This class provides tools to form bibtex entries for the DCASE challenge submissions. .. autosummary:: :toctree: generated/ BibtexProcessor BibtexProcessor.key BibtexProcessor.authors BibtexProcessor.authors_fancy BibtexProcessor.affiliation_str BibtexProcessor.affiliation_list BibtexProcessor.affiliation_list_fancy BibtexProcessor.submissions_fancy BibtexProcessor.title BibtexProcessor.abstract """ from .bibtex import * from .submission import * from .datasets import * __all__ = [_ for _ in dir() if not _.startswith('_')]
py
1a4ff4115e6c5bdf58db7e6d6952e625e77a246d
#!/usr/bin/env python __all__ = ['zhanqi_download'] from ..common import * import re def zhanqi_download(url, output_dir = '.', merge = True, info_only = False): html = get_content(url) rtmp_base_patt = r'VideoUrl":"([^"]+)"' rtmp_id_patt = r'VideoID":"([^"]+)"' title_patt = r'<p class="title-name" title="[^"]+">([^<]+)</p>' title_patt_backup = r'<title>([^<]{1,9999})</title>' rtmp_base = match1(html, rtmp_base_patt).replace('\\/','/') rtmp_id = match1(html, rtmp_id_patt).replace('\\/','/') title = match1(html, title_patt) or match1(html, title_patt_backup) title = unescape_html(title) real_url = rtmp_base+'/'+rtmp_id print_info(site_info, title, 'flv', float('inf')) if not info_only: download_rtmp_url(real_url, title, 'flv', {}, output_dir, merge = merge) site_info = "zhanqi.tv" download = zhanqi_download download_playlist = playlist_not_supported('zhanqi')
py
1a4ff4ec915f23e7c019a823ef18c805568717f8
# Generated file, please do not change!!! import re import typing import marshmallow import marshmallow_enum from commercetools import helpers from ... import models from ..cart import ( CartOrigin, CartState, DiscountCodeState, InventoryMode, LineItemMode, LineItemPriceMode, RoundingMode, ShippingMethodState, TaxCalculationMode, TaxMode, ) from ..common import ReferenceTypeId from .common import ( BaseResourceSchema, LocalizedStringField, ReferenceSchema, ResourceIdentifierSchema, ) from .type import FieldContainerField # Fields # Marshmallow Schemas class CartSchema(BaseResourceSchema): key = marshmallow.fields.String(allow_none=True, missing=None) last_modified_by = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.LastModifiedBySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="lastModifiedBy", ) created_by = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.CreatedBySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="createdBy", ) customer_id = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="customerId", ) customer_email = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="customerEmail", ) anonymous_id = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="anonymousId", ) store = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".store.StoreKeyReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) line_items = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".LineItemSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="lineItems", ) custom_line_items = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".CustomLineItemSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="customLineItems", ) total_price = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, data_key="totalPrice", ) taxed_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".TaxedPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxedPrice", ) cart_state = marshmallow_enum.EnumField( CartState, by_value=True, allow_none=True, missing=None, data_key="cartState" ) shipping_address = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingAddress", ) billing_address = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="billingAddress", ) inventory_mode = marshmallow_enum.EnumField( InventoryMode, by_value=True, allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="inventoryMode", ) tax_mode = marshmallow_enum.EnumField( TaxMode, by_value=True, allow_none=True, missing=None, data_key="taxMode" ) tax_rounding_mode = marshmallow_enum.EnumField( RoundingMode, by_value=True, allow_none=True, missing=None, data_key="taxRoundingMode", ) tax_calculation_mode = marshmallow_enum.EnumField( TaxCalculationMode, by_value=True, allow_none=True, missing=None, data_key="taxCalculationMode", ) customer_group = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".customer_group.CustomerGroupReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="customerGroup", ) country = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) shipping_info = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ShippingInfoSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingInfo", ) discount_codes = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".DiscountCodeInfoSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="discountCodes", ) custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) payment_info = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".order.PaymentInfoSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="paymentInfo", ) locale = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) delete_days_after_last_modification = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="deleteDaysAfterLastModification", ) refused_gifts = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".cart_discount.CartDiscountReferenceSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="refusedGifts", ) origin = marshmallow_enum.EnumField( CartOrigin, by_value=True, allow_none=True, missing=None ) shipping_rate_input = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "Classification": helpers.absmod( __name__, ".ClassificationShippingRateInputSchema" ), "Score": helpers.absmod(__name__, ".ScoreShippingRateInputSchema"), }, metadata={"omit_empty": True}, missing=None, data_key="shippingRateInput", ) item_shipping_addresses = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="itemShippingAddresses", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.Cart(**data) class CartDraftSchema(helpers.BaseSchema): currency = marshmallow.fields.String(allow_none=True, missing=None) customer_id = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="customerId", ) customer_email = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="customerEmail", ) customer_group = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".customer_group.CustomerGroupResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="customerGroup", ) anonymous_id = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="anonymousId", ) store = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".store.StoreResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) country = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) inventory_mode = marshmallow_enum.EnumField( InventoryMode, by_value=True, allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="inventoryMode", ) tax_mode = marshmallow_enum.EnumField( TaxMode, by_value=True, allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="taxMode", ) tax_rounding_mode = marshmallow_enum.EnumField( RoundingMode, by_value=True, allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="taxRoundingMode", ) tax_calculation_mode = marshmallow_enum.EnumField( TaxCalculationMode, by_value=True, allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="taxCalculationMode", ) line_items = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".LineItemDraftSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="lineItems", ) custom_line_items = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".CustomLineItemDraftSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="customLineItems", ) shipping_address = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingAddress", ) billing_address = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="billingAddress", ) shipping_method = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".shipping_method.ShippingMethodResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingMethod", ) external_tax_rate_for_shipping_method = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRateForShippingMethod", ) custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) locale = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) delete_days_after_last_modification = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="deleteDaysAfterLastModification", ) origin = marshmallow_enum.EnumField( CartOrigin, by_value=True, allow_none=True, metadata={"omit_empty": True}, missing=None, ) shipping_rate_input = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "Classification": helpers.absmod( __name__, ".ClassificationShippingRateInputDraftSchema" ), "Score": helpers.absmod(__name__, ".ScoreShippingRateInputDraftSchema"), }, metadata={"omit_empty": True}, missing=None, data_key="shippingRateInput", ) item_shipping_addresses = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="itemShippingAddresses", ) discount_codes = marshmallow.fields.List( marshmallow.fields.String(allow_none=True), allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="discountCodes", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.CartDraft(**data) class CartPagedQueryResponseSchema(helpers.BaseSchema): limit = marshmallow.fields.Integer(allow_none=True, missing=None) count = marshmallow.fields.Integer(allow_none=True, missing=None) total = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None ) offset = marshmallow.fields.Integer(allow_none=True, missing=None) results = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".CartSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.CartPagedQueryResponse(**data) class CartReferenceSchema(ReferenceSchema): obj = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".CartSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["type_id"] return models.CartReference(**data) class CartResourceIdentifierSchema(ResourceIdentifierSchema): class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["type_id"] return models.CartResourceIdentifier(**data) class CartUpdateSchema(helpers.BaseSchema): version = marshmallow.fields.Integer(allow_none=True, missing=None) actions = marshmallow.fields.List( helpers.Discriminator( allow_none=True, discriminator_field=("action", "action"), discriminator_schemas={ "addCustomLineItem": helpers.absmod( __name__, ".CartAddCustomLineItemActionSchema" ), "addDiscountCode": helpers.absmod( __name__, ".CartAddDiscountCodeActionSchema" ), "addItemShippingAddress": helpers.absmod( __name__, ".CartAddItemShippingAddressActionSchema" ), "addLineItem": helpers.absmod(__name__, ".CartAddLineItemActionSchema"), "addPayment": helpers.absmod(__name__, ".CartAddPaymentActionSchema"), "addShoppingList": helpers.absmod( __name__, ".CartAddShoppingListActionSchema" ), "applyDeltaToCustomLineItemShippingDetailsTargets": helpers.absmod( __name__, ".CartApplyDeltaToCustomLineItemShippingDetailsTargetsActionSchema", ), "applyDeltaToLineItemShippingDetailsTargets": helpers.absmod( __name__, ".CartApplyDeltaToLineItemShippingDetailsTargetsActionSchema", ), "changeCustomLineItemMoney": helpers.absmod( __name__, ".CartChangeCustomLineItemMoneyActionSchema" ), "changeCustomLineItemQuantity": helpers.absmod( __name__, ".CartChangeCustomLineItemQuantityActionSchema" ), "changeLineItemQuantity": helpers.absmod( __name__, ".CartChangeLineItemQuantityActionSchema" ), "changeTaxCalculationMode": helpers.absmod( __name__, ".CartChangeTaxCalculationModeActionSchema" ), "changeTaxMode": helpers.absmod( __name__, ".CartChangeTaxModeActionSchema" ), "changeTaxRoundingMode": helpers.absmod( __name__, ".CartChangeTaxRoundingModeActionSchema" ), "recalculate": helpers.absmod(__name__, ".CartRecalculateActionSchema"), "removeCustomLineItem": helpers.absmod( __name__, ".CartRemoveCustomLineItemActionSchema" ), "removeDiscountCode": helpers.absmod( __name__, ".CartRemoveDiscountCodeActionSchema" ), "removeItemShippingAddress": helpers.absmod( __name__, ".CartRemoveItemShippingAddressActionSchema" ), "removeLineItem": helpers.absmod( __name__, ".CartRemoveLineItemActionSchema" ), "removePayment": helpers.absmod( __name__, ".CartRemovePaymentActionSchema" ), "setAnonymousId": helpers.absmod( __name__, ".CartSetAnonymousIdActionSchema" ), "setBillingAddress": helpers.absmod( __name__, ".CartSetBillingAddressActionSchema" ), "setCartTotalTax": helpers.absmod( __name__, ".CartSetCartTotalTaxActionSchema" ), "setCountry": helpers.absmod(__name__, ".CartSetCountryActionSchema"), "setCustomField": helpers.absmod( __name__, ".CartSetCustomFieldActionSchema" ), "setCustomLineItemCustomField": helpers.absmod( __name__, ".CartSetCustomLineItemCustomFieldActionSchema" ), "setCustomLineItemCustomType": helpers.absmod( __name__, ".CartSetCustomLineItemCustomTypeActionSchema" ), "setCustomLineItemShippingDetails": helpers.absmod( __name__, ".CartSetCustomLineItemShippingDetailsActionSchema" ), "setCustomLineItemTaxAmount": helpers.absmod( __name__, ".CartSetCustomLineItemTaxAmountActionSchema" ), "setCustomLineItemTaxRate": helpers.absmod( __name__, ".CartSetCustomLineItemTaxRateActionSchema" ), "setCustomShippingMethod": helpers.absmod( __name__, ".CartSetCustomShippingMethodActionSchema" ), "setCustomType": helpers.absmod( __name__, ".CartSetCustomTypeActionSchema" ), "setCustomerEmail": helpers.absmod( __name__, ".CartSetCustomerEmailActionSchema" ), "setCustomerGroup": helpers.absmod( __name__, ".CartSetCustomerGroupActionSchema" ), "setCustomerId": helpers.absmod( __name__, ".CartSetCustomerIdActionSchema" ), "setDeleteDaysAfterLastModification": helpers.absmod( __name__, ".CartSetDeleteDaysAfterLastModificationActionSchema" ), "setKey": helpers.absmod(__name__, ".CartSetKeyActionSchema"), "setLineItemCustomField": helpers.absmod( __name__, ".CartSetLineItemCustomFieldActionSchema" ), "setLineItemCustomType": helpers.absmod( __name__, ".CartSetLineItemCustomTypeActionSchema" ), "setLineItemDistributionChannel": helpers.absmod( __name__, ".CartSetLineItemDistributionChannelActionSchema" ), "setLineItemPrice": helpers.absmod( __name__, ".CartSetLineItemPriceActionSchema" ), "setLineItemShippingDetails": helpers.absmod( __name__, ".CartSetLineItemShippingDetailsActionSchema" ), "setLineItemTaxAmount": helpers.absmod( __name__, ".CartSetLineItemTaxAmountActionSchema" ), "setLineItemTaxRate": helpers.absmod( __name__, ".CartSetLineItemTaxRateActionSchema" ), "setLineItemTotalPrice": helpers.absmod( __name__, ".CartSetLineItemTotalPriceActionSchema" ), "setLocale": helpers.absmod(__name__, ".CartSetLocaleActionSchema"), "setShippingAddress": helpers.absmod( __name__, ".CartSetShippingAddressActionSchema" ), "setShippingMethod": helpers.absmod( __name__, ".CartSetShippingMethodActionSchema" ), "setShippingMethodTaxAmount": helpers.absmod( __name__, ".CartSetShippingMethodTaxAmountActionSchema" ), "setShippingMethodTaxRate": helpers.absmod( __name__, ".CartSetShippingMethodTaxRateActionSchema" ), "setShippingRateInput": helpers.absmod( __name__, ".CartSetShippingRateInputActionSchema" ), "updateItemShippingAddress": helpers.absmod( __name__, ".CartUpdateItemShippingAddressActionSchema" ), }, ), allow_none=True, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.CartUpdate(**data) class CartUpdateActionSchema(helpers.BaseSchema): action = marshmallow.fields.String(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartUpdateAction(**data) class CustomLineItemSchema(helpers.BaseSchema): id = marshmallow.fields.String(allow_none=True, missing=None) name = LocalizedStringField(allow_none=True, missing=None) money = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, ) taxed_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".TaxedItemPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxedPrice", ) total_price = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, data_key="totalPrice", ) slug = marshmallow.fields.String(allow_none=True, missing=None) quantity = marshmallow.fields.Integer(allow_none=True, missing=None) state = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".order.ItemStateSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, ) tax_category = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".tax_category.TaxCategoryReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxCategory", ) tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".tax_category.TaxRateSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxRate", ) discounted_price_per_quantity = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".DiscountedLineItemPriceForQuantitySchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="discountedPricePerQuantity", ) custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) shipping_details = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetails", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.CustomLineItem(**data) class CustomLineItemDraftSchema(helpers.BaseSchema): name = LocalizedStringField(allow_none=True, missing=None) quantity = marshmallow.fields.Integer(allow_none=True, missing=None) money = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) slug = marshmallow.fields.String(allow_none=True, missing=None) tax_category = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".tax_category.TaxCategoryResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxCategory", ) external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) shipping_details = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetails", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.CustomLineItemDraft(**data) class DiscountCodeInfoSchema(helpers.BaseSchema): discount_code = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".discount_code.DiscountCodeReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="discountCode", ) state = marshmallow_enum.EnumField( DiscountCodeState, by_value=True, allow_none=True, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.DiscountCodeInfo(**data) class DiscountedLineItemPortionSchema(helpers.BaseSchema): discount = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".cart_discount.CartDiscountReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) discounted_amount = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, data_key="discountedAmount", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.DiscountedLineItemPortion(**data) class DiscountedLineItemPriceSchema(helpers.BaseSchema): value = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, ) included_discounts = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".DiscountedLineItemPortionSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="includedDiscounts", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.DiscountedLineItemPrice(**data) class DiscountedLineItemPriceForQuantitySchema(helpers.BaseSchema): quantity = marshmallow.fields.Float(allow_none=True, missing=None) discounted_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".DiscountedLineItemPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="discountedPrice", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.DiscountedLineItemPriceForQuantity(**data) class ExternalLineItemTotalPriceSchema(helpers.BaseSchema): price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) total_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="totalPrice", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.ExternalLineItemTotalPrice(**data) class ExternalTaxAmountDraftSchema(helpers.BaseSchema): total_gross = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="totalGross", ) tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="taxRate", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.ExternalTaxAmountDraft(**data) class ExternalTaxRateDraftSchema(helpers.BaseSchema): name = marshmallow.fields.String(allow_none=True, missing=None) amount = marshmallow.fields.Float( allow_none=True, metadata={"omit_empty": True}, missing=None ) country = marshmallow.fields.String(allow_none=True, missing=None) state = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) sub_rates = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".tax_category.SubRateSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="subRates", ) included_in_price = marshmallow.fields.Boolean( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="includedInPrice", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.ExternalTaxRateDraft(**data) class ItemShippingDetailsSchema(helpers.BaseSchema): targets = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingTargetSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, ) valid = marshmallow.fields.Boolean(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.ItemShippingDetails(**data) class ItemShippingDetailsDraftSchema(helpers.BaseSchema): targets = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingTargetSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.ItemShippingDetailsDraft(**data) class ItemShippingTargetSchema(helpers.BaseSchema): address_key = marshmallow.fields.String( allow_none=True, missing=None, data_key="addressKey" ) quantity = marshmallow.fields.Float(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.ItemShippingTarget(**data) class LineItemSchema(helpers.BaseSchema): id = marshmallow.fields.String(allow_none=True, missing=None) product_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="productId" ) name = LocalizedStringField(allow_none=True, missing=None) product_slug = LocalizedStringField( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="productSlug", ) product_type = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".product_type.ProductTypeReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="productType", ) variant = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".product.ProductVariantSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.PriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) taxed_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".TaxedItemPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxedPrice", ) total_price = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, data_key="totalPrice", ) quantity = marshmallow.fields.Integer(allow_none=True, missing=None) added_at = marshmallow.fields.DateTime( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="addedAt" ) state = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".order.ItemStateSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, ) tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".tax_category.TaxRateSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxRate", ) supply_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="supplyChannel", ) distribution_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="distributionChannel", ) discounted_price_per_quantity = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".DiscountedLineItemPriceForQuantitySchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="discountedPricePerQuantity", ) price_mode = marshmallow_enum.EnumField( LineItemPriceMode, by_value=True, allow_none=True, missing=None, data_key="priceMode", ) line_item_mode = marshmallow_enum.EnumField( LineItemMode, by_value=True, allow_none=True, missing=None, data_key="lineItemMode", ) custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) shipping_details = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetails", ) last_modified_at = marshmallow.fields.DateTime( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="lastModifiedAt", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.LineItem(**data) class LineItemDraftSchema(helpers.BaseSchema): product_id = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="productId", ) variant_id = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="variantId", ) sku = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) quantity = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None ) added_at = marshmallow.fields.DateTime( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="addedAt" ) supply_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="supplyChannel", ) distribution_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="distributionChannel", ) external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) external_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalPrice", ) external_total_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalLineItemTotalPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTotalPrice", ) shipping_details = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetails", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.LineItemDraft(**data) class ReplicaCartDraftSchema(helpers.BaseSchema): reference = helpers.Discriminator( allow_none=True, discriminator_field=("typeId", "type_id"), discriminator_schemas={ "cart-discount": helpers.absmod( __name__, ".cart_discount.CartDiscountReferenceSchema" ), "cart": helpers.absmod(__name__, ".CartReferenceSchema"), "category": helpers.absmod(__name__, ".category.CategoryReferenceSchema"), "channel": helpers.absmod(__name__, ".channel.ChannelReferenceSchema"), "key-value-document": helpers.absmod( __name__, ".custom_object.CustomObjectReferenceSchema" ), "customer-group": helpers.absmod( __name__, ".customer_group.CustomerGroupReferenceSchema" ), "customer": helpers.absmod(__name__, ".customer.CustomerReferenceSchema"), "discount-code": helpers.absmod( __name__, ".discount_code.DiscountCodeReferenceSchema" ), "inventory-entry": helpers.absmod( __name__, ".inventory.InventoryEntryReferenceSchema" ), "order-edit": helpers.absmod( __name__, ".order_edit.OrderEditReferenceSchema" ), "order": helpers.absmod(__name__, ".order.OrderReferenceSchema"), "payment": helpers.absmod(__name__, ".payment.PaymentReferenceSchema"), "product-discount": helpers.absmod( __name__, ".product_discount.ProductDiscountReferenceSchema" ), "product-type": helpers.absmod( __name__, ".product_type.ProductTypeReferenceSchema" ), "product": helpers.absmod(__name__, ".product.ProductReferenceSchema"), "review": helpers.absmod(__name__, ".review.ReviewReferenceSchema"), "shipping-method": helpers.absmod( __name__, ".shipping_method.ShippingMethodReferenceSchema" ), "shopping-list": helpers.absmod( __name__, ".shopping_list.ShoppingListReferenceSchema" ), "state": helpers.absmod(__name__, ".state.StateReferenceSchema"), "store": helpers.absmod(__name__, ".store.StoreReferenceSchema"), "tax-category": helpers.absmod( __name__, ".tax_category.TaxCategoryReferenceSchema" ), "type": helpers.absmod(__name__, ".type.TypeReferenceSchema"), "zone": helpers.absmod(__name__, ".zone.ZoneReferenceSchema"), }, missing=None, ) key = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.ReplicaCartDraft(**data) class ShippingInfoSchema(helpers.BaseSchema): shipping_method_name = marshmallow.fields.String( allow_none=True, missing=None, data_key="shippingMethodName" ) price = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, ) shipping_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".shipping_method.ShippingRateSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="shippingRate", ) taxed_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".TaxedItemPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxedPrice", ) tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".tax_category.TaxRateSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxRate", ) tax_category = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".tax_category.TaxCategoryReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxCategory", ) shipping_method = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".shipping_method.ShippingMethodReferenceSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingMethod", ) deliveries = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".order.DeliverySchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) discounted_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".DiscountedLineItemPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="discountedPrice", ) shipping_method_state = marshmallow_enum.EnumField( ShippingMethodState, by_value=True, allow_none=True, missing=None, data_key="shippingMethodState", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.ShippingInfo(**data) class ShippingRateInputSchema(helpers.BaseSchema): type = marshmallow.fields.String(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["type"] return models.ShippingRateInput(**data) class ClassificationShippingRateInputSchema(ShippingRateInputSchema): key = marshmallow.fields.String(allow_none=True, missing=None) label = LocalizedStringField(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["type"] return models.ClassificationShippingRateInput(**data) class ScoreShippingRateInputSchema(ShippingRateInputSchema): score = marshmallow.fields.Float(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["type"] return models.ScoreShippingRateInput(**data) class ShippingRateInputDraftSchema(helpers.BaseSchema): type = marshmallow.fields.String(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["type"] return models.ShippingRateInputDraft(**data) class ClassificationShippingRateInputDraftSchema(ShippingRateInputDraftSchema): key = marshmallow.fields.String(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["type"] return models.ClassificationShippingRateInputDraft(**data) class ScoreShippingRateInputDraftSchema(ShippingRateInputDraftSchema): score = marshmallow.fields.Float(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["type"] return models.ScoreShippingRateInputDraft(**data) class TaxPortionSchema(helpers.BaseSchema): name = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) rate = marshmallow.fields.Float(allow_none=True, missing=None) amount = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.TaxPortion(**data) class TaxPortionDraftSchema(helpers.BaseSchema): name = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) rate = marshmallow.fields.Float(allow_none=True, missing=None) amount = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.TaxPortionDraft(**data) class TaxedItemPriceSchema(helpers.BaseSchema): total_net = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, data_key="totalNet", ) total_gross = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, data_key="totalGross", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.TaxedItemPrice(**data) class TaxedPriceSchema(helpers.BaseSchema): total_net = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, data_key="totalNet", ) total_gross = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "centPrecision": helpers.absmod( __name__, ".common.CentPrecisionMoneySchema" ), "highPrecision": helpers.absmod( __name__, ".common.HighPrecisionMoneySchema" ), }, missing=None, data_key="totalGross", ) tax_portions = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".TaxPortionSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="taxPortions", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.TaxedPrice(**data) class TaxedPriceDraftSchema(helpers.BaseSchema): total_net = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="totalNet", ) total_gross = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="totalGross", ) tax_portions = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".TaxPortionDraftSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="taxPortions", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.TaxedPriceDraft(**data) class CartAddCustomLineItemActionSchema(CartUpdateActionSchema): money = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) name = LocalizedStringField(allow_none=True, missing=None) quantity = marshmallow.fields.Integer(allow_none=True, missing=None) slug = marshmallow.fields.String(allow_none=True, missing=None) tax_category = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".tax_category.TaxCategoryResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxCategory", ) custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartAddCustomLineItemAction(**data) class CartAddDiscountCodeActionSchema(CartUpdateActionSchema): code = marshmallow.fields.String(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartAddDiscountCodeAction(**data) class CartAddItemShippingAddressActionSchema(CartUpdateActionSchema): address = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartAddItemShippingAddressAction(**data) class CartAddLineItemActionSchema(CartUpdateActionSchema): custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) distribution_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="distributionChannel", ) external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) product_id = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="productId", ) variant_id = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="variantId", ) sku = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) quantity = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None ) supply_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="supplyChannel", ) external_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalPrice", ) external_total_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalLineItemTotalPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTotalPrice", ) shipping_details = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetails", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartAddLineItemAction(**data) class CartAddPaymentActionSchema(CartUpdateActionSchema): payment = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".payment.PaymentResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartAddPaymentAction(**data) class CartAddShoppingListActionSchema(CartUpdateActionSchema): shopping_list = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".shopping_list.ShoppingListResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="shoppingList", ) supply_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="supplyChannel", ) distribution_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="distributionChannel", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartAddShoppingListAction(**data) class CartApplyDeltaToCustomLineItemShippingDetailsTargetsActionSchema( CartUpdateActionSchema ): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) targets_delta = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingTargetSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="targetsDelta", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartApplyDeltaToCustomLineItemShippingDetailsTargetsAction(**data) class CartApplyDeltaToLineItemShippingDetailsTargetsActionSchema( CartUpdateActionSchema ): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) targets_delta = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingTargetSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="targetsDelta", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartApplyDeltaToLineItemShippingDetailsTargetsAction(**data) class CartChangeCustomLineItemMoneyActionSchema(CartUpdateActionSchema): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) money = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartChangeCustomLineItemMoneyAction(**data) class CartChangeCustomLineItemQuantityActionSchema(CartUpdateActionSchema): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) quantity = marshmallow.fields.Integer(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartChangeCustomLineItemQuantityAction(**data) class CartChangeLineItemQuantityActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) quantity = marshmallow.fields.Integer(allow_none=True, missing=None) external_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalPrice", ) external_total_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalLineItemTotalPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTotalPrice", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartChangeLineItemQuantityAction(**data) class CartChangeTaxCalculationModeActionSchema(CartUpdateActionSchema): tax_calculation_mode = marshmallow_enum.EnumField( TaxCalculationMode, by_value=True, allow_none=True, missing=None, data_key="taxCalculationMode", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartChangeTaxCalculationModeAction(**data) class CartChangeTaxModeActionSchema(CartUpdateActionSchema): tax_mode = marshmallow_enum.EnumField( TaxMode, by_value=True, allow_none=True, missing=None, data_key="taxMode" ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartChangeTaxModeAction(**data) class CartChangeTaxRoundingModeActionSchema(CartUpdateActionSchema): tax_rounding_mode = marshmallow_enum.EnumField( RoundingMode, by_value=True, allow_none=True, missing=None, data_key="taxRoundingMode", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartChangeTaxRoundingModeAction(**data) class CartRecalculateActionSchema(CartUpdateActionSchema): update_product_data = marshmallow.fields.Boolean( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="updateProductData", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartRecalculateAction(**data) class CartRemoveCustomLineItemActionSchema(CartUpdateActionSchema): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartRemoveCustomLineItemAction(**data) class CartRemoveDiscountCodeActionSchema(CartUpdateActionSchema): discount_code = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".discount_code.DiscountCodeReferenceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="discountCode", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartRemoveDiscountCodeAction(**data) class CartRemoveItemShippingAddressActionSchema(CartUpdateActionSchema): address_key = marshmallow.fields.String( allow_none=True, missing=None, data_key="addressKey" ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartRemoveItemShippingAddressAction(**data) class CartRemoveLineItemActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) quantity = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None ) external_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalPrice", ) external_total_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalLineItemTotalPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTotalPrice", ) shipping_details_to_remove = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetailsToRemove", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartRemoveLineItemAction(**data) class CartRemovePaymentActionSchema(CartUpdateActionSchema): payment = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".payment.PaymentResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartRemovePaymentAction(**data) class CartSetAnonymousIdActionSchema(CartUpdateActionSchema): anonymous_id = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="anonymousId", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetAnonymousIdAction(**data) class CartSetBillingAddressActionSchema(CartUpdateActionSchema): address = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetBillingAddressAction(**data) class CartSetCartTotalTaxActionSchema(CartUpdateActionSchema): external_total_gross = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="externalTotalGross", ) external_tax_portions = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".TaxPortionDraftSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxPortions", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCartTotalTaxAction(**data) class CartSetCountryActionSchema(CartUpdateActionSchema): country = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCountryAction(**data) class CartSetCustomFieldActionSchema(CartUpdateActionSchema): name = marshmallow.fields.String(allow_none=True, missing=None) value = marshmallow.fields.Raw( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomFieldAction(**data) class CartSetCustomLineItemCustomFieldActionSchema(CartUpdateActionSchema): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) name = marshmallow.fields.String(allow_none=True, missing=None) value = marshmallow.fields.Raw( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomLineItemCustomFieldAction(**data) class CartSetCustomLineItemCustomTypeActionSchema(CartUpdateActionSchema): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) type = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.TypeResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) fields = FieldContainerField( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomLineItemCustomTypeAction(**data) class CartSetCustomLineItemShippingDetailsActionSchema(CartUpdateActionSchema): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) shipping_details = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetails", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomLineItemShippingDetailsAction(**data) class CartSetCustomLineItemTaxAmountActionSchema(CartUpdateActionSchema): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) external_tax_amount = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxAmountDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxAmount", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomLineItemTaxAmountAction(**data) class CartSetCustomLineItemTaxRateActionSchema(CartUpdateActionSchema): custom_line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="customLineItemId" ) external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomLineItemTaxRateAction(**data) class CartSetCustomShippingMethodActionSchema(CartUpdateActionSchema): shipping_method_name = marshmallow.fields.String( allow_none=True, missing=None, data_key="shippingMethodName" ) shipping_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".shipping_method.ShippingRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, data_key="shippingRate", ) tax_category = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".tax_category.TaxCategoryResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxCategory", ) external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomShippingMethodAction(**data) class CartSetCustomTypeActionSchema(CartUpdateActionSchema): type = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.TypeResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) fields = FieldContainerField( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomTypeAction(**data) class CartSetCustomerEmailActionSchema(CartUpdateActionSchema): email = marshmallow.fields.String(allow_none=True, missing=None) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomerEmailAction(**data) class CartSetCustomerGroupActionSchema(CartUpdateActionSchema): customer_group = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".customer_group.CustomerGroupResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="customerGroup", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomerGroupAction(**data) class CartSetCustomerIdActionSchema(CartUpdateActionSchema): customer_id = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="customerId", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetCustomerIdAction(**data) class CartSetDeleteDaysAfterLastModificationActionSchema(CartUpdateActionSchema): delete_days_after_last_modification = marshmallow.fields.Integer( allow_none=True, metadata={"omit_empty": True}, missing=None, data_key="deleteDaysAfterLastModification", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetDeleteDaysAfterLastModificationAction(**data) class CartSetKeyActionSchema(CartUpdateActionSchema): key = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetKeyAction(**data) class CartSetLineItemCustomFieldActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) name = marshmallow.fields.String(allow_none=True, missing=None) value = marshmallow.fields.Raw( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLineItemCustomFieldAction(**data) class CartSetLineItemCustomTypeActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) type = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.TypeResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) fields = FieldContainerField( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLineItemCustomTypeAction(**data) class CartSetLineItemDistributionChannelActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) distribution_channel = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".channel.ChannelResourceIdentifierSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="distributionChannel", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLineItemDistributionChannelAction(**data) class CartSetLineItemPriceActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) external_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalPrice", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLineItemPriceAction(**data) class CartSetLineItemShippingDetailsActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) shipping_details = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetails", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLineItemShippingDetailsAction(**data) class CartSetLineItemTaxAmountActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) external_tax_amount = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxAmountDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxAmount", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLineItemTaxAmountAction(**data) class CartSetLineItemTaxRateActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLineItemTaxRateAction(**data) class CartSetLineItemTotalPriceActionSchema(CartUpdateActionSchema): line_item_id = marshmallow.fields.String( allow_none=True, missing=None, data_key="lineItemId" ) external_total_price = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalLineItemTotalPriceSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTotalPrice", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLineItemTotalPriceAction(**data) class CartSetLocaleActionSchema(CartUpdateActionSchema): locale = marshmallow.fields.String( allow_none=True, metadata={"omit_empty": True}, missing=None ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetLocaleAction(**data) class CartSetShippingAddressActionSchema(CartUpdateActionSchema): address = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetShippingAddressAction(**data) class CartSetShippingMethodActionSchema(CartUpdateActionSchema): shipping_method = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".shipping_method.ShippingMethodResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingMethod", ) external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetShippingMethodAction(**data) class CartSetShippingMethodTaxAmountActionSchema(CartUpdateActionSchema): external_tax_amount = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxAmountDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxAmount", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetShippingMethodTaxAmountAction(**data) class CartSetShippingMethodTaxRateActionSchema(CartUpdateActionSchema): external_tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ExternalTaxRateDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="externalTaxRate", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetShippingMethodTaxRateAction(**data) class CartSetShippingRateInputActionSchema(CartUpdateActionSchema): shipping_rate_input = helpers.Discriminator( allow_none=True, discriminator_field=("type", "type"), discriminator_schemas={ "Classification": helpers.absmod( __name__, ".ClassificationShippingRateInputDraftSchema" ), "Score": helpers.absmod(__name__, ".ScoreShippingRateInputDraftSchema"), }, metadata={"omit_empty": True}, missing=None, data_key="shippingRateInput", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartSetShippingRateInputAction(**data) class CartUpdateItemShippingAddressActionSchema(CartUpdateActionSchema): address = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.AddressSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): del data["action"] return models.CartUpdateItemShippingAddressAction(**data) class CustomLineItemImportDraftSchema(helpers.BaseSchema): name = LocalizedStringField(allow_none=True, missing=None) quantity = marshmallow.fields.Integer(allow_none=True, missing=None) money = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".common.MoneySchema"), allow_none=True, unknown=marshmallow.EXCLUDE, missing=None, ) slug = marshmallow.fields.String(allow_none=True, missing=None) state = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".order.ItemStateSchema"), allow_none=True, many=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) tax_rate = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".tax_category.TaxRateSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxRate", ) tax_category = helpers.LazyNestedField( nested=helpers.absmod( __name__, ".tax_category.TaxCategoryResourceIdentifierSchema" ), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="taxCategory", ) custom = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".type.CustomFieldsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, ) shipping_details = helpers.LazyNestedField( nested=helpers.absmod(__name__, ".ItemShippingDetailsDraftSchema"), allow_none=True, unknown=marshmallow.EXCLUDE, metadata={"omit_empty": True}, missing=None, data_key="shippingDetails", ) class Meta: unknown = marshmallow.EXCLUDE @marshmallow.post_load def post_load(self, data, **kwargs): return models.CustomLineItemImportDraft(**data)
py
1a4ff65a599d30cee48af1d8552998f462a11fdb
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest import Serializer, Deserializer from ...vss_client import VssClient from . import models class IdentityClient(VssClient): """Identity :param str base_url: Service URL :param Authentication creds: Authenticated credentials. """ def __init__(self, base_url=None, creds=None): super(IdentityClient, self).__init__(base_url, creds) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._deserialize = Deserializer(client_models) resource_area_identifier = '8a3d49b8-91f0-46ef-b33d-dda338c25db3' def create_or_bind_with_claims(self, source_identity): """CreateOrBindWithClaims. [Preview API] :param :class:`<Identity> <identity.v4_0.models.Identity>` source_identity: :rtype: :class:`<Identity> <identity.v4_0.models.Identity>` """ content = self._serialize.body(source_identity, 'Identity') response = self._send(http_method='PUT', location_id='90ddfe71-171c-446c-bf3b-b597cd562afd', version='4.0-preview.1', content=content) return self._deserialize('Identity', response) def get_descriptor_by_id(self, id, is_master_id=None): """GetDescriptorById. [Preview API] :param str id: :param bool is_master_id: :rtype: :class:`<str> <identity.v4_0.models.str>` """ route_values = {} if id is not None: route_values['id'] = self._serialize.url('id', id, 'str') query_parameters = {} if is_master_id is not None: query_parameters['isMasterId'] = self._serialize.query('is_master_id', is_master_id, 'bool') response = self._send(http_method='GET', location_id='a230389a-94f2-496c-839f-c929787496dd', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('str', response) def create_groups(self, container): """CreateGroups. :param :class:`<object> <identity.v4_0.models.object>` container: :rtype: [Identity] """ content = self._serialize.body(container, 'object') response = self._send(http_method='POST', location_id='5966283b-4196-4d57-9211-1b68f41ec1c2', version='4.0', content=content, returns_collection=True) return self._deserialize('[Identity]', response) def delete_group(self, group_id): """DeleteGroup. :param str group_id: """ route_values = {} if group_id is not None: route_values['groupId'] = self._serialize.url('group_id', group_id, 'str') self._send(http_method='DELETE', location_id='5966283b-4196-4d57-9211-1b68f41ec1c2', version='4.0', route_values=route_values) def list_groups(self, scope_ids=None, recurse=None, deleted=None, properties=None): """ListGroups. :param str scope_ids: :param bool recurse: :param bool deleted: :param str properties: :rtype: [Identity] """ query_parameters = {} if scope_ids is not None: query_parameters['scopeIds'] = self._serialize.query('scope_ids', scope_ids, 'str') if recurse is not None: query_parameters['recurse'] = self._serialize.query('recurse', recurse, 'bool') if deleted is not None: query_parameters['deleted'] = self._serialize.query('deleted', deleted, 'bool') if properties is not None: query_parameters['properties'] = self._serialize.query('properties', properties, 'str') response = self._send(http_method='GET', location_id='5966283b-4196-4d57-9211-1b68f41ec1c2', version='4.0', query_parameters=query_parameters, returns_collection=True) return self._deserialize('[Identity]', response) def get_identity_changes(self, identity_sequence_id, group_sequence_id, scope_id=None): """GetIdentityChanges. :param int identity_sequence_id: :param int group_sequence_id: :param str scope_id: :rtype: :class:`<ChangedIdentities> <identity.v4_0.models.ChangedIdentities>` """ query_parameters = {} if identity_sequence_id is not None: query_parameters['identitySequenceId'] = self._serialize.query('identity_sequence_id', identity_sequence_id, 'int') if group_sequence_id is not None: query_parameters['groupSequenceId'] = self._serialize.query('group_sequence_id', group_sequence_id, 'int') if scope_id is not None: query_parameters['scopeId'] = self._serialize.query('scope_id', scope_id, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', query_parameters=query_parameters) return self._deserialize('ChangedIdentities', response) def get_user_identity_ids_by_domain_id(self, domain_id): """GetUserIdentityIdsByDomainId. :param str domain_id: :rtype: [str] """ query_parameters = {} if domain_id is not None: query_parameters['domainId'] = self._serialize.query('domain_id', domain_id, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', query_parameters=query_parameters, returns_collection=True) return self._deserialize('[str]', response) def read_identities(self, descriptors=None, identity_ids=None, search_filter=None, filter_value=None, query_membership=None, properties=None, include_restricted_visibility=None, options=None): """ReadIdentities. :param str descriptors: :param str identity_ids: :param str search_filter: :param str filter_value: :param str query_membership: :param str properties: :param bool include_restricted_visibility: :param str options: :rtype: [Identity] """ query_parameters = {} if descriptors is not None: query_parameters['descriptors'] = self._serialize.query('descriptors', descriptors, 'str') if identity_ids is not None: query_parameters['identityIds'] = self._serialize.query('identity_ids', identity_ids, 'str') if search_filter is not None: query_parameters['searchFilter'] = self._serialize.query('search_filter', search_filter, 'str') if filter_value is not None: query_parameters['filterValue'] = self._serialize.query('filter_value', filter_value, 'str') if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') if properties is not None: query_parameters['properties'] = self._serialize.query('properties', properties, 'str') if include_restricted_visibility is not None: query_parameters['includeRestrictedVisibility'] = self._serialize.query('include_restricted_visibility', include_restricted_visibility, 'bool') if options is not None: query_parameters['options'] = self._serialize.query('options', options, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', query_parameters=query_parameters, returns_collection=True) return self._deserialize('[Identity]', response) def read_identities_by_scope(self, scope_id, query_membership=None, properties=None): """ReadIdentitiesByScope. :param str scope_id: :param str query_membership: :param str properties: :rtype: [Identity] """ query_parameters = {} if scope_id is not None: query_parameters['scopeId'] = self._serialize.query('scope_id', scope_id, 'str') if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') if properties is not None: query_parameters['properties'] = self._serialize.query('properties', properties, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', query_parameters=query_parameters, returns_collection=True) return self._deserialize('[Identity]', response) def read_identity(self, identity_id, query_membership=None, properties=None): """ReadIdentity. :param str identity_id: :param str query_membership: :param str properties: :rtype: :class:`<Identity> <identity.v4_0.models.Identity>` """ route_values = {} if identity_id is not None: route_values['identityId'] = self._serialize.url('identity_id', identity_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') if properties is not None: query_parameters['properties'] = self._serialize.query('properties', properties, 'str') response = self._send(http_method='GET', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', route_values=route_values, query_parameters=query_parameters) return self._deserialize('Identity', response) def update_identities(self, identities): """UpdateIdentities. :param :class:`<VssJsonCollectionWrapper> <identity.v4_0.models.VssJsonCollectionWrapper>` identities: :rtype: [IdentityUpdateData] """ content = self._serialize.body(identities, 'VssJsonCollectionWrapper') response = self._send(http_method='PUT', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', content=content, returns_collection=True) return self._deserialize('[IdentityUpdateData]', response) def update_identity(self, identity, identity_id): """UpdateIdentity. :param :class:`<Identity> <identity.v4_0.models.Identity>` identity: :param str identity_id: """ route_values = {} if identity_id is not None: route_values['identityId'] = self._serialize.url('identity_id', identity_id, 'str') content = self._serialize.body(identity, 'Identity') self._send(http_method='PUT', location_id='28010c54-d0c0-4c89-a5b0-1c9e188b9fb7', version='4.0', route_values=route_values, content=content) def create_identity(self, framework_identity_info): """CreateIdentity. :param :class:`<FrameworkIdentityInfo> <identity.v4_0.models.FrameworkIdentityInfo>` framework_identity_info: :rtype: :class:`<Identity> <identity.v4_0.models.Identity>` """ content = self._serialize.body(framework_identity_info, 'FrameworkIdentityInfo') response = self._send(http_method='PUT', location_id='dd55f0eb-6ea2-4fe4-9ebe-919e7dd1dfb4', version='4.0', content=content) return self._deserialize('Identity', response) def read_identity_batch(self, batch_info): """ReadIdentityBatch. [Preview API] :param :class:`<IdentityBatchInfo> <identity.v4_0.models.IdentityBatchInfo>` batch_info: :rtype: [Identity] """ content = self._serialize.body(batch_info, 'IdentityBatchInfo') response = self._send(http_method='POST', location_id='299e50df-fe45-4d3a-8b5b-a5836fac74dc', version='4.0-preview.1', content=content, returns_collection=True) return self._deserialize('[Identity]', response) def get_identity_snapshot(self, scope_id): """GetIdentitySnapshot. [Preview API] :param str scope_id: :rtype: :class:`<IdentitySnapshot> <identity.v4_0.models.IdentitySnapshot>` """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') response = self._send(http_method='GET', location_id='d56223df-8ccd-45c9-89b4-eddf692400d7', version='4.0-preview.1', route_values=route_values) return self._deserialize('IdentitySnapshot', response) def get_max_sequence_id(self): """GetMaxSequenceId. Read the max sequence id of all the identities. :rtype: long """ response = self._send(http_method='GET', location_id='e4a70778-cb2c-4e85-b7cc-3f3c7ae2d408', version='4.0') return self._deserialize('long', response) def get_self(self): """GetSelf. Read identity of the home tenant request user. :rtype: :class:`<IdentitySelf> <identity.v4_0.models.IdentitySelf>` """ response = self._send(http_method='GET', location_id='4bb02b5b-c120-4be2-b68e-21f7c50a4b82', version='4.0') return self._deserialize('IdentitySelf', response) def add_member(self, container_id, member_id): """AddMember. [Preview API] :param str container_id: :param str member_id: :rtype: bool """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') response = self._send(http_method='PUT', location_id='8ba35978-138e-41f8-8963-7b1ea2c5f775', version='4.0-preview.1', route_values=route_values) return self._deserialize('bool', response) def read_member(self, container_id, member_id, query_membership=None): """ReadMember. [Preview API] :param str container_id: :param str member_id: :param str query_membership: :rtype: :class:`<str> <identity.v4_0.models.str>` """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') response = self._send(http_method='GET', location_id='8ba35978-138e-41f8-8963-7b1ea2c5f775', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('str', response) def read_members(self, container_id, query_membership=None): """ReadMembers. [Preview API] :param str container_id: :param str query_membership: :rtype: [str] """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') response = self._send(http_method='GET', location_id='8ba35978-138e-41f8-8963-7b1ea2c5f775', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, returns_collection=True) return self._deserialize('[str]', response) def remove_member(self, container_id, member_id): """RemoveMember. [Preview API] :param str container_id: :param str member_id: :rtype: bool """ route_values = {} if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') response = self._send(http_method='DELETE', location_id='8ba35978-138e-41f8-8963-7b1ea2c5f775', version='4.0-preview.1', route_values=route_values) return self._deserialize('bool', response) def read_member_of(self, member_id, container_id, query_membership=None): """ReadMemberOf. [Preview API] :param str member_id: :param str container_id: :param str query_membership: :rtype: :class:`<str> <identity.v4_0.models.str>` """ route_values = {} if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') if container_id is not None: route_values['containerId'] = self._serialize.url('container_id', container_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') response = self._send(http_method='GET', location_id='22865b02-9e4a-479e-9e18-e35b8803b8a0', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters) return self._deserialize('str', response) def read_members_of(self, member_id, query_membership=None): """ReadMembersOf. [Preview API] :param str member_id: :param str query_membership: :rtype: [str] """ route_values = {} if member_id is not None: route_values['memberId'] = self._serialize.url('member_id', member_id, 'str') query_parameters = {} if query_membership is not None: query_parameters['queryMembership'] = self._serialize.query('query_membership', query_membership, 'str') response = self._send(http_method='GET', location_id='22865b02-9e4a-479e-9e18-e35b8803b8a0', version='4.0-preview.1', route_values=route_values, query_parameters=query_parameters, returns_collection=True) return self._deserialize('[str]', response) def create_scope(self, info, scope_id): """CreateScope. [Preview API] :param :class:`<CreateScopeInfo> <identity.v4_0.models.CreateScopeInfo>` info: :param str scope_id: :rtype: :class:`<IdentityScope> <identity.v4_0.models.IdentityScope>` """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') content = self._serialize.body(info, 'CreateScopeInfo') response = self._send(http_method='PUT', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', route_values=route_values, content=content) return self._deserialize('IdentityScope', response) def delete_scope(self, scope_id): """DeleteScope. [Preview API] :param str scope_id: """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') self._send(http_method='DELETE', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', route_values=route_values) def get_scope_by_id(self, scope_id): """GetScopeById. [Preview API] :param str scope_id: :rtype: :class:`<IdentityScope> <identity.v4_0.models.IdentityScope>` """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') response = self._send(http_method='GET', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', route_values=route_values) return self._deserialize('IdentityScope', response) def get_scope_by_name(self, scope_name): """GetScopeByName. [Preview API] :param str scope_name: :rtype: :class:`<IdentityScope> <identity.v4_0.models.IdentityScope>` """ query_parameters = {} if scope_name is not None: query_parameters['scopeName'] = self._serialize.query('scope_name', scope_name, 'str') response = self._send(http_method='GET', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', query_parameters=query_parameters) return self._deserialize('IdentityScope', response) def rename_scope(self, rename_scope, scope_id): """RenameScope. [Preview API] :param :class:`<IdentityScope> <identity.v4_0.models.IdentityScope>` rename_scope: :param str scope_id: """ route_values = {} if scope_id is not None: route_values['scopeId'] = self._serialize.url('scope_id', scope_id, 'str') content = self._serialize.body(rename_scope, 'IdentityScope') self._send(http_method='PATCH', location_id='4e11e2bf-1e79-4eb5-8f34-a6337bd0de38', version='4.0-preview.1', route_values=route_values, content=content) def get_signed_in_token(self): """GetSignedInToken. [Preview API] :rtype: :class:`<AccessTokenResult> <identity.v4_0.models.AccessTokenResult>` """ response = self._send(http_method='GET', location_id='6074ff18-aaad-4abb-a41e-5c75f6178057', version='4.0-preview.1') return self._deserialize('AccessTokenResult', response) def get_signout_token(self): """GetSignoutToken. [Preview API] :rtype: :class:`<AccessTokenResult> <identity.v4_0.models.AccessTokenResult>` """ response = self._send(http_method='GET', location_id='be39e83c-7529-45e9-9c67-0410885880da', version='4.0-preview.1') return self._deserialize('AccessTokenResult', response) def get_tenant(self, tenant_id): """GetTenant. [Preview API] :param str tenant_id: :rtype: :class:`<TenantInfo> <identity.v4_0.models.TenantInfo>` """ route_values = {} if tenant_id is not None: route_values['tenantId'] = self._serialize.url('tenant_id', tenant_id, 'str') response = self._send(http_method='GET', location_id='5f0a1723-2e2c-4c31-8cae-002d01bdd592', version='4.0-preview.1', route_values=route_values) return self._deserialize('TenantInfo', response)
py
1a4ff7c3f0e8533ab0ecf565be630b09c69456c4
#!/Users/huseyinhacihabiboglu/PycharmProjects/higrid/venv/bin/python # $Id: rstpep2html.py 4564 2006-05-21 20:44:42Z wiemann $ # Author: David Goodger <[email protected]> # Copyright: This module has been placed in the public domain. """ A minimal front end to the Docutils Publisher, producing HTML from PEP (Python Enhancement Proposal) documents. """ try: import locale locale.setlocale(locale.LC_ALL, '') except: pass from docutils.core import publish_cmdline, default_description description = ('Generates (X)HTML from reStructuredText-format PEP files. ' + default_description) publish_cmdline(reader_name='pep', writer_name='pep_html', description=description)
py
1a4ff84fab2fe919d178a11aab54a9744c70f5f1
import os import zipfile from datetime import datetime import numpy as np import spacy import twokenize from nlplingo.common.utils import IntPair from nlplingo.sandbox.misc.train_test import generate_argument_data_feature from nlplingo.sandbox.misc.train_test import generate_trigger_data_feature from nlplingo.sandbox.misc.train_test import get_predicted_positive_triggers from nlplingo.text.text_span import EntityMention from nlplingo.text.text_theory import Document # from pyspark import SparkContext, SparkConf # from ctypes import * global spacy_en global tagger_blog global tagger_tweet global tagger_news global tagger_dw #sys.path.append('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite') #sc.addPyFile('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite/crfsuite.py') #cdll.LoadLibrary('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite/libcrfsuite-0.12.so') #import crfsuite class Token(object): """An individual word token. """ # idx : starting char offset def __init__(self, text, idx, pos_tag=None): self.text = text self.idx = idx self.tag_ = pos_tag class Decoder(object): #sys.path.append('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite') #cdll.LoadLibrary('/nfs/mercury-04/u40/ychan/spark/ner/crfsuite/libcrfsuite-0.12.so') #import crfsuite # python_path: /nfs/mercury-04/u40/ychan/spark/ner/crfsuite # libcrfsuite_so: /nfs/mercury-04/u40/ychan/spark/ner/crfsuite/libcrfsuite-0.12.so # model_file: /nfs/mercury-04/u40/ychan/ner/model/twitter.cv1.model def __init__(self, params): #sys.path.append(python_path) #for library in libcrfsuite_so_libs: # cdll.LoadLibrary(library) #import crfsuite as crfsuite #self.crfsuite = crfsuite import pycrfsuite as pycrfsuite self.pycrfsuite = pycrfsuite self.model_blog = params['crf_models']['blog'] self.model_tweet = params['crf_models']['tweet'] self.model_news = params['crf_models']['news'] self.model_dw = params['crf_models']['dw'] if 'resources.zip' in params: if os.path.isfile(params['resources.zip']) and not os.path.isdir(params['crf_models']['dir']): zip_ref = zipfile.ZipFile(params['resources.zip'], 'r') zip_ref.extractall() zip_ref.close() def instances(self, fi): xseq = [] for line in fi: fields = line.split('\t') item = {} for field in fields[1:]: sfield = field.encode('ascii', 'replace') p = sfield.rfind(':') if p == -1: # Unweighted (weight=1) attribute. item[sfield] = 1.0 elif (p+1) >= len(sfield): item[sfield] = 1.0 else: try: weight = float(sfield[p+1:]) item[sfield[:p]] = weight except ValueError: item[sfield] = 1.0 xseq.append(item) return self.pycrfsuite.ItemSequence(xseq) #def instances(self, fi): # xseq = self.crfsuite.ItemSequence() # # for line in fi: # # Split the line with TAB characters. # fields = line.split('\t') # item = self.crfsuite.Item() # for field in fields[1:]: # #print('field %s' % (field)) # sfield = field.encode('ascii','replace') # #print('sfield %s' % (sfield)) # p = sfield.rfind(':') # if p == -1: # # Unweighted (weight=1) attribute. # #print('field:{} type(field):{}'.format(field, type(field))) # #print(type(field)) # #field_string = field.encode('ascii','replace') # #item.append(self.crfsuite.Attribute(field_string)) # item.append(self.crfsuite.Attribute(sfield)) # elif (p+1) >= len(sfield): # item.append(self.crfsuite.Attribute(sfield)) # else: # try: # weight = float(sfield[p+1:]) # item.append(self.crfsuite.Attribute(sfield[:p], weight)) # except ValueError: # item.append(self.crfsuite.Attribute(sfield)) # #print field # # Weighted attribute # #item.append(self.crfsuite.Attribute(sfield[:p], float(sfield[p+1:]))) # # Append the item to the item sequence. # xseq.append(item) # # return xseq # Blog , Conference , SocialMediaPosting def get_content_tagger(self, xseq, content_type): global tagger_blog global tagger_tweet global tagger_news global tagger_dw if content_type == 'Blog': try: tagger_blog.set(xseq) except: tagger_blog = self.pycrfsuite.Tagger() tagger_blog.open(self.model_blog) print('**** Loaded blog NER model %s' % (self.model_blog)) tagger_blog.set(xseq) return tagger_blog elif content_type == 'SocialMediaPosting': try: tagger_tweet.set(xseq) except: tagger_tweet = self.pycrfsuite.Tagger() tagger_tweet.open(self.model_tweet) print('**** Loaded tweet NER model %s' % (self.model_tweet)) tagger_tweet.set(xseq) return tagger_tweet elif content_type == 'NewsArticle': try: tagger_news.set(xseq) except: tagger_news = self.pycrfsuite.Tagger() tagger_news.open(self.model_news) print('**** Loaded news NER model %s' % (self.model_news)) tagger_news.set(xseq) return tagger_news elif content_type == 'Post': try: tagger_dw.set(xseq) except: tagger_dw = self.pycrfsuite.Tagger() tagger_dw.open(self.model_dw) print('**** Loaded dw NER model %s' % (self.model_dw)) tagger_dw.set(xseq) return tagger_dw def tag_seq(self, xseq, content_type): tagger = self.get_content_tagger(xseq, content_type) return tagger.tag() def collect_predictions(content, predictions, char_offsets): ret = [] i = 0 while i < len(predictions): p = predictions[i] if p.startswith('B-'): label = p[2:] (start, end) = char_offsets[i] while (i+1) < len(predictions) and predictions[i+1] == 'I-'+label: i += 1 end = char_offsets[i][1] # these are when we mix in ACE and Blog annotations. ACE tags 'ORG', Blog tags 'ORGANIZATION' if label == 'ORG': label = 'ORGANIZATION' if label == 'PER': label = 'PERSON' d = {} d['start'] = start d['end'] = end d['label'] = label d['text'] = content[start:end] d['extractor'] = 'nlplingo.ner' ret.append(d) i += 1 return ret # A line could be a paragraph consisting of multiple sentences. # We will get the correct definition of sentences according to whether this is blog, tweet, etc. def get_sentences(line, content_type): global spacy_en if content_type == 'SocialMediaPosting': sentences = [] start_offset = 0 sent = [] for token in twokenize.tokenize(line[:-1]): idx = line.index(token, start_offset) sent.append(Token(token, idx)) start_offset = idx + len(token) sentences.append(sent) return sentences elif content_type == 'Blog' or content_type == 'NewsArticle' or content_type == 'Post': try: spacy_doc = spacy_en(line) except: spacy_en = spacy.load('en') print('**** Loaded spacy en') spacy_doc = spacy_en(line) return spacy_doc.sents def decode_sentence(ner_fea, dec, content, sent, offset, content_type): """ :type ner_fea: ner.ner_feature.NerFeature :type dec: ner.decoder.Decoder :type content: str :type offset: int :type content_type: str sent: spacy sentence Returns: list[dict()] content_type: 'Blog' , 'SocialMediaPosting' , 'NewsArticle' (will decide which NER feature set to use) """ tokens = [t for t in sent if len(t.text) > 0] # a list, 1 element for each word in line # each element is a tab separate features, except the 1st element which is a dummy label word_feas = line_to_features(ner_fea, tokens, content_type) # content_type decides which NER feature set to use word_seq = dec.instances(word_feas) # of type pycrfsuite.ItemSequence predictions = dec.tag_seq(word_seq, content_type) # content_type decides which NER model to load char_offsets = [] for token in tokens: start = token.idx + offset end = start + len(token.text) char_offsets.append((start, end)) assert (len(char_offsets) == len(predictions)), 'len(char_offsets) should match len(predictions)' # returns a dict with keys: start, end, label, text, extractor return collect_predictions(content, predictions, char_offsets) def find(element, json): x = reduce(lambda d, key: d.get(key, {}), element.split("."), json) if any(x) is True: return x return None # line : a json string def line_to_predictions(ner_fea, dec, json_eg, attr, content_type, word_embeddings, trigger_generator, trigger_model, arg_generator, argument_model, event_domain): """ :type word_embeddings: embeddings.word_embeddings.WordEmbedding :type trigger_generator: tasks.event_trigger.EventTriggerExampleGenerator :type trigger_model: model.event_cnn.ExtractionModel :type arg_generator: tasks.event_argument.EventArgumentExampleGenerator :type trigger_model: model.event_cnn.ExtractionModel """ global spacy_en content = find(attr, json_eg) # json_eg.get(attr) print(content_type.encode('ascii', 'ignore')) print(content.encode('ascii', 'ignore')) offset = 0 all_predictions = [] if content is not None: if type(content) is list: content = '\n'.join(content) for line in content.split('\n'): #print(offset) #print('[' + content_type.encode('ascii', 'ignore') + ']') #print('[' + line.encode('ascii', 'ignore') + ']') d['line'] = line all_predictions.append(d) doc_ner_predictions = [] sentences = get_sentences(line, content_type) if sentences is not None: for sent in sentences: sent_predictions = decode_sentence(ner_fea, dec, content, sent, offset, content_type) doc_ner_predictions.extend(sent_predictions) all_predictions.extend(sent_predictions) if content_type == 'Blog': print('*** content_type == Blog ***') print(line.encode('ascii', 'ignore')) doc = Document('dummy', line) for i, p in enumerate(doc_ner_predictions): id = 'em-{}'.format(i) # we need to minus 'offset', because we are splitting the original 'content' into several 'line(s)' # then we pass each 'line' to make a Document object. But p[start], p[end] are with respect to the # 'content', so you need to minus 'offset' in order to make the 2 sets of offsets match doc.add_entity_mention(EntityMention(id, IntPair(int(p['start'])-offset, int(p['end'])-offset), p['text'], p['label'])) doc.annotate_sentences(word_embeddings, spacy_en) print('added {} NER'.format(len(doc_ner_predictions))) (trigger_examples, trigger_data, trigger_data_list, trigger_label) = generate_trigger_data_feature(trigger_generator, [doc]) print('Generated {} trigger_examples, at {}'.format(len(trigger_examples), datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) if len(trigger_examples) > 0: trigger_predictions = trigger_model.predict(trigger_data_list) predicted_positive_triggers_map = get_predicted_positive_triggers(trigger_predictions, trigger_examples, event_domain.get_event_type_index('None'), event_domain) # the above is organized by docid, let's now expand to get the actual eventtrigger examples predicted_positive_triggers = [] """:type list[nlplingo.tasks.event_trigger.EventTriggerExample]""" for docid in predicted_positive_triggers_map.keys(): predicted_positive_triggers.extend(predicted_positive_triggers_map[docid]) print('Predicted {} positive triggers, at {}'.format(len(predicted_positive_triggers), datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) for trigger_eg in predicted_positive_triggers: print('trigger_eg %s (%s,%s) %s' % (trigger_eg.token.text, str(trigger_eg.token.start_char_offset()), str(trigger_eg.token.end_char_offset()), trigger_eg.event_type)) if len(predicted_positive_triggers) > 0: if argument_model is None: for eg in predicted_positive_triggers: d = {} d['docid'] = eg.sentence.docid d['start'] = eg.anchor.start_char_offset() d['end'] = eg.anchor.end_char_offset() d['text'] = eg.anchor.text all_predictions.append(d) else: # generate arguments with predicted triggers (arg_examples_pt, arg_data_pt, arg_data_list_pt, arg_label_pt) = generate_argument_data_feature(arg_generator, [doc], params=None, predicted_triggers=predicted_positive_triggers_map) #print('formed {} tasks eventargument examples'.format(len(arg_examples_pt))) if len(arg_examples_pt) > 0: # decode arguments with predicted triggers argument_predictions_pt = argument_model.predict(arg_data_list_pt) pred_arg_max = np.argmax(argument_predictions_pt, axis=1) #predicted_events = defaultdict(list) # to collate by anchor for i, predicted_label in enumerate(pred_arg_max): if predicted_label != event_domain.get_event_role_index('None'): eg = arg_examples_pt[i] """:type: tasks.event_argument.EventArgumentExample""" predicted_role = event_domain.get_event_role_from_index(predicted_label) # print('{} || {} || {}'.format(predicted_role, eg.anchor.to_string(), eg.eventargument.to_string())) #predicted_events[eg.anchor].append(EventArgument('dummy', eg.eventargument, predicted_role)) #print('argument_eg %s (%s,%s) %s' % (eg.eventargument.text, str(eg.eventargument.start_char_offset()), str(eg.eventargument.end_char_offset()), '{}.{}'.format(eg.anchor.label, predicted_role))) d = {} d['start'] = eg.argument.start_char_offset() + offset d['end'] = eg.argument.end_char_offset() + offset d['label'] = '{}.{}'.format(eg.anchor.label, predicted_role) d['text'] = eg.argument.text d['extractor'] = 'nlplingo.network' all_predictions.append(d) offset += len(line) + 1 # +1 to account for newline # a list of dict, one for each predicted NE mention if len(all_predictions) > 0: if not "extractions" in json_eg: json_eg["extractions"] = {} json_eg['extractions'][attr] = all_predictions return json_eg # for each word in sent, return: label \tab (\tab separated list of features). If a feature is weighted, it will be like (.*):weight def line_to_features(ner_fea, sent, content_type): d = ('', '', '') seq = [d, d] for token in sent: #start = token.idx #print(token.text.encode('ascii', 'ignore')) pos_tag = 'NN' if token.tag_ is None else token.tag_ seq.append((ner_fea.encode(token.text), pos_tag, 'DUMMY-tag')) seq.append(d) seq.append(d) return ner_fea.extract_features(seq, content_type)
py
1a4ff95f81c5d04476b15094d5c1b33dc7c41760
from typing import List, Optional import attr from casexml.apps.case.xform import extract_case_blocks from corehq.form_processor.interfaces.dbaccessors import CaseAccessors from corehq.motech.value_source import CaseTriggerInfo @attr.s class RepeaterResponse: """ Ducktypes an HTTP response for Repeater.handle_response(), RepeatRecord.handle_success() and RepeatRecord.handle_failure() """ status_code = attr.ib() reason = attr.ib() text = attr.ib(default="") retry = attr.ib(default=True) def get_relevant_case_updates_from_form_json( domain: str, form_json: dict, case_types: list, extra_fields: list, form_question_values: Optional[dict] = None, ) -> List[CaseTriggerInfo]: result = [] case_blocks = extract_case_blocks(form_json) case_ids = [case_block['@case_id'] for case_block in case_blocks] cases = CaseAccessors(domain).get_cases(case_ids, ordered=True) db_case_dict = {case.case_id: case for case in cases} for case_block in case_blocks: case = db_case_dict[case_block['@case_id']] if case_types and case.type not in case_types: continue case_create = case_block.get('create') or {} case_update = case_block.get('update') or {} result.append(CaseTriggerInfo( domain=domain, case_id=case_block['@case_id'], type=case.type, name=case.name, owner_id=case.owner_id, modified_by=case.modified_by, updates={**case_create, **case_update}, created='create' in case_block, closed='close' in case_block, extra_fields={f: case.get_case_property(f) for f in extra_fields}, form_question_values=form_question_values or {}, )) return result
py
1a4ff9731662ecd1d3690f6fc5acc1594bc7be22
from django.shortcuts import render, redirect from django.views.generic import TemplateView, ListView, CreateView from django.core.files.storage import FileSystemStorage from django.urls import reverse_lazy from django.contrib.auth.decorators import login_required @login_required def upload(request): context = {} if request.method == 'POST': uploaded_file = request.FILES['document'] fs = FileSystemStorage() name = fs.save(uploaded_file.name, uploaded_file) context['url'] = fs.url(name) return render(request, 'upload.html', context)
py
1a4ff9c6fdf99ecd992301d5ef45fb174c31c774
# -*- coding: utf-8 -*- """ Created on Thu May 5, 2016 @author: jonki python2.7 """ import numpy as np import random import sys class QLearning(object): def __init__(self): # Reward matrix self.R = np.array([ [-1, -1, -1, -1, 0, -1], [-1, -1, -1, 0, -1, 100], [-1, -1, -1, 0, -1, -1], [-1, 0, 0, -1, 0, -1], [ 0, -1, -1, 0, -1, 100], [-1, 0, -1, -1, 0, 100] ]) # Initial Q-value self.Q = np.zeros((6,6)) self.LEARNING_COUNT = 1000 self.GAMMA = 0.8 self.GOAL_STATE = 5 return def learn(self): # set a start state randomly state = self._getRandomState() for i in range(self.LEARNING_COUNT): # extract possible actions in state possible_actions = self._getPossibleActionsFromState(state) # choise an action from possible actions randomly action = random.choice(possible_actions) # Update Q-value # Q(s,a) = r(s,a) + Gamma * max[Q(next_s, possible_actions)] next_state = action # in this example, action value is same as next state next_possible_actions = self._getPossibleActionsFromState(next_state) max_Q_next_s_a = self._getMaxQvalueFromStateAndPossibleActions(next_state, next_possible_actions) self.Q[state, action] = self.R[state, action] + self.GAMMA * max_Q_next_s_a state = next_state # If an agent reached a goal state, restart an episode from a random start state if state == self.GOAL_STATE: state = self._getRandomState() def _getRandomState(self): return random.randint(0, self.R.shape[0] - 1) def _getPossibleActionsFromState(self, state): if state < 0 or state >= self.R.shape[0]: sys.exit("invaid state: %d" % state) return list(np.where(np.array(self.R[state] != -1)))[0] def _getMaxQvalueFromStateAndPossibleActions(self, state, possible_actions): return max([self.Q[state][i] for i in (possible_actions)]) def dumpQvalue(self): print self.Q.astype(int) # convert float to int for redability def runGreedy(self, start_state = 0): print "===== START =====" state = start_state while state != self.GOAL_STATE: print "current state: %d" % state possible_actions = self._getPossibleActionsFromState(state) # get best action which maximaizes Q-value(s, a) max_Q = 0 best_action_candidates = [] for a in possible_actions: if self.Q[state][a] > max_Q: best_action_candidates = [a,] max_Q = self.Q[state][a] elif self.Q[state][a] == max_Q: best_action_candidates.append(a) print("best_action_candidates:", best_action_candidates) # get a best action from candidates randomly best_action = random.choice(best_action_candidates) print "-> choose action: %d" % best_action state = best_action # in this example, action value is same as next state print "state is %d, GOAL!!" % state if __name__ == "__main__": QL = QLearning() QL.learn() QL.dumpQvalue() for s in range(QL.R.shape[0]-1): print("s ",s) print("env is ", QL.R.shape) QL.runGreedy(s)
py
1a4ffa2175c3d3be366ee9d1763cc059cd8d10d9
#!/usr/bin/env python import unittest import warnings import numpy as np from pymatgen.core.lattice import Lattice from pymatgen.core.operations import SymmOp from pymatgen.symmetry.groups import PointGroup, SpaceGroup, _get_symm_data __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Virtual Lab" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __date__ = "4/10/14" class PointGroupTest(unittest.TestCase): def test_order(self): order = {"mmm": 8, "432": 24, "-6m2": 12} for k, v in order.items(): pg = PointGroup(k) self.assertEqual(order[k], len(pg.symmetry_ops)) def test_get_orbit(self): pg = PointGroup("mmm") self.assertEqual(len(pg.get_orbit([0.1, 0.1, 0.1])), 8) self.assertEqual(len(pg.get_orbit([0, 0, 0.1])), 2) self.assertEqual(len(pg.get_orbit([1.2, 1.2, 1])), 8) def test_is_sub_super_group(self): with warnings.catch_warnings() as w: warnings.simplefilter("ignore") pgmmm = PointGroup("mmm") pgmm2 = PointGroup("mm2") pg222 = PointGroup("222") pg4 = PointGroup("4") self.assertTrue(pgmmm.is_supergroup(pgmm2)) self.assertTrue(pgmm2.is_subgroup(pgmmm)) self.assertTrue(pgmmm.is_supergroup(pg222)) self.assertFalse(pgmmm.is_supergroup(pg4)) pgm3m = PointGroup("m-3m") pg6mmm = PointGroup("6/mmm") pg3m = PointGroup("-3m") # TODO: Fix the test below. # self.assertTrue(pg3m.is_subgroup(pgm3m)) self.assertTrue(pg3m.is_subgroup(pg6mmm)) self.assertFalse(pgm3m.is_supergroup(pg6mmm)) class SpaceGroupTest(unittest.TestCase): def test_renamed_e_symbols(self): sg = SpaceGroup.from_int_number(64) assert sg.symbol == "Cmce" for sym, num in ( ("Aem2", 39), ("Aea2", 41), ("Cmce", 64), ("Cmme", 67), ("Ccce", 68), ): assert SpaceGroup(sym).int_number == num def test_abbrev_symbols(self): sg = SpaceGroup("P2/c") self.assertEqual(sg.int_number, 13) sg = SpaceGroup("R-3mH") self.assertEqual(sg.int_number, 166) def test_attr(self): sg = SpaceGroup("Fm-3m") self.assertEqual(sg.full_symbol, "F4/m-32/m") self.assertEqual(sg.point_group, "m-3m") def test_point_group_is_set(self): for i in range(1, 231): sg = SpaceGroup.from_int_number(i) self.assertTrue(hasattr(sg, "point_group")) for symbol in _get_symm_data("space_group_encoding"): sg = SpaceGroup(symbol) self.assertTrue(hasattr(sg, "point_group")) def test_full_symbols(self): sg = SpaceGroup("P2/m2/m2/m") self.assertEqual(sg.symbol, "Pmmm") def test_order_symm_ops(self): for name in SpaceGroup.SG_SYMBOLS: sg = SpaceGroup(name) self.assertEqual(len(sg.symmetry_ops), sg.order) def test_get_settings(self): self.assertEqual({"Fm-3m(a-1/4,b-1/4,c-1/4)", "Fm-3m"}, SpaceGroup.get_settings("Fm-3m")) self.assertEqual( { "Pmmn", "Pmnm:1", "Pnmm:2", "Pmnm:2", "Pnmm", "Pnmm:1", "Pmmn:1", "Pmnm", "Pmmn:2", }, SpaceGroup.get_settings("Pmmn"), ) self.assertEqual( {"Pnmb", "Pman", "Pncm", "Pmna", "Pcnm", "Pbmn"}, SpaceGroup.get_settings("Pmna"), ) def test_crystal_system(self): sg = SpaceGroup("R-3c") self.assertEqual(sg.crystal_system, "trigonal") sg = SpaceGroup("R-3cH") self.assertEqual(sg.crystal_system, "trigonal") def test_get_orbit(self): sg = SpaceGroup("Fm-3m") p = np.random.randint(0, 100 + 1, size=(3,)) / 100 self.assertLessEqual(len(sg.get_orbit(p)), sg.order) def test_is_compatible(self): cubic = Lattice.cubic(1) hexagonal = Lattice.hexagonal(1, 2) rhom = Lattice.rhombohedral(3, 80) tet = Lattice.tetragonal(1, 2) ortho = Lattice.orthorhombic(1, 2, 3) sg = SpaceGroup("Fm-3m") self.assertTrue(sg.is_compatible(cubic)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup("R-3m:H") self.assertFalse(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(hexagonal)) sg = SpaceGroup("R-3m:R") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(rhom)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup("Pnma") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(tet)) self.assertTrue(sg.is_compatible(ortho)) self.assertFalse(sg.is_compatible(rhom)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup("P12/c1") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(tet)) self.assertTrue(sg.is_compatible(ortho)) self.assertFalse(sg.is_compatible(rhom)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup("P-1") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(tet)) self.assertTrue(sg.is_compatible(ortho)) self.assertTrue(sg.is_compatible(rhom)) self.assertTrue(sg.is_compatible(hexagonal)) sg = SpaceGroup("Pmmn:2") self.assertTrue(sg.is_compatible(cubic)) self.assertTrue(sg.is_compatible(tet)) self.assertTrue(sg.is_compatible(ortho)) self.assertFalse(sg.is_compatible(rhom)) self.assertFalse(sg.is_compatible(hexagonal)) sg = SpaceGroup.from_int_number(165) self.assertFalse(sg.is_compatible(cubic)) self.assertFalse(sg.is_compatible(tet)) self.assertFalse(sg.is_compatible(ortho)) self.assertFalse(sg.is_compatible(rhom)) self.assertTrue(sg.is_compatible(hexagonal)) def test_symmops(self): sg = SpaceGroup("Pnma") op = SymmOp.from_rotation_and_translation([[1, 0, 0], [0, -1, 0], [0, 0, -1]], [0.5, 0.5, 0.5]) self.assertIn(op, sg.symmetry_ops) def test_other_settings(self): sg = SpaceGroup("Pbnm") self.assertEqual(sg.int_number, 62) self.assertEqual(sg.order, 8) self.assertRaises(ValueError, SpaceGroup, "hello") def test_subgroup_supergroup(self): with warnings.catch_warnings() as w: warnings.simplefilter("ignore") self.assertTrue(SpaceGroup("Pma2").is_subgroup(SpaceGroup("Pccm"))) self.assertFalse(SpaceGroup.from_int_number(229).is_subgroup(SpaceGroup.from_int_number(230))) def test_hexagonal(self): sgs = [146, 148, 155, 160, 161, 166, 167] for sg in sgs: s = SpaceGroup.from_int_number(sg, hexagonal=False) self.assertTrue(not s.symbol.endswith("H")) def test_string(self): sg = SpaceGroup("R-3c") self.assertEqual(sg.to_latex_string(), "R$\overline{3}$cH") sg = SpaceGroup("P6/mmm") self.assertEqual(sg.to_latex_string(), "P6/mmm") sg = SpaceGroup("P4_1") self.assertEqual(sg.to_unicode_string(), "P4₁") if __name__ == "__main__": unittest.main()
py
1a4ffb7979a2a3db9af7e2d2f6271139e24b466d
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import ast import pkg_resources import threading import argparse import logging import signal import errno import json import stat import os import shutil from contextlib import contextmanager from uuid import uuid4 from yaml import safe_load from ansible_runner import run from ansible_runner import output from ansible_runner.utils import dump_artifact, Bunch from ansible_runner.runner import Runner from ansible_runner.exceptions import AnsibleRunnerException VERSION = pkg_resources.require("ansible_runner")[0].version DEFAULT_ROLES_PATH = os.getenv('ANSIBLE_ROLES_PATH', None) DEFAULT_RUNNER_BINARY = os.getenv('RUNNER_BINARY', None) DEFAULT_RUNNER_PLAYBOOK = os.getenv('RUNNER_PLAYBOOK', None) DEFAULT_RUNNER_ROLE = os.getenv('RUNNER_ROLE', None) DEFAULT_RUNNER_MODULE = os.getenv('RUNNER_MODULE', None) logger = logging.getLogger('ansible-runner') @contextmanager def role_manager(args): if args.role: role = {'name': args.role} if args.role_vars: role_vars = {} for item in args.role_vars.split(): key, value = item.split('=') try: role_vars[key] = ast.literal_eval(value) except Exception: role_vars[key] = value role['vars'] = role_vars kwargs = Bunch(**args.__dict__) kwargs.update(private_data_dir=args.private_data_dir, json_mode=args.json, ignore_logging=False, rotate_artifacts=args.rotate_artifacts) if args.artifact_dir: kwargs.artifact_dir = args.artifact_dir project_path = os.path.join(args.private_data_dir, 'project') project_exists = os.path.exists(project_path) env_path = os.path.join(args.private_data_dir, 'env') env_exists = os.path.exists(env_path) envvars_path = os.path.join(args.private_data_dir, 'env/envvars') envvars_exists = os.path.exists(envvars_path) if args.cmdline: kwargs.cmdline = args.cmdline playbook = None tmpvars = None play = [{'hosts': args.hosts if args.hosts is not None else "all", 'gather_facts': not args.role_skip_facts, 'roles': [role]}] filename = str(uuid4().hex) playbook = dump_artifact(json.dumps(play), project_path, filename) kwargs.playbook = playbook output.debug('using playbook file %s' % playbook) if args.inventory: inventory_file = os.path.join(args.private_data_dir, 'inventory', args.inventory) if not os.path.exists(inventory_file): raise AnsibleRunnerException('location specified by --inventory does not exist') kwargs.inventory = inventory_file output.debug('using inventory file %s' % inventory_file) roles_path = args.roles_path or os.path.join(args.private_data_dir, 'roles') roles_path = os.path.abspath(roles_path) output.debug('setting ANSIBLE_ROLES_PATH to %s' % roles_path) envvars = {} if envvars_exists: with open(envvars_path, 'rb') as f: tmpvars = f.read() new_envvars = safe_load(tmpvars) if new_envvars: envvars = new_envvars envvars['ANSIBLE_ROLES_PATH'] = roles_path kwargs.envvars = envvars else: kwargs = args yield kwargs if args.role: if not project_exists and os.path.exists(project_path): logger.debug('removing dynamically generated project folder') shutil.rmtree(project_path) elif playbook and os.path.isfile(playbook): logger.debug('removing dynamically generated playbook') os.remove(playbook) # if a previous envvars existed in the private_data_dir, # restore the original file contents if tmpvars: with open(envvars_path, 'wb') as f: f.write(tmpvars) elif not envvars_exists and os.path.exists(envvars_path): logger.debug('removing dynamically generated envvars folder') os.remove(envvars_path) # since ansible-runner created the env folder, remove it if not env_exists and os.path.exists(env_path): logger.debug('removing dynamically generated env folder') shutil.rmtree(env_path) def main(sys_args=None): parser = argparse.ArgumentParser(description='manage ansible execution') parser.add_argument('--version', action='version', version=VERSION) parser.add_argument('command', choices=['run', 'start', 'stop', 'is-alive']) parser.add_argument('private_data_dir', help='Base directory containing Runner metadata (project, inventory, etc') group = parser.add_mutually_exclusive_group() group.add_argument("-m", "--module", default=DEFAULT_RUNNER_MODULE, help="Invoke an Ansible module directly without a playbook") group.add_argument("-p", "--playbook", default=DEFAULT_RUNNER_PLAYBOOK, help="The name of the playbook to execute") group.add_argument("-r", "--role", default=DEFAULT_RUNNER_ROLE, help="Invoke an Ansible role directly without a playbook") parser.add_argument("-b", "--binary", default=DEFAULT_RUNNER_BINARY, help="The full path to ansible[-playbook] binary") parser.add_argument("--hosts", help="Define the set of hosts to execute against") parser.add_argument("-i", "--ident", default=uuid4(), help="An identifier that will be used when generating the" "artifacts directory and can be used to uniquely identify a playbook run") parser.add_argument("--rotate-artifacts", default=0, type=int, help="Automatically clean up old artifact directories after a given number has been created, the default is 0 which disables rotation") parser.add_argument("--roles-path", default=DEFAULT_ROLES_PATH, help="Path to the Ansible roles directory") parser.add_argument("--role-vars", help="Variables to pass to the role at runtime") parser.add_argument("--role-skip-facts", action="store_true", default=False, help="Disable fact collection when executing a role directly") parser.add_argument("--artifact-dir", help="Optional Path for the artifact root directory, by default it is located inside the private data dir") parser.add_argument("--inventory", help="Override the default inventory location in private_data_dir") parser.add_argument("-j", "--json", action="store_true", help="Output the json event structure to stdout instead of Ansible output") parser.add_argument("-v", action="count", help="Increase the verbosity with multiple v's (up to 5) of the ansible-playbook output") parser.add_argument("-q", "--quiet", action="store_true", help="Disable all output") parser.add_argument("--cmdline", help="Command line options to pass to ansible-playbook at execution time") parser.add_argument("--debug", action="store_true", help="Enable Runner debug output logging") parser.add_argument("--logfile", help="Log output messages to a file") parser.add_argument("-a", "--args", dest='module_args', help="Module arguments") parser.add_argument("--process-isolation", dest='process_isolation', action="store_true", help="Limits what directories on the filesystem the playbook run has access to, defaults to /tmp") parser.add_argument("--process-isolation-executable", dest='process_isolation_executable', default="bwrap", help="Process isolation executable that will be used. Defaults to bwrap") parser.add_argument("--process-isolation-path", dest='process_isolation_path', default="/tmp", help="Path that an isolated playbook run will use for staging. Defaults to /tmp") parser.add_argument("--process-isolation-hide-paths", dest='process_isolation_hide_paths', help="List of paths on the system that should be hidden from the playbook run") parser.add_argument("--process-isolation-show-paths", dest='process_isolation_show_paths', help="List of paths on the system that should be exposed to the playbook run") parser.add_argument("--process-isolation-ro-paths", dest='process_isolation_ro_paths', help="List of paths on the system that should be exposed to the playbook run as read-only") args = parser.parse_args(sys_args) output.configure() # enable or disable debug mode output.set_debug('enable' if args.debug else 'disable') # set the output logfile if args.logfile: output.set_logfile(args.logfile) output.debug('starting debug logging') # get the absolute path for start since it is a daemon args.private_data_dir = os.path.abspath(args.private_data_dir) pidfile = os.path.join(args.private_data_dir, 'pid') try: os.makedirs(args.private_data_dir) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(args.private_data_dir): pass else: raise if args.command != 'run': stderr_path = os.path.join(args.private_data_dir, 'daemon.log') if not os.path.exists(stderr_path): os.close(os.open(stderr_path, os.O_CREAT, stat.S_IRUSR | stat.S_IWUSR)) stderr = open(stderr_path, 'w+') if args.command in ('start', 'run'): if args.command == 'start': import daemon from daemon.pidfile import TimeoutPIDLockFile context = daemon.DaemonContext( pidfile=TimeoutPIDLockFile(pidfile), stderr=stderr ) else: context = threading.Lock() with context: with role_manager(args) as args: if args.inventory: with open(args.inventory) as f: inventory_data = f.read() else: inventory_data = None run_options = dict(private_data_dir=args.private_data_dir, ident=args.ident, binary=args.binary, playbook=args.playbook, module=args.module, module_args=args.module_args, host_pattern=args.hosts, verbosity=args.v, quiet=args.quiet, rotate_artifacts=args.rotate_artifacts, ignore_logging=False, json_mode=args.json, inventory=inventory_data, roles_path=[args.roles_path] if args.roles_path else None, process_isolation=args.process_isolation, process_isolation_executable=args.process_isolation_executable, process_isolation_path=args.process_isolation_path, process_isolation_hide_paths=args.process_isolation_hide_paths, process_isolation_show_paths=args.process_isolation_show_paths, process_isolation_ro_paths=args.process_isolation_ro_paths) if args.cmdline: run_options['cmdline'] = args.cmdline res = run(**run_options) return(res.rc) try: with open(pidfile, 'r') as f: pid = int(f.readline()) except IOError: return(1) if args.command == 'stop': Runner.handle_termination(pid) return (0) elif args.command == 'is-alive': try: os.kill(pid, signal.SIG_DFL) return(0) except OSError: return(1)
py
1a4ffbc90beb0242dbd5063f1be2342fe16c891a
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2021 Snowflake Computing Inc. All right reserved. # import decimal import json import logging import os import pickle import time from datetime import date, datetime from typing import TYPE_CHECKING, List, NamedTuple import mock import pytest import pytz import snowflake.connector from snowflake.connector import ( DictCursor, InterfaceError, NotSupportedError, ProgrammingError, constants, errorcode, errors, ) from snowflake.connector.compat import BASE_EXCEPTION_CLASS, IS_WINDOWS from snowflake.connector.cursor import SnowflakeCursor try: from snowflake.connector.cursor import ResultMetadata except ImportError: class ResultMetadata(NamedTuple): name: str type_code: int display_size: int internal_size: int precision: int scale: int is_nullable: bool from snowflake.connector.errorcode import ( ER_FAILED_TO_REWRITE_MULTI_ROW_INSERT, ER_INVALID_VALUE, ER_NOT_POSITIVE_SIZE, ) from snowflake.connector.sqlstate import SQLSTATE_FEATURE_NOT_SUPPORTED from snowflake.connector.telemetry import TelemetryField from ..randomize import random_string try: from snowflake.connector.constants import ( PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT, ) from snowflake.connector.errorcode import ( ER_NO_ARROW_RESULT, ER_NO_PYARROW, ER_NO_PYARROW_SNOWSQL, ) from snowflake.connector.result_batch import ArrowResultBatch, JSONResultBatch except ImportError: PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT = None ER_NO_ARROW_RESULT = None ER_NO_PYARROW = None ER_NO_PYARROW_SNOWSQL = None ArrowResultBatch = JSONResultBatch = None if TYPE_CHECKING: # pragma: no cover from snowflake.connector.result_batch import ResultBatch def _drop_warehouse(conn, db_parameters): conn.cursor().execute( "drop warehouse if exists {}".format(db_parameters["name_wh"]) ) @pytest.fixture() def conn(request, conn_cnx, db_parameters): def fin(): with conn_cnx() as cnx: cnx.cursor().execute( "use {db}.{schema}".format( db=db_parameters["database"], schema=db_parameters["schema"] ) ) cnx.cursor().execute("drop table {name}".format(name=db_parameters["name"])) request.addfinalizer(fin) with conn_cnx() as cnx: cnx.cursor().execute( """ create table {name} ( aa int, dt date, tm time, ts timestamp, tsltz timestamp_ltz, tsntz timestamp_ntz, tstz timestamp_tz, pct float, ratio number(5,2), b binary) """.format( name=db_parameters["name"] ) ) return conn_cnx def _check_results(cursor, results): assert cursor.sfqid, "Snowflake query id is None" assert cursor.rowcount == 3, "the number of records" assert results[0] == 65432, "the first result was wrong" assert results[1] == 98765, "the second result was wrong" assert results[2] == 123456, "the third result was wrong" def test_insert_select(conn, db_parameters): """Inserts and selects integer data.""" with conn() as cnx: c = cnx.cursor() try: c.execute( "insert into {name}(aa) values(123456)," "(98765),(65432)".format(name=db_parameters["name"]) ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 3, "wrong number of records were inserted" assert c.rowcount == 3, "wrong number of records were inserted" finally: c.close() try: c = cnx.cursor() c.execute( "select aa from {name} order by aa".format(name=db_parameters["name"]) ) results = [] for rec in c: results.append(rec[0]) _check_results(c, results) finally: c.close() with cnx.cursor(snowflake.connector.DictCursor) as c: c.execute( "select aa from {name} order by aa".format(name=db_parameters["name"]) ) results = [] for rec in c: results.append(rec["AA"]) _check_results(c, results) def test_insert_and_select_by_separate_connection(conn, db_parameters): """Inserts a record and select it by a separate connection.""" with conn() as cnx: result = cnx.cursor().execute( "insert into {name}(aa) values({value})".format( name=db_parameters["name"], value="1234" ) ) cnt = 0 for rec in result: cnt += int(rec[0]) assert cnt == 1, "wrong number of records were inserted" assert result.rowcount == 1, "wrong number of records were inserted" cnx2 = snowflake.connector.connect( user=db_parameters["user"], password=db_parameters["password"], host=db_parameters["host"], port=db_parameters["port"], account=db_parameters["account"], database=db_parameters["database"], schema=db_parameters["schema"], protocol=db_parameters["protocol"], timezone="UTC", ) try: c = cnx2.cursor() c.execute("select aa from {name}".format(name=db_parameters["name"])) results = [] for rec in c: results.append(rec[0]) c.close() assert results[0] == 1234, "the first result was wrong" assert result.rowcount == 1, "wrong number of records were selected" finally: cnx2.close() def _total_milliseconds_from_timedelta(td): """Returns the total number of milliseconds contained in the duration object.""" return (td.microseconds + (td.seconds + td.days * 24 * 3600) * 10 ** 6) // 10 ** 3 def _total_seconds_from_timedelta(td): """Returns the total number of seconds contained in the duration object.""" return _total_milliseconds_from_timedelta(td) // 10 ** 3 def test_insert_timestamp_select(conn, db_parameters): """Inserts and gets timestamp, timestamp with tz, date, and time. Notes: Currently the session parameter TIMEZONE is ignored. """ PST_TZ = "America/Los_Angeles" JST_TZ = "Asia/Tokyo" current_timestamp = datetime.utcnow() current_timestamp = current_timestamp.replace(tzinfo=pytz.timezone(PST_TZ)) current_date = current_timestamp.date() current_time = current_timestamp.time() other_timestamp = current_timestamp.replace(tzinfo=pytz.timezone(JST_TZ)) with conn() as cnx: cnx.cursor().execute("alter session set TIMEZONE=%s", (PST_TZ,)) c = cnx.cursor() try: fmt = ( "insert into {name}(aa, tsltz, tstz, tsntz, dt, tm) " "values(%(value)s,%(tsltz)s, %(tstz)s, %(tsntz)s, " "%(dt)s, %(tm)s)" ) c.execute( fmt.format(name=db_parameters["name"]), { "value": 1234, "tsltz": current_timestamp, "tstz": other_timestamp, "tsntz": current_timestamp, "dt": current_date, "tm": current_time, }, ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 1, "wrong number of records were inserted" assert c.rowcount == 1, "wrong number of records were selected" finally: c.close() cnx2 = snowflake.connector.connect( user=db_parameters["user"], password=db_parameters["password"], host=db_parameters["host"], port=db_parameters["port"], account=db_parameters["account"], database=db_parameters["database"], schema=db_parameters["schema"], protocol=db_parameters["protocol"], timezone="UTC", ) try: c = cnx2.cursor() c.execute( "select aa, tsltz, tstz, tsntz, dt, tm from {name}".format( name=db_parameters["name"] ) ) result_numeric_value = [] result_timestamp_value = [] result_other_timestamp_value = [] result_ntz_timestamp_value = [] result_date_value = [] result_time_value = [] for (aa, ts, tstz, tsntz, dt, tm) in c: result_numeric_value.append(aa) result_timestamp_value.append(ts) result_other_timestamp_value.append(tstz) result_ntz_timestamp_value.append(tsntz) result_date_value.append(dt) result_time_value.append(tm) c.close() assert result_numeric_value[0] == 1234, "the integer result was wrong" td_diff = _total_milliseconds_from_timedelta( current_timestamp - result_timestamp_value[0] ) assert td_diff == 0, "the timestamp result was wrong" td_diff = _total_milliseconds_from_timedelta( other_timestamp - result_other_timestamp_value[0] ) assert td_diff == 0, "the other timestamp result was wrong" td_diff = _total_milliseconds_from_timedelta( current_timestamp.replace(tzinfo=None) - result_ntz_timestamp_value[0] ) assert td_diff == 0, "the other timestamp result was wrong" assert current_date == result_date_value[0], "the date result was wrong" assert current_time == result_time_value[0], "the time result was wrong" desc = c.description assert len(desc) == 6, "invalid number of column meta data" assert desc[0][0].upper() == "AA", "invalid column name" assert desc[1][0].upper() == "TSLTZ", "invalid column name" assert desc[2][0].upper() == "TSTZ", "invalid column name" assert desc[3][0].upper() == "TSNTZ", "invalid column name" assert desc[4][0].upper() == "DT", "invalid column name" assert desc[5][0].upper() == "TM", "invalid column name" assert ( constants.FIELD_ID_TO_NAME[desc[0][1]] == "FIXED" ), "invalid column name: {}".format(constants.FIELD_ID_TO_NAME[desc[0][1]]) assert ( constants.FIELD_ID_TO_NAME[desc[1][1]] == "TIMESTAMP_LTZ" ), "invalid column name" assert ( constants.FIELD_ID_TO_NAME[desc[2][1]] == "TIMESTAMP_TZ" ), "invalid column name" assert ( constants.FIELD_ID_TO_NAME[desc[3][1]] == "TIMESTAMP_NTZ" ), "invalid column name" assert constants.FIELD_ID_TO_NAME[desc[4][1]] == "DATE", "invalid column name" assert constants.FIELD_ID_TO_NAME[desc[5][1]] == "TIME", "invalid column name" finally: cnx2.close() def test_insert_timestamp_ltz(conn, db_parameters): """Inserts and retrieve timestamp ltz.""" tzstr = "America/New_York" # sync with the session parameter with conn() as cnx: cnx.cursor().execute("alter session set timezone='{tzstr}'".format(tzstr=tzstr)) current_time = datetime.now() current_time = current_time.replace(tzinfo=pytz.timezone(tzstr)) c = cnx.cursor() try: fmt = "insert into {name}(aa, tsltz) values(%(value)s,%(ts)s)" c.execute( fmt.format(name=db_parameters["name"]), { "value": 8765, "ts": current_time, }, ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 1, "wrong number of records were inserted" finally: c.close() try: c = cnx.cursor() c.execute("select aa,tsltz from {name}".format(name=db_parameters["name"])) result_numeric_value = [] result_timestamp_value = [] for (aa, ts) in c: result_numeric_value.append(aa) result_timestamp_value.append(ts) td_diff = _total_milliseconds_from_timedelta( current_time - result_timestamp_value[0] ) assert td_diff == 0, "the first result was wrong" finally: c.close() def test_struct_time(conn, db_parameters): """Binds struct_time object for updating timestamp.""" tzstr = "America/New_York" os.environ["TZ"] = tzstr if not IS_WINDOWS: time.tzset() test_time = time.strptime("30 Sep 01 11:20:30", "%d %b %y %H:%M:%S") with conn() as cnx: c = cnx.cursor() try: fmt = "insert into {name}(aa, tsltz) values(%(value)s,%(ts)s)" c.execute( fmt.format(name=db_parameters["name"]), { "value": 87654, "ts": test_time, }, ) cnt = 0 for rec in c: cnt += int(rec[0]) finally: c.close() os.environ["TZ"] = "UTC" if not IS_WINDOWS: time.tzset() assert cnt == 1, "wrong number of records were inserted" try: result = cnx.cursor().execute( "select aa, tsltz from {name}".format(name=db_parameters["name"]) ) for (_, _tsltz) in result: pass _tsltz -= _tsltz.tzinfo.utcoffset(_tsltz) assert test_time.tm_year == _tsltz.year, "Year didn't match" assert test_time.tm_mon == _tsltz.month, "Month didn't match" assert test_time.tm_mday == _tsltz.day, "Day didn't match" assert test_time.tm_hour == _tsltz.hour, "Hour didn't match" assert test_time.tm_min == _tsltz.minute, "Minute didn't match" assert test_time.tm_sec == _tsltz.second, "Second didn't match" finally: os.environ["TZ"] = "UTC" if not IS_WINDOWS: time.tzset() def test_insert_binary_select(conn, db_parameters): """Inserts and get a binary value.""" value = b"\x00\xFF\xA1\xB2\xC3" with conn() as cnx: c = cnx.cursor() try: fmt = "insert into {name}(b) values(%(b)s)" c.execute(fmt.format(name=db_parameters["name"]), {"b": value}) count = sum(int(rec[0]) for rec in c) assert count == 1, "wrong number of records were inserted" assert c.rowcount == 1, "wrong number of records were selected" finally: c.close() cnx2 = snowflake.connector.connect( user=db_parameters["user"], password=db_parameters["password"], host=db_parameters["host"], port=db_parameters["port"], account=db_parameters["account"], database=db_parameters["database"], schema=db_parameters["schema"], protocol=db_parameters["protocol"], ) try: c = cnx2.cursor() c.execute("select b from {name}".format(name=db_parameters["name"])) results = [b for (b,) in c] assert value == results[0], "the binary result was wrong" desc = c.description assert len(desc) == 1, "invalid number of column meta data" assert desc[0][0].upper() == "B", "invalid column name" assert constants.FIELD_ID_TO_NAME[desc[0][1]] == "BINARY", "invalid column name" finally: cnx2.close() def test_insert_binary_select_with_bytearray(conn, db_parameters): """Inserts and get a binary value using the bytearray type.""" value = bytearray(b"\x00\xFF\xA1\xB2\xC3") with conn() as cnx: c = cnx.cursor() try: fmt = "insert into {name}(b) values(%(b)s)" c.execute(fmt.format(name=db_parameters["name"]), {"b": value}) count = sum(int(rec[0]) for rec in c) assert count == 1, "wrong number of records were inserted" assert c.rowcount == 1, "wrong number of records were selected" finally: c.close() cnx2 = snowflake.connector.connect( user=db_parameters["user"], password=db_parameters["password"], host=db_parameters["host"], port=db_parameters["port"], account=db_parameters["account"], database=db_parameters["database"], schema=db_parameters["schema"], protocol=db_parameters["protocol"], ) try: c = cnx2.cursor() c.execute("select b from {name}".format(name=db_parameters["name"])) results = [b for (b,) in c] assert bytes(value) == results[0], "the binary result was wrong" desc = c.description assert len(desc) == 1, "invalid number of column meta data" assert desc[0][0].upper() == "B", "invalid column name" assert constants.FIELD_ID_TO_NAME[desc[0][1]] == "BINARY", "invalid column name" finally: cnx2.close() def test_variant(conn, db_parameters): """Variant including JSON object.""" name_variant = db_parameters["name"] + "_variant" with conn() as cnx: cnx.cursor().execute( """ create table {name} ( created_at timestamp, data variant) """.format( name=name_variant ) ) try: with conn() as cnx: current_time = datetime.now() c = cnx.cursor() try: fmt = ( "insert into {name}(created_at, data) " "select column1, parse_json(column2) " "from values(%(created_at)s, %(data)s)" ) c.execute( fmt.format(name=name_variant), { "created_at": current_time, "data": ( '{"SESSION-PARAMETERS":{' '"TIMEZONE":"UTC", "SPECIAL_FLAG":true}}' ), }, ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 1, "wrong number of records were inserted" assert c.rowcount == 1, "wrong number of records were inserted" finally: c.close() result = cnx.cursor().execute( "select created_at, data from {name}".format(name=name_variant) ) _, data = result.fetchone() data = json.loads(data) assert data["SESSION-PARAMETERS"]["SPECIAL_FLAG"], ( "JSON data should be parsed properly. " "Invalid JSON data" ) finally: with conn() as cnx: cnx.cursor().execute("drop table {name}".format(name=name_variant)) def test_callproc(conn_cnx): """Callproc test. Notes: It's a nop as of now. """ with conn_cnx() as cnx: with pytest.raises(errors.NotSupportedError): cnx.cursor().callproc("whatever the stored procedure") def test_invalid_bind_data_type(conn_cnx): """Invalid bind data type.""" with conn_cnx() as cnx: with pytest.raises(errors.ProgrammingError): cnx.cursor().execute("select 1 from dual where 1=%s", ([1, 2, 3],)) def test_timeout_query(conn_cnx): with conn_cnx() as cnx: cnx.cursor().execute("select 1") c = cnx.cursor() try: c.execute( "select seq8() as c1 " "from table(generator(timeLimit => 60))", timeout=5, ) raise Exception("Must be canceled") except BASE_EXCEPTION_CLASS as err: assert isinstance( err, errors.ProgrammingError ), "Programming Error Exception" assert err.errno == 604, "Invalid error code" finally: c.close() def test_executemany(conn, db_parameters): """Executes many statements. Client binding is supported by either dict, or list data types. Notes: The binding data type is dict and tuple, respectively. """ with conn() as cnx: c = cnx.cursor() fmt = "insert into {name}(aa) values(%(value)s)".format( name=db_parameters["name"] ) c.executemany( fmt, [ {"value": "1234"}, {"value": "234"}, {"value": "34"}, {"value": "4"}, ], ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 4, "number of records" assert c.rowcount == 4, "wrong number of records were inserted" c.close() c = cnx.cursor() fmt = "insert into {name}(aa) values(%s)".format(name=db_parameters["name"]) c.executemany( fmt, [ (12345,), (1234,), (234,), (34,), (4,), ], ) rec = c.fetchone() assert rec[0] == 5, "number of records" assert c.rowcount == 5, "wrong number of records were inserted" c.close() @pytest.mark.skipolddriver def test_executemany_qmark_types(conn, db_parameters): table_name = random_string(5, "date_test_") with conn(paramstyle="qmark") as cnx: with cnx.cursor() as cur: cur.execute(f"create table {table_name} (birth_date date)") insert_qy = f"INSERT INTO {table_name} (birth_date) values (?)" date_1, date_2 = date(1969, 2, 7), date(1969, 1, 1) try: # insert two dates, one in tuple format which specifies # the snowflake type similar to how we support it in this # example: # https://docs.snowflake.com/en/user-guide/python-connector-example.html#using-qmark-or-numeric-binding-with-datetime-objects cur.executemany( insert_qy, [[date_1], [("DATE", date_2)]], ) cur.execute(f"select * from {table_name}") inserted_dates = [row[0] for row in cur.fetchall()] assert date_1 in inserted_dates assert date_2 in inserted_dates finally: cur.execute(f"drop table if exists {table_name}") def test_closed_cursor(conn, db_parameters): """Attempts to use the closed cursor. It should raise errors. Notes: The binding data type is scalar. """ with conn() as cnx: c = cnx.cursor() fmt = "insert into {name}(aa) values(%s)".format(name=db_parameters["name"]) c.executemany( fmt, [ 12345, 1234, 234, 34, 4, ], ) rec = c.fetchone() assert rec[0] == 5, "number of records" assert c.rowcount == 5, "number of records" c.close() fmt = "select aa from {name}".format(name=db_parameters["name"]) try: c.execute(fmt) raise Exception("should fail as the cursor was closed.") except snowflake.connector.Error as err: assert err.errno == errorcode.ER_CURSOR_IS_CLOSED def test_fetchmany(conn, db_parameters): with conn() as cnx: c = cnx.cursor() fmt = "insert into {name}(aa) values(%(value)s)".format( name=db_parameters["name"] ) c.executemany( fmt, [ {"value": "3456789"}, {"value": "234567"}, {"value": "1234"}, {"value": "234"}, {"value": "34"}, {"value": "4"}, ], ) cnt = 0 for rec in c: cnt += int(rec[0]) assert cnt == 6, "number of records" assert c.rowcount == 6, "number of records" c.close() c = cnx.cursor() fmt = "select aa from {name} order by aa desc".format( name=db_parameters["name"] ) c.execute(fmt) rows = c.fetchmany(2) assert len(rows) == 2, "The number of records" assert rows[1][0] == 234567, "The second record" rows = c.fetchmany(1) assert len(rows) == 1, "The number of records" assert rows[0][0] == 1234, "The first record" rows = c.fetchmany(5) assert len(rows) == 3, "The number of records" assert rows[-1][0] == 4, "The last record" rows = c.fetchmany(15) assert len(rows) == 0, "The number of records" c.close() def test_process_params(conn, db_parameters): """Binds variables for insert and other queries.""" with conn() as cnx: c = cnx.cursor() fmt = "insert into {name}(aa) values(%(value)s)".format( name=db_parameters["name"] ) c.executemany( fmt, [ {"value": "3456789"}, {"value": "234567"}, {"value": "1234"}, {"value": "234"}, {"value": "34"}, {"value": "4"}, ], ) cnt = 0 for rec in c: cnt += int(rec[0]) c.close() assert cnt == 6, "number of records" fmt = "select count(aa) from {name} where aa > %(value)s".format( name=db_parameters["name"] ) c = cnx.cursor() c.execute(fmt, {"value": 1233}) for (_cnt,) in c: pass assert _cnt == 3, "the number of records" c.close() fmt = "select count(aa) from {name} where aa > %s".format( name=db_parameters["name"] ) c = cnx.cursor() c.execute(fmt, (1234,)) for (_cnt,) in c: pass assert _cnt == 2, "the number of records" c.close() def test_real_decimal(conn, db_parameters): with conn() as cnx: c = cnx.cursor() fmt = ("insert into {name}(aa, pct, ratio) " "values(%s,%s,%s)").format( name=db_parameters["name"] ) c.execute(fmt, (9876, 12.3, decimal.Decimal("23.4"))) for (_cnt,) in c: pass assert _cnt == 1, "the number of records" c.close() c = cnx.cursor() fmt = "select aa, pct, ratio from {name}".format(name=db_parameters["name"]) c.execute(fmt) for (_aa, _pct, _ratio) in c: pass assert _aa == 9876, "the integer value" assert _pct == 12.3, "the float value" assert _ratio == decimal.Decimal("23.4"), "the decimal value" c.close() with cnx.cursor(snowflake.connector.DictCursor) as c: fmt = "select aa, pct, ratio from {name}".format(name=db_parameters["name"]) c.execute(fmt) rec = c.fetchone() assert rec["AA"] == 9876, "the integer value" assert rec["PCT"] == 12.3, "the float value" assert rec["RATIO"] == decimal.Decimal("23.4"), "the decimal value" def test_none_errorhandler(conn_testaccount): c = conn_testaccount.cursor() with pytest.raises(errors.ProgrammingError): c.errorhandler = None def test_nope_errorhandler(conn_testaccount): def user_errorhandler(connection, cursor, errorclass, errorvalue): pass c = conn_testaccount.cursor() c.errorhandler = user_errorhandler c.execute("select * foooooo never_exists_table") c.execute("select * barrrrr never_exists_table") c.execute("select * daaaaaa never_exists_table") assert c.messages[0][0] == errors.ProgrammingError, "One error was recorded" assert len(c.messages) == 1, "should be one error" @pytest.mark.internal def test_binding_negative(negative_conn_cnx, db_parameters): with negative_conn_cnx() as cnx: with pytest.raises(TypeError): cnx.cursor().execute( "INSERT INTO {name}(aa) VALUES(%s)".format(name=db_parameters["name"]), (1, 2, 3), ) with pytest.raises(errors.ProgrammingError): cnx.cursor().execute( "INSERT INTO {name}(aa) VALUES(%s)".format(name=db_parameters["name"]), (), ) with pytest.raises(errors.ProgrammingError): cnx.cursor().execute( "INSERT INTO {name}(aa) VALUES(%s)".format(name=db_parameters["name"]), (["a"],), ) def test_execute_after_close(conn_testaccount): """SNOW-13588: Raises an error if executing after the connection is closed.""" cursor = conn_testaccount.cursor() conn_testaccount.close() with pytest.raises(errors.Error): cursor.execute("show tables") def test_multi_table_insert(conn, db_parameters): try: with conn() as cnx: cur = cnx.cursor() cur.execute( """ INSERT INTO {name}(aa) VALUES(1234),(9876),(2345) """.format( name=db_parameters["name"] ) ) assert cur.rowcount == 3, "the number of records" cur.execute( """ CREATE OR REPLACE TABLE {name}_foo (aa_foo int) """.format( name=db_parameters["name"] ) ) cur.execute( """ CREATE OR REPLACE TABLE {name}_bar (aa_bar int) """.format( name=db_parameters["name"] ) ) cur.execute( """ INSERT ALL INTO {name}_foo(aa_foo) VALUES(aa) INTO {name}_bar(aa_bar) VALUES(aa) SELECT aa FROM {name} """.format( name=db_parameters["name"] ) ) assert cur.rowcount == 6 finally: with conn() as cnx: cnx.cursor().execute( """ DROP TABLE IF EXISTS {name}_foo """.format( name=db_parameters["name"] ) ) cnx.cursor().execute( """ DROP TABLE IF EXISTS {name}_bar """.format( name=db_parameters["name"] ) ) @pytest.mark.skipif( True, reason=""" Negative test case. """, ) def test_fetch_before_execute(conn_testaccount): """SNOW-13574: Fetch before execute.""" cursor = conn_testaccount.cursor() with pytest.raises(errors.DataError): cursor.fetchone() def test_close_twice(conn_testaccount): conn_testaccount.close() conn_testaccount.close() @pytest.mark.parametrize("result_format", ("arrow", "json")) def test_fetch_out_of_range_timestamp_value(conn, result_format): with conn() as cnx: cur = cnx.cursor() cur.execute( f"alter session set python_connector_query_result_format='{result_format}'" ) cur.execute("select '12345-01-02'::timestamp_ntz") with pytest.raises(errors.InterfaceError): cur.fetchone() @pytest.mark.parametrize("sql", (None, ""), ids=["None", "empty"]) def test_empty_execution(conn, sql): """Checks whether executing an empty string, or nothing behaves as expected.""" with conn() as cnx: with cnx.cursor() as cur: if sql is not None: cur.execute(sql) assert cur._result is None with pytest.raises( TypeError, match="'NoneType' object is not( an)? itera(tor|ble)" ): cur.fetchone() with pytest.raises( TypeError, match="'NoneType' object is not( an)? itera(tor|ble)" ): cur.fetchall() @pytest.mark.parametrize( "reuse_results", (False, pytest.param(True, marks=pytest.mark.skipolddriver)) ) def test_reset_fetch(conn, reuse_results): """Tests behavior after resetting the cursor.""" with conn(reuse_results=reuse_results) as cnx: with cnx.cursor() as cur: cur.execute("select 1") cur.reset() if reuse_results: assert cur.fetchone() == (1,) else: assert cur.fetchone() is None assert len(cur.fetchall()) == 0 def test_rownumber(conn): """Checks whether rownumber is returned as expected.""" with conn() as cnx: with cnx.cursor() as cur: assert cur.execute("select * from values (1), (2)") assert cur.rownumber is None assert cur.fetchone() == (1,) assert cur.rownumber == 0 assert cur.fetchone() == (2,) assert cur.rownumber == 1 def test_values_set(conn): """Checks whether a bunch of properties start as Nones, but get set to something else when a query was executed.""" properties = [ "timestamp_output_format", "timestamp_ltz_output_format", "timestamp_tz_output_format", "timestamp_ntz_output_format", "date_output_format", "timezone", "time_output_format", "binary_output_format", ] with conn() as cnx: with cnx.cursor() as cur: for property in properties: assert getattr(cur, property) is None assert cur.execute("select 1").fetchone() == (1,) # The default values might change in future, so let's just check that they aren't None anymore for property in properties: assert getattr(cur, property) is not None def test_execute_helper_params_error(conn_testaccount): """Tests whether calling _execute_helper with a non-dict statement params is handled correctly.""" with conn_testaccount.cursor() as cur: with pytest.raises( ProgrammingError, match=r"The data type of statement params is invalid. It must be dict.$", ): cur._execute_helper("select %()s", statement_params="1") def test_desc_rewrite(conn, caplog): """Tests whether describe queries are rewritten as expected and this action is logged.""" with conn() as cnx: with cnx.cursor() as cur: table_name = random_string(5, "test_desc_rewrite_") try: cur.execute("create or replace table {} (a int)".format(table_name)) caplog.set_level(logging.DEBUG, "snowflake.connector") cur.execute("desc {}".format(table_name)) assert ( "snowflake.connector.cursor", 20, "query was rewritten: org=desc {table_name}, new=describe table {table_name}".format( table_name=table_name ), ) in caplog.record_tuples finally: cur.execute("drop table {}".format(table_name)) @pytest.mark.skipolddriver @pytest.mark.parametrize("result_format", [False, None, "json"]) def test_execute_helper_cannot_use_arrow(conn_cnx, caplog, result_format): """Tests whether cannot use arrow is handled correctly inside of _execute_helper.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch( "snowflake.connector.cursor.CAN_USE_ARROW_RESULT_FORMAT", False ): if result_format is False: result_format = None else: result_format = { PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT: result_format } caplog.set_level(logging.DEBUG, "snowflake.connector") cur.execute("select 1", _statement_params=result_format) assert ( "snowflake.connector.cursor", logging.DEBUG, "Cannot use arrow result format, fallback to json format", ) in caplog.record_tuples assert cur.fetchone() == (1,) @pytest.mark.skipolddriver def test_execute_helper_cannot_use_arrow_exception(conn_cnx): """Like test_execute_helper_cannot_use_arrow but when we are trying to force arrow an Exception should be raised.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch( "snowflake.connector.cursor.CAN_USE_ARROW_RESULT_FORMAT", False ): with pytest.raises( ProgrammingError, match="The result set in Apache Arrow format is not supported for the platform.", ): cur.execute( "select 1", _statement_params={ PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT: "arrow" }, ) @pytest.mark.skipolddriver def test_check_can_use_arrow_resultset(conn_cnx, caplog): """Tests check_can_use_arrow_resultset has no effect when we can use arrow.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch( "snowflake.connector.cursor.CAN_USE_ARROW_RESULT_FORMAT", True ): caplog.set_level(logging.DEBUG, "snowflake.connector") cur.check_can_use_arrow_resultset() assert "Arrow" not in caplog.text @pytest.mark.skipolddriver @pytest.mark.parametrize("snowsql", [True, False]) def test_check_cannot_use_arrow_resultset(conn_cnx, caplog, snowsql): """Tests check_can_use_arrow_resultset expected outcomes.""" config = {} if snowsql: config["application"] = "SnowSQL" with conn_cnx(**config) as cnx: with cnx.cursor() as cur: with mock.patch( "snowflake.connector.cursor.CAN_USE_ARROW_RESULT_FORMAT", False ): with pytest.raises( ProgrammingError, match="Currently SnowSQL doesn't support the result set in Apache Arrow format." if snowsql else "The result set in Apache Arrow format is not supported for the platform.", ) as pe: cur.check_can_use_arrow_resultset() assert pe.errno == ( ER_NO_PYARROW_SNOWSQL if snowsql else ER_NO_ARROW_RESULT ) @pytest.mark.skipolddriver def test_check_can_use_pandas(conn_cnx): """Tests check_can_use_arrow_resultset has no effect when we can import pandas.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch("snowflake.connector.cursor.installed_pandas", True): cur.check_can_use_pandas() @pytest.mark.skipolddriver def test_check_cannot_use_pandas(conn_cnx): """Tests check_can_use_arrow_resultset has expected outcomes.""" with conn_cnx() as cnx: with cnx.cursor() as cur: with mock.patch("snowflake.connector.cursor.installed_pandas", False): with pytest.raises( ProgrammingError, match=r"Optional dependency: 'pyarrow' is not installed, please see the " "following link for install instructions: https:.*", ) as pe: cur.check_can_use_pandas() assert pe.errno == ER_NO_PYARROW @pytest.mark.skipolddriver def test_not_supported_pandas(conn_cnx): """Check that fetch_pandas functions return expected error when arrow results are not available.""" result_format = {PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT: "json"} with conn_cnx() as cnx: with cnx.cursor() as cur: cur.execute("select 1", _statement_params=result_format) with mock.patch("snowflake.connector.cursor.installed_pandas", True): with pytest.raises(NotSupportedError): cur.fetch_pandas_all() with pytest.raises(NotSupportedError): list(cur.fetch_pandas_batches()) def test_query_cancellation(conn_cnx): """Tests whether query_cancellation works.""" with conn_cnx() as cnx: with cnx.cursor() as cur: cur.execute( "select max(seq8()) from table(generator(timeLimit=>30));", _no_results=True, ) sf_qid = cur.sfqid cur.abort_query(sf_qid) def test_executemany_error(conn_cnx): """Tests calling executemany without many things.""" with conn_cnx() as con: with con.cursor() as cur: with pytest.raises( InterfaceError, match="No parameters are specified for the command: select 1", ) as ie: cur.executemany("select 1", []) assert ie.errno == ER_INVALID_VALUE def test_executemany_insert_rewrite(conn_cnx): """Tests calling executemany with a non rewritable pyformat insert query.""" with conn_cnx() as con: with con.cursor() as cur: with pytest.raises( InterfaceError, match="Failed to rewrite multi-row insert" ) as ie: cur.executemany("insert into numbers (select 1)", [1, 2]) assert ie.errno == ER_FAILED_TO_REWRITE_MULTI_ROW_INSERT def test_executemany_bulk_insert_size_mismatch(conn_cnx): """Tests bulk insert error with variable length of arguments.""" with conn_cnx(paramstyle="qmark") as con: with con.cursor() as cur: with pytest.raises( InterfaceError, match="Bulk data size don't match. expected: 1, got: 2" ) as ie: cur.executemany("insert into numbers values (?,?)", [[1], [1, 2]]) assert ie.errno == ER_FAILED_TO_REWRITE_MULTI_ROW_INSERT def test_fetchmany_size_error(conn_cnx): """Tests retrieving a negative number of results.""" with conn_cnx() as con: with con.cursor() as cur: cur.execute("select 1") with pytest.raises( ProgrammingError, match="The number of rows is not zero or positive number: -1", ) as ie: cur.fetchmany(-1) assert ie.errno == ER_NOT_POSITIVE_SIZE def test_nextset(conn_cnx, caplog): """Tests no op function nextset.""" caplog.set_level(logging.DEBUG, "snowflake.connector") with conn_cnx() as con: with con.cursor() as cur: caplog.set_level(logging.DEBUG, "snowflake.connector") assert cur.nextset() is None assert ("snowflake.connector.cursor", logging.DEBUG, "nop") in caplog.record_tuples def test_scroll(conn_cnx): """Tests if scroll returns a NotSupported exception.""" with conn_cnx() as con: with con.cursor() as cur: with pytest.raises( NotSupportedError, match="scroll is not supported." ) as nse: cur.scroll(2) assert nse.errno == SQLSTATE_FEATURE_NOT_SUPPORTED def test__log_telemetry_job_data(conn_cnx, caplog): """Tests whether we handle missing connection object correctly while logging a telemetry event.""" with conn_cnx() as con: with con.cursor() as cur: with mock.patch.object(cur, "_connection", None): caplog.set_level(logging.DEBUG, "snowflake.connector") cur._log_telemetry_job_data("test", True) assert ( "snowflake.connector.cursor", logging.WARNING, "Cursor failed to log to telemetry. Connection object may be None.", ) in caplog.record_tuples @pytest.mark.skipolddriver(reason="new feature in v2.5.0") @pytest.mark.parametrize( "result_format,expected_chunk_type", ( ("json", JSONResultBatch), ("arrow", ArrowResultBatch), ), ) def test_resultbatch( conn_cnx, result_format, expected_chunk_type, capture_sf_telemetry, ): """This test checks the following things: 1. After executing a query can we pickle the result batches 2. When we get the batches, do we emit a telemetry log 3. Whether we can iterate through ResultBatches multiple times 4. Whether the results make sense 5. See whether getter functions are working """ rowcount = 100000 with conn_cnx( session_parameters={ "python_connector_query_result_format": result_format, } ) as con: with capture_sf_telemetry.patch_connection(con) as telemetry_data: with con.cursor() as cur: cur.execute( f"select seq4() from table(generator(rowcount => {rowcount}));" ) assert cur._result_set.total_row_index() == rowcount pre_pickle_partitions = cur.get_result_batches() assert len(pre_pickle_partitions) > 1 assert pre_pickle_partitions is not None assert all( isinstance(p, expected_chunk_type) for p in pre_pickle_partitions ) pickle_str = pickle.dumps(pre_pickle_partitions) assert any( t.message["type"] == TelemetryField.GET_PARTITIONS_USED for t in telemetry_data.records ) post_pickle_partitions: List["ResultBatch"] = pickle.loads(pickle_str) total_rows = 0 # Make sure the batches can be iterated over individually for i, partition in enumerate(post_pickle_partitions): # Tests whether the getter functions are working if i == 0: assert partition.compressed_size is None assert partition.uncompressed_size is None else: assert partition.compressed_size is not None assert partition.uncompressed_size is not None for row in partition: col1 = row[0] assert col1 == total_rows total_rows += 1 assert total_rows == rowcount total_rows = 0 # Make sure the batches can be iterated over again for partition in post_pickle_partitions: for row in partition: col1 = row[0] assert col1 == total_rows total_rows += 1 assert total_rows == rowcount @pytest.mark.skipolddriver(reason="new feature in v2.5.0") @pytest.mark.parametrize( "result_format,patch_path", ( ("json", "snowflake.connector.result_batch.JSONResultBatch.create_iter"), ("arrow", "snowflake.connector.result_batch.ArrowResultBatch.create_iter"), ), ) def test_resultbatch_lazy_fetching_and_schemas(conn_cnx, result_format, patch_path): """Tests whether pre-fetching results chunks fetches the right amount of them.""" rowcount = 1000000 # We need at least 5 chunks for this test with conn_cnx( session_parameters={ "python_connector_query_result_format": result_format, } ) as con: with con.cursor() as cur: # Dummy return value necessary to not iterate through every batch with # first fetchone call downloads = [iter([(i,)]) for i in range(10)] with mock.patch( patch_path, side_effect=downloads, ) as patched_download: cur.execute( f"select seq4() as c1, randstr(1,random()) as c2 " f"from table(generator(rowcount => {rowcount}));" ) result_batches = cur.get_result_batches() batch_schemas = [batch.schema for batch in result_batches] for schema in batch_schemas: # all batches should have the same schema assert schema == [ ResultMetadata("C1", 0, None, None, 10, 0, False), ResultMetadata("C2", 2, None, 16777216, None, None, False), ] assert patched_download.call_count == 0 assert len(result_batches) > 5 assert result_batches[0]._local # Sanity check first chunk being local cur.fetchone() # Trigger pre-fetching # While the first chunk is local we still call _download on it, which # short circuits and just parses (for JSON batches) and then returns # an iterator through that data, so we expect the call count to be 5. # (0 local and 1, 2, 3, 4 pre-fetched) = 5 total start_time = time.time() while time.time() < start_time + 1: if patched_download.call_count == 5: break else: assert patched_download.call_count == 5 @pytest.mark.skipolddriver(reason="new feature in v2.5.0") @pytest.mark.parametrize("result_format", ["json", "arrow"]) def test_resultbatch_schema_exists_when_zero_rows(conn_cnx, result_format): with conn_cnx( session_parameters={"python_connector_query_result_format": result_format} ) as con: with con.cursor() as cur: cur.execute( "select seq4() as c1, randstr(1,random()) as c2 from table(generator(rowcount => 1)) where 1=0" ) result_batches = cur.get_result_batches() # verify there is 1 batch and 0 rows in that batch assert len(result_batches) == 1 assert result_batches[0].rowcount == 0 # verify that the schema is correct schema = result_batches[0].schema assert schema == [ ResultMetadata("C1", 0, None, None, 10, 0, False), ResultMetadata("C2", 2, None, 16777216, None, None, False), ] def test_optional_telemetry(conn_cnx, capture_sf_telemetry): """Make sure that we do not fail when _first_chunk_time is not present in cursor.""" with conn_cnx() as con: with con.cursor() as cur: with capture_sf_telemetry.patch_connection(con, False) as telemetry: cur.execute("select 1;") cur._first_chunk_time = None assert cur.fetchall() == [ (1,), ] assert not any( r.message.get("type", "") == TelemetryField.TIME_CONSUME_LAST_RESULT for r in telemetry.records ) @pytest.mark.parametrize("result_format", ("json", "arrow")) @pytest.mark.parametrize("cursor_type", (SnowflakeCursor, DictCursor)) @pytest.mark.parametrize("fetch_method", ("__next__", "fetchone")) def test_out_of_range_year(conn_cnx, result_format, cursor_type, fetch_method): """Tests whether the year 10000 is out of range exception is raised as expected.""" with conn_cnx( session_parameters={ PARAMETER_PYTHON_CONNECTOR_QUERY_RESULT_FORMAT: result_format } ) as con: with con.cursor(cursor_type) as cur: cur.execute( "select * from VALUES (1, TO_TIMESTAMP('9999-01-01 00:00:00')), (2, TO_TIMESTAMP('10000-01-01 00:00:00'))" ) iterate_obj = cur if fetch_method == "fetchone" else iter(cur) fetch_next_fn = getattr(iterate_obj, fetch_method) # first fetch doesn't raise error fetch_next_fn() with pytest.raises( InterfaceError, match="date value out of range" if IS_WINDOWS else "year 10000 is out of range", ): fetch_next_fn() @pytest.mark.skipolddriver def test_describe(conn_cnx): with conn_cnx() as con: with con.cursor() as cur: table_name = random_string(5, "test_describe_") # test select description = cur.describe( "select * from VALUES(1, 3.1415926, 'snow', TO_TIMESTAMP('2021-01-01 00:00:00'))" ) assert description is not None column_types = [column[1] for column in description] assert constants.FIELD_ID_TO_NAME[column_types[0]] == "FIXED" assert constants.FIELD_ID_TO_NAME[column_types[1]] == "FIXED" assert constants.FIELD_ID_TO_NAME[column_types[2]] == "TEXT" assert "TIMESTAMP" in constants.FIELD_ID_TO_NAME[column_types[3]] assert len(cur.fetchall()) == 0 # test insert cur.execute(f"create table {table_name} (aa int)") try: description = cur.describe( "insert into {name}(aa) values({value})".format( name=table_name, value="1234" ) ) assert description[0][0] == "number of rows inserted" assert cur.rowcount is None finally: cur.execute(f"drop table if exists {table_name}") @pytest.mark.skipolddriver def test_fetch_batches_with_sessions(conn_cnx): rowcount = 250_000 with conn_cnx() as con: with con.cursor() as cur: cur.execute( f"select seq4() as foo from table(generator(rowcount=>{rowcount}))" ) num_batches = len(cur.get_result_batches()) with mock.patch( "snowflake.connector.network.SnowflakeRestful._use_requests_session", side_effect=con._rest._use_requests_session, ) as get_session_mock: result = cur.fetchall() # all but one batch is downloaded using a session assert get_session_mock.call_count == num_batches - 1 assert len(result) == rowcount
py
1a4ffd71b2a0bf6a8d1c43c187ec96a2f5827ef1
import unittest from unittest import mock import shutil import tempfile from typing import Sequence import lib from lib import storage, bitcoin, keystore, constants from lib.transaction import Transaction from lib.simple_config import SimpleConfig from lib.wallet import TX_HEIGHT_UNCONFIRMED, TX_HEIGHT_UNCONF_PARENT, sweep from lib.util import bfh, bh2u from plugins.trustedcoin import trustedcoin from . import TestCaseForTestnet from . import SequentialTestCase from .test_bitcoin import needs_test_with_all_ecc_implementations class WalletIntegrityHelper: gap_limit = 1 # make tests run faster @classmethod def check_seeded_keystore_sanity(cls, test_obj, ks): test_obj.assertTrue(ks.is_deterministic()) test_obj.assertFalse(ks.is_watching_only()) test_obj.assertFalse(ks.can_import()) test_obj.assertTrue(ks.has_seed()) @classmethod def check_xpub_keystore_sanity(cls, test_obj, ks): test_obj.assertTrue(ks.is_deterministic()) test_obj.assertTrue(ks.is_watching_only()) test_obj.assertFalse(ks.can_import()) test_obj.assertFalse(ks.has_seed()) @classmethod def create_standard_wallet(cls, ks, gap_limit=None): store = storage.WalletStorage('if_this_exists_mocking_failed_648151893') store.put('keystore', ks.dump()) store.put('gap_limit', gap_limit or cls.gap_limit) w = lib.wallet.Standard_Wallet(store) w.synchronize() return w @classmethod def create_imported_wallet(cls, privkeys=False): store = storage.WalletStorage('if_this_exists_mocking_failed_648151893') if privkeys: k = keystore.Imported_KeyStore({}) store.put('keystore', k.dump()) w = lib.wallet.Imported_Wallet(store) return w @classmethod def create_multisig_wallet(cls, keystores: Sequence, multisig_type: str, gap_limit=None): """Creates a multisig wallet.""" store = storage.WalletStorage('if_this_exists_mocking_failed_648151893') for i, ks in enumerate(keystores): cosigner_index = i + 1 store.put('x%d/' % cosigner_index, ks.dump()) store.put('wallet_type', multisig_type) store.put('gap_limit', gap_limit or cls.gap_limit) w = lib.wallet.Multisig_Wallet(store) w.synchronize() return w # TODO passphrase/seed_extension class TestWalletKeystoreAddressIntegrityForMainnet(SequentialTestCase): @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_electrum_seed_standard(self, mock_write): seed_words = 'cycle rocket west magnet parrot shuffle foot correct salt library feed song' self.assertEqual(bitcoin.seed_type(seed_words), 'standard') ks = keystore.from_seed(seed_words, '', False) WalletIntegrityHelper.check_seeded_keystore_sanity(self, ks) self.assertTrue(isinstance(ks, keystore.BIP32_KeyStore)) self.assertEqual(ks.xprv, 'xprv9s21ZrQH143K32jECVM729vWgGq4mUDJCk1ozqAStTphzQtCTuoFmFafNoG1g55iCnBTXUzz3zWnDb5CVLGiFvmaZjuazHDL8a81cPQ8KL6') self.assertEqual(ks.xpub, 'xpub661MyMwAqRbcFWohJWt7PHsFEJfZAvw9ZxwQoDa4SoMgsDDM1T7WK3u9E4edkC4ugRnZ8E4xDZRpk8Rnts3Nbt97dPwT52CwBdDWroaZf8U') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(w.txin_type, 'p2pkh') self.assertEqual(w.get_receiving_addresses()[0], '1NNkttn1YvVGdqBW4PR6zvc3Zx3H5owKRf') self.assertEqual(w.get_change_addresses()[0], '1KSezYMhAJMWqFbVFB2JshYg69UpmEXR4D') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_electrum_seed_segwit(self, mock_write): seed_words = 'bitter grass shiver impose acquire brush forget axis eager alone wine silver' self.assertEqual(bitcoin.seed_type(seed_words), 'segwit') ks = keystore.from_seed(seed_words, '', False) WalletIntegrityHelper.check_seeded_keystore_sanity(self, ks) self.assertTrue(isinstance(ks, keystore.BIP32_KeyStore)) self.assertEqual(ks.xprv, 'zprvAZswDvNeJeha8qZ8g7efN3FXYVJLaEUsE9TW6qXDEbVe74AZ75c2sZFZXPNFzxnhChDQ89oC8C5AjWwHmH1HeRKE1c4kKBQAmjUDdKDUZw2') self.assertEqual(ks.xpub, 'zpub6nsHdRuY92FsMKdbn9BfjBCG6X8pyhCibNP6uDvpnw2cyrVhecvHRMa3Ne8kdJZxjxgwnpbHLkcR4bfnhHy6auHPJyDTQ3kianeuVLdkCYQ') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(w.txin_type, 'p2wpkh') self.assertEqual(w.get_receiving_addresses()[0], 'bc1q3g5tmkmlvxryhh843v4dz026avatc0zzr6h3af') self.assertEqual(w.get_change_addresses()[0], 'bc1qdy94n2q5qcp0kg7v9yzwe6wvfkhnvyzje7nx2p') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_electrum_seed_old(self, mock_write): seed_words = 'powerful random nobody notice nothing important anyway look away hidden message over' self.assertEqual(bitcoin.seed_type(seed_words), 'old') ks = keystore.from_seed(seed_words, '', False) WalletIntegrityHelper.check_seeded_keystore_sanity(self, ks) self.assertTrue(isinstance(ks, keystore.Old_KeyStore)) self.assertEqual(ks.mpk, 'e9d4b7866dd1e91c862aebf62a49548c7dbf7bcc6e4b7b8c9da820c7737968df9c09d5a3e271dc814a29981f81b3faaf2737b551ef5dcc6189cf0f8252c442b3') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(w.txin_type, 'p2pkh') self.assertEqual(w.get_receiving_addresses()[0], '1FJEEB8ihPMbzs2SkLmr37dHyRFzakqUmo') self.assertEqual(w.get_change_addresses()[0], '1KRW8pH6HFHZh889VDq6fEKvmrsmApwNfe') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_electrum_seed_2fa(self, mock_write): seed_words = 'kiss live scene rude gate step hip quarter bunker oxygen motor glove' self.assertEqual(bitcoin.seed_type(seed_words), '2fa') xprv1, xpub1, xprv2, xpub2 = trustedcoin.TrustedCoinPlugin.xkeys_from_seed(seed_words, '') ks1 = keystore.from_xprv(xprv1) self.assertTrue(isinstance(ks1, keystore.BIP32_KeyStore)) self.assertEqual(ks1.xprv, 'xprv9uraXy9F3HP7i8QDqwNTBiD8Jf4bPD4Epif8cS8qbUbgeidUesyZpKmzfcSeHutsGfFnjgih7kzwTB5UQVRNB5LoXaNc8pFusKYx3KVVvYR') self.assertEqual(ks1.xpub, 'xpub68qvwUg8sewQvcUgwxuTYr9rrgu5nfn6BwajQpYT9p8fXWxdCRHpN86UWruWJAD1ede8Sv8ERrTa22Gyc4SBfm7zFpcyoVWVBKCVwnw6s1J') self.assertEqual(ks1.xpub, xpub1) ks2 = keystore.from_xprv(xprv2) self.assertTrue(isinstance(ks2, keystore.BIP32_KeyStore)) self.assertEqual(ks2.xprv, 'xprv9uraXy9F3HP7kKSiRAvLV7Nrjj7YzspDys7dvGLLu4tLZT49CEBxPWp88dHhVxvZ69SHrPQMUCWjj4Ka2z9kNvs1HAeEf3extGGeSWqEVqf') self.assertEqual(ks2.xpub, 'xpub68qvwUg8sewQxoXBXCTLrFKbHkx3QLY5M63EiejxTQRKSFPHjmWCwK8byvZMM2wZNYA3SmxXoma3M1zxhGESHZwtB7SwrxRgKXAG8dCD2eS') self.assertEqual(ks2.xpub, xpub2) long_user_id, short_id = trustedcoin.get_user_id( {'x1/': {'xpub': xpub1}, 'x2/': {'xpub': xpub2}}) xpub3 = trustedcoin.make_xpub(trustedcoin.get_signing_xpub(), long_user_id) ks3 = keystore.from_xpub(xpub3) WalletIntegrityHelper.check_xpub_keystore_sanity(self, ks3) self.assertTrue(isinstance(ks3, keystore.BIP32_KeyStore)) w = WalletIntegrityHelper.create_multisig_wallet([ks1, ks2, ks3], '2of3') self.assertEqual(w.txin_type, 'p2sh') self.assertEqual(w.get_receiving_addresses()[0], '35L8XmCDoEBKeaWRjvmZvoZvhp8BXMMMPV') self.assertEqual(w.get_change_addresses()[0], '3PeZEcumRqHSPNN43hd4yskGEBdzXgY8Cy') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bip39_seed_bip44_standard(self, mock_write): seed_words = 'treat dwarf wealth gasp brass outside high rent blood crowd make initial' self.assertEqual(keystore.bip39_is_checksum_valid(seed_words), (True, True)) ks = keystore.from_bip39_seed(seed_words, '', "m/44'/0'/0'") self.assertTrue(isinstance(ks, keystore.BIP32_KeyStore)) self.assertEqual(ks.xprv, 'xprv9zGLcNEb3cHUKizLVBz6RYeE9bEZAVPjH2pD1DEzCnPcsemWc3d3xTao8sfhfUmDLMq6e3RcEMEvJG1Et8dvfL8DV4h7mwm9J6AJsW9WXQD') self.assertEqual(ks.xpub, 'xpub6DFh1smUsyqmYD4obDX6ngaxhd53Zx7aeFjoobebm7vbkT6f9awJWFuGzBT9FQJEWFBL7UyhMXtYzRcwDuVbcxtv9Ce2W9eMm4KXLdvdbjv') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(w.txin_type, 'p2pkh') self.assertEqual(w.get_receiving_addresses()[0], '16j7Dqk3Z9DdTdBtHcCVLaNQy9MTgywUUo') self.assertEqual(w.get_change_addresses()[0], '1GG5bVeWgAp5XW7JLCphse14QaC4qiHyWn') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bip39_seed_bip49_p2sh_segwit(self, mock_write): seed_words = 'treat dwarf wealth gasp brass outside high rent blood crowd make initial' self.assertEqual(keystore.bip39_is_checksum_valid(seed_words), (True, True)) ks = keystore.from_bip39_seed(seed_words, '', "m/49'/0'/0'") self.assertTrue(isinstance(ks, keystore.BIP32_KeyStore)) self.assertEqual(ks.xprv, 'yprvAJEYHeNEPcyBoQYM7sGCxDiNCTX65u4ANgZuSGTrKN5YCC9MP84SBayrgaMyZV7zvkHrr3HVPTK853s2SPk4EttPazBZBmz6QfDkXeE8Zr7') self.assertEqual(ks.xpub, 'ypub6XDth9u8DzXV1tcpDtoDKMf6kVMaVMn1juVWEesTshcX4zUVvfNgjPJLXrD9N7AdTLnbHFL64KmBn3SNaTe69iZYbYCqLCCNPZKbLz9niQ4') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(w.txin_type, 'p2wpkh-p2sh') self.assertEqual(w.get_receiving_addresses()[0], '35ohQTdNykjkF1Mn9nAVEFjupyAtsPAK1W') self.assertEqual(w.get_change_addresses()[0], '3KaBTcviBLEJajTEMstsA2GWjYoPzPK7Y7') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bip39_seed_bip84_native_segwit(self, mock_write): # test case from bip84 seed_words = 'abandon abandon abandon abandon abandon abandon abandon abandon abandon abandon abandon about' self.assertEqual(keystore.bip39_is_checksum_valid(seed_words), (True, True)) ks = keystore.from_bip39_seed(seed_words, '', "m/84'/0'/0'") self.assertTrue(isinstance(ks, keystore.BIP32_KeyStore)) self.assertEqual(ks.xprv, 'zprvAdG4iTXWBoARxkkzNpNh8r6Qag3irQB8PzEMkAFeTRXxHpbF9z4QgEvBRmfvqWvGp42t42nvgGpNgYSJA9iefm1yYNZKEm7z6qUWCroSQnE') self.assertEqual(ks.xpub, 'zpub6rFR7y4Q2AijBEqTUquhVz398htDFrtymD9xYYfG1m4wAcvPhXNfE3EfH1r1ADqtfSdVCToUG868RvUUkgDKf31mGDtKsAYz2oz2AGutZYs') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(w.txin_type, 'p2wpkh') self.assertEqual(w.get_receiving_addresses()[0], 'bc1qcr8te4kr609gcawutmrza0j4xv80jy8z306fyu') self.assertEqual(w.get_change_addresses()[0], 'bc1q8c6fshw2dlwun7ekn9qwf37cu2rn755upcp6el') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_electrum_multisig_seed_standard(self, mock_write): seed_words = 'blast uniform dragon fiscal ensure vast young utility dinosaur abandon rookie sure' self.assertEqual(bitcoin.seed_type(seed_words), 'standard') ks1 = keystore.from_seed(seed_words, '', True) WalletIntegrityHelper.check_seeded_keystore_sanity(self, ks1) self.assertTrue(isinstance(ks1, keystore.BIP32_KeyStore)) self.assertEqual(ks1.xprv, 'xprv9s21ZrQH143K3t9vo23J3hajRbzvkRLJ6Y1zFrUFAfU3t8oooMPfb7f87cn5KntgqZs5nipZkCiBFo5ZtaSD2eDo7j7CMuFV8Zu6GYLTpY6') self.assertEqual(ks1.xpub, 'xpub661MyMwAqRbcGNEPu3aJQqXTydqR9t49Tkwb4Esrj112kw8xLthv8uybxvaki4Ygt9xiwZUQGeFTG7T2TUzR3eA4Zp3aq5RXsABHFBUrq4c') # electrum seed: ghost into match ivory badge robot record tackle radar elbow traffic loud ks2 = keystore.from_xpub('xpub661MyMwAqRbcGfCPEkkyo5WmcrhTq8mi3xuBS7VEZ3LYvsgY1cCFDbenT33bdD12axvrmXhuX3xkAbKci3yZY9ZEk8vhLic7KNhLjqdh5ec') WalletIntegrityHelper.check_xpub_keystore_sanity(self, ks2) self.assertTrue(isinstance(ks2, keystore.BIP32_KeyStore)) w = WalletIntegrityHelper.create_multisig_wallet([ks1, ks2], '2of2') self.assertEqual(w.txin_type, 'p2sh') self.assertEqual(w.get_receiving_addresses()[0], '32ji3QkAgXNz6oFoRfakyD3ys1XXiERQYN') self.assertEqual(w.get_change_addresses()[0], '36XWwEHrrVCLnhjK5MrVVGmUHghr9oWTN1') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_electrum_multisig_seed_segwit(self, mock_write): seed_words = 'snow nest raise royal more walk demise rotate smooth spirit canyon gun' self.assertEqual(bitcoin.seed_type(seed_words), 'segwit') ks1 = keystore.from_seed(seed_words, '', True) WalletIntegrityHelper.check_seeded_keystore_sanity(self, ks1) self.assertTrue(isinstance(ks1, keystore.BIP32_KeyStore)) self.assertEqual(ks1.xprv, 'ZprvAjxLRqPiDfPDxXrm8JvcoCGRAW6xUtktucG6AMtdzaEbTEJN8qcECvujfhtDU3jLJ9g3Dr3Gz5m1ypfMs8iSUh62gWyHZ73bYLRWyeHf6y4') self.assertEqual(ks1.xpub, 'Zpub6xwgqLvc42wXB1wEELTdALD9iXwStMUkGqBgxkJFYumaL2dWgNvUkjEDWyDFZD3fZuDWDzd1KQJ4NwVHS7hs6H6QkpNYSShfNiUZsgMdtNg') # electrum seed: hedgehog sunset update estate number jungle amount piano friend donate upper wool ks2 = keystore.from_xpub('Zpub6y4oYeETXAbzLNg45wcFDGwEG3vpgsyMJybiAfi2pJtNF3i3fJVxK2BeZJaw7VeKZm192QHvXP3uHDNpNmNDbQft9FiMzkKUhNXQafUMYUY') WalletIntegrityHelper.check_xpub_keystore_sanity(self, ks2) self.assertTrue(isinstance(ks2, keystore.BIP32_KeyStore)) w = WalletIntegrityHelper.create_multisig_wallet([ks1, ks2], '2of2') self.assertEqual(w.txin_type, 'p2wsh') self.assertEqual(w.get_receiving_addresses()[0], 'bc1qvzezdcv6vs5h45ugkavp896e0nde5c5lg5h0fwe2xyfhnpkxq6gq7pnwlc') self.assertEqual(w.get_change_addresses()[0], 'bc1qxqf840dqswcmu7a8v82fj6ej0msx08flvuy6kngr7axstjcaq6us9hrehd') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bip39_multisig_seed_bip45_standard(self, mock_write): seed_words = 'treat dwarf wealth gasp brass outside high rent blood crowd make initial' self.assertEqual(keystore.bip39_is_checksum_valid(seed_words), (True, True)) ks1 = keystore.from_bip39_seed(seed_words, '', "m/45'/0") self.assertTrue(isinstance(ks1, keystore.BIP32_KeyStore)) self.assertEqual(ks1.xprv, 'xprv9vyEFyXf7pYVv4eDU3hhuCEAHPHNGuxX73nwtYdpbLcqwJCPwFKknAK8pHWuHHBirCzAPDZ7UJHrYdhLfn1NkGp9rk3rVz2aEqrT93qKRD9') self.assertEqual(ks1.xpub, 'xpub69xafV4YxC6o8Yiga5EiGLAtqR7rgNgNUGiYgw3S9g9pp6XYUne1KxdcfYtxwmA3eBrzMFuYcNQKfqsXCygCo4GxQFHfywxpUbKNfYvGJka') # bip39 seed: tray machine cook badge night page project uncover ritual toward person enact # der: m/45'/0 ks2 = keystore.from_xpub('xpub6B26nSWddbWv7J3qQn9FbwPPQktSBdPQfLfHhRK4375QoZq8fvM8rQey1koGSTxC5xVoMzNMaBETMUmCqmXzjc8HyAbN7LqrvE4ovGRwNGg') WalletIntegrityHelper.check_xpub_keystore_sanity(self, ks2) self.assertTrue(isinstance(ks2, keystore.BIP32_KeyStore)) w = WalletIntegrityHelper.create_multisig_wallet([ks1, ks2], '2of2') self.assertEqual(w.txin_type, 'p2sh') self.assertEqual(w.get_receiving_addresses()[0], '3JPTQ2nitVxXBJ1yhMeDwH6q417UifE3bN') self.assertEqual(w.get_change_addresses()[0], '3FGyDuxgUDn2pSZe5xAJH1yUwSdhzDMyEE') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bip39_multisig_seed_p2sh_segwit(self, mock_write): # bip39 seed: pulse mixture jazz invite dune enrich minor weapon mosquito flight fly vapor # der: m/49'/0'/0' # NOTE: there is currently no bip43 standard derivation path for p2wsh-p2sh ks1 = keystore.from_xprv('YprvAUXFReVvDjrPerocC3FxVH748sJUTvYjkAhtKop5VnnzVzMEHr1CHrYQKZwfJn1As3X4LYMav6upxd5nDiLb6SCjRZrBH76EFvyQAG4cn79') self.assertTrue(isinstance(ks1, keystore.BIP32_KeyStore)) self.assertEqual(ks1.xpub, 'Ypub6hWbqA2p47QgsLt5J4nxrR3ngu8xsPGb7PdV8CDh48KyNngNqPKSqertAqYhQ4umELu1UsZUCYfj9XPA6AdSMZWDZQobwF7EJ8uNrECaZg1') # bip39 seed: slab mixture skin evoke harsh tattoo rare crew sphere extend balcony frost # der: m/49'/0'/0' ks2 = keystore.from_xpub('Ypub6iNDhL4WWq5kFZcdFqHHwX4YTH4rYGp8xbndpRrY7WNZFFRfogSrL7wRTajmVHgR46AT1cqUG1mrcRd7h1WXwBsgX2QvT3zFbBCDiSDLkau') WalletIntegrityHelper.check_xpub_keystore_sanity(self, ks2) self.assertTrue(isinstance(ks2, keystore.BIP32_KeyStore)) w = WalletIntegrityHelper.create_multisig_wallet([ks1, ks2], '2of2') self.assertEqual(w.txin_type, 'p2wsh-p2sh') self.assertEqual(w.get_receiving_addresses()[0], '35LeC45QgCVeRor1tJD6LiDgPbybBXisns') self.assertEqual(w.get_change_addresses()[0], '39RhtDchc6igmx5tyoimhojFL1ZbQBrXa6') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bip32_extended_version_bytes(self, mock_write): seed_words = 'crouch dumb relax small truck age shine pink invite spatial object tenant' self.assertEqual(keystore.bip39_is_checksum_valid(seed_words), (True, True)) bip32_seed = keystore.bip39_to_seed(seed_words, '') self.assertEqual('0df68c16e522eea9c1d8e090cfb2139c3b3a2abed78cbcb3e20be2c29185d3b8df4e8ce4e52a1206a688aeb88bfee249585b41a7444673d1f16c0d45755fa8b9', bh2u(bip32_seed)) def create_keystore_from_bip32seed(xtype): ks = keystore.BIP32_KeyStore({}) ks.add_xprv_from_seed(bip32_seed, xtype=xtype, derivation='m/') return ks ks = create_keystore_from_bip32seed(xtype='standard') self.assertEqual('033a05ec7ae9a9833b0696eb285a762f17379fa208b3dc28df1c501cf84fe415d0', ks.derive_pubkey(0, 0)) self.assertEqual('02bf27f41683d84183e4e930e66d64fc8af5508b4b5bf3c473c505e4dbddaeed80', ks.derive_pubkey(1, 0)) ks = create_keystore_from_bip32seed(xtype='standard') # p2pkh w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(ks.xprv, 'xprv9s21ZrQH143K3nyWMZVjzGL4KKAE1zahmhTHuV5pdw4eK3o3igC5QywgQG7UTRe6TGBniPDpPFWzXMeMUFbBj8uYsfXGjyMmF54wdNt8QBm') self.assertEqual(ks.xpub, 'xpub661MyMwAqRbcGH3yTb2kMQGnsLziRTJZ8vNthsVSCGbdBr8CGDWKxnGAFYgyKTzBtwvPPmfVAWJuFmxRXjSbUTg87wDkWQ5GmzpfUcN9t8Z') self.assertEqual(w.get_receiving_addresses()[0], '19fWEVaXqgJFFn7JYNr6ouxyjZy3uK7CdK') self.assertEqual(w.get_change_addresses()[0], '1EEX7da31qndYyeKdbM665w1ze5gbkkAZZ') ks = create_keystore_from_bip32seed(xtype='p2wpkh-p2sh') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(ks.xprv, 'yprvABrGsX5C9janu6AdBvHNCMRZVHJfxcaCgoyWgsyi1wSXN9cGyLMe33bpRU54TLJ1ruJbTrpNqusYQeFvBx1CXNb9k1DhKtBFWo8b1sLbXhN') self.assertEqual(ks.xpub, 'ypub6QqdH2c5z7967aF6HwpNZVNJ3K9AN5J442u7VGPKaGyWEwwRWsftaqvJGkeZKNe7Jb3C9FG3dAfT94ZzFRrcGhMizGvB6Jtm3itJsEFhxMC') self.assertEqual(w.get_receiving_addresses()[0], '34SAT5gGF5UaBhhSZ8qEuuxYvZ2cm7Zi23') self.assertEqual(w.get_change_addresses()[0], '38unULZaetSGSKvDx7Krukh8zm8NQnxGiA') ks = create_keystore_from_bip32seed(xtype='p2wpkh') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(ks.xprv, 'zprvAWgYBBk7JR8GkPMk2H4zQSX4fFT7uEZhbvVjUGsbPwpQRFRWDzXCf7FxSg2eTEwwGYRQDLQwJaE6HvsUueRDKcGkcLv7unzjnXCEQVWhrF9') self.assertEqual(ks.xpub, 'zpub6jftahH18ngZxsSD8JbzmaToDHHcJhHYy9RLGfHCxHMPJ3kemXqTCuaSHxc9KHJ2iE9ztirc5q212MBYy8Gd4w3KrccbgDiFKSwxFpYKEH6') self.assertEqual(w.get_receiving_addresses()[0], 'bc1qtuynwzd0d6wptvyqmc6ehkm70zcamxpshyzu5e') self.assertEqual(w.get_change_addresses()[0], 'bc1qjy5zunxh6hjysele86qqywfa437z4xwmleq8wk') ks = create_keystore_from_bip32seed(xtype='standard') # p2sh w = WalletIntegrityHelper.create_multisig_wallet([ks], '1of1') self.assertEqual(ks.xprv, 'xprv9s21ZrQH143K3nyWMZVjzGL4KKAE1zahmhTHuV5pdw4eK3o3igC5QywgQG7UTRe6TGBniPDpPFWzXMeMUFbBj8uYsfXGjyMmF54wdNt8QBm') self.assertEqual(ks.xpub, 'xpub661MyMwAqRbcGH3yTb2kMQGnsLziRTJZ8vNthsVSCGbdBr8CGDWKxnGAFYgyKTzBtwvPPmfVAWJuFmxRXjSbUTg87wDkWQ5GmzpfUcN9t8Z') self.assertEqual(w.get_receiving_addresses()[0], '3F4nm8Vunb7mxVvqhUP238PYge2hpU5qYv') self.assertEqual(w.get_change_addresses()[0], '3N8jvKGmxzVHENn6B4zTdZt3N9bmRKjj96') ks = create_keystore_from_bip32seed(xtype='p2wsh-p2sh') w = WalletIntegrityHelper.create_multisig_wallet([ks], '1of1') self.assertEqual(ks.xprv, 'YprvANkMzkodih9AKfL18akM2RmND5LwAyFo15dBc9FFPiGvzLBBjjjv8ATkEB2Y1mWv6NNaLSpVj8G3XosgVBA9frhpaUL6jHeFQXQTbqVPcv2') self.assertEqual(ks.xpub, 'Ypub6bjiQGLXZ4hTY9QUEcHMPZi6m7BRaRyeNJYnQXerx3ous8WLHH4AfxnE5Tc2sos1Y47B1qGAWP3xGEBkYf1ZRBUPpk2aViMkwTABT6qoiBb') self.assertEqual(w.get_receiving_addresses()[0], '3L1BxLLASGKE3DR1ruraWm3hZshGCKqcJx') self.assertEqual(w.get_change_addresses()[0], '3NDGcbZVXTpaQWRhiuVPpXsNt4g2JiCX4E') ks = create_keystore_from_bip32seed(xtype='p2wsh') w = WalletIntegrityHelper.create_multisig_wallet([ks], '1of1') self.assertEqual(ks.xprv, 'ZprvAhadJRUYsNgeAxX7xwXyEWrsP3VP7bFHvC9QPY98miep3RzQzPuUkE7tFNz81gAqW1VP5vR4BncbR6VFCsaAU6PRSp2XKCTjgFU6zRpk6Xp') self.assertEqual(ks.xpub, 'Zpub6vZyhw1ShkEwPSbb4y4ybeobw5KsX3y9HR51BvYkL4BnvEKZXwDjJ2SN6fZcsiWvwhDymJriy3QW9WoKGMRaDR9zh5j15dBFDBDpqjK1ekQ') self.assertEqual(w.get_receiving_addresses()[0], 'bc1q84x0yrztvcjg88qef4d6978zccxulcmc9y88xcg4ghjdau999x7q7zv2qe') self.assertEqual(w.get_change_addresses()[0], 'bc1q0fj5mra96hhnum80kllklc52zqn6kppt3hyzr49yhr3ecr42z3tsrkg3gs') class TestWalletKeystoreAddressIntegrityForTestnet(TestCaseForTestnet): @mock.patch.object(storage.WalletStorage, '_write') def test_bip39_multisig_seed_p2sh_segwit_testnet(self, mock_write): # bip39 seed: finish seminar arrange erosion sunny coil insane together pretty lunch lunch rose # der: m/49'/1'/0' # NOTE: there is currently no bip43 standard derivation path for p2wsh-p2sh ks1 = keystore.from_xprv('Uprv9BEixD3As2LK5h6G2SNT3cTqbZpsWYPceKTSuVAm1yuSybxSvQz2MV1o8cHTtctQmj4HAenb3eh5YJv4YRZjv35i8fofVnNbs4Dd2B4i5je') self.assertTrue(isinstance(ks1, keystore.BIP32_KeyStore)) self.assertEqual(ks1.xpub, 'Upub5QE5Mia4hPtcJBAj8TuTQkQa9bfMv17U1YP3hsaNaKSRrQHbTxJGuHLGyv3MbKZixuPyjfXGUdbTjE4KwyFcX8YD7PX5ybTDbP11UT8UpZR') # bip39 seed: square page wood spy oil story rebel give milk screen slide shuffle # der: m/49'/1'/0' ks2 = keystore.from_xpub('Upub5QRzUGRJuWJe5MxGzwgQAeyJjzcdGTXkkq77w6EfBkCyf5iWppSaZ4caY2MgWcU9LP4a4uE5apUFN4wLoENoe9tpu26mrUxeGsH84dN3JFh') WalletIntegrityHelper.check_xpub_keystore_sanity(self, ks2) self.assertTrue(isinstance(ks2, keystore.BIP32_KeyStore)) w = WalletIntegrityHelper.create_multisig_wallet([ks1, ks2], '2of2') self.assertEqual(w.txin_type, 'p2wsh-p2sh') self.assertEqual(w.get_receiving_addresses()[0], '2MzsfTfTGomPRne6TkctMmoDj6LwmVkDrMt') self.assertEqual(w.get_change_addresses()[0], '2NFp9w8tbYYP9Ze2xQpeYBJQjx3gbXymHX7') @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bip32_extended_version_bytes(self, mock_write): seed_words = 'crouch dumb relax small truck age shine pink invite spatial object tenant' self.assertEqual(keystore.bip39_is_checksum_valid(seed_words), (True, True)) bip32_seed = keystore.bip39_to_seed(seed_words, '') self.assertEqual('0df68c16e522eea9c1d8e090cfb2139c3b3a2abed78cbcb3e20be2c29185d3b8df4e8ce4e52a1206a688aeb88bfee249585b41a7444673d1f16c0d45755fa8b9', bh2u(bip32_seed)) def create_keystore_from_bip32seed(xtype): ks = keystore.BIP32_KeyStore({}) ks.add_xprv_from_seed(bip32_seed, xtype=xtype, derivation='m/') return ks ks = create_keystore_from_bip32seed(xtype='standard') self.assertEqual('033a05ec7ae9a9833b0696eb285a762f17379fa208b3dc28df1c501cf84fe415d0', ks.derive_pubkey(0, 0)) self.assertEqual('02bf27f41683d84183e4e930e66d64fc8af5508b4b5bf3c473c505e4dbddaeed80', ks.derive_pubkey(1, 0)) ks = create_keystore_from_bip32seed(xtype='standard') # p2pkh w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(ks.xprv, 'tprv8ZgxMBicQKsPecD328MF9ux3dSaSFWci7FNQmuWH7uZ86eY8i3XpvjK8KSH8To2QphiZiUqaYc6nzDC6bTw8YCB9QJjaQL5pAApN4z7vh2B') self.assertEqual(ks.xpub, 'tpubD6NzVbkrYhZ4Y5Epun1qZKcACU6NQqocgYyC4RYaYBMWw8nuLSMR7DvzVamkqxwRgrTJ1MBMhc8wwxT2vbHqMu8RBXy4BvjWMxR5EdZroxE') self.assertEqual(w.get_receiving_addresses()[0], 'mpBTXYfWehjW2tavFwpUdqBJbZZkup13k2') self.assertEqual(w.get_change_addresses()[0], 'mtkUQgf1psDtL67wMAKTv19LrdgPWy6GDQ') ks = create_keystore_from_bip32seed(xtype='p2wpkh-p2sh') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(ks.xprv, 'uprv8tXDerPXZ1QsVuQ9rV8sN13YoQitC8cD2MtdZJQAVuw19kMMxhhPYnyGLeEiThgLELqNTxS91GTLsVofKAM9LRrkGeRzzEuJRtt1Tcostr7') self.assertEqual(ks.xpub, 'upub57Wa4MvRPNyAiPUcxWfsj8zHMSZNbbL4PapEMgon4FTz2YgWWF1e6bHkBvpDKk2Rg2Zy9LsonXFFbv7jNeCZ5kdKWv8UkfcoxpdjJrZuBX6') self.assertEqual(w.get_receiving_addresses()[0], '2MuzNWpcHrXyvPVKzEGT7Xrwp8uEnXXjWnK') self.assertEqual(w.get_change_addresses()[0], '2MzTzY5VcGLwce7YmdEwjXhgQD7LYEKLJTm') ks = create_keystore_from_bip32seed(xtype='p2wpkh') w = WalletIntegrityHelper.create_standard_wallet(ks) self.assertEqual(ks.xprv, 'vprv9DMUxX4ShgxMMCbGgqvVa693yNsL8kbhwUQrLhJ3svJtCrAbDMrxArdQMrCJTcLFdyxBDS2hTvotknRE2rmA8fYM8z8Ra9inhcwerEsG6Ev') self.assertEqual(ks.xpub, 'vpub5SLqN2bLY4WeZgfjnsTVwE5nXQhpYDKZJhLT95hfSFqs5eVjkuBCiewtD8moKegM5fgmtpUNFBboVCjJ6LcZszJvPFpuLaSJEYhNhUAnrCS') self.assertEqual(w.get_receiving_addresses()[0], 'tb1qtuynwzd0d6wptvyqmc6ehkm70zcamxpsaze002') self.assertEqual(w.get_change_addresses()[0], 'tb1qjy5zunxh6hjysele86qqywfa437z4xwm4lm549') ks = create_keystore_from_bip32seed(xtype='standard') # p2sh w = WalletIntegrityHelper.create_multisig_wallet([ks], '1of1') self.assertEqual(ks.xprv, 'tprv8ZgxMBicQKsPecD328MF9ux3dSaSFWci7FNQmuWH7uZ86eY8i3XpvjK8KSH8To2QphiZiUqaYc6nzDC6bTw8YCB9QJjaQL5pAApN4z7vh2B') self.assertEqual(ks.xpub, 'tpubD6NzVbkrYhZ4Y5Epun1qZKcACU6NQqocgYyC4RYaYBMWw8nuLSMR7DvzVamkqxwRgrTJ1MBMhc8wwxT2vbHqMu8RBXy4BvjWMxR5EdZroxE') self.assertEqual(w.get_receiving_addresses()[0], '2N6czpsRwQ3d8AHZPNbztf5NotzEsaZmVQ8') self.assertEqual(w.get_change_addresses()[0], '2NDgwz4CoaSzdSAQdrCcLFWsJaVowCNgiPA') ks = create_keystore_from_bip32seed(xtype='p2wsh-p2sh') w = WalletIntegrityHelper.create_multisig_wallet([ks], '1of1') self.assertEqual(ks.xprv, 'Uprv95RJn67y7xyEvUZXo9brC5PMXCm9QVHoLdYJUZfhsgmQmvvGj75fduqC9MCC28uETouMLYSFtUqqzfRRcPW6UuyR77YQPeNJKd9t3XutF8b') self.assertEqual(ks.xpub, 'Upub5JQfBberxLXY8xdzuB8rZDL65Ebdox1ehrTuGx5KS2JPejFRGePvBi9fzdmgtBFKuVdx1vsvfjdkj5jVfsMWEEjzMPEtA55orYubtrCZmRr') self.assertEqual(w.get_receiving_addresses()[0], '2NBZQ25GC3ipaF13ZY3UT8i2xnDuS17pJqx') self.assertEqual(w.get_change_addresses()[0], '2NDmUgLVX8vKvcJ4FQ37GSUre6QtBzKkb6k') ks = create_keystore_from_bip32seed(xtype='p2wsh') w = WalletIntegrityHelper.create_multisig_wallet([ks], '1of1') self.assertEqual(ks.xprv, 'Vprv16YtLrHXxePM6noKqtFtMtmUgBE9bEpF3fPLmpvuPksssLostujtdHBwqhEeVuzESz22UY8hyPx9ed684SQpCmUKSVhpxPFbvVNY7qnviNR') self.assertEqual(ks.xpub, 'Vpub5dEvVGKn7251zFq7jXvUmJRbFCk5ka19cxz84LyCp2gGhq4eXJZUomop1qjGt5uFK8kkmQUV8PzJcNM4PZmX2URbDiwJjyuJ8GyFHRrEmmG') self.assertEqual(w.get_receiving_addresses()[0], 'tb1q84x0yrztvcjg88qef4d6978zccxulcmc9y88xcg4ghjdau999x7qf2696k') self.assertEqual(w.get_change_addresses()[0], 'tb1q0fj5mra96hhnum80kllklc52zqn6kppt3hyzr49yhr3ecr42z3ts5777jl') class TestWalletSending(TestCaseForTestnet): @classmethod def setUpClass(cls): super().setUpClass() cls.electrum_path = tempfile.mkdtemp() cls.config = SimpleConfig({'electrum_path': cls.electrum_path}) @classmethod def tearDownClass(cls): super().tearDownClass() shutil.rmtree(cls.electrum_path) def create_standard_wallet_from_seed(self, seed_words): ks = keystore.from_seed(seed_words, '', False) return WalletIntegrityHelper.create_standard_wallet(ks, gap_limit=2) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_between_p2wpkh_and_compressed_p2pkh(self, mock_write): wallet1 = self.create_standard_wallet_from_seed('bitter grass shiver impose acquire brush forget axis eager alone wine silver') wallet2 = self.create_standard_wallet_from_seed('cycle rocket west magnet parrot shuffle foot correct salt library feed song') # bootstrap wallet1 funding_tx = Transaction('01000000014576dacce264c24d81887642b726f5d64aa7825b21b350c7b75a57f337da6845010000006b483045022100a3f8b6155c71a98ad9986edd6161b20d24fad99b6463c23b463856c0ee54826d02200f606017fd987696ebbe5200daedde922eee264325a184d5bbda965ba5160821012102e5c473c051dae31043c335266d0ef89c1daab2f34d885cc7706b267f3269c609ffffffff0240420f00000000001600148a28bddb7f61864bdcf58b2ad13d5aeb3abc3c42a2ddb90e000000001976a914c384950342cb6f8df55175b48586838b03130fad88ac00000000') funding_txid = funding_tx.txid() funding_output_value = 1000000 self.assertEqual('add2535aedcbb5ba79cc2260868bb9e57f328738ca192937f2c92e0e94c19203', funding_txid) wallet1.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # wallet1 -> wallet2 outputs = [(bitcoin.TYPE_ADDRESS, wallet2.get_receiving_address(), 250000)] tx = wallet1.mktx(outputs=outputs, password=None, config=self.config, fee=5000) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) self.assertEqual(wallet1.txin_type, tx.inputs()[0]['type']) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet1.is_mine(wallet1.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('010000000001010392c1940e2ec9f2372919ca3887327fe5b98b866022cc79bab5cbed5a53d2ad0000000000feffffff0290d00300000000001976a914ea7804a2c266063572cc009a63dc25dcc0e9d9b588ac285e0b0000000000160014690b59a8140602fb23cc2904ece9cc4daf361052024730440220608a5339ca894592da82119e1e4a1d09335d70a552c683687223b8ed724465e902201b3f0feccf391b1b6257e4b18970ae57d7ca060af2dae519b3690baad2b2a34e0121030faee9b4a25b7db82023ca989192712cdd4cb53d3d9338591c7909e581ae1c0c00000000', str(tx_copy)) self.assertEqual('3c06ae4d9be8226a472b3e7f7c127c7e3016f525d658d26106b80b4c7e3228e2', tx_copy.txid()) self.assertEqual('d8d930ae91dce73118c3fffabbdfcfb87f5d91673fb4c7dfd0fbe7cf03bf426b', tx_copy.wtxid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) wallet1.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # TX_HEIGHT_UNCONF_PARENT but nvm wallet2.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # wallet2 -> wallet1 outputs = [(bitcoin.TYPE_ADDRESS, wallet1.get_receiving_address(), 100000)] tx = wallet2.mktx(outputs=outputs, password=None, config=self.config, fee=5000) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) self.assertEqual(wallet2.txin_type, tx.inputs()[0]['type']) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet2.is_mine(wallet2.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('0100000001e228327e4c0bb80661d258d625f516307e7c127c7f3e2b476a22e89b4dae063c000000006b483045022100d3895b31e7c9766987c6f53794c7394f534f4acecefda5479d963236f9703d0b022026dd4e40700ceb788f136faf54bf85b966648dc7c2a608d8110604f2d22d59070121030b482838721a38d94847699fed8818b5c5f56500ef72f13489e365b65e5749cffeffffff02a0860100000000001600148a28bddb7f61864bdcf58b2ad13d5aeb3abc3c4268360200000000001976a914ca4c60999c46c2108326590b125aefd476dcb11888ac00000000', str(tx_copy)) self.assertEqual('5f25707571eb776bdf14142f9966bf2a681906e0a79501edbb99a972c2ceb972', tx_copy.txid()) self.assertEqual('5f25707571eb776bdf14142f9966bf2a681906e0a79501edbb99a972c2ceb972', tx_copy.wtxid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) wallet1.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) wallet2.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # wallet level checks self.assertEqual((0, funding_output_value - 250000 - 5000 + 100000, 0), wallet1.get_balance()) self.assertEqual((0, 250000 - 5000 - 100000, 0), wallet2.get_balance()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_between_p2sh_2of3_and_uncompressed_p2pkh(self, mock_write): wallet1a = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('blast uniform dragon fiscal ensure vast young utility dinosaur abandon rookie sure', '', True), keystore.from_xpub('tpubD6NzVbkrYhZ4YTPEgwk4zzr8wyo7pXGmbbVUnfYNtx6SgAMF5q3LN3Kch58P9hxGNsTmP7Dn49nnrmpE6upoRb1Xojg12FGLuLHkVpVtS44'), keystore.from_xpub('tpubD6NzVbkrYhZ4XJzYkhsCbDCcZRmDAKSD7bXi9mdCni7acVt45fxbTVZyU6jRGh29ULKTjoapkfFsSJvQHitcVKbQgzgkkYsAmaovcro7Mhf') ], '2of3', gap_limit=2 ) wallet1b = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('cycle rocket west magnet parrot shuffle foot correct salt library feed song', '', True), keystore.from_xpub('tpubD6NzVbkrYhZ4YTPEgwk4zzr8wyo7pXGmbbVUnfYNtx6SgAMF5q3LN3Kch58P9hxGNsTmP7Dn49nnrmpE6upoRb1Xojg12FGLuLHkVpVtS44'), keystore.from_xpub('tpubD6NzVbkrYhZ4YARFMEZPckrqJkw59GZD1PXtQnw14ukvWDofR7Z1HMeSCxfYEZVvg4VdZ8zGok5VxHwdrLqew5cMdQntWc5mT7mh1CSgrnX') ], '2of3', gap_limit=2 ) # ^ third seed: ghost into match ivory badge robot record tackle radar elbow traffic loud wallet2 = self.create_standard_wallet_from_seed('powerful random nobody notice nothing important anyway look away hidden message over') # bootstrap wallet1 funding_tx = Transaction('010000000001014121f99dc02f0364d2dab3d08905ff4c36fc76c55437fd90b769c35cc18618280100000000fdffffff02d4c22d00000000001600143fd1bc5d32245850c8cb5be5b09c73ccbb9a0f75001bb7000000000017a91480c2353f6a7bc3c71e99e062655b19adb3dd2e4887024830450221008781c78df0c9d4b5ea057333195d5d76bc29494d773f14fa80e27d2f288b2c360220762531614799b6f0fb8d539b18cb5232ab4253dd4385435157b28a44ff63810d0121033de77d21926e09efd04047ae2d39dbd3fb9db446e8b7ed53e0f70f9c9478f735dac11300') funding_txid = funding_tx.txid() funding_output_value = 12000000 self.assertEqual('b25cd55687c9e528c2cfd546054f35fb6741f7cf32d600f07dfecdf2e1d42071', funding_txid) wallet1a.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # wallet1 -> wallet2 outputs = [(bitcoin.TYPE_ADDRESS, wallet2.get_receiving_address(), 370000)] tx = wallet1a.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx = Transaction(tx.serialize()) # simulates moving partial txn between cosigners self.assertFalse(tx.is_complete()) wallet1b.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) self.assertEqual(wallet1a.txin_type, tx.inputs()[0]['type']) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet1a.is_mine(wallet1a.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('01000000017120d4e1f2cdfe7df000d632cff74167fb354f0546d5cfc228e5c98756d55cb201000000fdfe0000483045022100f9ce5616683e613ae14b98d56436454b003348a8172e2ed598018e3d206e57d7022030c65c6551e839f9e9409812be624dbb4e36bd4152c9ed9b0988c10fd8201d1401483045022100d5cb94d4d1dcf01bb9e9280e8178a7e9ada3ad14378ca543afcc9f5667b27cb2022018e76b74800a21934e73b226b34cbbe45c877fba64693da8a20d3cb330f2eafd014c69522102afb4af9a91264e1c6dce3ebe5312801723270ac0ba8134b7b49129328fcb0f2821030b482838721a38d94847699fed8818b5c5f56500ef72f13489e365b65e5749cf2103e5db7969ae2f2576e6a061bf3bb2db16571e77ffb41e0b27170734359235cbce53aefeffffff0250a50500000000001976a9149cd3dfb0d87a861770ae4e268e74b45335cf00ab88ac2862b1000000000017a9142e517854aa54668128c0e9a3fdd4dec13ad571368700000000', str(tx_copy)) self.assertEqual('26f3bdd0402e1cff19126244ebe3d32722cef0db507c7229ca8754f5e06ef25d', tx_copy.txid()) self.assertEqual('26f3bdd0402e1cff19126244ebe3d32722cef0db507c7229ca8754f5e06ef25d', tx_copy.wtxid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) wallet1a.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) wallet2.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # wallet2 -> wallet1 outputs = [(bitcoin.TYPE_ADDRESS, wallet1a.get_receiving_address(), 100000)] tx = wallet2.mktx(outputs=outputs, password=None, config=self.config, fee=5000) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) self.assertEqual(wallet2.txin_type, tx.inputs()[0]['type']) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet2.is_mine(wallet2.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('01000000015df26ee0f55487ca29727c50dbf0ce2227d3e3eb44621219ff1c2e40d0bdf326000000008b483045022100bd9f61ba82507d3a28922fb8be129e14699dfa54ddd03cc9494f696d38ac4121022071afca6fad5bc5c09b0a675e6444be3e97dbbdbc283764ee5f4e27a032d933d80141045f7ba332df2a7b4f5d13f246e307c9174cfa9b8b05f3b83410a3c23ef8958d610be285963d67c7bc1feb082f168fa9877c25999963ff8b56b242a852b23e25edfeffffff02a08601000000000017a91480c2353f6a7bc3c71e99e062655b19adb3dd2e4887280b0400000000001976a914ca14915184a2662b5d1505ce7142c8ca066c70e288ac00000000', str(tx_copy)) self.assertEqual('c573b3f8464a4ed40dfc79d0889a780f44e917beef7a75883b2427c2987f3e95', tx_copy.txid()) self.assertEqual('c573b3f8464a4ed40dfc79d0889a780f44e917beef7a75883b2427c2987f3e95', tx_copy.wtxid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) wallet1a.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) wallet2.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # wallet level checks self.assertEqual((0, funding_output_value - 370000 - 5000 + 100000, 0), wallet1a.get_balance()) self.assertEqual((0, 370000 - 5000 - 100000, 0), wallet2.get_balance()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_between_p2wsh_2of3_and_p2wsh_p2sh_2of2(self, mock_write): wallet1a = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('bitter grass shiver impose acquire brush forget axis eager alone wine silver', '', True), keystore.from_xpub('Vpub5fcdcgEwTJmbmqAktuK8Kyq92fMf7sWkcP6oqAii2tG47dNbfkGEGUbfS9NuZaRywLkHE6EmUksrqo32ZL3ouLN1HTar6oRiHpDzKMAF1tf'), keystore.from_xpub('Vpub5fjkKyYnvSS4wBuakWTkNvZDaBM2vQ1MeXWq368VJHNr2eT8efqhpmZ6UUkb7s2dwCXv2Vuggjdhk4vZVyiAQTwUftvff73XcUGq2NQmWra') ], '2of3', gap_limit=2 ) wallet1b = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('snow nest raise royal more walk demise rotate smooth spirit canyon gun', '', True), keystore.from_xpub('Vpub5fjkKyYnvSS4wBuakWTkNvZDaBM2vQ1MeXWq368VJHNr2eT8efqhpmZ6UUkb7s2dwCXv2Vuggjdhk4vZVyiAQTwUftvff73XcUGq2NQmWra'), keystore.from_xpub('Vpub5gSKXzxK7FeKQedu2q1z9oJWxqvX72AArW3HSWpEhc8othDH8xMDu28gr7gf17sp492BuJod8Tn7anjvJrKpETwqnQqX7CS8fcYyUtedEMk') ], '2of3', gap_limit=2 ) # ^ third seed: hedgehog sunset update estate number jungle amount piano friend donate upper wool wallet2a = WalletIntegrityHelper.create_multisig_wallet( [ # bip39: finish seminar arrange erosion sunny coil insane together pretty lunch lunch rose, der: m/1234'/1'/0', p2wsh-p2sh multisig keystore.from_xprv('Uprv9CvELvByqm8k2dpecJVjgLMX1z5DufEjY4fBC5YvdGF5WjGCa7GVJJ2fYni1tyuF7Hw83E6W2ZBjAhaFLZv2ri3rEsubkCd5avg4EHKoDBN'), keystore.from_xpub('Upub5Qb8ik4Cnu8g97KLXKgVXHqY6tH8emQvqtBncjSKsyfTZuorPtTZgX7ovKKZHuuVGBVd1MTTBkWez1XXt2weN1sWBz6SfgRPQYEkNgz81QF') ], '2of2', gap_limit=2 ) wallet2b = WalletIntegrityHelper.create_multisig_wallet( [ # bip39: square page wood spy oil story rebel give milk screen slide shuffle, der: m/1234'/1'/0', p2wsh-p2sh multisig keystore.from_xprv('Uprv9BbnKEXJxXaNvdEsRJ9VA9toYrSeFJh5UfGBpM2iKe8Uh7UhrM9K8ioL53s8gvCoGfirHHaqpABDAE7VUNw8LNU1DMJKVoWyeNKu9XcDC19'), keystore.from_xpub('Upub5RuakRisg8h3F7u7iL2k3UJFa1uiK7xauHamzTxYBbn4PXbM7eajr6M9Q2VCr6cVGhfhqWQqxnABvtSATuVM1xzxk4nA189jJwzaMn1QX7V') ], '2of2', gap_limit=2 ) # bootstrap wallet1 funding_tx = Transaction('01000000000101a41aae475d026c9255200082c7fad26dc47771275b0afba238dccda98a597bd20000000000fdffffff02400d0300000000002200203c43ac80d6e3015cf378bf6bac0c22456723d6050bef324ec641e7762440c63c9dcd410000000000160014824626055515f3ed1d2cfc9152d2e70685c71e8f02483045022100b9f39fad57d07ce1e18251424034f21f10f20e59931041b5167ae343ce973cf602200fefb727fa0ffd25b353f1bcdae2395898fe407b692c62f5885afbf52fa06f5701210301a28f68511ace43114b674371257bb599fd2c686c4b19544870b1799c954b40e9c11300') funding_txid = funding_tx.txid() funding_output_value = 200000 self.assertEqual('d2bd6c9d332db8e2c50aa521cd50f963fba214645aab2f7556e061a412103e21', funding_txid) wallet1a.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # wallet1 -> wallet2 outputs = [(bitcoin.TYPE_ADDRESS, wallet2a.get_receiving_address(), 165000)] tx = wallet1a.mktx(outputs=outputs, password=None, config=self.config, fee=5000) txid = tx.txid() tx = Transaction(tx.serialize()) # simulates moving partial txn between cosigners self.assertEqual(txid, tx.txid()) self.assertFalse(tx.is_complete()) wallet1b.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) self.assertEqual(wallet1a.txin_type, tx.inputs()[0]['type']) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet1a.is_mine(wallet1a.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('01000000000101213e1012a461e056752fab5a6414a2fb63f950cd21a50ac5e2b82d339d6cbdd20000000000feffffff023075000000000000220020cc5e4cc05a76d0648cd0742768556317e9f8cc729aed077134287909035dba88888402000000000017a914187842cea9c15989a51ce7ca889a08b824bf8743870400483045022100ea2fbd3d8681cfafdcae1bdaaa64f92fb9872fb8f6bf03a2b7effcf7390b66c8022021a79eff7975479934f958f3766d6ac61d708c79b785e398b3bcd84b1039e9b501483045022100dbc4f1ec18f0e0deb4ff88d7d5b3d3b7b500a80d0c0f33efbd3262f0c8689095022074fd226c0b52e3716ad907d14cba9c79aca482a8f4a51662ca83a5b9db49e15b016952210223f815ab09f6bfc8519165c5232947ae89d9d43d678fb3486f3b28382a2371fa210273c529c2c9a99592f2066cebc2172a48991af2b471cb726b9df78c6497ce984e2102aa8fc578b445a1e4257be6b978fcece92980def98dce0e1eb89e7364635ae94153ae00000000', str(tx_copy)) self.assertEqual('6e9c3cd8788bdb970a124ea06136d52bc01cec4f9b1e217627d5e90ebe77d049', tx_copy.txid()) self.assertEqual('c58650fb77d04577fccb3e201deecbf691ab52ffb61cd2e57996c4d51f7e980b', tx_copy.wtxid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) self.assertEqual(txid, tx_copy.txid()) wallet1a.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) wallet2a.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # wallet2 -> wallet1 outputs = [(bitcoin.TYPE_ADDRESS, wallet1a.get_receiving_address(), 100000)] tx = wallet2a.mktx(outputs=outputs, password=None, config=self.config, fee=5000) txid = tx.txid() tx = Transaction(tx.serialize()) # simulates moving partial txn between cosigners self.assertEqual(txid, tx.txid()) self.assertFalse(tx.is_complete()) wallet2b.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) self.assertEqual(wallet2a.txin_type, tx.inputs()[0]['type']) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet2a.is_mine(wallet2a.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('0100000000010149d077be0ee9d52776211e9b4fec1cc02bd53661a04e120a97db8b78d83c9c6e01000000232200204311edae835c7a5aa712c8ca644180f13a3b2f3b420fa879b181474724d6163cfeffffff0260ea00000000000017a9143025051b6b5ccd4baf30dfe2de8aa84f0dd567ed87a0860100000000002200203c43ac80d6e3015cf378bf6bac0c22456723d6050bef324ec641e7762440c63c0400483045022100c254468bbe6b8bd1c8c01b6a223e46cc5c6b56fbba87d59575385ad249133b0e02207139688f8d6ae8076c92a266d98454d25c040d04c8e513a37bf7c32dad3e48210147304402204af5edbab2d674f6a9edef8c97b2f7fdf8ababedc7b287710cc7a64d4699358b022064e2d07f4bb32373be31b2003dc56b7b831a7c01419326efb3011c64b898b3f00147522102119f899075a131d4d519d4cdcf5de5907dc2df3b93d54b53ded852211d2b6cb12102fdb0f6775d4b6619257c43343ba5e7807b0164f1eb3f00f2b594ab9e53ab812652ae00000000', str(tx_copy)) self.assertEqual('84b0dcb43022385f7a10e2710e5625a2be3cd6e390387b6100b55500d5eea8f6', tx_copy.txid()) self.assertEqual('7e561e25da843326e61fd20a40b72fcaeb8690176fc7c3fcbadb3a0146c8396c', tx_copy.wtxid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) self.assertEqual(txid, tx_copy.txid()) wallet1a.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) wallet2a.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # wallet level checks self.assertEqual((0, funding_output_value - 165000 - 5000 + 100000, 0), wallet1a.get_balance()) self.assertEqual((0, 165000 - 5000 - 100000, 0), wallet2a.get_balance()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_between_p2sh_1of2_and_p2wpkh_p2sh(self, mock_write): wallet1a = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('phone guilt ancient scan defy gasp off rotate approve ill word exchange', '', True), keystore.from_xpub('tpubD6NzVbkrYhZ4YPZ3ntVjqSCxiUUv2jikrUBU73Q3iJ7Y8iR41oYf991L5fanv7ciHjbjokdK2bjYqg1BzEUDxucU9qM5WRdBiY738wmgLP4') ], '1of2', gap_limit=2 ) # ^ second seed: kingdom now gift initial age right velvet exotic harbor enforce kingdom kick wallet2 = WalletIntegrityHelper.create_standard_wallet( # bip39: uniform tank success logic lesson awesome stove elegant regular desert drip device, der: m/49'/1'/0' keystore.from_xprv('uprv91HGbrNZTK4x8u22nbdYGzEuWPxjaHMREUi7CNhY64KsG5ZGnVM99uCa16EMSfrnaPTFxjbRdBZ2WiBkokoM8anzAy3Vpc52o88WPkitnxi'), gap_limit=2 ) # bootstrap wallet1 funding_tx = Transaction('010000000001027e20990282eb29588375ad04936e1e991af3bc5b9c6f1ab62eca8c25becaef6a01000000171600140e6a17fadc8bafba830f3467a889f6b211d69a00fdffffff51847fd6bcbdfd1d1ea2c2d95c2d8de1e34c5f2bd9493e88a96a4e229f564e800100000017160014ecdf9fa06856f9643b1a73144bc76c24c67774a6fdffffff021e8501000000000017a91451991bfa68fbcb1e28aa0b1e060b7d24003352e38700093d000000000017a914b0b9f31bace76cdfae2c14abc03e223403d7dc4b870247304402205e19721b92c6afd70cd932acb50815a36ee32ab46a934147d62f02c13aeacf4702207289c4a4131ef86e27058ff70b6cb6bf0e8e81c6cbab6dddd7b0a9bc732960e4012103fe504411c21f7663caa0bbf28931f03fae7e0def7bc54851e0194dfb1e2c85ef02483045022100e969b65096fba4f8b24eb5bc622d2282076241621f3efe922cc2067f7a8a6be702203ec4047dd2a71b9c83eb6a0875a6d66b4d65864637576c06ed029d3d1a8654b0012102bbc8100dca67ba0297aba51296a4184d714204a5fc2eda34708360f37019a3dccfcc1300') funding_txid = funding_tx.txid() funding_output_value = 4000000 self.assertEqual('1137c12de4ce0f5b08de8846ba14c0814351a7f0f31457c8ea51a5d4b3c891a3', funding_txid) wallet1a.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # wallet1 -> wallet2 outputs = [(bitcoin.TYPE_ADDRESS, wallet2.get_receiving_address(), 1000000)] tx = wallet1a.mktx(outputs=outputs, password=None, config=self.config, fee=5000) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) self.assertEqual(wallet1a.txin_type, tx.inputs()[0]['type']) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet1a.is_mine(wallet1a.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('0100000001a391c8b3d4a551eac85714f3f0a7514381c014ba4688de085b0fcee42dc13711010000009200483045022100fcf03aeb97b66791372c18aa0dd651817cf458d941dd628c966f0305a023360f022016c534530e267b6a52f90e62aa9fb50ace609ffb21e472d3ba7b29db9b30050e014751210245c90e040d4f9d1fc136b3d4d6b7535bbb5df2bd27666c21977042cc1e05b5b02103c9a6bebfce6294488315e58137a279b2efe09f1f528ecf93b40675ded3cf0e5f52aefeffffff0240420f000000000017a9149573eb50f3136dff141ac304190f41c8becc92ce8738b32d000000000017a914b815d1b430ae9b632e3834ed537f7956325ee2a98700000000', str(tx_copy)) self.assertEqual('1b7e94860b9681d4e371928d40fdbd4641e991aa74f1a211f239c887047e4a2a', tx_copy.txid()) self.assertEqual('1b7e94860b9681d4e371928d40fdbd4641e991aa74f1a211f239c887047e4a2a', tx_copy.wtxid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) wallet1a.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) wallet2.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # wallet2 -> wallet1 outputs = [(bitcoin.TYPE_ADDRESS, wallet1a.get_receiving_address(), 300000)] tx = wallet2.mktx(outputs=outputs, password=None, config=self.config, fee=5000) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) self.assertEqual(wallet2.txin_type, tx.inputs()[0]['type']) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet2.is_mine(wallet2.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('010000000001012a4a7e0487c839f211a2f174aa91e94146bdfd408d9271e3d481960b86947e1b00000000171600149fad840ed174584ee054bd26f3e411817338c5edfeffffff02e09304000000000017a914b0b9f31bace76cdfae2c14abc03e223403d7dc4b87d89a0a000000000017a9148ccd0efb2be5b412c4033715f560ed8f446c8ceb87024830450221009c816c3e0c40b37085244f0976f65635b8d711952bad9843c5f51e386fd37cc402202c34a4a7227182742d9f93e9f28c4bd30ded6514550f39614cb5ad00e46690070121038362bbf0b4918b37e9d7c75930ed3a78e3d445724cb5c37ade4a59b6e411fe4e00000000', str(tx_copy)) self.assertEqual('f65edb0843ff44436dc5964fb6b298e157502b9b4a83dac6b82dd2d2a3247d0a', tx_copy.txid()) self.assertEqual('63efc09db4c7445eaaca9a5e7732202f42aec81a53b05d819f1918ce0cf3b84d', tx_copy.wtxid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) wallet1a.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) wallet2.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) # wallet level checks self.assertEqual((0, funding_output_value - 1000000 - 5000 + 300000, 0), wallet1a.get_balance()) self.assertEqual((0, 1000000 - 5000 - 300000, 0), wallet2.get_balance()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bump_fee_p2pkh(self, mock_write): wallet = self.create_standard_wallet_from_seed('fold object utility erase deputy output stadium feed stereo usage modify bean') # bootstrap wallet funding_tx = Transaction('010000000001011f4db0ecd81f4388db316bc16efb4e9daf874cf4950d54ecb4c0fb372433d68500000000171600143d57fd9e88ef0e70cddb0d8b75ef86698cab0d44fdffffff0280969800000000001976a91472e34cebab371967b038ce41d0e8fa1fb983795e88ac86a0ae020000000017a9149188bc82bdcae077060ebb4f02201b73c806edc887024830450221008e0725d531bd7dee4d8d38a0f921d7b1213e5b16c05312a80464ecc2b649598d0220596d309cf66d5f47cb3df558dbb43c5023a7796a80f5a88b023287e45a4db6b9012102c34d61ceafa8c216f01e05707672354f8119334610f7933a3f80dd7fb6290296bd391400') funding_txid = funding_tx.txid() funding_output_value = 10000000 self.assertEqual('03052739fcfa2ead5f8e57e26021b0c2c546bcd3d74c6e708d5046dc58d90762', funding_txid) wallet.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create tx outputs = [(bitcoin.TYPE_ADDRESS, '2N1VTMMFb91SH9SNRAkT7z8otP5eZEct4KL', 2500000)] coins = wallet.get_spendable_coins(domain=None, config=self.config) tx = wallet.make_unsigned_transaction(coins, outputs, config=self.config, fixed_fee=5000) tx.set_rbf(True) tx.locktime = 1325501 wallet.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet.is_mine(wallet.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) self.assertEqual('01000000016207d958dc46508d706e4cd7d3bc46c5c2b02160e2578e5fad2efafc39270503000000006b483045022100df74e6a88085be1ff3a3fd96cf2ef03b5e33fa06788f56aa71649f0177d1bfc402206e36a7e6124863ac746d5288d6d47c1d1eac5d4ac3818e561a7a0f2c0a269429012102a807c07bd7975211078e916bdda061d97e98d59a3631a804aada2f9a3f5b587afdffffff02a02526000000000017a9145a71fc1a7a98ddd67be935ade1600981c0d066f987585d7200000000001976a914aab9af3fbee0ab4e5c00d53e92f66d4bcb44f1bd88acbd391400', str(tx_copy)) self.assertEqual('44e6dd9529a253181112fc40cadd8ebb4c4359aacb91aa24c45556a1d00839b0', tx_copy.txid()) self.assertEqual('44e6dd9529a253181112fc40cadd8ebb4c4359aacb91aa24c45556a1d00839b0', tx_copy.wtxid()) wallet.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual((0, funding_output_value - 2500000 - 5000, 0), wallet.get_balance()) # bump tx tx = wallet.bump_fee(tx=Transaction(tx.serialize()), delta=5000) tx.locktime = 1325501 self.assertFalse(tx.is_complete()) wallet.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) tx_copy = Transaction(tx.serialize()) self.assertEqual('01000000016207d958dc46508d706e4cd7d3bc46c5c2b02160e2578e5fad2efafc39270503000000006a473044022055b7e6b7e89a55740f7aa2ad1ffcd4b5c913f0de63cf512438921534bc9c3a8d022043b3b27bdc2da4cc6265e4cc9673a3780ccd5cd6f0ee2eaedb51720c15b7a00a012102a807c07bd7975211078e916bdda061d97e98d59a3631a804aada2f9a3f5b587afdffffff02a02526000000000017a9145a71fc1a7a98ddd67be935ade1600981c0d066f987d0497200000000001976a914aab9af3fbee0ab4e5c00d53e92f66d4bcb44f1bd88acbd391400', str(tx_copy)) self.assertEqual('f26edcf20991dccedf16058adbee923db7057c9b102db660156b8142b6a59bc7', tx_copy.txid()) self.assertEqual('f26edcf20991dccedf16058adbee923db7057c9b102db660156b8142b6a59bc7', tx_copy.wtxid()) wallet.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual((0, funding_output_value - 2500000 - 10000, 0), wallet.get_balance()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_cpfp_p2pkh(self, mock_write): wallet = self.create_standard_wallet_from_seed('fold object utility erase deputy output stadium feed stereo usage modify bean') # bootstrap wallet funding_tx = Transaction('010000000001010f40064d66d766144e17bb3276d96042fd5aee2196bcce7e415f839e55a83de800000000171600147b6d7c7763b9185b95f367cf28e4dc6d09441e73fdffffff02404b4c00000000001976a9141df43441a3a3ee563e560d3ddc7e07cc9f9c3cdb88ac009871000000000017a9143873281796131b1996d2f94ab265327ee5e9d6e28702473044022029c124e5a1e2c6fa12e45ccdbdddb45fec53f33b982389455b110fdb3fe4173102203b3b7656bca07e4eae3554900aa66200f46fec0af10e83daaa51d9e4e62a26f4012103c8f0460c245c954ef563df3b1743ea23b965f98b120497ac53bd6b8e8e9e0f9bbe391400') funding_txid = funding_tx.txid() funding_output_value = 5000000 self.assertEqual('9973bf8918afa349b63934432386f585613b51034db6c8628b61ba2feb8a3668', funding_txid) wallet.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # cpfp tx tx = wallet.cpfp(funding_tx, fee=50000) tx.set_rbf(True) tx.locktime = 1325502 wallet.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertEqual(tx.txid(), tx_copy.txid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) self.assertEqual('010000000168368aeb2fba618b62c8b64d03513b6185f58623433439b649a3af1889bf7399000000006a47304402203a0b369e46c5fbacb83044b7ab9d69ff7998774041d6870993504915bc495d210220272833b870d8abca516adb7dc4cb27892b1b6e4b52fbfeb592a72c3e795eb213012102a7536f0bfbc60c5a8e86e2b9df26431fc062f9f454016dbc26f2467e0bc98b3ffdffffff01f0874b00000000001976a9141df43441a3a3ee563e560d3ddc7e07cc9f9c3cdb88acbe391400', str(tx_copy)) self.assertEqual('47500a425518b5542d94db1157f473b8cf322d31ea97a1a642fec19386cdb761', tx_copy.txid()) self.assertEqual('47500a425518b5542d94db1157f473b8cf322d31ea97a1a642fec19386cdb761', tx_copy.wtxid()) wallet.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual((0, funding_output_value - 50000, 0), wallet.get_balance()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_bump_fee_p2wpkh(self, mock_write): wallet = self.create_standard_wallet_from_seed('frost repair depend effort salon ring foam oak cancel receive save usage') # bootstrap wallet funding_tx = Transaction('01000000000102acd6459dec7c3c51048eb112630da756f5d4cb4752b8d39aa325407ae0885cba020000001716001455c7f5e0631d8e6f5f05dddb9f676cec48845532fdffffffd146691ef6a207b682b13da5f2388b1f0d2a2022c8cfb8dc27b65434ec9ec8f701000000171600147b3be8a7ceaf15f57d7df2a3d216bc3c259e3225fdffffff02a9875b000000000017a914ea5a99f83e71d1c1dfc5d0370e9755567fe4a141878096980000000000160014d4ca56fcbad98fb4dcafdc573a75d6a6fffb09b702483045022100dde1ba0c9a2862a65791b8d91295a6603207fb79635935a67890506c214dd96d022046c6616642ef5971103c1db07ac014e63fa3b0e15c5729eacdd3e77fcb7d2086012103a72410f185401bb5b10aaa30989c272b554dc6d53bda6da85a76f662723421af024730440220033d0be8f74e782fbcec2b396647c7715d2356076b442423f23552b617062312022063c95cafdc6d52ccf55c8ee0f9ceb0f57afb41ea9076eb74fe633f59c50c6377012103b96a4954d834fbcfb2bbf8cf7de7dc2b28bc3d661c1557d1fd1db1bfc123a94abb391400') funding_txid = funding_tx.txid() funding_output_value = 10000000 self.assertEqual('52e669a20a26c8b3df5b41e5e6309b18bcde8e1ad7ea17a18f63b6dc6c8becc0', funding_txid) wallet.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create tx outputs = [(bitcoin.TYPE_ADDRESS, '2N1VTMMFb91SH9SNRAkT7z8otP5eZEct4KL', 2500000)] coins = wallet.get_spendable_coins(domain=None, config=self.config) tx = wallet.make_unsigned_transaction(coins, outputs, config=self.config, fixed_fee=5000) tx.set_rbf(True) tx.locktime = 1325499 wallet.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet.is_mine(wallet.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) self.assertEqual('01000000000101c0ec8b6cdcb6638fa117ead71a8edebc189b30e6e5415bdfb3c8260aa269e6520100000000fdffffff02a02526000000000017a9145a71fc1a7a98ddd67be935ade1600981c0d066f987585d720000000000160014f0fe5c1867a174a12e70165e728a072619455ed50247304402205442705e988abe74bf391b293bb1b886674284a92ed0788c33024f9336d60aef022013a93049d3bed693254cd31a704d70bb988a36750f0b74d0a5b4d9e29c54ca9d0121028d4c44ca36d2c4bff3813df8d5d3c0278357521ecb892cd694c473c03970e4c5bb391400', str(tx_copy)) self.assertEqual('b019bbad45a46ed25365e46e4cae6428fb12ae425977eb93011ffb294cb4977e', tx_copy.txid()) self.assertEqual('ba87313e2b3b42f1cc478843d4d53c72d6e06f6c66ac8cfbe2a59cdac2fd532d', tx_copy.wtxid()) wallet.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual((0, funding_output_value - 2500000 - 5000, 0), wallet.get_balance()) # bump tx tx = wallet.bump_fee(tx=Transaction(tx.serialize()), delta=5000) tx.locktime = 1325500 self.assertFalse(tx.is_complete()) wallet.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) tx_copy = Transaction(tx.serialize()) self.assertEqual('01000000000101c0ec8b6cdcb6638fa117ead71a8edebc189b30e6e5415bdfb3c8260aa269e6520100000000fdffffff02a02526000000000017a9145a71fc1a7a98ddd67be935ade1600981c0d066f987d049720000000000160014f0fe5c1867a174a12e70165e728a072619455ed5024730440220517fed3a902b5b41fa718ffd5f229b835b8ed26f23433c4ea437d24eff66d15b0220526854a6ebcd351ab2373d0e7c4e20f17c420520b5d570c2df7ca1d773d6a55d0121028d4c44ca36d2c4bff3813df8d5d3c0278357521ecb892cd694c473c03970e4c5bc391400', str(tx_copy)) self.assertEqual('9a1c0ef7e871798b86074c7f8dd1e81b6d9a758ff07e0059eee31dc6fbf4f438', tx_copy.txid()) self.assertEqual('59144d30c911ac33359b0a32d5a3fdd2ca806982c85838e193eb95f5d315e813', tx_copy.wtxid()) wallet.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual((0, funding_output_value - 2500000 - 10000, 0), wallet.get_balance()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_cpfp_p2wpkh(self, mock_write): wallet = self.create_standard_wallet_from_seed('frost repair depend effort salon ring foam oak cancel receive save usage') # bootstrap wallet funding_tx = Transaction('01000000000101c0ec8b6cdcb6638fa117ead71a8edebc189b30e6e5415bdfb3c8260aa269e6520000000017160014ba9ca815474a674ff1efb3fc82cf0f3460de8c57fdffffff0230390f000000000017a9148b59abaca8215c0d4b18cbbf715550aa2b50c85b87404b4c000000000016001483c3bc7234f17a209cc5dcce14903b54ee4dab9002473044022038a05f7d38bcf810dfebb39f1feda5cc187da4cf5d6e56986957ddcccedc75d302203ab67ccf15431b4e2aeeab1582b9a5a7821e7ac4be8ebf512505dbfdc7e094fd0121032168234e0ba465b8cedc10173ea9391725c0f6d9fa517641af87926626a5144abd391400') funding_txid = funding_tx.txid() funding_output_value = 5000000 self.assertEqual('c36a6e1cd54df108e69574f70bc9b88dc13beddc70cfad9feb7f8f6593255d4a', funding_txid) wallet.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # cpfp tx tx = wallet.cpfp(funding_tx, fee=50000) tx.set_rbf(True) tx.locktime = 1325501 wallet.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertEqual(tx.txid(), tx_copy.txid()) self.assertEqual(tx.wtxid(), tx_copy.wtxid()) self.assertEqual('010000000001014a5d2593658f7feb9fadcf70dced3bc18db8c90bf77495e608f14dd51c6e6ac30100000000fdffffff01f0874b000000000016001483c3bc7234f17a209cc5dcce14903b54ee4dab900248304502210098fbe458a9f1c595d6bf63962fad00300a7b60c6dd8b2e7625f3804a3bf1086602204bc8a46fb162be8f85a23644eccf9f4223fa092f5c861144676a34dc83a7c39d012102a6ff1ffc189b4776b78e20edca969cc45da3e610cc0cc79925604be43fee469fbd391400', str(tx_copy)) self.assertEqual('38a21c67336232c88ae15311f329197c69ee70e872f8acb5bc9c2b6417c35ad8', tx_copy.txid()) self.assertEqual('b5b8264ed5f3e03d48ef82fa2a25278cd9c0563fa78e557f370b7e0558293172', tx_copy.wtxid()) wallet.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual((0, funding_output_value - 50000, 0), wallet.get_balance()) @needs_test_with_all_ecc_implementations def test_sweep_p2pk(self): class NetworkMock: relay_fee = 1000 def get_local_height(self): return 1325785 def listunspent_for_scripthash(self, scripthash): if scripthash == '460e4fb540b657d775d84ff4955c9b13bd954c2adc26a6b998331343f85b6a45': return [{'tx_hash': 'ac24de8b58e826f60bd7b9ba31670bdfc3e8aedb2f28d0e91599d741569e3429', 'tx_pos': 1, 'height': 1325785, 'value': 1000000}] else: return [] privkeys = ['93NQ7CFbwTPyKDJLXe97jczw33fiLijam2SCZL3Uinz1NSbHrTu', ] network = NetworkMock() dest_addr = 'tb1q3ws2p0qjk5vrravv065xqlnkckvzcpclk79eu2' tx = sweep(privkeys, network, config=None, recipient=dest_addr, fee=5000) tx_copy = Transaction(tx.serialize()) self.assertEqual('010000000129349e5641d79915e9d0282fdbaee8c3df0b6731bab9d70bf626e8588bde24ac010000004847304402206bf0d0a93abae0d5873a62ebf277a5dd2f33837821e8b93e74d04e19d71b578002201a6d729bc159941ef5c4c9e5fe13ece9fc544351ba531b00f68ba549c8b38a9a01fdffffff01b82e0f00000000001600148ba0a0bc12b51831f58c7ea8607e76c5982c071fd93a1400', str(tx_copy)) self.assertEqual('7f827fc5256c274fd1094eb7e020c8ded0baf820356f61aa4f14a9093b0ea0ee', tx_copy.txid()) self.assertEqual('7f827fc5256c274fd1094eb7e020c8ded0baf820356f61aa4f14a9093b0ea0ee', tx_copy.wtxid()) class TestWalletOfflineSigning(TestCaseForTestnet): @classmethod def setUpClass(cls): super().setUpClass() cls.electrum_path = tempfile.mkdtemp() cls.config = SimpleConfig({'electrum_path': cls.electrum_path}) @classmethod def tearDownClass(cls): super().tearDownClass() shutil.rmtree(cls.electrum_path) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_xprv_online_xpub_p2pkh(self, mock_write): wallet_offline = WalletIntegrityHelper.create_standard_wallet( # bip39: "qwe", der: m/44'/1'/0' keystore.from_xprv('tprv8gfKwjuAaqtHgqxMh1tosAQ28XvBMkcY5NeFRA3pZMpz6MR4H4YZ3MJM4fvNPnRKeXR1Td2vQGgjorNXfo94WvT5CYDsPAqjHxSn436G1Eu'), gap_limit=4 ) wallet_online = WalletIntegrityHelper.create_standard_wallet( keystore.from_xpub('tpubDDMN69wQjDZxaJz9afZQGa48hZS7X5oSegF2hg67yddNvqfpuTN9DqvDEp7YyVf7AzXnqBqHdLhzTAStHvsoMDDb8WoJQzNrcHgDJHVYgQF'), gap_limit=4 ) # bootstrap wallet_online funding_tx = Transaction('01000000000116e9c9dac2651672316aab3b9553257b6942c5f762c5d795776d9cfa504f183c000000000000fdffffff8085019852fada9da84b58dcf753d292dde314a19f5a5527f6588fa2566142130000000000fdffffffa4154a48db20ce538b28722a89c6b578bd5b5d60d6d7b52323976339e39405230000000000fdffffff0b5ef43f843a96364aebd708e25ea1bdcf2c7df7d0d995560b8b1be5f357b64f0100000000fdffffffd41dfe1199c76fdb3f20e9947ea31136d032d9da48c5e45d85c8f440e2351a510100000000fdffffff5bd015d17e4a1837b01c24ebb4a6b394e3da96a85442bd7dc6abddfbf16f20510000000000fdffffff13a3e7f80b1bd46e38f2abc9e2f335c18a4b0af1778133c7f1c3caae9504345c0200000000fdffffffdf4fc1ab21bca69d18544ddb10a913cd952dbc730ab3d236dd9471445ff405680100000000fdffffffe0424d78a30d5e60ac6b26e2274d7d6e7c6b78fe0b49bdc3ac4dd2147c9535750100000000fdffffff7ab6dd6b3c0d44b0fef0fdc9ab0ad6eee23eef799eee29c005d52bc4461998760000000000fdffffff48a77e5053a21acdf4f235ce00c82c9bc1704700f54d217f6a30704711b9737d0000000000fdffffff86918b39c1d9bb6f34d9b082182f73cedd15504331164dc2b186e95c568ccb870000000000fdffffff15a847356cbb44be67f345965bb3f2589e2fec1c9a0ada21fd28225dcc602e8f0100000000fdffffff9a2875297f81dfd3b77426d63f621db350c270cc28c634ad86b9969ee33ac6960000000000fdffffffd6eeb1d1833e00967083d1ab86fa5a2e44355bd613d9277135240fe6f60148a20100000000fdffffffd8a6e5a9b68a65ff88220ca33e36faf6f826ae8c5c8a13fe818a5e63828b68a40100000000fdffffff73aab8471f82092e45ed1b1afeffdb49ea1ec74ce4853f971812f6a72a7e85aa0000000000fdffffffacd6459dec7c3c51048eb112630da756f5d4cb4752b8d39aa325407ae0885cba0000000000fdffffff1eddd5e13bef1aba1ff151762b5860837daa9b39db1eae8ea8227c81a5a1c8ba0000000000fdffffff67a096ff7c343d39e96929798097f6d7a61156bbdb905fbe534ba36f273271d40100000000fdffffff109a671eb7daf6dcd07c0ceff99f2de65864ab36d64fb3a890bab951569adeee0100000000fdffffff4f1bdc64da8056d08f79db7f5348d1de55946e57aa7c8279499c703889b6e0fd0200000000fdffffff042f280000000000001600149c756aa33f4f89418b33872a973274b5445c727b80969800000000001600146c540c1c9f546004539f45318b8d9f4d7b4857ef80969800000000001976a91422a6daa4a7b695c8a2dd104d47c5dc73d655c96f88ac809698000000000017a914a6885437e0762013facbda93894202a0fe86e35f8702473044022075ef5f04d7a63347064938e15a0c74277a79e5c9d32a26e39e8a517a44d565cc022015246790fb5b29c9bf3eded1b95699b1635bcfc6d521886fddf1135ba1b988ec012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe02473044022061aa9b0d9649ffd7259bc54b35f678565dbbe11507d348dd8885522eaf1fa70c02202cc79de09e8e63e8d57fde6ef66c079ddac4d9828e1936a9db833d4c142615c3012103a8f58fc1f5625f18293403104874f2d38c9279f777e512570e4199c7d292b81b0247304402207744dc1ab0bf77c081b58540c4321d090c0a24a32742a361aa55ad86f0c7c24e02201a9b0dd78b63b495ab5a0b5b161c54cb085d70683c90e188bb4dc2e41e142f6601210361fb354f8259abfcbfbdda36b7cb4c3b05a3ca3d68dd391fd8376e920d93870d0247304402204803e423c321acc6c12cb0ebf196d2906842fdfed6de977cc78277052ee5f15002200634670c1dc25e6b1787a65d3e09c8e6bb0340238d90b9d98887e8fd53944e080121031104c60d027123bf8676bcaefaa66c001a0d3d379dc4a9492a567a9e1004452d02473044022050e4b5348d30011a22b6ae8b43921d29249d88ea71b1fbaa2d9c22dfdef58b7002201c5d5e143aa8835454f61b0742226ebf8cd466bcc2cdcb1f77b92e473d3b13190121030496b9d49aa8efece4f619876c60a77d2c0dc846390ecdc5d9acbfa1bb3128760247304402204d6a9b986e1a0e3473e8aef84b3eb7052442a76dfd7631e35377f141496a55490220131ab342853c01e31f111436f8461e28bc95883b871ca0e01b5f57146e79d7bb012103262ffbc88e25296056a3c65c880e3686297e07f360e6b80f1219d65b0900e84e02483045022100c8ffacf92efa1dddef7e858a241af7a80adcc2489bcc325195970733b1f35fac022076f40c26023a228041a9665c5290b9918d06f03b716e4d8f6d47e79121c7eb37012102d9ba7e02d7cd7dd24302f823b3114c99da21549c663f72440dc87e8ba412120902483045022100b55545d84e43d001bbc10a981f184e7d3b98a7ed6689863716cab053b3655a2f0220537eb76a695fbe86bf020b4b6f7ae93b506d778bbd0885f0a61067616a2c8bce0121034a57f2fa2c32c9246691f6a922fb1ebdf1468792bae7eff253a99fc9f2a5023902483045022100f1d4408463dbfe257f9f778d5e9c8cdb97c8b1d395dbd2e180bc08cad306492c022002a024e19e1a406eaa24467f033659de09ab58822987281e28bb6359288337bd012103e91daa18d924eea62011ce596e15b6d683975cf724ea5bf69a8e2022c26fc12f0247304402204f1e12b923872f396e5e1a3aa94b0b2e86b4ce448f4349a017631db26d7dff8a022069899a05de2ad2bbd8e0202c56ab1025a7db9a4998eea70744e3c367d2a7eb71012103b0eee86792dbef1d4a49bc4ea32d197c8c15d27e6e0c5c33e58e409e26d4a39a0247304402201787dacdb92e0df6ad90226649f0e8321287d0bd8fddc536a297dd19b5fc103e022001fe89300a76e5b46d0e3f7e39e0ee26cc83b71d59a2a5da1dd7b13350cd0c07012103afb1e43d7ec6b7999ef0f1093069e68fe1dfe5d73fc6cfb4f7a5022f7098758c02483045022100acc1212bba0fe4fcc6c3ae5cf8e25f221f140c8444d3c08dfc53a93630ac25da02203f12982847244bd9421ef340293f3a38d2ab5d028af60769e46fcc7d81312e7e012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe024830450221009c04934102402949484b21899271c3991c007b783b8efc85a3c3d24641ac7c24022006fb1895ce969d08a2cb29413e1a85427c7e85426f7a185108ca44b5a0328cb301210360248db4c7d7f76fe231998d2967104fee04df8d8da34f10101cc5523e82648c02483045022100b11fe61b393fa5dbe18ab98f65c249345b429b13f69ee2d1b1335725b24a0e73022010960cdc5565cbc81885c8ed95142435d3c202dfa5a3dc5f50f3914c106335ce0121029c878610c34c21381cda12f6f36ab88bf60f5f496c1b82c357b8ac448713e7b50247304402200ca080db069c15bbf98e1d4dff68d0aea51227ff5d17a8cf67ceae464c22bbb0022051e7331c0918cbb71bb2cef29ca62411454508a16180b0fb5df94248890840df0121028f0be0cde43ff047edbda42c91c37152449d69789eb812bb2e148e4f22472c0f0247304402201fefe258938a2c481d5a745ef3aa8d9f8124bbe7f1f8c693e2ddce4ddc9a927c02204049e0060889ede8fda975edf896c03782d71ba53feb51b04f5ae5897d7431dc012103946730b480f52a43218a9edce240e8b234790e21df5e96482703d81c3c19d3f1024730440220126a6a56dbe69af78d156626fc9cf41d6aac0c07b8b5f0f8491f68db5e89cb5002207ee6ed6f2f41da256f3c1e79679a3de6cf34cc08b940b82be14aefe7da031a6b012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe024730440220363204a1586d7f13c148295122cbf9ec7939685e3cadab81d6d9e921436d21b7022044626b8c2bd4aa7c167d74bc4e9eb9d0744e29ce0ad906d78e10d6d854f23d170121037fb9c51716739bb4c146857fab5a783372f72a65987d61f3b58c74360f4328dd0247304402207925a4c2a3a6b76e10558717ee28fcb8c6fde161b9dc6382239af9f372ace99902204a58e31ce0b4a4804a42d2224331289311ded2748062c92c8aca769e81417a4c012102e18a8c235b48e41ef98265a8e07fa005d2602b96d585a61ad67168d74e7391cb02483045022100bbfe060479174a8d846b5a897526003eb2220ba307a5fee6e1e8de3e4e8b38fd02206723857301d447f67ac98a5a5c2b80ef6820e98fae213db1720f93d91161803b01210386728e2ac3ecee15f58d0505ee26f86a68f08c702941ffaf2fb7213e5026aea10247304402203a2613ae68f697eb02b5b7d18e3c4236966dac2b3a760e3021197d76e9ad4239022046f9067d3df650fcabbdfd250308c64f90757dec86f0b08813c979a42d06a6ec012102a1d7ee1cb4dc502f899aaafae0a2eb6cbf80d9a1073ae60ddcaabc3b1d1f15df02483045022100ab1bea2cc5388428fd126c7801550208701e21564bd4bd00cfd4407cfafc1acd0220508ee587f080f3c80a5c0b2175b58edd84b755e659e2135b3152044d75ebc4b501210236dd1b7f27a296447d0eb3750e1bdb2d53af50b31a72a45511dc1ec3fe7a684a19391400') funding_txid = funding_tx.txid() self.assertEqual('98574bc5f6e75769eb0c93d41453cc1dfbd15c14e63cc3c42f37cdbd08858762', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1qp0mv2sxsyxxfj5gl0332f9uyez93su9cf26757', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325340 self.assertFalse(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual('d9c21696eca80321933e7444ca928aaf25eeda81aaa2f4e5c085d4d0a9cf7aa7', tx.txid()) self.assertEqual('d9c21696eca80321933e7444ca928aaf25eeda81aaa2f4e5c085d4d0a9cf7aa7', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_xprv_online_xpub_p2wpkh_p2sh(self, mock_write): wallet_offline = WalletIntegrityHelper.create_standard_wallet( # bip39: "qwe", der: m/49'/1'/0' keystore.from_xprv('uprv8zHHrMQMQ26utWwNJ5MK2SXpB9hbmy7pbPaneii69xT8cZTyFpxQFxkknGWKP8dxBTZhzy7yP6cCnLrRCQjzJDk3G61SjZpxhFQuB2NR8a5'), gap_limit=4 ) wallet_online = WalletIntegrityHelper.create_standard_wallet( keystore.from_xpub('upub5DGeFrwFEPfD711qQ6tKPaUYjBY6BRqfxcWPT77hiHz7VMo7oNGeom5EdXoKXEazePyoN3ueJMqHBfp3MwmsaD8k9dFHoa8KGeVXev7Pbg2'), gap_limit=4 ) # bootstrap wallet_online funding_tx = Transaction('01000000000116e9c9dac2651672316aab3b9553257b6942c5f762c5d795776d9cfa504f183c000000000000fdffffff8085019852fada9da84b58dcf753d292dde314a19f5a5527f6588fa2566142130000000000fdffffffa4154a48db20ce538b28722a89c6b578bd5b5d60d6d7b52323976339e39405230000000000fdffffff0b5ef43f843a96364aebd708e25ea1bdcf2c7df7d0d995560b8b1be5f357b64f0100000000fdffffffd41dfe1199c76fdb3f20e9947ea31136d032d9da48c5e45d85c8f440e2351a510100000000fdffffff5bd015d17e4a1837b01c24ebb4a6b394e3da96a85442bd7dc6abddfbf16f20510000000000fdffffff13a3e7f80b1bd46e38f2abc9e2f335c18a4b0af1778133c7f1c3caae9504345c0200000000fdffffffdf4fc1ab21bca69d18544ddb10a913cd952dbc730ab3d236dd9471445ff405680100000000fdffffffe0424d78a30d5e60ac6b26e2274d7d6e7c6b78fe0b49bdc3ac4dd2147c9535750100000000fdffffff7ab6dd6b3c0d44b0fef0fdc9ab0ad6eee23eef799eee29c005d52bc4461998760000000000fdffffff48a77e5053a21acdf4f235ce00c82c9bc1704700f54d217f6a30704711b9737d0000000000fdffffff86918b39c1d9bb6f34d9b082182f73cedd15504331164dc2b186e95c568ccb870000000000fdffffff15a847356cbb44be67f345965bb3f2589e2fec1c9a0ada21fd28225dcc602e8f0100000000fdffffff9a2875297f81dfd3b77426d63f621db350c270cc28c634ad86b9969ee33ac6960000000000fdffffffd6eeb1d1833e00967083d1ab86fa5a2e44355bd613d9277135240fe6f60148a20100000000fdffffffd8a6e5a9b68a65ff88220ca33e36faf6f826ae8c5c8a13fe818a5e63828b68a40100000000fdffffff73aab8471f82092e45ed1b1afeffdb49ea1ec74ce4853f971812f6a72a7e85aa0000000000fdffffffacd6459dec7c3c51048eb112630da756f5d4cb4752b8d39aa325407ae0885cba0000000000fdffffff1eddd5e13bef1aba1ff151762b5860837daa9b39db1eae8ea8227c81a5a1c8ba0000000000fdffffff67a096ff7c343d39e96929798097f6d7a61156bbdb905fbe534ba36f273271d40100000000fdffffff109a671eb7daf6dcd07c0ceff99f2de65864ab36d64fb3a890bab951569adeee0100000000fdffffff4f1bdc64da8056d08f79db7f5348d1de55946e57aa7c8279499c703889b6e0fd0200000000fdffffff042f280000000000001600149c756aa33f4f89418b33872a973274b5445c727b80969800000000001600146c540c1c9f546004539f45318b8d9f4d7b4857ef80969800000000001976a91422a6daa4a7b695c8a2dd104d47c5dc73d655c96f88ac809698000000000017a914a6885437e0762013facbda93894202a0fe86e35f8702473044022075ef5f04d7a63347064938e15a0c74277a79e5c9d32a26e39e8a517a44d565cc022015246790fb5b29c9bf3eded1b95699b1635bcfc6d521886fddf1135ba1b988ec012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe02473044022061aa9b0d9649ffd7259bc54b35f678565dbbe11507d348dd8885522eaf1fa70c02202cc79de09e8e63e8d57fde6ef66c079ddac4d9828e1936a9db833d4c142615c3012103a8f58fc1f5625f18293403104874f2d38c9279f777e512570e4199c7d292b81b0247304402207744dc1ab0bf77c081b58540c4321d090c0a24a32742a361aa55ad86f0c7c24e02201a9b0dd78b63b495ab5a0b5b161c54cb085d70683c90e188bb4dc2e41e142f6601210361fb354f8259abfcbfbdda36b7cb4c3b05a3ca3d68dd391fd8376e920d93870d0247304402204803e423c321acc6c12cb0ebf196d2906842fdfed6de977cc78277052ee5f15002200634670c1dc25e6b1787a65d3e09c8e6bb0340238d90b9d98887e8fd53944e080121031104c60d027123bf8676bcaefaa66c001a0d3d379dc4a9492a567a9e1004452d02473044022050e4b5348d30011a22b6ae8b43921d29249d88ea71b1fbaa2d9c22dfdef58b7002201c5d5e143aa8835454f61b0742226ebf8cd466bcc2cdcb1f77b92e473d3b13190121030496b9d49aa8efece4f619876c60a77d2c0dc846390ecdc5d9acbfa1bb3128760247304402204d6a9b986e1a0e3473e8aef84b3eb7052442a76dfd7631e35377f141496a55490220131ab342853c01e31f111436f8461e28bc95883b871ca0e01b5f57146e79d7bb012103262ffbc88e25296056a3c65c880e3686297e07f360e6b80f1219d65b0900e84e02483045022100c8ffacf92efa1dddef7e858a241af7a80adcc2489bcc325195970733b1f35fac022076f40c26023a228041a9665c5290b9918d06f03b716e4d8f6d47e79121c7eb37012102d9ba7e02d7cd7dd24302f823b3114c99da21549c663f72440dc87e8ba412120902483045022100b55545d84e43d001bbc10a981f184e7d3b98a7ed6689863716cab053b3655a2f0220537eb76a695fbe86bf020b4b6f7ae93b506d778bbd0885f0a61067616a2c8bce0121034a57f2fa2c32c9246691f6a922fb1ebdf1468792bae7eff253a99fc9f2a5023902483045022100f1d4408463dbfe257f9f778d5e9c8cdb97c8b1d395dbd2e180bc08cad306492c022002a024e19e1a406eaa24467f033659de09ab58822987281e28bb6359288337bd012103e91daa18d924eea62011ce596e15b6d683975cf724ea5bf69a8e2022c26fc12f0247304402204f1e12b923872f396e5e1a3aa94b0b2e86b4ce448f4349a017631db26d7dff8a022069899a05de2ad2bbd8e0202c56ab1025a7db9a4998eea70744e3c367d2a7eb71012103b0eee86792dbef1d4a49bc4ea32d197c8c15d27e6e0c5c33e58e409e26d4a39a0247304402201787dacdb92e0df6ad90226649f0e8321287d0bd8fddc536a297dd19b5fc103e022001fe89300a76e5b46d0e3f7e39e0ee26cc83b71d59a2a5da1dd7b13350cd0c07012103afb1e43d7ec6b7999ef0f1093069e68fe1dfe5d73fc6cfb4f7a5022f7098758c02483045022100acc1212bba0fe4fcc6c3ae5cf8e25f221f140c8444d3c08dfc53a93630ac25da02203f12982847244bd9421ef340293f3a38d2ab5d028af60769e46fcc7d81312e7e012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe024830450221009c04934102402949484b21899271c3991c007b783b8efc85a3c3d24641ac7c24022006fb1895ce969d08a2cb29413e1a85427c7e85426f7a185108ca44b5a0328cb301210360248db4c7d7f76fe231998d2967104fee04df8d8da34f10101cc5523e82648c02483045022100b11fe61b393fa5dbe18ab98f65c249345b429b13f69ee2d1b1335725b24a0e73022010960cdc5565cbc81885c8ed95142435d3c202dfa5a3dc5f50f3914c106335ce0121029c878610c34c21381cda12f6f36ab88bf60f5f496c1b82c357b8ac448713e7b50247304402200ca080db069c15bbf98e1d4dff68d0aea51227ff5d17a8cf67ceae464c22bbb0022051e7331c0918cbb71bb2cef29ca62411454508a16180b0fb5df94248890840df0121028f0be0cde43ff047edbda42c91c37152449d69789eb812bb2e148e4f22472c0f0247304402201fefe258938a2c481d5a745ef3aa8d9f8124bbe7f1f8c693e2ddce4ddc9a927c02204049e0060889ede8fda975edf896c03782d71ba53feb51b04f5ae5897d7431dc012103946730b480f52a43218a9edce240e8b234790e21df5e96482703d81c3c19d3f1024730440220126a6a56dbe69af78d156626fc9cf41d6aac0c07b8b5f0f8491f68db5e89cb5002207ee6ed6f2f41da256f3c1e79679a3de6cf34cc08b940b82be14aefe7da031a6b012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe024730440220363204a1586d7f13c148295122cbf9ec7939685e3cadab81d6d9e921436d21b7022044626b8c2bd4aa7c167d74bc4e9eb9d0744e29ce0ad906d78e10d6d854f23d170121037fb9c51716739bb4c146857fab5a783372f72a65987d61f3b58c74360f4328dd0247304402207925a4c2a3a6b76e10558717ee28fcb8c6fde161b9dc6382239af9f372ace99902204a58e31ce0b4a4804a42d2224331289311ded2748062c92c8aca769e81417a4c012102e18a8c235b48e41ef98265a8e07fa005d2602b96d585a61ad67168d74e7391cb02483045022100bbfe060479174a8d846b5a897526003eb2220ba307a5fee6e1e8de3e4e8b38fd02206723857301d447f67ac98a5a5c2b80ef6820e98fae213db1720f93d91161803b01210386728e2ac3ecee15f58d0505ee26f86a68f08c702941ffaf2fb7213e5026aea10247304402203a2613ae68f697eb02b5b7d18e3c4236966dac2b3a760e3021197d76e9ad4239022046f9067d3df650fcabbdfd250308c64f90757dec86f0b08813c979a42d06a6ec012102a1d7ee1cb4dc502f899aaafae0a2eb6cbf80d9a1073ae60ddcaabc3b1d1f15df02483045022100ab1bea2cc5388428fd126c7801550208701e21564bd4bd00cfd4407cfafc1acd0220508ee587f080f3c80a5c0b2175b58edd84b755e659e2135b3152044d75ebc4b501210236dd1b7f27a296447d0eb3750e1bdb2d53af50b31a72a45511dc1ec3fe7a684a19391400') funding_txid = funding_tx.txid() self.assertEqual('98574bc5f6e75769eb0c93d41453cc1dfbd15c14e63cc3c42f37cdbd08858762', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1qp0mv2sxsyxxfj5gl0332f9uyez93su9cf26757', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325341 self.assertFalse(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('3f0d188519237478258ad2bf881643618635d11c2bb95512e830fcf2eda3c522', tx_copy.txid()) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual('3f0d188519237478258ad2bf881643618635d11c2bb95512e830fcf2eda3c522', tx.txid()) self.assertEqual('27b78ec072a403b0545258e7a1a8d494e4b6fd48bf77f4251a12160c92207cbc', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_xprv_online_xpub_p2wpkh(self, mock_write): wallet_offline = WalletIntegrityHelper.create_standard_wallet( # bip39: "qwe", der: m/84'/1'/0' keystore.from_xprv('vprv9K9hbuA23Bidgj1KRSHUZMa59jJLeZBpXPVn4RP7sBLArNhZxJjw4AX7aQmVTErDt4YFC11ptMLjbwxgrsH8GLQ1cx77KggWeVPeDBjr9xM'), gap_limit=4 ) wallet_online = WalletIntegrityHelper.create_standard_wallet( keystore.from_xpub('vpub5Y941QgusZGvuD5nXTpUvVWohm8q41uftcRNronjRWs9jB2iVr4BbxqbRfAoQjWHgJtDCQEXChgfsPbEuBnidtkFztZSD3zDKTrtwXa2LCa'), gap_limit=4 ) # bootstrap wallet_online funding_tx = Transaction('01000000000116e9c9dac2651672316aab3b9553257b6942c5f762c5d795776d9cfa504f183c000000000000fdffffff8085019852fada9da84b58dcf753d292dde314a19f5a5527f6588fa2566142130000000000fdffffffa4154a48db20ce538b28722a89c6b578bd5b5d60d6d7b52323976339e39405230000000000fdffffff0b5ef43f843a96364aebd708e25ea1bdcf2c7df7d0d995560b8b1be5f357b64f0100000000fdffffffd41dfe1199c76fdb3f20e9947ea31136d032d9da48c5e45d85c8f440e2351a510100000000fdffffff5bd015d17e4a1837b01c24ebb4a6b394e3da96a85442bd7dc6abddfbf16f20510000000000fdffffff13a3e7f80b1bd46e38f2abc9e2f335c18a4b0af1778133c7f1c3caae9504345c0200000000fdffffffdf4fc1ab21bca69d18544ddb10a913cd952dbc730ab3d236dd9471445ff405680100000000fdffffffe0424d78a30d5e60ac6b26e2274d7d6e7c6b78fe0b49bdc3ac4dd2147c9535750100000000fdffffff7ab6dd6b3c0d44b0fef0fdc9ab0ad6eee23eef799eee29c005d52bc4461998760000000000fdffffff48a77e5053a21acdf4f235ce00c82c9bc1704700f54d217f6a30704711b9737d0000000000fdffffff86918b39c1d9bb6f34d9b082182f73cedd15504331164dc2b186e95c568ccb870000000000fdffffff15a847356cbb44be67f345965bb3f2589e2fec1c9a0ada21fd28225dcc602e8f0100000000fdffffff9a2875297f81dfd3b77426d63f621db350c270cc28c634ad86b9969ee33ac6960000000000fdffffffd6eeb1d1833e00967083d1ab86fa5a2e44355bd613d9277135240fe6f60148a20100000000fdffffffd8a6e5a9b68a65ff88220ca33e36faf6f826ae8c5c8a13fe818a5e63828b68a40100000000fdffffff73aab8471f82092e45ed1b1afeffdb49ea1ec74ce4853f971812f6a72a7e85aa0000000000fdffffffacd6459dec7c3c51048eb112630da756f5d4cb4752b8d39aa325407ae0885cba0000000000fdffffff1eddd5e13bef1aba1ff151762b5860837daa9b39db1eae8ea8227c81a5a1c8ba0000000000fdffffff67a096ff7c343d39e96929798097f6d7a61156bbdb905fbe534ba36f273271d40100000000fdffffff109a671eb7daf6dcd07c0ceff99f2de65864ab36d64fb3a890bab951569adeee0100000000fdffffff4f1bdc64da8056d08f79db7f5348d1de55946e57aa7c8279499c703889b6e0fd0200000000fdffffff042f280000000000001600149c756aa33f4f89418b33872a973274b5445c727b80969800000000001600146c540c1c9f546004539f45318b8d9f4d7b4857ef80969800000000001976a91422a6daa4a7b695c8a2dd104d47c5dc73d655c96f88ac809698000000000017a914a6885437e0762013facbda93894202a0fe86e35f8702473044022075ef5f04d7a63347064938e15a0c74277a79e5c9d32a26e39e8a517a44d565cc022015246790fb5b29c9bf3eded1b95699b1635bcfc6d521886fddf1135ba1b988ec012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe02473044022061aa9b0d9649ffd7259bc54b35f678565dbbe11507d348dd8885522eaf1fa70c02202cc79de09e8e63e8d57fde6ef66c079ddac4d9828e1936a9db833d4c142615c3012103a8f58fc1f5625f18293403104874f2d38c9279f777e512570e4199c7d292b81b0247304402207744dc1ab0bf77c081b58540c4321d090c0a24a32742a361aa55ad86f0c7c24e02201a9b0dd78b63b495ab5a0b5b161c54cb085d70683c90e188bb4dc2e41e142f6601210361fb354f8259abfcbfbdda36b7cb4c3b05a3ca3d68dd391fd8376e920d93870d0247304402204803e423c321acc6c12cb0ebf196d2906842fdfed6de977cc78277052ee5f15002200634670c1dc25e6b1787a65d3e09c8e6bb0340238d90b9d98887e8fd53944e080121031104c60d027123bf8676bcaefaa66c001a0d3d379dc4a9492a567a9e1004452d02473044022050e4b5348d30011a22b6ae8b43921d29249d88ea71b1fbaa2d9c22dfdef58b7002201c5d5e143aa8835454f61b0742226ebf8cd466bcc2cdcb1f77b92e473d3b13190121030496b9d49aa8efece4f619876c60a77d2c0dc846390ecdc5d9acbfa1bb3128760247304402204d6a9b986e1a0e3473e8aef84b3eb7052442a76dfd7631e35377f141496a55490220131ab342853c01e31f111436f8461e28bc95883b871ca0e01b5f57146e79d7bb012103262ffbc88e25296056a3c65c880e3686297e07f360e6b80f1219d65b0900e84e02483045022100c8ffacf92efa1dddef7e858a241af7a80adcc2489bcc325195970733b1f35fac022076f40c26023a228041a9665c5290b9918d06f03b716e4d8f6d47e79121c7eb37012102d9ba7e02d7cd7dd24302f823b3114c99da21549c663f72440dc87e8ba412120902483045022100b55545d84e43d001bbc10a981f184e7d3b98a7ed6689863716cab053b3655a2f0220537eb76a695fbe86bf020b4b6f7ae93b506d778bbd0885f0a61067616a2c8bce0121034a57f2fa2c32c9246691f6a922fb1ebdf1468792bae7eff253a99fc9f2a5023902483045022100f1d4408463dbfe257f9f778d5e9c8cdb97c8b1d395dbd2e180bc08cad306492c022002a024e19e1a406eaa24467f033659de09ab58822987281e28bb6359288337bd012103e91daa18d924eea62011ce596e15b6d683975cf724ea5bf69a8e2022c26fc12f0247304402204f1e12b923872f396e5e1a3aa94b0b2e86b4ce448f4349a017631db26d7dff8a022069899a05de2ad2bbd8e0202c56ab1025a7db9a4998eea70744e3c367d2a7eb71012103b0eee86792dbef1d4a49bc4ea32d197c8c15d27e6e0c5c33e58e409e26d4a39a0247304402201787dacdb92e0df6ad90226649f0e8321287d0bd8fddc536a297dd19b5fc103e022001fe89300a76e5b46d0e3f7e39e0ee26cc83b71d59a2a5da1dd7b13350cd0c07012103afb1e43d7ec6b7999ef0f1093069e68fe1dfe5d73fc6cfb4f7a5022f7098758c02483045022100acc1212bba0fe4fcc6c3ae5cf8e25f221f140c8444d3c08dfc53a93630ac25da02203f12982847244bd9421ef340293f3a38d2ab5d028af60769e46fcc7d81312e7e012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe024830450221009c04934102402949484b21899271c3991c007b783b8efc85a3c3d24641ac7c24022006fb1895ce969d08a2cb29413e1a85427c7e85426f7a185108ca44b5a0328cb301210360248db4c7d7f76fe231998d2967104fee04df8d8da34f10101cc5523e82648c02483045022100b11fe61b393fa5dbe18ab98f65c249345b429b13f69ee2d1b1335725b24a0e73022010960cdc5565cbc81885c8ed95142435d3c202dfa5a3dc5f50f3914c106335ce0121029c878610c34c21381cda12f6f36ab88bf60f5f496c1b82c357b8ac448713e7b50247304402200ca080db069c15bbf98e1d4dff68d0aea51227ff5d17a8cf67ceae464c22bbb0022051e7331c0918cbb71bb2cef29ca62411454508a16180b0fb5df94248890840df0121028f0be0cde43ff047edbda42c91c37152449d69789eb812bb2e148e4f22472c0f0247304402201fefe258938a2c481d5a745ef3aa8d9f8124bbe7f1f8c693e2ddce4ddc9a927c02204049e0060889ede8fda975edf896c03782d71ba53feb51b04f5ae5897d7431dc012103946730b480f52a43218a9edce240e8b234790e21df5e96482703d81c3c19d3f1024730440220126a6a56dbe69af78d156626fc9cf41d6aac0c07b8b5f0f8491f68db5e89cb5002207ee6ed6f2f41da256f3c1e79679a3de6cf34cc08b940b82be14aefe7da031a6b012102801bc7170efb82c490e243204d86970f15966aa3bce6a06bef5c09a83a5bfffe024730440220363204a1586d7f13c148295122cbf9ec7939685e3cadab81d6d9e921436d21b7022044626b8c2bd4aa7c167d74bc4e9eb9d0744e29ce0ad906d78e10d6d854f23d170121037fb9c51716739bb4c146857fab5a783372f72a65987d61f3b58c74360f4328dd0247304402207925a4c2a3a6b76e10558717ee28fcb8c6fde161b9dc6382239af9f372ace99902204a58e31ce0b4a4804a42d2224331289311ded2748062c92c8aca769e81417a4c012102e18a8c235b48e41ef98265a8e07fa005d2602b96d585a61ad67168d74e7391cb02483045022100bbfe060479174a8d846b5a897526003eb2220ba307a5fee6e1e8de3e4e8b38fd02206723857301d447f67ac98a5a5c2b80ef6820e98fae213db1720f93d91161803b01210386728e2ac3ecee15f58d0505ee26f86a68f08c702941ffaf2fb7213e5026aea10247304402203a2613ae68f697eb02b5b7d18e3c4236966dac2b3a760e3021197d76e9ad4239022046f9067d3df650fcabbdfd250308c64f90757dec86f0b08813c979a42d06a6ec012102a1d7ee1cb4dc502f899aaafae0a2eb6cbf80d9a1073ae60ddcaabc3b1d1f15df02483045022100ab1bea2cc5388428fd126c7801550208701e21564bd4bd00cfd4407cfafc1acd0220508ee587f080f3c80a5c0b2175b58edd84b755e659e2135b3152044d75ebc4b501210236dd1b7f27a296447d0eb3750e1bdb2d53af50b31a72a45511dc1ec3fe7a684a19391400') funding_txid = funding_tx.txid() self.assertEqual('98574bc5f6e75769eb0c93d41453cc1dfbd15c14e63cc3c42f37cdbd08858762', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1qp0mv2sxsyxxfj5gl0332f9uyez93su9cf26757', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325341 self.assertFalse(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual('ee76c0c6da87f0eb5ab4d1ae05d3942512dcd3c4c42518f9d3619e74400cfc1f', tx_copy.txid()) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual('ee76c0c6da87f0eb5ab4d1ae05d3942512dcd3c4c42518f9d3619e74400cfc1f', tx.txid()) self.assertEqual('729c2e40a2fccd6b731407c01ed304119c1ac329bdf9baae5b642d916c5f3272', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_wif_online_addr_p2pkh(self, mock_write): # compressed pubkey wallet_offline = WalletIntegrityHelper.create_imported_wallet(privkeys=True) wallet_offline.import_private_key('p2pkh:cQDxbmQfwRV3vP1mdnVHq37nJekHLsuD3wdSQseBRA2ct4MFk5Pq', pw=None) wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('mg2jk6S5WGDhUPA8mLSxDLWpUoQnX1zzoG') # bootstrap wallet_online funding_tx = Transaction('01000000000101197a89cff51096b9dd4214cdee0eb90cb27a25477e739521d728a679724042730100000000fdffffff048096980000000000160014dab37af8fefbbb31887a0a5f9b2698f4a7b45f6a80969800000000001976a91405a20074ef7eb42c7c6fcd4f499faa699742783288ac809698000000000017a914b808938a8007bc54509cd946944c479c0fa6554f87131b2c0400000000160014a04dfdb9a9aeac3b3fada6f43c2a66886186e2440247304402204f5dbb9dda65eab26179f1ca7c37c8baf028153815085dd1bbb2b826296e3b870220379fcd825742d6e2bdff772f347b629047824f289a5499a501033f6c3495594901210363c9c98740fe0455c646215cea9b13807b758791c8af7b74e62968bef57ff8ae1e391400') funding_txid = funding_tx.txid() self.assertEqual('0a08ea26a49e2b80f253796d605b69e2d0403fac64bdf6f7db82ada4b7bb6b62', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1quk7ahlhr3qmjndy0uvu9y9hxfesrtahtta9ghm', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325340 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual('e56da664631b8c666c6df38ec80c954c4ac3c4f56f040faf0070e4681e937fc4', tx.txid()) self.assertEqual('e56da664631b8c666c6df38ec80c954c4ac3c4f56f040faf0070e4681e937fc4', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_wif_online_addr_p2wpkh_p2sh(self, mock_write): wallet_offline = WalletIntegrityHelper.create_imported_wallet(privkeys=True) wallet_offline.import_private_key('p2wpkh-p2sh:cU9hVzhpvfn91u2zTVn8uqF2ymS7ucYH8V5TmsTDmuyMHgRk9WsJ', pw=None) wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('2NA2JbUVK7HGWUCK5RXSVNHrkgUYF8d9zV8') # bootstrap wallet_online funding_tx = Transaction('01000000000101197a89cff51096b9dd4214cdee0eb90cb27a25477e739521d728a679724042730100000000fdffffff048096980000000000160014dab37af8fefbbb31887a0a5f9b2698f4a7b45f6a80969800000000001976a91405a20074ef7eb42c7c6fcd4f499faa699742783288ac809698000000000017a914b808938a8007bc54509cd946944c479c0fa6554f87131b2c0400000000160014a04dfdb9a9aeac3b3fada6f43c2a66886186e2440247304402204f5dbb9dda65eab26179f1ca7c37c8baf028153815085dd1bbb2b826296e3b870220379fcd825742d6e2bdff772f347b629047824f289a5499a501033f6c3495594901210363c9c98740fe0455c646215cea9b13807b758791c8af7b74e62968bef57ff8ae1e391400') funding_txid = funding_tx.txid() self.assertEqual('0a08ea26a49e2b80f253796d605b69e2d0403fac64bdf6f7db82ada4b7bb6b62', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1quk7ahlhr3qmjndy0uvu9y9hxfesrtahtta9ghm', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325340 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual('7642816d051aa3b333b6564bb6e44fe3a5885bfe7db9860dfbc9973a5c9a6562', tx.txid()) self.assertEqual('9bb9949974954613945756c48ca5525cd5cba1b667ccb10c7a53e1ed076a1117', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_wif_online_addr_p2wpkh(self, mock_write): wallet_offline = WalletIntegrityHelper.create_imported_wallet(privkeys=True) wallet_offline.import_private_key('p2wpkh:cPuQzcNEgbeYZ5at9VdGkCwkPA9r34gvEVJjuoz384rTfYpahfe7', pw=None) wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('tb1qm2eh4787lwanrzr6pf0ekf5c7jnmghm2y9k529') # bootstrap wallet_online funding_tx = Transaction('01000000000101197a89cff51096b9dd4214cdee0eb90cb27a25477e739521d728a679724042730100000000fdffffff048096980000000000160014dab37af8fefbbb31887a0a5f9b2698f4a7b45f6a80969800000000001976a91405a20074ef7eb42c7c6fcd4f499faa699742783288ac809698000000000017a914b808938a8007bc54509cd946944c479c0fa6554f87131b2c0400000000160014a04dfdb9a9aeac3b3fada6f43c2a66886186e2440247304402204f5dbb9dda65eab26179f1ca7c37c8baf028153815085dd1bbb2b826296e3b870220379fcd825742d6e2bdff772f347b629047824f289a5499a501033f6c3495594901210363c9c98740fe0455c646215cea9b13807b758791c8af7b74e62968bef57ff8ae1e391400') funding_txid = funding_tx.txid() self.assertEqual('0a08ea26a49e2b80f253796d605b69e2d0403fac64bdf6f7db82ada4b7bb6b62', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1quk7ahlhr3qmjndy0uvu9y9hxfesrtahtta9ghm', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325340 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual('f8039bd85279f2b5698f15d47f2e338d067d09af391bd8a19467aa94d03f280c', tx.txid()) self.assertEqual('3b7cc3c3352bbb43ddc086487ac696e09f2863c3d9e8636721851b8008a83ffa', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_xprv_online_addr_p2pkh(self, mock_write): # compressed pubkey wallet_offline = WalletIntegrityHelper.create_standard_wallet( # bip39: "qwe", der: m/44'/1'/0' keystore.from_xprv('tprv8gfKwjuAaqtHgqxMh1tosAQ28XvBMkcY5NeFRA3pZMpz6MR4H4YZ3MJM4fvNPnRKeXR1Td2vQGgjorNXfo94WvT5CYDsPAqjHxSn436G1Eu'), gap_limit=4 ) wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('mg2jk6S5WGDhUPA8mLSxDLWpUoQnX1zzoG') # bootstrap wallet_online funding_tx = Transaction('01000000000101197a89cff51096b9dd4214cdee0eb90cb27a25477e739521d728a679724042730100000000fdffffff048096980000000000160014dab37af8fefbbb31887a0a5f9b2698f4a7b45f6a80969800000000001976a91405a20074ef7eb42c7c6fcd4f499faa699742783288ac809698000000000017a914b808938a8007bc54509cd946944c479c0fa6554f87131b2c0400000000160014a04dfdb9a9aeac3b3fada6f43c2a66886186e2440247304402204f5dbb9dda65eab26179f1ca7c37c8baf028153815085dd1bbb2b826296e3b870220379fcd825742d6e2bdff772f347b629047824f289a5499a501033f6c3495594901210363c9c98740fe0455c646215cea9b13807b758791c8af7b74e62968bef57ff8ae1e391400') funding_txid = funding_tx.txid() self.assertEqual('0a08ea26a49e2b80f253796d605b69e2d0403fac64bdf6f7db82ada4b7bb6b62', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1quk7ahlhr3qmjndy0uvu9y9hxfesrtahtta9ghm', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325340 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertFalse(tx.is_segwit()) self.assertEqual('e56da664631b8c666c6df38ec80c954c4ac3c4f56f040faf0070e4681e937fc4', tx.txid()) self.assertEqual('e56da664631b8c666c6df38ec80c954c4ac3c4f56f040faf0070e4681e937fc4', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_xprv_online_addr_p2wpkh_p2sh(self, mock_write): wallet_offline = WalletIntegrityHelper.create_standard_wallet( # bip39: "qwe", der: m/49'/1'/0' keystore.from_xprv('uprv8zHHrMQMQ26utWwNJ5MK2SXpB9hbmy7pbPaneii69xT8cZTyFpxQFxkknGWKP8dxBTZhzy7yP6cCnLrRCQjzJDk3G61SjZpxhFQuB2NR8a5'), gap_limit=4 ) wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('2NA2JbUVK7HGWUCK5RXSVNHrkgUYF8d9zV8') # bootstrap wallet_online funding_tx = Transaction('01000000000101197a89cff51096b9dd4214cdee0eb90cb27a25477e739521d728a679724042730100000000fdffffff048096980000000000160014dab37af8fefbbb31887a0a5f9b2698f4a7b45f6a80969800000000001976a91405a20074ef7eb42c7c6fcd4f499faa699742783288ac809698000000000017a914b808938a8007bc54509cd946944c479c0fa6554f87131b2c0400000000160014a04dfdb9a9aeac3b3fada6f43c2a66886186e2440247304402204f5dbb9dda65eab26179f1ca7c37c8baf028153815085dd1bbb2b826296e3b870220379fcd825742d6e2bdff772f347b629047824f289a5499a501033f6c3495594901210363c9c98740fe0455c646215cea9b13807b758791c8af7b74e62968bef57ff8ae1e391400') funding_txid = funding_tx.txid() self.assertEqual('0a08ea26a49e2b80f253796d605b69e2d0403fac64bdf6f7db82ada4b7bb6b62', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1quk7ahlhr3qmjndy0uvu9y9hxfesrtahtta9ghm', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325340 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual('7642816d051aa3b333b6564bb6e44fe3a5885bfe7db9860dfbc9973a5c9a6562', tx.txid()) self.assertEqual('9bb9949974954613945756c48ca5525cd5cba1b667ccb10c7a53e1ed076a1117', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_xprv_online_addr_p2wpkh(self, mock_write): wallet_offline = WalletIntegrityHelper.create_standard_wallet( # bip39: "qwe", der: m/84'/1'/0' keystore.from_xprv('vprv9K9hbuA23Bidgj1KRSHUZMa59jJLeZBpXPVn4RP7sBLArNhZxJjw4AX7aQmVTErDt4YFC11ptMLjbwxgrsH8GLQ1cx77KggWeVPeDBjr9xM'), gap_limit=4 ) wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('tb1qm2eh4787lwanrzr6pf0ekf5c7jnmghm2y9k529') # bootstrap wallet_online funding_tx = Transaction('01000000000101197a89cff51096b9dd4214cdee0eb90cb27a25477e739521d728a679724042730100000000fdffffff048096980000000000160014dab37af8fefbbb31887a0a5f9b2698f4a7b45f6a80969800000000001976a91405a20074ef7eb42c7c6fcd4f499faa699742783288ac809698000000000017a914b808938a8007bc54509cd946944c479c0fa6554f87131b2c0400000000160014a04dfdb9a9aeac3b3fada6f43c2a66886186e2440247304402204f5dbb9dda65eab26179f1ca7c37c8baf028153815085dd1bbb2b826296e3b870220379fcd825742d6e2bdff772f347b629047824f289a5499a501033f6c3495594901210363c9c98740fe0455c646215cea9b13807b758791c8af7b74e62968bef57ff8ae1e391400') funding_txid = funding_tx.txid() self.assertEqual('0a08ea26a49e2b80f253796d605b69e2d0403fac64bdf6f7db82ada4b7bb6b62', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, 'tb1quk7ahlhr3qmjndy0uvu9y9hxfesrtahtta9ghm', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325340 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx tx = wallet_offline.sign_transaction(tx_copy, password=None) self.assertTrue(tx.is_complete()) self.assertTrue(tx.is_segwit()) self.assertEqual('f8039bd85279f2b5698f15d47f2e338d067d09af391bd8a19467aa94d03f280c', tx.txid()) self.assertEqual('3b7cc3c3352bbb43ddc086487ac696e09f2863c3d9e8636721851b8008a83ffa', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_hd_multisig_online_addr_p2sh(self, mock_write): # 2-of-3 legacy p2sh multisig wallet_offline1 = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('blast uniform dragon fiscal ensure vast young utility dinosaur abandon rookie sure', '', True), keystore.from_xpub('tpubD6NzVbkrYhZ4YTPEgwk4zzr8wyo7pXGmbbVUnfYNtx6SgAMF5q3LN3Kch58P9hxGNsTmP7Dn49nnrmpE6upoRb1Xojg12FGLuLHkVpVtS44'), keystore.from_xpub('tpubD6NzVbkrYhZ4XJzYkhsCbDCcZRmDAKSD7bXi9mdCni7acVt45fxbTVZyU6jRGh29ULKTjoapkfFsSJvQHitcVKbQgzgkkYsAmaovcro7Mhf') ], '2of3', gap_limit=2 ) wallet_offline2 = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('cycle rocket west magnet parrot shuffle foot correct salt library feed song', '', True), keystore.from_xpub('tpubD6NzVbkrYhZ4YTPEgwk4zzr8wyo7pXGmbbVUnfYNtx6SgAMF5q3LN3Kch58P9hxGNsTmP7Dn49nnrmpE6upoRb1Xojg12FGLuLHkVpVtS44'), keystore.from_xpub('tpubD6NzVbkrYhZ4YARFMEZPckrqJkw59GZD1PXtQnw14ukvWDofR7Z1HMeSCxfYEZVvg4VdZ8zGok5VxHwdrLqew5cMdQntWc5mT7mh1CSgrnX') ], '2of3', gap_limit=2 ) wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('2N4z38eTKcWTZnfugCCfRyXtXWMLnn8HDfw') # bootstrap wallet_online funding_tx = Transaction('010000000001016207d958dc46508d706e4cd7d3bc46c5c2b02160e2578e5fad2efafc3927050301000000171600147a4fc8cdc1c2cf7abbcd88ef6d880e59269797acfdffffff02809698000000000017a91480c2353f6a7bc3c71e99e062655b19adb3dd2e48870d0916020000000017a914703f83ef20f3a52d908475dcad00c5144164d5a2870247304402203b1a5cb48cadeee14fa6c7bbf2bc581ca63104762ec5c37c703df778884cc5b702203233fa53a2a0bfbd85617c636e415da72214e359282cce409019319d031766c50121021112c01a48cc7ea13cba70493c6bffebb3e805df10ff4611d2bf559d26e25c04bf391400') funding_txid = funding_tx.txid() self.assertEqual('c59913a1fa9b1ef1f6928f0db490be67eeb9d7cb05aa565ee647e859642f3532', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, '2MuCQQHJNnrXzQzuqfUCfAwAjPqpyEHbgue', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325503 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx - first tx = wallet_offline1.sign_transaction(tx_copy, password=None) self.assertFalse(tx.is_complete()) tx = Transaction(tx.serialize()) # sign tx - second tx = wallet_offline2.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) tx = Transaction(tx.serialize()) self.assertEqual('010000000132352f6459e847e65e56aa05cbd7b9ee67be90b40d8f92f6f11e9bfaa11399c500000000fdfe0000483045022100cfe41e783629a2ad0b1f17cd2dbd69db05763fa7a22691131fa321ba3140d7cb02203fbda2ccc6212315464cd814d4e909b4f80a2361e3af0f9deda06478f91a0f3901483045022100b84fd63e957f2409558f63962fc91ba58334efde8b88ff53ca71da3d0fe7219702206001c6caeb30e18a7525fc72de0003e12646bf815b12fb132c1aadd6ffa1989c014c69522102afb4af9a91264e1c6dce3ebe5312801723270ac0ba8134b7b49129328fcb0f2821030b482838721a38d94847699fed8818b5c5f56500ef72f13489e365b65e5749cf2103e5db7969ae2f2576e6a061bf3bb2db16571e77ffb41e0b27170734359235cbce53aefdffffff02a02526000000000017a9141567b2578f300fa618ef0033611fd67087aff6d187585d72000000000017a91480c2353f6a7bc3c71e99e062655b19adb3dd2e4887bf391400', str(tx)) self.assertEqual('bb4c28af28b970522c56ff0482cd98c2b78a90bec578bcede8a9e5cbec6ef5e7', tx.txid()) self.assertEqual('bb4c28af28b970522c56ff0482cd98c2b78a90bec578bcede8a9e5cbec6ef5e7', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_hd_multisig_online_addr_p2wsh_p2sh(self, mock_write): # 2-of-2 p2sh-embedded segwit multisig wallet_offline1 = WalletIntegrityHelper.create_multisig_wallet( [ # bip39: finish seminar arrange erosion sunny coil insane together pretty lunch lunch rose, der: m/1234'/1'/0', p2wsh-p2sh multisig keystore.from_xprv('Uprv9CvELvByqm8k2dpecJVjgLMX1z5DufEjY4fBC5YvdGF5WjGCa7GVJJ2fYni1tyuF7Hw83E6W2ZBjAhaFLZv2ri3rEsubkCd5avg4EHKoDBN'), keystore.from_xpub('Upub5Qb8ik4Cnu8g97KLXKgVXHqY6tH8emQvqtBncjSKsyfTZuorPtTZgX7ovKKZHuuVGBVd1MTTBkWez1XXt2weN1sWBz6SfgRPQYEkNgz81QF') ], '2of2', gap_limit=2 ) wallet_offline2 = WalletIntegrityHelper.create_multisig_wallet( [ # bip39: square page wood spy oil story rebel give milk screen slide shuffle, der: m/1234'/1'/0', p2wsh-p2sh multisig keystore.from_xprv('Uprv9BbnKEXJxXaNvdEsRJ9VA9toYrSeFJh5UfGBpM2iKe8Uh7UhrM9K8ioL53s8gvCoGfirHHaqpABDAE7VUNw8LNU1DMJKVoWyeNKu9XcDC19'), keystore.from_xpub('Upub5RuakRisg8h3F7u7iL2k3UJFa1uiK7xauHamzTxYBbn4PXbM7eajr6M9Q2VCr6cVGhfhqWQqxnABvtSATuVM1xzxk4nA189jJwzaMn1QX7V') ], '2of2', gap_limit=2 ) wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('2MsHQRm1pNi6VsmXYRxYMcCTdPu7Xa1RyFe') # bootstrap wallet_online funding_tx = Transaction('0100000000010118d494d28e5c3bf61566ca0313e22c3b561b888a317d689cc8b47b947adebd440000000017160014aec84704ea8508ddb94a3c6e53f0992d33a2a529fdffffff020f0925000000000017a91409f7aae0265787a02de22839d41e9c927768230287809698000000000017a91400698bd11c38f887f17c99846d9be96321fbf989870247304402206b906369f4075ebcfc149f7429dcfc34e11e1b7bbfc85d1185d5e9c324be0d3702203ce7fc12fd3131920fbcbb733250f05dbf7d03e18a4656232ee69d5c54dd46bd0121028a4b697a37f3f57f6e53f90db077fa9696095b277454fda839c211d640d48649c0391400') funding_txid = funding_tx.txid() self.assertEqual('54356de9e156b85c8516fd4d51bdb68b5513f58b4a6147483978ae254627ee3e', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, '2N8CtJRwxb2GCaiWWdSHLZHHLoZy53CCyxf', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325504 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx - first tx = wallet_offline1.sign_transaction(tx_copy, password=None) self.assertFalse(tx.is_complete()) self.assertEqual('6a58a51591142429203b62b6ddf6b799a6926882efac229998c51bee6c3573eb', tx.txid()) tx = Transaction(tx.serialize()) # sign tx - second tx = wallet_offline2.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) tx = Transaction(tx.serialize()) self.assertEqual('010000000001013eee274625ae78394847614a8bf513558bb6bd514dfd16855cb856e1e96d355401000000232200206ee8d4bb1277b7dbe1d4e49b880993aa993f417a9101cb23865c7c7258732704fdffffff02a02526000000000017a914a4189ef02c95cfe36f8e880c6cb54dff0837b22687585d72000000000017a91400698bd11c38f887f17c99846d9be96321fbf98987040047304402205a9dd9eb5676196893fb08f60079a2e9f567ee39614075d8c5d9fab0f11cbbc7022039640855188ebb7bccd9e3f00b397a888766d42d00d006f1ca7457c15449285f014730440220234f6648c5741eb195f0f4cd645298a10ce02f6ef557d05df93331e21c4f58cb022058ce2af0de1c238c4a8dd3b3c7a9a0da6e381ddad7593cddfc0480f9fe5baadf0147522102975c00f6af579f9a1d283f1e5a43032deadbab2308aef30fb307c0cfe54777462102d3f47041b424a84898e315cc8ef58190f6aec79c178c12de0790890ba7166e9c52aec0391400', str(tx)) self.assertEqual('6a58a51591142429203b62b6ddf6b799a6926882efac229998c51bee6c3573eb', tx.txid()) self.assertEqual('96d0bca1001778c54e4c3a07929fab5562c5b5a23fd1ca3aa3870cc5df2bf97d', tx.wtxid()) @needs_test_with_all_ecc_implementations @mock.patch.object(storage.WalletStorage, '_write') def test_sending_offline_hd_multisig_online_addr_p2wsh(self, mock_write): # 2-of-3 p2wsh multisig wallet_offline1 = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('bitter grass shiver impose acquire brush forget axis eager alone wine silver', '', True), keystore.from_xpub('Vpub5fcdcgEwTJmbmqAktuK8Kyq92fMf7sWkcP6oqAii2tG47dNbfkGEGUbfS9NuZaRywLkHE6EmUksrqo32ZL3ouLN1HTar6oRiHpDzKMAF1tf'), keystore.from_xpub('Vpub5fjkKyYnvSS4wBuakWTkNvZDaBM2vQ1MeXWq368VJHNr2eT8efqhpmZ6UUkb7s2dwCXv2Vuggjdhk4vZVyiAQTwUftvff73XcUGq2NQmWra') ], '2of3', gap_limit=2 ) wallet_offline2 = WalletIntegrityHelper.create_multisig_wallet( [ keystore.from_seed('snow nest raise royal more walk demise rotate smooth spirit canyon gun', '', True), keystore.from_xpub('Vpub5fjkKyYnvSS4wBuakWTkNvZDaBM2vQ1MeXWq368VJHNr2eT8efqhpmZ6UUkb7s2dwCXv2Vuggjdhk4vZVyiAQTwUftvff73XcUGq2NQmWra'), keystore.from_xpub('Vpub5gSKXzxK7FeKQedu2q1z9oJWxqvX72AArW3HSWpEhc8othDH8xMDu28gr7gf17sp492BuJod8Tn7anjvJrKpETwqnQqX7CS8fcYyUtedEMk') ], '2of3', gap_limit=2 ) # ^ third seed: hedgehog sunset update estate number jungle amount piano friend donate upper wool wallet_online = WalletIntegrityHelper.create_imported_wallet(privkeys=False) wallet_online.import_address('tb1q83p6eqxkuvq4eumcha46crpzg4nj84s9p0hnynkxg8nhvfzqcc7q4erju6') # bootstrap wallet_online funding_tx = Transaction('0100000000010132352f6459e847e65e56aa05cbd7b9ee67be90b40d8f92f6f11e9bfaa11399c501000000171600142e5d579693b2a7679622935df94d9f3c84909b24fdffffff0280969800000000002200203c43ac80d6e3015cf378bf6bac0c22456723d6050bef324ec641e7762440c63c83717d010000000017a91441b772909ad301b41b76f4a3c5058888a7fe6f9a8702483045022100de54689f74b8efcce7fdc91e40761084686003bcd56c886ee97e75a7e803526102204dea51ae5e7d01bd56a8c336c64841f7fe02a8b101fa892e13f2d079bb14e6bf012102024e2f73d632c49f4b821ccd3b6da66b155427b1e5b1c4688cefd5a4b4bfa404c1391400') funding_txid = funding_tx.txid() self.assertEqual('643a7ab9083d0227dd9df314ce56b18d279e6018ff975079dfaab82cd7a66fa3', funding_txid) wallet_online.receive_tx_callback(funding_txid, funding_tx, TX_HEIGHT_UNCONFIRMED) # create unsigned tx outputs = [(bitcoin.TYPE_ADDRESS, '2MyoZVy8T1t94yLmyKu8DP1SmbWvnxbkwRA', 2500000)] tx = wallet_online.mktx(outputs=outputs, password=None, config=self.config, fee=5000) tx.set_rbf(True) tx.locktime = 1325505 self.assertFalse(tx.is_complete()) self.assertEqual(1, len(tx.inputs())) tx_copy = Transaction(tx.serialize()) self.assertTrue(wallet_online.is_mine(wallet_online.get_txin_address(tx_copy.inputs()[0]))) self.assertEqual(tx.txid(), tx_copy.txid()) # sign tx - first tx = wallet_offline1.sign_transaction(tx_copy, password=None) self.assertFalse(tx.is_complete()) self.assertEqual('32e946761b4e718c1fa8d044db9e72d5831f6395eb284faf2fb5c4af0743e501', tx.txid()) tx = Transaction(tx.serialize()) # sign tx - second tx = wallet_offline2.sign_transaction(tx, password=None) self.assertTrue(tx.is_complete()) tx = Transaction(tx.serialize()) self.assertEqual('01000000000101a36fa6d72cb8aadf795097ff18609e278db156ce14f39ddd27023d08b97a3a640000000000fdffffff02a02526000000000017a91447ee5a659f6ffb53f7e3afc1681b6415f3c00fa187585d7200000000002200203c43ac80d6e3015cf378bf6bac0c22456723d6050bef324ec641e7762440c63c04004730440220629d89626585f563202e6b38ceddc26ccd00737e0b7ee4239b9266ef9174ea2f02200b74828399a2e35ed46c9b484af4817438d5fea890606ebb201b821944db1fdc0147304402205d1a59c84c419992069e9764a7992abca6a812cc5dfd4f0d6515d4283e660ce802202597a38899f31545aaf305629bd488f36bf54e4a05fe983932cafbb3906efb8f016952210223f815ab09f6bfc8519165c5232947ae89d9d43d678fb3486f3b28382a2371fa210273c529c2c9a99592f2066cebc2172a48991af2b471cb726b9df78c6497ce984e2102aa8fc578b445a1e4257be6b978fcece92980def98dce0e1eb89e7364635ae94153aec1391400', str(tx)) self.assertEqual('32e946761b4e718c1fa8d044db9e72d5831f6395eb284faf2fb5c4af0743e501', tx.txid()) self.assertEqual('4376fa5f1f6cb37b1f3956175d3bd4ef6882169294802b250a3c672f3ff431c1', tx.wtxid()) class TestWalletHistory_SimpleRandomOrder(TestCaseForTestnet): transactions = { "0f4972c84974b908a58dda2614b68cf037e6c03e8291898c719766f213217b67": "01000000029d1bdbe67f0bd0d7bd700463f5c29302057c7b52d47de9e2ca5069761e139da2000000008b483045022100a146a2078a318c1266e42265a369a8eef8993750cb3faa8dd80754d8d541d5d202207a6ab8864986919fd1a7fd5854f1e18a8a0431df924d7a878ec3dc283e3d75340141045f7ba332df2a7b4f5d13f246e307c9174cfa9b8b05f3b83410a3c23ef8958d610be285963d67c7bc1feb082f168fa9877c25999963ff8b56b242a852b23e25edfeffffff9d1bdbe67f0bd0d7bd700463f5c29302057c7b52d47de9e2ca5069761e139da2010000008a47304402201c7fa37b74a915668b0244c01f14a9756bbbec1031fb69390bcba236148ab37e02206151581f9aa0e6758b503064c1e661a726d75c6be3364a5a121a8c12cf618f64014104dc28da82e141416aaf771eb78128d00a55fdcbd13622afcbb7a3b911e58baa6a99841bfb7b99bcb7e1d47904fda5d13fdf9675cdbbe73e44efcc08165f49bac6feffffff02b0183101000000001976a914ca14915184a2662b5d1505ce7142c8ca066c70e288ac005a6202000000001976a9145eb4eeaefcf9a709f8671444933243fbd05366a388ac54c51200", "2791cdc98570cc2b6d9d5b197dc2d002221b074101e3becb19fab4b79150446d": "010000000132201ff125888a326635a2fc6e971cd774c4d0c1a757d742d0f6b5b020f7203a050000006a47304402201d20bb5629a35b84ff9dd54788b98e265623022894f12152ac0e6158042550fe02204e98969e1f7043261912dd0660d3da64e15acf5435577fc02a00eccfe76b323f012103a336ad86546ab66b6184238fe63bb2955314be118b32fa45dd6bd9c4c5875167fdffffff0254959800000000001976a9148d2db0eb25b691829a47503006370070bc67400588ac80969800000000001976a914f96669095e6df76cfdf5c7e49a1909f002e123d088ace8ca1200", "2d216451b20b6501e927d85244bcc1c7c70598332717df91bb571359c358affd": "010000000001036cdf8d2226c57d7cc8485636d8e823c14790d5f24e6cf38ba9323babc7f6db2901000000171600143fc0dbdc2f939c322aed5a9c3544468ec17f5c3efdffffff507dce91b2a8731636e058ccf252f02b5599489b624e003435a29b9862ccc38c0200000017160014c50ff91aa2a790b99aa98af039ae1b156e053375fdffffff6254162cf8ace3ddfb3ec242b8eade155fa91412c5bde7f55decfac5793743c1010000008b483045022100de9599dcd7764ca8d4fcbe39230602e130db296c310d4abb7f7ae4d139c4d46402200fbfd8e6dc94d90afa05b0c0eab3b84feb465754db3f984fbf059447282771c30141045eecefd39fabba7b0098c3d9e85794e652bdbf094f3f85a3de97a249b98b9948857ea1e8209ee4f196a6bbcfbad103a38698ee58766321ba1cdee0cbfb60e7b2fdffffff01e85af70100000000160014e8d29f07cd5f813317bec4defbef337942d85d74024730440220218049aee7bbd34a7fa17f972a8d24a0469b0131d943ef3e30860401eaa2247402203495973f006e6ee6ae74a83228623029f238f37390ee4b587d95cdb1d1aaee9901210392ba263f3a2b260826943ff0df25e9ca4ef603b98b0a916242c947ae0626575f02473044022002603e5ceabb4406d11aedc0cccbf654dd391ce68b6b2228a40e51cf8129310d0220533743120d93be8b6c1453973935b911b0a2322e74708d23e8b5f90e74b0f192012103221b4ee0f508ba595fc1b9c2252ed9d03e99c73b97344dae93263c68834f034800ed161300", "31494e7e9f42f4bd736769b07cc602e2a1019617b2c72a03ec945b667aada78f": "0100000000010454022b1b4d3b45e7fcac468de2d6df890a9f41050c05d80e68d4b083f728e76a000000008b483045022100ea8fe74db2aba23ad36ac66aaa481bad2b4d1b3c331869c1d60a28ce8cfad43c02206fa817281b33fbf74a6dd7352bdc5aa1d6d7966118a4ad5b7e153f37205f1ae80141045f7ba332df2a7b4f5d13f246e307c9174cfa9b8b05f3b83410a3c23ef8958d610be285963d67c7bc1feb082f168fa9877c25999963ff8b56b242a852b23e25edfdffffff54022b1b4d3b45e7fcac468de2d6df890a9f41050c05d80e68d4b083f728e76a01000000171600146dfe07e12af3db7c715bf1c455f8517e19c361e7fdffffff54022b1b4d3b45e7fcac468de2d6df890a9f41050c05d80e68d4b083f728e76a020000006a47304402200b1fb89e9a772a8519294acd61a53a29473ce76077165447f49a686f1718db5902207466e2e8290f84114dc9d6c56419cb79a138f03d7af8756de02c810f19e4e03301210222bfebe09c2638cfa5aa8223fb422fe636ba9675c5e2f53c27a5d10514f49051fdffffff54022b1b4d3b45e7fcac468de2d6df890a9f41050c05d80e68d4b083f728e76a0300000000fdffffff018793140d000000001600144b3e27ddf4fc5f367421ee193da5332ef351b700000247304402207ba52959938a3853bcfd942d8a7e6a181349069cde3ea73dbde43fa9669b8d5302207a686b92073863203305cb5d5550d88bdab0d21b9e9761ba4a106ea3970e08d901210265c1e014112ed19c9f754143fb6a2ff89f8630d62b33eb5ae708c9ea576e61b50002473044022029e868a905aa3ecae6eafcbd5959aefff0e5f39c1fc7a131a174828806e74e5202202f0aaa7c3cb3d9a9d526e5428ce37c0f0af0d774aa30b09ded8bc2230e7ffaf2012102fe0104455dc52b1689bba130664e452642180eb865217acfc6997260b7d946ae22c71200", "336eee749da7d1c537fd5679157fae63005bfd4bb8cf47ae73600999cbc9beaa": "0100000000010232201ff125888a326635a2fc6e971cd774c4d0c1a757d742d0f6b5b020f7203a020000006a4730440220198c0ba2b2aefa78d8cca01401d408ecdebea5ac05affce36f079f6e5c8405ca02200eabb1b9a01ff62180cf061dfacedba6b2e07355841b9308de2d37d83489c7b80121031c663e5534fe2a6de816aded6bb9afca09b9e540695c23301f772acb29c64a05fdfffffffb28ff16811d3027a2405be68154be8fdaff77284dbce7a2314c4107c2c941600000000000fdffffff015e104f01000000001976a9146dfd56a0b5d0c9450d590ad21598ecfeaa438bd788ac000247304402207d6dc521e3a4577685535f098e5bac4601aa03658b924f30bf7afef1850e437e022045b76771d8b6ca1939352d6b759fca31029e5b2edffa44dc747fe49770e746cd012102c7f36d4ceed353b90594ebaf3907972b6d73289bdf4707e120de31ec4e1eb11679f31200", "3a6ed17d34c49dfdf413398e113cf5f71710d59e9f4050bbc601d513a77eb308": "010000000168091e76227e99b098ef8d6d5f7c1bb2a154dd49103b93d7b8d7408d49f07be0000000008a47304402202f683a63af571f405825066bd971945a35e7142a75c9a5255d364b25b7115d5602206c59a7214ae729a519757e45fdc87061d357813217848cf94df74125221267ac014104aecb9d427e10f0c370c32210fe75b6e72ccc4f415076cf1a6318fbed5537388862c914b29269751ab3a04962df06d96f5f4f54e393a0afcbfa44b590385ae61afdffffff0240420f00000000001976a9145f917fd451ca6448978ebb2734d2798274daf00b88aca8063d00000000001976a914e1232622a96a04f5e5a24ca0792bb9c28b089d6e88ace9ca1200", "475c149be20c8a73596fad6cb8861a5af46d4fcf8e26a9dbf6cedff7ff80b70d": "01000000013a7e6f19a963adc7437d2f3eb0936f1fc9ef4ba7e083e19802eb1111525a59c2000000008b483045022100958d3931051306489d48fe69b32561e0a16e82a2447c07be9d1069317084b5e502202f70c2d9be8248276d334d07f08f934ffeea83977ad241f9c2de954a2d577f94014104d950039cec15ad10ad4fb658873bc746148bc861323959e0c84bf10f8633104aa90b64ce9f80916ab0a4238e025dcddf885b9a2dd6e901fe043a433731db8ab4fdffffff02a086010000000000160014bbfab2cc3267cea2df1b68c392cb3f0294978ca922940d00000000001976a914760f657c67273a06cad5b1d757a95f4ed79f5a4b88ac4c8d1300", "56a65810186f82132cea35357819499468e4e376fca685c023700c75dc3bd216": "01000000000101614b142aeeb827d35d2b77a5b11f16655b6776110ddd9f34424ff49d85706cf90200000000fdffffff02784a4c00000000001600148464f47f35cbcda2e4e5968c5a3a862c43df65a1404b4c00000000001976a914c9efecf0ecba8b42dce0ae2b28e3ea0573d351c988ac0247304402207d8e559ed1f56cb2d02c4cb6c95b95c470f4b3cb3ce97696c3a58e39e55cd9b2022005c9c6f66a7154032a0bb2edc1af1f6c8f488bec52b6581a3a780312fb55681b0121024f83b87ac3440e9b30cec707b7e1461ecc411c2f45520b45a644655528b0a68ae9ca1200", "6ae728f783b0d4680ed8050c05419f0a89dfd6e28d46acfce7453b4d1b2b0254": "0100000000010496941b9f18710b39bacde890e39a7fa401e6bf49985857cb7adfb8a45147ef1e000000001716001441aec99157d762708339d7faf7a63a8c479ed84cfdffffff96941b9f18710b39bacde890e39a7fa401e6bf49985857cb7adfb8a45147ef1e0100000000fdffffff1a5d1e4ca513983635b0df49fd4f515c66dd26d7bff045cfbd4773aa5d93197f000000006a4730440220652145460092ef42452437b942cb3f563bf15ad90d572d0b31d9f28449b7a8dd022052aae24f58b8f76bd2c9cf165cc98623f22870ccdbef1661b6dbe01c0ef9010f01210375b63dd8e93634bbf162d88b25d6110b5f5a9638f6fe080c85f8b21c2199a1fdfdffffff1a5d1e4ca513983635b0df49fd4f515c66dd26d7bff045cfbd4773aa5d93197f010000008a47304402207517c52b241e6638a84b05385e0b3df806478c2e444f671ca34921f6232ee2e70220624af63d357b83e3abe7cdf03d680705df0049ec02f02918ee371170e3b4a73d014104de408e142c00615294813233cdfe9e7774615ae25d18ba4a1e3b70420bb6666d711464518457f8b947034076038c6f0cfc8940d85d3de0386e0ad88614885c7cfdffffff0480969800000000001976a9149cd3dfb0d87a861770ae4e268e74b45335cf00ab88ac809698000000000017a914f2a76207d7b54bd34282281205923841341d9e1f87002d3101000000001976a914b8d4651937cd7db5bcf5fc98e6d2d8cfa131e85088ac743db20a00000000160014c7d0df09e03173170aed0247243874c6872748ed02483045022100b932cda0aeb029922e126568a48c05d79317747dcd77e61dce44e190e140822002202d13f84338bb272c531c4086277ac11e166c59612f4aefa6e20f78455bdc09970121028e6808a8ac1e9ede621aaabfcad6f86662dbe0ace0236f078eb23c24bc88bd5e02483045022100d74a253262e3898626c12361ba9bb5866f9303b42eec0a55ced0578829e2e61e022059c08e61d90cd63c84de61c796c9d1bc1e2f8217892a7c07b383af357ddd7a730121028641e89822127336fc12ff99b1089eb1a124847639a0e98d17ff03a135ad578b000020c71200", "72419d187c61cfc67a011095566b374dc2c01f5397e36eafe68e40fc44474112": "0100000002677b2113f26697718c8991823ec0e637f08cb61426da8da508b97449c872490f000000008b4830450221009c50c0f56f34781dfa7b3d540ac724436c67ffdc2e5b2d5a395c9ebf72116ef802205a94a490ea14e4824f36f1658a384aeaecadd54839600141eb20375a49d476d1014104c291245c2ee3babb2a35c39389df56540867f93794215f743b9aa97f5ba114c4cdee8d49d877966728b76bc649bb349efd73adef1d77452a9aac26f8c51ae1ddfdffffff677b2113f26697718c8991823ec0e637f08cb61426da8da508b97449c872490f010000008b483045022100ae0b286493491732e7d3f91ab4ac4cebf8fe8a3397e979cb689e62d350fdcf2802206cf7adf8b29159dd797905351da23a5f6dab9b9dbf5028611e86ccef9ff9012e014104c62c4c4201d5c6597e5999f297427139003fdb82e97c2112e84452d1cfdef31f92dd95e00e4d31a6f5f9af0dadede7f6f4284b84144e912ff15531f36358bda7fdffffff019f7093030000000022002027ce908c4ee5f5b76b4722775f23e20c5474f459619b94040258290395b88afb6ec51200", "76bcf540b27e75488d95913d0950624511900ae291a37247c22d996bb7cde0b4": "0100000001f4ba9948cdc4face8315c7f0819c76643e813093ffe9fbcf83d798523c7965db000000006a473044022061df431a168483d144d4cffe1c5e860c0a431c19fc56f313a899feb5296a677c02200208474cc1d11ad89b9bebec5ec00b1e0af0adaba0e8b7f28eed4aaf8d409afb0121039742bf6ab70f12f6353e9455da6ed88f028257950450139209b6030e89927997fdffffff01d4f84b00000000001976a9140b93db89b6bf67b5c2db3370b73d806f458b3d0488ac0a171300", "7f19935daa7347bdcf45f0bfd726dd665c514ffd49dfb035369813a54c1e5d1a": "01000000000102681b6a8dd3a406ee10e4e4aece3c2e69f6680c02f53157be6374c5c98322823a00000000232200209adfa712053a06cc944237148bcefbc48b16eb1dbdc43d1377809bcef1bea9affdffffff681b6a8dd3a406ee10e4e4aece3c2e69f6680c02f53157be6374c5c98322823a0100000023220020f40ed2e3fbffd150e5b74f162c3ce5dae0dfeba008a7f0f8271cf1cf58bfb442fdffffff02801d2c04000000001976a9140cc01e19090785d629cdcc98316f328df554de4f88ac6d455d05000000001976a914b9e828990a8731af4527bcb6d0cddf8d5ffe90ce88ac040047304402206eb65bd302eefae24eea05781e8317503e68584067d35af028a377f0751bb55b0220226453d00db341a4373f1bcac2391f886d3a6e4c30dd15133d1438018d2aad24014730440220343e578591fab0236d28fb361582002180d82cb1ba79eec9139a7a9519fca4260220723784bd708b4a8ed17bb4b83a5fd2e667895078e80eec55119015beb3592fd2016952210222eca5665ed166d090a5241d9a1eb27a92f85f125aaf8df510b2b5f701f3f534210227bca514c22353a7ae15c61506522872afecf10df75e599aabe4d562d0834fce2103601d7d49bada5a57a4832eafe4d1f1096d7b0b051de4a29cd5fc8ad62865e0a553ae0400483045022100b15ea9daacd809eb4d783a1449b7eb33e2965d4229e1a698db10869299dddc670220128871ffd27037a3e9dac6748ce30c14b145dd7f9d56cc9dcde482461fb6882601483045022100cb659e1de65f8b87f64d1b9e62929a5d565bbd13f73a1e6e9dd5f4efa024b6560220667b13ce2e1a3af2afdcedbe83e2120a6e8341198a79efb855b8bc5f93b4729f0169522102d038600af253cf5019f9d5637ca86763eca6827ed7b2b7f8cc6326dffab5eb68210315cdb32b7267e9b366fb93efe29d29705da3db966e8c8feae0c8eb51a7cf48e82103f0335f730b9414acddad5b3ee405da53961796efd8c003e76e5cd306fcc8600c53ae1fc71200", "9de08bcafc602a3d2270c46cbad1be0ef2e96930bec3944739089f960652e7cb": "010000000001013409c10fd732d9e4b3a9a1c4beb511fa5eb32bc51fd169102a21aa8519618f800000000000fdffffff0640420f00000000001976a9149cd3dfb0d87a861770ae4e268e74b45335cf00ab88ac40420f00000000001976a9149cd3dfb0d87a861770ae4e268e74b45335cf00ab88ac40420f00000000001976a9149cd3dfb0d87a861770ae4e268e74b45335cf00ab88ac80841e00000000001976a9149cd3dfb0d87a861770ae4e268e74b45335cf00ab88ac64064a000000000016001469825d422ca80f2a5438add92d741c7df45211f280969800000000001976a9149cd3dfb0d87a861770ae4e268e74b45335cf00ab88ac02483045022100b4369b18bccb74d72b6a38bd6db59122a9e8af3356890a5ecd84bdb8c7ffe317022076a5aa2b817be7b3637d179106fccebb91acbc34011343c8e8177acc2da4882e0121033c8112bbf60855f4c3ae489954500c4b8f3408665d8e1f63cf3216a76125c69865281300", "a29d131e766950cae2e97dd4527b7c050293c2f5630470bdd7d00b7fe6db1b9d": "010000000400899af3606e93106a5d0f470e4e2e480dfc2fd56a7257a1f0f4d16fd5961a0f000000006a47304402205b32a834956da303f6d124e1626c7c48a30b8624e33f87a2ae04503c87946691022068aa7f936591fb4b3272046634cf526e4f8a018771c38aff2432a021eea243b70121034bb61618c932b948b9593d1b506092286d9eb70ea7814becef06c3dfcc277d67fdffffff4bc2dcc375abfc7f97d8e8c482f4c7b8bc275384f5271678a32c35d955170753000000006b483045022100de775a580c6cb47061d5a00c6739033f468420c5719f9851f32c6992610abd3902204e6b296e812bb84a60c18c966f6166718922780e6344f243917d7840398eb3db0121025d7317c6910ad2ad3d29a748c7796ddf01e4a8bc5e3bf2a98032f0a20223e4aafdffffff4bc2dcc375abfc7f97d8e8c482f4c7b8bc275384f5271678a32c35d955170753010000006a4730440220615a26f38bf6eb7043794c08fb81f273896b25783346332bec4de8dfaf7ed4d202201c2bc4515fc9b07ded5479d5be452c61ce785099f5e33715e9abd4dbec410e11012103caa46fcb1a6f2505bf66c17901320cc2378057c99e35f0630c41693e97ebb7cffdffffff4bc2dcc375abfc7f97d8e8c482f4c7b8bc275384f5271678a32c35d955170753030000006b483045022100c8fba762dc50041ee3d5c7259c01763ed913063019eefec66678fb8603624faa02200727783ccbdbda8537a6201c63e30c0b2eb9afd0e26cb568d885e6151ef2a8540121027254a862a288cfd98853161f575c49ec0b38f79c3ef0bf1fb89986a3c36a8906fdffffff0240787d01000000001976a9149cd3dfb0d87a861770ae4e268e74b45335cf00ab88ac3bfc1502000000001976a914c30f2af6a79296b6531bf34dba14c8419be8fb7d88ac52c51200", "c1433779c5faec5df5e7bdc51214a95f15deeab842c23efbdde3acf82c165462": "0100000003aabec9cb99096073ae47cfb84bfd5b0063ae7f157956fd37c5d1a79d74ee6e33000000008b4830450221008136fc880d5e24fdd9d2a43f5085f374fef013b814f625d44a8075104981d92a0220744526ec8fc7887c586968f22403f0180d54c9b7ff8db9b553a3c4497982e8250141047b8b4c91c5a93a1f2f171c619ca41770427aa07d6de5130c3ba23204b05510b3bd58b7a1b35b9c4409104cfe05e1677fc8b51c03eac98b206e5d6851b31d2368fdffffff16d23bdc750c7023c085a6fc76e3e468944919783535ea2c13826f181058a656010000008a47304402204148410f2d796b1bb976b83904167d28b65dcd7c21b3876022b4fa70abc86280022039ea474245c3dc8cd7e5a572a155df7a6a54496e50c73d9fed28e76a1cf998c00141044702781daed201e35aa07e74d7bda7069e487757a71e3334dc238144ad78819de4120d262e8488068e16c13eea6092e3ab2f729c13ef9a8c42136d6365820f7dfdffffff68091e76227e99b098ef8d6d5f7c1bb2a154dd49103b93d7b8d7408d49f07be0010000008b4830450221008228af51b61a4ee09f58b4a97f204a639c9c9d9787f79b2fc64ea54402c8547902201ed81fca828391d83df5fbd01a3fa5dd87168c455ed7451ba8ccb5bf06942c3b0141046fcdfab26ac08c827e68328dbbf417bbe7577a2baaa5acc29d3e33b3cc0c6366df34455a9f1754cb0952c48461f71ca296b379a574e33bcdbb5ed26bad31220bfdffffff0210791c00000000001976a914a4b991e7c72996c424fe0215f70be6aa7fcae22c88ac80c3c901000000001976a914b0f6e64ea993466f84050becc101062bb502b4e488ac7af31200", "c2595a521111eb0298e183e0a74befc91f6f93b03e2f7d43c7ad63a9196f7e3a": "01000000018557003cb450f53922f63740f0f77db892ef27e15b2614b56309bfcee96a0ad3010000006a473044022041923c905ae4b5ed9a21aa94c60b7dbcb8176d58d1eb1506d9fb1e293b65ce01022015d6e9d2e696925c6ad46ce97cc23dec455defa6309b839abf979effc83b8b160121029332bf6bed07dcca4be8a5a9d60648526e205d60c75a21291bffcdefccafdac3fdffffff01c01c0f00000000001976a914a2185918aa1006f96ed47897b8fb620f28a1b09988ac01171300", "e07bf0498d40d7b8d7933b1049dd54a1b21b7c5f6d8def98b0997e22761e0968": "01000000016d445091b7b4fa19cbbee30141071b2202d0c27d195b9d6d2bcc7085c9cd9127010000008b483045022100daf671b52393af79487667eddc92ebcc657e8ae743c387b25d1c1a2e19c7a4e7022015ef2a52ea7e94695de8898821f9da539815775516f18329896e5fc52a3563b30141041704a3daafaace77c8e6e54cf35ed27d0bf9bb8bcd54d1b955735ff63ec54fe82a80862d455c12e739108b345d585014bf6aa0cbd403817c89efa18b3c06d6b5fdffffff02144a4c00000000001976a9148942ac692ace81019176c4fb0ac408b18b49237f88ac404b4c00000000001976a914dd36d773acb68ac1041bc31b8a40ee504b164b2e88ace9ca1200", "e453e7346693b507561691b5ea73f8eba60bfc8998056226df55b2fac88ba306": "010000000125af87b0c2ebb9539d644e97e6159ccb8e1aa80fe986d01f60d2f3f37f207ae8010000008b483045022100baed0747099f7b28a5624005d50adf1069120356ac68c471a56c511a5bf6972b022046fbf8ec6950a307c3c18ca32ad2955c559b0d9bbd9ec25b64f4806f78cadf770141041ea9afa5231dc4d65a2667789ebf6806829b6cf88bfe443228f95263730b7b70fb8b00b2b33777e168bcc7ad8e0afa5c7828842794ce3814c901e24193700f6cfdffffff02a0860100000000001976a914ade907333744c953140355ff60d341cedf7609fd88ac68830a00000000001976a9145d48feae4c97677e4ca7dcd73b0d9fd1399c962b88acc9cc1300", "e87a207ff3f3d2601fd086e90fa81a8ecb9c15e6974e649d53b9ebc2b087af25": "01000000010db780fff7dfcef6dba9268ecf4f6df45a1a86b86cad6f59738a0ce29b145c47010000008a47304402202887ec6ec200e4e2b4178112633011cbdbc999e66d398b1ff3998e23f7c5541802204964bd07c0f18c48b7b9c00fbe34c7bc035efc479e21a4fa196027743f06095f0141044f1714ed25332bb2f74be169784577d0838aa66f2374f5d8cbbf216063626822d536411d13cbfcef1ff3cc1d58499578bc4a3c4a0be2e5184b2dd7963ef67713fdffffff02a0860100000000001600145bbdf3ba178f517d4812d286a40c436a9088076e6a0b0c00000000001976a9143fc16bef782f6856ff6638b1b99e4d3f863581d388acfbcb1300" } txid_list = sorted(list(transactions)) @classmethod def create_old_wallet(cls): ks = keystore.from_old_mpk('e9d4b7866dd1e91c862aebf62a49548c7dbf7bcc6e4b7b8c9da820c7737968df9c09d5a3e271dc814a29981f81b3faaf2737b551ef5dcc6189cf0f8252c442b3') # seed words: powerful random nobody notice nothing important anyway look away hidden message over w = WalletIntegrityHelper.create_standard_wallet(ks, gap_limit=20) # some txns are beyond gap limit: w.create_new_address(for_change=True) return w @mock.patch.object(storage.WalletStorage, '_write') def test_restoring_old_wallet_txorder1(self, mock_write): w = self.create_old_wallet() for i in [2, 12, 7, 9, 11, 10, 16, 6, 17, 1, 13, 15, 5, 8, 4, 0, 14, 18, 3]: tx = Transaction(self.transactions[self.txid_list[i]]) w.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual(27633300, sum(w.get_balance())) @mock.patch.object(storage.WalletStorage, '_write') def test_restoring_old_wallet_txorder2(self, mock_write): w = self.create_old_wallet() for i in [9, 18, 2, 0, 13, 3, 1, 11, 4, 17, 7, 14, 12, 15, 10, 8, 5, 6, 16]: tx = Transaction(self.transactions[self.txid_list[i]]) w.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual(27633300, sum(w.get_balance())) @mock.patch.object(storage.WalletStorage, '_write') def test_restoring_old_wallet_txorder3(self, mock_write): w = self.create_old_wallet() for i in [5, 8, 17, 0, 9, 10, 12, 3, 15, 18, 2, 11, 14, 7, 16, 1, 4, 6, 13]: tx = Transaction(self.transactions[self.txid_list[i]]) w.receive_tx_callback(tx.txid(), tx, TX_HEIGHT_UNCONFIRMED) self.assertEqual(27633300, sum(w.get_balance())) class TestWalletHistory_EvilGapLimit(TestCaseForTestnet): transactions = { # txn A: "511a35e240f4c8855de4c548dad932d03611a37e94e9203fdb6fc79911fe1dd4": "010000000001018aacc3c8f98964232ebb74e379d8ff4e800991eecfcf64bd1793954f5e50a8790100000000fdffffff0340420f0000000000160014dbf321e905d544b54b86a2f3ed95b0ac66a3ddb0ff0514000000000016001474f1c130d3db22894efb3b7612b2c924628d0d7e80841e000000000016001488492707677190c073b6555fb08d37e91bbb75d802483045022100cf2904e09ea9d2670367eccc184d92fcb8a9b9c79a12e4efe81df161077945db02203530276a3401d944cf7a292e0660f36ee1df4a1c92c131d2c0d31d267d52524901210215f523a412a5262612e1a5ef9842dc864b0d73dc61fb4c6bfd480a867bebb1632e181400", # txn B: "fde0b68938709c4979827caa576e9455ded148537fdb798fd05680da64dc1b4f": "01000000000101a317998ac6cc717de17213804e1459900fe257b9f4a3b9b9edd29806728277530100000000fdffffff03c0c62d00000000001600149543301687b1ca2c67718d55fbe10413c73ddec200093d00000000001600141bc12094a4475dcfbf24f9920dafddf9104ca95b3e4a4c0000000000160014b226a59f2609aa7da4026fe2c231b5ae7be12ac302483045022100f1082386d2ce81612a3957e2801803938f6c0066d76cfbd853918d4119f396df022077d05a2b482b89707a8a600013cb08448cf211218a462f2a23c2c0d80a8a0ca7012103f4aac7e189de53d95e0cb2e45d3c0b2be18e93420734934c61a6a5ad88dd541033181400", # txn C: "268fce617aaaa4847835c2212b984d7b7741fdab65de22813288341819bc5656": "010000000001014f1bdc64da8056d08f79db7f5348d1de55946e57aa7c8279499c703889b6e0fd0100000000fdffffff0260e316000000000016001445e9879cf7cd5b4a15df7ddcaf5c6dca0e1508bacc242600000000001600141bc12094a4475dcfbf24f9920dafddf9104ca95b02483045022100ae3618912f341fefee11b67e0047c47c88c4fa031561c3fafe993259dd14d846022056fa0a5b5d8a65942fa68bcc2f848fd71fa455ba42bc2d421b67eb49ba62aa4e01210394d8f4f06c2ea9c569eb050c897737a7315e7f2104d9b536b49968cc89a1f11033181400", } @classmethod def create_wallet(cls): ks = keystore.from_xpub('vpub5Vhmk4dEJKanDTTw6immKXa3thw45u3gbd1rPYjREB6viP13sVTWcH6kvbR2YeLtGjradr6SFLVt9PxWDBSrvw1Dc1nmd3oko3m24CQbfaJ') # seed words: nephew work weather maze pyramid employ check permit garment scene kiwi smooth w = WalletIntegrityHelper.create_standard_wallet(ks, gap_limit=20) return w @mock.patch.object(storage.WalletStorage, '_write') def test_restoring_wallet_txorder1(self, mock_write): w = self.create_wallet() w.storage.put('stored_height', 1316917 + 100) for txid in self.transactions: tx = Transaction(self.transactions[txid]) w.transactions[tx.txid()] = tx # txn A is an external incoming txn paying to addr (3) and (15) # txn B is an external incoming txn paying to addr (4) and (25) # txn C is an internal transfer txn from addr (25) -- to -- (1) and (25) w.receive_history_callback('tb1qgh5c088he4d559wl0hw27hrdeg8p2z96pefn4q', # HD index 1 [('268fce617aaaa4847835c2212b984d7b7741fdab65de22813288341819bc5656', 1316917)], {}) w.synchronize() w.receive_history_callback('tb1qm0ejr6g964zt2jux5te7m9ds43n28hdsdz9ull', # HD index 3 [('511a35e240f4c8855de4c548dad932d03611a37e94e9203fdb6fc79911fe1dd4', 1316912)], {}) w.synchronize() w.receive_history_callback('tb1qj4pnq958k89zcem3342lhcgyz0rnmhkzl6x0cl', # HD index 4 [('fde0b68938709c4979827caa576e9455ded148537fdb798fd05680da64dc1b4f', 1316917)], {}) w.synchronize() w.receive_history_callback('tb1q3pyjwpm8wxgvquak240mprfhaydmkawcsl25je', # HD index 15 [('511a35e240f4c8855de4c548dad932d03611a37e94e9203fdb6fc79911fe1dd4', 1316912)], {}) w.synchronize() w.receive_history_callback('tb1qr0qjp99ygawul0eylxfqmt7alygye22mj33vej', # HD index 25 [('fde0b68938709c4979827caa576e9455ded148537fdb798fd05680da64dc1b4f', 1316917), ('268fce617aaaa4847835c2212b984d7b7741fdab65de22813288341819bc5656', 1316917)], {}) w.synchronize() self.assertEqual(9999788, sum(w.get_balance()))
py
1a4fff7ab0010b29843087a4b82536be24319609
from PyQt5.QtWidgets import * from PyQt5.QtCore import * import os import sqlite3 import random from panel import Ui_quiz # Questions Database conn = sqlite3.connect('questions.db') c = conn.cursor() # User information Database conn2 = sqlite3.connect('info_user.db') c2 = conn2.cursor() c2.execute('''CREATE TABLE IF NOT EXISTS level( level text )''') conn2.commit() # default time question time = 8 # answer question variable answer_question = 0 check_answer = True # Page status variable (question page/other page) status_question = False # level variable level = 0 # check buy time and wrong option status_buy_time = True status_buy_option = True class Root(QMainWindow): def __init__(self): global level QMainWindow.__init__(self) self.ui = Ui_quiz() self.ui.setupUi(self) self.oldPos = [] self.show() # set timer self.timer = QTimer(self) self.timer.timeout.connect(self.timer_func) self.timer.start(1000) # set info user self.ui.username.setText(os.getlogin()) self.ui.profile.setText(str(os.getlogin())[0].lower()) self.ui.username2.setText(os.getlogin()) # Set level try: c2.execute('SELECT * FROM level') level = c2.fetchone()[0] self.ui.level.setText(level) self.ui.level2.setText(level) except: c2.execute('INSERT INTO level VALUES(1)') conn2.commit() # Set Button self.ui.letsgo.clicked.connect(lambda: self.ui.pages.setCurrentWidget(self.ui.select)) self.ui.tech.clicked.connect(self.tech) self.ui.sport.clicked.connect(self.sport) self.ui.info.clicked.connect(self.info) self.ui.cinema.clicked.connect(self.cinema) self.ui.math.clicked.connect(self.math) self.ui.nature.clicked.connect(self.nature) # set option self.ui.one.clicked.connect(self.one) self.ui.two.clicked.connect(self.two) self.ui.three.clicked.connect(self.three) self.ui.four.clicked.connect(self.four) # set Button end question self.ui.end.clicked.connect(lambda: self.ui.pages.setCurrentWidget(self.ui.select)) self.ui.end.clicked.connect(self.end_question) self.ui.end2.clicked.connect(lambda: self.ui.pages.setCurrentWidget(self.ui.select)) self.ui.end2.clicked.connect(self.end_question) # help user self.ui.buy_option.clicked.connect(self.wrong_option) self.ui.buy_time.clicked.connect(self.buy_time) def mousePressEvent(self, evt): self.oldPos = evt.globalPos() def mouseMoveEvent(self, evt): delta = QPoint(evt.globalPos() - self.oldPos) self.move(self.x() + delta.x(), self.y() + delta.y()) self.oldPos = evt.globalPos() # Technology category def tech(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.tech) self.ui.next2.clicked.connect(self.tech) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM tech') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 # Sports category def sport(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.sport) self.ui.next2.clicked.connect(self.sport) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM Football') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 def info(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.info) self.ui.next2.clicked.connect(self.info) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM information') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 def cinema(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.cinema) self.ui.next2.clicked.connect(self.cinema) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM cinema') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 def math(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.math) self.ui.next2.clicked.connect(self.math) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM math') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 def nature(self): global conn global c global time global check_answer global status_question self.ui.next.clicked.connect(self.nature) self.ui.next2.clicked.connect(self.nature) self.ui.pages.setCurrentWidget(self.ui.question) c.execute('SELECT * FROM nature') questions = c.fetchall() tedad = len(questions) ran = random.randrange(0, tedad) questions = questions[ran] self.set_qu(questions[0], questions[1], questions[2], questions[3], questions[4], questions[5]) check_answer = True status_question = True time = 8 # Set option questions def set_qu(self, question, one, two, three, four, answer): global answer_question global check_answer global status_buy_option global status_buy_time # clear Ui self.ui.quest.clear() self.ui.quest_2.clear() status_buy_time = True status_buy_option = True self.ui.line1.hide() self.ui.line2.hide() self.ui.line3.hide() self.ui.line4.hide() if len(question) <= 45: self.ui.quest.setText(question) self.ui.quest_2.clear() else: self.ui.quest.setText(question[:40]) self.ui.quest_2.setText(question[40:]) self.ui.quest_win.setText(question) self.ui.quest_lost.setText(question) self.ui.one.setText(one) self.ui.two.setText(two) self.ui.three.setText(three) self.ui.four.setText(four) answer_question = answer if answer == 1: self.ui.answer_win.setText(one) self.ui.answer_lost.setText(one) elif answer == 2: self.ui.answer_win.setText(two) self.ui.answer_lost.setText(two) elif answer == 3: self.ui.answer_win.setText(three) self.ui.answer_lost.setText(three) else: self.ui.answer_win.setText(four) self.ui.answer_lost.setText(four) # One second timer def timer_func(self): global time global status_question global level if status_question: # timer time -= 1 if len(str(time)) == 2: self.ui.time.setText('00:'+str(time)) else: self.ui.time.setText('00:0' + str(time)) if time == 0 and check_answer: self.ui.pages.setCurrentWidget(self.ui.False_answer) status_question = False c2.execute('SELECT * FROM level') level = c2.fetchone()[0] self.ui.level.setText(level) self.ui.level2.setText(level) # Option one to four def one(self): self.check(1) def two(self): self.check(2) def three(self): self.check(3) def four(self): self.check(4) # Check user answer def check(self, user_answer): global check_answer global answer_question global level if user_answer == answer_question: check_answer = False self.ui.pages.setCurrentWidget(self.ui.True_answer) new_level = float(level) + 1 sql_update_query = f"""Update level set level = {new_level} where level = {level}""" c2.execute(sql_update_query) conn2.commit() else: self.ui.pages.setCurrentWidget(self.ui.False_answer) # help user (show wrong option) def wrong_option(self): global answer_question global level global status_buy_option if status_buy_option: status_buy_option = False if answer_question != 1: self.ui.line1.show() elif answer_question != 2: self.ui.line2.show() elif answer_question != 3: self.ui.line3.show() elif answer_question != 4: self.ui.line4.show() new_level = float(level) - 0.5 sql_update_query = f"""Update level set level = {new_level} where level = {level}""" c2.execute(sql_update_query) conn2.commit() # buy time @staticmethod def buy_time(): global time global level global status_buy_time if status_buy_time: time += 5 status_buy_time = False new_level = float(level) - 0.5 sql_update_query = f"""Update level set level = {new_level} where level = {level}""" c2.execute(sql_update_query) conn2.commit() # end question @staticmethod def end_question(): global status_question status_question = False if __name__ == '__main__': import sys app = QApplication(sys.argv) root = Root() sys.exit(app.exec_())
py
1a4fffb9234b88c945fde1713d3e946128800487
import cv2 import numpy as np def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.299, 0.587, 0.114]) def convert_2d_to_3d(u, v, z, K): v0 = K[1][2] u0 = K[0][2] fy = K[1][1] fx = K[0][0] x = (u - u0) * z / fx y = (v - v0) * z / fy return (x, y, z) def feature_match(img1, img2): r''' Find features on both images and match them pairwise ''' max_n_features = 1000 # max_n_features = 500 use_flann = False # better not use flann detector = cv2.xfeatures2d.SIFT_create(max_n_features) # find the keypoints and descriptors with SIFT kp1, des1 = detector.detectAndCompute(img1, None) kp2, des2 = detector.detectAndCompute(img2, None) if (des1 is None) or (des2 is None): return [], [] des1 = des1.astype(np.float32) des2 = des2.astype(np.float32) if use_flann: # FLANN parameters FLANN_INDEX_KDTREE = 0 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5) search_params = dict(checks=50) flann = cv2.FlannBasedMatcher(index_params, search_params) matches = flann.knnMatch(des1, des2, k=2) else: matcher = cv2.DescriptorMatcher().create('BruteForce') matches = matcher.knnMatch(des1, des2, k=2) good = [] pts1 = [] pts2 = [] # ratio test as per Lowe's paper for i, (m, n) in enumerate(matches): if m.distance < 0.8 * n.distance: good.append(m) pts2.append(kp2[m.trainIdx].pt) pts1.append(kp1[m.queryIdx].pt) pts1 = np.int32(pts1) pts2 = np.int32(pts2) return pts1, pts2 def get_pose_pnp(rgb_curr, rgb_near, depth_curr, K): gray_curr = rgb2gray(rgb_curr).astype(np.uint8) gray_near = rgb2gray(rgb_near).astype(np.uint8) height, width = gray_curr.shape pts2d_curr, pts2d_near = feature_match(gray_curr, gray_near) # feature matching # dilation of depth kernel = np.ones((4, 4), np.uint8) depth_curr_dilated = cv2.dilate(depth_curr, kernel) # extract 3d pts pts3d_curr = [] pts2d_near_filtered = [ ] # keep only feature points with depth in the current frame for i, pt2d in enumerate(pts2d_curr): # print(pt2d) u, v = pt2d[0], pt2d[1] z = depth_curr_dilated[v, u] if z > 0: xyz_curr = convert_2d_to_3d(u, v, z, K) pts3d_curr.append(xyz_curr) pts2d_near_filtered.append(pts2d_near[i]) # the minimal number of points accepted by solvePnP is 4: if len(pts3d_curr) >= 4 and len(pts2d_near_filtered) >= 4: pts3d_curr = np.expand_dims(np.array(pts3d_curr).astype(np.float32), axis=1) pts2d_near_filtered = np.expand_dims( np.array(pts2d_near_filtered).astype(np.float32), axis=1) # ransac ret = cv2.solvePnPRansac(pts3d_curr, pts2d_near_filtered, np.asarray(K), distCoeffs=None) success = ret[0] rotation_vector = ret[1] translation_vector = ret[2] return (success, rotation_vector, translation_vector) else: return (0, None, None)
py
1a5000fb5925a04a1cd7e75c9ff3e4fe189f940c
from django.test import TestCase from model_mommy import mommy from ..models import Ayah, Sura class TestQuranTextEndpointsURI(TestCase): @classmethod def setUpTestData(cls): cls.sura = mommy.make(Sura, name='Al-Fateha', index=1) cls.ayah = mommy.make(Ayah, number=1, sura=cls.sura, text='بسم الله الرحمن الرحيم') def test_sura_list_url_with_tail_slash(self): url_with_tail_slash = '/quran/' self.assertEqual(200, self.client.get(url_with_tail_slash).status_code) def test_sura_list_url_without_tail_slash(self): url_without_tail_slash = '/quran' # Root URL can't accept url without tail self.assertEqual(301, self.client.get(url_without_tail_slash).status_code) def test_sura_details_url_with_tail_slash(self): url_with_tail_slash = '/quran/1/1/' self.assertEqual(200, self.client.get(url_with_tail_slash).status_code) def test_sura_details_url_without_tail_slash(self): url_without_tail_slash = '/quran/1/1' self.assertEqual(200, self.client.get(url_without_tail_slash).status_code)
py
1a50012d034f082de66cbf5fcb8981c4ebebac5f
from selenium.webdriver.remote.webdriver import WebDriver from .globals import ENDPOINTS def has_needed_cookies(driver: WebDriver): """ Callback function to check if important cookies exists in a webdriver """ kosogha = driver.get_cookie("kosogha") ci_session = driver.get_cookie("ci_session") cookie = driver.get_cookie("cookie") return kosogha and ci_session and cookie def recaptcha_ok(driver: WebDriver) -> bool: """ Check if recaptcha is checked """ recaptcha_anchor = driver.find_element_by_id("recaptcha-anchor") aria_checked_attrib = recaptcha_anchor.get_attribute("aria-checked") return "false" not in aria_checked_attrib def redirected_into_welcome_page(driver: WebDriver) -> bool: return driver.current_url == ENDPOINTS["welcome_page"]
py
1a500193f55dc60f6cea55c762dfa8e46ce05ff2
''' Various classes and functions for handling Regier and colleagues' communicative cost model. ''' import numpy as np from scipy.spatial.distance import pdist, squareform class Partition: ''' A partition object represents a partition of an n-dimensional space. To create a partition, pass a list like [[0,0,1,1], [0,0,1,1]], where the structure of the lists represents the space (here 2x4), and the numbers represent the categories (here category 0 and 1). Passing a tuple like (2,4) creates a trivial partition of given dimensionality. Various iteration methods are available for traversing the partition. ''' @property def shape(self): return self._partition.shape @property def size(self): return self._partition.size def __init__(self, partition): if isinstance(partition, tuple): self._partition = np.zeros(partition, dtype=int) else: self._partition = np.array(partition, dtype=int) self._boolean_matrix = None def __repr__(self): ''' Provides textual description of the partition object. ''' if len(self.shape) == 1: return 'Partition[length=%i, n_categories=%i]' % (self.shape[0], self.__len__()) return 'Partition[shape=%s, n_categories=%i]' % ('x'.join(map(str, self.shape)), self.__len__()) def __str__(self): ''' Provides printable representation of the partition object. ''' return self._partition.__str__() def __len__(self): ''' The length of a partition is the number of categories it contains. ''' return np.unique(self._partition).size def __getitem__(self, key): ''' Pass a tuple to get the category memebership of a point. Pass an integer to get a list of points that belong to a category. ''' if isinstance(key, tuple): return self._partition[key] return list(map(tuple, np.transpose(np.where(self._partition==key)))) def __setitem__(self, key, value): ''' Change the category membership of a particular point. ''' if not isinstance(key, tuple): raise ValueError('Index must be tuple. For 1D spaces, include a trailing comma in the index.') self._boolean_matrix = None self._partition[key] = value def __iter__(self): ''' Default iterator. Each iteration returns a point in the space along with its associated category. ''' for point, category in np.ndenumerate(self._partition): yield point, category def iter_categories(self): ''' Iterate over categories in the partition. Each iteration returns an integer. ''' for category in np.unique(self._partition): yield category def iter_points(self): ''' Iterate over points in the space. Each iteration returns a tuple. ''' for point in np.ndindex(self.shape): yield point def boolean_matrix(self): ''' Returns a 2D Boolean matrix, where rows correspond to meanings and columns correspond to categories. True indicates that the ith meaning belongs to the jth category. This Boolean matrix representation is used by the communicative_cost method in the Space object for fast computation using a similarity matrix. ''' if self._boolean_matrix: return self._boolean_matrix self._boolean_matrix = convert_to_bool_matrix(self._partition) return self._boolean_matrix def spawn_speaker(self): ''' Creates a Speaker with perfect speaker certainty. ''' return Speaker(self.shape) def spawn_listener(self, gamma, mu=2): ''' Creates a Listener who represents the partition according to the specified gamma and mu parameters. gamma may be set to 'uniform' to create a uniform listener. ''' return Listener(self.shape, self.listener_distributions(gamma, mu)) def listener_distributions(self, gamma, mu=2): ''' Returns a dictionary mapping categories to distributions created under the specified gamma and mu parameters. gamma may be set to 'uniform' to create uniform category distributions. ''' if gamma == 'uniform': return {category:self.uniform_distribution(category) for category in self.iter_categories()} else: return {category:self.gaussian_distribution(category, gamma, mu) for category in self.iter_categories()} def uniform_distribution(self, category): ''' Returns the uniform distribution for a particular category. ''' category_members = self[category] uniform_probability = 1.0 / len(category_members) distribution = np.zeros(self.shape, dtype=float) for point in category_members: distribution[point] = uniform_probability return Distribution(distribution, normalize=False) def gaussian_distribution(self, category, gamma=1, mu=2): ''' Returns the Gaussian distribution for a particular category under the specified gamma and mu parameters. ''' distribution = np.zeros(self.shape, dtype=float) for point in self.iter_points(): distribution[point] = self._category_similarity(point, category, gamma, mu) return Distribution(distribution, normalize=True) def _category_similarity(self, point, category, gamma, mu): ''' Returns the sum similarity between a point and all members of a category under the specified gamma and mu parameters. ''' return sum(self._similarity(point, member, gamma, mu) for member in self[category]) def _similarity(self, x, y, gamma, mu): ''' Returns the similarity between two points under the specified gamma and mu parameters. ''' if not ((isinstance(gamma, int) or isinstance(gamma, float)) and gamma >= 0): raise ValueError('Gamma parameter must be positive number.') return np.exp(-gamma * self._distance(x, y, mu)**2) def _distance(self, x, y, mu): ''' Returns the Minkowski distance between two points for some mu. mu = 1: Manhattan distance mu = 2: Euclidean distance ''' if not ((isinstance(mu, int) or isinstance(mu, float)) and mu > 0): if mu == 'circle_euclidean': return self._circle_euclidean(x, y) raise ValueError('Mu parameter must be positive number.') return sum(abs(x - y)**mu for x, y in zip(x, y))**(1.0/mu) def _circle_euclidean(self, x, y): ''' Returns the Euclidean distance between two points on a line which wraps back around on itself (the shorter distance in either direction is returned). ''' sigma = 0.0 for dim in range(len(self.shape)): d1 = abs(x[dim] - y[dim]) d2 = abs(d1 - self.shape[dim]) if d1 < d2: sigma += d1**2 else: sigma += d2**2 return sigma**0.5 ######################################################################## class Distribution: ''' A Distribution object represents a probability distribution. An error is raised if the passed probabilities do not sum to 1; to correct this, set normalize to True, which will automatically normalize the distribution. ''' @property def shape(self): return self.probabilities.shape def __init__(self, distribution, normalize=False): distribution = np.array(distribution, dtype=float) if distribution.ndim == 0: raise ValueError('Distribution must have at least one dimension') if normalize is True: self.probabilities = distribution / distribution.sum() elif np.isclose(distribution.sum(), 1.0): self.probabilities = distribution else: raise ValueError('Probabilities do not sum to 1: Use normalize=True') def __repr__(self): ''' Provides textual description of the distribution. ''' dims = len(self.shape) start = '['*dims + str(self.probabilities[(0,)*dims]) end = str(self.probabilities[(-1,)*dims]) + ']'*dims return 'Distribution%s ... %s' % (start, end) def __str__(self): ''' Provides printable representation of the distribution. ''' return self.probabilities.__str__() def __getitem__(self, key): ''' Pass an int (1D) or tuple (ND) to get the probability of that point on the distribution. ''' return self.probabilities[key] def __iter__(self): ''' Default iterator. Each iteration returns a point in the distribution along with its associated probability. ''' for point, probability in np.ndenumerate(self.probabilities): yield point, probability def __mul__(self, operand): return self.probabilities * operand.probabilities def smooth(self, alpha): ''' Returns a smoothed copy of the Distribution using convex combination smoothing. alpha=0: no smoothing; alpha=1: smooth to a uniform distribution. ''' if alpha: if not isinstance(alpha, (int, float)) and (alpha < 0 or alpha > 1): raise ValueError('Alpha must be number between 0 and 1.') uniform = np.full(self.shape, 1.0 / np.product(self.shape), dtype=float) return Distribution(uniform*alpha + self.probabilities*(1.0 - alpha), False) return self ######################################################################## class Need(Distribution): ''' A Need object represents the probability with which each point in an n-dimensional space will need to be expressed. To create a Need object, pass a list like [[2,2,4,5], [3,1,6,8]], where the structure of the lists represents the space (here 2x4), and the numbers represent the frequency or probability of each point. Frequencies will automatically be converted to probabilities. Passing a tuple like (2,4) creates a Need object of given dimensionality with uniform need probabilities. ''' def __init__(self, need_frequencies): if isinstance(need_frequencies, tuple): self.probabilities = np.full(need_frequencies, 1.0 / np.product(need_frequencies), dtype=float) else: need_frequencies = np.array(need_frequencies, dtype=float) if need_frequencies.ndim == 0: raise ValueError('Distribution must be at least one dimensional') self.probabilities = need_frequencies / need_frequencies.sum() ######################################################################## class Speaker: ''' Collection of distributions - one for each point in the space. ''' @property def shape(self): return self._shape def __init__(self, shape, speaker_distributions=None): if not isinstance(shape, tuple): raise ValueError('Shape must be tuple') self._shape = shape self._distributions = {} if speaker_distributions: if not isinstance(speaker_distributions, dict): raise ValueError('Speaker distributions shoud be passed as dictionary: point:distribution') else: points = list(np.ndindex(self._shape)) for point in points: if point not in speaker_distributions: raise ValueError('Speaker distributions must be provided for every point') for point, speaker_distribution in speaker_distributions.items(): if point not in points: raise ValueError('Invalid point contained in passed speaker distributions') self[point] = speaker_distribution else: # Assume speaker certainty and create point distributions for point in np.ndindex(self._shape): point_distribution = np.zeros(self._shape, dtype=float) point_distribution[point] = 1.0 self._distributions[point] = Distribution(point_distribution) def __getitem__(self, key): ''' Pass a tuple to get the category memebership of a point. Pass an integer to get a list of points that belong to a category. ''' if key not in self._distributions: raise ValueError('Invalid point.') return self._distributions[key] def __setitem__(self, key, value): ''' Change the category membership of a particular point. ''' if not self._valid_key(key): raise ValueError('Invalid point.') if not isinstance(value, Distribution): value = Distribution(value) if value.shape != self._shape: raise ValueError('Distribution shape does not match the shape of the speaker.') self._distributions[key] = value def __iter__(self): ''' Default iterator. Each iteration returns a point in the distribution along with its associated probability. ''' for point in np.ndindex(self._shape): yield (point, self[point]) def _valid_key(self, key): if not isinstance(key, tuple): return False if len(key) != len(self.shape): return False for dim in range(len(key)): if key[dim] >= self._shape[dim]: return False return True ######################################################################## class Listener: ''' Collection of distributions - one for each category ''' @property def shape(self): return self._shape def __init__(self, shape, listener_distributions): if not isinstance(shape, tuple): raise ValueError('Shape must be tuple') if not isinstance(listener_distributions, dict): raise ValueError('Listener distributions shoud be passed as dictionary: category:Distribution') self._shape = shape self._distributions = {} for category, listener_distribution in listener_distributions.items(): self[category] = listener_distribution def __getitem__(self, key): ''' Pass an integer to get the distribution for that category. ''' if key not in self._distributions: raise ValueError('Invalid category.') return self._distributions[key] def __setitem__(self, key, value): ''' Change the distribution for a particular category ''' if not isinstance(value, Distribution): value = Distribution(value) if value.shape != self._shape: raise ValueError('Distribution shape does not match the shape of the listener.') self._distributions[key] = value def __iter__(self): ''' Default iterator. Each iteration returns a point in the distribution along with its associated probability. ''' for category in sorted(list(self._distributions.keys())): yield (category, self[category]) def smooth(self, alpha): if alpha: smoothed_distributions = {} for category, distribution in self._distributions.items(): smoothed_distributions[category] = distribution.smooth(alpha) return Listener(self.shape, smoothed_distributions) return self ######################################################################## class Space: ''' A Space object represents an n-dimensional universe. To create a space object of certain dimensionality, pass a tuple like (2,4). Optionally, you can pass a need object specifying, a gamma setting (default: 1), a mu setting (default: 2 (Euclidean), 1 = Manhattan), If no need object is passed, a uniform need object will be created. ''' @property def shape(self): return self._shape def __init__(self, shape, need=None, gamma=1, mu=2): if not isinstance(shape, tuple): raise ValueError('The shape of the space must be a tuple.') self._shape = shape if need: if not isinstance(need, Need): raise ValueError('Invalid need object. Pass a need object or set to None for uniform need probabilities.') self._need = need else: # Need unspecified, so create a uniform need object self._need = Need(self._shape) if not ((isinstance(gamma, int) or isinstance(gamma, float)) and gamma >= 0): raise ValueError('Gamma parameter must be positive number.') self._gamma = gamma if not ((isinstance(mu, int) or isinstance(mu, float)) and mu > 0): raise ValueError('Mu parameter must be positive number.') self._mu = mu pairwise_distances = pdist(list(np.ndindex(self._shape)), 'minkowski', self._mu) distance_matrix = squareform(pairwise_distances) self._similarity_matrix = np.exp(-self._gamma * distance_matrix**2) def __repr__(self): ''' Provides textual description of the space object. ''' if len(self._shape) == 1: return 'Space[length=%i, gamma=%i, mu=%s]' % (self._shape[0], self._gamma, self._mu) return 'Space[dimensionality=%s, gamma=%i, mu=%s]' % ('x'.join(map(str, self._shape)), self._gamma, self._mu) def communicative_cost(self, partition, need=None): ''' Returns the communicative cost for a given partition and need probabilities. If no need object is passed, the need probabilities will be inherited from the space's own need object. ''' if not isinstance(partition, Partition): raise ValueError('Invalid Partition object.') if partition.shape != self._shape: raise ValueError('Partition object does not match the dimensions of the space. Should be %s.' % 'x'.join(map(str, self._shape))) if need: if not isinstance(need, Need): raise ValueError('Invalid Need object. Pass a Need object or set to None to inherit need probabilities from the space.') if need.shape != self._shape: raise ValueError('Need object does not match the dimensions of the space. Should be %s.' % 'x'.join(map(str, self._shape))) else: need = self._need boolean_matrix = partition.boolean_matrix() listener_distributions = np.dot(self._similarity_matrix, boolean_matrix) norm_listener_distributions = listener_distributions * boolean_matrix / listener_distributions.sum(axis=0) neg_log_listener_distributions = -np.log2(norm_listener_distributions.sum(axis=1)) return (need.probabilities * neg_log_listener_distributions.reshape(self._shape)).sum() def cost(self, language_array): ''' Returns the communicative cost of a language passed as a simple numpy array under the assumption of uniform need probabilities. Essentially does the same as the communicative_cost method above without the need to first convert the numpy array to a Partition object. ''' if not isinstance(language_array, np.ndarray): raise ValueError('language_array should be Numpy array') if language_array.shape != self._shape: raise ValueError('Partition object does not match the dimensions of the space. Should be %s.' % 'x'.join(map(str, self._shape))) boolean_matrix = convert_to_bool_matrix(language_array) listener_distributions = np.dot(self._similarity_matrix, boolean_matrix) norm_listener_distributions = listener_distributions * boolean_matrix / listener_distributions.sum(axis=0) neg_log_listener_distributions = -np.log2(norm_listener_distributions.sum(axis=1)) return (self._need.probabilities * neg_log_listener_distributions.reshape(self._shape)).sum() ######################################################################## def convert_to_bool_matrix(partition): ''' Returns a 2D Boolean matrix, where rows correspond to meanings and columns correspond to categories. True indicates that the ith meaning belongs to the jth category. This Boolean matrix representation is used by the communicative_cost method in the Space object for fast computation using a similarity matrix. ''' n_points = partition.size # determines number of rows n_categories = len(np.unique(partition)) # determines number of columns cat_to_col = {cat:col for col, cat in enumerate(np.unique(partition))} # maps categories to columns boolean_matrix = np.zeros((n_points, n_categories), dtype=bool) for row, point in enumerate(np.ndindex(partition.shape)): column = cat_to_col[partition[point]] boolean_matrix[row, column] = True return boolean_matrix ######################################################################## def KL_divergence(s, l): ''' Returns the KL divergence between a speaker and listener distribution. ''' if s.shape != l.shape: raise ValueError('Speaker and listener distributions do not have the same shape') D_KL = 0.0 for point in np.ndindex(s.shape): if s[point] == 0: continue if l[point] == 0: raise ValueError('Cannot compute KL divergence because l=0 where s>0 at point %s. Try smoothing.'%str(point)) D_KL += s[point] * np.log2(s[point] / (l[point])) return D_KL def cost(partition, need, speaker, listener, alpha=None): ''' Returns the communicative cost given partition, need, speaker, and listener objects. ''' if not isinstance(partition, Partition): raise ValueError('Invalid Partition object') if not isinstance(need, Need) or partition.shape != need.shape: raise ValueError('Invalid Need object') if not isinstance(speaker, Speaker) or partition.shape != speaker.shape: raise ValueError('Invalid Speaker object') if not isinstance(listener, Listener) or partition.shape != listener.shape: raise ValueError('Invalid Listener object') if alpha: listener = listener.smooth(alpha) return sum(need[target] * KL_divergence(speaker[target], listener[category]) for target, category in partition) ######################################################################## def random_partition(shape, n_categories, convex=False, seeds=None): ''' Returns a randomly generated partition object with specified shape, number of categories, and convexity. ''' space = np.full(shape, -1, dtype=int) n_items = np.product(shape) points = list(np.ndindex(shape)) if seeds is None: seeds = [points[p] for p in np.random.choice(n_items, n_categories, False)] for category in range(n_categories): space[seeds[category]] = category for point in points: if space[point] == -1: if convex: distances = [dist(point, seed, 2) for seed in seeds] min_distance = min(distances) category = np.random.choice([c for c in range(n_categories) if distances[c] == min_distance]) else: category = np.random.choice(n_categories) space[point] = category return seeds, space def iter_partitions(collection): if len(collection) == 1: yield [ collection ] return first = collection[0] for smaller in iter_partitions(collection[1:]): for n, subset in enumerate(smaller): yield smaller[:n] + [[ first ] + subset] + smaller[n+1:] yield [ [ first ] ] + smaller def all_partitions(shape): ''' Returns all partitions of a space ''' space = np.zeros(shape, dtype=int) for partition in iter_partitions(list(np.ndindex(shape))): for category, points in enumerate(partition): for point in points: space[point] = category yield Partition(space) def dist(x, y, mu): return sum(abs(x - y)**mu for x, y in zip(x, y))**(1.0/mu)
py
1a5002791beead8b92c5b2b29e472d920ee17575
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import logging def conv3x3(in_channels, out_channels, stride=1): return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1, apply_activation=False): super(ResidualBlock, self).__init__() self.conv1 = conv3x3(in_channels, out_channels, stride) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = conv3x3(out_channels, out_channels) self.bn2 = nn.BatchNorm2d(out_channels) self.conv3 = conv3x3(out_channels, out_channels) self.bn3 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.apply_activation = apply_activation def forward(self, x): """Output size is same as input size""" residual = x out = self.conv1(x) out = self.bn1(out) out += residual residual = out out = self.conv2(out) out = self.bn2(out) out += residual residual = out out = self.conv3(out) out = self.bn3(out) out += residual if self.apply_activation: out = self.relu(out) return out
py
1a5002a81a2abfcfbe1194d04e2535e2b18285fe
import turtle import math #1. Write a function called square that takes a parameter named t, which is a turtle. It should use the turtle to draw a square.Write a function call that passes bob as an argument to square, and then run the program again. def square(t): for i in range(4): t.fd(100) t.lt(90) bob = turtle.Turtle() #square(bob) #2. Add another parameter, named length, to square. Modify the body so length of the sides is length, and then modify the function call to provide a second argument. Run the program again. Test your program with a range of values for length. def square(t, length): for i in range(4): t.fd(length) t.lt(90) #for i in range(100, 200, 10): # square(bob, i) #3. Make a copy of square and change the name to polygon. Add another parameter named n and modify the body so it draws an n-sided regular polygon. Hint: The exterior angles of an n-sided regular polygon are 360/n degrees. def polygon(t, len, n): for i in range(n): t.fd(len) t.lt(360/n) #polygon(bob, 50, 6) # 4 Write a function called circle that takes a turtle, t, and radius, r, as parameters and that draws an approximate circle by calling polygon with an appropriate length and number of sides. Test your function with a range of values of r. Hint: figure out the circumference of the circle and make sure that length * n = circumference. def circle(t, r): circumferance = 2 * math.pi * r length = 10 n = int(circumferance / length) polygon(t, length, n) #circle(bob, 100) #Make a more general version of circle called arc that takes an additional parameter angle, which determines what fraction of a circle to draw. angle is in units of degrees, so when angle=360, arc should draw a complete circle. def
py
1a50051e44f203a7a9867c57871969e28c877baa
#!/bin/python3 import math import os import random import re import sys # Complete the pairs function below. def pairs(k, arr): res = 0 memo = dict() for el in arr: if el-k in memo: res += 1 if el+k in memo: res += 1 memo[el] = True return res if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') nk = input().split() n = int(nk[0]) k = int(nk[1]) arr = list(map(int, input().rstrip().split())) result = pairs(k, arr) fptr.write(str(result) + '\n') fptr.close()
py
1a500543981cd9b47c25e514ee87f30e20a57bc0
# pylint: disable=C0103,C0111,C0302,W0212 import datetime import pytest import numpy as np import quasardb import test_table as tslib def test_int64_get_ranges__when_timeseries_is_empty(table, intervals): results = table.int64_get_ranges(tslib._int64_col_name(table), intervals) assert len(results) == 2 assert len(results[0]) == 0 assert len(results[1]) == 0 def test_int64_erase_ranges__when_timeseries_is_empty(table, intervals): erased_count = table.erase_ranges(tslib._int64_col_name(table), intervals) assert erased_count == 0 def test_int64_get_ranges(table, intervals): start_time = tslib._start_time(intervals) column_name = tslib._int64_col_name(table) inserted_int64_data = tslib._generate_int64_ts(start_time, 1000) table.int64_insert(column_name, inserted_int64_data[0], inserted_int64_data[1]) results = table.int64_get_ranges(column_name, [( start_time, start_time + np.timedelta64(10, 's'))]) tslib._check_ts_results(results, inserted_int64_data, 10) results = table.int64_get_ranges(column_name, [(start_time, start_time + np.timedelta64(10, 's')), (start_time + np.timedelta64(10, 's'), start_time + np.timedelta64(20, 's'))]) tslib._check_ts_results(results, inserted_int64_data, 20) # Everything results = table.int64_get_ranges(column_name) tslib._check_ts_results(results, inserted_int64_data, 1000) # empty result out_of_time = start_time + np.timedelta64(10, 'h') results = table.int64_get_ranges( column_name, [(out_of_time, out_of_time + np.timedelta64(10, 's'))]) assert len(results) == 2 assert len(results[0]) == 0 assert len(results[1]) == 0 # error: column doesn't exist with pytest.raises(quasardb.Error): table.int64_get_ranges( "lolilol", [(start_time, start_time + np.timedelta64(10, 's'))]) with pytest.raises(quasardb.Error): table.int64_insert( "lolilol", inserted_int64_data[0], inserted_int64_data[1]) with pytest.raises(quasardb.IncompatibleTypeError): table.blob_get_ranges( column_name, [(start_time, start_time + np.timedelta64(10, 's'))]) with pytest.raises(quasardb.IncompatibleTypeError): table.blob_insert( column_name, inserted_int64_data[0], inserted_int64_data[1]) def test_int64_erase_ranges(table, intervals): start_time = tslib._start_time(intervals) column_name = tslib._int64_col_name(table) inserted_int64_data = tslib._generate_int64_ts(start_time, 1000) table.int64_insert( column_name, inserted_int64_data[0], inserted_int64_data[1]) results = table.int64_get_ranges(column_name, [( start_time, start_time + np.timedelta64(10, 's'))]) erased_count = table.erase_ranges(column_name, [( start_time, start_time + np.timedelta64(10, 's'))]) assert erased_count == len(results[0]) erased_count = table.erase_ranges(column_name, [( start_time, start_time + np.timedelta64(10, 's'))]) assert erased_count == 0 results = table.int64_get_ranges(column_name, [( start_time, start_time + np.timedelta64(10, 's'))]) assert len(results[0]) == 0
py
1a50057aa9de328c43c7ce39610e090b9fc56f4d
"""The Energy Intensity Indicators Model """ from __future__ import print_function, division, absolute_import import os from EnergyIntensityIndicators.Residential import residential_floorspace from EnergyIntensityIndicators.Industry import (manufacturing, nonmanufacuturing, asm_price_fit) from EnergyIntensityIndicators import (industry, residential, commercial, transportation, electricity, additive_lmdi, multiplicative_lmdi, LMDI) __author__ = 'Isabelle Rabideau' __email__ = '[email protected]' EIIDIR = os.path.dirname(os.path.realpath(__file__)) TESTDATADIR = os.path.join(os.path.dirname(EIIDIR), 'tests', 'data')
py
1a500665a5df5926d3da104a56f44aa68c76dbeb
import torch from torch import nn def normalize(x, axis=-1): """Normalizing to unit length along the specified dimension. Args: x: pytorch Variable Returns: x: pytorch Variable, same shape as input """ x = 1. * x / (torch.norm(x, 2, axis, keepdim=True).expand_as(x) + 1e-12) return x def euclidean_dist(x, y): """ Args: x: pytorch Variable, with shape [m, d] y: pytorch Variable, with shape [n, d] Returns: dist: pytorch Variable, with shape [m, n] """ m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() dist = xx + yy dist.addmm_(1, -2, x, y.t()) dist = dist.clamp(min=1e-12).sqrt() # for numerical stability return dist def hard_example_mining(dist_mat, labels, return_inds=False): """For each anchor, find the hardest positive and negative sample. Args: dist_mat: pytorch Variable, pair wise distance between samples, shape [N, N] labels: pytorch LongTensor, with shape [N] return_inds: whether to return the indices. Save time if `False`(?) Returns: dist_ap: pytorch Variable, distance(anchor, positive); shape [N] dist_an: pytorch Variable, distance(anchor, negative); shape [N] p_inds: pytorch LongTensor, with shape [N]; indices of selected hard positive samples; 0 <= p_inds[i] <= N - 1 n_inds: pytorch LongTensor, with shape [N]; indices of selected hard negative samples; 0 <= n_inds[i] <= N - 1 NOTE: Only consider the case in which all labels have same num of samples, thus we can cope with all anchors in parallel. """ assert len(dist_mat.size()) == 2 assert dist_mat.size(0) == dist_mat.size(1) N = dist_mat.size(0) # shape [N, N] is_pos = labels.expand(N, N).eq(labels.expand(N, N).t()) is_neg = labels.expand(N, N).ne(labels.expand(N, N).t()) ap_mat = dist_mat.mul(is_pos.float()) an_mat = dist_mat.mul(is_neg.float()) dist_ap, relative_p_inds = torch.max(ap_mat, 1, keepdim=True) max_dist_an, _ = torch.max(an_mat, 1, keepdim=True) max_an_mat = dist_mat + max_dist_an * (is_pos.float()) dist_an, relative_n_inds = torch.min(max_an_mat, 1, keepdim=True) dist_ap = dist_ap.squeeze(1) dist_an = dist_an.squeeze(1) if return_inds: # shape [N, N] ind = (labels.new().resize_as_(labels) .copy_(torch.arange(0, N).long()) .unsqueeze(0).expand(N, N)) # shape [N, 1] p_inds = torch.gather( ind, 1, relative_p_inds.data) n_inds = torch.gather( ind, 1, relative_n_inds.data) # shape [N] p_inds = p_inds.squeeze(1) n_inds = n_inds.squeeze(1) return dist_ap, dist_an, p_inds, n_inds return dist_ap, dist_an class TripletLoss(object): """Modified from Tong Xiao's open-reid (https://github.com/Cysu/open-reid). Related Triplet Loss theory can be found in paper 'In Defense of the Triplet Loss for Person Re-Identification'.""" def __init__(self, margin=None): self.margin = margin if margin is not None: self.ranking_loss = nn.MarginRankingLoss(margin=margin) else: self.ranking_loss = nn.SoftMarginLoss() def __call__(self, global_feat, labels, normalize_feature=False): if normalize_feature: global_feat = normalize(global_feat, axis=-1) dist_mat = euclidean_dist(global_feat, global_feat) dist_ap, dist_an = hard_example_mining( dist_mat, labels) y = dist_an.new().resize_as_(dist_an).fill_(1) if self.margin is not None: loss = self.ranking_loss(dist_an, dist_ap, y) else: loss = self.ranking_loss(dist_an - dist_ap, y) return loss, dist_ap, dist_an class CrossEntropyLabelSmooth(nn.Module): """Cross entropy loss with label smoothing regularizer. Reference: Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016. Equation: y = (1 - epsilon) * y + epsilon / K. Args: num_classes (int): number of classes. epsilon (float): weight. """ def __init__(self, num_classes, epsilon=0.1, use_gpu=True): super(CrossEntropyLabelSmooth, self).__init__() self.num_classes = num_classes self.epsilon = epsilon self.use_gpu = use_gpu self.logsoftmax = nn.LogSoftmax(dim=1) def forward(self, inputs, targets): """ Args: inputs: prediction matrix (before softmax) with shape (batch_size, num_classes) targets: ground truth labels with shape (num_classes) """ log_probs = self.logsoftmax(inputs) targets = torch.zeros(log_probs.size()).scatter_(1, targets.unsqueeze(1).data.cpu(), 1) if self.use_gpu: targets = targets.cuda() targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes loss = (- targets * log_probs).mean(0).sum() return loss
py
1a50075e2220638a6059c48271bec260d3859a59
# -*- coding: utf-8 -*- ########################################################################### # Copyright (c), The AiiDA team. All rights reserved. # # This file is part of the AiiDA code. # # # # The code is hosted on GitHub at https://github.com/aiidateam/aiida_core # # For further information on the license, see the LICENSE.txt file # # For further information please visit http://www.aiida.net # ########################################################################### """Miscellaneous generic utility functions and classes.""" from __future__ import division from __future__ import print_function from __future__ import absolute_import import filecmp import inspect import os import re import sys import six from six.moves import range from six.moves import cStringIO as StringIO from .lang import classproperty def get_new_uuid(): """ Return a new UUID (typically to be used for new nodes). It uses the UUID version specified in aiida.backends.settings.AIIDANODES_UUID_VERSION """ import uuid return six.text_type(uuid.uuid4()) # To speed up the process (os.path.abspath calls are slow) _repository_folder_cache = {} # pylint: disable=invalid-name def get_repository_folder(subfolder=None): """ Return the top folder of the local repository. """ try: return _repository_folder_cache[subfolder] except KeyError: from aiida.manage.configuration import get_profile repository_path = get_profile().repository_path if not os.path.isdir(repository_path): raise ImportError if subfolder is None: retval = os.path.abspath(repository_path) elif subfolder == "sandbox": retval = os.path.abspath(os.path.join(repository_path, 'sandbox')) elif subfolder == "repository": retval = os.path.abspath(os.path.join(repository_path, 'repository')) else: raise ValueError("Invalid 'subfolder' passed to get_repository_folder: {}".format(subfolder)) _repository_folder_cache[subfolder] = retval return retval def validate_list_of_string_tuples(val, tuple_length): """ Check that: 1. ``val`` is a list or tuple 2. each element of the list: a. is a list or tuple b. is of length equal to the parameter tuple_length c. each of the two elements is a string Return if valid, raise ValidationError if invalid """ from aiida.common.exceptions import ValidationError err_msg = ("the value must be a list (or tuple) " "of length-N list (or tuples), whose elements are strings; " "N={}".format(tuple_length)) if not isinstance(val, (list, tuple)): raise ValidationError(err_msg) for element in val: if (not isinstance(element, (list, tuple)) or (len(element) != tuple_length) or not all(isinstance(s, six.string_types) for s in element)): raise ValidationError(err_msg) return True def get_unique_filename(filename, list_of_filenames): """ Return a unique filename that can be added to the list_of_filenames. If filename is not in list_of_filenames, it simply returns the filename string itself. Otherwise, it appends a integer number to the filename (before the extension) until it finds a unique filename. :param filename: the filename to add :param list_of_filenames: the list of filenames to which filename should be added, without name duplicates :returns: Either filename or its modification, with a number appended between the name and the extension. """ if filename not in list_of_filenames: return filename basename, ext = os.path.splitext(filename) # Not optimized, but for the moment this should be fast enough append_int = 1 while True: new_filename = "{:s}-{:d}{:s}".format(basename, append_int, ext) if new_filename not in list_of_filenames: break append_int += 1 return new_filename def str_timedelta(dt, max_num_fields=3, short=False, negative_to_zero=False): # pylint: disable=invalid-name """ Given a dt in seconds, return it in a HH:MM:SS format. :param dt: a TimeDelta object :param max_num_fields: maximum number of non-zero fields to show (for instance if the number of days is non-zero, shows only days, hours and minutes, but not seconds) :param short: if False, print always ``max_num_fields`` fields, even if they are zero. If True, do not print the first fields, if they are zero. :param negative_to_zero: if True, set dt = 0 if dt < 0. """ if max_num_fields <= 0: raise ValueError("max_num_fields must be > 0") s_tot = dt.total_seconds() # Important to get more than 1 day, and for # negative values. dt.seconds would give # wrong results in these cases, see # http://docs.python.org/2/library/datetime.html s_tot = int(s_tot) if negative_to_zero: if s_tot < 0: s_tot = 0 negative = (s_tot < 0) s_tot = abs(s_tot) negative_string = " in the future" if negative else " ago" # For the moment stay away from months and years, difficult to get days, remainder = divmod(s_tot, 3600 * 24) hours, remainder = divmod(remainder, 3600) minutes, seconds = divmod(remainder, 60) all_fields = [(days, 'D'), (hours, 'h'), (minutes, 'm'), (seconds, 's')] fields = [] start_insert = False counter = 0 for idx, field in enumerate(all_fields): if field[0] != 0: start_insert = True if (len(all_fields) - idx) <= max_num_fields: start_insert = True if start_insert: if counter >= max_num_fields: break fields.append(field) counter += 1 if short: while len(fields) > 1: # at least one element has to remain if fields[0][0] != 0: break fields.pop(0) # remove first element # Join the fields raw_string = ":".join(["{:02d}{}".format(*f) for f in fields]) if raw_string.startswith('0'): raw_string = raw_string[1:] # Return the resulting string, appending a suitable string if the time # is negative return "{}{}".format(raw_string, negative_string) def get_class_string(obj): """ Return the string identifying the class of the object (module + object name, joined by dots). It works both for classes and for class instances. """ if inspect.isclass(obj): return "{}.{}".format(obj.__module__, obj.__name__) return "{}.{}".format(obj.__module__, obj.__class__.__name__) def get_object_from_string(class_string): """ Given a string identifying an object (as returned by the get_class_string method) load and return the actual object. """ import importlib the_module, _, the_name = class_string.rpartition('.') return getattr(importlib.import_module(the_module), the_name) def export_shard_uuid(uuid): """ Sharding of the UUID for the import/export """ return os.path.join(uuid[:2], uuid[2:4], uuid[4:]) def grouper(n, iterable): # pylint: disable=invalid-name """ Given an iterable, returns an iterable that returns tuples of groups of elements from iterable of length n, except the last one that has the required length to exaust iterable (i.e., there is no filling applied). :param n: length of each tuple (except the last one,that will have length <= n :param iterable: the iterable to divide in groups """ import itertools iterator = iter(iterable) while True: chunk = tuple(itertools.islice(iterator, n)) if not chunk: return yield chunk class ArrayCounter(object): # pylint: disable=useless-object-inheritance """ A counter & a method that increments it and returns its value. It is used in various tests. """ seq = None def __init__(self): self.seq = -1 def array_counter(self): self.seq += 1 return self.seq def are_dir_trees_equal(dir1, dir2): """ Compare two directories recursively. Files in each directory are assumed to be equal if their names and contents are equal. @param dir1: First directory path @param dir2: Second directory path @return: True if the directory trees are the same and there were no errors while accessing the directories or files, False otherwise. """ # Directory comparison dirs_cmp = filecmp.dircmp(dir1, dir2) if dirs_cmp.left_only or dirs_cmp.right_only or dirs_cmp.funny_files: return (False, "Left directory: {}, right directory: {}, files only " "in left directory: {}, files only in right directory: " "{}, not comparable files: {}".format(dir1, dir2, dirs_cmp.left_only, dirs_cmp.right_only, dirs_cmp.funny_files)) # If the directories contain the same files, compare the common files (_, mismatch, errors) = filecmp.cmpfiles(dir1, dir2, dirs_cmp.common_files, shallow=False) if mismatch: return (False, "The following files in the directories {} and {} " "don't match: {}".format(dir1, dir2, mismatch)) if errors: return (False, "The following files in the directories {} and {} " "aren't regular: {}".format(dir1, dir2, errors)) for common_dir in dirs_cmp.common_dirs: new_dir1 = os.path.join(dir1, common_dir) new_dir2 = os.path.join(dir2, common_dir) res, msg = are_dir_trees_equal(new_dir1, new_dir2) if not res: return False, msg return True, "The given directories ({} and {}) are equal".format(dir1, dir2) class Prettifier(object): # pylint: disable=useless-object-inheritance """ Class to manage prettifiers (typically for labels of kpoints in band plots) """ @classmethod def _prettify_label_pass(cls, label): """ No-op prettifier, simply returns the same label :param label: a string to prettify """ return label @classmethod def _prettify_label_agr(cls, label): """ Prettifier for XMGrace :param label: a string to prettify """ label = ( label .replace('GAMMA', r'\xG\f{}') .replace('DELTA', r'\xD\f{}') .replace('LAMBDA', r'\xL\f{}') .replace('SIGMA', r'\xS\f{}') ) # yapf:disable return re.sub(r'_(.?)', r'\\s\1\\N', label) @classmethod def _prettify_label_agr_simple(cls, label): """ Prettifier for XMGrace (for old label names) :param label: a string to prettify """ if label == 'G': return r'\xG' return re.sub(r'(\d+)', r'\\s\1\\N', label) @classmethod def _prettify_label_gnuplot(cls, label): """ Prettifier for Gnuplot :note: uses unicode, returns unicode strings (potentially, if needed) :param label: a string to prettify """ label = ( label .replace(u'GAMMA', u'Γ') .replace(u'DELTA', u'Δ') .replace(u'LAMBDA', u'Λ') .replace(u'SIGMA', u'Σ') ) # yapf:disable return re.sub(r'_(.?)', r'_{\1}', label) @classmethod def _prettify_label_gnuplot_simple(cls, label): """ Prettifier for Gnuplot (for old label names) :note: uses unicode, returns unicode strings (potentially, if needed) :param label: a string to prettify """ if label == 'G': return u'Γ' return re.sub(r'(\d+)', r'_{\1}', label) @classmethod def _prettify_label_latex(cls, label): """ Prettifier for matplotlib, using LaTeX syntax :param label: a string to prettify """ label = ( label .replace('GAMMA', r'$\Gamma$') .replace('DELTA', r'$\Delta$') .replace('LAMBDA', r'$\Lambda$') .replace('SIGMA', r'$\Sigma$') ) # yapf:disable label = re.sub(r'_(.?)', r'$_{\1}$', label) # label += r"$_{\vphantom{0}}$" return label @classmethod def _prettify_label_latex_simple(cls, label): """ Prettifier for matplotlib, using LaTeX syntax (for old label names) :param label: a string to prettify """ if label == 'G': return r'$\Gamma$' return re.sub(r'(\d+)', r'$_{\1}$', label) @classproperty def prettifiers(cls): # pylint: disable=no-self-argument """ Property that returns a dictionary that for each string associates the function to prettify a label :return: a dictionary where keys are strings and values are functions """ return { 'agr_seekpath': cls._prettify_label_agr, 'agr_simple': cls._prettify_label_agr_simple, 'latex_simple': cls._prettify_label_latex_simple, 'latex_seekpath': cls._prettify_label_latex, 'gnuplot_simple': cls._prettify_label_gnuplot_simple, 'gnuplot_seekpath': cls._prettify_label_gnuplot, 'pass': cls._prettify_label_pass, } @classmethod def get_prettifiers(cls): """ Return a list of valid prettifier strings :return: a list of strings """ return sorted(cls.prettifiers.keys()) # pylint: disable=no-member def __init__(self, format): # pylint: disable=redefined-builtin """ Create a class to pretttify strings of a given format :param format: a string with the format to use to prettify. Valid formats are obtained from self.prettifiers """ if format is None: format = 'pass' try: self._prettifier_f = self.prettifiers[format] # pylint: disable=unsubscriptable-object except KeyError: raise ValueError("Unknown prettifier format {}; valid formats: {}".format( format, ", ".join(self.get_prettifiers()))) def prettify(self, label): """ Prettify a label using the format passed in the initializer :param label: the string to prettify :return: a prettified string """ return self._prettifier_f(label) def prettify_labels(labels, format=None): # pylint: disable=redefined-builtin """ Prettify label for typesetting in various formats :param labels: a list of length-2 tuples, in the format(position, label) :param format: a string with the format for the prettifier (e.g. 'agr', 'matplotlib', ...) :return: the same list as labels, but with the second value possibly replaced with a prettified version that typesets nicely in the selected format """ prettifier = Prettifier(format) return [(pos, prettifier.prettify(label)) for pos, label in labels] def join_labels(labels, join_symbol="|", threshold=1.e-6): """ Join labels with a joining symbol when they are very close :param labels: a list of length-2 tuples, in the format(position, label) :param join_symbol: the string to use to join different paths. By default, a pipe :param threshold: the threshold to decide if two float values are the same and should be joined :return: the same list as labels, but with the second value possibly replaced with strings joined when close enough """ if labels: new_labels = [list(labels[0])] # modify labels when in overlapping position j = 0 for i in range(1, len(labels)): if abs(labels[i][0] - labels[i - 1][0]) < threshold: new_labels[j][1] += join_symbol + labels[i][1] else: new_labels.append(list(labels[i])) j += 1 else: new_labels = [] return new_labels def strip_prefix(full_string, prefix): """ Strip the prefix from the given string and return it. If the prefix is not present the original string will be returned unaltered :param full_string: the string from which to remove the prefix :param prefix: the prefix to remove :return: the string with prefix removed """ if full_string.startswith(prefix): return full_string.rsplit(prefix)[1] return full_string class Capturing(object): # pylint: disable=useless-object-inheritance """ This class captures stdout and returns it (as a list, split by lines). Note: if you raise a SystemExit, you have to catch it outside. E.g., in our tests, this works:: import sys with self.assertRaises(SystemExit): with Capturing() as output: sys.exit() But out of the testing environment, the code instead just exits. To use it, access the obj.stdout_lines, or just iterate over the object :param capture_stderr: if True, also captures sys.stderr. To access the lines, use obj.stderr_lines. If False, obj.stderr_lines is None. """ # pylint: disable=attribute-defined-outside-init def __init__(self, capture_stderr=False): self.stdout_lines = list() super(Capturing, self).__init__() self._capture_stderr = capture_stderr if self._capture_stderr: self.stderr_lines = list() else: self.stderr_lines = None def __enter__(self): """Enter the context where all output is captured.""" self._stdout = sys.stdout self._stringioout = StringIO() sys.stdout = self._stringioout if self._capture_stderr: self._stderr = sys.stderr self._stringioerr = StringIO() sys.stderr = self._stringioerr return self def __exit__(self, *args): """Exit the context where all output is captured.""" self.stdout_lines.extend(self._stringioout.getvalue().splitlines()) sys.stdout = self._stdout del self._stringioout # free up some memory if self._capture_stderr: self.stderr_lines.extend(self._stringioerr.getvalue().splitlines()) sys.stderr = self._stderr del self._stringioerr # free up some memory def __str__(self): return str(self.stdout_lines) def __iter__(self): return iter(self.stdout_lines) class ErrorAccumulator(object): # pylint: disable=useless-object-inheritance """ Allows to run a number of functions and collect all the errors they raise This allows to validate multiple things and tell the user about all the errors encountered at once. Works best if the individual functions do not depend on each other. Does not allow to trace the stack of each error, therefore do not use for debugging, but for semantical checking with user friendly error messages. """ def __init__(self, *error_cls): self.error_cls = error_cls self.errors = {k: [] for k in self.error_cls} def run(self, function, *args, **kwargs): try: function(*args, **kwargs) except self.error_cls as err: self.errors[err.__class__].append(err) def success(self): return bool(not any(self.errors.values())) def result(self, raise_error=Exception): if raise_error: self.raise_errors(raise_error) return self.success(), self.errors def raise_errors(self, raise_cls): if not self.success(): raise raise_cls('The following errors were encountered: {}'.format(self.errors))
py
1a500783bbde8f5b4d49493ae39ffafab8a66dce
""" WSGI config for events project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'settings') application = get_wsgi_application()
py
1a5007ad9a17dbe48cf809a3ccdeb650c8e23f16
""" Ory APIs Documentation for all public and administrative Ory APIs. Administrative APIs can only be accessed with a valid Personal Access Token. Public APIs are mostly used in browsers. # noqa: E501 The version of the OpenAPI document: v0.0.1-alpha.93 Contact: [email protected] Generated by: https://openapi-generator.tech """ import sys import unittest import ory_client from ory_client.model.is_owner_for_project_by_slug_payload import IsOwnerForProjectBySlugPayload class TestIsOwnerForProjectBySlugPayload(unittest.TestCase): """IsOwnerForProjectBySlugPayload unit test stubs""" def setUp(self): pass def tearDown(self): pass def testIsOwnerForProjectBySlugPayload(self): """Test IsOwnerForProjectBySlugPayload""" # FIXME: construct object with mandatory attributes with example values # model = IsOwnerForProjectBySlugPayload() # noqa: E501 pass if __name__ == '__main__': unittest.main()
py
1a50088f23912a2de21321b082723f37b139a3fa
from __future__ import unicode_literals import frappe def execute(): if frappe.db.exists("DocType", "Patient"): if 'company' in frappe.db.get_table_columns("Patient"): frappe.db.sql("alter table `tabPatient` drop column company")
py
1a5008b3c7bde996c208c4e87eaed1ea57b2915d
input = """ :- a. :- not b. a :- b. a v b :- c. c v d. """ output = """ """