ext
stringclasses
9 values
sha
stringlengths
40
40
content
stringlengths
3
1.04M
py
1a5657ad7da5b155246c78e58d279842bb317521
# from -- https://cloud.google.com/ml-engine/docs/scikit/getting-started-training import datetime import os import subprocess import sys import pandas as pd from sklearn import svm from sklearn.externals import joblib # Fill in your Cloud Storage bucket name BUCKET_ID = <YOUR_BUCKET_NAME> iris_data_filename = 'iris_data.csv' iris_target_filename = 'iris_target.csv' data_dir = 'gs://cloud-samples-data/ml-engine/iris' subprocess.check_call(['gsutil', 'cp', os.path.join(data_dir, iris_data_filename), iris_data_filename], stderr=sys.stdout) subprocess.check_call(['gsutil', 'cp', os.path.join(data_dir, iris_target_filename), iris_target_filename], stderr=sys.stdout) iris_data = pd.read_csv(iris_data_filename).values iris_target = pd.read_csv(iris_target_filename).values iris_target = iris_target.reshape((iris_target.size,)) classifier = svm.SVC(verbose=True) classifier.fit(iris_data, iris_target) model = 'model.joblib' joblib.dump(classifier, model) model_path = os.path.join('gs://', bucket, datetime.datetime.now().strftime( 'iris_%Y%m%d_%H%M%S'), model) subprocess.check_call(['gsutil', 'cp', model, model_path], stderr=sys.stdout)
py
1a565800ee6c72f1f790dcda85717d91ada3da4c
#!/usr/bin/env python ## ## Copyright (C) 2017, Amit Aides, all rights reserved. ## ## This file is part of Camera Network ## (see https://bitbucket.org/amitibo/cameranetwork_git). ## ## Redistribution and use in source and binary forms, with or without modification, ## are permitted provided that the following conditions are met: ## ## 1) The software is provided under the terms of this license strictly for ## academic, non-commercial, not-for-profit purposes. ## 2) Redistributions of source code must retain the above copyright notice, this ## list of conditions (license) and the following disclaimer. ## 3) Redistributions in binary form must reproduce the above copyright notice, ## this list of conditions (license) and the following disclaimer in the ## documentation and/or other materials provided with the distribution. ## 4) The name of the author may not be used to endorse or promote products derived ## from this software without specific prior written permission. ## 5) As this software depends on other libraries, the user must adhere to and keep ## in place any licensing terms of those libraries. ## 6) Any publications arising from the use of this software, including but not ## limited to academic journal and conference publications, technical reports and ## manuals, must cite the following works: ## Dmitry Veikherman, Amit Aides, Yoav Y. Schechner and Aviad Levis, "Clouds in The Cloud" Proc. ACCV, pp. 659-674 (2014). ## ## THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR IMPLIED ## WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ## MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO ## EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, ## INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ## BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ## DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ## LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE ## OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ## ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.## """ Clean memory of the odroid. The script moves captured date to a backup folder. To remove the backup folder (and clear the memory) use the ``--delete`` flag. """ import argparse import CameraNetwork.global_settings as gs import datetime import os import shutil import warnings gs.initPaths() BACKUP_FOLDER = os.path.expanduser( datetime.datetime.now().strftime("~/BACKUP_%Y_%m_%d") ) def move(src_path): _, tmp = os.path.split(src_path) dst_path = os.path.join(BACKUP_FOLDER, tmp) if not os.path.exists(src_path): print("Source path does not exist: {}".format(src_path)) return assert not os.path.exists(dst_path),"Destination path exists: {}".format(dst_path) shutil.move(src_path, dst_path) def main(delete_backup=False): if not os.path.exists(BACKUP_FOLDER): os.makedirs(BACKUP_FOLDER) print("Created backup folder: {}".format(BACKUP_FOLDER)) move(gs.CAPTURE_PATH) move(gs.DEFAULT_LOG_FOLDER) move(gs.MASK_PATH) move(gs.SUN_POSITIONS_PATH) if delete_backup: answer = raw_input("Remove backup? [y/n]:") if answer == 'y': shutil.rmtree(BACKUP_FOLDER) print("Backup folder removed!") else: print("Backup folder NOT removed!") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Clean memory of the odroid.") parser.add_argument( '--delete', action='store_true', help='When set, the backup folder will be deleted.' ) args = parser.parse_args() main(args.delete)
py
1a56587abcfb5807b58024f92ade2deafb94e57e
""" """ import time import unittest import threading from pynetworking import ClientManager, MultiServerCommunicator from pynetworking.tests.example_functions import DummyServerCommunicator, DummyMultiServerCommunicator, \ DummyClientCommunicator from pynetworking.Logging import logger from pynetworking import Communication_general logger.setLevel(10) class TestManyClients(unittest.TestCase): address = "127.0.0.1", 5000 def setUp(self): self.manager = ClientManager(self.address, DummyClientCommunicator) self.manager.start() Communication_general.ENCRYPTED_COMMUNICATION = False def tearDown(self): DummyMultiServerCommunicator.close_all_connections() logger.debug(self.manager.clients) self.manager.stop_listening() self.manager.stop_connections() def test_many(self): clients = [] thread_pool = [] def client_exe(client: DummyMultiServerCommunicator): client.connect(self.address) c_id = client.remote_functions.return_client_id() print(c_id) time.sleep(5) client.close_connection() for i in range(20): clients.append(DummyMultiServerCommunicator(i)) thread_pool.append(threading.Thread(target=client_exe, args=(clients[i],))) thread_pool[i].start() time.sleep(0.1) time.sleep(1) logger.debug("Finished")
py
1a5658978f5a10941f5c15fe8d2afca6fadf1391
# SPDX-FileCopyrightText: 2020 Hlib Babii <[email protected]> # # SPDX-License-Identifier: Apache-2.0 import os import sys sys.path.insert(0, os.path.join(os.path.abspath(os.path.dirname(__file__)), '..'))
py
1a5658f00a937eeed58321a3b0ccc9fce6abc479
from pythonds.graphs import PriorityQueue, Graph, Vertex def dijkstra(aGraph: Graph, start: Vertex): pq = PriorityQueue() start.setDistance(0) pq.buildHeap([(v.getDistance(), v) for v in aGraph]) while not pq.isEmpty(): currentVert = pq.delMin() for nextVert in currentVert.getConnections(): newDist = currentVert.getDistance() + currentVert.getWeight(nextVert) if newDist < nextVert.getDistance(): nextVert.setDistance(newDist) nextVert.setPred(currentVert) pd.decreaseKey(nextVert, newDist)
py
1a5658fadee9cb6dd5ff48f5225fff5f82049ed5
import asyncio import json from datetime import datetime import aiohttp from aiohttp import ClientConnectorError from tracardi.config import tracardi from tracardi.domain.resource import ResourceCredentials from tracardi.domain.resources.token import Token from tracardi.service.storage.driver import storage from tracardi.service.plugin.domain.register import Plugin, Spec, MetaData, Form, FormGroup, FormField, FormComponent from tracardi.service.plugin.domain.result import Result from tracardi.service.plugin.runner import ActionRunner from .model.configuration import Configuration def validate(config: dict) -> Configuration: return Configuration(**config) class AmplitudeSendEvent(ActionRunner): @staticmethod async def build(**kwargs) -> 'AmplitudeSendEvent': config = validate(kwargs) resource = await storage.driver.resource.load(config.source.id) return AmplitudeSendEvent(config, resource.credentials) def __init__(self, config, credentials: ResourceCredentials): self.config = config # type: Configuration self.credentials = credentials.get_credentials(self, output=Token) @staticmethod def _get_value(dot, dot_notation, allow_custom_value=False): if dot_notation is None: return None value = dot[dot_notation] if value == dot_notation: if allow_custom_value is True: return value return None return value async def run(self, payload): try: dot = self._get_dot_accessor(payload) timeout = aiohttp.ClientTimeout(total=self.config.timeout) async with aiohttp.ClientSession(timeout=timeout) as session: platform = self._get_value(dot, self.config.platform) properties = self._get_value(dot, self.config.event_properties) pii = self._get_value(dot, self.config.user_properties) event_type = self._get_value(dot, self.config.event_type) ip = self._get_value(dot, self.config.ip, allow_custom_value=True) event = { "app_version": tracardi.version, "insert_id": self.event.id if self.debug is False else None, "user_id": self.profile.id, "session_id": int(datetime.timestamp( self.session.metadata.time.insert)) if self.profile.metadata.time.insert is not None else -1, "event_type": self.event.type if event_type is None else event_type, "event_properties": self.event.properties if not isinstance(properties, dict) else properties, "user_properties": self.profile.pii.dict() if not isinstance(pii, dict) else pii, "groups": self._get_value(dot, self.config.groups), "ip": self.event.metadata.ip if ip is None else ip, "location_lat": self._get_value(dot, self.config.location_lat), "location_lng": self._get_value(dot, self.config.location_lng), "revenueType": self._get_value(dot, self.config.revenueType), "productId": self._get_value(dot, self.config.productId), "revenue": self._get_value(dot, self.config.revenue), "quantity": self._get_value(dot, self.config.quantity), "price": self._get_value(dot, self.config.price), "language": self._get_value(dot, self.config.language), "dma": self._get_value(dot, self.config.dma), "city": self._get_value(dot, self.config.city), "region": self._get_value(dot, self.config.region), "country": self._get_value(dot, self.config.country), "carrier": self._get_value(dot, self.config.carrier), "device_model": self._get_value(dot, self.config.device_model), "device_manufacturer": self._get_value(dot, self.config.device_manufacturer), "device_brand": self._get_value(dot, self.config.device_brand), "os_version": self._get_value(dot, self.config.os_version), "os_name": self._get_value(dot, self.config.os_name), "platform": self.session.get_platform() if platform is None else platform, } params = { "api_key": self.credentials.token, "events": [ event ] } headers = { 'Content-Type': 'application/json', 'Accept': '*/*' } # print(params) async with session.post( url=str(self.config.url), headers=headers, data=json.dumps(params) ) as response: result = { "status": response.status, "content": await response.json() } if response.status in [200, 201, 202, 203]: return Result(port="response", value=result), Result(port="error", value=None) else: return Result(port="response", value=None), Result(port="error", value=result) except ClientConnectorError as e: return Result(port="response", value=None), Result(port="error", value=str(e)) except asyncio.exceptions.TimeoutError: return Result(port="response", value=None), Result(port="error", value="API timed out.") def register() -> Plugin: return Plugin( start=False, spec=Spec( module=__name__, className='AmplitudeSendEvent', inputs=['payload'], outputs=["response", "error"], init={ "source": {"id": None}, "url": "https://api2.amplitude.com/2/httpapi", "timeout": 15, "event_type": None, "event_properties": None, "user_properties": None, "groups": None, "ip": None, "location_lat": None, "location_lng": None, "language": None, "dma": None, "city": None, "region": None, "country": None, "revenueType": None, "productId": None, "revenue": None, "quantity": None, "price": None, "carrier": None, "device_model": None, "device_manufacturer": None, "device_brand": None, "os_version": None, "os_name": None, "platform": None, }, form=Form(groups=[ FormGroup( name="Amplitude source", fields=[ FormField( id="source", name="Amplitude resource", description="Please select your Amplitude resource.", component=FormComponent(type="resource", props={"label": "Resource", "tag": "token"}) ), ]), FormGroup( name="Amplitude Api Configuration", fields=[ FormField( id="url", name="API URL", description="Please type API URL if it is different then default Amplitude URL.", component=FormComponent(type="text", props={"label": "API URL"}) ), FormField( id="timeout", name="API timeout", description="Please API timeout.", component=FormComponent(type="text", props={"label": "API timeout"}) ), ]), FormGroup( name="Amplitude Event Configuration", description="Select what data should be sent to Amplitude. Leave empty if you want to send " "default data.", fields=[ FormField( id="event_type", name="Event type", description="Leave empty if the current event type is to be copied.", component=FormComponent(type="dotPath", props={"label": "Reference to event type", "defaultSourceValue": "event", "defaultPathValue": "type" }) ), FormField( id="event_properties", name="Event properties", description="Leave empty if the current event properties is to be copied.", component=FormComponent(type="dotPath", props={"label": "Reference to event properties", "defaultSourceValue": "event", "defaultPathValue": "properties" }) ), FormField( id="user_properties", name="User Personal Identifiable Information (PII)", description="Leave empty if the current profile PII is to be copied.", component=FormComponent(type="dotPath", props={"label": "Reference to profile PII", "defaultSourceValue": "profile", "defaultPathValue": "pii" }) ), FormField( id="groups", name="Groups", description="Group types are only available to Growth and Enterprise customers who have " "purchased the Accounts add-on on Amplitude.", component=FormComponent(type="dotPath", props={"label": "IP Groups"}) ), ]), FormGroup( name="Amplitude Location Configuration", description="Select what data should be sent to Amplitude. Leave empty if you want to send " "default data.", fields=[ FormField( id="ip", name="IP address", description="Leave empty if the events ip to be copied.", component=FormComponent(type="dotPath", props={"label": "IP address", "defaultSourceValue": "event", "defaultPathValue": "metadata.ip" }) ), FormField( id="location_lat", name="Latitude", description="Leave empty if you want Amplitude to read location from IP.", component=FormComponent(type="dotPath", props={"label": "Path to latitude", "defaultSourceValue": "payload" }) ), FormField( id="location_lng", name="Longitude", description="Leave empty if you want Amplitude to read location from IP.", component=FormComponent(type="dotPath", props={"label": "Path to longitude", "defaultSourceValue": "payload" }) ), FormField( id="language", name="Language", description="The language set by the user.", component=FormComponent(type="dotPath", props={"label": "Path to Language", "defaultSourceValue": "payload" }) ), FormField( id="dma", name="Designated Market Area (DMA)", description="The current Designated Market Area of the user.", component=FormComponent(type="dotPath", props={"label": "Path to DMA", "defaultSourceValue": "payload" }) ), FormField( id="city", name="City", description="The current city of the user.", component=FormComponent(type="dotPath", props={"label": "Path to city", "defaultSourceValue": "payload" }) ), FormField( id="region", name="Region", description="The current region of the user.", component=FormComponent(type="dotPath", props={"label": "Path to region", "defaultSourceValue": "payload" }) ), FormField( id="country", name="Country", description="The current country of the user.", component=FormComponent(type="dotPath", props={"label": "Path to country", "defaultSourceValue": "payload" }) ), ]), FormGroup( name="Amplitude Product Configuration", description="Select what data should be sent to Amplitude. Leave empty if you want to send " "default data.", fields=[ FormField( id="productId", name="Product ID", description="An identifier for the item purchased. You must send a price and quantity " "or revenue with this field.", component=FormComponent(type="dotPath", props={"label": "Path to productId", "defaultSourceValue": "event" }) ), FormField( id="revenue", name="Revenue", description="revenue = price * quantity. If you send all 3 fields of price, quantity, and " "revenue, then (price * quantity) will be used as the revenue value. You can " "use negative values to indicate refunds.", component=FormComponent(type="dotPath", props={"label": "Path to revenue", "defaultSourceValue": "event" }) ), FormField( id="revenueType", name="Revenue type", description="The type of revenue for the item purchased. You must send a price and " "quantity or revenue with this field.", component=FormComponent(type="dotPath", props={"label": "Path to revenue type", "defaultSourceValue": "event"}) ), FormField( id="quantity", name="Quantity", description="The quantity of the item purchased. Defaults to 1 if not specified.", component=FormComponent(type="dotPath", props={"label": "Path to quantity", "defaultSourceValue": "event" }) ), FormField( id="price", name="Price", description="The price of the item purchased. Required for revenue data if the revenue " "field is not sent. You can use negative values to indicate refunds.", component=FormComponent(type="dotPath", props={"label": "Path to price", "defaultSourceValue": "event" }) ), ]), FormGroup( name="Amplitude Device Configuration", description="Select what data should be sent to Amplitude. Leave empty if you want to send " "default data.", fields=[ FormField( id="platform", name="Platform", description="Platform of the device.", component=FormComponent(type="dotPath", props={"label": "Path to platform", "defaultSourceValue": "session" }) ), FormField( id="os_name", name="Operation System Name (OS)", description="The name of the mobile operating system or browser that the user is using.", component=FormComponent(type="dotPath", props={"label": "Path to OS", "defaultSourceValue": "session" }) ), FormField( id="os_version", name="Operation System Version", description="The version of the mobile operating system or browser the user is using.", component=FormComponent(type="dotPath", props={"label": "Path to OS version", "defaultSourceValue": "session" }) ), FormField( id="device_brand", name="Device Brand", description="The device brand that the user is using.", component=FormComponent(type="dotPath", props={"label": "Path to device brand", "defaultSourceValue": "session" }) ), FormField( id="device_manufacturer", name="Device Manufacturer", description="The device manufacturer that the user is using.", component=FormComponent(type="dotPath", props={"label": "Path to device manufacturer", "defaultSourceValue": "session" }) ), FormField( id="device_model", name="Device Model", description="The device model that the user is using.", component=FormComponent(type="dotPath", props={"label": "Path to device model", "defaultSourceValue": "session" }) ), FormField( id="carrier", name="Carrier", description="The carrier that the user is using.", component=FormComponent(type="dotPath", props={"label": "Path to carrier", "defaultSourceValue": "session" }) ), ]) ]), version="0.6.1", author="Risto Kowaczewski", license="MIT", manual="amplitude_send_event" ), metadata=MetaData( name='Amplitude register event', desc='Sends request to Amplitude API endpoint to register event.', icon='bar-chart', group=["Stats"] ) )
py
1a565971589940dc74f0c5af0143a58ed174bff0
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # See http://code.google.com/p/python-nose/issues/detail?id=373 # The code below enables nosetests to work with i18n _() blocks from __future__ import print_function import sys import os try: from unittest.util import safe_repr except ImportError: # Probably py26 _MAX_LENGTH = 80 def safe_repr(obj, short=False): try: result = repr(obj) except Exception: result = object.__repr__(obj) if not short or len(result) < _MAX_LENGTH: return result return result[:_MAX_LENGTH] + ' [truncated]...' from eventlet.green import socket # make unittests pass on all locale import swift setattr(swift, 'gettext_', lambda x: x) from swift.common.utils import readconf # Work around what seems to be a Python bug. # c.f. https://bugs.launchpad.net/swift/+bug/820185. import logging logging.raiseExceptions = False def get_config(section_name=None, defaults=None): """ Attempt to get a test config dictionary. :param section_name: the section to read (all sections if not defined) :param defaults: an optional dictionary namespace of defaults """ config = {} if defaults is not None: config.update(defaults) config_file = os.environ.get('SWIFT_TEST_CONFIG_FILE', '/etc/swift/test.conf') try: config = readconf(config_file, section_name) except IOError: if not os.path.exists(config_file): print('Unable to read test config %s - file not found' % config_file, file=sys.stderr) elif not os.access(config_file, os.R_OK): print('Unable to read test config %s - permission denied' % config_file, file=sys.stderr) except ValueError as e: print(e) return config def listen_zero(): """ The eventlet.listen() always sets SO_REUSEPORT, so when called with ("localhost",0), instead of returning unique ports it can return the same port twice. That causes our tests to fail, so open-code it here without SO_REUSEPORT. """ sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("127.0.0.1", 0)) sock.listen(50) return sock
py
1a565a04707df65d9462c64d561ac8ee6dcd83d6
# Lint as: python3 # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API for Tensorflow Model Analysis.""" # TODO(b/149126671): Put ValidationResultsWriter in a separate file. from __future__ import absolute_import from __future__ import division # Standard __future__ imports from __future__ import print_function import os import tempfile from typing import Any, Dict, Iterator, List, Optional, Set, Text, Union from absl import logging import apache_beam as beam import pandas as pd import pyarrow as pa import tensorflow as tf from tensorflow_model_analysis import config from tensorflow_model_analysis import constants from tensorflow_model_analysis import model_util from tensorflow_model_analysis import types from tensorflow_model_analysis.eval_saved_model import constants as eval_constants from tensorflow_model_analysis.evaluators import evaluator from tensorflow_model_analysis.evaluators import metrics_and_plots_evaluator from tensorflow_model_analysis.evaluators import metrics_and_plots_evaluator_v2 from tensorflow_model_analysis.extractors import batched_input_extractor from tensorflow_model_analysis.extractors import batched_predict_extractor_v2 from tensorflow_model_analysis.extractors import extractor from tensorflow_model_analysis.extractors import input_extractor from tensorflow_model_analysis.extractors import predict_extractor from tensorflow_model_analysis.extractors import slice_key_extractor from tensorflow_model_analysis.extractors import tfjs_predict_extractor from tensorflow_model_analysis.extractors import tflite_predict_extractor from tensorflow_model_analysis.extractors import unbatch_extractor from tensorflow_model_analysis.post_export_metrics import post_export_metrics from tensorflow_model_analysis.proto import metrics_for_slice_pb2 from tensorflow_model_analysis.proto import validation_result_pb2 from tensorflow_model_analysis.slicer import slicer_lib as slicer from tensorflow_model_analysis.validators import validator from tensorflow_model_analysis.view import util from tensorflow_model_analysis.view import view_types from tensorflow_model_analysis.writers import eval_config_writer from tensorflow_model_analysis.writers import metrics_plots_and_validations_writer from tensorflow_model_analysis.writers import writer from tfx_bsl.arrow import table_util from tfx_bsl.tfxio import tensor_adapter from tfx_bsl.tfxio import tf_example_record from tensorflow_metadata.proto.v0 import schema_pb2 def _assert_tensorflow_version(): """Check that we're using a compatible TF version.""" # Fail with a clear error in case we are not using a compatible TF version. major, minor, _ = tf.version.VERSION.split('.') if (int(major) not in (1, 2)) or (int(major) == 1 and int(minor) < 15): raise RuntimeError( 'Tensorflow version >= 1.15, < 3 is required. Found (%s). Please ' 'install the latest 1.x or 2.x version from ' 'https://github.com/tensorflow/tensorflow. ' % tf.version.VERSION) if int(major) == 2: logging.warning( 'Tensorflow version (%s) found. Note that TFMA support for TF 2.0 ' 'is currently in beta', tf.version.VERSION) def _is_legacy_eval( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels], eval_config: Optional[config.EvalConfig]): """Returns True if legacy evaluation is being used.""" # A legacy evaluation is an evalution that uses only a single EvalSharedModel, # has no tags (or uses "eval" as its tag), and does not specify an eval_config # (or specifies an eval_config with no metrics). The legacy evaluation is # based on using add_metrics_callbacks to create a modified version of the # graph saved with an EvalSavedModel. The newer version of evaluation supports # both add_metrics_callbacks as well as metrics defined in MetricsSpecs inside # of EvalConfig. The newer version works with both "eval" and serving models # and also supports multi-model evaluation. This function is used by code to # support backwards compatibility for callers that have not updated to use the # new EvalConfig. return (eval_shared_model and not isinstance(eval_shared_model, dict) and not isinstance(eval_shared_model, list) and ((not eval_shared_model.model_loader.tags or eval_constants.EVAL_TAG in eval_shared_model.model_loader.tags) and (not eval_config or not eval_config.metrics_specs))) def _default_eval_config(eval_shared_models: List[types.EvalSharedModel], slice_spec: Optional[List[slicer.SingleSliceSpec]], write_config: Optional[bool], compute_confidence_intervals: Optional[bool], min_slice_size: int): """Creates default EvalConfig (for use in legacy evaluations).""" model_specs = [] for shared_model in eval_shared_models: example_weight_key = shared_model.example_weight_key example_weight_keys = {} if example_weight_key and isinstance(example_weight_key, dict): example_weight_keys = example_weight_key example_weight_key = '' model_specs.append( config.ModelSpec( name=shared_model.model_name, example_weight_key=example_weight_key, example_weight_keys=example_weight_keys)) slicing_specs = None if slice_spec: slicing_specs = [s.to_proto() for s in slice_spec] options = config.Options() options.compute_confidence_intervals.value = compute_confidence_intervals options.min_slice_size.value = min_slice_size if not write_config: options.disabled_outputs.values.append(eval_config_writer.EVAL_CONFIG_FILE) return config.EvalConfig( model_specs=model_specs, slicing_specs=slicing_specs, options=options) def _model_types( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] ) -> Optional[Set[Text]]: """Returns model types associated with given EvalSharedModels.""" eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if not eval_shared_models: return None else: return set([m.model_type for m in eval_shared_models]) def _update_eval_config_with_defaults( eval_config: config.EvalConfig, eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] ) -> config.EvalConfig: """Returns updated eval config with default values.""" eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) maybe_add_baseline = eval_shared_models and len(eval_shared_models) == 2 return config.update_eval_config_with_defaults( eval_config, maybe_add_baseline=maybe_add_baseline) MetricsForSlice = metrics_for_slice_pb2.MetricsForSlice def load_metrics(output_path: Text, output_file_format: Text = '') -> Iterator[MetricsForSlice]: """Read and deserialize the MetricsForSlice records.""" for m in metrics_plots_and_validations_writer.load_and_deserialize_metrics( output_path, output_file_format): yield m PlotsForSlice = metrics_for_slice_pb2.PlotsForSlice def load_plots(output_path: Text, output_file_format: Text = '') -> Iterator[PlotsForSlice]: """Read and deserialize the PlotsForSlice records.""" for p in metrics_plots_and_validations_writer.load_and_deserialize_plots( output_path, output_file_format): yield p # Define types here to avoid type errors between OSS and internal code. ValidationResult = validation_result_pb2.ValidationResult def load_validation_result(output_path: Text, output_file_format: Text = '') -> ValidationResult: """Read and deserialize the ValidationResult.""" return metrics_plots_and_validations_writer.load_and_deserialize_validation_result( output_path, output_file_format) def make_eval_results(results: List[view_types.EvalResult], mode: Text) -> view_types.EvalResults: """Run model analysis for a single model on multiple data sets. Args: results: A list of TFMA evaluation results. mode: The mode of the evaluation. Currently, tfma.DATA_CENTRIC_MODE and tfma.MODEL_CENTRIC_MODE are supported. Returns: An `tfma.view.EvalResults` object containing all evaluation results. This can be used to construct a time series view. """ return view_types.EvalResults(results, mode) def load_eval_results( output_paths: Union[Text, List[Text]], output_file_format: Optional[Text] = '', mode: Text = constants.MODEL_CENTRIC_MODE, model_name: Optional[Text] = None) -> view_types.EvalResults: """Loads results for multiple models or multiple data sets. Args: output_paths: A single path or list of output paths of completed tfma runs. output_file_format: Optional file extension to filter files by. mode: The mode of the evaluation. Currently, tfma.DATA_CENTRIC_MODE and tfma.MODEL_CENTRIC_MODE are supported. model_name: Filters to only return results for given model. If unset all models are returned. Returns: An EvalResults containing the evaluation results serialized at output_paths. This can be used to construct a time series view. """ results = [] if not isinstance(output_paths, list): output_paths = [output_paths] for output_path in output_paths: if model_name is None: _, _, _, model_locations = eval_config_writer.load_eval_run(output_path) model_names = list(model_locations.keys()) else: model_names = [model_name] for model_name in model_names: results.append( load_eval_result( output_path, output_file_format, model_name=model_name)) return make_eval_results(results, mode) def load_eval_result( output_path: Text, output_file_format: Optional[Text] = '', model_name: Optional[Text] = None) -> view_types.EvalResult: """Loads EvalResult object for use with the visualization functions. Args: output_path: Output directory containing config, metrics, plots, etc. output_file_format: Optional file extension to filter files by. model_name: Optional model name. Required if multi-model evaluation was run. Returns: EvalResult object for use with the visualization functions. """ # Config, metrics, and plots files should all exist under the given output # directory, but fairness plugin has a use-case where only the metrics are # provided so we support all files as being optional (the EvalResult will have # corresponding None values for files that are not present). eval_config, data_location, file_format, model_locations = ( eval_config_writer.load_eval_run(output_path)) metrics_list = [] for p in metrics_plots_and_validations_writer.load_and_deserialize_metrics( output_path, output_file_format): metrics = util.convert_metrics_proto_to_dict(p, model_name=model_name) if metrics is not None: metrics_list.append(metrics) plots_list = [] for p in metrics_plots_and_validations_writer.load_and_deserialize_plots( output_path, output_file_format): plots = util.convert_plots_proto_to_dict(p, model_name=model_name) if plots is not None: plots_list.append(plots) if not model_locations: model_location = '' elif model_name is None: model_location = list(model_locations.values())[0] else: model_location = model_locations[model_name] return view_types.EvalResult( slicing_metrics=metrics_list, plots=plots_list, config=eval_config, data_location=data_location, file_format=file_format, model_location=model_location) def default_eval_shared_model( eval_saved_model_path: Text, add_metrics_callbacks: Optional[List[types.AddMetricsCallbackType]] = None, include_default_metrics: Optional[bool] = True, example_weight_key: Optional[Union[Text, Dict[Text, Text]]] = None, additional_fetches: Optional[List[Text]] = None, blacklist_feature_fetches: Optional[List[Text]] = None, tags: Optional[List[Text]] = None, model_name: Text = '', eval_config: Optional[config.EvalConfig] = None, custom_model_loader: Optional[types.ModelLoader] = None ) -> types.EvalSharedModel: """Returns default EvalSharedModel. Args: eval_saved_model_path: Path to EvalSavedModel. add_metrics_callbacks: Optional list of callbacks for adding additional metrics to the graph (see EvalSharedModel for more information on how to configure additional metrics). Metrics for example count and example weights will be added automatically. include_default_metrics: True to include the default metrics that are part of the saved model graph during evaluation. Note that eval_config.options.include_default_metrics must also be true. example_weight_key: Example weight key (single-output model) or dict of example weight keys (multi-output model) keyed by output name. additional_fetches: Prefixes of additional tensors stored in signature_def.inputs that should be fetched at prediction time. The "features" and "labels" tensors are handled automatically and should not be included. blacklist_feature_fetches: List of tensor names in the features dictionary which should be excluded from the fetches request. This is useful in scenarios where features are large (e.g. images) and can lead to excessive memory use if stored. tags: Model tags (e.g. 'serve' for serving or 'eval' for EvalSavedModel). model_name: Optional name of the model being created (should match ModelSpecs.name). The name should only be provided if multiple models are being evaluated. eval_config: Eval config. Only used for setting default tags. custom_model_loader: Optional custom model loader for non-TF models. """ if not eval_config: model_type = constants.TF_ESTIMATOR if tags is None: tags = [eval_constants.EVAL_TAG] else: model_spec = model_util.get_model_spec(eval_config, model_name) if not model_spec: raise ValueError('ModelSpec for model name {} not found in EvalConfig: ' 'config={}'.format(model_name, eval_config)) model_type = model_util.get_model_type(model_spec, eval_saved_model_path, tags) if tags is None: # Default to serving unless estimator is used. if model_type == constants.TF_ESTIMATOR: tags = [eval_constants.EVAL_TAG] else: tags = [tf.saved_model.SERVING] # Backwards compatibility for legacy add_metrics_callbacks implementation. if model_type == constants.TF_ESTIMATOR and eval_constants.EVAL_TAG in tags: # PyType doesn't know about the magic exports we do in post_export_metrics. # Additionally, the lines seem to get reordered in compilation, so we can't # just put the disable-attr on the add_metrics_callbacks lines. # pytype: disable=module-attr if not add_metrics_callbacks: add_metrics_callbacks = [] # Always compute example weight and example count. example_count_callback = post_export_metrics.example_count() add_metrics_callbacks.append(example_count_callback) if example_weight_key: if isinstance(example_weight_key, dict): for output_name, key in example_weight_key.items(): example_weight_callback = post_export_metrics.example_weight( key, metric_tag=output_name) add_metrics_callbacks.append(example_weight_callback) else: example_weight_callback = post_export_metrics.example_weight( example_weight_key) add_metrics_callbacks.append(example_weight_callback) # pytype: enable=module-attr model_loader = custom_model_loader if not model_loader and model_type in constants.VALID_TF_MODEL_TYPES: model_loader = types.ModelLoader( construct_fn=model_util.model_construct_fn( eval_saved_model_path=eval_saved_model_path, add_metrics_callbacks=add_metrics_callbacks, include_default_metrics=include_default_metrics, additional_fetches=additional_fetches, blacklist_feature_fetches=blacklist_feature_fetches, model_type=model_type, tags=tags), tags=tags) return types.EvalSharedModel( model_name=model_name, model_type=model_type, model_path=eval_saved_model_path, add_metrics_callbacks=add_metrics_callbacks, include_default_metrics=include_default_metrics, example_weight_key=example_weight_key, additional_fetches=additional_fetches, model_loader=model_loader) def default_extractors( # pylint: disable=invalid-name eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, materialize: Optional[bool] = True, tensor_adapter_config: Optional[tensor_adapter.TensorAdapterConfig] = None, custom_predict_extractor: Optional[extractor.Extractor] = None ) -> List[extractor.Extractor]: """Returns the default extractors for use in ExtractAndEvaluate. Args: eval_shared_model: Shared model (single-model evaluation) or list of shared models (multi-model evaluation). Required unless the predictions are provided alongside of the features (i.e. model-agnostic evaluations). eval_config: Eval config. slice_spec: Deprecated (use EvalConfig). materialize: True to have extractors create materialized output. tensor_adapter_config: Tensor adapter config which specifies how to obtain tensors from the Arrow RecordBatch. If None, we feed the raw examples to the model. custom_predict_extractor: Optional custom predict extractor for non-TF models. Raises: NotImplementedError: If eval_config contains mixed serving and eval models. """ if slice_spec and eval_config: raise ValueError('slice_spec is deprecated, only use eval_config') if eval_config is not None: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) if _is_legacy_eval(eval_shared_model, eval_config): # Backwards compatibility for previous add_metrics_callbacks implementation. if not eval_config and slice_spec: eval_config = config.EvalConfig( slicing_specs=[s.to_proto() for s in slice_spec]) return [ custom_predict_extractor or predict_extractor.PredictExtractor( eval_shared_model, materialize=materialize), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] elif eval_shared_model: model_types = _model_types(eval_shared_model) eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if (not model_types.issubset(constants.VALID_TF_MODEL_TYPES) and not custom_predict_extractor): raise NotImplementedError( 'either a custom_predict_extractor must be used or model type must ' 'be one of: {}. evalconfig={}'.format( str(constants.VALID_TF_MODEL_TYPES), eval_config)) if model_types == set([constants.TF_LITE]): # TODO(b/163889779): Convert TFLite extractor to operate on batched # extracts. Then we can remove the input extractor. return [ input_extractor.InputExtractor(eval_config=eval_config), (custom_predict_extractor or tflite_predict_extractor.TFLitePredictExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model)), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] elif constants.TF_LITE in model_types: raise NotImplementedError( 'support for mixing tf_lite and non-tf_lite models is not ' 'implemented: eval_config={}'.format(eval_config)) if model_types == set([constants.TF_JS]): return [ input_extractor.InputExtractor(eval_config=eval_config), (custom_predict_extractor or tfjs_predict_extractor.TFJSPredictExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model)), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] elif constants.TF_JS in model_types: raise NotImplementedError( 'support for mixing tf_js and non-tf_js models is not ' 'implemented: eval_config={}'.format(eval_config)) elif (eval_config and model_types == set([constants.TF_ESTIMATOR]) and all(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)): return [ custom_predict_extractor or predict_extractor.PredictExtractor( eval_shared_model, materialize=materialize, eval_config=eval_config), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] elif (eval_config and constants.TF_ESTIMATOR in model_types and any(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)): raise NotImplementedError( 'support for mixing eval and non-eval estimator models is not ' 'implemented: eval_config={}'.format(eval_config)) else: return [ batched_input_extractor.BatchedInputExtractor( eval_config=eval_config), (custom_predict_extractor or batched_predict_extractor_v2.BatchedPredictExtractor( eval_config=eval_config, eval_shared_model=eval_shared_model, tensor_adapter_config=tensor_adapter_config)), unbatch_extractor.UnbatchExtractor(), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] else: return [ batched_input_extractor.BatchedInputExtractor(eval_config=eval_config), unbatch_extractor.UnbatchExtractor(), slice_key_extractor.SliceKeyExtractor( eval_config=eval_config, materialize=materialize) ] def default_evaluators( # pylint: disable=invalid-name eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None, schema: Optional[schema_pb2.Schema] = None, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, serialize: bool = False, random_seed_for_testing: Optional[int] = None) -> List[evaluator.Evaluator]: """Returns the default evaluators for use in ExtractAndEvaluate. Args: eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if there are metrics to be computed in-graph using the model. eval_config: Eval config. schema: A schema to use for customizing default evaluators. compute_confidence_intervals: Deprecated (use eval_config). min_slice_size: Deprecated (use eval_config). serialize: Deprecated. random_seed_for_testing: Provide for deterministic tests only. """ disabled_outputs = [] if eval_config: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) disabled_outputs = eval_config.options.disabled_outputs.values if (_model_types(eval_shared_model) == set([constants.TF_LITE]) or _model_types(eval_shared_model) == set([constants.TF_JS])): # no in-graph metrics present when tflite or tfjs is used. if eval_shared_model: if isinstance(eval_shared_model, dict): eval_shared_model = { k: v._replace(include_default_metrics=False) for k, v in eval_shared_model.items() } elif isinstance(eval_shared_model, list): eval_shared_model = [ v._replace(include_default_metrics=False) for v in eval_shared_model ] else: eval_shared_model = eval_shared_model._replace( include_default_metrics=False) if (constants.METRICS_KEY in disabled_outputs and constants.PLOTS_KEY in disabled_outputs): return [] if _is_legacy_eval(eval_shared_model, eval_config): # Backwards compatibility for previous add_metrics_callbacks implementation. if eval_config is not None: if eval_config.options.HasField('compute_confidence_intervals'): compute_confidence_intervals = ( eval_config.options.compute_confidence_intervals.value) if eval_config.options.HasField('min_slice_size'): min_slice_size = eval_config.options.min_slice_size.value return [ metrics_and_plots_evaluator.MetricsAndPlotsEvaluator( eval_shared_model, compute_confidence_intervals=compute_confidence_intervals, min_slice_size=min_slice_size, serialize=serialize, random_seed_for_testing=random_seed_for_testing) ] else: return [ metrics_and_plots_evaluator_v2.MetricsAndPlotsEvaluator( eval_config=eval_config, eval_shared_model=eval_shared_model, schema=schema, random_seed_for_testing=random_seed_for_testing) ] def default_writers( output_path: Optional[Text], eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: Optional[config.EvalConfig] = None, display_only_data_location: Optional[Text] = None, display_only_data_file_format: Optional[Text] = None, output_file_format: Text = '', add_metric_callbacks: List[types.AddMetricsCallbackType] = None ) -> List[writer.Writer]: # pylint: disable=invalid-name """Returns the default writers for use in WriteResults. Note, sharding will be enabled by default if an output_file_format is provided. Filenames will be <output_path>-SSSSS-of-NNNNN.<output_file_format> where SSSSS is the shard number and NNNNN is the number of shards. Args: output_path: Output path. eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if legacy add_metrics_callbacks are used. eval_config: Eval config for writing out config along with results. Also used for to check for missing slices. display_only_data_location: Optional path indicating where the examples were read from. This is used only for display purposes - data will not actually be read from this path. display_only_data_file_format: Optional format of the input examples. This is used only for display purposes. output_file_format: File format to use when saving files. Currently only 'tfrecord' is supported. add_metric_callbacks: Optional list of metric callbacks (if used). """ writers = [] if not add_metric_callbacks: add_metric_callbacks = [] # The add_metric_callbacks are used in the metrics and plots serialization # code to post process the metric data by calling populate_stats_and_pop. # While both the legacy (V1) and new (V2) evaluation implementations support # EvalSavedModels using add_metric_callbacks, this particular code is only # required for the legacy evaluation based on the MetricsAndPlotsEvaluator. # The V2 MetricsAndPlotsEvaluator output requires no additional processing. # Since the V1 code only supports a single EvalSharedModel, we only set the # add_metrics_callbacks if a dict is not passed. if (eval_shared_model and not isinstance(eval_shared_model, dict) and not isinstance(eval_shared_model, list)): add_metric_callbacks = eval_shared_model.add_metrics_callbacks if eval_config: model_locations = {} eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) for v in (eval_shared_models or [None]): k = '' if v is None else v.model_name model_locations[k] = ('<unknown>' if v is None or v.model_path is None else v.model_path) writers.append( eval_config_writer.EvalConfigWriter( output_path, eval_config=eval_config, data_location=display_only_data_location, data_file_format=display_only_data_file_format, model_locations=model_locations)) output_paths = { constants.METRICS_KEY: os.path.join(output_path, constants.METRICS_KEY), constants.PLOTS_KEY: os.path.join(output_path, constants.PLOTS_KEY), constants.VALIDATIONS_KEY: os.path.join(output_path, constants.VALIDATIONS_KEY) } writers.append( metrics_plots_and_validations_writer.MetricsPlotsAndValidationsWriter( output_paths=output_paths, # Empty EvalConfig supported for backwards compatibility. eval_config=eval_config or config.EvalConfig(), add_metrics_callbacks=add_metric_callbacks, output_file_format=output_file_format)) return writers @beam.ptransform_fn # TODO(b/156538355): Find out why str is also required instead of just bytes # after adding types.Extracts. @beam.typehints.with_input_types(Union[bytes, str, types.Extracts]) @beam.typehints.with_output_types(types.Extracts) def InputsToExtracts( # pylint: disable=invalid-name inputs: beam.pvalue.PCollection) -> beam.pvalue.PCollection: """Converts serialized inputs (e.g. examples) to Extracts if not already.""" def to_extracts(x: Union[bytes, str, types.Extracts]) -> types.Extracts: result = {} if isinstance(x, dict): result.update(x) else: result[constants.INPUT_KEY] = x return result return inputs | 'AddInputKey' >> beam.Map(to_extracts) @beam.ptransform_fn @beam.typehints.with_input_types(Union[bytes, pa.RecordBatch]) @beam.typehints.with_output_types(types.Extracts) def BatchedInputsToExtracts( # pylint: disable=invalid-name batched_inputs: beam.pvalue.PCollection) -> beam.pvalue.PCollection: """Converts Arrow RecordBatch inputs to Extracts.""" def to_extracts(x: Union[bytes, pa.RecordBatch]) -> types.Extracts: result = {} if isinstance(x, dict): result.update(x) else: result[constants.ARROW_RECORD_BATCH_KEY] = x return result return batched_inputs | 'AddArrowRecordBatchKey' >> beam.Map(to_extracts) @beam.ptransform_fn @beam.typehints.with_input_types(types.Extracts) @beam.typehints.with_output_types(Any) def ExtractAndEvaluate( # pylint: disable=invalid-name extracts: beam.pvalue.PCollection, extractors: List[extractor.Extractor], evaluators: List[evaluator.Evaluator]) -> evaluator.Evaluation: """Performs Extractions and Evaluations in provided order.""" # evaluation[k] = list of values for k evaluation = {} def update(evaluation: Dict[Text, Any], new_evaluation: Dict[Text, Any]): for k, v in new_evaluation.items(): if k not in evaluation: evaluation[k] = [] evaluation[k].append(v) return evaluation # Run evaluators that run before extraction (i.e. that only require # the incoming input extract added by ReadInputs) for v in evaluators: if not v.run_after: update(evaluation, extracts | v.stage_name >> v.ptransform) for x in extractors: extracts = (extracts | x.stage_name >> x.ptransform) for v in evaluators: if v.run_after == x.stage_name: update(evaluation, extracts | v.stage_name >> v.ptransform) for v in evaluators: if v.run_after == extractor.LAST_EXTRACTOR_STAGE_NAME: update(evaluation, extracts | v.stage_name >> v.ptransform) # Merge multi-valued keys if necessary. result = {} for k, v in evaluation.items(): if len(v) == 1: result[k] = v[0] continue # Note that we assume that if a key is multivalued, its values are # dictionaries with disjoint keys. The combined value will simply be the # disjoint union of all the dictionaries. result[k] = ( v | 'FlattenEvaluationOutput(%s)' % k >> beam.Flatten() | 'CombineEvaluationOutput(%s)' % k >> beam.CombinePerKey( _CombineEvaluationDictionariesFn())) return result class _CombineEvaluationDictionariesFn(beam.CombineFn): """CombineFn to combine dictionaries generated by different evaluators.""" def create_accumulator(self) -> Dict[Text, Any]: return {} def _merge(self, accumulator: Dict[Text, Any], output_dict: Dict[Text, Any]) -> None: intersection = set(accumulator) & set(output_dict) if intersection: raise ValueError( 'Dictionaries generated by different evaluators should have ' 'different keys, but keys %s appeared in the output of multiple ' 'evaluators' % intersection) accumulator.update(output_dict) def add_input(self, accumulator: Dict[Text, Any], output_dict: Dict[Text, Any]) -> Dict[Text, Any]: if not isinstance(output_dict, dict): raise TypeError( 'for outputs written to by multiple evaluators, the outputs must all ' 'be dictionaries, but got output of type %s, value %s' % (type(output_dict), str(output_dict))) self._merge(accumulator, output_dict) return accumulator def merge_accumulators( self, accumulators: List[Dict[Text, Any]]) -> Dict[Text, Any]: result = self.create_accumulator() for acc in accumulators: self._merge(result, acc) return result def extract_output(self, accumulator: Dict[Text, Any]) -> Dict[Text, Any]: return accumulator @beam.ptransform_fn # TODO(b/157600974): Add input typehint. @beam.typehints.with_output_types(beam.pvalue.PDone) def WriteResults( # pylint: disable=invalid-name evaluation_or_validation: Union[evaluator.Evaluation, validator.Validation], writers: List[writer.Writer]) -> beam.pvalue.PDone: """Writes Evaluation or Validation results using given writers. Args: evaluation_or_validation: Evaluation or Validation output. writers: Writes to use for writing out output. Raises: ValueError: If Evaluation or Validation is empty. Returns: beam.pvalue.PDone. """ if not evaluation_or_validation: raise ValueError('Evaluations and Validations cannot be empty') for w in writers: _ = evaluation_or_validation | w.stage_name >> w.ptransform return beam.pvalue.PDone(list(evaluation_or_validation.values())[0].pipeline) def is_batched_input(eval_shared_model: Optional[ types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None) -> bool: """Returns true if batched input should be used. We will keep supporting the legacy unbatched V1 PredictExtractor as it parses the features and labels, and is the only solution currently that allows for slicing on transformed features. Eventually we should have support for transformed features via keras preprocessing layers. Args: eval_shared_model: Shared model (single-model evaluation) or list of shared models (multi-model evaluation). Required unless the predictions are provided alongside of the features (i.e. model-agnostic evaluations). eval_config: Eval config. Returns: A boolean indicating if batched extractors should be used. """ if _is_legacy_eval(eval_shared_model, eval_config): return False elif eval_shared_model: model_types = _model_types(eval_shared_model) eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if (model_types == set([constants.TF_LITE]) or model_types == set([constants.TF_JS])): return False elif (eval_config and model_types == set([constants.TF_ESTIMATOR]) and all(eval_constants.EVAL_TAG in m.model_loader.tags for m in eval_shared_models)): return False return True @beam.ptransform_fn @beam.typehints.with_input_types(Any) @beam.typehints.with_output_types(beam.pvalue.PDone) def ExtractEvaluateAndWriteResults( # pylint: disable=invalid-name examples: beam.pvalue.PCollection, eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None, extractors: Optional[List[extractor.Extractor]] = None, evaluators: Optional[List[evaluator.Evaluator]] = None, writers: Optional[List[writer.Writer]] = None, output_path: Optional[Text] = None, display_only_data_location: Optional[Text] = None, display_only_file_format: Optional[Text] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, write_config: Optional[bool] = True, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, random_seed_for_testing: Optional[int] = None, tensor_adapter_config: Optional[tensor_adapter.TensorAdapterConfig] = None, schema: Optional[schema_pb2.Schema] = None) -> beam.pvalue.PDone: """PTransform for performing extraction, evaluation, and writing results. Users who want to construct their own Beam pipelines instead of using the lightweight run_model_analysis functions should use this PTransform. Example usage: ```python eval_config = tfma.EvalConfig(slicing_specs=[...], metrics_specs=[...]) eval_shared_model = tfma.default_eval_shared_model( eval_saved_model_path=model_location, eval_config=eval_config) with beam.Pipeline(runner=...) as p: _ = (p | 'ReadData' >> beam.io.ReadFromTFRecord(data_location) | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=eval_shared_model, eval_config=eval_config, ...)) result = tfma.load_eval_result(output_path=output_path) tfma.view.render_slicing_metrics(result) ``` Note that the exact serialization format is an internal implementation detail and subject to change. Users should only use the TFMA functions to write and read the results. Args: examples: PCollection of input examples or Arrow Record batches. Examples can be any format the model accepts (e.g. string containing CSV row, TensorFlow.Example, etc). If the examples are in the form of a dict it will be assumed that input is already in the form of tfma.Extracts with examples stored under tfma.INPUT_KEY (any other keys will be passed along unchanged to downstream extractors and evaluators). eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if needed by default extractors, evaluators, or writers and for display purposes of the model path. eval_config: Eval config. extractors: Optional list of Extractors to apply to Extracts. Typically these will be added by calling the default_extractors function. If no extractors are provided, default_extractors (non-materialized) will be used. evaluators: Optional list of Evaluators for evaluating Extracts. Typically these will be added by calling the default_evaluators function. If no evaluators are provided, default_evaluators will be used. writers: Optional list of Writers for writing Evaluation output. Typically these will be added by calling the default_writers function. If no writers are provided, default_writers will be used. output_path: Path to output results to (config file, metrics, plots, etc). display_only_data_location: Optional path indicating where the examples were read from. This is used only for display purposes - data will not actually be read from this path. display_only_file_format: Optional format of the examples. This is used only for display purposes. slice_spec: Deprecated (use EvalConfig). write_config: Deprecated (use EvalConfig). compute_confidence_intervals: Deprecated (use EvalConfig). min_slice_size: Deprecated (use EvalConfig). random_seed_for_testing: Provide for deterministic tests only. tensor_adapter_config: Tensor adapter config which specifies how to obtain tensors from the Arrow RecordBatch. If None, we feed the raw examples to the model. schema: A schema to use for customizing evaluators. Raises: ValueError: If EvalConfig invalid or matching Extractor not found for an Evaluator. Returns: PDone. """ eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) if eval_config is None: eval_config = _default_eval_config(eval_shared_models, slice_spec, write_config, compute_confidence_intervals, min_slice_size) else: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) config.verify_eval_config(eval_config) if not extractors: extractors = default_extractors( eval_config=eval_config, eval_shared_model=eval_shared_model, materialize=False, tensor_adapter_config=tensor_adapter_config) if not evaluators: evaluators = default_evaluators( eval_config=eval_config, eval_shared_model=eval_shared_model, random_seed_for_testing=random_seed_for_testing, schema=schema) for v in evaluators: evaluator.verify_evaluator(v, extractors) if not writers: writers = default_writers( output_path=output_path, eval_shared_model=eval_shared_model, eval_config=eval_config, display_only_data_location=display_only_data_location, display_only_data_file_format=display_only_file_format) # pylint: disable=no-value-for-parameter if is_batched_input(eval_shared_model, eval_config): extracts = ( examples | 'BatchedInputsToExtracts' >> BatchedInputsToExtracts()) else: extracts = (examples | 'InputsToExtracts' >> InputsToExtracts()) _ = ( extracts | 'ExtractAndEvaluate' >> ExtractAndEvaluate( extractors=extractors, evaluators=evaluators) | 'WriteResults' >> WriteResults(writers=writers)) return beam.pvalue.PDone(examples.pipeline) def run_model_analysis( eval_shared_model: Optional[types.MaybeMultipleEvalSharedModels] = None, eval_config: config.EvalConfig = None, data_location: Text = '', file_format: Text = 'tfrecords', output_path: Optional[Text] = None, extractors: Optional[List[extractor.Extractor]] = None, evaluators: Optional[List[evaluator.Evaluator]] = None, writers: Optional[List[writer.Writer]] = None, pipeline_options: Optional[Any] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None, write_config: Optional[bool] = True, compute_confidence_intervals: Optional[bool] = False, min_slice_size: int = 1, random_seed_for_testing: Optional[int] = None, schema: Optional[schema_pb2.Schema] = None, ) -> Union[view_types.EvalResult, view_types.EvalResults]: """Runs TensorFlow model analysis. It runs a Beam pipeline to compute the slicing metrics exported in TensorFlow Eval SavedModel and returns the results. This is a simplified API for users who want to quickly get something running locally. Users who wish to create their own Beam pipelines can use the Evaluate PTransform instead. Args: eval_shared_model: Optional shared model (single-model evaluation) or list of shared models (multi-model evaluation). Only required if needed by default extractors, evaluators, or writers. eval_config: Eval config. data_location: The location of the data files. file_format: The file format of the data, can be either 'text' or 'tfrecords' for now. By default, 'tfrecords' will be used. output_path: The directory to output metrics and results to. If None, we use a temporary directory. extractors: Optional list of Extractors to apply to Extracts. Typically these will be added by calling the default_extractors function. If no extractors are provided, default_extractors (non-materialized) will be used. evaluators: Optional list of Evaluators for evaluating Extracts. Typically these will be added by calling the default_evaluators function. If no evaluators are provided, default_evaluators will be used. writers: Optional list of Writers for writing Evaluation output. Typically these will be added by calling the default_writers function. If no writers are provided, default_writers will be used. pipeline_options: Optional arguments to run the Pipeline, for instance whether to run directly. slice_spec: Deprecated (use EvalConfig). write_config: Deprecated (use EvalConfig). compute_confidence_intervals: Deprecated (use EvalConfig). min_slice_size: Deprecated (use EvalConfig). random_seed_for_testing: Provide for deterministic tests only. schema: Optional tf.Metadata schema of the input data. Returns: An EvalResult that can be used with the TFMA visualization functions. Raises: ValueError: If the file_format is unknown to us. """ _assert_tensorflow_version() if output_path is None: output_path = tempfile.mkdtemp() if not tf.io.gfile.exists(output_path): tf.io.gfile.makedirs(output_path) if eval_config is None: eval_shared_models = model_util.verify_and_update_eval_shared_models( eval_shared_model) eval_config = _default_eval_config(eval_shared_models, slice_spec, write_config, compute_confidence_intervals, min_slice_size) else: eval_config = _update_eval_config_with_defaults(eval_config, eval_shared_model) tensor_adapter_config = None with beam.Pipeline(options=pipeline_options) as p: if file_format == 'tfrecords': if is_batched_input(eval_shared_model, eval_config): tfxio = tf_example_record.TFExampleRecord( file_pattern=data_location, schema=schema, raw_record_column_name=constants.ARROW_INPUT_COLUMN) if schema is not None: tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations()) data = p | 'ReadFromTFRecordToArrow' >> tfxio.BeamSource() else: data = p | 'ReadFromTFRecord' >> beam.io.ReadFromTFRecord( file_pattern=data_location, compression_type=beam.io.filesystem.CompressionTypes.AUTO) elif file_format == 'text': data = p | 'ReadFromText' >> beam.io.textio.ReadFromText(data_location) else: raise ValueError('unknown file_format: {}'.format(file_format)) # pylint: disable=no-value-for-parameter _ = ( data | 'ExtractEvaluateAndWriteResults' >> ExtractEvaluateAndWriteResults( eval_config=eval_config, eval_shared_model=eval_shared_model, display_only_data_location=data_location, display_only_file_format=file_format, output_path=output_path, extractors=extractors, evaluators=evaluators, writers=writers, random_seed_for_testing=random_seed_for_testing, tensor_adapter_config=tensor_adapter_config, schema=schema)) # pylint: enable=no-value-for-parameter if len(eval_config.model_specs) <= 1: return load_eval_result(output_path) else: results = [] for spec in eval_config.model_specs: results.append(load_eval_result(output_path, model_name=spec.name)) return view_types.EvalResults(results, constants.MODEL_CENTRIC_MODE) def single_model_analysis( model_location: Text, data_location: Text, output_path: Text = None, eval_config: Optional[config.EvalConfig] = None, slice_spec: Optional[List[slicer.SingleSliceSpec]] = None ) -> view_types.EvalResult: """Run model analysis for a single model on a single data set. This is a convenience wrapper around run_model_analysis for a single model with a single data set. For more complex use cases, use tfma.run_model_analysis. Args: model_location: Path to the export eval saved model. data_location: The location of the data files. output_path: The directory to output metrics and results to. If None, we use a temporary directory. eval_config: Eval config. slice_spec: Deprecated (use EvalConfig). Returns: An EvalResult that can be used with the TFMA visualization functions. """ # Get working_dir ready. if output_path is None: output_path = tempfile.mkdtemp() if not tf.io.gfile.exists(output_path): tf.io.gfile.makedirs(output_path) if slice_spec and eval_config: raise ValueError('slice_spec is deprecated, only use eval_config') if slice_spec: eval_config = config.EvalConfig( slicing_specs=[s.to_proto() for s in slice_spec]) return run_model_analysis( eval_config=eval_config, eval_shared_model=default_eval_shared_model( eval_saved_model_path=model_location), data_location=data_location, output_path=output_path) # pytype: disable=bad-return-type def multiple_model_analysis(model_locations: List[Text], data_location: Text, **kwargs) -> view_types.EvalResults: """Run model analysis for multiple models on the same data set. Args: model_locations: A list of paths to the export eval saved model. data_location: The location of the data files. **kwargs: The args used for evaluation. See tfma.single_model_analysis() for details. Returns: A tfma.EvalResults containing all the evaluation results with the same order as model_locations. """ results = [] for m in model_locations: results.append(single_model_analysis(m, data_location, **kwargs)) return view_types.EvalResults(results, constants.MODEL_CENTRIC_MODE) def multiple_data_analysis(model_location: Text, data_locations: List[Text], **kwargs) -> view_types.EvalResults: """Run model analysis for a single model on multiple data sets. Args: model_location: The location of the exported eval saved model. data_locations: A list of data set locations. **kwargs: The args used for evaluation. See tfma.run_model_analysis() for details. Returns: A tfma.EvalResults containing all the evaluation results with the same order as data_locations. """ results = [] for d in data_locations: results.append(single_model_analysis(model_location, d, **kwargs)) return view_types.EvalResults(results, constants.DATA_CENTRIC_MODE) def analyze_raw_data( data: pd.DataFrame, eval_config: config.EvalConfig = None, output_path: Optional[Text] = None, add_metric_callbacks: List[types.AddMetricsCallbackType] = None ) -> view_types.EvalResult: """Runs TensorFlow model analysis on a pandas.DataFrame. This function allows you to use TFMA with Pandas DataFrames. The dataframe must include a 'predicted' column for the predicted label and a 'label' column for the actual label. In addition to a DataFrame, this function requires an eval_config, a `tfma.EvalConfig` object containing various configuration parameters (see [config.proto](https://github.com/tensorflow/model-analysis/blob/master/tensorflow_model_analysis/proto/config.proto) for a comprehensive list)... * the metrics to compute * the slices to compute metrics on * the DataFrame's column names for example labels and predictions ('label' and 'prediction' by default) * confidence interval options This function returns a `tfma.EvalResult`, which contains TFMA's computed metrics and can be used to generate plots with `tfma.view.render_slicing_metrics`. Example usage: ```python model_specs = [ config.ModelSpec( prediction_key='prediction', label_key='label') ] config.options.compute_confidence_intervals.value metrics_specs = [ config.MetricsSpec(metrics=[ config.MetricConfig(class_name='Accuracy'), config.MetricConfig(class_name='ExampleCount') ]) ] slicing_specs = [ config.SlicingSpec(), # the empty slice represents the overall dataset config.SlicingSpec(feature_keys=['language']) ] eval_config = config.EvalConfig( model_specs=model_specs, metrics_specs=metrics_specs, slicing_specs=slicing_specs) result = model_eval_lib.analyze_raw_data(df, eval_config) tfma.view.render_slicing_metrics(result) # Example with Fairness Indicators from tensorflow_model_analysis.addons.fairness.post_export_metrics import fairness_indicators from tensorflow_model_analysis.addons.fairness.view import widget_view add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators(thresholds=[0.25, 0.5, 0.75]) ] result = model_eval_lib.analyze_raw_data( data=df, metrics_specs=metrics_specs, slicing_specs=slicing_specs, add_metric_callbacks=add_metrics_callbacks ) widget_view.render_fairness_indicator(result) ``` Args: data: A pandas.DataFrame, where rows correspond to examples and columns correspond to features. One column must indicate a row's predicted label, and one column must indicate a row's actual label. eval_config: A `tfma.EvalConfig`, which contains various configuration parameters including metrics, slices, and label/prediction column names. output_path: Path to write EvalResult to. add_metric_callbacks: Optional list of metric callbacks (if used). Returns: A tfma.EvalResult to extract metrics or generate visualizations from. Raises: KeyError: If the prediction or label columns are not found within the DataFrame. """ for model_spec in eval_config.model_specs: model_spec.prediction_key = model_spec.prediction_key or 'prediction' model_spec.label_key = model_spec.label_key or 'label' if model_spec.prediction_key not in data.columns: raise KeyError( 'The prediction_key column was not found. Looked for %s but found: %s' % (model_spec.prediction_key, list(data.columns))) if model_spec.label_key not in data.columns: raise KeyError( 'The label_key column was not found. Looked for %s but found: %s' % (model_spec.label_key, list(data.columns))) # TODO(b/153570803): Validity check / assertions for dataframe structure if eval_config.slicing_specs is None: eval_config.slicing_specs = [config.SlicingSpec(feature_keys=[''])] if output_path is None: output_path = tempfile.mkdtemp() arrow_data = table_util.CanonicalizeRecordBatch( table_util.DataFrameToRecordBatch(data)) beam_data = beam.Create([arrow_data]) writers = default_writers( output_path, eval_config=eval_config, add_metric_callbacks=add_metric_callbacks) with beam.Pipeline() as p: _ = ( p | beam_data | 'ExtractEvaluateAndWriteResults' >> ExtractEvaluateAndWriteResults( # pylint: disable=no-value-for-parameter writers=writers, eval_config=eval_config, output_path=output_path)) return load_eval_result(output_path)
py
1a565abe38b0122edf71ee04b2cd0a13991e0e19
""" Utilities for general use """ import pandas as pd import random def cartesianproduct(*args): """Create full cartesian product of all objects passed""" # Create a random string to name a new random column for merging key_col = randomstring(16) out = pd.DataFrame(args[0].drop_duplicates()) out[key_col] = 1 for itm in args[1:]: itm = pd.DataFrame(itm.drop_duplicates()) itm[key_col] = 1 out = out.merge(itm, on=key_col) out.drop(columns=key_col, inplace=True) return out
py
1a565ad8449061775c178a6193e11b7213160b05
#!/usr/bin/env python # -*- coding: utf-8 -*- from bincrafters import build_template_default import os import platform if __name__ == "__main__": CONAN_USERNAME = os.environ.get("CONAN_USERNAME", "yjjnls") CONAN_UPLOAD = 'https://api.bintray.com/conan/%s/%s' % (CONAN_USERNAME, 'stable') os.environ['CONAN_UPLOAD'] = CONAN_UPLOAD os.environ['CONAN_CHANNEL'] = 'stable' os.environ['CONAN_UPLOAD_ONLY_WHEN_STABLE'] = 'False' os.environ['CONAN_USERNAME'] = CONAN_USERNAME DEPENDENT_BINTRAY_REPO = os.environ.get( "DEPENDENT_BINTRAY_REPO", CONAN_USERNAME) os.environ['DEPENDENT_BINTRAY_REPO'] = DEPENDENT_BINTRAY_REPO builder = build_template_default.get_builder() builds = [] for settings, options, env_vars, build_requires, reference in builder.items: # dynamic only if not options["gstreamer-custom:shared"]: continue # release only if settings["build_type"] == "Debug": continue # Visual Sutido 2017 only if platform.system() == "Windows": if settings["compiler"] == "Visual Studio": if settings["compiler.version"] == '14': builds.append( [settings, options, env_vars, build_requires]) elif platform.system() == "Linux": if settings["compiler"] == "gcc": if settings["compiler.version"] == '4.9' and settings["arch"] == 'x86_64': builds.append( [settings, options, {'DEPENDENT_BINTRAY_REPO': DEPENDENT_BINTRAY_REPO}, build_requires]) builder.builds = builds builder.run()
py
1a565b985347dca62c911fd14b9a35dfaa18f0c8
conv_encoder = km.Sequential(name="ConvEncoderModel") conv_encoder.add(kl.Conv2D(16, (3,3) , activation='relu', input_shape=(28,28,1) , padding='same' )) conv_encoder.add(kl.MaxPooling2D((2, 2), padding='same')) conv_encoder.add(kl.Conv2D(8, (3, 3), activation='relu', padding='same')) conv_encoder.add(kl.MaxPooling2D((2, 2), padding='same')) conv_encoder.add(kl.Conv2D(8, (3, 3), activation='relu', padding='same')) conv_encoder.add(kl. MaxPooling2D((2, 2), padding='same')) conv_decoder = km.Sequential(name="ConvDecoderModel") conv_decoder.add(kl.Conv2D(8, (3, 3), activation='relu', input_shape = (4, 4, 8), padding='same')) conv_decoder.add(kl.UpSampling2D((2, 2))) conv_decoder.add(kl.Conv2D(8, (3, 3), activation='relu', padding='same')) conv_decoder.add(kl.UpSampling2D((2, 2))) conv_decoder.add(kl.Conv2D(16, (3, 3), activation='relu')) conv_decoder.add(kl.UpSampling2D((2, 2))) conv_decoder.add(kl.Conv2D(1, (3, 3), activation='sigmoid', padding='same')) conv_autoencoder = km.Sequential(name="ConvAutoencoderModel") conv_autoencoder.add(conv_encoder) conv_autoencoder.add(conv_decoder) conv_autoencoder.compile(optimizer='adam', loss='binary_crossentropy') conv_autoencoder.fit(x_train_noisy, x_train_conv, epochs=10, batch_size=256, validation_data=(x_test_noisy, x_test_conv))
py
1a565cce4e1766f6eb30087c15882f74d383ecc5
import bluetooth bd_addr = "98:D3:31:F5:B9:E6" port = 1 sock = bluetooth.BluetoothSocket(bluetooth.RFCOMM) sock.connect((bd_addr,port)) while 1: a = sock.recv(1) print(a) sock.close()
py
1a565cfe60062642ef0ce63b71f290c0005ec333
from nltk.stem.wordnet import WordNetLemmatizer from SentimentAnalysis.common_functions import preprocess_one_line, remove_duplicates lemmatizer = WordNetLemmatizer() lemmatize_flag = True pos_raw_file = open('/home/data/positive-words-raw.txt', 'r') neg_raw_file = open('/home/data/negative-words-raw.txt', 'r') pos_file = open('/home/data/positive-words.txt', 'w') neg_file = open('/home/data/negative-words.txt', 'w') positives_raw = pos_raw_file.readlines() negatives_raw = neg_raw_file.readlines() positives = [] for pos_line in positives_raw: new_pos_line = preprocess_one_line(pos_line, lemmatizer, lemmatize_flag, []) # last arg is stopwords -- there are none by definition positives.append(new_pos_line) positives = remove_duplicates(positives) negatives = [] for neg_line in negatives_raw: new_neg_line = preprocess_one_line(neg_line, lemmatizer, lemmatize_flag, []) negatives.append(new_neg_line) negatives = remove_duplicates(negatives) for word in negatives: neg_file.write(word+'\n') neg_file.close() for word in positives: pos_file.write(word+'\n') pos_file.close()
py
1a565e11d9fe4e9cdd94cf5cce9a2a7f4faf814f
""" Django tests for training in qcm app. Generated by 'manage.py startapp' using Django 3.2.7. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/testing/ """ from django.test import TestCase from user_data.tests import create_student from ..models import Training from .test_shortcuts import create_branch_training, create_questions_subset_training class TrainingModelTest(TestCase): """class to test the Training model""" def test_create_questions_subset_training(self): """test a training creation""" student = create_student(username="test") training = create_questions_subset_training(user=student) trainings = Training.objects.all() self.assertQuerysetEqual(trainings, [training]) def test_create_branch_training(self): """test a training creation""" student = create_student(username="test") training = create_branch_training(user=student) trainings = Training.objects.all() self.assertQuerysetEqual(trainings, [training])
py
1a565e18afdbd19bfc482e06b2d7e8f7a7f62aea
#!/usr/bin/env python3 # # Copyright (c) 2021 Nordic Semiconductor ASA # # SPDX-License-Identifier: Apache-2.0 # from unittest import TestCase, main from subprocess import Popen, PIPE from re import sub from pathlib import Path from pprint import pprint # from ecdsa import VerifyingKey from hashlib import sha256 import cbor2 try: import cddl_gen except ImportError: print(""" The cddl_gen package must be installed to run these tests. During development, install with `python3 setup.py develop` to install in a way that picks up changes in the files without having to reinstall. """) import sys sys.exit(1) p_root = Path(__file__).absolute().parents[2] p_tests = Path(p_root, 'tests') p_manifest12 = Path(p_tests, 'cases', 'manifest12.cddl') p_manifest14 = Path(p_tests, 'cases', 'manifest14.cddl') p_test_vectors12 = tuple(Path(p_tests, 'cases', f'manifest12_example{i}.cborhex') for i in range(6)) p_test_vectors14 = tuple(Path(p_tests, 'cases', f'manifest14_example{i}.cborhex') for i in range(6)) p_optional = Path(p_tests, 'cases', 'optional.cddl') p_cose = Path(p_tests, 'cases', 'cose.cddl') p_manifest14_priv = Path(p_tests, 'cases', 'manifest14.priv') p_manifest14_pub = Path(p_tests, 'cases', 'manifest14.pub') class Testn(TestCase): def decode_file(self, data_path, *cddl_paths): data = bytes.fromhex(data_path.read_text().replace("\n", "")) self.decode_string(data, *cddl_paths) def decode_string(self, data_string, *cddl_paths): cddl_str = " ".join((Path(p).read_text() for p in cddl_paths)) self.my_types = cddl_gen.DataTranslator.from_cddl(cddl_str, 16).my_types cddl = self.my_types["SUIT_Envelope_Tagged"] self.decoded = cddl.decode_str(data_string) class Test0(Testn): def __init__(self, *args, **kwargs): super(Test0, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[0], p_manifest12) def test_manifest_digest(self): self.assertEqual( bytes.fromhex("5c097ef64bf3bb9b494e71e1f2418eef8d466cc902f639a855ec9af3e9eddb99"), self.decoded.suit_authentication_wrapper.SUIT_Digest_bstr.suit_digest_bytes) def test_signature(self): self.assertEqual( 1, self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.protected.uintint[0].uintint_key) self.assertEqual( -7, self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.protected.uintint[0].uintint) self.assertEqual( bytes.fromhex("a19fd1f23b17beed321cece7423dfb48c457b8f1f6ac83577a3c10c6773f6f3a7902376b59540920b6c5f57bac5fc8543d8f5d3d974faa2e6d03daa534b443a7"), self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.signature) def test_validate_run(self): self.assertEqual( "suit_condition_image_match", self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_validate[0].suit_validate.union[0].SUIT_Condition.union_choice) self.assertEqual( "suit_directive_run", self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_run[0].suit_run.union[0].SUIT_Directive.union_choice) def test_image_size(self): self.assertEqual(34768, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[3].suit_parameter_image_size) class Test1(Testn): def __init__(self, *args, **kwargs): super(Test1, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[1], p_manifest12) def test_components(self): self.assertEqual( [b'\x00'], self.decoded.suit_manifest.suit_common.suit_components[0][0].bstr) def test_uri(self): self.assertEqual( "http://example.com/file.bin", self.decoded.suit_manifest.SUIT_Severable_Manifest_Members.suit_install[0].suit_install.union[0].SUIT_Directive.suit_directive_set_parameters.map[0].suit_parameter_uri) class Test2(Testn): def __init__(self, *args, **kwargs): super(Test2, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[2], p_manifest12) def test_severed_uri(self): self.assertEqual( "http://example.com/very/long/path/to/file/file.bin", self.decoded.SUIT_Severable_Manifest_Members.suit_install[0].suit_install.union[0].SUIT_Directive.suit_directive_set_parameters.map[0].suit_parameter_uri) def test_severed_text(self): self.assertIn( "Example 2", self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Text_Keys.suit_text_manifest_description[0]) self.assertEqual( [b'\x00'], self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier_key.bstr) self.assertEqual( "arm.com", self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier.SUIT_Text_Component_Keys.suit_text_vendor_domain[0]) self.assertEqual( "This component is a demonstration. The digest is a sample pattern, not a real one.", self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier.SUIT_Text_Component_Keys.suit_text_component_description[0]) class Test3(Testn): def __init__(self, *args, **kwargs): super(Test3, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[3], p_manifest12) def test_A_B_offset(self): self.assertEqual( 33792, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[1].SUIT_Common_Commands.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr[0].union[0].SUIT_Directive.suit_directive_override_parameters.map[0].suit_parameter_component_offset) self.assertEqual( 541696, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[1].SUIT_Common_Commands.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr[1].union[0].SUIT_Directive.suit_directive_override_parameters.map[0].suit_parameter_component_offset) class Test4(Testn): def __init__(self, *args, **kwargs): super(Test4, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[4], p_manifest12) def test_load_decompress(self): self.assertEqual( 0, self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_load[0].suit_load.union[1].SUIT_Directive.suit_directive_set_parameters.map[3].suit_parameter_source_component) self.assertEqual( "SUIT_Compression_Algorithm_zlib", self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_load[0].suit_load.union[1].SUIT_Directive.suit_directive_set_parameters.map[2].suit_parameter_compression_info.suit_compression_algorithm) class Test5(Testn): def __init__(self, *args, **kwargs): super(Test5, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors12[5], p_manifest12) def test_two_image_match(self): self.assertEqual( "suit_condition_image_match", self.decoded.suit_manifest.SUIT_Severable_Manifest_Members.suit_install[0].suit_install.union[3].SUIT_Condition.union_choice) self.assertEqual( "suit_condition_image_match", self.decoded.suit_manifest.SUIT_Severable_Manifest_Members.suit_install[0].suit_install.union[7].SUIT_Condition.union_choice) def dumps(obj): return cbor2.dumps(obj, canonical=True) def loads(string): return cbor2.loads(string) class Test6(Testn): def __init__(self, *args, **kwargs): super(Test6, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[0], p_manifest14, p_cose) def test_authentication(self): digest = bytes.fromhex("a6c4590ac53043a98e8c4106e1e31b305516d7cf0a655eddfac6d45c810e036a") signature = bytes.fromhex("d11a2dd9610fb62a707335f584079225709f96e8117e7eeed98a2f207d05c8ecfba1755208f6abea977b8a6efe3bc2ca3215e1193be201467d052b42db6b7287") sig_struct = bytes.fromhex("846a5369676e61747572653143a10126405820a6c4590ac53043a98e8c4106e1e31b305516d7cf0a655eddfac6d45c810e036a") # key = VerifyingKey.from_pem(p_manifest14_pub.read_text()) # key.verify_digest(signature, digest) # key.verify(signature, digest, hashfunc=sha256) # key.verify(signature, sig_struct, hashfunc=sha256) self.assertEqual("COSE_Sign1_Tagged", self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].union_choice) self.assertEqual(-7, self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.Headers.protected.header_map_bstr.Generic_Headers.uint1union[0].int) manifest_signature = self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.signature sig_struct = ["Signature", self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.Headers.protected.header_map_bstr_bstr, b'', b'', b''] sig_struct_encoded = dumps(sig_struct) # self.assertEqual(dumps(self.decoded.suit_manifest.orig_obj), self.decoded.orig_obj[3]) manifest_str = dumps(self.decoded.suit_manifest_bstr) # manifest_hash = sha256(manifest_str).digest() manifest_hash = dumps(sha256(manifest_str).digest()) manifest_suit_digest = self.decoded.suit_authentication_wrapper.SUIT_Digest_bstr_bstr # manifest_suit_digest = dumps(dumps(self.decoded.suit_authentication_wrapper.SUIT_Digest_bstr.orig_obj)) sig_struct_encoded = sig_struct_encoded[:-1] + manifest_hash # sig_struct_encoded = sig_struct_encoded[:-1] + dumps(manifest_hash) # sig_struct_encoded = sig_struct_encoded[:-1] + dumps(manifest_suit_digest) # sig_struct_encoded = sig_struct_encoded[:-1] + dumps(dumps(manifest_suit_digest)) # res = self.my_types["Sig_structure"].validate_str(sig_struct_encoded) # print (sig_struct_encoded.hex()) loaded = loads(sig_struct_encoded) # key = VerifyingKey.from_pem(p_manifest14_pub.read_text()) # print(sig_struct_encoded.hex()) # print(key.to_string().hex()) # print(manifest_signature.hex()) # res = key.verify(manifest_signature, dumps(self.decoded.orig_obj[3]), hashfunc=sha256) # res = key.verify_digest(manifest_signature, manifest_hash) # res = key.verify(manifest_signature, manifest_hash, hashfunc=sha256) # res = key.verify(manifest_signature, dumps(manifest_hash), hashfunc=sha256) # res = key.verify(manifest_signature, manifest_suit_digest, hashfunc=sha256) # res = key.verify(manifest_signature, dumps(manifest_suit_digest), hashfunc=sha256) # res = key.verify(manifest_signature, dumps(sig_struct_encoded), hashfunc=sha256) # res = key.verify(manifest_signature, sig_struct_encoded, hashfunc=sha256) # print(res) class Test7(Testn): def __init__(self, *args, **kwargs): super(Test7, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[1], p_manifest14, p_cose) def test_structure(self): self.assertEqual("COSE_Sign1_Tagged", self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].union_choice) self.assertEqual(-7, self.decoded.suit_authentication_wrapper.SUIT_Authentication_Block_bstr[0].COSE_Sign1_Tagged.Headers.protected.header_map_bstr.Generic_Headers.uint1union[0].int) self.assertEqual(bytes.fromhex("60c61d6eb7a1aaeddc49ce8157a55cff0821537eeee77a4ded44155b03045132"), self.decoded.suit_authentication_wrapper.SUIT_Digest_bstr.suit_digest_bytes) self.assertEqual(1, self.decoded.suit_manifest.suit_manifest_sequence_number) self.assertEqual(bytes.fromhex("fa6b4a53d5ad5fdfbe9de663e4d41ffe"), self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[0].suit_parameter_vendor_identifier.RFC4122_UUID) self.assertEqual(bytes.fromhex("1492af1425695e48bf429b2d51f2ab45"), self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[1].suit_parameter_class_identifier) self.assertEqual(bytes.fromhex("00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210"), self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[2].suit_parameter_image_digest.suit_digest_bytes) self.assertEqual('cose_alg_sha_256', self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[2].suit_parameter_image_digest.suit_digest_algorithm_id.union_choice) self.assertEqual(34768, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[3].suit_parameter_image_size) self.assertEqual(4, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map)) self.assertEqual(15, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[1].SUIT_Condition.suit_condition_vendor_identifier.SUIT_Rep_Policy) self.assertEqual(15, self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[2].SUIT_Condition.suit_condition_class_identifier.SUIT_Rep_Policy) self.assertEqual(3, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union)) self.assertEqual(2, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0])) self.assertEqual(2, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands)) self.assertEqual(1, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters)) self.assertEqual(4, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map)) self.assertEqual(2, len(self.decoded.suit_manifest.suit_common.suit_common_sequence[0].suit_common_sequence.union[0].SUIT_Common_Commands.suit_directive_override_parameters.map[0])) def test_cbor_pen(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[3]) # manifest struct3 = loads(struct2[3]) # common sequence struct4 = loads(struct3[4]) # override params self.assertEqual(struct4[0], 20) self.assertTrue(isinstance(struct4[1][1], bytes)) struct4[1][1] = cbor2.CBORTag(112, struct4[1][1]) # Add the tag for cbor-pen struct3[4] = dumps(struct4) struct2[3] = dumps(struct3) struct.value[3] = dumps(struct2) data = dumps(struct) self.decode_string(data, p_manifest14, p_cose) class Test7Inv(Testn): def test_inv0(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[2]) # authentication struct3 = loads(struct2[1]) struct3.tag = 99999 # invalid tag for COSE_Sign1 struct2[1] = dumps(struct3) struct.value[2] = dumps(struct2) data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except cddl_gen.CddlValidationError as e: return else: assert False, "Should have failed validation" def test_inv1(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[3]) # manifest struct2[1] += 1 # invalid manifest version struct.value[3] = dumps(struct2) data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except cddl_gen.CddlValidationError as e: return else: assert False, "Should have failed validation" def test_inv2(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct.value[23] = b'' # Invalid integrated payload key data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except (cddl_gen.CddlValidationError, cbor2.CBORDecodeEOF) as e: return else: assert False, "Should have failed validation" def test_inv3(self): data = bytes.fromhex(p_test_vectors14[1].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[3]) # manifest struct3 = loads(struct2[3]) # common sequence struct4 = loads(struct3[4]) # override params self.assertEqual(struct4[0], 20) self.assertTrue(isinstance(struct4[1][1], bytes)) struct4[1][1] += b'x' # vendor ID: wrong length struct3[4] = dumps(struct4) struct2[3] = dumps(struct3) struct.value[3] = dumps(struct2) data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except cddl_gen.CddlValidationError as e: return else: assert False, "Should have failed validation" class Test8(Testn): def __init__(self, *args, **kwargs): super(Test8, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[2], p_manifest14, p_cose) def test_text(self): self.assertEqual( bytes.fromhex('2bfc4d0cc6680be7dd9f5ca30aa2bb5d1998145de33d54101b80e2ca49faf918'), self.decoded.suit_manifest.SUIT_Severable_Members_Choice.suit_text[0].SUIT_Digest.suit_digest_bytes) self.assertEqual( bytes.fromhex('2bfc4d0cc6680be7dd9f5ca30aa2bb5d1998145de33d54101b80e2ca49faf918'), sha256(dumps(self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text_bstr)).digest()) self.assertEqual('arm.com', self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier.SUIT_Text_Component_Keys.suit_text_vendor_domain[0]) self.assertEqual('This component is a demonstration. The digest is a sample pattern, not a real one.', self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Component_Identifier[0].SUIT_Component_Identifier.SUIT_Text_Component_Keys.suit_text_component_description[0]) # Check manifest description. The concatenation and .replace() call are there to add # trailing whitespace to all blank lines except the first. # This is done in this way to avoid editors automatically removing the whitespace. self.assertEqual('''## Example 2: Simultaneous Download, Installation, Secure Boot, Severed Fields ''' + ''' This example covers the following templates: * Compatibility Check ({{template-compatibility-check}}) * Secure Boot ({{template-secure-boot}}) * Firmware Download ({{firmware-download-template}}) This example also demonstrates severable elements ({{ovr-severable}}), and text ({{manifest-digest-text}}).'''.replace("\n\n", "\n \n"), self.decoded.SUIT_Severable_Manifest_Members.suit_text[0].suit_text.SUIT_Text_Keys.suit_text_manifest_description[0]) class Test9(Testn): def __init__(self, *args, **kwargs): super(Test9, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[3], p_manifest14, p_cose) def test_try_each(self): self.assertEqual(2, len(self.decoded.suit_manifest.SUIT_Severable_Members_Choice.suit_install[0].SUIT_Command_Sequence_bstr.union[0].SUIT_Directive.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr)) self.assertEqual(33792, self.decoded.suit_manifest.SUIT_Severable_Members_Choice.suit_install[0].SUIT_Command_Sequence_bstr.union[0].SUIT_Directive.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr[0].union[0].SUIT_Directive.suit_directive_set_parameters.map[0].suit_parameter_component_slot) self.assertEqual(541696, self.decoded.suit_manifest.SUIT_Severable_Members_Choice.suit_install[0].SUIT_Command_Sequence_bstr.union[0].SUIT_Directive.suit_directive_try_each.SUIT_Directive_Try_Each_Argument.SUIT_Command_Sequence_bstr[1].union[0].SUIT_Directive.suit_directive_set_parameters.map[0].suit_parameter_component_slot) class Test10(Testn): def __init__(self, *args, **kwargs): super(Test10, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[4], p_manifest14, p_cose) def test_components(self): self.assertEqual(3, len(self.decoded.suit_manifest.suit_common.suit_components[0])) self.assertEqual(b'\x00', self.decoded.suit_manifest.suit_common.suit_components[0][0].bstr[0]) self.assertEqual(b'\x02', self.decoded.suit_manifest.suit_common.suit_components[0][1].bstr[0]) self.assertEqual(b'\x01', self.decoded.suit_manifest.suit_common.suit_components[0][2].bstr[0]) class Test11(Testn): def __init__(self, *args, **kwargs): super(Test11, self).__init__(*args, **kwargs) self.decode_file(p_test_vectors14[5], p_manifest14, p_cose) def test_validate(self): self.assertEqual(4, len(self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_validate[0].suit_validate.union)) self.assertEqual(15, self.decoded.suit_manifest.SUIT_Unseverable_Members.suit_validate[0].suit_validate.union[1].SUIT_Condition.suit_condition_image_match.SUIT_Rep_Policy) class Test11Inv(Testn): def test_invalid_rep_policy(self): data = bytes.fromhex(p_test_vectors14[5].read_text().replace("\n", "")) struct = loads(data) struct2 = loads(struct.value[3]) # manifest struct3 = loads(struct2[10]) # suit_validate struct3[3] += 16 # invalid Rep_Policy struct2[10] = dumps(struct3) struct.value[3] = dumps(struct2) data = dumps(struct) try: self.decode_string(data, p_manifest14, p_cose) except cddl_gen.CddlValidationError as e: return else: assert False, "Should have failed validation" class TestCLI(TestCase): def get_std_args(self, input): return ["cddl-gen", "--cddl", p_manifest12, "--default-max-qty", "16", "convert", "--input", input, "-t", "SUIT_Envelope_Tagged"] def do_testn(self, n): call0 = Popen(self.get_std_args(p_test_vectors12[n]) + ["--output", "-", "--output-as", "cbor"], stdout=PIPE) stdout0, _ = call0.communicate() self.assertEqual(0, call0.returncode) call1 = Popen(self.get_std_args("-") + ["--input-as", "cbor", "--output", "-", "--output-as", "json"], stdin=PIPE, stdout=PIPE) stdout1, _ = call1.communicate(input=stdout0) self.assertEqual(0, call1.returncode) call2 = Popen(self.get_std_args("-") + ["--input-as", "json", "--output", "-", "--output-as", "yaml"], stdin=PIPE, stdout=PIPE) stdout2, _ = call2.communicate(input=stdout1) self.assertEqual(0, call2.returncode) call3 = Popen(self.get_std_args("-") + ["--input-as", "yaml", "--output", "-", "--output-as", "cbor"], stdin=PIPE, stdout=PIPE) stdout3, _ = call3.communicate(input=stdout2) self.assertEqual(0, call3.returncode) self.assertEqual(stdout0, stdout3) call4 = Popen(self.get_std_args("-") + ["--input-as", "cbor", "--output", "-", "--output-as", "cborhex"], stdin=PIPE, stdout=PIPE) stdout4, _ = call4.communicate(input=stdout3) self.assertEqual(0, call4.returncode) call5 = Popen(self.get_std_args("-") + ["--input-as", "cborhex", "--output", "-", "--output-as", "json"], stdin=PIPE, stdout=PIPE) stdout5, _ = call5.communicate(input=stdout4) self.assertEqual(0, call5.returncode) self.assertEqual(stdout1, stdout5) self.maxDiff = None with open(p_test_vectors12[n], 'r') as f: self.assertEqual(sub(r"\W+", "", f.read()), sub(r"\W+", "", stdout4.decode("utf-8"))) def test_0(self): self.do_testn(0) def test_1(self): self.do_testn(1) def test_2(self): self.do_testn(2) def test_3(self): self.do_testn(3) def test_4(self): self.do_testn(4) def test_5(self): self.do_testn(5) class TestOptional(TestCase): def test_0(self): with open(p_optional, 'r') as f: cddl_res = cddl_gen.DataTranslator.from_cddl(f.read(), 16) cddl = cddl_res.my_types['cfg'] test_yaml = """ mem_config: - 0 - 5""" decoded = cddl.decode_str_yaml(test_yaml) self.assertEqual(decoded.mem_config[0].READ.union_choice, "uint0") self.assertEqual(decoded.mem_config[0].N, [5]) if __name__ == "__main__": main()
py
1a565fc90c3cfe5fd3c3e394c712032657739b3a
""" Bug & Code by Yunhao Cao """ import typing INCREASE_CREDIT = 100 class BankAccount: def __init__(self, name : str, initialDeposit : int): self.name = name self.money = initialDeposit self.amountLoaned = 0 self.credit = 100 self.totalCredit = 100 # transfer money into another account def transferMoney(self, toAccount, amount : int) -> None: # TODO: Q1 What check is missing here? # TODO: Q2 Another error is presented here, please try to figure it out yourself. toAccount.money -= amount self.money += amount def borrowMoney(self,amount : int) -> None: # TODO: Q3 What check is missing here? self.credit -= amount self.amountLoaned += amount self.money += amount def payBackLoan(self,amount : int) -> None: if self.money <= amount: raise Exception('not enough money to pay back the loan') # TODO: Q4 What check is missing here? # TODO: Q5 Another erorr is made here, please try to figure it out yourself. self.credit += amount self.amountLoaned -= amount self.money -= amount # increment credit each time when a pay back is made increaseInCreditAmount = round(amount / self.totalCredit * INCREASE_CREDIT) self.totalCredit += increaseInCreditAmount """ This function takes in parameters: accounts - a python list of BankAccount instances eachAmount - a python list of int, eachAmount[i] corresponds to the amount of money that needs to be sent to accounts[i] Note: The function must fail and no money should be transferred if ANY of the transfers would fail. """ def groupTransfer(self, accounts : typing.List, eachAmount : typing.List[int]) -> None: assert len(accounts) == len(eachAmount) # TODO: Bug in this function. sumAmount = 0 for i in range(len(eachAmount)): ithAmount = eachAmount[i] if ithAmount < 0: raise Exception("cannot perform negative amount transfer") sumAmount += ithAmount if(self.money < sumAmount): raise Exception("not enough money") for i in range(len(accounts)): ithAccount = accounts[i] ithAmount = eachAmount[i] ithAccount.money -= ithAmount self.money += ithAmount
py
1a565fd083cfea8a4b32dff5e7da48aca4c20432
# Synchronization classes using decorators. Provides synchronized, semaphore # and event classes which provide transparent decorator patterns for # Lock, BoundedSemaphore and Event objects in Python. from threading import Thread, Lock, BoundedSemaphore, Event, currentThread from time import sleep from random import random class synchronized(object): """ Class enapsulating a lock and a function allowing it to be used as a synchronizing decorator making the wrapped function thread-safe """ def __init__(self, *args): self.lock = Lock() def __call__(self, f): def lockedfunc(*args, **kwargs): try: self.lock.acquire() print 'Acquired lock=>',currentThread() try: return f(*args, **kwargs) except Exception, e: raise finally: self.lock.release() print 'Released lock=>',currentThread() return lockedfunc class semaphore(object): """ Class encapsulating a semaphore to limit number of resources """ def __init__(self, *args): self.sem = BoundedSemaphore(args[0]) def __call__(self, f): def semfunc(*args, **kwargs): try: print 'Trying to acquire sem=>',currentThread() self.sem.acquire() print 'Acquired sem=>',currentThread() try: return f(*args, **kwargs) except Exception, e: raise finally: self.sem.release() print 'Released sem=>',currentThread() return semfunc class event(object): """ Class encapsulating an event object to control sequential access to a resource """ def __init__(self, *args): self.evt = Event() self.evt.set() def __call__(self, f): def eventfunc(*args, **kwargs): try: print 'Waiting on event =>',currentThread() self.evt.wait() # First thread will clear the event and # make others wait, once it is done with the # job, it sets the event which wakes up # another thread, which does the same thing... # This provides sequential access to a # resource... self.evt.clear() print 'Cleared event =>',currentThread() try: return f(*args, **kwargs) except Exception, e: raise finally: # Wake up another thread... self.evt.set() print 'Set event=>',currentThread() return eventfunc
py
1a56617c0d435c1d69bbe534eec5fafc5096dd7d
import argparse import time from pyspark.sql import SparkSession from pyspark.sql.types import StructType, StructField, FloatType, LongType, DecimalType, IntegerType, StringType, DateType def run_convert_files(): with SparkSession.builder.appName("convert_files").getOrCreate() as spark: sc = spark.sparkContext block_size = 1024 * 1024 * 1024 # 1GB sc._jsc.hadoopConfiguration().setInt("dfs.blocksize", block_size) sc._jsc.hadoopConfiguration().setInt("parquet.block.size", blockSize) def convert_files(src, dst, schema): df = sc.read.option("header", "false").option("delimiter","|")\ .schema(schema)\ .csv(src) df.write.parquet(dst) return path_src = "s3://tpc-h-small/" path_dst = "s3://tpc-h-small/parquet/" src_lineitem = path_src + "lineitem.tbl" dst_lineitem = path_dst + "lineitem" schema_lineitem = StructType()\ .add("l_orderkey",LongType(),False)\ .add("l_partkey",LongType(),True)\ .add("l_suppkey",LongType(),True)\ .add("l_linenumber",IntegerType(),True)\ .add("l_quantity",DecimalType(10,2),True)\ .add("l_extendedprice",DecimalType(10,2),True)\ .add("l_discount",DecimalType(10,2),True)\ .add("l_tax",DecimalType(10,2),True)\ .add("l_returnflag",StringType(),True)\ .add("l_linestatus",StringType(),True)\ .add("l_shipdate",DateType(),True)\ .add("l_commitdate",DateType(),True)\ .add("l_receiptdate",DateType(),True)\ .add("l_shipinstruct",StringType(),True)\ .add("l_shipmode",StringType(),True)\ .add("l_comment",StringType(),True) convert_files(src_lineitem, dst_lineitem, schema_lineitem) # src_orders = path_src + "orders.tbl" # dst_orders = path_dst + "orders" # schema_orders = StructType()\ # .add("o_orderkey",LongType(),False)\ # .add("o_custkey",LongType(),False)\ # .add("o_orderstatus",StringType(),True)\ # .add("o_totalprice",DecimalType(10,2),True)\ # .add("o_orderdate",DateType(),True)\ # .add("o_orderpriority",StringType(),True)\ # .add("o_clerk",StringType(),True)\ # .add("o_shippriority",IntegerType(),True)\ # .add("o_comment",StringType(),True) # convert_files(src_orders, dst_orders, schema_orders) if __name__ == "__main__": run_convert_files()
py
1a5661bbc185a11fd8fdb784014b4abd6cdbca1d
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Unit tests for the states.py fock probabilities methods""" import pytest import numpy as np import tensorflow as tf from scipy.special import factorial as fac from strawberryfields import backends from strawberryfields import utils MAG_ALPHAS = np.linspace(0, 0.8, 3) PHASE_ALPHAS = np.linspace(0, 2 * np.pi, 3, endpoint=False) @pytest.mark.parametrize("a", MAG_ALPHAS) @pytest.mark.parametrize("phi", PHASE_ALPHAS) class TestFockProbabilities: """Tests for the fock_prob state method""" def test_gaussian(self, a, phi, setup_backend, cutoff, tol): """Tests that probabilities of particular Fock states |n> are correct for a gaussian state.""" backend = setup_backend(1) alpha = a * np.exp(1j * phi) n = np.arange(cutoff) ref_state = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) ref_probs = np.abs(ref_state) ** 2 backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha), 0) state = backend.state() for n in range(cutoff): prob_n = state.fock_prob([n]) assert np.allclose(prob_n, ref_probs[n], atol=tol, rtol=0) @pytest.mark.backends("fock", "tf") def test_nongaussian(self, a, phi, setup_backend, cutoff, tol): """Tests that probabilities of particular Fock states |n> are correct for a nongaussian state.""" backend = setup_backend(2) alpha = a * np.exp(1j * phi) n = np.arange(cutoff) ref_state = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) ref_probs = np.abs(ref_state) ** 2 backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha), 0) backend.prepare_fock_state(cutoff // 2, 1) state = backend.state() for n in range(cutoff): prob_n = state.fock_prob([n, cutoff // 2]) assert np.allclose(prob_n, ref_probs[n], atol=tol, rtol=0) @pytest.mark.backends("fock", "tf", "gaussian") @pytest.mark.parametrize("a", MAG_ALPHAS) @pytest.mark.parametrize("phi", PHASE_ALPHAS) class TestAllFockProbs: """Tests for the all_fock_probs state method""" def test_pure(self, a, phi, setup_backend, cutoff, batch_size, tol): """Tests that the numeric probabilities in the full Fock basis are correct for a one-mode pure state.""" backend = setup_backend(1) alpha = a * np.exp(1j * phi) n = np.arange(cutoff) ref_state = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) ref_probs = np.abs(ref_state) ** 2 backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha), 0) state = backend.state() probs = state.all_fock_probs(cutoff=cutoff) if isinstance(probs, tf.Tensor): probs = probs.numpy() probs = probs.flatten() if batch_size is not None: ref_probs = np.tile(ref_probs, batch_size) assert np.allclose(probs, ref_probs, atol=tol, rtol=0) def test_two_mode_gaussian(self, a, phi, setup_backend, batch_size, cutoff, tol): """Tests that the numeric probabilities in the full Fock basis are correct for a two-mode gaussian state.""" if a == 0.0: pytest.skip("Test only runs for states with non-zero displacement") backend = setup_backend(2) alpha = a * np.exp(1j * phi) n = np.arange(cutoff) ref_state1 = np.exp(-0.5 * np.abs(alpha) ** 2) * alpha ** n / np.sqrt(fac(n)) ref_state2 = ( np.exp(-0.5 * np.abs(-alpha) ** 2) * (-alpha) ** n / np.sqrt(fac(n)) ) ref_state = np.outer(ref_state1, ref_state2) ref_probs = np.abs(np.reshape(ref_state ** 2, -1)) if batch_size is not None: ref_probs = np.tile(ref_probs, batch_size) backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha), 0) backend.prepare_coherent_state(np.abs(alpha), np.angle(alpha)+np.pi, 1) state = backend.state() for n in range(cutoff): for m in range(cutoff): probs = state.all_fock_probs(cutoff=cutoff) if isinstance(probs, tf.Tensor): probs = probs.numpy() assert np.allclose(probs.flatten(), ref_probs, atol=tol, rtol=0)
py
1a56621981e327574ab1a7664a069d7a284ce00e
############################################################################## # # Copyright (c) 2002 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """Adjustments are tunable parameters. """ import getopt import socket from waitress.compat import ( PY2, WIN, string_types, HAS_IPV6, ) truthy = frozenset(('t', 'true', 'y', 'yes', 'on', '1')) def asbool(s): """ Return the boolean value ``True`` if the case-lowered value of string input ``s`` is any of ``t``, ``true``, ``y``, ``on``, or ``1``, otherwise return the boolean value ``False``. If ``s`` is the value ``None``, return ``False``. If ``s`` is already one of the boolean values ``True`` or ``False``, return it.""" if s is None: return False if isinstance(s, bool): return s s = str(s).strip() return s.lower() in truthy def asoctal(s): """Convert the given octal string to an actual number.""" return int(s, 8) def aslist_cronly(value): if isinstance(value, string_types): value = filter(None, [x.strip() for x in value.splitlines()]) return list(value) def aslist(value): """ Return a list of strings, separating the input based on newlines and, if flatten=True (the default), also split on spaces within each line.""" values = aslist_cronly(value) result = [] for value in values: subvalues = value.split() result.extend(subvalues) return result def slash_fixed_str(s): s = s.strip() if s: # always have a leading slash, replace any number of leading slashes # with a single slash, and strip any trailing slashes s = '/' + s.lstrip('/').rstrip('/') return s class _str_marker(str): pass class _int_marker(int): pass class Adjustments(object): """This class contains tunable parameters. """ _params = ( ('host', str), ('port', int), ('ipv4', asbool), ('ipv6', asbool), ('listen', aslist), ('threads', int), ('trusted_proxy', str), ('url_scheme', str), ('url_prefix', slash_fixed_str), ('backlog', int), ('recv_bytes', int), ('send_bytes', int), ('outbuf_overflow', int), ('inbuf_overflow', int), ('connection_limit', int), ('cleanup_interval', int), ('channel_timeout', int), ('log_socket_errors', asbool), ('max_request_header_size', int), ('max_request_body_size', int), ('expose_tracebacks', asbool), ('ident', str), ('asyncore_loop_timeout', int), ('asyncore_use_poll', asbool), ('unix_socket', str), ('unix_socket_perms', asoctal), ) _param_map = dict(_params) # hostname or IP address to listen on host = _str_marker('0.0.0.0') # TCP port to listen on port = _int_marker(8080) listen = ['{}:{}'.format(host, port)] # mumber of threads available for tasks threads = 4 # Host allowed to overrid ``wsgi.url_scheme`` via header trusted_proxy = None # default ``wsgi.url_scheme`` value url_scheme = 'http' # default ``SCRIPT_NAME`` value, also helps reset ``PATH_INFO`` # when nonempty url_prefix = '' # server identity (sent in Server: header) ident = 'waitress' # backlog is the value waitress passes to pass to socket.listen() This is # the maximum number of incoming TCP connections that will wait in an OS # queue for an available channel. From listen(1): "If a connection # request arrives when the queue is full, the client may receive an error # with an indication of ECONNREFUSED or, if the underlying protocol # supports retransmission, the request may be ignored so that a later # reattempt at connection succeeds." backlog = 1024 # recv_bytes is the argument to pass to socket.recv(). recv_bytes = 8192 # send_bytes is the number of bytes to send to socket.send(). Multiples # of 9000 should avoid partly-filled packets, but don't set this larger # than the TCP write buffer size. In Linux, /proc/sys/net/ipv4/tcp_wmem # controls the minimum, default, and maximum sizes of TCP write buffers. send_bytes = 18000 # A tempfile should be created if the pending output is larger than # outbuf_overflow, which is measured in bytes. The default is 1MB. This # is conservative. outbuf_overflow = 1048576 # A tempfile should be created if the pending input is larger than # inbuf_overflow, which is measured in bytes. The default is 512K. This # is conservative. inbuf_overflow = 524288 # Stop creating new channels if too many are already active (integer). # Each channel consumes at least one file descriptor, and, depending on # the input and output body sizes, potentially up to three. The default # is conservative, but you may need to increase the number of file # descriptors available to the Waitress process on most platforms in # order to safely change it (see ``ulimit -a`` "open files" setting). # Note that this doesn't control the maximum number of TCP connections # that can be waiting for processing; the ``backlog`` argument controls # that. connection_limit = 100 # Minimum seconds between cleaning up inactive channels. cleanup_interval = 30 # Maximum seconds to leave an inactive connection open. channel_timeout = 120 # Boolean: turn off to not log premature client disconnects. log_socket_errors = True # maximum number of bytes of all request headers combined (256K default) max_request_header_size = 262144 # maximum number of bytes in request body (1GB default) max_request_body_size = 1073741824 # expose tracebacks of uncaught exceptions expose_tracebacks = False # Path to a Unix domain socket to use. unix_socket = None # Path to a Unix domain socket to use. unix_socket_perms = 0o600 # The socket options to set on receiving a connection. It is a list of # (level, optname, value) tuples. TCP_NODELAY disables the Nagle # algorithm for writes (Waitress already buffers its writes). socket_options = [ (socket.SOL_TCP, socket.TCP_NODELAY, 1), ] # The asyncore.loop timeout value asyncore_loop_timeout = 1 # The asyncore.loop flag to use poll() instead of the default select(). asyncore_use_poll = False # Enable IPv4 by default ipv4 = True # Enable IPv6 by default ipv6 = True def __init__(self, **kw): if 'listen' in kw and ('host' in kw or 'port' in kw): raise ValueError('host and or port may not be set if listen is set.') for k, v in kw.items(): if k not in self._param_map: raise ValueError('Unknown adjustment %r' % k) setattr(self, k, self._param_map[k](v)) if (not isinstance(self.host, _str_marker) or not isinstance(self.port, _int_marker)): self.listen = ['{}:{}'.format(self.host, self.port)] enabled_families = socket.AF_UNSPEC if not self.ipv4 and not HAS_IPV6: # pragma: no cover raise ValueError( 'IPv4 is disabled but IPv6 is not available. Cowardly refusing to start.' ) if self.ipv4 and not self.ipv6: enabled_families = socket.AF_INET if not self.ipv4 and self.ipv6 and HAS_IPV6: enabled_families = socket.AF_INET6 wanted_sockets = [] hp_pairs = [] for i in self.listen: if ':' in i: (host, port) = i.rsplit(":", 1) # IPv6 we need to make sure that we didn't split on the address if ']' in port: # pragma: nocover (host, port) = (i, str(self.port)) else: (host, port) = (i, str(self.port)) if WIN and PY2: # pragma: no cover try: # Try turning the port into an integer port = int(port) except: raise ValueError( 'Windows does not support service names instead of port numbers' ) try: if '[' in host and ']' in host: # pragma: nocover host = host.strip('[').rstrip(']') if host == '*': host = None for s in socket.getaddrinfo( host, port, enabled_families, socket.SOCK_STREAM, socket.IPPROTO_TCP, socket.AI_PASSIVE ): (family, socktype, proto, _, sockaddr) = s # It seems that getaddrinfo() may sometimes happily return # the same result multiple times, this of course makes # bind() very unhappy... # # Split on %, and drop the zone-index from the host in the # sockaddr. Works around a bug in OS X whereby # getaddrinfo() returns the same link-local interface with # two different zone-indices (which makes no sense what so # ever...) yet treats them equally when we attempt to bind(). if ( sockaddr[1] == 0 or (sockaddr[0].split('%', 1)[0], sockaddr[1]) not in hp_pairs ): wanted_sockets.append((family, socktype, proto, sockaddr)) hp_pairs.append((sockaddr[0].split('%', 1)[0], sockaddr[1])) except: raise ValueError('Invalid host/port specified.') self.listen = wanted_sockets @classmethod def parse_args(cls, argv): """Pre-parse command line arguments for input into __init__. Note that this does not cast values into adjustment types, it just creates a dictionary suitable for passing into __init__, where __init__ does the casting. """ long_opts = ['help', 'call'] for opt, cast in cls._params: opt = opt.replace('_', '-') if cast is asbool: long_opts.append(opt) long_opts.append('no-' + opt) else: long_opts.append(opt + '=') kw = { 'help': False, 'call': False, } opts, args = getopt.getopt(argv, '', long_opts) for opt, value in opts: param = opt.lstrip('-').replace('-', '_') if param == 'listen': kw['listen'] = '{} {}'.format(kw.get('listen', ''), value) continue if param.startswith('no_'): param = param[3:] kw[param] = 'false' elif param in ('help', 'call'): kw[param] = True elif cls._param_map[param] is asbool: kw[param] = 'true' else: kw[param] = value return kw, args
py
1a5662bbd0e5d7cbe17b9f12538f40f12c02b43a
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2011-2016 Lorenzo Carbonell # [email protected] # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. def redondea(valor): valor = valor * 10.0 return int(valor) / 10.0 def redondea_digits(valor, digits=0): if digits == 0: return int(round(valor, digits)) return round(valor, digits) def s2f(cadena): try: value = float(cadena) except BaseException: value = 0.0 return value def s2f_print(word): try: return float(word) except Exception as e: print('error:', str(e)) return 0 def cambia(valor, a, SI=True): if len(valor) == 0: return '' valor = float(valor) if SI is False: valor = redondea(5.0 / 9.0 * (valor - 32.0)) if a == 'F': return str(redondea(valor * 9.0 / 5.0 + 32.0)) elif a == 'K': return str(redondea(valor + 273.15)) return str(valor) def change_temperature(valor, a): valor = s2f(valor) # initial a in ºF if a == 'C': valor = 5.0 / 9.0 * (valor - 32.0) elif a == 'K': valor = 5.0 / 9.0 * (valor - 32.0) + 273.15 return str(redondea_digits(valor)) def fa2f(temperature): return (temperature - 273.15) * 9.0 / 5.0 + 32.0 def f2c(temperature): return (s2f(temperature) - 32.0) * 5.0 / 9.0
py
1a5665845fc01240cc0a550b1683c4baf5b9d999
# Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import os import subprocess from abc import ABCMeta, abstractmethod from collections import defaultdict from dataclasses import dataclass from typing import Any from pants.backend.native.tasks.native_task import NativeTask from pants.base.build_environment import get_buildroot from pants.base.exceptions import TaskError from pants.base.workunit import WorkUnit, WorkUnitLabel from pants.util.memo import memoized_method, memoized_property from pants.util.meta import classproperty @dataclass(frozen=True) class NativeCompileRequest: compiler: Any include_dirs: Any sources: Any compiler_options: Any output_dir: Any header_file_extensions: Any # TODO(#5950): perform all process execution in the v2 engine! @dataclass(frozen=True) class ObjectFiles: root_dir: Any filenames: Any def file_paths(self): return [os.path.join(self.root_dir, fname) for fname in self.filenames] class NativeCompile(NativeTask, metaclass=ABCMeta): # `NativeCompile` will use the `source_target_constraint` to determine what targets have "sources" # to compile, and the `dependent_target_constraint` to determine which dependent targets to # operate on for `strict_deps` calculation. # NB: `source_target_constraint` must be overridden. source_target_constraint = None @classproperty @abstractmethod def workunit_label(cls): """A string describing the work being done during compilation. `NativeCompile` will use `workunit_label` as the name of the workunit when executing the compiler process. :rtype: str """ @classmethod def product_types(cls): return [ObjectFiles] @property def cache_target_dirs(self): return True @classmethod def implementation_version(cls): return super().implementation_version() + [('NativeCompile', 1)] class NativeCompileError(TaskError): """Raised for errors in this class's logic. Subclasses are advised to create their own exception class. """ def execute(self): object_files_product = self.context.products.get(ObjectFiles) source_targets = self.context.targets(self.source_target_constraint.satisfied_by) with self.invalidated(source_targets, invalidate_dependents=True) as invalidation_check: for vt in invalidation_check.all_vts: if not vt.valid: compile_request = self._make_compile_request(vt) self.context.log.debug("compile_request: {}".format(compile_request)) self._compile(compile_request) object_files = self.collect_cached_objects(vt) self._add_product_at_target_base(object_files_product, vt.target, object_files) # This may be calculated many times for a target, so we memoize it. @memoized_method def _include_dirs_for_target(self, target): return os.path.join(get_buildroot(), target.address.spec_path) @dataclass(frozen=True) class NativeSourcesByType: rel_root: Any headers: Any sources: Any def get_sources_headers_for_target(self, target): """Return a list of file arguments to provide to the compiler. NB: result list will contain both header and source files! :raises: :class:`NativeCompile.NativeCompileError` if there is an error processing the sources. """ # Get source paths relative to the target base so the exception message with the target and # paths makes sense. target_relative_sources = target.sources_relative_to_target_base() rel_root = target_relative_sources.rel_root # Unique file names are required because we just dump object files into a single directory, and # the compiler will silently just produce a single object file if provided non-unique filenames. # TODO: add some shading to file names so we can remove this check. # NB: It shouldn't matter if header files have the same name, but this will raise an error in # that case as well. We won't need to do any shading of header file names. seen_filenames = defaultdict(list) for src in target_relative_sources: seen_filenames[os.path.basename(src)].append(src) duplicate_filename_err_msgs = [] for fname, source_paths in seen_filenames.items(): if len(source_paths) > 1: duplicate_filename_err_msgs.append("filename: {}, paths: {}".format(fname, source_paths)) if duplicate_filename_err_msgs: raise self.NativeCompileError( "Error in target '{}': source files must have a unique filename within a '{}' target. " "Conflicting filenames:\n{}" .format(target.address.spec, target.alias(), '\n'.join(duplicate_filename_err_msgs))) return [os.path.join(get_buildroot(), rel_root, src) for src in target_relative_sources] @abstractmethod def get_compile_settings(self): """Return an instance of NativeBuildStep. NB: Subclasses will be queried for the compile settings once and the result cached. """ @memoized_property def _compile_settings(self): return self.get_compile_settings() @abstractmethod def get_compiler(self, native_library_target): """An instance of `_CompilerMixin` which can be invoked to compile files. NB: Subclasses will be queried for the compiler instance once and the result cached. :return: :class:`pants.backend.native.config.environment._CompilerMixin` """ def _compiler(self, native_library_target): return self.get_compiler(native_library_target) def _make_compile_request(self, versioned_target): target = versioned_target.target include_dirs = [] for dep in self.native_deps(target): source_lib_base_dir = os.path.join(get_buildroot(), dep._sources_field.rel_path) include_dirs.append(source_lib_base_dir) for ext_dep in self.packaged_native_deps(target): external_lib_include_dir = os.path.join(get_buildroot(), ext_dep._sources_field.rel_path, ext_dep.include_relpath) self.context.log.debug('ext_dep: {}, external_lib_include_dir: {}' .format(ext_dep, external_lib_include_dir)) include_dirs.append(external_lib_include_dir) sources_and_headers = self.get_sources_headers_for_target(target) compiler_option_sets = (self._compile_settings.native_build_step .get_compiler_option_sets_for_target(target)) self.context.log.debug('target: {}, compiler_option_sets: {}'.format(target, compiler_option_sets)) compile_request = NativeCompileRequest( compiler=self._compiler(target), include_dirs=include_dirs, sources=sources_and_headers, compiler_options=(self._compile_settings .native_build_step .get_merged_args_for_compiler_option_sets(compiler_option_sets)), output_dir=versioned_target.results_dir, header_file_extensions=self._compile_settings.header_file_extensions) self.context.log.debug(repr(compile_request)) return compile_request def _iter_sources_minus_headers(self, compile_request): for s in compile_request.sources: if not s.endswith(tuple(compile_request.header_file_extensions)): yield s class _HeaderOnlyLibrary(Exception): pass def _make_compile_argv(self, compile_request): """Return a list of arguments to use to compile sources. Subclasses can override and append.""" sources_minus_headers = list(self._iter_sources_minus_headers(compile_request)) if len(sources_minus_headers) == 0: raise self._HeaderOnlyLibrary() compiler = compile_request.compiler compiler_options = compile_request.compiler_options # We are going to execute in the target output, so get absolute paths for everything. buildroot = get_buildroot() # TODO: add -v to every compiler and linker invocation! argv = ( [compiler.exe_filename] + list(compiler.extra_args) + # TODO: If we need to produce static libs, don't add -fPIC! (could use Variants -- see #5788). ['-c', '-fPIC'] + list(compiler_options) + [ '-I{}'.format(os.path.join(buildroot, inc_dir)) for inc_dir in compile_request.include_dirs ] + [os.path.join(buildroot, src) for src in sources_minus_headers]) self.context.log.info("selected compiler exe name: '{}'".format(compiler.exe_filename)) self.context.log.debug("compile argv: {}".format(argv)) return argv def _compile(self, compile_request): """Perform the process of compilation, writing object files to the request's 'output_dir'. NB: This method must arrange the output files so that `collect_cached_objects()` can collect all of the results (or vice versa)! """ try: argv = self._make_compile_argv(compile_request) except self._HeaderOnlyLibrary: self.context.log.debug('{} is a header-only library'.format(compile_request)) return compiler = compile_request.compiler output_dir = compile_request.output_dir env = compiler.invocation_environment_dict with self.context.new_workunit( name=self.workunit_label, labels=[WorkUnitLabel.COMPILER]) as workunit: try: process = subprocess.Popen( argv, cwd=output_dir, stdout=workunit.output('stdout'), stderr=workunit.output('stderr'), env=env) except OSError as e: workunit.set_outcome(WorkUnit.FAILURE) raise self.NativeCompileError( "Error invoking '{exe}' with command {cmd} and environment {env} for request {req}: {err}" .format(exe=compiler.exe_filename, cmd=argv, env=env, req=compile_request, err=e)) rc = process.wait() if rc != 0: workunit.set_outcome(WorkUnit.FAILURE) raise self.NativeCompileError( "Error in '{section_name}' with command {cmd} and environment {env} for request {req}. " "Exit code was: {rc}." .format(section_name=self.workunit_label, cmd=argv, env=env, req=compile_request, rc=rc)) def collect_cached_objects(self, versioned_target): """Scan `versioned_target`'s results directory and return the output files from that directory. :return: :class:`ObjectFiles` """ return ObjectFiles(versioned_target.results_dir, os.listdir(versioned_target.results_dir))
py
1a5665e5500369b2444352e2c3c8acd2ec8ee7d1
#!/usr/bin/env python3 import argparse import os import sys import logging from vapi_json_parser import Field, Struct, Enum, Union, Message, JsonParser,\ SimpleType, StructType, Alias class CField(Field): def get_c_name(self): return "vapi_type_%s" % self.name def get_c_def(self): if self.type.get_c_name() == 'vl_api_string_t': if self.len: return "u8 %s[%d];" % (self.name, self.len) else: return "vl_api_string_t %s;" % (self.name) else: if self.len is not None and type(self.len) != dict: return "%s %s[%d];" % (self.type.get_c_name(), self.name, self.len) else: return "%s %s;" % (self.type.get_c_name(), self.name) def get_swap_to_be_code(self, struct, var): if self.len is not None and type(self.len) != dict: if self.len > 0: return "do { unsigned i; for (i = 0; i < %d; ++i) { %s } }"\ " while(0);" % ( self.len, self.type.get_swap_to_be_code(struct, "%s[i]" % var)) else: if self.nelem_field.needs_byte_swap(): nelem_field = "%s(%s%s)" % ( self.nelem_field.type.get_swap_to_host_func_name(), struct, self.nelem_field.name) else: nelem_field = "%s%s" % (struct, self.nelem_field.name) return ( "do { unsigned i; for (i = 0; i < %s; ++i) { %s } }" " while(0);" % (nelem_field, self.type.get_swap_to_be_code( struct, "%s[i]" % var))) return self.type.get_swap_to_be_code(struct, "%s" % var) def get_swap_to_host_code(self, struct, var): if self.len is not None and type(self.len) != dict: if self.len > 0: return "do { unsigned i; for (i = 0; i < %d; ++i) { %s } }"\ " while(0);" % ( self.len, self.type.get_swap_to_host_code(struct, "%s[i]" % var)) else: # nelem_field already swapped to host here... return ( "do { unsigned i; for (i = 0; i < %s%s; ++i) { %s } }" " while(0);" % (struct, self.nelem_field.name, self.type.get_swap_to_host_code( struct, "%s[i]" % var))) return self.type.get_swap_to_host_code(struct, "%s" % var) def needs_byte_swap(self): return self.type.needs_byte_swap() def get_vla_field_length_name(self, path): return "%s_%s_array_size" % ("_".join(path), self.name) def get_alloc_vla_param_names(self, path): if self.is_vla(): result = [self.get_vla_field_length_name(path)] else: result = [] if self.type.has_vla(): t = self.type.get_alloc_vla_param_names(path + [self.name]) result.extend(t) return result def get_vla_calc_size_code(self, prefix, path): if self.is_vla(): result = ["sizeof(%s.%s[0]) * %s" % ( ".".join([prefix] + path), self.name, self.get_vla_field_length_name(path))] else: result = [] if self.type.has_vla(): t = self.type.get_vla_calc_size_code(prefix, path + [self.name]) result.extend(t) return result def get_vla_assign_code(self, prefix, path): result = [] if self.is_vla(): result.append("%s.%s = %s" % ( ".".join([prefix] + path), self.nelem_field.name, self.get_vla_field_length_name(path))) if self.type.has_vla(): t = self.type.get_vla_assign_code(prefix, path + [self.name]) result.extend(t) return result class CAlias(CField): def get_c_name(self): return "vapi_type_%s" % self.name def get_c_def(self): if self.len is not None: return "typedef %s vapi_type_%s[%d];" % ( self.type.get_c_name(), self.name, self.len) else: return "typedef %s vapi_type_%s;" % ( self.type.get_c_name(), self.name) class CStruct(Struct): def get_c_def(self): return "\n".join([ "typedef struct __attribute__((__packed__)) {\n%s" % ( "\n".join([" %s" % x.get_c_def() for x in self.fields])), "} %s;" % self.get_c_name()]) def get_vla_assign_code(self, prefix, path): return [x for f in self.fields if f.has_vla() for x in f.get_vla_assign_code(prefix, path)] def get_alloc_vla_param_names(self, path): return [x for f in self.fields if f.has_vla() for x in f.get_alloc_vla_param_names(path)] def get_vla_calc_size_code(self, prefix, path): return [x for f in self.fields if f.has_vla() for x in f.get_vla_calc_size_code(prefix, path)] class CSimpleType (SimpleType): swap_to_be_dict = { 'i16': 'htobe16', 'u16': 'htobe16', 'i32': 'htobe32', 'u32': 'htobe32', 'i64': 'htobe64', 'u64': 'htobe64', } swap_to_host_dict = { 'i16': 'be16toh', 'u16': 'be16toh', 'i32': 'be32toh', 'u32': 'be32toh', 'i64': 'be64toh', 'u64': 'be64toh', } __packed = "__attribute__((packed))" pack_dict = { 'i8': __packed, 'u8': __packed, 'i16': __packed, 'u16': __packed, } def get_c_name(self): return self.name def get_swap_to_be_func_name(self): return self.swap_to_be_dict[self.name] def get_swap_to_host_func_name(self): return self.swap_to_host_dict[self.name] def get_packed_string(self): return self.pack_dict[self.name] def get_swap_to_be_code(self, struct, var, cast=None): x = "%s%s" % (struct, var) return "%s = %s%s(%s);" % (x, "(%s)" % cast if cast else "", self.get_swap_to_be_func_name(), x) def get_swap_to_host_code(self, struct, var, cast=None): x = "%s%s" % (struct, var) return "%s = %s%s(%s);" % (x, "(%s)" % cast if cast else "", self.get_swap_to_host_func_name(), x) def needs_byte_swap(self): try: self.get_swap_to_host_func_name() return True except KeyError: pass return False def get_packed(self): return self.pack_dict.get(self.name, "") class CEnum(Enum): def get_c_name(self): return "vapi_enum_%s" % self.name def get_c_def(self): return "typedef enum {\n%s\n} %s %s;" % ( "\n".join([" %s = %s," % (i, j) for i, j in self.value_pairs]), self.type.get_packed(), self.get_c_name() ) def needs_byte_swap(self): return self.type.needs_byte_swap() def get_swap_to_be_code(self, struct, var): return self.type.get_swap_to_be_code(struct, var, self.get_c_name()) def get_swap_to_host_code(self, struct, var): return self.type.get_swap_to_host_code(struct, var, self.get_c_name()) class CUnion(Union): def get_c_name(self): return "vapi_union_%s" % self.name def get_c_def(self): return "typedef union {\n%s\n} %s;" % ( "\n".join([" %s %s;" % (i.get_c_name(), j) for i, j in self.type_pairs]), self.get_c_name() ) def needs_byte_swap(self): return False class CStructType (StructType, CStruct): def get_c_name(self): return "vapi_type_%s" % self.name def get_swap_to_be_func_name(self): return "%s_hton" % self.get_c_name() def get_swap_to_host_func_name(self): return "%s_ntoh" % self.get_c_name() def get_swap_to_be_func_decl(self): return "void %s(%s *msg)" % ( self.get_swap_to_be_func_name(), self.get_c_name()) def get_swap_to_be_func_def(self): return "%s\n{\n%s\n}" % ( self.get_swap_to_be_func_decl(), "\n".join([ " %s" % p.get_swap_to_be_code("msg->", "%s" % p.name) for p in self.fields if p.needs_byte_swap()]), ) def get_swap_to_host_func_decl(self): return "void %s(%s *msg)" % ( self.get_swap_to_host_func_name(), self.get_c_name()) def get_swap_to_host_func_def(self): return "%s\n{\n%s\n}" % ( self.get_swap_to_host_func_decl(), "\n".join([ " %s" % p.get_swap_to_host_code("msg->", "%s" % p.name) for p in self.fields if p.needs_byte_swap()]), ) def get_swap_to_be_code(self, struct, var): return "%s(&%s%s);" % (self.get_swap_to_be_func_name(), struct, var) def get_swap_to_host_code(self, struct, var): return "%s(&%s%s);" % (self.get_swap_to_host_func_name(), struct, var) def needs_byte_swap(self): for f in self.fields: if f.needs_byte_swap(): return True return False class CMessage (Message): def __init__(self, logger, definition, json_parser): super(CMessage, self).__init__(logger, definition, json_parser) self.payload_members = [ " %s" % p.get_c_def() for p in self.fields if p.type != self.header ] def has_payload(self): return len(self.payload_members) > 0 def get_msg_id_name(self): return "vapi_msg_id_%s" % self.name def get_c_name(self): return "vapi_msg_%s" % self.name def get_payload_struct_name(self): return "vapi_payload_%s" % self.name def get_alloc_func_name(self): return "vapi_alloc_%s" % self.name def get_alloc_vla_param_names(self): return [x for f in self.fields if f.has_vla() for x in f.get_alloc_vla_param_names([])] def get_alloc_func_decl(self): return "%s* %s(struct vapi_ctx_s *ctx%s)" % ( self.get_c_name(), self.get_alloc_func_name(), "".join([", size_t %s" % n for n in self.get_alloc_vla_param_names()])) def get_alloc_func_def(self): extra = [] if self.header.has_field('client_index'): extra.append( " msg->header.client_index = vapi_get_client_index(ctx);") if self.header.has_field('context'): extra.append(" msg->header.context = 0;") return "\n".join([ "%s" % self.get_alloc_func_decl(), "{", " %s *msg = NULL;" % self.get_c_name(), " const size_t size = sizeof(%s)%s;" % ( self.get_c_name(), "".join([" + %s" % x for f in self.fields if f.has_vla() for x in f.get_vla_calc_size_code("msg->payload", [])])), " /* cast here required to play nicely with C++ world ... */", " msg = (%s*)vapi_msg_alloc(ctx, size);" % self.get_c_name(), " if (!msg) {", " return NULL;", " }", ] + extra + [ " msg->header._vl_msg_id = vapi_lookup_vl_msg_id(ctx, %s);" % self.get_msg_id_name(), "".join([" %s;\n" % line for f in self.fields if f.has_vla() for line in f.get_vla_assign_code("msg->payload", [])]), " return msg;", "}"]) def get_calc_msg_size_func_name(self): return "vapi_calc_%s_msg_size" % self.name def get_calc_msg_size_func_decl(self): return "uword %s(%s *msg)" % ( self.get_calc_msg_size_func_name(), self.get_c_name()) def get_calc_msg_size_func_def(self): return "\n".join([ "%s" % self.get_calc_msg_size_func_decl(), "{", " return sizeof(*msg)%s;" % "".join(["+ msg->payload.%s * sizeof(msg->payload.%s[0])" % ( f.nelem_field.name, f.name) for f in self.fields if f.nelem_field is not None ]), "}", ]) def get_c_def(self): if self.has_payload(): return "\n".join([ "typedef struct __attribute__ ((__packed__)) {", "%s " % "\n".join(self.payload_members), "} %s;" % self.get_payload_struct_name(), "", "typedef struct __attribute__ ((__packed__)) {", (" %s %s;" % (self.header.get_c_name(), self.fields[0].name) if self.header is not None else ""), " %s payload;" % self.get_payload_struct_name(), "} %s;" % self.get_c_name(), ]) else: return "\n".join([ "typedef struct __attribute__ ((__packed__)) {", (" %s %s;" % (self.header.get_c_name(), self.fields[0].name) if self.header is not None else ""), "} %s;" % self.get_c_name(), ]) def get_swap_payload_to_host_func_name(self): return "%s_payload_ntoh" % self.get_c_name() def get_swap_payload_to_be_func_name(self): return "%s_payload_hton" % self.get_c_name() def get_swap_payload_to_host_func_decl(self): return "void %s(%s *payload)" % ( self.get_swap_payload_to_host_func_name(), self.get_payload_struct_name()) def get_swap_payload_to_be_func_decl(self): return "void %s(%s *payload)" % ( self.get_swap_payload_to_be_func_name(), self.get_payload_struct_name()) def get_swap_payload_to_be_func_def(self): return "%s\n{\n%s\n}" % ( self.get_swap_payload_to_be_func_decl(), "\n".join([ " %s" % p.get_swap_to_be_code("payload->", "%s" % p.name) for p in self.fields if p.needs_byte_swap() and p.type != self.header]), ) def get_swap_payload_to_host_func_def(self): return "%s\n{\n%s\n}" % ( self.get_swap_payload_to_host_func_decl(), "\n".join([ " %s" % p.get_swap_to_host_code("payload->", "%s" % p.name) for p in self.fields if p.needs_byte_swap() and p.type != self.header]), ) def get_swap_to_host_func_name(self): return "%s_ntoh" % self.get_c_name() def get_swap_to_be_func_name(self): return "%s_hton" % self.get_c_name() def get_swap_to_host_func_decl(self): return "void %s(%s *msg)" % ( self.get_swap_to_host_func_name(), self.get_c_name()) def get_swap_to_be_func_decl(self): return "void %s(%s *msg)" % ( self.get_swap_to_be_func_name(), self.get_c_name()) def get_swap_to_be_func_def(self): return "\n".join([ "%s" % self.get_swap_to_be_func_decl(), "{", (" VAPI_DBG(\"Swapping `%s'@%%p to big endian\", msg);" % self.get_c_name()), " %s(&msg->header);" % self.header.get_swap_to_be_func_name() if self.header is not None else "", " %s(&msg->payload);" % self.get_swap_payload_to_be_func_name() if self.has_payload() else "", "}", ]) def get_swap_to_host_func_def(self): return "\n".join([ "%s" % self.get_swap_to_host_func_decl(), "{", (" VAPI_DBG(\"Swapping `%s'@%%p to host byte order\", msg);" % self.get_c_name()), " %s(&msg->header);" % self.header.get_swap_to_host_func_name() if self.header is not None else "", " %s(&msg->payload);" % self.get_swap_payload_to_host_func_name() if self.has_payload() else "", "}", ]) def get_op_func_name(self): return "vapi_%s" % self.name def get_op_func_decl(self): if self.reply.has_payload(): return "vapi_error_e %s(%s)" % ( self.get_op_func_name(), ",\n ".join([ 'struct vapi_ctx_s *ctx', '%s *msg' % self.get_c_name(), 'vapi_error_e (*callback)(struct vapi_ctx_s *ctx', ' void *callback_ctx', ' vapi_error_e rv', ' bool is_last', ' %s *reply)' % self.reply.get_payload_struct_name(), 'void *callback_ctx', ]) ) else: return "vapi_error_e %s(%s)" % ( self.get_op_func_name(), ",\n ".join([ 'struct vapi_ctx_s *ctx', '%s *msg' % self.get_c_name(), 'vapi_error_e (*callback)(struct vapi_ctx_s *ctx', ' void *callback_ctx', ' vapi_error_e rv', ' bool is_last)', 'void *callback_ctx', ]) ) def get_op_func_def(self): return "\n".join([ "%s" % self.get_op_func_decl(), "{", " if (!msg || !callback) {", " return VAPI_EINVAL;", " }", " if (vapi_is_nonblocking(ctx) && vapi_requests_full(ctx)) {", " return VAPI_EAGAIN;", " }", " vapi_error_e rv;", " if (VAPI_OK != (rv = vapi_producer_lock (ctx))) {", " return rv;", " }", " u32 req_context = vapi_gen_req_context(ctx);", " msg->header.context = req_context;", " %s(msg);" % self.get_swap_to_be_func_name(), (" if (VAPI_OK == (rv = vapi_send_with_control_ping " "(ctx, msg, req_context))) {" if self.reply_is_stream else " if (VAPI_OK == (rv = vapi_send (ctx, msg))) {" ), (" vapi_store_request(ctx, req_context, %s, " "(vapi_cb_t)callback, callback_ctx);" % ("true" if self.reply_is_stream else "false")), " if (VAPI_OK != vapi_producer_unlock (ctx)) {", " abort (); /* this really shouldn't happen */", " }", " if (vapi_is_nonblocking(ctx)) {", " rv = VAPI_OK;", " } else {", " rv = vapi_dispatch(ctx);", " }", " } else {", " %s(msg);" % self.get_swap_to_host_func_name(), " if (VAPI_OK != vapi_producer_unlock (ctx)) {", " abort (); /* this really shouldn't happen */", " }", " }", " return rv;", "}", "", ]) def get_event_cb_func_decl(self): if not self.is_reply and not self.is_event: raise Exception( "Cannot register event callback for non-reply message") if self.has_payload(): return "\n".join([ "void vapi_set_%s_event_cb (" % self.get_c_name(), " struct vapi_ctx_s *ctx, ", (" vapi_error_e (*callback)(struct vapi_ctx_s *ctx, " "void *callback_ctx, %s *payload)," % self.get_payload_struct_name()), " void *callback_ctx)", ]) else: return "\n".join([ "void vapi_set_%s_event_cb (" % self.get_c_name(), " struct vapi_ctx_s *ctx, ", " vapi_error_e (*callback)(struct vapi_ctx_s *ctx, " "void *callback_ctx),", " void *callback_ctx)", ]) def get_event_cb_func_def(self): if not self.is_reply and not self.is_event: raise Exception( "Cannot register event callback for non-reply function") return "\n".join([ "%s" % self.get_event_cb_func_decl(), "{", (" vapi_set_event_cb(ctx, %s, (vapi_event_cb)callback, " "callback_ctx);" % self.get_msg_id_name()), "}"]) def get_c_metadata_struct_name(self): return "__vapi_metadata_%s" % self.name def get_c_constructor(self): has_context = False if self.header is not None: has_context = self.header.has_field('context') return '\n'.join([ 'static void __attribute__((constructor)) __vapi_constructor_%s()' % self.name, '{', ' static const char name[] = "%s";' % self.name, ' static const char name_with_crc[] = "%s_%s";' % (self.name, self.crc[2:]), ' static vapi_message_desc_t %s = {' % self.get_c_metadata_struct_name(), ' name,', ' sizeof(name) - 1,', ' name_with_crc,', ' sizeof(name_with_crc) - 1,', ' true,' if has_context else ' false,', ' offsetof(%s, context),' % self.header.get_c_name() if has_context else ' 0,', (' offsetof(%s, payload),' % self.get_c_name()) if self.has_payload() else ' VAPI_INVALID_MSG_ID,', ' sizeof(%s),' % self.get_c_name(), ' (generic_swap_fn_t)%s,' % self.get_swap_to_be_func_name(), ' (generic_swap_fn_t)%s,' % self.get_swap_to_host_func_name(), ' VAPI_INVALID_MSG_ID,', ' };', '', ' %s = vapi_register_msg(&%s);' % (self.get_msg_id_name(), self.get_c_metadata_struct_name()), ' VAPI_DBG("Assigned msg id %%d to %s", %s);' % (self.name, self.get_msg_id_name()), '}', ]) vapi_send_with_control_ping = """ static inline vapi_error_e vapi_send_with_control_ping (vapi_ctx_t ctx, void *msg, u32 context) { vapi_msg_control_ping *ping = vapi_alloc_control_ping (ctx); if (!ping) { return VAPI_ENOMEM; } ping->header.context = context; vapi_msg_control_ping_hton (ping); return vapi_send2 (ctx, msg, ping); } """ def emit_definition(parser, json_file, emitted, o): if o in emitted: return if o.name in ("msg_header1_t", "msg_header2_t"): return if hasattr(o, "depends"): for x in o.depends: emit_definition(parser, json_file, emitted, x) if hasattr(o, "reply"): emit_definition(parser, json_file, emitted, o.reply) if hasattr(o, "get_c_def"): if (o not in parser.enums_by_json[json_file] and o not in parser.types_by_json[json_file] and o not in parser.unions_by_json[json_file] and o.name not in parser.messages_by_json[json_file] and o not in parser.aliases_by_json[json_file]): return guard = "defined_%s" % o.get_c_name() print("#ifndef %s" % guard) print("#define %s" % guard) print("%s" % o.get_c_def()) print("") function_attrs = "static inline " if o.name in parser.messages_by_json[json_file]: if o.has_payload(): print("%s%s" % (function_attrs, o.get_swap_payload_to_be_func_def())) print("") print("%s%s" % (function_attrs, o.get_swap_payload_to_host_func_def())) print("") print("%s%s" % (function_attrs, o.get_swap_to_be_func_def())) print("") print("%s%s" % (function_attrs, o.get_swap_to_host_func_def())) print("") print("%s%s" % (function_attrs, o.get_calc_msg_size_func_def())) if not o.is_reply and not o.is_event: print("") print("%s%s" % (function_attrs, o.get_alloc_func_def())) print("") print("%s%s" % (function_attrs, o.get_op_func_def())) print("") print("%s" % o.get_c_constructor()) if o.is_reply or o.is_event: print("") print("%s%s;" % (function_attrs, o.get_event_cb_func_def())) elif hasattr(o, "get_swap_to_be_func_def"): print("%s%s" % (function_attrs, o.get_swap_to_be_func_def())) print("") print("%s%s" % (function_attrs, o.get_swap_to_host_func_def())) print("#endif") print("") emitted.append(o) def gen_json_unified_header(parser, logger, j, io, name): d, f = os.path.split(j) logger.info("Generating header `%s'" % name) orig_stdout = sys.stdout sys.stdout = io include_guard = "__included_%s" % ( j.replace(".", "_").replace("/", "_").replace("-", "_").replace("+", "_")) print("#ifndef %s" % include_guard) print("#define %s" % include_guard) print("") print("#include <stdlib.h>") print("#include <stddef.h>") print("#include <arpa/inet.h>") print("#include <vapi/vapi_internal.h>") print("#include <vapi/vapi.h>") print("#include <vapi/vapi_dbg.h>") print("") print("#ifdef __cplusplus") print("extern \"C\" {") print("#endif") if name == "memclnt.api.vapi.h": print("") print("static inline vapi_error_e vapi_send_with_control_ping " "(vapi_ctx_t ctx, void * msg, u32 context);") else: print("#include <vapi/vlib.api.vapi.h>") print("") for m in parser.messages_by_json[j].values(): print("extern vapi_msg_id_t %s;" % m.get_msg_id_name()) print("") print("#define DEFINE_VAPI_MSG_IDS_%s\\" % f.replace(".", "_").replace("/", "_").replace("-", "_").upper()) print("\\\n".join([ " vapi_msg_id_t %s;" % m.get_msg_id_name() for m in parser.messages_by_json[j].values() ])) print("") print("") emitted = [] for e in parser.enums_by_json[j]: emit_definition(parser, j, emitted, e) for u in parser.unions_by_json[j]: emit_definition(parser, j, emitted, u) for t in parser.types_by_json[j]: emit_definition(parser, j, emitted, t) for a in parser.aliases_by_json[j]: emit_definition(parser, j, emitted, a) for m in parser.messages_by_json[j].values(): emit_definition(parser, j, emitted, m) print("") if name == "vlib.api.vapi.h": print("%s" % vapi_send_with_control_ping) print("") print("#ifdef __cplusplus") print("}") print("#endif") print("") print("#endif") sys.stdout = orig_stdout def json_to_c_header_name(json_name): if json_name.endswith(".json"): return "%s.vapi.h" % os.path.splitext(json_name)[0] raise Exception("Unexpected json name `%s'!" % json_name) def gen_c_unified_headers(parser, logger, prefix, remove_path): if prefix == "" or prefix is None: prefix = "" else: prefix = "%s/" % prefix for j in parser.json_files: if remove_path: d, f = os.path.split(j) else: f = j with open('%s%s' % (prefix, json_to_c_header_name(f)), "w") as io: gen_json_unified_header( parser, logger, j, io, json_to_c_header_name(f)) if __name__ == '__main__': try: verbose = int(os.getenv("V", 0)) except: verbose = 0 if verbose >= 2: log_level = 10 elif verbose == 1: log_level = 20 else: log_level = 40 logging.basicConfig(stream=sys.stdout, level=log_level) logger = logging.getLogger("VAPI C GEN") logger.setLevel(log_level) argparser = argparse.ArgumentParser(description="VPP C API generator") argparser.add_argument('files', metavar='api-file', action='append', type=str, help='json api file' '(may be specified multiple times)') argparser.add_argument('--prefix', action='store', default=None, help='path prefix') argparser.add_argument('--remove-path', action='store_true', help='remove path from filename') args = argparser.parse_args() jsonparser = JsonParser(logger, args.files, simple_type_class=CSimpleType, enum_class=CEnum, union_class=CUnion, struct_type_class=CStructType, field_class=CField, message_class=CMessage, alias_class=CAlias) # not using the model of having separate generated header and code files # with generated symbols present in shared library (per discussion with # Damjan), to avoid symbol version issues in .so # gen_c_headers_and_code(jsonparser, logger, args.prefix) gen_c_unified_headers(jsonparser, logger, args.prefix, args.remove_path) for e in jsonparser.exceptions: logger.warning(e)
py
1a5666d99c6225eb7059ac325c050a3dcd7cb76e
import pickle from graph_features import GraphFeatures import numpy as np from loggers import BaseLogger, PrintLogger import os MOTIFS_VAR_PATH = os.path.join(__file__.rsplit(os.sep, 1)[0]) class MotifRatio: def __init__(self, ftr: GraphFeatures, is_directed, logger: BaseLogger=None): self._is_directed = is_directed # are the graphs directed self._index_ftr = None # list of ftr names + counter [ ... (ftr_i, 0), (ftr_i, 1) ...] self._logger = logger if logger else PrintLogger("graphs logger") # self._graph_order = graph_order if graph_order else [g for g in sorted(graph_ftr_dict)] self._gnx_ftr = ftr self._set_index_to_ftr(self._gnx_ftr) # list index in motif to number of edges in the motif self._motif_index_to_edge_num = {"motif3": self._motif_num_to_number_of_edges(3), "motif4": self._motif_num_to_number_of_edges(4)} self._ftr_mx = self._gnx_ftr.to_matrix(dtype=np.float32, mtype=np.matrix, should_zscore=False) self._headers = [] self._motif_ratio_vec = None self._motif_ratio_matrix = None # load motif variation file def _load_variations_file(self, level): fname = "%d_%sdirected.pkl" % (level, "" if self._is_directed else "un") fpath = os.path.join(MOTIFS_VAR_PATH, "motif_variations", fname) return pickle.load(open(fpath, "rb")) # return dictionary { motif_index: number_of_edges } def _motif_num_to_number_of_edges(self, level): motif_edge_num_dict = {} for bit_sec, motif_num in self._load_variations_file(level).items(): motif_edge_num_dict[motif_num] = bin(bit_sec).count('1') return motif_edge_num_dict # map matrix columns to features + count if there's more then one from a single feature def _set_index_to_ftr(self, gnx_ftr): if not self._index_ftr: sorted_ftr = [f for f in sorted(gnx_ftr) if gnx_ftr[f].is_relevant()] # fix feature order (names) self._index_ftr = [] for ftr in sorted_ftr: len_ftr = len(gnx_ftr[ftr]) # fill list with (ftr, counter) self._index_ftr += [(ftr, i) for i in range(len_ftr)] # get feature vector for a graph def _build_vector(self): # get gnx gnx final_vec = np.zeros((1, self._ftr_mx.shape[1])) motif3_ratio = None motif4_ratio = None for i, (ftr, ftr_count) in enumerate(self._index_ftr): if ftr == "motif3": # calculate { motif_index: motif ratio } motif3_ratio = self._count_subgraph_motif_by_size(self._ftr_mx, ftr) if not motif3_ratio else motif3_ratio final_vec[0, i] = motif3_ratio[ftr_count] self._headers.append("motif3_" + str(self._motif_index_to_edge_num["motif3"][ftr_count]) + "_edges") elif ftr == "motif4": # calculate { motif_index: motif ratio } motif4_ratio = self._count_subgraph_motif_by_size(self._ftr_mx, ftr) if not motif4_ratio else motif4_ratio final_vec[0, i] = motif4_ratio[ftr_count] self._headers.append("motif4_" + str(self._motif_index_to_edge_num["motif4"][ftr_count]) + "_edges") else: # calculate average of column final_vec[0, i] = np.sum(self._ftr_mx[:, i]) / self._ftr_mx.shape[0] self._headers.append(ftr + "_" + str(ftr_count)) return final_vec def _build_matrix(self): sum_dictionaries_motifs3 = [] sum_dictionaries_motifs4 = [] # 3: [ ... row(node): { num_edges_in_motif3: count (for_this_node_only) } ... ] for i in range(self._ftr_mx.shape[0]): sum_dictionaries_motifs3.append({}) sum_dictionaries_motifs4.append({}) for j, (ftr, ftr_count) in enumerate(self._index_ftr): if ftr == "motif3": key = self._motif_index_to_edge_num[ftr][ftr_count] sum_dictionaries_motifs3[i][key] = sum_dictionaries_motifs3[i].get(key, 1e-3) + self._ftr_mx[i, j] elif ftr == "motif4": key = self._motif_index_to_edge_num[ftr][ftr_count] sum_dictionaries_motifs4[i][key] = sum_dictionaries_motifs4[i].get(key, 1e-3) + self._ftr_mx[i, j] return_mx = self._ftr_mx.copy() for i in range(self._ftr_mx.shape[0]): for j, (ftr, ftr_count) in enumerate(self._index_ftr): if ftr == "motif3": # calculate { motif_index: motif ratio } return_mx[i, j] /= sum_dictionaries_motifs3[i][self._motif_index_to_edge_num[ftr][ftr_count]] if i == 0: self._headers.append("motif3_" + str(self._motif_index_to_edge_num["motif3"][ftr_count]) + "_edges") elif ftr == "motif4": # calculate { motif_index: motif ratio } return_mx[i, j] /= sum_dictionaries_motifs4[i][self._motif_index_to_edge_num[ftr][ftr_count]] if i == 0: self._headers.append("motif4_" + str(self._motif_index_to_edge_num["motif4"][ftr_count]) + "_edges") else: if i == 0: self._headers.append(ftr + "_" + str(ftr_count)) return return_mx def motif_ratio_vector(self): self._motif_ratio_vec = self._motif_ratio_vec if self._motif_ratio_vec else self._build_vector() return self._motif_ratio_vec[0] def motif_ratio_matrix(self): self._motif_ratio_matrix = self._motif_ratio_matrix if self._motif_ratio_matrix else self._build_matrix() return self._motif_ratio_matrix def get_headers(self): return self._headers # return { motif_index: sum motif in index/ total motifs with same edge count } def _count_subgraph_motif_by_size(self, ftr_mat, motif_type): sum_dict = {ftr_count: np.sum(ftr_mat[:, i]) for i, (ftr, ftr_count) in enumerate(self._index_ftr) if ftr == motif_type} # dictionary { motif_index: sum column } sum_by_edge = {} # dictionary { num_edges_in_motif: sum of } for motif_count, sum_motif in sum_dict.items(): key = self._motif_index_to_edge_num[motif_type][motif_count] sum_by_edge[key] = sum_by_edge.get(key, 0) + sum_motif # rewrite dictionary { motif_index: sum column/ total motifs with same edge count } for motif_count in sum_dict: key = self._motif_index_to_edge_num[motif_type][motif_count] sum_dict[motif_count] = sum_dict[motif_count] / sum_by_edge[key] if sum_by_edge[key] else 0 return sum_dict # return [ ... (motif_type, counter) ... ] def _get_motif_type(self, motif_type, num_motifs): header = [] for i in range(num_motifs): header.append((motif_type, i)) return header @staticmethod def is_motif(ftr): return ftr == 'motif4' or ftr == "motif3" if __name__ == "__main__": import networkx as nx from feature_meta import NODE_FEATURES gnx = nx.Graph() gnx.add_edges_from([ (1, 2), (1, 3), (2, 3), (2, 7), (7, 8), (3, 6), (4, 6), (6, 8), (5, 6), ]) gnx_ftr = GraphFeatures(gnx, NODE_FEATURES, ".", is_max_connected=True) gnx_ftr.build() m = MotifRatio(gnx_ftr, False) e = 0
py
1a56684c2e4fce374fe0480e4ca982bdb1b5066e
from datetime import datetime from typing import Dict, List, Optional, Tuple # noqa from sebs.cache import Cache from sebs.faas.config import Config as DeploymentConfig from sebs.faas.function import Function, ExecutionResult from sebs.utils import LoggingHandlers from sebs.experiments.config import Config as ExperimentConfig class Result: def __init__( self, experiment_config: ExperimentConfig, deployment_config: DeploymentConfig, invocations: Optional[Dict[str, Dict[str, ExecutionResult]]] = None, metrics: Optional[Dict[str, dict]] = None, result_bucket: Optional[str] = None, ): self.config = { "experiments": experiment_config, "deployment": deployment_config, } if not invocations: self._invocations = {} else: self._invocations = invocations if not metrics: self._metrics = {} else: self._metrics = metrics self.result_bucket = result_bucket def begin(self): self.begin_time = datetime.now().timestamp() def end(self): self.end_time = datetime.now().timestamp() def times(self) -> Tuple[int, int]: return self.begin_time, self.end_time def add_result_bucket(self, result_bucket: str): self.result_bucket = result_bucket def add_invocation(self, func: Function, invocation: ExecutionResult): if func.name in self._invocations: self._invocations.get(func.name)[invocation.request_id] = invocation # type: ignore else: self._invocations[func.name] = {invocation.request_id: invocation} def functions(self) -> List[str]: return list(self._invocations.keys()) def invocations(self, func: str) -> Dict[str, ExecutionResult]: return self._invocations[func] def metrics(self, func: str) -> dict: if func not in self._metrics: self._metrics[func] = {} return self._metrics[func] @staticmethod def deserialize(cached_config: dict, cache: Cache, handlers: LoggingHandlers) -> "Result": invocations: Dict[str, dict] = {} for func, func_invocations in cached_config["_invocations"].items(): invocations[func] = {} for invoc_id, invoc in func_invocations.items(): invocations[func][invoc_id] = ExecutionResult.deserialize(invoc) ret = Result( ExperimentConfig.deserialize(cached_config["config"]["experiments"]), DeploymentConfig.deserialize(cached_config["config"]["deployment"], cache, handlers), invocations, # FIXME: compatibility with old results cached_config["metrics"] if "metrics" in cached_config else {}, cached_config["result_bucket"], ) ret.begin_time = cached_config["begin_time"] ret.end_time = cached_config["end_time"] return ret
py
1a56686332e75fc577fb6952b2d660a8ca0544a0
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test mempool acceptance of raw transactions.""" from io import BytesIO from test_framework.test_framework import SthcoinTestFramework from test_framework.messages import ( BIP125_SEQUENCE_NUMBER, COIN, COutPoint, CTransaction, CTxOut, MAX_BLOCK_BASE_SIZE, ) from test_framework.script import ( hash160, CScript, OP_0, OP_EQUAL, OP_HASH160, OP_RETURN, ) from test_framework.util import ( assert_equal, assert_raises_rpc_error, bytes_to_hex_str, hex_str_to_bytes, wait_until, ) class MempoolAcceptanceTest(SthcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [[ '-txindex', '-reindex', # Need reindex for txindex '-acceptnonstdtxn=0', # Try to mimic main-net ]] * self.num_nodes def skip_test_if_missing_module(self): self.skip_if_no_wallet() def check_mempool_result(self, result_expected, *args, **kwargs): """Wrapper to check result of testmempoolaccept on node_0's mempool""" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size) # Must not change mempool state def run_test(self): node = self.nodes[0] self.log.info('Start with empty mempool, and 200 blocks') self.mempool_size = 0 wait_until(lambda: node.getblockcount() == 200) assert_equal(node.getmempoolinfo()['size'], self.mempool_size) self.log.info('Should not accept garbage to testmempoolaccept') assert_raises_rpc_error(-3, 'Expected type array, got string', lambda: node.testmempoolaccept(rawtxs='ff00baar')) assert_raises_rpc_error(-8, 'Array must contain exactly one raw transaction for now', lambda: node.testmempoolaccept(rawtxs=['ff00baar', 'ff22'])) assert_raises_rpc_error(-22, 'TX decode failed', lambda: node.testmempoolaccept(rawtxs=['ff00baar'])) self.log.info('A transaction already in the blockchain') coin = node.listunspent()[0] # Pick a random coin(base) to spend raw_tx_in_block = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': coin['txid'], 'vout': coin['vout']}], outputs=[{node.getnewaddress(): 0.3}, {node.getnewaddress(): 49}], ))['hex'] txid_in_block = node.sendrawtransaction(hexstring=raw_tx_in_block, allowhighfees=True) node.generate(1) self.check_mempool_result( result_expected=[{'txid': txid_in_block, 'allowed': False, 'reject-reason': '18: txn-already-known'}], rawtxs=[raw_tx_in_block], ) self.log.info('A transaction not in the mempool') fee = 0.00000700 raw_tx_0 = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{"txid": txid_in_block, "vout": 0, "sequence": BIP125_SEQUENCE_NUMBER}], # RBF is used later outputs=[{node.getnewaddress(): 0.3 - fee}], ))['hex'] tx = CTransaction() tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True}], rawtxs=[raw_tx_0], ) self.log.info('A transaction in the mempool') node.sendrawtransaction(hexstring=raw_tx_0) self.mempool_size = 1 self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': '18: txn-already-in-mempool'}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that replaces a mempool transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(fee * COIN) # Double the fee tx.vin[0].nSequence = BIP125_SEQUENCE_NUMBER + 1 # Now, opt out of RBF raw_tx_0 = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) txid_0 = tx.rehash() self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': True}], rawtxs=[raw_tx_0], ) self.log.info('A transaction that conflicts with an unconfirmed tx') # Send the transaction that replaces the mempool transaction and opts out of replaceability node.sendrawtransaction(hexstring=bytes_to_hex_str(tx.serialize()), allowhighfees=True) # take original raw_tx_0 tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vout[0].nValue -= int(4 * fee * COIN) # Set more fee # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '18: txn-mempool-conflict'}], rawtxs=[bytes_to_hex_str(tx.serialize())], allowhighfees=True, ) self.log.info('A transaction with missing inputs, that never existed') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout = COutPoint(hash=int('ff' * 32, 16), n=14) # skip re-signing the tx self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with missing inputs, that existed once in the past') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_0))) tx.vin[0].prevout.n = 1 # Set vout to 1, to spend the other outpoint (49 coins) of the in-chain-tx we want to double spend raw_tx_1 = node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex'] txid_1 = node.sendrawtransaction(hexstring=raw_tx_1, allowhighfees=True) # Now spend both to "clearly hide" the outputs, ie. remove the coins from the utxo set by spending them raw_tx_spend_both = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[ {'txid': txid_0, 'vout': 0}, {'txid': txid_1, 'vout': 0}, ], outputs=[{node.getnewaddress(): 0.1}] ))['hex'] txid_spend_both = node.sendrawtransaction(hexstring=raw_tx_spend_both, allowhighfees=True) node.generate(1) self.mempool_size = 0 # Now see if we can add the coins back to the utxo set by sending the exact txs again self.check_mempool_result( result_expected=[{'txid': txid_0, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_0], ) self.check_mempool_result( result_expected=[{'txid': txid_1, 'allowed': False, 'reject-reason': 'missing-inputs'}], rawtxs=[raw_tx_1], ) self.log.info('Create a signed "reference" tx for later use') raw_tx_reference = node.signrawtransactionwithwallet(node.createrawtransaction( inputs=[{'txid': txid_spend_both, 'vout': 0}], outputs=[{node.getnewaddress(): 0.05}], ))['hex'] tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) # Reference tx should be valid on itself self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': True}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with no outputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [] # Skip re-signing the transaction for context independent checks from now on # tx.deserialize(BytesIO(hex_str_to_bytes(node.signrawtransactionwithwallet(bytes_to_hex_str(tx.serialize()))['hex']))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-empty'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A really large transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * (MAX_BLOCK_BASE_SIZE // len(tx.vin[0].serialize())) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-oversize'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with negative output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue *= -1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-negative'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with too large output value') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].nValue = 21000000 * COIN + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-vout-toolarge'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with too large sum of output values') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout = [tx.vout[0]] * 2 tx.vout[0].nValue = 21000000 * COIN self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-txouttotal-toolarge'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction with duplicate inputs') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin = [tx.vin[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: bad-txns-inputs-duplicate'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A coinbase transaction') # Pick the input of the first tx we signed, so it has to be a coinbase tx raw_tx_coinbase_spent = node.getrawtransaction(txid=node.decoderawtransaction(hexstring=raw_tx_in_block)['vin'][0]['txid']) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_coinbase_spent))) self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '16: coinbase'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('Some nonstandard transactions') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.nVersion = 3 # A version currently non-standard self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: version'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_0]) # Some non-standard script self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptpubkey'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].scriptSig = CScript([OP_HASH160]) # Some not-pushonly scriptSig self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: scriptsig-not-pushonly'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) output_p2sh_burn = CTxOut(nValue=540, scriptPubKey=CScript([OP_HASH160, hash160(b'burn'), OP_EQUAL])) num_scripts = 100000 // len(output_p2sh_burn.serialize()) # Use enough outputs to make the tx too large for our policy tx.vout = [output_p2sh_burn] * num_scripts self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: tx-size'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0] = output_p2sh_burn tx.vout[0].nValue -= 1 # Make output smaller, such that it is dust for our policy self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: dust'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vout[0].scriptPubKey = CScript([OP_RETURN, b'\xff']) tx.vout = [tx.vout[0]] * 2 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: multi-op-return'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A timelocked transaction') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence -= 1 # Should be non-max, so locktime is not ignored tx.nLockTime = node.getblockcount() + 1 self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-final'}], rawtxs=[bytes_to_hex_str(tx.serialize())], ) self.log.info('A transaction that is locked by BIP68 sequence logic') tx.deserialize(BytesIO(hex_str_to_bytes(raw_tx_reference))) tx.vin[0].nSequence = 2 # We could include it in the second block mined from now, but not the very next one # Can skip re-signing the tx because of early rejection self.check_mempool_result( result_expected=[{'txid': tx.rehash(), 'allowed': False, 'reject-reason': '64: non-BIP68-final'}], rawtxs=[bytes_to_hex_str(tx.serialize())], allowhighfees=True, ) if __name__ == '__main__': MempoolAcceptanceTest().main()
py
1a5668d9e70d8c7b4f3eeeac7794025f91712b6a
from collections import Counter from collections import OrderedDict players = ['Mike', 'Chris', 'Arnold'] standings = OrderedDict([(player, Counter()) for player in players]) print('standings:', standings) standings['Mike']['game_played'] += 1 standings['Mike']['score'] = 2 standings['Mike']['game_played'] += 1 standings['Mike']['score'] = 3 standings['Arnold']['game_played'] += 1 standings['Arnold']['score'] = 5 standings['Chris']['game_played'] += 1 standings['Chris']['score'] = 5 rank = 1 print("standings.items:", standings.items()) standings_with_index = enumerate(standings.items()) print("standings.items.enum:", standings_with_index) ranks = [(-counter['score'], counter['games_played'], i, name) for i, (name, counter) in enumerate(standings.items())] print("ranks", ranks) print("Winner: {}".format(sorted(ranks)[rank - 1][3]))
py
1a5668e78097ac1653261c8a43a730d0d1fe5e74
# Copyright (C) 2017 Beijing Didi Infinity Technology and Development Co.,Ltd. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This model extracts pitch features per frame.""" import delta.compat as tf from core.ops import py_x_ops from delta.utils.hparam import HParams from delta.data.frontend.base_frontend import BaseFrontend class Pitch(BaseFrontend): """ Compute pitch features of every frame in speech, return a float tensor with size (num_frames, 2). """ def __init__(self, config: dict): super().__init__(config) @classmethod def params(cls, config=None): """ Set params. :param config: contains nineteen optional parameters: --sample_rate : Waveform data sample frequency (must match the waveform file, if specified there). (float, default = 16000) --delta-pitch : Smallest relative change in pitch that our algorithm measures (float, default = 0.005) --window_length : Frame length in seconds (float, default = 0.025) --frame_length : Frame shift in seconds (float, default = 0.010) --frames-per-chunk : Only relevant for offline pitch extraction (e.g. compute-kaldi-pitch-feats), you can set it to a small nonzero value, such as 10, for better feature compatibility with online decoding (affects energy normalization in the algorithm) (int, default = 0) --lowpass-cutoff : cutoff frequency for LowPass filter (Hz). (float, default = 1000) --lowpass-filter-width : Integer that determines filter width of lowpass filter, more gives sharper filter (int, default = 1) --max-f0 : max. F0 to search for (Hz) (float, default = 400) --max-frames-latency : Maximum number of frames of latency that we allow pitch tracking to introduce into the feature processing (affects output only if --frames-per-chunk > 0 and --simulate-first-pass-online=true (int, default = 0) --min-f0 : min. F0 to search for (Hz) (float, default = 50) --nccf-ballast : Increasing this factor reduces NCCF for quiet frames. (float, default = 7000) --nccf-ballast-online : This is useful mainly for debug; it affects how the NCCF ballast is computed. (bool, default = false) --penalty-factor : cost factor for FO change. (float, default = 0.1) --preemphasis-coefficient : Coefficient for use in signal preemphasis (deprecated). (float, default = 0) --recompute-frame : Only relevant for online pitch extraction, or for compatibility with online pitch extraction. A non-critical parameter; the frame at which we recompute some of the forward pointers, after revising our estimate of the signal energy. Relevant if--frames-per-chunk > 0. (int, default = 500) --resample-frequency : Frequency that we down-sample the signal to. Must be more than twice lowpass-cutoff (float, default = 4000) --simulate-first-pass-online : If true, compute-kaldi-pitch-feats will output features that correspond to what an online decoder would see in the first pass of decoding-- not the final version of the features, which is the default. Relevant if --frames-per-chunk > 0 (bool, default = false) --snip-edges : If this is set to false, the incomplete frames near the ending edge won't be snipped, so that the number of frames is the file size divided by the frame-shift. This makes different types of features give the same number of frames. (bool, default = true) --soft-min-f0 : Minimum f0, applied in soft way, must not exceed min-f0. (float, default = 10) --upsample-filter-width : Integer that determines filter width when upsampling NCCF. (int, default = 5) :return: An object of class HParams, which is a set of hyperparameters as name-value pairs. """ hparams = HParams(cls=cls) window_length = 0.025 frame_length = 0.010 sample_rate = 16000 snip_edges = True preemph_coeff = 0.0 min_f0 = 50.0 max_f0 = 400.0 soft_min_f0 = 10.0 penalty_factor = 0.1 lowpass_cutoff = 1000.0 resample_freq = 4000.0 delta_pitch = 0.005 nccf_ballast = 7000.0 lowpass_filter_width = 1 upsample_filter_width = 5 max_frames_latency = 0 frames_per_chunk = 0 simulate_first_pass_online = False recompute_frame = 500 nccf_ballast_online = False hparams.add_hparam('window_length', window_length) hparams.add_hparam('frame_length', frame_length) hparams.add_hparam('sample_rate', sample_rate) hparams.add_hparam('snip_edges', snip_edges) hparams.add_hparam('preemph_coeff', preemph_coeff) hparams.add_hparam('min_f0', min_f0) hparams.add_hparam('max_f0', max_f0) hparams.add_hparam('soft_min_f0', soft_min_f0) hparams.add_hparam('penalty_factor', penalty_factor) hparams.add_hparam('lowpass_cutoff', lowpass_cutoff) hparams.add_hparam('resample_freq', resample_freq) hparams.add_hparam('delta_pitch', delta_pitch) hparams.add_hparam('nccf_ballast', nccf_ballast) hparams.add_hparam('lowpass_filter_width', lowpass_filter_width) hparams.add_hparam('upsample_filter_width', upsample_filter_width) hparams.add_hparam('max_frames_latency', max_frames_latency) hparams.add_hparam('frames_per_chunk', frames_per_chunk) hparams.add_hparam('simulate_first_pass_online', simulate_first_pass_online) hparams.add_hparam('recompute_frame', recompute_frame) hparams.add_hparam('nccf_ballast_online', nccf_ballast_online) if config is not None: hparams.override_from_dict(config) return hparams def call(self, audio_data, sample_rate=None): """ Caculate picth features of audio data. :param audio_data: the audio signal from which to compute spectrum. Should be an (1, N) tensor. :param sample_rate: the samplerate of the signal we working with. :return: A float tensor of size (num_frames, 2) containing pitch && POV features of every frame in speech. """ p = self.config with tf.name_scope('pitch'): if sample_rate is None: sample_rate = tf.constant(p.sample_rate, dtype=tf.int32) else: if not tf.is_tensor(sample_rate): sample_rate = tf.convert_to_tensor(sample_rate) pitch = py_x_ops.pitch( audio_data, sample_rate, window_length=p.window_length, frame_length=p.frame_length, snip_edges=p.snip_edges, preemph_coeff=p.preemph_coeff, min_f0=p.min_f0, max_f0=p.max_f0, soft_min_f0=p.soft_min_f0, penalty_factor=p.penalty_factor, lowpass_cutoff=p.lowpass_cutoff, resample_freq=p.resample_freq, delta_pitch=p.delta_pitch, nccf_ballast=p.nccf_ballast, lowpass_filter_width=p.lowpass_filter_width, upsample_filter_width=p.upsample_filter_width, max_frames_latency=p.max_frames_latency, frames_per_chunk=p.frames_per_chunk, simulate_first_pass_online=p.simulate_first_pass_online, recompute_frame=p.recompute_frame, nccf_ballast_online=p.nccf_ballast_online) return pitch
py
1a566a3c232ee6aea79cb6c01c58baa12b928a71
# Test the runpy module import contextlib import importlib.machinery, importlib.util import os.path import pathlib import py_compile import re import signal import subprocess import sys import tempfile import textwrap import unittest import warnings <<<<<<< HEAD from test.support import no_tracing, verbose from test.support.import_helper import forget, make_legacy_pyc, unload from test.support.os_helper import create_empty_file, temp_dir ======= from test.support import ( forget, make_legacy_pyc, unload, verbose, no_tracing, create_empty_file, temp_dir) >>>>>>> 3.9 from test.support.script_helper import make_script, make_zip_script import runpy from runpy import _run_code, _run_module_code, run_module, run_path # Note: This module can't safely test _run_module_as_main as it # runs its tests in the current process, which would mess with the # real __main__ module (usually test.regrtest) # See test_cmd_line_script for a test that executes that code path # Set up the test code and expected results example_source = """\ # Check basic code execution result = ['Top level assignment'] def f(): result.append('Lower level reference') f() del f # Check the sys module import sys run_argv0 = sys.argv[0] run_name_in_sys_modules = __name__ in sys.modules module_in_sys_modules = (run_name_in_sys_modules and globals() is sys.modules[__name__].__dict__) # Check nested operation import runpy nested = runpy._run_module_code('x=1\\n', mod_name='<run>') """ implicit_namespace = { "__name__": None, "__file__": None, "__cached__": None, "__package__": None, "__doc__": None, "__spec__": None } example_namespace = { "sys": sys, "runpy": runpy, "result": ["Top level assignment", "Lower level reference"], "run_argv0": sys.argv[0], "run_name_in_sys_modules": False, "module_in_sys_modules": False, "nested": dict(implicit_namespace, x=1, __name__="<run>", __loader__=None), } example_namespace.update(implicit_namespace) class CodeExecutionMixin: # Issue #15230 (run_path not handling run_name correctly) highlighted a # problem with the way arguments were being passed from higher level APIs # down to lower level code. This mixin makes it easier to ensure full # testing occurs at those upper layers as well, not just at the utility # layer # Figuring out the loader details in advance is hard to do, so we skip # checking the full details of loader and loader_state CHECKED_SPEC_ATTRIBUTES = ["name", "parent", "origin", "cached", "has_location", "submodule_search_locations"] def assertNamespaceMatches(self, result_ns, expected_ns): """Check two namespaces match. Ignores any unspecified interpreter created names """ # Avoid side effects result_ns = result_ns.copy() expected_ns = expected_ns.copy() # Impls are permitted to add extra names, so filter them out for k in list(result_ns): if k.startswith("__") and k.endswith("__"): if k not in expected_ns: result_ns.pop(k) if k not in expected_ns["nested"]: result_ns["nested"].pop(k) # Spec equality includes the loader, so we take the spec out of the # result namespace and check that separately result_spec = result_ns.pop("__spec__") expected_spec = expected_ns.pop("__spec__") if expected_spec is None: self.assertIsNone(result_spec) else: # If an expected loader is set, we just check we got the right # type, rather than checking for full equality if expected_spec.loader is not None: self.assertEqual(type(result_spec.loader), type(expected_spec.loader)) for attr in self.CHECKED_SPEC_ATTRIBUTES: k = "__spec__." + attr actual = (k, getattr(result_spec, attr)) expected = (k, getattr(expected_spec, attr)) self.assertEqual(actual, expected) # For the rest, we still don't use direct dict comparison on the # namespace, as the diffs are too hard to debug if anything breaks self.assertEqual(set(result_ns), set(expected_ns)) for k in result_ns: actual = (k, result_ns[k]) expected = (k, expected_ns[k]) self.assertEqual(actual, expected) def check_code_execution(self, create_namespace, expected_namespace): """Check that an interface runs the example code correctly First argument is a callable accepting the initial globals and using them to create the actual namespace Second argument is the expected result """ sentinel = object() expected_ns = expected_namespace.copy() run_name = expected_ns["__name__"] saved_argv0 = sys.argv[0] saved_mod = sys.modules.get(run_name, sentinel) # Check without initial globals result_ns = create_namespace(None) self.assertNamespaceMatches(result_ns, expected_ns) self.assertIs(sys.argv[0], saved_argv0) self.assertIs(sys.modules.get(run_name, sentinel), saved_mod) # And then with initial globals initial_ns = {"sentinel": sentinel} expected_ns["sentinel"] = sentinel result_ns = create_namespace(initial_ns) self.assertIsNot(result_ns, initial_ns) self.assertNamespaceMatches(result_ns, expected_ns) self.assertIs(sys.argv[0], saved_argv0) self.assertIs(sys.modules.get(run_name, sentinel), saved_mod) class ExecutionLayerTestCase(unittest.TestCase, CodeExecutionMixin): """Unit tests for runpy._run_code and runpy._run_module_code""" def test_run_code(self): expected_ns = example_namespace.copy() expected_ns.update({ "__loader__": None, }) def create_ns(init_globals): return _run_code(example_source, {}, init_globals) self.check_code_execution(create_ns, expected_ns) def test_run_module_code(self): mod_name = "<Nonsense>" mod_fname = "Some other nonsense" mod_loader = "Now you're just being silly" mod_package = '' # Treat as a top level module mod_spec = importlib.machinery.ModuleSpec(mod_name, origin=mod_fname, loader=mod_loader) expected_ns = example_namespace.copy() expected_ns.update({ "__name__": mod_name, "__file__": mod_fname, "__loader__": mod_loader, "__package__": mod_package, "__spec__": mod_spec, "run_argv0": mod_fname, "run_name_in_sys_modules": True, "module_in_sys_modules": True, }) def create_ns(init_globals): return _run_module_code(example_source, init_globals, mod_name, mod_spec) self.check_code_execution(create_ns, expected_ns) # TODO: Use self.addCleanup to get rid of a lot of try-finally blocks class RunModuleTestCase(unittest.TestCase, CodeExecutionMixin): """Unit tests for runpy.run_module""" def expect_import_error(self, mod_name): try: run_module(mod_name) except ImportError: pass else: self.fail("Expected import error for " + mod_name) def test_invalid_names(self): # Builtin module self.expect_import_error("sys") # Non-existent modules self.expect_import_error("sys.imp.eric") self.expect_import_error("os.path.half") self.expect_import_error("a.bee") # Relative names not allowed self.expect_import_error(".howard") self.expect_import_error("..eaten") self.expect_import_error(".test_runpy") self.expect_import_error(".unittest") # Package without __main__.py self.expect_import_error("multiprocessing") def test_library_module(self): self.assertEqual(run_module("runpy")["__name__"], "runpy") def _add_pkg_dir(self, pkg_dir, namespace=False): os.mkdir(pkg_dir) if namespace: return None pkg_fname = os.path.join(pkg_dir, "__init__.py") create_empty_file(pkg_fname) return pkg_fname def _make_pkg(self, source, depth, mod_base="runpy_test", *, namespace=False, parent_namespaces=False): # Enforce a couple of internal sanity checks on test cases if (namespace or parent_namespaces) and not depth: raise RuntimeError("Can't mark top level module as a " "namespace package") pkg_name = "__runpy_pkg__" test_fname = mod_base+os.extsep+"py" pkg_dir = sub_dir = os.path.realpath(tempfile.mkdtemp()) if verbose > 1: print(" Package tree in:", sub_dir) sys.path.insert(0, pkg_dir) if verbose > 1: print(" Updated sys.path:", sys.path[0]) if depth: namespace_flags = [parent_namespaces] * depth namespace_flags[-1] = namespace for namespace_flag in namespace_flags: sub_dir = os.path.join(sub_dir, pkg_name) pkg_fname = self._add_pkg_dir(sub_dir, namespace_flag) if verbose > 1: print(" Next level in:", sub_dir) if verbose > 1: print(" Created:", pkg_fname) mod_fname = os.path.join(sub_dir, test_fname) with open(mod_fname, "w") as mod_file: mod_file.write(source) if verbose > 1: print(" Created:", mod_fname) mod_name = (pkg_name+".")*depth + mod_base mod_spec = importlib.util.spec_from_file_location(mod_name, mod_fname) return pkg_dir, mod_fname, mod_name, mod_spec def _del_pkg(self, top): for entry in list(sys.modules): if entry.startswith("__runpy_pkg__"): del sys.modules[entry] if verbose > 1: print(" Removed sys.modules entries") del sys.path[0] if verbose > 1: print(" Removed sys.path entry") for root, dirs, files in os.walk(top, topdown=False): for name in files: try: os.remove(os.path.join(root, name)) except OSError as ex: if verbose > 1: print(ex) # Persist with cleaning up for name in dirs: fullname = os.path.join(root, name) try: os.rmdir(fullname) except OSError as ex: if verbose > 1: print(ex) # Persist with cleaning up try: os.rmdir(top) if verbose > 1: print(" Removed package tree") except OSError as ex: if verbose > 1: print(ex) # Persist with cleaning up def _fix_ns_for_legacy_pyc(self, ns, alter_sys): char_to_add = "c" ns["__file__"] += char_to_add ns["__cached__"] = ns["__file__"] spec = ns["__spec__"] new_spec = importlib.util.spec_from_file_location(spec.name, ns["__file__"]) ns["__spec__"] = new_spec if alter_sys: ns["run_argv0"] += char_to_add def _check_module(self, depth, alter_sys=False, *, namespace=False, parent_namespaces=False): pkg_dir, mod_fname, mod_name, mod_spec = ( self._make_pkg(example_source, depth, namespace=namespace, parent_namespaces=parent_namespaces)) forget(mod_name) expected_ns = example_namespace.copy() expected_ns.update({ "__name__": mod_name, "__file__": mod_fname, "__cached__": mod_spec.cached, "__package__": mod_name.rpartition(".")[0], "__spec__": mod_spec, }) if alter_sys: expected_ns.update({ "run_argv0": mod_fname, "run_name_in_sys_modules": True, "module_in_sys_modules": True, }) def create_ns(init_globals): return run_module(mod_name, init_globals, alter_sys=alter_sys) try: if verbose > 1: print("Running from source:", mod_name) self.check_code_execution(create_ns, expected_ns) importlib.invalidate_caches() __import__(mod_name) os.remove(mod_fname) if not sys.dont_write_bytecode: make_legacy_pyc(mod_fname) unload(mod_name) # In case loader caches paths importlib.invalidate_caches() if verbose > 1: print("Running from compiled:", mod_name) self._fix_ns_for_legacy_pyc(expected_ns, alter_sys) self.check_code_execution(create_ns, expected_ns) finally: self._del_pkg(pkg_dir) if verbose > 1: print("Module executed successfully") def _check_package(self, depth, alter_sys=False, *, namespace=False, parent_namespaces=False): pkg_dir, mod_fname, mod_name, mod_spec = ( self._make_pkg(example_source, depth, "__main__", namespace=namespace, parent_namespaces=parent_namespaces)) pkg_name = mod_name.rpartition(".")[0] forget(mod_name) expected_ns = example_namespace.copy() expected_ns.update({ "__name__": mod_name, "__file__": mod_fname, "__cached__": importlib.util.cache_from_source(mod_fname), "__package__": pkg_name, "__spec__": mod_spec, }) if alter_sys: expected_ns.update({ "run_argv0": mod_fname, "run_name_in_sys_modules": True, "module_in_sys_modules": True, }) def create_ns(init_globals): return run_module(pkg_name, init_globals, alter_sys=alter_sys) try: if verbose > 1: print("Running from source:", pkg_name) self.check_code_execution(create_ns, expected_ns) importlib.invalidate_caches() __import__(mod_name) os.remove(mod_fname) if not sys.dont_write_bytecode: make_legacy_pyc(mod_fname) unload(mod_name) # In case loader caches paths if verbose > 1: print("Running from compiled:", pkg_name) importlib.invalidate_caches() self._fix_ns_for_legacy_pyc(expected_ns, alter_sys) self.check_code_execution(create_ns, expected_ns) finally: self._del_pkg(pkg_dir) if verbose > 1: print("Package executed successfully") def _add_relative_modules(self, base_dir, source, depth): if depth <= 1: raise ValueError("Relative module test needs depth > 1") pkg_name = "__runpy_pkg__" module_dir = base_dir for i in range(depth): parent_dir = module_dir module_dir = os.path.join(module_dir, pkg_name) # Add sibling module sibling_fname = os.path.join(module_dir, "sibling.py") create_empty_file(sibling_fname) if verbose > 1: print(" Added sibling module:", sibling_fname) # Add nephew module uncle_dir = os.path.join(parent_dir, "uncle") self._add_pkg_dir(uncle_dir) if verbose > 1: print(" Added uncle package:", uncle_dir) cousin_dir = os.path.join(uncle_dir, "cousin") self._add_pkg_dir(cousin_dir) if verbose > 1: print(" Added cousin package:", cousin_dir) nephew_fname = os.path.join(cousin_dir, "nephew.py") create_empty_file(nephew_fname) if verbose > 1: print(" Added nephew module:", nephew_fname) def _check_relative_imports(self, depth, run_name=None): contents = r"""\ from __future__ import absolute_import from . import sibling from ..uncle.cousin import nephew """ pkg_dir, mod_fname, mod_name, mod_spec = ( self._make_pkg(contents, depth)) if run_name is None: expected_name = mod_name else: expected_name = run_name try: self._add_relative_modules(pkg_dir, contents, depth) pkg_name = mod_name.rpartition('.')[0] if verbose > 1: print("Running from source:", mod_name) d1 = run_module(mod_name, run_name=run_name) # Read from source self.assertEqual(d1["__name__"], expected_name) self.assertEqual(d1["__package__"], pkg_name) self.assertIn("sibling", d1) self.assertIn("nephew", d1) del d1 # Ensure __loader__ entry doesn't keep file open importlib.invalidate_caches() __import__(mod_name) os.remove(mod_fname) if not sys.dont_write_bytecode: make_legacy_pyc(mod_fname) unload(mod_name) # In case the loader caches paths if verbose > 1: print("Running from compiled:", mod_name) importlib.invalidate_caches() d2 = run_module(mod_name, run_name=run_name) # Read from bytecode self.assertEqual(d2["__name__"], expected_name) self.assertEqual(d2["__package__"], pkg_name) self.assertIn("sibling", d2) self.assertIn("nephew", d2) del d2 # Ensure __loader__ entry doesn't keep file open finally: self._del_pkg(pkg_dir) if verbose > 1: print("Module executed successfully") def test_run_module(self): for depth in range(4): if verbose > 1: print("Testing package depth:", depth) self._check_module(depth) def test_run_module_in_namespace_package(self): for depth in range(1, 4): if verbose > 1: print("Testing package depth:", depth) self._check_module(depth, namespace=True, parent_namespaces=True) def test_run_package(self): for depth in range(1, 4): if verbose > 1: print("Testing package depth:", depth) self._check_package(depth) def test_run_package_init_exceptions(self): # These were previously wrapped in an ImportError; see Issue 14285 result = self._make_pkg("", 1, "__main__") pkg_dir, _, mod_name, _ = result mod_name = mod_name.replace(".__main__", "") self.addCleanup(self._del_pkg, pkg_dir) init = os.path.join(pkg_dir, "__runpy_pkg__", "__init__.py") exceptions = (ImportError, AttributeError, TypeError, ValueError) for exception in exceptions: name = exception.__name__ with self.subTest(name): source = "raise {0}('{0} in __init__.py.')".format(name) with open(init, "wt", encoding="ascii") as mod_file: mod_file.write(source) try: run_module(mod_name) except exception as err: self.assertNotIn("finding spec", format(err)) else: self.fail("Nothing raised; expected {}".format(name)) try: run_module(mod_name + ".submodule") except exception as err: self.assertNotIn("finding spec", format(err)) else: self.fail("Nothing raised; expected {}".format(name)) def test_submodule_imported_warning(self): pkg_dir, _, mod_name, _ = self._make_pkg("", 1) try: __import__(mod_name) with self.assertWarnsRegex(RuntimeWarning, r"found in sys\.modules"): run_module(mod_name) finally: self._del_pkg(pkg_dir) def test_package_imported_no_warning(self): pkg_dir, _, mod_name, _ = self._make_pkg("", 1, "__main__") self.addCleanup(self._del_pkg, pkg_dir) package = mod_name.replace(".__main__", "") # No warning should occur if we only imported the parent package __import__(package) self.assertIn(package, sys.modules) with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) run_module(package) # But the warning should occur if we imported the __main__ submodule __import__(mod_name) with self.assertWarnsRegex(RuntimeWarning, r"found in sys\.modules"): run_module(package) def test_run_package_in_namespace_package(self): for depth in range(1, 4): if verbose > 1: print("Testing package depth:", depth) self._check_package(depth, parent_namespaces=True) def test_run_namespace_package(self): for depth in range(1, 4): if verbose > 1: print("Testing package depth:", depth) self._check_package(depth, namespace=True) def test_run_namespace_package_in_namespace_package(self): for depth in range(1, 4): if verbose > 1: print("Testing package depth:", depth) self._check_package(depth, namespace=True, parent_namespaces=True) def test_run_module_alter_sys(self): for depth in range(4): if verbose > 1: print("Testing package depth:", depth) self._check_module(depth, alter_sys=True) def test_run_package_alter_sys(self): for depth in range(1, 4): if verbose > 1: print("Testing package depth:", depth) self._check_package(depth, alter_sys=True) def test_explicit_relative_import(self): for depth in range(2, 5): if verbose > 1: print("Testing relative imports at depth:", depth) self._check_relative_imports(depth) def test_main_relative_import(self): for depth in range(2, 5): if verbose > 1: print("Testing main relative imports at depth:", depth) self._check_relative_imports(depth, "__main__") def test_run_name(self): depth = 1 run_name = "And now for something completely different" pkg_dir, mod_fname, mod_name, mod_spec = ( self._make_pkg(example_source, depth)) forget(mod_name) expected_ns = example_namespace.copy() expected_ns.update({ "__name__": run_name, "__file__": mod_fname, "__cached__": importlib.util.cache_from_source(mod_fname), "__package__": mod_name.rpartition(".")[0], "__spec__": mod_spec, }) def create_ns(init_globals): return run_module(mod_name, init_globals, run_name) try: self.check_code_execution(create_ns, expected_ns) finally: self._del_pkg(pkg_dir) def test_pkgutil_walk_packages(self): # This is a dodgy hack to use the test_runpy infrastructure to test # issue #15343. Issue #15348 declares this is indeed a dodgy hack ;) import pkgutil max_depth = 4 base_name = "__runpy_pkg__" package_suffixes = ["uncle", "uncle.cousin"] module_suffixes = ["uncle.cousin.nephew", base_name + ".sibling"] expected_packages = set() expected_modules = set() for depth in range(1, max_depth): pkg_name = ".".join([base_name] * depth) expected_packages.add(pkg_name) for name in package_suffixes: expected_packages.add(pkg_name + "." + name) for name in module_suffixes: expected_modules.add(pkg_name + "." + name) pkg_name = ".".join([base_name] * max_depth) expected_packages.add(pkg_name) expected_modules.add(pkg_name + ".runpy_test") pkg_dir, mod_fname, mod_name, mod_spec = ( self._make_pkg("", max_depth)) self.addCleanup(self._del_pkg, pkg_dir) for depth in range(2, max_depth+1): self._add_relative_modules(pkg_dir, "", depth) for moduleinfo in pkgutil.walk_packages([pkg_dir]): self.assertIsInstance(moduleinfo, pkgutil.ModuleInfo) self.assertIsInstance(moduleinfo.module_finder, importlib.machinery.FileFinder) if moduleinfo.ispkg: expected_packages.remove(moduleinfo.name) else: expected_modules.remove(moduleinfo.name) self.assertEqual(len(expected_packages), 0, expected_packages) self.assertEqual(len(expected_modules), 0, expected_modules) class RunPathTestCase(unittest.TestCase, CodeExecutionMixin): """Unit tests for runpy.run_path""" def _make_test_script(self, script_dir, script_basename, source=None, omit_suffix=False): if source is None: source = example_source return make_script(script_dir, script_basename, source, omit_suffix) def _check_script(self, script_name, expected_name, expected_file, expected_argv0, mod_name=None, expect_spec=True, check_loader=True): # First check is without run_name def create_ns(init_globals): return run_path(script_name, init_globals) expected_ns = example_namespace.copy() if mod_name is None: spec_name = expected_name else: spec_name = mod_name if expect_spec: mod_spec = importlib.util.spec_from_file_location(spec_name, expected_file) mod_cached = mod_spec.cached if not check_loader: mod_spec.loader = None else: mod_spec = mod_cached = None expected_ns.update({ "__name__": expected_name, "__file__": expected_file, "__cached__": mod_cached, "__package__": "", "__spec__": mod_spec, "run_argv0": expected_argv0, "run_name_in_sys_modules": True, "module_in_sys_modules": True, }) self.check_code_execution(create_ns, expected_ns) # Second check makes sure run_name works in all cases run_name = "prove.issue15230.is.fixed" def create_ns(init_globals): return run_path(script_name, init_globals, run_name) if expect_spec and mod_name is None: mod_spec = importlib.util.spec_from_file_location(run_name, expected_file) if not check_loader: mod_spec.loader = None expected_ns["__spec__"] = mod_spec expected_ns["__name__"] = run_name expected_ns["__package__"] = run_name.rpartition(".")[0] self.check_code_execution(create_ns, expected_ns) def _check_import_error(self, script_name, msg): msg = re.escape(msg) self.assertRaisesRegex(ImportError, msg, run_path, script_name) def test_basic_script(self): with temp_dir() as script_dir: mod_name = 'script' script_name = self._make_test_script(script_dir, mod_name) self._check_script(script_name, "<run_path>", script_name, script_name, expect_spec=False) def test_basic_script_with_path_object(self): with temp_dir() as script_dir: mod_name = 'script' script_name = pathlib.Path(self._make_test_script(script_dir, mod_name)) self._check_script(script_name, "<run_path>", script_name, script_name, expect_spec=False) def test_basic_script_no_suffix(self): with temp_dir() as script_dir: mod_name = 'script' script_name = self._make_test_script(script_dir, mod_name, omit_suffix=True) self._check_script(script_name, "<run_path>", script_name, script_name, expect_spec=False) def test_script_compiled(self): with temp_dir() as script_dir: mod_name = 'script' script_name = self._make_test_script(script_dir, mod_name) compiled_name = py_compile.compile(script_name, doraise=True) os.remove(script_name) self._check_script(compiled_name, "<run_path>", compiled_name, compiled_name, expect_spec=False) def test_directory(self): with temp_dir() as script_dir: mod_name = '__main__' script_name = self._make_test_script(script_dir, mod_name) self._check_script(script_dir, "<run_path>", script_name, script_dir, mod_name=mod_name) def test_directory_compiled(self): with temp_dir() as script_dir: mod_name = '__main__' script_name = self._make_test_script(script_dir, mod_name) compiled_name = py_compile.compile(script_name, doraise=True) os.remove(script_name) if not sys.dont_write_bytecode: legacy_pyc = make_legacy_pyc(script_name) self._check_script(script_dir, "<run_path>", legacy_pyc, script_dir, mod_name=mod_name) def test_directory_error(self): with temp_dir() as script_dir: mod_name = 'not_main' script_name = self._make_test_script(script_dir, mod_name) msg = "can't find '__main__' module in %r" % script_dir self._check_import_error(script_dir, msg) def test_zipfile(self): with temp_dir() as script_dir: mod_name = '__main__' script_name = self._make_test_script(script_dir, mod_name) zip_name, fname = make_zip_script(script_dir, 'test_zip', script_name) self._check_script(zip_name, "<run_path>", fname, zip_name, mod_name=mod_name, check_loader=False) def test_zipfile_compiled(self): with temp_dir() as script_dir: mod_name = '__main__' script_name = self._make_test_script(script_dir, mod_name) compiled_name = py_compile.compile(script_name, doraise=True) zip_name, fname = make_zip_script(script_dir, 'test_zip', compiled_name) self._check_script(zip_name, "<run_path>", fname, zip_name, mod_name=mod_name, check_loader=False) def test_zipfile_error(self): with temp_dir() as script_dir: mod_name = 'not_main' script_name = self._make_test_script(script_dir, mod_name) zip_name, fname = make_zip_script(script_dir, 'test_zip', script_name) msg = "can't find '__main__' module in %r" % zip_name self._check_import_error(zip_name, msg) @no_tracing def test_main_recursion_error(self): with temp_dir() as script_dir, temp_dir() as dummy_dir: mod_name = '__main__' source = ("import runpy\n" "runpy.run_path(%r)\n") % dummy_dir script_name = self._make_test_script(script_dir, mod_name, source) zip_name, fname = make_zip_script(script_dir, 'test_zip', script_name) msg = "recursion depth exceeded" self.assertRaisesRegex(RecursionError, msg, run_path, zip_name) def test_encoding(self): with temp_dir() as script_dir: filename = os.path.join(script_dir, 'script.py') with open(filename, 'w', encoding='latin1') as f: f.write(""" #coding:latin1 s = "non-ASCII: h\xe9" """) result = run_path(filename) self.assertEqual(result['s'], "non-ASCII: h\xe9") class TestExit(unittest.TestCase): STATUS_CONTROL_C_EXIT = 0xC000013A EXPECTED_CODE = ( STATUS_CONTROL_C_EXIT if sys.platform == "win32" else -signal.SIGINT ) @staticmethod @contextlib.contextmanager def tmp_path(*args, **kwargs): with temp_dir() as tmp_fn: yield pathlib.Path(tmp_fn) def run(self, *args, **kwargs): with self.tmp_path() as tmp: self.ham = ham = tmp / "ham.py" ham.write_text( textwrap.dedent( """\ raise KeyboardInterrupt """ ) ) super().run(*args, **kwargs) def assertSigInt(self, *args, **kwargs): proc = subprocess.run(*args, **kwargs, text=True, stderr=subprocess.PIPE) self.assertTrue(proc.stderr.endswith("\nKeyboardInterrupt\n")) self.assertEqual(proc.returncode, self.EXPECTED_CODE) def test_pymain_run_file(self): self.assertSigInt([sys.executable, self.ham]) def test_pymain_run_file_runpy_run_module(self): tmp = self.ham.parent run_module = tmp / "run_module.py" run_module.write_text( textwrap.dedent( """\ import runpy runpy.run_module("ham") """ ) ) self.assertSigInt([sys.executable, run_module], cwd=tmp) def test_pymain_run_file_runpy_run_module_as_main(self): tmp = self.ham.parent run_module_as_main = tmp / "run_module_as_main.py" run_module_as_main.write_text( textwrap.dedent( """\ import runpy runpy._run_module_as_main("ham") """ ) ) self.assertSigInt([sys.executable, run_module_as_main], cwd=tmp) def test_pymain_run_command_run_module(self): self.assertSigInt( [sys.executable, "-c", "import runpy; runpy.run_module('ham')"], cwd=self.ham.parent, ) def test_pymain_run_command(self): self.assertSigInt([sys.executable, "-c", "import ham"], cwd=self.ham.parent) def test_pymain_run_stdin(self): self.assertSigInt([sys.executable], input="import ham", cwd=self.ham.parent) def test_pymain_run_module(self): ham = self.ham self.assertSigInt([sys.executable, "-m", ham.stem], cwd=ham.parent) if __name__ == "__main__": unittest.main()
py
1a566bd69302e8a79b7767cd2473d17ae6f43b46
import io import re import six from boto3.session import Session from botocore.config import Config AWS_ACCESS_KEY = 'AKIAJXFC3JRVYNIHX2UA' AWS_ACCESS_SECRET_KEY = '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' S3_BUCKET_NAME_PATTERN = re.compile(r'^[a-z0-9][a-z0-9\-]{1,61}[a-z0-9]$') S3_KEY_PATTERN = re.compile(r'^[a-zA-Z0-9][a-zA-Z0-9\-./_]{3,253}[a-zA-Z0-9]$') class S3Error(AssertionError): pass def get_client(): session = Session(aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_ACCESS_SECRET_KEY) return session.client('s3', config=Config(signature_version='s3v4')) def validate_bucket_name(bucket): if not S3_BUCKET_NAME_PATTERN.match(bucket) or '--' in bucket: raise S3Error('invalid bucket name {}'.format(bucket)) def validate_key_name(key): if not S3_KEY_PATTERN.match(key): raise S3Error('invalid s3 key name {}'.format(key)) def validate_content(content): if content is None: raise S3Error('no content to upload') if not isinstance(content, bytes) and not hasattr(content, 'read'): raise S3Error('content is neither a string nor a file like object, content={}'.format(content)) def download(bucket, key): """ always returns a byte string """ validate_bucket_name(bucket) validate_key_name(key) client = get_client() # do a buffered download bytes_io = io.BytesIO() client.download_fileobj(bucket, key, bytes_io) # hope that stuff is not too big, and just return content return bytes_io.getvalue() def download_file(bucket, key, filename): """ always returns a byte string """ validate_bucket_name(bucket) validate_key_name(key) client = get_client() client.download_file(bucket, key, filename) def upload(bucket, key, content, extra_agrs): """replace if key exists""" # validate_content(content) validate_bucket_name(bucket) validate_key_name(key) client = get_client() if extra_agrs: client.put_object(Body=content, Bucket=bucket, Key=key, ContentType=extra_agrs['ContentType']) else: client.put_object(Body=content, Bucket=bucket, Key=key) def delete(bucket, key): validate_bucket_name(bucket) validate_key_name(key) client = get_client() client.delete_object(Bucket=bucket, Key=key) def modify_metadata(): from api.models import S3Upload client = get_client() for s3_upload in S3Upload.objects.filter(folder='uploads/pod').filter(id__gte=34783).order_by('-id'): try: s3_obj = client.get_object(Bucket=s3_upload.bucket, Key=s3_upload.key()) client.put_object(Body=s3_obj['Body'].read(), Bucket=s3_upload.bucket, Key=s3_upload.key(), ContentType='image/jpeg') print(s3_upload.id) except: print(s3_upload.filename)
py
1a566c6d07c2ce2e31a9202edd4c14c0e397f19d
"""Declarative scaffolding for frameworks""" import collections import uuid import warnings __all__ = ["ModelMetaclass", "Field", "TypeDefinition", "TypeEngine", "DeclareException"] __version__ = "0.9.12" missing = object() # These engines can't be cleared _fixed_engines = collections.ChainMap() class DeclareException(Exception): """ Custom exception for cases where raising a built-in exception would be ambiguous (whether it was thrown by declare or a bound function) """ pass class TypeEngineMeta(type): """ Factory for :class:`~TypeEngine` so that each engine is init'd only once. This is necessary since if :meth:`~TypeEngine.__new__` returns an instance of the class, the :meth:`~TypeEngine.__init__` method will be called. """ engines = _fixed_engines.new_child() def __call__(cls, namespace, *args, **kwargs): engine = TypeEngineMeta.engines.get(namespace) if engine is None: engine = cls.__new__(cls) TypeEngineMeta.engines[namespace] = engine cls.__init__(engine, namespace, *args, **kwargs) return engine @classmethod def clear_engines(metaclass): """Clear all non-fixed engines""" metaclass.engines.clear() class TypeEngine(object, metaclass=TypeEngineMeta): """ Collection of bound :class:`~TypeDefinition` for a given namespace. TypeEngines are unique by namespace:: assert TypeEngine("foo") is TypeEngine("foo") This makes it easier for groups of components to use a single engine to translate values by type. By default :meth:`~TypeEngine.load` and :meth:`~TypeEngine.dump` require a reference to the typedef used to convert values. A custom Engine could use the :class:`~TypeDefinition` attributes ``python_type`` and ``backing_type`` to find the correct typedef from the set of available typedefs and automatically convert to the necessary format. """ def __init__(self, namespace="global", *args, **kwargs): self.namespace = namespace self.unbound_types = set() self.bound_types = {} @classmethod def unique(cls): """Return a unique type engine (using uuid4)""" namespace = str(uuid.uuid4()) return TypeEngine(namespace) def register(self, typedef): """ Add the typedef to this engine if it is compatible. After registering a :class:`~TypeDefinition`, it will not be bound until :meth:`~TypeEngine.bind` is next called. Nothing will happen when register is called with a typedef that is pending binding or already bound. Otherwise, the engine will ensure it is compatible with the type using :meth:`~TypeEngine.is_compatible` before adding it to the set of unbound types. Parameters ---------- typedef : :class:`~TypeDefinition` The typedef to register with this engine Raises ------ exc : :class:`ValueError` If :meth:`~TypeEngine.is_compatible` is falsey """ if typedef in self.bound_types: return if not self.is_compatible(typedef): raise ValueError("Incompatible type {} for engine {}".format( typedef, self)) if typedef not in self.unbound_types: self.unbound_types.add(typedef) typedef._register(self) def bind(self, **config): """ Bind all unbound types to the engine. Bind each unbound typedef to the engine, passing in the engine and :attr:`config`. The resulting ``load`` and ``dump`` functions can be found under ``self.bound_types[typedef]["load"]`` and ``self.bound_types[typedef]["dump"], respectively. Parameters ---------- config : dict, optional Engine-binding configuration to pass to each typedef that will be bound. Examples include floating-point precision values, maximum lengths for strings, or any other translation constraints/settings that a typedef needs to construct a load/dump function pair. """ while self.unbound_types: typedef = self.unbound_types.pop() try: load, dump = typedef.bind(self, **config) self.bound_types[typedef] = { "load": load, "dump": dump } except Exception: self.unbound_types.add(typedef) raise def load(self, typedef, value, **kwargs): """ Return the result of the bound load method for a typedef Looks up the load function that was bound to the engine for a typedef, and return the result of passing the given `value` and any `context` to that function. Parameters ---------- typedef : :class:`~TypeDefinition` The typedef whose bound load method should be used value : object The value to be passed into the bound load method **kwargs : kwargs Context for the value being loaded Returns ------- loaded_value : object The return value of the load function for the input value Raises ------ exc : :class:`KeyError` If the input typedef is not bound to this engine Example ------- .. code-block:: python class Account(TypeDefinition): prefix = "::account" def load(self, value, **context): return value + Account.prefix def dump(self, value, **context): return value[:-len(Account.prefix)] typedef = Account() engine = TypeEngine("accounts") engine.register(typedef) engine.bind() assert engine.dump(typedef, "Jill::account") == "Jill" """ try: bound_type = self.bound_types[typedef] except KeyError: raise DeclareException( "Can't load unknown type {}".format(typedef)) else: # Don't need to try/catch since load/dump are bound together return bound_type["load"](value, **kwargs) def dump(self, typedef, value, **kwargs): """ Return the result of the bound dump method for a typedef Looks up the dump function that was bound to the engine for a typedef, and return the result of passing the given `value` and any `context` to that function. Parameters ---------- typedef : :class:`~TypeDefinition` The typedef whose bound dump method should be used value : object The value to be passed into the bound dump method **kwargs : kwargs Context for the value being dumped Returns ------- dumped_value : object The return value of the dump function for the input value Raises ------ exc : :class:`KeyError` If the input typedef is not bound to this engine Example ------- .. code-block:: python class Account(TypeDefinition): prefix = "::account" def load(self, value, context): return value + Account.prefix def dump(self, value, context): return value[:-len(Account.prefix)] typedef = Account() engine = TypeEngine("accounts") engine.register(typedef) engine.bind() assert engine.load(typedef, "Jill") == "Jill::account" """ try: bound_type = self.bound_types[typedef] except KeyError: raise DeclareException( "Can't dump unknown type {}".format(typedef)) else: # Don't need to try/catch since load/dump are bound together return bound_type["dump"](value, **kwargs) def is_compatible(self, typedef): # pragma: no cover """ Returns ``true`` if the typedef is compatible with this engine. This function should return ``False`` otherwise. The default implementation will always return ``True``. """ return True def __contains__(self, typedef): return typedef in self.bound_types _fixed_engines["global"] = TypeEngine("global") class TypeDefinition: """ Translates between python types and backend/storage/transport types A single TypeDefinition can be used for multiple TypeEngines, by implementing :meth:`~TypeDefinition.bind` and returning different (load, dump) function tuples for each engine. For TypeDefinitions that are loaded/dumped the same for every engine, just implement :meth:`~TypeDefinition._load` and :meth:`~TypeDefinition._dump`. """ python_type = None backing_type = None def bind(self, engine, **config): """ Return a pair of (load, dump) functions for a specific engine. Some Types will load and dump values depending on certain config, or for different :class:`~TypeEngine`. By default, this function will return the functions :meth:`~TypeDefinition.load` and :meth:`~TypeDefinition._dump`. The default :meth:`~TypeDefintion._load` and :meth:`~TypeDefintion._dump` functions simply return the input value. Parameters ---------- engine : :class:`~TypeEngine` The engine that will save these load, dump functions config : dictionary Optional configuration for creating the functions. Returns ------- (load, dump) : (func, func) tuple Each function takes a value and context, and returns a single value """ return self._load, self._dump def _register(self, engine): """Called when the type is registered with an engine.""" pass def _load(self, value, **kwargs): """ Engine-agnostic load function. Implement this method for any TypeDefinition whose load function does not depend on the TypeEngine being used to load it. NOTE: This will not be available at runtime - TypeDefinitionMetaclass hides the reference at runtime to reduce the chance of incorrectly using an engine-agnostic load method when the TypeDefinition prefers an engine-specific load method. By default, returns :attr:`value` unchanged. """ return value def _dump(self, value, **kwargs): """ Engine-agnostic dump function. Implement this method for any TypeDefinition whose dump function does not depend on the TypeEngine being used to dump it. NOTE: This will not be available at runtime - TypeDefinitionMetaclass hides the reference at runtime to reduce the chance of incorrectly using an engine-agnostic dump method when the TypeDefinition prefers an engine-specific dump method. By default, returns :attr:`value` unchanged. """ return value def subclassof(obj, classinfo): """Wrap issubclass to only return True/False""" try: return issubclass(obj, classinfo) except TypeError: return False def instanceof(obj, classinfo): """Wrap isinstance to only return True/False""" try: return isinstance(obj, classinfo) except TypeError: # pragma: no cover # No coverage since we never call this without a class, # type, or tuple of classes, types, or such typles. return False class Field: def __init__(self, *, typedef=None, **kwargs): self._model_name = None if typedef is None: self.typedef = typedef else: if subclassof(typedef, TypeDefinition): typedef = typedef() if instanceof(typedef, TypeDefinition): self.typedef = typedef else: raise TypeError(("Expected {} to be None, instance of " "TypeDefinition, or subclass of" "TypeDefinition".format(typedef))) super().__init__(**kwargs) @property def model_name(self): """Name of the model's attr that references self""" return self._model_name @model_name.setter def model_name(self, value): if self._model_name is not None: raise AttributeError("{} model_name already set to '{}'".format( self.__class__.__name__, self._model_name)) self._model_name = value def set(self, obj, value): if self._model_name is None: raise AttributeError("Can't set field without binding to model") obj.__dict__[self._model_name] = value def get(self, obj): if self._model_name is None: raise AttributeError("Can't get field without binding to model") try: return obj.__dict__[self._model_name] except KeyError: raise AttributeError("'{}' has no attribute '{}'".format( obj.__class__, self._model_name)) def delete(self, obj): if self._model_name is None: raise AttributeError("Can't delete field without binding to model") try: del obj.__dict__[self._model_name] except KeyError: raise AttributeError("'{}' has no attribute '{}'".format( obj.__class__, self._model_name)) # Descriptor Protocol # To override, use set, get, delete above # https://docs.python.org/3.4/howto/descriptor.html def __set__(self, obj, value): self.set(obj, value) def __get__(self, obj, type=None): if obj is None: return self return self.get(obj) def __delete__(self, obj): self.delete(obj) def index(objects, attr): """ Generate a mapping of a list of objects indexed by the given attr. Parameters ---------- objects : :class:`list`, iterable attr : string The attribute to index the list of objects by Returns ------- dictionary : dict keys are the value of each object's attr, and values are from objects Example ------- class Person(object): def __init__(self, name, email, age): self.name = name self.email = email self.age = age people = [ Person('one', '[email protected]', 1), Person('two', '[email protected]', 2), Person('three', '[email protected]', 3) ] by_email = index(people, 'email') by_name = index(people, 'name') assert by_name['one'] is people[0] assert by_email['[email protected]'] is people[1] """ with warnings.catch_warnings(): warnings.simplefilter("ignore") return {getattr(obj, attr): obj for obj in objects} class ModelMetaclass(type, TypeDefinition): """ Track the order that ``Field`` attributes are declared, and insert a Meta object (class) in the class """ @classmethod def __prepare__(mcs, name, bases): """Returns an OrderedDict so attribute order is preserved""" return collections.OrderedDict() def __new__(mcs, name, bases, attrs): """Add a container class `Meta` to the class""" Meta = attrs.get('Meta', missing) if Meta is missing: class Meta: pass attrs['Meta'] = Meta if not isinstance(Meta, type): raise TypeError("Expected `Meta` to be a class object") cls = super().__new__(mcs, name, bases, attrs) # Load and index fields by name # ---------------------------------------------------------- fields = [] for name, attr in attrs.items(): if isinstance(attr, Field): fields.append(attr) # This will raise AttributeError if the field's # name is already set with warnings.catch_warnings(): warnings.simplefilter("ignore") attr.model_name = name Meta.fields_by_model_name = index(fields, 'model_name') Meta.fields = fields return cls
py
1a566cb5a64376cf6fcba9203f648186d44984c3
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2011 OpenStack LLC. # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """RequestContext: context for requests that persist through all of nova.""" import copy import uuid from nova.openstack.common import local from nova.openstack.common import log as logging from nova.openstack.common import timeutils from nova import policy LOG = logging.getLogger(__name__) def generate_request_id(): return 'req-' + str(uuid.uuid4()) class RequestContext(object): """Security context and request information. Represents the user taking a given action within the system. """ def __init__(self, user_id, project_id, is_admin=None, read_deleted="no", roles=None, remote_address=None, timestamp=None, request_id=None, auth_token=None, overwrite=True, quota_class=None, user_name=None, project_name=None, service_catalog=None, instance_lock_checked=False, **kwargs): """ :param read_deleted: 'no' indicates deleted records are hidden, 'yes' indicates deleted records are visible, 'only' indicates that *only* deleted records are visible. :param overwrite: Set to False to ensure that the greenthread local copy of the index is not overwritten. :param kwargs: Extra arguments that might be present, but we ignore because they possibly came in from older rpc messages. """ if kwargs: LOG.warn(_('Arguments dropped when creating context: %s') % str(kwargs)) self.user_id = user_id self.project_id = project_id self.roles = roles or [] self.is_admin = is_admin if self.is_admin is None: self.is_admin = policy.check_is_admin(self.roles) self.read_deleted = read_deleted self.remote_address = remote_address if not timestamp: timestamp = timeutils.utcnow() if isinstance(timestamp, basestring): timestamp = timeutils.parse_strtime(timestamp) self.timestamp = timestamp if not request_id: request_id = generate_request_id() self.request_id = request_id self.auth_token = auth_token self.service_catalog = service_catalog self.instance_lock_checked = instance_lock_checked # NOTE(markmc): this attribute is currently only used by the # rs_limits turnstile pre-processor. # See https://lists.launchpad.net/openstack/msg12200.html self.quota_class = quota_class self.user_name = user_name self.project_name = project_name if overwrite or not hasattr(local.store, 'context'): self.update_store() def _get_read_deleted(self): return self._read_deleted def _set_read_deleted(self, read_deleted): if read_deleted not in ('no', 'yes', 'only'): raise ValueError(_("read_deleted can only be one of 'no', " "'yes' or 'only', not %r") % read_deleted) self._read_deleted = read_deleted def _del_read_deleted(self): del self._read_deleted read_deleted = property(_get_read_deleted, _set_read_deleted, _del_read_deleted) def update_store(self): local.store.context = self def to_dict(self): return {'user_id': self.user_id, 'project_id': self.project_id, 'is_admin': self.is_admin, 'read_deleted': self.read_deleted, 'roles': self.roles, 'remote_address': self.remote_address, 'timestamp': timeutils.strtime(self.timestamp), 'request_id': self.request_id, 'auth_token': self.auth_token, 'quota_class': self.quota_class, 'user_name': self.user_name, 'service_catalog': self.service_catalog, 'project_name': self.project_name, 'instance_lock_checked': self.instance_lock_checked, 'tenant': self.tenant, 'user': self.user} @classmethod def from_dict(cls, values): return cls(**values) def elevated(self, read_deleted=None, overwrite=False): """Return a version of this context with admin flag set.""" context = copy.copy(self) context.is_admin = True if 'admin' not in context.roles: context.roles.append('admin') if read_deleted is not None: context.read_deleted = read_deleted return context # NOTE(sirp): the openstack/common version of RequestContext uses # tenant/user whereas the Nova version uses project_id/user_id. We need # this shim in order to use context-aware code from openstack/common, like # logging, until we make the switch to using openstack/common's version of # RequestContext. @property def tenant(self): return self.project_id @property def user(self): return self.user_id def get_admin_context(read_deleted="no"): return RequestContext(user_id=None, project_id=None, is_admin=True, read_deleted=read_deleted, overwrite=False)
py
1a566e725fe8aa198a20c06bbea7ecab796c779a
#import dependencies from bs4 import BeautifulSoup as bs from splinter import Browser import os import pandas as pd import time import requests import urllib from urllib.request import urlopen, urlretrieve from urllib.parse import urljoin from urllib.parse import urlsplit from splinter import Browser from selenium import webdriver from selenium.webdriver.firefox.firefox_binary import FirefoxBinary import time from bs4 import BeautifulSoup as yourVariable #preparation steps: import pymongo #install flask from flask import Flask, render_template # setup mongo connection (MongoDB Compass to python) conn = "mongodb://localhost:27017" # the default port for MongoDB client = pymongo.MongoClient(conn) #to connect to Mongo database via db = client.name_of_database (it'll be created if absent) # connect to mongo db and collection db = client.hemispheresDB collection = db.collection ### NASA Mars News ##Connecting to Mars Space News Site site url_space = "https://spacenews.com/segment/news" # Retrieve page with the requests module response = requests.get(url_space) def scrape(): from webdriver_manager.chrome import ChromeDriverManager executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=True) # Create BeautifulSoup object; parse with 'lxml' from bs4 import BeautifulSoup as bs soup = bs(response.text, 'lxml') mars_dict = {} #find the latest articles, search for a title results = soup.find_all('div', class_='article-item__top') for result in results: title = result.find('a', class_='title').text # Extract title text, save it into variable news_title = soup.title.text mars_dict['a_title'] = news_title paragraphs = soup.find_all("div", class_="article-meta") for paragraph in paragraphs: news_paragraph = paragraph.find('p', class_='post-excerpt').text mars_dict['b_paragraph'] = news_paragraph from webdriver_manager.chrome import ChromeDriverManager executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=True) #Visit the url for the Featured Space Image site (https://spaceimages-mars.com), assign the url string to a variable space_image = "https://spaceimages-mars.com" browser.visit(space_image) time.sleep(2) from urllib.parse import urlsplit base_url = "{0.scheme}://{0.netloc}/".format(urlsplit(space_image)) #get image url using BeautifulSoup html_image = browser.html soup = bs(html_image, "html.parser") # Create BeautifulSoup object; parse with 'parser' from bs4 import BeautifulSoup as bs #get image url using BeautifulSoup html_image = browser.html soup = bs(html_image, 'html.parser') soup = bs(urlopen(space_image)) for img in soup.find_all('img'): featured_image_url = urljoin(space_image, img['src']) file_name = img['src'].split('/')[-1] urlretrieve(featured_image_url, file_name) mars_dict['c_featured_image'] = featured_image_url mars_dict['d_featured_image_name'] = file_name ### Mars Facts url_facts = 'https://galaxyfacts-mars.com/' time.sleep(2) table = pd.read_html(url_facts) facts_table = table[0] facts_table.columns = ["Description", "Mars", "Earth"] facts_table.set_index("Description", inplace=True) mars_dict["e_Mars_data_table"] = facts_table.to_html() ### Mars Hemispheres mars_hemispheres_list = [] #Visit the url for Mars Hemispheres site (https://marshemispheres.com/), assign the url string to a variable hemisphere_images = "https://marshemispheres.com/" browser.visit(hemisphere_images) from urllib.parse import urlsplit base_url = "{0.scheme}://{0.netloc}/".format(urlsplit(space_image)) #get image url using BeautifulSoup html_image = browser.html soup = bs(html_image, "html.parser") # Create BeautifulSoup object; parse with 'parser' from bs4 import BeautifulSoup as bs #get image url using BeautifulSoup html_image = browser.html soup = bs(html_image, 'html.parser') #Visit the url for Mars Hemispheres site (https://marshemispheres.com/), assign the url string to a variable hemisphere_images = "https://marshemispheres.com/" browser.visit(hemisphere_images) mars_hemispheres_list = [] soup = bs(urlopen(hemisphere_images)) for i in range (4): time.sleep(5) #to create a loop # locate tag h3 (corresponding hemispheres) images = browser.find_by_tag("h3") # click on each image to get url images[i].click() # separate url html = browser.html soup = bs(html, "html.parser") # search for HD image url_hemisphere = soup.find("img", class_="wide-image")["src"] # looking for image title img_title = soup.find("h2",class_="title").text # get image url img_url = "https://marshemispheres.com/"+ url_hemisphere # store the results into dictionary dictionary={"title":img_title,"img_url":img_url} # append the dictionary into mars hemisheres list mars_hemispheres_list.append(dictionary) browser.back() mars_dict['f_Mars_hemispheres_list'] = mars_hemispheres_list return mars_dict
py
1a566fba0617e69d9952b085fc0ac95e828b44c5
import numpy as np def rnd_crc(radius=1, n=1): # Uniformly choose angles in [0,2pi) for each point theta = np.random.uniform(0, 2 * np.pi, n) # Convert angles to (x,y) coordinates, add center, and convert to list return np.vstack((np.cos(theta), np.sin(theta))).T * radius
py
1a5671ec90962f92f91ca8f011ef9d1fb17e4071
# -*- coding: utf-8 -*- """ flask-rstblog ~~~~~~~~~~~~~ :copyright: (c) 2011 by Christoph Heer. :license: BSD, see LICENSE for more details. """ import os from datetime import date from jinja2 import FileSystemLoader from flask import Flask, render_template from flaskrst.modules import manager from flaskrst.templating import inject_navigation class Flask(Flask): def create_global_jinja_loader(self): template_path = os.path.join(self.config.get('SOURCE', ''), "_templates") builtin_templates = os.path.join(self.root_path, self.template_folder) return FileSystemLoader([template_path, builtin_templates]) def create_app(source=None, config=None): app = Flask("flaskrst") # Set default config values app.config.setdefault('MODULES', {}) app.config.setdefault('STYLESHEETS', []) app.config.setdefault('FEEDS', []) # Load config if config: app.config.from_pyfile(config) config_loaded = True # maybe there is a file declared by env elif 'FLASK_RST_CONFIG' in os.environ: app.config.from_envvar('FLASK_RST_CONFIG') config_loaded = True # no config loaded try again later after source setting else: config_loaded = False # Set source path if source: app.config['SOURCE'] = source elif 'FLASK_RST_SOURCE' in os.environ: app.config['SOURCE'] = os.environ['FLASK_RST_SOURCE'] else: # Use current working directory as source app.config['SOURCE'] = os.getcwd() # If no config already loaded than is a config maybe in source path if not config_loaded: config_path = os.path.join(app.config['SOURCE'], 'config.py') app.config.from_pyfile(config_path, silent=True) # Set path of static folder if 'STATIC_FOLDER' in app.config: app.static_folder = app.config['STATIC_FOLDER'] else: # Is a static folder called _static in source path? source_static_folder = os.path.join(app.config['SOURCE'], "_static") if os.path.isdir(source_static_folder): app.static_folder = source_static_folder # Load flask-rst modules manager.init_app(app) manager.load_from_config() # Add some jinja globals and context processors app.jinja_env.globals['date'] = date app.context_processor(inject_navigation) @app.errorhandler(404) def page_not_found(error): return render_template('404.html'), 404 return app
py
1a5671f685db4ebdb3686e91b46b0cdb6d947104
from .module import Module from .linear import Linear from .loss import BCEWithLogitsLoss from .container import Sequential from .rnn import RNN
py
1a5672a4637d9ae00c732fadf3f8b349ad8aaf2e
from copy import deepcopy from typing import Optional from warnings import warn import numpy from catsim import cat from catsim.simulation import Estimator, Selector from sklearn.linear_model import LogisticRegression def _fit_log_reg( items, administered_items, response_vector, use_discriminations=True, # use_guess_slip=True, log_reg=None, ): if log_reg is None: log_reg = LogisticRegression(C=float("inf")) X = items[administered_items][:, 1, numpy.newaxis] sample_weight = None if use_discriminations: sample_weight = items[administered_items, 0] # if use_guess_slip: # response_vector = [ # slip if resp else guess # for resp, (guess, slip) in zip( # response_vector, items[administered_items, 2:4] # ) # ] log_reg.fit(X, response_vector, sample_weight=sample_weight) return log_reg """ def _set_log_reg(mean, scale): coef = 1 / scale _log_reg.intercept_ = -mean * coef _log_reg.coef_ = coef """ def _log_reg_scale(log_reg): return -1 / log_reg.coef_[0, 0] class LogisticEstimator(Estimator): """Estimator that uses a hill-climbing algorithm to maximize the likelihood function :param precision: number of decimal points of precision :param verbose: verbosity level of the maximization method """ def __init__( self, use_discriminations=True # , return_scale=False, # , use_guess_slip=True ): super().__init__() self._use_discriminations = use_discriminations # self._use_guess_slip = use_guess_slip # self._return_scale = return_scale def estimate( self, index: int = None, items: numpy.ndarray = None, administered_items: list = None, response_vector: list = None, est_theta: float = None, **kwargs, ) -> float: """Returns the theta value that minimizes the negative log-likelihood function, given the current state of the test for the given examinee. :param index: index of the current examinee in the simulator :param items: a matrix containing item parameters in the format that `catsim` understands (see: :py:func:`catsim.cat.generate_item_bank`) :param administered_items: a list containing the indexes of items that were already administered :param response_vector: a boolean list containing the examinee's answers to the administered items :param est_theta: a float containing the current estimated proficiency :returns: the current :math:`\\hat\\theta` """ items, administered_items, response_vector, est_theta = self._prepare_args( return_items=True, return_response_vector=True, return_est_theta=True, index=index, items=items, administered_items=administered_items, response_vector=response_vector, est_theta=est_theta, **kwargs, ) assert items is not None assert administered_items is not None assert response_vector is not None assert est_theta is not None if len(set(response_vector)) == 1: return cat.dodd(est_theta, items, response_vector[-1]) log_reg = _fit_log_reg( items, administered_items, response_vector, use_discriminations=self._use_discriminations, # use_guess_slip=self._use_guess_slip, ) # y = mx + c, max entropy when y = 0 => x = -c / m theta = -log_reg.intercept_[0] / log_reg.coef_[0, 0] return theta # return theta, _log_reg_scale(log_reg) def _all_future_scales( log_reg, items, administered_items, response_vector, next_choice ): res = numpy.zeros((items.shape[0],)) for item in items[:, 1].argsort(): log_reg = _fit_log_reg( items, administered_items + [item], response_vector + [next_choice], use_discriminations=True, log_reg=log_reg, ) scale = abs(_log_reg_scale(log_reg)) res[item] = scale return res class MinExpectedScaleSelector(Selector): """ Owens 1977, """ def select( self, index: int = None, items: numpy.ndarray = None, administered_items: list = None, est_theta: float = None, response_vector: list = None, **kwargs, ) -> Optional[int]: """Returns the index of the next item to be administered. :param index: the index of the current examinee in the simulator. :param items: a matrix containing item parameters in the format that `catsim` understands (see: :py:func:`catsim.cat.generate_item_bank`) :param administered_items: a list containing the indexes of items that were already administered :param est_theta: a float containing the current estimated proficiency :returns: index of the next item to be applied or `None` if there are no more items in the item bank. """ items, administered_items, response_vector, est_theta = self._prepare_args( return_items=True, return_response_vector=True, return_est_theta=True, index=index, items=items, administered_items=administered_items, response_vector=response_vector, est_theta=est_theta, **kwargs, ) assert items is not None assert administered_items is not None assert response_vector is not None assert est_theta is not None def default(): # Fall back to max info ordered_items = self._sort_by_info(items, est_theta) valid_indexes = self._get_non_administered( ordered_items, administered_items ) return valid_indexes[0] if len(administered_items) > 0 and len(set(response_vector)) >= 2: log_reg = LogisticRegression(C=float("inf"), warm_start=True) log_reg_before = _fit_log_reg( items, administered_items, response_vector, use_discriminations=True, log_reg=log_reg, ) if _log_reg_scale(log_reg_before) <= 0: return default() log_reg.tol = 0.05 neg_prob, pos_prob = log_reg_before.predict_proba( items[:, 1, numpy.newaxis] ).T else: return default() # TODO: Can instead use Dodd's like logic to find expected scale even when there is only one class # min_theta = min(items[:, 1]) # max_theta = max(items[:, 1]) # _set_log_reg( # est_theta, min(max_theta - est_theta, est_theta - min_theta) # ) working_log_reg = deepcopy(log_reg) false_scales = _all_future_scales( working_log_reg, items, administered_items, response_vector, False ) working_log_reg = deepcopy(log_reg) true_scales = _all_future_scales( working_log_reg, items, administered_items, response_vector, True ) organized_items = [ x for x in numpy.array( [ pp * ts + np * fs for np, pp, fs, ts in zip( neg_prob, pos_prob, false_scales, true_scales ) ] ).argsort() if x not in administered_items ] if len(organized_items) == 0: warn("There are no more items to apply.") return None return organized_items[0]
py
1a567410b99303f292ad2af6a35618cf31f8c37c
# weather.py ''' # Configuration The weather module reads from the weather.yaml file stored in bobbit's configuration directory and expects the following values: default: This is the default zip code ''' import logging import re import aiohttp.client_exceptions # Metadata NAME = 'weather' ENABLE = True USAGE = '''Usage: ![weather|forecast] <zipcode> Given a zipcode, this returns the current weather or the daily forecast for that location. Examples: > !weather # Default location > !forecast 46556 # Specific zip code ''' WEATHER_RX = r'^!weather\s*(?P<zipcode>\d{5})*$' FORECAST_RX = r'^!forecast\s*(?P<zipcode>\d{5})*$' # Constants ZIPCODE = { '#nd-cse' : 46556, # Notre Dame, IN '#ndlug' : 46556, # Notre Dame, IN '#lug' : 46556, # Notre Dame, IN '#uwec-cs': 54702, # Eau Claire, WI } DEFAULT_ZIPCODE = None WEATHER_GOV_URL = 'https://forecast.weather.gov' # Functions async def retrieve_weather_data(bot, zipcode): url = WEATHER_GOV_URL + '/zipcity.php' params = { 'inputstring': zipcode } async with bot.http_client.get(url, params=params) as response: try: text = await response.text() xml_url = re.findall(r'<a href="(MapClick[^"]+dwml)"', text)[0] json_url = WEATHER_GOV_URL + '/' + xml_url.replace('dwml', 'json') logging.debug('JSON URL: %s', json_url) except IndexError as e: logging.warning('Unable to get weather data: %s', e) return {} async with bot.http_client.get(json_url) as response: try: return await response.json() except aiohttp.client_exceptions.ContentTypeError: logging.warning('Unable to get weather data: %s', response.text) return {} def get_location(data): location = data['location']['areaDescription'] for prefix in re.findall(r'(\d+ Miles [ENSW]+)', location): location = location.replace(prefix, '') return location.strip()[:-3] + ", " + location.strip()[-2:] # Commands async def weather(bot, message, zipcode=None): zipcode = zipcode or ZIPCODE.get(message.channel, DEFAULT_ZIPCODE) data = await retrieve_weather_data(bot, zipcode) if not data: return message.with_body('No results') location = get_location(data) current = data['currentobservation'] return message.with_body(bot.client.format_text( '{bold}Weather{bold} for {bold}{location}{bold}: {temp}°F, {weather}', location = location, temp = current['Temp'].strip(), weather = current['Weather'].strip(), )) async def forecast(bot, message, zipcode=None): zipcode = zipcode or ZIPCODE.get(message.channel, DEFAULT_ZIPCODE) data = await retrieve_weather_data(bot, zipcode) if not data: return message.with_body('No results') location = get_location(data) text = data['data']['text'] return message.with_body(bot.client.format_text( '{bold}Forecast{bold} for {bold}{location}{bold}: {bold}Today{bold}: {today} {bold}Tonight{bold}: {tonight}', location = location, today = text[0].strip(), tonight = text[1].strip(), )) # Register def register(bot): global DEFAULT_ZIPCODE config = bot.config.load_module_config('weather') DEFAULT_ZIPCODE = config.get('default', ZIPCODE['#lug']) return ( ('command', WEATHER_RX , weather), ('command', FORECAST_RX, forecast), ) # vim: set sts=4 sw=4 ts=8 expandtab ft=python:
py
1a56756eae5d39ae0d4a51b9237ec7192fad309b
#!/usr/bin/env python3 # # Copyright (c) 2014, 2016, 2018, 2020 LexisNexis Risk Data Management Inc. # # This file is part of the RadSSH software package. # # RadSSH is free software, released under the Revised BSD License. # You are permitted to use, modify, and redsitribute this software # according to the Revised BSD License, a copy of which should be # included with the distribution as file LICENSE.txt # '''RadSSH setuptools interface''' import sys import os import shutil from setuptools import setup from os import listdir from os.path import isfile, join import radssh # Gather up all supplemental plugins from various directories # and copy them into the core plugins directory prior to install if not os.path.exists('radssh/plugins'): os.mkdir('radssh/plugins') for p, d, f in os.walk('radssh'): for ignore in [subdir for subdir in d if not subdir.endswith('_plugins')]: d.remove(ignore) if p.endswith('_plugins'): print('Merging plugins from %s' % p) for plugin in f: if not plugin.endswith('.pyc'): shutil.copy2(os.path.join(p, plugin), 'radssh/plugins') # Get list of non .py files in plugins directory to include as pkg_data olddir = os.getcwd() os.chdir('radssh') pkg_data_files = [join('plugins', f) for f in listdir('plugins') if not f.endswith('.py') and isfile(join('plugins', f))] os.chdir(olddir) # Conditional requirements (colorama for Windows platform only) required_packages = ['paramiko>=2.7.0', 'netaddr'] if sys.platform.startswith('win'): required_packages.append('colorama>=0.3.9') required_packages.append('pyreadline') setup(name='radssh', version=radssh.version, description='RadSSH Module', author=radssh.__author__, author_email=radssh.__author_email__, license='BSD', keywords='ssh parallel paramiko', url='https://github.com/radssh/radssh', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: System Administrators', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: POSIX', 'Operating System :: Microsoft :: Windows', 'Operating System :: MacOS :: MacOS X', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Topic :: System :: Shells', 'Topic :: Utilities'], packages=['radssh', 'radssh.plugins'], package_data={'': pkg_data_files}, install_requires=required_packages, long_description=''' RadSSH Package ============== RadSSH is a Python package that is built with Paramiko. Documentation for the project is hosted on ReadTheDocs, at http://radssh.readthedocs.org Frequently Asked Questions: https://github.com/radssh/radssh/blob/master/FAQ.md RadSSH is installable via **pip**, using "**pip install radssh**". ---- The RadSSH shell behaves similar to a normal ssh command line client, but instead of connecting to one host (at a time), you can connect to dozens or even hundreds at a time, and issue interactive command lines to all hosts at once. It requires very little learning curve to get started, and leverages on existing command line syntax that you already know. :: [paul@localhost ~]$ python -m radssh.shell huey dewey louie Please enter a password for (paul) : Connecting to 3 hosts... ... RadSSH $ hostname [huey] huey.example.org [dewey] dewey.example.org [louie] louie.example.org Average completion time for 3 hosts: 0.058988s RadSSH $ uptime [huey] 15:21:28 up 6 days, 22:49, 17 users, load average: 0.30, 0.43, 0.39 [louie] 15:43 up 652 days, 4:59, 0 users, load averages: 0.44 0.20 0.17 [dewey] 15:21:28 up 109 days, 23:28, 3 users, load average: 0.27, 0.09, 0.07 Average completion time for 3 hosts: 0.044532s RadSSH $ df -h / [huey] Filesystem Size Used Avail Use% Mounted on [huey] /dev/mapper/vg-Scientific [huey] 24G 22G 694M 97% / [louie] Filesystem Size Used Avail Capacity Mounted on [louie] /dev/disk0s3 234G 134G 99G 57% / [dewey] Filesystem Size Used Avail Use% Mounted on [dewey] /dev/mapper/vg_pkapp745-LogVol00 20G 17G 2.1G 89% / Average completion time for 3 hosts: 0.036792s RadSSH $ *exit Shell exiting RadSSH includes a loadable plugin facility to extend the functionality of the shell with basic Python scripting, as well as a high level API that can be used to build stand alone applications for dedicated SSH control processing in a parallel environment. Interested in more? * Download at https://pypi.python.org/pypi/radssh * Read the Docs at http://radssh.readthedocs.org/en/latest/index.html * Participate at https://github.com/radssh/radssh ''', )
py
1a5676e066e48adf1b8084a7cfb285a72c4dfef5
# --*-- coding:utf-8 --*-- """ Extract ips for scanning and checking in databases """ import pika from settings import * class BaseMqProducer(object): def __init__(self): credentials = pika.PlainCredentials(MQ_USR, MQ_PWD) conn_params = pika.ConnectionParameters(MQ_HOST, MQ_PORT, credentials=credentials) self.conn_broker = pika.BlockingConnection(conn_params) self.channel = self.conn_broker.channel() def close(self): self.conn_broker.close() class ScanProducer(BaseMqProducer): def __init__(self): super(ScanProducer, self).__init__() pass class CheckMqProducer(BaseMqProducer): def __init__(self): super(CheckMqProducer, self).__init__() pass # # 通过此信道交互 # channel.exchange_declare(exchange="hello-exchange", # exchange_type="direct", # passive=False, # durable=True, # auto_delete=False # ) # # for item in range(10000): # msg_props = pika.BasicProperties() # msg_props.content_type = "text/plain" # # channel.basic_publish(body=str(item), # exchange="hello-exchange", # properties=msg_props, # routing_key="hola" # ) # # # conn_broker.close()
py
1a5678ff882ca91f4c4656679b8722fb7dbdf330
################################################################################ # Module: __init__.py # Description: OSMnx - Retrieve, construct, analyze, and visualize street # networks from OpenStreetMap # License: MIT, see full license in LICENSE.txt # Web: https://github.com/gboeing/osmnx ################################################################################ from .buildings import * from .core import * from .elevation import * from .footprints import * from .plot import * from .pois import * from .projection import * from .save_load import * from .simplify import * from .stats import * from .utils import * __version__ = '0.9'
py
1a5679414067eddafd708399d092a895d5c01928
''' The actual saltkey functional code ''' # Import python modules import os import shutil import sys import logging # Import salt modules import salt.crypt import salt.utils import salt.utils.event log = logging.getLogger(__name__) class Key(object): ''' The object that encapsulates saltkey actions ''' def __init__(self, opts): self.opts = opts self.event = salt.utils.event.SaltEvent(opts['sock_dir'], 'master') self.colors = salt.utils.get_colors( not bool(self.opts.get('no_color', False)) ) def _keys(self, key_type, full_path=False): ''' Safely return the names of the unaccepted keys, pass True to return the full key paths. Returns a set. ''' ret = set() subdir = '' if key_type == 'pre': subdir = 'minions_pre' elif key_type == 'rej': subdir = 'minions_rejected' elif key_type == 'acc': subdir = 'minions' dir_ = os.path.join(self.opts['pki_dir'], subdir) if not os.path.isdir(dir_): err = ('The {0} directory is not present, ensure that ' 'the master server has been started').format(subdir) self._log(err, level='error') sys.exit(42) keys = os.listdir(dir_) if full_path: for key in keys: ret.add(os.path.join(dir_, key)) else: ret = set(keys) return ret def _log(self, message, level=''): if hasattr(log, level): log_msg = getattr(log, level) log_msg(message) if not self.opts['quiet']: print(message) def _list_pre(self, header=True, printer=None): ''' List the unaccepted keys ''' if header == True: self._log('{0}Unaccepted Keys:{1}'.format( self.colors['LIGHT_RED'], self.colors['ENDC'] )) keys = self._keys('pre') if printer is None: for key in sorted(keys): output = '{0}{1}{2}'.format( self.colors['RED'], key, self.colors['ENDC'] ) self._log(output) else: printer(list(keys)) def _list_accepted(self, header=True, printer=None): ''' List the accepted public keys ''' if header == True: self._log('{0}Accepted Keys:{1}'.format( self.colors['LIGHT_GREEN'], self.colors['ENDC'] )) keys = self._keys('acc') if printer is None: for key in sorted(keys): self._log('{0}{1}{2}'.format( self.colors['GREEN'], key, self.colors['ENDC'] )) else: printer(list(keys)) def _list_rejected(self, header=True, printer=None): ''' List the unaccepted keys ''' if header == True: self._log('{0}Rejected:{1}'.format( self.colors['LIGHT_BLUE'], self.colors['ENDC'] )) keys = self._keys('rej') if printer is None: for key in sorted(keys): self._log('{0}{1}{2}'.format( self.colors['BLUE'], key, self.colors['ENDC'] )) else: printer(list(keys)) def _list(self, name): ''' List keys ''' printout = self._get_outputter() if 'json_out' in self.opts and self.opts['json_out']: printout.indent = 2 if name in ('pre', 'un', 'unaccept', 'unaccepted'): self._list_pre(header=False, printer=printout) elif name in ('acc', 'accept', 'accepted'): self._list_accepted(header=False, printer=printout) elif name in ('rej', 'reject', 'rejected'): self._list_rejected(header=False, printer=printout) elif name in ('all',): if printout is not None: keys = { 'rejected': list(self._keys('rej')), 'accepted': list(self._keys('acc')), 'unaccepted': list(self._keys('pre')), } printout(keys) else: self._list_pre(printer=printout) self._list_accepted(printer=printout) self._list_rejected(printer=printout) else: err = ('Unrecognized key type "{0}". Run with -h for options.' ).format(name) self._log(err, level='error') def _get_outputter(self): get_outputter = salt.output.get_outputter if self.opts['raw_out']: printout = get_outputter('raw') elif self.opts['json_out']: printout = get_outputter('json') elif self.opts['yaml_out']: printout = get_outputter('yaml') else: printout = None # use default color output return printout def _print_key(self, name): ''' Print out the specified public key ''' keys = self._keys('pre', True).union(self._keys('acc', True)) for key in sorted(keys): if key.endswith(name): with open(key, 'r') as kfn: self._log(kfn.read()) def _print_all(self): ''' Print out the public keys, all of em' ''' self._log('{0}Unaccepted keys:{1}'.format( self.colors['LIGHT_RED'], self.colors['ENDC'] )) for key in sorted(self._keys('pre', True)): self._log(' {0}{1}{2}'.format( self.colors['RED'], os.path.basename(key), self.colors['ENDC'] )) with open(key, 'r') as kfn: self._log(kfn.read()) self._log('{0}Accepted keys:{1}'.format( self.colors['LIGHT_GREEN'], self.colors['ENDC'] )) for key in sorted(self._keys('acc', True)): self._log(' {0}{1}{2}'.format( self.colors['GREEN'], os.path.basename(key), self.colors['ENDC'] )) with open(key, 'r') as kfn: self._log(kfn.read()) self._log('{0}Rejected keys:{1}'.format( self.colors['LIGHT_BLUE'], self.colors['ENDC'] )) for key in sorted(self._keys('pre', True)): self._log(' {0}{1}{2}'.format( self.colors['BLUE'], os.path.basename(key), self.colors['ENDC'])) with open(key, 'r') as kfn: self._log(kfn.read()) def _accept(self, key): ''' Accept a specified host's public key ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() pre = os.listdir(minions_pre) if key not in pre: err = ('The key named {0} does not exist, please accept an ' 'available key').format(key) #log.error(err) self._log(err, level='error') sys.exit(43) shutil.move(os.path.join(minions_pre, key), os.path.join(minions_accepted, key)) eload = {'result': True, 'act': 'accept', 'id': key} self.event.fire_event(eload, 'key') self._log( 'Key for {0} accepted.'.format(key), level='info' ) def _accept_all(self): ''' Accept all keys in pre ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() for key in os.listdir(minions_pre): self._accept(key) def _delete_key(self, delete=None): ''' Delete a key ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() if delete is None: delete = self.opts['delete'] pre = os.path.join(minions_pre, delete) acc = os.path.join(minions_accepted, delete) rej = os.path.join(minions_rejected, delete) if os.path.exists(pre): os.remove(pre) self._log('Removed pending key {0}'.format(delete), level='info') if os.path.exists(acc): os.remove(acc) self._log('Removed accepted key {0}'.format(delete), level='info') if os.path.exists(rej): os.remove(rej) self._log('Removed rejected key {0}'.format(delete), level='info') def _delete_all(self): ''' Delete all keys ''' for dir in ("acc", "rej", "pre"): for key in self._keys(dir): self._delete_key(key) def _reject(self, key): ''' Reject a specified host's public key ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() pre = os.listdir(minions_pre) if key not in pre: err = ('The host named {0} is unavailable, please accept an ' 'available key').format(key) self._log(err, level='error') sys.exit(43) shutil.move(os.path.join(minions_pre, key), os.path.join(minions_rejected, key)) self._log('{0} key rejected.'.format(key), level='info') def _reject_all(self): ''' Reject all keys in pre ''' (minions_accepted, minions_pre, minions_rejected) = self._check_minions_directories() for key in os.listdir(minions_pre): self._reject(key) def _check_minions_directories(self): minions_accepted = os.path.join(self.opts['pki_dir'], 'minions') minions_pre = os.path.join(self.opts['pki_dir'], 'minions_pre') minions_rejected = os.path.join(self.opts['pki_dir'], 'minions_rejected') for dir_ in [minions_accepted, minions_pre, minions_rejected]: if not os.path.isdir(dir_): err = ('The minions directory {0} is not present, ensure ' 'that the master server has been started'.format(dir_)) self._log(err, level='error') sys.exit(42) return minions_accepted, minions_pre, minions_rejected def run(self): ''' Run the logic for saltkey ''' if self.opts['gen_keys']: salt.crypt.gen_keys( self.opts['gen_keys_dir'], self.opts['gen_keys'], self.opts['keysize']) return if self.opts['list']: self._list(self.opts['list']) elif self.opts['list_all']: self._list('all') elif self.opts['print']: self._print_key(self.opts['print']) elif self.opts['print_all']: self._print_all() elif self.opts['accept']: self._accept(self.opts['accept']) elif self.opts['accept_all']: self._accept_all() elif self.opts['reject']: self._reject(self.opts['reject']) elif self.opts['reject_all']: self._reject_all() elif self.opts['delete']: self._delete_key() elif self.opts['delete_all']: self._delete_all() else: self._list('all')
py
1a567a543a7c3f8a4f361badc8f9bf8fa170e277
# Copyright (c) AIRBUS and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations import random from enum import Enum from typing import Any, Dict, List, Optional, Union import numpy as np from skdecide.discrete_optimization.generic_tools.do_mutation import Mutation from skdecide.discrete_optimization.generic_tools.ea.deap_wrappers import ( generic_mutate_wrapper, ) from skdecide.discrete_optimization.generic_tools.ea.ga import ( DeapCrossover, DeapMutation, DeapSelection, ObjectiveHandling, ) from skdecide.discrete_optimization.generic_tools.result_storage.result_storage import ( ResultStorage, ) class ParametersGa: mutation: Union[Mutation, DeapMutation] = None crossover: DeapCrossover = None selection: DeapSelection = None encoding: str = None objective_handling: ObjectiveHandling = None objectives: Union[str, List[str]] = None objective_weights: List[float] = None pop_size: int = None max_evals: int = None mut_rate: float = None crossover_rate: float = None tournament_size: float = None deap_verbose: bool = False def __init__( self, mutation, crossover, selection, encoding, objective_handling, objectives, objective_weights, pop_size, max_evals, mut_rate, crossover_rate, tournament_size, deap_verbose, ): self.mutation = mutation self.crossover = crossover self.selection = selection self.encoding = encoding self.objective_handling = objective_handling self.objectives = objectives self.objective_weights = objective_weights self.pop_size = pop_size self.max_evals = max_evals self.mut_rate = mut_rate self.crossover_rate = crossover_rate self.tournament_size = tournament_size self.deap_verbose = deap_verbose @staticmethod def default_rcpsp(): return ParametersGa( mutation=DeapMutation.MUT_SHUFFLE_INDEXES, crossover=DeapCrossover.CX_PARTIALY_MATCHED, selection=DeapSelection.SEL_TOURNAMENT, encoding="rcpsp_permutation", objective_handling=ObjectiveHandling.AGGREGATE, objectives=["makespan"], objective_weights=[-1], pop_size=100, max_evals=10000, mut_rate=0.1, crossover_rate=0.9, tournament_size=5, deap_verbose=False, ) class ParametersAltGa: mutations: List[Union[Mutation, DeapMutation]] = None crossovers: List[DeapCrossover] = None selection: DeapSelection = None encodings: List[str] = None objective_handling: ObjectiveHandling = None objectives: Union[str, List[str]] = None objective_weights: List[float] = None pop_size: int = None max_evals: int = None mut_rate: float = None crossover_rate: float = None tournament_size: float = None deap_verbose: bool = False sub_evals: List[int] = None def __init__( self, mutations, crossovers, selection, encodings, objective_handling, objectives, objective_weights, pop_size, max_evals, mut_rate, crossover_rate, tournament_size, deap_verbose, sub_evals, ): self.mutations = mutations self.crossovers = crossovers self.selection = selection self.encodings = encodings self.objective_handling = objective_handling self.objectives = objectives self.objective_weights = objective_weights self.pop_size = pop_size self.max_evals = max_evals self.mut_rate = mut_rate self.crossover_rate = crossover_rate self.tournament_size = tournament_size self.deap_verbose = deap_verbose self.sub_evals = sub_evals @staticmethod def default_mrcpsp(): return ParametersAltGa( mutations=[DeapMutation.MUT_UNIFORM_INT, DeapMutation.MUT_SHUFFLE_INDEXES], crossovers=[DeapCrossover.CX_ONE_POINT, DeapCrossover.CX_PARTIALY_MATCHED], selection=DeapSelection.SEL_TOURNAMENT, encodings=["rcpsp_modes_arrity_fix", "rcpsp_permutation"], objective_handling=ObjectiveHandling.AGGREGATE, objectives=["makespan"], objective_weights=[-1], pop_size=100, max_evals=10000, mut_rate=0.1, crossover_rate=0.9, tournament_size=5, deap_verbose=False, sub_evals=[1000, 1000], ) @staticmethod def default_msrcpsp(): return ParametersAltGa( mutations=[ DeapMutation.MUT_UNIFORM_INT, DeapMutation.MUT_SHUFFLE_INDEXES, DeapMutation.MUT_SHUFFLE_INDEXES, ], crossovers=[ DeapCrossover.CX_ONE_POINT, DeapCrossover.CX_PARTIALY_MATCHED, DeapCrossover.CX_PARTIALY_MATCHED, ], selection=DeapSelection.SEL_TOURNAMENT, # encodings=['modes_arrity_fix', 'priority_list_task', 'priority_worker_per_task_perm'], encodings=[ "modes_arrity_fix_from_0", "priority_list_task", "priority_worker_per_task_perm", ], objective_handling=ObjectiveHandling.AGGREGATE, objectives=["makespan"], objective_weights=[-1], pop_size=100, max_evals=10000, mut_rate=0.1, crossover_rate=0.9, tournament_size=5, deap_verbose=False, sub_evals=[500, 500, 500], )
py
1a567a91a706b60d3b808a3e253b91090c558cf6
#!/usr/bin/python # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. ANSIBLE_METADATA = {'metadata_version': '1.0', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: azure short_description: create or terminate a virtual machine in azure description: - Creates or terminates azure instances. When created optionally waits for it to be 'running'. version_added: "1.7" options: name: description: - name of the virtual machine and associated cloud service. required: true default: null location: description: - the azure location to use (e.g. 'East US') required: true default: null subscription_id: description: - azure subscription id. Overrides the AZURE_SUBSCRIPTION_ID environment variable. required: false default: null management_cert_path: description: - path to an azure management certificate associated with the subscription id. Overrides the AZURE_CERT_PATH environment variable. required: false default: null storage_account: description: - the azure storage account in which to store the data disks. required: true image: description: - system image for creating the virtual machine (e.g., b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu_DAILY_BUILD-precise-12_04_3-LTS-amd64-server-20131205-en-us-30GB) required: true default: null role_size: description: - azure role size for the new virtual machine (e.g., Small, ExtraLarge, A6). You have to pay attention to the fact that instances of type G and DS are not available in all regions (locations). Make sure if you selected the size and type of instance available in your chosen location. required: false default: Small endpoints: description: - a comma-separated list of TCP ports to expose on the virtual machine (e.g., "22,80") required: false default: 22 user: description: - the unix username for the new virtual machine. required: false default: null password: description: - the unix password for the new virtual machine. required: false default: null ssh_cert_path: description: - path to an X509 certificate containing the public ssh key to install in the virtual machine. See http://www.windowsazure.com/en-us/manage/linux/tutorials/intro-to-linux/ for more details. - if this option is specified, password-based ssh authentication will be disabled. required: false default: null virtual_network_name: description: - Name of virtual network. required: false default: null hostname: description: - hostname to write /etc/hostname. Defaults to <name>.cloudapp.net. required: false default: null wait: description: - wait for the instance to be in state 'running' before returning required: false default: "no" choices: [ "yes", "no" ] aliases: [] wait_timeout: description: - how long before wait gives up, in seconds default: 600 aliases: [] wait_timeout_redirects: description: - how long before wait gives up for redirects, in seconds default: 300 aliases: [] state: description: - create or terminate instances required: false default: 'present' aliases: [] auto_updates: description: - Enable Auto Updates on Windows Machines required: false version_added: "2.0" default: "no" choices: [ "yes", "no" ] enable_winrm: description: - Enable winrm on Windows Machines required: false version_added: "2.0" default: "yes" choices: [ "yes", "no" ] os_type: description: - The type of the os that is gettings provisioned required: false version_added: "2.0" default: "linux" choices: [ "windows", "linux" ] requirements: - "python >= 2.6" - "azure >= 0.7.1" author: "John Whitbeck (@jwhitbeck)" ''' EXAMPLES = ''' # Note: None of these examples set subscription_id or management_cert_path # It is assumed that their matching environment variables are set. - name: Provision virtual machine example azure: name: my-virtual-machine role_size: Small image: b39f27a8b8c64d52b05eac6a62ebad85__Ubuntu_DAILY_BUILD-precise-12_04_3-LTS-amd64-server-20131205-en-us-30GB location: East US user: ubuntu ssh_cert_path: /path/to/azure_x509_cert.pem storage_account: my-storage-account wait: True state: present delegate_to: localhost - name: Terminate virtual machine example azure: name: my-virtual-machine state: absent delegate_to: localhost - name: Create windows machine azure: name: ben-Winows-23 hostname: win123 os_type: windows enable_winrm: True subscription_id: '{{ azure_sub_id }}' management_cert_path: '{{ azure_cert_path }}' role_size: Small image: bd507d3a70934695bc2128e3e5a255ba__RightImage-Windows-2012-x64-v13.5 location: East Asia password: xxx storage_account: benooytes user: admin wait: True state: present virtual_network_name: '{{ vnet_name }}' delegate_to: localhost ''' import base64 import datetime import os import time from urlparse import urlparse from ansible.module_utils.facts import * # TimeoutError AZURE_LOCATIONS = ['South Central US', 'Central US', 'East US 2', 'East US', 'West US', 'North Central US', 'North Europe', 'West Europe', 'East Asia', 'Southeast Asia', 'Japan West', 'Japan East', 'Brazil South'] AZURE_ROLE_SIZES = ['ExtraSmall', 'Small', 'Medium', 'Large', 'ExtraLarge', 'A5', 'A6', 'A7', 'A8', 'A9', 'Basic_A0', 'Basic_A1', 'Basic_A2', 'Basic_A3', 'Basic_A4', 'Standard_D1', 'Standard_D2', 'Standard_D3', 'Standard_D4', 'Standard_D11', 'Standard_D12', 'Standard_D13', 'Standard_D14', 'Standard_D1_v2', 'Standard_D2_v2', 'Standard_D3_v2', 'Standard_D4_v2', 'Standard_D5_v2', 'Standard_D11_v2', 'Standard_D12_v2', 'Standard_D13_v2', 'Standard_D14_v2', 'Standard_DS1', 'Standard_DS2', 'Standard_DS3', 'Standard_DS4', 'Standard_DS11', 'Standard_DS12', 'Standard_DS13', 'Standard_DS14', 'Standard_G1', 'Standard_G2', 'Standard_G3', 'Standard_G4', 'Standard_G5'] from distutils.version import LooseVersion try: import azure as windows_azure if hasattr(windows_azure, '__version__') and LooseVersion(windows_azure.__version__) <= "0.11.1": from azure import WindowsAzureError as AzureException from azure import WindowsAzureMissingResourceError as AzureMissingException else: from azure.common import AzureException as AzureException from azure.common import AzureMissingResourceHttpError as AzureMissingException from azure.servicemanagement import (ServiceManagementService, OSVirtualHardDisk, SSH, PublicKeys, PublicKey, LinuxConfigurationSet, ConfigurationSetInputEndpoints, ConfigurationSetInputEndpoint, Listener, WindowsConfigurationSet) HAS_AZURE = True except ImportError: HAS_AZURE = False from types import MethodType import json def _wait_for_completion(azure, promise, wait_timeout, msg): if not promise: return wait_timeout = time.time() + wait_timeout while wait_timeout > time.time(): operation_result = azure.get_operation_status(promise.request_id) time.sleep(5) if operation_result.status == "Succeeded": return raise AzureException('Timed out waiting for async operation ' + msg + ' "' + str(promise.request_id) + '" to complete.') def _delete_disks_when_detached(azure, wait_timeout, disk_names): def _handle_timeout(signum, frame): raise TimeoutError("Timeout reached while waiting for disks to become detached.") signal.signal(signal.SIGALRM, _handle_timeout) signal.alarm(wait_timeout) try: while len(disk_names) > 0: for disk_name in disk_names: disk = azure.get_disk(disk_name) if disk.attached_to is None: azure.delete_disk(disk.name, True) disk_names.remove(disk_name) except AzureException as e: module.fail_json(msg="failed to get or delete disk %s, error was: %s" % (disk_name, str(e))) finally: signal.alarm(0) def get_ssh_certificate_tokens(module, ssh_cert_path): """ Returns the sha1 fingerprint and a base64-encoded PKCS12 version of the certificate. """ # This returns a string such as SHA1 Fingerprint=88:60:0B:13:A9:14:47:DA:4E:19:10:7D:34:92:2B:DF:A1:7D:CA:FF rc, stdout, stderr = module.run_command(['openssl', 'x509', '-in', ssh_cert_path, '-fingerprint', '-noout']) if rc != 0: module.fail_json(msg="failed to generate the key fingerprint, error was: %s" % stderr) fingerprint = stdout.strip()[17:].replace(':', '') rc, stdout, stderr = module.run_command(['openssl', 'pkcs12', '-export', '-in', ssh_cert_path, '-nokeys', '-password', 'pass:']) if rc != 0: module.fail_json(msg="failed to generate the pkcs12 signature from the certificate, error was: %s" % stderr) pkcs12_base64 = base64.b64encode(stdout.strip()) return (fingerprint, pkcs12_base64) def create_virtual_machine(module, azure): """ Create new virtual machine module : AnsibleModule object azure: authenticated azure ServiceManagementService object Returns: True if a new virtual machine and/or cloud service was created, false otherwise """ name = module.params.get('name') os_type = module.params.get('os_type') hostname = module.params.get('hostname') or name + ".cloudapp.net" endpoints = module.params.get('endpoints').split(',') ssh_cert_path = module.params.get('ssh_cert_path') user = module.params.get('user') password = module.params.get('password') location = module.params.get('location') role_size = module.params.get('role_size') storage_account = module.params.get('storage_account') image = module.params.get('image') virtual_network_name = module.params.get('virtual_network_name') wait = module.params.get('wait') wait_timeout = int(module.params.get('wait_timeout')) changed = False # Check if a deployment with the same name already exists cloud_service_name_available = azure.check_hosted_service_name_availability(name) if cloud_service_name_available.result: # cloud service does not exist; create it try: result = azure.create_hosted_service(service_name=name, label=name, location=location) _wait_for_completion(azure, result, wait_timeout, "create_hosted_service") changed = True except AzureException as e: module.fail_json(msg="failed to create the new service, error was: %s" % str(e)) try: # check to see if a vm with this name exists; if so, do nothing azure.get_role(name, name, name) except AzureMissingException: # vm does not exist; create it if os_type == 'linux': # Create linux configuration disable_ssh_password_authentication = not password vm_config = LinuxConfigurationSet(hostname, user, password, disable_ssh_password_authentication) else: #Create Windows Config vm_config = WindowsConfigurationSet(hostname, password, None, module.params.get('auto_updates'), None, user) vm_config.domain_join = None if module.params.get('enable_winrm'): listener = Listener('Http') vm_config.win_rm.listeners.listeners.append(listener) else: vm_config.win_rm = None # Add ssh certificates if specified if ssh_cert_path: fingerprint, pkcs12_base64 = get_ssh_certificate_tokens(module, ssh_cert_path) # Add certificate to cloud service result = azure.add_service_certificate(name, pkcs12_base64, 'pfx', '') _wait_for_completion(azure, result, wait_timeout, "add_service_certificate") # Create ssh config ssh_config = SSH() ssh_config.public_keys = PublicKeys() authorized_keys_path = u'/home/%s/.ssh/authorized_keys' % user ssh_config.public_keys.public_keys.append(PublicKey(path=authorized_keys_path, fingerprint=fingerprint)) # Append ssh config to linux machine config vm_config.ssh = ssh_config # Create network configuration network_config = ConfigurationSetInputEndpoints() network_config.configuration_set_type = 'NetworkConfiguration' network_config.subnet_names = [] network_config.public_ips = None for port in endpoints: network_config.input_endpoints.append(ConfigurationSetInputEndpoint(name='TCP-%s' % port, protocol='TCP', port=port, local_port=port)) # First determine where to store disk today = datetime.date.today().strftime('%Y-%m-%d') disk_prefix = u'%s-%s' % (name, name) media_link = u'http://%s.blob.core.windows.net/vhds/%s-%s.vhd' % (storage_account, disk_prefix, today) # Create system hard disk os_hd = OSVirtualHardDisk(image, media_link) # Spin up virtual machine try: result = azure.create_virtual_machine_deployment(service_name=name, deployment_name=name, deployment_slot='production', label=name, role_name=name, system_config=vm_config, network_config=network_config, os_virtual_hard_disk=os_hd, role_size=role_size, role_type='PersistentVMRole', virtual_network_name=virtual_network_name) _wait_for_completion(azure, result, wait_timeout, "create_virtual_machine_deployment") changed = True except AzureException as e: module.fail_json(msg="failed to create the new virtual machine, error was: %s" % str(e)) try: deployment = azure.get_deployment_by_name(service_name=name, deployment_name=name) return (changed, urlparse(deployment.url).hostname, deployment) except AzureException as e: module.fail_json(msg="failed to lookup the deployment information for %s, error was: %s" % (name, str(e))) def terminate_virtual_machine(module, azure): """ Terminates a virtual machine module : AnsibleModule object azure: authenticated azure ServiceManagementService object Returns: True if a new virtual machine was deleted, false otherwise """ # Whether to wait for termination to complete before returning wait = module.params.get('wait') wait_timeout = int(module.params.get('wait_timeout')) name = module.params.get('name') delete_empty_services = module.params.get('delete_empty_services') changed = False deployment = None public_dns_name = None disk_names = [] try: deployment = azure.get_deployment_by_name(service_name=name, deployment_name=name) except AzureMissingException as e: pass # no such deployment or service except AzureException as e: module.fail_json(msg="failed to find the deployment, error was: %s" % str(e)) # Delete deployment if deployment: changed = True try: # gather disk info results = [] for role in deployment.role_list: role_props = azure.get_role(name, deployment.name, role.role_name) if role_props.os_virtual_hard_disk.disk_name not in disk_names: disk_names.append(role_props.os_virtual_hard_disk.disk_name) except AzureException as e: module.fail_json(msg="failed to get the role %s, error was: %s" % (role.role_name, str(e))) try: result = azure.delete_deployment(name, deployment.name) _wait_for_completion(azure, result, wait_timeout, "delete_deployment") except AzureException as e: module.fail_json(msg="failed to delete the deployment %s, error was: %s" % (deployment.name, str(e))) # It's unclear when disks associated with terminated deployment get detached. # Thus, until the wait_timeout is reached, we continue to delete disks as they # become detached by polling the list of remaining disks and examining the state. try: _delete_disks_when_detached(azure, wait_timeout, disk_names) except (AzureException, TimeoutError) as e: module.fail_json(msg=str(e)) try: # Now that the vm is deleted, remove the cloud service result = azure.delete_hosted_service(service_name=name) _wait_for_completion(azure, result, wait_timeout, "delete_hosted_service") except AzureException as e: module.fail_json(msg="failed to delete the service %s, error was: %s" % (name, str(e))) public_dns_name = urlparse(deployment.url).hostname return changed, public_dns_name, deployment def get_azure_creds(module): # Check module args for credentials, then check environment vars subscription_id = module.params.get('subscription_id') if not subscription_id: subscription_id = os.environ.get('AZURE_SUBSCRIPTION_ID', None) if not subscription_id: module.fail_json(msg="No subscription_id provided. Please set 'AZURE_SUBSCRIPTION_ID' or use the 'subscription_id' parameter") management_cert_path = module.params.get('management_cert_path') if not management_cert_path: management_cert_path = os.environ.get('AZURE_CERT_PATH', None) if not management_cert_path: module.fail_json(msg="No management_cert_path provided. Please set 'AZURE_CERT_PATH' or use the 'management_cert_path' parameter") return subscription_id, management_cert_path def main(): module = AnsibleModule( argument_spec=dict( ssh_cert_path=dict(), name=dict(), hostname=dict(), os_type=dict(default='linux', choices=['linux', 'windows']), location=dict(choices=AZURE_LOCATIONS), role_size=dict(choices=AZURE_ROLE_SIZES), subscription_id=dict(no_log=True), storage_account=dict(), management_cert_path=dict(), endpoints=dict(default='22'), user=dict(), password=dict(no_log=True), image=dict(), virtual_network_name=dict(default=None), state=dict(default='present'), wait=dict(type='bool', default=False), wait_timeout=dict(default=600), wait_timeout_redirects=dict(default=300), auto_updates=dict(type='bool', default=False), enable_winrm=dict(type='bool', default=True), ) ) if not HAS_AZURE: module.fail_json(msg='azure python module required for this module') # create azure ServiceManagementService object subscription_id, management_cert_path = get_azure_creds(module) wait_timeout_redirects = int(module.params.get('wait_timeout_redirects')) if hasattr(windows_azure, '__version__') and LooseVersion(windows_azure.__version__) <= "0.8.0": # wrapper for handling redirects which the sdk <= 0.8.0 is not following azure = Wrapper(ServiceManagementService(subscription_id, management_cert_path), wait_timeout_redirects) else: azure = ServiceManagementService(subscription_id, management_cert_path) cloud_service_raw = None if module.params.get('state') == 'absent': (changed, public_dns_name, deployment) = terminate_virtual_machine(module, azure) elif module.params.get('state') == 'present': # Changed is always set to true when provisioning new instances if not module.params.get('name'): module.fail_json(msg='name parameter is required for new instance') if not module.params.get('image'): module.fail_json(msg='image parameter is required for new instance') if not module.params.get('user'): module.fail_json(msg='user parameter is required for new instance') if not module.params.get('location'): module.fail_json(msg='location parameter is required for new instance') if not module.params.get('storage_account'): module.fail_json(msg='storage_account parameter is required for new instance') if not (module.params.get('password') or module.params.get('ssh_cert_path')): module.fail_json(msg='password or ssh_cert_path parameter is required for new instance') (changed, public_dns_name, deployment) = create_virtual_machine(module, azure) module.exit_json(changed=changed, public_dns_name=public_dns_name, deployment=json.loads(json.dumps(deployment, default=lambda o: o.__dict__))) class Wrapper(object): def __init__(self, obj, wait_timeout): self.other = obj self.wait_timeout = wait_timeout def __getattr__(self, name): if hasattr(self.other, name): func = getattr(self.other, name) return lambda *args, **kwargs: self._wrap(func, args, kwargs) raise AttributeError(name) def _wrap(self, func, args, kwargs): if isinstance(func, MethodType): result = self._handle_temporary_redirects(lambda: func(*args, **kwargs)) else: result = self._handle_temporary_redirects(lambda: func(self.other, *args, **kwargs)) return result def _handle_temporary_redirects(self, f): wait_timeout = time.time() + self.wait_timeout while wait_timeout > time.time(): try: return f() except AzureException as e: if not str(e).lower().find("temporary redirect") == -1: time.sleep(5) pass else: raise e # import module snippets from ansible.module_utils.basic import * if __name__ == '__main__': main()
py
1a567df5edc9b8f4ef7cf8f030fb516681f16d0d
import os import keywords as kw import mechanism_names as mn import mechanism from util import ParseUtil, make_readable_list_of_strings # All parameters and their defaults. PD = {kw.BEHAVIORS: set(), # set of (restricted) strings , REQ kw.STIMULUS_ELEMENTS: set(), # set of (restricted) strings , REQ kw.MECHANISM_NAME: '', # One of the available ones REQ kw.START_V: 0, # Scalar or list of se->b:val or default:val , kw.START_VSS: 0, # Scalar or list of se->se:val or default:val , kw.ALPHA_V: 1, # -"- , kw.ALPHA_VSS: 1, # Scalar or list of se->se:val or default:val , kw.BETA: 1, # -"- , kw.MU: 0, # -"- , kw.DISCOUNT: 1, # Scalar kw.TRACE: 0, # Scalar (number between 0 and 1) kw.U: 0, # Scalar or list of se:val or default:val , kw.LAMBDA: 0, # Scalar or list of se:val or default:val , kw.START_W: 0, # -"- , kw.ALPHA_W: 1, # -"- , kw.BEHAVIOR_COST: 0, # Scalar or list of b:val or default:val , kw.RESPONSE_REQUIREMENTS: dict(), # List of b:se or b:(se1,se2,...) , kw.BIND_TRIALS: 'off', # on or off kw.N_SUBJECTS: 1, # Positive integer kw.TITLE: '', # String (,) kw.SUBPLOTTITLE: '', # String (,) kw.RUNLABEL: '', # String (restricted), for postrocessing only (,) kw.SUBJECT: 'average', # average, all or zero-based index kw.XSCALE: 'all', # all or s1->b1->s2->..., s=se1,se2,... kw.XSCALE_MATCH: 'subset', # subset or exact kw.EVAL_PHASES: 'all', # @post: all or list of phase labels , kw.CUMULATIVE: 'on', # on or off kw.MATCH: 'subset', # subset or exact kw.FILENAME: ''} # valid path REQ def is_parameter_name(name): return name in PD def check_is_parameter_name(name): if not is_parameter_name(name): return f"Internal error: Invalid parameter name '{name}'." return None class Parameters(): def __init__(self): # All parameters and their valuess self.val = dict(PD) # self.got = dict.fromkeys(PD, False) def str_append(self, prop, v_str, variables, phases, all_run_labels, to_be_continued): err = check_is_parameter_name(prop) if err: return err if not self.is_csv(prop): return f"Internal error: Parameter '{prop}' is not of type list." return self.str_set(prop, v_str, variables, phases, all_run_labels, to_be_continued, True) def str_set(self, prop, v_str, variables, phases, all_run_labels, to_be_continued, is_appending=False): """ Parses the specified value (as a string) of the specified parameter and sets the resulting value. The input variables is a Variables object. Returns error message if parsing failed. """ err = check_is_parameter_name(prop) if err: return err # all_phase_labels = phases.labels_set() if prop == kw.BEHAVIORS: return self._parse_behaviors(v_str, variables, is_appending) elif prop == kw.STIMULUS_ELEMENTS: return self._parse_stimulus_elements(v_str, variables, is_appending) elif prop == kw.MECHANISM_NAME: return self._parse_mechanism_name(v_str) elif prop in (kw.START_VSS, kw.ALPHA_VSS): return self._parse_alphastart_vss(prop, v_str, variables, to_be_continued, is_appending) elif prop in (kw.START_W, kw.ALPHA_W, kw.U, kw.LAMBDA): return self._parse_stimulus_values(prop, v_str, variables, to_be_continued, is_appending) elif prop in (kw.BETA, kw.MU, kw.START_V, kw.ALPHA_V): return self._parse_stimulus_response_values(prop, v_str, variables, to_be_continued, is_appending) # Float elif prop in (kw.DISCOUNT, kw.TRACE): v, err = ParseUtil.evaluate(v_str, variables) if err: return err if (v < 0) or (v > 1): return f"Parameter '{prop}' must be a number >=0 and <=1." self.val[prop] = v return None elif prop == kw.BEHAVIOR_COST: return self._parse_behavior_cost(v_str, variables, to_be_continued, is_appending) elif prop == kw.RESPONSE_REQUIREMENTS: return self._parse_response_requirements(v_str, to_be_continued, is_appending) # 'on' or 'off' elif prop in (kw.BIND_TRIALS, kw.CUMULATIVE): v_str_lower = v_str.lower() if v_str_lower not in ('on', 'off'): return "Parameter '{}' must be 'on' or 'off'.".format(prop) self.val[prop] = v_str_lower return None # Positive integer elif prop == kw.N_SUBJECTS: v, err = ParseUtil.parse_posint(v_str, variables) if err: return err if not v: return "Parameter {} must be a positive integer.".format(kw.N_SUBJECTS) self.val[kw.N_SUBJECTS] = v return None # Any nonempty (after strip) string elif prop in (kw.TITLE, kw.SUBPLOTTITLE): if to_be_continued: # Add the removed comma v_str = v_str + "," self.val[prop] = v_str return None # 'average', 'all' or 1-based index elif prop == kw.SUBJECT: return self._parse_subject(v_str, variables) # 'all' or s1->b1->s2->..., s=se1,se2,... elif prop == kw.XSCALE: return self._parse_xscale(v_str, phases) # 'subset' or 'exact' elif prop in (kw.MATCH, kw.XSCALE_MATCH): if v_str.lower() not in ('subset', 'exact'): return "Parameter {} must be 'subset' or 'exact'.".format(prop) self.val[prop] = v_str return None # 'all' or cs-list of phase labels elif prop == kw.PHASES: return self._parse_phases(v_str) # , all_phase_labels) # String (@run-labels) (for postprocessing) elif prop == kw.RUNLABEL: if v_str not in all_run_labels: return "Invalid @RUN-label {}".format(v_str) self.val[kw.RUNLABEL] = v_str return None # Valid path to writable file elif prop == kw.FILENAME: filename = v_str try: file = open(filename, 'w', newline='') except Exception as ex: return str(ex) finally: file.close() try: os.remove(filename) except FileNotFoundError: pass self.val[kw.FILENAME] = filename return None def make_mechanism_obj(self): """ Returns a Mechanism object (None of error) and error message (None if no error). GA = 'ga' SR = 'sr' ES = 'es' QL = 'ql' AC = 'ac' RW = 'rw' MECHANISM_NAMES = (GA, SR, ES, QL, AC, RW) """ mechanism_name = self.val[kw.MECHANISM_NAME] if not mechanism_name: return None, "Parameter 'mechanism' is not specified." self.scalar_expand() if mechanism_name in mn.SR: mechanism_obj = mechanism.StimulusResponse(self) elif mechanism_name in mn.QL: mechanism_obj = mechanism.Qlearning(self) # elif mechanism_name == SARSA: # mechanism_obj = LsMechanism.SARSA(**self.parameters) elif mechanism_name in mn.ES: mechanism_obj = mechanism.EXP_SARSA(self) elif mechanism_name in mn.AC: mechanism_obj = mechanism.ActorCritic(self) elif mechanism_name in mn.GA: mechanism_obj = mechanism.Enquist(self) elif mechanism_name in mn.RW: mechanism_obj = mechanism.OriginalRescorlaWagner(self) else: raise Exception(f"Internal error. Unknown mechanism {mechanism_name}.") return mechanism_obj, None def _parse_behaviors(self, behaviors_str, variables, is_appending): """ Parse the string behaviors_str with comma-separated behavior names and return the corrsponding set of strings. Example: "B1, B2,B123" returns {'B1', 'B2', 'B123'} """ if not is_appending: self.val[kw.BEHAVIORS] = set() behaviors_list = behaviors_str.split(',') for b in behaviors_list: b = b.strip() if len(b) == 0: return "Found empty behavior name." if b in self.val[kw.BEHAVIORS]: return f"The behavior name '{b}' occurs more than once." if b in self.val[kw.STIMULUS_ELEMENTS]: return f"The behavior name '{b}' is invalid, since it is a stimulus element." if variables.contains(b): return f"The behavior name '{b}' is invalid, since it is a variable name." if not b.isidentifier(): return f"Behavior name '{b}' is not a valid identifier." self.val[kw.BEHAVIORS].add(b) return None # No error def _parse_stimulus_elements(self, stimulus_elements_str, variables, is_appending): """ Parse the string stimulus_elements_str with comma-separated stimulus element names and return the corrsponding set of strings. Example: "E1, E2,E123" returns {'E1', 'E2', 'E123'} """ if not is_appending: self.val[kw.STIMULUS_ELEMENTS] = set() stimulus_elements_list = stimulus_elements_str.split(',') for e in stimulus_elements_list: e = e.strip() if len(e) == 0: return "Found empty stimulus element name." if e in self.val[kw.STIMULUS_ELEMENTS]: return f"The stimulus element name '{e}' occurs more than once." if e in self.val[kw.BEHAVIORS]: return f"The stimulus element name '{e}' is invalid, since it is a behavior name." if variables.contains(e): return f"The stimulus element name '{e}' is invalid, since it is a variable name." if not e.isidentifier(): return f"Stimulus element name '{e}' is not a valid identifier." self.val[kw.STIMULUS_ELEMENTS].add(e) return None # No error def _parse_mechanism_name(self, mechanism_name): """ Parse the string mechanism_name with a mechanism name and return the corrsponding string. """ mn_lower = mechanism_name.lower() if mn_lower not in mn.MECHANISM_NAMES: cs_valid_names = ', '.join(sorted(mn.MECHANISM_NAMES)) return "Invalid mechanism name '{}'. ".format(mechanism_name) + \ "Mechanism name must be one of the following: {}.".format(cs_valid_names) self.val[kw.MECHANISM_NAME] = mn_lower return None def _parse_phases(self, v_str): if v_str == 'all': self.val[kw.PHASES] = v_str # list(all_phase_labels) else: phase_labels = ParseUtil.comma_split_strip(v_str) for phase_label in phase_labels: if len(phase_label) == 0: return "Expected comma-separated list of phase labels, found {}".format(phase_labels) # else: # if phase_label not in all_phase_labels: # return "Undefined phase label '{}'.".format(phase_label) self.val[kw.PHASES] = phase_labels return None def _parse_behavior_cost(self, behavior_cost_str, variables, to_be_continued, is_appending): if not self.val[kw.BEHAVIORS]: return f"The parameter 'behaviors' must be assigned before the parameter '{kw.BEHAVIOR_COST}'." # Create and populate the struct with None values if not is_appending: self.val[kw.BEHAVIOR_COST] = dict() for e in self.val[kw.BEHAVIORS]: self.val[kw.BEHAVIOR_COST][e] = None self.val[kw.BEHAVIOR_COST][kw.DEFAULT] = None single_c, _ = ParseUtil.evaluate(behavior_cost_str, variables) if single_c is not None: if is_appending: return "A single value for '{}' cannot follow other values.".format(kw.BEHAVIOR_COST) elif to_be_continued: return "A single value for '{}' cannot be followed by other values.".format(kw.BEHAVIOR_COST) else: for key in self.val[kw.BEHAVIOR_COST]: self.val[kw.BEHAVIOR_COST][key] = single_c self.val[kw.BEHAVIOR_COST].pop(kw.DEFAULT) else: cs = ParseUtil.comma_split(behavior_cost_str) cs = [x.strip() for x in cs] for bc_str in cs: # bc_str is 'e:value' or 'default:value' if bc_str.count(':') != 1: return "Expected 'element:value' or 'default:value' in '{}', got '{}'.".format(kw.BEHAVIOR_COST, bc_str) b, c_str = bc_str.split(':') b = b.strip() c_str = c_str.strip() c, err = ParseUtil.evaluate(c_str, variables) if err: return f"Invalid value '{c_str}' for '{b}' in parameter '{kw.BEHAVIOR_COST}'." if b == kw.DEFAULT: if self.val[kw.BEHAVIOR_COST][kw.DEFAULT] is not None: return "Default value for '{}' can only be stated once.".format(kw.BEHAVIOR_COST) elif b not in self.val[kw.BEHAVIORS]: return f"Error in parameter '{kw.BEHAVIOR_COST}': '{b}' is an invalid behavior name." if self.val[kw.BEHAVIOR_COST][b] is not None: return "Duplicate of {} in '{}'.".format(b, kw.BEHAVIOR_COST) self.val[kw.BEHAVIOR_COST][b] = c if not to_be_continued: # Set the default value for non-set behaviors err = self._set_default_values(kw.BEHAVIOR_COST) if err: return err return None # No error def _parse_stimulus_response_values(self, NAME, sr_str, variables, to_be_continued, is_appending): """ Parse the string sr_str with a value for stimulus-response pairs. Example: "S1->R1: 1.23, S2->R1:3.45, default:1" sets the parameter to {('S1','R1'):1.23, ('S1','R2'):1, ('S2','R1'):3.45, ('S2','R2'):1} under the assumption that behaviors = {'R1', 'R2'} and stimulus_elements = {'S1', 'S2'} """ if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{NAME}'." if not self.val[kw.BEHAVIORS]: return f"The parameter 'behaviors' must be assigned before the parameter '{NAME}'." # Create and populate the struct with None values if not is_appending: self.val[NAME] = dict() for e in self.val[kw.STIMULUS_ELEMENTS]: for b in self.val[kw.BEHAVIORS]: self.val[NAME][(e, b)] = None self.val[NAME][kw.DEFAULT] = None single_v, _ = ParseUtil.evaluate(sr_str, variables) if single_v is not None: if is_appending: return f"A single value for '{NAME}' cannot follow other values." elif to_be_continued: return f"A single value for '{NAME}' cannot be followed by other values." else: for key in self.val[NAME]: self.val[NAME][key] = single_v self.val[NAME].pop(kw.DEFAULT) else: vs = ParseUtil.comma_split(sr_str) vs = [x.strip() for x in vs] for eb_v_str in vs: # eb_v_str is 'e->b:value' or 'default:value' if eb_v_str.count(':') != 1: return f"Expected 'x->y:value' or 'default:value' in '{NAME}', got '{eb_v_str}'." eb, v_str = eb_v_str.split(':') eb = eb.strip() v_str = v_str.strip() v, err = ParseUtil.evaluate(v_str, variables) if err: return f"Invalid value '{v_str}' for '{eb}' in parameter '{NAME}'." if eb == kw.DEFAULT: if self.val[NAME][kw.DEFAULT] is not None: return f"Default value for '{NAME}' can only be stated once." self.val[NAME][kw.DEFAULT] = v elif eb.count('->') == 1: e, b = eb.split('->') if e not in self.val[kw.STIMULUS_ELEMENTS]: return f"Error in parameter '{NAME}': '{e}' is an invalid stimulus element." if b not in self.val[kw.BEHAVIORS]: return f"Error in parameter '{NAME}': '{b}' is an invalid behavior name." if self.val[NAME][(e, b)] is not None: return f"Duplicate of {e}->{b} in '{NAME}'." self.val[NAME][(e, b)] = v else: return f"Invalid string '{eb}' in parameter '{NAME}'." if not to_be_continued: # Set the default value for non-set stimulus-behavior pairs err = self._set_default_values(NAME) if err: return err return None # No error def _parse_alphastart_vss(self, NAME, vss_str, variables, to_be_continued, is_appending): """ Parse the string vss_str with a start_vss/alpha_vss specification. Example: "S1->S2: 1.23, S2->S1:3.45, default:1" sets the parameter to {('S1','S2'):1.23, ('S2','S1'):3.45, ('S1','S1'):1, ('S2','S2'):1} under the assumption that stimulus_elements = {'S1', 'S2'} """ if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{NAME}'." # Create and populate the struct with None values if not is_appending: self.val[NAME] = dict() for e1 in self.val[kw.STIMULUS_ELEMENTS]: for e2 in self.val[kw.STIMULUS_ELEMENTS]: self.val[NAME][(e1, e2)] = None self.val[NAME][kw.DEFAULT] = None single_vss, _ = ParseUtil.evaluate(vss_str, variables) if single_vss is not None: if is_appending: return f"A single value for '{NAME}' cannot follow other values." elif to_be_continued: return f"A single value for '{NAME}' cannot be followed by other values." else: for key in self.val[NAME]: self.val[NAME][key] = single_vss self.val[NAME].pop(kw.DEFAULT) else: vs = ParseUtil.comma_split(vss_str) vs = [x.strip() for x in vs] for ee_str in vs: # eb_v_str is 'e1->e2:value' or 'default:value' if ee_str.count(':') != 1: return f"Expected 'x->y:value' or 'default:value' in '{NAME}', got '{ee_str}'." ee, v_str = ee_str.split(':') ee = ee.strip() v_str = v_str.strip() v, err = ParseUtil.evaluate(v_str, variables) if err: return f"Invalid value '{v_str}' for '{ee}' in parameter '{NAME}'." if ee == kw.DEFAULT: if self.val[NAME][kw.DEFAULT] is not None: return f"Default value for '{NAME}' can only be stated once." self.val[NAME][kw.DEFAULT] = v elif ee.count('->') == 1: e1, e2 = ee.split('->') if e1 not in self.val[kw.STIMULUS_ELEMENTS]: return f"Error in parameter '{NAME}': '{e1}' is an invalid stimulus element." if e2 not in self.val[kw.STIMULUS_ELEMENTS]: return f"Error in parameter '{NAME}': '{e2}' is an invalid stimulus element." if self.val[NAME][(e1, e2)] is not None: return f"Duplicate of {e1}->{e2} in '{NAME}'." self.val[NAME][(e1, e2)] = v else: return f"Invalid string '{ee}' in parameter '{NAME}'." if not to_be_continued: # Set the default value for non-set stimulus-stimulus pairs err = self._set_default_values(NAME) if err: return err return None # No error def _parse_response_requirements(self, v_str, to_be_continued, is_appending): if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{kw.RESPONSE_REQUIREMENTS}'." if not self.val[kw.BEHAVIORS]: return f"The parameter 'behaviors' must be assigned before the parameter '{kw.RESPONSE_REQUIREMENTS}'." if not is_appending: self.val[kw.RESPONSE_REQUIREMENTS] = dict() for b in self.val[kw.BEHAVIORS]: self.val[kw.RESPONSE_REQUIREMENTS][b] = None rrs = ParseUtil.comma_split_sq(v_str) for rr in rrs: if rr.count(':') != 1: return "Expected 'behavior:stimulus_element', got '{}'.".format(rr) b, s = rr.split(':') b = b.strip() s = s.strip() if len(b) == 0 or len(s) == 0: return "Expected 'behavior:stimulus_element', got '{}'.".format(rr) if b not in self.val[kw.BEHAVIORS]: return "Unknown behavior name '{}'.".format(b) if self.val[kw.RESPONSE_REQUIREMENTS][b] is not None: return "Duplication of behavior '{}' in {}.".format(b, kw.RESPONSE_REQUIREMENTS) if '[' in s or ']' in s: if s.count('[') != 1 or s.count(']') != 1 or s[0] != '[' or s[-1] != ']': return "Malformed expression '{}'.".format(s) s = s[1:-1] # Strip the '['and the ']' es = s.split(',') for e in es: e = e.strip() if e not in self.val[kw.STIMULUS_ELEMENTS]: return "Unknown stimulus element '{}'.".format(e) self._response_requirements_add_element(b, e) else: if s not in self.val[kw.STIMULUS_ELEMENTS]: return "Unknown stimulus element '{}'.".format(s) self._response_requirements_add_element(b, s) if not to_be_continued: # For the unrestricted behaviors, add all stimulus elements for b in self.val[kw.RESPONSE_REQUIREMENTS]: if self.val[kw.RESPONSE_REQUIREMENTS][b] is None: self.val[kw.RESPONSE_REQUIREMENTS][b] = set(self.val[kw.STIMULUS_ELEMENTS]) # Check that each stimulus element has at least one feasible response stimulus_elements_in_rr = [] for stimulus_list in self.val[kw.RESPONSE_REQUIREMENTS].values(): stimulus_elements_in_rr.extend(stimulus_list) if set(stimulus_elements_in_rr) != set(self.val[kw.STIMULUS_ELEMENTS]): elements_without_response = set(self.val[kw.STIMULUS_ELEMENTS]) - set(stimulus_elements_in_rr) elements_without_response = list(elements_without_response) elements_without_response.sort() # To make error message testable elements_without_response_str = make_readable_list_of_strings(elements_without_response) err = f"Invalid {kw.RESPONSE_REQUIREMENTS}: " if len(elements_without_response) == 1: return err + f"Stimulus element {elements_without_response_str} has no possible responses." else: return err + f"Stimulus elements {elements_without_response_str} have no possible responses." return None # No error def _response_requirements_add_element(self, b, e): if self.val[kw.RESPONSE_REQUIREMENTS][b] is None: self.val[kw.RESPONSE_REQUIREMENTS][b] = {e} else: self.val[kw.RESPONSE_REQUIREMENTS][b].add(e) def _parse_stimulus_values(self, NAME, stimulus_values, variables, to_be_continued, is_appending): if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{NAME}'." # Create and populate the struct with None values if not is_appending: self.val[NAME] = dict() for e in self.val[kw.STIMULUS_ELEMENTS]: self.val[NAME][e] = None self.val[NAME][kw.DEFAULT] = None single_w, _ = ParseUtil.evaluate(stimulus_values, variables) if single_w is not None: if is_appending: return "A single value for '{}' cannot follow other values.".format(NAME) elif to_be_continued: return "A single value for '{}' cannot be followed by other values.".format(NAME) else: for key in self.val[NAME]: self.val[NAME][key] = single_w self.val[NAME].pop(kw.DEFAULT) else: ws = ParseUtil.comma_split(stimulus_values) ws = [x.strip() for x in ws] for e_w_str in ws: # eb_w_str is 'e:value' or 'default:value' if e_w_str.count(':') != 1: return "Expected 'element:value' or 'default:value' in '{}', got '{}'.".format(NAME, e_w_str) e, w_str = e_w_str.split(':') e = e.strip() w_str = w_str.strip() w, err = ParseUtil.evaluate(w_str, variables) if err: return "Invalid value '{}' for '{}' in parameter '{}'.".format(w_str, e, NAME) if e == kw.DEFAULT: if self.val[NAME][kw.DEFAULT] is not None: return "Default value for '{}' can only be stated once.".format(NAME) elif e not in self.val[kw.STIMULUS_ELEMENTS]: return f"Error in parameter '{NAME}': '{e}' is an invalid stimulus element." if self.val[NAME][e] is not None: return "Duplicate of {} in '{}'.".format(e, NAME) self.val[NAME][e] = w if not to_be_continued: # Set the default value for non-set stimulus elements err = self._set_default_values(NAME) if err: return err return None # No error def _parse_subject(self, v_str, variables): err = f"Parameter {kw.SUBJECT} must be 'average', 'all', or a positive integer." if v_str.lower() in ('average', 'all'): self.val[kw.SUBJECT] = v_str.lower() else: v, interr = ParseUtil.parse_posint(v_str, variables) if interr: # Parsing error return err + " " + interr if v is None: # Parsing worked, but negative integer return err self.val[kw.SUBJECT] = v - 1 # Zero-based index internally return None def _parse_xscale(self, xscale, phases): if not self.val[kw.STIMULUS_ELEMENTS]: return f"The parameter 'stimulus_elements' must be assigned before the parameter '{kw.XSCALE}'." if not self.val[kw.BEHAVIORS] and self.val[kw.MECHANISM_NAME] not in mn.RW: return f"The parameter 'behaviors' must be assigned before the parameter '{kw.XSCALE}'." if phases.is_phase_label(xscale): pass elif xscale == 'all': pass else: xscale, err = ParseUtil.parse_chain(xscale, self.val[kw.STIMULUS_ELEMENTS], self.val[kw.BEHAVIORS]) if err: return err self.val[kw.XSCALE] = xscale return None def _set_default_values(self, NAME): default_needed = False for key in self.val[NAME]: if key is not kw.DEFAULT and self.val[NAME][key] is None: default_needed = True break if default_needed and self.val[NAME][kw.DEFAULT] is None: return f"Missing default value for parameter '{NAME}'." else: for key in self.val[NAME]: if self.val[NAME][key] is None: self.val[NAME][key] = self.val[NAME][kw.DEFAULT] self.val[NAME].pop(kw.DEFAULT) def get(self, prop): return self.val[prop] def may_end_with_comma(self, prop): return self.is_csv(prop) or prop in (kw.TITLE, kw.SUBPLOTTITLE, kw.RUNLABEL) def is_csv(self, prop): return prop in (kw.BEHAVIORS, kw.STIMULUS_ELEMENTS, kw.BETA, kw.MU, kw.LAMBDA, kw.START_V, kw.START_VSS, kw.START_W, kw.ALPHA_V, kw.ALPHA_VSS, kw.ALPHA_W, kw.BEHAVIOR_COST, kw.U, kw.RESPONSE_REQUIREMENTS, kw.PHASES) def scalar_expand(self): """ Expand dict-parameters that are defined by scalar. If defined as dict, check that keys are compatible with stimulus elements and behaviors. """ behaviors = self.val[kw.BEHAVIORS] stimulus_elements = self.val[kw.STIMULUS_ELEMENTS] # Check START_VSS and ALPHA_VSS expected_ss_keys = set() for stimulus_element1 in stimulus_elements: for stimulus_element2 in stimulus_elements: key = (stimulus_element1, stimulus_element2) expected_ss_keys.add(key) for param_name in [kw.START_VSS, kw.ALPHA_VSS]: start_vss = self.val[param_name] if type(start_vss) is dict: if set(start_vss.keys()) != expected_ss_keys: self._raise_match_err(param_name, kw.STIMULUS_ELEMENTS) else: # scalar expand self.val[param_name] = dict() scalar = start_vss for stimulus_element1 in stimulus_elements: for stimulus_element2 in stimulus_elements: key = (stimulus_element1, stimulus_element2) self.val[param_name][key] = scalar expected_sb_keys = set() for stimulus_element in stimulus_elements: for behavior in behaviors: key = (stimulus_element, behavior) expected_sb_keys.add(key) # Check START_V self._scalar_expand_element_behavior(kw.START_V, stimulus_elements, behaviors, expected_sb_keys) # Check ALPHA_V self._scalar_expand_element_behavior(kw.ALPHA_V, stimulus_elements, behaviors, expected_sb_keys) # Check BETA self._scalar_expand_element_behavior(kw.BETA, stimulus_elements, behaviors, expected_sb_keys) # Check MU self._scalar_expand_element_behavior(kw.MU, stimulus_elements, behaviors, expected_sb_keys) expected_s_keys = set() for stimulus_element in stimulus_elements: expected_s_keys.add(stimulus_element) # Check U self._scalar_expand_element(kw.U, stimulus_elements, expected_s_keys) # Check START_W self._scalar_expand_element(kw.START_W, stimulus_elements, expected_s_keys) # Check ALPHA_W self._scalar_expand_element(kw.ALPHA_W, stimulus_elements, expected_s_keys) # Check LAMBDA self._scalar_expand_element(kw.LAMBDA, stimulus_elements, expected_s_keys) # Check BEHAVIOR_COST expected_b_keys = set() for behavior in behaviors: expected_b_keys.add(behavior) behavior_cost = self.val[kw.BEHAVIOR_COST] if type(behavior_cost) is dict: if set(behavior_cost.keys()) != expected_b_keys: self._raise_match_err(kw.BEHAVIOR_COST, kw.BEHAVIORS) else: # scalar expand self.val[kw.BEHAVIOR_COST] = dict() scalar = behavior_cost for behavior in behaviors: self.val[kw.BEHAVIOR_COST][behavior] = scalar def _scalar_expand_element_behavior(self, param_name, stimulus_elements, behaviors, expected_sb_keys): val = self.val[param_name] if type(val) is dict: if set(val.keys()) != expected_sb_keys: self._raise_match_err(param_name, kw.STIMULUS_ELEMENTS, kw.BEHAVIORS) else: # scalar expand self.val[param_name] = dict() scalar = val for stimulus_element in stimulus_elements: for behavior in behaviors: key = (stimulus_element, behavior) self.val[param_name][key] = scalar def _scalar_expand_element(self, param_name, stimulus_elements, expected_s_keys): val = self.val[param_name] if type(val) is dict: if set(val.keys()) != expected_s_keys: self._raise_match_err(param_name, kw.STIMULUS_ELEMENTS) else: # scalar expand self.val[param_name] = dict() scalar = val for stimulus_element in stimulus_elements: self.val[param_name][stimulus_element] = scalar @staticmethod def _raise_match_err(param1, param2, param3=None): if param3: err = f"The parameter '{param1}' does not match '{param2}' and '{param3}'." else: err = f"The parameter '{param1}' does not match '{param2}'." raise Exception(err)
py
1a567e2f0aea37470b21ebc7435dd115f21471f8
import socket import threading import codecs from scapy.all import * contentTable = ['porn', 'guns', 'torrent', 'skype'] firstIface = 'eth0' firstIfaceFlows = ['52:54:00:42:84:65'] secondIface = 'eth1' secondIfaceFlows = ['52:54:00:a1:54:c0'] def inOutServer(): global contentTable global firstIface global secondIface inSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(3)) inSocket.bind((firstIface, 0)) outSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) outSocket.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 1514) outSocket.bind((secondIface, 0)) for index in range(len(contentTable)): contentTable[index] = contentTable[index].encode() while True: pkt = inSocket.recvfrom(1514) try: et = Ether(bytes(pkt[0])) if not et.src in firstIfaceFlows: continue except: continue if TCP in et and Raw in et: if et[IP][TCP].dport == 80: data = et[Raw].load for content in contentTable: if not content in data: continue index = data.find(content) et[Raw].load = data[:index] + b'*' + data[index+len(content):] del et[TCP].chksum del et[IP].ihl del et[IP].len del et[IP].chksum et.show2(dump=True) break outSocket.send(bytes(et)) def outInServer(): global firstIface global secondIface inSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(3)) inSocket.bind((secondIface, 0)) outSocket = socket.socket(socket.AF_PACKET, socket.SOCK_RAW) outSocket.setsockopt(socket.SOL_SOCKET, socket.SO_SNDBUF, 1514) outSocket.bind((firstIface, 0)) while True: pkt = inSocket.recvfrom(1514) try: et = Ether(bytes(pkt[0])) if not et.src in secondIfaceFlows: continue except: continue outSocket.send(bytes(et)) inOut = threading.Thread(target=inOutServer,args=()) outIn = threading.Thread(target=outInServer,args=()) outIn.start() inOut.start() inOut.join()
py
1a567e331fc6444350846e05255b8960d7ec6481
class Module(object): pass
py
1a567ea722711aefd108ca18fa5d9a58e7046d99
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ragged_array_ops.where.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized from tensorflow.python.framework import test_util from tensorflow.python.ops.ragged import ragged_factory_ops from tensorflow.python.ops.ragged import ragged_where_op from tensorflow.python.platform import googletest @test_util.run_all_in_graph_and_eager_modes class RaggedWhereOpTest(test_util.TensorFlowTestCase, parameterized.TestCase): @parameterized.parameters([ #========================================================================= # Docstring Examples #========================================================================= dict( # shape=[D1, (D2)] condition=ragged_factory_ops.constant_value( [[True, False, True], [False, True]]), expected=[[0, 0], [0, 2], [1, 1]]), dict( # shape=[D1, (D2)] condition=ragged_factory_ops.constant_value( [[True, False, True], [False, True]]), x=ragged_factory_ops.constant_value( [['A', 'B', 'C'], ['D', 'E']]), y=ragged_factory_ops.constant_value( [['a', 'b', 'c'], ['d', 'e']]), expected=ragged_factory_ops.constant_value( [[b'A', b'b', b'C'], [b'd', b'E']])), dict( # shape=[D1, (D2)] condition=ragged_factory_ops.constant_value([True, False]), x=ragged_factory_ops.constant_value([['A', 'B', 'C'], ['D', 'E']]), y=ragged_factory_ops.constant_value([['a', 'b', 'c'], ['d', 'e']]), expected=ragged_factory_ops.constant_value( [[b'A', b'B', b'C'], [b'd', b'e']])), #========================================================================= # Coordinate-retrieval mode #========================================================================= dict( # shape=[D1] condition=[True, False, True, False, True], expected=[[0], [2], [4]]), dict( # shape=[D1, D2] condition=[[True, False], [False, True]], expected=[[0, 0], [1, 1]]), dict( # shape=[D1, (D2)] condition=ragged_factory_ops.constant_value( [[True, False, True], [False, True]]), expected=[[0, 0], [0, 2], [1, 1]]), dict( # shape=[D1, (D2), (D3)] condition=ragged_factory_ops.constant_value([ [[True, False, True], [False, True]], [[True], [], [False], [False, True, False]] ]), expected=[[0, 0, 0], [0, 0, 2], [0, 1, 1], [1, 0, 0], [1, 3, 1]]), dict( # shape=[D1, (D2), D3] condition=ragged_factory_ops.constant_value([ [[True, False], [False, True]], [[True, False], [False, False], [True, False], [False, True]] ], ragged_rank=1), expected=[[0, 0, 0], [0, 1, 1], [1, 0, 0], [1, 2, 0], [1, 3, 1]]), dict( # shape=[D1, (D2), (D3), (D4)] condition=ragged_factory_ops.constant_value([ [[[], [True]]], [[[True, False, True], [False, True]], [[True], [], [False], [False, True, False]]] ]), expected=[[0, 0, 1, 0], [1, 0, 0, 0], [1, 0, 0, 2], [1, 0, 1, 1], [1, 1, 0, 0], [1, 1, 3, 1]]), #========================================================================= # Elementwise value-selection mode #========================================================================= dict( # shape=[] condition=True, x='A', y='a', expected=b'A'), dict( # shape=[] condition=False, x='A', y='a', expected=b'a'), dict( # shape=[D1] condition=[True, False, True], x=['A', 'B', 'C'], y=['a', 'b', 'c'], expected=[b'A', b'b', b'C']), dict( # shape=[D1, D2] condition=[[True, False], [False, True]], x=[['A', 'B'], ['D', 'E']], y=[['a', 'b'], ['d', 'e']], expected=[[b'A', b'b'], [b'd', b'E']]), dict( # shape=[D1, (D2)] condition=ragged_factory_ops.constant_value( [[True, False, True], [False, True]]), x=ragged_factory_ops.constant_value([['A', 'B', 'C'], ['D', 'E']]), y=ragged_factory_ops.constant_value([['a', 'b', 'c'], ['d', 'e']]), expected=ragged_factory_ops.constant_value( [[b'A', b'b', b'C'], [b'd', b'E']])), dict( # shape=[D1, (D2), D3] condition=ragged_factory_ops.constant_value([ [[True, False], [False, True]], [[True, False], [False, False], [True, False], [False, True]] ], ragged_rank=1), x=ragged_factory_ops.constant_value([ [['A', 'B'], ['C', 'D']], [['E', 'F'], ['G', 'H'], ['I', 'J'], ['K', 'L']] ], ragged_rank=1), y=ragged_factory_ops.constant_value([ [['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h'], ['i', 'j'], ['k', 'l']] ], ragged_rank=1), expected=ragged_factory_ops.constant_value([ [[b'A', b'b'], [b'c', b'D']], [[b'E', b'f'], [b'g', b'h'], [b'I', b'j'], [b'k', b'L']] ], ragged_rank=1)), dict( # shape=[D1, (D2), (D3), (D4)] condition=ragged_factory_ops.constant_value([ [[[], [True]]], [[[True, False, True], [False, True]], [[True], [], [False], [False, True, False]]] ]), x=ragged_factory_ops.constant_value([ [[[], ['A']]], [[['B', 'C', 'D'], ['E', 'F']], [['G'], [], ['H'], ['I', 'J', 'K']]] ]), y=ragged_factory_ops.constant_value([ [[[], ['a']]], [[['b', 'c', 'd'], ['e', 'f']], [['g'], [], ['h'], ['i', 'j', 'k']]] ]), expected=ragged_factory_ops.constant_value([ [[[], [b'A']]], [[[b'B', b'c', b'D'], [b'e', b'F']], [[b'G'], [], [b'h'], [b'i', b'J', b'k']]] ])), #========================================================================= # Elementwise row-selection mode #========================================================================= dict( # x.shape=[D1, D2], y.shape=[D1, D2] condition=[True, False, True], x=[['A', 'B'], ['C', 'D'], ['E', 'F']], y=[['a', 'b'], ['c', 'd'], ['e', 'f']], expected=[[b'A', b'B'], [b'c', b'd'], [b'E', b'F']]), dict( # x.shape=[D1, D2], y.shape=[D1, (D2)] condition=[True, False, True], x=[['A', 'B'], ['C', 'D'], ['E', 'F']], y=ragged_factory_ops.constant_value( [['a', 'b'], ['c'], ['d', 'e']]), expected=ragged_factory_ops.constant_value( [[b'A', b'B'], [b'c'], [b'E', b'F']])), dict( # x.shape=[D1, (D2)], y.shape=[D1, (D2)] condition=[True, False, True], x=ragged_factory_ops.constant_value( [['A', 'B', 'C'], ['D', 'E'], ['F', 'G']]), y=ragged_factory_ops.constant_value( [['a', 'b'], ['c'], ['d', 'e']]), expected=ragged_factory_ops.constant_value( [[b'A', b'B', b'C'], [b'c'], [b'F', b'G']])), dict( # shape=[D1, (D2), (D3), (D4)] condition=ragged_factory_ops.constant_value([True, False]), x=ragged_factory_ops.constant_value([ [[[], ['A']]], [[['B', 'C', 'D'], ['E', 'F']], [['G'], [], ['H'], ['I', 'J', 'K']]] ]), y=ragged_factory_ops.constant_value([[[['a']]], [[['b']]]]), expected=ragged_factory_ops.constant_value( [[[[], [b'A']]], [[[b'b']]]])), ]) # pyformat: disable def testRaggedWhere(self, condition, expected, x=None, y=None): result = ragged_where_op.where(condition, x, y) self.assertAllEqual(result, expected) @parameterized.parameters([ dict( condition=[True, False], x=[1, 2], error=ValueError, message='x and y must be either both None or both non-None'), dict( condition=ragged_factory_ops.constant_value([[True, False, True], [False, True]]), x=ragged_factory_ops.constant_value([['A', 'B', 'C'], ['D', 'E']]), y=[['a', 'b'], ['d', 'e']], error=ValueError, message='Input shapes do not match.'), ]) def testRaggedWhereErrors(self, condition, error, message, x=None, y=None): with self.assertRaisesRegexp(error, message): ragged_where_op.where(condition, x, y) if __name__ == '__main__': googletest.main()
py
1a567eff7bee42564babacc28a35868a8f9b83ce
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os import re from pants.util.contextutil import temporary_dir from pants_test.pants_run_integration_test import PantsRunIntegrationTest class IvyResolveIntegrationTest(PantsRunIntegrationTest): def test_ivy_resolve_gives_correct_exception_on_cycles(self): with temporary_dir(root_dir=self.workdir_root()) as workdir: pants_run = self.run_pants_with_workdir([ 'compile', 'testprojects/src/java/org/pantsbuild/testproject/cycle1'], workdir) self.assert_failure(pants_run) self.assertIn('Cycle detected', pants_run.stderr_data) def test_java_compile_with_ivy_report(self): # Ensure the ivy report file gets generated with temporary_dir(root_dir=self.workdir_root()) as workdir: ivy_report_dir = '{workdir}/ivy-report'.format(workdir=workdir) pants_run = self.run_pants_with_workdir([ 'compile', 'testprojects/src/java/org/pantsbuild/testproject/unicode/main', '--resolve-ivy-report', '--resolve-ivy-outdir={reportdir}'.format(reportdir=ivy_report_dir)], workdir) self.assert_success(pants_run) # Find the ivy report found = False pattern = re.compile('internal-[a-f0-9]+-default\.html$') for f in os.listdir(ivy_report_dir): if os.path.isfile(os.path.join(ivy_report_dir, f)): if pattern.match(f): found = True break self.assertTrue(found, msg="Couldn't find ivy report in {report_dir}" .format(report_dir=ivy_report_dir)) def test_ivy_args(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-args=-blablabla', 'examples/src/scala::' ]) self.assert_failure(pants_run) self.assertIn('Unrecognized option: -blablabla', pants_run.stdout_data) def test_ivy_confs_success(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-confs=default', '--resolve-ivy-confs=sources', '--resolve-ivy-confs=javadoc', '3rdparty:junit' ]) self.assert_success(pants_run) def test_ivy_confs_failure(self): pants_run = self.run_pants([ 'resolve', '--resolve-ivy-confs=parampampam', '3rdparty:junit' ]) self.assert_failure(pants_run) def test_ivy_confs_ini_failure(self): pants_ini_config = {'resolve.ivy': {'confs': 'parampampam'}} pants_run = self.run_pants([ 'resolve', '3rdparty:junit' ], config=pants_ini_config) self.assert_failure(pants_run)
py
1a5680efb07f2dc3f2a02902ed7c61b6e9914c34
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs __all__ = ['WebAppDomainOwnershipIdentifierSlot'] warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-native:web:WebAppDomainOwnershipIdentifierSlot'.""", DeprecationWarning) class WebAppDomainOwnershipIdentifierSlot(pulumi.CustomResource): warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-native:web:WebAppDomainOwnershipIdentifierSlot'.""", DeprecationWarning) def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, domain_ownership_identifier_name: Optional[pulumi.Input[str]] = None, kind: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, slot: Optional[pulumi.Input[str]] = None, value: Optional[pulumi.Input[str]] = None, __props__=None, __name__=None, __opts__=None): """ A domain specific resource identifier. Latest API Version: 2020-10-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] domain_ownership_identifier_name: Name of domain ownership identifier. :param pulumi.Input[str] kind: Kind of resource. :param pulumi.Input[str] name: Name of the app. :param pulumi.Input[str] resource_group_name: Name of the resource group to which the resource belongs. :param pulumi.Input[str] slot: Name of the deployment slot. If a slot is not specified, the API will delete the binding for the production slot. :param pulumi.Input[str] value: String representation of the identity. """ pulumi.log.warn("""WebAppDomainOwnershipIdentifierSlot is deprecated: The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-native:web:WebAppDomainOwnershipIdentifierSlot'.""") if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['domain_ownership_identifier_name'] = domain_ownership_identifier_name __props__['kind'] = kind if name is None and not opts.urn: raise TypeError("Missing required property 'name'") __props__['name'] = name if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name if slot is None and not opts.urn: raise TypeError("Missing required property 'slot'") __props__['slot'] = slot __props__['value'] = value __props__['system_data'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:web/latest:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-native:web:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-nextgen:web:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-native:web/v20160801:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-nextgen:web/v20160801:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-native:web/v20180201:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-nextgen:web/v20180201:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-native:web/v20181101:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-nextgen:web/v20181101:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-native:web/v20190801:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-nextgen:web/v20190801:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-native:web/v20200601:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-nextgen:web/v20200601:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-native:web/v20200901:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-nextgen:web/v20200901:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-native:web/v20201001:WebAppDomainOwnershipIdentifierSlot"), pulumi.Alias(type_="azure-nextgen:web/v20201001:WebAppDomainOwnershipIdentifierSlot")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(WebAppDomainOwnershipIdentifierSlot, __self__).__init__( 'azure-native:web/latest:WebAppDomainOwnershipIdentifierSlot', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'WebAppDomainOwnershipIdentifierSlot': """ Get an existing WebAppDomainOwnershipIdentifierSlot resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["kind"] = None __props__["name"] = None __props__["system_data"] = None __props__["type"] = None __props__["value"] = None return WebAppDomainOwnershipIdentifierSlot(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def kind(self) -> pulumi.Output[Optional[str]]: """ Kind of resource. """ return pulumi.get(self, "kind") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Resource Name. """ return pulumi.get(self, "name") @property @pulumi.getter(name="systemData") def system_data(self) -> pulumi.Output['outputs.SystemDataResponse']: """ The system metadata relating to this resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Resource type. """ return pulumi.get(self, "type") @property @pulumi.getter def value(self) -> pulumi.Output[Optional[str]]: """ String representation of the identity. """ return pulumi.get(self, "value") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
py
1a56813ab3cae382f01386ca1dc75862a855ddb3
#!/usr/bin/env python # -*- coding: utf-8 -*- # SPDX-License-Identifier: Apache-2.0 # Copyright 2021 RT Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import rospy from geometry_msgs.msg import Twist from thouzer_msgs.msg import Vel from std_srvs.srv import Trigger, TriggerResponse class CmdVelTwist(object): def __init__(self): rospy.loginfo("cmd_vel remapper start") self._twist_sub = rospy.Subscriber('/cmd_vel', Twist, self.joy_callback, queue_size=1) self._vel_pub = rospy.Publisher('/thouzer/vel', Vel, queue_size=1) def joy_callback(self, msg): vel = Vel() vel.v_mps = msg.linear.x vel.w_degps = math.degrees(msg.angular.z) print(vel) self._vel_pub.publish(vel) if __name__ == '__main__': rospy.wait_for_service('/motor_on') rospy.wait_for_service('/motor_off') rospy.on_shutdown(rospy.ServiceProxy('/motor_off', Trigger).call) rospy.ServiceProxy('/motor_on', Trigger).call() rospy.init_node('thouzer_cmd_vel') logicool_cmd_vel = CmdVelTwist() rospy.spin()
py
1a5681a9088d589ccdc809e80a0a3ac76759c4df
import importlib.metadata name = "Dramakul" DISTRIBUTION_METADATA = importlib.metadata.metadata(name) description = DISTRIBUTION_METADATA["description"] __version__ = DISTRIBUTION_METADATA["version"]
py
1a5682bd956761a2c11c48916e1869ee99fc161b
from django.test import TestCase, Client from django.contrib.auth import get_user_model from django.urls import reverse class AdminSiteTests(TestCase): def setUp(self): self.client = Client() self.admin_user = get_user_model().objects.create_superuser( email='[email protected]', password='pass123' ) self.client.force_login(self.admin_user) self.user = get_user_model().objects.create_user( email='[email protected]', password='pass123', name='Test user full name' ) def test_users_listed(self): """Test that users are listed on user page""" url = reverse('admin:core_user_changelist') res = self.client.get(url) self.assertContains(res, self.user.name) self.assertContains(res, self.user.email) def test_user_change_page(self): """Test that user edit page works""" url = reverse("admin:core_user_change", args=[self.user.id]) res = self.client.get(url) self.assertEqual(res.status_code, 200) def test_create_user_page(self): """Test that the create user page works""" url = reverse('admin:core_user_add') res = self.client.get(url) self.assertEqual(res.status_code, 200)
py
1a5682c5246908ae69f51042882db54998c35a13
from django.contrib import admin from offices.models import CountyOffice class CountyOfficeAdmin(admin.ModelAdmin): search_fields = ['title'] list_filter = ('state_ref',) admin.site.register(CountyOffice, CountyOfficeAdmin)
py
1a56843623b42aa069890901df50c457267da825
from django.contrib import admin from django.contrib.auth.admin import UserAdmin from .models import User, Librarian, Patron, Student, Faculty, Professor, TA, Instructor from django.contrib.auth.forms import UserChangeForm # Register your models here. class BaseUserChangeForm(UserChangeForm): class Meta(UserChangeForm.Meta): model = User class BaseUserAdmin(UserAdmin): form = BaseUserChangeForm fieldsets = UserAdmin.fieldsets + ( (None, {'fields': ('phone_number', 'address')}), ) class LibrarianAdmin(BaseUserAdmin): pass class PatronAdmin(BaseUserAdmin): pass class StudentAdmin(BaseUserAdmin): pass class FacultyAdmin(BaseUserAdmin): pass class ProfessorAdmin(BaseUserAdmin): pass class TAAdmin(BaseUserAdmin): pass class InstructorAdmin(BaseUserAdmin): pass admin.site.register(User, BaseUserAdmin) admin.site.register(Patron, PatronAdmin) admin.site.register(Librarian, LibrarianAdmin) admin.site.register(Student, StudentAdmin) admin.site.register(Faculty, FacultyAdmin) admin.site.register(Professor, ProfessorAdmin) admin.site.register(TA, TAAdmin) admin.site.register(Instructor, InstructorAdmin)
py
1a56863a3f3f86eca98746e2b4d7e8335527330d
from .agent_builder import AgentBuilder from .a2c_builder import A2CBuilder from .ppo_builder import PPOBuilder from .trpo_builder import TRPOBuilder from .ddpg_builder import DDPGBuilder from .td3_builder import TD3Builder from .sac_builder import SACBuilder from .environment_builder import EnvironmentBuilder __all__ = [ 'AgentBuilder', 'A2CBuilder', 'PPOBuilder', 'TRPOBuilder', 'DDPGBuilder', 'TD3Builder', 'SACBuilder', 'EnvironmentBuilder' ]
py
1a56863d1c72313da6ee94e6fb214d57bd0ae0ed
# qubit number=3 # total number=12 import numpy as np from qiskit import QuantumCircuit, execute, Aer, QuantumRegister, ClassicalRegister, transpile, BasicAer, IBMQ import networkx as nx from qiskit.visualization import plot_histogram from typing import * from pprint import pprint from math import log2 from collections import Counter from qiskit.test.mock import FakeVigo, FakeYorktown kernel = 'circuit/bernstein' def make_circuit(n:int) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") prog = QuantumCircuit(input_qubit) prog.h(input_qubit[0]) # number=1 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=3 prog.h(input_qubit[3]) # number=4 for edge in E: k = edge[0] l = edge[1] prog.cp(-2 * gamma, input_qubit[k-1], input_qubit[l-1]) prog.p(gamma, k) prog.p(gamma, l) prog.rx(2 * beta, range(len(V))) prog.cx(input_qubit[0],input_qubit[2]) # number=9 prog.x(input_qubit[2]) # number=10 prog.cx(input_qubit[0],input_qubit[2]) # number=11 prog.x(input_qubit[2]) # number=6 prog.cx(input_qubit[1],input_qubit[0]) # number=7 prog.cx(input_qubit[1],input_qubit[0]) # number=8 # circuit end return prog if __name__ == '__main__': n = 4 V = np.arange(0, n, 1) E = [(0, 1, 1.0), (0, 2, 1.0), (1, 2, 1.0), (3, 2, 1.0), (3, 1, 1.0)] G = nx.Graph() G.add_nodes_from(V) G.add_weighted_edges_from(E) step_size = 0.1 a_gamma = np.arange(0, np.pi, step_size) a_beta = np.arange(0, np.pi, step_size) a_gamma, a_beta = np.meshgrid(a_gamma, a_beta) F1 = 3 - (np.sin(2 * a_beta) ** 2 * np.sin(2 * a_gamma) ** 2 - 0.5 * np.sin(4 * a_beta) * np.sin(4 * a_gamma)) * ( 1 + np.cos(4 * a_gamma) ** 2) result = np.where(F1 == np.amax(F1)) a = list(zip(result[0], result[1]))[0] gamma = a[0] * step_size beta = a[1] * step_size prog = make_circuit(4) sample_shot =3962 writefile = open("../data/startQiskit_QC87.csv", "w") # prog.draw('mpl', filename=(kernel + '.png')) IBMQ.load_account() provider = IBMQ.get_provider(hub='ibm-q') provider.backends() backend = provider.get_backend("ibmq_5_yorktown") circuit1 = transpile(prog, FakeYorktown()) circuit1.measure_all() prog = circuit1 info = execute(prog,backend=backend, shots=sample_shot).result().get_counts() print(info, file=writefile) print("results end", file=writefile) print(circuit1.depth(), file=writefile) print(circuit1, file=writefile) writefile.close()
py
1a5686647ce5422efb41e5cd33860af98a8134d8
# automatically generated by the FlatBuffers compiler, do not modify # namespace: protocol class MessageBody(object): NONE = 0 TracesFromPriorRequest = 1 ObservesInitRequest = 2 ProposalRequest = 3 TracesFromPriorReply = 4 ObservesInitReply = 5 ProposalReply = 6
py
1a568668a2e5a03fab7e4653acd0dda11ec35543
# Copyright 2019 The TensorTrade Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import tensortrade.orders.create as create from typing import Union, List, Tuple from itertools import product from gym.spaces import Discrete from tensortrade.actions import ActionScheme from tensortrade.orders import TradeSide, TradeType, Order, OrderListener, risk_managed_order class ManagedRiskOrders(ActionScheme): """A discrete action scheme that determines actions based on managing risk, through setting a follow-up stop loss and take profit on every order. """ def __init__(self, stop_loss_percentages: Union[List[float], float] = [0.02, 0.04, 0.06], take_profit_percentages: Union[List[float], float] = [0.01, 0.02, 0.03], trade_sizes: Union[List[float], int] = 10, trade_type: TradeType = TradeType.MARKET, ttl_in_seconds: int = None, ttl_in_steps: int = None, order_listener: OrderListener = None): """ Arguments: pairs: A list of trading pairs to select from when submitting an order. (e.g. TradingPair(BTC, USD), TradingPair(ETH, BTC), etc.) stop_loss_percentages: A list of possible stop loss percentages for each order. take_profit_percentages: A list of possible take profit percentages for each order. trade_sizes: A list of trade sizes to select from when submitting an order. (e.g. '[1, 1/3]' = 100% or 33% of balance is tradable. '4' = 25%, 50%, 75%, or 100% of balance is tradable.) order_listener (optional): An optional listener for order events executed by this action scheme. """ self.stop_loss_percentages = self.default('stop_loss_percentages', stop_loss_percentages) self.take_profit_percentages = self.default( 'take_profit_percentages', take_profit_percentages) self.trade_sizes = self.default('trade_sizes', trade_sizes) self.trade_type = self.default('trade_type', trade_type) self.ttl_in_seconds = self.default('ttl_in_seconds', ttl_in_seconds) self.ttl_in_steps = self.default('ttl_in_steps', ttl_in_steps) self._order_listener = self.default('order_listener', order_listener) generator = product(self.stop_loss_percentages, self.take_profit_percentages, self.trade_sizes, [TradeSide.BUY, TradeSide.SELL]) self.actions = list(generator) @property def action_space(self) -> Discrete: """The discrete action space produced by the action scheme.""" return Discrete(len(self.actions)) @property def stop_loss_percentages(self) -> List[float]: """A list of order percentage losses to select a stop loss from when submitting an order. (e.g. 0.01 = sell if price drops 1%, 0.15 = 15%, etc.) """ return self._stop_loss_percentages @stop_loss_percentages.setter def stop_loss_percentages(self, stop_loss_percentages: Union[List[float], float]): self._stop_loss_percentages = stop_loss_percentages if isinstance( stop_loss_percentages, list) else [stop_loss_percentages] @property def take_profit_percentages(self) -> List[float]: """A list of order percentage gains to select a take profit from when submitting an order. (e.g. 0.01 = sell if price rises 1%, 0.15 = 15%, etc.) """ return self._take_profit_percentages @take_profit_percentages.setter def take_profit_percentages(self, take_profit_percentages: Union[List[float], float]): self._take_profit_percentages = take_profit_percentages if isinstance( take_profit_percentages, list) else [take_profit_percentages] @property def trade_sizes(self) -> List[float]: """A list of trade sizes to select from when submitting an order. (e.g. '[1, 1/3]' = 100% or 33% of balance is tradable. '4' = 25%, 50%, 75%, or 100% of balance is tradable.) """ return self._trade_sizes @trade_sizes.setter def trade_sizes(self, trade_sizes: Union[List[float], int]): self._trade_sizes = trade_sizes if isinstance(trade_sizes, list) else [ (x + 1) / trade_sizes for x in range(trade_sizes)] def get_order(self, action: int, portfolio: 'Portfolio') -> Order: if action == 0: return None ((exchange, pair), (stop_loss, take_profit, size, side)) = self.actions[action] price = exchange.quote_price(pair) wallet_instrument = pair.base if side == TradeSide.BUY else pair.quote wallet = portfolio.get_wallet(exchange.id, instrument=wallet_instrument) size = (wallet.balance.size * size) size = min(wallet.balance.size, size) if size < 10 ** -pair.base.precision: return None params = { 'step': exchange.clock.step, 'side': side, 'pair': pair, 'price': price, 'size': size, 'down_percent': stop_loss, 'up_percent': take_profit, 'portfolio': portfolio, 'trade_type': self.trade_type, 'ttl_in_seconds': self.ttl_in_seconds, 'ttl_in_steps': self.ttl_in_steps, } order = risk_managed_order(**params) if self._order_listener is not None: order.attach(self._order_listener) def reset(self): pass
py
1a56866f2bb135a31bf7f5f216bfd4e0c8f95352
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # from oasisagent.objects import function # # Function = function.Function # __all__ = (Function)
py
1a5686735a15f23b492105c8ebcb222b161ac5f5
import _plotly_utils.basevalidators class HighlightcolorValidator(_plotly_utils.basevalidators.ColorValidator): def __init__( self, plotly_name="highlightcolor", parent_name="surface.contours.y", **kwargs ): super(HighlightcolorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "style"), **kwargs )
py
1a568757366ac8f0ffd0ec99a36e8b2191ed604e
from __future__ import print_function, unicode_literals import json import sys from tagalog import io def main(): for line in io.lines(sys.stdin): msg = json.loads(line) if '@timestamp' in msg: print(msg['@timestamp'], msg['@message']) else: print(msg['@message']) if __name__ == '__main__': main()
py
1a56879a7de3eb5d2083507fdd6bf6de62b6e04f
# Copyright (c) 2006-2009 The Trustees of Indiana University. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # - Neither the Indiana University nor the names of its contributors may be used # to endorse or promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from corepy.spre.spe import Instruction, DispatchInstruction from x86_64_fields import * from x86_64_insts import * __annoy__ = True __doc__=""" x86_64 Instruction Set Architecture (ISA). To use, import this module and call the Instructions as Python functions to generate a properly coded version. For example, to create an add instruction: import corepy.arch.x86_64.isa as isa import corepy.arch.x86_64.types.registers as regs inst = isa.add(regs.eax, regs.ebx) # add ebx to eax Operands are in the same order as presented in the architecture manuals. For a complete reference and details for all instructions, please referer to: 'Intel 64 and IA-32 Architectures Software Developer's Manual' or 'AMD64 Architecture Programmer's Manual'. URL (valid as of Sept 21, 2007): http://www.intel.com/products/processor/manuals/index.htm http://developer.amd.com/devguides.jsp """ # ------------------------------ # x86 Registers # ------------------------------ # reg num: named register gp8_map = {0: al_t, 1: cl_t} gp16_map = {0: ax_t, 2: dx_t} gp32_map = {0: eax_t} gp64_map = {0: rax_t} fp_map = {0: st0_t} # ------------------------------ # x86 Instructions # ------------------------------ # Currently 16bit versions of instructions have separate operand # functions, and the size-override prefix is in the opcode, so protected # (32bit default) mode is assumed here. class adc(DispatchInstruction): dispatch = ( (reg64_simm8, {'opcode':[0x83], 'modrm':0x10}), (mem64_simm8, {'opcode':[0x83], 'modrm':0x10}), (rax_imm32, {'opcode':[0x15], 'modrm':None}), (reg64_imm32, {'opcode':[0x81], 'modrm':0x10}), (mem64_imm32, {'opcode':[0x81], 'modrm':0x10}), (reg64_reg64, {'opcode':[0x11], 'modrm':None}), (mem64_reg64, {'opcode':[0x11], 'modrm':None}), (reg64_mem64, {'opcode':[0x13], 'modrm':None}), (reg32_simm8, {'opcode':[0x83], 'modrm':0x10}), (mem32_simm8, {'opcode':[0x83], 'modrm':0x10}), (eax_imm32, {'opcode':[0x15], 'modrm':None}), (reg32_imm32, {'opcode':[0x81], 'modrm':0x10}), (mem32_imm32, {'opcode':[0x81], 'modrm':0x10}), (reg32_reg32, {'opcode':[0x11], 'modrm':None}), (mem32_reg32, {'opcode':[0x11], 'modrm':None}), (reg32_mem32, {'opcode':[0x13], 'modrm':None}), (reg16_simm8, {'opcode':[0x83], 'modrm':0x10}), (mem16_simm8, {'opcode':[0x83], 'modrm':0x10}), (ax_imm16, {'opcode':[0x66, 0x15], 'modrm':None}), (reg16_imm16, {'opcode':[0x81], 'modrm':0x10}), (mem16_imm16, {'opcode':[0x81], 'modrm':0x10}), (reg16_reg16, {'opcode':[0x11], 'modrm':None}), (mem16_reg16, {'opcode':[0x11], 'modrm':None}), (reg16_mem16, {'opcode':[0x13], 'modrm':None}), (al_imm8, {'opcode':[0x14], 'modrm':None}), (reg8_imm8, {'opcode':[0x80], 'modrm':0x10}), (mem8_imm8, {'opcode':[0x80], 'modrm':0x10}), (reg8_reg8, {'opcode':[0x10], 'modrm':None}), (mem8_reg8, {'opcode':[0x10], 'modrm':None}), (reg8_mem8, {'opcode':[0x12], 'modrm':None})) class add(DispatchInstruction): dispatch = ( (reg64_simm8, {'opcode':[0x83], 'modrm':0x00}), (mem64_simm8, {'opcode':[0x83], 'modrm':0x00}), (rax_imm32, {'opcode':[0x05], 'modrm':None}), (reg64_imm32, {'opcode':[0x81], 'modrm':0x00}), (mem64_imm32, {'opcode':[0x81], 'modrm':0x00}), (reg64_reg64, {'opcode':[0x01], 'modrm':None}), (mem64_reg64, {'opcode':[0x01], 'modrm':None}), (reg64_mem64, {'opcode':[0x03], 'modrm':None}), (reg32_simm8, {'opcode':[0x83], 'modrm':0x00}), (mem32_simm8, {'opcode':[0x83], 'modrm':0x00}), (eax_imm32, {'opcode':[0x05], 'modrm':None}), (reg32_imm32, {'opcode':[0x81], 'modrm':0x00}), (mem32_imm32, {'opcode':[0x81], 'modrm':0x00}), (reg32_reg32, {'opcode':[0x01], 'modrm':None}), (mem32_reg32, {'opcode':[0x01], 'modrm':None}), (reg32_mem32, {'opcode':[0x03], 'modrm':None}), (reg16_simm8, {'opcode':[0x83], 'modrm':0x00}), (mem16_simm8, {'opcode':[0x83], 'modrm':0x00}), (ax_imm16, {'opcode':[0x66, 0x05], 'modrm':None}), (reg16_imm16, {'opcode':[0x81], 'modrm':0x00}), (mem16_imm16, {'opcode':[0x81], 'modrm':0x00}), (reg16_reg16, {'opcode':[0x01], 'modrm':None}), (mem16_reg16, {'opcode':[0x01], 'modrm':None}), (reg16_mem16, {'opcode':[0x03], 'modrm':None}), (al_imm8, {'opcode':[0x04], 'modrm':None}), (reg8_imm8, {'opcode':[0x80], 'modrm':0x00}), (mem8_imm8, {'opcode':[0x80], 'modrm':0x00}), (reg8_reg8, {'opcode':[0x00], 'modrm':None}), (mem8_reg8, {'opcode':[0x00], 'modrm':None}), (reg8_mem8, {'opcode':[0x02], 'modrm':None})) class and_(DispatchInstruction): dispatch = ( (reg64_simm8, {'opcode':[0x83], 'modrm':0x20}), (mem64_simm8, {'opcode':[0x83], 'modrm':0x20}), (rax_imm32, {'opcode':[0x25], 'modrm':None}), (reg64_imm32, {'opcode':[0x81], 'modrm':0x20}), (mem64_imm32, {'opcode':[0x81], 'modrm':0x20}), (reg64_reg64, {'opcode':[0x21], 'modrm':None}), (mem64_reg64, {'opcode':[0x21], 'modrm':None}), (reg64_mem64, {'opcode':[0x23], 'modrm':None}), (reg32_simm8, {'opcode':[0x83], 'modrm':0x20}), (mem32_simm8, {'opcode':[0x83], 'modrm':0x20}), (eax_imm32, {'opcode':[0x25], 'modrm':None}), (reg32_imm32, {'opcode':[0x81], 'modrm':0x20}), (mem32_imm32, {'opcode':[0x81], 'modrm':0x20}), (reg32_reg32, {'opcode':[0x21], 'modrm':None}), (mem32_reg32, {'opcode':[0x21], 'modrm':None}), (reg32_mem32, {'opcode':[0x23], 'modrm':None}), (reg16_simm8, {'opcode':[0x83], 'modrm':0x20}), (mem16_simm8, {'opcode':[0x83], 'modrm':0x20}), (ax_imm16, {'opcode':[0x66, 0x25], 'modrm':None}), (reg16_imm16, {'opcode':[0x81], 'modrm':0x20}), (mem16_imm16, {'opcode':[0x81], 'modrm':0x20}), (reg16_reg16, {'opcode':[0x21], 'modrm':None}), (mem16_reg16, {'opcode':[0x21], 'modrm':None}), (reg16_mem16, {'opcode':[0x23], 'modrm':None}), (al_imm8, {'opcode':[0x24], 'modrm':None}), (reg8_imm8, {'opcode':[0x80], 'modrm':0x20}), (mem8_imm8, {'opcode':[0x80], 'modrm':0x20}), (reg8_reg8, {'opcode':[0x20], 'modrm':None}), (mem8_reg8, {'opcode':[0x20], 'modrm':None}), (reg8_mem8, {'opcode':[0x22], 'modrm':None})) class bsf(DispatchInstruction): dispatch = ( (reg64_reg64, {'opcode':[0x0F, 0xBC], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0xBC], 'modrm':None}), (reg32_reg32, {'opcode':[0x0F, 0xBC], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0xBC], 'modrm':None}), (reg16_reg16, {'opcode':[0x0F, 0xBC], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0xBC], 'modrm':None})) class bsr(DispatchInstruction): dispatch = ( (reg64_reg64, {'opcode':[0x0F, 0xBD], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0xBD], 'modrm':None}), (reg32_reg32, {'opcode':[0x0F, 0xBD], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0xBD], 'modrm':None}), (reg16_reg16, {'opcode':[0x0F, 0xBD], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0xBD], 'modrm':None})) class bswap(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0x0F, 0xC8], 'modrm':None}), (reg32, {'opcode':[0x0F, 0xC8], 'modrm':None})) class bt(DispatchInstruction): dispatch = ( (reg64_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x20}), (mem64_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x20}), (reg64_reg64, {'opcode':[0x0F, 0xA3], 'modrm':None}), (mem64_reg64, {'opcode':[0x0F, 0xA3], 'modrm':None}), (reg32_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x20}), (mem32_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x20}), (reg32_reg32, {'opcode':[0x0F, 0xA3], 'modrm':None}), (mem32_reg32, {'opcode':[0x0F, 0xA3], 'modrm':None}), (reg16_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x20}), (mem16_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x20}), (reg16_reg16, {'opcode':[0x0F, 0xA3], 'modrm':None}), (mem16_reg16, {'opcode':[0x0F, 0xA3], 'modrm':None})) class btc(DispatchInstruction): dispatch = ( (reg64_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x38}), (mem64_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x38}), (reg64_reg64, {'opcode':[0x0F, 0xBB], 'modrm':None}), (mem64_reg64, {'opcode':[0x0F, 0xBB], 'modrm':None}), (reg32_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x38}), (mem32_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x38}), (reg32_reg32, {'opcode':[0x0F, 0xBB], 'modrm':None}), (mem32_reg32, {'opcode':[0x0F, 0xBB], 'modrm':None}), (reg16_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x38}), (mem16_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x38}), (reg16_reg16, {'opcode':[0x0F, 0xBB], 'modrm':None}), (mem16_reg16, {'opcode':[0x0F, 0xBB], 'modrm':None})) class btr(DispatchInstruction): dispatch = ( (reg64_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x30}), (mem64_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x30}), (reg64_reg64, {'opcode':[0x0F, 0xB3], 'modrm':None}), (mem64_reg64, {'opcode':[0x0F, 0xB3], 'modrm':None}), (reg32_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x30}), (mem32_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x30}), (reg32_reg32, {'opcode':[0x0F, 0xB3], 'modrm':None}), (mem32_reg32, {'opcode':[0x0F, 0xB3], 'modrm':None}), (reg16_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x30}), (mem16_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x30}), (reg16_reg16, {'opcode':[0x0F, 0xB3], 'modrm':None}), (mem16_reg16, {'opcode':[0x0F, 0xB3], 'modrm':None})) class bts(DispatchInstruction): dispatch = ( (reg64_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x28}), (mem64_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x28}), (reg64_reg64, {'opcode':[0x0F, 0xAB], 'modrm':None}), (mem64_reg64, {'opcode':[0x0F, 0xAB], 'modrm':None}), (reg32_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x28}), (mem32_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x28}), (reg32_reg32, {'opcode':[0x0F, 0xAB], 'modrm':None}), (mem32_reg32, {'opcode':[0x0F, 0xAB], 'modrm':None}), (reg16_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x28}), (mem16_imm8, {'opcode':[0x0F, 0xBA], 'modrm':0x28}), (reg16_reg16, {'opcode':[0x0F, 0xAB], 'modrm':None}), (mem16_reg16, {'opcode':[0x0F, 0xAB], 'modrm':None})) class call(DispatchInstruction): dispatch = ( (lbl32off, {'opcode':[0xE8], 'modrm':None}), (rel32off, {'opcode':[0xE8], 'modrm':None}), (reg64, {'opcode':[0xFF], 'modrm':0x10}), (mem64_32, {'opcode':[0xFF], 'modrm':0x10}), (reg16, {'opcode':[0xFF], 'modrm':0x10}), (mem16, {'opcode':[0x66, 0xFF], 'modrm':0x10})) class cbw(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0x98], 'modrm':None} class cdq(Instruction): machine_inst = no_op params = {'opcode':[0x99], 'modrm':None} class cdqe(Instruction): machine_inst = no_op params = {'opcode':[0x48, 0x98], 'modrm':None} class clc(Instruction): machine_inst = no_op params = {'opcode':[0xF8], 'modrm':None} class cld(Instruction): machine_inst = no_op params = {'opcode':[0xFC], 'modrm':None} class clflush(Instruction): machine_inst = mem8 params = {'opcode':[0x0F, 0xAE], 'modrm':0x38} class cli(Instruction): machine_inst = no_op params = {'opcode':[0xFA], 'modrm':None} class clts(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0x06], 'modrm':None} class cmc(Instruction): machine_inst = no_op params = {'opcode':[0xF5], 'modrm':None} class cmovo(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x40], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x40], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x40], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x40], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x40], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x40], 'modrm':None})) class cmovno(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x41], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x41], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x41], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x41], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x41], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x41], 'modrm':None})) class cmovb(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x42], 'modrm':None})) class cmovc(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x42], 'modrm':None})) class cmovnae(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x42], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x42], 'modrm':None})) class cmovnb(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x43], 'modrm':None})) class cmovnc(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x43], 'modrm':None})) class cmovae(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x43], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x43], 'modrm':None})) class cmovz(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x44], 'modrm':None})) class cmove(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x44], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x44], 'modrm':None})) class cmovnz(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x45], 'modrm':None})) class cmovne(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x45], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x45], 'modrm':None})) class cmovbe(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x46], 'modrm':None})) class cmovna(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x46], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x46], 'modrm':None})) class cmovnbe(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x47], 'modrm':None})) class cmova(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x47], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x47], 'modrm':None})) class cmovs(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x48], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x48], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x48], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x48], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x48], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x48], 'modrm':None})) class cmovns(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x49], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x49], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x49], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x49], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x49], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x49], 'modrm':None})) class cmovp(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4A], 'modrm':None})) class cmovpe(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4A], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4A], 'modrm':None})) class cmovnp(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4B], 'modrm':None})) class cmovpo(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4B], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4B], 'modrm':None})) class cmovl(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4C], 'modrm':None})) class cmovnge(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4C], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4C], 'modrm':None})) class cmovnl(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4D], 'modrm':None})) class cmovge(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4D], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4D], 'modrm':None})) class cmovle(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4E], 'modrm':None})) class cmovng(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4E], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4E], 'modrm':None})) class cmovnle(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4F], 'modrm':None})) class cmovg(DispatchInstruction): dispatch = ( (reg64_reg64_rev, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg32_reg32_rev, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg16_reg16_rev, {'opcode':[0x0F, 0x4F], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0x4F], 'modrm':None})) class cmp(DispatchInstruction): dispatch = ( (reg64_simm8, {'opcode':[0x83], 'modrm':0x38}), (mem64_simm8, {'opcode':[0x83], 'modrm':0x38}), (rax_imm32, {'opcode':[0x3D], 'modrm':None}), (reg64_imm32, {'opcode':[0x81], 'modrm':0x38}), (mem64_imm32, {'opcode':[0x81], 'modrm':0x38}), (reg64_reg64, {'opcode':[0x39], 'modrm':None}), (mem64_reg64, {'opcode':[0x39], 'modrm':None}), (reg64_mem64, {'opcode':[0x3B], 'modrm':None}), (reg32_simm8, {'opcode':[0x83], 'modrm':0x38}), (mem32_simm8, {'opcode':[0x83], 'modrm':0x38}), (eax_imm32, {'opcode':[0x3D], 'modrm':None}), (reg32_imm32, {'opcode':[0x81], 'modrm':0x38}), (mem32_imm32, {'opcode':[0x81], 'modrm':0x38}), (reg32_reg32, {'opcode':[0x39], 'modrm':None}), (mem32_reg32, {'opcode':[0x39], 'modrm':None}), (reg32_mem32, {'opcode':[0x3B], 'modrm':None}), (reg16_simm8, {'opcode':[0x83], 'modrm':0x38}), (mem16_simm8, {'opcode':[0x83], 'modrm':0x38}), (ax_imm16, {'opcode':[0x66, 0x3D], 'modrm':None}), (reg16_imm16, {'opcode':[0x81], 'modrm':0x38}), (mem16_imm16, {'opcode':[0x81], 'modrm':0x38}), (reg16_reg16, {'opcode':[0x39], 'modrm':None}), (mem16_reg16, {'opcode':[0x39], 'modrm':None}), (reg16_mem16, {'opcode':[0x3B], 'modrm':None}), (al_imm8, {'opcode':[0x3C], 'modrm':None}), (reg8_imm8, {'opcode':[0x80], 'modrm':0x38}), (mem8_imm8, {'opcode':[0x80], 'modrm':0x38}), (reg8_reg8, {'opcode':[0x38], 'modrm':None}), (mem8_reg8, {'opcode':[0x38], 'modrm':None}), (reg8_mem8, {'opcode':[0x3A], 'modrm':None})) class cmpsb(Instruction): machine_inst = no_op params = {'opcode':[0xA6], 'modrm':None} class cmpsd(Instruction): machine_inst = no_op params = {'opcode':[0xA7], 'modrm':None} class cmpsw(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0xA7], 'modrm':None} class cmpsq(Instruction): machine_inst = no_op params = {'opcode':[0x48, 0xA7], 'modrm':None} class cmpxchg(DispatchInstruction): dispatch = ( (reg64_reg64, {'opcode':[0x0F, 0xB1], 'modrm':None}), (mem64_reg64, {'opcode':[0x0F, 0xB1], 'modrm':None}), (reg32_reg32, {'opcode':[0x0F, 0xB1], 'modrm':None}), (mem32_reg32, {'opcode':[0x0F, 0xB1], 'modrm':None}), (reg16_reg16, {'opcode':[0x0F, 0xB1], 'modrm':None}), (mem16_reg16, {'opcode':[0x0F, 0xB1], 'modrm':None}), (reg8_reg8, {'opcode':[0x0F, 0xB0], 'modrm':None}), (mem8_reg8, {'opcode':[0x0F, 0xB0], 'modrm':None})) class cmpxchg8b(Instruction): machine_inst = mem64_32 params = {'opcode':[0x0F, 0xC7], 'modrm':0x08} class cmpxchg16b(Instruction): machine_inst = mem128 params = {'opcode':[0x0F, 0xC7], 'modrm':0x08} class cpuid(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0xA2], 'modrm':None} class cqo(Instruction): machine_inst = no_op params = {'opcode':[0x48, 0x99], 'modrm':None} class crc32(DispatchInstruction): dispatch = ( (reg64_reg64, {'opcode':[0x0F, 0x38, 0xF1], 'modrm':None, 'prefix':[0xF2]}), (reg64_mem64, {'opcode':[0x0F, 0x38, 0xF1], 'modrm':None, 'prefix':[0xF2]}), (reg64_reg8, {'opcode':[0x0F, 0x38, 0xF0], 'modrm':None, 'prefix':[0xF2]}), (reg64_mem8, {'opcode':[0x0F, 0x38, 0xF0], 'modrm':None, 'prefix':[0xF2]}), (reg32_reg32, {'opcode':[0x0F, 0x38, 0xF1], 'modrm':None, 'prefix':[0xF2]}), (reg32_mem32, {'opcode':[0x0F, 0x38, 0xF1], 'modrm':None, 'prefix':[0xF2]}), (reg32_reg16, {'opcode':[0x0F, 0x38, 0xF1], 'modrm':None, 'prefix':[0x66, 0xF2]}), (reg32_mem16, {'opcode':[0x0F, 0x38, 0xF1], 'modrm':None, 'prefix':[0x66, 0xF2]}), (reg32_reg8, {'opcode':[0x0F, 0x38, 0xF0], 'modrm':None, 'prefix':[0xF2]}), (reg32_mem8, {'opcode':[0x0F, 0x38, 0xF0], 'modrm':None, 'prefix':[0xF2]})) class cwd(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0x99], 'modrm':None} class cwde(Instruction): machine_inst = no_op params = {'opcode':[0x98], 'modrm':None} class dec(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0xFF], 'modrm':0x08}), (mem64, {'opcode':[0xFF], 'modrm':0x08}), (reg32, {'opcode':[0xFF], 'modrm':0x08}), (mem32, {'opcode':[0xFF], 'modrm':0x08}), (reg16, {'opcode':[0xFF], 'modrm':0x08}), (mem16, {'opcode':[0x66, 0xFF], 'modrm':0x08}), (reg8, {'opcode':[0xFE], 'modrm':0x08}), (mem8, {'opcode':[0xFE], 'modrm':0x08})) class div(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0xF7], 'modrm':0x30}), (mem64, {'opcode':[0xF7], 'modrm':0x30}), (reg32, {'opcode':[0xF7], 'modrm':0x30}), (mem32, {'opcode':[0xF7], 'modrm':0x30}), (reg16, {'opcode':[0xF7], 'modrm':0x30}), (mem16, {'opcode':[0x66, 0xF7], 'modrm':0x30}), (reg8, {'opcode':[0xF6], 'modrm':0x30}), (mem8, {'opcode':[0xF6], 'modrm':0x30})) class enter(Instruction): machine_inst = imm16_imm8 params = {'opcode':[0xC8], 'modrm':None} class hlt(Instruction): machine_inst = no_op params = {'opcode':[0xF4], 'modrm':None} class idiv(DispatchInstruction): dispatch = ( (reg32, {'opcode':[0xF7], 'modrm':0x38}), (mem32, {'opcode':[0xF7], 'modrm':0x38}), (reg16, {'opcode':[0xF7], 'modrm':0x38}), (mem16, {'opcode':[0x66, 0xF7], 'modrm':0x38}), (reg8, {'opcode':[0xF6], 'modrm':0x38}), (mem8, {'opcode':[0xF6], 'modrm':0x38})) class imul(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0xF7], 'modrm':0x28}), (mem64, {'opcode':[0xF7], 'modrm':0x28}), (reg64_reg64_rev, {'opcode':[0x0F, 0xAF], 'modrm':None}), (reg64_mem64, {'opcode':[0x0F, 0xAF], 'modrm':None}), (reg64_reg64_simm8_rev,{'opcode':[0x6B], 'modrm':None}), (reg64_mem64_simm8, {'opcode':[0x6B], 'modrm':None}), (reg64_reg64_imm32, {'opcode':[0x69], 'modrm':None}), (reg64_mem64_imm32, {'opcode':[0x69], 'modrm':None}), (reg32, {'opcode':[0xF7], 'modrm':0x28}), (mem32, {'opcode':[0xF7], 'modrm':0x28}), (reg32_reg32_rev, {'opcode':[0x0F, 0xAF], 'modrm':None}), (reg32_mem32, {'opcode':[0x0F, 0xAF], 'modrm':None}), (reg32_reg32_simm8_rev,{'opcode':[0x6B], 'modrm':None}), (reg32_mem32_simm8, {'opcode':[0x6B], 'modrm':None}), (reg32_reg32_imm32, {'opcode':[0x69], 'modrm':None}), (reg32_mem32_imm32, {'opcode':[0x69], 'modrm':None}), (reg16, {'opcode':[0xF7], 'modrm':0x28}), (mem16, {'opcode':[0x66, 0xF7], 'modrm':0x28}), (reg16_reg16, {'opcode':[0x0F, 0xAF], 'modrm':None}), (reg16_mem16, {'opcode':[0x0F, 0xAF], 'modrm':None}), (reg16_reg16_simm8_rev,{'opcode':[0x6B], 'modrm':None}), (reg16_mem16_simm8, {'opcode':[0x6B], 'modrm':None}), (reg16_reg16_imm16, {'opcode':[0x69], 'modrm':None}), (reg16_mem16_imm16, {'opcode':[0x69], 'modrm':None}), (reg8, {'opcode':[0xF6], 'modrm':0x28}), (mem8, {'opcode':[0xF6], 'modrm':0x28})) class in_(DispatchInstruction): dispatch = ( (eax_dx, {'opcode':[0xED], 'modrm':None}), (ax_dx, {'opcode':[0x66, 0xED], 'modrm':None}), (al_dx, {'opcode':[0xEC], 'modrm':None}), (eax_imm8, {'opcode':[0xE5], 'modrm':None}), (ax_imm8, {'opcode':[0x66, 0xE5], 'modrm':None}), (al_imm8, {'opcode':[0xE4], 'modrm':None})) class inc(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0xFF], 'modrm':0x00}), (mem64, {'opcode':[0xFF], 'modrm':0x00}), (reg32, {'opcode':[0xFF], 'modrm':0x00}), (mem32, {'opcode':[0xFF], 'modrm':0x00}), (reg16, {'opcode':[0xFF], 'modrm':0x00}), (mem16, {'opcode':[0x66, 0xFF], 'modrm':0x00}), (reg8, {'opcode':[0xFE], 'modrm':0x00}), (mem8, {'opcode':[0xFE], 'modrm':0x00})) class insb(Instruction): machine_inst = no_op params = {'opcode':[0x6C], 'modrm':None} class insd(Instruction): machine_inst = no_op params = {'opcode':[0x6D], 'modrm':None} class insw(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0x6D], 'modrm':None} class int_(Instruction): machine_inst = imm8 params = {'opcode':[0xCD], 'modrm':None} class int_3(Instruction): """NOTE - this is a special form of 'int 3' used for debugging; see the architecture manuals for more information.""" machine_inst = no_op params = {'opcode':[0xCC], 'modrm':None} class invd(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0x08], 'modrm':None} class invlpg(Instruction): machine_inst = mem8 params = {'opcode':[0x0F, 0x01], 'modrm':0x38} class iret(Instruction): machine_inst = no_op params = {'opcode':[0xCF], 'modrm':None} class iretd(Instruction): machine_inst = no_op params = {'opcode':[0xCF], 'modrm':None} class iretq(Instruction): machine_inst = no_op params = {'opcode':[0x48, 0xCF], 'modrm':None} class ja(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x77], [0x0F, 0x87]], 'modrm':None}), (rel32_8off, {'opcode':[[0x77], [0x0F, 0x87]], 'modrm':None})) #(rel8off, {'opcode':[0x77], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x87], 'modrm':None})) class jae(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x73], [0x0F, 0x83]], 'modrm':None}), (rel32_8off, {'opcode':[[0x73], [0x0F, 0x83]], 'modrm':None})) #(rel8off, {'opcode':[0x73], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x83], 'modrm':None})) class jb(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x72], [0x0F, 0x82]], 'modrm':None}), (rel32_8off, {'opcode':[[0x72], [0x0F, 0x82]], 'modrm':None})) #(rel8off, {'opcode':[0x72], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x82], 'modrm':None})) class jbe(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x76], [0x0F, 0x86]], 'modrm':None}), (rel32_8off, {'opcode':[[0x76], [0x0F, 0x86]], 'modrm':None})) #(rel8off, {'opcode':[0x76], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x86], 'modrm':None})) class jc(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x72], [0x0F, 0x82]], 'modrm':None}), (rel32_8off, {'opcode':[[0x72], [0x0F, 0x82]], 'modrm':None})) #(rel8off, {'opcode':[0x72], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x82], 'modrm':None})) class je(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x74], [0x0F, 0x84]], 'modrm':None}), (rel32_8off, {'opcode':[[0x74], [0x0F, 0x84]], 'modrm':None})) #(rel8off, {'opcode':[0x74], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x84], 'modrm':None})) class jecxz(DispatchInstruction): dispatch = ( (lbl8off, {'opcode':[0x67, 0xE3], 'modrm':None}), (rel8off, {'opcode':[0x67, 0xE3], 'modrm':None})) class jg(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7F], [0x0F, 0x8F]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7F], [0x0F, 0x8F]], 'modrm':None})) #(rel8off, {'opcode':[0x7F], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8F], 'modrm':None})) class jge(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7D], [0x0F, 0x8D]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7D], [0x0F, 0x8D]], 'modrm':None})) #(rel8off, {'opcode':[0x7D], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8D], 'modrm':None})) class jl(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7C], [0x0F, 0x8C]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7C], [0x0F, 0x8C]], 'modrm':None})) #(rel8off, {'opcode':[0x7C], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8C], 'modrm':None})) class jle(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7E], [0x0F, 0x8E]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7E], [0x0F, 0x8E]], 'modrm':None})) #(rel8off, {'opcode':[0x7E], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8E], 'modrm':None})) class jmp(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0xEB], [0xE9]], 'modrm':None}), (rel32_8off, {'opcode':[[0xEB], [0xE9]], 'modrm':None}), #(rel8off, {'opcode':[0xEB], 'modrm':None}), #(rel32off, {'opcode':[0xE9], 'modrm':None}), (reg64, {'opcode':[0xFF], 'modrm':0x20}), (mem64_32, {'opcode':[0xFF], 'modrm':0x20}), (reg16, {'opcode':[0xFF], 'modrm':0x20}), (mem16, {'opcode':[0x66, 0xFF], 'modrm':0x20})) class jna(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x76], [0x0F, 0x86]], 'modrm':None}), (rel32_8off, {'opcode':[[0x76], [0x0F, 0x86]], 'modrm':None})) #(rel8off, {'opcode':[0x76], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x86], 'modrm':None})) class jnae(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x72], [0x0F, 0x82]], 'modrm':None}), (rel32_8off, {'opcode':[[0x72], [0x0F, 0x82]], 'modrm':None})) #(rel8off, {'opcode':[0x72], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x82], 'modrm':None})) class jnb(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x73], [0x0F, 0x83]], 'modrm':None}), (rel32_8off, {'opcode':[[0x73], [0x0F, 0x83]], 'modrm':None})) #(rel8off, {'opcode':[0x73], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x83], 'modrm':None})) class jnbe(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x77], [0x0F, 0x87]], 'modrm':None}), (rel32_8off, {'opcode':[[0x77], [0x0F, 0x87]], 'modrm':None})) #(rel8off, {'opcode':[0x77], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x87], 'modrm':None})) class jnc(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x73], [0x0F, 0x83]], 'modrm':None}), (rel32_8off, {'opcode':[[0x73], [0x0F, 0x83]], 'modrm':None})) #(rel8off, {'opcode':[0x73], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x83], 'modrm':None})) class jne(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x75], [0x0F, 0x85]], 'modrm':None}), (rel32_8off, {'opcode':[[0x75], [0x0F, 0x85]], 'modrm':None})) #(rel8off, {'opcode':[0x75], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x85], 'modrm':None})) class jng(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7E], [0x0F, 0x8E]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7E], [0x0F, 0x8E]], 'modrm':None})) #(rel8off, {'opcode':[0x7E], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8E], 'modrm':None})) class jnge(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7C], [0x0F, 0x8C]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7C], [0x0F, 0x8C]], 'modrm':None})) #(rel8off, {'opcode':[0x7C], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8C], 'modrm':None})) class jnl(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7D], [0x0F, 0x8D]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7D], [0x0F, 0x8D]], 'modrm':None})) #(rel8off, {'opcode':[0x7D], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8D], 'modrm':None})) class jnle(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7F], [0x0F, 0x8F]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7F], [0x0F, 0x8F]], 'modrm':None})) #(rel8off, {'opcode':[0x7F], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8F], 'modrm':None})) class jno(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x71], [0x0F, 0x81]], 'modrm':None}), (rel32_8off, {'opcode':[[0x71], [0x0F, 0x81]], 'modrm':None})) #(rel8off, {'opcode':[0x71], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x81], 'modrm':None})) class jnp(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7B], [0x0F, 0x8B]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7B], [0x0F, 0x8B]], 'modrm':None})) #(rel8off, {'opcode':[0x7B], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8B], 'modrm':None})) class jns(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x79], [0x0F, 0x89]], 'modrm':None}), (rel32_8off, {'opcode':[[0x79], [0x0F, 0x89]], 'modrm':None})) #(rel8off, {'opcode':[0x79], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x89], 'modrm':None})) class jnz(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x75], [0x0F, 0x85]], 'modrm':None}), (rel32_8off, {'opcode':[[0x75], [0x0F, 0x85]], 'modrm':None})) #(rel8off, {'opcode':[0x75], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x85], 'modrm':None})) class jo(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x70], [0x0F, 0x80]], 'modrm':None}), (rel32_8off, {'opcode':[[0x70], [0x0F, 0x80]], 'modrm':None})) #(rel8off, {'opcode':[0x70], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x80], 'modrm':None})) class jp(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7A], [0x0F, 0x8A]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7A], [0x0F, 0x8A]], 'modrm':None})) #(rel8off, {'opcode':[0x7A], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8A], 'modrm':None})) class jpe(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7A], [0x0F, 0x8A]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7A], [0x0F, 0x8A]], 'modrm':None})) #(rel8off, {'opcode':[0x7A], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8A], 'modrm':None})) class jpo(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x7B], [0x0F, 0x8B]], 'modrm':None}), (rel32_8off, {'opcode':[[0x7B], [0x0F, 0x8B]], 'modrm':None})) #(rel8off, {'opcode':[0x7B], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x8B], 'modrm':None})) class jrcxz(DispatchInstruction): dispatch = ( (lbl8off, {'opcode':[0xE3], 'modrm':None}), (rel8off, {'opcode':[0xE3], 'modrm':None})) class js(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x78], [0x0F, 0x88]], 'modrm':None}), (rel32_8off, {'opcode':[[0x78], [0x0F, 0x88]], 'modrm':None})) #(rel8off, {'opcode':[0x78], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x88], 'modrm':None})) class jz(DispatchInstruction): dispatch = ( (lbl32_8off, {'opcode':[[0x74], [0x0F, 0x84]], 'modrm':None}), (rel32_8off, {'opcode':[[0x74], [0x0F, 0x84]], 'modrm':None})) #(rel8off, {'opcode':[0x74], 'modrm':None}), #(rel32off, {'opcode':[0x0F, 0x84], 'modrm':None})) class lahf(Instruction): machine_inst = no_op params = {'opcode':[0x9F], 'modrm':None} class lea(DispatchInstruction): dispatch = ( (reg64_mem, {'opcode':[0x8D], 'modrm':0x00}), (reg32_mem, {'opcode':[0x8D], 'modrm':0x00}), (reg16_mem, {'opcode':[0x8D], 'modrm':0x00})) class leave(Instruction): machine_inst = no_op params = {'opcode':[0xC9], 'modrm':None} class lfence(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0xAE, 0xE8], 'modrm':None} class lodsb(Instruction): machine_inst = no_op params = {'opcode':[0xAC], 'modrm':None} class lodsd(Instruction): machine_inst = no_op params = {'opcode':[0xAD], 'modrm':None} class lodsq(Instruction): machine_inst = no_op params = {'opcode':[0x48, 0xAD], 'modrm':None} class lodsw(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0xAD], 'modrm':None} class loop(DispatchInstruction): dispatch = ( (lbl8off, {'opcode':[0xE2], 'modrm':None}), (rel8off, {'opcode':[0xE2], 'modrm':None})) class loope(DispatchInstruction): dispatch = ( (lbl8off, {'opcode':[0xE1], 'modrm':None}), (rel8off, {'opcode':[0xE1], 'modrm':None})) class loopne(DispatchInstruction): dispatch = ( (lbl8off, {'opcode':[0xE0], 'modrm':None}), (rel8off, {'opcode':[0xE0], 'modrm':None})) class loopnz(DispatchInstruction): dispatch = ( (lbl8off, {'opcode':[0xE0], 'modrm':None}), (rel8off, {'opcode':[0xE0], 'modrm':None})) class loopz(DispatchInstruction): dispatch = ( (lbl8off, {'opcode':[0xE1], 'modrm':None}), (rel8off, {'opcode':[0xE1], 'modrm':None})) class lzcnt(DispatchInstruction): dispatch = ( (reg64_reg64, {'opcode':[0x0F, 0xBD], 'modrm':None, 'prefix':[0xF3]}), (reg64_mem64, {'opcode':[0x0F, 0xBD], 'modrm':None, 'prefix':[0xF3]}), (reg32_reg32, {'opcode':[0x0F, 0xBD], 'modrm':None, 'prefix':[0xF3]}), (reg32_mem32, {'opcode':[0x0F, 0xBD], 'modrm':None, 'prefix':[0xF3]}), (reg16_reg16, {'opcode':[0x0F, 0xBD], 'modrm':None, 'prefix':[0xF3]}), (reg16_mem16, {'opcode':[0x0F, 0xBD], 'modrm':None, 'prefix':[0xF3]})) class mfence(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0xAE, 0xF0], 'modrm':None} class mov(DispatchInstruction): dispatch = ( # TODO - implement moffset* operands! (reg64_imm32, {'opcode':[0xC7], 'modrm':0x00}), (mem64_imm32, {'opcode':[0xC7], 'modrm':0x00}), (reg64_imm64, {'opcode':[0xB8], 'modrm':None}), (reg64_reg64, {'opcode':[0x89], 'modrm':None}), (mem64_reg64, {'opcode':[0x89], 'modrm':None}), (reg64_mem64, {'opcode':[0x8B], 'modrm':None}), (reg32_imm32, {'opcode':[0xB8], 'modrm':None}), (mem32_imm32, {'opcode':[0xC7], 'modrm':0x00}), (reg32_reg32, {'opcode':[0x89], 'modrm':None}), (mem32_reg32, {'opcode':[0x89], 'modrm':None}), (reg32_mem32, {'opcode':[0x8B], 'modrm':None}), (reg16_imm16, {'opcode':[0xB8], 'modrm':None}), (mem16_imm16, {'opcode':[0xC7], 'modrm':0x00}), (reg16_reg16, {'opcode':[0x89], 'modrm':None}), (mem16_reg16, {'opcode':[0x89], 'modrm':None}), (reg16_mem16, {'opcode':[0x8B], 'modrm':None}), (reg8_imm8, {'opcode':[0xB0], 'modrm':None}), (mem8_imm8, {'opcode':[0xC6], 'modrm':0x00}), (reg8_reg8, {'opcode':[0x88], 'modrm':None}), (mem8_reg8, {'opcode':[0x88], 'modrm':None}), (reg8_mem8, {'opcode':[0x8A], 'modrm':None})) class movnti(DispatchInstruction): dispatch = ( (mem64_reg64, {'opcode':[0x0F, 0xC3], 'modrm':None}), (mem32_reg32, {'opcode':[0x0F, 0xC3], 'modrm':None})) # SSE2! class movsb(Instruction): machine_inst = no_op params = {'opcode':[0xA4], 'modrm':None} class movsd(Instruction): machine_inst = no_op params = {'opcode':[0xA5], 'modrm':None} class movsq(Instruction): machine_inst = no_op params = {'opcode':[0x48, 0xA5], 'modrm':None} class movsw(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0xA5], 'modrm':None} class movsx(DispatchInstruction): dispatch = ( (reg64_reg8, {'opcode':[0x0F, 0xBE], 'modrm':None, 'prefix':[]}), (reg64_mem8, {'opcode':[0x0F, 0xBE], 'modrm':None, 'prefix':[]}), (reg64_reg16, {'opcode':[0x0F, 0xBF], 'modrm':None}), (reg64_mem16, {'opcode':[0x0F, 0xBF], 'modrm':None}), (reg32_reg8, {'opcode':[0x0F, 0xBE], 'modrm':None, 'prefix':[]}), (reg32_mem8, {'opcode':[0x0F, 0xBE], 'modrm':None, 'prefix':[]}), (reg32_reg16, {'opcode':[0x0F, 0xBF], 'modrm':None, 'prefix':[]}), (reg32_mem16, {'opcode':[0x0F, 0xBF], 'modrm':None, 'prefix':[]}), (reg16_reg8, {'opcode':[0x0F, 0xBE], 'modrm':None}), (reg16_mem8, {'opcode':[0x0F, 0xBE], 'modrm':None})) class movsxd(DispatchInstruction): dispatch = ( (reg64_reg32, {'opcode':[0x63], 'modrm':None}), (reg64_mem32, {'opcode':[0x63], 'modrm':None})) class movzx(DispatchInstruction): dispatch = ( (reg64_reg8, {'opcode':[0x0F, 0xB6], 'modrm':None, 'prefix':[]}), (reg64_mem8, {'opcode':[0x0F, 0xB6], 'modrm':None, 'prefix':[]}), (reg64_reg16, {'opcode':[0x0F, 0xB7], 'modrm':None}), (reg64_mem16, {'opcode':[0x0F, 0xB7], 'modrm':None}), (reg32_reg8, {'opcode':[0x0F, 0xB6], 'modrm':None, 'prefix':[]}), (reg32_mem8, {'opcode':[0x0F, 0xB6], 'modrm':None, 'prefix':[]}), (reg32_reg16, {'opcode':[0x0F, 0xB7], 'modrm':None, 'prefix':[]}), (reg32_mem16, {'opcode':[0x0F, 0xB7], 'modrm':None, 'prefix':[]}), (reg16_reg8, {'opcode':[0x0F, 0xB6], 'modrm':None}), (reg16_mem8, {'opcode':[0x0F, 0xB6], 'modrm':None})) class mul(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0xF7], 'modrm':0x20}), (mem64, {'opcode':[0xF7], 'modrm':0x20}), (reg32, {'opcode':[0xF7], 'modrm':0x20}), (mem32, {'opcode':[0xF7], 'modrm':0x20}), (reg16, {'opcode':[0xF7], 'modrm':0x20}), (mem16, {'opcode':[0x66, 0xF7], 'modrm':0x20}), (reg8, {'opcode':[0xF6], 'modrm':0x20}), (mem8, {'opcode':[0xF6], 'modrm':0x20})) class neg(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0xF7], 'modrm':0x18}), (mem64, {'opcode':[0xF7], 'modrm':0x18}), (reg32, {'opcode':[0xF7], 'modrm':0x18}), (mem32, {'opcode':[0xF7], 'modrm':0x18}), (reg16, {'opcode':[0xF7], 'modrm':0x18}), (mem16, {'opcode':[0x66, 0xF7], 'modrm':0x18}), (reg8, {'opcode':[0xF6], 'modrm':0x18}), (mem8, {'opcode':[0xF6], 'modrm':0x18})) # TODO - REX prefix isn't needed for the reg64/mem64 versions.. what to do? # Could add an extra 'rex' param indicating whether REX is needed.. class nop(Instruction): machine_inst = no_op params = {'opcode':[0x90], 'modrm':None} class not_(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0xF7], 'modrm':0x10}), (mem64, {'opcode':[0xF7], 'modrm':0x10}), (reg32, {'opcode':[0xF7], 'modrm':0x10}), (mem32, {'opcode':[0xF7], 'modrm':0x10}), (reg16, {'opcode':[0xF7], 'modrm':0x10}), (mem16, {'opcode':[0x66, 0xF7], 'modrm':0x10}), (reg8, {'opcode':[0xF6], 'modrm':0x10}), (mem8, {'opcode':[0xF6], 'modrm':0x10})) class or_(DispatchInstruction): dispatch = ( (reg64_simm8, {'opcode':[0x83], 'modrm':0x08}), (mem64_simm8, {'opcode':[0x83], 'modrm':0x08}), (rax_imm32, {'opcode':[0x0D], 'modrm':None}), (reg64_imm32, {'opcode':[0x81], 'modrm':0x08}), (mem64_imm32, {'opcode':[0x81], 'modrm':0x08}), (mem64_reg64, {'opcode':[0x09], 'modrm':None}), (reg64_reg64, {'opcode':[0x09], 'modrm':None}), (reg64_mem64, {'opcode':[0x0B], 'modrm':None}), (reg32_simm8, {'opcode':[0x83], 'modrm':0x08}), (mem32_simm8, {'opcode':[0x83], 'modrm':0x08}), (eax_imm32, {'opcode':[0x0D], 'modrm':None}), (reg32_imm32, {'opcode':[0x81], 'modrm':0x08}), (mem32_imm32, {'opcode':[0x81], 'modrm':0x08}), (mem32_reg32, {'opcode':[0x09], 'modrm':None}), (reg32_reg32, {'opcode':[0x09], 'modrm':None}), (reg32_mem32, {'opcode':[0x0B], 'modrm':None}), (reg16_simm8, {'opcode':[0x83], 'modrm':0x08}), (mem16_simm8, {'opcode':[0x83], 'modrm':0x08}), (ax_imm16, {'opcode':[0x66, 0x0D], 'modrm':None}), (reg16_imm16, {'opcode':[0x81], 'modrm':0x08}), (mem16_imm16, {'opcode':[0x81], 'modrm':0x08}), (mem16_reg16, {'opcode':[0x09], 'modrm':None}), (reg16_reg16, {'opcode':[0x09], 'modrm':None}), (reg16_mem16, {'opcode':[0x0B], 'modrm':None}), (al_imm8, {'opcode':[0x0C], 'modrm':None}), (reg8_imm8, {'opcode':[0x80], 'modrm':0x08}), (mem8_imm8, {'opcode':[0x80], 'modrm':0x08}), (reg8_reg8, {'opcode':[0x08], 'modrm':None}), (mem8_reg8, {'opcode':[0x08], 'modrm':None}), (reg8_mem8, {'opcode':[0x0A], 'modrm':None})) class out(DispatchInstruction): dispatch = ( (dx_eax, {'opcode':[0xEF], 'modrm':None}), (dx_ax, {'opcode':[0x66, 0xEF], 'modrm':None}), (dx_al, {'opcode':[0xEE], 'modrm':None}), (imm8_eax, {'opcode':[0xE7], 'modrm':None}), (imm8_ax, {'opcode':[0x66, 0xE7], 'modrm':None}), (imm8_al, {'opcode':[0xE6], 'modrm':None})) class outsb(Instruction): machine_inst = no_op params = {'opcode':[0x6E], 'modrm':None} class outsd(Instruction): machine_inst = no_op params = {'opcode':[0x6F], 'modrm':None} class outsw(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0x6F], 'modrm':None} class pause(Instruction): machine_inst = no_op params = {'opcode':[0xF3, 0x90], 'modrm':None} class pop(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0x58], 'modrm':None}), (mem64, {'opcode':[0x8F], 'modrm':0x00}), (reg16, {'opcode':[0x58], 'modrm':None}), (mem16, {'opcode':[0x66, 0x8F], 'modrm':0x00})) class popcnt(DispatchInstruction): dispatch = ( (reg64_reg64, {'opcode':[0x0F, 0xB8], 'modrm':None, 'prefix':[0xF3]}), (reg64_mem64, {'opcode':[0x0F, 0xB8], 'modrm':None, 'prefix':[0xF3]}), (reg32_reg32, {'opcode':[0x0F, 0xB8], 'modrm':None, 'prefix':[0xF3]}), (reg32_mem32, {'opcode':[0x0F, 0xB8], 'modrm':None, 'prefix':[0xF3]}), (reg16_reg16, {'opcode':[0x0F, 0xB8], 'modrm':None, 'prefix':[0xF3]}), (reg16_mem16, {'opcode':[0x0F, 0xB8], 'modrm':None, 'prefix':[0xF3]})) class popf(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0x9D], 'modrm':None} class popfq(Instruction): machine_inst = no_op params = {'opcode':[0x9D], 'modrm':None} class prefetch(Instruction): machine_inst = mem8 params = {'opcode':[0x0F, 0x0D], 'modrm':0x00} class prefetchnta(Instruction): machine_inst = mem8 params = {'opcode':[0x0F, 0x18], 'modrm':0x00} class prefetcht0(Instruction): machine_inst = mem8 params = {'opcode':[0x0F, 0x18], 'modrm':0x08} class prefetcht1(Instruction): machine_inst = mem8 params = {'opcode':[0x0F, 0x18], 'modrm':0x10} class prefetcht2(Instruction): machine_inst = mem8 params = {'opcode':[0x0F, 0x18], 'modrm':0x18} class prefetchw(Instruction): machine_inst = mem8 params = {'opcode':[0x0F, 0x0D], 'modrm':0x08} class push(DispatchInstruction): dispatch = ( (reg64, {'opcode':[0x50], 'modrm':None}), (mem64, {'opcode':[0xFF], 'modrm':0x30}), # TODO - add keyword arg to override operand size? #(imm8, {'opcode':[0x6A], 'modrm':None}), #(imm16, {'opcode':[0x66, 0x68], 'modrm':None}), (imm32, {'opcode':[0x68], 'modrm':None}), (reg16, {'opcode':[0x50], 'modrm':None}), (mem16, {'opcode':[0x66, 0xFF], 'modrm':0x30})) class pushf(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0x9C], 'modrm':None} class pushfq(Instruction): machine_inst = no_op params = {'opcode':[0x9C], 'modrm':None} class rcl(DispatchInstruction): dispatch = ( (reg64_1, {'opcode':[0xD1], 'modrm':0x10}), (mem64_1, {'opcode':[0xD1], 'modrm':0x10}), (reg64_cl, {'opcode':[0xD3], 'modrm':0x10}), (mem64_cl, {'opcode':[0xD3], 'modrm':0x10}), (reg64_simm8, {'opcode':[0xC1], 'modrm':0x10}), (mem64_simm8, {'opcode':[0xC1], 'modrm':0x10}), (reg32_1, {'opcode':[0xD1], 'modrm':0x10}), (mem32_1, {'opcode':[0xD1], 'modrm':0x10}), (reg32_cl, {'opcode':[0xD3], 'modrm':0x10}), (mem32_cl, {'opcode':[0xD3], 'modrm':0x10}), (reg32_simm8, {'opcode':[0xC1], 'modrm':0x10}), (mem32_simm8, {'opcode':[0xC1], 'modrm':0x10}), (reg16_1, {'opcode':[0xD1], 'modrm':0x10}), (mem16_1, {'opcode':[0xD1], 'modrm':0x10}), (reg16_cl, {'opcode':[0xD3], 'modrm':0x10}), (mem16_cl, {'opcode':[0xD3], 'modrm':0x10}), (reg16_simm8, {'opcode':[0xC1], 'modrm':0x10}), (mem16_simm8, {'opcode':[0xC1], 'modrm':0x10}), (reg8_1, {'opcode':[0xD0], 'modrm':0x10}), (mem8_1, {'opcode':[0xD0], 'modrm':0x10}), (reg8_cl, {'opcode':[0xD2], 'modrm':0x10}), (mem8_cl, {'opcode':[0xD2], 'modrm':0x10}), (reg8_imm8, {'opcode':[0xC0], 'modrm':0x10}), (mem8_imm8, {'opcode':[0xC0], 'modrm':0x10})) class rcr(DispatchInstruction): dispatch = ( (reg64_1, {'opcode':[0xD1], 'modrm':0x18}), (mem64_1, {'opcode':[0xD1], 'modrm':0x18}), (reg64_cl, {'opcode':[0xD3], 'modrm':0x18}), (mem64_cl, {'opcode':[0xD3], 'modrm':0x18}), (reg64_simm8, {'opcode':[0xC1], 'modrm':0x18}), (mem64_simm8, {'opcode':[0xC1], 'modrm':0x18}), (reg32_1, {'opcode':[0xD1], 'modrm':0x18}), (mem32_1, {'opcode':[0xD1], 'modrm':0x18}), (reg32_cl, {'opcode':[0xD3], 'modrm':0x18}), (mem32_cl, {'opcode':[0xD3], 'modrm':0x18}), (reg32_simm8, {'opcode':[0xC1], 'modrm':0x18}), (mem32_simm8, {'opcode':[0xC1], 'modrm':0x18}), (reg16_1, {'opcode':[0xD1], 'modrm':0x18}), (mem16_1, {'opcode':[0xD1], 'modrm':0x18}), (reg16_cl, {'opcode':[0xD3], 'modrm':0x18}), (mem16_cl, {'opcode':[0xD3], 'modrm':0x18}), (reg16_simm8, {'opcode':[0xC1], 'modrm':0x18}), (mem16_simm8, {'opcode':[0xC1], 'modrm':0x18}), (reg8_1, {'opcode':[0xD0], 'modrm':0x18}), (mem8_1, {'opcode':[0xD0], 'modrm':0x18}), (reg8_cl, {'opcode':[0xD2], 'modrm':0x18}), (mem8_cl, {'opcode':[0xD2], 'modrm':0x18}), (reg8_imm8, {'opcode':[0xC0], 'modrm':0x18}), (mem8_imm8, {'opcode':[0xC0], 'modrm':0x18})) class rdtsc(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0x31], 'modrm':None} class rdtscp(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0x01, 0xF9], 'modrm':None} class ret(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xC3], 'modrm':None}), (imm16, {'opcode':[0xC2], 'modrm':None})) class rol(DispatchInstruction): dispatch = ( (reg64_1, {'opcode':[0xD1], 'modrm':0x00}), (mem64_1, {'opcode':[0xD1], 'modrm':0x00}), (reg64_cl, {'opcode':[0xD3], 'modrm':0x00}), (mem64_cl, {'opcode':[0xD3], 'modrm':0x00}), (reg64_imm8, {'opcode':[0xC1], 'modrm':0x00}), (mem64_imm8, {'opcode':[0xC1], 'modrm':0x00}), (reg32_1, {'opcode':[0xD1], 'modrm':0x00}), (mem32_1, {'opcode':[0xD1], 'modrm':0x00}), (reg32_cl, {'opcode':[0xD3], 'modrm':0x00}), (mem32_cl, {'opcode':[0xD3], 'modrm':0x00}), (reg32_imm8, {'opcode':[0xC1], 'modrm':0x00}), (mem32_imm8, {'opcode':[0xC1], 'modrm':0x00}), (reg16_1, {'opcode':[0xD1], 'modrm':0x00}), (mem16_1, {'opcode':[0xD1], 'modrm':0x00}), (reg16_cl, {'opcode':[0xD3], 'modrm':0x00}), (mem16_cl, {'opcode':[0xD3], 'modrm':0x00}), (reg16_imm8, {'opcode':[0xC1], 'modrm':0x00}), (mem16_imm8, {'opcode':[0xC1], 'modrm':0x00}), (reg8_1, {'opcode':[0xD0], 'modrm':0x00}), (mem8_1, {'opcode':[0xD0], 'modrm':0x00}), (reg8_cl, {'opcode':[0xD2], 'modrm':0x00}), (mem8_cl, {'opcode':[0xD2], 'modrm':0x00}), (reg8_imm8, {'opcode':[0xC0], 'modrm':0x00}), (mem8_imm8, {'opcode':[0xC0], 'modrm':0x00})) class ror(DispatchInstruction): dispatch = ( (reg64_1, {'opcode':[0xD1], 'modrm':0x08}), (mem64_1, {'opcode':[0xD1], 'modrm':0x08}), (reg64_cl, {'opcode':[0xD3], 'modrm':0x08}), (mem64_cl, {'opcode':[0xD3], 'modrm':0x08}), (reg64_imm8, {'opcode':[0xC1], 'modrm':0x08}), (mem64_imm8, {'opcode':[0xC1], 'modrm':0x08}), (reg32_1, {'opcode':[0xD1], 'modrm':0x08}), (mem32_1, {'opcode':[0xD1], 'modrm':0x08}), (reg32_cl, {'opcode':[0xD3], 'modrm':0x08}), (mem32_cl, {'opcode':[0xD3], 'modrm':0x08}), (reg32_imm8, {'opcode':[0xC1], 'modrm':0x08}), (mem32_imm8, {'opcode':[0xC1], 'modrm':0x08}), (reg16_1, {'opcode':[0xD1], 'modrm':0x08}), (mem16_1, {'opcode':[0xD1], 'modrm':0x08}), (reg16_cl, {'opcode':[0xD3], 'modrm':0x08}), (mem16_cl, {'opcode':[0xD3], 'modrm':0x08}), (reg16_imm8, {'opcode':[0xC1], 'modrm':0x08}), (mem16_imm8, {'opcode':[0xC1], 'modrm':0x08}), (reg8_1, {'opcode':[0xD0], 'modrm':0x08}), (mem8_1, {'opcode':[0xD0], 'modrm':0x08}), (reg8_cl, {'opcode':[0xD2], 'modrm':0x08}), (mem8_cl, {'opcode':[0xD2], 'modrm':0x08}), (reg8_imm8, {'opcode':[0xC0], 'modrm':0x08}), (mem8_imm8, {'opcode':[0xC0], 'modrm':0x08})) class sahf(Instruction): machine_inst = no_op params = {'opcode':[0x9E], 'modrm':None} class sal(DispatchInstruction): dispatch = ( (reg64_1, {'opcode':[0xD1], 'modrm':0x20}), (mem64_1, {'opcode':[0xD1], 'modrm':0x20}), (reg64_cl, {'opcode':[0xD3], 'modrm':0x20}), (mem64_cl, {'opcode':[0xD3], 'modrm':0x20}), (reg64_simm8, {'opcode':[0xC1], 'modrm':0x20}), (mem64_simm8, {'opcode':[0xC1], 'modrm':0x20}), (reg32_1, {'opcode':[0xD1], 'modrm':0x20}), (mem32_1, {'opcode':[0xD1], 'modrm':0x20}), (reg32_cl, {'opcode':[0xD3], 'modrm':0x20}), (mem32_cl, {'opcode':[0xD3], 'modrm':0x20}), (reg32_simm8, {'opcode':[0xC1], 'modrm':0x20}), (mem32_simm8, {'opcode':[0xC1], 'modrm':0x20}), (reg16_1, {'opcode':[0xD1], 'modrm':0x20}), (mem16_1, {'opcode':[0xD1], 'modrm':0x20}), (reg16_cl, {'opcode':[0xD3], 'modrm':0x20}), (mem16_cl, {'opcode':[0xD3], 'modrm':0x20}), (reg16_simm8, {'opcode':[0xC1], 'modrm':0x20}), (mem16_simm8, {'opcode':[0xC1], 'modrm':0x20}), (reg8_1, {'opcode':[0xD0], 'modrm':0x20}), (mem8_1, {'opcode':[0xD0], 'modrm':0x20}), (reg8_cl, {'opcode':[0xD2], 'modrm':0x20}), (mem8_cl, {'opcode':[0xD2], 'modrm':0x20}), (reg8_imm8, {'opcode':[0xC0], 'modrm':0x20}), (mem8_imm8, {'opcode':[0xC0], 'modrm':0x20})) class sar(DispatchInstruction): dispatch = ( (reg64_1, {'opcode':[0xD1], 'modrm':0x38}), (mem64_1, {'opcode':[0xD1], 'modrm':0x38}), (reg64_cl, {'opcode':[0xD3], 'modrm':0x38}), (mem64_cl, {'opcode':[0xD3], 'modrm':0x38}), (reg64_simm8, {'opcode':[0xC1], 'modrm':0x38}), (mem64_simm8, {'opcode':[0xC1], 'modrm':0x38}), (reg32_1, {'opcode':[0xD1], 'modrm':0x38}), (mem32_1, {'opcode':[0xD1], 'modrm':0x38}), (reg32_cl, {'opcode':[0xD3], 'modrm':0x38}), (mem32_cl, {'opcode':[0xD3], 'modrm':0x38}), (reg32_simm8, {'opcode':[0xC1], 'modrm':0x38}), (mem32_simm8, {'opcode':[0xC1], 'modrm':0x38}), (reg16_1, {'opcode':[0xD1], 'modrm':0x38}), (mem16_1, {'opcode':[0xD1], 'modrm':0x38}), (reg16_cl, {'opcode':[0xD3], 'modrm':0x38}), (mem16_cl, {'opcode':[0xD3], 'modrm':0x38}), (reg16_simm8, {'opcode':[0xC1], 'modrm':0x38}), (mem16_simm8, {'opcode':[0xC1], 'modrm':0x38}), (reg8_1, {'opcode':[0xD0], 'modrm':0x38}), (mem8_1, {'opcode':[0xD0], 'modrm':0x38}), (reg8_cl, {'opcode':[0xD2], 'modrm':0x38}), (mem8_cl, {'opcode':[0xD2], 'modrm':0x38}), (reg8_imm8, {'opcode':[0xC0], 'modrm':0x38}), (mem8_imm8, {'opcode':[0xC0], 'modrm':0x38})) class sbb(DispatchInstruction): dispatch = ( (reg64_simm8, {'opcode':[0x83], 'modrm':0x18}), (mem64_simm8, {'opcode':[0x83], 'modrm':0x18}), (rax_imm32, {'opcode':[0x1D], 'modrm':None}), (reg64_imm32, {'opcode':[0x81], 'modrm':0x18}), (mem64_imm32, {'opcode':[0x81], 'modrm':0x18}), (reg64_reg64, {'opcode':[0x19], 'modrm':None}), (mem64_reg64, {'opcode':[0x19], 'modrm':None}), (reg64_mem64, {'opcode':[0x1B], 'modrm':None}), (reg32_simm8, {'opcode':[0x83], 'modrm':0x18}), (mem32_simm8, {'opcode':[0x83], 'modrm':0x18}), (eax_imm32, {'opcode':[0x1D], 'modrm':None}), (reg32_imm32, {'opcode':[0x81], 'modrm':0x18}), (mem32_imm32, {'opcode':[0x81], 'modrm':0x18}), (reg32_reg32, {'opcode':[0x19], 'modrm':None}), (mem32_reg32, {'opcode':[0x19], 'modrm':None}), (reg32_mem32, {'opcode':[0x1B], 'modrm':None}), (reg16_simm8, {'opcode':[0x83], 'modrm':0x18}), (mem16_simm8, {'opcode':[0x83], 'modrm':0x18}), (ax_imm16, {'opcode':[0x66, 0x1D], 'modrm':None}), (reg16_imm16, {'opcode':[0x81], 'modrm':0x18}), (mem16_imm16, {'opcode':[0x81], 'modrm':0x18}), (reg16_reg16, {'opcode':[0x19], 'modrm':None}), (mem16_reg16, {'opcode':[0x19], 'modrm':None}), (reg16_mem16, {'opcode':[0x1B], 'modrm':None}), (al_imm8, {'opcode':[0x1C], 'modrm':None}), (reg8_imm8, {'opcode':[0x80], 'modrm':0x18}), (mem8_imm8, {'opcode':[0x80], 'modrm':0x18}), (reg8_reg8, {'opcode':[0x18], 'modrm':None}), (mem8_reg8, {'opcode':[0x18], 'modrm':None}), (reg8_mem8, {'opcode':[0x1A], 'modrm':None})) class scasb(Instruction): machine_inst = no_op params = {'opcode':[0xAE], 'modrm':None} class scasd(Instruction): machine_inst = no_op params = {'opcode':[0xAF], 'modrm':None} class scasq(Instruction): machine_inst = no_op params = {'opcode':[0x48, 0xAF], 'modrm':None} class scasw(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0xAF], 'modrm':None} class seta(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x97], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x97], 'modrm':0x00})) class setae(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x93], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x93], 'modrm':0x00})) class setb(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x92], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x92], 'modrm':0x00})) class setbe(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x96], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x96], 'modrm':0x00})) class setc(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x92], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x92], 'modrm':0x00})) class sete(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x94], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x94], 'modrm':0x00})) class setg(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9F], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9F], 'modrm':0x00})) class setge(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9D], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9D], 'modrm':0x00})) class setl(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9C], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9C], 'modrm':0x00})) class setle(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9E], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9E], 'modrm':0x00})) class setna(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x96], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x96], 'modrm':0x00})) class setnae(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x92], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x92], 'modrm':0x00})) class setnb(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x93], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x93], 'modrm':0x00})) class setnbe(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x97], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x97], 'modrm':0x00})) class setnc(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x93], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x93], 'modrm':0x00})) class setne(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x95], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x95], 'modrm':0x00})) class setng(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9E], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9E], 'modrm':0x00})) class setnge(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9C], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9C], 'modrm':0x00})) class setnl(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9D], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9D], 'modrm':0x00})) class setnle(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9F], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9F], 'modrm':0x00})) class setno(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x91], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x91], 'modrm':0x00})) class setnp(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9B], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9B], 'modrm':0x00})) class setns(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x99], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x99], 'modrm':0x00})) class setnz(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x95], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x95], 'modrm':0x00})) class seto(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x90], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x90], 'modrm':0x00})) class setp(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9A], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9A], 'modrm':0x00})) class setpe(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9A], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9A], 'modrm':0x00})) class setpo(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x9B], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x9B], 'modrm':0x00})) class sets(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x98], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x98], 'modrm':0x00})) class setz(DispatchInstruction): dispatch = ( (reg8, {'opcode':[0x0F, 0x94], 'modrm':0x00}), (mem8, {'opcode':[0x0F, 0x94], 'modrm':0x00})) class sfence(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0xAE, 0xF8], 'modrm':None} class shl(DispatchInstruction): dispatch = ( (reg64_1, {'opcode':[0xD1], 'modrm':0x20}), (mem64_1, {'opcode':[0xD1], 'modrm':0x20}), (reg64_cl, {'opcode':[0xD3], 'modrm':0x20}), (mem64_cl, {'opcode':[0xD3], 'modrm':0x20}), (reg64_imm8, {'opcode':[0xC1], 'modrm':0x20}), (mem64_imm8, {'opcode':[0xC1], 'modrm':0x20}), (reg32_1, {'opcode':[0xD1], 'modrm':0x20}), (mem32_1, {'opcode':[0xD1], 'modrm':0x20}), (reg32_cl, {'opcode':[0xD3], 'modrm':0x20}), (mem32_cl, {'opcode':[0xD3], 'modrm':0x20}), (reg32_imm8, {'opcode':[0xC1], 'modrm':0x20}), (mem32_imm8, {'opcode':[0xC1], 'modrm':0x20}), (reg16_1, {'opcode':[0xD1], 'modrm':0x20}), (mem16_1, {'opcode':[0xD1], 'modrm':0x20}), (reg16_cl, {'opcode':[0xD3], 'modrm':0x20}), (mem16_cl, {'opcode':[0xD3], 'modrm':0x20}), (reg16_imm8, {'opcode':[0xC1], 'modrm':0x20}), (mem16_imm8, {'opcode':[0xC1], 'modrm':0x20}), (reg8_1, {'opcode':[0xD0], 'modrm':0x20}), (mem8_1, {'opcode':[0xD0], 'modrm':0x20}), (reg8_cl, {'opcode':[0xD2], 'modrm':0x20}), (mem8_cl, {'opcode':[0xD2], 'modrm':0x20}), (reg8_imm8, {'opcode':[0xC0], 'modrm':0x20}), (mem8_imm8, {'opcode':[0xC0], 'modrm':0x20})) class shld(DispatchInstruction): dispatch = ( (reg64_reg64_imm8, {'opcode':[0x0F, 0xA4], 'modrm':None}), (mem64_reg64_imm8, {'opcode':[0x0F, 0xA4], 'modrm':None}), (reg64_reg64_cl, {'opcode':[0x0F, 0xA5], 'modrm':None}), (mem64_reg64_cl, {'opcode':[0x0F, 0xA5], 'modrm':None}), (reg32_reg32_imm8, {'opcode':[0x0F, 0xA4], 'modrm':None}), (mem32_reg32_imm8, {'opcode':[0x0F, 0xA4], 'modrm':None}), (reg32_reg32_cl, {'opcode':[0x0F, 0xA5], 'modrm':None}), (mem32_reg32_cl, {'opcode':[0x0F, 0xA5], 'modrm':None}), (reg16_reg16_imm8, {'opcode':[0x0F, 0xA4], 'modrm':None}), (mem16_reg16_imm8, {'opcode':[0x0F, 0xA4], 'modrm':None}), (reg16_reg16_cl, {'opcode':[0x0F, 0xA5], 'modrm':None}), (mem16_reg16_cl, {'opcode':[0x0F, 0xA5], 'modrm':None})) class shr(DispatchInstruction): dispatch = ( (reg64_1, {'opcode':[0xD1], 'modrm':0x28}), (mem64_1, {'opcode':[0xD1], 'modrm':0x28}), (reg64_cl, {'opcode':[0xD3], 'modrm':0x28}), (mem64_cl, {'opcode':[0xD3], 'modrm':0x28}), (reg64_imm8, {'opcode':[0xC1], 'modrm':0x28}), (mem64_imm8, {'opcode':[0xC1], 'modrm':0x28}), (reg32_1, {'opcode':[0xD1], 'modrm':0x28}), (mem32_1, {'opcode':[0xD1], 'modrm':0x28}), (reg32_cl, {'opcode':[0xD3], 'modrm':0x28}), (mem32_cl, {'opcode':[0xD3], 'modrm':0x28}), (reg32_imm8, {'opcode':[0xC1], 'modrm':0x28}), (mem32_imm8, {'opcode':[0xC1], 'modrm':0x28}), (reg16_1, {'opcode':[0xD1], 'modrm':0x28}), (mem16_1, {'opcode':[0xD1], 'modrm':0x28}), (reg16_cl, {'opcode':[0xD3], 'modrm':0x28}), (mem16_cl, {'opcode':[0xD3], 'modrm':0x28}), (reg16_imm8, {'opcode':[0xC1], 'modrm':0x28}), (mem16_imm8, {'opcode':[0xC1], 'modrm':0x28}), (reg8_1, {'opcode':[0xD0], 'modrm':0x28}), (mem8_1, {'opcode':[0xD0], 'modrm':0x28}), (reg8_cl, {'opcode':[0xD2], 'modrm':0x28}), (mem8_cl, {'opcode':[0xD2], 'modrm':0x28}), (reg8_imm8, {'opcode':[0xC0], 'modrm':0x28}), (mem8_imm8, {'opcode':[0xC0], 'modrm':0x28})) class shrd(DispatchInstruction): dispatch = ( (reg64_reg64_imm8, {'opcode':[0x0F, 0xAC], 'modrm':None}), (mem64_reg64_imm8, {'opcode':[0x0F, 0xAC], 'modrm':None}), (reg64_reg64_cl, {'opcode':[0x0F, 0xAD], 'modrm':None}), (mem64_reg64_cl, {'opcode':[0x0F, 0xAD], 'modrm':None}), (reg32_reg32_imm8, {'opcode':[0x0F, 0xAC], 'modrm':None}), (mem32_reg32_imm8, {'opcode':[0x0F, 0xAC], 'modrm':None}), (reg32_reg32_cl, {'opcode':[0x0F, 0xAD], 'modrm':None}), (mem32_reg32_cl, {'opcode':[0x0F, 0xAD], 'modrm':None}), (reg16_reg16_imm8, {'opcode':[0x0F, 0xAC], 'modrm':None}), (mem16_reg16_imm8, {'opcode':[0x0F, 0xAC], 'modrm':None}), (reg16_reg16_cl, {'opcode':[0x0F, 0xAD], 'modrm':None}), (mem16_reg16_cl, {'opcode':[0x0F, 0xAD], 'modrm':None})) class stc(Instruction): machine_inst = no_op params = {'opcode':[0xF9], 'modrm':None} class std(Instruction): machine_inst = no_op params = {'opcode':[0xFD], 'modrm':None} class stosb(Instruction): machine_inst = no_op params = {'opcode':[0xAA], 'modrm':None} class stosd(Instruction): machine_inst = no_op params = {'opcode':[0xAB], 'modrm':None} class stosq(Instruction): machine_inst = no_op params = {'opcode':[0x48, 0xAB], 'modrm':None} class stosw(Instruction): machine_inst = no_op params = {'opcode':[0x66, 0xAB], 'modrm':None} class sub(DispatchInstruction): dispatch = ( (reg64_simm8, {'opcode':[0x83], 'modrm':0x28}), (mem64_simm8, {'opcode':[0x83], 'modrm':0x28}), (rax_imm32, {'opcode':[0x2D], 'modrm':None}), (reg64_imm32, {'opcode':[0x81], 'modrm':0x28}), (mem64_imm32, {'opcode':[0x81], 'modrm':0x28}), (reg64_reg64, {'opcode':[0x29], 'modrm':None}), (mem64_reg64, {'opcode':[0x29], 'modrm':None}), (reg64_mem64, {'opcode':[0x2B], 'modrm':None}), (reg32_simm8, {'opcode':[0x83], 'modrm':0x28}), (mem32_simm8, {'opcode':[0x83], 'modrm':0x28}), (eax_imm32, {'opcode':[0x2D], 'modrm':None}), (reg32_imm32, {'opcode':[0x81], 'modrm':0x28}), (mem32_imm32, {'opcode':[0x81], 'modrm':0x28}), (reg32_reg32, {'opcode':[0x29], 'modrm':None}), (mem32_reg32, {'opcode':[0x29], 'modrm':None}), (reg32_mem32, {'opcode':[0x2B], 'modrm':None}), (reg16_simm8, {'opcode':[0x83], 'modrm':0x28}), (mem16_simm8, {'opcode':[0x83], 'modrm':0x28}), (ax_imm16, {'opcode':[0x66, 0x2D], 'modrm':None}), (reg16_imm16, {'opcode':[0x81], 'modrm':0x28}), (mem16_imm16, {'opcode':[0x81], 'modrm':0x28}), (reg16_reg16, {'opcode':[0x29], 'modrm':None}), (mem16_reg16, {'opcode':[0x29], 'modrm':None}), (reg16_mem16, {'opcode':[0x2B], 'modrm':None}), (al_imm8, {'opcode':[0x2C], 'modrm':None}), (reg8_imm8, {'opcode':[0x80], 'modrm':0x28}), (mem8_imm8, {'opcode':[0x80], 'modrm':0x28}), (reg8_reg8, {'opcode':[0x28], 'modrm':None}), (mem8_reg8, {'opcode':[0x28], 'modrm':None}), (reg8_mem8, {'opcode':[0x2A], 'modrm':None})) class test(DispatchInstruction): dispatch = ( (rax_imm32, {'opcode':[0xA9], 'modrm':None}), (reg64_imm32, {'opcode':[0xF7], 'modrm':0x00}), (mem64_imm32, {'opcode':[0xF7], 'modrm':0x00}), (reg64_reg64, {'opcode':[0x85], 'modrm':None}), (mem64_reg64, {'opcode':[0x85], 'modrm':None}), (eax_imm32, {'opcode':[0xA9], 'modrm':None}), (reg32_imm32, {'opcode':[0xF7], 'modrm':0x00}), (mem32_imm32, {'opcode':[0xF7], 'modrm':0x00}), (reg32_reg32, {'opcode':[0x85], 'modrm':None}), (mem32_reg32, {'opcode':[0x85], 'modrm':None}), (ax_imm16, {'opcode':[0x66, 0xA9], 'modrm':None}), (reg16_imm16, {'opcode':[0xF7], 'modrm':0x00}), (mem16_imm16, {'opcode':[0xF7], 'modrm':0x00}), (reg16_reg16, {'opcode':[0x85], 'modrm':None}), (mem16_reg16, {'opcode':[0x85], 'modrm':None}), (al_imm8, {'opcode':[0xA8], 'modrm':None}), (reg8_imm8, {'opcode':[0xF6], 'modrm':0x00}), (mem8_imm8, {'opcode':[0xF6], 'modrm':0x00}), (reg8_reg8, {'opcode':[0x84], 'modrm':None}), (mem8_reg8, {'opcode':[0x84], 'modrm':None})) class ud2(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0x0B], 'modrm':None} class xadd(DispatchInstruction): dispatch = ( (reg64_reg64, {'opcode':[0x0F, 0xC1], 'modrm':None}), (mem64_reg64, {'opcode':[0x0F, 0xC1], 'modrm':None}), (reg32_reg32, {'opcode':[0x0F, 0xC1], 'modrm':None}), (mem32_reg32, {'opcode':[0x0F, 0xC1], 'modrm':None}), (reg16_reg16, {'opcode':[0x0F, 0xC1], 'modrm':None}), (mem16_reg16, {'opcode':[0x0F, 0xC1], 'modrm':None}), (reg8_reg8, {'opcode':[0x0F, 0xC0], 'modrm':None}), (mem8_reg8, {'opcode':[0x0F, 0xC0], 'modrm':None})) class xchg(DispatchInstruction): dispatch = ( (rax_reg64, {'opcode':[0x90], 'modrm':None}), (reg64_rax, {'opcode':[0x90], 'modrm':None}), (reg64_reg64, {'opcode':[0x87], 'modrm':None}), (mem64_reg64, {'opcode':[0x87], 'modrm':None}), (reg64_mem64, {'opcode':[0x87], 'modrm':None}), (eax_reg32, {'opcode':[0x90], 'modrm':None}), (reg32_eax, {'opcode':[0x90], 'modrm':None}), (reg32_reg32, {'opcode':[0x87], 'modrm':None}), (mem32_reg32, {'opcode':[0x87], 'modrm':None}), (reg32_mem32, {'opcode':[0x87], 'modrm':None}), (reg16_ax, {'opcode':[0x90], 'modrm':None}), (ax_reg16, {'opcode':[0x90], 'modrm':None}), (reg16_reg16, {'opcode':[0x87], 'modrm':None}), (mem16_reg16, {'opcode':[0x87], 'modrm':None}), (reg16_mem16, {'opcode':[0x87], 'modrm':None}), (reg8_reg8, {'opcode':[0x86], 'modrm':None}), (mem8_reg8, {'opcode':[0x86], 'modrm':None}), (reg8_mem8, {'opcode':[0x86], 'modrm':None})) class xlatb(Instruction): machine_inst = no_op params = {'opcode':[0xD7], 'modrm':None} class xor(DispatchInstruction): dispatch = ( (reg64_simm8, {'opcode':[0x83], 'modrm':0x30}), (mem64_simm8, {'opcode':[0x83], 'modrm':0x30}), (rax_imm32, {'opcode':[0x35], 'modrm':None}), (reg64_imm32, {'opcode':[0x81], 'modrm':0x30}), (mem64_imm32, {'opcode':[0x81], 'modrm':0x30}), (reg64_reg64, {'opcode':[0x31], 'modrm':None}), (mem64_reg64, {'opcode':[0x31], 'modrm':None}), (reg64_mem64, {'opcode':[0x33], 'modrm':None}), (reg32_simm8, {'opcode':[0x83], 'modrm':0x30}), (mem32_simm8, {'opcode':[0x83], 'modrm':0x30}), (eax_imm32, {'opcode':[0x35], 'modrm':None}), (reg32_imm32, {'opcode':[0x81], 'modrm':0x30}), (mem32_imm32, {'opcode':[0x81], 'modrm':0x30}), (reg32_reg32, {'opcode':[0x31], 'modrm':None}), (mem32_reg32, {'opcode':[0x31], 'modrm':None}), (reg32_mem32, {'opcode':[0x33], 'modrm':None}), (reg16_simm8, {'opcode':[0x83], 'modrm':0x30}), (mem16_simm8, {'opcode':[0x83], 'modrm':0x30}), (ax_imm16, {'opcode':[0x66, 0x35], 'modrm':None}), (reg16_imm16, {'opcode':[0x81], 'modrm':0x30}), (mem16_imm16, {'opcode':[0x81], 'modrm':0x30}), (reg16_reg16, {'opcode':[0x31], 'modrm':None}), (mem16_reg16, {'opcode':[0x31], 'modrm':None}), (reg16_mem16, {'opcode':[0x33], 'modrm':None}), (al_imm8, {'opcode':[0x34], 'modrm':None}), (reg8_imm8, {'opcode':[0x80], 'modrm':0x30}), (mem8_imm8, {'opcode':[0x80], 'modrm':0x30}), (reg8_reg8, {'opcode':[0x30], 'modrm':None}), (mem8_reg8, {'opcode':[0x30], 'modrm':None}), (reg8_mem8, {'opcode':[0x32], 'modrm':None})) # X87_ISA = ( class f2xm1(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF0], 'modrm':None} class fabs(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xE1], 'modrm':None} class fadd(DispatchInstruction): dispatch = ( (st0_sti, {'opcode':[0xD8, 0xC0], 'modrm':None}), (sti_st0, {'opcode':[0xDC, 0xC0], 'modrm':None}), (mem32, {'opcode':[0xD8], 'modrm':0x00}), (mem64, {'opcode':[0xDC], 'modrm':0x00})) class faddp(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xDE, 0xC1], 'modrm':None}), (sti_st0, {'opcode':[0xDE, 0xC0], 'modrm':None})) class fiadd(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDA], 'modrm':0x00}), (mem16, {'opcode':[0xDE], 'modrm':0x00})) class fchs(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xE0], 'modrm':None} class fcmovb(Instruction): machine_inst = st0_sti params = {'opcode':[0xDA, 0xC0], 'modrm':None} class fcmovbe(Instruction): machine_inst = st0_sti params = {'opcode':[0xDA, 0xD0], 'modrm':None} class fcmove(Instruction): machine_inst = st0_sti params = {'opcode':[0xDA, 0xC8], 'modrm':None} class fcmovnb(Instruction): machine_inst = st0_sti params = {'opcode':[0xDB, 0xC0], 'modrm':None} class fcmovnbe(Instruction): machine_inst = st0_sti params = {'opcode':[0xDB, 0xD0], 'modrm':None} class fcmovne(Instruction): machine_inst = st0_sti params = {'opcode':[0xDB, 0xC8], 'modrm':None} class fcmovnu(Instruction): machine_inst = st0_sti params = {'opcode':[0xDB, 0xD8], 'modrm':None} class fcmovu(Instruction): machine_inst = st0_sti params = {'opcode':[0xDA, 0xD8], 'modrm':None} class fcom(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xD8, 0xD1], 'modrm':None}), (sti, {'opcode':[0xD8, 0xD0], 'modrm':None}), (mem32, {'opcode':[0xD8], 'modrm':0x10}), (mem64, {'opcode':[0xDC], 'modrm':0x10})) class fcomp(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xD8, 0xD9], 'modrm':None}), (sti, {'opcode':[0xD8, 0xD8], 'modrm':None}), (mem32, {'opcode':[0xD8], 'modrm':0x18}), (mem64, {'opcode':[0xDC], 'modrm':0x18})) class fcompp(Instruction): machine_inst = no_op params = {'opcode':[0xDE, 0xD9], 'modrm':None} class fcomi(Instruction): machine_inst = st0_sti params = {'opcode':[0xDB, 0xF0], 'modrm':None} class fcomip(Instruction): machine_inst = st0_sti params = {'opcode':[0xDF, 0xF0], 'modrm':None} class fcos(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xFF], 'modrm':None} class fdecstp(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF6], 'modrm':None} class fdiv(DispatchInstruction): dispatch = ( (st0_sti, {'opcode':[0xD8, 0xF0], 'modrm':None}), (sti_st0, {'opcode':[0xDC, 0xF8], 'modrm':None}), (mem32, {'opcode':[0xD8], 'modrm':0x30}), (mem64, {'opcode':[0xDC], 'modrm':0x30})) class fdivp(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xDE, 0xF9], 'modrm':None}), (sti_st0, {'opcode':[0xDE, 0xF8], 'modrm':None})) class fidiv(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDA], 'modrm':0x30}), (mem16, {'opcode':[0xDE], 'modrm':0x30})) class fdivr(DispatchInstruction): dispatch = ( (st0_sti, {'opcode':[0xD8, 0xF8], 'modrm':None}), (sti_st0, {'opcode':[0xDC, 0xF0], 'modrm':None}), (mem32, {'opcode':[0xD8], 'modrm':0x38}), (mem64, {'opcode':[0xDC], 'modrm':0x38})) class fdivrp(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xDE, 0xF1], 'modrm':None}), (sti_st0, {'opcode':[0xDE, 0xF0], 'modrm':None})) class fidivr(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDA], 'modrm':0x38}), (mem16, {'opcode':[0xDE], 'modrm':0x38})) class ffree(Instruction): machine_inst = sti params = {'opcode':[0xDD, 0xC0], 'modrm':None} class ficom(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDA], 'modrm':0x10}), (mem16, {'opcode':[0xDE], 'modrm':0x10})) class ficomp(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDA], 'modrm':0x18}), (mem16, {'opcode':[0xDE], 'modrm':0x18})) class fild(DispatchInstruction): dispatch = ( (mem64, {'opcode':[0xDF], 'modrm':0x28}), (mem32, {'opcode':[0xDB], 'modrm':0x00}), (mem16, {'opcode':[0xDF], 'modrm':0x00})) class fincstp(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF7], 'modrm':None} class finit(Instruction): machine_inst = no_op params = {'opcode':[0x9B, 0xDB, 0xE3], 'modrm':None} class fninit(Instruction): machine_inst = no_op params = {'opcode':[0xDB, 0xE3], 'modrm':None} class fist(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDB], 'modrm':0x10}), (mem16, {'opcode':[0xDF], 'modrm':0x10})) class fistp(DispatchInstruction): dispatch = ( (mem64, {'opcode':[0xDF], 'modrm':0x38}), (mem32, {'opcode':[0xDB], 'modrm':0x18}), (mem16, {'opcode':[0xDF], 'modrm':0x18})) class fisttp(DispatchInstruction): dispatch = ( (mem64, {'opcode':[0xDD], 'modrm':0x08}), (mem32, {'opcode':[0xDB], 'modrm':0x08}), (mem16, {'opcode':[0xDF], 'modrm':0x08})) class fld(DispatchInstruction): dispatch = ( (sti, {'opcode':[0xD9, 0xC0], 'modrm':None}), (mem80, {'opcode':[0xDB], 'modrm':0x28}), (mem64, {'opcode':[0xDD], 'modrm':0x00}), (mem32, {'opcode':[0xD9], 'modrm':0x00})) class fld1(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xE8], 'modrm':None} class fldcw(Instruction): machine_inst = mem16 params = {'opcode':[0xD9], 'modrm':0x28} class fldenv(Instruction): machine_inst = mem228 params = {'opcode':[0xD9], 'modrm':0x20} class fldl2e(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xEA], 'modrm':None} class fldl2t(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xE9], 'modrm':None} class fldlg2(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xEC], 'modrm':None} class fldln2(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xED], 'modrm':None} class fldpi(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xEB], 'modrm':None} class fldz(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xEE], 'modrm':None} class fmul(DispatchInstruction): dispatch = ( (st0_sti, {'opcode':[0xD8, 0xC8], 'modrm':None}), (sti_st0, {'opcode':[0xDC, 0xC8], 'modrm':None}), (mem32, {'opcode':[0xD8], 'modrm':0x08}), (mem64, {'opcode':[0xDC], 'modrm':0x08})) class fmulp(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xDE, 0xC9], 'modrm':None}), (sti_st0, {'opcode':[0xDE, 0xC8], 'modrm':None})) class fimul(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDA], 'modrm':0x08}), (mem16, {'opcode':[0xDE], 'modrm':0x08})) class fnop(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xD0], 'modrm':None} class fpatan(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF3], 'modrm':None} class fprem(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF8], 'modrm':None} class fprem1(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF5], 'modrm':None} class fptan(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF2], 'modrm':None} class frndint(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xFC], 'modrm':None} class frstor(Instruction): machine_inst = mem752 params = {'opcode':[0xDD], 'modrm':0x20} class fsave(Instruction): machine_inst = mem752 params = {'opcode':[0x9B, 0xDD], 'modrm':0x30} class fnsave(Instruction): machine_inst = mem752 params = {'opcode':[0xDD], 'modrm':0x30} class fscale(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xFD], 'modrm':None} class fsin(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xFE], 'modrm':None} class fsincos(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xFB], 'modrm':None} class fsqrt(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xFA], 'modrm':None} class fst(DispatchInstruction): dispatch = ( (sti, {'opcode':[0xDD, 0xD0], 'modrm':None}), (mem64, {'opcode':[0xDD], 'modrm':0x10}), (mem32, {'opcode':[0xD9], 'modrm':0x10})) class fstp(DispatchInstruction): dispatch = ( (sti, {'opcode':[0xDD, 0xD8], 'modrm':None}), (mem80, {'opcode':[0xDB], 'modrm':0x38}), (mem64, {'opcode':[0xDD], 'modrm':0x18}), (mem32, {'opcode':[0xD9], 'modrm':0x18})) class fstcw(Instruction): machine_inst = mem16 params = {'opcode':[0x9B, 0xD9], 'modrm':0x38} class fnstcw(Instruction): machine_inst = mem16 params = {'opcode':[0xD9], 'modrm':0x38} class fstenv(Instruction): machine_inst = mem228 params = {'opcode':[0x9B, 0xD9], 'modrm':0x30} class fnstenv(Instruction): machine_inst = mem228 params = {'opcode':[0xD9], 'modrm':0x30} class fstsw(DispatchInstruction): dispatch = ( (ax, {'opcode':[0x9B, 0xDF, 0xE0], 'modrm':None}), (mem16, {'opcode':[0x9B, 0xDD], 'modrm':0x38})) class fnstsw(DispatchInstruction): dispatch = ( (ax, {'opcode':[0xDF, 0xE0], 'modrm':None}), (mem16, {'opcode':[0xDD], 'modrm':0x38})) class fsub(DispatchInstruction): dispatch = ( (st0_sti, {'opcode':[0xD8, 0xE0], 'modrm':None}), (sti_st0, {'opcode':[0xDC, 0xE8], 'modrm':None}), (mem32, {'opcode':[0xD8], 'modrm':0x20}), (mem64, {'opcode':[0xDC], 'modrm':0x20})) class fsubp(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xDE, 0xE9], 'modrm':None}), (sti_st0, {'opcode':[0xDE, 0xE8], 'modrm':None})) class fisub(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDA], 'modrm':0x20}), (mem16, {'opcode':[0xDE], 'modrm':0x20})) class fsubr(DispatchInstruction): dispatch = ( (st0_sti, {'opcode':[0xD8, 0xE8], 'modrm':None}), (sti_st0, {'opcode':[0xDC, 0xE0], 'modrm':None}), (mem32, {'opcode':[0xD8], 'modrm':0x28}), (mem64, {'opcode':[0xDC], 'modrm':0x28})) class fsubrp(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xDE, 0xE1], 'modrm':None}), (sti_st0, {'opcode':[0xDE, 0xE0], 'modrm':None})) class fisubr(DispatchInstruction): dispatch = ( (mem32, {'opcode':[0xDA], 'modrm':0x28}), (mem16, {'opcode':[0xDE], 'modrm':0x28})) class ftst(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xE4], 'modrm':None} class fucom(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xDD, 0xE1], 'modrm':None}), (sti, {'opcode':[0xDD, 0xE0], 'modrm':None})) class fucomp(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xDD, 0xE9], 'modrm':None}), (sti, {'opcode':[0xDD, 0xE8], 'modrm':None})) class fucompp(Instruction): machine_inst = no_op params = {'opcode':[0xDA, 0xE9], 'modrm':None} class fucomi(Instruction): machine_inst = st0_sti params = {'opcode':[0xDB, 0xE8], 'modrm':None} class fucomip(Instruction): machine_inst = st0_sti params = {'opcode':[0xDF, 0xE8], 'modrm':None} class fwait(Instruction): machine_inst = no_op params = {'opcode':[0x9B], 'modrm':None} class fxam(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xE5], 'modrm':None} class fxch(DispatchInstruction): dispatch = ( (no_op, {'opcode':[0xD9, 0xC9], 'modrm':None}), (sti, {'opcode':[0xD9, 0xC8], 'modrm':None})) class fxrstor(Instruction): machine_inst = mem4096 params = {'opcode':[0x0F, 0xAE], 'modrm':0x08} #sse? class fxsave(Instruction): machine_inst = mem4096 params = {'opcode':[0x0F, 0xAE], 'modrm':0x00} #sse? class fxtract(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF4], 'modrm':None} class fyl2x(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF1], 'modrm':None} class fyl2xp1(Instruction): machine_inst = no_op params = {'opcode':[0xD9, 0xF9], 'modrm':None} #SSE_ISA = ( class addpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x58], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x58], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class addps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x58], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x58], 'modrm':None, 'prefix':[]})) arch_ext = 1 class addsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x58], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x58], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class addss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x58], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x58], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class addsubpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xD0], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xD0], 'modrm':None, 'prefix':[0x66]})) arch_ext = 3 class addsubps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xD0], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem128, {'opcode':[0x0F, 0xD0], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 3 class andnpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x55], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x55], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class andnps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x55], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x55], 'modrm':None, 'prefix':[]})) arch_ext = 1 class andpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x54], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x54], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class andps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x54], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x54], 'modrm':None, 'prefix':[]})) arch_ext = 1 class blendpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x0D], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x0D], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class blendps(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x0C], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x0C], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class blendvpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x15], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x15], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class blendvps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x14], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x14], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class cmpeqpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':0, 'prefix':[0x66]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':0, 'prefix':[0x66]})) arch_ext = 2 class cmpeqps(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':0, 'prefix':[]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':0, 'prefix':[]})) arch_ext = 1 class cmpeqsd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':0, 'prefix':[0xF2]}), (xmm_mem64_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':0, 'prefix':[0xF2]})) arch_ext = 2 class cmpeqss(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':0, 'prefix':[0xF3]}), (xmm_mem32_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':0, 'prefix':[0xF3]})) arch_ext = 1 class cmplepd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':2, 'prefix':[0x66]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':2, 'prefix':[0x66]})) arch_ext = 2 class cmpleps(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':2, 'prefix':[]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':2, 'prefix':[]})) arch_ext = 1 class cmplesd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':2, 'prefix':[0xF2]}), (xmm_mem64_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':2, 'prefix':[0xF2]})) arch_ext = 2 class cmpless(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':2, 'prefix':[0xF3]}), (xmm_mem32_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':2, 'prefix':[0xF3]})) arch_ext = 1 class cmpltpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':1, 'prefix':[0x66]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':1, 'prefix':[0x66]})) arch_ext = 2 class cmpltps(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':1, 'prefix':[]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':1, 'prefix':[]})) arch_ext = 1 class cmpltsd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':1, 'prefix':[0xF2]}), (xmm_mem64_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':1, 'prefix':[0xF2]})) arch_ext = 2 class cmpltss(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':1, 'prefix':[0xF3]}), (xmm_mem32_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':1, 'prefix':[0xF3]})) arch_ext = 1 class cmpneqpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':4, 'prefix':[0x66]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':4, 'prefix':[0x66]})) arch_ext = 2 class cmpneqps(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':4, 'prefix':[]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':4, 'prefix':[]})) arch_ext = 1 class cmpneqsd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':4, 'prefix':[0xF2]}), (xmm_mem64_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':4, 'prefix':[0xF2]})) arch_ext = 2 class cmpneqss(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':4, 'prefix':[0xF3]}), (xmm_mem32_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':4, 'prefix':[0xF3]})) arch_ext = 1 class cmpnlepd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':6, 'prefix':[0x66]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':6, 'prefix':[0x66]})) arch_ext = 2 class cmpnleps(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':6, 'prefix':[]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':6, 'prefix':[]})) arch_ext = 1 class cmpnlesd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':6, 'prefix':[0xF2]}), (xmm_mem64_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':6, 'prefix':[0xF2]})) arch_ext = 2 class cmpnless(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':6, 'prefix':[0xF3]}), (xmm_mem32_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':6, 'prefix':[0xF3]})) arch_ext = 1 class cmpnltpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':5, 'prefix':[0x66]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':5, 'prefix':[0x66]})) arch_ext = 2 class cmpnltps(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':5, 'prefix':[]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':5, 'prefix':[]})) arch_ext = 1 class cmpnltsd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':5, 'prefix':[0xF2]}), (xmm_mem64_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':5, 'prefix':[0xF2]})) arch_ext = 2 class cmpnltss(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':5, 'prefix':[0xF3]}), (xmm_mem32_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':5, 'prefix':[0xF3]})) arch_ext = 1 class cmpordpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':7, 'prefix':[0x66]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':7, 'prefix':[0x66]})) arch_ext = 2 class cmpordps(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':7, 'prefix':[]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':7, 'prefix':[]})) arch_ext = 1 class cmpordsd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':7, 'prefix':[0xF2]}), (xmm_mem64_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':7, 'prefix':[0xF2]})) arch_ext = 2 class cmpordss(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':7, 'prefix':[0xF3]}), (xmm_mem32_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':7, 'prefix':[0xF3]})) arch_ext = 1 class cmpunordpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':3, 'prefix':[0x66]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':3, 'prefix':[0x66]})) arch_ext = 2 class cmpunordps(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':3, 'prefix':[]}), (xmm_mem128_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':3, 'prefix':[]})) arch_ext = 1 class cmpunordsd(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':3, 'prefix':[0xF2]}), (xmm_mem64_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':3, 'prefix':[0xF2]})) arch_ext = 2 class cmpunordss(DispatchInstruction): dispatch = ( (xmm_xmm_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':3, 'prefix':[0xF3]}), (xmm_mem32_imm, {'opcode':[0x0F, 0xC2], 'modrm':None, 'imm':3, 'prefix':[0xF3]})) arch_ext = 1 class cmppd(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0xC2], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0xC2], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class cmpps(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0xC2], 'modrm':None, 'prefix':[]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0xC2], 'modrm':None, 'prefix':[]})) arch_ext = 1 class cmpsd(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0xC2], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64_imm8, {'opcode':[0x0F, 0xC2], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class cmpss(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0xC2], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32_imm8, {'opcode':[0x0F, 0xC2], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class comisd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x2F], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x2F], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class comiss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x2F], 'modrm':None, 'prefix':[]}), (xmm_mem64, {'opcode':[0x0F, 0x2F], 'modrm':None, 'prefix':[]})) arch_ext = 1 class cvtdq2pd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE6], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem64, {'opcode':[0x0F, 0xE6], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 2 class cvtdq2ps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5B], 'modrm':None, 'prefix':[]}), (xmm_mem64, {'opcode':[0x0F, 0x5B], 'modrm':None, 'prefix':[]})) arch_ext = 2 class cvtpd2dq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE6], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem128, {'opcode':[0x0F, 0xE6], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class cvtpd2pi(DispatchInstruction): dispatch = ( (mmx_xmm, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0x66]}), (mmx_mem128, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class cvtpd2ps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5A], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x5A], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class cvtpi2pd(DispatchInstruction): dispatch = ( (xmm_mmx, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class cvtpi2ps(DispatchInstruction): dispatch = ( (xmm_mmx, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[]}), (xmm_mem64, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[]})) arch_ext = 2 class cvtps2dq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5B], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x5B], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class cvtps2pd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5A], 'modrm':None, 'prefix':[]}), (xmm_mem64, {'opcode':[0x0F, 0x5A], 'modrm':None, 'prefix':[]})) arch_ext = 2 class cvtps2pi(DispatchInstruction): dispatch = ( (mmx_xmm, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[]}), (mmx_mem64, {'opcode':[0x0F, 0x2D], 'modrm':None})) arch_ext = 2 class cvtsd2si(DispatchInstruction): dispatch = ( # TODO - reg64 version defined by intel manuals but not AMD #(reg64_xmm, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0xF2]}), #(reg64_mem64, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0xF2]}), (reg32_xmm, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0xF2]}), (reg32_mem64, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class cvtsd2ss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5A], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x5A], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class cvtsi2sd(DispatchInstruction): dispatch = ( (xmm_reg64, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0xF2]}), (xmm_reg32, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem32, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class cvtsi2sd(DispatchInstruction): dispatch = ( # TODO - reg64 version defined by intel manuals but not AMD #(xmm_reg64, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0xF2]}), #(xmm_mem64, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0xF2]}), (xmm_reg32, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem32, {'opcode':[0x0F, 0x2A], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class cvtss2sd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5A], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x5A], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 2 class cvtss2si(DispatchInstruction): dispatch = ( # TODO - reg64 version defined by intel manuals but not AMD #(reg64_xmm, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0xF3]}), #(reg64_mem32, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0xF3]}), (reg32_xmm, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0xF3]}), (reg32_mem32, {'opcode':[0x0F, 0x2D], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class cvttpd2dq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE6], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE6], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class cvttpd2pi(DispatchInstruction): dispatch = ( (mmx_xmm, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0x66]}), (mmx_mem128, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class cvttps2dq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5B], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem128, {'opcode':[0x0F, 0x5B], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 2 class cvttps2pi(DispatchInstruction): dispatch = ( (mmx_xmm, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[]}), (mmx_mem64, {'opcode':[0x0F, 0x2C], 'modrm':None})) arch_ext = 2 class cvttsd2si(DispatchInstruction): dispatch = ( # TODO - reg64 version defined by intel manuals but not AMD #(reg64_xmm, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0xF2]}), #(reg64_mem64, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0xF2]}), (reg32_xmm, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0xF2]}), (reg32_mem64, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class cvttss2si(DispatchInstruction): dispatch = ( # TODO - reg64 version defined by intel manuals but not AMD #(reg64_xmm, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0xF3]}), #(reg64_mem32, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0xF3]}), (reg32_xmm, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0xF3]}), (reg32_mem32, {'opcode':[0x0F, 0x2C], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class divpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5E], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x5E], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class divps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5E], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x5E], 'modrm':None, 'prefix':[]})) arch_ext = 1 class divsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5E], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x5E], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class divss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5E], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x5E], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class dppd(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x41], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x41], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class dpps(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x40], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x40], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class emms(Instruction): machine_inst = no_op params = {'opcode':[0x0F, 0x77],'modrm':None} arch_ext = 0 class extractps(DispatchInstruction): dispatch = ( (reg64_xmm_imm8_rev, {'opcode':[0x0F, 0x3A, 0x17], 'modrm':None, 'prefix':[0x66]}), (reg32_xmm_imm8_rev, {'opcode':[0x0F, 0x3A, 0x17], 'modrm':None, 'prefix':[0x66]}), (mem32_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x17], 'modrm':None, 'prefix':[0x66]})) # TODO - ugh, this make the printer not emit 'dword' for the mem32 case #arch_ext = 4 class extrq(DispatchInstruction): dispatch = ( (xmm_imm8_imm8, {'opcode':[0x0F, 0x78], 'modrm':0x00, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0x79], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class haddpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x7C], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x7C], 'modrm':None, 'prefix':[0x66]})) arch_ext = 3 class haddps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x7C], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem128, {'opcode':[0x0F, 0x7C], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 3 class hsubpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x7D], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x7D], 'modrm':None, 'prefix':[0x66]})) arch_ext = 3 class hsubps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x7D], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem128, {'opcode':[0x0F, 0x7D], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 3 class insertps(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x21], 'modrm':None, 'prefix':[0x66]}), (xmm_mem32_imm8, {'opcode':[0x0F, 0x3A, 0x21], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class insertq(DispatchInstruction): dispatch = ( (xmm_xmm_imm8_imm8, {'opcode':[0x0F, 0x78], 'modrm':None, 'prefix':[0xF2]}), (xmm_xmm, {'opcode':[0x0F, 0x79], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 4 class lddqu(Instruction): machine_inst = xmm_mem128 params = {'opcode':[0x0F, 0xF0],'modrm':None, 'prefix':[0xF2]} arch_ext = 3 class ldmxcsr(Instruction): machine_inst = mem32 params = {'opcode':[0x0F, 0xAE],'modrm':0x10} arch_ext = 1 class maskmovdqu(Instruction): machine_inst = xmm_xmm params = {'opcode':[0x0F, 0xF7],'modrm':None, 'prefix':[0x66]} arch_ext = 2 class maskmovq(Instruction): machine_inst = mmx_mmx params = {'opcode':[0x0F, 0xF7],'modrm':None} arch_ext = 1 class maxpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5F], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x5F], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class maxps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5F], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x5F], 'modrm':None, 'prefix':[]})) arch_ext = 1 class maxsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5F], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x5F], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class maxss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5F], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x5F], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class minpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5D], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x5D], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class minps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5D], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x5D], 'modrm':None, 'prefix':[]})) arch_ext = 1 class minsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5D], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x5D], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class minss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5D], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x5D], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class movapd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x28], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x28], 'modrm':None, 'prefix':[0x66]}), (mem128_xmm, {'opcode':[0x0F, 0x29], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class movaps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x28], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x28], 'modrm':None, 'prefix':[]}), (mem128_xmm, {'opcode':[0x0F, 0x29], 'modrm':None, 'prefix':[]})) arch_ext = 1 class movd(DispatchInstruction): dispatch = ( # TODO - these are valid according to AMD64, but not according to Intel 64 #(xmm_reg64, {'opcode':[0x0F, 0x6E], 'modrm':None, 'prefix':[0x66]}), #(xmm_mem64, {'opcode':[0x0F, 0x6E], 'modrm':None, 'prefix':[0x66]}), #(mem64_xmm, {'opcode':[0x0F, 0x7E], 'modrm':None, 'prefix':[0x66]}), #(reg64_xmm_rev, {'opcode':[0x0F, 0x7E], 'modrm':None, 'prefix':[0x66]}), #(mmx_reg64, {'opcode':[0x0F, 0x6E], 'modrm':None}), #(mmx_mem64, {'opcode':[0x0F, 0x6E], 'modrm':None}), #(mem64_mmx, {'opcode':[0x0F, 0x7E], 'modrm':None}), #(reg64_mmx_rev, {'opcode':[0x0F, 0x7E], 'modrm':None}), (xmm_reg32, {'opcode':[0x0F, 0x6E], 'modrm':None, 'prefix':[0x66]}), (xmm_mem32, {'opcode':[0x0F, 0x6E], 'modrm':None, 'prefix':[0x66]}), (mem32_xmm, {'opcode':[0x0F, 0x7E], 'modrm':None, 'prefix':[0x66]}), (reg32_xmm_rev, {'opcode':[0x0F, 0x7E], 'modrm':None, 'prefix':[0x66]}), (mmx_reg32, {'opcode':[0x0F, 0x6E], 'modrm':None}), (mmx_mem32, {'opcode':[0x0F, 0x6E], 'modrm':None}), (mem32_mmx, {'opcode':[0x0F, 0x7E], 'modrm':None}), (reg32_mmx_rev, {'opcode':[0x0F, 0x7E], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class movddup(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x12], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x12], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 3 class movdq2q(Instruction): machine_inst = mmx_xmm params = {'opcode':[0x0F, 0xD6],'modrm':None, 'prefix':[0xF2]} arch_ext = 2 class movdqa(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x6F], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x6F], 'modrm':None, 'prefix':[0x66]}), (mem128_xmm, {'opcode':[0x0F, 0x7F], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class movdqu(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x6F], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem128, {'opcode':[0x0F, 0x6F], 'modrm':None, 'prefix':[0xF3]}), (mem128_xmm, {'opcode':[0x0F, 0x7F], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 2 class movhlps(Instruction): machine_inst = xmm_xmm params = {'opcode':[0x0F, 0x12],'modrm':None, 'prefix':[]} arch_ext = 1 class movhpd(DispatchInstruction): dispatch = ( (xmm_mem64, {'opcode':[0x0F, 0x16], 'modrm':None, 'prefix':[0x66]}), (mem64_xmm, {'opcode':[0x0F, 0x17], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class movhps(DispatchInstruction): dispatch = ( (xmm_mem64, {'opcode':[0x0F, 0x16], 'modrm':None, 'prefix':[]}), (mem64_xmm, {'opcode':[0x0F, 0x17], 'modrm':None, 'prefix':[]})) arch_ext = 1 class movlhps(Instruction): machine_inst = xmm_xmm params = {'opcode':[0x0F, 0x16], 'modrm':None, 'prefix':[]} arch_ext = 1 class movlpd(DispatchInstruction): dispatch = ( (xmm_mem64, {'opcode':[0x0F, 0x12], 'modrm':None, 'prefix':[0x66]}), (mem64_xmm, {'opcode':[0x0F, 0x13], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class movlps(DispatchInstruction): dispatch = ( (xmm_mem64, {'opcode':[0x0F, 0x12], 'modrm':None, 'prefix':[]}), (mem64_xmm, {'opcode':[0x0F, 0x13], 'modrm':None, 'prefix':[]})) arch_ext = 1 class movmskpd(Instruction): machine_inst = reg32_xmm params = {'opcode':[0x0F, 0x50], 'modrm':None, 'prefix':[0x66]} arch_ext = 2 class movmskps(Instruction): machine_inst = reg32_xmm params = {'opcode':[0x0F, 0x50], 'modrm':None, 'prefix':[]} arch_ext = 2 class movntdq(Instruction): machine_inst = mem128_xmm params = {'opcode':[0x0F, 0xE7], 'modrm':None, 'prefix':[0x66]} arch_ext = 2 class movntdqa(Instruction): machine_inst = xmm_mem128 params = {'opcode':[0x0F, 0x38, 0x2A], 'modrm':None, 'prefix':[0x66]} arch_ext = 4 class movntpd(Instruction): machine_inst = mem128_xmm params = {'opcode':[0x0F, 0x2B], 'modrm':None, 'prefix':[0x66]} arch_ext = 2 class movntps(Instruction): machine_inst = mem128_xmm params = {'opcode':[0x0F, 0x2B], 'modrm':None, 'prefix':[]} arch_ext = 2 class movntq(Instruction): machine_inst = mem64_mmx params = {'opcode':[0x0F, 0xE7], 'modrm':None, 'prefix':[]} arch_ext = 1 class movntsd(Instruction): machine_inst = mem64_xmm params = {'opcode':[0x0F, 0x2B], 'modrm':None, 'prefix':[0xF2]} arch_ext = 4 class movntss(Instruction): machine_inst = mem32_xmm params = {'opcode':[0x0F, 0x2B], 'modrm':None, 'prefix':[0xF3]} arch_ext = 4 class movq(DispatchInstruction): dispatch = ( # TODO - first 4 are defined by Intel 64 but not AMD64 (xmm_reg64, {'opcode':[0x0F, 0x6E], 'modrm':None, 'prefix':[0x66]}), (reg64_xmm_rev, {'opcode':[0x0F, 0x7E], 'modrm':None, 'prefix':[0x66]}), (mmx_reg64, {'opcode':[0x0F, 0x6E], 'modrm':None}), (reg64_mmx_rev, {'opcode':[0x0F, 0x7E], 'modrm':None}), (xmm_xmm, {'opcode':[0x0F, 0x7E], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem64, {'opcode':[0x0F, 0x7E], 'modrm':None, 'prefix':[0xF3]}), (mem64_xmm, {'opcode':[0x0F, 0xD6], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x6F], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x6F], 'modrm':None}), (mem64_mmx, {'opcode':[0x0F, 0x7F], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class movq2dq(Instruction): machine_inst = xmm_mmx params = {'opcode':[0x0F, 0xD6], 'modrm':None, 'prefix':[0xF3]} arch_ext = 2 class movsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x10], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x10], 'modrm':None, 'prefix':[0xF2]}), (mem64_xmm, {'opcode':[0x0F, 0x11], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class movshdup(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x16], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem128, {'opcode':[0x0F, 0x16], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 3 class movsldup(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x12], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem128, {'opcode':[0x0F, 0x12], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 3 class movss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x10], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x10], 'modrm':None, 'prefix':[0xF3]}), (mem32_xmm, {'opcode':[0x0F, 0x11], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class movupd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x10], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x10], 'modrm':None, 'prefix':[0x66]}), (mem128_xmm, {'opcode':[0x0F, 0x11], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class movups(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x10], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x10], 'modrm':None, 'prefix':[]}), (mem128_xmm, {'opcode':[0x0F, 0x11], 'modrm':None, 'prefix':[]})) arch_ext = 1 class mpsadbw(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x42], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x42], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class mulpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x59], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x59], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class mulps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x59], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x59], 'modrm':None, 'prefix':[]})) arch_ext = 1 class mulsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x59], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x59], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class mulss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x59], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x59], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class orpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x56], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x56], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class orps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x56], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x56], 'modrm':None, 'prefix':[]})) arch_ext = 1 class pabsb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x1C], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x1C], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x1C], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x1C], 'modrm':None})) arch_ext = 3 class pabsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x1E], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x1E], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x1E], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x1E], 'modrm':None})) arch_ext = 3 class pabsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x1D], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x1D], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x1D], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x1D], 'modrm':None})) arch_ext = 3 class packssdw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x6B], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x6B], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x6B], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x6B], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class packsswb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x63], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x63], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x63], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x63], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class packusdw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x2B], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x2B], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class packuswb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x67], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x67], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x67], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x67], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class paddb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xFC], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xFC], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xFC], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xFC], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class paddd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xFE], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xFE], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xFE], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xFE], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class paddq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xD4], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xD4], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xD4], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xD4], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class paddsb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xEC], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xEC], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xEC], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xEC], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class paddsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xED], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xED], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xED], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xED], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class paddusb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xDC], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xDC], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xDC], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xDC], 'modrm':None})) arch_ext = 0 class paddusw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xDD], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xDD], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xDD], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xDD], 'modrm':None})) arch_ext = 0 class paddw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xFD], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xFD], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xFD], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xFD], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class palignr(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x0F], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8,{'opcode':[0x0F, 0x3A, 0x0F], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx_imm8, {'opcode':[0x0F, 0x3A, 0x0F], 'modrm':None}), (mmx_mem64_imm8, {'opcode':[0x0F, 0x3A, 0x0F], 'modrm':None})) arch_ext = 3 class pand(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xDB], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xDB], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xDB], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xDB], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pandn(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xDF], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xDF], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xDF], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xDF], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pavgb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE0], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE0], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xE0], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xE0], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pavgw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE3], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE3], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xE3], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xE3], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pblendvb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x10], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x10], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pblendw(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x0E], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x0E], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pcmpeqb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x74], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x74], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x74], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x74], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pcmpeqd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x76], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x76], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x76], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x76], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pcmpeqq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x29], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x29], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pcmpeqw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x75], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x75], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x75], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x75], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pcmpestri(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x61], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x61], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pcmpestrm(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x60], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x60], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pcmpgtb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x64], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x64], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x64], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x64], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pcmpgtd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x66], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x66], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x66], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x66], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pcmpgtw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x65], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x65], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x65], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x65], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pcmpgtq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x37], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x37], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pcmpistri(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x63], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x63], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pcmpistrm(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x62], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x62], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pextrb(DispatchInstruction): dispatch = ( (reg64_xmm_imm8_rev, {'opcode':[0x0F, 0x3A, 0x14], 'modrm':None, 'prefix':[0x66]}), (reg32_xmm_imm8_rev, {'opcode':[0x0F, 0x3A, 0x14], 'modrm':None, 'prefix':[0x66]}), (mem8_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x14], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pextrd(DispatchInstruction): dispatch = ( (reg32_xmm_imm8_rev, {'opcode':[0x0F, 0x3A, 0x16], 'modrm':None, 'prefix':[0x66]}), (mem32_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x16], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pextrq(DispatchInstruction): dispatch = ( (reg64_xmm_imm8_rev, {'opcode':[0x0F, 0x3A, 0x16], 'modrm':None, 'prefix':[0x66]}), (mem64_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x16], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pextrw(DispatchInstruction): dispatch = ( (reg64_xmm_imm8, {'opcode':[0x0F, 0xC5], 'modrm':None, 'prefix':[0x66]}), (reg32_xmm_imm8, {'opcode':[0x0F, 0xC5], 'modrm':None, 'prefix':[0x66]}), (mem16_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x15], 'modrm':None, 'prefix':[0x66]}), (reg64_mmx_imm8, {'opcode':[0x0F, 0xC5], 'modrm':None}), (reg32_mmx_imm8, {'opcode':[0x0F, 0xC5], 'modrm':None})) arch_ext = 1 class phaddsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x03], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x03], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x03], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x03], 'modrm':None})) arch_ext = 3 class phaddw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x01], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x01], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x01], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x01], 'modrm':None})) arch_ext = 3 class phaddd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x02], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x02], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x02], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x02], 'modrm':None})) arch_ext = 3 class phminposuw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x41], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x41], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class phsubsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x07], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x07], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x07], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x07], 'modrm':None})) arch_ext = 3 class phsubw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x05], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x05], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x05], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x05], 'modrm':None})) arch_ext = 3 class phsubd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x06], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x06], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x06], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x06], 'modrm':None})) arch_ext = 3 class pinsrb(DispatchInstruction): dispatch = ( (xmm_reg32_imm8, {'opcode':[0x0F, 0x3A, 0x20], 'modrm':None, 'prefix':[0x66]}), (xmm_mem8_imm8, {'opcode':[0x0F, 0x3A, 0x20], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pinsrd(DispatchInstruction): dispatch = ( (xmm_reg32_imm8, {'opcode':[0x0F, 0x3A, 0x22], 'modrm':None, 'prefix':[0x66]}), (xmm_mem32_imm8, {'opcode':[0x0F, 0x3A, 0x22], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pinsrq(DispatchInstruction): dispatch = ( (xmm_reg64_imm8, {'opcode':[0x0F, 0x3A, 0x22], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64_imm8, {'opcode':[0x0F, 0x3A, 0x22], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pinsrw(DispatchInstruction): dispatch = ( (xmm_reg32_imm8, {'opcode':[0x0F, 0xC4], 'modrm':None, 'prefix':[0x66]}), (xmm_mem16_imm8, {'opcode':[0x0F, 0xC4], 'modrm':None, 'prefix':[0x66]}), (mmx_reg32_imm8, {'opcode':[0x0F, 0xC4], 'modrm':None}), (mmx_mem16_imm8, {'opcode':[0x0F, 0xC4], 'modrm':None})) arch_ext = 1 class pmaddubsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x04], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x04], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x04], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x04], 'modrm':None})) arch_ext = 3 class pmaddwd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xF5], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xF5], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xF5], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xF5], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pmaxsb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x3C], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x3C], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmaxsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x3D], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x3D], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmaxsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xEE], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xEE], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xEE], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xEE], 'modrm':None})) arch_ext = 1 class pmaxub(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xDE], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xDE], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xDE], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xDE], 'modrm':None})) arch_ext = 1 class pmaxud(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x3F], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x3F], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmaxuw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x3E], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x3E], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pminsb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x38], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x38], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pminsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x39], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x39], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pminsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xEA], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xEA], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xEA], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xEA], 'modrm':None})) arch_ext = 1 class pminub(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xDA], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xDA], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xDA], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xDA], 'modrm':None})) arch_ext = 1 class pminud(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x3B], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x3B], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pminuw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x3A], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x3A], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovmskb(DispatchInstruction): dispatch = ( # TODO - undocumented reg64 forms? #(reg64_xmm, {'opcode':[0x0F, 0xD7], 'modrm':None, 'prefix':[0x66]}), #(reg64_mmx, {'opcode':[0x0F, 0xD7], 'modrm':None}), (reg32_xmm, {'opcode':[0x0F, 0xD7], 'modrm':None, 'prefix':[0x66]}), (reg32_mmx, {'opcode':[0x0F, 0xD7], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 1 class pmovsxbw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x20], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x38, 0x20], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovsxbd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x21], 'modrm':None, 'prefix':[0x66]}), (xmm_mem32, {'opcode':[0x0F, 0x38, 0x21], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovsxbq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x22], 'modrm':None, 'prefix':[0x66]}), (xmm_mem16, {'opcode':[0x0F, 0x38, 0x22], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovsxwd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x23], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x38, 0x23], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovsxwq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x24], 'modrm':None, 'prefix':[0x66]}), (xmm_mem32, {'opcode':[0x0F, 0x38, 0x24], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovsxdq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x25], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x38, 0x25], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovzxbw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x30], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x38, 0x30], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovzxbd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x31], 'modrm':None, 'prefix':[0x66]}), (xmm_mem32, {'opcode':[0x0F, 0x38, 0x31], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovzxbq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x32], 'modrm':None, 'prefix':[0x66]}), (xmm_mem16, {'opcode':[0x0F, 0x38, 0x32], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovzxwd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x33], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x38, 0x33], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovzxwq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x34], 'modrm':None, 'prefix':[0x66]}), (xmm_mem32, {'opcode':[0x0F, 0x38, 0x34], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmovzxdq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x35], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x38, 0x35], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmuldq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x28], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x28], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmulhrsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x0B], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x0B], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x0B], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x0B], 'modrm':None})) arch_ext = 3 class pmulhuw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE4], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE4], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xE4], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xE4], 'modrm':None})) arch_ext = 1 class pmulhw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE5], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE5], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xE5], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xE5], 'modrm':None})) arch_ext = 1 class pmulld(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x40], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x40], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class pmullw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xD5], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xD5], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xD5], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xD5], 'modrm':None})) arch_ext = 2 # and 0 class pmuludq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xF4], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xF4], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xF4], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xF4], 'modrm':None})) arch_ext = 2 class por(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xEB], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xEB], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xEB], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xEB], 'modrm':None})) arch_ext = 2 # and 0 class psadbw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xF6], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xF6], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xF6], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xF6], 'modrm':None})) arch_ext = 1 class pshufb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x00], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x00], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x00], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x00], 'modrm':None})) arch_ext = 3 class pshufd(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x70], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x70], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class pshufhw(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x70], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x70], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 2 class pshuflw(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x70], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x70], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class pshufw(DispatchInstruction): dispatch = ( (mmx_mmx_imm8, {'opcode':[0x0F, 0x70], 'modrm':None}), (mmx_mem64_imm8, {'opcode':[0x0F, 0x70], 'modrm':None})) arch_ext = 1 class psignb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x08], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x08], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x08], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x08], 'modrm':None})) arch_ext = 3 class psignd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x0A], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x0A], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x0A], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x0A], 'modrm':None})) arch_ext = 3 class psignw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x09], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x09], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x38, 0x09], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x38, 0x09], 'modrm':None})) arch_ext = 3 class pslld(DispatchInstruction): dispatch = ( (xmm_imm8, {'opcode':[0x0F, 0x72], 'modrm':0x30, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0xF2], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xF2], 'modrm':None, 'prefix':[0x66]}), (mmx_imm8, {'opcode':[0x0F, 0x72], 'modrm':0x30}), (mmx_mmx, {'opcode':[0x0F, 0xF2], 'modrm':None}), (mmx_mem128, {'opcode':[0x0F, 0xF2], 'modrm':None})) arch_ext = 2 # and 0 and 1 class pslldq(Instruction): machine_inst = xmm_imm8 params = {'opcode':[0x0F, 0x73], 'modrm':0x38, 'prefix':[0x66]} arch_ext = 1 class psllq(DispatchInstruction): dispatch = ( (xmm_imm8, {'opcode':[0x0F, 0x73], 'modrm':0x30, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0xF3], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xF3], 'modrm':None, 'prefix':[0x66]}), (mmx_imm8, {'opcode':[0x0F, 0x73], 'modrm':0x30}), (mmx_mmx, {'opcode':[0x0F, 0xF3], 'modrm':None}), (mmx_mem128, {'opcode':[0x0F, 0xF3], 'modrm':None})) arch_ext = 2 # and 0 and 1 class psllw(DispatchInstruction): dispatch = ( (xmm_imm8, {'opcode':[0x0F, 0x71], 'modrm':0x30, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0xF1], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xF1], 'modrm':None, 'prefix':[0x66]}), (mmx_imm8, {'opcode':[0x0F, 0x71], 'modrm':0x30}), (mmx_mmx, {'opcode':[0x0F, 0xF1], 'modrm':None}), (mmx_mem128, {'opcode':[0x0F, 0xF1], 'modrm':None})) arch_ext = 2 # and 0 and 1 class psrad(DispatchInstruction): dispatch = ( (xmm_imm8, {'opcode':[0x0F, 0x72], 'modrm':0x20, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0xE2], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE2], 'modrm':None, 'prefix':[0x66]}), (mmx_imm8, {'opcode':[0x0F, 0x72], 'modrm':0x20}), (mmx_mmx, {'opcode':[0x0F, 0xE2], 'modrm':None}), (mmx_mem128, {'opcode':[0x0F, 0xE2], 'modrm':None})) arch_ext = 2 # and 0 and 1 class psraw(DispatchInstruction): dispatch = ( (xmm_imm8, {'opcode':[0x0F, 0x71], 'modrm':0x20, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0xE1], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE1], 'modrm':None, 'prefix':[0x66]}), (mmx_imm8, {'opcode':[0x0F, 0x71], 'modrm':0x20}), (mmx_mmx, {'opcode':[0x0F, 0xE1], 'modrm':None}), (mmx_mem128, {'opcode':[0x0F, 0xE1], 'modrm':None})) arch_ext = 2 # and 0 and 1 class psrld(DispatchInstruction): dispatch = ( (xmm_imm8, {'opcode':[0x0F, 0x72], 'modrm':0x10, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0xD2], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xD2], 'modrm':None, 'prefix':[0x66]}), (mmx_imm8, {'opcode':[0x0F, 0x72], 'modrm':0x10}), (mmx_mmx, {'opcode':[0x0F, 0xD2], 'modrm':None}), (mmx_mem128, {'opcode':[0x0F, 0xD2], 'modrm':None})) arch_ext = 2 # and 0 and 1 class psrldq(Instruction): machine_inst = xmm_imm8 params = {'opcode':[0x0F, 0x73], 'modrm':0x18, 'prefix':[0x66]} arch_ext = 1 class psrlq(DispatchInstruction): dispatch = ( (xmm_imm8, {'opcode':[0x0F, 0x73], 'modrm':0x10, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0xD3], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xD3], 'modrm':None, 'prefix':[0x66]}), (mmx_imm8, {'opcode':[0x0F, 0x73], 'modrm':0x10}), (mmx_mmx, {'opcode':[0x0F, 0xD3], 'modrm':None}), (mmx_mem128, {'opcode':[0x0F, 0xD3], 'modrm':None})) arch_ext = 2 # and 0 and 1 class psrlw(DispatchInstruction): dispatch = ( (xmm_imm8, {'opcode':[0x0F, 0x71], 'modrm':0x10, 'prefix':[0x66]}), (xmm_xmm, {'opcode':[0x0F, 0xD1], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xD1], 'modrm':None, 'prefix':[0x66]}), (mmx_imm8, {'opcode':[0x0F, 0x71], 'modrm':0x10}), (mmx_mmx, {'opcode':[0x0F, 0xD1], 'modrm':None}), (mmx_mem128, {'opcode':[0x0F, 0xD1], 'modrm':None})) arch_ext = 2 # and 0 and 1 class psubb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xF8], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xF8], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xF8], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xF8], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class psubd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xFA], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xFA], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xFA], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xFA], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class psubq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xFB], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xFB], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xFB], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xFB], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class psubsb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE8], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE8], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xE8], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xE8], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class psubsw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xE9], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xE9], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xE9], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xE9], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class psubusb(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xD8], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xD8], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xD8], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xD8], 'modrm':None})) arch_ext = 0 class psubusw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xD9], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xD9], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xD9], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xD9], 'modrm':None})) arch_ext = 0 class psubw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xF9], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xF9], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xF9], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xF9], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class ptest(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x38, 0x17], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x38, 0x17], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class punpckhbw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x68], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x68], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x68], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x68], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class punpckhdq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x6A], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x6A], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x6A], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x6A], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class punpckhqdq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x6D], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x6D], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class punpckhwd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x69], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x69], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x69], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x69], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class punpcklbw(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x60], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x60], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x60], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x60], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class punpckldq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x62], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x62], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x62], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x62], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class punpcklqdq(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x6C], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x6C], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class punpcklwd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x61], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x61], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0x61], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0x61], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class pxor(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0xEF], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0xEF], 'modrm':None, 'prefix':[0x66]}), (mmx_mmx, {'opcode':[0x0F, 0xEF], 'modrm':None}), (mmx_mem64, {'opcode':[0x0F, 0xEF], 'modrm':None})) arch_ext = 2 # TODO - err, some are 2, some are 0 class rcpps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x53], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x53], 'modrm':None, 'prefix':[]})) arch_ext = 1 class rcpss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x53], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x53], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 2 class roundpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x09], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x09], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class roundps(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x08], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x08], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class roundsd(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x0B], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64_imm8, {'opcode':[0x0F, 0x3A, 0x0B], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class roundss(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0x3A, 0x0A], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0x3A, 0x0A], 'modrm':None, 'prefix':[0x66]})) arch_ext = 4 class rsqrtps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x52], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x52], 'modrm':None, 'prefix':[]})) arch_ext = 1 class rsqrtss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x52], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x52], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 2 class shufpd(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0xC6], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0xC6], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class shufps(DispatchInstruction): dispatch = ( (xmm_xmm_imm8, {'opcode':[0x0F, 0xC6], 'modrm':None, 'prefix':[]}), (xmm_mem128_imm8, {'opcode':[0x0F, 0xC6], 'modrm':None, 'prefix':[]})) arch_ext = 1 class sqrtpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x51], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x51], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class sqrtps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x51], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x51], 'modrm':None, 'prefix':[]})) arch_ext = 1 class sqrtsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x51], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x51], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class sqrtss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x51], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32 , {'opcode':[0x0F, 0x51], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class stmxcsr(Instruction): machine_inst = mem32 params = {'opcode':[0x0F, 0xAE], 'modrm':0x18} arch_ext = 1 class subpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5C], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x5C], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class subps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5C], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x5C], 'modrm':None, 'prefix':[]})) arch_ext = 1 class subsd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5C], 'modrm':None, 'prefix':[0xF2]}), (xmm_mem64, {'opcode':[0x0F, 0x5C], 'modrm':None, 'prefix':[0xF2]})) arch_ext = 2 class subss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x5C], 'modrm':None, 'prefix':[0xF3]}), (xmm_mem32, {'opcode':[0x0F, 0x5C], 'modrm':None, 'prefix':[0xF3]})) arch_ext = 1 class ucomisd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x2E], 'modrm':None, 'prefix':[0x66]}), (xmm_mem64, {'opcode':[0x0F, 0x2E], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class ucomiss(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x2E], 'modrm':None, 'prefix':[]}), (xmm_mem32, {'opcode':[0x0F, 0x2E], 'modrm':None, 'prefix':[]})) arch_ext = 1 class unpckhpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x15], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x15], 'modrm':None, 'prefix':[0x66]})) arch_ext = 1 class unpckhps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x15], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x15], 'modrm':None, 'prefix':[]})) arch_ext = 1 class unpcklpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x14], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x14], 'modrm':None, 'prefix':[0x66]})) arch_ext = 1 class unpcklps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x14], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x14], 'modrm':None, 'prefix':[]})) arch_ext = 1 class xorpd(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x57], 'modrm':None, 'prefix':[0x66]}), (xmm_mem128, {'opcode':[0x0F, 0x57], 'modrm':None, 'prefix':[0x66]})) arch_ext = 2 class xorps(DispatchInstruction): dispatch = ( (xmm_xmm, {'opcode':[0x0F, 0x57], 'modrm':None, 'prefix':[]}), (xmm_mem128, {'opcode':[0x0F, 0x57], 'modrm':None, 'prefix':[]})) arch_ext = 1
py
1a5687d9a2cfe90be5fa7b715461d44c3faccf0d
# coding: utf-8 from __future__ import ( absolute_import, print_function, unicode_literals, ) from pydocx.models import XmlModel, XmlCollection from pydocx.openxml.wordprocessing.endnote import Endnote class Endnotes(XmlModel): XML_TAG = 'endnotes' children = XmlCollection(Endnote) def __init__(self, *args, **kwargs): super(Endnotes, self).__init__(*args, **kwargs) endnote_by_id = {} for endnote in self.children: if endnote.endnote_id: endnote_by_id[endnote.endnote_id] = endnote self._endnote_by_id = endnote_by_id def get_endnote_by_id(self, endnote_id): return self._endnote_by_id.get(endnote_id)
py
1a5687fbdd7435bd1fcc36a0e256796ecfc5fee9
from rest_framework import serializers from rest_waspmote.models import WaspData __author__ = 'julian' class WaspDataSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = WaspData fields = ('timestamp_waspmote','status','alt','lat','long','speed','voltage','notes','objects','valorsensor','timestamp_server')
py
1a56883a471661a907c55586485b9fb391666fda
from collections import Counter def cut_the_ropes(arr): ropes = Counter(arr) numbers = [len(arr)] for rope_len, ropes_count in sorted(ropes.items()): numbers.append( numbers[-1] - ropes_count ) numbers.pop() return numbers
py
1a56887314f63c97d78bcee9c75941bb6c2ffc86
from pathlib import Path import requests from lxml import etree headers = { 'user-agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.132 Safari/537.36" } meta_url = "https://pypi.org/" search_url = "https://pypi.org/search/?q" def init_save_path(save_path="."): """ 初始化下载环境 """ source_path = Path(save_path) save_path = source_path / 'whls' if not save_path.exists(): save_path.mkdir() return save_path def load_whl_info(packages_path: str): with open(packages_path, "r") as fr: whl_info = fr.read() return whl_info def init_download_packages(whl_info: str): """ 处理输入 """ need_packages = [] package_info = [i.strip() for i in whl_info.split("\n") if i.strip()] whl_name = "" version = "" for i in package_info: whl_name = i if "==" in i: whl_name, version = i.split("==") need_packages.append((whl_name, version)) return need_packages def pypi_spider(save_path, need_packages: list, error_package: list = []): """ pypi镜像包爬虫 need_packages: 需要下载的包 error_package: 下载中出错的包 """ for idx, package_info in enumerate(need_packages, 1): search_content = package_info[0] version = package_info[1] print('需要下载的包信息', package_info) response = requests.get( f'{search_url}={search_content}', headers=headers) html_str = response.content.decode('utf-8') html = etree.HTML(html_str) search_results = html.xpath( '//*[@id="content"]/div/div/div[2]/form/div[3]/ul/*') result_url = '' for result in search_results: result_href = result.xpath('./a/@href')[0] result_name = result.xpath('./a/h3/span[1]')[0].text result_version = result.xpath('./a/h3/span[2]')[0].text if result_name == search_content: result_url = f'{meta_url}{result_href}#files' break elif result_name == search_content.capitalize() and len(result_name) == len(search_content): result_url = f'{meta_url}{result_href}#files' break elif '-' in search_content and search_content.replace('-', '_') == result_name and len(result_name) == len(search_content): result_url = f'{meta_url}{result_href}#files' break if version: result_url = f'{meta_url}{result_href}{version}/#files' print(f'开始准备下载 {result_name} {version}') else: print(f'开始准备下载 {result_name} {result_version}') if not result_url: error_package.append(search_content) continue # get download url response = requests.get(result_url, headers=headers) result_html_str = response.content.decode('utf-8') result_html = etree.HTML(result_html_str) result_download_nodes = result_html.xpath( '//*[@id="files"]/table/tbody/tr') win32_info = None # 相同版本的win32包 for result_download in result_download_nodes: file_type = result_download.xpath( './td[1]/text()')[1].replace(" ", '').replace('\n', '') download_version = result_download.xpath( './td[2]/text()')[1].replace(" ", '').replace('\n', '') download_href = result_download.xpath('./th/a/@href')[0] whl_name = result_download.xpath( './th/a/text()')[0].replace(" ", '').replace('\n', '') whl_size = result_download.xpath( './th/text()')[2].replace(" ", '').replace('\n', '') # 下载版本判断 if download_version == 'cp37' and 'win32' in whl_name: win32_info = (whl_name, download_href) if download_version == 'py2.py3' and 'py2.py3-none-any' in whl_name: # 准确下载python3的版本 break elif download_version == 'cp37' and 'win_amd64' in whl_name: # 准确下载python3.7 win64的版本 # 查看是否有win32的包,并且下载 if win32_info: print(f'{search_content}的win32版本下载链接', win32_info) file_name = save_path / win32_info[0] file_content = requests.get(win32_info[1], headers=headers) with open(file_name.absolute(), 'wb') as f: f.write(file_content.content) break elif 'py3' in download_version or download_version == 'None': # 下载通用版本 break # 下载 file_name = save_path / whl_name file_content = requests.get(download_href, headers=headers) with open(file_name.absolute(), 'wb') as f: f.write(file_content.content) print(f'{search_content}{whl_size} 版本{download_version} 类型{file_type} -- 下载成功') if len(need_packages) == idx: print('此次任务结束') if error_package: print('此次任务下载失败的包如下:') for idx, error_ in enumerate(error_package, 1): print(f'{idx}: {error_}') return error_package def show_help(): print("choose which source you need to download") url_info = """ +++++++++COMMANDS++++++++++ 1:\t\tpypi.org 2:\t\tdouban 3:\t\taliyun +++++++++++++++++++++++++++ """ print(url_info) def main_loop(): packages_path = input(">>> input packages path: ").strip() if not packages_path: print("not found") return whl_info = load_whl_info(packages_path) need_packages = init_download_packages(whl_info) input_path = input(">>> input save path: ").strip() input_path = "." if not input_path else input_path save_path = init_save_path(input_path) show_help() choose = input(">>> ") if choose == "1": pypi_spider(save_path, need_packages) if __name__ == "__main__": main_loop()
py
1a568a062f7ec05c6da10ce78360f6f81740d272
from seleniumbase import BaseCase from ..page_objects.main_page import MainPage as PageObjects class HappyPathTest(BaseCase): def common_actions(self): # Preenche valor para aplicar com 20,00 self.update_text(PageObjects.input_valor_aplicar, '20,00') # Preenche valor que você quer poupar com 20,00 self.update_text(PageObjects.input_valor_investir, '20,00') # Por quanto tempo você quer poupar com 20 self.update_text(PageObjects.input_quanto_tempo, '20') self.click(PageObjects.btn_simular) self.assert_element(PageObjects.table) self.click(PageObjects.btn_repeat_simulation) def test_happy_path_para_voce(self): self.open(PageObjects.url) self.common_actions() # Testar para empresa self.click(PageObjects.radio_btn_empresa) self.common_actions()
py
1a568a90e696265f52c983fb8db6261ece3666db
import sys import csv_data import my_perceptron # TWEAKING VARIABLES max_perceptron_iterations = 100 def printResults( data_name, result_unrounded ): print( "RESULTS FOR", data_name.upper() ) print( "{:.2f}% correct prediction on {}\n".format( round( result_unrounded, 2 ), data_name.lower() ) ) def main( argv ): if len( argv ) != 3: print( "Usage: \"python3 perceptron.py <train> <test> <model>\"" ); exit() # Read Data Training_Data = csv_data.Data( argv[ 0 ] ) Testing_Data = csv_data.Data( argv[ 1 ] ) # Create Perceptron perceptron = my_perceptron.Perceptron() print( "\n\nPredictions results with", max_perceptron_iterations, "iterations of learning:\n" ) perceptron.perceptronTrain( Training_Data, max_perceptron_iterations ) resultsPercentage = perceptron.perceptronPredictionResults( Training_Data ) printResults( "Training Data", resultsPercentage ) resultsPercentage = perceptron.perceptronPredictionResultsAndPrintActivations( Testing_Data ) printResults( "Testing Data", resultsPercentage ) perceptron.outputModelToFile( argv[ 2 ] ) print( "Weights and bias recorded for", max_perceptron_iterations, "iterations in", argv[ 2 ], "\n" ); print( "\n\nAlso predictiong results with 50 iterations of learning because I get better percentages:\n" ) perceptron.perceptronTrain( Training_Data, 50 ) resultsPercentage = perceptron.perceptronPredictionResults( Training_Data ) printResults( "Training Data", resultsPercentage ) resultsPercentage = perceptron.perceptronPredictionResults( Testing_Data ) printResults( "Testing Data", resultsPercentage ) print( "Weights and bias of output file will still reflect the", max_perceptron_iterations, "iteration test above.\n\n" ) if __name__=='__main__': main( sys.argv[1:] )
py
1a568af6a39122535ab3df2bebc2e8ae412213bf
from django.db import models from django.conf import settings from ..departamentos.models import Departamento from ..empresas.models import Empresa class Funcionario(models.Model): """ Funcionário """ nome = models.CharField(max_length=150, help_text='Nome do funcionário') user = models.OneToOneField(to=settings.AUTH_USER_MODEL, on_delete=models.PROTECT) departamentos = models.ManyToManyField(Departamento) empresa = models.ForeignKey(Empresa, on_delete=models.PROTECT) class Meta: verbose_name = 'Funcionário' verbose_name_plural = "Funcionários" def __str__(self): return self.nome
py
1a568b4592c6466ca835888023b8967ab1a93c72
from setuptools import setup, find_packages setup( name='fetchai-netutils', version='0.0.6a2', description='Tools and utilities for interacting with the fetch network', url='https://github.com/fetchai/', author='Ed FitzGerald', author_email='[email protected]', packages=find_packages(exclude=['contrib', 'docs', 'tests']), # Required install_requires=[], extras_require={ 'dev': ['check-manifest'], 'test': ['coverage'], }, entry_points={ 'console_scripts': [ 'swarm=fetch.cluster.apps.swarm:main', ], }, )
py
1a568bab37209ab4cc52c15cb4b653e07c6c69d5
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools from abc import ABC, abstractmethod from typing import Any, Callable, Optional, Union from collections.abc import Mapping, Sequence from collections import namedtuple from copy import deepcopy from distutils.version import LooseVersion import os import torch from torch import nn from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.distributed import gather_all_tensors from pytorch_lightning.metrics.utils import _flatten, dim_zero_cat, dim_zero_mean, dim_zero_sum class Metric(nn.Module, ABC): """ Base class for all metrics present in the Metrics API. Implements ``add_state()``, ``forward()``, ``reset()`` and a few other things to handle distributed synchronization and per-step metric computation. Override ``update()`` and ``compute()`` functions to implement your own metric. Use ``add_state()`` to register metric state variables which keep track of state on each call of ``update()`` and are synchronized across processes when ``compute()`` is called. Note: Metric state variables can either be ``torch.Tensors`` or an empty list which can we used to store `torch.Tensors``. Note: Different metrics only override ``update()`` and not ``forward()``. A call to ``update()`` is valid, but it won't return the metric value at the current step. A call to ``forward()`` automatically calls ``update()`` and also returns the metric value at the current step. Args: compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. default: None """ def __init__( self, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__() self.dist_sync_on_step = dist_sync_on_step self.compute_on_step = compute_on_step self.process_group = process_group self.dist_sync_fn = dist_sync_fn self._to_sync = True self.update = self._wrap_update(self.update) self.compute = self._wrap_compute(self.compute) self._computed = None self._forward_cache = None # initialize state self._reductions = {} self._defaults = {} def add_state( self, name: str, default, dist_reduce_fx: Optional[Union[str, Callable]] = None, persistent: bool = True ): """ Adds metric state variable. Only used by subclasses. Args: name: The name of the state variable. The variable will then be accessible at ``self.name``. default: Default value of the state; can either be a ``torch.Tensor`` or an empty list. The state will be reset to this value when ``self.reset()`` is called. dist_reduce_fx (Optional): Function to reduce state accross mutliple processes in distributed mode. If value is ``"sum"``, ``"mean"``, or ``"cat"``, we will use ``torch.sum``, ``torch.mean``, and ``torch.cat`` respectively, each with argument ``dim=0``. The user can also pass a custom function in this parameter. persistent (Optional): whether the state will be saved as part of the modules ``state_dict``. Note: Setting ``dist_reduce_fx`` to None will return the metric state synchronized across different processes. However, there won't be any reduction function applied to the synchronized metric state. The metric states would be synced as follows - If the metric state is ``torch.Tensor``, the synced value will be a stacked ``torch.Tensor`` across the process dimension if the metric state was a ``torch.Tensor``. The original ``torch.Tensor`` metric state retains dimension and hence the synchronized output will be of shape ``(num_process, ...)``. - If the metric state is a ``list``, the synced value will be a ``list`` containing the combined elements from all processes. Note: When passing a custom function to ``dist_reduce_fx``, expect the synchronized metric state to follow the format discussed in the above note. """ if ( not isinstance(default, torch.Tensor) and not isinstance(default, list) # noqa: W503 or (isinstance(default, list) and len(default) != 0) # noqa: W503 ): raise ValueError( "state variable must be a tensor or any empty list (where you can append tensors)" ) if dist_reduce_fx == "sum": dist_reduce_fx = dim_zero_sum elif dist_reduce_fx == "mean": dist_reduce_fx = dim_zero_mean elif dist_reduce_fx == "cat": dist_reduce_fx = dim_zero_cat elif dist_reduce_fx is not None and not isinstance(dist_reduce_fx, Callable): raise ValueError( "`dist_reduce_fx` must be callable or one of ['mean', 'sum', 'cat', None]" ) if isinstance(default, torch.Tensor): if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): # persistent keyword is only supported in torch >= 1.6.0 self.register_buffer(name, default, persistent=persistent) else: self.register_buffer(name, default) else: setattr(self, name, default) self._defaults[name] = deepcopy(default) self._reductions[name] = dist_reduce_fx @torch.jit.unused def forward(self, *args, **kwargs): """ Automatically calls ``update()``. Returns the metric value over inputs if ``compute_on_step`` is True. """ # add current step with torch.no_grad(): self.update(*args, **kwargs) self._forward_cache = None if self.compute_on_step: self._to_sync = self.dist_sync_on_step # save context before switch self._cache = {attr: getattr(self, attr) for attr in self._defaults.keys()} # call reset, update, compute, on single batch self.reset() self.update(*args, **kwargs) self._forward_cache = self.compute() # restore context for attr, val in self._cache.items(): setattr(self, attr, val) self._to_sync = True self._computed = None return self._forward_cache def _sync_dist(self, dist_sync_fn=gather_all_tensors): input_dict = {attr: getattr(self, attr) for attr in self._reductions.keys()} output_dict = apply_to_collection( input_dict, torch.Tensor, dist_sync_fn, group=self.process_group, ) for attr, reduction_fn in self._reductions.items(): # pre-processing ops (stack or flatten for inputs) if isinstance(output_dict[attr][0], torch.Tensor): output_dict[attr] = torch.stack(output_dict[attr]) elif isinstance(output_dict[attr][0], list): output_dict[attr] = _flatten(output_dict[attr]) assert isinstance(reduction_fn, (Callable)) or reduction_fn is None reduced = reduction_fn(output_dict[attr]) if reduction_fn is not None else output_dict[attr] setattr(self, attr, reduced) def _wrap_update(self, update): @functools.wraps(update) def wrapped_func(*args, **kwargs): self._computed = None return update(*args, **kwargs) return wrapped_func def _wrap_compute(self, compute): @functools.wraps(compute) def wrapped_func(*args, **kwargs): # return cached value if self._computed is not None: return self._computed dist_sync_fn = self.dist_sync_fn if (dist_sync_fn is None and torch.distributed.is_available() and torch.distributed.is_initialized()): # User provided a bool, so we assume DDP if available dist_sync_fn = gather_all_tensors if self._to_sync and dist_sync_fn is not None: self._sync_dist(dist_sync_fn) self._computed = compute(*args, **kwargs) self.reset() return self._computed return wrapped_func @abstractmethod def update(self) -> None: # pylint: disable=E0202 """ Override this method to update the state variables of your metric class. """ pass @abstractmethod def compute(self): # pylint: disable=E0202 """ Override this method to compute the final metric value from state variables synchronized across the distributed backend. """ pass def reset(self): """ This method automatically resets the metric state variables to their default value. """ for attr, default in self._defaults.items(): current_val = getattr(self, attr) if isinstance(current_val, torch.Tensor): setattr(self, attr, deepcopy(default).to(current_val.device)) else: setattr(self, attr, deepcopy(default)) def __getstate__(self): # ignore update and compute functions for pickling return {k: v for k, v in self.__dict__.items() if k not in ["update", "compute"]} def __setstate__(self, state): # manually restore update and compute functions for pickling self.__dict__.update(state) self.update = self._wrap_update(self.update) self.compute = self._wrap_compute(self.compute)
py
1a568e3deb2a9f909312dced5ff68c2c3cd2e7cb
#!/usr/bin/python3 #import time import random import imp modl = imp.load_source('ppFunctions', '../00/ppFunctions.py') import os from ppFunctions import * from termcolor import colored, cprint #sleep becouse of loading midi modules print("Are you ready?") time.sleep(1) print_status = lambda x: cprint(x, 'white', 'on_blue') print_help = lambda x: cprint(x, 'red') hit = 0 rounde = 1 done = False generatedList = [] for i in range(stringToMidiNum("c"), stringToMidiNum("c'")+1): if i%12 in blackTonesBase: generatedList.append(i) while True: try: os.system('clear') print_status("Status: round=" + str(rounde) + ", hit=" + str(hit)) print_help("Help: rEPEAT sKIP") playHarmonicNotes(stringToMidiNum("f a c'")) randomNote = random.choice(generatedList) playNote(randomNote) while not done: guessedNote = input("Your input:") if guessedNote == "r": print("Repeating...") playHarmonicNotes(stringToMidiNum("f a c'")) playNote(randomNote) elif guessedNote == "s": print("Skiping...") done = True elif guessedNote not in lilypondTones: print("What? Syntax error!") else: if (lilypondTones[guessedNote] == randomNote%12): print("Yea!") hit += 1 rounde += 1 done = True else: print("Almost!") hit = 0 done = False except (KeyboardInterrupt): print('...Program Stopped Manually!') raise
py
1a568e7300f9bd7bb649c163c0af2b3867b7eb46
# # This source file is part of the EdgeDB open source project. # # Copyright 2008-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Mypy plugin to provide support for schema objects.""" from __future__ import annotations from typing import * from mypy import exprtotype import mypy.plugin as mypy_plugin from mypy import nodes from mypy import types from mypy import semanal from mypy.plugins import common as mypy_helpers from mypy.server import trigger as mypy_trigger METADATA_KEY = 'edbplugin' AST_BASE_CLASSES = { 'edb.common.ast.base.AST', } STRUCT_BASE_METACLASSES = { 'edb.common.struct.StructMeta', } SCHEMA_BASE_METACLASSES = { 'edb.schema.objects.ObjectMeta', 'edb.schema.types.SchemaCollectionMeta', } def plugin(version: str): return EDBPlugin class EDBPlugin(mypy_plugin.Plugin): def get_base_class_hook(self, fullname: str): if fullname.startswith('edb.'): return self.handle_schema_class def handle_schema_class(self, ctx: mypy_plugin.ClassDefContext): mro = ctx.cls.info.mro mcls = ctx.cls.info.metaclass_type mcls_mro = mcls.type.mro if mcls else [] transformers: List[BaseTransformer] = [] if any(c.fullname in SCHEMA_BASE_METACLASSES for c in mcls_mro): transformers.append( SchemaClassTransformer( ctx, field_makers={'edb.schema.objects.SchemaField'}, ) ) transformers.append( StructTransformer( ctx, field_makers={'edb.schema.objects.Field'}, ) ) elif any(c.fullname in STRUCT_BASE_METACLASSES for c in mcls_mro): transformers.append( StructTransformer( ctx, field_makers={'edb.common.struct.Field'}, ) ) elif any(c.fullname in AST_BASE_CLASSES for c in mro): transformers.append( ASTClassTransformer( ctx, ) ) for transformer in transformers: transformer.transform() class DeferException(Exception): pass class Field(NamedTuple): name: str has_explicit_accessor: bool has_default: bool line: int column: int type: types.Type def to_argument(self) -> nodes.Argument: result = nodes.Argument( variable=self.to_var(), type_annotation=self.type, initializer=None, kind=nodes.ARG_NAMED_OPT if self.has_default else nodes.ARG_NAMED, ) return result def to_var(self) -> nodes.Var: return nodes.Var(self.name, self.type) def serialize(self) -> nodes.JsonDict: return { 'name': self.name, 'has_explicit_accessor': self.has_explicit_accessor, 'has_default': self.has_default, 'line': self.line, 'column': self.column, 'type': self.type.serialize(), } @classmethod def deserialize( cls, api, data: nodes.JsonDict, ) -> Field: return cls( name=data['name'], has_explicit_accessor=data['has_explicit_accessor'], has_default=data['has_default'], line=data['line'], column=data['column'], type=mypy_helpers.deserialize_and_fixup_type(data['type'], api), ) class BaseTransformer: def __init__( self, ctx: mypy_plugin.ClassDefContext, ) -> None: self._ctx = ctx def transform(self): ctx = self._ctx metadata_key = self._get_metadata_key() metadata = ctx.cls.info.metadata.get(metadata_key) if not metadata: ctx.cls.info.metadata[metadata_key] = metadata = {} metadata['processing'] = True if metadata.get('processed'): return try: fields = self._transform() except DeferException: ctx.api.defer() return None metadata['fields'] = {f.name: f.serialize() for f in fields} metadata['processed'] = True def _transform(self) -> List[Field]: raise NotImplementedError def _field_from_field_def( self, stmt: nodes.AssignmentStmt, name: nodes.NameExpr, sym: nodes.SymbolTableNode, ) -> Optional[Field]: raise NotImplementedError def _collect_fields(self) -> List[Field]: """Collect all fields declared in a class and its ancestors.""" cls = self._ctx.cls fields: List[Field] = [] known_fields: Set[str] = set() for stmt in cls.defs.body: if not isinstance(stmt, nodes.AssignmentStmt): continue lhs = stmt.lvalues[0] if not isinstance(lhs, nodes.NameExpr): continue sym = cls.info.names.get(lhs.name) if sym is None or isinstance(sym.node, nodes.PlaceholderNode): # Not resolved yet? continue node = sym.node assert isinstance(node, nodes.Var) if node.is_classvar: # Disregard ClassVar stuff continue field = self._field_from_field_def(stmt, lhs, sym) if field is not None: fields.append(field) known_fields.add(field.name) return self._get_inherited_fields(known_fields) + fields def _lookup_type(self, fullname: str) -> types.Type: ctx = self._ctx type_sym = ctx.api.lookup_fully_qualified_or_none(fullname) if type_sym is None: raise DeferException t: types.Type if isinstance(type_sym.node, nodes.TypeInfo): from mypy.typevars import fill_typevars t = fill_typevars(type_sym.node) elif type_sym.type: t = type_sym.type else: ctx.api.fail(f'cannot find {fullname}', ctx.cls) return t def _get_metadata_key(self) -> str: return f'{METADATA_KEY}%%{type(self).__name__}' def _has_explicit_field_accessor(self, fieldname: str) -> bool: cls = self._ctx.cls accessor = cls.info.names.get(f'get_{fieldname}') return accessor is not None and not accessor.plugin_generated def _get_inherited_fields(self, self_fields: Set[str]) -> List[Field]: ctx = self._ctx cls = ctx.cls all_fields: List[Field] = [] known_fields = set(self_fields) for ancestor_info in cls.info.mro[1:-1]: metadata = ancestor_info.metadata.get(self._get_metadata_key()) if metadata is None: continue elif not metadata.get('processed'): raise DeferException ancestor_fields = [] ctx.api.add_plugin_dependency( mypy_trigger.make_wildcard_trigger(ancestor_info.fullname)) for name, data in metadata['fields'].items(): if name not in known_fields: if self._has_explicit_field_accessor(name): data = dict(data) data['has_explicit_accessor'] = True field = Field.deserialize(ctx.api, data) known_fields.add(name) ancestor_fields.append(field) all_fields = ancestor_fields + all_fields return all_fields def _synthesize_init(self, fields: List[Field]) -> None: ctx = self._ctx cls_info = ctx.cls.info # If our self type has placeholders (probably because of type # var bounds), defer. If we skip deferring and stick something # in our symbol table anyway, we'll get in trouble. (Arguably # plugins.common ought to help us with this, but oh well.) self_type = mypy_helpers.fill_typevars(cls_info) if semanal.has_placeholder(self_type): raise DeferException if ( ( '__init__' not in cls_info.names or cls_info.names['__init__'].plugin_generated ) and fields ): mypy_helpers.add_method( ctx, '__init__', self_type=self_type, args=[field.to_argument() for field in fields], return_type=types.NoneType(), ) class BaseStructTransformer(BaseTransformer): def __init__( self, ctx: mypy_plugin.ClassDefContext, field_makers: AbstractSet[str], ) -> None: super().__init__(ctx) self._field_makers = field_makers def _field_from_field_def( self, stmt: nodes.AssignmentStmt, name: nodes.NameExpr, sym: nodes.SymbolTableNode, ) -> Optional[Field]: ctx = self._ctx rhs = stmt.rvalue if isinstance(rhs, nodes.CastExpr): rhs = rhs.expr if not isinstance(rhs, nodes.CallExpr): return None fdef = rhs.callee ftype = None if ( isinstance(fdef, nodes.IndexExpr) and isinstance(fdef.analyzed, nodes.TypeApplication) ): # Explicitly typed Field declaration ctor = fdef.analyzed.expr if len(fdef.analyzed.types) > 1: ctx.api.fail('too many type arguments to Field', fdef) ftype = fdef.analyzed.types[0] else: ctor = fdef ftype = None if ( not isinstance(ctor, nodes.RefExpr) or ctor.fullname not in self._field_makers ): return None type_arg = rhs.args[0] deflt = self._get_default(rhs) if ftype is None: try: un_type = exprtotype.expr_to_unanalyzed_type(type_arg) except exprtotype.TypeTranslationError: ctx.api.fail('Cannot resolve schema field type', type_arg) else: ftype = ctx.api.anal_type(un_type) if ftype is None: raise DeferException is_optional = ( isinstance(deflt, nodes.NameExpr) and deflt.fullname == 'builtins.None' ) if is_optional: ftype = types.UnionType.make_union( [ftype, types.NoneType()], line=ftype.line, column=ftype.column, ) assert isinstance(name.node, nodes.Var) name.node.type = ftype return Field( name=name.name, has_explicit_accessor=self._has_explicit_field_accessor(name.name), has_default=deflt is not None, line=stmt.line, column=stmt.column, type=ftype, ) def _get_default(self, call) -> Optional[nodes.Expression]: for (n, v) in zip(call.arg_names, call.args): if n == 'default': return v else: return None class StructTransformer(BaseStructTransformer): def _transform(self) -> List[Field]: fields = self._collect_fields() self._synthesize_init(fields) return fields def _field_from_field_def( self, stmt: nodes.AssignmentStmt, name: nodes.NameExpr, sym: nodes.SymbolTableNode, ): field = super()._field_from_field_def(stmt, name, sym) if field is None: return None else: assert isinstance(sym.node, nodes.Var) sym.node.is_initialized_in_class = False name.is_inferred_def = False rhs = stmt.rvalue if not isinstance(rhs, nodes.CastExpr): stmt.rvalue = nodes.CastExpr( typ=field.type, expr=rhs, ) stmt.rvalue.line = rhs.line stmt.rvalue.column = rhs.column return field class SchemaClassTransformer(BaseStructTransformer): def _transform(self) -> List[Field]: ctx = self._ctx fields = self._collect_fields() schema_t = self._lookup_type('edb.schema.schema.Schema') for f in fields: if f.has_explicit_accessor: continue mypy_helpers.add_method( ctx, name=f'get_{f.name}', args=[ nodes.Argument( variable=nodes.Var( name='schema', type=schema_t, ), type_annotation=schema_t, initializer=None, kind=nodes.ARG_POS, ), ], return_type=f.type, ) return fields class ASTClassTransformer(BaseTransformer): def _transform(self) -> List[Field]: fields = self._collect_fields() # NB: __init__ synthesis below brings up a vast number of # typing errors which require AST definitions to be # annotated with defaults properly and the code adjusted # to handle Optional fields (historically we've been # initializing container fields with empty lists/tuples). # self._synthesize_init(fields) return fields def _field_from_field_def( self, stmt: nodes.AssignmentStmt, name: nodes.NameExpr, sym: nodes.SymbolTableNode, ) -> Optional[Field]: if sym.type is None: # No type annotation? return None else: has_default = not isinstance(stmt.rvalue, nodes.TempNode) if not has_default: sym.implicit = True return Field( name=name.name, has_default=has_default, line=stmt.line, column=stmt.column, type=sym.type, has_explicit_accessor=False, )
gyp
1a5690786ca65133dc94f3c216ca2f4e24788128
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, 'linux_link_kerberos%': 0, # Enables BidirectionalStream; Used in cronet, disabled by default. 'enable_bidirectional_stream%': 0, 'conditions': [ ['chromeos==1 or embedded==1 or OS=="ios"', { # Disable Kerberos on ChromeOS and iOS, at least for now. # It needs configuration (krb5.conf and so on). 'use_kerberos%': 0, }, { # chromeos == 0 and embedded==0 and OS!="ios" 'use_kerberos%': 1, }], ['OS=="android" and target_arch != "ia32"', { # The way the cache uses mmap() is inefficient on some Android devices. # If this flag is set, we hackily avoid using mmap() in the disk cache. # We are pretty confident that mmap-ing the index would not hurt any # existing x86 android devices, but we cannot be so sure about the # variety of ARM devices. So enable it for x86 only for now. 'posix_avoid_mmap%': 1, }, { 'posix_avoid_mmap%': 0, }], ['OS=="ios"', { # Websockets and socket stream are not used on iOS. 'enable_websockets%': 0, # iOS does not use V8. 'use_v8_in_net%': 0, 'enable_built_in_dns%': 0, }, { 'enable_websockets%': 1, 'use_v8_in_net%': 1, 'enable_built_in_dns%': 1, }], ], }, 'includes': [ '../build/win_precompile.gypi', 'net.gypi', ], 'targets': [ { 'target_name': 'net_derived_sources', 'type': 'none', 'sources': [ 'base/registry_controlled_domains/effective_tld_names.gperf', 'base/registry_controlled_domains/effective_tld_names_unittest1.gperf', 'base/registry_controlled_domains/effective_tld_names_unittest2.gperf', 'base/registry_controlled_domains/effective_tld_names_unittest3.gperf', 'base/registry_controlled_domains/effective_tld_names_unittest4.gperf', 'base/registry_controlled_domains/effective_tld_names_unittest5.gperf', 'base/registry_controlled_domains/effective_tld_names_unittest6.gperf', 'base/stale_while_revalidate_experiment_domains.gperf', ], 'rules': [ { 'rule_name': 'dafsa', 'extension': 'gperf', 'outputs': [ '<(SHARED_INTERMEDIATE_DIR)/net/<(RULE_INPUT_DIRNAME)/<(RULE_INPUT_ROOT)-inc.cc', ], 'inputs': [ 'tools/dafsa/make_dafsa.py', ], 'action': [ 'python', 'tools/dafsa/make_dafsa.py', '<(RULE_INPUT_PATH)', '<(SHARED_INTERMEDIATE_DIR)/net/<(RULE_INPUT_DIRNAME)/<(RULE_INPUT_ROOT)-inc.cc', ], }, ], 'direct_dependent_settings': { 'include_dirs': [ '<(SHARED_INTERMEDIATE_DIR)' ], }, }, { # Protobuf compiler / generator for QUIC crypto protocol buffer. # GN version: //net:net_quic_proto 'target_name': 'net_quic_proto', 'type': 'static_library', 'sources': [ 'quic/proto/cached_network_parameters.proto', 'quic/proto/source_address_token.proto', ], 'variables': { 'enable_wexit_time_destructors': 1, 'proto_in_dir': 'quic/proto', 'proto_out_dir': 'net/quic/proto', 'cc_generator_options': 'dllexport_decl=NET_EXPORT_PRIVATE:', 'cc_include': 'net/base/net_export.h', }, 'includes': [ '../build/protoc.gypi', ], 'defines': [ 'NET_IMPLEMENTATION', ], }, { # GN version: //net 'target_name': 'net', 'dependencies': [ '../base/base.gyp:base_i18n', '../third_party/brotli/brotli.gyp:brotli', '../third_party/icu/icu.gyp:icui18n', '../third_party/icu/icu.gyp:icuuc', '../third_party/protobuf/protobuf.gyp:protobuf_lite', '../url/url.gyp:url_lib', 'net_features', 'net_quic_proto', ], 'sources': [ 'base/filename_util_icu.cc', 'base/net_string_util_icu.cc', 'filter/brotli_filter.cc', ], 'includes': [ 'net_common.gypi' ], }, { # GN version: //net:features 'target_name': 'net_features', 'includes': [ '../build/buildflag_header.gypi' ], 'variables': { 'buildflag_header_path': 'net/net_features.h', 'buildflag_flags': [ 'ENABLE_BIDIRECTIONAL_STREAM=<(enable_bidirectional_stream)', ], }, }, { # GN version: //net:net_unittests 'target_name': 'net_unittests', 'type': '<(gtest_target_type)', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:base_i18n', '../base/base.gyp:base_prefs_test_support', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../crypto/crypto.gyp:crypto', '../crypto/crypto.gyp:crypto_test_support', '../testing/gmock.gyp:gmock', '../testing/gtest.gyp:gtest', '../third_party/zlib/zlib.gyp:zlib', '../url/url.gyp:url_lib', 'balsa', 'http_server', 'net', 'net_quic_proto', 'net_derived_sources', 'net_extras', 'net_test_support', 'simple_quic_tools', 'stale_while_revalidate_experiment_domains', ], 'sources': [ '<@(net_test_sources)', ], 'conditions': [ ['os_posix == 1 and OS != "mac" and OS != "ios" and OS != "android"', { 'dependencies': [ 'epoll_quic_tools', 'epoll_server', 'flip_in_mem_edsm_server_base', ], 'sources': [ '<@(net_linux_test_sources)', ], }], ['OS == "mac" or OS == "ios"', { 'sources': [ '<@(net_base_test_mac_ios_sources)', ], }], ['chromeos==1', { 'sources!': [ 'proxy/proxy_config_service_linux_unittest.cc', ], }], [ 'OS == "android"', { 'sources!': [ # See bug http://crbug.com/344533. 'disk_cache/blockfile/index_table_v3_unittest.cc', ], 'dependencies': [ 'net_javatests', ], }], [ 'use_nss_certs != 1', { 'sources!': [ 'cert/nss_cert_database_unittest.cc', 'cert/nss_cert_database_chromeos_unittest.cc', 'cert/nss_profile_filter_chromeos_unittest.cc', 'ssl/client_cert_store_nss_unittest.cc', ], }], [ 'use_openssl == 1', { # Avoid compiling/linking with the system library. 'dependencies': [ '../third_party/boringssl/boringssl.gyp:boringssl', ], }], [ 'use_nss_certs == 1 or OS == "ios" or use_openssl == 0', { 'conditions': [ [ 'desktop_linux == 1 or chromeos == 1', { 'dependencies': [ '../build/linux/system.gyp:ssl', ], }, { # desktop_linux == 0 and chromeos == 0 'dependencies': [ '../third_party/nss/nss.gyp:nspr', '../third_party/nss/nss.gyp:nss', 'third_party/nss/ssl.gyp:libssl', ], }], ], }], [ 'os_posix == 1 and OS != "mac" and OS != "android" and OS != "ios"', { 'conditions': [ ['use_allocator!="none"', { 'dependencies': [ '../base/allocator/allocator.gyp:allocator', ], }], ], }], [ 'use_kerberos==1', { 'defines': [ 'USE_KERBEROS', ], }], [ 'use_kerberos==0 or OS == "android"', { # These are excluded on Android, because the actual Kerberos support, # which these test, is in a separate app on Android. 'sources!': [ 'http/http_auth_gssapi_posix_unittest.cc', 'http/mock_gssapi_library_posix.cc', 'http/mock_gssapi_library_posix.h', ], }], [ 'use_kerberos==0', { 'sources!': [ 'http/http_auth_handler_negotiate_unittest.cc', ], }], [ 'use_nss_certs == 0 and OS != "ios"', { # Only include this test when using system NSS for cert verification # or on iOS (which also uses NSS for certs). 'sources!': [ 'cert_net/nss_ocsp_unittest.cc', ], }], [ 'use_openssl==1', { 'sources!': [ 'quic/test_tools/crypto_test_utils_nss.cc', ], }, { # else !use_openssl: remove the unneeded files and pull in NSS. 'sources!': [ 'quic/test_tools/crypto_test_utils_openssl.cc', 'socket/ssl_client_socket_openssl_unittest.cc', 'ssl/ssl_client_session_cache_openssl_unittest.cc', ], }, ], [ 'use_openssl_certs == 0', { 'sources!': [ 'ssl/openssl_client_key_store_unittest.cc', ], }], [ 'enable_websockets != 1', { 'sources/': [ ['exclude', '^websockets/'], ['exclude', '^server/'], ], 'dependencies!': [ 'http_server', ], }], ['disable_file_support==1', { 'sources!': [ 'base/directory_lister_unittest.cc', 'base/directory_listing_unittest.cc', 'url_request/url_request_file_job_unittest.cc', ], }], [ 'disable_ftp_support==1', { 'sources/': [ ['exclude', '^ftp/'], ], 'sources!': [ 'url_request/url_request_ftp_job_unittest.cc', ], }, ], [ 'enable_bidirectional_stream!=1', { 'sources!': [ 'http/bidirectional_stream_unittest.cc', ], }, ], [ 'enable_built_in_dns!=1', { 'sources!': [ 'dns/address_sorter_posix_unittest.cc', 'dns/address_sorter_unittest.cc', ], }, ], [ 'use_v8_in_net==1', { 'dependencies': [ 'net_with_v8', ], }, { # else: !use_v8_in_net 'sources!': [ 'proxy/proxy_resolver_v8_tracing_unittest.cc', 'proxy/proxy_resolver_v8_tracing_wrapper_unittest.cc', 'proxy/proxy_resolver_v8_unittest.cc', ], }, ], [ 'use_v8_in_net==1 and OS != "android"', { 'dependencies': [ 'net_with_v8', 'net_browser_services', 'net_utility_services', '../third_party/mojo/mojo_edk.gyp:mojo_system_impl', ], }, { # else 'sources!': [ 'dns/host_resolver_mojo_unittest.cc', 'dns/mojo_host_resolver_impl_unittest.cc', 'proxy/mojo_proxy_resolver_factory_impl_unittest.cc', 'proxy/mojo_proxy_resolver_impl_unittest.cc', 'proxy/mojo_proxy_resolver_v8_tracing_bindings_unittest.cc', 'proxy/proxy_resolver_factory_mojo_unittest.cc', 'proxy/proxy_service_mojo_unittest.cc', ], }, ], [ 'enable_mdns != 1', { 'sources!' : [ 'dns/mdns_cache_unittest.cc', 'dns/mdns_client_unittest.cc', 'dns/mdns_query_unittest.cc', 'dns/record_parsed_unittest.cc', 'dns/record_rdata_unittest.cc', ], }], [ 'OS == "win"', { 'sources!': [ 'dns/dns_config_service_posix_unittest.cc', 'http/http_auth_gssapi_posix_unittest.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], 'conditions': [ [ 'icu_use_data_file_flag == 0', { # This is needed to trigger the dll copy step on windows. # TODO(mark): Specifying this here shouldn't be necessary. 'dependencies': [ '../third_party/icu/icu.gyp:icudata', ], }], ], }, ], [ 'OS == "ios"', { 'actions': [ { 'action_name': 'copy_test_data', 'variables': { 'test_data_files': [ 'data/certificate_policies_unittest/', 'data/name_constraints_unittest/', 'data/parse_certificate_unittest/', 'data/ssl/certificates/', 'data/test.html', 'data/url_request_unittest/', 'data/verify_certificate_chain_unittest/', 'data/verify_name_match_unittest/names/', ], 'test_data_prefix': 'net', }, 'includes': [ '../build/copy_test_data_ios.gypi' ], }, ], 'sources!': [ # TODO(droger): The following tests are disabled because the # implementation is missing or incomplete. # KeygenHandler::GenKeyAndSignChallenge() is not ported to iOS. 'base/keygen_handler_unittest.cc', 'disk_cache/backend_unittest.cc', 'disk_cache/blockfile/block_files_unittest.cc', # Need to read input data files. 'filter/brotli_filter_unittest.cc', 'filter/gzip_filter_unittest.cc', # Need TestServer. "cert_net/cert_net_fetcher_impl_unittest.cc", 'proxy/proxy_script_fetcher_impl_unittest.cc', 'socket/ssl_client_socket_unittest.cc', 'socket/ssl_server_socket_unittest.cc', 'spdy/fuzzing/hpack_fuzz_util_test.cc', # Needs GetAppOutput(). 'test/python_utils_unittest.cc', 'url_request/url_fetcher_impl_unittest.cc', 'url_request/url_request_context_builder_unittest.cc', # The following tests are disabled because they don't apply to # iOS. # OS is not "linux" or "freebsd" or "openbsd". 'socket/unix_domain_client_socket_posix_unittest.cc', 'socket/unix_domain_server_socket_posix_unittest.cc', # See bug http://crbug.com/344533. 'disk_cache/blockfile/index_table_v3_unittest.cc', ], }], ['OS == "android"', { # TODO(mmenke): This depends on test_support_base, which depends on # icu. Figure out a way to remove that dependency. 'dependencies': [ '../testing/android/native_test.gyp:native_test_native_code', ] }], ['use_v8_in_net==1 and v8_use_external_startup_data==1', { 'dependencies': [ '../gin/gin.gyp:gin', ] }], ], 'target_conditions': [ # These source files are excluded by default platform rules, but they # are needed in specific cases on other platforms. Re-including them can # only be done in target_conditions as it is evaluated after the # platform rules. ['OS == "android"', { 'sources/': [ ['include', '^base/address_tracker_linux_unittest\\.cc$'], ], }], ['OS == "ios"', { 'sources/': [ ['include', '^base/mac/url_conversions_unittest\\.mm$'], ], }], ], }, { 'target_name': 'net_perftests', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:base_i18n', '../base/base.gyp:test_support_perf', '../testing/gtest.gyp:gtest', '../url/url.gyp:url_lib', 'net', 'net_extras', 'net_test_support', ], 'sources': [ 'base/mime_sniffer_perftest.cc', 'cookies/cookie_monster_perftest.cc', 'disk_cache/blockfile/disk_cache_perftest.cc', 'extras/sqlite/sqlite_persistent_cookie_store_perftest.cc', 'proxy/proxy_resolver_perftest.cc', 'udp/udp_socket_perftest.cc', 'websockets/websocket_frame_perftest.cc', ], 'conditions': [ [ 'use_v8_in_net==1', { 'dependencies': [ 'net_with_v8', ], }, { # else: !use_v8_in_net 'sources!': [ 'proxy/proxy_resolver_perftest.cc', ], }, ], [ 'OS == "win"', { 'conditions': [ [ 'icu_use_data_file_flag == 0', { # This is needed to trigger the dll copy step on windows. # TODO(mark): Specifying this here shouldn't be necessary. 'dependencies': [ '../third_party/icu/icu.gyp:icudata', ], }], ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }], [ 'enable_websockets != 1', { 'sources!': [ 'websockets/websocket_frame_perftest.cc', ], }], ], }, { 'target_name': 'net_test_support', 'type': 'static_library', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:test_support_base', '../crypto/crypto.gyp:crypto', '../net/tools/tld_cleanup/tld_cleanup.gyp:tld_cleanup_util', '../testing/gtest.gyp:gtest', '../testing/gmock.gyp:gmock', '../url/url.gyp:url_lib', 'net', ], 'export_dependent_settings': [ '../base/base.gyp:base', # TODO(mmenke): This depends on icu, figure out a way to build tests # without icu. '../base/base.gyp:test_support_base', '../crypto/crypto.gyp:crypto', '../testing/gtest.gyp:gtest', '../testing/gmock.gyp:gmock', ], 'sources': [ 'base/load_timing_info_test_util.cc', 'base/load_timing_info_test_util.h', 'base/mock_file_stream.cc', 'base/mock_file_stream.h', 'base/test_completion_callback.cc', 'base/test_completion_callback.h', 'base/test_data_directory.cc', 'base/test_data_directory.h', 'cert/mock_cert_verifier.cc', 'cert/mock_cert_verifier.h', 'cookies/cookie_monster_store_test.cc', 'cookies/cookie_monster_store_test.h', 'cookies/cookie_store_test_callbacks.cc', 'cookies/cookie_store_test_callbacks.h', 'cookies/cookie_store_test_helpers.cc', 'cookies/cookie_store_test_helpers.h', 'cookies/cookie_store_unittest.h', 'disk_cache/disk_cache_test_base.cc', 'disk_cache/disk_cache_test_base.h', 'disk_cache/disk_cache_test_util.cc', 'disk_cache/disk_cache_test_util.h', 'dns/dns_test_util.cc', 'dns/dns_test_util.h', 'dns/mock_host_resolver.cc', 'dns/mock_host_resolver.h', 'dns/mock_mdns_socket_factory.cc', 'dns/mock_mdns_socket_factory.h', 'http/http_transaction_test_util.cc', 'http/http_transaction_test_util.h', 'log/test_net_log.cc', 'log/test_net_log.h', 'log/test_net_log_entry.cc', 'log/test_net_log_entry.h', 'log/test_net_log_util.cc', 'log/test_net_log_util.h', 'proxy/mock_proxy_resolver.cc', 'proxy/mock_proxy_resolver.h', 'proxy/mock_proxy_script_fetcher.cc', 'proxy/mock_proxy_script_fetcher.h', 'proxy/proxy_config_service_common_unittest.cc', 'proxy/proxy_config_service_common_unittest.h', 'socket/socket_test_util.cc', 'socket/socket_test_util.h', 'test/cert_test_util.cc', 'test/cert_test_util.h', 'test/cert_test_util_nss.cc', 'test/channel_id_test_util.cc', 'test/channel_id_test_util.h', 'test/ct_test_util.cc', 'test/ct_test_util.h', 'test/embedded_test_server/default_handlers.cc', 'test/embedded_test_server/default_handlers.h', 'test/embedded_test_server/embedded_test_server.cc', 'test/embedded_test_server/embedded_test_server.h', 'test/embedded_test_server/http_connection.cc', 'test/embedded_test_server/http_connection.h', 'test/embedded_test_server/http_request.cc', 'test/embedded_test_server/http_request.h', 'test/embedded_test_server/http_response.cc', 'test/embedded_test_server/http_response.h', 'test/embedded_test_server/request_handler_util.cc', 'test/embedded_test_server/request_handler_util.h', 'test/event_waiter.h', 'test/net_test_suite.cc', 'test/net_test_suite.h', 'test/python_utils.cc', 'test/python_utils.h', 'test/spawned_test_server/base_test_server.cc', 'test/spawned_test_server/base_test_server.h', 'test/spawned_test_server/local_test_server.cc', 'test/spawned_test_server/local_test_server.h', 'test/spawned_test_server/local_test_server_posix.cc', 'test/spawned_test_server/local_test_server_win.cc', 'test/spawned_test_server/spawned_test_server.h', 'test/test_certificate_data.h', 'test/url_request/ssl_certificate_error_job.cc', 'test/url_request/ssl_certificate_error_job.h', 'test/url_request/url_request_failed_job.cc', 'test/url_request/url_request_failed_job.h', 'test/url_request/url_request_mock_data_job.cc', 'test/url_request/url_request_mock_data_job.h', 'test/url_request/url_request_slow_download_job.cc', 'test/url_request/url_request_slow_download_job.h', 'url_request/test_url_fetcher_factory.cc', 'url_request/test_url_fetcher_factory.h', 'url_request/url_request_test_util.cc', 'url_request/url_request_test_util.h', ], 'conditions': [ ['OS != "ios"', { 'dependencies': [ '../third_party/protobuf/protobuf.gyp:py_proto', ], }, { 'sources!': [ 'test/spawned_test_server/base_test_server.cc', 'test/spawned_test_server/base_test_server.h', 'test/spawned_test_server/local_test_server.cc', 'test/spawned_test_server/local_test_server.h', 'test/spawned_test_server/local_test_server_posix.cc', 'test/spawned_test_server/local_test_server_win.cc', 'test/spawned_test_server/spawned_test_server.h', ], }], ['use_nss_certs == 1 or OS == "ios"', { 'conditions': [ [ 'desktop_linux == 1 or chromeos == 1', { 'dependencies': [ '../build/linux/system.gyp:ssl', ], }, { # desktop_linux == 0 and chromeos == 0 'dependencies': [ '../third_party/nss/nss.gyp:nspr', '../third_party/nss/nss.gyp:nss', 'third_party/nss/ssl.gyp:libssl', ], }], ], }], ['os_posix == 1 and OS != "mac" and OS != "android" and OS != "ios"', { 'conditions': [ ['use_allocator!="none"', { 'dependencies': [ '../base/allocator/allocator.gyp:allocator', ], }], ], }], ['OS == "android"', { 'dependencies': [ 'net_test_jni_headers', ], 'sources': [ 'test/embedded_test_server/android/embedded_test_server_android.cc', 'test/embedded_test_server/android/embedded_test_server_android.h', 'test/spawned_test_server/remote_test_server.cc', 'test/spawned_test_server/remote_test_server.h', 'test/spawned_test_server/spawner_communicator.cc', 'test/spawned_test_server/spawner_communicator.h', ], }], [ 'use_v8_in_net==1', { 'dependencies': [ 'net_with_v8', ], }, ], [ 'enable_mdns != 1', { 'sources!' : [ 'dns/mock_mdns_socket_factory.cc', 'dns/mock_mdns_socket_factory.h' ] }], [ 'use_nss_certs != 1', { 'sources!': [ 'test/cert_test_util_nss.cc', ], }], ['disable_file_support != 1', { 'sources': [ 'test/url_request/url_request_mock_http_job.cc', 'test/url_request/url_request_mock_http_job.h', 'url_request/test_url_request_interceptor.cc', 'url_request/test_url_request_interceptor.h', ], }], ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'net_resources', 'type': 'none', 'variables': { 'grit_out_dir': '<(SHARED_INTERMEDIATE_DIR)/net', }, 'actions': [ { 'action_name': 'net_resources', 'variables': { 'grit_grd_file': 'base/net_resources.grd', }, 'includes': [ '../build/grit_action.gypi' ], }, ], }, { 'target_name': 'net_extras', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ '../base/base.gyp:base', '../sql/sql.gyp:sql', 'net', ], 'sources': [ '<@(net_extras_sources)', ], }, { 'target_name': 'net_docs', 'type': 'none', 'actions': [ { 'action_name': 'net_docs', 'variables': { 'net_docs_input_dir': '.', }, 'inputs': [ '<@(net_docs_sources)', ], 'outputs': [ '<(net_docs_output_dir)', ], 'action': [ 'python', '<(net_docs_script)', '--input_path', '<(net_docs_input_dir)', '--output_path', '<(net_docs_output_dir)', '<@(net_docs_sources)', ], 'message': 'Rendering network stack documentation', } ], }, { 'target_name': 'http_server', 'type': 'static_library', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'server/http_connection.cc', 'server/http_connection.h', 'server/http_server.cc', 'server/http_server.h', 'server/http_server_request_info.cc', 'server/http_server_request_info.h', 'server/http_server_response_info.cc', 'server/http_server_response_info.h', 'server/web_socket.cc', 'server/web_socket.h', 'server/web_socket_encoder.cc', 'server/web_socket_encoder.h', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { # GN version: //net:balsa 'target_name': 'balsa', 'type': 'static_library', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'tools/balsa/balsa_enums.h', 'tools/balsa/balsa_frame.cc', 'tools/balsa/balsa_frame.h', 'tools/balsa/balsa_headers.cc', 'tools/balsa/balsa_headers.h', 'tools/balsa/balsa_headers_token_utils.cc', 'tools/balsa/balsa_headers_token_utils.h', 'tools/balsa/balsa_visitor_interface.h', 'tools/balsa/http_message_constants.cc', 'tools/balsa/http_message_constants.h', 'tools/balsa/noop_balsa_visitor.h', 'tools/balsa/simple_buffer.cc', 'tools/balsa/simple_buffer.h', 'tools/balsa/split.cc', 'tools/balsa/split.h', 'tools/balsa/string_piece_utils.h', 'tools/quic/spdy_balsa_utils.cc', 'tools/quic/spdy_balsa_utils.h', ], }, { 'target_name': 'dump_cache', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', 'net_test_support', ], 'sources': [ 'tools/dump_cache/dump_cache.cc', 'tools/dump_cache/dump_files.cc', 'tools/dump_cache/dump_files.h', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'simple_quic_tools', 'type': 'static_library', 'dependencies': [ '../base/base.gyp:base', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../url/url.gyp:url_lib', 'net', 'net_quic_proto', ], 'sources': [ 'tools/quic/quic_client_base.cc', 'tools/quic/quic_client_base.h', 'tools/quic/quic_client_session.cc', 'tools/quic/quic_client_session.h', 'tools/quic/quic_dispatcher.cc', 'tools/quic/quic_dispatcher.h', 'tools/quic/quic_in_memory_cache.cc', 'tools/quic/quic_in_memory_cache.h', 'tools/quic/quic_per_connection_packet_writer.cc', 'tools/quic/quic_per_connection_packet_writer.h', 'tools/quic/quic_server_session_base.cc', 'tools/quic/quic_server_session_base.h', 'tools/quic/quic_simple_client.cc', 'tools/quic/quic_simple_client.h', 'tools/quic/quic_simple_per_connection_packet_writer.cc', 'tools/quic/quic_simple_per_connection_packet_writer.h', 'tools/quic/quic_simple_server.cc', 'tools/quic/quic_simple_server.h', 'tools/quic/quic_simple_server_packet_writer.cc', 'tools/quic/quic_simple_server_packet_writer.h', 'tools/quic/quic_simple_server_session.cc', 'tools/quic/quic_simple_server_session.h', 'tools/quic/quic_spdy_client_stream.cc', 'tools/quic/quic_spdy_client_stream.h', 'tools/quic/quic_simple_server_stream.cc', 'tools/quic/quic_simple_server_stream.h', 'tools/quic/quic_time_wait_list_manager.cc', 'tools/quic/quic_time_wait_list_manager.h', 'tools/quic/synchronous_host_resolver.cc', 'tools/quic/synchronous_host_resolver.h', ], }, { # GN version: //net:stale_while_revalidate_experiment_domains 'target_name': 'stale_while_revalidate_experiment_domains', 'type': 'static_library', 'dependencies': [ '../base/base.gyp:base', 'net', 'net_derived_sources', ], 'sources': [ 'base/stale_while_revalidate_experiment_domains.cc', 'base/stale_while_revalidate_experiment_domains.h', ], }, ], 'conditions': [ ['use_v8_in_net == 1', { 'targets': [ { 'target_name': 'net_with_v8', 'type': '<(component)', 'variables': { 'enable_wexit_time_destructors': 1, }, 'dependencies': [ '../base/base.gyp:base', '../gin/gin.gyp:gin', '../url/url.gyp:url_lib', '../v8/tools/gyp/v8.gyp:v8', 'net' ], 'defines': [ 'NET_IMPLEMENTATION', ], 'sources': [ 'proxy/proxy_resolver_v8.cc', 'proxy/proxy_resolver_v8.h', 'proxy/proxy_resolver_v8_tracing.cc', 'proxy/proxy_resolver_v8_tracing.h', 'proxy/proxy_resolver_v8_tracing_wrapper.cc', 'proxy/proxy_resolver_v8_tracing_wrapper.h', 'proxy/proxy_service_v8.cc', 'proxy/proxy_service_v8.h', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, ], }], ['use_v8_in_net == 1 and OS != "android"', { 'targets': [ { # GN version: //net/interfaces 'target_name': 'net_interfaces', 'type': 'static_library', 'sources': [ 'interfaces/host_resolver_service.mojom', 'interfaces/proxy_resolver_service.mojom', ], 'includes': [ '../third_party/mojo/mojom_bindings_generator.gypi', ], }, { # GN version: //net:net_browser_services 'target_name': 'net_browser_services', 'type': 'static_library', 'sources': [ 'dns/mojo_host_resolver_impl.cc', 'dns/mojo_host_resolver_impl.h', 'proxy/in_process_mojo_proxy_resolver_factory.cc', 'proxy/in_process_mojo_proxy_resolver_factory.h', 'proxy/mojo_proxy_resolver_factory.h', 'proxy/proxy_resolver_factory_mojo.cc', 'proxy/proxy_resolver_factory_mojo.h', 'proxy/proxy_service_mojo.cc', 'proxy/proxy_service_mojo.h', ], 'dependencies': [ 'mojo_type_converters', 'net', 'net_interfaces', '../mojo/mojo_base.gyp:mojo_common_lib', '../mojo/mojo_base.gyp:mojo_environment_chromium', '../mojo/mojo_base.gyp:mojo_url_type_converters', '../third_party/mojo/mojo_public.gyp:mojo_cpp_bindings', # NOTE(amistry): As long as we support in-process Mojo v8 PAC, we # need this dependency since in_process_mojo_proxy_resolver_factory # creates the utility process side Mojo services in the browser # process. Ultimately, this will go away when we only support # out-of-process. 'net_utility_services', ], }, { # GN version: //net:net_utility_services 'target_name': 'net_utility_services', 'type': 'static_library', 'sources': [ 'dns/host_resolver_mojo.cc', 'dns/host_resolver_mojo.h', 'proxy/mojo_proxy_resolver_factory_impl.cc', 'proxy/mojo_proxy_resolver_factory_impl.h', 'proxy/mojo_proxy_resolver_impl.cc', 'proxy/mojo_proxy_resolver_impl.h', 'proxy/mojo_proxy_resolver_v8_tracing_bindings.h', ], 'dependencies': [ 'mojo_type_converters', 'net_interfaces', 'net_with_v8', '../mojo/mojo_base.gyp:mojo_url_type_converters', '../third_party/mojo/mojo_public.gyp:mojo_cpp_bindings', ], }, { # GN version: //net:mojo_type_converters 'target_name': 'mojo_type_converters', 'type': 'static_library', 'sources': [ 'dns/mojo_host_type_converters.cc', 'dns/mojo_host_type_converters.h', 'proxy/mojo_proxy_type_converters.cc', 'proxy/mojo_proxy_type_converters.h', ], 'dependencies': [ 'net', 'net_interfaces', '../third_party/mojo/mojo_public.gyp:mojo_cpp_bindings', ], }, ], }], ['OS != "ios" and OS != "android"', { 'targets': [ # iOS doesn't have the concept of simple executables, these targets # can't be compiled on the platform. { 'target_name': 'crash_cache', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', 'net_test_support', ], 'sources': [ 'tools/crash_cache/crash_cache.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'crl_set_dump', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'tools/crl_set_dump/crl_set_dump.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'dns_fuzz_stub', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'tools/dns_fuzz_stub/dns_fuzz_stub.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'gdig', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'tools/gdig/file_net_log.cc', 'tools/gdig/gdig.cc', ], }, { 'target_name': 'get_server_time', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:base_i18n', '../url/url.gyp:url_lib', 'net', ], 'sources': [ 'tools/get_server_time/get_server_time.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'hpack_example_generator', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'spdy/fuzzing/hpack_example_generator.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'hpack_fuzz_mutator', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'spdy/fuzzing/hpack_fuzz_mutator.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'hpack_fuzz_wrapper', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'spdy/fuzzing/hpack_fuzz_wrapper.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'net_watcher', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', 'net_with_v8', ], 'conditions': [ [ 'use_glib == 1', { 'dependencies': [ '../build/linux/system.gyp:gconf', '../build/linux/system.gyp:gio', ], }, ], ], 'sources': [ 'tools/net_watcher/net_watcher.cc', ], }, { 'target_name': 'run_testserver', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:test_support_base', '../testing/gtest.gyp:gtest', 'net_test_support', ], 'sources': [ 'tools/testserver/run_testserver.cc', ], }, { 'target_name': 'quic_client', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', '../url/url.gyp:url_lib', 'net', 'simple_quic_tools', ], 'sources': [ 'tools/quic/quic_simple_client_bin.cc', ], }, { 'target_name': 'quic_server', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', 'net_quic_proto', 'simple_quic_tools', ], 'sources': [ 'tools/quic/quic_simple_server_bin.cc', ], }, { 'target_name': 'stress_cache', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', 'net_test_support', ], 'sources': [ 'tools/stress_cache/stress_cache.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, { 'target_name': 'tld_cleanup', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:base_i18n', '../net/tools/tld_cleanup/tld_cleanup.gyp:tld_cleanup_util', ], 'sources': [ 'tools/tld_cleanup/tld_cleanup.cc', ], # TODO(jschuh): crbug.com/167187 fix size_t to int truncations. 'msvs_disabled_warnings': [4267, ], }, ], }], ['os_posix == 1 and OS != "mac" and OS != "ios" and OS != "android"', { 'targets': [ { 'target_name': 'epoll_server', 'type': 'static_library', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'tools/epoll_server/epoll_server.cc', 'tools/epoll_server/epoll_server.h', ], }, { 'target_name': 'flip_in_mem_edsm_server_base', 'type': 'static_library', 'cflags': [ '-Wno-deprecated', ], 'dependencies': [ '../base/base.gyp:base', '../third_party/boringssl/boringssl.gyp:boringssl', 'balsa', 'epoll_server', 'net', ], 'sources': [ 'tools/flip_server/acceptor_thread.cc', 'tools/flip_server/acceptor_thread.h', 'tools/flip_server/constants.h', 'tools/flip_server/create_listener.cc', 'tools/flip_server/create_listener.h', 'tools/flip_server/flip_config.cc', 'tools/flip_server/flip_config.h', 'tools/flip_server/http_interface.cc', 'tools/flip_server/http_interface.h', 'tools/flip_server/mem_cache.cc', 'tools/flip_server/mem_cache.h', 'tools/flip_server/output_ordering.cc', 'tools/flip_server/output_ordering.h', 'tools/flip_server/ring_buffer.cc', 'tools/flip_server/ring_buffer.h', 'tools/flip_server/sm_connection.cc', 'tools/flip_server/sm_connection.h', 'tools/flip_server/sm_interface.h', 'tools/flip_server/spdy_interface.cc', 'tools/flip_server/spdy_interface.h', 'tools/flip_server/spdy_ssl.cc', 'tools/flip_server/spdy_ssl.h', 'tools/flip_server/spdy_util.cc', 'tools/flip_server/spdy_util.h', 'tools/flip_server/streamer_interface.cc', 'tools/flip_server/streamer_interface.h', 'tools/flip_server/url_to_filename_encoder.cc', 'tools/flip_server/url_to_filename_encoder.h', 'tools/flip_server/url_utilities.cc', 'tools/flip_server/url_utilities.h', ], }, { 'target_name': 'flip_in_mem_edsm_server_unittests', 'type': 'executable', 'dependencies': [ '../testing/gtest.gyp:gtest', '../testing/gmock.gyp:gmock', '../third_party/boringssl/boringssl.gyp:boringssl', 'flip_in_mem_edsm_server_base', 'net', 'net_test_support', ], 'sources': [ 'tools/flip_server/flip_test_utils.cc', 'tools/flip_server/flip_test_utils.h', 'tools/flip_server/http_interface_test.cc', 'tools/flip_server/mem_cache_test.cc', 'tools/flip_server/run_all_tests.cc', 'tools/flip_server/spdy_interface_test.cc', 'tools/flip_server/url_to_filename_encoder_unittest.cc', 'tools/flip_server/url_utilities_unittest.cc', ], }, { 'target_name': 'flip_in_mem_edsm_server', 'type': 'executable', 'cflags': [ '-Wno-deprecated', ], 'dependencies': [ '../base/base.gyp:base', 'flip_in_mem_edsm_server_base', 'net', ], 'sources': [ 'tools/flip_server/flip_in_mem_edsm_server.cc', ], }, { 'target_name': 'epoll_quic_tools', 'type': 'static_library', 'dependencies': [ '../base/base.gyp:base', '../base/third_party/dynamic_annotations/dynamic_annotations.gyp:dynamic_annotations', '../url/url.gyp:url_lib', 'balsa', 'epoll_server', 'net', 'net_quic_proto', ], 'sources': [ 'tools/quic/quic_client.cc', 'tools/quic/quic_client.h', 'tools/quic/quic_default_packet_writer.cc', 'tools/quic/quic_default_packet_writer.h', 'tools/quic/quic_epoll_clock.cc', 'tools/quic/quic_epoll_clock.h', 'tools/quic/quic_epoll_connection_helper.cc', 'tools/quic/quic_epoll_connection_helper.h', 'tools/quic/quic_packet_reader.cc', 'tools/quic/quic_packet_reader.h', 'tools/quic/quic_packet_writer_wrapper.cc', 'tools/quic/quic_packet_writer_wrapper.h', 'tools/quic/quic_server.cc', 'tools/quic/quic_server.h', 'tools/quic/quic_socket_utils.cc', 'tools/quic/quic_socket_utils.h', ], }, { 'target_name': 'epoll_quic_client', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', 'epoll_quic_tools', 'simple_quic_tools', ], 'sources': [ 'tools/quic/quic_client_bin.cc', ], }, { 'target_name': 'epoll_quic_server', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', 'net_quic_proto', 'epoll_quic_tools', 'simple_quic_tools', ], 'sources': [ 'tools/quic/quic_server_bin.cc', ], }, ] }], ['OS=="android"', { 'targets': [ { # The same target as 'net', but with smaller binary size due to # exclusion of ICU, FTP, FILE and WebSockets support. 'target_name': 'net_small', 'variables': { 'disable_ftp_support': 1, 'disable_file_support': 1, 'enable_websockets': 0, }, 'dependencies': [ '../url/url.gyp:url_lib_use_icu_alternatives_on_android', 'net_features', ], 'defines': [ 'USE_ICU_ALTERNATIVES_ON_ANDROID=1', 'DISABLE_FILE_SUPPORT=1', 'DISABLE_FTP_SUPPORT=1', ], 'sources': [ 'filter/brotli_filter_disabled.cc', 'base/net_string_util_icu_alternatives_android.cc', 'base/net_string_util_icu_alternatives_android.h', ], 'includes': [ 'net_common.gypi' ], }, { 'target_name': 'net_jni_headers', 'type': 'none', 'sources': [ 'android/java/src/org/chromium/net/AndroidCertVerifyResult.java', 'android/java/src/org/chromium/net/AndroidKeyStore.java', 'android/java/src/org/chromium/net/AndroidNetworkLibrary.java', 'android/java/src/org/chromium/net/AndroidTrafficStats.java', 'android/java/src/org/chromium/net/GURLUtils.java', 'android/java/src/org/chromium/net/HttpNegotiateAuthenticator.java', 'android/java/src/org/chromium/net/NetStringUtil.java', 'android/java/src/org/chromium/net/NetworkChangeNotifier.java', 'android/java/src/org/chromium/net/ProxyChangeListener.java', 'android/java/src/org/chromium/net/X509Util.java', ], 'variables': { 'jni_gen_package': 'net', }, 'includes': [ '../build/jni_generator.gypi' ], }, { 'target_name': 'net_test_jni_headers', 'type': 'none', 'sources': [ 'android/javatests/src/org/chromium/net/AndroidKeyStoreTestUtil.java', 'test/android/javatests/src/org/chromium/net/test/EmbeddedTestServerImpl.java', 'test/android/javatests/src/org/chromium/net/test/DummySpnegoAuthenticator.java', ], 'variables': { 'jni_gen_package': 'net/test', }, 'includes': [ '../build/jni_generator.gypi' ], }, { 'target_name': 'net_java', 'type': 'none', 'variables': { 'java_in_dir': '../net/android/java', }, 'dependencies': [ '../base/base.gyp:base', 'cert_verify_status_android_java', 'certificate_mime_types_java', 'network_change_notifier_types_java', 'network_change_notifier_android_types_java', 'net_errors_java', 'private_key_types_java', 'traffic_stats_error_java', ], 'includes': [ '../build/java.gypi' ], }, { 'target_name': 'embedded_test_server_aidl', 'type': 'none', 'variables': { 'aidl_interface_file': '../net/test/android/javatests/src/org/chromium/net/test/IEmbeddedTestServerInterface.aidl', }, 'sources': [ '../net/test/android/javatests/src/org/chromium/net/test/IEmbeddedTestServerImpl.aidl', ], 'includes': [ '../build/java_aidl.gypi' ], }, { 'target_name': 'net_java_test_support', 'type': 'none', 'variables': { 'java_in_dir': '../net/test/android/javatests', # TODO(jbudorick): remove chromium_code: 0 line once crbug.com/488192 is fixed. 'chromium_code': 0, }, 'dependencies': [ 'embedded_test_server_aidl', 'net_java', 'url_request_failed_job_java', '../base/base.gyp:base_java', '../base/base.gyp:base_java_test_support', '../third_party/android_tools/android_tools.gyp:legacy_http_javalib', ], 'includes': [ '../build/java.gypi' ], }, { 'target_name': 'libnet_java_test_support', 'type': 'shared_library', 'dependencies': [ 'net_test_support', '../base/base.gyp:base', ], 'sources': [ 'test/android/net_test_entry_point.cc', 'test/android/net_test_jni_onload.cc', 'test/android/net_test_jni_onload.h', ], }, { 'target_name': 'net_test_support_apk', 'type': 'none', 'dependencies': [ 'net_java_test_support', ], 'variables': { 'android_manifest_path': 'test/android/javatests/AndroidManifest.xml', 'apk_name': 'ChromiumNetTestSupport', 'is_test_apk': 1, 'java_in_dir': 'test/android/javatests', 'java_in_dir_suffix': '/src_dummy', 'native_lib_target': 'libnet_java_test_support', }, 'includes': [ '../build/java_apk.gypi', ], }, { # Targets that need the net test support APK should depend on this # target. It ensures that the APK is built without passing the # classpath on to dependent targets. 'target_name': 'require_net_test_support_apk', 'type': 'none', 'actions': [ { 'action_name': 'require_ChromiumNetTestSupport', 'variables': { 'required_file': '<(PRODUCT_DIR)/net_test_support_apk/ChromiumNetTestSupport.apk.required', }, 'inputs': [ '<(PRODUCT_DIR)/apks/ChromiumNetTestSupport.apk', ], 'outputs': [ '<(required_file)', ], 'action': [ 'python', '../build/android/gyp/touch.py', '<(required_file)', ], }, ], }, { 'target_name': 'url_request_failed_job_java', 'type': 'none', 'variables': { 'source_file': 'test/url_request/url_request_failed_job.h', }, 'includes': [ '../build/android/java_cpp_enum.gypi' ], }, { 'target_name': 'net_javatests', 'type': 'none', 'variables': { 'java_in_dir': '../net/android/javatests', }, 'dependencies': [ '../base/base.gyp:base', '../base/base.gyp:base_java_test_support', 'net_java', 'net_java_test_support', ], 'includes': [ '../build/java.gypi' ], }, { 'target_name': 'net_errors_java', 'type': 'none', 'sources': [ 'android/java/NetError.template', ], 'variables': { 'package_name': 'org/chromium/net', 'template_deps': ['base/net_error_list.h'], }, 'includes': [ '../build/android/java_cpp_template.gypi' ], }, { 'target_name': 'certificate_mime_types_java', 'type': 'none', 'variables': { 'source_file': 'base/mime_util.h', }, 'includes': [ '../build/android/java_cpp_enum.gypi' ], }, { 'target_name': 'cert_verify_status_android_java', 'type': 'none', 'variables': { 'source_file': 'android/cert_verify_result_android.h', }, 'includes': [ '../build/android/java_cpp_enum.gypi' ], }, { 'target_name': 'network_change_notifier_types_java', 'type': 'none', 'variables': { 'source_file': 'base/network_change_notifier.h', }, 'includes': [ '../build/android/java_cpp_enum.gypi' ], }, { 'target_name': 'network_change_notifier_android_types_java', 'type': 'none', 'variables': { 'source_file': 'android/network_change_notifier_android.cc', }, 'includes': [ '../build/android/java_cpp_enum.gypi' ], }, { 'target_name': 'private_key_types_java', 'type': 'none', 'variables': { 'source_file': 'android/keystore.h', }, 'includes': [ '../build/android/java_cpp_enum.gypi' ], }, { 'target_name': 'traffic_stats_error_java', 'type': 'none', 'variables': { 'source_file': 'android/traffic_stats.cc', }, 'includes': [ '../build/android/java_cpp_enum.gypi' ], }, { 'target_name': 'net_unittests_apk', 'type': 'none', 'dependencies': [ 'net_java', 'net_javatests', 'net_java_test_support', 'net_unittests', ], 'conditions': [ ['v8_use_external_startup_data==1', { 'dependencies': [ '../v8/tools/gyp/v8.gyp:v8_external_snapshot', ], 'variables': { 'dest_path': '<(asset_location)', 'renaming_sources': [ '<(PRODUCT_DIR)/natives_blob.bin', '<(PRODUCT_DIR)/snapshot_blob.bin', ], 'renaming_destinations': [ 'natives_blob_<(arch_suffix).bin', 'snapshot_blob_<(arch_suffix).bin', ], 'clear': 1, }, 'includes': ['../build/android/copy_ex.gypi'], }], ], 'variables': { 'test_suite_name': 'net_unittests', 'isolate_file': 'net_unittests.isolate', 'android_manifest_path': 'android/unittest_support/AndroidManifest.xml', 'resource_dir': 'android/unittest_support/res', 'conditions': [ ['v8_use_external_startup_data==1', { 'asset_location': '<(PRODUCT_DIR)/net_unittests_apk/assets', 'additional_input_paths': [ '<(PRODUCT_DIR)/net_unittests_apk/assets/natives_blob_<(arch_suffix).bin', '<(PRODUCT_DIR)/net_unittests_apk/assets/snapshot_blob_<(arch_suffix).bin', ], }], ], }, 'includes': [ '../build/apk_test.gypi', '../build/android/v8_external_startup_data_arch_suffix.gypi', ], }, { 'target_name': 'net_junit_tests', 'type': 'none', 'dependencies': [ 'net_java', '../base/base.gyp:base', '../base/base.gyp:base_java_test_support', '../base/base.gyp:base_junit_test_support', '../testing/android/junit/junit_test.gyp:junit_test_support', ], 'variables': { 'main_class': 'org.chromium.testing.local.JunitTestMain', 'src_paths': [ 'android/junit/', ], }, 'includes': [ '../build/host_jar.gypi', ], }, ], 'conditions': [ ['test_isolation_mode != "noop"', { 'targets': [ { 'target_name': 'net_unittests_apk_run', 'type': 'none', 'dependencies': [ 'net_unittests_apk', ], 'includes': [ '../build/isolate.gypi', ], 'sources': [ 'net_unittests_apk.isolate', ], }, ] } ], ], }], ['OS == "android" or OS == "linux"', { 'targets': [ { 'target_name': 'disk_cache_memory_test', 'type': 'executable', 'dependencies': [ '../base/base.gyp:base', 'net', ], 'sources': [ 'tools/disk_cache_memory_test/disk_cache_memory_test.cc', ], }, ], }], ['test_isolation_mode != "noop"', { 'targets': [ { 'target_name': 'net_unittests_run', 'type': 'none', 'dependencies': [ 'net_unittests', ], 'includes': [ '../build/isolate.gypi', ], 'sources': [ 'net_unittests.isolate', ], }, ], }], ], }
py
1a5690bf8321690ea7b11c7f3213ceac98906c85
# code is borrowed from the original repo and fit into our training framework # https://github.com/HuCaoFighting/Swin-Unet/tree/4375a8d6fa7d9c38184c5d3194db990a00a3e912 from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.utils.checkpoint as checkpoint from einops import rearrange from timm.models.layers import DropPath, to_2tuple, trunc_normal_ import copy import logging import math from os.path import join as pjoin import numpy as np from torch.nn import CrossEntropyLoss, Dropout, Softmax, Linear, Conv2d, LayerNorm from torch.nn.modules.utils import _pair from scipy import ndimage class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r""" Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = (q @ k.transpose(-2, -1)) relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r""" Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) if self.shift_size > 0: # calculate attention mask for SW-MSA H, W = self.input_resolution img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x): H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \ f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r""" Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class PatchExpand(nn.Module): def __init__(self, input_resolution, dim, dim_scale=2, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.expand = nn.Linear(dim, 2*dim, bias=False) if dim_scale==2 else nn.Identity() self.norm = norm_layer(dim // dim_scale) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution x = self.expand(x) B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=2, p2=2, c=C//4) x = x.view(B,-1,C//4) x= self.norm(x) return x class FinalPatchExpand_X4(nn.Module): def __init__(self, input_resolution, dim, dim_scale=4, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.dim_scale = dim_scale self.expand = nn.Linear(dim, 16*dim, bias=False) self.output_dim = dim self.norm = norm_layer(self.output_dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution x = self.expand(x) B, L, C = x.shape assert L == H * W, "input feature has wrong size" x = x.view(B, H, W, C) x = rearrange(x, 'b h w (p1 p2 c)-> b (h p1) (w p2) c', p1=self.dim_scale, p2=self.dim_scale, c=C//(self.dim_scale**2)) x = x.view(B,-1,self.output_dim) x= self.norm(x) return x class BasicLayer(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if downsample is not None: self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer) else: self.downsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class BasicLayer_up(nn.Module): """ A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__(self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, upsample=None, use_checkpoint=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ SwinTransformerBlock(dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # patch merging layer if upsample is not None: self.upsample = PatchExpand(input_resolution, dim=dim, dim_scale=2, norm_layer=norm_layer) else: self.upsample = None def forward(self, x): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.upsample is not None: x = self.upsample(x) return x class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class SwinTransformerSys(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 2, 2], depths_decoder=[1, 2, 2, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, final_upsample="expand_first", **kwargs): super().__init__() print("SwinTransformerSys expand initial----depths:{};depths_decoder:{};drop_path_rate:{};num_classes:{}".format(depths, depths_decoder,drop_path_rate,num_classes)) self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.num_features_up = int(embed_dim * 2) self.mlp_ratio = mlp_ratio self.final_upsample = final_upsample # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build encoder and bottleneck layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layer) # build decoder layers self.layers_up = nn.ModuleList() self.concat_back_dim = nn.ModuleList() for i_layer in range(self.num_layers): concat_linear = nn.Linear(2*int(embed_dim*2**(self.num_layers-1-i_layer)), int(embed_dim*2**(self.num_layers-1-i_layer))) if i_layer > 0 else nn.Identity() if i_layer ==0 : layer_up = PatchExpand(input_resolution=(patches_resolution[0] // (2 ** (self.num_layers-1-i_layer)), patches_resolution[1] // (2 ** (self.num_layers-1-i_layer))), dim=int(embed_dim * 2 ** (self.num_layers-1-i_layer)), dim_scale=2, norm_layer=norm_layer) else: layer_up = BasicLayer_up(dim=int(embed_dim * 2 ** (self.num_layers-1-i_layer)), input_resolution=(patches_resolution[0] // (2 ** (self.num_layers-1-i_layer)), patches_resolution[1] // (2 ** (self.num_layers-1-i_layer))), depth=depths[(self.num_layers-1-i_layer)], num_heads=num_heads[(self.num_layers-1-i_layer)], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:(self.num_layers-1-i_layer)]):sum(depths[:(self.num_layers-1-i_layer) + 1])], norm_layer=norm_layer, upsample=PatchExpand if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers_up.append(layer_up) self.concat_back_dim.append(concat_linear) self.norm = norm_layer(self.num_features) self.norm_up= norm_layer(self.embed_dim) if self.final_upsample == "expand_first": print("---final upsample expand_first---") self.up = FinalPatchExpand_X4(input_resolution=(img_size//patch_size,img_size//patch_size),dim_scale=4,dim=embed_dim) self.output = nn.Conv2d(in_channels=embed_dim,out_channels=self.num_classes,kernel_size=1,bias=False) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} #Encoder and Bottleneck def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) x_downsample = [] for layer in self.layers: x_downsample.append(x) x = layer(x) x = self.norm(x) # B L C return x, x_downsample #Dencoder and Skip connection def forward_up_features(self, x, x_downsample): for inx, layer_up in enumerate(self.layers_up): if inx == 0: x = layer_up(x) else: x = torch.cat([x,x_downsample[3-inx]],-1) x = self.concat_back_dim[inx](x) x = layer_up(x) x = self.norm_up(x) # B L C return x def up_x4(self, x): H, W = self.patches_resolution B, L, C = x.shape assert L == H*W, "input features has wrong size" if self.final_upsample=="expand_first": x = self.up(x) x = x.view(B,4*H,4*W,-1) x = x.permute(0,3,1,2) #B,C,H,W x = self.output(x) return x def forward(self, x): x, x_downsample = self.forward_features(x) x = self.forward_up_features(x,x_downsample) x = self.up_x4(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops logger = logging.getLogger(__name__) class SwinUnet_config(): def __init__(self): self.patch_size = 4 self.in_chans = 3 self.num_classes = 4 self.embed_dim = 96 self.depths = [2, 2, 6, 2] self.num_heads = [3, 6, 12, 24] self.window_size = 7 self.mlp_ratio = 4. self.qkv_bias = True self.qk_scale = None self.drop_rate = 0. self.drop_path_rate = 0.1 self.ape = False self.patch_norm = True self.use_checkpoint = False class SwinUnet(nn.Module): def __init__(self, config, img_size=224, num_classes=21843, zero_head=False, vis=False): super(SwinUnet, self).__init__() self.num_classes = num_classes self.zero_head = zero_head self.config = config self.swin_unet = SwinTransformerSys(img_size=img_size, patch_size=config.patch_size, in_chans=config.in_chans, num_classes=self.num_classes, embed_dim=config.embed_dim, depths=config.depths, num_heads=config.num_heads, window_size=config.window_size, mlp_ratio=config.mlp_ratio, qkv_bias=config.qkv_bias, qk_scale=config.qk_scale, drop_rate=config.drop_rate, drop_path_rate=config.drop_path_rate, ape=config.ape, patch_norm=config.patch_norm, use_checkpoint=config.use_checkpoint) def forward(self, x): # print(x.size()) # if x.size()[1] == 1: # x = x.repeat(1,3,1,1) logits = self.swin_unet(x) return logits def load_from(self, pretrained_path): if pretrained_path is not None: print("pretrained_path:{}".format(pretrained_path)) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') pretrained_dict = torch.load(pretrained_path, map_location=device) if "model" not in pretrained_dict: print("---start load pretrained modle by splitting---") pretrained_dict = {k[17:]:v for k,v in pretrained_dict.items()} for k in list(pretrained_dict.keys()): if "output" in k: print("delete key:{}".format(k)) del pretrained_dict[k] msg = self.swin_unet.load_state_dict(pretrained_dict,strict=False) # print(msg) return pretrained_dict = pretrained_dict['model'] print("---start load pretrained modle of swin encoder---") model_dict = self.swin_unet.state_dict() full_dict = copy.deepcopy(pretrained_dict) for k, v in pretrained_dict.items(): if "layers." in k: current_layer_num = 3-int(k[7:8]) current_k = "layers_up." + str(current_layer_num) + k[8:] full_dict.update({current_k:v}) for k in list(full_dict.keys()): if k in model_dict: if full_dict[k].shape != model_dict[k].shape: print("delete:{};shape pretrain:{};shape model:{}".format(k,v.shape,model_dict[k].shape)) del full_dict[k] msg = self.swin_unet.load_state_dict(full_dict, strict=False) # print(msg) else: print("none pretrain")
py
1a5690f41b1a9f69cda4001f2e7bec733e2a0a73
import uuid from django.db import models from django.utils import timezone from wallet.models import Wallet class Transaction(models.Model): TX_STATUS = [('INIT', 'INITIATED'), ('ABT', 'ABORTED'), ('IP', 'IN-PROGRESS'), ('CMP', 'COMPLETED'), ('TO', 'TIMED-OUT')] TX_TYPE = [('DX', 'DEPOSIT'), ('WX', 'WITHDRAWAL'), ('US', 'UNSPECIFIED')] id = models.BigAutoField(primary_key=True) reference_id = models.UUIDField(unique=True, default=uuid.uuid4) created_at = models.DateTimeField(default=timezone.now) wallet = models.ForeignKey(Wallet, blank=False, null=False, on_delete=models.CASCADE, db_column='wid') amount = models.PositiveIntegerField(default=0) status = models.CharField(max_length=10, choices=TX_STATUS, default='INIT') type = models.CharField(max_length=20, choices=TX_TYPE, default='US') class Meta: db_table = 'transaction' def get_dict(self): dict_obj = {'reference_id': self.reference_id if self.reference_id else None, 'created_at': str(self.created_at) if self.created_at else None, 'wallet_id': self.wallet.wxid if self.wallet.wxid else None, 'status': self.status if self.status else None } return dict_obj
py
1a56915815c7f96a1f624bb3ba76512dd2e94bb9
#!/usr/bin/env python3 import unittest from unittest.mock import patch import numpy as np import pandas as pd from tmc import points from tmc.utils import load, get_stdout, patch_helper module_name="src.subsetting_by_positions" subsetting_by_positions = load(module_name, "subsetting_by_positions") main = load(module_name, "main") ph = patch_helper(module_name) @points('p04-08.1') class SubsettingByPositions(unittest.TestCase): def test_shape_and_columns(self): df = subsetting_by_positions() self.assertEqual(df.shape, (10,2), msg="The returned DataFrame had wrong shape!") #np.testing.assert_array_equal(df.index, range(10), err_msg="Incorrect index") np.testing.assert_array_equal(df.columns, ["Title", "Artist"], err_msg="Incorrect column names") def test_called(self): with patch(ph("subsetting_by_positions"), wraps=subsetting_by_positions) as psbp,\ patch(ph("pd.read_csv"), wraps=pd.read_csv) as prc: main() psbp.assert_called() prc.assert_called() if __name__ == '__main__': unittest.main()
py
1a56920de499e0b75d7aaa01a68af9518661a8bc
# Import python libs import new import sys # Import Salt Testing libs from salttesting import skipIf, TestCase from salttesting.helpers import ensure_in_syspath ensure_in_syspath('../../') # wmi and pythoncom modules are platform specific... wmi = new.module('wmi') sys.modules['wmi'] = wmi pythoncom = new.module('pythoncom') sys.modules['pythoncom'] = pythoncom from salttesting.mock import NO_MOCK, NO_MOCK_REASON, Mock, patch, call, ANY if NO_MOCK is False: WMI = Mock() wmi.WMI = Mock(return_value=WMI) pythoncom.CoInitialize = Mock() pythoncom.CoUninitialize = Mock() # This is imported late so mock can do it's job import bonneville.modules.win_status as status @skipIf(NO_MOCK, NO_MOCK_REASON) class TestProcsBase(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) self.__processes = [] def add_process( self, pid=100, cmd='cmd', name='name', user='user', user_domain='domain', get_owner_result=0): process = Mock() process.GetOwner = Mock( return_value=(user_domain, get_owner_result, user) ) process.ProcessId = pid process.CommandLine = cmd process.Name = name self.__processes.append(process) def call_procs(self): WMI.win32_process = Mock(return_value=self.__processes) self.result = status.procs() class TestProcsCount(TestProcsBase): def setUp(self): self.add_process(pid=100) self.add_process(pid=101) self.call_procs() def test_process_count(self): self.assertEqual(len(self.result), 2) def test_process_key_is_pid(self): self.assertSetEqual(set(self.result.keys()), set([100, 101])) class TestProcsAttributes(TestProcsBase): def setUp(self): self._expected_name = 'name' self._expected_cmd = 'cmd' self._expected_user = 'user' self._expected_domain = 'domain' pid = 100 self.add_process( pid=pid, cmd=self._expected_cmd, user=self._expected_user, user_domain=self._expected_domain, get_owner_result=0) self.call_procs() self.proc = self.result[pid] def test_process_cmd_is_set(self): self.assertEqual(self.proc['cmd'], self._expected_cmd) def test_process_name_is_set(self): self.assertEqual(self.proc['name'], self._expected_name) def test_process_user_is_set(self): self.assertEqual(self.proc['user'], self._expected_user) def test_process_user_domain_is_set(self): self.assertEqual(self.proc['user_domain'], self._expected_domain) class TestProcsUnicodeAttributes(TestProcsBase): def setUp(self): unicode_str = u'\xc1' self.utf8str = unicode_str.encode('utf8') pid = 100 self.add_process( pid=pid, user=unicode_str, user_domain=unicode_str, cmd=unicode_str, name=unicode_str) self.call_procs() self.proc = self.result[pid] def test_process_cmd_is_utf8(self): self.assertEqual(self.proc['cmd'], self.utf8str) def test_process_name_is_utf8(self): self.assertEqual(self.proc['name'], self.utf8str) def test_process_user_is_utf8(self): self.assertEqual(self.proc['user'], self.utf8str) def test_process_user_domain_is_utf8(self): self.assertEqual(self.proc['user_domain'], self.utf8str) class TestProcsWMIGetOwnerAccessDeniedWorkaround(TestProcsBase): def setUp(self): self.expected_user = 'SYSTEM' self.expected_domain = 'NT AUTHORITY' self.add_process(pid=0, get_owner_result=2) self.add_process(pid=4, get_owner_result=2) self.call_procs() def test_user_is_set(self): self.assertEqual(self.result[0]['user'], self.expected_user) self.assertEqual(self.result[4]['user'], self.expected_user) def test_process_user_domain_is_set(self): self.assertEqual(self.result[0]['user_domain'], self.expected_domain) self.assertEqual(self.result[4]['user_domain'], self.expected_domain) class TestProcsWMIGetOwnerErrorsAreLogged(TestProcsBase): def setUp(self): self.expected_error_code = 8 self.add_process(get_owner_result=self.expected_error_code) def test_error_logged_if_process_get_owner_fails(self): with patch('salt.modules.win_status.log') as log: self.call_procs() log.warning.assert_called_once_with(ANY) self.assertIn( str(self.expected_error_code), log.warning.call_args[0][0] ) class TestEmptyCommandLine(TestProcsBase): def setUp(self): self.expected_error_code = 8 pid = 100 self.add_process(pid=pid, cmd=None) self.call_procs() self.proc = self.result[pid] def test_cmd_is_empty_string(self): self.assertEqual(self.proc['cmd'], '') #class TestProcsComInitialization(TestProcsBase): # def setUp(self): # call_count = 5 # for _ in range(call_count): # self.call_procs() # self.expected_calls = [call()] * call_count # # def test_initialize_and_uninitialize_called(self): # pythoncom.CoInitialize.assert_has_calls(self.expected_calls) # pythoncom.CoUninitialize.assert_has_calls(self.expected_calls) if __name__ == '__main__': from integration import run_tests run_tests( [ TestProcsCount, TestProcsAttributes, TestProcsUnicodeAttributes, TestProcsWMIGetOwnerErrorsAreLogged, TestProcsWMIGetOwnerAccessDeniedWorkaround, ], needs_daemon=False )
py
1a5692128821bf48b31f66b7b07d4ffd559c7b85
from typing import List, Type from colassigner.util import camel_to_snake # noqa: F401 def class_def_from_cls(cls: Type): return get_class_def( cls.__name__, [p.__name__ for p in get_simplified_mro(cls)], remove_dunder(cls.__dict__), ) def get_class_def( cls_name: str, parent_names: List[str] = None, att_dict: dict = None ): parent_str = ", ".join(parent_names) if att_dict: att_strs = [f" {k} = {v}" for k, v in att_dict.items()] else: att_strs = [" pass"] return "\n".join( [ f"class {cls_name}({parent_str}):", *att_strs, ] ) def snake_to_camel(snake_str: str): return "".join(snake_str.replace("_", " ").title().split()) def simplify_mro(parent_list: List[Type]): out = [] for cls in parent_list: if any(map(lambda added_cls: cls in added_cls.mro(), out)): continue out.append(cls) return out def get_simplified_mro(cls: Type): return simplify_mro(cls.mro()[1:]) def remove_dunder(dic: dict): return {k: v for k, v in dic.items() if not k.startswith("__")}
py
1a5692211f322e4a249f4ff9ce64adb3c97e0165
from PyQt5 import QtWidgets from PyQt5.QtCore import qWarning, Qt from PyQt5.QtWidgets import QWidget, QSplitter from candy_editor.qt.controls.ToolWindowManager.ToolWindowManagerArea import ToolWindowManagerArea class ToolWindowManagerWrapper ( QWidget ): def __init__ ( self, manager ): super ( ToolWindowManagerWrapper, self ).__init__ ( manager ) self.manager = manager self.setWindowFlags ( self.windowFlags () | Qt.Tool ) self.setWindowTitle ( '' ) mainLayout = QtWidgets.QVBoxLayout ( self ) mainLayout.setContentsMargins ( 0, 0, 0, 0 ) self.manager.wrappers.append ( self ) def closeEvent ( self, event ): ''' 关闭时处理所有拥有的ToolWindowManagerArea ''' from .ToolWindowManager import ToolWindowManager toolWindows = [] for widget in self.findChildren ( ToolWindowManagerArea ): toolWindows += widget.toolWindows () self.manager.moveToolWindows ( toolWindows, ToolWindowManager.NoArea ) def saveState ( self ): result = {} if self.layout ().count () > 1: qWarning ('too many children for wrapper') return result if self.isWindow () and self.layout ().count () == 0: qWarning ('empty top level wrapper') return result # result[ 'geometry' ] = str ( self.saveGeometry () ) splitter = self.findChild ( QSplitter ) if splitter: result[ 'splitter' ] = self.manager.saveSplitterState ( splitter ) else: area = self.findChild ( ToolWindowManagerArea ) if area: result[ 'area' ] = area.saveState () elif self.layout ().count () > 0: qWarning ('unknown child') return {} return result def restoreState ( self, data ): if 'geometry' in data: self.restoreGeometry ( data['geometry'] ) if self.layout ().count () > 0: qWarning ('wrapper is not empty') return if 'splitter' in data: self.layout ().addWidget ( self.manager.restoreSplitterState ( data[ 'splitter' ].toMap () ) ) elif 'area' in data: area = self.manager.createArea () area.restoreState ( data[ 'area' ] ) self.layout ().addWidget ( area ) def isOccupied ( self ): return self.layout ().count () > 0
py
1a56926d6e7e559323104c113a5174e815f864a6
#Claire Williams & Matthew Rasmussen #1/26/2021 #Moves info from one CSV file to other CSV files #dictionary full of info import csv def make_athletes_table(): '''SOMETHING ''' athlete_dict = {} with open('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: name = row[1] sex = row[2] height = row[4] weight = row[5] if name not in athlete_dict: athlete_dict[name] = [len(athlete_dict) + 1, sex, height, weight] with open('athletes.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in athlete_dict: writer.writerow([athlete_dict[key][0], key, athlete_dict[key][1], athlete_dict[key][2], athlete_dict[key][3]]) return athlete_dict def make_nations_table(): nations_dict = {} with open ('noc_regions.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: noc = row[0] region = row[1] nations_dict[noc] = [len(nations_dict) + 1, region] with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: noc = row[7] team = row[6] if noc not in nations_dict: nations_dict[noc] = [len(nations_dict) + 1, team] with open('nations.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for nation in nations_dict: writer.writerow([nations_dict[nation][0], nation, nations_dict[nation][1]]) return nations_dict def make_games_table(): games_dict = {} with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: game = row[8] year = row[9] season = row[10] city = row[11] if game not in games_dict: games_dict[game] = [len(games_dict) + 1, year, season, city] with open('games.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in games_dict: writer.writerow([games_dict[key][0], games_dict[key][1], games_dict[key][2], games_dict[key][3]]) return games_dict def make_contests_table(): contest_dict = {} with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: contest = row[13] sport = row[12] if contest not in contest_dict: contest_dict[contest] = [len(contest_dict) + 1, sport] with open('contests.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in contest_dict: writer.writerow([contest_dict[key][0], key, contest_dict[key][1]]) return contest_dict def make_athletes_games(athelete_dict, nations_dict, games_dict): athletes_games_dict = {} with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: athlete = row[1] game_name = row[8] noc = row[7] if (athlete, game_name) not in athletes_games_dict: athletes_games_dict[(athlete, game_name)] = [len(athletes_games_dict) + 1, athelete_dict[athlete][0], nations_dict[noc][0], games_dict[game_name][0]] with open('athletes_games.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in athletes_games_dict: writer.writerow(athletes_games_dict[key]) return athletes_games_dict def make_contests_medals(athletes_games_dict, contests_dict): contests_medals_dict = {} with open ('athlete_events.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') headers = next(csv_reader) for row in csv_reader: athlete = row[1] game_name = row[8] contest = row[13] medal = row[14] contests_medals_dict[len(contests_medals_dict) + 1] = [athletes_games_dict[(athlete, game_name)][0], contests_dict[contest][0], medal] with open('contests_medals.csv', 'w', newline='') as new_csv_file: writer = csv.writer(new_csv_file, delimiter=',') for key in contests_medals_dict: writer.writerow([key, contests_medals_dict[key][0], contests_medals_dict[key][1], contests_medals_dict[key][2]]) def main(): athelete_dict = make_athletes_table() nations_dict = make_nations_table() games_dict = make_games_table() contests_dict = make_contests_table() athletes_games_dict = make_athletes_games(athelete_dict, nations_dict, games_dict) make_contests_medals(athletes_games_dict, contests_dict) main()
py
1a5692bf6677bc96cfe8eff05fc67994f145f4dc
import FWCore.ParameterSet.Config as cms # Pixel Digi Monitoring from Validation.SiPixelPhase1DigisV.SiPixelPhase1DigisV_cfi import * # Hits from Validation.SiPixelPhase1HitsV.SiPixelPhase1HitsV_cfi import * # RecHit (clusters) from Validation.SiPixelPhase1RecHitsV.SiPixelPhase1RecHitsV_cfi import * # Clusters ontrack/offtrack (also general tracks) from Validation.SiPixelPhase1TrackClustersV.SiPixelPhase1TrackClustersV_cfi import * # Tracking Truth MC from Validation.SiPixelPhase1TrackingParticleV.SiPixelPhase1TrackingParticleV_cfi import * PerModule.enabled = False siPixelPhase1OfflineDQM_sourceV = cms.Sequence(SiPixelPhase1DigisAnalyzerV + SiPixelPhase1HitsAnalyzerV + SiPixelPhase1RecHitsAnalyzerV + SiPixelPhase1TrackClustersAnalyzerV + SiPixelPhase1TrackingParticleAnalyzerV )
py
1a5692f7b5be5e87b78dac9d1ae51f280ca089f8
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for contrib.seq2seq.python.ops.attention_wrapper.""" # pylint: disable=unused-import,g-bad-import-order from __future__ import absolute_import from __future__ import division from __future__ import print_function # pylint: enable=unused-import import collections import functools import numpy as np from tensorflow.contrib.seq2seq.python.ops import decoder from tensorflow.contrib.seq2seq.python.ops import attention_wrapper as wrapper from tensorflow.contrib.seq2seq.python.ops import helper as helper_py from tensorflow.contrib.seq2seq.python.ops import basic_decoder from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.layers import core as layers_core from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import rnn from tensorflow.python.ops import rnn_cell from tensorflow.python.ops import variables from tensorflow.python.ops import variable_scope as vs from tensorflow.python.platform import test from tensorflow.python.util import nest # pylint: enable=g-import-not-at-top # for testing AttentionWrapperState = wrapper.AttentionWrapperState # pylint: disable=invalid-name LSTMStateTuple = rnn_cell.LSTMStateTuple # pylint: disable=invalid-name BasicDecoderOutput = basic_decoder.BasicDecoderOutput # pylint: disable=invalid-name float32 = np.float32 int32 = np.int32 array = np.array dtype = np.dtype class ResultSummary( collections.namedtuple('ResultSummary', ('shape', 'dtype', 'mean'))): pass def get_result_summary(x): if isinstance(x, np.ndarray): return ResultSummary(x.shape, x.dtype, x.mean()) return x class AttentionWrapperTest(test.TestCase): def assertAllCloseOrEqual(self, x, y, **kwargs): if isinstance(x, np.ndarray) or isinstance(x, float): return super(AttentionWrapperTest, self).assertAllClose( x, y, atol=1e-3, **kwargs) else: self.assertAllEqual(x, y, **kwargs) def testAttentionWrapperState(self): num_fields = len(wrapper.AttentionWrapperState._fields) # pylint: disable=protected-access state = wrapper.AttentionWrapperState(*([None] * num_fields)) new_state = state.clone(time=1) self.assertEqual(state.time, None) self.assertEqual(new_state.time, 1) def testAttentionWrapperStateShapePropgation(self): batch_size = 5 max_time = 5 num_units = 5 memory = random_ops.random_uniform( [batch_size, max_time, num_units], seed=1) mechanism = wrapper.LuongAttention(num_units, memory) cell = wrapper.AttentionWrapper(rnn_cell.LSTMCell(num_units), mechanism) # Create zero state with static batch size. static_state = cell.zero_state(batch_size, dtypes.float32) # Create zero state without static batch size. state = cell.zero_state(array_ops.shape(memory)[0], dtypes.float32) state = static_state.clone( cell_state=state.cell_state, attention=state.attention) self.assertEqual(state.cell_state.c.shape, static_state.cell_state.c.shape) self.assertEqual(state.cell_state.h.shape, static_state.cell_state.h.shape) self.assertEqual(state.attention.shape, static_state.attention.shape) def _testWithAttention(self, create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=3, alignment_history=False, expected_final_alignment_history=None, attention_layer_size=6, attention_layer=None, name=''): attention_layer_sizes = ( [attention_layer_size] if attention_layer_size is not None else None) attention_layers = ( [attention_layer] if attention_layer is not None else None) self._testWithMaybeMultiAttention( is_multi=False, create_attention_mechanisms=[create_attention_mechanism], expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[attention_mechanism_depth], alignment_history=alignment_history, expected_final_alignment_history=expected_final_alignment_history, attention_layer_sizes=attention_layer_sizes, attention_layers=attention_layers, name=name) def _testWithMaybeMultiAttention(self, is_multi, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths, alignment_history=False, expected_final_alignment_history=None, attention_layer_sizes=None, attention_layers=None, name=''): # Allow is_multi to be True with a single mechanism to enable test for # passing in a single mechanism in a list. assert len(create_attention_mechanisms) == 1 or is_multi encoder_sequence_length = [3, 2, 3, 1, 1] decoder_sequence_length = [2, 0, 1, 2, 3] batch_size = 5 encoder_max_time = 8 decoder_max_time = 4 input_depth = 7 encoder_output_depth = 10 cell_depth = 9 if attention_layer_sizes is not None: # Compute sum of attention_layer_sizes. Use encoder_output_depth if None. attention_depth = sum(attention_layer_size or encoder_output_depth for attention_layer_size in attention_layer_sizes) elif attention_layers is not None: # Compute sum of attention_layers output depth. attention_depth = sum( attention_layer.compute_output_shape( [batch_size, cell_depth + encoder_output_depth]).dims[-1].value for attention_layer in attention_layers) else: attention_depth = encoder_output_depth * len(create_attention_mechanisms) decoder_inputs = array_ops.placeholder_with_default( np.random.randn(batch_size, decoder_max_time, input_depth).astype(np.float32), shape=(None, None, input_depth)) encoder_outputs = array_ops.placeholder_with_default( np.random.randn(batch_size, encoder_max_time, encoder_output_depth).astype(np.float32), shape=(None, None, encoder_output_depth)) attention_mechanisms = [ creator(num_units=depth, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length) for creator, depth in zip(create_attention_mechanisms, attention_mechanism_depths)] with self.session(use_gpu=True) as sess: with vs.variable_scope( 'root', initializer=init_ops.random_normal_initializer(stddev=0.01, seed=3)): attention_layer_size = attention_layer_sizes attention_layer = attention_layers if not is_multi: if attention_layer_size is not None: attention_layer_size = attention_layer_size[0] if attention_layer is not None: attention_layer = attention_layer[0] cell = rnn_cell.LSTMCell(cell_depth) cell = wrapper.AttentionWrapper( cell, attention_mechanisms if is_multi else attention_mechanisms[0], attention_layer_size=attention_layer_size, alignment_history=alignment_history, attention_layer=attention_layer) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtypes.float32, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) self.assertEqual((batch_size, None, attention_depth), tuple(final_outputs.rnn_output.get_shape().as_list())) self.assertEqual((batch_size, None), tuple(final_outputs.sample_id.get_shape().as_list())) self.assertEqual((batch_size, attention_depth), tuple(final_state.attention.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state.c.get_shape().as_list())) self.assertEqual((batch_size, cell_depth), tuple(final_state.cell_state.h.get_shape().as_list())) if alignment_history: if is_multi: state_alignment_history = [] for history_array in final_state.alignment_history: history = history_array.stack() self.assertEqual( (None, batch_size, None), tuple(history.get_shape().as_list())) state_alignment_history.append(history) state_alignment_history = tuple(state_alignment_history) else: state_alignment_history = final_state.alignment_history.stack() self.assertEqual( (None, batch_size, None), tuple(state_alignment_history.get_shape().as_list())) nest.assert_same_structure( cell.state_size, cell.zero_state(batch_size, dtypes.float32)) # Remove the history from final_state for purposes of the # remainder of the tests. final_state = final_state._replace(alignment_history=()) # pylint: disable=protected-access else: state_alignment_history = () sess.run(variables.global_variables_initializer()) sess_results = sess.run({ 'final_outputs': final_outputs, 'final_state': final_state, 'state_alignment_history': state_alignment_history, }) final_output_info = nest.map_structure(get_result_summary, sess_results['final_outputs']) final_state_info = nest.map_structure(get_result_summary, sess_results['final_state']) print(name) print('Copy/paste:\nexpected_final_output = %s' % str(final_output_info)) print('expected_final_state = %s' % str(final_state_info)) nest.map_structure(self.assertAllCloseOrEqual, expected_final_output, final_output_info) nest.map_structure(self.assertAllCloseOrEqual, expected_final_state, final_state_info) if alignment_history: # by default, the wrapper emits attention as output final_alignment_history_info = nest.map_structure( get_result_summary, sess_results['state_alignment_history']) print('expected_final_alignment_history = %s' % str(final_alignment_history_info)) nest.map_structure( self.assertAllCloseOrEqual, # outputs are batch major but the stacked TensorArray is time major expected_final_alignment_history, final_alignment_history_info) def testBahdanauNormalizedDType(self): for dtype in [np.float16, np.float32, np.float64]: num_units = 128 encoder_outputs = array_ops.placeholder(dtype, shape=[64, None, 256]) encoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) decoder_inputs = array_ops.placeholder(dtype, shape=[64, None, 128]) decoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) batch_size = 64 attention_mechanism = wrapper.BahdanauAttention( num_units=num_units, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, normalize=True, dtype=dtype, ) cell = rnn_cell.LSTMCell(num_units) cell = wrapper.AttentionWrapper(cell, attention_mechanism) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dtype, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual(final_outputs.rnn_output.dtype, dtype) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) def testBahdanauNotNormalized(self): create_attention_mechanism = wrapper.BahdanauAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052250605), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040092287), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020015112)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0052052638), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.12500001) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauNotNormalized') def testBahdanauNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauAttention, normalize=True) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.00597103), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040052128), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019996136)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.00595117), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, name='testBahdanauNormalized') def testLuongNotNormalized(self): create_attention_mechanism = wrapper.LuongAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052615386), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.004009536), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020016613)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0051812846), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, name='testLuongNotNormalized') def testLuongScaledDType(self): # Test case for GitHub issue 18099 for dt in [np.float16, np.float32, np.float64]: num_units = 128 encoder_outputs = array_ops.placeholder(dt, shape=[64, None, 256]) encoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) decoder_inputs = array_ops.placeholder(dt, shape=[64, None, 128]) decoder_sequence_length = array_ops.placeholder(dtypes.int32, shape=[64]) batch_size = 64 attention_mechanism = wrapper.LuongAttention( num_units=num_units, memory=encoder_outputs, memory_sequence_length=encoder_sequence_length, scale=True, dtype=dt, ) cell = rnn_cell.LSTMCell(num_units) cell = wrapper.AttentionWrapper(cell, attention_mechanism) helper = helper_py.TrainingHelper(decoder_inputs, decoder_sequence_length) my_decoder = basic_decoder.BasicDecoder( cell=cell, helper=helper, initial_state=cell.zero_state( dtype=dt, batch_size=batch_size)) final_outputs, final_state, _ = decoder.dynamic_decode(my_decoder) self.assertTrue( isinstance(final_outputs, basic_decoder.BasicDecoderOutput)) self.assertEqual(final_outputs.rnn_output.dtype, dt) self.assertTrue( isinstance(final_state, wrapper.AttentionWrapperState)) self.assertTrue( isinstance(final_state.cell_state, rnn_cell.LSTMStateTuple)) def testLuongScaled(self): create_attention_mechanism = functools.partial( wrapper.LuongAttention, scale=True) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0052615386), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.4)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.004009536), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0020016613)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.0051812846), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, name='testLuongScaled') def testNotUseAttentionLayer(self): create_attention_mechanism = wrapper.BahdanauAttention expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 10), dtype=dtype('float32'), mean=0.117389656), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=4.5999999999999996)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0063607907), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.00323448)), attention=ResultSummary( shape=(5, 10), dtype=dtype('float32'), mean=0.117389656,), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), alignment_history=()) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_layer_size=None, name='testNotUseAttentionLayer') def test_safe_cumprod(self): # Create some random test input test_input = np.random.uniform(size=(10, 20)) for axis in [0, 1]: for exclusive in [True, False]: with self.cached_session(): # Compute cumprod with regular tf.cumprod cumprod_output = math_ops.cumprod( test_input, axis=axis, exclusive=exclusive).eval() # Compute cumprod with safe_cumprod safe_cumprod_output = wrapper.safe_cumprod( test_input, axis=axis, exclusive=exclusive).eval() for x, y in zip(cumprod_output.shape, safe_cumprod_output.shape): self.assertEqual(x, y) for x, y in zip(cumprod_output.flatten(), safe_cumprod_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) def test_monotonic_attention(self): def monotonic_attention_explicit(p_choose_i, previous_attention): """Explicitly compute monotonic attention distribution using numpy.""" # Base case for recurrence relation out = [previous_attention[0]] # Explicitly follow the recurrence relation for j in range(1, p_choose_i.shape[0]): out.append((1 - p_choose_i[j - 1])*out[j - 1] + previous_attention[j]) return p_choose_i*np.array(out) # Generate a random batch of choosing probabilities for seq. len. 20 p_choose_i = np.random.uniform(size=(10, 20)).astype(np.float32) # Generate random previous attention distributions previous_attention = np.random.uniform(size=(10, 20)).astype(np.float32) previous_attention /= previous_attention.sum(axis=1).reshape((-1, 1)) # Create the output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): recursive_output = wrapper.monotonic_attention( p_choose_i, previous_attention, 'recursive').eval() self.assertEqual(recursive_output.ndim, explicit_output.ndim) for x, y in zip(recursive_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(recursive_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Generate new p_choose_i for parallel, which is unstable when p_choose_i[n] # is close to 1 p_choose_i = np.random.uniform(0, 0.9, size=(10, 20)).astype(np.float32) # Create new output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): parallel_output = wrapper.monotonic_attention( p_choose_i, previous_attention, 'parallel').eval() self.assertEqual(parallel_output.ndim, explicit_output.ndim) for x, y in zip(parallel_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(parallel_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Now, test hard mode, where probabilities must be 0 or 1 p_choose_i = np.random.choice(np.array([0, 1], np.float32), (10, 20)) previous_attention = np.zeros((10, 20), np.float32) # Randomly choose input sequence indices at each timestep random_idx = np.random.randint(0, previous_attention.shape[1], previous_attention.shape[0]) previous_attention[np.arange(previous_attention.shape[0]), random_idx] = 1 # Create the output to test against explicit_output = np.array([ monotonic_attention_explicit(p, a) for p, a in zip(p_choose_i, previous_attention)]) # Compute output with TensorFlow function, for both calculation types with self.cached_session(): hard_output = wrapper.monotonic_attention( # TensorFlow is unhappy when these are not wrapped as tf.constant constant_op.constant(p_choose_i), constant_op.constant(previous_attention), 'hard').eval() self.assertEqual(hard_output.ndim, explicit_output.ndim) for x, y in zip(hard_output.shape, explicit_output.shape): self.assertEqual(x, y) for x, y in zip(hard_output.flatten(), explicit_output.flatten()): # Use assertAlmostEqual for the actual values due to floating point self.assertAlmostEqual(x, y, places=5) # Now, test recursively computing attention distributions vs. sampling def sample(p_choose_i): """Generate a sequence of emit-ingest decisions from p_choose_i.""" output = np.zeros(p_choose_i.shape) t_im1 = 0 for i in range(p_choose_i.shape[0]): for j in range(t_im1, p_choose_i.shape[1]): if np.random.uniform() <= p_choose_i[i, j]: output[i, j] = 1 t_im1 = j break else: t_im1 = p_choose_i.shape[1] return output # Now, the first axis is output timestep and second is input timestep p_choose_i = np.random.uniform(size=(4, 5)).astype(np.float32) # Generate the average of a bunch of samples n_samples = 100000 sampled_output = np.mean( [sample(p_choose_i) for _ in range(n_samples)], axis=0) # Create initial previous_attention base case recursive_output = [np.array([1] + [0]*(p_choose_i.shape[1] - 1), np.float32)] # Compute output with TensorFlow function, for both calculation types with self.cached_session(): for j in range(p_choose_i.shape[0]): # Compute attention distribution for this output time step recursive_output.append(wrapper.monotonic_attention( # newaxis is for adding the expected batch dimension p_choose_i[j][np.newaxis], recursive_output[-1][np.newaxis], 'recursive').eval()[0]) # Stack together distributions; remove basecase recursive_output = np.array(recursive_output[1:]) self.assertEqual(recursive_output.ndim, sampled_output.ndim) for x, y in zip(recursive_output.shape, sampled_output.shape): self.assertEqual(x, y) for x, y in zip(recursive_output.flatten(), sampled_output.flatten()): # Use a very forgiving threshold since we are sampling self.assertAlmostEqual(x, y, places=2) def testBahdanauMonotonicNotNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauMonotonicAttention, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.002122893), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040002423), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019968653)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.9313523e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032228071), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032228071), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050430927) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauMonotonicNotNormalized') def testBahdanauMonotonicNormalized(self): create_attention_mechanism = functools.partial( wrapper.BahdanauMonotonicAttention, normalize=True, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0025896581), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.73333333)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040013152), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019973689)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-0.00069823361), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.029914695), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.029914695), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.0465225502849) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testBahdanauMonotonicNormalized') def testBahdanauMonotonicHard(self): # Run attention mechanism with mode='hard', make sure probabilities are hard b, t, u, d = 10, 20, 30, 40 with self.session(use_gpu=True) as sess: a = wrapper.BahdanauMonotonicAttention( d, random_ops.random_normal((b, t, u)), mode='hard') # Just feed previous attention as [1, 0, 0, ...] attn, unused_state = a( random_ops.random_normal((b, d)), array_ops.one_hot([0]*b, t)) sess.run(variables.global_variables_initializer()) attn_out = attn.eval() # All values should be 0 or 1 self.assertTrue(np.all(np.logical_or(attn_out == 0, attn_out == 1))) # Sum of distributions should be 0 or 1 (0 when all p_choose_i are 0) self.assertTrue(np.all(np.logical_or(attn_out.sum(axis=1) == 1, attn_out.sum(axis=1) == 0))) def testLuongMonotonicNotNormalized(self): create_attention_mechanism = functools.partial( wrapper.LuongMonotonicAttention, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0021257224), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040003359), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.001996913)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.2024145e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050387777) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testLuongMonotonicNotNormalized') def testLuongMonotonicScaled(self): create_attention_mechanism = functools.partial( wrapper.LuongMonotonicAttention, scale=True, sigmoid_noise=1.0, sigmoid_noise_seed=3) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 6), dtype=dtype('float32'), mean=-0.0021257224), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.7333333333333334)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040003359), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.001996913)), attention=ResultSummary( shape=(5, 6), dtype=dtype('float32'), mean=-5.2024145e-05), time=3, alignments=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), attention_state=ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.032198936), alignment_history=()) expected_final_alignment_history = ResultSummary( shape=(3, 5, 8), dtype=dtype('float32'), mean=0.050387777) self._testWithAttention( create_attention_mechanism, expected_final_output, expected_final_state, attention_mechanism_depth=9, alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testLuongMonotonicScaled') def testMultiAttention(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 7), dtype=dtype('float32'), mean=0.0011709079), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=3.2000000000000002)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0038725811), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019329828)), attention=ResultSummary( shape=(5, 7), dtype=dtype('float32'), mean=0.001174294), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( True, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths=[9, 9], attention_layer_sizes=[3, 4], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testMultiAttentionWithLayerInstances(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 7), dtype=dtype('float32'), mean=0.0011709079), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=3.2000000000000002)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0038725811), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019329828)), attention=ResultSummary( shape=(5, 7), dtype=dtype('float32'), mean=0.001174294), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( True, create_attention_mechanisms, expected_final_output, expected_final_state, attention_mechanism_depths=[9, 9], attention_layers=[layers_core.Dense(3, use_bias=False), layers_core.Dense(4, use_bias=False)], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testLuongMonotonicHard(self): # Run attention mechanism with mode='hard', make sure probabilities are hard b, t, u, d = 10, 20, 30, 40 with self.session(use_gpu=True) as sess: a = wrapper.LuongMonotonicAttention( d, random_ops.random_normal((b, t, u)), mode='hard') # Just feed previous attention as [1, 0, 0, ...] attn, unused_state = a( random_ops.random_normal((b, d)), array_ops.one_hot([0]*b, t)) sess.run(variables.global_variables_initializer()) attn_out = attn.eval() # All values should be 0 or 1 self.assertTrue(np.all(np.logical_or(attn_out == 0, attn_out == 1))) # Sum of distributions should be 0 or 1 (0 when all p_choose_i are 0) self.assertTrue(np.all(np.logical_or(attn_out.sum(axis=1) == 1, attn_out.sum(axis=1) == 0))) def testMultiAttentionNoAttentionLayer(self): create_attention_mechanisms = ( wrapper.BahdanauAttention, wrapper.LuongAttention) expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 20), dtype=dtype('float32'), mean=0.115853324533), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=8.6)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.003545674), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0018327223)), attention=ResultSummary( shape=(5, 20), dtype=dtype('float32'), mean=0.11462739855), time=3, alignments=(ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125)), alignment_history=(), attention_state=(ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary( shape=(5, 8), dtype=dtype('float32'), mean=0.125))) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125), ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125)) self._testWithMaybeMultiAttention( is_multi=True, create_attention_mechanisms=create_attention_mechanisms, expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[9, 9], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testSingleAttentionAsList(self): create_attention_mechanisms = [wrapper.BahdanauAttention] expected_final_output = BasicDecoderOutput( rnn_output=ResultSummary( shape=(5, 3, 3), dtype=dtype('float32'), mean=-0.0098485695), sample_id=ResultSummary( shape=(5, 3), dtype=dtype('int32'), mean=1.8)) expected_final_state = AttentionWrapperState( cell_state=LSTMStateTuple( c=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0040023471), h=ResultSummary( shape=(5, 9), dtype=dtype('float32'), mean=-0.0019979973)), attention=ResultSummary( shape=(5, 3), dtype=dtype('float32'), mean=-0.0098808752), time=3, alignments=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125),), attention_state=( ResultSummary(shape=(5, 8), dtype=dtype('float32'), mean=0.125),), alignment_history=()) expected_final_alignment_history = ( ResultSummary(shape=(3, 5, 8), dtype=dtype('float32'), mean=0.125),) self._testWithMaybeMultiAttention( is_multi=True, # pass the AttentionMechanism wrapped in a list create_attention_mechanisms=create_attention_mechanisms, expected_final_output=expected_final_output, expected_final_state=expected_final_state, attention_mechanism_depths=[9], attention_layer_sizes=[3], alignment_history=True, expected_final_alignment_history=expected_final_alignment_history, name='testMultiAttention') def testCustomizedAttention(self): batch_size = 2 max_time = 3 num_units = 2 memory = constant_op.constant([[[1., 1.], [2., 2.], [3., 3.]], [[4., 4.], [5., 5.], [6., 6.]]]) memory_sequence_length = constant_op.constant([3, 2]) attention_mechanism = wrapper.BahdanauAttention(num_units, memory, memory_sequence_length) # Sets all returned values to be all ones. def _customized_attention(unused_attention_mechanism, unused_cell_output, unused_attention_state, unused_attention_layer): """Customized attention. Returns: attention: `Tensor` of shape [batch_size, num_units], attention output. alignments: `Tensor` of shape [batch_size, max_time], sigma value for each input memory (prob. function of input keys). next_attention_state: A `Tensor` representing the next state for the attention. """ attention = array_ops.ones([batch_size, num_units]) alignments = array_ops.ones([batch_size, max_time]) next_attention_state = alignments return attention, alignments, next_attention_state attention_cell = wrapper.AttentionWrapper( rnn_cell.LSTMCell(2), attention_mechanism, attention_layer_size=None, # don't use attention layer. output_attention=False, alignment_history=(), attention_fn=_customized_attention, name='attention') self.assertEqual(num_units, attention_cell.output_size) initial_state = attention_cell.zero_state( batch_size=2, dtype=dtypes.float32) source_input_emb = array_ops.ones([2, 3, 2]) source_input_length = constant_op.constant([3, 2]) # 'state' is a tuple of # (cell_state, h, attention, alignments, alignment_history, attention_state) output, state = rnn.dynamic_rnn( attention_cell, inputs=source_input_emb, sequence_length=source_input_length, initial_state=initial_state, dtype=dtypes.float32) with self.session() as sess: sess.run(variables.global_variables_initializer()) output_value, state_value = sess.run([output, state], feed_dict={}) self.assertAllEqual(np.array([2, 3, 2]), output_value.shape) self.assertAllClose(np.array([[1., 1.], [1., 1.]]), state_value.attention) self.assertAllClose( np.array([[1., 1., 1.], [1., 1., 1.]]), state_value.alignments) self.assertAllClose( np.array([[1., 1., 1.], [1., 1., 1.]]), state_value.attention_state) if __name__ == '__main__': test.main()
py
1a56930dcd3cafca3aee90c8e6e0429d2868ef54
# Copyright 2019 Kyoto University (Hirofumi Inaguma) # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """Training/decoding definition for the speech translation task.""" import itertools import json import logging import os from chainer import training from chainer.training import extensions import numpy as np import torch from espnet.asr.asr_utils import adadelta_eps_decay from espnet.asr.asr_utils import adam_lr_decay from espnet.asr.asr_utils import add_results_to_json from espnet.asr.asr_utils import CompareValueTrigger from espnet.asr.asr_utils import restore_snapshot from espnet.asr.asr_utils import snapshot_object from espnet.asr.asr_utils import torch_load from espnet.asr.asr_utils import torch_resume from espnet.asr.asr_utils import torch_snapshot from espnet.asr.pytorch_backend.asr_init import load_trained_model from espnet.asr.pytorch_backend.asr_init import load_trained_modules from espnet.nets.pytorch_backend.e2e_asr import pad_list from espnet.nets.st_interface import STInterface from espnet.utils.dataset import ChainerDataLoader from espnet.utils.dataset import TransformDataset from espnet.utils.deterministic_utils import set_deterministic_pytorch from espnet.utils.dynamic_import import dynamic_import from espnet.utils.io_utils import LoadInputsAndTargets from espnet.utils.training.batchfy import make_batchset from espnet.utils.training.iterators import ShufflingEnabler from espnet.utils.training.tensorboard_logger import TensorboardLogger from espnet.utils.training.train_utils import check_early_stop from espnet.utils.training.train_utils import set_early_stop from espnet.asr.pytorch_backend.asr import CustomConverter as ASRCustomConverter from espnet.asr.pytorch_backend.asr import CustomEvaluator from espnet.asr.pytorch_backend.asr import CustomUpdater class CustomConverter(ASRCustomConverter): """Custom batch converter for Pytorch. Args: subsampling_factor (int): The subsampling factor. dtype (torch.dtype): Data type to convert. use_source_text (bool): use source transcription. """ def __init__( self, subsampling_factor=1, dtype=torch.float32, use_source_text=False ): """Construct a CustomConverter object.""" super().__init__(subsampling_factor=subsampling_factor, dtype=dtype) self.use_source_text = use_source_text def __call__(self, batch, device=torch.device("cpu")): """Transform a batch and send it to a device. Args: batch (list): The batch to transform. device (torch.device): The device to send to. Returns: tuple(torch.Tensor, torch.Tensor, torch.Tensor) """ # batch should be located in list assert len(batch) == 1 xs, ys, ys_src = batch[0] # get batch of lengths of input sequences ilens = np.array([x.shape[0] for x in xs]) ilens = torch.from_numpy(ilens).to(device) xs_pad = pad_list([torch.from_numpy(x).float() for x in xs], 0).to( device, dtype=self.dtype ) ys_pad = pad_list( [torch.from_numpy(np.array(y, dtype=np.int64)) for y in ys], self.ignore_id, ).to(device) if self.use_source_text: ys_pad_src = pad_list( [torch.from_numpy(np.array(y, dtype=np.int64)) for y in ys_src], self.ignore_id, ).to(device) else: ys_pad_src = None return xs_pad, ilens, ys_pad, ys_pad_src def train(args): """Train with the given args. Args: args (namespace): The program arguments. """ set_deterministic_pytorch(args) # check cuda availability if not torch.cuda.is_available(): logging.warning("cuda is not available") # get input and output dimension info with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] utts = list(valid_json.keys()) idim = int(valid_json[utts[0]]["input"][0]["shape"][-1]) odim = int(valid_json[utts[0]]["output"][0]["shape"][-1]) logging.info("#input dims : " + str(idim)) logging.info("#output dims: " + str(odim)) # Initialize with pre-trained ASR encoder and MT decoder if args.enc_init is not None or args.dec_init is not None: model = load_trained_modules(idim, odim, args, interface=STInterface) else: model_class = dynamic_import(args.model_module) model = model_class(idim, odim, args) assert isinstance(model, STInterface) total_subsampling_factor = model.get_total_subsampling_factor() # write model config if not os.path.exists(args.outdir): os.makedirs(args.outdir) model_conf = args.outdir + "/model.json" with open(model_conf, "wb") as f: logging.info("writing a model config file to " + model_conf) f.write( json.dumps( (idim, odim, vars(args)), indent=4, ensure_ascii=False, sort_keys=True ).encode("utf_8") ) for key in sorted(vars(args).keys()): logging.info("ARGS: " + key + ": " + str(vars(args)[key])) reporter = model.reporter # check the use of multi-gpu if args.ngpu > 1: if args.batch_size != 0: logging.warning( "batch size is automatically increased (%d -> %d)" % (args.batch_size, args.batch_size * args.ngpu) ) args.batch_size *= args.ngpu # set torch device device = torch.device("cuda" if args.ngpu > 0 else "cpu") if args.train_dtype in ("float16", "float32", "float64"): dtype = getattr(torch, args.train_dtype) else: dtype = torch.float32 model = model.to(device=device, dtype=dtype) logging.warning( "num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format( sum(p.numel() for p in model.parameters()), sum(p.numel() for p in model.parameters() if p.requires_grad), sum(p.numel() for p in model.parameters() if p.requires_grad) * 100.0 / sum(p.numel() for p in model.parameters()), ) ) # Setup an optimizer if args.opt == "adadelta": optimizer = torch.optim.Adadelta( model.parameters(), rho=0.95, eps=args.eps, weight_decay=args.weight_decay ) elif args.opt == "adam": optimizer = torch.optim.Adam( model.parameters(), lr=args.lr, weight_decay=args.weight_decay ) elif args.opt == "noam": from espnet.nets.pytorch_backend.transformer.optimizer import get_std_opt optimizer = get_std_opt( model.parameters(), args.adim, args.transformer_warmup_steps, args.transformer_lr, ) else: raise NotImplementedError("unknown optimizer: " + args.opt) # setup apex.amp if args.train_dtype in ("O0", "O1", "O2", "O3"): try: from apex import amp except ImportError as e: logging.error( f"You need to install apex for --train-dtype {args.train_dtype}. " "See https://github.com/NVIDIA/apex#linux" ) raise e if args.opt == "noam": model, optimizer.optimizer = amp.initialize( model, optimizer.optimizer, opt_level=args.train_dtype ) else: model, optimizer = amp.initialize( model, optimizer, opt_level=args.train_dtype ) use_apex = True else: use_apex = False # FIXME: TOO DIRTY HACK setattr(optimizer, "target", reporter) setattr(optimizer, "serialize", lambda s: reporter.serialize(s)) # Setup a converter converter = CustomConverter( subsampling_factor=model.subsample[0], dtype=dtype, use_source_text=args.asr_weight > 0 or args.mt_weight > 0, ) # read json data with open(args.train_json, "rb") as f: train_json = json.load(f)["utts"] with open(args.valid_json, "rb") as f: valid_json = json.load(f)["utts"] use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0 # make minibatch list (variable length) train = make_batchset( train_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, shortest_first=use_sortagrad, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, iaxis=0, oaxis=0, ) valid = make_batchset( valid_json, args.batch_size, args.maxlen_in, args.maxlen_out, args.minibatches, min_batch_size=args.ngpu if args.ngpu > 1 else 1, count=args.batch_count, batch_bins=args.batch_bins, batch_frames_in=args.batch_frames_in, batch_frames_out=args.batch_frames_out, batch_frames_inout=args.batch_frames_inout, iaxis=0, oaxis=0, ) load_tr = LoadInputsAndTargets( mode="asr", load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={"train": True}, # Switch the mode of preprocessing ) load_cv = LoadInputsAndTargets( mode="asr", load_output=True, preprocess_conf=args.preprocess_conf, preprocess_args={"train": False}, # Switch the mode of preprocessing ) # hack to make batchsize argument as 1 # actual bathsize is included in a list # default collate function converts numpy array to pytorch tensor # we used an empty collate function instead which returns list train_iter = ChainerDataLoader( dataset=TransformDataset(train, lambda data: converter([load_tr(data)])), batch_size=1, num_workers=args.n_iter_processes, shuffle=not use_sortagrad, collate_fn=lambda x: x[0], ) valid_iter = ChainerDataLoader( dataset=TransformDataset(valid, lambda data: converter([load_cv(data)])), batch_size=1, shuffle=False, collate_fn=lambda x: x[0], num_workers=args.n_iter_processes, ) # Set up a trainer updater = CustomUpdater( model, args.grad_clip, {"main": train_iter}, optimizer, device, args.ngpu, args.grad_noise, args.accum_grad, use_apex=use_apex, ) trainer = training.Trainer(updater, (args.epochs, "epoch"), out=args.outdir) if use_sortagrad: trainer.extend( ShufflingEnabler([train_iter]), trigger=(args.sortagrad if args.sortagrad != -1 else args.epochs, "epoch"), ) # Resume from a snapshot if args.resume: logging.info("resumed from %s" % args.resume) torch_resume(args.resume, trainer) # Evaluate the model with the test dataset for each epoch if args.save_interval_iters > 0: trainer.extend( CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu), trigger=(args.save_interval_iters, "iteration"), ) else: trainer.extend( CustomEvaluator(model, {"main": valid_iter}, reporter, device, args.ngpu) ) # Save attention weight at each epoch if args.num_save_attention > 0: data = sorted( list(valid_json.items())[: args.num_save_attention], key=lambda x: int(x[1]["input"][0]["shape"][1]), reverse=True, ) if hasattr(model, "module"): att_vis_fn = model.module.calculate_all_attentions plot_class = model.module.attention_plot_class else: att_vis_fn = model.calculate_all_attentions plot_class = model.attention_plot_class att_reporter = plot_class( att_vis_fn, data, args.outdir + "/att_ws", converter=converter, transform=load_cv, device=device, subsampling_factor=total_subsampling_factor, ) trainer.extend(att_reporter, trigger=(1, "epoch")) else: att_reporter = None # Save CTC prob at each epoch if (args.asr_weight > 0 and args.mtlalpha > 0) and args.num_save_ctc > 0: # NOTE: sort it by output lengths data = sorted( list(valid_json.items())[: args.num_save_ctc], key=lambda x: int(x[1]["output"][0]["shape"][0]), reverse=True, ) if hasattr(model, "module"): ctc_vis_fn = model.module.calculate_all_ctc_probs plot_class = model.module.ctc_plot_class else: ctc_vis_fn = model.calculate_all_ctc_probs plot_class = model.ctc_plot_class ctc_reporter = plot_class( ctc_vis_fn, data, args.outdir + "/ctc_prob", converter=converter, transform=load_cv, device=device, subsampling_factor=total_subsampling_factor, ) trainer.extend(ctc_reporter, trigger=(1, "epoch")) else: ctc_reporter = None # Make a plot for training and validation values trainer.extend( extensions.PlotReport( [ "main/loss", "validation/main/loss", "main/loss_asr", "validation/main/loss_asr", "main/loss_mt", "validation/main/loss_mt", "main/loss_st", "validation/main/loss_st", ], "epoch", file_name="loss.png", ) ) trainer.extend( extensions.PlotReport( [ "main/acc", "validation/main/acc", "main/acc_asr", "validation/main/acc_asr", "main/acc_mt", "validation/main/acc_mt", ], "epoch", file_name="acc.png", ) ) trainer.extend( extensions.PlotReport( ["main/bleu", "validation/main/bleu"], "epoch", file_name="bleu.png" ) ) # Save best models trainer.extend( snapshot_object(model, "model.loss.best"), trigger=training.triggers.MinValueTrigger("validation/main/loss"), ) trainer.extend( snapshot_object(model, "model.acc.best"), trigger=training.triggers.MaxValueTrigger("validation/main/acc"), ) # save snapshot which contains model and optimizer states if args.save_interval_iters > 0: trainer.extend( torch_snapshot(filename="snapshot.iter.{.updater.iteration}"), trigger=(args.save_interval_iters, "iteration"), ) else: trainer.extend(torch_snapshot(), trigger=(1, "epoch")) # epsilon decay in the optimizer if args.opt == "adadelta": if args.criterion == "acc": trainer.extend( restore_snapshot( model, args.outdir + "/model.acc.best", load_fn=torch_load ), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) trainer.extend( adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) elif args.criterion == "loss": trainer.extend( restore_snapshot( model, args.outdir + "/model.loss.best", load_fn=torch_load ), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) trainer.extend( adadelta_eps_decay(args.eps_decay), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) elif args.opt == "adam": if args.criterion == "acc": trainer.extend( restore_snapshot( model, args.outdir + "/model.acc.best", load_fn=torch_load ), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) trainer.extend( adam_lr_decay(args.lr_decay), trigger=CompareValueTrigger( "validation/main/acc", lambda best_value, current_value: best_value > current_value, ), ) elif args.criterion == "loss": trainer.extend( restore_snapshot( model, args.outdir + "/model.loss.best", load_fn=torch_load ), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) trainer.extend( adam_lr_decay(args.lr_decay), trigger=CompareValueTrigger( "validation/main/loss", lambda best_value, current_value: best_value < current_value, ), ) # Write a log of evaluation statistics for each epoch trainer.extend( extensions.LogReport(trigger=(args.report_interval_iters, "iteration")) ) report_keys = [ "epoch", "iteration", "main/loss", "main/loss_st", "main/loss_asr", "validation/main/loss", "validation/main/loss_st", "validation/main/loss_asr", "main/acc", "validation/main/acc", ] if args.asr_weight > 0: report_keys.append("main/acc_asr") report_keys.append("validation/main/acc_asr") report_keys += ["elapsed_time"] if args.opt == "adadelta": trainer.extend( extensions.observe_value( "eps", lambda trainer: trainer.updater.get_optimizer("main").param_groups[0][ "eps" ], ), trigger=(args.report_interval_iters, "iteration"), ) report_keys.append("eps") elif args.opt in ["adam", "noam"]: trainer.extend( extensions.observe_value( "lr", lambda trainer: trainer.updater.get_optimizer("main").param_groups[0][ "lr" ], ), trigger=(args.report_interval_iters, "iteration"), ) report_keys.append("lr") if args.asr_weight > 0: if args.mtlalpha > 0: report_keys.append("main/cer_ctc") report_keys.append("validation/main/cer_ctc") if args.mtlalpha < 1: if args.report_cer: report_keys.append("validation/main/cer") if args.report_wer: report_keys.append("validation/main/wer") if args.report_bleu: report_keys.append("main/bleu") report_keys.append("validation/main/bleu") trainer.extend( extensions.PrintReport(report_keys), trigger=(args.report_interval_iters, "iteration"), ) trainer.extend(extensions.ProgressBar(update_interval=args.report_interval_iters)) set_early_stop(trainer, args) if args.tensorboard_dir is not None and args.tensorboard_dir != "": from torch.utils.tensorboard import SummaryWriter trainer.extend( TensorboardLogger( SummaryWriter(args.tensorboard_dir), att_reporter=att_reporter, ctc_reporter=ctc_reporter, ), trigger=(args.report_interval_iters, "iteration"), ) # Run the training trainer.run() check_early_stop(trainer, args.epochs) def trans(args): """Decode with the given args. Args: args (namespace): The program arguments. """ set_deterministic_pytorch(args) model, train_args = load_trained_model(args.model) assert isinstance(model, STInterface) model.trans_args = args # gpu if args.ngpu == 1: gpu_id = list(range(args.ngpu)) logging.info("gpu id: " + str(gpu_id)) model.cuda() # read json data with open(args.trans_json, "rb") as f: js = json.load(f)["utts"] new_js = {} load_inputs_and_targets = LoadInputsAndTargets( mode="asr", load_output=False, sort_in_input_length=False, preprocess_conf=train_args.preprocess_conf if args.preprocess_conf is None else args.preprocess_conf, preprocess_args={"train": False}, ) if args.batchsize == 0: with torch.no_grad(): for idx, name in enumerate(js.keys(), 1): logging.info("(%d/%d) decoding " + name, idx, len(js.keys())) batch = [(name, js[name])] feat = load_inputs_and_targets(batch)[0][0] nbest_hyps = model.translate( feat, args, train_args.char_list, ) new_js[name] = add_results_to_json( js[name], nbest_hyps, train_args.char_list ) else: def grouper(n, iterable, fillvalue=None): kargs = [iter(iterable)] * n return itertools.zip_longest(*kargs, fillvalue=fillvalue) # sort data if batchsize > 1 keys = list(js.keys()) if args.batchsize > 1: feat_lens = [js[key]["input"][0]["shape"][0] for key in keys] sorted_index = sorted(range(len(feat_lens)), key=lambda i: -feat_lens[i]) keys = [keys[i] for i in sorted_index] with torch.no_grad(): for names in grouper(args.batchsize, keys, None): names = [name for name in names if name] batch = [(name, js[name]) for name in names] feats = load_inputs_and_targets(batch)[0] nbest_hyps = model.translate_batch( feats, args, train_args.char_list, ) for i, nbest_hyp in enumerate(nbest_hyps): name = names[i] new_js[name] = add_results_to_json( js[name], nbest_hyp, train_args.char_list ) with open(args.result_label, "wb") as f: f.write( json.dumps( {"utts": new_js}, indent=4, ensure_ascii=False, sort_keys=True ).encode("utf_8") )
py
1a5694c944e284ae00f962a870e6d1a51e1d644e
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from .. import _utilities import typing # Export this package's modules as members: from ._enums import * from .blockchain_member import * from .get_blockchain_member import * from .get_transaction_node import * from .list_blockchain_member_api_keys import * from .list_location_consortiums import * from .list_transaction_node_api_keys import * from .transaction_node import * from ._inputs import * from . import outputs # Make subpackages available: if typing.TYPE_CHECKING: import pulumi_azure_native.blockchain.v20180601preview as __v20180601preview v20180601preview = __v20180601preview else: v20180601preview = _utilities.lazy_import('pulumi_azure_native.blockchain.v20180601preview')
py
1a56958b7e75554f1fa19283efd9c5ce5df7c159
import os import os.path as osp import argparse import pickle import numpy as np from operator import itemgetter import re def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('-appstr', type=str, default='unknown') parser.add_argument('-ntask', type=int, default=1, help='number of tasks') parser.add_argument("-bmin", type=int, default=1, help ='minimum value for bandit budget') parser.add_argument("-bmax", type=int, default=8, help ='maximum value for bandit budget') parser.add_argument("-eta", type=int, default=2, help ='base value for bandit structure') parser.add_argument("-Nloop", type=int, default=1, help ='number of bandit loops') parser.add_argument('-expid', type=str, default='0') return parser.parse_args() def main(args): summary = [] my_source = f'./{args.appstr}_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.txt' save_path = f'./{args.appstr}_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}.pkl' GPTuneBand_source = f'./{args.appstr}_ntask{args.ntask}_bandit{args.bmin}-{args.bmax}-{args.eta}_Nloop{args.Nloop}_expid{args.expid}_parsed.pkl' with open(my_source, "r") as f: line = f.readline() while line: info = line.split() if (info[0] == 'Tuner:' and info[1] == "GPTuneBand"): results = [] tunername = info[1] results.append(tunername) line = f.readline() line = f.readline().split() for _ in range(int(args.ntask)): tid = int(line[1]) line = f.readline().split() line = f.readline() result = pickle.load(open(GPTuneBand_source, "rb")) results.append(result) if int(args.ntask) > 1: line = f.readline().split() summary.append(results) line = f.readline() elif (info[0] == 'Tuner:' and info[1] == "hpbandster"): results = [] tunername = info[1] results.append(tunername) line = f.readline() line = f.readline().split() for _ in range(int(args.ntask)): tid = int(line[1]) line = f.readline().split() task = line[0][7:] line = f.readline().strip(" Os ") data = [[float(y) for y in x.split(", ")] for x in re.split('\[\[|\]\]|\), \(|\(|\)', line) if len(x) > 2] data = [y for y in data if y[1] < float("Inf")] x = [] y = [] pre_fix = 0 max_num = -999 for info in data: if info[0] > max_num: max_num = info[0] for info in data: pre_fix += info[0]/max_num if np.isclose(info[0], max_num): x.append(pre_fix) y.append(info[1]) results.append([tid, task, [x, y]]) if int(args.ntask) > 1: line = f.readline().split() summary.append(results) line = f.readline() else: # GPTune OpenTuner and TPE results = [] tunername = info[1] results.append(tunername) line = f.readline() line = f.readline().split() for _ in range(int(args.ntask)): tid = int(line[1]) line = f.readline().split() task = [x for x in line] line = f.readline().strip(' Os [ ]\n') history = [float(x) for x in re.split('\], \[', line)] x = list(np.arange(1,len(history)+1)) results.append([tid, task, [x,history]]) if int(args.ntask) > 1: line = f.readline().split() summary.append(results) line = f.readline() print(summary[0]) print(summary[1]) print("Results saved to", save_path) pickle.dump(summary, open(save_path, "wb")) if __name__ == "__main__": main(parse_args())
py
1a56959839188458fc00d01357c32e361852b688
from api.models.base import Base db = Base.db class Activity(Base): """Model activities available for points.""" __tablename__ = 'activities' activity_type_id = db.Column( db.String, db.ForeignKey('activity_types.uuid'), nullable=False ) added_by_id = db.Column( db.String, db.ForeignKey('users.uuid'), nullable=False ) activity_date = db.Column(db.Date) logged_activities = db.relationship( 'LoggedActivity', back_populates='activity', lazy='dynamic', order_by='desc(LoggedActivity.created_at)' ) activity_type = db.relationship( 'ActivityType', back_populates='activities', uselist=False )
py
1a5695f333c44ffbd704837089d0f02e9ab6b365
import os import glob import argparse import matplotlib # Keras / TensorFlow os.environ['TF_CPP_MIN_LOG_LEVEL'] = '5' from keras.models import load_model from layers import BilinearUpSampling2D from utils import predict, load_images, display_images from matplotlib import pyplot as plt # Argument Parser parser = argparse.ArgumentParser(description='High Quality Monocular Depth Estimation via Transfer Learning') parser.add_argument('--model', default='nyu.h5', type=str, help='Trained Keras model file.') parser.add_argument('--input', default='examples/*.png', type=str, help='Input filename or folder.') args = parser.parse_args() # Custom object needed for inference and training custom_objects = {'BilinearUpSampling2D': BilinearUpSampling2D, 'depth_loss_function': None} print('Loading model...') # Load model into GPU / CPU model = load_model(args.model, custom_objects=custom_objects, compile=False) print('\nModel loaded ({0}).'.format(args.model)) # Input images inputs = load_images( glob.glob(args.input) ) print('\nLoaded ({0}) images of size {1}.'.format(inputs.shape[0], inputs.shape[1:])) # Compute results outputs = predict(model, inputs) #matplotlib problem on ubuntu terminal fix #matplotlib.use('TkAgg') # Display results viz = display_images(outputs.copy(), inputs.copy()) plt.figure(figsize=(10,5)) plt.imshow(viz) plt.savefig('test.png') plt.show()
py
1a5696030e1c9792567a9895fed93220b69da3e4
# -*- coding: utf-8 -*- # Generated by Django 1.10 on 2017-09-04 07:54 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('quiz', '0001_initial'), ] operations = [ migrations.AlterField( model_name='question', name='type', field=models.CharField(choices=[(b'mcq', b'mcq'), (b'fill', b'fill'), (b'code', b'code')], default=b'mcq', max_length=3), ), ]
py
1a5696966c6b293fd61e8ff44fbacd7ffe583ef8
import cv2 from time import sleep cap = cv2.VideoCapture(0) while True: ret,frame = cap.read() # Our operations on the frame come here gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Display the resulting frame cv2.imshow('frame',gray) if cv2.waitKey(1) & 0xFF == ord('q'): break sleep(1) cap.release() cv2.destroyAllWindows()
py
1a5696fab7d50fca1ea3dee0cd3f74545fe66a20
"""Tests for run from CLI, interactive, without an EE, with unicode.""" import pytest from ..._interactions import Command from ..._interactions import UiTestStep from ..._interactions import add_indices from ..._interactions import step_id from .base import BaseClass from .base import base_steps from .base import inventory_path from .base import playbook_path cmdline = f"{playbook_path} -i {inventory_path}" CLI = Command(subcommand="run", cmdline=cmdline, execution_environment=False).join() initial_steps = ( UiTestStep( user_input=CLI, comment="ansible-navigator run playbook", search_within_response=["COMPLETE", "SUCCESSFUL"], ), ) steps = add_indices(initial_steps + base_steps) @pytest.mark.parametrize("step", steps, ids=step_id) class Test(BaseClass): """Run the tests for run from CLI, interactive, without an EE.""" UPDATE_FIXTURES = False
py
1a569728f381664a1055351525ecbb700832d5bb
#!/usr/bin/env python # coding: utf-8 import sys from metaseq import * from mqo import * class MQSystemClass: def __init__(self, filename): self.mqo_loadFile(filename) def mqo_loadFile(self, fname): # for ScriptRunner self.doc = MQOReader.load(fname) def mqo_saveFile(self, fname): # for ScriptRunner MQOWriter.save(fname, self.doc) def getDocument(self): return self.doc def newObject(self): return MQObject() def newMaterial(self): return MQMaterial() def newPoint(self, x,y,z): return MQPoint(x,y,z) def newCoordinate(self, u,v): return MQCoordinate(u,v) def newColor(self, r,g,b): return MQColor(r,g,b) def newAngle(self, head,pitch,bank): return MQAngle(head,pitch,bank) def newMatrix(self): return MQMatrix() def messageBox(self, msg): print("# messageBox" + msg + "\n") def println(self, s): print(s) def clearLog(self): print("# ****** clear log ******") class Script: def __init__(self, script_path, mqsystem): self.script_path = script_path self.mqsystem = mqsystem def run(self): MQSystem = self.mqsystem print("# exec script: " + self.script_path) execfile(self.script_path) if __name__ == "__main__": if len(sys.argv) < 2: print("usage: {s} [-o OUTPUT.mqo] INPUT.mqo SCRIPT.py [SCRIPT2.py ...]".format(s = sys.argv[0])) exit(1) src_mqo_name = "in.mqo" dst_mqo_name = "out.mqo" scripts = [] it = iter(sys.argv[1:]) for f in it: if f == '-o' : dst_mqo_name = it.next() continue if f == '-i' : src_mqo_name = it.next() continue if f.endswith('.mqo'): src_mqo_name = f else: scripts.append(f) mq = MQSystemClass(src_mqo_name) for s in scripts: Script(s, mq).run() mq.mqo_saveFile(dst_mqo_name)
py
1a569787050d7aaa2cb8ef1ad34bebc233edd7f1
# gpl author: Ryan Inch (Imaginer) import bpy from bpy.types import Menu from . import utils_core class DynTopoMenu(Menu): bl_label = "Dyntopo" bl_idname = "VIEW3D_MT_sv3_dyntopo" @classmethod def poll(self, context): return utils_core.get_mode() == 'SCULPT' def draw(self, context): layout = self.layout if context.object.use_dynamic_topology_sculpting: layout.row().operator("sculpt.dynamic_topology_toggle", text="Disable Dynamic Topology") layout.row().separator() layout.row().menu(DynDetailMenu.bl_idname) layout.row().menu(DetailMethodMenu.bl_idname) layout.row().separator() layout.row().operator("sculpt.optimize") if context.tool_settings.sculpt.detail_type_method == 'CONSTANT': layout.row().operator("sculpt.detail_flood_fill") layout.row().menu(SymmetrizeMenu.bl_idname) layout.row().prop(context.tool_settings.sculpt, "use_smooth_shading", toggle=True) else: row = layout.row() row.operator_context = 'INVOKE_DEFAULT' row.operator("sculpt.dynamic_topology_toggle", text="Enable Dynamic Topology") class DynDetailMenu(Menu): bl_label = "Detail Size" bl_idname = "VIEW3D_MT_sv3_dyn_detail" def init(self): settings = (("40", 40), ("30", 30), ("20", 20), ("10", 10), ("5", 5), ("1", 1)) if bpy.context.tool_settings.sculpt.detail_type_method == 'RELATIVE': datapath = "tool_settings.sculpt.detail_size" slider_setting = "detail_size" elif bpy.context.tool_settings.sculpt.detail_type_method == 'CONSTANT': datapath = "tool_settings.sculpt.constant_detail_resolution" slider_setting = "constant_detail_resolution" else: datapath = "tool_settings.sculpt.detail_percent" slider_setting = "detail_percent" settings = (("100", 100), ("75", 75), ("50", 50), ("25", 25), ("10", 10), ("5", 5)) return settings, datapath, slider_setting def draw(self, context): settings, datapath, slider_setting = self.init() layout = self.layout # add the top slider layout.row().prop(context.tool_settings.sculpt, slider_setting, slider=True) layout.row().separator() # add the rest of the menu items for i in range(len(settings)): utils_core.menuprop( layout.row(), settings[i][0], settings[i][1], datapath, icon='RADIOBUT_OFF', disable=True, disable_icon='RADIOBUT_ON' ) class DetailMethodMenu(Menu): bl_label = "Detail Method" bl_idname = "VIEW3D_MT_sv3_detail_method_menu" def draw(self, context): layout = self.layout refine_path = "tool_settings.sculpt.detail_refine_method" type_path = "tool_settings.sculpt.detail_type_method" refine_items = (("Subdivide Edges", 'SUBDIVIDE'), ("Collapse Edges", 'COLLAPSE'), ("Subdivide Collapse", 'SUBDIVIDE_COLLAPSE')) type_items = (("Relative Detail", 'RELATIVE'), ("Constant Detail", 'CONSTANT'), ("Brush Detail", 'BRUSH')) layout.row().label(text="Refine") layout.row().separator() # add the refine menu items for item in refine_items: utils_core.menuprop( layout.row(), item[0], item[1], refine_path, disable=True, icon='RADIOBUT_OFF', disable_icon='RADIOBUT_ON' ) layout.row().label(text="") layout.row().label(text="Type") layout.row().separator() # add the type menu items for item in type_items: utils_core.menuprop( layout.row(), item[0], item[1], type_path, disable=True, icon='RADIOBUT_OFF', disable_icon='RADIOBUT_ON' ) class SymmetrizeMenu(Menu): bl_label = "Symmetrize" bl_idname = "VIEW3D_MT_sv3_symmetrize_menu" def draw(self, context): layout = self.layout path = "tool_settings.sculpt.symmetrize_direction" # add the the symmetrize operator to the menu layout.row().operator("sculpt.symmetrize") layout.row().separator() # add the rest of the menu items for item in context.tool_settings.sculpt. \ bl_rna.properties['symmetrize_direction'].enum_items: utils_core.menuprop( layout.row(), item.name, item.identifier, path, disable=True, icon='RADIOBUT_OFF', disable_icon='RADIOBUT_ON' ) classes = ( DynTopoMenu, DynDetailMenu, DetailMethodMenu, SymmetrizeMenu ) def register(): for cls in classes: bpy.utils.register_class(cls) def unregister(): for cls in classes: bpy.utils.unregister_class(cls)
py
1a5697e2b529a52ed8bf87df8dbe4457633b5ce7
# # Copyright (c) 2021, Neptune Labs Sp. z o.o. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import random import pytest from PIL import Image from e2e_tests.base import AVAILABLE_CONTAINERS, BaseE2ETest, fake from e2e_tests.utils import generate_image, image_to_png, tmp_context from neptune.new.metadata_containers import MetadataContainer class TestSeries(BaseE2ETest): @pytest.mark.parametrize("container", AVAILABLE_CONTAINERS, indirect=True) def test_log_numbers(self, container: MetadataContainer): key = self.gen_key() values = [random.random() for _ in range(50)] container[key].log(values[0]) container[key].log(values[1:]) container.sync() assert container[key].fetch_last() == values[-1] fetched_values = container[key].fetch_values() assert list(fetched_values["value"]) == values @pytest.mark.parametrize("container", AVAILABLE_CONTAINERS, indirect=True) def test_log_strings(self, container: MetadataContainer): key = self.gen_key() values = [fake.word() for _ in range(50)] container[key].log(values[0]) container[key].log(values[1:]) container.sync() assert container[key].fetch_last() == values[-1] fetched_values = container[key].fetch_values() assert list(fetched_values["value"]) == values @pytest.mark.parametrize("container", AVAILABLE_CONTAINERS, indirect=True) def test_log_images(self, container: MetadataContainer): key = self.gen_key() # images with size between 200KB - 12MB images = list(generate_image(size=2**n) for n in range(8, 12)) container[key].log(images[0]) container[key].log(images[1:]) container.sync() with tmp_context(): container[key].download_last("last") container[key].download("all") with Image.open("last/3.png") as img: assert img == image_to_png(image=images[-1]) for i in range(4): with Image.open(f"all/{i}.png") as img: assert img == image_to_png(image=images[i])
py
1a5698d3005efcd63f7d7d9c65d6f8ab771a3f3b
# Generated by Django 2.1 on 2018-08-21 18:29 from django.db import migrations, models import mainapp.utils.model_utils class Migration(migrations.Migration): dependencies = [ ('mainapp', '0070_merge_20180821_2307'), ] operations = [ migrations.CreateModel( name='CsvFileUpload', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=20)), ('csv_file', models.FileField(upload_to=mainapp.utils.model_utils.upload_to)), ], ), ]
py
1a56995c7e1d3f48080a0676bc784f9e937619d7
from .. import Provider as BankProvider class Provider(BankProvider): bban_format = '????##########' country_code = 'NL'
py
1a569964e4753b684bebaddb6b3f87b9199315f0
import copy import time from os import write import matplotlib as mpl import matplotlib.lines as lines import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np import pandas as pd import streamlit as st from matplotlib.patches import Rectangle from numpy.lib.function_base import interp from numpy.lib.npyio import save from scipy import interpolate from util import write_excel # {{InterpretationBox[ # TooltipBox[ # GraphicsBox[{{GrayLevel[0], # RectangleBox[{0, 0}]}, {GrayLevel[0], # RectangleBox[{1, -1}]}, # {RGBColor[0.87`, 0.94`, 1], # RectangleBox[{0, -1}, {2, 1}]}}, # AspectRatio -> 1, Frame -> True, # FrameStyle -> RGBColor[0.5800000000000001`, 0.6266666666666667`, 0.6666666666666666`], # FrameTicks -> None, PlotRangePadding -> None, # ImageSize -> Dynamic[{Automatic, Times[1.35`, Times[CurrentValue["FontCapHeight"], # Power[AbsoluteCurrentValue[Magnification], -1]]]}]], "RGBColor[0.87, 0.94, 1]"], # RGBColor[0.87`, 0.94`, 1], Editable -> False, Selectable -> False] # ,Rectangle[$CellContext`bl$pt,$CellContext`tr$pt]}, # Text[total work [J]:,{0.28\[VeryThinSpace]+$CellContext`txt,-0.16+$CellContext`txt}], # Text[T [\[Degree]C]:,{0.36\[VeryThinSpace]+$CellContext`txt,-0.25+$CellContext`txt}], # Text[$CellContext`work,{0.6\[VeryThinSpace]+$CellContext`txt,-0.16+$CellContext`txt}], # Text[$CellContext`Tcurr,{0.6\[VeryThinSpace]+$CellContext`txt,-0.25+$CellContext`txt}], # $CellContext`dict[$CellContext`c], # {FaceForm[InterpretationBox[TooltipBox[GraphicsBox[{{GrayLevel[0], RectangleBox[{0, 0}]}, # {GrayLevel[0], RectangleBox[{1, -1}]}, # {GrayLevel[0, 0], RectangleBox[{0, -1}, {2, 1}]}}, # AspectRatio -> 1, Frame -> True, FrameStyle -> GrayLevel[0`, 0`], # FrameTicks -> None, PlotRangePadding -> None, # ImageSize -> Dynamic[{Automatic, Times[1.35`, Times[CurrentValue["FontCapHeight"], # Power[AbsoluteCurrentValue[Magnification], -1]]]}]], "GrayLevel[0, 0]"], # GrayLevel[0, 0], Editable -> False, Selectable -> False]], # EdgeForm[InterpretationBox[TooltipBox[GraphicsBox[{{GrayLevel[0], RectangleBox[{0, 0}]}, # {GrayLevel[0], RectangleBox[{1, -1}]}, {GrayLevel[0], RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame -> True, FrameStyle -> GrayLevel[0`], # FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{Automatic, Times[1.35`, Times[CurrentValue["FontCapHeight"], # Power[AbsoluteCurrentValue[Magnification], -1]]]}]], "GrayLevel[0]"], GrayLevel[0], Editable -> False, Selectable -> False]], # Rectangle[{0.4,-0.13},{0.6,0.01}]}, # Arrow[{{0.5,-0.12},{0.5\[VeryThinSpace]+0.12 Cos[FractionBox["1", "180"] (135-FractionBox[RowBox[{"90", " ", "\:f74e"}], "$CellContext`Imax"]) \[Pi]], # -0.12+0.12 Sin[FractionBox["1", "180"] (135-FractionBox[RowBox[{"90", " ", "\:f74e"}], "$CellContext`Imax"]) \[Pi]]}}], # {FaceForm[{InterpretationBox[TooltipBox[GraphicsBox[{{GrayLevel[0], RectangleBox[{0, 0}]}, # {GrayLevel[0], RectangleBox[{1, -1}]}, {GrayLevel[0.9`], RectangleBox[{0, -1}, {2, 1}]}}, # AspectRatio -> 1, Frame -> True, FrameStyle -> GrayLevel[0.6000000000000001`], FrameTicks -> None, # PlotRangePadding -> None, ImageSize -> Dynamic[{Automatic, Times[1.35`, Times[CurrentValue["FontCapHeight"], Power[AbsoluteCurrentValue[Magnification], -1]]]}]], "GrayLevel[0.9]"], # GrayLevel[0.9`], Editable -> False, Selectable -> False],Opacity[0.8]}],EdgeForm[InterpretationBox[TooltipBox[GraphicsBox[{{GrayLevel[0], RectangleBox[{0, 0}]}, # {GrayLevel[0], RectangleBox[{1, -1}]}, {GrayLevel[0], RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame -> True, FrameStyle -> GrayLevel[0`], FrameTicks -> None, # PlotRangePadding -> None, ImageSize -> Dynamic[{Automatic, Times[1.35`, Times[CurrentValue["FontCapHeight"], Power[AbsoluteCurrentValue[Magnification], -1]]]}]], "GrayLevel[0]"], # GrayLevel[0], Editable -> False, Selectable -> False]],Rectangle[{0.46\[VeryThinSpace]-$CellContext`th,0.4},{0.54\[VeryThinSpace]-$CellContext`th,1.2}]}, # {$CellContext`dark$red,Rectangle[{0.47\[VeryThinSpace]-$CellContext`th,0.4},{0.53\[VeryThinSpace]-$CellContext`th,0.4\[VeryThinSpace]+$CellContext`dy (-14+$CellContext`Tcurr)}]}, # Table[Line[{{0.475\[VeryThinSpace]-$CellContext`th,0.4\[VeryThinSpace]+$CellContext`dy+$CellContext`i $CellContext`dy},{0.525\[VeryThinSpace]-$CellContext`th,0.4\[VeryThinSpace]+$CellContext`dy+$CellContext`i $CellContext`dy}}],{$CellContext`i,0,$CellContext`npts}],Line[{{0.4,-0.06},{0.3,-0.06},{0.3,0.19},{0.7,0.19},{0.7,-0.06},{0.6,-0.06}}],{InterpretationBox[TooltipBox[GraphicsBox[{{GrayLevel[0], RectangleBox[{0, 0}]}, {GrayLevel[0], RectangleBox[{1, -1}]}, {RGBColor[0.7333333333333333`, 0.6`, 0.4666666666666667`], RectangleBox[{0, -1}, {2, 1}]}}, AspectRatio -> 1, Frame -> True, FrameStyle -> RGBColor[0.4888888888888889`, 0.4`, 0.3111111111111111`], FrameTicks -> None, PlotRangePadding -> None, ImageSize -> Dynamic[{Automatic, Times[1.35`, Times[CurrentValue["FontCapHeight"], Power[AbsoluteCurrentValue[Magnification], -1]]]}]], "RGBColor[0.7333333333333333, 0.6, 0.4666666666666667]"], RGBColor[0.7333333333333333`, 0.6`, 0.4666666666666667`], Editable -> False, Selectable -> False],Rectangle[{0.36,0.15},{0.64,0.23}]},Text[15,{0.43\[VeryThinSpace]-$CellContext`th,0.395\[VeryThinSpace]+$CellContext`dy}],Text[20,{0.43\[VeryThinSpace]-$CellContext`th,0.395\[VeryThinSpace]+6 $CellContext`dy}],Text[25,{0.43\[VeryThinSpace]-$CellContext`th,0.395\[VeryThinSpace]+11 $CellContext`dy}]} T = np.arange(0, 101, dtype=float) cP = np.array([ 4.217, 4.213, 4.21, 4.207, 4.205, 4.202, 4.2, 4.198, 4.196, 4.194, 4.192, 4.191, 4.189, 4.188, 4.187, 4.186, 4.185, 4.184, 4.183, 4.182, 4.182, 4.181, 4.181, 4.18, 4.18, 4.18, 4.179, 4.179, 4.179, 4.179, 4.178, 4.178, 4.178, 4.178, 4.178, 4.178, 4.178, 4.178, 4.178, 4.179, 4.179, 4.179, 4.179, 4.179, 4.179, 4.18, 4.18, 4.18, 4.18, 4.181, 4.181, 4.181, 4.182, 4.182, 4.182, 4.183, 4.183, 4.183, 4.184, 4.184, 4.185, 4.185, 4.186, 4.186, 4.187, 4.187, 4.188, 4.188, 4.189, 4.189, 4.19, 4.19, 4.191, 4.192, 4.192, 4.193, 4.194, 4.194, 4.195, 4.196, 4.196, 4.197, 4.198, 4.199, 4.2, 4.2, 4.201, 4.202, 4.203, 4.204, 4.205, 4.206, 4.207, 4.208, 4.209, 4.21, 4.211, 4.212, 4.213, 4.214, 4.216 ]) cP_water = interpolate.interp1d(T, cP) def arrow(angle): angle = np.radians(angle) length = 0.1 return patches.FancyArrow(0.5, -0.12, np.cos(angle)*length, np.sin(angle)*length) def rect(bl, tr, **kwargs): h = tr[1] - bl[1] w = tr[0] - bl[0] return patches.Rectangle(bl, w, h, **kwargs) def draw(current, container): fig, ax = plt.subplots(figsize=(4,4)) ax.axis('off') water_color = "#d7f1fa" # rect((0.4,-0.13),(0.6,0.01), fc="1", ec="0", linewidth=1) water = patches.Rectangle((0.1,0.1), 0.8, 0.8, linewidth=1, ec="0", fc='#d7f1fa') waterCu = patches.Rectangle((0.1,0.1), 0.8, 0.8, linewidth=3, ec="#b87333", fc='#d7f1fa') container_dict= {"Dewar": [patches.Rectangle((0.05,0.05), 0.9, 0.9, linewidth=1, ec="0", fc='1'), water], "Styrofoam": [patches.Rectangle((0.05,0.05), 0.9, 0.9, linewidth=1, ec="0", fc='0.9'), water], "Cu in Air": [patches.Rectangle((0.05,0.05), 0.9, 0.9, linewidth=1, ec="0", fc='1'), waterCu], "Cu in Water": [patches.Rectangle((0.05,0.05), 0.9, 0.9, linewidth=1, ec="0", fc=water_color), waterCu] } shapes = [ rect((0.4,-0.13),(0.6,0.01), fc="1", ec="0", linewidth=1), *container_dict[container], patches.Rectangle((0.36,0.15), 0.64-0.36, 0.08, fc="#835828", linewidth=0.5, ec="0"), arrow(150-current*(120)/5), ] for shape in shapes: ax.add_patch(shape) ax.add_line(lines.Line2D([0.40, 0.35, 0.35, 0.358], [-0.05, -0.05, 0.18, 0.18], color="0", linewidth=0.75)) ax.add_line(lines.Line2D([0.60, 0.65, 0.65, 0.642], [-0.05, -0.05, 0.18, 0.18], color="0", linewidth=0.75)) ax.text(0.43, -0.185, "Current", fontdict=dict(size=8)) ax.text(0.47, 0.17, "1 Ω", fontdict=dict(size=8, color='1')) ax.set_xlim(0, 1) ax.set_ylim(-0.2, 1) # ax.set_aspect('equal') return fig, ax def simulate(Tsys, Tsurr, current, work, container): c = container work += current**2 * dt cp = 18.01 * cP_water(Tsys) Tsys = Tsys + (current**2 *dt - c*(Tsys-Tsurr)*dt)/cp return work, Tsys dt = 2.0 def run(): data_default = dict(t=[0], Tsys=[20.0],work=[0]) st.markdown("""# First Law of Thermodynamics This interactive lets you explore the first law of thermodynamics for a system consisting of 1 mol of water at a constant pressure of 1 atm. The sliders let you - Control the temperature of the system ($T_\\text{sys}$) and surroundings ($T_\\text{surr}$). - Do work on the system by controlling the current (0 to 5 A) through a 1 Ω resistor. - Choose the walls of the container; note that the dewar has perfectly adiabatic walls. """) if 'running' not in st.session_state: st.session_state.running = False containers = {"Dewar": 0, "Styrofoam": 0.03, "Cu in Air": 0.3, "Cu in Water": 10} containers_list = list(containers.keys()) container_index_dict = {name: i for i, name in enumerate(containers_list)} if 'container' not in st.session_state: st.session_state.container = "Dewar" if 'data' not in st.session_state: st.session_state.data = copy.copy(data_default) Tsys = st.sidebar.slider("System temperature (°C)", value=float(st.session_state.data["Tsys"][-1]), max_value=100.0, min_value=0.0, step=0.1) Tsurr = st.sidebar.slider("Surroundings temperature (°C)", value=20.0, max_value=100.0, min_value=0.0, step=0.1) current = st.sidebar.slider("Current (A)", value=0.0, min_value=0.0, max_value=5.0, step=0.01) container = st.sidebar.selectbox("System walls:", containers_list) st.session_state.container = containers[container] button_text = "Pause" if st.session_state.running else "Run" start_stop_sim = st.sidebar.button(f"{button_text} simulation") if start_stop_sim: st.session_state.running = not st.session_state.running if st.session_state.running: # Reset temperature... st.session_state.data["Tsys"][-1] = Tsys st.experimental_rerun() reset_simulation = st.sidebar.button(f"Reset simulation") if reset_simulation: st.session_state.running = False st.session_state.data = copy.copy(data_default) st.session_state.container = "Dewar" st.experimental_rerun() if st.session_state.running: st.markdown("### Simulation state: running") else: st.markdown("### Simulation state: paused") work = st.session_state.data["work"][-1] Tsys = st.session_state.data["Tsys"][-1] st.markdown(f"""## Properties $T_{{\\text{{sys}}}}$ = {Tsys:.2f} °C, &nbsp; &nbsp;$T_{{\\text{{surr}}}}$ = {Tsurr:.2f} °C Total work $w$ = {work:.2f} J, &nbsp; &nbsp; Walls: {container} """, unsafe_allow_html=True ) fig, ax = draw(current, container) st.pyplot(fig) show_data = st.checkbox(label="Show data") save_excel_button = False if show_data: df = pd.DataFrame(st.session_state.data) df.rename(columns={"work": "work (J)", "Tsys": "Tsys (°C)", "t": "Time (s)"}, inplace=True) st.write(df) filename = st.text_input("Filename:", value="CHE341-1stLaw-data") save_excel_button = st.button("Save to Excel") if save_excel_button: write_excel(df, filename) # Needs to be at the bottom if st.session_state.running: work, Tsys = simulate(Tsys, Tsurr, current, work, st.session_state.container) st.session_state.data["work"].append(work) st.session_state.data["Tsys"].append(Tsys) st.session_state.data['t'].append(st.session_state.data['t'][-1]+dt) time.sleep(0.5) st.experimental_rerun() if __name__ == '__main__': run()
py
1a569a60fe15963ff8bd498f56f7244681de2332
# Copyright 2016 Mycroft AI, Inc. # # This file is part of Mycroft Core. # # Mycroft Core is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Mycroft Core is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Mycroft Core. If not, see <http://www.gnu.org/licenses/>. from __future__ import print_function from adapt.intent import IntentBuilder from mycroft.skills.core import MycroftSkill, intent_handler from mycroft.util.log import getLogger from mycroft.skills.context import * import os import string import re import math __author__ = 'TREE' LOGGER = getLogger(__name__) class MathSkill(MycroftSkill): def __init__(self): super(MathSkill, self).__init__(name="MathSkill") @intent_handler(IntentBuilder("MathStartIntent").require("MathStart").build()) @adds_context('MathContext') def handle_math_start(self, message): self.speak('Please provide the first number.', expect_response=True) @intent_handler(IntentBuilder("FirstNumberIntent").require("Num1").require("MathContext").build()) @adds_context('FirstNumberContext') def handle_first_number(self, message): #utterance = message.data.get('utterance') self.num1 = message.data.get("Num1") self.speak('Please provide the second number.', expect_response=True) print(self.num1) @intent_handler(IntentBuilder("SecondNumberIntent").require("Num2").require("FirstNumberContext").build()) @adds_context('SecondNumberContext') @removes_context('FirstNumberContext') def handle_second_number(self, message): #utterance = message.data.get('utterance') self.num2 = message.data.get("Num2") self.speak('What operation would you like to do', expect_response=True) print(self.num2) @intent_handler(IntentBuilder('CalculateIntent').require('Calculate').require('SecondNumberContext').build()) @adds_context('CalculateContext') @removes_context('SecondNumberContext') def handle_calculate(self, message): utterance = message.data.get('utterance') #print(utterance) if "add" in utterance: self.answer = float(self.num1) + float(self.num2) self.speak('The answer is {}.'.format(self.answer)) elif "multiply" in utterance: self.answer = float(self.num1) * float(self.num2) self.speak('The answer is {}.'.format(self.answer)) elif "divide" in utterance: self.answer = float(self.num1) / float(self.num2) self.speak('The answer is {}.'.format(self.answer)) elif "subtract" in utterance: self.answer = float(self.num1) - float(self.num2) self.speak('The answer is {}'.format(self.answer)) self.speak('Would you like to perform another operation?', expect_response=True) @intent_handler(IntentBuilder('NextCalculationIntent').require('Calculate').require('Num').require('CalculateContext').build()) def handle_next_calculation(self, message): utterance = message.data.get('utterance') self.num = message.data.get("Num") print(utterance) print(self.num) if "add" in utterance: self.answer = float(self.answer) + float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "multiply" in utterance: self.answer = float(self.answer) * float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "x" in utterance: self.answer = float(self.answer) * float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "divide" in utterance: self.answer = float(self.answer) / float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "subtract" in utterance: self.answer = float(self.answer) - float(self.num) self.speak('The answer is {}.'.format(self.answer)) elif "square root" in utterance: self.answer = math.sqrt(self.answer) self.speak('The answer is {}.'.format(self.answer)) self.speak('Would you like to perform another operation?', expect_response=True) @intent_handler(IntentBuilder("TangentIntent").require("Tangent").require("Num").build()) def handle_tangent(self, message): utterance = message.data.get('utterance') self.num = message.data.get("Num") number = float(self.num) if "degrees" in utterance: self.answer = math.tan(math.radians(number)) self.speak('The answer is {:f} degrees.'.format(self.answer)) elif "radians" in utterance: self.answer = math.tan(number) self.speak('The answer is {:f} radians.'.format(self.answer)) else: self.answer = math.tan(number) self.speak('The answer is {:f} radians.'.format(self.answer)) def create_skill(): return MathSkill()
py
1a569aa0784f3860c5a1d8d7049086ea828788c8
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helper functions for building example regressor Estimator models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Standard Imports import tensorflow as tf from tensorflow_model_analysis.eval_saved_model import export from tensorflow_model_analysis.eval_saved_model import util def make_regressor_input_fn(feature_spec): """Train input function. Args: feature_spec: a dictionary mapping feature_name to Tensor or SparseTensor. Returns: A function. """ def _input_fn(): """Example-based input function.""" serialized_examples = [ x.SerializeToString() for x in [ util.make_example(age=1.0, language='english', label=4.0), util.make_example(age=2.0, language='english', label=7.0), util.make_example(age=3.0, language='english', label=10.0), util.make_example(age=4.0, language='english', label=13.0), util.make_example(age=1.0, language='chinese', label=3.0), util.make_example(age=2.0, language='chinese', label=6.0), util.make_example(age=3.0, language='chinese', label=9.0), util.make_example(age=4.0, language='chinese', label=12.0), util.make_example(age=10.0, language='english', label=31.0), util.make_example(age=20.0, language='english', label=61.0), util.make_example(age=30.0, language='english', label=91.0), util.make_example(age=40.0, language='english', label=121.0), util.make_example(age=10.0, language='chinese', label=30.0), util.make_example(age=20.0, language='chinese', label=60.0), util.make_example(age=30.0, language='chinese', label=90.0), util.make_example(age=40.0, language='chinese', label=120.0) ] ] features = tf.io.parse_example( serialized=serialized_examples, features=feature_spec) labels = features.pop('label') return features, labels return _input_fn def make_classifier_input_fn(feature_spec, n_classes=2, label_vocabulary=None): """Train input function. Args: feature_spec: a dictionary mapping feature_name to Tensor or SparseTensor. n_classes: set for multiclass. label_vocabulary: (Optional) Label vocabulary to use for labels. Returns: A function. """ def _input_fn(): """Example-based input function.""" english_label = label_vocabulary[1] if label_vocabulary else 1.0 chinese_label = label_vocabulary[0] if label_vocabulary else 0.0 if n_classes > 2: # For multi-class labels, English is class 0, Chinese is class 1. chinese_label = label_vocabulary[1] if label_vocabulary else 1 english_label = label_vocabulary[0] if label_vocabulary else 0 serialized_examples = [ x.SerializeToString() for x in [ util.make_example(age=1.0, language='english', label=english_label), util.make_example(age=2.0, language='english', label=english_label), util.make_example(age=3.0, language='chinese', label=chinese_label), util.make_example(age=4.0, language='chinese', label=chinese_label) ] ] features = tf.io.parse_example( serialized=serialized_examples, features=feature_spec) labels = features.pop('label') if n_classes > 2 and not label_vocabulary: labels = tf.sparse.to_dense(labels, default_value=-1) return features, labels return _input_fn def make_example(age, language, label=None): example = tf.train.Example() example.features.feature['age'].float_list.value.append(age) example.features.feature['language'].bytes_list.value.append(language) if label: if isinstance(label, list): example.features.feature['label'].int64_list.value.extend(label) else: example.features.feature['label'].float_list.value.append(label) return example def linear_columns(include_label_column=False): """Return feature_columns for linear model.""" language = tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list( key='language', vocabulary_list=('english', 'chinese'))) age = tf.feature_column.numeric_column(key='age', default_value=0.0) features = [age, language] if include_label_column: label = tf.feature_column.numeric_column(key='label', default_value=0.0) features.append(label) return features def dnn_columns(include_label_column=False, n_classes=2): """Return feature_columns for DNN model.""" language = tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( key='language', vocabulary_list=('english', 'chinese')), dimension=1) age = tf.feature_column.numeric_column(key='age', default_value=0.0) features = [age, language] if include_label_column: label = tf.feature_column.numeric_column(key='label', default_value=0.0) if n_classes > 2: label = tf.feature_column.categorical_column_with_identity( key='label', num_buckets=n_classes) features.append(label) return features def regressor_extra_metrics(features, labels, predictions): return { 'my_mean_prediction': tf.compat.v1.metrics.mean(predictions['predictions']), 'my_mean_age': tf.compat.v1.metrics.mean(features['age']), 'my_mean_label': tf.compat.v1.metrics.mean(labels), 'my_mean_age_times_label': tf.compat.v1.metrics.mean(labels * features['age']), } def classifier_extra_metrics(features, labels, predictions): """Returns extra metrics to use with classifier.""" if 'logistic' in predictions: metrics = { 'my_mean_prediction': tf.compat.v1.metrics.mean(predictions['logistic']), 'my_mean_age': tf.compat.v1.metrics.mean(features['age']), } if labels.dtype != tf.string: metrics.update({ 'my_mean_label': tf.compat.v1.metrics.mean(labels), 'my_mean_age_times_label': tf.compat.v1.metrics.mean(labels * features['age']), }) return metrics # Logistic won't be present in multiclass cases. return { 'mean_english_prediction': tf.compat.v1.metrics.mean(predictions['probabilities'][0]), 'my_mean_age': tf.compat.v1.metrics.mean(features['age']), } def export_model_and_eval_model(estimator, serving_input_receiver_fn=None, eval_input_receiver_fn=None, export_path=None, eval_export_path=None): """Export SavedModel and EvalSavedModel. Args: estimator: Estimator to export. serving_input_receiver_fn: Serving input receiver function. eval_input_receiver_fn: Eval input receiver function. export_path: Export path. If None, inference model is not exported. eval_export_path: Eval export path. If None, EvalSavedModel is not exported. Returns: Tuple of (path to the export directory, path to eval export directory). """ export_path_result = None eval_export_path_result = None if export_path and serving_input_receiver_fn: export_path_result = estimator.export_saved_model( export_dir_base=export_path, serving_input_receiver_fn=serving_input_receiver_fn) if eval_export_path and eval_input_receiver_fn: eval_export_path_result = export.export_eval_savedmodel( estimator=estimator, export_dir_base=eval_export_path, eval_input_receiver_fn=eval_input_receiver_fn, serving_input_receiver_fn=serving_input_receiver_fn) return export_path_result, eval_export_path_result