ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a5054b196a7126b94e542b4fcd25a0ab4b9de7b
#!/usr/bin/env python """ plot_hub.py: the plot tool """ import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt def plt_fidelity_vs_iter(fidelities,losses,config,indx=0): fig, (axs1, axs2) = plt.subplots(1, 2) axs1.plot(range(len(fidelities)), fidelities) axs1.set_xlabel('Epoch') axs1.set_ylabel('Fidelity between real and fake states') axs2.plot(range(len(losses)), losses) axs2.set_xlabel('Epoch') axs2.set_ylabel('Wasserstein Loss') plt.tight_layout() plt.savefig('{}/{}qubit_{}_{}.png'.format(config.figure_path,config.system_size, config.label, indx))
py
1a5054f3d651d52b5975c1c39d164b59eaf1226d
# Generated by Django 2.2.9 on 2020-02-06 15:22 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0004_auto_20200206_0955'), ] operations = [ migrations.AlterField( model_name='uniforme', name='categoria', field=models.CharField(choices=[('MALHARIA', 'Peças Têxteis'), ('CALCADO', 'Calçados')], default='MALHARIA', max_length=10), ), ]
py
1a50555e2c8c0d9b867e19eda3d74a62fee31ac4
# -*- coding: utf-8 -*- import os import sys import numpy as np IMAGE_SIZE = 64 #按照指定图像大小调整尺寸 def resize_image(image, height = IMAGE_SIZE, width = IMAGE_SIZE): top, bottom, left, right = (0, 0, 0, 0) #获取图像尺寸 h, w, _ = image.shape #对于长宽不相等的图片,找到最长的一边 longest_edge = max(h, w) #计算短边需要增加多上像素宽度使其与长边等长 if h < longest_edge: dh = longest_edge - h top = dh // 2 bottom = dh - top elif w < longest_edge: dw = longest_edge - w left = dw // 2 right = dw - left else: pass BLACK = [0, 0, 0] #给图像增加边界,是图片长、宽等长,cv2.BORDER_CONSTANT指定边界颜色由value指定 constant = cv2.copyMakeBorder(image, top , bottom, left, right, cv2.BORDER_CONSTANT, value = BLACK) #调整图像大小并返回 return cv2.resize(constant, (height, width)) #读取训练数据 images = [] labels = [] def read_images(path_name): for dir_item in os.listdir(path_name): full_path = os.path.abspath(os.path.join(path_name, dir_item)) if os.path.isdir(full_path): read_images(full_path) else: if dir_item.endswith('.jpg'): print(full_path) image = cv2.imread(full_path) image = resize_image(image, IMAGE_SIZE, IMAGE_SIZE) images.append(image) labels.append(path_name) return images,labels #从指定路径读取训练数据 def load_dataset(path_name): images,labels = read_images(path_name) #将输入的所有图片转成四维数组,尺寸为(图片数量*IMAGE_SIZE*IMAGE_SIZE*3) #图片为64 * 64像素,一个像素3个颜色值(RGB) images = np.array(images) labels = np.array([0 if label.endswith('yangwk') else 1 for label in labels]) return images, labels if __name__ == '__main__': path_name = './data/' images, labels = load_dataset(path_name) print(images.shape) print(labels.shape)
py
1a50583c0e1e67341ae5ee4af878a1a190bd7eef
""" ============================================================================ Decoding in time-frequency space data using the Common Spatial Pattern (CSP) ============================================================================ The time-frequency decomposition is estimated by iterating over raw data that has been band-passed at different frequencies. This is used to compute a covariance matrix over each epoch or a rolling time-window and extract the CSP filtered signals. A linear discriminant classifier is then applied to these signals. """ # Authors: Laura Gwilliams <[email protected]> # Jean-Remi King <[email protected]> # Alex Barachant <[email protected]> # Alexandre Gramfort <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt from mne import Epochs, find_events, create_info from mne.io import concatenate_raws, read_raw_edf from mne.datasets import eegbci from mne.decoding import CSP from mne.time_frequency import AverageTFR from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.model_selection import StratifiedKFold, cross_val_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import LabelEncoder ############################################################################### # Set parameters and read data event_id = dict(hands=2, feet=3) # motor imagery: hands vs feet subject = 1 runs = [6, 10, 14] raw_fnames = eegbci.load_data(subject, runs) raw_files = [read_raw_edf(f, stim_channel='auto', preload=True) for f in raw_fnames] raw = concatenate_raws(raw_files) # Extract information from the raw file sfreq = raw.info['sfreq'] events = find_events(raw, shortest_event=0, stim_channel='STI 014') raw.pick_types(meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Assemble the classifier using scikit-learn pipeline clf = make_pipeline(CSP(n_components=4, reg=None, log=True, norm_trace=False), LinearDiscriminantAnalysis()) n_splits = 5 # how many folds to use for cross-validation cv = StratifiedKFold(n_splits=n_splits, shuffle=True) # Classification & Time-frequency parameters tmin, tmax = -.200, 2.000 n_cycles = 10. # how many complete cycles: used to define window size min_freq = 5. max_freq = 25. n_freqs = 8 # how many frequency bins to use # Assemble list of frequency range tuples freqs = np.linspace(min_freq, max_freq, n_freqs) # assemble frequencies freq_ranges = list(zip(freqs[:-1], freqs[1:])) # make freqs list of tuples # Infer window spacing from the max freq and number of cycles to avoid gaps window_spacing = (n_cycles / np.max(freqs) / 2.) centered_w_times = np.arange(tmin, tmax, window_spacing)[1:] n_windows = len(centered_w_times) # Instantiate label encoder le = LabelEncoder() ############################################################################### # Loop through frequencies, apply classifier and save scores # init scores freq_scores = np.zeros((n_freqs - 1,)) # Loop through each frequency range of interest for freq, (fmin, fmax) in enumerate(freq_ranges): # Infer window size based on the frequency being used w_size = n_cycles / ((fmax + fmin) / 2.) # in seconds # Apply band-pass filter to isolate the specified frequencies raw_filter = raw.copy().filter(fmin, fmax, n_jobs=1, fir_design='firwin', skip_by_annotation='edge') # Extract epochs from filtered data, padded by window size epochs = Epochs(raw_filter, events, event_id, tmin - w_size, tmax + w_size, proj=False, baseline=None, preload=True) epochs.drop_bad() y = le.fit_transform(epochs.events[:, 2]) X = epochs.get_data() # Save mean scores over folds for each frequency and time window freq_scores[freq] = np.mean(cross_val_score(estimator=clf, X=X, y=y, scoring='roc_auc', cv=cv, n_jobs=1), axis=0) ############################################################################### # Plot frequency results plt.bar(left=freqs[:-1], height=freq_scores, width=np.diff(freqs)[0], align='edge', edgecolor='black') plt.xticks(freqs) plt.ylim([0, 1]) plt.axhline(len(epochs['feet']) / len(epochs), color='k', linestyle='--', label='chance level') plt.legend() plt.xlabel('Frequency (Hz)') plt.ylabel('Decoding Scores') plt.title('Frequency Decoding Scores') ############################################################################### # Loop through frequencies and time, apply classifier and save scores # init scores tf_scores = np.zeros((n_freqs - 1, n_windows)) # Loop through each frequency range of interest for freq, (fmin, fmax) in enumerate(freq_ranges): # Infer window size based on the frequency being used w_size = n_cycles / ((fmax + fmin) / 2.) # in seconds # Apply band-pass filter to isolate the specified frequencies raw_filter = raw.copy().filter(fmin, fmax, n_jobs=1, fir_design='firwin', skip_by_annotation='edge') # Extract epochs from filtered data, padded by window size epochs = Epochs(raw_filter, events, event_id, tmin - w_size, tmax + w_size, proj=False, baseline=None, preload=True) epochs.drop_bad() y = le.fit_transform(epochs.events[:, 2]) # Roll covariance, csp and lda over time for t, w_time in enumerate(centered_w_times): # Center the min and max of the window w_tmin = w_time - w_size / 2. w_tmax = w_time + w_size / 2. # Crop data into time-window of interest X = epochs.copy().crop(w_tmin, w_tmax).get_data() # Save mean scores over folds for each frequency and time window tf_scores[freq, t] = np.mean(cross_val_score(estimator=clf, X=X, y=y, scoring='roc_auc', cv=cv, n_jobs=1), axis=0) ############################################################################### # Plot time-frequency results # Set up time frequency object av_tfr = AverageTFR(create_info(['freq'], sfreq), tf_scores[np.newaxis, :], centered_w_times, freqs[1:], 1) chance = np.mean(y) # set chance level to white in the plot av_tfr.plot([0], vmin=chance, title="Time-Frequency Decoding Scores", cmap=plt.cm.Reds)
py
1a505852c76159452dfff8aede8d932bc3b6230f
""" Copyright 2019-present NAVER Corp. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ #-*- coding: utf-8 -*- import os import json import math import random import argparse import numpy as np from tqdm import tqdm import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.optim as optim import Levenshtein as Lev import label_loader from data_loader import AudioDataLoader, SpectrogramDataset, BucketingSampler from models import EncoderRNN, DecoderRNN, Seq2Seq # @Kwang-Ho import time import datetime from initialize import initialize char2index = dict() index2char = dict() SOS_token = 0 EOS_token = 0 PAD_token = 0 def label_to_string(labels): if len(labels.shape) == 1: sent = str() for i in labels: if i.item() == EOS_token: break sent += index2char[i.item()] return sent elif len(labels.shape) == 2: sents = list() for i in labels: sent = str() for j in i: if j.item() == EOS_token: break sent += index2char[j.item()] sents.append(sent) return sents def char_distance(ref, hyp): ref = ref.replace(' ', '') hyp = hyp.replace(' ', '') dist = Lev.distance(hyp, ref) length = len(ref.replace(' ', '')) return dist, length def get_distance(ref_labels, hyp_labels): total_dist = 0 total_length = 0 transcripts = [] for i in range(len(ref_labels)): ref = label_to_string(ref_labels[i]) hyp = label_to_string(hyp_labels[i]) transcripts.append('{hyp}\t{ref}'.format(hyp=hyp, ref=ref)) dist, length = char_distance(ref, hyp) total_dist += dist total_length += length return total_dist, total_length, transcripts def train(model, data_loader, criterion, optimizer, device, epoch, train_sampler, max_norm=400, teacher_forcing_ratio=1): total_loss = 0. total_num = 0 total_dist = 0 total_length = 0 total_sent_num = 0 model.train() for i, (data) in enumerate(data_loader): feats, scripts, feat_lengths, script_lengths = data optimizer.zero_grad() feats = feats.to(device) scripts = scripts.to(device) feat_lengths = feat_lengths.to(device) src_len = scripts.size(1) target = scripts[:, 1:] logit = model(feats, feat_lengths, scripts, teacher_forcing_ratio=teacher_forcing_ratio) logit = torch.stack(logit, dim=1).to(device) y_hat = logit.max(-1)[1] loss = criterion(logit.contiguous().view(-1, logit.size(-1)), target.contiguous().view(-1)) batch_size = logit.size(0) loss = loss / batch_size total_loss += loss.item() total_num += sum(feat_lengths).item() loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) optimizer.step() dist, length, _ = get_distance(target, y_hat) total_dist += dist total_length += length cer = float(dist / length) * 100 total_sent_num += target.size(0) print('Epoch: [{0}][{1}/{2}]\t' 'Loss {loss:.4f}\t' 'Cer {cer:.4f}'.format( (epoch + 1), (i + 1), len(train_sampler), loss=loss, cer=cer)) # return total_loss / total_num, (total_dist / total_length) * 100 return total_loss / len(data_loader), (total_dist / total_length) * 100 def evaluate(model, data_loader, criterion, device, save_output=False, teacher_forcing_ratio=0.0): total_loss = 0. total_num = 0 total_dist = 0 total_length = 0 total_sent_num = 0 transcripts_list = [] model.eval() with torch.no_grad(): for i, (data) in tqdm(enumerate(data_loader), total=len(data_loader)): feats, scripts, feat_lengths, script_lengths = data feats = feats.to(device) scripts = scripts.to(device) feat_lengths = feat_lengths.to(device) src_len = scripts.size(1) target = scripts[:, 1:] logit = model(feats, feat_lengths, scripts, teacher_forcing_ratio=teacher_forcing_ratio) # 3-th args: None logit = torch.stack(logit, dim=1).to(device) y_hat = logit.max(-1)[1] logit = logit[:,:target.size(1),:] # cut over length to calculate loss loss = criterion(logit.contiguous().view(-1, logit.size(-1)), target.contiguous().view(-1)) batch_size = logit.size(0) loss = loss / batch_size total_loss += loss.item() total_num += sum(feat_lengths).item() dist, length, transcripts = get_distance(target, y_hat) cer = float(dist / length) * 100 total_dist += dist total_length += length if save_output == True: transcripts_list += transcripts total_sent_num += target.size(0) # aver_loss = total_loss / total_num aver_loss = total_loss / len(data_loader) aver_cer = float(total_dist / total_length) * 100 return aver_loss, aver_cer, transcripts_list def main(): global char2index global index2char global SOS_token global EOS_token global PAD_token parser = argparse.ArgumentParser(description='LAS') parser.add_argument('--model-name', type=str, default='LAS') # Dataset parser.add_argument('--train-file', type=str, help='data list about train dataset', default='data/ClovaCall/train_ClovaCall.json') parser.add_argument('--test-file-list', nargs='*', help='data list about test dataset', default=['data/ClovaCall/test_ClovCall.json']) parser.add_argument('--labels-path', default='data/kor_syllable.json', help='Contains large characters over korean') parser.add_argument('--dataset-path', default='data/ClovaCall/clean', help='Target dataset path') # Hyperparameters parser.add_argument('--rnn-type', default='lstm', help='Type of the RNN. rnn|gru|lstm are supported') parser.add_argument('--encoder_layers', type=int, default=3, help='number of layers of model (default: 3)') parser.add_argument('--encoder_size', type=int, default=512, help='hidden size of model (default: 512)') parser.add_argument('--decoder_layers', type=int, default=2, help='number of pyramidal layers (default: 2)') parser.add_argument('--decoder_size', type=int, default=512, help='hidden size of model (default: 512)') parser.add_argument('--dropout', type=float, default=0.3, help='Dropout rate in training (default: 0.3)') parser.add_argument('--no-bidirectional', dest='bidirectional', action='store_false', default=True, help='Turn off bi-directional RNNs, introduces lookahead convolution') parser.add_argument('--batch_size', type=int, default=32, help='Batch size in training (default: 32)') parser.add_argument('--num_workers', type=int, default=4, help='Number of workers in dataset loader (default: 4)') parser.add_argument('--num_gpu', type=int, default=1, help='Number of gpus (default: 1)') parser.add_argument('--epochs', type=int, default=100, help='Number of max epochs in training (default: 100)') parser.add_argument('--lr', type=float, default=3e-4, help='Learning rate (default: 3e-4)') parser.add_argument('--learning-anneal', default=1.1, type=float, help='Annealing learning rate every epoch') parser.add_argument('--teacher_forcing', type=float, default=1.0, help='Teacher forcing ratio in decoder (default: 1.0)') parser.add_argument('--max_len', type=int, default=80, help='Maximum characters of sentence (default: 80)') parser.add_argument('--max-norm', default=400, type=int, help='Norm cutoff to prevent explosion of gradients') # Audio Config parser.add_argument('--sample-rate', default=16000, type=int, help='Sampling Rate') parser.add_argument('--window-size', default=.02, type=float, help='Window size for spectrogram') parser.add_argument('--window-stride', default=.01, type=float, help='Window stride for spectrogram') # System parser.add_argument('--save-folder', default='models', help='Location to save epoch models') parser.add_argument('--model-path', default='models/las_final.pth', help='Location to save best validation model') parser.add_argument('--log-path', default='log/', help='path to predict log about valid and test dataset') parser.add_argument('--cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=123456, help='random seed (default: 123456)') parser.add_argument('--mode', type=str, default='train', help='Train or Test') parser.add_argument('--load-model', action='store_true', default=False, help='Load model') parser.add_argument('--finetune', dest='finetune', action='store_true', default=False, help='Finetune the model after load model') args = parser.parse_args() args.max_norm = 5.0 args.dropout = 0.0 torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) np.random.seed(args.seed) random.seed(args.seed) char2index, index2char = label_loader.load_label_json(args.labels_path) SOS_token = char2index['<s>'] EOS_token = char2index['</s>'] PAD_token = char2index['_'] device = torch.device('cuda' if args.cuda else 'cpu') audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride) # Batch Size batch_size = args.batch_size * args.num_gpu print(">> Train dataset : ", args.train_file) trainData_list = [] with open(args.train_file, 'r', encoding='utf-8') as f: trainData_list = json.load(f) if args.num_gpu != 1: last_batch = len(trainData_list) % batch_size if last_batch != 0 and last_batch < args.num_gpu: trainData_list = trainData_list[:-last_batch] train_dataset = SpectrogramDataset(audio_conf=audio_conf, dataset_path=args.dataset_path, data_list=trainData_list, char2index=char2index, sos_id=SOS_token, eos_id=EOS_token, normalize=True) train_sampler = BucketingSampler(train_dataset, batch_size=batch_size) train_loader = AudioDataLoader(train_dataset, num_workers=args.num_workers, batch_sampler=train_sampler) print(">> Test dataset : ", args.test_file_list) testLoader_dict = {} for test_file in args.test_file_list: testData_list = [] with open(test_file, 'r', encoding='utf-8') as f: testData_list = json.load(f) test_dataset = SpectrogramDataset(audio_conf=audio_conf, dataset_path=args.dataset_path, data_list=testData_list, char2index=char2index, sos_id=SOS_token, eos_id=EOS_token, normalize=True) testLoader_dict[test_file] = AudioDataLoader(test_dataset, batch_size=1, num_workers=args.num_workers) # input_size = int(math.floor((args.sample_rate * args.window_size) / 2) + 1) input_size = 80 enc = EncoderRNN(input_size, args.encoder_size, n_layers=args.encoder_layers, dropout_p=args.dropout, bidirectional=args.bidirectional, rnn_cell=args.rnn_type, variable_lengths=False) dec = DecoderRNN(len(char2index), args.max_len, args.decoder_size, args.encoder_size, SOS_token, EOS_token, PAD_token, n_layers=args.decoder_layers, rnn_cell=args.rnn_type, dropout_p=args.dropout, bidirectional_encoder=args.bidirectional) model = Seq2Seq(enc, dec) initialize(model, init='xavier_uniform') save_folder = args.save_folder os.makedirs(save_folder, exist_ok=True) optim_state = None if args.load_model: # Starting from previous model print("Loading checkpoint model %s" % args.model_path) state = torch.load(args.model_path) model.load_state_dict(state['model']) print('Model loaded') if not args.finetune: # Just load model optim_state = state['optimizer'] model = model.to(device) # optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=1e-5) optimizer = optim.Adadelta(model.parameters(), lr=1.0, rho=0.95, eps=1e-08, weight_decay=0) scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=1, verbose=True) if optim_state is not None: optimizer.load_state_dict(optim_state) # criterion = nn.CrossEntropyLoss(reduction='mean').to(device) criterion = nn.CrossEntropyLoss(reduction='sum').to(device) # ignore_index=PAD_token print(model) print("Number of parameters: %d" % Seq2Seq.get_param_size(model)) train_model = nn.DataParallel(model) if args.mode != "train": for test_file in args.test_file_list: test_loader = testLoader_dict[test_file] test_loss, test_cer, transcripts_list = evaluate(model, test_loader, criterion, device, save_output=True) for idx, line in enumerate(transcripts_list): # print(line) hyp, ref = line.split('\t') print("({:3d}/{:3d}) [REF]: {}".format(idx+1, len(transcripts_list), ref)) print("({:3d}/{:3d}) [HYP]: {}".format(idx+1, len(transcripts_list), hyp)) print() print("Test {} CER : {}".format(test_file, test_cer)) else: best_cer = 1e10 begin_epoch = 0 # start_time = time.time() start_time = datetime.datetime.now() for epoch in range(begin_epoch, args.epochs): train_loss, train_cer = train(train_model, train_loader, criterion, optimizer, device, epoch, train_sampler, args.max_norm, args.teacher_forcing) # end_time = time.time() # elapsed_time = end_time - start_time elapsed_time = datetime.datetime.now() - start_time train_log = 'Train({name}) Summary Epoch: [{0}]\tAverage Loss {loss:.3f}\tAverage CER {cer:.3f}\tTime {time:}'.format(epoch + 1, name='train', loss=train_loss, cer=train_cer, time=elapsed_time) print(train_log) cer_list = [] for test_file in args.test_file_list: test_loader = testLoader_dict[test_file] test_loss_tf, test_cer_tf, _ = evaluate(model, test_loader, criterion, device, save_output=False, teacher_forcing_ratio=1.0) test_log = '(TF=1.0) Test({name}) Summary Epoch: [{0}]\tAverage Loss {loss:.3f}\tAverage CER {cer:.3f}\t'.format( epoch + 1, name=test_file, loss=test_loss_tf, cer=test_cer_tf) print(test_log) test_loss, test_cer, _ = evaluate(model, test_loader, criterion, device, save_output=False, teacher_forcing_ratio=0.0) test_log = '(TF=0.0) Test({name}) Summary Epoch: [{0}]\tAverage Loss {loss:.3f}\tAverage CER {cer:.3f}\t'.format( epoch + 1, name=test_file, loss=test_loss, cer=test_cer) print(test_log) cer_list.append(test_cer) if best_cer > cer_list[0]: print("Found better validated model, saving to %s" % args.model_path) state = { 'model': model.state_dict(), 'optimizer': optimizer.state_dict() } torch.save(state, args.model_path) best_cer = cer_list[0] print("Shuffling batches...") train_sampler.shuffle(epoch) scheduler.step(float(test_loss_tf)) # print('Learning rate annealed to: {lr:.6f}'.format(lr=scheduler.get_lr())) # for g in optimizer.param_groups: # g['lr'] = g['lr'] / args.learning_anneal # print('Learning rate annealed to: {lr:.6f}'.format(lr=g['lr'])) if __name__ == "__main__": main()
py
1a5058be428f46409c27374ac8a8ac0c57117fbb
""" Create a class to measure the average time lapsed between mark() calls This is useful to measure how frequent is the price update (i.e. we call mark() method on every price update) """ import time import random class LatencyMetric: def __init__(self): self._last_received_timestamp = time.time_ns() self._max_duration = 0 self._sum = 0 self._count = 0 def mark(self): # calculate time lapsed ts = time.time_ns() duration = ts - self._last_received_timestamp self._last_received_timestamp = ts self._sum += duration self._count += 1 if duration > self._max_duration: self._max_duration = duration def get_max(self) -> int: return self._max_duration def get_mean(self) -> int: """ get mean in milliseconds """ return self._sum / self._count / 1000000 # A simple driver class to demonstrate the usage if __name__ == '__main__': metric = LatencyMetric() while True: # a random time between 0.9 and 1.1 seconds random_duration = float(random.randint(90, 110)) / 100.0 time.sleep(random_duration) metric.mark() # we expect to print an average time of ~1 second print('Average: {}, max: {}'.format(metric.get_mean(), metric.get_max()))
py
1a50594bdaa755ffc98cb9dd240762611c173211
# # Copyright Contributors to the OpenTimelineIO project # # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # # You may obtain a copy of the Apache License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. # from PySide2 import QtWidgets, QtGui, QtCore import opentimelineio as otio class Details(QtWidgets.QTextEdit): """Text widget with the JSON string of the specified OTIO object.""" def __init__(self, *args, **kwargs): super(Details, self).__init__(*args, **kwargs) self.setReadOnly(True) self.font = QtGui.QFontDatabase.systemFont( QtGui.QFontDatabase.FixedFont) self.font.setPointSize(12) self.setFont(self.font) self.backgroundColor = QtGui.QColor(33, 33, 33) self.textColor = QtGui.QColor(180, 180, 180) self.highlightColor = QtGui.QColor(255, 198, 109) self.keywordColor = QtGui.QColor(204, 120, 50) self.palette = QtGui.QPalette() self.palette.setColor(QtGui.QPalette.Base, self.backgroundColor) self.palette.setColor(QtGui.QPalette.Text, self.textColor) self.palette.setColor(QtGui.QPalette.BrightText, self.highlightColor) self.palette.setColor(QtGui.QPalette.Link, self.keywordColor) self.setPalette(self.palette) self.highlighter = OTIOSyntaxHighlighter(self.palette, self.document()) def set_item(self, item): if item is None: self.setPlainText('') else: s = otio.adapters.write_to_string(item, 'otio_json') self.setPlainText(s) class OTIOSyntaxHighlighter(QtGui.QSyntaxHighlighter): def __init__(self, palette, parent=None): super(OTIOSyntaxHighlighter, self).__init__(parent) self.punctuation_format = QtGui.QTextCharFormat() self.punctuation_format.setForeground(palette.link()) self.punctuation_format.setFontWeight(QtGui.QFont.Bold) self.key_format = QtGui.QTextCharFormat() # self.key_format.setFontItalic(True) self.literal_format = QtGui.QTextCharFormat() self.literal_format.setForeground(palette.brightText()) self.literal_format.setFontWeight(QtGui.QFont.Bold) self.value_format = QtGui.QTextCharFormat() self.value_format.setForeground(palette.brightText()) self.value_format.setFontWeight(QtGui.QFont.Bold) self.schema_format = QtGui.QTextCharFormat() self.schema_format.setForeground(QtGui.QColor(161, 194, 97)) self.schema_format.setFontWeight(QtGui.QFont.Bold) def highlightBlock(self, text): expression = QtCore.QRegExp("(\\{|\\}|\\[|\\]|\\:|\\,)") index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length, self.punctuation_format) index = expression.indexIn(text, index + length) text.replace("\\\"", " ") expression = QtCore.QRegExp("\".*\" *\\:") expression.setMinimal(True) index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length - 1, self.key_format) index = expression.indexIn(text, index + length) expression = QtCore.QRegExp("\\: *\".*\"") expression.setMinimal(True) index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() firstQuoteIndex = text.index('"', index) valueLength = length - (firstQuoteIndex - index) - 2 self.setFormat(firstQuoteIndex + 1, valueLength, self.value_format) index = expression.indexIn(text, index + length) expression = QtCore.QRegExp(r"\\: (null|true|false|[0-9\.]+)") index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length, self.literal_format) index = expression.indexIn(text, index + length) expression = QtCore.QRegExp(r"\"OTIO_SCHEMA\"\s*:\s*\".*\"") index = expression.indexIn(text) while index >= 0: length = expression.matchedLength() self.setFormat(index, length, self.schema_format) index = expression.indexIn(text, index + length)
py
1a505ca95a45d4fd64f27e6753ef81bffcac18de
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from copy import copy import itertools import math import os import pytest import random import shutil import tempfile import time from subprocess import check_call from tests.common.test_dimensions import create_exec_option_dimension_from_dict from tests.common.impala_test_suite import ImpalaTestSuite, LOG from tests.util.filesystem_utils import WAREHOUSE, get_fs_path from tests.util.test_file_parser import QueryTestSectionReader # Random fuzz testing of HDFS scanners. Existing tables for any HDFS file format # are corrupted in random ways to flush out bugs with handling of corrupted data. class TestScannersFuzzing(ImpalaTestSuite): # Use abort_on_error = False to ensure we scan all the files. ABORT_ON_ERROR_VALUES = [False] # Only run on all nodes - num_nodes=1 would not provide additional coverage. NUM_NODES_VALUES = [0] # Limit memory to avoid causing other concurrent tests to fail. MEM_LIMITS = ['512m'] # Test the codegen and non-codegen paths. DISABLE_CODEGEN_VALUES = [True, False] # Test a range of batch sizes to exercise different corner cases. BATCH_SIZES = [0, 1, 16, 10000] # Test with denial of reservations at varying frequency. This will affect the number # of scanner threads that can be spun up. DEBUG_ACTION_VALUES = [None, '-1:OPEN:[email protected]', '-1:OPEN:[email protected]'] @classmethod def get_workload(cls): return 'functional-query' @classmethod def add_test_dimensions(cls): super(TestScannersFuzzing, cls).add_test_dimensions() cls.ImpalaTestMatrix.add_dimension( create_exec_option_dimension_from_dict({ 'abort_on_error' : cls.ABORT_ON_ERROR_VALUES, 'num_nodes' : cls.NUM_NODES_VALUES, 'mem_limit' : cls.MEM_LIMITS, 'debug_action' : cls.DEBUG_ACTION_VALUES})) # TODO: enable for more table formats once they consistently pass the fuzz test. # TODO(IMPALA-6772): enable for ORC formats once a new version after release-1.4.3 # of ORC library is released. cls.ImpalaTestMatrix.add_constraint(lambda v: v.get_value('table_format').file_format in ('avro', 'parquet') or (v.get_value('table_format').file_format == 'text' and v.get_value('table_format').compression_codec in ('none', 'lzo'))) def test_fuzz_alltypes(self, vector, unique_database): table_format = vector.get_value('table_format') src_db = QueryTestSectionReader.get_db_name(table_format) table_name = "alltypes" self.run_fuzz_test(vector, src_db, table_name, unique_database, table_name) def test_fuzz_decimal_tbl(self, vector, unique_database): table_format = vector.get_value('table_format') table_name = "decimal_tbl" if table_format.file_format == 'avro': table_name = "avro_decimal_tbl" if table_format.compression_codec != 'snap' or \ table_format.compression_type != 'block': pytest.skip() elif table_format.file_format == 'rc' or \ table_format.file_format == 'seq': pytest.skip() elif table_format.file_format == 'text' and \ table_format.compression_codec != 'none': # decimal_tbl is not present for these file formats pytest.skip() src_db = QueryTestSectionReader.get_db_name(table_format) self.run_fuzz_test(vector, src_db, table_name, unique_database, table_name, 10) def test_fuzz_nested_types(self, vector, unique_database): table_format = vector.get_value('table_format') table_name = "complextypestbl" src_db = QueryTestSectionReader.get_db_name(table_format) if table_format.file_format != 'parquet': pytest.skip() self.run_fuzz_test(vector, src_db, table_name, unique_database, table_name, 10) def test_fuzz_uncompressed_parquet(self, vector, unique_database): """Parquet tables in default schema are compressed, so in order to do the fuzz_test on an uncompressed parquet table, this test clones from an existing parquet table into a new table with no compression. """ table_format = vector.get_value('table_format') if vector.get_value('table_format').compression_codec != 'none': pytest.skip() if table_format.file_format != 'parquet': pytest.skip() """Even when the compression_codec is none, the default compression type is snappy so compression codec is changed explicitly to be none. """ self.execute_query("set compression_codec=none") tbl_list = ["alltypes", "decimal_tbl"] for orig_tbl_name in tbl_list: src_table_name = "parquet_uncomp_src_" + orig_tbl_name fuzz_table_name = "parquet_uncomp_dst_" + orig_tbl_name fq_tbl_name = unique_database + "." + src_table_name create_tbl = ("create table {0} stored as parquet as select * from" " functional_parquet.{1}".format(fq_tbl_name, orig_tbl_name)) self.execute_query(create_tbl) self.run_fuzz_test(vector, unique_database, src_table_name, unique_database, fuzz_table_name, 10) # TODO: add test coverage for additional data types like char and varchar def run_fuzz_test(self, vector, src_db, src_table, fuzz_db, fuzz_table, num_copies=1): """ Do some basic fuzz testing: create a copy of an existing table with randomly corrupted files and make sure that we don't crash or behave in an unexpected way. 'unique_database' is used for the table, so it will be cleaned up automatically. If 'num_copies' is set, create that many corrupted copies of each input file. SCANNER_FUZZ_SEED can be set in the environment to reproduce the result (assuming that input files are the same). SCANNER_FUZZ_KEEP_FILES can be set in the environment to keep the generated files. """ # Create and seed a new random number generator for reproducibility. rng = random.Random() random_seed = os.environ.get("SCANNER_FUZZ_SEED") or time.time() LOG.info("Using random seed %d", random_seed) rng.seed(long(random_seed)) tmp_table_dir = tempfile.mkdtemp(prefix="tmp-scanner-fuzz-%s" % fuzz_table, dir=os.path.join(os.environ['IMPALA_HOME'], "testdata")) self.execute_query("create table %s.%s like %s.%s" % (fuzz_db, fuzz_table, src_db, src_table)) fuzz_table_location = get_fs_path("/test-warehouse/{0}.db/{1}".format( fuzz_db, fuzz_table)) LOG.info("Generating corrupted version of %s in %s. Local working directory is %s", fuzz_table, fuzz_db, tmp_table_dir) # Find the location of the existing table and get the full table directory structure. fq_table_name = src_db + "." + src_table table_loc = self._get_table_location(fq_table_name, vector) check_call(['hdfs', 'dfs', '-copyToLocal', table_loc + "/*", tmp_table_dir]) partitions = self.walk_and_corrupt_table_data(tmp_table_dir, num_copies, rng) for partition in partitions: self.execute_query('alter table {0}.{1} add partition ({2})'.format( fuzz_db, fuzz_table, ','.join(partition))) # Copy all of the local files and directories to hdfs. to_copy = ["%s/%s" % (tmp_table_dir, file_or_dir) for file_or_dir in os.listdir(tmp_table_dir)] self.filesystem_client.copy_from_local(to_copy, fuzz_table_location) if "SCANNER_FUZZ_KEEP_FILES" not in os.environ: shutil.rmtree(tmp_table_dir) # Querying the corrupted files should not DCHECK or crash. self.execute_query("refresh %s.%s" % (fuzz_db, fuzz_table)) # Execute a query that tries to read all the columns and rows in the file. # Also execute a count(*) that materializes no columns, since different code # paths are exercised. queries = [ 'select count(*) from (select distinct * from {0}.{1}) q'.format( fuzz_db, fuzz_table), 'select count(*) from {0}.{1} q'.format(fuzz_db, fuzz_table)] for query, batch_size, disable_codegen in \ itertools.product(queries, self.BATCH_SIZES, self.DISABLE_CODEGEN_VALUES): query_options = copy(vector.get_value('exec_option')) query_options['batch_size'] = batch_size query_options['disable_codegen'] = disable_codegen query_options['disable_codegen_rows_threshold'] = 0 try: result = self.execute_query(query, query_options = query_options) LOG.info('\n'.join(result.log)) except Exception as e: if 'memory limit exceeded' in str(e).lower(): # Memory limit error should fail query. continue msg = "Should not throw error when abort_on_error=0: '{0}'".format(e) LOG.error(msg) # Parquet and compressed text can fail the query for some parse errors. # E.g. corrupt Parquet footer (IMPALA-3773) or a corrupt LZO index file # (IMPALA-4013). table_format = vector.get_value('table_format') if table_format.file_format != 'parquet' \ and not (table_format.file_format == 'text' and \ table_format.compression_codec != 'none') \ and not table_format.file_format == 'rc' \ and not table_format.file_format == 'seq': raise def walk_and_corrupt_table_data(self, tmp_table_dir, num_copies, rng): """ Walks a local copy of a HDFS table directory. Returns a list of partitions, each as a list of "key=val" pairs. Ensures there is 'num_copies' copies of each file, and corrupts each of the copies. """ partitions = [] # Iterate over the partitions and files we downloaded. for subdir, dirs, files in os.walk(tmp_table_dir): if '_impala_insert_staging' in subdir: continue if len(dirs) != 0: continue # Skip non-leaf directories rel_subdir = os.path.relpath(subdir, tmp_table_dir) if rel_subdir != ".": # Create metadata for any directory partitions. partitions.append(self.partitions_from_path(rel_subdir)) # Corrupt all of the files that we find. for filename in files: filepath = os.path.join(subdir, filename) copies = [filepath] for copy_num in range(1, num_copies): copypath = os.path.join(subdir, "copy{0}_{1}".format(copy_num, filename)) shutil.copyfile(filepath, copypath) copies.append(copypath) for filepath in copies: self.corrupt_file(filepath, rng) return partitions def partitions_from_path(self, relpath): """ Return a list of "key=val" parts from partitions inferred from the directory path. """ reversed_partitions = [] while relpath != '': relpath, suffix = os.path.split(relpath) reversed_partitions.append(suffix) return reversed(reversed_partitions) def corrupt_file(self, path, rng): """ Corrupt the file at 'path' in the local file system in a randomised way using the random number generator 'rng'. Rewrites the file in-place. Logs a message to describe how the file was corrupted, so the error is reproducible. """ with open(path, "rb") as f: data = bytearray(f.read()) num_corruptions = rng.randint(0, int(math.log(len(data)))) for _ in xrange(num_corruptions): flip_offset = rng.randint(0, len(data) - 1) flip_val = rng.randint(0, 255) LOG.info("corrupt file: Flip byte in {0} at {1} from {2} to {3}".format( path, flip_offset, data[flip_offset], flip_val)) data[flip_offset] = flip_val if rng.random() < 0.4: truncation = rng.randint(0, len(data)) LOG.info("corrupt file: Truncate {0} to {1}".format(path, truncation)) data = data[:truncation] with open(path, "wb") as f: f.write(data)
py
1a505cae0d0cb34d4705ea0719adabfeeea23a48
import os import warnings from typing import Any, Callable, Dict, List, Optional, Tuple, Union import gym import numpy as np from stable_baselines3.common import base_class from stable_baselines3.common.callbacks import EvalCallback, BaseCallback from stable_baselines3.common.vec_env import VecEnv, sync_envs_normalization from controller.helpers.logging import merge_dicts, log_dict, get_done_or_dones # we're adapting stable_baseline's eval function to also return averaged info dict def evaluate_policy_with_info( model: "base_class.BaseAlgorithm", env: Union[gym.Env, VecEnv], n_eval_episodes: int = 10, deterministic: bool = True, render: bool = False, callback: Optional[Callable[[Dict[str, Any], Dict[str, Any]], None]] = None, reward_threshold: Optional[float] = None, return_episode_rewards: bool = False, warn: bool = True, ) -> Union[Tuple[float, float], Tuple[List[float], List[int]]]: """ Runs policy for ``n_eval_episodes`` episodes and returns average reward. This is made to work only with one env. .. note:: If environment has not been wrapped with ``Monitor`` wrapper, reward and episode lengths are counted as it appears with ``env.step`` calls. If the environment contains wrappers that modify rewards or episode lengths (e.g. reward scaling, early episode reset), these will affect the evaluation results as well. You can avoid this by wrapping environment with ``Monitor`` wrapper before anything else. :param model: The RL agent you want to evaluate. :param env: The gym environment. In the case of a ``VecEnv`` this must contain only one environment. :param n_eval_episodes: Number of episode to evaluate the agent :param deterministic: Whether to use deterministic or stochastic actions :param render: Whether to render the environment or not :param callback: callback function to do additional checks, called after each step. Gets locals() and globals() passed as parameters. :param reward_threshold: Minimum expected reward per episode, this will raise an error if the performance is not met :param return_episode_rewards: If True, a list of rewards and episde lengths per episode will be returned instead of the mean. :param warn: If True (default), warns user about lack of a Monitor wrapper in the evaluation environment. :return: Mean reward per episode, std of reward per episode. Returns ([float], [int]) when ``return_episode_rewards`` is True, first list containing per-episode rewards and second containing per-episode lengths (in number of steps). """ is_monitor_wrapped = False # Avoid circular import from stable_baselines3.common.env_util import is_wrapped from stable_baselines3.common.monitor import Monitor if isinstance(env, VecEnv): assert env.num_envs == 1, "You must pass only one environment when using this function" is_monitor_wrapped = env.env_is_wrapped(Monitor)[0] else: is_monitor_wrapped = is_wrapped(env, Monitor) if not is_monitor_wrapped and warn: warnings.warn( "Evaluation environment is not wrapped with a ``Monitor`` wrapper. " "This may result in reporting modified episode lengths and rewards, if other wrappers happen to modify these. " "Consider wrapping environment first with ``Monitor`` wrapper.", UserWarning, ) episode_rewards, episode_lengths = [], [] not_reseted = True all_infos = {} while len(episode_rewards) < n_eval_episodes: # Number of loops here might differ from true episodes # played, if underlying wrappers modify episode lengths. # Avoid double reset, as VecEnv are reset automatically. if not isinstance(env, VecEnv) or not_reseted: obs = env.reset() not_reseted = False done, state = False, None episode_reward = 0.0 episode_length = 0 while not done: action, state = model.predict(obs, state=state, deterministic=deterministic) obs, reward, done, info = env.step(action) episode_reward += reward if callback is not None: callback(locals(), globals()) episode_length += 1 if render: env.render() info = info[0] # access dict within list all_infos = merge_dicts(info, all_infos) if is_monitor_wrapped: # Do not trust "done" with episode endings. # Remove vecenv stacking (if any) if isinstance(env, VecEnv): info = info[0] if "episode" in info.keys(): # Monitor wrapper includes "episode" key in info if environment # has been wrapped with it. Use those rewards instead. episode_rewards.append(info["episode"]["r"]) episode_lengths.append(info["episode"]["l"]) else: episode_rewards.append(episode_reward) episode_lengths.append(episode_length) mean_reward = np.mean(episode_rewards) std_reward = np.std(episode_rewards) if reward_threshold is not None: assert mean_reward > reward_threshold, "Mean reward below threshold: " f"{mean_reward:.2f} < {reward_threshold:.2f}" if return_episode_rewards: return episode_rewards, episode_lengths, all_infos return mean_reward, std_reward, all_infos class EvalCallbackWithInfo(EvalCallback): def __init__( self, eval_env: Union[gym.Env, VecEnv], callback_on_new_best: Optional[BaseCallback] = None, n_eval_episodes: int = 5, eval_freq: int = 10000, log_path: str = None, best_model_save_path: str = None, deterministic: bool = True, render: bool = False, verbose: int = 1, warn: bool = True, exclude_infos_from_logging=["terminal_observation"], eval_at_init=False, eval_after_episode=True, ): super(EvalCallbackWithInfo, self).__init__( eval_env, callback_on_new_best, n_eval_episodes, eval_freq, log_path, best_model_save_path, deterministic, render, verbose, warn ) self.exclude_infos_from_logging = exclude_infos_from_logging self.eval_at_init = eval_at_init self.eval_after_episode = eval_after_episode self.epside_counter = 0 def _init_callback(self) -> None: # Does not work in some corner cases, where the wrapper is not the same if not isinstance(self.training_env, type(self.eval_env)): warnings.warn("Training and eval env are not of the same type" f"{self.training_env} != {self.eval_env}") # Create folders if needed if self.best_model_save_path is not None: os.makedirs(self.best_model_save_path, exist_ok=True) if self.log_path is not None: os.makedirs(os.path.dirname(self.log_path), exist_ok=True) # test performance right at the beginning to see how well random policy does if self.eval_at_init: self.eval_with_info() def eval_with_info(self): # Sync training and eval env if there is VecNormalize sync_envs_normalization(self.training_env, self.eval_env) # Reset success rate buffer self._is_success_buffer = [] episode_rewards, episode_lengths, all_infos = evaluate_policy_with_info( self.model, self.eval_env, n_eval_episodes=self.n_eval_episodes, render=self.render, deterministic=self.deterministic, return_episode_rewards=True, warn=self.warn, callback=self._log_success_callback, ) if self.log_path is not None: self.evaluations_timesteps.append(self.num_timesteps) self.evaluations_results.append(episode_rewards) self.evaluations_length.append(episode_lengths) kwargs = {} # Save success log if present if len(self._is_success_buffer) > 0: self.evaluations_successes.append(self._is_success_buffer) kwargs = dict(successes=self.evaluations_successes) np.savez( self.log_path, timesteps=self.evaluations_timesteps, results=self.evaluations_results, ep_lengths=self.evaluations_length, **kwargs, ) mean_reward, std_reward = np.mean(episode_rewards), np.std(episode_rewards) mean_ep_length, std_ep_length = np.mean(episode_lengths), np.std(episode_lengths) self.last_mean_reward = mean_reward if self.verbose > 0: print(f"Eval num_timesteps={self.num_timesteps}, " f"episode_reward={mean_reward:.2f} +/- {std_reward:.2f}") print(f"Episode length: {mean_ep_length:.2f} +/- {std_ep_length:.2f}") # log mean infos from evaluation runs log_dict(all_infos, self.logger, "eval/mean_", "mean", self.exclude_infos_from_logging) # Add to current Logger self.logger.record("eval/mean_reward", float(mean_reward)) self.logger.record("eval/mean_ep_length", mean_ep_length) if len(self._is_success_buffer) > 0: success_rate = np.mean(self._is_success_buffer) if self.verbose > 0: print(f"Success rate: {100 * success_rate:.2f}%") self.logger.record("eval/success_rate", success_rate) if mean_reward > self.best_mean_reward: if self.verbose > 0: print("New best mean reward!") if self.best_model_save_path is not None: self.model.save(os.path.join(self.best_model_save_path, "best_model")) self.best_mean_reward = mean_reward # Trigger callback if needed if self.callback is not None: return self._on_event() def _on_step(self) -> bool: if get_done_or_dones(self): self.epside_counter += 1 eval_after_step = self.n_calls % self.eval_freq == 0 and not self.eval_after_episode eval_after_episode = self.epside_counter % self.eval_freq == 0 and self.eval_after_episode is_final_step = self.num_timesteps == self.model._total_timesteps if self.eval_freq > 0 and (eval_after_step or eval_after_episode or is_final_step): self.eval_with_info() return True
py
1a505d0fb0ea265556e4247bea3d4c9c21449508
# -*- coding: utf-8 -*- countries = { "ad" : "Andorra", "ae" : "the United Arab Emirates", "af" : "Afghanistan", "ag" : "Antigua and Barbuda", "ai" : "Anguilla", "al" : "Albania", "am" : "Armenia", "an" : "the Netherlands Antilles", "ao" : "Angola", "aq" : "Antarctica", "ar" : "Argentina", "as" : "American Samoa", "at" : "Austria", "au" : "Australia", "aw" : "Aruba", "ax" : "the Aland Islands", "az" : "Azerbaijan", "ba" : "Bosnia and Herzegovina", "bb" : "Barbados", "bd" : "Bangladesh", "be" : "Belgium", "bf" : "Burkina Faso", "bg" : "Bulgaria", "bh" : "Bahrain", "bi" : "Burundi", "bj" : "Benin", "bl" : "Saint Bartelemey", "bm" : "Bermuda", "bn" : "Brunei", "bo" : "Bolivia", "bq" : "Bonaire, Sint Eustatius and Saba", "br" : "Brazil", "bs" : "the Bahamas", "bt" : "Bhutan", "bv" : "the Bouvet Island", "bw" : "Botswana", "by" : "Belarus", "bz" : "Belize", "ca" : "Canada", "cc" : "the Cocos (Keeling) Islands", "cd" : "the Democratic Republic of the Congo", "cf" : "Central African Republic", "cg" : "Congo", "ch" : "Switzerland", "ci" : u"Côte d'Ivoire", "ck" : "the Cook Islands", "cl" : "Chile", "cm" : "Cameroon", "cn" : "China", "co" : "Colombia", "cr" : "Costa Rica", "cu" : "Cuba", "cv" : "Cape Verde", "cw" : u"Curaçao", "cx" : "the Christmas Island", "cy" : "Cyprus", "cz" : "the Czech Republic", "de" : "Germany", "dj" : "Djibouti", "dk" : "Denmark", "dm" : "Dominica", "do" : "the Dominican Republic", "dz" : "Algeria", "ec" : "Ecuador", "ee" : "Estonia", "eg" : "Egypt", "eh" : "the Western Sahara", "er" : "Eritrea", "es" : "Spain", "et" : "Ethiopia", "fi" : "Finland", "fj" : "Fiji", "fk" : "the Falkland Islands (Malvinas)", "fm" : "the Federated States of Micronesia", "fo" : "the Faroe Islands", "fr" : "France", "ga" : "Gabon", "gb" : "the United Kingdom", "gd" : "Grenada", "ge" : "Georgia", "gf" : "French Guiana", "gg" : "Guernsey", "gh" : "Ghana", "gi" : "Gibraltar", "gl" : "Greenland", "gm" : "Gambia", "gn" : "Guinea", "gp" : "Guadeloupe", "gq" : "Equatorial Guinea", "gr" : "Greece", "gs" : "South Georgia and the South Sandwich Islands", "gt" : "Guatemala", "gu" : "Guam", "gw" : "Guinea-Bissau", "gy" : "Guyana", "hk" : "Hong Kong", "hm" : "Heard Island and McDonald Islands", "hn" : "Honduras", "hr" : "Croatia", "ht" : "Haiti", "hu" : "Hungary", "id" : "Indonesia", "ie" : "Ireland", "il" : "Israel", "im" : "the Isle of Man", "in" : "India", "io" : "the British Indian Ocean Territory", "iq" : "Iraq", "ir" : "Iran", "is" : "Iceland", "it" : "Italy", "je" : "Jersey", "jm" : "Jamaica", "jo" : "Jordan", "jp" : "Japan", "ke" : "Kenya", "kg" : "Kyrgyzstan", "kh" : "Cambodia", "ki" : "Kiribati", "km" : "Comoros", "kn" : "Saint Kitts and Nevis", "kp" : "North Korea", "kr" : "the Republic of Korea", "kw" : "Kuwait", "ky" : "the Cayman Islands", "kz" : "Kazakhstan", "la" : "Laos", "lb" : "Lebanon", "lc" : "Saint Lucia", "li" : "Liechtenstein", "lk" : "Sri Lanka", "lr" : "Liberia", "ls" : "Lesotho", "lt" : "Lithuania", "lu" : "Luxembourg", "lv" : "Latvia", "ly" : "Libya", "ma" : "Morocco", "mc" : "Monaco", "md" : "the Republic of Moldova", "me" : "Montenegro", "mf" : "Saint Martin", "mg" : "Madagascar", "mh" : "the Marshall Islands", "mk" : "Macedonia", "ml" : "Mali", "mm" : "Burma", "mn" : "Mongolia", "mo" : "Macau", "mp" : "the Northern Mariana Islands", "mq" : "Martinique", "mr" : "Mauritania", "ms" : "Montserrat", "mt" : "Malta", "mu" : "Mauritius", "mv" : "the Maldives", "mw" : "Malawi", "mx" : "Mexico", "my" : "Malaysia", "mz" : "Mozambique", "na" : "Namibia", "nc" : "New Caledonia", "ne" : "Niger", "nf" : "Norfolk Island", "ng" : "Nigeria", "ni" : "Nicaragua", "nl" : "the Netherlands", "no" : "Norway", "np" : "Nepal", "nr" : "Nauru", "nu" : "Niue", "nz" : "New Zealand", "om" : "Oman", "pa" : "Panama", "pe" : "Peru", "pf" : "French Polynesia", "pg" : "Papua New Guinea", "ph" : "the Philippines", "pk" : "Pakistan", "pl" : "Poland", "pm" : "Saint Pierre and Miquelon", "pn" : "the Pitcairn Islands", "pr" : "Puerto Rico", "ps" : "the Palestinian Territory", "pt" : "Portugal", "pw" : "Palau", "py" : "Paraguay", "qa" : "Qatar", "re" : "Reunion", "ro" : "Romania", "rs" : "Serbia", "ru" : "Russia", "rw" : "Rwanda", "sa" : "Saudi Arabia", "sb" : "the Solomon Islands", "sc" : "the Seychelles", "sd" : "Sudan", "se" : "Sweden", "sg" : "Singapore", "sh" : "Saint Helena", "si" : "Slovenia", "sj" : "Svalbard and Jan Mayen", "sk" : "Slovakia", "sl" : "Sierra Leone", "sm" : "San Marino", "sn" : "Senegal", "so" : "Somalia", "sr" : "Suriname", "ss" : "South Sudan", "st" : u"São Tomé and Príncipe", "sv" : "El Salvador", "sx" : "Sint Maarten", "sy" : "the Syrian Arab Republic", "sz" : "Swaziland", "tc" : "Turks and Caicos Islands", "td" : "Chad", "tf" : "the French Southern Territories", "tg" : "Togo", "th" : "Thailand", "tj" : "Tajikistan", "tk" : "Tokelau", "tl" : "East Timor", "tm" : "Turkmenistan", "tn" : "Tunisia", "to" : "Tonga", "tr" : "Turkey", "tt" : "Trinidad and Tobago", "tv" : "Tuvalu", "tw" : "Taiwan", "tz" : "the United Republic of Tanzania", "ua" : "Ukraine", "ug" : "Uganda", "um" : "the United States Minor Outlying Islands", "us" : "the United States", "uy" : "Uruguay", "uz" : "Uzbekistan", "va" : "Vatican City", "vc" : "Saint Vincent and the Grenadines", "ve" : "Venezuela", "vg" : "the British Virgin Islands", "vi" : "the United States Virgin Islands", "vn" : "Vietnam", "vu" : "Vanuatu", "wf" : "Wallis and Futuna", "ws" : "Samoa", "xk" : "Kosovo", "ye" : "Yemen", "yt" : "Mayotte", "za" : "South Africa", "zm" : "Zambia", "zw" : "Zimbabwe" }
py
1a505dbc4efaac7afe57495cfced1e161405e8c3
""" ====================================================================== A demo of structured Ward hierarchical clustering on an image of coins ====================================================================== Compute the segmentation of a 2D image with Ward hierarchical clustering. The clustering is spatially constrained in order for each segmented region to be in one piece. """ # Author : Vincent Michel, 2010 # Alexandre Gramfort, 2011 # License: BSD 3 clause # %% # Generate data # ------------- from skimage.data import coins orig_coins = coins() # %% # Resize it to 20% of the original size to speed up the processing # Applying a Gaussian filter for smoothing prior to down-scaling # reduces aliasing artifacts. import numpy as np from scipy.ndimage import gaussian_filter from skimage.transform import rescale smoothened_coins = gaussian_filter(orig_coins, sigma=2) rescaled_coins = rescale( smoothened_coins, 0.2, mode="reflect", anti_aliasing=False, ) X = np.reshape(rescaled_coins, (-1, 1)) # %% # Define structure of the data # ---------------------------- # # Pixels are connected to their neighbors. from sklearn.feature_extraction.image import grid_to_graph connectivity = grid_to_graph(*rescaled_coins.shape) # %% # Compute clustering # ------------------ import time as time from sklearn.cluster import AgglomerativeClustering print("Compute structured hierarchical clustering...") st = time.time() n_clusters = 27 # number of regions ward = AgglomerativeClustering( n_clusters=n_clusters, linkage="ward", connectivity=connectivity ) ward.fit(X) label = np.reshape(ward.labels_, rescaled_coins.shape) print(f"Elapsed time: {time.time() - st:.3f}s") print(f"Number of pixels: {label.size}") print(f"Number of clusters: {np.unique(label).size}") # %% # Plot the results on an image # ---------------------------- # # Agglomerative clustering is able to segment each coin however, we have had to # use a ``n_cluster`` larger than the number of coins because the segmentation # is finding a large in the background. import matplotlib.pyplot as plt plt.figure(figsize=(5, 5)) plt.imshow(rescaled_coins, cmap=plt.cm.gray) for l in range(n_clusters): plt.contour( label == l, colors=[ plt.cm.nipy_spectral(l / float(n_clusters)), ], ) plt.axis("off") plt.show()
py
1a505dd13422337ccecbea02563994d94ddc2c8b
from Tkinter import * class Test(Frame): def printit(self): print(self.hi_there["command"]) def createWidgets(self): # a hello button self.QUIT = Button(self, text='QUIT', foreground='red', command=self.quit) self.QUIT.pack(side=LEFT, fill=BOTH) self.hi_there = Button(self, text='Hello', command=self.printit) self.hi_there.pack(side=LEFT) # note how Packer defaults to side=TOP self.guy2 = Button(self, text='button 2') self.guy2.pack() self.guy3 = Button(self, text='button 3') self.guy3.pack() def __init__(self, master=None): Frame.__init__(self, master) Pack.config(self) self.createWidgets() test = Test() test.mainloop()
py
1a505e2aa95532698fca8f145c2246dd34d6d4f5
# -*- coding: utf-8 -*- import time from common.base_test import BaseTest from project import INIT0_PK, INIT1_PK, INIT2_PK, INIT3_PK, INIT4_PK import lemoncheesecake.api as lcc from lemoncheesecake.matching import check_that, not_equal_to SUITE = { "description": "Operation 'committee_member_deactivate'" } @lcc.prop("main", "type") @lcc.tags("operations", "committee_member_operations", "committee_member_deactivate") @lcc.suite("Check work of operation 'committee_member_deactivate'", rank=1) class CommitteeMemberDeactivate(BaseTest): def __init__(self): super().__init__() self.__database_api_identifier = None self.init0 = None self.init1 = None self.init2 = None self.init3 = None self.init4 = None def setup_suite(self): super().setup_suite() self._connect_to_ethereum() self._connect_to_echopy_lib() lcc.set_step("Setup for {}".format(self.__class__.__name__)) self.__database_api_identifier = self.get_identifier("database") self.committee_members_info = self.get_active_committee_members_info(self.__database_api_identifier) self.init0 = self.committee_members_info[0]["account_id"] self.init1 = self.committee_members_info[1]["account_id"] self.init2 = self.committee_members_info[2]["account_id"] self.init3 = self.committee_members_info[3]["account_id"] self.init4 = self.committee_members_info[4]["account_id"] lcc.log_info( "Echo initial accounts: {}, {}, {}, {}, {}".format( self.init0, self.init1, self.init2, self.init3, self.init4 ) ) def teardown_suite(self): self._disconnect_to_echopy_lib() super().teardown_suite() @lcc.test("Simple work of operation 'committee_member_deactivate'") @lcc.depends_on("Operations.CommitteeMember.CommitteeMemberActivate.CommitteeMemberActivate.method_main_check") def method_main_check(self): operation = self.echo_ops.get_committee_member_deactivate_operation( echo=self.echo, committee_member_account=self.init0, committee_to_deactivate=self.committee_members_info[-1]["committee_id"], signer=INIT0_PK ) collected_operation = self.collect_operations(operation, self.__database_api_identifier) lcc.log_info("Collected successfully") lcc.set_step("Make proposal of deactivating new account") operation = self.echo_ops.get_proposal_create_operation( echo=self.echo, fee_paying_account=self.init0, proposed_ops=collected_operation, expiration_time=self.get_expiration_time(15), review_period_seconds=10, signer=INIT0_PK ) collected_operation = self.collect_operations(operation, self.__database_api_identifier) broadcast_result = self.echo_ops.broadcast(echo=self.echo, list_operations=operation) if not self.is_operation_completed(broadcast_result, expected_static_variant=1): raise Exception("Operation 'proposal_created' failed while broadcast") proposal_id = broadcast_result["trx"]["operation_results"][0][1] lcc.set_step("Make voting of deactivating new account") operation = self.echo_ops.get_proposal_update_operation( echo=self.echo, fee_paying_account=self.init0, proposal=proposal_id, active_approvals_to_add=[self.init0, self.init1, self.init2, self.init3, self.init4], active_approvals_to_remove=[], key_approvals_to_add=[], key_approvals_to_remove=[], signer=[INIT0_PK, INIT1_PK, INIT2_PK, INIT3_PK, INIT4_PK] ) collected_operation = self.collect_operations(operation, self.__database_api_identifier) broadcast_result = self.echo_ops.broadcast(echo=self.echo, list_operations=collected_operation) if not self.is_operation_completed(broadcast_result, expected_static_variant=0): raise Exception("Operation 'proposal_update' failed while broadcast") lcc.log_info("All committee member has voted") lcc.set_step( "Waiting for maintenance and release of two blocks and check that new committee member were deactivated" ) self.produce_block(self.__database_api_identifier) time.sleep(15) self.produce_block(self.__database_api_identifier) check_that( "acitve committee member", self.committee_members_info[-1]["account_id"], not_equal_to(self.get_active_committee_members_info(self.__database_api_identifier)[-1]["account_id"]), quiet=True )
py
1a50602a71266d11227582a7cbd30ef665d0ebd9
# Copyright (c) 2015, Dataent Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import dataent import os import unittest from dataent.utils.file_manager import save_file, get_file, get_files_path test_content1 = 'Hello' test_content2 = 'Hello World' def make_test_doc(): d = dataent.new_doc('ToDo') d.description = 'Test' d.save() return d.doctype, d.name class TestSimpleFile(unittest.TestCase): def setUp(self): self.attached_to_doctype, self.attached_to_docname = make_test_doc() self.test_content = test_content1 self.saved_file = save_file('hello.txt', self.test_content, self.attached_to_doctype, self.attached_to_docname) self.saved_filename = get_files_path(self.saved_file.file_name) def test_save(self): filename, content = get_file(self.saved_file.name) self.assertEqual(content, self.test_content) def tearDown(self): # File gets deleted on rollback, so blank pass class TestSameFileName(unittest.TestCase): def setUp(self): self.attached_to_doctype, self.attached_to_docname = make_test_doc() self.test_content1 = test_content1 self.test_content2 = test_content2 self.saved_file1 = save_file('hello.txt', self.test_content1, self.attached_to_doctype, self.attached_to_docname) self.saved_file2 = save_file('hello.txt', self.test_content2, self.attached_to_doctype, self.attached_to_docname) self.saved_filename1 = get_files_path(self.saved_file1.file_name) self.saved_filename2 = get_files_path(self.saved_file2.file_name) def test_saved_content(self): filename1, content1 = get_file(self.saved_file1.name) self.assertEqual(content1, self.test_content1) filename2, content2 = get_file(self.saved_file2.name) self.assertEqual(content2, self.test_content2) def tearDown(self): # File gets deleted on rollback, so blank pass class TestSameContent(unittest.TestCase): def setUp(self): self.attached_to_doctype1, self.attached_to_docname1 = make_test_doc() self.attached_to_doctype2, self.attached_to_docname2 = make_test_doc() self.test_content1 = test_content1 self.test_content2 = test_content1 self.orig_filename = 'hello.txt' self.dup_filename = 'hello2.txt' self.saved_file1 = save_file(self.orig_filename, self.test_content1, self.attached_to_doctype1, self.attached_to_docname1) self.saved_file2 = save_file(self.dup_filename, self.test_content2, self.attached_to_doctype2, self.attached_to_docname2) self.saved_filename1 = get_files_path(self.saved_file1.file_name) self.saved_filename2 = get_files_path(self.saved_file2.file_name) def test_saved_content(self): filename1, content1 = get_file(self.saved_file1.name) filename2, content2 = get_file(self.saved_file2.name) self.assertEqual(filename1, filename2) self.assertFalse(os.path.exists(get_files_path(self.dup_filename))) def tearDown(self): # File gets deleted on rollback, so blank pass
py
1a5061fa8eaa75165019221d64224e6c9602ed66
#!/usr/bin/env python def sum_even_fib(limit): fib_list = [1, 2] even_fib_list = [2] next_fib = fib_list[-1] + fib_list[-2] while(next_fib <= limit): next_fib = fib_list[-1] + fib_list[-2] fib_list.append(next_fib) if next_fib % 2 == 0: even_fib_list.append(next_fib) return sum(even_fib_list) print sum_even_fib(4*10**6) def sum_even_fib(limit): even_fib_list = [2] last_fib = 2 sec_last_fib = 1 next_fib = last_fib + sec_last_fib while(next_fib <= limit): next_fib = last_fib + sec_last_fib sec_last_fib = last_fib last_fib = next_fib if last_fib % 2 == 0: even_fib_list.append(last_fib) return sum(even_fib_list) print sum_even_fib(4*10**6)
py
1a5062db634952b09bf2921c99cf52cef5d60fb5
from flaskapp.models import Question from test.main.base_classes import BaseUnit from test.main.utils import test_post_request class AddQuestionTestCase(BaseUnit): def test_add_sub_question(self): # Test valid data new_question = dict( question="Is it okay?", mark=8, difficulty="Easy", cognitive_level="Application", imp=True, submit="submit", ) _, question = test_post_request(self, "/course/1/unit/1/question/sub/new/", new_question, Question, 1) # Testing if repr method is working self.assertEqual( str(question), "Question(Is it okay?, 8, Easy, Application, sub, True)", ) # Test invalid data new_question = dict( question="Isn't it okay?", mark=None, imp=False, difficulty="Easy", cognitive_level="Application", submit="submit", ) self.assertRaises( AttributeError, test_post_request, self, "/course/1/unit/1/question/sub/new/", new_question, Question, 2, ) def test_add_mcq_question(self): # test valid data new_mcq = dict( question="Rate it", mark=8, difficulty="Easy", cognitive_level="Application", imp=None, option1="10", option2="9", option3="8", option4="7", ) _, mcq = test_post_request(self, "/course/1/unit/1/question/mcq/new/", new_mcq, Question, 1) # test repr method self.assertEqual( str(mcq), "Question(Rate it, 8, Easy, Application, mcq, False)", ) # test invalid data new_mcq = dict( question=None, mark=8, difficulty="Easy", cognitive_level="Application", imp=True, submit="submit", option1="A", option2="B", option3="C", option4="D", ) self.assertRaises( AttributeError, test_post_request, self, "/course/1/unit/1/question/mcq/new/", new_mcq, Question, 2, )
py
1a5063640af479e08d6762eb2ca4cd99fc16093d
import keras.metrics import tensorflow as tf def weighted_crossentropy(y_true, y_pred): class_weights = tf.constant([[[[1., 1., 10.]]]]) unweighted_losses = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_true, logits=y_pred) weights = tf.reduce_sum(class_weights * y_true, axis=-1) weighted_losses = weights * unweighted_losses loss = tf.reduce_mean(weighted_losses) return loss
py
1a5063a23abd1c9c30c96e9eee1a5d3823383a83
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ """ import numpy as np from scipy.integrate._ivp.ivp import OdeResult import matplotlib.pyplot as plt plt.style.use('seaborn') def solve_ivp(fun, t_span, y0, t_eval=None, dt=0.01): t0, tf = float(t_span[0]), float(t_span[-1]) if t_eval is not None: assert t0 == t_eval[0] assert tf == t_eval[-1] # these variables are only needed if t_eval is not None i = 1 tp = t0 yp = y0 t = t0 y = y0 ts = [t] ys = [y] while t < tf : y = y + dt*fun(t,y) t = t + dt if t_eval is not None: while i < len(t_eval) and t >= t_eval[i]: if t == t_eval[i]: ts.append(t) ys.append(y) i += 1 elif t > t_eval[i]: yint = yp + (t_eval[i]-tp)*(y-yp)/(t-tp) ts.append(t_eval[i]) ys.append(yint) i += 1 tp = t yp = y else: ts.append(t) ys.append(y) ts = np.hstack(ts) ys = np.vstack(ys).T return OdeResult(t=ts, y=ys) if __name__ == "__main__": # stability region for Euler forward for this problem is h<2/50=0.04 @np.vectorize def func(t,y): return -50*y # t_span = (0,1) # y0 = np.array([1,1]) # # sol = solve_ivp(func, t_span, y0 ) # # plt.figure() # plt.plot(sol.t, sol.y) t_eval = np.linspace(0,1,10) y0 = np.array([1]) sol = solve_ivp(func, [t_eval[0], t_eval[-1]], y0, t_eval=t_eval)
py
1a5063bab8a95246ce4b824f868d12a78e67227f
#!/usr/bin/env python3 from __future__ import unicode_literals # Allow direct execution import os import sys import unittest sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import io import re import string from test.helper import FakeYDL from yt_dlp.extractor import YoutubeIE from yt_dlp.compat import compat_str, compat_urlretrieve _TESTS = [ ( 'https://s.ytimg.com/yts/jsbin/html5player-vflHOr_nV.js', 86, '>=<;:/.-[+*)(\'&%$#"!ZYX0VUTSRQPONMLKJIHGFEDCBA\\yxwvutsrqponmlkjihgfedcba987654321', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-vfldJ8xgI.js', 85, '3456789a0cdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRS[UVWXYZ!"#$%&\'()*+,-./:;<=>?@', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-vfle-mVwz.js', 90, ']\\[@?>=<;:/.-,+*)(\'&%$#"hZYXWVUTSRQPONMLKJIHGFEDCBAzyxwvutsrqponmlkjiagfedcb39876', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vfl0Cbn9e.js', 84, 'O1I3456789abcde0ghijklmnopqrstuvwxyzABCDEFGHfJKLMN2PQRSTUVW@YZ!"#$%&\'()*+,-./:;<=', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vflXGBaUN.js', '2ACFC7A61CA478CD21425E5A57EBD73DDC78E22A.2094302436B2D377D14A3BBA23022D023B8BC25AA', 'A52CB8B320D22032ABB3A41D773D2B6342034902.A22E87CDD37DBE75A5E52412DC874AC16A7CFCA2', ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vflBb0OQx.js', 84, '123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQ0STUVWXYZ!"#$%&\'()*+,@./:;<=>' ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vfl9FYC6l.js', 83, '123456789abcdefghijklmnopqr0tuvwxyzABCDETGHIJKLMNOPQRS>UVWXYZ!"#$%&\'()*+,-./:;<=F' ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vflCGk6yw/html5player.js', '4646B5181C6C3020DF1D9C7FCFEA.AD80ABF70C39BD369CCCAE780AFBB98FA6B6CB42766249D9488C288', '82C8849D94266724DC6B6AF89BBFA087EACCD963.B93C07FBA084ACAEFCF7C9D1FD0203C6C1815B6B' ), ( 'https://s.ytimg.com/yts/jsbin/html5player-en_US-vflKjOTVq/html5player.js', '312AA52209E3623129A412D56A40F11CB0AF14AE.3EE09501CB14E3BCDC3B2AE808BF3F1D14E7FBF12', '112AA5220913623229A412D56A40F11CB0AF14AE.3EE0950FCB14EEBCDC3B2AE808BF331D14E7FBF3', ) ] class TestPlayerInfo(unittest.TestCase): def test_youtube_extract_player_info(self): PLAYER_URLS = ( ('https://www.youtube.com/s/player/64dddad9/player_ias.vflset/en_US/base.js', '64dddad9'), ('https://www.youtube.com/s/player/64dddad9/player_ias.vflset/fr_FR/base.js', '64dddad9'), ('https://www.youtube.com/s/player/64dddad9/player-plasma-ias-phone-en_US.vflset/base.js', '64dddad9'), ('https://www.youtube.com/s/player/64dddad9/player-plasma-ias-phone-de_DE.vflset/base.js', '64dddad9'), ('https://www.youtube.com/s/player/64dddad9/player-plasma-ias-tablet-en_US.vflset/base.js', '64dddad9'), # obsolete ('https://www.youtube.com/yts/jsbin/player_ias-vfle4-e03/en_US/base.js', 'vfle4-e03'), ('https://www.youtube.com/yts/jsbin/player_ias-vfl49f_g4/en_US/base.js', 'vfl49f_g4'), ('https://www.youtube.com/yts/jsbin/player_ias-vflCPQUIL/en_US/base.js', 'vflCPQUIL'), ('https://www.youtube.com/yts/jsbin/player-vflzQZbt7/en_US/base.js', 'vflzQZbt7'), ('https://www.youtube.com/yts/jsbin/player-en_US-vflaxXRn1/base.js', 'vflaxXRn1'), ('https://s.ytimg.com/yts/jsbin/html5player-en_US-vflXGBaUN.js', 'vflXGBaUN'), ('https://s.ytimg.com/yts/jsbin/html5player-en_US-vflKjOTVq/html5player.js', 'vflKjOTVq'), ) for player_url, expected_player_id in PLAYER_URLS: player_id = YoutubeIE._extract_player_info(player_url) self.assertEqual(player_id, expected_player_id) class TestSignature(unittest.TestCase): def setUp(self): TEST_DIR = os.path.dirname(os.path.abspath(__file__)) self.TESTDATA_DIR = os.path.join(TEST_DIR, 'testdata') if not os.path.exists(self.TESTDATA_DIR): os.mkdir(self.TESTDATA_DIR) def make_tfunc(url, sig_input, expected_sig): m = re.match(r'.*-([a-zA-Z0-9_-]+)(?:/watch_as3|/html5player)?\.[a-z]+$', url) assert m, '%r should follow URL format' % url test_id = m.group(1) def test_func(self): basename = 'player-%s.js' % test_id fn = os.path.join(self.TESTDATA_DIR, basename) if not os.path.exists(fn): compat_urlretrieve(url, fn) ydl = FakeYDL() ie = YoutubeIE(ydl) with io.open(fn, encoding='utf-8') as testf: jscode = testf.read() func = ie._parse_sig_js(jscode) src_sig = ( compat_str(string.printable[:sig_input]) if isinstance(sig_input, int) else sig_input) got_sig = func(src_sig) self.assertEqual(got_sig, expected_sig) test_func.__name__ = str('test_signature_js_' + test_id) setattr(TestSignature, test_func.__name__, test_func) for test_spec in _TESTS: make_tfunc(*test_spec) if __name__ == '__main__': unittest.main()
py
1a50644e69a39683c380f6120f5e6d4a42979907
# -*- coding: utf-8 -*- """ oauthlib.oauth2.rfc6749 ~~~~~~~~~~~~~~~~~~~~~~~ This module is an implementation of various logic needed for consuming OAuth 2.0 RFC6749. """ from __future__ import absolute_import, unicode_literals import time import warnings from oauthlib.common import generate_token from oauthlib.oauth2.rfc6749 import tokens from oauthlib.oauth2.rfc6749.errors import (InsecureTransportError, TokenExpiredError) from oauthlib.oauth2.rfc6749.parameters import (parse_token_response, prepare_token_request, prepare_token_revocation_request) from oauthlib.oauth2.rfc6749.utils import is_secure_transport AUTH_HEADER = 'auth_header' URI_QUERY = 'query' BODY = 'body' FORM_ENC_HEADERS = { 'Content-Type': 'application/x-www-form-urlencoded' } class Client(object): """Base OAuth2 client responsible for access token management. This class also acts as a generic interface providing methods common to all client types such as ``prepare_authorization_request`` and ``prepare_token_revocation_request``. The ``prepare_x_request`` methods are the recommended way of interacting with clients (as opposed to the abstract prepare uri/body/etc methods). They are recommended over the older set because they are easier to use (more consistent) and add a few additional security checks, such as HTTPS and state checking. Some of these methods require further implementation only provided by the specific purpose clients such as :py:class:`oauthlib.oauth2.MobileApplicationClient` and thus you should always seek to use the client class matching the OAuth workflow you need. For Python, this is usually :py:class:`oauthlib.oauth2.WebApplicationClient`. """ refresh_token_key = 'refresh_token' def __init__(self, client_id, default_token_placement=AUTH_HEADER, token_type='Bearer', access_token=None, refresh_token=None, mac_key=None, mac_algorithm=None, token=None, scope=None, state=None, redirect_url=None, state_generator=generate_token, **kwargs): """Initialize a client with commonly used attributes. :param client_id: Client identifier given by the OAuth provider upon registration. :param default_token_placement: Tokens can be supplied in the Authorization header (default), the URL query component (``query``) or the request body (``body``). :param token_type: OAuth 2 token type. Defaults to Bearer. Change this if you specify the ``access_token`` parameter and know it is of a different token type, such as a MAC, JWT or SAML token. Can also be supplied as ``token_type`` inside the ``token`` dict parameter. :param access_token: An access token (string) used to authenticate requests to protected resources. Can also be supplied inside the ``token`` dict parameter. :param refresh_token: A refresh token (string) used to refresh expired tokens. Can also be supplied inside the ``token`` dict parameter. :param mac_key: Encryption key used with MAC tokens. :param mac_algorithm: Hashing algorithm for MAC tokens. :param token: A dict of token attributes such as ``access_token``, ``token_type`` and ``expires_at``. :param scope: A list of default scopes to request authorization for. :param state: A CSRF protection string used during authorization. :param redirect_url: The redirection endpoint on the client side to which the user returns after authorization. :param state_generator: A no argument state generation callable. Defaults to :py:meth:`oauthlib.common.generate_token`. """ self.client_id = client_id self.default_token_placement = default_token_placement self.token_type = token_type self.access_token = access_token self.refresh_token = refresh_token self.mac_key = mac_key self.mac_algorithm = mac_algorithm self.token = token or {} self.scope = scope self.state_generator = state_generator self.state = state self.redirect_url = redirect_url self.code = None self.expires_in = None self._expires_at = None self.populate_token_attributes(self.token) @property def token_types(self): """Supported token types and their respective methods Additional tokens can be supported by extending this dictionary. The Bearer token spec is stable and safe to use. The MAC token spec is not yet stable and support for MAC tokens is experimental and currently matching version 00 of the spec. """ return { 'Bearer': self._add_bearer_token, 'MAC': self._add_mac_token } def prepare_request_uri(self, *args, **kwargs): """Abstract method used to create request URIs.""" raise NotImplementedError("Must be implemented by inheriting classes.") def prepare_request_body(self, *args, **kwargs): """Abstract method used to create request bodies.""" raise NotImplementedError("Must be implemented by inheriting classes.") def parse_request_uri_response(self, *args, **kwargs): """Abstract method used to parse redirection responses.""" raise NotImplementedError("Must be implemented by inheriting classes.") def add_token(self, uri, http_method='GET', body=None, headers=None, token_placement=None, **kwargs): """Add token to the request uri, body or authorization header. The access token type provides the client with the information required to successfully utilize the access token to make a protected resource request (along with type-specific attributes). The client MUST NOT use an access token if it does not understand the token type. For example, the "bearer" token type defined in [`I-D.ietf-oauth-v2-bearer`_] is utilized by simply including the access token string in the request: .. code-block:: http GET /resource/1 HTTP/1.1 Host: example.com Authorization: Bearer mF_9.B5f-4.1JqM while the "mac" token type defined in [`I-D.ietf-oauth-v2-http-mac`_] is utilized by issuing a MAC key together with the access token which is used to sign certain components of the HTTP requests: .. code-block:: http GET /resource/1 HTTP/1.1 Host: example.com Authorization: MAC id="h480djs93hd8", nonce="274312:dj83hs9s", mac="kDZvddkndxvhGRXZhvuDjEWhGeE=" .. _`I-D.ietf-oauth-v2-bearer`: https://tools.ietf.org/html/rfc6749#section-12.2 .. _`I-D.ietf-oauth-v2-http-mac`: https://tools.ietf.org/html/rfc6749#section-12.2 """ if not is_secure_transport(uri): raise InsecureTransportError() token_placement = token_placement or self.default_token_placement case_insensitive_token_types = dict( (k.lower(), v) for k, v in self.token_types.items()) if not self.token_type.lower() in case_insensitive_token_types: raise ValueError("Unsupported token type: %s" % self.token_type) if not (self.access_token or self.token.get('access_token')): raise ValueError("Missing access token.") if self._expires_at and self._expires_at < time.time(): raise TokenExpiredError() return case_insensitive_token_types[self.token_type.lower()](uri, http_method, body, headers, token_placement, **kwargs) def prepare_authorization_request(self, authorization_url, state=None, redirect_url=None, scope=None, **kwargs): """Prepare the authorization request. This is the first step in many OAuth flows in which the user is redirected to a certain authorization URL. This method adds required parameters to the authorization URL. :param authorization_url: Provider authorization endpoint URL. :param state: CSRF protection string. Will be automatically created if not provided. The generated state is available via the ``state`` attribute. Clients should verify that the state is unchanged and present in the authorization response. This verification is done automatically if using the ``authorization_response`` parameter with ``prepare_token_request``. :param redirect_url: Redirect URL to which the user will be returned after authorization. Must be provided unless previously setup with the provider. If provided then it must also be provided in the token request. :param kwargs: Additional parameters to included in the request. :returns: The prepared request tuple with (url, headers, body). """ if not is_secure_transport(authorization_url): raise InsecureTransportError() self.state = state or self.state_generator() self.redirect_url = redirect_url or self.redirect_url self.scope = scope or self.scope auth_url = self.prepare_request_uri( authorization_url, redirect_uri=self.redirect_url, scope=self.scope, state=self.state, **kwargs) return auth_url, FORM_ENC_HEADERS, '' def prepare_token_request(self, token_url, authorization_response=None, redirect_url=None, state=None, body='', **kwargs): """Prepare a token creation request. Note that these requests usually require client authentication, either by including client_id or a set of provider specific authentication credentials. :param token_url: Provider token creation endpoint URL. :param authorization_response: The full redirection URL string, i.e. the location to which the user was redirected after successfull authorization. Used to mine credentials needed to obtain a token in this step, such as authorization code. :param redirect_url: The redirect_url supplied with the authorization request (if there was one). :param body: Existing request body (URL encoded string) to embed parameters into. This may contain extra paramters. Default ''. :param kwargs: Additional parameters to included in the request. :returns: The prepared request tuple with (url, headers, body). """ if not is_secure_transport(token_url): raise InsecureTransportError() state = state or self.state if authorization_response: self.parse_request_uri_response( authorization_response, state=state) self.redirect_url = redirect_url or self.redirect_url body = self.prepare_request_body(body=body, redirect_uri=self.redirect_url, **kwargs) return token_url, FORM_ENC_HEADERS, body def prepare_refresh_token_request(self, token_url, refresh_token=None, body='', scope=None, **kwargs): """Prepare an access token refresh request. Expired access tokens can be replaced by new access tokens without going through the OAuth dance if the client obtained a refresh token. This refresh token and authentication credentials can be used to obtain a new access token, and possibly a new refresh token. :param token_url: Provider token refresh endpoint URL. :param refresh_token: Refresh token string. :param body: Existing request body (URL encoded string) to embed parameters into. This may contain extra paramters. Default ''. :param scope: List of scopes to request. Must be equal to or a subset of the scopes granted when obtaining the refresh token. :param kwargs: Additional parameters to included in the request. :returns: The prepared request tuple with (url, headers, body). """ if not is_secure_transport(token_url): raise InsecureTransportError() self.scope = scope or self.scope body = self.prepare_refresh_body(body=body, refresh_token=refresh_token, scope=self.scope, **kwargs) return token_url, FORM_ENC_HEADERS, body def prepare_token_revocation_request(self, revocation_url, token, token_type_hint="access_token", body='', callback=None, **kwargs): """Prepare a token revocation request. :param revocation_url: Provider token revocation endpoint URL. :param token: The access or refresh token to be revoked (string). :param token_type_hint: ``"access_token"`` (default) or ``"refresh_token"``. This is optional and if you wish to not pass it you must provide ``token_type_hint=None``. :param callback: A jsonp callback such as ``package.callback`` to be invoked upon receiving the response. Not that it should not include a () suffix. :param kwargs: Additional parameters to included in the request. :returns: The prepared request tuple with (url, headers, body). Note that JSONP request may use GET requests as the parameters will be added to the request URL query as opposed to the request body. An example of a revocation request .. code-block: http POST /revoke HTTP/1.1 Host: server.example.com Content-Type: application/x-www-form-urlencoded Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW token=45ghiukldjahdnhzdauz&token_type_hint=refresh_token An example of a jsonp revocation request .. code-block: http GET /revoke?token=agabcdefddddafdd&callback=package.myCallback HTTP/1.1 Host: server.example.com Content-Type: application/x-www-form-urlencoded Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW and an error response .. code-block: http package.myCallback({"error":"unsupported_token_type"}); Note that these requests usually require client credentials, client_id in the case for public clients and provider specific authentication credentials for confidential clients. """ if not is_secure_transport(revocation_url): raise InsecureTransportError() return prepare_token_revocation_request(revocation_url, token, token_type_hint=token_type_hint, body=body, callback=callback, **kwargs) def parse_request_body_response(self, body, scope=None, **kwargs): """Parse the JSON response body. If the access token request is valid and authorized, the authorization server issues an access token as described in `Section 5.1`_. A refresh token SHOULD NOT be included. If the request failed client authentication or is invalid, the authorization server returns an error response as described in `Section 5.2`_. :param body: The response body from the token request. :param scope: Scopes originally requested. :return: Dictionary of token parameters. :raises: Warning if scope has changed. OAuth2Error if response is invalid. These response are json encoded and could easily be parsed without the assistance of OAuthLib. However, there are a few subtle issues to be aware of regarding the response which are helpfully addressed through the raising of various errors. A successful response should always contain **access_token** The access token issued by the authorization server. Often a random string. **token_type** The type of the token issued as described in `Section 7.1`_. Commonly ``Bearer``. While it is not mandated it is recommended that the provider include **expires_in** The lifetime in seconds of the access token. For example, the value "3600" denotes that the access token will expire in one hour from the time the response was generated. If omitted, the authorization server SHOULD provide the expiration time via other means or document the default value. **scope** Providers may supply this in all responses but are required to only if it has changed since the authorization request. .. _`Section 5.1`: https://tools.ietf.org/html/rfc6749#section-5.1 .. _`Section 5.2`: https://tools.ietf.org/html/rfc6749#section-5.2 .. _`Section 7.1`: https://tools.ietf.org/html/rfc6749#section-7.1 """ self.token = parse_token_response(body, scope=scope) self.populate_token_attributes(self.token) return self.token def prepare_refresh_body(self, body='', refresh_token=None, scope=None, **kwargs): """Prepare an access token request, using a refresh token. If the authorization server issued a refresh token to the client, the client makes a refresh request to the token endpoint by adding the following parameters using the "application/x-www-form-urlencoded" format in the HTTP request entity-body: grant_type REQUIRED. Value MUST be set to "refresh_token". refresh_token REQUIRED. The refresh token issued to the client. scope OPTIONAL. The scope of the access request as described by Section 3.3. The requested scope MUST NOT include any scope not originally granted by the resource owner, and if omitted is treated as equal to the scope originally granted by the resource owner. """ refresh_token = refresh_token or self.refresh_token return prepare_token_request(self.refresh_token_key, body=body, scope=scope, refresh_token=refresh_token, **kwargs) def _add_bearer_token(self, uri, http_method='GET', body=None, headers=None, token_placement=None): """Add a bearer token to the request uri, body or authorization header.""" if token_placement == AUTH_HEADER: headers = tokens.prepare_bearer_headers(self.access_token, headers) elif token_placement == URI_QUERY: uri = tokens.prepare_bearer_uri(self.access_token, uri) elif token_placement == BODY: body = tokens.prepare_bearer_body(self.access_token, body) else: raise ValueError("Invalid token placement.") return uri, headers, body def _add_mac_token(self, uri, http_method='GET', body=None, headers=None, token_placement=AUTH_HEADER, ext=None, **kwargs): """Add a MAC token to the request authorization header. Warning: MAC token support is experimental as the spec is not yet stable. """ headers = tokens.prepare_mac_header(self.access_token, uri, self.mac_key, http_method, headers=headers, body=body, ext=ext, hash_algorithm=self.mac_algorithm, **kwargs) return uri, headers, body def _populate_attributes(self, response): warnings.warn("Please switch to the public method " "populate_token_attributes.", DeprecationWarning) return self.populate_token_attributes(response) def populate_code_attributes(self, response): """Add attributes from an auth code response to self.""" if 'code' in response: self.code = response.get('code') def populate_token_attributes(self, response): """Add attributes from a token exchange response to self.""" if 'access_token' in response: self.access_token = response.get('access_token') if 'refresh_token' in response: self.refresh_token = response.get('refresh_token') if 'token_type' in response: self.token_type = response.get('token_type') if 'expires_in' in response: self.expires_in = response.get('expires_in') self._expires_at = time.time() + int(self.expires_in) if 'expires_at' in response: self._expires_at = int(response.get('expires_at')) if 'mac_key' in response: self.mac_key = response.get('mac_key') if 'mac_algorithm' in response: self.mac_algorithm = response.get('mac_algorithm')
py
1a50646bd81f469e039bc65dbaee2423d2bd8d4f
import numpy as np Y=np.array([[0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [0,1], [1,0], [1,0], [1,0], [1,0], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [1,0], [1,0], [1,0], [1,0], [1,0], [1,0], [0,1], [1,0], [1,0], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1], [0,1], [0,1], [0,1], [1,0], [0,1]]) X = np.array([[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 0], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 1], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 2], [1, 3]])
py
1a5064e8f07a0ae8af6f1d8fdd42461dbb265210
from typing import TYPE_CHECKING, List from django.conf import settings from saleor.plugins.base_plugin import BasePlugin, ConfigurationTypeField from . import ( GatewayConfig, authorize, capture, get_client_token, list_client_sources, process_payment, refund, void, ) GATEWAY_NAME = "Braintree" if TYPE_CHECKING: # flake8: noqa from . import GatewayResponse, PaymentData, TokenConfig from ...interface import CustomerSource def require_active_plugin(fn): def wrapped(self, *args, **kwargs): previous = kwargs.get("previous_value", None) if not self.active: return previous return fn(self, *args, **kwargs) return wrapped class BraintreeGatewayPlugin(BasePlugin): PLUGIN_ID = "mirumee.payments.braintree" PLUGIN_NAME = GATEWAY_NAME DEFAULT_ACTIVE = settings.BRAINTREE_PLUGIN_ACTIVE DEFAULT_CONFIGURATION = [ {"name": "Public API key", "value": settings.BRAINTREE_PUBLIC_KEY}, {"name": "Secret API key", "value": settings.BRAINTREE_PRIVATE_KEY}, {"name": "Use sandbox", "value": settings.BRAINTREE_SANDBOX_MODE}, {"name": "Merchant ID", "value": settings.BRAINTREE_MERCHANT_ID}, {"name": "Store customers card", "value": False}, {"name": "Automatic payment capture", "value": True}, {"name": "Require 3D secure", "value": False}, ] CONFIG_STRUCTURE = { "Public API key": { "type": ConfigurationTypeField.SECRET, "help_text": "Provide Braintree public API key", "label": "Public API key", }, "Secret API key": { "type": ConfigurationTypeField.SECRET, "help_text": "Provide Braintree secret API key", "label": "Secret API key", }, "Merchant ID": { "type": ConfigurationTypeField.SECRET, "help_text": "Provide Braintree merchant ID", "label": "Merchant ID", }, "Use sandbox": { "type": ConfigurationTypeField.BOOLEAN, "help_text": "Determines if Saleor should use Braintree sandbox API.", "label": "Use sandbox", }, "Store customers card": { "type": ConfigurationTypeField.BOOLEAN, "help_text": "Determines if Saleor should store cards on payments" " in Braintree customer.", "label": "Store customers card", }, "Automatic payment capture": { "type": ConfigurationTypeField.BOOLEAN, "help_text": "Determines if Saleor should automaticaly capture payments.", "label": "Automatic payment capture", }, "Require 3D secure": { "type": ConfigurationTypeField.BOOLEAN, "help_text": "Determines if Saleor should enforce 3D secure during payment.", "label": "Require 3D secure", }, } def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) configuration = {item["name"]: item["value"] for item in self.configuration} self.config = GatewayConfig( gateway_name=GATEWAY_NAME, auto_capture=configuration["Automatic payment capture"], connection_params={ "sandbox_mode": configuration["Use sandbox"], "merchant_id": configuration["Merchant ID"], "public_key": configuration["Public API key"], "private_key": configuration["Secret API key"], }, store_customer=configuration["Store customers card"], require_3d_secure=configuration["Require 3D secure"], ) def _get_gateway_config(self) -> GatewayConfig: return self.config @require_active_plugin def authorize_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return authorize(payment_information, self._get_gateway_config()) @require_active_plugin def capture_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return capture(payment_information, self._get_gateway_config()) @require_active_plugin def refund_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return refund(payment_information, self._get_gateway_config()) @require_active_plugin def void_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return void(payment_information, self._get_gateway_config()) @require_active_plugin def process_payment( self, payment_information: "PaymentData", previous_value ) -> "GatewayResponse": return process_payment(payment_information, self._get_gateway_config()) @require_active_plugin def list_payment_sources( self, customer_id: str, previous_value ) -> List["CustomerSource"]: sources = list_client_sources(self._get_gateway_config(), customer_id) previous_value.extend(sources) return previous_value @require_active_plugin def get_client_token(self, token_config: "TokenConfig", previous_value): return get_client_token(self._get_gateway_config(), token_config) @require_active_plugin def get_payment_config(self, previous_value): config = self._get_gateway_config() return [ {"field": "store_customer_card", "value": config.store_customer}, {"field": "client_token", "value": get_client_token(config=config)}, ]
py
1a5065d3b071def220ee7a6e2bedd7dd45b8a5c4
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # ======================================================================================================================== # # Project : Natural Language Recommendation # # Version : 0.1.0 # # File : \test_logfile.py # # Language : Python 3.7.11 # # ------------------------------------------------------------------------------------------------------------------------ # # Author : John James # # Company : nov8.ai # # Email : [email protected] # # URL : https://github.com/john-james-sf/nlr # # ------------------------------------------------------------------------------------------------------------------------ # # Created : Monday, November 8th 2021, 12:47:01 pm # # Modified : Monday, November 8th 2021, 12:57:22 pm # # Modifier : John James ([email protected]) # # ------------------------------------------------------------------------------------------------------------------------ # # License : BSD 3-clause "New" or "Revised" License # # Copyright: (c) 2021 nov8.ai # # ======================================================================================================================== # # %% import os import pytest import logging import inspect from configparser import ConfigParser from nlr.utils.loggers import LogFile from nlr.setup import configfile # ------------------------------------------------------------------------------------------------------------------------ # logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class LogFileTests: def test_get_logfile(self): logger.info(" Started {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) lf = LogFile() logname = 'root' level = 'warning' key = logname.lower() + '_' + level.lower() logfilepath_exp = 'logs/root_warning.log' logfilepath_act = lf.get_logfile(logname, level) # Confirm correct logfilepath config = ConfigParser() config.read(configfile) assert config['LOGGING'][key], "Failure in {}".format( inspect.stack()[0][3]) logger.info(" Successfully completed {} {}".format( self.__class__.__name__, inspect.stack()[0][3])) if __name__ == "__main__": t = LogFileTests() t.test_get_logfile() # %%
py
1a50662e99b1bf373709a3ff4cb4845b48d70de2
# -*- coding: utf-8 -*- from __future__ import absolute_import, unicode_literals import inspect import sys from math import trunc def get_locale(name): """Returns an appropriate :class:`Locale <arrow.locales.Locale>` corresponding to an inpute locale name. :param name: the name of the locale. """ locale_cls = _locales.get(name.lower()) if locale_cls is None: raise ValueError("Unsupported locale '{}'".format(name)) return locale_cls() # base locale type. class Locale(object): """ Represents locale-specific data and functionality. """ names = [] timeframes = { "now": "", "seconds": "", "minute": "", "minutes": "", "hour": "", "hours": "", "day": "", "days": "", "week": "", "weeks": "", "month": "", "months": "", "year": "", "years": "", } meridians = {"am": "", "pm": "", "AM": "", "PM": ""} past = None future = None month_names = [] month_abbreviations = [] day_names = [] day_abbreviations = [] ordinal_day_re = r"(\d+)" def __init__(self): self._month_name_to_ordinal = None def describe(self, timeframe, delta=0, only_distance=False): """ Describes a delta within a timeframe in plain language. :param timeframe: a string representing a timeframe. :param delta: a quantity representing a delta in a timeframe. :param only_distance: return only distance eg: "11 seconds" without "in" or "ago" keywords """ humanized = self._format_timeframe(timeframe, delta) if not only_distance: humanized = self._format_relative(humanized, timeframe, delta) return humanized def day_name(self, day): """ Returns the day name for a specified day of the week. :param day: the ``int`` day of the week (1-7). """ return self.day_names[day] def day_abbreviation(self, day): """ Returns the day abbreviation for a specified day of the week. :param day: the ``int`` day of the week (1-7). """ return self.day_abbreviations[day] def month_name(self, month): """ Returns the month name for a specified month of the year. :param month: the ``int`` month of the year (1-12). """ return self.month_names[month] def month_abbreviation(self, month): """ Returns the month abbreviation for a specified month of the year. :param month: the ``int`` month of the year (1-12). """ return self.month_abbreviations[month] def month_number(self, name): """ Returns the month number for a month specified by name or abbreviation. :param name: the month name or abbreviation. """ if self._month_name_to_ordinal is None: self._month_name_to_ordinal = self._name_to_ordinal(self.month_names) self._month_name_to_ordinal.update( self._name_to_ordinal(self.month_abbreviations) ) return self._month_name_to_ordinal.get(name) def year_full(self, year): """ Returns the year for specific locale if available :param name: the ``int`` year (4-digit) """ return "{:04d}".format(year) def year_abbreviation(self, year): """ Returns the year for specific locale if available :param name: the ``int`` year (4-digit) """ return "{:04d}".format(year)[2:] def meridian(self, hour, token): """ Returns the meridian indicator for a specified hour and format token. :param hour: the ``int`` hour of the day. :param token: the format token. """ if token == "a": return self.meridians["am"] if hour < 12 else self.meridians["pm"] if token == "A": return self.meridians["AM"] if hour < 12 else self.meridians["PM"] def ordinal_number(self, n): """ Returns the ordinal format of a given integer :param n: an integer """ return self._ordinal_number(n) def _ordinal_number(self, n): return "{}".format(n) def _name_to_ordinal(self, lst): return dict(map(lambda i: (i[1].lower(), i[0] + 1), enumerate(lst[1:]))) def _format_timeframe(self, timeframe, delta): return self.timeframes[timeframe].format(trunc(abs(delta))) def _format_relative(self, humanized, timeframe, delta): if timeframe == "now": return humanized direction = self.past if delta < 0 else self.future return direction.format(humanized) # base locale type implementations. class EnglishLocale(Locale): names = [ "en", "en_us", "en_gb", "en_au", "en_be", "en_jp", "en_za", "en_ca", "en_ph", ] past = "{0} ago" future = "in {0}" timeframes = { "now": "just now", "seconds": "seconds", "minute": "a minute", "minutes": "{0} minutes", "hour": "an hour", "hours": "{0} hours", "day": "a day", "days": "{0} days", "week": "a week", "weeks": "{0} weeks", "month": "a month", "months": "{0} months", "year": "a year", "years": "{0} years", } meridians = {"am": "am", "pm": "pm", "AM": "AM", "PM": "PM"} month_names = [ "", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ] month_abbreviations = [ "", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ] day_names = [ "", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday", ] day_abbreviations = ["", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] ordinal_day_re = r"((?P<value>[2-3]?1(?=st)|[2-3]?2(?=nd)|[2-3]?3(?=rd)|[1-3]?[04-9](?=th)|1[1-3](?=th))(st|nd|rd|th))" def _ordinal_number(self, n): if n % 100 not in (11, 12, 13): remainder = abs(n) % 10 if remainder == 1: return "{}st".format(n) elif remainder == 2: return "{}nd".format(n) elif remainder == 3: return "{}rd".format(n) return "{}th".format(n) def describe(self, timeframe, delta=0, only_distance=False): """ Describes a delta within a timeframe in plain language. :param timeframe: a string representing a timeframe. :param delta: a quantity representing a delta in a timeframe. :param only_distance: return only distance eg: "11 seconds" without "in" or "ago" keywords """ humanized = super(EnglishLocale, self).describe(timeframe, delta, only_distance) if only_distance and timeframe == "now": humanized = "instantly" return humanized class ItalianLocale(Locale): names = ["it", "it_it"] past = "{0} fa" future = "tra {0}" timeframes = { "now": "adesso", "seconds": "qualche secondo", "minute": "un minuto", "minutes": "{0} minuti", "hour": "un'ora", "hours": "{0} ore", "day": "un giorno", "days": "{0} giorni", "month": "un mese", "months": "{0} mesi", "year": "un anno", "years": "{0} anni", } month_names = [ "", "gennaio", "febbraio", "marzo", "aprile", "maggio", "giugno", "luglio", "agosto", "settembre", "ottobre", "novembre", "dicembre", ] month_abbreviations = [ "", "gen", "feb", "mar", "apr", "mag", "giu", "lug", "ago", "set", "ott", "nov", "dic", ] day_names = [ "", "lunedì", "martedì", "mercoledì", "giovedì", "venerdì", "sabato", "domenica", ] day_abbreviations = ["", "lun", "mar", "mer", "gio", "ven", "sab", "dom"] ordinal_day_re = r"((?P<value>[1-3]?[0-9](?=[ºª]))[ºª])" def _ordinal_number(self, n): return "{}º".format(n) class SpanishLocale(Locale): names = ["es", "es_es"] past = "hace {0}" future = "en {0}" timeframes = { "now": "ahora", "seconds": "segundos", "minute": "un minuto", "minutes": "{0} minutos", "hour": "una hora", "hours": "{0} horas", "day": "un día", "days": "{0} días", "week": "una semana", "weeks": "{0} semanas", "month": "un mes", "months": "{0} meses", "year": "un año", "years": "{0} años", } meridians = {"am": "am", "pm": "pm", "AM": "AM", "PM": "PM"} month_names = [ "", "enero", "febrero", "marzo", "abril", "mayo", "junio", "julio", "agosto", "septiembre", "octubre", "noviembre", "diciembre", ] month_abbreviations = [ "", "ene", "feb", "mar", "abr", "may", "jun", "jul", "ago", "sep", "oct", "nov", "dic", ] day_names = [ "", "lunes", "martes", "miércoles", "jueves", "viernes", "sábado", "domingo", ] day_abbreviations = ["", "lun", "mar", "mie", "jue", "vie", "sab", "dom"] ordinal_day_re = r"((?P<value>[1-3]?[0-9](?=[ºª]))[ºª])" def _ordinal_number(self, n): return "{}º".format(n) class FrenchLocale(Locale): names = ["fr", "fr_fr"] past = "il y a {0}" future = "dans {0}" timeframes = { "now": "maintenant", "seconds": "quelques secondes", "minute": "une minute", "minutes": "{0} minutes", "hour": "une heure", "hours": "{0} heures", "day": "un jour", "days": "{0} jours", "week": "une semaine", "weeks": "{0} semaines", "month": "un mois", "months": "{0} mois", "year": "un an", "years": "{0} ans", } month_names = [ "", "janvier", "février", "mars", "avril", "mai", "juin", "juillet", "août", "septembre", "octobre", "novembre", "décembre", ] month_abbreviations = [ "", "janv", "févr", "mars", "avr", "mai", "juin", "juil", "août", "sept", "oct", "nov", "déc", ] day_names = [ "", "lundi", "mardi", "mercredi", "jeudi", "vendredi", "samedi", "dimanche", ] day_abbreviations = ["", "lun", "mar", "mer", "jeu", "ven", "sam", "dim"] ordinal_day_re = ( r"((?P<value>\b1(?=er\b)|[1-3]?[02-9](?=e\b)|[1-3]1(?=e\b))(er|e)\b)" ) def _ordinal_number(self, n): if abs(n) == 1: return "{}er".format(n) return "{}e".format(n) class GreekLocale(Locale): names = ["el", "el_gr"] past = "{0} πριν" future = "σε {0}" timeframes = { "now": "τώρα", "seconds": "δευτερόλεπτα", "minute": "ένα λεπτό", "minutes": "{0} λεπτά", "hour": "μία ώρα", "hours": "{0} ώρες", "day": "μία μέρα", "days": "{0} μέρες", "month": "ένα μήνα", "months": "{0} μήνες", "year": "ένα χρόνο", "years": "{0} χρόνια", } month_names = [ "", "Ιανουαρίου", "Φεβρουαρίου", "Μαρτίου", "Απριλίου", "Μαΐου", "Ιουνίου", "Ιουλίου", "Αυγούστου", "Σεπτεμβρίου", "Οκτωβρίου", "Νοεμβρίου", "Δεκεμβρίου", ] month_abbreviations = [ "", "Ιαν", "Φεβ", "Μαρ", "Απρ", "Μαϊ", "Ιον", "Ιολ", "Αυγ", "Σεπ", "Οκτ", "Νοε", "Δεκ", ] day_names = [ "", "Δευτέρα", "Τρίτη", "Τετάρτη", "Πέμπτη", "Παρασκευή", "Σάββατο", "Κυριακή", ] day_abbreviations = ["", "Δευ", "Τρι", "Τετ", "Πεμ", "Παρ", "Σαβ", "Κυρ"] class JapaneseLocale(Locale): names = ["ja", "ja_jp"] past = "{0}前" future = "{0}後" timeframes = { "now": "現在", "seconds": "数秒", "minute": "1分", "minutes": "{0}分", "hour": "1時間", "hours": "{0}時間", "day": "1日", "days": "{0}日", "week": "1週間", "weeks": "{0}週間", "month": "1ヶ月", "months": "{0}ヶ月", "year": "1年", "years": "{0}年", } month_names = [ "", "1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月", ] month_abbreviations = [ "", " 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", "10", "11", "12", ] day_names = ["", "月曜日", "火曜日", "水曜日", "木曜日", "金曜日", "土曜日", "日曜日"] day_abbreviations = ["", "月", "火", "水", "木", "金", "土", "日"] class SwedishLocale(Locale): names = ["sv", "sv_se"] past = "för {0} sen" future = "om {0}" timeframes = { "now": "just nu", "seconds": "några sekunder", "minute": "en minut", "minutes": "{0} minuter", "hour": "en timme", "hours": "{0} timmar", "day": "en dag", "days": "{0} dagar", "month": "en månad", "months": "{0} månader", "year": "ett år", "years": "{0} år", } month_names = [ "", "januari", "februari", "mars", "april", "maj", "juni", "juli", "augusti", "september", "oktober", "november", "december", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "maj", "jun", "jul", "aug", "sep", "okt", "nov", "dec", ] day_names = [ "", "måndag", "tisdag", "onsdag", "torsdag", "fredag", "lördag", "söndag", ] day_abbreviations = ["", "mån", "tis", "ons", "tor", "fre", "lör", "sön"] class FinnishLocale(Locale): names = ["fi", "fi_fi"] # The finnish grammar is very complex, and its hard to convert # 1-to-1 to something like English. past = "{0} sitten" future = "{0} kuluttua" timeframes = { "now": ["juuri nyt", "juuri nyt"], "seconds": ["muutama sekunti", "muutaman sekunnin"], "minute": ["minuutti", "minuutin"], "minutes": ["{0} minuuttia", "{0} minuutin"], "hour": ["tunti", "tunnin"], "hours": ["{0} tuntia", "{0} tunnin"], "day": ["päivä", "päivä"], "days": ["{0} päivää", "{0} päivän"], "month": ["kuukausi", "kuukauden"], "months": ["{0} kuukautta", "{0} kuukauden"], "year": ["vuosi", "vuoden"], "years": ["{0} vuotta", "{0} vuoden"], } # Months and days are lowercase in Finnish month_names = [ "", "tammikuu", "helmikuu", "maaliskuu", "huhtikuu", "toukokuu", "kesäkuu", "heinäkuu", "elokuu", "syyskuu", "lokakuu", "marraskuu", "joulukuu", ] month_abbreviations = [ "", "tammi", "helmi", "maalis", "huhti", "touko", "kesä", "heinä", "elo", "syys", "loka", "marras", "joulu", ] day_names = [ "", "maanantai", "tiistai", "keskiviikko", "torstai", "perjantai", "lauantai", "sunnuntai", ] day_abbreviations = ["", "ma", "ti", "ke", "to", "pe", "la", "su"] def _format_timeframe(self, timeframe, delta): return ( self.timeframes[timeframe][0].format(abs(delta)), self.timeframes[timeframe][1].format(abs(delta)), ) def _format_relative(self, humanized, timeframe, delta): if timeframe == "now": return humanized[0] direction = self.past if delta < 0 else self.future which = 0 if delta < 0 else 1 return direction.format(humanized[which]) def _ordinal_number(self, n): return "{}.".format(n) class ChineseCNLocale(Locale): names = ["zh", "zh_cn"] past = "{0}前" future = "{0}后" timeframes = { "now": "刚才", "seconds": "几秒", "minute": "1分钟", "minutes": "{0}分钟", "hour": "1小时", "hours": "{0}小时", "day": "1天", "days": "{0}天", "week": "一周", "weeks": "{0}周", "month": "1个月", "months": "{0}个月", "year": "1年", "years": "{0}年", } month_names = [ "", "一月", "二月", "三月", "四月", "五月", "六月", "七月", "八月", "九月", "十月", "十一月", "十二月", ] month_abbreviations = [ "", " 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", "10", "11", "12", ] day_names = ["", "星期一", "星期二", "星期三", "星期四", "星期五", "星期六", "星期日"] day_abbreviations = ["", "一", "二", "三", "四", "五", "六", "日"] class ChineseTWLocale(Locale): names = ["zh_tw"] past = "{0}前" future = "{0}後" timeframes = { "now": "剛才", "seconds": "幾秒", "minute": "1分鐘", "minutes": "{0}分鐘", "hour": "1小時", "hours": "{0}小時", "day": "1天", "days": "{0}天", "month": "1個月", "months": "{0}個月", "year": "1年", "years": "{0}年", } month_names = [ "", "1月", "2月", "3月", "4月", "5月", "6月", "7月", "8月", "9月", "10月", "11月", "12月", ] month_abbreviations = [ "", " 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", "10", "11", "12", ] day_names = ["", "周一", "周二", "周三", "周四", "周五", "周六", "周日"] day_abbreviations = ["", "一", "二", "三", "四", "五", "六", "日"] class KoreanLocale(Locale): names = ["ko", "ko_kr"] past = "{0} 전" future = "{0} 후" timeframes = { "now": "지금", "seconds": "몇 초", "minute": "1분", "minutes": "{0}분", "hour": "1시간", "hours": "{0}시간", "day": "1일", "days": "{0}일", "month": "1개월", "months": "{0}개월", "year": "1년", "years": "{0}년", } month_names = [ "", "1월", "2월", "3월", "4월", "5월", "6월", "7월", "8월", "9월", "10월", "11월", "12월", ] month_abbreviations = [ "", " 1", " 2", " 3", " 4", " 5", " 6", " 7", " 8", " 9", "10", "11", "12", ] day_names = ["", "월요일", "화요일", "수요일", "목요일", "금요일", "토요일", "일요일"] day_abbreviations = ["", "월", "화", "수", "목", "금", "토", "일"] # derived locale types & implementations. class DutchLocale(Locale): names = ["nl", "nl_nl"] past = "{0} geleden" future = "over {0}" timeframes = { "now": "nu", "seconds": "seconden", "minute": "een minuut", "minutes": "{0} minuten", "hour": "een uur", "hours": "{0} uur", "day": "een dag", "days": "{0} dagen", "month": "een maand", "months": "{0} maanden", "year": "een jaar", "years": "{0} jaar", } # In Dutch names of months and days are not starting with a capital letter # like in the English language. month_names = [ "", "januari", "februari", "maart", "april", "mei", "juni", "juli", "augustus", "september", "oktober", "november", "december", ] month_abbreviations = [ "", "jan", "feb", "mrt", "apr", "mei", "jun", "jul", "aug", "sep", "okt", "nov", "dec", ] day_names = [ "", "maandag", "dinsdag", "woensdag", "donderdag", "vrijdag", "zaterdag", "zondag", ] day_abbreviations = ["", "ma", "di", "wo", "do", "vr", "za", "zo"] class SlavicBaseLocale(Locale): def _format_timeframe(self, timeframe, delta): form = self.timeframes[timeframe] delta = abs(delta) if isinstance(form, list): if delta % 10 == 1 and delta % 100 != 11: form = form[0] elif 2 <= delta % 10 <= 4 and (delta % 100 < 10 or delta % 100 >= 20): form = form[1] else: form = form[2] return form.format(delta) class BelarusianLocale(SlavicBaseLocale): names = ["be", "be_by"] past = "{0} таму" future = "праз {0}" timeframes = { "now": "зараз", "seconds": "некалькі секунд", "minute": "хвіліну", "minutes": ["{0} хвіліну", "{0} хвіліны", "{0} хвілін"], "hour": "гадзіну", "hours": ["{0} гадзіну", "{0} гадзіны", "{0} гадзін"], "day": "дзень", "days": ["{0} дзень", "{0} дні", "{0} дзён"], "month": "месяц", "months": ["{0} месяц", "{0} месяцы", "{0} месяцаў"], "year": "год", "years": ["{0} год", "{0} гады", "{0} гадоў"], } month_names = [ "", "студзеня", "лютага", "сакавіка", "красавіка", "траўня", "чэрвеня", "ліпеня", "жніўня", "верасня", "кастрычніка", "лістапада", "снежня", ] month_abbreviations = [ "", "студ", "лют", "сак", "крас", "трав", "чэрв", "ліп", "жнів", "вер", "каст", "ліст", "снеж", ] day_names = [ "", "панядзелак", "аўторак", "серада", "чацвер", "пятніца", "субота", "нядзеля", ] day_abbreviations = ["", "пн", "ат", "ср", "чц", "пт", "сб", "нд"] class PolishLocale(SlavicBaseLocale): names = ["pl", "pl_pl"] past = "{0} temu" future = "za {0}" timeframes = { "now": "teraz", "seconds": "kilka sekund", "minute": "minutę", "minutes": ["{0} minut", "{0} minuty", "{0} minut"], "hour": "godzina", "hours": ["{0} godzin", "{0} godziny", "{0} godzin"], "day": "dzień", "days": ["{0} dzień", "{0} dni", "{0} dni"], "month": "miesiąc", "months": ["{0} miesiąc", "{0} miesiące", "{0} miesięcy"], "year": "rok", "years": ["{0} rok", "{0} lata", "{0} lat"], } month_names = [ "", "styczeń", "luty", "marzec", "kwiecień", "maj", "czerwiec", "lipiec", "sierpień", "wrzesień", "październik", "listopad", "grudzień", ] month_abbreviations = [ "", "sty", "lut", "mar", "kwi", "maj", "cze", "lip", "sie", "wrz", "paź", "lis", "gru", ] day_names = [ "", "poniedziałek", "wtorek", "środa", "czwartek", "piątek", "sobota", "niedziela", ] day_abbreviations = ["", "Pn", "Wt", "Śr", "Czw", "Pt", "So", "Nd"] class RussianLocale(SlavicBaseLocale): names = ["ru", "ru_ru"] past = "{0} назад" future = "через {0}" timeframes = { "now": "сейчас", "seconds": "несколько секунд", "minute": "минуту", "minutes": ["{0} минуту", "{0} минуты", "{0} минут"], "hour": "час", "hours": ["{0} час", "{0} часа", "{0} часов"], "day": "день", "days": ["{0} день", "{0} дня", "{0} дней"], "week": "неделю", "weeks": ["{0} неделю", "{0} недели", "{0} недель"], "month": "месяц", "months": ["{0} месяц", "{0} месяца", "{0} месяцев"], "year": "год", "years": ["{0} год", "{0} года", "{0} лет"], } month_names = [ "", "января", "февраля", "марта", "апреля", "мая", "июня", "июля", "августа", "сентября", "октября", "ноября", "декабря", ] month_abbreviations = [ "", "янв", "фев", "мар", "апр", "май", "июн", "июл", "авг", "сен", "окт", "ноя", "дек", ] day_names = [ "", "понедельник", "вторник", "среда", "четверг", "пятница", "суббота", "воскресенье", ] day_abbreviations = ["", "пн", "вт", "ср", "чт", "пт", "сб", "вс"] class AfrikaansLocale(Locale): names = ["af", "af_nl"] past = "{0} gelede" future = "in {0}" timeframes = { "now": "nou", "seconds": "sekondes", "minute": "minuut", "minutes": "{0} minute", "hour": "uur", "hours": "{0} ure", "day": "een dag", "days": "{0} dae", "month": "een maand", "months": "{0} maande", "year": "een jaar", "years": "{0} jaar", } month_names = [ "", "Januarie", "Februarie", "Maart", "April", "Mei", "Junie", "Julie", "Augustus", "September", "Oktober", "November", "Desember", ] month_abbreviations = [ "", "Jan", "Feb", "Mrt", "Apr", "Mei", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Des", ] day_names = [ "", "Maandag", "Dinsdag", "Woensdag", "Donderdag", "Vrydag", "Saterdag", "Sondag", ] day_abbreviations = ["", "Ma", "Di", "Wo", "Do", "Vr", "Za", "So"] class BulgarianLocale(SlavicBaseLocale): names = ["bg", "bg_BG"] past = "{0} назад" future = "напред {0}" timeframes = { "now": "сега", "seconds": "няколко секунди", "minute": "минута", "minutes": ["{0} минута", "{0} минути", "{0} минути"], "hour": "час", "hours": ["{0} час", "{0} часа", "{0} часа"], "day": "ден", "days": ["{0} ден", "{0} дни", "{0} дни"], "month": "месец", "months": ["{0} месец", "{0} месеца", "{0} месеца"], "year": "година", "years": ["{0} година", "{0} години", "{0} години"], } month_names = [ "", "януари", "февруари", "март", "април", "май", "юни", "юли", "август", "септември", "октомври", "ноември", "декември", ] month_abbreviations = [ "", "ян", "февр", "март", "апр", "май", "юни", "юли", "авг", "септ", "окт", "ноем", "дек", ] day_names = [ "", "понеделник", "вторник", "сряда", "четвъртък", "петък", "събота", "неделя", ] day_abbreviations = ["", "пон", "вт", "ср", "четв", "пет", "съб", "нед"] class UkrainianLocale(SlavicBaseLocale): names = ["ua", "uk_ua"] past = "{0} тому" future = "за {0}" timeframes = { "now": "зараз", "seconds": "кілька секунд", "minute": "хвилину", "minutes": ["{0} хвилину", "{0} хвилини", "{0} хвилин"], "hour": "годину", "hours": ["{0} годину", "{0} години", "{0} годин"], "day": "день", "days": ["{0} день", "{0} дні", "{0} днів"], "month": "місяць", "months": ["{0} місяць", "{0} місяці", "{0} місяців"], "year": "рік", "years": ["{0} рік", "{0} роки", "{0} років"], } month_names = [ "", "січня", "лютого", "березня", "квітня", "травня", "червня", "липня", "серпня", "вересня", "жовтня", "листопада", "грудня", ] month_abbreviations = [ "", "січ", "лют", "бер", "квіт", "трав", "черв", "лип", "серп", "вер", "жовт", "лист", "груд", ] day_names = [ "", "понеділок", "вівторок", "середа", "четвер", "п’ятниця", "субота", "неділя", ] day_abbreviations = ["", "пн", "вт", "ср", "чт", "пт", "сб", "нд"] class MacedonianLocale(SlavicBaseLocale): names = ["mk", "mk_mk"] past = "пред {0}" future = "за {0}" timeframes = { "now": "сега", "seconds": "секунди", "minute": "една минута", "minutes": ["{0} минута", "{0} минути", "{0} минути"], "hour": "еден саат", "hours": ["{0} саат", "{0} саати", "{0} саати"], "day": "еден ден", "days": ["{0} ден", "{0} дена", "{0} дена"], "month": "еден месец", "months": ["{0} месец", "{0} месеци", "{0} месеци"], "year": "една година", "years": ["{0} година", "{0} години", "{0} години"], } meridians = {"am": "дп", "pm": "пп", "AM": "претпладне", "PM": "попладне"} month_names = [ "", "Јануари", "Февруари", "Март", "Април", "Мај", "Јуни", "Јули", "Август", "Септември", "Октомври", "Ноември", "Декември", ] month_abbreviations = [ "", "Јан.", " Фев.", " Мар.", " Апр.", " Мај", " Јун.", " Јул.", " Авг.", " Септ.", " Окт.", " Ноем.", " Декем.", ] day_names = [ "", "Понеделник", " Вторник", " Среда", " Четврток", " Петок", " Сабота", " Недела", ] day_abbreviations = [ "", "Пон.", " Вт.", " Сре.", " Чет.", " Пет.", " Саб.", " Нед.", ] class DeutschBaseLocale(Locale): past = "vor {0}" future = "in {0}" timeframes = { "now": "gerade eben", "seconds": "Sekunden", "minute": "einer Minute", "minutes": "{0} Minuten", "hour": "einer Stunde", "hours": "{0} Stunden", "day": "einem Tag", "days": "{0} Tagen", "month": "einem Monat", "months": "{0} Monaten", "year": "einem Jahr", "years": "{0} Jahren", } timeframes_only_distance = timeframes.copy() timeframes_only_distance["minute"] = "eine Minute" timeframes_only_distance["hour"] = "eine Stunde" timeframes_only_distance["day"] = "ein Tag" timeframes_only_distance["month"] = "ein Monat" timeframes_only_distance["year"] = "ein Jahr" month_names = [ "", "Januar", "Februar", "März", "April", "Mai", "Juni", "Juli", "August", "September", "Oktober", "November", "Dezember", ] month_abbreviations = [ "", "Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez", ] day_names = [ "", "Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag", "Samstag", "Sonntag", ] day_abbreviations = ["", "Mo", "Di", "Mi", "Do", "Fr", "Sa", "So"] def _ordinal_number(self, n): return "{}.".format(n) def describe(self, timeframe, delta=0, only_distance=False): """ Describes a delta within a timeframe in plain language. :param timeframe: a string representing a timeframe. :param delta: a quantity representing a delta in a timeframe. :param only_distance: return only distance eg: "11 seconds" without "in" or "ago" keywords """ humanized = self.timeframes_only_distance[timeframe].format(trunc(abs(delta))) if not only_distance: humanized = self._format_timeframe(timeframe, delta) humanized = self._format_relative(humanized, timeframe, delta) return humanized class GermanLocale(DeutschBaseLocale, Locale): names = ["de", "de_de"] class AustrianLocale(DeutschBaseLocale, Locale): names = ["de_at"] month_names = [ "", "Jänner", "Februar", "März", "April", "Mai", "Juni", "Juli", "August", "September", "Oktober", "November", "Dezember", ] class NorwegianLocale(Locale): names = ["nb", "nb_no"] past = "for {0} siden" future = "om {0}" timeframes = { "now": "nå nettopp", "seconds": "noen sekunder", "minute": "ett minutt", "minutes": "{0} minutter", "hour": "en time", "hours": "{0} timer", "day": "en dag", "days": "{0} dager", "month": "en måned", "months": "{0} måneder", "year": "ett år", "years": "{0} år", } month_names = [ "", "januar", "februar", "mars", "april", "mai", "juni", "juli", "august", "september", "oktober", "november", "desember", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "mai", "jun", "jul", "aug", "sep", "okt", "nov", "des", ] day_names = [ "", "mandag", "tirsdag", "onsdag", "torsdag", "fredag", "lørdag", "søndag", ] day_abbreviations = ["", "ma", "ti", "on", "to", "fr", "lø", "sø"] class NewNorwegianLocale(Locale): names = ["nn", "nn_no"] past = "for {0} sidan" future = "om {0}" timeframes = { "now": "no nettopp", "seconds": "nokre sekund", "minute": "ett minutt", "minutes": "{0} minutt", "hour": "ein time", "hours": "{0} timar", "day": "ein dag", "days": "{0} dagar", "month": "en månad", "months": "{0} månader", "year": "eit år", "years": "{0} år", } month_names = [ "", "januar", "februar", "mars", "april", "mai", "juni", "juli", "august", "september", "oktober", "november", "desember", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "mai", "jun", "jul", "aug", "sep", "okt", "nov", "des", ] day_names = [ "", "måndag", "tysdag", "onsdag", "torsdag", "fredag", "laurdag", "sundag", ] day_abbreviations = ["", "må", "ty", "on", "to", "fr", "la", "su"] class PortugueseLocale(Locale): names = ["pt", "pt_pt"] past = "há {0}" future = "em {0}" timeframes = { "now": "agora", "second": "um segundo", "seconds": "{0} segundos", "minute": "um minuto", "minutes": "{0} minutos", "hour": "uma hora", "hours": "{0} horas", "day": "um dia", "days": "{0} dias", "week": "uma semana", "weeks": "{0} semanas", "month": "um mês", "months": "{0} meses", "year": "um ano", "years": "{0} anos", } month_names = [ "", "janeiro", "fevereiro", "março", "abril", "maio", "junho", "julho", "agosto", "setembro", "outubro", "novembro", "dezembro", ] month_abbreviations = [ "", "jan", "fev", "mar", "abr", "maio", "jun", "jul", "ago", "set", "out", "nov", "dez", ] day_names = [ "", "segunda-feira", "terça-feira", "quarta-feira", "quinta-feira", "sexta-feira", "sábado", "domingo", ] day_abbreviations = ["", "seg", "ter", "qua", "qui", "sex", "sab", "dom"] class BrazilianPortugueseLocale(PortugueseLocale): names = ["pt_br"] past = "faz {0}" future = "em {0}" timeframes = { "now": "agora", "second": "um segundo", "seconds": "{0} segundos", "minute": "um minuto", "minutes": "{0} minutos", "hour": "uma hora", "hours": "{0} horas", "day": "um dia", "days": "{0} dias", "week": "uma semana", "weeks": "{0} semanas", "month": "um mês", "months": "{0} meses", "year": "um ano", "years": "{0} anos", } month_names = [ "", "Janeiro", "Fevereiro", "Março", "Abril", "Maio", "Junho", "Julho", "Agosto", "Setembro", "Outubro", "Novembro", "Dezembro", ] month_abbreviations = [ "", "Jan", "Fev", "Mar", "Abr", "Mai", "Jun", "Jul", "Ago", "Set", "Out", "Nov", "Dez", ] day_names = [ "", "Segunda-feira", "Terça-feira", "Quarta-feira", "Quinta-feira", "Sexta-feira", "Sábado", "Domingo", ] day_abbreviations = ["", "Seg", "Ter", "Qua", "Qui", "Sex", "Sab", "Dom"] class TagalogLocale(Locale): names = ["tl", "tl_ph"] past = "nakaraang {0}" future = "{0} mula ngayon" timeframes = { "now": "ngayon lang", "seconds": "segundo", "minute": "isang minuto", "minutes": "{0} minuto", "hour": "isang oras", "hours": "{0} oras", "day": "isang araw", "days": "{0} araw", "month": "isang buwan", "months": "{0} buwan", "year": "isang taon", "years": "{0} taon", } month_names = [ "", "Enero", "Pebrero", "Marso", "Abril", "Mayo", "Hunyo", "Hulyo", "Agosto", "Setyembre", "Oktubre", "Nobyembre", "Disyembre", ] month_abbreviations = [ "", "Ene", "Peb", "Mar", "Abr", "May", "Hun", "Hul", "Ago", "Set", "Okt", "Nob", "Dis", ] day_names = [ "", "Lunes", "Martes", "Miyerkules", "Huwebes", "Biyernes", "Sabado", "Linggo", ] day_abbreviations = ["", "Lun", "Mar", "Miy", "Huw", "Biy", "Sab", "Lin"] def _ordinal_number(self, n): return "ika-{}".format(n) class VietnameseLocale(Locale): names = ["vi", "vi_vn"] past = "{0} trước" future = "{0} nữa" timeframes = { "now": "hiện tại", "seconds": "giây", "minute": "một phút", "minutes": "{0} phút", "hour": "một giờ", "hours": "{0} giờ", "day": "một ngày", "days": "{0} ngày", "week": "một tuần", "weeks": "{0} tuần", "month": "một tháng", "months": "{0} tháng", "year": "một năm", "years": "{0} năm", } month_names = [ "", "Tháng Một", "Tháng Hai", "Tháng Ba", "Tháng Tư", "Tháng Năm", "Tháng Sáu", "Tháng Bảy", "Tháng Tám", "Tháng Chín", "Tháng Mười", "Tháng Mười Một", "Tháng Mười Hai", ] month_abbreviations = [ "", "Tháng 1", "Tháng 2", "Tháng 3", "Tháng 4", "Tháng 5", "Tháng 6", "Tháng 7", "Tháng 8", "Tháng 9", "Tháng 10", "Tháng 11", "Tháng 12", ] day_names = [ "", "Thứ Hai", "Thứ Ba", "Thứ Tư", "Thứ Năm", "Thứ Sáu", "Thứ Bảy", "Chủ Nhật", ] day_abbreviations = ["", "Thứ 2", "Thứ 3", "Thứ 4", "Thứ 5", "Thứ 6", "Thứ 7", "CN"] class TurkishLocale(Locale): names = ["tr", "tr_tr"] past = "{0} önce" future = "{0} sonra" timeframes = { "now": "şimdi", "seconds": "saniye", "minute": "bir dakika", "minutes": "{0} dakika", "hour": "bir saat", "hours": "{0} saat", "day": "bir gün", "days": "{0} gün", "month": "bir ay", "months": "{0} ay", "year": "yıl", "years": "{0} yıl", } month_names = [ "", "Ocak", "Şubat", "Mart", "Nisan", "Mayıs", "Haziran", "Temmuz", "Ağustos", "Eylül", "Ekim", "Kasım", "Aralık", ] month_abbreviations = [ "", "Oca", "Şub", "Mar", "Nis", "May", "Haz", "Tem", "Ağu", "Eyl", "Eki", "Kas", "Ara", ] day_names = [ "", "Pazartesi", "Salı", "Çarşamba", "Perşembe", "Cuma", "Cumartesi", "Pazar", ] day_abbreviations = ["", "Pzt", "Sal", "Çar", "Per", "Cum", "Cmt", "Paz"] class AzerbaijaniLocale(Locale): names = ["az", "az_az"] past = "{0} əvvəl" future = "{0} sonra" timeframes = { "now": "indi", "seconds": "saniyə", "minute": "bir dəqiqə", "minutes": "{0} dəqiqə", "hour": "bir saat", "hours": "{0} saat", "day": "bir gün", "days": "{0} gün", "month": "bir ay", "months": "{0} ay", "year": "il", "years": "{0} il", } month_names = [ "", "Yanvar", "Fevral", "Mart", "Aprel", "May", "İyun", "İyul", "Avqust", "Sentyabr", "Oktyabr", "Noyabr", "Dekabr", ] month_abbreviations = [ "", "Yan", "Fev", "Mar", "Apr", "May", "İyn", "İyl", "Avq", "Sen", "Okt", "Noy", "Dek", ] day_names = [ "", "Bazar ertəsi", "Çərşənbə axşamı", "Çərşənbə", "Cümə axşamı", "Cümə", "Şənbə", "Bazar", ] day_abbreviations = ["", "Ber", "Çax", "Çər", "Cax", "Cüm", "Şnb", "Bzr"] class ArabicLocale(Locale): names = [ "ar", "ar_ae", "ar_bh", "ar_dj", "ar_eg", "ar_eh", "ar_er", "ar_km", "ar_kw", "ar_ly", "ar_om", "ar_qa", "ar_sa", "ar_sd", "ar_so", "ar_ss", "ar_td", "ar_ye", ] past = "منذ {0}" future = "خلال {0}" timeframes = { "now": "الآن", "seconds": {"double": "ثانيتين", "ten": "{0} ثوان", "higher": "{0} ثانية"}, "minute": "دقيقة", "minutes": {"double": "دقيقتين", "ten": "{0} دقائق", "higher": "{0} دقيقة"}, "hour": "ساعة", "hours": {"double": "ساعتين", "ten": "{0} ساعات", "higher": "{0} ساعة"}, "day": "يوم", "days": {"double": "يومين", "ten": "{0} أيام", "higher": "{0} يوم"}, "month": "شهر", "months": {"double": "شهرين", "ten": "{0} أشهر", "higher": "{0} شهر"}, "year": "سنة", "years": {"double": "سنتين", "ten": "{0} سنوات", "higher": "{0} سنة"}, } month_names = [ "", "يناير", "فبراير", "مارس", "أبريل", "مايو", "يونيو", "يوليو", "أغسطس", "سبتمبر", "أكتوبر", "نوفمبر", "ديسمبر", ] month_abbreviations = [ "", "يناير", "فبراير", "مارس", "أبريل", "مايو", "يونيو", "يوليو", "أغسطس", "سبتمبر", "أكتوبر", "نوفمبر", "ديسمبر", ] day_names = [ "", "الإثنين", "الثلاثاء", "الأربعاء", "الخميس", "الجمعة", "السبت", "الأحد", ] day_abbreviations = ["", "إثنين", "ثلاثاء", "أربعاء", "خميس", "جمعة", "سبت", "أحد"] def _format_timeframe(self, timeframe, delta): form = self.timeframes[timeframe] delta = abs(delta) if isinstance(form, dict): if delta == 2: form = form["double"] elif delta > 2 and delta <= 10: form = form["ten"] else: form = form["higher"] return form.format(delta) class LevantArabicLocale(ArabicLocale): names = ["ar_iq", "ar_jo", "ar_lb", "ar_ps", "ar_sy"] month_names = [ "", "كانون الثاني", "شباط", "آذار", "نيسان", "أيار", "حزيران", "تموز", "آب", "أيلول", "تشرين الأول", "تشرين الثاني", "كانون الأول", ] month_abbreviations = [ "", "كانون الثاني", "شباط", "آذار", "نيسان", "أيار", "حزيران", "تموز", "آب", "أيلول", "تشرين الأول", "تشرين الثاني", "كانون الأول", ] class AlgeriaTunisiaArabicLocale(ArabicLocale): names = ["ar_tn", "ar_dz"] month_names = [ "", "جانفي", "فيفري", "مارس", "أفريل", "ماي", "جوان", "جويلية", "أوت", "سبتمبر", "أكتوبر", "نوفمبر", "ديسمبر", ] month_abbreviations = [ "", "جانفي", "فيفري", "مارس", "أفريل", "ماي", "جوان", "جويلية", "أوت", "سبتمبر", "أكتوبر", "نوفمبر", "ديسمبر", ] class MauritaniaArabicLocale(ArabicLocale): names = ["ar_mr"] month_names = [ "", "يناير", "فبراير", "مارس", "إبريل", "مايو", "يونيو", "يوليو", "أغشت", "شتمبر", "أكتوبر", "نوفمبر", "دجمبر", ] month_abbreviations = [ "", "يناير", "فبراير", "مارس", "إبريل", "مايو", "يونيو", "يوليو", "أغشت", "شتمبر", "أكتوبر", "نوفمبر", "دجمبر", ] class MoroccoArabicLocale(ArabicLocale): names = ["ar_ma"] month_names = [ "", "يناير", "فبراير", "مارس", "أبريل", "ماي", "يونيو", "يوليوز", "غشت", "شتنبر", "أكتوبر", "نونبر", "دجنبر", ] month_abbreviations = [ "", "يناير", "فبراير", "مارس", "أبريل", "ماي", "يونيو", "يوليوز", "غشت", "شتنبر", "أكتوبر", "نونبر", "دجنبر", ] class IcelandicLocale(Locale): def _format_timeframe(self, timeframe, delta): timeframe = self.timeframes[timeframe] if delta < 0: timeframe = timeframe[0] elif delta > 0: timeframe = timeframe[1] return timeframe.format(abs(delta)) names = ["is", "is_is"] past = "fyrir {0} síðan" future = "eftir {0}" timeframes = { "now": "rétt í þessu", "seconds": ("nokkrum sekúndum", "nokkrar sekúndur"), "minute": ("einni mínútu", "eina mínútu"), "minutes": ("{0} mínútum", "{0} mínútur"), "hour": ("einum tíma", "einn tíma"), "hours": ("{0} tímum", "{0} tíma"), "day": ("einum degi", "einn dag"), "days": ("{0} dögum", "{0} daga"), "month": ("einum mánuði", "einn mánuð"), "months": ("{0} mánuðum", "{0} mánuði"), "year": ("einu ári", "eitt ár"), "years": ("{0} árum", "{0} ár"), } meridians = {"am": "f.h.", "pm": "e.h.", "AM": "f.h.", "PM": "e.h."} month_names = [ "", "janúar", "febrúar", "mars", "apríl", "maí", "júní", "júlí", "ágúst", "september", "október", "nóvember", "desember", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "maí", "jún", "júl", "ágú", "sep", "okt", "nóv", "des", ] day_names = [ "", "mánudagur", "þriðjudagur", "miðvikudagur", "fimmtudagur", "föstudagur", "laugardagur", "sunnudagur", ] day_abbreviations = ["", "mán", "þri", "mið", "fim", "fös", "lau", "sun"] class DanishLocale(Locale): names = ["da", "da_dk"] past = "for {0} siden" future = "efter {0}" timeframes = { "now": "lige nu", "seconds": "et par sekunder", "minute": "et minut", "minutes": "{0} minutter", "hour": "en time", "hours": "{0} timer", "day": "en dag", "days": "{0} dage", "month": "en måned", "months": "{0} måneder", "year": "et år", "years": "{0} år", } month_names = [ "", "januar", "februar", "marts", "april", "maj", "juni", "juli", "august", "september", "oktober", "november", "december", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "maj", "jun", "jul", "aug", "sep", "okt", "nov", "dec", ] day_names = [ "", "mandag", "tirsdag", "onsdag", "torsdag", "fredag", "lørdag", "søndag", ] day_abbreviations = ["", "man", "tir", "ons", "tor", "fre", "lør", "søn"] class MalayalamLocale(Locale): names = ["ml"] past = "{0} മുമ്പ്" future = "{0} ശേഷം" timeframes = { "now": "ഇപ്പോൾ", "seconds": "സെക്കന്റ്‌", "minute": "ഒരു മിനിറ്റ്", "minutes": "{0} മിനിറ്റ്", "hour": "ഒരു മണിക്കൂർ", "hours": "{0} മണിക്കൂർ", "day": "ഒരു ദിവസം ", "days": "{0} ദിവസം ", "month": "ഒരു മാസം ", "months": "{0} മാസം ", "year": "ഒരു വർഷം ", "years": "{0} വർഷം ", } meridians = { "am": "രാവിലെ", "pm": "ഉച്ചക്ക് ശേഷം", "AM": "രാവിലെ", "PM": "ഉച്ചക്ക് ശേഷം", } month_names = [ "", "ജനുവരി", "ഫെബ്രുവരി", "മാർച്ച്‌", "ഏപ്രിൽ ", "മെയ്‌ ", "ജൂണ്‍", "ജൂലൈ", "ഓഗസ്റ്റ്‌", "സെപ്റ്റംബർ", "ഒക്ടോബർ", "നവംബർ", "ഡിസംബർ", ] month_abbreviations = [ "", "ജനു", "ഫെബ് ", "മാർ", "ഏപ്രിൽ", "മേയ്", "ജൂണ്‍", "ജൂലൈ", "ഓഗസ്റ", "സെപ്റ്റ", "ഒക്ടോ", "നവം", "ഡിസം", ] day_names = ["", "തിങ്കള്‍", "ചൊവ്വ", "ബുധന്‍", "വ്യാഴം", "വെള്ളി", "ശനി", "ഞായര്‍"] day_abbreviations = [ "", "തിങ്കള്‍", "ചൊവ്വ", "ബുധന്‍", "വ്യാഴം", "വെള്ളി", "ശനി", "ഞായര്‍", ] class HindiLocale(Locale): names = ["hi"] past = "{0} पहले" future = "{0} बाद" timeframes = { "now": "अभी", "seconds": "सेकंड्", "minute": "एक मिनट ", "minutes": "{0} मिनट ", "hour": "एक घंटा", "hours": "{0} घंटे", "day": "एक दिन", "days": "{0} दिन", "month": "एक माह ", "months": "{0} महीने ", "year": "एक वर्ष ", "years": "{0} साल ", } meridians = {"am": "सुबह", "pm": "शाम", "AM": "सुबह", "PM": "शाम"} month_names = [ "", "जनवरी", "फरवरी", "मार्च", "अप्रैल ", "मई", "जून", "जुलाई", "अगस्त", "सितंबर", "अक्टूबर", "नवंबर", "दिसंबर", ] month_abbreviations = [ "", "जन", "फ़र", "मार्च", "अप्रै", "मई", "जून", "जुलाई", "आग", "सित", "अकत", "नवे", "दिस", ] day_names = [ "", "सोमवार", "मंगलवार", "बुधवार", "गुरुवार", "शुक्रवार", "शनिवार", "रविवार", ] day_abbreviations = ["", "सोम", "मंगल", "बुध", "गुरुवार", "शुक्र", "शनि", "रवि"] class CzechLocale(Locale): names = ["cs", "cs_cz"] timeframes = { "now": "Teď", "seconds": {"past": "{0} sekundami", "future": ["{0} sekundy", "{0} sekund"]}, "minute": {"past": "minutou", "future": "minutu", "zero": "{0} minut"}, "minutes": {"past": "{0} minutami", "future": ["{0} minuty", "{0} minut"]}, "hour": {"past": "hodinou", "future": "hodinu", "zero": "{0} hodin"}, "hours": {"past": "{0} hodinami", "future": ["{0} hodiny", "{0} hodin"]}, "day": {"past": "dnem", "future": "den", "zero": "{0} dnů"}, "days": {"past": "{0} dny", "future": ["{0} dny", "{0} dnů"]}, "month": {"past": "měsícem", "future": "měsíc", "zero": "{0} měsíců"}, "months": {"past": "{0} měsíci", "future": ["{0} měsíce", "{0} měsíců"]}, "year": {"past": "rokem", "future": "rok", "zero": "{0} let"}, "years": {"past": "{0} lety", "future": ["{0} roky", "{0} let"]}, } past = "Před {0}" future = "Za {0}" month_names = [ "", "leden", "únor", "březen", "duben", "květen", "červen", "červenec", "srpen", "září", "říjen", "listopad", "prosinec", ] month_abbreviations = [ "", "led", "úno", "bře", "dub", "kvě", "čvn", "čvc", "srp", "zář", "říj", "lis", "pro", ] day_names = [ "", "pondělí", "úterý", "středa", "čtvrtek", "pátek", "sobota", "neděle", ] day_abbreviations = ["", "po", "út", "st", "čt", "pá", "so", "ne"] def _format_timeframe(self, timeframe, delta): """Czech aware time frame format function, takes into account the differences between past and future forms.""" form = self.timeframes[timeframe] if isinstance(form, dict): if delta == 0: form = form["zero"] # And *never* use 0 in the singular! elif delta > 0: form = form["future"] else: form = form["past"] delta = abs(delta) if isinstance(form, list): if 2 <= delta % 10 <= 4 and (delta % 100 < 10 or delta % 100 >= 20): form = form[0] else: form = form[1] return form.format(delta) class SlovakLocale(Locale): names = ["sk", "sk_sk"] timeframes = { "now": "Teraz", "seconds": {"past": "pár sekundami", "future": ["{0} sekundy", "{0} sekúnd"]}, "minute": {"past": "minútou", "future": "minútu", "zero": "{0} minút"}, "minutes": {"past": "{0} minútami", "future": ["{0} minúty", "{0} minút"]}, "hour": {"past": "hodinou", "future": "hodinu", "zero": "{0} hodín"}, "hours": {"past": "{0} hodinami", "future": ["{0} hodiny", "{0} hodín"]}, "day": {"past": "dňom", "future": "deň", "zero": "{0} dní"}, "days": {"past": "{0} dňami", "future": ["{0} dni", "{0} dní"]}, "month": {"past": "mesiacom", "future": "mesiac", "zero": "{0} mesiacov"}, "months": {"past": "{0} mesiacmi", "future": ["{0} mesiace", "{0} mesiacov"]}, "year": {"past": "rokom", "future": "rok", "zero": "{0} rokov"}, "years": {"past": "{0} rokmi", "future": ["{0} roky", "{0} rokov"]}, } past = "Pred {0}" future = "O {0}" month_names = [ "", "január", "február", "marec", "apríl", "máj", "jún", "júl", "august", "september", "október", "november", "december", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "máj", "jún", "júl", "aug", "sep", "okt", "nov", "dec", ] day_names = [ "", "pondelok", "utorok", "streda", "štvrtok", "piatok", "sobota", "nedeľa", ] day_abbreviations = ["", "po", "ut", "st", "št", "pi", "so", "ne"] def _format_timeframe(self, timeframe, delta): """Slovak aware time frame format function, takes into account the differences between past and future forms.""" form = self.timeframes[timeframe] if isinstance(form, dict): if delta == 0: form = form["zero"] # And *never* use 0 in the singular! elif delta > 0: form = form["future"] else: form = form["past"] delta = abs(delta) if isinstance(form, list): if 2 <= delta % 10 <= 4 and (delta % 100 < 10 or delta % 100 >= 20): form = form[0] else: form = form[1] return form.format(delta) class FarsiLocale(Locale): names = ["fa", "fa_ir"] past = "{0} قبل" future = "در {0}" timeframes = { "now": "اکنون", "seconds": "ثانیه", "minute": "یک دقیقه", "minutes": "{0} دقیقه", "hour": "یک ساعت", "hours": "{0} ساعت", "day": "یک روز", "days": "{0} روز", "month": "یک ماه", "months": "{0} ماه", "year": "یک سال", "years": "{0} سال", } meridians = { "am": "قبل از ظهر", "pm": "بعد از ظهر", "AM": "قبل از ظهر", "PM": "بعد از ظهر", } month_names = [ "", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December", ] month_abbreviations = [ "", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ] day_names = [ "", "دو شنبه", "سه شنبه", "چهارشنبه", "پنجشنبه", "جمعه", "شنبه", "یکشنبه", ] day_abbreviations = ["", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"] class HebrewLocale(Locale): names = ["he", "he_IL"] past = "לפני {0}" future = "בעוד {0}" timeframes = { "now": "הרגע", "seconds": "שניות", "minute": "דקה", "minutes": "{0} דקות", "hour": "שעה", "hours": "{0} שעות", "2-hours": "שעתיים", "day": "יום", "days": "{0} ימים", "2-days": "יומיים", "month": "חודש", "months": "{0} חודשים", "2-months": "חודשיים", "year": "שנה", "years": "{0} שנים", "2-years": "שנתיים", } meridians = { "am": 'לפנ"צ', "pm": 'אחר"צ', "AM": "לפני הצהריים", "PM": "אחרי הצהריים", } month_names = [ "", "ינואר", "פברואר", "מרץ", "אפריל", "מאי", "יוני", "יולי", "אוגוסט", "ספטמבר", "אוקטובר", "נובמבר", "דצמבר", ] month_abbreviations = [ "", "ינו׳", "פבר׳", "מרץ", "אפר׳", "מאי", "יוני", "יולי", "אוג׳", "ספט׳", "אוק׳", "נוב׳", "דצמ׳", ] day_names = ["", "שני", "שלישי", "רביעי", "חמישי", "שישי", "שבת", "ראשון"] day_abbreviations = ["", "ב׳", "ג׳", "ד׳", "ה׳", "ו׳", "ש׳", "א׳"] def _format_timeframe(self, timeframe, delta): """Hebrew couple of <timeframe> aware""" couple = "2-{}".format(timeframe) if abs(delta) == 2 and couple in self.timeframes: return self.timeframes[couple].format(abs(delta)) else: return self.timeframes[timeframe].format(abs(delta)) class MarathiLocale(Locale): names = ["mr"] past = "{0} आधी" future = "{0} नंतर" timeframes = { "now": "सद्य", "seconds": "सेकंद", "minute": "एक मिनिट ", "minutes": "{0} मिनिट ", "hour": "एक तास", "hours": "{0} तास", "day": "एक दिवस", "days": "{0} दिवस", "month": "एक महिना ", "months": "{0} महिने ", "year": "एक वर्ष ", "years": "{0} वर्ष ", } meridians = {"am": "सकाळ", "pm": "संध्याकाळ", "AM": "सकाळ", "PM": "संध्याकाळ"} month_names = [ "", "जानेवारी", "फेब्रुवारी", "मार्च", "एप्रिल", "मे", "जून", "जुलै", "अॉगस्ट", "सप्टेंबर", "अॉक्टोबर", "नोव्हेंबर", "डिसेंबर", ] month_abbreviations = [ "", "जान", "फेब्रु", "मार्च", "एप्रि", "मे", "जून", "जुलै", "अॉग", "सप्टें", "अॉक्टो", "नोव्हें", "डिसें", ] day_names = [ "", "सोमवार", "मंगळवार", "बुधवार", "गुरुवार", "शुक्रवार", "शनिवार", "रविवार", ] day_abbreviations = ["", "सोम", "मंगळ", "बुध", "गुरु", "शुक्र", "शनि", "रवि"] def _map_locales(): locales = {} for _, cls in inspect.getmembers(sys.modules[__name__], inspect.isclass): if issubclass(cls, Locale): # pragma: no branch for name in cls.names: locales[name.lower()] = cls return locales class CatalanLocale(Locale): names = ["ca", "ca_es", "ca_ad", "ca_fr", "ca_it"] past = "Fa {0}" future = "En {0}" timeframes = { "now": "Ara mateix", "seconds": "segons", "minute": "1 minut", "minutes": "{0} minuts", "hour": "una hora", "hours": "{0} hores", "day": "un dia", "days": "{0} dies", "month": "un mes", "months": "{0} mesos", "year": "un any", "years": "{0} anys", } month_names = [ "", "Gener", "Febrer", "Març", "Abril", "Maig", "Juny", "Juliol", "Agost", "Setembre", "Octubre", "Novembre", "Desembre", ] month_abbreviations = [ "", "Gener", "Febrer", "Març", "Abril", "Maig", "Juny", "Juliol", "Agost", "Setembre", "Octubre", "Novembre", "Desembre", ] day_names = [ "", "Dilluns", "Dimarts", "Dimecres", "Dijous", "Divendres", "Dissabte", "Diumenge", ] day_abbreviations = [ "", "Dilluns", "Dimarts", "Dimecres", "Dijous", "Divendres", "Dissabte", "Diumenge", ] class BasqueLocale(Locale): names = ["eu", "eu_eu"] past = "duela {0}" future = "{0}" # I don't know what's the right phrase in Basque for the future. timeframes = { "now": "Orain", "seconds": "segundu", "minute": "minutu bat", "minutes": "{0} minutu", "hour": "ordu bat", "hours": "{0} ordu", "day": "egun bat", "days": "{0} egun", "month": "hilabete bat", "months": "{0} hilabet", "year": "urte bat", "years": "{0} urte", } month_names = [ "", "urtarrilak", "otsailak", "martxoak", "apirilak", "maiatzak", "ekainak", "uztailak", "abuztuak", "irailak", "urriak", "azaroak", "abenduak", ] month_abbreviations = [ "", "urt", "ots", "mar", "api", "mai", "eka", "uzt", "abu", "ira", "urr", "aza", "abe", ] day_names = [ "", "astelehena", "asteartea", "asteazkena", "osteguna", "ostirala", "larunbata", "igandea", ] day_abbreviations = ["", "al", "ar", "az", "og", "ol", "lr", "ig"] class HungarianLocale(Locale): names = ["hu", "hu_hu"] past = "{0} ezelőtt" future = "{0} múlva" timeframes = { "now": "éppen most", "seconds": {"past": "másodpercekkel", "future": "pár másodperc"}, "minute": {"past": "egy perccel", "future": "egy perc"}, "minutes": {"past": "{0} perccel", "future": "{0} perc"}, "hour": {"past": "egy órával", "future": "egy óra"}, "hours": {"past": "{0} órával", "future": "{0} óra"}, "day": {"past": "egy nappal", "future": "egy nap"}, "days": {"past": "{0} nappal", "future": "{0} nap"}, "month": {"past": "egy hónappal", "future": "egy hónap"}, "months": {"past": "{0} hónappal", "future": "{0} hónap"}, "year": {"past": "egy évvel", "future": "egy év"}, "years": {"past": "{0} évvel", "future": "{0} év"}, } month_names = [ "", "január", "február", "március", "április", "május", "június", "július", "augusztus", "szeptember", "október", "november", "december", ] month_abbreviations = [ "", "jan", "febr", "márc", "ápr", "máj", "jún", "júl", "aug", "szept", "okt", "nov", "dec", ] day_names = [ "", "hétfő", "kedd", "szerda", "csütörtök", "péntek", "szombat", "vasárnap", ] day_abbreviations = ["", "hét", "kedd", "szer", "csüt", "pént", "szom", "vas"] meridians = {"am": "de", "pm": "du", "AM": "DE", "PM": "DU"} def _format_timeframe(self, timeframe, delta): form = self.timeframes[timeframe] if isinstance(form, dict): if delta > 0: form = form["future"] else: form = form["past"] return form.format(abs(delta)) class EsperantoLocale(Locale): names = ["eo", "eo_xx"] past = "antaŭ {0}" future = "post {0}" timeframes = { "now": "nun", "seconds": "kelkaj sekundoj", "minute": "unu minuto", "minutes": "{0} minutoj", "hour": "un horo", "hours": "{0} horoj", "day": "unu tago", "days": "{0} tagoj", "month": "unu monato", "months": "{0} monatoj", "year": "unu jaro", "years": "{0} jaroj", } month_names = [ "", "januaro", "februaro", "marto", "aprilo", "majo", "junio", "julio", "aŭgusto", "septembro", "oktobro", "novembro", "decembro", ] month_abbreviations = [ "", "jan", "feb", "mar", "apr", "maj", "jun", "jul", "aŭg", "sep", "okt", "nov", "dec", ] day_names = [ "", "lundo", "mardo", "merkredo", "ĵaŭdo", "vendredo", "sabato", "dimanĉo", ] day_abbreviations = ["", "lun", "mar", "mer", "ĵaŭ", "ven", "sab", "dim"] meridians = {"am": "atm", "pm": "ptm", "AM": "ATM", "PM": "PTM"} ordinal_day_re = r"((?P<value>[1-3]?[0-9](?=a))a)" def _ordinal_number(self, n): return "{}a".format(n) class ThaiLocale(Locale): names = ["th", "th_th"] past = "{0}{1}ที่ผ่านมา" future = "ในอีก{1}{0}" timeframes = { "now": "ขณะนี้", "seconds": "ไม่กี่วินาที", "minute": "1 นาที", "minutes": "{0} นาที", "hour": "1 ชั่วโมง", "hours": "{0} ชั่วโมง", "day": "1 วัน", "days": "{0} วัน", "month": "1 เดือน", "months": "{0} เดือน", "year": "1 ปี", "years": "{0} ปี", } month_names = [ "", "มกราคม", "กุมภาพันธ์", "มีนาคม", "เมษายน", "พฤษภาคม", "มิถุนายน", "กรกฎาคม", "สิงหาคม", "กันยายน", "ตุลาคม", "พฤศจิกายน", "ธันวาคม", ] month_abbreviations = [ "", "ม.ค.", "ก.พ.", "มี.ค.", "เม.ย.", "พ.ค.", "มิ.ย.", "ก.ค.", "ส.ค.", "ก.ย.", "ต.ค.", "พ.ย.", "ธ.ค.", ] day_names = ["", "จันทร์", "อังคาร", "พุธ", "พฤหัสบดี", "ศุกร์", "เสาร์", "อาทิตย์"] day_abbreviations = ["", "จ", "อ", "พ", "พฤ", "ศ", "ส", "อา"] meridians = {"am": "am", "pm": "pm", "AM": "AM", "PM": "PM"} BE_OFFSET = 543 def year_full(self, year): """Thai always use Buddhist Era (BE) which is CE + 543""" year += self.BE_OFFSET return "{:04d}".format(year) def year_abbreviation(self, year): """Thai always use Buddhist Era (BE) which is CE + 543""" year += self.BE_OFFSET return "{:04d}".format(year)[2:] def _format_relative(self, humanized, timeframe, delta): """Thai normally doesn't have any space between words""" if timeframe == "now": return humanized space = "" if timeframe == "seconds" else " " direction = self.past if delta < 0 else self.future return direction.format(humanized, space) class BengaliLocale(Locale): names = ["bn", "bn_bd", "bn_in"] past = "{0} আগে" future = "{0} পরে" timeframes = { "now": "এখন", "seconds": "সেকেন্ড", "minute": "এক মিনিট", "minutes": "{0} মিনিট", "hour": "এক ঘণ্টা", "hours": "{0} ঘণ্টা", "day": "এক দিন", "days": "{0} দিন", "month": "এক মাস", "months": "{0} মাস ", "year": "এক বছর", "years": "{0} বছর", } meridians = {"am": "সকাল", "pm": "বিকাল", "AM": "সকাল", "PM": "বিকাল"} month_names = [ "", "জানুয়ারি", "ফেব্রুয়ারি", "মার্চ", "এপ্রিল", "মে", "জুন", "জুলাই", "আগস্ট", "সেপ্টেম্বর", "অক্টোবর", "নভেম্বর", "ডিসেম্বর", ] month_abbreviations = [ "", "জানু", "ফেব", "মার্চ", "এপ্রি", "মে", "জুন", "জুল", "অগা", "সেপ্ট", "অক্টো", "নভে", "ডিসে", ] day_names = [ "", "সোমবার", "মঙ্গলবার", "বুধবার", "বৃহস্পতিবার", "শুক্রবার", "শনিবার", "রবিবার", ] day_abbreviations = ["", "সোম", "মঙ্গল", "বুধ", "বৃহঃ", "শুক্র", "শনি", "রবি"] def _ordinal_number(self, n): if n > 10 or n == 0: return "{}তম".format(n) if n in [1, 5, 7, 8, 9, 10]: return "{}ম".format(n) if n in [2, 3]: return "{}য়".format(n) if n == 4: return "{}র্থ".format(n) if n == 6: return "{}ষ্ঠ".format(n) class RomanshLocale(Locale): names = ["rm", "rm_ch"] past = "avant {0}" future = "en {0}" timeframes = { "now": "en quest mument", "seconds": "secundas", "minute": "ina minuta", "minutes": "{0} minutas", "hour": "in'ura", "hours": "{0} ura", "day": "in di", "days": "{0} dis", "month": "in mais", "months": "{0} mais", "year": "in onn", "years": "{0} onns", } month_names = [ "", "schaner", "favrer", "mars", "avrigl", "matg", "zercladur", "fanadur", "avust", "settember", "october", "november", "december", ] month_abbreviations = [ "", "schan", "fav", "mars", "avr", "matg", "zer", "fan", "avu", "set", "oct", "nov", "dec", ] day_names = [ "", "glindesdi", "mardi", "mesemna", "gievgia", "venderdi", "sonda", "dumengia", ] day_abbreviations = ["", "gli", "ma", "me", "gie", "ve", "so", "du"] class SwissLocale(Locale): names = ["de", "de_ch"] past = "vor {0}" future = "in {0}" timeframes = { "now": "gerade eben", "seconds": "Sekunden", "minute": "einer Minute", "minutes": "{0} Minuten", "hour": "einer Stunde", "hours": "{0} Stunden", "day": "einem Tag", "days": "{0} Tagen", "week": "einer Woche", "weeks": "{0} Wochen", "month": "einem Monat", "months": "{0} Monaten", "year": "einem Jahr", "years": "{0} Jahren", } month_names = [ "", "Januar", "Februar", "März", "April", "Mai", "Juni", "Juli", "August", "September", "Oktober", "November", "Dezember", ] month_abbreviations = [ "", "Jan", "Feb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dez", ] day_names = [ "", "Montag", "Dienstag", "Mittwoch", "Donnerstag", "Freitag", "Samstag", "Sonntag", ] day_abbreviations = ["", "Mo", "Di", "Mi", "Do", "Fr", "Sa", "So"] class RomanianLocale(Locale): names = ["ro", "ro_ro"] past = "{0} în urmă" future = "peste {0}" timeframes = { "now": "acum", "seconds": "câteva secunde", "minute": "un minut", "minutes": "{0} minute", "hour": "o oră", "hours": "{0} ore", "day": "o zi", "days": "{0} zile", "month": "o lună", "months": "{0} luni", "year": "un an", "years": "{0} ani", } month_names = [ "", "ianuarie", "februarie", "martie", "aprilie", "mai", "iunie", "iulie", "august", "septembrie", "octombrie", "noiembrie", "decembrie", ] month_abbreviations = [ "", "ian", "febr", "mart", "apr", "mai", "iun", "iul", "aug", "sept", "oct", "nov", "dec", ] day_names = [ "", "luni", "marți", "miercuri", "joi", "vineri", "sâmbătă", "duminică", ] day_abbreviations = ["", "Lun", "Mar", "Mie", "Joi", "Vin", "Sâm", "Dum"] class SlovenianLocale(Locale): names = ["sl", "sl_si"] past = "pred {0}" future = "čez {0}" timeframes = { "now": "zdaj", "seconds": "sekund", "minute": "minuta", "minutes": "{0} minutami", "hour": "uro", "hours": "{0} ur", "day": "dan", "days": "{0} dni", "month": "mesec", "months": "{0} mesecev", "year": "leto", "years": "{0} let", } meridians = {"am": "", "pm": "", "AM": "", "PM": ""} month_names = [ "", "Januar", "Februar", "Marec", "April", "Maj", "Junij", "Julij", "Avgust", "September", "Oktober", "November", "December", ] month_abbreviations = [ "", "Jan", "Feb", "Mar", "Apr", "Maj", "Jun", "Jul", "Avg", "Sep", "Okt", "Nov", "Dec", ] day_names = [ "", "Ponedeljek", "Torek", "Sreda", "Četrtek", "Petek", "Sobota", "Nedelja", ] day_abbreviations = ["", "Pon", "Tor", "Sre", "Čet", "Pet", "Sob", "Ned"] class IndonesianLocale(Locale): names = ["id", "id_id"] past = "{0} yang lalu" future = "dalam {0}" timeframes = { "now": "baru saja", "seconds": "detik", "minute": "1 menit", "minutes": "{0} menit", "hour": "1 jam", "hours": "{0} jam", "day": "1 hari", "days": "{0} hari", "month": "1 bulan", "months": "{0} bulan", "year": "1 tahun", "years": "{0} tahun", } meridians = {"am": "", "pm": "", "AM": "", "PM": ""} month_names = [ "", "Januari", "Februari", "Maret", "April", "Mei", "Juni", "Juli", "Agustus", "September", "Oktober", "November", "Desember", ] month_abbreviations = [ "", "Jan", "Feb", "Mar", "Apr", "Mei", "Jun", "Jul", "Ags", "Sept", "Okt", "Nov", "Des", ] day_names = ["", "Senin", "Selasa", "Rabu", "Kamis", "Jumat", "Sabtu", "Minggu"] day_abbreviations = [ "", "Senin", "Selasa", "Rabu", "Kamis", "Jumat", "Sabtu", "Minggu", ] class NepaliLocale(Locale): names = ["ne", "ne_np"] past = "{0} पहिले" future = "{0} पछी" timeframes = { "now": "अहिले", "seconds": "सेकण्ड", "minute": "मिनेट", "minutes": "{0} मिनेट", "hour": "एक घण्टा", "hours": "{0} घण्टा", "day": "एक दिन", "days": "{0} दिन", "month": "एक महिना", "months": "{0} महिना", "year": "एक बर्ष", "years": "बर्ष", } meridians = {"am": "पूर्वाह्न", "pm": "अपरान्ह", "AM": "पूर्वाह्न", "PM": "अपरान्ह"} month_names = [ "", "जनवरी", "फेब्रुअरी", "मार्च", "एप्रील", "मे", "जुन", "जुलाई", "अगष्ट", "सेप्टेम्बर", "अक्टोबर", "नोवेम्बर", "डिसेम्बर", ] month_abbreviations = [ "", "जन", "फेब", "मार्च", "एप्रील", "मे", "जुन", "जुलाई", "अग", "सेप", "अक्ट", "नोव", "डिस", ] day_names = [ "", "सोमवार", "मंगलवार", "बुधवार", "बिहिवार", "शुक्रवार", "शनिवार", "आइतवार", ] day_abbreviations = ["", "सोम", "मंगल", "बुध", "बिहि", "शुक्र", "शनि", "आइत"] class EstonianLocale(Locale): names = ["ee", "et"] past = "{0} tagasi" future = "{0} pärast" timeframes = { "now": {"past": "just nüüd", "future": "just nüüd"}, "second": {"past": "üks sekund", "future": "ühe sekundi"}, "seconds": {"past": "{0} sekundit", "future": "{0} sekundi"}, "minute": {"past": "üks minut", "future": "ühe minuti"}, "minutes": {"past": "{0} minutit", "future": "{0} minuti"}, "hour": {"past": "tund aega", "future": "tunni aja"}, "hours": {"past": "{0} tundi", "future": "{0} tunni"}, "day": {"past": "üks päev", "future": "ühe päeva"}, "days": {"past": "{0} päeva", "future": "{0} päeva"}, "month": {"past": "üks kuu", "future": "ühe kuu"}, "months": {"past": "{0} kuud", "future": "{0} kuu"}, "year": {"past": "üks aasta", "future": "ühe aasta"}, "years": {"past": "{0} aastat", "future": "{0} aasta"}, } month_names = [ "", "Jaanuar", "Veebruar", "Märts", "Aprill", "Mai", "Juuni", "Juuli", "August", "September", "Oktoober", "November", "Detsember", ] month_abbreviations = [ "", "Jan", "Veb", "Mär", "Apr", "Mai", "Jun", "Jul", "Aug", "Sep", "Okt", "Nov", "Dets", ] day_names = [ "", "Esmaspäev", "Teisipäev", "Kolmapäev", "Neljapäev", "Reede", "Laupäev", "Pühapäev", ] day_abbreviations = ["", "Esm", "Teis", "Kolm", "Nelj", "Re", "Lau", "Püh"] def _format_timeframe(self, timeframe, delta): form = self.timeframes[timeframe] if delta > 0: form = form["future"] else: form = form["past"] return form.format(abs(delta)) _locales = _map_locales()
py
1a5068aa8f2841531113ccb78811f79dcbf18fa9
# Copyright 2020 The MuLT Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from optimization import LightGBMOptimizer, SVMOptimizer, LogisticRegressionOptimizer from optimization import KNNOptimizer, MLPOptimizer, RFOptimizer from pipeline import SelectMarker from lightgbm import LGBMModel from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import os class SMLA(SelectMarker): def __init__(self, predictor, optimizer_default_params=None, model_default_params=None, verbose=-1, random_state=None, use_gpu=False, test_size=.2, n_gene_limit=None, output_path='.', experiment_number=1, number_of_experiments=1, export_metadata=True ): assert isinstance(optimizer_default_params, dict) or optimizer_default_params is None assert isinstance(model_default_params, dict) or model_default_params is None self.output_path = output_path # self.predictor = predictor self.model_default_params = model_default_params # self.optimized_params = None self.optimizer_default_params = optimizer_default_params # self.model = None self.fitted_shape = None # self.random_state = random_state self.verbose = verbose self.use_gpu = use_gpu # self.test_size = test_size # self.scaler = MinMaxScaler() # self.n_gene_limit = n_gene_limit self.selected_clinical = None self.selected_genes = None # self.experiment_number = experiment_number self.number_of_experiments = number_of_experiments self.export_metadata = export_metadata # if self.predictor == 'lightgbm': self.optimizer = LightGBMOptimizer(**self.optimizer_default_params) elif self.predictor == 'svm': self.optimizer = SVMOptimizer(**self.optimizer_default_params) elif self.predictor == 'knn': self.optimizer = KNNOptimizer(**self.optimizer_default_params) elif self.predictor == 'lr': self.optimizer = LogisticRegressionOptimizer(**self.optimizer_default_params) elif self.predictor == 'mlp': self.optimizer = MLPOptimizer(**self.optimizer_default_params) elif self.predictor == 'rf': self.optimizer = RFOptimizer(**self.optimizer_default_params) else: raise ValueError('predictor should be one of the following: ' 'lightgbm, svm, knn, lr, or mlp') for subdir in ['selected_markers']: path = os.path.join(self.output_path, subdir) if not os.path.exists(path): os.makedirs(path) def fit(self, genes, outcome, clinical_markers=None, treatments=None, clinical_marker_selection_threshold=0.1, genes_marker_selection_threshold=0.1, early_stopping_rounds=100): # feature selection if clinical_markers is not None: self.selected_clinical = self.select_markers( clinical_markers, outcome, threshold=clinical_marker_selection_threshold) x = clinical_markers.loc[:, self.selected_clinical[0]] if treatments is not None: x = x.join(treatments) if x is not None else treatments self.selected_genes = self.select_markers( genes, outcome, threshold=genes_marker_selection_threshold, random_state=self.random_state) if self.export_metadata: if self.selected_clinical is not None: pd.DataFrame({'clinical_marker': self.selected_clinical[0], 'pvalue': self.selected_clinical[1], 'entropy': self.selected_clinical[2]}).to_csv( os.path.join( self.output_path, 'selected_markers', 'clinical_{0:03}_{1:03}.csv'.format( self.experiment_number, self.number_of_experiments)), index=False) pd.DataFrame({'gene': self.selected_genes[0], 'pvalue': self.selected_genes[1], 'entropy': self.selected_genes[2]}).to_csv( os.path.join( self.output_path, 'selected_markers', 'genes_{0:03}_{1:03}.csv'.format( self.experiment_number, self.number_of_experiments)), index=False) genes = genes.loc[:, self.selected_genes[0]] # join data sets x = x.join(genes, how='inner').fillna(0).values if x is not None else genes.fillna(0).values y = outcome.values x = self.scaler.fit_transform(x) ###### self.fitted_shape = x.shape self.optimized_params = self.optimizer.optimize(x, y) self.optimized_params['random_state'] = self.random_state self.optimized_params['n_jobs'] = -1 if self.model_default_params is not None: self.optimized_params.update(self.model_default_params) if self.predictor == 'lightgbm': self.fit_lightgbm(x, y, early_stopping_rounds) elif self.predictor == 'svm': self.fit_svm(x, y) elif self.predictor == 'knn': self.fit_knn(x, y) elif self.predictor == 'lr': self.fit_lr(x, y) elif self.predictor == 'mlp': self.fit_mlp(x, y, early_stopping_rounds) elif self.predictor == 'rf': self.fit_rf(x, y) def fit_rf(self, x, y): self.model = RandomForestClassifier(**self.optimized_params) self.model.fit(x, y) def fit_lightgbm(self, x, y, early_stopping_rounds): self.model = LGBMModel(**self.optimized_params) self.model.fit(x, y) if early_stopping_rounds is not None and early_stopping_rounds > 0: x_train, x_valid, y_train, y_valid = train_test_split(x, y, stratify=y, shuffle=True, test_size=self.test_size, random_state=self.random_state) self.model.fit(x_train, y_train, eval_set=[(x_valid, y_valid)], verbose=self.verbose) else: self.model.fit(x, y) def fit_svm(self, x, y): del self.optimized_params['n_jobs'] self.model = SVC(**self.optimized_params, probability=True) self.model.fit(x, y) def fit_lr(self, x, y): self.model = LogisticRegression(**self.optimized_params) self.model.fit(x, y) def fit_mlp(self, x, y, early_stopping_rounds): esr = early_stopping_rounds is not None and early_stopping_rounds > 0 del self.optimized_params['n_jobs'] self.model = MLPClassifier(**self.optimized_params, early_stopping=esr, validation_fraction=self.test_size) self.model.fit(x, y) def fit_knn(self, x, y): del self.optimized_params['random_state'] self.model = KNeighborsClassifier(**self.optimized_params) self.model.fit(x, y) def predict(self, genes, clinical_markers=None, treatments=None): assert isinstance(genes, pd.DataFrame), 'genes should a pd.DataFrame' if clinical_markers is not None: x = clinical_markers.loc[:, self.selected_clinical[0]] if treatments is not None: x = x.join(treatments) if x is not None else treatments genes = genes.loc[:, self.selected_genes[0]] x = x.join(genes, how='inner').fillna(0).values if x is not None else genes.fillna(0) x = np.maximum(0, np.minimum(1, self.scaler.transform(x))) assert x.shape[1] == self.fitted_shape[1], \ 'new data should have same number of features used to fit model' if self.predictor == 'lightgbm': result = self.model.predict(x) else: result = self.model.predict_proba(x) if len(result.shape) > 1: result = result[:, -1] return result
py
1a506b1b56cac2bacd0a0508a58dc18706262fd5
""" Программа для построения интегральных кривых дифференциального уравнения 3-го порядка, разрешенного относительно производной y''' = f(x, y, y', y''). Левая кнопка мыши - зафиксировать начальное условие или зафиксировать интегральную кривую. Правая кнопка мыши - сменить началные условия. """ import matplotlib matplotlib.use('TkAgg') from collections import namedtuple import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Circle from scipy.integrate import ode def f(x, y): """ Правая часть дифференциального уравнения y'''=(x, y, y', y'') Здесь y <--> y[0]; y' <--> y[1]; y'' <--> y[2] """ return [y[1], y[2], x + y[0] + y[1]+ y[2]] def on_move(event): global x0, y0, x1, y1, dy0 if not event.xdata or not event.ydata: # выход курсора за пределы области line.set_data([], []) dot.set_data([], []) tang.set_data([], []) circ.set_radius(0) ax.set_title("") fig.canvas.draw_idle() return if x0 is None: # инициализация 1-го начального условия dot.set_data([event.xdata], [event.ydata]) ax.set_title(f"y({event.xdata:.2f})={event.ydata:.2f}") if event.button == 1: x0 = event.xdata y0 = event.ydata elif x1 is None: # инициализация 2-го начального условия # восстановление доп. построений, если они были удалены при выходе # мыши за пределы области dot.set_data([x0], [y0]) tang.set_data([2*x0 - event.xdata, event.xdata], [2*y0 - event.ydata, event.ydata]) delta_x = event.xdata - x0 delta_y = event.ydata - y0 if delta_x == 0: # деление на ноль запрещено return ax.set_title(f"y({x0:.2f})={y0:.2f}, y'({x0:.2f})={delta_y/delta_x:.2f}") if event.button == 1: x1 = event.xdata y1 = event.ydata dy0 = delta_y / delta_x else: # инициализация 3-го начального условия и построение интегральной кривой x2 = event.xdata y2 = event.ydata # восстановление доп. построений, если они были удалены при выходе # мыши за пределы области dot.set_data([x0], [y0]) tang.set_data([2*x0 - x1, x1], [2*y0 - y1, y1]) if dy0 == 0: x_c = x0 y_c = 0.5*(y2+y0+(x2-x0)**2/(y2-y0)) R = abs(y0-y_c) else: # Угловой коэффициент прямой, на кот. должен лежать центр окр. k = -1/dy0 # Координаты центра окружности x_c = .5 * (y2**2 - y0**2 + x2**2 - x0**2 + 2 * (y0 - k*x0) * (y0 - y2)) / (k*(y2 - y0) + x2 - x0) y_c = k * (x_c - x0) + y0 # Радиус окружности R = np.hypot(y0 - y_c, x0 - x_c) # Отрисовка окружности circ.center = (x_c, y_c) circ.set_radius(R) # Начальное значение 2ой производной d2y0 = (1+dy0**2)**(3/2)/R*np.sign(y_c-y0) ax.set_title(f"y({x0:.2f})={y0:.2f}, y'({x0:.2f})={dy0:.2f}, y''({x0:.2f})={d2y0:.2f}") de = ode(f) de.set_integrator('dop853') # de.set_integrator('zvode', method='bdf') dt = 0.05 sol = [] de.set_initial_value([y0, dy0, d2y0], x0) while de.successful() and de.t <= xlim.end: de.integrate(de.t + dt) sol.append((de.t, de.y[0])) de.set_initial_value([y0, dy0, d2y0], x0) while de.successful() and de.t >= xlim.start: de.integrate(de.t - dt) sol.append((de.t, de.y[0])) sol.sort(key=lambda x: x[0]) sol = list(zip(*sol)) if event.button == 1: # зафиксировать интегральную кривую ax.plot(sol[0], sol[1], 'r') elif event.button == 3: # сменить начальную точку x0 = event.xdata y0 = event.ydata x1 = None y1 = None dy0 = None dot.set_data([x0], [y0]) tang.set_data([], []) circ.set_radius(0) line.set_data([], []) ax.set_title(f"y({x0:.2f})={y0:.2f}") else: # текущая интегральная кривая line.set_data(sol[0], sol[1]) print(f"y''({x0:.2f})={d2y0:.2f}") fig.canvas.draw_idle() Lim = namedtuple('Lim', ['start', 'end']) xlim = Lim(-5, 5) ylim = Lim(-5, 5) x0 = None y0 = None x1 = None y1 = None dy0 = None fig, ax = plt.subplots() ax.grid() ax.set_xlim(xlim) ax.set_ylim(ylim) ax.set_aspect('equal') ax.hlines(0, *xlim, lw=0.5) ax.vlines(0, *ylim, lw=0.5) fig.canvas.mpl_connect('button_press_event', on_move) fig.canvas.mpl_connect('motion_notify_event', on_move) line, = ax.plot([], [], 'm') dot, = ax.plot([], [], '.m') tang, = ax.plot([], [], 'g', lw=0.5) circ = Circle((0, 0), 0, color='g', lw=0.5, fill=False) ax.add_patch(circ) plt.show()
py
1a506ce907cc18af49447b92f3f28d1737b9d769
import _x64dbg def _plugin_logprintf(text='', *args): _x64dbg._plugin_logprintf(text % args) def _plugin_logputs(text=''): _plugin_logprintf('%s\n' % text)
py
1a506d0e6570d18481953003f181d0c3055c467f
from typing import List from pyrep.objects.dummy import Dummy from pyrep.objects.joint import Joint from rlbench.backend.task import Task from rlbench.backend.conditions import JointCondition OPTIONS = ['left', 'right'] class TurnTap(Task): def init_task(self) -> None: self.left_start = Dummy('waypoint0') self.left_end = Dummy('waypoint1') self.right_start = Dummy('waypoint5') self.right_end = Dummy('waypoint6') self.left_joint = Joint('left_joint') self.right_joint = Joint('right_joint') def init_episode(self, index: int) -> List[str]: option = OPTIONS[index] if option == 'right': self.left_start.set_position(self.right_start.get_position()) self.left_start.set_orientation(self.right_start.get_orientation()) self.left_end.set_position(self.right_end.get_position()) self.left_end.set_orientation(self.right_end.get_orientation()) self.register_success_conditions( [JointCondition(self.right_joint, 1.57)]) else: self.register_success_conditions( [JointCondition(self.left_joint, 1.57)]) return ['turn %s tap' % option, 'rotate the %s tap' % option, 'grasp the %s tap and turn it' % option] def variation_count(self) -> int: return 2
py
1a506d7336bd2be1617b16314b9704f08b53643a
import glob import os import ast import sys import json from collections import Counter sys.setrecursionlimit(1000000) CODE_DIR = "python_top_code" OUT_DIR = "stats" def make_dir_ignore_exists(d): try: return os.mkdir(d) except FileExistsError as E: pass def decode_data(data): try: data = data.decode("utf8") return data except UnicodeDecodeError: pass data = data.decode("ISO-8859-1") return data def gen_repo_asts(repo): ok = 0 bad = 0 for file in glob.glob(f"{CODE_DIR}/{repo}/*.py"): data = open(file, "rb").read() data = decode_data(data) if "generated" in data[:1024]: print(f"skipping file {file}: autogenerated") continue try: yield ast.parse(data) ok += 1 except Exception: bad += 1 print(f"ast generation finished: ok {ok}, bad {bad}") def gen_ast_subnodes(ast_node): for child in ast.iter_child_nodes(ast_node): yield child yield from gen_ast_subnodes(child) def save_counter(repo, filename, counter): make_dir_ignore_exists(OUT_DIR) make_dir_ignore_exists(f"{OUT_DIR}/{repo}") with open(f"{OUT_DIR}/{repo}/{filename}", "w") as f: for k, v in counter.most_common(): print(v, k, file=f) c = Counter() class_keywords_c = Counter() class_bases_c = Counter() class_decorators_c = Counter() function_decorators_c = Counter() async_function_decorators_c = Counter() exception_handlers_c = Counter() attributes_c = Counter() func_names_c = Counter() async_func_names_c = Counter() class_names_c = Counter() module_names_c = Counter() from_module_names_c = Counter() repo = sys.argv[1].replace("/", "_") for cur_ast in gen_repo_asts(repo): for ast_node in gen_ast_subnodes(cur_ast): name = type(ast_node).__name__ c[name] += 1 if isinstance(ast_node, ast.For): if ast_node.orelse: c["bay_for_with_else"] += 1 elif isinstance(ast_node, ast.While): if ast_node.orelse: c["bay_while_with_else"] += 1 elif isinstance(ast_node, ast.ClassDef): has_metaclass = False for keyword in ast_node.keywords: if keyword.arg == "metaclass": has_metaclass = True class_keywords_c[f"{keyword.arg}={ast.unparse(keyword.value)}"] += 1 if has_metaclass: c["bay_class_with_metaclass"] += 1 bases = [ast.unparse(b) for b in ast_node.bases] if bases and bases != ["object"]: c["bay_class_with_bases"] += 1 if bases: class_bases_c.update(bases) else: class_bases_c["<no_base_class>"] += 1 decorators = [ast.unparse(b) for b in ast_node.decorator_list] if decorators: c["bay_class_with_decorators"] += 1 if decorators: class_decorators_c.update(decorators) else: class_decorators_c["<no_decorators>"] += 1 if ast.get_docstring(ast_node): c["bay_class_with_docstring"] += 1 class_names_c[ast_node.name] += 1 elif isinstance(ast_node, ast.Try): has_handlers = ast_node.handlers has_final = ast_node.finalbody has_else = ast_node.orelse except_type = "bay_try" if has_handlers: except_type += "_except" if has_final: except_type += "_finally" if has_else: except_type += "_else" c[except_type] += 1 elif isinstance(ast_node, ast.FunctionDef): decorators = [ast.unparse(b) for b in ast_node.decorator_list] if decorators: c["bay_functions_with_decorators"] += 1 if decorators: function_decorators_c.update(decorators) else: function_decorators_c["<no_decorators>"] += 1 if ast.get_docstring(ast_node): c["bay_functions_with_docstring"] += 1 func_names_c[ast_node.name] += 1 if ast_node.returns: c["bay_functions_annotation_in_returns"] += 1 elif isinstance(ast_node, ast.AsyncFunctionDef): decorators = [ast.unparse(b) for b in ast_node.decorator_list] if decorators: c["bay_async_functions_with_decorators"] += 1 if decorators: async_function_decorators_c.update(decorators) else: async_function_decorators_c["<no_decorators>"] += 1 if ast.get_docstring(ast_node): c["bay_async_functions_with_docstring"] += 1 async_func_names_c[ast_node.name] += 1 if ast_node.returns: c["bay_async_functions_annotation_in_returns"] += 1 elif isinstance(ast_node, ast.Assign): if isinstance(ast_node.value, ast.Yield): c["bay_assign_yield"] += 1 if isinstance(ast_node.value, ast.YieldFrom): c["bay_assign_yield_from"] += 1 elif isinstance(ast_node, ast.ExceptHandler): except_type = ast_node.type try: exception_handlers_c[ast.unparse(except_type)] += 1 except Exception: pass elif isinstance(ast_node, ast.Attribute): attributes_c[ast_node.attr] += 1 elif isinstance(ast_node, ast.Import): modules = [ast.unparse(b) for b in ast_node.names] module_names_c.update(modules) elif isinstance(ast_node, ast.ImportFrom): from_module_names_c[ast_node.module] += 1 elif isinstance(ast_node, ast.arg): if ast_node.annotation: c["bay_arg_annotation"] += 1 save_counter(repo, "stat_ast.txt", c) save_counter(repo, "stat_class_keywords.txt", class_keywords_c) save_counter(repo, "stat_class_bases.txt", class_bases_c) save_counter(repo, "stat_class_decorators_c.txt", class_decorators_c) save_counter(repo, "stat_function_decorators_c.txt", function_decorators_c) save_counter(repo, "stat_async_function_decorators.txt", async_function_decorators_c) save_counter(repo, "stat_exception_handlers.txt", exception_handlers_c) save_counter(repo, "stat_attributes.txt", attributes_c) save_counter(repo, "stat_func_names.txt", func_names_c) save_counter(repo, "stat_async_func_names.txt", async_func_names_c) save_counter(repo, "stat_class_names.txt", class_names_c) save_counter(repo, "stat_module_names.txt", module_names_c) save_counter(repo, "stat_from_module_names.txt", from_module_names_c)
py
1a506dd488bece9eb4feb69a5a865dbbef76e646
# qubit number=2 # total number=10 import cirq import qiskit from qiskit import IBMQ from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") target = QuantumRegister(1, "oft") oracle = QuantumCircuit(controls, target, name="Of") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) oracle.mct(controls, target[0], None, mode='noancilla') for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() # oracle.draw('mpl', filename='circuit/deutsch-oracle.png') return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n, "qc") target = QuantumRegister(1, "qt") prog = QuantumCircuit(input_qubit, target) # inverse last one (can be omitted if using O_f^\pm) prog.x(target) # apply H to get superposition for i in range(n): prog.h(input_qubit[i]) prog.h(input_qubit[1]) # number=1 prog.h(input_qubit[1]) # number=7 prog.cz(input_qubit[0],input_qubit[1]) # number=8 prog.h(input_qubit[1]) # number=9 prog.cx(input_qubit[0],input_qubit[1]) # number=5 prog.h(target) prog.barrier() # apply oracle O_f oracle = build_oracle(n, f) prog.append( oracle.to_gate(), [input_qubit[i] for i in range(n)] + [target]) # apply H back (QFT on Z_2^n) for i in range(n): prog.h(input_qubit[i]) prog.barrier() # measure prog.x(input_qubit[0]) # number=3 prog.y(input_qubit[1]) # number=6 prog.x(input_qubit[0]) # number=4 # circuit end return prog if __name__ == '__main__': n = 2 f = lambda rep: rep[-1] # f = lambda rep: "1" if rep[0:2] == "01" or rep[0:2] == "10" else "0" # f = lambda rep: "0" prog = make_circuit(n, f) sample_shot =2800 backend = BasicAer.get_backend('statevector_simulator') circuit1 = transpile(prog,FakeVigo()) circuit1.x(qubit=3) circuit1.x(qubit=3) prog = circuit1 info = execute(prog, backend=backend).result().get_statevector() qubits = round(log2(len(info))) info = { np.binary_repr(i, qubits): round((info[i]*(info[i].conjugate())).real,3) for i in range(2 ** qubits) } writefile = open("../data/startQiskit_Class150.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
py
1a506ecd619438944adcb4e0d904f0f2200128bb
import logging import asyncio from .http_utils import Request, Response from .exceptions import ( BadRequestException, NotFoundException, TimeoutException, ) TIMEOUT = 5 # 一个 HTTPServer 对象,需要一个 Router 对象和一个 http_parser 模块,并使用它们来初始化 class HTTPServer(object): """ Contains objects that are shared by HTTPConnections and schedules async connections. :param router: An object that must expose the 'get_handler' interface. :param http_parser: An object that must expose the 'parse_into' interface, which works with a Request object and a bytearray. :param loop: An object that implements the 'asyncio.BaseEventLoop' interface. """ # HTTPServer(self.router, self.http_parser, self.loop) def __init__(self, router, http_parser, loop): self.router = router self.http_parser = http_parser self.loop = loop async def handle_connection(self, reader, writer): """ Creates and schedules a HTTPConnection given a set (reader, writer) objects. :param reader: An object that implements the 'asyncio.StreamReader' interface. :param writer: An object that implements the 'asyncio.StreamWriter' interface. """ connection = HTTPConnection(self, reader, writer) asyncio.ensure_future(connection.handle_request(), loop=self.loop) ''' HTTPConnection 对象,每一个对象表示一个单独的客户端 HTTP 连接,并且处理其请求-响应周期: 使用 http_parser 模块将收到的字节流解析为一个 Request 对象; 使用一个 Router 实例寻找并调用正确的函数来生成一个响应; 最后将这个响应发送回客户端。 ''' class HTTPConnection(object): """ Takes care of whole life cycle of a single TCP connection with a HTTP client. First reads incoming data, parses it with 'http_server.parser', generates as Response with 'http_server.router' and sends data back to client. :param http_server: An instance of HTTPServer. :param reader: An object that implements the 'asyncio.StreamReader' interface. :param writer: An object that implements the 'asyncio.StreamWriter' interface. """ def __init__(self, http_server, reader, writer): self.router = http_server.router # Router 实例寻找并调用正确的函数来生成一个响应 self.http_parser = http_server.http_parser # http_parser 模块将收到的字节流解析为一个 Request 对象 self.loop = http_server.loop self._reader = reader self._writer = writer self._buffer = bytearray() self._conn_timeout = None self.request = Request() async def handle_request(self): """ Reads bytes from a connection and attempts to parse them incrementally until it can issue a Response and close the connection. Also handles resetting the timeout counter for a connection. """ try: while not self.request.finished and not self._reader.at_eof(): data = await self._reader.read(1024) if data: self._reset_conn_timeout() await self.process_data(data) if self.request.finished: await self.reply() elif self._reader.at_eof(): raise BadRequestException() except (NotFoundException, BadRequestException) as e: self.error_reply(e.code, body=Response.reason_phrases[e.code]) except Exception as e: logging.error(e) logging.error(e.__traceback__) self.error_reply(500, body=Response.reason_phrases[500]) self.close_connection() async def process_data(self, data): """ Accumulates data inside of _buffer and attempts to parse the accumulated data. :param data: A bytearray object. """ self._buffer.extend(data) self._buffer = self.http_parser.parse_into( self.request, self._buffer) def close_connection(self): """ Cancels the timeout timer and closes the connection. """ logging.debug('Closing connection') self._cancel_conn_timeout() self._writer.close() def error_reply(self, code, body=''): """ Generates a simple error response. :param code: Integer signifying the HTTP error. :param body: A string that contains an error message. """ response = Response(code=code, body=body) self._writer.write(response.to_bytes()) self._writer.drain() async def reply(self): """ Obtains and applies the correct handler from 'self.router' and write the Response back to the client. """ logging.debug('Replying to request') request = self.request handler = self.router.get_handler(request.path) response = await handler.handle(request) if not isinstance(response, Response): response = Response(code=200, body=response) self._writer.write(response.to_bytes()) await self._writer.drain() def _conn_timeout_close(self): self.error_reply(500, 'timeout') self.close_connection() def _reset_conn_timeout(self, timeout=TIMEOUT): self._cancel_conn_timeout() self._conn_timeout = self.loop.call_later( timeout, self._conn_timeout_close) def _cancel_conn_timeout(self): if self._conn_timeout: self._conn_timeout.cancel()
py
1a5071834f3db5b1059edd0ae03cec41eab99d5f
# -*- coding: utf-8 -*- import logging from pyramid.interfaces import IRequest from openregistry.assets.core.includeme import IContentConfigurator from openregistry.assets.core.interfaces import IAssetManager from openregistry.assets.basic.models import Asset, IBasicAsset from openregistry.assets.basic.adapters import BasicAssetConfigurator, BasicAssetManagerAdapter from openregistry.assets.basic.constants import ( DEFAULT_ASSET_BASIC_TYPE, DEFAULT_LEVEL_OF_ACCREDITATION ) LOGGER = logging.getLogger(__name__) def includeme(config, plugin_config=None): config.scan("openregistry.assets.basic.views") config.scan("openregistry.assets.basic.subscribers") config.registry.registerAdapter(BasicAssetConfigurator, (IBasicAsset, IRequest), IContentConfigurator) config.registry.registerAdapter(BasicAssetManagerAdapter, (IBasicAsset, ), IAssetManager) asset_types = plugin_config.get('aliases', []) if plugin_config.get('use_default', False): asset_types.append(DEFAULT_ASSET_BASIC_TYPE) for at in asset_types: config.add_assetType(Asset, at) LOGGER.info("Included openregistry.assets.basic plugin", extra={'MESSAGE_ID': 'included_plugin'}) # add accreditation level if not plugin_config.get('accreditation'): config.registry.accreditation['asset'][Asset._internal_type] = DEFAULT_LEVEL_OF_ACCREDITATION else: config.registry.accreditation['asset'][Asset._internal_type] = plugin_config['accreditation']
py
1a50720ffaa798318a22c8be25c78bd0510c4b63
import base64 import os import shutil import string import sys import tempfile import unittest from datetime import timedelta from django.conf import settings from django.contrib.sessions.backends.cache import SessionStore as CacheSession from django.contrib.sessions.backends.cached_db import \ SessionStore as CacheDBSession from django.contrib.sessions.backends.db import SessionStore as DatabaseSession from django.contrib.sessions.backends.file import SessionStore as FileSession from django.contrib.sessions.backends.signed_cookies import \ SessionStore as CookieSession from django.contrib.sessions.exceptions import InvalidSessionKey from django.contrib.sessions.middleware import SessionMiddleware from django.contrib.sessions.models import Session from django.contrib.sessions.serializers import ( JSONSerializer, PickleSerializer, ) from django.core import management from django.core.cache import caches from django.core.cache.backends.base import InvalidCacheBackendError from django.core.exceptions import ImproperlyConfigured from django.http import HttpResponse from django.test import ( RequestFactory, TestCase, ignore_warnings, override_settings, ) from django.test.utils import patch_logger from django.utils import six, timezone from django.utils.encoding import force_text from django.utils.six.moves import http_cookies from .custom_db_backend import SessionStore as CustomDatabaseSession class SessionTestsMixin(object): # This does not inherit from TestCase to avoid any tests being run with this # class, which wouldn't work, and to allow different TestCase subclasses to # be used. backend = None # subclasses must specify def setUp(self): self.session = self.backend() def tearDown(self): # NB: be careful to delete any sessions created; stale sessions fill up # the /tmp (with some backends) and eventually overwhelm it after lots # of runs (think buildbots) self.session.delete() def test_new_session(self): self.assertFalse(self.session.modified) self.assertFalse(self.session.accessed) def test_get_empty(self): self.assertEqual(self.session.get('cat'), None) def test_store(self): self.session['cat'] = "dog" self.assertTrue(self.session.modified) self.assertEqual(self.session.pop('cat'), 'dog') def test_pop(self): self.session['some key'] = 'exists' # Need to reset these to pretend we haven't accessed it: self.accessed = False self.modified = False self.assertEqual(self.session.pop('some key'), 'exists') self.assertTrue(self.session.accessed) self.assertTrue(self.session.modified) self.assertEqual(self.session.get('some key'), None) def test_pop_default(self): self.assertEqual(self.session.pop('some key', 'does not exist'), 'does not exist') self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) def test_setdefault(self): self.assertEqual(self.session.setdefault('foo', 'bar'), 'bar') self.assertEqual(self.session.setdefault('foo', 'baz'), 'bar') self.assertTrue(self.session.accessed) self.assertTrue(self.session.modified) def test_update(self): self.session.update({'update key': 1}) self.assertTrue(self.session.accessed) self.assertTrue(self.session.modified) self.assertEqual(self.session.get('update key', None), 1) def test_has_key(self): self.session['some key'] = 1 self.session.modified = False self.session.accessed = False self.assertIn('some key', self.session) self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) def test_values(self): self.assertEqual(list(self.session.values()), []) self.assertTrue(self.session.accessed) self.session['some key'] = 1 self.assertEqual(list(self.session.values()), [1]) def test_iterkeys(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False i = six.iterkeys(self.session) self.assertTrue(hasattr(i, '__iter__')) self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) self.assertEqual(list(i), ['x']) def test_itervalues(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False i = six.itervalues(self.session) self.assertTrue(hasattr(i, '__iter__')) self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) self.assertEqual(list(i), [1]) def test_iteritems(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False i = six.iteritems(self.session) self.assertTrue(hasattr(i, '__iter__')) self.assertTrue(self.session.accessed) self.assertFalse(self.session.modified) self.assertEqual(list(i), [('x', 1)]) def test_clear(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False self.assertEqual(list(self.session.items()), [('x', 1)]) self.session.clear() self.assertEqual(list(self.session.items()), []) self.assertTrue(self.session.accessed) self.assertTrue(self.session.modified) def test_save(self): if (hasattr(self.session, '_cache') and 'DummyCache' in settings.CACHES[settings.SESSION_CACHE_ALIAS]['BACKEND']): raise unittest.SkipTest("Session saving tests require a real cache backend") self.session.save() self.assertTrue(self.session.exists(self.session.session_key)) def test_delete(self): self.session.save() self.session.delete(self.session.session_key) self.assertFalse(self.session.exists(self.session.session_key)) def test_flush(self): self.session['foo'] = 'bar' self.session.save() prev_key = self.session.session_key self.session.flush() self.assertFalse(self.session.exists(prev_key)) self.assertNotEqual(self.session.session_key, prev_key) self.assertIsNone(self.session.session_key) self.assertTrue(self.session.modified) self.assertTrue(self.session.accessed) def test_cycle(self): self.session['a'], self.session['b'] = 'c', 'd' self.session.save() prev_key = self.session.session_key prev_data = list(self.session.items()) self.session.cycle_key() self.assertNotEqual(self.session.session_key, prev_key) self.assertEqual(list(self.session.items()), prev_data) def test_save_doesnt_clear_data(self): self.session['a'] = 'b' self.session.save() self.assertEqual(self.session['a'], 'b') def test_invalid_key(self): # Submitting an invalid session key (either by guessing, or if the db has # removed the key) results in a new key being generated. try: session = self.backend('1') try: session.save() except AttributeError: self.fail( "The session object did not save properly. " "Middleware may be saving cache items without namespaces." ) self.assertNotEqual(session.session_key, '1') self.assertEqual(session.get('cat'), None) session.delete() finally: # Some backends leave a stale cache entry for the invalid # session key; make sure that entry is manually deleted session.delete('1') def test_session_key_empty_string_invalid(self): """Falsey values (Such as an empty string) are rejected.""" self.session._session_key = '' self.assertIsNone(self.session.session_key) def test_session_key_too_short_invalid(self): """Strings shorter than 8 characters are rejected.""" self.session._session_key = '1234567' self.assertIsNone(self.session.session_key) def test_session_key_valid_string_saved(self): """Strings of length 8 and up are accepted and stored.""" self.session._session_key = '12345678' self.assertEqual(self.session.session_key, '12345678') def test_session_key_is_read_only(self): def set_session_key(session): session.session_key = session._get_new_session_key() self.assertRaises(AttributeError, set_session_key, self.session) # Custom session expiry def test_default_expiry(self): # A normal session has a max age equal to settings self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) # So does a custom session with an idle expiration time of 0 (but it'll # expire at browser close) self.session.set_expiry(0) self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) def test_custom_expiry_seconds(self): modification = timezone.now() self.session.set_expiry(10) date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_timedelta(self): modification = timezone.now() # Mock timezone.now, because set_expiry calls it on this code path. original_now = timezone.now try: timezone.now = lambda: modification self.session.set_expiry(timedelta(seconds=10)) finally: timezone.now = original_now date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_datetime(self): modification = timezone.now() self.session.set_expiry(modification + timedelta(seconds=10)) date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_reset(self): self.session.set_expiry(None) self.session.set_expiry(10) self.session.set_expiry(None) self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) def test_get_expire_at_browser_close(self): # Tests get_expire_at_browser_close with different settings and different # set_expiry calls with override_settings(SESSION_EXPIRE_AT_BROWSER_CLOSE=False): self.session.set_expiry(10) self.assertFalse(self.session.get_expire_at_browser_close()) self.session.set_expiry(0) self.assertTrue(self.session.get_expire_at_browser_close()) self.session.set_expiry(None) self.assertFalse(self.session.get_expire_at_browser_close()) with override_settings(SESSION_EXPIRE_AT_BROWSER_CLOSE=True): self.session.set_expiry(10) self.assertFalse(self.session.get_expire_at_browser_close()) self.session.set_expiry(0) self.assertTrue(self.session.get_expire_at_browser_close()) self.session.set_expiry(None) self.assertTrue(self.session.get_expire_at_browser_close()) def test_decode(self): # Ensure we can decode what we encode data = {'a test key': 'a test value'} encoded = self.session.encode(data) self.assertEqual(self.session.decode(encoded), data) def test_decode_failure_logged_to_security(self): bad_encode = base64.b64encode(b'flaskdj:alkdjf') with patch_logger('django.security.SuspiciousSession', 'warning') as calls: self.assertEqual({}, self.session.decode(bad_encode)) # check that the failed decode is logged self.assertEqual(len(calls), 1) self.assertIn('corrupted', calls[0]) def test_actual_expiry(self): # this doesn't work with JSONSerializer (serializing timedelta) with override_settings(SESSION_SERIALIZER='django.contrib.sessions.serializers.PickleSerializer'): self.session = self.backend() # reinitialize after overriding settings # Regression test for #19200 old_session_key = None new_session_key = None try: self.session['foo'] = 'bar' self.session.set_expiry(-timedelta(seconds=10)) self.session.save() old_session_key = self.session.session_key # With an expiry date in the past, the session expires instantly. new_session = self.backend(self.session.session_key) new_session_key = new_session.session_key self.assertNotIn('foo', new_session) finally: self.session.delete(old_session_key) self.session.delete(new_session_key) def test_session_load_does_not_create_record(self): """ Loading an unknown session key does not create a session record. Creating session records on load is a DOS vulnerability. """ if self.backend is CookieSession: raise unittest.SkipTest("Cookie backend doesn't have an external store to create records in.") session = self.backend('someunknownkey') session.load() self.assertFalse(session.exists(session.session_key)) # provided unknown key was cycled, not reused self.assertNotEqual(session.session_key, 'someunknownkey') class DatabaseSessionTests(SessionTestsMixin, TestCase): backend = DatabaseSession session_engine = 'django.contrib.sessions.backends.db' @property def model(self): return self.backend.get_model_class() def test_session_str(self): "Session repr should be the session key." self.session['x'] = 1 self.session.save() session_key = self.session.session_key s = self.model.objects.get(session_key=session_key) self.assertEqual(force_text(s), session_key) def test_session_get_decoded(self): """ Test we can use Session.get_decoded to retrieve data stored in normal way """ self.session['x'] = 1 self.session.save() s = self.model.objects.get(session_key=self.session.session_key) self.assertEqual(s.get_decoded(), {'x': 1}) def test_sessionmanager_save(self): """ Test SessionManager.save method """ # Create a session self.session['y'] = 1 self.session.save() s = self.model.objects.get(session_key=self.session.session_key) # Change it self.model.objects.save(s.session_key, {'y': 2}, s.expire_date) # Clear cache, so that it will be retrieved from DB del self.session._session_cache self.assertEqual(self.session['y'], 2) def test_clearsessions_command(self): """ Test clearsessions command for clearing expired sessions. """ self.assertEqual(0, self.model.objects.count()) # One object in the future self.session['foo'] = 'bar' self.session.set_expiry(3600) self.session.save() # One object in the past other_session = self.backend() other_session['foo'] = 'bar' other_session.set_expiry(-3600) other_session.save() # Two sessions are in the database before clearsessions... self.assertEqual(2, self.model.objects.count()) with override_settings(SESSION_ENGINE=self.session_engine): management.call_command('clearsessions') # ... and one is deleted. self.assertEqual(1, self.model.objects.count()) @override_settings(USE_TZ=True) class DatabaseSessionWithTimeZoneTests(DatabaseSessionTests): pass class CustomDatabaseSessionTests(DatabaseSessionTests): backend = CustomDatabaseSession session_engine = 'sessions_tests.custom_db_backend' def test_extra_session_field(self): # Set the account ID to be picked up by a custom session storage # and saved to a custom session model database column. self.session['_auth_user_id'] = 42 self.session.save() # Make sure that the customized create_model_instance() was called. s = self.model.objects.get(session_key=self.session.session_key) self.assertEqual(s.account_id, 42) # Make the session "anonymous". self.session.pop('_auth_user_id') self.session.save() # Make sure that save() on an existing session did the right job. s = self.model.objects.get(session_key=self.session.session_key) self.assertEqual(s.account_id, None) class CacheDBSessionTests(SessionTestsMixin, TestCase): backend = CacheDBSession @unittest.skipIf('DummyCache' in settings.CACHES[settings.SESSION_CACHE_ALIAS]['BACKEND'], "Session saving tests require a real cache backend") def test_exists_searches_cache_first(self): self.session.save() with self.assertNumQueries(0): self.assertTrue(self.session.exists(self.session.session_key)) # Some backends might issue a warning @ignore_warnings(module="django.core.cache.backends.base") def test_load_overlong_key(self): self.session._session_key = (string.ascii_letters + string.digits) * 20 self.assertEqual(self.session.load(), {}) @override_settings(SESSION_CACHE_ALIAS='sessions') def test_non_default_cache(self): # 21000 - CacheDB backend should respect SESSION_CACHE_ALIAS. self.assertRaises(InvalidCacheBackendError, self.backend) @override_settings(USE_TZ=True) class CacheDBSessionWithTimeZoneTests(CacheDBSessionTests): pass # Don't need DB flushing for these tests, so can use unittest.TestCase as base class class FileSessionTests(SessionTestsMixin, unittest.TestCase): backend = FileSession def setUp(self): # Do file session tests in an isolated directory, and kill it after we're done. self.original_session_file_path = settings.SESSION_FILE_PATH self.temp_session_store = settings.SESSION_FILE_PATH = tempfile.mkdtemp() # Reset the file session backend's internal caches if hasattr(self.backend, '_storage_path'): del self.backend._storage_path super(FileSessionTests, self).setUp() def tearDown(self): super(FileSessionTests, self).tearDown() settings.SESSION_FILE_PATH = self.original_session_file_path shutil.rmtree(self.temp_session_store) @override_settings( SESSION_FILE_PATH="/if/this/directory/exists/you/have/a/weird/computer") def test_configuration_check(self): del self.backend._storage_path # Make sure the file backend checks for a good storage dir self.assertRaises(ImproperlyConfigured, self.backend) def test_invalid_key_backslash(self): # Ensure we don't allow directory-traversal. # This is tested directly on _key_to_file, as load() will swallow # a SuspiciousOperation in the same way as an IOError - by creating # a new session, making it unclear whether the slashes were detected. self.assertRaises(InvalidSessionKey, self.backend()._key_to_file, "a\\b\\c") def test_invalid_key_forwardslash(self): # Ensure we don't allow directory-traversal self.assertRaises(InvalidSessionKey, self.backend()._key_to_file, "a/b/c") @override_settings(SESSION_ENGINE="django.contrib.sessions.backends.file") def test_clearsessions_command(self): """ Test clearsessions command for clearing expired sessions. """ storage_path = self.backend._get_storage_path() file_prefix = settings.SESSION_COOKIE_NAME def count_sessions(): return len([session_file for session_file in os.listdir(storage_path) if session_file.startswith(file_prefix)]) self.assertEqual(0, count_sessions()) # One object in the future self.session['foo'] = 'bar' self.session.set_expiry(3600) self.session.save() # One object in the past other_session = self.backend() other_session['foo'] = 'bar' other_session.set_expiry(-3600) other_session.save() # Two sessions are in the filesystem before clearsessions... self.assertEqual(2, count_sessions()) management.call_command('clearsessions') # ... and one is deleted. self.assertEqual(1, count_sessions()) class CacheSessionTests(SessionTestsMixin, unittest.TestCase): backend = CacheSession # Some backends might issue a warning @ignore_warnings(module="django.core.cache.backends.base") def test_load_overlong_key(self): self.session._session_key = (string.ascii_letters + string.digits) * 20 self.assertEqual(self.session.load(), {}) def test_default_cache(self): self.session.save() self.assertNotEqual(caches['default'].get(self.session.cache_key), None) @override_settings(CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', }, 'sessions': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'session', }, }, SESSION_CACHE_ALIAS='sessions') def test_non_default_cache(self): # Re-initialize the session backend to make use of overridden settings. self.session = self.backend() self.session.save() self.assertEqual(caches['default'].get(self.session.cache_key), None) self.assertNotEqual(caches['sessions'].get(self.session.cache_key), None) class SessionMiddlewareTests(TestCase): @override_settings(SESSION_COOKIE_SECURE=True) def test_secure_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertTrue( response.cookies[settings.SESSION_COOKIE_NAME]['secure']) @override_settings(SESSION_COOKIE_HTTPONLY=True) def test_httponly_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertTrue( response.cookies[settings.SESSION_COOKIE_NAME]['httponly']) self.assertIn(http_cookies.Morsel._reserved['httponly'], str(response.cookies[settings.SESSION_COOKIE_NAME])) @override_settings(SESSION_COOKIE_HTTPONLY=False) def test_no_httponly_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertFalse(response.cookies[settings.SESSION_COOKIE_NAME]['httponly']) self.assertNotIn(http_cookies.Morsel._reserved['httponly'], str(response.cookies[settings.SESSION_COOKIE_NAME])) def test_session_save_on_500(self): request = RequestFactory().get('/') response = HttpResponse('Horrible error') response.status_code = 500 middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) # Check that the value wasn't saved above. self.assertNotIn('hello', request.session.load()) def test_session_delete_on_end(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Before deleting, there has to be an existing cookie request.COOKIES[settings.SESSION_COOKIE_NAME] = 'abc' # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # Check that the cookie was deleted, not recreated. # A deleted cookie header looks like: # Set-Cookie: sessionid=; expires=Thu, 01-Jan-1970 00:00:00 GMT; Max-Age=0; Path=/ self.assertEqual( 'Set-Cookie: {}={}; expires=Thu, 01-Jan-1970 00:00:00 GMT; ' 'Max-Age=0; Path=/'.format( settings.SESSION_COOKIE_NAME, '""' if sys.version_info >= (3, 5) else '', ), str(response.cookies[settings.SESSION_COOKIE_NAME]) ) @override_settings(SESSION_COOKIE_DOMAIN='.example.local') def test_session_delete_on_end_with_custom_domain(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Before deleting, there has to be an existing cookie request.COOKIES[settings.SESSION_COOKIE_NAME] = 'abc' # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # Check that the cookie was deleted, not recreated. # A deleted cookie header with a custom domain looks like: # Set-Cookie: sessionid=; Domain=.example.local; # expires=Thu, 01-Jan-1970 00:00:00 GMT; Max-Age=0; Path=/ self.assertEqual( 'Set-Cookie: {}={}; Domain=.example.local; expires=Thu, ' '01-Jan-1970 00:00:00 GMT; Max-Age=0; Path=/'.format( settings.SESSION_COOKIE_NAME, '""' if sys.version_info >= (3, 5) else '', ), str(response.cookies[settings.SESSION_COOKIE_NAME]) ) def test_flush_empty_without_session_cookie_doesnt_set_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # A cookie should not be set. self.assertEqual(response.cookies, {}) # The session is accessed so "Vary: Cookie" should be set. self.assertEqual(response['Vary'], 'Cookie') def test_empty_session_saved(self): """" If a session is emptied of data but still has a key, it should still be updated. """ request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Set a session key and some data. middleware.process_request(request) request.session['foo'] = 'bar' # Handle the response through the middleware. response = middleware.process_response(request, response) self.assertEqual(tuple(request.session.items()), (('foo', 'bar'),)) # A cookie should be set, along with Vary: Cookie. self.assertIn( 'Set-Cookie: sessionid=%s' % request.session.session_key, str(response.cookies) ) self.assertEqual(response['Vary'], 'Cookie') # Empty the session data. del request.session['foo'] # Handle the response through the middleware. response = HttpResponse('Session test') response = middleware.process_response(request, response) self.assertEqual(dict(request.session.values()), {}) session = Session.objects.get(session_key=request.session.session_key) self.assertEqual(session.get_decoded(), {}) # While the session is empty, it hasn't been flushed so a cookie should # still be set, along with Vary: Cookie. self.assertGreater(len(request.session.session_key), 8) self.assertIn( 'Set-Cookie: sessionid=%s' % request.session.session_key, str(response.cookies) ) self.assertEqual(response['Vary'], 'Cookie') # Don't need DB flushing for these tests, so can use unittest.TestCase as base class class CookieSessionTests(SessionTestsMixin, unittest.TestCase): backend = CookieSession def test_save(self): """ This test tested exists() in the other session backends, but that doesn't make sense for us. """ pass def test_cycle(self): """ This test tested cycle_key() which would create a new session key for the same session data. But we can't invalidate previously signed cookies (other than letting them expire naturally) so testing for this behavior is meaningless. """ pass @unittest.expectedFailure def test_actual_expiry(self): # The cookie backend doesn't handle non-default expiry dates, see #19201 super(CookieSessionTests, self).test_actual_expiry() def test_unpickling_exception(self): # signed_cookies backend should handle unpickle exceptions gracefully # by creating a new session self.assertEqual(self.session.serializer, JSONSerializer) self.session.save() self.session.serializer = PickleSerializer self.session.load()
py
1a507249b464d2ec9598b07830d9ba846c1aaa2a
from django.contrib import admin from rest_framework.authtoken.models import Token class TokenAdmin(admin.ModelAdmin): list_display = ('key', 'user', 'created') fields = ('user',) ordering = ('-created',) admin.site.register(Token, TokenAdmin)
py
1a5072fa3eeab0be2d8b440af4161b250d47d65b
import fdp def test_fdp(): nstx = fdp.Nstxu() assert fdp.__version__ is not None
py
1a5074ea609d4afb4b9f3590d051ec7b694740d8
def math(): i_put = int(input()) if 5 < i_put < 2000: for i in range(1, i_put+1): if i % 2 == 0: print(str(i) + '^2 =', i*i) if __name__ == '__main__': math()
py
1a5074ec86b9dc5481e17eb5e5ba0fdc5fe5792a
#!/usr/bin/env python # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import os import shutil import sys def DoMain(argv): parser = argparse.ArgumentParser(description='Generate forwarding headers.') parser.add_argument('-i', '--list-inputs', action='store_true', help='List input files and exit.') parser.add_argument('-o', '--list-outputs', action='store_true', help='List output files and exit.') parser.add_argument('-d', '--dest-dir', type=str, help=('Output directory for forwarding headers.')) parser.add_argument('filenames', metavar='filename', type=str, nargs='+', help='Input filenames.') args = parser.parse_args(argv) if args.list_inputs: return list_inputs(args.filenames) if not args.dest_dir: print '--dest-dir is required for this command.' sys.exit(1) if args.list_outputs: return ' '.join( os.path.join(args.dest_dir, os.path.basename(filename)) for filename in args.filenames) if not os.path.isdir(args.dest_dir): os.makedirs(args.dest_dir) for filename in args.filenames: target_filename = os.path.join(args.dest_dir, os.path.basename(filename)) if os.path.isfile(target_filename): os.unlink(target_filename) try: os.link(filename, target_filename) except OSError as e: # Fallbacks to copy if hardlinking fails. shutil.copy(filename, target_filename) if __name__ == '__main__': results = DoMain(sys.argv[1:]) if results: print results
py
1a50757045c50eee81e5883e79c8c7e8308e09eb
#! /usr/bin/env python3 # -*- coding: utf-8 -*- ''' ------------------------------------------------------------ Main entry for ImgReSizer. .. module:: `Main` :platform: Unix :synopsis: Takes configuration json with :py:class: imgresizer.CommandLine and run image processing .. moduleauthor:: Tumurtogtokh Davaakhuu <[email protected]> ------------------------------------------------------------ ''' # IMPORT STANDARD import sys import os # IMPORT Local from imgresizer import Img from imgresizer import ImageSizerController from imgresizer import CommandLine # ============================================================================= # MAIN def main(): cli = CommandLine() config = cli.load_configuration() if cli.exit: sys.exit(0) IMG_URLS = cli.process_img_url_file() TARGET = config['targets'] MAX_THREADS = config['num_threads'] DATA = config['data'] INCOMING = config['input_dir'] OUTGOING = config['output_dir'] img_sizer = ImageSizerController(Img(DATA, INCOMING, OUTGOING, MAX_THREADS), IMG_URLS, TARGET) # img_sizer.perform_resizing() img_sizer.make_imgs() if __name__ == '__main__': main()
py
1a507776502a8b29a60bb368349e6138e7e92d85
#!/usr/bin/env python """ ROS Code Coverage Class (Python). This module demonstrates code coverage and code quality for ROS Python applications. """ class RosCCClass(object): """Example of a Python Class for code coverage purposes.""" def __init__(self, identifier, name='default'): """ ROS Code Coverage __init__ method. Args: identifier (string): identification parameter name (string): name parameter """ self.identifier = identifier self.name = name def set_name(self, name): """ Method for changing the name parameter Args: name (string): name parameter """ self.name = name def get_name(self): """ Method for getting the name parameter Returns: name (string): name parameter """ return self.name
py
1a5078f614596e83a998507f278a0b9bd0a27b7f
import numpy as np def projective(coords): """ Convert 2D cartesian coordinates to homogeneus/projective. """ num = np.shape(coords)[0] w = np.array([[1], ]*num) return np.append(coords, w, axis=1) def cartesian(coords): """ Convert 2D homogeneus/projective coordinates to cartesian. """ return coords[:, :2] def translate(x, y): """ Return translation matrix. """ return np.array([ [1, 0, x], [0, 1, y], [0, 0, 1], ]) def rotate(a): """ Return rotation matrix. """ return np.array([ [np.cos(a), -np.sin(a), 0], [np.sin(a), np.cos(a), 0], [0, 0, 1] ]) def transform_list(coords, matrix): """ Apply transformation to a list of coordinates. """ return matrix.dot(coords.T).T def transform_apply(coords, transforms): """ Apply list of transformations to a list of coordinates. """ out = projective(coords) for transform in transforms: out = transform_list(out, transform) return cartesian(out)
py
1a507b207a9db803a1966627c3a632700a5910fe
from rest_framework.urlpatterns import format_suffix_patterns from django.urls import re_path from api.bookmarks import views as bookmark_views from api.experiment_groups import views from constants.urls import GROUP_ID_PATTERN, ID_PATTERN, NAME_PATTERN, USERNAME_PATTERN groups_urlpatterns = [ re_path(r'^{}/{}/groups/{}/?$'.format(USERNAME_PATTERN, NAME_PATTERN, ID_PATTERN), views.ExperimentGroupDetailView.as_view()), re_path(r'^{}/{}/groups/{}/statuses/?$'.format( USERNAME_PATTERN, NAME_PATTERN, GROUP_ID_PATTERN), views.ExperimentGroupStatusListView.as_view()), re_path(r'^{}/{}/groups/{}/stop/?$'.format(USERNAME_PATTERN, NAME_PATTERN, ID_PATTERN), views.ExperimentGroupStopView.as_view()), re_path( r'^{}/{}/groups/{}/bookmark/?$'.format(USERNAME_PATTERN, NAME_PATTERN, ID_PATTERN), bookmark_views.ExperimentGroupBookmarkCreateView.as_view()), re_path( r'^{}/{}/groups/{}/unbookmark/?$'.format(USERNAME_PATTERN, NAME_PATTERN, ID_PATTERN), bookmark_views.ExperimentGroupBookmarkDeleteView.as_view()), ] # Order is important, because the patterns could swallow other urls urlpatterns = format_suffix_patterns(groups_urlpatterns)
py
1a507b6e7bb23accbb6e5a653b600c7c3eacea3c
# coding:utf-8 import collections import csv import os from util.log import logger logger = logger() class Template(object): def __init__(self, base_dic, cmp_dic, base_cost, cmp_cost, base_call_times, cmp_call_times, base_method_thread, cmp_method_thread, base_theads_pid, cmp_theads_pid): self.base = base_dic # base_sorted_dic, cmp_sorted_dic, base_cost, cmp_cost,base_call_times,cmp_call_times self.cmp = cmp_dic self.base_cost = base_cost self.cmp_cost = cmp_cost self.base_call_times = base_call_times self.cmp_call_times = cmp_call_times self.order_base_dic = collections.OrderedDict() self.order_cmp_dic = collections.OrderedDict() self.order_base_keys, self.order_base_values = self.initObjDatas(self.base, self.order_base_dic) self.order_cmp_keys, self.order_cmp_values = self.initObjDatas(self.cmp, self.order_cmp_dic) self.base_method_thread = base_method_thread self.cmp_method_thread = cmp_method_thread self.base_theads_pid = base_theads_pid self.cmp_theads_pid = cmp_theads_pid def initObjDatas(self, obj, init_obj): _keys = [] _values = [] for each in obj: init_obj[each[0]] = each[1] for _k, _v in init_obj.items(): _keys.append(_k) _values.append(_v) return _keys, _values def generateTable(self, path, rows, data): if os.path.isfile(path): os.remove(path) csvfile = file(path, "wb") writer = csv.writer(csvfile) # writer.writerow(rows) writer.writerows(data) csvfile.close() def searchDictList(self, orderDict): keys = [] values = [] for k, v in orderDict.items(): keys.append(k) values.append(v) return keys, values def generateTableData(self, path, rows): ''' ['调用方法','隶属线程', '线程PID', '基准分支排名', '对比分支排名', '基准分支方法耗时', '对比分支方法耗时', '耗时差(对比分支-基准分支)', '耗时上涨比例(%)', '基准分支方法调用次数','对比分支方法调用次数','方法耗时排名变化'] ''' logger.debug("self.cmp_cost:\n" + str(self.cmp_cost)) logger.debug("self.base_cost:\n" + str(self.base_cost)) if self.base_cost != 0: ratio = format(float(self.cmp_cost - self.base_cost) / float(self.base_cost), '.2%') else: ratio = self.cmp_cost data = [] add_rows = rows add_rows[0] = add_rows[0] + "- 系数: " + str(ratio) add_flag = 0 for cmp_obj in self.order_cmp_keys: ''' 当cmp_obj有新增方法时 ''' if cmp_obj not in self.order_base_keys: add_flag = 1 method = cmp_obj base_index = "-" cmp_index = self.order_cmp_keys.index(cmp_obj) base_time = 0 cmp_time = self.order_cmp_values[cmp_index] cmp_call_times = self.cmp_call_times[cmp_obj] if self.cmp_call_times.has_key(cmp_obj) else "-" if self.cmp_method_thread.has_key(cmp_obj): cmp_thread = self.cmp_method_thread[cmp_obj] self.cmp_method_thread.pop(cmp_obj) else: cmp_thread = "-" base_call_times = 0 diff = cmp_time rate = format(float(1), '.2%') rank_change = cmp_index content = ( method, str(cmp_thread), str(base_index), str(cmp_index), str(base_time), str(cmp_time), str(diff), str(rate), str(base_call_times), str(cmp_call_times), str(rank_change)) data.append(content) if add_flag == 1: data.insert(0, add_rows) rows[0] = rows[0] + "- 系数: " + str(ratio) data.append(rows) for base_obj in self.order_base_keys: method = base_obj base_index = self.order_base_keys.index(base_obj) # 获取base_key的排名 if base_obj in self.order_cmp_keys: cmp_index = self.order_cmp_keys.index(base_obj) # 当base_obj方法还在cmp_obj方法中 base_call_times = self.base_call_times[base_obj] if self.base_call_times.has_key(base_obj) else "-" cmp_call_times = self.cmp_call_times[base_obj] if self.cmp_call_times.has_key(base_obj) else "-" else: cmp_index = "-" # 当base_obj方法在cmp_obj已经删减 base_call_times = self.base_call_times[base_obj] if self.base_call_times.has_key(base_obj) else "-" cmp_call_times = 0 if self.base_method_thread.has_key(base_obj): base_thread = self.base_method_thread[base_obj] self.base_method_thread.pop(base_obj) else: base_thread = "-" base_time = self.order_base_values[base_index] if cmp_index == "-": cmp_time = 0 rank_change = base_index else: cmp_time = self.order_cmp_values[cmp_index] rank_change = base_index - cmp_index diff = cmp_time - base_time try: rate = format(float(diff) / float(base_time), '.2%') # -100%:代表base_obj方法在cmp_obj已经删减的比率 except Exception as e: rate = "error" content = ( method, str(base_thread), str(base_index), str(cmp_index), str(base_time), str(cmp_time), str(diff), str(rate), str(base_call_times), str(cmp_call_times), str(rank_change)) data.append(content) self.generateTable(path, rows, data) logger.debug("self.base_cost-self.cmp_cost:\n" + str(self.base_cost - self.cmp_cost)) logger.debug("self.base_method_thread:\n" + str(self.base_method_thread)) logger.debug("self.cmp_method_thread:\n" + str(self.cmp_method_thread))
py
1a507c189770c68c66f6bb4705998f4f2911ca3d
# -*- coding: utf-8 -*- # Copyright (c) 2021, TeamPRO and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.model.document import Document class AMCSubscription(Document): pass
py
1a507c70bd3e12854b972c0c26d72f6b67d5a0f2
import re import os import nltk import zlib import codecs import shutil import logging from unidecode import unidecode from indra.literature.pmc_client import extract_text from indra.resources.greek_alphabet import greek_alphabet logger = logging.getLogger(__name__) class IsiPreprocessor(object): """Preprocess a set of documents, one by one, and add the preprocessed text to a temporary directory in a format suitable for the ISI reader. The ISI reader requires plain text with one sentence per line. Attributes ---------- preprocessed_dir : str The directory holding the literature text preprocessed and sentence tokenized in a format suitable for the ISI reader next_file_id : int The next file with preprocessed text will be named next_file_id.txt pmids : dict A dictionary mapping file ids to the pmid of the text corresponding to that file, can be None if unknown extra_annotations : dict A dictionary mapping file ids to a (possibly empty) dictionary with additional annotations to include for statements extracted from this document """ def __init__(self, preprocessed_dir): preprocessed_dir = os.path.abspath(preprocessed_dir) self.preprocessed_dir = preprocessed_dir self.next_file_id = 1 self.pmids = {} self.extra_annotations = {} # This directory should be empty contents = os.listdir(preprocessed_dir) if len(contents) != 0: logger.warning('IsiPreprocessor should get an empty directory in' + ' which to store preprocessed files.') def register_preprocessed_file(self, infile, pmid, extra_annotations): """Set up already preprocessed text file for reading with ISI reader. This is essentially a mock function to "register" already preprocessed files and get an IsiPreprocessor object that can be passed to the IsiProcessor. Parameters ---------- infile : str Path to an already preprocessed text file (i.e. one ready to be sent for reading to ISI reader). pmid : str The PMID corresponding to the file extra_annotations : dict Extra annotations to be added to each statement, possibly including metadata about the source (annotations with the key "interaction" will be overridden) """ infile_base = os.path.basename(infile) outfile = os.path.join(self.preprocessed_dir, infile_base) shutil.copyfile(infile, outfile) infile_key = os.path.splitext(infile_base)[0] self.pmids[infile_key] = pmid self.extra_annotations[infile_key] = extra_annotations def preprocess_plain_text_string(self, text, pmid, extra_annotations): """Preprocess plain text string for use by ISI reader. Preprocessing is done by tokenizing into sentences and writing each sentence on its own line in a plain text file. All other preprocessing functions ultimately call this one. Parameters ---------- text : str The plain text of the article of abstract pmid : str The PMID from which it comes, or None if not specified extra_annotations : dict Extra annotations to be added to each statement, possibly including metadata about the source (annotations with the key "interaction" will be overridden) """ output_file = '%s.txt' % self.next_file_id output_file = os.path.join(self.preprocessed_dir, output_file) # Replace greek characters with corresponding strings for greek_letter, spelled_letter in greek_alphabet.items(): text = text.replace(greek_letter, spelled_letter) # Replace all other unicode characters with nearest ascii equivalents text = unidecode(text) # Tokenize sentence sentences = nltk.sent_tokenize(text) # Write sentences to text file first_sentence = True with codecs.open(output_file, 'w', encoding='utf-8') as f: for sentence in sentences: if not first_sentence: f.write('\n') f.write(sentence.rstrip()) first_sentence = False # Store annotations self.pmids[str(self.next_file_id)] = pmid self.extra_annotations[str(self.next_file_id)] = extra_annotations # Increment file id self.next_file_id += 1 def preprocess_plain_text_file(self, filename, pmid, extra_annotations): """Preprocess a plain text file for use with ISI reder. Preprocessing results in a new text file with one sentence per line. Parameters ---------- filename : str The name of the plain text file pmid : str The PMID from which it comes, or None if not specified extra_annotations : dict Extra annotations to be added to each statement, possibly including metadata about the source (annotations with the key "interaction" will be overridden) """ with codecs.open(filename, 'r', encoding='utf-8') as f: content = f.read() self.preprocess_plain_text_string(content, pmid, extra_annotations) def preprocess_nxml_file(self, filename, pmid, extra_annotations): """Preprocess an NXML file for use with the ISI reader. Preprocessing is done by extracting plain text from NXML and then creating a text file with one sentence per line. Parameters ---------- filename : str Filename (more specifically the file path) of an nxml file to process pmid : str The PMID from which it comes, or None if not specified extra_annotations : dict Extra annotations to be added to each statement, possibly including metadata about the source (annotations with the key "interaction" will be overridden) """ with open(filename, 'r') as fh: txt_content = extract_text(fh.read()) # We need to remove some common LaTEX commands from the converted text # or the reader will get confused cmd1 = r'[^ \{\}]+\{[^\{\}]+\}\{[^\{\}]+\}' cmd2 = r'[^ \{\}]+\{[^\{\}]+\}' txt_content = re.sub(cmd1, '', txt_content) txt_content = re.sub(cmd2, '', txt_content) # Prepocess text extracted from nxml self.preprocess_plain_text_string(txt_content, pmid, extra_annotations) def preprocess_abstract_list(self, abstract_list): """Preprocess abstracts in database pickle dump format for ISI reader. For each abstract, creates a plain text file with one sentence per line, and stores metadata to be included with each statement from that abstract. Parameters ---------- abstract_list : list[dict] Compressed abstracts with corresopnding metadata in INDRA database pickle dump format. """ for abstract_struct in abstract_list: abs_format = abstract_struct['format'] content_type = abstract_struct['text_type'] content_zipped = abstract_struct['content'] tcid = abstract_struct['tcid'] trid = abstract_struct['trid'] assert(abs_format == 'text') assert(content_type == 'abstract') pmid = None # Don't worry about pmid for now extra_annotations = {'tcid': tcid, 'trid': trid} # Uncompress content content = zlib.decompress(content_zipped, zlib.MAX_WBITS+16).decode('utf-8') self.preprocess_plain_text_string(content, pmid, extra_annotations) def iter_outputs(self, output_dir): """Iterate over the outputs in a given directory using stored metadata. For each of the output JSONs, retrieve the extra annotations for that file, and link the file with its corresponding PMID. Parameters ---------- output_dir : str The path to the directory where the JSON outputs were dumped. """ for basename, pmid in self.pmids.items(): fname = os.path.join(output_dir, '%s.json' % basename) extra_annotations = self.extra_annotations.get(fname, {}) yield fname, pmid, extra_annotations
py
1a507cb276f0f6520024a7c275f6935be0c40157
import numpy as np import math from instrument.geometry.pml import weave from instrument.geometry import shapes, operations import os, sys class Clampcell(object): def __init__(self, total_height=False): self.sample_height=28.57 #mm if total_height is True: self.sample_height=95.758 ###### OUTER BODY ############# def outer_body(self): Al_OutDiameter = 32.05 # mm Al_OutRadius=Al_OutDiameter/2 Al_Height=self.sample_height #28.57 #mm (total height 95.758 mm) Al_InSmallestCone_Dia= 14.59 #mm (inner boundary is tappered cylinder, bottom Diameter ) Al_InSmallestCone_Rad=Al_InSmallestCone_Dia/2 Al_InconeAngle= 2 Al_InHeight=Al_Height+10 #mm (tappered cylinder height) (this should be same as Al_Height, but in constructive geometry the inner height has to be larger for correct subtraction) Al_InLargestCone_Dia= (2* np.tan(np.deg2rad(Al_InconeAngle/2))*Al_InHeight)+Al_InSmallestCone_Dia #( tappered cylinder top diameter) Al_InLargestCone_Rad=Al_InLargestCone_Dia/2 Al_InSmallest_ConeHeight=Al_InSmallestCone_Dia/(2*np.tan(np.deg2rad(Al_InconeAngle/2))) Al_InLargest_ConeHeight=Al_InSmallest_ConeHeight+Al_InHeight Al_boxHeightToSubtract=Al_InSmallest_ConeHeight*2 Al_boxthisckness= Al_InSmallestCone_Dia+20 Al_HalfHeight=Al_InHeight/2 Al_moving_height=Al_InSmallest_ConeHeight+Al_HalfHeight ### CReate the string for OUTER BODY ###### Al_OutRadius_str=str(Al_OutRadius)+r'*mm' Al_Height_str=str(Al_Height)+r'*mm' Al_InLargestCone_Rad_str=str(Al_InLargestCone_Rad)+r'*mm' Al_InLargest_ConeHeight_str=str(Al_InLargest_ConeHeight)+r'*mm' Al_InSmallest_ConeHeight_str=str(Al_InSmallest_ConeHeight)+r'*mm' Al_boxHeightToSubtract_str=str(Al_boxHeightToSubtract)+r'*mm' Al_boxthisckness_str=str(Al_boxthisckness)+r'*mm' Al_moving_height_str=str(-Al_moving_height)+r'*mm' #create the inner Al largest cone Al_largest_cone=shapes.cone(radius=Al_InLargestCone_Rad_str, height=Al_InLargest_ConeHeight_str) # upside down #rotation to make top wider Al_largest_cone_widertip=operations.rotate(Al_largest_cone, angle="180*deg",vertical="0",transversal="1",beam="0") #make a tapered cylinder Al_tapered_cylinder= operations.Difference(Al_largest_cone_widertip, shapes.block(thickness=Al_boxthisckness_str,height=Al_boxHeightToSubtract_str,width=Al_boxthisckness_str) ) #moving the center of the cylinder to the center of the coordinate Al_centered_taperedCylinder=operations.translate(Al_tapered_cylinder, vertical=Al_moving_height_str) #Creating the outer Al body outer_Al = operations.subtract( shapes.cylinder(radius=Al_OutRadius_str, height=Al_Height_str), Al_centered_taperedCylinder, ) return(outer_Al) ######## INNER SLEEVE ########## def inner_sleeve(self): CuBe_InDiameter = 4.74 # mm CuBe_InRadius=CuBe_InDiameter/2 CuBe_InHeight=self.sample_height+10 #mm (total height 95.758 mm) CuBe_Height=self.sample_height CuBe_OutSmallestCone_Dia=14.63 #(outer boundary is tappered cylinder, bottom diameter ) CuBe_OutSmallestCone_Rad=CuBe_OutSmallestCone_Dia/2 CuBe_OutconeAngle= 2 # the tappered angle CuBe_OutLargestCone_Dia= (2* np.tan(np.deg2rad(CuBe_OutconeAngle/2))*CuBe_Height)+CuBe_OutSmallestCone_Dia #( tappered cylinder top diamter) CuBe_OutLargestCone_Rad=CuBe_OutLargestCone_Dia/2 CuBe_OutSmallest_ConeHeight=CuBe_OutSmallestCone_Dia/(2*np.tan(np.deg2rad(CuBe_OutconeAngle/2))) CuBe_OutLargest_ConeHeight=CuBe_OutSmallest_ConeHeight+CuBe_Height CuBe_boxHeightToSubtract=CuBe_OutSmallest_ConeHeight*2 CuBe_boxthisckness= CuBe_OutSmallestCone_Dia+20 CuBe_HalfHeight=CuBe_Height/2 CuBe_moving_height=CuBe_OutSmallest_ConeHeight+CuBe_HalfHeight ### CReate the string for INNER SLEEVE ###### CuBe_InRadius_str=str(CuBe_InRadius)+r'*mm' CuBe_InHeight_str=str(CuBe_InHeight)+r'*mm' CuBe_Height_str=str(CuBe_Height)+r'*mm' CuBe_OutLargestCone_Rad_str=str(CuBe_OutLargestCone_Rad)+r'*mm' CuBe_OutLargest_ConeHeight_str=str(CuBe_OutLargest_ConeHeight)+r'*mm' CuBe_boxHeightToSubtract_str=str(CuBe_boxHeightToSubtract)+r'*mm' CuBe_boxthisckness_str=str(CuBe_boxthisckness)+r'*mm' CuBe_moving_height_str=str(-CuBe_moving_height)+r'*mm' #create the outer CuBe largest cone CuBe_largest_cone=shapes.cone(radius=CuBe_OutLargestCone_Rad_str, height=CuBe_OutLargest_ConeHeight_str) # upside down #rotation to make top wider CuBe_largest_cone_widertip=operations.rotate(CuBe_largest_cone, angle="180*deg",vertical="0",transversal="1",beam="0") #make a tapered cylinder CuBe_tapered_cylinder= operations.Difference(CuBe_largest_cone_widertip, shapes.block(thickness=CuBe_boxthisckness_str,height=CuBe_boxHeightToSubtract_str,width=CuBe_boxthisckness_str) ) #moving the center of the cylinder to the center of the coordinate CuBe_centered_taperedCylinder=operations.translate(CuBe_tapered_cylinder, vertical=CuBe_moving_height_str) #Creating the InnerSleeve CuBe_innerSleeve = operations.subtract( CuBe_centered_taperedCylinder, shapes.cylinder(radius=CuBe_InRadius_str, height=CuBe_InHeight_str), ) return(CuBe_innerSleeve) ####### SAMPLE ######### ( the sample is a cylinder) def sample(self): sample_Height=27.3 #mm sample_Diameter=4.16 #mm sample_Radius=sample_Diameter/2 ##covert to string### sample_Height_str=str(sample_Height)+r'*mm' sample_Radius_str=str(sample_Radius)+r'*mm' ##cylindrical sample## sample= shapes.cylinder(radius=sample_Radius_str, height=sample_Height_str) return(sample)
py
1a507ccb9116aba31011218629b52df56616e510
# Generated by Django 3.0.2 on 2020-01-23 07:16 import django.contrib.auth.models import django.contrib.auth.validators from django.db import migrations, models import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [("auth", "0011_update_proxy_permissions")] operations = [ migrations.CreateModel( name="CustomUser", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("password", models.CharField(max_length=128, verbose_name="password")), ( "last_login", models.DateTimeField( blank=True, null=True, verbose_name="last login" ), ), ( "is_superuser", models.BooleanField( default=False, help_text="Designates that this user has all permissions without explicitly assigning them.", verbose_name="superuser status", ), ), ( "username", models.CharField( error_messages={ "unique": "A user with that username already exists." }, help_text="Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.", max_length=150, unique=True, validators=[ django.contrib.auth.validators.UnicodeUsernameValidator() ], verbose_name="username", ), ), ( "first_name", models.CharField( blank=True, max_length=30, verbose_name="first name", null=True ), ), ( "last_name", models.CharField( blank=True, max_length=150, verbose_name="last name", null=True ), ), ( "email", models.EmailField( blank=True, max_length=254, verbose_name="email address" ), ), ( "is_staff", models.BooleanField( default=False, help_text="Designates whether the user can log into this admin site.", verbose_name="staff status", ), ), ( "is_active", models.BooleanField( default=True, help_text="Designates whether this user should be treated as active. Unselect this instead of deleting accounts.", verbose_name="active", ), ), ( "date_joined", models.DateTimeField( default=django.utils.timezone.now, verbose_name="date joined" ), ), ( "groups", models.ManyToManyField( blank=True, help_text="The groups this user belongs to. A user will get all permissions granted to each of their groups.", related_name="user_set", related_query_name="user", to="auth.Group", verbose_name="groups", ), ), ( "user_permissions", models.ManyToManyField( blank=True, help_text="Specific permissions for this user.", related_name="user_set", related_query_name="user", to="auth.Permission", verbose_name="user permissions", ), ), ], options={"unique_together": {("first_name", "last_name")}}, managers=[("objects", django.contrib.auth.models.UserManager())], ) ]
py
1a507db96ef2e9c6d83ee0cc11d852aaa93bc3ee
# !/usr/bin/python # -*- coding:utf-8 -*- # @author: Shengjia Yan # @date: 2017-11-17 Friday # @email: [email protected] import re import json import codecs from collections import Counter def words(text): return re.findall(r'\w+', text.lower()) # \w+ matches one or more word characters (i.e., [a-zA-Z0-9_]). WORDS = Counter(words(open('../data/big.txt').read())) # probability of 'word' def P(word, N=sum(WORDS.values())): return WORDS[word] / float(N) # most probable spelling correction for word def correction(word): return max(candidates(word), key=P) # generate possible spelling corrections for word def candidates(word): return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word]) # the subset of `words` that appear in the dictionary of WORDS def known(words): return set(w for w in words if w in WORDS) # all edits that are one edit away from `word` def edits1(word): letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word) + 1)] deletes = [L + R[1:] for L, R in splits if R] transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1] replaces = [L + c + R[1:] for L, R in splits if R for c in letters] inserts = [L + c + R for L, R in splits for c in letters] return set(deletes + transposes + replaces + inserts) # all edits that are two edits away from `word`. def edits2(word): return (e2 for e1 in edits1(word) for e2 in edits1(e1)) def saveDict(path): with codecs.open(path, mode='w', encoding='UTF8') as dict_file: # big_dict = sorted(WORDS.items(), key=lambda x: x[1], reverse=True) big_dict = json.dumps(WORDS, ensure_ascii=False) dict_file.write(big_dict) def main(): print len(WORDS) print sum(WORDS.values()) print WORDS.most_common(10) print max(WORDS, key=P) print P('the') print P('outrivaled') print P('unmentioned') if __name__ == '__main__': main()
py
1a507e559349518aefc0875ed6c87aea2669522b
# Generated by Django 2.1.5 on 2019-06-21 15:05 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('user', '0115_auto_20190621_1556'), ] operations = [ migrations.AlterField( model_name='monetization', name='bank', field=models.CharField(choices=[('gt', 'GT Bank Plc'), ('zenith', 'Zenith Bank Plc'), ('first', 'First Bank Plc'), ('polaris', 'Polaris Bank Plc'), ('access', 'Access Bank Plc')], default='gt', max_length=20), ), ]
py
1a507faefd6f842a15003eaa146dcb3a1389ad27
import tensorflow as tf import numpy as np import os import math import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt @tf.function def one_hot(labels, class_size): """ Create one hot label matrix of size (N, C) Inputs: - labels: Labels Tensor of shape (N,) representing a ground-truth label for each MNIST image - class_size: Scalar representing of target classes our dataset Returns: - targets: One-hot label matrix of (N, C), where targets[i, j] = 1 when the ground truth label for image i is j, and targets[i, :j] & targets[i, j + 1:] are equal to 0 """ return tf.one_hot(labels, class_size) def save_model_weights(model, args): """ Save trained VAE model weights to model_ckpts/ Inputs: - model: Trained VAE model. - cfg: All arguments. """ model_flag = "cvae" if args.is_cvae else "vae" output_dir = os.path.join("model_ckpts", model_flag) output_path = os.path.join(output_dir, model_flag) os.makedirs("model_ckpts", exist_ok=True) os.makedirs(output_dir, exist_ok=True) model.save_weights(output_path) def show_vae_images(model, latent_size): """ Call this only if the model is VAE! Generate 10 images from random vectors. Show the generated images from your trained VAE. Image will be saved to outputs/show_vae_images.pdf Inputs: - model: Your trained model. - latent_size: Latent size of your model. """ # Generated images from vectors of random values. z = tf.random.normal(shape=[10, latent_size]) samples = model.decoder(z).numpy() # Visualize fig = plt.figure(figsize=(10, 1)) gspec = gridspec.GridSpec(1, 10) gspec.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): ax = plt.subplot(gspec[i]) plt.axis("off") ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect("equal") plt.imshow(sample.reshape(28, 28), cmap="Greys_r") # Save the generated images os.makedirs("outputs", exist_ok=True) output_path = os.path.join("outputs", "show_vae_images.pdf") plt.savefig(output_path, bbox_inches="tight") plt.close(fig) def show_vae_interpolation(model, latent_size): """ Call this only if the model is VAE! Generate interpolation between two . Show the generated images from your trained VAE. Image will be saved to outputs/show_vae_interpolation.pdf Inputs: - model: Your trained model. - latent_size: Latent size of your model. """ def show_interpolation(images): """ A helper to visualize the interpolation. """ images = tf.reshape(images, [images.shape[0], -1]) # images reshape to (batch_size, D) sqrtn = int(math.ceil(math.sqrt(images.shape[0]))) sqrtimg = int(math.ceil(math.sqrt(images.shape[1]))) fig = plt.figure(figsize=(sqrtn, sqrtn)) gs = gridspec.GridSpec(sqrtn, sqrtn) gs.update(wspace=0.05, hspace=0.05) for i, img in enumerate(images): ax = plt.subplot(gs[i]) plt.axis('off') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect('equal') plt.imshow(tf.reshape(img, [sqrtimg, sqrtimg])) # Save the generated images os.makedirs("outputs", exist_ok=True) output_path = os.path.join("outputs", "show_vae_interpolation.pdf") plt.savefig(output_path, bbox_inches="tight") plt.close(fig) S = 12 z0 = tf.random.normal(shape=[S, latent_size], dtype=tf.dtypes.float32) # [S, latent_size] z1 = tf.random.normal(shape=[S, latent_size], dtype=tf.dtypes.float32) w = tf.linspace(0, 1, S) w = tf.cast(tf.reshape(w, (S, 1, 1)), dtype=tf.float32) # [S, 1, 1] z = tf.transpose(w * z0 + (1 - w) * z1, perm=[1, 0, 2]) z = tf.reshape(z, (S * S, latent_size)) # [S, S, latent_size] x = model.decoder(z) # [S*S, 1, 28, 28] show_interpolation(x) def show_cvae_images(model, latent_size): """ Call this only if the model is CVAE! Conditionally generate 10 images for each digit. Show the generated images from your trained CVAE. Image will be saved to outputs/show_cvae_images.pdf Inputs: - model: Your trained model. - latent_size: Latent size of your model. """ # Conditionally generated images from vectors of random values. num_generation = 100 num_classes = 10 num_per_class = num_generation // num_classes c = tf.eye(num_classes) # [one hot labels for 0-9] z = [] labels = [] for label in range(num_classes): curr_c = c[label] curr_c = tf.broadcast_to(curr_c, [num_per_class, len(curr_c)]) curr_z = tf.random.normal(shape=[num_per_class, latent_size]) curr_z = tf.concat([curr_z, curr_c], axis=-1) z.append(curr_z) labels.append([label] * num_per_class) z = np.concatenate(z) labels = np.concatenate(labels) samples = model.decoder(z).numpy() # Visualize rows = num_classes cols = num_generation // rows fig = plt.figure(figsize=(cols, rows)) gspec = gridspec.GridSpec(rows, cols) gspec.update(wspace=0.05, hspace=0.05) for i, sample in enumerate(samples): ax = plt.subplot(gspec[i]) plt.axis("off") ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_aspect("equal") plt.imshow(sample.reshape(28, 28), cmap="Greys_r") # Save the generated images os.makedirs("outputs", exist_ok=True) output_path = os.path.join("outputs", "show_cvae_images.pdf") plt.savefig(output_path, bbox_inches="tight") plt.close(fig) def load_weights(model, is_cvae): """ Load the trained model's weights. Inputs: - model: Your untrained model instance. Returns: - model: Trained model. """ num_classes = 10 inputs = tf.zeros([1, 1, 28, 28]) # Random data sample labels = tf.constant([[0]]) if is_cvae: weights_path = os.path.join("model_ckpts", "cvae", "cvae") one_hot_vec = one_hot(labels, num_classes) _ = model(inputs, one_hot_vec) model.load_weights(weights_path) else: weights_path = os.path.join("model_ckpts", "vae", "vae") _ = model(inputs) model.load_weights(weights_path) return model
py
1a5080cfb18962865047b43a5b352ccb65758ac5
import numpy as np import torch from gym import spaces from torch import nn as nn from torch.nn import functional as F def loss_function_factory(loss_function): if loss_function == "l2": return F.mse_loss elif loss_function == "l1": return F.l1_loss elif loss_function == "smooth_l1": return F.smooth_l1_loss elif loss_function == "bce": return F.binary_cross_entropy else: raise ValueError("Unknown loss function : {}".format(loss_function)) def optimizer_factory(params, optimizer_type="ADAM", **kwargs): if optimizer_type == "ADAM": return torch.optim.Adam(params=params, **kwargs) elif optimizer_type == "RMS_PROP": return torch.optim.RMSprop(params=params, **kwargs) else: raise ValueError("Unknown optimizer type: {}".format(optimizer_type)) def model_factory(type="MultiLayerPerceptron", **kwargs) -> nn.Module: from rlberry.agents.torch.utils.attention_models import EgoAttentionNetwork from rlberry.agents.torch.utils.models import ( MultiLayerPerceptron, DuelingNetwork, ConvolutionalNetwork, Table, ) if type == "MultiLayerPerceptron": return MultiLayerPerceptron(**kwargs) elif type == "DuelingNetwork": return DuelingNetwork(**kwargs) elif type == "ConvolutionalNetwork": return ConvolutionalNetwork(**kwargs) elif type == "EgoAttentionNetwork": return EgoAttentionNetwork(**kwargs) elif type == "Table": return Table(**kwargs) else: raise ValueError("Unknown model type") def model_factory_from_env(env, **kwargs): kwargs = size_model_config(env, **kwargs) return model_factory(**kwargs) def size_model_config(env, **model_config): """ Update the configuration of a model depending on the environment observation/action spaces. Typically, the input/output sizes. Parameters ---------- env : gym.Env An environment. model_config : dict A model configuration. """ if isinstance(env.observation_space, spaces.Box): obs_shape = env.observation_space.shape elif isinstance(env.observation_space, spaces.Tuple): obs_shape = env.observation_space.spaces[0].shape elif isinstance(env.observation_space, spaces.Discrete): return model_config # Assume CHW observation space if model_config["type"] == "ConvolutionalNetwork": model_config["in_channels"] = int(obs_shape[0]) model_config["in_height"] = int(obs_shape[1]) model_config["in_width"] = int(obs_shape[2]) else: model_config["in_size"] = int(np.prod(obs_shape)) if isinstance(env.action_space, spaces.Discrete): model_config["out_size"] = env.action_space.n elif isinstance(env.action_space, spaces.Tuple): model_config["out_size"] = env.action_space.spaces[0].n return model_config def activation_factory(activation_type): if activation_type == "RELU": return F.relu elif activation_type == "TANH": return torch.tanh elif activation_type == "ELU": return nn.ELU() else: raise ValueError("Unknown activation_type: {}".format(activation_type)) def trainable_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad)
py
1a5081279ba26079ac484e3a3617605dac12837d
# Copyright 2021 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Algorithm specs. The "spec" of each algorithm is a static set of `(stage, loc, type)`-tuples. - `stage`: One of either an `input`, `output` or `hint` - `location`: Each datum is associated with either the `node`, `edge` or `graph` - `type`: Either a `scalar`, `categorical`, `mask`, `mask_one` or `pointer` The dataflow for an algorithm is represented by `(stage, loc, type, data)` "probes" that are valid under that algorithm's spec. It contains a single snapshot for each `input` and `output` and a time-series of intermediate algorithmic states (`hint`). At minimum, each node contains a `pos` probe that serves as a unique index e.g. for representing sequential data where appropriate """ import types from typing import Dict, Tuple class Stage: INPUT = 'input' OUTPUT = 'output' HINT = 'hint' class Location: NODE = 'node' EDGE = 'edge' GRAPH = 'graph' class Type: SCALAR = 'scalar' CATEGORICAL = 'categorical' MASK = 'mask' MASK_ONE = 'mask_one' POINTER = 'pointer' class OutputClass: POSITIVE = 1 NEGATIVE = 0 MASKED = -1 Spec = Dict[str, Tuple[str, str, str]] CLRS_21_ALGS = [ 'a_star', 'bellman_ford', 'bfs', 'binary_search', 'bubble_sort', 'dag_shortest_paths', 'dfs', 'dijkstra', 'find_maximum_subarray_kadane', 'floyd_warshall', 'heapsort', 'insertion_sort', 'kmp_matcher', 'matrix_chain_order', 'minimum', 'mst_prim', 'naive_string_matcher', 'optimal_bst', 'quickselect', 'quicksort', 'task_scheduling', 'topological_sort', ] SPECS = types.MappingProxyType({ 'insertion_sort': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'bubble_sort': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'heapsort': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'parent': (Stage.HINT, Location.NODE, Type.POINTER), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'largest': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'heap_size': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'phase': (Stage.HINT, Location.GRAPH, Type.CATEGORICAL) }, 'quicksort': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'pred': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'p': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'r': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'quickselect': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'median': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'p': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'r': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'i_rank': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'target': (Stage.HINT, Location.GRAPH, Type.SCALAR) }, 'minimum': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'min': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'min_h': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'binary_search': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'target': (Stage.INPUT, Location.GRAPH, Type.SCALAR), 'return': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'low': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'high': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'mid': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'find_maximum_subarray': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'start': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'end': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'low': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'high': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'mid': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'left_low': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'left_high': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'left_sum': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'right_low': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'right_high': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'right_sum': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'cross_low': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'cross_high': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'cross_sum': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'ret_low': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'ret_high': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'ret_sum': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'sum': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'left_x_sum': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'right_x_sum': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'phase': (Stage.HINT, Location.GRAPH, Type.CATEGORICAL) }, 'find_maximum_subarray_kadane': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.SCALAR), 'start': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'end': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'best_low': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'best_high': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'best_sum': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'sum': (Stage.HINT, Location.GRAPH, Type.SCALAR) }, 'matrix_chain_order': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'p': (Stage.INPUT, Location.NODE, Type.SCALAR), 's': (Stage.OUTPUT, Location.EDGE, Type.POINTER), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'm': (Stage.HINT, Location.EDGE, Type.SCALAR), 's_h': (Stage.HINT, Location.EDGE, Type.POINTER), 'msk': (Stage.HINT, Location.EDGE, Type.MASK) }, 'lcs_length': { 'string': (Stage.INPUT, Location.NODE, Type.MASK), 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.CATEGORICAL), 'b': (Stage.OUTPUT, Location.EDGE, Type.CATEGORICAL), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'b_h': (Stage.HINT, Location.EDGE, Type.CATEGORICAL), 'c': (Stage.HINT, Location.EDGE, Type.SCALAR) }, 'optimal_bst': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'p': (Stage.INPUT, Location.NODE, Type.SCALAR), 'q': (Stage.INPUT, Location.NODE, Type.SCALAR), 'root': (Stage.OUTPUT, Location.EDGE, Type.POINTER), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'root_h': (Stage.HINT, Location.EDGE, Type.POINTER), 'e': (Stage.HINT, Location.EDGE, Type.SCALAR), 'w': (Stage.HINT, Location.EDGE, Type.SCALAR), 'msk': (Stage.HINT, Location.EDGE, Type.MASK) }, 'activity_selector': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 's': (Stage.INPUT, Location.NODE, Type.SCALAR), 'f': (Stage.INPUT, Location.NODE, Type.SCALAR), 'selected': (Stage.OUTPUT, Location.NODE, Type.MASK), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'selected_h': (Stage.HINT, Location.NODE, Type.MASK), 'm': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'k': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'task_scheduling': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'd': (Stage.INPUT, Location.NODE, Type.SCALAR), 'w': (Stage.INPUT, Location.NODE, Type.SCALAR), 'selected': (Stage.OUTPUT, Location.NODE, Type.MASK), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'selected_h': (Stage.HINT, Location.NODE, Type.MASK), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 't': (Stage.HINT, Location.GRAPH, Type.SCALAR) }, 'dfs': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'pi': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER), 'color': (Stage.HINT, Location.NODE, Type.CATEGORICAL), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'f': (Stage.HINT, Location.NODE, Type.SCALAR), 's_prev': (Stage.HINT, Location.NODE, Type.POINTER), 's': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'v': (Stage.HINT, Location.NODE, Type.MASK_ONE), 's_last': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'time': (Stage.HINT, Location.GRAPH, Type.SCALAR) }, 'topological_sort': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'topo': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'topo_head': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'topo_h': (Stage.HINT, Location.NODE, Type.POINTER), 'topo_head_h': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'color': (Stage.HINT, Location.NODE, Type.CATEGORICAL), 's_prev': (Stage.HINT, Location.NODE, Type.POINTER), 's': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'v': (Stage.HINT, Location.NODE, Type.MASK_ONE), 's_last': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'strongly_connected_components': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'scc_id': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'scc_id_h': (Stage.HINT, Location.NODE, Type.POINTER), 'A_t': (Stage.HINT, Location.EDGE, Type.MASK), 'color': (Stage.HINT, Location.NODE, Type.CATEGORICAL), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'f': (Stage.HINT, Location.NODE, Type.SCALAR), 's_prev': (Stage.HINT, Location.NODE, Type.POINTER), 's': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'v': (Stage.HINT, Location.NODE, Type.MASK_ONE), 's_last': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'time': (Stage.HINT, Location.GRAPH, Type.SCALAR), 'phase': (Stage.HINT, Location.GRAPH, Type.MASK) }, 'a_star': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 's': (Stage.INPUT, Location.NODE, Type.MASK_ONE), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'pi': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'f': (Stage.HINT, Location.NODE, Type.SCALAR), 'mark': (Stage.HINT, Location.NODE, Type.MASK), 'in_queue': (Stage.HINT, Location.NODE, Type.MASK), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'articulation_points': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'is_cut': (Stage.OUTPUT, Location.NODE, Type.MASK), 'is_cut_h': (Stage.HINT, Location.NODE, Type.MASK), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER), 'color': (Stage.HINT, Location.NODE, Type.CATEGORICAL), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'f': (Stage.HINT, Location.NODE, Type.SCALAR), 'low': (Stage.HINT, Location.NODE, Type.SCALAR), 'child_cnt': (Stage.HINT, Location.NODE, Type.SCALAR), 's_prev': (Stage.HINT, Location.NODE, Type.POINTER), 's': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'v': (Stage.HINT, Location.NODE, Type.MASK_ONE), 's_last': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'time': (Stage.HINT, Location.GRAPH, Type.SCALAR) }, 'bridges': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'is_bridge': (Stage.OUTPUT, Location.EDGE, Type.MASK), 'is_bridge_h': (Stage.HINT, Location.EDGE, Type.MASK), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER), 'color': (Stage.HINT, Location.NODE, Type.CATEGORICAL), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'f': (Stage.HINT, Location.NODE, Type.SCALAR), 'low': (Stage.HINT, Location.NODE, Type.SCALAR), 's_prev': (Stage.HINT, Location.NODE, Type.POINTER), 's': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'v': (Stage.HINT, Location.NODE, Type.MASK_ONE), 's_last': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'time': (Stage.HINT, Location.GRAPH, Type.SCALAR) }, 'bfs': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 's': (Stage.INPUT, Location.NODE, Type.MASK_ONE), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'pi': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'reach_h': (Stage.HINT, Location.NODE, Type.MASK), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER) }, 'mst_kruskal': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'in_mst': (Stage.OUTPUT, Location.EDGE, Type.MASK), 'in_mst_h': (Stage.HINT, Location.EDGE, Type.MASK), 'pi': (Stage.HINT, Location.NODE, Type.POINTER), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'v': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'root_u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'root_v': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'mask_u': (Stage.HINT, Location.NODE, Type.MASK), 'mask_v': (Stage.HINT, Location.NODE, Type.MASK), 'phase': (Stage.HINT, Location.GRAPH, Type.CATEGORICAL) }, 'mst_prim': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 's': (Stage.INPUT, Location.NODE, Type.MASK_ONE), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'pi': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER), 'key': (Stage.HINT, Location.NODE, Type.SCALAR), 'mark': (Stage.HINT, Location.NODE, Type.MASK), 'in_queue': (Stage.HINT, Location.NODE, Type.MASK), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'bellman_ford': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 's': (Stage.INPUT, Location.NODE, Type.MASK_ONE), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'pi': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'msk': (Stage.HINT, Location.NODE, Type.MASK) }, 'dag_shortest_paths': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 's': (Stage.INPUT, Location.NODE, Type.MASK_ONE), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'pi': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'mark': (Stage.HINT, Location.NODE, Type.MASK), 'topo_h': (Stage.HINT, Location.NODE, Type.POINTER), 'topo_head_h': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'color': (Stage.HINT, Location.NODE, Type.CATEGORICAL), 's_prev': (Stage.HINT, Location.NODE, Type.POINTER), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'v': (Stage.HINT, Location.NODE, Type.MASK_ONE), 's_last': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'phase': (Stage.HINT, Location.GRAPH, Type.MASK) }, 'dijkstra': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 's': (Stage.INPUT, Location.NODE, Type.MASK_ONE), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'pi': (Stage.OUTPUT, Location.NODE, Type.POINTER), 'pi_h': (Stage.HINT, Location.NODE, Type.POINTER), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'mark': (Stage.HINT, Location.NODE, Type.MASK), 'in_queue': (Stage.HINT, Location.NODE, Type.MASK), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'floyd_warshall': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 'Pi': (Stage.OUTPUT, Location.EDGE, Type.POINTER), 'Pi_h': (Stage.HINT, Location.EDGE, Type.POINTER), 'D': (Stage.HINT, Location.EDGE, Type.SCALAR), 'msk': (Stage.HINT, Location.EDGE, Type.MASK), 'k': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'bipartite_matching': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'A': (Stage.INPUT, Location.EDGE, Type.SCALAR), 'adj': (Stage.INPUT, Location.EDGE, Type.MASK), 's': (Stage.INPUT, Location.NODE, Type.MASK_ONE), 't': (Stage.INPUT, Location.NODE, Type.MASK_ONE), 'in_matching': (Stage.OUTPUT, Location.EDGE, Type.MASK), 'in_matching_h': (Stage.HINT, Location.EDGE, Type.MASK), 'A_h': (Stage.HINT, Location.EDGE, Type.SCALAR), 'adj_h': (Stage.HINT, Location.EDGE, Type.MASK), 'd': (Stage.HINT, Location.NODE, Type.SCALAR), 'msk': (Stage.HINT, Location.NODE, Type.MASK), 'pi': (Stage.HINT, Location.NODE, Type.POINTER), 'u': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'phase': (Stage.HINT, Location.GRAPH, Type.MASK) }, 'naive_string_matcher': { 'string': (Stage.INPUT, Location.NODE, Type.MASK), 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.CATEGORICAL), 'match': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 's': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE) }, 'kmp_matcher': { 'string': (Stage.INPUT, Location.NODE, Type.MASK), 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'key': (Stage.INPUT, Location.NODE, Type.CATEGORICAL), 'match': (Stage.OUTPUT, Location.NODE, Type.MASK_ONE), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'pi': (Stage.HINT, Location.NODE, Type.POINTER), 'k': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'q': (Stage.HINT, Location.NODE, Type.MASK_ONE), 's': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'phase': (Stage.HINT, Location.GRAPH, Type.MASK) }, 'segments_intersect': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'x': (Stage.INPUT, Location.NODE, Type.SCALAR), 'y': (Stage.INPUT, Location.NODE, Type.SCALAR), 'intersect': (Stage.OUTPUT, Location.GRAPH, Type.MASK), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'j': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'k': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'dir': (Stage.HINT, Location.NODE, Type.SCALAR), 'on_seg': (Stage.HINT, Location.NODE, Type.MASK) }, 'graham_scan': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'x': (Stage.INPUT, Location.NODE, Type.SCALAR), 'y': (Stage.INPUT, Location.NODE, Type.SCALAR), 'in_hull': (Stage.OUTPUT, Location.NODE, Type.MASK), 'best': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'atans': (Stage.HINT, Location.NODE, Type.SCALAR), 'in_hull_h': (Stage.HINT, Location.NODE, Type.MASK), 'stack_prev': (Stage.HINT, Location.NODE, Type.POINTER), 'last_stack': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'phase': (Stage.HINT, Location.GRAPH, Type.CATEGORICAL) }, 'jarvis_march': { 'pos': (Stage.INPUT, Location.NODE, Type.SCALAR), 'x': (Stage.INPUT, Location.NODE, Type.SCALAR), 'y': (Stage.INPUT, Location.NODE, Type.SCALAR), 'in_hull': (Stage.OUTPUT, Location.NODE, Type.MASK), 'pred_h': (Stage.HINT, Location.NODE, Type.POINTER), 'in_hull_h': (Stage.HINT, Location.NODE, Type.MASK), 'best': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'last_point': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'endpoint': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'i': (Stage.HINT, Location.NODE, Type.MASK_ONE), 'phase': (Stage.HINT, Location.GRAPH, Type.CATEGORICAL) } })
py
1a508183996d75a1abc83c8ced1800c6ff90f9ca
# Copyright (c) 2016 Matt Davis, <[email protected]> # Chris Houseknecht, <[email protected]> # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) import os import re import types import copy import inspect import traceback from os.path import expanduser from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.six.moves import configparser import ansible.module_utils.six.moves.urllib.parse as urlparse try: from ansible.release import __version__ as ANSIBLE_VERSION except ImportError: ANSIBLE_VERSION = 'unknown' AZURE_COMMON_ARGS = dict( auth_source=dict( type='str', choices=['auto', 'cli', 'env', 'credential_file'] ), profile=dict(type='str'), subscription_id=dict(type='str', no_log=True), client_id=dict(type='str', no_log=True), secret=dict(type='str', no_log=True), tenant=dict(type='str', no_log=True), ad_user=dict(type='str', no_log=True), password=dict(type='str', no_log=True), cloud_environment=dict(type='str'), cert_validation_mode=dict(type='str', choices=['validate', 'ignore']), api_profile=dict(type='str', default='latest') # debug=dict(type='bool', default=False), ) AZURE_CREDENTIAL_ENV_MAPPING = dict( profile='AZURE_PROFILE', subscription_id='AZURE_SUBSCRIPTION_ID', client_id='AZURE_CLIENT_ID', secret='AZURE_SECRET', tenant='AZURE_TENANT', ad_user='AZURE_AD_USER', password='AZURE_PASSWORD', cloud_environment='AZURE_CLOUD_ENVIRONMENT', cert_validation_mode='AZURE_CERT_VALIDATION_MODE', ) # FUTURE: this should come from the SDK or an external location. # For now, we have to copy from azure-cli AZURE_API_PROFILES = { 'latest': { 'ContainerInstanceManagementClient': '2018-02-01-preview', 'ComputeManagementClient': dict( default_api_version='2017-12-01', resource_skus='2017-09-01', disks='2017-03-30', snapshots='2017-03-30', virtual_machine_run_commands='2017-03-30' ), 'NetworkManagementClient': '2017-11-01', 'ResourceManagementClient': '2017-05-10', 'StorageManagementClient': '2017-10-01' }, '2017-03-09-profile': { 'ComputeManagementClient': '2016-03-30', 'NetworkManagementClient': '2015-06-15', 'ResourceManagementClient': '2016-02-01', 'StorageManagementClient': '2016-01-01' } } AZURE_TAG_ARGS = dict( tags=dict(type='dict'), append_tags=dict(type='bool', default=True), ) AZURE_COMMON_REQUIRED_IF = [ ('log_mode', 'file', ['log_path']) ] ANSIBLE_USER_AGENT = 'Ansible/{0}'.format(ANSIBLE_VERSION) CLOUDSHELL_USER_AGENT_KEY = 'AZURE_HTTP_USER_AGENT' VSCODEEXT_USER_AGENT_KEY = 'VSCODEEXT_USER_AGENT' CIDR_PATTERN = re.compile(r"(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1" r"[0-9]{2}|2[0-4][0-9]|25[0-5])(/([0-9]|[1-2][0-9]|3[0-2]))") AZURE_SUCCESS_STATE = "Succeeded" AZURE_FAILED_STATE = "Failed" HAS_AZURE = True HAS_AZURE_EXC = None HAS_AZURE_CLI_CORE = True HAS_MSRESTAZURE = True HAS_MSRESTAZURE_EXC = None try: import importlib except ImportError: # This passes the sanity import test, but does not provide a user friendly error message. # Doing so would require catching Exception for all imports of Azure dependencies in modules and module_utils. importlib = None try: from packaging.version import Version HAS_PACKAGING_VERSION = True HAS_PACKAGING_VERSION_EXC = None except ImportError as exc: Version = None HAS_PACKAGING_VERSION = False HAS_PACKAGING_VERSION_EXC = exc # NB: packaging issue sometimes cause msrestazure not to be installed, check it separately try: from msrest.serialization import Serializer except ImportError as exc: HAS_MSRESTAZURE_EXC = exc HAS_MSRESTAZURE = False try: from enum import Enum from msrestazure.azure_exceptions import CloudError from msrestazure.tools import resource_id, is_valid_resource_id from msrestazure import azure_cloud from azure.common.credentials import ServicePrincipalCredentials, UserPassCredentials from azure.mgmt.network.version import VERSION as network_client_version from azure.mgmt.storage.version import VERSION as storage_client_version from azure.mgmt.compute.version import VERSION as compute_client_version from azure.mgmt.resource.version import VERSION as resource_client_version from azure.mgmt.dns.version import VERSION as dns_client_version from azure.mgmt.web.version import VERSION as web_client_version from azure.mgmt.network import NetworkManagementClient from azure.mgmt.resource.resources import ResourceManagementClient from azure.mgmt.storage import StorageManagementClient from azure.mgmt.compute import ComputeManagementClient from azure.mgmt.dns import DnsManagementClient from azure.mgmt.web import WebSiteManagementClient from azure.mgmt.containerservice import ContainerServiceClient from azure.storage.cloudstorageaccount import CloudStorageAccount except ImportError as exc: HAS_AZURE_EXC = exc HAS_AZURE = False try: from azure.cli.core.util import CLIError from azure.common.credentials import get_azure_cli_credentials, get_cli_profile from azure.common.cloud import get_cli_active_cloud except ImportError: HAS_AZURE_CLI_CORE = False CLIError = Exception def azure_id_to_dict(id): pieces = re.sub(r'^\/', '', id).split('/') result = {} index = 0 while index < len(pieces) - 1: result[pieces[index]] = pieces[index + 1] index += 1 return result def format_resource_id(val, subscription_id, namespace, types, resource_group): return resource_id(name=val, resource_group=resource_group, namespace=namespace, type=types, subscription=subscription_id) if not is_valid_resource_id(val) else val # FUTURE: either get this from the requirements file (if we can be sure it's always available at runtime) # or generate the requirements files from this so we only have one source of truth to maintain... AZURE_PKG_VERSIONS = { 'StorageManagementClient': { 'package_name': 'storage', 'expected_version': '1.5.0' }, 'ComputeManagementClient': { 'package_name': 'compute', 'expected_version': '2.0.0' }, 'ContainerInstanceManagementClient': { 'package_name': 'containerinstance', 'expected_version': '0.3.1' }, 'NetworkManagementClient': { 'package_name': 'network', 'expected_version': '1.3.0' }, 'ResourceManagementClient': { 'package_name': 'resource', 'expected_version': '1.1.0' }, 'DnsManagementClient': { 'package_name': 'dns', 'expected_version': '1.0.1' }, 'WebSiteManagementClient': { 'package_name': 'web', 'expected_version': '0.32.0' }, } if HAS_AZURE else {} AZURE_MIN_RELEASE = '2.0.0' class AzureRMModuleBase(object): def __init__(self, derived_arg_spec, bypass_checks=False, no_log=False, check_invalid_arguments=None, mutually_exclusive=None, required_together=None, required_one_of=None, add_file_common_args=False, supports_check_mode=False, required_if=None, supports_tags=True, facts_module=False, skip_exec=False): merged_arg_spec = dict() merged_arg_spec.update(AZURE_COMMON_ARGS) if supports_tags: merged_arg_spec.update(AZURE_TAG_ARGS) if derived_arg_spec: merged_arg_spec.update(derived_arg_spec) merged_required_if = list(AZURE_COMMON_REQUIRED_IF) if required_if: merged_required_if += required_if self.module = AnsibleModule(argument_spec=merged_arg_spec, bypass_checks=bypass_checks, no_log=no_log, check_invalid_arguments=check_invalid_arguments, mutually_exclusive=mutually_exclusive, required_together=required_together, required_one_of=required_one_of, add_file_common_args=add_file_common_args, supports_check_mode=supports_check_mode, required_if=merged_required_if) if not HAS_PACKAGING_VERSION: self.fail("Do you have packaging installed? Try `pip install packaging`" "- {0}".format(HAS_PACKAGING_VERSION_EXC)) if not HAS_MSRESTAZURE: self.fail("Do you have msrestazure installed? Try `pip install msrestazure`" "- {0}".format(HAS_MSRESTAZURE_EXC)) if not HAS_AZURE: self.fail("Do you have azure>={1} installed? Try `pip install ansible[azure]`" "- {0}".format(HAS_AZURE_EXC, AZURE_MIN_RELEASE)) self._cloud_environment = None self._network_client = None self._storage_client = None self._resource_client = None self._compute_client = None self._dns_client = None self._web_client = None self._containerservice_client = None self.check_mode = self.module.check_mode self.api_profile = self.module.params.get('api_profile') self.facts_module = facts_module # self.debug = self.module.params.get('debug') # authenticate self.credentials = self._get_credentials(self.module.params) if not self.credentials: if HAS_AZURE_CLI_CORE: self.fail("Failed to get credentials. Either pass as parameters, set environment variables, " "define a profile in ~/.azure/credentials, or log in with Azure CLI (`az login`).") else: self.fail("Failed to get credentials. Either pass as parameters, set environment variables, " "define a profile in ~/.azure/credentials, or install Azure CLI and log in (`az login`).") # cert validation mode precedence: module-arg, credential profile, env, "validate" self._cert_validation_mode = self.module.params['cert_validation_mode'] or self.credentials.get('cert_validation_mode') or \ os.environ.get('AZURE_CERT_VALIDATION_MODE') or 'validate' if self._cert_validation_mode not in ['validate', 'ignore']: self.fail('invalid cert_validation_mode: {0}'.format(self._cert_validation_mode)) # if cloud_environment specified, look up/build Cloud object raw_cloud_env = self.credentials.get('cloud_environment') if self.credentials.get('credentials') is not None and raw_cloud_env is not None: self._cloud_environment = raw_cloud_env elif not raw_cloud_env: self._cloud_environment = azure_cloud.AZURE_PUBLIC_CLOUD # SDK default else: # try to look up "well-known" values via the name attribute on azure_cloud members all_clouds = [x[1] for x in inspect.getmembers(azure_cloud) if isinstance(x[1], azure_cloud.Cloud)] matched_clouds = [x for x in all_clouds if x.name == raw_cloud_env] if len(matched_clouds) == 1: self._cloud_environment = matched_clouds[0] elif len(matched_clouds) > 1: self.fail("Azure SDK failure: more than one cloud matched for cloud_environment name '{0}'".format(raw_cloud_env)) else: if not urlparse.urlparse(raw_cloud_env).scheme: self.fail("cloud_environment must be an endpoint discovery URL or one of {0}".format([x.name for x in all_clouds])) try: self._cloud_environment = azure_cloud.get_cloud_from_metadata_endpoint(raw_cloud_env) except Exception as e: self.fail("cloud_environment {0} could not be resolved: {1}".format(raw_cloud_env, e.message), exception=traceback.format_exc(e)) if self.credentials.get('subscription_id', None) is None and self.credentials.get('credentials') is None: self.fail("Credentials did not include a subscription_id value.") self.log("setting subscription_id") self.subscription_id = self.credentials['subscription_id'] if self.credentials.get('credentials') is not None: # AzureCLI credentials self.azure_credentials = self.credentials['credentials'] elif self.credentials.get('client_id') is not None and \ self.credentials.get('secret') is not None and \ self.credentials.get('tenant') is not None: self.azure_credentials = ServicePrincipalCredentials(client_id=self.credentials['client_id'], secret=self.credentials['secret'], tenant=self.credentials['tenant'], cloud_environment=self._cloud_environment, verify=self._cert_validation_mode == 'validate') elif self.credentials.get('ad_user') is not None and self.credentials.get('password') is not None: tenant = self.credentials.get('tenant') if not tenant: tenant = 'common' # SDK default self.azure_credentials = UserPassCredentials(self.credentials['ad_user'], self.credentials['password'], tenant=tenant, cloud_environment=self._cloud_environment, verify=self._cert_validation_mode == 'validate') else: self.fail("Failed to authenticate with provided credentials. Some attributes were missing. " "Credentials must include client_id, secret and tenant or ad_user and password or " "be logged using AzureCLI.") # common parameter validation if self.module.params.get('tags'): self.validate_tags(self.module.params['tags']) if not skip_exec: res = self.exec_module(**self.module.params) self.module.exit_json(**res) def check_client_version(self, client_type): # Ensure Azure modules are at least 2.0.0rc5. package_version = AZURE_PKG_VERSIONS.get(client_type.__name__, None) if package_version is not None: client_name = package_version.get('package_name') try: client_module = importlib.import_module(client_type.__module__) client_version = client_module.VERSION except RuntimeError: # can't get at the module version for some reason, just fail silently... return expected_version = package_version.get('expected_version') if Version(client_version) < Version(expected_version): self.fail("Installed azure-mgmt-{0} client version is {1}. The supported version is {2}. Try " "`pip install ansible[azure]`".format(client_name, client_version, expected_version)) def exec_module(self, **kwargs): self.fail("Error: {0} failed to implement exec_module method.".format(self.__class__.__name__)) def fail(self, msg, **kwargs): ''' Shortcut for calling module.fail() :param msg: Error message text. :param kwargs: Any key=value pairs :return: None ''' self.module.fail_json(msg=msg, **kwargs) def deprecate(self, msg, version=None): self.module.deprecate(msg, version) def log(self, msg, pretty_print=False): pass # Use only during module development # if self.debug: # log_file = open('azure_rm.log', 'a') # if pretty_print: # log_file.write(json.dumps(msg, indent=4, sort_keys=True)) # else: # log_file.write(msg + u'\n') def validate_tags(self, tags): ''' Check if tags dictionary contains string:string pairs. :param tags: dictionary of string:string pairs :return: None ''' if not self.facts_module: if not isinstance(tags, dict): self.fail("Tags must be a dictionary of string:string values.") for key, value in tags.items(): if not isinstance(value, str): self.fail("Tags values must be strings. Found {0}:{1}".format(str(key), str(value))) def update_tags(self, tags): ''' Call from the module to update metadata tags. Returns tuple with bool indicating if there was a change and dict of new tags to assign to the object. :param tags: metadata tags from the object :return: bool, dict ''' new_tags = copy.copy(tags) if isinstance(tags, dict) else dict() changed = False if isinstance(self.module.params.get('tags'), dict): for key, value in self.module.params['tags'].items(): if not new_tags.get(key) or new_tags[key] != value: changed = True new_tags[key] = value if isinstance(tags, dict): for key, value in tags.items(): if not self.module.params['tags'].get(key): new_tags.pop(key) changed = True return changed, new_tags def has_tags(self, obj_tags, tag_list): ''' Used in fact modules to compare object tags to list of parameter tags. Return true if list of parameter tags exists in object tags. :param obj_tags: dictionary of tags from an Azure object. :param tag_list: list of tag keys or tag key:value pairs :return: bool ''' if not obj_tags and tag_list: return False if not tag_list: return True matches = 0 result = False for tag in tag_list: tag_key = tag tag_value = None if ':' in tag: tag_key, tag_value = tag.split(':') if tag_value and obj_tags.get(tag_key) == tag_value: matches += 1 elif not tag_value and obj_tags.get(tag_key): matches += 1 if matches == len(tag_list): result = True return result def get_resource_group(self, resource_group): ''' Fetch a resource group. :param resource_group: name of a resource group :return: resource group object ''' try: return self.rm_client.resource_groups.get(resource_group) except CloudError as cloud_error: self.fail("Error retrieving resource group {0} - {1}".format(resource_group, cloud_error.message)) except Exception as exc: self.fail("Error retrieving resource group {0} - {1}".format(resource_group, str(exc))) def _get_profile(self, profile="default"): path = expanduser("~/.azure/credentials") try: config = configparser.ConfigParser() config.read(path) except Exception as exc: self.fail("Failed to access {0}. Check that the file exists and you have read " "access. {1}".format(path, str(exc))) credentials = dict() for key in AZURE_CREDENTIAL_ENV_MAPPING: try: credentials[key] = config.get(profile, key, raw=True) except: pass if credentials.get('subscription_id'): return credentials return None def _get_azure_cli_credentials(self): credentials, subscription_id = get_azure_cli_credentials() cloud_environment = get_cli_active_cloud() cli_credentials = { 'credentials': credentials, 'subscription_id': subscription_id, 'cloud_environment': cloud_environment } return cli_credentials def _get_env_credentials(self): env_credentials = dict() for attribute, env_variable in AZURE_CREDENTIAL_ENV_MAPPING.items(): env_credentials[attribute] = os.environ.get(env_variable, None) if env_credentials['profile']: credentials = self._get_profile(env_credentials['profile']) return credentials if env_credentials.get('subscription_id') is not None: return env_credentials return None def _get_credentials(self, params): # Get authentication credentials. self.log('Getting credentials') arg_credentials = dict() for attribute, env_variable in AZURE_CREDENTIAL_ENV_MAPPING.items(): arg_credentials[attribute] = params.get(attribute, None) auth_source = params.get('auth_source', None) if not auth_source: auth_source = os.environ.get('ANSIBLE_AZURE_AUTH_SOURCE', 'auto') if auth_source == 'cli': if not HAS_AZURE_CLI_CORE: self.fail("Azure auth_source is `cli`, but azure-cli package is not available. Try `pip install azure-cli --upgrade`") try: self.log('Retrieving credentials from Azure CLI profile') cli_credentials = self._get_azure_cli_credentials() return cli_credentials except CLIError as err: self.fail("Azure CLI profile cannot be loaded - {0}".format(err)) if auth_source == 'env': self.log('Retrieving credentials from environment') env_credentials = self._get_env_credentials() return env_credentials if auth_source == 'credential_file': self.log("Retrieving credentials from credential file") profile = params.get('profile', 'default') default_credentials = self._get_profile(profile) return default_credentials # auto, precedence: module parameters -> environment variables -> default profile in ~/.azure/credentials # try module params if arg_credentials['profile'] is not None: self.log('Retrieving credentials with profile parameter.') credentials = self._get_profile(arg_credentials['profile']) return credentials if arg_credentials['subscription_id']: self.log('Received credentials from parameters.') return arg_credentials # try environment env_credentials = self._get_env_credentials() if env_credentials: self.log('Received credentials from env.') return env_credentials # try default profile from ~./azure/credentials default_credentials = self._get_profile() if default_credentials: self.log('Retrieved default profile credentials from ~/.azure/credentials.') return default_credentials try: if HAS_AZURE_CLI_CORE: self.log('Retrieving credentials from AzureCLI profile') cli_credentials = self._get_azure_cli_credentials() return cli_credentials except CLIError as ce: self.log('Error getting AzureCLI profile credentials - {0}'.format(ce)) return None def serialize_obj(self, obj, class_name, enum_modules=None): ''' Return a JSON representation of an Azure object. :param obj: Azure object :param class_name: Name of the object's class :param enum_modules: List of module names to build enum dependencies from. :return: serialized result ''' enum_modules = [] if enum_modules is None else enum_modules dependencies = dict() if enum_modules: for module_name in enum_modules: mod = importlib.import_module(module_name) for mod_class_name, mod_class_obj in inspect.getmembers(mod, predicate=inspect.isclass): dependencies[mod_class_name] = mod_class_obj self.log("dependencies: ") self.log(str(dependencies)) serializer = Serializer(classes=dependencies) return serializer.body(obj, class_name, keep_readonly=True) def get_poller_result(self, poller, wait=5): ''' Consistent method of waiting on and retrieving results from Azure's long poller :param poller Azure poller object :return object resulting from the original request ''' try: delay = wait while not poller.done(): self.log("Waiting for {0} sec".format(delay)) poller.wait(timeout=delay) return poller.result() except Exception as exc: self.log(str(exc)) raise def check_provisioning_state(self, azure_object, requested_state='present'): ''' Check an Azure object's provisioning state. If something did not complete the provisioning process, then we cannot operate on it. :param azure_object An object such as a subnet, storageaccount, etc. Must have provisioning_state and name attributes. :return None ''' if hasattr(azure_object, 'properties') and hasattr(azure_object.properties, 'provisioning_state') and \ hasattr(azure_object, 'name'): # resource group object fits this model if isinstance(azure_object.properties.provisioning_state, Enum): if azure_object.properties.provisioning_state.value != AZURE_SUCCESS_STATE and \ requested_state != 'absent': self.fail("Error {0} has a provisioning state of {1}. Expecting state to be {2}.".format( azure_object.name, azure_object.properties.provisioning_state, AZURE_SUCCESS_STATE)) return if azure_object.properties.provisioning_state != AZURE_SUCCESS_STATE and \ requested_state != 'absent': self.fail("Error {0} has a provisioning state of {1}. Expecting state to be {2}.".format( azure_object.name, azure_object.properties.provisioning_state, AZURE_SUCCESS_STATE)) return if hasattr(azure_object, 'provisioning_state') or not hasattr(azure_object, 'name'): if isinstance(azure_object.provisioning_state, Enum): if azure_object.provisioning_state.value != AZURE_SUCCESS_STATE and requested_state != 'absent': self.fail("Error {0} has a provisioning state of {1}. Expecting state to be {2}.".format( azure_object.name, azure_object.provisioning_state, AZURE_SUCCESS_STATE)) return if azure_object.provisioning_state != AZURE_SUCCESS_STATE and requested_state != 'absent': self.fail("Error {0} has a provisioning state of {1}. Expecting state to be {2}.".format( azure_object.name, azure_object.provisioning_state, AZURE_SUCCESS_STATE)) def get_blob_client(self, resource_group_name, storage_account_name, storage_blob_type='block'): keys = dict() try: # Get keys from the storage account self.log('Getting keys') account_keys = self.storage_client.storage_accounts.list_keys(resource_group_name, storage_account_name) except Exception as exc: self.fail("Error getting keys for account {0} - {1}".format(storage_account_name, str(exc))) try: self.log('Create blob service') if storage_blob_type == 'page': return CloudStorageAccount(storage_account_name, account_keys.keys[0].value).create_page_blob_service() elif storage_blob_type == 'block': return CloudStorageAccount(storage_account_name, account_keys.keys[0].value).create_block_blob_service() else: raise Exception("Invalid storage blob type defined.") except Exception as exc: self.fail("Error creating blob service client for storage account {0} - {1}".format(storage_account_name, str(exc))) def create_default_pip(self, resource_group, location, public_ip_name, allocation_method='Dynamic'): ''' Create a default public IP address <public_ip_name> to associate with a network interface. If a PIP address matching <public_ip_name> exists, return it. Otherwise, create one. :param resource_group: name of an existing resource group :param location: a valid azure location :param public_ip_name: base name to assign the public IP address :param allocation_method: one of 'Static' or 'Dynamic' :return: PIP object ''' pip = None self.log("Starting create_default_pip {0}".format(public_ip_name)) self.log("Check to see if public IP {0} exists".format(public_ip_name)) try: pip = self.network_client.public_ip_addresses.get(resource_group, public_ip_name) except CloudError: pass if pip: self.log("Public ip {0} found.".format(public_ip_name)) self.check_provisioning_state(pip) return pip params = self.network_models.PublicIPAddress( location=location, public_ip_allocation_method=allocation_method, ) self.log('Creating default public IP {0}'.format(public_ip_name)) try: poller = self.network_client.public_ip_addresses.create_or_update(resource_group, public_ip_name, params) except Exception as exc: self.fail("Error creating {0} - {1}".format(public_ip_name, str(exc))) return self.get_poller_result(poller) def create_default_securitygroup(self, resource_group, location, security_group_name, os_type, open_ports): ''' Create a default security group <security_group_name> to associate with a network interface. If a security group matching <security_group_name> exists, return it. Otherwise, create one. :param resource_group: Resource group name :param location: azure location name :param security_group_name: base name to use for the security group :param os_type: one of 'Windows' or 'Linux'. Determins any default rules added to the security group. :param ssh_port: for os_type 'Linux' port used in rule allowing SSH access. :param rdp_port: for os_type 'Windows' port used in rule allowing RDP access. :return: security_group object ''' group = None self.log("Create security group {0}".format(security_group_name)) self.log("Check to see if security group {0} exists".format(security_group_name)) try: group = self.network_client.network_security_groups.get(resource_group, security_group_name) except CloudError: pass if group: self.log("Security group {0} found.".format(security_group_name)) self.check_provisioning_state(group) return group parameters = self.network_models.NetworkSecurityGroup() parameters.location = location if not open_ports: # Open default ports based on OS type if os_type == 'Linux': # add an inbound SSH rule parameters.security_rules = [ self.network_models.SecurityRule('Tcp', '*', '*', 'Allow', 'Inbound', description='Allow SSH Access', source_port_range='*', destination_port_range='22', priority=100, name='SSH') ] parameters.location = location else: # for windows add inbound RDP and WinRM rules parameters.security_rules = [ self.network_models.SecurityRule('Tcp', '*', '*', 'Allow', 'Inbound', description='Allow RDP port 3389', source_port_range='*', destination_port_range='3389', priority=100, name='RDP01'), self.network_models.SecurityRule('Tcp', '*', '*', 'Allow', 'Inbound', description='Allow WinRM HTTPS port 5986', source_port_range='*', destination_port_range='5986', priority=101, name='WinRM01'), ] else: # Open custom ports parameters.security_rules = [] priority = 100 for port in open_ports: priority += 1 rule_name = "Rule_{0}".format(priority) parameters.security_rules.append( self.network_models.SecurityRule(protocol='Tcp', source_address_prefix='*', destination_address_prefix='*', access='Allow', direction='Inbound', source_port_range='*', destination_port_range=str(port), priority=priority, name=rule_name) ) self.log('Creating default security group {0}'.format(security_group_name)) try: poller = self.network_client.network_security_groups.create_or_update(resource_group, security_group_name, parameters) except Exception as exc: self.fail("Error creating default security rule {0} - {1}".format(security_group_name, str(exc))) return self.get_poller_result(poller) @staticmethod def _validation_ignore_callback(session, global_config, local_config, **kwargs): session.verify = False def get_api_profile(self, client_type_name, api_profile_name): profile_all_clients = AZURE_API_PROFILES.get(api_profile_name) if not profile_all_clients: raise KeyError("unknown Azure API profile: {0}".format(api_profile_name)) profile_raw = profile_all_clients.get(client_type_name, None) if not profile_raw: self.module.warn("Azure API profile {0} does not define an entry for {1}".format(api_profile_name, client_type_name)) if isinstance(profile_raw, dict): if not profile_raw.get('default_api_version'): raise KeyError("Azure API profile {0} does not define 'default_api_version'".format(api_profile_name)) return profile_raw # wrap basic strings in a dict that just defines the default return dict(default_api_version=profile_raw) def get_mgmt_svc_client(self, client_type, base_url=None, api_version=None): self.log('Getting management service client {0}'.format(client_type.__name__)) self.check_client_version(client_type) client_argspec = inspect.getargspec(client_type.__init__) client_kwargs = dict(credentials=self.azure_credentials, subscription_id=self.subscription_id, base_url=base_url) api_profile_dict = {} if self.api_profile: api_profile_dict = self.get_api_profile(client_type.__name__, self.api_profile) if not base_url: # most things are resource_manager, don't make everyone specify base_url = self._cloud_environment.endpoints.resource_manager # unversioned clients won't accept profile; only send it if necessary # clients without a version specified in the profile will use the default if api_profile_dict and 'profile' in client_argspec.args: client_kwargs['profile'] = api_profile_dict # If the client doesn't accept api_version, it's unversioned. # If it does, favor explicitly-specified api_version, fall back to api_profile if 'api_version' in client_argspec.args: profile_default_version = api_profile_dict.get('default_api_version', None) if api_version or profile_default_version: client_kwargs['api_version'] = api_version or profile_default_version client = client_type(**client_kwargs) # FUTURE: remove this once everything exposes models directly (eg, containerinstance) try: getattr(client, "models") except AttributeError: def _ansible_get_models(self, *arg, **kwarg): return self._ansible_models setattr(client, '_ansible_models', importlib.import_module(client_type.__module__).models) client.models = types.MethodType(_ansible_get_models, client) # Add user agent for Ansible client.config.add_user_agent(ANSIBLE_USER_AGENT) # Add user agent when running from Cloud Shell if CLOUDSHELL_USER_AGENT_KEY in os.environ: client.config.add_user_agent(os.environ[CLOUDSHELL_USER_AGENT_KEY]) # Add user agent when running from VSCode extension if VSCODEEXT_USER_AGENT_KEY in os.environ: client.config.add_user_agent(os.environ[VSCODEEXT_USER_AGENT_KEY]) if self._cert_validation_mode == 'ignore': client.config.session_configuration_callback = self._validation_ignore_callback return client @property def storage_client(self): self.log('Getting storage client...') if not self._storage_client: self._storage_client = self.get_mgmt_svc_client(StorageManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-10-01') return self._storage_client @property def storage_models(self): self.log('Getting storage models...') return StorageManagementClient.models("2017-10-01") @property def network_client(self): self.log('Getting network client') if not self._network_client: self._network_client = self.get_mgmt_svc_client(NetworkManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-06-01') return self._network_client @property def network_models(self): self.log("Getting network models...") return NetworkManagementClient.models("2017-06-01") @property def rm_client(self): self.log('Getting resource manager client') if not self._resource_client: self._resource_client = self.get_mgmt_svc_client(ResourceManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-05-10') return self._resource_client @property def rm_models(self): self.log("Getting resource manager models") return ResourceManagementClient.models("2017-05-10") @property def compute_client(self): self.log('Getting compute client') if not self._compute_client: self._compute_client = self.get_mgmt_svc_client(ComputeManagementClient, base_url=self._cloud_environment.endpoints.resource_manager, api_version='2017-03-30') return self._compute_client @property def compute_models(self): self.log("Getting compute models") return ComputeManagementClient.models("2017-03-30") @property def dns_client(self): self.log('Getting dns client') if not self._dns_client: self._dns_client = self.get_mgmt_svc_client(DnsManagementClient, base_url=self._cloud_environment.endpoints.resource_manager) return self._dns_client @property def web_client(self): self.log('Getting web client') if not self._web_client: self._web_client = self.get_mgmt_svc_client(WebSiteManagementClient, base_url=self._cloud_environment.endpoints.resource_manager) return self._web_client @property def containerservice_client(self): self.log('Getting container service client') if not self._containerservice_client: self._containerservice_client = self.get_mgmt_svc_client(ContainerServiceClient, base_url=self._cloud_environment.endpoints.resource_manager) return self._containerservice_client
py
1a5081c9201ab0d4435a01791d52d4d818d5c93c
import django from django.conf import settings from django.core.management import call_command settings.configure( DEBUG=True, INSTALLED_APPS=( 'django.contrib.contenttypes', 'msg', ), MSG_SETTINGS={ 'handlers': [] } ) django.setup() call_command('makemigrations', 'msg')
py
1a508273d369a63133b1fb7039edc365ebe16b40
from .base import BaseSerializer from architecture import models class WtvSerializer(BaseSerializer): class Meta: model = models.Wtv fields = '__all__' class BImsBootSerializer(BaseSerializer): class Meta: model = models.BImsBoot fields = '__all__' class BImsPanelSerializer(BaseSerializer): class Meta: model = models.BImsPanel fields = '__all__' class TmsSerializer(BaseSerializer): class Meta: model = models.Tms fields = '__all__' class EpgSerializer(BaseSerializer): class Meta: model = models.Epg fields = '__all__' class SearchSerializer(BaseSerializer): class Meta: model = models.Search fields = '__all__' class PicSerializer(BaseSerializer): class Meta: model = models.Pic fields = '__all__' class PplSerializer(BaseSerializer): class Meta: model = models.Ppl fields = '__all__' class CosEpgSerializer(BaseSerializer): class Meta: model = models.CosEpg fields = '__all__' class UicSerializer(BaseSerializer): class Meta: model = models.Uic fields = '__all__' class MScreenSerializer(BaseSerializer): class Meta: model = models.MScreen fields = '__all__' class DMS2Serializer(BaseSerializer): class Meta: model = models.DMS2 fields = '__all__' class XMppSerializer(BaseSerializer): class Meta: model = models.XMpp fields = '__all__' class NDmsSerializer(BaseSerializer): class Meta: model = models.NDms fields = '__all__' class TOSSerializer(BaseSerializer): class Meta: model = models.TOS fields = '__all__' class UCSSerializer(BaseSerializer): class Meta: model = models.UCS fields = '__all__' class MGSSerializer(BaseSerializer): class Meta: model = models.MGS fields = '__all__' class NMCSerializer(BaseSerializer): class Meta: model = models.NMC fields = '__all__' class UBSSerializer(BaseSerializer): class Meta: model = models.UBS fields = '__all__' class VASSerializer(BaseSerializer): class Meta: model = models.VAS fields = '__all__'
py
1a5082cc00b544c3d5c5798e2d6c024736d4710d
#!/usr/bin/env python from functools import partial import sys import os import numpy as np from vmaf.config import VmafConfig from vmaf.core.asset import Asset from vmaf.core.quality_runner import PsnrQualityRunner from vmaf.tools.misc import get_cmd_option from vmaf.tools.stats import ListStats __copyright__ = "Copyright 2016-2018, Netflix, Inc." __license__ = "Apache, Version 2.0" FMTS = ['yuv420p', 'yuv422p', 'yuv444p', 'yuv420p10le', 'yuv422p10le', 'yuv444p10le'] OUT_FMTS = ['text (default)', 'xml', 'json'] POOL_METHODS = ['mean', 'harmonic_mean', 'min', 'median', 'perc5', 'perc10', 'perc20'] def print_usage(): print "usage: " + os.path.basename(sys.argv[0]) \ + " fmt width height ref_path dis_path [--out-fmt out_fmt]\n" print "fmt:\n\t" + "\n\t".join(FMTS) + "\n" print "out_fmt:\n\t" + "\n\t".join(OUT_FMTS) + "\n" def main(): if len(sys.argv) < 6: print_usage() return 2 try: fmt = sys.argv[1] width = int(sys.argv[2]) height = int(sys.argv[3]) ref_path = sys.argv[4] dis_path = sys.argv[5] except ValueError: print_usage() return 2 if width < 0 or height < 0: print "width and height must be non-negative, but are {w} and {h}".format(w=width, h=height) print_usage() return 2 if fmt not in FMTS: print_usage() return 2 out_fmt = get_cmd_option(sys.argv, 6, len(sys.argv), '--out-fmt') if not (out_fmt is None or out_fmt == 'xml' or out_fmt == 'json' or out_fmt == 'text'): print_usage() return 2 pool_method = get_cmd_option(sys.argv, 6, len(sys.argv), '--pool') if not (pool_method is None or pool_method in POOL_METHODS): print '--pool can only have option among {}'.format(', '.join(POOL_METHODS)) return 2 asset = Asset(dataset="cmd", content_id=0, asset_id=0, workdir_root=VmafConfig.workdir_path(), ref_path=ref_path, dis_path=dis_path, asset_dict={'width':width, 'height':height, 'yuv_type':fmt} ) assets = [asset] runner_class = PsnrQualityRunner runner = runner_class( assets, None, fifo_mode=True, delete_workdir=True, result_store=None, optional_dict=None, optional_dict2=None, ) # run runner.run() result = runner.results[0] # pooling if pool_method == 'harmonic_mean': result.set_score_aggregate_method(ListStats.harmonic_mean) elif pool_method == 'min': result.set_score_aggregate_method(np.min) elif pool_method == 'median': result.set_score_aggregate_method(np.median) elif pool_method == 'perc5': result.set_score_aggregate_method(ListStats.perc5) elif pool_method == 'perc10': result.set_score_aggregate_method(ListStats.perc10) elif pool_method == 'perc20': result.set_score_aggregate_method(ListStats.perc20) else: # None or 'mean' pass # output if out_fmt == 'xml': print result.to_xml() elif out_fmt == 'json': print result.to_json() else: # None or 'text' print str(result) return 0 if __name__ == "__main__": ret = main() exit(ret)
py
1a508320b82773c126e2598fc03b21c04c4fc9ce
""""Example usage of BayesianDense layer on MNIST dataset (~1.5% test error). """ import os import logging import logging.config from sklearn.utils import shuffle from keras.layers import Dense, Input from keras.models import Model from keras.datasets import mnist from keras.optimizers import Adam import numpy as np import pickle import keras.backend as K from tqdm import tqdm from bayesian_dense.bayesian_dense import BayesianDense, VariationalRegularizer from keras.regularizers import WeightRegularizer def accuracy(model, x, label_true, batch_size): """Calculate accuracy of a model""" y_pred = model.predict(x, batch_size=batch_size) label_pred = np.argmax(y_pred,axis=1) correct = np.count_nonzero(label_true == label_pred) return 1.0-(float(correct)/float(x.shape[0])) def one_hot(labels, m): """Convert labels to one-hot representations""" n = labels.shape[0] y = np.zeros((n,m)) y[np.arange(n),labels.ravel()]=1 return y def model(hidden_dim=512, input_dim=28*28, sigma_regularization=1e-3, mu_regularization=1e-5, k=10, activation = lambda x: K.relu(x, 1.0 / 5.5)): """Create two layer MLP with softmax output""" _x = Input(shape=(input_dim,)) layer = lambda output_dim, activation: BayesianDense(output_dim, activation=activation, W_sigma_regularizer=VariationalRegularizer(weight=sigma_regularization), b_sigma_regularizer=VariationalRegularizer(weight=sigma_regularization), W_regularizer=WeightRegularizer(l1=mu_regularization)) h1 = layer(hidden_dim, activation) h2 = layer(hidden_dim, activation) y = layer(k, 'softmax') _y = y(h2(h1(_x))) m = Model(_x, _y) m.compile(Adam(1e-3),loss='categorical_crossentropy') return m def mnist_data(): """Rescale and reshape MNIST data""" (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype(np.float32) / 255. x_test = x_test.astype(np.float32) / 255. x_train = x_train.reshape((x_train.shape[0], -1)) x_test = x_test.reshape((x_test.shape[0], -1)) return (x_train, y_train, x_test, y_test) if __name__ == "__main__": logging.config.fileConfig('logging.conf') path = "output/bayesian_dense/test" if not os.path.exists(path): os.makedirs(path) x_train, y_train, x_test, y_test = mnist_data() nb_epoch = 100 batch_size = 128 k = 10 decay = 0.96 lr = 1e-3 m=model() m.summary() log = [] for epoch in tqdm(range(nb_epoch)): acc_train = accuracy(m, x_train, y_train, batch_size=batch_size) acc_test = accuracy(m, x_test, y_test, batch_size=batch_size) log.append([acc_train, acc_test]) m.optimizer.lr.set_value(np.float32(lr)) logging.info("Epoch: %i/%i, Train: %f, Test: %f, LR: %f"%(epoch, nb_epoch, acc_train, acc_test, lr)) x_train, y_train = shuffle(x_train, y_train) m.fit(x_train, one_hot(y_train,k), nb_epoch=1, batch_size=batch_size, shuffle=True, validation_data=(x_test, one_hot(y_test,k))) lr *= decay if epoch%10 == 0: m.save_weights("%s/checkpoint-%03i.hd5"%(path,epoch)) m.save_weights('%s/model.hd5'%path) with open("%s/log.pkl"%path, "w") as f: pickle.dump(log, f)
py
1a50835b8dcb63b23e0f5b2b7a331401ec3c56e8
__author__ = 'yuxiang' import datasets import datasets.kitti_tracking import os import PIL import datasets.imdb import numpy as np import scipy.sparse from utils.cython_bbox import bbox_overlaps from utils.boxes_grid import get_boxes_grid import subprocess import pickle as cPickle from fast_rcnn.config import cfg import math from rpn_msr.generate_anchors import generate_anchors class kitti_tracking(datasets.imdb): def __init__(self, image_set, seq_name, kitti_tracking_path=None): datasets.imdb.__init__(self, 'kitti_tracking_' + image_set + '_' + seq_name) self._image_set = image_set self._seq_name = seq_name self._kitti_tracking_path = self._get_default_path() if kitti_tracking_path is None \ else kitti_tracking_path self._data_path = os.path.join(self._kitti_tracking_path, image_set, 'image_02') self._classes = ('__background__', 'Car', 'Pedestrian', 'Cyclist') self._class_to_ind = dict(zip(self.classes, xrange(self.num_classes))) self._image_ext = '.png' self._image_index = self._load_image_set_index() # Default to roidb handler if cfg.IS_RPN: self._roidb_handler = self.gt_roidb else: self._roidb_handler = self.region_proposal_roidb # num of subclasses if image_set == 'training' and seq_name != 'trainval': self._num_subclasses = 220 + 1 else: self._num_subclasses = 472 + 1 # load the mapping for subcalss to class if image_set == 'training' and seq_name != 'trainval': filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt') else: filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt') assert os.path.exists(filename), 'Path does not exist: {}'.format(filename) mapping = np.zeros(self._num_subclasses, dtype=np.int) with open(filename) as f: for line in f: words = line.split() subcls = int(words[0]) mapping[subcls] = self._class_to_ind[words[1]] self._subclass_mapping = mapping self.config = {'top_k': 100000} # statistics for computing recall self._num_boxes_all = np.zeros(self.num_classes, dtype=np.int) self._num_boxes_covered = np.zeros(self.num_classes, dtype=np.int) self._num_boxes_proposal = 0 assert os.path.exists(self._kitti_tracking_path), \ 'kitti_tracking path does not exist: {}'.format(self._kitti_tracking_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path) def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self.image_path_from_index(self.image_index[i]) def image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ image_path = os.path.join(self._data_path, index + self._image_ext) assert os.path.exists(image_path), \ 'Path does not exist: {}'.format(image_path) return image_path def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ kitti_train_nums = [154, 447, 233, 144, 314, 297, 270, 800, 390, 803, 294, \ 373, 78, 340, 106, 376, 209, 145, 339, 1059, 837] kitti_test_nums = [465, 147, 243, 257, 421, 809, 114, 215, 165, 349, 1176, \ 774, 694, 152, 850, 701, 510, 305, 180, 404, 173, 203, \ 436, 430, 316, 176, 170, 85, 175] if self._seq_name == 'train' or self._seq_name == 'trainval': assert self._image_set == 'training', 'Use train set or trainval set in testing' if self._seq_name == 'train': seq_index = [0, 1, 2, 3, 4, 5, 12, 13, 14, 15, 16] else: seq_index = range(0, 21) # for each sequence image_index = [] for i in xrange(len(seq_index)): seq_idx = seq_index[i] num = kitti_train_nums[seq_idx] for j in xrange(num): image_index.append('{:04d}/{:06d}'.format(seq_idx, j)) else: # a single sequence seq_num = int(self._seq_name) if self._image_set == 'training': num = kitti_train_nums[seq_num] else: num = kitti_test_nums[seq_num] image_index = [] for i in xrange(num): image_index.append('{:04d}/{:06d}'.format(seq_num, i)) return image_index def _get_default_path(self): """ Return the default path where kitti_tracking is expected to be installed. """ return os.path.join(datasets.ROOT_DIR, 'data', 'KITTI_Tracking') def gt_roidb(self): """ Return the database of ground-truth regions of interest. """ cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_kitti_voxel_exemplar_annotation(index) for index in self.image_index] if cfg.IS_RPN: # print out recall for i in xrange(1, self.num_classes): print('{}: Total number of boxes {:d}'.format(self.classes[i], self._num_boxes_all[i])) print('{}: Number of boxes covered {:d}'.format(self.classes[i], self._num_boxes_covered[i])) print('{}: Recall {:f}'.format(self.classes[i], float(self._num_boxes_covered[i]) / float(self._num_boxes_all[i]))) with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb def _load_kitti_voxel_exemplar_annotation(self, index): """ Load image and bounding boxes info from txt file in the KITTI voxel exemplar format. """ if self._image_set == 'training' and self._seq_name != 'trainval': prefix = 'train' elif self._image_set == 'training': prefix = 'trainval' else: prefix = '' if prefix == '': lines = [] lines_flipped = [] else: filename = os.path.join(self._kitti_tracking_path, cfg.SUBCLS_NAME, prefix, index + '.txt') if os.path.exists(filename): print(filename) # the annotation file contains flipped objects lines = [] lines_flipped = [] with open(filename) as f: for line in f: words = line.split() subcls = int(words[1]) is_flip = int(words[2]) if subcls != -1: if is_flip == 0: lines.append(line) else: lines_flipped.append(line) else: lines = [] lines_flipped = [] num_objs = len(lines) # store information of flipped objects assert (num_objs == len(lines_flipped)), 'The number of flipped objects is not the same!' gt_subclasses_flipped = np.zeros((num_objs), dtype=np.int32) for ix, line in enumerate(lines_flipped): words = line.split() subcls = int(words[1]) gt_subclasses_flipped[ix] = subcls boxes = np.zeros((num_objs, 4), dtype=np.float32) gt_classes = np.zeros((num_objs), dtype=np.int32) gt_subclasses = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) subindexes = np.zeros((num_objs, self.num_classes), dtype=np.int32) subindexes_flipped = np.zeros((num_objs, self.num_classes), dtype=np.int32) for ix, line in enumerate(lines): words = line.split() cls = self._class_to_ind[words[0]] subcls = int(words[1]) boxes[ix, :] = [float(n) for n in words[3:7]] gt_classes[ix] = cls gt_subclasses[ix] = subcls overlaps[ix, cls] = 1.0 subindexes[ix, cls] = subcls subindexes_flipped[ix, cls] = gt_subclasses_flipped[ix] overlaps = scipy.sparse.csr_matrix(overlaps) subindexes = scipy.sparse.csr_matrix(subindexes) subindexes_flipped = scipy.sparse.csr_matrix(subindexes_flipped) if cfg.IS_RPN: if cfg.IS_MULTISCALE: # compute overlaps between grid boxes and gt boxes in multi-scales # rescale the gt boxes boxes_all = np.zeros((0, 4), dtype=np.float32) for scale in cfg.TRAIN.SCALES: boxes_all = np.vstack((boxes_all, boxes * scale)) gt_classes_all = np.tile(gt_classes, len(cfg.TRAIN.SCALES)) # compute grid boxes s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] boxes_grid, _, _ = get_boxes_grid(image_height, image_width) # compute overlap overlaps_grid = bbox_overlaps(boxes_grid.astype(np.float), boxes_all.astype(np.float)) # check how many gt boxes are covered by grids if num_objs != 0: index = np.tile(range(num_objs), len(cfg.TRAIN.SCALES)) max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in xrange(1, self.num_classes): fg_inds.extend(np.where((gt_classes_all == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) index_covered = np.unique(index[fg_inds]) for i in xrange(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[index_covered] == i)[0]) else: assert len(cfg.TRAIN.SCALES_BASE) == 1 scale = cfg.TRAIN.SCALES_BASE[0] feat_stride = 16 # faster rcnn region proposal base_size = 16 ratios = [3.0, 2.0, 1.5, 1.0, 0.75, 0.5, 0.25] scales = 2**np.arange(1, 6, 0.5) anchors = generate_anchors(base_size, ratios, scales) num_anchors = anchors.shape[0] # image size s = PIL.Image.open(self.image_path_from_index(index)).size image_height = s[1] image_width = s[0] # height and width of the heatmap height = np.round((image_height * scale - 1) / 4.0 + 1) height = np.floor((height - 1) / 2 + 1 + 0.5) height = np.floor((height - 1) / 2 + 1 + 0.5) width = np.round((image_width * scale - 1) / 4.0 + 1) width = np.floor((width - 1) / 2.0 + 1 + 0.5) width = np.floor((width - 1) / 2.0 + 1 + 0.5) # gt boxes gt_boxes = boxes * scale # 1. Generate proposals from bbox deltas and shifted anchors shift_x = np.arange(0, width) * feat_stride shift_y = np.arange(0, height) * feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = num_anchors K = shifts.shape[0] all_anchors = (anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) # compute overlap overlaps_grid = bbox_overlaps(all_anchors.astype(np.float), gt_boxes.astype(np.float)) # check how many gt boxes are covered by anchors if num_objs != 0: max_overlaps = overlaps_grid.max(axis = 0) fg_inds = [] for k in xrange(1, self.num_classes): fg_inds.extend(np.where((gt_classes == k) & (max_overlaps >= cfg.TRAIN.FG_THRESH[k-1]))[0]) for i in xrange(self.num_classes): self._num_boxes_all[i] += len(np.where(gt_classes == i)[0]) self._num_boxes_covered[i] += len(np.where(gt_classes[fg_inds] == i)[0]) return {'boxes' : boxes, 'gt_classes': gt_classes, 'gt_subclasses': gt_subclasses, 'gt_subclasses_flipped': gt_subclasses_flipped, 'gt_overlaps': overlaps, 'gt_subindexes': subindexes, 'gt_subindexes_flipped': subindexes_flipped, 'flipped' : False} def region_proposal_roidb(self): """ Return the database of regions of interest. Ground-truth ROIs are also included. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_' + cfg.SUBCLS_NAME + '_' + cfg.REGION_PROPOSAL + '_region_proposal_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print('{} roidb loaded from {}'.format(self.name, cache_file)) return roidb if self._image_set != 'testing': gt_roidb = self.gt_roidb() print('Loading region proposal network boxes...') if self._image_set == 'trainval': model = cfg.REGION_PROPOSAL + '_trainval/' else: model = cfg.REGION_PROPOSAL + '_train/' rpn_roidb = self._load_rpn_roidb(gt_roidb, model) print('Region proposal network boxes loaded') roidb = datasets.imdb.merge_roidbs(rpn_roidb, gt_roidb) else: print('Loading region proposal network boxes...') model = cfg.REGION_PROPOSAL + '_trainval/' roidb = self._load_rpn_roidb(None, model) print('Region proposal network boxes loaded') print('{} region proposals per image'.format(self._num_boxes_proposal / len(self.image_index))) with open(cache_file, 'wb') as fid: cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) print('wrote roidb to {}'.format(cache_file)) return roidb def _load_rpn_roidb(self, gt_roidb, model): # set the prefix prefix = model box_list = [] for index in self.image_index: filename = os.path.join(self._kitti_tracking_path, 'region_proposals', prefix, self._image_set, index + '.txt') assert os.path.exists(filename), \ 'RPN data not found at: {}'.format(filename) print(filename) raw_data = np.loadtxt(filename, dtype=float) if len(raw_data.shape) == 1: if raw_data.size == 0: raw_data = raw_data.reshape((0, 5)) else: raw_data = raw_data.reshape((1, 5)) x1 = raw_data[:, 0] y1 = raw_data[:, 1] x2 = raw_data[:, 2] y2 = raw_data[:, 3] score = raw_data[:, 4] inds = np.where((x2 > x1) & (y2 > y1))[0] raw_data = raw_data[inds,:4] self._num_boxes_proposal += raw_data.shape[0] box_list.append(raw_data) return self.create_roidb_from_box_list(box_list, gt_roidb) def evaluate_detections(self, all_boxes, output_dir): # load the mapping for subcalss the alpha (viewpoint) if self._image_set == 'training' and self._seq_name != 'trainval': filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt') else: filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt') assert os.path.exists(filename), 'Path does not exist: {}'.format(filename) mapping = np.zeros(self._num_subclasses, dtype=np.float) with open(filename) as f: for line in f: words = line.split() subcls = int(words[0]) mapping[subcls] = float(words[3]) # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index[5:] + '.txt') print('Writing kitti_tracking results to file ' + filename) with open(filename, 'wt') as f: # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): subcls = int(dets[k, 5]) cls_name = self.classes[self.subclass_mapping[subcls]] assert (cls_name == cls), 'subclass not in class' alpha = mapping[subcls] f.write('{:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1 -1 -1 -1 {:.32f}\n'.format(\ cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) # write detection results into one file def evaluate_detections_one_file(self, all_boxes, output_dir): # load the mapping for subcalss the alpha (viewpoint) if self._image_set == 'training' and self._seq_name != 'trainval': filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'train', 'mapping.txt') else: filename = os.path.join(self._kitti_tracking_path, 'voxel_exemplars', 'trainval', 'mapping.txt') assert os.path.exists(filename), 'Path does not exist: {}'.format(filename) mapping = np.zeros(self._num_subclasses, dtype=np.float) with open(filename) as f: for line in f: words = line.split() subcls = int(words[0]) mapping[subcls] = float(words[3]) # open results file filename = os.path.join(output_dir, self._seq_name+'.txt') print('Writing all kitti_tracking results to file ' + filename) with open(filename, 'wt') as f: # for each image for im_ind, index in enumerate(self.image_index): # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): subcls = int(dets[k, 5]) cls_name = self.classes[self.subclass_mapping[subcls]] assert (cls_name == cls), 'subclass not in class' alpha = mapping[subcls] f.write('{:d} -1 {:s} -1 -1 {:f} {:f} {:f} {:f} {:f} -1 -1 -1 -1000 -1000 -1000 -10 {:f}\n'.format(\ im_ind, cls, alpha, dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) def evaluate_proposals(self, all_boxes, output_dir): # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index[5:] + '.txt') print('Writing kitti_tracking results to file ' + filename) with open(filename, 'wt') as f: # for each class for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue dets = all_boxes[cls_ind][im_ind] if dets == []: continue for k in xrange(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(\ dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) def evaluate_proposals_msr(self, all_boxes, output_dir): # for each image for im_ind, index in enumerate(self.image_index): filename = os.path.join(output_dir, index + '.txt') print('Writing kitti_tracking results to file ' + filename) with open(filename, 'wt') as f: dets = all_boxes[im_ind] if dets == []: continue for k in xrange(dets.shape[0]): f.write('{:f} {:f} {:f} {:f} {:.32f}\n'.format(dets[k, 0], dets[k, 1], dets[k, 2], dets[k, 3], dets[k, 4])) if __name__ == '__main__': d = datasets.kitti_tracking('training', '0000') res = d.roidb from IPython import embed; embed()
py
1a5083ebbebdd16af155ac7533545ba295527189
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Abstract base class for tests of `PrivacyAccountant` classes. Checks that a class derived from `PrivacyAccountant` has the correct behavior for standard `DpEvent` classes. """ from typing import Collection from absl.testing import absltest from dp_accounting import dp_event from dp_accounting import privacy_accountant class PrivacyAccountantTest(absltest.TestCase): def _make_test_accountants( self) -> Collection[privacy_accountant.PrivacyAccountant]: """Makes a list of accountants to test. Subclasses should define this to return a list of accountants to be tested. Returns: A list of accountants to test. """ return [] def test_make_test_accountants(self): self.assertNotEmpty(self._make_test_accountants()) def test_unsupported(self): class UnknownDpEvent(dp_event.DpEvent): pass for accountant in self._make_test_accountants(): for unsupported in [dp_event.UnsupportedDpEvent(), UnknownDpEvent()]: self.assertFalse(accountant.supports(unsupported)) self.assertFalse( accountant.supports(dp_event.SelfComposedDpEvent(unsupported, 10))) self.assertFalse( accountant.supports(dp_event.ComposedDpEvent([unsupported]))) def test_no_events(self): for accountant in self._make_test_accountants(): self.assertEqual(accountant.get_epsilon(1e-12), 0) self.assertEqual(accountant.get_epsilon(0), 0) self.assertEqual(accountant.get_epsilon(1), 0) try: self.assertEqual(accountant.get_delta(1e-12), 0) self.assertEqual(accountant.get_delta(0), 0) self.assertEqual(accountant.get_delta(float('inf')), 0) except NotImplementedError: # Implementing `get_delta` is optional. pass def test_no_op(self): for accountant in self._make_test_accountants(): event = dp_event.NoOpDpEvent() self.assertTrue(accountant.supports(event)) accountant._compose(event) self.assertEqual(accountant.get_epsilon(1e-12), 0) self.assertEqual(accountant.get_epsilon(0), 0) self.assertEqual(accountant.get_epsilon(1), 0) try: self.assertEqual(accountant.get_delta(1e-12), 0) self.assertEqual(accountant.get_delta(0), 0) self.assertEqual(accountant.get_delta(float('inf')), 0) except NotImplementedError: # Implementing `get_delta` is optional. pass def test_non_private(self): for accountant in self._make_test_accountants(): event = dp_event.NonPrivateDpEvent() self.assertTrue(accountant.supports(event)) accountant._compose(event) self.assertEqual(accountant.get_epsilon(0.99), float('inf')) self.assertEqual(accountant.get_epsilon(0), float('inf')) self.assertEqual(accountant.get_epsilon(1), float('inf')) try: self.assertEqual(accountant.get_delta(100), 1) self.assertEqual(accountant.get_delta(0), 1) self.assertEqual(accountant.get_delta(float('inf')), 1) except NotImplementedError: # Implementing `get_delta` is optional. pass
py
1a508469425ccd4be1bb12270af993cc485e0323
import DAO def show_my_courses(student, course_list): print('\nMy Courses:') print('#\tCOURSE NAME\tINSTRUCTOR NAME') attending_dao = DAO.AttendingDAO() my_courses = attending_dao.get_student_courses(course_list, student.get_email()) i = 1 for course in my_courses: print(f'{i}\t{course.get_name()}\t{course.get_instructor()}') i+=1 def show_all_courses(course_list): print('\nAll Courses:') print('ID\tCOURSE NAME\tINSTRUCTOR NAME') for course in course_list: print(f'{course.get_id()}\t{course.get_name()}\t{course.get_instructor()}') def main(): print('Welcome!') entry=None while entry!='2': entry = input('\n1. Current Student\n2. New Student\n3. Quit\nPlease, enter 1, 2 or 3: ') if entry=='1': student_dao = DAO.StudentDAO() email = input('\nEnter Your Email: ') pw = input('Enter Your Password: ') if student_dao.validate_user(email, pw): course_dao = DAO.CourseDAO() attending_dao = DAO.AttendingDAO() student = student_dao.get_student_by_email(email) course_list = course_dao.get_courses() print(type(student)) show_my_courses(student, course_list) print('\nWhat Would You Like To Do?') while entry!='2': entry = input('\n1. Register To Course\n2. Logout\nPlease, enter 1 or 2: ') if entry=='1': show_all_courses(course_list) course_id = input('\nSelect Course By ID Number: ') print("\nAttempting to Register...") if attending_dao.register_student_to_course(email, course_id, course_list): show_my_courses(student, course_list) elif entry=='2': print('\nYou Have Been Logged Out.') else: print('\nInvalid Option...') else: print('\nWrong Credentials!') elif entry=='2': print("Welcome to the school!") student_dao = DAO.StudentDAO() email = input('Please provide your email : ') if not student_dao.get_student_by_email(email): name = input("What is your full name? : ") password = input("What would you like your password to be? : ") student_dao.add_new_student(email, name, password) entry = '-1' continue; else: print("That email is already taken") elif entry=='3': print("Programming is closing, ") break; else: print('Invalid Option...') print('\nClosing Program. Goodbye.') if __name__=='__main__': main()
py
1a5084aba21c8c60d67577e2f0050a295e35ac59
from django.contrib.auth.models import User from django.shortcuts import render, render_to_response from django.http import HttpResponse, HttpResponseRedirect from django.views.decorators.csrf import csrf_exempt from suppliers.models import * from django.db.models import Q import json import sys from django.core.serializers.json import DjangoJSONEncoder from django.core.exceptions import ValidationError from datetime import datetime @csrf_exempt def getSuppliers(request): if not request.user.is_authenticated(): return HttpResponseRedirect('/login') else: try: suppliers = suppliers_accounts.objects.all().order_by('supplier_name', 'supplier_service') if 'pattern' in request.POST.keys(): pattern = request.POST['pattern'] suppliers = suppliers.filter(Q(supplier_name__icontains=pattern) | Q(supplier_type__icontains=pattern) | Q(supplier_service__icontains=pattern) | Q(supplier_location__icontains=pattern) | Q(supplier_tel__icontains=pattern) | Q(supplier_email__icontains=pattern) | Q(supplier_tin__icontains=pattern) | Q(supplier_website__icontains=pattern) | Q(supplier_bank_name__icontains=pattern) | Q(suppler_bank_account_num__icontains=pattern)).order_by('supplier_name', 'supplier_service') arr = [] for supplier in suppliers: fields = {} fields['id'] = supplier.id, fields['name'] = supplier.supplier_name, fields['type'] = supplier.supplier_type, fields['service'] = supplier.supplier_service, fields['location'] = supplier.supplier_location, fields['telephone'] = supplier.supplier_tel, fields['email'] = supplier.supplier_email, fields['tin'] = supplier.supplier_tin, fields['website'] = supplier.supplier_website, fields['bank_name'] = supplier.supplier_bank_name, fields['bank_account'] = supplier.suppler_bank_account_num, fields['notes'] = supplier.supp_notes mapped = {'fields': fields} print mapped arr.append(mapped) response = {'response': arr} return HttpResponse(json.dumps(response)) except: [] return HttpResponse('') @csrf_exempt def addSupplier(request): if not request.user.is_authenticated(): return HttpResponseRedirect('login') else: if request.method == 'POST': supplier = suppliers_accounts() supplier.supplier_name = request.POST.get('supp_name') supplier.supplier_type = request.POST.get('supp_type') supplier.supplier_service = request.POST.get('supp_service') supplier.supplier_location = request.POST.get('supp_location') supplier.supplier_tel = request.POST.get('supp_tele') supplier.supplier_email = request.POST.get('supp_mail') supplier.supplier_tin = request.POST.get('supp_tin') supplier.supplier_website = request.POST.get('supp_website') supplier.supplier_bank_name = request.POST.get('supp_bank_name') supplier.suppler_bank_account_num = request.POST.get('supp_bank_account') supplier.supp_notes = request.POST.get('supp_notes') supplier.save() return HttpResponseRedirect('/') @csrf_exempt def editSupplier(request): if not request.user.is_authenticated(): return HttpResponseRedirect('login') else: if request.method == 'POST': supp_prk = request.POST.get('edsupp_prik') edsupplier = suppliers_accounts.objects.get(id=supp_prk) edsupplier.supplier_name = request.POST.get('edsupp_name') edsupplier.supplier_type = request.POST.get('edsupp_type') edsupplier.supplier_service = request.POST.get('edsupp_service') edsupplier.supplier_location = request.POST.get('edsupp_location') edsupplier.supplier_tel = request.POST.get('edsupp_tele') edsupplier.supplier_email = request.POST.get('edsupp_mail') edsupplier.supplier_tin = request.POST.get('edsupp_tin') edsupplier.supplier_website = request.POST.get('edsupp_website') edsupplier.supplier_bank_name = request.POST.get('edsupp_bank_name') edsupplier.suppler_bank_account_num = request.POST.get('edsupp_bank_account') edsupplier.supp_notes = request.POST.get('edsupp_notes') edsupplier.save() return HttpResponseRedirect('/') @csrf_exempt def removeSupplier(request): if not request.user.is_authenticated(): return HttpResponseRedirect('/login') else: if request.method == 'POST': supplierprik = request.POST.get('supplierkey') supplier = suppliers_accounts.objects.get(id=supplierprik) supplier.delete() return HttpResponseRedirect('/') @csrf_exempt def getSuppliersInvoices(request): if not request.user.is_authenticated(): return HttpResponseRedirect('/login') else: try: supplier_invoice = suppliersinvoice.objects.all().order_by('invoiceID', 'supplier_name') if 'pattern' in request.POST.keys(): pattern = request.POST['pattern'] supplier_invoice = supplier_invoice.filter(Q(invoiceID__icontains=pattern) | Q(supplier_name__icontains=pattern) | Q(SDCID__icontains=pattern) | Q(reference__icontains=pattern) | Q(description__icontains=pattern) | Q(status__icontains=pattern) | Q(Package__icontains=pattern) | Q(amount_tobe_paid__icontains=pattern) | Q(amount_paid__icontains=pattern) | Q(amount_remaining__icontains=pattern) | Q(supp_notes__icontains=pattern) | Q(supp_service_id__icontains=pattern)).order_by('invoiceID', 'supplier_name') arr = [] for invoice in supplier_invoice: fields = {} fields['id'] = invoice.id fields['invoiceID'] = invoice.invoiceID fields['I_supplier_name'] = invoice.supplier_name fields['I_SDCID'] = invoice.SDCID fields['I_reference'] = invoice.reference fields['I_description'] = invoice.description fields['I_status'] = invoice.status fields['I_package'] = invoice.Package fields['I_amount_tobepaid'] = invoice.amount_tobe_paid fields['I_amountpaid'] = invoice.amount_paid fields['I_amountremaining'] = invoice.amount_remaining fields['I_invoicedate'] = invoice.invoice_date.__format__('%d-%m-%Y') fields['I_invoiceduedate'] = invoice.invoice_due_date.__format__('%d-%m-%Y') fields['I_suppnotes'] = invoice.supp_notes fields['I_supp_service_id'] = invoice.supp_service_id fields['I_receivedon'] = invoice.invoice_due_date.__format__('%d-%m-%Y') fields['I_suppliers_id'] = 1 mapped = {'fields': fields} print mapped arr.append(mapped) response = {'response': arr} return HttpResponse(json.dumps(response)) except: [] # print 'Unexpected error', sys.exc_info()[0] # raise return HttpResponse('') @csrf_exempt def newSupplierInvoice(request): if not request.user.is_authenticated(): return HttpResponseRedirect('login') else: try: if request.method == 'POST': inv = suppliersinvoice() inv.invoiceID = request.POST.get('supplierInvId') inv.supplier_name = request.POST.get('supplierName') inv.SDCID = request.POST.get('supplierSDCID') inv.invoice_date = datetime.strptime(request.POST.get('supplierInvDate'),'%d/%m/%Y').__format__('%Y-%m-%d') inv.invoice_due_date = datetime.strptime(request.POST.get('supplierInvDueDate'),'%d/%m/%Y').__format__('%Y-%m-%d') inv.reference = request.POST.get('supplierReference') inv.status = request.POST.get('supplierStatus') inv.amount_tobe_paid = request.POST.get('supplierAmtToPay') inv.amount_paid = request.POST.get('supplierAmtPaid') inv.amount_remaining = request.POST.get('supplierRemAmt') inv.Package = request.POST.get('supplierPackage') inv.received_on = datetime.strptime(request.POST.get('supplierInvReceivedOn'),'%d/%m/%Y').__format__('%Y-%m-%d') inv.supp_service_id = request.POST.get('supplierServiceID') inv.description = request.POST.get('supplierInvDescri') inv.supp_notes = request.POST.get('supplierNotes') inv.suppliers_id = 2 inv.save() print 'successful saved line 156' return HttpResponseRedirect('/') except: print "Unexpected error:", sys.exc_info()[0] raise return HttpResponse('') @csrf_exempt def editSupplierInvoice(request): if not request.user.is_authenticated(): return HttpResponseRedirect('login') else: try: if request.method == 'POST': inv_identity = request.POST.get('supp_inv_ID') inv = suppliersinvoice.objects.get(id=inv_identity) inv.invoiceID = request.POST.get('supplierInvId') inv.supplier_name = request.POST.get('supplierName') inv.SDCID = request.POST.get('supplierSDCID') inv.invoice_date = datetime.strptime(request.POST.get('supplierInvDate'),'%d-%m-%Y').__format__('%Y-%m-%d') inv.invoice_due_date = datetime.strptime(request.POST.get('supplierInvDueDate'),'%d-%m-%Y').__format__('%Y-%m-%d') inv.reference = request.POST.get('supplierReference') inv.status = request.POST.get('supplierStatus') inv.amount_tobe_paid = request.POST.get('supplierAmtToPay') inv.amount_paid = request.POST.get('supplierAmtPaid') inv.amount_remaining = request.POST.get('supplierRemAmt') inv.Package = request.POST.get('supplierPackage') inv.received_on = datetime.strptime(request.POST.get('supplierInvReceivedOn'),'%d-%m-%Y').__format__('%Y-%m-%d') inv.supp_service_id = request.POST.get('supplierServiceID') inv.description = request.POST.get('supplierInvDescri') inv.supp_notes = request.POST.get('supplierNotes') inv.suppliers_id = 2 inv.save() print 'successful saved line 156' return HttpResponseRedirect('/') except: print "Unexpected error:", sys.exc_info()[0] raise return HttpResponse('') @csrf_exempt def removeSupplierInvoice(request): if not request.user.is_authenticated(): return HttpResponseRedirect('/login') else: if request.method == 'POST': supplierinv_prik = request.POST.get('supplierinv_key') supplier = suppliersinvoice.objects.get(id=supplierinv_prik) supplier.delete() return HttpResponseRedirect('/')
py
1a50852ba2b88516b2ac246c27069350de8bfe91
# -*- coding: utf-8 -*- from django.core.urlresolvers import reverse from django.shortcuts import get_object_or_404, redirect from django.views.generic.list_detail import object_list from faq.models import Topic, Question def _fragmentify(model, slug, url=None): get_object_or_404(model.objects.published().filter(slug=slug)) url = url or reverse('faq-topic-list') fragment = '#%s' % slug return redirect(url + fragment, permanent=True) def topic_list(request): """ A list view of all published Topics Templates: :template:`faq/topic_list.html` Context: topic_list A list of all published :model:`faq.Topic` objects that relate to the current :model:`sites.Site`. """ return object_list(request, queryset=Topic.objects.published(), template_object_name='topic') def topic_detail(request, slug): """ A detail view of a Topic Simply redirects to :view:`faq.views.topic_list` with the addition of a fragment identifier that links to the given :model:`faq.Topic`. E.g., ``/faq/#topic-slug``. """ return _fragmentify(Topic, slug) def question_detail(request, topic_slug, slug): """ A detail view of a Question. Simply redirects to :view:`faq.views.topic_list` with the addition of a fragment identifier that links to the given :model:`faq.Question`. E.g. ``/faq/#question-slug``. """ return _fragmentify(Question, slug)
py
1a508687dac6f176e0ecc52dbb9ad6db340f8a82
''' Copyright 2017 The Regents of the University of Colorado Licensed under the Apache License, Version 2.0 (the "License") you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' events_mapping.py Python Version: 3.6.3 Queries the study by the events_mapping table and populates OHDSI tables Death, visit_occurrence and procedure_occurrence. This is research code for demonstration purposes only. croeder 8/2017 [email protected] ''' import logging from HeartData import migrate #import datetime #import sys #import re import psycopg2 from psycopg2.extras import RealDictCursor from HeartData.person import BasePerson from ui.models import Concept logger = logging.getLogger(__name__) NULL_PLACEHOLDER='no_column' def _read_event_mappings(con, study_id): event_mappings={} cur = con.cursor(cursor_factory=RealDictCursor) cur.execute( ("SELECT study_id, from_table, from_column, to_table, value_vocabulary_id, value_concept_code, addl_column, addl_value, from_date_column, where_clause" " FROM events_mapping " " WHERE study_id = %s"), (study_id,) ) rows = cur.fetchall() cur.close() return rows def populate(con, person_id_list, study): """ populate the ohdsi person table. Be wary of the fact that the list of person_ids is a list of ohdsi_ids, and that when you query study tables those ids need converted. """ personObj = BasePerson.factory(study) id_col = personObj.get_id_field_name() cur = con.cursor() event_mappings = _read_event_mappings(con, study.study_id) procedure_id=0 visit_id=0 for row in event_mappings: logger.info("XX events_mapping.populate() %s", row) from_table_name=row['from_table'] prefix = from_table_name.split('_')[0] for person_id in person_id_list: query="" # QUERY FOR THE VALUES, BEST SPECIFIC? TODO if (row['from_column'] != NULL_PLACEHOLDER): # a value and a date, like the Death table if (row['where_clause'] != NULL_PLACEHOLDER) : query = ("SELECT {0}, {1} from {2} where " + id_col + " = %s and ( {3} )").format(row['from_date_column'], row['from_column'], row['from_table'], row['where_clause']) #logger.debug("QUERY1:%s %s", query, person_id) logger.info("QUERY1:%s %s", query, person_id) cur.execute(query, (personObj.convert_person_id_to_study(person_id),)) else: query = ("SELECT {0}, {1} from {2} where " + id_col + " = %s").format(row['from_date_column'], row['from_column'], row['from_table']) #logger.debug("QUERY2: %s, %s", query, row) logger.info("QUERY2: %s, %s", query, row) cur.execute(query, (personObj.convert_person_id_to_study(person_id),)) else: # just a date, like the Occurrence tables: if (row['where_clause'] != NULL_PLACEHOLDER) : query = ("SELECT {0} from {1} where " + id_col + " = %s and ( {2} )").format(row['from_date_column'], row['from_table'], row['where_clause']) #logger.debug("QUERY3: %s %s", query, row) logger.info("QUERY3: %s %s", query, row) cur.execute(query, (personObj.convert_person_id_to_study(person_id),)) else: query = ("SELECT {0} from {1} where " + id_col + " = %s").format(row['from_date_column'], row['from_table']) #logger.debug("QUERY4: %s %s", query, row) logger.info("QUERY4: %s %s", query, row) cur.execute(query, (personObj.convert_person_id_to_study(person_id),)) value_rows = cur.fetchall() logger.debug("events.populate() from:%s to:%s rows:%d", from_table_name, row['to_table'], len(value_rows)) # LOOKUP the id (vocab, concept) from the mappings row concept_id = Concept.objects.get(vocabulary_id=row['value_vocabulary_id'], concept_code=row['value_concept_code']).concept_id # INSERT if (len(value_rows) == 0): logger.warn("no rows back from %s person:%s, with %s", query, person_id, row) elif (concept_id == None) : logger.error("No concept %s, %s", row['value_vocabulary_id'], row['value_concept_code']) else: for value_row in value_rows: if value_row[0] != None : logger.debug("VALUE ROWS pid:%s query:%s value:%s num-rows:%d", person_id, query, value_row, len(value_rows)) to_table_name=row['to_table'] # sometimes this is a date, sometimes a string. Use string, the lowest-common denominator, works for all sources the_date_value='' try: date_time_string = str(value_row[0]) (year, month, day) = date_time_string.split(' ')[0].split('-') the_date_value = "{0}/{1}/{2}".format(month, day, year) except: logger.error("populate raised on {}".format(date_time_string)) the_date_value = date_time_string # INSERT DEATH if to_table_name == 'Death': statement = "INSERT into death (person_id, death_date, death_datetime, death_type_concept_id, cause_concept_id)" \ + " values ( %s, %s, %s, %s, %s)" logger.debug("death: %s, %s, %s, %s, %s %s %s %s); ", statement, person_id, the_date_value, row['addl_value'], concept_id, row['value_vocabulary_id'], row['value_concept_code'], value_row[0] ) cur.execute(statement, (person_id, the_date_value, the_date_value, row['addl_value'], concept_id)) # INSERT VISIT OCCURRENCE elif to_table_name == 'visit_occurrence': statement = ("INSERT into visit_occurrence " "(visit_occurrence_id, person_id, visit_concept_id, visit_start_date, " " visit_start_datetime, visit_end_date, visit_type_concept_id)" " values ( %s, %s, %s, %s, %s, %s, %s)") logger.debug("visit %s %s %s %s %s %s %s %s", statement, visit_id, person_id, concept_id, the_date_value, row['addl_value'], row['value_vocabulary_id'], row['value_concept_code']) cur.execute(statement, (visit_id, person_id, concept_id, the_date_value, the_date_value, the_date_value, row['addl_value'])) visit_id += 1 # INSERT PROCEDURE OCCURRENCE elif to_table_name == 'procedure_occurrence': statement = ("INSERT into procedure_occurrence" " (procedure_occurrence_id, person_id, procedure_concept_id, " " procedure_date, procedure_datetime, procedure_type_concept_id)"\ " values ( %s, %s, %s, %s, %s, %s)") logger.debug("proc: %s %s %s %s *%s* %s %s %s %s", statement, procedure_id, person_id, concept_id, the_date_value, row['addl_value'], row['value_vocabulary_id'], row['value_concept_code'], value_row[0] ) cur.execute(statement, (procedure_id, person_id, concept_id, the_date_value, the_date_value, row['addl_value'])) procedure_id += 1 else: logger.error("unknown table name %s in events.populate() %s", to_table_name, row) else: logger.warn("None value in events_mapping.populate() with %s", value_row) value_rows=None cur.close() con.commit()
py
1a50869ff40561255c4e6fd20574bf871ac2c165
import unittest import requests class UnitTestsIbanAPI(unittest.TestCase): # https://ibanapi.com/get-api def test_get_get_api(self): print('test_get_get_api') params = ( ('api_key', 'API_KEY'), ) iban = "EE471000001020145685" url = "https://api.ibanapi.com/v1/validate/" + iban response = requests.get(url, params=params) print(response.text) if __name__ == '__main__': unittest.main()
py
1a50870947659c3f85f6f5686a3d1561b3ed712f
""" formatting.py """ import math from enum import Enum, unique from typing import Dict, Iterable, List from .layer_info import LayerInfo @unique class Verbosity(Enum): """ Contains verbosity levels. """ QUIET, DEFAULT, VERBOSE = 0, 1, 2 class FormattingOptions: """ Class that holds information about formatting the table output. """ def __init__( self, max_depth: int, verbose: int, col_names: Iterable[str], col_width: int, ): self.max_depth = max_depth self.verbose = verbose self.col_names = col_names self.col_width = col_width self.layer_name_width = 40 def set_layer_name_width( self, summary_list: List[LayerInfo], align_val: int = 5 ) -> None: """ Set layer name width by taking the longest line length and rounding up to the nearest multiple of align_val. """ max_length = 0 for info in summary_list: depth_indent = info.depth * align_val + 1 max_length = max(max_length, len(str(info)) + depth_indent) if max_length >= self.layer_name_width: self.layer_name_width = math.ceil(max_length / align_val) * align_val def get_total_width(self) -> int: """ Calculate the total width of all lines in the table. """ return len(tuple(self.col_names)) * self.col_width + self.layer_name_width def format_row(self, layer_name: str, row_values: Dict[str, str]) -> str: """ Get the string representation of a single layer of the model. """ info_to_use = [row_values.get(row_type, "") for row_type in self.col_names] new_line = f"{layer_name:<{self.layer_name_width}} " for info in info_to_use: new_line += f"{info:<{self.col_width}} " return new_line.rstrip() + "\n"
py
1a508738f4b4fe1c3b100c4317d73fb7401f7358
import time import torch import functools import argparse import pyaudio import wave import torch.nn.functional as F from utils import data from ctcdecode import CTCBeamDecoder from data.utility import add_arguments, print_arguments parser = argparse.ArgumentParser(description=__doc__) add_arg = functools.partial(add_arguments, argparser=parser) parser.add_argument("--model_path", default="save_model/model.pth", type=str, help="trained model path. (default: %(default)s)") parser.add_argument("--lm_path", default="lm/zh_giga.no_cna_cmn.prune01244.klm", type=str, help="language model path. (default: %(default)s)") parser.add_argument("--record_time", default=5, type=int, help="record time for second. (default: %(default)s)") args = parser.parse_args() print_arguments(args) alpha = 0.8 beta = 0.3 cutoff_top_n = 40 cutoff_prob = 1.0 beam_width = 32 num_processes = 4 blank_index = 0 model = torch.load(args.model_path) model = model.cuda() model.eval() decoder = CTCBeamDecoder(model.vocabulary, args.lm_path, alpha, beta, cutoff_top_n, cutoff_prob, beam_width, num_processes, blank_index) def translate(vocab, out, out_len): return "".join([vocab[x] for x in out[0:out_len]]) def predict(wav_path): wav = data.load_audio(wav_path) spec = data.spectrogram(wav) spec.unsqueeze_(0) with torch.no_grad(): spec = spec.cuda() y = model.cnn(spec) y = F.softmax(y, 1) y_len = torch.tensor([y.size(-1)]) y = y.permute(0, 2, 1) # B * T * V print("decoding...") out, score, offset, out_len = decoder.decode(y, y_len) return translate(model.vocabulary, out[0][0], out_len[0][0]) def save_wave_file(filename, data): wf = wave.open(filename, "wb") wf.setnchannels(CHANNELS) wf.setsampwidth(SAMPWIDTH) wf.setframerate(RATE) wf.writeframes(b"".join(data)) wf.close() def record(wav_path, time=5): p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) my_buf = [] print("录音中(%ds)" % time) for i in range(0, int(RATE / CHUNK * time)): data = stream.read(CHUNK) my_buf.append(data) print(".", end="", flush=True) save_wave_file(wav_path, my_buf) stream.close() if __name__ == '__main__': # 录音格式 RATE = 16000 CHUNK = 1024 CHANNELS = 1 SAMPWIDTH = 2 # 临时保存路径 save_path = 'dataset/record.wav' while True: _ = input("按下回车键开机录音,录音%s秒中:" % args.record_time) record(save_path, time=args.record_time) start = time.time() result_text = predict(save_path) end = time.time() print("识别时间:%dms,识别结果:%s" % (round((end - start) * 1000), result_text))
py
1a50885e76ca6297fe2088d710c1efc6e451dc20
""" Put files into the LeoShadow subfolder. Usage: 1. convert.py <filename> LeoShadow x This copy file <filename> into the subfolder leoShadow, adds the prefix, and creates an empty file at the current location. After restarting Leo, <filename> will be re-created without annotations. 2. convert -all LeoShadow x Apply 'convert.py <filename> LeoShadow x' to all .py files. Must be run in the directory with the .py files. x is the prefix specified the for mod_shadow plugin. """ import os, sys, shutil def convert(filename, leoFolder, prefix): if not os.path.exists(leoFolder): os.mkdir(leoFolder) assert os.path.exists(leoFolder) else: assert os.path.isdir(leoFolder) dir, name = os.path.split(filename) newname = os.path.join(dir, leoFolder, prefix + name) if os.path.exists(newname): return print("Putting", filename, "into the shadow folder", leoFolder) os.rename(filename, newname) f = open(filename, "w") f.close() if __name__ == '__main__': scriptname, filename, leoFolder, prefix = sys.argv if filename == '-all': for filename in os.listdir("."): rest, extension = os.path.splitext(filename) if extension == '.py': if (extension not in ['.leo', '.pyc'] and not filename.startswith("convert")): if os.path.isfile(filename): convert(filename, leoFolder, prefix) else: convert(filename, leoFolder, prefix)
py
1a5089aefef580f0b2ef8c3db74d2a656d7504c4
""" Helpers for plugin app """ import os import subprocess import pathlib import sysconfig import traceback import inspect import pkgutil from django.conf import settings from django.core.exceptions import AppRegistryNotReady # region logging / errors class IntegrationPluginError(Exception): """ Error that encapsulates another error and adds the path / reference of the raising plugin """ def __init__(self, path, message): self.path = path self.message = message def __str__(self): return self.message # pragma: no cover class MixinImplementationError(ValueError): """ Error if mixin was implemented wrong in plugin Mostly raised if constant is missing """ pass class MixinNotImplementedError(NotImplementedError): """ Error if necessary mixin function was not overwritten """ pass def log_error(error, reference: str = 'general'): """ Log an plugin error """ from plugin import registry # make sure the registry is set up if reference not in registry.errors: registry.errors[reference] = [] # add error to stack registry.errors[reference].append(error) def handle_error(error, do_raise: bool = True, do_log: bool = True, log_name: str = ''): """ Handles an error and casts it as an IntegrationPluginError """ package_path = traceback.extract_tb(error.__traceback__)[-1].filename install_path = sysconfig.get_paths()["purelib"] try: package_name = pathlib.Path(package_path).relative_to(install_path).parts[0] except ValueError: # is file - loaded -> form a name for that path_obj = pathlib.Path(package_path).relative_to(settings.BASE_DIR) path_parts = [*path_obj.parts] path_parts[-1] = path_parts[-1].replace(path_obj.suffix, '') # remove suffix # remove path prefixes if path_parts[0] == 'plugin': path_parts.remove('plugin') path_parts.pop(0) else: path_parts.remove('plugins') package_name = '.'.join(path_parts) if do_log: log_kwargs = {} if log_name: log_kwargs['reference'] = log_name log_error({package_name: str(error)}, **log_kwargs) if do_raise: raise IntegrationPluginError(package_name, str(error)) # endregion # region git-helpers def get_git_log(path): """ Get dict with info of the last commit to file named in path """ from plugin import registry output = None if registry.git_is_modern: path = path.replace(os.path.dirname(settings.BASE_DIR), '')[1:] command = ['git', 'log', '-n', '1', "--pretty=format:'%H%n%aN%n%aE%n%aI%n%f%n%G?%n%GK'", '--follow', '--', path] try: output = str(subprocess.check_output(command, cwd=os.path.dirname(settings.BASE_DIR)), 'utf-8')[1:-1] if output: output = output.split('\n') except subprocess.CalledProcessError: # pragma: no cover pass if not output: output = 7 * [''] # pragma: no cover return {'hash': output[0], 'author': output[1], 'mail': output[2], 'date': output[3], 'message': output[4], 'verified': output[5], 'key': output[6]} def check_git_version(): """returns if the current git version supports modern features""" # get version string try: output = str(subprocess.check_output(['git', '--version'], cwd=os.path.dirname(settings.BASE_DIR)), 'utf-8') except subprocess.CalledProcessError: # pragma: no cover return False # process version string try: version = output[12:-1].split(".") if len(version) > 1 and version[0] == '2': if len(version) > 2 and int(version[1]) >= 22: return True except ValueError: # pragma: no cover pass return False class GitStatus: """ Class for resolving git gpg singing state """ class Definition: """ Definition of a git gpg sing state """ key: str = 'N' status: int = 2 msg: str = '' def __init__(self, key: str = 'N', status: int = 2, msg: str = '') -> None: self.key = key self.status = status self.msg = msg N = Definition(key='N', status=2, msg='no signature',) G = Definition(key='G', status=0, msg='valid signature',) B = Definition(key='B', status=2, msg='bad signature',) U = Definition(key='U', status=1, msg='good signature, unknown validity',) X = Definition(key='X', status=1, msg='good signature, expired',) Y = Definition(key='Y', status=1, msg='good signature, expired key',) R = Definition(key='R', status=2, msg='good signature, revoked key',) E = Definition(key='E', status=1, msg='cannot be checked',) # endregion # region plugin finders def get_modules(pkg): """get all modules in a package""" context = {} for loader, name, ispkg in pkgutil.walk_packages(pkg.__path__): try: module = loader.find_module(name).load_module(name) pkg_names = getattr(module, '__all__', None) for k, v in vars(module).items(): if not k.startswith('_') and (pkg_names is None or k in pkg_names): context[k] = v context[name] = module except AppRegistryNotReady: # pragma: no cover pass except Exception as error: # this 'protects' against malformed plugin modules by more or less silently failing # log to stack log_error({name: str(error)}, 'discovery') return [v for k, v in context.items()] def get_classes(module): """get all classes in a given module""" return inspect.getmembers(module, inspect.isclass) def get_plugins(pkg, baseclass): """ Return a list of all modules under a given package. - Modules must be a subclass of the provided 'baseclass' - Modules must have a non-empty PLUGIN_NAME parameter """ plugins = [] modules = get_modules(pkg) # Iterate through each module in the package for mod in modules: # Iterate through each class in the module for item in get_classes(mod): plugin = item[1] if issubclass(plugin, baseclass) and plugin.PLUGIN_NAME: plugins.append(plugin) return plugins # endregion
py
1a508a241f5a08f04aaed82672c538f941a25712
import logging from botocore import exceptions import json import sys from utils.utils import get_region_name, get_price1, get_price2, handle_limit_exceeded_exception class Pricing: """For getting and returning the price of the Elastic IP's.""" #Filter for get_products pricing api call used to fetch EIP price. eip_filter = '[{{"Field": "location", "Value": "{r}", "Type": "TERM_MATCH"}},' \ ' {{"Field": "group", "Value": "ElasticIP:Address", "Type": "TERM_MATCH"}},' \ '{{"Field": "productFamily", "Value": "IP Address", "Type": "TERM_MATCH"}}]' def __init__(self, pricing_client=None, region=None): self.pricing_client = pricing_client self.region = region self.formatted_region = get_region_name(region) logging.basicConfig(level=logging.WARNING) self.logger = logging.getLogger() def get_eip_price(self): """Returns EIP price.""" try: f = self.eip_filter.format(r=self.formatted_region) data = self.pricing_client.get_products(ServiceCode='AmazonEC2', Filters=json.loads(f)) if "eu-west-1" in self.region: price = get_price2(data) return float(price) price = get_price1(data) return float(price) except exceptions.ClientError as error: handle_limit_exceeded_exception(error, 'eip pricing.py') sys.exit(1) except Exception as e: print("Error on line {} in eip pricing.py".format(sys.exc_info()[-1].tb_lineno) + " | Message: " + str(e)) sys.exit(1)
py
1a508a278c658bb2025dc0c78357a34533e4d402
from collections import deque d = deque() for _ in range(int(input())): line = input().split() if line[0] == 'append': d.append(line[1]) elif line[0] == 'pop': d.pop() elif line[0] == 'popleft': d.popleft() elif line[0] == 'appendleft': d.appendleft(line[1]) print(*d)
py
1a508ac5ac09d76e86379adf28ed24a60e95b0ad
from typing import List, Optional from enum import IntEnum import numpy as np import logging from numpy import random # The two following classes just make it convenient to select which mutation/recombination/selectoin to use with EA class Recombination(IntEnum): NONE = -1 # can be used when only mutation is required UNIFORM = 0 # uniform crossover (only really makes sense for function dimension > 1) INTERMEDIATE = 1 # intermediate recombination class Mutation(IntEnum): NONE = -1 # Can be used when only recombination is required UNIFORM = 0 # Uniform mutation GAUSSIAN = 1 # Gaussian mutation class ParentSelection(IntEnum): NEUTRAL = 0 FITNESS = 1 TOURNAMENT = 2 class Member: """ Class to simplify member handling. """ def __init__(self, initial_x: np.ndarray, target_function: callable, bounds: List[float], mutation: Mutation, recombination: Recombination, sigma: Optional[float] = None, recom_prob: Optional[float] = None) -> None: """ Init :param initial_x: Initial coordinate of the member :param target_function: The target function that determines the fitness value :param bounds: Allowed bounds. For simplicities sake we assume that all elements in initial_x have the same bounds -> bounds[0] lower bound && bounds[1] upper bounds :param mutation: hyperparameter that determines which mutation type use :param recombination: hyperparameter that determines which recombination type to use :param sigma: Optional hyperparameter that is only active if mutation is gaussian :param recom_prob: Optional hyperparameter that is only active if recombination is uniform """ self._x = initial_x.astype(float) # astype is crucial here. Otherwise numpy might cast everything to int self._f = target_function self.__bounds = bounds self._age = 0 # basically indicates how many offspring were generated from this member self._mutation = mutation self._recombination = recombination self._x_changed = True self._fit = None self._sigma = sigma self._recom_prob = recom_prob self.logger = logging.getLogger(self.__class__.__name__) @property # fitness can only be queried never set def fitness(self): if self._x_changed: # Only if the x_coordinate has changed we need to evaluate the fitness. self._x_changed = False self._fit = self._f(self._x) return self._fit # otherwise we can return the cached value @property # properties let us easily handle getting and setting without exposing our private variables def x_coordinate(self): return self._x @x_coordinate.setter def x_coordinate(self, value): assert np.all((self.__bounds[0] <= value) & (value <= self.__bounds[1])), 'Member out of bounds' self._x_changed = True self._x = value def mutate(self): """ Mutation which creates a new offspring :return: new member who is based on this member """ new_x = self.x_coordinate.copy() self.logger.debug('new point before mutation:') self.logger.debug(new_x) # modify new_x either through uniform or gaussian mutation if self._mutation == Mutation.UNIFORM: new_x = np.random.uniform(self.__bounds[0], self.__bounds[1], new_x.size) elif self._mutation == Mutation.GAUSSIAN: assert self._sigma, 'Sigma has to be set when gaussian mutation is used' new_x = new_x + self._sigma*np.random.randn() new_x[new_x < self.__bounds[0]] = self.__bounds[0] new_x[new_x > self.__bounds[1]] = self.__bounds[1] elif self._mutation != Mutation.NONE: # We won't consider any other mutation types raise NotImplementedError self.logger.debug('new point after mutation:') self.logger.debug(new_x) child = Member(new_x, self._f, self.__bounds, self._mutation, self._recombination, self._sigma, self._recom_prob) self._age += 1 return child def recombine(self, partner): """ Recombination of this member with a partner :param partner: Member :return: new offspring based on this member and partner """ if self._recombination == Recombination.INTERMEDIATE: new_x = 0.5*(self.x_coordinate + partner.x_coordinate) elif self._recombination == Recombination.UNIFORM: assert self._recom_prob is not None, \ 'for this recombination type you have to specify the recombination probability' cross = np.random.binomial(1,self._recom_prob,self.x_coordinate.size) new_x = self.x_coordinate*cross + partner.x_coordinate*(1-cross) elif self._recombination == Recombination.NONE: new_x = self.x_coordinate.copy() # copy is important here to not only get a reference else: raise NotImplementedError self.logger.debug('new point after recombination:') self.logger.debug(new_x) child = Member(new_x, self._f, self.__bounds, self._mutation, self._recombination, self._sigma, self._recom_prob) self._age += 1 return child def __str__(self): """Makes the class easily printable""" str = "Population member: Age={}, x={}, f(x)={}".format(self._age, self.x_coordinate, self.fitness) return str def __repr__(self): """Will also make it printable if it is an entry in a list""" return self.__str__() + '\n' class EA: def __init__(self, target_func: callable, population_size: int = 10, problem_dim: int = 2, problem_bounds: List = [-30, 30], mutation_type: Mutation = Mutation.UNIFORM, recombination_type: Recombination = Recombination.INTERMEDIATE, sigma: float = 1., recom_proba: float = 0.5, selection_type: ParentSelection = ParentSelection.NEUTRAL, total_number_of_function_evaluations: int = 200, children_per_step: int = 5, fraction_mutation: float = .5 ): """ Simple evolutionary algorithm :param target_func: callable target function we optimize :param population_size: int :param problem_dim: int :param problem_bounds: list[int] used to make sure population members are valid :param mutation_type: hyperparameter to set mutation strategy :param recombination_type: hyperparameter to set recombination strategy :param sigma: conditional hyperparameter dependent on mutation_type GAUSSIAN :param recom_proba: conditional hyperparameter dependent on recombination_type UNIFORM :param selection_type: hyperparameter to set selection strategy :param total_number_of_function_evaluations: maximum allowed function evaluations :param children_per_step: how many children to produce per step :param fraction_mutation: balance between sexual and asexual reproduction """ assert 0 <= fraction_mutation <= 1 assert 0 < children_per_step assert 0 < total_number_of_function_evaluations assert 0 < sigma assert 0 < problem_dim assert 0 < population_size # Step 1: initialize Population self.population = [ Member(np.random.uniform(*problem_bounds, problem_dim), target_func, problem_bounds, mutation_type, recombination_type, sigma, recom_proba ) for _ in range(population_size)] self.population.sort(key=lambda x: x.fitness) # sort population by fitness for easier handling downstream self.pop_size = population_size self.selection = selection_type self.logger = logging.getLogger(self.__class__.__name__) self.logger.info('Initial average fitness of population: %f', self.get_average_fitness()) self.max_func_evals = total_number_of_function_evaluations self._func_evals = population_size self.num_children = children_per_step self.frac_mutants = fraction_mutation # will store the optimization trajectory and lets you easily observe how often self.trajectory = [self.population[0]] # a new best member was generated def get_average_fitness(self) -> float: """Helper to quickly access average population fitness""" return np.mean(list(map(lambda x: x.fitness, self.population))) def select_parents(self): """ Method that implements all selection mechanism. For ease of computation we assume that the population members are sorted according to their fitness :return: list of ids of selected parents. """ parent_ids = [] mu = self.num_children if self.selection == ParentSelection.NEUTRAL: for i in range(mu): id = random.randint(0, self.pop_size) parent_ids.append(id) elif self.selection == ParentSelection.FITNESS: for i in range(mu): max = sum([c.fitness for c in self.population]) pick = random.uniform(0, max) current = 0 for id, member in zip(range(self.pop_size), self.population): current+= member.fitness if current > pick: parent_ids.append(self.pop_size-1-id) break elif self.selection == ParentSelection.TOURNAMENT: for i in range(mu): tournament_size = 5 if self.pop_size <= tournament_size: parent_ids.append(0) else: arr = np.array([1]*tournament_size + [0] * (self.pop_size-tournament_size)) np.random.shuffle(arr) one_idx= np.where(arr==1) parent_ids.append(one_idx[0][0]) else: raise NotImplementedError self.logger.debug('Selected parents:') self.logger.debug(parent_ids) return parent_ids def step(self) -> float: """ Performs one step of parent selection -> offspring creation -> survival selection :return: average population fittness """ # Step 2: Parent selection parent_ids = self.select_parents() # Step 3: Variation / create offspring children = [] for id in parent_ids: # for each parent create exactly one offspring (use the frac_mutants) parameter to determine # if more recombination or mutation should be performed parent = self.population[id] new_pop = parent.mutate() if np.random.uniform(0., 1., 1) < self.frac_mutants: new_pop = parent.recombine(new_pop) children.append(new_pop) self._func_evals += 1 self.logger.debug('Children:') self.logger.debug(children) # Step 4: Survival selection # (\mu + \lambda)-selection i.e. combine offspring and parents in one sorted list, keep the #pop_size best self.population.extend(children) self.population.sort(key=lambda x: x.fitness) self.population = self.population[:self.pop_size] self.trajectory.append(self.population[0]) return self.get_average_fitness() def optimize(self): """ Simple optimization loop that stops after a predetermined number of function evaluations :return: """ step = 1 while self._func_evals < self.max_func_evals: avg_fitness = self.step() self.logger.info( 'Step {:>3d} | Average fitness {:>10.7f} | Best fitness {:>10.7f} | #Func Evals: {:>4d}'.format( step, avg_fitness, self.population[0].fitness, self._func_evals)) step += 1 return self.population[0] if __name__ == '__main__': """ Simple main to give an example of how to use the EA """ from target_function import ackley np.random.seed(0) # fix seed for comparisons sake logging.basicConfig(level=logging.INFO) dimensionality = 2 max_func_evals = 500 * dimensionality pop_size = 20 ea = EA(ackley, pop_size, dimensionality, selection_type=ParentSelection.TOURNAMENT, total_number_of_function_evaluations=max_func_evals) optimum = ea.optimize() # print(ea.trajectory) print(optimum) print('#' * 120) ea = EA(ackley, pop_size, dimensionality, selection_type=ParentSelection.FITNESS, total_number_of_function_evaluations=max_func_evals) optimum = ea.optimize() # print(ea.trajectory) print(optimum) print('#' * 120) ea = EA(ackley, pop_size, dimensionality, selection_type=ParentSelection.NEUTRAL, total_number_of_function_evaluations=max_func_evals) optimum = ea.optimize() # print(ea.trajectory) print(optimum) print('#' * 120)
py
1a508b7c8857ef2062b0bd1c3deb38363465d49d
# Copyright Amazon.com Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may # not use this file except in compliance with the License. A copy of the # License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """Integration tests for the SageMaker TrainingJob API. """ import botocore import pytest import logging from typing import Dict from acktest.resources import random_suffix_name from acktest.k8s import resource as k8s from e2e import ( service_marker, create_sagemaker_resource, wait_for_status, sagemaker_client, ) from e2e.replacement_values import REPLACEMENT_VALUES from e2e.bootstrap_resources import get_bootstrap_resources from e2e.common import config as cfg from time import sleep RESOURCE_PLURAL = "trainingjobs" @pytest.fixture(scope="function") def xgboost_training_job_debugger(): resource_name = random_suffix_name("xgboost-trainingjob-debugger", 32) replacements = REPLACEMENT_VALUES.copy() replacements["TRAINING_JOB_NAME"] = resource_name reference, _, resource = create_sagemaker_resource( resource_plural=RESOURCE_PLURAL, resource_name=resource_name, spec_file="xgboost_trainingjob_debugger", replacements=replacements, ) assert resource is not None assert k8s.get_resource_arn(resource) is not None yield (reference, resource) if k8s.get_resource_exists(reference): _, deleted = k8s.delete_custom_resource(reference, 3, 10) assert deleted def get_sagemaker_training_job(training_job_name: str): try: training_job = sagemaker_client().describe_training_job( TrainingJobName=training_job_name ) return training_job except botocore.exceptions.ClientError as error: logging.error( f"SageMaker could not find a training debugger job with the name {training_job_name}. Error {error}" ) return None # TODO: Move to __init__.py def get_training_sagemaker_status(training_job_name: str): training_sm_desc = get_sagemaker_training_job(training_job_name) return training_sm_desc["TrainingJobStatus"] def get_training_resource_status(reference: k8s.CustomResourceReference): resource = k8s.get_resource(reference) assert "trainingJobStatus" in resource["status"] return resource["status"]["trainingJobStatus"] def get_training_debugger_sagemaker_status(training_job_name: str): training_sm_desc = get_sagemaker_training_job(training_job_name) return training_sm_desc["DebugRuleEvaluationStatuses"][0]["RuleEvaluationStatus"] def get_training_debugger_resource_status(reference: k8s.CustomResourceReference): resource = k8s.get_resource(reference) resource_status = resource["status"]["debugRuleEvaluationStatuses"][0][ "ruleEvaluationStatus" ] assert resource_status is not None return resource_status @service_marker class TestTrainingDebuggerJob: def _wait_sagemaker_training_status( self, training_job_name, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_sagemaker_status, training_job_name, ) def _wait_resource_training_status( self, reference: k8s.CustomResourceReference, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_resource_status, reference, ) def _assert_training_status_in_sync( self, training_job_name, reference, expected_status ): assert ( self._wait_sagemaker_training_status(training_job_name, expected_status) == self._wait_resource_training_status(reference, expected_status) == expected_status ) def _wait_sagemaker_training_debugger_status( self, training_job_name, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_debugger_sagemaker_status, training_job_name, ) def _wait_resource_training_debugger_status( self, reference: k8s.CustomResourceReference, expected_status: str, wait_periods: int = 30, period_length: int = 30, ): return wait_for_status( expected_status, wait_periods, period_length, get_training_debugger_resource_status, reference, ) def _assert_training_debugger_status_in_sync( self, training_job_name, reference, expected_status ): assert ( self._wait_sagemaker_training_debugger_status( training_job_name, expected_status ) == self._wait_resource_training_debugger_status(reference, expected_status) == expected_status ) def test_completed(self, xgboost_training_job_debugger): (reference, resource) = xgboost_training_job_debugger assert k8s.get_resource_exists(reference) training_job_name = resource["spec"].get("trainingJobName", None) assert training_job_name is not None training_job_desc = get_sagemaker_training_job(training_job_name) assert k8s.get_resource_arn(resource) == training_job_desc["TrainingJobArn"] assert training_job_desc["TrainingJobStatus"] == cfg.JOB_STATUS_INPROGRESS assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "False") self._assert_training_status_in_sync( training_job_name, reference, cfg.JOB_STATUS_COMPLETED ) # TODO: This test is failing assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "False") self._assert_training_debugger_status_in_sync( training_job_name, reference, cfg.DEBUGGERJOB_STATUS_COMPLETED ) assert k8s.wait_on_condition(reference, "ACK.ResourceSynced", "True") # Check that you can delete a completed resource from k8s _, deleted = k8s.delete_custom_resource(reference, 3, 10) assert deleted is True
py
1a508c997d77d0a7166980ec6b504c06e8c7ad4c
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name='scrapy-autounit', version='0.0.22', author='', author_email='', description='Automatic unit test generation for Scrapy.', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/fcanobrash/scrapy-autounit', packages=setuptools.find_packages(), classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', ], install_requires=[ 'pathlib', 'datadiff==2.0.0', ], entry_points = { 'console_scripts': ['autounit-inspect=scrapy_autounit.inspect:main'], }, )
py
1a508cb3c4d0fd909c39b31e5183e84ed4e56b9e
n = input("Credit Card No.: ") s1 = 0 s2 = 0 for i in range(len(n)): if(i%2 == 0): s1 += int(n[i]) else: tmp = int(n[i]) * 2 while (tmp > 9): tmp -= 9 s2 += tmp tot = s1 + s2 if( tot % 10 == 0): print(n + " passes the test") else: print(n + " failed the test")
py
1a508dbac7dfd15a6330d757fa97c1caff0d6bc0
# find the minimum number of coins needed to make up a given amount # greedy version, not dynamic programming version denominations = [1, 2, 5, 10, 20, 50, 100, 1000] # add the largest coin that does not exceed the target amount to the total def coins_required(amount): total = 0 coins = [] for denomination in denominations[::-1]: while total + denomination <= amount: total += denomination coins.append(denomination) return coins print(coins_required(2035))
py
1a508ef3bdac9c9611f6c4ba82a14522651d3743
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads/v6/errors/customer_client_link_error.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads/v6/errors/customer_client_link_error.proto', package='google.ads.googleads.v6.errors', syntax='proto3', serialized_options=b'\n\"com.google.ads.googleads.v6.errorsB\034CustomerClientLinkErrorProtoP\001ZDgoogle.golang.org/genproto/googleapis/ads/googleads/v6/errors;errors\242\002\003GAA\252\002\036Google.Ads.GoogleAds.V6.Errors\312\002\036Google\\Ads\\GoogleAds\\V6\\Errors\352\002\"Google::Ads::GoogleAds::V6::Errors', create_key=_descriptor._internal_create_key, serialized_pb=b'\n?google/ads/googleads/v6/errors/customer_client_link_error.proto\x12\x1egoogle.ads.googleads.v6.errors\x1a\x1cgoogle/api/annotations.proto\"\x8f\x03\n\x1b\x43ustomerClientLinkErrorEnum\"\xef\x02\n\x17\x43ustomerClientLinkError\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0b\n\x07UNKNOWN\x10\x01\x12*\n&CLIENT_ALREADY_INVITED_BY_THIS_MANAGER\x10\x02\x12\'\n#CLIENT_ALREADY_MANAGED_IN_HIERARCHY\x10\x03\x12\x1b\n\x17\x43YCLIC_LINK_NOT_ALLOWED\x10\x04\x12\"\n\x1e\x43USTOMER_HAS_TOO_MANY_ACCOUNTS\x10\x05\x12#\n\x1f\x43LIENT_HAS_TOO_MANY_INVITATIONS\x10\x06\x12*\n&CANNOT_HIDE_OR_UNHIDE_MANAGER_ACCOUNTS\x10\x07\x12-\n)CUSTOMER_HAS_TOO_MANY_ACCOUNTS_AT_MANAGER\x10\x08\x12 \n\x1c\x43LIENT_HAS_TOO_MANY_MANAGERS\x10\tB\xf7\x01\n\"com.google.ads.googleads.v6.errorsB\x1c\x43ustomerClientLinkErrorProtoP\x01ZDgoogle.golang.org/genproto/googleapis/ads/googleads/v6/errors;errors\xa2\x02\x03GAA\xaa\x02\x1eGoogle.Ads.GoogleAds.V6.Errors\xca\x02\x1eGoogle\\Ads\\GoogleAds\\V6\\Errors\xea\x02\"Google::Ads::GoogleAds::V6::Errorsb\x06proto3' , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _CUSTOMERCLIENTLINKERRORENUM_CUSTOMERCLIENTLINKERROR = _descriptor.EnumDescriptor( name='CustomerClientLinkError', full_name='google.ads.googleads.v6.errors.CustomerClientLinkErrorEnum.CustomerClientLinkError', filename=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='UNKNOWN', index=1, number=1, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CLIENT_ALREADY_INVITED_BY_THIS_MANAGER', index=2, number=2, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CLIENT_ALREADY_MANAGED_IN_HIERARCHY', index=3, number=3, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CYCLIC_LINK_NOT_ALLOWED', index=4, number=4, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CUSTOMER_HAS_TOO_MANY_ACCOUNTS', index=5, number=5, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CLIENT_HAS_TOO_MANY_INVITATIONS', index=6, number=6, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CANNOT_HIDE_OR_UNHIDE_MANAGER_ACCOUNTS', index=7, number=7, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CUSTOMER_HAS_TOO_MANY_ACCOUNTS_AT_MANAGER', index=8, number=8, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), _descriptor.EnumValueDescriptor( name='CLIENT_HAS_TOO_MANY_MANAGERS', index=9, number=9, serialized_options=None, type=None, create_key=_descriptor._internal_create_key), ], containing_type=None, serialized_options=None, serialized_start=162, serialized_end=529, ) _sym_db.RegisterEnumDescriptor(_CUSTOMERCLIENTLINKERRORENUM_CUSTOMERCLIENTLINKERROR) _CUSTOMERCLIENTLINKERRORENUM = _descriptor.Descriptor( name='CustomerClientLinkErrorEnum', full_name='google.ads.googleads.v6.errors.CustomerClientLinkErrorEnum', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _CUSTOMERCLIENTLINKERRORENUM_CUSTOMERCLIENTLINKERROR, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=130, serialized_end=529, ) _CUSTOMERCLIENTLINKERRORENUM_CUSTOMERCLIENTLINKERROR.containing_type = _CUSTOMERCLIENTLINKERRORENUM DESCRIPTOR.message_types_by_name['CustomerClientLinkErrorEnum'] = _CUSTOMERCLIENTLINKERRORENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) CustomerClientLinkErrorEnum = _reflection.GeneratedProtocolMessageType('CustomerClientLinkErrorEnum', (_message.Message,), { 'DESCRIPTOR' : _CUSTOMERCLIENTLINKERRORENUM, '__module__' : 'google.ads.googleads.v6.errors.customer_client_link_error_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.errors.CustomerClientLinkErrorEnum) }) _sym_db.RegisterMessage(CustomerClientLinkErrorEnum) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
py
1a508f5df0e22854fbed72fbd197ebe002525c17
from typing import List from secrets import choice from discord.ext import commands from .. import config keywords = ["dm"] reply = ( "SCAM ALERT! Never accept any trade on DEVNET, SOL on this network are fake and unlimited.", "SCAM ALERT! PLEASE ONLY DO BUSINESS ON MAGICEDEN OR SOLANART.", "SCAM ALERT! TO STAY SAFE, PLEASE TURN OFF YOUR DMS!!.", ) def check(word, list): return True if word in list else False class ScamAlert(commands.Cog): bot: commands.Bot allowed_channels: List[str] def __init__(self, bot): self.bot = bot self.allowed_channels = config.allowed_check_scam_channels @commands.Cog.listener() async def on_message(self, message): if message.author.bot: return if not message.content: return if message.channel.name in self.allowed_channels: msg_to_list = message.content.split() msg_to_list = [x.lower() for x in msg_to_list] for word in keywords: if check(word.lower(), msg_to_list): await message.channel.send(choice(reply))
py
1a508fd21943030ee68e5287e73bd1d74433364a
# Copyright 2020 . All Rights Reserved. # Author : Lei Sha from Hyperparameters import args import argparse parser = argparse.ArgumentParser() parser.add_argument('--gpu', '-g') parser.add_argument('--modelarch', '-m') parser.add_argument('--aspect', '-a') parser.add_argument('--choose', '-c') cmdargs = parser.parse_args() print(cmdargs) usegpu = True if cmdargs.gpu is None: usegpu = False args['device'] = 'cpu' else: usegpu = True args['device'] = 'cuda:' + str(cmdargs.gpu) if cmdargs.modelarch is None: args['model_arch'] = 'lstm' else: args['model_arch'] = cmdargs.modelarch if cmdargs.aspect is None: args['aspect'] = 0 else: args['aspect'] = int(cmdargs.aspect) if cmdargs.choose is None: args['choose'] = 0 else: args['choose'] = int(cmdargs.aspect) import functools print = functools.partial(print, flush=True) import os from textdataBeer import TextDataBeer import time, sys import torch import torch.autograd as autograd import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from tqdm import tqdm import time, datetime import math, random import nltk import pickle from nltk.translate.bleu_score import corpus_bleu, SmoothingFunction # import matplotlib.pyplot as plt import numpy as np import copy from LanguageModel_beer import LanguageModel import LSTM_IB_GAN_beer def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (%s)' % (asMinutes(s), datetime.datetime.now()) class Runner: def __init__(self): self.model_path = args['rootDir'] + '/chargemodel_' + args['model_arch'] + '.mdl' def main(self): if args['model_arch'] in ['lstmibgan']: args['classify_type'] = 'single' args['batchSize'] = 256 self.textData = TextDataBeer('beer') # self.start_token = self.textData.word2index['START_TOKEN'] # self.end_token = self.textData.word2index['END_TOKEN'] args['vocabularySize'] = self.textData.getVocabularySize() args['chargenum'] = 5 args['embeddingSize'] = self.textData.index2vector.shape[1] print(self.textData.getVocabularySize()) args['model_arch'] = 'lstmibgan' # args['aspect'] = 0 args['hiddenSize'] = 200 print(args) if args['model_arch'] == 'lstmibgan': print('Using LSTM information bottleneck GAN model for Beer.') LM = torch.load(args['rootDir']+'/LMbeer.pkl', map_location=args['device']) for param in LM.parameters(): param.requires_grad = False ppl = self.CalPPL(LM) print('PPL=',ppl) # LM=0 LSTM_IB_GAN_beer.train(self.textData, LM, self.textData.index2vector) def indexesFromSentence(self, sentence): return [self.textData.word2index[word] if word in self.textData.word2index else self.textData.word2index['UNK'] for word in sentence] def tensorFromSentence(self, sentence): indexes = self.indexesFromSentence(sentence) # indexes.append(self.textData.word2index['END_TOKEN']) return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1) def evaluate(self, sentence, correctlabel, max_length=20): with torch.no_grad(): input_tensor = self.tensorFromSentence(sentence) input_length = input_tensor.size()[0] # encoder_hidden = encoder.initHidden() # encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device) x = {} # print(input_tensor) x['enc_input'] = torch.transpose(input_tensor, 0, 1) x['enc_len'] = [input_length] x['labels'] = [correctlabel] # print(x['enc_input'], x['enc_len']) # print(x['enc_input'].shape) decoded_words, label, _ = self.model.predict(x, True) return decoded_words, label def evaluateRandomly(self, n=10): for i in range(n): sample = random.choice(self.textData.datasets['train']) print('>', sample) output_words, label = self.evaluate(sample[2], sample[1]) output_sentence = ' '.join(output_words[0]) # batch=1 print('<', output_sentence, label) print('') def CalPPL(self, LM): batches = self.textData.getBatches('dev') total = 0 loss_sum = 0 for index, batch in enumerate(batches): x = {} x['dec_input'] = autograd.Variable(torch.LongTensor(batch.decoderSeqs)).to(args['device']) x['dec_len'] = batch.decoder_lens x['dec_target'] = autograd.Variable(torch.LongTensor(batch.targetSeqs)).to(args['device']) total += x['dec_input'].size()[0] print(x['dec_input'].size()) embedding = nn.Embedding.from_pretrained(torch.FloatTensor(self.textData.index2vector)) decoderTargetsEmbeddings = embedding(x['dec_target']) _, recon_loss = LM.getloss(x['dec_input'],decoderTargetsEmbeddings, x['dec_target'] ) loss_sum += recon_loss.sum() loss_mean = loss_sum / total return torch.exp(loss_mean) if __name__ == '__main__': r = Runner() r.main()
py
1a509141414a5ef6470ad8ed7ebecfc818ca601b
# -*- coding: utf-8 -*- """RAPIDS_Intro.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/11M0rHM6Q3cao8_tYzp-XTZrOh9e-CAL1 # Accelerating Pandas and Scikit Learn on GPU using RAPIDS - Note use only T4 or P100 Or P4 GPU which is compatible for RAPIDS. - https://github.com/rapidsai - RAPIDS Uses the folowing componenets: - - CuML : - Cuda Accelerated Machine learning. (GPU Replacement for sklearn) - Cudf : - Cuda DataFrames (GPU Replacement for pandas) - CuGraph : - Cuda accelerated Graphs. (GPU Replacement for networkX) - CuDNN : - Cuda Deep Neural Networks # Installing RAPIDS. - Follow the procedure. """ !nvidia-smi # Install RAPIDS !git clone https://github.com/rapidsai/rapidsai-csp-utils.git !bash rapidsai-csp-utils/colab/rapids-colab.sh import sys, os dist_package_index = sys.path.index('/usr/local/lib/python3.6/dist-packages') sys.path = sys.path[:dist_package_index] + ['/usr/local/lib/python3.6/site-packages'] + sys.path[dist_package_index:] sys.path exec(open('rapidsai-csp-utils/colab/update_modules.py').read(), globals()) """# Now we can use CuML and CuDf""" import cuml, cudf import sys,tempfile, urllib, os import pandas as pd from sklearn.model_selection import train_test_split import numpy as np from sklearn.datasets import fetch_openml covtyp = fetch_openml(name='covertype', version=4) # Predicting the forest cover type using 53 variables. # Predict one categorical class. covtyp.data.shape np.unique(covtyp.target) # Still we have not loaded the data !nvidia-smi cov_df = pd.DataFrame(data=np.c_[covtyp['data'], covtyp['target']], columns=covtyp['feature_names'] + ['target']) cov_df.memory_usage().sum() cov_df.head() cov_df.target.value_counts() cov_df.dtypes """- Convert all objects into float32 format. - Keep the categorical target as int32 """ for cols in cov_df.columns: cov_df[cols] = cov_df[cols].astype(np.float32) cov_df.dtypes cov_df['target'] = cov_df['target'].astype(np.int32) """- Keep target variable from 0 - 7 instead of 1 - 8""" cov_df['target'] = cov_df['target'] - 1 cov_df_x = cov_df.drop(['target'], axis=1) cov_df_y = cov_df['target'] cov_df_x.head() cov_df_y = pd.DataFrame(cov_df_y) cov_df_y['target'] = cov_df_y['target'].astype(np.int32) cov_df_y['target'].value_counts() cov_df_y.dtypes X_train, X_test, y_train, y_test = train_test_split(cov_df_x, cov_df_y, train_size=0.75, stratify=cov_df_y, random_state=31) """- This moves data to GPU by making a GPU dataframe""" X_train_gdf = cudf.DataFrame.from_pandas(X_train) X_test_gdf = cudf.DataFrame.from_pandas(X_test) y_train_gdf = cudf.DataFrame.from_pandas(y_train) y_test_gdf = cudf.DataFrame.from_pandas(y_test) !nvidia-smi from cuml import RandomForestClassifier as curf import time curf_params = { 'n_estimators' : 250, 'max_depth' : 3, 'n_streams' : 1, 'split_algo' : 0, 'seed' : 1000 } clf = curf(**curf_params) start_time = time.time() clf.fit(X_train_gdf, y_train_gdf) end_time = time.time() print("Time taken to train = %s" %(end_time - start_time)) pred = clf.predict(X_test_gdf) print(pred) print(pred[0]) # There may be problem with older versions. Tested on v 0.12 clf.score(X_test_gdf, y_test_gdf) # We can take values to local memory pred_out = pred.copy_to_host() from sklearn.metrics import confusion_matrix confusion_matrix(y_test, pred_out)
py
1a5092922e3ff08032f24d8039449c8152e45b30
import skimage.transform as st import numpy as np import matplotlib.pyplot as plt from skimage import data, feature def ex_1(): # Hough Transform image = np.zeros((100, 100)) idx = np.arange(25, 75) image[idx[::-1], idx] = 255 image[idx, idx] = 255 h, theta, d = st.hough_line(image) fig, (ax0, ax1) = plt.subplots(1, 2) plt.tight_layout() ax0.imshow(image, plt.cm.gray) ax0.set_title('input') ax0.set_axis_off() ax1.imshow(np.log(1 + h)) ax1.set_title('Hough') ax1.set_xlabel('Angles (degrees)') ax1.set_ylabel('Distance (pixels)') ax1.axis('image') plt.show() def ex_2(): # Hough Transform Line Detection image = np.zeros((100, 100)) idx = np.arange(25, 75) image[idx[::-1], idx] = 255 image[idx, idx] = 255 h, theta, d = st.hough_line(image) fig, (ax0, ax1, ax2) = plt.subplots(1, 3) plt.tight_layout() ax0.imshow(image, plt.cm.gray) ax0.set_title('input image') ax0.set_axis_off() ax1.imshow(np.log(1 + h)) ax1.set_title('Hough transform') ax1.set_xlabel('Angles (degrees)') ax1.set_ylabel('Distance (pixels)') ax1.axis('image') ax2.imshow(image, plt.cm.gray) row1, col1 = image.shape for _, angle, dist in zip(*st.hough_line_peaks(h, theta, d)): y0 = (dist - 0 * np.cos(angle)) / np.sin(angle) y1 = (dist - col1 * np.cos(angle)) / np.sin(angle) ax2.plot((0, col1), (y0, y1), '-r') ax2.axis((0, col1, row1, 0)) ax2.set_title('Detected') ax2.set_axis_off() plt.show() def ex_3(): # Probabilistic Hough Transform image = data.camera() edges = feature.canny(image, sigma=2, low_threshold=1, high_threshold=25) lines = st.probabilistic_hough_line(edges, threshold=10, line_length=5, line_gap=3) fig, (ax0, ax1, ax2) = plt.subplots(1, 3) plt.tight_layout() ax0.imshow(image, plt.cm.gray) ax0.set_title('input') ax0.set_axis_off() ax1.imshow(edges, plt.cm.gray) ax1.set_title('canny edges') ax1.set_axis_off() ax2.imshow(edges * 0) for line in lines: p0, p1 = line ax2.plot((p0[0], p1[0]), (p0[1], p1[1])) row2, col2 = image.shape ax2.axis((0, col2, row2, 0)) ax2.set_title('probabilistic') ax2.set_axis_off() plt.show() if __name__ == '__main__': ex_3()
py
1a5092a930491418a72a2f8ed8025184ae877684
import os import random from comet_ml import Experiment import torch import copy import colbert.utils.distributed as distributed from colbert.utils.parser import Arguments from colbert.utils.runs import Run from colbert.training.training import train def main(): parser = Arguments(description='Training ColBERT with <query, positive passage, negative passage> triples.') parser.add_model_parameters() parser.add_model_training_parameters() parser.add_training_input() args = parser.parse() assert args.bsize % args.accumsteps == 0, ((args.bsize, args.accumsteps), "The batch size must be divisible by the number of gradient accumulation steps.") assert args.query_maxlen <= 512 assert args.doc_maxlen <= 512 args.lazy = args.collection is not None experiment = Experiment(project_name="ColBERT_Training") experiment.log_parameters(args) with Run.context(consider_failed_if_interrupted=False): train(args) if __name__ == "__main__": main()
py
1a5092c32e262621e8919badd17fc25eb17aea3d
# Generated by Django 3.1.4 on 2020-12-16 19:32 from django.db import migrations def add_questions(apps, schema_editor): YES_NO_CHOICES = ['Yes', 'No'] # noqa: N806 Question = apps.get_model('studies', 'Question') # noqa: N806 QuestionChoice = apps.get_model('studies', 'QuestionChoice') # noqa: N806 questions = { 'Can this be used for the desired application/study?': YES_NO_CHOICES, 'Does the lesion appear to be benign or malignant?': [ 'Benign', 'Malignant', ], 'Does the lesion appear to be benign, malignant, or neither?': [ 'Benign', 'Malignant', 'Unsure', ], 'Does the lesion appear with border/corners?': YES_NO_CHOICES, 'Does the lesion contain a network?': YES_NO_CHOICES, 'Does the lesion image contain a ruler?': YES_NO_CHOICES, 'Does the lesion image contain any sensitive content or potential Protected Health Information?': YES_NO_CHOICES, # noqa: E501 'Does the lesion image contain light leak spots?': YES_NO_CHOICES, 'Does the lesion image contain pen markings?': YES_NO_CHOICES, 'Indicate your management decision': ['Biopsy', 'Observation and/or reassurance'], 'Is the lesion area blurry?': YES_NO_CHOICES, 'Is the lesion diagnosis consistent with the current image?': YES_NO_CHOICES, 'Is the lesion a nevus, seborrheic keratosis, or melanoma?': [ 'Nevus', 'Seborrheic keratosis', 'Melanoma', ], 'Is the lesion a nevus, melanoma, or other?': ['Melanoma', 'Nevus', 'Other'], 'Is the lesion organized or disorganized?': ['Organized', 'Disorganized'], 'Is there hair obscuring the lesion?': YES_NO_CHOICES, 'What is your level of confidence (1-7)?': [ 'Absolutely confident', 'Confident', 'Somewhat confident', 'Neither confident nor unconfident', 'Somewhat unconfident', 'Unconfident', 'Not confident at all', ], 'What is your level of confidence (1-5)?': [ 'Very Confident', 'Somewhat Confident', 'Neither Confident / Not Confident', 'Somewhat Not Confident', 'Very Not Confident', ], 'Does the lesion contain the color black?': YES_NO_CHOICES, 'Does the lesion contain the color brown?': YES_NO_CHOICES, 'Does the lesion contain the color grey/blue?': YES_NO_CHOICES, 'Does the lesion contain the color light brown?': YES_NO_CHOICES, 'Does the lesion contain the color red?': YES_NO_CHOICES, 'Does the lesion contain the color white?': YES_NO_CHOICES, } for question, choices in questions.items(): q = Question.objects.create(prompt=question, official=True) for choice in choices: QuestionChoice.objects.create(question=q, text=choice) class Migration(migrations.Migration): dependencies = [ ('studies', '0001_initial'), ] operations = [ migrations.RunPython(add_questions), ]
py
1a50939315de53dbb797c712bdfa7784a3f5e51e
from .api import Api __all__ = ['Api']
py
1a50940be7c36e428a0aed2a0a801692edfdfcb3
from django.utils.encoding import force_unicode from django.forms.forms import BoundField from django.utils.html import conditional_escape def as_p(instance=None, cls=None): "Returns this form rendered as HTML <p>s." if not instance and not cls: return TypeError('as_p takes at least 1 argument (0 given)') elif instance and cls: return TypeError('as_p takes at most 1 argument (2 given)') elif cls: # This might not always work, if your form requires params, # pass an instance instead of a class! instance = cls() return html_output( instance, normal_row = u'<p%(html_class_attr)s>%(label)s %(field)s%(help_text)s</p>', error_row = u'%s', row_ender = '</p>', help_text_html = u' %s', errors_on_separate_row = True) def as_div(instance=None, cls=None): "Returns this form rendered as HTML <div>s." if not instance and not cls: return TypeError('as_div takes at least 1 argument (0 given)') elif instance and cls: return TypeError('as_div takes at most 1 argument (2 given)') elif cls: # This might not always work, if your form requires params, # pass an instance instead of a class! instance = cls() return html_output( instance, normal_row = u'<div%(html_class_attr)s>%(label)s %(field)s%(help_text)s</div>', error_row = u'%s', row_ender = '</div>', help_text_html = u' %s', errors_on_separate_row = True) def as_table(instance=None, cls=None): "Returns this form rendered as HTML <tr>s -- excluding the <table></table>." if not instance and not cls: return TypeError('as_table takes at least 1 argument (0 given)') elif instance and cls: return TypeError('as_table takes at most 1 argument (2 given)') elif cls: # This might not always work, if your form requires params, # pass an instance instead of a class! instance = cls() return html_output( instance, normal_row = u'<tr%(html_class_attr)s><th>%(label)s</th><td>%(errors)s%(field)s%(help_text)s</td></tr>', error_row = u'<tr><td colspan="2">%s</td></tr>', row_ender = u'</td></tr>', help_text_html = u'<br />%s', errors_on_separate_row = False) def as_ul(instance=None, cls=None): "Returns this form rendered as HTML <li>s -- excluding the <ul></ul>." if not instance and not cls: return TypeError('as_ul takes at least 1 argument (0 given)') elif instance and cls: return TypeError('as_ul takes at most 1 argument (2 given)') elif cls: # This might not always work, if your form requires params, # pass an instance instead of a class! instance = cls() return html_output( instance, normal_row = u'<li%(html_class_attr)s>%(errors)s%(label)s %(field)s%(help_text)s</li>', error_row = u'<li>%s</li>', row_ender = '</li>', help_text_html = u' %s', errors_on_separate_row = False) def html_output(form, normal_row, error_row, row_ender, help_text_html, errors_on_separate_row): "Helper function for outputting HTML. Used by as_table(), as_ul(), as_p()." top_errors = form.non_field_errors() # Errors that should be displayed above all fields. output, hidden_fields = [], [] for name, field in form.fields.items(): html_class_attr = '' bf = BoundField(form, field, name) bf_errors = form.error_class([conditional_escape(error) for error in bf.errors]) # Escape and cache in local variable. if bf.is_hidden: if bf_errors: top_errors.extend([u'(Hidden field %s) %s' % (name, force_unicode(e)) for e in bf_errors]) hidden_fields.append(unicode(bf)) else: # Create a 'class="..."' atribute if the row should have any # CSS classes applied. css_classes = bf.css_classes() if css_classes: html_class_attr = ' class="%s"' % css_classes if errors_on_separate_row: output.append(error_row % \ '{%% if form.%s.errors %%}{%% for error in form.%s.errors %%}{{ error }}{%% endfor %%}{%% endif %%}' \ % (name, name,)) output.append(normal_row % { 'errors': \ '{%% if form.%s.errors %%}{%% for error in form.%s.errors %%}{{ error }}{%% endfor %%}{%% endif %%}' \ % (name, name,), 'label': '{{ form.%s.label_tag }}' % (name,), 'field': '{{ form.%s }}' % (name,), 'help_text': '', 'html_class_attr': html_class_attr }) if top_errors: output.insert(0, r'{% if form.errors %}{% for field, error in form.errors %}(Hidden field {{ field }}) {{ error }}{% endfor %}{% end if %}' ) if hidden_fields: # Insert any hidden fields in the last row. str_hidden = u'{%% for field in form.hidden_fields %%}{{ field }}{%% endfor %%}' if output: last_row = output[-1] # Chop off the trailing row_ender (e.g. '</td></tr>') and # insert the hidden fields. if not last_row.endswith(row_ender): # This can happen in the as_p() case (and possibly others # that users write): if there are only top errors, we may # not be able to conscript the last row for our purposes, # so insert a new, empty row. last_row = (normal_row % {'errors': '', 'label': '', 'field': '', 'help_text':'', 'html_class_attr': html_class_attr}) output.append(last_row) output[-1] = last_row[:-len(row_ender)] + str_hidden + row_ender else: # If there aren't any rows in the output, just append the # hidden fields. output.append(str_hidden) return u'\n'.join(output)
py
1a5095816ddf423e13d4d9acf5c2d0f530d587d0
import numpy as np import statistics as stat from config import * def process_info(info): """ Process a line of info from data source and extract distance :param info: a line of info. See below for format sample :return: directory of {node_id (str): distance} """ dist = {} rough_split = info.split('[') if len(rough_split) <= 2: return None dis_list = rough_split[1].split(']')[0].split(',') if len(dis_list) < 4: return None id_list = rough_split[2].split(']')[0].split(',') if len(id_list) < 4: return None if (len(dis_list) != len(id_list)) | (len(dis_list) < 4): return None for i in range(0, len(dis_list)): id_list[i] = id_list[i].strip('"') if id_list[i] in ref_nodes: dist[id_list[i]] = float(dis_list[i].strip('"')) if len(dist) < 4: return None return dist pre_process_threshold = 0.5 def pre_process_data(ranges): """ Pre-process a list of ranges from one reference node and eliminate points that are away from the medium by pre_process_threshold :param ranges: a list of ranges :return average range after filtering """ median = stat.median(ranges) s = 0 # sum c = 0 # count for r in ranges: if median - pre_process_threshold < r < median + pre_process_threshold: s += r c += 1 if c == 0: return None else: return s / c def calc_position(dist): """ Calculate position based on distances to reference point :param dist: directory of {node_id (str): distance} :return: 1D np.array of position [x, y, z] """ A = np.array([0, 0, 0]) B = np.array([0]) for i in dist.keys(): if i == base_node: continue A = np.vstack((A, ref_nodes[i] - ref_nodes[base_node])) B = np.vstack( (B, dist[i] ** 2 - dist[base_node] ** 2 - np.dot(ref_nodes[i] ** 2 - ref_nodes[base_node] ** 2, np.array([1, 1, 1])))) A = A[1:len(dist)] B = B[1:len(dist)] * (-0.5) AT = np.transpose(A) B = np.dot(AT, B) rev = np.linalg.inv(np.dot(AT, A)) pos = np.dot(rev, B) posT = np.transpose(pos) return posT[0] if __name__ == '__main__': dist = process_info( '{"utime": 2157172559,"survey": {"seq": 26,"mask": 15,"nrngs": [{"mask": 14,"nrng": ["2.495","3.583","2.443"]},{"mask": 13,"nrng": ["1.613","5.014","3.034"]},{"mask": 11,"nrng": ["3.550","4.971","5.377"]},{"mask": 7,"nrng": ["4.971","3.018","5.377"]}]}}') if dist is not None: print(dist) pos = calc_position(dist) if pos is not None: print(pos) else: print("Fail to calculate position") else: print("Fail to process info")
py
1a5095a3d93d4bf47d0f3ddd6bf8a5ddf32d4ed5
weight = 10 def run(): # Pak za guranje 1300cm od ivice, 774 # Pak za guranje: (200,1000) # Goldium: (726,1000) r.speed(140) #bilo 180 '''x,y = coord('gold_setpos') r.goto(x,y) r.absrot(-90) r.goto(x,y-200) r.speed(60) def f(): _goto(offset=1, ref='main') r.conf_set('enable_stuck', 1) _on('motion:stuck', f) r.absrot(-90) r.forward(150) r.setpos(y=-885) r.conf_set('enable_stuck', 0) r.speed(200) #bilo 180 r.forward(-100) r.absrot(0)''' ''' r.goto(0, 0) x,y= coord('aktiviranje_akceleratora') #r.goto(x,y,1) r.goto(x-100-10,y-25+14+5+7+5+6+3+50-20+150) @_do def _(): print("tek sad ocitaj: ") atoms = cam_read() if len(atoms) == 1: a = atoms[0] r.turn(-90) r.forward(int(-a[1]) + 120) r.turn(90) r.forward(int(a[0]) - 140) r.turn(90) r.forward(300) r.goto(x-100-10,y-25-20+5+14+7+5+6+3+50-20+150, -1) r.goto(x,y-25+14+7+5+6-20+5+3,-1) r.absrot(180) lrucica(1) #r.forward(120) #r.goto(x+100,y,1) r.goto(x+100+20,y-25+14-15+7+5+6+3,-1) lrucica(0) ##### # Nakon sto gurne pak #Poeni za guranje plavog u akcelerator i otklj goldeniuma addpts(10) addpts(10) r.forward(-50) r.turn(8) '''
py
1a5095d0e44f12da3bbdfafe0d8b27ecb9d0bf5f
# Copyright (c) 2013, Yanky and contributors # For license information, please see license.txt import frappe def execute(filters=None): columns, data = [], [] columns = get_columns() article_data = get_article_data(filters) for article in article_data: temp_dict = { "title":article.get("title"), "isbn":article.get("isbn"), "stock":article.get("stock"), "total_quantity":article.get("total_quantity"), "issued_count":article.get("total_quantity") - article.get("stock") } data.append(temp_dict) chart = get_chart() return columns, data, None, chart def get_columns(): columns = ["" for column in range(5)] columns[0] = { "label": ("Title"), "fieldname": "title", "fieldtype": "Link", "options": "Article", "width": 200 } columns[1] = { "label": ("Isbn"), "fieldname": "isbn", "width": 200 } columns[2] = { "label": ("Stock"), "fieldname": "stock", "width": 150 } columns[3] = { "label": ("Total Quantity"), "fieldname": "total_quantity", "width": 150 } columns[4] = { "label": ("Issued Count"), "fieldname": "issued_count", "width": 150 } return columns def get_article_data(filters) : if filters: query = "select title, isbn, stock, total_quantity from tabArticle where title = '" + str(filters.get("title_filter")) + "'" article_data = frappe.db.sql(query, as_dict=1) else: article_data = frappe.db.sql("""select title, isbn, stock, total_quantity from tabArticle """, as_dict=1) return article_data def get_chart(): chart_data = { "labels": frappe.db.get_list('Article', fields=['title'],as_list=True), "datasets": [ { 'name': "Stock", 'values': frappe.db.get_list('Article',fields=['stock'],as_list=True) }, { 'name': "Total Quantity", 'values': frappe.db.get_list('Article',fields=['total_quantity'],as_list=True) } ] } chart = { "title": "Book Avialability", "data": chart_data, "type": 'bar', "height": 250, "color": ['#4463F0', '#7cd6fd'] } return chart
py
1a5095e4f7d52bf70ff8974af3783f497f20281b
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import atexit import bisect import multiprocessing as mp from collections import deque import cv2 import torch from detectron2.data import MetadataCatalog from detectron2.engine.defaults import DefaultPredictor from detectron2.utils.video_visualizer import VideoVisualizer from detectron2.utils.visualizer import ColorMode, Visualizer class VisualizationDemo(object): def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False): """ Args: cfg (CfgNode): instance_mode (ColorMode): parallel (bool): whether to run the model in different processes from visualization. Useful since the visualization logic can be slow. """ self.metadata = MetadataCatalog.get( cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" ) self.cpu_device = torch.device("cpu") self.instance_mode = instance_mode self.parallel = parallel if parallel: num_gpu = torch.cuda.device_count() self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) else: self.predictor = DefaultPredictor(cfg) self.metadata.thing_classes.append("object") def run_on_image(self, image): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. vis_output (VisImage): the visualized image output. """ vis_output = None predictions = self.predictor(image) # Convert image from OpenCV BGR format to Matplotlib RGB format. image = image[:, :, ::-1] visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_output = visualizer.draw_panoptic_seg_predictions( panoptic_seg.to(self.cpu_device), segments_info ) else: if "sem_seg" in predictions: vis_output = visualizer.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) if "instances" in predictions: instances = predictions["instances"].to(self.cpu_device) vis_output = visualizer.draw_instance_predictions(predictions=instances) return predictions, vis_output def _frame_from_video(self, video): while video.isOpened(): success, frame = video.read() if success: yield frame else: break def run_on_video(self, video): """ Visualizes predictions on frames of the input video. Args: video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be either a webcam or a video file. Yields: ndarray: BGR visualizations of each video frame. """ video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) def process_predictions(frame, predictions): frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_frame = video_visualizer.draw_panoptic_seg_predictions( frame, panoptic_seg.to(self.cpu_device), segments_info ) elif "instances" in predictions: predictions = predictions["instances"].to(self.cpu_device) vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) elif "sem_seg" in predictions: vis_frame = video_visualizer.draw_sem_seg( frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) # Converts Matplotlib RGB format to OpenCV BGR format vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) return vis_frame frame_gen = self._frame_from_video(video) if self.parallel: buffer_size = self.predictor.default_buffer_size frame_data = deque() for cnt, frame in enumerate(frame_gen): frame_data.append(frame) self.predictor.put(frame) if cnt >= buffer_size: frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) while len(frame_data): frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions) else: for frame in frame_gen: yield process_predictions(frame, self.predictor(frame)) class AsyncPredictor: """ A predictor that runs the model asynchronously, possibly on >1 GPUs. Because rendering the visualization takes considerably amount of time, this helps improve throughput a little bit when rendering videos. """ class _StopToken: pass class _PredictWorker(mp.Process): def __init__(self, cfg, task_queue, result_queue): self.cfg = cfg self.task_queue = task_queue self.result_queue = result_queue super().__init__() def run(self): predictor = DefaultPredictor(self.cfg) while True: task = self.task_queue.get() if isinstance(task, AsyncPredictor._StopToken): break idx, data = task result = predictor(data) self.result_queue.put((idx, result)) def __init__(self, cfg, num_gpus: int = 1): """ Args: cfg (CfgNode): num_gpus (int): if 0, will run on CPU """ num_workers = max(num_gpus, 1) self.task_queue = mp.Queue(maxsize=num_workers * 3) self.result_queue = mp.Queue(maxsize=num_workers * 3) self.procs = [] for gpuid in range(max(num_gpus, 1)): cfg = cfg.clone() cfg.defrost() cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" self.procs.append( AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) ) self.put_idx = 0 self.get_idx = 0 self.result_rank = [] self.result_data = [] for p in self.procs: p.start() atexit.register(self.shutdown) def put(self, image): self.put_idx += 1 self.task_queue.put((self.put_idx, image)) def get(self): self.get_idx += 1 # the index needed for this request if len(self.result_rank) and self.result_rank[0] == self.get_idx: res = self.result_data[0] del self.result_data[0], self.result_rank[0] return res while True: # make sure the results are returned in the correct order idx, res = self.result_queue.get() if idx == self.get_idx: return res insert = bisect.bisect(self.result_rank, idx) self.result_rank.insert(insert, idx) self.result_data.insert(insert, res) def __len__(self): return self.put_idx - self.get_idx def __call__(self, image): self.put(image) return self.get() def shutdown(self): for _ in self.procs: self.task_queue.put(AsyncPredictor._StopToken()) @property def default_buffer_size(self): return len(self.procs) * 5
py
1a509614e09528d1efc21103efc4e29ec189b7bc
from torch.utils.data import TensorDataset import numpy as np import logging import os import random import torch import time from tqdm import tqdm from _utils import * logger = logging.getLogger(__name__) def load_and_cache_gen_data(args, filename, pool, tokenizer, split_tag, only_src=False, is_sample=False): # cache the data into args.cache_path except it is sampled # only_src: control whether to return only source ids for bleu evaluating (dev/test) # return: examples (Example object), data (TensorDataset) data_tag = '_all' if args.data_num == -1 else '_%d' % args.data_num cache_fn = '{}/{}.pt'.format(args.cache_path, split_tag + ('_src' if only_src else '') + data_tag) examples = read_examples(filename, args.data_num, args.task) if is_sample: examples = random.sample(examples, min(5000, len(examples))) if split_tag == 'train': calc_stats(examples, tokenizer, is_tokenize=True) else: calc_stats(examples) if os.path.exists(cache_fn) and not is_sample: logger.info("Load cache data from %s", cache_fn) data = torch.load(cache_fn) else: if is_sample: logger.info("Sample 5k data for computing bleu from %s", filename) else: logger.info("Create cache data into %s", cache_fn) tuple_examples = [(example, idx, tokenizer, args, split_tag) for idx, example in enumerate(examples)] features = pool.map(convert_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples))) all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long) if split_tag == 'test' or only_src: data = TensorDataset(all_source_ids) else: all_target_ids = torch.tensor([f.target_ids for f in features], dtype=torch.long) data = TensorDataset(all_source_ids, all_target_ids) if args.local_rank in [-1, 0] and not is_sample: torch.save(data, cache_fn) return examples, data def load_and_cache_clone_data(args, filename, pool, tokenizer, split_tag, is_sample=False): cache_fn = '{}/{}.pt'.format(args.cache_path, split_tag + '_all' if args.data_num == -1 else '_%d' % args.data_num) examples = read_examples(filename, args.data_num, args.task) if is_sample: examples = random.sample(examples, int(len(examples) * 0.1)) calc_stats(examples, tokenizer, is_tokenize=True) if os.path.exists(cache_fn): logger.info("Load cache data from %s", cache_fn) data = torch.load(cache_fn) else: if is_sample: logger.info("Sample 10 percent of data from %s", filename) elif args.data_num == -1: logger.info("Create cache data into %s", cache_fn) tuple_examples = [(example, idx, tokenizer, args) for idx, example in enumerate(examples)] features = pool.map(convert_clone_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples))) all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long) all_labels = torch.tensor([f.label for f in features], dtype=torch.long) data = TensorDataset(all_source_ids, all_labels) if args.local_rank in [-1, 0] and args.data_num == -1: torch.save(data, cache_fn) return examples, data def load_and_cache_defect_data(args, filename, pool, tokenizer, split_tag, is_sample=False): cache_fn = os.path.join(args.cache_path, split_tag) examples = read_examples(filename, args.data_num, args.task) if is_sample: examples = random.sample(examples, int(len(examples) * 0.1)) calc_stats(examples, tokenizer, is_tokenize=True) if os.path.exists(cache_fn): logger.info("Load cache data from %s", cache_fn) data = torch.load(cache_fn) else: if is_sample: logger.info("Sample 10 percent of data from %s", filename) elif args.data_num == -1: logger.info("Create cache data into %s", cache_fn) tuple_examples = [(example, idx, tokenizer, args) for idx, example in enumerate(examples)] features = pool.map(convert_defect_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples))) # features = [convert_clone_examples_to_features(x) for x in tuple_examples] all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long) all_labels = torch.tensor([f.label for f in features], dtype=torch.long) data = TensorDataset(all_source_ids, all_labels) if args.local_rank in [-1, 0] and args.data_num == -1: torch.save(data, cache_fn) return examples, data def load_and_cache_multi_gen_data(args, pool, tokenizer, split_tag, only_src=False, is_sample=False): cache_fn = os.path.join(args.cache_path, split_tag) if os.path.exists(cache_fn) and not is_sample: logger.info("Load cache data from %s", cache_fn) examples_data_dict = torch.load(cache_fn) else: examples_data_dict = {} task_list = ['summarize', 'translate', 'refine', 'concode', 'defect'] for task in task_list: if task == 'summarize': sub_tasks = ['ruby', 'javascript', 'go', 'python', 'java', 'php'] elif task == 'translate': sub_tasks = ['java-cs', 'cs-java'] elif task == 'refine': sub_tasks = ['small', 'medium'] else: sub_tasks = ['none'] args.task = task for sub_task in sub_tasks: args.sub_task = sub_task if task == 'summarize': args.max_source_length = 256 args.max_target_length = 128 elif task == 'translate': args.max_source_length = 320 args.max_target_length = 256 elif task == 'refine': if sub_task == 'small': args.max_source_length = 130 args.max_target_length = 120 else: args.max_source_length = 240 args.max_target_length = 240 elif task == 'concode': args.max_source_length = 320 args.max_target_length = 150 elif task == 'defect': args.max_source_length = 512 args.max_target_length = 3 # as do not need to add lang ids filename = get_filenames(args.data_dir, args.task, args.sub_task, split_tag) examples = read_examples(filename, args.data_num, args.task) if is_sample: examples = random.sample(examples, min(5000, len(examples))) if split_tag == 'train': calc_stats(examples, tokenizer, is_tokenize=True) else: calc_stats(examples) tuple_examples = [(example, idx, tokenizer, args, split_tag) for idx, example in enumerate(examples)] if args.data_num == -1: features = pool.map(convert_examples_to_features, tqdm(tuple_examples, total=len(tuple_examples))) else: features = [convert_examples_to_features(x) for x in tuple_examples] all_source_ids = torch.tensor([f.source_ids for f in features], dtype=torch.long) if only_src: data = TensorDataset(all_source_ids) else: all_target_ids = torch.tensor([f.target_ids for f in features], dtype=torch.long) data = TensorDataset(all_source_ids, all_target_ids) examples_data_dict['{}_{}'.format(task, sub_task) if sub_task != 'none' else task] = (examples, data) if args.local_rank in [-1, 0] and not is_sample: torch.save(examples_data_dict, cache_fn) logger.info("Save data into %s", cache_fn) return examples_data_dict def get_filenames(data_root, task, sub_task, split=''): if task == 'generation': data_dir = '{}/{}'.format(data_root, task) train_fn = '{}/train.json'.format(data_dir) dev_fn = '{}/dev.json'.format(data_dir) test_fn = '{}/test.json'.format(data_dir) elif task == 'concode': data_dir = '{}/{}'.format(data_root, task) train_fn = '{}/train.json'.format(data_dir) dev_fn = '{}/dev.json'.format(data_dir) test_fn = '{}/test.json'.format(data_dir) elif task == 'summarize': data_dir = '{}/{}/{}'.format(data_root, task, sub_task) train_fn = '{}/train.jsonl'.format(data_dir) dev_fn = '{}/valid.jsonl'.format(data_dir) test_fn = '{}/test.jsonl'.format(data_dir) elif task == 'refine': data_dir = '{}/{}/{}'.format(data_root, task, sub_task) train_fn = '{}/train.buggy-fixed.buggy,{}/train.buggy-fixed.fixed'.format(data_dir, data_dir) dev_fn = '{}/valid.buggy-fixed.buggy,{}/valid.buggy-fixed.fixed'.format(data_dir, data_dir) test_fn = '{}/test.buggy-fixed.buggy,{}/test.buggy-fixed.fixed'.format(data_dir, data_dir) elif task == 'translate': data_dir = '{}/{}'.format(data_root, task) if sub_task == 'cs-java': train_fn = '{}/train.java-cs.txt.cs,{}/train.java-cs.txt.java'.format(data_dir, data_dir) dev_fn = '{}/valid.java-cs.txt.cs,{}/valid.java-cs.txt.java'.format(data_dir, data_dir) test_fn = '{}/test.java-cs.txt.cs,{}/test.java-cs.txt.java'.format(data_dir, data_dir) else: train_fn = '{}/train.java-cs.txt.java,{}/train.java-cs.txt.cs'.format(data_dir, data_dir) dev_fn = '{}/valid.java-cs.txt.java,{}/valid.java-cs.txt.cs'.format(data_dir, data_dir) test_fn = '{}/test.java-cs.txt.java,{}/test.java-cs.txt.cs'.format(data_dir, data_dir) elif task == 'clone': data_dir = '{}/{}'.format(data_root, task) train_fn = '{}/train.txt'.format(data_dir) dev_fn = '{}/valid.txt'.format(data_dir) test_fn = '{}/test.txt'.format(data_dir) elif task == 'defect': data_dir = '{}/{}'.format(data_root, task) train_fn = '{}/train.jsonl'.format(data_dir) dev_fn = '{}/valid.jsonl'.format(data_dir) test_fn = '{}/test.jsonl'.format(data_dir) if split == 'train': return train_fn elif split == 'dev': return dev_fn elif split == 'test': return test_fn else: return train_fn, dev_fn, test_fn def read_examples(filename, data_num, task): read_example_dict = { 'summarize': read_summarize_examples, 'refine': read_refine_examples, 'translate': read_translate_examples, 'generation': read_generation_examples, 'concode': read_concode_examples, 'clone': read_clone_examples, 'defect': read_defect_examples, } return read_example_dict[task](filename, data_num) def calc_stats(examples, tokenizer=None, is_tokenize=False): avg_src_len = [] avg_trg_len = [] avg_src_len_tokenize = [] avg_trg_len_tokenize = [] for ex in examples: if is_tokenize: avg_src_len.append(len(ex.source.split())) avg_trg_len.append(len(str(ex.target).split())) avg_src_len_tokenize.append(len(tokenizer.tokenize(ex.source))) avg_trg_len_tokenize.append(len(tokenizer.tokenize(str(ex.target)))) else: avg_src_len.append(len(ex.source.split())) avg_trg_len.append(len(str(ex.target).split())) if is_tokenize: logger.info("Read %d examples, avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d", len(examples), np.mean(avg_src_len), np.mean(avg_trg_len), max(avg_src_len), max(avg_trg_len)) logger.info("[TOKENIZE] avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d", np.mean(avg_src_len_tokenize), np.mean(avg_trg_len_tokenize), max(avg_src_len_tokenize), max(avg_trg_len_tokenize)) else: logger.info("Read %d examples, avg src len: %d, avg trg len: %d, max src len: %d, max trg len: %d", len(examples), np.mean(avg_src_len), np.mean(avg_trg_len), max(avg_src_len), max(avg_trg_len)) def get_elapse_time(t0): elapse_time = time.time() - t0 if elapse_time > 3600: hour = int(elapse_time // 3600) minute = int((elapse_time % 3600) // 60) return "{}h{}m".format(hour, minute) else: minute = int((elapse_time % 3600) // 60) return "{}m".format(minute)
py
1a509758f72e1e53e0aef95f37d197cfb391bbad
from datasources.acs_population import ACSPopulation from datasources.cdc_covid_deaths import CDCCovidDeaths from datasources.cdc_restricted import CDCRestrictedData from datasources.county_adjacency import CountyAdjacency from datasources.county_names import CountyNames from datasources.covid_tracking_project import CovidTrackingProject from datasources.covid_tracking_project_metadata import CtpMetadata from datasources.household_income import HouseholdIncome from datasources.manual_uploads import ManualUploads from datasources.primary_care_access import PrimaryCareAccess from datasources.state_names import StateNames from datasources.urgent_care_facilities import UrgentCareFacilities from datasources.acs_health_insurance import ACSHealthInsurance from datasources.acs_poverty import ACSPovertyDataSource from datasources.acs_household_income import ACSHouseholdIncomeDatasource # Map of data source ID to the class that implements the ingestion methods for # that data source. DATA_SOURCES_DICT = { ACSPopulation.get_id(): ACSPopulation(), CDCCovidDeaths.get_id(): CDCCovidDeaths(), CDCRestrictedData.get_id(): CDCRestrictedData(), CountyAdjacency.get_id(): CountyAdjacency(), CountyNames.get_id(): CountyNames(), CovidTrackingProject.get_id(): CovidTrackingProject(), CtpMetadata.get_id(): CtpMetadata(), HouseholdIncome.get_id(): HouseholdIncome(), ManualUploads.get_id(): ManualUploads(), PrimaryCareAccess.get_id(): PrimaryCareAccess(), StateNames.get_id(): StateNames(), UrgentCareFacilities.get_id(): UrgentCareFacilities(), ACSHealthInsurance.get_id(): ACSHealthInsurance(), ACSHouseholdIncomeDatasource.get_id(): ACSHouseholdIncomeDatasource(), ACSPovertyDataSource.get_id(): ACSPovertyDataSource() }
py
1a5097bcfd40086c0226231404d6f94a2f9efb82
import os from conans import CMake, ConanFile, tools class QtXlsxWriterConan(ConanFile): name = "qtxlsxwriter" license = "MIT" url = "https://github.com/conan-io/conan-center-index" homepage = "https://github.com/dbzhang800/QtXlsxWriter" description = ".xlsx file reader and writer for Qt5" topics = ("qtxlsxwriter", "excel", "xlsx", "conan-recipe") settings = "os", "compiler", "build_type", "arch" options = { "shared": [True, False], "fPIC": [True, False] } default_options = { "shared": False, "fPIC": True } generators = "cmake" exports_sources = "CMakeLists.txt", "patches/**" _cmake = None @property def _source_subfolder(self): return "source_subfolder" def _configure_cmake(self): if self._cmake: return self._cmake self._cmake = CMake(self) self._cmake.definitions["QT_ROOT"] = self.deps_cpp_info["qt"].rootpath.replace("\\", "/") self._cmake.configure() return self._cmake def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC def requirements(self): self.requires("qt/5.15.2") def source(self): for source in self.conan_data["sources"][self.version]: url = source["url"] filename = url.rsplit("/", 1)[-1] tools.download(url, filename, sha256=source["sha256"]) tools.unzip(os.path.join(self.source_folder, "v0.3.0.zip"), self._source_subfolder, strip_root=True) def build(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) cmake = self._configure_cmake() cmake.build() def package(self): cmake = self._configure_cmake() cmake.install() self.copy("LICENSE", dst="licenses") def package_info(self): if not self.options.shared: self.cpp_info.defines = ["QTXLSX_STATIC"] self.cpp_info.libs = tools.collect_libs(self)
py
1a5098360cfab211a640f610d53a3ccbbd774c19
"""Viessmann ViCare climate device.""" import logging from homeassistant.components.climate import ClimateDevice from homeassistant.components.climate.const import ( SUPPORT_PRESET_MODE, SUPPORT_TARGET_TEMPERATURE, PRESET_ECO, PRESET_COMFORT, HVAC_MODE_OFF, HVAC_MODE_HEAT, HVAC_MODE_AUTO, ) from homeassistant.const import TEMP_CELSIUS, ATTR_TEMPERATURE, PRECISION_WHOLE from . import DOMAIN as VICARE_DOMAIN from . import VICARE_API from . import VICARE_NAME _LOGGER = logging.getLogger(__name__) VICARE_MODE_DHW = "dhw" VICARE_MODE_DHWANDHEATING = "dhwAndHeating" VICARE_MODE_FORCEDREDUCED = "forcedReduced" VICARE_MODE_FORCEDNORMAL = "forcedNormal" VICARE_MODE_OFF = "standby" VICARE_PROGRAM_ACTIVE = "active" VICARE_PROGRAM_COMFORT = "comfort" VICARE_PROGRAM_ECO = "eco" VICARE_PROGRAM_EXTERNAL = "external" VICARE_PROGRAM_HOLIDAY = "holiday" VICARE_PROGRAM_NORMAL = "normal" VICARE_PROGRAM_REDUCED = "reduced" VICARE_PROGRAM_STANDBY = "standby" VICARE_HOLD_MODE_AWAY = "away" VICARE_HOLD_MODE_HOME = "home" VICARE_HOLD_MODE_OFF = "off" VICARE_TEMP_HEATING_MIN = 3 VICARE_TEMP_HEATING_MAX = 37 SUPPORT_FLAGS_HEATING = SUPPORT_TARGET_TEMPERATURE | SUPPORT_PRESET_MODE VICARE_TO_HA_HVAC_HEATING = { VICARE_MODE_DHW: HVAC_MODE_OFF, VICARE_MODE_DHWANDHEATING: HVAC_MODE_AUTO, VICARE_MODE_FORCEDREDUCED: HVAC_MODE_OFF, VICARE_MODE_FORCEDNORMAL: HVAC_MODE_HEAT, VICARE_MODE_OFF: HVAC_MODE_OFF, } HA_TO_VICARE_HVAC_HEATING = { HVAC_MODE_HEAT: VICARE_MODE_FORCEDNORMAL, HVAC_MODE_OFF: VICARE_MODE_FORCEDREDUCED, HVAC_MODE_AUTO: VICARE_MODE_DHWANDHEATING, } VICARE_TO_HA_PRESET_HEATING = { VICARE_PROGRAM_COMFORT: PRESET_COMFORT, VICARE_PROGRAM_ECO: PRESET_ECO, } HA_TO_VICARE_PRESET_HEATING = { PRESET_COMFORT: VICARE_PROGRAM_COMFORT, PRESET_ECO: VICARE_PROGRAM_ECO, } PYVICARE_ERROR = "error" def setup_platform(hass, config, add_entities, discovery_info=None): """Create the ViCare climate devices.""" if discovery_info is None: return vicare_api = hass.data[VICARE_DOMAIN][VICARE_API] add_entities( [ViCareClimate(f"{hass.data[VICARE_DOMAIN][VICARE_NAME]} Heating", vicare_api)] ) class ViCareClimate(ClimateDevice): """Representation of the ViCare heating climate device.""" def __init__(self, name, api): """Initialize the climate device.""" self._name = name self._state = None self._api = api self._target_temperature = None self._current_mode = None self._current_temperature = None self._current_program = None def update(self): """Let HA know there has been an update from the ViCare API.""" _room_temperature = self._api.getRoomTemperature() _supply_temperature = self._api.getSupplyTemperature() if _room_temperature is not None and _room_temperature != PYVICARE_ERROR: self._current_temperature = _room_temperature elif _supply_temperature != PYVICARE_ERROR: self._current_temperature = _supply_temperature else: self._current_temperature = None self._current_program = self._api.getActiveProgram() # The getCurrentDesiredTemperature call can yield 'error' (str) when the system is in standby desired_temperature = self._api.getCurrentDesiredTemperature() if desired_temperature == PYVICARE_ERROR: desired_temperature = None self._target_temperature = desired_temperature self._current_mode = self._api.getActiveMode() @property def supported_features(self): """Return the list of supported features.""" return SUPPORT_FLAGS_HEATING @property def name(self): """Return the name of the climate device.""" return self._name @property def temperature_unit(self): """Return the unit of measurement.""" return TEMP_CELSIUS @property def current_temperature(self): """Return the current temperature.""" return self._current_temperature @property def target_temperature(self): """Return the temperature we try to reach.""" return self._target_temperature @property def hvac_mode(self): """Return current hvac mode.""" return VICARE_TO_HA_HVAC_HEATING.get(self._current_mode) def set_hvac_mode(self, hvac_mode): """Set a new hvac mode on the ViCare API.""" vicare_mode = HA_TO_VICARE_HVAC_HEATING.get(hvac_mode) if vicare_mode is None: _LOGGER.error( "Cannot set invalid vicare mode: %s / %s", hvac_mode, vicare_mode ) return _LOGGER.debug("Setting hvac mode to %s / %s", hvac_mode, vicare_mode) self._api.setMode(vicare_mode) @property def hvac_modes(self): """Return the list of available hvac modes.""" return list(HA_TO_VICARE_HVAC_HEATING) @property def min_temp(self): """Return the minimum temperature.""" return VICARE_TEMP_HEATING_MIN @property def max_temp(self): """Return the maximum temperature.""" return VICARE_TEMP_HEATING_MAX @property def precision(self): """Return the precision of the system.""" return PRECISION_WHOLE def set_temperature(self, **kwargs): """Set new target temperatures.""" temp = kwargs.get(ATTR_TEMPERATURE) if temp is not None: self._api.setProgramTemperature( self._current_program, self._target_temperature ) @property def preset_mode(self): """Return the current preset mode, e.g., home, away, temp.""" return VICARE_TO_HA_PRESET_HEATING.get(self._current_program) @property def preset_modes(self): """Return the available preset mode.""" return list(VICARE_TO_HA_PRESET_HEATING) def set_preset_mode(self, preset_mode): """Set new preset mode and deactivate any existing programs.""" vicare_program = HA_TO_VICARE_PRESET_HEATING.get(preset_mode) if vicare_program is None: _LOGGER.error( "Cannot set invalid vicare program: %s / %s", preset_mode, vicare_program, ) return _LOGGER.debug("Setting preset to %s / %s", preset_mode, vicare_program) self._api.deactivateProgram(self._current_program) self._api.activateProgram(vicare_program)
py
1a509976aff4ae971d08eda82ebb6b867906789a
#!/usr/bin/env python3 import argparse import curses import sys import threading import traceback from .source_handler import CandumpHandler, InvalidFrame, SerialHandler should_redraw = threading.Event() stop_reading = threading.Event() can_messages = {} can_messages_lock = threading.Lock() thread_exception = None def reading_loop(source_handler, blacklist): """Background thread for reading.""" try: while not stop_reading.is_set(): try: frame_id, data = source_handler.get_message() except InvalidFrame: continue except EOFError: break if frame_id in blacklist: continue # Add the frame to the can_messages dict and tell the main thread to refresh its content with can_messages_lock: can_messages[frame_id] = data should_redraw.set() stop_reading.wait() except: if not stop_reading.is_set(): # Only log exception if we were not going to stop the thread # When quitting, the main thread calls close() on the serial device # and read() may throw an exception. We don't want to display it as # we're stopping the script anyway global thread_exception thread_exception = sys.exc_info() def init_window(stdscr): """Init a window filling the entire screen with a border around it.""" stdscr.clear() stdscr.refresh() max_y, max_x = stdscr.getmaxyx() root_window = stdscr.derwin(max_y, max_x, 0, 0) root_window.box() return root_window def format_data_hex(data): """Convert the bytes array to an hex representation.""" # Bytes are separated by spaces. return ' '.join('%02X' % byte for byte in data) def format_data_ascii(data): """Try to make an ASCII representation of the bytes. Non printable characters are replaced by '?' except null character which is replaced by '.'. """ msg_str = '' for byte in data: char = chr(byte) if char == '\0': msg_str = msg_str + '.' elif ord(char) < 32 or ord(char) > 126: msg_str = msg_str + '?' else: msg_str = msg_str + char return msg_str def main(stdscr, reading_thread): """Main function displaying the UI.""" # Don't print typed character curses.noecho() curses.cbreak() curses.curs_set(0) # set cursor state to invisible # Set getch() to non-blocking stdscr.nodelay(True) win = init_window(stdscr) while True: # should_redraw is set by the serial thread when new data is available if should_redraw.wait(timeout=0.05): # Timeout needed in order to react to user input max_y, max_x = win.getmaxyx() column_width = 100 id_column_start = 2 bytes_column_start = 13 text_column_start = 38 # Compute row/column counts according to the window size and borders row_start = 3 lines_per_column = max_y - (1 + row_start) num_columns = (max_x - 2) // column_width # Setting up column headers for i in range(0, num_columns): win.addstr(1, id_column_start + i * column_width, 'ID') win.addstr(1, 25 + bytes_column_start + i * column_width, 'Bytes') win.addstr(1, 30 + text_column_start + i * column_width, 'Text') win.addstr(3, id_column_start, "Press 'q' to quit") row = row_start + 2 # The first column starts a bit lower to make space for the 'press q to quit message' current_column = 0 # Make sure we don't read the can_messages dict while it's being written to in the reading thread with can_messages_lock: for frame_id in sorted(can_messages.keys()): msg = can_messages[frame_id] msg_bytes = format_data_hex(msg) msg_str = format_data_ascii(msg) # print frame ID in decimal and hex win.addstr(row, id_column_start + current_column * column_width, '%s' % str(frame_id).ljust(5)) win.addstr(row, id_column_start + 18 + current_column * column_width, '%X'.ljust(5) % frame_id) # print frame bytes win.addstr(row, 25 + bytes_column_start + current_column * column_width, msg_bytes.ljust(23)) # print frame text win.addstr(row, 30 + text_column_start + current_column * column_width, msg_str.ljust(8)) row = row + 1 if row >= lines_per_column + row_start: # column full, switch to the next one row = row_start current_column = current_column + 1 if current_column >= num_columns: break win.refresh() should_redraw.clear() c = stdscr.getch() if c == ord('q') or not reading_thread.is_alive(): break elif c == curses.KEY_RESIZE: win = init_window(stdscr) should_redraw.set() def parse_ints(string_list): int_set = set() for line in string_list: try: int_set.add(int(line, 0)) except ValueError: continue return int_set def run(): parser = argparse.ArgumentParser(description='Process CAN data from a serial device or from a file.') parser.add_argument('serial_device', type=str, nargs='?') parser.add_argument('baud_rate', type=int, default=115200, nargs='?', help='Serial baud rate in bps (default: 115200)') parser.add_argument('-f', '--candump-file', metavar='CANDUMP_FILE', help="File (of 'candump' format) to read from") parser.add_argument('-s', '--candump-speed', type=float, metavar='CANDUMP_SPEED', help="Speed scale of file read") parser.add_argument('--blacklist', '-b', nargs='+', metavar='BLACKLIST', help="Ids that must be ignored") parser.add_argument( '--blacklist-file', '-bf', metavar='BLACKLIST_FILE', help="File containing ids that must be ignored", ) args = parser.parse_args() # checks arguments if not args.serial_device and not args.candump_file: print("Please specify serial device or file name") print() parser.print_help() return if args.serial_device and args.candump_file: print("You cannot specify a serial device AND a file name") print() parser.print_help() return # --blacklist-file prevails over --blacklist if args.blacklist_file: with open(args.blacklist_file) as f_obj: blacklist = parse_ints(f_obj) elif args.blacklist: blacklist = parse_ints(args.blacklist) else: blacklist = set() if args.serial_device: source_handler = SerialHandler(args.serial_device, baudrate=args.baud_rate) elif args.candump_file: source_handler = CandumpHandler(args.candump_file, args.candump_speed) reading_thread = None try: # If reading from a serial device, it will be opened with timeout=0 (non-blocking read()) source_handler.open() # Start the reading background thread reading_thread = threading.Thread(target=reading_loop, args=(source_handler, blacklist,)) reading_thread.start() # Make sure to draw the UI the first time even if no data has been read should_redraw.set() # Start the main loop curses.wrapper(main, reading_thread) finally: # Cleanly stop reading thread before exiting if reading_thread: stop_reading.set() if source_handler: source_handler.close() reading_thread.join() # If the thread returned an exception, print it if thread_exception: traceback.print_exception(*thread_exception) sys.stderr.flush() if __name__ == '__main__': run()
py
1a5099940f9b50bcda3a92132b6dee68ddc6ddb1
# -*- coding: utf-8 -*- """ Class definition of YOLO_v3 style detection model on image and video """ import os import time import logging import colorsys import numpy as np import tensorflow.keras.backend as K from tensorflow.keras.models import load_model from tensorflow.keras.layers import Input from tensorflow.keras.utils import multi_gpu_model from tensorflow.compat.v1.keras.backend import get_session from tensorflow.compat.v1 import disable_eager_execution from .model import yolo_eval, yolo_body_full, yolo_body_tiny from .utils import letterbox_image, update_path, get_anchors, get_class_names from .visual import draw_bounding_box # swap X-Y axis PREDICT_FIELDS = ('class', 'label', 'confidence', 'ymin', 'xmin', 'ymax', 'xmax') class YOLO(object): """YOLO detector with tiny alternative Example ------- >>> # prepare EMPTY model since download and convert existing is a bit complicated >>> anchors = get_anchors(YOLO.get_defaults('anchors_path')) >>> classes = get_class_names(YOLO.get_defaults('classes_path')) >>> yolo_empty = yolo_body_tiny(Input(shape=(None, None, 3)), len(anchors) // 2, len(classes)) >>> path_model = os.path.join(update_path('model_data'), 'yolo_empty.h5') >>> yolo_empty.save(path_model) >>> # use the empty one, so no reasonable detections are expected >>> from keras_yolo3.utils import image_open >>> yolo = YOLO(weights_path=path_model, ... anchors_path=YOLO.get_defaults('anchors_path'), ... classes_path=YOLO.get_defaults('classes_path'), ... model_image_size=YOLO.get_defaults('model_image_size')) >>> img = image_open(os.path.join(update_path('model_data'), 'bike-car-dog.jpg')) >>> yolo.detect_image(img) # doctest: +ELLIPSIS (<PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=520x518 at ...>, [...]) """ _DEFAULT_PARAMS = { "weights_path": os.path.join(update_path('model_data'), 'tiny-yolo.h5'), "anchors_path": os.path.join(update_path('model_data'), 'tiny-yolo_anchors.csv'), "classes_path": os.path.join(update_path('model_data'), 'coco_classes.txt'), "score": 0.3, "iou": 0.45, # "model_image_size": (416, 416), "nb_gpu": 1, } @classmethod def get_defaults(cls, name): if name not in cls._DEFAULT_PARAMS: logging.warning('Unrecognized attribute name "%s"', name) return cls._DEFAULT_PARAMS.get(name) def __init__(self, weights_path, anchors_path, classes_path, model_image_size=(None, None), score=0.3, iou=0.45, nb_gpu=1, **kwargs): """ :param str weights_path: path to loaded model weights, e.g. 'model_data/tiny-yolo.h5' :param str anchors_path: path to loaded model anchors, e.g. 'model_data/tiny-yolo_anchors.csv' :param str classes_path: path to loaded trained classes, e.g. 'model_data/coco_classes.txt' :param float score: confidence score :param float iou: :param tuple(int,int) model_image_size: e.g. for tiny (416, 416) :param int nb_gpu: :param kwargs: """ self.__dict__.update(kwargs) # and update with user overrides self.weights_path = update_path(weights_path) self.anchors_path = update_path(anchors_path) self.classes_path = update_path(classes_path) self.score = score self.iou = iou self.nb_gpu = nb_gpu if not self.nb_gpu: # disable all GPUs os.environ["CUDA_VISIBLE_DEVICES"] = "-1" self.class_names = get_class_names(self.classes_path) self.anchors = get_anchors(self.anchors_path) self._open_session() disable_eager_execution() self.boxes, self.scores, self.classes = self._create_model(model_image_size) self._generate_class_colors() def _open_session(self): logging.warning('Using %s backend.', K.backend()) self.sess = get_session() def _create_model(self, model_image_size=(None, None)): # weights_path = update_path(self.weights_path) logging.debug('loading model from "%s"', self.weights_path) assert self.weights_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) try: self.yolo_model = load_model(self.weights_path, compile=False) except Exception: logging.warning('Loading weights from "%s"', self.weights_path) is_tiny_version = (num_anchors == 6) # default setting cnn_h, cnn_w = model_image_size input = Input(shape=(cnn_h, cnn_w, 3)) if is_tiny_version: self.yolo_model = yolo_body_tiny(input, num_anchors // 2, num_classes) else: self.yolo_model = yolo_body_full(input, num_anchors // 3, num_classes) # make sure model, anchors and classes match self.yolo_model.load_weights(self.weights_path, by_name=True, skip_mismatch=True) else: out_shape = self.yolo_model.layers[-1].output_shape[-1] ration_anchors = num_anchors / len(self.yolo_model.output) * (num_classes + 5) assert out_shape == ration_anchors, \ 'Mismatch between model and given anchor %r and class %r sizes' \ % (ration_anchors, out_shape) logging.info('loaded model, anchors (%i), and classes (%i) from %s', num_anchors, num_classes, self.weights_path) # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2,)) if self.nb_gpu >= 2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.nb_gpu) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes def _generate_class_colors(self): """Generate colors for drawing bounding boxes.""" hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) _fn_colorr = lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)) self.colors = list(map(_fn_colorr, self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. # Shuffle colors to decorrelate adjacent classes. np.random.shuffle(self.colors) np.random.seed(None) # Reset seed to default. def detect_image(self, image): start = time.time() # this should be taken from the model model_image_size = self.yolo_model._input_layers[0].input_shape[0][1:3] if all(model_image_size): for size in model_image_size: assert size % 32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image(image, tuple(reversed(model_image_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype='float32') logging.debug('image shape: %s', repr(image_data.shape)) if image_data.max() > 1.5: image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={ self.yolo_model.input: image_data, self.input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) end = time.time() logging.debug('Found %i boxes in %f sec.', len(out_boxes), (end - start)) thickness = (image.size[0] + image.size[1]) // 500 predicts = [] for i, c in reversed(list(enumerate(out_classes))): draw_bounding_box(image, self.class_names[c], out_boxes[i], out_scores[i], self.colors[c], thickness) pred = dict(zip( PREDICT_FIELDS, (int(c), self.class_names[c], float(out_scores[i]), *[int(x) for x in out_boxes[i]]) )) predicts.append(pred) return image, predicts def _close_session(self): self.sess.close() def __del__(self): self._close_session()
py
1a509996142cc4ccb2bdd0f2debb42cd7c03c1b7
# Copyright 2014 Intel Corporation, All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the"License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from django.utils.translation import ugettext_lazy as _ import horizon from vsm_dashboard.dashboards.vsm import dashboard class ClusterImport(horizon.Panel): name = _("Import Cluster") slug = 'cluster-import' dashboard.VizDash.register(ClusterImport)
py
1a5099d86e2325abef29e7709a4a067100cd7289
import pygame pygame.init() def drawGrid(window, cell_width): for i in range(1,9): if i%3 == 0: stroke = 3 else: stroke = 1 pygame.draw.line(window, (60,113,210), (0, i*cell_width), (WIDTH, i*cell_width), stroke) pygame.draw.line(window, (69,113,210), (i*cell_width, 0), (i*cell_width, HEIGHT), stroke) def displayBoard(board): number_font = pygame.font.SysFont("Century Gothic", 30) for i in range(len(board)): for j in range(len(board[0])): if board[i][j] == 0: number = number_font.render(" ", 1, (203,217,243)) else: number = number_font.render(str(board[i][j]), 1, (203,217,243)) WIN.blit(number, ((j*CELL_WIDTH)+int(CELL_WIDTH/2.5), (i*CELL_WIDTH)+int(CELL_WIDTH/3))) def findEmpty(board): for i in range(9): for j in range(9): if board[i][j] == 0: return (i, j) return False def valid(board, pos , n): # Check row for j in range(9): if board[pos[0]][j] == n: return False # Check column for i in range(9): if board[i][pos[1]] == n: return False # Check square row_index = pos[0]//3 col_index = pos[1]//3 for i in range(row_index*3, row_index*3 + 3): for j in range(col_index*3, col_index*3 + 3): if board[i][j] == n: return False return True def solve(): global grid pos = findEmpty(grid) if pos == False: return True for i in range(1, 10): if valid(grid, pos, i): grid[pos[0]][pos[1]] = i displayBoard(grid) pygame.display.update() if solve(): return True grid[pos[0]][pos[1]] = 0 return False if __name__ == "__main__": WIDTH, HEIGHT = 540, 540 WIN = pygame.display.set_mode((WIDTH, HEIGHT)) CELL_WIDTH = WIDTH/9 grid = [ [7,8,0,4,0,0,1,2,0], [6,0,0,0,7,5,0,0,9], [0,0,0,6,0,1,0,7,8], [0,0,7,0,4,0,2,6,0], [0,0,1,0,5,0,9,3,0], [9,0,4,0,6,0,0,0,5], [0,7,0,3,0,0,0,1,2], [1,2,0,0,0,7,4,0,0], [0,4,9,2,0,6,0,0,7] ] running = True while running: drawGrid(WIN, CELL_WIDTH) displayBoard(grid) for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == pygame.MOUSEBUTTONDOWN: solve() pygame.display.update() WIN.fill((50,50,50))
py
1a509a04abf02e90ce4a098046a3d44bbbef7602
# QR Code Reader # Author: Johnjimy Som # Created: June 3, 2021 import math # Initialising hex string ini_string = "11109D6B2700A000200000E000000000" #sample #ini_string = input('Please insert a hexcode: ')#import the hex here # Printing initial string # Step 1 Step1 QR code(16進数)を読み取る print ("Initial string:", ini_string) # Code to convert hex to binary #Step2 読み取ったQR code(16進数)を2進数へ変換する n = int(ini_string, 16) binaryStr = '' while n > 0: binaryStr = str(n % 2) + binaryStr n = n >> 1 result = binaryStr # Print the resultant string print ("\nResultant string [Binary]:", str(result)) #00010001000100001001110101101011001001110000000010100000000000000010000000000000000000001110000000000000000000000000000000000000 # Print binary characters start[9]-[34]length should be : 00010000100111010110101100 print ("\nResultant string [9-34] [Binary]:", str(result[1:])) #Step3 2進数に変換した結果を、項目毎にデータを区切る # import module from tabulate import tabulate #unresolved import <'from tabulate'> # assigned binaryStr data mydata = [{"Encode Version", "x","x","y"}, {"Print Area", "wololo","xxx","yyyu"}, {"Item Code", "xx","yy","zz"}] # create header head = [" ", "City", "Binary", "Value(Decimal)"] # display table print(tabulate(mydata, headers=head, tablefmt="pretty"))
py
1a509a43d1fbe589e64631ca67b2e316572f4c9c
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.tf.Cholesky.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.client import session from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes as dtypes_lib from tensorflow.python.framework import errors_impl from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import gen_linalg_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import linalg_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variables from tensorflow.python.ops.linalg import linalg from tensorflow.python.platform import benchmark from tensorflow.python.platform import test from tensorflow.python.platform import tf_logging # Different gradient implementations for benchmark purposes def SpecializedGrad(l, grad): return gen_linalg_ops.cholesky_grad(l, grad) def _GradWithInverseL(l, l_inverse, grad): middle = math_ops.matmul(l, grad, adjoint_a=True) middle = array_ops.matrix_set_diag(middle, 0.5 * array_ops.matrix_diag_part(middle)) middle = array_ops.matrix_band_part(middle, -1, 0) grad_a = math_ops.matmul( math_ops.matmul(l_inverse, middle, adjoint_a=True), l_inverse) grad_a += math_ops.conj(array_ops.matrix_transpose(grad_a)) return grad_a * 0.5 def TriAngSolveCompositeGrad(l, grad): # Gradient is l^{-H} @ ((l^{H} @ grad) * (tril(ones)-1/2*eye)) @ l^{-1} # Compute ((l^{H} @ grad) * (tril(ones)-1/2*eye)) = middle middle = math_ops.matmul(l, grad, adjoint_a=True) middle = array_ops.matrix_set_diag(middle, 0.5 * array_ops.matrix_diag_part(middle)) middle = array_ops.matrix_band_part(middle, -1, 0) # Compute l^{-H} @ middle = z l_inverse_middle = linalg_ops.matrix_triangular_solve(l, middle, adjoint=True) # We need to compute z @ l^{-1}. With matrix_triangular_solve we # actually compute l^{-H} @ z^{H} = grad. Since we later add grad^{H} # we can ommit the conjugate transpose here. z_h = math_ops.conj(array_ops.matrix_transpose(l_inverse_middle)) grad_a = linalg_ops.matrix_triangular_solve(l, z_h, adjoint=True) grad_a += linalg.adjoint(grad_a) return grad_a * 0.5 def MatrixInverseCompositeGrad(l, grad): l_inverse = linalg_ops.matrix_inverse(l) return _GradWithInverseL(l, l_inverse, grad) def TriAngInvCompositeGrad(l, grad): num_rows = array_ops.shape(l)[-1] batch_shape = array_ops.shape(l)[:-2] l_inverse = linalg_ops.matrix_triangular_solve(l, linalg_ops.eye( num_rows, batch_shape=batch_shape, dtype=l.dtype)) return _GradWithInverseL(l, l_inverse, grad) class CholeskyOpTest(test.TestCase): def _verifyCholeskyBase(self, sess, x, chol, verification): chol_np, verification_np = self.evaluate([chol, verification]) self.assertAllClose(x, verification_np) self.assertShapeEqual(x, chol) # Check that the cholesky is lower triangular, and has positive diagonal # elements. if chol_np.shape[-1] > 0: chol_reshaped = np.reshape(chol_np, (-1, chol_np.shape[-2], chol_np.shape[-1])) for chol_matrix in chol_reshaped: self.assertAllClose(chol_matrix, np.tril(chol_matrix)) self.assertTrue((np.diag(chol_matrix) > 0.0).all()) def _verifyCholesky(self, x): # Verify that LL^T == x. with self.cached_session(use_gpu=True) as sess: chol = linalg_ops.cholesky(x) verification = math_ops.matmul(chol, chol, adjoint_b=True) self._verifyCholeskyBase(sess, x, chol, verification) def testBasic(self): data = np.array([[4., -1., 2.], [-1., 6., 0], [2., 0., 5.]]) for dtype in (np.float32, np.float64): self._verifyCholesky(data.astype(dtype)) for dtype in (np.complex64, np.complex128): complex_data = np.tril(1j * data, -1).astype(dtype) complex_data += np.triu(-1j * data, 1).astype(dtype) complex_data += data self._verifyCholesky(complex_data) def testBatch(self): simple_array = np.array([[[1., 0.], [0., 5.]]]) # shape (1, 2, 2) self._verifyCholesky(simple_array) self._verifyCholesky(np.vstack((simple_array, simple_array))) odd_sized_array = np.array([[[4., -1., 2.], [-1., 6., 0], [2., 0., 5.]]]) self._verifyCholesky(np.vstack((odd_sized_array, odd_sized_array))) # Generate random positive-definite matrices. matrices = np.random.rand(10, 5, 5) for i in xrange(10): matrices[i] = np.dot(matrices[i].T, matrices[i]) self._verifyCholesky(matrices) # Generate random complex valued positive-definite matrices. matrices = np.random.rand(10, 5, 5) + 1j * np.random.rand(10, 5, 5) for i in xrange(10): matrices[i] = np.dot(matrices[i].T.conj(), matrices[i]) self._verifyCholesky(matrices) def testNonSquareMatrix(self): with self.assertRaises(ValueError): linalg_ops.cholesky(np.array([[1., 2., 3.], [3., 4., 5.]])) with self.assertRaises(ValueError): linalg_ops.cholesky( np.array([[[1., 2., 3.], [3., 4., 5.]], [[1., 2., 3.], [3., 4., 5.]] ])) def testWrongDimensions(self): tensor3 = constant_op.constant([1., 2.]) with self.assertRaises(ValueError): linalg_ops.cholesky(tensor3) with self.assertRaises(ValueError): linalg_ops.cholesky(tensor3) def testNotInvertibleCPU(self): # The input should be invertible. with self.session(use_gpu=True): with self.assertRaisesRegexp( errors_impl.InvalidArgumentError, "Cholesky decomposition was not successful. The" " input might not be valid."): # All rows of the matrix below add to zero self._verifyCholesky( np.array([[1., -1., 0.], [-1., 1., -1.], [0., -1., 1.]])) def testEmpty(self): self._verifyCholesky(np.empty([0, 2, 2])) self._verifyCholesky(np.empty([2, 0, 0])) def testConcurrentExecutesWithoutError(self): with self.session(use_gpu=True) as sess: matrix1 = random_ops.random_normal([5, 5], seed=42) matrix2 = random_ops.random_normal([5, 5], seed=42) matrix1 = math_ops.matmul(matrix1, matrix1, adjoint_a=True) matrix2 = math_ops.matmul(matrix2, matrix2, adjoint_a=True) c1 = linalg_ops.cholesky(matrix1) c2 = linalg_ops.cholesky(matrix2) c1_val, c2_val = self.evaluate([c1, c2]) self.assertAllClose(c1_val, c2_val) class CholeskyGradTest(test.TestCase): _backprop_block_size = 32 def getShapes(self, shapeList): return ((elem, int(np.floor(1.2 * elem))) for elem in shapeList) def testSmallMatrices(self): np.random.seed(0) shapes = self.getShapes([1, 2, 10]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.float32, dtypes_lib.float64)) def testSmallMatricesComplex(self): np.random.seed(0) shapes = self.getShapes([1, 2, 10]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.complex64, dtypes_lib.complex128)) def testOneBlockMatrices(self): np.random.seed(0) shapes = self.getShapes([self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.float32, dtypes_lib.float64), scalarTest=True) def testTwoBlockMatrixFloat(self): np.random.seed(0) shapes = self.getShapes([2 * self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.float32,), scalarTest=True) def testTwoBlockMatrixDouble(self): np.random.seed(0) shapes = self.getShapes([2 * self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.float64,), scalarTest=True) def testTwoBlockMatrixComplexFloat(self): np.random.seed(0) shapes = self.getShapes([2 * self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.complex64,), scalarTest=True) def testTwoBlockMatrixComplexDouble(self): np.random.seed(0) shapes = self.getShapes([2 * self._backprop_block_size + 1]) self.runFiniteDifferences( shapes, dtypes=(dtypes_lib.complex128,), scalarTest=True) def testAgainstSpecialized(self): np.random.seed(0) data = np.random.randn(33, 33).astype(np.float32) data = np.matmul(data, data.T) grad_data = np.random.randn(*data.shape).astype(np.float32) with ops.Graph().as_default(), self.session(use_gpu=False) as s: x = constant_op.constant(data, dtypes_lib.float32) chol = linalg_ops.cholesky(x) composite_grad = gradients_impl.gradients(chol, x, grad_data)[0] specialized_grad = SpecializedGrad(chol, grad_data) reference, actual = s.run([specialized_grad, composite_grad]) self.assertAllClose(reference, actual) def runFiniteDifferences(self, shapes, dtypes=(dtypes_lib.float32, dtypes_lib.float64, dtypes_lib.complex64, dtypes_lib.complex128), scalarTest=False): with self.session(use_gpu=True): for shape in shapes: for batch in False, True: for dtype in dtypes: if not scalarTest: data = np.random.randn(shape[0], shape[1]) if dtype.is_complex: data = data.astype(np.complex64) data += 1j * np.random.randn(shape[0], shape[1]) x = constant_op.constant(data, dtype) tensor = math_ops.matmul( x, math_ops.conj(array_ops.transpose(x))) / shape[0] else: # This is designed to be a faster test for larger matrices. data = np.random.randn() if dtype.is_complex: data = np.complex64(data) data += 1j * np.random.randn() x = constant_op.constant(data, dtype) R = constant_op.constant( np.random.randn(shape[0], shape[1]), dtype) e = math_ops.multiply(R, x) tensor = math_ops.matmul( e, math_ops.conj(array_ops.transpose(e))) / shape[0] # Inner-most matrices in tensor are positive definite. if batch: tensor = array_ops.tile( array_ops.expand_dims(tensor, 0), [4, 1, 1]) y = linalg_ops.cholesky(tensor) if scalarTest: y = math_ops.reduce_mean(y) error = gradient_checker.compute_gradient_error( x, x._shape_as_list(), y, y._shape_as_list()) tf_logging.info("error = %f", error) if dtype == dtypes_lib.float64: self.assertLess(error, 1e-5) elif dtype == dtypes_lib.complex128: self.assertLess(error, 5e-5) else: self.assertLess(error, 5e-3) class CholeskyBenchmark(test.Benchmark): shapes = [ (4, 4), (10, 10), (16, 16), (101, 101), (256, 256), (1000, 1000), (1024, 1024), (2048, 2048), (513, 2, 2), (513, 8, 8), (513, 256, 256), (4, 513, 2, 2), ] def _GenerateMatrix(self, shape): batch_shape = shape[:-2] shape = shape[-2:] assert shape[0] == shape[1] n = shape[0] matrix = np.ones(shape).astype(np.float32) / ( 2.0 * n) + np.diag(np.ones(n).astype(np.float32)) return np.tile(matrix, batch_shape + (1, 1)) def benchmarkCholeskyOp(self): for shape in self.shapes: with ops.Graph().as_default(), \ session.Session(config=benchmark.benchmark_config()) as sess, \ ops.device("/cpu:0"): matrix = variables.Variable(self._GenerateMatrix(shape)) l = linalg_ops.cholesky(matrix) variables.global_variables_initializer().run() self.run_op_benchmark( sess, control_flow_ops.group( l,), min_iters=25, name="cholesky_cpu_{shape}".format(shape=shape)) if test.is_gpu_available(True): with ops.Graph().as_default(), \ session.Session(config=benchmark.benchmark_config()) as sess, \ ops.device("/device:GPU:0"): matrix = variables.Variable(self._GenerateMatrix(shape)) l = linalg_ops.cholesky(matrix) variables.global_variables_initializer().run() self.run_op_benchmark( sess, control_flow_ops.group( l,), min_iters=25, name="cholesky_gpu_{shape}".format(shape=shape)) def benchmarkGradVariants(self): def _BenchmarkGrad(grad_fn, name, device): for shape in self.shapes: matrix = self._GenerateMatrix(shape) with ops.Graph().as_default(), \ session.Session(config=benchmark.benchmark_config()) as sess, \ ops.device(device): l = variables.Variable(np.linalg.cholesky(matrix)) grad_matrix = variables.Variable( np.random.randn(*matrix.shape).astype(np.float32)) grad = grad_fn(l, grad_matrix) variables.global_variables_initializer().run() self.run_op_benchmark( sess, control_flow_ops.group( grad,), min_iters=25, name="{name}_{dev}_{shape}".format( name=name, dev=grad.device, shape=shape)) if test.is_gpu_available(True): _BenchmarkGrad(MatrixInverseCompositeGrad, "composite_matrix_inverse", "/device:GPU:0") _BenchmarkGrad(TriAngInvCompositeGrad, "composite_tri_ang_inverse", "/device:GPU:0") _BenchmarkGrad(TriAngSolveCompositeGrad, "composite_triangular_solve", "/device:GPU:0") _BenchmarkGrad(MatrixInverseCompositeGrad, "composite_matrix_inverse", "/cpu:0") _BenchmarkGrad(TriAngInvCompositeGrad, "composite_tri_ang_inverse", "/cpu:0") _BenchmarkGrad(TriAngSolveCompositeGrad, "composite_triangular_solve", "/cpu:0") _BenchmarkGrad(SpecializedGrad, "specialized", "/cpu:0") if __name__ == "__main__": test.main()
py
1a509a608a69b97f0d9b13832334a6b25a649328
#!/usr/bin/python # Copyright (c) 2020, 2021 Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. # GENERATED FILE - DO NOT EDIT - MANUAL CHANGES WILL BE OVERWRITTEN from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = { "metadata_version": "1.1", "status": ["preview"], "supported_by": "community", } DOCUMENTATION = """ --- module: oci_database_management_managed_database_group_facts short_description: Fetches details about one or multiple ManagedDatabaseGroup resources in Oracle Cloud Infrastructure description: - Fetches details about one or multiple ManagedDatabaseGroup resources in Oracle Cloud Infrastructure - Gets the Managed Database Group for a specific ID or the list of Managed Database Groups in a specific compartment. Managed Database Groups can also be filtered based on the name parameter. Only one of the parameters, ID or name should be provided. If none of these parameters is provided, all the Managed Database Groups in the compartment are listed. - If I(managed_database_group_id) is specified, the details of a single ManagedDatabaseGroup will be returned. version_added: "2.9.0" author: Oracle (@oracle) options: managed_database_group_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the Managed Database Group. - Required to get a specific managed_database_group. type: str aliases: ["id"] compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment. - Required to list multiple managed_database_groups. type: str name: description: - A filter to return only resources that match the entire name. type: str lifecycle_state: description: - The lifecycle state of a resource. type: str choices: - "CREATING" - "UPDATING" - "ACTIVE" - "DELETING" - "DELETED" - "FAILED" sort_by: description: - The field to sort information by. Only one sortOrder can be used. The default sort order for 'TIMECREATED' is descending and the default sort order for 'NAME' is ascending. The 'NAME' sort order is case-sensitive. type: str choices: - "TIMECREATED" - "NAME" sort_order: description: - The option to sort information in ascending ('ASC') or descending ('DESC') order. Ascending order is the default order. type: str choices: - "ASC" - "DESC" extends_documentation_fragment: [ oracle.oci.oracle ] """ EXAMPLES = """ - name: List managed_database_groups oci_database_management_managed_database_group_facts: compartment_id: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" - name: Get a specific managed_database_group oci_database_management_managed_database_group_facts: managed_database_group_id: "ocid1.manageddatabasegroup.oc1..xxxxxxEXAMPLExxxxxx" """ RETURN = """ managed_database_groups: description: - List of ManagedDatabaseGroup resources returned: on success type: complex contains: name: description: - The name of the Managed Database Group. returned: on success type: str sample: name_example id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the Managed Database Group. returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" description: description: - The information specified by the user about the Managed Database Group. returned: on success type: str sample: description_example managed_databases: description: - A list of Managed Databases in the Managed Database Group. returned: on success type: complex contains: id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the Managed Database. returned: on success type: str sample: "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx" name: description: - The name of the Managed Database. returned: on success type: str sample: name_example compartment_id: description: - The L(OCID,https://docs.cloud.oracle.com/Content/General/Concepts/identifiers.htm) of the compartment in which the Managed Database resides. returned: on success type: str sample: "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx" deployment_type: description: - The infrastructure used to deploy the Oracle Database. returned: on success type: str sample: ONPREMISE database_type: description: - The type of Oracle Database installation. returned: on success type: str sample: EXTERNAL_SIDB database_sub_type: description: - The subtype of the Oracle Database. Indicates whether the database is a Container Database, Pluggable Database, or a Non-container Database. returned: on success type: str sample: CDB time_added: description: - The date and time the Managed Database was added to the group. returned: on success type: str sample: "2013-10-20T19:20:30+01:00" lifecycle_state: description: - The current lifecycle state of the Managed Database Group. returned: on success type: str sample: CREATING time_created: description: - The date and time the Managed Database Group was created. returned: on success type: str sample: "2013-10-20T19:20:30+01:00" time_updated: description: - The date and time the Managed Database Group was last updated. returned: on success type: str sample: "2013-10-20T19:20:30+01:00" managed_database_count: description: - The number of Managed Databases in the Managed Database Group. returned: on success type: int sample: 56 sample: [{ "name": "name_example", "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "description": "description_example", "managed_databases": [{ "id": "ocid1.resource.oc1..xxxxxxEXAMPLExxxxxx", "name": "name_example", "compartment_id": "ocid1.compartment.oc1..xxxxxxEXAMPLExxxxxx", "deployment_type": "ONPREMISE", "database_type": "EXTERNAL_SIDB", "database_sub_type": "CDB", "time_added": "2013-10-20T19:20:30+01:00" }], "lifecycle_state": "CREATING", "time_created": "2013-10-20T19:20:30+01:00", "time_updated": "2013-10-20T19:20:30+01:00", "managed_database_count": 56 }] """ from ansible.module_utils.basic import AnsibleModule from ansible_collections.oracle.oci.plugins.module_utils import oci_common_utils from ansible_collections.oracle.oci.plugins.module_utils.oci_resource_utils import ( OCIResourceFactsHelperBase, get_custom_class, ) try: from oci.database_management import DbManagementClient HAS_OCI_PY_SDK = True except ImportError: HAS_OCI_PY_SDK = False class ManagedDatabaseGroupFactsHelperGen(OCIResourceFactsHelperBase): """Supported operations: get, list""" def get_required_params_for_get(self): return [ "managed_database_group_id", ] def get_required_params_for_list(self): return [ "compartment_id", ] def get_resource(self): return oci_common_utils.call_with_backoff( self.client.get_managed_database_group, managed_database_group_id=self.module.params.get( "managed_database_group_id" ), ) def list_resources(self): optional_list_method_params = [ "name", "lifecycle_state", "sort_by", "sort_order", ] optional_kwargs = dict( (param, self.module.params[param]) for param in optional_list_method_params if self.module.params.get(param) is not None ) return oci_common_utils.list_all_resources( self.client.list_managed_database_groups, compartment_id=self.module.params.get("compartment_id"), **optional_kwargs ) ManagedDatabaseGroupFactsHelperCustom = get_custom_class( "ManagedDatabaseGroupFactsHelperCustom" ) class ResourceFactsHelper( ManagedDatabaseGroupFactsHelperCustom, ManagedDatabaseGroupFactsHelperGen ): pass def main(): module_args = oci_common_utils.get_common_arg_spec() module_args.update( dict( managed_database_group_id=dict(aliases=["id"], type="str"), compartment_id=dict(type="str"), name=dict(type="str"), lifecycle_state=dict( type="str", choices=[ "CREATING", "UPDATING", "ACTIVE", "DELETING", "DELETED", "FAILED", ], ), sort_by=dict(type="str", choices=["TIMECREATED", "NAME"]), sort_order=dict(type="str", choices=["ASC", "DESC"]), ) ) module = AnsibleModule(argument_spec=module_args) if not HAS_OCI_PY_SDK: module.fail_json(msg="oci python sdk required for this module.") resource_facts_helper = ResourceFactsHelper( module=module, resource_type="managed_database_group", service_client_class=DbManagementClient, namespace="database_management", ) result = [] if resource_facts_helper.is_get(): result = [resource_facts_helper.get()] elif resource_facts_helper.is_list(): result = resource_facts_helper.list() else: resource_facts_helper.fail() module.exit_json(managed_database_groups=result) if __name__ == "__main__": main()
py
1a509b2c0f3f925ebe7ebe7dd07cca76e71d10b4
import os from bootstrapbase import BootstrapBase from common.const import Constants from common.mapr_logger.log import Log from operations.operationsbase import OperationsBase from operations.shared import SharedSystem from operations.csi import CSI from operations.csinfs import CSINFS from operations.dataplatform import DataPlatform from operations.compute import Compute from operations.drill import Drill from operations.ldap import LDAP from operations.kubeflow import Kubeflow from operations.nodesvc import Nodesvc from operations.spark import Spark from operations.autoticket_generator import AutoTicketGenerator from operations.dataplatform_validator import DataPlatformValidator from operations.tenant_validator import TenantValidator from cluster_info import ClusterInfo class BootstrapUninstall(BootstrapBase): def __init__(self): super(BootstrapUninstall, self).__init__(BootstrapBase.UNINSTALL) self.cloud_instance = None self.cloud_created = False self._parse_args() def run(self): super(BootstrapUninstall, self).run() k8s = OperationsBase() k8s.load_replace_dict() shared = SharedSystem() nodesvc = Nodesvc() csi = CSI() csinfs = CSINFS() ldap = LDAP(self._prompts) dataplatform = DataPlatform() compute = Compute() spark = Spark() autoticket_generator = AutoTicketGenerator() dataplatform_validator = DataPlatformValidator() tenant_validator = TenantValidator() kubeflow = Kubeflow() # openshift = OpenShift() drill = Drill() cluster_info = ClusterInfo() self.prologue() self.python_check() if dataplatform.dataplatform_operation(self.parsed_args, False): return self.check_laptop_tools() self.confirm_delete_installation() if self.core_install_enabled: do_storage = True else: do_storage = self.parsed_args.core_uninstall do_compute = True do_drill = self.parsed_args.drill_uninstall do_csi = True uninstall_csi = False uninstall_compute = False # uninstall_autoticket_generator = False uninstall_compute_templates = False uninstall_storage = False uninstall_storage_templates = False do_kubeflow = True uninstall_kubeflow = True do_spark = False uninstall_spark = True do_external = True uninstall_external = False do_secure = True uninstall_secure = False do_exampleldap = True uninstall_exampleldap = False uninstall_drill = False str_tolerations = "" if cluster_info.schedule_pods_on_master: str_tolerations = "\n - key: node-role.kubernetes.io/master\n operator: Exists\n effect: NoSchedule" OperationsBase.replace_dict["{tolerate-master-node}"] = str_tolerations OperationsBase.replace_dict["{operator-repo}"] = Constants.OPERATOR_REPO OperationsBase.replace_dict["{csi-repo}"] = Constants.CSI_REPO OperationsBase.replace_dict["{kdf-repo}"] = Constants.KDF_REPO OperationsBase.replace_dict["{kubeflow-repo}"] = Constants.KUBEFLOW_REPO OperationsBase.replace_dict["{local-path-provisioner-repo}"] = Constants.LOCAL_PATH_PROVISIONER_REPO OperationsBase.replace_dict["{kfctl-hcp-istio-repo}"] = Constants.KFCTL_HSP_ISTIO_REPO OperationsBase.replace_dict["{busybox-repo}"] = Constants.BUSYBOX_REPO OperationsBase.replace_dict["{fake-labels}"] = "true" if do_csi: uninstall_csi = self.check_remove_csi() if do_storage: uninstall_storage = self.check_remove_storage() uninstall_storage_templates = self.check_remove_storage_templates() if do_external: uninstall_external = self.check_remove_external() if do_secure: uninstall_secure = self.check_remove_secure() if do_exampleldap: uninstall_exampleldap = self.check_remove_exampleldap(k8s) if do_compute: uninstall_compute = self.check_remove_compute() # uninstall_autoticket_generator = uninstall_compute if uninstall_compute: uninstall_compute_templates = self.check_remove_compute_templates() if cluster_info.is_spark_installed(): uninstall_spark = self.check_remove_spark() uninstall_drill = do_drill if do_kubeflow: uninstall_kubeflow = self.check_remove_kubeflow() # Check if the connected k8s environment is Openshift # if k8s.is_openshift_connected(): # k8s.is_openshift = True # k8s.switch_to_oc() if uninstall_external: shared.uninstall_external_components() if uninstall_storage: dataplatform.uninstall_dataplatform(uninstall_templates=uninstall_storage_templates) dataplatform_validator.run_uninstall() if uninstall_compute: compute.uninstall_compute_components(uninstall_templates=uninstall_compute_templates) autoticket_generator.run_uninstall() tenant_validator.run_uninstall() # uninstall_autoticket_generator = uninstall_compute if uninstall_spark: spark.uninstall_spark_components() if uninstall_drill: drill.uninstall_drill_components() if uninstall_compute or uninstall_storage: shared.uninstall_common_components() nodesvc.uninstall_nodesvc() elif uninstall_kubeflow: shared.uninstall_common_components() if uninstall_secure: shared.uninstall_secure_components() if uninstall_exampleldap: ldap.uninstall_exampleldap() if uninstall_kubeflow: kubeflow.uninstall_kubeflow_components() if uninstall_csi: csi.uninstall_csi_components() csinfs.uninstall_csi_components() self.complete_uninstallation() def confirm_delete_installation(self): print(os.linesep) Log.info("This will uninstall ALL Ezmeral Data Fabric for Kubernetes operators from your Kubernetes environment. This will cause all " "Tenants to be destroyed. They cannot be recovered!", True) agree = self._prompts.prompt_boolean("Do you agree?", False, key_name="AGREEMENT") if not agree: Log.info("Very wise decision. Exiting uninstall...", True) BootstrapBase.exit_application(2) def check_remove_csi(self): choice = self._prompts.prompt_boolean("Remove the Ezmeral Data Fabric CSI driver?", False, key_name="REMOVE_CSI") return choice def check_remove_spark(self): choice = self._prompts.prompt_boolean("Remove the Spark Operator?", False, key_name="REMOVE_SPARK") return choice def check_remove_drill(self): choice = self._prompts.prompt_boolean("Remove the Drill Operator?", False, key_name="REMOVE_DRILL") return choice def check_remove_kubeflow(self): choice = self._prompts.prompt_boolean("Remove the Kubeflow Operator?", False, key_name="REMOVE_KUBEFLOW") return choice def check_remove_compute(self): choice = self._prompts.prompt_boolean("Remove Compute components?", False, key_name="REMOVE_COMPUTE") return choice def check_remove_compute_templates(self): choice = self._prompts.prompt_boolean("Remove the Compute templates? Note: You will lose your template changes!", False, key_name="REMOVE_COMPUTE_TEMPLATES") return choice def check_remove_storage(self): choice = self._prompts.prompt_boolean("Remove Data Platform?", False, key_name="REMOVE_STORAGE") return choice def check_remove_storage_templates(self): choice = self._prompts.prompt_boolean("Remove the Data Platform Templates? Note: You will lose your template changes!", False, key_name="REMOVE_STORAGE_TEMPLATES") return choice def check_remove_external(self): choice = self._prompts.prompt_boolean("Remove the External Cluster Info? Note: You will lose your imported cluster info!", False, key_name="REMOVE_EXTERNAL_INFO") return choice def check_remove_secure(self): choice = self._prompts.prompt_boolean("Remove the Secure Namespace? Note: You will lose your template changes!", False, key_name="REMOVE_SECURE") return choice @staticmethod def check_remove_exampleldap(k8s): get_str = "namespace {0}".format(Constants.EXAMPLE_LDAP_NAMESPACE) response, status = k8s.run_get(get_str, False) result = (status == 0) return result def is_cloud_env(self): print(os.linesep) is_cloud = self._prompts.prompt_boolean("Is this a cloud env?", True, key_name="CLOUD_ENV") if is_cloud: return True return False @staticmethod def complete_uninstallation(): print(os.linesep) msg = "This Kubernetes environment" warnings = Log.get_warning_count() errors = Log.get_error_count() if errors > 0 and warnings > 0: msg = "{0} had {1} error(s) and {2} warning(s) during the uninstall process for selected components".format(msg, errors, warnings) Log.error(msg) elif errors > 0 and warnings == 0: msg = "{0} had {1} error(s) during the uninstall process for selected components".format(msg, errors) Log.error(msg) elif errors == 0 and warnings > 0: msg = "{0} had {1} warnings(s) during the uninstall process for selected components".format(msg, warnings) Log.warning(msg) else: msg = "{0} has had selected components successfully uninstalled".format(msg) Log.info(msg, True) if errors > 0 or warnings > 0: msg = "Please check the bootstrap log file for this session here: {0}".format(Log.get_log_filename()) Log.warning(msg) Log.info("") if __name__ == '__main__': bootstrap_uninstall = BootstrapUninstall() try: bootstrap_uninstall.run() except Exception as e: Log.exception(e) raise e BootstrapBase.exit_application(0)
py
1a509b81eaaccae145956ff5aa798834e9d60b6f
#!/usr/bin/env python # -*- coding: utf-8 -*- from speech_recognition_msgs.msg import SpeechRecognitionCandidates from std_msgs.msg import String import rospy class SpeechRecognition(object): def __init__(self): rospy.Subscriber('/Tablet/voice', SpeechRecognitionCandidates, self.callback) self.pub_ = rospy.Publisher('/speech', String, queue_size=1) self.num_dict = {'one':'1','two':'2','three':'3','four':'4','five':'5','six':'6','seven':'7','eight':'8','nine':'9','zero':'0'} self.num_list = ['1','2','3','4','5','6','7','8','9'] self.subject_list = ['全部', 'everything'] self.verb_list = ['片付けて', '片付けといて', '直して', '直しといて', 'なおして', 'なおしといて', 'clean'] print SpeechRecognitionCandidates def callback(self, msg): rospy.loginfo('{} ({})'.format(msg.transcript[0], msg.confidence[0])) raw_msg = str() pub_msg = str() if msg.confidence[0] > 0.5 : raw_msg = msg.transcript[0] tmp_flg = True for n_dic_key in self.num_dict.keys(): if n_dic_key in raw_msg: raw_msg = raw_msg.replace(n_dic_key,self.num_dict[n_dic_key]) rospy.loginfo('%s', raw_msg) for sbj in self.subject_list: if sbj in raw_msg: for verb in self.verb_list: if verb in raw_msg: tmp_flg = False self.pub_.publish('99') if tmp_flg: for data in list(raw_msg): if data in self.num_list: pub_msg += data if len(pub_msg) == 2: self.pub_.publish(pub_msg) if __name__ == '__main__': rospy.init_node('speech_recognition') speech_recognition = SpeechRecognition() rospy.spin()