ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a55c821abcafb1b59ee8697e61ecbf6b2fe8172
from .add import add from .subtract import subtract from .multiply import multiply
py
1a55c83049ee15de6151cdbe439cb057866f3946
from nintendo.nex import backend, authentication, friends, nintendo_notification from nintendo import account import rpc import time client_id = '472185292636291082' rpc_obj = rpc.DiscordIpcClient.for_platform(client_id) print("RPC connection successful.") # Wii U Console Details DEVICE_ID = 1111111111 SERIAL_NUMBER = "xxxxxxxxxxxx" SYSTEM_VERSION = 0x230 # 5.5.2E REGION = 4 # Europe (PAL) COUNTRY = "GB" # United Kingdom (Great Britain) # Wii U Secondary User/Account Details USERNAME = "PutSecondaryNNIDUsernameHere" PASSWORD = "PutSecondaryNNIDPasswordHere" # Wii U Main User/Account NNID MAINID = "PutMainNNIDUsernameHere" class NotificationHandler(nintendo_notification.NintendoNotificationHandler): def __init__(self): self.name_cache = {} def process_notification_event(self, event): pid = event.pid if pid not in self.name_cache: self.name_cache[pid] = api.get_nnid(pid) name = self.name_cache[pid] if event.type == nintendo_notification.NotificationType.LOGOUT: if name == MAINID: print("Peace!") activity = { } rpc_obj.set_activity(activity) elif event.type == nintendo_notification.NotificationType.PRESENCE_CHANGE: presence = event.data if name == MAINID: print("Gotcha!") title_id = "%016X" %(event.data.game_key.title_id) if title_id == "0000000000000000": title_name = "Wii U Menu" elif title_id == "000500001010ED00": title_name = "MARIO KART 8" elif title_id == "000500001010CD00": title_name = "MARIO KART 8" elif title_id == "0005000010176A00": title_name = "Splatoon" elif title_id == "00050000101C9500": title_name = "Breath of the Wild" elif title_id == "0005000010180700": title_name = "Captain Toad: Treasure Tracker" elif title_id == "0005000010199500": title_name = "Super Mario 64" elif title_id == "0005000010195B00": title_name = "NEW SUPER MARIO BROS." elif title_id == "0005000010172700": title_name = "BAYONETTA 2" elif title_id == "000500301001420A": title_name = "Nintendo eShop" elif title_id == "000500301001620A": title_name = "Miiverse" elif title_id == "000500301001220A": title_name = "Internet Browser" elif title_id == "000500101004A200": title_name = "Mii Maker" elif title_id == "000500101005A200": title_name = "Wii U Chat" elif title_id == "0005000010105A00": title_name = "Netflix" elif title_id == "0005000010105700": title_name = "YouTube" elif title_id == "0005000010102F00": title_name = "Amazon / LOVEFiLM" elif title_id == "0005000010101E00": title_name = "New SUPER MARIO BROS. U" elif title_id == "000500001014B800": title_name = "New SUPER MARIO BROS. U + New SUPER LUIGI U" elif title_id == "0005000010145D00": title_name = "SUPER MARIO 3D WORLD" elif title_id == "000500001018DD00": title_name = "Super Mario Maker" else: title_name = title_id #idDash = title_id[:8] + "-" + title_id[8:] #print("idDash: " + idDash) start_time = time.time() print(title_id + " / " + title_name) activity = { "details": title_name, "timestamps": { "start": start_time }, "assets": { "small_text": MAINID, "small_image": "nn", "large_text": title_name, "large_image": title_id.lower() } } rpc_obj.set_activity(activity) else: print("Unknown notification type %i (from %s)" %(event.type, name)) api = account.AccountAPI() api.set_device(DEVICE_ID, SERIAL_NUMBER, SYSTEM_VERSION, REGION, COUNTRY) api.set_title(friends.FriendsTitle.TITLE_ID_EUR, friends.FriendsTitle.LATEST_VERSION) api.login(USERNAME, PASSWORD) nex_token = api.get_nex_token(friends.FriendsTitle.GAME_SERVER_ID) backend = backend.BackEndClient( friends.FriendsTitle.ACCESS_KEY, friends.FriendsTitle.NEX_VERSION, backend.Settings("friends.cfg") ) backend.connect(nex_token.host, nex_token.port) backend.login( nex_token.username, nex_token.password, None, authentication.NintendoLoginData(nex_token.token) ) backend.nintendo_notification_server.handler = NotificationHandler() input("Press enter to disconnect and exit\n") backend.close()
py
1a55c940d814b845c4bce402cd217cb56f0def04
"""The Met Office integration.""" import asyncio import logging import datapoint from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_API_KEY, CONF_LATITUDE, CONF_LONGITUDE, CONF_NAME from homeassistant.core import HomeAssistant from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.update_coordinator import DataUpdateCoordinator from .const import ( DEFAULT_SCAN_INTERVAL, DOMAIN, METOFFICE_COORDINATES, METOFFICE_DAILY_COORDINATOR, METOFFICE_HOURLY_COORDINATOR, METOFFICE_NAME, MODE_3HOURLY, MODE_DAILY, ) from .data import MetOfficeData from .helpers import fetch_data, fetch_site _LOGGER = logging.getLogger(__name__) PLATFORMS = ["sensor", "weather"] async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up a Met Office entry.""" latitude = entry.data[CONF_LATITUDE] longitude = entry.data[CONF_LONGITUDE] api_key = entry.data[CONF_API_KEY] site_name = entry.data[CONF_NAME] connection = datapoint.connection(api_key=api_key) site = await hass.async_add_executor_job( fetch_site, connection, latitude, longitude ) if site is None: raise ConfigEntryNotReady() async def async_update_3hourly() -> MetOfficeData: return await hass.async_add_executor_job( fetch_data, connection, site, MODE_3HOURLY ) async def async_update_daily() -> MetOfficeData: return await hass.async_add_executor_job( fetch_data, connection, site, MODE_DAILY ) metoffice_hourly_coordinator = DataUpdateCoordinator( hass, _LOGGER, name=f"MetOffice Hourly Coordinator for {site_name}", update_method=async_update_3hourly, update_interval=DEFAULT_SCAN_INTERVAL, ) metoffice_daily_coordinator = DataUpdateCoordinator( hass, _LOGGER, name=f"MetOffice Daily Coordinator for {site_name}", update_method=async_update_daily, update_interval=DEFAULT_SCAN_INTERVAL, ) metoffice_hass_data = hass.data.setdefault(DOMAIN, {}) metoffice_hass_data[entry.entry_id] = { METOFFICE_HOURLY_COORDINATOR: metoffice_hourly_coordinator, METOFFICE_DAILY_COORDINATOR: metoffice_daily_coordinator, METOFFICE_NAME: site_name, METOFFICE_COORDINATES: f"{latitude}_{longitude}", } # Fetch initial data so we have data when entities subscribe await asyncio.gather( metoffice_hourly_coordinator.async_config_entry_first_refresh(), metoffice_daily_coordinator.async_config_entry_first_refresh(), ) hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = await hass.config_entries.async_unload_platforms(entry, PLATFORMS) if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) if not hass.data[DOMAIN]: hass.data.pop(DOMAIN) return unload_ok
py
1a55c944f6990945f1202908f898951f9c17128d
# Copyright 2016-2017 Workonline Communications (Pty) Ltd. All rights reserved. # # The contents of this file are licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. """Views module for prngmgr API.""" from django.db.models import F, Q from django_peeringdb.models import concrete as pdb_models from prngmgr import models as prngmgr_models from prngmgr.api import datatables, serializers from rest_framework import permissions, viewsets from rest_framework.decorators import list_route from rest_framework.response import Response class OrganizationViewSet(viewsets.ReadOnlyModelViewSet): """Organization view set.""" queryset = pdb_models.Organization.objects.all() serializer_class = serializers.OrganizationSerializer permission_classes = (permissions.IsAuthenticated,) class FacilityViewSet(viewsets.ReadOnlyModelViewSet): """Facility view set.""" queryset = pdb_models.Facility.objects.all() serializer_class = serializers.FacilitySerializer permission_classes = (permissions.IsAuthenticated,) class NetworkProxyViewSet(viewsets.ReadOnlyModelViewSet): """Network proxy view set.""" queryset = prngmgr_models.NetworkProxy.objects.all() serializer_class = serializers.NetworkSerializer permission_classes = (permissions.IsAuthenticated,) @list_route() def datatable(self, request, *args, **kwargs): """Render datatable query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params ) return query.response @list_route() def tabledef(self, *args, **kwargs): """Render datatable table definition.""" columns = [ {'title': 'Network Name', 'data': 'name', 'name': 'name'}, {'title': 'Primary ASN', 'data': 'asn', 'name': 'asn'}, {'title': 'IRR Record', 'data': 'irr_as_set', 'name': 'irr_as_set'}, {'title': 'Looking Glass', 'data': 'looking_glass', 'name': 'looking_glass'}, {'title': 'Peering Policy', 'data': 'policy_general', 'name': 'policy_general'}, {'title': 'Possible Sessions', 'data': 'possible_sessions', 'name': 'possible_sessions', 'orderable': False, 'searchable': False}, {'title': 'Provisioned Sessions', 'data': 'provisioned_sessions', 'name': 'provisioned_sessions', 'orderable': False, 'searchable': False}, {'title': 'Established Sessions', 'data': 'established_sessions', 'name': 'established_sessions', 'orderable': False, 'searchable': False}, ] definition = datatables.TableDefView(columns=columns) return definition.response class InternetExchangeProxyViewSet(viewsets.ReadOnlyModelViewSet): """IXP proxy view set.""" queryset = prngmgr_models.InternetExchangeProxy.objects.all() serializer_class = serializers.InternetExchangeSerializer permission_classes = (permissions.IsAuthenticated,) @list_route() def datatable(self, request, *args, **kwargs): """Render datatable query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params ) return query.response @list_route() def tabledef(self, *args, **kwargs): """Render datatable table definition.""" columns = [ {'title': 'IXP Name', 'data': 'name', 'name': 'name', 'path': 'value'}, {'title': 'Country', 'data': 'country', 'name': 'country'}, {'title': 'Region', 'data': 'region_continent', 'name': 'region_continent'}, {'title': 'Participants', 'data': 'participants', 'name': 'participants', 'orderable': True, 'searchable': False}, {'title': 'Possible Sessions', 'data': 'possible_sessions', 'name': 'possible_sessions', 'orderable': False, 'searchable': False}, {'title': 'Provisioned Sessions', 'data': 'provisioned_sessions', 'name': 'provisioned_sessions', 'orderable': False, 'searchable': False}, {'title': 'Established Sessions', 'data': 'established_sessions', 'name': 'established_sessions', 'orderable': False, 'searchable': False}, ] definition = datatables.TableDefView(columns=columns) return definition.response class InternetExchangeFacilityViewSet(viewsets.ReadOnlyModelViewSet): """IXP Facility proxy view set.""" queryset = pdb_models.InternetExchangeFacility.objects.all() serializer_class = serializers.InternetExchangeFacilitySerializer permission_classes = (permissions.IsAuthenticated,) class IXLanViewSet(viewsets.ReadOnlyModelViewSet): """IXP LAN view set.""" queryset = pdb_models.IXLan.objects.all() serializer_class = serializers.IXLanSerializer permission_classes = (permissions.IsAuthenticated,) class IXLanPrefixViewSet(viewsets.ReadOnlyModelViewSet): """IXP LAN prefix view set.""" queryset = pdb_models.IXLanPrefix.objects.all() serializer_class = serializers.IXLanPrefixSerializer permission_classes = (permissions.IsAuthenticated,) class NetworkContactViewSet(viewsets.ReadOnlyModelViewSet): """Network contact view set.""" queryset = pdb_models.NetworkContact.objects.all() serializer_class = serializers.NetworkContactSerializer permission_classes = (permissions.IsAuthenticated,) class NetworkFacilityViewSet(viewsets.ReadOnlyModelViewSet): """Network facility view set.""" queryset = pdb_models.NetworkFacility.objects.all() serializer_class = serializers.NetworkFacilitySerializer permission_classes = (permissions.IsAuthenticated,) class NetworkIXLanViewSet(viewsets.ReadOnlyModelViewSet): """Network IX LAN view set.""" queryset = pdb_models.NetworkIXLan.objects.all() serializer_class = serializers.NetworkIXLanSerializer permission_classes = (permissions.IsAuthenticated,) class PeeringRouterViewSet(viewsets.ModelViewSet): """Peering router view set.""" queryset = prngmgr_models.PeeringRouter.objects.all() serializer_class = serializers.PeeringRouterSerializer permission_classes = (permissions.IsAuthenticated,) @list_route() def datatable(self, request, *args, **kwargs): """Render datatable query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params ) return query.response @list_route() def tabledef(self, *args, **kwargs): """Render datatable table definition.""" columns = [ {'title': 'Hostname', 'data': 'hostname', 'name': 'hostname'}, {'title': 'Peering Interfaces', 'data': 'peering_interfaces', 'name': 'peering_interfaces'}, {'title': 'Possible Sessions', 'data': 'possible_sessions', 'name': 'possible_sessions', 'orderable': False, 'searchable': False}, {'title': 'Provisioned Sessions', 'data': 'provisioned_sessions', 'name': 'provisioned_sessions', 'orderable': False, 'searchable': False}, {'title': 'Established Sessions', 'data': 'established_sessions', 'name': 'established_sessions', 'orderable': False, 'searchable': False}, ] definition = datatables.TableDefView(columns=columns) return definition.response class PeeringRouterIXInterfaceViewSet(viewsets.ModelViewSet): """Peering router IX interface view set.""" queryset = prngmgr_models.PeeringRouterIXInterface.objects.all() serializer_class = serializers.PeeringRouterIXInterfaceSerializer permission_classes = (permissions.IsAuthenticated,) class PeeringSessionViewSet(viewsets.ModelViewSet): """Peering session view set.""" model_manager = prngmgr_models.PeeringSession.objects queryset = model_manager.all() serializer_class = serializers.PeeringSessionSerializer permission_classes = (permissions.IsAuthenticated,) @list_route() def status_summary(self, *args, **kwargs): """Render status summary response.""" summary = self.model_manager.status_summary() return Response(summary) @list_route() def state_changes(self, request, *args, **kwargs): """Render state changes query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params, static_exclude=Q(**{"session_state": F("previous_state")}), static_order='-state_changed', ) return query.response @list_route() def datatable(self, request, *args, **kwargs): """Render datatable query response.""" query_params = datatables.QueryParams(request) query = datatables.QueryView( query_set=self.queryset, serializer_class=self.serializer_class, query_params=query_params ) return query.response @list_route() def tabledef(self, *args, **kwargs): """Render datatable table definition.""" columns = [ {'title': 'IXP', 'data': 'ixp_name', 'name': 'ixp_name', 'responsivePriority': 5}, {'title': 'Peer Name', 'data': 'remote_network_name', 'name': 'remote_network_name', 'responsivePriority': 1}, {'title': 'Peer AS', 'data': 'remote_network_asn', 'name': 'remote_network_asn', 'responsivePriority': 2}, {'title': 'Address Family', 'data': 'address_family', 'name': 'address_family', 'responsivePriority': 3}, {'title': 'Peer Address', 'data': 'remote_address', 'name': 'remote_address'}, {'title': 'Router', 'data': 'router_hostname', 'name': 'router_hostname'}, {'title': 'State', 'data': 'session_state', 'name': 'session_state', 'responsivePriority': 4}, {'title': 'Accepted Prefixes', 'data': 'accepted_prefixes', 'name': 'accepted_prefixes', 'responsivePriority': 6} ] definition = datatables.TableDefView(columns=columns) return definition.response
py
1a55c9a4d0ab076081aa3c631ce6f7525cfe9eec
import os from fabric.api import run, sudo, env, cd, local, prefix, put, lcd, settings from fabric.contrib.project import rsync_project from fabric.contrib.files import exists, sed from fabric.utils import puts server_dir = '/root/wxBot' tmp_dir = '/tmp/wxBot' + str(os.getpid()) def _set_user_dir(): global server_dir with settings(warn_only=True): issue = run('id root').lower() def _prepare_local_website(): local('mkdir -p %s' % tmp_dir) local('cp *.py *.jpg %s' % tmp_dir) def prepare_remote_dirs(): _set_user_dir() if not exists(server_dir): sudo('mkdir -p %s' % server_dir) sudo('chmod -R 755 %s' % server_dir) sudo('chown %s %s' % ('root', server_dir)) def _clean_local_dir(): local('rm -r %s' % tmp_dir) def host_type(): run('uname -s') def deploy(): _prepare_local_website() prepare_remote_dirs() rsync_project(local_dir=tmp_dir + '/', remote_dir=server_dir, delete=True) _clean_local_dir()
py
1a55ca65fd688653194f87a7281e511b36f3439a
import dbProvider as db import json from operator import itemgetter from flask import Flask, url_for, render_template, abort, make_response, redirect app = Flask(__name__) serverName = '146.185.179.193:5000' # serverName = 'otkachkaseptika.ru' def getStaticPath(relativePath): # return '/static/' + relativePath return url_for('static', filename=relativePath) app.config['SERVER_NAME'] = serverName # Helpers @app.context_processor def utility_processor(): def getLinkForRegionService(regionId = None, serviceId = None, order = False, subdomain = None): if regionId == None: if serviceId == None: return url_for("RegionNoService", subdomain = 'www' if subdomain == None else subdomain) else: service = db.getServiceById(serviceId) return url_for("RegionService", routeString = service['nameTranslit'], subdomain = 'www' if subdomain == None else subdomain) else: region = db.getRegionById(regionId) subdomain = db.getSubdomainByMainRegionId(regionId) if subdomain == None: isMainRegion = False subdomain = db.getSubdomainByRegionId(regionId) else: isMainRegion = True if serviceId == None: if isMainRegion: return url_for("RegionNoService", subdomain = subdomain) else: return url_for("RegionService", routeString = getPathForRegionId(regionId), subdomain = subdomain) else: service = db.getServiceById(serviceId) if isMainRegion: return url_for("RegionService", routeString = service['nameTranslit'], subdomain = subdomain) else: if not (region['hasChildren']): order = True if order: routeString = service['nameTranslit'] + "-v-" + region['dativeTranslit'] return url_for("RegionService", routeString = routeString, subdomain = subdomain) else: routeString = service['nameTranslit'] + getPathForRegionId(regionId) return url_for("RegionService", routeString = routeString, subdomain = subdomain) def getLen(array): return len(array) return dict(getLinkForRegionService=getLinkForRegionService, getLen=getLen, getServiceImgUrl=getServiceImgUrl) def getPathForRegionId(regionId): path = "" parents = db.getRegionParentsSorted(regionId) for parent in parents: path += "/" + parent["nameTranslit"] region = db.getRegionById(regionId) path += "/" + region["nameTranslit"] return path def getRegionByPathAndParentId(path, parentId): regions = path.split('/') for regionName in regions: region = db.getRegionByNameTranslitAndParentId(regionName, parentId) if region == None: return None parentId = region['id'] return region def getServiceImgUrl(service, region, size = None): imgNumber = db.getServiceRandomImgNumber(service, region['id']) if imgNumber == None: service = db.getServiceById(5) imgNumber = db.getServiceRandomImgNumber(service, region['id']) sizeStr = '' if size != None: sizeStr = '-' + size return getStaticPath('img/' + service['nameTranslit'] + '/' + service['nameTranslit'] + '-' + str(imgNumber) + sizeStr + '.jpg') def replaceDataInContent(content, region, service): result = [] for block in content: imgUrl = getServiceImgUrl(service, region) replaced = block.replace('{N}', region['dativeCaseName']).replace('{imgSrc}', imgUrl).replace('{imgAlt}', service['name'] + ' в ' + region['dativeCaseName']) result.append(replaced) return result # Redirects from no subdomains to www # @app.route('/') # def Redirect(): # return redirect("http://www." + serverName + "/", code=301) # @app.route('/<path:routeString>') # def RedirectWithPath(routeString): # return redirect("http://www." + serverName + "/" + routeString, code=301) # With subdomain @app.route('/') @app.route('/', subdomain="<subdomain>") def RegionNoService(subdomain = ''): print('Subdomain ' + subdomain) region = db.getRegionBySubdomain(subdomain) if region == None: region = 0 return render_template('selectServiceForRegion.html', siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(region['dativeCaseName']), mainPhone = db.getPhoneByRegionId(region['id'])['phoneString'], mainPhoneMeta = db.getText("phoneDescription", "other"), mainPhoneLink = db.getPhoneByRegionId(region['id'])['phoneNormal'], subdomain = subdomain, title = db.getText("regionNoService", "title").format(region['dativeCaseName']), description = db.getText("regionNoService", "description").format(region['dativeCaseName']), keywords = db.getText("regionNoService", "keywords").format(region['dativeCaseName']), h1 = db.getText("regionNoService", "h1").format(region['dativeCaseName']), copyright = db.getText("footer", "copyright"), services = db.getServices(), region = region, parentRegions = db.getRegionParentsSorted(region['id']), regions = db.getRegionsTree(parentIds=[region['id']]) ) @app.route('/<path:routeString>', subdomain = '') @app.route('/<path:routeString>', subdomain="<subdomain>") def RegionService(routeString, subdomain): print('Subdomain ' + subdomain) mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 serviceAndRegion = routeString.split("/") service = db.getServiceByNameTranslit(serviceAndRegion[0]) if service != None: regionPath = routeString.replace(service['nameTranslit'] + "/", "") region = getRegionByPathAndParentId(path=regionPath, parentId=mainRegion['id']) dativeRegionName = mainRegion['dativeCaseName'] parentIds=[mainRegion['id']] parentRegions = db.getRegionParentsSorted(mainRegion['id']) regionOrMainRegion = mainRegion if region != None: dativeRegionName = region['dativeCaseName'] parentIds=[region['id']] parentRegions = db.getRegionParentsSorted(region['id']) regionOrMainRegion = region return render_template('selectRegionForService.html', siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(mainRegion['dativeCaseName']), mainPhone = db.getPhoneByRegionId(mainRegion['id'])['phoneString'], mainPhoneMeta = db.getText("phoneDescription", "other"), mainPhoneLink = db.getPhoneByRegionId(mainRegion['id'])['phoneNormal'], subdomain = subdomain, title = db.getText("mainRegionService", "title").format(service['name'], dativeRegionName), description = db.getText("mainRegionService", "description").format(service['name'], dativeRegionName, service['description']), keywords = db.getText("mainRegionService", "keywords").format(service['name'], dativeRegionName), h1 = db.getText("mainRegionService", "h1").format(service['name'], dativeRegionName), service = service, parentRegions = parentRegions, copyright = db.getText("footer", "copyright"), regions = db.getRegionsTree(parentIds, 2), region = regionOrMainRegion ) else: serviceAndRegion = routeString.split("-v-") service = db.getServiceByNameTranslit(serviceAndRegion[0]) if service == None: region = getRegionByPathAndParentId(serviceAndRegion[0], mainRegion['id']) if region == None: region = 0 return render_template('selectServiceForRegion.html', siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(mainRegion['dativeCaseName']), mainPhone = db.getPhoneByRegionId(mainRegion['id'])['phoneString'], mainPhoneMeta = db.getText("phoneDescription", "other"), mainPhoneLink = db.getPhoneByRegionId(mainRegion['id'])['phoneNormal'], subdomain = subdomain, title = db.getText("regionNoService", "title").format(region['dativeCaseName']), description = db.getText("regionNoService", "description").format(region['dativeCaseName']), keywords = db.getText("regionNoService", "keywords").format(region['dativeCaseName']), h1 = db.getText("regionNoService", "h1").format(region['dativeCaseName']), copyright = db.getText("footer", "copyright"), services = db.getServices(), region = region, parentRegions = db.getRegionParentsSorted(region['id']), regions = db.getRegionsTree(parentIds = [mainRegion['id']]) ) if len(serviceAndRegion) > 1: region = db.getRegionByDativeTranslitAndMainRegion(serviceAndRegion[1], mainRegion['id']) if region == None: region = 0 services = db.getServices()[:] services.remove(service) content = db.getRandomizedTexts("orderService", subdomain, str(service['id']), region['id']) content = replaceDataInContent(content, region, service) return render_template('orderService.html', siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(mainRegion['dativeCaseName']), mainPhone = db.getPhoneByRegionId(mainRegion['id'])['phoneString'], mainPhoneLink = db.getPhoneByRegionId(mainRegion['id'])['phoneNormal'], mainPhoneMeta = db.getText("phoneDescription", "other"), subdomain = subdomain, title = db.getText("orderService", "title").format(service['name'], region['dativeCaseName']), description = db.getText("orderService", "description").format(service['name'], region['dativeCaseName']), keywords = db.getText("orderService", "keywords").format(service['name'], region['dativeCaseName']), h1 = db.getText("orderService", "h1").format(service['name'], region['dativeCaseName']), copyright = db.getText("footer", "copyright"), services = services, region = region, service = service, parentRegions = db.getRegionParentsSorted(region['id']), regions = db.getRegionsTree(parentIds = [mainRegion['id']]), otherServicesHeader = "Другие услуги в {}".format(region['dativeCaseName']), contentBlocks = content, imgUrl = getServiceImgUrl(service, region) ) #robots.txt @app.route('/robots.txt', subdomain="<subdomain>") def Robots(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 robots = 'User-agent: *\nAllow: /\nHost:' + subdomain + '.' + serverName + '\nsitemap: http://' + subdomain + '.' + serverName + '/sitemap.xml' response= make_response(robots) response.headers["Content-Type"] = "text/plain" return response #sitemap.xml sitemapCount = 50 lastMod = '2017-07-16' @app.route('/sitemap.xml', subdomain="<subdomain>") def SitemapIndex(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 sitemapIndex = render_template('sitemapindex.xml', urlRoot='http://' + subdomain + '.' + serverName, sitemapCount = sitemapCount, lastMod = lastMod) response= make_response(sitemapIndex) response.headers["Content-Type"] = "application/xml" return response @app.route('/sitemap<index>.xml', subdomain="<subdomain>") def Sitemap(index, subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 index = int(index) if index > sitemapCount: abort(404) services = db.getServices() regions = db.getAllChildrenRegionIds(mainRegion['id']) start = (index - 1) * len(regions)/sitemapCount if start < 0: abort(404) if start > len(regions): start = len(regions) end = index * len(regions)/sitemapCount if end > len(regions): end = len(regions) start = int(start) end = int(end) sitemapTemplate = 'sitemap1.xml' if index == 1: sitemapTemplate = 'sitemap.xml' sitemapXml = render_template(sitemapTemplate, urlRoot='http://' + subdomain + '.' + serverName, services = services, regions = regions[start:end], lastMod = lastMod, subdomain = subdomain) response= make_response(sitemapXml) response.headers["Content-Type"] = "application/xml" return response #verification @app.route('/google450d69197dedc081.html', subdomain="<subdomain>") def GoogleVerification(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return 'google-site-verification: google450d69197dedc081.html' @app.route('/df439bf5423b.html', subdomain="<subdomain>") def YandexVerificationMsk(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return 'd085889e17e4' @app.route('/yandex_d6b8a19aaea0ecfe.html', subdomain="<subdomain>") def YandexVerificationSpb(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return render_template('yandex_d6b8a19aaea0ecfe.html') @app.route('/wmail_557011f651d368ddfb70a33d8e147a72.html', subdomain="<subdomain>") def MailVerificationSpb(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return render_template('wmail_557011f651d368ddfb70a33d8e147a72.html') @app.route('/yandex_fb5d169c5c36f5d3.html', subdomain="<subdomain>") def YandexVerificationKrasnodar(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return render_template('yandex_fb5d169c5c36f5d3.html') @app.route('/wmail_076dfddb21e2e2bdee0afae71729a13a.html', subdomain="<subdomain>") def MailVerificationKrasnodar(subdomain): mainRegion = db.getRegionBySubdomain(subdomain) if mainRegion == None: mainRegion = 0 return render_template('wmail_076dfddb21e2e2bdee0afae71729a13a.html') # Error handling @app.errorhandler(404) def page_not_found(error): region = db.getRegionById(0) return render_template('404.html', mainPhone = db.getPhoneByRegionId(region['id'])['phoneString'], mainPhoneMeta = db.getText("phoneDescription", "other"), mainPhoneLink = db.getPhoneByRegionId(region['id'])['phoneNormal'], siteName = db.getText("header", "siteName"), motto = db.getText("header", "motto").format(region['dativeCaseName']), subdomain = db.getSubdomainByMainRegionId(region['id']), title = "Страница не найдена", copyright = db.getText("footer", "copyright")),404 if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True)
py
1a55cac3973009cc95fc291d9168bbd0587f4fd5
from django.conf.urls import url from sensor import views urlpatterns = [ url(r'^$', views.sensors, name='sensor.sensors'), url(r'^sensors_api', views.sensors_api.as_view(), name='sensor.sensors_api'), url(r'^get_sensors', views.get_sensors, name='sensor.get_sensors'), ]
py
1a55cb94c53ca897a7e16bbe13b53dac0a210d61
from typing import Callable, Union class Rate(object): def __init__(self, lambda_t: Union[str, Callable[[float], float]]): if isinstance(lambda_t, str): if hasattr(self, lambda_t): self._lambda_t: Union[str, Callable[[float], float]] = \ getattr(self, lambda_t)() else: raise ValueError(f'Rate class has no method {lambda_t}') else: self._lambda_t: Callable[[float], float] = lambda_t def __call__(self, t: float) -> float: return self._lambda_t(t) @classmethod def linear(cls) -> 'Rate': return Rate(lambda t: t) @classmethod def quadratic(cls) -> 'Rate': return Rate(lambda t: t ** 2) @classmethod def cubic(cls) -> 'Rate': return Rate(lambda t: t ** 3)
py
1a55cbac5106076bea76e63057a320f9252b702f
from torchvision import transforms class PytorchTransforms(object): def gettraintransforms(self, mean, std, size=224): # Train Phase transformations return transforms.Compose([ transforms.Resize(size), # transforms.Pad(padding=1, padding_mode="edge"), # transforms.RandomHorizontalFlip(p=1), # randomly flip and rotate # transforms.RandomRotation(20), transforms.ColorJitter(saturation=0.2, hue=0.2), # transforms.RandomCrop(size=(64, 64), padding=4), transforms.ToTensor(), # transforms.Normalize(mean, std), # transforms.RandomErasing(scale=(0.10, 0.10), ratio=(1, 1), p=1), ]) def gettesttransforms(self, mean, std): # Test Phase transformations return transforms.Compose([ transforms.ToTensor(), # transforms.Normalize(mean, std) ])
py
1a55ccd1fc71662a8d0a18d009cbc327133b18cd
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Copyright (c) 2019 Chaintope Inc. # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Tests NODE_NETWORK_LIMITED. Tests that a node configured with -prune=550 signals NODE_NETWORK_LIMITED correctly and that it responds to getdata requests for blocks correctly: - send a block within 288 + 2 of the tip - disconnect peers who request blocks older than that.""" from test_framework.messages import CInv, msg_getdata, msg_verack, NODE_BLOOM, NODE_NETWORK_LIMITED, NODE_WITNESS from test_framework.mininode import P2PInterface, mininode_lock from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, disconnect_nodes, connect_nodes_bi, sync_blocks, wait_until class P2PIgnoreInv(P2PInterface): firstAddrnServices = 0 def on_inv(self, message): # The node will send us invs for other blocks. Ignore them. pass def on_addr(self, message): self.firstAddrnServices = message.addrs[0].nServices def wait_for_addr(self, timeout=5): test_function = lambda: self.last_message.get("addr") wait_until(test_function, timeout=timeout, lock=mininode_lock) def send_getdata_for_block(self, blockhash): getdata_request = msg_getdata() getdata_request.inv.append(CInv(2, int(blockhash, 16))) self.send_message(getdata_request) class NodeNetworkLimitedTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 3 self.extra_args = [['-prune=550', '-addrmantest'], [], []] def disconnect_all(self): disconnect_nodes(self.nodes[0], 1) disconnect_nodes(self.nodes[1], 0) disconnect_nodes(self.nodes[2], 1) disconnect_nodes(self.nodes[2], 0) disconnect_nodes(self.nodes[0], 2) disconnect_nodes(self.nodes[1], 2) def setup_network(self): super(NodeNetworkLimitedTest, self).setup_network() self.disconnect_all() def run_test(self): node = self.nodes[0].add_p2p_connection(P2PIgnoreInv()) expected_services = NODE_BLOOM | NODE_NETWORK_LIMITED self.log.info("Check that node has signalled expected services.") assert_equal(node.nServices, expected_services) self.log.info("Check that the localservices is as expected.") assert_equal(int(self.nodes[0].getnetworkinfo()['localservices'], 16), expected_services) self.log.info("Mine enough blocks to reach the NODE_NETWORK_LIMITED range.") connect_nodes_bi(self.nodes, 0, 1) blocks = self.nodes[1].generate(292, self.signblockprivkey) sync_blocks([self.nodes[0], self.nodes[1]]) self.log.info("Make sure we can max retrieve block at tip-288.") node.send_getdata_for_block(blocks[1]) # last block in valid range node.wait_for_block(int(blocks[1], 16), timeout=3) self.log.info("Requesting block at height 2 (tip-289) must fail (ignored).") node.send_getdata_for_block(blocks[0]) # first block outside of the 288+2 limit node.wait_for_disconnect(5) self.log.info("Check local address relay, do a fresh connection.") self.nodes[0].disconnect_p2ps() node1 = self.nodes[0].add_p2p_connection(P2PIgnoreInv()) node1.send_message(msg_verack()) node1.wait_for_addr() #must relay address with NODE_NETWORK_LIMITED assert_equal(node1.firstAddrnServices, 1028) self.nodes[0].disconnect_p2ps() node1.wait_for_disconnect() # connect unsynced node 2 with pruned NODE_NETWORK_LIMITED peer # because node 2 is in IBD and node 0 is a NODE_NETWORK_LIMITED peer, sync must not be possible connect_nodes_bi(self.nodes, 0, 2) try: sync_blocks([self.nodes[0], self.nodes[2]], timeout=5) except: pass # node2 must remain at heigh 0 assert_equal(self.nodes[2].getblockheader(self.nodes[2].getbestblockhash())['height'], 0) # now connect also to node 1 (non pruned) connect_nodes_bi(self.nodes, 1, 2) # sync must be possible sync_blocks(self.nodes) # disconnect all peers self.disconnect_all() # mine 10 blocks on node 0 (pruned node) self.nodes[0].generate(10, self.signblockprivkey) # connect node1 (non pruned) with node0 (pruned) and check if the can sync connect_nodes_bi(self.nodes, 0, 1) # sync must be possible, node 1 is no longer in IBD and should therefore connect to node 0 (NODE_NETWORK_LIMITED) sync_blocks([self.nodes[0], self.nodes[1]]) if __name__ == '__main__': NodeNetworkLimitedTest().main()
py
1a55cd0d75d43823b1df6063f9b196e67833c168
import os import argparse import numpy as np from algos import construct_classifier, classifier_types from utils.data_utils import get_dataset, dataset_names from utils.misc import increment_path from utils.tf_utils import launch_tensorboard from utils.vis_utils import plot_embeddings masterdir = "/tmp/fairml-farm/" base_datadir = masterdir + "data/" base_logdir = masterdir + "logs/" parser = argparse.ArgumentParser(description="Evaluate an individual fairness " "algorithm.\nNOTE: classifier-specific " "arguments should be specified in area " "in the script itself.") parser.add_argument("--experiment-name", default="default", help="Name for the experiment base directory, " "used as the extension relative to {}".format(base_logdir)) parser.add_argument("--load-dir", help="Path to a previous experiment subdirectory, used to " "load model weights, relative to {}.".format(base_logdir)) parser.add_argument("--train", action="store_true", help="train the classifier") parser.add_argument("-epochs", type=int, default=20) parser.add_argument("--visualize", action="store_true", help="visualize " "learned latent space") parser.add_argument("-classifier", choices=[c.name for c in classifier_types], default="simplenn", help="Name of the type of fairness algorithm to use.") parser.add_argument("-dataset", choices=dataset_names, default="adult", help="Name of dataset to train on.") args = parser.parse_args() loaddir = None if args.load_dir is not None: loaddir = os.path.join(base_logdir, args.load_dir) logdir = increment_path(os.path.join(base_logdir, args.experiment_name, "run")) os.makedirs(logdir, exist_ok=True) print("Logging data to {}".format(logdir)) print("Loading {} dataset...".format(args.dataset)) train_dataset, validation_dataset = get_dataset(args.dataset, base_datadir=base_datadir) print("Launching Tensorboard.\nTo visualize, navigate to " "http://0.0.0.0:6006/\nTo close Tensorboard," " press ctrl+C") tensorboard_process = launch_tensorboard(logdir) # ===== SPECIFY HYPERPARAMETERS (INCLUDING CLASSIFIER-TYPE) ===== inputsize = train_dataset["data"].shape[1] layersizes = [100] classifier_type = "paritynn" hparams = { "classifier_type": classifier_type, "layersizes": layersizes, "inputsize": inputsize, } # =============================================================== print("Initializing classifier...") classifier = construct_classifier(hparams, loaddir=loaddir) if args.train: print("Training network...") classifier.train(train_dataset, logdir, epochs=args.epochs, validation_dataset=validation_dataset) savepath = classifier.save_model(logdir) if args.visualize: # Plot out the learned embedding space n = validation_dataset["label"].shape[0] # get an equal number of male and female points n_males = sum(validation_dataset["label"]) limiting_gender = n_males > n - n_males # 1 if men, 0 if women n_limiting_gender = sum(validation_dataset["label"] == limiting_gender) max_points_per_gender = 500 n_per_gender = min(max_points_per_gender, n_limiting_gender) inds = np.concatenate([ np.where(validation_dataset["label"] == limiting_gender)[0][:n_per_gender], np.where(validation_dataset["label"] != limiting_gender)[0][:n_per_gender]], axis=0) vis_dataset = {k:v[inds, ...] for k, v in validation_dataset.items()} val_embeddings = classifier.compute_embedding(vis_dataset["data"]) plot_embeddings(val_embeddings, vis_dataset["label"], vis_dataset["protected"], plot3d=True, subsample=False, label_names=["income<=50k", "income>50k"], protected_names=["female", "male"]) tensorboard_process.join()
py
1a55cd6cc1ad1a84c6bea93adc95049968d8caac
from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Title(_BaseTraceHierarchyType): # font # ---- @property def font(self): """ Sets this axis' title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. The 'font' property is an instance of Font that may be specified as: - An instance of plotly.graph_objs.carpet.baxis.title.Font - A dict of string/value properties that will be passed to the Font constructor Supported dict properties: color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- plotly.graph_objs.carpet.baxis.title.Font """ return self['font'] @font.setter def font(self, val): self['font'] = val # offset # ------ @property def offset(self): """ An additional amount by which to offset the title from the tick labels, given in pixels. Note that this used to be set by the now deprecated `titleoffset` attribute. The 'offset' property is a number and may be specified as: - An int or float Returns ------- int|float """ return self['offset'] @offset.setter def offset(self, val): self['offset'] = val # text # ---- @property def text(self): """ Sets the title of this axis. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. The 'text' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self['text'] @text.setter def text(self, val): self['text'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'carpet.baxis' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ font Sets this axis' title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. offset An additional amount by which to offset the title from the tick labels, given in pixels. Note that this used to be set by the now deprecated `titleoffset` attribute. text Sets the title of this axis. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. """ def __init__(self, arg=None, font=None, offset=None, text=None, **kwargs): """ Construct a new Title object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.carpet.baxis.Title font Sets this axis' title font. Note that the title's font used to be set by the now deprecated `titlefont` attribute. offset An additional amount by which to offset the title from the tick labels, given in pixels. Note that this used to be set by the now deprecated `titleoffset` attribute. text Sets the title of this axis. Note that before the existence of `title.text`, the title's contents used to be defined as the `title` attribute itself. This behavior has been deprecated. Returns ------- Title """ super(Title, self).__init__('title') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.carpet.baxis.Title constructor must be a dict or an instance of plotly.graph_objs.carpet.baxis.Title""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop('skip_invalid', False) # Import validators # ----------------- from plotly.validators.carpet.baxis import (title as v_title) # Initialize validators # --------------------- self._validators['font'] = v_title.FontValidator() self._validators['offset'] = v_title.OffsetValidator() self._validators['text'] = v_title.TextValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('font', None) self['font'] = font if font is not None else _v _v = arg.pop('offset', None) self['offset'] = offset if offset is not None else _v _v = arg.pop('text', None) self['text'] = text if text is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Tickformatstop(_BaseTraceHierarchyType): # dtickrange # ---------- @property def dtickrange(self): """ range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" The 'dtickrange' property is an info array that may be specified as: * a list or tuple of 2 elements where: (0) The 'dtickrange[0]' property accepts values of any type (1) The 'dtickrange[1]' property accepts values of any type Returns ------- list """ return self['dtickrange'] @dtickrange.setter def dtickrange(self, val): self['dtickrange'] = val # enabled # ------- @property def enabled(self): """ Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. The 'enabled' property must be specified as a bool (either True, or False) Returns ------- bool """ return self['enabled'] @enabled.setter def enabled(self, val): self['enabled'] = val # name # ---- @property def name(self): """ When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. The 'name' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self['name'] @name.setter def name(self, val): self['name'] = val # templateitemname # ---------------- @property def templateitemname(self): """ Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. The 'templateitemname' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self['templateitemname'] @templateitemname.setter def templateitemname(self, val): self['templateitemname'] = val # value # ----- @property def value(self): """ string - dtickformat for described zoom level, the same as "tickformat" The 'value' property is a string and must be specified as: - A string - A number that will be converted to a string Returns ------- str """ return self['value'] @value.setter def value(self, val): self['value'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'carpet.baxis' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" """ def __init__( self, arg=None, dtickrange=None, enabled=None, name=None, templateitemname=None, value=None, **kwargs ): """ Construct a new Tickformatstop object Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.carpet.baxis.Tickformatstop dtickrange range [*min*, *max*], where "min", "max" - dtick values which describe some zoom level, it is possible to omit "min" or "max" value by passing "null" enabled Determines whether or not this stop is used. If `false`, this stop is ignored even within its `dtickrange`. name When used in a template, named items are created in the output figure in addition to any items the figure already has in this array. You can modify these items in the output figure by making your own item with `templateitemname` matching this `name` alongside your modifications (including `visible: false` or `enabled: false` to hide it). Has no effect outside of a template. templateitemname Used to refer to a named item in this array in the template. Named items from the template will be created even without a matching item in the input figure, but you can modify one by making an item with `templateitemname` matching its `name`, alongside your modifications (including `visible: false` or `enabled: false` to hide it). If there is no template or no matching item, this item will be hidden unless you explicitly show it with `visible: true`. value string - dtickformat for described zoom level, the same as "tickformat" Returns ------- Tickformatstop """ super(Tickformatstop, self).__init__('tickformatstops') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.carpet.baxis.Tickformatstop constructor must be a dict or an instance of plotly.graph_objs.carpet.baxis.Tickformatstop""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop('skip_invalid', False) # Import validators # ----------------- from plotly.validators.carpet.baxis import ( tickformatstop as v_tickformatstop ) # Initialize validators # --------------------- self._validators['dtickrange'] = v_tickformatstop.DtickrangeValidator() self._validators['enabled'] = v_tickformatstop.EnabledValidator() self._validators['name'] = v_tickformatstop.NameValidator() self._validators['templateitemname' ] = v_tickformatstop.TemplateitemnameValidator() self._validators['value'] = v_tickformatstop.ValueValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('dtickrange', None) self['dtickrange'] = dtickrange if dtickrange is not None else _v _v = arg.pop('enabled', None) self['enabled'] = enabled if enabled is not None else _v _v = arg.pop('name', None) self['name'] = name if name is not None else _v _v = arg.pop('templateitemname', None) self['templateitemname' ] = templateitemname if templateitemname is not None else _v _v = arg.pop('value', None) self['value'] = value if value is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.basedatatypes import BaseTraceHierarchyType as _BaseTraceHierarchyType import copy as _copy class Tickfont(_BaseTraceHierarchyType): # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self['color'] @color.setter def color(self, val): self['color'] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self['family'] @family.setter def family(self, val): self['family'] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self['size'] @size.setter def size(self, val): self['size'] = val # property parent name # -------------------- @property def _parent_path_str(self): return 'carpet.baxis' # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Tickfont object Sets the tick font. Parameters ---------- arg dict of properties compatible with this constructor or an instance of plotly.graph_objs.carpet.baxis.Tickfont color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The plotly service (at https://plot.ly or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Tickfont """ super(Tickfont, self).__init__('tickfont') # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.carpet.baxis.Tickfont constructor must be a dict or an instance of plotly.graph_objs.carpet.baxis.Tickfont""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop('skip_invalid', False) # Import validators # ----------------- from plotly.validators.carpet.baxis import (tickfont as v_tickfont) # Initialize validators # --------------------- self._validators['color'] = v_tickfont.ColorValidator() self._validators['family'] = v_tickfont.FamilyValidator() self._validators['size'] = v_tickfont.SizeValidator() # Populate data dict with properties # ---------------------------------- _v = arg.pop('color', None) self['color'] = color if color is not None else _v _v = arg.pop('family', None) self['family'] = family if family is not None else _v _v = arg.pop('size', None) self['size'] = size if size is not None else _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False from plotly.graph_objs.carpet.baxis import title
py
1a55ce88943063c726dcfad654315657b9b208a1
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ' a test module' __author__ = 'DANTE FUNG' import sys def test(): args = sys.argv if len(args) == 1: print('Hello world!') elif len(args) == 2: print('Hello, %s!' % args[1]) else: print('Too many arguments!') if __name__ == '__main__': test()
py
1a55cea41e297d2463239699924b1e951d206a7f
from typing import List, Any def quick_sort(array: List[Any], arr_length: int) -> List[Any]: def __quick_sort(start: int, end: int) -> None: if start >= end: return pivot = array[(start + end) // 2] left, right = start, end while left <= right: while array[left] < pivot: left += 1 while array[right] > pivot: right -= 1 if left <= right: array[left], array[right] = array[right], array[left] left += 1 right -= 1 __quick_sort(start, right) __quick_sort(left, end) __quick_sort(0, arr_length - 1) return array
py
1a55cf8a9bcf496063a239d7b29aad52ae511312
#!/usr/bin/env python # -*- coding: utf-8 -*- import datetime import json import os import random as _random import sys import traceback from getopt import getopt, GetoptError from multiprocessing import Process from os import environ from wsgiref.simple_server import make_server import requests as _requests from jsonrpcbase import JSONRPCService, InvalidParamsError, KeywordError, \ JSONRPCError, InvalidRequestError from jsonrpcbase import ServerError as JSONServerError from biokbase import log from abbyjergerContigFilter.authclient import KBaseAuth as _KBaseAuth try: from ConfigParser import ConfigParser except ImportError: from configparser import ConfigParser DEPLOY = 'KB_DEPLOYMENT_CONFIG' SERVICE = 'KB_SERVICE_NAME' AUTH = 'auth-service-url' # Note that the error fields do not match the 2.0 JSONRPC spec def get_config_file(): return environ.get(DEPLOY, None) def get_service_name(): return environ.get(SERVICE, None) def get_config(): if not get_config_file(): return None retconfig = {} config = ConfigParser() config.read(get_config_file()) for nameval in config.items(get_service_name() or 'abbyjergerContigFilter'): retconfig[nameval[0]] = nameval[1] return retconfig config = get_config() from abbyjergerContigFilter.abbyjergerContigFilterImpl import abbyjergerContigFilter # noqa @IgnorePep8 impl_abbyjergerContigFilter = abbyjergerContigFilter(config) class JSONObjectEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, set): return list(obj) if isinstance(obj, frozenset): return list(obj) if hasattr(obj, 'toJSONable'): return obj.toJSONable() return json.JSONEncoder.default(self, obj) class JSONRPCServiceCustom(JSONRPCService): def call(self, ctx, jsondata): """ Calls jsonrpc service's method and returns its return value in a JSON string or None if there is none. Arguments: jsondata -- remote method call in jsonrpc format """ result = self.call_py(ctx, jsondata) if result is not None: return json.dumps(result, cls=JSONObjectEncoder) return None def _call_method(self, ctx, request): """Calls given method with given params and returns it value.""" method = self.method_data[request['method']]['method'] params = request['params'] result = None try: if isinstance(params, list): # Does it have enough arguments? if len(params) < self._man_args(method) - 1: raise InvalidParamsError('not enough arguments') # Does it have too many arguments? if(not self._vargs(method) and len(params) > self._max_args(method) - 1): raise InvalidParamsError('too many arguments') result = method(ctx, *params) elif isinstance(params, dict): # Do not accept keyword arguments if the jsonrpc version is # not >=1.1. if request['jsonrpc'] < 11: raise KeywordError result = method(ctx, **params) else: # No params result = method(ctx) except JSONRPCError: raise except Exception as e: # log.exception('method %s threw an exception' % request['method']) # Exception was raised inside the method. newerr = JSONServerError() newerr.trace = traceback.format_exc() if len(e.args) == 1: newerr.data = repr(e.args[0]) else: newerr.data = repr(e.args) raise newerr return result def call_py(self, ctx, jsondata): """ Calls jsonrpc service's method and returns its return value in python object format or None if there is none. This method is same as call() except the return value is a python object instead of JSON string. This method is mainly only useful for debugging purposes. """ rdata = jsondata # we already deserialize the json string earlier in the server code, no # need to do it again # try: # rdata = json.loads(jsondata) # except ValueError: # raise ParseError # set some default values for error handling request = self._get_default_vals() if isinstance(rdata, dict) and rdata: # It's a single request. self._fill_request(request, rdata) respond = self._handle_request(ctx, request) # Don't respond to notifications if respond is None: return None return respond elif isinstance(rdata, list) and rdata: # It's a batch. requests = [] responds = [] for rdata_ in rdata: # set some default values for error handling request_ = self._get_default_vals() self._fill_request(request_, rdata_) requests.append(request_) for request_ in requests: respond = self._handle_request(ctx, request_) # Don't respond to notifications if respond is not None: responds.append(respond) if responds: return responds # Nothing to respond. return None else: # empty dict, list or wrong type raise InvalidRequestError def _handle_request(self, ctx, request): """Handles given request and returns its response.""" if 'types' in self.method_data[request['method']]: self._validate_params_types(request['method'], request['params']) result = self._call_method(ctx, request) # Do not respond to notifications. if request['id'] is None: return None respond = {} self._fill_ver(request['jsonrpc'], respond) respond['result'] = result respond['id'] = request['id'] return respond class MethodContext(dict): def __init__(self, logger): self['client_ip'] = None self['user_id'] = None self['authenticated'] = None self['token'] = None self['module'] = None self['method'] = None self['call_id'] = None self['rpc_context'] = None self['provenance'] = None self._debug_levels = set([7, 8, 9, 'DEBUG', 'DEBUG2', 'DEBUG3']) self._logger = logger def log_err(self, message): self._log(log.ERR, message) def log_info(self, message): self._log(log.INFO, message) def log_debug(self, message, level=1): if level in self._debug_levels: pass else: level = int(level) if level < 1 or level > 3: raise ValueError("Illegal log level: " + str(level)) level = level + 6 self._log(level, message) def set_log_level(self, level): self._logger.set_log_level(level) def get_log_level(self): return self._logger.get_log_level() def clear_log_level(self): self._logger.clear_user_log_level() def _log(self, level, message): self._logger.log_message(level, message, self['client_ip'], self['user_id'], self['module'], self['method'], self['call_id']) def provenance(self): callbackURL = os.environ.get('SDK_CALLBACK_URL') if callbackURL: # OK, there's a callback server from which we can get provenance arg_hash = {'method': 'CallbackServer.get_provenance', 'params': [], 'version': '1.1', 'id': str(_random.random())[2:] } body = json.dumps(arg_hash) response = _requests.post(callbackURL, data=body, timeout=60) response.encoding = 'utf-8' if response.status_code == 500: if ('content-type' in response.headers and response.headers['content-type'] == 'application/json'): err = response.json() if 'error' in err: raise ServerError(**err['error']) else: raise ServerError('Unknown', 0, response.text) else: raise ServerError('Unknown', 0, response.text) if not response.ok: response.raise_for_status() resp = response.json() if 'result' not in resp: raise ServerError('Unknown', 0, 'An unknown server error occurred') return resp['result'][0] else: return self.get('provenance') class ServerError(Exception): ''' The call returned an error. Fields: name - the name of the error. code - the error code. message - a human readable error message. data - the server side stacktrace. ''' def __init__(self, name, code, message, data=None, error=None): super(Exception, self).__init__(message) self.name = name self.code = code self.message = message if message else '' self.data = data or error or '' # data = JSON RPC 2.0, error = 1.1 def __str__(self): return self.name + ': ' + str(self.code) + '. ' + self.message + \ '\n' + self.data def getIPAddress(environ): xFF = environ.get('HTTP_X_FORWARDED_FOR') realIP = environ.get('HTTP_X_REAL_IP') trustXHeaders = config is None or \ config.get('dont_trust_x_ip_headers') != 'true' if (trustXHeaders): if (xFF): return xFF.split(',')[0].strip() if (realIP): return realIP.strip() return environ.get('REMOTE_ADDR') class Application(object): # Wrap the wsgi handler in a class definition so that we can # do some initialization and avoid regenerating stuff over # and over def logcallback(self): self.serverlog.set_log_file(self.userlog.get_log_file()) def log(self, level, context, message): self.serverlog.log_message(level, message, context['client_ip'], context['user_id'], context['module'], context['method'], context['call_id']) def __init__(self): submod = get_service_name() or 'abbyjergerContigFilter' self.userlog = log.log( submod, ip_address=True, authuser=True, module=True, method=True, call_id=True, changecallback=self.logcallback, config=get_config_file()) self.serverlog = log.log( submod, ip_address=True, authuser=True, module=True, method=True, call_id=True, logfile=self.userlog.get_log_file()) self.serverlog.set_log_level(6) self.rpc_service = JSONRPCServiceCustom() self.method_authentication = dict() self.rpc_service.add(impl_abbyjergerContigFilter.run_abbyjergerContigFilter, name='abbyjergerContigFilter.run_abbyjergerContigFilter', types=[dict]) self.method_authentication['abbyjergerContigFilter.run_abbyjergerContigFilter'] = 'required' # noqa self.rpc_service.add(impl_abbyjergerContigFilter.run_abbyjergerContigFilter_max, name='abbyjergerContigFilter.run_abbyjergerContigFilter_max', types=[dict]) self.method_authentication['abbyjergerContigFilter.run_abbyjergerContigFilter_max'] = 'required' # noqa self.rpc_service.add(impl_abbyjergerContigFilter.status, name='abbyjergerContigFilter.status', types=[dict]) authurl = config.get(AUTH) if config else None self.auth_client = _KBaseAuth(authurl) def __call__(self, environ, start_response): # Context object, equivalent to the perl impl CallContext ctx = MethodContext(self.userlog) ctx['client_ip'] = getIPAddress(environ) status = '500 Internal Server Error' try: body_size = int(environ.get('CONTENT_LENGTH', 0)) except (ValueError): body_size = 0 if environ['REQUEST_METHOD'] == 'OPTIONS': # we basically do nothing and just return headers status = '200 OK' rpc_result = "" else: request_body = environ['wsgi.input'].read(body_size) try: req = json.loads(request_body) except ValueError as ve: err = {'error': {'code': -32700, 'name': "Parse error", 'message': str(ve), } } rpc_result = self.process_error(err, ctx, {'version': '1.1'}) else: ctx['module'], ctx['method'] = req['method'].split('.') ctx['call_id'] = req['id'] ctx['rpc_context'] = { 'call_stack': [{'time': self.now_in_utc(), 'method': req['method']} ] } prov_action = {'service': ctx['module'], 'method': ctx['method'], 'method_params': req['params'] } ctx['provenance'] = [prov_action] try: token = environ.get('HTTP_AUTHORIZATION') # parse out the method being requested and check if it # has an authentication requirement method_name = req['method'] auth_req = self.method_authentication.get( method_name, 'none') if auth_req != 'none': if token is None and auth_req == 'required': err = JSONServerError() err.data = ( 'Authentication required for ' + 'abbyjergerContigFilter ' + 'but no authentication header was passed') raise err elif token is None and auth_req == 'optional': pass else: try: user = self.auth_client.get_user(token) ctx['user_id'] = user ctx['authenticated'] = 1 ctx['token'] = token except Exception as e: if auth_req == 'required': err = JSONServerError() err.data = \ "Token validation failed: %s" % e raise err if (environ.get('HTTP_X_FORWARDED_FOR')): self.log(log.INFO, ctx, 'X-Forwarded-For: ' + environ.get('HTTP_X_FORWARDED_FOR')) self.log(log.INFO, ctx, 'start method') rpc_result = self.rpc_service.call(ctx, req) self.log(log.INFO, ctx, 'end method') status = '200 OK' except JSONRPCError as jre: err = {'error': {'code': jre.code, 'name': jre.message, 'message': jre.data } } trace = jre.trace if hasattr(jre, 'trace') else None rpc_result = self.process_error(err, ctx, req, trace) except Exception: err = {'error': {'code': 0, 'name': 'Unexpected Server Error', 'message': 'An unexpected server error ' + 'occurred', } } rpc_result = self.process_error(err, ctx, req, traceback.format_exc()) # print('Request method was %s\n' % environ['REQUEST_METHOD']) # print('Environment dictionary is:\n%s\n' % pprint.pformat(environ)) # print('Request body was: %s' % request_body) # print('Result from the method call is:\n%s\n' % \ # pprint.pformat(rpc_result)) if rpc_result: response_body = rpc_result else: response_body = '' response_headers = [ ('Access-Control-Allow-Origin', '*'), ('Access-Control-Allow-Headers', environ.get( 'HTTP_ACCESS_CONTROL_REQUEST_HEADERS', 'authorization')), ('content-type', 'application/json'), ('content-length', str(len(response_body)))] start_response(status, response_headers) return [response_body.encode('utf8')] def process_error(self, error, context, request, trace=None): if trace: self.log(log.ERR, context, trace.split('\n')[0:-1]) if 'id' in request: error['id'] = request['id'] if 'version' in request: error['version'] = request['version'] e = error['error'].get('error') if not e: error['error']['error'] = trace elif 'jsonrpc' in request: error['jsonrpc'] = request['jsonrpc'] error['error']['data'] = trace else: error['version'] = '1.0' error['error']['error'] = trace return json.dumps(error) def now_in_utc(self): # noqa Taken from http://stackoverflow.com/questions/3401428/how-to-get-an-isoformat-datetime-string-including-the-default-timezone @IgnorePep8 dtnow = datetime.datetime.now() dtutcnow = datetime.datetime.utcnow() delta = dtnow - dtutcnow hh, mm = divmod((delta.days * 24 * 60 * 60 + delta.seconds + 30) // 60, 60) return "%s%+02d:%02d" % (dtnow.isoformat(), hh, mm) application = Application() # This is the uwsgi application dictionary. On startup uwsgi will look # for this dict and pull its configuration from here. # This simply lists where to "mount" the application in the URL path # # This uwsgi module "magically" appears when running the app within # uwsgi and is not available otherwise, so wrap an exception handler # around it # # To run this server in uwsgi with 4 workers listening on port 9999 use: # uwsgi -M -p 4 --http :9999 --wsgi-file _this_file_ # To run a using the single threaded python BaseHTTP service # listening on port 9999 by default execute this file # try: import uwsgi # Before we do anything with the application, see if the # configs specify patching all std routines to be asynch # *ONLY* use this if you are going to wrap the service in # a wsgi container that has enabled gevent, such as # uwsgi with the --gevent option if config is not None and config.get('gevent_monkeypatch_all', False): print("Monkeypatching std libraries for async") from gevent import monkey monkey.patch_all() uwsgi.applications = {'': application} except ImportError: # Not available outside of wsgi, ignore pass _proc = None def start_server(host='localhost', port=0, newprocess=False): ''' By default, will start the server on localhost on a system assigned port in the main thread. Excecution of the main thread will stay in the server main loop until interrupted. To run the server in a separate process, and thus allow the stop_server method to be called, set newprocess = True. This will also allow returning of the port number.''' global _proc if _proc: raise RuntimeError('server is already running') httpd = make_server(host, port, application) port = httpd.server_address[1] print("Listening on port %s" % port) if newprocess: _proc = Process(target=httpd.serve_forever) _proc.daemon = True _proc.start() else: httpd.serve_forever() return port def stop_server(): global _proc _proc.terminate() _proc = None def process_async_cli(input_file_path, output_file_path, token): exit_code = 0 with open(input_file_path) as data_file: req = json.load(data_file) if 'version' not in req: req['version'] = '1.1' if 'id' not in req: req['id'] = str(_random.random())[2:] ctx = MethodContext(application.userlog) if token: user = application.auth_client.get_user(token) ctx['user_id'] = user ctx['authenticated'] = 1 ctx['token'] = token if 'context' in req: ctx['rpc_context'] = req['context'] ctx['CLI'] = 1 ctx['module'], ctx['method'] = req['method'].split('.') prov_action = {'service': ctx['module'], 'method': ctx['method'], 'method_params': req['params']} ctx['provenance'] = [prov_action] resp = None try: resp = application.rpc_service.call_py(ctx, req) except JSONRPCError as jre: trace = jre.trace if hasattr(jre, 'trace') else None resp = {'id': req['id'], 'version': req['version'], 'error': {'code': jre.code, 'name': jre.message, 'message': jre.data, 'error': trace} } except Exception: trace = traceback.format_exc() resp = {'id': req['id'], 'version': req['version'], 'error': {'code': 0, 'name': 'Unexpected Server Error', 'message': 'An unexpected server error occurred', 'error': trace} } if 'error' in resp: exit_code = 500 with open(output_file_path, "w") as f: f.write(json.dumps(resp, cls=JSONObjectEncoder)) return exit_code if __name__ == "__main__": if (len(sys.argv) >= 3 and len(sys.argv) <= 4 and os.path.isfile(sys.argv[1])): token = None if len(sys.argv) == 4: if os.path.isfile(sys.argv[3]): with open(sys.argv[3]) as token_file: token = token_file.read() else: token = sys.argv[3] sys.exit(process_async_cli(sys.argv[1], sys.argv[2], token)) try: opts, args = getopt(sys.argv[1:], "", ["port=", "host="]) except GetoptError as err: # print help information and exit: print(str(err)) # will print something like "option -a not recognized" sys.exit(2) port = 9999 host = 'localhost' for o, a in opts: if o == '--port': port = int(a) elif o == '--host': host = a print("Host set to %s" % host) else: assert False, "unhandled option" start_server(host=host, port=port) # print("Listening on port %s" % port) # httpd = make_server( host, port, application) # # httpd.serve_forever()
py
1a55cfd36c55e6138c8d87f68f35ad1a562c9570
import gc gc.threshold((gc.mem_free() + gc.mem_alloc()) // 4)
py
1a55d0322f0ec50710d5b7168715de8efac78be9
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): "Write your forwards methods here." dupe_emails = set() for email_data in orm["auth.User"].objects.values("email").distinct().annotate( num=models.Count("id")): if email_data["num"] > 1: dupe_emails.add(email_data["email"]) for email in dupe_emails: i = 0 for user in orm["auth.User"].objects.filter(email=email).order_by("id"): if i: user.email = email + u"-dupe-" + unicode(i) user.save() i += 1 def backwards(self, orm): "Write your backwards methods here." models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'unique': 'True', 'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'core.product': { 'Meta': {'ordering': "['name']", 'object_name': 'Product'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'has_team': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'own_team': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'blank': 'True'}) }, 'core.productversion': { 'Meta': {'ordering': "['product', 'order']", 'object_name': 'ProductVersion'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'environments': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'productversion'", 'symmetrical': 'False', 'to': "orm['environments.Environment']"}), 'has_team': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'latest': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'order': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'own_team': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.User']", 'symmetrical': 'False', 'blank': 'True'}), 'product': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'versions'", 'to': "orm['core.Product']"}), 'version': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'environments.category': { 'Meta': {'ordering': "['name']", 'object_name': 'Category'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'environments.element': { 'Meta': {'ordering': "['name']", 'object_name': 'Element'}, 'category': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'elements'", 'to': "orm['environments.Category']"}), 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'environments.environment': { 'Meta': {'object_name': 'Environment'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'elements': ('django.db.models.fields.related.ManyToManyField', [], {'related_name': "'environments'", 'symmetrical': 'False', 'to': "orm['environments.Element']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'profile': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'environments'", 'null': 'True', 'to': "orm['environments.Profile']"}) }, 'environments.profile': { 'Meta': {'object_name': 'Profile'}, 'cc_version': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'created_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'created_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'deleted_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'deleted_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified_by': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'+'", 'null': 'True', 'to': "orm['auth.User']"}), 'modified_on': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2012, 3, 28, 0, 0)'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '200'}) } } complete_apps = ['core'] symmetrical = True
py
1a55d0b5e9963afdf2bcdbab13416e1e3e06a7fd
# Copyright (c) University of Utah from IPython.display import display from traitlets import Bool, Dict, HasTraits, Instance, Int, List, Tuple, Unicode, observe, Set, link from ipywidgets import HBox, VBox, IntRangeSlider, FloatRangeSlider import ipywidgets as widgets from . import BaseTreeView from .filters import AttrFilter, Trigger, GroupUIFilter class TreeView(BaseTreeView): options = List(Unicode(), ['span', 'fitness', 'parent_fitness', 'child_fitness', 'shared_fitness', 'coef_change', 'coef_similarity', 'inv_fitness', 'min', 'max', 'unique_max', 'unique_min', 'dim_parent', 'dim_child', 'dim_min', 'dim_max', 'q_fitness', ]) x_value = Tuple(default_value=(0, 1)) y_value = Tuple(default_value=(0, 1)) def __init__(self, src=None, auto=True, x=None, y=None, **kwargs): super().__init__(**kwargs) self._filters = {} self.box = VBox() self._links = [] self._group_filter = GroupUIFilter() self._trigger = Trigger(self._group_filter, func=self._apply_filter) self._filters = {} self._auto = auto self._auto_filter = None self.show_measure = False # setup controls self._ctrls = HBox() self._menu = widgets.Dropdown( options=self.options, description='Attribute:', value=self.attr, disabled=False, ) self.x_slider = IntRangeSlider(min=0, max=1, value=(0, 1), description='Points:') self.y_slider = FloatRangeSlider(min=0, max=1, value=(0,1), description='Persistence:', step=0.001) self._ctrls = HBox([self._menu, self.y_slider, self.x_slider]) link((self, 'x_value'), (self.x_slider, 'value')) link((self, 'y_value'), (self.y_slider, 'value')) self._auto_filter = AttrFilter(attr=self._menu.value) if self._auto: self._group_filter.add(self._auto_filter, name='auto') widgets.link((self, 'attr'), (self._menu, 'value')) self.observe(self._auto_update, names=['attr']) # setup view self._links = [ widgets.link((self, 'x'), (self.x_slider, 'value')), widgets.link((self, 'y'), (self.y_slider, 'value')), ] self._update_children() if src is not None: self.src = src if x is not None: self.x = x if y is not None: self.y = y def _apply_filter(self): if self.tree is not None: self.show = self.tree.filter(self._group_filter) def _auto_update(self, change): self._auto_filter.attr = self.attr self._auto_filter.update_range(self.tree) @observe('tree') def tree_view_tree_changed(self, change): if self.tree is None: self.x_slider.value = (self.x_slider.min, self.x_slider.max) else: reset = self.x_slider.value[1] == self.x_slider.max self.x_slider.max = self.tree.regulus.pts.size() if reset: self.x_slider.value = self.x_slider.value[0], self.x_slider.max @property def filters(self): return self._group_filter @filters.setter def filters(self, f): if f == self._group_filter: return self._trigger.remove(self._group_filter) self._group_filter = f if self._auto: self._group_filter.insert(0, self._auto_filter, name='auto') self._trigger.add(self._group_filter) self._update_children() @property def opts(self): return self._menu.options @opts.setter def opts(self, opts): self._menu.options = opts def add_option(self, attr): if attr not in self._menu.options: self._menu.options = list(self.options) + [attr] self.attr = attr def remove_option(self, attr): if attr in self._menu.options: opts = list(self._menu.options) del opts[attr] self._menu.options = opts if self.attr == attr: self.attr = opts[0] if len(opts) > 0 else None def _update_children(self): children = [self._ctrls, self, self._group_filter] self.box.children = children def find_filter(self, name): return self._group_filter.find(name) def add_filter(self, *args, **kwargs): f = self._group_filter.add(*args, **kwargs) if self.tree and hasattr(f, 'update_range'): f.update_range(self.tree) return f def insert_filter(self, idx, *args, **kwargs): f = self._group_filter.insert(idx, *args, **kwargs) if self.tree and hasattr(f, 'update_range'): f.update_range(self.tree) def remove_filter(self, item): self._group_filter.remove(item) @property def auto(self): return self._auto @auto.setter def auto(self, value): if value != self._auto: self._auto = value if self._auto: self._group_filter.insert(0, self._auto_filter) else: self._group_filter.remove(self._auto_filter) def _ipython_display_(self, **kwargs): display(self.box)
py
1a55d2168a2c5b13aa2ea9a47b780a993154c9f4
import FWCore.ParameterSet.Config as cms RU_ME1A = cms.PSet( doCollisions = cms.bool(True), enlarge = cms.bool(False), chi2Norm_2D_ = cms.double(35), chi2_str = cms.double(50.0), chi2Max = cms.double(100.0), dPhiIntMax = cms.double(0.005), dPhiMax = cms.double(0.006), wideSeg = cms.double(3.0), minLayersApart = cms.int32(1), dRIntMax = cms.double(2.0), dRMax = cms.double(1.5) ) RU_ME1B = cms.PSet( doCollisions = cms.bool(True), enlarge = cms.bool(False), chi2Norm_2D_ = cms.double(35), chi2_str = cms.double(50.0), chi2Max = cms.double(100.0), dPhiIntMax = cms.double(0.004), dPhiMax = cms.double(0.005), wideSeg = cms.double(3.0), minLayersApart = cms.int32(1), dRIntMax = cms.double(2.0), dRMax = cms.double(1.5) ) RU_ME12 = cms.PSet( doCollisions = cms.bool(True), enlarge = cms.bool(False), chi2Norm_2D_ = cms.double(35), chi2_str = cms.double(50.0), chi2Max = cms.double(100.0), dPhiIntMax = cms.double(0.003), dPhiMax = cms.double(0.004), wideSeg = cms.double(3.0), minLayersApart = cms.int32(1), dRIntMax = cms.double(2.0), dRMax = cms.double(1.5) ) RU_ME13 = cms.PSet( doCollisions = cms.bool(True), enlarge = cms.bool(False), chi2Norm_2D_ = cms.double(20), chi2_str = cms.double(30.0), chi2Max = cms.double(60.0), dPhiIntMax = cms.double(0.002), dPhiMax = cms.double(0.003), wideSeg = cms.double(3.0), minLayersApart = cms.int32(1), dRIntMax = cms.double(2.0), dRMax = cms.double(1.5) ) RU_MEX1 = cms.PSet( doCollisions = cms.bool(True), enlarge = cms.bool(False), chi2Norm_2D_ = cms.double(60), chi2_str = cms.double(80.0), chi2Max = cms.double(180.0), dPhiIntMax = cms.double(0.005), dPhiMax = cms.double(0.007), wideSeg = cms.double(3.0), minLayersApart = cms.int32(1), dRIntMax = cms.double(2.0), dRMax = cms.double(1.5) ) RU_MEX2 = cms.PSet( doCollisions = cms.bool(True), enlarge = cms.bool(False), chi2Norm_2D_ = cms.double(35), chi2_str = cms.double(50.0), chi2Max = cms.double(100.0), dPhiIntMax = cms.double(0.004), dPhiMax = cms.double(0.006), wideSeg = cms.double(3.0), minLayersApart = cms.int32(1), dRIntMax = cms.double(2.0), dRMax = cms.double(1.5) ) CSCSegAlgoRU = cms.PSet( chamber_types = cms.vstring('ME1/a', 'ME1/b', 'ME1/2', 'ME1/3', 'ME2/1', 'ME2/2', 'ME3/1', 'ME3/2', 'ME4/1', 'ME4/2'), algo_name = cms.string('CSCSegAlgoRU'), algo_psets = cms.VPSet( cms.PSet( RU_ME1A ), cms.PSet( RU_ME1B ), cms.PSet( RU_ME12 ), cms.PSet( RU_ME13 ), cms.PSet( RU_MEX1 ), cms.PSet( RU_MEX2 )), parameters_per_chamber_type = cms.vint32(1, 2, 3, 4, 5, 6, 5, 6, 5, 6) )
py
1a55d218eaf99279a9c506213cd7030427bed4e8
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from opteryx.storage import BasePartitionScheme def _safe_get_next_element(lst, item): """get the element from a list which follows a given element""" try: index = lst.index(item) return lst[index + 1] except IndexError: return None def _extract_as_at(path): for part in path.split("/"): if part.startswith("as_at_"): return part return "" def _extract_by(path): for part in path.split("/"): if part.startswith("by_"): return part _is_complete = lambda blobs, as_at: any( blob for blob in blobs if as_at + "/frame.complete" in blob ) _is_invalid = lambda blobs, as_at: any( blob for blob in blobs if (as_at + "/frame.ignore" in blob) ) class MabelPartitionScheme(BasePartitionScheme): """ Handle reading data using the Mabel partition scheme. """ def partition_format(self): return "year_{yyyy}/month_{mm}/day_{dd}" def _inner_filter_blobs(self, list_of_blobs, statistics): # The segments are stored in folders with the prefix 'by_', as in, # segments **by** field name list_of_segments = { _extract_by(blob) for blob in list_of_blobs if "/by_" in blob } chosen_segment = "" # If we have multiple 'by_' segments, pick one - pick the first one until # we start making cost-based decisions if list_of_segments: list_of_segments = sorted(list_of_segments) chosen_segment = list_of_segments.pop() # Do the pruning list_of_blobs = [ blob for blob in list_of_blobs if f"/{chosen_segment}/" in blob ] # build a list of the segments we're going to read, for example, if we have # data which are segmented by hour, this will be the hour=00 part if chosen_segment == "": segmented_folders = {""} else: segmented_folders = { _safe_get_next_element(blob.split("/"), chosen_segment) for blob in list_of_blobs } # count the segments we're planning to read statistics.segments_scanned += len(segmented_folders) # go through the list of segments, getting the active frame for each for segment_folder in segmented_folders: # we get the blobs for this segment by looking for the path to contain # a combination of the segment and the segmented folder segment_blobs = [ blob for blob in list_of_blobs if f"{chosen_segment}/{segment_folder}" in blob ] # work out if there's an as_at part as_ats = { _extract_as_at(blob) for blob in segment_blobs if "as_at_" in blob } if as_ats: as_ats = sorted(as_ats) as_at = as_ats.pop() while not _is_complete(segment_blobs, as_at) or _is_invalid( segment_blobs, as_at ): if len(as_ats) > 0: as_at = as_ats.pop() else: return [] # get_logger().debug(f"Reading Frame `{as_at}`") yield from (blob for blob in segment_blobs if (as_at in blob)) else: yield from list_of_blobs def filter_blobs(self, list_of_blobs, statistics): return list(self._inner_filter_blobs(list_of_blobs, statistics))
py
1a55d2236f8fc03ef426f57e17d7b51f66d0cdd8
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2018-04-14 12:51 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('shortener', '0001_initial'), ] operations = [ migrations.CreateModel( name='ClickEvent', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('count', models.IntegerField(default=0)), ('updated', models.DateTimeField(auto_now=True)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('short_url', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='shortener.ShortURL')), ], ), ]
py
1a55d3a34e1e65548ff39cb885271cde36e4434e
from typing import TypeVar, Optional T = TypeVar("T") def ensure(value: Optional[T]) -> T: if value is None: raise RuntimeError("Expected a non-None value to be present.") return value
py
1a55d3d4178975f466c7d8c56f6542159a3b88c2
import collections.abc import copy import datetime import decimal import operator import uuid import warnings from base64 import b64decode, b64encode from functools import partialmethod, total_ordering from django import forms from django.apps import apps from django.conf import settings from django.core import checks, exceptions, validators from django.db import connection, connections, router from django.db.models.constants import LOOKUP_SEP from django.db.models.query_utils import DeferredAttribute, RegisterLookupMixin from django.utils import timezone from django.utils.datastructures import DictWrapper from django.utils.dateparse import ( parse_date, parse_datetime, parse_duration, parse_time, ) from django.utils.duration import duration_microseconds, duration_string from django.utils.functional import Promise, cached_property from django.utils.ipv6 import clean_ipv6_address from django.utils.itercompat import is_iterable from django.utils.text import capfirst from django.utils.translation import gettext_lazy as _ __all__ = [ 'AutoField', 'BLANK_CHOICE_DASH', 'BigAutoField', 'BigIntegerField', 'BinaryField', 'BooleanField', 'CharField', 'CommaSeparatedIntegerField', 'DateField', 'DateTimeField', 'DecimalField', 'DurationField', 'EmailField', 'Empty', 'Field', 'FilePathField', 'FloatField', 'GenericIPAddressField', 'IPAddressField', 'IntegerField', 'NOT_PROVIDED', 'NullBooleanField', 'PositiveBigIntegerField', 'PositiveIntegerField', 'PositiveSmallIntegerField', 'SlugField', 'SmallAutoField', 'SmallIntegerField', 'TextField', 'TimeField', 'URLField', 'UUIDField', ] class Empty: pass class NOT_PROVIDED: pass # The values to use for "blank" in SelectFields. Will be appended to the start # of most "choices" lists. BLANK_CHOICE_DASH = [("", "---------")] def _load_field(app_label, model_name, field_name): return apps.get_model(app_label, model_name)._meta.get_field(field_name) # A guide to Field parameters: # # * name: The name of the field specified in the model. # * attname: The attribute to use on the model object. This is the same as # "name", except in the case of ForeignKeys, where "_id" is # appended. # * db_column: The db_column specified in the model (or None). # * column: The database column for this field. This is the same as # "attname", except if db_column is specified. # # Code that introspects values, or does other dynamic things, should use # attname. For example, this gets the primary key value of object "obj": # # getattr(obj, opts.pk.attname) def _empty(of_cls): new = Empty() new.__class__ = of_cls return new def return_None(): return None @total_ordering class Field(RegisterLookupMixin): """Base class for all field types""" # Designates whether empty strings fundamentally are allowed at the # database level. empty_strings_allowed = True empty_values = list(validators.EMPTY_VALUES) # These track each time a Field instance is created. Used to retain order. # The auto_creation_counter is used for fields that Django implicitly # creates, creation_counter is used for all user-specified fields. creation_counter = 0 auto_creation_counter = -1 default_validators = [] # Default set of validators default_error_messages = { 'invalid_choice': _('Value %(value)r is not a valid choice.'), 'null': _('This field cannot be null.'), 'blank': _('This field cannot be blank.'), 'unique': _('%(model_name)s with this %(field_label)s ' 'already exists.'), # Translators: The 'lookup_type' is one of 'date', 'year' or 'month'. # Eg: "Title must be unique for pub_date year" 'unique_for_date': _("%(field_label)s must be unique for " "%(date_field_label)s %(lookup_type)s."), } system_check_deprecated_details = None system_check_removed_details = None # Field flags hidden = False many_to_many = None many_to_one = None one_to_many = None one_to_one = None related_model = None descriptor_class = DeferredAttribute # Generic field type description, usually overridden by subclasses def _description(self): return _('Field of type: %(field_type)s') % { 'field_type': self.__class__.__name__ } description = property(_description) def __init__(self, verbose_name=None, name=None, primary_key=False, max_length=None, unique=False, blank=False, null=False, db_index=False, rel=None, default=NOT_PROVIDED, editable=True, serialize=True, unique_for_date=None, unique_for_month=None, unique_for_year=None, choices=None, help_text='', db_column=None, db_tablespace=None, auto_created=False, validators=(), error_messages=None): self.name = name self.verbose_name = verbose_name # May be set by set_attributes_from_name self._verbose_name = verbose_name # Store original for deconstruction self.primary_key = primary_key self.max_length, self._unique = max_length, unique self.blank, self.null = blank, null self.remote_field = rel self.is_relation = self.remote_field is not None self.default = default self.editable = editable self.serialize = serialize self.unique_for_date = unique_for_date self.unique_for_month = unique_for_month self.unique_for_year = unique_for_year if isinstance(choices, collections.abc.Iterator): choices = list(choices) self.choices = choices self.help_text = help_text self.db_index = db_index self.db_column = db_column self._db_tablespace = db_tablespace self.auto_created = auto_created # Adjust the appropriate creation counter, and save our local copy. if auto_created: self.creation_counter = Field.auto_creation_counter Field.auto_creation_counter -= 1 else: self.creation_counter = Field.creation_counter Field.creation_counter += 1 self._validators = list(validators) # Store for deconstruction later messages = {} for c in reversed(self.__class__.__mro__): messages.update(getattr(c, 'default_error_messages', {})) messages.update(error_messages or {}) self._error_messages = error_messages # Store for deconstruction later self.error_messages = messages def __str__(self): """ Return "app_label.model_label.field_name" for fields attached to models. """ if not hasattr(self, 'model'): return super().__str__() model = self.model app = model._meta.app_label return '%s.%s.%s' % (app, model._meta.object_name, self.name) def __repr__(self): """Display the module, class, and name of the field.""" path = '%s.%s' % (self.__class__.__module__, self.__class__.__qualname__) name = getattr(self, 'name', None) if name is not None: return '<%s: %s>' % (path, name) return '<%s>' % path def check(self, **kwargs): return [ *self._check_field_name(), *self._check_choices(), *self._check_db_index(), *self._check_null_allowed_for_primary_keys(), *self._check_backend_specific_checks(**kwargs), *self._check_validators(), *self._check_deprecation_details(), ] def _check_field_name(self): """ Check if field name is valid, i.e. 1) does not end with an underscore, 2) does not contain "__" and 3) is not "pk". """ if self.name.endswith('_'): return [ checks.Error( 'Field names must not end with an underscore.', obj=self, id='fields.E001', ) ] elif LOOKUP_SEP in self.name: return [ checks.Error( 'Field names must not contain "%s".' % (LOOKUP_SEP,), obj=self, id='fields.E002', ) ] elif self.name == 'pk': return [ checks.Error( "'pk' is a reserved word that cannot be used as a field name.", obj=self, id='fields.E003', ) ] else: return [] @classmethod def _choices_is_value(cls, value): return isinstance(value, (str, Promise)) or not is_iterable(value) def _check_choices(self): if not self.choices: return [] if not is_iterable(self.choices) or isinstance(self.choices, str): return [ checks.Error( "'choices' must be an iterable (e.g., a list or tuple).", obj=self, id='fields.E004', ) ] choice_max_length = 0 # Expect [group_name, [value, display]] for choices_group in self.choices: try: group_name, group_choices = choices_group except (TypeError, ValueError): # Containing non-pairs break try: if not all( self._choices_is_value(value) and self._choices_is_value(human_name) for value, human_name in group_choices ): break if self.max_length is not None and group_choices: choice_max_length = max([ choice_max_length, *(len(value) for value, _ in group_choices if isinstance(value, str)), ]) except (TypeError, ValueError): # No groups, choices in the form [value, display] value, human_name = group_name, group_choices if not self._choices_is_value(value) or not self._choices_is_value(human_name): break if self.max_length is not None and isinstance(value, str): choice_max_length = max(choice_max_length, len(value)) # Special case: choices=['ab'] if isinstance(choices_group, str): break else: if self.max_length is not None and choice_max_length > self.max_length: return [ checks.Error( "'max_length' is too small to fit the longest value " "in 'choices' (%d characters)." % choice_max_length, obj=self, id='fields.E009', ), ] return [] return [ checks.Error( "'choices' must be an iterable containing " "(actual value, human readable name) tuples.", obj=self, id='fields.E005', ) ] def _check_db_index(self): if self.db_index not in (None, True, False): return [ checks.Error( "'db_index' must be None, True or False.", obj=self, id='fields.E006', ) ] else: return [] def _check_null_allowed_for_primary_keys(self): if (self.primary_key and self.null and not connection.features.interprets_empty_strings_as_nulls): # We cannot reliably check this for backends like Oracle which # consider NULL and '' to be equal (and thus set up # character-based fields a little differently). return [ checks.Error( 'Primary keys must not have null=True.', hint=('Set null=False on the field, or ' 'remove primary_key=True argument.'), obj=self, id='fields.E007', ) ] else: return [] def _check_backend_specific_checks(self, **kwargs): app_label = self.model._meta.app_label for db in connections: if router.allow_migrate(db, app_label, model_name=self.model._meta.model_name): return connections[db].validation.check_field(self, **kwargs) return [] def _check_validators(self): errors = [] for i, validator in enumerate(self.validators): if not callable(validator): errors.append( checks.Error( "All 'validators' must be callable.", hint=( "validators[{i}] ({repr}) isn't a function or " "instance of a validator class.".format( i=i, repr=repr(validator), ) ), obj=self, id='fields.E008', ) ) return errors def _check_deprecation_details(self): if self.system_check_removed_details is not None: return [ checks.Error( self.system_check_removed_details.get( 'msg', '%s has been removed except for support in historical ' 'migrations.' % self.__class__.__name__ ), hint=self.system_check_removed_details.get('hint'), obj=self, id=self.system_check_removed_details.get('id', 'fields.EXXX'), ) ] elif self.system_check_deprecated_details is not None: return [ checks.Warning( self.system_check_deprecated_details.get( 'msg', '%s has been deprecated.' % self.__class__.__name__ ), hint=self.system_check_deprecated_details.get('hint'), obj=self, id=self.system_check_deprecated_details.get('id', 'fields.WXXX'), ) ] return [] def get_col(self, alias, output_field=None): if output_field is None: output_field = self if alias != self.model._meta.db_table or output_field != self: from django.db.models.expressions import Col return Col(alias, self, output_field) else: return self.cached_col @cached_property def cached_col(self): from django.db.models.expressions import Col return Col(self.model._meta.db_table, self) def select_format(self, compiler, sql, params): """ Custom format for select clauses. For example, GIS columns need to be selected as AsText(table.col) on MySQL as the table.col data can't be used by Django. """ return sql, params def deconstruct(self): """ Return enough information to recreate the field as a 4-tuple: * The name of the field on the model, if contribute_to_class() has been run. * The import path of the field, including the class:e.g. django.db.models.IntegerField This should be the most portable version, so less specific may be better. * A list of positional arguments. * A dict of keyword arguments. Note that the positional or keyword arguments must contain values of the following types (including inner values of collection types): * None, bool, str, int, float, complex, set, frozenset, list, tuple, dict * UUID * datetime.datetime (naive), datetime.date * top-level classes, top-level functions - will be referenced by their full import path * Storage instances - these have their own deconstruct() method This is because the values here must be serialized into a text format (possibly new Python code, possibly JSON) and these are the only types with encoding handlers defined. There's no need to return the exact way the field was instantiated this time, just ensure that the resulting field is the same - prefer keyword arguments over positional ones, and omit parameters with their default values. """ # Short-form way of fetching all the default parameters keywords = {} possibles = { "verbose_name": None, "primary_key": False, "max_length": None, "unique": False, "blank": False, "null": False, "db_index": False, "default": NOT_PROVIDED, "editable": True, "serialize": True, "unique_for_date": None, "unique_for_month": None, "unique_for_year": None, "choices": None, "help_text": '', "db_column": None, "db_tablespace": None, "auto_created": False, "validators": [], "error_messages": None, } attr_overrides = { "unique": "_unique", "error_messages": "_error_messages", "validators": "_validators", "verbose_name": "_verbose_name", "db_tablespace": "_db_tablespace", } equals_comparison = {"choices", "validators"} for name, default in possibles.items(): value = getattr(self, attr_overrides.get(name, name)) # Unroll anything iterable for choices into a concrete list if name == "choices" and isinstance(value, collections.abc.Iterable): value = list(value) # Do correct kind of comparison if name in equals_comparison: if value != default: keywords[name] = value else: if value is not default: keywords[name] = value # Work out path - we shorten it for known Django core fields path = "%s.%s" % (self.__class__.__module__, self.__class__.__qualname__) if path.startswith("django.db.models.fields.related"): path = path.replace("django.db.models.fields.related", "django.db.models") elif path.startswith("django.db.models.fields.files"): path = path.replace("django.db.models.fields.files", "django.db.models") elif path.startswith("django.db.models.fields.proxy"): path = path.replace("django.db.models.fields.proxy", "django.db.models") elif path.startswith("django.db.models.fields"): path = path.replace("django.db.models.fields", "django.db.models") # Return basic info - other fields should override this. return (self.name, path, [], keywords) def clone(self): """ Uses deconstruct() to clone a new copy of this Field. Will not preserve any class attachments/attribute names. """ name, path, args, kwargs = self.deconstruct() return self.__class__(*args, **kwargs) def __eq__(self, other): # Needed for @total_ordering if isinstance(other, Field): return self.creation_counter == other.creation_counter return NotImplemented def __lt__(self, other): # This is needed because bisect does not take a comparison function. if isinstance(other, Field): return self.creation_counter < other.creation_counter return NotImplemented def __hash__(self): return hash(self.creation_counter) def __deepcopy__(self, memodict): # We don't have to deepcopy very much here, since most things are not # intended to be altered after initial creation. obj = copy.copy(self) if self.remote_field: obj.remote_field = copy.copy(self.remote_field) if hasattr(self.remote_field, 'field') and self.remote_field.field is self: obj.remote_field.field = obj memodict[id(self)] = obj return obj def __copy__(self): # We need to avoid hitting __reduce__, so define this # slightly weird copy construct. obj = Empty() obj.__class__ = self.__class__ obj.__dict__ = self.__dict__.copy() return obj def __reduce__(self): """ Pickling should return the model._meta.fields instance of the field, not a new copy of that field. So, use the app registry to load the model and then the field back. """ if not hasattr(self, 'model'): # Fields are sometimes used without attaching them to models (for # example in aggregation). In this case give back a plain field # instance. The code below will create a new empty instance of # class self.__class__, then update its dict with self.__dict__ # values - so, this is very close to normal pickle. state = self.__dict__.copy() # The _get_default cached_property can't be pickled due to lambda # usage. state.pop('_get_default', None) return _empty, (self.__class__,), state return _load_field, (self.model._meta.app_label, self.model._meta.object_name, self.name) def get_pk_value_on_save(self, instance): """ Hook to generate new PK values on save. This method is called when saving instances with no primary key value set. If this method returns something else than None, then the returned value is used when saving the new instance. """ if self.default: return self.get_default() return None def to_python(self, value): """ Convert the input value into the expected Python data type, raising django.core.exceptions.ValidationError if the data can't be converted. Return the converted value. Subclasses should override this. """ return value @cached_property def validators(self): """ Some validators can't be created at field initialization time. This method provides a way to delay their creation until required. """ return [*self.default_validators, *self._validators] def run_validators(self, value): if value in self.empty_values: return errors = [] for v in self.validators: try: v(value) except exceptions.ValidationError as e: if hasattr(e, 'code') and e.code in self.error_messages: e.message = self.error_messages[e.code] errors.extend(e.error_list) if errors: raise exceptions.ValidationError(errors) def validate(self, value, model_instance): """ Validate value and raise ValidationError if necessary. Subclasses should override this to provide validation logic. """ if not self.editable: # Skip validation for non-editable fields. return if self.choices is not None and value not in self.empty_values: for option_key, option_value in self.choices: if isinstance(option_value, (list, tuple)): # This is an optgroup, so look inside the group for # options. for optgroup_key, optgroup_value in option_value: if value == optgroup_key: return elif value == option_key: return raise exceptions.ValidationError( self.error_messages['invalid_choice'], code='invalid_choice', params={'value': value}, ) if value is None and not self.null: raise exceptions.ValidationError(self.error_messages['null'], code='null') if not self.blank and value in self.empty_values: raise exceptions.ValidationError(self.error_messages['blank'], code='blank') def clean(self, value, model_instance): """ Convert the value's type and run validation. Validation errors from to_python() and validate() are propagated. Return the correct value if no error is raised. """ value = self.to_python(value) self.validate(value, model_instance) self.run_validators(value) return value def db_type_parameters(self, connection): return DictWrapper(self.__dict__, connection.ops.quote_name, 'qn_') def db_check(self, connection): """ Return the database column check constraint for this field, for the provided connection. Works the same way as db_type() for the case that get_internal_type() does not map to a preexisting model field. """ data = self.db_type_parameters(connection) try: return connection.data_type_check_constraints[self.get_internal_type()] % data except KeyError: return None def db_type(self, connection): """ Return the database column data type for this field, for the provided connection. """ # The default implementation of this method looks at the # backend-specific data_types dictionary, looking up the field by its # "internal type". # # A Field class can implement the get_internal_type() method to specify # which *preexisting* Django Field class it's most similar to -- i.e., # a custom field might be represented by a TEXT column type, which is # the same as the TextField Django field type, which means the custom # field's get_internal_type() returns 'TextField'. # # But the limitation of the get_internal_type() / data_types approach # is that it cannot handle database column types that aren't already # mapped to one of the built-in Django field types. In this case, you # can implement db_type() instead of get_internal_type() to specify # exactly which wacky database column type you want to use. data = self.db_type_parameters(connection) try: return connection.data_types[self.get_internal_type()] % data except KeyError: return None def rel_db_type(self, connection): """ Return the data type that a related field pointing to this field should use. For example, this method is called by ForeignKey and OneToOneField to determine its data type. """ return self.db_type(connection) def cast_db_type(self, connection): """Return the data type to use in the Cast() function.""" db_type = connection.ops.cast_data_types.get(self.get_internal_type()) if db_type: return db_type % self.db_type_parameters(connection) return self.db_type(connection) def db_parameters(self, connection): """ Extension of db_type(), providing a range of different return values (type, checks). This will look at db_type(), allowing custom model fields to override it. """ type_string = self.db_type(connection) check_string = self.db_check(connection) return { "type": type_string, "check": check_string, } def db_type_suffix(self, connection): return connection.data_types_suffix.get(self.get_internal_type()) def get_db_converters(self, connection): if hasattr(self, 'from_db_value'): return [self.from_db_value] return [] @property def unique(self): return self._unique or self.primary_key @property def db_tablespace(self): return self._db_tablespace or settings.DEFAULT_INDEX_TABLESPACE @property def db_returning(self): """ Private API intended only to be used by Django itself. Currently only the PostgreSQL backend supports returning multiple fields on a model. """ return False def set_attributes_from_name(self, name): self.name = self.name or name self.attname, self.column = self.get_attname_column() self.concrete = self.column is not None if self.verbose_name is None and self.name: self.verbose_name = self.name.replace('_', ' ') def contribute_to_class(self, cls, name, private_only=False): """ Register the field with the model class it belongs to. If private_only is True, create a separate instance of this field for every subclass of cls, even if cls is not an abstract model. """ self.set_attributes_from_name(name) self.model = cls cls._meta.add_field(self, private=private_only) if self.column: # Don't override classmethods with the descriptor. This means that # if you have a classmethod and a field with the same name, then # such fields can't be deferred (we don't have a check for this). if not getattr(cls, self.attname, None): setattr(cls, self.attname, self.descriptor_class(self)) if self.choices is not None: if not hasattr(cls, 'get_%s_display' % self.name): setattr( cls, 'get_%s_display' % self.name, partialmethod(cls._get_FIELD_display, field=self), ) def get_filter_kwargs_for_object(self, obj): """ Return a dict that when passed as kwargs to self.model.filter(), would yield all instances having the same value for this field as obj has. """ return {self.name: getattr(obj, self.attname)} def get_attname(self): return self.name def get_attname_column(self): attname = self.get_attname() column = self.db_column or attname return attname, column def get_internal_type(self): return self.__class__.__name__ def pre_save(self, model_instance, add): """Return field's value just before saving.""" return getattr(model_instance, self.attname) def get_prep_value(self, value): """Perform preliminary non-db specific value checks and conversions.""" if isinstance(value, Promise): value = value._proxy____cast() return value def get_db_prep_value(self, value, connection, prepared=False): """ Return field's value prepared for interacting with the database backend. Used by the default implementations of get_db_prep_save(). """ if not prepared: value = self.get_prep_value(value) return value def get_db_prep_save(self, value, connection): """Return field's value prepared for saving into a database.""" return self.get_db_prep_value(value, connection=connection, prepared=False) def has_default(self): """Return a boolean of whether this field has a default value.""" return self.default is not NOT_PROVIDED def get_default(self): """Return the default value for this field.""" return self._get_default() @cached_property def _get_default(self): if self.has_default(): if callable(self.default): return self.default return lambda: self.default if not self.empty_strings_allowed or self.null and not connection.features.interprets_empty_strings_as_nulls: return return_None return str # return empty string def get_choices(self, include_blank=True, blank_choice=BLANK_CHOICE_DASH, limit_choices_to=None, ordering=()): """ Return choices with a default blank choices included, for use as <select> choices for this field. """ if self.choices is not None: choices = list(self.choices) if include_blank: blank_defined = any(choice in ('', None) for choice, _ in self.flatchoices) if not blank_defined: choices = blank_choice + choices return choices rel_model = self.remote_field.model limit_choices_to = limit_choices_to or self.get_limit_choices_to() choice_func = operator.attrgetter( self.remote_field.get_related_field().attname if hasattr(self.remote_field, 'get_related_field') else 'pk' ) qs = rel_model._default_manager.complex_filter(limit_choices_to) if ordering: qs = qs.order_by(*ordering) return (blank_choice if include_blank else []) + [ (choice_func(x), str(x)) for x in qs ] def value_to_string(self, obj): """ Return a string value of this field from the passed obj. This is used by the serialization framework. """ return str(self.value_from_object(obj)) def _get_flatchoices(self): """Flattened version of choices tuple.""" if self.choices is None: return [] flat = [] for choice, value in self.choices: if isinstance(value, (list, tuple)): flat.extend(value) else: flat.append((choice, value)) return flat flatchoices = property(_get_flatchoices) def save_form_data(self, instance, data): setattr(instance, self.name, data) def formfield(self, form_class=None, choices_form_class=None, **kwargs): """Return a django.forms.Field instance for this field.""" defaults = { 'required': not self.blank, 'label': capfirst(self.verbose_name), 'help_text': self.help_text, } if self.has_default(): if callable(self.default): defaults['initial'] = self.default defaults['show_hidden_initial'] = True else: defaults['initial'] = self.get_default() if self.choices is not None: # Fields with choices get special treatment. include_blank = (self.blank or not (self.has_default() or 'initial' in kwargs)) defaults['choices'] = self.get_choices(include_blank=include_blank) defaults['coerce'] = self.to_python if self.null: defaults['empty_value'] = None if choices_form_class is not None: form_class = choices_form_class else: form_class = forms.TypedChoiceField # Many of the subclass-specific formfield arguments (min_value, # max_value) don't apply for choice fields, so be sure to only pass # the values that TypedChoiceField will understand. for k in list(kwargs): if k not in ('coerce', 'empty_value', 'choices', 'required', 'widget', 'label', 'initial', 'help_text', 'error_messages', 'show_hidden_initial', 'disabled'): del kwargs[k] defaults.update(kwargs) if form_class is None: form_class = forms.CharField return form_class(**defaults) def value_from_object(self, obj): """Return the value of this field in the given model instance.""" return getattr(obj, self.attname) class BooleanField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value must be either True or False.'), 'invalid_nullable': _('“%(value)s” value must be either True, False, or None.'), } description = _("Boolean (Either True or False)") def get_internal_type(self): return "BooleanField" def to_python(self, value): if self.null and value in self.empty_values: return None if value in (True, False): # 1/0 are equal to True/False. bool() converts former to latter. return bool(value) if value in ('t', 'True', '1'): return True if value in ('f', 'False', '0'): return False raise exceptions.ValidationError( self.error_messages['invalid_nullable' if self.null else 'invalid'], code='invalid', params={'value': value}, ) def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return self.to_python(value) def formfield(self, **kwargs): if self.choices is not None: include_blank = not (self.has_default() or 'initial' in kwargs) defaults = {'choices': self.get_choices(include_blank=include_blank)} else: form_class = forms.NullBooleanField if self.null else forms.BooleanField # In HTML checkboxes, 'required' means "must be checked" which is # different from the choices case ("must select some value"). # required=False allows unchecked checkboxes. defaults = {'form_class': form_class, 'required': False} return super().formfield(**{**defaults, **kwargs}) class CharField(Field): description = _("String (up to %(max_length)s)") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.validators.append(validators.MaxLengthValidator(self.max_length)) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_max_length_attribute(**kwargs), ] def _check_max_length_attribute(self, **kwargs): if self.max_length is None: return [ checks.Error( "CharFields must define a 'max_length' attribute.", obj=self, id='fields.E120', ) ] elif (not isinstance(self.max_length, int) or isinstance(self.max_length, bool) or self.max_length <= 0): return [ checks.Error( "'max_length' must be a positive integer.", obj=self, id='fields.E121', ) ] else: return [] def cast_db_type(self, connection): if self.max_length is None: return connection.ops.cast_char_field_without_max_length return super().cast_db_type(connection) def get_internal_type(self): return "CharField" def to_python(self, value): if isinstance(value, str) or value is None: return value return str(value) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): # Passing max_length to forms.CharField means that the value's length # will be validated twice. This is considered acceptable since we want # the value in the form field (to pass into widget for example). defaults = {'max_length': self.max_length} # TODO: Handle multiple backends with different feature flags. if self.null and not connection.features.interprets_empty_strings_as_nulls: defaults['empty_value'] = None defaults.update(kwargs) return super().formfield(**defaults) class CommaSeparatedIntegerField(CharField): default_validators = [validators.validate_comma_separated_integer_list] description = _("Comma-separated integers") system_check_removed_details = { 'msg': ( 'CommaSeparatedIntegerField is removed except for support in ' 'historical migrations.' ), 'hint': ( 'Use CharField(validators=[validate_comma_separated_integer_list]) ' 'instead.' ), 'id': 'fields.E901', } class DateTimeCheckMixin: def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_mutually_exclusive_options(), *self._check_fix_default_value(), ] def _check_mutually_exclusive_options(self): # auto_now, auto_now_add, and default are mutually exclusive # options. The use of more than one of these options together # will trigger an Error mutually_exclusive_options = [self.auto_now_add, self.auto_now, self.has_default()] enabled_options = [option not in (None, False) for option in mutually_exclusive_options].count(True) if enabled_options > 1: return [ checks.Error( "The options auto_now, auto_now_add, and default " "are mutually exclusive. Only one of these options " "may be present.", obj=self, id='fields.E160', ) ] else: return [] def _check_fix_default_value(self): return [] class DateField(DateTimeCheckMixin, Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value has an invalid date format. It must be ' 'in YYYY-MM-DD format.'), 'invalid_date': _('“%(value)s” value has the correct format (YYYY-MM-DD) ' 'but it is an invalid date.'), } description = _("Date (without time)") def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add if auto_now or auto_now_add: kwargs['editable'] = False kwargs['blank'] = True super().__init__(verbose_name, name, **kwargs) def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): if not timezone.is_naive(value): value = timezone.make_naive(value, timezone.utc) value = value.date() elif isinstance(value, datetime.date): # Nothing to do, as dates don't have tz information pass else: # No explicit date / datetime value -- no checks necessary return [] offset = datetime.timedelta(days=1) lower = (now - offset).date() upper = (now + offset).date() if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.auto_now: kwargs['auto_now'] = True if self.auto_now_add: kwargs['auto_now_add'] = True if self.auto_now or self.auto_now_add: del kwargs['editable'] del kwargs['blank'] return name, path, args, kwargs def get_internal_type(self): return "DateField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.datetime): if settings.USE_TZ and timezone.is_aware(value): # Convert aware datetimes to the default time zone # before casting them to dates (#17742). default_timezone = timezone.get_default_timezone() value = timezone.make_naive(value, default_timezone) return value.date() if isinstance(value, datetime.date): return value try: parsed = parse_date(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_date'], code='invalid_date', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = datetime.date.today() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) def contribute_to_class(self, cls, name, **kwargs): super().contribute_to_class(cls, name, **kwargs) if not self.null: setattr( cls, 'get_next_by_%s' % self.name, partialmethod(cls._get_next_or_previous_by_FIELD, field=self, is_next=True) ) setattr( cls, 'get_previous_by_%s' % self.name, partialmethod(cls._get_next_or_previous_by_FIELD, field=self, is_next=False) ) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts dates into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_datefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DateField, **kwargs, }) class DateTimeField(DateField): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value has an invalid format. It must be in ' 'YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ] format.'), 'invalid_date': _("“%(value)s” value has the correct format " "(YYYY-MM-DD) but it is an invalid date."), 'invalid_datetime': _('“%(value)s” value has the correct format ' '(YYYY-MM-DD HH:MM[:ss[.uuuuuu]][TZ]) ' 'but it is an invalid date/time.'), } description = _("Date (with time)") # __init__ is inherited from DateField def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc) elif isinstance(value, datetime.date): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset lower = datetime.datetime(lower.year, lower.month, lower.day) upper = now + second_offset upper = datetime.datetime(upper.year, upper.month, upper.day) value = datetime.datetime(value.year, value.month, value.day) else: # No explicit date / datetime value -- no checks necessary return [] if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def get_internal_type(self): return "DateTimeField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.datetime): return value if isinstance(value, datetime.date): value = datetime.datetime(value.year, value.month, value.day) if settings.USE_TZ: # For backwards compatibility, interpret naive datetimes in # local time. This won't work during DST change, but we can't # do much about it, so we let the exceptions percolate up the # call stack. warnings.warn("DateTimeField %s.%s received a naive datetime " "(%s) while time zone support is active." % (self.model.__name__, self.name, value), RuntimeWarning) default_timezone = timezone.get_default_timezone() value = timezone.make_aware(value, default_timezone) return value try: parsed = parse_datetime(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_datetime'], code='invalid_datetime', params={'value': value}, ) try: parsed = parse_date(value) if parsed is not None: return datetime.datetime(parsed.year, parsed.month, parsed.day) except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_date'], code='invalid_date', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = timezone.now() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) # contribute_to_class is inherited from DateField, it registers # get_next_by_FOO and get_prev_by_FOO def get_prep_value(self, value): value = super().get_prep_value(value) value = self.to_python(value) if value is not None and settings.USE_TZ and timezone.is_naive(value): # For backwards compatibility, interpret naive datetimes in local # time. This won't work during DST change, but we can't do much # about it, so we let the exceptions percolate up the call stack. try: name = '%s.%s' % (self.model.__name__, self.name) except AttributeError: name = '(unbound)' warnings.warn("DateTimeField %s received a naive datetime (%s)" " while time zone support is active." % (name, value), RuntimeWarning) default_timezone = timezone.get_default_timezone() value = timezone.make_aware(value, default_timezone) return value def get_db_prep_value(self, value, connection, prepared=False): # Casts datetimes into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_datetimefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DateTimeField, **kwargs, }) class DecimalField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value must be a decimal number.'), } description = _("Decimal number") def __init__(self, verbose_name=None, name=None, max_digits=None, decimal_places=None, **kwargs): self.max_digits, self.decimal_places = max_digits, decimal_places super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): errors = super().check(**kwargs) digits_errors = [ *self._check_decimal_places(), *self._check_max_digits(), ] if not digits_errors: errors.extend(self._check_decimal_places_and_max_digits(**kwargs)) else: errors.extend(digits_errors) return errors def _check_decimal_places(self): try: decimal_places = int(self.decimal_places) if decimal_places < 0: raise ValueError() except TypeError: return [ checks.Error( "DecimalFields must define a 'decimal_places' attribute.", obj=self, id='fields.E130', ) ] except ValueError: return [ checks.Error( "'decimal_places' must be a non-negative integer.", obj=self, id='fields.E131', ) ] else: return [] def _check_max_digits(self): try: max_digits = int(self.max_digits) if max_digits <= 0: raise ValueError() except TypeError: return [ checks.Error( "DecimalFields must define a 'max_digits' attribute.", obj=self, id='fields.E132', ) ] except ValueError: return [ checks.Error( "'max_digits' must be a positive integer.", obj=self, id='fields.E133', ) ] else: return [] def _check_decimal_places_and_max_digits(self, **kwargs): if int(self.decimal_places) > int(self.max_digits): return [ checks.Error( "'max_digits' must be greater or equal to 'decimal_places'.", obj=self, id='fields.E134', ) ] return [] @cached_property def validators(self): return super().validators + [ validators.DecimalValidator(self.max_digits, self.decimal_places) ] @cached_property def context(self): return decimal.Context(prec=self.max_digits) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.max_digits is not None: kwargs['max_digits'] = self.max_digits if self.decimal_places is not None: kwargs['decimal_places'] = self.decimal_places return name, path, args, kwargs def get_internal_type(self): return "DecimalField" def to_python(self, value): if value is None: return value if isinstance(value, float): return self.context.create_decimal_from_float(value) try: return decimal.Decimal(value) except decimal.InvalidOperation: raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def get_db_prep_save(self, value, connection): return connection.ops.adapt_decimalfield_value(self.to_python(value), self.max_digits, self.decimal_places) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): return super().formfield(**{ 'max_digits': self.max_digits, 'decimal_places': self.decimal_places, 'form_class': forms.DecimalField, **kwargs, }) class DurationField(Field): """ Store timedelta objects. Use interval on PostgreSQL, INTERVAL DAY TO SECOND on Oracle, and bigint of microseconds on other databases. """ empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value has an invalid format. It must be in ' '[DD] [[HH:]MM:]ss[.uuuuuu] format.') } description = _("Duration") def get_internal_type(self): return "DurationField" def to_python(self, value): if value is None: return value if isinstance(value, datetime.timedelta): return value try: parsed = parse_duration(value) except ValueError: pass else: if parsed is not None: return parsed raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def get_db_prep_value(self, value, connection, prepared=False): if connection.features.has_native_duration_field: return value if value is None: return None return duration_microseconds(value) def get_db_converters(self, connection): converters = [] if not connection.features.has_native_duration_field: converters.append(connection.ops.convert_durationfield_value) return converters + super().get_db_converters(connection) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else duration_string(val) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.DurationField, **kwargs, }) class EmailField(CharField): default_validators = [validators.validate_email] description = _("Email address") def __init__(self, *args, **kwargs): # max_length=254 to be compliant with RFCs 3696 and 5321 kwargs.setdefault('max_length', 254) super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() # We do not exclude max_length if it matches default as we want to change # the default in future. return name, path, args, kwargs def formfield(self, **kwargs): # As with CharField, this will cause email validation to be performed # twice. return super().formfield(**{ 'form_class': forms.EmailField, **kwargs, }) class FilePathField(Field): description = _("File path") def __init__(self, verbose_name=None, name=None, path='', match=None, recursive=False, allow_files=True, allow_folders=False, **kwargs): self.path, self.match, self.recursive = path, match, recursive self.allow_files, self.allow_folders = allow_files, allow_folders kwargs.setdefault('max_length', 100) super().__init__(verbose_name, name, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_allowing_files_or_folders(**kwargs), ] def _check_allowing_files_or_folders(self, **kwargs): if not self.allow_files and not self.allow_folders: return [ checks.Error( "FilePathFields must have either 'allow_files' or 'allow_folders' set to True.", obj=self, id='fields.E140', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.path != '': kwargs['path'] = self.path if self.match is not None: kwargs['match'] = self.match if self.recursive is not False: kwargs['recursive'] = self.recursive if self.allow_files is not True: kwargs['allow_files'] = self.allow_files if self.allow_folders is not False: kwargs['allow_folders'] = self.allow_folders if kwargs.get("max_length") == 100: del kwargs["max_length"] return name, path, args, kwargs def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return str(value) def formfield(self, **kwargs): return super().formfield(**{ 'path': self.path() if callable(self.path) else self.path, 'match': self.match, 'recursive': self.recursive, 'form_class': forms.FilePathField, 'allow_files': self.allow_files, 'allow_folders': self.allow_folders, **kwargs, }) def get_internal_type(self): return "FilePathField" class FloatField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value must be a float.'), } description = _("Floating point number") def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None try: return float(value) except (TypeError, ValueError) as e: raise e.__class__( "Field '%s' expected a number but got %r." % (self.name, value), ) from e def get_internal_type(self): return "FloatField" def to_python(self, value): if value is None: return value try: return float(value) except (TypeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.FloatField, **kwargs, }) class IntegerField(Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value must be an integer.'), } description = _("Integer") def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_max_length_warning(), ] def _check_max_length_warning(self): if self.max_length is not None: return [ checks.Warning( "'max_length' is ignored when used with %s." % self.__class__.__name__, hint="Remove 'max_length' from field", obj=self, id='fields.W122', ) ] return [] @cached_property def validators(self): # These validators can't be added at field initialization time since # they're based on values retrieved from `connection`. validators_ = super().validators internal_type = self.get_internal_type() min_value, max_value = connection.ops.integer_field_range(internal_type) if min_value is not None and not any( ( isinstance(validator, validators.MinValueValidator) and ( validator.limit_value() if callable(validator.limit_value) else validator.limit_value ) >= min_value ) for validator in validators_ ): validators_.append(validators.MinValueValidator(min_value)) if max_value is not None and not any( ( isinstance(validator, validators.MaxValueValidator) and ( validator.limit_value() if callable(validator.limit_value) else validator.limit_value ) <= max_value ) for validator in validators_ ): validators_.append(validators.MaxValueValidator(max_value)) return validators_ def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None try: return int(value) except (TypeError, ValueError) as e: raise e.__class__( "Field '%s' expected a number but got %r." % (self.name, value), ) from e def get_internal_type(self): return "IntegerField" def to_python(self, value): if value is None: return value try: return int(value) except (TypeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.IntegerField, **kwargs, }) class BigIntegerField(IntegerField): description = _("Big (8 byte) integer") MAX_BIGINT = 9223372036854775807 def get_internal_type(self): return "BigIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': -BigIntegerField.MAX_BIGINT - 1, 'max_value': BigIntegerField.MAX_BIGINT, **kwargs, }) class IPAddressField(Field): empty_strings_allowed = False description = _("IPv4 address") system_check_removed_details = { 'msg': ( 'IPAddressField has been removed except for support in ' 'historical migrations.' ), 'hint': 'Use GenericIPAddressField instead.', 'id': 'fields.E900', } def __init__(self, *args, **kwargs): kwargs['max_length'] = 15 super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['max_length'] return name, path, args, kwargs def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None return str(value) def get_internal_type(self): return "IPAddressField" class GenericIPAddressField(Field): empty_strings_allowed = False description = _("IP address") default_error_messages = {} def __init__(self, verbose_name=None, name=None, protocol='both', unpack_ipv4=False, *args, **kwargs): self.unpack_ipv4 = unpack_ipv4 self.protocol = protocol self.default_validators, invalid_error_message = \ validators.ip_address_validators(protocol, unpack_ipv4) self.default_error_messages['invalid'] = invalid_error_message kwargs['max_length'] = 39 super().__init__(verbose_name, name, *args, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_blank_and_null_values(**kwargs), ] def _check_blank_and_null_values(self, **kwargs): if not getattr(self, 'null', False) and getattr(self, 'blank', False): return [ checks.Error( 'GenericIPAddressFields cannot have blank=True if null=False, ' 'as blank values are stored as nulls.', obj=self, id='fields.E150', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.unpack_ipv4 is not False: kwargs['unpack_ipv4'] = self.unpack_ipv4 if self.protocol != "both": kwargs['protocol'] = self.protocol if kwargs.get("max_length") == 39: del kwargs['max_length'] return name, path, args, kwargs def get_internal_type(self): return "GenericIPAddressField" def to_python(self, value): if value is None: return None if not isinstance(value, str): value = str(value) value = value.strip() if ':' in value: return clean_ipv6_address(value, self.unpack_ipv4, self.error_messages['invalid']) return value def get_db_prep_value(self, value, connection, prepared=False): if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_ipaddressfield_value(value) def get_prep_value(self, value): value = super().get_prep_value(value) if value is None: return None if value and ':' in value: try: return clean_ipv6_address(value, self.unpack_ipv4) except exceptions.ValidationError: pass return str(value) def formfield(self, **kwargs): return super().formfield(**{ 'protocol': self.protocol, 'form_class': forms.GenericIPAddressField, **kwargs, }) class NullBooleanField(BooleanField): default_error_messages = { 'invalid': _('“%(value)s” value must be either None, True or False.'), 'invalid_nullable': _('“%(value)s” value must be either None, True or False.'), } description = _("Boolean (Either True, False or None)") def __init__(self, *args, **kwargs): kwargs['null'] = True kwargs['blank'] = True super().__init__(*args, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['null'] del kwargs['blank'] return name, path, args, kwargs def get_internal_type(self): return "NullBooleanField" class PositiveIntegerRelDbTypeMixin: def rel_db_type(self, connection): """ Return the data type that a related field pointing to this field should use. In most cases, a foreign key pointing to a positive integer primary key will have an integer column data type but some databases (e.g. MySQL) have an unsigned integer type. In that case (related_fields_match_type=True), the primary key should return its db_type. """ if connection.features.related_fields_match_type: return self.db_type(connection) else: return IntegerField().db_type(connection=connection) class PositiveBigIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField): description = _('Positive big integer') def get_internal_type(self): return 'PositiveBigIntegerField' def formfield(self, **kwargs): return super().formfield(**{ 'min_value': 0, **kwargs, }) class PositiveIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField): description = _("Positive integer") def get_internal_type(self): return "PositiveIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': 0, **kwargs, }) class PositiveSmallIntegerField(PositiveIntegerRelDbTypeMixin, IntegerField): description = _("Positive small integer") def get_internal_type(self): return "PositiveSmallIntegerField" def formfield(self, **kwargs): return super().formfield(**{ 'min_value': 0, **kwargs, }) class SlugField(CharField): default_validators = [validators.validate_slug] description = _("Slug (up to %(max_length)s)") def __init__(self, *args, max_length=50, db_index=True, allow_unicode=False, **kwargs): self.allow_unicode = allow_unicode if self.allow_unicode: self.default_validators = [validators.validate_unicode_slug] super().__init__(*args, max_length=max_length, db_index=db_index, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if kwargs.get("max_length") == 50: del kwargs['max_length'] if self.db_index is False: kwargs['db_index'] = False else: del kwargs['db_index'] if self.allow_unicode is not False: kwargs['allow_unicode'] = self.allow_unicode return name, path, args, kwargs def get_internal_type(self): return "SlugField" def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.SlugField, 'allow_unicode': self.allow_unicode, **kwargs, }) class SmallIntegerField(IntegerField): description = _("Small integer") def get_internal_type(self): return "SmallIntegerField" class TextField(Field): description = _("Text") def get_internal_type(self): return "TextField" def to_python(self, value): if isinstance(value, str) or value is None: return value return str(value) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def formfield(self, **kwargs): # Passing max_length to forms.CharField means that the value's length # will be validated twice. This is considered acceptable since we want # the value in the form field (to pass into widget for example). return super().formfield(**{ 'max_length': self.max_length, **({} if self.choices is not None else {'widget': forms.Textarea}), **kwargs, }) class TimeField(DateTimeCheckMixin, Field): empty_strings_allowed = False default_error_messages = { 'invalid': _('“%(value)s” value has an invalid format. It must be in ' 'HH:MM[:ss[.uuuuuu]] format.'), 'invalid_time': _('“%(value)s” value has the correct format ' '(HH:MM[:ss[.uuuuuu]]) but it is an invalid time.'), } description = _("Time") def __init__(self, verbose_name=None, name=None, auto_now=False, auto_now_add=False, **kwargs): self.auto_now, self.auto_now_add = auto_now, auto_now_add if auto_now or auto_now_add: kwargs['editable'] = False kwargs['blank'] = True super().__init__(verbose_name, name, **kwargs) def _check_fix_default_value(self): """ Warn that using an actual date or datetime value is probably wrong; it's only evaluated on server startup. """ if not self.has_default(): return [] now = timezone.now() if not timezone.is_naive(now): now = timezone.make_naive(now, timezone.utc) value = self.default if isinstance(value, datetime.datetime): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc) elif isinstance(value, datetime.time): second_offset = datetime.timedelta(seconds=10) lower = now - second_offset upper = now + second_offset value = datetime.datetime.combine(now.date(), value) if timezone.is_aware(value): value = timezone.make_naive(value, timezone.utc).time() else: # No explicit time / datetime value -- no checks necessary return [] if lower <= value <= upper: return [ checks.Warning( 'Fixed default value provided.', hint='It seems you set a fixed date / time / datetime ' 'value as default for this field. This may not be ' 'what you want. If you want to have the current date ' 'as default, use `django.utils.timezone.now`', obj=self, id='fields.W161', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.auto_now is not False: kwargs["auto_now"] = self.auto_now if self.auto_now_add is not False: kwargs["auto_now_add"] = self.auto_now_add if self.auto_now or self.auto_now_add: del kwargs['blank'] del kwargs['editable'] return name, path, args, kwargs def get_internal_type(self): return "TimeField" def to_python(self, value): if value is None: return None if isinstance(value, datetime.time): return value if isinstance(value, datetime.datetime): # Not usually a good idea to pass in a datetime here (it loses # information), but this can be a side-effect of interacting with a # database backend (e.g. Oracle), so we'll be accommodating. return value.time() try: parsed = parse_time(value) if parsed is not None: return parsed except ValueError: raise exceptions.ValidationError( self.error_messages['invalid_time'], code='invalid_time', params={'value': value}, ) raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) def pre_save(self, model_instance, add): if self.auto_now or (self.auto_now_add and add): value = datetime.datetime.now().time() setattr(model_instance, self.attname, value) return value else: return super().pre_save(model_instance, add) def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): # Casts times into the format expected by the backend if not prepared: value = self.get_prep_value(value) return connection.ops.adapt_timefield_value(value) def value_to_string(self, obj): val = self.value_from_object(obj) return '' if val is None else val.isoformat() def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.TimeField, **kwargs, }) class URLField(CharField): default_validators = [validators.URLValidator()] description = _("URL") def __init__(self, verbose_name=None, name=None, **kwargs): kwargs.setdefault('max_length', 200) super().__init__(verbose_name, name, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() if kwargs.get("max_length") == 200: del kwargs['max_length'] return name, path, args, kwargs def formfield(self, **kwargs): # As with CharField, this will cause URL validation to be performed # twice. return super().formfield(**{ 'form_class': forms.URLField, **kwargs, }) class BinaryField(Field): description = _("Raw binary data") empty_values = [None, b''] def __init__(self, *args, **kwargs): kwargs.setdefault('editable', False) super().__init__(*args, **kwargs) if self.max_length is not None: self.validators.append(validators.MaxLengthValidator(self.max_length)) def check(self, **kwargs): return [*super().check(**kwargs), *self._check_str_default_value()] def _check_str_default_value(self): if self.has_default() and isinstance(self.default, str): return [ checks.Error( "BinaryField's default cannot be a string. Use bytes " "content instead.", obj=self, id='fields.E170', ) ] return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() if self.editable: kwargs['editable'] = True else: del kwargs['editable'] return name, path, args, kwargs def get_internal_type(self): return "BinaryField" def get_placeholder(self, value, compiler, connection): return connection.ops.binary_placeholder_sql(value) def get_default(self): if self.has_default() and not callable(self.default): return self.default default = super().get_default() if default == '': return b'' return default def get_db_prep_value(self, value, connection, prepared=False): value = super().get_db_prep_value(value, connection, prepared) if value is not None: return connection.Database.Binary(value) return value def value_to_string(self, obj): """Binary data is serialized as base64""" return b64encode(self.value_from_object(obj)).decode('ascii') def to_python(self, value): # If it's a string, it should be base64-encoded data if isinstance(value, str): return memoryview(b64decode(value.encode('ascii'))) return value class UUIDField(Field): default_error_messages = { 'invalid': _('“%(value)s” is not a valid UUID.'), } description = _('Universally unique identifier') empty_strings_allowed = False def __init__(self, verbose_name=None, **kwargs): kwargs['max_length'] = 32 super().__init__(verbose_name, **kwargs) def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['max_length'] return name, path, args, kwargs def get_internal_type(self): return "UUIDField" def get_prep_value(self, value): value = super().get_prep_value(value) return self.to_python(value) def get_db_prep_value(self, value, connection, prepared=False): if value is None: return None if not isinstance(value, uuid.UUID): value = self.to_python(value) if connection.features.has_native_uuid_field: return value return value.hex def to_python(self, value): if value is not None and not isinstance(value, uuid.UUID): input_form = 'int' if isinstance(value, int) else 'hex' try: return uuid.UUID(**{input_form: value}) except (AttributeError, ValueError): raise exceptions.ValidationError( self.error_messages['invalid'], code='invalid', params={'value': value}, ) return value def formfield(self, **kwargs): return super().formfield(**{ 'form_class': forms.UUIDField, **kwargs, }) class AutoFieldMixin: db_returning = True def __init__(self, *args, **kwargs): kwargs['blank'] = True super().__init__(*args, **kwargs) def check(self, **kwargs): return [ *super().check(**kwargs), *self._check_primary_key(), ] def _check_primary_key(self): if not self.primary_key: return [ checks.Error( 'AutoFields must set primary_key=True.', obj=self, id='fields.E100', ), ] else: return [] def deconstruct(self): name, path, args, kwargs = super().deconstruct() del kwargs['blank'] kwargs['primary_key'] = True return name, path, args, kwargs def validate(self, value, model_instance): pass def get_db_prep_value(self, value, connection, prepared=False): if not prepared: value = self.get_prep_value(value) value = connection.ops.validate_autopk_value(value) return value def contribute_to_class(self, cls, name, **kwargs): assert not cls._meta.auto_field, ( "Model %s can't have more than one auto-generated field." % cls._meta.label ) super().contribute_to_class(cls, name, **kwargs) cls._meta.auto_field = self def formfield(self, **kwargs): return None class AutoFieldMeta(type): """ Metaclass to maintain backward inheritance compatibility for AutoField. It is intended that AutoFieldMixin become public API when it is possible to create a non-integer automatically-generated field using column defaults stored in the database. In many areas Django also relies on using isinstance() to check for an automatically-generated field as a subclass of AutoField. A new flag needs to be implemented on Field to be used instead. When these issues have been addressed, this metaclass could be used to deprecate inheritance from AutoField and use of isinstance() with AutoField for detecting automatically-generated fields. """ @property def _subclasses(self): return (BigAutoField, SmallAutoField) def __instancecheck__(self, instance): return isinstance(instance, self._subclasses) or super().__instancecheck__(instance) def __subclasscheck__(self, subclass): return subclass in self._subclasses or super().__subclasscheck__(subclass) class AutoField(AutoFieldMixin, IntegerField, metaclass=AutoFieldMeta): def get_internal_type(self): return 'AutoField' def rel_db_type(self, connection): return IntegerField().db_type(connection=connection) class BigAutoField(AutoFieldMixin, BigIntegerField): def get_internal_type(self): return 'BigAutoField' def rel_db_type(self, connection): return BigIntegerField().db_type(connection=connection) class SmallAutoField(AutoFieldMixin, SmallIntegerField): def get_internal_type(self): return 'SmallAutoField' def rel_db_type(self, connection): return SmallIntegerField().db_type(connection=connection)
py
1a55d44db89b9871362eb635e3f20f146c282c79
data = ( 'jjwaels', # 0x00 'jjwaelt', # 0x01 'jjwaelp', # 0x02 'jjwaelh', # 0x03 'jjwaem', # 0x04 'jjwaeb', # 0x05 'jjwaebs', # 0x06 'jjwaes', # 0x07 'jjwaess', # 0x08 'jjwaeng', # 0x09 'jjwaej', # 0x0a 'jjwaec', # 0x0b 'jjwaek', # 0x0c 'jjwaet', # 0x0d 'jjwaep', # 0x0e 'jjwaeh', # 0x0f 'jjoe', # 0x10 'jjoeg', # 0x11 'jjoegg', # 0x12 'jjoegs', # 0x13 'jjoen', # 0x14 'jjoenj', # 0x15 'jjoenh', # 0x16 'jjoed', # 0x17 'jjoel', # 0x18 'jjoelg', # 0x19 'jjoelm', # 0x1a 'jjoelb', # 0x1b 'jjoels', # 0x1c 'jjoelt', # 0x1d 'jjoelp', # 0x1e 'jjoelh', # 0x1f 'jjoem', # 0x20 'jjoeb', # 0x21 'jjoebs', # 0x22 'jjoes', # 0x23 'jjoess', # 0x24 'jjoeng', # 0x25 'jjoej', # 0x26 'jjoec', # 0x27 'jjoek', # 0x28 'jjoet', # 0x29 'jjoep', # 0x2a 'jjoeh', # 0x2b 'jjyo', # 0x2c 'jjyog', # 0x2d 'jjyogg', # 0x2e 'jjyogs', # 0x2f 'jjyon', # 0x30 'jjyonj', # 0x31 'jjyonh', # 0x32 'jjyod', # 0x33 'jjyol', # 0x34 'jjyolg', # 0x35 'jjyolm', # 0x36 'jjyolb', # 0x37 'jjyols', # 0x38 'jjyolt', # 0x39 'jjyolp', # 0x3a 'jjyolh', # 0x3b 'jjyom', # 0x3c 'jjyob', # 0x3d 'jjyobs', # 0x3e 'jjyos', # 0x3f 'jjyoss', # 0x40 'jjyong', # 0x41 'jjyoj', # 0x42 'jjyoc', # 0x43 'jjyok', # 0x44 'jjyot', # 0x45 'jjyop', # 0x46 'jjyoh', # 0x47 'jju', # 0x48 'jjug', # 0x49 'jjugg', # 0x4a 'jjugs', # 0x4b 'jjun', # 0x4c 'jjunj', # 0x4d 'jjunh', # 0x4e 'jjud', # 0x4f 'jjul', # 0x50 'jjulg', # 0x51 'jjulm', # 0x52 'jjulb', # 0x53 'jjuls', # 0x54 'jjult', # 0x55 'jjulp', # 0x56 'jjulh', # 0x57 'jjum', # 0x58 'jjub', # 0x59 'jjubs', # 0x5a 'jjus', # 0x5b 'jjuss', # 0x5c 'jjung', # 0x5d 'jjuj', # 0x5e 'jjuc', # 0x5f 'jjuk', # 0x60 'jjut', # 0x61 'jjup', # 0x62 'jjuh', # 0x63 'jjweo', # 0x64 'jjweog', # 0x65 'jjweogg', # 0x66 'jjweogs', # 0x67 'jjweon', # 0x68 'jjweonj', # 0x69 'jjweonh', # 0x6a 'jjweod', # 0x6b 'jjweol', # 0x6c 'jjweolg', # 0x6d 'jjweolm', # 0x6e 'jjweolb', # 0x6f 'jjweols', # 0x70 'jjweolt', # 0x71 'jjweolp', # 0x72 'jjweolh', # 0x73 'jjweom', # 0x74 'jjweob', # 0x75 'jjweobs', # 0x76 'jjweos', # 0x77 'jjweoss', # 0x78 'jjweong', # 0x79 'jjweoj', # 0x7a 'jjweoc', # 0x7b 'jjweok', # 0x7c 'jjweot', # 0x7d 'jjweop', # 0x7e 'jjweoh', # 0x7f 'jjwe', # 0x80 'jjweg', # 0x81 'jjwegg', # 0x82 'jjwegs', # 0x83 'jjwen', # 0x84 'jjwenj', # 0x85 'jjwenh', # 0x86 'jjwed', # 0x87 'jjwel', # 0x88 'jjwelg', # 0x89 'jjwelm', # 0x8a 'jjwelb', # 0x8b 'jjwels', # 0x8c 'jjwelt', # 0x8d 'jjwelp', # 0x8e 'jjwelh', # 0x8f 'jjwem', # 0x90 'jjweb', # 0x91 'jjwebs', # 0x92 'jjwes', # 0x93 'jjwess', # 0x94 'jjweng', # 0x95 'jjwej', # 0x96 'jjwec', # 0x97 'jjwek', # 0x98 'jjwet', # 0x99 'jjwep', # 0x9a 'jjweh', # 0x9b 'jjwi', # 0x9c 'jjwig', # 0x9d 'jjwigg', # 0x9e 'jjwigs', # 0x9f 'jjwin', # 0xa0 'jjwinj', # 0xa1 'jjwinh', # 0xa2 'jjwid', # 0xa3 'jjwil', # 0xa4 'jjwilg', # 0xa5 'jjwilm', # 0xa6 'jjwilb', # 0xa7 'jjwils', # 0xa8 'jjwilt', # 0xa9 'jjwilp', # 0xaa 'jjwilh', # 0xab 'jjwim', # 0xac 'jjwib', # 0xad 'jjwibs', # 0xae 'jjwis', # 0xaf 'jjwiss', # 0xb0 'jjwing', # 0xb1 'jjwij', # 0xb2 'jjwic', # 0xb3 'jjwik', # 0xb4 'jjwit', # 0xb5 'jjwip', # 0xb6 'jjwih', # 0xb7 'jjyu', # 0xb8 'jjyug', # 0xb9 'jjyugg', # 0xba 'jjyugs', # 0xbb 'jjyun', # 0xbc 'jjyunj', # 0xbd 'jjyunh', # 0xbe 'jjyud', # 0xbf 'jjyul', # 0xc0 'jjyulg', # 0xc1 'jjyulm', # 0xc2 'jjyulb', # 0xc3 'jjyuls', # 0xc4 'jjyult', # 0xc5 'jjyulp', # 0xc6 'jjyulh', # 0xc7 'jjyum', # 0xc8 'jjyub', # 0xc9 'jjyubs', # 0xca 'jjyus', # 0xcb 'jjyuss', # 0xcc 'jjyung', # 0xcd 'jjyuj', # 0xce 'jjyuc', # 0xcf 'jjyuk', # 0xd0 'jjyut', # 0xd1 'jjyup', # 0xd2 'jjyuh', # 0xd3 'jjeu', # 0xd4 'jjeug', # 0xd5 'jjeugg', # 0xd6 'jjeugs', # 0xd7 'jjeun', # 0xd8 'jjeunj', # 0xd9 'jjeunh', # 0xda 'jjeud', # 0xdb 'jjeul', # 0xdc 'jjeulg', # 0xdd 'jjeulm', # 0xde 'jjeulb', # 0xdf 'jjeuls', # 0xe0 'jjeult', # 0xe1 'jjeulp', # 0xe2 'jjeulh', # 0xe3 'jjeum', # 0xe4 'jjeub', # 0xe5 'jjeubs', # 0xe6 'jjeus', # 0xe7 'jjeuss', # 0xe8 'jjeung', # 0xe9 'jjeuj', # 0xea 'jjeuc', # 0xeb 'jjeuk', # 0xec 'jjeut', # 0xed 'jjeup', # 0xee 'jjeuh', # 0xef 'jjyi', # 0xf0 'jjyig', # 0xf1 'jjyigg', # 0xf2 'jjyigs', # 0xf3 'jjyin', # 0xf4 'jjyinj', # 0xf5 'jjyinh', # 0xf6 'jjyid', # 0xf7 'jjyil', # 0xf8 'jjyilg', # 0xf9 'jjyilm', # 0xfa 'jjyilb', # 0xfb 'jjyils', # 0xfc 'jjyilt', # 0xfd 'jjyilp', # 0xfe 'jjyilh', # 0xff )
py
1a55d593277c80cd1650a55861cba80c66467b65
import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.ticker import MultipleLocator from mpl_toolkits.mplot3d import Axes3D import hanshu proapp=pd.read_excel("C:\\Users\\eric\\Desktop\\月报数据\\月报数据.xlsx",'省公司每月检测缺陷密度') proapp0=hanshu.zyzh(proapp) print(proapp0) fig = plt.figure(5) ax=fig.add_subplot(1,1,1,projection='3d') #绘制三维图 x=proapp['org_id'] y=proapp['yue'] #获取x轴数据,y轴数据 z=proapp['rat'] #获取z轴数据 # ax.plot_surface(x,y,z,rstride=2,cstride=1,cmap=plt.cm.coolwarm,alpha=0.8) #绘制三维图表面 ax.set_xlabel('x-name') #x轴名称 ax.set_ylabel('y-name') #y轴名称 ax.set_zlabel('z-name') #z轴名称 plt.savefig('12.png',dpi=400,bbox_inches='tight') plt.show()
py
1a55d5f29913f75b66d7b9308a40efead3e40b8f
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.1.4 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # s_dyn_principal_component_var [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_dyn_principal_component_var&codeLang=Python) # For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-dyn-pc-var). import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from arpym.statistics import simulate_var1, simulate_normal, multi_r2 from arpym.tools import transpose_square_root, add_logo # ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-parameters) n_ = 2 # number of target variables k_ = 1 # number of factors t_ = int(1e4) # length of VAR(1) process j_ = int(1e2) # number of scenarios delta_omega = 1e-3 sigma2 = np.eye(n_) # scale matrix # ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step00): Setup parameters # + t_vec = np.arange(t_) tau_vec = np.arange(-j_, j_+1) omega_vec = np.arange(-np.pi, np.pi, delta_omega) m_ = len(omega_vec) gamma = (2 * np.random.rand(4) - 1) * 0.99 theta = gamma * np.pi / 2 b = np.array([[np.sin(theta[0]), 0], [np.sin(theta[3])*np.sin(theta[2]), np.sin(theta[3])*np.cos(theta[2])]]) mu_epsi = np.zeros(n_) s_1 = np.cos(theta[0]) s_2 = np.cos(theta[3]) rho = np.sin(theta[1]) sigma2_epsi = np.array([[s_1**2, rho*s_1*s_2], [rho*s_1*s_2, s_2**2]]) # - # ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step01): Simulate VAR(1) process # + mu_inf = np.linalg.solve(np.eye(n_) - b, mu_epsi) sigma2_inf = np.linalg.solve(np.eye(n_**2) - np.kron(b, b), sigma2.reshape(n_**2, 1)).reshape(n_, n_) x_tnow = simulate_normal(mu_inf, sigma2_inf, 1).reshape(n_) x = simulate_var1(x_tnow, b, mu_epsi, sigma2_epsi, t_, j_=1).squeeze() mu_x = np.linalg.solve((np.eye(n_) - b), mu_epsi) sigma2_x = np.linalg.solve(np.eye(n_ ** 2) - np.kron(b, b), sigma2_epsi.reshape(n_ ** 2, 1)).reshape(n_, n_) # - # ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step02): Compute spectral density # + ktilde_x = np.zeros((m_, n_, n_), dtype=complex) sigma_epsi = transpose_square_root(sigma2_epsi) for m in range(m_): ktilde_x_temp = np.linalg.solve(np.eye(n_, dtype=complex) - np.exp(-omega_vec[m]*1j) * b, sigma_epsi) ktilde_x[m, :, :] = ktilde_x_temp @ ktilde_x_temp.conj().T # - # ## [Step 3](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step03): Principal components decomposition # + lam, e = np.linalg.eigh(ktilde_x) lam_k = lam[:, -k_:][:, ::-1] e_k = e[:, :, -k_:][:, :, ::-1] sigma = transpose_square_root(sigma2) beta_tilde_f = np.einsum('ij,ljk->lik', sigma, e_k) gamma_tilde_f = np.einsum('ijk,kl->ijl', e_k.conj().transpose((0, 2, 1)), np.linalg.inv(sigma)) # - # ## [Step 4](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step04): Computation of the filter h # + h_tilde_f = np.einsum('ijk,ikl->ijl', beta_tilde_f, gamma_tilde_f) coef = np.exp(1j * np.outer(tau_vec, omega_vec)) h_f = np.real(np.tensordot(coef, h_tilde_f, axes=(1, 0)) * delta_omega / (2 * np.pi)) gamma_f = np.tensordot(coef, gamma_tilde_f, axes=(1, 0)) * \ delta_omega / (2 * np.pi) alpha_f = (np.eye(n_) - np.sum(h_f, axis=0)) @ mu_x # - # ## [Step 5](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step05): Compute the spectral density of predicted process ktilde_x_pc_bar = np.einsum('ijk,ilk->ijl', np.einsum('ijk,ikl->ijl', h_tilde_f, ktilde_x), h_tilde_f.conj()) # ## [Step 6](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step06): Compute the principal components predicted process # + t_vec_pc = t_vec[tau_vec[-1]:-tau_vec[-1]] t_pc = t_vec_pc.shape[0] x_pc_bar = np.zeros((t_pc, n_), dtype=complex) z_pc = np.zeros((t_pc, k_), dtype=complex) for t in range(t_pc): x_tau = x[t_vec_pc[t] + tau_vec, :][::-1, :] x_pc_bar[t, :] = np.einsum('ijk,ik->j', h_f, x_tau) + alpha_f z_pc[t, :] = np.einsum('ijk,ik->j', gamma_f, x_tau) x_pc_bar = np.real(x_pc_bar) z_pc = np.real(z_pc) # - # ## [Step 7](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step07): update times of original process x x = x[t_vec_pc, :] # ## [Step 8](https://www.arpm.co/lab/redirect.php?permalink=s_dyn_principal_component_var-implementation-step08): Compute r-squared u = x - x_pc_bar sigma2_u = np.einsum('ijk,ilk->ijl', np.einsum('ijk,ikl->ijl', np.eye(n_) - h_tilde_f, ktilde_x), (np.eye(n_) - h_tilde_f).conj()) sigma2_u = np.sum(np.real(sigma2_u), axis=0) * delta_omega / (2 * np.pi) r_2 = multi_r2(sigma2_u, sigma2_x, sigma2) # ## Plots # + plt.style.use('arpm') t_plot = t_vec_pc[1:150] xlim = [t_plot[0], t_plot[-1]] ylim = [-4, 4] fig1, axes = plt.subplots(1, 2) axes[0].plot(t_plot, x[t_plot, 0], 'b') axes[0].plot(t_plot, x[t_plot, 0], 'r--') axes[0].set_xlabel('$t$') axes[0].set_ylabel('$x_1$') axes[0].set_xlim(xlim) axes[0].set_ylim(ylim) axes[0].legend(['Process', 'Predicted process']) axes[1].plot(t_plot, x[t_plot, 1], 'b') axes[1].plot(t_plot, x[t_plot, 1], 'r--') axes[1].set_xlabel('$t$') axes[1].set_ylabel('$x_2$') axes[1].set_xlim(xlim) axes[1].set_ylim(ylim) axes[1].legend(['Process', 'Predicted process']) add_logo(fig1, size_frac_x=1/8) plt.tight_layout() fig2 = plt.figure() gs = gridspec.GridSpec(1, 3, width_ratios=[1, 3, 1]) ax0 = plt.subplot(gs[0]) ax0.plot(ylim, ylim, 'k') ax0.plot(x[t_plot, 0], x_pc_bar[t_plot, 0], 'r.') ax0.set_xlabel('$x_1$') ax0.set_ylabel('$\overline{x}_{1}^{pc}$') ax0.set_xlim(ylim) ax0.set_ylim(ylim) ax1 = plt.subplot(gs[1]) ax1.plot(t_plot, z_pc[t_plot, 0], 'b') ax1.set_xlabel('$t$') ax1.set_ylabel('$Z^{pc}$') ax1.set_xlim(xlim) ax2 = plt.subplot(gs[2]) ax2.plot(ylim, ylim, 'k') ax2.plot(x[t_plot, 1], x_pc_bar[t_plot, 1], 'r.') ax2.set_xlabel('$x_2$') ax2.set_ylabel('$\overline{x}_{2}^{pc}$') ax2.set_xlim(ylim) ax1.set_ylim(ylim) add_logo(fig2, size_frac_x=1/4) plt.tight_layout() fig3, axes = plt.subplots(2, 4) for i in range(2): for j in range(2): axes[i, j].plot(omega_vec, np.real(ktilde_x[:, i, j]), 'b') axes[i, j].plot(omega_vec, np.imag(ktilde_x[:, i, j]), 'r') axes[i, j].set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi]) axes[i, j].set_xticklabels(['$-\pi$', '$-\pi/2$', '$0$', '$\pi$', '$\pi/2$']) axes[i, j].set_ylabel(r'$[\tilde{k}_x(\omega)]_{'+str(i+1)+str(j+1)+'}$') for j in range(2): axes[i, j+2].plot(omega_vec, np.real(ktilde_x_pc_bar[:, i, j]), 'b') axes[i, j+2].plot(omega_vec, np.imag(ktilde_x_pc_bar[:, i, j]), 'r') axes[i, j+2].set_xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi]) axes[i, j+2].set_xticklabels(['$-\pi$', '$-\pi/2$', '$0$', '$\pi$', '$\pi/2$']) axes[i, j+2].set_ylabel(r'$[\tilde{k}_{\bar{x}}(\omega)]^{pc}_{'+str(i+1)+str(j+1)+'}$') add_logo(fig3, size_frac_x=1/4, location=1) plt.tight_layout()
py
1a55d621ab449ad87c0fe12fe2babb2a00d0c676
# ================ # SOFTWARE LICENSE # ================ # The MIT License (MIT) # Copyright (c) 2018 Yutaka Sawai (Varipon) # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ============================================================== # LICENSE FOR CONTENT PROCEDURALLY GENERATED USING THIS SOFTWARE # ============================================================== # All content procedurally generated by this software and its permutations # are licensed under Creative Commons Attribution By 3.0: # https://creativecommons.org/licenses/by/3.0/ #!/usr/bin/python import bpy from bpy import * import mathutils import math from mathutils import * from math import * class Formula: J = 18 #joint number def __init__(self, P, A, move, part, helicity, start, end): global interval global frame_start global frame_end self.interval = interval self.frame_start = frame_start self.frame_end = frame_end # pivot factor self.P = P # scale factor self.A = A # name self.move = move # element self.part = part # element helicity self.helicity = helicity self.start = start self.end = end bpy.ops.object.mode_set(mode='OBJECT') # Create armature and object self.amt = bpy.data.armatures.new(move + '.' + part + '.' + helicity + '.data') self.rig = bpy.data.objects.new(move + '.' + part + '.' + helicity, self.amt) # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n], δ(n) -> o[n] self.a = [0 for i in range(4)] # Joint α self.b = [0 for i in range(self.J)] # Joint β self.y = [0 for i in range(self.J)] # Joint γ self.o = [0 for i in range(self.J)] # Joint δ # Configuration Movement self.configMovement(self.P, self.A, self.J, self.a, self.b, self.y, self.o) # Construction Movement self.constructMovement(self.J, self.helicity, self.amt, self.rig, self.a, self.b, self.y, self.o) # Construction Rotation self.configRotation(self.rig, self.interval, self.frame_start, self.frame_end, self.start, self.end) # Configuration Linkage self.configLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Construction Linkage self.constructLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) def configMovement(self, P, A, J, a, b, y, o): mat_a = [0 for i in range(4)] # Joint α matrix mat_b = [0 for i in range(self.J)] # Joint β matrix mat_y = [0 for i in range(self.J)] # Joint γ matrix mat_o = [0 for i in range(self.J)] # Joint δ matrix a[1] = mathutils.Euler((P, A, 0), 'XYZ') print ("a1 =", a[1]) a[2] = mathutils.Euler((A, -A, 0), 'XYZ') print ("a2 =", a[2]) b[1] = mathutils.Euler((-A, A, 0), 'XYZ') print ("b1 =", b[1]) o[1] = mathutils.Euler((A, A, 0), 'XYZ') print ("o1 =", o[1]) B = A * 2 * sqrt (2) C = B + (B * sqrt (2)) D = C * sqrt (2) E = C + D a[0] = mathutils.Euler((-A - E + (D * 0.5), -A - (D * 0.5), 0), 'XYZ') print ("a0 =", a[0]) mat_a[0] = Matrix.Translation(a[0]) a[3] = mathutils.Euler((0-a[0].x, 0-a[0].y, 0-a[0].z), 'XYZ') print ("a3 =", a[3]) mat_a[3] = Matrix.Translation(a[3]) y[1] = mathutils.Euler((-A, -A, 0), 'XYZ') print ("y1 =", y[1]) mat_y[1] = Matrix.Translation(y[1]) ### pattern A b[2] = mathutils.Euler((a[0].x + E + (A * 2), a[0].y + (A * 2), 0), 'XYZ') print ("b2 =", b[2]) mat_b[2] = Matrix.Translation(b[2]) b[3] = mathutils.Euler((a[0].x + E - (D * 0.5), a[0].y - (A * 2), 0), 'XYZ') print ("b3 =", b[3]) mat_b[3] = Matrix.Translation(b[3]) y[2] = mathutils.Euler((a[0].x + E, a[0].y, 0), 'XYZ') print ("y2 =", y[2]) mat_y[2] = Matrix.Translation(y[2]) y[3] = mathutils.Euler((a[0].x + E - (D * 0.5), a[0].y - (D * 0.5), 0), 'XYZ') print ("y3 =", y[3]) mat_y[3] = Matrix.Translation(y[3]) o[2] = mathutils.Euler((a[0].x + E + (A * 2), a[0].y - (A * 2), 0), 'XYZ') print ("o2 =", o[2]) mat_o[2] = Matrix.Translation(o[2]) o[3] = mathutils.Euler((a[0].x + E - (D * 0.5) - (A * 2), a[0].y - (D * 0.5) - (A * 2), 0), 'XYZ') print ("o3 =", o[3]) mat_o[3] = Matrix.Translation(o[3]) ### pattern A end org_rot_mat = Matrix.Rotation(math.radians(0), 4, 'Z') # define the rotation rot_mat = Matrix.Rotation(math.radians(-45), 4, 'Z') for j in range(2, J - 2): mat_y[j + 2] = mat_a[0] * org_rot_mat * rot_mat * mat_a[3] * mat_y[j] # obj.matrix_world = mat_y[j + 2] # extract components back out of the matrix loc, rot, sca = mat_y[j + 2].decompose() y[j + 2] = mathutils.Euler(loc, 'XYZ') print("y"+str(j + 2)+" = ", y[j + 2], rot, sca) mat_b[j + 2] = mat_a[0] * org_rot_mat * rot_mat * mat_a[3] * mat_b[j] # obj.matrix_world = mat_b[j + 2] # extract components back out of the matrix loc, rot, sca = mat_b[j + 2].decompose() b[j + 2] = mathutils.Euler(loc, 'XYZ') print("b"+str(j + 2)+" = ", b[j + 2], rot, sca) mat_o[j + 2] = mat_a[0] * org_rot_mat * rot_mat * mat_a[3] * mat_o[j] # obj.matrix_world = mat_o[j + 2] # extract components back out of the matrix loc, rot, sca = mat_o[j + 2].decompose() o[j + 2] = mathutils.Euler(loc, 'XYZ') print("o"+str(j + 2)+" = ", o[j + 2], rot, sca) def constructMovement(self, J, helicity, amt, rig, a, b, y, o): # Linkages aa = [[0 for i in range(4)] for j in range(4)] # Link α(i) - α(j) ab = [[0 for i in range(4)] for j in range(4)] # Link α(i) - β(j) ya = [[0 for i in range(4)] for j in range(4)] # Link γ(i) - α(j) ao = [[0 for i in range(4)] for j in range(4)] # Link α(i) - δ(j) ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - γ(j) by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) rig.location = mathutils.Euler((0.0, 0.0, 0.0), 'XYZ') rig.show_x_ray = True amt.show_names = True amt.draw_type = 'STICK' # amt.draw_type = 'BBONE' # Link object to scene scn = bpy.context.scene scn.objects.link(rig) scn.objects.active = rig scn.update() # Edit bpy.ops.object.editmode_toggle() # Construction Linkage aa[2][1] = amt.edit_bones.new('a2a1') aa[2][1].head = a[2] aa[2][1].tail = a[1] ab[1][1] = amt.edit_bones.new('a1b1') ab[1][1].head = a[1] ab[1][1].tail = b[1] ab[1][1].parent = aa[2][1] by[1][1] = amt.edit_bones.new('b1y1') by[1][1].head = b[1] by[1][1].tail = y[1] by[1][1].parent = ab[1][1] by[1][1].use_inherit_rotation = False ya[1][2] = amt.edit_bones.new('y1a2') ya[1][2].head = y[1] ya[1][2].tail = a[2] ya[1][2].parent = by[1][1] ao[2][1] = amt.edit_bones.new('a2o1') ao[2][1].head = a[2] ao[2][1].tail = o[1] ao[2][1].parent = ya[1][2] ob[1][2] = amt.edit_bones.new('o1b2') ob[1][2].head = o[1] ob[1][2].tail = b[2] ob[1][2].parent = ao[2][1] yy[1][2] = amt.edit_bones.new('y1y2') yy[1][2].head = y[1] yy[1][2].tail = y[2] yy[1][2].parent = by[1][1] for j in range(2, J - 1): by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j)) by[j][j].head = b[j] by[j][j].tail = y[j] by[j][j].parent = ob[j-1][j] yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j)) yo[j][j].head = y[j] yo[j][j].tail = o[j] yo[j][j].parent = yy[j-1][j] yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1)) yy[j][j+1].head = y[j] yy[j][j+1].tail = y[j+1] yy[j][j+1].parent = by[j][j] if j < (J-2): ob[j][j+1] = amt.edit_bones.new('o'+ str(j) + 'b'+ str(j+1)) ob[j][j+1].head = o[j] ob[j][j+1].tail = b[j+1] ob[j][j+1].parent = yo[j][j] # all bones select #bpy.ops.pose.select_all(action="SELECT") for b in amt.edit_bones: b.select = True if helicity == 'right': bpy.ops.armature.calculate_roll(type='GLOBAL_POS_Z') else: bpy.ops.armature.calculate_roll(type='GLOBAL_NEG_Z') # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint cns = rig.pose.bones['y1a2'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'a2a1' cns.chain_count = 2 cns.use_stretch = False for j in range(2, J - 1): cns = rig.pose.bones['b'+str(j) +'y'+str(j)].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False bpy.ops.object.mode_set(mode='OBJECT') def configRotation(self, rig, interval, frame_start, frame_end, start, end): # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # key insert keyframe_insert_interval = interval rig.pose.bones["a1b1"].rotation_mode = 'XYZ' rig.pose.bones["a1b1"].rotation_euler.z = math.radians(start) rig.pose.bones["a1b1"].keyframe_insert(data_path="rotation_euler",frame=frame_start) rig.pose.bones["a1b1"].rotation_mode = 'XYZ' rig.pose.bones["a1b1"].rotation_euler.z = math.radians(end) rig.pose.bones["a1b1"].keyframe_insert(data_path="rotation_euler",frame=frame_end) for curve in bpy.context.active_object.animation_data.action.fcurves: cycles = curve.modifiers.new(type='CYCLES') cycles.mode_before = 'REPEAT_OFFSET' cycles.mode_after = 'REPEAT_OFFSET' for keyframe in curve.keyframe_points: keyframe.interpolation = 'LINEAR' bpy.ops.object.mode_set(mode='OBJECT') def configLink(self, A, J, helicity, rig, move, part): bpy.ops.object.mode_set(mode='OBJECT') Q = (0.18648+0.146446)*A # Z = -Q*2 Z = 0.0 obj_joint = bpy.data.objects["joint.gold.000"].copy() obj_joint.location = (0.0, 0.0, -Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2a1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.silver.001"].copy() obj_joint.location = (0.0, 0.0, +Q+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y1a2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, +Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2o1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a1b1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for n in range(1, J - 1): if n <= (J-2): # Pattern 2 of by obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Pattern 2 of yy obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-3): # Pattern 1 of ob obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2 + Q*(n % 2)*6 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Pattern 2 of yo obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n+1)+"o"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for ob in context.scene.objects: if "mesh" in ob.name: ob.select = True bpy.ops.object.make_single_user(type='SELECTED_OBJECTS', object=True, obdata=True, material=True, texture=True, animation=True) bpy.context.scene.cursor_location = (0.0, 0.0, 0.0) bpy.ops.object.origin_set(type='ORIGIN_CURSOR') def constructLink(self, A, J, helicity, rig, move, part): # Move and rotate the tip bone in pose mode bpy.context.scene.objects.active = rig Y = 1.1838*A for n in rig.pose.bones: if n.name != "o" + str(J-2) + "b" + str(J-1): # we can get the object from the pose bone obj = n.id_data matrix_final = obj.matrix_world * n.matrix # Create armature and object lnk = bpy.data.armatures.new(n.name[:len(n.name)]+'.data.' + helicity) lnk_rig = bpy.data.objects.new(n.name[:len(n.name)]+'.link.' + helicity, lnk) lnk_rig.location = mathutils.Euler((0.0, 0.0, 0.0), 'XYZ') # rig.show_x_ray = True lnk.show_names = True lnk.draw_type = 'STICK' # Link object to scene scn = bpy.context.scene scn.objects.link(lnk_rig) scn.objects.active = lnk_rig scn.update() # Create bones # mode='EDIT' bpy.ops.object.editmode_toggle() link = lnk.edit_bones.new(n.name[:len(n.name)]) link.head = (0, 0, 0) link.tail = (0, Y, 0) link_head = lnk.edit_bones.new('head') link_head.head = (0, 0, 0.1) link_head.tail = (0, 0, 0) link_head.parent = link link_head.use_inherit_scale = False link_tail = lnk.edit_bones.new('tail') link_tail.head = (0, Y, 0) link_tail.tail = (0, Y, -0.1) link_tail.parent = link link_tail.use_inherit_scale = False bpy.ops.object.mode_set(mode='OBJECT') ob = bpy.data.objects[n.name[:len(n.name)]+'.mesh.' + move + '.' + part +'.' + helicity] ob.location = mathutils.Euler((0, 0, 0), 'XYZ') # Give mesh object an armature modifier, using vertex groups but # not envelopes mod = ob.modifiers.new('MyRigModif', 'ARMATURE') mod.object = lnk_rig mod.use_bone_envelopes = False mod.use_vertex_groups = True # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # Copy rotation constraints Base -> Tip pBase = lnk_rig.pose.bones[n.name[:len(n.name)]] cns = pBase.constraints.new('COPY_LOCATION') cns.name = 'Copy_Location' cns.target = rig cns.subtarget = n.name[:len(n.name)] cns.owner_space = 'WORLD' cns.target_space = 'WORLD' # Copy rotation constraints Base -> Tip pBase = lnk_rig.pose.bones[n.name[:len(n.name)]] cns = pBase.constraints.new('COPY_ROTATION') cns.name = 'Copy_Rotation' cns.target = rig cns.subtarget = n.name[:len(n.name)] cns.owner_space = 'WORLD' cns.target_space = 'WORLD' # StretchTo constraint Mid -> Tip with influence 0.5 cns1 = pBase.constraints.new('STRETCH_TO') cns1.name = 'Stretch' cns1.target = rig cns1.subtarget = n.name[:len(n.name)] cns1.head_tail = 1 cns1.rest_length = Y cns1.influence = 1 cns1.keep_axis = 'PLANE_Z' cns1.volume = 'NO_VOLUME' bpy.ops.object.mode_set(mode='OBJECT') class Pitch(Formula): J = 2 #joint number # Overriding def __init__(self, P, A, move, part, helicity, start, end, body_loc, body_rot, body): global interval global frame_start global frame_end self.interval = interval self.frame_start = frame_start self.frame_end = frame_end # pivot factor self.P = P # scale factor self.A = A # name self.move = move # element self.part = part # element helicity self.helicity = helicity self.start = start self.end = end # body self.body_loc = body_loc self.body_rot = body_rot self.body = body bpy.ops.object.mode_set(mode='OBJECT') # Create armature and object self.amt = bpy.data.armatures.new(move + '.' + part + '.' + helicity + '.data') self.rig = bpy.data.objects.new(move + '.' + part + '.' + helicity, self.amt) # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n] self.a = [0 for i in range(4)] # Joint α self.b = [0 for i in range(self.J)] # Joint β self.y = [0 for i in range(self.J)] # Joint γ # Configuration Movement self.configMovement(self.P, self.A, self.J, self.a, self.b, self.y) # Construction Movement self.constructMovement(self.J, self.helicity, self.amt, self.rig, self.a, self.b, self.y) # Parent body to pitch self.setParent(self.helicity, self.move, self.rig, self.body_loc, self.body_rot, self.body) # Construction Rotation self.configRotation(self.rig, self.interval, self.frame_start, self.frame_end, self.start, self.end) # Configuration Linkage self.configLink(self.A*0.3, self.J, self.helicity, self.rig, self.move, self.part) # Construction Linkage self.constructLink(self.A*0.3, self.J, self.helicity, self.rig, self.move, self.part) def configMovement(self, P, A, J, a, b, y): mat_a = [0 for i in range(4)] # Joint α matrix mat_b = [0 for i in range(self.J)] # Joint β matrix mat_y = [0 for i in range(self.J)] # Joint γ matrix a[1] = mathutils.Euler((P, A, 0), 'XYZ') print ("a1 =", a[1]) a[2] = mathutils.Euler((A, -A, 0), 'XYZ') print ("a2 =", a[2]) b[1] = mathutils.Euler((-A, A, 0), 'XYZ') print ("b1 =", b[1]) y[1] = mathutils.Euler((-A, -A, 0), 'XYZ') print ("y1 =", y[1]) mat_y[1] = Matrix.Translation(y[1]) def constructMovement(self, J, helicity, amt, rig, a, b, y): # Linkages aa = [[0 for i in range(4)] for j in range(4)] # Link α(i) - α(j) ab = [[0 for i in range(4)] for j in range(4)] # Link α(i) - β(j) ya = [[0 for i in range(4)] for j in range(4)] # Link γ(i) - α(j) by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) rig.location = mathutils.Euler((0.0, 0.0, 0.0), 'XYZ') rig.show_x_ray = True amt.show_names = True amt.draw_type = 'STICK' # amt.draw_type = 'BBONE' # Link object to scene scn = bpy.context.scene scn.objects.link(rig) scn.objects.active = rig scn.update() # Edit bpy.ops.object.editmode_toggle() # Construction Linkage aa[2][1] = amt.edit_bones.new('a2a1') aa[2][1].head = a[2] aa[2][1].tail = a[1] ab[1][1] = amt.edit_bones.new('a1b1') ab[1][1].head = a[1] ab[1][1].tail = b[1] ab[1][1].parent = aa[2][1] by[1][1] = amt.edit_bones.new('b1y1') by[1][1].head = b[1] by[1][1].tail = y[1] by[1][1].parent = ab[1][1] by[1][1].use_inherit_rotation = False ya[1][2] = amt.edit_bones.new('y1a2') ya[1][2].head = y[1] ya[1][2].tail = a[2] ya[1][2].parent = by[1][1] # all bones select #bpy.ops.pose.select_all(action="SELECT") for b in amt.edit_bones: b.select = True if helicity == 'right': bpy.ops.armature.calculate_roll(type='GLOBAL_POS_Z') else: bpy.ops.armature.calculate_roll(type='GLOBAL_NEG_Z') # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint cns = rig.pose.bones['y1a2'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'a2a1' cns.chain_count = 2 cns.use_stretch = False bpy.ops.object.mode_set(mode='OBJECT') def configLink(self, A, J, helicity, rig, move, part): bpy.ops.object.mode_set(mode='OBJECT') Q = (0.18648+0.146446)*A # Z = -Q*2 Z = 0.0 obj_joint = bpy.data.objects["joint.gold.000"].copy() obj_joint.location = (0.0, 0.0, -Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2a1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.silver.A"].copy() obj_joint.location = (0.0, 0.0, +Q+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y1a2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a1b1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) n = 1 obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for ob in context.scene.objects: if "mesh" in ob.name: ob.select = True bpy.ops.object.make_single_user(type='SELECTED_OBJECTS', object=True, obdata=True, material=True, texture=True, animation=True) bpy.context.scene.cursor_location = (0.0, 0.0, 0.0) bpy.ops.object.origin_set(type='ORIGIN_CURSOR') # Parent set fingers to arm def setParent(self, helicity, move, rig, body_loc, body_rot, body): # body position body.rig.location = body_loc body.rig.rotation_euler = body_rot # body to pitch bpy.ops.object.mode_set(mode='OBJECT') bpy.context.scene.frame_current = 0 bpy.ops.object.select_all(action='DESELECT') rig.select = True bpy.context.scene.objects.active = rig bpy.ops.object.editmode_toggle() parent_bone = 'b1y1' # choose the bone name which you want to be the parent rig.data.edit_bones.active = rig.data.edit_bones[parent_bone] bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.select_all(action='DESELECT') #deselect all objects body.rig.select = True rig.select = True bpy.context.scene.objects.active = rig #the active object will be the parent of all selected object bpy.ops.object.parent_set(type='BONE', keep_transform=True) bpy.ops.object.select_all(action='DESELECT') #deselect all objects # end class Body(Formula): J = 7 #joint number # Overriding def __init__(self, P, A, move, part, helicity, start, end, arm_left_loc, arm_left_rot, arm_left, scale_frame_start, scale_frame_mid, scale_frame_end, start_value, mid_value, end_value): global interval global frame_start global frame_end self.interval = interval self.frame_start = frame_start self.frame_end = frame_end self.scale_frame_start = scale_frame_start self.scale_frame_mid = scale_frame_mid self.scale_frame_end = scale_frame_end self.start_value = start_value self.mid_value = mid_value self.end_value = end_value # pivot factor self.P = P # scale factor self.A = A # name self.move = move # element self.part = part # element helicity self.helicity = helicity self.start = start self.end = end bpy.ops.object.mode_set(mode='OBJECT') # Create armature and object self.amt = bpy.data.armatures.new(move + '.' + part + '.' + helicity + '.data') self.rig = bpy.data.objects.new(move + '.' + part + '.' + helicity, self.amt) self.arm_left_loc = arm_left_loc self.arm_left_rot = arm_left_rot self.arm_left = arm_left # Centroid # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n], δ(n) -> o[n] self.a = [0 for i in range(3)] # Joint α self.b = [0 for i in range(2)] # Joint β self.y = [0 for i in range(2)] # Joint γ self.o = [0 for i in range(2)] # Joint δ # Upper body # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n], δ(n) -> o[n] self.upper_b = [0 for i in range(self.J)] # Joint β self.upper_y = [0 for i in range(self.J)] # Joint γ self.upper_o = [0 for i in range(self.J)] # Joint δ # Joints ω(n) -> w[n] self.upper_w = [0 for i in range(self.J)] # Joint ω # Left shoulder # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n], δ(n) -> o[n] self.upper_left_b = [0 for i in range(self.J)] # Joint β self.upper_left_y = [0 for i in range(self.J)] # Joint γ self.upper_left_o = [0 for i in range(self.J)] # Joint δ self.upper_left_w = [0 for i in range(self.J)] # Joint ω matrix # Right shoulder # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n], δ(n) -> o[n] self.upper_right_b = [0 for i in range(self.J)] # Joint β self.upper_right_y = [0 for i in range(self.J+1)] # Joint γ self.upper_right_o = [0 for i in range(self.J)] # Joint δ # Right arm self.upper_right_w = [0 for i in range(self.J+2)] # Joint ω matrix # y = 8 self.gimbal_upper_right_y = [0 for i in range(self.J+2)] # Joint γ # w = 8 self.gimbal_upper_right_w = [0 for i in range(self.J-5)] # Joint ω matrix # Lower body # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n], δ(n) -> o[n] self.lower_b = [0 for i in range(self.J)] # Joint β self.lower_y = [0 for i in range(self.J)] # Joint γ self.lower_o = [0 for i in range(self.J)] # Joint δ # Joints ω(n) -> w[n] self.lower_w = [0 for i in range(self.J)] # Joint ω # Left leg # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n], δ(n) -> o[n] self.lower_left_b = [0 for i in range(self.J)] # Joint β self.lower_left_y = [0 for i in range(self.J)] # Joint γ self.lower_left_o = [0 for i in range(self.J)] # Joint δ # Right leg # Joints α(n) -> a[n], β(n) -> b[n], γ(n) -> y[n], δ(n) -> o[n] self.lower_right_b = [0 for i in range(self.J)] # Joint β self.lower_right_y = [0 for i in range(self.J)] # Joint γ self.lower_right_o = [0 for i in range(self.J)] # Joint δ # gimbal self.gimbal_lower_left_o = [0 for i in range(self.J)] # Joint δ self.gimbal_lower_left_b = [0 for i in range(self.J)] # Joint β self.gimbal_lower_left_y = [0 for i in range(self.J)] # Joint γ self.gimbal_lower_right_o = [0 for i in range(self.J)] # Joint δ self.gimbal_lower_right_b = [0 for i in range(self.J)] # Joint β self.gimbal_lower_right_y = [0 for i in range(self.J)] # Joint γ # Configuration Movement self.configMovement(self.P, self.A, self.J, self.a, self.b, self.y, self.o, self.upper_b, self.upper_y, self.upper_o, self.upper_w, self.upper_left_b, self.upper_left_y, self.upper_left_o, self.upper_right_b, self.upper_right_y, self.upper_right_o, self.upper_right_w, self.gimbal_upper_right_y, self.gimbal_upper_right_w, self.lower_b, self.lower_y, self.lower_o, self.lower_w, self.lower_left_b, self.lower_left_y, self.lower_left_o, self.lower_right_b, self.lower_right_y, self.lower_right_o, self.gimbal_lower_left_o, self.gimbal_lower_left_b, self.gimbal_lower_left_y, self.gimbal_lower_right_o, self.gimbal_lower_right_b, self.gimbal_lower_right_y) # Construction Movement self.constructMovement(self.J, self.amt, self.rig, self.a, self.b, self.y, self.o, self.upper_b, self.upper_y, self.upper_o, self.upper_w, self.upper_left_b, self.upper_left_y, self.upper_left_o, self.upper_right_b, self.upper_right_y, self.upper_right_o, self.upper_right_w, self.gimbal_upper_right_y, self.gimbal_upper_right_w, self.lower_b, self.lower_y, self.lower_o, self.lower_w, self.lower_left_b, self.lower_left_y, self.lower_left_o, self.lower_right_b, self.lower_right_y, self.lower_right_o, self.gimbal_lower_left_o, self.gimbal_lower_left_b, self.gimbal_lower_left_y, self.gimbal_lower_right_o, self.gimbal_lower_right_b, self.gimbal_lower_right_y) # Parent set arms to body self.setParent(self.helicity, self.move, self.rig, self.arm_left_loc, self.arm_left_rot, self.arm_left) # Configuration Rotation self.configRotation(self.rig, self.interval, self.frame_start, self.frame_end, self.start, self.end) self.configLink(self.A*0.7, self.J, self.helicity, self.rig, self.move, self.part) # Construction Linkage self.constructLink(self.A*0.7, self.J, self.helicity, self.rig, self.move, self.part) # Configuration Scale # w3w4.upper.right scale setting self.configScale(self.rig, self.interval, self.scale_frame_start, self.scale_frame_mid, self.scale_frame_end, self.start_value, self.mid_value, self.end_value) # Overriding Configuration Movement def configMovement(self, P, A, J, a, b, y, o, upper_b, upper_y, upper_o, upper_w, upper_left_b, upper_left_y, upper_left_o, upper_right_b, upper_right_y, upper_right_o, upper_right_w, gimbal_upper_right_y, gimbal_upper_right_w, lower_b, lower_y, lower_o, lower_w, lower_left_b, lower_left_y, lower_left_o, lower_right_b, lower_right_y, lower_right_o, gimbal_lower_left_o, gimbal_lower_left_b, gimbal_lower_left_y, gimbal_lower_right_o, gimbal_lower_right_b, gimbal_lower_right_y): a[1] = mathutils.Euler((P, A, 0), 'XYZ') print ("a1 =", a[1]) a[2] = mathutils.Euler((A, -A, 0), 'XYZ') print ("a2 =", a[2]) b[1] = mathutils.Euler((-A, A, 0), 'XYZ') print ("b1 =", b[1]) o[1] = mathutils.Euler((A, A, 0), 'XYZ') print ("o1 =", o[1]) y[1] = mathutils.Euler((-A, -A, 0), 'XYZ') print ("y1 =", y[1]) lower_b[2] = mathutils.Euler((1.35031, -1.93408, 0), 'XYZ') print ("b2.lower =", lower_b[2]) lower_o[2] = mathutils.Euler((-1.18173, -3.18999, 0), 'XYZ') print ("o2.lower =", lower_o[2]) lower_y[2] = mathutils.Euler((-0.761987, -3.11885, 0), 'XYZ') print ("y2.lower =", lower_y[2]) lower_y[3] = mathutils.Euler((-0.425565, -8.51839, 0), 'XYZ') print ("y3.lower =", lower_y[3]) lower_w[1] = mathutils.Euler((-0.425565, -8.51839, 2.50277), 'XYZ') print ("w1.lower =", lower_w[1]) lower_left_o[3] = mathutils.Euler((1.76787, -8.43042, 1.81914), 'XYZ') print ("o3.lower.left =", lower_left_o[3]) lower_left_b[4] = mathutils.Euler((1.76787, -19.2299, 5.0545), 'XYZ') print ("b4.lower.left =", lower_left_b[4]) lower_left_y[4] = mathutils.Euler((1.76787, -27.4568, 2.13126), 'XYZ') print ("y4.lower.left =", lower_left_y[4]) lower_left_y[5] = mathutils.Euler((1.76787, -29.0398, 4.39707), 'XYZ') print ("y5.lower.left =", lower_left_y[5]) gimbal_lower_left_o[3] = mathutils.Euler((1.87361, -8.51839, 2.50277), 'XYZ') print ("o3.gimbal.lower.left =", gimbal_lower_left_o[3]) gimbal_lower_left_b[4] = mathutils.Euler((1.87361, -19.7847, 2.50277), 'XYZ') print ("b4.gimbal.lower.left =", gimbal_lower_left_b[4]) gimbal_lower_left_o[4] = mathutils.Euler((1.77335, -8.4289, 1.81649), 'XYZ') print ("o4.gimbal.lower.left =", gimbal_lower_left_o[4]) gimbal_lower_left_b[5] = mathutils.Euler((5.14961, -19.1839, 1.81649), 'XYZ') print ("b5.gimbal.lower.left =", gimbal_lower_left_b[5]) gimbal_lower_left_y[5] = mathutils.Euler((2.33473, -27.4476, 1.81649), 'XYZ') print ("y5.gimbal.lower.left =", gimbal_lower_left_y[5]) gimbal_lower_left_y[6] = mathutils.Euler((2.91482, -27.429, 1.81649), 'XYZ') print ("y6.gimbal.lower.left =", gimbal_lower_left_y[6]) lower_right_o[3] = mathutils.Euler((-2.89871, -8.60219, 1.75624), 'XYZ') print ("o3.lower.right =", lower_right_o[3]) lower_right_b[4] = mathutils.Euler((-2.89871, -19.3735, 5.04104), 'XYZ') print ("b4.lower.right =", lower_right_b[4]) lower_right_y[4] = mathutils.Euler((-2.89871, -27.5528, 1.98242), 'XYZ') print ("y4.lower.right =", lower_right_y[4]) lower_right_y[5] = mathutils.Euler((-2.89871, -29.1751, 4.22026), 'XYZ') print ("y5.lower.right =", lower_right_y[5]) gimbal_lower_right_o[3] = mathutils.Euler((-3.01028, -8.51839, 2.50277), 'XYZ') print ("o3.gimbal.lower.right =", gimbal_lower_right_o[3]) gimbal_lower_right_b[4] = mathutils.Euler((-3.01028, -19.7726, 2.50277), 'XYZ') print ("b4.gimbal.lower.right =", gimbal_lower_right_b[4]) gimbal_lower_right_o[4] = mathutils.Euler((-2.89871, -8.60219, 1.75624), 'XYZ') print ("o4.gimbal.lower.right =", gimbal_lower_right_o[4]) gimbal_lower_right_b[5] = mathutils.Euler((-6.82237, -19.1528, 1.75624), 'XYZ') print ("b5.gimbal.lower.right =", gimbal_lower_right_b[5]) gimbal_lower_right_y[5] = mathutils.Euler((-4.35508, -27.5285, 1.75624), 'XYZ') print ("y5.gimbal.lower.right =", gimbal_lower_right_y[5]) gimbal_lower_right_y[6] = mathutils.Euler((-4.88072, -27.5137, 1.75624), 'XYZ') print ("y6.gimbal.lower.right =", gimbal_lower_right_y[6]) upper_b[2] = mathutils.Euler((0.510293, 5.22315, 0), 'XYZ') print ("b2.upper =", upper_b[2]) upper_o[2] = mathutils.Euler((-1.65578, 4.62023, 0), 'XYZ') print ("o2.upper =", upper_o[2]) upper_y[2] = mathutils.Euler((-1.56747, 4.00093, 0), 'XYZ') print ("y2.upper =", upper_y[2]) upper_w[3] = mathutils.Euler((-1.56747, 4.00093, 9.05079), 'XYZ') print ("w3.upper =", upper_w[3]) upper_w[4] = mathutils.Euler((-1.65459, 3.99465, 9.05079), 'XYZ') print ("w4.upper =", upper_w[4]) upper_w[5] = mathutils.Euler((-1.65459, 3.99465, 1.61675), 'XYZ') print ("w5.upper =", upper_w[5]) upper_y[3] = mathutils.Euler((-1.65459, 4.6204, 0), 'XYZ') print ("y3.upper.left =", upper_y[3]) upper_w[2] = mathutils.Euler((-1.65459, 4.6204, 9.05079), 'XYZ') print ("w2.upper =", upper_w[2]) upper_o[3] = mathutils.Euler((-2.07892, 9.71201, 0), 'XYZ') print ("o3.upper =", upper_o[3]) upper_w[1] = mathutils.Euler((-2.07852, 9.71278, 0.712845), 'XYZ') print ("w1.upper =", upper_w[1]) upper_b[4] = mathutils.Euler((-2.07852, 10.4327, 0.669667), 'XYZ') print ("o3.upper =", upper_o[3]) upper_left_y[3] = mathutils.Euler((-1.65578, 4.62023, 0), 'XYZ') print ("y3.upper.left =", upper_left_y[3]) upper_left_b[3] = mathutils.Euler((0.349662, 4.8056, 0), 'XYZ') print ("b3.upper.left =", upper_left_b[3]) upper_left_y[2] = mathutils.Euler((-1.56747, 3.99717, 0), 'XYZ') print ("y2.upper.left =", upper_left_y[2]) upper_left_o[2] = mathutils.Euler((0.589122, 4.23164, 0), 'XYZ') print ("o2.upper.left =", upper_left_o[2]) upper_right_y[3] = mathutils.Euler((-1.65578, 4.62023, 0), 'XYZ') print ("y3.upper.right =", upper_right_y[3]) upper_right_b[3] = mathutils.Euler((-5.25711, 3.84599, 0), 'XYZ') print ("b3.upper.right =", upper_right_b[3]) upper_right_y[2] = mathutils.Euler((-1.56747, 3.99717, 0), 'XYZ') print ("y2.upper.right =", upper_right_y[2]) upper_right_o[2] = mathutils.Euler((-5.17039, 3.22555, 0), 'XYZ') print ("o2.upper.right =", upper_right_o[2]) # Right arm upper_right_y[4] = mathutils.Euler((-6.02955, 2.93315, 0.64604), 'XYZ') print ("y4.upper.right =", upper_right_y[4]) upper_right_y[5] = mathutils.Euler((-6.02955, -3.75035, 0.64604), 'XYZ') print ("y5.upper.right =", upper_right_y[5]) upper_right_y[6] = mathutils.Euler((-6.02956, -8.9087, 2.52353), 'XYZ') print ("y6.upper.right =", upper_right_y[6]) upper_right_y[7] = mathutils.Euler((-6.02956, -8.9087, 4.09698), 'XYZ') print ("y7.upper.right =", upper_right_y[7]) upper_right_w[1] = mathutils.Euler((-6.02955, -9.75705, 4.09698), 'XYZ') print ("w1.upper.right =", upper_right_w[1]) upper_right_w[2] = mathutils.Euler((-6.02955, -9.75705, 4.0775), 'XYZ') print ("w2.upper.right =", upper_right_w[2]) gimbal_upper_right_y[8] = mathutils.Euler((-7.603, -8.9087, 2.52353), 'XYZ') print ("y8.upper.gimbal.right =", gimbal_upper_right_y[8]) gimbal_upper_right_w[1] = mathutils.Euler((-7.603, -9.75705, 2.52353), 'XYZ') print ("w1.gimbal.upper.right =", gimbal_upper_right_w[1]) upper_right_w[3] = mathutils.Euler((7.39752, -3.75035, 2.21949), 'XYZ') print ("w3.upper.right =", upper_right_w[3]) upper_right_w[4] = mathutils.Euler((-4.03109, -3.75035, 2.21949), 'XYZ') print ("w4.upper.right =", upper_right_w[4]) upper_right_w[5] = mathutils.Euler((-4.03109, -3.75035, 0.64604), 'XYZ') print ("w5.upper.right =", upper_right_w[5]) upper_right_w[6] = mathutils.Euler((-4.03109, -4.22665, 0.64604), 'XYZ') print ("w6.upper.right =", upper_right_w[6]) gimbal_upper_right_y[4] = mathutils.Euler((-6.61626, 3.84599, 0), 'XYZ') print ("y4.gimbal.upper.right =", gimbal_upper_right_y[4]) gimbal_upper_right_y[5] = mathutils.Euler((-6.61626, -2.8406, 0), 'XYZ') print ("y5.gimbal.upper.right =", gimbal_upper_right_y[5]) gimbal_upper_right_y[6] = mathutils.Euler((-11.5189, -3.75035, 0.64604), 'XYZ') print ("y6.gimbal.upper.right =", gimbal_upper_right_y[6]) gimbal_upper_right_y[7] = mathutils.Euler((-11.5189, -5.3238, 0.64604), 'XYZ') print ("y7.gimbal.upper.right =", gimbal_upper_right_y[7]) upper_right_w[7] = mathutils.Euler((-8.0889, -2.17378, -4.08346), 'XYZ') print ("w7.upper.right =", upper_right_w[7]) upper_right_w[8] = mathutils.Euler((-10.7061, -2.17378, -4.08346), 'XYZ') print ("w8.upper.right =", upper_right_w[8]) def constructMovement(self, J, amt, rig, a, b, y, o, upper_b, upper_y, upper_o, upper_w, upper_left_b, upper_left_y, upper_left_o, upper_right_b, upper_right_y, upper_right_o, upper_right_w, gimbal_upper_right_y, gimbal_upper_right_w, lower_b, lower_y, lower_o, lower_w, lower_left_b, lower_left_y, lower_left_o, lower_right_b, lower_right_y, lower_right_o, gimbal_lower_left_o, gimbal_lower_left_b, gimbal_lower_left_y, gimbal_lower_right_o, gimbal_lower_right_b, gimbal_lower_right_y): # Linkages aa = [[0 for i in range(3)] for j in range(3)] # Link α(i) - α(j) ab = [[0 for i in range(3)] for j in range(3)] # Link α(i) - β(j) ya = [[0 for i in range(3)] for j in range(3)] # Link γ(i) - α(j) ao = [[0 for i in range(3)] for j in range(3)] # Link α(i) - δ(j) by = [[0 for i in range(2)] for j in range(2)] # Link β(i) - γ(j) upper_ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) upper_yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - γ(j) upper_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) upper_yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) upper_ow = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) upper_ww = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) upper_left_ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) upper_left_yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - γ(j) upper_left_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) upper_left_yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) upper_right_ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) upper_right_yy = [[0 for i in range(self.J+1)] for j in range(self.J)] # Link γ(i) - γ(j) upper_right_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) upper_right_yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) # Right arm upper_right_yw = [[0 for i in range(self.J)] for j in range(self.J+1)] # Link γ(i) - ω(j) upper_right_ww = [[0 for i in range(self.J+2)] for j in range(self.J+1)] # Link ω(i) - ω(j) gimbal_upper_right_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) gimbal_upper_right_yy = [[0 for i in range(self.J+2)] for j in range(self.J)] # Link γ(i) - γ(j) gimbal_upper_right_yw = [[0 for i in range(self.J)] for j in range(self.J+2)] # Link γ(i) - ω(j) lower_ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) lower_yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - γ(j) lower_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) lower_yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) lower_yw = [[0 for i in range(2)] for j in range(self.J)] # Link γ(i) - ω(j) lower_left_ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) lower_left_yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) lower_left_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) lower_left_yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - γ(j) lower_right_ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) lower_right_yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) lower_right_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) lower_right_yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - γ(j) gimbal_lower_left_yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) gimbal_lower_left_ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) gimbal_lower_left_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) gimbal_lower_left_yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) gimbal_lower_right_yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) gimbal_lower_right_ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) gimbal_lower_right_by = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) gimbal_lower_right_yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) rig.location = mathutils.Euler((0.0, 0.0, 0.0), 'XYZ') rig.show_x_ray = True amt.show_names = True amt.draw_type = 'STICK' # amt.draw_type = 'BBONE' # Link object to scene scn = bpy.context.scene scn.objects.link(rig) scn.objects.active = rig scn.update() # Edit bpy.ops.object.editmode_toggle() j = 1 # Construction Linkage aa[j+1][j] = amt.edit_bones.new('a'+ str(j+1)+'a'+ str(j)) aa[j+1][j].head = a[j+1] aa[j+1][j].tail = a[j] # aa[j+1][j].parent = by[j][j]_body ab[j][j] = amt.edit_bones.new('a'+ str(j)+'b'+ str(j)) ab[j][j].head = a[j] ab[j][j].tail = b[j] ab[j][j].parent = aa[j+1][j] by[j][j] = amt.edit_bones.new('b'+ str(j)+'y'+ str(j)) by[j][j].head = b[j] by[j][j].tail = y[j] by[j][j].parent = ab[j][j] by[j][j].use_inherit_rotation = False ya[j][j+1] = amt.edit_bones.new('y'+ str(j)+'a'+ str(j+1)) ya[j][j+1].head = y[j] ya[j][j+1].tail = a[j+1] ya[j][j+1].parent = by[j][j] ao[j+1][j] = amt.edit_bones.new('a'+ str(j+1)+'o'+str(j)) ao[j+1][j].head = a[j+1] ao[j+1][j].tail = o[j] ao[j+1][j].parent = ya[j][j+1] lower_ob[j][j+1] = amt.edit_bones.new('o'+ str(j)+'b'+ str(j+1)+'.lower') lower_ob[j][j+1].head = o[j] lower_ob[j][j+1].tail = lower_b[j+1] lower_ob[j][j+1].parent = ao[j+1][j] lower_yy[j][j+1] = amt.edit_bones.new('y'+ str(j)+'y'+ str(j+1)+'.lower') lower_yy[j][j+1].head = y[j] lower_yy[j][j+1].tail = lower_y[j+1] lower_yy[j][j+1].parent = by[j][j] upper_ob[j][j+1] = amt.edit_bones.new('o'+ str(j)+'b'+ str(j+1)+'.upper') upper_ob[j][j+1].head = o[j] upper_ob[j][j+1].tail = upper_b[j+1] upper_ob[j][j+1].parent = ao[j+1][j] upper_yy[j][j+1] = amt.edit_bones.new('y'+ str(j)+'y'+ str(j+1)+'.upper') upper_yy[j][j+1].head = y[j] upper_yy[j][j+1].tail = upper_y[j+1] upper_yy[j][j+1].parent = by[j][j] j = 2 lower_by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j) + '.lower') lower_by[j][j].head = lower_b[j] lower_by[j][j].tail = lower_y[j] lower_by[j][j].parent = lower_ob[j-1][j] lower_yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1) + '.lower') lower_yy[j][j+1].head = lower_y[j] lower_yy[j][j+1].tail = lower_y[j+1] lower_yy[j][j+1].parent = lower_by[j][j] lower_yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j) + '.lower') lower_yo[j][j].head = lower_y[j] lower_yo[j][j].tail = lower_o[j] lower_yo[j][j].parent = lower_yy[j-1][j] upper_by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j) + '.upper') upper_by[j][j].head = upper_b[j] upper_by[j][j].tail = upper_y[j] upper_by[j][j].parent = upper_ob[j-1][j] upper_yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1) + '.upper') upper_yy[j][j+1].head = upper_y[j] upper_yy[j][j+1].tail = upper_y[j+1] upper_yy[j][j+1].parent = upper_by[j][j] # left shoulder gimbal upper_left_yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j) + '.upper.left') upper_left_yo[j][j].head = upper_y[j] upper_left_yo[j][j].tail = upper_left_o[j] upper_left_yo[j][j].parent = upper_yy[j-1][j] upper_left_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) + '.upper.left') upper_left_ob[j][j+1].head = upper_left_o[j] upper_left_ob[j][j+1].tail = upper_left_b[j+1] upper_left_ob[j][j+1].parent = upper_left_yo[j][j] # right shoulder gimbal upper_right_yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j) + '.upper.right') upper_right_yo[j][j].head = upper_y[j] upper_right_yo[j][j].tail = upper_right_o[j] upper_right_yo[j][j].parent = upper_yy[j-1][j] upper_right_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) + '.upper.right') upper_right_ob[j][j+1].head = upper_right_o[j] upper_right_ob[j][j+1].tail = upper_right_b[j+1] upper_right_ob[j][j+1].parent = upper_right_yo[j][j] j = 3 lower_yw[j][1] = amt.edit_bones.new('y'+ str(j) + 'w'+ str(1) + '.lower') lower_yw[j][1].head = lower_y[j] lower_yw[j][1].tail = lower_w[1] lower_yw[j][1].parent = lower_yy[2][j] lower_left_yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j) + '.lower.left') lower_left_yo[j][j].head = lower_w[1] lower_left_yo[j][j].tail = lower_left_o[j] lower_left_yo[j][j].parent = lower_yw[j][1] lower_left_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) + '.lower.left') lower_left_ob[j][j+1].head = lower_left_o[j] lower_left_ob[j][j+1].tail = lower_left_b[j+1] lower_left_ob[j][j+1].parent = lower_left_yo[j][j] lower_right_yo[j][j] = amt.edit_bones.new('y' + str(j) + 'o'+ str(j) +'.lower.right') lower_right_yo[j][j].head = lower_w[1] lower_right_yo[j][j].tail = lower_right_o[j] lower_right_yo[j][j].parent = lower_yw[j][1] lower_right_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) +'.lower.right') lower_right_ob[j][j+1].head = lower_right_o[j] lower_right_ob[j][j+1].tail = lower_right_b[j+1] lower_right_ob[j][j+1].parent = lower_right_yo[j][j] # gimbal gimbal_lower_left_yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j) + '.gimbal.lower.left') gimbal_lower_left_yo[j][j].head = lower_w[1] gimbal_lower_left_yo[j][j].tail = gimbal_lower_left_o[j] gimbal_lower_left_yo[j][j].parent = lower_yw[j][1] gimbal_lower_left_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) + '.gimbal.lower.left') gimbal_lower_left_ob[j][j+1].head = gimbal_lower_left_o[j] gimbal_lower_left_ob[j][j+1].tail = gimbal_lower_left_b[j+1] gimbal_lower_left_ob[j][j+1].parent = gimbal_lower_left_yo[j][j] gimbal_lower_right_yo[j][j] = amt.edit_bones.new('y' + str(j) + 'o'+ str(j) +'.gimbal.lower.right') gimbal_lower_right_yo[j][j].head = lower_w[1] gimbal_lower_right_yo[j][j].tail = gimbal_lower_right_o[j] gimbal_lower_right_yo[j][j].parent = lower_yw[j][1] gimbal_lower_right_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) +'.gimbal.lower.right') gimbal_lower_right_ob[j][j+1].head = gimbal_lower_right_o[j] gimbal_lower_right_ob[j][j+1].tail = gimbal_lower_right_b[j+1] gimbal_lower_right_ob[j][j+1].parent = gimbal_lower_right_yo[j][j] # end upper_left_by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j) + '.upper.left') upper_left_by[j][j].head = upper_left_b[j] upper_left_by[j][j].tail = upper_left_y[j] upper_left_by[j][j].parent = upper_left_ob[j-1][j] upper_right_by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j) + '.upper.right') upper_right_by[j][j].head = upper_right_b[j] upper_right_by[j][j].tail = upper_right_y[j] upper_right_by[j][j].parent = upper_right_ob[j-1][j] upper_yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j) + '.upper') upper_yo[j][j].head = upper_y[j] upper_yo[j][j].tail = upper_o[j] upper_yo[j][j].parent = upper_yy[j-1][j] upper_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) + '.upper') upper_ob[j][j+1].head = upper_w[1] upper_ob[j][j+1].tail = upper_b[j+1] upper_ob[j][j+1].parent = upper_yo[j][j] # Right arm upper_right_by[j][j+1] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j+1) + '.upper.right') upper_right_by[j][j+1].head = upper_right_b[j] upper_right_by[j][j+1].tail = upper_right_y[j+1] upper_right_by[j][j+1].parent = upper_right_ob[j-1][j] gimbal_upper_right_by[j][j+1] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j+1) + '.gimbal.upper.right') gimbal_upper_right_by[j][j+1].head = upper_right_b[j] gimbal_upper_right_by[j][j+1].tail = gimbal_upper_right_y[j+1] gimbal_upper_right_by[j][j+1].parent = upper_right_ob[j-1][j] upper_right_ww[j][j+1] = amt.edit_bones.new('w' + str(j) + 'w'+ str(j+1) + '.upper.right') upper_right_ww[j][j+1].head = upper_right_w[j] upper_right_ww[j][j+1].tail = upper_right_w[j+1] upper_right_ww[j][j+1].parent = aa[j-1][j-2] upper_right_ww[j][j+1].use_inherit_rotation = False upper_right_ww[j][j+1].use_local_location = False j = 4 lower_left_by[j][j] = amt.edit_bones.new('b' + str(j) + 'y' + str(j) +'.lower.left') lower_left_by[j][j].head = lower_left_b[j] lower_left_by[j][j].tail = lower_left_y[j] lower_left_by[j][j].parent = lower_left_ob[j-1][j] lower_left_yy[j][j+1] = amt.edit_bones.new('y' + str(j) + 'y' + str(j+1) +'.lower.left') lower_left_yy[j][j+1].head = lower_left_y[j] lower_left_yy[j][j+1].tail = lower_left_y[j+1] lower_left_yy[j][j+1].parent = lower_left_by[j][j] # gimbal o4b5 gimbal_lower_left_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) + '.gimbal.lower.left') gimbal_lower_left_ob[j][j+1].head = gimbal_lower_left_o[j] gimbal_lower_left_ob[j][j+1].tail = gimbal_lower_left_b[j+1] gimbal_lower_left_ob[j][j+1].parent = lower_left_yo[j-1][j-1] lower_right_by[j][j] = amt.edit_bones.new('b' + str(j) + 'y' + str(j) +'.lower.right') lower_right_by[j][j].head = lower_right_b[j] lower_right_by[j][j].tail = lower_right_y[j] lower_right_by[j][j].parent = lower_right_ob[j-1][j] lower_right_yy[j][j+1] = amt.edit_bones.new('y' + str(j) + 'y' + str(j+1) +'.lower.right') lower_right_yy[j][j+1].head = lower_right_y[j] lower_right_yy[j][j+1].tail = lower_right_y[j+1] lower_right_yy[j][j+1].parent = lower_right_by[j][j] # gimbal o4b5 gimbal_lower_right_ob[j][j+1] = amt.edit_bones.new('o' + str(j) + 'b'+ str(j+1) + '.gimbal.lower.right') gimbal_lower_right_ob[j][j+1].head = gimbal_lower_right_o[j] gimbal_lower_right_ob[j][j+1].tail = gimbal_lower_right_b[j+1] gimbal_lower_right_ob[j][j+1].parent = lower_right_yo[j-1][j-1] # Right arm upper_right_yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1) + '.upper.right') upper_right_yy[j][j+1].head = upper_right_y[j] upper_right_yy[j][j+1].tail = upper_right_y[j+1] upper_right_yy[j][j+1].parent = upper_right_by[j-1][j] upper_right_yy[j][j+1].use_connect = True gimbal_upper_right_yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1) + '.gimbal.upper.right') gimbal_upper_right_yy[j][j+1].head = gimbal_upper_right_y[j] gimbal_upper_right_yy[j][j+1].tail = gimbal_upper_right_y[j+1] gimbal_upper_right_yy[j][j+1].parent = gimbal_upper_right_by[j-1][j] upper_right_ww[j][j+1] = amt.edit_bones.new('w' + str(j) + 'w'+ str(j+1) + '.upper.right') upper_right_ww[j][j+1].head = upper_right_w[j] upper_right_ww[j][j+1].tail = upper_right_w[j+1] upper_right_ww[j][j+1].parent = upper_right_ww[j-1][j] j = 5 # gimbal b5y5 gimbal_lower_right_by[j][j] = amt.edit_bones.new('b' + str(j) + 'y'+ str(j) + '.gimbal.lower.right') gimbal_lower_right_by[j][j].head = gimbal_lower_right_b[j] gimbal_lower_right_by[j][j].tail = gimbal_lower_right_y[j] gimbal_lower_right_by[j][j].parent = gimbal_lower_right_ob[j-1][j] # gimbal y5y6 gimbal_lower_right_yy[j][j+1] = amt.edit_bones.new('y' + str(j) + 'y'+ str(j+1) + '.gimbal.lower.right') gimbal_lower_right_yy[j][j+1].head = gimbal_lower_right_y[j] gimbal_lower_right_yy[j][j+1].tail = gimbal_lower_right_y[j+1] gimbal_lower_right_yy[j][j+1].parent = gimbal_lower_right_by[j][j] # gimbal b5y5 gimbal_lower_left_by[j][j] = amt.edit_bones.new('b' + str(j) + 'y'+ str(j) + '.gimbal.lower.left') gimbal_lower_left_by[j][j].head = gimbal_lower_left_b[j] gimbal_lower_left_by[j][j].tail = gimbal_lower_left_y[j] gimbal_lower_left_by[j][j].parent = gimbal_lower_left_ob[j-1][j] # gimbal y5y6 gimbal_lower_left_yy[j][j+1] = amt.edit_bones.new('y' + str(j) + 'y'+ str(j+1) + '.gimbal.lower.left') gimbal_lower_left_yy[j][j+1].head = gimbal_lower_left_y[j] gimbal_lower_left_yy[j][j+1].tail = gimbal_lower_left_y[j+1] gimbal_lower_left_yy[j][j+1].parent = gimbal_lower_left_by[j][j] # Right arm upper_right_yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1) + '.upper.right') upper_right_yy[j][j+1].head = upper_right_y[j] upper_right_yy[j][j+1].tail = upper_right_y[j+1] upper_right_yy[j][j+1].parent = upper_right_yy[j-1][j] gimbal_upper_right_yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1) + '.gimbal.upper.right') gimbal_upper_right_yy[j][j+1].head = upper_right_y[j] gimbal_upper_right_yy[j][j+1].tail = gimbal_upper_right_y[j+1] gimbal_upper_right_yy[j][j+1].parent = upper_right_yy[j-1][j] upper_right_ww[j][j+1] = amt.edit_bones.new('w' + str(j) + 'w'+ str(j+1) + '.upper.right') upper_right_ww[j][j+1].head = upper_right_w[j] upper_right_ww[j][j+1].tail = upper_right_w[j+1] upper_right_ww[j][j+1].parent = upper_right_ww[j-1][j] j = 6 # Right arm upper_right_yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1) + '.upper.right') upper_right_yy[j][j+1].head = upper_right_y[j] upper_right_yy[j][j+1].tail = upper_right_y[j+1] upper_right_yy[j][j+1].parent = upper_right_yy[j-1][j] upper_right_yy[j][j+1].use_inherit_rotation = False gimbal_upper_right_yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1) + '.gimbal.upper.right') gimbal_upper_right_yy[j][j+1].head = gimbal_upper_right_y[j] gimbal_upper_right_yy[j][j+1].tail = gimbal_upper_right_y[j+1] gimbal_upper_right_yy[j][j+1].parent = gimbal_upper_right_yy[j-1][j] gimbal_upper_right_yy[j][j+2] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+2) + '.gimbal.upper.right') gimbal_upper_right_yy[j][j+2].head = upper_right_y[j] gimbal_upper_right_yy[j][j+2].tail = gimbal_upper_right_y[j+2] gimbal_upper_right_yy[j][j+2].parent = upper_right_yy[j-1][j] j = 7 # Right arm upper_right_yw[j][j-6] = amt.edit_bones.new('y'+ str(j) + 'w'+ str(j-6) + '.upper.right') upper_right_yw[j][j-6].head = upper_right_y[j] upper_right_yw[j][j-6].tail = upper_right_w[j-6] upper_right_yw[j][j-6].parent = upper_right_yy[j-1][j] gimbal_upper_right_yw[j+1][j-6] = amt.edit_bones.new('y'+ str(j+1) + 'w'+ str(j-6) + '.gimbal.upper.right') gimbal_upper_right_yw[j+1][j-6].head = gimbal_upper_right_y[j+1] gimbal_upper_right_yw[j+1][j-6].tail = gimbal_upper_right_w[j-6] gimbal_upper_right_yw[j+1][j-6].parent = gimbal_upper_right_yy[j-1][j+1] upper_right_ww[j-6][j-5] = amt.edit_bones.new('w'+ str(j-6) + 'w'+ str(j-5) + '.upper.right') upper_right_ww[j-6][j-5].head = upper_right_w[j-6] upper_right_ww[j-6][j-5].tail = upper_right_w[j-5] upper_right_ww[j-6][j-5].parent = upper_right_yw[j][j-6] upper_right_ww[j][j+1] = amt.edit_bones.new('w'+ str(j) + 'w'+ str(j+1) + '.upper.right') upper_right_ww[j][j+1].head = upper_right_w[j] upper_right_ww[j][j+1].tail = upper_right_w[j+1] upper_right_ww[j][j+1].parent = aa[j-5][j-6] upper_right_ww[j][j+1].use_inherit_rotation = False upper_right_ww[j][j+1].use_local_location = False # all bones select #bpy.ops.pose.select_all(action="SELECT") for b in amt.edit_bones: b.select = True bpy.ops.armature.calculate_roll(type='GLOBAL_NEG_Z') for b in amt.edit_bones: b.select = False amt.edit_bones["o3b4.lower.left"].select = True amt.edit_bones["b4y4.lower.left"].select = True amt.edit_bones["y4y5.lower.left"].select = True bpy.ops.armature.calculate_roll(type='GLOBAL_NEG_X') for b in amt.edit_bones: b.select = False amt.edit_bones["o3b4.lower.right"].select = True amt.edit_bones["b4y4.lower.right"].select = True amt.edit_bones["y4y5.lower.right"].select = True bpy.ops.armature.calculate_roll(type='GLOBAL_POS_X') # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint j = 1 cns = rig.pose.bones['y' +str(j) +'a' +str(j+1)].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'a'+str(j+1)+'a'+str(j) cns.chain_count = 2 cns.use_stretch = False j = 2 cns = rig.pose.bones['b'+str(j) +'y'+str(j)+'.lower'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j)+'.lower' cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['b'+str(j) +'y'+str(j)+'.upper'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j)+'.upper.left' cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False j = 3 cns = rig.pose.bones['b'+str(j) +'y'+str(j)+'.upper.left'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j)+'.upper' cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['b'+str(j) +'y'+str(j)+'.upper.right'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j)+'.upper' cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['o'+str(j) +'b'+str(j+1)+'.gimbal.lower.left'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'b'+str(j+1)+'y'+str(j+1)+'.lower.left' cns.pole_target = rig cns.pole_subtarget = 'o'+str(j)+'b'+str(j+1)+'.lower.left' cns.pole_angle = 0 cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['o'+str(j) +'b'+str(j+1)+'.gimbal.lower.right'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'b'+str(j+1)+'y'+str(j+1)+'.lower.right' cns.pole_target = rig cns.pole_subtarget = 'o'+str(j)+'b'+str(j+1)+'.lower.right' cns.pole_angle = math.radians(180) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False j = 4 cns = rig.pose.bones['b'+str(j) +'y'+str(j)+'.lower.right'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j+1)+'y'+str(j+2)+'.gimbal.lower.right' cns.pole_target = rig cns.pole_subtarget = 'b'+str(j+1)+'y'+str(j+1)+'.gimbal.lower.right' cns.pole_angle = math.radians(0) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['b'+str(j) +'y'+str(j)+'.lower.left'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j+1)+'y'+str(j+2)+'.gimbal.lower.left' cns.pole_target = rig cns.pole_subtarget = 'b'+str(j+1)+'y'+str(j+1)+'.gimbal.lower.left' cns.pole_angle = math.radians(180) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['y'+str(j) +'y'+str(j+1)+'.gimbal.upper.right'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j+1)+'y'+str(j+2)+'.upper.right' cns.pole_target = rig cns.pole_subtarget = 'y'+str(j)+'y'+str(j+1)+'.upper.right' cns.pole_angle = math.radians(180) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False j = 5 cns = rig.pose.bones['y'+str(j) +'y'+str(j+1)+'.upper.right'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'w'+str(j)+'w'+str(j+1)+'.upper.right' cns.pole_target = rig cns.pole_subtarget = 'w'+str(j+2)+'w'+str(j+3)+'.upper.right' cns.pole_angle = math.radians(90) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False j = 6 cns = rig.pose.bones['y'+str(j) +'y'+str(j+1)+'.gimbal.upper.right'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j+1)+'w'+str(j-5)+'.upper.right' cns.pole_target = rig cns.pole_subtarget = 'y'+str(j)+'y'+str(j+1)+'.upper.right' cns.pole_angle = math.radians(180) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False j = 8 cns = rig.pose.bones['y'+str(j) +'w'+str(j-7)+'.gimbal.upper.right'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'w'+str(j-7)+'w'+str(j-6)+'.upper.right' cns.pole_target = rig cns.pole_subtarget = 'y'+str(j-1)+'w'+str(j-7)+'.upper.right' cns.pole_angle = math.radians(180) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False bpy.ops.object.mode_set(mode='OBJECT') def configLink(self, A, J, helicity, rig, move, part): bpy.ops.object.mode_set(mode='OBJECT') Q = (0.18648+0.146446)*A # Z = -Q*2 Z = 0.0 n = 1 obj_joint = bpy.data.objects["joint.gold.body.E"].copy() obj_joint.location = (0.0, 0.0, -Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = 'a'+ str(n+1)+'a'+ str(n)+ ".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = 'a'+ str(n)+'b'+ str(n)+ ".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.silver.001"].copy() obj_joint.location = (0.0, 0.0, +Q+Z) obj_joint.scale = (A, A, A) obj_joint.name = 'y'+ str(n)+'a'+ str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, +Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = 'a'+ str(n+1)+'o'+ str(n)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2 + Q*(n % 2)*6 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".lower.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".lower.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2 + Q*(n % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".upper.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".upper.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Right arm obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w"+str(n)+"w"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) n = 2 obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".lower.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".lower.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*(n % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"o"+str(n)+".lower.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".upper.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".upper.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*(n % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"o"+str(n)+".upper.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".upper.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*(n % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"o"+str(n)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) n = 3 obj_joint = bpy.data.objects["joint.gold.A"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"w"+str(1)+".lower.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.A"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"o"+str(n)+".lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.B"].copy() # obj_joint.location = (0.0, 0.0, -Q*2 + Q*(n % 2)*6 +Z) obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.A"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"o"+str(n)+".lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.B"].copy() # obj_joint.location = (0.0, 0.0, -Q*2 + Q*(n % 2)*6 +Z) obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.g1.y.B"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"o"+str(n)+".gimbal.lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.g1.z.B"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".gimbal.lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.g1.y.B"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"o"+str(n)+".gimbal.lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.g1.z.B"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".gimbal.lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".upper.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*(n % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"o"+str(n)+".upper.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2 + Q*(n % 2)*6 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".upper.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Right arm obj_joint = bpy.data.objects["joint.gold.B3"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.g1.y.C.R.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n+1)+".gimbal.upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Right arm obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w"+str(n)+"w"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) n = 4 obj_joint = bpy.data.objects["joint.green.leg-left.A"].copy() # obj_joint.location = (0.0, 0.0, Q +Z) obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.cursor"].copy() obj_joint.location = (0.0, 0.0, Q/2 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.green.leg-right.A"].copy() # obj_joint.location = (0.0, 0.0, Q +Z) obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.cursor"].copy() obj_joint.location = (0.0, 0.0, Q/2 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.cursor"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".gimbal.lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.cursor"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".gimbal.lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Right arm obj_joint = bpy.data.objects["joint.silver.g1.z.C.R.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".gimbal.upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.C.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w"+str(n)+"w"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) n = 5 obj_joint = bpy.data.objects["joint.cursor"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".gimbal.lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.cursor"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".gimbal.lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.cursor"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".gimbal.lower.left.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.cursor"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".gimbal.lower.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Right arm obj_joint = bpy.data.objects["joint.gold.g1.y.C.R.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".gimbal.upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.green.arm-left.A"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w"+str(n)+"w"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) n = 6 # Right arm obj_joint = bpy.data.objects["joint.silver.g1.z.C.R.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".gimbal.upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y6y7.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.green.y6y8.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+2)+".gimbal.upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) n = 7 # Right arm obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"w"+str(n-6)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w"+str(n)+"w"+str(n+1)+".upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) n = 8 # Right arm obj_joint = bpy.data.objects["joint.blue.y8w1.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"w"+str(n-7)+".gimbal.upper.right.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for ob in context.scene.objects: if "mesh" in ob.name: ob.select = True bpy.ops.object.make_single_user(type='SELECTED_OBJECTS', object=True, obdata=True, material=True, texture=True, animation=True) bpy.context.scene.cursor_location = (0.0, 0.0, 0.0) bpy.ops.object.origin_set(type='ORIGIN_CURSOR') # Parent set arms to body def setParent(self, helicity, move, rig, arm_left_loc, arm_left_rot, arm_left): # arm_left_loc, arm_left_rot, arm_left, # arm_right_loc, arm_right_rot, arm_right): bpy.ops.object.mode_set(mode='OBJECT') bpy.context.scene.frame_current = 0 # arm left bpy.ops.object.select_all(action='DESELECT') rig.select = True bpy.context.scene.objects.active = rig bpy.ops.object.editmode_toggle() ## parent_bone = 'o2b3.upper.left' # choose the bone name which you want to be the parent # parent_bone = 'o2w5.gimbal.upper.left' # choose the bone name which you want to be the parent parent_bone = 'o2b3.upper.left' # choose the bone name which you want to be the parent rig.data.edit_bones.active = rig.data.edit_bones[parent_bone] bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.select_all(action='DESELECT') #deselect all objects arm_left.rig.select = True rig.select = True bpy.context.scene.objects.active = rig #the active object will be the parent of all selected object bpy.ops.object.parent_set(type='BONE', keep_transform=True) # arm left end bpy.ops.object.select_all(action='DESELECT') #deselect all objects # arms position arm_left.rig.location = arm_left_loc arm_left.rig.rotation_euler = arm_left_rot ### grab the long pole with the right hand arm_left.rig.select = True # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint y5 -> right hand cns = arm_left.rig.pose.bones['y5w1'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = rig cns.subtarget = 'y6y7.upper.right' cns.head_tail = 1 bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.select_all(action='DESELECT') #deselect all objects rig.select = True # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint y7 -> left hand cns = rig.pose.bones['y7w1.upper.right'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = arm_left.rig cns.subtarget = 'y4y5' cns.head_tail = 1 # IK constraint y3 -> left hand cns = rig.pose.bones['w3w4.upper.right'].constraints.new('COPY_LOCATION') cns.name = 'Copy Location' cns.target = arm_left.rig cns.subtarget = 'y4y5' cns.head_tail = 1 bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.select_all(action='DESELECT') #deselect all objects # w3w4.upper.right scale setting def configScale(self, rig, interval, scale_frame_start, scale_frame_mid, scale_frame_end, start_value, mid_value, end_value): # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # key insert keyframe_insert_interval = interval rig.pose.bones["w3w4.upper.right"].scale.x = math.radians(start_value) rig.pose.bones["w3w4.upper.right"].scale.y = math.radians(start_value) rig.pose.bones["w3w4.upper.right"].scale.z = math.radians(start_value) rig.pose.bones["w3w4.upper.right"].keyframe_insert(data_path="scale",frame=scale_frame_start) rig.pose.bones["w3w4.upper.right"].scale.x = math.radians(mid_value) rig.pose.bones["w3w4.upper.right"].scale.y = math.radians(mid_value) rig.pose.bones["w3w4.upper.right"].scale.z = math.radians(mid_value) rig.pose.bones["w3w4.upper.right"].keyframe_insert(data_path="scale",frame=scale_frame_mid) rig.pose.bones["w3w4.upper.right"].scale.x = math.radians(end_value) rig.pose.bones["w3w4.upper.right"].scale.y = math.radians(end_value) rig.pose.bones["w3w4.upper.right"].scale.z = math.radians(end_value) rig.pose.bones["w3w4.upper.right"].keyframe_insert(data_path="scale",frame=scale_frame_end) # for curve in bpy.context.active_object.animation_data.action.fcurves: # cycles = curve.modifiers.new(type='CYCLES') # cycles.mode_before = 'REPEAT_OFFSET' # cycles.mode_after = 'REPEAT_OFFSET' # for keyframe in curve.keyframe_points: # keyframe.interpolation = 'LINEAR' bpy.ops.object.mode_set(mode='OBJECT') class LeftArm(Formula): J = 6 #joint number # Overriding def __init__(self, P, A, move, part, helicity, start, end): global interval global frame_start global frame_end self.interval = interval self.frame_start = frame_start self.frame_end = frame_end # pivot factor self.P = P # scale factor self.A = A # name self.move = move # element self.part = part # element helicity self.helicity = helicity self.start = start self.end = end bpy.ops.object.mode_set(mode='OBJECT') # Create armature and object self.amt = bpy.data.armatures.new(move + '.' + part + '.' + helicity + '.data') self.rig = bpy.data.objects.new(move + '.' + part + '.' + helicity, self.amt) # Joints self.a = [0 for i in range(4)] # Joint α self.b = [0 for i in range(self.J)] # Joint β self.y = [0 for i in range(self.J+1)] # Joint γ self.o = [0 for i in range(self.J)] # Joint δ self.w = [0 for i in range(self.J)] # Joint ω # Configuration Movement self.configMovement(self.P, self.A, self.J, self.a, self.b, self.y, self.o, self.w) # Construction Movement self.constructMovement(self.J, self.helicity, self.amt, self.rig, self.a, self.b, self.y, self.o, self.w) # Construction Rotation self.configRotation(self.rig, self.interval, self.frame_start, self.frame_end, self.start, self.end) # Configuration Linkage self.configLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Construction Linkage self.constructLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Overriding Configuration Movement def configMovement(self, P, A, J, a, b, y, o, w): a[1] = mathutils.Euler((P, A, 0), 'XYZ') print ("a1 =", a[1]) a[2] = mathutils.Euler((A, -A, 0), 'XYZ') print ("a2 =", a[2]) b[1] = mathutils.Euler((-A, A, 0), 'XYZ') print ("b1 =", b[1]) o[1] = mathutils.Euler((A, A, 0), 'XYZ') print ("o1 =", o[1]) B = A * 2 * sqrt (2) C = B + (B * sqrt (2)) D = C * sqrt (2) E = C + D y[1] = mathutils.Euler((-A, -A, 0), 'XYZ') print ("y1 =", y[1]) y[2] = mathutils.Euler((0.405231, -0.871367, 0), 'XYZ') print ("y2 =", y[2]) b[2] = mathutils.Euler((1.10081, -0.097826, 0), 'XYZ') print ("b2 =", b[2]) o[2] = mathutils.Euler((-1.11656, -0.810155, 0), 'XYZ') print ("o2 =", o[2]) y[3] = mathutils.Euler((6.58612, 1.68254, 0), 'XYZ') print ("y3 =", y[3]) b[3] = mathutils.Euler((6.19272, 1.02113, 0), 'XYZ') print ("b3 =", b[3]) o[3] = mathutils.Euler((6.13951, 1.51912, 0), 'XYZ') print ("o3 =", o[3]) y[4] = mathutils.Euler((10.6357, 5.38492, 0), 'XYZ') print ("y4 =", y[4]) b[4] = mathutils.Euler((10.1215, 5.14466, 0), 'XYZ') print ("b4 =", b[4]) o[4] = mathutils.Euler((10.3915, 5.5772, 0), 'XYZ') print ("o4 =", o[4]) y[5] = mathutils.Euler((11.9006, 6.53608, 0), 'XYZ') print ("y5 =", y[5]) w[1] = mathutils.Euler((11.9006, 6.53608, 68.3593), 'XYZ') print ("w1 =", w[1]) w[2] = mathutils.Euler((12.0181, 6.40694, 68.3593), 'XYZ') print ("w2 =", w[2]) y[6] = mathutils.Euler((12.346, 5.38258, 0), 'XYZ') print ("y6 =", y[6]) w[3] = mathutils.Euler((12.346, 5.38258, 68.3593), 'XYZ') print ("w3 =", w[3]) def constructMovement(self, J, helicity, amt, rig, a, b, y, o, w): # Linkages aa = [[0 for i in range(4)] for j in range(4)] # Link α(i) - α(j) ab = [[0 for i in range(4)] for j in range(4)] # Link α(i) - β(j) ya = [[0 for i in range(4)] for j in range(4)] # Link γ(i) - α(j) ao = [[0 for i in range(4)] for j in range(4)] # Link α(i) - δ(j) ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) yy = [[0 for i in range(self.J+1)] for j in range(self.J)] # Link γ(i) - γ(j) by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) yw = [[0 for i in range(self.J)] for j in range(self.J+1)] # Link γ(i) - ω(j) ww = [[0 for i in range(self.J)] for j in range(self.J)] # Link ω(i) - ω(j) rig.location = mathutils.Euler((0.0, 0.0, 0.0), 'XYZ') rig.show_x_ray = True amt.show_names = True amt.draw_type = 'STICK' # amt.draw_type = 'BBONE' # Link object to scene scn = bpy.context.scene scn.objects.link(rig) scn.objects.active = rig scn.update() # Edit bpy.ops.object.editmode_toggle() # Construction Linkage aa[2][1] = amt.edit_bones.new('a2a1') aa[2][1].head = a[2] aa[2][1].tail = a[1] ab[1][1] = amt.edit_bones.new('a1b1') ab[1][1].head = a[1] ab[1][1].tail = b[1] ab[1][1].parent = aa[2][1] by[1][1] = amt.edit_bones.new('b1y1') by[1][1].head = b[1] by[1][1].tail = y[1] by[1][1].parent = ab[1][1] by[1][1].use_inherit_rotation = False ya[1][2] = amt.edit_bones.new('y1a2') ya[1][2].head = y[1] ya[1][2].tail = a[2] ya[1][2].parent = by[1][1] ao[2][1] = amt.edit_bones.new('a2o1') ao[2][1].head = a[2] ao[2][1].tail = o[1] ao[2][1].parent = ya[1][2] ob[1][2] = amt.edit_bones.new('o1b2') ob[1][2].head = o[1] ob[1][2].tail = b[2] ob[1][2].parent = ao[2][1] yy[1][2] = amt.edit_bones.new('y1y2') yy[1][2].head = y[1] yy[1][2].tail = y[2] yy[1][2].parent = by[1][1] for j in range(2, J - 1): by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j)) by[j][j].head = b[j] by[j][j].tail = y[j] by[j][j].parent = ob[j-1][j] yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j)) yo[j][j].head = y[j] yo[j][j].tail = o[j] yo[j][j].parent = yy[j-1][j] yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1)) yy[j][j+1].head = y[j] yy[j][j+1].tail = y[j+1] yy[j][j+1].parent = by[j][j] if j < (J-2): ob[j][j+1] = amt.edit_bones.new('o'+ str(j) + 'b'+ str(j+1)) ob[j][j+1].head = o[j] ob[j][j+1].tail = b[j+1] ob[j][j+1].parent = yo[j][j] yw[5][1] = amt.edit_bones.new('y5w1') yw[5][1].head = y[5] yw[5][1].tail = w[1] yw[5][1].parent = yy[4][5] ww[1][2] = amt.edit_bones.new('w1w2') ww[1][2].head = w[1] ww[1][2].tail = w[2] ww[1][2].parent = yw[5][1] yy[4][6] = amt.edit_bones.new('y4y6.gimbal') yy[4][6].head = y[4] yy[4][6].tail = y[6] yy[4][6].parent = by[4][4] yw[6][3] = amt.edit_bones.new('y6w3.gimbal') yw[6][3].head = y[6] yw[6][3].tail = w[3] yw[6][3].parent = yy[4][6] # all bones select #bpy.ops.pose.select_all(action="SELECT") for b in amt.edit_bones: b.select = True if helicity == 'right': bpy.ops.armature.calculate_roll(type='GLOBAL_POS_Z') else: bpy.ops.armature.calculate_roll(type='GLOBAL_NEG_Z') # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint cns = rig.pose.bones['y1a2'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'a2a1' cns.chain_count = 2 cns.use_stretch = False for j in range(2, J - 1): cns = rig.pose.bones['b'+str(j) +'y'+str(j)].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['y6w3.gimbal'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'w1w2' cns.pole_target = rig cns.pole_subtarget = 'y5w1' cns.pole_angle = math.radians(90) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False bpy.ops.object.mode_set(mode='OBJECT') def configLink(self, A, J, helicity, rig, move, part): bpy.ops.object.mode_set(mode='OBJECT') Q = (0.18648+0.146446)*A # Z = -Q*2 Z = 0.0 obj_joint = bpy.data.objects["joint.gold.arm-left.000"].copy() obj_joint.location = (0.0, 0.0, -Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2a1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.silver.002"].copy() obj_joint.location = (0.0, 0.0, +Q*(3+4)+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y1a2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, +Q*(1+4)+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2o1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a1b1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for n in range(1, J - 1): if n <= (J-2): # Pattern 2 of by obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-3): # Pattern 2 of yy obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-3): # Pattern 1 of ob obj_joint = bpy.data.objects["joint.blue.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, -Q*4 + Q*(n % 2)*8 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Pattern 2 of yo obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n+1)+"o"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y4y5.002"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y4y5.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y5w1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w1w2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.green.y4y6.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y4y6.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y6w3.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y6w3.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for ob in context.scene.objects: if "mesh" in ob.name: ob.select = True bpy.ops.object.make_single_user(type='SELECTED_OBJECTS', object=True, obdata=True, material=True, texture=True, animation=True) bpy.context.scene.cursor_location = (0.0, 0.0, 0.0) bpy.ops.object.origin_set(type='ORIGIN_CURSOR') class RightArm(Formula): J = 5 #joint number # Overriding def __init__(self, P, A, move, part, helicity, start, end): global interval global frame_start global frame_end self.interval = interval self.frame_start = frame_start self.frame_end = frame_end # pivot factor self.P = P # scale factor self.A = A # name self.move = move # element self.part = part # element helicity self.helicity = helicity self.start = start self.end = end bpy.ops.object.mode_set(mode='OBJECT') # Create armature and object self.amt = bpy.data.armatures.new(move + '.' + part + '.' + helicity + '.data') self.rig = bpy.data.objects.new(move + '.' + part + '.' + helicity, self.amt) # Joints self.a = [0 for i in range(4)] # Joint α self.b = [0 for i in range(self.J)] # Joint β self.y = [0 for i in range(self.J+1)] # Joint γ self.o = [0 for i in range(self.J)] # Joint δ self.w = [0 for i in range(self.J)] # Joint ω # Configuration Movement self.configMovement(self.P, self.A, self.J, self.a, self.b, self.y, self.o, self.w) # Construction Movement self.constructMovement(self.J, self.helicity, self.amt, self.rig, self.a, self.b, self.y, self.o, self.w) # Construction Rotation self.configRotation(self.rig, self.interval, self.frame_start, self.frame_end, self.start, self.end) # Configuration Linkage self.configLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Construction Linkage self.constructLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Overriding Configuration Movement def configMovement(self, P, A, J, a, b, y, o, w): a[1] = mathutils.Euler((P, A, 0), 'XYZ') print ("a1 =", a[1]) a[2] = mathutils.Euler((A, -A, 0), 'XYZ') print ("a2 =", a[2]) b[1] = mathutils.Euler((-A, A, 0), 'XYZ') print ("b1 =", b[1]) o[1] = mathutils.Euler((A, A, 0), 'XYZ') print ("o1 =", o[1]) B = A * 2 * sqrt (2) C = B + (B * sqrt (2)) D = C * sqrt (2) E = C + D y[1] = mathutils.Euler((-A, -A, 0), 'XYZ') print ("y1 =", y[1]) y[2] = mathutils.Euler((5.23572, -4.00436, 0), 'XYZ') print ("y2 =", y[2]) b[2] = mathutils.Euler((5.80363, -3.26182, 0), 'XYZ') print ("b2 =", b[2]) o[2] = mathutils.Euler((4.64316, -3.47289, 0), 'XYZ') print ("o2 =", o[2]) y[3] = mathutils.Euler((10.4745, -5.64019, 0), 'XYZ') print ("y3 =", y[3]) b[3] = mathutils.Euler((9.87603, -5.84587, 0), 'XYZ') print ("b3 =", b[3]) o[3] = mathutils.Euler((10.042, -5.44267, 0), 'XYZ') print ("o3 =", o[3]) y[4] = mathutils.Euler((12.3316, -5.71339, 0), 'XYZ') print ("y4 =", y[4]) w[1] = mathutils.Euler((12.3316, -5.71339, -1.0), 'XYZ') print ("w1 =", w[1]) w[2] = mathutils.Euler((12.3316, -5.61339, -1.0), 'XYZ') print ("w2 =", w[2]) y[5] = mathutils.Euler((12.333, -5.6402, 0), 'XYZ') print ("y5 =", y[5]) w[3] = mathutils.Euler((12.333, -5.6402, -1.0), 'XYZ') print ("w3 =", w[3]) def constructMovement(self, J, helicity, amt, rig, a, b, y, o, w): # Linkages aa = [[0 for i in range(4)] for j in range(4)] # Link α(i) - α(j) ab = [[0 for i in range(4)] for j in range(4)] # Link α(i) - β(j) ya = [[0 for i in range(4)] for j in range(4)] # Link γ(i) - α(j) ao = [[0 for i in range(4)] for j in range(4)] # Link α(i) - δ(j) ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) yy = [[0 for i in range(self.J+1)] for j in range(self.J)] # Link γ(i) - γ(j) by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) yw = [[0 for i in range(self.J)] for j in range(self.J+1)] # Link γ(i) - ω(j) ww = [[0 for i in range(self.J)] for j in range(self.J)] # Link ω(i) - ω(j) rig.location = mathutils.Euler((0.0, 0.0, 0.0), 'XYZ') rig.show_x_ray = True amt.show_names = True amt.draw_type = 'STICK' # amt.draw_type = 'BBONE' # Link object to scene scn = bpy.context.scene scn.objects.link(rig) scn.objects.active = rig scn.update() # Edit bpy.ops.object.editmode_toggle() # Construction Linkage aa[2][1] = amt.edit_bones.new('a2a1') aa[2][1].head = a[2] aa[2][1].tail = a[1] ab[1][1] = amt.edit_bones.new('a1b1') ab[1][1].head = a[1] ab[1][1].tail = b[1] ab[1][1].parent = aa[2][1] by[1][1] = amt.edit_bones.new('b1y1') by[1][1].head = b[1] by[1][1].tail = y[1] by[1][1].parent = ab[1][1] by[1][1].use_inherit_rotation = False ya[1][2] = amt.edit_bones.new('y1a2') ya[1][2].head = y[1] ya[1][2].tail = a[2] ya[1][2].parent = by[1][1] ao[2][1] = amt.edit_bones.new('a2o1') ao[2][1].head = a[2] ao[2][1].tail = o[1] ao[2][1].parent = ya[1][2] ob[1][2] = amt.edit_bones.new('o1b2') ob[1][2].head = o[1] ob[1][2].tail = b[2] ob[1][2].parent = ao[2][1] yy[1][2] = amt.edit_bones.new('y1y2') yy[1][2].head = y[1] yy[1][2].tail = y[2] yy[1][2].parent = by[1][1] for j in range(2, J - 1): by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j)) by[j][j].head = b[j] by[j][j].tail = y[j] by[j][j].parent = ob[j-1][j] yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j)) yo[j][j].head = y[j] yo[j][j].tail = o[j] yo[j][j].parent = yy[j-1][j] yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1)) yy[j][j+1].head = y[j] yy[j][j+1].tail = y[j+1] yy[j][j+1].parent = by[j][j] if j < (J-2): ob[j][j+1] = amt.edit_bones.new('o'+ str(j) + 'b'+ str(j+1)) ob[j][j+1].head = o[j] ob[j][j+1].tail = b[j+1] ob[j][j+1].parent = yo[j][j] yw[4][1] = amt.edit_bones.new('y4w1') yw[4][1].head = y[4] yw[4][1].tail = w[1] yw[4][1].parent = yy[3][4] ww[1][2] = amt.edit_bones.new('w1w2') ww[1][2].head = w[1] ww[1][2].tail = w[2] ww[1][2].parent = yw[4][1] yy[3][5] = amt.edit_bones.new('y3y5.gimbal') yy[3][5].head = y[3] yy[3][5].tail = y[5] yy[3][5].parent = by[3][3] yw[5][3] = amt.edit_bones.new('y5w3.gimbal') yw[5][3].head = y[5] yw[5][3].tail = w[3] yw[5][3].parent = yy[3][5] # all bones select #bpy.ops.pose.select_all(action="SELECT") for b in amt.edit_bones: b.select = True if helicity == 'right': bpy.ops.armature.calculate_roll(type='GLOBAL_POS_Z') else: bpy.ops.armature.calculate_roll(type='GLOBAL_NEG_Z') # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint cns = rig.pose.bones['y1a2'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'a2a1' cns.chain_count = 2 cns.use_stretch = False for j in range(2, J - 1): cns = rig.pose.bones['b'+str(j) +'y'+str(j)].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['y5w3.gimbal'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'w1w2' cns.pole_target = rig cns.pole_subtarget = 'y4w1' cns.pole_angle = math.radians(90) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False bpy.ops.object.mode_set(mode='OBJECT') def configLink(self, A, J, helicity, rig, move, part): bpy.ops.object.mode_set(mode='OBJECT') Q = (0.18648+0.146446)*A # Z = -Q*2 Z = 0.0 obj_joint = bpy.data.objects["joint.gold.arm-right.006"].copy() obj_joint.location = (0.0, 0.0, -Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2a1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.silver.002"].copy() obj_joint.location = (0.0, 0.0, +Q*(3+4)+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y1a2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, +Q*(1+4)+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2o1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a1b1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for n in range(1, J - 1): if n <= (J-2): # Pattern 2 of by obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-3): # Pattern 2 of yy obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-3): # Pattern 1 of ob obj_joint = bpy.data.objects["joint.blue.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, -Q*4 + Q*(n % 2)*8 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Pattern 2 of yo obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n+1)+"o"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y3y4.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y3y4.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y4w1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w1w2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y3y5.gimbal.000"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y3y5.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y5w3.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y5w3.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for ob in context.scene.objects: if "mesh" in ob.name: ob.select = True bpy.ops.object.make_single_user(type='SELECTED_OBJECTS', object=True, obdata=True, material=True, texture=True, animation=True) bpy.context.scene.cursor_location = (0.0, 0.0, 0.0) bpy.ops.object.origin_set(type='ORIGIN_CURSOR') class LeftLeg(Formula): J = 7 #joint number # Overriding def __init__(self, P, A, move, part, helicity, start, end, leg_left_loc, leg_left_rot, leg_right_loc, leg_right_rot, leg_right, pitch_loc, pitch_rot, pitch): global interval global frame_start global frame_end self.interval = interval self.frame_start = frame_start self.frame_end = frame_end # pivot factor self.P = P # scale factor self.A = A # name self.move = move # element self.part = part # element helicity self.helicity = helicity self.start = start self.end = end # leg_left self.leg_left_loc = leg_left_loc self.leg_left_rot = leg_left_rot # leg_right self.leg_right_loc = leg_right_loc self.leg_right_rot = leg_right_rot self.leg_right = leg_right # pitch self.pitch_loc = pitch_loc self.pitch_rot = pitch_rot self.pitch = pitch # body self.body = body bpy.ops.object.mode_set(mode='OBJECT') # Create armature and object self.amt = bpy.data.armatures.new(move + '.' + part + '.' + helicity + '.data') self.rig = bpy.data.objects.new(move + '.' + part + '.' + helicity, self.amt) # Joints self.a = [0 for i in range(4)] # Joint α self.b = [0 for i in range(self.J)] # Joint β self.y = [0 for i in range(self.J)] # Joint γ self.o = [0 for i in range(self.J)] # Joint δ self.w = [0 for i in range(self.J)] # Joint ω # Configuration Movement self.configMovement(self.P, self.A, self.J, self.a, self.b, self.y, self.o, self.w) # Construction Movement self.constructMovement(self.J, self.helicity, self.amt, self.rig, self.a, self.b, self.y, self.o, self.w) # Parent set pitch and right leg to left leg self.setParent(self.helicity, self.move, self.rig, self.leg_left_loc, self.leg_left_rot, self.leg_right_loc, self.leg_right_rot, self.leg_right, self.pitch_loc, self.pitch_rot, self.pitch) # Construction Rotation self.configRotation(self.rig, self.interval, self.frame_start, self.frame_end, self.start, self.end) # Configuration Linkage self.configLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Construction Linkage self.constructLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Overriding Configuration Movement def configMovement(self, P, A, J, a, b, y, o, w): a[1] = mathutils.Euler((P, A, 0), 'XYZ') print ("a1 =", a[1]) a[2] = mathutils.Euler((A, -A, 0), 'XYZ') print ("a2 =", a[2]) b[1] = mathutils.Euler((-A, A, 0), 'XYZ') print ("b1 =", b[1]) o[1] = mathutils.Euler((A, A, 0), 'XYZ') print ("o1 =", o[1]) B = A * 2 * sqrt (2) C = B + (B * sqrt (2)) D = C * sqrt (2) E = C + D y[1] = mathutils.Euler((-A, -A, 0), 'XYZ') print ("y1 =", y[1]) y[2] = mathutils.Euler((5.64394, -7.71944, 0), 'XYZ') print ("y2 =", y[2]) b[2] = mathutils.Euler((6.96819, -6.39353, 0), 'XYZ') print ("b2 =", b[2]) o[2] = mathutils.Euler((7.57679, -7.71912, 0), 'XYZ') print ("o2 =", o[2]) y[3] = mathutils.Euler((5.64394, -17.9947, 0), 'XYZ') print ("y3 =", y[3]) o[4] = mathutils.Euler((3.89305, -26.8512, 0), 'XYZ') print ("o4 =", o[4]) o[3] = mathutils.Euler((-1.02857, -20.6204, 0), 'XYZ') print ("o3 =", o[3]) b[4] = mathutils.Euler((12.94517, -7.71944, 0), 'XYZ') print ("b4 =", b[4]) b[3] = mathutils.Euler((5.64394, -7.71944, -7.30119), 'XYZ') print ("b3 =", b[3]) w[1] = mathutils.Euler((5.64394, -5.67138, -7.30119), 'XYZ') print ("w1 =", w[1]) w[2] = mathutils.Euler((5.64394, -5.47138, -7.30119), 'XYZ') print ("w2 =", w[2]) w[3] = mathutils.Euler((12.94517, -5.67138, 0), 'XYZ') print ("w3 =", w[3]) b[6] = mathutils.Euler((1.7675, -A, 0), 'XYZ') print ("b6 =", b[6]) b[5] = mathutils.Euler((-A, -A, -2.43247), 'XYZ') print ("b5 =", b[5]) w[4] = mathutils.Euler((-A, A, -2.43247), 'XYZ') print ("w4 =", w[4]) w[5] = mathutils.Euler((-A, 0.835105, -2.43247), 'XYZ') print ("w5 =", w[5]) w[6] = mathutils.Euler((1.7675, A, 0), 'XYZ') print ("w6 =", w[6]) def constructMovement(self, J, helicity, amt, rig, a, b, y, o, w): # Linkages aa = [[0 for i in range(4)] for j in range(4)] # Link α(i) - α(j) ab = [[0 for i in range(4)] for j in range(4)] # Link α(i) - β(j) ya = [[0 for i in range(4)] for j in range(4)] # Link γ(i) - α(j) ao = [[0 for i in range(4)] for j in range(4)] # Link α(i) - δ(j) ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - γ(j) by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) yb = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - β(j) bw = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - ω(j) ww = [[0 for i in range(self.J)] for j in range(self.J)] # Link ω(i) - ω(j) rig.location = mathutils.Euler((0.0, 0.0, 0.0), 'XYZ') rig.show_x_ray = True amt.show_names = True amt.draw_type = 'STICK' # amt.draw_type = 'BBONE' # Link object to scene scn = bpy.context.scene scn.objects.link(rig) scn.objects.active = rig scn.update() # Edit bpy.ops.object.editmode_toggle() # Construction Linkage aa[2][1] = amt.edit_bones.new('a2a1') aa[2][1].head = a[2] aa[2][1].tail = a[1] ab[1][1] = amt.edit_bones.new('a1b1') ab[1][1].head = a[1] ab[1][1].tail = b[1] ab[1][1].parent = aa[2][1] by[1][1] = amt.edit_bones.new('b1y1') by[1][1].head = b[1] by[1][1].tail = y[1] by[1][1].parent = ab[1][1] by[1][1].use_inherit_rotation = False ya[1][2] = amt.edit_bones.new('y1a2') ya[1][2].head = y[1] ya[1][2].tail = a[2] ya[1][2].parent = by[1][1] ao[2][1] = amt.edit_bones.new('a2o1') ao[2][1].head = a[2] ao[2][1].tail = o[1] ao[2][1].parent = ya[1][2] ob[1][2] = amt.edit_bones.new('o1b2') ob[1][2].head = o[1] ob[1][2].tail = b[2] ob[1][2].parent = ao[2][1] yy[1][2] = amt.edit_bones.new('y1y2') yy[1][2].head = y[1] yy[1][2].tail = y[2] yy[1][2].parent = by[1][1] for j in range(2, J - 4): by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j)) by[j][j].head = b[j] by[j][j].tail = y[j] by[j][j].parent = ob[j-1][j] yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j)) yo[j][j].head = y[j] yo[j][j].tail = o[j] yo[j][j].parent = yy[j-1][j] yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1)) yy[j][j+1].head = y[j] yy[j][j+1].tail = y[j+1] yy[j][j+1].parent = by[j][j] if j < (J-5): ob[j][j+1] = amt.edit_bones.new('o'+ str(j) + 'b'+ str(j+1)) ob[j][j+1].head = o[j] ob[j][j+1].tail = b[j+1] ob[j][j+1].parent = yo[j][j] yo[3][3] = amt.edit_bones.new('y3o3') yo[3][3].head = y[3] yo[3][3].tail = o[3] yo[3][3].parent = yy[2][3] yo[3][3].use_inherit_rotation = False yo[3][4] = amt.edit_bones.new('y3o4') yo[3][4].head = y[3] yo[3][4].tail = o[4] yo[3][4].parent = yy[2][3] yo[3][4].use_inherit_rotation = False yb[2][3] = amt.edit_bones.new('y2b3') yb[2][3].head = y[2] yb[2][3].tail = b[3] yb[2][3].parent = yy[1][2] bw[3][1] = amt.edit_bones.new('b3w1') bw[3][1].head = b[3] bw[3][1].tail = w[1] bw[3][1].parent = yb[2][3] ww[1][2] = amt.edit_bones.new('w1w2') ww[1][2].head = w[1] ww[1][2].tail = w[2] ww[1][2].parent = bw[3][1] yb[2][4] = amt.edit_bones.new('y2b4.gimbal') yb[2][4].head = y[2] yb[2][4].tail = b[4] yb[2][4].parent = yy[1][2] bw[4][3] = amt.edit_bones.new('b4w3.gimbal') bw[4][3].head = b[4] bw[4][3].tail = w[3] bw[4][3].parent = yb[2][4] yb[1][5] = amt.edit_bones.new('y1b5') yb[1][5].head = y[1] yb[1][5].tail = b[5] yb[1][5].parent = by[1][1] bw[5][4] = amt.edit_bones.new('b5w4') bw[5][4].head = b[5] bw[5][4].tail = w[4] bw[5][4].parent = yb[1][5] ww[4][5] = amt.edit_bones.new('w4w5') ww[4][5].head = w[4] ww[4][5].tail = w[5] ww[4][5].parent = bw[5][4] yb[1][6] = amt.edit_bones.new('y1b6.gimbal') yb[1][6].head = y[1] yb[1][6].tail = b[6] yb[1][6].parent = by[1][1] bw[6][6] = amt.edit_bones.new('b6w6.gimbal') bw[6][6].head = b[6] bw[6][6].tail = w[6] bw[6][6].parent = yb[1][6] # all bones select #bpy.ops.pose.select_all(action="SELECT") for b in amt.edit_bones: b.select = True if helicity == 'right': bpy.ops.armature.calculate_roll(type='GLOBAL_POS_Z') else: bpy.ops.armature.calculate_roll(type='GLOBAL_NEG_Z') # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint cns = rig.pose.bones['y1a2'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'a2a1' cns.chain_count = 2 cns.use_stretch = False for j in range(2, J - 4): cns = rig.pose.bones['b'+str(j) +'y'+str(j)].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['b4w3.gimbal'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'w1w2' cns.pole_target = rig cns.pole_subtarget = 'b3w1' cns.pole_angle = math.radians(0) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['b6w6.gimbal'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'w4w5' cns.pole_target = rig cns.pole_subtarget = 'b5w4' cns.pole_angle = math.radians(0) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False bpy.ops.object.mode_set(mode='OBJECT') # Parent set pitch and right leg to left leg def setParent(self, helicity, move, rig, leg_left_loc, leg_left_rot, leg_right_loc, leg_right_rot, leg_right, pitch_loc, pitch_rot, pitch): # leg left position rig.location = leg_left_loc rig.rotation_euler = leg_left_rot # leg right position leg_right.rig.location = leg_right_loc leg_right.rig.rotation_euler = leg_right_rot # pitch position pitch.rig.location = pitch_loc pitch.rig.rotation_euler = pitch_rot # pitch to left leg bpy.ops.object.mode_set(mode='OBJECT') bpy.context.scene.frame_current = 0 bpy.ops.object.select_all(action='DESELECT') rig.select = True bpy.context.scene.objects.active = rig bpy.ops.object.editmode_toggle() parent_bone = 'y3o4' # choose the bone name which you want to be the parent rig.data.edit_bones.active = rig.data.edit_bones[parent_bone] bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.select_all(action='DESELECT') #deselect all objects pitch.rig.select = True rig.select = True bpy.context.scene.objects.active = rig #the active object will be the parent of all selected object bpy.ops.object.parent_set(type='BONE', keep_transform=True) bpy.ops.object.select_all(action='DESELECT') #deselect all objects # end rig.select = True bpy.context.scene.objects.active = rig bpy.ops.object.editmode_toggle() parent_bone = 'y3o3' # choose the bone name which you want to be the parent rig.data.edit_bones.active = rig.data.edit_bones[parent_bone] bpy.ops.object.mode_set(mode='OBJECT') bpy.ops.object.select_all(action='DESELECT') #deselect all objects leg_right.rig.select = True rig.select = True bpy.context.scene.objects.active = rig #the active object will be the parent of all selected object bpy.ops.object.parent_set(type='BONE', keep_transform=True) bpy.ops.object.select_all(action='DESELECT') #deselect all objects def configLink(self, A, J, helicity, rig, move, part): bpy.ops.object.mode_set(mode='OBJECT') Q = (0.18648+0.146446)*A # Z = -Q*2 Z = 0.0 obj_joint = bpy.data.objects["joint.gold.000"].copy() obj_joint.location = (0.0, 0.0, -Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2a1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.silver.001"].copy() obj_joint.location = (0.0, 0.0, +Q+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y1a2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, +Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2o1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a1b1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for n in range(1, J - 3): if n <= (J-5): # Pattern 2 of by obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) # Pattern 2 of yy obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-6): # Pattern 1 of ob obj_joint = bpy.data.objects["joint.blue.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, -Q*4 + Q*(n % 2)*8 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-6): # Pattern 2 of yo obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n+1)+"o"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y3o3.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.y3o4.leg-left.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "y3o4.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.y2b3.leg-left.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y2b3.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b3w1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w1w2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y3y5.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y2b4.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.b4w3.gimbal.leg-left.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b4w3.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y1b5.leg-left.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y1b5.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b5w4.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w4w5.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y3y5.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y1b6.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.b6w6.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b6w6.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for ob in context.scene.objects: if "mesh" in ob.name: ob.select = True bpy.ops.object.make_single_user(type='SELECTED_OBJECTS', object=True, obdata=True, material=True, texture=True, animation=True) bpy.context.scene.cursor_location = (0.0, 0.0, 0.0) bpy.ops.object.origin_set(type='ORIGIN_CURSOR') class RightLeg(Formula): J = 7 #joint number # Overriding def __init__(self, P, A, move, part, helicity, start, end): global interval global frame_start global frame_end self.interval = interval self.frame_start = frame_start self.frame_end = frame_end # pivot factor self.P = P # scale factor self.A = A # name self.move = move # element self.part = part # element helicity self.helicity = helicity self.start = start self.end = end bpy.ops.object.mode_set(mode='OBJECT') # Create armature and object self.amt = bpy.data.armatures.new(move + '.' + part + '.' + helicity + '.data') self.rig = bpy.data.objects.new(move + '.' + part + '.' + helicity, self.amt) # Joints self.a = [0 for i in range(4)] # Joint α self.b = [0 for i in range(self.J)] # Joint β self.y = [0 for i in range(self.J)] # Joint γ self.o = [0 for i in range(self.J)] # Joint δ self.w = [0 for i in range(self.J)] # Joint ω # Configuration Movement self.configMovement(self.P, self.A, self.J, self.a, self.b, self.y, self.o, self.w) # Construction Movement self.constructMovement(self.J, self.helicity, self.amt, self.rig, self.a, self.b, self.y, self.o, self.w) # Construction Rotation self.configRotation(self.rig, self.interval, self.frame_start, self.frame_end, self.start, self.end) # Configuration Linkage self.configLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Construction Linkage self.constructLink(self.A, self.J, self.helicity, self.rig, self.move, self.part) # Overriding Configuration Movement def configMovement(self, P, A, J, a, b, y, o, w): a[1] = mathutils.Euler((P, A, 0), 'XYZ') print ("a1 =", a[1]) a[2] = mathutils.Euler((A, -A, 0), 'XYZ') print ("a2 =", a[2]) b[1] = mathutils.Euler((-A, A, 0), 'XYZ') print ("b1 =", b[1]) o[1] = mathutils.Euler((A, A, 0), 'XYZ') print ("o1 =", o[1]) B = A * 2 * sqrt (2) C = B + (B * sqrt (2)) D = C * sqrt (2) E = C + D y[1] = mathutils.Euler((-A, -A, 0), 'XYZ') print ("y1 =", y[1]) y[2] = mathutils.Euler((5.68545, -7.44271, 0), 'XYZ') print ("y2 =", y[2]) b[2] = mathutils.Euler((6.95751, -6.17062, 0), 'XYZ') print ("b2 =", b[2]) o[2] = mathutils.Euler((7.53988, -7.37879, 0), 'XYZ') print ("o2 =", o[2]) y[3] = mathutils.Euler((7.73628, -17.1943, 0), 'XYZ') print ("y3 =", y[3]) b[4] = mathutils.Euler((11.3434, -7.44271, 0), 'XYZ') print ("b4 =", b[4]) b[3] = mathutils.Euler((5.68546, -7.44271, -5.65991), 'XYZ') print ("b3 =", b[3]) w[1] = mathutils.Euler((5.68546, -5.67138, -8.65991), 'XYZ') print ("w1 =", w[1]) w[2] = mathutils.Euler((5.68546, -5.47138, -8.65991), 'XYZ') print ("w2 =", w[2]) w[3] = mathutils.Euler((14.3434, -5.67138, 0), 'XYZ') print ("w3 =", w[3]) b[6] = mathutils.Euler((10.1687, -17.1943, 0), 'XYZ') print ("b6 =", b[6]) b[5] = mathutils.Euler((7.73628, -17.1943, -2.43205), 'XYZ') print ("b5 =", b[5]) w[4] = mathutils.Euler((7.73628, -15.42297, -5.43205), 'XYZ') print ("w4 =", w[4]) w[5] = mathutils.Euler((7.73628, -15.22297, -5.43205), 'XYZ') print ("w5 =", w[5]) w[6] = mathutils.Euler((13.1687, -15.42297, 0), 'XYZ') print ("w6 =", w[6]) def constructMovement(self, J, helicity, amt, rig, a, b, y, o, w): # Linkages aa = [[0 for i in range(4)] for j in range(4)] # Link α(i) - α(j) ab = [[0 for i in range(4)] for j in range(4)] # Link α(i) - β(j) ya = [[0 for i in range(4)] for j in range(4)] # Link γ(i) - α(j) ao = [[0 for i in range(4)] for j in range(4)] # Link α(i) - δ(j) ob = [[0 for i in range(self.J)] for j in range(self.J)] # Link δ(i) - β(j) yy = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - γ(j) by = [[0 for i in range(self.J)] for j in range(self.J)] # Link β(i) - γ(j) yo = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - δ(j) yb = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - β(j) bw = [[0 for i in range(self.J)] for j in range(self.J)] # Link γ(i) - ω(j) ww = [[0 for i in range(self.J)] for j in range(self.J)] # Link ω(i) - ω(j) rig.location = mathutils.Euler((0.0, 0.0, 0.0), 'XYZ') rig.show_x_ray = True amt.show_names = True amt.draw_type = 'STICK' # amt.draw_type = 'BBONE' # Link object to scene scn = bpy.context.scene scn.objects.link(rig) scn.objects.active = rig scn.update() # Edit bpy.ops.object.editmode_toggle() # Construction Linkage aa[2][1] = amt.edit_bones.new('a2a1') aa[2][1].head = a[2] aa[2][1].tail = a[1] ab[1][1] = amt.edit_bones.new('a1b1') ab[1][1].head = a[1] ab[1][1].tail = b[1] ab[1][1].parent = aa[2][1] by[1][1] = amt.edit_bones.new('b1y1') by[1][1].head = b[1] by[1][1].tail = y[1] by[1][1].parent = ab[1][1] by[1][1].use_inherit_rotation = False ya[1][2] = amt.edit_bones.new('y1a2') ya[1][2].head = y[1] ya[1][2].tail = a[2] ya[1][2].parent = by[1][1] ao[2][1] = amt.edit_bones.new('a2o1') ao[2][1].head = a[2] ao[2][1].tail = o[1] ao[2][1].parent = ya[1][2] ob[1][2] = amt.edit_bones.new('o1b2') ob[1][2].head = o[1] ob[1][2].tail = b[2] ob[1][2].parent = ao[2][1] yy[1][2] = amt.edit_bones.new('y1y2') yy[1][2].head = y[1] yy[1][2].tail = y[2] yy[1][2].parent = by[1][1] for j in range(2, J - 4): by[j][j] = amt.edit_bones.new('b'+ str(j) + 'y'+ str(j)) by[j][j].head = b[j] by[j][j].tail = y[j] by[j][j].parent = ob[j-1][j] yo[j][j] = amt.edit_bones.new('y'+ str(j) + 'o'+ str(j)) yo[j][j].head = y[j] yo[j][j].tail = o[j] yo[j][j].parent = yy[j-1][j] yy[j][j+1] = amt.edit_bones.new('y'+ str(j) + 'y'+ str(j+1)) yy[j][j+1].head = y[j] yy[j][j+1].tail = y[j+1] yy[j][j+1].parent = by[j][j] if j < (J - 5): ob[j][j+1] = amt.edit_bones.new('o'+ str(j) + 'b'+ str(j+1)) ob[j][j+1].head = o[j] ob[j][j+1].tail = b[j+1] ob[j][j+1].parent = yo[j][j] yb[2][3] = amt.edit_bones.new('y2b3') yb[2][3].head = y[2] yb[2][3].tail = b[3] yb[2][3].parent = yy[1][2] bw[3][1] = amt.edit_bones.new('b3w1') bw[3][1].head = b[3] bw[3][1].tail = w[1] bw[3][1].parent = yb[2][3] ww[1][2] = amt.edit_bones.new('w1w2') ww[1][2].head = w[1] ww[1][2].tail = w[2] ww[1][2].parent = bw[3][1] yb[2][4] = amt.edit_bones.new('y2b4.gimbal') yb[2][4].head = y[2] yb[2][4].tail = b[4] yb[2][4].parent = yy[1][2] bw[4][3] = amt.edit_bones.new('b4w3.gimbal') bw[4][3].head = b[4] bw[4][3].tail = w[3] bw[4][3].parent = yb[2][4] yb[3][5] = amt.edit_bones.new('y3b5') yb[3][5].head = y[3] yb[3][5].tail = b[5] yb[3][5].parent = yy[2][3] bw[5][4] = amt.edit_bones.new('b5w4') bw[5][4].head = b[5] bw[5][4].tail = w[4] bw[5][4].parent = yb[3][5] ww[4][5] = amt.edit_bones.new('w4w5') ww[4][5].head = w[4] ww[4][5].tail = w[5] ww[4][5].parent = bw[5][4] yb[3][6] = amt.edit_bones.new('y3b6.gimbal') yb[3][6].head = y[3] yb[3][6].tail = b[6] yb[3][6].parent = yy[2][3] bw[6][6] = amt.edit_bones.new('b6w6.gimbal') bw[6][6].head = b[6] bw[6][6].tail = w[6] bw[6][6].parent = yb[3][6] # all bones select #bpy.ops.pose.select_all(action="SELECT") for b in amt.edit_bones: b.select = True if helicity == 'right': bpy.ops.armature.calculate_roll(type='GLOBAL_POS_Z') else: bpy.ops.armature.calculate_roll(type='GLOBAL_NEG_Z') # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint cns = rig.pose.bones['y1a2'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'a2a1' cns.chain_count = 2 cns.use_stretch = False for j in range(2, J - 4): cns = rig.pose.bones['b'+str(j) +'y'+str(j)].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'y'+str(j)+'o'+str(j) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['b4w3.gimbal'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'w1w2' cns.pole_target = rig cns.pole_subtarget = 'b3w1' cns.pole_angle = math.radians(0) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False cns = rig.pose.bones['b6w6.gimbal'].constraints.new('IK') cns.name = 'Ik' cns.target = rig cns.subtarget = 'w4w5' cns.pole_target = rig cns.pole_subtarget = 'b5w4' cns.pole_angle = math.radians(0) cns.iterations = 500 cns.chain_count = 2 cns.use_stretch = False bpy.ops.object.mode_set(mode='OBJECT') def configLink(self, A, J, helicity, rig, move, part): bpy.ops.object.mode_set(mode='OBJECT') Q = (0.18648+0.146446)*A # Z = -Q*2 Z = 0.0 obj_joint = bpy.data.objects["joint.gold.leg-right.001"].copy() obj_joint.location = (0.0, 0.0, -Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2a1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.silver.001"].copy() obj_joint.location = (0.0, 0.0, +Q+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y1a2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, +Q*3+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a2o1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.001"].copy() obj_joint.location = (0.0, 0.0, -Q*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "a1b1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for n in range(1, J - 3): if n <= (J-5): # Pattern 2 of by obj_joint = bpy.data.objects["joint.green.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b"+str(n)+"y"+str(n)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-6): # Pattern 2 of yy obj_joint = bpy.data.objects["joint.gold.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, +Q*(1 - (n % 2))*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n)+"y"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-6): # Pattern 1 of ob obj_joint = bpy.data.objects["joint.blue.00"+str(1 + (n+1) % 2)].copy() obj_joint.location = (0.0, 0.0, -Q*4 + Q*(n % 2)*8 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "o"+str(n)+"b"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) if n <= (J-6): # Pattern 2 of yo obj_joint = bpy.data.objects["joint.copper.001"].copy() obj_joint.location = (0.0, 0.0, -Q + Q*((n+1) % 2)*4 +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y"+str(n+1)+"o"+str(n+1)+".mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y2y3.leg-right.001"].copy() obj_joint.location = (0.0, 0.0, +Q*2+Z) obj_joint.scale = (A, A, A) obj_joint.name = "y2y3.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.copper.y2b3.leg-right.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y2b3.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b3w1.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w1w2.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y3y5.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y2b4.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.b4w3.gimbal.leg-right.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b4w3.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y3b5.leg-right.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y3b5.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "b5w4.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["cursor.001"].copy() obj_joint.location = (0.0, 0.0, 0.0) obj_joint.scale = (A, A, A) obj_joint.name = "w4w5.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.gold.y3y5.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "y3b6.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) obj_joint = bpy.data.objects["joint.blue.b6w6.gimbal.001"].copy() obj_joint.location = (0.0, 0.0, +Z) obj_joint.scale = (A, A, A) obj_joint.name = "b6w6.gimbal.mesh." + move + '.' + part +'.' + helicity bpy.context.scene.objects.link(obj_joint) for ob in context.scene.objects: if "mesh" in ob.name: ob.select = True bpy.ops.object.make_single_user(type='SELECTED_OBJECTS', object=True, obdata=True, material=True, texture=True, animation=True) bpy.context.scene.cursor_location = (0.0, 0.0, 0.0) bpy.ops.object.origin_set(type='ORIGIN_CURSOR') def formula(): # pivot factor P = 0 # scale factor A = 1 # name move = 'formula' # element part = 'universe' # left or right helicity = 'left' start = 0 end = start+360 formula = Formula(P, A, move, part, helicity, start, end) def arms(): # scale factor A = 0.380 # pivot factor # P = 0.010708 P = 0 # name move = 'kungfu' # arm element part = 'arm-left' # left arm element helicity = 'left' start = 77.9422 end = start+360 global arm_left arm_left = LeftArm(P, A, move, part, helicity, start, end) def legs(): # name move = 'kungfu' # arm element part = 'leg-right' # scale factor A = 0.638694 # pivot factor P = -0.02853 # P = 0 ## right leg element helicity = 'right' start = -180.491 end = start-360 global leg_right leg_right = RightLeg(P, A, move, part, helicity, start, end) leg_right_loc = (8.88082, 1.22518, 22.398) leg_right_rot = mathutils.Euler((math.radians(-90.0), math.radians(173.618), math.radians(0.0)), 'XYZ') # arm element part = 'leg-left' # scale factor A = 0.664895 # pivot factor P = -0.030131 # P = 0 # left leg element helicity = 'right' start = -0.491119 end = start+360 global pitch pitch_loc = (11.7981, 1.49764, 26.9466) pitch_rot = mathutils.Euler((math.radians(90.0), math.radians(34.4707), math.radians(-90)), 'XYZ') global leg_left leg_left_loc = (14.053, 5.91232, 1.8578) leg_left_rot = mathutils.Euler((math.radians(-90.0), math.radians(-13.2686), math.radians(0.0)), 'XYZ') leg_left = LeftLeg(P, A, move, part, helicity, start, end, leg_left_loc, leg_left_rot, leg_right_loc, leg_right_rot, leg_right, pitch_loc, pitch_rot, pitch) global body bpy.ops.object.mode_set(mode='OBJECT') body.rig.select = True # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint cns = body.rig.pose.bones['o4b5.gimbal.lower.right'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = leg_right.rig cns.subtarget = 'y2b3' cns.head_tail = 1 cns = body.rig.pose.bones['b5y5.gimbal.lower.right'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = leg_right.rig cns.subtarget = 'y3b5' cns.head_tail = 1 cns = body.rig.pose.bones['o4b5.gimbal.lower.left'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = leg_left.rig cns.subtarget = 'y2b3' cns.head_tail = 1 cns = body.rig.pose.bones['b5y5.gimbal.lower.left'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = leg_left.rig cns.subtarget = 'y1b5' cns.head_tail = 1 bpy.ops.object.mode_set(mode='OBJECT') leg_right.rig.select = True # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') # IK constraint cns = leg_right.rig.pose.bones['b3w1'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = body.rig cns.subtarget = 'y3o3.lower.right' cns.head_tail = 1 cns = leg_right.rig.pose.bones['b5w4'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = body.rig cns.subtarget = 'b5y5.gimbal.lower.right' cns.head_tail = 0 bpy.ops.object.mode_set(mode='OBJECT') leg_left.rig.select = True # Bone constraints. Armature must be in pose mode. bpy.ops.object.mode_set(mode='POSE') cns = leg_left.rig.pose.bones['b3w1'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = body.rig cns.subtarget = 'y3o3.lower.left' cns.head_tail = 1 cns = leg_left.rig.pose.bones['b5w4'].constraints.new('DAMPED_TRACK') cns.name = 'Damped Track' cns.target = body.rig cns.subtarget = 'b5y5.gimbal.lower.left' cns.head_tail = 0 bpy.ops.object.mode_set(mode='OBJECT') def body(): # scale factor A = 1 # pivot factor P = -(A * 0.862422) # name move = 'kungfu' # arm element part = 'body' # helicity of element helicity = 'right' start = 10.0003 end = start - 360 # start = 295 # end = 632.6244 global arm_left # global arm_right arm_left_loc = (1.70332, 4.20638, 0.555307) arm_left_rot = mathutils.Euler((math.radians(-22.535), math.radians(-149.379), math.radians(129.414)), 'XYZ') # arm_right_loc = (-6.09865, 2.74983, 0.039255) # arm_right_rot = mathutils.Euler((math.radians(-157.882), math.radians(-78.9597), math.radians(148.427)), 'XYZ') global interval factor = 57.296949 # scale start scale_frame_start = 0.5*interval start_value = 1.11391*factor # lx = 0.459332*interval # ly = value # rx = 0.540668*interval # ry = value # scale mid scale_frame_mid = 0.60417*interval mid_value = 0.684769*factor # lx = 0.563498*interval # ly = value # rx = 0.758704*interval # ry = value # scale end scale_frame_end = 1*interval end_value = 1.11391*factor # lx = 0.84546*interval # ly = value # rx = 1.154542*interval # ry = value global body body = Body(P, A, move, part, helicity, start, end, arm_left_loc, arm_left_rot, arm_left, scale_frame_start, scale_frame_mid, scale_frame_end, start_value, mid_value, end_value) def pitch(): # scale factor A = 2.0 # pivot factor P = -1.37 # name move = 'kungfu' # arm element part = 'pitch' # helicity of element helicity = 'left' start = 180.008 end = 180.008 global body body_loc = (-0.823266, 2.38084, -2.56963) body_rot = mathutils.Euler((math.radians(-246.029), math.radians(90.3186), math.radians(-214.068)), 'XYZ') global pitch pitch = Pitch(P, A, move, part, helicity, start, end, body_loc, body_rot, body) def main(origin): global interval global frame_start global frame_end frame_start = 0 frame_end = 96 interval = frame_end - frame_start # formula() arms() body() #roll pitch() legs() if __name__ == "__main__": # renaming of corrada objects # for ob in context.scene.objects: # if "joint_" in ob.name: # ob.name = ob.name.replace("_", ".") main((0,0,0))
py
1a55d63759851d007bfbdb6995131842d67d8ea6
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the # Pyedra Project (https://github.com/milicolazo/Pyedra/). # Copyright (c) 2020, Milagros Colazo # License: MIT # Full Text: https://github.com/milicolazo/Pyedra/blob/master/LICENSE # ====================================================================== # IMPORTS # ====================================================================== import numpy as np import pandas as pd import pyedra.datasets # ============================================================================= # TESTS # ============================================================================= def test_load_carbognani2019(): result = pyedra.datasets.load_carbognani2019() assert isinstance(result, pd.DataFrame) np.testing.assert_almost_equal(result["id"].mean(), 283.042553, 6) np.testing.assert_almost_equal(result["alpha"].mean(), 9.228085, 6) np.testing.assert_almost_equal(result["v"].mean(), 9.114468, 6) def test_load_penttila2016(): result = pyedra.datasets.load_penttila2016() assert isinstance(result, pd.DataFrame) np.testing.assert_almost_equal(result["alpha"].mean(), 40.951960, 6) np.testing.assert_almost_equal(result["phi1"].mean(), 0.491135, 6) np.testing.assert_almost_equal(result["phi2"].mean(), 0.610840, 6) np.testing.assert_almost_equal(result["phi3"].mean(), 0.213223, 6) def test_load_gaia(): result = pyedra.datasets.load_gaia() assert isinstance(result, pd.DataFrame) np.testing.assert_almost_equal(result["id"].mean(), 13374.904873, 6) np.testing.assert_almost_equal(result["epoch_utc"].mean(), 2024.415650, 6) np.testing.assert_almost_equal(result["jd"].mean(), 2457221.915650, 6) np.testing.assert_almost_equal(result["r"].mean(), 2.834362, 6) np.testing.assert_almost_equal(result["delta"].mean(), 2.609104, 6) np.testing.assert_almost_equal(result["alpha"].mean(), 18.736902, 6) np.testing.assert_almost_equal(result["g_mag"].mean(), 17.645928, 6) np.testing.assert_almost_equal(result["g_red"].mean(), 13.454926, 6) np.testing.assert_almost_equal(result["v"].mean(), 13.639460, 6) np.testing.assert_almost_equal(result["v-r"].mean(), 0.428789, 6) assert list(result.tax.unique()) == [ "", "C", "O", "S", "L", "X", "D", "B", "P", "K", "A", "F", "V", "M", "T", "E", "G", "R", "Q", ]
py
1a55d673af0cbd15bc694f14e830fb85686af97c
import logging import sys from pathlib import Path sys.path.append(str(Path(__file__).resolve().parents[2])) from nni.retiarii import Mutator from base_mnasnet import RegularConv, DepthwiseConv, MobileConv _logger = logging.getLogger(__name__) class BlockMutator(Mutator): def __init__(self, target: str): super(BlockMutator, self).__init__() self.target = target def mutate(self, model): nodes = model.get_nodes_by_label(self.target) assert len(nodes) == 1 node = nodes[0] graph = node.graph related_info = node.operation.parameters kernel_size = self.choice(related_info['kernel_size_options']) op_type = self.choice(related_info['op_type_options']) #self.choice(related_info['se_ratio_options']) skip = self.choice(related_info['skip_options']) n_filter = self.choice(related_info['n_filter_options']) if related_info['in_ch'] is not None: in_ch = related_info['in_ch'] else: assert len(node.predecessors) == 1 the_node = node.predecessors[0] _logger.debug(repr(the_node.operation.parameters)) _logger.debug(the_node.__repr__()) in_ch = the_node.operation.parameters['out_ch'] # update the placeholder to be a new operation node.update_operation(op_type, { 'kernel_size': kernel_size, 'in_ch': in_ch, 'out_ch': n_filter, 'skip': 'no', 'exp_ratio': related_info['exp_ratio'], 'stride': related_info['stride'] }) # insert new nodes after the placeholder n_layer = self.choice(related_info['n_layer_options']) for i in range(1, n_layer): node = graph.insert_node_on_edge(node.outgoing_edges[0], '{}_{}'.format(self.target, i), op_type, {'kernel_size': kernel_size, 'in_ch': n_filter, 'out_ch': n_filter, 'skip': skip, 'exp_ratio': related_info['exp_ratio'], 'stride': 1}) # fix possible shape mismatch # TODO: use formal method function to update parameters if len(node.successors) == 1 and 'in_channels' in node.successors[0].operation.parameters: node.successors[0].operation.parameters['in_channels'] = n_filter
py
1a55d6d9d3c240d13febb955ca3737053f772be8
from wrast.tools import wrastf, wrasts
py
1a55d6e5b663de5690e84c6bb1f325e4908f8533
# Something, something words with digit N times import re pattern_word = re.compile(r'\b\w+\b') pattern_sentence = re.compile(r'^[A-Z].*[\.\!\?]$') criteria = list(input()) letter, times = criteria[0], int(criteria[1]) result = [] while True: user_input = input() if user_input == 'end': break sentence = re.search(pattern_sentence, user_input) if sentence is not None: words = re.finditer(pattern_word, sentence.group()) for word in words: cur_word = word.group() letter_count = cur_word.count(letter) if letter_count == times: result.append(cur_word) print(*result, sep = ', ')
py
1a55d859472a9f7b5c2c4a80db80875a48645b61
# ---------------------------------------------------------------------------- # CLASSES: nightly # # Test Case: queriesOverTime.py # # Tests: queries - Database # # Defect ID: none # # Programmer: Kathleen Bonnell # Date: March 31, 2004 # # Modifications: # # Hank Childs, Tue Apr 13 13:00:15 PDT 2004 # Rename surface area query. # # Kathleen Bonnell, Tue Apr 20 09:42:30 PDT 2004 # Added TestFilledBoundary. # # Kathleen Bonnell, Tue Apr 27 12:10:44 PDT 2004 # Added TestExpressions, TestOperators. # # Kathleen Bonnell, Thu Jun 24 09:49:35 PDT 2004 # Added TestTransientVariable. # # Kathleen Bonnell, Wed Jul 21 16:51:31 PDT 2004 # Added TestSpecifyTimeQueryWindow. # # Kathleen Bonnell, Wed Sep 8 10:53:58 PDT 2004 # Renamed 'WorldPick' as 'Pick'. # # Kathleen Bonnell, Mon Dec 20 15:54:04 PST 2004 # Changed 'Variable by Node' to 'PickByNode'. # # Kathleen Bonnell, Thu Jan 6 11:06:29 PST 2005 # Added TestTimeVaryingSIL. # # Kathleen Bonnell, Wed Mar 16 11:13:40 PST 2005 # Added TestQueryAfterQueryOverTime. # # Kathleen Bonnell, Wed Jul 6 16:21:34 PDT 2005 # Added TestMili. # # Kathleen Bonnell, Thu Nov 10 08:21:54 PST 2005 # Added TrajectoryByZone to TestMili. # # Mark C. Miller, Wed Jan 20 07:37:11 PST 2010 # Added ability to swtich between Silo's HDF5 and PDB data. # # Cyrus Harrison, Fri Feb 5 09:27:37 PST 2010 # Turn off color cycling to avoid possible propagation of error from # one failed test to several. # # Kathleen Bonnell, Thu Mar 3 11:47:09 PST 2011 # Added MultiVarTimePick tests. # # Kathleen Biagas, Thu Jul 14 10:44:55 PDT 2011 # Use named arguments. # # Alister Maguire, Tue Oct 17 16:54:48 PDT 2017 # Added TestPickRangeTimeQuery # # Alister Maguire, Wed May 9 10:13:26 PDT 2018 # Added TestReturnValue. # # Alister Maguire, Wed May 30 14:16:28 PDT 2018 # Added tests for performing pick ranges over time with and # without plotting and returning the curves. # # Alister Maguire, Wed May 22 08:49:30 PDT 2019 # Updated mili tests to reflect new plugin changes. # # Alister Maguire, Tue Oct 1 11:48:15 MST 2019 # Make sure to set use_actual_data to true when we want # to use data from the pipeline output. # # Alister Maguire, Fri Oct 11 13:12:36 PDT 2019 # Added TestDirectDatabaseRoute. I also updated several tests to # use actual data so that they continue to test the old QOT route. # # Kathleen Biagas, Thu Jan 30 13:37:50 MST 2020 # Added TestOperatorCreatedVar. (github bugs #2842, #3489). # # Alister Maguire, Tue Feb 25 13:46:24 PST 2020 # Added tests for handling vectors in the direct database route. # # Alister Maguire, Mon Mar 9 15:16:36 PDT 2020 # I've removed the use_actual_data flag for Pick queries as this # is now handled internally. # # ---------------------------------------------------------------------------- RequiredDatabasePlugin(("PDB", "Mili", "SAMRAI")) def InitAnnotation(): # Turn off most annotations a = AnnotationAttributes() a.axes2D.visible = 1 a.axes2D.xAxis.label.visible = 1 a.axes2D.yAxis.label.visible = 1 a.axes2D.xAxis.title.visible = 1 a.axes2D.yAxis.title.visible = 1 a.axes3D.triadFlag = 0 a.axes3D.bboxFlag = 0 a.userInfoFlag = 0 a.databaseInfoFlag = 0 a.legendInfoFlag = 0 a.backgroundMode = a.Solid a.foregroundColor = (0, 0, 0, 255) a.backgroundColor = (255, 255, 255, 255) SetAnnotationAttributes(a) def SetCurvePlotDefaults(): # Disable Color Cycling, default to a blue curve. catts = CurveAttributes() catts.lineWidth = 0 catts.color = (0, 0, 255, 255) catts.showLabels = 1 catts.designator = "" catts.showPoints = 0 catts.showLegend = 1 catts.cycleColors = 0 catts.renderMode = catts.RenderAsLines SetDefaultPlotOptions(catts) def TestAllTimeQueries(): OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "pressure") DrawPlots() # Do some database queries. QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() Test("AllTimeQueries_01") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Volume") SetActiveWindow(2); Test("AllTimeQueries_02") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Min") SetActiveWindow(2); Test("AllTimeQueries_03") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Max") SetActiveWindow(2); Test("AllTimeQueries_04") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Variable Sum") SetActiveWindow(2); Test("AllTimeQueries_05") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Weighted Variable Sum") SetActiveWindow(2); Test("AllTimeQueries_06") DeleteAllPlots() SetActiveWindow(1) pa = GetPickAttributes() pa.doTimeCurve = 1 pa.timePreserveCoord = 0 SetPickAttributes(pa) PickByNode(15947) # reset some defaults pa.doTimeCurve = 0 pa.timePreserveCoord = 1 SetPickAttributes(pa) SetActiveWindow(2); Test("AllTimeQueries_07") # delete window 2 DeleteWindow() # remove plots from window 1 DeleteAllPlots() def TestFilledBoundary(): # bug '4708 OpenDatabase(silo_data_path("wave.visit")) AddPlot("FilledBoundary", "Material") DrawPlots() TurnMaterialsOff(("1 barrier", "2 water")) SetActiveWindow(1) QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() Test("FBTimeQuery_01") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() AddPlot("Pseudocolor", "pressure") DrawPlots() TurnMaterialsOff(("1 barrier", "2 water")) QueryOverTime("3D surface area") SetActiveWindow(2) Test("FBTimeQuery_02") # delete window 2 DeleteWindow() # remove plots from window 1 TurnMaterialsOn() DeleteAllPlots() def TestOperators(): # bug '4818 OpenDatabase(silo_data_path("wave*.silo database")) AddPlot("Pseudocolor", "pressure") AddOperator("Isovolume") iso = IsovolumeAttributes() iso.lbound = 0.1 iso.ubound = 1.0 SetOperatorOptions(iso) DrawPlots() SetActiveWindow(1) QueryOverTime("Volume", stride=10, use_actual_data=1) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_ops_01") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() AddPlot("Pseudocolor", "mesh_quality/jacobian") AddOperator("Slice") slice = SliceAttributes() slice.axisType = slice.Arbitrary slice.normal = (-0.689, -0.0416, 0.7233) slice.originType = slice.Point slice.originPoint = (2.0011, -0.4084, -1.1279) slice.upAxis = (-0.08584, 0.996007, -0.0245) slice.project2d = 1 SetOperatorOptions(slice) DrawPlots() QueryOverTime("2D area", stride=10, use_actual_data=1) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_ops_02") # prepare for next test-set # delete plots from window 2 & l DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestExpressions(): #bug '4784 OpenDatabase(data_path("pdb_test_data/dbA00.pdb")) AddPlot("Pseudocolor", "mesh/ireg") pa = PseudocolorAttributes() pa.minFlag = 1 pa.maxFlag = 1 pa.min = 1 pa.max = 4 SetPlotOptions(pa) DrawPlots() pt = (4., 3., 0.) pick = GetPickAttributes() pick.doTimeCurve = 1 SetPickAttributes(pick) Pick(pt) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_expr_01") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() # test a scalar expression OpenDatabase(silo_data_path("wave*.silo database")) DefineScalarExpression("p2", "pressure*pressure") AddPlot("Pseudocolor", "p2") DrawPlots() QueryOverTime("Variable Sum", stride=10) SetActiveWindow(2) Test("TimeQuery_expr_02") # prepare for next test-set # delete plots from window 2 & l DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() OpenDatabase(data_path("pdb_test_data/dbA00.pdb")) DefineScalarExpression("m", "matvf(material, 1)") AddPlot("Pseudocolor", "m") DrawPlots() QueryOverTime("Variable Sum") SetActiveWindow(2) Test("TimeQuery_expr_03") # prepare for next test-set # delete plots from window 2 & l DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestTransientVariable(): #bug '4906 # Do what is necessary to get access to the transient variable, # because QueryOverTime requires an active drawn plot. db = silo_data_path("wave_tv*.silo database") OpenDatabase(db) SetTimeSliderState(17) ReOpenDatabase(db) AddPlot("Pseudocolor", "transient") DrawPlots() qt = GetQueryOverTimeAttributes() qt.timeType = qt.Timestep SetQueryOverTimeAttributes(qt) QueryOverTime("Variable Sum") SetActiveWindow(2) InitAnnotation() Test("TimeQuery_trans_01") DeleteAllPlots() SetActiveWindow(1) pick = GetPickAttributes() pick.doTimeCurve = 1 pick.timePreserveCoord = 0 SetPickAttributes(pick) PickByNode(327) pick.doTimeCurve = 0 pick.timePreserveCoord = 1 SetPickAttributes(pick) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_trans_02") # Prepare for next test DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestSpecifyTimeQueryWindow(): # bug '5163 OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "pressure") DrawPlots() qt = GetQueryOverTimeAttributes() qt.timeType = qt.Timestep SetQueryOverTimeAttributes(qt) QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() Test("SpecifyTimeQueryWindow_01") DeleteAllPlots() SetActiveWindow(1) TurnMaterialsOff(("1 barrier")) DrawPlots() qot = GetQueryOverTimeAttributes() qot.createWindow = 0 qot.windowId = 3 SetQueryOverTimeAttributes(qot) QueryOverTime("3D surface area") SetActiveWindow(3) InitAnnotation() Test("SpecifyTimeQueryWindow_02") DeleteAllPlots() SetActiveWindow(1) TurnMaterialsOff(("2 water")) DrawPlots() qot.windowId = 2 SetQueryOverTimeAttributes(qot) QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() Test("SpecifyTimeQueryWindow_03") # Prepare for next test DeleteAllPlots() DeleteWindow() SetActiveWindow(3) DeleteWindow() SetActiveWindow(1) DeleteAllPlots() def TestTimeVaryingSIL(): #bug '5473 OpenDatabase(data_path("samrai_test_data/sil_changes/dumps.visit")) cfileName = "./temp.curve" curveFile = open(cfileName, "wt") curveFile.write("#3D surface area\n") nframes = TimeSliderGetNStates() for i in range(nframes): Query("3D surface area") val = GetQueryOutputValue() curveFile.write("%g %g\n" % (i, val)) TimeSliderNextState() curveFile.close() AddWindow() SetActiveWindow(2) DeleteAllPlots() OpenDatabase(cfileName) AddPlot("Curve", "3D surface area") DrawPlots() SetActiveWindow(1) # Go ahead and use default plot for now. qt = GetQueryOverTimeAttributes() qt.timeType = qt.Timestep qt.createWindow = 0 qt.windowId = 2 SetQueryOverTimeAttributes(qt) QueryOverTime("3D surface area") SetActiveWindow(2) InitAnnotation() cv = GetViewCurve(); cv.domainCoords = (-0.534115, 10.5341) cv.rangeCoords = (4029.87, 5856.13) SetViewCurve(cv) SetActivePlots((0, 1)) c = CurveAttributes() c.showPoints = 1 SetPlotOptions(c) Query("Area Between Curves") s = GetQueryOutputString() text = CreateAnnotationObject("Text2D") text.text = s text.height = 0.02 text.position = (0.55, 0.4) Test("TimeQuery_sil_01") text.Delete() os.unlink(cfileName) # Prepare for next test DeleteAllPlots() SetActiveWindow(2) DeleteWindow() SetActiveWindow(1) DeleteAllPlots() def TestQueryAfterQueryOverTime(): # bug '5823 OpenDatabase(silo_data_path("wave_tv.visit")) SetTimeSliderState(17) ReOpenDatabase(silo_data_path("wave_tv.visit")) AddPlot("Pseudocolor", "transient") DrawPlots() QueryOverTime("Volume") Query("Volume") s = GetQueryOutputString() QueryOverTime("Max") Query("Max") s = s + GetQueryOutputString() SetActiveWindow(2) DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() # bug '6042 OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "pressure") DrawPlots() TurnMaterialsOn() QueryOverTime("3D surface area", stride=10) SetActiveWindow(2) DeleteAllPlots() SetActiveWindow(1) Query("3D surface area") s = s + GetQueryOutputString() TestText("QueryAfterQueryOverTime", s) SetActiveWindow(2) DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestMili(): # bug '6430 OpenDatabase(data_path("mili_test_data/single_proc/m_plot.mili")) AddPlot("Pseudocolor", "Primal/node/nodvel/vz") DrawPlots() ResetQueryOverTimeAttributes() QueryOverTime("Volume") SetActiveWindow(2) ResetView() InitAnnotation() Test("TimeQuery_mili_01") DeleteAllPlots() SetActiveWindow(1) QueryOverTime("Max") SetActiveWindow(2) InitAnnotation() Test("TimeQuery_mili_02") DeleteAllPlots() SetActiveWindow(1) p = GetPickAttributes() p.doTimeCurve = 1 p.timePreserveCoord = 0 SetPickAttributes(p) NodePick(122, 161) p.doTimeCurve = 0 SetPickAttributes(p) SetActiveWindow(2) InitAnnotation() Test("TimeQuery_mili_03") DeleteAllPlots() SetActiveWindow(1) qvars = ("Primal/shell/edv1", "Primal/shell/edv2") QueryOverTime("TrajectoryByZone", element=242, vars=qvars) SetActiveWindow(2) ResetView() InitAnnotation() Test("TimeQuery_mili_04") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def MultiVarTimePick(): OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "pressure") DrawPlots() pa = GetPickAttributes() pa.doTimeCurve = 1 pa.timeCurveType = pa.Single_Y_Axis SetPickAttributes(pa) vars =("pressure", "v", "direction_magnitude") PickByNode(8837, vars) SetActiveWindow(2); InitAnnotation() Test("TimePick_MultiVar_01") DeleteAllPlots() SetActiveWindow(1) pa.timeCurveType = pa.Multiple_Y_Axes SetPickAttributes(pa) PickByNode(8837, vars) SetActiveWindow(2); Test("TimePick_MultiVar_02") DeleteAllPlots() # remove plots from window 1 SetActiveWindow(1) DeleteAllPlots() OpenDatabase(data_path("mili_test_data/single_proc/m_plot.mili")) AddPlot("Pseudocolor", "Primal/shell/inteng") DrawPlots() pa.timePreserveCoord = 0 pa.timeCurveType = pa.Single_Y_Axis SetPickAttributes(pa) vars = ("default", "Primal/shell/normal_magnitude") PickByZone(233, vars) SetActiveWindow(2); Test("TimePick_MultiVar_03") DeleteAllPlots() SetActiveWindow(1) pa.timeCurveType = pa.Multiple_Y_Axes SetPickAttributes(pa) PickByZone(233, vars) SetActiveWindow(2); Test("TimePick_MultiVar_04") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestPickRangeTimeQuery(): OpenDatabase(silo_data_path("wave_tv.visit")) SetTimeSliderState(17) AddPlot("Pseudocolor", "v") DrawPlots() pickAtts = GetPickAttributes() pickAtts.doTimeCurve = 0 pickAtts.variables = ("default", "v") pickAtts.timeCurveType = pickAtts.Single_Y_Axis SetPickAttributes(pickAtts) # # Return the curves without plotting, and show # highlights. # pickAtts.showPickHighlight = 1 SetPickAttributes(pickAtts) options = {} options["pick_range"] = "100-105, 100, 1" options["do_time"] = 0 options["return_curves"] = 1 output_dict = PickByZone(options) s = str(output_dict) Test("TimePickRange_00") TestText("TimePickRangeDict_00",s) ClearPickPoints() # # Plot the curves, but don't return them. # pickAtts.showPickHighlight = 0 SetPickAttributes(pickAtts) options = {} options["pick_range"] = "100-105, 100, 1" options["do_time"] = 1 options["return_curves"] = 0 options["start_time"] = 10 options["end_time"] = 14 options["stride"] = 2 output_dict = PickByNode(options) s = str(output_dict) SetActiveWindow(2) Test("TimePickRange_01") TestText("TimePickRangeDict_01",s) ClearPickPoints() SetActiveWindow(1) # # Plot the curves, and return them. # pickAtts.showPickHighlight = 0 SetPickAttributes(pickAtts) options = {} options["pick_range"] = "100-105" options["do_time"] = 1 options["return_curves"] = 1 options["start_time"] = 20 options["end_time"] = 60 options["stride"] = 2 output_dict = PickByNode(options) s = str(output_dict) SetActiveWindow(2) Test("TimePickRange_02") TestText("TimePickRangeDict_02",s) SetActiveWindow(1) ClearPickPoints() DeleteAllPlots() ResetPickLetter() SetActiveWindow(1) ClearPickPoints() DeleteAllPlots() ResetPickLetter() def TestReturnValue(): # # There used to be a bug where the return value # from previous picks would propagate to the following # time query. Let's make sure this isn't re-introduced. # OpenDatabase(silo_data_path("wave.visit")) AddPlot("Pseudocolor", "v") DrawPlots() pickAtts = GetPickAttributes() pickAtts.doTimeCurve = 0 pickAtts.variables = ("default", "v") pickAtts.timeCurveType = pickAtts.Single_Y_Axis SetPickAttributes(pickAtts) time1 = NodePick(coord=(3, .5, 3), do_time=1, start_time=0, end_time=70) no_time = NodePick(coord=(2, .2, 2), do_time=0) time2 = NodePick(coord=(3, .5, 3), do_time=1, start_time=0, end_time=70) AssertEqual("Pick Updated", type(time1), type(time2)) ClearPickPoints() DeleteAllPlots() ResetPickLetter() def TestDirectDatabaseRoute(): # # Cleanup any plots that haven't been deleted yet. # SetActiveWindow(2) DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() OpenDatabase(data_path("mili_test_data/single_proc/d3samp6_10_longrun.plt.mili")) AddPlot("Pseudocolor", "Primal/Shared/edrate") DrawPlots() element = 116 domain = 0 element = 116 preserve = 0 start = 0 stride = 1 stop = 10000 vars = ("default") # # First, let's time the query. This hard to predict because of it being dependent # on the machine's architecture, but we can make an educated guess. The direct # route should take under a second, and the old route should take at least # 30 seconds. We'll give ourselves a threshold of 10 seconds to be safe. # import time thresh = 10 timer_start = time.time() PickByZone(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) timer_stop = time.time() res = timer_stop - timer_start AssertLTE("Timing Direct Database Query", res, thresh) SetActiveWindow(2) Test("Direct_Database_Route_00") DeleteAllPlots() SetActiveWindow(1) # # Like the original QOT, the direct route creates a clone, but this clone # differs in that its resulting dataset will NOT match the original dataset. # Let's make sure the active dataset is being updated to the old plot by # performing a new pick (not through time). # PickByZone(do_time=0, domain=domain, element=element) Test("Direct_Database_Route_01") # # Test basic range settings. # start = 100 stop = 900 stride = 10 PickByZone(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) stride = 1 start = 0 stop = 10000 SetActiveWindow(2) Test("Direct_Database_Route_02") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() AddPlot("Pseudocolor", "Primal/node/nodacc/ax") DrawPlots() # This tests two things: # 1. Plotting a node pick curve. # 2. Using a direct route query on magnitude expression. # vars=("Primal/node/nodacc_magnitude") PickByNode(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) SetActiveWindow(2) Test("Direct_Database_Route_03") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() OpenDatabase(data_path("mili_test_data/single_proc/m_plot.mili")) AddPlot("Pseudocolor", "Primal/brick/stress/sx") DrawPlots() # # Test plotting multiple variables at once. # element = 489 vars=("Primal/brick/stress/sz", "Primal/brick/stress/sx") PickByZone(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) SetActiveWindow(2) Test("Direct_Database_Route_04") DeleteAllPlots() SetActiveWindow(1) # # Testing the multi curve plot. # PickByZone(curve_plot_type=1, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) SetActiveWindow(2) Test("Direct_Database_Route_05") DeleteAllPlots() SetActiveWindow(1) # # Test multi-domain data. # DeleteAllPlots() OpenDatabase(data_path("mili_test_data/multi_proc/d3samp6.plt.mili")) AddPlot("Pseudocolor", "Primal/Shared/edrate") DrawPlots() domain = 1 element = 11 vars = ("default") PickByZone(curve_plot_type=0, vars=vars, do_time=1, domain=domain, element=element, preserve_coord=preserve, end_time=stop, start_time=start, stride=stride) SetActiveWindow(2) Test("Direct_Database_Route_06") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() # # Now let's test a variable that is not defined on all # timesteps. # db = silo_data_path("wave_tv*.silo database") OpenDatabase(db) SetTimeSliderState(17) ReOpenDatabase(db) AddPlot("Pseudocolor", "transient") DrawPlots() pick = GetPickAttributes() pick.doTimeCurve = 1 pick.timePreserveCoord = 0 SetPickAttributes(pick) PickByNode(element=327) pick.doTimeCurve = 0 pick.timePreserveCoord = 1 SetPickAttributes(pick) SetActiveWindow(2) InitAnnotation() Test("Direct_Database_Route_07") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() # # Next, let's test a vector plot. The vectors should be reduced # to their magnitudes. # AddPlot("Vector", "direction") DrawPlots() pick = GetPickAttributes() pick.doTimeCurve = 1 pick.timePreserveCoord = 0 SetPickAttributes(pick) PickByNode(element=10) SetActiveWindow(2) InitAnnotation() Test("Direct_Database_Route_08") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() def TestOperatorCreatedVar(): OpenDatabase(silo_data_path("wave.visit")) DefineVectorExpression("normals", "cell_surface_normal(quadmesh)") AddPlot("Pseudocolor", "operators/Flux/quadmesh") fluxAtts = FluxAttributes() fluxAtts.flowField = "direction" SetOperatorOptions(fluxAtts) AddOperator("Slice") sliceAtts = SliceAttributes() sliceAtts.axisType = sliceAtts.Arbitrary sliceAtts.normal = (0, 1, 0) sliceAtts.originType = sliceAtts.Percent sliceAtts.originPercent = 50 sliceAtts.project2d = 0 SetOperatorOptions(sliceAtts) AddOperator("DeferExpression") deferAtts = DeferExpressionAttributes() deferAtts.exprs = ("normals") SetOperatorOptions(deferAtts) # we want slice before flux, so demote it DemoteOperator(1) DrawPlots() qt = GetQueryOverTimeAttributes() qt.timeType = qt.Cycle SetQueryOverTimeAttributes(qt) QueryOverTime("Weighted Variable Sum") SetActiveWindow(2) InitAnnotation() Test("OperatorCreatedVar_01") DeleteAllPlots() SetActiveWindow(1) DeleteAllPlots() DeleteExpression("normals") CloseDatabase(silo_data_path("wave.visit")) def TimeQueryMain(): TestAllTimeQueries() TestFilledBoundary() TestOperators() TestExpressions() TestTransientVariable() TestSpecifyTimeQueryWindow() TestTimeVaryingSIL() TestQueryAfterQueryOverTime() TestMili() MultiVarTimePick() TestPickRangeTimeQuery() TestReturnValue() TestDirectDatabaseRoute() TestOperatorCreatedVar() # main InitAnnotation() SetCurvePlotDefaults() TimeQueryMain() Exit()
py
1a55d8e56ee191f0fafbe8e602798de989b8aaa6
import numpy as np """ t: 0...1 x: -1...1 dz/dt = x dz/dx = (1-t)*x z|t>1 = 1.0 """ def generator(mbsize): delta = 0.2 while True: s0 = np.random.random((mbsize,2)) s0[:,0] = s0[:,0]*2-1 x0 = s0[:,0] t0 = s0[:,1] direction = np.random.randint(0, 4, mbsize) s1 = s0.copy() s1[direction==0, 0] += delta # x+ s1[direction==1, 0] -= delta # x- s1[direction==2, 1] += delta # t+ s1[direction==3, 1] -= delta # t- x1 = s1[:,0] t1 = s1[:,1] dz = np.empty_like(x0) dz[direction==0] = ((1-t0)*x0*delta)[direction==0] dz[direction==1] = (-(1-t0)*x0*delta)[direction==1] dz[direction==2] = (x0*delta)[direction==2] dz[direction==3] = (-x0*delta)[direction==3] boundary = (t1 > 1.0) # * (np.abs(x1) < 0.1) dz[boundary] = 1.0 yield [s0, s1, np.asarray(boundary, dtype=np.float32)], dz def sample(nx, nt, model): x = np.arange(-1.0, 1.0, 2.0/nx) t = np.arange(-0.1, 1.1, 1.2/nt) xg, tg = np.meshgrid(x, t) s = np.array((xg.reshape((-1,)),tg.reshape((-1,)))).T print "s:",s.shape,s z = model.predict_on_batch(s) return xg, tg, z[:,0].reshape(xg.shape)
py
1a55da32a6ddeb546a84ada4134fa554acd5e731
from pydub import AudioSegment import requests import easygui # get the stuff for making the mp3 text = easygui.enterbox(msg='Enter the text for the spooky man to say.', title='Damon, I love you!', default='', strip=True) headers = { 'Connection': 'keep-alive', 'Accept': '*/*', 'Origin': 'https://fasthub.net', 'X-Requested-With': 'XMLHttpRequest', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/79.0.3945.117 Safari/537.36', 'Content-Type': 'application/x-www-form-urlencoded', 'Sec-Fetch-Site': 'same-origin', 'Sec-Fetch-Mode': 'cors', 'Referer': 'https://fasthub.net/', 'Accept-Encoding': 'gzip, deflate, br', 'Accept-Language': 'en-US,en;q=0.9', } # fasthub.net macintalk voice whisper data = { 'text': text, 'lang': 'en-us en en-US', 'langTrans': 'en-us en en-US', 'voiceType': 'whisper', 'amplitude': '109', 'pitch': '51', 'speed': '80', 'repeat': '0' } response = requests.post('https://fasthub.net/plauder', headers=headers, data=data) mp3stop = response.text.split('#') mp3url = 'https://fasthub.net/speak/' + mp3stop[0] + '.mp3' mp3 = requests.get(mp3url, allow_redirects=True) open('mp3ofVoice.mp3', 'wb').write(mp3.content) #Put it together voice = easygui.fileopenbox(title='Choose speech audio') mp3fromweb = AudioSegment.from_mp3("mp3ofVoice.mp3") mp3voice = AudioSegment.from_mp3(voice) mp3guitar = AudioSegment.from_mp3("guitarwail.mp3") length=len(mp3voice) combined = mp3guitar.overlay(mp3voice, gain_during_overlay=-12) final = mp3fromweb + combined gaming = final.export(text+".mp3", format="mp3")
py
1a55da3a2024b2571e5347a6468ab60ad8caffd5
#!/usr/bin/env python # encoding: utf-8 # Modifications copyright Amazon.com, Inc. or its affiliates. # Carlos Rafael Giani, 2006 (dv) # Tamas Pal, 2007 (folti) # Nicolas Mercier, 2009 # Matt Clarkson, 2012 import os, sys, re, tempfile from waflib import Utils, Task, Logs, Options, Errors from waflib.Logs import debug, warn from waflib.Tools import c_preproc, ccroot, c, cxx, ar from waflib.Configure import conf from waflib.TaskGen import feature, after, after_method, before_method import waflib.Node # The compiler will issue a warning if some flags are specified more than once. # The command is constructed from subsets that may have conflicting flags # This list of lists contains all the set of flags that are made unique UNIQUE_FLAGS_LIST = [ ["/arch:IA32", "/arch:SSE", "/arch:SSE2", "/arch:AVX", "/arch:AVX2"], # code gen for arch ["/clr", "/clr:initialAppDomain", "/clr:noAssembly", "/clr:nostdlib", "/clr:pure", "/clr:safe"], # common language runtime ["/EHs", "/EHa", "/EHac", "/EHsc"], # exception handling ["/errorReport:none", "/errorReport:prompt", "/errorReport:queue", "/errorReport:send"], # report internal compiler errors ["/favor:blend", "/favor:ATOM", "/favor:AMD64", "/favor:INTEL64"], # optimize for arch ["/fp:precise", "/fp:except", "/fp:except-", "/fp:fast", "/fp:strict"], # floating point behavior ["/Gd", "/Gr", "/Gv", "/Gz"], # calling convention ["/GL", "/GL-"], # whole program optimization ["/GR", "/GR-"], # runtime type information ["/GS", "/GS-"], # buffer security checks ["/Gs", "/Gs0", "/Gs4096"], # control stack checking calls ["/Gw", "/Gw-"], # global data optimization ["/Gy", "/Gy-"], # enable function level linking ["/O1", "/O2", "/Od", "/Ox"], # optimization level ["/Ob0", "/Ob1", "/Ob2"], # inline expansion ["/Oi", "/Oi-"], # intrinsics ["/Os", "/Ot"], # favor small code/ fast code ["/Oy", "/Oy-"], # frame pointer omission ["/MD", "/MT", "/LD", "/MDd", "/MTd", "/LDd"], # runtime library ["/RTC1","/RTCc","/RTCs","/RTCu"], # runtime error checks ["/volatile","/volatile:iso", "/volatile:ms"], # volatile keyword handling ["/vd0", "/vd1", "/vd2"], # disable construction displacements ["/ZW", "/ZW:nostdlib"], # windows runtime compilation ["/sdl", "/sdl-"], # enable additional security checks ["/vmb", "/vmg"], # always declare a class before using a pointer to it ["/vmm", "/vms", "/vmv"], # inheritance of yet-to-be-defined classes ["/W0", "/W1", "/W2", "/W3", "/W4"], # error level ["/WX", "/WX-", "/WX:NO"], # treat warnings as errors ["/Z7", "/Zi", "/ZI"], # debug information format ["/Za", "/Ze"], # disable language extensions ["/Zc:forScope", "/Zc:forScope-"], # for loop scope conformance ["/Zc:wchar_t", "/Zc:wchar_t-"], # wchar_t maps to __wchar_t ["/Zc:auto", "/Zc:auto-"], # deduce variable type ["/Zc:trigraphs", "/Zc:trigraphs-"], # character substitutions if character isn't in charpage ["/Zc:rvalueCast", "/Zc:rvalueCast-"], # enforce type conversion rules ["/Zc:strictStrings", "/Zc:strictStrings-"], # disable string literal type conversion ["/Zc:inline", "/Zc:inline-"], # remove unreferenced comdat sections ["/Zp", "/Zp:1", "/Zp:2", "/Zp:4", "/Zp:8", "/Zp:16"] # struct member alignment ] # convert list of flags that must be unique to dictionary UNIQUE_FLAGS_DICT = {} for idx, flags in enumerate(UNIQUE_FLAGS_LIST): assert(isinstance(flags,list)) for flag in flags: UNIQUE_FLAGS_DICT[flag] = idx # all flags from the list have the same value, just using index as a dummy unique val def exec_mf(self): """ Create the manifest file """ env = self.env mtool = env['MT'] if not mtool: return 0 self.do_manifest = False outfile = self.outputs[0].abspath() manifest = None for out_node in self.outputs: if out_node.name.endswith('.manifest'): manifest = out_node.abspath() break if manifest is None: # Should never get here. If we do, it means the manifest file was # never added to the outputs list, thus we don't have a manifest file # to embed, so we just return. return 0 # embedding mode. Different for EXE's and DLL's. # see: http://msdn2.microsoft.com/en-us/library/ms235591(VS.80).aspx mode = '' if 'cprogram' in self.generator.features or 'cxxprogram' in self.generator.features: mode = '1' elif 'cshlib' in self.generator.features or 'cxxshlib' in self.generator.features: mode = '2' debug('msvc: embedding manifest in mode %r' % mode) lst = [] lst.append(env['MT']) lst.extend(Utils.to_list(env['MTFLAGS'])) lst.extend(['-manifest',manifest]) if hasattr(self.generator, 'additional_manifests'): if not isinstance(self.generator.additional_manifests, list): # the additional manifests could be a string self.generator.additional_manifests = [self.generator.additional_manifests] for element in self.generator.additional_manifests: # add each one with its own path lst.append( self.generator.path.abspath() + '/' + element) lst.append('-outputresource:%s;%s' % (outfile, mode)) # note that because we call exec_command and give it a list of params, these become the subprocess argv* # and thus it is not necessary for us to escape them with quotes or anything like that. lst = [lst] return self.exec_command(*lst) def quote_response_command(self, flag): flag = flag.replace('\\', '\\\\') # escape any backslashes flag = flag.replace('"', '\\"') # escape any quotes if flag.find(' ') > -1: for x in ('/LIBPATH:', '/IMPLIB:', '/OUT:', '/I'): if flag.startswith(x): flag = '%s"%s"' % (x, flag[len(x):]) break else: flag = '"%s"' % flag return flag def exec_response_command(self, cmd, **kw): # not public yet try: tmp = None if sys.platform.startswith('win') and isinstance(cmd, list) and len(' '.join(cmd)) >= 16384: tmp_files_folder = self.generator.bld.get_bintemp_folder_node().make_node('TempFiles') program = cmd[0] #unquoted program name, otherwise exec_command will fail cmd = [self.quote_response_command(x) for x in cmd] # Determine an appropriate filename for the output file (displayed by Incredibuild) if self.outputs and len(self.outputs[0].abspath()): tmp_file_name = os.path.basename(self.outputs[0].abspath()) else: # strips quotes off the FRONT in case its a string like '"something="somethingelse"' which would cause issues out_file = os.path.split(cmd[-1].strip('"')) tmp_file_name = out_file[1] (fd, tmp) = tempfile.mkstemp(prefix=tmp_file_name, dir=tmp_files_folder.abspath()) os.write(fd, '\r\n'.join(cmd[1:]).encode()) os.close(fd) cmd = [program, '@' + tmp] # no return here, that's on purpose ret = self.generator.bld.exec_command(cmd, **kw) finally: if tmp: try: os.remove(tmp) except OSError: pass # anti-virus and indexers can keep the files open -_- return ret ########## stupid evil command modification: concatenate the tokens /Fx, /doc, and /x: with the next token def exec_command_msvc(self, *k, **kw): """ Change the command-line execution for msvc programs. Instead of quoting all the paths and keep using the shell, we can just join the options msvc is interested in """ # If bullseye coverage tool is in the environment, and we are executing the CXX or C compiler, then # we prefix with the bullseye coverage tool. Otherwise, just run the regular tools. # Ideally we need a way to do this cleanly on other platforms, but this implies a post hook of some kind to change # the CXX task run_str, and I could not immediately see a clean way to do that, especially conditionally as # we need to do below. if 'BULL_COVC' in self.env: excluded_modules = getattr(self.generator.bld.options,'bullseye_excluded_modules',"").replace(' ', '').split(',') if "" in excluded_modules: excluded_modules.remove("") # Figure out which package we are building, and check if it is in the list of packages we want coverage for # If the package list is empty, then we do coverage building for the whole project. # This applies to the CC/CXX steps. We must always link with coverage if we are going to get measurements. included_modules = getattr(self.generator.bld.options,'bullseye_included_modules',"").replace(' ', '').split(',') if "" in included_modules: included_modules.remove("") if self.generator.name not in excluded_modules and (not included_modules or self.generator.name in included_modules): if k[0][0] == self.env['CXX'] or k[0][0] == self.env['CC']: k = ([self.env['BULL_COVC'], '--file', self.env['BULL_COV_FILE']] + k[0],) # We must link with bullseye regardless of which way the project is set (with or without coverage) to avoid link errors with included libraries. if 'BULL_COVLINK' in self.env and (k[0][0] == self.env['LINK'] or k[0][0] == self.env['LINK_CXX'] or k[0][0] == self.env['LINK_CC']): k = ([self.env['BULL_COVLINK']] + k[0],) # 1) Join options that carry no space are joined e.g. /Fo FilePath -> /FoFilePath # 2) Join options that carry a ':' as last character : e.g. /OUT: FilePath -> /OUT:FilePath if isinstance(k[0], list): lst = [] carry = '' join_with_next_list_item = ['/Fo', '/doc', '/Fi', '/Fa'] for a in k[0]: if a in join_with_next_list_item or a[-1] == ':': carry = a else: lst.append(carry + a) carry = '' k = [lst] bld = self.generator.bld try: if not kw.get('cwd', None): kw['cwd'] = bld.cwd except AttributeError: bld.cwd = kw['cwd'] = bld.variant_dir ret = self.exec_response_command(k[0], **kw) if not ret and getattr(self, 'do_manifest', None): ret = self.exec_mf() return ret def wrap_class(class_name): """ Manifest file processing and @response file workaround for command-line length limits on Windows systems The indicated task class is replaced by a subclass to prevent conflicts in case the class is wrapped more than once """ cls = Task.classes.get(class_name, None) if not cls: return derived_class = type(class_name, (cls,), {}) def exec_command(self, *k, **kw): if self.env['CC_NAME'] == 'msvc': return self.exec_command_msvc(*k, **kw) else: return super(derived_class, self).exec_command(*k, **kw) # Chain-up monkeypatch needed since exec_command() is in base class API derived_class.exec_command = exec_command # No chain-up behavior needed since the following methods aren't in # base class API derived_class.exec_response_command = exec_response_command derived_class.quote_response_command = quote_response_command derived_class.exec_command_msvc = exec_command_msvc derived_class.exec_mf = exec_mf return derived_class for k in 'c cxx cprogram cxxprogram cshlib cxxshlib cstlib cxxstlib'.split(): wrap_class(k) @feature('cxxprogram', 'cxxshlib', 'cprogram', 'cshlib', 'cxx', 'c') @after_method('apply_incpaths') @after_method('add_pch_to_dependencies') def set_pdb_flags(self): if not 'msvc' in (self.env.CC_NAME, self.env.CXX_NAME): return if not self.bld.is_option_true('generate_debug_info'): return # find the last debug symbol type of [/Z7, /Zi, /ZI] applied in cxxflags. last_debug_option = '' for opt in reversed(self.env['CXXFLAGS']): if opt in ['/Z7', '/Zi', '/ZI']: last_debug_option = opt break if last_debug_option in ['/Zi', '/ZI']: # Compute PDB file path pdb_folder = self.path.get_bld().make_node(str(self.idx)) pdb_cxxflag = '/Fd{}'.format(pdb_folder.abspath()) # Make sure the PDB folder exists pdb_folder.mkdir() # Add CXX and C Flags for t in getattr(self, 'compiled_tasks', []): t.env.append_value('CXXFLAGS', pdb_cxxflag) t.env.append_value('CFLAGS', pdb_cxxflag) # Add PDB also to Precompiled header. pch_task is not in compiled_tasks if getattr(self, 'pch_task', None): self.pch_task.env.append_value('CXXFLAGS', pdb_cxxflag) self.pch_task.env.append_value('CFLAGS', pdb_cxxflag) def is_node_qt_rc_generated(self,node): if node.is_child_of(self.bld.bldnode): raw_name = os.path.splitext(os.path.basename(node.abspath()))[0] if raw_name.endswith('_rc'): return True return False @feature('cxx') @before_method('process_source') def add_pch_msvc(self): if not 'msvc' in (self.env.CC_NAME, self.env.CXX_NAME): return if Utils.unversioned_sys_platform() != 'win32': return # Create Task to compile PCH if not getattr(self, 'pch', ''): return if not self.bld.is_option_true('use_precompiled_header'): return # Always assume only one PCH File pch_source = self.to_nodes(self.pch)[0] self.pch_header = pch_source.change_ext('.h') self.pch_header_name = os.path.split(self.pch_header.abspath())[1] # Generate PCH per target project idx # Avoids the case where two project have the same PCH output path but compile the PCH with different compiler options i.e. defines, includes, ... self.pch_file = pch_source.change_ext('.%d.pch' % self.idx) self.pch_object = pch_source.change_ext('.%d.obj' % self.idx) # Create PCH Task self.pch_task = pch_task = self.create_task('pch_msvc', pch_source, [self.pch_object, self.pch_file]) pch_task.env.append_value('PCH_NAME', self.pch_header_name) pch_task.env.append_value('PCH_FILE', '/Fp' + self.pch_file.abspath()) pch_task.env.append_value('PCH_OBJ', self.pch_object.abspath()) @feature('cxx') @after_method('apply_incpaths') def add_pch_to_dependencies(self): if not 'msvc' in (self.env.CC_NAME, self.env.CXX_NAME): return # Create Task to compile PCH if not getattr(self, 'pch_object', ''): return pch_abs_path = self.pch_file.abspath() pch_flag = '/Fp' + pch_abs_path pch_header = '/Yu' + self.pch_header_name # Append PCH File to each compile task for t in getattr(self, 'compiled_tasks', []): input_file = t.inputs[0].abspath() file_specific_settings = self.file_specifc_settings.get(input_file, None) if file_specific_settings and 'disable_pch' in file_specific_settings and file_specific_settings['disable_pch'] == True: continue # Don't append PCH to files for which we don't use them if getattr(t, 'disable_pch', False) == True: continue # Don't append PCH to files for which we don't use them if t.__class__.__name__ in ['cxx','qxx']: #Is there a better way to ensure cpp only? if is_node_qt_rc_generated(self,t.inputs[0]): t.env.append_value('CXXFLAGS', '/Y-') else: t.env.append_value('CXXFLAGS', pch_header) t.env.append_value('CXXFLAGS', pch_flag) # Append PCH to task input to ensure correct ordering t.dep_nodes.append(self.pch_object) # Append the pch object to the link task if getattr(self, 'link_task', None): self.link_task.inputs.append(self.pch_object) class pch_msvc(waflib.Task.Task): run_str = '${CXX} ${PCH_CREATE_ST:PCH_NAME} ${CXXFLAGS} ${CPPPATH_ST:INCPATHS} ${DEFINES_ST:DEFINES} ${SRC} ${CXX_TGT_F}${PCH_OBJ} ${PCH_FILE}' scan = c_preproc.scan color = 'BLUE' def exec_command(self, *k, **kw): return exec_command_msvc(self, *k, **kw) def exec_response_command(self, *k, **kw): return exec_response_command(self, *k, **kw) def quote_response_command(self, *k, **kw): return quote_response_command(self, *k, **kw) def exec_mf(self, *k, **kw): return exec_mf(self, *k, **kw) def strip_all_but_last_dependent_options(flags): seen = set() delete = [] for idx, flag in enumerate(reversed(flags)): try: val = UNIQUE_FLAGS_DICT[flag] if val not in seen: seen.add(val) continue # mark for delete delete.append(len(flags) -1 -idx) except: pass for idx in reversed(delete): del flags[idx] def verify_options_common(env): strip_all_but_last_dependent_options(env.CFLAGS) strip_all_but_last_dependent_options(env.CXXFLAGS) @feature('c', 'cxx') @after_method('apply_link') @after_method('add_pch_to_dependencies') def verify_compiler_options_msvc(self): if not 'msvc' in (self.env.CC_NAME, self.env.CXX_NAME): return if Utils.unversioned_sys_platform() != 'win32': return # Verify compiler option (strip all but last for dependant options) for t in getattr(self, 'compiled_tasks', []): verify_options_common(t.env) # Verify pch_task options (strip all but last for dependant options) if hasattr(self, 'pch_task'): verify_options_common(self.pch_task.env) # Strip unsupported ARCH linker option if hasattr(self, 'link_task'): del self.link_task.env['ARCH'] ############################################################################# # Code for auto-recognition of Visual Studio Compiler and Windows SDK Path # Taken from the original WAF code ############################################################################# all_msvc_platforms = [ ('x64', 'amd64')] """List of msvc platforms""" @conf def auto_detect_msvc_compiler(conf, version, target, windows_kit): conf.env['MSVC_VERSIONS'] = [version] conf.env['MSVC_TARGETS'] = [target] conf.autodetect(windows_kit, True) conf.find_msvc() @conf def autodetect(conf, windows_kit, arch = False): v = conf.env if arch: compiler, version, path, includes, libdirs, arch = conf.detect_msvc(windows_kit, True) v['DEST_CPU'] = arch else: compiler, version, path, includes, libdirs = conf.detect_msvc(windows_kit) v['PATH'] = path v['INCLUDES'] = includes v['LIBPATH'] = libdirs v['MSVC_COMPILER'] = compiler try: v['MSVC_VERSION'] = float(version) except Exception: v['MSVC_VERSION'] = float(version[:-3]) @conf def detect_msvc(conf, windows_kit, arch = False): versions = get_msvc_versions(conf, windows_kit) return setup_msvc(conf, versions, arch) def setup_msvc(conf, versions, arch = False): platforms = getattr(Options.options, 'msvc_targets', '').split(',') if platforms == ['']: platforms=Utils.to_list(conf.env['MSVC_TARGETS']) or [i for i,j in all_msvc_platforms] desired_versions = getattr(Options.options, 'msvc_version', '').split(',') if desired_versions == ['']: desired_versions = conf.env['MSVC_VERSIONS'] or [v for v,_ in versions][::-1] versiondict = dict(versions) for version in desired_versions: try: targets = dict(versiondict [version]) for target in platforms: try: arch,(p1,p2,p3) = targets[target] compiler,revision = version.rsplit(' ', 1) if arch: return compiler,revision,p1,p2,p3,arch else: return compiler,revision,p1,p2,p3 except KeyError: continue except KeyError: continue conf.fatal('msvc: Impossible to find a valid architecture for building (in setup_msvc)') MSVC_INSTALLED_VERSIONS = {} @conf def get_msvc_versions(conf, windows_kit): """ :return: list of compilers installed :rtype: list of string """ global MSVC_INSTALLED_VERSIONS if not windows_kit in MSVC_INSTALLED_VERSIONS: MSVC_INSTALLED_VERSIONS[windows_kit] = '' if len(MSVC_INSTALLED_VERSIONS[windows_kit]) == 0: lst = [] conf.gather_wsdk_versions(windows_kit, lst) conf.gather_msvc_versions(windows_kit, lst) MSVC_INSTALLED_VERSIONS[windows_kit] = lst return MSVC_INSTALLED_VERSIONS[windows_kit] def gather_msvc_detected_versions(): #Detected MSVC versions! version_pattern = re.compile('^(\d\d?\.\d\d?)(Exp)?$') detected_versions = [] for vcver,vcvar in [('VCExpress','Exp'), ('VisualStudio','')]: try: prefix = 'SOFTWARE\\Wow6432node\\Microsoft\\'+vcver all_versions = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, prefix) except WindowsError: try: prefix = 'SOFTWARE\\Microsoft\\'+vcver all_versions = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, prefix) except WindowsError: continue index = 0 while 1: try: version = Utils.winreg.EnumKey(all_versions, index) except WindowsError: break index = index + 1 match = version_pattern.match(version) if not match: continue else: versionnumber = float(match.group(1)) detected_versions.append((versionnumber, version+vcvar, prefix+"\\"+version)) def fun(tup): return tup[0] detected_versions.sort(key = fun) return detected_versions @conf def gather_msvc_versions(conf, windows_kit, versions): vc_paths = [] for (v,version,reg) in gather_msvc_detected_versions(): try: try: msvc_version = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, reg + "\\Setup\\VC") except WindowsError: msvc_version = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, reg + "\\Setup\\Microsoft Visual C++") path,type = Utils.winreg.QueryValueEx(msvc_version, 'ProductDir') vc_paths.append((version, os.path.abspath(str(path)))) except WindowsError: continue for version,vc_path in vc_paths: vs_path = os.path.dirname(vc_path) conf.gather_msvc_targets(versions, version, windows_kit, vc_path) pass @conf def gather_msvc_targets(conf, versions, version, windows_kit, vc_path): #Looking for normal MSVC compilers! targets = [] if os.path.isfile(os.path.join(vc_path, 'vcvarsall.bat')): for target,realtarget in all_msvc_platforms[::-1]: try: targets.append((target, (realtarget, conf.get_msvc_version('msvc', version, target, windows_kit, os.path.join(vc_path, 'vcvarsall.bat'))))) except conf.errors.ConfigurationError: pass elif os.path.isfile(os.path.join(vc_path, 'Common7', 'Tools', 'vsvars32.bat')): try: targets.append(('x86', ('x86', conf.get_msvc_version('msvc', version, 'x86', windows_kit, os.path.join(vc_path, 'Common7', 'Tools', 'vsvars32.bat'))))) except conf.errors.ConfigurationError: pass elif os.path.isfile(os.path.join(vc_path, 'Bin', 'vcvars32.bat')): try: targets.append(('x86', ('x86', conf.get_msvc_version('msvc', version, '', windows_kit, os.path.join(vc_path, 'Bin', 'vcvars32.bat'))))) except conf.errors.ConfigurationError: pass if targets: versions.append(('msvc '+ version, targets)) def _get_prog_names(conf, compiler): if compiler=='intel': compiler_name = 'ICL' linker_name = 'XILINK' lib_name = 'XILIB' else: # assumes CL.exe compiler_name = 'CL' linker_name = 'LINK' lib_name = 'LIB' return compiler_name, linker_name, lib_name @conf def get_msvc_version(conf, compiler, version, target, windows_kit, vcvars): """ Create a bat file to obtain the location of the libraries :param compiler: ? :param version: ? :target: ? :vcvars: ? :return: the location of msvc, the location of include dirs, and the library paths :rtype: tuple of strings """ debug('msvc: get_msvc_version: %r %r %r %r', compiler, version, target, windows_kit) batfile = conf.bldnode.make_node('waf-print-msvc.bat') batfile.write("""@echo off set INCLUDE= set LIB= call "%s" %s %s echo PATH=%%PATH%% echo INCLUDE=%%INCLUDE%% echo LIB=%%LIB%%;%%LIBPATH%% """ % (vcvars,target,windows_kit)) sout = conf.cmd_and_log(['cmd', '/E:on', '/V:on', '/C', batfile.abspath()]) lines = sout.splitlines() if not lines[0]: lines.pop(0) MSVC_PATH = MSVC_INCDIR = MSVC_LIBDIR = None for line in lines: if line.startswith('PATH='): path = line[5:] MSVC_PATH = path.split(';') elif line.startswith('INCLUDE='): MSVC_INCDIR = [i for i in line[8:].split(';') if i] elif line.startswith('LIB='): MSVC_LIBDIR = [i for i in line[4:].split(';') if i] if not MSVC_PATH or not MSVC_INCDIR or not MSVC_LIBDIR: conf.fatal('msvc: Could not find a valid architecture for building (get_msvc_version_3)') # Check if the compiler is usable at all. # The detection may return 64-bit versions even on 32-bit systems, and these would fail to run. env = dict(os.environ) env.update(PATH = path) compiler_name, linker_name, lib_name = _get_prog_names(conf, compiler) cxx = conf.find_program(compiler_name, path_list=MSVC_PATH, silent_output=True) cxx = conf.cmd_to_list(cxx) # delete CL if exists. because it could contain parameters wich can change cl's behaviour rather catastrophically. if 'CL' in env: del(env['CL']) try: try: conf.cmd_and_log(cxx + ['/help'], env=env) except Exception as e: debug('msvc: get_msvc_version: %r %r %r %r -> failure' % (compiler, version, target, windows_kit)) debug(str(e)) conf.fatal('msvc: cannot run the compiler (in get_msvc_version)') else: debug('msvc: get_msvc_version: %r %r %r %r -> OK', compiler, version, target, windows_kit) finally: conf.env[compiler_name] = '' # vcvarsall does not always resolve the windows sdk path with VS2015 + Win10, but we know where it is winsdk_path = _get_win_sdk_path(windows_kit, target) if winsdk_path: MSVC_PATH.append(winsdk_path) return (MSVC_PATH, MSVC_INCDIR, MSVC_LIBDIR) def _get_win_sdk_path(windows_kit, arch): path = _find_win_sdk_root(windows_kit) if path: is_valid, version, bin_path = _is_valid_win_sdk(path, windows_kit.startswith('10'), windows_kit) if is_valid: if version == windows_kit: return str(os.path.join(bin_path, arch)) else: Logs.debug('winsdk: Found a working windows SDK (%s), but it does not match the requested version (%s)' % (version, windows_kit)) return '' def _is_valid_win_sdk(path, is_universal_versioning, desired_version=''): # Successfully installed windows kits have rc.exe. This file is a downstream dependency of vcvarsall.bat. def _check_for_rc_file(path): rc_x64 = os.path.join(path, 'x64\\rc.exe') rc_x86 = os.path.join(path, 'x86\\rc.exe') return os.path.isfile(rc_x64) or os.path.isfile(rc_x86) bin_dir = os.path.join(path, 'bin') include_dir = os.path.join(path, 'include') if is_universal_versioning: potential_sdks = [desired_version] if desired_version else [] if os.path.isdir(include_dir): # lexically sort the 10.xxx versions in reverse so that latest/highest is first potential_sdks += sorted(os.listdir(include_dir), reverse=True) sdk10_versions = [entry for entry in potential_sdks if entry.startswith('10.')] for sub_version in sdk10_versions: sub_version_folder = os.path.join(include_dir, sub_version) if os.path.isdir(os.path.join(sub_version_folder, 'um')): # check for rc.exe in the sub_version folder's bin, or in the root 10 bin, we just need at least one for bin_path in (os.path.join(os.path.join(path, 'bin'), sub_version), bin_dir): if _check_for_rc_file(bin_path): return True, sub_version, bin_path else: if _check_for_rc_file(bin_dir): version = path.split('\\')[-2] return True, version, bin_dir return False, '', '' def _find_win_sdk_root(winsdk_hint): """ Use winreg to find a valid installed windows kit. Returns empty string if no valid version was found. See visual studio compatibility charts here: https://www.visualstudio.com/en-us/productinfo/vs2015-compatibility-vs """ try: installed_roots = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Wow6432node\\Microsoft\\Windows Kits\\Installed Roots') except WindowsError: try: installed_roots = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Microsoft\\Windows Kits\\Installed Roots') except WindowsError: return '' if winsdk_hint.startswith('10'): try: path, type = Utils.winreg.QueryValueEx(installed_roots, 'KitsRoot10') return path except WindowsError: pass elif winsdk_hint.startswith('8'): try: path, type = Utils.winreg.QueryValueEx(installed_roots, 'KitsRoot81') return path except WindowsError: pass return '' @conf def find_valid_wsdk_version(conf): path = _find_win_sdk_root("10") if path: is_valid, version, bin_path = _is_valid_win_sdk(path, True) if is_valid: return version # No root for sdk 10 found, try 8.1 path = _find_win_sdk_root("8.1") if path: is_valid, version, bin_path = _is_valid_win_sdk(path, False) if is_valid: return version return '' @conf def gather_wsdk_versions(conf, windows_kit, versions): """ Use winreg to add the msvc versions to the input list :param versions: list to modify :type versions: list """ version_pattern = re.compile('^v..?.?\...?.?') try: all_versions = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Wow6432node\\Microsoft\\Microsoft SDKs\\Windows') except WindowsError: try: all_versions = Utils.winreg.OpenKey(Utils.winreg.HKEY_LOCAL_MACHINE, 'SOFTWARE\\Microsoft\\Microsoft SDKs\\Windows') except WindowsError: return index = 0 while 1: try: version = Utils.winreg.EnumKey(all_versions, index) except WindowsError: break index = index + 1 if not version_pattern.match(version): continue try: msvc_version = Utils.winreg.OpenKey(all_versions, version) path,type = Utils.winreg.QueryValueEx(msvc_version,'InstallationFolder') except WindowsError: continue if os.path.isfile(os.path.join(path, 'bin', 'SetEnv.cmd')): targets = [] for target,arch in all_msvc_platforms: try: targets.append((target, (arch, conf.get_msvc_version('wsdk', version, '/'+target, windows_kit, os.path.join(path, 'bin', 'SetEnv.cmd'))))) except conf.errors.ConfigurationError: pass versions.append(('wsdk ' + version[1:], targets)) pass @conf def find_msvc(conf): """Due to path format limitations, limit operation only to native Win32. Yeah it sucks.""" if sys.platform == 'cygwin': conf.fatal('MSVC module does not work under cygwin Python!') # the autodetection is supposed to be performed before entering in this method v = conf.env path = v['PATH'] compiler = v['MSVC_COMPILER'] version = v['MSVC_VERSION'] compiler_name, linker_name, lib_name = _get_prog_names(conf, compiler) v.MSVC_MANIFEST = (compiler == 'msvc' and version >= 8) or (compiler == 'wsdk' and version >= 6) or (compiler == 'intel' and version >= 11) # compiler cxx = None if v['CXX']: cxx = v['CXX'] elif 'CXX' in conf.environ: cxx = conf.environ['CXX'] cxx = conf.find_program(compiler_name, var='CXX', path_list=path, silent_output=True) cxx = conf.cmd_to_list(cxx) # before setting anything, check if the compiler is really msvc env = dict(conf.environ) if path: env.update(PATH = ';'.join(path)) if not conf.cmd_and_log(cxx + ['/nologo', '/help'], env=env): conf.fatal('the msvc compiler could not be identified') # c/c++ compiler v['CC'] = v['CXX'] = cxx[0] v['CC_NAME'] = v['CXX_NAME'] = 'msvc' # Bullseye code coverage if conf.is_option_true('use_bullseye_coverage'): # TODO: Error handling for this is opaque. This will fail the MSVS 2015 tool check, # and not say anything about bullseye being missing. try: covc = conf.find_program('covc',var='BULL_COVC',path_list = path, silent_output=True) covlink = conf.find_program('covlink',var='BULL_COVLINK',path_list = path, silent_output=True) covselect = conf.find_program('covselect',var='BULL_COVSELECT',path_list = path, silent_output=True) v['BULL_COVC'] = covc v['BULL_COVLINK'] = covlink v['BULL_COV_FILE'] = conf.CreateRootRelativePath(conf.options.bullseye_cov_file) # Update the coverage file with the region selections detailed in the settings regions parameters # NOTE: should we clear other settings at this point, or allow them to accumulate? # Maybe we need a flag for that in the setup? regions = conf.options.bullseye_coverage_regions.replace(' ','').split(',') conf.cmd_and_log(([covselect] + ['--file', v['BULL_COV_FILE'], '-a'] + regions)) except: Logs.error('Could not find the Bullseye Coverage tools on the path, or coverage tools are not correctly installed. Coverage build disabled.') # linker if not v['LINK_CXX']: link = conf.find_program(linker_name, path_list=path, silent_output=True) if link: v['LINK_CXX'] = link else: conf.fatal('%s was not found (linker)' % linker_name) v['LINK'] = link if not v['LINK_CC']: v['LINK_CC'] = v['LINK_CXX'] # staticlib linker if not v['AR']: stliblink = conf.find_program(lib_name, path_list=path, var='AR', silent_output=True) if not stliblink: return v['ARFLAGS'] = ['/NOLOGO'] # manifest tool. Not required for VS 2003 and below. Must have for VS 2005 and later if v.MSVC_MANIFEST: conf.find_program('MT', path_list=path, var='MT', silent_output=True) v['MTFLAGS'] = ['/NOLOGO'] # call configure on the waflib winres module to setup the environment for configure # conf.load('winres') caches the environment as part of the module load key, and we just modified # the environment, causing the cache to miss, and extra calls import/load the module # winres is loaded try: module = sys.modules['waflib.Tools.winres'] func = getattr(module,'configure',None) if func: func(conf) except Error as e: warn('Resource compiler not found. Compiling resource file is disabled')
py
1a55da770f7d7895895e60d4b2ee010dceb37374
import logging import numpy as np import torch import torch.utils.data as data import torchvision.transforms as transforms from .datasets import CIFAR10_truncated logging.basicConfig() logger = logging.getLogger() logger.setLevel(logging.INFO) # generate the non-IID distribution for all methods def read_data_distribution(filename='./data_preprocessing/non-iid-distribution/CIFAR10/distribution.txt'): distribution = {} with open(filename, 'r') as data: for x in data.readlines(): if '{' != x[0] and '}' != x[0]: tmp = x.split(':') if '{' == tmp[1].strip(): first_level_key = int(tmp[0]) distribution[first_level_key] = {} else: second_level_key = int(tmp[0]) distribution[first_level_key][second_level_key] = int(tmp[1].strip().replace(',', '')) return distribution def read_net_dataidx_map(filename='./data_preprocessing/non-iid-distribution/CIFAR10/net_dataidx_map.txt'): net_dataidx_map = {} with open(filename, 'r') as data: for x in data.readlines(): if '{' != x[0] and '}' != x[0] and ']' != x[0]: tmp = x.split(':') if '[' == tmp[-1].strip(): key = int(tmp[0]) net_dataidx_map[key] = [] else: tmp_array = x.split(',') net_dataidx_map[key] = [int(i.strip()) for i in tmp_array] return net_dataidx_map def record_net_data_stats(y_train, net_dataidx_map): net_cls_counts = {} for net_i, dataidx in net_dataidx_map.items(): unq, unq_cnt = np.unique(y_train[dataidx], return_counts=True) tmp = {unq[i]: unq_cnt[i] for i in range(len(unq))} net_cls_counts[net_i] = tmp logging.debug('Data statistics: %s' % str(net_cls_counts)) return net_cls_counts class Cutout(object): def __init__(self, length): self.length = length def __call__(self, img): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img def _data_transforms_cifar10(): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.ToPILImage(), transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) train_transform.transforms.append(Cutout(16)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform def load_cifar10_data(datadir): train_transform, test_transform = _data_transforms_cifar10() cifar10_train_ds = CIFAR10_truncated(datadir, train=True, download=True, transform=train_transform) cifar10_test_ds = CIFAR10_truncated(datadir, train=False, download=True, transform=test_transform) X_train, y_train = cifar10_train_ds.data, cifar10_train_ds.target X_test, y_test = cifar10_test_ds.data, cifar10_test_ds.target return (X_train, y_train, X_test, y_test) def partition_data(dataset, datadir, partition, n_nets, alpha): logging.info("*********partition data***************") X_train, y_train, X_test, y_test = load_cifar10_data(datadir) n_train = X_train.shape[0] # n_test = X_test.shape[0] if partition == "homo": total_num = n_train idxs = np.random.permutation(total_num) batch_idxs = np.array_split(idxs, n_nets) net_dataidx_map = {i: batch_idxs[i] for i in range(n_nets)} elif partition == "hetero": min_size = 0 K = 10 N = y_train.shape[0] logging.info("N = " + str(N)) net_dataidx_map = {} while min_size < 10: idx_batch = [[] for _ in range(n_nets)] # for each class in the dataset for k in range(K): idx_k = np.where(y_train == k)[0] np.random.shuffle(idx_k) proportions = np.random.dirichlet(np.repeat(alpha, n_nets)) ## Balance proportions = np.array([p * (len(idx_j) < N / n_nets) for p, idx_j in zip(proportions, idx_batch)]) proportions = proportions / proportions.sum() proportions = (np.cumsum(proportions) * len(idx_k)).astype(int)[:-1] idx_batch = [idx_j + idx.tolist() for idx_j, idx in zip(idx_batch, np.split(idx_k, proportions))] min_size = min([len(idx_j) for idx_j in idx_batch]) for j in range(n_nets): np.random.shuffle(idx_batch[j]) net_dataidx_map[j] = idx_batch[j] elif partition == "hetero-fix": dataidx_map_file_path = './data_preprocessing/non-iid-distribution/CIFAR10/net_dataidx_map.txt' net_dataidx_map = read_net_dataidx_map(dataidx_map_file_path) if partition == "hetero-fix": distribution_file_path = './data_preprocessing/non-iid-distribution/CIFAR10/distribution.txt' traindata_cls_counts = read_data_distribution(distribution_file_path) else: traindata_cls_counts = record_net_data_stats(y_train, net_dataidx_map) return X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts # for centralized training def get_dataloader(dataset, datadir, train_bs, test_bs, dataidxs=None): return get_dataloader_CIFAR10(datadir, train_bs, test_bs, dataidxs) # for local devices def get_dataloader_test(dataset, datadir, train_bs, test_bs, dataidxs_train, dataidxs_test): return get_dataloader_test_CIFAR10(datadir, train_bs, test_bs, dataidxs_train, dataidxs_test) def get_dataloader_CIFAR10(datadir, train_bs, test_bs, dataidxs=None): dl_obj = CIFAR10_truncated transform_train, transform_test = _data_transforms_cifar10() train_ds = dl_obj(datadir, dataidxs=dataidxs, train=True, transform=transform_train, download=True) test_ds = dl_obj(datadir, train=False, transform=transform_test, download=True) train_dl = data.DataLoader(dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True) test_dl = data.DataLoader(dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True) return train_dl, test_dl def get_dataloader_test_CIFAR10(datadir, train_bs, test_bs, dataidxs_train=None, dataidxs_test=None): dl_obj = CIFAR10_truncated transform_train, transform_test = _data_transforms_cifar10() train_ds = dl_obj(datadir, dataidxs=dataidxs_train, train=True, transform=transform_train, download=True) test_ds = dl_obj(datadir, dataidxs=dataidxs_test, train=False, transform=transform_test, download=True) train_dl = data.DataLoader(dataset=train_ds, batch_size=train_bs, shuffle=True, drop_last=True) test_dl = data.DataLoader(dataset=test_ds, batch_size=test_bs, shuffle=False, drop_last=True) return train_dl, test_dl def load_partition_data_distributed_cifar10(process_id, dataset, data_dir, partition_method, partition_alpha, client_number, batch_size): X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts = partition_data(dataset, data_dir, partition_method, client_number, partition_alpha) class_num = len(np.unique(y_train)) logging.info("traindata_cls_counts = " + str(traindata_cls_counts)) train_data_num = sum([len(net_dataidx_map[r]) for r in range(client_number)]) # get global test data if process_id == 0: train_data_global, test_data_global = get_dataloader(dataset, data_dir, batch_size, batch_size) logging.info("train_dl_global number = " + str(len(train_data_global))) logging.info("test_dl_global number = " + str(len(test_data_global))) train_data_local = None test_data_local = None local_data_num = 0 else: # get local dataset dataidxs = net_dataidx_map[process_id - 1] local_data_num = len(dataidxs) logging.info("rank = %d, local_sample_number = %d" % (process_id, local_data_num)) # training batch size = 64; algorithms batch size = 32 train_data_local, test_data_local = get_dataloader(dataset, data_dir, batch_size, batch_size, dataidxs) logging.info("process_id = %d, batch_num_train_local = %d, batch_num_test_local = %d" % ( process_id, len(train_data_local), len(test_data_local))) train_data_global = None test_data_global = None return train_data_num, train_data_global, test_data_global, local_data_num, train_data_local, test_data_local, class_num def load_partition_data_cifar10(dataset, data_dir, partition_method, partition_alpha, client_number, batch_size): X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts = partition_data(dataset, data_dir, partition_method, client_number, partition_alpha) class_num = len(np.unique(y_train)) logging.info("traindata_cls_counts = " + str(traindata_cls_counts)) train_data_num = sum([len(net_dataidx_map[r]) for r in range(client_number)]) train_data_global, test_data_global = get_dataloader(dataset, data_dir, batch_size, batch_size) logging.info("train_dl_global number = " + str(len(train_data_global))) logging.info("test_dl_global number = " + str(len(test_data_global))) test_data_num = len(test_data_global) # get local dataset data_local_num_dict = dict() train_data_local_dict = dict() test_data_local_dict = dict() for client_idx in range(client_number): dataidxs = net_dataidx_map[client_idx] local_data_num = len(dataidxs) data_local_num_dict[client_idx] = local_data_num logging.info("client_idx = %d, local_sample_number = %d" % (client_idx, local_data_num)) # training batch size = 64; algorithms batch size = 32 train_data_local, test_data_local = get_dataloader(dataset, data_dir, batch_size, batch_size, dataidxs) logging.info("client_idx = %d, batch_num_train_local = %d, batch_num_test_local = %d" % ( client_idx, len(train_data_local), len(test_data_local))) train_data_local_dict[client_idx] = train_data_local test_data_local_dict[client_idx] = test_data_local return train_data_num, test_data_num, train_data_global, test_data_global, \ data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num, traindata_cls_counts
py
1a55db0a8eabb9fceb3ac09fa296b0ddc790172c
from typing import Dict, Type from abc import abstractmethod from functools import lru_cache import pafy from .media_tag import MediaTag from .pack import Packing, Unpacking, p_, u_ from .encoding_hierarchy import Encoded class Media(Encoded['Media']): @abstractmethod def tags(self): pass @abstractmethod def mrl(self): pass class StandardMedia(Media): def __init__(self, tags, title): self._tags = tags self.title = title super().__init__() @classmethod @abstractmethod def decode_to_dict(cls, kwargs, unpacking: Unpacking, format_prefix): part = unpacking.pop() tags_raw, title = u_(part) kwargs['tags'] = set(MediaTag(t) for t in u_(tags_raw)) kwargs['title'] = title super().decode_to_dict(kwargs, unpacking, format_prefix) def tags(self): return self._tags def encode(self, packing: Packing): part = p_(p_(*self._tags), self.title) packing.append(part) super().encode(packing) def __str__(self): return self.title class YoutubeMedia(StandardMedia): def __init__(self, url, **kwargs): super().__init__(**kwargs) self.url = url if not self.title: self.title = self._pafy().title @classmethod def decode_to_dict(cls, kwargs, unpacking: Unpacking, format_prefix): assert format_prefix in ['y0'] part = unpacking.pop() kwargs['url'] = part super().decode_to_dict(kwargs, unpacking, format_prefix) def encode(self, packing: Packing): packing.append(self.url) super().encode(packing) @classmethod def format_prefix(cls): return 'y0' @lru_cache(maxsize=None) def _pafy(self): return pafy.new(self.url) def mrl(self): best = self._pafy().getbest() play_url = best.url return play_url def __str__(self): return super().__str__() + ' (source: youtube)' def __hash__(self): return hash(self.url) def __eq__(self, other): return self.url == other.url class FileMedia(StandardMedia): def __init__(self, path, **kwargs): super().__init__(**kwargs) self.path = path @classmethod def decode_to_dict(cls, kwargs, unpacking: Unpacking, format_prefix): assert format_prefix in ['f0'] part = unpacking.pop() kwargs['path'] = part super().decode_to_dict(kwargs, unpacking, format_prefix) def encode(self, packing: Packing): packing.append(self.path) super().encode(packing) @classmethod def format_prefix(cls): return 'f0' def mrl(self): return self.path def __str__(self): return super().__str__() + ' (source: file)' Media.prefix_dict: Dict[str, Type[Media]] = {'y0': YoutubeMedia, 'f0': FileMedia}
py
1a55dc007989360af1bef5295e0432769448e4ac
# pylint: disable=protected-access, unused-argument import os import glob import radical.utils as ru from .test_common import setUp from radical.pilot.agent.launch_method.jsrun import JSRUN try: import mock except ImportError: from unittest import mock # ------------------------------------------------------------------------------ # def tearDown(): rs = glob.glob('%s/*.rs' % os.getcwd()) for fold in rs: os.remove(fold) # ------------------------------------------------------------------------------ # @mock.patch.object(JSRUN, '__init__', return_value=None) @mock.patch.object(JSRUN, '_configure',return_value='jsrun') @mock.patch('radical.utils.raise_on') def test_create_resource_set_file(mocked_init, mocked_configure, mocked_raise_on): test_cases = setUp('lm', 'jsrun') component = JSRUN(name=None, cfg=None, session=None) for unit, _, resource_file, _ in test_cases: slot = unit['slots'] uid = unit['uid'] component._create_resource_set_file(slots=slot, uid=uid, sandbox='.') print(uid) with open('%s.rs' % uid) as rs_layout: assert rs_layout.readlines() == resource_file tearDown() # ------------------------------------------------------------------------------ # @mock.patch.object(JSRUN, '__init__', return_value=None) @mock.patch.object(JSRUN, '_configure', return_value='jsrun') @mock.patch('radical.utils.raise_on') def test_construct_command(mocked_init, mocked_configure, mocked_raise_on): test_cases = setUp('lm', 'jsrun') component = JSRUN(name=None, cfg=None, session=None) component._create_resource_set_file = mock.Mock() component._log = ru.Logger('dummy') component.launch_command = 'jsrun' for unit, result, _ , resource_filename in test_cases: component._create_resource_set_file.return_value = resource_filename command, hop = component.construct_command(unit, None) assert([command, hop] == result) # ------------------------------------------------------------------------------
py
1a55dc048ad30625d11dcd46a16649e7c24befc8
from setuptools import setup with open("README.md", "r", encoding="utf-8") as f: long_description = f.read() ## edit below variables as per your requirements - REPO_NAME = "Movie-Recommender-System" AUTHOR_USER_NAME = "Nitin" SRC_REPO = "src" LIST_OF_REQUIREMENTS = ['streamlit'] setup( name=SRC_REPO, version="0.0.1", author=AUTHOR_USER_NAME, description="A small package for Movie Recommender System", long_description=long_description, long_description_content_type="text/markdown", url=f"https://github.com/{AUTHOR_USER_NAME}/{REPO_NAME}", author_email="[email protected]", packages=[SRC_REPO], license="MIT", python_requires=">=3.7", install_requires=LIST_OF_REQUIREMENTS )
py
1a55dd1504728fa603e49e50f84d6699608f6061
# Copyright (C) 2019 Intel Corporation # SPDX-License-Identifier: BSD-3-Clause import unittest from codebasin import util class TestValidPath(unittest.TestCase): """ Test that valid_path correctly identifies null-byte, carriage return and line feed characters. """ def test_valid(self): """Check that a valid path is accepted""" self.assertTrue(util.valid_path("/valid/path/")) def test_null_byte(self): """Check that a null-byte character is rejected""" self.assertFalse(util.valid_path("/invalid/\x00/path/")) def test_carriage_return(self): """Check that a carriage return character is rejected""" self.assertFalse(util.valid_path("/invalid/\r/path/")) def test_line_feed(self): """Check that a line feed character is rejected""" self.assertFalse(util.valid_path("/invalid/\n/path/")) if __name__ == '__main__': unittest.main()
py
1a55dd516e459dd8ed0d597e8bab7d72aae2e033
import os import pathlib import subprocess from sphinx.ext.doctest import (Any, Dict, DocTestBuilder, TestcodeDirective, TestoutputDirective, doctest, sphinx) from sphinx.locale import __ class JavaDocTestBuilder(DocTestBuilder): """ Runs java test snippets in the documentation. """ name = "javadoctest" epilog = __( "Java testing of doctests in the sources finished, look at the " "results in %(outdir)s/output.txt." ) def compile( self, code: str, name: str, type: str, flags: Any, dont_inherit: bool ) -> Any: # go to project that contains all your arrow maven dependencies path_arrow_project = pathlib.Path(__file__).parent.parent / "source" / "demo" # create list of all arrow jar dependencies subprocess.check_call( [ "mvn", "-q", "dependency:build-classpath", "-DincludeTypes=jar", "-Dmdep.outputFile=.cp.tmp", ], cwd=path_arrow_project, text=True, ) if not (path_arrow_project / ".cp.tmp").exists(): raise RuntimeError( __("invalid process to create jshell dependencies library") ) # get list of all arrow jar dependencies with open(path_arrow_project / ".cp.tmp") as f: stdout_dependency = f.read() if not stdout_dependency: raise RuntimeError( __("invalid process to list jshell dependencies library") ) # execute java testing code thru jshell and read output # JDK11 support '-' This allows the pipe to work as expected without requiring a shell # Migrating to /dev/stdin to also support JDK9+ proc_jshell_process = subprocess.Popen( ["jshell", "--class-path", stdout_dependency, "-s", "/dev/stdin"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, text=True, ) out_java_arrow, err_java_arrow = proc_jshell_process.communicate(code) if err_java_arrow: raise RuntimeError(__("invalid process to run jshell")) # continue with python logic code to do java output validation output = f"print('''{self.clean_output(out_java_arrow)}''')" # continue with sphinx default logic return compile(output, name, self.type, flags, dont_inherit) def clean_output(self, output: str): if output[-3:] == '-> ': output = output[:-3] if output[-1:] == '\n': output = output[:-1] output = (4*' ').join(output.split('\t')) return output def setup(app) -> Dict[str, Any]: app.add_directive("testcode", TestcodeDirective) app.add_directive("testoutput", TestoutputDirective) app.add_builder(JavaDocTestBuilder) # this config value adds to sys.path app.add_config_value("doctest_path", [], False) app.add_config_value("doctest_test_doctest_blocks", "default", False) app.add_config_value("doctest_global_setup", "", False) app.add_config_value("doctest_global_cleanup", "", False) app.add_config_value( "doctest_default_flags", doctest.DONT_ACCEPT_TRUE_FOR_1 | doctest.ELLIPSIS | doctest.IGNORE_EXCEPTION_DETAIL, False, ) return {"version": sphinx.__display_version__, "parallel_read_safe": True}
py
1a55de24a301623b45501b915a2587e96de5b4a3
import numpy as np k = lambda x:3*np.sin(x)*np.exp(np.sqrt(x))/(2*x) def cordes_para(f,x0,epsilon,gamma,maxiter=50): xn = x0 for i in range(maxiter): xn_ = xn xn = xn-f(xn)/gamma print(xn, f(xn)) return (xn, np.abs(xn_-xn)<epsilon) print(cordes_para(lambda x:k(x)-0.25, 3.5, 1, 5))
py
1a55dee6dece5483a8e4c0e1ed7185e9c20d3d64
from django.contrib.auth.models import AbstractUser from django.db import models class User(AbstractUser): email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255, blank=True, null=True) def save(self, *args, **kwargs): self.is_active = True super().save(*args, **kwargs)
py
1a55df4f025b2c2d53fd53c375d4e566f7785601
""" Copyright 2015 Brocade Communications Systems, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from pynos.versions.base.ras import RAS as RASBase class RAS(RASBase): """RAS class containing all system level methods and attributes. """ pass
py
1a55df87be9b53985a5f4b42e90b0fbd31b38aa7
#!/usr/bin/env python # -*- coding: utf-8 -*- # # hydroengine documentation build configuration file, created by # sphinx-quickstart on Fri Jun 9 13:47:02 2017. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another # directory, add these directories to sys.path here. If the directory is # relative to the documentation root, use os.path.abspath to make it # absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) import hydroengine # -- General configuration --------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # General information about the project. project = u'hydro-engine' copyright = u"2018, Gennadii Donchyts" author = u"Gennadii Donchyts" # The version info for the project you're documenting, acts as replacement # for |version| and |release|, also used in various other places throughout # the built documents. # # The short X.Y version. version = hydroengine.__version__ # The full version, including alpha/beta/rc tags. release = hydroengine.__version__ # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a # theme further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # -- Options for HTMLHelp output --------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'hydroenginedoc' # -- Options for LaTeX output ------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto, manual, or own class]). latex_documents = [ (master_doc, 'hydroengine.tex', u'hydro-engine Documentation', u'Gennadii Donchyts', 'manual'), ] # -- Options for manual page output ------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'hydroengine', u'hydro-engine Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'hydroengine', u'hydro-engine Documentation', author, 'hydroengine', 'One line description of project.', 'Miscellaneous'), ]
py
1a55e02099b18746ab7895dc4d379b5166035978
import sys import torch from setuptools import setup, find_packages from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CppExtension def trt_inc_dir(): return "/usr/include/aarch64-linux-gnu" def trt_lib_dir(): return "/usr/lib/aarch64-linux-gnu" ext_modules = [] exclude_dir = ["torch2trt/contrib","torch2trt/contrib.*"] plugins_ext_module = CUDAExtension( name='plugins', sources=[ 'torch2trt/plugins/plugins.cpp' ], include_dirs=[ trt_inc_dir() ], library_dirs=[ trt_lib_dir() ], libraries=[ 'nvinfer' ], extra_compile_args={ 'cxx': ['-DUSE_DEPRECATED_INTLIST'] if torch.__version__ < "1.5" else [], 'nvcc': [] } ) if '--plugins' in sys.argv: ext_modules.append(plugins_ext_module) sys.argv.remove('--plugins') if '--contrib' in sys.argv: exclude_dir=[] sys.argv.remove('--contrib') setup( name='torch2trt', version='0.3.0', description='An easy to use PyTorch to TensorRT converter', packages=find_packages(exclude=exclude_dir), ext_package='torch2trt', ext_modules=ext_modules, cmdclass={'build_ext': BuildExtension} )
py
1a55e0b5e59d109a6aefddcdae7718b5b0656b43
from train import CoordParser def cluster(file_list, output, n_clusters=None, max_files=None): import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) from mpl_toolkits.basemap import Basemap import numpy as np if n_clusters is None: n_clusters = 100 # Parse the coordinates parser = CoordParser() c = np.array([parser(l) for l in open(file_list,'r')]) # Create the basemap parameters bnd = 0 basemap_params = dict(projection='merc',llcrnrlat=np.min(c[:,0])-bnd,urcrnrlat=np.max(c[:,0])+bnd, llcrnrlon=np.min(c[:,1])-bnd,urcrnrlon=np.max(c[:,1])+bnd) # Select a subset of the coordinates to cluster if max_files is None: max_files = 100000 np.random.shuffle(c) c = c[:max_files] # Project the coordinates into x, y coordinates m = Basemap(**basemap_params) x,y = m(c[:,1],c[:,0]) from sklearn import cluster km = cluster.MiniBatchKMeans(n_clusters=n_clusters).fit(np.concatenate((x[:,None],y[:,None]),axis=1)) np.save(output,(basemap_params,km.cluster_centers_)) def main(): from argparse import ArgumentParser from time import time parser = ArgumentParser() parser.add_argument('--file-list', type=str, default='/fastdata/finder/streetview_train.txt', help='path to the streetview training file') parser.add_argument('-n', '--n-clusters', type=int, default=100, help='number of cluster') parser.add_argument('--max-files', type=int, help='maximum number of files to cluster') parser.add_argument('output', type=str, help='output file (e.g. clusters.npy)') args = parser.parse_args() cluster(args.file_list, args.output, args.n_clusters, args.max_files) if __name__ == "__main__": main()
py
1a55e174afec8deba452a112ac043e6d0ca19b79
from django.test import TestCase from django.shortcuts import resolve_url as r class PeditoApiTest(TestCase): def setUp(self): self.resp = self.client.get(r('api_name:pedidos')) def test_get_status(self): self.assertEqual(200, self.resp.status_code)
py
1a55e1e7e252265df73c2f2c2ae3038ff1bb21e0
# # Licensed to Dagda under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Dagda licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import datetime import requests import json import traceback from threading import Thread from analysis.static.os import os_info_extractor from analysis.static.dependencies import dep_info_extractor from analysis.static.av import malware_extractor from api.internal.internal_server import InternalServer from log.dagda_logger import DagdaLogger from analysis.static.util.utils import extract_filesystem_bundle from analysis.static.util.utils import clean_up # Analyzer class class Analyzer: # -- Public methods # Analyzer Constructor def __init__(self, dagda_server_url=None): super(Analyzer, self).__init__() self.is_remote = False if dagda_server_url is not None: self.dagda_server_url = dagda_server_url self.is_remote = True else: self.mongoDbDriver = InternalServer.get_mongodb_driver() self.dockerDriver = InternalServer.get_docker_driver() # Evaluate image from image name or container id def evaluate_image(self, image_name, container_id, file_path): if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "ENTRY to the method for analyzing a docker image" ) # Init data = {} # -- Static analysis if not file_path: self.dockerDriver.get_docker_image_name_by_container_id( container_id ) if container_id else image_name os_packages = [] malware_binaries = [] dependencies = [] temp_dir = None try: # Get OS packages if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "Retrieving OS packages from the docker image ..." ) if file_path: # no OS packages to scan because not contained in a docker image temp_dir = extract_filesystem_bundle( image_name=image_name, image_path=file_path, ) elif container_id is None: # Scans the docker image os_packages = os_info_extractor.get_soft_from_docker_image( docker_driver=self.dockerDriver, image_name=image_name ) temp_dir = extract_filesystem_bundle( docker_driver=self.dockerDriver, image_name=image_name ) else: # Scans the docker container os_packages = os_info_extractor.get_soft_from_docker_container_id( docker_driver=self.dockerDriver, container_id=container_id ) temp_dir = extract_filesystem_bundle( docker_driver=self.dockerDriver, container_id=container_id ) if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "OS packages from the docker image retrieved" ) # Get malware binaries in a parallel way malware_thread = Thread( target=Analyzer._threaded_malware, args=(self.dockerDriver, temp_dir, malware_binaries), ) malware_thread.start() # Get programming language dependencies in a parallel way dependencies_thread = Thread( target=Analyzer._threaded_dependencies, args=(self.dockerDriver, image_name, temp_dir, dependencies), ) dependencies_thread.start() # Waiting for the threads malware_thread.join() dependencies_thread.join() except Exception as ex: message = "Unexpected exception of type {0} occurred: {1!r}".format( type(ex).__name__, ex.get_message() if type(ex).__name__ == "DagdaError" else ex.args, ) DagdaLogger.get_logger().error(message) if InternalServer.is_debug_logging_enabled(): traceback.print_exc() data["status"] = message # -- Cleanup if temp_dir is not None: clean_up(temporary_dir=temp_dir) # -- Prepare output if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug("Preparing analysis output ...") if "status" not in data or data["status"] is None: data["status"] = "Completed" data["image_name"] = image_name data["timestamp"] = datetime.datetime.now().timestamp() data["static_analysis"] = self.generate_static_analysis( image_name, os_packages, dependencies, malware_binaries ) if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug("Analysis output completed") # -- Return if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "EXIT from the method for analyzing a docker image" ) return data # Generates the result of the static analysis def generate_static_analysis( self, image_name, os_packages, dependencies, malware_binaries ): data = {} data["os_packages"] = self.generate_os_report(image_name, os_packages) data["prog_lang_dependencies"] = self.generate_dependencies_report( image_name, dependencies ) data["malware_binaries"] = malware_binaries return data # Generates dependencies report def generate_dependencies_report(self, image_name, dependencies): data = {} dep_details = {} dep_details["java"] = [] dep_details["python"] = [] dep_details["nodejs"] = [] dep_details["js"] = [] dep_details["ruby"] = [] dep_details["php"] = [] fp_count = 0 for dependency in dependencies: d = {} splitted_dep = dependency.split("#") d["product"] = splitted_dep[1] d["version"] = splitted_dep[2] d["product_file_path"] = splitted_dep[3] d["vulnerabilities"] = self.get_vulnerabilities(d["product"], d["version"]) # purpose of this code is to not throw away the cve_id reported by 3grander/4depcheck container process dep_check_cve_id = splitted_dep[4] # DagdaLogger.get_logger().debug(f"dep_check_cve_id: {dep_check_cve_id}") included_vuln_ids = [] for vuln in d["vulnerabilities"]: included_vuln_ids.extend(str(vuln.keys())) # DagdaLogger.get_logger().debug( # f"included_vuln_ids: {json.dumps(included_vuln_ids)}" # ) if not dep_check_cve_id in included_vuln_ids: info = {} cve_info = {} cve_data = self.mongoDbDriver.db.cve_info.find_one( {"cveid": dep_check_cve_id} ) # DagdaLogger.get_logger().debug(f"cve_data: {cve_data}") if cve_data is not None: cve_info = cve_data.copy() cve_info["mod_date"] = cve_data["mod_date"].strftime("%d-%m-%Y") cve_info["pub_date"] = cve_data["pub_date"].strftime("%d-%m-%Y") del cve_info["_id"] info[dep_check_cve_id] = cve_info # DagdaLogger.get_logger().debug(f"info: {json.dumps(info)}") d["vulnerabilities"].append(info) # DagdaLogger.get_logger().debug( # f"d['vulnerabilities']: {json.dumps(d['vulnerabilities'])}" # ) d["is_vulnerable"] = True d["is_false_positive"] = self.is_fp(image_name, d["product"], d["version"]) if d["is_false_positive"]: fp_count += 1 dep_details[splitted_dep[0]].append(d) # Prepare output data["vuln_dependencies"] = ( len(dep_details["java"]) + len(dep_details["python"]) + len(dep_details["nodejs"]) + len(dep_details["js"]) + len(dep_details["ruby"]) + len(dep_details["php"]) - fp_count ) data["dependencies_details"] = dep_details # Return return data # Generates os report def generate_os_report(self, image_name, os_packages): data = {} products_status = [] vuln_products = 0 fp_count = 0 for package in os_packages: p = {} p["product"] = package["product"] p["version"] = package["version"] p["vulnerabilities"] = self.get_vulnerabilities( package["product"], package["version"] ) if len(p["vulnerabilities"]) > 0: p["is_vulnerable"] = True vuln_products += 1 else: p["is_vulnerable"] = False p["is_false_positive"] = self.is_fp( image_name, package["product"], package["version"] ) if p["is_false_positive"]: fp_count += 1 products_status.append(p) # Prepare output vuln_products -= fp_count data["total_os_packages"] = len(products_status) data["vuln_os_packages"] = vuln_products data["ok_os_packages"] = data["total_os_packages"] - vuln_products data["os_packages_details"] = products_status # Return return data # Gets vulnerabilities by product and version def get_vulnerabilities(self, product, version): if not self.is_remote: return self.mongoDbDriver.get_vulnerabilities(product, version) else: if product is not None: product += "/" + version r = requests.get(self.dagda_server_url + "/vuln/products/" + product) if r.status_code == 200: return json.loads(r.content.decode("utf-8")) return [] # Check if it is a false positive def is_fp(self, image_name, product, version): if not self.is_remote: return self.mongoDbDriver.is_fp(image_name, product, version) else: if product is not None: product += "/" + version r = requests.get( self.dagda_server_url + "/history/" + image_name + "/fp/" + product ) return r.status_code == 204 # Get malware binaries thread @staticmethod def _threaded_malware(dockerDriver, temp_dir, malware_binaries): # Get malware binaries if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( f'Retrieving malware files from the docker image in "{temp_dir}"...' ) malware_binaries.extend( malware_extractor.get_malware_included_in_docker_image( docker_driver=dockerDriver, temp_dir=temp_dir ) ) if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "Malware files from the docker image retrieved" ) # Get programming language dependencies thread @staticmethod def _threaded_dependencies(dockerDriver, image_name, temp_dir, dependencies): # Get programming language dependencies if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( f'Retrieving dependencies from the docker image in "{temp_dir}...' ) dependencies.extend( dep_info_extractor.get_dependencies_from_docker_image( docker_driver=dockerDriver, image_name=image_name, temp_dir=temp_dir ) ) if InternalServer.is_debug_logging_enabled(): DagdaLogger.get_logger().debug( "Dependencies from the docker image retrieved" ) # DagdaLogger.get_logger().debug(f"dependencies: {json.dumps(dependencies)}")
py
1a55e277819fb60a4ae85d6d90470affe61a2af0
from ohapi import api from django.conf import settings import arrow from datetime import timedelta def get_rescuetime_file(oh_member): try: oh_access_token = oh_member.get_access_token( client_id=settings.OPENHUMANS_CLIENT_ID, client_secret=settings.OPENHUMANS_CLIENT_SECRET) user_object = api.exchange_oauth2_member(oh_access_token) for dfile in user_object['data']: if 'Rescuetime' in dfile['metadata']['tags']: return dfile['download_url'] return '' except: return 'error' def check_update(rescuetime_member): if rescuetime_member.last_submitted < (arrow.now() - timedelta(hours=1)): return True return False
py
1a55e46781301f5f2fb1a2aad6a82fbe20f65661
#!/usr/bin/env python """Set version. This script updates the version number information in the Properties.py files, as well as *.html and *.txt. This should be used only by Webware developers whenever a new Webware version is being cut. Please be very careful and read also the ReleaseProcedures.html. If setVersion is True, then the version information is updated in various files as follows: Properties.py files version information is set, replacing the version setting and releaseDate setting. *.html files version information is set by searching for a comment tag surrounding both version and release date and replacing the version and release date information respectively. *.txt files version is set by matching :Version: :Released: tags at the beginning of the line. This is designed for the reStructured text documents. Note that reStructured text HTML files will need to be re-generated after processing. The version in ReleaseNotes-X.Y.phtml is not set (this will be done by the installer), but they are renamed to the current version. If possible, this is done with "git mv". Exception: If no new notes have been written (i.e. ReleaseNotes-X.Y same as ReleaseNotesTemplate), they will not be saved, but deleted, if possible, using "git rm". If newRelease is True, then a new release is prepared as follows: The version in ReleaseNotes-X.Y.phtml files is set, and they are renamed to the current version if they are not empty. New ReleaseNotes-X.y.phtml files are created from the ReleaseNotesTemplates.phtml files instead. If possible, "git mv" and "git add" will be used. Note that this script will not automatically perform a "git commit" so you can always revert when something goes wrong. You should not use "setVersion" on the master branch, but after creating a tag for the desired version which must not be a final release. You should use "newRelease" on the trunk for the final version when you want to freeze the release notes and switch to empty release notes for the next release. Written by Stuart Donaldson - stu at asyn.com. Improved by Christoph Zwerschke - cito at online.de. """ # Version format is (Major, Minor, Sub, Alpha/Beta/etc) # The Sub is optional, and if 0 is not returned. # Examples: (0, 8, 1, 'b1'), (0, 8, 2) or (0, 9, 0, 'rc1') # releaseDate format should be 'MM/DD/YY'. # Update this to change the current version and release date: version = ('X', 'Y', 0) releaseDate = '@@/@@/@@' # Set Version info in files (should not be done on the trunk): setVersion = True # Prepare a new release (this should be done on the trunk): newRelease = False # Verbose output (output unchanged files also): verbose = False import os import sys import re from glob import glob # We assume that this script is located in Webware/bin: progPath = os.path.abspath(sys.argv[0]) webwarePath = os.path.dirname(os.path.dirname(progPath)) sys.path.append(webwarePath) os.chdir(webwarePath) from MiscUtils.PropertiesObject import PropertiesObject class Replacer(object): """Class to handle substitutions in a file.""" def __init__(self, *args): self._subs = list(args) def add(self, search, replace): self._subs.append((re.compile(search, re.M), replace)) def replaceInStr(self, data): for search, replace in self._subs: data = re.sub(search, replace, data) return data def replaceInFile(self, filename): data = open(filename, 'rb').read() newData = self.replaceInStr(data) if data == newData: if verbose: print 'Unchanged ' + filename else: print 'Updating ' + filename open(filename, 'wb').write(newData) if os.system('git add ' + filename): print "git add not possible." def replaceGlob(self, pattern): for filename in glob(pattern): if os.path.exists(filename): self.replaceInFile(filename) def main(): po = PropertiesObject() po.loadValues(version=version, releaseDate=releaseDate) po.createVersionString() if po['versionString'] == 'X.Y': print "Please set the version." sys.exit(1) elif po['releaseDate'] == '@@/@@/@@': print "Please set the release Date." sys.exit(1) propReplace = Replacer() propReplace.add(r"(version\s*=)\s*.*", r"\g<1> %s" % repr(version)) propReplace.add(r"(releaseDate\s*=)\s*.*", r"\g<1> %s" % repr(releaseDate)) htmlReplace = Replacer() htmlReplace.add(r"<!--\s*version\s*-->[^<]*<!--\s*/version\s*-->", r"<!-- version --> %s <!-- /version -->" % po['versionString']) htmlReplace.add(r"<!--\s*relDate\s*-->[^<]*<!--\s*/relDate\s*-->", r"<!-- relDate --> %s <!-- /relDate -->" % po['releaseDate']) rstReplace = Replacer() rstReplace.add(r"^:Version:.*$", ":Version: %s" % po['versionString']) rstReplace.add(r"^:Released:.*$", ":Released: %s" % po['releaseDate']) phtmlReplace = Replacer() phtmlReplace.add(r"(<%.*)' \+ versionString \+ '(.*%>)", r"\g<1>%s\g<2>" % po['versionString']) phtmlReplace.add(r"<% versionString %>", po['versionString']) phtmlReplace.add(r"<% releaseDate %>", po['releaseDate']) twillReplace = Replacer() twillReplace.add(r"^setglobal version .*$", r"setglobal version %s" % po['versionString']) twillReplace.add(r"^setglobal date .*$", r"setglobal date %s" % po['releaseDate']) twillReplace.add(r"^# if release ", '') if setVersion: # Replace in Properties files: propReplace.replaceGlob('Properties.py') propReplace.replaceGlob('*/Properties.py') # Replace in existing HTML: htmlReplace.replaceGlob('*/Docs/*.html') htmlReplace.replaceGlob('Docs/*.html') # Replace in reStructuredText files: rstReplace.replaceGlob('*/Docs/*.txt') rstReplace.replaceGlob('Docs/*.txt') # Replace in global README file: rstReplace.replaceGlob('_README') # Replace in twill test scripts: twillReplace.replaceGlob('WebKit/Tests/twill/*.twill') # Process release notes: if setVersion or newRelease: template = open('DocSupport/RelNotesTemplate.phtml', 'rb').read() infile = 'RelNotes-X.Y.phtml' outfile = infile.replace('X.Y', po['versionString']) for filename in ['Docs/' + infile] + glob('*/Docs/' + infile): if verbose: print "Processing " + filename current = open(filename, 'rb').read() if current == template: if newRelease: print "Kept empty " + filename continue else: print "Removing empty " + filename if os.system('git rm ' + filename): print "git rm not possible." os.remove(filename) else: if newRelease: phtmlReplace.replaceInFile(filename) newName = os.path.join(os.path.split(filename)[0], outfile) print "Renaming %s to %s" % (filename, outfile) if os.system('git mv -f %s %s' % (filename, newName)): print "git mv not possible." os.rename(filename, newName) if newRelease: print "Creating empty " + filename open(filename, 'wb').write(template) if os.system('git add ' + filename): print "git add not possible." if __name__ == '__main__': main()
py
1a55e468ab91160ab7957182ed0f2c74bb8e18fe
# Assignment 2
py
1a55e577d335d9f9515ee5e52c8dad094799d6fa
import os import sys module_path = os.path.abspath(os.path.join('..')) if module_path not in sys.path: sys.path.append(module_path) from src.PanelMethod import * import numpy as np from scipy.special import exp1 def wave_source(x,y,xs,ys,K): "Source plus generated free surface waves" r2 = (x-xs)**2+(y-ys)**2 # source square-distance m2 = (x-xs)**2+(y+ys)**2 # mirror sink square-distance Z = K*(y+ys+1j*abs(x-xs)) # wave number scaled complex vector eZ = np.exp(Z) # propagating wave potential fZ = np.real(eZ*exp1(Z)) # standing wave potential return 0.5*np.log(r2/m2)-2j*np.pi*eZ-2*fZ from matplotlib.animation import FuncAnimation def wave_video(x,y,q,XY,G=wave_source,args=(4,),size=(16,6)): "Animate the induced flow over a cycle of motion" # Get complex velocity def uv(i): return q[i]*velocity(*XY, x[i], y[i], x[i+1], y[i+1], G, args) UV = sum(uv(i) for i in range(len(x)-1)) # Plot flow and segments fig, ax = plt.subplots(1,1,figsize=size) Q = ax.quiver(*XY, *UV)#, pivot='mid') ax.plot(x,y,c='b') ax.set_ylim(None,0.5) ax.set_aspect('equal', adjustable='box') plt.close() # run through a wave period def update_quiver(num, Q): Q.set_UVC(*np.real(UV*np.exp(-2j*np.pi*num/101))) return Q, # create the animation return FuncAnimation(fig, update_quiver, fargs=(Q,), interval=50)
py
1a55e67ac43de771b79600482f8e2a484552b0a7
"""Support for Tellstick sensors.""" from collections import namedtuple import logging from tellcore import telldus import tellcore.constants as tellcore_constants import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.const import CONF_ID, CONF_NAME, CONF_PROTOCOL, TEMP_CELSIUS import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity _LOGGER = logging.getLogger(__name__) DatatypeDescription = namedtuple("DatatypeDescription", ["name", "unit"]) CONF_DATATYPE_MASK = "datatype_mask" CONF_ONLY_NAMED = "only_named" CONF_TEMPERATURE_SCALE = "temperature_scale" CONF_MODEL = "model" DEFAULT_DATATYPE_MASK = 127 DEFAULT_TEMPERATURE_SCALE = TEMP_CELSIUS PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional( CONF_TEMPERATURE_SCALE, default=DEFAULT_TEMPERATURE_SCALE ): cv.string, vol.Optional( CONF_DATATYPE_MASK, default=DEFAULT_DATATYPE_MASK ): cv.positive_int, vol.Optional(CONF_ONLY_NAMED, default=[]): vol.All( cv.ensure_list, [ vol.Schema( { vol.Required(CONF_ID): cv.positive_int, vol.Required(CONF_NAME): cv.string, vol.Optional(CONF_PROTOCOL): cv.string, vol.Optional(CONF_MODEL): cv.string, } ) ], ), } ) def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the Tellstick sensors.""" sensor_value_descriptions = { tellcore_constants.TELLSTICK_TEMPERATURE: DatatypeDescription( "temperature", config.get(CONF_TEMPERATURE_SCALE) ), tellcore_constants.TELLSTICK_HUMIDITY: DatatypeDescription("humidity", "%"), tellcore_constants.TELLSTICK_RAINRATE: DatatypeDescription("rain rate", ""), tellcore_constants.TELLSTICK_RAINTOTAL: DatatypeDescription("rain total", ""), tellcore_constants.TELLSTICK_WINDDIRECTION: DatatypeDescription( "wind direction", "" ), tellcore_constants.TELLSTICK_WINDAVERAGE: DatatypeDescription( "wind average", "" ), tellcore_constants.TELLSTICK_WINDGUST: DatatypeDescription("wind gust", ""), } try: tellcore_lib = telldus.TelldusCore() except OSError: _LOGGER.exception("Could not initialize Tellstick") return sensors = [] datatype_mask = config.get(CONF_DATATYPE_MASK) if config[CONF_ONLY_NAMED]: named_sensors = {} for named_sensor in config[CONF_ONLY_NAMED]: name = named_sensor[CONF_NAME] proto = named_sensor.get(CONF_PROTOCOL) model = named_sensor.get(CONF_MODEL) id_ = named_sensor[CONF_ID] if proto is not None: if model is not None: named_sensors["{}{}{}".format(proto, model, id_)] = name else: named_sensors["{}{}".format(proto, id_)] = name else: named_sensors[id_] = name for tellcore_sensor in tellcore_lib.sensors(): if not config[CONF_ONLY_NAMED]: sensor_name = str(tellcore_sensor.id) else: proto_id = "{}{}".format(tellcore_sensor.protocol, tellcore_sensor.id) proto_model_id = "{}{}{}".format( tellcore_sensor.protocol, tellcore_sensor.model, tellcore_sensor.id ) if tellcore_sensor.id in named_sensors: sensor_name = named_sensors[tellcore_sensor.id] elif proto_id in named_sensors: sensor_name = named_sensors[proto_id] elif proto_model_id in named_sensors: sensor_name = named_sensors[proto_model_id] else: continue for datatype in sensor_value_descriptions: if datatype & datatype_mask and tellcore_sensor.has_value(datatype): sensor_info = sensor_value_descriptions[datatype] sensors.append( TellstickSensor(sensor_name, tellcore_sensor, datatype, sensor_info) ) add_entities(sensors) class TellstickSensor(Entity): """Representation of a Tellstick sensor.""" def __init__(self, name, tellcore_sensor, datatype, sensor_info): """Initialize the sensor.""" self._datatype = datatype self._tellcore_sensor = tellcore_sensor self._unit_of_measurement = sensor_info.unit or None self._value = None self._name = f"{name} {sensor_info.name}" @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the sensor.""" return self._value @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement def update(self): """Update tellstick sensor.""" self._value = self._tellcore_sensor.value(self._datatype).value
py
1a55e8092a11da802b3c8a719a2759b90d195f14
""" Author: Alex Kiernan Desc: Fact model """ from app import db class Fact(db.Model): __tablename__ = 'prediction_facts' pf_date = db.Column('pf_date', db.Date, primary_key=True) pf_time_of_day = db.Column('pf_time_of_day', db.Integer, primary_key=True) user_id = db.Column('user_id', db.Integer, primary_key=True) bg_value = db.Column('bg_value', db.Float) ins_value = db.Column('ins_value', db.Float) food_value = db.Column('food_value', db.Integer) exercise_value = db.Column('exercise_value', db.Integer) def serialize(self): return { 'pf_date' : self.pf_date.strftime("%A, %d %b %Y"), 'pf_time_of_day' : self.pf_time_of_day, 'user_id' : self.user_id, 'bg_value' : self.bg_value, 'ins_value': self.ins_value, 'food_value': self.food_value, 'exercise_value': self.exercise_value } def fact_serialize(self): return { 'timestamp': self.pf_time_of_day, 'bg_value': self.bg_value, 'carbs': self.food_value, 'exercise': self.exercise_value, 'insulin_dosage': self.ins_value }
py
1a55e840ffefb3dc2cf25637ee56ff1c20820011
# -*- coding: utf-8 -*- # # Copyright (C) 2005-2020 Edgewall Software # Copyright (C) 2005-2006 Christian Boos <[email protected]> # All rights reserved. # # This software is licensed as described in the file COPYING, which # you should have received as part of this distribution. The terms # are also available at https://trac.edgewall.org/wiki/TracLicense. # # This software consists of voluntary contributions made by many # individuals. For the exact contribution history, see the revision # history and logs, available at https://trac.edgewall.org/log/. # # Author: Christian Boos <[email protected]> import re from trac.config import ConfigSection from trac.core import * from trac.util.html import Element, Fragment, find_element, tag from trac.util.translation import N_, _, tag_ from trac.web.api import IRequestHandler from trac.wiki.api import IWikiMacroProvider from trac.wiki.formatter import extract_link class InterTracDispatcher(Component): """InterTrac dispatcher.""" implements(IRequestHandler, IWikiMacroProvider) is_valid_default_handler = False intertrac_section = ConfigSection('intertrac', """This section configures InterTrac prefixes. Option names in this section that contain a `.` are of the format `<name>.<attribute>`. Option names that don't contain a `.` define an alias. The `.url` attribute is mandatory and is used for locating the other Trac. This can be a relative path when the other Trac environment is located on the same server. The `.title` attribute is used for generating a tooltip when the cursor is hovered over an InterTrac link. Example configuration: {{{#!ini [intertrac] # -- Example of setting up an alias: t = trac # -- Link to an external Trac: genshi.title = Edgewall's Trac for Genshi genshi.url = https://genshi.edgewall.org }}} """) # IRequestHandler methods def match_request(self, req): match = re.match(r'^/intertrac/(.*)', req.path_info) if match: if match.group(1): req.args['link'] = match.group(1) return True def process_request(self, req): link = req.args.get('link', '') parts = link.split(':', 1) if len(parts) > 1: resolver, target = parts if target[:1] + target[-1:] not in ('""', "''"): link = '%s:"%s"' % (resolver, target) from trac.web.chrome import web_context link_frag = extract_link(self.env, web_context(req), link) if isinstance(link_frag, (Element, Fragment)): elt = find_element(link_frag, 'href') if elt is None: raise TracError( _("Can't view %(link)s. Resource doesn't exist or " "you don't have the required permission.", link=link)) href = elt.attrib.get('href') else: href = req.href(link.rstrip(':')) req.redirect(href) # IWikiMacroProvider methods def get_macros(self): yield 'InterTrac' def get_macro_description(self, name): return 'messages', N_("Provide a list of known InterTrac prefixes.") def expand_macro(self, formatter, name, content): intertracs = {} for key, value in self.intertrac_section.options(): idx = key.rfind('.') if idx > 0: # 0 itself doesn't help much: .xxx = ... prefix, attribute = key[:idx], key[idx+1:] intertrac = intertracs.setdefault(prefix, {}) try: intertrac[attribute] = value except TypeError: # alias pass else: intertracs[key] = value # alias intertracs.setdefault('trac', {'title': _('The Trac Project'), 'url': 'https://trac.edgewall.org'}) def generate_prefix(prefix): intertrac = intertracs[prefix] if isinstance(intertrac, basestring): yield tag.tr(tag.td(tag.strong(prefix)), tag.td(tag_("Alias for %(name)s", name=tag.strong(intertrac)))) else: url = intertrac.get('url') if url: title = intertrac.get('title', url) yield tag.tr(tag.td(tag.a(tag.strong(prefix), href=url + '/timeline')), tag.td(tag.a(title, href=url))) return tag.table(class_="wiki intertrac")( tag.tr(tag.th(tag.em(_("Prefix"))), tag.th(tag.em(_("Trac Site")))), [generate_prefix(p) for p in sorted(intertracs)])
py
1a55e8818120935dcd5e7b771d5a59fdabead51e
import unittest from conans.test.utils.tools import TestClient class ConanfileErrorsTest(unittest.TestCase): def copy_error_test(self): client = TestClient() conanfile = ''' from conans import ConanFile class HelloConan(ConanFile): name = "Hello" version = "0.1" exports = "*" def package(self): self.copy2("*.h", dst="include", src=["include","platform"]) ''' files = {"conanfile.py": conanfile, "test.txt": "Hello world"} client.save(files) client.run("export . lasote/stable") client.run("install Hello/0.1@lasote/stable --build", assert_error=True) self.assertIn("Hello/0.1@lasote/stable: Error in package() method, line 9", client.out) self.assertIn('self.copy2("*.h", dst="include", src=["include","platform"]', client.out) self.assertIn("'HelloConan' object has no attribute 'copy2'", client.out) def copy_error2_test(self): client = TestClient() conanfile = ''' from conans import ConanFile class HelloConan(ConanFile): name = "Hello" version = "0.1" exports = "*" def package(self): self.copy("*.h", dst="include", src=["include","platform"]) ''' files = {"conanfile.py": conanfile, "test.txt": "Hello world"} client.save(files) client.run("export . lasote/stable") client.run("install Hello/0.1@lasote/stable --build", assert_error=True) self.assertIn("Hello/0.1@lasote/stable: Error in package() method, line 9", client.out) self.assertIn('self.copy("*.h", dst="include", src=["include","platform"]', client.out) # It results that the error is different in different Python2/3 and OSs # self.assertIn("'list' object has no attribute 'replace'", client.out) def package_info_error_test(self): client = TestClient() conanfile = ''' from conans import ConanFile class HelloConan(ConanFile): name = "Hello" version = "0.1" exports = "*" def package_info(self): self.copy2() ''' files = {"conanfile.py": conanfile, "test.txt": "Hello world"} client.save(files) client.run("export . lasote/stable") client.run("install Hello/0.1@lasote/stable --build", assert_error=True) self.assertIn("Hello/0.1@lasote/stable: Error in package_info() method, line 9", client.out) self.assertIn('self.copy2()', client.out) self.assertIn("'HelloConan' object has no attribute 'copy2'", client.out) def config_error_test(self): client = TestClient() conanfile = ''' from conans import ConanFile class HelloConan(ConanFile): name = "Hello" version = "0.1" exports = "*" def configure(self): self.copy2() ''' files = {"conanfile.py": conanfile, "test.txt": "Hello world"} client.save(files) client.run("export . lasote/stable") client.run("install Hello/0.1@lasote/stable --build", assert_error=True) self.assertIn("""ERROR: Hello/0.1@lasote/stable: Error in configure() method, line 9 self.copy2() AttributeError: 'HelloConan' object has no attribute 'copy2'""", client.out) def source_error_test(self): client = TestClient() conanfile = ''' from conans import ConanFile class HelloConan(ConanFile): name = "Hello" version = "0.1" exports = "*" def source(self): self.copy2() ''' files = {"conanfile.py": conanfile, "test.txt": "Hello world"} client.save(files) client.run("export . lasote/stable") client.run("install Hello/0.1@lasote/stable --build", assert_error=True) self.assertIn("Hello/0.1@lasote/stable: Error in source() method, line 9", client.out) self.assertIn('self.copy2()', client.out) self.assertIn("'HelloConan' object has no attribute 'copy2'", client.out) def duplicate_requires_test(self): client = TestClient() conanfile = ''' [requires] foo/0.1@user/testing foo/0.2@user/testing ''' files = {"conanfile.txt": conanfile} client.save(files) client.run("install . --build", assert_error=True) self.assertIn("ERROR: Duplicated requirement", client.out) def duplicate_requires_py_test(self): client = TestClient() conanfile = ''' from conans import ConanFile class HelloConan(ConanFile): name = "Hello" version = "0.1" requires = "foo/0.1@user/testing", "foo/0.2@user/testing" ''' files = {"conanfile.py": conanfile} client.save(files) client.run("install . --build", assert_error=True) self.assertIn("Error while initializing requirements. Duplicated requirement", client.out)
py
1a55e97c43e9d8c5726b86415f92b58b7e9b04b9
from tridesclous import get_dataset from tridesclous.peakdetector import get_peak_detector_class import time import itertools import scipy.signal import numpy as np import sklearn.metrics.pairwise from matplotlib import pyplot from tridesclous.tests.test_signalpreprocessor import offline_signal_preprocessor from tridesclous.peakdetector import make_sum_rectified, detect_peaks_in_rectified, get_mask_spatiotemporal_peaks from tridesclous.peakdetector import HAVE_PYOPENCL import matplotlib.pyplot as plt def get_normed_sigs(chunksize=None): # get sigs sigs, sample_rate = get_dataset(name='olfactory_bulb') #~ sigs = np.tile(sigs, (1, 20)) #for testing large channels num if sigs.shape[0] % chunksize >0: sigs = sigs[:-(sigs.shape[0] % chunksize), :] nb_channel = sigs.shape[1] #~ print('nb_channel', nb_channel) geometry = np.zeros((nb_channel, 2)) geometry[:, 0] = np.arange(nb_channel) * 50 # um spacing # normalize sigs highpass_freq = 300. preprocess_params = dict( highpass_freq=highpass_freq, common_ref_removal=True, backward_chunksize=chunksize+chunksize//4, output_dtype='float32') normed_sigs = offline_signal_preprocessor(sigs, sample_rate, **preprocess_params) return sigs, sample_rate, normed_sigs, geometry def offline_peak_detect_global(normed_sigs, sample_rate, geometry, peak_sign='-',relative_threshold = 5, peak_span_ms=0.5, smooth_radius_um=None): n_span = int(sample_rate * peak_span_ms / 1000.)//2 if smooth_radius_um is None: spatial_matrix = None else: d = sklearn.metrics.pairwise.euclidean_distances(geometry) spatial_matrix = np.exp(-d/smooth_radius_um) spatial_matrix[spatial_matrix<0.01] = 0. sum_rectified = make_sum_rectified(normed_sigs, relative_threshold, peak_sign, spatial_matrix) mask_peaks = detect_peaks_in_rectified(sum_rectified, n_span, relative_threshold, peak_sign) ind_peaks, = np.nonzero(mask_peaks) ind_peaks += n_span return ind_peaks, sum_rectified def offline_peak_detect_geometrical(normed_sigs, sample_rate, geometry, peak_sign='-',relative_threshold = 5, peak_span_ms=0.5, adjacency_radius_um=None, smooth_radius_um=None): assert smooth_radius_um is None assert adjacency_radius_um is not None nb_channel = normed_sigs.shape[1] n_span = int(sample_rate * peak_span_ms / 1000.)//2 d = sklearn.metrics.pairwise.euclidean_distances(geometry) neighbour_mask = d<=adjacency_radius_um nb_neighbour_per_channel = np.sum(neighbour_mask, axis=0) nb_max_neighbour = np.max(nb_neighbour_per_channel) nb_max_neighbour = nb_max_neighbour neighbours = np.zeros((nb_channel, nb_max_neighbour), dtype='int32') neighbours[:] = -1 for c in range(nb_channel): neighb, = np.nonzero(neighbour_mask[c, :]) neighbours[c, :neighb.size] = neighb peak_mask = get_mask_spatiotemporal_peaks(normed_sigs, n_span, relative_threshold, peak_sign, neighbours) peaks, chan_inds = np.nonzero(peak_mask) return peaks def test_compare_offline_online_engines(): #~ HAVE_PYOPENCL = True engine_names = [ ('global', 'numpy'), ('geometrical', 'numpy'), ('geometrical', 'numba'), ] if HAVE_PYOPENCL: #~ engine_names += [('global', 'opencl'), #~ ('geometrical', 'opencl')] engine_names += [('geometrical', 'opencl')] chunksize=1024 sigs, sample_rate, normed_sigs, geometry = get_normed_sigs(chunksize=chunksize) #params peak_sign = '-' relative_threshold = 8 peak_span_ms = 0.9 smooth_radius_um = None adjacency_radius_um = 200. nb_channel = sigs.shape[1] #~ print('n_span', n_span) nloop = sigs.shape[0]//chunksize print('sig duration', sigs.shape[0]/sample_rate) offline_peaks = {} t1 = time.perf_counter() peaks, rectified_sum = offline_peak_detect_global(sigs, sample_rate, geometry, peak_sign=peak_sign, relative_threshold=relative_threshold, peak_span_ms=peak_span_ms, smooth_radius_um=smooth_radius_um) t2 = time.perf_counter() print('offline global', 'process time', t2-t1) offline_peaks['global', 'numpy'] = peaks offline_peaks['global', 'opencl'] = peaks t1 = time.perf_counter() peaks = offline_peak_detect_geometrical(sigs, sample_rate, geometry, peak_sign=peak_sign, relative_threshold=relative_threshold, peak_span_ms=peak_span_ms, smooth_radius_um=smooth_radius_um, adjacency_radius_um=adjacency_radius_um) t2 = time.perf_counter() print('offline geometrical', 'process time', t2-t1) offline_peaks['geometrical', 'numpy'] = peaks offline_peaks['geometrical', 'numba'] = peaks offline_peaks['geometrical', 'opencl'] = peaks online_peaks = {} for method, engine in engine_names: print(engine) EngineClass = get_peak_detector_class(method, engine) #~ buffer_size = chunksize*4 peakdetector = EngineClass(sample_rate, nb_channel, chunksize, 'float32', geometry) peakdetector.change_params(peak_sign=peak_sign, relative_threshold=relative_threshold, peak_span_ms=peak_span_ms, smooth_radius_um=smooth_radius_um, adjacency_radius_um=adjacency_radius_um) all_online_peaks = [] t1 = time.perf_counter() for i in range(nloop): #~ print(i) pos = (i+1)*chunksize chunk = sigs[pos-chunksize:pos,:] time_ind_peaks, chan_peak_index, peak_val_peaks = peakdetector.process_buffer_stream(pos, chunk) #~ print(n_peaks) if time_ind_peaks is not None: #~ all_online_peaks.append(chunk_peaks['index']) all_online_peaks.append(time_ind_peaks) online_peaks[method, engine] = np.concatenate(all_online_peaks) t2 = time.perf_counter() print(engine, 'process time', t2-t1, 'size', online_peaks[method, engine].size) # remove peaks on border for comparison for method, engine in engine_names: peaks = online_peaks[method, engine] peaks = peaks[(peaks>chunksize) & (peaks<sigs.shape[0]-chunksize)] online_peaks[method, engine] = peaks peaks = offline_peaks[method, engine] peaks = peaks[(peaks>chunksize) & (peaks<sigs.shape[0]-chunksize)] offline_peaks[method, engine] = peaks # compare for method, engine in engine_names: print('compare', method, engine) onlinepeaks = online_peaks[method, engine] offlinepeaks = offline_peaks[method, engine] print(onlinepeaks.size, offlinepeaks.size) # TODO #~ assert offlinepeaks.size==onlinepeaks.size, '{} nb_peak {} instead {}'.format(engine, offlinepeaks.size, onlinepeaks.size) #~ assert np.array_equal(offlinepeaks, onlinepeaks) def test_detect_geometrical_peaks(): chunksize=1024 sigs, sample_rate, normed_sigs, geometry = get_normed_sigs(chunksize=chunksize) nb_channel = sigs.shape[1] n_span = 4 thresh = 5 peak_sign = '-' d = sklearn.metrics.pairwise.euclidean_distances(geometry) nb_neighbour = 4 neighbours = np.zeros((nb_channel, nb_neighbour+1), dtype='int64') for c in range(nb_channel): nearest = np.argsort(d[c, :]) #~ print(c, nearest) neighbours[c, :] = nearest[:nb_neighbour+1] # include itself #~ print(neighbours) mask = get_mask_spatiotemporal_peaks(normed_sigs, n_span, thresh, peak_sign, neighbours) peak_inds, chan_inds = np.nonzero(mask) peak_inds += n_span print(peak_inds.size) #~ fig, ax = plt.subplots() #~ plot_sigs = normed_sigs.copy() #~ for c in range(nb_channel): #~ plot_sigs[:, c] += c*30 #~ ax.plot(plot_sigs, color='k') #~ ampl = plot_sigs[peak_inds, chan_inds] #~ ax.scatter(peak_inds, ampl, color='r') #~ plt.show() # test two way mask_neg = get_mask_spatiotemporal_peaks(normed_sigs, n_span, thresh, '-', neighbours) mask_pos = get_mask_spatiotemporal_peaks(-normed_sigs, n_span, thresh, '+', neighbours) assert np.array_equal(mask_neg, mask_pos) #~ print(peak_inds) #~ print(chan_inds) def benchmark_speed(): chunksize=1024 #~ chunksize=1025 #~ chunksize= 1024 + 256 #~ chunksize=2048 #~ chunksize = 1024 * 10 #~ chunksize=950 sigs, sample_rate, normed_sigs, geometry = get_normed_sigs(chunksize=chunksize) #~ sigs = np #***for testing large channels num*** sigs = np.tile(sigs, (1, 20)) normed_sigs = np.tile(normed_sigs, (1, 20)) geometry = np.zeros((sigs.shape[1], 2), dtype='float64') geometry[:, 0] = np.arange(sigs.shape[1]) * 50. #*** nb_channel = sigs.shape[1] print('nb_channel', nb_channel) engine_names = [ #~ ('global', 'numpy'), #~ ('geometrical', 'numpy'), ('geometrical', 'numba'), ] if HAVE_PYOPENCL: engine_names += [ #~ ('global', 'opencl'), ('geometrical', 'opencl'), ] args = (sample_rate, nb_channel, chunksize, 'float32', geometry) params = dict(peak_span_ms = 0.9, relative_threshold = 5, peak_sign = '-') online_peaks = {} for method, engine in engine_names: peakdetector = get_peak_detector_class(method, engine)(*args) peakdetector.change_params(**params) #~ print(peakdetector.n_span, peakdetector.dtype) nloop = normed_sigs.shape[0]//chunksize peak_inds = [] peak_chans = [] t1 = time.perf_counter() for i in range(nloop): pos = (i+1)*chunksize chunk = normed_sigs[pos-chunksize:pos,:] time_ind_peaks, chan_peak_index, peak_val_peaks = peakdetector.process_buffer_stream(pos, chunk) if time_ind_peaks is not None: peak_inds.append(time_ind_peaks) if chan_peak_index is not None: peak_chans.append(chan_peak_index) t2 = time.perf_counter() peak_inds = np.concatenate(peak_inds) if len(peak_chans) > 0: peak_chans = np.concatenate(peak_chans) else: peak_chans = np.argmin(normed_sigs[peak_inds, :], axis=1) online_peaks[method, engine] = peak_inds print(method, engine, ':' , peak_inds.size) print(method, engine, 'process time', t2-t1) #~ fig, ax = plt.subplots() #~ plot_sigs = normed_sigs.copy() #~ for c in range(nb_channel): #~ plot_sigs[:, c] += c*30 #~ ax.plot(plot_sigs, color='k') #~ ampl = plot_sigs[peak_inds, peak_chans] #~ ax.scatter(peak_inds, ampl, color='r') #~ plt.show() def test_peak_sign_symetry(): chunksize=1024 raw_sigs, sample_rate, normed_sigs, geometry = get_normed_sigs(chunksize=chunksize) nb_channel = normed_sigs.shape[1] #~ print('nb_channel', nb_channel) args = (sample_rate, nb_channel, chunksize, 'float32', geometry) params = dict(peak_span_ms = 0.9, relative_threshold = 5) engine_names = [ ('global', 'numpy'), ('geometrical', 'numpy'), ('geometrical', 'numba'), ] if HAVE_PYOPENCL: engine_names += [ ('global', 'opencl'), ('geometrical', 'opencl'), ] online_peaks = {} for method, engine in engine_names: peakdetector = get_peak_detector_class(method, engine)(*args) for peak_sign in ['-', '+']: if peak_sign=='-': sigs = normed_sigs elif peak_sign=='+': sigs = -normed_sigs peakdetector.change_params(peak_sign=peak_sign, **params) nloop = normed_sigs.shape[0]//chunksize peaks = [] t1 = time.perf_counter() for i in range(nloop): #~ print(i) pos = (i+1)*chunksize chunk = sigs[pos-chunksize:pos,:] #~ print(chunk.shape) time_ind_peaks, chan_peak_index, peak_val_peaks = peakdetector.process_buffer_stream(pos, chunk) #~ print(n_peaks) #~ print(chunk_peaks) if time_ind_peaks is not None: #~ all_online_peaks.append(chunk_peaks['index']) peaks.append(time_ind_peaks) peak_inds = np.concatenate(peaks) online_peaks[method, engine, peak_sign] = peak_inds t2 = time.perf_counter() print(method, engine, 'peak_sign', peak_sign,':' , peak_inds.size, 'unique peak size', np.unique(peak_inds).size) #~ print(name, 'process time', t2-t1) assert np.array_equal(online_peaks[method, engine, '-'], online_peaks[method, engine, '+']) if HAVE_PYOPENCL: assert np.array_equal(online_peaks['global', 'numpy', '-'], online_peaks['global', 'opencl', '-']) assert np.array_equal(online_peaks['geometrical', 'numpy', '-'], online_peaks['geometrical', 'numba', '-']) # TODO this should be totally equal assert np.array_equal(online_peaks['geometrical', 'numpy', '-'], online_peaks['geometrical', 'opencl', '-']) assert np.array_equal(online_peaks['geometrical', 'numba', '-'], online_peaks['geometrical', 'opencl', '-']) if __name__ == '__main__': test_compare_offline_online_engines() #~ test_detect_geometrical_peaks() #~ benchmark_speed() #~ test_peak_sign_symetry()
py
1a55e988fffe9fadc8032b13229b5853a84e62cd
from urllib.request import urlopen, Request import os import src.util as util def save_image_tag(bs_object, conf): # Header for passing header checker if conf['site_name'] == conf['comic_sites'][0]: headers = conf['headers']['m'] elif conf['site_name'] == conf['comic_sites'][1]: headers = conf['headers']['w'] #이미지 소스 선택 targetString = 'https://' targetlen = len(targetString) #썸네일 사진 패스하기 thumbnailString = conf['thumbnail_link'] thumbnaillen = len(thumbnailString) #그 외 불필요 이미지 파일 패스하기 otherString = conf['unnecessary_link'] otherStringlen = len(otherString) # 인스턴스의 find_all 이라는 함수에 img 태그가 있으면 img_data에 넣어줌 img_data = bs_object.find_all("img") num_comic_img = 2 img_idx = 1 ''' structure of img tag(prop list) 1. src 2. data-.... 3. style ''' for img_tag in img_data: # print(list(img_tag.attrs.keys())) attr_list = list(img_tag.attrs.keys()) # if lenght of attribute is less than 3 # it isn't comic image if len(attr_list) < 2: continue # print(attr_list) isComicImg = False # if it is comic image, # attribute list must contain 'data class' for attr in attr_list: if attr[:4] == 'data': isComicImg = True data_tag = attr # some image tag contains 'itemprop' class if conf['site_name'] == conf['comic_sites'][0]: if 'itemprop' in attr_list: isComicImg = True data_tag = 'content' elif conf['site_name'] == conf['comic_sites'][1]: if 'alt' in attr_list: isComicImg = True data_tag = 'src' if not isComicImg: continue print(img_idx, img_tag.attrs[data_tag]) srcString = img_tag.attrs[data_tag] #썸네일은 건너뛰기 if srcString[:thumbnaillen] == thumbnailString: print("pass thumbnail") continue if 'assets' in srcString: print("pass img of assets") continue #서버 이미지면 저장 그만하기 #모든 만화 이미지는 외부 서버에 있음 print("img index=", img_idx) if (srcString[:otherStringlen] == otherString): print("break othrestring") continue #구글 드라이브 혹은 타서버에 저장된 만화 이미지 파일 처리 if srcString[0:targetlen] == targetString: #딕셔너리를 순서대로 넣어줌 imgReq = Request(url=img_tag.attrs[data_tag], headers=headers) try: imageDownload = urlopen(imgReq).read() except: continue #파일 이름 생성 filename = "image"+str(img_idx).zfill(2)+'.jpg' folder_path = os.path.join(conf['comic_name'], str(conf['number'])) #폴더 생성 path = util.create_dir(conf['comic_path'], folder_path) #파일 생성 경로 filepath = os.path.join(path, filename) #파일 생성 with open(filepath,"wb") as f: f.write(imageDownload) print('save => "' + path + "'/" + str(conf['number']) + '"') img_idx += 1
py
1a55e9fccbf4b434e4b506f58aa558e98f88f2fb
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import itertools import logging import os import re import threading import time from typing import Callable, Optional, Sequence from unittest import skip, SkipTest from absl.testing import absltest from absl.testing import parameterized import jax from jax import core from jax._src import api from jax.config import config from jax import dtypes from jax.experimental import host_callback as hcb from jax.experimental import PartitionSpec as P from jax.experimental import maps from jax.experimental import pjit from jax import lax from jax import numpy as jnp from jax import test_util as jtu from jax import tree_util from jax.lib import xla_bridge import numpy as np config.parse_flags_with_absl() FLAGS = config.FLAGS class _TestingOutputStream(object): """Use as `output_stream` for tests.""" def __init__(self): self._output = [] self._test_method_name = None def write(self, what: str) -> None: print(f"output_stream[{self._test_method_name}]: {what}", end="") self._output.append(what) @property def output(self): return "".join(self._output) @property def output_sorted_by_device(self): # Assume that the output is a sequence of strings including metadata # and data, with metadata containing `device: xxx` by_device = [] # each element is a pair (device, str_list) for s in self._output: m = re.match(r".*device: (\S+)", s) if m: by_device.append((m.group(1), [])) assert by_device, f"output does not include 'device:': {self._output}" by_device[-1][1].append(s) sorted_by_device = sorted(by_device, key=lambda x: x[0]) return "\n".join(itertools.chain(*[s[1] for s in sorted_by_device])) def __str__(self): return "TestingOutputStream" def reset(self): self._output = [] testing_stream = _TestingOutputStream() def fun1(a): """Function used for several `id_tap` tests.""" y = hcb.id_print(a * 2., what="a * 2", output_stream=testing_stream) y = hcb.id_print(y * 3., what="y * 3", output_stream=testing_stream, result=y) return y ** 2 # Some computation to make the gradient interesting def fun1_equiv(a): # Numerical equivalent of fun1 return (a * 2.) ** 2 def maybe_print(do_print: bool, arg, what: str, tap_with_device: Optional[bool] = False): """Conditionally print on testing_string""" if do_print: return hcb.id_print(arg, what=what, output_stream=testing_stream, tap_with_device=tap_with_device) else: return arg def local_devices(): # Tests require using not more than 2 devices. return api.local_devices()[:2] ignore_jit_of_pmap_warning = partial( jtu.ignore_warning, message=".*jit-of-pmap.*") def assertMultiLineStrippedEqual(tst: jtu.JaxTestCase, expected: str, what: str): """A variant that preprocesses the string to eliminate non-determinism in floating point values, and several uninteresting id_tap primitive params. """ # Sometimes we get floating points in the output; we round them def repl_floats(match_group): matched = match_group.group(0) if matched == ".": return matched x = np.around(float(matched), decimals=2) return f"{x:.2f}" what = re.sub(r"\-?\d*\.[\-\def]*", repl_floats, what) what = re.sub(r"output_stream=[^\]\n,]*,?", "", what) what = re.sub(r"threshold=[^\]\n,]*,?", "", what) what = re.sub(r"bwd=[^\]\n]*", "", what) what = re.sub(r"out_trees=[^\]\n]*", "", what) what = re.sub(r"fwd_jaxpr_thunk=[^\]\n]*", "", what) what = re.sub(r"jvp_jaxpr_thunk=[^\]\n]*", "", what) # Empty lines what = re.sub(r"^\s*\n", "", what, flags=re.MULTILINE) def repl_func(match_group): matched = match_group.group(3) if "function _print_consumer" in matched: return match_group.group(1) + "=_print" else: return match_group.group(1) + "=..." what = re.sub(r"((tap_func_)|(callback))=([^\]\n,]*),?", repl_func, what) tst.assertMultiLineStrippedEqual(expected, what) def helper_set_hlo_dump(): flags_str = os.getenv("XLA_FLAGS", "") import shutil dump_dir = "/tmp/xla_dump" os.environ["XLA_FLAGS"] = f"{flags_str} --xla_dump_to={dump_dir}" if os.path.isdir(dump_dir): logging.warning(f"Deleting old XLA dump directory {dump_dir}") shutil.rmtree(dump_dir) logging.warning(f"Setting XLA dump directory {dump_dir}") # Clear any cached backends so new CPU backend will pick up the env var. xla_bridge.get_backend.cache_clear() def helper_print_optimized_hlo(fun, *args): backend = api.lib.xla_bridge.get_backend() c = api.xla_computation(fun)(*args) print(re.sub(r", metadata.*", "", backend.compile(c).hlo_modules()[0].to_string())) def helper_log_ir(name, f_jax, *args, num_partitions=None, strip_metadata=False): print(f"Jaxpr[{name}]: {jax.make_jaxpr(f_jax)(*args)}") jax_comp = jax.xla_computation(f_jax)(*args) print(f"HLO[{name}]: {jax_comp.as_hlo_text()}") backend = jax.lib.xla_bridge.get_backend() if num_partitions is not None: num_replicas = 1 device_assignment = np.arange(num_partitions * num_replicas) device_assignment = np.reshape(device_assignment, (-1, num_partitions)) use_spmd_partitioning = num_partitions > 1 compile_options = jax.lib.xla_bridge.get_compile_options( num_replicas=num_replicas, num_partitions=num_partitions, device_assignment=device_assignment, use_spmd_partitioning=use_spmd_partitioning, ) else: compile_options = None jax_optimized_hlo = backend.compile( jax_comp, compile_options).hlo_modules()[0].to_string() if strip_metadata: jax_optimized_hlo = re.sub(r", metadata.*", "", jax_optimized_hlo) print(f"Optimized HLO[{name}] for " f"platform {backend.platform}: {jax_optimized_hlo}") prev_xla_flags = None def setUpModule(): global prev_xla_flags # This will control the CPU devices. On TPU we always have 2 devices prev_xla_flags = jtu.set_host_platform_device_count(2) # Reset to previous configuration in case other test modules will be run. def tearDownModule(): prev_xla_flags() def assertMultiDeviceOutputEqual(tst: jtu.JaxTestCase, expected_2CPUs: str): """Check that the multi-device output is equal to the expected. The tests run with 2 devices if available, otherwise 1 device. We adjust the expected output here for 1 device. Args: expected_2CPUs: the expected output for 2 CPUs. If there is only one device, this is trimmed to the first device. If the current device_under_test is not a CPU, then we change the names """ expected = expected_2CPUs if len(local_devices()) == 1: start_device_1 = expected.find('device: cpu:1') if start_device_1 >= 0: expected = expected[0:start_device_1] def replace_device_name(m) -> str: return str(local_devices()[int(m.group(1))]) expected = re.sub(r'cpu:(\d+)', replace_device_name, expected) what = testing_stream.output_sorted_by_device return assertMultiLineStrippedEqual(tst, expected, what) class HostCallbackTapTest(jtu.JaxTestCase): def setUp(self): super().setUp() if jtu.device_under_test() == "gpu" and jax.device_count() > 1: raise SkipTest("host_callback broken on multi-GPU platforms (#6447)") testing_stream.reset() testing_stream._test_method_name = self._testMethodName self.old_flags = os.getenv("XLA_FLAGS", "") def tearDown(self) -> None: if os.getenv("XLA_FLAGS") != self.old_flags: os.environ["XLA_FLAGS"] = self.old_flags xla_bridge.get_backend.cache_clear() hcb.barrier_wait("HostCallbackTapTest.tearDown") super().tearDown() def test_tap_eval(self): self.assertAllClose((5. * 2.) ** 2, fun1(5.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: a * 2 10.00 what: y * 3 30.00""", testing_stream.output) def test_tap_with_tuple_results(self): def func2(x): x1, y1 = hcb.id_print((x * 2., x * 3.), output_stream=testing_stream) return x1 + y1 self.assertEqual(3. * (2. + 3.), func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( 6.00 9.00 )""", testing_stream.output) def test_tap_with_dict_results(self): def func2(x): res = hcb.id_print(dict(a=x * 2., b=x * 3.), output_stream=testing_stream) return res["a"] + res["b"] self.assertEqual(3. * (2. + 3.), func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ { a=6.00 b=9.00 }""", testing_stream.output) def test_tap_with_result(self): def func2(x): x1 = hcb.id_print((x * 2., x * 3.), result=x * 4., output_stream=testing_stream) return x1 self.assertEqual(3. * 4., func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( 6.00 9.00 )""", testing_stream.output) def test_tap_with_result_no_arg(self): def tap_func(arg, transforms): testing_stream.write(f"called tap_func with {arg}") def func2(x): x1 = hcb.id_tap(tap_func, None, result=x) return x1 self.assertEqual(3., func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, "called tap_func with None", testing_stream.output) def test_tap_result_unused(self): def tap_func(arg, transforms): testing_stream.write(f"called tap_func with {arg}") def func2(x): hcb.id_tap(tap_func, None) return x self.assertEqual(3., func2(3.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, "called tap_func with None", testing_stream.output) def test_tap_with_device(self): def func2(x): x1 = hcb.id_print((x * 2., x * 3.), result=x * 4., output_stream=testing_stream, tap_with_device=True) return x1 self.assertEqual(3. * 4., func2(3.)) hcb.barrier_wait() assertMultiDeviceOutputEqual(self, """ device: cpu:0 ( 6.00 9.00 )""") def test_tap_eval_exception(self): if not FLAGS.jax_host_callback_outfeed: raise SkipTest("TODO: implement error handling for customcall") # Simulate a tap error def tap_err(*args, **kwargs): raise ValueError("Some user message") def func(x): x1 = hcb.id_print(x + 1, what="x1", output_stream=testing_stream) x2 = hcb.id_tap(tap_err, x1 + 1) x3 = hcb.id_print(x2 + 1, what="x3", output_stream=testing_stream) return x3 with self.assertRaisesRegex( hcb.CallbackException, re.compile("There were exceptions during callback processing. Last one was:.*" "ValueError: Some user message", re.DOTALL)): func(0) hcb.barrier_wait() # We should have received everything before the error assertMultiLineStrippedEqual(self, """ what: x1 1 what: x3 3""", testing_stream.output) def test_tap_empty(self): """Tap empty arrays.""" hcb.id_print((), output_stream=testing_stream) hcb.id_print((1., np.ones((2, 0))), what="second", output_stream=testing_stream) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( ) what: second ( 1.00 [] )""", testing_stream.output) def test_tap_jit_simple(self): jit_fun1 = api.jit(lambda x: 3. * hcb.id_print( 2. * x, what="here", output_stream=testing_stream)) self.assertAllClose(6. * 5., jit_fun1(5.)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: here 10.00""", testing_stream.output) def test_tap_jit_no_invars(self): def func(): # jitted function does not take arguments return hcb.id_print(42, output_stream=testing_stream) self.assertAllClose(42, api.jit(func)()) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ 42""", testing_stream.output) def test_tap_jit_multiple_invars(self): def func(x1, x2): return hcb.id_print(x1 + x2, output_stream=testing_stream) self.assertAllClose(42, api.jit(func)(40, 2)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ 42""", testing_stream.output) def test_tap_jit_constant(self): def func(x): return hcb.id_print(42, result=x, output_stream=testing_stream) self.assertAllClose(5, api.jit(func)(5)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ 42""", testing_stream.output) def test_tap_jit_sequence1(self): def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) return hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) logging.info("%s: %s", self._testMethodName, api.make_jaxpr(func)(1)) logging.info("%s: %s", self._testMethodName, api.xla_computation(func)(1).as_hlo_text()) self.assertEqual(2, api.jit(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2""", testing_stream.output) def test_tap_jit2(self): """A sequence of JIT.""" def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) return x2 self.assertEqual(2, api.jit(func)(1)) self.assertEqual(11, api.jit(func)(10)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: 1 10 where: 2 11""", testing_stream.output) def test_tap_jit_result_unused(self): """We can id_print even if we don't use the result.""" def func(x): hcb.id_print(x, where="1", output_stream=testing_stream) hcb.id_print(x + 1, where="2", output_stream=testing_stream) return x + 1 self.assertEqual(2, api.jit(func)(1)) self.assertEqual(11, api.jit(func)(10)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: 1 10 where: 2 11""", testing_stream.output) def test_tap_jit_nested(self): def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) def func_nested(x): x2 = hcb.id_print(x + 1, where="nested", output_stream=testing_stream) return x2 x3 = api.jit(func_nested)(x1) return hcb.id_print(x3 + 1, where="3", output_stream=testing_stream) self.assertEqual(3, api.jit(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: nested 2 where: 3 3""", testing_stream.output) def test_tap_jit_devices(self): """Running on multiple devices.""" logging.info(f"{self._testMethodName}: has devices {local_devices()}") def func(x, device_id): x1 = hcb.id_print(x, dev=str(device_id), output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, dev=str(device_id), output_stream=testing_stream) return x2 for d in local_devices(): self.assertEqual(112, api.jit(func, device=d, static_argnums=1)(111, d.id)) hcb.barrier_wait() logging.info(f"{self._testMethodName}: found output {testing_stream.output}") self.assertEqual( len(local_devices()), len(re.findall(r"111", testing_stream.output))) self.assertEqual( len(local_devices()), len(re.findall(r"112", testing_stream.output))) @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_with_jit_{with_jit}", with_jit=with_jit) for with_jit in [True, False])) def test_tap_pytree(self, with_jit=False): def func(x, what=""): """Returns some pytrees depending on x""" if what == "pair_1_x": return (1, x) elif what == "pair_x_2x": return (x, 2 * x) elif what == "dict": return dict(a=2 * x, b=3 * x) else: assert False tap_count = 0 def tap_func(a, _, *, what=""): nonlocal tap_count tap_count += 1 self.assertEqual(func(5, what), a) transform = api.jit if with_jit else lambda f: f for what in ("pair_1_x", "pair_x_2x", "dict"): transformed = transform( lambda x: hcb.id_tap( partial(tap_func, what=what), func(x, what), result=func(x * 2, what)) )(5) self.assertEqual(func(10, what), transformed) hcb.barrier_wait() # Wait for receivers to be done self.assertEqual(3, tap_count) @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_concurrent_{concurrent}", concurrent=concurrent) for concurrent in [True, False])) def test_tap_multiple(self, concurrent=False): """Call id_tap multiple times, concurrently or in sequence. """ if concurrent and jtu.device_under_test() in ["cpu", "gpu"]: # TODO(necula): if there is device side concurrency, outfeeds from # different computations can be interleaved. For example, it seems that # on GPU if multiple host threads run a jit computation, the multiple # computations are interleaved on the GPU. This can result in the outfeed # trains being interleaved, which will trigger an error. # The solution is to fix on GPU the receiving logic so that we can outfeed # the train as one tuple, and receive it one piece as a time. Then the # trains should be atomic. # See also b/160692602. raise SkipTest("concurrent id_tap not supported on CPU, GPU") received = set() count = 5 def pause_tap(idx, _): received.add(int(idx)) logging.info(f"Starting do_tap {idx}. Sleeping 1sec ...") time.sleep(0.3) logging.info(f"Finish do_tap {idx}") def do_tap(idx): api.jit(lambda idx: hcb.id_tap(pause_tap, idx))(idx) if concurrent: threads = [ threading.Thread( name=f"enqueue_tap_{idx}", target=do_tap, args=(idx,)) for idx in range(count) ] [t.start() for t in threads] [t.join() for t in threads] else: for idx in range(count): do_tap(idx) hcb.barrier_wait() self.assertEqual(received, set(range(count))) # TODO(necula): see comment for test_multiple_tap. Here we disable also # on TPU, because the barrier_wait runs on all devices, including on the CPU # where it would run into concurrency problems. @skip("Concurrency not supported") def test_tap_multiple_barriers(self): """Call barrier_wait concurrently.""" def pause_tap(*args, **kwargs): logging.info("pause_tap waiting") time.sleep(0.3) logging.info("pause_tap done") def long_run(x): return hcb.id_tap(pause_tap, x) api.jit(long_run)(5.) def try_barrier(idx): logging.info(f"Starting test barrier {idx}") hcb.barrier_wait() logging.info(f"Finished test barrier {idx}") threads = [ threading.Thread( name=f"barrier_{idx}", target=try_barrier, args=(idx,)) for idx in range(3) ] [t.start() for t in threads] [t.join() for t in threads] @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_with_jit_{with_jit}", with_jit=with_jit) for with_jit in [True, False])) def test_tap_cond(self, with_jit=False): """A conditional""" def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) x4 = lax.cond(x % 2 == 0, lambda x: hcb.id_print(x, where="cond_t", output_stream=testing_stream), lambda x: hcb.id_print(-1, where="cond_f", result=x, output_stream=testing_stream), x2 + 1) x5 = hcb.id_print(x4 + 1, where="end", output_stream=testing_stream) return x5 transform = api.jit if with_jit else lambda f: f self.assertEqual(4, transform(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: cond_f -1 where: end 4""", testing_stream.output) @parameterized.named_parameters( jtu.cases_from_list( dict(testcase_name=f"_with_jit_{with_jit}", with_jit=with_jit) for with_jit in [True, False])) def test_tap_while_cond(self, with_jit=False): def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) def body(x): x3 = hcb.id_print(x, where="w_b_1", output_stream=testing_stream) x4 = lax.cond(x % 2 == 0, lambda x: hcb.id_print(x, where="w_b_t", output_stream=testing_stream), lambda x: hcb.id_print(-1, where="w_b_f", result=x, output_stream=testing_stream), x3 + 1) return hcb.id_print(x4, where="w_b_2", output_stream=testing_stream) x10 = lax.while_loop(lambda x: x <= 3, body, x2) res = hcb.id_print(x10, where="end", output_stream=testing_stream) return res transform = api.jit if with_jit else lambda f: f self.assertEqual(4, transform(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: w_b_1 2 where: w_b_t 3 where: w_b_2 3 where: w_b_1 3 where: w_b_f -1 where: w_b_2 4 where: end 4""", testing_stream.output) def test_tap_jit_while_pred_tap(self): """While with printing in the conditional.""" def func(x): x1 = hcb.id_print(x, where="1") x10 = lax.while_loop(lambda x: hcb.id_print(x < 3, where="w_p", output_stream=testing_stream), lambda x: hcb.id_print(x + 1, where="w_b", output_stream=testing_stream), x1) res = hcb.id_print(x10, where="3", output_stream=testing_stream) return res self.assertEqual(3, api.jit(func)(1)) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: w_p True where: w_b 2 where: w_p True where: w_b 3 where: w_p False where: 3 3""", testing_stream.output) @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_with_jit_{with_jit}", with_jit=with_jit) for with_jit in [True, False])) def test_tap_scan_cond(self, with_jit=True): def func(x): x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = hcb.id_print(x1 + 1, where="2", output_stream=testing_stream) def body(c, x): x3 = hcb.id_print(x, where="s_1", output_stream=testing_stream) x4 = lax.cond(x % 2 == 0, lambda x: hcb.id_print(x, where="s_t", output_stream=testing_stream), lambda x: hcb.id_print(-1, where="s_f", result=x, output_stream=testing_stream), x3 + 1) return (c, hcb.id_print(x4, where="s_2", output_stream=testing_stream)) _, x10 = lax.scan(body, x2, jnp.arange(3)) res = hcb.id_print(x10, where="10", output_stream=testing_stream) return res if with_jit: func = api.jit(func) res = func(1) self.assertAllClose(jnp.array([1, 2, 3]), res) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ where: 1 1 where: 2 2 where: s_1 0 where: s_t 1 where: s_2 1 where: s_1 1 where: s_f -1 where: s_2 2 where: s_1 2 where: s_t 3 where: s_2 3 where: 10 [1 2 3]""", testing_stream.output) testing_stream.reset() @parameterized.named_parameters( jtu.cases_from_list( dict( testcase_name=f"_shape_{shape}_dtype_{np.dtype(dtype).name}_nr_args={nr_args}", shape=shape, dtype=dtype, nr_args=nr_args) for nr_args in [1, 2] for shape in [(), (2,), (2, 3), (2, 3, 4)] for dtype in jtu.dtypes.all)) def test_tap_jit_dtypes(self, nr_args=2, dtype=jnp.int16, shape=(2,)): if dtype in (jnp.complex64, jnp.complex128, jnp.bool_): raise SkipTest(f"host_callback not implemented for {dtype}.") if dtype == np.bool_: args = [np.random.choice(a=[True, False], size=shape)] else: args = [jnp.arange(np.prod(shape), dtype=dtype).reshape(shape)] if nr_args > 1: args = args * nr_args jit_fun1 = api.jit(lambda xs: hcb.id_print( xs, a_new_test="************", testcase_name=f"shape_{shape}_dtype_{dtype}_nr_args={nr_args}")) res = jit_fun1(args) self.assertAllClose(args, res, check_dtypes=True) def test_tap_jit_large(self): arg = jnp.arange(10000, dtype=jnp.int32).reshape((10, 10, 5, -1)) api.jit(hcb.id_print)(arg) def test_tap_jit_several_together(self): arg = jnp.arange(50, dtype=jnp.int32).reshape((10, 5)) api.jit(lambda x, y: hcb.id_print((x, y, x * 2.)))(arg, jnp.ones(100, dtype=jnp.int32)) def test_tap_jit_interleaving(self): # Several jit's without data dependencies; they may interfere count = 0 # Count tap invocations nr_arrays = 5 def tap_func(arg, _): nonlocal count assert len(arg) == nr_arrays count += 1 # This is the function that we'll run multiple times def func(x, count): for i in range(count): x = hcb.id_tap(tap_func, [x + i for i in range(nr_arrays)])[-1] return x x = jnp.array(1, dtype=np.int32) res = 0 for _ in range(10): # No dependencies between the jit invocations res += api.jit(lambda x: func(x, 10))(x) hcb.barrier_wait() self.assertEqual(100, count) def test_tap_jit_tap_exception(self): if not FLAGS.jax_host_callback_outfeed: raise SkipTest("TODO: implement error handling for customcall") # Simulate a tap error def tap_err(*args, **kwargs): raise NotImplementedError def func(x): x1 = hcb.id_print(x + 1, what="x1", output_stream=testing_stream) x2 = hcb.id_tap(tap_err, x1 + 1) x3 = hcb.id_print(x2 + 1, what="x3", output_stream=testing_stream) return x3 res = api.jit(func)(0) # No error yet with self.assertRaises(hcb.CallbackException): hcb.barrier_wait() # Even though the receiver thread raised, the main thread should still # return 3. self.assertEqual(3, res) # We should have received all others assertMultiLineStrippedEqual(self, """ what: x1 1 what: x3 3""", testing_stream.output) def test_tap_while(self): """Executing while, even without JIT uses compiled code""" y = jnp.ones(5) # captured const def func(x): return lax.while_loop( lambda c: c[1] < 5, lambda c: (y, hcb.id_print(c[1], output_stream=testing_stream) + 1), (x, 1)) func(y) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ 1 2 3 4""", testing_stream.output) def test_tap_jvp(self): jvp_fun1 = lambda x, xt: api.jvp(fun1, (x,), (xt,)) res_primals, res_tangents = jvp_fun1(jnp.float32(5.), jnp.float32(0.1)) self.assertAllClose(100., res_primals, check_dtypes=False) self.assertAllClose(4., res_tangents, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ transforms: ['jvp'] what: a * 2 ( 10.00 0.20 ) transforms: ['jvp'] what: y * 3 ( 30.00 0.60 )""", testing_stream.output) def test_tap_grad_primal_unused(self): # The output of id_print is not needed for backwards pass def func(x): return 2. * hcb.id_print(x * 3., what="x * 3", output_stream=testing_stream) grad_func = api.grad(func) arg = jnp.float32(5.) jaxpr = str(api.make_jaxpr(grad_func)(arg)) # making the Jaxpr does not print anything hcb.barrier_wait() treedef = tree_util.tree_structure(arg) assertMultiLineStrippedEqual(self, f""" {{ lambda ; a. let b = mul a 3.00 c = outside_call[ arg_treedef={treedef} callback=... identity=True transforms=( ) ] b _ = mul c 2.00 d = mul 1.00 2.00 _ = broadcast_in_dim[ broadcast_dimensions=( ) shape=( ) ] 0.00 e = outside_call[ arg_treedef={treedef} callback=... identity=True transforms=(('jvp',), ('transpose',)) ] d f = mul e 3.00 in (f,) }}""", jaxpr) assertMultiLineStrippedEqual(self, "", testing_stream.output) testing_stream.reset() res_grad = grad_func(arg) hcb.barrier_wait() self.assertAllClose(6., res_grad, check_dtypes=False) assertMultiLineStrippedEqual(self, """ what: x * 3 15.00 transforms: ['jvp', 'transpose'] what: x * 3 2.00""", testing_stream.output) def test_tap_grad_simple(self): def func(x): y = hcb.id_print(x * 2., what="x * 2", output_stream=testing_stream) return x * hcb.id_print(y * 3., what="y * 3", output_stream=testing_stream) grad_func = api.grad(func) res_grad = grad_func(jnp.float32(5.)) self.assertAllClose(2. * 5. * 6., res_grad, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: x * 2 10.00 what: y * 3 30.00 transforms: ['jvp', 'transpose'] what: y * 3 5.00 transforms: ['jvp', 'transpose'] what: x * 2 15.00""", testing_stream.output) def test_tap_grad_grad(self): def func(x): y = hcb.id_print(x * 2., what="x * 2", output_stream=testing_stream) return x * (y * 3.) grad_func = api.grad(api.grad(func)) # making the Jaxpr does not print anything _ = api.make_jaxpr(grad_func)(5.) hcb.barrier_wait() assertMultiLineStrippedEqual(self, "", testing_stream.output) res_grad = grad_func(jnp.float32(5.)) self.assertAllClose(12., res_grad, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: x * 2 10.00 transforms: ['jvp', 'transpose'] what: x * 2 15.00 transforms: ['jvp', 'transpose', 'jvp', 'transpose'] what: x * 2 2.00 transforms: ['jvp', 'transpose'] what: x * 2 3.00""", testing_stream.output) def test_tap_grad_pytree(self): def func(x): x4, x5 = hcb.id_print((x * 2., x * 3.), what="pair", result=(x * 4., x * 5.), output_stream=testing_stream) return x4 + 2. * x5 x = jnp.float32(5.) grad_func = api.grad(func) print(api.make_jaxpr(grad_func)(x)) res_grad = grad_func(x) self.assertAllClose(14., res_grad, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: pair ( 10.00 15.00 ) transforms: ['jvp', 'transpose'] what: pair ( 0.00 0.00 )""", testing_stream.output) def test_tap_jvp_float0(self): def f(x, yint): x, yint = hcb.id_tap(lambda arg, _: arg, (x, yint)) return x * yint res = api.jvp(f, (2., 3), (0.2, np.zeros((), dtypes.float0))) self.assertAllClose((6., 0.6), res) def test_tap_grad_float0(self): def func(x, yint): x, yint = hcb.id_print((x, yint), what="pair", output_stream=testing_stream) return x * yint grad_func = api.grad(func) res_grad = grad_func(jnp.float32(5.), jnp.int32(2)) self.assertAllClose(2., res_grad, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ what: pair ( 5.00 2 ) transforms: ['jvp', 'transpose'] what: pair ( 2.00 False )""", testing_stream.output) def test_tap_grad_float0_result(self): # https://github.com/google/jax/issues/7340 # x is a Tuple[f32[2], s32[3]] x = (np.array([.7, .8], dtype=np.float32), np.array([11, 12, 13], dtype=np.int32)) def f_jax(x): x = hcb.id_print(x, result=x, output_stream=testing_stream) # result= is important return (3. * x[0], x[1]) def f_jax_vjp(x): res, pullback = jax.vjp(f_jax, x) g, = pullback((np.ones(x[0].shape, dtype=x[0].dtype), np.zeros(x[1].shape, dtype=dtypes.float0))) return g g = f_jax_vjp(x) self.assertAllClose(np.array([3., 3.], dtype=np.float32), g[0]) self.assertEqual(dtypes.float0, g[1].dtype) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( [0.70 0.80] [11 12 13] ) transforms: ['jvp', 'transpose'] ( [0.00 0.00] [False False False] )""", testing_stream.output) def test_tap_higher_order_grad_float0_result(self): # https://github.com/google/jax/issues/7340 # x is a Tuple[f32[2], s32[3]] x = (np.array([.7, .8], dtype=np.float32), np.array([11, 12, 13], dtype=np.int32)) def f_jax(x): x = hcb.id_print(x, result=x, output_stream=testing_stream) # result= is important return (jnp.sin(x[0]), x[1]) def wrap_vjp(f, args, res_f_of_args): # Given a function "f" and "args" return the f_vjp and args_vjp def make_ct(res): res_dtype = np.result_type(res) if res_dtype == dtypes.float0: return res ct_dtype = core.primal_dtype_to_tangent_dtype(res_dtype) return np.ones(np.shape(res), dtype=ct_dtype) cts = tree_util.tree_map(make_ct, res_f_of_args) def f_vjp(args, cts): res, pullback = jax.vjp(f, *args) return pullback(cts) return (f_vjp, (args, cts)) res = f_jax(x) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( [0.70 0.80] [11 12 13] )""", testing_stream.output) testing_stream.reset() # 1st order f_jax_vjp1, args_vjp1 = wrap_vjp(f_jax, (x,), res) res_vjp1 = f_jax_vjp1(*args_vjp1) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ ( [0.70 0.80] [11 12 13] ) transforms: ['jvp', 'transpose'] ( [0.00 0.00] [False False False] )""", testing_stream.output) testing_stream.reset() # 2nd order f_jax_vjp2, args_vjp2 = wrap_vjp(f_jax_vjp1, args_vjp1, res_vjp1) res_vjp2 = f_jax_vjp2(*args_vjp2) # 3rd order f_jax_vjp3, args_vjp3 = wrap_vjp(f_jax_vjp2, args_vjp2, res_vjp2) _ = f_jax_vjp3(*args_vjp3) def test_tap_vmap(self): vmap_fun1 = api.vmap(fun1) vargs = jnp.array([jnp.float32(4.), jnp.float32(5.)]) vmap_fun1(vargs) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ transforms: [('batch', {'batch_dims': (0,)})] what: a * 2 [ 8.00 10.00] transforms: [('batch', {'batch_dims': (0,)})] what: y * 3 [24.00 30.00]""", testing_stream.output) def test_tap_vmap_not_batched(self): x = 3. def func(y): # x is not mapped, y is mapped _, y = hcb.id_print((x, y), output_stream=testing_stream) return x + y vmap_func = api.vmap(func) vargs = jnp.array([jnp.float32(4.), jnp.float32(5.)]) _ = vmap_func(vargs) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ transforms: [('batch', {'batch_dims': (None, 0)})] ( 3.00 [4.00 5.00] )""", testing_stream.output) def test_tap_vmap_vmap(self): # A 2D tensor with x[i, j] = i + j using 2 vmap def sum(x, y): return hcb.id_print(x + y, output_stream=testing_stream) def sum_rows(xv, y): return api.vmap(sum, in_axes=(0, None))(xv, y) def sum_all(xv, yv): return api.vmap(sum_rows, in_axes=(None, 0))(xv, yv) xv = jnp.arange(5, dtype=np.int32) yv = jnp.arange(3, dtype=np.int32) # assertMultiLineStrippedEqual(self, "", str(api.make_jaxpr(sum_all)(xv, yv))) _ = sum_all(xv, yv) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ transforms: [('batch', {'batch_dims': (0,)}), ('batch', {'batch_dims': (0,)})] [[0 1 2 3 4] [1 2 3 4 5] [2 3 4 5 6]]""", testing_stream.output) def test_tap_vmap_while(self): """Vmap of while.""" def func(x): # like max(x, 2) x1 = hcb.id_print(x, where="before:x", output_stream=testing_stream) x2 = lax.while_loop( lambda x: x < 2, lambda x: hcb.id_print( x + 1, where="body:x+1", output_stream=testing_stream), x1) res = hcb.id_print(x2, where="after:x", output_stream=testing_stream) return res inputs = np.arange(5, dtype=np.int32) self.assertAllClose( np.array([2, 2, 2, 3, 4]), api.jit(api.vmap(func))(inputs), check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual( self, """ transforms: [('batch', {'batch_dims': (0,)})] where: before:x [0 1 2 3 4] transforms: [('batch', {'batch_dims': (0,)})] where: body:x+1 [1 2 3 4 5] transforms: [('batch', {'batch_dims': (0,)})] where: body:x+1 [2 3 3 4 5] transforms: [('batch', {'batch_dims': (0,)})] where: after:x [2 2 2 3 4]""", testing_stream.output) def test_tap_vmap_while_tap_cond(self): """Vmap of while, with a tap in the conditional.""" def func(x): # like max(x, 2) x1 = hcb.id_print(x, where="1", output_stream=testing_stream) x2 = lax.while_loop(lambda x: hcb.id_print(x < 2, where="w_c", output_stream=testing_stream), lambda x: hcb.id_print(x + 1, where="w_b", output_stream=testing_stream), x1) res = hcb.id_print(x2, where="3", output_stream=testing_stream) return res inputs = np.arange(5, dtype=np.int32) res = api.jit(api.vmap(func))(inputs) hcb.barrier_wait() self.assertAllClose(np.array([2, 2, 2, 3, 4]), res, check_dtypes=False) assertMultiLineStrippedEqual(self, """ transforms: [('batch', {'batch_dims': (0,)})] where: 1 [0 1 2 3 4] transforms: [('batch', {'batch_dims': (0,)})] where: w_c [ True True False False False] transforms: [('batch', {'batch_dims': (0,)})] where: w_b [1 2 3 4 5] transforms: [('batch', {'batch_dims': (0,)})] where: w_c [ True False False False False] transforms: [('batch', {'batch_dims': (0,)})] where: w_b [2 3 3 4 5] transforms: [('batch', {'batch_dims': (0,)})] where: w_c [False False False False False] transforms: [('batch', {'batch_dims': (0,)})] where: 3 [2 2 2 3 4]""", testing_stream.output) def test_tap_transforms(self): def power3(x): y = x * x # Print both 'x' and 'x^2'. Must pack as a tuple. _, y = hcb.id_print((x, y), what="x,x^2", output_stream=testing_stream) return y * x print(f"impl = {power3(3.)}") hcb.barrier_wait() expected = """ what: x,x^2 ( 3. 9. )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() print(f"vmap = {jax.vmap(power3)(np.arange(3.))}") hcb.barrier_wait() expected = """ transforms: [('batch', {'batch_dims': (0, 0)})] what: x,x^2 ( [0. 1. 2.] [0. 1. 4.] )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() print(f"jvp = {jax.jvp(power3, (3.,), (0.1,))}") hcb.barrier_wait() expected = """ transforms: ['jvp'] what: x,x^2 ( ( 3. 9. ) ( 0.1 0.6 ) )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() print(f"grad = {jax.grad(power3)(3.)}") hcb.barrier_wait() expected = """ what: x,x^2 ( 3. 9. ) transforms: ['jvp', 'transpose'] what: x,x^2 ( 0. 3. )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() print(f"vmap o grad {jax.vmap(jax.grad(power3))(np.array([2., 3.]))}") hcb.barrier_wait() expected = """ transforms: [('batch', {'batch_dims': (0, 0)})] what: x,x^2 ( [2. 3.] [4. 9.] ) transforms: ['jvp', 'transpose', ('batch', {'batch_dims': (None, 0)})] what: x,x^2 ( 0. [2. 3.] )""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) def test_tap_pmap(self): if len(local_devices()) < 2: raise SkipTest("test requires at least 2 devices") def power3(x): y = x * x # Print both 'x' and 'x^2'. Must pack as a tuple. _, y = hcb.id_print((x, y), what="x,x^2", output_stream=testing_stream, tap_with_device=True) return y * x pmap_power3 = api.pmap(power3, devices=local_devices()) xv = np.array([3, 4], dtype=np.int32) res = pmap_power3(xv) hcb.barrier_wait() self.assertAllClose(xv * xv * xv, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual( self, """ device: cpu:0 what: x,x^2 ( 3 9 ) device: cpu:1 what: x,x^2 ( 4 16 )""") def test_tap_pmap_vmap(self): # A matrix M[ij] = i * 10 + j nr_devices = len(local_devices()) shape = (nr_devices, 3) matrix = np.fromfunction(lambda i, j: 10. * i + j, shape, dtype=np.int32) def fun1(x, do_print=False): # x: i32 return maybe_print(do_print, x * 2, "x * 2", tap_with_device=True) pmap_vmap_fun1 = api.pmap( api.vmap(partial(fun1, do_print=True)), devices=local_devices()) res = pmap_vmap_fun1(matrix) hcb.barrier_wait() expected_res = api.pmap( api.vmap(partial(fun1, do_print=False)), devices=local_devices())( matrix) self.assertAllClose(expected_res, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual(self, """ device: cpu:0 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [0.00 2.00 4.00] device: cpu:1 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [20.00 22.00 24.00]""") def test_tap_pmap_pmap_vmap(self): # A matrix M[ijk] = i * 100 + j * 10 + k nr_devices = len(local_devices()) if nr_devices % 2 != 0: raise SkipTest("test works only on even number of devices") shape = (2, nr_devices // 2, 3) matrix = np.fromfunction(lambda i, j, k: 100. * i + 10. * j + k, shape, dtype=np.float32) def fun1(x, do_print=False): # x: f32 y = maybe_print(do_print, x * 2., "x * 2", tap_with_device=True) return y ** 2 pmap_fun1 = api.pmap( api.pmap(api.vmap(partial(fun1, do_print=True))), devices=local_devices()) res = pmap_fun1(matrix) hcb.barrier_wait() expected_res = api.pmap( api.pmap(api.vmap(partial(fun1, do_print=False))), devices=local_devices())( matrix) self.assertAllClose(expected_res, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual(self, """ device: cpu:0 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [0.00 2.00 4.00] device: cpu:1 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [200.00 202.00 204.00]""") @ignore_jit_of_pmap_warning() def test_tap_pmap_pmap_extra(self): """pmap of a pmap surrounded by extra code.""" # A matrix M[ij] = i * 10 + j nr_devices = len(local_devices()) if nr_devices != 2: raise SkipTest("test works only on 2 devices") shape = (2, 1, 3) matrix = np.fromfunction(lambda i, j, k: 100. * i + 10. * j + k, shape, dtype=np.float32) def fun(xv, do_print=False): # This will be printed on all devices, with shape [1, 3] xv = maybe_print(do_print, xv + 1., "before", tap_with_device=True) res = api.pmap(lambda x: maybe_print(do_print, x * 2., "inside", tap_with_device=True))(xv) # This will be printed on all devices, with shape [1, 3] return maybe_print(do_print, res + 1., "after", tap_with_device=True) res = api.pmap(partial(fun, do_print=True))(matrix) self.assertAllClose(fun(matrix, do_print=False), res, check_dtypes=False) hcb.barrier_wait() # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual(self, """ device: cpu:0 what: before [[1.00 2.00 3.00]] device: cpu:0 what: inside [2.00 4.00 6.00] device: cpu:0 what: after [[3.00 5.00 7.00]] device: cpu:1 what: before [[101.00 102.00 103.00]] device: cpu:1 what: inside [202.00 204.00 206.00] device: cpu:1 what: after [[203.00 205.00 207.00]]""") def test_tap_jvp_pmap_vmap(self): # A matrix M[ijk] = i * 100 + j * 10 * k nr_devices = len(local_devices()) shape = (nr_devices, 2, 3) matrix = np.fromfunction(lambda i, j, k: 100. * i + 10. * j + k, shape, dtype=np.float32) def fun(xv, do_print=False): # x: f32[3] return api.jvp(api.pmap(api.vmap(lambda x: maybe_print(do_print, x * 2., "x * 2", tap_with_device=True))), (xv,), (.1 * jnp.ones_like(xv),)) res = fun(matrix, do_print=True) hcb.barrier_wait() expected_res = fun(matrix, do_print=False) self.assertAllClose(expected_res, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) # Device 0 will get to execute api.jvp(api.vmap(...)) for matrix[0, :, :] assertMultiDeviceOutputEqual(self, """ device: cpu:0 transforms: [('batch', {'batch_dims': (0,)}), 'jvp'] what: x * 2 ( [[ 0.00 2.00 4.00] [20.00 22.00 24.00]] [[0.20 0.20 0.20] [0.20 0.20 0.20]] ) device: cpu:1 transforms: [('batch', {'batch_dims': (0,)}), 'jvp'] what: x * 2 ( [[200.00 202.00 204.00] [220.00 222.00 224.00]] [[0.20 0.20 0.20] [0.20 0.20 0.20]] )""") def test_tap_vmap_pmap(self): # A matrix M[ijk] = i * 100 + j * 10 * k nr_devices = len(local_devices()) shape = (2, nr_devices, 3) matrix = np.fromfunction(lambda i, j, k: 100. * i + 10. * j + k, shape, dtype=np.float32) def fun(xv, do_print=False): # x: f32[3] return api.vmap(api.pmap(lambda x: maybe_print(do_print, x * 2., "x * 2", tap_with_device=True)))(xv) res = fun(matrix, do_print=True) hcb.barrier_wait() expected_res = fun(matrix, do_print=False) self.assertAllClose(expected_res, res, check_dtypes=False) # Assertion text is for 2 devices (also works for 1 device) # Device 0 will get to execute api.jvp(api.vmap(...)) for matrix[:, 0, :] assertMultiDeviceOutputEqual(self, """ device: cpu:0 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [[ 0.00 2.00 4.00] [200.00 202.00 204.00]] device: cpu:1 transforms: [('batch', {'batch_dims': (0,)})] what: x * 2 [[ 20.00 22.00 24.00] [220.00 222.00 224.00]]""") @ignore_jit_of_pmap_warning() def test_tap_jit_pmap_extra(self): """jit of a pmap surrounded by extra code.""" # A matrix M[ij] = i * 10 + j nr_devices = len(local_devices()) assert nr_devices in (1, 2) shape = (nr_devices, 3) matrix = np.fromfunction(lambda i, j: 10. * i + j, shape, dtype=np.float32) def fun(xv, do_print=False): # This will be printed on all devices with shape (nr_devices, 3) xv = maybe_print(do_print, xv + 1., "before", tap_with_device=True) res = api.pmap(lambda x: maybe_print(do_print, x * 2., "inside", tap_with_device=True))(xv) # This will be printed on all devices with shape (nr_devices, 3) return maybe_print(do_print, res + 1., "after", tap_with_device=True) res = api.jit(partial(fun, do_print=True))(matrix) self.assertAllClose(fun(matrix, do_print=False), res, check_dtypes=False) hcb.barrier_wait() if len(local_devices()) == 2: assertMultiDeviceOutputEqual(self, """ device: cpu:0 what: before [[ 1.00 2.00 3.00] [11.00 12.00 13.00]] device: cpu:0 what: inside [2.00 4.00 6.00] device: cpu:0 what: after [[ 3.00 5.00 7.00] [23.00 25.00 27.00]] device: cpu:1 what: before [[ 1.00 2.00 3.00] [11.00 12.00 13.00]] device: cpu:1 what: inside [22.00 24.00 26.00] device: cpu:1 what: after [[ 3.00 5.00 7.00] [23.00 25.00 27.00]]""") else: assert len(local_devices()) == 1 assertMultiDeviceOutputEqual(self, """ device: cpu:0 what: before [[1.00 2.00 3.00]] device: cpu:0 what: inside [2.00 4.00 6.00] device: cpu:0 what: after [[3.00 5.00 7.00]]""") def test_tap_cond_pmap(self): raise SkipTest("cond of pmap does not work in JAX. Issue #5178.") # A matrix M[ij] = i * 10 + j nr_devices = len(local_devices()) shape = (nr_devices, 3) matrix = np.fromfunction(lambda i, j: 10. * i + j, shape, dtype=np.float32) def fun1(x, do_print=False): return maybe_print(do_print, x * 2., "x * 2") def fun2(cond, xv, do_print=False): return lax.cond(cond, api.pmap(partial(fun1, do_print=do_print)), lambda xv: xv, xv) res = fun2(True, matrix) self.assertAllClose(fun2(True, matrix, do_print=False), res, check_dtypes=False) hcb.barrier_wait() assertMultiLineStrippedEqual(self, """ TBD""", testing_stream.output) @jtu.skip_on_devices("cpu", "gpu") # TODO(necula): file XLA:GPU bug for the 'Sharding' CustomCall def test_tap_pjit(self): devices = np.array(local_devices()) nr_devices = len(devices) if nr_devices < 2: raise SkipTest("test requires at least 2 devices") print(f"test_tap_pjit is running on devices {devices}.") # x: i32[D, 3] = [[0, 1, 2], [10, 11, 12], ...] # y: i32[3, 4] x = jnp.arange(100, dtype=jnp.int32).reshape((10, 10))[:nr_devices, :3] y = jnp.ones((3, 4), np.int32) @partial(jax.named_call, name="fun1") # for xprof debugging def fun1(x, do_print=False): z = jnp.dot(x, y) return maybe_print(do_print, z, "z", tap_with_device=True) res0 = fun1(x, do_print=False) pjit_fun1 = pjit.pjit( partial(fun1, do_print=True), in_axis_resources=(P("d"),), out_axis_resources=P("d")) with maps.mesh(devices, ["d"]): # Print the internal IR helper_log_ir( f"{self._testMethodName}.pjit", pjit_fun1, x, num_partitions=nr_devices) res = pjit_fun1(x) self.assertAllClose(res0, res) hcb.barrier_wait("before check") # Assertion text is for 2 devices (also works for 1 device) # Note that a single call is made. assertMultiDeviceOutputEqual( self, """ device: cpu:0 what: z [[ 3 3 3 3] [33 33 33 33]]""") def test_tap_tap_scan_custom_jvp(self): """custom JVP, inside scan. This exercises the custom_jvp_call_jaxpr primitives.""" @api.custom_jvp def f(x): return x * hcb.id_print(x, output_stream=testing_stream, what="x") @f.defjvp def f_jvp(primals, tangents): x, = primals x_dot, = tangents primal_out = f(x) tangent_out = 3. * x * hcb.id_print(x_dot, output_stream=testing_stream, what="x_dot") return primal_out, tangent_out def g(x): # Sum f(x_i) return lax.scan(lambda carry, inp: (carry + f(inp), 0.), np.full(x.shape[1:], 0.), # Like x w/o leading dim x)[0] arg = np.full((2,), 0.7) self.assertAllClose(0.7 * 0.7 * 2, g(arg)) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" what: x 0.7 what: x 0.7""", testing_stream.output) testing_stream.reset() self.assertAllClose(np.array([2.1, 2.1]), api.grad(g)(arg), check_dtypes=False) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" what: x 0.7 what: x 0.7 transforms: ['transpose'] what: x_dot 2.1 transforms: ['transpose'] what: x_dot 2.1""", testing_stream.output) def test_tap_scan_custom_vjp(self): """custom VJP, inside scan. This exercises the custom_vjp_call_jaxpr primitives.""" @api.custom_vjp def f(x): return x * hcb.id_print(x, output_stream=testing_stream, what="x") # f_fwd: a -> (b, residual) def f_fwd(x): return f(x), 3. * x # f_bwd: (residual, CT b) -> [CT a] def f_bwd(residual, ct_b): return residual * hcb.id_print(ct_b, output_stream=testing_stream, what="ct_b"), f.defvjp(f_fwd, f_bwd) def g(x): # Sum f(x_i) return lax.scan(lambda carry, inp: (carry + f(inp), 0.), np.full(x.shape[1:], 0.), # Like x w/o leading dim x)[0] arg = np.full((2,), 0.7) self.assertAllClose(0.7 * 0.7 * 2, g(arg)) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" what: x 0.7 what: x 0.7""", testing_stream.output) testing_stream.reset() self.assertAllClose(np.array([2.1, 2.1]), api.grad(g)(arg), check_dtypes=False) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" what: x 0.7 what: x 0.7 what: ct_b 1. what: ct_b 1.""", testing_stream.output) def test_tap_mask(self): @partial(api.mask, in_shapes=['n'], out_shape='') def padded_sum(x): three_x = hcb.id_print((x, 2 * x), result=3 * x, what="x", output_stream=testing_stream) return jnp.sum(three_x) x = np.arange(5.) self.assertAllClose(9., padded_sum([x], dict(n=3))) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" transforms: [('mask', {'logical_shapes': 5})] what: x ( ( [0. 1. 2. 3. 4.] [0. 2. 4. 6. 8.] ) ( ( 3 ) ( 3 ) ) )""", testing_stream.output) testing_stream.reset() # With VMAP xv = np.arange(10.).reshape((2, 5)) # logical_shape = 5 self.assertAllClose( np.array([9., 78.]), # batch_size = 2, n=3 and 4 for the two elements api.vmap(padded_sum)([xv], dict(n=np.array([3., 4.])))) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" transforms: [('mask', {'logical_shapes': 5}), ('batch', {'batch_dims': (0, 0, 0, 0)})] what: x ( ( [[0. 1. 2. 3. 4.] [5. 6. 7. 8. 9.]] [[ 0. 2. 4. 6. 8.] [10. 12. 14. 16. 18.]] ) ( ( [3. 4.] ) ( [3. 4.] ) ) )""", testing_stream.output) testing_stream.reset() # With JVP self.assertAllClose((9., 0.9), api.jvp(lambda arg: padded_sum([arg], dict(n=3)), (x,), (x * 0.1,))) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" transforms: [('mask', {'logical_shapes': 5}), 'jvp'] what: x ( ( ( [0. 1. 2. 3. 4.] [0. 2. 4. 6. 8.] ) ( ( 3 ) ( 3 ) ) ) ( ( [0. 0.1 0.2 0.3 0.4] [0. 0.2 0.4 0.6 0.8] ) ( ( False ) ( False ) ) ) )""", testing_stream.output) testing_stream.reset() # Now with JIT self.assertAllClose(9., api.jit(padded_sum)([x], dict(n=3))) hcb.barrier_wait() self.assertMultiLineStrippedEqual(""" transforms: [('mask', {'logical_shapes': 5})] what: x ( ( [0. 1. 2. 3. 4.] [0. 2. 4. 6. 8.] ) ( ( 3 ) ( 3 ) ) )""", testing_stream.output) def test_tap_callback_delay(self): hcb.callback_extra = lambda dev: time.sleep(1) def func(x): for i in range(5): x = hcb.id_print(x * i, what="x times i") return x api.jit(func)(np.arange(6, dtype=np.float32).reshape((2, 3))) def test_tap_callback_delay_barrier(self): hcb.callback_extra = lambda dev: time.sleep(2) def func(x): for i in range(1, 4): x = hcb.id_print(x * i, what=f"x times {i}", output_stream=testing_stream) return x api.jit(func)(np.arange(6, dtype=np.float32).reshape((2, 3))) # Wait for the results hcb.barrier_wait("first") expected = """ what: x times 1 [[0. 1. 2.] [3. 4. 5.]] what: x times 2 [[ 0. 2. 4.] [ 6. 8. 10.]] what: x times 3 [[ 0. 6. 12.] [18. 24. 30.]]""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) testing_stream.reset() # Call again api.jit(func)(np.arange(6, dtype=np.float32).reshape((2, 3))) hcb.barrier_wait("second") self.assertMultiLineStrippedEqual(expected, testing_stream.output) def test_tap_error_bad_consumer_id(self): """Try to use reserved consumer ID 0. Check that we get the proper error from the runtime.""" if not hcb._use_outfeed(jtu.device_under_test()): raise SkipTest("test works only for outfeed") comp = xla_bridge.make_computation_builder(self._testMethodName) token = hcb.xops.CreateToken(comp) hcb._initialize_outfeed_receiver() # Needed if this is the sole test with self.assertRaisesRegex(RuntimeError, "Consumer ID cannot be a reserved value: 0"): hcb._callback_handler_data.receiver.add_outfeed( comp, token, 0, [xla_bridge.constant(comp, np.zeros((2, 3), dtype=np.float32))]) def test_tap_error_different_shapes(self): """Try to register different shapes for the same consumer ID.""" if not hcb._use_outfeed(jtu.device_under_test()): raise SkipTest("test works only for outfeed") comp = xla_bridge.make_computation_builder(self._testMethodName) token = hcb.xops.CreateToken(comp) hcb._initialize_outfeed_receiver() # Needed if this is the sole test hcb._callback_handler_data.receiver.add_outfeed( comp, token, 123, [xla_bridge.constant(comp, np.zeros((2, 3), dtype=np.float32))]) with self.assertRaisesRegex( RuntimeError, ".*does not match previous shape element_type.*"): hcb._callback_handler_data.receiver.add_outfeed( comp, token, 123, [xla_bridge.constant(comp, np.zeros((2, 3), dtype=np.int32))]) with self.assertRaisesRegex( RuntimeError, ".*does not match previous shape element_type.*"): hcb._callback_handler_data.receiver.add_outfeed( comp, token, 123, [xla_bridge.constant(comp, np.zeros((2,), dtype=np.float32))]) def test_tap_id_tap_removed_kwargs(self): def func(x, transforms, y): pass with self.assertRaisesRegex(TypeError, r"Support for \*\*kwargs in ``id_tap``"): hcb.id_tap(func, 1, y=2) def test_tap_odeint(self): # TODO: find a smaller repro for bug #4015 # Seems to be xla_call(scan(xla_call)), all under grad. from jax.experimental.ode import odeint def f(x, t, k): x = hcb.id_print(x) return -k * x def loss(k=1.0): t = jnp.linspace(0, 0.001, num=2) xs = odeint(f, 1.0, t, k) return xs[-1] api.grad(loss)(1.0) # should not fail def test_tap_remat(self): def f(i, k): x = hcb.id_print(k + i, output_stream=testing_stream) return k * x def loss(k): return lax.fori_loop(0, 2, api.remat(f), k) print(loss(3)) hcb.barrier_wait() expected = """ 3 10""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) def test_tap_named_call(self): def tap_scalar(init, do_print=False): @partial(api.named_call, name="step") def step(acc, step_nr): acc = acc + step_nr maybe_print(do_print, step_nr, what="step_nr") return acc, None return lax.scan(step, init, np.arange(2)) self.assertAllClose(tap_scalar(3., do_print=False), tap_scalar(3., do_print=True)) hcb.barrier_wait() expected = """ what: step_nr 0 what: step_nr 1""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) class HostCallbackCallTest(jtu.JaxTestCase): """Tests for hcb.call""" def setUp(self): super().setUp() if jtu.device_under_test() == "gpu" and jax.device_count() > 1: raise SkipTest("host_callback broken on multi-GPU platforms (#6447)") testing_stream.reset() testing_stream._test_method_name = self._testMethodName def tearDown(self) -> None: hcb.barrier_wait("HostCallbackCallTest.tearDown") super().tearDown() def call_log_testing_stream(self, func, arg, *, result_shape, name=""): """Call `func` and log inputs and outputs to the testing stream""" def call_log(arg): def val2str(v): return np.array2string(np.array(arg)) testing_stream.write(f"Call {name}({val2str(arg)})\n") res = func(arg) testing_stream.write(f" = {val2str(res)}\n") return res return hcb.call(call_log, arg, result_shape=result_shape) def test_call_simple(self): def f_outside(x): return 2 * x def fun(x): y = hcb.call(f_outside, x + 1, result_shape=x) return 3 * (1 + y) arg = np.arange(24, dtype=np.int32).reshape((2, 3, 4)) self.assertAllClose(3 * (1 + 2 * (arg + 1)), fun(arg)) @parameterized.named_parameters( jtu.cases_from_list( dict(testcase_name=f"_{np.dtype(dtype).name}", dtype=dtype) for dtype in jtu.dtypes.all if dtype != np.bool_)) def test_call_types(self, dtype=np.float64): def f_outside(x): # Use x + x to ensure that the result type is the same return x + x def fun(x): return hcb.call(f_outside, x + x, result_shape=x) arg = np.arange(24, dtype=dtype).reshape((2, 3, 4)) self.assertAllClose(arg + arg + arg + arg, fun(arg), check_dtypes=True) def test_call_types_bool(self, dtype=np.float64): def f_outside(x): return np.invert(x) def fun(x): return hcb.call(f_outside, x, result_shape=x) arg = np.random.choice(a=[True, False], size=(2, 3, 4)) self.assertAllClose(np.invert(arg), fun(arg)) def test_call_tuples(self): def f_outside(args): x, y = args return y, x # Swap the tuple def fun(x): xy = hcb.call(f_outside, (x, x + 1), result_shape=(x, x)) return 2 * xy[0] + 3 * xy[1] arg = np.arange(24, dtype=np.int32).reshape((2, 3, 4)) self.assertAllClose(2 * (arg + 1) + 3 * arg, fun(arg)) def test_call_empty_arg(self): """Call with empty array.""" result = np.ones((2,), dtype=np.float32) def f_outside(_): return result def fun(x): return x + hcb.call(f_outside, (), result_shape=api.ShapeDtypeStruct(result.shape, result.dtype)) self.assertAllClose(2. + result, fun(2.)) def test_call_empty_result(self): """Call returning empty array.""" result_shape = (2, 0) def f_outside(_): return np.ones(result_shape, dtype=np.float32) def fun(x): return x + hcb.call(f_outside, 1., result_shape=api.ShapeDtypeStruct(result_shape, np.float32)) self.assertAllClose(f_outside(0.), fun(2.)) def test_call_empty_result_inside_pytree(self): """Call returning a tuple with an empty array and a non-empty one.""" result_shape_0 = (2, 0) result_shape_2 = (0,) def f_outside(_): return (np.ones(result_shape_0, dtype=np.float32), np.ones((1,), dtype=np.float32), np.ones(result_shape_2, dtype=np.float32)) def fun(x): res = hcb.call(f_outside, 1., result_shape=(api.ShapeDtypeStruct(result_shape_0, np.float32), api.ShapeDtypeStruct((1,), np.float32), api.ShapeDtypeStruct(result_shape_2, np.float32))) self.assertEqual(result_shape_0, res[0].shape) self.assertEqual(result_shape_2, res[2].shape) return x + res[1] self.assertAllClose(2 + np.ones((1,), dtype=np.float32), fun(2.)) def test_call_empty_result_all_pytree(self): """Call returning a tuple of empty arrays.""" result_shape = (2, 0) def f_outside(_): return (np.ones(result_shape, dtype=np.float32), np.ones(result_shape, dtype=np.float32)) def fun(x): res = hcb.call(f_outside, 1., result_shape=(api.ShapeDtypeStruct(result_shape, np.float32), api.ShapeDtypeStruct(result_shape, np.float32))) return x + res[0] + res[1] self.assertAllClose(np.ones(result_shape, dtype=np.float32), fun(2.)) def test_call_no_result(self): def f_outside(arg): self.call_log_testing_stream(lambda x: None, arg, result_shape=None, name="outside") return arg self.assertAllClose((3., 4.), f_outside((3., 4.))) hcb.barrier_wait() expected = """ Call outside([3. 4.]) = [3. 4.]""" self.assertMultiLineStrippedEqual(expected, testing_stream.output) def test_call_cond(self): def f_outside(args): x, y = args return x * y def loop(x, use_outside=True): def body(i, acc): return lax.cond(i % 2 == 1, lambda _: (hcb.call(f_outside, (acc, i), result_shape=acc) if use_outside else f_outside((acc, i))), lambda _: acc, None) return lax.fori_loop(0, 18, body, x) res_inside = loop(1.2, use_outside=False) self.assertAllClose(res_inside, api.jit(loop)(1.2)) def test_call_jit_scan_call(self): def f_outside(x): return x def loop(x, use_outside=True): def body(carry, i): if use_outside: return carry + hcb.call(f_outside, i, result_shape=i), None else: return carry + i, None return lax.scan(body, 0, x) x = np.arange(5, dtype=np.int32) res_outside = api.jit(partial(loop, use_outside=True))(x) self.assertAllClose(res_outside, loop(x, use_outside=False)) def test_call_doc_example1(self): """Examples from the documentation: simplest, call a function""" def host_eig(x): return np.linalg.eigvals(x) shape = (2, 5, 4, 4) m = np.ones(shape, dtype=np.float32) def fun(m): eig_m = hcb.call(host_eig, m, result_shape=api.ShapeDtypeStruct(m.shape[:-1], m.dtype)) return eig_m expected_res = np.linalg.eigvals(m) self.assertAllClose(expected_res, fun(m)) def test_call_doc_example_hlo(self): """Examples from the documentation: simplest, call a function.""" def fun1(m): return jnp.sin(hcb.call(lambda x: np.cos, jnp.cos(m), result_shape=m)) m = np.ones((2,), np.float32) helper_print_optimized_hlo(fun1, m) def fun2(m): x = hcb.call(lambda x: None, 2, result_shape=()) return x m = np.ones((2,), np.float32) helper_print_optimized_hlo(fun2, m) def test_call_with_device(self): def callback_func(x, device=None): testing_stream.write(f"device: {device}\n Called with {x}") return x def func(x): return hcb.call(callback_func, x, result_shape=x, call_with_device=True) self.assertEqual(3., func(3.)) assertMultiDeviceOutputEqual(self, """ device: cpu:0 Called with 3.00""") def test_call_pmap(self): # Works for 1 or 2 devices def callback_func(x, device=None): testing_stream.write(f"device: {device}\n Called with {x}") return x * np.array(3, np.int32) def fun(x): # x: i32 return hcb.call(callback_func, x * 2, result_shape=x, call_with_device=True) xv = jnp.arange(len(local_devices()), dtype=jnp.int32) res = api.pmap(fun)(xv) self.assertAllClose(api.pmap(lambda x: x * 6)(xv), res) # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual(self, """ device: cpu:0 Called with 0 device: cpu:1 Called with 2""") def test_call_vmap(self): def f_outside(x): return x def fun(x): return hcb.call(f_outside, x, result_shape=x) with self.assertRaisesRegex(NotImplementedError, "batching rules are implemented only for id_tap, not for call"): api.vmap(fun)(np.ones((2, 3))) @jtu.skip_on_devices("cpu", "gpu") # TODO(necula): file XLA:GPU bug for the 'Sharding' CustomCall def test_call_pjit(self): devices = np.array(local_devices()) nr_devices = len(devices) if nr_devices < 2: raise SkipTest("test requires at least 2 devices") print(f"test_call_pjit is running on devices {devices}.") # x: i32[D, 3] = [[0, 1, 2], [10, 11, 12], ...] # y: i32[3, 4] x = jnp.arange(100, dtype=jnp.int32).reshape((10, 10))[:nr_devices, :3] y = jnp.ones((3, 4), np.int32) def callback_x5_func(x, device=None): testing_stream.write(f"device: {device}\n Called with {x}") return x * np.array(5, np.int32) def fun(x): xy = jnp.dot(x, y) return hcb.call( callback_x5_func, xy, result_shape=xy, call_with_device=True) pjit_fun = pjit.pjit( fun, in_axis_resources=(P("d"),), out_axis_resources=P("d")) with maps.mesh(devices, ["d"]): # Print the internal IR helper_log_ir( f"{self._testMethodName}.pjit", pjit_fun, x, num_partitions=nr_devices) res = pjit_fun(x) expected_res = jnp.dot(x, y) * np.array(5, np.int32) self.assertAllClose(expected_res, res, check_dtypes=False) hcb.barrier_wait("before assertion") # Assertion text is for 2 devices (also works for 1 device) assertMultiDeviceOutputEqual( self, """ device: cpu:0 Called with [[ 3 3 3 3] [33 33 33 33]]""") def test_call_error_bad_result_shape(self): with self.assertRaisesRegex( ValueError, "The values must be either numeric scalars, or must have 'shape' and 'dtype' attributes"): hcb.call(lambda x: x, 3., result_shape="string") with self.assertRaisesRegex( ValueError, "The values must be either numeric scalars, or must have 'shape' and 'dtype' attributes"): hcb.call(lambda x: x, 3., result_shape=lambda x: x) hcb.barrier_wait("wait for error") def helper_check_callback_errors(self, thunk: Callable, expected_exc_txt: str): """Calls thunk() and checks for expected exceptions. """ if jtu.device_under_test() == "cpu": # On CPU the runtime crashes, and the tests are all aborted raise SkipTest("TODO: CPU runtime crashes on unexpected infeed") elif jtu.device_under_test() == "gpu": # On GPU we get a nice error back to Python with self.assertRaisesRegex( RuntimeError, "RET_CHECK failure .* Mismatch between infeed source buffer shape s8.12345."): thunk() elif jtu.device_under_test() == "tpu": # On TPU we get no error!!! raise SkipTest("TODO: TPU runtime does not check infeed, and just computes with garbage") # Both on GPU and TPU we also get an error during the barrier_wait at the # end of the test. Run a barrier_wait now, to consume that error. with self.assertRaisesRegex( hcb.CallbackException, re.compile( "There were exceptions during callback processing.*Last one was:.*" + expected_exc_txt, re.DOTALL)): hcb.barrier_wait("Waiting for error") def test_call_error_callback_throws_exception(self): def f_outside(x): raise ValueError("user exception") def fun(x): return hcb.call(f_outside, x, result_shape=x) self.helper_check_callback_errors(lambda: fun(3.), "ValueError: user exception") def test_call_error_callback_returns_unexpected_shape(self): def fun(x): return hcb.call(lambda x: (x, x), x, result_shape=x) self.helper_check_callback_errors(lambda: fun(3.), "Callback func .* should have returned a result with pytree") def test_call_error_then_compute(self): # Continue computation on device after error def f_outside(x): raise ValueError("user exception") def fun(x): x1 = hcb.call(f_outside, x, result_shape=x) return x1 arg = np.arange(3, dtype=np.int32) self.helper_check_callback_errors(lambda: self.assertAllClose(arg, fun(arg)), "ValueError: user exception") def call_jax_other_device(jax_outside_fun, arg, *, device): """Calls a JAX function on a specific device with simple support for reverse AD. Functions whose name starts with "jax_outside" are called on another device, by way of hcb.call. """ def run_jax_outside_fun(arg): return api.jit(jax_outside_fun)(api.device_put(arg, device)) @api.custom_vjp def make_call(arg): return hcb.call(run_jax_outside_fun, arg, result_shape=api.eval_shape(jax_outside_fun, arg)) # Define the fwd and bwd custom_vjp functions def make_call_vjp_fwd(arg): # Return the primal argument as the residual. Use `make_call` for the # primal computation to enable higher-order AD. return make_call(arg), arg # Return the primal argument as the residual def make_call_vjp_bwd(res, ct_res): arg = res # residual is the primal argument def jax_outside_vjp_fun(arg_and_ct): arg, ct = arg_and_ct _, f_vjp = api.vjp(jax_outside_fun, arg) ct_in, = f_vjp(ct) return ct_in return (call_jax_other_device(jax_outside_vjp_fun, (arg, ct_res), device=device),) make_call.defvjp(make_call_vjp_fwd, make_call_vjp_bwd) return make_call(arg) class CallJaxTest(jtu.JaxTestCase): """Tests using `call_jax_other_device`.""" def setUp(self): if jtu.device_under_test() == "gpu" and jax.device_count() > 1: raise SkipTest("host_callback broken on multi-GPU platforms (#6447)") if jtu.device_under_test() != "cpu": assert api.devices("cpu") self.outside_device = api.devices("cpu")[0] else: if len(api.devices("cpu")) == 1: raise SkipTest("Test needs at least two devices. On CPU use XLA_FLAGS=--xla_force_host_platform_device_count=2") self.outside_device = api.devices("cpu")[1] super().setUp() def test_jax_impl(self): def f_jax(x): return jnp.sin(x) def f_outside(x): return call_jax_other_device(f_jax, x, device=self.outside_device) self.assertAllClose(f_jax(3.), f_outside(3.)) self.assertAllClose(f_jax(3.), api.jit(f_outside)(3.)) def test_jax_impl_pytree(self): def f_jax(x): # x : dict(a=..., b=...) and output is a list of two elements return [jnp.sin(x["a"]), jnp.sin(x["b"])] def f_outside(x): return call_jax_other_device(f_jax, x, device=self.outside_device) x = dict(a=3., b=4.) res_jax = f_jax(x) # print(f"outside_jaxpr = {api.make_jaxpr(f_outside)(x)}") res_outside = f_outside(x) self.assertAllClose(res_jax, res_outside) def test_jax_grad(self): def f_jax(x): return 2. * jnp.sin(x) def f_outside(x): return 2. * call_jax_other_device(jnp.sin, x, device=self.outside_device) res_jax = api.grad(f_jax)(3.) self.assertAllClose(res_jax, api.grad(f_outside)(3.)) def test_jax_grad_pytree(self): def f_jax(x): # x : dict(a=..., b=...) and output is a float return 3. * jnp.sin(x["a"]) + jnp.sin(x["b"]) def f_outside(x): return call_jax_other_device(f_jax, x, device=self.outside_device) x = dict(a=3., b=4.) res_jax = api.grad(f_jax)(x) self.assertAllClose(res_jax, api.grad(f_outside)(x)) def test_jax_grad_of_grad(self): def f_jax(x): return 2. * x * x * x def f_outside(x): return 2. * call_jax_other_device(lambda x: x * x * x, x, device=self.outside_device) res_jax = api.grad(api.grad(f_jax))(5.) res_outside = api.grad(api.grad(f_outside))(5.) self.assertAllClose(res_jax, res_outside) class OutfeedRewriterTest(jtu.JaxTestCase): def setUp(self): if jtu.device_under_test() == "gpu" and jax.device_count() > 1: raise SkipTest("host_callback broken on multi-GPU platforms (#6447)") super().setUp() def assertRewrite(self, expected: str, func: Callable, args: Sequence, has_input_token=True, has_output_token=True): """Check that the rewrite of func(*args) matches expected.""" jaxpr = api.make_jaxpr(func)(*args) rewritten = hcb._rewrite_closed_jaxpr(jaxpr, # noqa: F841 has_input_token, has_output_token) # Since it is somewhat annoying to update the Jaxpr assertions when we change # the Jaxpr printing, we do not check these by default. It is recommended that # before making changes to the code generation and Jaxpr rewriting, turn on # the checking, update the expected Jaxpr, and then make the changes. # assertMultiLineStrippedEqual(self, expected, str(rewritten)) del rewritten def test_no_outfeed(self): self.assertRewrite(""" { lambda ; a. let b = mul a a c = add a b in (c,) }""", lambda x: x + x * x, [0], has_input_token=False, has_output_token=False) self.assertRewrite(""" { lambda ; a d e. let b = mul a a c = add a b in (c,) }""", lambda x: x + x * x, [0], has_output_token=False) self.assertRewrite(""" { lambda ; a d e. let b = mul a a c = add a b in (c, d, e) }""", lambda x: x + x * x, [0]) def test_simple_outfeed(self): self.assertRewrite(""" { lambda ; a d e. let b = add a a c f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] b d e in (c, f, g) }""", lambda x: hcb.id_print(x + x), [0]) def test_simple_outfeed_without_input_token(self): self.assertRewrite(""" { lambda ; a b. let e = create_token a b f = create_token a b c = add a b d g h = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] c e f in (d,) }""", lambda x1, x2: hcb.id_print(x1 + x2), [1, 2], has_input_token=False, has_output_token=False) def test_simple_outfeed_without_input_token_nor_invars(self): self.assertRewrite(""" { lambda ; . let b = create_token c = create_token a d e = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] 42 b c in (a,) }""", lambda: hcb.id_print(42), [], has_input_token=False, has_output_token=False) def test_multiple_tap_without_dependencies(self): def f(x): hcb.id_print(x, what="x") hcb.id_print(x + 1, what="x + 1") return 2 self.assertRewrite(""" { lambda ; a c d. let _ e f = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a c d b = add a 1 _ g h = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] b e f in (2, g, h) }""", f, [1]) def test_cond(self): y = jnp.ones(5) # captured const def func(x, z): return lax.cond(z > 0, (1, 2), lambda a: (a[0], jnp.zeros(5)), z, lambda a: (hcb.id_print(a), y)) self.assertRewrite(""" { lambda a ; b c h i. let d = gt c 0 e = convert_element_type[ new_dtype=int32 ] d f g j k = cond[ branches=( { lambda ; a b c d f g. let e h i = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] d f g in (e, a, h, i) } { lambda ; f_ a b c g h. let d = broadcast_in_dim[ broadcast_dimensions=( ) shape=(5,) ] 0.00 in (a, d, g, h) } ) linear=(False, False, False, False, False, False) ] e a 1 2 c h i in (f, g, j, k) }""", func, [y, 5]) def test_while(self): ct_body = jnp.ones(5, np.float32) # captured const for the body ct_cond = jnp.ones(5, np.float32) # captured const for the conditional def func(x): # x: f32[5] # c: (f32[5], f32) return lax.while_loop(lambda c: c[1] < jnp.sum(c[0] + ct_cond), lambda c: (ct_body, hcb.id_print(c[1]) + 1.), (x, np.float32(1.))) self.assertRewrite(""" { lambda a b ; c f g. let d e h i = while[ body_jaxpr={ lambda ; a b c f g. let d h i = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] c f g e = add d 1.00 in (a, e, h, i) } body_nconsts=1 cond_jaxpr={ lambda ; a b c g h. let d = add b a e = reduce_sum[ axes=(0,) ] d f = lt c e in (f,) } cond_nconsts=1 ] a b c 1.00 f g in (d, e, h, i) }""", func, [ct_body]) def test_while_pred_outfeed(self): """A while with outfeed in the pred.""" ct_body = jnp.ones(5) # captured const for the body ct_cond = jnp.ones(2) # captured const for the conditional def func(x): return lax.while_loop(lambda c: hcb.id_print(ct_cond, result=c[1]) < 5, lambda c: (ct_body, hcb.id_print(c[1]) + 1), (x, 1)) self.assertRewrite(""" { lambda a b ; c f g. let j k l = xla_call[ call_jaxpr={ lambda ; a b c g h. let d i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a g h e = id_tap_dep c d f = lt e 5 in (f, i, j) } donated_invars=(False, False, False, False, False) name=cond_before ] a c 1 f g bf d e h i = while[ body_jaxpr={ lambda ; r s t u v w x. let y z ba bb = xla_call[ call_jaxpr={ lambda ; a b c f g. let d h i = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] c f g e = add d 1 in (a, e, h, i) } donated_invars=(False, False, False, False, False) name=body ] s u v w x bc bd be = xla_call[ call_jaxpr={ lambda ; a b c g h. let d i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a g h e = id_tap_dep c d f = lt e 5 in (f, i, j) } donated_invars=(False, False, False, False, False) name=cond_body ] r y z ba bb in (bc, y, z, bd, be) } body_nconsts=2 cond_jaxpr={ lambda ; m n o p q. let in (m,) } cond_nconsts=0 ] a b j c 1 k l in (d, e, h, i) }""", func, [ct_body]) def test_scan(self): y = jnp.ones(5) # captured const def func(x): return lax.scan(lambda c, a: (hcb.id_print(c), y), (1, 2), x) self.assertRewrite(""" { lambda a ; b f g. let c d h i e = scan[ jaxpr={ lambda ; a b c g h d. let e f i j = outside_call[ arg_treedef=PyTreeDef(tuple, [*,*]) callback=... has_token=True identity=True ] b c g h in (e, f, i, j, a) } length=5 linear=(False, False, False, False, False, False) num_carry=4 num_consts=1 reverse=False unroll=1 ] a 1 2 f g b in (c, d, e, h, i) }""", func, [y]) def test_scan_custom_jvp(self): """custom JVP, inside scan. This exercises the custom_jvp_call_jaxpr primitives.""" @api.custom_jvp def f(x): return x * hcb.id_print(x) @f.defjvp def f_jvp(primals, tangents): x, = primals x_dot, = tangents primal_out = f(x) tangent_out = 3. * x * hcb.id_print(x_dot) return primal_out, tangent_out def g(x): # Sum f(x_i) return lax.scan(lambda carry, inp: (carry + f(inp), 0.), np.full(x.shape[1:], 0.), # Like x w/o leading dim x)[0] arg = np.full((5,), 0.7) self.assertRewrite(""" { lambda ; a c d. let b e f _ = scan[ jaxpr={ lambda ; a e f b. let c g h = custom_jvp_call_jaxpr[ fun_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = mul a b in (c, f, g) } num_consts=0 ] b e f d = add a c in (d, g, h, 0.00) } length=5 linear=(False, False, False, False) num_carry=3 num_consts=0 reverse=False unroll=1 ] 0.00 c d a in (b, e, f) }""", g, [arg]) self.assertRewrite(""" { lambda ; a d e. let _ _ f g _ b = scan[ jaxpr={ lambda ; a b h i c d. let e j k = custom_jvp_call_jaxpr[ fun_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = mul a b in (c, f, g) } num_consts=0 ] c h i f = add a e g = mul c 3.00 in (f, *, j, k, 0.00, g) } length=5 linear=(False, True, False, False, False, True) num_carry=4 num_consts=0 reverse=False unroll=1 ] 0.00 * d e a * _ _ h i _ c = scan[ jaxpr={ lambda ; a b g h c d. let e = mul b d f i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True transforms=(('transpose',),) ] e g h in (*, b, i, j, *, f) } length=5 linear=(True, True, False, False, True, False) num_carry=4 num_consts=0 reverse=True unroll=1 ] * 1.00 f g * b in (c, h, i) }""", api.grad(g), [arg]) def test_scan_custom_vjp(self): """custom VJP, inside scan. This exercises the custom_vjp_call_jaxpr primitives.""" @api.custom_vjp def f(x): return x * hcb.id_print(x) # f_fwd: a -> (b, residual) def f_fwd(x): return f(x), 3. * x # f_bwd: (residual, CT b) -> [CT a] def f_bwd(residual, ct_b): return residual * hcb.id_print(ct_b), f.defvjp(f_fwd, f_bwd) def g(x): # Sum f(x_i) return lax.scan(lambda carry, inp: (carry + f(inp), 0.), np.full(x.shape[1:], 0.), # Like x w/o leading dim x)[0] arg = np.full((2,), 0.7) self.assertRewrite(""" { lambda ; a c d. let b e f _ = scan[ jaxpr={ lambda ; a e f b. let c g h = custom_vjp_call_jaxpr[ fun_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = mul a b in (c, f, g) } num_consts=0 ] b e f d = add a c in (d, g, h, 0.00) } length=2 linear=(False, False, False, False) num_carry=3 num_consts=0 reverse=False unroll=1 ] 0.00 c d a in (b, e, f) }""", g, [arg]) self.assertRewrite(""" { lambda ; a d e. let _ _ f g _ b = scan[ jaxpr={ lambda ; a b h i c d. let e j k = custom_vjp_call_jaxpr[ fun_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = mul a b in (c, f, g) } num_consts=0 ] c h i f = add a e g = mul c 3.00 in (f, *, j, k, 0.00, g) } length=2 linear=(False, True, False, False, False, True) num_carry=4 num_consts=0 reverse=False unroll=1 ] 0.00 * d e a * _ _ h i _ c = scan[ jaxpr={ lambda ; a b g h c d. let e i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] b g h f = mul d e in (*, b, i, j, *, f) } length=2 linear=(True, True, False, False, True, False) num_carry=4 num_consts=0 reverse=True unroll=1 ] * 1.00 f g * b in (c, h, i) }""", api.grad(g), [arg]) def test_remat_loop(self): def f(k, x): x = hcb.id_print(k + x) return -k * x def loss(k): return lax.fori_loop(0, 1, api.remat(f), k) self.assertRewrite(""" { lambda ; a c d. let _ _ b e f = while[ body_jaxpr={ lambda ; a b c f g. let d = add a 1 e h i = remat_call[ call_jaxpr={ lambda ; a b g h. let c = add a b d i j = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] c g h e = neg a f = mul e d in (f, i, j) } concrete=False name=f ] a c f g in (d, b, e, h, i) } body_nconsts=0 cond_jaxpr={ lambda ; a b c e f. let d = lt a b in (d,) } cond_nconsts=0 ] 0 1 a c d in (b, e, f) }""", loss, [2]) def test_named_call(self): def tap_scalar(init, do_print=False): @partial(api.named_call, name="step") def step(acc, step_nr): acc = acc + step_nr maybe_print(do_print, step_nr, what="step_nr") return acc, None return lax.scan(step, init, np.arange(2, dtype=np.int32)) self.assertRewrite(""" { lambda a ; b d e. let c = scan[ jaxpr={ lambda ; a b. let c = named_call[ call_jaxpr={ lambda ; a b. let c = add a b in (c,) } name=step ] a b in (c,) } length=2 linear=(False, False) num_carry=1 num_consts=0 reverse=False unroll=1 ] b a in (c, d, e) }""", tap_scalar, [np.int32(3)]) def test_pmap(self): def f(xv): api.pmap(lambda x: jnp.sin(hcb.id_print(x, tap_with_device=True)), axis_name="i")(xv) self.assertRewrite(""" { lambda ; a b c. let _ d e = xla_pmap[ axis_name=i axis_size=1 backend=None call_jaxpr={ lambda ; a d e. let b f g = outside_call[ arg_treedef=* callback=... has_token=True identity=True ] a d e c = sin b in (c, f, g) } devices=None donated_invars=(False, False, False) global_arg_shapes=(None,) global_axis_size=None in_axes=(0, 0, 0) name=<lambda> out_axes=(0, 0, 0) ] a b c in (d, e) }""", f, [np.array([2.], dtype=np.float32)]) if __name__ == "__main__": absltest.main(testLoader=jtu.JaxTestLoader())
py
1a55ea413f7ed33e14c00dd4354d7ee5bc6b8d5a
"""Define a class for managing a thread pool with delayed execution. Attributes: log (logging.Logger): Logger for current module. """ import time import logging from concurrent import futures from threading import Lock from threading import Thread from .singleton import singleton log = logging.getLogger("ECC") @singleton class ThreadPool: """Thread pool that makes sure we don't get recurring jobs. Whenever a job is submitted we check if there is already a job like this running. If it is, we try to cancel the previous job. We are only able to cancel this job if it has not started yet. Example: active: ['update', 'info'] and 'update' is running. incoming: 'update' and then another 'update'. We will try to cancel the first 'update' and will fail as it is running. We still cancel the 'info' job as it has less priority (no need to get info if the translation unit is not up to date). We add a new 'update' to the list. Now there are two 'update' jobs, one running, one pending. Adding another 'update' job will replace the pending update job. """ def __init__(self, max_workers=1): """Create a thread pool. Args: max_workers (int): Maximum number of parallel workers. """ self.__thread_pool = futures.ThreadPoolExecutor( max_workers=max_workers) self.__lock = Lock() self.__progress_lock = Lock() self.__show_animation = False self.__progress_update_delay = 0.1 self.__progress_idle_delay = 0.3 # All the jobs that are currently active are stored here. self.__active_jobs = [] # start animation thread self.__progress_status = None self.__progress_thread = Thread(target=self.__animate_progress, daemon=True).start() @property def progress_status(self): """Return current progress status.""" return self.__progress_status @progress_status.setter def progress_status(self, val): """Set progress status instance.""" with self.__progress_lock: self.__progress_status = val def new_job(self, job): """Add a new job to be submitted to a thread pool. Args: job (ThreadJob): A job to be run asynchronously. """ # Cancel all the jobs with the same name that are already running. # Iterating over a list is atomic in python, so we should be safe. for active_job in self.__active_jobs: if job.overrides(active_job): if active_job.future.cancel(): log.debug("Canceled job: '%s'", job) else: log.debug("Cannot cancel job: '%s'", active_job) # Submit a new job to the pool. future = self.__thread_pool.submit(job.function, *job.args) future.add_done_callback(job.callback) future.add_done_callback(self.__on_job_done) job.future = future # Set the future for this job. with self.__lock: self.__active_jobs.append(job) self.__show_animation = True def __on_job_done(self, future): """Call this when the job is done or cancelled.""" # We want to clear the old list and alter the positions of elements. # This is a potentially dangerous operation, so protect it by a mutex. with self.__lock: self.__active_jobs[:] = [ job for job in self.__active_jobs if not job.future.done()] if len(self.__active_jobs) < 1: self.__show_animation = False def __animate_progress(self): """Change the status message, mostly used to animate progress.""" while True: sleep_time = self.__progress_idle_delay with self.__progress_lock: if not self.__progress_status: sleep_time = self.__progress_idle_delay elif self.__show_animation: self.__progress_status.show_next_message() sleep_time = self.__progress_update_delay else: self.__progress_status.show_ready_message() sleep_time = self.__progress_idle_delay # Allow some time for progress status to be updated. time.sleep(sleep_time)
py
1a55ea67bb9ea37057e9e5c112efd6db98713a8e
import StringIO import os import unittest from rnn_prof import simple_rnn from rnn_prof.data.wrapper import load_data from rnn_prof.data.rnn import build_nn_data TESTDATA_FILENAME = os.path.join(os.path.dirname(__file__), 'data', 'test_assist_data.csv.gz') class TestRnn(unittest.TestCase): def test_initialization(self): """ Just make sure initialize doesn't cause the interpreter to crash """ data, _, item_ids, _, _ = load_data(TESTDATA_FILENAME, 'assistments') num_questions = len(item_ids) nn_data = build_nn_data(data, num_questions) pivot = len(nn_data) // 2 train_data = nn_data[:pivot] test_data = nn_data[pivot:] opts = simple_rnn.RnnOpts(hidden_dim=20) simple_rnn.SimpleRnn(train_data, opts, test_data=test_data) def test_dump_and_load(self): """ Test dumping and loading the SimpleRnn and make sure that all of its properties remain in shape. """ data, _, item_ids, _, _ = load_data(TESTDATA_FILENAME, 'assistments') num_questions = len(item_ids) nn_data = build_nn_data(data, num_questions) pivot = len(nn_data) // 2 train_data = nn_data[:pivot] max_compress_dim = 10 hidden_dim = 20 recurrent = False grad_norm_limit = 1.0 first_learning_rate = 20.0 decay_rate = 0.5 largest_grad = 4.0 batch_threshold = 0.8 opts = simple_rnn.RnnOpts(max_compress_dim=max_compress_dim, hidden_dim=hidden_dim, recurrent=recurrent, grad_norm_limit=grad_norm_limit, largest_grad=largest_grad, batch_threshold=batch_threshold, first_learning_rate=first_learning_rate, decay_rate=decay_rate) original = simple_rnn.SimpleRnn(train_data, opts) dumped = StringIO.StringIO() original.dump(dumped) dumped_str = dumped.getvalue() dumped_reader = StringIO.StringIO(dumped_str) recalled = simple_rnn.SimpleRnn.load(dumped_reader) for attr in ('max_compress_dim', 'recurrent', 'grad_norm_limit', 'first_learning_rate', 'decay_rate', 'largest_grad', 'batch_threshold'): self.assertEqual(getattr(original.opts, attr), getattr(recalled.opts, attr), "%s was changed" % attr)
py
1a55ea8fad76205a63af781b79e22f182b9adca0
RAWDATA_DIR = '/staging/as/skchoudh/re-ribo-datasets/gallus_gallus/SRP016501' OUT_DIR = '/staging/as/skchoudh/rna-seq-output/gallus_gallus/SRP016501' CDNA_FA_GZ = '/home/cmb-panasas2/skchoudh/genomes/gallus_gallus/cdna/Gallus_gallus.Gallus_gallus-5.0.cdna.all.fa.gz' CDNA_IDX = '/home/cmb-panasas2/skchoudh/genomes/gallus_gallus/cdna/Gallus_gallus.Gallus_gallus-5.0.cdna.all.kallisto.index'
py
1a55eabf1e571e5e553e716c23cabed05d780ad4
# -*- coding: utf-8 -*- import MeCab from .tokenizer_none import NoneTokenizer class TokenizerJaMecab(NoneTokenizer): def __init__(self): self.tagger = MeCab.Tagger("-Owakati") # make sure the dictionary is IPA # sacreBLEU is only compatible with 0.996.5 for now # Please see: https://github.com/mjpost/sacrebleu/issues/94 d = self.tagger.dictionary_info() assert d.size == 392126, \ "Please make sure to use IPA dictionary for MeCab" assert d.next is None def __call__(self, line): """ Tokenizes an Japanese input line using MeCab morphological analyzer. :param line: a segment to tokenize :return: the tokenized line """ line = line.strip() sentence = self.tagger.parse(line).strip() return sentence def signature(self): """ Returns the MeCab parameters. :return: signature string """ signature = self.tagger.version() + "-IPA" return 'ja-mecab-' + signature
py
1a55eb200e1dccd9f0d2db96e7c8ee0b84e6453a
# Linear autoencoder (ie PCA) applied to a 3d dataset projecting to 2d #https://github.com/ageron/handson-ml2/blob/master/17_autoencoders_and_gans.ipynb import numpy as np import matplotlib.pyplot as plt import os figdir = "../figures" def save_fig(fname): plt.savefig(os.path.join(figdir, fname)) import tensorflow as tf from tensorflow import keras from sklearn.decomposition import PCA from mpl_toolkits import mplot3d from mpl_toolkits.mplot3d import Axes3D np.random.seed(4) def generate_3d_data(m, w1=0.1, w2=0.3, noise=0.1): angles = np.random.rand(m) * 3 * np.pi / 2 - 0.5 data = np.empty((m, 3)) data[:, 0] = np.cos(angles) + np.sin(angles)/2 + noise * np.random.randn(m) / 2 data[:, 1] = np.sin(angles) * 0.7 + noise * np.random.randn(m) / 2 data[:, 2] = data[:, 0] * w1 + data[:, 1] * w2 + noise * np.random.randn(m) return data X_train = generate_3d_data(60) X_train = X_train - X_train.mean(axis=0, keepdims=0) np.random.seed(42) tf.random.set_seed(42) encoder = keras.models.Sequential([keras.layers.Dense(2, input_shape=[3])]) decoder = keras.models.Sequential([keras.layers.Dense(3, input_shape=[2])]) autoencoder = keras.models.Sequential([encoder, decoder]) autoencoder.compile(loss="mse", optimizer=keras.optimizers.SGD(lr=1.5)) history = autoencoder.fit(X_train, X_train, epochs=20) codings = encoder.predict(X_train) X = X_train fig = plt.figure().gca(projection='3d') fig.scatter(X[:,0], X[:,1], X[:,2], s=50, marker='o') save_fig("linear-autoecoder-data3d.pdf") plt.show() fig = plt.figure(figsize=(4,3)) plt.plot(codings[:,0], codings[:, 1], "b.") plt.xlabel("$z_1$", fontsize=18) plt.ylabel("$z_2$", fontsize=18, rotation=0) plt.grid(True) save_fig("linear-autoencoder-embedding.pdf") plt.show() # PCA version pca = PCA(n_components=2) mu = np.mean(X_train, axis=0) Xc = X_train - mu # center the data pca.fit(Xc) W = pca.components_.T # D*K Z = np.dot(Xc, W) # N * K latent scores Xrecon = np.dot(Z, W.T) + mu # N*D fig = plt.figure(figsize=(4,3)) plt.plot(Z[:,0], Z[:, 1], "b.") plt.xlabel("$z_1$", fontsize=18) plt.ylabel("$z_2$", fontsize=18, rotation=0) plt.grid(True) save_fig("linear-autoencoder-pca.pdf") plt.show()
py
1a55ec5e348c6e1f74bdd0c091c38bb19d616deb
""" Defines the NotebookCell class """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import json as _json import os as _os class NotebookCell(object): """ Struct representing either a code or markdown cell Parameters ---------- cell_type : str, optional Tag for the cell: either 'code' or 'markdown' source : list, optional A list of strings that are the lines of code/markdown in the cell. """ def __init__(self, cell_type='code', source=None): ''' Build a notebook cell Parameters ---------- cell_type : str, optional tag for the cell: either 'code' or 'markdown' source : list(str), optional lines of code/markdown in the cell ''' if source is None: source = [] self.cellType = cell_type self.source = source def to_json_dict(self): """ Convert this cell to a json representation of a cell, using a default template Returns ------- dict """ if self.cellType == 'markdown': templateFilename = 'MDcell.json' elif self.cellType == 'code': templateFilename = 'CodeCell.json' templateFilename = _os.path.join(_os.path.dirname(_os.path.abspath(__file__)), 'templates', templateFilename) with open(templateFilename, 'r') as infile: cellDict = _json.load(infile) cellDict['source'].extend(self.source) return cellDict
py
1a55ecab8d8b82eeb2dcad08ca933498cf77850d
# date:2018/8/27 11:35 # -*- coding: utf-8 -*- #author;cwd """ function:获取鼠标在图像上的当前坐标 """ from PIL import Image from pylab import * im = array(Image.open('./images/set.png')) imshow(im) # print('Please click 3 points') # x = ginput(3) # print('you clicked:', x)
py
1a55ecac2e13865fa9e9f085fe9b97b122aae442
import os from flask import g, current_app from .utils import Singleton class MediaFinder(metaclass=Singleton): def __init__(self, path): self.path = path self._collection = [] for root, dirs, files in os.walk(path): for name in files: fname = os.path.abspath(os.path.join(root, name)) size = os.stat(fname).st_size self._collection.append({'name': fname, 'size': size}) self._collection.sort(key=lambda x: x['name']) self._collection = {x['name']: x['size'] for x in self._collection} @property def collection(self): return self._collection def get_media_finder(): if 'media_finder' not in g: g.media_finder = MediaFinder(current_app.config['MEDIA_DIR']) return g.media_finder
py
1a55ef9224c0ee58db6a102b3e3085f7960e9381
__copyright__ = """ Copyright (C) 2020 George N Wong Copyright (C) 2020 Zachary J Weiner """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np __doc__ = """ .. currentmodule:: pydemic.distributions .. autoclass:: DistributionBase .. currentmodule:: pydemic .. autoclass:: GammaDistribution """ class DistributionBase: def pdf(self, t): raise NotImplementedError def cdf(self, t): raise NotImplementedError def convolve_pdf(self, t, influx, prefactor=1, method='fft'): pdf = self.pdf(t[:] - t[0]) prefactor = prefactor * np.ones_like(influx[0, ...]) end = t.shape[0] if method == 'fft': kernel = np.outer(pdf, prefactor) from scipy.signal import fftconvolve result = fftconvolve(kernel, influx, mode='full', axes=0)[:end] elif method == 'direct': result = np.zeros_like(influx) for i in range(1, end): result[i, ...] = prefactor * np.dot(influx[i-1::-1].T, pdf[:i]) return result def convolve_survival(self, t, influx, prefactor=1, method='fft'): survival = 1 - self.cdf(t - t[0]) prefactor = prefactor * np.ones_like(influx[0, ...]) kernel = np.outer(survival, prefactor) end = t.shape[0] from scipy.signal import fftconvolve result = fftconvolve(kernel, influx, mode='full', axes=0)[:end] return result class GammaDistribution(DistributionBase): def __init__(self, mean=None, std=None, shape=None, scale=None): if shape is None: self.shape = mean**2 / std**2 else: self.shape = shape if scale is None: self.scale = std**2 / mean else: self.scale = scale def pdf(self, t, method='diff'): if method == 'diff': cdf = self.cdf(t) # FIXME: prepend or append? return np.diff(cdf, prepend=0) else: from scipy.stats import gamma return gamma.pdf(t, self.shape, scale=self.scale) def cdf(self, t): from scipy.stats import gamma return gamma.cdf(t, self.shape, scale=self.scale)
py
1a55efb5ed916709d75fbdfcd6104bff0b6677eb
#!/usr/bin/env python ''' Licensed to Elasticsearch B.V under one or more agreements. Elasticsearch B.V licenses this file to you under the Apache 2.0 License. See the LICENSE file in the project root for more information ''' from elasticsearch import Elasticsearch es = Elasticsearch() print("c5e5873783246c7b1c01d8464fed72c4 - L:9") # tag::c5e5873783246c7b1c01d8464fed72c4[] response = es.delete( index='twitter', id=1, ) # end::c5e5873783246c7b1c01d8464fed72c4[] print("---------------------------------------") print(response) print("---------------------------------------") print("47b5ff897f26e9c943cee5c06034181d - L:84") # tag::47b5ff897f26e9c943cee5c06034181d[] response = es.delete( index='twitter', id=1, routing='kimchy', ) # end::47b5ff897f26e9c943cee5c06034181d[] print("---------------------------------------") print(response) print("---------------------------------------") print("d90a84a24a407731dfc1929ac8327746 - L:147") # tag::d90a84a24a407731dfc1929ac8327746[] response = es.delete( index='twitter', id=1, timeout='5m', ) # end::d90a84a24a407731dfc1929ac8327746[] print("---------------------------------------") print(response) print("---------------------------------------")
py
1a55efeddc9dde05f8d001945eec305c3c24a401
# Copyright 2018, Kay Hayen, mailto:[email protected] # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Common test infrastructure functions. To be used by test runners. """ from __future__ import print_function import ast import atexit import os import re import shutil import subprocess import sys import tempfile from contextlib import contextmanager from nuitka.Tracing import my_print from nuitka.utils.AppDirs import getAppDir, getCacheDir from nuitka.utils.Execution import check_output from nuitka.utils.FileOperations import makePath, removeDirectory from .SearchModes import ( SearchModeBase, SearchModeByPattern, SearchModeCoverage, SearchModeResume ) def check_result(*popenargs, **kwargs): if "stdout" in kwargs: raise ValueError("stdout argument not allowed, it will be overridden.") process = subprocess.Popen( stdout = subprocess.PIPE, *popenargs, **kwargs ) _unused_output, _unused_err = process.communicate() retcode = process.poll() if retcode: return False else: return True def goMainDir(): # Go its own directory, to have it easy with path knowledge. os.chdir( os.path.dirname( os.path.abspath(sys.modules[ "__main__" ].__file__) ) ) _python_version = None _python_arch = None _python_executable = None def setup(suite = "", needs_io_encoding = False, silent = False, go_main = True): if go_main: goMainDir() if "PYTHON" not in os.environ: os.environ["PYTHON"] = sys.executable # Allow test code to use this to make caching specific. os.environ["NUITKA_TEST_SUITE"] = suite # Allow providing 33, 27, and expand that to python2.7 if len(os.environ["PYTHON"]) == 2 and \ os.environ["PYTHON"].isdigit() and \ os.name != "nt": os.environ["PYTHON"] = "python%s.%s" % ( os.environ["PYTHON"][0], os.environ["PYTHON"][1] ) if needs_io_encoding and "PYTHONIOENCODING" not in os.environ: os.environ["PYTHONIOENCODING"] = "utf-8" version_output = check_output( ( os.environ["PYTHON"], "-c", """\ import sys, os;\ print(".".join(str(s) for s in list(sys.version_info)[:3]));\ print(("x86_64" if "AMD64" in sys.version else "x86") if os.name == "nt" else os.uname()[4]);\ print(sys.executable);\ """, ), stderr = subprocess.STDOUT ) global _python_version, _python_arch, _python_executable # singleton, pylint: disable=global-statement _python_version = version_output.split(b"\n")[0].strip() _python_arch = version_output.split(b"\n")[1].strip() _python_executable = version_output.split(b"\n")[2].strip() if sys.version.startswith('3'): _python_arch = _python_arch.decode("utf-8") _python_version = _python_version.decode("utf-8") _python_executable = _python_executable.decode("utf-8") if not silent: my_print("Using concrete python", _python_version, "on", _python_arch) assert type(_python_version) is str, repr(_python_version) assert type(_python_arch) is str, repr(_python_arch) assert type(_python_executable) is str, repr(_python_executable) if "COVERAGE_FILE" not in os.environ: os.environ["COVERAGE_FILE"] = os.path.join( os.path.dirname(__file__), "..", "..", "..", ".coverage" ) return _python_version tmp_dir = None def getTempDir(): # Create a temporary directory to work in, automatically remove it in case # it is empty in the end. global tmp_dir # singleton, pylint: disable=global-statement if tmp_dir is None: tmp_dir = tempfile.mkdtemp( prefix = os.path.basename( os.path.dirname( os.path.abspath(sys.modules[ "__main__" ].__file__) ) ) + '-', dir = tempfile.gettempdir() if not os.path.exists("/var/tmp") else "/var/tmp" ) def removeTempDir(): removeDirectory( path = tmp_dir, ignore_errors = True ) atexit.register(removeTempDir) return tmp_dir def convertUsing2to3(path, force = False): command = [ os.environ["PYTHON"], "-m", "py_compile", path ] if not force: with open(path) as source_file: if "xrange" not in source_file.read(): with open(os.devnull, 'w') as stderr: if check_result(command, stderr = stderr): return path, False filename = os.path.basename(path) new_path = os.path.join(getTempDir(), filename) # This may already be a temp file, e.g. because of construct creation. try: shutil.copy(path, new_path) except shutil.Error: pass # For Python2.6 and 3.2 the -m lib2to3 was not yet supported. use_binary = sys.version_info[:2] in ((2,6), (3,2)) if use_binary: # On Windows, we cannot rely on 2to3 to be in the path. if os.name == "nt": command = [ sys.executable, os.path.join( os.path.dirname(sys.executable), "Tools/Scripts/2to3.py" ) ] else: command = [ "2to3" ] else: command = [ sys.executable, "-m", "lib2to3", ] command += [ "-w", "-n", "--no-diffs", new_path ] with open(os.devnull, 'w') as devnull: check_output( command, stderr = devnull ) with open(new_path) as result_file: data = result_file.read() with open(new_path, 'w') as result_file: result_file.write("__file__ = %r\n" % os.path.abspath(path)) result_file.write(data) return new_path, True def decideFilenameVersionSkip(filename): """ Make decision whether to skip based on filename and Python version. This codifies certain rules that files can have as suffixes or prefixes to make them be part of the set of tests executed for a version or not. Generally, an ening of "<major><minor>.py" indicates that it must be that Python version or higher. There is no need for ending in "26.py" as this is the minimum version anyway. The "_2.py" indicates a maxmimum version of 2.7, i.e. not Python 3.x, for language syntax no more supported. """ # This will make many decisions with immediate returns. # pylint: disable=too-many-return-statements assert type(filename) is str assert type(_python_version) is str # Skip runner scripts by default. if filename.startswith("run_"): return False # Skip tests that require Python 2.7 at least. if filename.endswith("27.py") and _python_version.startswith("2.6"): return False if filename.endswith("_2.py") and _python_version.startswith('3'): return False # Skip tests that require Python 3.2 at least. if filename.endswith("32.py") and _python_version < "3.2": return False # Skip tests that require Python 3.3 at least. if filename.endswith("33.py") and _python_version < "3.3": return False # Skip tests that require Python 3.4 at least. if filename.endswith("34.py") and _python_version < "3.4": return False # Skip tests that require Python 3.5 at least. if filename.endswith("35.py") and _python_version < "3.5": return False # Skip tests that require Python 3.6 at least. if filename.endswith("36.py") and _python_version < "3.6": return False return True def _removeCPythonTestSuiteDir(): # Cleanup, some tests apparently forget that. try: if os.path.isdir("@test"): removeDirectory("@test", ignore_errors = False) elif os.path.isfile("@test"): os.unlink("@test") except OSError: # TODO: Move this into removeDirectory maybe. Doing an external # call as last resort could be a good idea. # This seems to work for broken "lnk" files. if os.name == "nt": os.system("rmdir /S /Q @test") if os.path.exists("@test"): raise def compareWithCPython(dirname, filename, extra_flags, search_mode, needs_2to3): """ Call the comparison tool. For a given directory filename. The search mode decides if the test case aborts on error or gets extra flags that are exceptions. """ if dirname is None: path = filename else: path = os.path.join(dirname, filename) # Apply 2to3 conversion if necessary. if needs_2to3: path, converted = convertUsing2to3(path) else: converted = False command = [ sys.executable, os.path.join("..", "..", "bin", "compare_with_cpython"), path, "silent" ] if extra_flags is not None: command += extra_flags command += search_mode.getExtraFlags(dirname, filename) # Cleanup before and after test stage directory. _removeCPythonTestSuiteDir() try: result = subprocess.call( command ) except KeyboardInterrupt: result = 2 # Cleanup before and after test stage directory. _removeCPythonTestSuiteDir() if result != 0 and \ result != 2 and \ search_mode.abortOnFinding(dirname, filename): my_print("Error exit!", result) sys.exit(result) if converted: os.unlink(path) if result == 2: sys.stderr.write("Interrupted, with CTRL-C\n") sys.exit(2) def checkCompilesNotWithCPython(dirname, filename, search_mode): if dirname is None: path = filename else: path = os.path.join(dirname, filename) command = [ _python_executable, "-mcompileall", path ] try: result = subprocess.call( command ) except KeyboardInterrupt: result = 2 if result != 1 and \ result != 2 and \ search_mode.abortOnFinding(dirname, filename): my_print("Error exit!", result) sys.exit(result) def checkSucceedsWithCPython(filename): command = [ _python_executable, filename ] result = subprocess.call( command, stdout = open(os.devnull,'w'), stderr = subprocess.STDOUT ) return result == 0 def hasDebugPython(): # On Debian systems, these work. debug_python = os.path.join("/usr/bin/", os.environ["PYTHON"] + "-dbg") if os.path.exists(debug_python): return True # On Windows systems, these work. debug_python = os.environ["PYTHON"] if debug_python.lower().endswith(".exe"): debug_python = debug_python[:-4] debug_python = debug_python + "_d.exe" if os.path.exists(debug_python): return True # For other Python, if it's the one also executing the runner, which is # very probably the case, we check that. We don't check the provided # binary here, this could be done as well. if sys.executable == os.environ["PYTHON"] and \ hasattr(sys, "gettotalrefcount"): return True # Otherwise no. return False def getArchitecture(): if os.name == "nt": if "AMD64" in sys.version: return "x86_64" else: return "x86" else: return os.uname()[4] # @UndefinedVariable def getDependsExePath(): if "APPDATA" not in os.environ: sys.exit("Error, standalone mode cannot find 'APPDATA' environment.") nuitka_app_dir = getAppDir() depends_dir = os.path.join( nuitka_app_dir, _python_arch, ) depends_exe = os.path.join( depends_dir, "depends.exe" ) assert os.path.exists(depends_exe), depends_exe return depends_exe def isExecutableCommand(command): path = os.environ["PATH"] suffixes = (".exe",) if os.name == "nt" else ("",) for part in path.split(os.pathsep): if not part: continue for suffix in suffixes: if os.path.isfile(os.path.join(part, command + suffix)): return True return False def getRuntimeTraceOfLoadedFiles(path, trace_error = True): """ Returns the files loaded when executing a binary. """ # This will make a crazy amount of work, pylint: disable=too-many-branches,too-many-statements result = [] if os.name == "posix": if sys.platform == "darwin" or \ sys.platform.startswith("freebsd"): if not isExecutableCommand("dtruss"): sys.exit( """\ Error, needs 'dtruss' on your system to scan used libraries.""" ) if not isExecutableCommand("sudo"): sys.exit( """\ Error, needs 'sudo' on your system to scan used libraries.""" ) args = ( "sudo", "dtruss", "-t", "open", path ) else: if not isExecutableCommand("strace"): sys.exit( """\ Error, needs 'strace' on your system to scan used libraries.""" ) args = ( "strace", "-e", "file", "-s4096", # Some paths are truncated otherwise. path ) process = subprocess.Popen( args = args, stdout = subprocess.PIPE, stderr = subprocess.PIPE ) _stdout_strace, stderr_strace = process.communicate() exit_strace = process.returncode if exit_strace != 0: if str is not bytes: stderr_strace = stderr_strace.decode("utf8") my_print(stderr_strace, file = sys.stderr) sys.exit("Failed to run strace.") open(path+".strace","wb").write(stderr_strace) for line in stderr_strace.split(b"\n"): if process.returncode != 0 and trace_error: my_print(line) if not line: continue # Don't consider files not found. The "site" module checks lots # of things. if b"ENOENT" in line: continue if line.startswith(b"stat(") and b"S_IFDIR" in line: continue # Allow stats on the python binary, and stuff pointing to the # standard library, just not uses of it. It will search there # for stuff. if line.startswith(b"lstat(") or \ line.startswith(b"stat(") or \ line.startswith(b"readlink("): filename = line[line.find(b"(")+2:line.find(b", ")-1] # At least Python3.7 considers the default Python3 path. if filename == b"/usr/bin/python3": continue if filename in (b"/usr/bin/python3." + version for version in (b"5", b"6", b"7")): continue binary_path = _python_executable if str is not bytes: binary_path = binary_path.encode("utf-8") found = False while binary_path: if filename == binary_path: found = True break if binary_path == os.path.dirname(binary_path): break binary_path = os.path.dirname(binary_path) if filename == os.path.join(binary_path, b"python" + _python_version[:3].encode("utf8")): found = True continue if found: continue result.extend( os.path.abspath(match) for match in re.findall(b'"(.*?)(?:\\\\0)?"', line) ) if sys.version.startswith('3'): result = [s.decode("utf-8") for s in result] elif os.name == "nt": subprocess.call( ( getDependsExePath(), "-c", "-ot%s" % path + ".depends", "-f1", "-pa1", "-ps1", "-pp0", "-pl1", path ) ) inside = False for line in open(path + ".depends"): if "| Module Dependency Tree |" in line: inside = True continue if not inside: continue if "| Module List |" in line: break if ']' not in line: continue # Skip missing DLLs, apparently not needed anyway. if '?' in line[:line.find(']')]: continue dll_filename = line[line.find(']')+2:-1] assert os.path.isfile(dll_filename), dll_filename # The executable itself is of course exempted. if os.path.normcase(dll_filename) == \ os.path.normcase(os.path.abspath(path)): continue dll_filename = os.path.normcase(dll_filename) result.append(dll_filename) os.unlink(path + ".depends") result = list(sorted(set(result))) return result def checkRuntimeLoadedFilesForOutsideAccesses(loaded_filenames, white_list): # A lot of special white listing is required. # pylint: disable=too-many-branches,too-many-statements result = [] for loaded_filename in loaded_filenames: loaded_filename = os.path.normpath(loaded_filename) loaded_filename = os.path.normcase(loaded_filename) loaded_basename = os.path.basename(loaded_filename) ok = False for entry in white_list: if loaded_filename.startswith(entry): ok = True while entry: old_entry = entry entry = os.path.dirname(entry) if old_entry == entry: break if loaded_filename == entry: ok = True break if ok: continue if loaded_filename.startswith("/etc/"): continue if loaded_filename.startswith("/proc/") or loaded_filename == "/proc": continue if loaded_filename.startswith("/dev/"): continue if loaded_filename.startswith("/tmp/"): continue if loaded_filename.startswith("/run/"): continue if loaded_filename.startswith("/sys/"): continue if loaded_filename.startswith("/usr/lib/locale/"): continue if loaded_filename.startswith("/usr/share/locale/"): continue if loaded_filename.startswith("/usr/share/X11/locale/"): continue # Themes may of course be loaded. if loaded_filename.startswith("/usr/share/themes"): continue if "gtk" in loaded_filename and "/engines/" in loaded_filename: continue # Terminal info files are OK too. if loaded_filename.startswith("/lib/terminfo/"): continue # System C libraries are to be expected. if loaded_basename.startswith(( "libc.so.", "libpthread.so.", "libdl.so.", "libm.so.", )): continue # Taking these from system is harmless and desirable if loaded_basename.startswith(( "libz.so", "libutil.so", "libgcc_s.so", )): continue # TODO: Unclear, loading gconv from filesystem of installed system # may be OK or not. I think it should be. if loaded_basename == "gconv-modules.cache": continue if "/gconv/" in loaded_filename: continue if loaded_basename.startswith("libicu"): continue # GTK may access X files. if loaded_basename == ".Xauthority": continue result.append(loaded_filename) return result def hasModule(module_name): result = subprocess.call( ( os.environ["PYTHON"], "-c" "import %s" % module_name ), stdout = open(os.devnull,'w'), stderr = subprocess.STDOUT ) return result == 0 m1 = {} m2 = {} def snapObjRefCntMap(before): import gc if before: m = m1 else: m = m2 for x in gc.get_objects(): if x is m1: continue if x is m2: continue m[ str(x) ] = sys.getrefcount(x) def checkReferenceCount(checked_function, max_rounds = 10): assert sys.exc_info() == (None, None, None), sys.exc_info() print(checked_function.__name__ + ": ", end = "") sys.stdout.flush() ref_count1 = 17 ref_count2 = 17 explain = False import gc assert max_rounds > 0 for count in range(max_rounds): gc.collect() ref_count1 = sys.gettotalrefcount() # @UndefinedVariable if explain and count == max_rounds - 1: snapObjRefCntMap(True) checked_function() # Not allowed, but happens when bugs occur. assert sys.exc_info() == (None, None, None), sys.exc_info() gc.collect() if explain and count == max_rounds - 1: snapObjRefCntMap(False) ref_count2 = sys.gettotalrefcount() # @UndefinedVariable if ref_count1 == ref_count2: result = True print("PASSED") break # print count, ref_count1, ref_count2 else: result = False print("FAILED", ref_count1, ref_count2, "leaked", ref_count2 - ref_count1) if explain: assert m1 assert m2 for key in m1: if key not in m2: print('*' * 80) print("extra", key) elif m1[key] != m2[key]: print('*' * 80) print(m1[key], "->", m2[key], key) else: pass # print m1[key] assert sys.exc_info() == (None, None, None), sys.exc_info() gc.collect() sys.stdout.flush() return result def createSearchMode(): search_mode = len(sys.argv) > 1 and sys.argv[1] == "search" resume_mode = len(sys.argv) > 1 and sys.argv[1] == "resume" start_at = sys.argv[2] if len(sys.argv) > 2 else None coverage_mode = len(sys.argv) > 1 and sys.argv[1] == "coverage" if coverage_mode: return SearchModeCoverage() elif resume_mode: return SearchModeResume( sys.modules["__main__"].__file__ ) elif search_mode and start_at: start_at = start_at.replace('/', os.path.sep) return SearchModeByPattern(start_at) else: class SearchModeImmediate(SearchModeBase): def abortOnFinding(self, dirname, filename): return search_mode and \ SearchModeBase.abortOnFinding(self, dirname, filename) return SearchModeImmediate() def reportSkip(reason, dirname, filename): case = os.path.join(dirname, filename) case = os.path.normpath(case) my_print("Skipped, %s (%s)." % (case, reason)) def executeReferenceChecked(prefix, names, tests_skipped, tests_stderr): import gc gc.disable() extract_number = lambda name: int(name.replace(prefix, "")) # Find the function names. matching_names = tuple( name for name in names if name.startswith(prefix) and name[-1].isdigit() ) old_stderr = sys.stderr # Everything passed result = True for name in sorted(matching_names, key = extract_number): number = extract_number(name) # print(tests_skipped) if number in tests_skipped: my_print(name + ": SKIPPED (%s)" % tests_skipped[number]) continue # Avoid unraisable output. try: if number in tests_stderr: sys.stderr = open(os.devnull, "wb") except OSError: # Windows if not checkReferenceCount(names[name]): result = False else: if not checkReferenceCount(names[name]): result = False if number in tests_stderr: new_stderr = sys.stderr sys.stderr = old_stderr new_stderr.close() gc.enable() return result def checkDebugPython(): if not hasattr(sys, "gettotalrefcount"): my_print("Warning, using non-debug Python makes this test ineffective.") sys.gettotalrefcount = lambda : 0 elif sys.version_info >= (3,7,0) and sys.version_info < (3,7,2): my_print("Warning, bug of CPython 3.7.0/1 breaks reference counting and makes this test ineffective.") sys.gettotalrefcount = lambda : 0 def addToPythonPath(python_path): if type(python_path) in (tuple, list): python_path = os.pathsep.join(python_path) if python_path: if "PYTHONPATH" in os.environ: os.environ["PYTHONPATH"] += os.pathsep + python_path else: os.environ["PYTHONPATH"] = python_path @contextmanager def withPythonPathChange(python_path): if python_path: if type(python_path) not in (tuple, list): python_path = python_path.split(os.pathsep) python_path = [ os.path.normpath(os.path.abspath(element)) for element in python_path ] python_path = os.pathsep.join(python_path) if "PYTHONPATH" in os.environ: old_path = os.environ["PYTHONPATH"] os.environ["PYTHONPATH"] += os.pathsep + python_path else: old_path = None os.environ["PYTHONPATH"] = python_path # print( # "Effective PYTHONPATH in %s is %r" % ( # sys.modules["__main__"], # os.environ.get("PYTHONPATH", "") # ) # ) yield if python_path: if old_path is None: del os.environ["PYTHONPATH"] else: os.environ["PYTHONPATH"] = old_path @contextmanager def withExtendedExtraOptions(*args): assert args old_value = os.environ.get("NUITKA_EXTRA_OPTIONS", None) value = old_value for arg in args: if value is None: value = arg else: value += ' ' + arg os.environ[ "NUITKA_EXTRA_OPTIONS" ] = value yield if old_value is None: del os.environ[ "NUITKA_EXTRA_OPTIONS" ] else: os.environ[ "NUITKA_EXTRA_OPTIONS" ] = old_value def indentedCode(codes, count): """ Indent code, used for generating test codes. """ return '\n'.join( ' ' * count + line if line else "" for line in codes ) def convertToPython(doctests, line_filter = None): """ Convert give doctest string to static Python code. """ # This is convoluted, but it just needs to work, pylint: disable=too-many-branches import doctest code = doctest.script_from_examples(doctests) if code.endswith('\n'): code += "#\n" else: assert False output = [] inside = False def getPrintPrefixed(evaluated, line_number): try: node = ast.parse(evaluated.lstrip(), "eval") except SyntaxError: return evaluated if node.body[0].__class__.__name__ == "Expr": count = 0 while evaluated.startswith(' ' * count): count += 1 if sys.version_info < (3,): modified = (count-1) * ' ' + "print " + evaluated return (count-1) * ' ' + ("print 'Line %d'" % line_number) + '\n' + modified else: modified = (count-1) * ' ' + "print(" + evaluated + "\n)\n" return (count-1) * ' ' + ("print('Line %d'" % line_number) + ")\n" + modified else: return evaluated def getTried(evaluated, line_number): if sys.version_info < (3,): return """ try: %(evaluated)s except Exception as __e: print "Occurred", type(__e), __e """ % { "evaluated" : indentedCode(getPrintPrefixed(evaluated, line_number).split('\n'), 4) } else: return """ try: %(evaluated)s except Exception as __e: print("Occurred", type(__e), __e) """ % { "evaluated" : indentedCode(getPrintPrefixed(evaluated, line_number).split('\n'), 4) } def isOpener(evaluated): evaluated = evaluated.lstrip() if evaluated == "": return False return evaluated.split()[0] in ( "def", "class", "for", "while", "try:", "except", "except:", "finally:", "else:" ) chunk = None for line_number, line in enumerate(code.split('\n')): # print "->", inside, line if line_filter is not None and line_filter(line): continue if inside and line and line[0].isalnum() and not isOpener(line): output.append(getTried('\n'.join(chunk), line_number)) # @UndefinedVariable chunk = [] inside = False if inside and not (line.startswith('#') and line.find("SyntaxError:") != -1): chunk.append(line) elif line.startswith('#'): if line.find("SyntaxError:") != -1: # print "Syntax error detected" if inside: # print "Dropping chunk", chunk chunk = [] inside = False else: del output[-1] elif isOpener(line): inside = True chunk = [line] elif line.strip() == "": output.append(line) else: output.append(getTried(line, line_number)) return '\n'.join(output).rstrip() + '\n' def compileLibraryPath(search_mode, path, stage_dir, decide, action): my_print("Checking standard library path:", path) for root, dirnames, filenames in os.walk(path): dirnames_to_remove = [ dirname for dirname in dirnames if '-' in dirname ] for dirname in dirnames_to_remove: dirnames.remove(dirname) dirnames.sort() filenames = [ filename for filename in filenames if decide(root, filename) ] for filename in sorted(filenames): if not search_mode.consider(root, filename): continue full_path = os.path.join(root, filename) my_print(full_path, ':', end = ' ') sys.stdout.flush() action(stage_dir, path, full_path) def compileLibraryTest(search_mode, stage_dir, decide, action): if not os.path.exists(stage_dir): os.makedirs(stage_dir) my_dirname = os.path.join(os.path.dirname(__file__), "../../..") my_dirname = os.path.normpath(my_dirname) paths = [ path for path in sys.path if not path.startswith(my_dirname) ] my_print("Using standard library paths:") for path in paths: my_print(path) for path in paths: print("Checking path:", path) compileLibraryPath( search_mode = search_mode, path = path, stage_dir = stage_dir, decide = decide, action = action ) search_mode.finish() def run_async(coro): """ Execute a coroutine until it's done. """ values = [] result = None while True: try: values.append(coro.send(None)) except StopIteration as ex: result = ex.args[0] if ex.args else None break return values, result def async_iterate(g): """ Execute async generator until it's done. """ # Test code for Python3, catches all kinds of exceptions. # pylint: disable=broad-except # Also Python3 only, pylint: disable=I0021,undefined-variable res = [] while True: try: g.__anext__().__next__() except StopAsyncIteration: # @UndefinedVariable res.append("STOP") break except StopIteration as ex: if ex.args: res.append("ex arg %s" % ex.args[0]) else: res.append("EMPTY StopIteration") break except Exception as ex: res.append(str(type(ex))) return res def getTestingCacheDir(): cache_dir = getCacheDir() result = os.path.join(cache_dir, "tests_state") makePath(result) return result def getTestingCPythonOutputsCacheDir(): cache_dir = getCacheDir() result = os.path.join(cache_dir, "cpython_outputs", os.environ.get("NUITKA_TEST_SUITE", "")) makePath(result) return result @contextmanager def withDirectoryChange(path, allow_none = False): if path is not None or not allow_none: old_cwd = os.getcwd() os.chdir(path) yield if path is not None or not allow_none: os.chdir(old_cwd) def someGenerator(): yield 1 yield 2 yield 3 def someGeneratorRaising(): yield 1 raise TypeError(2)
py
1a55f0d91ccb600d1b3d67f387f11ec4ece4c786
from pazusoba import adventureEx, Profile, ProfileName, Orb import time import random def random_board() -> str: return "".join(random.choice(["L", "R", "G", "B", "D", "H"]) for _ in range(30)) def amen_benchmark(): print("Running amen benchmark...") COUNT = 10 goal_counter = 0 steps = 0 start = time.time() for i in range(COUNT): print("Test {}".format(i + 1)) board = random_board() print("Board: {}".format(board)) result = adventureEx(board, 3, 150, 10000, [ Profile(name=ProfileName.COMBO, target=7), Profile(name=ProfileName.ORB_REMAINING, target=3), ]) if result.goal: goal_counter += 1 steps += result.step time_taken = time.time() - start print("It took {} seconds, {} seconds on average".format( time_taken, time_taken / COUNT)) print("Goal rate: {}/{}".format(goal_counter, COUNT)) print("Average steps: {}".format(steps / COUNT)) def combo_benchmark(): print("Running combo benchmark...") COUNT = 100 goal_counter = 0 steps = 0 start = time.time() for i in range(COUNT): board = random_board() print("{} - {}".format(i + 1, board)) result = adventureEx(board, 3, 150, 1000, [ Profile(name=ProfileName.COMBO, threshold=50) ]) if result.goal: goal_counter += 1 steps += result.step time_taken = time.time() - start print("It took {} seconds, {} seconds on average".format( time_taken, time_taken / COUNT)) print("Goal rate: {}/{}".format(goal_counter, COUNT)) print("Average steps: {}".format(steps / COUNT)) def find_best_small_size_combo(): COUNT = 20 # generate same board boards = [random_board() for _ in range(COUNT)] for x in range(1, 11): size = x * 100 goal_counter = 0 steps = 0 start = time.time() for i in range(COUNT): result = adventureEx(boards[i], 3, 150, 1000, [ Profile(name=ProfileName.COMBO, threshold=20) ]) if result.goal: goal_counter += 1 steps += result.step time_taken = time.time() - start print("Size {} - avg {} s, {}/{}, avg {} steps".format( size, time_taken / COUNT, goal_counter, COUNT, steps / COUNT)) if __name__ == '__main__': print("Running benchmark") # amen_benchmark() combo_benchmark() # find_best_small_size_combo()
py
1a55f104752f257e3462ac8338301d58407d8c96
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for XLA JIT compiler.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.compiler.tests.xla_test import XLATestCase from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import bitwise_ops from tensorflow.python.ops import gen_nn_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn_ops from tensorflow.python.platform import googletest def nhwc_to_format(x, data_format): """Converts a numpy array from NHWC format to `data_format`.""" rank = len(x.shape) if data_format == "NCHW": return np.transpose(x, [0, rank - 1] + list(range(1, rank - 1))) elif data_format == "NHWC": return x else: raise ValueError("Unknown format {}".format(data_format)) class UnaryOpsTest(XLATestCase): """Test cases for unary operators.""" def _assertOpOutputMatchesExpected(self, op, inp, expected, equality_test=None, rtol=1e-3, atol=1e-5): """Verifies that 'op' produces 'expected' when fed input 'inp' . Args: op: operator to test inp: numpy input array to use as input to 'op'. expected: numpy array representing the expected output of 'op'. equality_test: either None, or a function that tests two numpy arrays for equality. If None, self.assertAllClose is used. rtol: relative tolerance for equality test. atol: absolute tolerance for equality test. """ with self.test_session() as session: with self.test_scope(): pinp = array_ops.placeholder( dtypes.as_dtype(inp.dtype), inp.shape, name="a") output = op(pinp) result = session.run(output, {pinp: inp}) if equality_test is None: self.assertAllCloseAccordingToType( result, expected, rtol=rtol, atol=atol, bfloat16_rtol=0.03) else: equality_test(result, expected, rtol=rtol, atol=atol) def ListsAreClose(self, result, expected, rtol, atol): """Tests closeness of two lists of floats.""" self.assertEqual(len(result), len(expected)) for i in xrange(len(result)): self.assertAllClose(result[i], expected[i], rtol, atol) def testAllTypeOps(self): for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( array_ops.diag, np.array([1, 2, 3, 4], dtype=dtype), np.array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.diag_part, np.arange(36).reshape([2, 3, 2, 3]).astype(dtype), np.array([[0, 7, 14], [21, 28, 35]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.diag, np.array([[1, 2], [3, 4]], dtype=dtype), np.array( [[[[1, 0], [0, 0]], [[0, 2], [0, 0]]], [[[0, 0], [3, 0]], [[0, 0], [0, 4]]]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.identity, np.array([[-1, 1]], dtype=dtype), expected=np.array([[-1, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.matrix_diag, np.array([[1, 2], [3, 4]], dtype=dtype), np.array([[[1, 0], [0, 2]], [[3, 0], [0, 4]]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.matrix_diag, np.array([1, 2, 3, 4], dtype=dtype), np.array( [[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.matrix_diag, np.array( [[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], dtype=dtype), np.array( [[[[1, 0, 0], [0, 2, 0], [0, 0, 3]], [[4, 0, 0], [0, 5, 0], [0, 0, 6]]], [[[7, 0, 0], [0, 8, 0], [0, 0, 9]], [[10, 0, 0], [0, 11, 0], [0, 0, 12]]]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.matrix_diag_part, np.arange(3 * 2 * 4).reshape([3, 2, 4]).astype(dtype), np.array([[0, 5], [8, 13], [16, 21]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.prevent_gradient, np.array([[-1, 1]], dtype=dtype), expected=np.array([[-1, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.squeeze, np.array([[[[[]]]]], dtype=dtype), expected=np.array([], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.squeeze, np.array([[[1], [2]]], dtype=dtype), expected=np.array([1, 2], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.squeeze, np.array([[[1]], [[2]]], dtype=dtype), expected=np.array([1, 2], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.squeeze, np.array([[[1, 2], [3, 4]]], dtype=dtype), expected=np.array([[1, 2], [3, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.stop_gradient, np.array([[-1, 1]], dtype=dtype), expected=np.array([[-1, 1]], dtype=dtype)) def testFloatOps(self): for dtype in self.float_types: # TODO (b/77694432): Half test failed on CPU, last ran on 04-06-2018. id:177 # https://github.com/imdone/tensorflow/issues/178 if dtype == np.float16 and self.device == "XLA_CPU": continue x = np.arange(-0.90, 0.90, 0.25) self._assertOpOutputMatchesExpected( math_ops.acos, x.astype(dtype), expected=np.arccos(x).astype(dtype)) self._assertOpOutputMatchesExpected( math_ops.asin, x.astype(dtype), expected=np.arcsin(x).astype(dtype)) x = np.arange(-3, 3).reshape(1, 3, 2) self._assertOpOutputMatchesExpected( math_ops.atan, x.astype(dtype), expected=np.arctan(x).astype(dtype)) self._assertOpOutputMatchesExpected( math_ops.acosh, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([0, 1.3169579, 1.76274717, 2.06343707], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.asinh, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([0.88137359, 1.44363548, 1.81844646, 2.09471255], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.atanh, np.array([0.1, 0.2, 0.3, 0.4], dtype=dtype), expected=np.array([0.10033535, 0.20273255, 0.3095196, 0.42364893], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.ceil, np.array([[-1.7, 1.2]], dtype=dtype), expected=np.array([[-1, 2]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.cosh, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([1.54308063, 3.76219569, 10.067662, 27.30823284], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.exp, np.array([[-1, 1]], dtype=dtype), expected=np.array([[0.36787945, 2.7182817]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.expm1, np.array([[-1, 1]], dtype=dtype), expected=np.array([[-0.63212056, 1.71828183]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.floor, np.array([[-1.7, 1.2]], dtype=dtype), expected=np.array([[-2, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.is_finite, np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype), expected=np.array([[0, 1, 1, 1, 1, 1, 1, 0, 0]], dtype=np.bool)) # Tests for tf.nn ops. self._assertOpOutputMatchesExpected( nn_ops.l2_loss, np.array([[[]]], dtype=dtype), expected=dtype(0)) self._assertOpOutputMatchesExpected(nn_ops.l2_loss, dtype(4), dtype(8)) self._assertOpOutputMatchesExpected( nn_ops.l2_loss, np.array([[-2, 4]], dtype=dtype), expected=dtype(10)) self._assertOpOutputMatchesExpected( math_ops.reciprocal, np.array([[1, 2]], dtype=dtype), expected=np.array([[1, 0.5]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.log, np.array([[1, 2]], dtype=dtype), expected=np.array([[0, 0.69314718]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sin, np.array([[1, 2]], dtype=dtype), expected=np.array([[0.841478, 0.909302]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.cos, np.array([[1, 2]], dtype=dtype), expected=np.array([[0.540297, -0.41614]], dtype=dtype)) # TODO (b/34703906): improve log1p implementation and make tolerance id:332 # https://github.com/imdone/tensorflow/issues/333 # tighter. self._assertOpOutputMatchesExpected( math_ops.log1p, np.array([[1e-14, 1e-15, 0.6]], dtype=dtype), expected=np.log1p(np.array([[1e-14, 1e-15, 0.6]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.rint, np.array([[-1.7, 1.2, 4.0, 0.0], [-3.5, -2.5, -1.5, -0.5], [0.5, 1.5, 2.5, 3.5]], dtype=dtype), expected=np.array([[-2, 1, 4, 0], [-4, -2, -2, 0], [0, 2, 2, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.round, np.array([[-1.7, 1.2, 4.0, 0.0], [-3.5, -2.5, -1.5, -0.5], [0.5, 1.5, 2.5, 3.5]], dtype=dtype), expected=np.array([[-2, 1, 4, 0], [-4, -2, -2, 0], [0, 2, 2, 4]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.rsqrt, np.array([[4, 16]], dtype=dtype), expected=np.array([[0.5, 0.25]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sigmoid, np.array( [[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype), expected=np.array( [[0.7310586, 0.7310586, 0.7310586, 0.7310586], [0.7310586, 0.880797, 0.95257413, 0.98201376]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sigmoid, np.array([-300, -150, 0, 150, 300], dtype=dtype), expected=np.array([0, 0, 0.5, 1, 1], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sinh, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([1.17520119, 3.62686041, 10.01787493, 27.2899172], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.sqrt, np.array([[4, 9]], dtype=dtype), expected=np.array([[2, 3]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.tan, np.array([1, 2, 3, 4], dtype=dtype), expected=np.array([1.55740772, -2.18503986, -0.14254654, 1.15782128], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.tanh, np.array( [[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype), expected=np.array( [[0.76159418, 0.76159418, 0.76159418, 0.76159418], [0.76159418, 0.96402758, 0.99505478, 0.99932933]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.log_softmax, np.array( [[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype), expected=np.array( [[-1.3862944, -1.3862944, -1.3862944, -1.3862944], [-3.4401896, -2.4401896, -1.4401897, -0.44018969]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.elu, np.array([[-1, 0, 1]], dtype=dtype), expected=np.array([[-0.63212056, 0, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.selu, np.array([[-1, 0, 1]], dtype=dtype), expected=np.array([[-1.11133074, 0., 1.05070099]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.relu, np.array([[-1, 1]], dtype=dtype), expected=np.array([[0, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.relu6, np.array([[-0.05, 6.05, 5]], dtype=dtype), expected=np.array([[0, 6, 5]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.softmax, np.array( [[1, 1, 1, 1], [1, 2, 3, 4]], dtype=dtype), expected=np.array( [[0.25, 0.25, 0.25, 0.25], [0.032058604, 0.087144323, 0.23688284, 0.64391428]], dtype=dtype)) self._assertOpOutputMatchesExpected( nn_ops.softsign, np.array([[-2, -1, 0, 1, 2]], dtype=dtype), expected=np.array([[-0.66666669, -0.5, 0, 0.5, 0.66666669]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.is_finite, np.array( [[42, float("inf"), -123], [float("nan"), 0, -0.0]], dtype=dtype), expected=np.array( [[True, False, True], [False, True, True]], dtype=np.bool)) self._assertOpOutputMatchesExpected( lambda x: array_ops.quantize_and_dequantize_v2(x, -127, 127, True, 8), np.array([-1, -0.5, 0, 0.3], dtype=dtype), expected=np.array([-1, -64.0 / 127, 0, 38.0 / 127], dtype=dtype)) def testComplexOps(self): for dtype in self.complex_types: self._assertOpOutputMatchesExpected( math_ops.acosh, np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype), expected=np.arccosh( np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.asinh, np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype), expected=np.arcsinh( np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.atanh, np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype), expected=np.arctanh( np.array([0.1, 0.2j, 0.3 - 0.1j, 0.4 + 0.5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.cosh, np.array([1j, 2 - 3j, 3, 4 + 2j], dtype=dtype), expected=np.cosh(np.array([1j, 2 - 3j, 3, 4 + 2j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.sinh, np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype), expected=np.sinh(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.exp, np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype), expected=np.exp(np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.expm1, np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype), expected=np.expm1(np.array([[-1 + 2j, 3j, 2 - 3j]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.reciprocal, np.array([[1, 2j, 2 + 3j]], dtype=dtype), expected=1.0 / np.array([[1, 2j, 2 + 3j]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.log, np.array([[5j, 3 - 2j]], dtype=dtype), expected=np.log(np.array([[5j, 3 - 2j]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.sin, np.array([[5j, 3 - 2j]], dtype=dtype), expected=np.sin(np.array([[5j, 3 - 2j]], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.cos, np.array([[5j, 3 - 2j]], dtype=dtype), expected=np.cos(np.array([[5j, 3 - 2j]], dtype=dtype))) # TODO (b/34703906): improve log1p implementation and make tolerance id:256 # https://github.com/imdone/tensorflow/issues/257 # tighter. self._assertOpOutputMatchesExpected( math_ops.log1p, np.array([[1e-14, 1e-15j, 0.6 - 0.3j]], dtype=dtype), expected=np.log1p( np.array([[1e-14, 1e-15j, 0.6 - 0.3j]], dtype=dtype))) val = np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype) self._assertOpOutputMatchesExpected( math_ops.rsqrt, val, expected=1 / np.sqrt(val)) self._assertOpOutputMatchesExpected( math_ops.sigmoid, val, expected=1 / (1 + np.exp(-val))) self._assertOpOutputMatchesExpected( math_ops.sqrt, val, expected=np.sqrt(val)) self._assertOpOutputMatchesExpected( math_ops.tanh, np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype), expected=np.tanh(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.tan, np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype), expected=np.tan(np.array([1, 2j, 2 - 3j, 4 + 5j], dtype=dtype))) ctypes = {np.complex64: np.float32} self._assertOpOutputMatchesExpected( math_ops.abs, np.array([[3 - 4j, -1j, np.inf]], dtype=dtype), expected=np.array([[5, 1, np.inf]], dtype=ctypes[dtype])) self._assertOpOutputMatchesExpected( math_ops.negative, np.array([[-1 + 2j, -3j]], dtype=dtype), expected=np.array([[1 - 2j, 3j]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.square, np.array([[-2 - 3j, 3 + 4j, 5j]], dtype=dtype), expected=np.array([[-2 - 3j, 3 + 4j, 5j]], dtype=dtype)**2) self._assertOpOutputMatchesExpected( array_ops.zeros_like, np.array([[4j, 3 - 2j], [2, -1j]], dtype=dtype), expected=np.array([[0, 0], [0, 0]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.ones_like, np.array([[-4j, 3 + 2j], [2, -1j]], dtype=dtype), expected=np.array([[1, 1], [1, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.angle, np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype), expected=np.angle(np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype))) self._assertOpOutputMatchesExpected( math_ops.conj, np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype), expected=np.array([1 - 3j, -4 - 7j, 2.7, 3j], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.imag, np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype), expected=np.array([3, 7, 0, -3], dtype=ctypes[dtype])) self._assertOpOutputMatchesExpected( math_ops.real, np.array([1 + 3j, -4 + 7j, 2.7, -3j], dtype=dtype), expected=np.array([1, -4, 2.7, 0], dtype=ctypes[dtype])) def testIntOps(self): for dtype in self.int_types: self._assertOpOutputMatchesExpected( bitwise_ops.invert, np.array([0, -1, 1, 16, 42], dtype=dtype), expected=np.array([-1, 0, -2, -17, -43], dtype=dtype)) def testNumericOps(self): for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( math_ops.abs, np.array([[2, -1]], dtype=dtype), expected=np.array([[2, 1]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.negative, np.array([[-1, 1]], dtype=dtype), expected=np.array([[1, -1]], dtype=dtype)) self._assertOpOutputMatchesExpected( math_ops.square, np.array([[-2, 3]], dtype=dtype), expected=np.array([[4, 9]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.zeros_like, np.array([[4, 3], [2, 1]], dtype=dtype), expected=np.array([[0, 0], [0, 0]], dtype=dtype)) self._assertOpOutputMatchesExpected( array_ops.ones_like, np.array([[4, 3], [2, 1]], dtype=dtype), expected=np.array([[1, 1], [1, 1]], dtype=dtype)) # TODO (phawkins): these tests fail unless fastmath optimizations id:202 # https://github.com/imdone/tensorflow/issues/203 # are disabled. Use more robust IsInf/IsNaN detection and enable these # tests. @unittest.skip("test case fails in fast-math mode") def testIsInfAndIsNan(self): for dtype in self.float_types: self._assertOpOutputMatchesExpected( math_ops.is_inf, np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype), expected=np.array([[1, 0, 0, 0, 0, 0, 0, 1, 0]], dtype=np.bool)) self._assertOpOutputMatchesExpected( math_ops.is_nan, np.array([[np.NINF, -2, -1, 0, 0.5, 1, 2, np.inf, np.nan]], dtype=dtype), expected=np.array([[0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=np.bool)) def testLogicalOps(self): self._assertOpOutputMatchesExpected( math_ops.logical_not, np.array([[True, False], [False, True]], dtype=np.bool), expected=np.array([[False, True], [True, False]], dtype=np.bool)) def testBiasAddGrad(self): self._assertOpOutputMatchesExpected( gen_nn_ops.bias_add_grad, np.array([[1., 2.], [3., 4.]], dtype=np.float32), expected=np.array([4., 6.], dtype=np.float32)) self._assertOpOutputMatchesExpected( lambda x: gen_nn_ops.bias_add_grad(x, data_format="NCHW"), np.array([[[1., 2.], [3., 4.]], [[5., 6.], [7., 8.]]], dtype=np.float32), expected=np.array([10., 26.], dtype=np.float32)) def testCast(self): shapes = [[], [4], [2, 3], [2, 0, 4]] types = (set([dtypes.bool, dtypes.int32, dtypes.float32]) | self.complex_tf_types) for shape in shapes: for src_type in types: for dst_type in types: src = np.arange(np.prod(shape)).astype(src_type.as_numpy_dtype) if src_type in self.complex_tf_types: src += (np.arange(np.prod(shape)) * 2j).astype( src_type.as_numpy_dtype) src = src.reshape(shape) dst = src.astype(dst_type.as_numpy_dtype) self._assertOpOutputMatchesExpected( lambda x, dst_type=dst_type: math_ops.cast(x, dst_type), src, expected=dst) def testBitcast(self): self._assertOpOutputMatchesExpected( lambda x: array_ops.bitcast(x, dtypes.int32), np.array([1, 0x3f800000], np.int32), expected=np.array([1, 0x3f800000], np.int32)) self._assertOpOutputMatchesExpected( lambda x: array_ops.bitcast(x, dtypes.float32), np.array([1, 0x3f800000], np.int32), expected=np.array([1e-45, 1.0], np.float32)) self._assertOpOutputMatchesExpected( lambda x: array_ops.bitcast(x, dtypes.int32), np.array([1e-45, 1.0], np.float32), expected=np.array([1, 0x3f800000], np.int32)) def testInvertPermutation(self): self._assertOpOutputMatchesExpected( array_ops.invert_permutation, np.array([1, 2, 0], np.int32), expected=np.array([2, 0, 1], dtype=np.int32)) def testRank(self): rank_op = lambda x: array_ops.rank_internal(x, optimize=False) for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( rank_op, dtype(7), expected=np.int32(0)) self._assertOpOutputMatchesExpected( rank_op, np.array( [[], []], dtype=dtype), expected=np.int32(2)) self._assertOpOutputMatchesExpected( rank_op, np.array( [-1, 1], dtype=dtype), expected=np.int32(1)) self._assertOpOutputMatchesExpected( rank_op, np.array( [[-1, 1]], dtype=dtype), expected=np.int32(2)) self._assertOpOutputMatchesExpected( rank_op, np.array([[-1], [1], [4]], dtype=dtype), expected=np.int32(2)) def testShape(self): shape_op = lambda x: array_ops.shape_internal(x, optimize=False) for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( shape_op, dtype(7), expected=np.array([], dtype=np.int32)) self._assertOpOutputMatchesExpected( shape_op, np.array([[], []], dtype=dtype), expected=np.array([2, 0], dtype=np.int32)) self._assertOpOutputMatchesExpected( shape_op, np.array([-1, 1], dtype=dtype), expected=np.array([2], dtype=np.int32)) self._assertOpOutputMatchesExpected( shape_op, np.array([[-1, 1]], dtype=dtype), expected=np.array([1, 2], dtype=np.int32)) self._assertOpOutputMatchesExpected( shape_op, np.array([[-1], [1], [4]], dtype=dtype), expected=np.array([3, 1], dtype=np.int32)) def testSize(self): size_op = lambda x: array_ops.size_internal(x, optimize=False) for dtype in self.numeric_types: self._assertOpOutputMatchesExpected( size_op, dtype(7), expected=np.int32(1)) self._assertOpOutputMatchesExpected( size_op, np.array([[], []], dtype=dtype), expected=np.int32(0)) self._assertOpOutputMatchesExpected( size_op, np.array([-1, 1], dtype=dtype), expected=np.int32(2)) self._assertOpOutputMatchesExpected( size_op, np.array([[-1, 1]], dtype=dtype), expected=np.int32(2)) self._assertOpOutputMatchesExpected( size_op, np.array([[-1], [1], [4]], dtype=dtype), expected=np.int32(3)) def testUnpack(self): self._assertOpOutputMatchesExpected( array_ops.unstack, np.array([[1., 2.], [3., 4.], [5., 6.]], dtype=np.float32), expected=[ np.array([1., 2.], dtype=np.float32), np.array([3., 4.], dtype=np.float32), np.array([5., 6.], dtype=np.float32), ], equality_test=self.ListsAreClose) self._assertOpOutputMatchesExpected( lambda x: array_ops.unstack(x, axis=1), np.array([[1., 2.], [3., 4.], [5., 6.]], dtype=np.float32), expected=[ np.array([1., 3., 5.], dtype=np.float32), np.array([2., 4., 6.], dtype=np.float32), ], equality_test=self.ListsAreClose) def testDepthToSpace(self): def make_op(data_format): def op(x): return array_ops.depth_to_space(x, block_size=2, data_format=data_format) return op for dtype in self.numeric_types: for data_format in ["NCHW", "NHWC"]: self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format(np.array([[[[1, 2, 3, 4]]]], dtype=dtype), data_format), expected=nhwc_to_format(np.array([[[[1], [2]], [[3], [4]]]], dtype=dtype), data_format)) self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format( np.array([[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]], dtype=dtype), data_format), expected=nhwc_to_format( np.array([[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]], dtype=dtype), data_format)) self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format( np.array([[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]], dtype=dtype), data_format), expected=nhwc_to_format( np.array([[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]], dtype=dtype), data_format)) def testSpaceToDepth(self): def make_op(data_format): def op(x): return array_ops.space_to_depth(x, block_size=2, data_format=data_format) return op for dtype in self.numeric_types: for data_format in ["NCHW", "NHWC"]: self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format(np.array([[[[1], [2]], [[3], [4]]]], dtype=dtype), data_format), expected=nhwc_to_format(np.array([[[[1, 2, 3, 4]]]], dtype=dtype), data_format)) self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format(np.array([[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]], dtype=dtype), data_format), expected=nhwc_to_format( np.array([[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]], dtype=dtype), data_format)) self._assertOpOutputMatchesExpected( make_op(data_format), nhwc_to_format(np.array([[[[1], [2], [5], [6]], [[3], [4], [7], [8]], [[9], [10], [13], [14]], [[11], [12], [15], [16]]]], dtype=dtype), data_format), expected=nhwc_to_format( np.array([[[[1, 2, 3, 4], [5, 6, 7, 8]], [[9, 10, 11, 12], [13, 14, 15, 16]]]], dtype=dtype), data_format)) def _assertSoftplusMatchesExpected(self, features, dtype): features = np.array(features, dtype=dtype) zero = np.asarray(0).astype(dtype) expected = np.logaddexp(zero, features) self._assertOpOutputMatchesExpected( nn_ops.softplus, features, expected=expected) def testSoftplus(self): for dtype in self.float_types: self._assertSoftplusMatchesExpected([[-2, 0, 8]], dtype) self._assertSoftplusMatchesExpected( [[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]], dtype) if dtype == dtypes.bfloat16.as_numpy_dtype: log_eps = np.log(np.finfo(np.float32).eps) else: log_eps = np.log(np.finfo(dtype).eps) one = dtype(1) ten = dtype(10) self._assertSoftplusMatchesExpected([ log_eps, log_eps - one, log_eps + one, log_eps - ten, log_eps + ten, -log_eps, -log_eps - one, -log_eps + one, -log_eps - ten, -log_eps + ten], dtype) if __name__ == "__main__": googletest.main()
py
1a55f19ed14304cec7e5fc14d53880f21c6759c3
from classes import List def write_data_into_file(f, password, count_of_lists, list_of_task_lists): """ Writes information from variables into file :param f: file :param password: user's hashed password :param count_of_lists: number of user's task lists :param list_of_task_lists: all user's task lists are included in this list :return: file with updated data """ f.write(password + '\n') f.write(str(count_of_lists) + '\n') for i in range(count_of_lists): temp_line = str(list_of_task_lists[i].name) + ' ' + str(len(list_of_task_lists[i].tasks)) f.write(temp_line + '\n') for j in range(len(list_of_task_lists[i].tasks)): temp_task = list_of_task_lists[i].tasks[j].name + ', ' + \ list_of_task_lists[i].tasks[j].expiration_date + ', ' + \ list_of_task_lists[i].tasks[j].reminder + ', ' + \ str(list_of_task_lists[i].tasks[j].priority) + ', ' + \ list_of_task_lists[i].tasks[j].description f.write(temp_task + '\n') temp_line = str(len(list_of_task_lists[i].done_tasks)) f.write(temp_line + '\n') for j in range(len(list_of_task_lists[i].done_tasks)): temp_done_task = list_of_task_lists[i].done_tasks[j].name + ', ' + \ list_of_task_lists[i].done_tasks[j].expiration_date + ', ' + \ list_of_task_lists[i].done_tasks[j].reminder + ', ' + \ str(list_of_task_lists[i].done_tasks[j].priority) + ', ' + \ list_of_task_lists[i].done_tasks[j].description f.write(temp_done_task + '\n') return f def read_data_from_file(f): """ Takes data from files and writes it in count_of_lists, list_of_task_lists :param f: file :return: number of user's task lists and information about all user's task lists """ count_of_lists = int(f.readline().strip()) # количество списков задач list_of_task_lists = [] for i in range(count_of_lists): list_of_task_lists.append(List('', [], [])) task_list, done_task_list = [], [] list_of_task_lists[i].name, count_of_tasks = f.readline().strip().split() count_of_tasks = int(count_of_tasks) for j in range(count_of_tasks): task_list.append(f.readline().strip()) list_of_task_lists[i].read_tasks(task_list) count_of_done_tasks = int(f.readline().strip()) for j in range(count_of_done_tasks): done_task_list.append(f.readline().strip()) list_of_task_lists[i].read_done_tasks(done_task_list) return count_of_lists, list_of_task_lists
py
1a55f2c411aafabf63f2f51336ad9cc7e9d4399a
# coding: utf-8 import re import six from huaweicloudsdkcore.sdk_response import SdkResponse from huaweicloudsdkcore.utils.http_utils import sanitize_for_serialization class ShowServerTagsResponse(SdkResponse): """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'tags': 'list[ServerTag]' } attribute_map = { 'tags': 'tags' } def __init__(self, tags=None): """ShowServerTagsResponse - a model defined in huaweicloud sdk""" super(ShowServerTagsResponse, self).__init__() self._tags = None self.discriminator = None if tags is not None: self.tags = tags @property def tags(self): """Gets the tags of this ShowServerTagsResponse. 标签列表 :return: The tags of this ShowServerTagsResponse. :rtype: list[ServerTag] """ return self._tags @tags.setter def tags(self, tags): """Sets the tags of this ShowServerTagsResponse. 标签列表 :param tags: The tags of this ShowServerTagsResponse. :type: list[ServerTag] """ self._tags = tags def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" import simplejson as json if six.PY2: import sys reload(sys) sys.setdefaultencoding("utf-8") return json.dumps(sanitize_for_serialization(self), ensure_ascii=False) def __repr__(self): """For `print`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ShowServerTagsResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
py
1a55f410223c4fdd289ad3100e7352ae082f0fee
from random import randint palpite = [] jog = [] jogcop = [] qtd = int(input('Digite quantos jogos você quer fazer: ')) i = 0 c = 0 while i < qtd: while c < 6: n1 = randint(1, 60) if n1 not in jog: jog.append(n1) c += 1 jog.sort() palpite.append(jog[:]) jog.clear() c = 0 print(f'{i+1}° jogo: {palpite[i]}.') i += 1
py
1a55f506f88716d4f0199bb245dc93a2b86c16ae
""" Sample Data""" # published as /alice/index.schema alice_index_schema = ''.join(("doc:/alice/movies/[^/]+$\n" " -> wrapper:/irtf/icnrg/flic\n" " -> wrapper:/alice/homebrewed/ac\n" " mode='CBC'\n" " padding='PKCS5'\n" " => type:/mime/video/mp4\n" "\n" "doc:/alice/public/docs/.*[.]pdf$\n" " -> wrapper:/simple/chunking\n" " => type:/mime/application/pdf\n" "\n" "doc:/alice/public/img/basel.jpg$\n" " -> wrapper:/simple/chunking\n" " => type:/mime/image/jpeg\n")) # published as /alice/homebrewed/ac ac_wrapper_desc = ''.join(("def decap:\n" " $secDek = call:/alice/homebrewed/fetchDEK(#, @id.pub)\n" " $dek = call:/crypto/lib/rsa/decrypt($secDek, @id.priv)\n" " return call:/nist/aes/decrypt(#, $dek, %mode, %padding)\n" "\n" "\n" "def encap:\n" " $secDek = call:/alice/homebrewed/fetchDEK(#, @id.pub)\n", " $dek = call:/crypto/lib/rsa/decrypt($secDek, @id.priv\n", " sreturn call:/nist/aes/encrypt(#, $dek, %mode, %padding)\n"))
py
1a55f57c13ee96107dafc097d50c50d6ef0c2376
""" This is an end to end release test automation script used to kick off periodic release tests, running on Anyscale. The tool leverages app configs and compute templates. Calling this script will run a single release test. Example: python e2e.py --test-config ~/ray/release/xgboost_tests/xgboost_tests.yaml --test-name tune_small The following steps are then performed: 1. It will look up the test tune_small in the file xgboost_tests.yaml 2. It will fetch the specified app config and compute template and register those with anyscale (if they don’t exist yet) 3. It waits until the app config is built 4. It then kicks off the script defined in the run block 5. When the script is finished, it will fetch the latest logs, the full log output, and any artifacts specified in the artifacts block. 6. The full logs and artifacts will be stored in a s3 bucket 7. It will also fetch the json file specified in the run block as results. This is the file where you should write your metrics to. 8. All results are then stored in a database. Specifically it will store the following fields: - Timestamp - Test name - Status (finished, error, timeout, invalid) - Last logs (50 lines) - results (see above) - artifacts (links to s3 files) Then the script exits. If an error occurs at any time, a fail result is written to the database. Writing a new release test -------------------------- Each release test requires the following: 1. It has to be added in a release test yaml file, describing meta information about the test (e.g. name, command to run, timeout) 2. You need an app config yaml 3. You need a compute template yaml 4. You need to define a command to run. This is usually a python script. The command should accept (or ignore) a single optional `--smoke-test` argument. Usually the command should write its result metrics to a json file. The json filename is available in the TEST_OUTPUT_JSON env variable. 5. Add your test in release/.buildkite/build_pipeline.py. The script will have access to these environment variables: "RAY_ADDRESS": os.environ.get("RAY_ADDRESS", "auto") "TEST_OUTPUT_JSON": results_json_filename "IS_SMOKE_TEST": "1" if smoke_test else "0" For an example, take a look at the XGBoost test suite: https://github.com/ray-project/ray/blob/master/release/xgboost_tests/xgboost_tests.yaml These all use the same app configs and similar compute templates. This means that app configs can be re-used across runs and only have to be built ones. App configs and compute templates can interpret environment variables. A notable one is the `RAY_WHEELS` variable which points to the wheels that should be tested (e.g. latest master wheels). You might want to include something like this in your `post_build_cmds`: - pip3 install -U {{ env["RAY_WHEELS"] | default("ray") }} If you want to force rebuilds, consider using something like - echo {{ env["TIMESTAMP"] }} so that your app configs changes each time the script is executed. If you only want to trigger rebuilds once per day, use `DATESTAMP` instead: - echo {{ env["DATESTAMP"] }} Local testing ------------- For local testing, make sure to authenticate with the ray-ossci AWS user (e.g. by setting the respective environment variables obtained from go/aws), or use the `--no-report` command line argument. Also make sure to set these environment variables: - ANYSCALE_CLI_TOKEN (should contain your anyscale credential token) - ANYSCALE_PROJECT (should point to a project ID you have access to) A test can then be run like this: python e2e.py --no-report --test-config ~/ray/release/xgboost_tests/xgboost_tests.yaml --test-name tune_small The `--no-report` option disables storing the results in the DB and artifacts on S3. If you set this option, you do not need access to the ray-ossci AWS user. Using Compilation on Product + App Config Override -------------------------------------------------- For quick iteration when debugging a release test, go/compile-on-product allows you to easily modify and recompile Ray, such that the recompilation happens within an app build step and can benefit from a warm Bazel cache. See go/compile-on-product for more information. After kicking off the app build, you can give the app config ID to this script as an app config override, where the indicated app config will be used instead of the app config given in the test config. E.g., running python e2e.py --no-report --test-config ~/ray/benchmarks/benchmark_tests.yaml --test-name=single_node --app-config-id-override=apt_TBngEXXXrhipMXgexVcrpC9i would run the single_node benchmark test with the apt_TBngEXXXrhipMXgexVcrpC9i app config instead of the app config given in ~/ray/benchmarks/benchmark_tests.yaml. If the build for the app config is still in progress, the script will wait until it completes, same as for a locally defined app config. Running on Head Node vs Running with Anyscale Connect ----------------------------------------------------- By default release tests run their drivers on the head node. Support is being added to run release tests that execute the driver as a subprocess and run the workload on Anyscale product via Anyscale connect. Note that when the driver in the test is a subprocess of releaser, releaser cannot be terminated before the test finishes. Other known feature gaps when running with Anyscale connect: - Kicking off a test or checking progress is not supported. - Downloading / uploading logs and artifacts are unsupported. - Logs from remote may not have finished streaming, before the driver exits. Long running tests ------------------ Long running tests can be kicked off with by adding the --kick-off-only parameters to the e2e script. The status can then be checked with the --check command. Long running test sessions will be terminated after `timeout` seconds, after which the latest result in the TEST_OUTPUT_JSON will be reported. Thus, long running release tests should update this file periodically. There are also two config options to configure behavior. The `time_key` is needed to track the latest update of the TEST_OUTPUT_JSON and should contain a floating point number (usually `time.time()`). The `max_update_delay` then specified the maximum time in seconds that can be passed without an update to the results json. If the output file hasn't been updated in e.g. 60 seconds, this could indicate that the command is stale/frozen, and thus should fail. Release test yaml example ------------------------- - name: example owner: mail: "[email protected]" # Currently not used slack: "@tune-team" # Currentl not used cluster: app_config: app_config.yaml # Relative to the release test yaml compute_template: tpl_cpu.yaml run: timeout: 600 # in seconds prepare: python wait_cluster.py 4 600 # prepare cmd to run before test script: python workloads/train.py # actual release test command # Only needed for long running test time_key: last_update # Key in the results json indicating current time max_update_delay: 30 # If state hasn't been updated in 30s, terminate # This block is optional artifacts: # Artifact name: location on head node - detailed_output: detailed_output.csv # This block is optional. If present, the contents will be # deep updated for smoke testing smoke_test: cluster: compute_template: tpl_cpu_smoketest.yaml """ # noqa: E501 import argparse import boto3 import collections import copy import datetime import hashlib import jinja2 import json import logging import multiprocessing import os import requests import shutil import subprocess import sys import tempfile import time from queue import Empty from typing import Any, Dict, Optional, Tuple, List import yaml import anyscale import anyscale.conf from anyscale.api import instantiate_api_client from anyscale.controllers.session_controller import SessionController from anyscale.sdk.anyscale_client.sdk import AnyscaleSDK logger = logging.getLogger() logger.setLevel(logging.INFO) handler = logging.StreamHandler(stream=sys.stdout) formatter = logging.Formatter(fmt="[%(levelname)s %(asctime)s] " "%(filename)s: %(lineno)d " "%(message)s") handler.setFormatter(formatter) logger.addHandler(handler) def getenv_default(key: str, default: Optional[str] = None): """Return environment variable with default value""" # If the environment variable is set but "", still return default return os.environ.get(key, None) or default GLOBAL_CONFIG = { "ANYSCALE_USER": getenv_default("ANYSCALE_USER", "[email protected]"), "ANYSCALE_HOST": getenv_default("ANYSCALE_HOST", "https://beta.anyscale.com"), "ANYSCALE_CLI_TOKEN": getenv_default("ANYSCALE_CLI_TOKEN"), "ANYSCALE_CLOUD_ID": getenv_default( "ANYSCALE_CLOUD_ID", "cld_4F7k8814aZzGG8TNUGPKnc"), # cld_4F7k8814aZzGG8TNUGPKnc "ANYSCALE_PROJECT": getenv_default("ANYSCALE_PROJECT", ""), "RAY_VERSION": getenv_default("RAY_VERSION", "2.0.0.dev0"), "RAY_REPO": getenv_default("RAY_REPO", "https://github.com/ray-project/ray.git"), "RAY_BRANCH": getenv_default("RAY_BRANCH", "master"), "RELEASE_AWS_BUCKET": getenv_default("RELEASE_AWS_BUCKET", "ray-release-automation-results"), "RELEASE_AWS_LOCATION": getenv_default("RELEASE_AWS_LOCATION", "dev"), "RELEASE_AWS_DB_NAME": getenv_default("RELEASE_AWS_DB_NAME", "ray_ci"), "RELEASE_AWS_DB_TABLE": getenv_default("RELEASE_AWS_DB_TABLE", "release_test_result"), "RELEASE_AWS_DB_SECRET_ARN": getenv_default( "RELEASE_AWS_DB_SECRET_ARN", "arn:aws:secretsmanager:us-west-2:029272617770:secret:" "rds-db-credentials/cluster-7RB7EYTTBK2EUC3MMTONYRBJLE/ray_ci-MQN2hh", ), "RELEASE_AWS_DB_RESOURCE_ARN": getenv_default( "RELEASE_AWS_DB_RESOURCE_ARN", "arn:aws:rds:us-west-2:029272617770:cluster:ci-reporting", ), "RELEASE_RESULTS_DIR": getenv_default("RELEASE_RESULTS_DIR", "/tmp/ray_release_test_artifacts"), "DATESTAMP": str(datetime.datetime.now().strftime("%Y%m%d")), "TIMESTAMP": str(int(datetime.datetime.now().timestamp())), "EXPIRATION_1D": str((datetime.datetime.now() + datetime.timedelta(days=1)).strftime("%Y-%m-%d")), "EXPIRATION_2D": str((datetime.datetime.now() + datetime.timedelta(days=2)).strftime("%Y-%m-%d")), "EXPIRATION_3D": str((datetime.datetime.now() + datetime.timedelta(days=3)).strftime("%Y-%m-%d")), } REPORT_S = 30 RETRY_MULTIPLIER = 2 def exponential_backoff_retry(f, retry_exceptions, initial_retry_delay_s, max_retries): retry_cnt = 0 retry_delay_s = initial_retry_delay_s while True: try: return f() except retry_exceptions as e: retry_cnt += 1 if retry_cnt > max_retries: raise logger.info(f"Retry function call failed due to {e} " f"in {retry_delay_s} seconds...") time.sleep(retry_delay_s) retry_delay_s *= RETRY_MULTIPLIER def maybe_fetch_api_token(): if GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] is None: logger.info( "Missing ANYSCALE_CLI_TOKEN, retrieving from AWS secrets store") # NOTE(simon) This should automatically retrieve # [email protected]'s anyscale token GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] = boto3.client( "secretsmanager", region_name="us-west-2" ).get_secret_value( SecretId="arn:aws:secretsmanager:us-west-2:029272617770:secret:" "release-automation/" "anyscale-token20210505220406333800000001-BcUuKB")["SecretString"] class PrepareCommandRuntimeError(RuntimeError): pass class ReleaseTestTimeoutError(RuntimeError): pass class SessionTimeoutError(ReleaseTestTimeoutError): pass class FileSyncTimeoutError(ReleaseTestTimeoutError): pass class CommandTimeoutError(ReleaseTestTimeoutError): pass class PrepareCommandTimeoutError(ReleaseTestTimeoutError): pass # e.g., App config failure. class AppConfigBuildFailure(RuntimeError): pass class State: def __init__(self, state: str, timestamp: float, data: Any): self.state = state self.timestamp = timestamp self.data = data sys.path.insert(0, anyscale.ANYSCALE_RAY_DIR) def anyscale_project_url(project_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/projects/{project_id}" \ f"/?tab=session-list" def anyscale_session_url(project_id: str, session_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/projects/{project_id}" \ f"/clusters/{session_id}" def anyscale_compute_tpl_url(compute_tpl_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/configurations/cluster-computes" \ f"/{compute_tpl_id}" def anyscale_app_config_build_url(build_id: str): return f"{GLOBAL_CONFIG['ANYSCALE_HOST']}" \ f"/o/anyscale-internal/configurations/app-config-details" \ f"/{build_id}" def wheel_url(ray_version, git_branch, git_commit): return f"https://s3-us-west-2.amazonaws.com/ray-wheels/" \ f"{git_branch}/{git_commit}/" \ f"ray-{ray_version}-cp37-cp37m-manylinux2014_x86_64.whl" def wheel_exists(ray_version, git_branch, git_commit): url = wheel_url(ray_version, git_branch, git_commit) return requests.head(url).status_code == 200 def commit_or_url(commit_or_url: str) -> str: if commit_or_url.startswith("http"): # Assume URL return commit_or_url # Else, assume commit os.environ["RAY_COMMIT"] = commit_or_url return wheel_url(GLOBAL_CONFIG["RAY_VERSION"], GLOBAL_CONFIG["RAY_BRANCH"], commit_or_url) def get_latest_commits(repo: str, branch: str = "master") -> List[str]: cur = os.getcwd() with tempfile.TemporaryDirectory() as tmpdir: os.chdir(tmpdir) clone_cmd = [ "git", "clone", "--filter=tree:0", "--no-checkout", # "--single-branch", # "--depth=10", f"--branch={branch}", repo, tmpdir, ] log_cmd = [ "git", "log", "-n", "10", "--pretty=format:%H", ] subprocess.check_output(clone_cmd) commits = subprocess.check_output(log_cmd).decode( sys.stdout.encoding).split("\n") os.chdir(cur) return commits def find_ray_wheels(repo: str, branch: str, version: str): url = None commits = get_latest_commits(repo, branch) logger.info(f"Latest 10 commits for branch {branch}: {commits}") for commit in commits: if wheel_exists(version, branch, commit): url = wheel_url(version, branch, commit) os.environ["RAY_WHEELS"] = url os.environ["RAY_COMMIT"] = commit logger.info( f"Found wheels URL for Ray {version}, branch {branch}: " f"{url}") break return url def populate_wheels_sanity_check(commit: Optional[str] = None): if not commit: cmd = ("python -c 'import ray; print(" "\"No commit sanity check available, but this is the " "Ray wheel commit:\", ray.__commit__)'") else: cmd = (f"python -c 'import ray; " f"assert ray.__commit__ == \"{commit}\", ray.__commit__'") os.environ["RAY_WHEELS_SANITY_CHECK"] = cmd def _check_stop(stop_event: multiprocessing.Event, timeout_type: str): if stop_event.is_set(): if timeout_type == "prepare_command": raise PrepareCommandTimeoutError( "Process timed out in the prepare command stage.") if timeout_type == "command": raise CommandTimeoutError( "Process timed out while running a command.") elif timeout_type == "file_sync": raise FileSyncTimeoutError( "Process timed out while syncing files.") elif timeout_type == "session": raise SessionTimeoutError( "Process timed out while starting a session.") else: assert False, "Unexpected timeout type." def _deep_update(d, u): for k, v in u.items(): if isinstance(v, collections.abc.Mapping): d[k] = _deep_update(d.get(k, {}), v) else: d[k] = v return d def _dict_hash(dt: Dict[Any, Any]) -> str: json_str = json.dumps(dt, sort_keys=True, ensure_ascii=True) sha = hashlib.sha256() sha.update(json_str.encode()) return sha.hexdigest() def _load_config(local_dir: str, config_file: Optional[str]) -> Optional[Dict]: if not config_file: return None config_path = os.path.join(local_dir, config_file) with open(config_path, "rt") as f: # Todo: jinja2 render content = f.read() env = copy.deepcopy(os.environ) env.update(GLOBAL_CONFIG) content = jinja2.Template(content).render(env=env) return yaml.safe_load(content) def has_errored(result: Dict[Any, Any]) -> bool: return result.get("status", "invalid") != "finished" def report_result(test_suite: str, test_name: str, status: str, last_logs: str, results: Dict[Any, Any], artifacts: Dict[Any, Any], category: str): now = datetime.datetime.utcnow() rds_data_client = boto3.client("rds-data", region_name="us-west-2") schema = GLOBAL_CONFIG["RELEASE_AWS_DB_TABLE"] sql = ( f"INSERT INTO {schema} " f"(created_on, test_suite, test_name, status, last_logs, " f"results, artifacts, category) " f"VALUES (:created_on, :test_suite, :test_name, :status, :last_logs, " f":results, :artifacts, :category)") parameters = [{ "name": "created_on", "typeHint": "TIMESTAMP", "value": { "stringValue": now.strftime("%Y-%m-%d %H:%M:%S") }, }, { "name": "test_suite", "value": { "stringValue": test_suite } }, { "name": "test_name", "value": { "stringValue": test_name } }, { "name": "status", "value": { "stringValue": status } }, { "name": "last_logs", "value": { "stringValue": last_logs } }, { "name": "results", "typeHint": "JSON", "value": { "stringValue": json.dumps(results) }, }, { "name": "artifacts", "typeHint": "JSON", "value": { "stringValue": json.dumps(artifacts) }, }, { "name": "category", "value": { "stringValue": category } }] # Default boto3 call timeout is 45 seconds. retry_delay_s = 64 MAX_RDS_RETRY = 3 exponential_backoff_retry( lambda: rds_data_client.execute_statement( database=GLOBAL_CONFIG["RELEASE_AWS_DB_NAME"], parameters=parameters, secretArn=GLOBAL_CONFIG["RELEASE_AWS_DB_SECRET_ARN"], resourceArn=GLOBAL_CONFIG["RELEASE_AWS_DB_RESOURCE_ARN"], schema=schema, sql=sql), retry_exceptions=rds_data_client.exceptions.StatementTimeoutException, initial_retry_delay_s=retry_delay_s, max_retries=MAX_RDS_RETRY) logger.info("Result has been persisted to the databse") def log_results_and_artifacts(result: Dict): results = result.get("results", {}) if results: msg = "Observed the following results:\n\n" for key, val in results.items(): msg += f" {key} = {val}\n" else: msg = "Did not find any results." logger.info(msg) artifacts = result.get("artifacts", {}) if artifacts: msg = "Saved the following artifacts:\n\n" for key, val in artifacts.items(): msg += f" {key} = {val}\n" else: msg = "Did not find any artifacts." logger.info(msg) def _cleanup_session(sdk: AnyscaleSDK, session_id: str): if session_id: # Just trigger a request. No need to wait until session shutdown. sdk.terminate_session( session_id=session_id, terminate_session_options={}) def search_running_session(sdk: AnyscaleSDK, project_id: str, session_name: str) -> Optional[str]: session_id = None logger.info(f"Looking for existing session with name {session_name}") result = sdk.search_sessions( project_id=project_id, sessions_query=dict(name=dict(equals=session_name))) if len(result.results) > 0 and result.results[0].state == "Running": logger.info("Found existing session.") session_id = result.results[0].id return session_id def create_or_find_compute_template( sdk: AnyscaleSDK, project_id: str, compute_tpl: Dict[Any, Any], _repeat: bool = True) -> Tuple[Optional[str], Optional[str]]: compute_tpl_id = None compute_tpl_name = None if compute_tpl: # As of Anyscale 0.4.1, it is an error to use the same compute template # name within the same organization, between different projects. compute_tpl_name = f"{project_id}/compute/{_dict_hash(compute_tpl)}" logger.info(f"Tests uses compute template " f"with name {compute_tpl_name}. Looking up existing " f"templates.") paging_token = None while not compute_tpl_id: result = sdk.search_compute_templates( dict( project_id=project_id, name=dict(equals=compute_tpl_name), include_anonymous=True), paging_token=paging_token) paging_token = result.metadata.next_paging_token for res in result.results: if res.name == compute_tpl_name: compute_tpl_id = res.id logger.info( f"Template already exists with ID {compute_tpl_id}") break if not paging_token: break if not compute_tpl_id: logger.info(f"Compute template not found. " f"Creating with name {compute_tpl_name}.") try: result = sdk.create_compute_template( dict( name=compute_tpl_name, project_id=project_id, config=compute_tpl)) compute_tpl_id = result.result.id except Exception as e: if _repeat: logger.warning( f"Got exception when trying to create compute " f"template: {e}. Sleeping for 10 seconds and then " f"try again once...") time.sleep(10) return create_or_find_compute_template( sdk=sdk, project_id=project_id, compute_tpl=compute_tpl, _repeat=False) raise e logger.info(f"Compute template created with ID {compute_tpl_id}") return compute_tpl_id, compute_tpl_name def create_or_find_app_config( sdk: AnyscaleSDK, project_id: str, app_config: Dict[Any, Any], _repeat: bool = True) -> Tuple[Optional[str], Optional[str]]: app_config_id = None app_config_name = None if app_config: app_config_name = f"{project_id}-{_dict_hash(app_config)}" logger.info(f"Test uses an app config with hash {app_config_name}. " f"Looking up existing app configs with this name.") paging_token = None while not app_config_id: result = sdk.list_app_configs( project_id=project_id, count=50, paging_token=paging_token) paging_token = result.metadata.next_paging_token for res in result.results: if res.name == app_config_name: app_config_id = res.id logger.info( f"App config already exists with ID {app_config_id}") break if not paging_token or app_config_id: break if not app_config_id: logger.info("App config not found. Creating new one.") try: result = sdk.create_app_config( dict( name=app_config_name, project_id=project_id, config_json=app_config)) app_config_id = result.result.id except Exception as e: if _repeat: logger.warning( f"Got exception when trying to create app " f"config: {e}. Sleeping for 10 seconds and then " f"try again once...") time.sleep(10) return create_or_find_app_config( sdk=sdk, project_id=project_id, app_config=app_config, _repeat=False) raise e logger.info(f"App config created with ID {app_config_id}") return app_config_id, app_config_name def install_app_config_packages(app_config: Dict[Any, Any]): os.environ.update(app_config.get("env_vars", {})) packages = app_config["python"]["pip_packages"] for package in packages: subprocess.check_output(["pip", "install", "-U", package], text=True) def install_matching_ray(): wheel = os.environ.get("RAY_WHEELS", None) if not wheel: return assert "manylinux2014_x86_64" in wheel, wheel if sys.platform == "darwin": platform = "macosx_10_15_intel" elif sys.platform == "win32": platform = "win_amd64" else: platform = "manylinux2014_x86_64" wheel = wheel.replace("manylinux2014_x86_64", platform) subprocess.check_output(["pip", "uninstall", "-y", "ray"], text=True) subprocess.check_output(["pip", "install", "-U", wheel], text=True) def wait_for_build_or_raise(sdk: AnyscaleSDK, app_config_id: Optional[str]) -> Optional[str]: if not app_config_id: return None # Fetch build build_id = None last_status = None result = sdk.list_builds(app_config_id) for build in sorted(result.results, key=lambda b: b.created_at): build_id = build.id last_status = build.status if build.status == "failed": continue if build.status == "succeeded": logger.info(f"Link to app config build: " f"{anyscale_app_config_build_url(build_id)}") return build_id if last_status == "failed": raise AppConfigBuildFailure("App config build failed.") if not build_id: raise AppConfigBuildFailure("No build found for app config.") # Build found but not failed/finished yet completed = False start_wait = time.time() next_report = start_wait + REPORT_S logger.info(f"Waiting for build {build_id} to finish...") logger.info(f"Track progress here: " f"{anyscale_app_config_build_url(build_id)}") while not completed: now = time.time() if now > next_report: logger.info(f"... still waiting for build {build_id} to finish " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S result = sdk.get_build(build_id) build = result.result if build.status == "failed": raise AppConfigBuildFailure( f"App config build failed. Please see " f"{anyscale_app_config_build_url(build_id)} for details") if build.status == "succeeded": logger.info("Build succeeded.") return build_id completed = build.status not in ["in_progress", "pending"] if completed: raise AppConfigBuildFailure( f"Unknown build status: {build.status}. Please see " f"{anyscale_app_config_build_url(build_id)} for details") time.sleep(1) return build_id def run_job(cluster_name: str, compute_tpl_name: str, cluster_env_name: str, job_name: str, min_workers: str, script: str, script_args: List[str], env_vars: Dict[str, str], autosuspend: int) -> Tuple[int, str]: # Start cluster and job address = f"anyscale://{cluster_name}?autosuspend={autosuspend}" logger.info(f"Starting job {job_name} with Ray address: {address}") env = copy.deepcopy(os.environ) env.update(GLOBAL_CONFIG) env.update(env_vars) env["RAY_ADDRESS"] = address env["RAY_JOB_NAME"] = job_name env["RAY_RELEASE_MIN_WORKERS"] = str(min_workers) proc = subprocess.Popen( script.split(" ") + script_args, env=env, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True) proc.stdout.reconfigure(line_buffering=True) logs = "" for line in proc.stdout: logs += line sys.stdout.write(line) proc.wait() return proc.returncode, logs def create_and_wait_for_session( sdk: AnyscaleSDK, stop_event: multiprocessing.Event, session_name: str, session_options: Dict[Any, Any], ) -> str: # Create session logger.info(f"Creating session {session_name}") result = sdk.create_session(session_options) session_id = result.result.id # Trigger session start logger.info(f"Starting session {session_name} ({session_id})") session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) logger.info(f"Link to session: {session_url}") result = sdk.start_session(session_id, start_session_options={}) sop_id = result.result.id completed = result.result.completed # Wait for session logger.info(f"Waiting for session {session_name}...") start_wait = time.time() next_report = start_wait + REPORT_S while not completed: # Sleep 1 sec before next check. time.sleep(1) session_operation_response = sdk.get_session_operation( sop_id, _request_timeout=30) session_operation = session_operation_response.result completed = session_operation.completed _check_stop(stop_event, "session") now = time.time() if now > next_report: logger.info(f"... still waiting for session {session_name} " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S return session_id def run_session_command(sdk: AnyscaleSDK, session_id: str, cmd_to_run: str, result_queue: multiprocessing.Queue, env_vars: Dict[str, str], state_str: str = "CMD_RUN") -> Tuple[str, int]: full_cmd = " ".join(f"{k}={v}" for k, v in env_vars.items()) + " " + cmd_to_run logger.info(f"Running command in session {session_id}: \n" f"{full_cmd}") session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) logger.info(f"Link to session: {session_url}") result_queue.put(State(state_str, time.time(), None)) result = sdk.create_session_command( dict(session_id=session_id, shell_command=full_cmd)) scd_id = result.result.id return scd_id, result def wait_for_session_command_to_complete(create_session_command_result, sdk: AnyscaleSDK, scd_id: str, stop_event: multiprocessing.Event, state_str: str = "CMD_RUN"): result = create_session_command_result completed = result.result.finished_at is not None start_wait = time.time() next_report = start_wait + REPORT_S while not completed: # Sleep 1 sec before next check. time.sleep(1) result = exponential_backoff_retry( lambda: sdk.get_session_command(session_command_id=scd_id), retry_exceptions=Exception, initial_retry_delay_s=10, max_retries=3) completed = result.result.finished_at if state_str == "CMD_RUN": _check_stop(stop_event, "command") elif state_str == "CMD_PREPARE": _check_stop(stop_event, "prepare_command") now = time.time() if now > next_report: logger.info(f"... still waiting for command to finish " f"({int(now - start_wait)} seconds) ...") next_report = next_report + REPORT_S status_code = result.result.status_code runtime = time.time() - start_wait if status_code != 0: if state_str == "CMD_RUN": raise RuntimeError( f"Command returned non-success status: {status_code}") elif state_str == "CMD_PREPARE": raise PrepareCommandRuntimeError( f"Prepare command returned non-success status: {status_code}") return status_code, runtime def get_command_logs(session_controller: SessionController, scd_id: str, lines: int = 50): result = exponential_backoff_retry( lambda: session_controller.api_client.get_execution_logs_api_v2_session_commands_session_command_id_execution_logs_get( # noqa: E501 session_command_id=scd_id, start_line=-1 * lines, end_line=0), retry_exceptions=Exception, initial_retry_delay_s=10, max_retries=3) return result.result.lines def get_remote_json_content( temp_dir: str, session_name: str, remote_file: Optional[str], session_controller: SessionController, ): if not remote_file: logger.warning("No remote file specified, returning empty dict") return {} local_target_file = os.path.join(temp_dir, ".tmp.json") session_controller.pull( session_name=session_name, source=remote_file, target=local_target_file) with open(local_target_file, "rt") as f: return json.load(f) def get_local_json_content(local_file: Optional[str], ): if not local_file: logger.warning("No local file specified, returning empty dict") return {} with open(local_file, "rt") as f: return json.load(f) def pull_artifacts_and_store_in_cloud( temp_dir: str, logs: str, session_name: str, test_name: str, artifacts: Optional[Dict[Any, Any]], session_controller: SessionController, ): output_log_file = os.path.join(temp_dir, "output.log") with open(output_log_file, "wt") as f: f.write(logs) bucket = GLOBAL_CONFIG["RELEASE_AWS_BUCKET"] location = f"{GLOBAL_CONFIG['RELEASE_AWS_LOCATION']}" \ f"/{session_name}/{test_name}" saved_artifacts = {} s3_client = boto3.client("s3") s3_client.upload_file(output_log_file, bucket, f"{location}/output.log") saved_artifacts["output.log"] = f"s3://{bucket}/{location}/output.log" # Download artifacts if artifacts: for name, remote_file in artifacts.items(): logger.info(f"Downloading artifact `{name}` from " f"{remote_file}") local_target_file = os.path.join(temp_dir, name) session_controller.pull( session_name=session_name, source=remote_file, target=local_target_file) # Upload artifacts to s3 s3_client.upload_file(local_target_file, bucket, f"{location}/{name}") saved_artifacts[name] = f"s3://{bucket}/{location}/{name}" return saved_artifacts def find_session_by_test_name( sdk: AnyscaleSDK, session_controller: SessionController, temp_dir: str, state_json: str, project_id: str, test_name: str, ) -> Optional[Tuple[str, str, Dict[Any, Any]]]: paging_token = None while True: # Will break if paging_token is None after first search result = sdk.search_sessions( project_id=project_id, sessions_query=dict( name=dict(contains=test_name), state_filter=["Running"], paging=dict(count=20, paging_token=paging_token))) for session in result.results: logger.info(f"Found sessions {session.name}") if not session.name.startswith(test_name): continue try: session_state = get_remote_json_content( temp_dir=temp_dir, session_name=session.name, remote_file=state_json, session_controller=session_controller) except Exception as exc: raise RuntimeError(f"Could not get remote json content " f"for session {session.name}") from exc if session_state.get("test_name") == test_name: return session.id, session.name, session_state session_token = result.metadata.next_paging_token if not session_token: return None def get_latest_running_command_id(sdk: AnyscaleSDK, session_id: str ) -> Tuple[Optional[str], Optional[bool]]: scd_id = None paging_token = None success = None while not scd_id: result = sdk.list_session_commands( session_id=session_id, paging_token=paging_token) paging_token = result.metadata.next_paging_token for cmd in result.results: if not scd_id: scd_id = cmd.id completed = cmd.finished_at is not None if completed: if success is None: success = True success = success and cmd.status_code == 0 if not completed: return cmd.id, None return scd_id, success or False def run_test_config( local_dir: str, project_id: str, test_name: str, test_config: Dict[Any, Any], commit_url: str, session_name: str = None, smoke_test: bool = False, no_terminate: bool = False, kick_off_only: bool = False, check_progress: bool = False, upload_artifacts: bool = True, keep_results_dir: bool = False, app_config_id_override: Optional[str] = None, ) -> Dict[Any, Any]: """ Returns: Dict with the following entries: status (str): One of [finished, error, timeout] command_link (str): Link to command (Anyscale web UI) last_logs (str): Last logs (excerpt) to send to owner artifacts (dict): Dict of artifacts Key: Name Value: S3 URL """ # Todo (mid-term): Support other cluster definitions # (not only cluster configs) cluster_config_rel_path = test_config["cluster"].get( "cluster_config", None) cluster_config = _load_config(local_dir, cluster_config_rel_path) app_config_rel_path = test_config["cluster"].get("app_config", None) app_config = _load_config(local_dir, app_config_rel_path) compute_tpl_rel_path = test_config["cluster"].get("compute_template", None) compute_tpl = _load_config(local_dir, compute_tpl_rel_path) stop_event = multiprocessing.Event() result_queue = multiprocessing.Queue() if not session_name: session_name = f"{test_name}_{int(time.time())}" temp_dir = tempfile.mkdtemp() # Result and state files results_json = test_config["run"].get("results", None) if results_json is None: results_json = "/tmp/release_test_out.json" state_json = test_config["run"].get("state", None) if state_json is None: state_json = "/tmp/release_test_state.json" env_vars = { "RAY_ADDRESS": os.environ.get("RAY_ADDRESS", "auto"), "TEST_OUTPUT_JSON": results_json, "TEST_STATE_JSON": state_json, "IS_SMOKE_TEST": "1" if smoke_test else "0", } with open(os.path.join(local_dir, ".anyscale.yaml"), "wt") as f: f.write(f"project_id: {project_id}") os.chdir(local_dir) # Setup interface # Unfortunately, there currently seems to be no great way to # transfer files with the Anyscale SDK. # So we use the session controller instead. sdk = AnyscaleSDK(auth_token=GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"]) session_controller = SessionController( api_client=instantiate_api_client( cli_token=GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"], host=GLOBAL_CONFIG["ANYSCALE_HOST"], ), anyscale_api_client=sdk.api_client, ) timeout = test_config["run"].get("timeout", 1800) if "RELEASE_OVERRIDE_TIMEOUT" in os.environ: previous_timeout = timeout timeout = int(os.environ.get("RELEASE_OVERRIDE_TIMEOUT", str(timeout))) logger.warning(f"Release test timeout override: {timeout} " f"(would have been {previous_timeout})") # If a test is long running, timeout does not mean it failed is_long_running = test_config["run"].get("long_running", False) build_id_override = None if test_config["run"].get("use_connect"): autosuspend_mins = test_config["run"].get("autosuspend_mins", 5) assert not kick_off_only, \ "Unsupported for running with Anyscale connect." if app_config_id_override is not None: logger.info( "Using connect and an app config override, waiting until " "build finishes so we can fetch the app config in order to " "install its pip packages locally.") build_id_override = wait_for_build_or_raise( sdk, app_config_id_override) response = sdk.get_cluster_environment_build(build_id_override) app_config = response.result.config_json install_app_config_packages(app_config) install_matching_ray() elif "autosuspend_mins" in test_config["run"]: raise ValueError( "'autosuspend_mins' is only supported if 'use_connect' is True.") # Add information to results dict def _update_results(results: Dict): if "last_update" in results: results["last_update_diff"] = time.time() - results["last_update"] if smoke_test: results["smoke_test"] = True def _process_finished_command(session_controller: SessionController, scd_id: str, results: Optional[Dict] = None, runtime: int = None, commit_url: str = None, session_url: str = None): logger.info("Command finished successfully.") if results_json: results = results or get_remote_json_content( temp_dir=temp_dir, session_name=session_name, remote_file=results_json, session_controller=session_controller, ) else: results = {"passed": 1} _update_results(results) if scd_id: logs = get_command_logs(session_controller, scd_id, test_config.get("log_lines", 50)) else: logs = "No command found to fetch logs for" if upload_artifacts: saved_artifacts = pull_artifacts_and_store_in_cloud( temp_dir=temp_dir, logs=logs, # Also save logs in cloud session_name=session_name, test_name=test_name, artifacts=test_config.get("artifacts", {}), session_controller=session_controller, ) logger.info("Fetched results and stored on the cloud. Returning.") else: saved_artifacts = {} logger.info("Usually I would have fetched the results and " "artifacts and stored them on S3.") # Add these metadata here to avoid changing SQL schema. results["_runtime"] = runtime results["_session_url"] = session_url results["_commit_url"] = commit_url results["_stable"] = test_config.get("stable", True) result_queue.put( State( "END", time.time(), { "status": "finished", "last_logs": logs, "results": results, "artifacts": saved_artifacts, }, )) # When running the test script in client mode, the finish command is a # completed local process. def _process_finished_client_command(returncode: int, logs: str): if upload_artifacts: saved_artifacts = pull_artifacts_and_store_in_cloud( temp_dir=temp_dir, logs=logs, # Also save logs in cloud session_name=session_name, test_name=test_name, artifacts=None, session_controller=None, ) logger.info("Stored results on the cloud. Returning.") else: saved_artifacts = {} logger.info("Usually I would have fetched the results and " "artifacts and stored them on S3.") if results_json: results = get_local_json_content(local_file=results_json, ) else: results = { "passed": int(returncode == 0), } results["returncode"] = returncode _update_results(results) result_queue.put( State( "END", time.time(), { "status": "finished", "last_logs": logs, "results": results, "artifacts": saved_artifacts, }, )) def _run(logger): # These values will be set as the test runs. session_url = None runtime = None anyscale.conf.CLI_TOKEN = GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] test_uses_ray_connect = test_config["run"].get("use_connect") session_id = None scd_id = None try: # First, look for running sessions session_id = search_running_session(sdk, project_id, session_name) compute_tpl_name = None app_config_id = app_config_id_override app_config_name = None build_id = build_id_override if not session_id: logger.info("No session found.") # Start session session_options = dict( name=session_name, project_id=project_id) if cluster_config is not None: logging.info("Starting session with cluster config") cluster_config_str = json.dumps(cluster_config) session_options["cluster_config"] = cluster_config_str session_options["cloud_id"] = ( GLOBAL_CONFIG["ANYSCALE_CLOUD_ID"], ) session_options["uses_app_config"] = False else: logging.info("Starting session with app/compute config") # Find/create compute template compute_tpl_id, compute_tpl_name = \ create_or_find_compute_template( sdk, project_id, compute_tpl) logger.info(f"Link to compute template: " f"{anyscale_compute_tpl_url(compute_tpl_id)}") # Find/create app config if app_config_id is None: ( app_config_id, app_config_name, ) = create_or_find_app_config(sdk, project_id, app_config) else: logger.info( f"Using override app config {app_config_id}") app_config_name = sdk.get_app_config( app_config_id).result.name if build_id is None: # We might have already retrieved the build ID when # installing app config packages locally if using # connect, so only get the build ID if it's not set. build_id = wait_for_build_or_raise(sdk, app_config_id) session_options["compute_template_id"] = compute_tpl_id session_options["build_id"] = build_id session_options["uses_app_config"] = True # Start session session_id = create_and_wait_for_session( sdk=sdk, stop_event=stop_event, session_name=session_name, session_options=session_options, ) prepare_command = test_config["run"].get("prepare") # Write test state json test_state_file = os.path.join(local_dir, "test_state.json") with open(test_state_file, "wt") as f: json.dump({ "start_time": time.time(), "test_name": test_name }, f) if prepare_command or not test_uses_ray_connect: if test_uses_ray_connect: logger.info("Found a prepare command, so pushing it " "to the session.") # Rsync up logger.info("Syncing files to session...") session_controller.push( session_name=session_name, source=None, target=None, config=None, all_nodes=False, ) logger.info("Syncing test state to session...") session_controller.push( session_name=session_name, source=test_state_file, target=state_json, config=None, all_nodes=False, ) session_url = anyscale_session_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], session_id=session_id) _check_stop(stop_event, "file_sync") # Optionally run preparation command if prepare_command: logger.info( f"Running preparation command: {prepare_command}") scd_id, result = run_session_command( sdk=sdk, session_id=session_id, cmd_to_run=prepare_command, result_queue=result_queue, env_vars=env_vars, state_str="CMD_PREPARE") _, _ = wait_for_session_command_to_complete( result, sdk=sdk, scd_id=scd_id, stop_event=stop_event, state_str="CMD_PREPARE") if test_uses_ray_connect: script_args = test_config["run"].get("args", []) if smoke_test: script_args += ["--smoke-test"] min_workers = 0 for node_type in compute_tpl["worker_node_types"]: min_workers += node_type["min_workers"] # Build completed, use job timeout result_queue.put(State("CMD_RUN", time.time(), None)) returncode, logs = run_job( cluster_name=session_name, compute_tpl_name=compute_tpl_name, cluster_env_name=app_config_name, job_name=session_name, min_workers=min_workers, script=test_config["run"]["script"], script_args=script_args, env_vars=env_vars, autosuspend=autosuspend_mins) _process_finished_client_command(returncode, logs) return # Run release test command cmd_to_run = test_config["run"]["script"] + " " args = test_config["run"].get("args", []) if args: cmd_to_run += " ".join(args) + " " if smoke_test: cmd_to_run += " --smoke-test" scd_id, result = run_session_command( sdk=sdk, session_id=session_id, cmd_to_run=cmd_to_run, result_queue=result_queue, env_vars=env_vars, state_str="CMD_RUN") if not kick_off_only: _, runtime = wait_for_session_command_to_complete( result, sdk=sdk, scd_id=scd_id, stop_event=stop_event, state_str="CMD_RUN") _process_finished_command( session_controller=session_controller, scd_id=scd_id, runtime=runtime, session_url=session_url, commit_url=commit_url) else: result_queue.put( State("END", time.time(), { "status": "kickoff", "last_logs": "" })) except (ReleaseTestTimeoutError, Exception) as e: logger.error(e, exc_info=True) logs = str(e) if scd_id is not None: try: logs = logs + "; Command logs:" + get_command_logs( session_controller, scd_id, test_config.get("log_lines", 50)) except Exception as e2: logger.error(e2, exc_info=True) # Long running tests are "finished" successfully when # timed out if isinstance(e, ReleaseTestTimeoutError) and is_long_running: _process_finished_command( session_controller=session_controller, scd_id=scd_id) else: timeout_type = "" runtime = None if isinstance(e, CommandTimeoutError): timeout_type = "timeout" runtime = 0 elif (isinstance(e, PrepareCommandTimeoutError) or isinstance(e, FileSyncTimeoutError) or isinstance(e, SessionTimeoutError) or isinstance(e, PrepareCommandRuntimeError) or isinstance(e, AppConfigBuildFailure)): timeout_type = "infra_timeout" runtime = None elif isinstance(e, RuntimeError): timeout_type = "runtime_error" runtime = 0 else: timeout_type = "unknown timeout" runtime = None # Add these metadata here to avoid changing SQL schema. results = {} results["_runtime"] = runtime results["_session_url"] = session_url results["_commit_url"] = commit_url results["_stable"] = test_config.get("stable", True) result_queue.put( State( "END", time.time(), { "status": timeout_type, "last_logs": logs, "results": results })) finally: if no_terminate: logger.warning( "`no_terminate` is set to True, so the session will " "*not* be terminated!") else: _cleanup_session(sdk, session_id) def _check_progress(logger): anyscale.conf.CLI_TOKEN = GLOBAL_CONFIG["ANYSCALE_CLI_TOKEN"] should_terminate = False session_id = None scd_id = None try: existing_session = find_session_by_test_name( sdk=sdk, session_controller=session_controller, temp_dir=temp_dir, state_json=state_json, project_id=project_id, test_name=test_name) if existing_session is None: logger.info(f"Found no existing session for {test_name}") result_queue.put( State("END", time.time(), { "status": "nosession", "last_logs": "" })) return session_id, session_name, session_state = existing_session logger.info(f"Found existing session for {test_name}: " f"{session_name}") scd_id, success = get_latest_running_command_id( sdk=sdk, session_id=session_id) latest_result = get_remote_json_content( temp_dir=temp_dir, session_name=session_name, remote_file=results_json, session_controller=session_controller, ) # Fetch result json and check if it has been updated recently result_time_key = test_config["run"].get("time_key", None) maximum_update_delay = test_config["run"].get( "max_update_delay", None) if result_time_key and maximum_update_delay: last_update = latest_result.get(result_time_key, None) if not last_update: result_queue.put( State( "END", time.time(), { "status": "error", "last_logs": f"Test did not store " f"{result_time_key} in the " f"results json." })) return delay = time.time() - last_update logger.info(f"Last update was at {last_update:.2f}. " f"This was {delay:.2f} seconds ago " f"(maximum allowed: {maximum_update_delay})") if delay > maximum_update_delay: raise RuntimeError( f"Test did not update the results json within " f"the last {maximum_update_delay} seconds.") if time.time() - session_state["start_time"] > timeout: # Long running test reached timeout logger.info( f"Test command reached timeout after {timeout} seconds") _process_finished_command( session_controller=session_controller, scd_id=scd_id, results=latest_result) should_terminate = True elif success: logger.info("All commands finished.") _process_finished_command( session_controller=session_controller, scd_id=scd_id, results=latest_result) should_terminate = True else: rest_time = timeout - time.time() + session_state["start_time"] logger.info(f"Test command should continue running " f"for {rest_time} seconds") result_queue.put( State("END", time.time(), { "status": "kickoff", "last_logs": "Test is still running" })) except Exception as e: logger.error(e, exc_info=True) logs = str(e) if scd_id is not None: try: logs = get_command_logs(session_controller, scd_id, test_config.get("log_lines", 50)) logs += f"\n{str(e)}" except Exception as e2: logger.error(e2, exc_info=True) result_queue.put( State("END", time.time(), { "status": "error", "last_logs": logs })) should_terminate = True finally: if should_terminate: logger.warning("Terminating session") _cleanup_session(sdk, session_id) if not check_progress: process = multiprocessing.Process(target=_run, args=(logger, )) else: process = multiprocessing.Process( target=_check_progress, args=(logger, )) build_timeout = test_config["run"].get("build_timeout", 1800) prepare_timeout = test_config["run"].get("prepare_timeout", timeout) project_url = anyscale_project_url( project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"]) logger.info(f"Link to project: {project_url}") msg = f"This will now run test {test_name}." if smoke_test: msg += " This is a smoke test." if is_long_running: msg += " This is a long running test." logger.info(msg) logger.info(f"Starting process with timeout {timeout} " f"(prepare timeout {prepare_timeout}, " f"build timeout {build_timeout})") process.start() # The timeout time will be updated after the build finished # Build = App config + compute template build and session start timeout_time = time.time() + build_timeout result = {} while process.is_alive(): try: state: State = result_queue.get(timeout=1) except (Empty, TimeoutError): if time.time() > timeout_time: stop_event.set() logger.warning("Process timed out.") if not is_long_running: logger.warning("Terminating process in 10 seconds.") time.sleep(10) logger.warning("Terminating process now.") process.terminate() else: logger.info("Process is long running. Give 2 minutes to " "fetch result and terminate.") start_terminate = time.time() while time.time( ) < start_terminate + 120 and process.is_alive(): time.sleep(1) if process.is_alive(): logger.warning("Terminating forcefully now.") process.terminate() else: logger.info("Long running results collected.") break continue if not isinstance(state, State): raise RuntimeError(f"Expected `State` object, got {result}") if state.state == "CMD_PREPARE": # Reset timeout after build finished timeout_time = state.timestamp + prepare_timeout if state.state == "CMD_RUN": # Reset timeout after prepare command or build finished timeout_time = state.timestamp + timeout elif state.state == "END": result = state.data break while not result_queue.empty(): state = result_queue.get_nowait() result = state.data logger.info("Final check if everything worked.") try: result.setdefault("status", "error (status not found)") except (TimeoutError, Empty): result = {"status": "timeout", "last_logs": "Test timed out."} logger.info(f"Final results: {result}") log_results_and_artifacts(result) if not keep_results_dir: logger.info(f"Removing results dir {temp_dir}") shutil.rmtree(temp_dir) else: # Write results.json with open(os.path.join(temp_dir, "results.json"), "wt") as fp: json.dump(result, fp) out_dir = os.path.expanduser(GLOBAL_CONFIG["RELEASE_RESULTS_DIR"]) logger.info(f"Moving results dir {temp_dir} to persistent location " f"{out_dir}") shutil.rmtree(out_dir, ignore_errors=True) shutil.copytree(temp_dir, out_dir) logger.info(f"Dir contents: {os.listdir(out_dir)}") return result def run_test(test_config_file: str, test_name: str, project_id: str, commit_url: str, category: str = "unspecified", smoke_test: bool = False, no_terminate: bool = False, kick_off_only: bool = False, check_progress: bool = False, report: bool = True, keep_results_dir: bool = False, session_name: Optional[str] = None, app_config_id_override=None) -> Dict[str, Any]: with open(test_config_file, "rt") as f: test_configs = yaml.safe_load(f) test_config_dict = {} for test_config in test_configs: name = test_config.pop("name") test_config_dict[name] = test_config if test_name not in test_config_dict: raise ValueError( f"Test with name `{test_name}` not found in test config file " f"at `{test_config_file}`.") test_config = test_config_dict[test_name] if smoke_test and "smoke_test" in test_config: smoke_test_config = test_config.pop("smoke_test") test_config = _deep_update(test_config, smoke_test_config) local_dir = os.path.dirname(test_config_file) if "local_dir" in test_config: # local_dir is relative to test_config_file local_dir = os.path.join(local_dir, test_config["local_dir"]) if test_config["run"].get("use_connect"): assert not kick_off_only, \ "--kick-off-only is unsupported when running with " \ "Anyscale connect." assert not check_progress, \ "--check is unsupported when running with Anyscale connect." if test_config.get("artifacts", {}): logger.error( "Saving artifacts are not yet supported when running with " "Anyscale connect.") result = run_test_config( local_dir, project_id, test_name, test_config, commit_url, session_name=session_name, smoke_test=smoke_test, no_terminate=no_terminate, kick_off_only=kick_off_only, check_progress=check_progress, upload_artifacts=report, keep_results_dir=keep_results_dir, app_config_id_override=app_config_id_override) status = result.get("status", "invalid") if kick_off_only: if status != "kickoff": raise RuntimeError("Error kicking off test.") logger.info("Kicked off test. It's now up to the `--check` " "part of the script to track its process.") return {} else: # `--check` or no kick off only if status == "nosession": logger.info(f"No running session found for test {test_name}, so " f"assuming everything is fine.") return {} if status == "kickoff": logger.info(f"Test {test_name} is still running.") return {} last_logs = result.get("last_logs", "No logs.") test_suite = os.path.basename(test_config_file).replace(".yaml", "") report_kwargs = dict( test_suite=test_suite, test_name=test_name, status=status, last_logs=last_logs, results=result.get("results", {}), artifacts=result.get("artifacts", {}), category=category, ) if report: report_result(**report_kwargs) else: logger.info(f"Usually I would now report the following results:\n" f"{report_kwargs}") if has_errored(result): raise RuntimeError(last_logs) return report_kwargs if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( "--test-config", type=str, required=True, help="Test config file") parser.add_argument("--test-name", type=str, help="Test name in config") parser.add_argument( "--ray-wheels", required=False, type=str, help="URL to ray wheels") parser.add_argument( "--no-terminate", action="store_true", default=False, help="Don't terminate session after failure") parser.add_argument( "--no-report", action="store_true", default=False, help="Do not report any results or upload to S3") parser.add_argument( "--kick-off-only", action="store_true", default=False, help="Kick off only (don't wait for command to finish)") parser.add_argument( "--check", action="store_true", default=False, help="Check (long running) status") parser.add_argument( "--keep-results-dir", action="store_true", default=False, help="Keep results in directory (named RELEASE_RESULTS_DIR), e.g. " "for Buildkite artifact upload.") parser.add_argument( "--category", type=str, default="unspecified", help="Category name, e.g. `release-1.3.0` (will be saved in database)") parser.add_argument( "--smoke-test", action="store_true", help="Finish quickly for testing") parser.add_argument( "--session-name", required=False, type=str, help="Name of the session to run this test.") parser.add_argument( "--app-config-id-override", required=False, type=str, help=("An app config ID, which will override the test config app " "config.")) args, _ = parser.parse_known_args() if not GLOBAL_CONFIG["ANYSCALE_PROJECT"]: raise RuntimeError( "You have to set the ANYSCALE_PROJECT environment variable!") ray_wheels = args.ray_wheels or os.environ.get("RAY_WHEELS", "") maybe_fetch_api_token() if ray_wheels: logger.info(f"Using Ray wheels provided from URL/commit: " f"{ray_wheels}") url = commit_or_url(str(ray_wheels)) # Overwrite with actual URL os.environ["RAY_WHEELS"] = url elif not args.check: url = find_ray_wheels( GLOBAL_CONFIG["RAY_REPO"], GLOBAL_CONFIG["RAY_BRANCH"], GLOBAL_CONFIG["RAY_VERSION"], ) if not url: raise RuntimeError(f"Could not find wheels for " f"Ray {GLOBAL_CONFIG['RAY_VERSION']}, " f"branch {GLOBAL_CONFIG['RAY_BRANCH']}") # RAY_COMMIT is set by commit_or_url and find_ray_wheels populate_wheels_sanity_check(os.environ.get("RAY_COMMIT", "")) test_config_file = os.path.abspath(os.path.expanduser(args.test_config)) result_dict = run_test( test_config_file=test_config_file, test_name=args.test_name, project_id=GLOBAL_CONFIG["ANYSCALE_PROJECT"], commit_url=url, category=args.category, smoke_test=args.smoke_test, no_terminate=args.no_terminate or args.kick_off_only, kick_off_only=args.kick_off_only, check_progress=args.check, report=not args.no_report, session_name=args.session_name, keep_results_dir=args.keep_results_dir, app_config_id_override=args.app_config_id_override, ) if result_dict: # If we get a result dict, check if any alerts should be raised from alert import SUITE_TO_FN, default_handle_result logger.info("Checking if results are valid...") handle_result_kwargs = result_dict.copy() handle_result_kwargs["created_on"] = None test_suite = handle_result_kwargs.get("test_suite", None) test_name = handle_result_kwargs.get("test_name", None) category = handle_result_kwargs.get("category", None) handle_fn = SUITE_TO_FN.get(test_suite, None) if not handle_fn: logger.warning(f"No handle for suite {test_suite}") alert = default_handle_result(**handle_result_kwargs) else: alert = handle_fn(**handle_result_kwargs) if alert: # If we get an alert, the test failed. raise RuntimeError(alert) else: logger.info(f"No alert raised for test {test_suite}/{test_name} " f"({category}) - the test successfully passed!")
py
1a55f580c13ca5cf9be25cdf1210ca376a577eb9
#Kunal Gautam #Codewars : @Kunalpod #Problem name: Complete The Pattern #3 (Horizontal Image of #2) #Problem level: 7 kyu def pattern(n): return '\n'.join(''.join(str(i) for i in reversed(list(range(x, n+1)))) for x in list(range(1, n+1))[::-1])
py
1a55f5814d06c54cb360436d3f1240de1a21d455
# DO NOT EDIT, FILE BEING WRITTEN BY FIRMWARE import original.main original.main.run()
py
1a55f870d30ccb996f23cb8edd7c97bf55c44df5
# ---------------------------------------------------------------------------------------------------------------------- # -----------------------------------------Copy and Paste Comment Bars From Here---------------------------------------- # ---------------------------------------------------------------------------------------------------------------------- # --------------------------------Multiplication code in 6 lines-------------------------------------------------------- # numbers_to_multiply = [2,4,6,8] # # def multiplier_by_two (number1): # result = number1*2 # print(result) # # for i in numbers_to_multiply: # multiplier_by_two(i) # ----------------------------------Use list comprehension to create a list of the results in 2 lines------------------- # same_as_above = [i * 2 for i in range(1, 9) if i % 2 == 0] # # print(f'The results are {", ".join(str(i) for i in same_as_above)}') # ------------------------------------------------F string play--------------------------------------------------------- # # name = input('What is your name? ') # # age = input('How old are you? ') # # print(f'Hi {name}! You are {100 - int(age)} years away from being 100!') # -----------------------------------------------Map and lists and such------------------------------------------------- # myList = [1, 3, 5, 7, 9] # # print(f'My list is {len(myList)} item(s) long') # print(myList) # ---------------------------------------------Trying to use OOP-------------------------------------------------------- class Human: def __init__(self, name, age, country): self.name = name self.age = age self.country = country def introduction(self, language): if language in ["English", "english", "e", "eng", "ENG", "American", "american"]: return print(f"Hi! My name is {self.name}, I am {self.age} years old and I am from {self.country}") elif language in ["Japanese", "japanese", "jp", "JP"]: return print(f"はじめまして!{self.name}と申します。{self.age}歳です。{self.country}から来ました。宜しくお願いします!") seth = Human("Seth", 29, "Japan") loser = Human("Loser", 30, "Britain") loser.introduction("JP") seth.introduction("ENG")
py
1a55f8b015a20e6949b2804078a228e3800d003d
# Copyright (C) 2019 The Raphielscape Company LLC. # # Licensed under the Raphielscape Public License, Version 1.d (the "License"); # you may not use this file except in compliance with the License. # All Credits to https://t.me/azrim89 for timestamp. # All Credits to https://t.me/Devp73 for Offline stamps.. # """ Userbot module which contains afk-related commands """ from datetime import datetime import time from random import randint from telethon.events import StopPropagation from telethon.tl.functions.account import UpdateProfileRequest from userbot import (AFKREASON, CMD_HELP, BOTLOG, BOTLOG_CHATID, PM_AUTO_BAN, bot) from userbot.events import register # ================================================================= global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end USER_AFK = {} afk_time = None afk_start = {} # ================================================================= @register(outgoing=True, pattern="^.afk(?: |$)(.*)", disable_errors=True) async def set_afk(afk_e): """ For .afk command, allows you to inform people that you are afk when they message you """ afk_e.text string = afk_e.pattern_match.group(1) global ISAFK global AFKREASON global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end user = await bot.get_me() global reason USER_AFK = {} afk_time = None afk_end = {} start_1 = datetime.now() afk_start = start_1.replace(microsecond=0) if string: AFKREASON = string await afk_e.edit(f"**Gonna go AFK. I'll be right back.**") else: await afk_e.edit("**Gonna go AFK. I'll be right back.**") if user.last_name: await afk_e.client(UpdateProfileRequest(first_name=user.first_name, last_name=user.last_name + " [OFF]")) else: await afk_e.client(UpdateProfileRequest(first_name=user.first_name, last_name=" [OFF]")) if BOTLOG: await afk_e.client.send_message(BOTLOG_CHATID, "#AFK\nYou went AFK!") ISAFK = True afk_time = datetime.now() # pylint:disable=E0602 raise StopPropagation @register(outgoing=True, pattern="^.unafk(?: |$)(.*)", disable_errors=True) async def type_afk_is_not_true(notafk): """ This sets your status as not afk automatically when you write something while being afk """ global ISAFK global COUNT_MSG global USERS global AFKREASON global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end user = await bot.get_me() last = user.last_name if last and last.endswith(" [OFF]"): raw_last = f"{last}" last1 = raw_last.replace(" [OFF]", "") else: last1 = "" back_alive = datetime.now() afk_end = back_alive.replace(microsecond=0) if ISAFK: ISAFK = False msg = await notafk.edit("**I'm back! Did you guys miss me?**") time.sleep(3) await msg.delete() await notafk.client(UpdateProfileRequest(first_name=user.first_name, last_name=last1)) if BOTLOG: await notafk.client.send_message( BOTLOG_CHATID, "You've recieved " + str(COUNT_MSG) + " messages from " + str(len(USERS)) + " chats while you were away", ) for i in USERS: name = await notafk.client.get_entity(i) name0 = str(name.first_name) await notafk.client.send_message( BOTLOG_CHATID, "[" + name0 + "](tg://user?id=" + str(i) + ")" + " sent you " + "`" + str(USERS[i]) + " messages`", ) COUNT_MSG = 0 USERS = {} AFKREASON = None @register(incoming=True, disable_edited=True) async def mention_afk(mention): """ This function takes care of notifying the people who mention you that you are AFK.""" global COUNT_MSG global USERS global ISAFK global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end await bot.get_me() back_alivee = datetime.now() afk_end = back_alivee.replace(microsecond=0) afk_since = "**a while ago**" if mention.message.mentioned and not (await mention.get_sender()).bot: if ISAFK: now = datetime.now() datime_since_afk = now - afk_time # pylint:disable=E0602 time = float(datime_since_afk.seconds) days = time // (24 * 3600) time = time % (24 * 3600) hours = time // 3600 time %= 3600 minutes = time // 60 time %= 60 seconds = time if days == 1: afk_since = "**Yesterday**" elif days > 1: if days > 6: date = now + \ datetime.timedelta( days=-days, hours=-hours, minutes=-minutes) afk_since = date.strftime("%A, %Y %B %m, %H:%I") else: wday = now + datetime.timedelta(days=-days) afk_since = wday.strftime('%A') elif hours > 1: afk_since = f"`{int(hours)}h {int(minutes)}m`" elif minutes > 0: afk_since = f"`{int(minutes)}m {int(seconds)}s`" else: afk_since = f"`{int(seconds)}s`" if mention.sender_id not in USERS: if AFKREASON: await mention.reply(f"**I've been AFK.** (Since {afk_since} ago.)\ \n**Reason:** `{AFKREASON}`") else: await mention.reply(f"**I've been AFK.** (Since {afk_since} ago.)") USERS.update({mention.sender_id: 1}) COUNT_MSG = COUNT_MSG + 1 elif mention.sender_id in USERS: if USERS[mention.sender_id] % randint(2, 4) == 0: if AFKREASON: await mention.reply(f"**I'm still AFK.** (Since {afk_since} ago.)\ \n**Reason:** `{AFKREASON}`") else: await mention.reply(f"**I'm still AFK.** (Since {afk_since} ago.)") USERS[mention.sender_id] = USERS[mention.sender_id] + 1 COUNT_MSG = COUNT_MSG + 1 else: USERS[mention.sender_id] = USERS[mention.sender_id] + 1 COUNT_MSG = COUNT_MSG + 1 @register(incoming=True, disable_errors=True) async def afk_on_pm(sender): """ Function which informs people that you are AFK in PM """ global ISAFK global USERS global COUNT_MSG global COUNT_MSG global USERS global ISAFK global USER_AFK # pylint:disable=E0602 global afk_time # pylint:disable=E0602 global afk_start global afk_end await bot.get_me() back_alivee = datetime.now() afk_end = back_alivee.replace(microsecond=0) afk_since = "**a while ago**" if sender.is_private and sender.sender_id != 777000 and not ( await sender.get_sender()).bot: if PM_AUTO_BAN: try: from userbot.modules.sql_helper.pm_permit_sql import is_approved apprv = is_approved(sender.sender_id) except AttributeError: apprv = True else: apprv = True if apprv and ISAFK: now = datetime.now() datime_since_afk = now - afk_time # pylint:disable=E0602 time = float(datime_since_afk.seconds) days = time // (24 * 3600) time = time % (24 * 3600) hours = time // 3600 time %= 3600 minutes = time // 60 time %= 60 seconds = time if days == 1: afk_since = "**yesterday**" elif days > 1: if days > 6: date = now + \ datetime.timedelta( days=-days, hours=-hours, minutes=-minutes) afk_since = date.strftime("%A, %Y %B %m, %H:%I") else: wday = now + datetime.timedelta(days=-days) afk_since = wday.strftime('%A') elif hours > 1: afk_since = f"`{int(hours)}h {int(minutes)}m`" elif minutes > 0: afk_since = f"`{int(minutes)}m {int(seconds)}s`" else: afk_since = f"`{int(seconds)}s`" if sender.sender_id not in USERS: if AFKREASON: await sender.reply(f"**I've been AFK.** (Since {afk_since} ago.)\ \n**Reason:** `{AFKREASON}`") else: await sender.reply(f"**I've been AFK.** (Since {afk_since} ago.)") USERS.update({sender.sender_id: 1}) COUNT_MSG = COUNT_MSG + 1 elif apprv and sender.sender_id in USERS: if USERS[sender.sender_id] % randint(2, 4) == 0: if AFKREASON: await sender.reply(f"**I'm still AFK.** (Since {afk_since} ago.)\ \n**Reason:** `{AFKREASON}`") else: await sender.reply(f"**I'm still AFK.** (Since {afk_since} ago.)") USERS[sender.sender_id] = USERS[sender.sender_id] + 1 COUNT_MSG = COUNT_MSG + 1 else: USERS[sender.sender_id] = USERS[sender.sender_id] + 1 COUNT_MSG = COUNT_MSG + 1 CMD_HELP.update({ "afk": "`.afk` [Optional Reason]\ \nUsage: Sets you as afk.\nReplies to anyone who tags/PM's \ you telling them that you are AFK(reason).\ \n\n`.unafk`\ \nBack from AFK state, anywhere.\ " })
py
1a55fa37bbdc5941f299ced5b0c0b1b41ae54361
from ..base.Dat import Dat class VerbWord(): def __init__(self, filename1, filename2): self.__vmDat = Dat(filename=filename1) self.__vdDat = Dat(filename=filename2) self.__tagV = 'v' def adjustTag(self, sentence): if not self.__vmDat or not self.__vdDat: return for i in range(len(sentence) - 1): if sentence[i].tag == self.__tagV and sentence[i + 1].tag == self.__tagV: if self.__vmDat.match(sentence[i].word) != -1: sentence[i].tag = 'vm' elif self.__vdDat.match(sentence[i + 1].word) != -1: sentence[i + 1].tag = 'vd'
py
1a55fb0af5e631cc4faa07514e68dd576e3ca937
#!/usr/bin/env python # -*- coding: utf-8 -*- from paper import Paper class Page(Paper): """This class represents a single document page""" __name__ = "Page" def __init__(self): Paper.__init__(self) self.children = list() def draw(self, context, hints): Paper.draw(self, context) for child in sorted(self.children, key=lambda child: child.z): child.hints = hints # TODO Not here child.draw(context) def serialize(self): text = "<object type=\"%s\">" % self.__name__ text += "<children>" for child in self.children: text += child.serialize() text += "</children>" text += "</object>" return text
py
1a55fc461d2d3f2b292a8afecd2df78884249b96
import collections import json import os import shutil import tempfile import traceback from functools import partial from ice import steam_model from ice import steam_paths from ice import shortcuts from ice import configuration from ice.cli import CommandLineRunner from ice.filesystem import FakeFilesystem from ice.persistence.config_file_backing_store import ConfigFileBackingStore from fixtures import SteamFixture, UserFixture def json_to_shortcut(json): for field in ["name", "exe", "startdir", "icon", "shortcut_path", "launch_options", "hidden", "allow_desktop_config", "open_vr", "last_play_time", "tags"]: assert field in json return model.Shortcut( name = json.get("name").encode("UTF8"), exe = json.get("exe").encode("UTF8"), startdir = json.get("startdir").encode("UTF8"), icon = json.get("icon").encode("UTF8"), shortcut_path = json.get("shortcut_path").encode("UTF8"), launch_options = json.get("launch_options").encode("UTF8"), hidden = json.get("hidden"), allow_desktop_config = json.get("allow_desktop_config"), open_vr = json.get("open_vr"), last_play_time = json.get("last_play_time"), tags = json.get("tags") ) class FakeEnvironment(object): def __init__(self, file_path): """ Generates a new environment in which to run Integration tests. `testdata_dir` refers to the base testdata directory, which individual tests will then use to load their test-specific configurations. """ # We also need a sandbox to play in. self.sandbox = FakeFilesystem(root = tempfile.mkdtemp()) # Need a dummy Steam installation for Ice to work with # We'll put it in the `Steam` directory of our sandbox self.steam_fixture = SteamFixture(os.path.join(self.sandbox.root, "Steam")) # Create a list of user fixtures that consumers can populate self.user_fixtures = [] # The testdata directory should be in the same directory as the tests # themselves. self.testdata_dir = os.path.join(os.path.dirname(file_path), "testdata") assert os.path.exists(self.testdata_dir) self.loaded_data = None self.extra_args = [] def clean(self): for user_fixture in self.user_fixtures: user_fixture.tearDown() self.steam_fixture.tearDown() shutil.rmtree(self.sandbox.root) def _use_config_file(self, file, location): assert os.path.exists(location) self.extra_args.append('--%s' % file) self.extra_args.append(location) def _test_config_path(self, directory, file): return os.path.join(directory, '%s.txt' % file) def _load_config_file_overrides(self, directory): file_basenames = ['config', 'consoles', 'emulators'] filenames = map(lambda f: '%s.txt' % f, file_basenames) for f in file_basenames: self._use_config_file(f, self._test_config_path(directory, f)) def _load_roms_for_test(self, directory): """Takes the ROMs located in `directory/ROMs` and moves them into the ROMs directory specified in the provided config.txt file.""" config_path = self._test_config_path(directory, 'config') c = configuration.from_store(ConfigFileBackingStore(config_path)) target_roms_directory = self.sandbox.adjusted_path(c.roms_directory) source_roms_directory = os.path.join(directory, 'ROMs') shutil.copytree(source_roms_directory, target_roms_directory) def _override_backups_directory(self, data_directory): # TODO: Figure out a way to actually override this, so I can test that # backups get made correctly. pass def _adjust_json_path(self, path): return path.replace("%sb", self.sandbox.root) def _adjust_shortcut_exe(self, shortcut): return model.Shortcut( name = shortcut.name, exe = self._adjust_json_path(shortcut.exe), startdir = shortcut.startdir, icon = shortcut.icon, shortcut_path ='', launch_options = self._adjust_json_path(shortcut.launch_options.replace("/", os.sep)), hidden = False, allow_desktop_config = False, open_vr = False, last_play_time = 0, tags = shortcut.tags, ) def load_test_data(self, testdata): """ Reads the config.txt, consoles.txt, emulators.txt, shortcuts.vdf, and ROMs folder from the provided testdata subdirectory and places it in the sandbox such that it will be used by Ice the next time its run. """ assert self.loaded_data is None, "Can't load test data twice in a single test" self.loaded_data = testdata data_directory = os.path.join(self.testdata_dir, testdata) assert os.path.exists(data_directory), "Can't load test data from a missing directory" self._load_config_file_overrides(data_directory) self._load_roms_for_test(data_directory) self._override_backups_directory(data_directory) def create_fake_user(self, uid=None): fixture = UserFixture(self.steam_fixture, uid) self.user_fixtures.append(fixture) return fixture.uid def load_shortcuts_from_json(self, filename): expectations_path = os.path.join(self.testdata_dir, self.loaded_data, filename) with open(expectations_path) as f: expected_shortcuts_json = json.load(f) return map(json_to_shortcut, expected_shortcuts_json) def expected_shortcuts(self, filename="shortcuts-expected.json"): """Returns the shortcuts which the test expects will exist after executing""" expected_shortcuts = self.load_shortcuts_from_json(filename) return map(self._adjust_shortcut_exe, expected_shortcuts) def set_user_shortcuts(self, uid, new_shortcuts): context = model.LocalUserContext(self.steam_fixture.get_steam(), uid) return shortcuts.set_shortcuts(context, new_shortcuts) def user_shortcuts(self, uid): context = model.LocalUserContext(self.steam_fixture.get_steam(), uid) return shortcuts.get_shortcuts(context) def run_command(self, *args): """" Runs the command specified by `args`, where doing run_command("list", "consoles", "--json") is equivalent to running the command ./ice.py list consoles --json """ # Turn `args` into a list, like `sys.argv` represents them args = list(args) # Add the 'ice.py' at the beginning of the list, which `run` will then # promptly ignore args.insert(0, "ice.py") args.extend(self.extra_args) # Run the command try: runner = CommandLineRunner(self.steam_fixture.get_steam(), self.sandbox) runner.run(args) success = True except Exception as e: success = False print e
py
1a55fc7a869f78e3a86112f0e80d25915b7f640d
############################################################################## # Copyright 2016-2019 Rigetti Computing # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## r""" Standard gate set, as detailed in Quil whitepaper (arXiV:1608:03355v2) Currently includes: I - identity :math:`\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}` X - Pauli-X :math:`\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}` Y - Pauli-Y :math:`\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}` Z - Pauli-Z :math:`\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}` H - Hadamard :math:`\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}` S - PHASE(pi/2) :math:`\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}` T - PHASE(pi/4) :math:`\begin{pmatrix} 1 & 0 \\ 0 & e^{i \pi / 4} \end{pmatrix}` PHASE(:math:`\phi`) - PHASE :math:`\begin{pmatrix} 1 & 0 \\ 0 & e^{i \phi} \end{pmatrix}` RX(:math:`\phi`) - RX :math:`\begin{pmatrix} \cos(\phi / 2) & -i \sin(\phi/2) \\ -i \sin(\phi/2) & \cos(\phi/2) \end{pmatrix}` RY(:math:`\phi`) - RY :math:`\begin{pmatrix} \cos(\phi / 2) & -\sin(\phi / 2) \\ \sin(\phi/2) & \cos(\phi/2) \end{pmatrix}` RZ(:math:`\phi`) - RZ :math:`\begin{pmatrix} \cos(\phi/2) - i \sin(\phi/2) & 0 \\ 0 & \cos(\phi/2) + i \sin(\phi/2) \end{pmatrix}` CZ - controlled-Z :math:`P_0 \otimes I + P_1 \otimes Z = \begin{pmatrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&1&0 \\ 0&0&0&-1 \end{pmatrix}` CNOT - controlled-X / controlled-NOT :math:`P_0 \otimes I + P_1 \otimes X = \begin{pmatrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&0&1 \\ 0&0&1&0 \end{pmatrix}` CCNOT - double-controlled-X :math:`P_0 \otimes P_0 \otimes I + P_0 \otimes P_1 \otimes I + P_1 \otimes P_0 \otimes I + P_1 \otimes P_1 \otimes X` CPHASE00(:math:`\phi`) - controlled-phase-on-|00> :math:`\text{diag}(e^{i \phi}, 1, 1, 1,)` CPHASE01(:math:`\phi`) - controlled-phase-on-|01> :math:`\text{diag}(1, e^{i \phi}, 1, 1,)` CPHASE10(:math:`\phi`) - controlled-phase-on-|10> :math:`\text{diag}(1, 1, e^{i \phi}, 1)` CPHASE(:math:`\phi`) - controlled-phase-on-|11> :math:`\text{diag}(1, 1, 1, e^{i \phi})` SWAP - swap :math:`\begin{pmatrix} 1&0&0&0 \\ 0&0&1&0 \\ 0&1&0&0 \\ 0&0&0&1 \end{pmatrix}` CSWAP - controlled-swap :math:`P_0 \otimes I_2 + P_1 \otimes \text{SWAP}` ISWAP - i-phase-swap :math:`\begin{pmatrix} 1&0&0&0 \\ 0&0&i&0 \\ 0&i&0&0 \\ 0&0&0&1 \end{pmatrix}` PSWAP(:math:`\phi`) - phi-phase-swap :math:`\begin{pmatrix} 1&0&0&0 \\ 0&0&e^{i\phi}&0 \\ 0&e^{i\phi}&0&0 \\ 0&0&0&1 \end{pmatrix}` XY(:math:`\phi`) - XY-interaction :math:`\begin{pmatrix} 1&0&0&0 \\ 0&\cos(\phi/2)&i\sin(\phi/2)&0 \\ 0&i\sin(\phi/2)&\cos(\phi/2)&0 \\ 0&0&0&1 \end{pmatrix}` Specialized gates / internal utility gates: BARENCO(:math:`\alpha, \phi, \theta`) - Barenco gate :math:`\begin{pmatrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&e^{i\phi} \cos\theta & -i e^{i(\alpha-\phi)} \sin\theta \\ 0&0&-i e^{i(\alpha+\phi)} \sin\theta & e^{i\alpha} \cos\theta \end{pmatrix}` P0 - project-onto-zero :math:`\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}` P1 - project-onto-one :math:`\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}` """ import cmath from typing import Tuple import numpy as np I = np.array([[1.0, 0.0], [0.0, 1.0]]) X = np.array([[0.0, 1.0], [1.0, 0.0]]) Y = np.array([[0.0, 0.0 - 1.0j], [0.0 + 1.0j, 0.0]]) Z = np.array([[1.0, 0.0], [0.0, -1.0]]) H = (1.0 / np.sqrt(2.0)) * np.array([[1.0, 1.0], [1.0, -1.0]]) S = np.array([[1.0, 0.0], [0.0, 1.0j]]) T = np.array([[1.0, 0.0], [0.0, cmath.exp(1.0j * np.pi / 4.0)]]) def PHASE(phi: float) -> np.ndarray: return np.array([[1.0, 0.0], [0.0, np.exp(1j * phi)]]) def RX(phi: float) -> np.ndarray: return np.array( [[np.cos(phi / 2.0), -1j * np.sin(phi / 2.0)], [-1j * np.sin(phi / 2.0), np.cos(phi / 2.0)]] ) def RY(phi: float) -> np.ndarray: return np.array( [[np.cos(phi / 2.0), -np.sin(phi / 2.0)], [np.sin(phi / 2.0), np.cos(phi / 2.0)]] ) def RZ(phi: float) -> np.ndarray: return np.array( [ [np.cos(phi / 2.0) - 1j * np.sin(phi / 2.0), 0], [0, np.cos(phi / 2.0) + 1j * np.sin(phi / 2.0)], ] ) CZ = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]) CNOT = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]]) CCNOT = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], ] ) def CPHASE00(phi: float) -> np.ndarray: return np.diag([np.exp(1j * phi), 1.0, 1.0, 1.0]) def CPHASE01(phi: float) -> np.ndarray: return np.diag([1.0, np.exp(1j * phi), 1.0, 1.0]) def CPHASE10(phi: float) -> np.ndarray: return np.diag([1.0, 1.0, np.exp(1j * phi), 1.0]) def CPHASE(phi: float) -> np.ndarray: return np.diag([1.0, 1.0, 1.0, np.exp(1j * phi)]) SWAP = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) CSWAP = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], ] ) ISWAP = np.array([[1, 0, 0, 0], [0, 0, 1j, 0], [0, 1j, 0, 0], [0, 0, 0, 1]]) def PSWAP(phi: float) -> np.ndarray: return np.array( [[1, 0, 0, 0], [0, 0, np.exp(1j * phi), 0], [0, np.exp(1j * phi), 0, 0], [0, 0, 0, 1]] ) def XY(phi: float) -> np.ndarray: return np.array( [ [1, 0, 0, 0], [0, np.cos(phi / 2), 1j * np.sin(phi / 2), 0], [0, 1j * np.sin(phi / 2), np.cos(phi / 2), 0], [0, 0, 0, 1], ] ) # Utility gates for internal QVM use P0 = np.array([[1, 0], [0, 0]]) P1 = np.array([[0, 0], [0, 1]]) # Specialized useful gates; not officially in standard gate set def BARENCO(alpha: float, phi: float, theta: float) -> np.ndarray: lower_unitary = np.array( [ [np.exp(1j * phi) * np.cos(theta), -1j * np.exp(1j * (alpha - phi)) * np.sin(theta)], [-1j * np.exp(1j * (alpha + phi)) * np.sin(theta), np.exp(1j * alpha) * np.cos(theta)], ] ) return np.kron(P0, np.eye(2)) + np.kron(P1, lower_unitary) QUANTUM_GATES = { "I": I, "X": X, "Y": Y, "Z": Z, "H": H, "S": S, "T": T, "PHASE": PHASE, "RX": RX, "RY": RY, "RZ": RZ, "CNOT": CNOT, "CCNOT": CCNOT, "CPHASE00": CPHASE00, "CPHASE01": CPHASE01, "CPHASE10": CPHASE10, "CPHASE": CPHASE, "SWAP": SWAP, "CSWAP": CSWAP, "ISWAP": ISWAP, "PSWAP": PSWAP, "BARENCO": BARENCO, "CZ": CZ, "XY": XY, } def relaxation_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the amplitude damping Kraus operators """ k0 = np.array([[1.0, 0.0], [0.0, np.sqrt(1 - p)]]) k1 = np.array([[0.0, np.sqrt(p)], [0.0, 0.0]]) return k0, k1 def dephasing_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the phase damping Kraus operators """ k0 = np.eye(2) * np.sqrt(1 - p / 2) k1 = np.sqrt(p / 2) * Z return k0, k1 def depolarizing_operators(p: float) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """ Return the phase damping Kraus operators """ k0 = np.sqrt(1.0 - p) * I k1 = np.sqrt(p / 3.0) * X k2 = np.sqrt(p / 3.0) * Y k3 = np.sqrt(p / 3.0) * Z return k0, k1, k2, k3 def phase_flip_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the phase flip kraus operators """ k0 = np.sqrt(1 - p) * I k1 = np.sqrt(p) * Z return k0, k1 def bit_flip_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the phase flip kraus operators """ k0 = np.sqrt(1 - p) * I k1 = np.sqrt(p) * X return k0, k1 def bitphase_flip_operators(p: float) -> Tuple[np.ndarray, np.ndarray]: """ Return the bitphase flip kraus operators """ k0 = np.sqrt(1 - p) * I k1 = np.sqrt(p) * Y return k0, k1 KRAUS_OPS = { "relaxation": relaxation_operators, "dephasing": dephasing_operators, "depolarizing": depolarizing_operators, "phase_flip": phase_flip_operators, "bit_flip": bit_flip_operators, "bitphase_flip": bitphase_flip_operators, } SIC0 = np.array([1, 0]) SIC1 = np.array([1, np.sqrt(2)]) / np.sqrt(3) SIC2 = np.array([1, np.exp(-np.pi * 2j / 3) * np.sqrt(2)]) / np.sqrt(3) SIC3 = np.array([1, np.exp(np.pi * 2j / 3) * np.sqrt(2)]) / np.sqrt(3) """ The symmetric informationally complete POVMs for a qubit. These can reduce the number of experiments to perform quantum process tomography. For more information, please see http://info.phys.unm.edu/~caves/reports/infopovm.pdf """ STATES = { "X": [np.array([1, 1]) / np.sqrt(2), np.array([1, -1]) / np.sqrt(2)], "Y": [np.array([1, 1j]) / np.sqrt(2), np.array([1, -1j]) / np.sqrt(2)], "Z": [np.array([1, 0]), np.array([0, 1])], "SIC": [SIC0, SIC1, SIC2, SIC3], } __all__ = list(QUANTUM_GATES.keys()) + [ "relaxation_operators", "dephasing_operators", "depolarizing_operators", "phase_flip_operators", "bit_flip_operators", "bitphase_flip_operators", "STATES", "SIC0", "SIC1", "SIC2", "SIC3", ]
py
1a55fceb55d92d9c35b3c934aac745f6c3a580b3
""" ###################################################################################################### # Class of scripts to testing Feudal Network policy # ###################################################################################################### """ import numpy as np import unittest from scripts.training.feudal_networks.policies.feudal_policy import FeudalPolicy import tensorflow as tf np.set_printoptions(suppress=True, precision=6) class TestFeudalPolicy(unittest.TestCase): """ Class for testing feudal network policy """ def setUp(self): """ Function for initializing the test """ # reset graph before each test case tf.reset_default_graph() def test_init(self): """ Function for initializing the test """ global_step = tf.get_variable("global_step", [], tf.int32,\ initializer=tf.constant_initializer(0, dtype=tf.int32), trainable=False) feudal = FeudalPolicy((80,80,3), 4, global_step) def test_fit_simple_dataset(self): """ Function for initializing the test """ with tf.Session() as session: global_step = tf.get_variable("global_step", [], tf.int32,\ initializer=tf.constant_initializer(0, dtype=tf.int32), trainable=False) obs_space = (80,80,3) act_space = 2 lr = 1e-5 g_dim = 256 worker_hid_dim = 32 manager_hid_dim = 256 pi = FeudalPolicy(obs_space, act_space, global_step) grads = tf.gradients(pi.loss, pi.var_list) prints = [] for g in grads: prints.append(g.op.name) prints.append(g) # grads[0] = tf.Print(grads[0],prints) grads, _ = tf.clip_by_global_norm(grads, 40) grads_and_vars = list(zip(grads, pi.var_list)) opt = tf.train.AdamOptimizer(lr) train_op = opt.apply_gradients(grads_and_vars) # train_op = tf.train.AdamOptimizer(lr).minimize(pi.loss,var_list=pi.var_list) session.run(tf.global_variables_initializer()) obs = [np.zeros(obs_space), np.zeros(obs_space)] a = [[1,0], [0,1]] returns = [0, 1] s_diff = [np.ones(g_dim), np.ones(g_dim)] gsum = [np.zeros((1,g_dim)), np.ones((1,g_dim))] ri = [0, 0] _,features = pi.get_initial_features() worker_features = features[0:2] manager_features = features[2:] feed_dict = { pi.obs: obs, pi.ac: a, pi.r: returns, pi.s_diff: s_diff, pi.prev_g: gsum, pi.ri: ri, pi.state_in[0]: worker_features[0], pi.state_in[1]: worker_features[1], pi.state_in[2]: manager_features[0], pi.state_in[3]: manager_features[1] } n_updates = 1000 verbose = True for i in range(n_updates): loss, vf, policy, _ = session.run([pi.loss,pi.manager_vf,pi.pi, train_op], feed_dict=feed_dict) if verbose: print('loss: {}\npolicy: {}\nvalue: {}\n-------'.format( loss, policy, vf)) def test_simple_manager_behavior(self): """ Function for initializing the test """ with tf.Session() as session: global_step = tf.get_variable("global_step", [], tf.int32,\ initializer=tf.constant_initializer(0, dtype=tf.int32), trainable=False) obs_space = (80,80,3) act_space = 2 lr = 5e-4 g_dim = 256 worker_hid_dim = 32 manager_hid_dim = 256 pi = FeudalPolicy(obs_space, act_space, global_step) train_op = tf.train.AdamOptimizer(lr).minimize(pi.loss) worker_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) worker_vars = [v for v in worker_vars if 'worker' in v.name] worker_assign = tf.group(*[tf.assign(v, tf.zeros_like(v)) for v in worker_vars]) session.run(tf.global_variables_initializer()) obs = [np.zeros(obs_space), np.zeros(obs_space)] a = [[1,0], [0,1]] returns = [0, 1] s_diff = [np.ones(g_dim), np.ones(g_dim)] gsum = [np.zeros((1,g_dim)), np.ones((1,g_dim))] ri = [0, 0] _, features = pi.get_initial_features() worker_features = features[0:2] manager_features = features[2:] feed_dict = { pi.obs: obs, pi.ac: a, pi.r: returns, pi.s_diff: s_diff, pi.prev_g: gsum, pi.ri: ri, pi.state_in[0]: worker_features[0], pi.state_in[1]: worker_features[1], pi.state_in[2]: manager_features[0], pi.state_in[3]: manager_features[1] } n_updates = 1000 verbose = True for i in range(n_updates): loss, vf, policy, _, _ = session.run( [pi.loss, pi.manager_vf, pi.pi, train_op, worker_assign], feed_dict=feed_dict) if verbose: print('loss: {}\npolicy: {}\nvalue: {}\n-------'.format( loss, policy, vf)) worker_var_values = session.run(worker_vars) print(worker_var_values) U = session.run(pi.U, feed_dict=feed_dict) print(U) input() if __name__ == '__main__': unittest.main()
py
1a55fd7636d713267632d40fed2c74926426d25a
#!/usr/bin/env python3 # Copyright 2015-2021 Scott Bezek and the splitflap contributors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os import subprocess import sys from svg_processor import SvgProcessor from projection_renderer import Renderer script_dir = os.path.dirname(os.path.abspath(__file__)) source_parts_dir = os.path.dirname(script_dir) repo_root = os.path.dirname(source_parts_dir) sys.path.append(repo_root) from util import rev_info KERF_PRESETS = { 'ponoko-3mm-mdf': 0.18, 'ponoko-3mm-acrylic': 0.1, } if __name__ == '__main__': logging.basicConfig(level=logging.DEBUG) parser = argparse.ArgumentParser() parser.add_argument('--panelize', type=int, default=1, help='Quantity to panelize - must be 1 or an even number') parser.add_argument('--skip-optimize', action='store_true', help='Don\'t remove redundant/overlapping cut lines') kerf_group = parser.add_mutually_exclusive_group() kerf_group.add_argument('--kerf', type=float, help='Override kerf_width value') kerf_group.add_argument('--kerf-preset', choices=KERF_PRESETS, help='Override kerf_width using a defined preset') parser.add_argument('--render-raster', action='store_true', help='Render raster PNG from the output SVG (requires ' 'Inkscape)') parser.add_argument('--thickness', type=float, help='Override panel thickness value') parser.add_argument('--no-etch', action='store_true', help='Do not render laser-etched features') parser.add_argument('--mirror', action='store_true', help='Mirror the assembly so the outside faces are facing up. ' 'Note that this will remove all etched features.') args = parser.parse_args() laser_parts_directory = os.path.join(source_parts_dir, 'build', 'laser_parts') extra_variables = { 'render_revision': rev_info.git_short_rev(), 'render_date': rev_info.current_date(), 'render_etch': not args.no_etch, 'render_2d_mirror': args.mirror, } if args.kerf is not None: extra_variables['kerf_width'] = args.kerf elif args.kerf_preset is not None: extra_variables['kerf_width'] = KERF_PRESETS[args.kerf_preset] if args.thickness is not None: extra_variables['thickness'] = args.thickness print('Variables:\n' + json.dumps(extra_variables, indent=4)) renderer = Renderer(os.path.join(source_parts_dir, 'splitflap.scad'), laser_parts_directory, extra_variables) renderer.clean() svg_output = renderer.render_svgs(panelize_quantity=args.panelize) logging.info('Removing redundant lines') processor = SvgProcessor(svg_output) redundant_lines, merged_lines = None, None if not args.skip_optimize: redundant_lines, merged_lines = processor.remove_redundant_lines() processor.write(svg_output) logging.info('\n\n\nDone rendering to SVG: ' + svg_output) if args.render_raster: # Export to png logging.info('Generating raster preview') raster_svg = os.path.join(laser_parts_directory, 'raster.svg') raster_png = os.path.join(laser_parts_directory, 'raster.png') processor.apply_raster_render_style() if not args.skip_optimize: # Show which redundant lines were removed and lines merged processor.add_highlight_lines(redundant_lines, '#ff0000') processor.add_highlight_lines(merged_lines, '#0000ff') processor.write(raster_svg) logging.info('Resize SVG canvas') subprocess.check_call([ 'inkscape', '--verb=FitCanvasToDrawing', '--verb=FileSave', '--verb=FileClose', '--verb=FileQuit', raster_svg, ]) logging.info('Export PNG') subprocess.check_call([ 'inkscape', '--export-width=320', '--export-png', raster_png, raster_svg, ])
py
1a55fda1529209c9e33b00282a607e41601e292f
# coding=utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from copy import deepcopy from transformers import RobertaConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from .test_configuration_common import ConfigTester from .test_generation_utils import GenerationTesterMixin from .test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, ) from transformers.models.roberta.modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaEmbeddings, create_position_ids_from_input_ids, ) ROBERTA_TINY = "sshleifer/tiny-distilroberta-base" class RobertaModelTester: def __init__( self, parent, ): self.parent = parent self.batch_size = 13 self.seq_length = 7 self.is_training = True self.use_input_mask = True self.use_token_type_ids = True self.use_labels = True self.vocab_size = 99 self.hidden_size = 32 self.num_hidden_layers = 5 self.num_attention_heads = 4 self.intermediate_size = 37 self.hidden_act = "gelu" self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 self.max_position_embeddings = 512 self.type_vocab_size = 16 self.type_sequence_label_size = 2 self.initializer_range = 0.02 self.num_labels = 3 self.num_choices = 4 self.scope = None def prepare_config_and_inputs(self): input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) input_mask = None if self.use_input_mask: input_mask = random_attention_mask([self.batch_size, self.seq_length]) token_type_ids = None if self.use_token_type_ids: token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) sequence_labels = None token_labels = None choice_labels = None if self.use_labels: sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size) token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels) choice_labels = ids_tensor([self.batch_size], self.num_choices) config = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def get_config(self): return RobertaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def prepare_config_and_inputs_for_decoder(self): ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = self.prepare_config_and_inputs() config.is_decoder = True encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def create_and_check_model( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaModel(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) result = model(input_ids, token_type_ids=token_type_ids) result = model(input_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_model_as_decoder( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.add_cross_attention = True model = RobertaModel(config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, ) result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, encoder_hidden_states=encoder_hidden_states, ) result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def create_and_check_for_causal_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): model = RobertaForCausalLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_decoder_model_past_large_inputs( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ): config.is_decoder = True config.add_cross_attention = True model = RobertaForCausalLM(config=config).to(torch_device).eval() # make sure that ids don't start with pad token mask = input_ids.ne(config.pad_token_id).long() input_ids = input_ids * mask # first forward pass outputs = model( input_ids, attention_mask=input_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=True, ) past_key_values = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size) # make sure that ids don't start with pad token mask = next_tokens.ne(config.pad_token_id).long() next_tokens = next_tokens * mask next_mask = ids_tensor((self.batch_size, 3), vocab_size=2) # append to next input_ids and next_input_ids = torch.cat([input_ids, next_tokens], dim=-1) next_attention_mask = torch.cat([input_mask, next_mask], dim=-1) output_from_no_past = model( next_input_ids, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_hidden_states=True, )["hidden_states"][0] output_from_past = model( next_tokens, attention_mask=next_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, output_hidden_states=True, )["hidden_states"][0] # select random slice random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item() output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach() output_from_past_slice = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3)) def create_and_check_for_masked_lm( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForMaskedLM(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def create_and_check_for_token_classification( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_labels = self.num_labels model = RobertaForTokenClassification(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def create_and_check_for_multiple_choice( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): config.num_choices = self.num_choices model = RobertaForMultipleChoice(config=config) model.to(torch_device) model.eval() multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() result = model( multiple_choice_inputs_ids, attention_mask=multiple_choice_input_mask, token_type_ids=multiple_choice_token_type_ids, labels=choice_labels, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def create_and_check_for_question_answering( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = RobertaForQuestionAnswering(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, start_positions=sequence_labels, end_positions=sequence_labels, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def prepare_config_and_inputs_for_common(self): config_and_inputs = self.prepare_config_and_inputs() ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) = config_and_inputs inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class RobertaModelTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase): all_model_classes = ( ( RobertaForCausalLM, RobertaForMaskedLM, RobertaModel, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaForMultipleChoice, RobertaForQuestionAnswering, ) if is_torch_available() else () ) all_generative_model_classes = (RobertaForCausalLM,) if is_torch_available() else () fx_compatible = True def setUp(self): self.model_tester = RobertaModelTester(self) self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37) def test_config(self): self.config_tester.run_common_tests() def test_model(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*config_and_inputs) def test_model_various_embeddings(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: config_and_inputs[0].position_embedding_type = type self.model_tester.create_and_check_model(*config_and_inputs) def test_model_as_decoder(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*config_and_inputs) def test_model_as_decoder_with_default_input_mask(self): # This regression test was failing with PyTorch < 1.3 ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) = self.model_tester.prepare_config_and_inputs_for_decoder() input_mask = None self.model_tester.create_and_check_model_as_decoder( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def test_for_causal_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*config_and_inputs) def test_decoder_model_past_with_large_inputs(self): config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs) def test_for_masked_lm(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*config_and_inputs) def test_for_token_classification(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*config_and_inputs) def test_for_multiple_choice(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs) def test_for_question_answering(self): config_and_inputs = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*config_and_inputs) @slow def test_model_from_pretrained(self): for model_name in ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: model = RobertaModel.from_pretrained(model_name) self.assertIsNotNone(model) def test_create_position_ids_respects_padding_index(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] model = RobertaEmbeddings(config=config) input_ids = torch.as_tensor([[12, 31, 13, model.padding_idx]]) expected_positions = torch.as_tensor( [[0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx]] ) position_ids = create_position_ids_from_input_ids(input_ids, model.padding_idx) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) def test_create_position_ids_from_inputs_embeds(self): """Ensure that the default position ids only assign a sequential . This is a regression test for https://github.com/huggingface/transformers/issues/1761 The position ids should be masked with the embedding object's padding index. Therefore, the first available non-padding position index is RobertaEmbeddings.padding_idx + 1 """ config = self.model_tester.prepare_config_and_inputs()[0] embeddings = RobertaEmbeddings(config=config) inputs_embeds = torch.empty(2, 4, 30) expected_single_positions = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] expected_positions = torch.as_tensor([expected_single_positions, expected_single_positions]) position_ids = embeddings.create_position_ids_from_inputs_embeds(inputs_embeds) self.assertEqual(position_ids.shape, expected_positions.shape) self.assertTrue(torch.all(torch.eq(position_ids, expected_positions))) @require_torch class RobertaModelIntegrationTest(TestCasePlus): @slow def test_inference_masked_lm(self): model = RobertaForMaskedLM.from_pretrained("roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 11, 50265)) self.assertEqual(output.shape, expected_shape) # compare the actual values for a slice. expected_slice = torch.tensor( [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_no_head(self): model = RobertaModel.from_pretrained("roberta-base") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] # compare the actual values for a slice. expected_slice = torch.tensor( [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]] ) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.base') # roberta.eval() # expected_slice = roberta.extract_features(input_ids)[:, :3, :3].detach() self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4)) @slow def test_inference_classification_head(self): model = RobertaForSequenceClassification.from_pretrained("roberta-large-mnli") input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]]) with torch.no_grad(): output = model(input_ids)[0] expected_shape = torch.Size((1, 3)) self.assertEqual(output.shape, expected_shape) expected_tensor = torch.tensor([[-0.9469, 0.3913, 0.5118]]) # roberta = torch.hub.load('pytorch/fairseq', 'roberta.large.mnli') # roberta.eval() # expected_tensor = roberta.predict("mnli", input_ids, return_logits=True).detach() self.assertTrue(torch.allclose(output, expected_tensor, atol=1e-4)) # XXX: this might be a candidate for common tests if we have many of those def test_lm_head_ignore_keys(self): keys_to_ignore_on_save_tied = [r"lm_head.decoder.weight", r"lm_head.decoder.bias"] keys_to_ignore_on_save_untied = [r"lm_head.decoder.bias"] config = RobertaConfig.from_pretrained(ROBERTA_TINY) config_tied = deepcopy(config) config_tied.tie_word_embeddings = True config_untied = deepcopy(config) config_untied.tie_word_embeddings = False for cls in [RobertaForMaskedLM, RobertaForCausalLM]: model = cls(config_tied) self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_tied, cls) # the keys should be different when embeddings aren't tied model = cls(config_untied) self.assertEqual(model._keys_to_ignore_on_save, keys_to_ignore_on_save_untied, cls) # test that saving works with updated ignore keys - just testing that it doesn't fail model.save_pretrained(self.get_auto_remove_tmp_dir())
py
1a55ff1226791265e9839633702c788bceb5cedb
"""Binary tree === CSC148 Winter 2018 === University of Toronto, Department of Computer Science __author__ = 'Eric K' === Module Description === This module contains a binary tree implementation """ from typing import Union, Optional class BinaryTree: """ A Binary Tree, i.e. arity 2. """ value: object left: Optional['BinaryTree'] right: Optional['BinaryTree'] def __init__(self, value: object, left: Optional['BinaryTree'] = None, right: Optional['BinaryTree'] = None) -> None: """ Create BinaryTree self with value and children left and right. """ self.value, self.left, self.right = value, left, right def __eq__(self, other: Union['BinaryTree', object]) -> bool: """ Return whether BinaryTree self is equivalent to other. >>> BinaryTree(7).__eq__("seven") False >>> b1 = BinaryTree(7, BinaryTree(5)) >>> b1.__eq__(BinaryTree(7, BinaryTree(5), None)) True >>> b1.__eq__(BinaryTree(7, BinaryTree(5,BinaryTree(2)), None)) False """ return (type(self) is type(other) and self.value == other.value and self.left == other.left and self.right == other.right) def __repr__(self) -> str: """ Represent BinaryTree (self) as a string that can be evaluated to produce an equivalent BinaryTree. >>> BinaryTree(1, BinaryTree(2), BinaryTree(3)) BinaryTree(1, BinaryTree(2), BinaryTree(3)) """ if self.value is None: return '' elif self.left is None and self.right is None: return f'BinaryTree({self.value})' else: return "BinaryTree({}, {}, {})".format(repr(self.value), repr(self.left), repr(self.right)) def __str__(self, level: str = '') -> str: """ Return a user-friendly string representing BinaryTree (self) inorder. Indent by indent. >>> b = BinaryTree(1, BinaryTree(2, BinaryTree(3)), BinaryTree(4)) >>> print(b) 4 1 2 3 <BLANKLINE> """ if self.value is None: return '' else: right = self.right.__str__(level + ' ') if self.right else '' left = self.left.__str__(level + ' ') if self.left else '' s = right + "{}{}\n".format(level, str(self.value)) + left return s def __contains__(self, value: object) -> bool: """ Return whether tree rooted at self contains value. >>> t = BinaryTree(5, BinaryTree(7), BinaryTree(9)) >>> 7 in t True >>> t = BinaryTree(5, BinaryTree(7), None) >>> 3 in t False """ # Can also use: self.left.__contains__(value) rather than in # Version 1 if self.value is None: return False elif value == self.value: return True else: return any([self.left is not None and value in self.left, self.right is not None and value in self.right]) # Version 2 # if self.value is None: # return False # else: # return any([self.value == value, # self.left is not None and value in self.left, # self.right is not None and value in self.right]) # Version 3 # if self.value is None: # return False # elif value == self.value: # return True # else: # return any([value in self.left if self.left else False, # value in self.right if self.right else False]) if __name__ == '__main__': import doctest doctest.testmod()
py
1a55ff7fa520084010447498500ab37973886012
import os import glob import sys import functools import jsonpickle from collections import OrderedDict from Orange.widgets import widget, gui, settings import Orange.data from Orange.data.io import FileFormat from DockerClient import DockerClient from BwBase import OWBwBWidget, ConnectionDict, BwbGuiElements, getIconName, getJsonName from PyQt5 import QtWidgets, QtGui class OWPerl(OWBwBWidget): name = "Perl" description = "Minimum perl container" priority = 20 icon = getIconName(__file__, "perl.png") want_main_area = False docker_image_name = "biodepot/perl" docker_image_tag = "5.26.2-r1__alpine-3.7__081418" inputs = [ ("inputFile", str, "handleInputsinputFile"), ("Trigger", str, "handleInputsTrigger"), ] outputs = [("OutputDir", str)] pset = functools.partial(settings.Setting, schema_only=True) runMode = pset(0) exportGraphics = pset(False) runTriggers = pset([]) triggerReady = pset({}) inputConnectionsStore = pset({}) optionsChecked = pset({}) InputFile = pset(None) def __init__(self): super().__init__(self.docker_image_name, self.docker_image_tag) with open(getJsonName(__file__, "Perl")) as f: self.data = jsonpickle.decode(f.read()) f.close() self.initVolumes() self.inputConnections = ConnectionDict(self.inputConnectionsStore) self.drawGUI() def handleInputsinputFile(self, value, *args): if args and len(args) > 0: self.handleInputs("inputFile", value, args[0][0], test=args[0][3]) else: self.handleInputs("inputFile", value, None) def handleInputsTrigger(self, value, *args): if args and len(args) > 0: self.handleInputs("Trigger", value, args[0][0], test=args[0][3]) else: self.handleInputs("inputFile", value, None) def handleOutputs(self): outputValue = None if hasattr(self, "OutputDir"): outputValue = getattr(self, "OutputDir") self.send("OutputDir", outputValue)
py
1a55ffd4b029f2cc8684f21bf780b292f2ab3c52
#!/usr/bin/env python3 """compressed_stream ----------------- A simple python module to handle streams of compressed files. """ from setuptools import setup, find_packages setup( name='compressed_stream', version='0.0.2', author='Cristian Consonni', author_email='crist' 'ian' '<dot>' 'conson' 'ni' '<a' 't>' 'uni' 'tn' '<d' 'ot>i' 't', license='MIT', description='Handle streams of compressed files.', long_description=__doc__, url='https://github.com/CristianCantoro/compressed_stream', packages=find_packages(), entry_points={ 'console_scripts': [ 'decompressgrep=compressed_stream.__main__:decompressgrep', 'decompressless=compressed_stream.__main__:decompressless', 'decompressmore=compressed_stream.__main__:decompressmore', 'decompressdiff=compressed_stream.__main__:decompressdiff', 'decompresscmp=compressed_stream.__main__:decompresscmp', 'decompresscat=compressed_stream.__main__:decompresscat', ], }, options={ 'build_scripts': { 'executable': 'python3', }, }, install_requires=[], zip_safe=False, )
py
1a55ffe095f70e0e410f20db7fd063ce014c346f
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack.package import * class W3nco(CMakePackage): """This library contains Fortran 90 decoder/encoder routines for GRIB edition 1 with NCO changes. This library is deprecated; all functionality has been moved to the w3emc library. This is part of the NCEPLIBS project.""" homepage = "https://noaa-emc.github.io/NCEPLIBS/NCEPLIBS-w3nco/" url = "https://github.com/NOAA-EMC/NCEPLIBS-w3nco/archive/refs/tags/v2.4.1.tar.gz" maintainers = ['t-brown', 'kgerheiser', 'Hang-Lei-NOAA', 'edwardhartnett'] version('2.4.1', sha256='48b06e0ea21d3d0fd5d5c4e7eb50b081402567c1bff6c4abf4fd4f3669070139')
py
1a56006c34032556059e97ac1683195d9eead7e1
#!/usr/local/bin/python3 # -*- coding: utf-8 -*- """ (C) Copyright [2015] InfoSec Consulting, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ... .:::|#:#|::::. .:::::|##|##|::::::. .::::|##|:|##|:::::. ::::|#|:::|#|::::: ::::|#|:::|#|::::: ::::|##|:|##|::::: ::::.|#|:|#|.::::: ::|####|::|####|:: :|###|:|##|:|###|: |###|::|##|::|###| |#|::|##||##|::|#| |#|:|##|::|##|:|#| |#|##|::::::|##|#| |#|::::::::::|#| :::::::::::::: :::::::::: :::::::: :::::: :: """ __author__ = 'Avery Rozar' import os import sys import classes.db_tables try: import yaml except ImportError: print('Installing PyYmal..') os.system('pip3 install PyYAML') import yaml try: import psycopg2 except ImportError: print('Installing Psycopg2..') os.system('pip3 install psycopg2') import psycopg2 try: import sqlalchemy from sqlalchemy import Column, String, Text, Integer, ForeignKey, Sequence, create_engine, MetaData from sqlalchemy.orm import relationship, sessionmaker from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.engine.url import URL except ImportError: print('Installing SQLAlchemy..') os.system('pip3 install SQLAlchemy') import sqlalchemy from sqlalchemy import Column, String, Text, Integer, ForeignKey, Sequence, create_engine, MetaData from sqlalchemy.orm import relationship, sessionmaker from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.engine.url import URL Session = sessionmaker() def connect(): db_yml = open('config/database.yml', 'r') db_info = yaml.safe_load(db_yml) cursor = None try: Session = sessionmaker() engine = create_engine(URL(**db_info), pool_size=20) Session.configure(bind=engine) return Session except sqlalchemy.exc.OperationalError as e: print(e) sys.exit(1) finally: if cursor: cursor.close() def connect_and_create_db(): db_yml = open('config/database.yml', 'r') db_info = yaml.safe_load(db_yml) cursor = None try: engine = create_engine(URL(**db_info)) Session.configure(bind=engine) classes.db_tables.Base.metadata.create_all(engine) return Session except sqlalchemy.exc.OperationalError as e: print(e) sys.exit(1) finally: if cursor: cursor.close() def connect_and_drop_all(): db_yml = open('config/database.yml', 'r') db_info = yaml.safe_load(db_yml) cursor = None try: engine = create_engine(URL(**db_info)) Session.configure(bind=engine) classes.db_tables.Base.metadata.drop_all(engine) return Session except sqlalchemy.exc.OperationalError as e: print(e) sys.exit(1) finally: if cursor: cursor.close()
py
1a560088279ac945cce14d02454e50b8483771e4
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import unittest from apache.aurora.client import base from gen.apache.aurora.api.ttypes import ( PopulateJobResult, Response, ResponseCode, ResponseDetail, Result, TaskConfig ) class TestBase(unittest.TestCase): def test_format_response_with_message(self): resp = Response(responseCode=ResponseCode.ERROR, details=[ResponseDetail(message='Error')]) formatted = base.format_response(resp) assert formatted == 'Response from scheduler: ERROR (message: Error)' def test_format_response_with_details(self): resp = Response(responseCode=ResponseCode.ERROR, details=[ResponseDetail(message='Error')]) formatted = base.format_response(resp) assert formatted == 'Response from scheduler: ERROR (message: Error)' def test_combine_messages(self): resp = Response(responseCode=ResponseCode.ERROR) assert base.combine_messages(resp) == '' resp = Response(responseCode=ResponseCode.ERROR, details=[]) assert base.combine_messages(resp) == '' resp = Response(responseCode=ResponseCode.ERROR, details=[ResponseDetail(message='Error')]) assert base.combine_messages(resp) == 'Error' resp = Response(responseCode=ResponseCode.ERROR, details=[ResponseDetail()]) assert base.combine_messages(resp) == 'Unknown error' resp = Response( responseCode=ResponseCode.ERROR, details=[ResponseDetail(message='Error1'), ResponseDetail(message='Error2')]) assert base.combine_messages(resp) == 'Error1, Error2' def test_get_populated_task_config_set(self): config = TaskConfig() resp = Response(responseCode=ResponseCode.OK, result=Result(populateJobResult=PopulateJobResult( taskConfig=config))) assert config == resp.result.populateJobResult.taskConfig
py
1a560131a27e82eae69a9cf89789ad79575b143f
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Interfaces and abstractions for filesystem access. We should be agnostic whether we're using a "temporary" file system, rooted in a local tmp dir, or whether we're using a true HDFS. This file defines the interface. Note that PEP 355 (Path - object oriented filesystem paths) did not pass. Many file system methods are in __builtin__, os, or os.path, and take strings representing filenames as arguments. We maintain this usage of paths as arguments. When possible, the interfaces here have fidelity to the native python interfaces. """ from __future__ import division from future import standard_library from functools import reduce standard_library.install_aliases() from builtins import map from builtins import range from builtins import object import errno import grp import logging import math import os import posixpath import pwd import re import shutil import stat import sys if sys.version_info[0] > 2: from builtins import open as builtins_open else: from __builtin__ import open as builtins_open SEEK_SET, SEEK_CUR, SEEK_END = os.SEEK_SET, os.SEEK_CUR, os.SEEK_END # The web (and POSIX) always uses forward slash as a separator LEADING_DOUBLE_SEPARATORS = re.compile("^" + posixpath.sep*2) def normpath(path): """ Eliminates double-slashes. Oddly, posixpath.normpath doesn't eliminate leading double slashes, but it does clean-up triple-slashes. """ p = posixpath.normpath(path) return LEADING_DOUBLE_SEPARATORS.sub(posixpath.sep, p) class IllegalPathException(Exception): pass class LocalSubFileSystem(object): """ Facade around normal python filesystem calls, for a temporary/local file system rooted in a root directory. This is intended for testing, and is not a secure chroot alternative. So far, this doesn't have a notion of current working dir, so all paths are "absolute". I dislike the state that having cwd's implies, but it may be convenient. TODO(philip): * chown: want to implement with names, not uids. * chmod * stat: perhaps implement "stats" which returns a dictionary; Hadoop and posix have different stats * set_replication: no equivalent * file-system level stats I think this covers all the functionality in "src/contrib/thriftfs/if/hadoopfs.thrift", but there may be some bits missing. The implementation of the file-like object for HDFS will be a bit tricky: open(f, "w") is generally the equivalent of createFile, but it has to handle the case where f already exists (in which case the best we can do is append, if that). """ def __init__(self, root): """ A file system rooted in root. """ self.root = root self.name = "file://%s" % self.root if not os.path.isdir(root): logging.fatal("Root(%s) not found." % root + " Perhaps you need to run manage.py create_test_fs") def _resolve_path(self, path): """ Returns path to use in native file system. """ # Strip leading "/" if not path.startswith("/"): raise IllegalPathException("Path %s must start with leading /." % path) path = path.lstrip("/") joined = os.path.join(self.root, path) absolute = os.path.abspath(joined) normalized = os.path.normpath(absolute) prefix = os.path.commonprefix([self.root, normalized]) if prefix != self.root: raise IllegalPathException("Path %s is not valid." % path) return joined def _unresolve_path(self, path): """ Given an absolute path within the wrapped filesystem, return the path that the user of this class sees. """ # Resolve it to make it realy absolute assert path.startswith(self.root) return path[len(self.root):] def _wrap(f, paths=None, users=None, groups=None): """ Wraps an existing function f, and transforms path arguments to "resolved paths" and user arguments to uids. By default transforms the first (zeroth) argument as a path, but can be customized. This lets us write: def open(self, name, mode="r"): return open(self._resolve_path(name), mode) as open = _wrap(__builtin__.open) NOTE: No transformation is done on the keyword args; they are not accepted. (The alternative would be to require the names of the keyword transformations.) """ if users is None: users = [] if groups is None: groups = [] if paths is None and 0 not in users and 0 not in groups: paths = [0] # complicated way of taking the intersection of three lists. assert not reduce(set.intersection, list(map(set, [paths, users, groups]))) def wrapped(*args): self = args[0] newargs = list(args[1:]) for i in paths: newargs[i] = self._resolve_path(newargs[i]) for i in users: newargs[i] = pwd.getpwnam(newargs[i]).pw_uid for i in groups: newargs[i] = grp.getgrnam(newargs[i]).gr_gid if f == builtins_open and sys.version_info[0] > 2: return f(*newargs, encoding='utf-8') return f(*newargs) return wrapped # These follow their namesakes. open = _wrap(builtins_open) remove = _wrap(os.remove) mkdir = _wrap(os.mkdir) rmdir = _wrap(os.rmdir) listdir = _wrap(os.listdir) rename = _wrap(os.rename, paths=[0,1]) exists = _wrap(os.path.exists) isfile = _wrap(os.path.isfile) isdir = _wrap(os.path.isdir) chmod = _wrap(os.chmod) join = _wrap(os.path.join) # This could be provided with an error_handler rmtree = _wrap(shutil.rmtree) chown = _wrap(os.chown, paths=[0], users=[1], groups=[2]) @property def uri(self): return self.name def stats(self, path, raise_on_fnf=True): path = self._resolve_path(path) try: statobj = os.stat(path) except OSError as ose: if ose.errno == errno.ENOENT and not raise_on_fnf: return None raise ret = dict() ret["path"] = self._unresolve_path(path) ret["size"] = statobj[stat.ST_SIZE] ret["mtime"] = statobj[stat.ST_MTIME] ret["mode"] = statobj[stat.ST_MODE] ret["user"] = pwd.getpwuid(statobj[stat.ST_UID]).pw_name ret["group"] = grp.getgrgid(statobj[stat.ST_GID]).gr_name return ret def setuser(self, user, groups=None): pass def status(self): return FakeStatus() def listdir_stats(self, path): """ This is an equivalent of listdir that, instead of returning file names, returns a list of stats instead. """ listdir_files = self.listdir(path) paths = [posixpath.join(path, f) for f in listdir_files] return [self.stats(path) for path in paths] def __repr__(self): return "LocalFileSystem(%s)" % repr(self.root) class FakeStatus(object): """ A fake implementation of HDFS health RPCs. These follow the thrift naming conventions, but return dicts or arrays of dicts, because they will be encoded as JSON. """ def get_messages(self): """Warnings/lint checks.""" return [ dict(type="WARNING",message="All your base belong to us."), dict(type="INFO", message="Hamster Dance!") ] def get_health(self): o = dict() GB = 1024*1024*1024 o["bytesTotal"] = 5*GB o["bytesUsed"] = math.floor(5*GB / 2) o["bytesRemaining"] = 2*GB o["bytesNonDfs"] = math.floor(GB / 2) o["liveDataNodes"] = 13 o["deadDataNodes"] = 2 o["upgradeStatus"] = dict(version=13, percentComplete=100, finalized=True) return o def get_datanode_report(self): r = [] for i in range(0, 13): dinfo = dict() dinfo["name"] = "fake-%d" % i dinfo["storageID"] = "fake-id-%d" % i dinfo["host"] = "fake-host-%d" % i dinfo["capacity"] = 123456789 dinfo["dfsUsed"] = 23456779 dinfo["remaining"] = 100000010 dinfo["xceiverCount"] = 3 dinfo["state"] = "NORMAL_STATE" r.append(dinfo) for i in range(0, 2): dinfo = dict() dinfo["name"] = "fake-dead-%d" % i dinfo["storageID"] = "fake-dead-id-%d" % i dinfo["host"] = "fake-dead-host-%d" % i dinfo["capacity"] = 523456789 dinfo["dfsUsed"] = 23456779 dinfo["remaining"] = 500000010 dinfo["xceiverCount"] = 3 dinfo["state"] = "DECOMISSION_INPROGRESS" r.append(dinfo) return r
py
1a560169e5ffaa15bf7771c99187dc1770159c28
import typing def main() -> typing.NoReturn: s = input() print(2 * min(s.count('0'), s.count('1'))) main()
py
1a560250a939b3e8d062a7cf5397c3cd7f14f175
import anndata as ad import episcanpy as epi import scanpy as sc import pandas as pd import numpy as np import matplotlib.pyplot as plt import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.io as pio from scanpy.plotting._tools.scatterplots import _get_palette def river_plot_2_omics(adata, source, target, omic, cell_number=False, title='River plot (Sankey Diagram)', save=None, scale=4): """ cell number count doesn't work in this function yet. """ omics = list(set(adata.obs[omic])) # print(omics[1], ' cells on the left') adata_rna = adata[adata.obs[omic] == omics[1], :].copy() # print(omics[0], ' cells on the right') adata_atac = adata[adata.obs[omic] == omics[0], :].copy() df_nodes_rna, df_links_rna = __tool_sankey(adata_rna, source=source, target=target, cell_number=False) key_infos = pd.crosstab(adata_atac.obs[target], adata_atac.obs[source]) # key_infos label_list = key_infos.columns.tolist() id_list = list(range(df_nodes_rna.shape[0], df_nodes_rna.shape[0] + len(label_list), 1)) nodes = [['ID', 'Label', 'Color']] if source + '_colors' not in adata_atac.uns.keys(): adata_atac.uns[source + '_colors'] = list(_get_palette(adata_atac, source).values()) if type(adata_atac.uns[source + '_colors']) == np.ndarray: adata_atac.uns[source + '_colors'] = adata_atac.uns[source + '_colors'].tolist() colors = adata.uns[source + '_colors'] + adata.uns[target + '_colors'] index = 0 for number in id_list: tmp_list = [number, label_list[index], colors[index]] nodes.append(tmp_list) index += 1 ### merge atac nodes to rna nodes nodes_headers = nodes.pop(0) df_nodes = pd.DataFrame(nodes, columns=nodes_headers) df_nodes = df_nodes_rna.append(df_nodes) index_target = df_nodes_rna.shape[0] - len(nodes) # print(index_target) del nodes ### add cell number if cell_number: df_nodes.index = df_nodes['ID'] key_infos = pd.crosstab(adata_atac.obs[target], adata_atac.obs[source], margins=True) atac_cell_numbers_source = ['(n=' + str(x) + ')' for x in key_infos.loc['All'].tolist()[:-1]] atac_cell_numbers_target = key_infos['All'].tolist()[:-1] key_infos = pd.crosstab(adata_rna.obs[target], adata_rna.obs[source], margins=True) rna_cell_numbers_source = ['(n=' + str(x) + ')' for x in key_infos.loc['All'].tolist()[:-1]] rna_cell_numbers_target = key_infos['All'].tolist()[:-1] rna_cell_numbers_target = [": ".join([str(omics[1]), str(x)]) for x in rna_cell_numbers_target] atac_cell_numbers_target = [": ".join([str(omics[0]), str(x)]) for x in atac_cell_numbers_target] target_cell_numbers = [] index = 0 for rna_count in rna_cell_numbers_target: target_cell_numbers.append('(' + ' & '.join([str(rna_count), str(atac_cell_numbers_target[index])]) + ')') index += 1 total_count = rna_cell_numbers_source + target_cell_numbers + atac_cell_numbers_source new_label = [] index = 0 for n_cells in total_count: new_label.append(' '.join([str(df_nodes['Label'][index]), str(n_cells)])) index += 1 df_nodes['Label'] = new_label ###### LINKS ###### key_infos_values = key_infos.values.tolist() key_infos_index = key_infos.index.tolist() # make the link df links = [['Source', 'Target', 'Value', 'Link Color']] # index_target = len(label_list)-len(key_infos.index.tolist()) # print(key_infos) for index_value in key_infos_values: index_source = df_nodes_rna.shape[0] index_color = 0 for count in index_value: tmp_list = [index_source, index_target, count, colors[index_color]] index_source += 1 index_color += 1 links.append(tmp_list) index_target += 1 ### merge atac links to rna links links_headers = links.pop(0) df_links = pd.DataFrame(links, columns=links_headers) tmp_var = df_links['Source'].tolist() tmp_var2 = df_links['Target'].tolist() df_links['Source'] = tmp_var2 df_links['Target'] = tmp_var del tmp_var, tmp_var2 df_links = df_links_rna.append(df_links) new_title = title + '\n (' + omics[1] + ' cells on the left & ' + omics[0] + ' cells on the right)' __plot_sankey(df_nodes, df_links, title=new_title, save=save, scale=4) def __tool_sankey(adata, source, target, cell_number=True): # extract key_infos in adata key_infos = pd.crosstab(adata.obs[target], adata.obs[source]) ###### NODES ###### # transform key_infos into the nodes df nodes = [['ID', 'Label', 'Color']] if not cell_number: label_list = key_infos.columns.tolist() + key_infos.index.tolist() else: target_cell_nb = pd.crosstab(adata.obs[target], adata.obs[target], margins=True) source_cell_nb = pd.crosstab(adata.obs[source], adata.obs[source], margins=True) source_names = [] for n in range(0, len(key_infos.columns.tolist())): source_names.append(" n=".join([str(key_infos.columns.tolist()[n]), str(source_cell_nb['All'][n])])) target_names = [] index = 0 for target_name in key_infos.index.tolist(): # print(target_name, target_cell_nb['All'][index]) target_names.append(" n=".join([target_name, str(target_cell_nb['All'][index])])) index += 1 label_list = source_names + target_names # print(label_list) id_list = list(range(0, len(label_list), 1)) # Pay attention if clusters_colors or 'orig.ident_colors' missing if source + '_colors' not in adata.uns.keys(): adata.uns[source + '_colors'] = list(_get_palette(adata, source).values()) if target + '_colors' not in adata.uns.keys(): adata.uns[target + '_colors'] = list(_get_palette(adata, target).values()) if type(adata.uns[source + '_colors']) == np.ndarray: adata.uns[source + '_colors'] = adata.uns[source + '_colors'].tolist() if type(adata.uns[target + '_colors']) == np.ndarray: adata.uns[target + '_colors'] = adata.uns[target + '_colors'].tolist() colors = adata.uns[source + '_colors'] + adata.uns[target + '_colors'] for number in id_list: tmp_list = [number, label_list[number], colors[number]] nodes.append(tmp_list) ###### LINKS ###### key_infos_values = key_infos.values.tolist() key_infos_index = key_infos.index.tolist() # make the link df links = [['Source', 'Target', 'Value', 'Link Color']] index_target = len(label_list) - len(key_infos.index.tolist()) for index_value in key_infos_values: index_source = 0 for count in index_value: tmp_list = [index_source, index_target, count, colors[index_source]] index_source += 1 links.append(tmp_list) index_target += 1 # Retrieve headers and build dataframes nodes_headers = nodes.pop(0) links_headers = links.pop(0) df_nodes = pd.DataFrame(nodes, columns=nodes_headers) df_links = pd.DataFrame(links, columns=links_headers) return df_nodes, df_links def __plot_sankey(df_nodes, df_links, title="Draw Sankey Diagram from dataframes", save=None, scale=1): """ """ # Sankey plot setup data_trace = dict( type='sankey', domain=dict( x=[0, 1], y=[0, 1] ), orientation="h", valueformat=".0f", node=dict( pad=10, # thickness = 30, line=dict( color="black", width=0 ), label=df_nodes['Label'].dropna(axis=0, how='any'), color=df_nodes['Color'] ), link=dict( source=df_links['Source'].dropna(axis=0, how='any'), target=df_links['Target'].dropna(axis=0, how='any'), value=df_links['Value'].dropna(axis=0, how='any'), color=df_links['Link Color'].dropna(axis=0, how='any'), ) ) layout = dict( title=title, height=772, font=dict( size=10), ) fig = dict(data=[data_trace], layout=layout) # fig.savefig('test.png') iplot(fig, validate=False) if save: pio.write_image(fig, save, width=700, height=775, scale=scale)
py
1a5602752e8a7ad4a4c6f51137506b7e55e330ac
import argparse import math from urllib.request import urlopen import sys import os import subprocess import glob from braceexpand import braceexpand from types import SimpleNamespace # pip install taming-transformers work with Gumbel, but does works with coco etc # appending the path works with Gumbel, but gives ModuleNotFoundError: No module named 'transformers' for coco etc sys.path.append("taming-transformers") import os.path from omegaconf import OmegaConf from taming.models import cond_transformer, vqgan import torch from torch import nn, optim from torch.nn import functional as F from torchvision import transforms from torchvision.transforms import functional as TF torch.backends.cudnn.benchmark = ( False # NR: True is a bit faster, but can lead to OOM. False is more deterministic. ) # torch.use_deterministic_algorithms(True) # NR: grid_sampler_2d_backward_cuda does not have a deterministic implementation from torch_optimizer import DiffGrad, AdamP, RAdam from perlin_numpy import generate_fractal_noise_2d from CLIP import clip import kornia import kornia.augmentation as K import numpy as np import imageio from PIL import ImageFile, Image, PngImagePlugin ImageFile.LOAD_TRUNCATED_IMAGES = True # or 'border' global_padding_mode = "reflection" global_aspect_width = 1 vqgan_config_table = { "imagenet_f16_1024": "http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_1024.yaml", "imagenet_f16_16384": "http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.yaml", "openimages_f16_8192": "https://heibox.uni-heidelberg.de/d/2e5662443a6b4307b470/files/?p=%2Fconfigs%2Fmodel.yaml&dl=1", "coco": "https://dl.nmkd.de/ai/clip/coco/coco.yaml", "faceshq": "https://drive.google.com/uc?export=download&id=1fHwGx_hnBtC8nsq7hesJvs-Klv-P0gzT", "wikiart_1024": "http://mirror.io.community/blob/vqgan/wikiart.yaml", "wikiart_16384": "http://mirror.io.community/blob/vqgan/wikiart_16384.yaml", "sflckr": "https://heibox.uni-heidelberg.de/d/73487ab6e5314cb5adba/files/?p=%2Fconfigs%2F2020-11-09T13-31-51-project.yaml&dl=1", } vqgan_checkpoint_table = { "imagenet_f16_1024": "http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_1024.ckpt", "imagenet_f16_16384": "http://mirror.io.community/blob/vqgan/vqgan_imagenet_f16_16384.ckpt", "openimages_f16_8192": "https://heibox.uni-heidelberg.de/d/2e5662443a6b4307b470/files/?p=%2Fckpts%2Flast.ckpt&dl=1", "coco": "https://dl.nmkd.de/ai/clip/coco/coco.ckpt", "faceshq": "https://app.koofr.net/content/links/a04deec9-0c59-4673-8b37-3d696fe63a5d/files/get/last.ckpt?path=%2F2020-11-13T21-41-45_faceshq_transformer%2Fcheckpoints%2Flast.ckpt", "wikiart_1024": "http://mirror.io.community/blob/vqgan/wikiart.ckpt", "wikiart_16384": "http://mirror.io.community/blob/vqgan/wikiart_16384.ckpt", "sflckr": "https://heibox.uni-heidelberg.de/d/73487ab6e5314cb5adba/files/?p=%2Fcheckpoints%2Flast.ckpt&dl=1", } # https://stackoverflow.com/a/39662359 def isnotebook(): try: shell = get_ipython().__class__.__name__ if shell == "ZMQInteractiveShell": return True # Jupyter notebook or qtconsole elif shell == "Shell": return True # Seems to be what co-lab does elif shell == "TerminalInteractiveShell": return False # Terminal running IPython else: return False # Other type (?) except NameError: return False # Probably standard Python interpreter IS_NOTEBOOK = isnotebook() if IS_NOTEBOOK: from IPython import display from tqdm.notebook import tqdm else: from tqdm import tqdm # file helpers def real_glob(rglob): glob_list = braceexpand(rglob) files = [] for g in glob_list: files = files + glob.glob(g) return sorted(files) # Functions and classes def sinc(x): return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([])) def lanczos(x, a): cond = torch.logical_and(-a < x, x < a) out = torch.where(cond, sinc(x) * sinc(x / a), x.new_zeros([])) return out / out.sum() def ramp(ratio, width): n = math.ceil(width / ratio + 1) out = torch.empty([n]) cur = 0 for i in range(out.shape[0]): out[i] = cur cur += ratio return torch.cat([-out[1:].flip([0]), out])[1:-1] # NR: Testing with different intital images def old_random_noise_image(w, h): random_image = Image.fromarray( np.random.randint(0, 255, (w, h, 3), dtype=np.dtype("uint8")) ) return random_image def NormalizeData(data): return (data - np.min(data)) / (np.max(data) - np.min(data)) def random_noise_image(w, h): # scale up roughly as power of 2 if w > 1024 or h > 1024: side, octp = 2048, 7 elif w > 512 or h > 512: side, octp = 1024, 6 elif w > 256 or h > 256: side, octp = 512, 5 else: side, octp = 256, 4 nr = NormalizeData(generate_fractal_noise_2d((side, side), (32, 32), octp)) ng = NormalizeData(generate_fractal_noise_2d((side, side), (32, 32), octp)) nb = NormalizeData(generate_fractal_noise_2d((side, side), (32, 32), octp)) stack = np.dstack((nr, ng, nb)) substack = stack[:h, :w, :] im = Image.fromarray((255.9 * stack).astype("uint8")) return im # testing def gradient_2d(start, stop, width, height, is_horizontal): if is_horizontal: return np.tile(np.linspace(start, stop, width), (height, 1)) else: return np.tile(np.linspace(start, stop, height), (width, 1)).T def gradient_3d(width, height, start_list, stop_list, is_horizontal_list): result = np.zeros((height, width, len(start_list)), dtype=float) for i, (start, stop, is_horizontal) in enumerate( zip(start_list, stop_list, is_horizontal_list) ): result[:, :, i] = gradient_2d(start, stop, width, height, is_horizontal) return result def random_gradient_image(w, h): array = gradient_3d( w, h, (0, 0, np.random.randint(0, 255)), ( np.random.randint(1, 255), np.random.randint(2, 255), np.random.randint(3, 128), ), (True, False, False), ) random_image = Image.fromarray(np.uint8(array)) return random_image # Not used? def resample(input, size, align_corners=True): n, c, h, w = input.shape dh, dw = size input = input.view([n * c, 1, h, w]) if dh < h: kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype) pad_h = (kernel_h.shape[0] - 1) // 2 input = F.pad(input, (0, 0, pad_h, pad_h), "reflect") input = F.conv2d(input, kernel_h[None, None, :, None]) if dw < w: kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype) pad_w = (kernel_w.shape[0] - 1) // 2 input = F.pad(input, (pad_w, pad_w, 0, 0), "reflect") input = F.conv2d(input, kernel_w[None, None, None, :]) input = input.view([n, c, h, w]) return F.interpolate(input, size, mode="bicubic", align_corners=align_corners) class ReplaceGrad(torch.autograd.Function): @staticmethod def forward(ctx, x_forward, x_backward): ctx.shape = x_backward.shape return x_forward @staticmethod def backward(ctx, grad_in): return None, grad_in.sum_to_size(ctx.shape) replace_grad = ReplaceGrad.apply class ClampWithGrad(torch.autograd.Function): @staticmethod def forward(ctx, input, min, max): ctx.min = min ctx.max = max ctx.save_for_backward(input) return input.clamp(min, max) @staticmethod def backward(ctx, grad_in): (input,) = ctx.saved_tensors return ( grad_in * (grad_in * (input - input.clamp(ctx.min, ctx.max)) >= 0), None, None, ) clamp_with_grad = ClampWithGrad.apply def vector_quantize(x, codebook): d = ( x.pow(2).sum(dim=-1, keepdim=True) + codebook.pow(2).sum(dim=1) - 2 * x @ codebook.T ) indices = d.argmin(-1) x_q = F.one_hot(indices, codebook.shape[0]).to(d.dtype) @ codebook return replace_grad(x_q, x) def spherical_dist_loss(x, y): x = F.normalize(x, dim=-1) y = F.normalize(y, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) class Prompt(nn.Module): def __init__(self, embed, weight=1.0, stop=float("-inf")): super().__init__() self.register_buffer("embed", embed) self.register_buffer("weight", torch.as_tensor(weight)) self.register_buffer("stop", torch.as_tensor(stop)) def forward(self, input): input_normed = F.normalize(input.unsqueeze(1), dim=2) embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2) dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2) dists = dists * self.weight.sign() return ( self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean() ) def parse_prompt(prompt): vals = prompt.rsplit(":", 2) vals = vals + ["", "1", "-inf"][len(vals) :] # print(f"parsed vals is {vals}") return vals[0], float(vals[1]), float(vals[2]) from typing import cast, Dict, List, Optional, Tuple, Union # override class to get padding_mode class MyRandomPerspective(K.RandomPerspective): def apply_transform( self, input: torch.Tensor, params: Dict[str, torch.Tensor], transform: Optional[torch.Tensor] = None, ) -> torch.Tensor: _, _, height, width = input.shape transform = cast(torch.Tensor, transform) return kornia.geometry.warp_perspective( input, transform, (height, width), mode=self.resample.name.lower(), align_corners=self.align_corners, padding_mode=global_padding_mode, ) cached_spot_indexes = {} def fetch_spot_indexes(sideX, sideY): # make sure image is loaded if we need it cache_key = (sideX, sideY) if cache_key not in cached_spot_indexes: if global_aspect_width != 1: mask_image = Image.open("inputs/spot_wide.png") else: mask_image = Image.open("inputs/spot_square.png") # this is a one channel mask mask_image = mask_image.convert("RGB") mask_image = mask_image.resize((sideX, sideY), Image.LANCZOS) mask_image_tensor = TF.to_tensor(mask_image) # print("ONE CHANNEL ", mask_image_tensor.shape) mask_indexes = mask_image_tensor.ge(0.5).to(device) # print("GE ", mask_indexes.shape) # sys.exit(0) mask_indexes_off = mask_image_tensor.lt(0.5).to(device) cached_spot_indexes[cache_key] = [mask_indexes, mask_indexes_off] return cached_spot_indexes[cache_key] # n = torch.ones((3,5,5)) # f = generate.fetch_spot_indexes(5, 5) # f[0].shape = [60,3] class MakeCutouts(nn.Module): def __init__(self, cut_size, cutn, cut_pow=1.0): global global_aspect_width super().__init__() self.cut_size = cut_size self.cutn = cutn self.cut_pow = cut_pow self.transforms = None augmentations = [] if global_aspect_width != 1: augmentations.append( K.RandomCrop( size=(self.cut_size, self.cut_size), p=1.0, return_transform=True ) ) augmentations.append( MyRandomPerspective(distortion_scale=0.40, p=0.7, return_transform=True) ) augmentations.append( K.RandomResizedCrop( size=(self.cut_size, self.cut_size), scale=(0.15, 0.80), ratio=(0.75, 1.333), cropping_mode="resample", p=0.7, return_transform=True, ) ) augmentations.append( K.ColorJitter(hue=0.1, saturation=0.1, p=0.8, return_transform=True) ) self.augs = nn.Sequential(*augmentations) # self.augs = nn.Sequential( # # K.RandomHorizontalFlip(p=0.5), # NR: add augmentation options # # K.RandomVerticalFlip(p=0.5), # # K.RandomSolarize(0.01, 0.01, p=0.7), # # K.RandomSharpness(0.3,p=0.4), # # K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.1,1), ratio=(0.75,1.333), cropping_mode='resample', p=0.5, return_transform=True), # K.RandomCrop(size=(self.cut_size,self.cut_size), p=1.0), # # K.RandomAffine(degrees=15, translate=0.1, p=0.7, padding_mode='border', return_transform=True), # # MyRandomPerspective(distortion_scale=0.40, p=0.7, return_transform=True), # # K.RandomResizedCrop(size=(self.cut_size,self.cut_size), scale=(0.15,0.80), ratio=(0.75,1.333), cropping_mode='resample', p=0.7, return_transform=True), # K.ColorJitter(hue=0.1, saturation=0.1, p=0.8, return_transform=True), # # K.RandomErasing((.1, .4), (.3, 1/.3), same_on_batch=True, p=0.7, return_transform=True), # ) self.noise_fac = 0.1 # Pooling self.av_pool = nn.AdaptiveAvgPool2d((self.cut_size, self.cut_size)) self.max_pool = nn.AdaptiveMaxPool2d((self.cut_size, self.cut_size)) def forward(self, input, spot=None): global i, global_aspect_width sideY, sideX = input.shape[2:4] max_size = min(sideX, sideY) min_size = min(sideX, sideY, self.cut_size) cutouts = [] mask_indexes = None if spot is not None: spot_indexes = fetch_spot_indexes(self.cut_size, self.cut_size) if spot == 0: mask_indexes = spot_indexes[1] else: mask_indexes = spot_indexes[0] # print("Mask indexes ", mask_indexes) for _ in range(self.cutn): # size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size) # offsetx = torch.randint(0, sideX - size + 1, ()) # offsety = torch.randint(0, sideY - size + 1, ()) # cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size] # cutouts.append(resample(cutout, (self.cut_size, self.cut_size))) # cutout = transforms.Resize(size=(self.cut_size, self.cut_size))(input) # Pooling cutout = (self.av_pool(input) + self.max_pool(input)) / 2 if mask_indexes is not None: cutout[0][mask_indexes] = 0.5 if global_aspect_width != 1: cutout = kornia.geometry.transform.rescale(cutout, (1, 16 / 9)) # if i % 50 == 0 and _ == 0: # print(cutout.shape) # TF.to_pil_image(cutout[0].cpu()).save(f"cutout_im_{i:02d}_{spot}.png") cutouts.append(cutout) if self.transforms is not None: # print("Cached transforms available, but I'm not smart enough to use them") # print(cutouts.shape) # print(torch.cat(cutouts, dim=0).shape) # print(self.transforms.shape) # batch = kornia.geometry.transform.warp_affine(torch.cat(cutouts, dim=0), self.transforms, (sideY, sideX)) # batch = self.transforms @ torch.cat(cutouts, dim=0) batch = kornia.geometry.transform.warp_perspective( torch.cat(cutouts, dim=0), self.transforms, (self.cut_size, self.cut_size), padding_mode=global_padding_mode, ) # if i < 4: # for j in range(4): # TF.to_pil_image(batch[j].cpu()).save(f"cached_im_{i:02d}_{j:02d}_{spot}.png") else: batch, self.transforms = self.augs(torch.cat(cutouts, dim=0)) # if i < 4: # for j in range(4): # TF.to_pil_image(batch[j].cpu()).save(f"live_im_{i:02d}_{j:02d}_{spot}.png") # print(batch.shape, self.transforms.shape) if self.noise_fac: facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac) batch = batch + facs * torch.randn_like(batch) return batch def load_vqgan_model(config_path, checkpoint_path): global gumbel gumbel = False config = OmegaConf.load(config_path) if config.model.target == "taming.models.vqgan.VQModel": model = vqgan.VQModel(**config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) elif config.model.target == "taming.models.vqgan.GumbelVQ": model = vqgan.GumbelVQ(**config.model.params) model.eval().requires_grad_(False) model.init_from_ckpt(checkpoint_path) gumbel = True elif config.model.target == "taming.models.cond_transformer.Net2NetTransformer": parent_model = cond_transformer.Net2NetTransformer(**config.model.params) parent_model.eval().requires_grad_(False) parent_model.init_from_ckpt(checkpoint_path) model = parent_model.first_stage_model else: raise ValueError(f"unknown model type: {config.model.target}") del model.loss return model def resize_image(image, out_size): ratio = image.size[0] / image.size[1] area = min(image.size[0] * image.size[1], out_size[0] * out_size[1]) size = round((area * ratio) ** 0.5), round((area / ratio) ** 0.5) return image.resize(size, Image.LANCZOS) def wget_file(url, out): try: output = subprocess.check_output(["wget", "-O", out, url]) except subprocess.CalledProcessError as cpe: output = e.output print("Ignoring non-zero exit: ", output) def do_init(args): global model, opt, perceptors, normalize, cutoutsTable, cutoutSizeTable global z, z_orig, z_targets, z_labels, z_min, z_max, init_image_tensor global gside_X, gside_Y, overlay_image_rgba global pmsTable, pImages, device, spotPmsTable, spotOffPmsTable # Do it (init that is) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if args.vqgan_config is not None: vqgan_config = args.vqgan_config vqgan_checkpoint = args.vqgan_checkpoint else: # the "vqgan_model" option also downloads if necessary vqgan_config = f"models/vqgan_{args.vqgan_model}.yaml" vqgan_checkpoint = f"models/vqgan_{args.vqgan_model}.ckpt" if not os.path.exists(vqgan_config): wget_file(vqgan_config_table[args.vqgan_model], vqgan_config) if not os.path.exists(vqgan_checkpoint): wget_file(vqgan_checkpoint_table[args.vqgan_model], vqgan_checkpoint) model = load_vqgan_model(vqgan_config, vqgan_checkpoint).to(device) jit = True if float(torch.__version__[:3]) < 1.8 else False f = 2 ** (model.decoder.num_resolutions - 1) for clip_model in args.clip_models: perceptor = ( clip.load(clip_model, jit=jit)[0].eval().requires_grad_(False).to(device) ) perceptors[clip_model] = perceptor # TODO: is one cut_size enought? I hope so. cut_size = perceptor.visual.input_resolution cutoutSizeTable[clip_model] = cut_size if not cut_size in cutoutsTable: make_cutouts = MakeCutouts(cut_size, args.num_cuts, cut_pow=args.cut_pow) cutoutsTable[cut_size] = make_cutouts toksX, toksY = args.size[0] // f, args.size[1] // f sideX, sideY = toksX * f, toksY * f if gumbel: e_dim = 256 n_toks = model.quantize.n_embed z_min = model.quantize.embed.weight.min(dim=0).values[None, :, None, None] z_max = model.quantize.embed.weight.max(dim=0).values[None, :, None, None] else: e_dim = model.quantize.e_dim n_toks = model.quantize.n_e z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None] z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None] # z_min = model.quantize.embedding.weight.min(dim=0).values[None, :, None, None] # z_max = model.quantize.embedding.weight.max(dim=0).values[None, :, None, None] # normalize_imagenet = transforms.Normalize(mean=[0.485, 0.456, 0.406], # std=[0.229, 0.224, 0.225]) # save sideX, sideY in globals (need if using overlay) gside_X = sideX gside_Y = sideY init_image_tensor = None # Image initialisation if args.init_image or args.init_noise: # setup init image wih pil # first - always start with noise or blank if args.init_noise == "pixels": img = random_noise_image(args.size[0], args.size[1]) elif args.init_noise == "gradient": img = random_gradient_image(args.size[0], args.size[1]) else: img = Image.new( mode="RGB", size=(args.size[0], args.size[1]), color=(255, 255, 255) ) starting_image = img.convert("RGB") starting_image = starting_image.resize((sideX, sideY), Image.LANCZOS) if args.init_image: # now we might overlay an init image (init_image also can be recycled as overlay) if "http" in args.init_image: init_image = Image.open(urlopen(args.init_image)) else: init_image = Image.open(args.init_image) # this version is needed potentially for the loss function init_image_rgb = init_image.convert("RGB") init_image_rgb = init_image_rgb.resize((sideX, sideY), Image.LANCZOS) init_image_tensor = TF.to_tensor(init_image_rgb) init_image_tensor = init_image_tensor.to(device).unsqueeze(0) # this version gets overlaid on the background (noise) init_image_rgba = init_image.convert("RGBA") init_image_rgba = init_image_rgba.resize((sideX, sideY), Image.LANCZOS) top_image = init_image_rgba.copy() if args.init_image_alpha and args.init_image_alpha >= 0: top_image.putalpha(args.init_image_alpha) starting_image.paste(top_image, (0, 0), top_image) starting_image.save("starting_image.png") starting_tensor = TF.to_tensor(starting_image) z, *_ = model.encode(starting_tensor.to(device).unsqueeze(0) * 2 - 1) else: # legacy init one_hot = F.one_hot( torch.randint(n_toks, [toksY * toksX], device=device), n_toks ).float() # z = one_hot @ model.quantize.embedding.weight if gumbel: z = one_hot @ model.quantize.embed.weight else: z = one_hot @ model.quantize.embedding.weight z = z.view([-1, toksY, toksX, e_dim]).permute(0, 3, 1, 2) if args.overlay_every: if args.overlay_image: if "http" in args.overlay_image: overlay_image = Image.open(urlopen(args.overlay_image)) else: overlay_image = Image.open(args.overlay_image) overlay_image_rgba = overlay_image.convert("RGBA") overlay_image_rgba = overlay_image_rgba.resize( (sideX, sideY), Image.LANCZOS ) else: overlay_image_rgba = init_image_rgba if args.overlay_alpha: overlay_image_rgba.putalpha(args.overlay_alpha) overlay_image_rgba.save("overlay_image.png") if args.target_images is not None: z_targets = [] filelist = real_glob(args.target_images) for target_image in filelist: target_image = Image.open(target_image) target_image_rgb = target_image.convert("RGB") target_image_rgb = target_image_rgb.resize((sideX, sideY), Image.LANCZOS) target_image_tensor = TF.to_tensor(target_image_rgb) target_image_tensor = target_image_tensor.to(device).unsqueeze(0) * 2 - 1 z_target, *_ = model.encode(target_image_tensor) z_targets.append(z_target) if args.image_labels is not None: z_labels = [] filelist = real_glob(args.image_labels) cur_labels = [] for image_label in filelist: image_label = Image.open(image_label) image_label_rgb = image_label.convert("RGB") image_label_rgb = image_label_rgb.resize((sideX, sideY), Image.LANCZOS) image_label_rgb_tensor = TF.to_tensor(image_label_rgb) image_label_rgb_tensor = ( image_label_rgb_tensor.to(device).unsqueeze(0) * 2 - 1 ) z_label, *_ = model.encode(image_label_rgb_tensor) cur_labels.append(z_label) image_embeddings = torch.stack(cur_labels) print("Processing labels: ", image_embeddings.shape) image_embeddings /= image_embeddings.norm(dim=-1, keepdim=True) image_embeddings = image_embeddings.mean(dim=0) image_embeddings /= image_embeddings.norm() z_labels.append(image_embeddings.unsqueeze(0)) z_orig = z.clone() z.requires_grad_(True) pmsTable = {} spotPmsTable = {} spotOffPmsTable = {} for clip_model in args.clip_models: pmsTable[clip_model] = [] spotPmsTable[clip_model] = [] spotOffPmsTable[clip_model] = [] pImages = [] normalize = transforms.Normalize( mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], ) # CLIP tokenize/encode # NR: Weights / blending for prompt in args.prompts: for clip_model in args.clip_models: pMs = pmsTable[clip_model] perceptor = perceptors[clip_model] txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for prompt in args.spot_prompts: for clip_model in args.clip_models: pMs = spotPmsTable[clip_model] perceptor = perceptors[clip_model] txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for prompt in args.spot_prompts_off: for clip_model in args.clip_models: pMs = spotOffPmsTable[clip_model] perceptor = perceptors[clip_model] txt, weight, stop = parse_prompt(prompt) embed = perceptor.encode_text(clip.tokenize(txt).to(device)).float() pMs.append(Prompt(embed, weight, stop).to(device)) for label in args.labels: for clip_model in args.clip_models: pMs = pmsTable[clip_model] perceptor = perceptors[clip_model] txt, weight, stop = parse_prompt(label) texts = [ template.format(txt) for template in imagenet_templates ] # format with class print(f"Tokenizing all of {texts}") texts = clip.tokenize(texts).to(device) # tokenize class_embeddings = perceptor.encode_text(texts) # embed with text encoder class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True) class_embedding = class_embeddings.mean(dim=0) class_embedding /= class_embedding.norm() pMs.append(Prompt(class_embedding.unsqueeze(0), weight, stop).to(device)) for prompt in args.image_prompts: path, weight, stop = parse_prompt(prompt) img = Image.open(path) pil_image = img.convert("RGB") img = resize_image(pil_image, (sideX, sideY)) pImages.append(TF.to_tensor(img).unsqueeze(0).to(device)) # batch = make_cutouts(TF.to_tensor(img).unsqueeze(0).to(device)) # embed = perceptor.encode_image(normalize(batch)).float() # pMs.append(Prompt(embed, weight, stop).to(device)) for seed, weight in zip(args.noise_prompt_seeds, args.noise_prompt_weights): gen = torch.Generator().manual_seed(seed) embed = torch.empty([1, perceptor.visual.output_dim]).normal_(generator=gen) pMs.append(Prompt(embed, weight).to(device)) # Set the optimiser if args.optimiser == "Adam": opt = optim.Adam([z], lr=args.step_size) # LR=0.1 elif args.optimiser == "AdamW": opt = optim.AdamW([z], lr=args.step_size) # LR=0.2 elif args.optimiser == "Adagrad": opt = optim.Adagrad([z], lr=args.step_size) # LR=0.5+ elif args.optimiser == "Adamax": opt = optim.Adamax([z], lr=args.step_size) # LR=0.5+? elif args.optimiser == "DiffGrad": opt = DiffGrad([z], lr=args.step_size) # LR=2+? elif args.optimiser == "AdamP": opt = AdamP([z], lr=args.step_size) # LR=2+? elif args.optimiser == "RAdam": opt = RAdam([z], lr=args.step_size) # LR=2+? # Output for the user print("Using device:", device) print("Optimising using:", args.optimiser) if args.prompts: print("Using text prompts:", args.prompts) if args.spot_prompts: print("Using spot prompts:", args.spot_prompts) if args.spot_prompts_off: print("Using spot off prompts:", args.spot_prompts_off) if args.image_prompts: print("Using image prompts:", args.image_prompts) if args.init_image: print("Using initial image:", args.init_image) if args.noise_prompt_weights: print("Noise prompt weights:", args.noise_prompt_weights) if args.seed is None: seed = torch.seed() else: seed = args.seed torch.manual_seed(seed) print("Using seed:", seed) def synth(z): if gumbel: z_q = vector_quantize(z.movedim(1, 3), model.quantize.embed.weight).movedim( 3, 1 ) # Vector quantize else: z_q = vector_quantize(z.movedim(1, 3), model.quantize.embedding.weight).movedim( 3, 1 ) return clamp_with_grad(model.decode(z_q).add(1).div(2), 0, 1) # dreaded globals (for now) z = None z_orig = None z_targets = None z_labels = None z_min = None z_max = None opt = None model = None perceptors = {} normalize = None cutoutsTable = {} cutoutSizeTable = {} init_image_tensor = None pmsTable = None spotPmsTable = None spotOffPmsTable = None pImages = None gside_X = None gside_Y = None overlay_image_rgba = None device = None # OK, THIS ONE IS AWFUL i = None @torch.no_grad() def z_to_pil(): global z out = synth(z) return TF.to_pil_image(out[0].cpu()) @torch.no_grad() def checkin(args, i, losses): losses_str = ", ".join(f"{loss.item():g}" for loss in losses) tqdm.write(f"i: {i}, loss: {sum(losses).item():g}, losses: {losses_str}") info = PngImagePlugin.PngInfo() info.add_text("comment", f"{args.prompts}") img = z_to_pil() img.save(args.output, pnginfo=info) if IS_NOTEBOOK: display.display(display.Image(args.output)) def ascend_txt(args): global i, perceptors, normalize, cutoutsTable, cutoutSizeTable global z, z_orig, z_targets, z_labels, init_image_tensor global pmsTable, spotPmsTable, spotOffPmsTable, global_padding_mode out = synth(z) result = [] if i % 2 == 0: global_padding_mode = "reflection" else: global_padding_mode = "border" cur_cutouts = {} cur_spot_cutouts = {} cur_spot_off_cutouts = {} for cutoutSize in cutoutsTable: make_cutouts = cutoutsTable[cutoutSize] cur_cutouts[cutoutSize] = make_cutouts(out) if args.spot_prompts: for cutoutSize in cutoutsTable: cur_spot_cutouts[cutoutSize] = make_cutouts(out, spot=1) if args.spot_prompts_off: for cutoutSize in cutoutsTable: cur_spot_off_cutouts[cutoutSize] = make_cutouts(out, spot=0) for clip_model in args.clip_models: perceptor = perceptors[clip_model] cutoutSize = cutoutSizeTable[clip_model] transient_pMs = [] if args.spot_prompts: iii_s = perceptor.encode_image( normalize(cur_spot_cutouts[cutoutSize]) ).float() spotPms = spotPmsTable[clip_model] for prompt in spotPms: result.append(prompt(iii_s)) if args.spot_prompts_off: iii_so = perceptor.encode_image( normalize(cur_spot_off_cutouts[cutoutSize]) ).float() spotOffPms = spotOffPmsTable[clip_model] for prompt in spotOffPms: result.append(prompt(iii_so)) pMs = pmsTable[clip_model] iii = perceptor.encode_image(normalize(cur_cutouts[cutoutSize])).float() for prompt in pMs: result.append(prompt(iii)) # If there are image prompts we make cutouts for those each time # so that they line up with the current cutouts from augmentation make_cutouts = cutoutsTable[cutoutSize] for timg in pImages: # note: this caches and reuses the transforms - a bit of a hack but it works if args.image_prompt_shuffle: # print("Disabling cached transforms") make_cutouts.transforms = None # new way builds throwaway Prompts batch = make_cutouts(timg) embed = perceptor.encode_image(normalize(batch)).float() if args.image_prompt_weight is not None: transient_pMs.append(Prompt(embed, args.image_prompt_weight).to(device)) else: transient_pMs.append(Prompt(embed).to(device)) for prompt in transient_pMs: result.append(prompt(iii)) for cutoutSize in cutoutsTable: # clear the transform "cache" make_cutouts = cutoutsTable[cutoutSize] make_cutouts.transforms = None # main init_weight uses spherical loss if args.target_images is not None: for z_target in z_targets: f = z.reshape(1, -1) f2 = z_target.reshape(1, -1) cur_loss = spherical_dist_loss(f, f2) * args.target_image_weight result.append(cur_loss) if args.image_labels is not None: for z_label in z_labels: f = z.reshape(1, -1) f2 = z_label.reshape(1, -1) cur_loss = spherical_dist_loss(f, f2) * args.image_label_weight result.append(cur_loss) # main init_weight uses spherical loss if args.init_weight: f = z.reshape(1, -1) f2 = z_orig.reshape(1, -1) cur_loss = spherical_dist_loss(f, f2) * args.init_weight result.append(cur_loss) # these three init_weight variants offer mse_loss, mse_loss in pixel space, and cos loss if args.init_weight_dist: cur_loss = F.mse_loss(z, z_orig) * args.init_weight_dist / 2 result.append(cur_loss) if args.init_weight_pix: if init_image_tensor is None: print("OOPS IIT is 0") else: # TF.to_pil_image(out[0].cpu()).save(f"out_1.png") # TF.to_pil_image(init_image_tensor[0].cpu()).save(f"init_1.png") # print(out.shape) # print(init_image_tensor.shape) # print(out[0][0]) # print(init_image_tensor[0][0]) cur_loss = F.l1_loss(out, init_image_tensor) * args.init_weight_pix / 2 result.append(cur_loss) if args.init_weight_cos: f = z.reshape(1, -1) f2 = z_orig.reshape(1, -1) y = torch.ones_like(f[0]) cur_loss = F.cosine_embedding_loss(f, f2, y) * args.init_weight_cos result.append(cur_loss) if args.make_video: img = np.array( out.mul(255).clamp(0, 255)[0].cpu().detach().numpy().astype(np.uint8) )[:, :, :] img = np.transpose(img, (1, 2, 0)) imageio.imwrite(f"./steps/frame_{i:04d}.png", np.array(img)) return result def re_average_z(args): global z, gside_X, gside_Y global model, device # old_z = z.clone() cur_z_image = z_to_pil() cur_z_image = cur_z_image.convert("RGB") if overlay_image_rgba: # print("applying overlay image") cur_z_image.paste(overlay_image_rgba, (0, 0), overlay_image_rgba) cur_z_image.save("overlaid.png") cur_z_image = cur_z_image.resize((gside_X, gside_Y), Image.LANCZOS) new_z, *_ = model.encode(TF.to_tensor(cur_z_image).to(device).unsqueeze(0) * 2 - 1) # t_dist = F.pairwise_distance(new_z, old_z) with torch.no_grad(): z.copy_(new_z) # with torch.no_grad(): # z.copy_(z.maximum(z_min).minimum(z_max)) # torch.autograd.set_detect_anomaly(True) def train(args, i): global z, z_min, z_max opt.zero_grad(set_to_none=True) lossAll = ascend_txt(args) if i % args.display_freq == 0: checkin(args, i, lossAll) loss = sum(lossAll) loss.backward() opt.step() if ( args.overlay_every and i != 0 and (i % (args.overlay_every + args.overlay_offset)) == 0 ): re_average_z(args) with torch.no_grad(): z.copy_(z.maximum(z_min).minimum(z_max)) imagenet_templates = [ "itap of a {}.", "a bad photo of the {}.", "a origami {}.", "a photo of the large {}.", "a {} in a video game.", "art of the {}.", "a photo of the small {}.", ] def do_run(args): global i i = 0 try: with tqdm() as pbar: while True: try: train(args, i) if i == args.iterations: break i += 1 pbar.update() except RuntimeError as e: print("Oops: runtime error: ", e) print("Try reducing --num-cuts to save memory") raise e except KeyboardInterrupt: pass if args.make_video: do_video(settings) def do_video(args): global i # Video generation init_frame = 1 # This is the frame where the video will start last_frame = i # You can change i to the number of the last frame you want to generate. It will raise an error if that number of frames does not exist. min_fps = 10 max_fps = 60 total_frames = last_frame - init_frame length = 15 # Desired time of the video in seconds frames = [] tqdm.write("Generating video...") for i in range(init_frame, last_frame): # frames.append(Image.open(f"./steps/frame_{i:04d}.png")) # fps = last_frame/10 fps = np.clip(total_frames / length, min_fps, max_fps) from subprocess import Popen, PIPE import re output_file = re.compile("\.png$").sub(".mp4", args.output) p = Popen( [ "ffmpeg", "-y", "-f", "image2pipe", "-vcodec", "png", "-r", str(fps), "-i", "-", "-vcodec", "libx264", "-r", str(fps), "-pix_fmt", "yuv420p", "-crf", "17", "-preset", "veryslow", "-metadata", f"comment={args.prompts}", output_file, ], stdin=PIPE, ) for im in tqdm(frames): im.save(p.stdin, "PNG") p.stdin.close() p.wait() # this dictionary is used for settings in the notebook global_clipit_settings = {} def setup_parser(): # Create the parser vq_parser = argparse.ArgumentParser(description="Image generation using VQGAN+CLIP") # Add the arguments vq_parser.add_argument( "-p", "--prompts", type=str, help="Text prompts", default=[], dest="prompts" ) vq_parser.add_argument( "-sp", "--spot", type=str, help="Spot Text prompts", default=[], dest="spot_prompts", ) vq_parser.add_argument( "-spo", "--spot_off", type=str, help="Spot off Text prompts", default=[], dest="spot_prompts_off", ) vq_parser.add_argument( "-l", "--labels", type=str, help="ImageNet labels", default=[], dest="labels" ) vq_parser.add_argument( "-ip", "--image_prompts", type=str, help="Image prompts", default=[], dest="image_prompts", ) vq_parser.add_argument( "-ipw", "--image_prompt_weight", type=float, help="Weight for image prompt", default=None, dest="image_prompt_weight", ) vq_parser.add_argument( "-ips", "--image_prompt_shuffle", type=bool, help="Shuffle image prompts", default=False, dest="image_prompt_shuffle", ) vq_parser.add_argument( "-il", "--image_labels", type=str, help="Image prompts", default=None, dest="image_labels", ) vq_parser.add_argument( "-ilw", "--image_label_weight", type=float, help="Weight for image prompt", default=1.0, dest="image_label_weight", ) vq_parser.add_argument( "-i", "--iterations", type=int, help="Number of iterations", default=None, dest="iterations", ) vq_parser.add_argument( "-se", "--save_every", type=int, help="Save image iterations", default=50, dest="display_freq", ) vq_parser.add_argument( "-ove", "--overlay_every", type=int, help="Overlay image iterations", default=None, dest="overlay_every", ) vq_parser.add_argument( "-ovo", "--overlay_offset", type=int, help="Overlay image iteration offset", default=0, dest="overlay_offset", ) vq_parser.add_argument( "-ovi", "--overlay_image", type=str, help="Overlay image (if not init)", default=None, dest="overlay_image", ) vq_parser.add_argument( "-qua", "--quality", type=str, help="draft, normal, best", default="normal", dest="quality", ) vq_parser.add_argument( "-asp", "--aspect", type=str, help="widescreen, square", default="widescreen", dest="aspect", ) vq_parser.add_argument( "-ezs", "--ezsize", type=str, help="small, medium, large", default=None, dest="ezsize", ) vq_parser.add_argument( "-sca", "--scale", type=float, help="scale (instead of ezsize)", default=None, dest="scale", ) vq_parser.add_argument( "-ova", "--overlay_alpha", type=int, help="Overlay alpha (0-255)", default=None, dest="overlay_alpha", ) vq_parser.add_argument( "-s", "--size", nargs=2, type=int, help="Image size (width height)", default=None, dest="size", ) vq_parser.add_argument( "-ii", "--init_image", type=str, help="Initial image", default=None, dest="init_image", ) vq_parser.add_argument( "-iia", "--init_image_alpha", type=int, help="Init image alpha (0-255)", default=200, dest="init_image_alpha", ) vq_parser.add_argument( "-in", "--init_noise", type=str, help="Initial noise image (pixels or gradient)", default="pixels", dest="init_noise", ) vq_parser.add_argument( "-ti", "--target_images", type=str, help="Target images", default=None, dest="target_images", ) vq_parser.add_argument( "-tiw", "--target_image_weight", type=float, help="Target images weight", default=1.0, dest="target_image_weight", ) vq_parser.add_argument( "-iw", "--init_weight", type=float, help="Initial weight (main=spherical)", default=None, dest="init_weight", ) vq_parser.add_argument( "-iwd", "--init_weight_dist", type=float, help="Initial weight dist loss", default=0.0, dest="init_weight_dist", ) vq_parser.add_argument( "-iwc", "--init_weight_cos", type=float, help="Initial weight cos loss", default=0.0, dest="init_weight_cos", ) vq_parser.add_argument( "-iwp", "--init_weight_pix", type=float, help="Initial weight pix loss", default=0.0, dest="init_weight_pix", ) vq_parser.add_argument( "-m", "--clip_models", type=str, help="CLIP model", default=None, dest="clip_models", ) vq_parser.add_argument( "-vqgan", "--vqgan_model", type=str, help="VQGAN model", default="imagenet_f16_16384", dest="vqgan_model", ) vq_parser.add_argument( "-conf", "--vqgan_config", type=str, help="VQGAN config", default=None, dest="vqgan_config", ) vq_parser.add_argument( "-ckpt", "--vqgan_checkpoint", type=str, help="VQGAN checkpoint", default=None, dest="vqgan_checkpoint", ) vq_parser.add_argument( "-nps", "--noise_prompt_seeds", nargs="*", type=int, help="Noise prompt seeds", default=[], dest="noise_prompt_seeds", ) vq_parser.add_argument( "-npw", "--noise_prompt_weights", nargs="*", type=float, help="Noise prompt weights", default=[], dest="noise_prompt_weights", ) vq_parser.add_argument( "-lr", "--learning_rate", type=float, help="Learning rate", default=0.2, dest="step_size", ) vq_parser.add_argument( "-cuts", "--num_cuts", type=int, help="Number of cuts", default=None, dest="num_cuts", ) vq_parser.add_argument( "-cutp", "--cut_power", type=float, help="Cut power", default=1.0, dest="cut_pow", ) vq_parser.add_argument( "-sd", "--seed", type=int, help="Seed", default=None, dest="seed" ) vq_parser.add_argument( "-opt", "--optimiser", type=str, help="Optimiser (Adam, AdamW, Adagrad, Adamax, DiffGrad, AdamP or RAdam)", default="Adam", dest="optimiser", ) vq_parser.add_argument( "-o", "--output", type=str, help="Output file", default="output.png", dest="output", ) vq_parser.add_argument( "-vid", "--video", type=bool, help="Create video frames?", default=False, dest="make_video", ) vq_parser.add_argument( "-d", "--deterministic", type=bool, help="Enable cudnn.deterministic?", default=False, dest="cudnn_determinism", ) return vq_parser square_size = [144, 144] widescreen_size = [200, 112] # at the small size this becomes 192,112 def process_args(vq_parser, namespace=None): global global_aspect_width if namespace == None: # command line: use ARGV to get args args = vq_parser.parse_args() else: # notebook, ignore ARGV and use dictionary instead args = vq_parser.parse_args(args=[], namespace=namespace) if args.cudnn_determinism: torch.backends.cudnn.deterministic = True quality_to_clip_models_table = { "draft": "ViT-B/32", "normal": "ViT-B/32,ViT-B/16", "better": "RN50,ViT-B/32,ViT-B/16", "best": "RN50x4,ViT-B/32,ViT-B/16", } quality_to_iterations_table = { "draft": 200, "normal": 350, "better": 500, "best": 500, } quality_to_scale_table = {"draft": 1, "normal": 2, "better": 3, "best": 4} # this should be replaced with logic that does somethings # smart based on available memory (eg: size, num_models, etc) quality_to_num_cuts_table = {"draft": 40, "normal": 40, "better": 40, "best": 40} if args.quality not in quality_to_clip_models_table: print("Qualitfy setting not understood, aborting -> ", argz.quality) exit(1) if args.clip_models is None: args.clip_models = quality_to_clip_models_table[args.quality] if args.iterations is None: args.iterations = quality_to_iterations_table[args.quality] if args.num_cuts is None: args.num_cuts = quality_to_num_cuts_table[args.quality] if args.ezsize is None and args.scale is None: args.scale = quality_to_scale_table[args.quality] size_to_scale_table = {"small": 1, "medium": 2, "large": 4} aspect_to_size_table = {"square": [150, 150], "widescreen": [200, 112]} # determine size if not set if args.size is None: size_scale = args.scale if size_scale is None: if args.ezsize in size_to_scale_table: size_scale = size_to_scale_table[args.ezsize] else: print("EZ Size not understood, aborting -> ", argz.ezsize) exit(1) if args.aspect in aspect_to_size_table: base_size = aspect_to_size_table[args.aspect] base_width = int(size_scale * base_size[0]) base_height = int(size_scale * base_size[1]) args.size = [base_width, base_height] else: print("aspect not understood, aborting -> ", argz.aspect) exit(1) if args.aspect == "widescreen": global_aspect_width = 16 / 9 if args.init_noise.lower() == "none": args.init_noise = None # Split text prompts using the pipe character if args.prompts: args.prompts = [phrase.strip() for phrase in args.prompts.split("|")] # Split text prompts using the pipe character if args.spot_prompts: args.spot_prompts = [phrase.strip() for phrase in args.spot_prompts.split("|")] # Split text prompts using the pipe character if args.spot_prompts_off: args.spot_prompts_off = [ phrase.strip() for phrase in args.spot_prompts_off.split("|") ] # Split text labels using the pipe character if args.labels: args.labels = [phrase.strip() for phrase in args.labels.split("|")] # Split target images using the pipe character if args.image_prompts: args.image_prompts = args.image_prompts.split("|") args.image_prompts = [image.strip() for image in args.image_prompts] # legacy "spread mode" removed # if args.init_weight is not None: # args.init_weight_pix = args.init_weight # args.init_weight_cos = args.init_weight # args.init_weight_dist = args.init_weight if args.overlay_every is not None and args.overlay_every <= 0: args.overlay_every = None clip_models = args.clip_models.split(",") args.clip_models = [model.strip() for model in clip_models] # Make video steps directory if args.make_video: if not os.path.exists("steps"): os.mkdir("steps") return args def reset_settings(): global global_clipit_settings global_clipit_settings = {} def add_settings(**kwargs): global global_clipit_settings for k, v in kwargs.items(): if v is None: # just remove the key if it is there global_clipit_settings.pop(k, None) else: global_clipit_settings[k] = v def apply_settings(): global global_clipit_settings settingsDict = None vq_parser = setup_parser() if len(global_clipit_settings) > 0: # check for any bogus entries in the settings dests = [d.dest for d in vq_parser._actions] for k in global_clipit_settings: if not k in dests: raise ValueError( f"Requested setting not found, aborting: {k}={global_clipit_settings[k]}" ) # convert dictionary to easyDict # which can be used as an argparse namespace instead # settingsDict = easydict.EasyDict(global_clipit_settings) settingsDict = SimpleNamespace(**global_clipit_settings) settings = process_args(vq_parser, settingsDict) return settings def main(): settings = apply_settings() do_init(settings) do_run(settings) if __name__ == "__main__": main()
py
1a56038c8136ec0da18ae5b097290b08dfaa59c0
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012, Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Unit Tests for nova.cert.rpcapi """ from oslo.config import cfg from nova.cert import rpcapi as cert_rpcapi from nova import context from nova.openstack.common import rpc from nova import test CONF = cfg.CONF class CertRpcAPITestCase(test.NoDBTestCase): def _test_cert_api(self, method, **kwargs): ctxt = context.RequestContext('fake_user', 'fake_project') rpcapi = cert_rpcapi.CertAPI() expected_retval = 'foo' expected_version = kwargs.pop('version', rpcapi.BASE_RPC_API_VERSION) expected_msg = rpcapi.make_msg(method, **kwargs) expected_msg['version'] = expected_version self.call_ctxt = None self.call_topic = None self.call_msg = None self.call_timeout = None def _fake_call(_ctxt, _topic, _msg, _timeout): self.call_ctxt = _ctxt self.call_topic = _topic self.call_msg = _msg self.call_timeout = _timeout return expected_retval self.stubs.Set(rpc, 'call', _fake_call) retval = getattr(rpcapi, method)(ctxt, **kwargs) self.assertEqual(retval, expected_retval) self.assertEqual(self.call_ctxt, ctxt) self.assertEqual(self.call_topic, CONF.cert_topic) self.assertEqual(self.call_msg, expected_msg) self.assertIsNone(self.call_timeout) def test_revoke_certs_by_user(self): self._test_cert_api('revoke_certs_by_user', user_id='fake_user_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('revoke_certs_by_user', user_id='fake_user_id', version='1.0') def test_revoke_certs_by_project(self): self._test_cert_api('revoke_certs_by_project', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('revoke_certs_by_project', project_id='fake_project_id', version='1.0') def test_revoke_certs_by_user_and_project(self): self._test_cert_api('revoke_certs_by_user_and_project', user_id='fake_user_id', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('revoke_certs_by_user_and_project', user_id='fake_user_id', project_id='fake_project_id', version='1.0') def test_generate_x509_cert(self): self._test_cert_api('generate_x509_cert', user_id='fake_user_id', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('generate_x509_cert', user_id='fake_user_id', project_id='fake_project_id', version='1.0') def test_fetch_ca(self): self._test_cert_api('fetch_ca', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('fetch_ca', project_id='fake_project_id', version='1.0') def test_fetch_crl(self): self._test_cert_api('fetch_crl', project_id='fake_project_id') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('fetch_crl', project_id='fake_project_id', version='1.0') def test_decrypt_text(self): self._test_cert_api('decrypt_text', project_id='fake_project_id', text='blah') # NOTE(russellb) Havana compat self.flags(cert='havana', group='upgrade_levels') self._test_cert_api('decrypt_text', project_id='fake_project_id', text='blah', version='1.0')