ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a55805b279e21d0d0bdc998eff35c73c26598af
import os import glob import logging import numpy as np import mirnylib.genome import hiclib.mapping import mirnylib.h5dict logging.basicConfig(level=logging.DEBUG) if not os.path.exists('tmp'): os.mkdir('tmp') bowtie_bin_path = '../../bin/bowtie2/bowtie2' bowtie_index_path = '../../bin/bowtie2/index/sacCer3' fasta_path = '../../fasta/sacCer3' genome_db = mirnylib.genome.Genome(fasta_path) print "Map the insilico generated Hi-C reads..." hiclib.mapping.iterative_mapping( bowtie_path=bowtie_bin_path, bowtie_index_path=bowtie_index_path, fastq_path='./tmp/insilico_1.fastq', out_sam_path='./tmp/insilico_1.bam', min_seq_len=25, len_step=5, nthreads=4, tmp_dir='./tmp', bowtie_flags='--very-sensitive') hiclib.mapping.iterative_mapping( bowtie_path=bowtie_bin_path, bowtie_index_path=bowtie_index_path, fastq_path='./tmp/insilico_2.fastq', out_sam_path='./tmp/insilico_2.bam', min_seq_len=25, len_step=5, nthreads=4, tmp_dir='./tmp', bowtie_flags='--very-sensitive') print "Done!" print 'Parse the generated BAMs...' lib = mirnylib.h5dict.h5dict('./tmp/insilico_mapped_reads.hdf5') hiclib.mapping.parse_sam( sam_basename1='./tmp/insilico_1.bam', sam_basename2='./tmp/insilico_2.bam', out_dict=lib, genome_db=genome_db, keep_ids=True, enzyme_name='HindIII') print 'Done!'
py
1a55806f6738c51fab42373d8536a538e4d5f6b7
from Constant_Speed_Constant_Angle import Constant_Speed_Constant_Angle from Constant_Speed_Constant_Angle_Noise import Constant_Speed_Constant_Angle_Noise from Constant_Speed_Constant_Rate import Constant_Speed_Constant_Rate from Linear_Mach_Constant_Rate import Linear_Mach_Constant_Rate from Constant_Throttle_Constant_EAS import Constant_Throttle_Constant_EAS from Constant_Throttle_Constant_Mach import Constant_Throttle_Constant_Mach from Constant_Throttle_Constant_Speed import Constant_Throttle_Constant_Speed from Constant_Throttle_Linear_Speed import Constant_Throttle_Linear_Speed from Constant_EAS_Constant_Rate import Constant_EAS_Constant_Rate from Unknown_Throttle import Unknown_Throttle
py
1a55812baa9f52bab0a36ce6affb37aa4486cc57
from jsonrpc import ServiceProxy access = ServiceProxy("http://127.0.0.1:30332") pwd = raw_input("Enter wallet passphrase: ") access.walletpassphrase(pwd, 60)
py
1a558191ea3eec29752c01a2a7354c4b6b262834
import ast import os import shutil from distutils.dir_util import copy_tree import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras.models import load_model import tensorflow_hub as hub from tqdm import tqdm class PseudoLabelGenerator: """ Class to generate pseudo labels for unlabeled images using a trained model. Arguments: model_path (str): location of the h5 tensorflow model to use train_data_path (str): folder which holds training data unlabeled_path (str): folder which holds unlabeled data pseudo_data_path (str): folder to store training data and pseudo data combined output_folder (str): folder to store outputs csv_filename (str): name of csv file """ def __init__(self, model_path="model.h5", train_data_path="data/image_dataset/train", unlabeled_path="data/unlabeled", pseudo_data_path="data/train_ssl", output_folder="outputs", csv_filename="data.csv"): self.train_data_path = train_data_path self.unlabeled_path = unlabeled_path self.pseudo_data_path = pseudo_data_path self.output_folder = output_folder self.csv_path = os.path.join(self.output_folder, csv_filename) # Load model self.model = load_model(model_path, compile=False, custom_objects={"KerasLayer": hub.KerasLayer}) print("Loaded model.") # Make new output folder if not os.path.exists(self.output_folder): os.mkdir(self.output_folder) # Make dictionary for classes and their index self.class_names = sorted(os.listdir(self.train_data_path)) self.class_dict = {cat: i for (i, cat) in enumerate(self.class_names)} def _load_img(self, path, target_size=(299, 299)): """ Load an image from a given path and normalize it Arguments: path (list): Input image path target_size (tuple): Size of image Returns: np.array: Numpy array of the data """ # Read image bits = tf.io.read_file(path) image = tf.image.decode_jpeg(bits, channels=3) # Resize image = tf.image.resize(image, size=[*target_size]) image = tf.reshape(image, [*target_size, 3]) image = tf.cast(image, tf.uint8) # Normalize [0, 1] image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = image.numpy() return image def _plot_data(self, predictions, name, output_path): """ Plots a bar plot and saves it to a file. Arguments: predictions (list): List of predictions name (str): Title of the plot output_path (str): Save file using this name """ predictions = sorted(predictions) samples = list(range(len(predictions))) plt.bar(samples, predictions, color='g') plt.axhline(y=0.5, color='r', linestyle='--') plt.title(name, size=16) plt.xlabel("Number of unlabelled images", size=16) plt.ylim([0.0, 1.0]) plt.ylabel("Probability", size=16) plt.tick_params(labelright=True) plt.savefig(output_path, dpi=100) plt.clf() # clear buffer, otherwise plot overlap! def plot_confidence_scores(self, per_class=True, overall=True): """ Generate bar plots for highest confidence predictions per class and overall and save them. Arguments: per_class (bool): make bar plots per class or not overall (bool): make overall bar plot or not """ dt = pd.read_csv(self.csv_path) dt['All Class Predictions List'] = dt['All Class Predictions'].apply( lambda x: ast.literal_eval(x)) raw_predictions_ = dt[["Highest Confidence"]].values raw_predictions = [pred[0] for pred in raw_predictions_] raw_predictions_all_ = dt[['All Class Predictions List']].values raw_predictions_all = [pred[0] for pred in raw_predictions_all_] # Plot graph for highest confidence pseudo labels for each class if per_class: for idx, cat in enumerate(self.class_names): predictions = [pred[idx] for pred in raw_predictions_all] title = "Confidences for the class: {}".format(cat) path = "{}/{}_confidences.png".format( self.output_folder, cat) self._plot_data(predictions, title, path) # Plot graph for highest confidence pseudo labels for all unlabeled images if overall: self._plot_data(raw_predictions, name="Highest confidence pseudo labels", output_path="{}/highest_confidence_predictions.png".format( self.output_folder)) def _make_dataset(self, filenames, batch_size): def parse_image(filename): image = tf.io.read_file(filename) image = tf.image.decode_jpeg(image, channels=3) image = tf.image.resize(image, [299, 299]) image = tf.cast(image, tf.uint8) image = tf.image.convert_image_dtype(image, dtype=tf.float32) return image def configure_for_performance(ds): ds = ds.batch(batch_size) ds = ds.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) return ds filenames_ds = tf.data.Dataset.from_tensor_slices(filenames) images_ds = filenames_ds.map(parse_image, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds = configure_for_performance(images_ds) return ds def move_unlabeled_images(self, threshold=None): """ Split unlabeled images into folders of the training data based on pseudo labels. A new training dataset is created with the labeled and pseudo labeled data. Arguments: threshold (float): Discard images with prediction below this confidence, default is None. """ # Copy the training/labeled data to the destination folder where # we will also store the pseudo labels. copy_tree(self.train_data_path, self.pseudo_data_path) dt = pd.read_csv(self.csv_path) filepaths = dt[["Filepaths"]].values predicted_class = dt[["Predicted Class"]].values raw_predictions = dt[["Highest Confidence"]].values for proba, y, path in zip(raw_predictions, predicted_class, filepaths): # The results variable should be the same as the class category for class_name, index in self.class_dict.items(): if threshold: # For thresholding predictions if index == y and proba >= threshold: shutil.copy(os.path.join(self.unlabeled_path, str(path[0])), os.path.join(self.pseudo_data_path, class_name)) else: # For hard predictions if index == y: shutil.copy(os.path.join(self.unlabeled_path, str(path[0])), os.path.join(self.pseudo_data_path, class_name)) print("Moved unlabeled images to their pseudo label categories.") def generate_pseudolabel_data(self, plot_confidences=False, threshold=None, move_images=False, batch_size=32): """ Use trained model to make pseudo labels and save them into a csv file. Also possible to plot the results and move the unlabeled images directly to the category corresponding to their pseudo label. Arguments: plot_confidences (boolean): Whether to plot confidence graphs for raw confidences and per class confidences. threshold (float): Discard images with prediction below this confidence, default is None. Only used if move_images is True. move_images (bool): Move images into categories or not batch_size (int): Batch size while making predictions Returns: pseudo_data_path: A folder with both labeled and pseudo labeled images. """ print("Generating pseudo labels...") # Generate pseudo labels unlabeled_image_paths = os.listdir(self.unlabeled_path) print("There are {} unlabeled images.".format( len(unlabeled_image_paths))) raw_predictions = [] # single confidence value of predicted class predicted_class = [] # predicted class index raw_predictions_all = [] # confidences for all classes unlabeled_filenames = [os.path.join(self.unlabeled_path, path) for path in unlabeled_image_paths] ds = self._make_dataset(unlabeled_filenames, batch_size) y_preds = [] for batch in tqdm(ds): y_preds_ = self.model.predict(batch) y_preds.extend(list(y_preds_)) for y_pred in y_preds: y = np.argmax(y_pred) # Get probability score proba = y_pred[y] predicted_class.append(y) raw_predictions.append(proba) raw_predictions_all.append(list(y_pred)) raw_predictions_paths = [path for path in unlabeled_image_paths] # 'Pseudo Class Names': pseudo_class_names, print("Saving CSV with pseudo predictions.") data = {'Filepaths': raw_predictions_paths, 'Predicted Class': predicted_class, 'Highest Confidence': raw_predictions, 'All Class Predictions': raw_predictions_all} df = pd.DataFrame(data) df.to_csv(self.csv_path, index=False) # move pseudo labeled images if move_images: self.move_unlabeled_images(threshold=threshold) if plot_confidences: print("Plotting data.") self.plot_confidence_scores()
py
1a55837547f5d14af0ac37de5769befb381550dd
import subprocess import tempfile import inspect import random import shutil import time import json import sys import os KWARGS = "k" RESULT = "r" VALUE = "v" ARGS = "a" # !!! Dekoratörde, fonksiyon okunduktan sonra dosyalarını silebilirsin aslında # Ya da aradan belli bir süre geçtiyse, dosyayı sil gitsin, loop'tan silebilirisn """ Dosyalama Şekli; +/tmp |---> -/dirio |---> +/12345 |---> -/67891 |-----> __main__.py -> Sadece ilk çalıştırılırken vardır. |-----> +/func1 |-----> -/func2 | |-------> 11 | |-------> 12 | |-------> 13 | |-> {"a": ["Func args"], "k": {"Func kwargs"}, "r": "Dönüş değeri"} |-----> variable1 |-----> variable2 |-----> variable3 |-------> "Değişkendeki değer" """ # import fcntl # # # # ################################ File LOCK - Henüz kullanmadık # # https://stackoverflow.com/questions/4843359/python-lock-a-file # def lock_to_file(filename): # """ acquire exclusive lock file access """ # locked_file_descriptor = open(filename, 'w+') # fcntl.lockf(locked_file_descriptor, fcntl.LOCK_EX) # return locked_file_descriptor # # # def lock_to_release(locked_file_descriptor): # """ release exclusive lock file access """ # locked_file_descriptor.close() # # # # ############################################################## def new_dir(tempdir, module, class_name, args, kwargs): """/Tempdir/353464325""" # Dizini oluşturuyoruz dir_path = os.path.join(tempdir or tempfile.gettempdir(), "dirio") if not os.path.exists(dir_path): os.mkdir(dir_path) no = 111 while str(no) in os.listdir(dir_path): no = random.randint(111, 9999999999) new_path = os.path.join(dir_path, str(no)) os.mkdir(new_path) # ####################### # ####################### # Scripti oluşturuyoruz # Önce bu dosya okunur. with open(__file__) as f: script_body = f.read() # İçe aktarılacak modülün yolu bulunur. module_name = os.path.basename(module).split(".")[0] module_path = os.path.dirname(module) if module_name in ("__init__", "__main__"): module_name = os.path.basename(module_path) module_path = os.path.dirname(module_path) # Scriptin parçaları oluşturulur # script_head = f"import sys\nsys.path.append('{module_path}')\nfrom {module_name} import {class_name}" script_head = f""" import sys sys.path.append('{module_path}') from {module_name} import {class_name} """ # script_footer = f"new = Dirio(target={class_name}, args={args}, kwargs={kwargs}, worker=True)\nnew._dr_loop()" script_footer = f""" try: new = Dirio(target={class_name}, args={args}, kwargs={kwargs}, worker=True) new._dr_loop() except: pass # Çıkışta dosyaları sil dirname = os.path.dirname(__file__) if os.path.exists(dirname): shutil.rmtree(dirname) sys.exit() """ script = "\n".join([script_head, script_body, script_footer]) # Script yazılır with open(os.path.join(new_path, "__main__.py"), "w") as f: f.write(script) # Burada da Process olarak başlatsan iyi olur subprocess.Popen([ sys.executable, new_path ], # close_fds=True ) print("Dirio -> New Path ->", new_path) return new_path def check_type(value): tip = type(value) check = True if tip in (dict, list, tuple, int, str, float, bool, type(None)): if tip is dict: for k, v in value.items(): if not (check_type(k) and check_type(v)): return False elif tip in (list, tuple): for i in value: if not check_type(i): return False else: return False return check def set_decorator(self): # Class'daki tüm değerleri alıyoruz for attr in self.__dict__: # Bu isimlerdeyse, dekoratör ekleme, boşver. # if attr in ("__getattribute__", "__setattr__", "__new__"): if (attr.startswith("__") and attr.endswith("__")) or attr in ("dr_terminate", "dr_code", "dr_bind", "dr_binds_check", "dr_isactive"): continue # Eğer çağrılabilir fonksiyon ise dekorator ekliyoruz attribute = getattr(self, attr) if callable(attribute): setattr(self, attr, get_decorator(self, attribute)) def get_result(path_code, dr_wait): start_time = time.time() wait_time = 1 # Cevabı okurken bekle while wait_time: if os.path.exists(path_code): try: with open(path_code) as f: data = json.load(f) if RESULT in data: return data.get(RESULT) except: pass # -1 ise cevap gelene kadar bekle # 0 ise sadece bir kere kontrol et # 5 gibi değer ise, 5 sn kadar bekle if dr_wait >= 0: wait_time = time.time() - start_time < dr_wait return None def get_decorator(self, func): def wrapper(*args, **kwargs): # kwargs'ın içinde, # dr_code=True varsa; Okuma kodu döndürür. # dr_code=2345 gibi ; # İstemci ise, bu kodun dönüşü varsa, onu döndürür. Yoksa None döndürsün. # Sunucu ise, o değerdeki dosyaya RESULT değerini kayıt yap demek oluyor # Hiçbiri yoksa ; En son herhangi bir cevabı döndürür dr_code = kwargs.pop("dr_code", False) dr_wait = kwargs.pop("dr_wait", 0) # Fonksiyonun klasörü path = os.path.join(self._dr_dir, func.__name__) # Yoksa oluştur if not os.path.exists(path): os.mkdir(path) # Temel metodlar derhal işletilir. !!! Burayı kullanmak istiyorsan, set_decorator kısmını da düzenle # if func.__name__.startswith("__") and func.__name__.endswith("__"): # return func(*args, **kwargs) # İstemci ise veya self.metod değilse, (@class veya @static ise) baştaki self parametresini sil if not self._dr_active or "self" not in inspect.getfullargspec(func).args: args = args[1:] # ################################ # İstemci ise ve Parametreler uygunsa, dosyaya kaydeder. if not self._dr_active and check_type(args) and check_type(kwargs): # dr_code -> int -> Bu kodla olan veri varsa döndür. Belirtilen süre kadar cevabı bekle if type(dr_code) is int and dr_code > 1: return get_result(os.path.join(path, str(dr_code)), dr_wait) # Func dizinindeki dosyaların isimlerini int olarak alır ve # ["1", "2", ... ] String listesinde en büyük sayıyı verir. Yoksa 10 değerini verir son_code = self._dr_last_code new_code = son_code + 1 full_path = os.path.join(path, str(new_code)) while os.path.exists(full_path): new_code += 1 full_path = os.path.join(path, str(new_code)) # Datayı dosyaya yaz with open(full_path, 'w') as f: json.dump({ARGS: args, KWARGS: kwargs}, f) self._dr_last_code = new_code # Cevabı bu süre kadar bekle ve dön if dr_wait: return get_result(full_path, dr_wait) # dr_code -> True -> Kodu döndür if dr_code is True: return new_code # dr_code -> False -> Default, Son dosyada cevap varsa döndür if son_code != 10: try: with open(os.path.join(path, str(son_code))) as f: return json.load(f).get(RESULT) except: pass # Hiçbiri uymuyorsa, boş dön return None # ################################ # Kod varsa datayı koddaki dosyaya yaz. Tabi tipler uygunsa yaz. if type(dr_code) is str: file = os.path.join(path, dr_code) try: with open(file) as f: data = json.load(f) except: return # Clas fonksiyonu veya self fonksiyon olmasına göre fazla parametre hatası verebildiğinden böyle yapıldı if "self" not in inspect.getfullargspec(func).args: result = func(*data.get(ARGS, ()), **data.get(KWARGS, {})) else: result = func(args[0], *data.get(ARGS, ()), **data.get(KWARGS, {})) data[RESULT] = result if check_type(result) else None with open(file, "w") as f: json.dump(data, f) # Zaman kaydedicide, fonksiyonun ismi yoksa, oluştur if func.__name__ not in self._dr_last_times: self._dr_last_times[func.__name__] = {} # Func dosyasını değiştirdiğimiz için, değişim zamanını kaydediyoruz ki, sonradan başkası değişti sanılmasın self._dr_last_times[func.__name__][dr_code] = os.stat(file).st_mtime else: # Sunucuysa, direkt fonksiyonu işle result = func(*args, **kwargs) return result return wrapper class Dirio: _dr_inwork = False _dr_binds = {} def __init__(self, target=None, args=(), kwargs={}, tempdir="", keeperiod=10, looperiod=.05, worker=False): """ :param target: class: Hedef Class :param args: tuple: Class'ın argümanları :param kwargs: dict: Class'ın keyword'lü argümanları :param tempdir: str: Temporary klasörü. Girilmediyse, standart sistemdeki klasör kullanılır. :param keeperiod: int: Geçmişi tutma süresi. Default: 10 sn boyunca geçmişi saklar. :param looperiod: int: Sunucu için, döngüde bekleme süresi. Küçük olursa işlemciden, büyük olursa işlemden zarar :param worker: bool: Read Only. Değiştirme. Sınıfın kendine has kullanımına dahildir. """ self._dr_bind = {} self._dr_active = worker self._dr_last_code = 10 self._dr_last_times = {} self._dr_keep_period = keeperiod self._dr_loop_period = looperiod # Önce kopyalıyoruz, Çünkü üstünde değişiklik yaptığımızda kalıcı olmasın target = type(target.__name__, target.__bases__, dict(target.__dict__)) set_decorator(target) if worker: # Sunucu kısmıdır. Bu kısım sadece temp klasöründen başlatıldığında çalışır self._dr_dir = os.path.dirname(__file__) else: # İstemci kısmıdır.Sunucu oluşturulur ve başlatılır self._dr_dir = new_dir(tempdir, inspect.getfile(target), target.__name__, args, kwargs) # target = type(f'gecis.{target.__name__}', tuple(target.__bases__), dict(target.__dict__)) # Dirio özelliklerini diğer sınıfa ekliyoruz for attr in self.__dict__: if attr.startswith("_dr_") or attr.startswith("dr_"): # or attr in ("__getattribute__", "__setattr__"): setattr(target, attr, self.__getattribute__(attr)) # Kendimizi, Clasın kopyasına çeviriyoruz self.__class__ = type(f'dirio.{target.__name__}', tuple([Dirio, target]), dict(self.__dict__)) self._dr_inwork = True super().__init__(*args, **kwargs) def __getattribute__(self, name): # _dr_ ile başlıyorsa veya __xxx__ gibi bir değişkense hemen döndürülür if name.startswith("_dr_") or (name.startswith("__") and name.endswith("__")): return super().__getattribute__(name) in_class = name in dir(self) # print("__getattribute__\t<--\t\t\t", name) # Fonksiyon ise, direkt döndürülür. ############### if in_class: value = super().__getattribute__(name) if callable(value): return value # Değişken ise; ############### # Değer dosyada varsa, oradan okunur if name in os.listdir(self._dr_dir): with open(os.path.join(self._dr_dir, name)) as f: value = json.load(f).get(VALUE) return value if in_class: value = super().__getattribute__(name) # Demekki dosyada yok ki buraya kadar geldik, dosyaya da kaydedelim. self.__setattr__(name, value) return value return lambda *args, **kwargs: None def __setattr__(self, key, value): # print("__setattribute__\t\t\t-->\t", key, value) # Eğer value, çağrılabilir ise, ona özelliklerimizi ver. # Value uygunsa, key isimli dosyaya yaz # İstemci ve sunucu için de geçerli if self._dr_inwork: file = os.path.join(self._dr_dir, key) if check_type(value): with open(file, "w") as f: json.dump({VALUE: value}, f) else: # Eğer kaydedilemeyen bir tip ise, dosyada var olanı da sil ki, çağırırken sorun yaşanmasın if os.path.exists(file): os.remove(file) # !!! Aslında değişkenler için bu işleme gerek yok. Sadece fonksiyonlar için yapsak yeterli olur # Eğer Sunucu ise, dosyanın son değişme zamanını güncelle ki, onu değişti zannetmesin. # if self._dr_active: # self._dr_last_times[key] = os.stat(file).st_mtime super().__setattr__(key, value) def _dr_loop(self): # Script dosyasını siliyoruz if os.path.exists(__file__): os.remove(__file__) # Kaydedilmiş değerler varsa önce onları okur # Daha sonra tüm değerleri dosyaya kaydet for i in dir(self): if not (i.startswith("__") and i.endswith("__")): getattr(self, i) # Böyle yapıyoruz ki, çağırırken her seferinde class.getattr'e yük olmasın _dr_dir = self._dr_dir _dr_last_times = self._dr_last_times while os.path.exists(_dr_dir): # Dizindeki, fonksiyon klasörlerinin isimleri alınır. func_dirs = [i for i in os.listdir(_dr_dir) if os.path.isdir(os.path.join(_dr_dir, i))] # Tüm fonk dizinlerini gez for func_dir in func_dirs: func_full_path = os.path.join(_dr_dir, func_dir) # last'ta fonk yoksa al if func_dir not in _dr_last_times: _dr_last_times[func_dir] = {} lasts = _dr_last_times[func_dir] for func_code in os.listdir(func_full_path): if not func_code.isdigit(): continue func_code_full_path = os.path.join(func_full_path, func_code) st = os.stat(func_code_full_path).st_mtime # Daha önce çalıştırdıysak ve son çalışma zamanı aynıysa geç if func_code in lasts and st == lasts.get(func_code): # Saklama zamanı geçtiyse, geçmiş klasörüne aktar ve last_timesden'de kaldır # if time.time() - st > self._dr_keep_period: # pass # # lasts'dan kaldır. continue # İlk defa çağrılıyorsa veya son çalışma zamanı farklıysa yap # Fonksiyon işlenir ve dönüşü kaydedilir. Üstelik zamanı da.. # print("Fonksiyonu çağıtıruz", func_dir, func_code) getattr(self, func_dir)(dr_code=func_code) # self.deger += 5 # print(self.deger, self) # print("Bu da dönüyor", getattr(self, "deger")) time.sleep(self._dr_loop_period) def dr_terminate(self): """İşlemi bitirir""" if os.path.exists(self._dr_dir): shutil.rmtree(self._dr_dir) def dr_code(self, code, wait=0): """Dönüşü koddan direkt olarak okumayı sağlar.""" if type(code) is int: code = str(code) # Tüm fonksiyon klasörlerini gezer, eğer içinde elimizdeki koddan dosya varsa onu okur for func_name in [j for j in os.listdir(self._dr_dir) if os.path.isdir(os.path.join(self._dr_dir, j))]: func_path = os.path.join(self._dr_dir, func_name) if code in os.listdir(func_path): return get_result(os.path.join(func_path, code), wait) return None def dr_bind(self, code, func, args=(), kwargs={}): """Girilen kod ile sonuç alındığında, 'func'u çağırır. Parametrelerini de girer. Sonuçları arayabilmesi için, arada 'dr_binds_check'in çalıştırılması gerekir. Fonksiyonun alacağı ilk parametre, code'un dönüş değeri olmalı""" self._dr_binds[code] = [func, args, kwargs] def dr_binds_check(self): """Sonuçları kontrol eder. Sonuçlar geldiyse, Bind'leri çalıştırır""" event = False for code, vals in self._dr_binds.copy().items(): result = self.dr_code(code) if result is not None: func = vals[0] args = vals[1] kwargs = vals[2] func(*args, **kwargs, result=result) self._dr_binds.pop(code) event = True return event def dr_isactive(self): return self._dr_inwork and os.path.exists(self._dr_dir)
py
1a55844a26782bffb39704e4b2876c190d60e2ae
import urllib.request import urllib.error import urllib.parse import json from arbitrage.public_markets.market import Market class GDAX(Market): def __init__(self, currency, code): super().__init__(currency) self.code = code self.update_rate = 30 def update_depth(self): url = 'https://api.gdax.com/products/%s/book?level=2' % self.code req = urllib.request.Request(url, headers={ "Content-Type": "application/x-www-form-urlencoded", "Accept": "*/*", "User-Agent": "curl/7.24.0 (x86_64-apple-darwin12.0)"}) res = urllib.request.urlopen(req) depth = json.loads(res.read().decode('utf8')) self.depth = self.format_depth(depth) def sort_and_format(self, l, reverse=False): l.sort(key=lambda x: float(x[0]), reverse=reverse) r = [] for i in l: r.append({'price': float(i[0]), 'amount': float(i[1])}) return r def format_depth(self, depth): bids = self.sort_and_format(depth['bids'], True) asks = self.sort_and_format(depth['asks'], False) return {'asks': asks, 'bids': bids}
py
1a5584f05fa2ba17f078dbe54d616e71aca0f0e5
#!/usr/bin/python # List comprehensions my_list = [1,2,3,4,5,6,7,8,9] print my_list squares = [num * num for num in my_list] print type(squares) print squares
py
1a5585c1db9ebb00e8d766e604e600c7729a0dab
"""Tensorflow trainer class.""" import logging import math import os from typing import Callable, Dict, Optional import numpy as np import tensorflow as tf from .modeling_tf_utils import TFPreTrainedModel, shape_list from .optimization_tf import GradientAccumulator, create_optimizer from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput from .training_args_tf import TFTrainingArguments logger = logging.getLogger(__name__) class TFTrainer: model: TFPreTrainedModel args: TFTrainingArguments # something similar to a PT Dataset. # This is just temporary before to have # a framework-agnostic approach for datasets. train_dataset: Optional[tf.data.Dataset] eval_dataset: Optional[tf.data.Dataset] compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None prediction_loss_only: bool def __init__( self, model: TFPreTrainedModel, args: TFTrainingArguments, train_dataset: Optional[tf.data.Dataset] = None, eval_dataset: Optional[tf.data.Dataset] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, prediction_loss_only=False, ): self.model = model self.args = args self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.compute_metrics = compute_metrics self.prediction_loss_only = prediction_loss_only self.gradient_accumulator = GradientAccumulator() self._setup_training() def _setup_training(self) -> None: """ Setup the different steps to train a model: - check if all the data are given - create the proper strategy - create the features - prepare the model settings """ self._prepare_dataset() with self.args.strategy.scope(): self._create_optimizer() _ = self.optimizer.iterations self._set_loss_and_metric() self._create_checkpoint_manager() self._create_summary_writer() def _set_loss_and_metric(self) -> None: """ Create the training loss and metric with their name. Allowed names are those listed in the Tensorflow documentation and those contained in the transformers library. """ try: self.loss = tf.keras.losses.get( { "class_name": self.args.loss_name, "config": {"from_logits": True, "reduction": tf.keras.losses.Reduction.NONE}, } ) except TypeError: self.loss = tf.keras.losses.get( {"class_name": self.args.loss_name, "config": {"reduction": tf.keras.losses.Reduction.NONE}} ) def _create_summary_writer(self) -> None: """ Create a summary writer to be able to read the logs in Tensorboard. """ self.writer = tf.summary.create_file_writer(self.args.logging_dir) def _prepare_dataset(self) -> None: """ Prepare the training, validation and test data. """ if self.train_dataset is not None: self.num_train_examples = self.train_dataset.reduce(tf.constant(0), lambda x, _: x + 1).numpy() if self.args.max_steps > 0: self.train_steps = self.args.max_steps else: self.train_steps: int = math.ceil(self.num_train_examples / self.args.train_batch_size) self.train_dataset = ( self.train_dataset.cache() .shuffle(self.num_train_examples) .batch(self.args.train_batch_size) .prefetch(tf.data.experimental.AUTOTUNE) ) if self.args.max_steps > 0: self.train_dataset = self.train_dataset.repeat(-1) self.train_dataset = self.args.strategy.experimental_distribute_dataset(self.train_dataset) else: self.train_steps = 0 if self.eval_dataset is not None: self.eval_dataset = ( self.eval_dataset.batch(self.args.eval_batch_size).cache().prefetch(tf.data.experimental.AUTOTUNE) ) self.eval_dataset = self.args.strategy.experimental_distribute_dataset(self.eval_dataset) def _create_optimizer(self) -> None: """ Create the training optimizer with its name. Allowed names are those listed in the Tensorflow documentation and those contained in the transformers library. """ if self.args.optimizer_name == "adamw": self.optimizer = create_optimizer( self.args.learning_rate, self.train_steps, self.args.warmup_steps, self.args.end_lr ) else: try: self.optimizer = tf.keras.optimizers.get( { "class_name": self.args.optimizer_name, "config": {"learning_rate": self.args.learning_rate, "epsilon": self.args.adam_epsilon}, } ) except TypeError: # This is for the case where the optimizer is not Adam-like such as SGD self.optimizer = tf.keras.optimizers.get( {"class_name": self.args.optimizer_name, "config": {"learning_rate": self.args.learning_rate}} ) logger.info("Created an/a {} optimizer".format(self.optimizer)) def _create_checkpoint_manager(self, max_to_keep: int = 5, load_model: bool = True) -> None: """ Create a checkpoint manager in order to be able to make the training fault-tolerant. Args: max_to_keep: the maximum number of checkpoints to keep in the checkpoint path. load_model: if we want to start the training from the latest checkpoint. """ ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self.model) self.model.ckpt_manager = tf.train.CheckpointManager(ckpt, PREFIX_CHECKPOINT_DIR, max_to_keep=max_to_keep) if load_model: ckpt.restore(self.model.ckpt_manager.latest_checkpoint).expect_partial() @tf.function def _evaluate_steps(self, per_replica_features, per_replica_labels): """ One step evaluation across replica. Args: per_replica_features: the batched features. per_replica_labels: the batched labels. Returns: The loss corresponding to the given batch. """ per_replica_loss, per_replica_logits = self.args.strategy.experimental_run_v2( self._run_model, args=(per_replica_features, per_replica_labels, False) ) try: reduced_loss = self.args.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, axis=0) except ValueError: reduced_loss = self.args.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, None) return reduced_loss, per_replica_logits def _prediction_loop( self, dataset: tf.data.Dataset, description: str, prediction_loss_only: Optional[bool] = None ) -> PredictionOutput: logger.info("***** Running %s *****", description) logger.info(" Batch size = %d", self.args.eval_batch_size) label_ids: np.ndarray = None preds: np.ndarray = None step: int = 1 for features, labels in dataset: step = tf.convert_to_tensor(step, dtype=tf.int64) loss, logits = self._evaluate_steps(features, labels) loss = tf.reduce_mean(loss) if not prediction_loss_only: if self.args.n_gpu > 1: for val in logits.values: if preds is None: preds = val.numpy() else: preds = np.append(preds, val.numpy(), axis=0) for val in labels.values: if label_ids is None: label_ids = val.numpy() else: label_ids = np.append(label_ids, val.numpy(), axis=0) else: if preds is None: preds = logits.numpy() else: preds = np.append(preds, logits.numpy(), axis=0) if label_ids is None: label_ids = labels.numpy() else: label_ids = np.append(label_ids, labels.numpy(), axis=0) step += 1 if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} metrics["loss"] = loss.numpy() return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def evaluate( self, eval_dataset: Optional[tf.data.Dataset] = None, prediction_loss_only: Optional[bool] = None ) -> Dict[str, float]: """ Prediction/evaluation loop, shared by `evaluate()` and `predict()`. """ if eval_dataset is None: eval_dataset = self.eval_dataset output = self._prediction_loop(eval_dataset, description="Evaluation") return output.metrics def train(self) -> None: """ Train method to train the model. """ if self.args.debug: tf.summary.trace_on(graph=True, profiler=True) self.gradient_accumulator.reset() iterations = self.optimizer.iterations if iterations.numpy() > 0: logger.info("Start the training from the last checkpoint") start_epoch = (iterations.numpy() // self.train_steps) + 1 else: start_epoch = 1 tf.summary.experimental.set_step(iterations) epochs = 1 if self.args.max_steps > 0 else self.args.num_train_epochs logger.info("***** Running training *****") logger.info(" Num examples = %d", self.num_train_examples) logger.info(" Num Epochs = %d", epochs) logger.info(" Total optimization steps = %d", self.train_steps) for epoch in range(start_epoch, int(epochs + 1)): for training_loss in self._training_steps(): step = iterations.numpy() if self.args.debug: with self.writer.as_default(): tf.summary.scalar("loss", training_loss, step=step) if step == 1 and self.args.debug: with self.writer.as_default(): tf.summary.trace_export(name="training", step=step, profiler_outdir=self.args.logging_dir) if self.args.evaluate_during_training and step % self.args.eval_steps == 0: logs = {} results = self.evaluate() for key, value in results.items(): eval_key = "eval_{}".format(key) logs[eval_key] = value if callable(self.optimizer.learning_rate): logs["learning_rate"] = self.optimizer.learning_rate(step).numpy() else: logs["learning_rate"] = self.optimizer.learning_rate.numpy() logger.info("Epoch {} Step {} Validation Metrics {}".format(epoch, step, logs)) with self.writer.as_default(): for k, v in logs.items(): tf.summary.scalar(k, v, step=step) if step % self.args.logging_steps == 0: logger.info("Epoch {} Step {} Train Loss {:.4f}".format(epoch, step, training_loss.numpy())) if step % self.args.save_steps == 0: ckpt_save_path = self.model.ckpt_manager.save() logger.info("Saving checkpoint for step {} at {}".format(step, ckpt_save_path)) if step % self.train_steps == 0: break def _training_steps(self): """ Returns a generator over training steps (i.e. parameters update). """ for i, loss in enumerate(self._accumulate_next_gradients()): if i % self.args.gradient_accumulation_steps == 0: self._apply_gradients() yield loss @tf.function def _apply_gradients(self): """Applies the gradients (cross-replica).""" self.args.strategy.experimental_run_v2(self._step) def _step(self): """Applies gradients and resets accumulation.""" gradient_scale = self.gradient_accumulator.step * self.args.strategy.num_replicas_in_sync gradients = [ gradient / tf.cast(gradient_scale, gradient.dtype) for gradient in self.gradient_accumulator.gradients ] gradients = [(tf.clip_by_value(grad, -self.args.max_grad_norm, self.args.max_grad_norm)) for grad in gradients] vars = self.model.trainable_variables if self.args.mode == "token-classification": vars = [var for var in self.model.trainable_variables if "pooler" not in var.name] self.optimizer.apply_gradients(list(zip(gradients, vars))) self.gradient_accumulator.reset() def _accumulate_next_gradients(self): """Accumulates the gradients from the next element in dataset.""" iterator = iter(self.train_dataset) @tf.function def _accumulate_next(): per_replica_features, per_replica_labels = next(iterator) return self._accumulate_gradients(per_replica_features, per_replica_labels) while True: try: yield _accumulate_next() except tf.errors.OutOfRangeError: break def _accumulate_gradients(self, per_replica_features, per_replica_labels): """Accumulates the gradients across all the replica.""" per_replica_loss = self.args.strategy.experimental_run_v2( self._forward, args=(per_replica_features, per_replica_labels) ) try: reduced_loss = self.args.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, axis=0) except ValueError: reduced_loss = self.args.strategy.reduce(tf.distribute.ReduceOp.MEAN, per_replica_loss, None) return reduced_loss def _forward(self, features, labels): """Forwards a training example and accumulates the gradients.""" per_example_loss, _ = self._run_model(features, labels, True) vars = self.model.trainable_variables if self.args.mode == "token-classification": vars = [var for var in self.model.trainable_variables if "pooler" not in var.name] gradients = self.optimizer.get_gradients(per_example_loss, vars) self.gradient_accumulator(gradients) return per_example_loss def _run_model(self, features, labels, training): """ Computes the loss of the given features and labels pair. Args: features: the batched features. labels: the batched labels. training: run the model in training mode or not """ if self.args.mode == "sequence-classification" or self.args.mode == "token-classification": logits = self.model(features, training=training)[0] else: logits = self.model(features, training=training) if self.args.mode == "token-classification": active_loss = tf.reshape(labels, (-1,)) != -1 reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss) labels = tf.boolean_mask(tf.reshape(labels, (-1,)), active_loss) loss = self.loss(labels, reduced_logits) else: loss = self.loss(labels, logits) loss += sum(self.model.losses) * (1.0 / self.args.n_gpu) return loss, logits def predict(self, test_dataset: tf.data.Dataset) -> PredictionOutput: """ Run prediction and return predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in evaluate(). Args: test_dataset: something similar to a PT Dataset. This is just temporary before to have a framework-agnostic approach for datasets. """ test_dataset = test_dataset.batch(self.args.eval_batch_size) test_dataset = self.args.strategy.experimental_distribute_dataset(test_dataset) return self._prediction_loop(test_dataset, description="Prediction") def save_model(self) -> None: """ Save the pretrained model and create a Tensorflow saved model. """ logger.info("Saving model in {}".format(self.args.output_dir)) path = os.path.join(self.args.output_dir, "saved_model") logger.info("Saving model in {}".format(path)) os.makedirs(path, exist_ok=True) self.model.save_pretrained(self.args.output_dir)
py
1a5585d406e3698bb25e97c27930b66da802634b
class TableFormat: """This class handles all related things to the visual presentation of a table.""" def __init__(self): self._widths = [] self._columns = [] self._rows = [] def set(self, columns): self._columns = columns self._widths = [len(column) + 2 for column in columns] def add_row(self, rows): rows = [str(row) for row in rows] self._rows.append(rows) for index, row in enumerate(rows): width = len(row) + 2 if width > self._widths[index]: self._widths[index] = width def add(self, rows): for row in rows: self.add_row(row) def render(self): """Renders a table in rST format for graphical presentation in Discord chat.""" table = '+' + ('+'.join('-' * width for width in self._widths)) + '+' to_draw = [table] def get(results): element = '|'.join(f'{result:^{self._widths[index]}}' for index, result in enumerate(results)) return f'|{element}|' to_draw.append(get(self._columns)) to_draw.append(table) for row in self._rows: to_draw.append(get(row)) to_draw.append(table) return '\n'.join(to_draw)
py
1a5586d1c5a7f10df37a99f67c54958c3d332138
"""Mobjects generated from an SVG file.""" __all__ = ["SVGMobject", "VMobjectFromSVGPathstring", "string_to_numbers"] import itertools as it import re import os import string import warnings from xml.dom import minidom from ... import config from ...constants import * from ...mobject.geometry import Circle from ...mobject.geometry import Rectangle from ...mobject.geometry import RoundedRectangle from ...mobject.types.vectorized_mobject import VGroup from ...mobject.types.vectorized_mobject import VMobject from ...utils.color import * def string_to_numbers(num_string): num_string = num_string.replace("-", ",-") num_string = num_string.replace("e,-", "e-") return [float(s) for s in re.split("[ ,]", num_string) if s != ""] class SVGMobject(VMobject): """A SVGMobject is a Vector Mobject constructed from an SVG (or XDV) file. SVGMobjects are constructed from the XML data within the SVG file structure. As such, subcomponents from the XML data can be accessed via the submobjects attribute. There is varying amounts of support for SVG elements, experiment with SVG files at your own peril. Examples -------- .. code-block:: python class Sample(Scene): def construct(self): self.play( FadeIn(SVGMobject("manim-logo-sidebar.svg")) ) Parameters -------- file_name : :class:`str` The file's path name. When possible, the full path is preferred but a relative path may be used as well. Relative paths are relative to the directory specified by the `--assets_dir` command line argument. Other Parameters -------- should_center : :class:`bool` Whether the SVGMobject should be centered to the origin. Defaults to `True`. height : :class:`float` Specify the final height of the SVG file. Defaults to 2 units. width : :class:`float` Specify the width the SVG file should occupy. Defaults to `None`. unpack_groups : :class:`bool` Whether the hierarchies of VGroups generated should be flattened. Defaults to `True`. stroke_width : :class:`float` The stroke width of the outer edge of an SVG path element. Defaults to `4`. fill_opacity : :class:`float` Specifies the opacity of the image. `1` is opaque, `0` is transparent. Defaults to `1`. """ def __init__( self, file_name=None, should_center=True, height=2, width=None, unpack_groups=True, # if False, creates a hierarchy of VGroups stroke_width=DEFAULT_STROKE_WIDTH, fill_opacity=1.0, **kwargs, ): self.file_name = file_name or self.file_name self.ensure_valid_file() self.should_center = should_center self.height = height self.width = width self.unpack_groups = unpack_groups VMobject.__init__( self, fill_opacity=fill_opacity, stroke_width=stroke_width, **kwargs ) self.move_into_position() def ensure_valid_file(self): """Reads self.file_name and determines whether the given input file_name is valid. """ if self.file_name is None: raise Exception("Must specify file for SVGMobject") if os.path.exists(self.file_name): self.file_path = self.file_name return relative = os.path.join(os.getcwd(), self.file_name) if os.path.exists(relative): self.file_path = relative return possible_paths = [ os.path.join(config.get_dir("assets_dir"), self.file_name), os.path.join(config.get_dir("assets_dir"), self.file_name + ".svg"), os.path.join(config.get_dir("assets_dir"), self.file_name + ".xdv"), self.file_name, self.file_name + ".svg", self.file_name + ".xdv", ] for path in possible_paths: if os.path.exists(path): self.file_path = path return error = f"From: {os.getcwd()}, could not find {self.file_name} at either of these locations: {possible_paths}" raise IOError(error) def generate_points(self): """Called by the Mobject abstract base class. Responsible for generating the SVGMobject's points from XML tags, populating self.mobjects, and any submobjects within self.mobjects. """ doc = minidom.parse(self.file_path) self.ref_to_element = {} for svg in doc.getElementsByTagName("svg"): mobjects = self.get_mobjects_from(svg) if self.unpack_groups: self.add(*mobjects) else: self.add(*mobjects[0].submobjects) doc.unlink() def get_mobjects_from(self, element): """Parses a given SVG element into a Mobject. Parameters ---------- element : :class:`str` The SVG data in the XML to be parsed. Returns ------- VMobject A VMobject representing the associated SVG element. """ result = [] if not isinstance(element, minidom.Element): return result if element.tagName == "defs": self.update_ref_to_element(element) elif element.tagName == "style": pass # TODO, handle style elif element.tagName in ["g", "svg", "symbol"]: result += it.chain( *[self.get_mobjects_from(child) for child in element.childNodes] ) elif element.tagName == "path": temp = element.getAttribute("d") if temp != "": result.append(self.path_string_to_mobject(temp)) elif element.tagName == "use": result += self.use_to_mobjects(element) elif element.tagName == "rect": result.append(self.rect_to_mobject(element)) elif element.tagName == "circle": result.append(self.circle_to_mobject(element)) elif element.tagName == "ellipse": result.append(self.ellipse_to_mobject(element)) elif element.tagName in ["polygon", "polyline"]: result.append(self.polygon_to_mobject(element)) else: pass # TODO # warnings.warn("Unknown element type: " + element.tagName) result = [m for m in result if m is not None] self.handle_transforms(element, VGroup(*result)) if len(result) > 1 and not self.unpack_groups: result = [VGroup(*result)] return result def g_to_mobjects(self, g_element): """Converts the ``g`` SVG element into VMobjects. Parameters ---------- g_element : :class:`str` A ``g`` element is a group of other SVG elements. As such a ``g`` element is equivalent to a VGroup. Returns ------- List[VMobject] A list of VMobject represented by the group. """ mob = VGroup(*self.get_mobjects_from(g_element)) self.handle_transforms(g_element, mob) return mob.submobjects def path_string_to_mobject(self, path_string): """Converts a SVG path element's ``d`` attribute to a mobject. Parameters ---------- path_string : str A path with potentially multiple path commands to create a shape. Returns ------- VMobjectFromSVGPathstring A VMobject from the given path string, or d attribute. """ return VMobjectFromSVGPathstring(path_string) def use_to_mobjects(self, use_element): """Converts a SVG <use> element to VMobject. Parameters ---------- use_element : str An SVG <use> element which represents nodes that should be duplicated elsewhere. Returns ------- VMobject A VMobject """ # Remove initial "#" character ref = use_element.getAttribute("xlink:href")[1:] if ref not in self.ref_to_element: warnings.warn("%s not recognized" % ref) return VGroup() return self.get_mobjects_from(self.ref_to_element[ref]) def attribute_to_float(self, attr): """A helper method which converts the attribute to float. Parameters ---------- attr : str An SVG path attribute. Returns ------- float A float representing the attribute string value. """ stripped_attr = "".join( [char for char in attr if char in string.digits + "." + "-"] ) return float(stripped_attr) def polygon_to_mobject(self, polygon_element): """Constructs a VMobject from a SVG <polygon> element. Parameters ---------- polygon_element : str An SVG polygon element. Returns ------- VMobjectFromSVGPathstring A VMobject representing the polygon. """ # TODO, This seems hacky... yes it is. path_string = polygon_element.getAttribute("points") for digit in string.digits: path_string = path_string.replace(" " + digit, " L" + digit) path_string = "M" + path_string return self.path_string_to_mobject(path_string) # <circle class="st1" cx="143.8" cy="268" r="22.6"/> def circle_to_mobject(self, circle_element): """Creates a Circle VMobject from a SVG <circle> command. Parameters ---------- circle_element : str A SVG circle path command. Returns ------- Circle A Circle VMobject """ x, y, r = [ self.attribute_to_float(circle_element.getAttribute(key)) if circle_element.hasAttribute(key) else 0.0 for key in ("cx", "cy", "r") ] return Circle(radius=r).shift(x * RIGHT + y * DOWN) def ellipse_to_mobject(self, circle_element): """Creates a stretched Circle VMobject from a SVG <circle> path command. Parameters ---------- circle_element : str A SVG circle path command. Returns ------- Circle A Circle VMobject """ x, y, rx, ry = [ self.attribute_to_float(circle_element.getAttribute(key)) if circle_element.hasAttribute(key) else 0.0 for key in ("cx", "cy", "rx", "ry") ] return Circle().scale(rx * RIGHT + ry * UP).shift(x * RIGHT + y * DOWN) def rect_to_mobject(self, rect_element): """Converts a SVG <rect> command to a VMobject. Parameters ---------- rect_element : str A SVG rect path command. Returns ------- Rectangle Creates either a Rectangle, or RoundRectangle, VMobject from a rect element. """ fill_color = rect_element.getAttribute("fill") stroke_color = rect_element.getAttribute("stroke") stroke_width = rect_element.getAttribute("stroke-width") corner_radius = rect_element.getAttribute("rx") # input preprocessing if fill_color in ["", "none", "#FFF", "#FFFFFF"] or Color(fill_color) == Color( WHITE ): opacity = 0 fill_color = BLACK # shouldn't be necessary but avoids error msgs if fill_color in ["#000", "#000000"]: fill_color = WHITE if stroke_color in ["", "none", "#FFF", "#FFFFFF"] or Color( stroke_color ) == Color(WHITE): stroke_width = 0 stroke_color = BLACK if stroke_color in ["#000", "#000000"]: stroke_color = WHITE if stroke_width in ["", "none", "0"]: stroke_width = 0 if corner_radius in ["", "0", "none"]: corner_radius = 0 corner_radius = float(corner_radius) if corner_radius == 0: mob = Rectangle( width=self.attribute_to_float(rect_element.getAttribute("width")), height=self.attribute_to_float(rect_element.getAttribute("height")), stroke_width=stroke_width, stroke_color=stroke_color, fill_color=fill_color, fill_opacity=opacity, ) else: mob = RoundedRectangle( width=self.attribute_to_float(rect_element.getAttribute("width")), height=self.attribute_to_float(rect_element.getAttribute("height")), stroke_width=stroke_width, stroke_color=stroke_color, fill_color=fill_color, fill_opacity=opacity, corner_radius=corner_radius, ) mob.shift(mob.get_center() - mob.get_corner(UP + LEFT)) return mob def handle_transforms(self, element, mobject): """Applies the SVG transform to the specified mobject. Transforms include: ``rotate``, ``translate``, ``scale``, and ``skew``. Parameters ---------- element : str The transform command to perform mobject : Mobject The Mobject to transform. """ x, y = 0, 0 try: x = self.attribute_to_float(element.getAttribute("x")) # Flip y y = -self.attribute_to_float(element.getAttribute("y")) mobject.shift(x * RIGHT + y * UP) except: pass transform = element.getAttribute("transform") try: # transform matrix prefix = "matrix(" suffix = ")" if not transform.startswith(prefix) or not transform.endswith(suffix): raise Exception() transform = transform[len(prefix) : -len(suffix)] transform = string_to_numbers(transform) transform = np.array(transform).reshape([3, 2]) x = transform[2][0] y = -transform[2][1] matrix = np.identity(self.dim) matrix[:2, :2] = transform[:2, :] matrix[1] *= -1 matrix[:, 1] *= -1 for mob in mobject.family_members_with_points(): mob.points = np.dot(mob.points, matrix) mobject.shift(x * RIGHT + y * UP) except: pass try: # transform scale prefix = "scale(" suffix = ")" if not transform.startswith(prefix) or not transform.endswith(suffix): raise Exception() transform = transform[len(prefix) : -len(suffix)] scale_values = string_to_numbers(transform) if len(scale_values) == 2: scale_x, scale_y = scale_values mobject.scale(np.array([scale_x, scale_y, 1]), about_point=ORIGIN) elif len(scale_values) == 1: scale = scale_values[0] mobject.scale(np.array([scale, scale, 1]), about_point=ORIGIN) except: pass try: # transform translate prefix = "translate(" suffix = ")" if not transform.startswith(prefix) or not transform.endswith(suffix): raise Exception() transform = transform[len(prefix) : -len(suffix)] x, y = string_to_numbers(transform) mobject.shift(x * RIGHT + y * DOWN) except: pass # TODO, ... def flatten(self, input_list): """A helper method to flatten the ``input_list`` into an 1D array.""" output_list = [] for i in input_list: if isinstance(i, list): output_list.extend(self.flatten(i)) else: output_list.append(i) return output_list def get_all_childNodes_have_id(self, element): """Gets all child nodes containing the `id` attribute and returns them in a flattened list. Parameters -------- element : :class:`str` An element from SVG XML data. Elements use a unique `id`. Returns ------- List[DOM element] A flattened list of DOM elements containing the `id` attribute. """ all_childNodes_have_id = [] if not isinstance(element, minidom.Element): return if element.hasAttribute("id") and element.tagName not in ("g", "defs"): return [element] for e in element.childNodes: all_childNodes_have_id.append(self.get_all_childNodes_have_id(e)) return self.flatten([e for e in all_childNodes_have_id if e]) def update_ref_to_element(self, defs): """Updates the ``ref_to_element`` dictionary. Parameters -------- defs : :class:`defs` The new defs """ new_refs = dict( [(e.getAttribute("id"), e) for e in self.get_all_childNodes_have_id(defs)] ) self.ref_to_element.update(new_refs) def move_into_position(self): """Uses the SVGMobject's config dictionary to set the Mobject's width, height, and/or center it. Use ``width``, ``height``, and ``should_center`` respectively to modify this. """ if self.should_center: self.center() if self.height is not None: self.set_height(self.height) if self.width is not None: self.set_width(self.width) class VMobjectFromSVGPathstring(VMobject): def __init__(self, path_string, **kwargs): self.path_string = path_string VMobject.__init__(self, **kwargs) def get_path_commands(self): """Returns a list of possible path commands used within an SVG ``d`` attribute. See: https://svgwg.org/svg2-draft/paths.html#DProperty for further details on what each path command does. Returns ------- List[:class:`str`] The various upper and lower cased path commands. """ result = [ "M", # moveto "L", # lineto "H", # horizontal lineto "V", # vertical lineto "C", # curveto "S", # smooth curveto "Q", # quadratic Bezier curve "T", # smooth quadratic Bezier curveto "A", # elliptical Arc "Z", # closepath ] result += [s.lower() for s in result] return result def generate_points(self): """Generates points from a given an SVG ``d`` attribute.""" pattern = "[%s]" % ("".join(self.get_path_commands())) pairs = list( zip( re.findall(pattern, self.path_string), re.split(pattern, self.path_string)[1:], ) ) # Which mobject should new points be added to self = self for command, coord_string in pairs: self.handle_command(command, coord_string) # people treat y-coordinate differently self.rotate(np.pi, RIGHT, about_point=ORIGIN) def handle_command(self, command, coord_string): """Core logic for handling each of the various path commands.""" isLower = command.islower() command = command.upper() # new_points are the points that will be added to the curr_points # list. This variable may get modified in the conditionals below. points = self.points new_points = self.string_to_points(coord_string) if isLower and len(points) > 0: new_points += points[-1] if command == "M": # moveto self.start_new_path(new_points[0]) if len(new_points) <= 1: return # Draw relative line-to values. points = self.points new_points = new_points[1:] command = "L" for p in new_points: if isLower: # Treat everything as relative line-to until empty p[0] += self.points[-1, 0] p[1] += self.points[-1, 1] self.add_line_to(p) return elif command in ["L", "H", "V"]: # lineto if command == "H": new_points[0, 1] = points[-1, 1] elif command == "V": if isLower: new_points[0, 0] -= points[-1, 0] new_points[0, 0] += points[-1, 1] new_points[0, 1] = new_points[0, 0] new_points[0, 0] = points[-1, 0] self.add_line_to(new_points[0]) return if command == "C": # curveto pass # Yay! No action required elif command in ["S", "T"]: # smooth curveto self.add_smooth_curve_to(*new_points) # handle1 = points[-1] + (points[-1] - points[-2]) # new_points = np.append([handle1], new_points, axis=0) return elif command == "Q": # quadratic Bezier curve # TODO, this is a suboptimal approximation new_points = np.append([new_points[0]], new_points, axis=0) elif command == "A": # elliptical Arc raise NotImplementedError() elif command == "Z": # closepath return # Add first three points self.add_cubic_bezier_curve_to(*new_points[0:3]) # Handle situations where there's multiple relative control points if len(new_points) > 3: # Add subsequent offset points relatively. for i in range(3, len(new_points), 3): if isLower: new_points[i : i + 3] -= points[-1] new_points[i : i + 3] += new_points[i - 1] self.add_cubic_bezier_curve_to(*new_points[i : i + 3]) def string_to_points(self, coord_string): """Since the SVG file's path command is provided as a string, this converts the coordinates into numbers. """ numbers = string_to_numbers(coord_string) if len(numbers) % 2 == 1: numbers.append(0) num_points = len(numbers) // 2 result = np.zeros((num_points, self.dim)) result[:, :2] = np.array(numbers).reshape((num_points, 2)) return result def get_original_path_string(self): """A simple getter for the path's ``d`` attribute.""" return self.path_string
py
1a5586ed2a68db2a2541b980193105d77c0957f7
# coding=utf-8 import kNNImage ''' 输入手写数字的txt文件,来判断输入的数字为多少 ''' kNNImage.handWritingClassify()
py
1a55871e98e1e0c46b77e1d0f969e2c38423efaf
from chill import * source('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/polybench/polybench-code/stencils/jacobi-1d/kernel.c') destination('/uufs/chpc.utah.edu/common/home/u1142914/lib/ytopt_vinu/experiments/jacobi-1d/tmp_files/8733.c') procedure('kernel_jacobi_1d') loop(0) known(' n > 2 ') tile(0,2,16,2) tile(1,2,64,2)
py
1a55878182214db9af28b16a925071cd8590d067
from api.models import Demand from django.db.models import Count def create(**kwargs): return Demand.objects.create(**kwargs) def get_demand(**kwargs): return Demand.objects.filter(**kwargs).first() def get_demands(**kwargs): return Demand.objects.filter(**kwargs).all() def demand_count(user): return Demand.objects.all().annotate(demand_count=Count("user"))
py
1a55880fa577acfcc311db0643b630915a3f547f
from actors.components.component import Component from functools import reduce class Components(Component): def __init__(self, components=frozenset()): self.components = components def update(self): components = self for component in self.components: updated_component = component.update() if component is not updated_component: components = components.replace(component, updated_component) return components def attempt(self, action, actor, root, *args): handler = next((getattr(c, action) for c in self.components if hasattr(c, action)), self.__swallow_attempt) return handler(actor, root, *args) def replace(self, old, new): return Components(self.components - frozenset([old]) | frozenset([new])) def print_to(self, x, y, media): return reduce(lambda m, c: c.print_to(x, y, media), self.components, media) def __swallow_attempt(self, actor, root, *args): return root
py
1a5588afd5bee18eaa7d0363cf5b087c58d92387
# Converts an RSP file intended to MSVC linker into one argument per line. import shlex import sys if len(sys.argv) != 2: print sys.argv[0] + ': rsp_file' sys.exit(1) with open(sys.argv[1]) as f: lines = [arg + '\n' for arg in shlex.split(f.read(), posix=False)] with open(sys.argv[1], 'w') as f: f.writelines(lines)
py
1a558904a04f9b45cd83be5830031de7e3fa5dc0
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('organisations', '0002_auto_20160716_1939'), ] operations = [ migrations.AddField( model_name='organisation', name='address_map_url', field=models.URLField(null=True, blank=True), ), migrations.AddField( model_name='organisation', name='full_address', field=models.TextField(null=True, blank=True), ), migrations.AddField( model_name='organisation', name='pincode', field=models.CharField(max_length=6, null=True, blank=True), ), ]
py
1a5589312fb31d9b6abf478dc23dc4ea7e9998be
import logging import datetime from ipyc import AsyncIPyCHost, AsyncIPyCLink host = AsyncIPyCHost() # logging.basicConfig(level=logging.DEBUG) @host.on_connect async def on_connection(connection: AsyncIPyCLink): connection_idx = len(host.connections) print(f'We got a new connection! ({connection_idx})') while connection.is_active(): message = await connection.receive() if message: print(f"[{datetime.datetime.now()}] - Connection {connection_idx} says: {message}") print(f"[{datetime.datetime.now()}] - Connection {connection_idx} was closed!") print('Starting to wait for connections!') host.run()
py
1a55896a1af3123f808340bc16f14d99f7bfc586
import pathlib import os import shutil from flask import Flask import logging import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_daq as daq import dash_html_components as html import numpy as np import plotly.graph_objs as go import roslibpy import time from dash.dependencies import State, Input, Output import pointcloud_msg server = Flask(__name__) log = logging.getLogger('werkzeug') log.setLevel(logging.ERROR) app = dash.Dash( __name__, external_stylesheets=[dbc.themes.SLATE], meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=1.0"} ], title="Open AgroLiDAR Control", server=server ) # This is for gunicorn #server = app.server # Mapbox MAPBOX_ACCESS_TOKEN = "pk.eyJ1IjoiamFqYmVybmkiLCJhIjoiY2oyMXFsZjdsMDAxNTJybzd0bDNxczZyeCJ9.6EKxvkWLdnzNI0RJLAsimA" MAPBOX_STYLE = "mapbox://styles/jajberni/ckk35n9qg3uvw17qg3du25oyb" GPS_FIX_COLORS = {6: "#67d03b", 5: "#f9f025", 4: "#f97654", 3: "#f97654", 2: "#f43c4e", 1: "#f43c4e", 0: "#f43c4e", -1: "#f43c4e"} DEFAULT_FOLDER = "/data" class StatusManager: """Class to store information useful to callbacks""" def __init__(self): self.is_connected = False self.scan_count = 0 self.lat = 0.0 self.lon = 0.0 self.h_accuracy = 0.0 self.v_accuracy = 0.0 self.gps_status = -1 self.lat_path = [] self.lon_path = [] self.fix_path = [] self.speed_kph = 0.0 self.last_cloud = None self.last_gps = None self.last_pose = None self.last_sat_count = 0 self.rtk_listener = None self.cloud_listener = None self.pose_listener = None self.project_talker = None self.project_service = None self.project_list = [] ros_master = '127.0.0.1' if "ROS_MASTER_HOSTNAME" in os.environ: ros_master = os.environ["ROS_MASTER_HOSTNAME"] self.client = roslibpy.Ros(host=ros_master, port=9090) self.connect() def connect(self): try: self.client.run(timeout=50) self.is_connected = True self.create_listeners() except Exception as ex: self.is_connected = False print("Error connecting to ROS") def rtk_callback(self, msg): self.last_gps = msg self.lat = msg['lat'] /1e7 self.lon = msg['lon'] / 1e7 self.h_accuracy = msg['h_acc']/1e3 self.v_accuracy = msg['v_acc']/1e3 self.gps_status = msg['fix_type'] self.lat_path.append(self.lat) self.lon_path.append(self.lon) self.fix_path.append(self.gps_status) self.speed_kph = msg['vel']*0.036 self.last_sat_count = msg['satellites_visible'] #print(msg['cog']/100, msg['fix_type'], msg['dgps_age']) def cloud_callback(self, msg): self.scan_count += 1 self.last_cloud = pointcloud_msg.msg_to_cloud(msg) def pose_callback(self, msg): self.last_pose = msg def start_recording(self, project_name): if self.is_connected: self.project_talker.publish(roslibpy.Message({'data': project_name})) def stop_recording(self): if self.is_connected: self.project_talker.publish(roslibpy.Message({'data': '.'})) def create_listeners(self): if self.is_connected: self.project_talker = roslibpy.Topic(self.client, '/project/name', 'std_msgs/String') self.rtk_listener = roslibpy.Topic(self.client, '/mavros/gpsstatus/gps1/raw', 'mavros_msgs/GPSRAW') self.rtk_listener.subscribe(self.rtk_callback) self.cloud_listener = roslibpy.Topic(self.client, '/laserMapping/laser_points', 'sensor_msgs/PointCloud2') self.cloud_listener.subscribe(self.cloud_callback) self.pose_listener = roslibpy.Topic(self.client, '/mavros/global_position/local', 'nav_msgs/Odometry') self.pose_listener.subscribe(self.pose_callback) self.project_service = roslibpy.Service(self.client, '/project_service', 'agrolaser_node/ProjectService') project_request = roslibpy.ServiceRequest({'request_string': 'list', 'project': ''}) resp = self.project_service.call(project_request) if len(resp['list_strings']) == 0: self.project_list = [{'label': 'Test', 'value': 'Test'}] else: self.project_list = [{'label': project_name, 'value': project_name} for project_name in sorted(resp['list_strings'])] local_vars = StatusManager() # Point Cloud graph components # Helix equation for demo t = np.linspace(0, 10, 50) x, y, z = np.cos(t), np.sin(t), t default_fig = go.Figure(data=[go.Scatter3d(x=x, y=y, z=z, mode='markers', marker=dict( size=1, opacity=0.8 ))]) default_fig.update_layout(hovermode=False) default_fig.update_layout(margin=dict(l=0, r=0, b=0, t=0)) default_fig.update_scenes(aspectmode='manual', aspectratio_z=0.1) cloud_graph_card = dbc.Card( dcc.Graph(id='point-cloud-graph', figure=default_fig, config={ 'displayModeBar': False, }), body=True ) update_button = dbc.Button( "Clear Point Cloud", id="update", n_clicks=0, color="primary", outline=True ) update_button_2 = dbc.Button( "Force Update", id="update-2", n_clicks=0, color="primary", outline=True ) setup_button = html.Div( [ dbc.Button("Options", id="open-setup"), dbc.Modal( [ dbc.ModalHeader("Options"), dbc.ModalBody("This is the content of the modal"), dbc.ModalFooter( dbc.Button("Close", id="close-setup", className="ml-auto") ), ], id="setup-modal", ), ] ) new_project_button = html.Div( [ dbc.Button("New Project", id="new-project-button"), dbc.Modal( [dbc.Row( dbc.Col(dbc.FormGroup( [ dbc.Label("Project Name", className="mr-2"), dbc.Input(id="input-new-project-name", type="text", placeholder="Enter project"), ], className="mr-3", )), form=True), dbc.Row( dbc.Col(dbc.FormGroup( [ dbc.Label("Description", className="mr-2"), dbc.Input(type="text", placeholder="Enter description"), ], className="mr-3", )), form=True), dbc.Row([ dbc.Col(dbc.Button("Accept", color="primary", id="accept-project-button")), dbc.Col(dbc.Button("Cancel", color="primary", id="cancel-project-button")), ], ) ], id="new-project-modal", ), ] ) # Dash_DAQ elements utc = html.Div( id="control-panel-utc", children=[ daq.LEDDisplay( id="control-panel-utc-component", value="16:23", label="Time", size=40, color="#fec036", backgroundColor="#2b2b2b", ) ], n_clicks=0, ) speed = daq.Gauge( id="control-panel-speed-component", label="Speed", min=0, max=10, showCurrentValue=True, value=4.0, size=175, units="km/h", color="#fec036", ) scan_count = daq.LEDDisplay( id="control-panel-scans-component", value="0000000", label="Scans", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) storage_indicator = html.Div( id="control-panel-disk", children=[ daq.GraduatedBar( id="control-panel-disk-component", label="Disk Capacity", min=0, max=100, value=76, step=1, showCurrentValue=True, color="#fec036", ) ], n_clicks=0, ) battery_indicator = html.Div( id="control-panel-battery", children=[ daq.GraduatedBar( id="control-panel-battery-component", label="Battery-Level", min=0, max=100, value=85, step=1, showCurrentValue=True, color="#fec036", ) ], n_clicks=0, ) longitude = daq.LEDDisplay( id="control-panel-longitude-component", value="0000.0000", label="Longitude", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) latitude = daq.LEDDisplay( id="control-panel-latitude-component", value="0050.9789", label="Latitude", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) h_accuracy = daq.LEDDisplay( id="control-panel-h-accuracy-component", value="0.0000", label="H Accuracy (m)", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) v_accuracy = daq.LEDDisplay( id="control-panel-v-accuracy-component", value="0.0000", label="V Accuracy (m)", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) satellites = html.Div([ dbc.Row([ dbc.Col( daq.LEDDisplay( id="satellite-count", value="00", label="Satellites", size=24, color="#fec036", style={"color": "#black"}, backgroundColor="#2b2b2b", ) ), dbc.Col( daq.Indicator( id="rtk-indicator", label="RTK Status", labelPosition="bottom", value=True, color="#15e82e", style={"color": "#black"}, ) ), ], no_gutters=True, align="center") ]) gps_card = dbc.Card([ satellites, dbc.Row([ dbc.Col([ latitude, longitude]), dbc.Col([ h_accuracy, v_accuracy]), ]) ]) map_toggle = daq.ToggleSwitch( id="control-panel-toggle-map", value=True, label=["Hide path", "Show path"], color="#ffe102", style={"color": "#black"}, ) # Side panel project_dropdown_text = html.P( id="project-dropdown-text", children=["Control"] ) """project_dropdown = dbc.FormGroup( [ dbc.Label("Camera Position"), dbc.Select( id="project", options=[ {"label": "New Project...", "value": "new_project"}, {"label": "Project 1", "value": "project_1"}, {"label": "Project 2", "value": "project_2"}, ], value="project_1", ), ] ) """ project_select = dbc.InputGroup( [ dbc.InputGroupAddon("Select Project", addon_type="prepend"), dbc.Select( id="project-dropdown-component", options=local_vars.project_list, value=local_vars.project_list[0]['value'] ), dbc.InputGroupAddon( new_project_button, addon_type="append", ), ] ), project_title = html.H1(id="project-name", children="") recording_button = daq.PowerButton( id='recording-button', on=False, color='#FF5E5E', size=80, label='Record', labelPosition='top' ) project_body = html.P( className="project-description", id="project-description", children=[""] ) side_panel_layout = html.Div( id="panel-side", children=[ dbc.Card([ dbc.Row([ dbc.Col(project_select), ]), dbc.Row([ dbc.Col(recording_button), ]), dbc.Row([ dbc.Col(update_button), dbc.Col(update_button_2), dbc.Col(setup_button), ]) ]), ], ) # project location tracker # Helper to straighten lines on the map def flatten_path(xy1, xy2): diff_rate = (xy2 - xy1) / 100 res_list = [] for i in range(100): res_list.append(xy1 + i * diff_rate) return res_list map_data = [ { "type": "scattermapbox", "lat": [0], "lon": [0], "hoverinfo": "text+lon+lat", "text": "LiDAR Path", "mode": "lines", "line": {"width": 3, "color": "#126de3"}, }, { "type": "scattermapbox", "lat": [0], "lon": [0], "hoverinfo": "text+lon+lat", "text": "Current Position", "mode": "markers", "marker": {"size": 10, "color": "#fec036"}, }, ] map_layout = { "mapbox": { "accesstoken": MAPBOX_ACCESS_TOKEN, "style": MAPBOX_STYLE, "center": {"lat": 37.8, "lon": -4.8}, "zoom": 18, }, "showlegend": False, "autosize": True, "paper_bgcolor": "#1e1e1e", "plot_bgcolor": "#1e1e1e", "margin": {"t": 0, "r": 0, "b": 0, "l": 0}, } map_graph = dbc.Card( id="world-map-wrapper", children=[ map_toggle, dcc.Graph( id="world-map", figure={"data": map_data, "layout": map_layout}, config={"displayModeBar": False, "scrollZoom": True}, ) ], body=True ) main_panel_card = html.Div([ dcc.Interval(id="interval", interval=1 * 2000, n_intervals=0), dcc.Interval(id="interval-fast", interval=500, n_intervals=0), dbc.Card([ dbc.Row([ dbc.Col(speed, width=3), dbc.Col([dbc.Row(utc), dbc.Row(scan_count), dbc.Row(storage_indicator)], width=3), dbc.Col(gps_card, width=5) ] ), ]), dbc.Card(dbc.Row([dbc.Col(cloud_graph_card, width=6), dbc.Col(map_graph, width=6)])) ]) # Data generation # Pandas APP_PATH = str(pathlib.Path(__file__).parent.resolve()) # Root root_layout = dbc.Container( [ dcc.Store(id="store-placeholder"), dcc.Store( id="store-data"), html.H1("Open PhenoLiDAR Control"), html.Hr(), dbc.Row([ dbc.Col(main_panel_card, md=8), dbc.Col(side_panel_layout, md=4), ], align="start") ], fluid=True, ) app.layout = root_layout # Callback free space @app.callback( Output("control-panel-disk-component", "value"), [Input("interval", "n_intervals")] ) def update_free_disk(interval): total, used, free = shutil.disk_usage("/") free_pc = 100 * used / total return free_pc # Callbacks Data # Callbacks Components @app.callback( Output("control-panel-utc-component", "value"), [Input("interval", "n_intervals")] ) def update_time(interval): hour = time.localtime(time.time())[3] hour = str(hour).zfill(2) minute = time.localtime(time.time())[4] minute = str(minute).zfill(2) return hour + ":" + minute @app.callback( [ Output("control-panel-latitude-component", "value"), Output("control-panel-longitude-component", "value"), Output("control-panel-h-accuracy-component", "value"), Output("control-panel-v-accuracy-component", "value"), Output("control-panel-scans-component", "value"), Output("satellite-count", "value"), Output("rtk-indicator", "value"), Output("rtk-indicator", "color"), ], [Input("interval", "n_intervals")], ) def update_gps_component(clicks): rtk_status = False rtk_color = "#fec036" if local_vars.gps_status > 5: rtk_status = True if local_vars.gps_status < 3: rtk_color = "#dc1330" elif local_vars.gps_status == 5: rtk_color = "#f9f025" elif local_vars.gps_status == 6: rtk_color = "#6bd71f" else: rtk_color = "#dc1330" return "{:.4f}".format(local_vars.lat), "{:.4f}".format( local_vars.lon), "{:.3f}".format(local_vars.h_accuracy), "{:.3f}".format( local_vars.v_accuracy), "{:08d}".format(local_vars.scan_count), local_vars.last_sat_count, rtk_status, rtk_color @app.callback(Output("control-panel-speed-component", "value"), [Input("interval-fast", "n_intervals")], ) def update_speed_component(clicks): return local_vars.speed_kph @app.callback( Output("point-cloud-graph", "figure"), [Input("update", "n_clicks"), ], [State("point-cloud-graph", "figure")] ) def create_cloud_graph(clicks, graph_data): if local_vars.last_cloud is not None: # print(graph_data) # print(local_vars.last_cloud.points.head()) df = local_vars.last_cloud graph_data['data'] = [ go.Scatter3d( x=df['x'], y=df['y'], z=df['z'], mode='markers', marker=dict( size=1, color=df['intensity'], opacity=0.8 ) ) ] else: print("No data") return graph_data @app.callback( Output("point-cloud-graph", "extendData"), [Input("interval", "n_intervals"), Input("update-2", "n_clicks"), ], [State("point-cloud-graph", "figure")] ) def update_cloud_graph(interval, clicks, graph_data): # print(graph_data['data']) if local_vars.last_cloud is not None: df = local_vars.last_cloud data = [go.Scatter3d( x=df['x'], y=df['y'], z=df['z'], mode='markers', marker=dict( size=1, color=df['intensity'], opacity=0.8 ) )] # print(data[0]['marker']) if graph_data is None: return if len(graph_data['data']) > 0: # return data[0], [0] return dict(x=[data[0]['x']], y=[data[0]['y']], z=[data[0]['z']]), [ 0] # , marker=dict(color=[data[0]['marker']['color']])), [0] # return data @app.callback( Output("world-map", "figure"), [ Input("interval", "n_intervals"), Input("control-panel-toggle-map", "value"), ], [ State("world-map", "figure"), State("store-data", "data"), ], ) def update_word_map(clicks, toggle, old_figure, data): figure = old_figure figure["data"][1]["lat"] = [local_vars.lat] figure["data"][1]["lon"] = [local_vars.lon] figure["data"][1]["marker"]["color"] = GPS_FIX_COLORS[local_vars.gps_status] figure["layout"]["mapbox"]["center"] = {"lat": local_vars.lat, "lon": local_vars.lon} if not toggle: figure["data"][0]["lat"] = [] figure["data"][0]["lon"] = [] else: figure["data"][0]["lat"] = local_vars.lat_path figure["data"][0]["lon"] = local_vars.lon_path return figure @app.callback( [Output("project-dropdown-component", "disabled"), Output("new-project-button", "disabled")], [ Input("recording-button", "on"), Input("project-dropdown-component", "value"), ], ) def recording_control(on, project): if project != 'new_project': if on: print("Start record: " + project) local_vars.start_recording(project) else: local_vars.stop_recording() return on, on @app.callback( Output("setup-modal", "is_open"), [Input("open-setup", "n_clicks"), Input("close-setup", "n_clicks")], [State("setup-modal", "is_open")], ) def toggle_modal(n1, n2, is_open): if n1 or n2: return not is_open return is_open @app.callback( [Output("new-project-modal", "is_open"), Output("project-dropdown-component", "options")], [Input("new-project-button", "n_clicks"), Input("accept-project-button", "n_clicks"), Input("cancel-project-button", "n_clicks"), Input("input-new-project-name", "value")], [State("new-project-modal", "is_open"), State("accept-project-button", "n_clicks"), State("cancel-project-button", "n_clicks")], ) def toggle_modal(n1, n2, n3, new_project_name, is_open, n2_s, n3_s): if n1 is None: return is_open, local_vars.project_list if n2 == n1: print("Create new project: " + new_project_name) resp = local_vars.project_service.call(roslibpy.ServiceRequest({'request_string': 'create', 'project': new_project_name})) project_request = roslibpy.ServiceRequest({'request_string': 'list', 'project': ''}) local_vars.project_list = [{'label': project_name, 'value': project_name} for project_name in sorted(local_vars.project_service.call(project_request)['list_strings'])] return False, local_vars.project_list if n3 == n1: return False, local_vars.project_list if n1: return True, local_vars.project_list return is_open, local_vars.project_list if __name__ == "__main__": debug = True port = 8051 if "DASH_DEBUG_MODE" in os.environ: debug = False if os.environ["DASH_DEBUG_MODE"] == "False" else True if "DASH_PORT" in os.environ: port = os.environ["DASH_PORT"] app.run_server(host="0.0.0.0", port=port, debug=debug)
py
1a558b2caf88a1ebde222167aee0fe867c6fc1a2
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ConnectToSourceMySqlTaskInput(Model): """Input for the task that validates MySQL database connection. All required parameters must be populated in order to send to Azure. :param source_connection_info: Required. Information for connecting to MySQL source :type source_connection_info: ~azure.mgmt.datamigration.models.MySqlConnectionInfo :param target_platform: Target Platform for the migration. Possible values include: 'AzureDbForMySQL' :type target_platform: str or ~azure.mgmt.datamigration.models.MySqlTargetPlatformType :param check_permissions_group: Permission group for validations. Possible values include: 'Default', 'MigrationFromSqlServerToAzureDB', 'MigrationFromSqlServerToAzureMI', 'MigrationFromMySQLToAzureDBForMySQL' :type check_permissions_group: str or ~azure.mgmt.datamigration.models.ServerLevelPermissionsGroup """ _validation = { 'source_connection_info': {'required': True}, } _attribute_map = { 'source_connection_info': {'key': 'sourceConnectionInfo', 'type': 'MySqlConnectionInfo'}, 'target_platform': {'key': 'targetPlatform', 'type': 'str'}, 'check_permissions_group': {'key': 'checkPermissionsGroup', 'type': 'str'}, } def __init__(self, **kwargs): super(ConnectToSourceMySqlTaskInput, self).__init__(**kwargs) self.source_connection_info = kwargs.get('source_connection_info', None) self.target_platform = kwargs.get('target_platform', None) self.check_permissions_group = kwargs.get('check_permissions_group', None)
py
1a558c8763a8bf138b6ce243f02c18b5324f2035
from mavetools.validators import dataset_validators def validate_all(countfile=None, scorefile=None, scorejson=None): """ By calling other helper functions, this function runs all of the validation code """ validate_dataset(countfile, scorefile, scorejson) def validate_dataset(countfile=None, scorefile=None, scorejson=None): """ This function calls all of the validation functions within mavetools/mavetools/validators/dataset_validation.py Returns ------- """ # how to incorporate word limit validator? if scorefile is not None: # open scorefile open(scorefile) # this one returns header scoreheader = dataset_validators.read_header_from_io(file=scorefile) # if the header was returned, do these ones dataset_validators.validate_has_hgvs_in_header(header=scoreheader) dataset_validators.validate_at_least_one_additional_column(header=scoreheader) dataset_validators.validate_header_contains_no_null_columns(header=scoreheader) dataset_validators.validate_scoreset_score_data_input(file=scorefile) if scorejson is not None: # open scorejson open(scorejson) dataset_validators.validate_scoreset_json(dict_=scorejson) if countfile is not None: # open countfile open(countfile) countheader = dataset_validators.read_header_from_io(file=countfile) # if the header was returned, do these ones dataset_validators.validate_has_hgvs_in_header(header=countheader) dataset_validators.validate_at_least_one_additional_column(header=countheader) dataset_validators.validate_header_contains_no_null_columns(header=countheader) dataset_validators.validate_scoreset_count_data_input(file=countfile) if scorefile is not None and countfile is not None: dataset_validators.validate_datasets_define_same_variants( scores=scorefile, counts=countfile )
py
1a558de7f88a73ac33572a81197f78245d5bb3a3
# coding: utf-8 """ Spinnaker API No description provided (generated by Swagger Codegen https://github.com/swagger-api/swagger-codegen) # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class HttpEntity(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'body': 'object' } attribute_map = { 'body': 'body' } def __init__(self, body=None): # noqa: E501 """HttpEntity - a model defined in Swagger""" # noqa: E501 self._body = None self.discriminator = None if body is not None: self.body = body @property def body(self): """Gets the body of this HttpEntity. # noqa: E501 :return: The body of this HttpEntity. # noqa: E501 :rtype: object """ return self._body @body.setter def body(self, body): """Sets the body of this HttpEntity. :param body: The body of this HttpEntity. # noqa: E501 :type: object """ self._body = body def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(HttpEntity, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, HttpEntity): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a558e4eea28f2dec2a481faba8b6d7233186cf9
import shutil import pytest import yaml from click.testing import CliRunner from kedro.extras.datasets.pandas import CSVDataSet from kedro.io import DataCatalog, MemoryDataSet from kedro.pipeline import Pipeline, node @pytest.fixture def fake_load_context(mocker): context = mocker.MagicMock() return mocker.patch( "kedro.framework.session.KedroSession.load_context", return_value=context ) PIPELINE_NAME = "pipeline" @pytest.fixture def mock_pipelines(mocker): dummy_pipelines = {PIPELINE_NAME: Pipeline([]), "second": Pipeline([])} return mocker.patch("kedro.framework.cli.catalog.pipelines", dummy_pipelines) @pytest.mark.usefixtures( "chdir_to_dummy_project", "fake_load_context", "mock_pipelines" ) class TestCatalogListCommand: def test_list_all_pipelines(self, fake_project_cli, fake_metadata, mocker): yaml_dump_mock = mocker.patch("yaml.dump", return_value="Result YAML") result = CliRunner().invoke( fake_project_cli, ["catalog", "list"], obj=fake_metadata ) assert not result.exit_code expected_dict = { "DataSets in 'pipeline' pipeline": {}, "DataSets in 'second' pipeline": {}, } yaml_dump_mock.assert_called_once_with(expected_dict) def test_list_specific_pipelines(self, fake_project_cli, fake_metadata, mocker): yaml_dump_mock = mocker.patch("yaml.dump", return_value="Result YAML") result = CliRunner().invoke( fake_project_cli, ["catalog", "list", "--pipeline", PIPELINE_NAME], obj=fake_metadata, ) assert not result.exit_code expected_dict = {f"DataSets in '{PIPELINE_NAME}' pipeline": {}} yaml_dump_mock.assert_called_once_with(expected_dict) def test_not_found_pipeline(self, fake_project_cli, fake_metadata): result = CliRunner().invoke( fake_project_cli, ["catalog", "list", "--pipeline", "fake"], obj=fake_metadata, ) assert result.exit_code expected_output = ( "Error: `fake` pipeline not found! Existing pipelines: pipeline, second" ) assert expected_output in result.output def test_no_param_datasets_in_respose( self, fake_project_cli, fake_metadata, fake_load_context, mocker, mock_pipelines ): yaml_dump_mock = mocker.patch("yaml.dump", return_value="Result YAML") mocked_context = fake_load_context.return_value catalog_data_sets = { "iris_data": CSVDataSet("test.csv"), "intermediate": MemoryDataSet(), "parameters": MemoryDataSet(), "params:data_ratio": MemoryDataSet(), "not_used": CSVDataSet("test2.csv"), } mocked_context.catalog = DataCatalog(data_sets=catalog_data_sets) mocker.patch.object( mock_pipelines[PIPELINE_NAME], "data_sets", return_value=catalog_data_sets.keys() - {"not_used"}, ) result = CliRunner().invoke( fake_project_cli, ["catalog", "list"], obj=fake_metadata, ) assert not result.exit_code # 'parameters' and 'params:data_ratio' should not appear in the response expected_dict = { f"DataSets in '{PIPELINE_NAME}' pipeline": { "Datasets mentioned in pipeline": { "CSVDataSet": ["iris_data"], "MemoryDataSet": ["intermediate"], }, "Datasets not mentioned in pipeline": {"CSVDataSet": ["not_used"]}, } } key = f"DataSets in '{PIPELINE_NAME}' pipeline" assert yaml_dump_mock.call_count == 1 assert yaml_dump_mock.call_args[0][0][key] == expected_dict[key] def test_default_dataset( self, fake_project_cli, fake_metadata, fake_load_context, mocker, mock_pipelines ): """Test that datasets that are found in `Pipeline.data_sets()`, but not in the catalog, are outputted under the key "DefaultDataset". """ yaml_dump_mock = mocker.patch("yaml.dump", return_value="Result YAML") mocked_context = fake_load_context.return_value catalog_data_sets = {"some_dataset": CSVDataSet("test.csv")} mocked_context.catalog = DataCatalog(data_sets=catalog_data_sets) mocker.patch.object( mock_pipelines[PIPELINE_NAME], "data_sets", return_value=catalog_data_sets.keys() | {"intermediate"}, ) result = CliRunner().invoke( fake_project_cli, ["catalog", "list"], obj=fake_metadata, ) assert not result.exit_code expected_dict = { f"DataSets in '{PIPELINE_NAME}' pipeline": { "Datasets mentioned in pipeline": { "CSVDataSet": ["some_dataset"], "DefaultDataSet": ["intermediate"], } } } key = f"DataSets in '{PIPELINE_NAME}' pipeline" assert yaml_dump_mock.call_count == 1 assert yaml_dump_mock.call_args[0][0][key] == expected_dict[key] def identity(data): return data # pragma: no cover @pytest.mark.usefixtures("chdir_to_dummy_project") class TestCatalogCreateCommand: PIPELINE_NAME = "de" @staticmethod @pytest.fixture(params=["base"]) def catalog_path(request, fake_repo_path): catalog_path = fake_repo_path / "conf" / request.param / "catalog" yield catalog_path shutil.rmtree(catalog_path, ignore_errors=True) def test_pipeline_argument_is_required(self, fake_project_cli): result = CliRunner().invoke(fake_project_cli, ["catalog", "create"]) assert result.exit_code expected_output = "Error: Missing option '--pipeline' / '-p'." assert expected_output in result.output @pytest.mark.usefixtures("fake_load_context") def test_not_found_pipeline(self, fake_project_cli, fake_metadata, mock_pipelines): result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", "fake"], obj=fake_metadata, ) assert result.exit_code existing_pipelines = ", ".join(sorted(mock_pipelines.keys())) expected_output = ( f"Error: `fake` pipeline not found! Existing " f"pipelines: {existing_pipelines}\n" ) assert expected_output in result.output def test_catalog_is_created_in_base_by_default( self, fake_project_cli, fake_metadata, fake_repo_path, catalog_path ): main_catalog_path = fake_repo_path / "conf" / "base" / "catalog.yml" main_catalog_config = yaml.safe_load(main_catalog_path.read_text()) assert "example_iris_data" in main_catalog_config data_catalog_file = catalog_path / f"{self.PIPELINE_NAME}.yml" result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", self.PIPELINE_NAME], obj=fake_metadata, ) assert not result.exit_code assert data_catalog_file.is_file() expected_catalog_config = { "example_test_x": {"type": "MemoryDataSet"}, "example_test_y": {"type": "MemoryDataSet"}, "example_train_x": {"type": "MemoryDataSet"}, "example_train_y": {"type": "MemoryDataSet"}, } catalog_config = yaml.safe_load(data_catalog_file.read_text()) assert catalog_config == expected_catalog_config @pytest.mark.parametrize("catalog_path", ["local"], indirect=True) def test_catalog_is_created_in_correct_env( self, fake_project_cli, fake_metadata, catalog_path ): data_catalog_file = catalog_path / f"{self.PIPELINE_NAME}.yml" env = catalog_path.parent.name result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", self.PIPELINE_NAME, "--env", env], obj=fake_metadata, ) assert not result.exit_code assert data_catalog_file.is_file() def test_no_missing_datasets( self, fake_project_cli, fake_metadata, fake_load_context, fake_repo_path, mock_pipelines, ): mocked_context = fake_load_context.return_value catalog_data_sets = { "input_data": CSVDataSet("test.csv"), "output_data": CSVDataSet("test2.csv"), } mocked_context.catalog = DataCatalog(data_sets=catalog_data_sets) mocked_context.project_path = fake_repo_path mock_pipelines[self.PIPELINE_NAME] = Pipeline( [node(identity, "input_data", "output_data")] ) data_catalog_file = ( fake_repo_path / "conf" / "base" / "catalog" / f"{self.PIPELINE_NAME}.yml" ) result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", self.PIPELINE_NAME], obj=fake_metadata, ) assert not result.exit_code assert not data_catalog_file.exists() @pytest.mark.usefixtures("fake_repo_path") def test_missing_datasets_appended( self, fake_project_cli, fake_metadata, catalog_path ): data_catalog_file = catalog_path / f"{self.PIPELINE_NAME}.yml" assert not catalog_path.exists() catalog_path.mkdir() catalog_config = { "example_test_x": {"type": "pandas.CSVDataSet", "filepath": "test.csv"} } with data_catalog_file.open(mode="w") as catalog_file: yaml.safe_dump(catalog_config, catalog_file, default_flow_style=False) result = CliRunner().invoke( fake_project_cli, ["catalog", "create", "--pipeline", self.PIPELINE_NAME], obj=fake_metadata, ) assert not result.exit_code expected_catalog_config = { "example_test_x": catalog_config["example_test_x"], "example_test_y": {"type": "MemoryDataSet"}, "example_train_x": {"type": "MemoryDataSet"}, "example_train_y": {"type": "MemoryDataSet"}, } catalog_config = yaml.safe_load(data_catalog_file.read_text()) assert catalog_config == expected_catalog_config def test_bad_env(self, fake_project_cli, fake_metadata): """Test error when provided conf environment does not exist""" env = "no_such_env" cmd = ["catalog", "list", "-e", env, "--pipeline", PIPELINE_NAME] result = CliRunner().invoke(fake_project_cli, cmd, obj=fake_metadata) assert result.exit_code assert "Unable to instantiate Kedro session" in result.output
py
1a558e95cd46725ed3e69f5d0057e7cd778bb0b4
"""Dyson test configuration.""" from unittest.mock import patch import pytest from . import CREDENTIAL, HOST, SERIAL from .mocked_mqtt import MockedMQTT @pytest.fixture() def mqtt_client(request: pytest.FixtureRequest) -> MockedMQTT: """Return mocked mqtt client.""" device_type = request.module.DEVICE_TYPE status = request.module.STATUS environmental_data = request.module.ENVIRONMENTAL_DATA mocked_mqtt = MockedMQTT( HOST, SERIAL, CREDENTIAL, f"{device_type}/{SERIAL}/command", f"{device_type}/{SERIAL}/status/current", status, environmental_data, ) with patch("libdyson.dyson_device.mqtt.Client", mocked_mqtt.refersh), patch( "libdyson.dyson_device.TIMEOUT", 0 ): yield mocked_mqtt
py
1a558eff14d1b8d8f34d2f540bbf983bd19d90d2
from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger # Yields a list chunk of size n from list def group(list, n): for i in range(0, len(list), n): yield list[i:i+n] # Takes requested data and breaks it up into a number of pages, # each with n pages def pagebreak(request, data, n): paginator = Paginator(data, 1) page = request.GET.get('page') items = paginator.get_page(page) # Generate page numbers to provide a link to from current page page_span = 2 last = paginator.num_pages index = items.number prev = (index - page_span) if index > page_span else 1 next = (index + page_span) if index < (last - page_span) else last page_range = paginator.page_range[prev:next] return items, page_range
py
1a559031b92445683fb2168e6c1c6197fb556cb6
import torch import torch.nn as nn import torch.nn.functional as F import pdb from collections import OrderedDict class LinearFeatureBaseline(nn.Module): """Linear baseline based on handcrafted features, as described in [1] (Supplementary Material 2). [1] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, Pieter Abbeel, "Benchmarking Deep Reinforcement Learning for Continuous Control", 2016 (https://arxiv.org/abs/1604.06778) """ def __init__(self, input_size, reg_coeff=1e-5): super(LinearFeatureBaseline, self).__init__() self.input_size = input_size self._reg_coeff = reg_coeff self.weight = nn.Parameter(torch.Tensor(self.feature_size,), requires_grad=False) self.weight.data.zero_() self._eye = torch.eye(self.feature_size, dtype=torch.float32, device=self.weight.device) @property def feature_size(self): return 2 * self.input_size + 4 def _feature(self, episodes): ones = episodes.mask.unsqueeze(2) observations = episodes.observations time_step = torch.arange(len(episodes)).view(-1, 1, 1) * ones / 100.0 return torch.cat([ observations, observations ** 2, time_step, time_step ** 2, time_step ** 3, ones ], dim=2) def fit(self, episodes): # sequence_length * batch_size x feature_size featmat = self._feature(episodes).view(-1, self.feature_size) # sequence_length * batch_size x 1 returns = episodes.returns.view(-1, 1) # Remove blank (all-zero) episodes that only exist because episode lengths vary flat_mask = episodes.mask.flatten() flat_mask_nnz = torch.nonzero(flat_mask, as_tuple=False) featmat = featmat[flat_mask_nnz].view(-1, self.feature_size) returns = returns[flat_mask_nnz].view(-1, 1) reg_coeff = self._reg_coeff XT_y = torch.matmul(featmat.t(), returns) XT_X = torch.matmul(featmat.t(), featmat) for _ in range(5): try: coeffs, _ = torch.lstsq(XT_y, XT_X + reg_coeff * self._eye) # An extra round of increasing regularization eliminated # inf or nan in the least-squares solution most of the time if torch.isnan(coeffs).any() or torch.isinf(coeffs).any(): raise RuntimeError break except RuntimeError: reg_coeff *= 10 else: raise RuntimeError('Unable to solve the normal equations in ' '`LinearFeatureBaseline`. The matrix X^T*X (with X the design ' 'matrix) is not full-rank, regardless of the regularization ' '(maximum regularization: {0}).'.format(reg_coeff)) self.weight.copy_(coeffs.flatten()) def forward(self, episodes): features = self._feature(episodes) values = torch.mv(features.view(-1, self.feature_size), self.weight) return values.view(features.shape[:2])
py
1a559084b3dc46239ef02ae1fed352f69c77d406
import random from collections import Iterable from dynaconf import settings def lang_raw(lang_code, *path): package = settings.LANG[lang_code] for p in path: package = package[p] return package def lang(lang_code, *path): package = settings.LANG[lang_code] for p in path: package = package[p] if isinstance(package, Iterable) and not isinstance(package, str): return random.choice(list(package)) else: return package def limitation(name): return settings.LIMITATIONS[name]
py
1a5590d842116e6e3b7cbbaeeb65a77fd99cd60a
from gui.blueprints.blueprint import Blueprint from utils.string_utils import StringUtils from blueprints.attribute_blueprint import AttributeBlueprint as AB from utils import logger_utils import pygame as pg from utils.gui_utils import Themes class AttributeBlueprint(Blueprint): SIZE = [.2, .1] DATA_TYPE = { "none": "ID_NONE", "int": "ID_INTEGER", "string": "ID_STRING", "char": "ID_CHARACTER", "float": "ID_FLOAT" } def __init__(self, panel): Blueprint.__init__(self, panel, AB()) self.__logger = logger_utils.get_logger(__name__) self.set_custom_size(AttributeBlueprint.SIZE) self.data_type_pressed = [False, None] # IS PRESSED; TEXT BOX self.data_type_selection = list() self.change_font(pg.font.Font(Themes.DEFAULT_THEME.get("text_font_style"), int(self.get_rect().height * .23))) def reset_selection(self): super().reset_selection() self.data_type_pressed = [False, None] self.data_type_selection = list() def initialize(self, coords, size, blueprint, panel): super().initialize(coords, size, blueprint, panel) self.change_font(pg.font.Font(Themes.DEFAULT_THEME.get("text_font_style"), int(self.get_rect().height * .23))) # TODO add additional data def get_data(self): data = super().get_data() data[1] = StringUtils.get_string("ID_ATTRIBUTE") data[2] = StringUtils.get_string(AttributeBlueprint.DATA_TYPE.get(self.get_blueprint().get_data_type())) data[3] = self.get_blueprint().get_value() return data def set_data(self, index, data): if index == 2: for key, value in AttributeBlueprint.DATA_TYPE.items(): if data == StringUtils.get_string(value): self.get_blueprint().set_data_type(key) elif index == 3: self.get_blueprint().set_value(data) super().set_data(index, data) self.update_displayed_data(self.font.render(self.get_blueprint().name, True, Themes.DEFAULT_THEME.get("font"))) def update_displayed_data(self, text): super().update_displayed_data(text)
py
1a5590fad5775a23d01473f119cb1e3b91f64703
""" Code for `daugman_visual_explanation.ipynb` """ import cv2 import numpy as np import matplotlib.pyplot as plt import itertools import random from daugman import daugman from daugman import find_iris from typing import List, Tuple, Iterable class DaugmanVisualExplanation: def __init__(self, img_path: str, start_r=10, end_r=30, circle_step=2, points_step=3): self.img = self._get_new_image(img_path) self.start_r = start_r self.end_r = end_r self.circle_step = circle_step self.points_step = points_step self.all_points = self._get_all_potential_iris_centers(self.img) self.colors = self._get_unique_color_for_each_point(self.all_points) def _get_new_image(self, img_path, gray=False) -> np.ndarray: """ Get properly cropped BGR image, which looks like grayscale """ img = cv2.imread(img_path) img = img[20:130, 20:130] img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if not gray: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) return img def _get_all_potential_iris_centers(self, img: np.ndarray) -> List[Tuple[int, int]]: # get all potential points for search (from `find_iris()`) h = img.shape[0] # we will look only on dots within central 1/3 of image single_axis_range = range(int(h / 3), h - int(h / 3), self.points_step) all_points = list(itertools.product(single_axis_range, single_axis_range)) return all_points def _get_unique_color_for_each_point(self, all_points: List[Tuple[int, int]]) -> List[Tuple[int, int, int]]: colors = [(random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) for i in self.all_points] return colors def plot_all_potential_iris_centers(self) -> np.ndarray: # plot all potential points img_dot = self.img.copy() for point, color in zip(self.all_points, self.colors): cv2.circle(img_dot, point, 0, color, -1) _ = plt.imshow(img_dot[::, ::, ::-1]) return img_dot def plot_circles_for_one_center(self, img_dot: np.ndarray, dot_idx=0) -> np.ndarray: img_circles = img_dot.copy() # within circles in radii range from 10px to 1/4 of image side # plot the chosen potential point cv2.circle(img_circles, list(self.all_points)[dot_idx], 0, self.colors[dot_idx], 1) # plot all circle candidates for the single potential point img_circles = self._draw_circles(img_circles, self.all_points[dot_idx], self.colors[dot_idx], start_r=self.start_r, end_r=self.end_r, step=self.circle_step) _ = plt.imshow(img_circles[::, ::, ::-1]) return img_circles def _draw_circles(self, img: np.ndarray, center: Tuple[int, int], color: Tuple[int, int, int], start_r: int, end_r: int, step: int, alpha=0.5) -> np.ndarray: """ Part of ``daugman()`` modified for presentation purposes """ # get separate coordinates x, y = center overlay = img.copy() radii = list(range(start_r, end_r, step)) for r in radii: cv2.circle(overlay, center, r, color, 1) img = cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0) return img def plot_best_circle_for_single_potential_iris_center(self, img_dot: np.ndarray, dot_idx: int, color=None, alpha=0.8) -> np.ndarray: gray_img = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) # get best circle _, best_radius = daugman(gray_img, self.all_points[dot_idx], self.start_r, self.end_r, self.circle_step) # plot best circle if not color: color = self.colors[dot_idx] overlay = img_dot.copy() cv2.circle(overlay, self.all_points[dot_idx], best_radius, color, 1) img_dot = cv2.addWeighted(overlay, alpha, img_dot, 1 - alpha, 0) return img_dot def plot_best_circle_for_a_few_potential_iris_centers(self, img_dot: np.ndarray, idxs: Iterable[int]) -> np.ndarray: img = img_dot.copy() for idx in idxs: img = self.plot_best_circle_for_single_potential_iris_center(img, idx) _ = plt.imshow(img[::, ::, ::-1]) return img_dot def find_iris(self, *, daugman_start, daugman_end, daugman_step, points_step) -> np.ndarray: gray_img = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) answer = find_iris(gray_img, daugman_start=daugman_start, daugman_end=daugman_end, daugman_step=daugman_step, points_step=points_step) iris_center, iris_rad = answer out = self.img.copy() cv2.circle(out, iris_center, iris_rad, (0, 0, 255), 1) _ = plt.imshow(out[::, ::, ::-1]) return out def plot_pixel_intensity_delta_pic(self) -> None: # white image img = np.full([100, 100, 3], 255, dtype=np.uint8) # black circle img = cv2.circle(img, (50, 50), 20, [0, 0, 0], -1) # yellow img = cv2.circle(img, (50, 50), 10, [255, 255, 0], 1) # green img = cv2.circle(img, (50, 50), 15, [0, 255, 0], 1) # red img = cv2.circle(img, (50, 50), 20, [255, 0, 0], 1) # blue img = cv2.circle(img, (50, 50), 25, [0, 0, 255], 1) _ = plt.imshow(img) def find_iris_on_binary_image(self, *, daugman_start, daugman_end, daugman_step, points_step) -> None: # create simple image img = np.full([100, 100, 3], 255, dtype=np.uint8) img = cv2.circle(img, (50, 50), 20, [0, 0, 0], -1) gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) answer = find_iris(gray_img, daugman_start=daugman_start, daugman_end=daugman_end, daugman_step=daugman_step, points_step=points_step) iris_center, iris_rad = answer cv2.circle(img, iris_center, iris_rad, (0, 0, 255), 1) _ = plt.imshow(img[::, ::, ::-1])
py
1a55920d86311a6a10a70d935a4521b2bba7ae0d
import math import torch.nn as nn class VGG(nn.Module): ''' VGG model ''' def __init__(self, features): super(VGG, self).__init__() self.features = features self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(512, 512), nn.ReLU(True), nn.Dropout(), nn.Linear(512, 512), nn.ReLU(True), nn.Linear(512, 10), ) # Initialize weights for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def make_layers(cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) cfg = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } def vgg11(): """VGG 11-layer model (configuration "A")""" return VGG(make_layers(cfg['A']))
py
1a5592d41716c020ed7917523a8c5a280355fa53
# Copyright 2018, The TensorFlow Federated Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Libraries for interacting with the type of a computation.""" from tensorflow_federated.python.core.impl.types.computation_types import * from tensorflow_federated.python.core.impl.types.type_analysis import contains from tensorflow_federated.python.core.impl.types.type_analysis import count from tensorflow_federated.python.core.impl.types.type_analysis import is_structure_of_floats from tensorflow_federated.python.core.impl.types.type_analysis import is_structure_of_integers from tensorflow_federated.python.core.impl.types.type_analysis import is_structure_of_tensors from tensorflow_federated.python.core.impl.types.type_analysis import is_tensorflow_compatible_type from tensorflow_federated.python.core.impl.types.type_conversions import type_from_tensors from tensorflow_federated.python.core.impl.types.type_conversions import type_to_py_container from tensorflow_federated.python.core.impl.types.type_conversions import type_to_tf_tensor_specs from tensorflow_federated.python.core.impl.types.type_serialization import deserialize_type from tensorflow_federated.python.core.impl.types.type_serialization import serialize_type
py
1a5593905433dfd2c66949a872afb662bd707f7f
"""Very simple breakout clone. A circle shape serves as the paddle, then breakable bricks constructed of Poly-shapes. The code showcases several pymunk concepts such as elasitcity, impulses, constant object speed, joints, collision handlers and post step callbacks. """ import math, sys, random import os import pygame from pygame.locals import * from pygame.color import * import pymunk from pymunk import Vec2d import pymunk.pygame_util width, height = 600,600 collision_types = { "ball": 1, "brick": 2, "bottom": 3, "player": 4, } def spawn_ball(space, position, direction): ball_body = pymunk.Body(1, pymunk.inf) ball_body.position = position ball_shape = pymunk.Circle(ball_body, 5) ball_shape.color = THECOLORS["green"] ball_shape.elasticity = 1.0 ball_shape.collision_type = collision_types["ball"] ball_body.apply_impulse_at_local_point(Vec2d(direction)) # Keep ball velocity at a static value def constant_velocity(body, gravity, damping, dt): body.velocity = body.velocity.normalized() * 400 ball_body.velocity_func = constant_velocity space.add(ball_body, ball_shape) def setup_level(space, player_body): # Remove balls and bricks for s in space.shapes[:]: if s.body.body_type == pymunk.Body.DYNAMIC and s.body not in [player_body]: space.remove(s.body, s) # Spawn a ball for the player to have something to play with spawn_ball(space, player_body.position + (0,40), random.choice([(1,10),(-1,10)])) # Spawn bricks for x in range(0,21): x = x * 20 + 100 for y in range(0,5): y = y * 10 + 400 brick_body = pymunk.Body(body_type=pymunk.Body.KINEMATIC) brick_body.position = x, y brick_shape = pymunk.Poly.create_box(brick_body, (20,10)) brick_shape.elasticity = 1.0 brick_shape.color = THECOLORS['blue'] brick_shape.group = 1 brick_shape.collision_type = collision_types["brick"] space.add(brick_body, brick_shape) # Make bricks be removed when hit by ball def remove_brick(arbiter, space, data): brick_shape = arbiter.shapes[0] space.remove(brick_shape, brick_shape.body) h = space.add_collision_handler( collision_types["brick"], collision_types["ball"]) h.separate = remove_brick def main(): ### PyGame init pygame.init() screen = pygame.display.set_mode((width,height)) clock = pygame.time.Clock() running = True font = pygame.font.SysFont("Arial", 16) ### Physics stuff space = pymunk.Space() draw_options = pymunk.pygame_util.DrawOptions(screen) ### Game area # walls - the left-top-right walls static_lines = [pymunk.Segment(space.static_body, (50, 50), (50, 550), 2) ,pymunk.Segment(space.static_body, (50, 550), (550, 550), 2) ,pymunk.Segment(space.static_body, (550, 550), (550, 50), 2) ] for line in static_lines: line.color = THECOLORS['lightgray'] line.elasticity = 1.0 space.add(static_lines) # bottom - a sensor that removes anything touching it bottom = pymunk.Segment(space.static_body, (50, 50), (550, 50), 2) bottom.sensor = True bottom.collision_type = collision_types["bottom"] bottom.color = THECOLORS['red'] def remove_first(arbiter, space, data): ball_shape = arbiter.shapes[0] space.remove(ball_shape, ball_shape.body) return True h = space.add_collision_handler( collision_types["ball"], collision_types["bottom"]) h.begin = remove_first space.add(bottom) ### Player ship player_body = pymunk.Body(500, pymunk.inf) player_body.position = 300,100 player_shape = pymunk.Segment(player_body, (-50,0), (50,0), 8) player_shape.color = THECOLORS["red"] player_shape.elasticity = 1.0 player_shape.collision_type = collision_types["player"] def pre_solve(arbiter, space, data): # We want to update the collision normal to make the bounce direction # dependent of where on the paddle the ball hits. Note that this # calculation isn't perfect, but just a quick example. set_ = arbiter.contact_point_set if len(set_.points) > 0: player_shape = arbiter.shapes[0] width = (player_shape.b - player_shape.a).x delta = (player_shape.body.position - set_.points[0].point_a.x).x normal = Vec2d(0, 1).rotated(delta / width / 2) set_.normal = normal set_.points[0].distance = 0 arbiter.contact_point_set = set_ return True h = space.add_collision_handler( collision_types["player"], collision_types["ball"]) h.pre_solve = pre_solve # restrict movement of player to a straigt line move_joint = pymunk.GrooveJoint(space.static_body, player_body, (100,100), (500,100), (0,0)) space.add(player_body, player_shape, move_joint) global state # Start game setup_level(space, player_body) while running: for event in pygame.event.get(): if event.type == QUIT: running = False elif event.type == KEYDOWN and (event.key in [K_ESCAPE, K_q]): running = False elif event.type == KEYDOWN and event.key == K_p: pygame.image.save(screen, "breakout.png") elif event.type == KEYDOWN and event.key == K_LEFT: player_body.velocity = (-600,0) elif event.type == KEYUP and event.key == K_LEFT: player_body.velocity = 0,0 elif event.type == KEYDOWN and event.key == K_RIGHT: player_body.velocity = (600,0) elif event.type == KEYUP and event.key == K_RIGHT: player_body.velocity = 0,0 elif event.type == KEYDOWN and event.key == K_r: setup_level(space, player_body) elif event.type == KEYDOWN and event.key == K_SPACE: spawn_ball(space, player_body.position + (0,40), random.choice([(1,10),(-1,10)])) ### Clear screen screen.fill(THECOLORS["black"]) ### Draw stuff space.debug_draw(draw_options) state = [] for x in space.shapes: s = "%s %s %s" % (x, x.body.position, x.body.velocity) state.append(s) ### Update physics fps = 60 dt = 1./fps space.step(dt) ### Info and flip screen screen.blit(font.render("fps: " + str(clock.get_fps()), 1, THECOLORS["white"]), (0,0)) screen.blit(font.render("Move with left/right arrows, space to spawn a ball", 1, THECOLORS["darkgrey"]), (5,height - 35)) screen.blit(font.render("Press R to reset, ESC or Q to quit", 1, THECOLORS["darkgrey"]), (5,height - 20)) pygame.display.flip() clock.tick(fps) if __name__ == '__main__': sys.exit(main())
py
1a5593dc2cbe7858b0bdab2b98618691f453cdca
""" Module for Optuna hyperparameter optimization (optuna.org) """ from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from builtins import zip from builtins import range from builtins import open from builtins import str from future import standard_library standard_library.install_aliases() # required to make json saving work in Python 2/3 try: to_unicode = unicode except NameError: to_unicode = str import imp import json import logging import datetime import os import signal import glob from copy import copy from random import Random from time import sleep, time from itertools import product from subprocess import Popen, PIPE import importlib, types import numpy.random as nr import numpy as np import pickle from neuron import h from netpyne import sim, specs import optuna from .utils import createFolder from .utils import bashTemplate from .utils import dcp, sigfig pc = h.ParallelContext() # use bulletin board master/slave # ------------------------------------------------------------------------------- # Optuna optimization # ------------------------------------------------------------------------------- # func needs to be outside of class def runJob(nrnCommand, script, cfgSavePath, netParamsSavePath, simDataPath): """ Function for/to <short description of `netpyne.batch.optuna_parallel.runJob`> Parameters ---------- script : <type> <Short description of script> **Default:** *required* cfgSavePath : <type> <Short description of cfgSavePath> **Default:** *required* netParamsSavePath : <type> <Short description of netParamsSavePath> **Default:** *required* simDataPath : <type> <Short description of simDataPath> **Default:** *required* """ import os print('\nJob in rank id: ',pc.id()) command = '%s %s simConfig=%s netParams=%s' % (nrnCommand, script, cfgSavePath, netParamsSavePath) print(command) with open(simDataPath+'.run', 'w') as outf, open(simDataPath+'.err', 'w') as errf: pid = Popen(command.split(' '), stdout=outf, stderr=errf, preexec_fn=os.setsid).pid with open('./pids.pid', 'a') as file: file.write(str(pid) + ' ') def optunaOptim(self, pc): """ Function for/to <short description of `netpyne.batch.optuna_parallel.optunaOptim`> Parameters ---------- self : <type> <Short description of self> **Default:** *required* pc : <type> <Short description of pc> **Default:** *required* """ import sys # ------------------------------------------------------------------------------- # Optuna optimization: Parallel evaluation # ------------------------------------------------------------------------------- def objective(trial, args): import os ngen = trial.number total_jobs = 0 # options slurm, mpi type = args.get('type', 'mpi_direct') # params paramLabels = args.get('paramLabels', []) minVals = args.get('minVals', []) maxVals = args.get('maxVals', []) # paths to required scripts script = args.get('script', 'init.py') netParamsSavePath = args.get('netParamsSavePath') genFolderPath = self.saveFolder + '/trial_' + str(ngen) # mpi command setup nodes = args.get('nodes', 1) coresPerNode = args.get('coresPerNode', 1) mpiCommand = args.get('mpiCommand', 'mpiexec') nrnCommand = args.get('nrnCommand', 'nrniv -python -mpi') numproc = nodes*coresPerNode # slurm setup custom = args.get('custom', '') folder = args.get('folder', '.') email = args.get('email', '[email protected]') walltime = args.get('walltime', '00:01:00') reservation = args.get('reservation', None) allocation = args.get('allocation', 'csd403') # NSG account # fitness function fitnessFunc = args.get('fitnessFunc') fitnessFuncArgs = args.get('fitnessFuncArgs') maxFitness = args.get('maxFitness') # read params or set defaults sleepInterval = args.get('sleepInterval', 0.2) # create folder if it does not exist createFolder(genFolderPath) # -------------------------------------- # generate param values for optuna trial candidate = [] for paramLabel, minVal, maxVal in zip(paramLabels, minVals, maxVals): candidate.append(trial.suggest_uniform(str(paramLabel), minVal, maxVal)) # remember pids and jobids in a list pids = [] jobids = {} # create a job for the candidate candidate_index = 0 sleep(sleepInterval) # required for slurm # name and path jobName = "trial_" + str(ngen) jobPath = genFolderPath + '/' + jobName # set initial cfg initCfg if len(self.initCfg) > 0: for paramLabel, paramVal in self.initCfg.items(): self.setCfgNestedParam(paramLabel, paramVal) # modify cfg instance with candidate values #print(paramLabels, candidate) for label, value in zip(paramLabels, candidate): print('set %s=%s' % (label, value)) self.setCfgNestedParam(label, value) #self.setCfgNestedParam("filename", jobPath) self.cfg.simLabel = jobName self.cfg.saveFolder = genFolderPath # save cfg instance to file cfgSavePath = jobPath + '_cfg.json' self.cfg.save(cfgSavePath) if type=='mpi_bulletin': # ---------------------------------------------------------------------- # MPI master-slaves # ---------------------------------------------------------------------- pc.submit(runJob, nrnCommand, script, cfgSavePath, netParamsSavePath, jobPath) print('-'*80) else: # ---------------------------------------------------------------------- # MPI job commnand # ---------------------------------------------------------------------- if mpiCommand == '': command = '%s %s simConfig=%s netParams=%s ' % (nrnCommand, script, cfgSavePath, netParamsSavePath) else: command = '%s -n %d %s %s simConfig=%s netParams=%s ' % (mpiCommand, numproc, nrnCommand, script, cfgSavePath, netParamsSavePath) # ---------------------------------------------------------------------- # run on local machine with <nodes*coresPerNode> cores # ---------------------------------------------------------------------- if type=='mpi_direct': executer = '/bin/bash' jobString = bashTemplate('mpi_direct') %(custom, folder, command) # ---------------------------------------------------------------------- # run on HPC through slurm # ---------------------------------------------------------------------- elif type=='hpc_slurm': executer = 'sbatch' res = '#SBATCH --res=%s' % (reservation) if reservation else '' jobString = bashTemplate('hpc_slurm') % (jobName, allocation, walltime, nodes, coresPerNode, jobPath, jobPath, email, res, custom, folder, command) # ---------------------------------------------------------------------- # run on HPC through PBS # ---------------------------------------------------------------------- elif type=='hpc_torque': executer = 'qsub' queueName = args.get('queueName', 'default') nodesppn = 'nodes=%d:ppn=%d' % (nodes, coresPerNode) jobString = bashTemplate('hpc_torque') % (jobName, walltime, queueName, nodesppn, jobPath, jobPath, custom, command) # ---------------------------------------------------------------------- # save job and run # ---------------------------------------------------------------------- print('Submitting job ', jobName) print(jobString) print('-'*80) # save file batchfile = '%s.sbatch' % (jobPath) with open(batchfile, 'w') as text_file: text_file.write("%s" % jobString) if type == 'mpi_direct': with open(jobPath+'.run', 'a+') as outf, open(jobPath+'.err', 'w') as errf: pids.append(Popen([executer, batchfile], stdout=outf, stderr=errf, preexec_fn=os.setsid).pid) else: with open(jobPath+'.jobid', 'w') as outf, open(jobPath+'.err', 'w') as errf: pids.append(Popen([executer, batchfile], stdout=outf, stderr=errf, preexec_fn=os.setsid).pid) #proc = Popen(command.split([executer, batchfile]), stdout=PIPE, stderr=PIPE) sleep(0.1) #read = proc.stdout.read() if type == 'mpi_direct': with open('./pids.pid', 'a') as file: file.write(str(pids)) else: with open(jobPath+'.jobid', 'r') as outf: read=outf.readline() print(read) if len(read) > 0: jobid = int(read.split()[-1]) jobids[candidate_index] = jobid print('jobids', jobids) total_jobs += 1 sleep(0.1) # ---------------------------------------------------------------------- # gather data and compute fitness # ---------------------------------------------------------------------- if type == 'mpi_bulletin': # wait for pc bulletin board jobs to finish try: while pc.working(): sleep(1) #pc.done() except: pass num_iters = 0 jobs_completed = 0 fitness = [None] # just 1 candidate # print outfilestem print("Waiting for jobs from generation %d/%d ..." %(ngen, args.get('maxiters'))) # print "PID's: %r" %(pids) # start fitness calculation while jobs_completed < total_jobs: unfinished = [i for i, x in enumerate(fitness) if x is None ] for candidate_index in unfinished: try: # load simData and evaluate fitness jobNamePath = genFolderPath + "/trial_" + str(ngen) if os.path.isfile(jobNamePath+'.json'): with open('%s.json'% (jobNamePath)) as file: simData = json.load(file)['simData'] fitness[candidate_index] = fitnessFunc(simData, **fitnessFuncArgs) jobs_completed += 1 print(' Candidate %d fitness = %.1f' % (candidate_index, fitness[candidate_index])) elif os.path.isfile(jobNamePath+'.pkl'): with open('%s.pkl'% (jobNamePath), 'rb') as file: simData = pickle.load(file)['simData'] fitness[candidate_index] = fitnessFunc(simData, **fitnessFuncArgs) jobs_completed += 1 print(' Candidate %d fitness = %.1f' % (candidate_index, fitness[candidate_index])) except Exception as e: err = "There was an exception evaluating candidate %d:"%(candidate_index) print(("%s \n %s"%(err,e))) num_iters += 1 print('completed: %d' %(jobs_completed)) if num_iters >= args.get('maxiter_wait', 5000): print("Max iterations reached, the %d unfinished jobs will be canceled and set to default fitness" % (len(unfinished))) for canditade_index in unfinished: fitness[canditade_index] = maxFitness # rerun those that didn't complete; jobs_completed += 1 try: if 'scancelUser' in kwargs: os.system('scancel -u %s'%(kwargs['scancelUser'])) else: os.system('scancel %d' % (jobids[candidate_index])) # terminate unfinished job (resubmitted jobs not terminated!) except: pass sleep(args.get('time_sleep', 1)) # kill all processes if type == 'mpi_bulletin': try: with open("./pids.pid", 'r') as file: # read pids for mpi_bulletin pids = [int(i) for i in file.read().split(' ')[:-1]] with open("./pids.pid", 'w') as file: # delete content pass for pid in pids: try: os.killpg(os.getpgid(pid), signal.SIGTERM) except: pass except: pass elif type == 'mpi_direct': import psutil PROCNAME = "nrniv" for proc in psutil.process_iter(): # check whether the process name matches try: if proc.name() == PROCNAME: proc.kill() except: pass # don't want to to this for hpcs since jobs are running on compute nodes not master print("-" * 80) print(" Completed a generation ") print("-" * 80) return fitness[0] # single candidate for now # ------------------------------------------------------------------------------- # Optuna optimization: Main code # ------------------------------------------------------------------------------- import os from time import sleep try: from mpi4py import MPI comm = MPI.COMM_WORLD size = comm.Get_size() rank = comm.Get_rank() except: size = 1 rank = 0 # create main sim directory and save scripts self.saveScripts() global ngen ngen = -1 # gather **kwargs args = {} args['popsize'] = self.optimCfg.get('popsize', 1) args['minVals'] = [x['values'][0] for x in self.params] args['maxVals'] = [x['values'][1] for x in self.params] args['cfg'] = self.cfg # include here args/params to pass to evaluator function args['paramLabels'] = [x['label'] for x in self.params] args['netParamsSavePath'] = self.saveFolder + '/' + self.batchLabel + '_netParams.py' args['maxiters'] = self.optimCfg['maxiters'] if 'maxiters' in self.optimCfg else 1000 args['maxtime'] = self.optimCfg['maxtime'] if 'maxtime' in self.optimCfg else None args['fitnessFunc'] = self.optimCfg['fitnessFunc'] args['fitnessFuncArgs'] = self.optimCfg['fitnessFuncArgs'] args['maxiter_wait'] = self.optimCfg['maxiter_wait'] args['time_sleep'] = self.optimCfg['time_sleep'] args['maxFitness'] = self.optimCfg.get('maxFitness', 1000) args['direction'] = self.optimCfg['direction'] if 'direction' in self.optimCfg else 'minimize' for key, value in self.optimCfg.items(): args[key] = value for key, value in self.runCfg.items(): args[key] = value # if using pc bulletin board, initialize all workers if self.runCfg.get('type', None) == 'mpi_bulletin': for iworker in range(int(pc.nhost())): pc.runworker() # ------------------------------------------------------------------------------- # Run algorithm # ------------------------------------------------------------------------------- sleep(rank) # each process wiats a different time to avoid saturating sqlite database study = optuna.create_study(study_name=self.batchLabel, storage='sqlite:///%s/%s_storage.db' % (self.saveFolder, self.batchLabel), load_if_exists=True, direction=args['direction']) try: study.optimize(lambda trial: objective(trial, args), n_trials=args['maxiters'], timeout=args['maxtime']) except Exception as e: print(e) # print best and finish if rank == size-1: df = study.trials_dataframe(attrs=('number', 'value', 'params', 'state')) importance = optuna.importance.get_param_importances(study=study) print('\nBest trial: ', study.best_trial) print('\nParameter importance: ', dict(importance)) print('\nBest Solution with fitness = %.4g: \n' % (study.best_value), study.best_params) print('\nSaving to output.pkl...\n') output = {'study': study, 'df': df, 'importance': importance} with open('%s/%s_output.pkl' % (self.saveFolder, self.batchLabel), 'wb') as f: pickle.dump(output, f) sleep(1) print("-" * 80) print(" Completed Optuna parameter optimization ") print("-" * 80) sys.exit()
py
1a5594ed594c956000fa19a073be97fdc9823df4
# Standard library imports import sqlite3 from dataclasses import asdict # Third party imports import pandas as pd from spotify_flows.spotify.artists import read_artists_from_id from spotify_flows.database import SpotifyDatabase # Main body def main(): db = SpotifyDatabase("data/spotify.db", op_table="operations") df_related, df_artists = db.table_contents(["related", "artists"]) df_related = df_related.drop_duplicates() enriched_artist_ids = df_artists.loc[:, "id"].unique().tolist() all_artist_ids = set( df_related["artist_id"].tolist() + df_related["related_artist_id"].tolist() ) artists_to_enrich = [id for id in all_artist_ids if id not in enriched_artist_ids] remaining_artists = artists_to_enrich while remaining_artists: n = min(len(remaining_artists), 50) artists = read_artists_from_id(artist_ids=remaining_artists[:n]) df_data = pd.DataFrame([asdict(artist) for artist in artists]).drop( columns=["genres"] ) db.enrich_database_table(df_data=df_data, table="artists") remaining_artists = remaining_artists[n:] if __name__ == "__main__": raise SystemExit(main())
py
1a559519e298ca9aaae5f933db2803c42b8e7a3b
import glob import os import pytest from cli.src.helpers.build_io import get_build_path from cli.src.helpers.data_loader import load_schema_obj, load_all_schema_objs, load_all_schema_objs_from_directory,\ load_template_file, load_json_obj, types, SCHEMA_DIR from tests.unit.helpers.constants import CLUSTER_NAME_LOAD, NON_EXISTING_CLUSTER, TEST_DOCS, OUTPUT_PATH, TEST_INVENTORY, TEST_JSON,\ TEST_JSON_NAME, TEST_CLUSTER_MODEL TEST_MINIMAL_CLUSTER_CONFIG = { 'kind': 'epiphany-cluster', 'title': 'Epiphany cluster Config', 'provider': 'aws', 'name': 'default', 'specification': { 'name': 'name', 'prefix': 'prefix', 'admin_user': { 'name': 'ubuntu', 'key_path': '/shared/.ssh/epiphany-operations/id_rsa' }, 'cloud': { 'k8s_as_cloud_service': False, 'use_public_ips': False, 'credentials': { 'key': 'XXXX-XXXX-XXXX', 'secret': 'XXXXXXXXXXXXXXXX' }, 'default_os_image': 'default' }, 'components': { 'repository': {'count': 1}, 'kubernetes_master': {'count': 1}, 'kubernetes_node': {'count': 2}, 'logging': {'count': 1}, 'monitoring': {'count': 1}, 'kafka': {'count': 2}, 'postgresql': {'count': 1}, 'load_balancer': {'count': 1}, 'rabbitmq': {'count': 1} } } } def test_load_schema_obj(): yaml_obj = load_schema_obj(types.DEFAULT, 'aws', 'configuration/minimal-cluster-config') assert yaml_obj == TEST_MINIMAL_CLUSTER_CONFIG def test_load_all_schema_objs(): yaml_objs = load_all_schema_objs(types.DEFAULT, 'aws', 'configuration/minimal-cluster-config') assert yaml_objs == [TEST_MINIMAL_CLUSTER_CONFIG] def test_load_all_schema_objs_from_directory(): defaults = load_all_schema_objs_from_directory(types.DEFAULT, 'common', 'configuration') directory_path = os.path.join(SCHEMA_DIR, 'common', types.DEFAULT, 'configuration') assert len(defaults) == len(glob.glob(os.path.join(directory_path, '*.yml'))) def test_load_template_file(): template = load_template_file(types.ANSIBLE, '', 'inventory') content = template.render(inventory=TEST_INVENTORY, cluster_model=TEST_CLUSTER_MODEL) assert 'test-1 ansible_host=10.0.0.1' in content assert 'test-2 ansible_host=10.0.0.2' in content assert 'test-3 ansible_host=10.0.0.3' in content assert 'test-4 ansible_host=10.0.0.4' in content assert 'ansible_user=operations' in content assert 'ansible_ssh_private_key_file=id_rsa' in content def test_load_json_obj(): loaded_json = load_json_obj(os.path.join(OUTPUT_PATH, TEST_JSON_NAME)) assert loaded_json == TEST_JSON def test_load_not_existing_manifest_docs(): build_path = get_build_path(NON_EXISTING_CLUSTER) with pytest.raises(Exception): load_manifest(build_path)
py
1a559623ff8be3a978a6f505cf50cf3f1cdba39f
import tempfile from unittest import TestCase from qtlayoutbuilder.lib.multiline_string_utils import MultilineString from qtlayoutbuilder.lib.original_file_rewriter import OriginalFileReWriter class TestOriginalFileReWriter(TestCase): # Lower level functions first. def test_add_backup_location_comment(self): # First check that we get what we expect when the existing # one_big_string, does not already have such a comment in. one_big_string = 'just this text' mock_backup_folder_string = 'mock_backup_folder' output = OriginalFileReWriter._add_backup_location_comment( mock_backup_folder_string, one_big_string) output = MultilineString.normalise(output) expected = MultilineString.normalise(""" # This file has been automatically re-formatted. # Previous versions can be found here: # mock_backup_folder ## just this text """) self.assertEquals(output, expected) # Now ensure that if we do it again - but this time with the # new one_big_string that already has a comment in, the old comment # gets replaced with the new. previous_output = output mock_backup_folder_string = 'DIFFERENT_mock_backup_folder' new_output = \ OriginalFileReWriter._add_backup_location_comment( mock_backup_folder_string, previous_output) new_output = MultilineString.normalise(new_output) expected = MultilineString.normalise(""" # This file has been automatically re-formatted. # Previous versions can be found here: # DIFFERENT_mock_backup_folder ## just this text """) self.assertEquals(new_output, expected) def test_make_backup_of_existing_file(self): # Make a file that we will then back up. orig_fd = tempfile.NamedTemporaryFile(delete=False) orig_file_path = orig_fd.name orig_fd.write('original file content') orig_fd.close() # Back it up backup_folder, backup_file_path = \ OriginalFileReWriter._make_backup_of_existing_file(orig_file_path) # Ensure that the backed up file has the expected content. with open(backup_file_path, 'r') as read_fd: content = read_fd.read() self.assertEqual(content, 'original file content') # Now at API level def test_at_api_level(self): # Make a file that we will then overwrite. orig_fd = tempfile.NamedTemporaryFile(suffix='.txt', delete=False) orig_file_path = orig_fd.name content = MultilineString.shift_left(""" layout QHBoxLayout widget QWidget """) orig_fd.write(content) orig_fd.close() # Mandate the overwrite OriginalFileReWriter.overwrite_original(orig_file_path, 'new content') # Check for both the presence of the new content, and the # backup message. with open(orig_file_path, 'r') as input_file: content = input_file.read() self.assertTrue('new content' in content) self.assertTrue('has been' in content)
py
1a559746bf3a3cadbde1440782fedc9b74a66fa9
# todo_list/todo_app/views.py from django.views.generic import ListView from .models import ToDoList, ToDoItem class ListListView(ListView): model = ToDoList template_name = "todo_app/index.html" class ItemListView(ListView): model = ToDoItem template_name = "todo_app/todo_list.html" def get_queryset(self): return ToDoItem.objects.filter(todo_list_id=self.kwargs["list_id"]) def get_context_data(self): context = super().get_context_data() context["todo_list"] = ToDoList.objects.get(id=self.kwargs["list_id"]) return context
py
1a559799b6988376d9f472dd5d792aaa5e547763
from .engine import SimEngine import logging l = logging.getLogger(name=__name__) class SimEngineFailure(SimEngine): #pylint:disable=abstract-method def _check(self, state, *args, **kwargs): jumpkind = state.history.jumpkind if jumpkind in ('Ijk_EmFail', 'Ijk_MapFail') or jumpkind.startswith('Ijk_Sig'): return True if jumpkind == 'Ijk_Exit': return True return False def process(self, state, *args, **kwargs): from ..procedures import SIM_PROCEDURES if state.history.jumpkind in ("Ijk_EmFail", "Ijk_MapFail") or "Ijk_Sig" in state.history.jumpkind: raise AngrExitError("Cannot execute following jumpkind %s" % state.history.jumpkind) elif state.history.jumpkind == 'Ijk_Exit': l.debug('Execution terminated at %#x', state.addr) terminator = SIM_PROCEDURES['stubs']['PathTerminator'](project=self.project) return self.project.factory.procedure_engine.process(state, terminator, force_addr=state.addr) else: return SimSuccessors.failure() from ..errors import AngrExitError from .successors import SimSuccessors
py
1a5598de7ef68c669f9ce6b83d23d4cf64f17883
from PIL import ImageGrab #Used to screenshots #it takes board number 1-6!! def screen_board(board_no): grab_displays = ((10,50,630,380), (650,50,1270,380), (1290,50,1910,380), (10,590,630,920), (650,590,1270,920), (1290,590,1910,920)) #Screenshot of whole window number board-1 return ImageGrab.grab(bbox=(grab_displays[board_no-1])) #takes and returns a screenshot of given coords x1 y1 to x2 y2 def screenshot(xyxy): return ImageGrab.grab(bbox=(xyxy))
py
1a5598f24f9201dbb373f8c66d683279ed097060
# -*- coding: utf-8 -*- settings = { 'source': 'csv', #'source': 'mongodb', 'data_path': './data', 'stock_commission': 3 / 10000.0, 'future_commission': 1 / 10000.0, 'tick_test': False, } class ConfigLog(object): log_level = 'INFO' log_to_file = True log_to_console = True log_path = './log' __all__ = ['settings', 'ConfigLog']
py
1a5599e35bd63233ef6990d3eafee228e33e1985
# _ _ # | | | | # ___ ___ _ __ ___| |_ __ _ _ __ | |_ ___ # / __/ _ \| '_ \/ __| __/ _` | '_ \| __/ __| # | (_| (_) | | | \__ \ || (_| | | | | |_\__ \ # \___\___/|_| |_|___/\__\__,_|_| |_|\__|___/ # """ constants.py various fixed values used elsewhere """ # place to store downloaded imaged DOWNLOAD_DIRECTORY = './downloaded_images/' # directory to save augmented images before sending to S3 TMP_SAVE_DIR = "./aug_img_tmp/" # should reflect number of distinct transformations in transformations.py NUM_POSSIBLE_TRANSFORMS = 6 # redis database host app name HOST = "redis" # redis database key for the jobs JOB_NAME = "job2"
py
1a559a5382f4f3bab16245590561d1201884f37e
import datetime from typing import List from unittest.mock import patch import pytz from django.core import mail from django.core.exceptions import ImproperlyConfigured from django.test import TestCase from django.utils import timezone from freezegun import freeze_time from posthog.email import EmailMessage from posthog.models import Event, Organization, Person, Team, User from posthog.tasks.email import send_weekly_email_report class TestEmail(TestCase): def create_person(self, team: Team, base_distinct_id: str = "") -> Person: person = Person.objects.create(team=team) person.add_distinct_id(base_distinct_id) return person @freeze_time("2020-09-21") def setUp(self): super().setUp() self.organization = Organization.objects.create() self.team = Team.objects.create(organization=self.organization, name="The Bakery") self.user = User.objects.create(email="[email protected]") self.user2 = User.objects.create(email="[email protected]") self.organization.members.add(self.user) self.organization.members.add(self.user2) last_week = datetime.datetime(2020, 9, 17, 3, 22, tzinfo=pytz.UTC) two_weeks_ago = datetime.datetime(2020, 9, 8, 19, 54, tzinfo=pytz.UTC) self.persons: List = [self.create_person(self.team, str(i)) for i in range(0, 7)] # Resurrected self.persons[0].created_at = timezone.now() - datetime.timedelta(weeks=3) self.persons[0].save() self.persons[1].created_at = timezone.now() - datetime.timedelta(weeks=4) self.persons[1].save() Event.objects.create(team=self.team, timestamp=last_week, distinct_id=0) Event.objects.create(team=self.team, timestamp=last_week, distinct_id=1) # Retained Event.objects.create(team=self.team, timestamp=last_week, distinct_id=2) Event.objects.create(team=self.team, timestamp=two_weeks_ago, distinct_id=2) Event.objects.create(team=self.team, timestamp=last_week, distinct_id=3) Event.objects.create(team=self.team, timestamp=two_weeks_ago, distinct_id=3) Event.objects.create(team=self.team, timestamp=last_week, distinct_id=4) Event.objects.create(team=self.team, timestamp=two_weeks_ago, distinct_id=4) # New Event.objects.create(team=self.team, timestamp=last_week, distinct_id=5) Event.objects.create(team=self.team, timestamp=last_week, distinct_id=5) # Churned Event.objects.create(team=self.team, timestamp=two_weeks_ago, distinct_id=6) def test_cant_send_emails_if_not_properly_configured(self) -> None: with self.settings(EMAIL_HOST=None): with self.assertRaises(ImproperlyConfigured) as e: EmailMessage("Subject", "template") self.assertEqual( str(e.exception), "Email settings not configured! Set at least the EMAIL_HOST environment variable.", ) @freeze_time("2020-09-21") def test_weekly_email_report(self) -> None: with self.settings( EMAIL_HOST="localhost", SITE_URL="http://localhost:9999", ): send_weekly_email_report() self.assertEqual(len(mail.outbox), 2) self.assertEqual(mail.outbox[0].to, ["[email protected]"]) self.assertEqual(mail.outbox[1].to, ["[email protected]"]) self.assertEqual( mail.outbox[0].subject, "PostHog weekly report for Sep 14, 2020 to Sep 20", ) self.assertEqual( mail.outbox[0].body, "", ) # no plain-text version support yet html_message = mail.outbox[0].alternatives[0][0] # type: ignore self.assertIn( "http://localhost:9999/static/posthog-logo.png", html_message, ) # absolute URLs are used self.assertIn('style="font-weight: 300"', html_message) # CSS is inlined self.assertIn( "Your PostHog weekly report is ready! Your team had 6 active users last week! &#127881;", html_message, ) # preheader @patch("posthog.tasks.email.EmailMessage") @freeze_time("2020-09-21") def test_weekly_email_report_content(self, mock_email_message): with self.settings(EMAIL_HOST="localhost"): send_weekly_email_report() self.assertEqual( mock_email_message.call_args[0][0], "PostHog weekly report for Sep 14, 2020 to Sep 20", ) # Email subject self.assertEqual(mock_email_message.call_args[0][1], "weekly_report") template_context = mock_email_message.call_args[0][2] self.assertEqual(template_context["team"], "The Bakery") self.assertEqual( template_context["period_start"], datetime.datetime(2020, 9, 14, tzinfo=pytz.UTC), ) self.assertEqual( template_context["period_end"], datetime.datetime(2020, 9, 20, 23, 59, 59, 999999, tzinfo=pytz.UTC), ) self.assertEqual( template_context["active_users"], 6, ) self.assertEqual( template_context["active_users_delta"], 0.5, ) self.assertEqual( round(template_context["user_distribution"]["new"], 2), 0.17, ) self.assertEqual( template_context["user_distribution"]["retained"], 0.5, ) self.assertEqual( round(template_context["user_distribution"]["resurrected"], 2), 0.33, ) self.assertEqual( template_context["churned_users"], {"abs": 1, "ratio": 0.25, "delta": None}, )
py
1a559b52ea77ea4ac5e489621120f5578fe4e075
#!/usr/bin/env python """ self-contained to write legacy storage (pickle/msgpack) files To use this script. Create an environment where you want generate pickles, say its for 0.18.1, with your pandas clone in ~/pandas . activate pandas_0.18.1 cd ~/ $ python pandas/pandas/tests/io/generate_legacy_storage_files.py \ pandas/pandas/tests/io/data/legacy_pickle/0.18.1/ pickle This script generates a storage file for the current arch, system, and python version pandas version: 0.18.1 output dir : pandas/pandas/tests/io/data/legacy_pickle/0.18.1/ storage format: pickle created pickle file: 0.18.1_x86_64_darwin_3.5.2.pickle The idea here is you are using the *current* version of the generate_legacy_storage_files with an *older* version of pandas to generate a pickle file. We will then check this file into a current branch, and test using test_pickle.py. This will load the *older* pickles and test versus the current data that is generated (with master). These are then compared. If we have cases where we changed the signature (e.g. we renamed offset -> freq in Timestamp). Then we have to conditionally execute in the generate_legacy_storage_files.py to make it run under the older AND the newer version. """ from datetime import timedelta from distutils.version import LooseVersion import os import platform as pl import sys import numpy as np import pandas from pandas import ( Categorical, DataFrame, Index, MultiIndex, NaT, Period, Series, SparseDataFrame, SparseSeries, Timestamp, bdate_range, date_range, period_range, timedelta_range, to_msgpack) from pandas.tseries.offsets import ( FY5253, BusinessDay, BusinessHour, CustomBusinessDay, DateOffset, Day, Easter, Hour, LastWeekOfMonth, Minute, MonthBegin, MonthEnd, QuarterBegin, QuarterEnd, SemiMonthBegin, SemiMonthEnd, Week, WeekOfMonth, YearBegin, YearEnd) _loose_version = LooseVersion(pandas.__version__) def _create_sp_series(): nan = np.nan # nan-based arr = np.arange(15, dtype=np.float64) arr[7:12] = nan arr[-1:] = nan bseries = SparseSeries(arr, kind='block') bseries.name = 'bseries' return bseries def _create_sp_tsseries(): nan = np.nan # nan-based arr = np.arange(15, dtype=np.float64) arr[7:12] = nan arr[-1:] = nan date_index = bdate_range('1/1/2011', periods=len(arr)) bseries = SparseSeries(arr, index=date_index, kind='block') bseries.name = 'btsseries' return bseries def _create_sp_frame(): nan = np.nan data = {'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6], 'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6], 'C': np.arange(10).astype(np.int64), 'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]} dates = bdate_range('1/1/2011', periods=10) return SparseDataFrame(data, index=dates) def create_data(): """ create the pickle/msgpack data """ data = { 'A': [0., 1., 2., 3., np.nan], 'B': [0, 1, 0, 1, 0], 'C': ['foo1', 'foo2', 'foo3', 'foo4', 'foo5'], 'D': date_range('1/1/2009', periods=5), 'E': [0., 1, Timestamp('20100101'), 'foo', 2.] } scalars = dict(timestamp=Timestamp('20130101'), period=Period('2012', 'M')) index = dict(int=Index(np.arange(10)), date=date_range('20130101', periods=10), period=period_range('2013-01-01', freq='M', periods=10), float=Index(np.arange(10, dtype=np.float64)), uint=Index(np.arange(10, dtype=np.uint64)), timedelta=timedelta_range('00:00:00', freq='30T', periods=10)) if _loose_version >= LooseVersion('0.18'): from pandas import RangeIndex index['range'] = RangeIndex(10) if _loose_version >= LooseVersion('0.21'): from pandas import interval_range index['interval'] = interval_range(0, periods=10) mi = dict(reg2=MultiIndex.from_tuples( tuple(zip(*[['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']])), names=['first', 'second'])) series = dict(float=Series(data['A']), int=Series(data['B']), mixed=Series(data['E']), ts=Series(np.arange(10).astype(np.int64), index=date_range('20130101', periods=10)), mi=Series(np.arange(5).astype(np.float64), index=MultiIndex.from_tuples( tuple(zip(*[[1, 1, 2, 2, 2], [3, 4, 3, 4, 5]])), names=['one', 'two'])), dup=Series(np.arange(5).astype(np.float64), index=['A', 'B', 'C', 'D', 'A']), cat=Series(Categorical(['foo', 'bar', 'baz'])), dt=Series(date_range('20130101', periods=5)), dt_tz=Series(date_range('20130101', periods=5, tz='US/Eastern')), period=Series([Period('2000Q1')] * 5)) mixed_dup_df = DataFrame(data) mixed_dup_df.columns = list("ABCDA") frame = dict(float=DataFrame({'A': series['float'], 'B': series['float'] + 1}), int=DataFrame({'A': series['int'], 'B': series['int'] + 1}), mixed=DataFrame({k: data[k] for k in ['A', 'B', 'C', 'D']}), mi=DataFrame({'A': np.arange(5).astype(np.float64), 'B': np.arange(5).astype(np.int64)}, index=MultiIndex.from_tuples( tuple(zip(*[['bar', 'bar', 'baz', 'baz', 'baz'], ['one', 'two', 'one', 'two', 'three']])), names=['first', 'second'])), dup=DataFrame(np.arange(15).reshape(5, 3).astype(np.float64), columns=['A', 'B', 'A']), cat_onecol=DataFrame({'A': Categorical(['foo', 'bar'])}), cat_and_float=DataFrame({ 'A': Categorical(['foo', 'bar', 'baz']), 'B': np.arange(3).astype(np.int64)}), mixed_dup=mixed_dup_df, dt_mixed_tzs=DataFrame({ 'A': Timestamp('20130102', tz='US/Eastern'), 'B': Timestamp('20130603', tz='CET')}, index=range(5)), dt_mixed2_tzs=DataFrame({ 'A': Timestamp('20130102', tz='US/Eastern'), 'B': Timestamp('20130603', tz='CET'), 'C': Timestamp('20130603', tz='UTC')}, index=range(5)) ) cat = dict(int8=Categorical(list('abcdefg')), int16=Categorical(np.arange(1000)), int32=Categorical(np.arange(10000))) timestamp = dict(normal=Timestamp('2011-01-01'), nat=NaT, tz=Timestamp('2011-01-01', tz='US/Eastern')) if _loose_version < LooseVersion('0.19.2'): timestamp['freq'] = Timestamp('2011-01-01', offset='D') timestamp['both'] = Timestamp('2011-01-01', tz='Asia/Tokyo', offset='M') else: timestamp['freq'] = Timestamp('2011-01-01', freq='D') timestamp['both'] = Timestamp('2011-01-01', tz='Asia/Tokyo', freq='M') off = {'DateOffset': DateOffset(years=1), 'DateOffset_h_ns': DateOffset(hour=6, nanoseconds=5824), 'BusinessDay': BusinessDay(offset=timedelta(seconds=9)), 'BusinessHour': BusinessHour(normalize=True, n=6, end='15:14'), 'CustomBusinessDay': CustomBusinessDay(weekmask='Mon Fri'), 'SemiMonthBegin': SemiMonthBegin(day_of_month=9), 'SemiMonthEnd': SemiMonthEnd(day_of_month=24), 'MonthBegin': MonthBegin(1), 'MonthEnd': MonthEnd(1), 'QuarterBegin': QuarterBegin(1), 'QuarterEnd': QuarterEnd(1), 'Day': Day(1), 'YearBegin': YearBegin(1), 'YearEnd': YearEnd(1), 'Week': Week(1), 'Week_Tues': Week(2, normalize=False, weekday=1), 'WeekOfMonth': WeekOfMonth(week=3, weekday=4), 'LastWeekOfMonth': LastWeekOfMonth(n=1, weekday=3), 'FY5253': FY5253(n=2, weekday=6, startingMonth=7, variation="last"), 'Easter': Easter(), 'Hour': Hour(1), 'Minute': Minute(1)} return dict(series=series, frame=frame, index=index, scalars=scalars, mi=mi, sp_series=dict(float=_create_sp_series(), ts=_create_sp_tsseries()), sp_frame=dict(float=_create_sp_frame()), cat=cat, timestamp=timestamp, offsets=off) def create_pickle_data(): data = create_data() # Pre-0.14.1 versions generated non-unpicklable mixed-type frames and # panels if their columns/items were non-unique. if _loose_version < LooseVersion('0.14.1'): del data['frame']['mixed_dup'] del data['panel']['mixed_dup'] if _loose_version < LooseVersion('0.17.0'): del data['series']['period'] del data['scalars']['period'] return data def _u(x): return {k: _u(x[k]) for k in x} if isinstance(x, dict) else x def create_msgpack_data(): data = create_data() if _loose_version < LooseVersion('0.17.0'): del data['frame']['mixed_dup'] del data['panel']['mixed_dup'] del data['frame']['dup'] del data['panel']['dup'] if _loose_version < LooseVersion('0.18.0'): del data['series']['dt_tz'] del data['frame']['dt_mixed_tzs'] # Not supported del data['sp_series'] del data['sp_frame'] del data['series']['cat'] del data['series']['period'] del data['frame']['cat_onecol'] del data['frame']['cat_and_float'] del data['scalars']['period'] if _loose_version < LooseVersion('0.23.0'): del data['index']['interval'] del data['offsets'] return _u(data) def platform_name(): return '_'.join([str(pandas.__version__), str(pl.machine()), str(pl.system().lower()), str(pl.python_version())]) def write_legacy_pickles(output_dir): # make sure we are < 0.13 compat (in py3) try: from pandas.compat import cPickle as pickle # noqa except ImportError: import pickle version = pandas.__version__ print("This script generates a storage file for the current arch, system, " "and python version") print(" pandas version: {0}".format(version)) print(" output dir : {0}".format(output_dir)) print(" storage format: pickle") pth = '{0}.pickle'.format(platform_name()) fh = open(os.path.join(output_dir, pth), 'wb') pickle.dump(create_pickle_data(), fh, pickle.HIGHEST_PROTOCOL) fh.close() print("created pickle file: %s" % pth) def write_legacy_msgpack(output_dir, compress): version = pandas.__version__ print("This script generates a storage file for the current arch, " "system, and python version") print(" pandas version: {0}".format(version)) print(" output dir : {0}".format(output_dir)) print(" storage format: msgpack") pth = '{0}.msgpack'.format(platform_name()) to_msgpack(os.path.join(output_dir, pth), create_msgpack_data(), compress=compress) print("created msgpack file: %s" % pth) def write_legacy_file(): # force our cwd to be the first searched sys.path.insert(0, '.') if not (3 <= len(sys.argv) <= 4): exit("Specify output directory and storage type: generate_legacy_" "storage_files.py <output_dir> <storage_type> " "<msgpack_compress_type>") output_dir = str(sys.argv[1]) storage_type = str(sys.argv[2]) try: compress_type = str(sys.argv[3]) except IndexError: compress_type = None if storage_type == 'pickle': write_legacy_pickles(output_dir=output_dir) elif storage_type == 'msgpack': write_legacy_msgpack(output_dir=output_dir, compress=compress_type) else: exit("storage_type must be one of {'pickle', 'msgpack'}") if __name__ == '__main__': write_legacy_file()
py
1a559c8296a8f361e14145548aad230587540917
"""Given a folder with subfolders, run the schizo test and report on the min, max, etc statistics of each subfolder. """ import argparse import collections import multiprocessing import os import re import subprocess progdir = os.path.dirname(os.path.abspath(__file__)) mainscript = os.path.join(progdir, '../main.py') def dir_arg(s): if os.path.isdir(s): return s raise ArgumentError(f'{s} is not a directory') def get_rmse(fpath): p = subprocess.Popen(['python3', mainscript, fpath], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = p.communicate() r = p.wait() vals = {} for m in re.finditer(rb'^Max RMSE, (.*) to (.*): ([^\n]+)', stderr, flags=re.M): vals[(m.group(1), m.group(2))] = float(m.group(3)) return vals def main(): ap = argparse.ArgumentParser(description=__doc__) ap.add_argument('folder', type=dir_arg) args = ap.parse_args() pool = multiprocessing.Pool() all_files = [] for path, dirs, files in os.walk(args.folder): for f in files: fpath = os.path.join(path, f) if os.path.isfile(fpath): all_files.append(fpath) results = pool.map(get_rmse, all_files) rmses = sorted(zip(all_files, results), key=lambda k: k[0]) folders = [] class Tracker: def __init__(self): self.items = collections.defaultdict(list) def __str__(self): result = [] for (t1, t2), vals in self.items.items(): result.append(f'{t1} to {t2}: {sum(vals) / len(vals):.4f} ({min(vals):.4f} / {max(vals):.4f})') return ', '.join(result) def add(self, rmse_vals): for k, v in rmse_vals.items(): self.items[k].append(v) def cap(parts, rmse): for fi in reversed(range(len(folders))): if len(parts) <= fi or parts[fi] != folders[fi][0]: fname = '/'.join([ff[0] for ff in folders]) fstr = "\n ".join(str(folders[fi][1]).split(", ")) print(f'{fname}\n {fstr}') folders.pop() else: break for fi in range(len(folders), len(parts)): folders.append([parts[fi], Tracker()]) for f in folders: f[1].add(rmse) for f, r in rmses: remainder = f parts = [] while True: remainder, tail = os.path.split(remainder) if not tail: break parts.insert(0, tail) if not remainder: break cap(parts, r) cap([], None) if __name__ == '__main__': main()
py
1a559f46668c26a67dcfdb505cd887a807690162
from __future__ import absolute_import, print_function from django.conf.urls import include, patterns, url from .endpoints.accept_project_transfer import AcceptProjectTransferEndpoint from .endpoints.organization_dashboards import OrganizationDashboardsEndpoint from .endpoints.relay_heartbeat import RelayHeartbeatEndpoint from .endpoints.relay_projectconfigs import RelayProjectConfigsEndpoint from .endpoints.relay_publickeys import RelayPublicKeysEndpoint from .endpoints.relay_index import RelayIndexEndpoint from .endpoints.relay_details import RelayDetailsEndpoint from .endpoints.relay_register import RelayRegisterChallengeEndpoint, \ RelayRegisterResponseEndpoint from .endpoints.api_applications import ApiApplicationsEndpoint from .endpoints.api_application_details import ApiApplicationDetailsEndpoint from .endpoints.api_authorizations import ApiAuthorizationsEndpoint from .endpoints.api_tokens import ApiTokensEndpoint from .endpoints.assistant import AssistantEndpoint from .endpoints.auth_index import AuthIndexEndpoint from .endpoints.authenticator_index import AuthenticatorIndexEndpoint from .endpoints.broadcast_details import BroadcastDetailsEndpoint from .endpoints.broadcast_index import BroadcastIndexEndpoint from .endpoints.catchall import CatchallEndpoint from .endpoints.chunk import ChunkUploadEndpoint from .endpoints.event_attachment_details import EventAttachmentDetailsEndpoint from .endpoints.event_attachments import EventAttachmentsEndpoint from .endpoints.event_details import EventDetailsEndpoint from .endpoints.event_owners import EventOwnersEndpoint from .endpoints.event_apple_crash_report import EventAppleCrashReportEndpoint from .endpoints.event_grouping_info import EventGroupingInfoEndpoint from .endpoints.group_details import GroupDetailsEndpoint from .endpoints.group_events import GroupEventsEndpoint from .endpoints.group_events_latest import GroupEventsLatestEndpoint from .endpoints.group_events_oldest import GroupEventsOldestEndpoint from .endpoints.group_hashes import GroupHashesEndpoint from .endpoints.group_integration_details import GroupIntegrationDetailsEndpoint from .endpoints.group_integrations import GroupIntegrationsEndpoint from .endpoints.group_notes import GroupNotesEndpoint from .endpoints.group_notes_details import GroupNotesDetailsEndpoint from .endpoints.group_participants import GroupParticipantsEndpoint from .endpoints.group_external_issues import GroupExternalIssuesEndpoint from .endpoints.group_external_issue_details import GroupExternalIssueDetailsEndpoint from .endpoints.group_similar_issues import GroupSimilarIssuesEndpoint from .endpoints.group_stats import GroupStatsEndpoint from .endpoints.group_tags import GroupTagsEndpoint from .endpoints.group_tagkey_details import GroupTagKeyDetailsEndpoint from .endpoints.group_tagkey_values import GroupTagKeyValuesEndpoint from .endpoints.group_tombstone_details import GroupTombstoneDetailsEndpoint from .endpoints.group_tombstone import GroupTombstoneEndpoint from .endpoints.group_user_reports import GroupUserReportsEndpoint from .endpoints.organization_incident_details import OrganizationIncidentDetailsEndpoint from .endpoints.organization_incident_seen import OrganizationIncidentSeenEndpoint from .endpoints.index import IndexEndpoint from .endpoints.internal_queue_tasks import InternalQueueTasksEndpoint from .endpoints.internal_quotas import InternalQuotasEndpoint from .endpoints.internal_stats import InternalStatsEndpoint from .endpoints.monitor_checkins import MonitorCheckInsEndpoint from .endpoints.monitor_checkin_details import MonitorCheckInDetailsEndpoint from .endpoints.monitor_details import MonitorDetailsEndpoint from .endpoints.monitor_stats import MonitorStatsEndpoint from .endpoints.organization_access_request_details import OrganizationAccessRequestDetailsEndpoint from .endpoints.organization_activity import OrganizationActivityEndpoint from .endpoints.organization_auditlogs import OrganizationAuditLogsEndpoint from .endpoints.organization_api_key_index import OrganizationApiKeyIndexEndpoint from .endpoints.organization_api_key_details import OrganizationApiKeyDetailsEndpoint from .endpoints.organization_auth_providers import OrganizationAuthProvidersEndpoint from .endpoints.organization_auth_provider_details import OrganizationAuthProviderDetailsEndpoint from .endpoints.organization_auth_provider_send_reminders import OrganizationAuthProviderSendRemindersEndpoint from .endpoints.organization_avatar import OrganizationAvatarEndpoint from .endpoints.organization_details import OrganizationDetailsEndpoint from .endpoints.organization_discover_query import OrganizationDiscoverQueryEndpoint from .endpoints.organization_discover_saved_queries import OrganizationDiscoverSavedQueriesEndpoint from .endpoints.organization_discover_saved_query_detail import OrganizationDiscoverSavedQueryDetailEndpoint from .endpoints.organization_events import OrganizationEventsEndpoint, OrganizationEventsMetaEndpoint, OrganizationEventsStatsEndpoint, OrganizationEventsHeatmapEndpoint from .endpoints.organization_group_index import OrganizationGroupIndexEndpoint from .endpoints.organization_dashboard_details import OrganizationDashboardDetailsEndpoint from .endpoints.organization_dashboard_widget_details import OrganizationDashboardWidgetDetailsEndpoint from .endpoints.organization_dashboard_widgets import OrganizationDashboardWidgetsEndpoint from .endpoints.organization_health import OrganizationHealthTopEndpoint, OrganizationHealthGraphEndpoint from .endpoints.organization_shortid import ShortIdLookupEndpoint from .endpoints.organization_environments import OrganizationEnvironmentsEndpoint from .endpoints.organization_eventid import EventIdLookupEndpoint from .endpoints.organization_slugs import SlugsUpdateEndpoint from .endpoints.organization_incident_activity_index import OrganizationIncidentActivityIndexEndpoint from .endpoints.organization_incident_comment_index import OrganizationIncidentCommentIndexEndpoint from .endpoints.organization_incident_comment_details import OrganizationIncidentCommentDetailsEndpoint from .endpoints.organization_incident_index import OrganizationIncidentIndexEndpoint from .endpoints.organization_incident_subscription_index import OrganizationIncidentSubscriptionIndexEndpoint from .endpoints.organization_incident_suspects_index import OrganizationIncidentSuspectsIndexEndpoint from .endpoints.organization_issues_new import OrganizationIssuesNewEndpoint from .endpoints.organization_issues_resolved_in_release import OrganizationIssuesResolvedInReleaseEndpoint from .endpoints.organization_member_details import OrganizationMemberDetailsEndpoint from .endpoints.organization_member_index import OrganizationMemberIndexEndpoint from .endpoints.organization_member_issues_assigned import OrganizationMemberIssuesAssignedEndpoint from .endpoints.organization_member_issues_bookmarked import OrganizationMemberIssuesBookmarkedEndpoint from .endpoints.organization_member_issues_viewed import OrganizationMemberIssuesViewedEndpoint from .endpoints.organization_member_unreleased_commits import OrganizationMemberUnreleasedCommitsEndpoint from .endpoints.organization_member_team_details import OrganizationMemberTeamDetailsEndpoint from .endpoints.organization_monitors import OrganizationMonitorsEndpoint from .endpoints.organization_onboarding_tasks import OrganizationOnboardingTaskEndpoint from .endpoints.organization_index import OrganizationIndexEndpoint from .endpoints.organization_pinned_searches import OrganizationPinnedSearchEndpoint from .endpoints.organization_plugins import OrganizationPluginsEndpoint from .endpoints.organization_processingissues import OrganizationProcessingIssuesEndpoint from .endpoints.organization_projects import OrganizationProjectsEndpoint from .endpoints.organization_recent_searches import OrganizationRecentSearchesEndpoint from .endpoints.organization_releases import OrganizationReleasesEndpoint from .endpoints.organization_release_details import OrganizationReleaseDetailsEndpoint from .endpoints.organization_release_assemble import OrganizationReleaseAssembleEndpoint from .endpoints.organization_release_files import OrganizationReleaseFilesEndpoint from .endpoints.organization_release_file_details import OrganizationReleaseFileDetailsEndpoint from .endpoints.organization_release_commits import OrganizationReleaseCommitsEndpoint from .endpoints.organization_repositories import OrganizationRepositoriesEndpoint from .endpoints.organization_integration_details import OrganizationIntegrationDetailsEndpoint from .endpoints.organization_integration_repos import OrganizationIntegrationReposEndpoint from .endpoints.organization_integrations import OrganizationIntegrationsEndpoint from .endpoints.organization_config_integrations import OrganizationConfigIntegrationsEndpoint from .endpoints.organization_config_repositories import OrganizationConfigRepositoriesEndpoint from .endpoints.organization_repository_commits import OrganizationRepositoryCommitsEndpoint from .endpoints.organization_repository_details import OrganizationRepositoryDetailsEndpoint from .endpoints.organization_search_details import OrganizationSearchDetailsEndpoint from .endpoints.organization_searches import OrganizationSearchesEndpoint from .endpoints.organization_sentry_apps import OrganizationSentryAppsEndpoint from .endpoints.organization_tagkey_values import OrganizationTagKeyValuesEndpoint from .endpoints.organization_tags import OrganizationTagsEndpoint from .endpoints.organization_user_reports import OrganizationUserReportsEndpoint from .endpoints.organization_users import OrganizationUsersEndpoint from .endpoints.organization_user_details import OrganizationUserDetailsEndpoint from .endpoints.sentry_app_installations import SentryAppInstallationsEndpoint from .endpoints.sentry_app_installation_details import SentryAppInstallationDetailsEndpoint from .endpoints.sentry_app_installation_external_requests import SentryAppInstallationExternalRequestsEndpoint from .endpoints.sentry_app_installation_external_issues import SentryAppInstallationExternalIssuesEndpoint from .endpoints.organization_stats import OrganizationStatsEndpoint from .endpoints.organization_teams import OrganizationTeamsEndpoint from .endpoints.organization_user_issues import OrganizationUserIssuesEndpoint from .endpoints.organization_user_issues_search import OrganizationUserIssuesSearchEndpoint from .endpoints.project_avatar import ProjectAvatarEndpoint from .endpoints.project_details import ProjectDetailsEndpoint from .endpoints.project_transfer import ProjectTransferEndpoint from .endpoints.project_create_sample import ProjectCreateSampleEndpoint from .endpoints.project_docs_platform import ProjectDocsPlatformEndpoint from .endpoints.project_environments import ProjectEnvironmentsEndpoint from .endpoints.project_environment_details import ProjectEnvironmentDetailsEndpoint from .endpoints.project_platforms import ProjectPlatformsEndpoint from .endpoints.project_events import ProjectEventsEndpoint from .endpoints.project_event_details import ProjectEventDetailsEndpoint, EventJsonEndpoint from .endpoints.project_filters import ProjectFiltersEndpoint from .endpoints.project_filter_details import ProjectFilterDetailsEndpoint from .endpoints.project_group_index import ProjectGroupIndexEndpoint from .endpoints.project_group_stats import ProjectGroupStatsEndpoint from .endpoints.project_index import ProjectIndexEndpoint from .endpoints.project_issues_resolved_in_release import ProjectIssuesResolvedInReleaseEndpoint from .endpoints.project_keys import ProjectKeysEndpoint from .endpoints.project_key_details import ProjectKeyDetailsEndpoint from .endpoints.project_key_stats import ProjectKeyStatsEndpoint from .endpoints.project_member_index import ProjectMemberIndexEndpoint from .endpoints.project_ownership import ProjectOwnershipEndpoint from .endpoints.project_plugins import ProjectPluginsEndpoint from .endpoints.project_plugin_details import ProjectPluginDetailsEndpoint from .endpoints.project_release_details import ProjectReleaseDetailsEndpoint from .endpoints.project_release_files import ProjectReleaseFilesEndpoint from .endpoints.project_release_file_details import ProjectReleaseFileDetailsEndpoint from .endpoints.project_release_commits import ProjectReleaseCommitsEndpoint from .endpoints.project_releases import ProjectReleasesEndpoint from .endpoints.project_release_setup import ProjectReleaseSetupCompletionEndpoint from .endpoints.project_releases_token import ProjectReleasesTokenEndpoint from .endpoints.project_rules import ProjectRulesEndpoint from .endpoints.project_rules_configuration import ProjectRulesConfigurationEndpoint from .endpoints.project_rule_details import ProjectRuleDetailsEndpoint from .endpoints.project_searches import ProjectSearchesEndpoint from .endpoints.project_search_details import ProjectSearchDetailsEndpoint from .endpoints.project_stats import ProjectStatsEndpoint from .endpoints.project_tags import ProjectTagsEndpoint from .endpoints.project_tagkey_details import ProjectTagKeyDetailsEndpoint from .endpoints.project_tagkey_values import ProjectTagKeyValuesEndpoint from .endpoints.project_team_details import ProjectTeamDetailsEndpoint from .endpoints.project_teams import ProjectTeamsEndpoint from .endpoints.project_processingissues import ProjectProcessingIssuesEndpoint, \ ProjectProcessingIssuesFixEndpoint, ProjectProcessingIssuesDiscardEndpoint from .endpoints.project_reprocessing import ProjectReprocessingEndpoint from .endpoints.project_servicehooks import ProjectServiceHooksEndpoint from .endpoints.project_servicehook_details import ProjectServiceHookDetailsEndpoint from .endpoints.project_servicehook_stats import ProjectServiceHookStatsEndpoint from .endpoints.project_user_details import ProjectUserDetailsEndpoint from .endpoints.project_user_reports import ProjectUserReportsEndpoint from .endpoints.project_user_stats import ProjectUserStatsEndpoint from .endpoints.project_users import ProjectUsersEndpoint from .endpoints.prompts_activity import PromptsActivityEndpoint from .endpoints.filechange import CommitFileChangeEndpoint from .endpoints.release_deploys import ReleaseDeploysEndpoint from .endpoints.debug_files import DebugFilesEndpoint, DifAssembleEndpoint, \ UnknownDebugFilesEndpoint, AssociateDSymFilesEndpoint from .endpoints.sentry_apps import SentryAppsEndpoint from .endpoints.sentry_app_features import SentryAppFeaturesEndpoint from .endpoints.sentry_apps_stats import SentryAppsStatsEndpoint from .endpoints.sentry_app_components import SentryAppComponentsEndpoint, \ OrganizationSentryAppComponentsEndpoint from .endpoints.sentry_app_details import SentryAppDetailsEndpoint from .endpoints.sentry_app_authorizations import SentryAppAuthorizationsEndpoint from .endpoints.shared_group_details import SharedGroupDetailsEndpoint from .endpoints.system_health import SystemHealthEndpoint from .endpoints.system_options import SystemOptionsEndpoint from .endpoints.team_avatar import TeamAvatarEndpoint from .endpoints.team_details import TeamDetailsEndpoint from .endpoints.team_groups_new import TeamGroupsNewEndpoint from .endpoints.team_groups_trending import TeamGroupsTrendingEndpoint from .endpoints.team_members import TeamMembersEndpoint from .endpoints.team_projects import TeamProjectsEndpoint from .endpoints.team_stats import TeamStatsEndpoint from .endpoints.useravatar import UserAvatarEndpoint from .endpoints.user_appearance import UserAppearanceEndpoint from .endpoints.user_authenticator_index import UserAuthenticatorIndexEndpoint from .endpoints.user_authenticator_enroll import UserAuthenticatorEnrollEndpoint from .endpoints.user_authenticator_details import UserAuthenticatorDetailsEndpoint from .endpoints.user_identity_details import UserIdentityDetailsEndpoint from .endpoints.user_index import UserIndexEndpoint from .endpoints.user_details import UserDetailsEndpoint from .endpoints.user_emails import UserEmailsEndpoint from .endpoints.user_emails_confirm import UserEmailsConfirmEndpoint from .endpoints.user_ips import UserIPsEndpoint from .endpoints.user_organizations import UserOrganizationsEndpoint from .endpoints.user_notification_details import UserNotificationDetailsEndpoint from .endpoints.user_password import UserPasswordEndpoint from .endpoints.user_notification_fine_tuning import UserNotificationFineTuningEndpoint from .endpoints.user_social_identities_index import UserSocialIdentitiesIndexEndpoint from .endpoints.user_social_identity_details import UserSocialIdentityDetailsEndpoint from .endpoints.user_subscriptions import UserSubscriptionsEndpoint from .endpoints.event_file_committers import EventFileCommittersEndpoint from .endpoints.setup_wizard import SetupWizard from .endpoints.grouping_configs import GroupingConfigsEndpoint from .endpoints.grouping_enhancements import GroupingEnhancementsEndpoint from .endpoints.builtin_symbol_sources import BuiltinSymbolSourcesEndpoint urlpatterns = patterns( '', # Relay url( r'^relays/$', RelayIndexEndpoint.as_view(), name='sentry-api-0-relays-index' ), url( r'^relays/register/challenge/$', RelayRegisterChallengeEndpoint.as_view(), name='sentry-api-0-relay-register-challenge' ), url( r'^relays/register/response/$', RelayRegisterResponseEndpoint.as_view(), name='sentry-api-0-relay-register-response' ), url( r'^relays/heartbeat/$', RelayHeartbeatEndpoint.as_view(), name='sentry-api-0-relay-heartbeat' ), url( r'^relays/projectconfigs/$', RelayProjectConfigsEndpoint.as_view(), name='sentry-api-0-relay-projectconfigs' ), url( r'^relays/publickeys/$', RelayPublicKeysEndpoint.as_view(), name='sentry-api-0-relay-publickeys' ), url( r'^relays/(?P<relay_id>[^\/]+)/$', RelayDetailsEndpoint.as_view(), name='sentry-api-0-relays-details' ), # Api Data url( r'^assistant/$', AssistantEndpoint.as_view(), name='sentry-api-0-assistant', ), url( r'^api-applications/$', ApiApplicationsEndpoint.as_view(), name='sentry-api-0-api-applications' ), url( r'^api-applications/(?P<app_id>[^\/]+)/$', ApiApplicationDetailsEndpoint.as_view(), name='sentry-api-0-api-application-details' ), url( r'^api-authorizations/$', ApiAuthorizationsEndpoint.as_view(), name='sentry-api-0-api-authorizations' ), url(r'^api-tokens/$', ApiTokensEndpoint.as_view(), name='sentry-api-0-api-tokens'), url( r'^promptsactivity/$', PromptsActivityEndpoint.as_view(), name='sentry-api-0-promptsactivity', ), # Auth url(r'^auth/$', AuthIndexEndpoint.as_view(), name='sentry-api-0-auth'), # List Authentiactors url(r'^authenticators/$', AuthenticatorIndexEndpoint.as_view(), name='sentry-api-0-authenticator-index'), # Broadcasts url(r'^broadcasts/$', BroadcastIndexEndpoint.as_view(), name='sentry-api-0-broadcast-index'), url(r'^broadcasts/(?P<broadcast_id>[^\/]+)/$', BroadcastDetailsEndpoint.as_view()), # Project transfer url(r'^accept-transfer/$', AcceptProjectTransferEndpoint.as_view(), name='sentry-api-0-accept-project-transfer'), # Monitors url(r'^monitors/(?P<monitor_id>[^\/]+)/$', MonitorDetailsEndpoint.as_view()), url(r'^monitors/(?P<monitor_id>[^\/]+)/checkins/$', MonitorCheckInsEndpoint.as_view()), url(r'^monitors/(?P<monitor_id>[^\/]+)/checkins/(?P<checkin_id>[^\/]+)/$', MonitorCheckInDetailsEndpoint.as_view()), url(r'^monitors/(?P<monitor_id>[^\/]+)/stats/$', MonitorStatsEndpoint.as_view()), # Users url(r'^users/$', UserIndexEndpoint.as_view(), name='sentry-api-0-user-index'), url( r'^users/(?P<user_id>[^\/]+)/$', UserDetailsEndpoint.as_view(), name='sentry-api-0-user-details' ), url( r'^users/(?P<user_id>[^\/]+)/avatar/$', UserAvatarEndpoint.as_view(), name='sentry-api-0-user-avatar' ), url( r'^users/(?P<user_id>[^\/]+)/appearance/$', UserAppearanceEndpoint.as_view(), name='sentry-api-0-user-appearance' ), url( r'^users/(?P<user_id>[^\/]+)/authenticators/$', UserAuthenticatorIndexEndpoint.as_view(), name='sentry-api-0-user-authenticator-index' ), url( r'^users/(?P<user_id>[^\/]+)/authenticators/(?P<interface_id>[^\/]+)/enroll/$', UserAuthenticatorEnrollEndpoint.as_view(), name='sentry-api-0-user-authenticator-enroll' ), url( r'^users/(?P<user_id>[^\/]+)/authenticators/(?P<auth_id>[^\/]+)/(?P<interface_device_id>[^\/]+)/$', UserAuthenticatorDetailsEndpoint.as_view(), name='sentry-api-0-user-authenticator-device-details' ), url( r'^users/(?P<user_id>[^\/]+)/authenticators/(?P<auth_id>[^\/]+)/$', UserAuthenticatorDetailsEndpoint.as_view(), name='sentry-api-0-user-authenticator-details' ), url( r'^users/(?P<user_id>[^\/]+)/emails/$', UserEmailsEndpoint.as_view(), name='sentry-api-0-user-emails' ), url( r'^users/(?P<user_id>[^\/]+)/emails/confirm/$', UserEmailsConfirmEndpoint.as_view(), name='sentry-api-0-user-emails-confirm' ), url( r'^users/(?P<user_id>[^\/]+)/identities/(?P<identity_id>[^\/]+)/$', UserIdentityDetailsEndpoint.as_view(), name='sentry-api-0-user-identity-details' ), url( r'^users/(?P<user_id>[^\/]+)/ips/$', UserIPsEndpoint.as_view(), name='sentry-api-0-user-ips' ), url( r'^users/(?P<user_id>[^\/]+)/organizations/$', UserOrganizationsEndpoint.as_view(), name='sentry-api-0-user-organizations' ), url( r'^users/(?P<user_id>[^\/]+)/notifications/$', UserNotificationDetailsEndpoint.as_view(), name='sentry-api-0-user-notifications' ), url( r'^users/(?P<user_id>[^\/]+)/password/$', UserPasswordEndpoint.as_view(), name='sentry-api-0-user-password' ), url( r'^users/(?P<user_id>[^\/]+)/notifications/(?P<notification_type>[^\/]+)/$', UserNotificationFineTuningEndpoint.as_view(), name='sentry-api-0-user-notifications-fine-tuning' ), url( r'^users/(?P<user_id>[^\/]+)/social-identities/$', UserSocialIdentitiesIndexEndpoint.as_view(), name='sentry-api-0-user-social-identities-index'), url( r'^users/(?P<user_id>[^\/]+)/social-identities/(?P<identity_id>[^\/]+)/$', UserSocialIdentityDetailsEndpoint.as_view(), name='sentry-api-0-user-social-identity-details'), url( r'^users/(?P<user_id>[^\/]+)/subscriptions/$', UserSubscriptionsEndpoint.as_view(), name='sentry-api-0-user-subscriptions' ), # Incidents url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/activity/$', OrganizationIncidentActivityIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-activity' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/comments/$', OrganizationIncidentCommentIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-comments' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/comments/(?P<activity_id>[^\/]+)/$', OrganizationIncidentCommentDetailsEndpoint.as_view(), name='sentry-api-0-organization-incident-comment-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/$', OrganizationIncidentDetailsEndpoint.as_view(), name='sentry-api-0-organization-incident-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/$', OrganizationIncidentIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/seen/$', OrganizationIncidentSeenEndpoint.as_view(), name='sentry-api-0-organization-incident-seen' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/subscriptions/$', OrganizationIncidentSubscriptionIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-subscription-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/incidents/(?P<incident_identifier>[^\/]+)/suspects/$', OrganizationIncidentSuspectsIndexEndpoint.as_view(), name='sentry-api-0-organization-incident-suspect-index' ), # Organizations url( r'^organizations/(?P<organization_slug>[^\/]+)/chunk-upload/$', ChunkUploadEndpoint.as_view(), name='sentry-api-0-chunk-upload' ), url( r'^organizations/$', OrganizationIndexEndpoint.as_view(), name='sentry-api-0-organizations' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/$', OrganizationDetailsEndpoint.as_view(), name='sentry-api-0-organization-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/discover/query/$', OrganizationDiscoverQueryEndpoint.as_view(), name='sentry-api-0-organization-discover-query' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/discover/saved/$', OrganizationDiscoverSavedQueriesEndpoint.as_view(), name='sentry-api-0-organization-discover-saved-queries' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/discover/saved/(?P<query_id>[^\/]+)/$', OrganizationDiscoverSavedQueryDetailEndpoint.as_view(), name='sentry-api-0-organization-discover-saved-query-detail' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/dashboards/(?P<dashboard_id>[^\/]+)/$', OrganizationDashboardDetailsEndpoint.as_view(), name='sentry-api-0-organization-dashboard-details', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/dashboards/$', OrganizationDashboardsEndpoint.as_view(), name='sentry-api-0-organization-dashboards' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/dashboards/(?P<dashboard_id>[^\/]+)/widgets/$', OrganizationDashboardWidgetsEndpoint.as_view(), name='sentry-api-0-organization-dashboard-widgets', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/dashboards/(?P<dashboard_id>[^\/]+)/widgets/(?P<widget_id>[^\/]+)$', OrganizationDashboardWidgetDetailsEndpoint.as_view(), name='sentry-api-0-organization-dashboard-widget-details', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/health/top/$', OrganizationHealthTopEndpoint.as_view(), name='sentry-api-0-organization-health-top', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/health/graph/$', OrganizationHealthGraphEndpoint.as_view(), name='sentry-api-0-organization-health-graph', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/shortids/(?P<short_id>[^\/]+)/$', ShortIdLookupEndpoint.as_view(), name='sentry-api-0-short-id-lookup' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/eventids/(?P<event_id>[^\/]+)/$', EventIdLookupEndpoint.as_view(), name='sentry-api-0-event-id-lookup' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/slugs/$', SlugsUpdateEndpoint.as_view(), name='sentry-api-0-short-ids-update' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/access-requests/$', OrganizationAccessRequestDetailsEndpoint.as_view(), name='sentry-api-0-organization-access-requests' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/access-requests/(?P<request_id>\d+)/$', OrganizationAccessRequestDetailsEndpoint.as_view(), name='sentry-api-0-organization-access-request-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/activity/$', OrganizationActivityEndpoint.as_view(), name='sentry-api-0-organization-activity' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/api-keys/$', OrganizationApiKeyIndexEndpoint.as_view(), name='sentry-api-0-organization-api-key-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/api-keys/(?P<api_key_id>[^\/]+)/$', OrganizationApiKeyDetailsEndpoint.as_view(), name='sentry-api-0-organization-api-key-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/audit-logs/$', OrganizationAuditLogsEndpoint.as_view(), name='sentry-api-0-organization-audit-logs' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/auth-provider/$', OrganizationAuthProviderDetailsEndpoint.as_view(), name='sentry-api-0-organization-auth-provider' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/auth-providers/$', OrganizationAuthProvidersEndpoint.as_view(), name='sentry-api-0-organization-auth-providers' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/auth-provider/send-reminders/$', OrganizationAuthProviderSendRemindersEndpoint.as_view(), name='sentry-api-0-organization-auth-provider-send-reminders' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/avatar/$', OrganizationAvatarEndpoint.as_view(), name='sentry-api-0-organization-avatar' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/config/integrations/$', OrganizationConfigIntegrationsEndpoint.as_view(), name='sentry-api-0-organization-config-integrations' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/config/repos/$', OrganizationConfigRepositoriesEndpoint.as_view(), name='sentry-api-0-organization-config-repositories' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/events/$', OrganizationEventsEndpoint.as_view(), name='sentry-api-0-organization-events' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/events-stats/$', OrganizationEventsStatsEndpoint.as_view(), name='sentry-api-0-organization-events-stats' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/events-heatmap/$', OrganizationEventsHeatmapEndpoint.as_view(), name='sentry-api-0-organization-events-heatmap' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/events-meta/$', OrganizationEventsMetaEndpoint.as_view(), name='sentry-api-0-organization-events-meta' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/issues/new/$', OrganizationIssuesNewEndpoint.as_view(), ), url( r'^organizations/(?P<organization_slug>[^\/]+)/issues/$', OrganizationGroupIndexEndpoint.as_view(), name='sentry-api-0-organization-group-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/integrations/$', OrganizationIntegrationsEndpoint.as_view(), name='sentry-api-0-organization-integrations' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/integrations/(?P<integration_id>[^\/]+)/$', OrganizationIntegrationDetailsEndpoint.as_view(), ), url( r'^organizations/(?P<organization_slug>[^\/]+)/integrations/(?P<integration_id>[^\/]+)/repos/$', OrganizationIntegrationReposEndpoint.as_view(), ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/$', OrganizationMemberIndexEndpoint.as_view(), name='sentry-api-0-organization-member-index' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/monitors/$', OrganizationMonitorsEndpoint.as_view(), ), url( r'^organizations/(?P<organization_slug>[^\/]+)/pinned-searches/$', OrganizationPinnedSearchEndpoint.as_view(), name='sentry-api-0-organization-pinned-searches' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/recent-searches/$', OrganizationRecentSearchesEndpoint.as_view(), name='sentry-api-0-organization-recent-searches' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/searches/(?P<search_id>[^\/]+)/$', OrganizationSearchDetailsEndpoint.as_view(), name='sentry-api-0-organization-search-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/searches/$', OrganizationSearchesEndpoint.as_view(), name='sentry-api-0-organization-searches' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/users/issues/$', OrganizationUserIssuesSearchEndpoint.as_view(), name='sentry-api-0-organization-issue-search' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/users/(?P<user_id>[^\/]+)/issues/$', OrganizationUserIssuesEndpoint.as_view(), name='sentry-api-0-organization-user-issues' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/resolved/$', OrganizationIssuesResolvedInReleaseEndpoint.as_view(), name='sentry-api-0-organization-release-resolved' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/$', OrganizationMemberDetailsEndpoint.as_view(), name='sentry-api-0-organization-member-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/unreleased-commits/$', OrganizationMemberUnreleasedCommitsEndpoint.as_view(), name='sentry-api-0-organization-member-unreleased-commits' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/issues/assigned/$', OrganizationMemberIssuesAssignedEndpoint.as_view(), name='sentry-api-0-organization-member-issues-assigned' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/issues/bookmarked/$', OrganizationMemberIssuesBookmarkedEndpoint.as_view(), name='sentry-api-0-organization-member-issues-bookmarked' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/issues/viewed/$', OrganizationMemberIssuesViewedEndpoint.as_view(), name='sentry-api-0-organization-member-issues-viewed' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/members/(?P<member_id>[^\/]+)/teams/(?P<team_slug>[^\/]+)/$', OrganizationMemberTeamDetailsEndpoint.as_view(), name='sentry-api-0-organization-member-team-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/processingissues/$', OrganizationProcessingIssuesEndpoint.as_view(), name='sentry-api-0-organization-processing-issues' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/projects/$', OrganizationProjectsEndpoint.as_view(), name='sentry-api-0-organization-projects' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/repos/$', OrganizationRepositoriesEndpoint.as_view(), name='sentry-api-0-organization-repositories' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/repos/(?P<repo_id>[^\/]+)/$', OrganizationRepositoryDetailsEndpoint.as_view(), name='sentry-api-0-organization-repository-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/repos/(?P<repo_id>[^\/]+)/commits/$', OrganizationRepositoryCommitsEndpoint.as_view(), name='sentry-api-0-organization-repository-commits' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/plugins/$', OrganizationPluginsEndpoint.as_view(), name='sentry-api-0-organization-plugins' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/$', OrganizationReleasesEndpoint.as_view(), name='sentry-api-0-organization-releases' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/$', OrganizationReleaseDetailsEndpoint.as_view(), name='sentry-api-0-organization-release-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/assemble/$', OrganizationReleaseAssembleEndpoint.as_view(), name='sentry-api-0-organization-release-assemble' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/files/$', OrganizationReleaseFilesEndpoint.as_view(), name='sentry-api-0-organization-release-files' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/files/(?P<file_id>\d+)/$', OrganizationReleaseFileDetailsEndpoint.as_view(), name='sentry-api-0-organization-release-file-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/commitfiles/$', CommitFileChangeEndpoint.as_view(), name='sentry-api-0-release-commitfilechange' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/deploys/$', ReleaseDeploysEndpoint.as_view(), name='sentry-api-0-organization-release-deploys' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/releases/(?P<version>[^/]+)/commits/$', OrganizationReleaseCommitsEndpoint.as_view(), name='sentry-api-0-organization-release-commits' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/user-feedback/$', OrganizationUserReportsEndpoint.as_view(), name='sentry-api-0-organization-user-feedback' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/users/$', OrganizationUsersEndpoint.as_view(), name='sentry-api-0-organization-users' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/users/(?P<user_id>[^\/]+)/$', OrganizationUserDetailsEndpoint.as_view(), name='sentry-api-0-organization-user-details' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/sentry-app-installations/$', SentryAppInstallationsEndpoint.as_view(), name='sentry-api-0-sentry-app-installations' ), url( r'^sentry-app-installations/(?P<uuid>[^\/]+)/$', SentryAppInstallationDetailsEndpoint.as_view(), name='sentry-api-0-sentry-app-installation-details' ), url( r'^sentry-app-installations/(?P<uuid>[^\/]+)/external-requests/$', SentryAppInstallationExternalRequestsEndpoint.as_view(), name='sentry-api-0-sentry-app-installation-external-requests' ), url( r'^sentry-app-installations/(?P<uuid>[^\/]+)/external-issues/$', SentryAppInstallationExternalIssuesEndpoint.as_view(), name='sentry-api-0-sentry-app-installation-external-issues' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/sentry-apps/$', OrganizationSentryAppsEndpoint.as_view(), name='sentry-api-0-organization-sentry-apps' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/stats/$', OrganizationStatsEndpoint.as_view(), name='sentry-api-0-organization-stats' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/teams/$', OrganizationTeamsEndpoint.as_view(), name='sentry-api-0-organization-teams' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/tags/$', OrganizationTagsEndpoint.as_view(), name='sentry-api-0-organization-tags' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/tags/(?P<key>[^/]+)/values/$', OrganizationTagKeyValuesEndpoint.as_view(), name='sentry-api-0-organization-tagkey-values' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/onboarding-tasks/$', OrganizationOnboardingTaskEndpoint.as_view(), name='sentry-api-0-organization-onboardingtasks' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/environments/$', OrganizationEnvironmentsEndpoint.as_view(), name='sentry-api-0-organization-environments', ), url( r'^organizations/(?P<organization_slug>[^\/]+)/broadcasts/$', BroadcastIndexEndpoint.as_view(), name='sentry-api-0-organization-broadcasts' ), # Teams url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/$', TeamDetailsEndpoint.as_view(), name='sentry-api-0-team-details' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/(?:issues|groups)/new/$', TeamGroupsNewEndpoint.as_view(), name='sentry-api-0-team-groups-new' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/(?:issues|groups)/trending/$', TeamGroupsTrendingEndpoint.as_view(), name='sentry-api-0-team-groups-trending' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/members/$', TeamMembersEndpoint.as_view(), name='sentry-api-0-team-members' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/projects/$', TeamProjectsEndpoint.as_view(), name='sentry-api-0-team-project-index' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/stats/$', TeamStatsEndpoint.as_view(), name='sentry-api-0-team-stats' ), url( r'^teams/(?P<organization_slug>[^\/]+)/(?P<team_slug>[^\/]+)/avatar/$', TeamAvatarEndpoint.as_view(), name='sentry-api-0-team-avatar' ), # Projects url(r'^projects/$', ProjectIndexEndpoint.as_view(), name='sentry-api-0-projects'), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/$', ProjectDetailsEndpoint.as_view(), name='sentry-api-0-project-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/avatar/$', ProjectAvatarEndpoint.as_view(), name='sentry-api-0-project-avatar' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/create-sample/$', ProjectCreateSampleEndpoint.as_view(), name='sentry-api-0-project-create-sample' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/docs/(?P<platform>[\w-]+)/$', ProjectDocsPlatformEndpoint.as_view(), name='sentry-api-0-project-docs-platform' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/environments/$', ProjectEnvironmentsEndpoint.as_view(), name='sentry-api-0-project-environments' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/environments/(?P<environment>[^/]+)/$', ProjectEnvironmentDetailsEndpoint.as_view(), name='sentry-api-0-project-environment-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/platforms/$', ProjectPlatformsEndpoint.as_view(), name='sentry-api-0-project-platform-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/$', ProjectEventsEndpoint.as_view(), name='sentry-api-0-project-events' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>(?:\d+|[A-Fa-f0-9]{32}))/$', ProjectEventDetailsEndpoint.as_view(), name='sentry-api-0-project-event-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/grouping-info/$', EventGroupingInfoEndpoint.as_view(), name='sentry-api-0-event-grouping-info' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/apple-crash-report$', EventAppleCrashReportEndpoint.as_view(), name='sentry-api-0-event-apple-crash-report' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/attachments/$', EventAttachmentsEndpoint.as_view(), name='sentry-api-0-event-attachments' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/attachments/(?P<attachment_id>[\w-]+)/$', EventAttachmentDetailsEndpoint.as_view(), name='sentry-api-0-event-attachment-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/committers/$', EventFileCommittersEndpoint.as_view(), name='sentry-api-0-event-file-committers' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/json/$', EventJsonEndpoint.as_view(), name='sentry-api-0-event-json' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/events/(?P<event_id>[\w-]+)/owners/$', EventOwnersEndpoint.as_view(), name='sentry-api-0-event-owners' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/files/dsyms/$', DebugFilesEndpoint.as_view(), name='sentry-api-0-dsym-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/files/difs/assemble/$', DifAssembleEndpoint.as_view(), name='sentry-api-0-assemble-dif-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/files/dsyms/unknown/$', UnknownDebugFilesEndpoint.as_view(), name='sentry-api-0-unknown-dsym-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/files/dsyms/associate/$', AssociateDSymFilesEndpoint.as_view(), name='sentry-api-0-associate-dsym-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/filters/$', ProjectFiltersEndpoint.as_view(), name='sentry-api-0-project-filters' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/filters/(?P<filter_id>[\w-]+)/$', ProjectFilterDetailsEndpoint.as_view(), name='sentry-api-0-project-filters' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/hooks/$', ProjectServiceHooksEndpoint.as_view(), ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/hooks/(?P<hook_id>[^\/]+)/$', ProjectServiceHookDetailsEndpoint.as_view(), ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/hooks/(?P<hook_id>[^\/]+)/stats/$', ProjectServiceHookStatsEndpoint.as_view(), ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/(?:issues|groups)/$', ProjectGroupIndexEndpoint.as_view(), name='sentry-api-0-project-group-index' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/(?:issues|groups)/stats/$', ProjectGroupStatsEndpoint.as_view(), name='sentry-api-0-project-group-stats' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/keys/$', ProjectKeysEndpoint.as_view(), name='sentry-api-0-project-keys' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/keys/(?P<key_id>[^\/]+)/$', ProjectKeyDetailsEndpoint.as_view(), name='sentry-api-0-project-key-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/keys/(?P<key_id>[^\/]+)/stats/$', ProjectKeyStatsEndpoint.as_view() ), url( r'^projects/(?P<organization_slug>[^/]+)/(?P<project_slug>[^/]+)/members/$', ProjectMemberIndexEndpoint.as_view(), name='sentry-api-0-project-member-index' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/$', ProjectReleasesEndpoint.as_view(), name='sentry-api-0-project-releases' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/token/$', ProjectReleasesTokenEndpoint.as_view(), name='sentry-api-0-project-releases-token' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/completion/$', ProjectReleaseSetupCompletionEndpoint.as_view(), name='sentry-api-0-project-releases-completion-status' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/$', ProjectReleaseDetailsEndpoint.as_view(), name='sentry-api-0-project-release-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/commits/$', ProjectReleaseCommitsEndpoint.as_view(), name='sentry-api-0-project-release-commits' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/resolved/$', ProjectIssuesResolvedInReleaseEndpoint.as_view(), name='sentry-api-0-project-release-resolved' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/files/$', ProjectReleaseFilesEndpoint.as_view(), name='sentry-api-0-project-release-files' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/releases/(?P<version>[^/]+)/files/(?P<file_id>\d+)/$', ProjectReleaseFileDetailsEndpoint.as_view(), name='sentry-api-0-project-release-file-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/rules/$', ProjectRulesEndpoint.as_view(), name='sentry-api-0-project-rules' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/rules/configuration/$', ProjectRulesConfigurationEndpoint.as_view(), name='sentry-api-0-project-rules-configuration' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/rules/(?P<rule_id>[^\/]+)/$', ProjectRuleDetailsEndpoint.as_view(), name='sentry-api-0-project-rule-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/searches/$', ProjectSearchesEndpoint.as_view(), name='sentry-api-0-project-searches' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/searches/(?P<search_id>[^\/]+)/$', ProjectSearchDetailsEndpoint.as_view(), name='sentry-api-0-project-search-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/stats/$', ProjectStatsEndpoint.as_view(), name='sentry-api-0-project-stats' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tags/$', ProjectTagsEndpoint.as_view(), name='sentry-api-0-project-tags' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tags/(?P<key>[^/]+)/$', ProjectTagKeyDetailsEndpoint.as_view(), name='sentry-api-0-project-tagkey-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tags/(?P<key>[^/]+)/values/$', ProjectTagKeyValuesEndpoint.as_view(), name='sentry-api-0-project-tagkey-values' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/teams/$', ProjectTeamsEndpoint.as_view(), name='sentry-api-0-project-teams' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/teams/(?P<team_slug>[^\/]+)/$', ProjectTeamDetailsEndpoint.as_view(), name='sentry-api-0-project-team-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/transfer/$', ProjectTransferEndpoint.as_view(), name='sentry-api-0-project-transfer' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/users/$', ProjectUsersEndpoint.as_view(), name='sentry-api-0-project-users' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/users/(?P<user_hash>[^/]+)/$', ProjectUserDetailsEndpoint.as_view(), name='sentry-api-0-project-user-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/(?:user-feedback|user-reports)/$', ProjectUserReportsEndpoint.as_view(), name='sentry-api-0-project-user-reports' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/user-stats/$', ProjectUserStatsEndpoint.as_view(), name='sentry-api-0-project-userstats' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/processingissues/$', ProjectProcessingIssuesEndpoint.as_view(), name='sentry-api-0-project-processing-issues' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/processingissues/fix$', ProjectProcessingIssuesFixEndpoint.as_view(), name='sentry-api-0-project-fix-processing-issues' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/reprocessing/$', ProjectReprocessingEndpoint.as_view(), name='sentry-api-0-project-reprocessing' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/processingissues/discard/$', ProjectProcessingIssuesDiscardEndpoint.as_view(), name='sentry-api-0-project-discard-processing-issues' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/ownership/$', ProjectOwnershipEndpoint.as_view(), name='sentry-api-0-project-ownership' ), # Load plugin project urls url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/plugins/$', ProjectPluginsEndpoint.as_view(), name='sentry-api-0-project-plugins' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/plugins/(?P<plugin_id>[^\/]+)/$', ProjectPluginDetailsEndpoint.as_view(), name='sentry-api-0-project-plugin-details' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/plugins?/', include('sentry.plugins.base.project_api_urls') ), # Groups url( r'^(?:issues|groups)/(?P<issue_id>\d+)/$', GroupDetailsEndpoint.as_view(), name='sentry-api-0-group-details' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/events/$', GroupEventsEndpoint.as_view(), name='sentry-api-0-group-events' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/events/latest/$', GroupEventsLatestEndpoint.as_view(), name='sentry-api-0-group-events-latest' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/events/oldest/$', GroupEventsOldestEndpoint.as_view(), name='sentry-api-0-group-events-oldest' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/(?:notes|comments)/$', GroupNotesEndpoint.as_view(), name='sentry-api-0-group-notes' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/(?:notes|comments)/(?P<note_id>[^\/]+)/$', GroupNotesDetailsEndpoint.as_view(), name='sentry-api-0-group-notes-details' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/hashes/$', GroupHashesEndpoint.as_view(), name='sentry-api-0-group-events' ), url( r'^issues/(?P<issue_id>\d+)/participants/$', GroupParticipantsEndpoint.as_view(), name='sentry-api-0-group-stats' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/stats/$', GroupStatsEndpoint.as_view(), name='sentry-api-0-group-stats' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/tags/$', GroupTagsEndpoint.as_view(), name='sentry-api-0-group-tags' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/tags/(?P<key>[^/]+)/$', GroupTagKeyDetailsEndpoint.as_view(), name='sentry-api-0-group-tagkey-details' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/tags/(?P<key>[^/]+)/values/$', GroupTagKeyValuesEndpoint.as_view(), name='sentry-api-0-group-tagkey-values' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/(?:user-feedback|user-reports)/$', GroupUserReportsEndpoint.as_view(), name='sentry-api-0-group-user-reports' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/similar/$', GroupSimilarIssuesEndpoint.as_view(), name='sentry-api-0-group-similar-issues' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/external-issues/$', GroupExternalIssuesEndpoint.as_view(), name='sentry-api-0-group-external-issues' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/external-issues/(?P<external_issue_id>\d+)/$', GroupExternalIssueDetailsEndpoint.as_view(), name='sentry-api-0-group-external-issue-details' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/integrations/$', GroupIntegrationsEndpoint.as_view(), name='sentry-api-0-group-integrations' ), url( r'^(?:issues|groups)/(?P<issue_id>\d+)/integrations/(?P<integration_id>\d+)/$', GroupIntegrationDetailsEndpoint.as_view(), name='sentry-api-0-group-integration-details' ), # Load plugin group urls url( r'^(?:issues|groups)/(?P<issue_id>\d+)/plugins?/', include('sentry.plugins.base.group_api_urls') ), url( r'^shared/(?:issues|groups)/(?P<share_id>[^\/]+)/$', SharedGroupDetailsEndpoint.as_view(), name='sentry-api-0-shared-group-details' ), # Tombstone url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tombstones/$', GroupTombstoneEndpoint.as_view(), name='sentry-api-0-group-tombstones' ), url( r'^projects/(?P<organization_slug>[^\/]+)/(?P<project_slug>[^\/]+)/tombstones/(?P<tombstone_id>\d+)/$', GroupTombstoneDetailsEndpoint.as_view(), name='sentry-api-0-group-tombstone-details' ), # Events url( r'^events/(?P<event_id>\d+)/$', EventDetailsEndpoint.as_view(), name='sentry-api-0-event-details' ), # Sentry Apps url( r'^sentry-apps/$', SentryAppsEndpoint.as_view(), name='sentry-api-0-sentry-apps' ), url( r'^sentry-apps-stats/$', SentryAppsStatsEndpoint.as_view(), name='sentry-api-0-sentry-apps-stats' ), url( r'^sentry-apps/(?P<sentry_app_slug>[^\/]+)/$', SentryAppDetailsEndpoint.as_view(), name='sentry-api-0-sentry-app-details' ), url( r'^sentry-apps/(?P<sentry_app_slug>[^\/]+)/features/$', SentryAppFeaturesEndpoint.as_view(), name='sentry-api-0-sentry-app-features' ), url( r'^sentry-apps/(?P<sentry_app_slug>[^\/]+)/components/$', SentryAppComponentsEndpoint.as_view(), name='sentry-api-0-sentry-app-components' ), url( r'^organizations/(?P<organization_slug>[^\/]+)/sentry-app-components/$', OrganizationSentryAppComponentsEndpoint.as_view(), name='sentry-api-0-org-sentry-app-components' ), url( r'^sentry-app-installations/(?P<uuid>[^\/]+)/authorizations/$', SentryAppAuthorizationsEndpoint.as_view(), name='sentry-api-0-sentry-app-authorizations' ), # Grouping configs url( r'^grouping-configs/$', GroupingConfigsEndpoint.as_view(), name='sentry-api-0-grouping-configs' ), url( r'^grouping-enhancements/$', GroupingEnhancementsEndpoint.as_view(), name='sentry-api-0-grouping-enhancements' ), # Symbolicator Builtin Sources url( r'^builtin-symbol-sources/$', BuiltinSymbolSourcesEndpoint.as_view(), name='sentry-api-0-builtin-symbol-sources', ), # Internal url(r'^internal/health/$', SystemHealthEndpoint.as_view(), name='sentry-api-0-system-health'), url( r'^internal/options/$', SystemOptionsEndpoint.as_view(), name='sentry-api-0-system-options' ), url(r'^internal/quotas/$', InternalQuotasEndpoint.as_view()), url(r'^internal/queue/tasks/$', InternalQueueTasksEndpoint.as_view()), url(r'^internal/stats/$', InternalStatsEndpoint.as_view(), name='sentry-api-0-internal-stats'), # Project Wizard url( r'^wizard/$', SetupWizard.as_view(), name='sentry-api-0-project-wizard-new' ), url( r'^wizard/(?P<wizard_hash>[^\/]+)/$', SetupWizard.as_view(), name='sentry-api-0-project-wizard' ), # Catch all url(r'^$', IndexEndpoint.as_view(), name='sentry-api-index'), url(r'^', CatchallEndpoint.as_view(), name='sentry-api-catchall'), # url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')) )
py
1a559fa823ec02d17b17bb512dc0a2d66ac7fa0a
""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import collections import math from typing import Callable, Dict, Iterator, List, Tuple, Union import oneflow as flow from oneflow.nn.optimizer.optimizer import Optimizer, ParamGroup from oneflow.nn.parameter import Parameter class AdamW(Optimizer): """Implements AdamW algorithm. The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. The optimizer of the Adam-weight-decay algorithm. (More details please refer to `Adam-weight-decay <https://www.fast.ai/2018/07/02/adam-weight-decay/>`_). So we use Adam-weight-decay algorithm to solve this problem. the equation of parameters updating is: .. math:: & V_t = \\beta_1*V_{t-1} + (1-\\beta_1)*grad & S_t = \\beta_2*S_{t-1} + (1-\\beta_2)*{grad} \\odot {grad} & \\hat{g} = learning\\_rate*(\\frac{{V_t}}{\\sqrt{{S_t}}+\\epsilon}+\\lambda*param_{old}) & param_{new} = param_{old} - \\hat{g} Args: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay (L2 penalty) (In the equation is λ, default: 0) amsgrad (bool, optional): whether to use the AMSGrad variant of this algorithm. (default: False) do_bias_correction (bool, optional): Whether do bias correction (default: True) .. _Adam\\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 For example: Example 1: .. code-block:: python # Assume net is a custom model. adamw = flow.optim.AdamW(net.parameters(), lr=1e-3) for epoch in range(epochs): # Read data, Compute the loss and so on. # ... loss.backward() adamw.step() adamw.zero_grad() Example 2: .. code-block:: python # Assume net is a custom model. adamw = flow.optim.AdamW( [ { "params": net.parameters(), "lr": learning_rate, "clip_grad_max_norm": 0.5, "clip_grad_norm_type": 2.0, } ], ) for epoch in range(epochs): # Read data, Compute the loss and so on. # ... loss.backward() adamw.clip_grad() adamw.step() adamw.zero_grad() If you want to use clip_grad, you can refer this example. For more details of `clip_grad_max_norm` and `clip_grad_norm_type`, you can refer to :func:`oneflow.nn.utils.clip_grad_norm_`. """ def __init__( self, params: Union[Iterator[Parameter], List[Dict]], lr: float = 0.001, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-08, weight_decay: float = 0, amsgrad: bool = False, do_bias_correction: bool = True, ): assert lr >= 0.0, f"Invalid learning rate: {lr}" assert eps >= 0.0, f"Invalid epsilon value: {eps}" assert ( betas[0] >= 0.0 and betas[0] < 1.0 ), f"Invalid beta parameter at index 0: {betas[0]}" assert ( betas[1] >= 0.0 and betas[1] < 1.0 ), f"Invalid beta parameter at index 1: {betas[1]}" assert weight_decay >= 0.0, f"Invalid weight_decay value: {weight_decay}" options = dict() options["lr"] = lr options["eps"] = eps options["betas"] = betas options["weight_decay"] = weight_decay options["bias_correction1"] = 1.0 options["bias_correction2"] = 1.0 options["do_bias_correction"] = do_bias_correction options["amsgrad"] = amsgrad super().__init__(params, options) for param_group in self.param_groups: for param in param_group.parameters: assert param.is_leaf, "parameters must be leaf tensor" self._state[param] = dict() self._op_with_amsgrad = ( flow.stateful_op("adam_update") .Input("model") .Input("model_diff") .Input("m") .Input("v") .Input("max_v") .Build() ) self._op_without_amsgrad = ( flow.stateful_op("adam_update") .Input("model") .Input("model_diff") .Input("m") .Input("v") .Build() ) def step(self, closure: Callable = None): """Performs a single optimization step. Args: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ with flow.no_grad(): loss = None if closure is not None: loss = closure() for param_group in self.param_groups: if param_group["do_bias_correction"]: param_group["bias_correction1"] = 1.0 - math.pow( param_group["betas"][0], self._state["step"] + 1 ) param_group["bias_correction2"] = 1.0 - math.pow( param_group["betas"][1], self._state["step"] + 1 ) kwargs = { "learning_rate": param_group["lr"], "bias_correction1": param_group["bias_correction1"], "bias_correction2": param_group["bias_correction2"], "weight_decay": param_group["weight_decay"], "beta1": param_group["betas"][0], "beta2": param_group["betas"][1], "epsilon": param_group["eps"], "do_bias_correction": param_group["do_bias_correction"], "amsgrad": param_group["amsgrad"], } for param in param_group.parameters: if param.grad is None: continue if "exp_avg" not in self._state[param]: self._state[param]["exp_avg"] = flow.zeros_like(param) if "exp_avg_sq" not in self._state[param]: self._state[param]["exp_avg_sq"] = flow.zeros_like(param) if param_group["amsgrad"]: if "max_exp_avg_sq" not in self._state[param]: self._state[param]["max_exp_avg_sq"] = flow.zeros_like( param ) m_tensor = self._state[param]["exp_avg"] v_tensor = self._state[param]["exp_avg_sq"] if param_group["amsgrad"]: max_v_tensor = self._state[param]["max_exp_avg_sq"] flow._C.dispatch_adam_update( self._op_with_amsgrad, (param, param.grad, m_tensor, v_tensor, max_v_tensor), **kwargs, ) else: flow._C.dispatch_adam_update( self._op_without_amsgrad, (param, param.grad, m_tensor, v_tensor), **kwargs, ) self._state["step"] += 1 return loss def _generate_conf_for_graph(self, train_conf, vars_conf): new_opt_confs = [] for param_group in self.param_groups: optimizer_conf = train_conf.mutable_optimizer_conf().Add() lr = ( param_group["initial_lr"] if "initial_lr" in param_group else param_group["lr"] ) weight_decay = param_group["weight_decay"] beta1 = param_group["betas"][0] beta2 = param_group["betas"][1] epsilon = param_group["eps"] do_bias_correction = param_group["do_bias_correction"] amsgrad = param_group["amsgrad"] optimizer_conf.set_base_learning_rate(lr) optimizer_conf.mutable_adam_conf().set_beta1(beta1) optimizer_conf.mutable_adam_conf().set_beta2(beta2) optimizer_conf.mutable_adam_conf().set_epsilon(epsilon) optimizer_conf.mutable_adam_conf().set_do_bias_correction( do_bias_correction ) optimizer_conf.mutable_adam_conf().set_amsgrad(amsgrad) optimizer_conf.mutable_weight_decay_conf().set_weight_decay_rate( weight_decay ) self._generate_grad_clip_conf_for_optim_conf(param_group, optimizer_conf) for param in param_group.parameters: if param.requires_grad: optimizer_conf.add_variable_op_names(vars_conf[param].name) new_opt_confs.append(optimizer_conf) return new_opt_confs @property def support_sparse(self): """Whether AdamW Optimizer support sparse update. """ return True
py
1a559fc47bb3e60212398594d32b2a5728ee97b8
import sys import re import numpy as np import pandas as pd from scipy.stats import pearsonr from sklearn.preprocessing import scale import pytest from nibabel import Nifti1Image from nilearn.input_data import NiftiMasker from nilearn.interfaces.fmriprep import load_confounds from nilearn.interfaces.fmriprep.load_confounds import _check_strategy from nilearn._utils.fmriprep_confounds import _to_camel_case from nilearn.interfaces.fmriprep.tests.utils import ( create_tmp_filepath, get_leagal_confound ) def _simu_img(tmp_path, demean): """Simulate an nifti image based on confound file with some parts confounds and some parts noise.""" file_nii, _ = create_tmp_filepath(tmp_path, copy_confounds=True) # set the size of the image matrix nx = 5 ny = 5 # the actual number of slices will actually be double of that # as we will stack slices with confounds on top of slices with noise nz = 2 # Load a simple 6 parameters motion models as confounds # demean set to False just for simulating signal based on the original # state confounds, _ = load_confounds( file_nii, strategy=("motion", ), motion="basic", demean=False ) X = _handle_non_steady(confounds) X = X.values # the number of time points is based on the example confound file nt = X.shape[0] # initialize an empty 4D volume vol = np.zeros([nx, ny, 2 * nz, nt]) vol_conf = np.zeros([nx, ny, 2 * nz]) vol_rand = np.zeros([nx, ny, 2 * nz]) # create random noise and a random mixture of confounds standardized # to zero mean and unit variance if sys.version_info < (3, 7): # fall back to random state for 3.6 np.random.RandomState(42) beta = np.random.rand(nx * ny * nz, X.shape[1]) tseries_rand = scale(np.random.rand(nx * ny * nz, nt), axis=1) else: randome_state = np.random.default_rng(0) beta = randome_state.random((nx * ny * nz, X.shape[1])) tseries_rand = scale(randome_state.random((nx * ny * nz, nt)), axis=1) # create the confound mixture tseries_conf = scale(np.matmul(beta, X.transpose()), axis=1) # fill the first half of the 4D data with the random mixture vol[:, :, 0:nz, :] = tseries_conf.reshape(nx, ny, nz, nt) vol_conf[:, :, 0:nz] = 1 # create random noise in the second half of the 4D data vol[:, :, range(nz, 2 * nz), :] = tseries_rand.reshape(nx, ny, nz, nt) vol_rand[:, :, range(nz, 2 * nz)] = 1 # Shift the mean to non-zero vol = vol + 10 # create an nifti image with the data, and corresponding mask img = Nifti1Image(vol, np.eye(4)) mask_conf = Nifti1Image(vol_conf, np.eye(4)) mask_rand = Nifti1Image(vol_rand, np.eye(4)) # generate the associated confounds for testing test_confounds, _ = load_confounds( file_nii, strategy=("motion",), motion="basic", demean=demean) # match how we extend the length to increase the degree of freedom test_confounds = _handle_non_steady(test_confounds) sample_mask = np.arange(test_confounds.shape[0])[1:] return img, mask_conf, mask_rand, test_confounds, sample_mask def _handle_non_steady(confounds): """Simulate non steady state correctly while increase the length.""" X = confounds.values # the first row is non-steady state, replace it with the input from the # second row non_steady = X[0, :] X[0, :] = X[1, :] # repeat X in length (axis = 0) 10 times to increase # the degree of freedom for numerical stability X = np.tile(X, (10, 1)) # put non-steady state volume back at the first sample X[0, :] = non_steady X = pd.DataFrame(X, columns=confounds.columns) return X def _regression(confounds, tmp_path): """Simple regression with NiftiMasker.""" # Simulate data img, mask_conf, _, _, _ = _simu_img(tmp_path, demean=False) confounds = _handle_non_steady(confounds) # Do the regression masker = NiftiMasker(mask_img=mask_conf, standardize=True) tseries_clean = masker.fit_transform( img, confounds=confounds, sample_mask=None ) assert tseries_clean.shape[0] == confounds.shape[0] @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize( "test_strategy,param", [ (("motion", ), {}), (("high_pass", ), {}), (("wm_csf", ), {"wm_csf": "full"}), (("global_signal", ), {"global_signal": "full"}), (("high_pass", "compcor", ), {}), (("high_pass", "compcor", ), {"compcor": "anat_separated"}), (("high_pass", "compcor", ), {"compcor": "temporal"}), (("ica_aroma", ), {"ica_aroma": "basic"}), ], ) def test_nilearn_regress(tmp_path, test_strategy, param): """Try regressing out all motion types without sample mask.""" img_nii, _ = create_tmp_filepath( tmp_path, copy_confounds=True, copy_json=True ) confounds, _ = load_confounds(img_nii, strategy=test_strategy, **param) _regression(confounds, tmp_path) def _tseries_std(img, mask_img, confounds, sample_mask, standardize_signal=False, standardize_confounds=True, detrend=False): """Get the std of time series in a mask.""" masker = NiftiMasker( mask_img=mask_img, standardize=standardize_signal, standardize_confounds=standardize_confounds, detrend=detrend ) tseries = masker.fit_transform(img, confounds=confounds, sample_mask=sample_mask) return tseries.std(axis=0) def _denoise(img, mask_img, confounds, sample_mask, standardize_signal=False, standardize_confounds=True, detrend=False): """Extract time series with and without confounds.""" masker = NiftiMasker(mask_img=mask_img, standardize=standardize_signal, standardize_confounds=standardize_confounds, detrend=detrend) tseries_raw = masker.fit_transform(img, sample_mask=sample_mask) tseries_clean = masker.fit_transform( img, confounds=confounds, sample_mask=sample_mask ) return tseries_raw, tseries_clean def _corr_tseries(tseries1, tseries2): """Compute the correlation between two sets of time series.""" corr = np.zeros(tseries1.shape[1]) for ind in range(tseries1.shape[1]): corr[ind], _ = pearsonr(tseries1[:, ind], tseries2[:, ind]) return corr @pytest.mark.filterwarnings("ignore") def test_nilearn_standardize_false(tmp_path): """Test removing confounds with no standardization.""" # niftimasker default: # standardize=False, standardize_confounds=True, detrend=False # Simulate data; set demean to False as standardize_confounds=True (img, mask_conf, mask_rand, confounds, sample_mask) = _simu_img(tmp_path, demean=False) # Check that most variance is removed # in voxels composed of pure confounds tseries_std = _tseries_std(img, mask_conf, confounds, sample_mask, standardize_signal=False, standardize_confounds=True, detrend=False) assert np.mean(tseries_std < 0.0001) # Check that most variance is preserved # in voxels composed of random noise tseries_std = _tseries_std(img, mask_rand, confounds, sample_mask, standardize_signal=False, standardize_confounds=True, detrend=False) assert np.mean(tseries_std > 0.9) @pytest.mark.filterwarnings("ignore") @pytest.mark.parametrize("standardize_signal", ["zscore", "psc"]) @pytest.mark.parametrize("standardize_confounds,detrend", [(True, False), (False, True), (True, True)]) def test_nilearn_standardize(tmp_path, standardize_signal, standardize_confounds, detrend): """Test confounds removal with logical parameters for processing signal.""" # demean is set to False to let signal.clean handle everything (img, mask_conf, mask_rand, confounds, mask) = _simu_img(tmp_path, demean=False) # We now load the time series with vs without confounds # in voxels composed of pure confounds # the correlation before and after denoising should be very low # as most of the variance is removed by denoising tseries_raw, tseries_clean = _denoise( img, mask_conf, confounds, mask, standardize_signal=standardize_signal, standardize_confounds=standardize_confounds, detrend=detrend) corr = _corr_tseries(tseries_raw, tseries_clean) assert np.absolute(np.mean(corr)) < 0.2 # We now load the time series with zscore standardization # with vs without confounds in voxels where the signal is uncorrelated # with confounds. The correlation before and after denoising should be very # high as very little of the variance is removed by denoising tseries_raw, tseries_clean = _denoise( img, mask_rand, confounds, mask, standardize_signal=standardize_signal, standardize_confounds=standardize_confounds, detrend=detrend) corr = _corr_tseries(tseries_raw, tseries_clean) assert corr.mean() > 0.8 def test_confounds2df(tmp_path): """Check auto-detect of confonds from an fMRI nii image.""" img_nii, _ = create_tmp_filepath(tmp_path, copy_confounds=True) confounds, _ = load_confounds(img_nii) assert "trans_x" in confounds.columns @pytest.mark.parametrize("strategy,message", [(["string", ], "not a supported type of confounds."), ("error", "tuple or list of strings"), ((0, ), "not a supported type of confounds."), (("compcor", ), "high_pass")]) def test_check_strategy(strategy, message): """Check that flawed strategy options generate meaningful error messages.""" with pytest.raises(ValueError) as exc_info: _check_strategy(strategy=strategy) assert message in exc_info.value.args[0] SUFFIXES = np.array(["", "_derivative1", "_power2", "_derivative1_power2"]) @pytest.fixture def expected_suffixes(motion): expectation = { "basic": slice(1), "derivatives": slice(2), "power2": np.array([True, False, True, False]), "full": slice(4), } return SUFFIXES[expectation[motion]] @pytest.mark.parametrize("motion", ["basic", "derivatives", "power2", "full"]) @pytest.mark.parametrize( "param", ["trans_x", "trans_y", "trans_z", "rot_x", "rot_y", "rot_z"] ) def test_motion(tmp_path, motion, param, expected_suffixes): img_nii, _ = create_tmp_filepath(tmp_path, copy_confounds=True) conf, _ = load_confounds( img_nii, strategy=("motion", ), motion=motion ) for suff in SUFFIXES: if suff in expected_suffixes: assert f"{param}{suff}" in conf.columns else: assert f"{param}{suff}" not in conf.columns @pytest.mark.parametrize("compcor,n_compcor,test_keyword,test_n", [("anat_combined", 2, "a_comp_cor_", 2), ("anat_combined", "all", "a_comp_cor_", 57), ("temporal", "all", "t_comp_cor_", 6)]) def test_n_compcor(tmp_path, compcor, n_compcor, test_keyword, test_n): img_nii, _ = create_tmp_filepath( tmp_path, copy_confounds=True, copy_json=True ) conf, _ = load_confounds( img_nii, strategy=("high_pass", "compcor", ), compcor=compcor, n_compcor=n_compcor ) assert sum(True for col in conf.columns if test_keyword in col) == test_n def test_not_found_exception(tmp_path): """Check various file or parameter missing scenario.""" # Create invalid confound file in temporary dir img_missing_confounds, bad_conf = create_tmp_filepath( tmp_path, copy_confounds=True, copy_json=False ) missing_params = ["trans_y", "trans_x_derivative1", "rot_z_power2"] missing_keywords = ["cosine"] leagal_confounds = pd.read_csv(bad_conf, delimiter="\t", encoding="utf-8") cosine = [ col_name for col_name in leagal_confounds.columns if "cosine" in col_name ] aroma = [ col_name for col_name in leagal_confounds.columns if "aroma" in col_name ] missing_confounds = leagal_confounds.drop( columns=missing_params + cosine + aroma ) missing_confounds.to_csv(bad_conf, sep="\t", index=False) with pytest.raises(ValueError) as exc_info: load_confounds( img_missing_confounds, strategy=("high_pass", "motion", "global_signal", ), global_signal="full", motion="full", ) assert f"{missing_params}" in exc_info.value.args[0] assert f"{missing_keywords}" in exc_info.value.args[0] # loading anat compcor should also raise an error, because the json file is # missing for that example dataset with pytest.raises(ValueError): load_confounds( img_missing_confounds, strategy=("high_pass", "compcor"), compcor="anat_combined", ) # catch invalid compcor option with pytest.raises(KeyError): load_confounds( img_missing_confounds, strategy=("high_pass", "compcor"), compcor="blah" ) # Aggressive ICA-AROMA strategy requires # default nifti and noise ICs in confound file # correct nifti but missing noise regressor with pytest.raises(ValueError) as exc_info: load_confounds( img_missing_confounds, strategy=("ica_aroma", ), ica_aroma="basic" ) assert "aroma" in exc_info.value.args[0] # Aggressive ICA-AROMA strategy requires # default nifti aroma_nii, _ = create_tmp_filepath( tmp_path, image_type="ica_aroma", suffix="aroma" ) with pytest.raises(ValueError) as exc_info: load_confounds( aroma_nii, strategy=("ica_aroma", ), ica_aroma="basic" ) assert "Invalid file type" in exc_info.value.args[0] # non aggressive ICA-AROMA strategy requires # desc-smoothAROMAnonaggr nifti file with pytest.raises(ValueError) as exc_info: load_confounds( img_missing_confounds, strategy=("ica_aroma", ), ica_aroma="full" ) assert "desc-smoothAROMAnonaggr_bold" in exc_info.value.args[0] # no confound files along the image file (tmp_path / bad_conf).unlink() with pytest.raises(ValueError) as exc_info: load_confounds(img_missing_confounds) assert "Could not find associated confound file." in exc_info.value.args[0] def test_non_steady_state(tmp_path): """Warn when 'non_steady_state' is in strategy.""" # supplying 'non_steady_state' in strategy is not necessary # check warning is correctly raised img, conf = create_tmp_filepath( tmp_path, copy_confounds=True ) warning_message = (r"Non-steady state") with pytest.warns(UserWarning, match=warning_message): load_confounds(img, strategy=('non_steady_state', 'motion')) def test_load_non_nifti(tmp_path): """Test non-nifti and invalid file type as input.""" # tsv file - unsupported input _, tsv = create_tmp_filepath(tmp_path, copy_confounds=True, copy_json=True) with pytest.raises(ValueError): load_confounds(str(tsv)) # cifti file should be supported cifti, _ = create_tmp_filepath( tmp_path, image_type="cifti", copy_confounds=True, copy_json=True ) conf, _ = load_confounds(cifti) assert conf.size != 0 # gifti support gifti, _ = create_tmp_filepath( tmp_path, image_type="gifti", copy_confounds=True, copy_json=True ) conf, _ = load_confounds(gifti) assert conf.size != 0 def test_invalid_filetype(tmp_path): """Invalid file types/associated files for load method.""" bad_nii, bad_conf = create_tmp_filepath(tmp_path, copy_confounds=True) conf, _ = load_confounds(bad_nii) # more than one legal filename for confounds add_conf = "test_desc-confounds_timeseries.tsv" leagal_confounds, _ = get_leagal_confound() leagal_confounds.to_csv(tmp_path / add_conf, sep="\t", index=False) with pytest.raises(ValueError) as info: load_confounds(bad_nii) assert "more than one" in str(info.value) (tmp_path / add_conf).unlink() # Remove for the rest of the tests to run # invalid fmriprep version: confound file with no header (<1.0) fake_confounds = np.random.rand(30, 20) np.savetxt(bad_conf, fake_confounds, delimiter="\t") with pytest.raises(ValueError) as error_log: load_confounds(bad_nii) assert "The confound file contains no header." in str(error_log.value) # invalid fmriprep version: old camel case header (<1.2) leagal_confounds, _ = get_leagal_confound() camel_confounds = leagal_confounds.copy() camel_confounds.columns = [ _to_camel_case(col_name) for col_name in leagal_confounds.columns ] camel_confounds.to_csv(bad_conf, sep="\t", index=False) with pytest.raises(ValueError) as error_log: load_confounds(bad_nii) assert "contains header in camel case." in str(error_log.value) # create a empty nifti file with no associated confound file # We only need the path to check this no_conf = "no_confound_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz" no_confound = tmp_path / no_conf no_confound.touch() with pytest.raises(ValueError): load_confounds(bad_nii) def test_ica_aroma(tmp_path): """Test ICA AROMA related file input.""" aroma_nii, _ = create_tmp_filepath( tmp_path, image_type="ica_aroma", copy_confounds=True ) regular_nii, _ = create_tmp_filepath( tmp_path, image_type="regular", copy_confounds=True ) # Aggressive strategy conf, _ = load_confounds( regular_nii, strategy=("ica_aroma", ), ica_aroma="basic" ) for col_name in conf.columns: # only aroma and non-steady state columns will be present assert re.match("(?:aroma_motion_+|non_steady_state+)", col_name) # Non-aggressive strategy conf, _ = load_confounds( aroma_nii, strategy=("ica_aroma", ), ica_aroma="full" ) assert conf.size == 0 # invalid combination of strategy and option with pytest.raises(ValueError) as exc_info: conf, _ = load_confounds( regular_nii, strategy=("ica_aroma", ), ica_aroma="invalid" ) assert "Current input: invalid" in exc_info.value.args[0] def test_sample_mask(tmp_path): """Test load method and sample mask.""" regular_nii, regular_conf = create_tmp_filepath( tmp_path, image_type="regular", copy_confounds=True ) reg, mask = load_confounds( regular_nii, strategy=("motion", "scrub"), scrub=5, fd_threshold=0.15 ) # the current test data has 6 time points marked as motion outliers, # and one nonsteady state (overlap with the first motion outlier) # 2 time points removed due to the "full" srubbing strategy (remove segment # shorter than 5 volumes) assert reg.shape[0] - len(mask) == 8 # nilearn requires unmasked confound regressors assert reg.shape[0] == 30 # non steady state will always be removed reg, mask = load_confounds(regular_nii, strategy=("motion", )) assert reg.shape[0] - len(mask) == 1 # When no non-steady state volumes are present conf_data, _ = get_leagal_confound(non_steady_state=False) conf_data.to_csv(regular_conf, sep="\t", index=False) # save to tmp reg, mask = load_confounds(regular_nii, strategy=("motion", )) assert mask is None # When no volumes needs removing (very liberal motion threshould) reg, mask = load_confounds( regular_nii, strategy=("motion", "scrub"), scrub=0, fd_threshold=4 ) assert mask is None @pytest.mark.parametrize( "image_type", ["regular", "ica_aroma", "gifti", "cifti"] ) def test_inputs(tmp_path, image_type): """Test multiple images as input.""" # generate files files = [] for i in range(2): # gifti edge case nii, _ = create_tmp_filepath( tmp_path, suffix=f"img{i+1}", image_type=image_type, copy_confounds=True, copy_json=True, ) files.append(nii) if image_type == "ica_aroma": conf, _ = load_confounds(files, strategy=("ica_aroma", )) else: conf, _ = load_confounds(files) assert len(conf) == 2
py
1a55a08019c44e162fe054c9ed697fb9eb0b1dc5
# Copyright (c) 2018, NVIDIA CORPORATION. from __future__ import print_function, division import inspect import pytest import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal from itertools import product import cudf from cudf import queryutils from cudf.dataframe import DataFrame _params_query_parser = [] _params_query_parser.append(('a > @b', ('a', '__CUDF_ENVREF__b'))) _params_query_parser.append(('(a + b) <= @c', ('a', 'b', '__CUDF_ENVREF__c'))) _params_query_parser.append(('a > b if a > 0 else b > a', ('a', 'b'))) @pytest.mark.parametrize('text,expect_args', _params_query_parser) def test_query_parser(text, expect_args): info = queryutils.query_parser(text) fn = queryutils.query_builder(info, 'myfoo') assert callable(fn) argspec = inspect.getfullargspec(fn) assert tuple(argspec.args) == tuple(expect_args) params_query_data = list(product([1, 2, 7, 8, 9, 16, 100, 129], range(2))) params_query_fn = [ (lambda a, b: a < b, 'a < b'), (lambda a, b: a * 2 >= b, 'a * 2 >= b'), (lambda a, b: 2 * (a + b) > (a + b) / 2, '2 * (a + b) > (a + b) / 2'), ] @pytest.mark.parametrize('data,fn', product(params_query_data, params_query_fn)) def test_query(data, fn): # prepare nelem, seed = data expect_fn, query_expr = fn np.random.seed(seed) df = DataFrame() df['a'] = aa = np.arange(nelem) df['b'] = bb = np.random.random(nelem) * nelem # udt expect_mask = expect_fn(aa, bb) df2 = df.query(query_expr) # check assert len(df2) == np.count_nonzero(expect_mask) np.testing.assert_array_almost_equal(df2['a'].to_array(), aa[expect_mask]) np.testing.assert_array_almost_equal(df2['b'].to_array(), bb[expect_mask]) params_query_env_fn = [ (lambda a, b, c, d: a * c > b + d, 'a * @c > b + @d'), (lambda a, b, c, d: ((a / c) < d) | ((b ** c) > d), '((a / @c) < @d) | ((b ** @c) > @d)') ] @pytest.mark.parametrize('data,fn', product(params_query_data, params_query_env_fn)) def test_query_ref_env(data, fn): # prepare nelem, seed = data expect_fn, query_expr = fn np.random.seed(seed) df = DataFrame() df['a'] = aa = np.arange(nelem) df['b'] = bb = np.random.random(nelem) * nelem c = 2.3 d = 1.2 # udt expect_mask = expect_fn(aa, bb, c, d) print(expect_mask) df2 = df.query(query_expr) # check assert len(df2) == np.count_nonzero(expect_mask) np.testing.assert_array_almost_equal(df2['a'].to_array(), aa[expect_mask]) np.testing.assert_array_almost_equal(df2['b'].to_array(), bb[expect_mask]) def test_query_env_changing(): df = DataFrame() df['a'] = aa = np.arange(100) expr = 'a < @c' # first attempt c = 10 got = df.query(expr) np.testing.assert_array_equal(aa[aa < c], got['a'].to_array()) # change env c = 50 got = df.query(expr) np.testing.assert_array_equal(aa[aa < c], got['a'].to_array()) def test_query_splitted_combine(): np.random.seed(0) df = pd.DataFrame({'x': np.random.randint(0, 5, size=10), 'y': np.random.normal(size=10)}) gdf = DataFrame.from_pandas(df) # Split the GDF s1 = gdf[:5] s2 = gdf[5:] # Do the query expr = 'x > 2' q1 = s1.query(expr) q2 = s2.query(expr) # Combine got = cudf.concat([q1, q2]).to_pandas() # Should equal to just querying the original GDF expect = gdf.query(expr).to_pandas() assert_frame_equal(got, expect)
py
1a55a0fccc5c95f93b2dee0e06b78515a82b48de
#!/usr/bin/env python # # Copyright 2020 Confluent Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================= # # Produce messages to Confluent Cloud # Using Confluent Python Client for Apache Kafka # # ============================================================================= from confluent_kafka import Producer, KafkaError import json import ccloud_lib if __name__ == '__main__': # Read arguments and configurations and initialize args = ccloud_lib.parse_args() config_file = args.config_file topic = args.topic conf = ccloud_lib.read_ccloud_config(config_file) # Create Producer instance producer = Producer({ 'bootstrap.servers': conf['bootstrap.servers'], 'sasl.mechanisms': conf['sasl.mechanisms'], 'security.protocol': conf['security.protocol'], 'sasl.username': conf['sasl.username'], 'sasl.password': conf['sasl.password'], }) # Create topic if needed ccloud_lib.create_topic(conf, topic) delivered_records = 0 # Optional per-message on_delivery handler (triggered by poll() or flush()) # when a message has been successfully delivered or # permanently failed delivery (after retries). def acked(err, msg): global delivered_records """Delivery report handler called on successful or failed delivery of message """ if err is not None: print("Failed to deliver message: {}".format(err)) else: delivered_records += 1 print("Produced record to topic {} partition [{}] @ offset {}" .format(msg.topic(), msg.partition(), msg.offset())) for n in range(10): record_key = "alice" record_value = json.dumps({'count': n}) print("Producing record: {}\t{}".format(record_key, record_value)) producer.produce(topic, key=record_key, value=record_value, on_delivery=acked) # p.poll() serves delivery reports (on_delivery) # from previous produce() calls. producer.poll(0) producer.flush() print("{} messages were produced to topic {}!".format(delivered_records, topic))
py
1a55a139ef81501a106b0a1d180117cac359935b
import argparse import os import numpy as np import math import torchvision.transforms as transforms from torchvision.utils import save_image from PIL import Image from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable from datasets import * from models import * import torch.nn as nn import torch.nn.functional as F import torch os.makedirs("images", exist_ok=True) parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training") parser.add_argument("--batch_size", type=int, default=8, help="size of the batches") parser.add_argument("--dataset_name", type=str, default="img_align_celeba", help="name of the dataset") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space") parser.add_argument("--img_size", type=int, default=128, help="size of each image dimension") parser.add_argument("--mask_size", type=int, default=32, help="size of random mask") parser.add_argument("--channels", type=int, default=3, help="number of image channels") parser.add_argument("--sample_interval", type=int, default=500, help="interval between image sampling") opt = parser.parse_args() print(opt) cuda = True if torch.cuda.is_available() else False input_shape = (opt.channels, opt.img_size, opt.img_size) # Loss function adversarial_loss = torch.nn.MSELoss() # Initialize generator and discriminator generator = Generator(input_shape) discriminator = Discriminator(input_shape) if cuda: generator.cuda() discriminator.cuda() adversarial_loss.cuda() # Initialize weights generator.apply(weights_init_normal) discriminator.apply(weights_init_normal) # Dataset loader transforms_ = [ transforms.Resize((opt.img_size, opt.img_size), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] transforms_lr = [ transforms.Resize((opt.img_size // 4, opt.img_size // 4), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] dataloader = DataLoader( ImageDataset("../../data/%s" % opt.dataset_name, transforms_x=transforms_, transforms_lr=transforms_lr), batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu, ) # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor def apply_random_mask(imgs): idx = np.random.randint(0, opt.img_size - opt.mask_size, (imgs.shape[0], 2)) masked_imgs = imgs.clone() for i, (y1, x1) in enumerate(idx): y2, x2 = y1 + opt.mask_size, x1 + opt.mask_size masked_imgs[i, :, y1:y2, x1:x2] = -1 return masked_imgs def save_sample(saved_samples): # Generate inpainted image gen_imgs = generator(saved_samples["masked"], saved_samples["lowres"]) # Save sample sample = torch.cat((saved_samples["masked"].data, gen_imgs.data, saved_samples["imgs"].data), -2) save_image(sample, "images/%d.png" % batches_done, nrow=5, normalize=True) saved_samples = {} for epoch in range(opt.n_epochs): for i, batch in enumerate(dataloader): imgs = batch["x"] imgs_lr = batch["x_lr"] masked_imgs = apply_random_mask(imgs) # Adversarial ground truths valid = Variable(Tensor(imgs.shape[0], *discriminator.output_shape).fill_(1.0), requires_grad=False) fake = Variable(Tensor(imgs.shape[0], *discriminator.output_shape).fill_(0.0), requires_grad=False) if cuda: imgs = imgs.type(Tensor) imgs_lr = imgs_lr.type(Tensor) masked_imgs = masked_imgs.type(Tensor) real_imgs = Variable(imgs) imgs_lr = Variable(imgs_lr) masked_imgs = Variable(masked_imgs) # ----------------- # Train Generator # ----------------- optimizer_G.zero_grad() # Generate a batch of images gen_imgs = generator(masked_imgs, imgs_lr) # Loss measures generator's ability to fool the discriminator g_loss = adversarial_loss(discriminator(gen_imgs), valid) g_loss.backward() optimizer_G.step() # --------------------- # Train Discriminator # --------------------- optimizer_D.zero_grad() # Measure discriminator's ability to classify real from generated samples real_loss = adversarial_loss(discriminator(real_imgs), valid) fake_loss = adversarial_loss(discriminator(gen_imgs.detach()), fake) d_loss = 0.5 * (real_loss + fake_loss) d_loss.backward() optimizer_D.step() print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item()) ) # Save first ten samples if not saved_samples: saved_samples["imgs"] = real_imgs[:1].clone() saved_samples["masked"] = masked_imgs[:1].clone() saved_samples["lowres"] = imgs_lr[:1].clone() elif saved_samples["imgs"].size(0) < 10: saved_samples["imgs"] = torch.cat((saved_samples["imgs"], real_imgs[:1]), 0) saved_samples["masked"] = torch.cat((saved_samples["masked"], masked_imgs[:1]), 0) saved_samples["lowres"] = torch.cat((saved_samples["lowres"], imgs_lr[:1]), 0) batches_done = epoch * len(dataloader) + i if batches_done % opt.sample_interval == 0: save_sample(saved_samples)
py
1a55a189e26e20a331f3abb4db3bed6b2669ec32
# -*- coding: utf-8 -*- """ Created on Sun Apr 22 14:23:32 2018 CSV module handles parsing better as delimiter can be part of data as well @author: dongrp2 """ import csv with open('names.csv','r') as names_csv: csv_reader = csv.reader(names_csv) next(csv_reader) # to loop over the first line which is headder for line in csv_reader: #print(line) #print all the lines in list print(line[2]) # 2nd index of the list """Creating a tab delimited file""" with open('names.csv','r') as names_csv: csv_reader = csv.reader(names_csv) with open('new_names.csv','w') as new_names: csv_writer = csv.writer(new_names, delimiter='\t') for line in csv_reader: csv_writer.writerow(line) # with open('new_names.csv','r') as read_new_csv: # csv_new_reader = csv.reader(read_new_csv,delimiter='\t') # for line in csv_new_reader: # print(line) """Using Dictionary Reader where field names are keys of the values""" with open('names.csv','r') as names_csv: csv_reader = csv.DictReader(names_csv) for line in csv_reader: print(line['email']) #accesing the key 'email' """Using Dictionary Writer have to provide the field names""" with open('names.csv','r') as names_csv: csv_reader = csv.DictReader(names_csv) with open('new_names_dict.csv','w') as new_names_dict: fieldnames = ['first_name','last_name','email'] csv_writer = csv.DictWriter(new_names_dict, fieldnames=fieldnames, delimiter='\t') csv_writer.writeheader() for line in csv_reader: #del line['email'] if want to write only first and last name csv_writer.writerow(line) #for line in csv_reader: # print(line['email']) #accesing the key 'email'
py
1a55a2f230de02eaa710f63af5a521766c430758
from typing import List, cast from avtocod.methods.base import AvtocodMethod, AvtocodType, Request from avtocod.types.profile.profile import Balance, BalanceItem class GetBalance(AvtocodMethod[List[BalanceItem]]): """Get the current avtocod repair balance""" __returning__ = Balance def build_request(self) -> Request: return Request(method="profile.balance") @classmethod def on_response_parse(cls, response: AvtocodType) -> List[BalanceItem]: return cast(List[BalanceItem], response.balance)
py
1a55a3d82cbe7b230399083345ef0d8edd2a5607
# -*- coding: utf-8 -*- from tests import HangulizeTestCase from hangulize.langs.slk import Slovak class SlovakTestCase(HangulizeTestCase): lang = Slovak() def test_people(self): self.assert_examples({ 'Ján Bahýľ': '얀 바힐', 'Štefan Banič': '슈테판 바니치', 'Anton Bernolák': '안톤 베르놀라크', 'Peter Bondra': '페테르 본드라', 'Zdeno Chára': '즈데노 하라', 'Dominika Cibulková': '도미니카 치불코바', 'Ján Čarnogurský': '얀 차르노구르스키', 'Štefan Marko Daxner': '슈테판 마르코 닥스네르', 'Pavol Demitra': '파볼 데미트라', 'Alexander Dubček': '알렉산데르 둡체크', 'Mikuláš Dzurinda': '미쿨라시 주린다', 'Marián Gáborík': '마리안 가보리크', 'Marek Hamšík': '마레크 함시크', 'Daniela Hantuchová': '다니엘라 한투호바', 'Andrej Hlinka': '안드레이 흘린카', 'Milan Hodža': '밀란 호자', 'Marian Hossa': '마리안 호사', 'Dominik Hrbatý': '도미니크 흐르바티', 'Pavol Hurajt': '파볼 후라이트', 'Jozef Miloslav Hurban': '요제프 밀로슬라우 후르반', 'Gustáv Husák': '구스타우 후사크', 'Hviezdoslav': '흐비에즈도슬라우', 'Dionýz Ilkovič': '디오니스 일코비치', 'Elena Kaliská': '엘레나 칼리스카', 'Michaela Kocianová': '미하엘라 코치아노바', 'Karol Kučera': '카롤 쿠체라', 'Anastasiya Kuzmina': '아나스타시야 쿠즈미나', 'Michal Martikán': '미할 마르티칸', 'Janko Matúška': '얀코 마투슈카', 'Vladimír Mečiar': '블라디미르 메치아르', 'Martina Moravcová': '마르티나 모라우초바', 'Jozef Murgaš': '요제프 무르가시', 'Natália Prekopová': '나탈리아 프레코포바', 'Jozef Roháček': '요제프 로하체크', 'Magdaléna Rybáriková': '마그달레나 리바리코바', 'Zuzana Sekerová': '주자나 세케로바', 'Aurel Stodola': '아우렐 스토돌라', 'Eugen Suchoň': '에우겐 수혼', 'Martin Škrtel': '마르틴 슈크르텔', 'Milan Rastislav Štefánik': '밀란 라스티슬라우 슈테파니크', 'Zuzana Štefečeková': '주자나 슈테페체코바', 'Peter Šťastný': '페테르 슈탸스트니', 'Ľudovít Štúr': '류도비트 슈투르', 'Jozef Tiso': '요제프 티소', 'Vavrinec': '바우리네츠', 'Rudolf Vrba': '루돌프 브르바', 'Vladimír Weiss': '블라디미르 베이스', }) def test_places(self): self.assert_examples({ 'Banská Bystrica': '반스카 비스트리차', 'Bardejov': '바르데요우', 'Bratislava': '브라티슬라바', 'Komárno': '코마르노', 'Košice': '코시체', 'Manínska tiesňava': '마닌스카 티에스냐바', 'Martin': '마르틴', 'Michalovce': '미할로우체', 'Nitra': '니트라', 'Poprad': '포프라트', 'Považská': '포바슈스카', 'Prešov': '프레쇼우', 'Rožňava': '로주냐바', 'Slavín': '슬라빈', 'Spiš': '스피시', 'Trenčín': '트렌친', 'Trnava': '트르나바', 'Váh': '바흐', 'Vlkolínec': '블콜리네츠', 'Vydrica': '비드리차', 'Zvolen': '즈볼렌', 'Žilina': '질리나', 'Žehra': '제흐라', }) def test_miscellaneous(self): self.assert_examples({ 'deväť': '데베티', 'jahôd': '야후오트', 'mäkčeň': '멕첸', 'pätnásť': '페트나스티', })
py
1a55a4950b13ac7573ae51b4ea7b1b0b134f1f6f
import urllib import itertools import json import jinja2 from datasette.plugins import pm from datasette.database import QueryInterrupted from datasette.utils import ( CustomRow, MultiParams, append_querystring, compound_keys_after_sql, escape_sqlite, filters_should_redirect, is_url, path_from_row_pks, path_with_added_args, path_with_removed_args, path_with_replaced_args, sqlite3, to_css_class, urlsafe_components, value_as_boolean, ) from datasette.utils.asgi import NotFound from datasette.filters import Filters from .base import DataView, DatasetteError, ureg from .database import QueryView LINK_WITH_LABEL = ( '<a href="{base_url}{database}/{table}/{link_id}">{label}</a>&nbsp;<em>{id}</em>' ) LINK_WITH_VALUE = '<a href="{base_url}{database}/{table}/{link_id}">{id}</a>' class Row: def __init__(self, cells): self.cells = cells def __iter__(self): return iter(self.cells) def __getitem__(self, key): for cell in self.cells: if cell["column"] == key: return cell["raw"] raise KeyError def display(self, key): for cell in self.cells: if cell["column"] == key: return cell["value"] return None def __str__(self): d = { key: self[key] for key in [ c["column"] for c in self.cells if not c.get("is_special_link_column") ] } return json.dumps(d, default=repr, indent=2) class RowTableShared(DataView): async def sortable_columns_for_table(self, database, table, use_rowid): db = self.ds.databases[database] table_metadata = self.ds.table_metadata(database, table) if "sortable_columns" in table_metadata: sortable_columns = set(table_metadata["sortable_columns"]) else: sortable_columns = set(await db.table_columns(table)) if use_rowid: sortable_columns.add("rowid") return sortable_columns async def expandable_columns(self, database, table): # Returns list of (fk_dict, label_column-or-None) pairs for that table expandables = [] db = self.ds.databases[database] for fk in await db.foreign_keys_for_table(table): label_column = await db.label_column_for_table(fk["other_table"]) expandables.append((fk, label_column)) return expandables async def display_columns_and_rows( self, database, table, description, rows, link_column=False, truncate_cells=0 ): "Returns columns, rows for specified table - including fancy foreign key treatment" db = self.ds.databases[database] table_metadata = self.ds.table_metadata(database, table) sortable_columns = await self.sortable_columns_for_table(database, table, True) columns = [ {"name": r[0], "sortable": r[0] in sortable_columns} for r in description ] pks = await db.primary_keys(table) column_to_foreign_key_table = { fk["column"]: fk["other_table"] for fk in await db.foreign_keys_for_table(table) } cell_rows = [] base_url = self.ds.config("base_url") for row in rows: cells = [] # Unless we are a view, the first column is a link - either to the rowid # or to the simple or compound primary key if link_column: is_special_link_column = len(pks) != 1 pk_path = path_from_row_pks(row, pks, not pks, False) cells.append( { "column": pks[0] if len(pks) == 1 else "Link", "value_type": "pk", "is_special_link_column": is_special_link_column, "raw": pk_path, "value": jinja2.Markup( '<a href="{base_url}{database}/{table}/{flat_pks_quoted}">{flat_pks}</a>'.format( base_url=base_url, database=database, table=urllib.parse.quote_plus(table), flat_pks=str(jinja2.escape(pk_path)), flat_pks_quoted=path_from_row_pks(row, pks, not pks), ) ), } ) for value, column_dict in zip(row, columns): column = column_dict["name"] if link_column and len(pks) == 1 and column == pks[0]: # If there's a simple primary key, don't repeat the value as it's # already shown in the link column. continue # First let the plugins have a go # pylint: disable=no-member plugin_display_value = pm.hook.render_cell( value=value, column=column, table=table, database=database, datasette=self.ds, ) if plugin_display_value is not None: display_value = plugin_display_value elif isinstance(value, bytes): display_value = jinja2.Markup( "&lt;Binary&nbsp;data:&nbsp;{}&nbsp;byte{}&gt;".format( len(value), "" if len(value) == 1 else "s" ) ) elif isinstance(value, dict): # It's an expanded foreign key - display link to other row label = value["label"] value = value["value"] # The table we link to depends on the column other_table = column_to_foreign_key_table[column] link_template = ( LINK_WITH_LABEL if (label != value) else LINK_WITH_VALUE ) display_value = jinja2.Markup( link_template.format( database=database, base_url=base_url, table=urllib.parse.quote_plus(other_table), link_id=urllib.parse.quote_plus(str(value)), id=str(jinja2.escape(value)), label=str(jinja2.escape(label)), ) ) elif value in ("", None): display_value = jinja2.Markup("&nbsp;") elif is_url(str(value).strip()): display_value = jinja2.Markup( '<a href="{url}">{url}</a>'.format( url=jinja2.escape(value.strip()) ) ) elif column in table_metadata.get("units", {}) and value != "": # Interpret units using pint value = value * ureg(table_metadata["units"][column]) # Pint uses floating point which sometimes introduces errors in the compact # representation, which we have to round off to avoid ugliness. In the vast # majority of cases this rounding will be inconsequential. I hope. value = round(value.to_compact(), 6) display_value = jinja2.Markup( "{:~P}".format(value).replace(" ", "&nbsp;") ) else: display_value = str(value) if truncate_cells and len(display_value) > truncate_cells: display_value = display_value[:truncate_cells] + u"\u2026" cells.append( { "column": column, "value": display_value, "raw": value, "value_type": "none" if value is None else str(type(value).__name__), } ) cell_rows.append(Row(cells)) if link_column: # Add the link column header. # If it's a simple primary key, we have to remove and re-add that column name at # the beginning of the header row. if len(pks) == 1: columns = [col for col in columns if col["name"] != pks[0]] columns = [ {"name": pks[0] if len(pks) == 1 else "Link", "sortable": len(pks) == 1} ] + columns return columns, cell_rows class TableView(RowTableShared): name = "table" async def post(self, request, db_name, table_and_format): # Handle POST to a canned query canned_query = await self.ds.get_canned_query( db_name, table_and_format, request.actor ) assert canned_query, "You may only POST to a canned query" return await QueryView(self.ds).data( request, db_name, None, canned_query["sql"], metadata=canned_query, editable=False, canned_query=table_and_format, named_parameters=canned_query.get("params"), write=bool(canned_query.get("write")), ) async def data( self, request, database, hash, table, default_labels=False, _next=None, _size=None, ): canned_query = await self.ds.get_canned_query(database, table, request.actor) if canned_query: return await QueryView(self.ds).data( request, database, hash, canned_query["sql"], metadata=canned_query, editable=False, canned_query=table, named_parameters=canned_query.get("params"), write=bool(canned_query.get("write")), ) db = self.ds.databases[database] is_view = bool(await db.get_view_definition(table)) table_exists = bool(await db.table_exists(table)) if not is_view and not table_exists: raise NotFound("Table not found: {}".format(table)) await self.check_permission(request, "view-instance") await self.check_permission(request, "view-database", database) await self.check_permission(request, "view-table", (database, table)) private = not await self.ds.permission_allowed( None, "view-table", (database, table), default=True ) pks = await db.primary_keys(table) table_columns = await db.table_columns(table) select_columns = ", ".join(escape_sqlite(t) for t in table_columns) use_rowid = not pks and not is_view if use_rowid: select = "rowid, {}".format(select_columns) order_by = "rowid" order_by_pks = "rowid" else: select = select_columns order_by_pks = ", ".join([escape_sqlite(pk) for pk in pks]) order_by = order_by_pks if is_view: order_by = "" # Ensure we don't drop anything with an empty value e.g. ?name__exact= args = MultiParams( urllib.parse.parse_qs(request.query_string, keep_blank_values=True) ) # Special args start with _ and do not contain a __ # That's so if there is a column that starts with _ # it can still be queried using ?_col__exact=blah special_args = {} other_args = [] for key in args: if key.startswith("_") and "__" not in key: special_args[key] = args[key] else: for v in args.getlist(key): other_args.append((key, v)) # Handle ?_filter_column and redirect, if present redirect_params = filters_should_redirect(special_args) if redirect_params: return self.redirect( request, path_with_added_args(request, redirect_params), forward_querystring=False, ) # Spot ?_sort_by_desc and redirect to _sort_desc=(_sort) if "_sort_by_desc" in special_args: return self.redirect( request, path_with_added_args( request, { "_sort_desc": special_args.get("_sort"), "_sort_by_desc": None, "_sort": None, }, ), forward_querystring=False, ) table_metadata = self.ds.table_metadata(database, table) units = table_metadata.get("units", {}) filters = Filters(sorted(other_args), units, ureg) where_clauses, params = filters.build_where_clauses(table) extra_wheres_for_ui = [] # Add _where= from querystring if "_where" in request.args: if not await self.ds.permission_allowed( request.actor, "execute-sql", resource=database, default=True, ): raise DatasetteError("_where= is not allowed", status=403) else: where_clauses.extend(request.args.getlist("_where")) extra_wheres_for_ui = [ { "text": text, "remove_url": path_with_removed_args(request, {"_where": text}), } for text in request.args.getlist("_where") ] # Support for ?_through={table, column, value} extra_human_descriptions = [] if "_through" in request.args: for through in request.args.getlist("_through"): through_data = json.loads(through) through_table = through_data["table"] other_column = through_data["column"] value = through_data["value"] outgoing_foreign_keys = await db.foreign_keys_for_table(through_table) try: fk_to_us = [ fk for fk in outgoing_foreign_keys if fk["other_table"] == table ][0] except IndexError: raise DatasetteError( "Invalid _through - could not find corresponding foreign key" ) param = "p{}".format(len(params)) where_clauses.append( "{our_pk} in (select {our_column} from {through_table} where {other_column} = :{param})".format( through_table=escape_sqlite(through_table), our_pk=escape_sqlite(fk_to_us["other_column"]), our_column=escape_sqlite(fk_to_us["column"]), other_column=escape_sqlite(other_column), param=param, ) ) params[param] = value extra_human_descriptions.append( '{}.{} = "{}"'.format(through_table, other_column, value) ) # _search support: fts_table = special_args.get("_fts_table") fts_table = fts_table or table_metadata.get("fts_table") fts_table = fts_table or await db.fts_table(table) fts_pk = special_args.get("_fts_pk", table_metadata.get("fts_pk", "rowid")) search_args = dict( pair for pair in special_args.items() if pair[0].startswith("_search") ) search = "" search_mode_raw = special_args.get("_searchmode") == "raw" if fts_table and search_args: if "_search" in search_args: # Simple ?_search=xxx search = search_args["_search"] where_clauses.append( "{fts_pk} in (select rowid from {fts_table} where {fts_table} match {match_clause})".format( fts_table=escape_sqlite(fts_table), fts_pk=escape_sqlite(fts_pk), match_clause=":search" if search_mode_raw else "escape_fts(:search)", ) ) extra_human_descriptions.append('search matches "{}"'.format(search)) params["search"] = search else: # More complex: search against specific columns for i, (key, search_text) in enumerate(search_args.items()): search_col = key.split("_search_", 1)[1] if search_col not in await db.table_columns(fts_table): raise DatasetteError("Cannot search by that column", status=400) where_clauses.append( "rowid in (select rowid from {fts_table} where {search_col} match {match_clause})".format( fts_table=escape_sqlite(fts_table), search_col=escape_sqlite(search_col), match_clause=":search_{}".format(i) if search_mode_raw else "escape_fts(:search_{})".format(i), ) ) extra_human_descriptions.append( 'search column "{}" matches "{}"'.format( search_col, search_text ) ) params["search_{}".format(i)] = search_text sortable_columns = set() sortable_columns = await self.sortable_columns_for_table( database, table, use_rowid ) # Allow for custom sort order sort = special_args.get("_sort") sort_desc = special_args.get("_sort_desc") if not sort and not sort_desc: sort = table_metadata.get("sort") sort_desc = table_metadata.get("sort_desc") if sort and sort_desc: raise DatasetteError("Cannot use _sort and _sort_desc at the same time") if sort: if sort not in sortable_columns: raise DatasetteError("Cannot sort table by {}".format(sort)) order_by = escape_sqlite(sort) if sort_desc: if sort_desc not in sortable_columns: raise DatasetteError("Cannot sort table by {}".format(sort_desc)) order_by = "{} desc".format(escape_sqlite(sort_desc)) from_sql = "from {table_name} {where}".format( table_name=escape_sqlite(table), where=("where {} ".format(" and ".join(where_clauses))) if where_clauses else "", ) # Copy of params so we can mutate them later: from_sql_params = dict(**params) count_sql = "select count(*) {}".format(from_sql) _next = _next or special_args.get("_next") offset = "" if _next: if is_view: # _next is an offset offset = " offset {}".format(int(_next)) else: components = urlsafe_components(_next) # If a sort order is applied, the first of these is the sort value if sort or sort_desc: sort_value = components[0] # Special case for if non-urlencoded first token was $null if _next.split(",")[0] == "$null": sort_value = None components = components[1:] # Figure out the SQL for next-based-on-primary-key first next_by_pk_clauses = [] if use_rowid: next_by_pk_clauses.append("rowid > :p{}".format(len(params))) params["p{}".format(len(params))] = components[0] else: # Apply the tie-breaker based on primary keys if len(components) == len(pks): param_len = len(params) next_by_pk_clauses.append( compound_keys_after_sql(pks, param_len) ) for i, pk_value in enumerate(components): params["p{}".format(param_len + i)] = pk_value # Now add the sort SQL, which may incorporate next_by_pk_clauses if sort or sort_desc: if sort_value is None: if sort_desc: # Just items where column is null ordered by pk where_clauses.append( "({column} is null and {next_clauses})".format( column=escape_sqlite(sort_desc), next_clauses=" and ".join(next_by_pk_clauses), ) ) else: where_clauses.append( "({column} is not null or ({column} is null and {next_clauses}))".format( column=escape_sqlite(sort), next_clauses=" and ".join(next_by_pk_clauses), ) ) else: where_clauses.append( "({column} {op} :p{p}{extra_desc_only} or ({column} = :p{p} and {next_clauses}))".format( column=escape_sqlite(sort or sort_desc), op=">" if sort else "<", p=len(params), extra_desc_only="" if sort else " or {column2} is null".format( column2=escape_sqlite(sort or sort_desc) ), next_clauses=" and ".join(next_by_pk_clauses), ) ) params["p{}".format(len(params))] = sort_value order_by = "{}, {}".format(order_by, order_by_pks) else: where_clauses.extend(next_by_pk_clauses) where_clause = "" if where_clauses: where_clause = "where {} ".format(" and ".join(where_clauses)) if order_by: order_by = "order by {} ".format(order_by) extra_args = {} # Handle ?_size=500 page_size = _size or request.args.get("_size") or table_metadata.get("size") if page_size: if page_size == "max": page_size = self.ds.max_returned_rows try: page_size = int(page_size) if page_size < 0: raise ValueError except ValueError: raise DatasetteError("_size must be a positive integer", status=400) if page_size > self.ds.max_returned_rows: raise DatasetteError( "_size must be <= {}".format(self.ds.max_returned_rows), status=400 ) extra_args["page_size"] = page_size else: page_size = self.ds.page_size sql_no_limit = "select {select} from {table_name} {where}{order_by}".format( select=select, table_name=escape_sqlite(table), where=where_clause, order_by=order_by, ) sql = "{sql_no_limit} limit {limit}{offset}".format( sql_no_limit=sql_no_limit.rstrip(), limit=page_size + 1, offset=offset ) if request.args.get("_timelimit"): extra_args["custom_time_limit"] = int(request.args.get("_timelimit")) results = await db.execute(sql, params, truncate=True, **extra_args) # Number of filtered rows in whole set: filtered_table_rows_count = None if ( not db.is_mutable and self.ds.inspect_data and count_sql == "select count(*) from {} ".format(table) ): try: filtered_table_rows_count = self.ds.inspect_data[database]["tables"][ table ]["count"] except KeyError: pass if count_sql and filtered_table_rows_count is None: try: count_rows = list(await db.execute(count_sql, from_sql_params)) filtered_table_rows_count = count_rows[0][0] except QueryInterrupted: pass # facets support if not self.ds.config("allow_facet") and any( arg.startswith("_facet") for arg in request.args ): raise DatasetteError("_facet= is not allowed", status=400) # pylint: disable=no-member facet_classes = list( itertools.chain.from_iterable(pm.hook.register_facet_classes()) ) facet_results = {} facets_timed_out = [] facet_instances = [] for klass in facet_classes: facet_instances.append( klass( self.ds, request, database, sql=sql_no_limit, params=params, table=table, metadata=table_metadata, row_count=filtered_table_rows_count, ) ) for facet in facet_instances: ( instance_facet_results, instance_facets_timed_out, ) = await facet.facet_results() facet_results.update(instance_facet_results) facets_timed_out.extend(instance_facets_timed_out) # Figure out columns and rows for the query columns = [r[0] for r in results.description] rows = list(results.rows) # Expand labeled columns if requested expanded_columns = [] expandable_columns = await self.expandable_columns(database, table) columns_to_expand = None try: all_labels = value_as_boolean(special_args.get("_labels", "")) except ValueError: all_labels = default_labels # Check for explicit _label= if "_label" in request.args: columns_to_expand = request.args.getlist("_label") if columns_to_expand is None and all_labels: # expand all columns with foreign keys columns_to_expand = [fk["column"] for fk, _ in expandable_columns] if columns_to_expand: expanded_labels = {} for fk, _ in expandable_columns: column = fk["column"] if column not in columns_to_expand: continue expanded_columns.append(column) # Gather the values column_index = columns.index(column) values = [row[column_index] for row in rows] # Expand them expanded_labels.update( await self.ds.expand_foreign_keys(database, table, column, values) ) if expanded_labels: # Rewrite the rows new_rows = [] for row in rows: new_row = CustomRow(columns) for column in row.keys(): value = row[column] if (column, value) in expanded_labels and value is not None: new_row[column] = { "value": value, "label": expanded_labels[(column, value)], } else: new_row[column] = value new_rows.append(new_row) rows = new_rows # Pagination next link next_value = None next_url = None if len(rows) > page_size and page_size > 0: if is_view: next_value = int(_next or 0) + page_size else: next_value = path_from_row_pks(rows[-2], pks, use_rowid) # If there's a sort or sort_desc, add that value as a prefix if (sort or sort_desc) and not is_view: prefix = rows[-2][sort or sort_desc] if isinstance(prefix, dict) and "value" in prefix: prefix = prefix["value"] if prefix is None: prefix = "$null" else: prefix = urllib.parse.quote_plus(str(prefix)) next_value = "{},{}".format(prefix, next_value) added_args = {"_next": next_value} if sort: added_args["_sort"] = sort else: added_args["_sort_desc"] = sort_desc else: added_args = {"_next": next_value} next_url = self.ds.absolute_url( request, path_with_replaced_args(request, added_args) ) rows = rows[:page_size] # Detect suggested facets suggested_facets = [] if ( self.ds.config("suggest_facets") and self.ds.config("allow_facet") and not _next ): for facet in facet_instances: suggested_facets.extend(await facet.suggest()) # human_description_en combines filters AND search, if provided human_description_en = filters.human_description_en( extra=extra_human_descriptions ) if sort or sort_desc: sorted_by = "sorted by {}{}".format( (sort or sort_desc), " descending" if sort_desc else "" ) human_description_en = " ".join( [b for b in [human_description_en, sorted_by] if b] ) async def extra_template(): nonlocal sort display_columns, display_rows = await self.display_columns_and_rows( database, table, results.description, rows, link_column=not is_view, truncate_cells=self.ds.config("truncate_cells_html"), ) metadata = ( (self.ds.metadata("databases") or {}) .get(database, {}) .get("tables", {}) .get(table, {}) ) self.ds.update_with_inherited_metadata(metadata) form_hidden_args = [] for arg in ("_fts_table", "_fts_pk"): if arg in special_args: form_hidden_args.append((arg, special_args[arg])) if request.args.get("_where"): for where_text in request.args.getlist("_where"): form_hidden_args.append(("_where", where_text)) # if no sort specified AND table has a single primary key, # set sort to that so arrow is displayed if not sort and not sort_desc: if 1 == len(pks): sort = pks[0] elif use_rowid: sort = "rowid" return { "supports_search": bool(fts_table), "search": search or "", "use_rowid": use_rowid, "filters": filters, "display_columns": display_columns, "filter_columns": columns, "display_rows": display_rows, "facets_timed_out": facets_timed_out, "sorted_facet_results": sorted( facet_results.values(), key=lambda f: (len(f["results"]), f["name"]), reverse=True, ), "extra_wheres_for_ui": extra_wheres_for_ui, "form_hidden_args": form_hidden_args, "is_sortable": any(c["sortable"] for c in display_columns), "path_with_replaced_args": path_with_replaced_args, "path_with_removed_args": path_with_removed_args, "append_querystring": append_querystring, "request": request, "sort": sort, "sort_desc": sort_desc, "disable_sort": is_view, "custom_table_templates": [ "_table-{}-{}.html".format( to_css_class(database), to_css_class(table) ), "_table-table-{}-{}.html".format( to_css_class(database), to_css_class(table) ), "_table.html", ], "metadata": metadata, "view_definition": await db.get_view_definition(table), "table_definition": await db.get_table_definition(table), } return ( { "database": database, "table": table, "is_view": is_view, "human_description_en": human_description_en, "rows": rows[:page_size], "truncated": results.truncated, "filtered_table_rows_count": filtered_table_rows_count, "expanded_columns": expanded_columns, "expandable_columns": expandable_columns, "columns": columns, "primary_keys": pks, "units": units, "query": {"sql": sql, "params": params}, "facet_results": facet_results, "suggested_facets": suggested_facets, "next": next_value and str(next_value) or None, "next_url": next_url, "private": private, "allow_execute_sql": await self.ds.permission_allowed( request.actor, "execute-sql", database, default=True ), }, extra_template, ( "table-{}-{}.html".format(to_css_class(database), to_css_class(table)), "table.html", ), ) class RowView(RowTableShared): name = "row" async def data(self, request, database, hash, table, pk_path, default_labels=False): pk_values = urlsafe_components(pk_path) await self.check_permission(request, "view-instance") await self.check_permission(request, "view-database", database) await self.check_permission(request, "view-table", (database, table)) db = self.ds.databases[database] pks = await db.primary_keys(table) use_rowid = not pks select = "*" if use_rowid: select = "rowid, *" pks = ["rowid"] wheres = ['"{}"=:p{}'.format(pk, i) for i, pk in enumerate(pks)] sql = "select {} from {} where {}".format( select, escape_sqlite(table), " AND ".join(wheres) ) params = {} for i, pk_value in enumerate(pk_values): params["p{}".format(i)] = pk_value results = await db.execute(sql, params, truncate=True) columns = [r[0] for r in results.description] rows = list(results.rows) if not rows: raise NotFound("Record not found: {}".format(pk_values)) async def template_data(): display_columns, display_rows = await self.display_columns_and_rows( database, table, results.description, rows, link_column=False, truncate_cells=0, ) for column in display_columns: column["sortable"] = False return { "foreign_key_tables": await self.foreign_key_tables( database, table, pk_values ), "display_columns": display_columns, "display_rows": display_rows, "custom_table_templates": [ "_table-{}-{}.html".format( to_css_class(database), to_css_class(table) ), "_table-row-{}-{}.html".format( to_css_class(database), to_css_class(table) ), "_table.html", ], "metadata": (self.ds.metadata("databases") or {}) .get(database, {}) .get("tables", {}) .get(table, {}), } data = { "database": database, "table": table, "rows": rows, "columns": columns, "primary_keys": pks, "primary_key_values": pk_values, "units": self.ds.table_metadata(database, table).get("units", {}), } if "foreign_key_tables" in (request.args.get("_extras") or "").split(","): data["foreign_key_tables"] = await self.foreign_key_tables( database, table, pk_values ) return ( data, template_data, ( "row-{}-{}.html".format(to_css_class(database), to_css_class(table)), "row.html", ), ) async def foreign_key_tables(self, database, table, pk_values): if len(pk_values) != 1: return [] db = self.ds.databases[database] all_foreign_keys = await db.get_all_foreign_keys() foreign_keys = all_foreign_keys[table]["incoming"] if len(foreign_keys) == 0: return [] sql = "select " + ", ".join( [ "(select count(*) from {table} where {column}=:id)".format( table=escape_sqlite(fk["other_table"]), column=escape_sqlite(fk["other_column"]), ) for fk in foreign_keys ] ) try: rows = list(await db.execute(sql, {"id": pk_values[0]})) except sqlite3.OperationalError: # Almost certainly hit the timeout return [] foreign_table_counts = dict( zip( [(fk["other_table"], fk["other_column"]) for fk in foreign_keys], list(rows[0]), ) ) foreign_key_tables = [] for fk in foreign_keys: count = ( foreign_table_counts.get((fk["other_table"], fk["other_column"])) or 0 ) foreign_key_tables.append({**fk, **{"count": count}}) return foreign_key_tables
py
1a55a5390cd36c477cf6357a62dcabfcdbc9c3d3
from datetime import datetime import time if __name__ == "__main__": # get now time now = datetime.now() # convert time into timestamp timstart = datetime.timestamp(now) print("now is ", now,"<<<>", timstart) now_end = datetime.now() timend = now_end.timestamp() print('second ===>', int(timend - timstart)) seconds = 100 minutes, seconds = divmod(seconds,60) hours, minutes = divmod(minutes, 60) print("%02d:%02d:%02d" % (hours, minutes, seconds))
py
1a55a7256fb362a3683a8b644a9a75371e77a0a4
import numpy as np import matplotlib.pyplot as plt Nx = 81 Nz = 81 Lx = 91.42 Lz = 100.0 xn = np.linspace(0,Lx,Nx) Liton = -0.8*Lz + 0.02*Lz*np.cos(np.pi*xn/Lx) Liton = Liton*1000 f = open("interfaces_creep.txt","w") f.write("C 1.0 1.0\n") f.write("rho -1000. 0.\n") f.write("H 0.0E-12 0.0E-12\n") f.write("A 0.0 0.0\n") f.write("n 0.0 0.0\n") f.write("Q 0.0 0.0\n") f.write("V 0.0 0.0\n") for i in np.arange(Nx): f.write("%lf\n"%(Liton[i])) f.close()
py
1a55a8b015ce2b85f88ea05ea2f7d17aa6f4f07d
import json import re import time import typing import warnings import inspect import numpy as np import zmq from weakref import WeakSet import threading import copy import sys class DataSocket: """ Wrapper for ZMQ socket that sends and recieves dictionaries """ def __init__(self, context, port, type, debug, ip_address="127.0.0.1"): # request reply socket self._socket = context.socket(type) self._debug = debug # store these as wekrefs so that circular refs dont prevent garbage collection self._java_objects = WeakSet() # try: if type == zmq.PUSH: if debug: print("binding {}".format(port)) self._socket.bind("tcp://{}:{}".format(ip_address, port)) else: if debug: print("connecting {}".format(port)) self._socket.connect("tcp://{}:{}".format(ip_address, port)) # except Exception as e: # print(e.__traceback__) # raise Exception('Couldnt connect or bind to port {}'.format(port)) def _register_java_object(self, object): self._java_objects.add(object) def __del__(self): # make sure all shadow objects have signaled to Java side to release references before they shut down for java_object in self._java_objects: java_object._close() def _convert_np_to_python(self, d): """ recursively search dictionary and convert any values from numpy floats/ints to python floats/ints so they can be json serialized :return: """ if type(d) != dict: return for k, v in d.items(): if isinstance(v, dict): self._convert_np_to_python(v) elif type(v) == list: for e in v: self._convert_np_to_python(e) elif np.issubdtype(type(v), np.floating): d[k] = float(v) elif np.issubdtype(type(v), np.integer): d[k] = int(v) def _make_array_identifier(self, entry): """ make a string to replace bytes data or numpy array in message, which encode data type if numpy """ # make up a random 32 bit int as the identifier # TODO: change to simple counting identifier = np.random.randint(-(2 ** 31), 2 ** 31 - 1, 1, dtype=np.int32)[0] # '@{some_number}_{bytes_per_pixel}' # if its a numpy array, include bytes per pixel, otherwise just interpret it as raw byts return identifier, "@" + str(int(identifier)) + "_" + str( 0 if isinstance(entry, bytes) else entry.dtype.itemsize ) def _remove_bytes(self, bytes_data, structure): if isinstance(structure, list): for i, entry in enumerate(structure): if isinstance(entry, bytes) or isinstance(entry, np.ndarray): int_id, str_id = self._make_array_identifier(entry) structure[i] = str_id bytes_data.append((int_id, entry)) elif isinstance(entry, list) or isinstance(entry, dict): self._remove_bytes(bytes_data, entry) elif isinstance(structure, dict): for key in structure.keys(): entry = structure[key] if isinstance(entry, bytes) or isinstance(entry, np.ndarray): int_id, str_id = self._make_array_identifier(entry) structure[key] = str_id bytes_data.append((int_id, entry)) elif isinstance(entry, list) or isinstance(entry, dict): self._remove_bytes(bytes_data, structure[key]) def send(self, message, timeout=0): if message is None: message = {} # make sure any np types convert to python types so they can be json serialized self._convert_np_to_python(message) # Send binary data in seperate messages so it doesnt need to be json serialized bytes_data = [] self._remove_bytes(bytes_data, message) message_string = json.dumps(message) if self._debug: print("DEBUG, sending: {}".format(message)) # convert keys to byte array key_vals = [(identifier.tobytes(), value) for identifier, value in bytes_data] message_parts = [bytes(message_string, "iso-8859-1")] + [ item for keyval in key_vals for item in keyval ] if timeout == 0: self._socket.send_multipart(message_parts) else: start = time.time() while 1000 * (time.time() - start) < timeout: try: self._socket.send_multipart(message_parts, flags=zmq.NOBLOCK) return True except zmq.ZMQError: pass # ignore, keep trying return False def _replace_bytes(self, dict_or_list, hash, value): """ Replace placeholders for byte arrays in JSON message with their actual values """ if isinstance(dict_or_list, dict): for key in dict_or_list: if isinstance(dict_or_list[key], str) and "@" in dict_or_list[key]: hash_in_message = int( dict_or_list[key].split("@")[1], 16 ) # interpret hex hash string if hash == hash_in_message: dict_or_list[key] = value return elif isinstance(dict_or_list[key], list) or isinstance(dict_or_list[key], dict): self._replace_bytes(dict_or_list[key], hash, value) elif isinstance(dict_or_list, list): for i, entry in enumerate(dict_or_list): if isinstance(entry, str) and "@" in dict_or_list[key]: hash_in_message = int(entry.split("@")[1], 16) # interpret hex hash string if hash == hash_in_message: dict_or_list[i] = value return elif isinstance(entry, list) or isinstance(entry, dict): self._replace_bytes(entry, hash, value) def receive(self, timeout=0): if timeout == 0: reply = self._socket.recv_multipart() else: start = time.time() reply = None while 1000 * (time.time() - start) < timeout: try: reply = self._socket.recv_multipart(flags=zmq.NOBLOCK) if reply is not None: break except zmq.ZMQError: pass # ignore, keep trying if reply is None: return reply message = json.loads(reply[0].decode("iso-8859-1")) # replace any byte data placeholders with the byte data itself for i in np.arange(1, len(reply), 2): # messages come in pairs: first is hash, second it byte data identity_hash = int.from_bytes(reply[i], byteorder=sys.byteorder) value = reply[i + 1] self._replace_bytes(message, identity_hash, value) if self._debug: print("DEBUG, recieved: {}".format(message)) self._check_exception(message) return message def _check_exception(self, response): if "type" in response and response["type"] == "exception": raise Exception(response["value"]) def close(self): self._socket.close() class Bridge: """ Create an object which acts as a client to a corresponding server running within micro-manager. This enables construction and interaction with arbitrary java objects """ _DEFAULT_PORT = 4827 _EXPECTED_ZMQ_SERVER_VERSION = "4.0.0" thread_local = threading.local() def __new__(cls, *args, **kwargs): """ Only one instance of Bridge per a thread """ if hasattr(Bridge.thread_local, "bridge"): return Bridge.thread_local.bridge else: return super(Bridge, cls).__new__(cls) def __init__( self, port=_DEFAULT_PORT, convert_camel_case=True, debug=False, ip_address="127.0.0.1" ): """ Parameters ---------- port : int The port on which the bridge operates convert_camel_case : bool If True, methods for Java objects that are passed across the bridge will have their names converted from camel case to underscores. i.e. class.methodName() becomes class.method_name() debug : bool If True print helpful stuff for debugging """ self._ip_address = ip_address if not hasattr(self, "_context"): Bridge._context = zmq.Context() if hasattr(self.thread_local, "bridge"): return self.thread_local.bridge = self # cache a thread-local version of the bridge self._convert_camel_case = convert_camel_case self._debug = debug self._master_socket = DataSocket( self._context, port, zmq.REQ, debug=debug, ip_address=self._ip_address ) self._master_socket.send({"command": "connect", "debug": debug}) self._class_factory = _JavaClassFactory() reply_json = self._master_socket.receive(timeout=500) if reply_json is None: raise TimeoutError( "Socket timed out after 500 milliseconds. Is Micro-Manager running and is the ZMQ server option enabled?" ) if reply_json["type"] == "exception": raise Exception(reply_json["message"]) if "version" not in reply_json: reply_json["version"] = "2.0.0" # before version was added if reply_json["version"] != self._EXPECTED_ZMQ_SERVER_VERSION: warnings.warn( "Version mistmatch between Java ZMQ server and Python client. " "\nJava ZMQ server version: {}\nPython client expected version: {}" "\n To fix, update to BOTH latest pycromanager and latest micro-manager nightly build".format( reply_json["version"], self._EXPECTED_ZMQ_SERVER_VERSION ) ) def get_class(self, serialized_object) -> typing.Type["JavaObjectShadow"]: return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case ) def construct_java_object(self, classpath, new_socket=False, args=None): """ Create a new instance of a an object on the Java side. Returns a Python "Shadow" of the object, which behaves just like the object on the Java side (i.e. same methods, fields). Methods of the object can be inferred at runtime using iPython autocomplete Parameters ---------- classpath : str Full classpath of the java object new_socket : bool If True, will create new java object on a new port so that blocking calls will not interfere with the bridges master port args : list list of arguments to the constructor, if applicable Returns ------- Python "Shadow" to the Java object """ if args is None: args = [] # classpath_minus_class = '.'.join(classpath.split('.')[:-1]) # query the server for constructors matching this classpath message = {"command": "get-constructors", "classpath": classpath} self._master_socket.send(message) constructors = self._master_socket.receive()["api"] methods_with_name = [m for m in constructors if m["name"] == classpath] if len(methods_with_name) == 0: raise Exception("No valid java constructor found with classpath {}".format(classpath)) valid_method_spec, deserialize_types = _check_method_args(methods_with_name, args) # Calling a constructor, rather than getting return from method message = { "command": "constructor", "classpath": classpath, "argument-types": valid_method_spec["arguments"], "argument-deserialization-types": deserialize_types, "arguments": _package_arguments(valid_method_spec, args), } if new_socket: message["new-port"] = True self._master_socket.send(message) serialized_object = self._master_socket.receive() if new_socket: socket = DataSocket( self._context, serialized_object["port"], zmq.REQ, ip_address=self._ip_address ) else: socket = self._master_socket return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case )(socket=socket, serialized_object=serialized_object, bridge=self) def _connect_push(self, port): """ Connect a push socket on the given port :param port: :return: """ return DataSocket( self._context, port, zmq.PUSH, debug=self._debug, ip_address=self._ip_address ) def _connect_pull(self, port): """ Connect to a pull socket on the given port :param port: :return: """ return DataSocket( self._context, port, zmq.PULL, debug=self._debug, ip_address=self._ip_address ) def get_magellan(self): """ return an instance of the Micro-Magellan API """ return self.construct_java_object("org.micromanager.magellan.api.MagellanAPI") def get_core(self): """ Connect to CMMCore and return object that has its methods :return: Python "shadow" object for micromanager core """ if hasattr(self, "core"): return getattr(self, "core") self.core = self.construct_java_object("mmcorej.CMMCore") return self.core def get_studio(self): """ return an instance of the Studio object that provides access to micro-manager Java APIs """ return self.construct_java_object("org.micromanager.Studio") class _JavaClassFactory: """ This class is responsible for generating subclasses of JavaObjectShadow. Each generated class is kept in a `dict`. If a given class has already been generate once it will be returns from the cache rather than re-generating it. """ def __init__(self): self.classes = {} def create( self, serialized_obj: dict, convert_camel_case: bool = True ) -> typing.Type["JavaObjectShadow"]: """Create a class (or return a class from the cache) based on the contents of `serialized_object` message.""" if serialized_obj["class"] in self.classes.keys(): # Return a cached class return self.classes[serialized_obj["class"]] else: # Generate a new class since it wasn't found in the cache. _java_class: str = serialized_obj["class"] python_class_name_translation = _java_class.replace( ".", "_" ) # Having periods in the name would be problematic. _interfaces = serialized_obj["interfaces"] static_attributes = {"_java_class": _java_class, "_interfaces": _interfaces} fields = {} # Create a dict of field names with getter and setter funcs. for field in serialized_obj["fields"]: fields[field] = property( fget=lambda instance, Field=field: instance._access_field(Field), fset=lambda instance, val, Field=field: instance._set_field(Field, val), ) methods = {} # Create a dict of methods for the class by name. methodSpecs = serialized_obj["api"] method_names = set([m["name"] for m in methodSpecs]) # parse method descriptions to make python stand ins for method_name in method_names: params, methods_with_name, method_name_modified = _parse_arg_names( methodSpecs, method_name, convert_camel_case ) return_type = methods_with_name[0]["return-type"] fn = lambda instance, *args, signatures_list=tuple( methods_with_name ): instance._translate_call(signatures_list, args) fn.__name__ = method_name_modified fn.__doc__ = "{}.{}: A dynamically generated Java method.".format( _java_class, method_name_modified ) sig = inspect.signature(fn) params = [ inspect.Parameter("self", inspect.Parameter.POSITIONAL_ONLY) ] + params # Add `self` as the first argument. return_type = ( _JAVA_TYPE_NAME_TO_PYTHON_TYPE[return_type] if return_type in _JAVA_TYPE_NAME_TO_PYTHON_TYPE else return_type ) fn.__signature__ = sig.replace(parameters=params, return_annotation=return_type) methods[method_name_modified] = fn newclass = type( # Dynamically create a class to shadow a java class. python_class_name_translation, # Name, based on the original java name (JavaObjectShadow,), # Inheritance { "__init__": lambda instance, socket, serialized_object, bridge: JavaObjectShadow.__init__( instance, socket, serialized_object, bridge ), **static_attributes, **fields, **methods, }, ) self.classes[_java_class] = newclass return newclass class JavaObjectShadow: """ Generic class for serving as a python interface for a micromanager class using a zmq server backend """ _interfaces = ( None # Subclasses should fill these out. This class should never be directly instantiated. ) _java_class = None def __init__(self, socket, serialized_object, bridge: Bridge): self._socket = socket self._hash_code = serialized_object["hash-code"] self._bridge = bridge # register objects with bridge so it can tell Java side to release them before socket shuts down socket._register_java_object(self) self._closed = False # atexit.register(self._close) def _close(self): if self._closed: return if not hasattr(self, "_hash_code"): return # constructor didnt properly finish, nothing to clean up on java side message = {"command": "destructor", "hash-code": self._hash_code} if self._bridge._debug: print("closing: {}".format(self)) self._socket.send(message) reply_json = self._socket.receive() if reply_json["type"] == "exception": raise Exception(reply_json["value"]) self._closed = True def __del__(self): """ Tell java side this object is garbage collected so it can do the same if needed """ self._close() def _access_field(self, name): """ Return a python version of the field with a given name :return: """ message = {"command": "get-field", "hash-code": self._hash_code, "name": name} self._socket.send(message) return self._deserialize(self._socket.receive()) def _set_field(self, name, value): """ Return a python version of the field with a given name :return: """ message = { "command": "set-field", "hash-code": self._hash_code, "name": name, "value": _serialize_arg(value), } self._socket.send(message) reply = self._deserialize(self._socket.receive()) def _translate_call(self, method_specs, fn_args: tuple): """ Translate to appropriate Java method, call it, and return converted python version of its result Parameters ---------- args : args[0] is list of dictionaries of possible method specifications kwargs : hold possible polymorphic args, or none """ # args that are none are placeholders to allow for polymorphism and not considered part of the spec # fn_args = [a for a in fn_args if a is not None] valid_method_spec, deserialize_types = _check_method_args(method_specs, fn_args) # args are good, make call through socket, casting the correct type if needed (e.g. int to float) message = { "command": "run-method", "hash-code": self._hash_code, "name": valid_method_spec["name"], "argument-types": valid_method_spec["arguments"], "argument-deserialization-types": deserialize_types, } message["arguments"] = _package_arguments(valid_method_spec, fn_args) self._socket.send(message) return self._deserialize(self._socket.receive()) def _deserialize(self, json_return): """ method_spec : info about the method that called it reply : bytes that represents return Returns ------- An appropriate python type of the converted value """ if json_return["type"] == "exception": raise Exception(json_return["value"]) elif json_return["type"] == "null": return None elif json_return["type"] == "primitive": return json_return["value"] elif json_return["type"] == "string": return json_return["value"] elif json_return["type"] == "list": return [self._deserialize(obj) for obj in json_return["value"]] elif json_return["type"] == "object": if json_return["class"] == "JSONObject": return json.loads(json_return["value"]) else: raise Exception("Unrecognized return class") elif json_return["type"] == "unserialized-object": # inherit socket from parent object return self._bridge.get_class(json_return)( socket=self._socket, serialized_object=json_return, bridge=self._bridge ) else: return deserialize_array(json_return) def deserialize_array(json_return): """ Convert a serialized java array to the appropriate numpy type Parameters ---------- json_return """ if json_return["type"] in ["byte-array", "int-array", "short-array", "float-array"]: decoded = json_return["value"] if json_return["type"] == "byte-array": return np.frombuffer(decoded, dtype="=u1").copy() elif json_return["type"] == "double-array": return np.frombuffer(decoded, dtype="=f8").copy() elif json_return["type"] == "int-array": return np.frombuffer(decoded, dtype="=u4").copy() elif json_return["type"] == "short-array": return np.frombuffer(decoded, dtype="=u2").copy() elif json_return["type"] == "float-array": return np.frombuffer(decoded, dtype="=f4").copy() def _package_arguments(valid_method_spec, fn_args): """ Serialize function arguments and also include description of their Java types Parameters ---------- valid_method_spec: fn_args : """ arguments = [] for arg_type, arg_val in zip(valid_method_spec["arguments"], fn_args): if isinstance(arg_val, JavaObjectShadow): arguments.append(_serialize_arg(arg_val)) elif _JAVA_TYPE_NAME_TO_PYTHON_TYPE[arg_type] is object: arguments.append(_serialize_arg(arg_val)) elif arg_val is None: arguments.append(_serialize_arg(arg_val)) elif isinstance(arg_val, np.ndarray): arguments.append(_serialize_arg(arg_val)) else: arguments.append(_serialize_arg(_JAVA_TYPE_NAME_TO_PYTHON_TYPE[arg_type](arg_val))) return arguments def _serialize_arg(arg): if arg is None: return None if type(arg) in [bool, str, int, float]: return arg # json handles serialization elif type(arg) == np.ndarray: return arg.tobytes() elif isinstance(arg, JavaObjectShadow): return {"hash-code": arg._hash_code} else: raise Exception("Unknown argumetn type") def _check_single_method_spec(method_spec, fn_args): """ Check if a single method specificiation is compatible with the arguments the function recieved Parameters ---------- method_spec : fn_args : """ if len(method_spec["arguments"]) != len(fn_args): return False for arg_java_type, arg_val in zip(method_spec["arguments"], fn_args): if isinstance(arg_val, JavaObjectShadow): if arg_java_type not in arg_val._interfaces: # check that it shadows object of the correct type return False elif type(arg_val) == np.ndarray: # For ND Arrays, need to make sure data types match if ( arg_java_type != "java.lang.Object" and arg_val.dtype.type != _JAVA_ARRAY_TYPE_NUMPY_DTYPE[arg_java_type] ): return False elif not any( [ isinstance(arg_val, acceptable_type) for acceptable_type in _JAVA_TYPE_NAME_TO_CASTABLE_PYTHON_TYPE[arg_java_type] ] ) and not ( arg_val is None and arg_java_type in _JAVA_NON_PRIMITIVES ): # could be null if its an object # if a type that gets converted return False return True def _check_method_args(method_specs, fn_args): """ Compare python arguments to java arguments to find correct function to call Parameters ---------- method_specs : fn_args : Returns ------- one of the method_specs that is valid """ valid_method_spec = None for method_spec in method_specs: if _check_single_method_spec(method_spec, fn_args): valid_method_spec = method_spec break if valid_method_spec is None: raise Exception( "Incorrect arguments. \nExpected {} \nGot {}".format( " or ".join([", ".join(method_spec["arguments"]) for method_spec in method_specs]), ", ".join([str(type(a)) for a in fn_args]), ) ) # subclass NDArrays to the appropriate data type so they dont get incorrectly reconstructed as objects valid_method_spec = copy.deepcopy(valid_method_spec) deserialize_types = [] for java_arg_class, python_arg_val in zip(valid_method_spec["arguments"], fn_args): if isinstance(python_arg_val, np.ndarray): deserialize_types.append( [ ja for ja, npdt in zip( _JAVA_ARRAY_TYPE_NUMPY_DTYPE.keys(), _JAVA_ARRAY_TYPE_NUMPY_DTYPE.values() ) if python_arg_val.dtype.type == npdt ][0] ) else: deserialize_types.append(java_arg_class) return valid_method_spec, deserialize_types def _parse_arg_names(methods, method_name, convert_camel_case): method_name_modified = ( _camel_case_2_snake_case(method_name) if convert_camel_case else method_name ) # all methods with this name and different argument lists methods_with_name = [m for m in methods if m["name"] == method_name] min_required_args = ( 0 if len(methods_with_name) == 1 and len(methods_with_name[0]["arguments"]) == 0 else min([len(m["arguments"]) for m in methods_with_name]) ) # sort with largest number of args last so lambda at end gets max num args methods_with_name.sort(key=lambda val: len(val["arguments"])) method = methods_with_name[-1] # We only need to evaluate the overload with the most arguments. params = [] unique_argument_names = [] for arg_index, typ in enumerate(method["arguments"]): hint = _CLASS_NAME_MAPPING[typ] if typ in _CLASS_NAME_MAPPING else "object" python_type = ( _JAVA_TYPE_NAME_TO_PYTHON_TYPE[typ] if typ in _JAVA_TYPE_NAME_TO_PYTHON_TYPE else typ ) if hint in unique_argument_names: # append numbers to end so arg hints have unique names i = 1 while hint + str(i) in unique_argument_names: i += 1 arg_name = hint + str(i) else: arg_name = hint unique_argument_names.append(arg_name) # this is how overloading is handled for now, by making default arguments as none, but # it might be better to explicitly compare argument types if arg_index >= min_required_args: default_arg_value = None else: default_arg_value = inspect.Parameter.empty params.append( inspect.Parameter( name=arg_name, kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, default=default_arg_value, annotation=python_type, ) ) return params, methods_with_name, method_name_modified def _camel_case_2_snake_case(name): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() _CLASS_NAME_MAPPING = { "boolean": "boolean", "byte[]": "uint8array", "double": "float", "double[]": "float64_array", "float": "float", "int": "int", "int[]": "uint32_array", "java.lang.String": "string", "long": "int", "short": "int", "void": "void", } _JAVA_ARRAY_TYPE_NUMPY_DTYPE = { "byte[]": np.uint8, "short[]": np.uint16, "double[]": np.float64, "int[]": np.int32, } _JAVA_TYPE_NAME_TO_PYTHON_TYPE = { "boolean": bool, "double": float, "float": float, "byte[]": np.ndarray, "short[]": np.ndarray, "double[]": np.ndarray, "int[]": np.ndarray, "int": int, "java.lang.String": str, "long": int, "short": int, "char": int, "byte": int, "void": None, "java.lang.Object": object, } # type conversions that allow for autocasting _JAVA_TYPE_NAME_TO_CASTABLE_PYTHON_TYPE = { "boolean": {bool}, "byte[]": {np.ndarray}, "double": {float, int}, "double[]": {np.ndarray}, "float": {float}, "int": {int}, "int[]": {np.ndarray}, "java.lang.String": {str}, "long": {int}, "short": {int}, "char": {int}, "byte": {int}, "void": {None}, "java.lang.Object": {object}, } _JAVA_NON_PRIMITIVES = {"byte[]", "double[]", "int[]", "java.lang.String", "java.lang.Object"} if __name__ == "__main__": # Test basic bridge operations import traceback b = Bridge() try: s = b.get_studio() except: traceback.print_exc() try: c = b.get_core() except: traceback.print_exc() a = 1
py
1a55a8f14f940df08a1c1818762dd1a3d8b0fda6
# jwt.py '''JWT generation logic''' from flask import abort from flask_jwt_extended import (create_access_token, create_refresh_token) from .models import User import datetime from .hashing import verify_password def user_gen_jwt(username, password='', refresh=False): ''' Main JWT dispatching function. Checks incoming username data and checks if user exists in Database. Args: username (str): Username string `email` that will be queried into DB [password (str)]: Password string unhashed to output JWT with increased security refresh (bool): Whether return as refresh token or not Raises: TypeError, Abort 401: Failed username query Returns: access_token (str): JWT session key with 3600min life-span [refresh_token (str)]: JWT refresh session key, returned only if refresh==True ''' aux = User.query.filter_by(username=username).first() if aux and verify_password(aux.password, password): if refresh: refresh_token = create_refresh_token(identity=username) return refresh_token access_token = create_access_token(identity=username) return access_token elif aux and password == '': access_token = create_access_token(identity=username) return access_token else: abort(401)
py
1a55aa535153a04ee310091b75d2361f01b205d7
from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files class FCoEGSNNNN(Base): __slots__ = () _SDM_NAME = 'fCoEGSNNNN' _SDM_ATT_MAP = { 'FcoeHeaderVersion': 'fCoEGSNNNN.header.fcoeHeader.version-1', 'FcoeHeaderReserved': 'fCoEGSNNNN.header.fcoeHeader.reserved-2', 'FcoeHeaderESOF': 'fCoEGSNNNN.header.fcoeHeader.eSOF-3', 'DeviceDataFramesDeviceDataInfo': 'fCoEGSNNNN.header.fcHeader.rCTL.deviceDataFrames.deviceDataInfo-4', 'RCTLReserved': 'fCoEGSNNNN.header.fcHeader.rCTL.reserved-5', 'ExtendedLinkServicesInfo': 'fCoEGSNNNN.header.fcHeader.rCTL.extendedLinkServices.info-6', 'Fc4LinkDataInfo': 'fCoEGSNNNN.header.fcHeader.rCTL.fc4LinkData.info-7', 'VideoDataInfo': 'fCoEGSNNNN.header.fcHeader.rCTL.videoData.info-8', 'ExtendedHeaderInfo': 'fCoEGSNNNN.header.fcHeader.rCTL.extendedHeader.info-9', 'BasicLinkServicesInfo': 'fCoEGSNNNN.header.fcHeader.rCTL.basicLinkServices.info-10', 'LinkControlFramesInfo': 'fCoEGSNNNN.header.fcHeader.rCTL.linkControlFrames.info-11', 'ExtendedRoutingInfo': 'fCoEGSNNNN.header.fcHeader.rCTL.extendedRouting.info-12', 'FcHeaderDstId': 'fCoEGSNNNN.header.fcHeader.dstId-13', 'FcHeaderCsCTLPriority': 'fCoEGSNNNN.header.fcHeader.csCTLPriority-14', 'FcHeaderSrcId': 'fCoEGSNNNN.header.fcHeader.srcId-15', 'FcHeaderType': 'fCoEGSNNNN.header.fcHeader.type-16', 'FCTLCustom': 'fCoEGSNNNN.header.fcHeader.fCTL.custom-17', 'BuildFCTLExchangeContext': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.exchangeContext-18', 'BuildFCTLSequenceContext': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.sequenceContext-19', 'BuildFCTLFirstSequence': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.firstSequence-20', 'BuildFCTLLastSequence': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.lastSequence-21', 'BuildFCTLEndSequence': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.endSequence-22', 'BuildFCTLEndConnection': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.endConnection-23', 'BuildFCTLCsCTLPriority': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.csCTLPriority-24', 'BuildFCTLSequenceInitiative': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.sequenceInitiative-25', 'BuildFCTLFcXIDReassigned': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.fcXIDReassigned-26', 'BuildFCTLFcInvalidateXID': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.fcInvalidateXID-27', 'BuildFCTLAckForm': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.ackForm-28', 'BuildFCTLFcDataCompression': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.fcDataCompression-29', 'BuildFCTLFcDataEncryption': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.fcDataEncryption-30', 'BuildFCTLRetransmittedSequence': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.retransmittedSequence-31', 'BuildFCTLUnidirectionalTransmit': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.unidirectionalTransmit-32', 'BuildFCTLContinueSeqCondition': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.continueSeqCondition-33', 'BuildFCTLAbortSeqCondition': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.abortSeqCondition-34', 'BuildFCTLRelativeOffsetPresent': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.relativeOffsetPresent-35', 'BuildFCTLExchangeReassembly': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.exchangeReassembly-36', 'BuildFCTLFillBytes': 'fCoEGSNNNN.header.fcHeader.fCTL.buildFCTL.fillBytes-37', 'FcHeaderSeqID': 'fCoEGSNNNN.header.fcHeader.seqID-38', 'FcHeaderDfCTL': 'fCoEGSNNNN.header.fcHeader.dfCTL-39', 'FcHeaderSeqCNT': 'fCoEGSNNNN.header.fcHeader.seqCNT-40', 'FcHeaderOxID': 'fCoEGSNNNN.header.fcHeader.oxID-41', 'FcHeaderRxID': 'fCoEGSNNNN.header.fcHeader.rxID-42', 'FcHeaderParameter': 'fCoEGSNNNN.header.fcHeader.parameter-43', 'FcCTRevision': 'fCoEGSNNNN.header.fcCT.revision-44', 'FcCTInId': 'fCoEGSNNNN.header.fcCT.inId-45', 'FcCTGsType': 'fCoEGSNNNN.header.fcCT.gsType-46', 'FcCTGsSubtype': 'fCoEGSNNNN.header.fcCT.gsSubtype-47', 'FcCTOptions': 'fCoEGSNNNN.header.fcCT.options-48', 'FcCTReserved': 'fCoEGSNNNN.header.fcCT.reserved-49', 'DNSOpcode': 'fCoEGSNNNN.header.dNS.opcode-50', 'DNSMaxsize': 'fCoEGSNNNN.header.dNS.maxsize-51', 'DNSReserved': 'fCoEGSNNNN.header.dNS.reserved-52', 'DNSNodeName': 'fCoEGSNNNN.header.dNS.nodeName-53', 'FcCRCAutoCRC': 'fCoEGSNNNN.header.fcCRC.autoCRC-54', 'FcCRCGenerateBadCRC': 'fCoEGSNNNN.header.fcCRC.generateBadCRC-55', 'FcTrailerEEOF': 'fCoEGSNNNN.header.fcTrailer.eEOF-56', 'FcTrailerReserved': 'fCoEGSNNNN.header.fcTrailer.reserved-57', } def __init__(self, parent, list_op=False): super(FCoEGSNNNN, self).__init__(parent, list_op) @property def FcoeHeaderVersion(self): """ Display Name: Version Default Value: 0 Value Format: decimal """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcoeHeaderVersion'])) @property def FcoeHeaderReserved(self): """ Display Name: Reserved Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcoeHeaderReserved'])) @property def FcoeHeaderESOF(self): """ Display Name: E-SOF Default Value: 54 Value Format: decimal Available enum values: SOFf - Fabric, 40, SOFi4 - Initiate Class 4, 41, SOFi2 - Initiate Class 2, 45, SOFi3 - Initiate Class 3, 46, SOFn4 - Normal Class 4, 49, SOFn2 - Normal Class 2, 53, SOFn3 - Normal Class 3, 54, SOFc4 - Connect Class 4, 57, SOFn1 - Normal Class 1 or 6, 250 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcoeHeaderESOF'])) @property def DeviceDataFramesDeviceDataInfo(self): """ Display Name: Information Default Value: 0 Value Format: decimal Available enum values: Uncategorized Information, 0, Solicited Data, 1, Unsolicited Control, 2, Solicited Control, 3, Unsolicited Data, 4, Data Descriptor, 5, Unsolicited Command, 6, Command Status, 7 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['DeviceDataFramesDeviceDataInfo'])) @property def RCTLReserved(self): """ Display Name: Reserved Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['RCTLReserved'])) @property def ExtendedLinkServicesInfo(self): """ Display Name: Information Default Value: 33 Value Format: decimal Available enum values: Solicited Data, 32, Request, 33, Reply, 34 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ExtendedLinkServicesInfo'])) @property def Fc4LinkDataInfo(self): """ Display Name: Information Default Value: 48 Value Format: decimal Available enum values: Uncategorized Information, 48, Solicited Data, 49, Unsolicited Control, 50, Solicited Control, 51, Unsolicited Data, 52, Data Descriptor, 53, Unsolicited Command, 54, Command Status, 55 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['Fc4LinkDataInfo'])) @property def VideoDataInfo(self): """ Display Name: Information Default Value: 68 Value Format: decimal Available enum values: Unsolicited Data, 68 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['VideoDataInfo'])) @property def ExtendedHeaderInfo(self): """ Display Name: Information Default Value: 80 Value Format: decimal Available enum values: Virtual Fabric Tagging Header, 80, Inter Fabric Routing Header, 81, Encapsulation Header, 82 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ExtendedHeaderInfo'])) @property def BasicLinkServicesInfo(self): """ Display Name: Information Default Value: 128 Value Format: decimal Available enum values: No Operation, 128, Abort Sequence, 129, Remove Connection, 130, Basic Accept, 132, Basic Reject, 133, Dedicated Connection Preempted, 134 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BasicLinkServicesInfo'])) @property def LinkControlFramesInfo(self): """ Display Name: Information Default Value: 192 Value Format: decimal Available enum values: Acknowledge_1, 128, Acknowledge_0, 129, Nx Port Reject, 130, Fabric Reject, 131, Nx Port Busy, 132, Fabric Busy to Data Frame, 133, Fabric Busy to Link Control Frame, 134, Link Credit Reset, 135, Notify, 136, End, 137 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['LinkControlFramesInfo'])) @property def ExtendedRoutingInfo(self): """ Display Name: Information Default Value: 240 Value Format: decimal Available enum values: Vendor Unique, 240 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['ExtendedRoutingInfo'])) @property def FcHeaderDstId(self): """ Display Name: Destination ID Default Value: 0 Value Format: fCID """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderDstId'])) @property def FcHeaderCsCTLPriority(self): """ Display Name: CS_CTL/Priority Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderCsCTLPriority'])) @property def FcHeaderSrcId(self): """ Display Name: Source ID Default Value: 0 Value Format: fCID """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderSrcId'])) @property def FcHeaderType(self): """ Display Name: Type Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderType'])) @property def FCTLCustom(self): """ Display Name: Custom Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FCTLCustom'])) @property def BuildFCTLExchangeContext(self): """ Display Name: Exchange Context Default Value: 0 Value Format: decimal Available enum values: Originator, 0, Receipient, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLExchangeContext'])) @property def BuildFCTLSequenceContext(self): """ Display Name: Sequence Context Default Value: 0 Value Format: decimal Available enum values: Initiator, 0, Receipient, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLSequenceContext'])) @property def BuildFCTLFirstSequence(self): """ Display Name: First Sequence Default Value: 0 Value Format: decimal Available enum values: Other, 0, First, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLFirstSequence'])) @property def BuildFCTLLastSequence(self): """ Display Name: Last Sequence Default Value: 0 Value Format: decimal Available enum values: Other, 0, Last, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLLastSequence'])) @property def BuildFCTLEndSequence(self): """ Display Name: End Sequence Default Value: 0 Value Format: decimal Available enum values: Other, 0, Last, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLEndSequence'])) @property def BuildFCTLEndConnection(self): """ Display Name: End Connection Default Value: 0 Value Format: decimal Available enum values: Alive, 0, Pending, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLEndConnection'])) @property def BuildFCTLCsCTLPriority(self): """ Display Name: CS_CTL/Priority Default Value: 0 Value Format: decimal Available enum values: CS_CTL, 0, Priority, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLCsCTLPriority'])) @property def BuildFCTLSequenceInitiative(self): """ Display Name: Sequence Initiative Default Value: 0 Value Format: decimal Available enum values: Hold, 0, Transfer, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLSequenceInitiative'])) @property def BuildFCTLFcXIDReassigned(self): """ Display Name: FC XID Reassigned Default Value: 0 Value Format: decimal Available enum values: No, 0, Yes, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLFcXIDReassigned'])) @property def BuildFCTLFcInvalidateXID(self): """ Display Name: FC Invalidate XID Default Value: 0 Value Format: decimal Available enum values: No, 0, Yes, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLFcInvalidateXID'])) @property def BuildFCTLAckForm(self): """ Display Name: ACK_Form Default Value: 0 Value Format: decimal Available enum values: No assistance provided, 0, ACK_1 Required, 1, reserved, 2, Ack_0 Required, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLAckForm'])) @property def BuildFCTLFcDataCompression(self): """ Display Name: FC Data Compression Default Value: 0 Value Format: decimal Available enum values: No, 0, Yes, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLFcDataCompression'])) @property def BuildFCTLFcDataEncryption(self): """ Display Name: FC Data Encryption Default Value: 0 Value Format: decimal Available enum values: No, 0, Yes, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLFcDataEncryption'])) @property def BuildFCTLRetransmittedSequence(self): """ Display Name: Retransmitted Sequence Default Value: 0 Value Format: decimal Available enum values: Original, 0, Retransmission, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLRetransmittedSequence'])) @property def BuildFCTLUnidirectionalTransmit(self): """ Display Name: Unidirectional Transmit Default Value: 0 Value Format: decimal Available enum values: Bi-directional, 0, Unidirectional, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLUnidirectionalTransmit'])) @property def BuildFCTLContinueSeqCondition(self): """ Display Name: Continue Sequence Condition Default Value: 0 Value Format: decimal Available enum values: No information, 0, Sequence to follow-immediately, 1, Squence to follow-soon, 2, Sequence to follow-delayed, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLContinueSeqCondition'])) @property def BuildFCTLAbortSeqCondition(self): """ Display Name: Abort Sequence Condition Default Value: 0 Value Format: decimal Available enum values: 0x00, 0, 0x01, 1, 0x10, 2, 0x11, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLAbortSeqCondition'])) @property def BuildFCTLRelativeOffsetPresent(self): """ Display Name: Relative Offset Present Default Value: 0 Value Format: decimal Available enum values: Parameter field defined, 0, Relative offset, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLRelativeOffsetPresent'])) @property def BuildFCTLExchangeReassembly(self): """ Display Name: Exchange Reassembly Default Value: 0 Value Format: decimal Available enum values: off, 0, on, 1 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLExchangeReassembly'])) @property def BuildFCTLFillBytes(self): """ Display Name: Fill Bytes Default Value: 0 Value Format: decimal Available enum values: 0 bytes of fill, 0, 1 bytes of fill, 1, 2 bytes of fill, 2, 3 bytes of fill, 3 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['BuildFCTLFillBytes'])) @property def FcHeaderSeqID(self): """ Display Name: SEQ_ID Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderSeqID'])) @property def FcHeaderDfCTL(self): """ Display Name: DF_CTL Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderDfCTL'])) @property def FcHeaderSeqCNT(self): """ Display Name: SEQ_CNT Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderSeqCNT'])) @property def FcHeaderOxID(self): """ Display Name: OX_ID Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderOxID'])) @property def FcHeaderRxID(self): """ Display Name: RX_ID Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderRxID'])) @property def FcHeaderParameter(self): """ Display Name: Parameter Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcHeaderParameter'])) @property def FcCTRevision(self): """ Display Name: Revision Default Value: 0x01 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcCTRevision'])) @property def FcCTInId(self): """ Display Name: IN_ID Default Value: 0x000000 Value Format: fCID """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcCTInId'])) @property def FcCTGsType(self): """ Display Name: GS_Type Default Value: 252 Value Format: decimal Available enum values: Event Service, 244, Key Distribution Service, 247, Alias Service, 248, Management Service, 250, Time Service, 251, Directory Service, 252 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcCTGsType'])) @property def FcCTGsSubtype(self): """ Display Name: GS_Subtype Default Value: 0x02 Value Format: hex Available enum values: X.500 Server (Obsolete), 1, Name Server, 2, IP Address Server (Obsolete), 3, FC-4 specific Servers, 128 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcCTGsSubtype'])) @property def FcCTOptions(self): """ Display Name: Options Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcCTOptions'])) @property def FcCTReserved(self): """ Display Name: Reserved Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcCTReserved'])) @property def DNSOpcode(self): """ Display Name: Command/Response Code Default Value: 313 Value Format: decimal Available enum values: GA_NXT, 256, GID_A, 257, GPN_ID, 274, GNN_ID, 275, GCS_ID, 276, GFT_ID, 279, GSPN_ID, 280, GPT_ID, 282, GIPP_ID, 283, GFPN_ID, 284, GHA_ID, 285, GFD_ID, 286, GFF_ID, 287, GID_PN, 289, GIPP_PN, 299, GID_NN, 305, GPN_NN, 306, GIP_NN, 309, GIPA_NN, 310, GSNN_NN, 313, GNN_IP, 339, GIPA_IP, 342, GID_FT, 369, GPN_FT, 370, GNN_FT, 371, GNN_FF, 384, GPN_FF, 385, GPN_SDFCP, 386, GID_PT, 417, GID_IPP, 433, GPN_IPP, 434, GID_FPN, 449, GPPN_ID, 465, GID_FF, 497, GID_DP, 498, RPN_ID, 530, RNN_ID, 531, RCS_ID, 532, RFT_ID, 535, RSPN_ID, 536, RPT_ID, 538, RIPP_ID, 539, RHA_ID, 541, RFD_ID, 542, RFF_ID, 543, RIP_NN, 565, RIPA_NN, 566, RSNN_NN, 569, DA_ID, 768, SSB, 32761, SSE, 32762 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['DNSOpcode'])) @property def DNSMaxsize(self): """ Display Name: Maximum/Residual Size Default Value: 0x0000 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['DNSMaxsize'])) @property def DNSReserved(self): """ Display Name: Reserved Default Value: 0x00 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['DNSReserved'])) @property def DNSNodeName(self): """ Display Name: Node Name Default Value: 0x2000000000000001 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['DNSNodeName'])) @property def FcCRCAutoCRC(self): """ Display Name: Auto Default Value: 0 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcCRCAutoCRC'])) @property def FcCRCGenerateBadCRC(self): """ Display Name: Bad CRC Default Value: 0x01 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcCRCGenerateBadCRC'])) @property def FcTrailerEEOF(self): """ Display Name: E-EOF Default Value: 65 Value Format: decimal Available enum values: EOFn - Normal, 65, EOFt - Terminate, 66, EOFrt - Remove Terminate, 68, EOFni - Normal Invalid, 73, EOFrti - Remove Terminate Invalid, 79, EOFa - Abort, 80 """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcTrailerEEOF'])) @property def FcTrailerReserved(self): """ Display Name: Reserved Default Value: 0x000000 Value Format: hex """ from ixnetwork_restpy.multivalue import Multivalue return Multivalue(self, self._get_attribute(self._SDM_ATT_MAP['FcTrailerReserved'])) def add(self): return self._create(self._map_locals(self._SDM_ATT_MAP, locals()))
py
1a55aab051b3f8e83d75cd37e407bb5565d8dccf
# pylint: disable=no-self-use,invalid-name import pytest from allennlp.common import Params from allennlp.common.checks import ConfigurationError from allennlp.data.iterators import BucketIterator from allennlp.tests.data.iterators.basic_iterator_test import IteratorTest class TestBucketIterator(IteratorTest): # pylint: disable=protected-access def test_create_batches_groups_correctly(self): iterator = BucketIterator(batch_size=2, padding_noise=0, sorting_keys=[('text', 'num_tokens')]) iterator.index_with(self.vocab) batches = list(iterator._create_batches(self.instances, shuffle=False)) grouped_instances = [batch.instances for batch in batches] assert grouped_instances == [[self.instances[4], self.instances[2]], [self.instances[0], self.instances[1]], [self.instances[3]]] def test_create_batches_groups_correctly_with_max_instances(self): # If we knew all the instances, the correct order is 4 -> 2 -> 0 -> 1 -> 3. # Here max_instances_in_memory is 3, so we load instances [0, 1, 2] # and then bucket them by size into batches of size 2 to get [2, 0] -> [1]. # Then we load the remaining instances and bucket them by size to get [4, 3]. iterator = BucketIterator(batch_size=2, padding_noise=0, sorting_keys=[('text', 'num_tokens')], max_instances_in_memory=3) iterator.index_with(self.vocab) for test_instances in (self.instances, self.lazy_instances): batches = list(iterator._create_batches(test_instances, shuffle=False)) grouped_instances = [batch.instances for batch in batches] assert grouped_instances == [[self.instances[2], self.instances[0]], [self.instances[1]], [self.instances[4], self.instances[3]]] def test_biggest_batch_first_works(self): iterator = BucketIterator(batch_size=2, padding_noise=0, sorting_keys=[('text', 'num_tokens')], biggest_batch_first=True) iterator.index_with(self.vocab) batches = list(iterator._create_batches(self.instances, shuffle=False)) grouped_instances = [batch.instances for batch in batches] assert grouped_instances == [[self.instances[3]], [self.instances[0], self.instances[1]], [self.instances[4], self.instances[2]]] def test_from_params(self): # pylint: disable=protected-access params = Params({}) with pytest.raises(ConfigurationError): iterator = BucketIterator.from_params(params) sorting_keys = [("s1", "nt"), ("s2", "nt2")] params['sorting_keys'] = sorting_keys iterator = BucketIterator.from_params(params) assert iterator._sorting_keys == sorting_keys assert iterator._padding_noise == 0.1 assert not iterator._biggest_batch_first assert iterator._batch_size == 32 assert not iterator._skip_smaller_batches params = Params({ "sorting_keys": sorting_keys, "padding_noise": 0.5, "biggest_batch_first": True, "batch_size": 100, "skip_smaller_batches": True }) iterator = BucketIterator.from_params(params) assert iterator._sorting_keys == sorting_keys assert iterator._padding_noise == 0.5 assert iterator._biggest_batch_first assert iterator._batch_size == 100 assert iterator._skip_smaller_batches def test_bucket_iterator_maximum_samples_per_batch(self): iterator = BucketIterator( batch_size=3, padding_noise=0, sorting_keys=[('text', 'num_tokens')], maximum_samples_per_batch=['num_tokens', 9] ) iterator.index_with(self.vocab) batches = list(iterator._create_batches(self.instances, shuffle=False)) stats = self.get_batches_stats(batches) # ensure all instances are in a batch assert stats['total_instances'] == len(self.instances) # ensure correct batch sizes assert stats['batch_lengths'] == [2, 2, 1] # ensure correct sample sizes (<= 9) assert stats['sample_sizes'] == [6, 8, 9] def test_maximum_samples_per_batch_packs_tightly(self): token_counts = [10, 4, 3] test_instances = self.create_instances_from_token_counts(token_counts) iterator = BucketIterator( batch_size=3, padding_noise=0, sorting_keys=[('text', 'num_tokens')], maximum_samples_per_batch=['num_tokens', 11] ) iterator.index_with(self.vocab) batches = list(iterator._create_batches(test_instances, shuffle=False)) stats = self.get_batches_stats(batches) # ensure all instances are in a batch assert stats['total_instances'] == len(test_instances) # ensure correct batch sizes assert stats['batch_lengths'] == [2, 1] # ensure correct sample sizes (<= 11) assert stats['sample_sizes'] == [8, 10] def test_skip_smaller_batches_works(self): iterator = BucketIterator(batch_size=2, padding_noise=0, sorting_keys=[('text', 'num_tokens')], skip_smaller_batches=True) iterator.index_with(self.vocab) batches = list(iterator._create_batches(self.instances, shuffle=False)) stats = self.get_batches_stats(batches) # all batches have length batch_size assert all(batch_len == 2 for batch_len in stats['batch_lengths']) # we should have lost one instance by skipping the last batch assert stats['total_instances'] == len(self.instances) - 1
py
1a55ab291359659641e7de041c2c893c7fc5a6ae
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import satchmo_utils.fields class Migration(migrations.Migration): dependencies = [ ('product', '0001_initial'), ] operations = [ migrations.CreateModel( name='CustomProduct', fields=[ ('product', models.OneToOneField(primary_key=True, serialize=False, to='product.Product', verbose_name='Product')), ('downpayment', models.IntegerField(default=20, verbose_name='Percent Downpayment')), ('deferred_shipping', models.BooleanField(default=False, help_text='Do not charge shipping at checkout for this item.', verbose_name='Deferred Shipping')), ('option_group', models.ManyToManyField(to='product.OptionGroup', verbose_name='Option Group', blank=True)), ], options={ 'verbose_name': 'Custom Product', 'verbose_name_plural': 'Custom Products', }, bases=(models.Model,), ), migrations.CreateModel( name='CustomTextField', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=40, verbose_name='Custom field name')), ('slug', models.SlugField(help_text='Auto-generated from name if blank', verbose_name='Slug', blank=True)), ('sort_order', models.IntegerField(default=0, help_text='The display order for this group.', verbose_name='Sort Order')), ('price_change', satchmo_utils.fields.CurrencyField(null=True, verbose_name='Price Change', max_digits=14, decimal_places=6, blank=True)), ('products', models.ForeignKey(related_name='custom_text_fields', verbose_name='Custom Fields', to='custom.CustomProduct')), ], options={ 'ordering': ('sort_order',), }, bases=(models.Model,), ), migrations.CreateModel( name='CustomTextFieldTranslation', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('languagecode', models.CharField(max_length=10, verbose_name='language', choices=[(b'en', b'English')])), ('name', models.CharField(max_length=255, verbose_name='Translated Custom Text Field Name')), ('version', models.IntegerField(default=1, verbose_name='version')), ('active', models.BooleanField(default=True, verbose_name='active')), ('customtextfield', models.ForeignKey(related_name='translations', to='custom.CustomTextField')), ], options={ 'ordering': ('customtextfield', 'name', 'languagecode'), 'verbose_name': 'CustomTextField Translation', 'verbose_name_plural': 'CustomTextField Translations', }, bases=(models.Model,), ), migrations.AlterUniqueTogether( name='customtextfieldtranslation', unique_together=set([('customtextfield', 'languagecode', 'version')]), ), migrations.AlterUniqueTogether( name='customtextfield', unique_together=set([('slug', 'products')]), ), ]
py
1a55ab42ec4b153f851c2eda9978e41ae0db72b1
#!/usr/bin/env python #Copyright (C) 2009-2011 by Benedict Paten ([email protected]) # #Released under the MIT license, see LICENSE.txt import unittest import sys import os from sonLib.bioio import getLogLevelString from sonLib.bioio import parseSuiteTestOptions from sonLib.bioio import system class TestCase(unittest.TestCase): def testCuTest(self): system("matchingAndOrderingTests %s" % getLogLevelString()) def main(): parseSuiteTestOptions() sys.argv = sys.argv[:1] unittest.main() if __name__ == '__main__': main()
py
1a55ab7ff6d6480b3d3d0a155f34d30efc08b1c4
# Copyright 2018 The Fuego Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import intersection import pytest import numpy as np def test_slope_intercept_90_degrees(): coord = intersection.slope_and_intercept(45,135,5,-5,5,5) assert np.all(coord == [0,0]) def test_slope_intercept_45_degrees(): coord = intersection.slope_and_intercept(45,90,5,2,5,5) assert np.all(coord == [2,2]) def test_slope_intercept_90_degrees_opp(): coord = intersection.slope_and_intercept(135,45,5,-5,-5,-5) assert np.all(coord == [0,0]) def test_slope_intercept_45_degrees_opp(): coord = intersection.slope_and_intercept(45,90,-5,-2,-5,-5) assert np.all(coord == [-2,-2])
py
1a55abb42c7b47812d11dc55bb91f57712e48365
"""Modules for multi-modal datasets PCME Copyright (c) 2021-present NAVER Corp. MIT license """ from datasets._dataloader import prepare_coco_dataloaders, prepare_cub_dataloaders from datasets.vocab import Vocabulary __all__ = [ 'Vocabulary', 'prepare_coco_dataloaders', 'prepare_cub_dataloaders', ]
py
1a55abb86b8a180f6a3927b41c74fce74e8ef80f
# Copyright 2013-2020 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class PyTetoolkit(PythonPackage): """TEToolkit is a software package that utilizes both unambiguously (uniquely) and ambiguously (multi-) mapped reads to perform differential enrichment analyses from high throughput sequencing experiments.""" homepage = "http://hammelllab.labsites.cshl.edu/software" pypi = "TEToolkit/TEToolkit-1.5.1.tar.gz" version('2.0.3', sha256='1d0f5928b30c6cd9dbef8e092ae0c11e9e707faf92a19af8eed3e360da7d4e46') version('1.5.1', sha256='22c13ca45bccc89e9d9bf48d59ae6db1fa4c634def64fc56ba9bffd23aa689ac') depends_on('py-setuptools') depends_on('[email protected]:', type=('build', 'run')) depends_on('py-pysam', type=('build', 'run')) depends_on('r-deseq', when='@:1.5.1', type=('build', 'run')) depends_on('r-deseq2', when='@2.0.0:', type=('build', 'run'))
py
1a55abe6bbde9010182f3e8862220d947373edff
#import copy #from PhysicsTools.PatAlgos.tools.helpers import * # # Tracking # from RecoEgamma.EgammaElectronProducers.ecalDrivenElectronSeeds_cfi import * uncleanedOnlyElectronSeeds = ecalDrivenElectronSeeds.clone( barrelSuperClusters = cms.InputTag("uncleanedOnlyCorrectedHybridSuperClusters"), endcapSuperClusters = cms.InputTag("uncleanedOnlyCorrectedMulti5x5SuperClustersWithPreshower") ) from TrackingTools.GsfTracking.CkfElectronCandidateMaker_cff import * uncleanedOnlyElectronCkfTrackCandidates = electronCkfTrackCandidates.clone( src = cms.InputTag("uncleanedOnlyElectronSeeds") ) from TrackingTools.GsfTracking.GsfElectronGsfFit_cff import * uncleanedOnlyElectronGsfTracks = electronGsfTracks.clone( src = 'uncleanedOnlyElectronCkfTrackCandidates' ) uncleanedOnlyTrackingTask = cms.Task(uncleanedOnlyElectronSeeds,uncleanedOnlyElectronCkfTrackCandidates,uncleanedOnlyElectronGsfTracks) uncleanedOnlyTracking = cms.Sequence(uncleanedOnlyTrackingTask) # # Conversions # from RecoEgamma.EgammaPhotonProducers.conversionTrackCandidates_cfi import * uncleanedOnlyConversionTrackCandidates = conversionTrackCandidates.clone( scHybridBarrelProducer = cms.InputTag("uncleanedOnlyCorrectedHybridSuperClusters"), bcBarrelCollection = cms.InputTag("hybridSuperClusters","uncleanOnlyHybridSuperClusters"), scIslandEndcapProducer = cms.InputTag("uncleanedOnlyCorrectedMulti5x5SuperClustersWithPreshower"), bcEndcapCollection = cms.InputTag("multi5x5SuperClusters","uncleanOnlyMulti5x5EndcapBasicClusters") ) from RecoEgamma.EgammaPhotonProducers.ckfOutInTracksFromConversions_cfi import * uncleanedOnlyCkfOutInTracksFromConversions = ckfOutInTracksFromConversions.clone( src = cms.InputTag("uncleanedOnlyConversionTrackCandidates","outInTracksFromConversions"), producer = cms.string('uncleanedOnlyConversionTrackCandidates'), ComponentName = cms.string('uncleanedOnlyCkfOutInTracksFromConversions') ) from RecoEgamma.EgammaPhotonProducers.ckfInOutTracksFromConversions_cfi import * uncleanedOnlyCkfInOutTracksFromConversions = ckfInOutTracksFromConversions.clone( src = cms.InputTag("uncleanedOnlyConversionTrackCandidates","inOutTracksFromConversions"), producer = cms.string('uncleanedOnlyConversionTrackCandidates'), ComponentName = cms.string('uncleanedOnlyCkfInOutTracksFromConversions') ) uncleanedOnlyCkfTracksFromConversionsTask = cms.Task(uncleanedOnlyConversionTrackCandidates,uncleanedOnlyCkfOutInTracksFromConversions,uncleanedOnlyCkfInOutTracksFromConversions) uncleanedOnlyCkfTracksFromConversions = cms.Sequence(uncleanedOnlyCkfTracksFromConversionsTask) from RecoEgamma.EgammaPhotonProducers.conversionTrackSequence_cff import * uncleanedOnlyGeneralConversionTrackProducer = generalConversionTrackProducer.clone() from RecoEgamma.EgammaPhotonProducers.conversionTrackSequence_cff import * uncleanedOnlyInOutConversionTrackProducer = inOutConversionTrackProducer.clone( TrackProducer = cms.string('uncleanedOnlyCkfInOutTracksFromConversions') ) from RecoEgamma.EgammaPhotonProducers.conversionTrackSequence_cff import * uncleanedOnlyOutInConversionTrackProducer = outInConversionTrackProducer.clone( TrackProducer = cms.string('uncleanedOnlyCkfOutInTracksFromConversions') ) from RecoEgamma.EgammaPhotonProducers.conversionTrackSequence_cff import * uncleanedOnlyGsfConversionTrackProducer = gsfConversionTrackProducer.clone( TrackProducer = cms.string('uncleanedOnlyElectronGsfTracks') ) uncleanedOnlyConversionTrackProducersTask = cms.Task(uncleanedOnlyGeneralConversionTrackProducer,uncleanedOnlyInOutConversionTrackProducer,uncleanedOnlyOutInConversionTrackProducer,uncleanedOnlyGsfConversionTrackProducer) uncleanedOnlyConversionTrackProducers = cms.Sequence(uncleanedOnlyConversionTrackProducersTask) from RecoEgamma.EgammaPhotonProducers.conversionTrackSequence_cff import * uncleanedOnlyInOutOutInConversionTrackMerger = inOutOutInConversionTrackMerger.clone( TrackProducer2 = cms.InputTag('uncleanedOnlyOutInConversionTrackProducer'), TrackProducer1 = cms.InputTag('uncleanedOnlyInOutConversionTrackProducer') ) from RecoEgamma.EgammaPhotonProducers.conversionTrackSequence_cff import * uncleanedOnlyGeneralInOutOutInConversionTrackMerger = generalInOutOutInConversionTrackMerger.clone( TrackProducer2 = cms.InputTag('uncleanedOnlyGeneralConversionTrackProducer'), TrackProducer1 = cms.InputTag('uncleanedOnlyInOutOutInConversionTrackMerger') ) from RecoEgamma.EgammaPhotonProducers.conversionTrackSequence_cff import * uncleanedOnlyGsfGeneralInOutOutInConversionTrackMerger = gsfGeneralInOutOutInConversionTrackMerger.clone( TrackProducer2 = cms.InputTag('uncleanedOnlyGsfConversionTrackProducer'), TrackProducer1 = cms.InputTag('uncleanedOnlyGeneralInOutOutInConversionTrackMerger') ) uncleanedOnlyConversionTrackMergersTask = cms.Task(uncleanedOnlyInOutOutInConversionTrackMerger,uncleanedOnlyGeneralInOutOutInConversionTrackMerger,uncleanedOnlyGsfGeneralInOutOutInConversionTrackMerger) uncleanedOnlyConversionTrackMergers = cms.Sequence(uncleanedOnlyConversionTrackMergersTask) from RecoEgamma.EgammaPhotonProducers.allConversions_cfi import * uncleanedOnlyAllConversions = allConversions.clone( scBarrelProducer = cms.InputTag("uncleanedOnlyCorrectedHybridSuperClusters"), bcBarrelCollection = cms.InputTag("hybridSuperClusters","uncleanOnlyHybridSuperClusters"), scEndcapProducer = cms.InputTag("uncleanedOnlyCorrectedMulti5x5SuperClustersWithPreshower"), bcEndcapCollection = cms.InputTag("multi5x5SuperClusters","uncleanOnlyMulti5x5EndcapBasicClusters"), src = cms.InputTag("uncleanedOnlyGsfGeneralInOutOutInConversionTrackMerger") ) uncleanedOnlyConversionsTask = cms.Task(uncleanedOnlyCkfTracksFromConversionsTask,uncleanedOnlyConversionTrackProducersTask,uncleanedOnlyConversionTrackMergersTask,uncleanedOnlyAllConversions) uncleanedOnlyConversions = cms.Sequence(uncleanedOnlyConversionsTask) # # Particle Flow Tracking # from RecoParticleFlow.PFTracking.pfTrack_cfi import * uncleanedOnlyPfTrack = pfTrack.clone( GsfTrackModuleLabel = cms.InputTag("uncleanedOnlyElectronGsfTracks") ) from RecoParticleFlow.PFTracking.pfConversions_cfi import * uncleanedOnlyPfConversions = pfConversions.clone( conversionCollection = cms.InputTag("allConversions") ) from RecoParticleFlow.PFTracking.pfTrackElec_cfi import * uncleanedOnlyPfTrackElec = pfTrackElec.clone( PFConversions = cms.InputTag("uncleanedOnlyPfConversions"), GsfTrackModuleLabel = cms.InputTag("uncleanedOnlyElectronGsfTracks"), PFRecTrackLabel = cms.InputTag("uncleanedOnlyPfTrack") ) uncleanedOnlyPfTrackingTask = cms.Task(uncleanedOnlyPfTrack,uncleanedOnlyPfConversions,uncleanedOnlyPfTrackElec) uncleanedOnlyPfTracking = cms.Sequence(uncleanedOnlyPfTrackingTask) # # Electrons # from RecoEgamma.EgammaElectronProducers.gsfElectronCores_cfi import * uncleanedOnlyGsfElectronCores = ecalDrivenGsfElectronCores.clone( gsfTracks = cms.InputTag("uncleanedOnlyElectronGsfTracks"), gsfPfRecTracks = cms.InputTag("uncleanedOnlyPfTrackElec") ) from RecoEgamma.EgammaElectronProducers.gsfElectrons_cfi import * uncleanedOnlyGsfElectrons = ecalDrivenGsfElectrons.clone( gsfPfRecTracksTag = cms.InputTag("uncleanedOnlyPfTrackElec"), gsfElectronCoresTag = cms.InputTag("uncleanedOnlyGsfElectronCores"), seedsTag = cms.InputTag("uncleanedOnlyElectronSeeds") ) uncleanedOnlyElectronsTask = cms.Task(uncleanedOnlyGsfElectronCores,uncleanedOnlyGsfElectrons) uncleanedOnlyElectrons = cms.Sequence(uncleanedOnlyElectronsTask) # # Whole Sequence # uncleanedOnlyElectronTask = cms.Task(uncleanedOnlyTrackingTask,uncleanedOnlyConversionsTask,uncleanedOnlyPfTrackingTask,uncleanedOnlyElectronsTask) uncleanedOnlyElectronSequence = cms.Sequence(uncleanedOnlyElectronTask)
py
1a55ad05951f69a8ccdfbcca932bfd1205e5030c
#!/usr/bin/env python # coding: utf-8 # # Basics of convection # The essential model of planetary solid-state circulation is Rayleigh-Benard convection, in which a fluid held between two plane layers of different temperatures is observed to spontaneously self-organise into counter-rotating cells to maximise the efficiency of transport {cite}`Getling1998-gv`. Such a model is governed by three principal dimensionless quantities: # - The *Prandtl* number, the ratio of momentum diffusivity (or kinematic viscosity) $\nu$ to the thermal diffusivity $\kappa$: # # $$ Pr = \frac{\nu}{\kappa} $$ # # - The *Reynolds* number, the ratio of inertial forces to viscous forces and hence a measure of flow turbulence (where $u$ is flow velocity and $L$ is a length scale): # # $$ Re =\frac{u L}{\nu} $$ # # - And the *Rayleigh* number, the product of $Pr$ and $Re$, interperable as the ratio of buoyancy forces to viscous forces in the fluid (with thermal expansivity $\alpha$, gravity $g$, thermal gradient $\Delta T$, and length scale $b$): # # $$ Ra = \frac{\alpha g \Delta T b^3}{\kappa \nu} $$ # # In addition to these three input variables, one unifying output variable - also dimensionless - commonly enters into the analysis, and will prove an essential razor throughout this thesis: the *Nusselt* number, a measure of the efficiency of global thermal transport relative to that expected by conduction alone. It can be given in terms of the rate of change of the dimensionless potential temperature $\theta^*$ with respect to dimensionless depth $y^*$ {cite}`Schubert2001-ea`: # # $$ Nu = \left| \frac{\partial \theta^*}{\partial y^*} \right| _S $$ # # Where $|x|_S$ indicates the average value across a surface. The asterisks indicate a non-dimensionalised quantity: a common textbook convention. This is the definition we adhere to throughout, but there is some variability in how $Nu$ is defined in the literature. In non-curved domains, $Nu$ is equivalent to the dimensionless surface temperature gradient, and so it is confusingly defined as such in some contexts {cite}`Blankenbach1989-li`. There is also a practice of adding a constant $1$ to the expression, reflecting a difference of opinion over whether $Nu$ is best constructed as an arithmetic quantity (i.e $Nu$ as the convective flux after conductive flux is substracted) or as a geometric quantity, as we have stated it here. We prefer the latter usage, reterming the former as $Nu_{+}$. # Because any convection of interest to us in the mantle is going to be occurring in the solid state, across great distances, and under tremendous heat gradients, we are able to make certain assumptions that simplify the analysis. Two are commonly made: # - The *Boussinesq* approximation, in which non-gravitational terms of density are ignored, with the consequence that the fluid is incompressible. This is a justifiable assumption for just about any non-gaseous fluid, particularly one subjected to such extreme lithostatic pressures. # - The infinite *Prandtl* assumption, in which momentum diffusivity is held to be much greater than thermal diffusivity. This is reasonable for the mantle given the measured value comes to at least $10^{23}$ {cite}`Schubert2001-ea`. Because $Pr \cdot Re = Ra$, this also implies that the *Reynolds* number must be infinitesimal, and hence that inertial forces and the turbulent effects thereof are negligible. # # These two simplifications have many consequences. For one, they allow the four dimensionless parameters above to be collapsed to only two: the *Rayleigh* number $Ra$ and the *Nusselt* number $Nu$ {cite}`Turcotte1967-cz`. It will shortly become clear that these two quantities actually bear a power-law relation through a third property, the '*beta* exponent' $\beta$, that in a single stroke unifies the intrinsic and extrinsic characteristics of planetary thermal transport: # # $$ Nu \propto Ra^{\beta}$$ # # This elegant law forms the analytical cornerstone of our work. # # Though we ground ourselves in theory, our method is empirical. Thankfully, the scheme we have laid out also provides a powerful framework for numericisation: by eliminating inertial, compressive, and turbulent forces, we are able to construct mantle convection as a kind of Stokes Flow under the body forcing of gravity $g$, limited by conservation of mass and iterated by advection-diffusion, and so captured by the equations: # # $$ \begin{align*} # \nabla p - \nabla \left( \eta D \right) &= \Delta \rho \mathbf{g} \\ # \nabla \cdot \mathbf{u} &= 0 \\ # \frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T &= \kappa \nabla^2 T + H \\ # \end{align*} $$ # # Where $\eta$ is dynamic viscosity, $D$ the strain rate tensor, $p$ dynamic pressure, $\Delta\rho$ the density anomaly, $\mathbf{g}$ the gravity vector, $\mathbf{u}$ the velocity vector, $T$ temperature, $\kappa$ thermal diffusivity, $t$ time, and $H$ a thermal source term, i.e. radiogenic heating. # With these equations, we may implement an alternating cycle of instaneous pressure solutions followed by finite time-stepping of the temperature field (and any other state variables we choose to implement). Of course, such a system is meaningless and insoluble unless we further stipulate a geometry (width, length, depth, and curvature) and a set of boundary conditions for the temperature and velocity fields. The boundary conditions on each outer domain surface are typically set to be either: # - Fixed in value (a 'Dirichlet' condition). For the temperature field, this would imply that the core and/or the space-facing surface of the planet are infinite thermal buffers. For the velocity field, this can be used - for example - to define surfaces that are impervious in the normal component and either no-stick, perfect-stick, or tractional in the parallel component. # - Fixed in gradient (a 'Neumann' condition): for the temperature field, this would imply that the surface radiates heat at a fixed power, which in the case of zero power would make that boundary effectively insulating; for the velocity field, this essentially configures the strain rate in the chosen component. # # With respect to temperature, either of the above conditions can be set to inject or remove heat from the model, which - in tandem with the internal heat function $H$ - provides the fluid with the thermal situation its flow is expected to resolve, given sufficient time. On Earth, we imagine mantle convection and the interconnected phenomenon of surface tectonics to represent the Earth's own natural solution, or solution-in-progress, to the circumstance of volumetric radiogenic heating and basal heating from the core, although the debate over the relative significance of these is ancient and ongoing {cite}`Thomson1862-kb,Urey1955-zs,Korenaga2003-oy,Korenaga2008-js,Gando2011-sh,Mareschal2012-ie,Huang2013-eu,Jaupart2015-un`. For the models being discussed forthwith, we have restricted ourselves to free-slip velocity boundaries and Dirichlet thermal boundaries with a constant unit temperature gradient from top to bottom, such that the heating regime is always either purely basal or mixed. # # Within these simplifying constraints, almost limitless variety is possible - which is why this essential formulation has become common to virtually all studies of mantle convection. However, while it is hoped that somewhere within problem-space a solution resembling Earth may be found, such a solution must elude us until our grasp of the fundamentals is absolute; and there is still much about even the simplest rheologies that we do not understand. # ## Linear rheologies: the isoviscous case # # When we talk about rheology, or a materials' style of flow, we are primarily talking about its viscosity function - the expression that maps the local viscosity at any point in the fluid to its context, history, or environment. While most fluids in the real world have complex 'Non-Newtonian' rheologies in which pressure and viscosity are co-dependent, mantle convection studies have often relied on simpler Newtonian rheologies that are more numerically and analytically tractable. These are what we here call 'linear rheologies'. # # The bulk of all mantle convection studies focus on one of the following three linear rheologies: # - **Isoviscous** or 'constant viscosity' flow. # - **Arrhenius**-type exponentially temperature-dependent viscosity. # - **Spatialised** viscosity - either arbitrarily zoned or simply depth-dependent. # # This two-part investigation will focus on the isoviscous and Arrhenius types. The former can be viewed as a special case of the latter, so it makes a fitting launching-off point for this study.
py
1a55ad21423d419e2a50eaf5a2f7f4188c51a605
# Generated by Django 3.1.6 on 2021-02-18 18:41 import multiselectfield.db.fields from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("structures", "0017_war_dec_notifications"), ] operations = [ migrations.RemoveField( model_name="notification", name="notification_type", ), migrations.AddField( model_name="notification", name="notif_type", field=models.CharField( db_index=True, default="", help_text="type of this notification as reported by ESI", max_length=100, verbose_name="type", ), ), migrations.AlterField( model_name="notification", name="created", field=models.DateTimeField( default=None, help_text="Date when this notification was first received from ESI", null=True, ), ), migrations.AlterField( model_name="notification", name="is_read", field=models.BooleanField( default=None, help_text="True when this notification has read in the eve client", null=True, ), ), migrations.AlterField( model_name="notification", name="is_sent", field=models.BooleanField( default=False, help_text="True when this notification has been forwarded to Discord", ), ), migrations.AlterField( model_name="notification", name="is_timer_added", field=models.BooleanField( default=False, help_text="True when a timer has been added for this notification", null=True, ), ), migrations.AlterField( model_name="notification", name="notification_id", field=models.PositiveBigIntegerField(verbose_name="id"), ), migrations.AlterField( model_name="webhook", name="notification_types", field=multiselectfield.db.fields.MultiSelectField( choices=[ ("CharAppAcceptMsg", "Character joins corporation"), ("CharLeftCorpMsg", "Character leaves corporation"), ("MoonminingExtractionStarted", "Moonmining extraction started"), ("MoonminingLaserFired", "Moonmining laser fired"), ( "MoonminingExtractionCancelled", "Moonmining extraction cancelled", ), ("MoonminingExtractionFinished", "Moonmining extraction finished"), ( "MoonminingAutomaticFracture", "Moonmining automatic fracture triggered", ), ("StructureAnchoring", "Upwell structure anchoring"), ("StructureOnline", "Upwell structure went online"), ( "StructureServicesOffline", "Upwell structure services went offline", ), ("StructureWentHighPower", "Upwell structure went high power"), ("StructureWentLowPower", "Upwell structure went low power"), ("StructureUnanchoring", "Upwell structure unanchoring"), ("StructureFuelAlert", "Upwell structure fuel alert"), ("StructureUnderAttack", "Upwell structure is under attack"), ("StructureLostShields", "Upwell structure lost shields"), ("StructureLostArmor", "Upwell structure lost armor"), ("StructureDestroyed", "Upwell structure destroyed"), ("OwnershipTransferred", "Upwell structure ownership transferred"), ("OrbitalAttacked", "Customs office attacked"), ("OrbitalReinforced", "Customs office reinforced"), ("TowerAlertMsg", "Starbase attacked"), ("TowerResourceAlertMsg", "Starbase fuel alert"), ("EntosisCaptureStarted", "Sovereignty entosis capture started"), ( "SovCommandNodeEventStarted", "Sovereignty command node event started", ), ("SovAllClaimAquiredMsg", "Sovereignty DED claim acknowledgment"), ("SovStructureReinforced", "Sovereignty structure reinforced"), ("SovStructureDestroyed", "Sovereignty structure destroyed"), ("WarDeclared", "War declared"), ("AllyJoinedWarAggressorMsg", "War ally joined"), ("WarAdopted", "War adopted"), ("WarInherited", "War inherited"), ("CorpWarSurrenderMsg", "War party surrendered"), ("WarRetractedByConcord", "War retracted by Concord"), ], default=[ "StructureAnchoring", "StructureDestroyed", "StructureFuelAlert", "StructureLostArmor", "StructureLostShields", "StructureOnline", "StructureServicesOffline", "StructureUnderAttack", "StructureWentHighPower", "StructureWentLowPower", "OrbitalAttacked", "OrbitalReinforced", "TowerAlertMsg", "TowerResourceAlertMsg", "SovStructureReinforced", "SovStructureDestroyed", ], help_text="select which type of notifications should be forwarded to this webhook", max_length=704, ), ), ]
py
1a55b0c3bc9695eeb9f80163e12709e9a6b62b24
import json import os import pycspr # A known casper test-net node address. _NODE_ADDRESS = os.getenv("CASPER_NODE_ADDRESS", "3.136.227.9") # A known block hash. _BLOCK_HASH: bytes = bytes.fromhex("c7148e1e2e115d8fba357e04be2073d721847c982dc70d5c36b5f6d3cf66331c") # A known block height. _BLOCK_HEIGHT: int = 20652 def main(): """Retrieves on-chain auction information. """ # Set client. client: pycspr.NodeClient = pycspr.NodeClient(pycspr.NodeConnectionInfo(host=_NODE_ADDRESS)) # Set auction info scoped by current era. auction_info_1: dict = client.queries.get_auction_info() # Set auction info scoped by known hash. auction_info_2: dict = client.queries.get_auction_info(_BLOCK_HASH) # Set auction info scoped by known height. auction_info_3: dict = client.queries.get_auction_info(_BLOCK_HEIGHT) # Verify. assert auction_info_1 != auction_info_2 assert auction_info_2 == auction_info_3 print("-----------------------------------------------------------------------------------------------------") print(f"QUERIED TEST-NET NODE {_NODE_ADDRESS}") print("-----------------------------------------------------------------------------------------------------") print(f"Auction information = {json.dumps(auction_info_1, indent=4)}") print("-----------------------------------------------------------------------------------------------------") if __name__ == "__main__": try: main() except Exception as err: print(f"API ERROR @ NODE {_NODE_ADDRESS} :: {err}")
py
1a55b29843eeb6ec6bb0bc6355f9f5d0dc26fc41
from __future__ import absolute_import from selenium import webdriver from shishito.runtime.environment.shishito import ShishitoEnvironment class ControlEnvironment(ShishitoEnvironment): """ Local control environment. """ def get_capabilities(self, config_section): """ Return dictionary of capabilities for specific config combination. :param str config_section: section in platform/environment.properties config :return: dict with capabilities """ get_opt = self.shishito_support.get_opt default_capabilities = super().get_capabilities(config_section) capabilities = { 'marionette': str(get_opt('firefox_marionette')).lower() == 'true', } return {**default_capabilities, **capabilities} def start_driver(self, browser_type, capabilities, config_section=None): """ Prepare selenium webdriver. :param browser_type: type of browser for which prepare driver :param capabilities: capabilities used for webdriver initialization """ # get browser profile browser_profile = self.get_browser_profile(browser_type, capabilities, config_section) # starts local browser if browser_type == "firefox": from selenium.webdriver.firefox.options import Options firefox_options = Options() for arg in self.get_browser_arguments(config_section): firefox_options.add_argument(arg) driver = webdriver.Firefox(browser_profile, desired_capabilities=capabilities, firefox_options=firefox_options) elif browser_type == "chrome": driver = webdriver.Chrome(desired_capabilities=capabilities, chrome_options=browser_profile) elif browser_type == "ie": driver = webdriver.Ie(capabilities=capabilities) elif browser_type == "phantomjs": driver = webdriver.PhantomJS(desired_capabilities=capabilities) elif browser_type == "opera": driver = webdriver.Opera(desired_capabilities=capabilities) # SafariDriver bindings for Python not yet implemented # elif browser == "Safari": # self.driver = webdriver.SafariDriver() else: raise ValueError('Unknown type of browser.') return driver def call_browser(self, config_section): """ Start webdriver for given config section. Prepare capabilities for the browser, set browser resolution. :param str config_section: section in platform/environment.properties config :return: created webdriver """ # get browser capabilities capabilities = self.get_capabilities(config_section) # get browser type browser_type = self.shishito_support.get_opt(config_section, 'browser').lower() # get driver driver = self.start_driver(browser_type, capabilities, config_section=config_section) if browser_type.lower() == 'chrome': self.set_download_path(driver) # set browser size is defined browser_size = self.shishito_support.get_opt(config_section, 'resolution') if browser_size: # default size --> leave it on webdriver width, height = browser_size.split('x') driver.set_window_size(width, height) return driver
py
1a55b34f854bc69a65b643c098b1f085b4a13a54
# stdlib import sys from typing import Any from typing import Dict from typing import List from typing import Optional from typing import Tuple from typing import Union # third party from google.protobuf.reflection import GeneratedProtocolMessageType from nacl.signing import SigningKey from nacl.signing import VerifyKey import pandas as pd # syft relative from ....core.pointer.pointer import Pointer from ....decorators import syft_decorator from ....lib import create_lib_ast from ....logger import critical from ....logger import debug from ....logger import error from ....logger import traceback_and_raise from ....proto.core.node.common.client_pb2 import Client as Client_PB from ....proto.core.node.common.metadata_pb2 import Metadata as Metadata_PB from ....util import get_fully_qualified_name from ...common.message import EventualSyftMessageWithoutReply from ...common.message import ImmediateSyftMessageWithReply from ...common.message import ImmediateSyftMessageWithoutReply from ...common.message import SignedEventualSyftMessageWithoutReply from ...common.message import SignedImmediateSyftMessageWithReply from ...common.message import SignedImmediateSyftMessageWithoutReply from ...common.message import SyftMessage from ...common.serde.deserialize import _deserialize from ...common.uid import UID from ...io.location import Location from ...io.location import SpecificLocation from ...io.route import Route from ...io.route import SoloRoute from ...io.virtual import VirtualClientConnection from ...node.common.service.obj_search_service import ObjectSearchMessage from ..abstract.node import AbstractNodeClient from .action.exception_action import ExceptionMessage from .service.child_node_lifecycle_service import RegisterChildNodeMessage class Client(AbstractNodeClient): """Client is an incredibly powerful abstraction in Syft. We assume that, no matter where a client is, it can figure out how to communicate with the Node it is supposed to point to. If I send you a client I have with all of the metadata in it, you should have all the information you need to know to interact with a node (although you might not have permissions - clients should not store private keys).""" @syft_decorator(typechecking=True) def __init__( self, name: Optional[str], routes: List[Route], network: Optional[Location] = None, domain: Optional[Location] = None, device: Optional[Location] = None, vm: Optional[Location] = None, signing_key: Optional[SigningKey] = None, verify_key: Optional[VerifyKey] = None, ): name = f"{name} Client" if name is not None else None super().__init__( name=name, network=network, domain=domain, device=device, vm=vm ) self.routes = routes self.default_route_index = 0 # create a signing key if one isn't provided if signing_key is None: self.signing_key = SigningKey.generate() else: self.signing_key = signing_key # if verify key isn't provided, get verify key from signing key if verify_key is None: self.verify_key = self.signing_key.verify_key else: self.verify_key = verify_key self.install_supported_frameworks() self.store = StoreClient(client=self) @property def icon(self) -> str: icon = "📡" sub = [] if self.vm is not None: sub.append("🍰") if self.device is not None: sub.append("📱") if self.domain is not None: sub.append("🏰") if self.network is not None: sub.append("🔗") if len(sub) > 0: icon = f"{icon} [" for s in sub: icon += s icon += "]" return icon @staticmethod def deserialize_client_metadata_from_node( metadata: Metadata_PB, ) -> Tuple[SpecificLocation, str, UID]: # string of bytes meta = _deserialize(blob=metadata) return meta.node, meta.name, meta.id def install_supported_frameworks(self) -> None: self.lib_ast = create_lib_ast(client=self) # first time we want to register for future updates self.lib_ast.register_updates(self) if self.lib_ast is not None: for attr_name, attr in self.lib_ast.attrs.items(): setattr(self, attr_name, attr) # shortcut syft.lib.python to just python if hasattr(self.lib_ast, "syft"): try: lib_attr = getattr(self.lib_ast.syft, "lib", None) if lib_attr is not None: python_attr = getattr(lib_attr, "python", None) setattr(self, "python", python_attr) except Exception as e: critical(f"Failed to set python attribute on client. {e}") def add_me_to_my_address(self) -> None: traceback_and_raise(NotImplementedError) @syft_decorator(typechecking=True) def register_in_memory_client(self, client: AbstractNodeClient) -> None: # WARNING: Gross hack route_index = self.default_route_index # this ID should be unique but persistent so that lookups are universal route = self.routes[route_index] if isinstance(route, SoloRoute): connection = route.connection if isinstance(connection, VirtualClientConnection): connection.server.node.in_memory_client_registry[ client.address.target_id.id ] = client else: traceback_and_raise( Exception( "Unable to save client reference without VirtualClientConnection" ) ) else: traceback_and_raise( Exception("Unable to save client reference without SoloRoute") ) @syft_decorator(typechecking=True) def register(self, client: AbstractNodeClient) -> None: debug(f"> Registering {client.pprint} with {self.pprint}") self.register_in_memory_client(client=client) msg = RegisterChildNodeMessage( lookup_id=client.id, child_node_client_address=client.address, address=self.address, ) if self.network is not None: client.network = ( self.network if self.network is not None # type: ignore # nested "is not None" else client.network ) # QUESTION # if the client is a network and the domain is not none this will set it # on the network causing an exception # but we can't check if the client is a NetworkClient here because # this is a superclass of NetworkClient # Remove: if self.domain is not None: # then see the test line node_test.py: # bob_network_client.register(client=bob_domain_client) if self.domain is not None: client.domain = ( self.domain if self.domain is not None # type: ignore # nested "is not None" else client.domain ) if self.device is not None: client.device = ( self.device if self.device is not None # type: ignore # nested "is not None" else client.device ) assert self.device == client.device if self.vm is not None: client.vm = self.vm self.send_immediate_msg_without_reply(msg=msg) @property def id(self) -> UID: """This client points to an node, this returns the id of that node.""" traceback_and_raise(NotImplementedError) # TODO fix the msg type but currently tensor needs SyftMessage @syft_decorator(typechecking=True) def send_immediate_msg_with_reply( self, msg: Union[SignedImmediateSyftMessageWithReply, ImmediateSyftMessageWithReply], route_index: int = 0, ) -> SyftMessage: route_index = route_index or self.default_route_index if isinstance(msg, ImmediateSyftMessageWithReply): output = ( f"> {self.pprint} Signing {msg.pprint} with " + f"{self.key_emoji(key=self.signing_key.verify_key)}" ) debug(output) msg = msg.sign(signing_key=self.signing_key) response = self.routes[route_index].send_immediate_msg_with_reply(msg=msg) if response.is_valid: # check if we have an ExceptionMessage to trigger a local exception # from a remote exception that we caused if isinstance(response.message, ExceptionMessage): exception_msg = response.message exception = exception_msg.exception_type(exception_msg.exception_msg) error(str(exception)) traceback_and_raise(exception) else: return response.message traceback_and_raise( Exception("Response was signed by a fake key or was corrupted in transit.") ) # TODO fix the msg type but currently tensor needs SyftMessage @syft_decorator(typechecking=True) def send_immediate_msg_without_reply( self, msg: Union[ SignedImmediateSyftMessageWithoutReply, ImmediateSyftMessageWithoutReply ], route_index: int = 0, ) -> None: route_index = route_index or self.default_route_index if isinstance(msg, ImmediateSyftMessageWithoutReply): output = ( f"> {self.pprint} Signing {msg.pprint} with " + f"{self.key_emoji(key=self.signing_key.verify_key)}" ) debug(output) msg = msg.sign(signing_key=self.signing_key) debug(f"> Sending {msg.pprint} {self.pprint} ➡️ {msg.address.pprint}") self.routes[route_index].send_immediate_msg_without_reply(msg=msg) @syft_decorator(typechecking=True) def send_eventual_msg_without_reply( self, msg: EventualSyftMessageWithoutReply, route_index: int = 0 ) -> None: route_index = route_index or self.default_route_index output = ( f"> {self.pprint} Signing {msg.pprint} with " + f"{self.key_emoji(key=self.signing_key.verify_key)}" ) debug(output) signed_msg: SignedEventualSyftMessageWithoutReply = msg.sign( signing_key=self.signing_key ) self.routes[route_index].send_eventual_msg_without_reply(msg=signed_msg) @syft_decorator(typechecking=True) def __repr__(self) -> str: return f"<Client pointing to node with id:{self.id}>" @syft_decorator(typechecking=True) def register_route(self, route: Route) -> None: self.routes.append(route) @syft_decorator(typechecking=True) def set_default_route(self, route_index: int) -> None: self.default_route = route_index @syft_decorator(typechecking=True) def _object2proto(self) -> Client_PB: obj_type = get_fully_qualified_name(obj=self) routes = [route.serialize() for route in self.routes] network = self.network._object2proto() if self.network is not None else None domain = self.domain._object2proto() if self.domain is not None else None device = self.device._object2proto() if self.device is not None else None vm = self.vm._object2proto() if self.vm is not None else None client_pb = Client_PB( obj_type=obj_type, id=self.id.serialize(), name=self.name, routes=routes, has_network=self.network is not None, network=network, has_domain=self.domain is not None, domain=domain, has_device=self.device is not None, device=device, has_vm=self.vm is not None, vm=vm, ) return client_pb @staticmethod def _proto2object(proto: Client_PB) -> "Client": module_parts = proto.obj_type.split(".") klass = module_parts.pop() obj_type = getattr(sys.modules[".".join(module_parts)], klass) network = ( SpecificLocation._proto2object(proto.network) if proto.has_network else None ) domain = ( SpecificLocation._proto2object(proto.domain) if proto.has_domain else None ) device = ( SpecificLocation._proto2object(proto.device) if proto.has_device else None ) vm = SpecificLocation._proto2object(proto.vm) if proto.has_vm else None routes = [SoloRoute._proto2object(route) for route in proto.routes] obj = obj_type( name=proto.name, routes=routes, network=network, domain=domain, device=device, vm=vm, ) if type(obj) != obj_type: traceback_and_raise( TypeError( f"Deserializing Client. Expected type {obj_type}. Got {type(obj)}" ) ) return obj @staticmethod def get_protobuf_schema() -> GeneratedProtocolMessageType: return Client_PB @property def keys(self) -> str: verify = ( self.key_emoji(key=self.signing_key.verify_key) if self.signing_key is not None else "🚫" ) keys = f"🔑 {verify}" return keys class StoreClient: def __init__(self, client: Client) -> None: self.client = client @property def store(self) -> List[Pointer]: msg = ObjectSearchMessage( address=self.client.address, reply_to=self.client.address ) results = self.client.send_immediate_msg_with_reply(msg=msg).results # This is because of a current limitation in Pointer where we cannot # serialize a client object. TODO: Fix limitation in Pointer so that we don't need this. for result in results: result.gc_enabled = False result.client = self.client return results def __len__(self) -> int: """Return the number of items in the object store we're allowed to know about""" return len(self.store) def __getitem__(self, key: Union[str, int]) -> Pointer: if isinstance(key, str): matches = 0 match_obj: Optional[Pointer] = None for obj in self.store: if key in str(obj.id_at_location.value).replace("-", ""): return obj if key in obj.tags: matches += 1 match_obj = obj if matches == 1 and match_obj is not None: return match_obj elif matches > 1: traceback_and_raise(KeyError("More than one item with tag:" + str(key))) traceback_and_raise(KeyError("No such request found for id:" + str(key))) if isinstance(key, int): return self.store[key] else: traceback_and_raise(KeyError("Please pass in a string or int key")) def __repr__(self) -> str: return repr(self.store) @property def pandas(self) -> pd.DataFrame: obj_lines: List[Dict[str, Any]] = list() for obj in self.store: obj_lines.append( { "ID": obj.id_at_location, "Tags": obj.tags, "Description": obj.description, "object_type": obj.object_type, } ) return pd.DataFrame(obj_lines)
py
1a55b36c4dac293e0f8254c4aecfff5e0373bcca
#!/usr/bin/env python3 """websocket cmd client for wssrv.py example.""" import argparse import asyncio import signal import sys import aiohttp async def start_client(loop: asyncio.AbstractEventLoop, url: str) -> None: name = input("Please enter your name: ") # input reader def stdin_callback() -> None: line = sys.stdin.buffer.readline().decode("utf-8") if not line: loop.stop() else: ws.send_str(name + ": " + line) loop.add_reader(sys.stdin.fileno(), stdin_callback) async def dispatch() -> None: while True: msg = await ws.receive() if msg.type == aiohttp.WSMsgType.TEXT: print("Text: ", msg.data.strip()) elif msg.type == aiohttp.WSMsgType.BINARY: print("Binary: ", msg.data) elif msg.type == aiohttp.WSMsgType.PING: await ws.pong() elif msg.type == aiohttp.WSMsgType.PONG: print("Pong received") else: if msg.type == aiohttp.WSMsgType.CLOSE: await ws.close() elif msg.type == aiohttp.WSMsgType.ERROR: print("Error during receive %s" % ws.exception()) elif msg.type == aiohttp.WSMsgType.CLOSED: pass break # send request async with aiohttp.ClientSession() as client: async with client.ws_connect(url, autoclose=False, autoping=False) as ws: await dispatch() ARGS = argparse.ArgumentParser( description="websocket console client for wssrv.py example." ) ARGS.add_argument( "--host", action="store", dest="host", default="127.0.0.1", help="Host name" ) ARGS.add_argument( "--port", action="store", dest="port", default=8080, type=int, help="Port number" ) if __name__ == "__main__": args = ARGS.parse_args() if ":" in args.host: args.host, port = args.host.split(":", 1) args.port = int(port) url = f"http://{args.host}:{args.port}" loop = asyncio.get_event_loop() loop.add_signal_handler(signal.SIGINT, loop.stop) loop.create_task(start_client(loop, url)) loop.run_forever()
py
1a55b3896777324ce82a5bc611a9231289060163
bole=True n=0 while n<=30: n=n+1 print(f'ola turma{n}') break print('passou')
py
1a55b4080af739125fd701fe8ecfb44c65fe7dd0
from setuptools import setup, find_packages setup( name='vid2slides', version='0.0.4', description='Extract a slideshow from a video presentation', url='https://github.com/lukew3/vid2slides', author='Luke Weiler', author_email='[email protected]', license='MIT', packages=find_packages(), install_requires=['click', 'Pillow'], entry_points={ 'console_scripts': ['vid2slides=vid2slides.cli:cli'], }, )
py
1a55b4f8084a38de5617d36961b992fef0f3cb1f
import os import signal import psutil from rest.api.loghelpers.message_dumper import MessageDumper from rest.service.fluentd import Fluentd class ProcessUtils: def __init__(self, logger): self.logger = logger self.fluentd_utils = Fluentd(logger) self.message_dumper = MessageDumper() def on_terminate(self, proc): self.fluentd_utils.emit(tag="process", msg=self.message_dumper.dump_message( {"proc": str(proc), "returncode": proc.returncode})) def log_process_err(self, proc, err=""): self.fluentd_utils.emit(tag="process", msg=self.message_dumper.dump_message( {"proc": str(proc), "error": err})) @staticmethod def find_procs_by_name(name): """ Return a list of processes matching 'name' """ ls = [] for p in psutil.process_iter(["name", "exe", "cmdline"]): if name == p.info['name'] or \ p.info['exe'] and os.path.basename(p.info['exe']) == name or \ p.info['cmdline'] and p.info['cmdline'][0] == name: ls.append(p) return ls def kill_proc_tree(self, pid=os.getpid(), sig=signal.SIGTERM, include_parent=True, timeout=5): """Kill a process tree (including grandchildren) with signal "sig" and return a (gone, still_alive) tuple. "on_terminate", if specified, is a callback function which is called as soon as a child terminates. """ if pid == os.getpid(): include_parent = False parent = psutil.Process(pid=pid) children = parent.children(recursive=True) if include_parent: children.append(parent) for p in children: try: p.send_signal(sig) except Exception as e: self.log_process_err(proc=p, err=e.__str__()) gone, alive = psutil.wait_procs(children, timeout=timeout, callback=self.on_terminate) return gone, alive
py
1a55b677c8fb2d289a6687b6a7c3ea12868b5871
import ncvis vis = ncvis.NCVis(n_neighbors=15, M=16, ef_construction=200, n_init_epochs=20, n_epochs=50, min_dist=0.4, n_threads=-1, distance='euclidean')
py
1a55b6d37a8a463f0f25d42676490302e63b9182
import discord import sqlite3 import re from datetime import datetime from discord import Message, TextChannel, Member, PartialEmoji from discord.ext import commands class Music(commands.Cog, name="Please don't stop the music"): def __init__(self, client): self.client = client @commands.command(aliases=['history']) @commands.is_owner() async def gethistory(self, ctx): count = 0 async for message in ctx.channel.history(limit = None, oldest_first = True): # if message.author == self.client.user or message.channel.id != 399477609559490560: # print('returned') # return if 'htt' in message.content and message.author != self.client.user : main = sqlite3.connect('music.db') cursor = main.cursor() sql = ("INSERT or IGNORE INTO links(link, date_posted, author, jump_link, count) VALUES(?,?,?,?,?)") val = (str(message.content), str(message.created_at.date()), str(message.author), str(message.jump_url), count) cursor.execute(sql, val) main.commit() cursor.close() main.close() else: pass @commands.Cog.listener() async def on_message(self, message:discord.Message): if message.author == self.client.user: return else: main = sqlite3.connect('music.db') cursor = main.cursor() if message.channel.id == 399477609559490560 and 'http' in message.content: cursor.execute('SELECT link, date_posted, author, jump_link FROM links WHERE link LIKE ?', (message.content,)) result = cursor.fetchone() if not result: sql = ("INSERT INTO links(link, date_posted, author, jump_link) VALUES(?,?,?,?)") val = (str(message.content), str(message.created_at.date()), str(message.author), str(message.jump_url)) cursor.execute(sql, val) else: embed = discord.Embed(colour = 0x7ed321, description = "This song/link was already posted!") embed.timestamp = datetime.utcnow() embed.set_author(name="Jungle Jive") embed.set_footer(text=f'{self.client.user.name}', icon_url=f'{self.client.user.avatar_url}') embed.add_field(name="Original Poster", value=f"{result[2]}") embed.add_field(name="Link to original post", value=f"[Click here]({result[3]})") embed.add_field(name="Date of original post", value=f"{result[1]}") await message.channel.send(embed=embed) main.commit() cursor.close() main.close() @commands.command(aliases=['musicchat', 'chat']) async def music_chat(self, ctx): await ctx.send(file=discord.File('music_channel.png')) def setup(client): client.add_cog(Music(client)) print('Music Cog loaded')
py
1a55b9177615c691eb51445b6ae9926809db380a
# -*- coding: utf-8 -*- """ simulation script for benchmark data """ #%% import sys import os sys.path.insert(0, ".." + os.sep + ".." + os.sep) from benchmarking.benchmarking_tools import SurfaceCodeBenchmarkingTool from qiskit.providers.aer.noise import NoiseModel from qiskit.providers.aer.noise.errors import pauli_error, depolarizing_error from surface_code.fitters import GraphDecoder from surface_code.circuits import SurfaceCodeLogicalQubit from qiskit import QuantumCircuit, execute, QuantumRegister, ClassicalRegister, Aer from tqdm import tqdm import multiprocessing as mp # Noise Model Function def get_noise_model(p_err): error_gate1 = pauli_error([("X", p_err / 2), ("Z", p_err / 2), ("I", 1 - p_err)]) noise_model = NoiseModel() noise_model.add_all_qubit_quantum_error(error_gate1, "id") return noise_model if __name__ == "__main__": decoder_keys = [(d, 1) for d in range(3, 11, 2)] benchmarking_tools = [] for decoder_key in tqdm(decoder_keys): d = decoder_key[0] T = decoder_key[1] qubit = SurfaceCodeLogicalQubit(d) qubit.stabilize() qubit.identity_data() qubit.stabilize() qubit.readout_z() benchmarking_tools.append( SurfaceCodeBenchmarkingTool( decoder=GraphDecoder(d=d, T=T), readout_circuit=qubit, noise_model_func=get_noise_model, ) ) print("\nDONE SETTING UP DECODERS!\n") for benchmarking_tool in benchmarking_tools: print( "\nSIMULATE: (d={},T={})\n".format(benchmarking_tool.d, benchmarking_tool.T) ) correct_logical_value = 0 noise_values = [ 5e-5, 1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 4e-3, 5e-3, 6e-3, 7e-3, 8e-3, 9e-3, 1e-2, 2e-2, ] benchmarking_tool.simulate_readout_mp( correct_logical_value=correct_logical_value, noise_values=noise_values ) # %%
py
1a55b9cb3df0051caf721460a1200a20de07fcd8
import requests from bs4 import BeautifulSoup import pytest import time import hashlib def find_playstation_price(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') price = soup.find(class_='psw-t-title-m').text return price def find_apple_store_price(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') price = soup.find_all( class_='inline-list__item inline-list__item--bulleted app-header__list__item--price')[0].get_text() return price def find_pioneer_firmware_versions(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') price_str = soup.find(class_='version').text price_arr = price_str.split() price = price_arr[1] return price def find_wacom_price(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') price = soup.find(class_='price').text return price def check_logsdon(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') resp = soup.find(class_='_1Cfot') hashed = hashlib.md5(str(resp).encode()) return hashed.hexdigest() class Common: def setup(self): pass def teardown(self): time.sleep(5) # Sleep for 5 seconds class TestPioneer(Common): def test_pioneer_software_download_updated_firmware(self): url = 'https://www.pioneerelectronics.com/PUSA/Car/NEX/DMH-W4600NEX' expected_firmware = '1.31' dmh_4600_next_fw = find_pioneer_firmware_versions(url) assert expected_firmware in dmh_4600_next_fw class TestLogsdon(Common): def test_logsdon_website_for_any_changes(self): url = 'https://www.farmhousebeer.com/' expected_hashes = ['6adf97f83acf6453d4a6a4b1070f3754', '534952d2d7451c0709c8d0263a50005f'] actual_hash = check_logsdon(url) assert actual_hash in expected_hashes class TestPlaystation(Common): def test_actraiser_renaissance(self): url = 'https://store.playstation.com/en-us/product/UP0082-CUSA25035_00-ACTPS4APPNA00001/' expected_price = '$29.99' price = find_playstation_price(url) assert expected_price == price
py
1a55bab1d2721a86cfb6364183df1f22a0099c99
import os import threading import queue import asyncio def convert_video(Q,file): if not Q.empty(): async def covert_720p(): os.system('ffmpeg -i ' + file + ' -r 30 -b 2M -s 1280x720 ' + file + '_720.mp4') print(threading.currentThread()) return '720P covert successfully' async def covert_480p(): os.system('ffmpeg -i ' + file + ' -r 30 -b 1M -s 720x480 ' + file + '_480.mp4') print(threading.currentThread()) return '480P covert successfully' coroutine1 = covert_720p() coroutine2 = covert_480p() thread_list = [ asyncio.ensure_future(coroutine1), asyncio.ensure_future(coroutine2), ] loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.wait(thread_list)) for thread in thread_list: print('thread: ', thread.result()) def main(): Q = queue.Queue() path = 'D:\EC500\Exercise2' for file in os.listdir(path): if file.endswith('.mp4'): Q.put(file) convert_video(Q,file) if __name__ == '__main__': main()
py
1a55bc26d24a3d83e804258e44c5f9c41ad03e0e
import click import py42.sdk.queries.alerts.filters as f from py42.exceptions import Py42NotFoundError from py42.sdk.queries.alerts.alert_query import AlertQuery from py42.sdk.queries.alerts.filters import AlertState from py42.sdk.queries.alerts.filters import RuleType from py42.sdk.queries.alerts.filters import Severity from py42.util import format_dict import code42cli.cmds.search.options as searchopt import code42cli.errors as errors import code42cli.options as opt from code42cli.bulk import generate_template_cmd_factory from code42cli.bulk import run_bulk_process from code42cli.click_ext.groups import OrderedGroup from code42cli.cmds.search import SendToCommand from code42cli.cmds.search.cursor_store import AlertCursorStore from code42cli.cmds.search.options import server_options from code42cli.cmds.util import convert_to_or_query from code42cli.cmds.util import create_time_range_filter from code42cli.cmds.util import try_get_default_header from code42cli.date_helper import convert_datetime_to_timestamp from code42cli.date_helper import limit_date_range from code42cli.enums import JsonOutputFormat from code42cli.enums import OutputFormat from code42cli.file_readers import read_csv_arg from code42cli.options import format_option from code42cli.output_formats import OutputFormatter from code42cli.util import hash_event from code42cli.util import parse_timestamp from code42cli.util import warn_interrupt ALERTS_KEYWORD = "alerts" ALERT_PAGE_SIZE = 25 begin = opt.begin_option( ALERTS_KEYWORD, callback=lambda ctx, param, arg: convert_datetime_to_timestamp( limit_date_range(arg, max_days_back=90) ), ) end = opt.end_option(ALERTS_KEYWORD) checkpoint = opt.checkpoint_option(ALERTS_KEYWORD) advanced_query = searchopt.advanced_query_option(ALERTS_KEYWORD) severity_option = click.option( "--severity", multiple=True, type=click.Choice(Severity.choices()), cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.Severity), help="Filter alerts by severity. Defaults to returning all severities.", ) filter_state_option = click.option( "--state", multiple=True, type=click.Choice(AlertState.choices()), cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.AlertState), help="Filter alerts by status. Defaults to returning all statuses.", ) actor_option = click.option( "--actor", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.Actor), help="Filter alerts by including the given actor(s) who triggered the alert. " "Arguments must match the actor's cloud alias exactly.", ) actor_contains_option = click.option( "--actor-contains", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.contains_filter(f.Actor), help="Filter alerts by including actor(s) whose cloud alias contains the given string.", ) exclude_actor_option = click.option( "--exclude-actor", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_in_filter(f.Actor), help="Filter alerts by excluding the given actor(s) who triggered the alert. " "Arguments must match actor's cloud alias exactly.", ) exclude_actor_contains_option = click.option( "--exclude-actor-contains", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_contains_filter(f.Actor), help="Filter alerts by excluding actor(s) whose cloud alias contains the given string.", ) rule_name_option = click.option( "--rule-name", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.RuleName), help="Filter alerts by including the given rule name(s).", ) exclude_rule_name_option = click.option( "--exclude-rule-name", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_in_filter(f.RuleName), help="Filter alerts by excluding the given rule name(s).", ) rule_id_option = click.option( "--rule-id", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.RuleId), help="Filter alerts by including the given rule id(s).", ) exclude_rule_id_option = click.option( "--exclude-rule-id", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_in_filter(f.RuleId), help="Filter alerts by excluding the given rule id(s).", ) rule_type_option = click.option( "--rule-type", multiple=True, type=click.Choice(RuleType.choices()), cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.is_in_filter(f.RuleType), help="Filter alerts by including the given rule type(s).", ) exclude_rule_type_option = click.option( "--exclude-rule-type", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.not_in_filter(f.RuleType), help="Filter alerts by excluding the given rule type(s).", ) description_option = click.option( "--description", multiple=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible, callback=searchopt.contains_filter(f.Description), help="Filter alerts by description. Does fuzzy search by default.", ) send_to_format_options = click.option( "-f", "--format", type=click.Choice(JsonOutputFormat(), case_sensitive=False), help="The output format of the result. Defaults to json format.", default=JsonOutputFormat.RAW, ) alert_id_arg = click.argument("alert-id") note_option = click.option("--note", help="A note to attach to the alert.") update_state_option = click.option( "--state", help="The state to give to the alert.", type=click.Choice(AlertState.choices()), ) def _get_default_output_header(): return { "id": "Id", "name": "RuleName", "actor": "Username", "createdAt": "ObservedDate", "state": "State", "severity": "Severity", "description": "Description", } def search_options(f): f = checkpoint(f) f = advanced_query(f) f = end(f) f = begin(f) return f def filter_options(f): f = actor_option(f) f = actor_contains_option(f) f = exclude_actor_option(f) f = exclude_actor_contains_option(f) f = rule_name_option(f) f = exclude_rule_name_option(f) f = rule_id_option(f) f = exclude_rule_id_option(f) f = rule_type_option(f) f = exclude_rule_type_option(f) f = description_option(f) f = severity_option(f) f = filter_state_option(f) return f @click.group(cls=OrderedGroup) @opt.sdk_options(hidden=True) def alerts(state): """Get and send alert data.""" # store cursor getter on the group state so shared --begin option can use it in validation state.cursor_getter = _get_alert_cursor_store @alerts.command() @click.argument("checkpoint-name") @opt.sdk_options() def clear_checkpoint(state, checkpoint_name): """Remove the saved alert checkpoint from `--use-checkpoint/-c` mode.""" _get_alert_cursor_store(state.profile.name).delete(checkpoint_name) @alerts.command() @filter_options @search_options @click.option( "--or-query", is_flag=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible ) @opt.sdk_options() @click.option( "--include-all", default=False, is_flag=True, help="Display simple properties of the primary level of the nested response.", ) @format_option def search( cli_state, format, begin, end, advanced_query, use_checkpoint, or_query, include_all, **kwargs, ): """Search for alerts.""" output_header = try_get_default_header( include_all, _get_default_output_header(), format ) formatter = OutputFormatter(format, output_header) cursor = _get_alert_cursor_store(cli_state.profile.name) if use_checkpoint else None if use_checkpoint: checkpoint_name = use_checkpoint checkpoint = cursor.get(checkpoint_name) if checkpoint is not None: begin = checkpoint query = _construct_query(cli_state, begin, end, advanced_query, or_query) alerts_gen = cli_state.sdk.alerts.get_all_alert_details(query) if use_checkpoint: checkpoint_name = use_checkpoint # update checkpoint to alertId of last event retrieved alerts_gen = _dedupe_checkpointed_events_and_store_updated_checkpoint( cursor, checkpoint_name, alerts_gen ) alerts_list = [] for alert in alerts_gen: alerts_list.append(alert) if not alerts_list: click.echo("No results found.") return formatter.echo_formatted_list(alerts_list) def _construct_query(state, begin, end, advanced_query, or_query): if advanced_query: state.search_filters = advanced_query else: if begin or end: state.search_filters.append( create_time_range_filter(f.DateObserved, begin, end) ) if or_query: state.search_filters = convert_to_or_query(state.search_filters) query = AlertQuery(*state.search_filters) query.page_size = ALERT_PAGE_SIZE query.sort_direction = "asc" query.sort_key = "CreatedAt" return query def _dedupe_checkpointed_events_and_store_updated_checkpoint( cursor, checkpoint_name, alerts_gen ): """De-duplicates events across checkpointed runs. Since using the timestamp of the last event processed as the `--begin` time of the next run causes the last event to show up again in the next results, we hash the last event(s) of each run and store those hashes in the cursor to filter out on the next run. It's also possible that two events have the exact same timestamp, so `checkpoint_events` needs to be a list of hashes so we can filter out everything that's actually been processed. """ checkpoint_alerts = cursor.get_alerts(checkpoint_name) new_timestamp = None new_alerts = [] for alert in alerts_gen: event_hash = hash_event(alert) if event_hash not in checkpoint_alerts: if alert[f.DateObserved._term] != new_timestamp: new_timestamp = alert[f.DateObserved._term] new_alerts.clear() new_alerts.append(event_hash) yield alert ts = parse_timestamp(new_timestamp) cursor.replace(checkpoint_name, ts) cursor.replace_alerts(checkpoint_name, new_alerts) @alerts.command(cls=SendToCommand) @filter_options @search_options @click.option( "--or-query", is_flag=True, cls=searchopt.AdvancedQueryAndSavedSearchIncompatible ) @opt.sdk_options() @server_options @click.option( "--include-all", default=False, is_flag=True, help="Display simple properties of the primary level of the nested response.", ) @send_to_format_options def send_to(cli_state, begin, end, advanced_query, use_checkpoint, or_query, **kwargs): """Send alerts to the given server address. HOSTNAME format: address:port where port is optional and defaults to 514. """ cursor = _get_cursor(cli_state, use_checkpoint) if use_checkpoint: checkpoint_name = use_checkpoint checkpoint = cursor.get(checkpoint_name) if checkpoint is not None: begin = checkpoint query = _construct_query(cli_state, begin, end, advanced_query, or_query) alerts_gen = cli_state.sdk.alerts.get_all_alert_details(query) if use_checkpoint: checkpoint_name = use_checkpoint alerts_gen = _dedupe_checkpointed_events_and_store_updated_checkpoint( cursor, checkpoint_name, alerts_gen ) with warn_interrupt(): alert = None for alert in alerts_gen: cli_state.logger.info(alert) if alert is None: # generator was empty click.echo("No results found.") def _get_cursor(state, use_checkpoint): return _get_alert_cursor_store(state.profile.name) if use_checkpoint else None def _get_alert_cursor_store(profile_name): return AlertCursorStore(profile_name) @alerts.command() @opt.sdk_options() @alert_id_arg @click.option( "--include-observations", is_flag=True, help="View observations of the alert." ) def show(state, alert_id, include_observations): """Display the details of a single alert.""" formatter = OutputFormatter(OutputFormat.TABLE, _get_default_output_header()) try: response = state.sdk.alerts.get_details(alert_id) except Py42NotFoundError: raise errors.Code42CLIError(f"No alert found with ID '{alert_id}'.") alert = response["alerts"][0] formatter.echo_formatted_list([alert]) # Show note details note = alert.get("note") if note: click.echo("\nNote:\n") click.echo(format_dict(note)) if include_observations: observations = alert.get("observations") if observations: click.echo("\nObservations:\n") click.echo(format_dict(observations)) else: click.echo("\nNo observations found.") @alerts.command() @opt.sdk_options() @alert_id_arg @update_state_option @note_option def update(cli_state, alert_id, state, note): """Update alert information.""" _update_alert(cli_state.sdk, alert_id, state, note) @alerts.group(cls=OrderedGroup) @opt.sdk_options(hidden=True) def bulk(state): """Tools for executing bulk alert actions.""" pass UPDATE_ALERT_CSV_HEADERS = ["id", "state", "note"] update_alerts_generate_template = generate_template_cmd_factory( group_name=ALERTS_KEYWORD, commands_dict={"update": UPDATE_ALERT_CSV_HEADERS}, help_message="Generate the CSV template needed for bulk alert commands.", ) bulk.add_command(update_alerts_generate_template) @bulk.command( name="update", help=f"Bulk update alerts using a CSV file with format: {','.join(UPDATE_ALERT_CSV_HEADERS)}", ) @opt.sdk_options() @read_csv_arg(headers=UPDATE_ALERT_CSV_HEADERS) def bulk_update(cli_state, csv_rows): """Bulk update alerts.""" sdk = cli_state.sdk def handle_row(id, state, note): _update_alert(sdk, id, state, note) run_bulk_process( handle_row, csv_rows, progress_label="Updating alerts:", ) def _update_alert(sdk, alert_id, alert_state, note): if alert_state: sdk.alerts.update_state(alert_state, [alert_id], note=note) elif note: sdk.alerts.update_note(alert_id, note)
py
1a55bca72bf3a7d4416cbcb4ab53b53f11524b5f
# coding: utf-8 """ CloudEndure API documentation © 2017 CloudEndure All rights reserved # General Request authentication in CloudEndure's API is done using session cookies. A session cookie is returned upon successful execution of the \"login\" method. This value must then be provided within the request headers of all subsequent API requests. ## Errors Some errors are not specifically written in every method since they may always return. Those are: 1) 401 (Unauthorized) - for unauthenticated requests. 2) 405 (Method Not Allowed) - for using a method that is not supported (POST instead of GET). 3) 403 (Forbidden) - request is authenticated, but the user is not allowed to access. 4) 422 (Unprocessable Entity) - for invalid input. ## Formats All strings with date-time format are according to RFC3339. All strings with \"duration\" format are according to ISO8601. For example, a full day duration can be specified with \"PNNNND\". # noqa: E501 OpenAPI spec version: 5 Contact: https://bit.ly/2T54hSc Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest from cloudendure import cloudendure_api from cloudendure.cloudendure_api.rest import ApiException from models.cloud_endure_account_request import CloudEndureAccountRequest # noqa: E501 class TestCloudEndureAccountRequest(unittest.TestCase): """CloudEndureAccountRequest unit test stubs""" def setUp(self): pass def tearDown(self): pass def testCloudEndureAccountRequest(self): """Test CloudEndureAccountRequest""" # FIXME: construct object with mandatory attributes with example values # model = cloudendure_api.models.cloud_endure_account_request.CloudEndureAccountRequest() # noqa: E501 pass if __name__ == "__main__": unittest.main()
py
1a55bcda03c90a7ea7873cefaeb8219fef138986
""" Functions for creating and restoring url-safe signed JSON objects. The format used looks like this: >>> signing.dumps("hello") 'ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk' There are two components here, separated by a ':'. The first component is a URLsafe base64 encoded JSON of the object passed to dumps(). The second component is a base64 encoded hmac/SHA1 hash of "$first_component:$secret" signing.loads(s) checks the signature and returns the deserialized object. If the signature fails, a BadSignature exception is raised. >>> signing.loads("ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk") 'hello' >>> signing.loads("ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk-modified") ... BadSignature: Signature failed: ImhlbGxvIg:1QaUZC:YIye-ze3TTx7gtSv422nZA4sgmk-modified You can optionally compress the JSON prior to base64 encoding it to save space, using the compress=True argument. This checks if compression actually helps and only applies compression if the result is a shorter string: >>> signing.dumps(range(1, 20), compress=True) '.eJwFwcERACAIwLCF-rCiILN47r-GyZVJsNgkxaFxoDgxcOHGxMKD_T7vhAml:1QaUaL:BA0thEZrp4FQVXIXuOvYJtLJSrQ' The fact that the string is compressed is signalled by the prefixed '.' at the start of the base64 JSON. There are 65 url-safe characters: the 64 used by url-safe base64 and the ':'. These functions make use of all of them. """ import base64 import datetime import json import re import time import zlib from django.conf import settings from django.utils import baseconv from django.utils.crypto import constant_time_compare, salted_hmac from django.utils.encoding import force_bytes from django.utils.module_loading import import_string _SEP_UNSAFE = re.compile(r'^[A-z0-9-_=]*$') class BadSignature(Exception): """Signature does not match.""" pass class SignatureExpired(BadSignature): """Signature timestamp is older than required max_age.""" pass def b64_encode(s): return base64.urlsafe_b64encode(s).strip(b'=') def b64_decode(s): pad = b'=' * (-len(s) % 4) return base64.urlsafe_b64decode(s + pad) def base64_hmac(salt, value, key): return b64_encode(salted_hmac(salt, value, key).digest()).decode() def get_cookie_signer(salt='django.core.signing.get_cookie_signer'): Signer = import_string(settings.SIGNING_BACKEND) key = force_bytes(settings.SECRET_KEY) # SECRET_KEY may be str or bytes. return Signer(b'django.http.cookies' + key, salt=salt) class JSONSerializer: """ Simple wrapper around json to be used in signing.dumps and signing.loads. """ def dumps(self, obj): return json.dumps(obj, separators=(',', ':')).encode('latin-1') def loads(self, data): return json.loads(data.decode('latin-1')) def dumps(obj, key=None, salt='django.core.signing', serializer=JSONSerializer, compress=False): """ Return URL-safe, hmac/SHA1 signed base64 compressed JSON string. If key is None, use settings.SECRET_KEY instead. If compress is True (not the default), check if compressing using zlib can save some space. Prepend a '.' to signify compression. This is included in the signature, to protect against zip bombs. Salt can be used to namespace the hash, so that a signed string is only valid for a given namespace. Leaving this at the default value or re-using a salt value across different parts of your application without good cause is a security risk. The serializer is expected to return a bytestring. """ data = serializer().dumps(obj) # Flag for if it's been compressed or not is_compressed = False if compress: # Avoid zlib dependency unless compress is being used compressed = zlib.compress(data) if len(compressed) < (len(data) - 1): data = compressed is_compressed = True base64d = b64_encode(data).decode() if is_compressed: base64d = '.' + base64d return TimestampSigner(key, salt=salt).sign(base64d) def loads(s, key=None, salt='django.core.signing', serializer=JSONSerializer, max_age=None): """ Reverse of dumps(), raise BadSignature if signature fails. The serializer is expected to accept a bytestring. """ # TimestampSigner.unsign() returns str but base64 and zlib compression # operate on bytes. base64d = TimestampSigner(key, salt=salt).unsign(s, max_age=max_age).encode() decompress = base64d[:1] == b'.' if decompress: # It's compressed; uncompress it first base64d = base64d[1:] data = b64_decode(base64d) if decompress: data = zlib.decompress(data) return serializer().loads(data) class Signer: def __init__(self, key=None, sep=':', salt=None): # Use of native strings in all versions of Python self.key = key or settings.SECRET_KEY self.sep = sep if _SEP_UNSAFE.match(self.sep): raise ValueError( 'Unsafe Signer separator: %r (cannot be empty or consist of ' 'only A-z0-9-_=)' % sep, ) self.salt = salt or '%s.%s' % (self.__class__.__module__, self.__class__.__name__) def signature(self, value): return base64_hmac(self.salt + 'signer', value, self.key) def sign(self, value): return '%s%s%s' % (value, self.sep, self.signature(value)) def unsign(self, signed_value): if self.sep not in signed_value: raise BadSignature('No "%s" found in value' % self.sep) value, sig = signed_value.rsplit(self.sep, 1) if constant_time_compare(sig, self.signature(value)): return value raise BadSignature('Signature "%s" does not match' % sig) class TimestampSigner(Signer): def timestamp(self): return baseconv.base62.encode(int(time.time())) def sign(self, value): value = '%s%s%s' % (value, self.sep, self.timestamp()) return super().sign(value) def unsign(self, value, max_age=None): """ Retrieve original value and check it wasn't signed more than max_age seconds ago. """ result = super().unsign(value) value, timestamp = result.rsplit(self.sep, 1) timestamp = baseconv.base62.decode(timestamp) if max_age is not None: if isinstance(max_age, datetime.timedelta): max_age = max_age.total_seconds() # Check timestamp is not older than max_age age = time.time() - timestamp if age > max_age: raise SignatureExpired( 'Signature age %s > %s seconds' % (age, max_age)) return value
py
1a55bcf9433cb47ed26373df5bd50d32fae15921
import os import sys import miind.include as include import miind.algorithms as algorithms import miind.nodes as nodes import miind.connections as connections import miind.simulation as simulation import miind.variables as variables import xml.etree.ElementTree as ET import argparse import miind.directories as directories XML_EXTENSION = '.xml' # Nothing too fancy for the weight type WEIGHTTYPES = ['double', 'DelayedConnection'] def generate_preamble(outfile): outfile.write('//Machine-generated by miind.py. Edit at your own risk.\n\n') for inc in include.includes: outfile.write(inc +'\n') return def generate_closing(outfile, steps, type, t_step): outfile.write('\tnetwork.configureSimulation(par_run);\n') # outfile.write('\tstd::thread t1(TwoDLib::Display::stat_runthreaded);\n') # outfile.write('\tt1.detach();\n') # outfile.write('\tnetwork.evolve();\n') if type == "DelayedConnection": s = "MPILib::" + type else: s = "double" outfile.write('\tstd::vector<MPILib::NodeId> nodes;\n') outfile.write('\tnodes.push_back(0);\n') outfile.write('\tTwoDLib::Display::getInstance()->animate(true, nodes,' + t_step + ');\n') outfile.write('\tnetwork.startSimulation();\n') outfile.write('\tMPILib::utilities::ProgressBar *pb = new MPILib::utilities::ProgressBar(' + steps + ');\n') outfile.write('\tlong count = 0;\n') outfile.write('\twhile(count < ' + steps + ') {\n') outfile.write('\t\tnetwork.evolveSingleStep(std::vector<MPILib::ActivityType>());\n') outfile.write('\t\tnetwork.reportNodeActivities(nodes);\n') outfile.write('\t\tTwoDLib::Display::getInstance()->updateDisplay(count);\n') outfile.write('\t\tTwoDLib::GridReport<TwoDLib::GridAlgorithm<DelayedConnection>>::getInstance()->reportDensity();\n') outfile.write('\t\t(*pb)++;\n') outfile.write('\t\tcount++;\n') outfile.write('\t}\n') outfile.write('\tnetwork.endSimulation();\n') outfile.write('\t} catch(std::exception& exc){\n') outfile.write('\t\tstd::cout << exc.what() << std::endl;\n') outfile.write('#ifdef ENABLE_MPI\n') outfile.write('\t//Abort the MPI environment in the correct way :\n') outfile.write('\tenv.abort(1);\n') outfile.write('#endif\n') outfile.write('\t}\n\n') outfile.write('\tMPILib::utilities::MPIProxy().barrier();\n') outfile.write('\tt.stop();\n') outfile.write('\tif (MPILib::utilities::MPIProxy().getRank() == 0) {\n') outfile.write('\n\t\tstd::cout << \"Overall time spend\\n\";\n') outfile.write('\t\tt.report();\n') outfile.write('\t}\n') outfile.write('\treturn 0;\n}\n') for t in algorithms.RATEFUNCTIONS: outfile.write(t) return def define_network_type(outfile, type): if type == "DelayedConnection": s = "MPILib::" + type else: s = "double" return 'typedef MPILib::MPINetwork<' + s + ', MPILib::utilities::CircularDistribution> Network;\n' def parse_xml(infile, outfile): tree=ET.fromstring(infile.read()) m=tree.find('WeightType') s = m.text return define_network_type(outfile,s), tree def generate_opening(outfile): outfile.write('int main(int argc, char *argv[]){\n\tNetwork network;\n') outfile.write('\tboost::timer::auto_cpu_timer t;\n\n') outfile.write('#ifdef ENABLE_MPI\n') outfile.write('\t// initialise the mpi environment this cannot be forwarded to a class\n') outfile.write('\tboost::mpi::environment env(argc, argv);\n') outfile.write('#endif\n\n') outfile.write('\ttry {') def model_name(fn): '''Identifies model files mentioned in an XML file. For example used in placing the right model file in the same directory as an XML file.''' infile = open(fn) tree=ET.fromstring(infile.read()) ma = tree.findall('Algorithms/Algorithm') modelnames = [] for a in ma: if a.attrib['type'] == 'MeshAlgorithm' or a.attrib['type'] == 'GridAlgorithm': modelnames.append(a.attrib['modelfile']) return modelnames def matrix_transform_name(fn): '''Identifies matrix transform files mentioned in an XML file. For example used in placing the right model file in the same directory as an XML file.''' infile = open(fn) tree=ET.fromstring(infile.read()) ma = tree.findall('Algorithms/Algorithm') tmatnames = [] for a in ma: if a.attrib['type'] == 'GridAlgorithm': tmatnames.append(a.attrib['transformfile']) return tmatnames def matrix_names(fn): '''Find the file names of all MatrixFiles, mentioned in an XML file.''' infile = open(fn) tree=ET.fromstring(infile.read()) ma = tree.findall('Algorithms/Algorithm/MatrixFile') matrixnames = [] for a in ma: matrixnames.append(a.text) return matrixnames def generate_outputfile(infile, outfile, enable_root): generate_preamble(outfile) nettype, tree = parse_xml(infile,outfile) outfile.write(nettype) outfile.write('\t// defining variables\n') # whatever variables are use are global variable_list = tree.findall('Variable') variables.parse_variables(variable_list,outfile) algies = tree.findall('Algorithms') if len(algies) != 1: raise ValueError alg_list = algies[0].findall('Algorithm') weighttype = tree.find('WeightType') generate_opening(outfile) outfile.write('\t// generating algorithms\n') algorithms.parse_algorithms(alg_list,weighttype,outfile) node_list = tree.findall('Nodes/Node') outfile.write('\t// generating nodes\n') nodes.parse_nodes(node_list,weighttype,outfile) outfile.write('\t// generating connections\n') connection_list = tree.findall('Connections/Connection') connections.parse_connections(connection_list,weighttype,outfile) outfile.write('\t// generation simulation parameter\n') simhand = tree.find('SimulationIO') simulation.parse_simulation(simhand,outfile,enable_root) simpar = tree.find('SimulationRunParameter') simulation.parse_parameter(simpar,outfile) t_begin = tree.find('SimulationRunParameter/t_begin') t_end = tree.find('SimulationRunParameter/t_end') t_step = tree.find('SimulationRunParameter/t_step') m=tree.find('WeightType') s = m.text generate_closing(outfile, '(' + t_end.text + ' - ' + t_begin.text + ') / ' + t_step.text , s , t_step.text) algorithms.reset_algorithms() nodes.reset_nodes()
py
1a55bd4952e950b60c643c76ef2d7f5672ce160f
# -*- coding: utf-8 -*- """ Code source: https://github.com/KaiyangZhou/deep-person-reid """ from __future__ import division, print_function, absolute_import import math import numpy as np from itertools import repeat from collections import namedtuple, defaultdict import torch __all__ = ['compute_model_complexity'] """ Utility """ def _ntuple(n): def parse(x): if isinstance(x, int): return tuple(repeat(x, n)) return x return parse _single = _ntuple(1) _pair = _ntuple(2) _triple = _ntuple(3) """ Convolution """ def hook_convNd(m, x, y): k = torch.prod(torch.Tensor(m.kernel_size)).item() cin = m.in_channels flops_per_ele = k * cin # + (k*cin-1) if m.bias is not None: flops_per_ele += 1 flops = flops_per_ele * y.numel() / m.groups return int(flops) """ Pooling """ def hook_maxpool1d(m, x, y): flops_per_ele = m.kernel_size - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_maxpool2d(m, x, y): k = _pair(m.kernel_size) k = torch.prod(torch.Tensor(k)).item() # ops: compare flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_maxpool3d(m, x, y): k = _triple(m.kernel_size) k = torch.prod(torch.Tensor(k)).item() flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_avgpool1d(m, x, y): flops_per_ele = m.kernel_size flops = flops_per_ele * y.numel() return int(flops) def hook_avgpool2d(m, x, y): k = _pair(m.kernel_size) k = torch.prod(torch.Tensor(k)).item() flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) def hook_avgpool3d(m, x, y): k = _triple(m.kernel_size) k = torch.prod(torch.Tensor(k)).item() flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) def hook_adapmaxpool1d(m, x, y): x = x[0] out_size = m.output_size k = math.ceil(x.size(2) / out_size) flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_adapmaxpool2d(m, x, y): x = x[0] out_size = _pair(m.output_size) k = torch.Tensor(list(x.size()[2:])) / torch.Tensor(out_size) k = torch.prod(torch.ceil(k)).item() flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_adapmaxpool3d(m, x, y): x = x[0] out_size = _triple(m.output_size) k = torch.Tensor(list(x.size()[2:])) / torch.Tensor(out_size) k = torch.prod(torch.ceil(k)).item() flops_per_ele = k - 1 flops = flops_per_ele * y.numel() return int(flops) def hook_adapavgpool1d(m, x, y): x = x[0] out_size = m.output_size k = math.ceil(x.size(2) / out_size) flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) def hook_adapavgpool2d(m, x, y): x = x[0] out_size = _pair(m.output_size) k = torch.Tensor(list(x.size()[2:])) / torch.Tensor(out_size) k = torch.prod(torch.ceil(k)).item() flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) def hook_adapavgpool3d(m, x, y): x = x[0] out_size = _triple(m.output_size) k = torch.Tensor(list(x.size()[2:])) / torch.Tensor(out_size) k = torch.prod(torch.ceil(k)).item() flops_per_ele = k flops = flops_per_ele * y.numel() return int(flops) """ Non-linear activations """ def hook_relu(m, x, y): # eq: max(0, x) num_ele = y.numel() return int(num_ele) def hook_leakyrelu(m, x, y): # eq: max(0, x) + negative_slope*min(0, x) num_ele = y.numel() flops = 3 * num_ele return int(flops) """ Normalization """ def hook_batchnormNd(m, x, y): num_ele = y.numel() flops = 2 * num_ele # mean and std if m.affine: flops += 2 * num_ele # gamma and beta return int(flops) def hook_instancenormNd(m, x, y): return hook_batchnormNd(m, x, y) def hook_groupnorm(m, x, y): return hook_batchnormNd(m, x, y) def hook_layernorm(m, x, y): num_ele = y.numel() flops = 2 * num_ele # mean and std if m.elementwise_affine: flops += 2 * num_ele # gamma and beta return int(flops) """ Linear """ def hook_linear(m, x, y): flops_per_ele = m.in_features # + (m.in_features-1) if m.bias is not None: flops_per_ele += 1 flops = flops_per_ele * y.numel() return int(flops) __generic_flops_counter = { # Convolution 'Conv1d': hook_convNd, 'Conv2d': hook_convNd, 'Conv3d': hook_convNd, # Pooling 'MaxPool1d': hook_maxpool1d, 'MaxPool2d': hook_maxpool2d, 'MaxPool3d': hook_maxpool3d, 'AvgPool1d': hook_avgpool1d, 'AvgPool2d': hook_avgpool2d, 'AvgPool3d': hook_avgpool3d, 'AdaptiveMaxPool1d': hook_adapmaxpool1d, 'AdaptiveMaxPool2d': hook_adapmaxpool2d, 'AdaptiveMaxPool3d': hook_adapmaxpool3d, 'AdaptiveAvgPool1d': hook_adapavgpool1d, 'AdaptiveAvgPool2d': hook_adapavgpool2d, 'AdaptiveAvgPool3d': hook_adapavgpool3d, # Non-linear activations 'ReLU': hook_relu, 'ReLU6': hook_relu, 'LeakyReLU': hook_leakyrelu, # Normalization 'BatchNorm1d': hook_batchnormNd, 'BatchNorm2d': hook_batchnormNd, 'BatchNorm3d': hook_batchnormNd, 'InstanceNorm1d': hook_instancenormNd, 'InstanceNorm2d': hook_instancenormNd, 'InstanceNorm3d': hook_instancenormNd, 'GroupNorm': hook_groupnorm, 'LayerNorm': hook_layernorm, # Linear 'Linear': hook_linear, } __conv_linear_flops_counter = { # Convolution 'Conv1d': hook_convNd, 'Conv2d': hook_convNd, 'Conv3d': hook_convNd, # Linear 'Linear': hook_linear, } def _get_flops_counter(only_conv_linear): if only_conv_linear: return __conv_linear_flops_counter return __generic_flops_counter def compute_model_complexity(model, input_size, verbose=False, only_conv_linear=True): """Returns number of parameters and FLOPs. .. note:: (1) this function only provides an estimate of the theoretical time complexity rather than the actual running time which depends on implementations and hardware, and (2) the FLOPs is only counted for layers that are used at test time. This means that redundant layers such as person ID classification layer will be ignored as it is discarded when doing feature extraction. Note that the inference graph depends on how you construct the computations in ``forward()``. Args: model (nn.Module): network model. input_size (tuple): input size, e.g. (1, 3, 256, 128). verbose (bool, optional): shows detailed complexity of each module. Default is False. only_conv_linear (bool, optional): only considers convolution and linear layers when counting flops. Default is True. If set to False, flops of all layers will be counted. """ registered_handles = [] layer_list = [] layer = namedtuple('layer', ['class_name', 'params', 'flops']) def _add_hooks(m): def _has_submodule(m): return len(list(m.children())) > 0 def _hook(m, x, y): params = sum(p.numel() for p in m.parameters()) class_name = str(m.__class__.__name__) flops_counter = _get_flops_counter(only_conv_linear) if class_name in flops_counter: flops = flops_counter[class_name](m, x, y) else: flops = 0 layer_list.append(layer(class_name=class_name, params=params, flops=flops)) # only consider the very basic nn layer if _has_submodule(m): return handle = m.register_forward_hook(_hook) registered_handles.append(handle) default_train_mode = model.training model.eval().apply(_add_hooks) input = torch.rand(input_size) if next(model.parameters()).is_cuda: input = input.cuda() model(input) # forward for handle in registered_handles: handle.remove() model.train(default_train_mode) if verbose: per_module_params = defaultdict(list) per_module_flops = defaultdict(list) total_params, total_flops = 0, 0 for layer in layer_list: total_params += layer.params total_flops += layer.flops if verbose: per_module_params[layer.class_name].append(layer.params) per_module_flops[layer.class_name].append(layer.flops) if verbose: num_udscore = 55 print(' {}'.format('-' * num_udscore)) print(' Model complexity with input size {}'.format(input_size)) print(' {}'.format('-' * num_udscore)) for class_name in per_module_params: params = int(np.sum(per_module_params[class_name])) flops = int(np.sum(per_module_flops[class_name])) print(' {} (params={:,}, flops={:,})'.format(class_name, params, flops)) print(' {}'.format('-' * num_udscore)) print(' Total (params={:,}, flops={:,})'.format(total_params, total_flops)) print(' {}'.format('-' * num_udscore)) return total_params, total_flops
py
1a55bd5eccd4d3ad946ff3c51b50c5b1ceb236b4
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle.distributed.passes import new_pass, PassManager import paddle.distributed.fleet as fleet from paddle.vision.models import resnet50 as resnet import unittest from dist_pass_test_base import DistPassTestBase import paddle.nn as nn import numpy as np class TestFuseAllReducePass(DistPassTestBase): def init(self): if paddle.is_compiled_with_cuda(): paddle.set_flags({'FLAGS_cudnn_deterministic': 1}) self.atol = 0.0 self.rtol = 0.0 def apply_passes(self, main_prog, startup_prog): pass_manager = PassManager([ new_pass("fuse_elewise_add_act"), new_pass("fuse_all_reduce", {"max_memory_size": 1024 * 1024}) ]) pass_manager.apply([main_prog], [startup_prog]) def test_bs_32(self): self.check_main(batch_size=32) def get_model(self, place, batch_size): image = paddle.static.data( shape=[batch_size, 3, 224, 224], dtype='float32', name='image') label = paddle.static.data( shape=[batch_size, 1], dtype='int64', name='label') model = resnet(pretrained=False) loss_fn = nn.loss.CrossEntropyLoss() pred_out = model(image) loss = loss_fn(pred_out, label) optimizer = paddle.optimizer.Adam(learning_rate=1e-3) dist_strategy = fleet.DistributedStrategy() dist_strategy.fuse_all_reduce_ops = False dist_strategy.without_graph_optimization = True fleet.init(is_collective=True, strategy=dist_strategy) optimizer = fleet.distributed_optimizer(optimizer) optimizer.minimize(loss) rank = paddle.distributed.get_rank() def reader(): np.random.seed(self.seed + rank) for _ in range(10): image_np = np.random.random(size=image.shape).astype('float32') label_np = np.random.randint( low=0, high=1000, size=label.shape).astype('int64') yield image_np, label_np main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() return main_program, startup_program, [image, label], [loss], reader if __name__ == "__main__": unittest.main()
py
1a55be6c6ad819c39b8ff0497e958d9a29e89bfd
import pytest from django.conf import settings from django.test import RequestFactory from seatrekking.users.views import UserRedirectView, UserUpdateView pytestmark = pytest.mark.django_db class TestUserUpdateView: """ TODO: extracting view initialization code as class-scoped fixture would be great if only pytest-django supported non-function-scoped fixture db access -- this is a work-in-progress for now: https://github.com/pytest-dev/pytest-django/pull/258 """ def test_get_success_url( self, user: settings.AUTH_USER_MODEL, request_factory: RequestFactory ): view = UserUpdateView() request = request_factory.get("/fake-url/") request.user = user view.request = request assert view.get_success_url() == f"/users/{user.username}/" def test_get_object( self, user: settings.AUTH_USER_MODEL, request_factory: RequestFactory ): view = UserUpdateView() request = request_factory.get("/fake-url/") request.user = user view.request = request assert view.get_object() == user class TestUserRedirectView: def test_get_redirect_url( self, user: settings.AUTH_USER_MODEL, request_factory: RequestFactory ): view = UserRedirectView() request = request_factory.get("/fake-url") request.user = user view.request = request assert view.get_redirect_url() == f"/users/{user.username}/"
py
1a55c007dca16bd6a675c2c8a51cf42a2b631ea4
import os PROJECT_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) PACKAGE_ROOT = os.path.abspath(os.path.dirname(__file__)) BASE_DIR = PACKAGE_ROOT DEBUG = True TEMPLATE_DEBUG = DEBUG DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": "dev.db", } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = "UTC" # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = "en-us" SITE_ID = int(os.environ.get("SITE_ID", 1)) # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale. USE_L10N = True # If you set this to False, Django will not use timezone-aware datetimes. USE_TZ = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = os.path.join(PACKAGE_ROOT, "site_media", "media") # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = "/site_media/media/" # Absolute path to the directory static files should be collected to. # Don"t put anything in this directory yourself; store your static files # in apps" "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = os.path.join(PACKAGE_ROOT, "site_media", "static") # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = "/site_media/static/" # Additional locations of static files STATICFILES_DIRS = [ os.path.join(PACKAGE_ROOT, "static"), ] # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] # Make this unique, and don't share it with anybody. SECRET_KEY = "yc)7(o27pavgtr&$3i3si@d8zulc&0b#1kpof7f%jo@&+vlc$g" # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = [ "django.template.loaders.filesystem.Loader", "django.template.loaders.app_directories.Loader", ] TEMPLATE_CONTEXT_PROCESSORS = [ "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.core.context_processors.static", "django.core.context_processors.tz", "django.core.context_processors.request", "django.contrib.messages.context_processors.messages", "account.context_processors.account", "pinax_theme_bootstrap.context_processors.theme", ] MIDDLEWARE_CLASSES = [ "django.middleware.common.CommonMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", ] ROOT_URLCONF = "rakesh.urls" # Python dotted path to the WSGI application used by Django's runserver. WSGI_APPLICATION = "rakesh.wsgi.application" TEMPLATE_DIRS = [ os.path.join(PACKAGE_ROOT, "templates"), ] INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.messages", "django.contrib.sessions", "django.contrib.sites", "django.contrib.staticfiles", # theme "bootstrapform", "pinax_theme_bootstrap", # external "account", "eventlog", "metron", "easy_thumbnails", "kaleo", "teams", "wiki", # project "rakesh", "rakesh.profiles", ] # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error when DEBUG=False. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { "version": 1, "disable_existing_loggers": False, "filters": { "require_debug_false": { "()": "django.utils.log.RequireDebugFalse" } }, "handlers": { "mail_admins": { "level": "ERROR", "filters": ["require_debug_false"], "class": "django.utils.log.AdminEmailHandler" } }, "loggers": { "django.request": { "handlers": ["mail_admins"], "level": "ERROR", "propagate": True, }, } } FIXTURE_DIRS = [ os.path.join(PROJECT_ROOT, "fixtures"), ] EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" ACCOUNT_OPEN_SIGNUP = True ACCOUNT_USE_OPENID = False ACCOUNT_REQUIRED_EMAIL = False ACCOUNT_EMAIL_UNIQUE = True ACCOUNT_EMAIL_CONFIRMATION_REQUIRED = False ACCOUNT_LOGIN_REDIRECT_URL = "home" ACCOUNT_LOGOUT_REDIRECT_URL = "home" ACCOUNT_EMAIL_CONFIRMATION_EXPIRE_DAYS = 2 WIKI_HOOKSET = "rakesh.hooks.ProjectWikiHookset" WIKI_BINDERS = [ "rakesh.binders.UserBinder", "rakesh.binders.TeamBinder" ] AUTHENTICATION_BACKENDS = [ "account.auth_backends.UsernameAuthenticationBackend", "django.contrib.auth.backends.ModelBackend" ] AUTH_PROFILE_MODULE = "profiles.Profile"
py
1a55c059946214e3a29ef09d156abd0ac016dc15
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import os import sys import time try: import frida except ImportError: sys.exit('install frida\nsudo python3 -m pip install frida') def err(msg): sys.stderr.write(msg + '\n') def on_message(message, data): if message['type'] == 'error': err('[!] ' + message['stack']) elif message['type'] == 'send': print('[+] ' + message['payload']) else: print(message) def kill_process(target_process): cmd = 'adb shell pm clear {} 1> /dev/null'.format(target_process) os.system(cmd) def main(): target_process = sys.argv[1] #kill_process(target_process) device = frida.get_usb_device() try: started = False session = device.attach(target_process) except frida.ProcessNotFoundError: print('Starting process {}...\n'.format(target_process)) started = True try: pid = device.spawn([target_process]) except frida.NotSupportedError: sys.exit('An error ocurred while attaching with the procces\n') session = device.attach(pid) script = session.create_script(""" Java.perform(function () { var Log = Java.use("android.util.Log"); Log.e.overload('java.lang.String', 'java.lang.String').implementation = function (tag, entry) { console.log('Log.e( ' + tag + ', ' + entry + ' )'); console.log(''); return this.e.apply(this, arguments); } Log.w.overload('java.lang.String', 'java.lang.String').implementation = function (tag, entry) { console.log('Log.w( ' + tag + ', ' + entry + ' )'); console.log(''); return this.w.apply(this, arguments); } Log.i.overload('java.lang.String', 'java.lang.String').implementation = function (tag, entry) { console.log('Log.i( ' + tag + ', ' + entry + ' )'); console.log(''); return this.i.apply(this, arguments); } Log.d.overload('java.lang.String', 'java.lang.String').implementation = function (tag, entry) { console.log('Log.d( ' + tag + ', ' + entry + ' )'); console.log(''); return this.d.apply(this, arguments); } }); """) script.on('message', on_message) print('[!] Press <Enter> at any time to detach from instrumented program.\n\n') script.load() if started: device.resume(pid) input() session.detach() if __name__ == '__main__': if len(sys.argv) != 2: usage = 'usage {} <process name or PID>\n\n'.format(__file__) sys.exit(usage) main()
py
1a55c069193c48b5e3225db345b83a024f818e25
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Encryption and digest functionality.""" __author__ = 'Mike Gainer ([email protected])' import base64 import hashlib import hmac import os import random import time from Crypto.Cipher import AES import appengine_config from common import utils from models import config from google.appengine.api import users XSRF_SECRET_LENGTH = 20 XSRF_SECRET = config.ConfigProperty( 'gcb_xsrf_secret', str, ( 'Text used to encrypt tokens, which help prevent Cross-site request ' 'forgery (CSRF, XSRF). You can set the value to any alphanumeric text, ' 'preferably using 16-64 characters. Once you change this value, the ' 'server rejects all subsequent requests issued using an old value for ' 'this variable.'), 'course builder XSRF secret') ENCRYPTION_SECRET_LENGTH = 48 ENCRYPTION_SECRET = config.ConfigProperty( 'gcb_encryption_secret', str, ( 'Text used to encrypt messages. You can set this to any text at all, ' 'but the value must be exactly ' + str(ENCRYPTION_SECRET_LENGTH) + ' characters long. If you change this value, the server will be ' 'unable to understand items encrypted under the old key.'), 'default value of CourseBuilder encryption secret', validator=config.ValidateLength(ENCRYPTION_SECRET_LENGTH).validator) class EncryptionManager(object): @classmethod def _init_secret_if_none(cls, cfg, length): # Any non-default value is fine. if cfg.value and cfg.value != cfg.default_value: return # All property manipulations must run in the default namespace. with utils.Namespace(appengine_config.DEFAULT_NAMESPACE_NAME): # Look in the datastore directly. entity = config.ConfigPropertyEntity.get_by_key_name(cfg.name) if not entity: entity = config.ConfigPropertyEntity(key_name=cfg.name) # Any non-default non-None value is fine. if (entity.value and not entity.is_draft and (str(entity.value) != str(cfg.default_value))): return # Initialize to random value. entity.value = base64.urlsafe_b64encode( os.urandom(int(length * 0.75))) entity.is_draft = False entity.put() @classmethod def _get_hmac_secret(cls): """Verifies that non-default XSRF secret exists; creates one if not.""" cls._init_secret_if_none(XSRF_SECRET, XSRF_SECRET_LENGTH) return XSRF_SECRET.value @classmethod def _get_encryption_secret(cls): """Verifies non-default encryption secret exists; creates one if not.""" cls._init_secret_if_none(ENCRYPTION_SECRET, ENCRYPTION_SECRET_LENGTH) return ENCRYPTION_SECRET.value @classmethod def hmac(cls, components): """Generate an XSRF over the array of components strings.""" secret = cls._get_hmac_secret() digester = hmac.new(str(secret)) for component in components: digester.update(component) return digester.digest() @classmethod def _build_crypto(cls, secret): if len(secret) != 48: raise ValueError('Encryption secret must be exactly 48 characters') return AES.new(secret[:32], AES.MODE_CBC, secret[32:]) @classmethod def encrypt(cls, message, secret=None): """Encrypt a message. Message value returned is not URL-safe.""" message = message or '' message = '%d.%s' % (len(message), message) message += '^' * (16 - len(message) % 16) secret = secret or cls._get_encryption_secret() return cls._build_crypto(secret).encrypt(message) @classmethod def encrypt_to_urlsafe_ciphertext(cls, message, secret=None): """Convenience wrapper to get URL-safe version of encrytped data.""" return base64.urlsafe_b64encode(cls.encrypt(message, secret)) @classmethod def decrypt(cls, message, secret=None): """Decrypt a message, returning the original plaintext.""" secret = secret or cls._get_encryption_secret() crypto = cls._build_crypto(secret) message = crypto.decrypt(message) delim_index = message.find('.') original_length = int(message[:delim_index]) return message[delim_index + 1:delim_index + 1 + original_length] @classmethod def decrypt_from_urlsafe_ciphertext(cls, message, secret=None): return cls.decrypt(base64.urlsafe_b64decode(message), secret) class XsrfTokenManager(object): """Provides XSRF protection by managing action/user tokens in memcache.""" # Max age of the token (4 hours). XSRF_TOKEN_AGE_SECS = 60 * 60 * 4 # Token delimiters. DELIMITER_PRIVATE = ':' DELIMITER_PUBLIC = '/' # Default nickname to use if a user does not have a nickname, USER_ID_DEFAULT = 'default' @classmethod def _create_token(cls, action_id, issued_on): """Creates a string representation (digest) of a token.""" # We have decided to use transient tokens stored in memcache to reduce # datastore costs. The token has 4 parts: hash of the actor user id, # hash of the action, hash of the time issued and the plain text of time # issued. # Lookup user id. user = users.get_current_user() if user: user_id = user.user_id() else: user_id = cls.USER_ID_DEFAULT # Round time to seconds. issued_on = long(issued_on) digest = EncryptionManager.hmac( cls.DELIMITER_PRIVATE.join([ str(user_id), str(action_id), str(issued_on)])) token = '%s%s%s' % ( issued_on, cls.DELIMITER_PUBLIC, base64.urlsafe_b64encode(digest)) return token @classmethod def create_xsrf_token(cls, action): return cls._create_token(action, time.time()) @classmethod def is_xsrf_token_valid(cls, token, action): """Validate a given XSRF token by retrieving it from memcache.""" try: parts = token.split(cls.DELIMITER_PUBLIC) if len(parts) != 2: return False issued_on = long(parts[0]) age = time.time() - issued_on if age > cls.XSRF_TOKEN_AGE_SECS: return False authentic_token = cls._create_token(action, issued_on) if authentic_token == token: return True return False except Exception: # pylint: disable=broad-except return False def get_external_user_id(app_id, namespace, email): """Gets an id for a user that can be transmitted to external systems. The returned key is scoped to a particular user within a particular course on a particular Course Builder deployment, and is guaranteed to be statistically unique within that scope. Args: app_id: string. Application ID of the CB App Engine deployment. namespace: string. Namespace of a single course. May be the empty string. email: string. Unvalidated email address for a user. Returns: String. """ return hmac.new( '%s%s%s' % (app_id, namespace, email), digestmod=hashlib.sha256 ).hexdigest() def hmac_sha_2_256_transform(privacy_secret, value): """HMAC-SHA-2-256 for use as a privacy transformation function.""" return hmac.new( str(privacy_secret), msg=str(value), digestmod=hashlib.sha256 ).hexdigest() def generate_transform_secret_from_xsrf_token(xsrf_token, action): """Deterministically generate a secret from an XSRF 'nonce'. When multiple data sources are being via the REST API, consumers may need to correlate data across the different sources. To take a particular example, the analytics page on the dashboard is one such consumer. This function provides a convenient way to turn an opaque, non-forgeable XSRF token internally into an HMAC secret. The main point here is that the secret string used for HMAC'ing the PII in the data source outputs is - Not derived from anything the user may generate, so the user cannot manipulate the seed value to experiment to find weaknesses. - Not predictable given the information the user has. (The user does not have the encryption key.) The encryption key is used in preference to using the HMAC key twice. Args: xsrf_token: An XSRF token encoded as usual for use as an HTML parameter. action: Action expected to be present in the token. Returns: None if the XSRF token is invalid, or an encryption key if it is. """ if not XsrfTokenManager.is_xsrf_token_valid(xsrf_token, action): return None # Encrypt the publicly-visible xsrf parameter with our private # encryption secret so that we now have a string which is # - Entirely deterministic # - Not generatable by anyone not in posession of the encryption secret. seed_string = EncryptionManager.encrypt(xsrf_token) seed = 0 for c in seed_string: seed *= 256 seed += ord(c) r = random.Random(seed) # Use the random seed to deterministically generate a secret which # will be consistent for identical values of the HMAC token. return base64.urlsafe_b64encode( ''.join(chr(r.getrandbits(8)) for unused in range( int(ENCRYPTION_SECRET_LENGTH * 0.75)))) def _digit32_to_char(digit32): assert digit32 >= 0 and digit32 < 32 if digit32 < 10: return chr(ord('0') + digit32) return chr(ord('A') + digit32-10) def _char_to_digit_32(char): if char >= '0' and char <= '9': return ord(char) - ord('0') return ord(char.upper()) - ord('A') HMAC_KEY='a;sldkjaweruoalksjdf' def verify_access_code(access_code): access_code = access_code.strip() if len(access_code) != 6: return False to_encode = access_code[0:3].upper() crypt = hmac.new(HMAC_KEY, to_encode) encoded = base64.b32encode(crypt.digest())[0:3] return encoded == access_code[3:6].upper() def generate_access_code(): """ Generates a not very secure, but secure enough for 49 CHF 6 character access code. The first 3 characters are random base 32 and the next 3 are the prefix of their MD5 HMAC """ to_encode = _digit32_to_char(random.randrange(32)) + _digit32_to_char(random.randrange(32)) + _digit32_to_char(random.randrange(32)) crypt = hmac.new(HMAC_KEY, to_encode) encoded = base64.b32encode(crypt.digest())[0:3] return to_encode+encoded def main(): print generate_access_code() print verify_access_code(generate_access_code()) print verify_access_code(generate_access_code().lower()) if __name__ == "__main__": main()
py
1a55c10ee323bae9cf7a99ffce6df5f354feb625
######## # Copyright (c) 2014 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############ class CloudifyCliError(Exception): pass class CloudifyBootstrapError(Exception): pass class CloudifyValidationError(Exception): pass class SuppressedCloudifyCliError(Exception): pass class ExecutionTimeoutError(RuntimeError): def __init__(self, execution_id, message): self.execution_id = execution_id self.message = message class EventProcessingTimeoutError(RuntimeError): def __init__(self, execution_id, message): self.execution_id = execution_id self.message = message
py
1a55c1452763fe4c9539e1296e2381286cb9922a
import asyncio import base64 import binascii import hashlib import json import logging import os import random import requests import sys import time from urllib.parse import urlparse from qrcode import QRCode from aiohttp import ClientError from uuid import uuid4 from datetime import date sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # noqa from runners.support.agent import DemoAgent, default_genesis_txns from runners.support.utils import ( log_json, log_msg, log_status, log_timer, prompt, prompt_loop, require_indy, ) CRED_PREVIEW_TYPE = ( "did:sov:BzCbsNYhMrjHiqZDTUASHg;spec/issue-credential/1.0/credential-preview" ) SELF_ATTESTED = os.getenv("SELF_ATTESTED") LOGGER = logging.getLogger(__name__) TAILS_FILE_COUNT = int(os.getenv("TAILS_FILE_COUNT", 100)) class VSWAgent(DemoAgent): def __init__( self, http_port: int, admin_port: int, tails_server_base_url: str = None, **kwargs, ): super().__init__( "VSW.Agent", http_port, admin_port, prefix="VSW", tails_server_base_url=tails_server_base_url, extra_args=["--auto-accept-invites", "--auto-accept-requests"], **kwargs, ) self.connection_id = None self._connection_ready = asyncio.Future() self.cred_state = {} self.cred_done = asyncio.Future() # TODO define a dict to hold credential attributes # based on credential_definition_id self.cred_attrs = {} self.proof_done = asyncio.Future() async def detect_connection(self): await self._connection_ready async def credential_complete(self): await self.cred_done async def proof_complete(self): await self.proof_done @property def connection_ready(self): return self._connection_ready.done() and self._connection_ready.result() async def handle_connections(self, message): if message["connection_id"] == self.connection_id: if message["state"] == "active" and not self._connection_ready.done(): self.log("Connected") self._connection_ready.set_result(True) async def handle_present_proof(self, message): state = message["state"] presentation_exchange_id = message["presentation_exchange_id"] self.log( "Presentation: state =", state, ", presentation_exchange_id =", presentation_exchange_id, ) if state == "presentation_received": log_status("#27 Process the proof provided by X") log_status("#28 Check if proof is valid") proof = await self.admin_POST( f"/present-proof/records/{presentation_exchange_id}/verify-presentation" ) self.log("Proof =", proof["verified"]) # if presentation is a vsw schema (app publication), # check the values received pres = message["presentation"] self.log("pres:", pres) name = pres['requested_proof']['revealed_attrs']['0_name_uuid']['raw'] url = pres['requested_proof']['revealed_attrs']['0_url_uuid']['raw'] digest = pres['requested_proof']['revealed_attrs']['0_digest_uuid']['raw'] response = requests.get(url, allow_redirects=True) if response.status_code != 200: print("Failed to download file from URL") sys.exit(1) computed = hashlib.sha256(response.content).hexdigest() if computed != digest: print("SHA does not match") print(computed) sys.exit(1) else: open(f'vsw/{name}.wasm', 'wb').write(response.content) self.log("SUCCESS") self.proof_done.set_result(True) async def handle_basicmessages(self, message): self.log("Received message:", message["content"]) async def main( start_port: int, name: str, show_timing: bool = False, ): with open('/home/indy/vsw/.config.json') as f: config = json.load(f) genesis = await default_genesis_txns() if not genesis: print("Error retrieving ledger genesis transactions") sys.exit(1) agent = None try: log_status("#1 Provision an agent and wallet, get back configuration details") agent = VSWAgent( start_port, start_port + 1, genesis_data=genesis, timing=show_timing, ) await agent.listen_webhooks(start_port + 2) # FIXME: This user should not have to publish their DID, but if I remove the next line it fails await agent.register_did() with log_timer("Startup duration:"): await agent.start_process() log_msg("Admin URL is at:", agent.admin_url) log_msg("Endpoint URL is at:", agent.endpoint) # Connect to repo log_status("#9 Connect to repo") connection = await agent.admin_POST("/connections/receive-invitation", config['invitation']) agent.connection_id = connection["connection_id"] log_json(connection, label="Invitation response:") await agent.detect_connection() log_status("#20 Request app credential from repo") req_attrs = [ { "name": "name", "value": name, "restrictions": [{"schema_name": "vsw schema"}] }, { "name": "url", "restrictions": [{"schema_name": "vsw schema"}] }, { "name": "digest", "restrictions": [{"schema_name": "vsw schema"}] } ] req_preds = [] indy_proof_request = { "name": "Retrieve by Name", "version": "1.0", "nonce": str(uuid4().int), "requested_attributes": { f"0_{req_attr['name']}_uuid": req_attr for req_attr in req_attrs }, "requested_predicates": {} } proof_request_web_request = { "connection_id": agent.connection_id, "proof_request": indy_proof_request } # this sends the request to our agent, which forwards it to the repo # (based on the connection_id) await agent.admin_POST( "/present-proof/send-request", proof_request_web_request ) await agent.proof_complete() finally: terminated = True try: if agent: await agent.terminate() except Exception: LOGGER.exception("Error terminating agent:") terminated = False await asyncio.sleep(0.1) if not terminated: os._exit(1) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Runs a VSW agent.") parser.add_argument( "-p", "--port", type=int, default=8050, metavar=("<port>"), help="Choose the starting port number to listen on", ) parser.add_argument( "--timing", action="store_true", help="Enable timing information" ) parser.add_argument("name", type=str, help="name of app to install") args = parser.parse_args() ENABLE_PYDEVD_PYCHARM = os.getenv("ENABLE_PYDEVD_PYCHARM", "").lower() ENABLE_PYDEVD_PYCHARM = ENABLE_PYDEVD_PYCHARM and ENABLE_PYDEVD_PYCHARM not in ( "false", "0", ) PYDEVD_PYCHARM_HOST = os.getenv("PYDEVD_PYCHARM_HOST", "localhost") PYDEVD_PYCHARM_CONTROLLER_PORT = int( os.getenv("PYDEVD_PYCHARM_CONTROLLER_PORT", 5001) ) if ENABLE_PYDEVD_PYCHARM: try: import pydevd_pycharm print( "VSW remote debugging to " f"{PYDEVD_PYCHARM_HOST}:{PYDEVD_PYCHARM_CONTROLLER_PORT}" ) pydevd_pycharm.settrace( host=PYDEVD_PYCHARM_HOST, port=PYDEVD_PYCHARM_CONTROLLER_PORT, stdoutToServer=True, stderrToServer=True, suspend=False, ) except ImportError: print("pydevd_pycharm library was not found") require_indy() try: asyncio.get_event_loop().run_until_complete( main( args.port, args.name, args.timing, ) ) except KeyboardInterrupt: os._exit(1)
py
1a55c161fa8a136f0ee9db41182888dbff9540c6
# -*- coding: utf-8 -*- # --------------------------------------------------------------------------- # practical1.py # Created on: 2018-01-23 16:04:05.00000 # (generated by ArcGIS/ModelBuilder) # Usage: practical1 <Input_Features> <Distance__value_or_field_> <Layer> <Intersect__3_> <Output_Feature_Class> # Description: # --------------------------------------------------------------------------- # Import arcpy module import arcpy # Script arguments Input_Features = arcpy.GetParameterAsText(0) Distance__value_or_field_ = arcpy.GetParameterAsText(1) Layer = arcpy.GetParameterAsText(2) Intersect__3_ = arcpy.GetParameterAsText(3) if Intersect__3_ == '#' or not Intersect__3_: Intersect__3_ = "\\\\ds.leeds.ac.uk\\student\\student13\\gy17cev\\ArcGIS\\Default.gdb\\Intersect" # provide a default value if unspecified Output_Feature_Class = arcpy.GetParameterAsText(4) # Local variables: # Process: Buffer arcpy.Buffer_analysis(Input_Features, Output_Feature_Class, Distance__value_or_field_, "FULL", "ROUND", "NONE", "", "PLANAR") # Process: Intersect arcpy.Intersect_analysis([Layer,Output_Feature_Class], Intersect__3_, "ALL", "", "INPUT")
py
1a55c2a937833856cf82918909a69317a5834693
a= input("lanjut(y/t)?") if a in ["y","Y"]: print("baiklah") else: print("okelah...")
py
1a55c37c3d332fcd4137cd1cc048cc04d2443452
# -*- coding: utf-8 -*- """ module to do uiauto """ import json import re import codecs import time from urllib2 import URLError from appium import webdriver from selenium.common.exceptions import WebDriverException from logger import logger from emulator import ADB from db import DB from smartmonkey import Navigator, Stabilizer from myexceptions import PathNotDefinedInConfig, IdPHandlingException, EmulatorActionException,\ TestInitException RP_REQUEST_TIMEOUT = 20 IDP_STATUS_TIMEOUT = 20 class UIAction(object): """class to simplify ui action process""" def __init__(self, driver, emulator=None, idp=None, config_file=None, package=None, version=None): if 'udid' in driver.desired_capabilities and driver.desired_capabilities['udid']: self.adb = ADB(serial=driver.desired_capabilities['udid']) elif emulator and emulator.serial: self.adb = ADB(serial=emulator.serial) else: self.adb = ADB() if not package: package = self.adb.current_package() version = self.adb.current_version(package) self.emulator = emulator self.package = package self.driver = driver self.idp = idp self.app_style = 'international' if self.idp == 'fb' else 'chinese' self.config_file = config_file self.config = {} if config_file: self.loaded = self.load_config_from_file(config_file) else: if not idp: raise Exception("IdP not specified") self.loaded = self.load_config_from_db(package, idp, version=version) if self.loaded: if 'home_activity' in self.config and self.config['home_activity']: self.has_home_activity = True else: self.has_home_activity = False self.stabilizer = Stabilizer(self.driver, package=self.package, app_style=self.app_style) def load_config_from_db(self, package, idp, version=None): """load configuration from database""" config = DB().fetch_config(package, idp, version=version) if not config: return False else: logger.debug(u'Config for %s loaded from DB', package) return self.set_config(config) def load_config_from_file(self, filename): """load configuration from config file""" try: with open(filename, 'r') as config_f: result = self.set_config(config_f.read()) logger.debug(u'Config for %s loaded from %s', self.config['package'], filename) return result except EnvironmentError: logger.error(u'Read file error: %s', filename) return False def set_config(self, config): """initialize configuration from json""" try: if isinstance(config, str): config = json.loads(config) # check required objects package_name = config['package'] package_version = config['version'] installed_version = self.adb.current_version(package_name) config_version = package_version if installed_version != config_version: logger.warning(u'Version inconsistent - Installed: %s, Config: %s',\ installed_version, config_version) self.config = config return True except ValueError: logger.error(u'Invalid path format') raise def login(self): """perform navigation to get to login page""" assert self.loaded login_path = self.path_for('login') origin = self.origin_for('login') if origin: self.stabilizer.better_start_activity(origin) else: self.start_home_activity() logger.info(u"[+] Navigate for login") loginer = Navigator(self.driver, path=login_path, package=self.config['package'],\ app_style=self.app_style) return loginer.navigate() def login_from_snapshot(self, tag): """restore session from snapshot""" # check emulator if not self.emulator: raise EmulatorActionException('No emulator instance is specified') # check snapshot tags_in_use = [ x['tag'] for x in self.emulator.list_snapshot()] if tag not in tags_in_use: raise EmulatorActionException('No snapshot with tag {}'.format(tag)) # try to load snapshot if not self.emulator.load_snapshot(tag): raise EmulatorActionException('Fail to load snapshot {}'.format(tag)) # try to restore appium session desired_caps = self.driver.capabilities desired_caps['autoLaunch'] = False try: self.driver = webdriver.Remote(self.driver.command_executor._url, desired_caps) except URLError: raise TestInitException('appium is not running') # try to login if self.idp == 'fb': status = 'IdpNeedLogin' return status def logout(self, reset=False): """perform logout action""" assert self.loaded self.clear_sdcard() if reset: logger.info(u"[+] App reset") return self.driver.reset() else: logout_path = self.path_for('logout') origin = self.origin_for('logout') if origin: self.stabilizer.better_start_activity(origin) else: self.start_home_activity() logger.info(u"[+] Navigate for logout") logoutter = Navigator(self.driver, path=logout_path, package=self.config['package'],\ app_style=self.app_style) return logoutter.navigate() def clear_sdcard(self): """clear sdcard and keep only essential files""" files = self.adb.ls('/sdcard/') files_reserved = ['Android', 'DCIM', 'Download', 'Movies', 'Music', 'Notifications', 'Pictures', 'Podcasts', 'Ringtones', 'UxinSDK', 'backups', 'sina', 'tencent'] for fname in files: if fname in files_reserved: continue self.adb.rm('/sdcard/{}'.format(fname)) def user_info(self): """retrieve user info""" assert self.loaded info_path = self.path_for('user_info') origin = self.origin_for('user_info') if origin: self.stabilizer.better_start_activity(origin) else: self.start_home_activity() logger.info(u"[+] Navigate for user info") user_getter = Navigator(self.driver, path=info_path, package=self.config['package'],\ app_style=self.app_style) status = user_getter.navigate() if status == 'LoggedIn': identities = self.config['paths']['user_info']['identities'] for (k, val) in identities.items(): if re.search(val, self.page_source, re.I): return k return 'Others' else: return status # ----------------- Single Destination ------------------- # match = re.search(self.config['paths']['user_info']['identity_regex'], # self.page_source) # if len(match.groups()) > 0: # return match.group(1) # else: # return match.group(0) # [ example_regex: "(?=<[^<]*user_name[^<]*>)<.*?text=\"(.*?)\".*?>" ] def landing(self): """land on home activity""" home_activity = self.stabilizer.get_home_activity() if self.loaded: if self.has_home_activity and self.config['home_activity'] != home_activity: logger.warning(u'home_activity already exists in config, skip record update\n' u'\tstored: %s, new: %s', self.config['home_activity'],\ home_activity) else: self.has_home_activity = True self.config['home_activity'] = home_activity if self.config_file: self.config['home_activity'] = home_activity with open(self.config_file, 'wb') as config_f: config_f = codecs.getwriter('utf-8')(config_f) json.dump(self.config, config_f, indent=4, sort_keys=True,\ ensure_ascii=False) else: result = DB().update_config(self.config['package'], self.config['idp'],\ {'home_activity': home_activity}, version=self.config['version']) if result: logger.info(u'home_activity:%s stored into config', home_activity) else: logger.info(u'Landed on %s', home_activity) return home_activity def start_home_activity(self, is_retry=False): """better start home activity""" if self.loaded and self.has_home_activity: home_activity = self.config['home_activity'] else: logger.debug(u'home_activity not defined in DB') home_activity = self.landing() if self.stabilizer.better_start_activity(home_activity): return True else: if is_retry: logger.warning('uiaction: start_home_activity mismatch') return False else: self.stabilizer.skip_irrelevant() if self.driver.current_activity == home_activity: return True else: return self.start_home_activity(is_retry=True) def origin_for(self, action): """find origin of the action""" if action not in self.config['paths']: return False if 'origin' in self.config['paths'][action]: return self.config['paths'][action]['origin'] else: return False def path_for(self, action): """find path to the action""" if action in self.config['paths'] and self.config['paths'][action]: return json.dumps(self.config['paths'][action]) else: raise PathNotDefinedInConfig(u"%s not configured for %s - %s" % (action, self.config['package'], self.config['version'])) def fblite_login_handler(self, stab, account=None, password=None): """handler for fblite login""" if not account or not password: account = "[email protected]" password = "evessotest" # very ugly wait for status change logger.debug(u'Wait for status change') time.sleep(IDP_STATUS_TIMEOUT) # if session is stored if self.driver.current_activity != 'com.facebook.browser.lite.BrowserLiteActivity': logger.debug(u'Session is stored') return True # click continue logger.debug(u'Try to click continue') stab.find_elements_by_keyword(u'Continue', clickable_only=True,\ exact=False)[-1].click() # wait for getting out of fblite count = 0 while self.driver.current_activity == 'com.facebook.browser.lite.BrowserLiteActivity': time.sleep(1) count += 1 assert count <= IDP_STATUS_TIMEOUT logger.debug(u'Get out of fblite') return True def fb_login_handler(self, stab, account=None, password=None): """handler for facebook webview login""" if not account or not password: account = "[email protected]" password = "evessotest" keywords = [u"Enter email", u"请输入邮箱", u"輸入電郵"] err_keywords = [u'Error', u'Invalid', u'应用编号无效'] block_keywords = [u'Secure Account'] # wait for correct activity logger.debug(u'Wait for facebook login activity') count = 0 activity = self.driver.current_activity while activity != 'com.facebook.FacebookActivity' and activity != 'com.facebook.LoginActivity': count += 1 activity = self.driver.current_activity assert count <= IDP_STATUS_TIMEOUT # wait for input boxes appear logger.debug(u'Wait for input boxes appear') count = 0 while not self.driver.find_elements_by_class_name('android.widget.EditText'): # in case app does not support fb login at all if any(kw in self.page_source for kw in err_keywords): raise IdPHandlingException('This app does not support facebook login') time.sleep(1) count += 1 assert count <= IDP_STATUS_TIMEOUT # input email and password source = self.page_source logger.debug(u'Try to input email and password') if any(kw in source for kw in keywords): self.driver.find_elements_by_class_name('android.widget.EditText')[0]\ .set_text(account) self.driver.find_elements_by_class_name('android.widget.Button')[-1].click() self.driver.find_elements_by_class_name('android.widget.EditText')[-1]\ .set_text(password) self.driver.find_elements_by_class_name('android.widget.Button')[-1].click() elif any(kw in source for kw in err_keywords): raise IdPHandlingException('This app does not support facebook login') else: inputs = self.driver.find_elements_by_class_name('android.widget.EditText') inputs[0].set_text(account) inputs[-1].set_text(password) self.driver.find_elements_by_class_name('android.widget.Button')[-1].click() # wait for status change logger.debug(u'Wait for status change') status_keywords = [u'身分繼續', u'Continue', u'would like to'] + err_keywords + block_keywords count = 0 while not any(kw in self.page_source for kw in status_keywords): time.sleep(1) count += 1 assert count <= IDP_STATUS_TIMEOUT # handle pages after status change count = 0 logger.debug(u'Try to handle pages after status change') while self.driver.current_activity == 'com.facebook.FacebookActivity'\ or self.driver.current_activity == 'com.facebook.LoginActivity': count += 1 source = self.page_source # in case of any error if any(kw in source for kw in err_keywords): logger.debug(u'Error keywords received') raise IdPHandlingException('This app does not support facebook login') # in case of account has been blocked elif any(kw in self.page_source for kw in block_keywords): raise IdPHandlingException('This account has been blocked!') # in case of continue appears elif 'Continue' in source: logger.debug(u'Try to click Continue') stab.find_elements_by_keyword(u'Continue', clickable_only=True,\ exact=False)[-1].click() # give all possible permisson to the app elif 'would like to' in source: logger.debug(u'Try to offer permission by clicking OK') stab.find_elements_by_keyword(u'OK', clickable_only=True, exact=True)[-1].click() time.sleep(1) assert count <= IDP_STATUS_TIMEOUT logger.debug(u'Get out of facebook login webview') return True def idp_handler(self, status, account=None, password=None): """handler idp login process""" logger.info(u"RP login status: %s, idp: %s", status, self.idp) stab = Stabilizer(self.driver) if status == "Uncertain": if self.idp == 'sina' and stab.wait_for_activities('.SSOAuthorizeActivity'): status = "IdpNeedConfirm" elif self.idp == 'wechat' and stab.wait_for_keyword(u'微信登录|登录后应用将获得以下权限', timeout=60): status = "IdpNeedConfirm" elif self.idp == 'fb' and stab.wait_for_keyword(u'登录 Facebook 帐户', timeout=60): status = "IdpNeedLogin" else: return if status == "IdpNeedConfirm" and self.idp == 'sina': if self.driver.current_activity == '.SSOAuthorizeActivity' and \ stab.wait_for_keyword(u'确定', timeout=60): stab.tap_keyword(u'确定', siblings_on=False) elif status == "IdpNeedConfirm" and self.idp == 'wechat': if stab.wait_for_keyword(u'确认登录', timeout=60): stab.tap_keyword(u'确认登录', siblings_on=False) elif status == "IdpNeedLogin" and self.idp == 'fb': self.fb_login_handler(stab, account=account, password=password) elif status == "LoggedIn": pass else: logger.warning("Cannot handle: status - %s, IdP - %s", status, self.idp) time.sleep(RP_REQUEST_TIMEOUT) def idp_set_session(self, idp, path): """ Set IdP to specific user session by file copying :param idp: fb, sina or wechat :param path: path to the folder or file containing session data. For wechat, no coexisting sessions are allowed, and sessions are bind to device information. :return: True for success """ # make sure adb has root permission, if not exception will be raised self.adb.root() # On-device location of session file for different IdP PKG = { 'fb': 'com.facebook.lite', 'sina': 'com.sina.weibo', 'wechat': 'com.tencent.mm' } DST = { 'fb': '/data/data/com.facebook.lite/shared_prefs/', 'sina': '/data/data/com.sina.weibo/databases/sina_weibo', 'wechat': '/data/data/com.tencent.mm/MicroMsg/' } self.adb.force_stop(PKG[idp]) self.adb.rm(DST[idp]) self.adb.push(path, DST[idp]) self.adb.chmod(DST[idp]) @property def page_source(self): """wrapper around appium page_source to catch exception""" source = None e = None for _ in range(3): try: source = self.driver.page_source if source: break except WebDriverException as e: time.sleep(1) continue else: raise WebDriverException(e) return source
py
1a55c50007fb059f1c428525f49e6dcab30c95a7
from setuptools import find_packages, setup with open('README.md') as readme_file: readme = readme_file.read() with open('requirements.txt') as requirements_file: requirements = requirements_file.read().split('\n') setup( author='Philipp Bode, Christian Warmuth', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], description=( 'neurogaze provides wrapper functionality to record and ' 'visualize eye tracking and application usage data.' ), install_requires=requirements, license='MIT license', long_description=readme, include_package_data=True, name='neurogaze', packages=find_packages(include=['neurogaze']), url='https://github.com/christianwarmuth/neurogaze', version='0.0.1', )
py
1a55c58210d304e8a665f1470813eccb61ef9c94
a = (int(input("Entrez a:"))) b = (int(input("Entrez b:"))) def pgcd(a, b): while b != 0: a, b = b, a % b return a print("Le pgcd est:", pgcd(a, b))
py
1a55c682f6d63164f49830a07ec2a92630348140
# 消息 def display_message(msg): """打印消息""" print(msg) display_message('你好')
py
1a55c6be5d2fa16c43e47ef90b1020367aa9d3b4
# coding: utf-8 import os import re from time import gmtime, localtime, strftime, time from django import forms from django.contrib import messages from django.contrib.admin.views.decorators import staff_member_required from django.core.files.storage import (DefaultStorage, FileSystemStorage, default_storage) from django.core.paginator import EmptyPage, InvalidPage, Paginator from django.http import HttpResponseBadRequest, HttpResponseRedirect from django.shortcuts import HttpResponse, render from django.template import RequestContext as Context from django.urls import get_resolver, get_urlconf, reverse from django.utils.encoding import smart_str from django.utils.translation import ugettext as _ from django.views.decorators.cache import never_cache from django.views.decorators.csrf import csrf_exempt from filebrowser import signals # Default actions from filebrowser.actions import (flip_horizontal, flip_vertical, rotate_90_clockwise, rotate_90_counterclockwise, rotate_180) from filebrowser.base import FileListing, FileObject from filebrowser.decorators import file_exists, path_exists from filebrowser.settings import (ADMIN_THUMBNAIL, ADMIN_VERSIONS, CONVERT_FILENAME, DEFAULT_PERMISSIONS, DEFAULT_SORTING_BY, DEFAULT_SORTING_ORDER, DIRECTORY, EXCLUDE, EXTENSION_LIST, EXTENSIONS, LIST_PER_PAGE, MAX_UPLOAD_SIZE, NORMALIZE_FILENAME, OVERWRITE_EXISTING, SEARCH_TRAVERSE, SELECT_FORMATS, UPLOAD_TEMPDIR, VERSIONS, VERSIONS_BASEDIR) from filebrowser.storage import FileSystemStorageMixin from filebrowser.templatetags.fb_tags import query_helper from filebrowser.utils import convert_filename try: import json except ImportError: from django.utils import simplejson as json # Add some required methods to FileSystemStorage if FileSystemStorageMixin not in FileSystemStorage.__bases__: FileSystemStorage.__bases__ += (FileSystemStorageMixin,) # This cache contains all *instantiated* FileBrowser sites _sites_cache = {} def get_site_dict(app_name='filebrowser'): """ Return a dict with all *deployed* FileBrowser sites that have a given app_name. """ if app_name not in _sites_cache: return {} # Get names of all deployed filebrowser sites with a give app_name deployed = get_resolver(get_urlconf()).app_dict[app_name] # Get the deployed subset from the cache return dict((k, v) for k, v in _sites_cache[app_name].items() if k in deployed) def register_site(app_name, site_name, site): """ Add a site into the site dict. """ if app_name not in _sites_cache: _sites_cache[app_name] = {} _sites_cache[app_name][site_name] = site def get_default_site(app_name='filebrowser'): """ Returns the default site. This function uses Django's url resolution method to obtain the name of the default site. """ # Get the name of the default site: resolver = get_resolver(get_urlconf()) name = 'filebrowser' # Django's default name resolution method (see django.core.urlresolvers.reverse()) app_list = resolver.app_dict[app_name] if name not in app_list: name = app_list[0] return get_site_dict()[name] def get_breadcrumbs(query, path): """ Get breadcrumbs. """ breadcrumbs = [] dir_query = "" if path: for item in path.split(os.sep): dir_query = os.path.join(dir_query, item) breadcrumbs.append([item, dir_query]) return breadcrumbs def get_filterdate(filter_date, date_time): """ Get filterdate. """ returnvalue = '' date_year = strftime("%Y", gmtime(date_time)) date_month = strftime("%m", gmtime(date_time)) date_day = strftime("%d", gmtime(date_time)) if filter_date == 'today' and int(date_year) == int(localtime()[0]) and int(date_month) == int(localtime()[1]) and int(date_day) == int(localtime()[2]): returnvalue = 'true' elif filter_date == 'thismonth' and date_time >= time() - 2592000: returnvalue = 'true' elif filter_date == 'thisyear' and int(date_year) == int(localtime()[0]): returnvalue = 'true' elif filter_date == 'past7days' and date_time >= time() - 604800: returnvalue = 'true' elif filter_date == '': returnvalue = 'true' return returnvalue def get_settings_var(directory=DIRECTORY): """ Get settings variables used for FileBrowser listing. """ settings_var = {} # Main # Extensions/Formats (for FileBrowseField) settings_var['EXTENSIONS'] = EXTENSIONS settings_var['SELECT_FORMATS'] = SELECT_FORMATS # Versions settings_var['ADMIN_VERSIONS'] = ADMIN_VERSIONS settings_var['ADMIN_THUMBNAIL'] = ADMIN_THUMBNAIL # FileBrowser Options settings_var['MAX_UPLOAD_SIZE'] = MAX_UPLOAD_SIZE # Normalize Filenames settings_var['NORMALIZE_FILENAME'] = NORMALIZE_FILENAME # Convert Filenames settings_var['CONVERT_FILENAME'] = CONVERT_FILENAME # Traverse directories when searching settings_var['SEARCH_TRAVERSE'] = SEARCH_TRAVERSE return settings_var def handle_file_upload(path, file, site): """ Handle File Upload. """ uploadedfile = None try: file_path = os.path.join(path, file.name) uploadedfile = site.storage.save(file_path, file) except Exception as inst: raise inst return uploadedfile def filebrowser_view(view): "Only let staff browse the files" return staff_member_required(never_cache(view)) class FileBrowserSite(object): """ A filebrowser.site defines admin views for browsing your servers media files. """ filelisting_class = FileListing def __init__(self, name=None, app_name='filebrowser', storage=default_storage): self.name = name self.app_name = app_name self.storage = storage self._actions = {} self._global_actions = self._actions.copy() # Register this site in the global site cache register_site(self.app_name, self.name, self) # Per-site settings: self.directory = DIRECTORY def _directory_get(self): "Set directory" return self._directory def _directory_set(self, val): "Get directory" self._directory = val directory = property(_directory_get, _directory_set) def get_urls(self): "URLs for a filebrowser.site" from django.conf.urls import url # filebrowser urls (views) urlpatterns = [ url(r'^browse/$', path_exists(self, filebrowser_view(self.browse)), name="fb_browse"), url(r'^createdir/', path_exists(self, filebrowser_view(self.createdir)), name="fb_createdir"), url(r'^upload/', path_exists(self, filebrowser_view(self.upload)), name="fb_upload"), url(r'^delete_confirm/$', file_exists(self, path_exists(self, filebrowser_view(self.delete_confirm))), name="fb_delete_confirm"), url(r'^delete/$', file_exists(self, path_exists(self, filebrowser_view(self.delete))), name="fb_delete"), url(r'^detail/$', file_exists(self, path_exists(self, filebrowser_view(self.detail))), name="fb_detail"), url(r'^version/$', file_exists(self, path_exists(self, filebrowser_view(self.version))), name="fb_version"), url(r'^upload_file/$', staff_member_required(csrf_exempt(self._upload_file)), name="fb_do_upload"), ] return urlpatterns def add_action(self, action, name=None): """ Register an action to be available globally. """ name = name or action.__name__ # Check/create short description if not hasattr(action, 'short_description'): action.short_description = action.__name__.replace("_", " ").capitalize() # Check/create applies-to filter if not hasattr(action, 'applies_to'): action.applies_to = lambda x: True self._actions[name] = action self._global_actions[name] = action def disable_action(self, name): """ Disable a globally-registered action. Raises KeyError for invalid names. """ del self._actions[name] def get_action(self, name): """ Explicitally get a registered global action wheather it's enabled or not. Raises KeyError for invalid names. """ return self._global_actions[name] def applicable_actions(self, fileobject): """ Return a list of tuples (name, action) of actions applicable to a given fileobject. """ res = [] for name, action in self.actions: if action.applies_to(fileobject): res.append((name, action)) return res @property def actions(self): """ Get all the enabled actions as a list of (name, func). The list is sorted alphabetically by actions names """ res = list(self._actions.items()) res.sort(key=lambda name_func: name_func[0]) return res @property def urls(self): "filebrowser.site URLs" return self.get_urls(), self.app_name, self.name def browse(self, request): "Browse Files/Directories." filter_re = [] for exp in EXCLUDE: filter_re.append(re.compile(exp)) # do not filter if VERSIONS_BASEDIR is being used if not VERSIONS_BASEDIR: for k, v in VERSIONS.items(): exp = (r'_%s(%s)$') % (k, '|'.join(EXTENSION_LIST)) filter_re.append(re.compile(exp, re.IGNORECASE)) def filter_browse(item): "Defining a browse filter" filtered = item.filename.startswith('.') for re_prefix in filter_re: if re_prefix.search(item.filename): filtered = True if filtered: return False return True query = request.GET.copy() path = u'%s' % os.path.join(self.directory, query.get('dir', '')) filelisting = self.filelisting_class( path, filter_func=filter_browse, sorting_by=query.get('o', DEFAULT_SORTING_BY), sorting_order=query.get('ot', DEFAULT_SORTING_ORDER), site=self) files = [] if SEARCH_TRAVERSE and query.get("q"): listing = filelisting.files_walk_filtered() else: listing = filelisting.files_listing_filtered() # If we do a search, precompile the search pattern now do_search = query.get("q") if do_search: re_q = re.compile(query.get("q").lower(), re.M) filter_type = query.get('filter_type') filter_date = query.get('filter_date') filter_format = query.get('type') for fileobject in listing: # date/type filter, format filter append = False if (not filter_type or fileobject.filetype == filter_type) and \ (not filter_date or get_filterdate(filter_date, fileobject.date or 0)) and \ (not filter_format or filter_format in fileobject.format): append = True # search if do_search and not re_q.search(fileobject.filename.lower()): append = False # always show folders with popups # otherwise, one is not able to select/filter files within subfolders if fileobject.filetype == "Folder": append = True # MODIFIED: Hide folders in search if do_search: append = False # append if append: files.append(fileobject) filelisting.results_total = len(listing) filelisting.results_current = len(files) p = Paginator(files, LIST_PER_PAGE) page_nr = request.GET.get('p', '1') try: page = p.page(page_nr) except (EmptyPage, InvalidPage): page = p.page(p.num_pages) request.current_app = self.name return render(request, 'filebrowser/index.html', { 'p': p, 'page': page, 'filelisting': filelisting, 'query': query, 'title': _(u'FileBrowser'), 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': "", 'filebrowser_site': self }) def createdir(self, request): "Create Directory" from filebrowser.forms import CreateDirForm query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) if request.method == 'POST': form = CreateDirForm(path, request.POST, filebrowser_site=self) if form.is_valid(): server_path = os.path.join(path, form.cleaned_data['name']) try: signals.filebrowser_pre_createdir.send(sender=request, path=server_path, name=form.cleaned_data['name'], site=self) self.storage.makedirs(server_path) signals.filebrowser_post_createdir.send(sender=request, path=server_path, name=form.cleaned_data['name'], site=self) messages.add_message(request, messages.SUCCESS, _('The Folder %s was successfully created.') % form.cleaned_data['name']) redirect_url = reverse("filebrowser:fb_browse", current_app=self.name) + query_helper(query, "ot=desc,o=date", "ot,o,filter_type,filter_date,q,p") return HttpResponseRedirect(redirect_url) except OSError as e: errno = e.args[0] if errno == 13: form.errors['name'] = forms.utils.ErrorList([_('Permission denied.')]) else: form.errors['name'] = forms.utils.ErrorList([_('Error creating folder.')]) else: form = CreateDirForm(path, filebrowser_site=self) request.current_app = self.name return render(request, 'filebrowser/createdir.html', { 'form': form, 'query': query, 'title': _(u'New Folder'), 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': _(u'New Folder'), 'filebrowser_site': self }) def upload(self, request): "Multipe File Upload." query = request.GET request.current_app = self.name return render(request, 'filebrowser/upload.html', { 'query': query, 'title': _(u'Select files to upload'), 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': _(u'Upload'), 'filebrowser_site': self }) def delete_confirm(self, request): "Delete existing File/Directory." query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) fileobject = FileObject(os.path.join(path, query.get('filename', '')), site=self) if fileobject.filetype == "Folder": filelisting = self.filelisting_class( os.path.join(path, fileobject.filename), sorting_by=query.get('o', 'filename'), sorting_order=query.get('ot', DEFAULT_SORTING_ORDER), site=self) filelisting = filelisting.files_walk_total() if len(filelisting) > 100: additional_files = len(filelisting) - 100 filelisting = filelisting[:100] else: additional_files = None else: filelisting = None additional_files = None request.current_app = self.name return render(request, 'filebrowser/delete_confirm.html', { 'fileobject': fileobject, 'filelisting': filelisting, 'additional_files': additional_files, 'query': query, 'title': _(u'Confirm delete'), 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': _(u'Confirm delete'), 'filebrowser_site': self }) def delete(self, request): "Delete existing File/Directory." query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) fileobject = FileObject(os.path.join(path, query.get('filename', '')), site=self) if request.GET: try: signals.filebrowser_pre_delete.send(sender=request, path=fileobject.path, name=fileobject.filename, site=self) fileobject.delete_versions() fileobject.delete() signals.filebrowser_post_delete.send(sender=request, path=fileobject.path, name=fileobject.filename, site=self) messages.add_message(request, messages.SUCCESS, _('Successfully deleted %s') % fileobject.filename) except OSError: # TODO: define error-message pass redirect_url = reverse("filebrowser:fb_browse", current_app=self.name) + query_helper(query, "", "filename,filetype") return HttpResponseRedirect(redirect_url) def detail(self, request): """ Show detail page for a file. Rename existing File/Directory (deletes existing Image Versions/Thumbnails). """ from filebrowser.forms import ChangeForm query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) fileobject = FileObject(os.path.join(path, query.get('filename', '')), site=self) if request.method == 'POST': form = ChangeForm(request.POST, path=path, fileobject=fileobject, filebrowser_site=self) if form.is_valid(): new_name = form.cleaned_data['name'] action_name = form.cleaned_data['custom_action'] try: action_response = None if action_name: action = self.get_action(action_name) # Pre-action signal signals.filebrowser_actions_pre_apply.send(sender=request, action_name=action_name, fileobject=[fileobject], site=self) # Call the action to action action_response = action(request=request, fileobjects=[fileobject]) # Post-action signal signals.filebrowser_actions_post_apply.send(sender=request, action_name=action_name, fileobject=[fileobject], result=action_response, site=self) if new_name != fileobject.filename: signals.filebrowser_pre_rename.send(sender=request, path=fileobject.path, name=fileobject.filename, new_name=new_name, site=self) fileobject.delete_versions() self.storage.move(fileobject.path, os.path.join(fileobject.head, new_name)) signals.filebrowser_post_rename.send(sender=request, path=fileobject.path, name=fileobject.filename, new_name=new_name, site=self) messages.add_message(request, messages.SUCCESS, _('Renaming was successful.')) if isinstance(action_response, HttpResponse): return action_response if "_continue" in request.POST: redirect_url = reverse("filebrowser:fb_detail", current_app=self.name) + query_helper(query, "filename=" + new_name, "filename") else: redirect_url = reverse("filebrowser:fb_browse", current_app=self.name) + query_helper(query, "", "filename") return HttpResponseRedirect(redirect_url) except OSError: form.errors['name'] = forms.utils.ErrorList([_('Error.')]) else: form = ChangeForm(initial={"name": fileobject.filename}, path=path, fileobject=fileobject, filebrowser_site=self) request.current_app = self.name return render(request, 'filebrowser/detail.html', { 'form': form, 'fileobject': fileobject, 'query': query, 'title': u'%s' % fileobject.filename, 'settings_var': get_settings_var(directory=self.directory), 'breadcrumbs': get_breadcrumbs(query, query.get('dir', '')), 'breadcrumbs_title': u'%s' % fileobject.filename, 'filebrowser_site': self }) def version(self, request): """ Version detail. This just exists in order to select a version with a filebrowser–popup. """ query = request.GET path = u'%s' % os.path.join(self.directory, query.get('dir', '')) fileobject = FileObject(os.path.join(path, query.get('filename', '')), site=self) request.current_app = self.name return render(request, 'filebrowser/version.html', { 'fileobject': fileobject, 'query': query, 'settings_var': get_settings_var(directory=self.directory), 'filebrowser_site': self }) def _upload_file(self, request): """ Upload file to the server. If temporary is true, we upload to UPLOAD_TEMPDIR, otherwise we upload to site.directory """ if request.method == "POST": folder = request.GET.get('folder', '') temporary = request.GET.get('temporary', '') temp_filename = None if len(request.FILES) == 0: return HttpResponseBadRequest('Invalid request! No files included.') if len(request.FILES) > 1: return HttpResponseBadRequest('Invalid request! Multiple files included.') filedata = list(request.FILES.values())[0] fb_uploadurl_re = re.compile(r'^.*(%s)' % reverse("filebrowser:fb_upload", current_app=self.name)) folder = fb_uploadurl_re.sub('', folder) # temporary upload folder should be outside self.directory if folder == UPLOAD_TEMPDIR and temporary == "true": path = folder else: path = os.path.join(self.directory, folder) # we convert the filename before uploading in order # to check for existing files/folders file_name = convert_filename(filedata.name) filedata.name = file_name file_path = os.path.join(path, file_name) file_already_exists = self.storage.exists(file_path) # construct temporary filename by adding the upload folder, because # otherwise we don't have any clue if the file has temporary been # uploaded or not if folder == UPLOAD_TEMPDIR and temporary == "true": temp_filename = os.path.join(folder, file_name) # Check for name collision with a directory if file_already_exists and self.storage.isdir(file_path): ret_json = {'success': False, 'filename': file_name} return HttpResponse(json.dumps(ret_json)) signals.filebrowser_pre_upload.send(sender=request, path=folder, file=filedata, site=self) uploadedfile = handle_file_upload(path, filedata, site=self) if file_already_exists and OVERWRITE_EXISTING: old_file = smart_str(file_path) new_file = smart_str(uploadedfile) self.storage.move(new_file, old_file, allow_overwrite=True) full_path = FileObject(smart_str(old_file), site=self).path_full else: file_name = smart_str(uploadedfile) filedata.name = os.path.relpath(file_name, path) full_path = FileObject(smart_str(file_name), site=self).path_full # set permissions if DEFAULT_PERMISSIONS is not None: os.chmod(full_path, DEFAULT_PERMISSIONS) f = FileObject(smart_str(file_name), site=self) signals.filebrowser_post_upload.send(sender=request, path=folder, file=f, site=self) # let Ajax Upload know whether we saved it or not ret_json = {'success': True, 'filename': f.filename, 'temp_filename': temp_filename} return HttpResponse(json.dumps(ret_json), content_type="application/json") storage = DefaultStorage() # Default FileBrowser site site = FileBrowserSite(name='filebrowser', storage=storage) site.add_action(flip_horizontal) site.add_action(flip_vertical) site.add_action(rotate_90_clockwise) site.add_action(rotate_90_counterclockwise) site.add_action(rotate_180)
py
1a55c7188ee84f2f8a37f3d08d88c9ac2540c0c9
''' Module for gathering and managing network information ''' # Import python libs import logging # Import salt libs from salt.utils.socket_util import sanitize_host __outputter__ = { 'dig': 'txt', 'ping': 'txt', 'netstat': 'txt', } log = logging.getLogger(__name__) def __virtual__(): ''' Only work on posix-like systems ''' # Disable on Windows, a specific file module exists: if __grains__['os'] in ('Windows',): return False return 'network' def _cidr_to_ipv4_netmask(cidr_bits): ''' Returns an IPv4 netmask ''' netmask = '' for n in range(4): if n: netmask += '.' if cidr_bits >= 8: netmask += '255' cidr_bits -= 8 else: netmask += '{0:d}'.format(256-(2**(8-cidr_bits))) cidr_bits = 0 return netmask def _number_of_set_bits_to_ipv4_netmask(set_bits): ''' Returns an IPv4 netmask from the integer representation of that mask. Ex. 0xffffff00 -> '255.255.255.0' ''' return _cidr_to_ipv4_netmask(_number_of_set_bits(set_bits)) def _number_of_set_bits(x): ''' Returns the number of bits that are set in a 32bit int ''' #Taken from http://stackoverflow.com/a/4912729. Many thanks! x -= (x >> 1) & 0x55555555 x = ((x >> 2) & 0x33333333) + (x & 0x33333333) x = ((x >> 4) + x) & 0x0f0f0f0f x += x >> 8 x += x >> 16 return x & 0x0000003f def _interfaces_ip(out): ''' Uses ip to return a dictionary of interfaces with various information about each (up/down state, ip address, netmask, and hwaddr) ''' import re ret = dict() def parse_network(value, cols): ''' Return a tuple of ip, netmask, broadcast based on the current set of cols ''' brd = None if '/' in value: # we have a CIDR in this address ip, cidr = value.split('/') else: ip = value cidr = 32 if type == 'inet': mask = _cidr_to_ipv4_netmask(int(cidr)) if 'brd' in cols: brd = cols[cols.index('brd')+1] elif type == 'inet6': mask = cidr return (ip, mask, brd) groups = re.compile('\r?\n\d').split(out) for group in groups: iface = None data = dict() for line in group.splitlines(): if not ' ' in line: continue m = re.match('^\d*:\s+([\w.]+)(?:@)?(\w+)?:\s+<(.+)>', line) if m: iface, parent, attrs = m.groups() if 'UP' in attrs.split(','): data['up'] = True else: data['up'] = False if parent: data['parent'] = parent continue cols = line.split() if len(cols) >= 2: type, value = tuple(cols[0:2]) iflabel = cols[-1:][0] if type in ('inet', 'inet6'): if 'secondary' not in cols: ipaddr, netmask, broadcast = parse_network(value, cols) if type == 'inet': if 'inet' not in data: data['inet'] = list() addr_obj = dict() addr_obj['address'] = ipaddr addr_obj['netmask'] = netmask addr_obj['broadcast'] = broadcast addr_obj['label'] = iflabel data['inet'].append(addr_obj) elif type == 'inet6': if 'inet6' not in data: data['inet6'] = list() addr_obj = dict() addr_obj['address'] = ipaddr addr_obj['prefixlen'] = netmask data['inet6'].append(addr_obj) else: if 'secondary' not in data: data['secondary'] = list() ip, mask, brd = parse_network(value, cols) data['secondary'].append({ 'type': type, 'address': ip, 'netmask': mask, 'broadcast': brd, 'label': iflabel, }) del ip, mask, brd elif type.startswith('link'): data['hwaddr'] = value if iface: ret[iface] = data del iface, data return ret def _interfaces_ifconfig(out): ''' Uses ifconfig to return a dictionary of interfaces with various information about each (up/down state, ip address, netmask, and hwaddr) ''' import re ret = dict() piface = re.compile('^(\S+):?') pmac = re.compile('.*?(?:HWaddr|ether) ([0-9a-fA-F:]+)') pip = re.compile('.*?(?:inet addr:|inet )(.*?)\s') pip6 = re.compile('.*?(?:inet6 addr: (.*?)/|inet6 )([0-9a-fA-F:]+)') pmask = re.compile('.*?(?:Mask:|netmask )(?:(0x[0-9a-fA-F]{8})|([\d\.]+))') pmask6 = re.compile('.*?(?:inet6 addr: [0-9a-fA-F:]+/(\d+)|prefixlen (\d+)).*') pupdown = re.compile('UP') pbcast = re.compile('.*?(?:Bcast:|broadcast )([\d\.]+)') groups = re.compile('\r?\n(?=\S)').split(out) for group in groups: data = dict() iface = '' updown = False for line in group.splitlines(): miface = piface.match(line) mmac = pmac.match(line) mip = pip.match(line) mip6 = pip6.match(line) mupdown = pupdown.search(line) if miface: iface = miface.group(1) if mmac: data['hwaddr'] = mmac.group(1) if mip: if 'inet' not in data: data['inet'] = list() addr_obj = dict() addr_obj['address'] = mip.group(1) mmask = pmask.match(line) if mmask: if mmask.group(1): mmask = _number_of_set_bits_to_ipv4_netmask( int(mmask.group(1), 16)) else: mmask = mmask.group(2) addr_obj['netmask'] = mmask mbcast = pbcast.match(line) if mbcast: addr_obj['broadcast'] = mbcast.group(1) data['inet'].append(addr_obj) if mupdown: updown = True if mip6: if 'inet6' not in data: data['inet6'] = list() addr_obj = dict() addr_obj['address'] = mip6.group(1) or mip6.group(2) mmask6 = pmask6.match(line) if mmask6: addr_obj['prefixlen'] = mmask6.group(1) or mmask6.group(2) data['inet6'].append(addr_obj) data['up'] = updown ret[iface] = data del data return ret def interfaces(): ''' Return a dictionary of information about all the interfaces on the minion CLI Example:: salt '*' network.interfaces ''' ifaces = dict() if __salt__['cmd.has_exec']('ip'): cmd1 = __salt__['cmd.run']('ip link show') cmd2 = __salt__['cmd.run']('ip addr show') ifaces = _interfaces_ip(cmd1 + '\n' + cmd2) elif __salt__['cmd.has_exec']('ifconfig'): cmd = __salt__['cmd.run']('ifconfig -a') ifaces = _interfaces_ifconfig(cmd) return ifaces def _get_net_start(ipaddr, netmask): ipaddr_octets = ipaddr.split('.') netmask_octets = netmask.split('.') net_start_octets = [str(int(ipaddr_octets[x]) & int(netmask_octets[x])) for x in range(0, 4)] return '.'.join(net_start_octets) def _get_net_size(mask): binary_str = '' for octet in mask.split('.'): binary_str += bin(int(octet))[2:].zfill(8) return len(binary_str.rstrip('0')) def _calculate_subnet(ipaddr, netmask): return '{0}/{1}'.format(_get_net_start(ipaddr, netmask), _get_net_size(netmask)) def _ipv4_to_bits(ipaddr): ''' Accepts an IPv4 dotted quad and returns a string representing its binary counterpart ''' return ''.join([bin(int(x))[2:].rjust(8, '0') for x in ipaddr.split('.')]) def subnets(): ''' Returns a list of subnets to which the host belongs ''' ifaces = interfaces() subnets = [] for ipv4_info in ifaces.values(): for ipv4 in ipv4_info.get('inet', []): if ipv4['address'] == '127.0.0.1': continue network = _calculate_subnet(ipv4['address'], ipv4['netmask']) subnets.append(network) return subnets def in_subnet(cidr): ''' Returns True if host is within specified subnet, otherwise False ''' try: netstart, netsize = cidr.split('/') netsize = int(netsize) except: log.error('Invalid CIDR \'{0}\''.format(cidr)) return False netstart_bin = _ipv4_to_bits(netstart) if netsize < 32 and len(netstart_bin.rstrip('0')) > netsize: log.error('Invalid network starting IP \'{0}\' in CIDR ' '\'{1}\''.format(netstart, cidr)) return False netstart_leftbits = netstart_bin[0:netsize] for ip_addr in ip_addrs(): if netsize == 32: if netstart == ip_addr: return True else: ip_leftbits = _ipv4_to_bits(ip_addr)[0:netsize] if netstart_leftbits == ip_leftbits: return True return False def ip_addrs(interface=None, include_loopback=False): ''' Returns a list of IPv4 addresses assigned to the host. 127.0.0.1 is ignored, unless 'include_loopback=True' is indicated. If 'interface' is provided, then only IP addresses from that interface will be returned. ''' ret = [] ifaces = interfaces() if interface is None: target_ifaces = ifaces else: target_ifaces = dict([(k,v) for k,v in ifaces.iteritems() if k == interface]) if not target_ifaces: log.error('Interface {0} not found.'.format(interface)) for ipv4_info in target_ifaces.values(): for ipv4 in ipv4_info.get('inet',[]): if include_loopback \ or (not include_loopback and ipv4['address'] != '127.0.0.1'): ret.append(ipv4['address']) return ret def ip_addrs6(interface=None, include_loopback=False): ''' Returns a list of IPv6 addresses assigned to the host. ::1 is ignored, unless 'include_loopback=True' is indicated. If 'interface' is provided, then only IP addresses from that interface will be returned. ''' ret = [] ifaces = interfaces() if interface is None: target_ifaces = ifaces else: target_ifaces = dict([(k,v) for k,v in ifaces.iteritems() if k == interface]) if not target_ifaces: log.error('Interface {0} not found.'.format(interface)) for ipv6_info in target_ifaces.values(): for ipv6 in ipv6_info.get('inet6',[]): if include_loopback \ or (not include_loopback and ipv6['address'] != '::1'): ret.append(ipv6['address']) return ret def ping(host): ''' Performs a ping to a host CLI Example:: salt '*' network.ping archlinux.org ''' cmd = 'ping -c 4 {0}'.format(sanitize_host(host)) return __salt__['cmd.run'](cmd) # FIXME: Does not work with: netstat 1.42 (2001-04-15) from net-tools 1.6.0 (Ubuntu 10.10) def netstat(): ''' Return information on open ports and states CLI Example:: salt '*' network.netstat ''' ret = [] cmd = 'netstat -tulpnea' out = __salt__['cmd.run'](cmd).splitlines() for line in out: comps = line.split() if line.startswith('tcp'): ret.append({ 'inode': comps[7], 'local-address': comps[3], 'program': comps[8], 'proto': comps[0], 'recv-q': comps[1], 'remote-address': comps[4], 'send-q': comps[2], 'state': comps[5], 'user': comps[6]}) if line.startswith('udp'): ret.append({ 'inode': comps[6], 'local-address': comps[3], 'program': comps[7], 'proto': comps[0], 'recv-q': comps[1], 'remote-address': comps[4], 'send-q': comps[2], 'user': comps[5]}) return ret # FIXME: This is broken on: Modern traceroute for Linux, version 2.0.14, May 10 2010 (Ubuntu 10.10) # FIXME: traceroute is deprecated, make this fall back to tracepath def traceroute(host): ''' Performs a traceroute to a 3rd party host CLI Example:: salt '*' network.traceroute archlinux.org ''' ret = [] cmd = 'traceroute {0}'.format(sanitize_host(host)) out = __salt__['cmd.run'](cmd) for line in out: if not ' ' in line: continue if line.startswith('traceroute'): continue comps = line.split() result = { 'count': comps[0], 'hostname': comps[1], 'ip': comps[2], 'ms1': comps[4], 'ms2': comps[6], 'ms3': comps[8], 'ping1': comps[3], 'ping2': comps[5], 'ping3': comps[7]} ret.append(result) return ret def dig(host): ''' Performs a DNS lookup with dig CLI Example:: salt '*' network.dig archlinux.org ''' cmd = 'dig {0}'.format(sanitize_host(host)) return __salt__['cmd.run'](cmd)
py
1a55c7ad07164f13c44efcabf514e503d434e43e
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## ''' RestrictedPython package. ''' from SelectCompiler import * from PrintCollector import PrintCollector